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Abstract

The three-dimensional velocity, attenuation and 6-value structure is mapped 

beneath the Katmai group volcanoes, located in south-central Alaska. Data for these 

studies include 4320 earthquakes recorded in the period July 26, 1995 to November 30, 

1999 on a 5-18 station short-period seismograph array.

The velocity structure is determined by inversion o f P-wave travel-times for 8041 

rays from 815 earthquakes. The inversion revealed the lowest velocities (3.6-5.0 km/s) 

centered beneath Novarupta, Trident and Mageik volcanoes between the surface and 4 

km below sea level and moderately lower velocities at 0-6 km depth between Martin 

volcano and Katmai caldera (4.5-6.0 km/s). Higher relative velocities (5.0-6.5 km/s) 

prevail outboard o f the volcanic axis and at Griggs volcano.

The attenuation structure is determined by inversion o f the amplitude spectra roll 

off to obtain t* for 1301 rays from 230 earthquakes in the magnitude range (0.8 < Ml <

1.8). The inversion, which is well constrained in the depth range 0-6 km, reveals higher 

attenuation along the volcanic axis 1 IQ = 0.008-0.018 (55 < Q < 125) and lower 

attenuation in non-volcanic regions o f  the study area l/Q  = 0.01-0.000 (100 < Q < °°). 

The attenuation is greatest beneath Mageik, Trident and Novarupta ( l /Q  = 0.018; Q  = 55) 

between the surface and 6 km below sea level.

Frequency-magnitude distributions are determined by mapping 6-values for 

-1300 earthquakes larger than the magnitude o f completeness (0.7 Ml). The analysis 

reveals high 6-values at Mageik volcano (1.2-2.2), intermediate 6-values at Martin (1.0

1.6) and Katmai caldera (1.2-1.4) and low 6-values at Trident (0.6-1.2).
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Results point to the existence of a large region o f partially molten rock centered 

beneath Mageik, Novarupta and Trident volcanoes at 0-4 km depth. The localized nature 

of the high 6-value zone at Mageik volcano suggests that the magma is discontinuous, 

occurring as several distinct bodies. The deeper high attenuation anomaly might mark 

the now solidified but highly fractured plumbing system associated with the 1912 

Novarupta eruption.
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1

Chapter 1: Introduction

1.0 Introduction

The largest volcanic eruption o f the 20th century occurred in the Valley of Ten- 

Thousand Smokes, Alaska on June 6th-9th, 1912. The event produced -3 0  km3 of 

eruptive materials (Hildreth, 1983) from a new vent at Novarupta and induced the 

collapse of Katmai peak about 10 km to the east The large spatial offset between the 

eruptive vent and the caldera collapse site requires a magma system o f great lateral 

extent. For this reason the subsurface structures in the vicinity o f Novarupta dome and 

Katmai caldera (Figure 1.1) have been topics of great scientific interest in the past several 

decades (e.g. Matumoto and Ward, 1967; Kienle, 1970; Matumoto, 1971; Hildreth, 1983; 

Fierstein and Hildreth, 1992; Ward and others; 1991, Abe, 1992).

The Katmai group o f volcanoes is located on the Alaska Peninsula 80 km south 

east o f King Salmon (Figure 1.1). The volcanoes of the group include, from southwest to 

northeast: Martin, Mageik, Trident, Novarupta, Katmai caldera, Griggs and Snowy 

volcanoes.

Matumoto and Ward (1967), Kubota and Berg (1967) and Matumoto (1971) were 

the first to identify variations in the subsurface structure in the Katmai region. They 

identified regions where S-waves were attenuated. The attenuation was generally greatest 

in the vicinity o f the volcanic axis and at both shallow and mid-crustal depths. At about 

the same time, Kienle (1970) observed a —35 Mgal gravity low located in the vicinity of
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58  •

4 0 *  30 *  20 '  10*  156  •  50 ’  40 *  30 '  20 *  10*  155  •  50 *  40 *  30 *

Figure 1.1: Location map o f the study area. Volcanoes (stars), and important place names 

are shown for clarity. Latitude and longitude are in degrees and minutes north and west 

respectively.
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Katmai pass. Saltus et al. (1991) modeled this gravity anomaly as a spherical body 

centered about 7-9 km below sea level, having a volume o f 280 km3 and a density 

contrast o f  500 Kg/m3. Later, Ward et al., (1991) observed significant travel-time delays 

for a seismograph station south o f Katmai pass. These delays were azimuth dependent 

and were greatest for rays coming from the north of the station. However, the location or 

extent o f the anomaly could not be determined. Recently, Lu et al., (1997) observed an 

interferometric anomaly near Southwest Trident volcano from Synthetic Aperture Radar 

(SAR) images acquired between 1993 and 1995. They interpreted the anomaly as being 

caused by a surface inflation o f several centimeters. From the uplift gradient, Lu et al.,

(1997) inferred a pressure source located 0.8 to 2.0 km below the surface.

These earlier studies suggested that Katmai is a good target for three-dimensional 

imaging o f  the subsurface using modem seismological techniques. The present 

investigation uses three well known techniques (P-wave velocity tomography, P-wave 

attenuation tomography, and 6-value spatial mapping) to image the sub-surface structure. 

Multiple techniques are applied to reduce the inherent ambiguity associated with the 

interpretation o f results from individual methods. The formal thesis, then, is to determine 

if magma is resident in the subsurface, and if  so, to examine its extent and character.

3
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4

1.1 Data

On July 26, 1995, the Alaska Volcano Observatory began continuously recording 

data from a 5-station seismograph network resurrected from an existing United States 

Geological Survey (USGS) network in the Valley o f Ten Thousand Smokes (VTTS).

This network was further augmented in September 1996 when 6 new stations were added 

around Martin and Mageik volcanoes. In August 1998 the network was augmented a 

third time when 7 new stations were added in the northern portion o f the network to bring 

the total network to 18 stations and 24 components (Figure 1.2). The network includes 

15 single component short-period instruments with a 1 Hz natural frequency and 3 three- 

component short-period instruments with a 2 Hz natural frequency. For the period July 

26, 1995 to November 30, 1999,4320 tectonic and volcano-tectonic earthquakes were 

recorded with magnitudes ranging from -0.5 to 4.5 Afr (Figure 1.3).

Upper-crustal seismicity in the Katmai region forms 4 distinct clusters: 1) beneath 

Martin and Mageik volcanoes, 2) Trident volcano, 3) about 2 km west of Katmai caldera, 

and 4) about 5 km due west o f Snowy volcano. Additional diffuse seismicity occurred 

along the volcanic axis in an ENE-WSW belt about 20 km in width (Figure 1.3). 

Earthquake depths were generally shallowest at Trident volcano where seismicity was 

concentrated above 5 km, and reached seismogenic depths o f about 10 km to the 

northeast near Snowy and to the southwest at Martin. Isolated earthquakes having depths 

greater than 10 km were also observed. Griggs volcano and Novarupta, site of the 

paroxysmal 1912 eruption, each had little seismic activity beneath them. Anomalous 

seismicity at 1.0 km above sea level (Figure 1.2, cross-section) may result from a location 

artifact associated with the location program HYPOELLIPSE (Lahr, 1989). The artifact 

is probably caused by earthquakes that were unable to iterate o ff the -1.0 km initial trial
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Figure 1.2: Katmai seismograph stations. Small black circles represent volcanoes while 

large black circles represent seismic stations.
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Figure 1.3: Map and cross-section of seismicity in the Katmai region. Seismicity is from 

the period July 20,1995 to November 31, 1999. Lines are the 3000 foot elevation 

contour. The box in (a) is the cross-section projection for (b).
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depth. A new velocity model and high quality earthquake locations, eliminate this artifact 

(Chapter 5).

1.2 Thesis outline

This thesis is presented in 6 chapters including the Introduction (Chapter 1) and 

the Discussion and Conclusions (Chapter 6). Two chapters are devoted to 6-value 

analysis techniques (Chapter 4 and 5) and one each for the P-wave velocity (Chapter 2) 

and attenuation (Chapter 3). It is noted for clarity that the 6-value analysis in Chapter 4 

was the first study completed because the 6-value analysis included earthquakes located 

with as few as 4 local stations (Chapter 4) while the velocity inversion required at least 8 

P-wave arrival-times for inclusion. However, the development o f the new velocity model 

provided high quality earthquake locations which might change the 6-value results 

presented in Chapter 4. This required a new examination o f  the 6-value results using the 

new earthquake locations and additional data. In Chapter 5, earthquakes are relocated, 

and compared with the earlier published results (Jolly and McNutt, 1999).

13 Breakthroughs and results

This thesis presents new results and methods that are worth specific mention.

First, a new method for removing the site amplification factor from each amplitude 

spectrum is applied (Section 3.3.1). This is the first time that a ‘site specific’ correction 

has been applied in a three-dimensional attenuation inversion. In addition, this thesis
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presents a new method for examining earthquake spectra at their source regions (Section 

3.3.2). This method allows observation of systematic features at the source and proved 

useful for mitigating the effect o f features not related to attenuation in the subsequent

inversion.

The principle scientific results of the thesis include the identification o f a general 

low velocity (Sections 2.5 and 6.2), high attenuation (Sections 3.6 and 6.2) region 

beneath Katmai, Trident, Novarupta, and Mageik volcanoes, and a high 6-value region 

beneath Mageik volcano (Sections 4.6, 5.3 and 6.2). This is the first time that the 

subsurface structures of Katmai have been mapped for these three parameters. This thesis 

also provides the first case study in which 6-value spatial mapping was determined before 

and after a full three-dimensional velocity inversion (Sections 5.2 and 5.3). It is thus an 

important benchmark for studies of this type.

Finally, hazards associated with volcanic eruptions are potentially great, as 

demonstrated at Mount St. Helens, Pinatubo, and Montserrat The effects o f  these 

hazards might be mitigated via analysis of data acquired during a volcano’s quiescent pre

emptive period. This thesis is important as a hazard mitigation resource because 

earthquake locations, seismicity rates, swarm decay rates, and static 6-value estimates 

offer a baseline for comparison to future activity. In addition, the three-dimensional 

tomographic images offer an important indicator o f subsurface magma potential and 

hence the future eruptive potential in the area.

8
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Chapter 2: P-wave velocity inversion

2.0 Abstract

The three-dimensional P-wave velocity structure beneath the Katmai group 

volcanoes is determined by inversion of 8041 rays from 815 earthquakes recorded on a 

local 18 station short-period network. The inversion is well constrained from sea level to 

about 6-8 km below sea level and encompasses all o f  the Katmai volcanoes; Martin, 

Mageik, Trident, Griggs, Novarupta and Katmai.

The inversion, which converged after the 3rd inversion step, reveals a prominent 

low velocity zone (3.6-5.0 km/s) centered at Katmai pass and extending from Mageik to 

Trident volcano. The anomaly is about 20-25% slower than velocities outboard o f the 

region (5.0-6.5 km/s). Moderately low velocities (4.5-6.0 km/s) are observed along the 

volcanic axis between Martin and Katmai caldera. Griggs volcano, located about 10 km 

behind the volcanic axis, has unremarkable velocities (5.0-5.7 km/s) compared to non- 

volcanic regions. The highest velocities are observed between Snowy and Griggs volcano 

(5.S-6.5 km/s). The results yield a 27% reduction in RMS travel-time residual over the 

standard velocity model.

These results provide evidence in favor o f  partially molten rock at shallow depth 

beneath the Mageik-Katmai-Novarupta region. Moderately low velocities beneath Martin 

and Katmai suggest that old, mostly solidified intrusions exist beneath these volcanoes. 

Higher relative velocities beneath the Griggs and Snowy vents suggest that no magma is 

resident in the shallow crust at these volcanoes.
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2.1 Introduction

Ray inversion tomography is now a standard tool for identification o f velocity 

anomalies below the Earth’s surface. The method was first pioneered in the medical 

fields to image the interior o f the human body (Gilbert, 1972; Houndsfield, 1973) and 

was later applied in seismology to image the interior o f  the earth (Aid and Lee, 1976; Aki 

et al., 1977). High resolution subsurface imaging proved valuable, leading to numerous 

other tomographic studies with the same general goal: To determine the variation o f  a 

property (in this case the P-wave velocity) within a volume, through an analysis o f the 

integral o f that property along each of many ray-paths.

Volcanoes provide good targets for tomographic studies because magma is likely 

beneath active and recently active volcanic systems. This magma should have 

fundamentally different elastic properties than the surrounding rock. As an example, the 

P-wave velocity, a  is given by

ct=[(K+(4v/3)) /p]ia 2.0

where k  is the bulk modulus, u is the rigidity or shear modulus, and p is the density. 

Equation 2.0 shows that the presence o f liquids, which do not support shear, and a 

reduction in the shear modulus p, will produce a reduction in the elastic wave velocity. 

Thus, the velocity in partially melted rock should be slower than the velocity in un-melted
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rock of the same composition (Mavco, 1980). For this reason, observed low velocity 

zones beneath volcanic regions are commonly ascribed to the presence o f magma 

(Lorenzen, 1994; Benz et al., 1996; Power et al., 1998).

Katmai is a good target for tomographic study. The region produced the largest 

eruption o f the 20th century at Novarupta, and numerous smaller eruptions from Trident 

volcano. The area exhibited strong S wave attenuation along the volcanic axis 

(Matumoto, 1971) and a strong low velocity anomaly centered at Katmai pass (Ward et 

al., 1991). The latter is approximately coincident with a -35 Mgal gravity low (Kienle, 

1970) and localized uplift (Lu et al., 1997) found using SAR interferometry. These 

independent lines o f evidence point to Katmai as a region that might hold magma at 

shallow depths.

In this study, the travel-time residuals for 885 local earthquakes (Figure 2.1) were 

available for inversion to determine the three dimensional velocity structure at the Katmai 

group of volcanoes (Martin, Mageik Trident, Novarupta, Katmai, Griggs, and Snowy). 

These events had at least 8 P-phases for the earthquake location, an azimuthal gap of less 

than 180 degrees and the nearest station within 15 km o f the earthquake. S-phases were 

not used for the earthquake location process. In subsequent inversion steps the selection 

criteria were reapplied, thus the number o f events and rays available for an inversion step 

was variable. This study uses the algorithm o f  Moran (1997), which was modified from 

an original algorithm by Lees (1989). Moran’s (1997) improvements to the original 

computational methods include: 1) the ability to trace rays above sea level, 2) application 

o f an annihilation operator to the parameter separation technique (Spencer

13
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and Gubbins, 1980 and Pavlis and Booker, 1980) to further mitigate errors associated 

with earthquake mis-locations and 3) improved methods for projecting the latitude, 

longitude, depth pairs into xyz coordinates. The techniques o f this thesis closely follows 

Moran’s (1997).

2.2 Theory

The travel-time o f a ray in the earth can be represented by the path integral

t(E,R)= ^ S(x,y,z)dl, 2.1
L(E.R)

where t is the travel-time, L is the path length between the earthquake E  and the receiver 

R, and S(x,y,z) is the slowness (reciprocal velocity) of the medium along a path segment 

dl. The equation is non-linear because the raypath and earthquake location are dependent 

on the unknown slowness. The problem is linearized by assuming that the actual 

slowness S  is close to a reference slowness S0

AS = S  - So. 2.2

Then a travel-time t can be estimated from the reference slowness and compared to the 

observed travel-time t0, producing a travel-time residual

At = t -  ta. 2.3

The form o f the path integral then becomes

15
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At(E,R) = ^ AS(x,y,z)dl0. 2.4
Lo(E.R)

where At is a travel-time residual, and AS is a departure in slowness from a reference 

slowness for a segment o f  the ray dl0. The problem is then linear because raypath is 

known relative to the reference model.

Consider, next, a multitude o f rays traversing a region. If  the velocity is 

anomalously slow in some part of that region (relative to the reference velocity model), 

then rays which traverse the anomaly will have longer travel-times t, and by Equation 2.3, 

positive travel-time residuals At. This system of equations can be solved by means of a 

matrix inversion

r = C ' S ,  2.5

where r  is a vector of travel-time residuals At, C is a matrix o f ray lengths dl0, and 5 is a 

vector o f unknown slowness values. In practice, the region o f  interest is subdivided into 

numerous blocks, then earthquakes are located and the rays are traced through each block 

as a forward problem. Travel-time residuals and ray lengths are calculated for each block 

and these data are inverted using Equation 2.5 to produce a new slowness model.

Further, the new model can be used to relocate the earthquakes and trace a new set of rays 

and theoretical travel-times. By multiple iterations, the non-linear inversion is reduced to 

a series o f linear inversions for the velocity. This is the generalized goal o f this study.

16
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2 3  Methods

Equation 2.5 can be solved using various mathematical schemes, the most 

common of which is the method o f damped least squares.

5* = (CTC + /? iy lCTr, 2.6

where 5* is the model parameter estimate and k  is the damping parameter. Direct 

solution of Equation 2.6 is unrealistic for large matrix systems. As a result, a host of 

approximate inversion methodologies have been developed. This study uses the LSQR 

method (Paige and Saunders, 1982a and 1982b) to determine an approximate solution to 

the matrix system in Equation 2.S. The method offers strong computational advantages 

over direct inversion methods like Singular Value Decomposition (Press et al.,1996), but 

does not provide a method o f determining model resolution and errors. This shortfall is 

traditionally overcome via empirical reconstruction o f synthetic anomalies, called 

“checkerboards” (Humphreys and Clayton, 1988) and subset re-sampling, called 

“jackknife” (Lees, 1989).

Ray tracing represents a second important aspect in the tomographic method.

This study uses an approximate ray-tracing method developed by Um and Thurber 

(1987). This method assumes that the ray origin and end points are known and that the 

velocity function is smooth and differentiable. The technique offers a fast approximation 

o f  the raypath by iteratively defining a set of mid-points along a ray segment, and 

perturbing the location o f the mid-points based on the velocity gradient. Successive
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iterations yield more ray segments and refined ray trajectories until the traveltime is 

minimized within an established criterion.

23.1 Starting model

Earthquakes in the Katmai region were initially located using the program 

HYPOELLIPSE (Lahr, 1989) and the southern Alaska regional velocity model (See 

Chapter 4; Table 4.1) (Fogleman, 1988). This model was used by Ward et al., (1991) to 

locate seismicity occurring between September, 1987 and December, 1990, and is the 

standard model for earthquake locations at Katmai. To assess the validity o f  this starting 

model, 394 well recorded shocks from the period August 1997 and October 1998 were 

selected. For these events, the layer boundaries and velocities were perturbed while 

monitoring the average RMS residual. The best model determined from this forward 

method had P-wave velocities as summarized in Table 2.1.

For data used in the inversion, the new model reduced the RMS residual from 

0.18 seconds to 0.15 seconds, a reduction o f 16%. Next the earthquakes were relocated 

and station corrections determined. The final one-dimensional locations had station 

corrections as summarized in Table 2.2.

Table 2.1: New 1-dimensional velocity model for tomography study. Positive depths are 

below sea level and the top of the model is 3 km above sea level. HS is a half-space.

Laver Velocity (km/sec) Laver boundary fkml
1 5.0 0.0
2 5.3 3.0
3 5.6 5.0
4 5.9 7.0
HS 6.1 9.0
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Table 2.2: Station corrections for P-arrival times.

STATION P-DELAY STATION P-DELAY
ACH -0.09 KARR 0.39
ANCK -0.05 KAWH 0.08
CAHL -0.09 KBM -0.04
CNTC 0.46 KCE 0.21
KABR -0.08 KCG 0.00
KAHC 0.54 KEL 0.28
KAHG 0.43 KJL -0.04
KAIC 0.23 KVT -0.03
KAPH 0.93 MGLS -0.12

2.3.2 Selection of the damping parameter

The least squares problem o f Equation 2.7 is further parameterized by the addition 

o f smoothing Z, damping and weighting W parameters to the matrix system (Equation

2.6), giving

~wc
8B =

'W 8i
XL 0

The smoothing parameter, Z, is called the 2-D Laplacian operator that applies nearest 

neighbor smoothing in two dimensions. The event weighting matrix, W, is applied based 

on both the arrival time pick quality and earthquake-station distance. The latter 

weighting scheme improved the inversion o f local upper-crustal seismicity in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tomographic analysis of the greater Mt. Rainier area (S. Moran, personal communication, 

2000).

The damping parameter A, the final constraint, adds model smoothing. If  A is 

large, then more weight will be given to the constraint equations relative to the data. If A 

is small then greater weight is given to the data. Highly damped inversions vary little 

from the starting model but also yield little residual reduction. Alternatively, 

underdamped inversions yield highly variable models, including data errors, and have 

high residual reductions.

The selection of A is very important and, as the discussion above implies, is a great 

source of ambiguity. The selection o f  the ‘best’ model must balance model errors against 

residual reduction in a meaningful way. This study uses an analysis o f the tradeoff 

between the damping parameter and the amount o f  error reduction for the linear inversion 

(Table 2.3) to determine the ‘correct’ damping.

Table 2.3: Parameter reduction and average model error reduction at selected damping (A)

values.

20

damping (X) v2 reduction(%) model error (km/s)
25 38.60 0.13
50 37.85 0.12
100 36.78 0.10
125 36.20 0.10
150 35.67 0.08
200 34.43 0.06
400 29.54 0.03
800 23.61 0.02
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For several trial A values, model error and associated residual reduction was monitored. 

Model errors were monitored via the jackknife method (Lees, 1989) and the residual 

reduction was monitored via the combined misfit o f data 81 and model constraints L,W  

and A, which are lumped into a measure o f  parameter reduction (Equation 2.8) called chi-

squared (x2)-

In the end, a damping o f  A =125 was selected as the optimal value. This value provided a 

36% chi-squared misfit reduction in the linear inversion with average model errors o f 

about 0.1 km/s. It is important to note, however, that the strongest velocity anomalies 

interpreted here were successfully resolved at a wide variety o f damping values and so the 

inversion results are considered robust.

2 3 3  Resolution and errors

This study used the checkerboard (Humphreys and Clayton, 1988) and jackknife 

(Lees, 1989) methods as indicators of the resolution and errors associated with the 

inversion. The resolution o f data is controlled by raypath distribution, model 

parameterization, and smoothing (Moran, 1997). Raypath distribution is critical to 

resolution o f  anomalies, as blocks which are not hit by rays will not be used in the inverse 

problem, while blocks with many rays traversing from many directions will be well 

constrained. The model parameterization provides a measure o f the resolving capabilities

2.9
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of the interpreted blocks. For example, a 1-km anomaly will not be successfully imaged 

in a 10-km by 10-km block inversion, and highly smoothed inversions cannot resolve 

structures the scale o f the minimum block size. This is because high >.’s yield highly 

smoothed inversions that may miss strong velocity contrasts.

The checkerboard procedure used here involves defining many spiked regions 

with 10% variability in the velocity structure (compared to the one-dimensional reference 

model), and calculating a new set of travel-times through this hypothetical velocity 

structure. Using these new travel-times, the data are inverted for the slowness structure. 

The resulting inversion indicates the ability o f  the existing ray coverage to reproduce the 

hypothetical velocity structure. Well-resolved regions of the model will retain the 

structure o f the many spikes model, while in poorly resolved regions, the anomalies will 

become smeared out and the hypothetical structure will become incoherent.

The variance o f the inversion is controlled by errors in the data including mis- 

picks and incorrectly determined raypaths. Mis-picks also result in mis-located 

earthquakes, an important problem which is mitigated in both the earthquake relocation 

and the data filtering processes. A common measure of the variance is given by the 

jackknife method. In this method, the data set is cut into k  subsets, each containing 

(n -n/k) earthquakes. An inversion is completed on each subset and the standard 

deviation in each slowness block is determined. For blocks traversed by many rays having 

well described characteristics the standard deviations of the inversions are small and the 

blocks are well determined. For poorly sampled blocks, or blocks with highly variable 

travel times, the standard deviations are large.

22
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One drawback to the jackknife inversion method is that it is only useful for 

estimating errors in a linear inversion (Moran, 1997). To estimate the errors o f a full non

linear inversion, one must compute Jd" jackknife models where m is the number of steps 

to complete the inversion. For example, if  you wished to find an estimate o f the errors 

associated with the fifth iteration of a non-linear inversion, and you separated the model 

into 20 jackknife models, tha t you would need to compute 20s = 3200000 inversions and 

average the results. To attempt such an analysis is unrealistic and is not completed in this 

study. For this study, and others, the jackknife errors are determined for the linear 

inversion. This error estimate represents an approximate measure of the errors of the 

whole non-linear inversion under the assumption that errors o f the linear inversion are o f 

the same order as the errors o f subsequent inversion steps.

2.4 Procedural outline

The following outline provides the method used in this inversion study. The 

procedures follow closely those of Moran (1997) and include:

1) Select earthquakes for inversion.

2) Select subset o f  high-quality events for forward modeling.

2a) Iteratively perturb layer boundaries and velocities from top o f model 

downward while monitoring average RMS.

2b) Select best one-dimensional velocity model based on minimum average 

RMS.

23
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3) Relocate all earthquakes in best one-dimensional model and compute station 

corrections.

3a) Fix old locations and compute residuals in reference one-dimensional 

model.

3b) Compute P-wave station corrections for all recording stations.

3c) Relocate earthquakes with new station corrections.

3d) Repeat step 3b and 3c until station corrections stop changing.

4) Compute final locations in one-dimensional model using station corrections of 

step 3.

5) Perform initial inversion for velocity parameters.

5 a) Re-compute travel-time residuals without station corrections and using 

locations derived in step 4.

Sb) Remove all raypaths outside study area.

5c) Remove all events outside the initial selection criteria o f step 1.

5d) Invert the data for new velocity model.

6) Select damping parameter based on trade-off analysis.

7) Redo step 5 at the selected damping parameter.

8) Perform next inversion step.

8a) Relocate the earthquakes using prior inversion model.

8b) Trace rays and calculate new residuals using inversion model.

8c) Invert for new velocity model.

24
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8d) Monitor resultant model and misfit reduction. If  models stop changing 

and misfit reduction is minimized then go to step 9, otherwise repeat step 8a.

9) Select the final model and estimate resolution and errors using checkerboard 

and jackknife methods.

25
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2.5 Inversion results

Nine iterations for the velocity structure were completed on the data. For each 

model, the reduction in the chi-squared misfit (x2) was monitored (Table 2.4). The model 

selected for interpretation (Figure 2.2-2.11) and further study was iteration step 5. This 

inversion step included 8041 rays from 815 earthquakes and had the lowest misfit 

reduction of all models (Table 2.4). It is noted, however, that this inversion step is not 

significantly different from prior or following inversion steps, and the interpretation and 

subsequent analysis would not change with use o f another step. The final model 

(iteration 5) yielded an average RMS travel-time residual o f  0.13 s. This is a reduction o f  

13 % over the best one-dimensional velocity model (Table 2.1) which had an average 

RMS o f 0.15 seconds, 27 % reduction in the average RMS compared to the one

dimensional model used in standard processing (Table 4.1). Tomographic results for the 

final model (iteration 5) are shown in Figures 2.2, 2.4, 2.6, 2.8 and 2.10. In addition, for 

each layer, the associated jackknife and checkerboard tests are shown (Figure 2.3,2.5,

2.7, 2.9, and 2.11).

Checkerboard and jackknife analysis (Figure 2.3, 2.5,2.7, 2.9 and 2.11) are used 

as a basis to interpret the tomographic results at Katmai. The interpretation is limited to 

regions with adequate reconstruction of the many-spikes model and lower than average 

model errors (< 0.1 km/sec). In the depth range 0-2 km (Figure 2.4), the velocity 

structure is interpretable in a 20-30 km swath between Martin volcano and Trident
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volcano. At 2-4 km depth, checkerboard and jackknife results (Figure 2.5) are well 

resolved from Martin to Katmai caldera and from Griggs volcano to about 5 km south o f 

Martin and Mageik volcanoes. In the depth range 4-6 km, the model is less well resolved 

as the checkerboard inversion is poorly resolved (Figure 2.8,2.9). The uppermost layer 

(Figure 2.2 and 2.3) includes mostly uni-directional rays and the results in this layer are 

probably associated with the static residual of the site. For example, the 0.25 sec travel

time delay at station KCE (Table 2.1) is expressed in the velocity structure as a very low 

velocity region in the vicinity of Katmai pass (Figure 2.3). Layer 5 (6-8 km depth) is 

considered poorly resolved in this inversion because the checkerboard reconstruction 

(Figure 2.11) is not possible and the linear jackknife has too few rays traversing the layer. 

For this reason, the Layer 5 velocity structure (Figure 2.10) is considered ill-resolved and 

un-interpretable.

Table 2.4: Cumulative Chi-squared misfit reduction with iteration number.

37

Iteration #______ Chi-squared reductiont%l

0 36.23
1 19.58
2 10.79
3 10.33
4 7.67
5 6.98
6 9.45
7 8.70
8 10.79
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Within the interpretable regions of the model, the P-wave tomography reveals a 

prominent low velocity zone (3.6-5.0 km/s) centered at Katmai pass, and extending along 

the volcanic axis between Mageik volcano and the edge o f Katmai caldera (Figure 2.3, 

2.5, 2.7, 2.9). In the depth range 0.0-4.0, the anomaly at Katmai pass has velocities of 

about 4.3 km/s while the volcanic axis has velocities o f  about 4.3 km/s to 5.5 km/s.

These velocities are 20-25% lower than velocities observed outboard o f the Katmai pass 

region (5.5-6.0 km/s). The Katmai pass anomaly appears to extend through all model 

layers but is subtle in layer 4 (4-6 km). Here, the velocities are about 5.0 km/s, a 

relatively low value compared to the velocities elsewhere at this depth (5.5-6.6 km/s). 

Mageik, Trident and Novarupta volcanoes have lower relative velocities than both Martin 

and Griggs volcanoes (5.0-6.0 km/s).

The regional velocities in the study area appear to be highly variable but generally 

increase with depth. Uppermost crust at 0-4 km depth has average velocities o f about 5-6 

km/s. This average is taken at stations on non-volcanic bedrock and might reflect the 

average velocity o f the Jurassic Naknek Formation. At depths o f 4-6 km below the 

surface the velocities are 6-7 km/s. These higher velocities might represent granitic rocks 

common in the basement o f the Alaska Peninsula and South-central Alaska (Magoon et 

al., 1976). The highest velocities in the region are observed between Griggs and Snowy 

volcano with velocities between about 6.0-6.5 km/s in the depth range 0-6 km.

A further result o f the velocity inversion is the final locations o f  the high quality 

earthquakes (Figure 2.12). The majority of the 815 events relocate in 3 clusters centered 

at Martin-Mageik volcanoes, Trident volcanoes and Katmai caldera. The earthquakes

38
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Figure 2.12: Map and cross-section o f relocated hypocenters. The 5th inversion step 

used 815 high quality earthquakes and over 8000 rays.
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(Figure 2.12), when compared to earthquakes located using the standard model (Figure 

2.1) have generally tighter clustering at Martin and Mageik volcanoes and a shifting of 

epicenters o f the Katmai caldera cluster from 2 to 3 km north o f  the volcano to directly 

beneath the volcano. An additional feature o f the relocation is the elimination of a 

location artifact (Figure 2.1) for events located 1 km above sea level at Martin, Mageik 

and Trident volcano. The relocation pushed these events to depths o f 0-5 km.

In summary, the new velocity model reduces the RMS travel-time residual by 

27% compared to the standard velocity model. The new model yields anomalously low 

velocities at Katmai pass and along the volcanic axis, consistent with independently 

determined gravity results (Kienle, 1971). Finally, the model appears to yield better 

quality earthquake locations that tighten the clustering o f the Martin-Mageik seismic 

cluster and eliminate an artifact causing earthquakes to locate erroneously at 1 km above 

sea level. These results taken together suggest that the inversion results are improved over 

the prior one-dimensional velocity model. These results in conjunction with new 

attenuation results (Chapter 3) and prior gravity data, provide strong evidence in favor of 

partially molten rock at shallow depth beneath the Mageik-Katmai-Novarupta region. 

Higher relative velocities at Martin and Griggs volcanoes suggest that no magma is 

resident in the shallow crust at these volcanoes. Detailed interpretations o f  the results are 

deferred to Chapter 6 where they are integrated with 6-value and attenuation results of 

Chapters 3 ,4  and 5.
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Chapter 3: P-wave Attenuation

3.0 Abstract

The three-dimensional P-wave attenuation structure o f the Katmai group of 

volcanoes is determined between the surface and 8 km below sea level by inverting 

measured t* values for the anenuation. The data included 1301 rays from 230 

earthquakes recorded on a local 18 station short-period network. The t* calculation was 

determined by regressing the log amplitude of the spectra in the 3.91-13.26 Hz range after 

deconvolving the instrument and site amplification. Linearity o f the regression for t* is 

assured by eliminating earthquakes with source comer frequencies below 15 Hz from the 

inversion. Earthquake locations and raypaths were determined using the velocity structure 

developed in a prior P-wave velocity study (see Chapter 2).

Results o f the inversion suggest that high attenuation occurs along the volcanic 

axis 1 IQ = 0.008-0.018 {Q -  55-125) and centered at Katmai pass (Q = 55), and generally 

lower attenuation outboard 1 IQ =0.01-0.000 (100 <Q< °°). The attenuation results are 

coincident with a low velocity anomaly (-4.3 km/s; see Chapter 2) and low gravity 

anomaly (-35 mgal) also in the vicinity of Katmai pass. The results are consistent with an 

interpretation o f  partially molten rock in the vicinity o f Katmai pass in the depth range 0

4 km below sea level.
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3.1 Introduction

The attenuation o f waves is, in the simplest terms, the decay o f the wave 

amplitude as the wave propagates through a body. The observed decay results from either 

anelastic friction (also called intrinsic attenuation) or by scattering during propagation, 

but does not include the amplitude reduction due to geometrical spreading. Scattering off 

small-scale structures will reduce the amplitude o f the primary wave and generally 

increase the amplitude of the coda, with no loss in energy from the total wavefield. The 

frictional amplitude decay associated with the intrinsic attenuation is given by the unitless 

quantity Q in terms o f the fractional energy loss per cycle

— —  = 3.1
Q( co) 2ji£

Where £  is the peak strain energy and -A£  is the energy loss per cycle. Here Q(u>) is 

inversely related to the strength of attenuation. Most earth problems deal with a decay of 

signal amplitude with time and so the attenuation is reformulated in terms o f the

amplitude as,

A(t) =Aae 2Q 3.2
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where r is the elapsed time along the propagation direction, co is the frequency and A0 is 

the amplitude at a reference distance, usually near the source.

The generalized form o f the attenuation problem discussed above has been applied 

as an earth science problem, and a variety o f methods have been developed over the past 

30 years (Tonn, 1989). The most common methods include the spectral ratios (Solomon 

and Toksoz, 1970; Frankel, 1982) and rise-time methods (Gladwin and Stacey, 1974). 

These methods are applied to individual stations, but the parallel development o f new 

tomographic techniques (Chapter 2) has prompted research in three-dimensional 

attenuation structure using data from both passive (Wittlinger et al., 1983; Scherbaum,

1990; Lees and Lindley, 1994; Wu and Lees, 1996) and active sources (Evans and Zucca,

1988; Zucca and Evans, 1992). The advantage o f  many stations and sources can thus be 

used to form a three-dimensional image of the earth’s attenuation structure.

Attenuation in the earth’s crust is generally dependent on the frequency over a 

selected bandwidth (Patane et al, 1994; Aki, 1980). In these studies, the frequency 

dependence o f Q, as given by the relation Q=Q<fn, ranged between 0.3 < n < 1.6. Despite 

the apparent frequency dependence, attenuation tomography methods (Wittlinger et al., 

1983; Scherbaum, 1990; Lees and Lindley, 1994) have generally assumed that attenuation 

is frequency independent (constant Q with frequency) over the bandwidth o f interest

A second assumption o f  passive source attenuation studies relates to the behavior 

o f the source spectra. Inversion methods by Scherbaum, (1990), and Lees and Lindley,

(1994) assume that the source spectra behaves according to the Brune (1970) model with 

a flat frequency response below the comer frequency and a 1/co2 rolloff above.
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Departures from this model are then ascribed to the whole-path attenuation. However, 

Patane et al., (1994) have shown that attenuation-corrected spectra at Etna volcano roll 

o ff above the comer frequency according the relation 1/co3 in accordance with more 

complicated source models (Dahlen, 1974; Boatwright, 1980). This apparent ambiguity 

casts some doubt on three-dimensional tomographic techniques that model the 

attenuation above the comer frequency and leads to the fundamental question: are these 

methods inverting for variations in the attenuation, or a complex combination o f both the 

source and the attenuation? Rather than to answer this difficult question, it is assumed 

that one common feature of the source models can be relied upon, namely that the source 

amplitude is flat below the comer frequency. Then, the only issue is to select earthquakes 

with comer frequencies above the bandwidth o f interest and to determine the attenuation 

below this passband. This is the method of Wittlinger et al., (1983) and also o f this study.

3.2 Theory

The observed spectra Sp(f) can be represented in the form

sp(f) = S0(f)Pa(f)Si(f)l(f), 3.3

where S0(f) is the source, Pa(f) is the path, Si(j) is the site amplification, and 1(f) is the 

instrument response. The generalized goal then is to reduce the effects o f the site and
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instrument, such that the whole path attenuation will be the dominant parameter of the

inversion.

49

3.2.1 Attenuation measurement (t*)

The amplitude spectrum of an earthquake is often exploited under the assumption 

of constant Q with frequency. Under this assumption, higher frequency waves decay more 

quickly than low frequency waves over the same path lengths and the Q  can be estimated 

directly from the spectra. Substituting equation 3.2 into equation 3.3, the spectral 

amplitude is

The exponent can be eliminated by taking the log o f both sides, and with co = 2itf, the 

relation is expressed

SP(f) = Sa(f) 10) S,(f) e 2Q . 3.4

Log (Sp0 )/S o0) S ffl  10)}= -Kft/Q , 3.5

then the relation is linear o f  the form

Log (Sp0) ) = Log ( So0) SiO)  10)) -  (it t/Q V 3.6
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where (it t/Q) = t*. Thus the slope o f the log amplitude relation for the spectra gives the 

parameter t* under the assumption that Q is independent o f frequency. In this general 

relation the slope (t*) is steeper for high attenuation and shallower for low attenuation. 

For the special case o f no attenuation the slope would be flat and t*  would be 0. Also 

note from the left side of equation 3.5 that deconvolution o f the instrument and site Sff) 

and 1(f) can be completed to reduce their effect on the raw spectra. Furthermore, 

deconvolution o f  the source S0(f) is trivial as it is a constant with frequency as long as the 

comer frequency is higher than the frequency o f  interest.

3.2.2 Inversion

The attenuation inversion is analogous to the P-wave velocity inversion where the 

attenuation is ascribed to the path by the relation

Where 1/Q is the unitless attenuation, 1/V is the slowness, and dr  is an incremental path 

length. Consider next an abundance of rays traversing a region having an inhomogeneous 

attenuation structure. Then, rays traversing locales having higher attenuation will be 

imparted with higher r*’s, and rays traversing locales with lower attenuation will be 

imparted with low t*'s. For this general problem the region can be subdivided into

3.7
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numerous blocks and l/Q  values can be assigned to each o f  the blocks as long as the 

slowness and incremental path length are known. This is completed by inversion of the 

matrix system

B = C X , 3.8

where C is a matrix o f P-wave travel-time values (determined from path lengths and 

velocities), AT is a row matrix o f the unknown l /Q s and B  are the known t* values.

Unlike the velocity inversion problem in Chapter 2, this equation is linear because the 

path lengths and velocities are known. Hence, only one inversion is required.

3 3  M ethods

Earthquakes in the Katmai region having magnitudes from 0.8 to 1.8 M l were 

selected for analysis. Each waveform was examined visually, and spectra were calculated 

for on-scale phases recorded at 100 samples per second on the 12-bit analog system 

(Figure 3.1). Spectra were calculated using a 128 sample Fast Fourier Transform (FFT) 

for both the P-phase and the pre-event noise (Figure 3.2). The P-phase spectral window 

begins 15 samples before the P-onset as determined by standard AVO processing while 

the noise window is determined 300 samples before the P-onset The FFT window has a 

10% Hamming taper (raised cosine) and S-phase contamination was mitigated by 

excluding spectra with S-P times less than 1.2 seconds. A total o f 327 events were 

examined and 2977 spectra were calculated. The calculated spectra have a frequency 

resolution o f 0.783 Hz, but neighboring amplitude values are averaged producing

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



co
un

ts

52

2000 

1500 

1000 

500 

O' 

-500 

-1000; 

-1500 

-2000

P S

10

Event 980101191003k 
at station KCE

111 'M •

20 30

seconds
40 50

Figure 3.1: Example velocity function for event 980101191003p at station KCE. 

Spectra were calculated at the analyst selected P arrival time shown.
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Figure 3.2: Amplitude spectra for typical earthquake. The spectra were calculated via a 

128 sample Fast Fourier Transform for P-phase and pre-event noise. Stars and pluses 

are the averaged amplitude for the spectra at 1.56, 3.91, 6.25, 8.59, 10.94, 13.28, 15.63, 

17.97, 20.31, 22.66 and 25.00 Hz. These averaged amplitude data were saved for 

further analysis.
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smoothed spectral amplitudes at 1.56, 3.91, 6.25, 8.59, 10.94, 13.28, 15.63, 17.97, 20.31, 

22.66 and 25.00 Hz (Figure 3.2). This scheme eased programming, databasing and 

processing o f  the spectra before the final inversion.

33.1 Instrument and site

The nominal instrument frequency response 1(f), is well known and deconvolved 

directly from the observed amplitude spectra. The site response Si(f), also called the site 

amplification factor, is determined in a multi-step process and then used to deconvolve 

the site response. As a first step, low quality spectra are removed by requiring signal to 

noise ratios greater than two and at least 5 good spectra per earthquake. For the 327 

events analyzed, 129 earthquakes survived this requirement. For each survivor, a log- 

averaged spectrum was calculated (Figure 3.3) and the spectrum from each station is 

divided by the log-averaged spectrum, producing station amplifications relative to the 

average earthquake spectrum. Then, for each station, the totality o f site amplification data 

is log-averaged. This log-average is the site amplification factor for a given station. The 

results for all stations in the study area are summarized in Figure 3.4 and Table 3.1. The 

principle result is the identification o f strong amplification in the 17-20 Hz range at 

stations ACH, KAWH, KBM and KVT (Figure 3.4). It is surmised that high frequency 

amplification at these sites might result from resonance o f  the 1912 ignimbrite sheet or 

other near surface layer. I f  the P wave velocity is ~5 km/s and the resonance is 15-18 Hz, 

then the scale length o f the resonator is ~0.20-0.29 km. This length is roughly equal to
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Figure 3.3: Spectra for event 980217200639.p. Stations used are KCE (green), KBM 

(cyan), KCG (blue), KJL (black), KVT (magenta). Connected red lines are the log 

average o f the individual spectra. Geometric and instrument corrections are applied.
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the thickness o f the ignimbrite sheet (Kienle, 1991) as determined from gravity and 

seismic refraction data. It is also noted that the log-averaged spectrum shown in Figure

3.3 still contains this resonant feature. This suggests that the effect o f  the resonance has 

not been completely removed. Adding more stations to the log-averaged spectra might 

provide a more accurate correction for the site amplification factor. Unfortunately, the 

limited amount of high quality data (Table 3.1) prohibits such an analysis at this time.

As the final step, the average site amplifications (Table 3.1) are applied as corrections to 

each spectrum, thus deconvolving the site amplification factor from the observed spectra 

■Sp6#(Figure 3.5). Direct comparison o f the spectra before (Figure 3.3) and after (Figure 

3.5) the site amplification correction reveals the visual result of the applied correction: 

generally smoother spectra for which systematic effects o f the site have been minimized. 

The corrected spectra (Figure 3.5) thus contain the attenuation Pa(f), and the source S0(f), 

while the site Si(f) and instrument 1(f) effects are minimized.

33 .2  The source

The source spectrum is thought to vary widely with magnitude, stress drop, rupture 

velocity and other features. Such variability impedes any effort to deconvolve the source 

effect. Regardless, it is useful to examine the spectra at the source in  an effort to reduce 

the potential biases from the inversion process. In this study, the log averaged spectra
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Table 3.1: Site amplification correction for each station. The amplification is determined for 

each station at a given frequency (/). The total number of readings per station (n) is reported in 

the final column. Data are determined from 128 sample FFT data.

60

/THz) 1.56 3.91 6.25 8.59 10.94 13.28 15.63 17.97 20.31 22.66 25.00 n

ACH 0.94 0.89 0.86 1.11 1.31 1.89 2.06 1.52 1.85 1.61 1.44 43
ANCK 0.84 0.95 0.88 0.95 0.72 0.81 0.94 0.66 0.82 1.02 1.09 82
CAHL 1.90 0.84 0.55 0.82 0.81 0.45 0.43 0.48 0.41 0.45 0.47 72
CNTC 0.82 1.42 1.14 0.97 1.23 0.86 0.80 0.91 0.90 1.22 1.20 7
KABR 0.94 0.37 0.46 0.38 0.49 0.31 0.24 0.28 0.19 0.17 0.18 25
KAHC 1.02 1.37 0.87 1.26 0.95 0.70 0.46 0.34 0.42 0.48 0.51 3
KAHG 1.68 1.88 2.12 1.91 1.90 1.87 1.73 1.18 2.02 2.50 2.01 7
KAIC 0.87 0.92 0.94 0.92 1.24 1.40 0.92 1.31 1.16 1.43 1.44 12
KAPH 0.42 0.40 0.51 0.68 0.64 0.32 0.44 0.32 0.31 0.39 0.27 3
KARR 0.96 1.61 1.49 1.29 1.39 1.10 1.66 1.29 1.12 1.02 1.53 10
KAWH 1.15 0.66 0.77 1.02 1.57 2.39 1.38 1.21 1.40 1.23 1.05 6
KBM 0.78 1.44 1.01 1.76 2.33 3.18 4.11 3.05 2.75 2.70 3.32 97
KCE 1.35 1.76 1.88 1.74 1.43 1.16 0.72 0.82 0.52 0.33 0.25 55
KCG 1.51 1.52 2.93 1.48 1.38 1.59 1.49 1.71 1.90 1.13 1.52 88
KEL 0.80 0.89 1.08 1.28 1.10 0.70 0.81 0.75 0.49 0.84 0.93 15
KJL 1.25 1.20 1.28 1.30 0.85 0.60 0.54 0.78 0.87 0.82 0.74 31
KVT 0.61 0.44 0.44 0.44 0.45 0.60 0.66 0.90 1.27 1.50 0.97 112
MGLS 0.91 1.30 1.31 0.89 0.93 0.78 0.77 0.75 0.60 0.81 0.96 83
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Figure 3.5: Spectra for event 980217200639.p with site amplification, instrument, and 

geometric spreading corrections applied. Stations used are K.CE (green), KBM (cyan), 

KCG (blue), KJL (black), KVT (magenta). Connected red lines are the log average of 

the individual spectra. Note the improvement over spectra without site amplification 

correction (Figure 3.3).
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used in the site amplification study were grouped based on their locations to observe any 

systematic aspect o f  the amplitude spectra. The data were grouped in a 2 km by 2 km 

lateral grid spacing and were further subdivided into shallow (< 4.0 km depth) and deep 

(> 4.0 km depth) locations. Gridded locations with three or more log averaged spectra are 

shown in Figure 3.6 and 3.7. Further, these log averaged spectra were also log averaged 

producing a ‘typical’ spectrum for that locale. The dominant feature is the observation o f  

a peak in the 15-18 Hz range for many o f  the spectra. This observation suggests that the 

site amplification study o f  Section 3.3.1 has not completely removed the site resonance. 

Further, an inversion using data from this frequency range might be biased, producing a 

potentially unstable inversion. To avoid this potential bias, the feature is bypassed by 

inverting the data in the frequency range 3.91-13.28 Hz.

To further assess the spectra at the source, the slope of the frequency roll off 

between 3.91-13.28 Hz and its associated 95% confidence interval is calculated for each 

locale and plotted in map view for shallow (Figure 3.8) and deep earthquakes (Figure 

3.9). The slopes o f Martin, Mageik, and Trident clusters appear to have higher rolloffs 

than locations outboard o f  the volcanoes (Figure 3.8 and 3.9). Note that the 95% 

confidence intervals and hitcounts for each of the blocks are shown to offer an estimate o f 

the confidence of the observations.

Results o f the analysis suggest a strong systematic variation o f  the slope in space. 

The largest anomalies occur at shallow depth (less than 4 km) and centered near the low 

velocity zone of our P-wave inversion. Outboard o f the volcanoes, and at greater depth, 

the slopes are flatter. Grid box 4, located near Angle Creek, is an exception. The spectra
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Figure 3.6: Log averaged spectra from earthquakes at given source regions. The 

regions are for shallow earthquakes (-3 to 4 km) shown in Figure 3.8 at, a) Martin, b) 

Mageik, c) Trident and d) Angle Creek. Red lines are the log averaged spectra for 

earthquakes with at least 5 high quality spectra. The blue star connected lines are the 

log average of all earthquakes within the grid block.
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Figure 3.7: Log averaged spectra from earthquakes at given source regions. The 

explanation is the same as Figure 3.6 for deeper events (4 km -12 km) located at a) 

Martin-Mageik, b) Katmai, and c-d) Snowy in Figure 3.9.
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Earthquake locations and 4x4km grid Negative of slope (3.91-13.28 Hz)
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Figure 3.8: Grid map of earthquake spectra for depth range o f 3 km above sea level to 4 

km below sea level. The upper left panel shows the defined grid (blue line) and 

earthquakes in the study area (magenta +). The upper right panel shows the negative of 

the regressed slope for the frequency range 3.91-15.63 Hz. Two quality measures o f the 

regression for each grid block are shown: Hitcounts in the lower left panel, and 95% 

confidence interval o f the regressed slope in the lower right panel. Grid nodes are 4 km 

by 4 km. Letters a-d in the slope panel refer to Figure3.6a-d.
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Figure 3.9: Grid map o f earthquake spectra for depth range o f 4 km below sea level to 

12 km below sea level. Letters a-d in slope panel refer to Figure 3.7 a-d. See Figure

3.8 for explanation.
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from this locale appear to have an anomalously steep slope. On closer examination o f  the 

spectra from this grid box (Figure 3.1.4), it is apparent that the frequency rolls off rapidly 

at less than 13 Hz. Such spectra might have low source comer frequencies that could 

contaminate the inversion results.

To assess the importance o f source comer frequencies on the inversion, 

parameters such as the moment, stress drop, and rupture velocity are evaluated. For 

simplicity, the Haskell dislocation model is assumed. This model predicts that the 1/oj 

comer frequency, Fc is inversely proportional to the rupture duration id  

Fc = 2/xd. 3.10

Because the rupture propagates, its duration must be dependent on the receiver location in

relation to the rupture direction. If  the rupture propagates towards the receiver, then

xj (towards) = £ (l/v r -l/ar), 3.11

where L is the length o f the fault, vr is the rupture velocity and a  is the P-wave velocity.

If the rupture propagates away from the receiver then

xd (away) = £( 1 /vr + 1 /or). 3.12

It is assumed that the length of a fault is related to the size o f the earthquake, and 

A a=  1M0 /16 r3 3.13

is an appropriate measure for the relation o f the moment M0 to rupture area (Brune, 1970) 

where r  is the radius o f a circular rupture. Equations 3.10-3.13 offer direct estimates o f  

the comer frequency and its relation to rupture characteristics such as the stress drop, 

rupture size and rupture velocity. For example, three earthquakes having magnitude 0.8,

1.2 and 1.8 AfL are converted to moment release (Kanamori, 1977) using the relation
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Mw = (2/3)LogioA/0 -  10.7 3.14

and assuming Ml = Mw. Next, the rupture area is determined at several stress drop values 

(Equation 3.13), which in turn are converted to an average rupture duration (Equation 

3.11 and 3.12) and the comer frequency (Equation 3.10). For this analysis (Figure 3.10), 

the stress drop varies from 5-150 bars (0.5-15xl06 dyne/cm2), the P-wave velocity is 5.0 

km/s, and the rupture velocity is 0.8 times the S-wave velocity o f  2.9 km/s. The average 

stress drop for intra-continental earthquakes is known to be about 100 bars while the 

stress drop for inter-continental earthquakes is about 30 bars (Harr et al., 1984). The 

analysis suggests that earthquakes in the study area should have comer frequencies above 

40 Hz for the majority o f the data. However, a small proportion o f  the data might be 

contaminated by lower comer frequencies associated with very low stress drops, very 

slow rupture velocities or strong directivity effects (Equation 3.5 and 3.6). It is surmised 

that high frequency rolloffs o f Figure 3.8 and 3.9 result predominantly from the 

attenuation o f earthquake rays propagating from the common source areas. If  so, then the 

spectral rolloff maps in Figure 3.8 and 3.9 represent bulk attenuation measurements 

which are mapped at the source.
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180 -----------------------------------------------------------------------------------------------
Average intraplate

Stress drop (Dyne/cm2) x 106

Figure 3.10: Stress drop (dyne/cm2) versus comer frequency (Hz) for three earthquakes 

having magnitude 0.8 Ml (top), 1.2 Ml (middle) and 1.8 Ml (bottom). The comers are 

based on a simple Haskell source model with P-velocity of 5.0 km/s, S velocity 2.8 

km/s, and an earthquake rupture velocity of 2.25 km/s. The comer frequency is above 

the frequency o f interest (3.91-13.28 Hz) for reasonable stress drops. The abscissa 

range is from 5 to 150 bars (0.5-50x106 dyne/cm2). The average stress drop for an 

intraplate earthquake is about 100 bars.
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3.4 Data fo r Inversion

In this study, 327 earthquakes and 2977 spectra are available for inversion. These 

data were corrected for the site amplification factor and then the spectra for each 

earthquake were reexamined to determine the comer frequency. Application o f the site 

amplification correction (Figure 3.4) allows examination of the comer frequency from 

earthquakes with fewer high quality spectra. Thus, earthquakes with three or more 

spectra with 2X signal to noise ratios are visually examined, and each earthquake whose 

log-averaged spectra rolled off at a rate greater than 1/co2 in the frequency range 3.91

13.28 were excluded from the inversion. Then, for the surviving spectra, the log 

amplitude o f the available spectra were determined and all available spectra were 

regressed by least-squares for the slope (f *). The quality of the regression is determined 

by calculating a 95% confidence interval (Kreyszig, 1993) for the slope. The visual 

analysis and comer frequency filtering left 230 earthquakes and 1301 rays for inversion.

The approximate inverse solver LSQR (Paige and Saunders, 1982a and 1982b) is 

applied to determine the inverse o f the matrix system and a ray tracer (Um and Thurber,

1987) to determine the ray paths through the velocity model. For each ray, a t*  value and 

the standard error is available. The latter is applied as a weighting constraint for each t* 

value (i.e. W  = I/a). Thus, like the P-velocity inversion (Chapter 2), the matrix system is 

given by

r w x t ♦!
3.9

~ w c
8B  =

XL 0
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where X is the damping o f the system, L is the two-dimensional Laplacian, and C  is the 

matrix o f travel-times. This weighted damped least-squares system is inverted for the 

unknown 1/Q values (SB). The choice o f a damping parameter, X, for the attenuation 

inversion is somewhat arbitrary. In their inversion, Lees and Lindley (1994) tested 

several trial damping values and then chose the model providing a reasonable 

compromise between residual reduction and model smoothness. Their primary goal was 

to model structural features having the same wavelength as that o f their velocity 

inversion. At Katmai, the same methodology is applied, producing a 66.9% model 

reduction from a damping o f X = 60.

3.5 Procedural outline

The following outline provides the method used in the attenuation inversion study. 

The procedures include:

1) Select and process earthquake waveform.

la) Visually inspect event to ensure it is within instrumental dynamic range 

(exclude clipped events).

lb) Calculate P and pre-event noise spectra for events surviving step la.

1 c) Deconvolve instrument response.

lc) Save spectra and all other spectra for given earthquake in database.

2) Determine site amplification.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2a) For an earthquake, correct spectra for geometric spreading, plot spectra and 

associated log averaged spectrum.

2b) For earthquakes with 5 spectra above noise criterion, divide each spectrum by 

the log average spectrum. The result is amplification o f  station relative to 

earthquake.

2c) Save amplification data, and repeat step 2 for all earthquakes.

3) Calculate site amplification factor for totality o f data in step 2.

4) Inspect spectra o f  step 2 within source regions.

5) Deconvolve site amplification factor determined in step 3 for all spectra.

6) Examine site and instrument corrected spectra.

6a) Plot spectra for all earthquakes with 3 or more spectra above the noise 

criterion.

6b) Inspect the log averaged spectra for comer frequency. Exclude all earthquakes 

with frequency rolloffs greater than 1/<D2.

6c) Calculate the slope (t*) and standard error o f  the amplitude-frequency relation 

in frequency band o f interest.

7) Invert the slope data.

7 a) Relocate attenuation study earthquakes using final velocity model from 

Chapter 2.

7b) Trace rays using ray-bending techniques o f Chapter 2.

7c) Invert t* data o f  step 6c for three-dimensional attenuation structure (1 /0 .

8) Conduct error analysis using hitcount and jackknife procedures.
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3.6 Errors

Errors associated with generalized attenuation inversions are complex and difficult to 

characterize. Such errors as outlined by Scherbaum (1990) and Lees and Lindley (1994) 

include: 1) assumptions about source models, 2) errors in the velocity model, 3) tradeoff 

between Fc and t*, 4) ambiguity between intrinsic and scattering attenuation, 5) source 

directivity and radiation effects, 6) uncorrected site effects and 7) frequency dependence 

in Q. These issues are addressed in order below.

Source model assumptions (issue 1) do not enter into the inversion because this 

study makes no assumption about the roll off characteristics of the source. It is assumed 

that the source spectrum is flat below the comer frequency; a common feature o f many 

source models. Velocity model errors (issue 2) are addressed by first inverting the data 

for the P-wave velocity (Chapter 2), and then inverting for the attenuation. Errors 

associated with the velocity model are generally small as shown in the jackknife analysis. 

The largest velocity model errors occur on the outer margins o f the velocity model. The 

problem with tradeoff between Fc and t* (issue 3) is not an issue in this inversion method 

because the comer frequency is not a parameter o f  the regression for t*.

The question o f intrinsic and scattering attenuation (issue 4) is not addressed in 

this study, or in prior attenuation inversion studies. Single station methods for separating 

intrinsic and scattering attenuation have been conducted for S-waves from the post-S 

coda (Frankel, 1991). The applicability of this method for a P-wave inversion study is
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doubtful. Instead it is probable that the observed Q is a  combination o f both types o f  

attenuation. Problems with source directivity and radiation patterns (issue 5) were not 

directly addressed. However, the source spectra were examined with respect to latitude, 

longitude and depth (Figure 3.6-3.7) towards a better understanding o f these effects. One 

potential comer frequency anomaly was observed for a small earthquake cluster located at 

Angle Creek (Figure 3.6-4). Source comer frequencies in this cluster are anomalously low 

for a subset of the data. Such events are excluded from the inversion by visual inspection 

and should not bias the final inversion. Site effects (issue 6) are minimized by 

deconvolving the site amplification factor for all stations. We also limit the bandwidth of 

interest to avoid systematic and non-linear effects o f  the source, path and site. The 

frequency dependence o f Q (issue 7) is difficult to assess. Aki (1980) found that Q  

increased with frequency by/ "  (0.5 < n < 0.8) for S-waves in both Japan and central Asia. 

Patane et al. (1994) found that Q in the vicinity o f ML Etna varied with frequency by (0.5 

< n < 1.6). These studies used single station methods, which are not directly applicable to 

the multi-station inversion method used here. If higher frequencies are less attenuating as 

suggested by these studies, then the inversion method will incorrectly estimate the 

attenuation in the frequency range o f interest Assessing the frequency dependence o f Q 

in the Katmai region might be a fruitful area of study in the future. In summary, the 

method applied in this study attempts to minimize the effect o f source comer frequencies 

on the data.
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3.7 Results

The primary results o f the inversion include a broad region o f high attenuation 

located at Katmai pass and extending from Martin volcano to Katmai caldera (Figures 

3.11-20). The detailed interpretations o f the results are saved for Chapter 6 where they 

are discussed in context with three dimensional 6-value, velocity inversion and prior 

gravity, interferometry and seismology results. This section will concentrate on the 

observations, resolution and errors o f the attenuation inversion. Attenuation results are 

shown for layer 1 (Figure 3.11), layer 2 (Figure 3.13), layer 3 (Figure 3.15), layer 4 

(Figure 3.17), layer 5, (Figure 3.19) and presented in 1 IQ so higher values on the color 

scale represent higher attenuation. In the discussion, attenuation will be given as HQ 

with the actual Q values offered in parentheses where appropriate. The resolution and 

errors of the inversion are estimated for layer 1 (Figure 3.12), layer 2 (Figure 3.14), layer 

3 (Figure 3.16), layer 4 (Figure 3.18) and layer 5 (Figure 3.20). As with the prior velocity 

inversion (Chapter 2) the resolution of the attenuation inversion is controlled by raypath 

distribution, model parameterization and smoothing. Unlike the velocity inversion, a 

meaningful method of assessing the combined effects o f model parameterization and 

smoothing (i.e. checkerboard) is not available. Instead, the resolution of the system is 

assessed using hitcount maps (Figure 3.12a, Figure 3.14a, Figure 3.16a, Figure 3.18a, 

Figure 3.20a) showing the number o f rays traversing a given block. This resolution 

method is identical to that followed by Lees and Lindley (1994).
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Figure 3.11:Attenuation model for layer 1 (-3.0-0.0 km depth). The color scale is 

expressed in unitlessl/0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

PH

sag

M .7  

204

a)

b)
■0.00 

0.00623

0.0125

0.0167
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Figure 3.14: Hitcount map (a) and jackknife errors (b) for layer 2, (0.0 to 2.0 km depth 

range). Color scale is number of events (a) and unitless 1/(7 (b).
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Figure 3.16: Hitcount map (a) and jackknife errors (b) for layer 3, (2.0-4.0 km depth 

range). Color scale is number o f events (a) and unitlessl/Q (b).
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Figure 3.17:Attenuation model for layer 4 (4.0-6.0 km depth). The color scale is 

expressed in unitlessl/Q.
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Figure 3.18: Hitcount map (a) and jackknife errors (b) for layer 4, (4.0-6.0 km depth 

range). Color scale is number of events (a) and unitlessl/Q (b).
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Figure 3.19:Attenuation model for layer 5 (6.0-8.0 km depth). The color scale is 

expressed in unitlessl/0.
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Figure 3.20: Hitcount map (a) and jackknife errors (b) for layer 5, (6.0-8.0 km depth 

range). Color scale is number o f events (a) and unitlessl/Q (b).
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The errors associated with the attenuation inversion are determined in a manner 

described in Chapter 2 using the method o f Lees (1989) and Lees and Lindley (1994).

For the jackknife method, the existing dataset was subdivided into 20 subsets each 

containing (n -  n/k) rays and each subset is inverted separately producing a 1 IQ 

measurement for each block. The 20 inversions are averaged producing statistics for each 

hit block. Regions with large variability (yellows and greens) are not well constrained and 

should be viewed with caution (Figure 3.12b, Figure 3.14b, Figure 3.16b, Figure 3.18b 

and Figure 3.20b). A third consideration with the inversion is the variability o f  the 

azimuth and take-off angle o f impinging rays, also called ray anisotropy. Regions o f the 

model with uni-directional rays have poor model resolution even though they may have 

high hit counts. For layer 1 (Figure 3 .12a) where rays traverse from depth to the stations 

in one direction, the model results may be poorly constrained.

Based on both hit count and jackknife errors, the best resolved regions appear to be 

in layers 1-4 associated with the 0-6 km depth range where large continuous blocks of 

blue, green and magenta are observed in the hitcount plots (Figure 3.12a, Figure 3.14a, 

Figure 3.16a and Figure 3.18a). Jackknife error analysis further suggests that the model is 

less well resolved in the northern and southern parts o f  layer 2 and 3 (Figure 3.12b and 

Figure 3.16b) south o f Martin and Mageik clusters where the resolution appears to 

degrade. The attenuation model is interpreted in the 0-6 km depth region (Figure 3.11a 

and b) where hitcounts are greater than 5 and the jackknife errors are small (1 /Q <  0.005). 

In this restricted volume, relatively high attenuation 0.008-0.018 (Q  — 55-125) is 

observed in the 0-6 km range centered on Katmai pass and extending along the volcanic
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axis from Martin volcano to Katmai caldera. The anomalous high attenuation extends 

northward to Griggs volcano which has 1 IQ = 0.01 (Q = 100). Higher attenuation ranging 

from 0.01-0.000 (100 <Q< °°) is observed outboard o f the volcanic axis and at depths 

greater than 6 km below sea level. The depth o f the anomaly appears to be above 6 km 

depth (layer 5; Figure 3.19) where 1 IQ is about 0.000 < 1 IQ < 0.001 (1000 < Q <  °°).

This observation should be viewed with caution however because (Figures 3.20a and b) 

the volume below 6 km is not traversed by many rays.
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Chapter 4: Seismicity and 6-values at the volcanoes o f Katmai National Park, 

Alaska; July 1995-December 1997 

4.0 Abstract

Upper-crustal seismicity located within Katmai National Park occurs mainly 

within four distinct clusters originating near Martin-Mageik volcanoes, Trident volcano, 

Katmai caldera and Snowy volcano. Analyses of earthquake frequency-magnitude 

distributions reveal high b~values beneath Martin-Mageik (—1.5), normal b-values at 

Trident volcano (-1.0), and intermediate b-values at Katmai caldera (-1.3) for all 

seismicity occurring between July 1995 and December 1997. Detailed analyses of 

subsets o f 6-values and hypocenter locations at Martin-Mageik reveal a temporal increase 

in b- value associated with an increase in the maximum depth o f seismicity. The changes 

occurred during a shallow earthquake swarm beneath Mageik volcano between October 

16 and 25, 1996 and again in November-December 1997. Before the swarm, the 

weighted least squares b- value was 1.01 at Martin-Mageik, increased to 1.59 during the 

swarm and remained anomalously high until April 1997. The corresponding maximum 

depth o f seismicity is generally less than 5 km for well located earthquakes occurring 

after September 18, 1996, but shifted to — 10-km during both the October 1996 swarm and 

the November-December 1997 period. The November-December 1997 event is not 

associated with an increase in the rate o f  seismicity or the b~ value. The October 1996 

swarm had, a cumulative moment release o f 5.0x1020 dyne-cm, and decayed from a peak
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rate o f  110 events per day with a modified Omori law />-value o f 1.06 ± 0.11. Modeling 

by the flow law with a 10 km depth limit for seismicity suggests that temperature 

gradients are on the order of20-40°C km '1, in agreement with the /7-value estimate. We 

infer that a simple pressurizing intrusion was not associated with the October swarm 

because higher stresses should increase seismicity and lower the 6-value, the opposite of 

what we observed. Alternatively, an actively degassing intrusion would reduce the 

effective stress and increase the 6-value at shallow depths while the increased stress 

would induce seismicity at depth. Surface temperature measurements taken at the Mageik 

crater lake in July 1995, and again in July 1997, revealed an increase o f  about 10°C in the 

lake water temperature, consistent with a degassing intrusive event.

93

This chapter is excerpted from  Jolly A. D. and McNutt, S. R., 1999, Seismicity at the 
volcanoes o f Katmai National Park; July 1995-December, J. Vole, and Geotherm. Res., 
93, 173-190, 1999.
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A recently installed, permanent, telemetered seismic network in the vicinity o f the 

Katmai group o f volcanoes, Alaska peninsula (Figure 4.1), permits us to characterize 

selected features o f the seismicity for the first time. Spatial and temporal analyses of 

earthquakes recorded between July 1995 and December 1997 in the Katmai region was 

conducted. Rates o f seismicity, spatial clustering, and frequency-magnitude distributions 

were completed with emphasis on the activity before, during, and after a swarm in 

October 1996 beneath Mageik volcano.

At Katmai, earthquakes are observed in four clusters: Martin-Mageik, Trident, 

Katmai caldera, and Snowy (Figure 4.2). At Martin-Mageik volcanoes we observed both 

an increase in the b- value (the slope of the frequency-magnitude relation) and a decrease 

in the maximum depth o f seismicity following the 1996 earthquake swarm. No 

anomalous values were observed near the adjacent volcanoes Novarupta, Trident, or 

Katmai caldera.

Although seismicity is examined, deformation in the volcanic environment may 

occur as a response to either regional or local stress changes, or both. The predominant 

mode of deformation, either plastic flow or brittle failure, is controlled by the material 

properties o f the rock and the applied stress. In the crust, the transition between brittle 

failure and plastic flow is expressed by the occurrence o f earthquakes which are 

constrained above a seismogenic depth o f typically 10 to 20 km. Below this brittle- 

ductile transition, ever-increasing burial temperatures and rock confining pressures reduce 

rock strength and induce plastic flow (Sibson, 1982; Scholz, 1988). Rock strength may 

be reduced in volcanic environments where thermal gradients are steeper, resulting in 

shallower maximum earthquake depths during times o f volcanic quiescence (Stephens

4.1 Introduction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

Katmai Seismic Stations
so*

40*

30*

20'

10 '

A  K E L

Griggs Snowy
★

C N T C  V

A . N C K  V

KJL V

A K V T

★
A  K C G  

KBM^  ★  Katmai CalderaACH KCEA .
V  t  ^  T n d e n t

A  Mageik ~ Katmai Pass
M a r t i n  w  M G L S  

7  C A H L

40* 30* 20* 10* 156 * SO* 40* 30* 20* 10* 155 *50* 40* 30*

Figure 4.1: Index map of the study area in the Alaska Peninsula, south central Alaska, 

and station map showing the locations o f seismic stations used in this study. Open 

triangles are stations which began operation July 27, 1995; solid inverted triangles are 

stations which began operation after September, 1996. Stars show the locations o f  major 

volcanoes in the region.
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Figure 4.2: Seismicity map and WSW-ENE cross-section o f earthquakes located in the 

region between July 27, 1995 and December 31, 1997. Crosses represent earthquakes 

from -3.0 to 0.0 km, triangles 0.0 km to 5.0 km, inverted triangles 5.0 to 10.0 km, 

squares 10.0 km to 20.0 km, and diamonds deeper than 20.0 km. Larger magnitudes are 

given by larger symbols. Solid box represents area o f space-time plot o f Figure 4.3. 

Dashed box represents area used in 6-value cross-section o f  Figure 4.6.
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et al., 1984; Hill, 1992; Jolly et al., 1994). Such quiescent zones may become illuminated 

by seismicity when magma is injected and stresses are concentrated along volcanic 

conduits (e.g., Power et al., 1995; Hill, 1996). Water content may also play an important 

role in the depth o f the brittle-ductile transition (Kirby and Kronenberg, 1987; Hill, 1992) 

because rock strength is reduced both in the brittle and ductile layers when the water 

content is increased, thereby increasing the potential for rock to flow plastically. Such a 

mechanism might apply to volcanic environments where high stress concentrations and 

high deformation rates may increase rock fracture resulting in increased permeability and 

fluid mobility. These would then appear as systematic differences in seismicity.

Seismicity is expressed by the occurrence o f many more small earthquakes than 

large ones, following a power law given as Log N = a - 6M (Gutenberg and Richter,

1954) where N is the cumulative number o f earthquakes having magnitude greater than 

M, and a and b are constants. The slope b is found to vary in predictable ways in both 

regional tectonic (Anderson et al., 1980; Wiemer and Benoit, 1996) and volcanic 

environments (Wiemer and McNutt, 1997; Wyss et al., 1997; Power et al., 1998; Wiemer 

et al., 1998). Higher relative b-values are shown to result from: 1) high thermal gradients 

(Warren and Latham, 1970), 2) lowering o f the magnitude o f applied shear stress (Scholz, 

1968), 3) decreased effective stress (or high pore pressure; Wyss, 1973), or 4) high 

material heterogeneity (Mogi, 1962). In addition, non-fractal scaling or scale saturation 

(Scholz, 1982; Pacheco et al., 1992) or systematic biases associated with magnitudes 

(Zuniga and Wyss, 1995) may modify the frequency-magnitude distribution.

The b- value and depth data is used to place constraints on the likely processes and 

sequence of events before, during, and after the October 1996 swarm near Mageik 

volcano.
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The subsurface structure in the vicinity o f Novarupta dome and Katmai caldera, 

Alaska (Figure 4.1) has been a topic o f great scientific interest in the past several decades 

(e.g., Matumoto and Ward, 1967; Kienle, 1970; Matumoto, 1971; Hildreth, 1987; 

Fierstien and Hildreth, 1982; Ward et al., 1991; Abe, 1992). This interest is spurred in 

large part by the June 6th-9th, 1912 eruption which produced ~30 km3 o f eruptive 

materials (Hildreth, 1987) and induced the collapse o f  Mount Katmai (located ~10 km to 

the east o f Novarupta). The spatial offset between the eruptive vent (Novarupta) and the 

caldera collapse site (Katmai) requires a magma system o f large lateral extent Matumoto 

and Ward (1967), Kubota and Berg (1967) and Matumoto (1971) mapped the location o f  

the magma system in the area. They observed an attenuation of S-waves in the region. 

Kienle (1970), observed a -35 Mgal gravity low in the vicinity of Katmai pass (Figure 

4.1). Later, Ward et al. (1991) observed travel-time delays as large as 0.9 seconds for a 

seismic station south o f Katmai pass. These travel-time delays depended on azimuth and 

were greatest to the north o f the station. Recently, Lu et al. (1997) observed anomalies 

from SAR interferometric images acquired between 1993 and 1995. They interpreted the 

anomalies as representing significant inflation (8 cm) in the vicinity o f Trident volcano. 

From the uplift gradient, Lu et al. (1997) determined a pressure source located 0.8 to 2.0 

km below the surface. The observed anomaly lies outside an established EDM/GPS net 

(Kleinman et al., 1997) which yielded no significant deformation for the 1991-1993 

period.

4.2 Previous Studies
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4 3  Seismic data 1995-1997

Beginning late July 1995, the Alaska Volcano Observatory (AVO) reestablished 5 

stations, with 7 components (Figure 4.1), o f a 16 station, 20 component array originally 

operated by the United States Geological Survey between September 1987 and February 

1993 (Ward et al., 1991). The refurbished net, located in the Valley o f Ten Thousand 

Smokes (here referred to as the VTTS subnet), operated until April 1996 and recorded 

nearly 500 locatable volcano-tectonic earthquakes (Figures 4.2 and 4.3) before a 

telemetry failure stopped data transmission. The VTTS subnet was re-established in July 

1996 and 6 new seismic stations were added in the vicinity o f  Martin and Mageik 

volcanoes (here referred to as the MM subnet; Figures 4.1 and 4.3). This augmented 

local net, which consisted o f  11 stations and spanned an area o f  about 1000 km2, recorded 

almost 1500 locatable earthquakes before another telemetry failure occurred the net in 

April 1997. The second telemetry failure prompted AVO to replace the old VTTS subnet 

with 5 new short-period instruments in July 1997. The network includes 9 short-period 

vertical seismometers with a natural frequency o f  1Hz, and 2 three-component 

instruments with a natural frequency of 2 Hz. Magnifications range between 1 .OxlO6 to 

5.0xl06 at a frequency o f  10 Hz. All data are telemetered via FM radio to King Salmon, 

Alaska, where they are transmitted continuously, frequency-multiplexed via phone lines, 

to the AVO seismology lab in Fairbanks, Alaska. In Fairbanks, the signals are digitized 

using a 12 bit analog-to-digital converter at a rate o f  100 samples s '1 and recorded in both 

continuous and event detection modes.

In all, the period July 27, 1995 to December 31, 1997, over 2500 earthquakes 

were located in the area (Figure 4.2). Earthquakes were located using the program 

HYPOELLIPSE (Lahr, 1989) and the southern Alaska regional velocity model (Table 1)
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the diagram. Symbols are as indicated in Figure 4.2.
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(Fogleman et al., 1988). Magnitudes (Ml) for these earthquakes were determined using 

the maximum trace amplitude o f several stations. The velocity model was originally used 

by Ward et al. (1991) to locate seismicity originating between the period September,

1987-December, 1990. The model (Table 4.1) provides locations with formal errors of 

about 1.5 km in depth at the Trident cluster and about 3.0 km in depth for less well 

constrained locations near Snowy volcano. These errors are roughly equivalent to errors 

found for earthquakes originating at other Alaskan volcanoes (Lahr et al., 1994; Jolly et 

al., 1994). Thus, the model provides adequate locations for kilometer-scale spatial 

analyses o f  the seismicity in the Katmai region.

Table 4.1: Velocity model used for locations in the Katmai region (Fogleman et al.,

1988). The top o f the model begins at 3 km above sea level and depths are referenced to 

sea level with values below sea level having positive values. A half-space (HS) having 

velocity o f 8.3 km s'1 is located at 65 km below sea level.

Laver Velocitv(km/s) Denthflan)
1 5.3 -3.0
2 5.6 4.0
3 6.2 10.0
4 6.9 15.0
5 7.4 20.0
6 7.7 25.0
7 7.9 33.0
8 8.1 47.0
HS 8.3 65.0
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Upper-crustal seismicity in the Katmai region formed four distinct clusters which 

were centered beneath Martin-Mageik volcanoes, Trident volcano, 2 km west o f Katmai 

caldera, and about 5 km due west o f Snowy volcano. Additional diffuse seismicity 

occurred along the volcanic axis in an ENE-WSW belt about 20 km in width (Figure 4.2). 

The earthquakes are volcano tectonic in character and only isolated B-type earthquakes 

were observed. Earthquake depths were generally shallowest at Trident volcano where 

seismicity was concentrated above 5 km, and reached greater depths at Martin-Mageik 

and Snowy volcanoes where earthquakes depths reached to about 10 km. Isolated 

earthquakes having depths greater than 10 km were occasionally observed. Griggs 

volcano and Novarupta, site o f the paroxysmal 1912 eruption, had little seismic activity 

beneath them. Magnitudes for earthquakes originating in the region ranged between -0.5 

and 4.5 for the period o f  interest Anomalous seismicity at 1.0 km above sea level 

(Figure 4.2, cross-section) results from a location artifact associated with the program 

HYPOELLIPSE (Lahr, 1989). The artifact is caused by earthquakes that have an 

insufficient number o f  arrival times to iterate away from the -1.0 km initial trial depth.

A uniform magnitude detection threshold was determined from the power law of 

the frequency-magnitude relationship. This detection threshold changed depending on 

both station availability and distance from the center of the array (Figure 4.3). For the 

time period July 1995-April 1996 when only 5 seismic stations operated locally, the 

uniform detection threshold was 1.0 Ml at Martin-Mageik, 0.7 at Trident and 0.7 at 

Katmai caldera (Table 4.2). After installation o f  the Martin-Mageik subnet the uniform 

magnitude detection threshold decreased to about 0.5 Ml at Martin-Mageik and 0.5 at

4.4 Seismicity
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Table 4.2: Summary o f seismicity rates, b- values and magnitudes o f completeness.

July 95-April 96 

RateA M__ # b*

October swann 

Rate'' b*

Sept 96-April 97 

(excluding swarm) 

Rate" M o J?  b*

May 97-Dec 97 

Rate" b*

Martin-Mageik 3 1.0 0.92 500 0.5 1.54 9 0.7 1.56 6 0.7 0.98

Trident 4 0.7 1.03 7 0.5 1.08 2

Katmai Caldera 3 0.7 1.17 3 1

Snowy 1 1 1

"-Earthquake rate in events per week.

^-Magnitudes are given in ML.

*-6-value calculated by weighted least squares with average errors ±0.07.

Trident (Table 4.2). The addition o f the Martin-Mageik subnet generally decreased the 

uniform detection threshold at Martin-Mageik and Trident volcanoes but not elsewhere.

Rates o f seismicity were determined at each o f  the four clusters to offer baselines 

for comparison to future activity. Such measurements were complicated, however, by 

network and station outages and by the addition o f new local subnets. At Martin-Mageik, 

approximately 3 events per week were recorded during the period July 1995-April 1996 

when the VTTS subnet operated. The Trident cluster produced 4 events per week during 

the same period and Katmai caldera cluster had 3 events per week. With the addition o f 

the MM subnet in August-September 1996 the sensitivity and hence the number of 

locatable earthquakes increased. At Martin-Mageik 9 earthquakes per week were located 

for the time interval September 1996- April 1997 (excluding events o f  the October 1996 

Mageik swarm), the Trident cluster generated 7 locatable earthquakes per week, and
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Katmai caldera recorded 3 earthquakes per week (unchanged from the previous period). 

Magnitude dependent rates o f locatable seismicity appear to follow the Gutenberg-Richter 

relation for the Trident cluster, which was the only cluster with sufficient seismicity to 

calculate the rate for increased detection sensitivity. At Martin-Mageik the rate of 

seismicity appears to follow that expected by the Gutenberg-Richter relation, however the 

number of small magnitude events is increased significantly relative to the number of 

large magnitude events. In other words the 6-value was much higher for the Martin- 

Mageik cluster after the end o f the October 1996 swarm.

4.5 The October 16-25,1996 swarm

An intense swarm occurred near Mageik volcano beginning October 16, 1996 

with a 1.3 M l shock (Figure 4.4). This was the most significant swarm recorded since the 

network was installed, so it is described in detail. The swarm reached its peak rate about 

17 hours after the onset (Figure 4.4), and then decayed until background rates were 

reached 8 days later. The general character o f  the October 1996 swarm is similar to other 

swarms originating in volcanic environments. For example, the duration is slightly 

longer than the average of 3.5 days established by Benoit and McNutt (1996) for 136 non- 

eruptive earthquake swarms. Further, the swarm’s weighted least-squares 6-value is 1.54 

± 0.05 (Table 4.2), within the range o f published 6-values o f  0.6 (Endo et al., 1981) to 3.5 

(Minakami, 1974), but is anomalous compared to the 1.01 ±  0.06 6-value observed in the 

same area prior to the swarm (Table 2). The swarm is characterized by a cumulative 

moment release o f about 5.0x1020 dyne-cm (Figure 4.4c), roughly equivalent to a single 

magnitude 3 earthquake.
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Figure 4.4: Number o f  events per hour (A), magnitudes (B), and cumulative seismic 

moment release (C), for the October 16-25, 1996 Mageik swarm. The data span a one 

month period and moment calculations are determined using parameters derived by 

Bakun (1984). Vertical lines mark two prominent phases o f the swarm. See text for 

further discussion.
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Figure 4.5: Earthquake decay vs. time for October 16-25 Martin-Mageik swarm. 

Number o f events per day after the peak o f seismicity associated with the October 1996 

earthquake swarm (stars) and maximum likelihood determination o f parameters 

associated with the decay of the swarm (line). The swarm decays with a p-value of 1.06 

±0.11 using the modified Omori law. Other parameters o f the regression include c = 

0.17 ± 0.08 and k  = 88.72 ± 13.60. Parameters were derived using the program ASPAR 

(Reasenberg, 1994).
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The swarm’s />-value or decay rate (Figure 4.5) was estimated using the modified 

Omori law, expressed by «(/) =  K(t + c)'p where n(t) is the number o f events per unit time 

at time t, and K, c and p  are parameters which describe the total number o f  events in the 

sequence, the rate o f activity at the beginning o f the sequence, and the decay rate, 

respectively (Kisslinger and Jones, 1991). The />-value o f 1.06 ± 0.11, which is 

determined beginning from the peak seismic rate, is similar to /7-values determined in 

southern California (1.11 ± 0.25) for 39 aftershock sequences (Kisslinger and Jones,

1991). This decay rate is used to corroborate an estimate o f  temperature gradient 

determined from flow law modeling later in the paper. A 12-hour quiescence was 

observed beginning about 36 hours after the swarm’s onset The data acquisition systems 

operated properly throughout the swarm, thus the quiescence is real and separates two 

phases in the evolution o f  the swarm (Figure 4.4).

4.6 Spatial variations in the frequency-magnitude distribution

Detailed analysis o f variations in the frequency-magnitude distribution in space 

was conducted using the methods of Wiemer and McNutt (1997) (Figure 4.6). The data 

selected for this analysis include seismicity from Martin-Mageik, Trident and Katmai 

caldera (Figure 4.2, dashed box) which were filtered by removing earthquakes smaller 

than 0.7 Ml to reduce the effects o f magnitude incompleteness in the data set. The 0.7 

Ml filter was determined visually from the bulk 6-value analyses shown in Table 4.2. 

About 1100 events remaining in the data set were projected into a cross-sectional plane 

over which a 0.5 km grid was placed. For each node, a cylindrical volume containing 100 

nearest neighbor earthquakes, was selected. The 6-value was calculated for this 

cylindrical volume and subsequent cylindrical volumes in the projected plane. The 6-
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Figure 4.6: Spatial b-values determined within a cross-section shown by dashed line in 

Figure 4.2. ^-values are calculated using a weighted least-squares method described by 

Wiemer and McNutt (1997).
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value was calculated in a weighted least squares sense such that the regression line relies 

on the number o f  events in a magnitude class, so that a few larger earthquake do not bias 

the calculation. Nodes for cylinders smaller than 2.5 km are plotted with the color scale 

given in Figure 4.6. The processed data (Figure 4.6 and Table 4.2) reveal two high 6 

regions in the vicinity o f Martin and Mageik volcanoes (b > 1.5), lower relative 6-values 

at Trident (b = 1.0) and intermediate 6-values at Katmai caldera (6 = 1.2 to b>\.5). Table

4.2 shows overall or bulk values for each region whereas Figure 4.6 shows higher spatial 

resolution. High 6-values at Martin and Mageik volcanoes occur at about the same depth 

(3-4 km beneath ground surface) as high b observations at both Spurr and M t St. Helens 

volcanoes (Wiemer and McNutt, 1997) and Mammoth Mountain (Wiemer et al., 1998). 

No 6-value anomaly is associated with the velocity and gravity anomaly observed by 

Ward et al. (1991) between Trident and Katmai. The high 6 anomaly beneath Katmai 

caldera is somewhat deeper (7-8 km beneath ground surface). The anomalous 6-values at 

Martin and Mageik volcanoes probably are associated with the October 1996 swarm and 

post-swarm seismicity, based on temporal analyses (Table 4.2). Temporal analyses of 6- 

value changes are limited to Martin-Mageik volcanoes, however, because of insufficient 

data elsewhere for these periods.

4.7 Temporal analyses of pre- and post-swarm seismicity

The character o f seismicity at Martin-Mageik changed fundamentally following 

the October 1996 swarm, with twin observations o f  increased 6-values and shoaling o f 

the maximum depths (Figure 4.7). The 6-value was 1.01 at Martin-Mageik between July 

27, 1995 and October 16, 1996, and 1.55 for the post-swarm period November 1, 1996 to 

April 31, 1997 (Table 4.2; Figure 4.8). One possible explanation is that the post-swarm
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Figure 4.7: The 6-value versus time and depth versus time and for pre- and post-swarm 

seismicity located in the vicinity o f Martin and Mageik volcanoes. The moving window 

b- value calculation contains 100 events per window. Number o f stations available for 

depth calculation are shown above the 6-value vs. time plot and period boundaries are 

marked as vertical dashed lines. Dotted line in plot A refers to the inferred maximum 

depth o f seismicity. B) Relocation o f all events using only the VTTS subnet.
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Figure 4.8: Frequency-magnitude distributions for Martin-Mageik area. The 

distributions are pre-swarm (solid line; July 27, 1997-October 15, 1996), swarm (dotted 

line; October 16-25, 1996) and post-swarm (dashed line; November 1, 1996-April 30, 

1997) periods. Data are selected from the Martin-Mageik cluster with events shallower 

than 6 km. An Utsu (1992) test for pre-swarm and post-swarm periods show that the b- 

values are significantly different at a probability greater than 99%.
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6-value resulted from excitation o f a previously quiescent portion o f  the crust and thus 

represented a spatial change in the 6-value rather than a temporal one. Unfortunately, 

higher detection levels prior to the October 1996 swarm preclude detailed spatio-temporal 

analysis of 6-values such as that shown in Figure 6. It is noted, however, that the seismic 

cluster above 5 km depth does not change significantly in shape or average location for 

the two periods. Thus, the 6-value change probably does not reflect a spatial change 

within the cluster. For the two periods, using events from identical volumes and 

withdepths less than 5 km, the probability that the 6-values are different is > 99% as 

determined by the Utsu (1992) test. The effect o f station geometry changes associated 

with the installation o f the new Martin-Mageik seismograph net beginning August 1996 

was examined to determine its effect on seismic patterns. At the adjacent Trident cluster, 

the 6-value is 1.03 prior to installation o f the Martin-Mageik subnet and 1.08 after 

installation. Errors associated with the weighted least-squares calculations are about ± 

0.07 (Table 4.2). Therefore, the two 6-values are not significantly different. Trident 

seismicity is only about 8 km away from the Martin-Mageik cluster. If  the 6-value 

changed at Martin-Mageik as a result o f some station change with time, then nearby 

Trident seismicity should also change. We infer from the lack o f 6-value change at 

Trident that the scaling o f  the frequency-magnitude distribution did not change as a result 

o f the addition o f the Martin Mageik subnet.

Prior to the October 1996 swarm, seismicity at the Martin-Mageik cluster was 

generally constrained between the surface and 10 km below sea level (Figure 4.7).

Shortly after the October 1996 swarm, the maximum depth o f  seismicity was observed to 

decrease to about 5 km below sea level. Again, the change in maximum seismic depths 

might result from the addition of the Martin-Mageik subnet in September 1996. This 

hypothesis was tested by relocating the post-swarm seismicity with (Figure 4.7a) and
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without the Martin-Mageik subnet (Figure 4.7b), thus locating both data sets with the 

same subset o f  seismic stations. After the relocation, post-swarm earthquakes became 

systematically deeper and occupied the volume which was previously devoid of 

seismicity. The results suggest that depth change results for the period July, 1995 to 

September 1996 should be viewed with caution. However, we observe from seismicity 

located between September 18 and October 16, 1996, when all stations were operational, 

that seismicity immediately before the swarm was constrained above 5 km (Figure 4.7a). 

A detailed interpretation o f  temporal 6-value and depth changes is given in the following 

section.

4.8 Discussion

4.8.1 Interpreting intrusive events

The combined observations o f 6-values and maximum earthquake depths at 

Martin-Mageik volcanoes offer an opportunity to evaluate critically the various 

mechanisms that can affect seismicity in volcanic environments. Both the temporal and 

spatial scales o f the observations are considered and plausible assumptions are 

subsequently applied to infer their sources. Finally, the physical conditions at depth 

including the stress, water content, and heat are examined to obtain quantitative estimates 

of these parameters.

First consider the spatial extent o f the 6-value anomaly associated with the 

October 1996 swarm. The seismicity apparently occupies a volume o f  15 km3 (Figures

4.2 and 4.3). Lahr et al. (1994) have shown, however, that a point source with typical 

measurement errors will generate a diffuse cluster o f hypocenters. Given the formal
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errors (1.5 km in depth) for the locations, and the additional errors inherent with non

uniform phase sets and unknown velocity structure, the swarm’s actual source volume 

may be less than 1 km3. Within such a small volume it is possible that a local stress 

change, a water injection, or a thermal event triggered the seismicity over the 1 week 

period o f the swarm. Alternatively, the 6-value change might reflect excitation o f a 

heterogeneous region which was previously quiescent. Any o f the above physical 

processes can easily occur over small (< 1 km3) volumes, resulting in the anomalous 6- 

values. These arguments suggest that the physical mechanisms which drive earthquakes 

for short-lived and small-volume seismic swarms cannot be determined uniquely unless 

information other than 6-value data is available.

The volume within which the swarm-related depth change occurred underlies 

Martin-Mageik volcanoes and spans a region 6 km along the volcanic axis and 2 km 

wide. These dimensions are established by the geometry of the seismicity (Figure 4.2), the 

earthquake location errors, and the separation o f the Martin-Mageik volcanic vents. The 

earthquake depths range from the surface to 10 km below sea level. Thus, the 

observations span a volume o f  150 km3, at least one order o f magnitude larger than the 

volume occupied by the October 1996 swarm, and are not dependent on measurement or 

location errors.

Consider the time scale associated with the change in 6-value and in the 

maximum depth o f earthquakes at Martin-Mageik. Because rates o f seismicity are low, 

several months of data are required to calculate a robust 6-value. A moving-window 6- 

value calculation (Figure 4.7) suggests that the change occurred within two months o f the 

onset o f the October 1996 swarm, reached a peak 6-value o f >1.5 beginning January 

1997, and remained anomalous through April 1997. As stated earlier, depths o f 

seismicity before September 18, 1996 are poorly constrained. During the October 1996
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swarm, well constrained depths are above 6 km, with sparse seismicity occurring as deep 

as 9-10 km. The seismicity between 6 and 10 km persists for about 1-2 months before 

seismicity returns to the 5 km depth limit. Seismicity remains shallower than 5 km depth 

during the January-April peak 6-value period and increases to -1 0  km in November 1997.

Earlier it was established that spatio-temporal 6-value changes cannot be 

attributed to single physical processes without corroborating evidence. If so, then what 

spatial and temporal scales o f observation can be attributed to each candidate physical 

process? It can be argued that certain physical processes associated with the observed 

changes may be excluded if the changes occur over too large a volume or too short a 

period to be plausible. As an example, material heterogeneity can be excluded because it 

would require unrealistically extensive brittle deformation to occur over the short period 

observed. Likewise, thermal conduction is difficult to invoke because estimates o f 

cooling o f intrusions (e.g., Hill, 1992) show that thermal gradient changes in the upper 

crust occur over thousands of years, not the observed several months.

Increased water content is known to reduce the strength o f all rock types, causing 

increased 6-values (Wyss, 1973) or plastic creep in rock (Sibson, 1982; Hill, 1992). 

However, water diffusion cannot account for the increase in the maximum depth o f 

seismicity at Martin-Mageik volcanoes, because the diffusion rates are slow (Kronenberg 

et al., 1986) and in the wrong polarity to account for the depth change observations.

A stress increase is a potential mechanism. Pressurization of the system will tend 

to push seismicity from plastic to brittle deformation at depth. However, Scholz (1968) 

determined that 6-values are lowered with the application of higher shear stress, opposite 

of the observation at Martin-Mageik. A simple stress increase is excluded as a 

mechanism responsible for the observations.
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These analyses suggest that a single candidate process is not responsible for the 

twin observations at Martin-Mageik. It may be that a more complicated model is needed 

to explain the observations. O f several combinations o f processes, an actively degassing 

intrusive model is considered most likely. If the intrusion contains sufficient volatiles, 

their propagation into surrounding country rock will act to reduce the effective stress and 

increase the 6-value. At the same time, the intrusion increases the applied stress, moving 

rocks from plastic to brittle behavior. The intrusive degassing mechanism also agrees 

with the timescale o f observations. Stresses propagate through the crust rapidly and can 

dissipate rapidly, accounting for the 1-2 month time scale for reducing the depth o f 

seismicity from 10 to 5 km. Degassing o f magmatic fluids is a much slower process, as 

reflected by the seven month period required to reduce the 6-value to pre-swarm levels.

Some additional evidence o f an intrusive degassing event is available at Martin- 

Mageik volcanoes. Surface measurements where taken at Mageik’s crater lake in July 

1995, and again in July 1997. The measurements showed an increase in the lake water 

temperature o f about 10°C (R. Symonds, personal communication, 1997). These 

observations, made 15 months before and 10 months after the 6-value change in October 

1996 (Figure 4.7), give circumstantial support to the hypothesis o f an intrusion which 

temporarily increased the stress causing increased seismicity at depth while at the same 

time increased fluids caused the 6-value to increase beneath Martin-Mageik volcanoes.

The 1989 Mammoth Mountain swarm exhibited similar behavior to the 

observations we describe at Martin-Mageik. The Mammoth Mountain post swarm 

seismicity was associated with an increase in the maximum depth o f  volcano-tectonic 

seismicity from 8 to 11 km (Hill, 1996) and an increase in the 6-value from 0.8 to 1.5 

(Wiemer et al., 1998), in agreement with our observations. If the Mammoth Mountain 

swarm resulted from a simple dike intrusion, as suggested by Langbein et al. (1993), one
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would expect increased pressurization, which in turn induces deeper seismicity and lower 

6-values (Scholz, 1968). If, however, the Mammoth Mountain swarm resulted from 

intrusion and exsolution of a fluid phase as suggested by Hill (1996) and Wiemer et al.

(1998), then both the 6-value and the maximum earthquake depth would increase only if 

water-related 6-value changes dominate stress-related 6-value changes. Evidence for fluid 

exsolution at Mammoth Mountain includes CO2 emissions (Farrar et al., 1995) and long- 

period earthquakes (Hill, 1996).

Magma degassing may be critical in the interpretation o f  6-values associated with 

intrusive events. For example, the intrusion at Mammoth Mountain is associated with a 

high 6-value and extensive CO2 gas emission, while the intrusion prior to the May 18, 

1980 Mount St. Helens eruption had a low 6-value o f 0.6 (Endo et al., 1981) and low SO2 

levels (Casadevall et al., 1981). Initial eruptive products at Mt. S t  Helens were not 

degassed (Eichelberger et al., 1986) possibly because ascent rates were very rapid, and 

diffusion through the magma and into the surrounding country rock was inefficient 

(Eichelberger, 1995). If so, then little fluid was available from the magma to reduce the 

effective stress and increase the 6-value in the surrounding rocks.

In both Mount S t Helens and Mammoth Mountain, surface deformation was 

observed and seismicity propagated to depths where little prior seismicity had been 

observed (Endo, 1981; Hill, 1996). Elsewhere, Fedotov et al. (1992) observed changes in 

the mean depth o f seismicity which correlated with surface deformation near 

Klyuchevskoy volcano in Kamchatka. However, no 6-value changes were reported. The 

available evidence suggests that pressurizing intrusive events may be accompanied by 

increased maximum seismic depths and high 6-values in the presence o f magma 

degassing, and low 6-values otherwise. At Martin-Mageik, the November-December
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1997 increase in the maximum depth o f seismicity is not accompanied by an increase in 

the b- value. This observation is interpreted as a pressurizing event without degassing.

4.8.2 Flow law models

If the October 1996 swarm is associated with a  stress increase, then the process 

can be modeled by the flow law to determine the magnitude o f  the strain rate change. 

This is done with shear strength models previously discussed by Sibson (1982), Scholz 

(1988), and Hill (1992). In their formulations the static frictional strength o f  the brittle 

layer is given by

x = |1 Sn 4.1

where x has units MPa, p. is the coefficient of friction (dimensionless), and S„ is the 

brittle effective compressional stress (MPa) normal to the local fracture surface. Under 

conditions of classical Andersonian faulting with p = 0.75, hydrostatic pore pressure, and 

pressures less than 500 MPa (Byrlee, 1978; Sibson, 1982), the strength o f rock should be 

proportional to x (MPa)= 1 Oz for strike-slip faulting, where z=depth in km. The strength 

for normal, strike-slip and thrust faulting follows from the ratio 1:1.6:4 (Sibson, 1982). 

The flow law is given by

e = A c  n exp(-HVRT) 4.2

where a  is the differential stress G = x = (Gi - Ci)/2 or the shear strength. Solving for 

the shear strength gives

x = (eA4)1/n exp(H*/nRT) 4.3

(Kirby and Kronenberg, 1987) where e is the strain rate, H* is the activation energy, R is 

the universal gas constant, T  is absolute temperature and A  and n are constants.
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Table 3: Steady-state parameters (A, n and H*) used in flow-law models. Parameters 

evaluated include the strain-rate increase (Ae), temperature gradient (dT/dz), and 

temperature increase (dT), required to induce plastic flow using flow law o f the form z = 

(e/A)1'" exp(H*/nRT) (Kirby and Kronenberg, 1987).

Rock tvpe A(MPa'“ s '1) n H*(kJ m o l1) A sfs'^t 1 n

felsic
1.9x1 O'3granite ‘wet’# 1.5 137 105 20

granite ‘dry’# 2.6x1 O'9 3.4 139 10s 30
intermediate

3.8xlO'2Diorite ‘wet’# 2.4 216 108 35
mafic
Diabase* 2.2x10*4 3.4 260 108 50

# Hanson and Carter, 1982.
* Shelton and Tullis, 1981.
t  Assume upper strain rate o f  10'16 s'1.

The flow law characteristics o f ‘wet’ and ‘dry’ Westerly granite, ‘wet’ diorite 

(Hanson and Carter, 1982) and diabase (Shelton and Tullis, 1981) (Table 4.3) were 

applied to determine the effects of strain rate and temperature (equations 4.2 and 4.3) on 

the depth o f the brittle-ductile transition. First the upper limit o f the thermal gradient 

(dT/dz; Table 3) at Martin-Mageik volcanoes is obtained by determining the strength of 

the rock at given thermal gradients with the flow law parameters for both felsic and mafic 

rocks, and assuming that strain rates do not exceed the highest values historically 

observed in geologic and volcanic environments worldwide (10_I ls_1; Hill, 1992). Then, 

the 10 km seismicity depth yields a thermal gradient less than 30°C km '1 if rocks are 

felsic and 70°C km '1 if  rocks are mafic. Alternatively, if  strain rates are near the 

geologically observable limit o f detection (10'l6s '1), then the thermal gradient is between 

15-23 °C km '1 if  the rocks are felsic and 35-50 °C km'1 if  rocks are intermediate to mafic.
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Martin-Mageik deposits are andesitic to dacitic while nearby Novarupta volcano deposits 

are rhyolitic to andesitic. Thus, thermal gradients probably have lower to intermediate 

values o f 20-40 °C km '1 even if  strain rates are relatively high.

The strain rate increase (Ae) required to increase the depth is strongly dependent 

on rock type, but not on thermal gradient (dT/dz) or initial strain rate (eXTable 4.3). If 

the rocks near Martin-Mageik are felsic, then a 5 order-of-magnitude increase in the strain 

rate is required to change the maximum depth of seismicity from 5 to 10 km (Figure 4.9). 

If  rocks are intermediate to mafic, then an 8 order-of-magnitude increase is required 

(Table 4.3). No surface deformation data is available to determine i f  these values are 

reasonable.

The flow law provides useful constraints; however, there are many uncertainties 

associated with such analyses. These include experimental uncertainties o f  A , n and H* 

(Chen and Molnar, 1983) and uncertainties associated with extrapolation o f  laboratory
J  O  J

strain rate measurements o f 10 to 10 s (Hanson and Carter, 1982) to the geologically 

observed strain rates o f 10'*1 and 10*16 s '1 (Hill, 1992). In addition, temperature gradients 

at Martin-Mageik are not known, and variations in temperature can cause large changes in 

the exponential term o f the flow law equation. This latter concern may be addressed by 

evaluating the 1.06 ±  0.11 p -value observed for the October 1996 swarm (Figure 4.5). 

Mogi (1967) and Kisslinger and Jones (1991) demonstrated general relationships between 

heat flow and /7-values in studies in Japan and southern California, respectively. In 

California the average p-value is 1.11 ± 0.25 (Kisslinger and Jones, 1991, their Figure 6), 

a value which is in agreement with our computation and which suggests heat flow of 

about 120 mWm'2 for Martin-Mageik volcanoes. Such heat flows also correspond to our 

modeled temperature gradients o f 20-40 °C km'1. Higher temperature gradients, such as 

are observed at the Phlegrean fields (120 °C km'1; De Vivo et al.1988), are unreasonable
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Figure 4.9: Rock shear strength (MPa) vs depth (km) for brittle and plastic flow. Brittle 

rock strength profiles (strait lines) are for normal, strike-slip, and thrust faulting as 

determined by (Byrlee, 1978) and (Sibson, 1983). Flow law shear strength profiles 

(curved lines) as developed by Kirby and Kronenberg (1987) show shear strength for 

low strain rate and high strain rate cases. Intersection o f curved and strait lines show 

the depth below which plastic flow dominated for the given brittle strength profile. 

Temperature-depth gradient is 20°Ckm'1.
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for Martin-Mageik volcanoes because they would result in much shallower maximum 

earthquake depths and higher p-values.

4.9 Conclusions

Results at Martin-Mageik, Mammoth Mountain, and M t S t Helens show that the 

maximum depths of seismicity in conjunction with 6-values can be used to interpret the 

physical processes which operate in volcanic environments. It is proposed that swarms 

which have low b-values and increased depths of seismicity are associated with degassed 

intrusions while swarms with high 6-values and increased depths o f seismicity represent 

actively degassing intrusions. Simultaneous changes in these parameters provide a 

method of isolating physical processes which occur at active volcanoes. These new 

results at Martin-Mageik suggest that an intrusive event occurred, with magmatic 

degassing. This in turn triggered the anomalous seismicity and surface temperatures. 

Further case studies are needed to elucidate these patterns. The outcome o f these studies 

will determine i f  volcanic hazard assessment can be improved based on a coupled 

analyses of maximum depths o f seismicity and 6-values.
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Chapter 5: Spatial variations in 6-values and earthquake relocations

S.O Abstract

This chapter presents a new and improved version o f  the spatial 6-value analysis. 

Earthquakes recorded for the period July 26, 1995 to November 30, 1999 were re-located 

using a new three-dimensional velocity model to determine the effect o f improved 

earthquake locations on 6-value spatial maps. The three-dimensional velocity model was 

derived by non-linear inversion o f over 8000 first P-arrival times. These new locations 

and 6-value spatial maps are compared to baseline locations and 6-value spatial maps 

derived from the standard Alaska Volcano Observatory (AVO) one-dimensional velocity 

model. For both standard and revised velocity models, the seismicity forms distinct 

seismic clusters beneath Martin, Mageik, Trident and Katmai caldera. Earthquake 

locations are similar for both models at Mageik, Trident and Katmai caldera, but are 

noted to shift for seismicity beneath Martin volcano. For this cluster, earthquakes ranged 

between -3  to 4 km depth for the standard model locations and between —1 to 6 km depth 

for the relocation. The standard model locations yield high 6-values at Martin (0.8-1.8) 

and Mageik (1.2-2.2) volcanoes, lower 6-values at Trident volcano (0.6-1.2) and 

moderate 6-values at Katmai caldera (0.7-1.2). After the relocation, the 6-value 

distribution at Mageik (1.2-2.2), Trident (0.6-1.2) and Katmai caldera (1.2-1.4) are 

similar to their standard model 6-value ranges. The 6-value distribution at Martin 

volcano, however is significantly changed. The standard model yielded low 6-values 

(0.8-1.2) near the surface —3 to 0 km depth and higher 6-values (1.2-1.8) at greater depths
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with the standard model. After relocation, the high and low 6-value zones are eliminated 

and the 6-value ranges between (1.0-1.6).

5.1 Introduction

The 6-value analysis in Chapter 4 was completed using data collected July 26,

1995-December, 31 1997. After this period, the Alaska Volcano Observatory added 7 

seismic stations to the Katmai network (Chapter 1). The new network configuration 

yielded 1800 additional earthquakes for the period January 1, 1998-November 30, 1999. 

Earthquakes from the two periods provided the basis for a new P-wave velocity model 

and revised earthquake locations (Chapter 2). The revised earthquake locations, in turn, 

offer an opportunity to examine the effect o f improved velocity models on the 6-value 

spatial mapping techniques conducted in Chapter 4.

Three aspects of the 6-value study o f Chapter 4 merit review: 1) an examination 

of the spatial 6-value for earthquake data collected for the period July 26, 1995- 

November 30, 1999, using the standard AVO velocity model, 2) a comparison o f spatial 

6-value variations with both the standard AVO velocity model and the 6-values derived 

from the new three-dimensional model (Chapters 2 and 3) and 3) an examination o f the 

effect o f  earthquake relocations on temporal changes observed beneath Martin and 

Mageik volcanoes. These aspects of the seismicity are examined in order in Sections 

5.2-5.5.
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5.2 Frequency-magnitude distribution using 1-D velocity model

Earthquake locations depend on the velocity model used. Thus, as a first step, the 

spatial frequency-magnitude results o f Chapter 4 are re-examined by combining data from 

July 26, 1995-December 31, 1997 with new data from January 1, 1998-November 30, 

1999. The earthquakes are located using the standard AVO velocity model (Table 4.1) 

and the combined data are presented in Figure 5.1. Comparison o f the combined datasets 

with results from the earlier data locations (Figure 4.2) show that persistent features o f the 

seismicity remain: namely 4 clusters o f seismicity centered at Martin-Mageik, Trident, 

Katmai caldera and Snowy volcano generally located above 10 km depth. Details o f the 

seismicity also persist. For example, the very shallow seismicity (-3  km to 5 km depth) 

beneath Martin Volcano for the earlier dataset (Figure 4.2) is also present in the combined 

dataset (Figure 5.1b). As a second step, a new 6-value map and cross-section were 

produced using the methods outlined in Section 4.6. First, the dataset was filtered by 

removing earthquakes smaller than 0.7 Ml- This reduced the effects o f magnitude 

incompleteness in the data set and left about 2600 events for analysis. Remaining events 

were projected into both a map and cross-section and a 0.5 km by 0.5 km grid was 

overlain on both projections. For each grid-node, a variable cylindrical volume 

containing 100 nearest neighbor earthquakes was selected. The b- value was calculated 

for each cylindrical volume in the projected plane. The 6-value was calculated in a 

weighted least squares sense such that the regression line relies on the number o f events 

in a magnitude class. This weighting scheme ensured that a few larger
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Figure 5.1: Map (a) and cross-section (b) o f  seismicity in the Katmai region. Seismicity 

is from the period July 20,1995 to November 31, 1999.
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earthquakes do not bias the 6-value calculation. Nodes for cylinders smaller than 2.5 km 

are plotted with the color scale given in Figure 5.2.

The cross-section o f  Figure 5.2 is substantially the same as the cross-section of 

Figure 4.6 shown in Chapter 4 despite the addition of about 30% more data. The addition 

o f these new data show that the prior 6-value results are robust, and do not represent 

under sampled spatial distributions which change markedly with new data. Instead, the 

anomalies are judged to be temporally persistent and provide a baseline for comparison to 

6-value spatial maps using an improved velocity model.

5.3 Frequency magnitude distribution with a new three-dimensional velocity model

The new 6-value map with all data (Figure 5.2) is next compared to the same 

dataset located with the new three-dimensional velocity model (Chapter 2). All 

earthquakes are relocated using the final three-dimensional model o f  the P-wave velocity 

inversion (Figure 2.4) and are re-plotted here for convenience (Figure 5.3). The 

relocation utilized only P-wave arrival times because an S-velocity model was not 

developed in Chapter 2 and the computer code for S-wave derived locations is not 

available. For the relocation o f each earthquake, 5 P-wave arrival times, and a gap less 

than 300 degrees was required, a criterion established as a compromise between data 

sufficiency and earthquake location quality, which reduced the number of events from 

4320 to 2103. This is a significant reduction, but far more than the 815 earthquakes 

surviving the requirement for inversion o f  the final model (see Chapter 2).
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Figure 5.2: Map (a) and cross-section (b) of 6-value variation in space for earthquakes 

located between July 1995 to November 1999. The 6-value is determined using the 

standard AVO velocity model.
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Figure 5.3: Map and cross-section for relocation o f earthquakes using the final three

dimensional velocity model. Earthquakes required 5 P phases and an azimuthal gap of 

less than 300 degrees for inclusion.
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Results of the earthquake relocation include a strong shift in the depths o f 

earthquakes located beneath Martin volcano (Figure 5.1 compared to Figure 5.3). The 

earthquakes initially locate at depths o f -3 km to 2 km below sea level. The relocated 

hypocenters plot between sea level and 5 km below sea level, similar to the depth range 

for seismicity located beneath Mageik, Trident and Katmai caldera. For 815 high quality 

earthquakes (see Chapter 2), the relocation reduced the average RMS from 0.18 (Section 

2.2.1) to 0.13 seconds, an improvement of 27% over the standard model (Section 2.4).

In addition, the relocation eliminated an artifact caused by earthquakes located 1 km 

above sea level (Chapter 4.2). The source o f this artifact is unclear, but the location 

algorithm HYPOELLIPSE (Lahr, 1989) tries a location with depths o f-1 .0  km as an 

initial starting point for earthquake locations. If  this starting point has a very low initial 

RMS travel-time for its solution, then it is accepted as the best solution. The elimination 

o f this artifact, reduced RMS, and improved earthquake clustering suggests that the 

relocation is more robust and improved over the standard model locations.

Comparison o f  the 6-value maps calculated with the standard model (Figure 5.2) 

and the new model (Figure 5.4) show that the 6-values have not changed significantly for 

the Mageik, Trident and Katmai clusters. The 6-value calculated at Martin volcano, 

however, is significantly different after relocation. At Martin volcano, the relocation 

causes a strong change in the 6-value. Low 6-values (<1) observed at shallow depth for 

the standard model locations are eliminated with new model locations (Figure 4.6) and
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Figure 5.4: Map (a) and cross-section (b) of b-value variation in space for earthquakes 

located between July 1995 to November 1999. The 6-value is determined using the 

final three-dimensional velocity model.
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high 6-values resolved at 0-3 km depth are reduced from 1.5-2.0 to about 1.0-1.5 after 

relocation. Results show that earthquake relocations can change the character o f 6-value 

spatial map and stress the importance of high quality earthquake locations for 6-value 

spatial mapping studies.

5.4 Temporal analysis o f b-values and maximum depths of seismicity

At Martin and Mageik volcanoes, a temporal variation o f the 6-value was 

observed in conjunction with a variation in the maximum depth o f seismicity (Figure 

4.7). These variations were reexamined using additional earthquakes, higher quality 

locations and an analysis o f  the differential 6-value to determine if  the observation might 

result from a spatial variation. At Martin and Mageik, almost 700 earthquakes were 

available for analysis after relocating hypocenters and eliminating earthquakes smaller 

than the magnitude of completeness (0.7 M l ). With relocation, the earthquakes ranged in 

depth from about 1 km above sea level to about 4 km below sea level (Figure 5.3) with 

isolated events at greater depths.

With the new velocity model and relocated hypocenters, the fundamental 

observations persist: increased depths of seismicity associated with the October 1996 

swarm coincide with increasing 6-values (Figure 5.5). It is noted however that the 

number o f deep events in the relocation is very small: Only three events remain below 7 

km depth during the October 1996 swarm. Based on the small number o f events, the 

depth change results should be viewed with caution. The temporal change in 6-values is
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Figure 5.5: Depth versus time and 6-value versus time for the period July 26, 1995 to 

November 30, 1999. Martin-Mageik cluster seismicity is located with three

dimensional velocity model (Chapter 2). Earthquakes required 5 P-phases for inclusion 

in the relocation.
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noted to occur on the scale o f the Martin-Mageik cluster. The majority o f  events during 

the October 1996 swarm occurred beneath Mageik volcano. Analysis o f  the differential 

6-value revealed that most of the earthquakes associated with the October 1996 swarm 

seismicity occur about 1-2 km from the pre and post swarm seismicity. The difference in 

locations suggests that the observed temporal 6-value anomaly instead may result from a 

spatial change.

In late December 1998, a second smaller swarm occurred beneath Martin-Mageik 

volcanoes (Figure 5.5). The December swarm contained about 76 earthquakes and the 

largest event had a magnitude o f 2.6. The 6-value and maximum depths o f seismicity for 

the December, 1998 swarm show the same character and polarity as the swarm on 

October 1996. Again the number o f  events at depths greater than 7 km  is small: only two 

earthquakes are located at greater depth. The data suggest that the swarms might 

represent an influx o f  pressurizing fluid, which lowered the effective stress on fractures, 

induced seismicity in a high 6-value region, and extended seismicity to greater depths.

5.5 Discussion

Spatial 6-value mapping has become a standard tool for the examination of 

subsurface structures in volcanic (Wiemer and McNutt, 1997; Wyss et al., 1997; Power et 

al., 1998; Wiemer et al., 1998) and tectonic regions (Wiemer and Benoit, 1996; Weimer 

and Wyss, 1997). Most often, the method has relied on careful selection o f earthquakes
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located with one-dimensional velocity models. New results suggest that the 6-value 

mapping technique can resolve 6-value anomalies with greater accuracy if  a higher 

resolution velocity model, such as the three-dimensional velocity model from Chapter 2, 

is incorporated into the location process.

The strong shift in hypocenters (Figure 5.3 compared to Figure 4.2) and associated 

6-value anomalies (Figure 5.4 compared to Figure 5.2) probably occur as a result of 

previously unmodeled velocity perturbations. The unmodeled perturbation might 

systematically shift earthquake locations based on magnitude because smaller earthquakes 

contain a different subset o f  raypaths than larger earthquakes from the same source area.

As a general example, consider a small {Ml 0.8) and larger {Ml 3.0) earthquake 

located at Martin volcano using the standard one-dimensional velocity model and an 

unmodeled velocity perturbation located at Katmai Pass (—10 km distant). The small 

magnitude earthquake might have sufficient energy to be recorded 30 km from the source 

and the phase arrival will be recorded at about 10 near stations. For this earthquake, three 

of the ten stations might be influenced by the unmodeled anomaly (say KCE, KCG, and 

KABR) causing a bias in the location. Next, consider the large {Ml 3.0) magnitude 

earthquake. Its location will be determined using more stations because it has more 

energy traveling to more distant stations. If  the event is located on all available stations, 

then the velocity perturbation will have a much smaller influence (say 3 o f 18 arrival 

times) on the location. Then for many earthquakes in a source region, the larger 

earthquakes o f  the distribution might be systematically shifted with respect to the location 

of smaller earthquakes and this systematic shift might produce an anomalous 6-value
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distribution. Such anomalies have been generated from synthetic frequency-magnitude 

distributions originating at a point source and modified by a local velocity perturbation 

(Jolly et al., 1996).

At Martin volcano, 6-values calculated with the standard model are lower at 

shallow depth and higher at greater depths (Figure 5.2b). The low 6-values at shallow 

depth imply a depletion o f small magnitude earthquakes relative to large magnitude 

events and an enrichment o f small magnitude earthquakes at greater depth. Based on 

these observations, it is surmised that the unmodeled low velocity anomaly at Katmai 

Pass forced the small earthquakes systematically deeper and further away from the 

anomaly relative to larger magnitude earthquakes.

Alternatively, a subset o f  the earthquakes might have insufficient arrival time 

information to iterate off the location trial depth o f 1.0 km above sea level. Such a 

pathological effect might produce the 6-value shift observed. However, a significant 

number o f Martin earthquakes are not located at 1 km above sea level and are not unusual 

compared to other upper-crustal seismicity in the area. The anomalous earthquakes also 

occur above Mageik and Trident volcano in significant numbers (Figure 5.1). Martin 

volcano has 5 seismograph stations within 10-15 km, a station distribution as good or 

better than other Katmai volcanoes in the study area. Based on the distribution of 

stations, it is expected that earthquake locations at Martin volcano should be of the same 

quality as its neighbors. Regardless, this analysis demonstrates the need for better 

earthquake locations in seismological studies. This relocation study is shown to highlight 

regions where 6-value anomalies are stable (Trident, Mageik, Katmai) under different
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velocity models, and regions (Martin) where the 6-value anomalies are shown to change. 

Based on lower RMS travel-time residuals and removal o f  the location artifact, the 

associated 6-value images are judged to be improved over the version offered in

Chapter 4.
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Chapter 6: Integrated analysis of the 6-value, P-wave velocity and P-wave 

attenuation

6.0 Introduction

In prior chapters, separate methods for exam ining the subsurface structure (6- 

values, P-wave velocity and P-wave attenuation) were applied to the Katmai volcanoes. 

Interpreted individually, the methods are useful, but provide an incomplete and 

unconstrained picture of the subsurface structure. Together, the methods are highly 

complementary, and provide strong evidence in support of magma resident at shallow 

depth beneath Mageik and Trident volcanoes. The methods use double couple (elastic 

failure) earthquakes to measure properties o f  the earth. However, the 6-value spatial 

mapping technique measures those properties at the source, and P-wave velocity and 

attenuation methods measure those properties along the path. A consequence of this 

difference is illustrated in Figure 2.2 and 2.3 compared to Figure 5.4. The tomographic 

method provides interpretable images from a much larger portion o f the earth, even 

though the methods were drawn from the same datasets. This advantage is offset by the 

computational expense associated with tomographic methods. The CPU cycles required 

for this tomographic analysis were at least an order of magnitude greater than for the b- 

value study. In addition, spatial mapping via the 6-value has an advantage in error 

estimation because the earthquake frequency-magnitude distribution obeys a power law, 

allowing standard regression statistics (Wiemer and McNutt, 1997) and testing (Utsu,
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1992). Errors associated with tomographic techniques are not as straightforward, a 

consequence o f the non-linearity and approximate nature of the inversion technique.

6.1.0 Variations in the frequency-magnitude distribution

Double-couple earthquakes common to both tectonic and volcanic environments 

obey the frequency-magnitude relation given by

Log N  — a - Mb 6.1

where a is the total number of earthquakes in the distribution, N  is the total number o f  

earthquakes at and above the magnitude M, and the b describes the slope. The 6-value is 

known to vary systematically with applied shear stress (Scholz, 1968), material 

heterogeneity (Mogi, 1962), temperature gradient (Warren and Latham, 1970) and 

effective stress (Wyss, 1973). Recent computational advances have made analyses o f  b- 

values in space (Wiemer and Benoit, 1996;Wiemer and McNutt, 1997), and time 

(Wiemer et al., 1998) routine. These analyses showed that large variations in the 

frequency-magnitude distribution occur over small spatial scales and that the variations 

can be ascribed to one or more mechanisms.
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6.1.1 Velocity in the volcanic environment

Like frequency-magnitude distributions, the P-wave velocity is highly variable in 

the earth’s crust. Despite a large number o f  papers showing observations in volcanic 

environments (e.g. Lorenzen, 1994; Benz, et al., 1996; Okubo et al., 1997; Power et al., 

1998, Moran, 1997), little is known about the physics under which the velocity varies. As 

stated in Chapter 2, the P-wave velocity is given by

a  = [(jc+(4p/3))/p]l/2 6.2

where k  is the bulk modulus, u is the rigidity, and p  is the density. Examination of 

Equation 6.2 shows that liquids, which do not support shear, will cause a reduction in 

rigidity and consequent reduction in elastic wave velocity. This simplistic approach is 

confirmed by theoretical analysis by Mavco, (1980) who showed for olivine and pyroxene 

that a 10% partial melt o f  magma could produce 10-40% reduction on the P-wave 

velocity. Ito et al. (1979) showed that the velocity o f rock decreased under conditions of 

low pore pressures where steam exists. Under conditions o f higher pore pressures, where 

liquid and steam coexist, the velocity decreased, but not strongly. Further saturation of 

the fractured system caused the velocity to increase as pore fractures are completely 

filled. The later observation can be understood because under conditions o f increased 

pore fluid pressure, voids in the rock are filled with fluid and become less compressible, 

hence increasing the bulk modulus (Equation 6.1 above) (Lorenzen, 1994).
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6.1.2 Attenuation and volcanoes

Many studies o f the frictional attenuation o f the earth’s crust have been 

undertaken over the past 30 years. Ito et al. (1979) showed experimentally that strong 

attenuation is associated with low pore pressure conditions where steam exists. Such 

conditions probably apply to the upper kilometer or two of the crust (Evans and Zucca,

1988; Zucca and Evans, 1992). At greater depths and higher confining pressures, fluid 

saturated rocks might dominate producing higher attenuation than their unsaturated 

counterparts (Toksoz et al., 1979). Studies by Volarovitch and Gurevich (1957) and 

Gordon and Davis (1968) showed that attenuation is independent o f temperature, at 

temperatures low relative to the melting point At higher temperatures, Mavco (1980) 

showed that the P-wave attenuation should increase with increased partial melting. This 

is confirmed in low temperature laboratory experiments (Gao et al., 1993), where strong 

attenuation resulted in simulations o f partial melting using aluminum-gallium mixtures.

6.2 Integrated analysis

The three parameters o f this study are integrated to determine the subsurface 

structure beneath the Katmai volcanoes. The integration is completed by first re-plotting 

velocity, attenuation and 6-value results from Chapters 2, 3 and 5 (Figures 6.1-6.4). 

Associated cross-sections for the velocity (Figures 6.5a), attenuation (Figures 6.5b) and
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the 6-value (Figure 6.5c) are projected from a section along the volcanic axis (box in 

Figure 4.2). Finally, the dominant features o f each cross-section in Figure 6.5 are 

integrated into a generalized cross-section (Figure 6.6). These integrated features are 

tested against competing theoretical, laboratory, and field observations resulting in a 

consistent and realistic interpretation o f  the subsurface structure. Results o f  the 

integration include; 1) normal velocity and attenuation observed outboard o f the 

volcanoes (Figure 6.1-6.4), 2) a zone o f  moderately low velocities and moderately high 

attenuation between Martin volcanoes and Katmai caldera at depths less than 6 km 

(dotted rectangle, Figure 6.6), 3) lowest velocities and highest attenuation observed 

between Mageik, Novarupta and Trident volcanoes at depths o f 0-4 km (Figures 6.5-6.6) 

and 4) high 6-values at Mageik volcano and low 6-values at Trident volcano.

The velocity and attenuation anomalies probably cannot be ascribed to simple 

lithologic variations. In the study area, surface rocks are dominantly Jurassic Naknek 

Formation (sand and siltstones), except along the volcanic axis, where andesite, dacite 

and rhyolite predominate. The thickness o f the Naknek Formation rocks is poorly 

constrained, but is probably on the order o f  1.5 km thick (Hildreth, 1987). The Naknek 

Formation is underlain by Mesozoic sedimentary and volcanic rock having an 

approximate thickness o f 3.5 km (Hildreth, 1987). The underlying basement rock is 

probably composed o f  meta-sedimentary and plutonic rocks (Beikman, 1980). If the 

rocks outboard of the volcano are predominantly sedimentary and the rocks along the 

volcanic axis are predominantly volcanic, then the question is, what is the expected
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Figure 6.2: Velocity (a) and attenuation (b) for layer 3 (2.0-4.0 km). Color scale 
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Figure 6.3: Velocity (a) and attenuation (b) for layer 4 (4.0-6.0 km). Color scale is km/s 

(a) and 1 IQ (b).
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Figure 6.4: Map of b- value variation in space for earthquakes located between July 

26,1995 and November 30,1999. Grid spacing is approximately 0.5 km by 0.5 km. 

Locations are determined using the final three-dimensional velocity model. The 6-value 

is determined in variable volume cylinders having 100 earthquakes > 0.7 Ml-
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Figure 6.5: Cross-sections along the volcanic axis from Martin to Katmai caldera for 

velocity (a), attenuation (b), and 6-value spatial mapping (c). Color scales are given in 

Figures 6.1-4.
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Figure 6.6: Integration of velocity, attenuation, and 6-value results for cross-section 

along volcanic axis.
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velocity distribution? Examination o f velocities o f  common rock types at relevant 

confining pressures o f about 1 kbar (Handbook o f  physical properties o f rocks, v. 2, 1982, 

and references therein) suggest velocities of 3.95-5.29 km/s for sandstones and siltstones. 

Alternatively, a single measurement o f the velocity o f  andesite at the same confining 

pressure yields a velocity of 5.27 km/s. These limited data suggest that the volcanic rocks 

at Katmai should have faster or similar P-wave velocities compared to sandstones and 

siltstones observed outboard o f the volcanic axis. Hence, lithologic variations probably 

cannot account for the observations.

The observations near the surface could indicate the existence o f a shallow 

hydrothermal system. Power et al, (1998) showed that a strong low velocity anomaly 

occurred beneath an active geothermal system at Spurr volcano, Alaska. Such a 

geothermal system might produce high attenuation and low velocities in the first 

kilometer or so below the surface (Evans and Zucca, 1988). Fumarolic activity is 

observed at Trident, and Mageik consistent with this hypothesis. However, it is not likely 

that these effects extend to greater than a kilometer or two below the surface where higher 

confining pressures preclude the existence of steam in pores and fractures.

Prior experimental and theoretical studies suggest that the presence o f partially 

melted rock at depths greater than a few kilometers below the surface will result in higher 

6-values, lower relative velocities, and increased attenuation. Alternatively, a solid with 

fractures filled with water might produce higher attenuation, moderately lower velocities 

and higher 6-values. Such conditions are likely in volcanic environments and could 

produce the results of Figure 6.6 from about 2-6 km below sea level.
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Moderately low velocities and associated moderate attenuation occur along the 

volcanic axis between the surface and 6 km below sea level (rectangle, Figure 6.6).

These observations probably result from higher fracture density, higher water content, and 

perhaps residual melt in old intrusions. Repeated intrusions may have deformed and 

fractured the rocks in the immediate vicinity o f the volcanic axis. This high fracture 

density, and an inferred abundance o f water from overlying glaciers and degassing 

magmas may have produced a general trend o f lower velocity and higher attenuation 

between Martin volcano and Katmai caldera.

Beneath Mageik, Novarupta and Trident volcanoes, a zone o f higher attenuation 

and lower velocities exist. This zone has stronger anomalies than observed along the 

general volcanic axis and the subsurface conditions are probably different there. If  the 

observations result from a magma system at shallow depth (i.e. 0-6 km depth), then what 

is the character o f  this magma system? Based on work by Mavco (1980) one might 

expect the shallow magma chamber to contain anywhere from 10-40% melt based on the 

-10%  reduction in velocities. I f  the body contained 10% partial melt for the extent of the 

system and the dimensions of the magma body are 15 km (Katmai caldera to Mageik) by 

10 km (Novarupta to Observation mountain) and extend from sea level to 6 km below sea 

level, then the total portion of magma within the observed anomaly would be -90  km3 

(10% o f the total velocity and attenuation anomaly o f 900 km3). Hildreth et al. (1983) 

determined a total volume for the 1912 eruption o f about 13 km3 (dry rock equivalent). 

Given the estimates o f partial m elt and the distribution of the observed structure, it is
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surmised that the 1912 eruption could have been fed by this inferred magma system, but 

probably could not have produced the collapse at Katmai caldera located ~10 km away.

A further indication of the character of the inferred magma system is supplied by 

our 6-value analysis. The bulk o f  the data for the 6-value calculation at Mageik volcano 

come from two swarms: one during the 1996 October swarm and the second associated 

with the December 1998 swarm (Figures 4.7 and 5.5). The highly localized nature o f the 

swarms suggests that a single magma chamber between Martin and Trident is unrealistic. 

The volume occupied by the swarm itself is less than about 15 km3, about 2% of the 

volume occupied by the velocity and attenuation anomaly (900 km3). Instead, the swarms 

and associated 6-value anomalies are restricted to one small part o f the velocity and 

attenuation anomaly suggesting multiple intrusions rather than a single chamber. This 

inference is further supported by results by Lu et al. (1997). The deformation signature 

they observed was modeled as a Mogi point source located at shallow depth and on the 

south-west flank o f  Trident volcano. Lu et al.’s (1997) anomaly is basically centered on 

the velocity and attenuation anomalies o f this study (Figure 6.6). The results are also 

coincident with results by Coombs et al., (in press) which suggest that Trident eruptive 

products were derived from shallow depth.

High 6-values at Mageik volcanoes and low 6-values at Trident volcano offer an 

interesting conundrum. Why do two regions where magma is inferred to exist have such 

completely different frequency-magnitude distributions? The variation might be ascribed 

to the timing o f the intrusive event. The high 6-values associated with the Mageik 6- 

value anomaly are associated with the two swarms in October 1996 and December 1998
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(Figure 5.5), while the most recent intrusion at Trident may have occurred earlier, 

between 1993 and 1995 (Lu et al., 1997). Perhaps high b-values are observed 

immediately after an intrusive event while the attenuation and velocity results are longer- 

lived features.

The evidence suggests that at least two younger magma chambers exist The most 

recently active one is beneath Mageik volcano, while the second magma chamber is 

beneath Southwest Trident and was probably last intruded between 1993-1995 (Lu et al,

1997). A generalized cartoon cross-section of the Katmai volcanoes (Figure 6.6) shows 

the main subsurface features.

The depth and extent of subsurface features at Katmai is not well resolved 

because parameters o f this study are limited to the region above 8 km depth. Prior 

geophysical results, however, suggest that the volcanic system at the Katmai group 

volcanoes extends to far greater depth. For example, gravity results obtained by Kienle 

(1970) were subsequently modeled by Saltus et al. (1991) as a 4.5 km radius sphere 

centered approximately 7-9 km below sea level and having a density contrast of 500 

kg/m3. In addition, Ward, et al. (1991) found a 0.2-0.9 second delay in the arrival times 

for earthquakes recorded on a station located at Katmai pass. The three-dimensional 

velocity model in this study (Chapter 2) does not yield this total anomaly. For example, if 

vertical rays impinged the new three-dimensional velocity structure at Katmai pass 

compared to a non-volcanic ray path (beneath station ACH for this example), then only 

about 0.2 seconds o f velocity contrast could occur. Additional low velocity material is 

required and must be located at greater depth. Deeper volcanic structures are also
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inferred in a study o f S-wave screening (Matumoto, 1971) using local and regional 

seismicity. The anomalies were centered on Katmai and included 4 bodies, one at depths 

o f 20 to 30 kilometers, beneath Katmai pass and the others at depths less than 10 km and 

centered at: 1) Martin-Mageik, 2) beneath Trident, Katmai caldera and Griggs, and 3) 

beneath Snowy volcano.

The prior geophysical results require deeper volcanic structures, while the new 

attenuation (Chapter 2) results suggest that the anomalous structures do not extend 

beyond about 6 km depth. The observations suggest that both shallow and deep volcanic 

systems exist beneath the Katmai volcanoes. This inference is provisional, however, 

because the critical 6-8 km layer for the attenuation inversion and the 4-8 km  layers for 

the velocity inversion are less well constrained.

6 3  Models for the 1912 eruption

As a final point o f discussion, two models for the 1912 eruption were forwarded 

in recent papers. One, by Hildreth and Fierstein (2000), suggests that a large 

compositionally zoned magma chamber was resident beneath Katmai caldera, and erupted 

via a propagating sill and dike at Novarupta dome. The alternate model, by Eichelberger 

and Izbekov (2000) suggests that a large rhyolite dike intruded both a shallow dacite- 

andesite magma chamber beneath Mount Katmai and the surface at Novarupta, producing 

the large eruption, and caldera collapse. How do these models compare with the new 

velocity, attenuation and 6-value results? The Hildreth and Fierstein (2000) model
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requires a large magma chamber beneath Katmai caldera. If such a chamber existed at 

the beginning o f the 20th century, it is reasonable that some manifestation should be seen 

in the subsurface structure today. If  so, then it is only imaged as a generalized feature o f  

the volcanic axis (Figure 6.6). Unfortunately, the region in question is on the edge o f 

both the velocity and attenuation models (Figures 2.5, 2.7,2.9, 3.14, 3.16 and 3.18) and 

might exist, yet remain unresolved. A dike of the nature proposed by Eichelberger and 

Izbekov (2000) is probably not resolvable by the techniques described in this thesis. 

However, the smaller scale magma chamber, proposed in the alternate model, might 

produce the moderately low velocities and moderately high attenuation seen in the 

vicinity o f  Katmai caldera.

One interesting aspect of both models could be expressed in the attenuation result 

o f  Chapter 3. The dike structure common to both models must have propagated through 

undeformed rock before reaching the new vent at Novarupta. This feature is expressed in 

Figure 6.6 as the deeper (2-6 km) high attenuation structure beneath Trident volcano. 

Inspection o f  the layer 3 attenuation results (Figure 6.3b) shows that the high attenuation 

structure is centered beneath Novarupta dome (Figure 6.3b) and is not related to a strong 

velocity anomaly (Figure 6.3a). The strong attenuation and low velocity feature might 

result from a solidified dike and fault system common to both the Hildreth and Fierstein 

(2000) and Eichelberger and Izbekov (2000) models. The highly fractured zone probably 

contains no resident magma, having been long solidified and never re-injected, hence 

producing only marginally low velocities. However, the region beneath Novarupta may 

contain abundant fluid filled cracks, producing the strong attenuation result.
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This thesis uses established techniques for estimating the P-wave velocity (Lees, 

1989, Moran 1997), P-wave attenuation (Witlinger et al. 1983; Lees and Lindley, 1994), 

and 6-value (Wiemer and Benoit, 1996; Wiemer and McNutt, 1997) structure in three- 

dimensions at the Katmai group of volcanoes. Results o f these studies indicate that low 

velocities and high attenuation occur beneath Mageik, Novarupta, Trident and Katmai 

caldera in the depth range 0-4 km below sea level at this same depth range, high 6-values 

are observed beneath Mageik volcano, intermediate 6-values are observed beneath Martin 

and Katmai caldera and low 6-values are observed at Trident volcano. The P-wave 

velocity (Chapter 2) and attenuation (Chapter 3) studies in conjunction with prior gravity 

(Kienle, 1970), and S-wave attenuation results (Matumoto, 1971) demonstrate the 

existence of a large shallow subsurface structure extending from Mageik volcanoes to 

Katmai caldera. This structure is probably composed o f  several smaller scale structures, 

as indicated by the localized character o f the 6-value distributions (Chapter 4 and 5) and 

prior deformation results (Lu et al., 1997). The totality o f the data suggest that the 

Katmai volcanoes between Mageik and Trident are underlain by a series o f partially 

molten magma bodies which are isolated from each other, at least within the time scale of 

the geophysical data used for this interpretation (i.e. 1970-2000).

6.4 Conclusions
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