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Abstract:

The impetus for this dissertation was an interest in geographic variation in 

Microtus longicaudus with a particular focus on populations in the Alexander 

Archipelago o f southeastern Alaska. To establish a framework for interpreting 

intraspecific variation in M. longicaudus. I examined the phylogenetics of 28 species of 

the genus Microtus. including all North American species (Chapters 2 and 4). That study, 

which corroborates a rapid pulse of diversification noted in the fossil record, necessitated 

a deeper phylogenetic perspective. Thus, a third objective of the dissertation was to 

investigate relationships among genera o f arvicolines within the framework of other murid 

rodents. I examined variation in the mitochondrial cytochrome b and ND4 genes using 

maximum parsimony, distance, and maximum likelihood phylogenetic analyses. 

Relationships at several taxonomic levels appear intractable due to rapid accumulation and 

survival o f genetic lineages. These rapid radiations were found among species, genera, and 

possibly subfamilies: however, strong support at these levels for other taxa (e.g.. the 

monophyly o f Microtus) suggests these genes have strong phylogenetic signal.

Many of the well-supported sister species pairs within Microtus (Chapters 2 and 

4) had been previously identified based on morphologic or allozvme work (e.g.. M. 

pennsylvanicus and M. montanus. M. pinetorum  and M. quasiater). The sequence data 

supported a clade o f  taiga dwelling species in North America and a clade of eastern and 

central Asian species. The southernmost arvicoline species of Mexico and Guatemala.
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though previously suggested to be derived from a single ancient invasion, did not appear 

to be either ancient or monophyletic.

Within M  longicaudus. a large east-west phylogeographic break was detected that 

is equivalent in genetic distance to other sister species pairs in the genus. This break may 

indicate mid to late-Pleistocene differentiation (Chapter 3) within the genus. At higher 

latitudes, populations o f M  longicaudus exhibited evidence o f recent range expansion 

including absence o f correlation between geographic and genetic structure; and pairwise 

mismatches among DNA sequences with a single peak and few differences.
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I

VI. INTRODUCTION:

Arvicoline rodents have provided model systems for studies in disparate areas of 

biology. Because o f their morphological, physiological, behavioral, and ecological 

variation, voles o f the genus Microtus are commonly used as models in mammalian 

biology (Tamarin. 1985). Species o f Microtus are found in numerous habitats at the 

higher latitudes o f the Northern Hemisphere (Rose and Bimey. 1985) and are common 

components o f mammalian species assemblages from temperate to arctic biomes (Gromov 

and Polyakov. 1977; Hoffmann and Koeppl. 1985). They have been essential to 

exploring such phenomena as cycling in mammalian populations (Krebs and Myers.

1974).

Arvicolines have also been useful as biostratigraphic markers for establishing 

paleoclimatic events (Repenning et al., 1990). The occlusal surface of arvicoline teeth has 

increased in complexity over geological time scales (Chaline, 1987). Therefore, the 

complexity o f arvicoline teeth and abundance in the fossil record make arvicolines useful 

paleoclimatic indicators. The synchronicity o f climatic events that affect whole 

continents has been identified from the appearance of arvicolines with similarly complex 

tooth structure in the fossil record.

Despite their importance to neontology and paleontology, many aspects of 

arvicoline evolution are understudied. Paleontological studies have documented the first
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appearance and subsequent transformation o f taxa over time (anagenesis), but cladogenic 

events and evolutionary relationships have been difficult to identify.

Two major radiations have been recognized within the arvicolinae (Chaline and 

Graf. 1988). The first radiation occurred among the basal lineages of the subfamily. 

Several tribes or suprageneric groups are recognized (e.g.. collared lemmings. 

Dichrostonvchini; true lemmings. Lemmi: muskrats. Ondatrini). but the relationships 

among them are unclear due to a nearly simultaneous appearance in the fossil record and 

few shared characteristics among extant members. Because many species o f Micro (us 

have a shallow or non-existent fossil record, phylogenetic hypotheses have been difficult 

to construct from fossil data.

This dissertation adds to the evolutionary framework for arvicoline rodents using 

molecular techniques. Most molecular studies so far in this group have been biased with 

respect to taxonomic sampling, or have made use o f data that are difficult to compare 

across studies (e.g.. allozymes). This dissertation uses molecular markers that are well- 

characterized by comparative studies (cytochrome b. ND4) and contribute an 

independent perspective on the evolutionary history o f this group from that interpreted 

from their morphology. Each chapter evaluates interpretations o f the fossil, taxonomic, 

and molecular data.

The chapters in this dissertation are organized in an effort to uncover emergent 

properties o f evolution that span populations, species, and higher levels within a clade
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(Fig. 1). To begin to understand speciation in this group, it is necessary to investigate 

variation within species, such as genetic divergence over geography. However, to 

understand macroevolutionary phenomena such as species sorting, higher level studies are 

necessary. Each level requires a perspective deeper than its primary focus.

Unfortunately, few studies exist that have addressed relationships at the family level 

within the Order Rodentia.

3

SUBFAMILIES OF 
MURIDAE

ARVICOLINAE
CRICETINAE
MURINAE
GERBILLINAE
SIGMODONTINAE

ARVICOLINAE

M IC R O TU S
ELLO BIU S
C LE TH R IO N O M YS
A L T ! CO LA
A R V IC O L A
O N D A TR A
L E M M U S
S Y N A P T O M Y S
M Y O P U S
D IC R O ST O N Y X
P H E N A C O M Y S

M IC RO TU S

M. abbreviatus
M. agrestis
M. arxalis
M. californicus
M. canicaudus
M. chrotorrhinus
M. fortis
M. gregalis
M. kikuchii
M. longicaudus * *

M. mexicanus
M. middendorffi
M. m iurus
M. m ontanus
M. m ontebelli
M. ochrogaster
M. oeconom us
M. oregoni
M. pennsylvanicus
M. pineiorum
M. richardsoni
M. rossiaemeridionalis
M. tounsendii
M. xanthoenaihus

Fig. 1. The chapters in this dissertation are nested in this arrangement. The initial 
focus is among murid subfamilies and genera of Arvicolinae (Chapter 1). then on species 
within the genus Microtus (Chapter 2). Chapter 3 focuses on populations o f one species. 
Microtus longicaudus.
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Although molecular data have frequently resolved dichotomous branching 

relationships among lineages, non-bifurcating or polytomous relationships also have been 

revealed. This may be due to either saturation of characters for phylogenetic inference 

(soft polytomv). or might reflect truly rapid speciation (hard polytomy). Inferences 

from the fossil record and from taxonomy suggest a combination of both dichotomous 

branching and polytomous relationships might be found among lineages o f arvicoline 

rodents at several levels.

I conducted all the molecular work for these projects, with the occasional 

assistance o f other students in Joe Cook's lab and staff in the Institute of Arctic Biology 

Core Sequencing Facility. Joe Cook, my advisor and coauthor on all chapters, provided 

funding for the bulk o f the research and provided technical support in methods and 

assisted in expressing the ideas presented. Fernando Cervantes and Yolanda Horteiano. 

coauthors on the fourth chapter, provided the specimens and are also contributing their 

knowledge o f the biology of the southern species o f arvicolines found in Mexico.
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Chapter I

MtDNA Evidence for Repeated Pulses of Speciation within Arv icoline and Murid

Rodents'

Abstract: We examined temporal aspects of phylogenetic relationships among five murid 

rodent subfamilies and 11 arvicoline genera based on DNA sequences o f the cytochrome b 

gene (n = 92) and ND4 gene (n = 17). We found monophyly for Muridae but a polytomy 

among murid subfamilies. Arvicolinae was monophyletic. but most genera within this 

subfamily arose from a polytomy. Microtus was monophyletic. but within the genus, 

species arose rapidly. This pattern of nested pulses (polytomies) was recovered across 

parsimony, distance, and likelihood methods and indicates that accumulation of taxonomic 

diversity in murids was sporadic, rather than gradual. Arvicolines appeared in the Late 

Miocene and diversified later between three and five million years ago. A relatively high 

rate of sequence evolution (i.e.. 2.3 % in third position transversions per million years) 

helps reconcile the diversification of fossils and mtDNA lineages.

1 Conroy. C. J.. and J. A. Cook. Accepted. MtDNA evidence for repeated pulses o f  speciation within 
arvicoline and murid rodents. Journal o f Mammalian Evolution
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INTRODUCTION

The hollow curve distribution of species richness (Fig. 1) has stimulated 

considerable discussion among biologists (Anderson, 1974: Stanley. 1979) because it is a 

common feature o f higher taxonomic categories. Studies aimed at examining this uneven 

distribution have generally avoided an explicit phylogenetic framework (e.g.. Huston.

1995). yet phylogenies based on molecular techniques have provided insight into the 

apparent disparity in diversification rates among lineages (e.g.. Sanderson and Donoghue.

1996).

The murid rodent subfamily Arvicolinae has been advanced as a classic example of 

the hollow curve distribution (Reig, 1989) (Fig. 1). Previous attempts to classify or 

reconstruct the phylogenetic history of the Arvicolinae have been based on morphology, 

allozymes. karyotypes (reviewed in Musserand Carleton. 1993). and restriction 

fragments of nuclear and mitochondrial DNA (DeBry. 1992: Modi. 1996). Because few 

studies have shared many taxa. comparisons across studies have been difficult. 

Reconstructing the history o f arvicolines has been further complicated by apparent pulses 

o f speciation in the fossil record. The earliest arvicoline fossils date to the Late Miocene 

(Chaline. 1990). Modem arvicoline genera appeared in the Mid- to Late Pliocene 

(Repenning et al., 1990) and radiated into diverse habitats including tundra, taiga, 

deciduous and coniferous forest, prairie, and steppe (Gromov and Polyakov. 1977). The 

radiation of Microtus is thought to have occurred within the last 2 million years (Chaline

7
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and Graf. 1988). Due to temporal and spatial gaps in the fossil record, the origin o f 

specific lineages has remained obscure (Repenning et al.. 1990).

In this paper, we focus on diversification within the Arvicolinae and provide 

preliminary data on two other apparent cases of rapid diversification at the level o f murid 

subfamilies and among species of Microtus. Muridae. the most speciose family o f 

mammals (Musser and Carleton. 1993). also exhibits a hollow curve distribution. A few 

murid subfamilies are diverse (e.g.. Murinae with 122 genera. 529 species: Wilson and 

Reeder. 1993) while others are monotypic. suggesting unequal rates o f diversification.

We lack a phylogenetic framework to begin exploring diversification in these 

groups. In particular, a phylogenetic approach would help to I ) address relationships 

among arvicoline genera which have remained problematic. 2) characterize the tempo of 

diversification. 3) date certain cladogenic events, and 4) identify- sister clades for 

investigations of the hollow curve distribution of species. A resolved phylogeny would 

best aid in address relationships among taxa. However, unresolved branches (e.g.. a 

multifurcation) might obscure relationships, but they might best characterize the tempo of 

diversification.

We used sequences from two mitochondrial genes and expanded the number of 

taxa previously examined (e.g.. DeBry. 1992: Modi. 1987. 1996: Nadler et al. 1978) to 

test previous phylogenetic hypotheses among seven of the eight arvicoline tribes and 

examine further the complex history of diversification within the Muridae.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MATERIALS AND METHODS 

Nucleotide Sequences

DNA sequences o f the mitochondrial cytochrome b (cyt-b) gene and a portion of 

the ND4 gene were generated for 11 genera and 17 species of arvicolines (92 individuals) 

representing seven tribes (Table I). These genes efficiently retrieve known phvlogenies 

for this and deeper levels o f  divergence and they have been sequenced for a substantial 

number o f related taxa (Russo et at.. 1996; Zardoya and Meyer. 1996). The cyt b genes 

of fourteen outgroup taxa (three murine genera, two cricetine genera, three sigmodontine 

genera, one gerbilline. one dipodid. one sciurid. and three hystricognath genera) were 

sequenced, retrieved from GenBank. or obtained from J. Salazar (Table I). In related 

studies, we examined complete sequences of cyt-b from 26 species of Microtus (Conroy 

and Cook, submitted).

DNA was extracted from heart or liver (Table I) via a modified salt method 

(Medrano et al.. 1990). Symmetric PCR (Saiki et al.. 1988) was used to amplify the 

complete cyt-b gene (Mus bp 14139-15282 of the complete mitochondrial genome: Bibb et 

al.. 1981) using primer pairs MVZ04-MVZ05 and MVZ23-MVZ14 (Smith and Patton. 

1993) and arvicoline specific primer pairs CLETH-16 (5‘ -

AGAAARTAYCATTCTGGYTTAAT: Mus bp 14940 is the 3 ' end of the primer). 

CLETH-37 (5' - TA Y AA Y AT AATY G AAAC HT G A A; Mus bp 14457). VOLE-23 (5* - 

T AC A AG A AAC AGG AT C A AAC AAC C; Mus bp 14752). and VOLE-14 (5' - 

TTTCATTACTGGTTTACAAGAC: Mus bp 15309). A portion of the mitochondrial

9
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ND4 gene (Mus bp 832-1377) was sequenced for at least one representative o f each 

arvicoline genus and the sigmodontine Peromyscus (Table I) using primers ND4 and LEU 

(Arevalo et al.. 1994). PCR reactions generally included a denaturation step at 94°C for 5 

minutes, followed by 35 cycles o f 94°C for 15 seconds. 45-50°C for 15 seconds, and 

72°C for 1 minute, followed by a final extension step of 72°C for 5 minutes. Double 

stranded PCR products were precipitated with polyethylene glycol and sodium chloride 

and pellets were rinsed with 75% ethanol prior to cycle sequencing. Cycle sequencing 

consisted o f a denaturation step of 96° for one minute followed by 35 cycles o f 96°C for 

10 seconds. 50°C for 5 seconds, and 60°C for 4 minutes. Cycle sequencing products 

®(Perkin-Elmer Prism dye terminator kit [Fst-RR. 402119]) were purified with Sephadex 

G-50 (Sigma) and dried under vacuum. Sequences for both strands were determined on an 

ABI 373a Stretch DNA sequencer. Alignment was done by eye. Sequences have been 

deposited on Genbank with Accession Numbers XXXX through XXXX.

We sequenced multiple species for four polytypic genera to attempt to break up 

long branches o f the phylogeny (Hillis et al.. 1996) and to identify representatives of each 

group. For higher level analysis, we used cyt-b sequences from the rodents Phoclopus 

sungorus. P. campbelli, and Mesocricetus auratus (Cricetinae); Rattus rattus. Mus 

musculus, and Acomys airensis (Murinae); Meriones unguiculatus (Gerbillinae. 827 bp 

cyt b): and Bolomys amoenus, Calomys callosus. and Peromyscus keeni (Sigmodontinae). 

Zapus trinotatus (Dipodidae) and Sciurus aberti (Sciuridae) were included as outgroups to

10
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11

Muridae. Hystricognath sequences (Echimyidae: Makalata didelphoides. Proechimys 

amphichoricus. and Mesomys hispidus) rooted the initial sciurognath tree.

Data Analyses

Nucleotide variation and amino acid variation were examined for both genes 

(MEGA version 1.02. Kumar et al.. 1993) across arvicoline genera and between 

arvicolines and murines (Mus musculus and Rattus rattus). Pairwise transitions (TS) and 

transversions (TV) were plotted against maximum likelihood distance (DNADIST in 

PHYLIP version 3.572. Felsenstein. 1993) to examine saturation for TS 's and TV 's at 

each codon position (Fig. 2). To estimate time of divergence, we tabulated pairwise TV's 

in codon third positions for several levels of taxonomic divergence and adjusted them with 

a sigmodontine-based rate o f 2.3 % substitution per million years (Smith and Patton.

1993).

The random trees option on test version 4.0d59 o f PAUP* (Swofford. 1997) 

constructed 100.000 trees to examine phylogenetic signal at different taxonomic levels 

using g) statistics (Table II: Hillis and Huelsenbeck. 1992). All g ( values were significant 

(a  = 0.05). except ND4 third positions. Tajima's (1993) relative rate test was applied 

within the Arvicolinae. We also tested for a molecular clock by comparing trees built 

under the F84 model which allows variation in root to tip path lengths (DNAML. 

Felsenstein, 1993) and under a model which assumed a molecular clock (DNAMLK) 

under three TS/TV ratios (2/1. 10/1. 20/1).
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Phylogenetic reconstruction was done with three methods. Weighted maximum 

parsimony (MP) searches were completed on PAUP* with weights based on empirical 

variation in codon position in pairwise comparisons between arvicolines and murines. A 

TS/TV ratio o f 10:1 (Wakelev. 1996) was also used at deeper levels. Trees were initially 

rooted with three hystricognath sequences (Lara et al.. 1996) to polarize the sciurognath 

characters (cyt-b only). The sigmodontine Peromyscus was identified as the closest 

outgroup to the arvicolines by successively removing basal taxa (Kitching. 1994). Due to 

the large number of taxa. a heuristic search with default search options was implemented. 

Random starting options (n = 100) were also implemented to minimize the potential of 

islands-of-trees problem (Maddison. 1991). To avoid the use o f saturated characters in 

such a taxonomicallv deep analysis, we also used amino acid parsimony.

We also used PAUP* for Neighbor-joining (NJ: Kimura's [1980] two-parameter 

distance) (Saitou and Nei. 1987) and maximum likelihood (ML: F84 model of 

substitution. TI/TV = 2. empirical base frequencies, four rate categories, gamma 

distributed with shape = 0.296) trees. The MP and NJ trees were bootstrapped 250 

times maintaining the original distance schemes and all were rooted for presentation. 

Bremer decay indices (Bremer. 1988) were constructed with TreeRot (Sorenson. 1996).

The topologies o f the MP and NJ trees were tested against the ML tree with a 

likelihood ratio test (Kishino and Hasegawa. 1989). We also tested four particular 

relationships based on morphology and karyologv. (1) Is Arvicola sister to Microtus 

(Bailey, 1900: Hooper and Hart. 1962: Miller. 1896; Nadler et al.. 1978)7 Arvicola

12
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displays striking morphological resemblance to Microtus. except that it is more 

semiaquatic. somewhat like the muskrat Ondatra, and it is larger than most species o f 

Microtus. (2) Is Dicrostonyx. the collared lemming, a member of the true lemmings 

(Hinton. 1926: Matthey. 1957)? Dicrostonyx is a common small mammal of high latitude 

tundra habitats. However, despite similarities in habitat and morphology with other 

"true" lemmings, particularly Lemmus and Myopus. the tooth structure and karvology of 

Dicrostonyx suggest a deeper historical split. (3) Is Phenacomys. the heather vole, sister 

to Microtus (Hinton. 1926: Miller. 1896)? The systematic position of Phenacomys has 

never been clear. (4) Is Ellobius sister to Microtus? This relationship was hypothesized 

based on similarity in karyotypes (Matthey. 1957). The phyletic position o f Ellobius. 

the mole vole, has been unclear because of its exceptional subterranean adaptations. 

Repenning (1968) suggested that Ellobius be excluded from Arvicolinae based on 

mandibular musculature. Maximum likelihood searches were constrained to satisfy these 

four relationships and evaluated under the F84 ML model with a likelihood ratio test 

(Kishino and Hasegawa. 1989).

Trees based on either cyt-b or ND4 differed only at branches with weak bootstrap 

support. We combined these data (Zardoya and Meyer. 1996) because the genes are 

linked within the non-recombining mitochondrial genome and appear to be evolving at 

similar rates (Fig. 2). Increasing sequence length may resolve suspected rapid radiations 

by increasing the number o f  synapomorphies (Kraus and Miyamoto. 1991). Although 

phylogenetic investigations can be flawed if large biases in base and codon composition

13
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exist (e.g. Naylor and Brown. 1998). we suggest this issue is limited within the relatively 

limited taxonomic scope of this study.

RESULTS 

Sequence Variation

This study expands the only other paper describing mtDNA variation in 

arvicolines which was limited to two closely related species over a narrow geographic area 

(Baker et al.. 1996). .Arvicolines share a cyt-b gene of 1143 bp (381 codons). Among 

mammals, the number of codons in the cyt-b gene varies from 379 (carnivores, 

perissodactyls. proboscideans, artiodactyls: Jermiin et al.. 1994) to 388 codons 

(marsupials: Patton et al.. 1996). Overall, nucleotide composition in arvicolines is similar 

to other mammals: adenine (31.5 %). cytosine (28.5 %). thymine (27.7 %). and guanine 

(12.4 %). Third positions exhibited an extreme deficiency of guanine (3.3 %) similar to 

other mammals (e.g.. Irwin et al.. 1991: Patton et al.. 1996). Third position transitions 

appeared to saturate faster than first and second positions due to a faster rate of evolution 

(Fig. 2).

Variation in nucleotides and amino acids for cyt-b was similar to that found in 

other mammals. Of the 469 variable nucleotide sites. 339 were phylogenetically 

informative among 11 arvicoline and two murine genera. The distribution of amino acid 

replacements among transmembrane, outer surface, and inner surface regions was
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equivalent (X2 = 0.87, p < 0 .1) to that identified by Irwin et al. (1991) for hypervariable 

sites. For cyt b (n = 32). there were 380 total amino acids (plus a stop codon in 

arvicolines). O f these. 168 were variable of which 115 were parsimony informative.

Structural models o f the ND4 gene comparable to that for cyt-b (Irwin et al.. 1991) 

are not available. Variation across codon positions for ND4 (2.4 : 1 : 8.4) was not 

statistically different (X2 test: 0.90 < p < 0.75) from cyt-b ( 4 : 1 : 1 7 ) .  Saturation o f third 

position TS's (Fig. 2), overall base composition, and guanine deficiency (i.e.. guanines 

were present in 10% o f bases overall and 4% in third positions) were similar between 

ND4 and cyt-b. Across ND4 sequences (n = 15). there were 181 amino acids and o f these 

55 were variable and 20 parsimony informative.

Of 1689 nucleotide sites from the combined cyt-b (1143) and ND4 (546) 

sequences. 723 were variable (966 invariant) and 529 were parsimony informative among 

arvicolines and murines. Variation across codon positions was 3 : 1 : 13(3:  1 : 10 for TS 

and 4 : 1 : 22 for TV) across all taxa For MP trees, positions were weighted inversely (4 

: 13 : 1) to the observed variation (Chippendale and Weins. 1994: Huelsenbeck et al..

1994). The overall TS/TV ratio was 1.4. Varying the TS/TV parameter between 1 and 10 

did not significantly alter the likelihood. Third position TS's appeared saturated beyond 

a likelihood distance o f 0.2. whereas slopes for first and second position TS's and all 

TV 's appeared constant (Fig. 2). We used the F84 likelihood distance (e.g.. Lara et al.. 

1996: Tan and Wake. 1995) though a similar relationship was found with other genetic 

distances (e.g.. Kimura's two-parameter, calculated with DNADIST. Felsenstein. 1993).
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The combined amino acid sequences were 561 acids long, of which 223 were variable and 

135 were parsimony informative.

Tajima's (1993) relative rate test indicated that branches were not significantly 

different from expectations under equal rates of evolution. Tree likelihood and topology 

did not differ significantly when a molecular clock (DNAMLK.) was assumed 

(Felsenstein. 1993). further suggesting similar rates o f nucleotide evolution.

Phylogenetic Implications

Similar topologies were found across methods, and three pulses o f diversification 

were identified. Support for monophyly of the Muridae, subfamilies Arvicolinae and 

Cricetinae. several arvicoline groups (e.g.. true lemmings. Microtus. Dicrostonyx.

Ellobius). and some sister species o f Microtus agrees with previous morphological 

analyses and indicates the molecular data can resolve relationships across these taxonomic 

levels (Fig. 4). For instance. Muridae is supported by numerous skeletal 

svnapomorphies (Carleton and Musser. 1984) such as uniserial enamel (Flynn et al..

1984). Arvicolinae has been recognized for more than 100 years (Alston. 1876) based on 

their prismatic tooth pattern. True lemmings (Lemmus. Myopus. Svnaptomys) are usually 

recognized as a monophyletic group to the exclusion of Dicrostonyx (Jarrell and Fredga. 

1993). Microtus, though possibly paraphyletic with other arvicoline genera (Carleton.

1985), exhibits some derived morphological features such as the way the teeth are rooted 

and the numbers o f triangles on the occlusal surface (Miller, 1896). The monophyly of

16
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the genera Dicrostonyx and Ellobius is supported by the morphological synapomorphies 

that define those genera (e.g. winter claws in Dicrostonyx and fossorial adaptations in 

Ellobius).

A MP tree of cyt b sequences rooted with hystricognath sequences (Fig. 3) placed 

the sciurid basal to the dipodid and all murids. The sciurid sequence was used to root 

subsequent analyses o f higher level murid relationships (Fig. 4) and these indicated that 

the family Muridae was monophyletic (82 % MP. 80 % NJ bootstrap support). Two 

MP trees were obtained. Not all murid subfamilies were monophyletic and bootstrap 

support for relationships among subfamilies was generally weak (< 50 %). The NJ and 

ML trees also exhibited weak support for relationships among subfamilies, suggesting a 

pulse o f diversification among the murid subfamilies. However, the Arvicolinae was 

monophyletic across all methods (bootstrap support 67 % MP. 87 % NJ).

The second pulse was among arvicoline genera. Monophyly of the genera 

Microtus and Dicrostonyx were well supported in MP analyses. However, the genus 

Clethrionomys was paraphyletic because Alticola macrotis was sister to Clethrionomvs 

rutilus when arvicolines were rooted with Peromyscus (Fig. 5-b. c) and in higher level NJ 

and ML trees (Fig. 4-a, b, c). One tree island of shortest length was found when MP 

searches were limited to arvicolines with a Peromyscus outgroup. The NJ and ML trees 

(Fig. 5-b. c) supported the monophyly of Ellobius, true lemmings (Myopus. Lemmus. and 

Synaptomys). and a weak but consistent sister-group relationship between the 

Clethrionomyini and Microtus (69 % bootstrap support in Peromyscus rooted NJ. Fig. 5-

17
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b). Otherwise, relationships among genera of the Arvicolinae (e.g.. Dicrostonyx. 

Phenacomys, Ondatra and Ellobius) were poorly resolved. This was corroborated by 

likelihood ratio tests which did not reject any of the topologies we tested (Table 11). MP 

and NJ trees constructed with amino acids only (Fig. 6) also suggested that these pulses 

are not due to saturation, but to rapid branching.

A third most recent pulse led to a rapid diversification among species o f Microtus 

and these details are presented elsewhere (Conroy and Cook, submitted). Evidence for 

that pulse was apparent only when larger numbers of species of Microtus were included. 

Short branches were found at the base of the radiation of Microtus. but a number of 

previously identified sister species (e.g. M. montanus and M. pennsylvanicus. M. miurus 

and M. abbreviatus) were supported also.

DISCUSSION

Polytomies may be the result o f homoplasy due to saturation (i.e.. "soft" rather 

than "hard;" Maddison and Maddison. 1992) or a paucity of synapomorphies along short 

intemodal branches due to rapid pulses of speciation. Our data have several 

characteristics that argue for hard polytomies (Lara et al.. 1996: Lessa and Cook. 1998). 

First, significant gj statistics for all but ND4 third positions suggest the data have 

phylogenetic signal. Second, consistency across methods suggests that short branches are 

not an artifact o f  the phylogenetic analysis. Third, relative rate tests demonstrated that 

rate heterogeneity among lineages was not a factor affecting tree construction. Fourth.

18
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although third positions may exhibit excess homoplasy at deeper branches, when removed 

from analyses we recover similar tree topology (i.e. the same areas of low support). 

Amino acid parsimony, which should identify the effects o f saturation, also resulted in 

similar tree topology (Fig. 6). Finally, bootstrap support at nodes above and below 

polytomies indicate diversification over a short period of time, rather than saturation 

effects.

These polytomies may be responsible partially for the problematic taxonomic 

history of this clade. The number and constitution o f tribes have changed repeatedly. 

Currently Lemmini. Lagurini. Clethrionomyini. Microtini. Ondatrini. Ellobiini. 

Phenacomyini and Dicrostonychini are recognized (Musser and Carleton. 1993). Fossils 

are abundant for some taxa, but evolutionary relationships among tribes and genera remain 

poorly resolved (Chaline. 1990: Chaline and Graf. 1988). Morphological convergence is 

widespread in the subfamily and may have obscured phylogenetic relationships (Courant 

et al.. 1997).

Well-corroborated phytogenies may elucidate aspects of the history' of speciation 

(Mooers and Heard. 1997). such as tempo. Fluctuations between high and low rates of 

speciation might be reflected in a phylogenetic tree by polytomies (pulses) interspersed 

with periods of anagenesis versus more regularly spaced bifurcations. Because we did not 

reject a molecular clock, branch length may be equated with time (e.g.. short branches 

indicate short periods o f time). Below we discuss each of the pulses in conjunction with 

their systematic implications.

19
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Murid subfamily relationships. These data are consistent with other molecular studies that 

have also suggested a rapid cladogenesis among murid subfamilies (DNA-DNA 

hybridization: Catzeflis et al.. 1995: mtDNA sequences: Engel et al.. 1998: nDNA 

sequences: Robinson et al.. 1997) or their problematic svstematics (Flynn et al.. 1984). 

However, no phylogenetic studies have been comprehensively considered all 17 

subfamilies (Musser and Carleton. 1993). Although the shared polytomous relationships 

across studies and markers suggest this pulse may be genuine, it is also possible that 

methods used to date have been inappropriate for addressing questions at this taxonomic 

level. We recommend that markers other than cyt b be used to further address this 

question. Other subfamilies also need to be sampled for a robust test.

Genera o f  the Arvicolinae. The phylogenetic relationships among genera in this subfamily 

were not strongly supported. A hard basal polytomy would suggest that systematic 

inferences at this level may be flawed. However, relationships that were consistent 

across methods, that had strong bootstrap support, and that were consistent with 

previous morphological analyses deserve further attention. For instance, monophyly of 

Arvicolinae. true lemmings and Microtus reflect relationships previously identified. 

Paraphyly o f Clethrionomys with respect to Alticola has previously been reported based 

on DNA-DNA hybridization (Gileva et al. 1990). Other genera (e.g. Eothenomys and 

Hyperacrius) should be included to test monophyly. Nuclear repetitive elements (Modi.
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1996) supported the sister relationship between Microtus and Clethrionomys. the 

monophyly of lemmings excluding Dicrostonyx. and the paucity o f synapomorphies 

among basal nodes within the Arvicolinae. A hard basal polytomy would explain why 

relationships among arvicoline tribes have remained intractable.

Species o f  Microtus. Our preliminary data for Microtus (Conroy and Cook, submitted) 

support a rapid diversification in this lineage. The tribe Microtini originated in the Late 

Pliocene with the earliest fossils assignable to Microtus dating to about 2.2 million years 

ago (Repenning et al.. 1990). Fossils for many extant species appeared about 1 to 0.5 

million years ago (Zakrzewski. 1985). Despite the abundant fossil record for Microtus. 

phylogenetic reconstruction o f their diversification has proved difficult (Chaline and Graf. 

1988). Cladogenesis among lineages during Pleistocene glacial cycles has been invoked to 

explain species diversity in Microtus (Hoffmann and Koeppl. 1985). However, the rapid 

appearance of fossils, a lack of morphological synapomorphies that define clades within 

the genus (e.g. see Carleton. 1985). and molecular phylogenies (Conroy and Cook, 

submitted) argue instead for a single, major pulse of diversification.

M acroevolution

Molecular phylogenies. by explicitly establishing sister group relationships and 

estimating the duration o f lineages, provide an opportunity to further characterize the 

hollow curve distribution o f species richness. For example, the consistent sister
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relationship between Microtus and Clethrionomys (including Alticolci) that we have 

identified will allow us to test whether the increased species diversity in Microtus is 

significantly greater than expected tinder null models (Sanderson and Donoghue. 1996). If 

we assume they are sister taxa. then by definition they are of equivalent age. We can 

begin investigating differences in diversification rate once a phylogeny is developed that 

includes more of the extant species of these lineages (Clethrionomyini and Microtus).

Periods in which taxonomic diversity has accumulated in these murids have been 

brief (as identified by short intemodal branch lengths). Extant lineages have arisen 

abruptly at the level o f family, subfamily and genus and subsequently undergone gradual 

morphological diversification (Bamosky. 1987; Chaline. 1987). Whether this pattern 

poses a statistically significant challenge to a gradualistic model of macroevolution will 

require further testing. Molecular and paleontological data support rapid diversifications 

in other Rodentia (e.g.. Echimyidae: Lara et al.. 1996; Ctenomyinae: Lessa and Cook. 

1998). However, the mechanisms underlying those pulses remain obscure.

There has been much debate over the causes of pulses and radiations (Givnish and 

Sytsma. 1997: Stanley. 1979). Vrba (1993. 1995) noted that pulses in speciation may be 

correlated with abiotic factors (e.g. Milankovitch cycles; Bennett. 1990). Repenning et 

al.( 1990) and Chaline et al. (1993) have suggested that arvicoline evolution and 

distribution are strongly tied to periodic fluctuations in global climate, with arvicoline 

dispersals from northern to southern regions tied to regular intervals of roughly every 

500.000 years over the last 5.5 million years. We did not find evidence for speciation at
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regular intervals. Alternatively, our data support Chaline and Graf (1988). who suggested 

two main radiations in the Arvicolinae: the first. 3-5 million years ago. resulted in 

diversification among genera and another, about 2 million years ago involved the radiation 

of species o f Microtus. The specific climatic episodes or other circumstances potentially 

responsible for these pulses need further investigation.

Age of Divergence and Evolutionary Rates

The paleontological record and other molecular data have established dates and 

phylogenetic relationships that may be tested with these data. For example. North 

American sigmodontines may be more closely related to the arvicolines than to other 

murid subfamilies (DNA-DNA hybridization: Catzeflis et al.. 1989. Fig. 12.4: mtDNA 

sequences: Engel et al.. 1998: fossils [e.g.. Copemys]: Martin. 1975). Arvicolines are 

found first in the late Miocene with Prosomys mimus in North America and P. imuliferus 

in Eurasia (Chaline. 1987. and references therein). The earliest age of species of Mimomvs 

and other ancient arvicolines (Microtoscoptes and Goniodontomys) has been estimated at 

eight million years old (Repenning et al.. 1990). Other testable dates include the first 

appearance of modem genera (three to five million years ago) and the diversification 

among species o f Microtus about two million years ago (Chaline and Graf. 1988).

To test these dates we averaged the divergence of third position TV 's in cyt-b 

between taxa and calibrated a clock at 2.3 % change per million years (Smith and Patton.
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1993). This rate would place the divergence between Murinae (Mus and Rattus) and the 

lineage leading to arvicolines at 9.8 (± 0.5 = 1 SD) million years ago. The pulse o f 

diversification among arvicoline genera would have occurred at about 5.7 (± 0.6) million 

years ago (Fig. 7). This date is much closer to the diversification among genera recognized 

by paleontologists (e.g.. 3 to 5 million years ago. Chaline and Graf. 1988). This rate 

places our estimate o f divergence among species o i Microtus at 3.6 (± 0.95) million years 

ago. Thus, cladogenesis within Microtus or within its putative ancestor Allophaiomys 

(Repenning et al.. 1990: Gromov and Polyakov. 1977) may have occurred much earlier 

than implied by the existing fossil record.

Estimates from Other M olecular Data

Other estimates of divergence do not coincide with the dates based on the 

mitochondrial data. Using DNA-DNA hybridization data. Catzeflis et al. (1989) placed 

the divergence between Arvicolinae and Murinae at 15.6 (±3.3) million years ago. which 

is much older than our estimate of 9.8 million years ago. Estimates from other DNA- 

DNA hybridization and immunological distance studies (reviewed in Nikoletopoulos et 

al.. 1992) are also more ancient, suggesting this divergence may have been 20 to 58 million 

years ago. The Clethrionomys-Microtus divergence which Catzeflis et al. (1989) dated at 

4.2 (3.2-5.5) million years ago. falls near our estimate o f 5.76 million years ago. These are 

less than estimates from nuclear LCAT sequences (7 to 12 million years ago: Robinson et 

al.. 1997).
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Calibration o f a molecular clock for sequence evolution in murids might benefit 

from additional comparative molecular studies and refinement o f the fossil record. 

Rodents may have higher rates o f molecular evolution than other mammals due to small 

body size, short generation time, and high metabolic rate (Martin and Palumbi. 1993: Wu 

and Li. 1985). Although a rate based on sigmodontine divergence (Smith and Patton. 

1993) helps to reconcile fossil and molecular estimates in arvicolines. a faster rate may 

improve the fit. However, we lack independent evidence to corroborate third position 

transversion rates faster than 2.3 %/MY.

Fossil vs. Molecular Estimates

A potential source o f error in calibrating a molecular clock for rodents is the 

estimation of the dates o f divergence between fossil taxa (O'hUigin and Li. 1992: 

Robinson et al.. 1997: Ruedas and Kirsch. 1997: Catzeflis et al.. 1992). Fossils provide a 

minimum estimate for divergence times among taxa (Springer. 1995: Novacek. 1992) and 

molecular data often estimate branching events that predate the fossil record. For 

example. Riddle (1995) attributed the diversification o f arid land rodents in North 

America to Mid-Miocene climate change, rather than Pleistocene glacial cycles, as 

previously suggested from the fossil record. Similarly. Klicka and Zink (1997) placed 

much o f the highly diverse North American passerine birds divergence in the Pliocene. 

Cooper and Fortey (1998) noted that several taxonomic explosions (e.g.. the Cambrian) 

may have been preceded by millions of years of molecular evolution that were not

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



identified in the fossil record. The late Miocene appearance of some arvicolines 

(Micro toscoptes. Mimomys. Goniodontomys) suggests an earlier arvicoline diversification 

than generally recognized (e.g.. 3 to 5 million years ago. Chaline and Graf. 1988) and is 

more ancient than our molecular estimates suggest. However, an earlier and additional 

diversification is compatible with our analysis since the extant taxa in our study may be 

derived from one survivor o f this earlier event.

CONCLUSIONS

This paper is another step toward recovering and refining the history of arvicoline 

rodents. We found two rapid pulses of speciation in this clade. one among genera and 

another among species of Microtus. An additional pulse earlier in the history of the 

Muridae (i.e.. radiation o f subfamilies) may be the result o f saturation o f our DNA data 

(i.e.. among third position transitions). These repeated pulses of speciation challenge a 

gradualistic model o f speciation in the Muridae. and help to interpret the uncertain 

svstematics that have plagued this group.

A molecular estimate based on sigmodontines (Smith and Patton. 1993) indicates 

that the major diversification of the modem arvicoline genera occurred much more recently 

than the origin o f the clade. as suggested by paleontologists.

Further investigation of rate heterogeneity among rodent lineages and more 

attention to cladogenesis among fossils would improve our understanding of nested 

diversification in the Muridae, the most speciose family of mammals. Vrba (1995)
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suggested that because climatic phenomena may be cyclical, their effects on pulses in 

speciation should be hierarchical. A profitable area o f research may be to relate the nested 

nature of the pulses we have identified with nested climatic phenomena.
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Table I. Taxa used in phylogenetic analysis with cyt b. Complete data on all specimens are available from CJC.

Family Subfamily Arvicoline Tribe species Common Name Reference
Number

1 Muridae Arvicolinae Microimi Arvicola terrestris* Water Vole MI3
2 Muridae Arvicolinae Microtim Microtus agresns* Common Vole AL3I3I
.1 Muridae Arvicolinae Microimi A hcrolus pennsylvanwus* Meadmv Vole NKII205
•4 Muridae Arvicolinae Microlini Microtus monumus* Montane Vole NK5504I
5 Muridae Arvicolinae Microimi Microtus longicaudus* long-tailed Vole A l2031
6 Muridae Arvicolinae Clclhrionomyuu Ahicola macrons* Lemming Vole A t 3791
7 Muridae Arvicolinae Cleihrionomyini < 'Imhrionomys glareolus* Bunk Vole At'3133
X Muridae Arvicolinae C'lcihriononiyini ( lelhnonomys rutilus Kcd-hackcd Vole AL4853
9 Muridae Arvicolinae Dicrosiunichim Dicrostonyx groenhmdiciis* Collared Lemming Al'2246
10 Muridae Arvicolinae Dicrosioniclom Dicrostonyx torquutus AL5430
11 Muridae Arvicolinae Lllohum Ellobius lancrci* Mole Vole VF224
12 Muriduc Arvicolinae Lllohum Ellobius fuscocapillus VI-226
13 Muridae Arvicolinae l.eninum l.emmus iriiniicronaiiis* Arctic Lemming Al- 7421
14 Muridae Arvicolinae l.cmmmi Myopus scluslicolor* Wood Lemming A t 1946
15 Muridae Arvicolinae l.cininim Synaplomys borealis* Bog Lemming A t 1196
16 Muridae Arvicolinae Ondutrim Ondatra ztbetlucus* Muskrat AI-7445
17 Muriduc Arvicolinae I’hcnncomyim Phenacomys mtermeihus* 1 leather Vole A t 12726
IK Muriduc Cncelinae Mesocncelus auratus (ioldcn Hamster A t 19870
19 Muridae t'ricetiniie Phodopus sungorus Djunguriun Hamster A l20111
20 Muridae Cncciinuc Phot/opus camphelli 1 lamstcr AI-774
21 Muridae (ierhillmue Menones ungliiculalus Jird A t 19868
22 Muridae Murinae Mus musculus* 1 louse Mouse (ienhank V00711
23 Muridae Mm mac Kail us rattus* Kut Cienhunk X 14848
24 Muridae Murinae Acomys airensis Spiny Kill (ienhank X96996
25 Muridae Sigmodonunuc liolumys amoenus J Sulu/.ur
26 Muridae Sigmndontmiic ( 'alnmys cat las us Vesper Mice J Sulu/ur
27 Muriduu Sigmodoniinae Peromyscus keem* Deei Mouse A t 17750
28 Seiuriduc Sciiii mac St iurus aberli A hen's .Squirrel (ienhank U 10163
29 /upodidue /.apodmae /opus trinotaius Jumping Mouse A t 18534
30 l-chimyidue 1 ichuiiy mae .' laka/ala t/ulelphoules I ree Kill (ienhank 1135413
31 Lclumyiduc lumyopsmae 1 'roechunys amphu horicus Spiny Km (ienhank 1.23363
32 Lclumyiduc humyopsinuc Mesomvs luspnlus l ice Kill (ienhank 1.23385

* Taxa include ND4 sequences.
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Table IL Kishino and Hasegawa ( 1989) test of the ML tree against NJ and MP trees in 

addition to hypothesized relationships derived from the literature (see text for order of 

hypotheses).

T ree -In L D if f - ln  L s.d. (d iff) T PT

ML tree 1 1 8 2 1 .8 8 (b est)

NJ. Kimura 2-parameter I 1 8 3 6 .4 9 14.61 I 1 .80 1 .24 0 .2 1 6

MP. no constraint 1 1 8 3 9 .8 2 1 7 .9 4 10 .0 0 1 .79 0 .0 7 3

1) Arvicola-Microtus monophyletic 1 1 8 3 8 .5 3 1 6 .6 5 15 .2 4 1 .09 0 .2 7 5

2) Dicrostonyx & Lemmini monophyletic 1 1 8 2 6 .0 4 4 .1 6 10 .4 9 0 .4 0 0 .6 9 2

3) Phenacomys & Microtus monophyletic 1 1 8 3 0 .7 6 8 .8 8 13 .12 0 .6 8 0 .4 9 9

4) Ellobius & M icrotus monophyletic 1 1 8 2 5 .6 2 3 .7 4 13 .48 0 .2 8 0 .7 8 2

+ Probability o f finding a more extreme T-value under the null hypothesis of no difference 

between the two trees (two-tailed test).
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Fig. I. The hollow curve distribution o f species across the 25 genera o f  

the Arvicolinae recognized by Musser and Carleton (1993).
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Fig. 2. Comparison of the number of pairwise TS (above) and TV (below) mutations (ordinate) plotted against maximum 
likelihood distance (abscissa) between arvicolines and Mus and Rattus.
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Diversification of Murid Subfamilies

I I ! I I
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Fig. 7. Estimates o f  divergence from fossil and m olecular data. M olecular estimates are 
based on change in third position transversions and assum e a rate o f  2.3 %  per million 
years (Sm ith and Patton, 1993). Fossil estimates are from Chaline and G raf (1986) for 
arvicolines (three to five M Y ago) and from Catzeflis el al. (1992) for murid subfamily 
diversification (= 25 to 20 M Y ago).
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Chapter 2

Molecular Systematics of a Holarctic Rodent (Microtus: Muridae)2

ABSTRACT. -- The Bering Land Bridge was the itinerant connection that allowed 

the exchange of mammals between Asia and North America. Because some mammalian 

genera are widely distributed on both continents, recovery of their phylogenetic history 

may help reconstruct the sequence of intercontinental exchanges. The extant species of 

Microtus (Muridae: Rodentia) in North America are thought to be derived from a 

Eurasian ancestor. Their present distribution may be due to multiple invasions, or 

alternatively, a single invasion followed by subsequent speciation. However, an 

incomplete fossil record and an unstable taxonomic history suggest that some 

relationships have been difficult to recover. We sequenced mitochondrial cytochrome b 

gene sequences for 78 individuals representing 24 species of  Microtus. Parsimony and 

likelihood methods were used to test competing phylogenetic and biogeographic 

hypotheses. One clade of taiga voles (M. pennsvlvanicus. M. montanus. M. townsendii. 

and M- canicaudus). a clade o f Asian species (M- kikuchii. M. fortis. M. montebelli. and 

M. middendorffi) with the Holarctic M. oeconomus. and several previously identified 

sister taxon pairs were supported. M. ereaalis was genetically distant from M.

: Conroy, C. J., and J. A. Cook. Submitted. Molecular systematics o f  a holarctic rodent 1 Microtus: 
Muridae). Journal o f  Mammalogy.
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abbreviates and M. miurus. thus contradicting the monophyly of Stenocranius. 

Monophyly o f the North American species was weakly supported because basal 

relationships were not robust, reflecting a single pulse of diversification about 1.3 million 

years ago. This pulse may obscure our ability to calibrate the timing of intercontinental 

invasions in this group.

47

INTRODUCTION

Many species of terrestrial mammals are thought to have moved between North 

America and Asia during glacial periods of the Pleistocene via the Bering Land Bridge 

(Korth. 1994). These invasions may have initiated major continental radiations, the 

timing and extent o f which have proven difficult to recover because the fossil record and 

evolutionary relationships of many of these taxa are poorly known. An assessment of 

the evolutionary relationships of a group may be crucial to our interpretation o f the 

historical biogeography o f a region. For example. Engel et al. (1998) suggested that the 

suspected radiation of the Sigmodontinae in South America needs to be re-evaluated 

because the group is apparently paraphyletic. Because molecular phylogenies provide 

opportunities to reconstruct the evolutionary history' o f  taxa. they may be used to 

estimate the number and temporal order of invasions (Givnish. 1997).
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We focus on the genus Microtus (Rodentia: Muridae). a Holarctic genus (Fig. 1) 

that could be important in interpreting the historical biogeography of the northern 

continents. Since the late Pliocene. Microtus diversified rapidly (Reig. 1989) into one of 

the more speciose mammalian genera (Musser and Carleton. 1993) with 65 species 

recognized in 14 subgenera. This rapid diversification may be partially responsible for 

the chaotic taxonomic history for the group (Anderson. 1985: Musser and Carleton.

1993). Evolutionary relationships among species remain unclear. Also, the limits of the 

genus are not clear. Numerous synonyms have been attributed to the group. However, at 

this time we include as Microtus a subset of those species classified by Musser and 

Carleton (1993) as Microtus or Volemvs.

Species o f Microtus are distributed in grassland, taiga, steppe and tundra 

ecosystems (Gromov and Polyakov. 1992: Hoffmann and Koeppl. 1985). Their fossil 

record indicates large fluctuations in distribution due to climate change (Graham et al.. 

1996: Repenning et al.. 1990) with some species invading southerly regions of Eurasia and 

North America during cold phases. During subsequent warming trends, glacial relicts 

(e.g.. on mountaintops) were isolated. These large fluctuations in distribution and 

apparent isolating events may be partially responsible for high species diversity in this 

genus.

Relationships among some Eurasian and North American species of Microtus 

have been explained by independent invasions across the Bering Land Bridge (Hoffmann

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and Koeppl. 1985: Repenning et al.. 1990). Rausch (1994) noted that movements of 

species across Beringia were not symmetric, with most species moving from Asia to 

North America. Asymmetric movement is suspected because western Beringia was 

directly connected to source populations further west in Eurasia during glacial maxima. 

However, eastern Beringia was isolated from southern areas o f North America by the 

Laurentide and Cordilleran ice sheets. Because the fossil record and systematics of many 

Holarctic taxa remain largely unstudied, these hypotheses have not been thoroughly 

tested. Furthermore, although microtines were a common mammalian component of 

Beringia (Guthrie. 1982), the fossil record has not been investigated well enough to 

determine the diversity or persistence o f species in this region.

Relationships among some species of Microtus have been proposed (e.g.. as 

subgenera; Miller. 1896), but a phylogeny is crucial to examining how species of 

Microtus and other mammals invaded and diversified in North America. If the earliest 

Microtus originated in the Old World, a monophyletic origin for endemic North American 

species of Microtus would indicate either a single invasion (with a backward invasion of 

the Old World by M- oeconomus). or two invasions (resulting in the present New World 

group of endemics plus a later invasion by the Holarctic M- oeconomus). Sister 

relationships between particular North American and Asian/European clades would 

indicate more than two invasions. Phylogenies may aid in recovering the temporal
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sequence o f invasions. Taxa closely related to Eurasian sister taxa would indicate recent 

invasion, whereas deeper relationships may be the result o f older invasions.

Alternatively, there is good reason to expect that basal relationships among 

species o f Microtus mav be difficult to recover. Because the paleontological record 

indicates a rapid appearance o f many species of Microtus in North America about 

500.000 years ago (Zakrzewski. 1985). some relationships may be polytomous. Previous 

systematic investigations o f some species of Microtus were inconclusive or conflicted 

with other studies (Musser and Carleton. 1993). We address these issues by testing 

several phylogeographic hypotheses.

Phvlogeographic Hypotheses. -- Karyotypes and molecular markers have 

provided an independent assessment o f Microtus systematics (DeBry. 1992: Graf. 1982: 

Modi. 1987. 1996; Moore and Janecek. 1990: Nadler etal.. 1978: Zagorodnyuk. 1990). 

However, the taxa and data in those studies often did not overlap. In this paper. DNA 

sequences for 24 species were used to assess the following biogeographic and systematic 

hypotheses described below: I) monophyly of North American Microtus. II) monophyly 

of Holarctic subgenus Stenocranius (Rausch, 1964). and III) monophyly o f each o f two 

groups of taiga-dwelling species of  Microtus in North America (Hoffmann and Koeppl. 

1985).

I. Interpretation of the fossil record of Pleistocene environments has led to a 

number of scenarios for the movement of particular species between Asia and North 

America, (e.g.. Hoffmann and Koeppl. 1985: van der Meulen. 1978). If all endemic North 

American species diversified from a single invasion, they should be monophyletic. 

Alternatively, some endemic North America species may have sister species in Eurasia.
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II. Phylogenetic relationships among species on separate continents may have 

been obscured by convergent morphological evolution. For example, the Holarctic 

subgenus Stenocranius (M. gregalis. M. miurus. and M. abbreviatus) is based on shared 

skull characteristics that ostensibly reflects a common origin. However, the high degree of 

morphological convergence in Arvicolinae (Courant et al.. 1997). however, cautions that 

the morphology-based taxonomy o f Microtus mav not always reflect phylogenetic 

relationships.

III. Hoffmann (1981) and Hoffmann and Koeppl (1985) described a model of 

speciation wherein two purported clades o f Microtus (Clade 1: M. pennsvlvanicus. M. 

montanus. M. townsendii: Clade 2: M. xanthognathus. M. richardsoni. M. chrotorrhinus) 

expanded during interglacials, but contracted in three separate refugia (western coastal, 

western montane, eastern boreal) during glacial periods (Fig. 2). Speciation events that 

occurred over multiple glacial advances may produce a dichotomous phylogeny. An 

initial advance might lead to a single branching. A subsequent advance might then lead to 

branching within those daughters. However, rapid isolation during a single glacial period 

could result in polytomous branching if multiple daughter lineages were derived from a 

single ancestor at the same time.
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MATERIALS AND METHODS

Eight palearctic species. 15 nearctic species, and the Holarctic M. oeconomus 

were included to represent 10 of 14 subgenera of  Microtus (Musser and Carleton. 1993 -

Table 1). Two species o f Clethrionomys were used as outgroups (Conroy and Cook, 

submitted). DNA was extracted via a modified salt method (Medrano et al.. 1990) from 

skin, liver, muscle, and/or heart tissue that was dried, frozen or preserved in ethanol. 

Symmetric PCR (Saiki et al.. 1985) amplified the 1143 bp mitochondrial cytochrome b 

gene (cyt b) as described in Conroy and Cook (submitted). Sequence data were

* (§) determined on an ABI 373 a Stretch DNA sequencer using Prism dye terminator

technology. Sequences for two taxa were obtained from Genbank (Microtus arvalis. 

GenBank Accession #U54488: M. rossiaemeridionalis. GenBank Accession 4U54474). 

MtDNA was sequenced for 78 individuals, including partial or complete cyt b sequences 

for multiple individuals for 21 of the 24 species. Species represented by multiple 

samples were all reciprocally monophyletic and apparently correctly identified. Due to 

computational limitations, phylogenetic analysis included only one representative per 

species (Table 1).

Saturation was examined by plotting maximum likelihood distance (DNADIST: 

Felsenstein. 1993) against transitions (TS) and transversions (TV) across each codon 

position (Fig. 3). Parsimony searches (MP) included a TS:TV bias of 2.6 based on
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observed variation. That is. the average number o f transitions between any two taxa was 

2.6 times the average number of transversions between any two taxa. This was 

determined by summing pairwise transitions and transversions over all pairs. Trees were 

rooted with Clethrionomvs glareolus and C. gapperi (Conroy and Cook, submitted) and 

bootstrapped 250 times using a heuristic search in PAUP* (test version 4.0d59. written 

by D. L. Swofford). A maximum-likelihood (ML) tree was estimated with PAUP* using 

an F84 (Felsenstein, 1984) + T (a  = 0.2159) model (with TS/TV ratio o f  2.6). Skewness

or g! statistics were generated from 1.000 random trees (PAUP*). with and without 

weighting at each position, and compared to values in Hillis and Huelsenbeck (1992) for 

statistical significance (a  = 0.05). To evaluate the strength of alternate topologies, we usd 

likelihood ratios (Kishino and Hasegawa. 1989) to test the unconstrained ML tree against

1) ML trees constrained for particular phylogenetic hypotheses and 2) MP trees. To test 

the strength of relationships we 3) constrained the ML analysis to exclude two well- 

supported clades and tested those against the unconstrained ML tree.

To calibrate a rate o f sequence evolution, we assumed that the deepest divergence 

among species o f  Microtus should correspond roughly to the initial diversification of the 

genus (approximately 2.1 million years ago; Repenning et al.. 1990). To estimate the time 

ot divergence, we used a distance based on the same maximum likelihood model used for 

estimating the ML tree. A molecular clock, the assumption of a linear relationship 

between molecular divergence and time, is often subject to error from excessive rate
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heterogeneity. Therefore, we tested for rate heterogeneity among taxa by evaluating ML 

trees with and without a molecular clock constraint using a Chi-Square test ( i.e.. two 

times the Iog-Iikelihood difference with n [= number o f taxa] minus two degrees of 

freedom: Felsenstein. 1988). To evaluate individual taxa. we used the Wu and Li (1985) 

relative rate test, as implemented by algorithms in Muse and Weir (1992). with software 

(K2WuLi) distributed by L. Jermiin.

RESULTS

Composition and Variation. — Of the 1143 base pairs. 459 (40 %) were variable 

and 361 of those were phylogenetically informative (Table 2) across the individuals used 

in the phylogenetic analysis. Similar to other studies o f mammalian cyt b evolution 

(Irwin et al.. 1991: Ma et al.. 1993), most polymorphic sites were in third positions (340. 

74 %) followed by first positions (94. 20 %). and second positions (25. 5 %). Base pair 

composition differed across codon position and between nucleotides (Table 4). Guanine 

nucleotides were underrepresented at second and third positions (12.3 % and 3.7 %. 

respectively), thymine nucleotides were overrepresented in second positions (41.7 %) 

and adenine nucleotides were overrepresented in third positions (40.9 %).

Interspecific Kimura (1980) 2-P distance (Table 5) ranged from 1.5 % (M. 

abbreviatus and M. miurus) to 18.0 % (M. oregoni and M. gregalis). Expected differences
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in variation among codon and substitution type were seen in saturation curves (Fig. 3). 

None displayed saturation. G1 statistics (Table 2) indicated that the data have 

phylogenetic signal (Hillis and Huelsenbeck. 1992).

Phylogenetic Results. -- ML and MP supported monophyly o f the subset of 

North American species o f Microtus sampled in this study (Fig. 4). Several sister 

relationships (e.g.. _M. fortis and M. middendorffi. M. arvalis and M. rossiaemeridionalis. 

M. abbreviatus and M. miurus. M. canicaudus and M. townsendii. M. pennsvlvanicus 

and M- montanus. and M. pinetorum and M. richardsonil were consistent across 

methods. The clade including M. oeconomus. M. middendorffi. M. montebelli. M. 

kikuchii and M. fortis (hereafter the “Asian clade") and the clade including M. 

pennsvlvanicus. M. montanus. M. townsendii. and M. canicaudus (hereafter the "M. 

pennsvlvanicus clade") were present in both methods. No analyses supported 

monophyly of the subgenus Stenocranius or monophyly o f the second clade of taiga voles 

(M. xanthognathus. M. chrotorrhinus. and M. richardsoni) as proposed by Hoffmann and 

Koeppl (1985). Though weakly supported. North American species were monophvletic 

in both methods. They formed a sister clade to European species, and Asian species were 

basal to them. Bootstrap support was weak for basal nodes and only one alternate 

topology was rejected by the likelihood ratio test.

The M- pennsvlvanicus clade (subgenus Mvnomes. Musser and Carleton. 1993) 

was identified previously by karyotypes (Modi, 1987), skeletal morphology (Hooper
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and Hart. 1962). nuclear DNA (Modi. 1996) and allozymes (Moore and Janecek. 1990). 

M. oregoni and M. longicaudus were basal to the M. pennsvlvanicus clade in the ML 

tree. M. canicaudus was not sister to M. montanus. as has been previously suggested 

(Musser and Carleton. 1993). but instead was sister to M. townsendii. Modi (1986) also 

noted significant chromosomal differences between these species. DeBry (1992) 

investigated the monophyly of the M. pennsvlvanicus clade with mtDNA R.FLP data and 

did not find it to be monophyletic, but also could not reject their monophyly with a 

likelihood ratio test. Although DeBry (1992) suggested that mtDNA sequences might 

provide more synapomorphies to make this test more sensitive (phylogenetically 

informative sites: RFLP. 53; cyt b sequence. 361). we were also unable to reject a ML 

tree constrained against this clade.

The Asian clade has not been recognized previously, though Zagorudnvuk (1990) 

placed M. fortis in the M. middendorffi species group o f subgenus Alexandromvs. By 

retaining M. kikuchii within Microtus. we depart from the taxonomy of Musser and 

Carleton (1993) and Zagorudnyuk (1990) who placed M. kikuchii and three other species 

from southeastern Asia (Volemvs clarkei. V. millicens. and V. musseri) in a separate 

genus. Volemvs. The position o f M. kikuchii suggests the need for further sampling of 

Asian species including the three additional species of Volemvs. Zagorudnyuk (1990) 

also suggested thatM- oeconomus and M. montebelli may be sister taxa (Fig. 4). M. 

oeconomus and M. montebelli share an ancestral form of X-Y chromosome pairing, the
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lack of which is shared by most species o f Microtus (Borodin et al.. 1997).

Chromosomal pairing needs to be investigated in other members of the Asian clade. M. 

gregafis. and in North American species to resolve this hypothesis.

O f the 346 relative rate tests. 32 indicated unequal rates of evolution (jZj > 1.96). 

These departures from equal rates involved nearly all taxa and rate heterogeneity was not 

greater than expectations (Chi-Square = 2.68) under a molecular clock (Felsenstein. 1988). 

Constraining the oldest interspecific divergence to 2.1 million years ago (Repenning et al.. 

1990) yielded a rate o f 7.5 million years per unit o f likelihood distance. A plot of 

pairwise differences (Fig. 5) with a unimodal distribution suggested a single pulse of 

diversification among species about 1.3 million years ago. This pulse corresponds to the 

early Pleistocene appearance of several lineages in North America (Hoffmann and 

K.oeppl, 1985; Repenning, 1980).

DISCUSSION

Our primary goal was to use molecular characters and a relatively large taxonomic 

sample to test taxonomic hypotheses in this diverse group. The monophyly of the M. 

pennsvlvanicus and Asian clades. and several sister taxon pairs (e.g.. M. arvalis and M. 

rossiaemeridionalis. M. fortis and M. middendorffi. M. abbreviatus and M. miurus.) were 

well supported (Fig. 4). However, in addition to resolving some clades, our data also 

indicated weak relationships across many internal branches in the parsimony analysis
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(Fig. 4A). The likelihood ratio tests (Table 3) indicated that only one of the alternative 

topologies we tested was significantly less likely than that depicted in the maximum 

likelihood tree.

We suggest three possible explanations for this failure to reject alternate 

topologies. The first is that rapid diversification may have led to short intemodal 

branches. Altering the topology across these short branches does not significantly change 

the likelihood. The second is that as likelihood models are made complex to more 

realistically model DNA evolution, the sampling variance increases and the ability to 

reject alternative trees decreases. A third possibility is that the data lack phylogenetic 

signal and all trees are equally likely or unlikely. However, we can probably reject the 

last explanation because g 1 statistics are significant and saturation is not apparent. 

Because both MP and ML displayed equivalent topologies, the weakly supported 

relationships most likely reflect the rapid diversification, especially notable at the base of 

the phylogeny.

Pulses of diversification apparently have been repeated throughout murid 

evolution (Conroy and Cook, submitted). This pulse of speciation in Microtus may 

correspond to an environmental change, such as the period o f global warming (Chaline et 

al.. 1993) about 1.3 million years ago. Our calibration, based on the minimum age of 

fossils of Microtus. corresponds to the Late Villafranchian interglacial epoch in Europe 

(Kurten, 1968) and the beginning of the Kansan glaciation in North America (Zakrzewski.
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1985). Though a single and severe climatic phenomenon may have been important to 

speciation in Microtus. fine scale variability on a millennial scale may also be a potential 

cause of increased speciation or extinction rates (Roy et al.. 1996). Climatic oscillations 

shifted from 41.000 to 100.000 year cycles at about 1.2 million years ago (Imbrie. et al. 

1993). However, the effects o f this shift on mammalian evolution are unstudied. This 

calibration of the apparent pulse o f speciation in Microtus should be further tested. For 

instance, it may be appropriate to subtract genetic variation in the putative ancestor 

before estimating interspecific differences (i.e.. net divergence; Avise and Walker. 1998: 

Edwards. 1997). Intraspecific variation o f the cytochrome b gene in Microtus is being 

investigated elsewhere (CJC and JAC).

It is apparent that many relationships across these species remain to be tested 

with the inclusion of more taxa and independent characters. The historical implications of 

the relationships supported by our data are summarized in the following sections.

North American Monophvlv. — During Pleistocene glacial maxima (Kansan. 

Nebraskan, Illinoian, and Wisconsinan), ocean levels dropped sufficiently to expose the 

Bering Land Bridge and unite Beringia (Hopkins et al.. 1982). The biogeographv. ecology, 

and systematics o f many North American mammals hinges on the nature of Beringia's 

vegetational composition and climate during and since the Pleistocene (Guthrie. 1990: 

Kontrimavichus, 1986). Much controversy exists over these questions (Colinvaux. 1996: 

Elias et al.. 1996), but establishing the chronology of mammal invasion between Asia and
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North America could help to reconstruct the environments through which they passed 

and could help to reconstruct the tempo at which North American species evolved.

Microtus has a long association with Beringia with an origin approximately 2.1 

million years ago when it is thought to have first invaded North America from Asia after 

the Blancan V glaciation in Laurentia (Repenning et al.. 1990). Because the Palearctic has 

an older fossil record (Gromov and Polyakov. 1992). a Eurasian ancestor appears more 

probable. The placement of Palearctic species basal to the North American taxa (Fig. 4) is 

consistent with a Eurasian origin for the genus.

From paleontological and zoogeographical data. Hoffmann and Koeppl (1985) 

suggested that distinct lineages of Microtus invaded North America across the Bering 

Land Bridge in the early, middle, and late Pleistocene (until about 13.000 years ago).

Some of the earliest species (e.g.. Microtus deceitensis. M. paroperarius) are extinct and 

their relationships to extant species are unclear. Three hypothesized survivors o f the 

earliest invasion are M- califomicus and M. umbrosus (Martin. 1974) and M. 

guatemalensis (Repenning, 1980). Survivors of Middle Pleistocene invaders are thought 

to be M- quasiater and M. oaxacensis of the Mexican cloud forest. M. pinetorum o f the 

eastern North American forest, and M- ochrogaster of the Great Plains. During the late 

Pleistocene most other North American species appeared in the fossil record, except for 

M. canicaudus. M. oregoni. M. townsendii. and a few insular allospecies (Hoffmann and
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Koeppl. 1985). Two possible recent arrivals areM- miurus (Hoffmann and Koeppl.

1985) and M- oeconomus (Lance and Cook. 1998).

Our data suggest a different history o f invasion into North America than that 

previously inferred. Unfortunately, weak basal relationships limit our ability to 

discriminate multiple invasions. Monophyly of the endemic North American species of 

Microtus we sampled indicates only two invasions (these plus M. oeconomus) and 

potentially refutes proposed taxonomic affinities (e.g.. M. longicaudus a member of 

Eurasian Chilotus: Anderson. 1985;M. richardsoni within European Arvicola: Bailey. 

1900; Hooper and Hart. 1962; Miller, 1896; Nadler et al.. 1978; and_M. pinetorum within 

Eurasian Pitvmvs: Gromov and Polyakov, 1992). Monophyly o f North American 

species also was supported by G rafs (1982) allozymic data, although sampling of taxa 

was less extensive in that study relative to this.

Because our data only address the history of extant species, there may have been 

other invasions o f North America whose descendants have since gone extinct. For 

example. M. paroperarius and M. deceitensis. now extinct, were present in North 

America in the early Pleistocene (Repenning et al., 1990). They share the four-triangle 

ml with M. oeconomus (Zakrzewski, 1985), a holarctic species we found to be distantly 

related to North American species o f Microtus and a late Pleistocene invader of North 

America (Lance and Cook. 1998). It is more probable that most extant species of 

Microtus in North America evolved from a later invader in the middle Pleistocene. Due to
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the apparent monophyly o f North American species and an early pulse o f diversification, 

only two invasions may have occurred: the first resulting in species restricted to North 

America and the second inM - oeconomus (Lance and Cook. 1998). Our estimate of this 

group's phvlogeny should improve with the inclusion of other species that were likely to 

have been early invaders: M. quasiater. M. oaxacensis. M. umbrosus. and M. 

guatemalensis.

Albeit weakly supported, the sister relationship between the North American 

species and European species (M. agrestis. M. arvalis. M. rossiaemeridionalis) may 

suggest that some Asian species were isolated in a separate refugium while a corridor 

existed between Beringia and Eurasia. Guthrie (1990) described a "mammoth steppe." or 

high latitude steppe grassland belt that extended from Europe to eastern Beringia during 

glacial periods. Though M. oeconomus and M. middendorffi are widely distributed 

throughout Asia, M. kikuchii. M. montebelli (now both island endemics), and M. fortis 

are distributed south o f  this corridor and may have been isolated from it during glacial 

advances. More thorough sampling of east Asian species should provide a test of this 

hypothesis.

Monophvlv o f  subgenus Stenocranius. -- Stenocranius was diagnosed originally 

by the long and narrow skull and short tail o f the Asian M. gregalis (Kaschenko. 1901). 

North American M- miurus (Rausch, 1964) and M. abbreviatus of Hall (Miller. 1899) and 

St. Matthew (Rausch and Rausch, 1968) islands (Bering Sea) were later included in the 

clade indicating a trans-Beringian distribution for the subgenus. An invasion of North 

America during the Illinoian Age (=  300,000 years ago, Rausch. 1964; Zakrzewski. 1985)
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by a Stenocranius ancestor was hypothesized to explain their Holarctic distribution. 

Subsequently. M- abbreviatus was isolated on Hall and St. Matthew islands at the end of 

the Wisconsin glaciation (Hoffmann and Koeppl. 1985: Rausch and Rausch. 1968). Its 

similar morphology and karyotype to M.- miurus suggested to Rausch and Rausch (1968) 

that the two were closely related. However, monophyly of Stenocranius has been 

questioned on the basis o f differences in behavior, dental morphology (Gromov and 

Polyakov. 1992) and karyotypes (Fedyk. 1970). For example. M.- abbreviatus and M. 

middendorffi (subgenus Alexandromvs) were hypothesized to be sister taxa based on 

similar karyotvpic and morphologic characteristics (Lyapunova and Krivosheev. 1969: 

Matthey and Zimmermann. 1961).

It appears that M. miurus originated in North America (Fig. 4) and is

morphologically convergent with M. gregalis. M. abbreviatus was a close sister to M. 

miurus based on cyt b sequences (Table 5). In addition, chromosomal similarity supports 

their conspecific status. Morphological and chromosomal similarities between M. 

middendorffi and M. abbreviatus (Matthey and Zimmermann. 1961: Vorontsov and 

Lyapunova. 1986) appear to be convergent (Fig. 4 A-C). Thus, our data support the 

interpretation of Stenocranius as '*pseudoamphiberingian" (Vorontsov and Lyapunova.

1986). The basal position of M, gregalis agrees with an early Pleistocene origin from the 

extinct M, gregaloides (Chaline, 1990: Gromov and Polyakov. 1992). _M- miurus and M. 

abbreviatus were consistently sister to M. xanthognathus and part o f the North American 

clade.

Taiga Vole Speciation. — Pleistocene glaciations have been implicated as an 

important factor in speciation in birds and mammals (Rand. 1948, 1954). Ecosystems
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expanded, contracted, and fragmented along the fringes of ice sheets and along elevational 

gradients at lower latitudes (Hewitt, 1996). Hoffmann and Koeppl (1985) attributed the 

speciation of two taiga adapted vole clades in North America to allopatry during 

Pleistocene glacial phases (Fig. 2). They suggested that ancestors o f these clades were 

widespread during interglacials and then became isolated in refugia during glacial advances 

(Rand. 1948. 1954: Hoffmann. 1981). For the M. pennsvlvanicus clade. refugia were 

hypothesized for the eastern boreal (M- pennsvlvanicusf  the western montane (M. 

montanus). and Pacific coastal (M. canicaudus. M. townsendii) areas. This clade (T 1 in 

Fig. 4) was well supported in our analyses. M. canicaudus has been considered a 

peripheral isolate o f M. montanus. but our data suggest it is sister to M. townsendii. 

suggesting a different series of speciation events.

The other taiga voles were suggested to have arisen in the eastern boreal (M. 

chrotorrhinus and M. xanthoenathus) and western montane (M- richardsoni) refugia. 

However, these species were not monophyletic (Table 3. T2 in Fig. 4). The position of 

M. chrotorrhinus was poorly defined. M. xanthoenathus was sister to M. miurus and M. 

abbreviatus. while M. richardsoni was sister to M. pinetorum. The latter relationship 

was unexpected and has never been suggested. _M. pinetorum is often considered to be 

closely related to members o f the subgenus Pitvmvs o f Europe (Gromov and Polyakov.

1992) and Mexico (Musser and Carleton. 1993). Gromov and Polyakov (1992:275) 

explained this disjunct distribution as *‘a result o f the complex Pleistocene history of
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alpine-forest biomes in the New World." Although M, richardsoni has been considered 

highly divergent, other studies (Jannett. 1992; 1997; Matthey. 1957; Zakrzewski. 1985; 

Conroy and Cook, submitted) support its inclusion within Microtus. Adding more taxa 

(e.g.. European and other North American members o f the subgenus Pitvmvs) will help 

address the problem of long-branch attraction, although ML is generally robust to its 

effect (Gaut and Lewis, 1995).

Our data suggest that all taiga specialized species are not phylogeneticallv related. 

A tree constrained to monophyly for the six taiga species was rejected by the Kishino- 

Hasegawa test. Two other species that occur in taiga. M. longicaudus and M. oregoni. 

have been considered distinctive due to differences in karyotypes (Modi. 1987). 

gonosomal mosaicism in_M- oregoni (Ohno et al.. 1963). large B-chromosome complement 

in M. longicaudus (Judd and Cross. 1980), and genic comparisons (Moore and Janecek. 

1990).

The Pleistocene glacial refugia model of speciation (Rand. 1948. 1954) has been 

criticized as a primary mechanism o f speciation during the last glaciation (Klicka and 

Zink. 1997). This was because avian examples appear more divergent than expected 

based on a rate of sequence evolution o f 2% per site per million years (Shields and 

Wilson, 1987). Pairwise differences among species of passerines range from the Pliocene 

to the late Pleistocene, suggesting that diversification in this group was not centered 

around a single point in time, particularly the latest Pleistocene. A single pulse of
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speciation among species o f Microtus implies a different history than that experienced by 

the diverse North American passerines, which evolved over a much longer period. 

Refinements to the molecular dating approach are possible (e.g.. Avise and Walker. 1998: 

Rambaut and Bromham. 1998). but establishing a date o f  origin for Microtus from fossils 

remains problematic.

The work presented here is a step toward recovering the history of faunal 

interchange among the northern continents. The rapid appearance o f species of Microtus 

during the Pleistocene may be responsible for the difficulty in resolving basal 

phylogenetic relationships, yet numerous lower level relationships were well supported. 

Some of these relationships based on these mitochondrial data differ from those proposed 

based on morphology. These should be tested with other unlinked markers and against 

other taxa with similar distribution and diversity (e.g.. other boreal mammals, birds, and 

plants).

These data do not support more than two invasions o f North America. An 

invasion by the ancestor o f most species occurred in the early Pleistocene, followed bv 

M. oeconomus in the late Pleistocene. More paleontological research in conjunction with 

molecular studies o f the four remaining North American and 36 Old World species not 

included here, as well as other closely related genera, such as: Volemvs. Blanfordimvs. 

Chionomvs. Lasiopodomvs. and Proedromvs would further clarify intercontinental 

relationships.
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Another important step to enhance understanding o f speciation within Microtus 

will be investigations o f intraspecific and interspecific variation. Peripheral isolates 

models, for example, have testable phylogenetic predictions at the species level (Frey. 

1993). The model suggested by Hoffmann and Koeppl (1985) for the divergence in the 

M. pennsvlvanicus clade is consistent with our data, but other aspects of their 

hypothesis were not. Phylogeographic research (Avise et al.. 1987) is a logical extension 

to bridge the gap between speciation and population genetics in Microtus and should 

provide insight into rates of divergence during and since the Pleistocene (Avise and 

Walker. 1998).
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Table 1.— Species o f Microtus (Musser and Carleton. 1993). including Volemys.

examined in the study. X in sequence indicates full cvt b ( 1143 bp), n -  number of 

specimens examined with at least partial cvt b. ? in subeenus indicates taxonomy is 

unclear.

80

Subgenus species n Subgenus Species n

A g rico la aarestis 2 M vn om es O reaoni 4

A lex a n d ro m v s fortis 1 M vn om es p en n sv lvan icu s *>

A lex a n d ro m v s m iddendorffi 2 M vn om es? ca lifo m icu s 4

A u la co m v s chrotorrhinus 4 Pailasiinus m on teb elli 4

A u la co m v s richardsoni J Pal Iasi inus o eco n o m u s 4

A u la co m v s xan th oen ath u s 6 P ed om vs o ch ro a a ster 7

A u la co m v s ioneicaudus 5 P itv m v s p inetorum J

M icrotus arvalis T * Stenocranius abbreviatus 4

M icrotus rossiaem erid ional is 2 * Stenocranius areaalis j

M icrotus? m exicanus 2 Stenocranius miurus *■>

M v n o m e s canicaudus 4 V olem vs kikuchii ■>
j

M v n o m e s m ontanus j M vn om es tow nsendii

* = obtained from Genbank
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Table 2. —  Sequence variation a n d s ta tis t ic s  from 1.000 random trees (PAUP*). All 

are significant at g  < 0.011. Significance from Table 2 in Hillis and Huelsenbeck 

( 1992). All searches were run three times to verify results (data not shown). 

Values from first search presented.

First

Position

Second

Position

Third

Position

# base pairs 381 381 381

# variable sites 94 25 340

# parsimony informative variable sites 65 11 285

g 1 statistic with no weights -0.28 -2.13 -0.39

gl statistic with TS/TV = 2.6 -0.30 -1.83 -0.71
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Table 3. —  Results o f  Kishino and Hasegawa (1989) test o f tree topologies. See text for

description o f tree construction. One topology was significantly different from the ML 

tree.

Tree -InL D iff-lnL s.d .(d iff) T P*

1 ML Tree with no constraints 8976.26 (best) - - -

2 MP Tree “ 1 8990.22 13.96 10.78 1.29 0.196

3 MP Tree #2 8987.03 10.78 10.50 1.03 0.305

4 Stenocranius monoDhvIv enforced 8995.19 18.93 13.71 1.38 0.168

5 Taiga vole clade "1 enforced 8976.26 0.00 0.00 0.00 1.000

6 Taiga vole clade -2  enforced 8989.96 13.70 9.36 1.46 0.144

7 North American Monophyly enforced 8976.26 0.00 0.00 0.00 1.000

8 All Taiga voles forced monophyly 9000.41 24.16 10.81 2.23 0.026**

9 Asian Clade rejected 8980.72 4.46 10.64 0.42 0.68

10 Pennsvlvanicus clade rejected 8982.02 5.76 8.41 0.68 0.49

** Significant at P < 0.05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[

Table 4. —  Percent nucleotide base composition, by codon position and by nucleotide, 

for complete cytochrome b gene sequences averaged across 24 species of Microtus"1.

83

Nucleotide

Position

Overall 1st 2nd 3rd

G 13.0 22.9 12.3 3.7

A 30.7 30.3 20.9 40.9

T 27.2 23.1 41.7 16.8

C 29.1 23.6 25.0 38.7

JG. guanine; A. adenine; T. thymine; C. cytosine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5. —  Kimura pairwise distances (Kimura. 1980) for 24 species o f Microtus and 2 

outgroup species of Clethrionomys. Values are percentages times 100.

1 -> 3 4 5 6 7 8 9 10 1 1 12

1. C le th r io n o m v s  g la reo lus

2 .  C .  gapperi 7.2

3 .  M icro tus  abbreviatus 15.9 16.2

4 .  M . agrestis 15.0 16.2 13.9

5 .  M . arvalis 15.3 16.8 13.8 14.3

6 .  M . califomipu$ 15.3 16.2 14.1 13.1 15.1

7. M . canicaudu? 16.3 16.7 12.4 13.7 12.8 13.7

8 .  M . chrotorrh inus 14 1 14.3 13.6 13.4 13.1 12.7 12.3

9 .  M . fortis 14.7 14.7 14.3 13.5 14.0 13.2 13.6 12.3

10. M . gregalis 16.8 17.8 17.6 17.7 17.1 15.8 16.2 16.8 15.5

11. M . k ikuchii 14.2 14.7 13.3 13.9 14.3 1 1.8 12.5 12.9 12.3 14.8

12. M . longicaudus 17.1 17.7 14.4 15.6 14.1 15.3 12.3 13.0 14.9 17 5 14.4

13. M . m exjcanp? 15.3 16.5 13.5 13.6 13.4 12.0 1 1.9 12.2 14.5 15.8 13.4 14.5

14. M . middendptffi 14.7 15.3 13.8 13.4 13.3 13.4 14.1 1 1.9 9.1 15.3 10.9 14.7

15. M . miuru? 15.0 16.0 1.5 13.8 13.0 13.8 12.7 13.0 13.6 16.9 13.2 14.0

16. M . m o n tan us 15.2 16.5 14.5 14.6 14.0 13.1 9.3 12.7 13.9 16.6 12.9 12.3

17. M . m ontebe ll i 14.0 14.4 14.7 12.7 13.3 14.0 13.0 12.5 12.0 15.0 10.3 15 7

18. M . ochrpga$ter 14.8 15.2 13.9 15.5 14.0 12.5 13.7 12.7 15.0 14.8 13 6 1 5 0

19. M . o eco no m u s 14.7 15.3 13.5 13.3 12.9 13.6 12.8 I 1.8 10.4 14.6 9.7 13.7

2 0 .  M . oregpqi 18.4 20.2 14.6 16.3 15.2 14.2 12.4 14.2 16.9 18.0 14.5 14 7

2 1 .  M . pennsv lvan icus 16.3 17.4 13.8 15.0 14.6 13 1 10.2 13.7 I 5 4 16.9 13.8 12 6

2 2 .  M . p inetorum 14.4 16.2 13.4 15.9 14.0 13.3 13.7 13.0 14.1 15.5 13.3 14.4

2 3 .  M . richardsoni 15.2 16.1 14 4 15.3 14.7 13 1 12.8 12.5 13.8 16.7 13.9 13 4

2 4 .  M . ross iaem erid iona lis 16.4 18.5 14.8 14.9 6.5 15.3 14.4 13.9 14.2 17.5 14.4 14.8

2 5 .  M . town$en<fii 16.3 16.8 12.7 12.7 13.7 13.0 5.3 12.4 14.1 16.1 1 1.7 12.3

2 6 .  M . x a n th oen a thu s 15.9 15.9 12.7 14.6 13.6 13.2 12.7 13.1 14.5 16.5 13.6 13.4
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Table 5. cont.

13 14 15 16 17 18 19 20 21 22 23 24 25

14. M . middendorffi 14.5

15. M . m iu ru? 12.8 12.9

16. M. montanu<; 12.3 14.7 14 2

17. M. m p n teb e l l j 14.4 10.9 13.8 14.0

18. M . ochrogaster 13.9 15.0 14.4 13.6 14.5

19. M. oeco n o m u s 13.5 9.3 13.0 13.9 9.5 14.5

2 0 .  M . oregoni 14.5 16.4 13.8 13.1 14.8 15.2 16.3

2 1 .  M. pennsv lvan icus 13.7 16.2 14.2 7.6 14.4 14.6 14.8 14.5

2 2 .  M . p in e to ru m 13.0 14.3 12.8 13.6 13.6 13.6 13.9 14.7 14.5

2 3 .  M . r ichardsoni 12.4 13.8 13.9 I 1.4 14.2 13.6 13.3 14.0 12.9 12.3

2 4 .  M . ross iaem erid ionalis 13.9 14.7 14.2 15.0 13.9 14.5 13.4 15.3 14.7 14.9 14.7

2 5 .  M . to w n sen d i i 1 1.6 14.0 12.6 8.3 12.7 13.7 12.8 11.7 9.4 13.8 13.0 14.4

2 6 .  M . x an tho ena thu s 13.5 14.6 12.0 12.8 14.1 13.6 13.4 14.5 13.3 14.6 14.0 15.7 11.7
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APPENDIX

Specimens included in the phylogenetic analysis were obtained from the following 

collections: Museum of Southwestern Biology. University of New Mexico (NK). 

University o f Alaska Museum (UAM or AF). Burke Museum (HEH and SAR). Museum 

of Vertebrate Zoology (MVZ). University o f Michigan Museum of Zoology (UMMZ). 

and Rick Jannett (FJ). Quad refers to USGS 1:250.000 quadrangle.

Clethrionomvs gapperi: Washington. Kittitas County (NK 3221): Clethrionomvs 

glareolus: Finland. Lieksa (AF3133); Microtus abbreviatus: Alaska. St. Matthew Island 

(UAM 7762. AF21237. AF21238. AF21239); Microtus agrestis: Finland. Lieksa 

(AF3131. AF3304); Microtus califomicus: California. Contra Costa County (MVZ3941). 

San Bemadino County (AF15889. AF15890, AF15891); Microtus canicaudus: Oregon. 

Benton County (AF18618. AF18619. AF18723. AF18724); Microtus chrotorrhinus: 

Minnesota. Cook County (AF17691. AFI7692. A F17693. FJ47595): Microtus fortis: 

Korea (MVZ 1524): Microtus gregalis: Russia. Yamal Peninsula (AF 14463. AF14464. 

AF14465); Microtus kikuchii: Taiwan (MVZ1243. MVZ1245. MVZ 1373): Microtus 

longicaudus: Alaska. Yakutat Quad (AF2031). Washington. Kittitas County (NK3135). 

Oregon, Lincoln County (AF 18526), Arizona, Apache County (NK1924). Montana. 

Carbon County (AF 10901); Microtus mexicanus: New Mexico. Union County 

(NK9222), Mexico. Coahuila State (NK950P: Microtus middendorffi: Russia. Yakutia
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Republic (SAR6117. SAR6118); Microtus miurus: Alaska. Philip Smith Mountains Quad 

(AF5101), Heaiy Quad (AF1846); Microtus montanus: Utah, Salt Lake County 

(NK55041). White Mountains (NK3446). California. Mono County (NK5897):

Microtus montebelli: Japan. Honshu Island (NK6066. NK6078. NK6084. NK6117); 

Microtus ochroeaster: Minnesota. Clay County (NK1946. NK7945). Montana. Carbon 

County (AF5275). New Mexico. Mora County (NK11180. N K 11181). Arkansas.

Lonoke County (NK.3331. NK3332); Microtus oeconomus: Alaska. Montague Island 

(AF545), Russia, Kuril Islands. Rassua Island (HEH040). Shimishur Island (HEH024). 

Ketoi Island (HEH065); Microtus oregoni: Washington. Clallam County (NK3205). 

Oregon. Lane County (AF24989). Tillamook County (AF24992). Douglas County 

(AF24993); Microtus pennsvlvanicus: Alaska. Mitkof Island (AF2511). New Mexico. 

San Juan County (N K 11205); Microtus pinetorum: Arkansas. Pulaski County 

(NK2734). Saline County (NK9815). Massachusetts. Franklin County (NK9145): 

Microtus richardsoni: Oregon. Linn County (NK2786). Montana. Glacier County 

(UMMZ57934), Wyoming, Teton County (UMMZ67979); Microtus townsendii: 

Oregon, Tillamook County (AF 18520. AF 18523); Microtus xanthognathus: Alaska. 

Hughes Quad (AF3401. AF7953). Beaver Quad (AF3817). Nulato Quad (AF5372).

Ruby Quad (AF3101), Tanacross Quad (AF10290).
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Fig. 1. —  Current distribution o f  Microtus (black) and postulated extent o f  Beringia (Hopkins, et al., 1982) at 
peak glaciation (grey). Species diversity follows Musser and Carleton (1993) including V olem vs. Distribution 
o f  Microtus follow s Grom ov and Polyakov (1977). 00
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-• —  Model ol taiga bionic expansion and contraction through Pleistocene glaciations. Glacial refugia modified from H offmann ( I‘J81) and 
distribution o f  species modified from Hoffmann and Koeppl ( 1985).
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Clethrionomys giareolus
 Clethrionomys gapperi

-------------M. gregalis
M. fortis  

M. middendorffi 
M. kikuchii 
M. montebelli 

M. oeconomus
M. agrestis 

M. arvalis
M. rossiaemeridionalis

M. chrotorrhinus - T2 
M. mexicanus

A. One of two MP trees

M. xanthognathus - T2
j M. abbreviatus
*- M. miurus 

M. californicus 
M. ochrogaster 

M. canicaudus • T1 
M. townsendii - T1 

M. montanus - T1
M. pennsylvanicus - T1 

M. longicaudus 
M. oregoni 
M. pinetorum 

M. richardsoni - T2

<o
EUl
S<
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z

Clethrionomys giareolus
 Clethrionomys gapperi

M. gregalis
M. fortis

— M. middendorffi
— M. montebelli
—  M. kikuchii 
M. oeconomus

B. ML Tree with F84 + gamma

M. arvalis
 M. rossiaemeridionalis
—  M. a g re s tis ____________

-M. ochrogaster 
' sfni-M .  xanthognathus - T2 

i— M. abbreviatus 
L M. miurus

—  M. californicus
—  M. mexicanus
M. chrotorrhinus - T2 

M. pinetorum
M. richardsoni.- T2 M. oregoni
— M. longicaudus 

•M. canicaudus -T1
M. townsendii - T1 

— M. montanus - T1 
 M. pennsylvanicus T1

Fig. 4. —  A. One of two maximum parsimony trees. B. Maximum-likelihood 
tree (F84). T l and T2 following taxon indicate first and second taiga vole 
clades, respectively.
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Chapter 3

Phylogeography o f a Post-Glacial Invader: Microtus longicaudus (Muridae: RodentiaF 

Abstract:

The molecular phylogeography of Microtus longicaudus was investigated with 

DNA sequences of the mitochondrial cytochrome b gene. We used phylogenetic and 

pairwise distance methods to reconstruct the history of the species with a particular 

emphasis on the Pacific Northwest. Our data are consistent with post-glacial expansion 

following the receding Laurentide and Cordilleran ice sheets. Genetic variation across the 

species appears to be related to vicariant events during the Pleistocene followed by 

expansion. The largest break (> 6 % uncorrected percent sequence divergence) exists 

between populations found southeast of the Colorado River (eastern Arizona. Colorado. 

Wyoming, and New Mexico) and all other western populations. Other well-supported 

subclades were composed of samples from I ) the islands and north coast of southeast 

Alaska, 2) eastern Alaska. British Columbia. Washington, and Oregon, and 3) northern 

California. Idaho, and Montana. Within subclades divergence was low. Our results 

suggest that the close relationships among haplotypes within northern subclades are due

! Conroy. C. J.. and J. A. Cook. In prep. Phylogeography o f  a Post-Glacial Invader: Microtus 
longicaudus (Muridae: Rodentia). Molecular Evolution.
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to recent invasion whereas among subclade divergence is due to earlier, possibly mid

Pleistocene isolation events.
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Introduction

Co-distributed organisms often respond to large environmental changes in 

predictable ways (Avise 1994. Hewitt 1993). The retreat of the Laurentide and 

Cordilleran ice sheets in North America at the end o f the Pleistocene (ca. 10.000 years 

ago) provides an opportunity to assess the response of recolonizing communities o f 

organisms. Graham et al. (1996) concluded that, based on the fossil record, vertebrate 

species apparently responded to deglaciation independently. Genetic markers can reveal 

geographic structure within and between species that is not necessarily exhibited 

morphologically (i.e. cryptic variation. Baker et al. 1995). Often these phylogeographic 

patterns are shared across species (e.g. Avise 1992. Bermingham & Moritz 1998). 

Molecular markers thus provide an alternative perspective to morphology to test 

geographic structuring within and among species.

Glacial retreat in North America led to range expansion northward by many taxa. 

Generalized predictions for genetic and phylogeographic structuring for these recolonizing 

populations include factors such as 1) population expansion. 2) vicariance. 3) differing 

forms o f dispersal, and 4) refugial isolation (Hewitt 1993. 1996. Ibrahim et al. 1996. 

Marjoram & Donnelly 1991, Slatkin & Hudson 1991). For example, populations 

inhabiting recently deglaciated regions should exhibit patterns of lineage branching such as 

star phylogenies and genetic diversity typical o f range expansion such as smooth 

mismatch distributions in pairwise comparisons o f DNA sequences (e.g. see Fedorov et
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al. 1996: Jaarola & Tegelstrom 1996: M ediae/al. 1997: Slatkin & Hudson 1991). Within 

a particular species, variation between clades is predicted if there has been expansion from 

separate refugia. Species may not share phylogeographic patterns if they expanded from 

geographically disjunct refugia in post-glacial periods. Conversely, patterns across 

species may be coincident if they expanded from shared refugia and responded to similar 

geographic barriers. Widely divergent haplotypes within an area might indicate secondary- 

contact. Populations that have persisted in or near glacial refugia should have deeper 

among clade branch lengths than expanding populations (Bematchez & Wilson 1998). 

With good comparative data at higher taxonomic levels, we can begin to assess the relative 

timing of phylogeographic events (Avise & Walker 1998).

Extant populations that occur in previously glaciated regions of North America are 

the descendents of lineages that invaded during the Holocene. These are characterized 

generally by reduced levels o f genetic variation when compared to more southern 

conspecific populations (Hayes & Harrison 1992. Merila et al. 1997. Sage & Wolff 1986. 

Soltis et al. 1997). However, levels o f genetic variation in populations in northwestern 

North America may be confounded by the possibility of admixture among populations 

expanding from multiple refugia south of the ice sheets (Soltis et al. 1997). or retugia 

farther north along the Pacific Coast (Heaton et al. 1996). or Beringia (MacDonald & 

Cook 1996).
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Microtus longicaudus

M. longicaudus is an herbivorous rodent that occurs in western montane taiga 

from New Mexico and Arizona north into British Columbia. Yukon Territory- and Alaska 

(see review in Smolen & Keller 1987). It occurs in isolated mesic habitats on western and 

southwestern mountains, but has a more continuous distribution at higher latitudes and 

along the North Pacific Coast. Many mammals that expanded northward following glacial 

retreat apparently also were isolated in the mountains of the Great Basin and the southern 

Sierras (Lomolino et al. 1989. Patterson 1995).

Because patterns seen in mammals may not indicate broader community 

responses to environmental change, examining additional taxa such as plants could be 

informative of broader responses. For instance. Lamb et al. (1997) interpreted 

phylogeographic patterns in Abert's squirrel. Sciurus aberti. within the context of the 

distribution of ponderosa pine (Pinus ponderosa). The distribution of M. longicaudus is 

largely shared with P. contorta. P. contorta has responded rapidly to climate change 

(Anderson 1996. Critchfield 1985) and may be a general indicator of movement of boreal- 

forest associated species. Because the pollen o f P. contorta is preserved in many late 

Holocene lakes throughout western North America and is easily identified, it is possible 

to track the movement o f P. contorta forest over time.

Much of the data that bears on interglacial refugial isolation and expansion has 

been derived from the fossil record (Graham et al. 1996). However, those data are
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frequently limited in the temporal scope of questions they might address. Because 

molecular approaches provide an independent view of intraspecific divergence and 

relationships, they can be used to address questions related to Pleistocene differentiation 

and recolonization.

Few boreal taxa have been studied over large geographic areas to investigate both 

refugial and expansion responses to Holocene warming (Wooding & Ward 1997). 

Although the Pleistocene fossil record has been interpreted to generally suggest that most 

taxa exhibit independent responses to climatic change (Graham et al. 1996). the growing 

body of molecular data at the intraspecific level provides a more detailed perspective on 

the geography of plant and animal movement in the Holocene. For instance, 

phylogeographic studies (see review in Molecular Ecology. Volume 7) can be quite useful 

for identifying Pleistocene refugia. post-glacial invasions, and variation within species 

previously undetected by morphological studies.

We test the genetic predictions of post-glacial range expansion by examining DNA 

sequence variation across populations of long-tailed voles (Microtus longicaudus. 

Muridae). We focus on populations along the North Pacific Coast and place them within 

the context of variation across the entire range o f the species.
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Materials and methods

Sampling

Specimens were obtained from throughout the range of M. longicaudus with a 

particular focus on localities north of 54° north latitude and along the North Pacific Coast 

(Fig. 1. Appendix). This region has a complex biogeographic history (Conroy et al. in 

press. Klein 1965. MacDonald & Cook 1996. Scudder and Gessler 1989) and has been 

suggested to support paleoendemic populations (Heaton et al. 1996). Because many 

northern populations descended from periglacial lineages within the last 10.000 years ago. 

we investigated genetic variation within and between phylogeneticallv defined lineages 

(e.g. Bonatto & Salzano 1997. Redd et al. 1995. Shields et al. 1992).

Molecular Methods

We examined variation in the mitochondrial cytochrome b gene (cyt b) in 111 

specimens of M. longicaudus. O f those, we sequenced the complete cyt b gene (1143 

bases) from 72 and a portion o f the gene (409 bases) from 39 specimens using methods 

described in Conroy & Cook (in press). PAUP* (test version 4.0d64. written by D. L. 

Swofford) was used for genetic and phylogeographic analyses. Variable sites were 

compared within and among species. The synonymous to replacement ratio was 

examined both between and within species with a G test (MacDonald & Kreitman 1991). 

We rooted parsimony trees with closely related species M. pennsvlvanicus and M.
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montanus (Conroy & Cook submitted). Neighbor-joining trees (Saitou & Nei 1987) were 

based on all specimens and Kimura two-parameter distances (Kimura 1980). This 

distance method corrects for multiple substitutions, but assumes equal base frequencies. 

However, trees constructed with more complex models (e.g. Tamura-Nei. Tamura & Nei

1993) were not different in branching order among the major subclades. Only individuals 

with complete cyt b sequences were used in bootstrap resampling (500 replicas) to 

identify well-supported clades. Patterns of variation in cyt b within M. longicaudus were 

compared with 24 other species of Microtus (Conroy & Cook submitted).

Clades with at least five individuals and bootstrap support greater than 50% were 

used for analysis o f  within-clade diversity. Gene diversity was calculated for all samples 

and also examined within clades using Arlequin (Excoffier et al. 1997). Pairwise 

mismatches were calculated, plotted, and tested against a sudden expansion model for 

expanding populations (Rogers 1995, Watterson 1975).

We estimated the relative time of divergence of mitochondrial lineages using a 

maximum likelihood distance based on interspecific comparisons (Conroy & Cook 

submitted). We assumed that the deepest phylogenetic splits within the genus Microtus 

should approximate the oldest branching events in the group. Therefore, we set the 

genetic distance between M  gregalis and M. oregoni. the deepest split, to 2.2 million 

years divergence, based on the fossil record (Repenning et al.. 1990). Chi-square tests of 

rate heterogeneity indicated that species o f Microtus were evolving in a clocklike manner
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(Conroy & Cook submitted). We estimated the average pairwise distances within clades 

under the HKY85 (Hasegawa et al. 1985) + T model (a  = 0.2159. ti/tv ratio = 2.6) with 

PAUP*. and then subtracted these distances from between clade differences for a net 

divergence time (Avise & Walker 1998. Edwards 1997). We also tested for rate 

heterogeneity among the complete cyt b sequences within Microtus longicaudus by- 

evaluating ML trees with and without a molecular clock constraint (Felsenstein 1988).

Results

Variation across third (178 variable sites. 78 % o f all variable sites), first (39. 17 

%) and second (12, 5 %) positions of codons was distributed as suggested for genuine 

sequences of mammalian cyt b. Base composition (A: 31 %. C: 27 %. G: 13 %. T: 29 %) 

is similar to other mammals (Irwin et al. 1991. Lessa & Cook 1998) and other species of 

Microtus (Conrov & Cook submitted). The distribution of forty-five variable amino acid 

sites along the gene was consistent with structural and functional models of variation (e.g. 

Irwin et al. 1991). Comparisons of within and between species variation suggest selection 

on cyt b is not apparent (McDonald & Kreitman 1991). That is, the ratio o f replacement 

to synonomous sites was the same between as within species.

Parsimony and distance analysis retrieved topologically equivalent trees that 

differed only at nodes with bootstrap values below 50 % (Fig. 2). Four primary clades 

were identified. A clade of haplotypes from Colorado. Wyoming, eastern Arizona, and 

New Mexico was highly divergent from all other haplotypes. These are at the eastern and
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southeastern edges o f the Great Basin (hereafter Southern Rockies clade). A second clade 

included samples from northern California. Idaho and Montana (hereafter Central clade). 

Samples from central Washington, coastal Oregon. British Columbia, the east coast of 

southeast Alaska, and interior Alaska were monophyletic (hereafter Northwest clade). 

Finally, samples from southwestern Yukon Territory, southeast Alaska islands, the 

Pacific coast from Haines. Alaska, west to Yakutat. Alaska, and southern interior Alaska 

formed another clade (hereafter Island clade). The Island and Northwest clades 

apparently contact in the vicinity o f Haines. Alaska. Samples from the north rim of the 

Grand Canyon in Arizona were not strongly monophyletic and were intermediate to the 

Central. Northwest, and Island clades.

The pairwise distance histogram of all samples (Fig. 3) indicated variation both 

within and among populations or clades (Marjoram & Donnelly 1991). Mean pairwise 

numbers of differences within M. longicaudus was 29.2 ± 12.9 (= 1 SD). Pairwise 

analysis suggested the Central clade and Southern Rockies clade were significantly 

different from expectations under Rogers (1995) Sudden Expansion Model. However, 

pairwise differences within the Island (12.3 ± 5.7) and Northwest (11.2 ± 5.3) clades 

were indistinguishable from an expansion model. Mean pairwise difference was lowest in 

the Central clade (10.1 ± 5.2). The Southern Rockies clade exhibited much deeper 

divergence (28.1 ±  13.8).
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The test o f rate heterogeneity indicated that some lineages may be evolving at 

different rates under the Kimura two-parameter model. This weakens the inferences we 

can make by applying a molecular clock assumption to these data. However, we present 

this analysis as a heuristic tool for exploring the relationship between genetic divergence 

and time since last common ancestor within this species. An estimate of the net 

divergence time for M- longicaudus from other Microtus suggested a divergence beginning 

0.918 ± 0.018 (= 1 SD) millions of years ago (MY A) under the assumption o f a molecular 

clock (Table 2. Fig. 4). The Island and Northwest clades were estimated to have diverged 

0.091 ± 0.024 MYA and these clades diverged from the Central clade about 0.246 ± 0.029 

MYA. These clades in turn diverged from the Southern Rockies clade approximately 

0.342 ± 0.067 MYA.

D iscussion

Climatic change can impact organismal evolution at many temporal and geographic 

scales. Cycles o f fluctuating climate since the Pliocene, for example, may be partially 

responsible for elevated mammalian species richness in western North America 

(Monkkonen & Viro 1997). More recent events in the late Pleistocene, however, may- 

only have effects below the species level (Avise & Walker 1988). For instance, late 

Pleistocene climatic cycles may have resulted in distinctive genetic lineages within M. 

longicaudus that were undetected previously with morphological characters. This
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variation can be used to test the predictions of post-glacial expansion on the distribution 

of genetic variation and test the geographic limits of genetic lineages. However, these 

results should be tested with other morphological and genetic markers and by examining 

additional specimens of M. longicaudus. particularly from southern populations. This 

might allow identification o f morphological characters that correlate with these results.

History o f  Invasions

Pairwise analysis o f DNA sequences has been used to recover the history of 

population movement, particularly in humans (Harpending 1994. Rogers 1995. Rogers & 

Jorde 1995. Shields et al. 1993:555). Distribution of pairwise mismatches for example, 

may indicate whether populations are expanding geographically or. alternatively, are older 

and have had a relatively constant size (i.e. not substantially bottlenecked). A bimodal 

distribution pattern is expected from gene trees with a single major bifurcation (Slatkin & 

Hudson 1991). such as that seen between the Southern Rockies clade and all others. The 

pattern of pairwise mismatches within the southern clades departs from expectations of 

Rogers (1995) model of sudden expansion; this suggests they may be older. These clades 

are contrasted with the two northern clades which have rapidly expanded their ranges 

northward into deglaciated areas. The phylogeny also supports this interpretation with 

well-supported branches for suspected older populations, but star-like topology for the 

expanding clades (Slatkin & Hudson 1991).
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The distribution o f pairwise differences in the northern clades (i.e. relatively small 

differences and a single peak) may indicate a recent bottleneck (Marjoram & Donnelly 

1994. Merila et al. 1997). Serial bottlenecking may be a common theme among animals 

invading recently deglaciated regions (Merila et al. 1997. Sage & W olff 1986) and is the 

likely case for M. longicaudus. The relatively low DNA divergence within the Island and 

Northwest clades indicates rapid population level radiation and is consistent with other 

high latitude arvicoline rodents (Mvopus schisticolor. Fedorov et al. 1996: Microtus 

agrestis. Jaarola & Tegelstrom 1996). Soltis et al. (1997) documented a reduction in 

lineages among post-glacial populations o f plants in the Pacific Northwest. This pattern 

may be contrasted with southern M. longicaudus which exhibited larger genetic 

differences over equivalent geographic distances: a situation consistent with longer 

isolation (e.g. on mountain tops). Restricted gene flow due to isolation on mountains has 

been suggested for other southwestern mammals (e.g. mountain sheep. Ramey 1995).

Our sampling scheme, which emphasized sampling in the northern latitudes, also 

may have contributed to the levels o f variation seen in the northern clades (Fig. 3). 

Average pairwise differences were less within the two northern clades than within more 

southern clades. However, more extensive sampling of populations, particularly those at 

lower latitudes, will be necessary to test the significance of this sampling artifact. Further 

sampling may also allow tests of forms of dispersal over extended time periods (e.g. 

normal versus leptokurtic, Ibrahim et al. 1996).
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Post-Glacial Invasion Pathways

Most o f the northern half o f  the current range M. longicaudus was likely glaciated 

until 15.000 years before the present. Since then, this vole has reinvaded these areas, 

possibly through several different pathways. These possibilities for post-glacial 

colonization include 1) northward expansion along the North Pacific Coast from refugia 

south o f the Laurentide and Cordilleran ice sheets. 2) expansion from coastal refugia along 

the North Pacific Coast. 3) northward expansion east o f the coast range, or 4) expansion 

southward from the Beringian refugium (Fig. 5B). The low genetic variation within the 

northern clades over large geographic areas suggests this expansion was rapid.

A northward post-glacial coastal invasion might have occurred as early as 13.500 

to 10.400 years before present when there was a rapid retreat o f ice along the coast of 

British Columbia and southeast Alaska exposing large areas of land (Josenhans et al. 1995. 

Mann & Hamilton 1995). These exposed low-relief areas may have been productive 

habitat for early succession generalists (Heusser 1960) such as M. longicaudus. Old- 

growth associated species, such as the northern flying squirrel. Glaucomvs sabrinus. 

probably arrived much later (Demboski et al. in press). The absence o f M, longicaudus 

from the Queen Charlotte and Vancouver islands, which are isolated by deep-water 

channels, is consistent with a mainland coastal expansion of the Island clade from a 

southern refugium. The absence o f the Island clade along the mainland in southeastern
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Alaska, other than the northern coast, is inconsistent with a post-glacial coastal 

northward invasion.

An alternative to a post-glacial colonization of southeast Alaska by M. 

longicaudus is persistence in a refugium in southeast Alaska during the latest glaciation as 

has been suggested for Ursus arctos (Heaton et al. 1996) and some tree species (Hansen & 

Engstrom 1996). Fossil evidence of long-term occupation of voles in southeast Alaska is 

lacking. However, presence on numerous islands of the Alexander Archipelago, presence 

in southern interior Alaska, and divergence of the Island clade from other northwest 

populations is consistent with isolation in a refugium. Pinus contorta. which is often co

distributed with M.. longicaudus. has occurred in southeast Alaska throughout the 

Holocene. and possibly through glacial advances (Hansen & Engstrom 1996). This 

suggests that other boreal taxa also may have been present through these glacial advances 

in or near southeast Alaska. Although our data are consistent with a refugium in the area, 

precisely locating a Northwest Coast refugium is problematic because of a lack of 

information for mid-glacial sea levels and environments in the region. Thorough 

geographic sampling is necessary to establish the boundaries of potential refugia. 

Preliminary data from coastal British Columbia (175 bases, light strand only from Goose 

Lake. Haney Experimental Forest [n = 1]; Surf Inlet. Belmont [n = 1]: Kvnoch Inlet [n =

2]: Garibaldi Provincial Park [n = I], and Goose Island [n = 2]) indicates the Northwest 

clade is continuously distributed on the coast from Oregon to Haines, Alaska. This
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suggests the Island clade is restricted to the islands in southeastern Alaska and mainland 

areas north o f 58° North latitude.

The glacial history o f southeastern Alaska may have significantly impacted the 

distribution o f genetic lineages in the region. The mainland south o f Juneau. Alaska (Fig.

1). was probably the area most recently deglaciated by the receding Cordilleran ice sheet 

which probably melted from the edges towards the middle. Numerous glaciers and ice 

fields still occur in the Coast Mountains of southeastern Alaska and British Columbia. 

Absence of the Island clade from this area is consistent with an eastern expansion from 

the outer edge of the Alexander Archipelago that was halted by mainland glaciers. The 

presence of the Island clade in southcentral Alaska could have been facilitated by invasion 

along exposed beaches and morraines during lowered sea levels. Other taxa such as Pinus 

contorta were probably prevented from expanding west o f Yakutat by the Malaspina and 

Bering glaciers (Heusser 1960). The range of M. longicaudus. however, barely extends 

into interior Alaska and Yukon Territory. We suggest that these populations were 

established relatively recently.

The presence of M. longicaudus on at least 25 islands (MacDonald & Cook 1996) 

suggests that movement may have been more common when sea levels were depressed 

and distances between islands were reduced. However, absence of Microtus from the 

nearby Queen Charlotte islands argues against a refugium for voles in that archipelago as 

has been suggested for other taxa (Byun et al. 1996. Foster 1965. Scudder & Gessler
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1989). An abundance of closely related haplotypes distributed across the Alexander 

Archipelago is consistent with a past genetic connection o f these populations. The lack of 

geographical structure among those lineages within southeast Alaska, however, is 

consistent with an initial colonization by a bottlenecked population followed by isolation 

and subsequent divergence on different islands. The paucity o f shared identical 

haplotypes between localities suggests modem gene flow is relatively rare.

Invasion routes between eastern Beringia (interior Alaska and Yukon Territory) 

and southern regions in North America were not available until 12-15.000 years ago when 

the Laurentide and Cordilleran ice sheets had melted sufficiently (Mandryk 1996). This 

corridor has implications for the peopling o f North America and expansion of populations 

from various other refugia (Fladmark 1978. Rogers et al. 1990. Rogers et al. 1991. Rogers 

et al. 1992). The presence of the relatively undifferentiated Northwest clade of long

tailed voles (Oregon to interior Alaska) is consistent with a rapid post-glacial invasion 

northward along an interior route (Fig. 5).

Although this interior route was used by mammals that moved both north and 

south, it seems unlikely that M. longicaudus expanded south from Beringia after glacial 

retreat. M. longicaudus lacks a Beringian fossil record (Morlan 1989) and interior 

Alaskan populations are closely related to populations in Washington and Oregon. 

Relatively few North American mammal taxa were present in both Beringia and southern 

refugia; most were south o f the ice sheets and dispersed northward (Hoffmann 1981).
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However, no fossils of M. longicaudus have been documented in Oregon or Washington. 

Thus, it is possible that M_. longicaudus expanded from Beringia and the more southern 

populations of this lineage were the result o f recent colonization. Larger sample sizes and 

a faster evolving molecular marker will be necessary to discriminate the relative age of 

these populations. For instance, application of isolation by distance models could be 

informative of the direction of invasion.

Coastal versus mainland or interior taxonomic divisions occur within a number of 

taxa (mammals. MacDonald and Cook 1996: birds. Passerella iliaca. Zink 1994: trees. 

Pinus contorta Critchfield 1985). We found that the Northwest and Island clades overlap 

in the vicinity o f Haines. Alaska (Fig. 1). This might be a region o f overlap for other 

interior-coast pairs. However, it is not clear when these M. longicaudus clades may have 

come into contact. Coastal and interior forms o f Pinus contorta are found in the region, 

but the fossil record suggests they did not move through White Pass, which has always 

been alpine tundra at higher elevations (Spear & Cwvnar 1997). Introgression between 

the coastal and interior forms of Pinus contorta is not very extensive (Wheeler & Guries 

1982).

Southern Refugia

Findley & Andersen (1956) suggested that a number of sister taxa meet across the 

Wyoming Basin and the Green River, a tributary o f the Colorado River. Our preliminary
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data also suggest a phylogeographic break in M- longicaudus across this region. This deep 

division in long tailed voles has not been identified previously either on the basis o f 

subspecific taxonomy (Hall 1981) or chromosomal variation (Judd & Cross 1980). Other 

taxa that appear to be morphologically undifferentiated across this region should be 

examined for cryptic genetic differences.

The similarity o f many mammal communities throughout the southern Rocky 

Mountains suggests these taxa dispersed between areas through the Pleistocene (Davis et 

al. 1988. Luikart & Allendorf 1996). However, it is also possible that this region 

supported distinct Pleistocene refugia for mammals of low vagility. For example, other 

small mammals also exhibit large phylogeographic breaks in this region (e.g. Onvchomvs 

leucogaster. Riddle et al. 1993; Sciurus aberti. Lamb et al. 1997). Extensive genetic 

divergence among southern haplotypes in M. longicaudus (and other taxa) could be due to 

rare invasion events during cooler periods in the Pleistocene (Lomolino et al. 1989. Roy et 

al. 1996) followed by isolation during interglacials. Early phylogeographic events 

occurred inM- longicaudus approximately 0.34 MYA. which corresponds to the Kansan 

glaciation (Winograd et al. 1997). Though Pleistocene climatic oscillations may not have 

been as important to mammalian and ornithological speciation as previously thought 

(Riddle 1995. Klicka & Zink 1997), this period may have been key to many 

phylogeographic breaks (Avise & Walker 1998). Our divergence estimates, which placed 

the major phylogeographic break within M. longicaudus within the mid-Pleistocene is
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consistent with findings for other taxa. Our estimate, based on net divergence, 

significantly reduced estimates of between clade divergence (Avise & Walker 1998. 

Edwards 1997).

Fossils can provide temporal information regarding the history of populations 

(Graham et cil. 1996). However, fossils of Microtus longicaudus are scarce and limited 

both temporally and geographically (Graham et al. 1996. Zakrzewski 1985). The shallow 

age of fossils for this species (early Wisconsinan) limits inferences to the last glacial 

episode. Unambiguous M. longicaudus fossils are largely distributed within the 

contemporaneous distribution and are restricted to the eastern side o f  the distribution of 

the species (Nevada, Idaho. Montana. Utah. Colorado. Wyoming. New Mexico. Nevada, 

and Alberta). Whether this depicts the late Pleistocene distribution o f Microtus 

longicaudus or is due to a bias in preservation is unknown. There are many other fossils 

in western North America that may be M. longicaudus. but morphological similarity to 

M- montanus and M. pennsylvanicus inhibits positive identification to species level 

(Zakrzewski 1985). The molecular characters used in this study have provided an 

alternative, but testable, perspective to the limited direct evidence available from fossils.

Conclusion

M. longicaudus apparently responded to climate change in two ways during the 

mid to late Pleistocene. An early separation across the Colorado River led to the
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accumulation o f significant amounts o f genetic variation equivalent to recent species level 

divergence. The retreat o f glaciers in the early Holocene led to a rapid but spatially- 

organized northward invasion. Consequently, specimens examined over large geographic 

areas in the north (e.g. British Columbia to interior Alaska) are very closely related 

genetically, but show geographic differentiation that suggests multiple paths of expansion. 

The timing and geographical origins for the Island clade might support the presence o f a 

glacial retiigium in or near southeast Alaska.

Many processes affect the distribution of genetic variation across populations. 

Similar phylogeographic patterns across species indicate the possibility of common 

processes or history. Though many species appear to respond to their environments 

independently and not share geographic patterns (Graham et al. 1996. Zink 1994. 

Bematchez & Wilson 1998. Taberlet et al. 1998), more empirical data are necessary to 

test this observation. Conclusions for M. longicaudus should be tested against other 

phylogeographic studies of mammals, plants, and birds common to boreal habitats of 

western North America. Unfortunately, few boreal taxa o f North America have been 

investigated with molecular methods at both northern and southern extremes. Future 

phylogeographic studies should test the spatial distribution o f genetic variation in other 

mammals that occur on recently deglaciated areas in Alaska and Canada, many of which 

have conspecific populations isolated in mountains o f the southern Rocky and Sierra 

mountains. Investigations o f lineage differentiation in other taxa, particularly plants and
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invertebrates, would provide a robust test o f the response o f organisms to climatic 

change. An appreciation for the genetic response of organisms to widespread northw ard 

invasion may be useful for predicting future responses to global climatic change as welt.
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Table 1 Descriptive statistics o f genetic variation by major clade.
SOITHERN NORTHWEST ISLAND CENTRAL TOTAL
ROCKIES

No. o f samples 8 25 27 8 71

Observed transitions 58 55 96 30 211
Observed transversions 7 11 8 I -*J J
transition/ transversion 
ratio

8.29 5 12 30 6.39

Substitutions 65 66 104 31 244
Polymorphic sites 64 63 104 31 229
Observed transitions 57 55 96 30 208
Observed substitutions 64 63 104 31 229
C 34.57% 35.94% 36.40% 26.21% 37.66%
T 29.49% 26.79% 26.10% 37.90% 26.30° o
A 21.68% 20.13% 22.86% 20.16% 27.20%
G 14.26% 17.14% 14.64% 15.73% 8.83%

Mean pairwise differences 28.12 11.21 12.26 10.07 29.2
X 13.80 = 5.26 -  5.71 X 5.16 x 12.9

Nucleotide diversity 0.44 0.18 0.12 0.32 0.09
= 0.25 r 0.09 = 0.06 -  0.19 = 0.05

Mismatch observed mean 2 8 .1 1 11.21 12.26 10.07 29.2
Mismatch observed 
variance

255.06 22.61 16.43 15.11 264.46
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Table 2 Molecular clock estimates of divergence between clades in millions o f years

(Mya). Net divergence is the average gross estimate minus the average pairwise 

distance within clades. Net divergence between XI. longicaudus and other species 

is the average distance between XI. longicaudus and sister taxa minus the average 

distance within XL longicaudus based on all pairwise comparisons.

Between And Gross (Mya) Net (Mya)

M  longicaudus Other species o f Microtus 1.13 0 .9 1 8

SOUTHERN ROCKIES All other subclades 0 .440 0 .3 4 2

CENTRAL NORTHWEST * ISLANDS 0 .320 0 .2 4 6

NORTHWEST ISLANDS 0 .1 6 9 0.091

NORTHERN HALF OF 
NORTHWEST CLADE

SOUTHERN HALF OF 
NORTHWEST CLADE 0.102 0 .0 5 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix: Specimens obtained from the following collections or individuals: Museum of 

Southwestern Biology. University o f New Mexico (NIC). University o f Alaska Museum 

(UAM or AF). Lee Simons. University o f California at Davis (LHS). Bruce Hayward 

(BJH). Jack Sullivan. University o f Idaho (JMS). and Cowan Vertebrate Museum. 

University o f British Columbia (CVM). Quad refers to USGS 1:250.000 quadrangle.

Clethrionomys gapperi, Washington. Clallam County (NK3221):

Microtus montanus. Utah. Salt Lake County (NK55041):

M. pennsylvanicus, New Mexico. San Juan County (HK11205):

M. longicaudus:

Alaska.

Circle Quad. Big Windy Hot Springs (AF15867. AF 15868):

Big Delta Quad. Goodpaster R. (UAM1894):

Bradfield Canal Quad, mouth of Unuk R. (AF4366. AF4426):

Craig Quad. Prince of Wales Island. Dunbar Inlet (AF 10405); Anguilla I. (AF12411); Orr 

I. (AF 12434); Tuxecan I. (AF 12487); Prince of Wales I., near El Capitan 

(AF 14456); Prince of Wales I.. Polk Inlet (AF2156); Coronation I., Egg Harbor 

(AF3982. AF4485. AF4486, AF5170. AF5171. AF5172. AF5173); Prince of 

Wales L. 19 km E of Craig (AF4503); Suemez I.. Refugio Bay (AF4517); 

Cleveland Peninsula. Union Bay (AF4717. AF4718); Marble I. (AF4832); Warren 

I.. Warren Cove (AF8345. AF8347);

Dixon Entrance Quad. Forrester I. (AF16751, AF16752); Dali I.. Essowah Lakes 

(AF4687);

Juneau Quad. Chichagof I., Game Creek (AF10376); Lynn Canal. Excursion Inlet. W side 

(AF17242); Lynn Canal, Excursion Inlet, E side (AF17254); Chichagof I.. 11 mi
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SE o f Hoonah (A PI809): Glacier Bay. Bartlett Cove. 10 km NW Gustavus 

Airport (AF3752): Chichagofl.. Game Creek (AF6519): Chichagof!.. Otter Lake 

(AF8619. AF8662):

Ketchikan Quad. Revillagigedo I.. EllaCr. (AF4333): Revillagigedo L. Behm Canal.

Portage Cove (AP4773):

McCarthy Quad, near Kennecott (UAM3553. AF3553):

Petersburg Quad. Etolin I.. Anita Bay (AF14451. AF14452. AF14453. AF14454.

AF2583): M itkof I. (AF2440); Kupreanof L. (AF2960. AF4843): mouth o f the 

Chickamin R. (AF4902. AF4910): Revillagigedo I.. Orchard Lake (AF4986): 

Thomas Bay (AF5269. AF5270);

Port Alexander Quad. Kuiu I. (AF3725);

Prince Rupert Quad. Pearce Canal. Hidden Inlet. Gwent Cove (AF8389);

Sitka Quad. Chichagofl.. Salt Lake Bay (AF10195):

Skagwav Quad. White Pass. (AF12501. AF12502): Taiya River tidal flats (AF12516. 

AF12517): Haines Hwy.. 3.9 km WNW Haines (AF 12535): 17 km W. 20 km N 

Klukwan. Kelsall R drainage (AF8014. AF8015. AF8034. AF8038. AF8090): 10 

km E. 9 km S Klukwan (AF8075); Klehini R. 5 km W Klukwan (AF8116):

Taku River Quad. Crescent Lake (AF8299. AF8308. AF8317); Fish Creek (AF8464. 

AF8467):

Yakutat Quad. Cannon Beach near Yakutat (AF2031):

Arizona: Apache County (NK1924); Coconino County (NK8521. NK8524. NK8525): 

California: Siskiyou County (LHS558, LHS567. LHS569, LHS577. LHS616. LHS641): 

Colorado: Chaffee County (BJH9871. BJH9873, BJH9874);

Idaho: Latah County (JMS 138);

Montana: Carbon County (AF 10901):

New Mexico: Sandoval County (NK1719): Cibola County (NK9766):
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Oregon: Lincoln County (AF 18526). Lane County (AF 18528):

Washington: Kittitas County (NK3135);

Wyoming: Carbon County (AF23201):

British Columbia: Salmon River (AF 12713): Stikine River (AF 12847. 12860): near 

Atlin (AF 12909): Sicamous Creek (AF14020. AF18740. AF24886. AF24988. AF24990): 

Opax Mountain (AF14909); Goose Lake (CVM10610): Surf Inlet (CVM5059): Kynoch 

Inlet (CVM2754. CVM2755): Garibaldi Provincial Park (CVM3607): Goose Island 

(CVM2734. CVM2739):

Yukon Territory: near Haines Junction (AF 10424. AF 10426).
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Chapter 4

The Phylogenetic Position of Southern Relictual Species of Microtus'1.

Abstract:

The most southern species of Microtus (M. guatemalensis. M. oaxacensis. M. 

quasiater. and M. umbrosus) may be relics, isolated in the mountains o f Mexico and 

Guatemala by the warming phase at the end of the Pleistocene. To investigate their 

biogeographic history, we used parsimony and likelihood analyses of complete 

mitochondrial cytochrome b gene sequences of 28 species of Microtus. including several 

Eurasian species, holarctic M. oeconomus. and all extant North American species. North 

American Microtus were monophyletic under the maximum-likelihood criterion, but 

paraphyletic under parsimony. Likelihood ratio tests and bootstrapping indicated a rapid 

basal radiation in this group with apparently short intervals between cladogenic events. 

However, many sister taxon relationships (e.g. M. quasiater and M. pinetorum) were 

robust to bootstrapping or were consistent between methods. We found that M. 

quasiater was sister to M. pinetorum. as previously predicted from morphology, and 

these taxa were sister to a clade of M. oaxacensis and M. guatemalensis. The

4 Conroy, C. J., J. A. Cook. Y. Hortelano, and F. Cervantes. In prep. The phylogenetic position o f  
southern relictual species o f  Microtus. Canadian Journal o f  Zoology.
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phylogenetic position o f M. umbrosus. however, was unclear. Monophyly of the 

southern relics was rejected by a likelihood ratio test. The paraphyly of the southern 

relics suggests multiple invasions. Conservation strategies for these mountain top relics 

should incorporate phylogenetic data for other co-distributed taxa since the relationships 

among other taxa may not be apparent from current taxonomy.

INTRODUCTION

The mountains o f Mexico and Guatemala host a highly endemic flora and fauna 

(Ramamoorthy et al. 1993) including a diverse set of organisms associated with mesic 

environments that apparently invaded the region during cooler periods and then became 

isolated at higher elevations as conditions became drier and warmer. This invasion and 

isolation cycle may have occurred numerous times during the Pleistocene and has led to a 

complex biogeographic history (Sullivan et al. 1997).

The genus Microtus is primarily holarctic in distribution and reaches its southern 

limit in Central America. At higher latitudes, up to five species (e.g. M. longicaudus. M. 

miurus. M. oeconomus. M. pennsylvanicus.and M. xanthognathus in Yukon Territory) 

may be found in close proximity. However, species tend to be more allopatrically 

distributed at southern latitudes. For example. M. guatemalensis. M. oaxacensis. M. 

quasiater, and M. umbrosus are endemic to separate mountains in the cloud and pine 

forests o f Mexico and Guatemala (Fig. 1). Microtus quasiater. the Jalapin vole, is found
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in the more southern parts o f the Sierra Madre Oriental in Central Mexico. Microtus 

oaxacensis. the Tarabundi vole, is isolated in the Sierra de Juarez of Oaxaca, but ranges in 

elevation from 1.600 (Sanchez et al. 1996) to 2.499 meters (Jones and Genowavs 1967). 

Microtus umbrosus. the Zempoaltepec vole, is restricted to approximately 80 km2 at 

elevations ranging from 1.829 to 3.000 meters (Frey and Cervantes 1997) around Mt. 

Zempoaltepec (type locality 8.200 feet) in the mountains o f Oaxaca. M. guatemalensis. 

the most southern o f the relics, occurs from the mountains o f central Chiapas south to 

central Guatemala. These species may be the result o f  peripheral isolation of ancestors 

that were more widely distributed during cool periods o f the early to middle Pleistocene 

(Hoffmann and Koeppl 1985).

In contrast to the four highly restricted species. M. mexicanus is widespread in 

Mexico and occurs in limited sympatry or parapatry with M. oaxacensis. M. quasiater. 

and M. umbrosus with a disjunct range extending from New Mexico and Arizona to 

southern Mexico (Hall 1981). Its fossil record is limited to the late Wisconsinan and is 

restricted to San Josecito in northeastern Mexico and localities farther north (Zakrzewski 

1985). Phylogenetic relationships between M. mexicanus and other species o f Microtus 

are unclear, but there is little indication that this species shares a common ancestor with 

other Meso-American species. Thus, its presence in Mexico probably reflects an 

independent invasion.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We expand the investigation of holarctic Microtus phylogeny reported earlier 

(Conroy and Cook, submitted) by testing the monophyly of four low latitude relics. M. 

guatemalensis. M. oaxacensis. M. quasiater. and M. umbrosus. While monophyly of 

these possibly relictual survivors would indicate a single early invasion, paraphvly would 

suggest multiple invasions. Timing of invasions might be ascertained through examination 

of relative depth o f divergence and branching order among clades. Although correlating 

depth of genetic divergence with absolute time of isolation is problematic, we propose to 

compare branch lengths among species pairs within this genus to estimate relative times 

of divergence for the southern relics relative to other "temporally calibrated" divergence 

points within the genus. Finally, we propose to evaluate whether these species were 

likely to have been isolated simultaneously by a single climatic event, in which case we 

would expect a polytomy or very short intemodal branch lengths among species (Zink 

and Blackwell 1998).

MATERIALS AND METHODS 

DNA was extracted from ethanol-preserved tissues of these four southern 

Microtus (Table 1) with methods described in Conroy and Cook (in press). The 

cytochrome b gene (hereafter cyt b) was amplified in three sections and sequenced in both

®directions (Perkin-EImer Prism dye terminator kit [Fst-RR, 402119]) on an ABI 373 

automated sequencer. We included cyt b sequences from 24 species o f Microtus and two
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species o f Clethrionomys (Conroy and Cook in press, submitted). In the phylogenetic 

analysis we represented each species with a single individual, but we examined 

intraspecific variation where possible by including multiple representatives for 24 of the 

28 species (data available from authors). We used unweighted parsimony (MP) and 

maximum likelihood (ML) with the software PAUP* (Swofford 1998). We estimated 

parameters o f simple to more complex likelihood models (JC [Jukes and Cantor 1969]. 

HKY85 [Hasegawa et al. 1985], and GTR [Yang 1994a], and the latter two with gamma 

distributed among-site rate variation [Yang 1994b]) and tested among them with 

likelihood ratio tests that are chi-square distributed. As tests o f node strength, we 

bootstrapped the parsimony analysis 1.000 times and used 1,000 random addition 

sequences to locate multiple tree islands. We tested several alternative phylogenetic 

topologies against the ML tree (Kishino and Hasegawa 1989): 1) monophyly of the four 

relictual Meso-American species, and 2) the four shortest maximum parsimony trees. 

Besides testing relationships among these new taxa. several tests were conducted to 

ascertain the effects of adding these four southern species to more general hypotheses 

concerning the systematics of Microtus previously conducted (Conroy and Cook 

submitted). These included: 1) monophyly o f subgenus Stenocranius (Rausch 1964). 2) 

monophyly o f the "M. pennsylvanicus" clade o f taiga voles (M pennsylvanicus, M. 

montanus, M. townsendii, M. canicaudus, Hoffmann and Koeppl 1985), 3) monophyly of
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a second taiga vole clade (M. richardsoni, M. xanthognathus, M. chrotorrhinus). and 4) 

monophyly of all North American taiga voles (Hoffmann and Koeppl 1985).

RESULTS

Base pair composition of the cyt b gene was similar to other Microtus (Conroy 

and Cook submitted) as well as most other mammals (Irwin et al. 1991). O f the 1143 

base pairs. 472 were variable across 28 species o f Microtus and two species o f 

Clethrionomys. When outgroups were excluded. 460 sites were variable. O f these. 100 

were in the first position. 23 in the second position, and 337 in the third position of 

codons. O f the 381 amino acids. 76 (20 %) were variable across species o f Microtus and 

the replacement pattern was consistent with structural models (e.g. Irwin et al. 1991). 

There were 351 parsimony informative nucleotide sites and g t statistics (g( = -0.325) 

indicated phylogenetic signal in the data.

Maximum parsimony searches recovered four equally parsimonious trees (Fig. 2). 

each including a basal clade of M. ochrogaster, a North American species, and M. 

gregalis. an Asian species. A clade of M. oeconomus, M. middendorffi, M. montebelli. M. 

kikuchii and M. fortis  (hereafter the "Asian clade"). and the M. pennsvlvanicus clade were 

present in the four trees. The branch leading to a sister relationship between M. 

pinetorum and M. quasiater was in all trees, had high bootstrap support (99 %) and 

relatively high decay values (12). This relationship has been predicted based on
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morphology. M. oaxacensis and M. guatemalensis were sister taxa in three o f four trees, 

but the branch leading to this pair had weak bootstrap support (< 50 %) and a decay 

index o f zero. Other clades were found in three or four o f these shortest trees, but 

bootstrap support was generally low across basal relationships.

The HKY85 + T likelihood model (transition/transversion ratio = 3.4. a  = 0.213)

was chosen since more complex models (e.g. GTR + T) were not significantly more likely 

but produced the same topology (not shown). As in other studies (e.g. Sullivan et al. 

1997), the addition o f the gamma-distributed rate parameter contributed significantly to 

model likelihood. This model produced one tree (Fig. 3) in which Microtus gregalis was 

basal, followed by the Asian clade. North American endemic species formed a 

monophyletic clade and the European species formed a sister clade to North American 

species. The Meso-American endemics were not basal within the clade of North 

.American species. Three Meso-American species (Microtus guatemalensis. M. 

oaxacensis. and M. quasiater) displayed the same branching pattern as in the parsimony 

trees, while M. umbrosus was sister to M. chrotorrhinus. Other relationships were 

similar to previous analyses (Conroy and Cook submitted). For example, the M. 

pennsylvanicus and Asian clades were consistently supported and M. mexicanus was 

sister to M. californicus. In likelihood ratio tests (Table 2), few o f the alternate 

topologies could be rejected. However, one of the MP trees and two trees obtained from 

a ML search constrained to monophyly o f the four southern species were rejected.
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Relative depth o f  divergence was estimated with pairwise likelihood differences 

between taxa estimated under the same model used for the ML phylogeny. M. 

abbreviatus and M. miurus. which were probably split at the end of the Pleistocene when 

rising sea levels in the Bering Strait isolated M. abbreviatus on islands, differ by 0.015. 

Another late Pleistocene split may be M. canicaudus and M. townsendii which differ by 

0.058. Another pair considered closely related include VI. arvalis and VI. 

rossiaemeridionalis (0.072), while two widespread sister taxa. .VI. montanus and V/. 

pennsylvanicus. differ by 0.086. Divergence between the southern species (A/, quasiater 

and VI. pinetorum [0.094]. M. guatemalensis and VI. oaxacensis [0.113]. and Vi 

chrotorrhinus and VI. umbrosus [0.137]) is deeper than any of the preceding examples.

DISCUSSION

Previous investigations into the history of microtines suggested an evolutionary 

history closely tied to fluctuating boreal ecosystems (Hoffmann and Koeppl 1985). The 

biogeographic history of species of Microtus in Mexico and Guatemala has been 

enigmatic. The elevational distribution suggests expansion and contraction of cool, moist 

forests may have resulted in isolation in relatively small areas. The paucity of 

synapomorphic characters, but apparent abundance of autapomorphic characters has led 

to their characterization as ancient, highly divergent species. This paper reconsiders the 

biogeographic and evolutionary history of the southern relics in light of molecular
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characters examined within a wider taxonomic sampling (28 species) for the genus. These 

southern species lack a fossil record, which might provide minimum estimates for their 

age.

Biogeography

The four southern species of Microtus are in two clades: three species are closely- 

related to M. pinetorum , while the fourth is a sister taxon to M. chrotorrhinus. Our data 

do not support the hypothesis that species of Microtus restricted to the mountains of 

Mexico and Guatemala may be relics of an invasion of North America prior to other 

invasions leading to other species at higher latitudes (Hoffmann and Koeppl 1985).

These species were not basal in the North American clade. nor were they monophyletic. 

However, interspecific distances suggest they may have speciated earlier than some other 

more northern pairs, particularly late Pleistocene peripheral isolates (e.g. M. abbreviatus 

and M. miurus). The split between North American Clethrionomys gapperi and Eurasian 

C. giareolus. 0.079. occurred about the time their common ancestor invaded North 

America. This suggests Microtus may have been present and fragmented into isolated 

populations in Mexico and Guatemala prior to the invasion o f North America by 

Clethrionomys. which may have occurred during the early Pleistocene (Repenning et al. 

1990). Although the rapid basal radiation in Microtus obscures relationships, a topology
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constrained for monophyly o f these southern species was significantly worse than the 

ML topology. This supports two invasions by Microtus into the southern latitudes.

Sullivan et al. (1997) found that the Isthmus o f Tehuantepec was a strong 

geographic barrier for the Peromyscus aztecus group in Mexico and Guatemala. They 

summarized divergence in other taxa (see Ramamoorthy et al. 1993) and recommended 

that their phylogeography be tested with co-distributed taxa. No species o f Microtus is 

distributed across the Isthmus of Tehuantepec. However. M. guatemalensis. which is 

south o f the barrier, is sister to M. oaxacensis. found north of the isthmus. Their 

common ancestor may have been distributed across this barrier with northern and 

southern populations subsequently diverging. This difference in the depth of divergence 

around the Isthmus of Tehuantepec (e.g.. intraspecific in Peromyscus. interspecific in 

Microtus) suggests that although Microtus and Peromyscus are widely sympatric. they 

apparently responded to Pleistocene climatic fluctuations differently. The Isthmus of 

Tehuantepec may have isolated populations of Microtus much earlier than populations of 

Peromyscus. Although few studies have addressed the significance of the Isthmus of 

Tehuantepec as a barrier, the great diversity in mammal species in the region indicates 

there is ample material to test these hypotheses.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Systematics

Microtus quasiater is a member of the subgenus Pitymys (Musser and Carleton 

1993) and shares dental morphology with extinct Microtus (Pitymys) meadensis. a 

widespread species o f  mid-Pleistocene North America and Mexico (Repenning 1983). 

Morphological characters and DNA sequences are congruent in placing .V/. quasiater as 

sister to M. pinetorum  (Musser and Carleton 1993). M. quasiater previously was 

considered sister to M. ochrogaster (Moore and Janecek 1990) in an allozyme study, but 

only nine o f 21 North American species (Musser and Carleton 1993) and no Palearctic 

species were examined.

The evolutionary relationships of M. guatemalensis and M. oaxacensis have not 

been addressed in detail, although they are thought to be relatively divergent from one 

another (Musser and Carleton 1993 ). Microtus guatemalensis is in the monotvpic 

subgenus Herpetomys, but may have affinities with Pitymys (Martin 1987). There is little 

evidence to suggest Herpetomys should be a distinct genus, as indicated by its original 

description, or that it is related to Phenacomys, as suggested by Hinton (1926). The 

relationship between M. oaxacensis and other species is obscure (Musser and Carleton 

1993), but it too has been considered a part of an early pitymyine invasion (Hoffmann 

and Koeppl 1985, Martin 1974). Though no details were given. Jones and Genoways 

(1967:320) noted that M. oaxacensis "resembles quasiater in external features." A 

widespread ancestor (e.g. M. meadensis) may have given rise to the clade consisting of .V/
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pinetorum and M. guatemalensis. M. quasiater. and M. oaxacensis. prior to peripheral 

isolation in the eastern deciduous forests and southern cloud forests (Hoffmann and 

Koeppl 1985). The branching order suggests isolation occurred first between an ancestor 

o f \l. pinetorum-M. quasiater and an ancestor of M guatemalensis-M. oaxacensis. A 

later cladogenic event split each o f these pairs. The latter pair may have been split after 

invasion across the Isthmus o f Tehuantepec, while the former pair may have diverged 

following an interglacial-aged episode of range retraction.

The sister relationship between M. umbrosus and M. chrotorrhinus was 

unexpected because they are not similar morphologically. Microtus umbrosus is the sole 

member of the subgenus Orthriomys (Musser and Carleton 1993) and has been considered 

a relic from an early invasion from Asia during the mid-Pleistocene by the extinct 

Phaiomys (Martin 1987). Though previously considered closely related to M. 

xanthognathus (Hall and Kelson 1959). M. chrotorrhinus was later differentiated based on 

chromosomal complement (Rausch and Rausch 1974). The lack o f similarity between M. 

chrotorrhinus and M. umbrosus and the "pitymyine" species suggests an independent 

invasion of the southern latitudes by a common ancestor of .V/. umbrosus and M. 

chrotorrhinus.

We included 28 of approximately 65 species o f Microtus (Musser and Carleton 

1993), but the addition of more taxa may lead to more accurate phylogenies (Hillis 1996). 

The addition of the four taxa in this study did not significantly alter the ML topology
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previously obtained with only 24 species of Microtus (Conroy and Cook submitted ).

The North American species and the Asian and M. pennsylvanicus clades remained 

monophyletic. Several constraints previously tested (Conroy and Cook submitted) were 

consistent with the ML tree (e.g. North American monophyly. M. pennsylvanicus group 

monophyly). and are not reported. Also. M. richardsoni became basal to a clade of .V/. 

californicus and M. mexicanus. The expanded analysis suggested two differences based 

on likelihood ratio tests. Without the Meso-American species, we rejected the topology 

(p = 0.026) which constrained all North American taiga voles as monophyletic (sensu 

Hoffmann and Koeppl 1985). However, with the inclusion of Meso-American species, 

we did not reject this hypothesis (p = 0.136). In the expanded analysis we rejected one 

o f the four equally parsimonious trees (p = 0.013). That topology indicated M. 

chrotorrhinus was basal among all species o f Microtus sampled and that M. gregalis 

(Russia) was within a clade o f North American species. It is unclear whether this new 

arrangement will be stable with the addition of taxa and other characters.

Morphological material for interspecific comparison is abundant, but the 

phylogenetic utility of morphological characters such as tooth pattern has been criticized 

because they are too variable within and between species (Guthrie 1965. Zakrzewski 

1985). Only M. quasiater has been included in an allozyme study (Moore and Janecek

1990) and DNA data have not previously been used. Despite the availability of standard 

karyotypes for these and other species o f Microtus. chromosomes might not be
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phylogenetically informative since the rates of chromosomal evolution varies greatly 

between species (Cervantes et al. 1997. Modi 1987). Indeed, our phylogeny suggests a 

complicated series o f events are needed to explain chromosomal rearrangements in 

Microtus (Fig. 2). Species with low fundamental numbers are not sister to each other. 

For example. M. oaxacensis (2N = 30) is sister to M. guatemalensis (2N = 52). and M. 

canicaudus (2N = 24) is sister to M. townsendii (2N = 50). This supports Cervantes et 

al.'s (1997) contention that chromosomal evolution may be independent o f phylogenetic 

history in Microtus.

C onservation

Mexico has one of the richest mammalian faunas on Earth partially because it 

shares both elements of neotropical and nearctic biomes (Fa and Morales 1993). 

Conservation efforts for this rich fauna are complicated by the diversity of the fauna and 

the variety o f threats (Ceballos and Navarro L. 1991). Protection o f the mountains of 

Oaxaca, a region of high mammalian diversity (Arita et al. 1997), would impact the three 

relics. M. oaxacensis, M. umbrosus, and M. quasiater. M. guatemalensis is found in 

Chiapas and south into Guatemala. Whether conservation criteria focus on rarity', 

diversity, or levels o f endemism these southern relics and their habitats warrant 

conservation concern.
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Molecular systematic studies o f other endemic taxa should be considered in 

planning conservation efforts in this region (Baker et al. 1995). Our analysis suggests that 

temporal scales may be a crucial component to interpreting the significance of 

biogeographic barriers. Barriers apparent for recently diverged taxa may be less apparent 

for taxa with deeper histories. Detection of patterns at different temporal scales could 

help resolve shared histories of taxa in the region (Avise 1994) and be used to manage for 

historical associations o f flora and fauna.

CONCLUSIONS

Species of Microtus in Mexico and Guatemala are not monophyletic but instead 

are the result o f at least two invasions of this region during the Pleistocene. One invasion 

may have been by the ancestors of M. oaxacensis. M. quasiater, and M. guatemalensis. 

Another invasion might have occurred by the ancestor of M. umbrosus. A third invasion 

might have led to the distribution of M. mexicanus. A lack of fossils inhibits dating 

cladogenesis among these species, however, depth of divergence relative to other splits 

within Microtus suggest mid-Pleistocene divergence. Morphological similarity' between 

some species (e.g. M. pinetorum and M. quasiater) and formerly widespread (mid to late 

Pleistocene) taxa that are now extinct (e.g. M. meadensis) suggest isolation by range 

retraction is a viable hypothesis. Morphological studies support the shared history o f
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several of the pitymyine species. The sister relationship between M. umbrosus and M. 

chrotorrhinus was not predicted and suggests it should be tested further. Phylogenetic 

analysis of other organisms o f the region should be used to identify regions of endemism 

and significant biogeographic barriers.
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Table 1. Specimens o f Meso-American species o f Microtus examined in this

study (in addition to those reported in Conroy and Cook [submitted]).

Species C ollection location

UNAM Museum  
Catalog Number 

(co llector  
num ber)

XI. umbrosus
Mexico: Oaxaca Cerro Zempoaltepetl, 5 Km N Sta 

Ma. Yacochi. Mpio. Tlahuitoltepec, 2450 m.

34890 (JMV 1460). 

34894 (JMV 1466).

M. guatemalensis
Mexico: Chiapas: Cerro Tzontehuitz. 13 Km NE San 

Cristobal de las Casas. Mpio Chamula. 2880 m.
35262 (JMV 1590).

M. oaxacensis

Mexico: Oaxaca: 11 km SW La Esperanza. Mpio. 

Santiago Comaltepec. 2000 m.: Oaxaca: 11 Km SE 

La Esperanza. Mpio. Santiago Comaltepec. 1000 m.

27415 (JMV 277). 

33815 (JMV 1390).

XI. quasiater
Mexico: Veracruz: 5 Km. W Naolinco. Mpio. 

Naolinco. 1650 m.

35282 (YHM 295). 

35274 (YHM 279).
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Table 2. Kishino-Hasegawa likelihood ratio tests o f  tree topologies. The "Stenocranius " 

constraint forced M. miurus, M. gregalis, and M. abbreviatus to be monophylyetic. The 

"Second taiga vole’’ constraint enforced M. xanthognathus, M. chrotorrhinus. and M. 

richardsoni monophyly. The "All taiga voles’* constraint enforced the "Second taiga 

vole*' species with M. pennsylvanicus, S4. montanus. M. townsendii. and .V/. canicaudus 

monophyly. The "Meso-Americans’* constraint enforced M. guatemalensis. M. 

oaxacensis. M. quasiater. and M. umbrosus monophyly. Two trees were obtained from 

the ML search under this last constraint. The parsimony trees were derived from 

unweighted heuristic searches with ten random-addition replicates.

155

Tree Constraint -InL Diff- InL s.d. (diff) T P*

1 None 9868.811 (best)

-) Stenocranius Monophvletic 9891.258 22.447 16.723 1.342 0.180

3 Second taiga vole clade 9879.176 10.365 9.080 1.142 0.254

4 All Taiga voles Monophvletic 9897.044 28.233 18.904 1.494 0.136

N Meso-Americans monophvletic I 9910.346 41.535 11.613 3.577 0.0004*

6 Meso-Americans monophvletic II 9910.346 41.535 11.613 3.577 0.0004*

7 Parsimony Tree 1 9908.109 39.298 22.586 1.740 0.082

8 Parsimony Tree 2 9908.743 39.932 20.492 1.949 0.052

9 Parsimony Tree 3 9908.493 39.682 20.581 1.928 0.054

10 Parsimony Tree 4 9919.839 51.027 20.528 2.486 0.013*

* Significant at P < 0.05
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Fig 1. Map o f the distribution o f  species of Microtus in North America and into Guatemala 
(redrawn from Hoffmann and Koeppl 1985).
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c. glareolus 56 56
c. gapperl 56 56
■M. gregalis 36 50
M . ochrogaster 54 64
■M. fortis 52 62
■M. middendorffi 50 56
M. kikuchii 28 50
M. montebelli 30 56
■M. oeconomus 30 56
•M. chrotorrhinus 60 60

1 M. xanthognathus 54 58
| 100 j ------- M. abbreviatus 54 68
100/43 '------- M. miurus 54 68

1 ■ ---- --- M . agrestis 50 50
| 100 j ------- M . arvalis 46 80
1 00 /29 54 54

j--------M. californicus 54 62
'------- M. mexicanus 48 58

100 1 ■ ~ M. pinetorum 62 62

75 ------- -------M. oregoni 18 32
-------M. richardsoni 56 58

M. longicaudus 56 92
too ------ M. canicaudus 24 44

100
9e/a -------M. townsendii 50 48

9 0 /3 TOO ------ M. montanus 24 44
96/6 ------ M. pennsylvanicus 46 50

Fig. 2. Summary of MP searches. Values above branch are the percentage of equally 
parsimonious trees that share that relationship (e.g., 75 = three of four trees). Values 
below branchs to the left of slash are the percent of 1,000 bootstraps, simple addition of 
taxa; right of slash indicates decay index calculated with 10 random-addition replicates 
for each search. Diploid (2N) and fundamental (FN) numbers are from Cervantes et al. 
(1997), Matthey (1957), Modi (1985, 1986), and Zagorodnyuk (1990).
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Clethrionomys giareolus
 Clethrionomys gapperi
------------------------- M. gregalis

M. fortis
M. middendorffi 

-M . montebelli 

—  M. kikuchii
■ M. oeconomus

M. arvalis
 M. rossiaemeridionalis

• M. agrestis
 M. oregoni
■M. longicaudus

■ M. canicaudus
M. townsendii

 M. montanus
 M. pennsylvanicus
------------- M. ochrogaster

■ M. xanthognathus 

 M. richardsoni

■M. californicus 
-  M. mexicanus

•M. chrotorrhinus

M. abbreviatus 

M. miurusr ~ m/i
•M. pinetorum

Fig. 3. Maximum likelihood phylogenetic tree based on the HKY85 + T 
model (see text for parameter values).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



XI. CONCLUSIONS:

These molecular genetic studies, summarized in the preceding chapters, supported 

radiations within the arvicolines at the levels o f genera (Chapter 1) and species within 

Microtus (Chapters 1. 2. 4: Chaline and Graf. 1988). A pulse among murid subfamilies 

was supported, but taxonomic and character sampling for this level remains limited.

Other studies also support a rapid radiation at this level (Catzeflis et al.. 1992; Engel et 

al.. 1998; Robinson et al.. 1997). Processes responsible for these pulses o f diversification 

may include an intrinsic factor in the group's genetic background (e.g. rapid chromosomal 

evolution), or some extrinsic factor, such as rapid climate response (Vrba. 1992). With a 

more precise estimate o f the relationship between molecular divergence and time, it may 

be possible to precisely correlate the timing of cladogenic events with environmental 

events, such as glacial or interglacial peaks. Unfortunately, the field of molecular 

phylogenetics is far from resolved on the use o f molecular clocks other than as speculativ e 

tools (Johns and Avise. 1998).

Contrary to the polytomies at some higher levels, I found support for several 

previously postulated species groups within Microtus (Chapters 2. 4). This evolutionary 

framework provides a basis for investigating the evolution o f a variety o f characteristics 

within this group. For instance, behavior or ecology among species of Microtus now may 

be cast in a phylogenetic perspective. That is. the similarity among taxa in behavior or 

ecological attributes made be in part due to their evolutionary similarity.
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The work presented in Chapter 2 is a step toward recovering the history o f faunal 

interchange between the northern continents. Contrary to previous hypotheses of 

multiple invasions, these data support no more than two invasions o f North America 

from Eurasia. More paleontological research in conjunction with molecular studies o f the 

36 Old World species not included here, as well as Volemys. Blanfordimys, Chionomys. 

Lasiopodomys, and Proedromys. would further clarify intercontinental relationships.

The results o f Chapter 3 suggested major differentation in the southeastern 

portion of the range of M. longicaudus and widespread expansion in recently deglaciated 

regions in the north. The major split within Microtus longicaudus may represent 

incipient species and should be tested with other characters. One of my primary goals 

was to investigate the status of M. coronarius, the Coronation Island vole, from a 

mitochondrial DNA perspective (Chapter 3). Samples of M. coronarius (Coronation [n = 

6], Warren [n = 2]. and Forrester [n = 2] islands) were considered in perspective with 

larger sample sizes in the surrounding regions. Our larger sample of long-tailed voles from 

southeast Alaska can be referred to the subspecies M. longicaudus littoralis and M. I. 

vellerosus. The border between these morphologically defined taxa was described as the 

coast range (Osgood. 1900; Swarth, 1922. 1933) with some morphological overlap in the 

Haines and Juneau area. However, as discussed in Chapter 3. the cyt b data suggested 

that mainland populations south and east of Haines are distinct from nearby island 

populations.
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Populations o f M. coronarius originally were elevated to species due to color and 

size differences (Swarth, 1911). However, the status o f M. coronarius has been called 

into question (e.g.. Musser and Carleton. 1993). These mtDNA data do not distinguish 

individuals on Coronation. Warren, or Forrester islands. However. mtDNA may conflict 

with other markers (Avise. 1994) and further investigation of nuclear markers, karyology. 

and skeletal morphology is needed to critically evaluate the status of this taxon (Conroy 

and Cook, in press). Neutral nuclear alleles take approximately four times as long to 

fixate through drift as neutral mtDNA haplotypes. A genetically unique population may 

have persisted in a Northwest Coast glacial refugium. Gene flow, due to post-glacial 

colonization, may have led to a loss o f unique mitochondrial markers in M. coronarius. It 

is also possible that M. coronarius is an artifact o f excessive species level splitting 

(Anderson. 1985). This is the first systematic reanalvsis of this taxon since its 

description. Although samples from Coronation. Warren, and Forrester islands were not 

distinct, samples that coincide with the subspecies M. longicaudus littoralis (the Island 

clade) appear divergent from other clades in the Pacific Northwest and are consistent with 

genetic isolation in a glacial refugium. These clades are not nearly as divergent as other 

sister species in the genus Microtus, but these data illustrate the effectiveness o f placing 

previous systematic hypotheses (e.g.. subspecies of M. longicaudus) within a 

phylogenetic framework.
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Despite the information obtained in these chapters, these phylogenetic 

hypotheses remain a framework to be tested with more paleontological data and further 

taxon and character sampling. Recent work in molecular systematics (e.g.. Hillis. 1996) 

suggests that intensive taxonomic sampling can improve the accurate recovery of 

branching topologies. Therefore, these phylogenetic and phylogeographic studies will be 

more accurate reconstructions o f history when the sampling o f species and populations is 

enhanced. Other markers must be considered to obtain the most robust perspective on 

these groups because gene trees are not necessarily species trees.

An area o f molecular phylogenetics that requires more attention is the application 

of molecular clocks (Chapters 1 and 2). Molecular phylogenetics will benefit from the 

development of techniques to more reliably interpret molecular data within a temporal 

framework. Therefore, critical estimates o f cladogenic events among arvicoline lineages 

will require better dates from the fossil record and better methods of correcting DNA 

distances.

This thesis challenges several well-recognized systematic relationships including 

monophyly o f the Sigmodontinae. the validity o f genera Volemys and Alticola and the 

taxonomic status o f Microtus coronarius. However, several unexpected sister pairs (e.g.. 

M. umbrosus and M. chrotorrhinus, M. canicaudus and M. townsendii) were also 

recovered. Some o f these relationships conflict with previous analyses and therefore 

warrant additional testing with wider sampling of taxa and independent markers. Studies
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based on DNA sequences can be readily expanded with the addition o f taxa or other 

characters. However, this directly leads to the challenge o f computational limits imposed 

by current computer software. Progress in uncovering arvicoline evolution will thus rely 

on 1) an expanded fossil record. 2) sampling more taxa. 3) development o f independent 

loci, and 4) methods to address the computational limits to phylogenetic inference.
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