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ABSTRACT

Under repeated external loads, engineering structures or objects may fail by large plastic deformation or 

fatigue. Shakedown will occur when the accumulation o f plastic deformation ceases under repeated loads; 

the response of the system is then purely elastic. Fatigue and shakedown have been individually studied for 

decades and no attempt has been made to couple these two mechanisms in the mechanics analysis. In this 

study, an attempt is made to couple shakedown and fatigue in pavement mechanics analysis using 

numerical simulation.

The study covers three main areas: fatigue, static shakedown, and kinematic shakedown analysis. A 

numerical approach to fatigue analysis is proposed based on elastic-plastic fracture mechanics. The amount 

o f the crack growth during each load cycle is determined by using the J-integral curve and Rcurve. Crack 

propagation is simulated by shifting the R curve along the crack growth direction. Fatigue life is predicted 

based on numerically established fatigue equation. The numerical results indicate that the algorithm can be 

applied to fatigue analyses of different materials. A numerical algorithm based on the finite element 

method coupled with the nonlinear programming is proposed in static shakedown analysis. In this 

algorithm, both the inequality and equality constraints are included in the pseudo-objective function. These 

constraints are normalized by the material yield stress and the reference load, respectively. A 

multidirectional search algorithm is used in the optimization process. The influence of finite element mesh 

on shakedown loads is investigated. An algorithm that utilizes eigen-modes to construct the arbitrary 

admissible plastic deformation path is proposed in kinematic shakedown analysis. This algorithm converts 

the shakedown theorem into a convex optimization problem and can be solved by using a multidirectional 

search algorithm. Fatigue behavior of a two-layer full-depth pavement system of asphalt concrete is 

analyzed using the proposed numerical algorithm. Fatigue crack growth rate is estimated and fatigue life is 

predicted for the system. Shakedown analyses are also carried out for the same pavement system. The 

comparison between the shakedown load and the fatigue failure load with respect to the same crack length 

indicates that the shakedown dominates the response of the pavement system under traffic loads.
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CHAPTER I

INTRODUCTION

1.1 PROBLEM DEFINITION '

A scientific approach to pavement design has been pursued by engineers for many decades. Early 

pavement design consisted of rule-of-thumb procedures based on past experience. The total pavement 

thickness was estimated based on the classification of subgrade soil without a strength test. In an effort to 

characterize the strength o f the soil, the CBR method was developed to relate the pavement thickness to the 

California Bearing Ratio of subgrade soil. The CBR method has been extensively studied and widely 

adapted both in airfield and highway pavement design. Another method relates the design of pavement 

thickness to the strength of the materials and is called limiting shear failure method [1]. This method 

considers the cohesion and internal friction angle of pavement components and subgrade soil as major 

material properties. The design of pavement thickness is based on its bearing capacity. To control large 

deformation of a pavement caused by heavy traffic load, the limiting deflection method is used to 

determine the thickness of pavements so that the vertical deflection is below an allowable limit [I]. To well 

understand the effects of traffic load, material, and environment on pavement performance, a large number 

of test-roads were constructed and tested under various conditions. Based on the results of road tests, 

regression equations for pavement design were developed by The American Association of State Highway 

Officials. The AASHO method uses the regression equations based on the results of road tests for 

pavement design [1]. This design procedure takes into account factors such as type and volume of traffic, 

pavement performance and serviceability, fatigue, and the environment.

All these methods are based on extensive road tests and past experience in pavement design. They are 

simple and easy to implement in practice. However, these methods are directly related to a given regional 

environment, material, load condition and experience. The application to different environmental, material, 

and load conditions cannot be made without extensive correlation. Based on some mathematical models 

such as half-space solid and multilayer theory, mechanistic-empirical methods of design are gradually 

developed. The mechanistic-empirical method o f design is based on the physical requirements of a 

structure to withstand the anticipated external loads, postulated deformations and stresses in the elements, 

and satisfies the mechanical behavior of materials and meets the basic laws of mechanics governing motion

1
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and force. With the development of computer techniques, various computer programs based on 

mechanistic-empirical methods have been developed and have gained popular acceptance in pavement 

analysis.

The ever-increasing transportation demands outgrew the advancement of pavement design and research. As 

indicated in [2, 3], current design procedures are not adequately meeting expectations and pavement life 

predictions are often inaccurate. Data from the Asphalt Institute's report on pavement thickness design [3] 

shows that under current design procedures, pavements might, in some cases, be overdesigned. Data from 

Brazil [2] indicates that the majority of the pavements studied may have been underdesigned. Therefore, 

developing a systematic, practical mechanistic pavement design procedure to provide an optimum reliable 

pavement structure and accurate service life prediction seems critical.

It is believed that uncertainties inherited from current pavement design practice are the major causes of 

inaccuracy in service life prediction and thickness design. With increasing tire pressure, roughness, truck 

loads and traffic volume as well as new vehicle configurations, it can be expected that current design 

practice will lead to higher inaccuracies in estimated pavement life and serviceability.

1.2 BACKGROUND

Fatigue and rutting are considered major distress modes in flexible pavement design. Repeated traffic 

loading is responsible for these two distress modes. Many models have been proposed to utilize stress, 

strain, or deflection related parameters to estimate “fatigue life” or “permanent deformation” accumulated 

under repeated traffic loading.

1.2.1 FATIGUE

The phenomenological characterization of fatigue in bituminous mixtures is utilized by Hveem [4] who 

developed a strong correlation between deflection measurements and pavement performance based on field 

observations. Since then, extensive laboratory modeling of the fatigue process has been studied by 

Monismith [5], Pell [6], Deacon [7], and Majidzadeh [8],

The stress-strain-based approach to fatigue relates the fatigue life of a flexible pavement to the maximum 

tensile stress o,T(nax or tensile strain e Tmax developed in the under-side of the bituminous layer by semi- 

emnirical relationship A variety of specimen configurations and test setups have been developed for the 

fatigue testing of bituminous mixtures. But most fatigue tests employ the bending beams. This is because
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3

the transverse deformation develops across the pavement and traffic loads are applied only at the wheel 

path. A simple supported beam with third-point [7], trapezoidal-shaped cantilever beam [9,10,11], center- 

point loading beam [ 12] or cantilever beam with rotating bending [6] has been used in laboratory 

investigations. The bending plate has also been used [13,14],

There are two types of loading modes that are generally selected in laboratory fatigue tests: controlled 

stress or controlled strain. In a controlled stress test, the stress remains constant, while the strain increases 

with the number of repetitions. In a controlled strain test, the strain is kept constant, while the load or stress 

decreases with the number of repetitions. When compared with the same initial nominal stress, available 

experimental results [15,5,16] have indicated that controlled stress tests are more conservative than 

controlled strain tests for predicting fatigue life. For a better simulation of fatigue response of pavements in 

service, the loading mode has to be selected according to the pavement thickness and other geometrical 

considerations [17]. Hung [1] concluded that the controlled stress test was applicable to thicker pavements, 

wherein the HMA (Hot Mix Asphalt or Asphalt Concrete) was more than 6 in. (152mm) thick and was the 

main load-carrying component. As the HMA becomes weaker under repeated loads, the strain should 

increase with the number of repetitions. The controlled strain test was applicable to thin pavements with 

HMA less than 2 in. (55mm) thick because the strain in the asphalt layer was governed by the underlying

layers and v/as not affected by the decrease in stiffness of HMA. For intermediate thickness, a combination

of controlled stress and controlled strain testing was desired.

Based on extensive fatigue test results, various fatigue equations have been developed. These equations 

relate the allowable number of load repetitions to the tensile strain at the bottom of the asphalt layer. In the 

Asphalt Institute and Shell design methods, the allowable number of repetitions, N f , to cause fatigue 

cracking is related to the tensile strain, e , , at the bottom of the HMA and the HMA modulus. E , . by

N f = f 1( e ,) f’ (E Ir f' ( 1.1)

while other agencies [ 1 ] use the following fatigue equations in the design procedure,

N f = f , ( s , ) - f= (1.2)

Laboratory fatigue tests have shown that the exponent, f2 , of the fatigue equations varies from 3 to 6, but 

the coefficient, f , , varies over an order of magnitude from 5x10** to lxlO "4 . The exponents, f2 and f3, 

are usually determined from fatigue tests on laboratory specimens, while f, must be shifted from 

laboratory to field values by calibration. Pell [ 18] indicated that the shift factor might range from 5 to 700.
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4

Laboratory fatigue tests are time-consuming. Based on 146 fatigue tests covering a wide range of mixes, 

bituminous and testing conditions, Shell [ 19] developed separate equations and a nomograph for controlled 

stress and strain tests. The nomograph of the solutions of these equations is presented in Fig. 1.1. However, 

the accuracy of the equations for constant stress tests was reported within ± 40% for 90% of the results and 

within ± 50% for controlled strain tests.

Most of the previous stress-strain based investigations of fatigue response of asphalt mixes have been 

conducted using a simple loading history, in which the load or strain amplitude for each cycle was 

constant. Compound loadings have also been attempted by Deacon and Monismith [20] to study their 

effects on fatigue response.

Frequency of load application in fatigue tests has also been considered as an important testing variable. 

Monismith, et al [16] reported that the frequency of load application in the range of 3.0 to 30.0 cycles per 

minute had no effect on the specimen’s fatigue behavior. The subsequent work of Deacon and Monismith 

[20] had shown that the increase in the rate o f loading significantly decreased the fracture life for the type 

of test employed at rates ranging between 30 and 100 applications per minute.

But Raithby and Sterling [21,22] showed that rest periods between successive loading cycles had a 

beneficial effect on fatigue performance both by increasing the resistance to cracking and by reducing the 

rate of loss of dynamic stiffness due to repeated loading. When compared with fatigue life under 

continuous sinusoidal cyclic loading, rest periods on the order of one second increases the number of 

cycles to fatigue by a factor of up to 5,. The improvement in fatigue life was less at high temperatures; it 

also appeared to be influenced by the magnitude of the applied cyclic stress, although this effect was not 

clearly established. A comparison of fatigue performance under square, sinusoidal and triangular 

waveforms indicated the same significant differences, but these were small compared to the effects of rest 

periods. The effect o f rest periods on the crack growth process was also investigated by Majidzadeh and 

Kauffman [23] by testing beams on elastic foundations with rest periods of 0.0, 0.4 and 0.8 seconds. They 

reported that for such test conditions, there were no significant effects of rest period on the crack growth 

process.

The stress-strain-based approach to study fatigue behavior has gained universal acceptance and has been 

adopted by various organizations in their design practice. However, as pointed out in a previous section, a
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fatigue equation from laboratory tests has to be shifted or calibrated to account for field behavior. In 

addition, the stress-strain-based approach cannot take into account crack initiation and propagation.

Fracture mechanics methods have been used to study the fracture behavior o f pavement components 

including asphalt cement and cement-treated layers, particularly in relation to crack initiation and 

propagation. Fracture and fatigue behaviors o f asphalt concrete materials were studied by Salam [24], In 

his study, fracture toughness for different material compositions was measured at different temperatures. A

fatigue equation for asphalt concrete beams at 10° Fand 68° F was established based on laboratory fatigue 

test data. A ffacture-mechanics based approach was also developed at Ohio State University [25,26,27] to 

study fatigue behavior of pavement systems. The research at Ohio State University [25,126,27] and the 

theoretical development of fracture mechanics at other institutes has provided various methods for the 

solution of crack problems. A computer program and analysis procedure was also developed for the design 

of pavement systems [23,26], The results of the research at Ohio State University led to the following 

general conclusions:

(1) The crack propagation law, dc / dn = AK" satisfactorily explains the fatigue performance of 

bituminous material with the stress intensity factor being the dominant parameter controlling the crack 

growth. Depending upon the material characteristics such as asphalt content, gradation, etc. the 

constant n varies.

(2) The fatigue life o f pavement slabs subjected to loads of variable amplitude can be predicted from tests 

on beams resting on an elastic solid. The sequence of load application has a significant effect on the 

fatigue life of asphalt materials, causing a delay in the rate of crack propagation. The rest period has 

little or no effect on the fatigue life of pavements.

(3) The concept of linear elastic fracture mechanics is applicable in predicting the fatigue life of 

pavements.

As indicated in [25,26,27], bituminous mixtures could be brittle or ductile depending on temperature, 

loading conditions, hardening or softening induced factors, and inherited properties. The existence of 

crack-like imperfections or flaws creates a plastic zone around the crack tip when a body is subjected to 

alternating low stress levels. In addition, during each loading cycle the sharp aggregate comers transmit 

point-loading conditions to the asphalt cement with a stress singularity. Hence, even before crack 

formation, a plastic zone existed at each contact, and energy was dissipated through cyclic plasticity. Once 

a crack is initiated, then at the tip of the crack, stress distribution goes to infinity according to linear
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fracture mechanics. However, the material can only tolerate stress up to its yield point, then a plastic zone 

around the crack tip forms and blunts the crack advance. The size of this plastic zone is critical in fatigue 

life analysis. If the formed plastic zone is small compared to the crack size and the geometry of the 

continuum, linear elastic fracture mechanics will favorably approximate fracture failure. On the other hand, 

if the size of the plastic zone cannot be ignored, a nonlinear fracture mechanics approach is more 

appropriate.

It has been found [25,26,27] that in bituminous mixtures, cracks usually develop at the bottom of the 

asphalt layer due to tensile stresses exceeding a threshold yield stress value. This provides an opening 

mode fracture, defined as Mode I. Furthermore, the crack propagates vertically but in a zigzag path, 

indicating either an aggregate obstruct or a crack contribution of Mode II loading type. However, for all 

practical purposes, Mode I can be considered a dominating crack propagation mode.

Based on these analyses, a fatigue fracture model was developed [26], The model includes a crack 

initiation, a fatigue crack propagation and an ultimate failure. The fatigue life o f the pavement system is the 

summation of the number of load cycles of the three stages.

1.2.2 RUTTING

Rut depth has a major influence on pavement design and performance. Current mechanistic based 

thickness design procedures limit the rut depth within allowable values. This is done by choosing the 

thickness of the surface layer according to a certain critical strain value. Many investigations have been 

conducted to establish a functional relationship between the permanent strain and loading repetitions for 

various materials. The functional relationship may be generalized in the following form [28],

s p = f(a ,N ,T .A ,B .E ) (1.3)

where

s p - permanent strain

cr - cyclic stress level 

N - number of repeated load applications 

T - temperature 

E - resilient modulus

A and B -  experimentally determined coefficients.
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Current design procedures limit rut depth within an allowable value. However, a proper layer thickness 

determined by this approach will not guarantee the rut depth does not exceed a given value. From Eq. 

(1.3), it can be seen that for a given load level, temperature, and material properties, load repetition 

numbers are finite for a given E p  . Permanent deformation will continually accumulate after N repetitions.

Furthermore, the repeated load may vary in magnitude and sense, which will make the estimate much more 

uncertain. On the other hand, permanent deformation may stabilize after several load repetitions, and the 

response to further repeated loads is purely elastic. This phenomenon is explained by the shakedown 

theory.

The shakedown concept with regards to the reliability of the collapse loads calculated according to limit 

analysis theory in the case of variable repeated loads was first discussed by Griming [29]. Later Bleich [30] 

established a necessary and sufficient shakedown condition for a simply indeterminate structure. Based on 

Bleich’s work, Melan [31] presented a general shakedown theorem for structures and extended it to the 

elastic-perfectly-plastic continuum. Much the same as in limit theory, the kinematic shakedown theorem, a 

dual of Melan’s static theorem, was established by Koiter [32] for elastic-perfectly plastic materials.

These two fundamental theorems known as the static and the kinematic shakedown theorems are based on 

a number of assumptions such as elastic-perfectly-plastic material, small deformation and quasi-static 

loads. However, in engineering practice, for most cases these assumptions cannot always be satisfied. 

Therefore, classical shakedown theorems have to be extended to include the effects of relaxation on one or 

more constraints of these assumptions.

By directly including thermal stresses in the shakedown formulation, Prager [33] and Rosenblum [34] 

extended Melan’s static theorem to account for thermal loading effects in addition to mechanical loading 

effects. The kinematic shakedown theorem that accounts for thermal loading and mechanical loading was 

presented in [35,36,37]. When elastic moduli of the considered material also varies with temperature, the

formulation for static shakedown theorem becomes rather complicated. The plastic strain field, e?, does

not define uniquely the residual stress field, p^. The static theorem has to be formulated in terms of steady 

plastic strains rather than in terms o f residual stresses. Konig and Maier [37] presented the static 

shakedown theorem including thermal stresses. Based on Konig and Maier’s work, Cazzani et al [38] 

proposed a numerical procedure to obtain a kinematic shakedown load factor. Ceradini [39] established
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shakedown formulations to account for inertia and damping effects under dynamic loading. In these 

formulations, it was assumed that the actual history o f external actions was known along with the initial 

conditions and that the fictitious elastic response was calculated from a dynamic analysis. This fictitious 

elastic stress field was superimposed with a time-independent residual stress field to determine the 

shakedown load factor. A shakedown theorem for systems with nonlinear kinematic hardening materials 

was first formulated by Neal [40]. Neal used a Masing [41] one-dimensional overlay model to describe the 

nonlinear kinematical behavior o f material. Stein et al [42] extended the Masing’s overlay model to a three

dimensional model in order to describe the nonlinear kinematic behavior of materials and formulated a 

corresponding shakedown theorem. The ‘second order’ geometrical effects were taken into account in 

Maier’s [43] formulation of shakedown theorem for discretized systems in terms of the ‘geometric 

stiffness’ matrix. Weichert [44] discussed the effect o f  geometric nonlinearity on shakedown within the 

framework of continuum mechanics and proposed practicable methods in the prediction of the shakedown 

behavior for particular situations.

The classical shakedown theorems were reconsidered by Polizztto et al [45] with the objective o f extending 

it to a quite general constitutive law for rate-insensitive elastic-plastic material models endowed with dual 

internal variables and thermodynamic potential. A non-associated flow rule was considered in Maier’s 

early work on shakedown theorem, which was concerned with perfect plasticity with piecewise linear yield 

functions. It was centered on the concept of a reduced elastic domain as a basis for a sufficient shakedown 

condition. Recently, this notion was re-proposed in a more general constitutive context under the name of 

elastic sanctuary by Nayroles and Weichert [46], who suggested its experimental determination. The article 

deals with an extension of the static shakedown theorem to a fairly general class o f elastic-plastic material 

constitutive models and aims at unifying the above mentioned approaches.

By means of matrix description of the mechanical behavior based on the finite element discretization and 

the piecewise linearization of yield function, Maier [47] formulated Melan’s shakedown theorem into a 

linear programming problem, which, in principle, permits the evaluation of the shakedown load for a 

general continuum. This shakedown matrix theory has been employed to extend shakedown theory to a 

broader area and has been applied widely to discretized structures such as truss and beams. Belytschko [48] 

presented the first numerical solution for shakedown analysis in continuum problems. Belytschko 

formulated the shakedown problem by using the equilibrated finite element formulation coupled with the 

sequential unconstrained minimization technique to obtain the shakedown load. The shakedown analysis 

was carried out for an elastic-perfectly-plastic square plate with a circular hole subjected to biaxial variable
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repeated loading under plane stress condition. Corradi and Zavelani [49] proposed an alternative linear 

programming approach to reduce the number of constraints in Maier’s approach while retaining the linear 

nature of the problem. The procedure is mainly based on expressing the yield condition by means of the 

coordinates of the vertices of the yield polyhedron instead of the direction cosines and the plastic capacity 

of each yield plane. The major advantage of this approach is the efficiency in computing time and the 

avoidance of computational difficulties with the nonlinear programming approach.

Hung and Konig [50] established a compatible finite element formulation for static shakedown theorem 

with a nonlinear mathematical programming formulation, based on the ‘yield criterion of the mean’. By 

way of the ‘yield criterion of the mean’, the number o f  discrete nonlinear yield constraints in Belytschko’s 

formulation was reduced by averaging the yield function over each element and make shakedown analysis 

for continuum problem more applicable in practice.

Application of shakedown theory to soil mechanics began in 1975 when Rowe[51] carried out an 

experimental model to study circular surface foundations, resting on saturated clays and subjected to 

inclined, eccentric static and cyclic loads to model an offshore gravity platform. The results of measured 

pore pressure showed that equilibrium was associated with the ‘equilibrium of shakedown.’ While studying 

wave effect on the foundations of offshore structures, Zienkiewiz et al [52] observed that ‘Progressive 

deformation’ at loading levels was much smaller than those resulted from the static collapse. Shakedown 

behavior is further illustrated by examples of a footing under plane strain condition subjected to a vertical 

steady loading and a cyclic bending moment due to horizontal loads. The results showed that the 

magnitude of settlement increased either due to the increase of the vertical load, or the decrease of the 

strain hardening parameter or the angle of internal friction. Shakedown analysis of a footing underlined by 

dry soil and subjected to a variable repeated loading was carried out by Aboustit and Reddy [53] under a 

plane strain condition. Shakedown load parameters for different angles of internal friction of the material 

were computed.

The possible application of the static shakedown theory in pavement design is first made by Sharp [54] and 

then illustrated by Sharp and Brooker [55]. The pavement is modeled as a multilayer system of an elastic- 

perfectly plastic solid subjected to a trapezoidal distributed load. The shakedown analysis o f pavements 

was carried out by two approaches: a linear programming method and a conic section method. In the first 

approach, they followed the same procedure proposed by Maier [43] and transformed Melan’s shakedown 

theorem into a linear programming problem by employing piecewise linearized Mohr-Coulomb yield
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function. A conventional linear programming technique was then used to determine the shakedown limit of 

a layered continuum subjected to repeated moving surface loads under plane strain condition. In the 

second approach, the conic section method was used to find a shakedown load factor. By substituting 

stresses into Mohr-Coulomb yield function, a quadratic form in load factor and residual stresses was 

obtained, which defines a conic section for each point (x, z) in the half-space. The shakedown limit value 

was obtained by finding the largest load factor (k) satisfying (a) k>0; (b) lie inside or on all of these 

conices; (c) residual stress field p must be larger than the tensile strength, -p , ,  and smaller than the 

compressive strength, pc .

Several layered pavements were analyzed by the proposed approaches. From these results, it was found 

that at a given value of strength, there exists an optimal value of relative stiffness that maximizes the 

shakedown limit. A higher value of E / E0 results in the fatigue failure at the bottom of the top layer, while 

a lower value of E / E0 results in the fatigue failure at the top of the subgrade. At a given value of stiffness, 

increasing the relative strength causes an increase in shakedown limit.

By case study, Sharp and Brooker [55] demonstrated that the shakedown limit of a pavement provides a 

convenient predictor of the performance for design purposes. The relationship between the shakedown 

limit, material properties, and the thickness developed from shakedown analysis may provide various 

combinations of relative strength, relative stiffness, and surface layer thickness. These may be chosen to 

give a standard o f performance. Therefore, design tools may be readily developed based on shakedown 

analysis results.

A finite element method in conjunction with the nonlinear mathematical programming approach was 

employed by Raad et al. [56-58] in the shakedown analysis of pavement system. For the discretized system 

that consists of numbers of four node elements, Melan’s shakedown theorem was formulated into a 

nonlinear programming problem. The equilibrium condition of the residual stress field is satisfied by 

incorporating the resultant forces caused by the residual stress at every node into the objective function. A 

pattern search algorithm originated by Hooke and Jeeves [59] was used to solve the optimization problem. 

The influence o f compaction stress on shakedown limit value was investigated. It was found that 

compaction stresses would increase the predicted shakedown loads for both pavements with soft and stiff 

subgrade and the increase is most significant for granular base with low cohesion and for base overlaying 

stiff subgrade. The influence of the cohesion and friction of a granular base on shakedown load was also
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studied. The numerical results show that increase in the strength o f a granular base would significantly 

increase the shakedown capacity of the pavement. However, the cohesion of a base seems to be more a 

significant parameter on shakedown capacity than the friction angle.

Sharp’s conic section method was re-examined by Collins et al [60]. Based on Koiter’s [32] kinematic 

shakedown theorem, and the assumption that failure mechanism is similar to upper bound limit analysis, an 

upper bound physical interpretation was given to the conic method and the shakedown analysis was 

extended to a three dimensional half-space problem with elastic-perfectly plastic material following Mohr- 

Coulomb yield condition. Later, the same approach was extended to a layered pavement system shakedown 

analysis [61, 62], in which permanent deformations along the traffic direction were taken into account 

through a shakedown load formulation. Shakedown behavior for a two-dimensional plane strain problem 

under a trapezoidal distributed surface load and three-dimensional problem under a circular distributed 

load were investigated. The results showed that shakedown load from a two-dimensional analysis was 

consistently lower than that from a three-dimensional analysis, which means plane strain analysis gives a 

conservative estimation. -

The advantage of Belytschko’s shakedown analysis formulation is that equilibrium conditions o f residual 

stresses need not be included in the optimization process. But the nonlinear optimization technique is rather 

complicated. The optimizer has to find the parameters o f stress functions of residual stress field that 

minimize the objective function. Corradi and Zavelani’s linear programming approach greatly reduce the 

numbers of variables used in the optimization process. However, only an upper bound shakedown load can 

be computed by using duality formulations. On the other hand, considering the plastic deformation defined 

in Eq. (5.8) in Ref [49], it only represents one instance within one admissible strain cycle. Therefore, the 

“total dissipated energy” may not be for one admissible strain cycle. Sharp and Booker’s elegant ‘method 

of conics’ based on the assumption that residual stress distribution is uniformly distributed within a plane 

(x, y) and is dependent solely on the depth z. This assumption greatly simplifies the shakedown 

formulation and leads to ‘method of conics,’ but it may not be the case in actual loading situations, 

especially for the problem they considered. Raad et al’s[56] approach does not include yield constraints in 

the objective function, although an alternative procedure was used to satisfy these conditions. Also the 

optimization algorithm is rather time consuming. •

II
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1.3 SCOPE OF STUDY

The objectives of the current study are:

1. Establish a numerical algorithm to simulate fatigue crack growth behavior, to determine unstable crack 

growth, and to predict fatigue life for engineering materials and objects.

2. Based on current numerical algorithms of shakedown analysis, develop a general numerical algorithm 

and optimization procedure to evaluate both the lower and upper bound shakedown loads for a given 

system accurately and efficiently.

3. Discuss the possibility to couple the fatigue failure mechanism with shakedown behavior.

There are seven major topics included in this thesis. The problem definition, general introduction, and 

objective of the study are included in the first chapter. Literature review of fatigue and shakedown and 

their current development is given in Chapter II and III. A numerical algorithm to simulate fatigue crack 

growth and to predict fatigue life is proposed in Chapter IV. The fatigue behavior of several simple 

problems is analyzed. The fatigue crack growth rates are established and fatigue lives are predicted for 

these problems. A general numerical algorithm to evaluate lower bound shakedown load is described in 

Chapter V. A multidimensional search algorithm adopted as an optimizer in finding lower bound 

shakedown load. An eigen-mode method is proposed in chapter VI to construct the arbitrary plastic 

deformation paths in evaluating the upper bound shakedown load. Several examples are presented to 

illustrate the applicability of the proposed method. Applications of these proposed numerical algorithms 

and methods are given in chapter VII. The fatigue behavior is analyzed and the lower and upper bound 

shakedown loads are evaluated for a two-layered pavement system. The lower and upper bound shakedown 

loads for a three-layered pavement system are also calculated. The possibility of interaction between 

fatigue failure mechanism and shakedown behavior is discussed. Summary and conclusions are given in 

chapter VIII.
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Figure 1.1 Nomograph for Predicting Fatigue Life of Bituminous Mixes. 
(After Bonnaurc et al. (1980).)



CHAPTER II

REVIEW OF FRACTURE AND FATIGUE

2.1 INTRODUCTION

Fracture and fatigue have great importance in engineering object design with regard to both reliability and 

economies. Engineering objects such as structural components and mechanical parts may fail in different 

ways under applied loads. The mechanical failure modes mostly concerned in engineering design may be 

classified as follows:

Instability failure both in tension (plastic necking) and compression (buckling)

Failure by yielding with large plastic deformation 

Failure by fracture (cracking)

Failure by load cycling (fatigue).

The traditional design approach that is based on the selection of a limiting applied stress as compared with 

the material yield stress, <ry , might not always guarantee a fail-safe design strategy. On the other hand,

imperfection always exists in engineering materials and leads to local stress concentration. Hence, fracture 

and fatigue play more and more important roles in engineering object design. The concepts of fracture and 

fatigue are reviewed in this chapter. Fracture characteristic and fatigue behavior of engineering materials 

will be addressed in the following chapter.

2.2 BASIC EQUATIONS

The equilibrium state of the volume element of a loaded three-dimensional body as shown in Fig. 2 .1 can 

be determined in terms of six stress components, cty (i, j= 1,2,3) acting on the element, as follows by 

ignoring any body forces

CTy.j =0 (2 . 1a)

where CTyj denotes partial differentiation of stress components, cr^, with respect to the coordinates Xj.

The elastic continuity requires the strain components, e ,j, corresponding to the stress components satisfy

the compatibility equation,

Eij.kk + Ekl.ij — Eik.jl — Ejl.ik = ® (2-2)

14
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wheree jj = —(Uj j+ U j ,) and Ujj denotes partial differentiation of displacement components with

respect to x j . The relationship between stresses and strains for an isotropic, elastic material satisfies the 

generalized Hooke’s law

CTg = 2p8ij+A.ekk5 ij (2.3) 

in which = e,, + e 22 + £ 33,

p = E /2(l + v) shear modulus of 

elasticity and k  = 2pv /(I -  2v) is 

Lame constant. The equilibrium 

equation Eq. (2.1a) can be expressed 

in terms of displacements, which is 

known as Navier’s displacement 

equations

1
U: :: +  U j jj = 0

11 I - 2 v  J'J
(2. 1b)

f  *3

Figure 2 .1 Stress Com ponents,  n a three-dimensional Element 
Referred to Cartesian Coordinate System.

For plane strain problem. Hook's law can be simplified as

1 - v -  v
En ~ z  (CTu  -----E 1 - v

1 — V *  V
z 22 = —— (<*22 -----CTll) (2-4)E 1 - v

1 + v
eI2 — —- —tj | ,

For plane stress problem. Hook's law becomes

I
e ii = ■=■(»! i - v<*22)E

e 22 = ̂ t (ct22 ~ v a I! ) <2-5)E
1 + v

EI2 — —~—cr 12
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2.3 LINEAR ELASTIC FRACTURE MECHANICS

2.3.1 Westergaard's Stress Function

In linear elasticity theory, Westergaard’s stress function [63] is often used to solve two-dimensional 

problems of cracked bodies or components in structures. Considering a complex stress function O:

d> = Re<|>(z) + x2 Im<|>(z) (2.6)

V 2(V2<t*) = 0

where z=x+iy is a complex variable, ij)(z) is a harmonic function and <j>'(z), (j)"(z), <|>(z) and <j>(z)are 

denoted as its first and second derivatives and integrals, respectively, the state of stress can be determined 

by

R e<f>(z) + Im(|>'(z)
OX |

cr,, = Re<|>(z)-x2 Im<|>’(z) (2.7)
OX ■»

<32<D

The displacements are given by

ct12 = — ——  = - x 2Re<j>'(z)
u X | u X i

2pu, = ^-(k -  l)Re<(>(z) — x 2 lm<j>(z) 

2pu2 = -j(k  + 1) Im ij)(z) -  x2 Re(f>(z)
(2.8)

For three particular boundary conditions, specific stress functions were constructed respectively and the 

stress field near crack tip then is determined by Eq. (2.7).

A. Crack under Tension [64]

Consider an infinite plate containing a crack of length 2a subjected to a remote tensile stress, ct, as shown 

in Fig. 2.2. From the analysis of the boundary conditions, the complex stress function can be represented 

by [64]

« z ) — (2.9)
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To obtain the stress state around the crack tip, it is more convenient to substitute the variable q=z-a and

r| = re10 into Eq. (2.9) and make the first order approximation. Then the stress function can now be 

rewritten as

A oVa cjifa _ie/2 -e
/2r -\/2r

From stress function Eq. (2.9), the stress field near crack tip can be obtained by

(2- 10)

n r  e 6 3
cr,, = ct,I— cos—(1 - s i n —sin—0)+-- 

V2r 2 2 2

• 9 -
= ct,/— cos— (1 + sin—sin—0)+-" 

-- y 2r 2 2 2

0 0 30
CTu  = CTi/—  sin—cos—cos— +-••

and the near tip displacement field is given by

O’ /ar 0 I . i 0
u, = ~ y — c o s - [ - ( i c - l )  + sm - ]

ct far . 0 1 , 0u, = — . — sin—[—(k + 1) -cos — 
- |i V ?

(2. 11)

(2.12)
Figure 2.2 An Infinite Plate 
Containing a Crack o f Length 
2a Subjected to a Remote 
Tensile Stress a.

B. Crack under Shear [64]

For the cracked plate subjected to a remote shear stress o 21 = t  as shown in Fig. 2.3, the stress function is 

expressed by

<D„ = - x 2Re<f>n(z) 

where <J>n (z) is a function of z, which is prc 

satisfy all the given boundary conditions. T1 

then expressed by the stress function,

o 11 = 2 Im <|>n (z) + x2 Re<f>n (z) 
o  = - x 2Re<|>[;(z) 

o 2i = 0 , 2  =  R ^ n f z j - X j  Im<t>!i(z)

(2.13a) 

operly chosen to 

he stress field is

(2.13b)
Figure 2.3 An Infinite Plate 
Containing a Crack of Length 2a 
Subjected to a Remote Shear Stress t
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Through the analysis o f boundary conditions, the following specific stress function is obtained

T
4>h =■

•y/(l-a2 / z2)

Similar to the tensile situation, the stress field is given by

fa~ . 0 
0,1 X\ 2 r Sm2

0 30i(2 + cos—cos— ) 
2 2

The displacement field is given by

a . 0 0 30
Or, = t J — sin—cos —cos —

“  V 2r 2 2 2

fa~  0 „  . 0 . 30,
CTI2 c o s - d - s i n - s i n — )

t  far  . 0 1 - , 0
u> =— ,/— sin—[— (k + I) + cos —]

p V 2 2 2 2

t ZaT 0 1 i 0
u2 = -  —  c o s - [ - ( l - K ) - s in - - ]

P V 2 ■?

(2.14a)

(2.14b)

(2.14c)

C. Crack under Antiplane Shear [64]

Another possible shear model is remote shear stress 

a  i3 = t  applied along the direction perpendicular to 

the plate plane as illustrated in Fig. 2.4. In this 

situation, displacement occurs only in 

the x3 direction. Therefore, we have

<3ui
<7X,

d\i - 23
d x1 P

The equilibrium equation Eq. (2.1a) becomes 

dcji
(2.15b)

<3x, d x2

Introducing Eq. (2.15a) into Eq. (2.15b), we obtain.

-~2 n2
£7 U ,  5  U ,

= V2u, =0 (2.15c)

By choosing the following displacement function

u 3 = — Imi|>rn(z) 
P

(2.15d)

J /

A

\J

Figure 2.4 An Infinite Plate Containing 
a Crack of Length 2a Subjected to a 
Remote Shear Stress x along x3 .
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the stress components are expressed by

ct,3 = Im<|>[n (z), 023 = R e(t>(u(z) (2 .15e)

The following stress function is obtained by satisfying these boundary conditions.

<j>;n (z) = —= T (2.150
V d - a 2 / z 2)

From this stress function, the stress field near crack tip can be obtained by

n r . e
= - t , —  sin — 

V2r 2
«  0 3 e* (2 + cos—cos— )

2 2

a . 9 0 30
CT"  V2r  s m Y c o s T c o s ~  (2 -I5 g )

IT  0., . 0 . 30,o p = tJ — cos—( 1 - s m —sin— )
V 2 r 2 2 2

The displacement field is given by

t  ar . 0 I i 0 .
u, = —,/— sin—[—( k + 1) + cos —1 

p V 2 2 2 2

t  /ar" 0 l . i 0 .U-, = — J — cos—[— ( l- ic ) - s in  —J 
‘ u V 2 2 2 2

By examining the stress o , , in Eq. (2.11), we may write,

r ——- Vita' K,
ii(x=oi - o v a / 2r - o -j= =  -  -j==r

(2.15h)

(2.16)

where K., = oVita is defined as Stress Intensity Factor for opening mode. Introducing K., into Eq. (2.11), 

we can see that the local stress field around crack tip in a cracked body can be characterized in terms o f a 

single parameter, K , , that is related to both the nominal stress (o) level in the body and the size of the 

crack (a) presented. For shear and tearing modes, the stress intensity factors are defined by K „ and K m , 

respectively.

2.3.2 Fracture Strength

The theoretical fracture strength o f a solid is of the order of E/10, but the strength of crystals and glass 

found in practice tend to be lower than this value by some two orders of magnitude [64], By using a 

thermodynamic approach, Griffith[65] provided an energy criterion of fracture for an infinite plate with a
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central crack subjected to an uniformly distributed stress. It is defined as strain energy release rate and is 

given by

„  oU CT27ta . .G = —  =  for plane stress (2.17)
da E

The relationship between stress intensity factor and strain energy release rate is [65]

G = ^ f -  ’ (2I8)

2.4 ELASTIC-PLASTIC FRACTURE MECHANICS

Many engineering materials and structures often experience large deformations and display ductile 

behavior. Thus, for many applications, the linear elastic fracture analysis used to calculate fracture 

parameters such as K IC is invalidated by the formation of a large-scale plastic zone and by an elastic- 

plastic behavior. Linear-elastic fracture mechanics therefore, is extended to elastic-plastic fracture 

mechanics by introducing the concepts of R curve, J-integral, and crack tip opening displacement(CTOD).

In 1961, Wells [66] proposed that the fracture behavior in the vicinity of a sharp crack could be 

characterized by the opening of the notch faces, namely, the crack tip opening displacement (CTOD). The 

measurements of CTOD can be made even when there is considerable plastic flow ahead o f a crack for 

elastic-plastic or fully plastic behavior. Several crack tip plastic models were proposed to include plastic 

zone size effect around crack tip and relate the CTOD to the applied stress and crack length.

2.4.1 Irwin’s Plastic Zone Correction Model [67]

Considering a remotely loaded sheet in a state of plane stress, the distribution of csy along y=O(0=O) can 

be described by the stress-field equation (Eq. 2.11) from elastic fracture mechanics and is plotted in Fig. 

2.5. As r close to a, elastic stress, o y , approaches infinite. In practice, when applied stress reaches yield

stress, a 0, the material undergoes plastic deformation. Thus, high level elastic stress will re-distribute 

around the crack tip such that no point excesses yield stress. As a result, the stress curve must be shifted, so 

that equilibrium is maintained. Considering the equilibrium condition:

f  —K , / i dr = rPq 0 <219>* (27tr) P
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Figure 2.5 (a) Elastic Stress Distribution around
Crack Tip by Using

„  Ki 8 , ■ 0 • 39,n  =  L— cos—(I - s i n — sin— )

a  = y

(2itr)l/2 
K

(2*r)
, 0 . . 0 . 30i— cos—(1 + sin—sin— ) >l/2 2 2 2

(b) Irwin’s Plastic Zone Model by Considering 
Stress redistribution around Crack Tip.

By integration, we have

1 , K
rP = - ( — )- tt cr„

Assuming the plastic zone around crack tip is a circular with radius k = rp / 2 , then

2ti a0

Irwin [67] proposed that for large plastic deformation, crack length should be modified as a v. 

introducing a y into the crack opening equation described in [68]

- CT / 2 2vl/2
V=T  ‘ x >

crack opening displacement is given at x=a

4a , ,1/25(CTOD) = ——(2aX) 
E

Substituting Eq. (2.21) into Eq. (2.23), we have,

4 K.25(CTOD) = —-----
k Ea„
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2.4.2 Dugdale’s Strip-Yield Model [69] 

Consider a through-thickness 

crack in an infinite plate that is 

subjected to a tensile stress 

normal to the plane of the crack as 

shown in Fig. 2.6. The crack is 

assumed to have a length of 

2(a + p ) , where p is the extent of 

the plastic zone that is subjected 

to yield-stress levels that tend to 

close the crack. Dugdale [69] 

proposed that the plastic zone 

size. p. is fixed by the 

requirement that the stress 

singularity should disappear, thus
Figure 2.6 Dugdale Model for an Infinite Cracked Plate.

the superposition of stress intensity due to remotely applied stress, Kc , and that due to plastic closure, 

K„o, should be zero, giving,

Ka + K 0 o =o (2.25)

By using physical crack length a = (a0 + p ) . we have,

Ka =cr[7t(a + p]l/2 (2.26)

By using weight function technique [68], we have

K = - 2cr0 (——^-)1' 2 arccos(— —) 
7t a + p

Substituting Eq. (2.26) and (2.27) into Eq. (2.25), we obtain

a 7tCT= cos(—— )
a + p 2ct„

(2.27)

(2.28)

i r  . l  713 / CT ^  71 / K  . iIf a  «  cr0 , then p = — (— )~ = - ( — )-
8 CTn 8 C7„

The crack tip opening displacement is,

5(CTOD) = 8- ^ - In s e c ( -— ) 
rtE 2 o 0

(2.29)
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where cr0—  yield stress of the material 

a —  '/2 physical crack length 

<t —  nominal stress

E —  modulus of elasticity of the material.

By expanding lnsec(— — ), Eq. (2.29) becomes 
2 cr„

5(CTOD) = 8 CTCT"
JiE

For nominal stress values less than 3 / 4ctq , a reasonable approximation for 5(CTOD) is

(2.30)

5(CTOD) = H 3 .  (2.3 d
Ect„

2.4.3 J-integral

Mathematical theory encounters considerable difficulties in determining concentrated stress-strain fields 

near notches or cracks for elastic-plastic materials. As described in the previous section and Ref [70], 

some simple models were proposed to solve the elastic-plastic problems of opening mode crack. 

However, the path-independent integral J approach provides an effective tool for some cases.

The J-integral was first identified by Rice [71]. For 

a two-dimensional deformation body of linear or 

nonlinear (elastic-plastic behavior defined by 

deformation theory of plasticity) elastic material 

with a notch and free of body force as shown in Fig.

2.7, the J-integral is defined by Rice [71] in the 

form

J = f ( W d y - T —  dS) (2.32)
■r 8x

where T is an arbitrary contour surrounding the 

crack tip, the integral being evaluated in a 

counterclockwise manner from the lower flat notch surface and continuing along the path T to the upper 

flat surface. W is defined as the strain-energy density i. e.

W = W (x,y)=W (e)=  £0 ^

Figure 2.7 Crack Tip Coordinate System and typical Line 
Integral Contour.

J= [wdy-T(^-)dST OX
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T  is the traction vector defined according to the outward normal f ,  T, = 0 ,-n ,, u is the displacement 

vector at which T is applied. dS is variation of arc length along r .

J-integral bypasses the detailed solution of boundary-value problems that are usually very difficulty to 

solve mathematically and characterizes the locally concentrated stress-strain field in an average sense. 

For linear or nonlinear elastic materials, J-integral was proven to be path independent, which makes its

evaluation go sufficiently far from the crack tip region and be directly carried out.

An alternative definition was also given 

by Rice [72]. The alternative definition 

considers the variation of potential energy 

per unit thickness with respect to notch 

size. Considering two bodies of linear or 

nonlinear elastic material each with a 

notch as shown in Fig. 2.8a and 2.8b.

The notched bodies differ in size, 

otherwise they are identical in mechanical 

and geometrical aspects. Assuming

surface traction, Tj°, applied on ST and 

displacement u, imposed on Su . Let 

AS denote the newly created traction free surface and AV denote the corresponding volume. If cr? , £°

denotes the deformation state for body A, the potential energy is,

P° = J w (E° n)dV - j^T °u°dS  (2.33)

For body B, the state of deformation changes too? + Acri r E° + Ae^ . Defining potential energy increase 

as AP, the potential energy at the new state of deformation is

P° +AP = W(E°mn + AEmn )dV - j^T j°(u° + AUj )dS (2.34)

Considering the boundary conditions,

AT; =0 on S T, AUj = 0 on S u and Tj° + ATj = o on AS. we have

^ T j°AuidS= £  ^(cr?+A cyij)AEjjdV.
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Figure 2.8 (a) and (b) Comparison of Two Notched Elastic 
Bodies o f Identical Shape Composition, and 
Loading, but the Notches o f The Two Bodies.
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The potential energy decrease can be expressed as [72],

_AP= L  W(E- )dV+ J L v {(CTS +ACTii)A£'i ~ [W(e™ + Aemn) - W ( e ° n)]}dV

= L  W(E",n )dV + JL v {f  " +* ~  K  — CTij)dejjydV } (2.35)

Assuming the deformation satisfies stability deride,; > 0. the strain integral of Eq. (2.35) over a straight 

line path in stress space leads to

0 < | (o'] + Affjj -  a,, )de^ < ACTij As^
"'•ran

By using Eq. (2.35), we have the inequalities,

(2.36)

0 < ( - A P ) - j [ v W (e°n )dV< J^ATjAUjdS (2.37)
a x,

Suppose the notch size difference is infinitesimal, both 

ATj =(Ac7jj)nj and Au( are of first-order quantities. Since

the integral over AV is first-order, the upper bound in Eq.

(2.37) is second-order and tends to zero when notch size has

infinitesimal change. Thus, the potential energy decrease is

-d P =  £ v W (e l)d V  (2.38)

Consider a two-dimensional deformation body with a flat- 

surfaced notch as shown in Fig. 2.9. The notch has surfaces 

parallel to the x, direction and smooth arc T, around the tip.

Denoting the potential energy decrease per unit thickness in 

the xs direction as AP and notch difference as dl, the rate of 

decrease of potential energy per unit thickness with respect to notch size is

-d P /d l=  £ w (E mn)dx2

Considering J-integral

J = f [Wdx-, - T — dS]
‘ 3x,

Figure 2.9 Flat Surface Notch in Two
dimensional Deformation Filed. F( 
Denotes Curved Notch Root; T Denotes 
any Curve Surranding the Root.

(2.39)

(2.40)
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integrated along traction free notch surface r t , we have

J ~ d%, (2.41)

For linear or nonlinear elastic materials, J-integral is path independent, and then Eq. (2.41) is true when 

it is computed along any arbitrary path around the notch.

This J-integral is defined by externally measurable variables such as load and displacement and makes 

direct measurement of J-integral through experiment possible.

The third method of defining J is the pure-bend-area method, which is widely used and described in 

ASTM Standard [73]. This standard is used to determine J IC the J value at the initiation of crack 

growth. For bend or edge-notched specimens, the load-line displacement must be measured. The total 

area under the load load-line displacement curve should be measured as illustrated in Fig. 2.10. For each 

of several tests to different Aa, determine J as follows

j = —  f(^_ )
Bb W

where A —  area under load load-point displacement record 

B —  specimen thickness 

b —  initial uncracked ligament, W-a 

W —  specimen width

aQ—  original crack length, including fatigue crack.

(2.42)

For the three-point bend specimen

f ( — ) =  2.0 W
For the compact specimen

f ( — ) =  22 
W

Figure 2.10 Illustration o f  W ork  to  a G iven 
Displacement.
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2.4.4 R curve

For ductile materials, it is observed that stable crack growth accompanied by an increasing or constant 

load level, which indicates that material resistance to fracture must be developed in a decreasing rate with 

crack growth and load-bearing area reduced. This behavior is characterized by the Incurve. The R curve 

describes the variation in material resistance to fracture, J R , with crack length, a . It provides a record 

of the toughness development as a crack is driving stablely under the increasing crack driving parameter.

Since the introduction of J-integral [71] parameter to describe singularity strain field around crack tip, it 

has become common practice to use J R curve to characterize material resistance to fracture and crack 

growth behavior under monotonically increasing deformation. The multi-specimen method was first 

developed to determine J-integral and J ,c . By direct measurement on the fracture surface of a series of 

separate specimens, the amount of crack growth can be constructed based on these J -  Aa data. Rice et al 

[71] research makes it possible to use a single load-displacement curve to determine the R_curve. An 

unloading compliance method was developed to measure the crack length change in a single load- 

displacement curve. A tentative test procedure for determining material resistance curve was proposed 

[74]. Based on Paris et al’s work [75], stability of J-controlled crack growth was discussed by Hutchinson 

and Paris [68] from theoretical and analytical aspects. Formulations were presented to estimate the 

stability for a given specimen material and configuration. This work was extended to other specimen 

configurations by Ernst et al. [76] based on an alternative J-integral definition [72] and dimensional 

analysis of relation between load, crack length, and plastic displacement. The general formulation to 

calculate J, dJ, and da were derived and material tearing stability was estimated. Although the 

formulation was exact, these methods required a significant amount of numerical work to evaluate the 

load-displacement curve. A simple method to determine R curve was developed by Ernst et al. [77] by 

considering the variable separability. It was proven in [77] that load is separable in multiplication of 

functions of variable a/w (crack length over specimen width) and v p, (plastic displacement) that is

F(vpi / W, a /  W)  = g ( - ^ ) H ( ^ )  (2.43)

and thus the load P can be expressed as

P = L _ p  = — g(— )H (^!-) (2.44)W W5 W W
By using the third definition, J-integral can be further expressed as

J = -g- JPdv (2.45)
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where

b=W -a. W is specimen width and a is crack length 

w  g

By introducing load P into Eq. (2.43) and considering crack growth and the load displacement curve, 

Ernst et al. [77] derived the following formulation to calculate J-integral

n' = d q /d (a /  W)

where the subscript i (or i + 1) indicates functions evaluated at that step. The term A, j+I refers to the area 

enclosed by the actual test record curve and lines of constant displacement Vj and vj+, .

Standard tests for developing Rcurves rely on automatic methods for measuring crack tip advance 

among which the elastic unloading compliance method is most frequently used. The automatic crack 

measuring methods require sophisticated equipment and techniques; sometimes a great deal o f effort is 

required to achieve good results.

Lands and Herrera[78] recently proposed a method for directly determining an R curve from a load 

versus displacement record. This method does not require automatic crack length measuring equipment, 

but is based on the principle of normalization of deformation properties of a material for which load, 

displacement, and crack length can be functionally related. If an appropriate functional form is assumed, 

the crack length can be determined directly from the corresponding load and displacement values.

If load separation parameter, Sy, is a constant over the whole domain of plastic displacement, v pl, then 

the load can be expressed in separable form of crack length, a, and plastic displacement, v pi , i. e.

where W is defined as before. The normalized load, PN , that is the load P normalized by crack length 

function, is a function of plastic displacement only

(2.46)

P = G(a / W)H(v p| / W) (2.47)

(2.48)
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The function G (a/W) is only dependent on normalized crack length, a/W, and can be determined from

the J calibration for each standard specimen geometry [79]. The total displacement v is the summation of

elastic component ve, and plastic component v pl, i. e.

v = ve, + v pl (2.49)

where

vel = PC(a / W) (2.50)

in which C(a/W) is a compliance function. If H(vpl / W) is known, crack length can be determined

from Eq. (2.48), (2.49), and (2.50), the values of J can be determined by using the formula in ASTM E 

1152-87 and the entire R curve can be determined.

Function of H(v p, / W) for a given material can be determined by assuming a proper function form with

unknown constants that can be determined by calibration with experimental data. A simple power law 

function formed with two constants is assumed in [79]. These two constants are determined by the 

experimental data at initial crack length and at final crack length. The resulting R curve agrees well with 

materials with limited plastic deformation. However, materials that exhibit extensive plastic deformation, 

do not follow a power law throughout the entire range of load vs. displacement history. In studying most 

test records, it was found that the deformation seemed to have a combined power law and straight line 

character [80] that could be best fit by an equation suggested by Orange [81]. It has the form

L + M(v j/W) v
PM =H(vnI/W) = ----------- 1-------( -* - )  • (2.51)
N P> N + (vp,/W) W

where L, M, and N are the unknown constants and are to determined by the experimental data. This 

function has a power law character when vp, is of the order of N. For vp| »  N , it follows a straight

line. Three calibration points have been chosen to determine the unknown constants. The first point 

corresponds to the point of final load displacement and crack length. The second point consists of several 

points chosen between the first deviation from linearly and maximum load to which the forced blunting 

was added. The third point is taken as a series of points at one third of the final plastic displacement used 

to optimize the fit of Eq. (2.51).

The normalized load-displacement curve can be obtained after L, M, and N are determined. Crack length 

then can be calculated from Eq. (2.48), (2.49), and (2.50) and the corresponding J value can be evaluated 

from formula in [73] ASTM E 1152-87 and the entire J-R curve can be established.
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2-5 FATIGUE CRACK GROWTH LAWS

Fatigue is considered as a process o f cumulative damage or progressive cracking under variable repeated or 

cyclic loads or in the presence o f an aggressive environment. As a highly complex phenomenon which 

involves a localized progressive microstructure change and stress concentration within the material fatigue 

crack propagation can be characterized in three stages: crack initiation, stable crack growth, and unstable 

crack growth and fracture. Under cyclic elastic stress, cracks in the material will initiate from impurity, 

flaws and microstructure defects by cumulating dislocations of substructure and slip deformation. Further 

repeated load cycling will eventually cause the cracks to grow and coalesce into an open area, which is 

characterized by stable crack growth. Within this stage, the crack growth is relatively stable and is 

governed by the rate of subcritical crack propagation, which can be investigated by determining the crack 

growth at every cycle of load application. The detailed description of this stable stage crack growth will be 

given in the following section.

It has been observed that a structure component with initial crack length, 2a, under repeated application of 

a stress level, ct, can experience a large number of stress cycles before fatigue failure occurs. Early 

investigation [82] assumed that fatigue crack growth may be directly related to the number of load

repetitions and the applied stress level and can be expressed in following general form:

~ a , C T nCm (2.52)
dN

Shanley [83] proposed the following crack growth law,

( 2 - 5 3 )

where a, and n are determined empirically and a a is the cyclic stress level(crmax - a mm) . It was 

observed that n can vary over a wide range of values.

By assuming a rigid plastic work-hardening region existing ahead of a crack tip in an infinite sheet with 

uniform stress acting on the boundary and perpendicular to the crack plane and the plastic zone at crack tip

surrounded by elastic stress field, Head[84] developed the following fatigue model,

da CActV' 2 , ,
 = ---------------jrr (2-54)
dN (Oy-AcORj,7-

where a is defined as half crack length. Act denotes the stress amplitude (CTmax -CTmin) , C(constant) and 

Cy (yield stress) are functions of mechanical characteristics for a given material and Rp characterizes the
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size of the plastic zone around the crack tip. The value of Rp was assumed to be constant in the process 

o f crack growth.

From dimensional analysis. Frost and Dugdale [85] suggested that the rate of crack growth should be 

directly proportional to the crack length and proposed the following fatigue crack growth law,

da
—— = aB(cr) (2.55a)
dN

They found that the coefficient function B(cr) in Eq.(2.55a) determined from experimental data is 

proportional to the cube of the cyclic stress level. Crack growth law then can be rewritten as

da i
—  = C(o)3a (2.55b) 
dN

Liu [86, 87] studied the same case by assuming that the material is ideal elastic-plastic with no work 

hardening. Using hysteresis energy absorption as a criterion for crack growth, he obtained the functional 

relationship for fatigue crack growth,

da i
—  = C(<5)-a (2.56)
dN

Based on the analysis of static strength of cracked plates and using an elastic stress concentration factor 

Kn , McEvily and Illg [88] derived the following functional relationship to describe fatigue crack growth 

behavior,

da
—  = F ( K „ , a net) (2.57)

where K„ = 1 -t-2(a / p ,) 1/2 for an infinite plate with a elliptical crack of length 2a and end radius p , . 

<jne, is defined as the net uniform stress along crack surface. By introducing the stress concentration factor 

Kn , which characterizes local stress intensity around crack tip, into Eq. (2.57), the crack growth law will 

not be limited to describe fatigue crack growth behavior for a particular configuration as was the case with 

the other proposed laws.

From the critical analysis of early extensive experimental observations and those proposed fatigue crack 

growth laws which were obtained from various materials, Paris and Erdogan [82] established a simple 

functional relationship relating crack growth rate da/dN with the instantaneous value of variation of 

stress intensity factor, AK,

-^ - = AAKm (2.58)
dN
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where A and m are fitting constants dependent on materials used in the test. This law'is a direct application 

of linear elastic fracture mechanics to the analysis of fatigue crack growth. It is applicable to a wide range 

of materials, such as metal and steel, and various specimen configurations [82],

This relation, however, has been criticized by Forman [89] on the basis that it does not reflect the 

instability of crack growth when stress level is high and maximum stress intensity factor. Kmax , at crack 

tip reaches material toughness K IC. Therefore, an empirical model was proposed to include the fatigue 

crack growth beyond stable stage, which has the following form,

da CAK"
dN mK.r  -  AK,

(2.59)

u • - , ,  AK,where, n is material constant and m -------
^  max

Considering load ratio, R, has great influence on crack growth, Pearson [90] presented the following 

fatigue equation that included the load ratio effects, the critical stress intensity factor^ and the instability of 

crack growth by

da A,(AK)n
dN (1-R )KC -AK

(2.60a)

K
where. A, is a constant and R = - min■ . When Kmax approaches Kc (critical stress intensity factor for

Kmax

plane stress condition), Eq. (2.60a) is modified as,

da A ,K c (AK)n
dN ( l - R ) K c -(A K)n

(2.60b)

Hudson [91] conducted crack-propagation tests on two aluminum alloys (7075-T6 and 2024-T3) over a 

wide range of stress levels and stress ratio and compared the Eq. (2.58) and (2.59) to the data. Forman's 

equation produced an excellent fit to both the 7075-T6 and 2024-T3 data. However, Erdogan and Paris’ 

equation also showed good correlation with the test data except at higher growth rates.

Based on fatigue crack closure experiments under constant amplitude loading on 2024-T3 aluminum alloy, 

Elber [92] proposed the following functional relationship for the crack growth rate,

~ C A K eV  (2.61)
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where AKefr, the effective variation of stress intensity factor, is calculated from the difference between 

the maximum applied stress, Smax and the crack opening stress, SQ . Thus, crack growth should occur 

only during that portion of the loading cycle when the crack tip was open. The expression for the effective 

variation of stress intensity factor is given by,

AKefr = (Smax - S 0)V£T = U0AK (2.62)

where U0 is a functional relationship which corrects the variation o f elastic stress intensity factor.

Although the variation of stress intensity parameter, AK. is widely used for correlation of fatigue crack 

growth rate, important limitations on the use of linear elastic fracture mechanics arise when materials are 

capable of large plastic deformation, such as large loads and high temperature, which induced extensive 

crack tip plasticity. More general criterion, which will take into account the influence of extensive 

plasticity on fatigue crack growth rates, has to be developed. With the advancement of elastic-plastic 

fracture mechanics, J-integral is considered to be a valid parameter to characterize crack growth behavior 

around crack tip in elastic-plastic materials. In spite of the controversy of the applicability of the J-integral 

in the situation that involves unloading, Dowling and Begley [93] first applied the J-integral concept to 

interpret their fatigue test results of elastic-plastic material under general yield conditions. The fatigue 

crack growth rate is expressed in the variation of J-integral instead o f stress intensity factor, AK, i.e.

da n
—  = A(AJ)n (2.63)
dN

The applicability of the J-integral methodology to characterize fatigue crack growth behavior in the high 

plastic deformation range was also investigated by El. Haddad et al. [94] through fatigue tests on ASTM 

A516 grade 70 steel. The specimen is subjected to high levels o f cyclic load. Under this loading condition, 

most test results exceeded the plasticity limit required to keep a specimen predominantly elastic as defined 

in the ASTM Standard Test for Constant Load Amplitude Fatigue Crack Growth Rates (E647-78T). Cyclic 

J values were determined such that plasticity and crack closure effects are accounted for. The fatigue crack 

growth rate is correlated by both cyclic stress intensity factor, AK, and cyclic J-integral value, AJ that may

be converted by K = VEAJ . It was concluded that the experimental data are better represented by fatigue 

crack growth law expressed by AJ rather than that expressed by AK.

The conventional J-integral methodology to characterize fatigue crack growth problem is also challenged 

by the finding o f significant acceleration of crack growth under a high level of cyclic stress with a positive 

mean stress. From experiments, Tanaka [95] observed that under load-controlled cycling with a  tensile
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mean stress, the hysteresis loop of load against displacement tended to shift horizontally and the extension 

deformation, or the ratchets deformation, was monotonically accumulated as a fatigue crack grows. During 

high stress level cycling, fatigue crack growth rates deviate from the steady state crack growth, which is 

del
defined by —— = AAKm . He proposed to use crack opening displacement to describe accelerated crack 

dN

growth due to ratcheting.

The possibility of numerical simulation of fatigue crack growth was also investigated. The finding of the 

crack closure phenomenon by Elber [92] has great impact on the study of fatigue crack growth. An 

extensive effort was expended in an attempt to measure, characterize, and predict crack closure behavior 

and its effect on fatigue crack growth rates. The majority of this research has been experimental, as 

investigators have attempted to observe directly and quantify crack opening stresses under various loading 

and boundary conditions. However, the wide range of measurement techniques and measurement locations 

employed, have lead to a wide range of results and no clear consensus has yet emerged as to the standard 

experimental procedure. Another limitation of experimental approach is that critical behavior, such as 

displacement histories at min-section in a thick specimen, may be essentially inaccessible to any 

conventional measuring scheme.

An alternative approach to the study of fatigue crack closure is analytical. Analytical models of crack 

closure are based on a concept like the Dugdale model [69] or strip-yield model, but modification was 

made to leave plastically deformed material in the wake o f the advancing crack. Newman [96], Budansky 

and Hutchinson [97], and Fiihring and Seeger [98, 99] studied only the crack closure behavior, while Dill 

and Saff [100] and Hardrath et al. [101] used the crack opening stresses from the models to predict crack 

growth under spectrum loading. However, these simple models generally require a number of crucial 

assumptions as well as simplistic versions of material models, the accuracy is not easily established.

The third approach, which involves the step-by-step elastic-plastic finite element analysis of a growing 

fatigue crack, is numerical. Although the cost of actually computing results is relatively high, the 

adaptation of a basic model to different materials, load histories, or geometry is relatively quick and cheap. 

Realistic constitutive models and complex crack configurations are easily accommodated. Therefore, 

numerical approach appears to be a promising investigation tool for the study of crack closure and its 

effects on fatigue crack growth rate.
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The Finite element method was introduced into fatigue analysis by Miyamoto [102] to simulate crack 

closing, crack opening, and crack growth behavior under monotonic and cyclic loading. They investigated 

the changes in the stress and strain distributions and crack opening displacements upon releasing of the 

crack tip node, and they have observed crack closing phenomenon during unloading in a tension-to-tension 

cycles.

A finite element model was presented by Ohji, Ogura and Chkubo [103, 104] to study the fatigue crack 

closure phenomenon by taking into account crack extension and load interaction effects. This finite 

element model was developed so that crack extension was modeled by releasing the crack tip node at a 

stress level at which a reaction force of a crack tip node came up to zero for loading cycle. The amount of 

crack growth was determined by the length of crack tip elements. Opening and closing of the crack 

surfaces were detected at every loading increment and proper boundary conditions were selected for all the 

nodes along the crack. Crack surface opening and closing behavior were examined under both constant 

amplitude loading and variable amplitude loading. The effective range of the stress intensity

factor, AKefT is calculated by the equation AKefr = F(a / b)Acre(r y/na , in which a is a current crack length, 

F(a/b) is a correction factor of the stress intensity factor for finite width that was estimated on the basis of 

the crack closure stress level, Aareff obtained from the analysis. It was concluded that the retardation and 

acceleration phenomena under variable amplitude loading are closely related with the crack closure 

behavior.

A comprehensive nonlinear finite element model was presented by Newman [96] and later was extended 

with crack growth criterion to study crack growth under monotonic and cyclic loading [105, 106]. Crack 

growth criterion was based on critical crack tip strain, e^ , , whenever it equaled to or exceeded critical

strain ect , the crack tip node was broken and the crack advanced to the next node. The restraining force at 

the crack tip node was then released and redistributed. If the nodal average strain on the new crack tip was 

still greater than ect, the crack continued to grow. If the strain was less than £ „ , the applied load was 

increased until the new crack tip strain reached the critical value and the crack moved forward again. Crack 

growth under cyclic load was also studied.

An analytical fatigue crack closure model was developed and utilized in conjunction with a crack growth 

analysis program [107] to predict crack growth and fatigue life under constant amplitude and aircraft
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spectrum loading. The model was based on the Dugdale model [69], but modified to leave plastically 

deformed material in the wake of the advancing crack tip was given by

—  = C AKC> ‘ - ( AKo ^ K efr)2
dN efr l - ( K max/ C 5)2

AK0 = C 3( I - C 4 ^ 2 - )
m̂ax

where, K mxt =S maxF ^

AK eff=(Smax- S 0)F V ^

and S0 denotes crack opening stress, Smax the maximum stress, F finite-width correction function and Smin 

the minimum stress. The constants C, to C5 were determined to best-fit experimental data for constant- 

amplitude loading.

With regard to the difference of the crack-opening loads between plane strain and plane stress, a three

dimensional elastic-plastic finite element model was developed [108] using eight-node isoparametric, 

hexahedron elements. Crack-opening stress levels on the exterior and interior planes o f the specimen were 

found to agree reasonably well with plane stress and plane strain analysis reported on the literature.

A more efficient finite element model was proposed by Nakagaki and Atluri [109], This model 

incorporated special crack tip elements that takes into account stress and strain singularity near crack tip. 

The special hybrid elements were arranged around the crack tip with circular sector shape, which allowed 

crack growth in any arbitrary direction and an arbitrary amount. Crack growth criterion was proposed as,

= p ( s max - s 0 ) + s 0

where p is a constant obtained by calibration such that the calculated S0 correlated with that observed in 

experimental study. The effective stress intensity factor AKcfr was defined as a function of the current 

crack length, a

AKefr = C , A/7t(a0 +NAa)(Smax - S 0) 

where C , is the finite element size correction factor and N is the number of load cycles. Fatigue crack 

growth rate was calculated by

l r C(AK- )n
where AKefr is calculated from the finite element analysis.
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Finite element model was also used to study small crack growth by Newman [110]. The 'plasticity-induced' 

crack closure model [107] in conjunction with crack opening stress equation [111] were used to predict 

fatigue life. The effective stress-intensity factor variation was calculated by

AKeff=(Smi„ - S 0)F ^  

where Fj defined as boundary correction factor. Crack opening stress equation is given by [111],

S0 / S max = A 0 + A,R + A2R2 + A 3R 3 for R > 0

and

S0 / S max= A 0 + A,R for -1 < R < 0

where R = Smjn / Smax . When S0 > Smjn, the coefficients were

A 0 = (0.825- 0 J 4 a  +0.05a2)[cos(7tSmax /2ct0)]1/2 ’
A, = (0.415-0.071a )Smax/ a 0 

A 2 = I - A 0 - A , - A j  
A 3 = 2A„ + A| - I

The correlation between fatigue crack growth rate and effective stress intensity factor variation AKefr can 

be obtained by finding an a  value that will fit over wide range of crack growth rate data.

A more comprehensive review and critical study of finite element model to simulate fatigue crack closure 

and growth behavior was conducted by McClung and Sehilaglu [112,113]. This study was based on Lalor 

and Sehitoglu’s previous investigation [114-116]. In regard to the accuracy and sensitivity of the finite 

element model, three issues were addressed in the study: mesh refinement and element type, initial defect 

size, stabilization behavior, and the crack tip node release scheme.

Criteria for sufficient mesh refinement was suggested based on the ratio of the element size to the forward 

crack tip plastic zone size, *

Rp / a  = (Smax/ a 0)2

The crack advance scheme of releasing crack tip node immediately after maximum load on each cycle has 

recommended for general efficiency and consistent performance. Wide range influential factors, such as 

maximum stress, material properties, and constitutive models were examined using a two-dimensional 

elastic-plastic finite element model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

Considering that conventional elements are insufficient both in capturing a significant amount of forward 

plastic deformation of crack tip and mesh refinement to simulate actual crack growth, X. Zhang [117] 

incorporated 'quarter-node' singularity element in his finite element model to capture stress and strain 

singularity around the crack tip. Attempt to use energy release rate, G, as the crack extension criterion was 

made in the model, but failed by not recognizing that the mechanism for fatigue crack propagation may not 

be a sudden energy release but hysteric energy dissipation. The scheme of node releasing at the maximum 

load of a specified cycle that determined by

Aa
AN = ---------------

CfAKefl-)n

was adopted in the study where Aa is the size of the crack tip element, AN is the number o f cycles required 

for such an amount of crack extension. C and n are material constants obtained from the fatigue test.
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CHAPTER III

REVIEW OF SHAKEDOWN THEORY .

3.1 INTRODUCTION

The shakedown theory is considered a generalization of the theory of limit analysis. It was established and 

developed for elastic-plastic body subjected to variable repeated loads. It enriches the content of plasticity 

theory by taking into account failure mechanisms caused by plastic strain increments accumulating over 

subsequent load cycles as well as low-cycle fatigue phenomenon in the plastic analysis.

A classical limit analysis is used to determine the collapse loads and associated mechanisms of plastic 

collapse, this is called the static collapse. It is based on the idea that the external forces in the loading 

program monotonically increase proportionally each to other without recourse to a step-by-step 

investigation of their elastic-plastic behavior. However, when the body is subjected to several loads, each 

of which can vary independently between certain limits, the limit analysis may fail to give safe estimation 

of the collapse load although some critical combinations of loads within these prescribed bounds are 

considered. To the contrary, shakedown theory can provide the methodology to estimate the bounding 

values for complex repetitive loads. .

Under random and repeated loads, the response of an elastic-plastic body is very complicated. Extensive 

investigation of plasticity of materials has indicated that three basic patterns can be distinguished.

(1) Shakedown: for cyclic-independent materials, if plastic deformations stabilized within an early finite 

number of cycles and residual stress field, which corresponds to the plastic strains, may have 

developed such that the response to any further cycling is purely elastic as if the system accommodates 

itself to the loading program.

(2) Alternating plasticity: if the plastic strain increments over subsequent load cycles change in sign 

alternatively, the summation of them is equal to zero under the loading program. As a result, the total 

plastic deformation is contained within the yield zone at a certain point in the system. With load 

cycling continuing, material in the yield zone begins cracking due to energy accumulation, which 

eventually leads to low cycle fatigue failure.

(3) Incremental collapse: if the plastic strain increments are repeated in the same sign each time a critical 

load cycle that causes it is repeated, the total plastic strain will accumulate with each cycle that 

progressive deformation will develop and results in failure of the global system. _

39
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Comparing it to the step-by-step elastic-plastic analysis that is generally quite complicated, cumbersome 

and sometimes impractical, shakedown analysis shares the following advantages when application is 

concerned: (i) full description of history of loads is not necessary; (ii) essential and valuable information 

such as bounding value that is sufficient in engineering design is provided; (iii) direct and simple in 

computation method. Shakedown analysis is o f great importance in the design of the elastic-plastic system 

of civil and mechanical engineering. Applications have been found in many areas such as nuclear reactor 

parts, pressure vessel and piping, offshore platform, geotechnical foundation and pavement systems.

The shakedown concept was introduced by Gruning [29] in 1926. The two fundamental theorems for the 

shakedown of an elastic-plastic continuum were established by Bleich-Melan [30,31,118] and Koiter [32] 

and are known as the static and the kinematic shakedown theorems, respectively. Since then, great progress 

has been made in plasticity theory. The classical shakedown theorems were also extended to include 

thermaloading, dynamic loading, geometrically nonlinear effects, and creep and viscous effects. A 

comprehensive review can be found in [37].

In this chapter, shakedown concept will be introduced by a simple example. Classical shakedown theorems 

will be presented with their limitations. Extensions of the classical shakedown theorems to other areas will 

be briefly reviewed.

3.2 NOTATION OF SHAKEDOWN

In engineering practice, the loads may act randomly, independently and repetitively, varying in magnitude, 

sense and direction within given limits. Therefore, the response of the elastic-plastic body is very 

complicated. The response of the body may be completely elastic if the load intensities remain under 

certain level. If load intensities are sufficiently high, progressive plastic flow may develop in the body, its 

instantaneous load-carrying capacity will become exhausted and the body will collapse. If the load 

intensities are at certain level lower than the collapse load, the plastic deformation of the body may 

increase with load cycling. After a sufficient number of cycling, the accumulated plastic deformation 

becomes excessively large and the body becomes unserviceable. If the net plastic strain increment, within 

one cycle, is zero and the total plastic deformation contained within the yield zone, the body may also fail 

by low-cycle fatigue. The body may also shakedown if the plastic deformation stabilized within early finite 

number of cycling and response to further load cycling is purely elastic. A very simple example to 

demonstrate how the elastic-plastic body responds to a repeated loading program follows.
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A two-span continuous beam with a uniform cross-section is shown in Fig. 3.1. The material of the beam is 

characterized by plastic moment Mp and yield moment Me . Two concentrated load W, and W2 are

loaded at the center of each span and vary independently within the given limits, M „

0< W, <W0

0 < W2 < W0 

The loading program is given as follows,

I W ,= W 0, W2 = 0;

II W, = W0, W2 = W0; (3.1)

III W ,= W 0, W2 =0;

The continuous beam problem can be solved

by any conventional structure analysis

A

W|

11 B ,r

L

m
L/2

Figure 3.1 A Two-Span Beam Subjected to Cyclic 
Loading.

method and the elastic solutions at each stage are presented in Table 3.1. From the table, it can be seen that 

the beam responds elastically if the following inequality is satisfied:

^ W , L < M p

That is, the applied load varies within the following limits,

0<  W0 <4.92Mp / L.

By means of limit analysis, it is found that the beam will collapse at stage II, if the applied load W-, is 

increased monotonically from zero to W2 = WQ = 6Mp / L .

►

However, the beam behavior may be elastic even if the loads are greater than 4.92Mp / L ,  provided 

residual moment within the beam satisfies the following conditions,

—  W0L + — m < M0,
64 0 2 p

-  Mp < — — W L + —m, 
p 64 2

m < Mp
12 (3.2)

- M  <  W L + m
p 64

—  W0L < 2 M C 
64 ° '
—  W0L < 2 M C 
64 0 '

where m is internal moment corresponding to applied load.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

This is a constrained optimization problem and can be handled by any standard linear programming 

technique. Since only two variables are involved in this problem, it can be solved by simply rearranging 

these inequalities. The final results are,

m = — WL, M = — W0L192 0 p 192 0

Then the maximum shakedown load can be determined as

WQ = 5.0526Mp / L 

which corresponds to the value leading to the incremental collapse failure.

The last two inequalities in Eq. (3.2) define the limits for alternating plasticity. Thus, if W0 < 8Mp / L 

then the beam will be safe with regards to alternating plasticity.

Four bounding values corresponding to four different responses of the beam under the applied load are 

obtained from foregoing analysis. In the following, a step-by-step investigation is carried out for two 

intermediate load levels to demonstrate that the bounding values really set the boundaries by which the 

responses are different with one another under a given cyclic loading program.

The actual bending moment applied upon the beam is the sum o f the elastic and the residual moments. The 

elastic moments at each beam section are provided in Table 3.1. The residual moments at each beam 

section are calculated from following formulations [84]:

M? = - —— (0i + 20-> + 8 ,)
'  4 L ‘

R R 3 ElMp =M£   (0, + 202 + 03)
8 L

where these 0, ,02 and 03 are rotation angles at section A, B, and C, respectively and are to be determined 

at every loading stage in the step-by-step analysis.

Case 1. W0 = 5Mp / L

At stage I, the load W, is applied gradually to the level W0 while W2 = 0. A plastic hinge at section A

begins to develop when WQ =4.92M p / Land the momentMA finally reaches the plastic moment Mp .

The rotation angle at the plastic hinge and the moments at B and C are determined by the following 

equations: •
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After rotation angle 0 , is obtained from the first equation in Eq. (3.3), the moments M? and M2 can be 

determined from the second and the third equations in Eq. (3.3) and are given as follows:

0 , = - ^ ^  = 0 .0 4 1 6 6 7 ^ 1
24 El El

M{ = Mp ^

= - M p / 2

M ' = -  —  M 
3 64 p

At stage II, when the load W2 is increased up to Wp while W, = Wp, section A is experienced unloading 

but the rotation angle 0[ corresponding to residual moment field MR(x) keeps no change and no

additional plastic hinges develop during this process. The moments M , M 2 and M “ are given by

ir II 10 3EI M_L 49

'  64 p 4 24 Ei 64 p

At stage III, when the load W2 is gradually removed, section A is reloaded again to its original value 

MjUI = Mp . No further rotation at hinge A develops and no plastic hinges occur at other sections, the 

response is purely elastic. Therefore, the moments at this stage are same as stage I. *

At the end of stage III, the beam is experienced one whole loading cycle with a constant residual moment 

field,

Mr = M ^ = — - M _ ,  M ? = — —M_
64 p * 32 p

which developed at first stage. The response o f the beam for further loading cycle is purely elastic. The

responses calculated for additional load cycles and stages are listed in Table 3.2.
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Case 2. W0 =5.5Mp /L

At stage [, the rotation angle 9 j and moments M; , m ‘3 are determined by Eq.(3.3)

5M„L
9| =■

16EI
M[=Mp

mU - | mp

M^=-^Mp

Stage II, when W2 is loaded up to 5 iM 0 / L , a new plastic hinge develops at the section B. It rotates until 

M 2 = - M p. Thus the rotation angle 9" and the moments M , M " are determined from the following 

equations:

M? 5JM 0 - - — (— - ^ + 2 9 ? )  = - M 0 
'  64 0 4 L 16 El * °

M “ = M ? = — 55M0 
1 3 64 ° 8 L 16 El

(3-4)

From the first equation in Eq. (3.4), 9 2 can be determined, i.e.

Q„ = _ | 7  M5LL = _01770g M£ L ■
‘ 96 El El

Introducing 9 2 into the second equation in (3.4), we obtain Mj1 and M" as follows:

M{' = M ? = | j M 0 .
64

Stage III, when the load W2 is gradually decreased from WQ to zero, section B undergoes unloading and 

M, reloads back up to Mp . After new plastic hinge92 develops, the rotation angle 9[n has to be 

determined by

M j11 = —  5.5M0 - - — (0[n - 2  — ^ 1 )  = M0 
1 64 0 8 L 1 96 El °

gill _ 2 M0L
1 3 El
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Then the bending moments at section B and C are given by

M"1 = — —  M0 = -  —M 
‘ 128 ° 4

win 48 3= M. = —  M0
128 8

These values are the same as in stage I, but the rotation angles have increased from 0| and 0 ' to 0[u and

0 J,11, respectively. In this loading case, the plastic deformations have been accumulated with load cycling. 

As the load cycling continues, the plastic deformations will increase cycle by cycle. Finally, this will result 

in the incremental collapse to occur. The calculated results for additional cycles and stages in this loading 

case are presented in Table 3.3.

96 3
O

The plastic deformation calculated at each stage during the step-by-step analysis for load case 1 and case 2 

are shown in Fig. 3.2. From these plots we can see that plastic deformation develops during the first 

loading cycle for both case 1 and case 2. In loading case 2, plastic deformations continue to accumulate 

over subsequent loading cycles after they have been developed during the first cycle. When load cycling 

continues, excessive plastic deformations will occur until the beam fails by incremental collapse. However, 

in loading case 1, plastic deformations stabilized after the first loading cycle and the response to 

subsequent loading cycle is purely elastic, which means shakedown has occurred.

3.3 LOADING MODEL

Loads applied on an elastic-plastic body may vary randomly, independently and repetitively with time and 

change in magnitude, sense and direction. They can be described as functions of location and time. i.e.

T (x.t)and F (x, t),  which stand for tractions and body forces applied on the body, respectively. Exact 

description of the loads by functions is very complicated and difficult. However, they can be characterized 

by several loading patterns that vary within certain limits. Assuming an elastic-plastic body is subjected to 

several load-modes as shown in Fig. 3.3, where Tl is described as wind pressure, T2snow pressure, T3 

mechanical load and F1 body forces. The variations of these forces with time are assumed as in Fig. 3.4. 

Therefore these forces can be described as functions of location and time, i.e. T1 (x . t ) , T 2( x , t ) , T3(x,t)

and F1 (x, t ) . If we can use Fig. 3.3 to describe the load-modes change only with location and use Fig. 3.4 

to define every load-mode magnitude change only with time, then these load functions are separable, i.e.
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Table 3.1: Elastic Beading Moments at the Cross -Section in the Two-Span Beam

Loading Cross Sections
Program A B C

P, = P Pj = 0 13/64 PL -6/64 PL 13/64 PL

P, = P P2 = P 10/64 PL -12/64 PL 10/64 PL

Table 3.2: Elastic-Plastic Bending Moments in the Two •Span Beam
Cycle Loading Moments Rotation Deflection

Numbers Program M a M c 0A 9 n D a

1 M „ - I / 2 M , , - 1 6 / 6 4 M , , M „ L / 2 4 E I 0 M 0 I.2 / 5 1 2 !•: 1

1 II 4 9 / 6 4 M , , - 6 2  / 6 4 M 0 4 9 / 6 4 M , , ■■ 0 It

1 M 0 -1 / 2 M „ - 1 6  /  64 M H - 0 II

1 M „ - I / 2 M , , - 1 6  /  64 M „ 0 tl

2 II 49  / 6 4 M  0 - 6 2 / 6 4 M 0 49 / 64 M „ « 0 II

»
1 M„ - 1 / 2 M 0 - 1 6  /  64 M „

i
■■ 0 II

Os
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Table 3.3: Elastic-Plastic Bending Moments in the Two-Span Beam (Incremental Collapse)

Cycle Loading Moments Rotation

Numbers Program m a Mb M c 0A ® B
I M q -3 / 4M0 - 3 /8 M 0 5M 0L/I6E I 0

1 II 5 6 / 64M„ -M 0 56/ 64M„ 5M „L / 16EI - I7 M 0L /96EI

I M 0 -3 /4 M 0 -3  / 8M 0 2M nL/3EI -1 7 M 0L /96EI

I M 0 -3 /4 M 0 - 3 /8 M 0 2M 0L/3EI - I7 M 0L /96E I

2 II 5 6 /6 4 M c - M 0 5 6 /64M 0 2M 0L/3EI - I7 M 0L /48EI

I M„ -3 /  4M0 - 3 /8 M 0 49M 0L/48EI -1 7 M 0L /48E I

I M 0 -3 /4 M 0 -3  / 8M 0 49M 0L/ 48EI -I7 M „ L /4 8 E I

3 II 5 6 / 64M 0 -M 0 5 6 /6 4 M 0 49iM0L/48EI --5 IM 0L /96E I

I M 0 -3 /4 M 0 - 3 /8 M 0 11M0L/8EI -51M 0L /96E I
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Number of Load Cycles

Figure 3.2 Plastic Deformation in Shakedown Analysis of 
Two-Span Beam.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.3 A Solid Body Subjected Arbitrary Repeated Loads.

Pi (t) P:(t)

(b)

P3 M O  I

(d)

Figure 3.4 Illustration of Load Variation with Time.
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they can be expressed in the following form:

Ti(x,t) = ^ ( J s(t)'ns(x)

* s= l,2 ,. .., r (3.5)
Fi (x,t) = 2 , p s(t)F;s(x)

S

where Tjs, F‘ are surface tractions and body forces in an s_th unit load-mode, p s denote the load factors.

By defining a certain set, £2, which contains the limits of load variations, the load factors, Ps, are allowed to 

vary within these limits. According to [119], any load factor domain, Q, can be assumed convex and can be 

approximated by a finite set of linear inequalities.

r

2 ^ p sAsk< a k k= 1.2,.. ., m
S =  I

Because the load domain is convex, it can be equivalently defined by its comers, pj , P‘  p " . Thus,

any load factor in the domain, Pk e Q ,  can be represented by the linear combination of the comers of the 

domain, Q,

P s  =
k = l

For a k = 1,

Ps = Z P s k (3-6)
k=l

Introducing En. (3.6) into En.(3.5), the loads can be expressed as

Ti(x,t) = 2 j p J i r ( x )  = (3.7)
s k = l k = 1 s

^  = Z  Z p* F‘ ( x )= Z  Z p* F-S(x) s = u  r
s k = l k=l s
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3.4 BASIC RELATIONS AND ASSUMPTIONS

The basic relations that govern the response of elastic-plastic body or structures under an applied load are 

based on a small deformation assumption. These relations are the same whether they are expressed in the 

coordinates referring to the deformed or the undeformed state. The equilibrium equations of the body 

under the body forces Fj and the surface tractions T; are

Oijj + F; =0 in V
T  w  M

CT' j n i  =  i 0 n  T

where is the symmetric stress tensor, V stands for the volume of the body; VT is this part of its 

boundary on which the tractions are prescribed, n ■ defines the outward normal to VT. The remaining part 

o f the surface is denoted by Vu . Geometric compatibility for the body is imposed by

Uj = u° on Vu

here,Ejj denotes the symmetric strain tensor, Uj the displacements, u° their values on the boundary part 

Vu where displacements are imposed.

By means of virtual work principle, the equilibrium conditions(3.8) may be compressed into a single 

equation,

jyCTijEijdV= J^FjUjd V + T j U j d S  (3.10)

which holds for any stress field in equilibrium with the external loads Fj, T, , and for admissible strain 

field with respect to displacement filed Uj. The volume integrals are taken over the entire volume of the 

body and the surface integral is taken over its entire surface.

It is assumed that the actual strain of an element of the body may be written as the summation of the 

elastic strains e 'j, plastic strains (for contained plastic deformation) e ? , thermal strains and initial

strains ejj,

Eij = E'j + Eu + E?j + Eu (3.11)

The elastic stress-strain relationship is denoted by Hook’s law,

: fj =  E j j k i t r k |e?i -  Fjjki<Tid (3.12)
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where E^, is the fourth-order tensor of elastic moduli. Considering that both and e,j are symmetric 

tensors, E ^ , is of the following symmetric properties,

îjkl ^jild îjlk — ^jilk ■

With the elastic energy always positive, the quadratic form,

E jjk lCTijCTkl

must be positive unless all stresses are zero. Thus the inverse of Eq. (3.11) is unique, that is.

CTij ~  E jjid E y (3.13)

The relation between the stresses and the plastic strains are based on Drucker’s fundamental postulates, i.e.

a) for all ‘safe’ states of stress cr-*’ and all ‘allowable’ stress a-?’ , stress cŝ  on the yield surface in

which non-vanishing plastic strain rate ejj occur satisfies the following inequalities:

b) b) if cfjj are the stress rates corresponding to the plastic strain rate , then

s 0
V *J

c) yield surface is convex.

For perfectly plastic materials that cannot support stresses in excess of a certain fixed yield limit, the plastic 

strain rates are given by the relation.

For the regular yield surface. A. is a scalar defined by,

A. = 0 if f < 0  and also if f = 0 and f = ------ cr::<0
aCTjJ

A. > 0 if f  = 0 and f  = 0

For a workhardening material that an increase of the stresses beyond the yield limit is required for non

vanishing increment of the plastic strains, the plastic strain rates are given by the following formulations:

(3.14)
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eP = 0, if f< 0  and also if f  = 0, f  = ------<t;: < 0
' & Jii ,J

eP = h------ f if f  = 0 and f > 0
’ SOjj

The thermal strain is determined by thermal expansion law, e® = ay0 where 0 indicate material 

temperature, ay represents the thermal expansion tensor of the material.

3.5 CLASSICAL SHAKEDOWN THEORY

3.5.1 Melan’s Theorem (static shakedown theorem)

Based on those basic assumptions stated in the foregoing section and Bleich’s early work on shakedown 

analysis in structures, Melan established a general theorem for structures and extended it to the elastic- 

perfect plastic continuum that is known as the static shakedown theorem. According to Koiter[32], Melan’s 

theorem can be stated as follows:

If any time-independent distribution of residual stresses, piy, can be found such that the sum of these 

residual stresses and the elastic stresses, cty , is a safe state of stress

+  Pij =

i.e., a state of stress inside the yield limit, at every point of the body and for all possible load combinations 

within the prescribed bounds, then the structure will shakedown to some time-independent distribution of 

residual stresses (usually depending on the actual loading program), and the response to subsequent load 

variations within the prescribed limits will be elastic. On the other hand, shakedown is impossible if no 

time-independent distribution of residual stresses can be found with the property that the sum of residual 

stresses and elastic stresses is an allowable state of stress at every point of the body and for all possible load 

combinations.

Alternatively, Konig [120] restated this theorem as below:

If there exists a time-independent residual stress field, Py , and elastic stress filed, cr|(x ,t), corresponded 

to the load path, p , , such that

Pij.j=° ^  V, Pjjn j = 0 on VT •

py = 0 for t > 0 £  EyiftjpudV < co (3.15)
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max max f[ucr^(x,t) + oTx)] = 0
x e V  0 . « n  ’’ '<

then the structure will shakedown over any load path, P ,(t), contained within a given load domain, Q, 

where (i is a real number and greater than 1.

In the application of Melan’s shakedown theorem to calculate the shakedown load parameter o f the 

engineering problem, the following question arises: does shakedown in a given loading path imply 

shakedown in any path contained within the same limits? With this regard, Konig [119] proposed the 

following theorems with respect to cyclic loading. .

Theorem 1. If a given structure shakes down in a prescribed cyclic loading process then it shakes down

also in any process for which the envelope, 2, of elastic stress fields is contained (or coincides 

with) within the envelope, 2 ’, relative to the given cyclic process.

Theorem 2. If a given structure shakes down in a cyclic load process which covers the whole boundary 8Q 

of a given load domain, O then it shakes down in any load path contained within the domain Q.

Theorem 3. If a given structure shakes down in a cyclic loading process which contains all the comers P‘ , 

i= 1 ,2 ,..., r of a given load domain Q, then it shakes down in an arbitrary loading path 

contained within the domain Q.

3.5.2 Koiter’s Theorem (Kinematic shakedown theorem)

The body will not shakedown, i.e. it will fail ultimately by cyclic plastic deformations, if any admissible 

plastic strain rate cycle efj(t) and any external load Fj ( t ) , Tj(t) within the prescribed limits can be found 

for which

j^ d tfj^ F jU jd V + l TjUjdS}> j^ d tD (e j j )d V  . (3.16)

where D( e|j ) is the plastic energy dissipation function in the strain rate cycle e[j(t). On the other hand, 

the structure will shakedown if a number k > 1 can be found with property that for all admissible plastic 

strain rate cycles ejj(t) and all external loads F, ( t ) , Tj (t) within the prescribed limits,

k j[Td t{ ^ F ,u idV+ |  Tj ujdS} < j^dt D(e ? )dV (3.17)

The upper bound of such numbers k is then obviously the factor of safety with respect to shakedown.
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Alternatively, Konig [121] presented a general kinematic shakedown theorem, from which the perfect 

alternating plasticity as well as the perfect incremental collapse conditions are obtained as particular cases. 

It can be stated as follow:

Shakedown may be impossible if there exists a load program Ps(t) resulting in elastic stress crE(x,t)and 

an independent cycle of plastic deformations ejj(t) such that:

1°) Increments of the plastic strains over a certain time period ( t ,, t , ) constitute a compatible field, 

Ae,j(x)= j<!Eij(x,t)dt = ^-(ujj +U,,) u, = 0 on Su;

2° ) The following inequality holds,

J '  £ a E(x ,t)e jj(x,t)dVdt> J '  £  D{eij(x,t)}dVdt (3.18a)

where D {e,,} denotes the dissipation associated with the plastic strain rate .

On the other hand, the structure will shakedown in any load path contained within the domain, Q, for any 

plastic strain increments, A e^ x ), if the following inequality holds,

|*‘ (x,t)Ejj(x,t)dVdt < j*1 £  D{Ejj(x,t)}dVdt (3.19a)

provided that,
n j

^  Aej|(x) = —fuimj + u , , ) U i=0 on Su
k = I “

By definition, shakedown will occur at any load path within the load domain, Q. Let’s consider load paths 

consisting of all the stress fields c t^ , cr^E, . . . ct,"e at the comers of the domain. Denoting 0 k the

respective set of instants during which elastic stress field is equal to cr}jE. The Eq. (3.18a) can be rewritten 

in following form:

crjf (x)Ejj(x,t)dtdV> £  £  D{Ejj(x,t)}dVdt

Assuming strain rate, e ̂  (x, t ) , within each one of the sets 0k can be expressed by

E,j(x,t) = A(x, t)E,j (x), t e 0 k .
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and for any plastic strain history, ejj (x, t ) , the following inequality holds

f ’ lX E jp d tsD C E g a^ -E jja ,))
■*1

Then Eq. (3.18a) and (3.19a) can be rewritten as

f J  o f  (x)Ae  ̂(x)dV > f  £  D{Ae,j (x)]dV
k=l k=I

and

f J o f  (x)Al*(x)dV < f £  D{AE§(x)}dV
k=l k=l

respectively, provided that,

Ae J ( x ) = I ' “  “
k = l

j

^ A e i-(x) = - ( u j | + u M) u, = 0  on Su .

Incremental Collapse Condition [121]

The incremental collapse is assumed to occur if following inequality holds,

£ a ij(x)Aeij(x)dV> £D (A eij(x))dV

where

n I
^  AeJ(x) = —(Ujj + u ,,) Ui = 0 on Su
k = l “

On the other hand, the incremental collapse will not show up for any A e^x) such that

n  ̂ I
^ A e ^ ( x )  = - ( u jj +U,,) ^ = 0  on Su
k=i * m

the following inequality holds,

£CTij(x)Aejj(x)dV> J^D(AEjj(x))dV

where (x) denotes the appropriate cr'J’(x) at the point x, which is defined by

CT-j, (x)AEij(x)>CTjjE(x)AEij(x) k = 1 ,2 ,- , n

(3.18b)

(3.19b)
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Alternating plasticity [121]

The safety condition in regard to alternating plasticity is in following form:

p. |d t  £<7? (x,t)AEjj(x,t)dV < £d t£  D(A£ij)dV

provided

(•T •
p > 1, ^  £jj(x,t)dt = 0 for every x e '

3.6 DEVELOPMENT IN SHAKEDOWN THEORY

Classical shakedown theory is strictly based on idealized assumptions such as elastic-perfectly plastic 

material which follows the associated plastic flow rule with a convex yield surface, temperature 

independent material property, small deformation, and quasi-static applied load. However, in practice these 

assumptions are not always satisfied. Therefore, the classical shakedown theorems are extended to consider 

the effects of relaxation of one or more of the assumptions. In this section, some developments of 

shakedown theory in several sub-areas are presented.

3.6.1 Thermal Loading Effect

In engineering practice, variable repeated thermal loading usually occurs accompanied with mechanical 

loading in structures and components, especially in civil, mechanical, and chemical engineering. 

Inhomogeneous temperature distribution induces thermal strain in the structure, which in many cases, is 

large or equal to those due to mechanical loading. Therefore, it has significant influence on plastic design 

of these structures. In most cases, material properties such as elastic moduli and yield stress ctv are also 

dependent on temperature. Assuming elastic moduli is independent of temperature, then the classical 

shakedown theorems can be extended to include thermal effect [37],

Static Theorem

If there exists a factor s>l and a time independent residual stress field, PlJ, such that, for all loads and 

temperature variations within the prescribed limit the relation:

♦[scj-(x,0, t) + Pij(x)]-K (x,0) < 0 (3.20a)

holds, then the structure will shake down. In Eq. (3.20a), the elastic stress, a j j , is the summation of the 

stresses under mechanical loading and thermal loading, i.e. a|[ = aj- + ctJ  and holds for all temperatures.
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Kinematic Theorem [37]

A structure will not shakedown (i.e. the total plastic work can tend to infinity at least for one o f the possible 

load-temperature histories) if there exists a ‘cycle’ of plastic strain rates, ej’fx, t), t, < t < t 1 and an

independent ‘cycle’ of loads and temperature such that the following relations hold:

(a) there exists a filed u satisfying the kinematic boundary condition and

| ,J ER(x,t)dt = ^ ( u ij + uj-I)

(b) £  { |T iuidS+ £ a ijp ij0dv}dt> £  £D(8P,0)dVdt

Here D(e{],0) = o-jjÊ  denotes the dissipation associated with the e?, p- is the residual stress, and cty 

stands for the tensor of linear thermal expansion.

If the elastic modulus also changes with temperature, different residual stresses may be associated with the 

same plastic strain field. The static theorem has to be formulated in terms of steady plastic strains rather 

than in terms of residual stresses.

Static Theorem [122]

If there exists a safety factor s>l and a time-independent plastic strain field, e? , such that, for all loads and 

temperature variations within a prescribed range, the following relation holds:

«sa{ [(x ,0, t) + Pjj(x ,0 )]-  K(x,0) < 0 (3.20b)

then adaptation will occur; p- stands for the residual stress field associated with the constant plastic strain

field, e y , and changes with temperature due to variations of the elastic moduli, AjjkI.

Kinematic Theorem [38]

Eq. (3.20b) can be rewritten in the following form:

<j)[saf (x,0, t) + Pjj(x ,0 )]-K (x ,0 ) < 0 (3.20c)

For a discretized system, an upper bound formulation can be established by means of piecewise

linearization of yield function. Eq. (3.5.1b) is replaced by Y linear inequalities that can be written as

follows:
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<|> = S(0,t) -  A(0)A. -  R(0) < 0 (3.21)

where A. > 0 is a Y-vector if internal variations defining the time-independent plastic strains. The projected 

elastic stresses, S, and the (symmetric, positive semi-definite) matrix. A, are expressed by

S(0,t) = NTffE(0,t) = N t (Bt(0)T(0) + Z(0)T0(t))
T - (3.22)

A(0) = -N  Z(0)N

where R(0) is the temperature-dependent generalized yield stress and N, T are constant matrices, such that

T0 is the vector o f generalized thermal strains and NA. that of time-independent plastic strains. BT and Z

are elastic operators, depending on temperature 0(t) through the elastic moduli; BTF and ZT0 give the

elastic stress response to the external loads and temperature changes, respectively, and ZNA. provides the 

residual stress vector.

If shakedown occurs, Eq. (3.21) always holds for each component, hence for each component <|>L, 

evaluated at a given time t L and instantaneous temperatures 0L = 0(tL) , the following inequality is 

complied with,

<f>L=SL(0L,tL) - £ A u (0L) I k - R l(0 l )<O L = 1,2, - , Y (3.23)
k

Let now vectors S*, R* and a matrix A * be defined, having as L_th element or row the relevant quantities 

evaluated at time t L , possibly different for each L.

S* = {SL(0L, t L)}; R* = {Rl(0l )}; A* =[A Lk(0L)] (3.24)

Then, if shakedown occurs, the problem,

s* -  a ‘ x  - R* < 0  X > 0

admits a solution for any S*, R* and A ’ , Eq. (3.24).

Let us consider the following related problem,

p > 0 ; (A*)T{i < 0; (S* -R * )Tp = 0 (3.25)

an upper bound to the shakedown domain can be obtained by finding a solution to En. (3.25).
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3.6.2 Dynamic Shakedown

In engineering practice, variable repeated loadings are often treated as quasi-static load, in which inertia 

and damping forces are ignored. This approach simplifies the calculation in design process and provides an 

appropriate approximation to the actual solutions when load changes slowly with respect to time. However, 

in most situations, variable repeated loadings may vary so rapidly that inertia and damping forces cannot be 

neglected. The classical shakedown theorems have to be extended to include the dynamic effect [39]. In 

contrast to quasi-static shakedown theory, the dynamic theory presumes that the time history of external 

actions is known, along with the initial conditions, and that the fictitious linear elastic stress response of the 

structure is calculated by any familiar of elastodynamics. In the spirit of Melan’s theorem, the first dynamic 

adaptation theorem ensures adaptation if the yield condition is strictly fulfilled at any point and any time by 

the sum of a constant (in time) self-stress field and the linear elastic dynamic stress response calculated on 

the basis of some initial condition (not necessarily coincident with the actual ones). It can be stated as 

follow:

Sufficient Shakedown Condition

If a fictitious response, u*, Ey, o ' and a residual stress distribution, cryd , may be found so that,

<|>r (cT*j +Oyd) < 0  r = 1,2,— n; x e V ; te [0 ,tM] 

then shakedown will occur in the real response.

A necessary shakedown condition for periodic actions is given below.

If the actions are periodic and if the body in the real dynamic process shakes down, then at the least, a 

fictitious response must exist, which superimposed to a suitable residual stress distribution, satisfies the 

inequality conditions,

(|>r (CTy+<t^ ) < 0 r = 1,2, -n; te fO ,^ ]

A more general formulation of the sufficient and necessary condition for shakedown follows.

Sufficient and necessary condition for shakedown is that a fictitious response and a residual stress 

distribution exist, which satisfy the inequality,

<|)r[cr *j(x,t) + CTŷ Cx)] < 0; r= l ,2 ,- - ,n ;  x eV ; t e [ t ‘, t j

The second dynamic shakedown theorem basically follows Koiter’s definition and is stated below 

(sufficient condition).
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If, for all fictitious processes, an admissible plastic strain rate cycle can be found, starting from t>t* 

satisfying the inequality,

£  dt £  (CT*j + <Ty* )igdv -  £  dt £  D(lg )dV > 0 

then the body will not shakedown.

The necessary condition for inadaptation follows:

If the body will not shakedown, then for all fictitious processes and for all t ’ >0, some admissible plastic 

strain rate cycles must exist which satisfy the inequality,

J^dtJ^nfCT-j )e£dV - I 'd tj^ D feJp d V  >0; p >  I.

3.6.3 Strain Hardening Effects

Melan’s pioneering work in shakedown theory included both perfectly plastic and linear, unlimited 

kinematic hardening materials. Some particular cases in strain-hardening were also considered in [169]. 

Investigation has shown that the safety factor with respect to inadaptation is extremely sensitive to the 

hardening rule adapted in the material description and exhibit obvious degeneration in some situations. 

Furthermore, explicit formulation of constitutive relations for complex material hardening behavior often 

fails to decide adequately all phases of the behavior. A three-dimensional overlay model was proposed 

[42,123] to simulate the elastic-plastic strain hardening behavior without using explicit constitutive 

relationship. •

Three-dimensional Overlay Model [42,123]

A given body, V, is assumed to be composed of material points denoted by a vector x e V c E 3 and each 

material point, x, in the body, V, is assumed to be composed of a dense spectrum of microelements 

numbered with scalar variable £e[0,l]. Stresses (macrostresses) corresponding to each material point 

assumed to be the resultant of the microstresses of the microelements and the deformation is assumed the 

same for both the macroscopic material point and the microelements. These can be expressed in the 

following formula,

CTij(x)= j j V j j f x , ^  

riij(M ) = 6jj(x) VI; e [0,1 ]
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The macroscopic stress field, cjjj(x), must satisfy the static equilibrium conditions,

CTjj j + b; = 0 in V

and the static boundary conditions,

CTyiij = pj on Vc

where dV = 8Va +8VU is the boundary of V, b, denote body forces and Pj are surface traction on 5Va .

The macroscopic strain field, Ejj, is related with displacement at a material point by the kinematic relation,

Eij = 7 ( u U + ui.i) in v

with

Uj = u° on 5VU

The microelements are assumed to be linear elastic, perfectly plastic with a convex yield function defined 

by <D() and complied with associated flow rule. The yield stresses of the microelements are denoted by 

K(q). For microelements, the following relations exist, ’

n|j = ^ ^ ( 4 )  
d>(Vij) = k2(l;)

^ ){ O [v |/ ij( ^ ) ] - k 2(^)} = 0 

where the elasticity tensor, E ,jkJ, is positive definite and symmetric.

The function k(x,^) is uniquely determined for a given macroscopic cr-e function and vice versa. In the 

elastic-plastic range, cr, e ,  and k(£) are related by

crfc)= £k(f)d$  + ( l-5 )k (S )

and

e(4) = -ik (4)
b *

6 2
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For given elastic and plastic microscopic strains, and rjP , the following relations can be derived,

Vij(^) = Ejjkl[eu -  Tiki©] 

o-ij = Eijki[ek| -  j[n&(^)d^] 

eij = Eijki^ki + ]Jni}(S)d§

The plastic macrostrains, , are equal to

sP = J[n§(§)d§.

The difference between the microstresses, y  ̂ , and macrostresses, cr^, is called residual microstresses and 

is denoted by Jtjj(§),

71 ij(^) = Eijkj[ek| -  qki(^)] (3.26)

The residual microstresses satisfy the homogeneous static equilibrium conditions

Pij.j = 0  in V

and

Pijnj = 0 on V0

By integrating the Eq. (3.26), one obtains,

j£jrjj(x,5)d5 = 0 V xeV  

which shows that the resultant of 7^(1;) does not contribute to the macrostresses.

Shakedown Theorem

For the overlay model, the following static shakedown theorem was formulated [42,123],

If there exists a time-independent residual masrostress field, p,,(x), and a time-independent field, ctjj(x), 

satisfying,

®[majj(x)] < [k(x) -  k0(x)]2 V xeV  

such that for all possible loads within the load domain, the condition:

<t>{m[a^(x,t) + Pij(x) -  ajj(x)]| < k5(x)
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is fulfilled Vx e  V and Vt > 0, where m>l is a safety factor against inadaptation, then the total plastic 

energy dissipation within an arbitrary load path contained within the same load domain is bounded.

The backstresses, a ,j(x ), were introduced to describe the translation of the initial yield surface in the stress

space. This theorem indicates that the necessary shakedown conditions for a kinematic hardening material 

are sufficient ones for the proposed overlay model.

This formulation is in a general form. For special case, which tXjj(x) =0, it reduces to Melan’s theorem for

an elastic-perfectly plastic material [31], For k(x) ->oo , we obtain the static shaxedown formulation 

derived by Melan for linear, unlimited kinematic hardening material.
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C H A P T E R  IV

A NUMERICAL APPROACH TO FATIGUE

4.1 INTRODUCTION

Fatigue has long been recognized as a common failure mechanism and distress mode that occurs in 

engineering structures and components under variable repeated loads. Extensive investigations of fatigue 

crack growth behavior for metals, various high yield strength steels and alloys, and other materials have 

indicated that three distinct stages exist in fatigue crack growth process, which are crackinitiation, stable crack 

propagation, and unstable crack propagation and fracture. For small-scale yield zone around the crack tip, 

where linear elastic fracture mechanics is applicable, Paris’ law [82] that relates crack growth rate, da/dN, with 

variation of stress intensity factor, AK, gives a considerably accurate description of fatigue crack growth 

behavior within a stable stage of crack growth. Various modifications to Paris’ law have been proposed to 

include the influence of different factors on fatigue crack growth behavior and many fatigue equations (crack 

growth law) for different materials are reported [124], Fracture parameters such as maximum stress intensity 

factor, Kmax , and toughness, Kc , are incorporated into the fatigue equation to describe fatigue crack growth 

from stable stage to unstable stage and fracture. When material is capable of large-scale plastic deformation 

around crack tip, elastic-plastic fracture mechanics is utilized to study crack growth behavior. Cyclic J-integral 

(AJ) instead of the variation of stress intensity factor is used in fatigue equation to describe fatigue behavior 

[93].

Theoretical, analytical, and experimental investigations have provided detailed description of crack growth 

mechanisms both in microscopic and macroscopic aspects. Both the fracture mechanisms of plastic blunting 

and dimple formation have been recognized. Under variable repeated loads, fatigue crack growth is 

characterized by plastic blunting at moderate stress intensities and by dimple formation at high stress 

intensities that is considered to be controlled by maximum stress intensity factor. Analytical formulations for 

fatigue crack growth derived both for plastic blunting and dimple formation mechanisms are presented in 

[125,126]. Fracture parameters such as Kc and KmiDC are incorporated into these formulations by considering 

the boundary conditions of crack growth. For the transition region from plastic blunting to dimple formation. 

Schwable[127] used the linear combination of the formulations for plastic blunting and dimple formation to 

describe crack growth behavior. For elastic-plastic materials, Musuva et al. [128] directly superpose the crack 

growth rate by plastic blunting and crack growth by dimple formation that is characterized by the R curve to 

describe the fatigue crack growth behavior from stable stage to unstable stage using J-integral.

65
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Recent experimental results have shown that under load-controlled cyclic loading with a tensile mean stress, 

the hysteresis loop against displacement tended to shift horizontally and the extensional deformation, or the 

ratcheting deformation, was monotonically accumulated as a fatigue crack grew and that the initial stage of 

acceleration is not caused by the change of crack growth mode, and that the static mode fracture mechanism is 

operating in the rapid acceleration stage [95]. Based on these observations, Tanaka et al [95] presented an 

upper bound crack growth rate equation by using the power law function of crack tip opening displacement 

(CTOD) to describe fatigue crack growth behavior under high cyclic stresses.

The discovery of crack closure phenomenon by Elber [92] made it possible to simulate fatigue crack growth 

by calculating crack opening (or closing) stress using finite element method. Early numerical investigations 

mainly focus on studying of crack tip opening displacement, computing crack opening(or closing) stresses, 

and analyzing over loading and under loading influence on crack growth behavior under monotonic and/or 

cyclic loading. Three major crack growth criteria are employed in these numerical investigations. These are 

releasing crack tip node at maximum load with stabilization [104,105,106], releasing crack tip node at 

minimum load [129,103], and releasing crack tip node immediately after maximum load [116,117], The 

amount o f crack growth is determined by the element size arranged along crack growth line. However, both 

the strategy of crack growth element by element and the releasing crack tip node scheme make the simulation 

of crack growth in finite element model typically arbitrary.

A few efforts were also made in an attempt to establish a fatigue equation and predict fatigue life numerically 

[130,131,132]. In 1977, Newmen Jr. [105] incorporated a critical strain criterion in his nonlinear finite element 

program to simulate fatigue crack growth and intended to establish functional a relationship between fatigue 

crack growth rate and the variation of stress intensity factor. His investigation results show that both finite 

element mesh size arranged along the crack growth line and preset critical strain value, eCT, have considerable 

influence on the applied stress level and hence on fatigue crack growth rate. Later, a critical crack opening 

stress criterion was proposed by Nakagaki et al. [109] to simulate crack growth, in which the critical stress 

level was defined as crex = p(crmax - ctop) , where p is determined by calibration such that the calculated

a op correlated with experimental results. Such defined critical stress is found to be dependent on material

properties and to some extent on the analysis procedure itself. X. Zhang et al [133,117] proposed a 

modification to the technique of releasing crack tip node at the maximum load of a cycle. In this technique, 

crack growth is simulated by releasing the crack tip node at the maximum load of a cycle and advancing the 

crack tip one element length in front. The number of cycles required for this amount of growth was 

determined by a modified Paris’ law [133]. This strategy is rather realistic, but material constants, C and n, in
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modified Paris’ law have to be determined by the fatigue test in advance. These numerical approaches are 

either dependent on finite element mesh size arranged along the crack growth line or dependent on fatigue test 

to obtain fitting constants in fatigue crack growth law. Therefore, the crack growth criterion, the amount of 

crack growth during each cycle, and unstable crack growth and final fracture become the fundamental issues 

in simulating fatigue crack growth behavior and predicting fatigue life by using numerical methods.

By using parameters of fracture mechanics to characterize the two crack growth mechanisms in simulating 

fatigue crack growth and predicting fatigue life, a numerical approach is proposed in this study. The proposed 

crack growth criterion is a practical and fundamental approach, taking into account material resistance to 

fracture and singularity of stress-strain filed around crack tip in simulation of fatigue crack growth without 

using empirical or experimental constants. Crack propagation is simulated by shifting the R curve along the 

crack growth direction. Unstable fatigue crack growth and related critical crack length for a given cyclic 

loading level is determined by fitting numerically obtained crack increments and its corresponding cyclic J- 

integral values. Fatigue life then can be predicted by integrating the fatigue equation. This proposed numerical 

approach is based on the following assumptions:

—  R curve is assumed to represent material resistance to crack growth under monotonic loading.

—  Fatigue crack growth is the combined contribution of component by dimple formation and component by 

plastic blunting in different percentages at different crack growth stages.

—  Crack growth only occurs during the load rising portion of each cycle.

—  Crack closing, residual stress, and dynamic acceleration effects are not included in this study. Opening 

crack mode (Mode I) is used throughout this study.

4.2 MATERIAL RESISTANCE CURVE R_curve

The existence of a relationship between the J-integral 

and the amount of stable crack growth under monotonic 

load. i.e. material resistance to crack growth curve 

(R curve) has been recognized and utilized in studies 

by Rice [134], Paris et al. [75], Hutchison et al. [135], 

and Shih et al. [136]. J-integral concept that directly 

related to the locally concentrated strain field was first 

identified by Rice [71] for two dimensional linear Figure 4.1 Crack Tip Coordinate System and 
typical Line Integral Contour.
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elastic and elastic-plastic (deformation theory of plasticity or nonlinear elastic) materials and is given in the 

following form,

J = J(W dy-T ^-dS ) (4.1)
r

where, W denotes the strain energy density that can be calculated by W(e(j ) = CTjjde,j , T defines the

traction vector along arbitrary line integral path r ,  T = a;jnj> u is a vector of displacement field at any 

point within f  and dS is a line element along the integral path , f  as shown in Fig. 4.1.

a P

Figure 4.2 An Alternative Interpretation of J-integral.

An alternative expression of J-integral in terms of energy variation that is directly related to exteriorly 

measurable quantities, such as load and displacement, was also proposed by Rice [72] for two dimensional 

elastic (linear or nonlinear) materials,

J = _5(U/
8a

where U/B is the potential energy per unit thickness, B, and is defined by

Wdxdy- j j u d S

where A is the area of the considered two dimensional problem as shown in Fig. 4.2 and T , W , u, T are 

defined as before.

U / B - J f

B) (4.2a)
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For elastic-plastic, considering the area under load-displacement curve, P-A (where P is load per unit 

thickness and A is the load point displacement) Eq. (4.2a) is further explicitly expressed in load, P, and 

load point displacement. A, by Ernst et al [77] as follows:

(4-2b>

For convenience, Ernst expressed the load point displacement. A, as the summation of linear elastic part,

Ae(, and plastic part, Ap, , and presented J-integral of Eq. (4.2b) in the following form,

r
Pt 5 P(■")&„ dAp, (4.2c)

where, G(P, a) is the energy release rate defined in linear elastic fracture mechanics [65],

Jci=f (̂ r )dP=G(P'a) (4-2d)
and

f f > ^ »  (4-2e)

Based on this alternative J-integral definition, material resistance to fracture curve, R curve, can be 

developed from load-displacement curves by calculating J integral value and corresponding crack 

increment, da, from the following equations derived by Emst et al[76] for general specimen configuration 

o f elastic-plastic material.

-  . p i -  3b2 |*pt <3F| b3 pin 5F,
J ' G + JPl'b=b" + l „ b [_J p1+ ^ i  ^ ^ 1Api_w 3' i  ~ r 7 dApi]da

(4.3a)

and
*W>

b2 aF' H t jpd a p i *dP
W2^ )

da = ---------------   (4.3b)
2 b b2 a F,

" W ' W ^ J L )
W
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k -  2b b2 rV 3F,
" ,hereJ » ' - w i  F'd 4 " - p T  r r ^ *

*w*

b2 \  w  w )

P - load per unit thickness 

a - crack length, a<, initial crack length 

W - specimen width as shown in Fig. 4.7 

b - remaining ligament at the cracked section 

b0 - initial remaining ligament

Api - plastic displacement along applied load line.

Function F,
AP| a

(also called key curve) in Eq. (4.3) can be constructed for a given specimen
„ W W,

geometry! 156]. R_curve, then can be directly obtained from load displacement curves by using FI function 

to calculate J and the amount of crack extension. A discretized formulation of Eq. (4.3) is given in [137] 

and is rewritten in the following for convenience,

5J„ = 2b b2 sf;

W w2
w

and

5An + 4b v -  <3F,*_ A y Fli6Ai+^ y  
w t r  w 2 f r

b2 5f; 
w 2

-8 An-5Pn

5a„ =-
b2 sf;

\ \ r  2w

-6A, 8a r (4.4a)

(4.4b)

where n is the current number of divisions of discretized load-displacement curve. The term of F, is 

directly evaluated from load displacement curve of a given specimen. F,’ is evaluated from F, calibration

curve defined by F, 

shown in Fig. 4.3.

—  | = . N is the total number of the divisions of load displacement curve as
W W j b2
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The total J and Aa are

N

(4.5a)

N
Aa = ^  8 a. (4.5b)

i=i

The last point (N+l) of the N divisions is determined by finding the displacement point corresponding to 

the maximum load of the specimen with the shortest crack. At this point a crack begins to initiate or is 

occurring. A program is developed in the current study to implement these equations. R curve then can be 

evaluated based on load-displacement curves.

4.3 CRACK DRIVING FORCE J_curve

Jintegral, as defined by Rice [72], is an average measurement o f intensity o f the locally concentrated 

strain field around notch or crack under given loads. Several techniques to evaluate the J-integral 

theoretically [138,139], numerically [102], and experimentally [140] have been reported. Therefore, 

J curve, the variation of J integral value with crack length under a given load level, can be developed. 

From Eq. (4.2), it is observed that the functional relationship between load and displacement includes the 

crack length as the third variable. For function F, at two different crack length, aj and a f , it has been 

proven that [141] if the separable parameter.

is a constant over the whole domain of plastic displacement, AP), the load, P, can be expressed by two 

separable variables that are crack length, a, and AP1. It is assumed by Ernst et al [77] that the load, P, can 

be expressed in the following form.

then, two different J-integral formulations are derived in the current study from Eq. (4.6) and given in the

(4.6)

Apl
following. For a given plastic displacement, Api , the function 0 ( -----) can be evaluated and may be
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expressed as

d>

Introducing Eq. (4.7) into Eq. (4.6), we have

' V = a(A p, ) p (4.7)

P = ot(A pi)PvP(-^-) (4.8)

where a  and P are constants, ^P (~) is a function of crack length only. Introducing Eq. (4.8) into Eq. (4.2c), 

the J-integral can be evaluated by

J(a,Apl) = G(P,a)-£P'(|^)AijidApl
(4.9a)

= G(P, a) - ag (— )(A pI)

where a  = ----   and g(— ) = <D'(— ).
(l + p)W 5 W W

Following the same argument, for a given load level P, we may express the plastic displacement according 

to Eq. (4.6) as following

Apl = k  Pn H (^ )  '  (4.10)

Introducing Eq. (4.10) into Eq. (4.2c), we obtain the J-integral formulation for a constant load P

J(a, P) = G(P,a)+ f ( ^ ) PdP
(4.9b)

= G(P,a) + kh(— )P‘"n 
W

in which A., q and k  =--------    are constants . h(— ) = H'(— ) is a function of crack length. Once the
(l + ti)W W W 5

^  I SL
function <I> = ( ^  ) and T (— ) in Eq. (4.6) have been obtained, Eq. (4.9) can be used to determine

J curves under a constant load or under a constant displacement.
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4.4 CRACK GROWTH UNDER MONOTONIC LOAD

The amount of crack growth under monotonic load can be determined in the process of evaluating R curve 

developed from load displacement curves as described in foregoing section. However, to simulate fatigue 

crack growth under cyclic load, a numerical approach is proposed in this study to determine the amount of 

crack growth by using Jcurve and R curve.

Under a constant load, the crack driving force in terms of J-integral that varies with crack length can be 

evaluated by Eq. (4.9). For a given elastic-plastic material and two dimensional geometric configuration, the 

functional relationship of J versus crack length, a, which is termed as J curve may be, for simplicity, 

represented by

J(a,P) = *P1+nf(a) (4.11a)

where fra) is a function of crack 

length only.

On the other hand, material 

resistance to crack growth curve,

R curve that is determined by 

Eq. (4.3) may be expressed as 

power function of crack 

extension,

J R(ao,a) = C ( a - a 0)m (4.11b) 

where C and m are fitting constants and dependent on material analyzed. The crack driving force, J can be 

used in conjunction with R curve to determine the amount of crack growth. Considering a diagram in which 

a typical R curve and a J curve both plotted in the same coordinate system as shown in Fig. 4.4, 

differentiation of crack length can be obtained by differentiating R curve with respect to crack length a,

da = [JR(a0,a)]"'dJ(a,P) • (4.12)

Assuming the load is continuously increased from 0 to P and crack extended from a 0 to a, then crack 

incremental can be evaluated by,

Aa = Ida = f * ’ [JR(a0,a)]_ldJ(a,P) (4.13)
o -Mao)

By introducing dJ(a,P) = ^ ^ p d P  + ̂ ^ d a  and J '(ao,a) = C m (a-a 0) ” ' 1 into the above equation and 

considering R curve and J curve intercepted at crack length, a, then the amount of crack growth under

Figure 4.4 Illustration o f Crack Increments Calculation and ShiftingR_curve.
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monotonic load can be calculated by integrating Eq. (4.12) from a 0 to a and is given by the following 

equation,

Aa= | ,A.[Cm(a-aor-|] ' l[(l + n )P nf(a)N(a,ao) + P1"nf'(a)]da (4.14)

  X’(a a ) c (a  a )m
where X (a,a0) =  : and X'(a,a ) = ------—2 .T heJ integral value corresponding to the crack

(l + n)Pn A.f(a)

growth, Aa. can be evaluated by introducing Aa into Eq. (4.1 lb).

4.5 SIMULATION OF CRACK PROPAGATION

Under assumption that stable crack growth satisfies J-controlled conditions, the requirements for crack growth 

within stable range can be defined, from elastic-plastic fracture mechanics point of view, by

J(a,P )>  J R( a - a 0)

From Fig. 4.4, it can be seen that under a specific load level P, crack will grow from a Q to a = a Q + Aa,

and crack tip will move along crack growth direction from point A to point A*. At point A ’ , where crack 

length is a = a0 +Aa,, J curve intercepts with R_curve i.e. J (a ,P )= J R(a „ ,a ) . Further crack growth 

beyond this point is impossible. Because for any crack length, a, > a 0 + A a,, the calculated J(a ; , P) is 

less than J R(aQ,a j ) . Additional energy has to be provided externally to the system to continue the crack 

propagation process. Increasing the applied load level from P to P, results in J-integral value increasing 

from J(a, P) to J(a, P ,) such that J (a j ,P |)> J R(a0,a j ) ,  which will leads to stable crack growth under 

monotonic load. In the case of cyclic loading, the applied load cycles between maximum load level 

Pmax and minimum load level Pmjn , which provides additional energy (hysteretic energy dissipation) for 

fatigue crack growth. To simulate the crack propagation process under cyclic load numerically, R curve is 

shifted along with crack tip advancement. Therefore, at initial crack length a0 , R curve originated from 

point A, and can be expressed as,

J R(a,a0) = C ( a - a 0)m

After crack grows the amount of Aa, crack tip advances to a = a 0 + Aa and R curve will originate from 

point B and can be represented by the equation,

J R(a,a0 +Aa) = C [a - (a 0 +Aa)]m
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From Fig. 4.4, it can be seen that with the R curve shifting, J-integral value, J(a, P) at crack tip, a , 

becomes larger than J R(a,a0 +Aa) value around crack tip, then crack begins to propagate again. By 

introducing J R(a,a0 + Aa) into Eq. (4.14), another crack incremental Aa( will be computed. Thus, by 

shifting R_curve along crack growth direction with crack tip advancement, crack will propagate 

incremental by incremental until unstable growth occurs.

Based on the assumption, the crack extension that is calculated by Eq. (4.14) during the process o f R curve 

shifting is equal to fatigue crack growth rate, i. e.

da
—  = Aa 
dN

Therefore, the functional relationship between fatigue crack growth rate and the variation of J-integral, AJ 

can be established by fitting the computed data pairs, Aa and AJ and is given by.

where A and B are fitting constants dependent on material analyzed.

4.6 MODIFIED FATIGUE CRACK GROWTH RATE

The fatigue crack growth rate presented in the foregoing section is established by simply fining a series of 

data pairs of crack incremental, Aaj and the variation of J-integral value, AJ(a;, P ), which are computed 

by using R curve shifting technique. As it is known that both R curve and J curve are developed under 

monotonic load, the computed crack incremental Aaf from these two curves still characterizes monotonic 

crack growth properties. To take account of cyclic load effect into fatigue crack growth rate, modification 

of crack increments, Aaf is made by examining the crack tip deformation under both monotonic loading 

and cyclic loading.

4.6.1 Plastic Zone Size

From crack tip deformation mechanism analysis, where small scale yield zone around crack tip is assumed, 

Rice [142] has derived the following formulations to evaluate plastic zone size around crack tip and crack 

opening displacement for elastic perfect plastic material with Tresca-Mises yield criterion. The 

formulations he derived for plastic zone size for mode I under monotonic load is given by.

-^ -  = f(AJ,A, B) (4.15)

(4.16a)
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and crack opening displacement by

u _ (< + l)K i2 
° I6G(t0

Under cyclic load, he gives the following formulation to evaluate plastic zone size.

(4.16b)

32 ct„
(4.17a)

and the displacement by

(ic + 1)(AK, ) 2
(4.17b)

32G a,,

where

ct0 denotes material yield stress,

K, stress intensity factor for mode I ,

AK, = Kmax -  Kmm , variation of stress intensity factor under cyclic load (quasi-static) 

k = 3-4v for plane strain and tc = 3-v/ 1+v for general plane stress,

G is shear modulus.

Comparison between the displacement under monotonic load and displacement under cyclic load gives

i f  a k ,  ' r
r  —  u (4.18)

As suggested in Ref [ 125], the plastic deformations at the 

crack tip are responsible for crack growth (for mode I , 

plane strain condition). At the blunting crack tip caused by 

shear deformations, two displacements can be 

distinguished: the crack opening displacement 5^ and the 

crack advance displacement 8* • The crack growth rate is 

calculated based on the consideration that the amount of 

crack growth, Aa, for plane strain condition during each 

load cycle is equal to the crack advance displacement 

calculated for the load rising portion of each cycle.

4.6.2 Fatigue Crack Growth Rate

Figure 4.5 Plastic Zone Size Notation.
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Under monotonic loading, the crack tip opening displacement 8,y has been derived in Ref [125] for elastic- 

perfectly plastic material under plane strain condition and is rewritten in the following

B 4(1- v )
S tv = u 0 = ---------- Y0co (4.19a)

'  71

and the crack advance displacement can be calculated by

„ C O . „  CO -
8 t x = — 8 V = — u0 (4.19b)

CO CO

where co denotes the maximum extent of the plastic zone and co 0 denotes the extent of the plastic zone on 

the uncracked ligament as shown in Fig. 4.5.

The crack advance displacement for crack opening mode I under cyclic load is also given by [125],

AS* = —  AS^ = —  A Uo (4.20)
CO CO

Then crack growth rate is defined by

da , co _
—  s A 5 tx = ^ A u 0 (4.21)
dN co

By introducing A u0 = —(—-^ -)2 u0 and Eq. (4.19b) into Eq. (4.21) then, 
-  Ki

i i s A 5 tx = I (M L c 2 ; 
dN “ 2 Ki
—  S A8r = _ ( _ f i i . ) 25 tx (4.22a)

Here, for small-scale yielding and plane strain condition, crack growth is dominated by plastic blunting and 

is roughly approximated by Aa = 5 LX. If the variation of stress intensity factor under cyclic load and stress 

intensity factor under monotonic load are identical, then Eq. (4.22a) can be rewritten as

da 1
-  = -A a  (4.22b)

which gives the relationship between the fatigue crack growth rate under cyclic load and the crack growth 

under monotonic load.

This procedure may be extended to plane stress condition by assuming that,

Aa = 5 tx =a5,y = a u 0 (4.23a)

and
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A5IX = cc-Au„ (4.23b)

where a  is a scalar factor. By introducing Eq. (4.18) and Eq. (4.23) into Eq. (4.21), we have

da 1 AK. ■>
—— s  A5tt-= —(------ ) '  Aa (4.24a)
dN 2 K,

If it is assumed that AK, and K , is identical, then crack growth rate is given by

da 1
—  = A5 R = — Aa (4.24b)
dN 2

Crack extension and the variation of J-integral value under a specific load level can be calculated by Eq. 

(4.3). Fatigue crack growth rate then can be calculated through Eq. (4.22b) or Eq. (4.24). Functional 

da
relationship between —  and cyclic J-integral, AJ, can be established by using least square fitting 

dN

technique,

da
= f(AJ,A,B) (4.25)

dN

where A and B are fitting constants and dependent on material analyzed.

4.7 UNSTABLE CRACK GROWTH

As described in foregoing sections, fatigue crack propagation under cyclic load may be simulated by using 

crack driving force, Jcurve, in conjunction with material resistance to crack growth, R curve, that is 

shifted along crack growth line. As crack grows increment by increment, R curve is shifted along 

advancing crack tip. A tangent point can always be found between the shifted R curve and a J_curve at a 

specific cyclic load level. After this tangent point is reached, J_curve value is always greater than R curve 

value, which means crack growth will become unstable and the material will fail by fracture. For a 

considered problem under a given applied load level, J curve is a function of current crack length, a. only. 

Rcurve is a function of the crack increment, (a-a0 ) only. The instability of crack growth is defined by

dJp
y r * - *  ^

Functional relationship for J curve and R curve can be established by the method described in foregoing 

• fdJ"! d JR
section. —  and ------ can be evaluated by differentiating J curve and R curve, respectively. The

v oa/ p da

critical crack length where unstable growth begins can be determined by
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0.A dJR .
* J P <427)

4.8 FATIGUE LIFE

The traditional approach to predict fatigue life of engineering structures or components under cyclic load 

by means of S-N data, cannot separate out crack initiation and propagation stages and cannot be applied to 

determine the structural Iife-expectancy with a crack-like defect of a known size. By using fracture 

mechanics parameter AK to characterize crack growth behavior, fatigue crack growth rate, such as Paris’ 

law, can be established for a given material from fatigue test. Therefore, the number of cycles required for 

a crack to extend from a initial crack length to a given crack length can be obtained by integrating fatigue 

crack growth rate equation. However, to predict fatigue life, the Final crack length has to be determined in 

advance and the total fatigue life should also include the contribution of unstable crack growth and 

fracture, where Paris’ law is invalid. On the other hand, the configuration correction factor in the formulae 

to calculate the variation of stress intensity factor AK, is only available for very simple and limited 

specimen geometry. Therefore, the application of the method is very limited.

The proposed engineering approach can resolve these difficulties encountered in predicting fatigue life by 

using traditional S-N curve or Paris law. In the proposed approach, fatigue crack growth rate equation can 

be established and the critical crack length can be determined by using shifted R curve and J curve. The 

number of load cycles for every crack increment within the range from initial crack length to critical crack 

length can be evaluated by integrating fatigue crack growth rate equation with respect to crack length, this 

is,

AN, = r d N -  ------- —-------  (4.28)
1 I , \  f(J(a), A, B)

Then, the fatigue life is the summation of all these number of load cycles, A N i. from to critical crack

length, a CT,

m
Nf = 2 ANi (4.29)

i=l

where m is numbers of crack increment from a„ to arr .
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4.9 J-CONTROLLED CRACK GROWTH

A proposed numerical approach has been presented in the previous sections, which is based on the 

fundamental concept o f  elastic-plastic fracture mechanics. This approach is assuming that J-integral is a 

valid parameter to characterize locally concentrated stress-strain field around crack tip and control the 

small crack growth. However, the applicability of J-integral to characterize the near crack tip field for 

growing crack is subjected several restrictions. To ground the proposed numerical algorithm on a solid 

basis and to obtain a reliable result, the restrictions will be reviewed in this section and have to be satisfied 

in the applications.

It is evident that J-integral or stress intensity factor, K ,, uniquely measures the intensity of the stress-strain 

fields surrounding the immediate vicinity of the crack tip under small-scale yield condition [135]. 

Therefore, J-integral can be used to 

characterize material resistance to crack 

growth by means of J resistance curve under 

condition that the amount of crack growth is 

small compared to all other relevant 

geometric dimensions,

Aa «  R

where R is some fraction of the plastic zone 

size. However, under large-scale yield 

condition and in the presence of significant 

amount of crack extension, the condition for 

J-integral characterizing the near crack tip field becomes more involved. Hutchinson et al. [135], Rice 

[134] and Shih et al. [136] have shown that under certain conditions, there exists a small region around 

crack tip where crack growth is controlled by J-integral. The work by Hutchinson et al. [135], Rice [134], 

and Shih et al [136] will be briefly reviewed below.

Three different regions around crack tip, as shown in Fig. 4.6, can be identified in the case of stationary 

crack:

1) Fracture process zone which consists of elastic unloading and non-proportional plastic loading.

2) A nearly proportional loading zone exits around the fracture process zone, which is known as the 

Hutchinson-Rice-Rosengren (HRR) [143] field and can be characterized by J-integral. Within this 

zone, the stresses and strains can be given by

Elastic Unloading Nearly Proportional 
Plastic Loading 
Dominated by 
J-integral

Non-Proportional 
Plastic Loading

Figure 4.6 Denotation of Terms in Condition 
of J-controlled Crack Growth.
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cr  ̂ =cr0C— )l/<n+I)5 ii(6,n)
CTo ‘ n r

P -  ^2.z_§£_xn/(n>l)~ ,n %
E» ~ C  0 7 7 '  'j  ^ '

b  < V n r

(4.30)

where

J is J-integral defined by Rice [71 ]

ct„ is initial yield stress

E denotes elastic modulus

r is radial distance from crack tip

CTjj,Ejj are known dimensionless functions of the circumferential position 0 and the hardening 

exponent n

l n a constant which is a function only of n [135,144],

3) Elastic-plastic field that encompasses HRR field, in which stresses and strains can be described by 

flow theory of plasticity.

In crack growth situations, the near-tip field is far more complex than in the stationary case. Based on a 

J2 flow theory of plasticity for an ideally plastic material. Rice [134] showed that the incremental strains in

the immediate vicinity of the crack tip are functions of an increase of the crack opening displacement, d5 

and the increment of the crack extension, da.

(4.31,
r 1 E r r 1

Eq. (4.31) can be rewritten as the rate of change of the strain field with crack growth,

| i  = ^ flj(e, ^ i , nM > gij(e) (4.32,
da r da ‘ E r r J

where. R(9) is a measure o f the distance to the elastic-plastic boundary, g y  is a dimensionless function of 

order unity and fy = asy(0) / In, a  is a scalar factor. The first term represents a proportional part of strain 

field, while the second term represents a non-proportional part caused by the advance of the stress field. If

• (4.33,da E r
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is satisfied, the strains at the crack tip are uniquely characterized by the crack tip opening angle, d8 / d a .

From J 2 deformation theory of plasticity, Hutchinson and Paris[138] derived the strain increments for 

hardening material as follows:

dEjj = kBJn/(n+l)r"(n/n+l,{——— + — Pfj} (4.34)
n + 1 J r

For an ideally plastic material, this expression reduces to [ 3 0 ]

1 dJ 1 da ~
dEjj = -------------- ^ ( 0 )  + ---------J — P i j ( 6 )  ( 4 .3 5 )

J a a 0 r J a a 0 r  1 -

where Pjj(0)is a dimensionless quantity of order unity. Eq. ( 4 .3 5 )  can be rewritten in terms o f the rate of

change of strain with respect to crack extension,

d£jj 1 1 dJ 1 J ~
- tJL = (------) - —  fij(9) + (------ ' “da aci„ r da ‘ cta„ r*7 1  = (------) - - T fu(9) + <------ )— Pij(G) (4.36)nn rtrr r rir» 1 « / r  1

If the condition,

dJ J
—  »  -  ( 4 .3 7 )
da r

is satisfied, the near crack tip field is uniquely characterized by J-integral.

Although Eq. (4.32) and Eq. (4.35) are derived from two different plastic theories, they bear a similar 

structure. Their first term represents proportional increments in the strain fields due to the increase in size 

or strength of the HRR singularity, while the second terms represent the non-proportional strain increments 

due to the advance of the HRR field with the extension crack. Therefore, when the fracture process zone is 

enclosed in the region dominated by d8 / da or dJ/da, Eq. (4.32) and Eq. (4.35) provide the basis for a 5- 

based or a J-based resistance approach for stable crack growth.

If a material-based length quantity D is defined as

_1_ _ dM  
D "  da J

and r < R , then Eq. (4.37) can be restated as

D «  r <R (4.38)
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For fully yield condition, R will be some fraction of the relevant uncracked ligament, b. By defining a non- 

dimensional parameter

b dJ
(4.39)

the condition for J-controlled stable crack growth can be restated as

co » I .

In addition, the uncracked ligament of the test specimen must also satisfy

(4.40)

4.10 EXAMPLES

By means of the proposed numerical algorithm, fatigue analysis was carried out for several examples with 

different materials. The numerical results are compared with available experimental data. They show very 

strong correlations.

4.10.1 EXAMPLE 1

As discussed in foregoing sections, crack driving force curve, J curve, can be used in conjunction with the 

material resistance curve, R curve, to predict fatigue life numerically. In this example, the proposed 

numerical procedure will be examined by analyzing fatigue behavior of a compact specimen of A533B 

steel at 93°C(200°F). Comprehensive investigations of fracture behavior of these specimens have been 

carried out by Shih et al[ 136.143 ] and Andrews et al[ 145], A brief description of their investigations will 

be given here and some of the experimental results will be employed in the analysis to predict fatigue life.

The specimen geometry was complied with the standard compact specimen(ASTM E399-74). 

Modifications were made to permit measurement of the load line deflection and the opening displacement 

near the crack tip as shown in Fig. 4.7. The uniaxial stress-strain curve for this specimen and its 

characterization by the Ramberg-Osgood law are given in Fig. 4.8. Elastic modulus E, poison ratio v, and

initial yield stress a 0 are taken to be 207xl03MPa (30xl06 psi.), 0.3 and 414 MPa (60x l03 psi.), 

respectively. The least squares curve fitting method gives a= l. 12 and n=9.7 in the fitting equation.

The elastic-plastic estimation o f J-integral value for the compact specimen has been obtained by Kumar et 

al [146] and is re-presented here as
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J = f i(a e)-^r*acroEochi(a W.n)[P/P0]n*‘

;  2 5  VK t C  3 0 5  fJ D : i .  
2 HOLES

w : G . C 0 5 W --------

— 1 2 5 W  i  O.OIOW

Figure 4.7: Geometry' of ASTM Standard Compact Tension Specimen.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4.41)



St
re

ss
 

(M
pa

)

85

where

Plastic Strain (m/m)

Figure 4.8: Stress-Strain Curve for A533B Steel at 200° F and Its 

Representation by the Ramberg-Osgood Law.

a  is a scalar factor, e0 is initial plastic strain 

P is the applied load per unit thickness,

a is the crack length, W specimen width c = W-a is the uncracked ligament as shown in Fig. 4.7 

E’=E, for plane stress, E' = E / (1 -  v2) for plane strain.

ae = a + (j>rv denotes effective crack length, in which rv = — [-— -](— )2 fs plastic zone size 
7 • pit n + l a 0

and <j> = ------^ —  . For plane strain condition, (3=2.
1 + (F )2 

* A
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The function f,(ac) is determined by

f,(a / W) = [02960(^) -  1.855(^)2 + 62>57(^)3 -  I0 .7 (^ )4 + 6 J 8 9 ( ^ ) 5]

The function h| can be obtained from Table A.I. PQ is the limit load per unit thickness and is given by

P0 = 1 .4 5 5 t | cct0

H = [(2a / c)2 + 2(2a / c) + 2]l/2 -  [2a / c + I]

For some specific load levels, J-integral within a given crack length range are calculated by substituting the 

value of h, in Eq. (4.41) and presented in Table A.2 and plotted in Fig. 4.9.

0.115 0.12 0.125 0.13 0.135 0.14 0.145

Crack Length ( M )

Figure 4.9: J-integral versus Crack Length Curves with Load as the Parameter 
for Plane Strain Compact Specimen of A533-B Steel.
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By fitting the test data of crack growth resistance provided in Shih’s [136] experiments using nonlinear 

fitting technique, functional relationship for the R curve can be established. For. some specific crack 

lengths, J-integral value can be calculated from this R-curve and are given in Table A.3 and plotted in Fig.

4.10

Crack Length(M)

Figure 4.10: R curve for Compact Specimen of A533B Steel at 200° F.

Both the R curve and J curve are taken as input of a fatigue analysis program (FLAPI.O) developed 

based on the proposed numerical procedure. Fatigue analysis was carried out. From the fatigue analysis 

results, crack increments that directly calculated from shifted Rcurves and Jcurves are extracted and 

presented in Table A.4. By considering the difference of crack tip deformation between monotonic and 

cyclic loadings, these crack increments in Table A.4 are modified according to the foregoing section to 

include the cyclic loading effects and are shown in Table A.5. Table A.6 provides cyclic increments of J- 

integral corresponding to the crack increments listed in Table A.4 and Table A.5. These cyclic increments 

of J-integral value are computed by assuming that it is two times o f the J-integral value, 5J, that is directly 

calculated from shifted R curves and J curves, i.e. _

AJ = 28J = J 

where J is J-integral value under monotonic load.
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By fitting the data pairs Aa in Table A.5 and AJ in Table A.6, we obtain fatigue crack growth rate equation

—  = 2.4*I0"5(AJ)“  
dN

The fatigue crack growth rate curve, together with the fitting data given in Table A.5 and Table A.6 are 

plotted in Fig. 4.11.

Cyclic J-integral (Mpa-M)

Figure 4.11 :Fatigue Crack Growth Rate as a Function of Cyclic J-integral

for A533B Steel at 200° FfCurrent Study ) and 97° (Dowling 

Fatigue Test).
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No fatigue test data were available for these specimens of steel A533B at 200° F. However, for 

comparison, Dowling’s [93] fatigue test results on the same material at different temperatures,

CTy = 70.0ksi and T=97°F, is also presented in Fig. 4.11. By comparing the numerical prediction of 

fatigue crack growth rate with experimental results, we can see that the proposed numerical procedure 

gives reasonable prediction of fatigue crack growth rate.

Fatigue life at a given load level can also be calculated within the program(FLAPl.O) by integrating the 

fatigue equation incremental by incremental from initial crack length, cD to critical crack length ca . At 

every load level, fatigue lives are calculated and presented in Table A.6 and plotted in Fig. 4.12.

Cycle Number

Figure 4.12: Numerical Prediction of Fatigue Life at Different Load 

Levels for Compact Specimen of A533B Steel at 200° F .

The J-controlled requirements for using J-intgera! in stable crack growth have been verified in[136, 145] 

for R curve obtained from plane-strain compact tension specimen of A533-B steel. With regards to use 

R curve and J curve to simulate fatigue crack propagation, J-controlled requirements also have to be 

satisfied so that J-integral is valid parameter to characterize near-tip stress-strain field. In this example, the
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J-controlled requirements are verified by introducing every crack increment and its corresponding J- 

integrai into Eq. (4.39) and Eq. (4.40). The crack increment and its corresponding J-integral value can be 

found in Table A.4 and Table A.6, respectively. The onset J-integral, J IC, and flow stress, <rv , are given 

in [145], The computation results show that

“ mm = 128 » 1  

“ max =  180 »  I

and

Pm in =  6 1  »  1 

Pmax =  3 0 5 3  »  1

which satisfy the J-controlled requirements. Comparing the results with recommended lower bound value

200 in [147], we can see that the p = — - —  at some points is not satisfied.
J R / c t v

4.10.2 EXAMPLE 2

In this example, fatigue behavior of a four point prismatic 

bending beam is examined using the proposed numerical 

approach. The beam is made of soil-cement material. Its 

elastic properties are given by elastic modulus

E= 1.724xl03 MPa( 2.5x10s psi). and poison ratio v=0.15.

i! I
A^a

m
h--------- ►4--------- »« i

Figure 4.13: (a) Four-Point Beam Used 
In Fatigue Analysis.

Its plastic properties are described by Mohr-Coulomb 

model with cohesion C=2.586 MPa(375.0 psi). and internal

friction angle <j>=42°. The difference in this example from

example 1 is that there are no sufficient experimental data to establish J resistance curve for the material. 

Second there is no available standard test procedure to conduct the J resistance curve test. Therefore, 

numerical approach described in section 4.2 has to be used to establish R curve used in fatigue analysis. 

The beam is 0.0762 M(3.0 inches) high, 0.0762 M(3.0 inches) thick and 0.4572 M(18.0 inches) long. The 

major and minor span are 0.4572 M(!8.0 inches) and 0.1524 M(6.0 inches), respectively, as shown in Fig. 

4.13. Considering the symmetry of geometry and applied load, only half of the beam is modeled in 

numerical analysis using finite element method. Eight-node isoparametric element is used throughout the 

half beam. Quarter point singularity element is arranged around crack tip. The finite element mesh is 

shown in Fig. 4.13. For a given crack length, a load displacement curve is traced and J-integral value is 

computed at each displacement increment by using ABAQUS [148], a general finite element analysis
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Figure 4.13(b): Finite Element Mesh for Half of the Four-point Beam.
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program. A typical load displacement curve computed from ABAQUS is shown in Fig. 4.14. For different 

crack lengths, a group of load displacement curves and J-integral vs. displacement curves are established. 

These two groups of curves are taken as input of the fatigue analysis program (FLAP1.0) which is based 

on the proposed numerical procedure. From these two groups of curves, R curve and J curve are evaluated 

by the program. Figure 4.15 shows a typical R_curve of the considered material. Based on these R_curves 

and J_curves, the increments of crack growth, Aa, and increments o f J-integral, AJ, are computed within the 

range from initial crack length to critical crack length. These values are presented in Table A.8-A.10. 

According to the assumptions, fatigue crack growth rate can be obtained by fitting these computed data 

pairs Aa in Table A.8 and Table A.9 and AJ in Table A. 10. The fitting curve, together with computed data, 

is plotted in Fig. 4.16. At each given load level, fatigue lives can be computed by integrating the fatigue 

crack growth rate equation incremental by incremental from initial crack length, cQ to critical crack length 

ca . For different load levels, fatigue lives are evaluated. At a given load level, initial flexural stress can 

be calculated for the beam. These initial flexural stresses at different load levels and corresponding fatigue 

lives constitute an S-N curve, as shown in Fig. 4.17.

A Flexural fatigue test has been conducted on the same material by Pretorius [149], The test was conducted 

under load control condition. Strains on the top and bottom surface o f the beam are monitored. From the 

measured strains, initial flexural stress, and initial radius of curvature ratio can be computed. By means of 

linear least fitting technique, three fatigue life equations in three independent variables i.e. initial flexural 

strain, initial flexural stress and initial radius of curvature were obtained. These equations and fatigue test 

data are given in Table A. 11 and plotted in Fig. 4.18, respectively. The fatigue life at specific stress level is 

recalculated from the initial stress fatigue equation listed in Table A. 11 and together with numerical 

predicted fatigue life are plotted in Fig. 4.17. By comparing these two curves, we can conclude that the 

predicted fatigue life using the proposed numerical procedure is agree very well with Pretorius[149] 

experimental results.

The applicability of fracture mechanics to soil-cement material has been investigated experimentally by a 

few investigators [150, 151]. Fracture parameters, such as stress intensity factor, K, energy release rate 

factor, G, J-integral, and R curve were obtained for several different soil-cement materials. The 

experimental results shown that there is a tendency of relating stress intensity factor to the crack 

propagation rate] 150], Fatigue crack growth law was also developed in [151].
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Figure 4.14: Load as a Function of Load-line Displacement for
Beanding Beam of Soil-Cement Material with Coherision

C= 2.586 Mpa. and Internal Friction Angle = 42° .
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Figure 4.15: J-Resistance Curve for Bending Beam o f  Soil-Cem cnt Material.
<0



Cr
ac

k 
Gr

ow
th

 
Ra

te 
(M

M
/C

Y
C1

.H
)

Figure 4.16: Fatigue Crack Growth Rate Changes with Cyclic J-integral 
for Bending Beam of Soil-Cement Material.
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Figure 4.17: Fatigue Life Changes with Internal Flexural Stress 
For Bending Beam( cp = 42° ).
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Soil-cement material generally is regarded as linear elastic. When microcracking developed around the 

crack tip, it may have also behaved nonlinearly. Although the process zone surrounding the crack tip is 

primarily due to microcracking that is confined to a relatively small process zone, the macrocracks still 

follow certain fracture modes as shown in test specimen.

If the crack tip process zone is small in relation to the crack length and other specimen dimensions, stress 

intensity factor, K. or J-integral, can be used to characterize near-tip stress or strain field. As long as the 

dimensions of the test specimen satisfy the requirements specified in ASTM standard test procedures, 

enough constraint should occur in the vicinity of the crack tip, which ensures the crack tip process zone 

within small size. In this case, the ratio of specimen width and thickness W/B=2.0. is within ASTM 

standard requirement and, it is sufficient to provide the necessary constraint. When ASTM standard 

requirements are satisfied, the radius of the plane-strain plastic zone size should not exceed rv =B/50. On 

the other hand, plastic zone size can be evaluated by [142]

o  = * (4.45)
8  ( T o '

and the crack opening displacement by

- M l  (4.46)
IoGcto

By introducing Eq. (4.46) into Eq. (4.45), the plastic zone size can be calculated by

“  = 7 T ~ r :---- u0 (4.47)
( I - v ' ) c t 0

Assuming E = 500cro, then Eq. (4.47) can be rewritten as

5007T
to = -------   uq = 1600uo (4.48)

1 -  v*

Therefore, the plastic zone size will fall within the following range
D

16Q0u. <co < —
50

In this example, the thickness of the beam is B=76.2(mm) and ry is approximately equals to 1,52(mm). The

maximum and minimum crack increment and corresponding J-integral can be found in Table A. 10 and 

Table A.l 1 and are

(Aa)max =0.001069 (mm); (AJ)raax = 0.001874 (MPa)

and

O
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(Aa)min =0.000067 (mm); (AJ)max = 0.000652 (MPa)

According to[71, 152], crack opening displacement can be determined by

5 = - ^ -  (4.49)

where a  is a constant and set to 1 here.

By assuming the tensile strength is dominant yield stress in the crack growth process, the plastic zone size 

can be evaluated as follows,

co max = 0.651 < B / 50 = 1.52 for maximum crack increment 

co mjn = 02266 < B / 50 = 152 for minimum crack increment

Comparing the plastic zone size with crack increments, we obtained

-Aa-m-̂  = 0.0016 « 1  and (Aa)min = 0.0003 « 1
® max ®  min

Therefore, the requirement for J-controlled crack growth is satisfied.

4.10.3 EXAMPLE 3

The fatigue behavior of the beam in example 2 is re-examined here using asphalt cement materials. Like 

soil-cement material, asphalt cement material is also treated as Mohr-Coulomb type C-«t> material. Viscous 

effect is not considered in this analysis. Detailed description o f the material properties is given in Table 

A.12. *

The procedure to obtain load displacement curves, J-integral versus displacement curves, R curves and 

J curves is same as that described in example 2 and will not be repeated in this example. The numerical 

results of increments of crack growth and increments of J-integral obtained from the program(FLAPl.O)

are given in Table A.13-A.15 and Table A.16-A.18, respectively for the material atl0°Fand at 68° F. 

Fatigue tests on the same materials have been carried out by Salam [24], The fatigue test data were 

presented by means of S-N curves. In constructing these S-N curves, the nominal stresses are determined 

by simply assuming a beam whose depth is reduced by the size of the notch. A log-log plot of nominal 

stress versus fatigue life is shown in Fig. 4.19 for different notch sizes. The S-N curve with notch size a/h =

0.4, and the numerically predicted fatigue life curve are plotted in Fig. 4.20 for the material at 10°F
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Figure 4.19: Norm al Stress as a Function o f  Fatigue Life for Bending 
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Cycle Number

Figure 4.20: Numerical Predicted Fatigue Life Variations with Initial 
Flexural Stress(S-N Curve) for Beading Beam of Asphalt
Cement Material at 10° F ( (J) = 48° ).
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and Fig. 4.21 for the material at 68° F. Once again, the proposed numerical procedure gives a very good 

prediction o f fatigue life in comparison with experimental results.

Extensive experimental investigation and theoretical models [25] have related fracture mechanics 

parameters (K, J) to the fatigue crack growth in asphalt cement materials. Asphalt cement material is 

generally considered visco-elastic or visco-plastic. However, at lower temperatures, as the material studied 

in this example, the material behavior is dominated by elasticity. In this case, small crack tip process zone 

assumption still holds in the analysis of stable crack growth. Therefore, the same procedure described in 

example 2 can also be used here to verify J-controlled crack growth conditions.

For the material at 10° F , from Table(4.13) and (4.14), we find

(Aa)max =0.00182 (mm)
(AJ)max = 0.008529 (MPa-mm) .

and

(Aa)min =0.00201 (mm)
(AJ)m„  =0.003613 (MPa-mm)

The plastic zone size can be calculated and is given by

“ max = 1-12 < B/50 = 1.52 for maximum crack increment

u) max = 0.0264 < B / 50 = 1.52 for minimum crack increment 

Comparing the crack increments with plastic zone size, we have

= 0.0016 «  1

(Aa)min
= 0.000423 « 1

J-controlled stable crack growth condition is satisfied at 10° F .

At 68° F, from Table A. 16 and Table A. 18, we found

(Aa)max =0.002016 (mm)
(AJ)max =0.007676 (MPa-mm)

and

(Aa)mjn =0.000145 (mm)
(AJ)min =0.001294 (MPa-mm)
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From these values, we obtain

(omJ, = 1008 < B / 50 = I f  2 for maximum crack increment

and

to mjn = 0.429 < B / 50 = \52 for minimum crack increment

(Aa)mjx = 0.002 « 1

( ^ * 0  min = 0.00034 « 1

J-controlled stable crack growth requirement is also satisfied at 68° F .
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Cyclic Number

Figure 4.21: Numerical Predicted Fatigue Life Variations with Initial 
Flexural Stress(S-N Curve) for Beading Beam of Asphalt
Cement Material at 68° F(<j> = 17° ).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

SUMMARY

A numerical approach to fatigue analysis is proposed in this chapter. This approach is based on the 

fundamental concept of elastic-plastic fracture mechanics. It utilizes crack driving parameter, J-integral curve, 

in conjunction with material resistance to fracture curve, R curve, to determine the amount of crack growth. 

Crack propagation is simulated by shifting R curve along crack growth direction after each crack extension. 

Critical crack growth length is determined by finding the tangent point between shifted R curve and J curve. 

The crack increment determined by J_curve and R curve is modified by considering the difference between 

plastic zone size under cyclic loading and monotonic loading. Thus, cyclic loading effects can be taken into

account. From these modified crack increments and their corresponding cyclic J-integral, the functional

relationship of fatigue crack growth rate can be developed by using curve-fitting technique. Fatigue life is then 

calculated by integrating crack growth rate function from initial crack length to critical crack length. S_N 

curve that is used in fatigue design can also be established.

There are several advantages when compared to other numerical approaches.

1. The amount of crack growth during each load cycle does not depend on the element size arranged along 

crack growth direction.

2. Fatigue crack growth rate can be established directly by fitting those numerically obtained crack 

increments and cyclic J-integrals.

3. Fatigue life prediction does not depend on parameters that have to be obtained from fatigue tests.

4. Unstable crack growth can be determined and critical crack length can be calculated.

Three fatigue problems with different material properties are analyzed by using the proposed numerical 

algorithm. For steel material, the fatigue analysis directly use J curve constructed from analytical formulation 

of J-integral and R curve obtained from experiment to determine crack increments. For other two problems 

where analytical J-integral formulation and experimental R curve are not available, a numerical procedure is 

introduced to establish these curves. These numerical results are compared with available experimental results, 

which show very good agreement and consistence as indicated in these examples.

This numerical algorithm works very well with simple loading problems such as bending beam specimen and 

compact specimen. For complex loading, the procedure to establish J curve and R curve has to be modified 

to satisfy different boundary conditions. Each fatigue analysis requires as many as 10-20 specimens with 

different initial crack lengths to obtained load displacement curves. Majority part of the computation time is 

spent on this step. Further investigation of elastic-plastic analysis algorithm to increase convergence speed and
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reduce computing time is recommended. Mesh size around the crack region should be identical among all 

these specimens with different crack lengths.
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CHAPTER V

NUMERICAL ALGORITHM FOR 

STATIC SHAKEDOWN ANALYSIS

5.1 INTRODUCTION

The response of an elastic-plastic system under randomly repeated loading programs may be very 

complicated. Extensive investigations have indicated that three basic response patterns can be 

distinguished:

Shakedown: If plastic deformations stabilized within early finite number of cycles, residual stress field, 

corresponding to the plastic strains, may develop such that the response to any further cycling is in a purely 

elastic manner, as if the system accommodates itself to the loading program.

Alternating plasticity: If the plastic strain increment changes alternatively in sign in every cycle under 

repeated loading, they tend to cancel each other out. As a result, the total deformation is contained within 

the yield zone at a certain point in the system. With load cycle continuing, material in the yield zone begins 

to cracking, which eventually leads to low cycle fatigue failure.

Incremental collapse: If the plastic strain incremental in each load cycle is of the same sign, the total plastic 

strain will accumulate with each cycle so that progressive deformation will develop and result in failure of 

the global system.

Shakedown theory has great importance in the design of an elastic-plastic system in civil and mechanical 

engineering. The shakedown concept was introduced by Griining [29] in 1926. The two fundamental 

theorems for the shakedown of an elastic-perfectly plastic continuum were developed by Melan [31.118] 

based on Bleich’s work [30], and Koiter [32], They are known as the static and the kinematic shakedown 

theorems, respectively. The classical shakedown theorems are also extended to include thermo-loading, 

dynamic loading, geometrically nonlinear effects, and creep and viscous effects. A comprehensive review 

can be found in [37]. Applications of the shakedown theorems have been found in many areas such as 

nuclear reactor parts, pressure vessel and piping, offshore platforms, geotechnical foundation, and layered 

pavement systems.

Analytical evaluation of shakedown load is complicated and can be performed only for discrete or simple 

continuous systems [153,154,47]. A matrix theory, based on finite element discretization and which, in 

principle, permits the evaluation of the shakedown load for a general continuum, was proposed by Maier

107
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[47,155], The first numerical calculation of the shakedown load of continuum was conducted by 

Belytschko [48], He formulated the static shakedown theorem as a nonlinear mathematical programming 

problem and implemented it by means of an equilibrated finite element model. He applied the method to 

find shakedown load o f a square plate with a circular hole subjected to a biaxial repeated loading program 

under plane stress condition. Corradi et al. [49] studied the same problem by means of a dual linear 

programming approach, which reduces the number of constraints in Maier’s approach to Melan’s theorem 

and bypasses the computation difficulty in nonlinear programming. Their approach is mainly based on 

expressing the yield condition by means of the coordinates of the vertices of the yield polyhedron and is 

implemented by using a compatible finite element model. Hung et al. [50] presented a finite element 

nonlinear programming formulation for the shakedown analysis, based on the static theorem and the ‘yield 

criterion of the mean.’ This approach reduces the number of discrete nonlinear yield constraints in 

Belytschko’s formulation by averaging the yield function over each element. For a fine mesh, the error in 

this procedure becomes very small as it was successfully used in limit analysis by Hung [156]. A finite 

element program based on the kinematic formulation and linearization of Von Mises yield criterion was 

developed by Aboustit et al. [53] in their investigation o f limit load of a uniformly loaded strip footing 

underlined by a shallow stratum of undrained clay. A plane strain shakedown analysis of a footing, 

underlined by dry soil and subjected to variable repeated loading was also carried out in their study. The 

same algorithm then was extended to include dynamic effects on shakedown load by Haidar et al. [157] 

and Mohr-Coulomb type yield surface was linearized and used in the analysis. The shakedown load of a 

fluid-saturated foundation soil was calculated for different cases. The analysis results show that dynamic 

loading and gravity loading have significant influence on the shakedown load. A finite element program 

based on compatible finite element formulation coupled with nonlinear mathematical programming was 

developed by Raad et al. [56] for the shakedown analysis o f a layered pavement system. In their approach, 

Mohr-Coulomb yield condition as inequality constraint was directly included in mathematical 

programming and the equilibrium and boundary conditions are accounted for as nodal forces in a weak 

sense. The nonlinear programming problem is solved by means of the Hooke and Jeeves [59] pattern 

search algorithm. Shakedown load was calculated for a layered pavement system with different thicknesses 

and material properties. The same program was used by Boubibane et al. [158] in shakedown analysis of 

pavement system with consideration for the anisotropic property of the materials.

The major difference among various computational methods in shakedown analysis is the way to handle 

the inequality constraint, i.e. yield condition. The linear programming approach proposed by Maier [47] 

using piecewisely linearized yield function (linear inequality constraints) to approximate nonlinear 

inequality constraints can be implemented by means of standard and fairly reliable linear programming
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routines. The large number of linear inequality constraints required to approximate the nonlinear inequality 

constraint was reduced by Corradi et al. [49] using a dual linear programming approach. However, the 

yield condition can only be approximately satisfied at every checkpoint in this approach. On the other 

hand, in the nonlinear programming approach that directly uses yield function.as constraint in the 

optimization process, the yield condition can be exactly satisfied at every checkpoint and only a single 

constraint is imposed at every checkpoint. But nonlinear optimization techniques are often difficult to 

implement. In Belytschko’s approach [48], the constructed pseudo-objective function does not include 

equality constraints for residual stresses. The equilibrium condition of residual stresses is assumed to be 

satisfied by using proper stress function. In Raad’s approach[56], the equality constraints for residual 

stresses are included in pseudo-objective function, but inequality constraints for yield conditions are 

excluded. The yield condition is separately computed and satisfied at every check point during Hooke and 

Jeeves [59] pattern search process. By doing so, it implicitly uses the penalty function method [159], but 

with penalty factor for the inequality constraints being equal to zero. In principle, all conditions and 

constraints of the problem are satisfied in this algorithm. However, because no stress state information 

within or on the yield surface is included in pseudo-objective function, the search direction in the 

optimization process may not be adjusted according to yield state.

In this study, a modified nonlinear programming algorithm is proposed based on Belytschko’s[48] 

approach and Raad’s[56] approach. The proposed numerical algorithm is based on compatible finite 

element method coupled with nonlinear programming technique. The pseudo-objective function includes 

both the inequality and equality constraints with each term normalized by corresponding yield stress and 

reference load, respectively, which makes them scalars and consistent with the original objective function, 

a load parameter. The penalty factors for these two terms are set to unit. Multidirectional search algorithm 

[160,161] is adopted in this approach as an optimizer to promote the efficiency in the optimization process. 

A finite element program is developed based on the proposed approach. Shakedown analyses were 

conducted for several examples using this approach and compared with available theoretical and numerical 

results. The comparisons show very good agreement.

5.2 STATIC SHAKEDOWN THEOREM

Considering a three dimensional elastic-perfectly plastic body, B, occupying the volume, V, and bounded 

by the surface, S. Any particle within the body is defined by Cartesian coordinates x=[ x, , x 2 . x 3 ] and its 

displacement referred to the coordinate is defined by u=[ u , ,  u 2 , u 3 ]. Body force is denoted by Xf in V.
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Surface traction p; is applied on SF and surface displacement u° is prescribed on Su . Here, S=SF +SU . 

The deformation of the body is assumed quasi-static under external load application.

The static shakedown theorem can be stated as follows. If there exists a time-independent residual stress 

field, p;j and elastic stress filed, cr^(x,t) corresponding to the load path Ps such that

Pi i i=0 in V, Ptjnj = 0 on SF

P„ = 0  for t> 0  E^kiP.jPydV < =o (5.1)

max max f[pO” (x,t) + p::(x)] = 0 
16 v p,en ‘ ‘

then the structure will shakedown over any load path P,(t) contained within a given load domain Q,

where p^ j denotes partial differentiation of residual stress components, pij with respect to the coordinates

x j , py is residual stress rate. E ̂  is the fourth-order tensor of elastic moduli, n f is the unit outward 

normal vector to the surface S, and p is a real number and greater than I .

This fundamental static shakedown theorem provides a lower-bound bounding value for considered elastic- 

plastic continuum under prescribed random load within domain Q. To evaluate the lower bound load 

parameter corresponding to a time-independent residual stress field, , which satisfies the equilibrium 

equation, boundary condition and yield condition, the static shakedown theorem may be transformed into 

the following nonlinear mathematical programming problem:

Max: p

s. t. ffpcr^ (x, t) -t- pjj (x)] < 0 V x e V

P'j.j(x)= 0 V x e V  (5.2a)

P i jn^ O  Vx e S F _

here p is defined as load parameter.

By application of the virtual work equation, crbjeijdV = £ XjUjdV+ |pjU,dS , the two equality 

constraints in Eq. (5.2a) can be compressed into a single weak form equation.
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£  PijEijdV =0 (5.3)

where

EU = -̂Cui.j + u j.i) with Uj = 0 on Su

is an arbitrary virtual kinematically admissible strain field and is stresses in .equilibrium with the

external load, X t , p , . The mathematical programming problem Eq. (5.2a) then can be rewritten as

Max:p (5.2b)

s t .  f[pa,j (x, t) + Pjj (x)] < 0 V x e V  (5.2c)

PijEijdv  = 0 V x e V  (5.2d)

5.3 FINITE ELEMENT FORMULATIONS

The continuum problem is usually discretized into a finite number of elements connected by nodes. The 

field variables can be evaluated by any standard numerical procedures. The determination of the 

shakedown load reduces to an optimization problem by coupling of the finite element method with suitable

mathematical programming technique. For discretized systems, the elastic stresses cr,j (x, t) at every

integral point can be determined by finite element method as follows

[K]u = P° . (5.4a)

a  = DBuc (5.4b)

where [K] - a n x n system stiffness matrix, n is the number of degree of freedom of the system, 

u - n x 1 system nodal displacement vector.

uc - 3*NK x 1 nodal displacement vector of an element, NK. is the number of nodes of N th 

element.

P° - n x 1 reference load vector. 

a  - 6 x 1 stress vector at an integral point.

B - 6 x 3*NK strain matrix.

D - 6 x 6 elastic mudulus matrix.

The equilibrium equation of Eq. (5.2d) for the residual stresses can be transformed into nodal forces by 

integrating over every element within V. The displacement field Uj(x) in an element is approximated by

means of nodal displacements (uf )k of the element and shape functions N k (x) ,
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N X

U j ( x )  = £ ( u f ) kNk(x) (5.5)
k=l

where k denotes the k_th node o f an element. The virtual strain field is calculated by

e(x.t) = B(x)ue (5.6)

The integral o f Eq. (5.2d) is calculated over every element in V. For an element number I. the integral is

numerically calculated by using Gauss-quadrature,

r r NG .
Ri = F Pijeijdv  = f PijB(x)uedV = ( .« ) * £  BT(x')PjCDj (5.7)

c ' i=i

where R ( = [X |,Y 1I,Z I1, X'NG, Y^G, Z'NG ]T a NG x 1 force vector of element 1. NG is the numbers 

o f Gauss-integral point.

Pi = [p,i i ’P!»2’P33’P,i2’Pi3’P23]T a ^ x  1 residual stress vector at the i_th Gaussian point.

Ve is the element volume.

a) j the weighting factor for the i_th Gaussian point.

The nodal forces at each element can be assembled into resultant nodal forces at each node, i, of the system

N E  N E  N E

Xj = £ x | t Yj = ^  Y k Z( = £ z k (5.8)
k=l k=l k=l

where NE is number of element around node i, Xk. Yk,Zk are nodal forces along x, y and z direction in 

system coordinate calculated from Eq.(5.4).

Now the mathematical programming problem for discretized system with NP nodes and M checkpoints can 

be formulated as follows.

Max: p

s.t. f[pcrlf(xk,t)  + p;j(xk ) ]<0  k=I M

N E  N E  N E

X i = 2 > . k = 0  Y. = £ Yk =0 z  = £ z k = 0 i=1 NP (5.9)
k=l k=l k=l

These formulations can be applied to axisymmetric and two-dimensional shakedown problems by reducing 

the index from 3 to 2 without losing generality.
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5.4 MULTIDIMENSIONAL SEARCH ALGORITHM

The constrained optimization problem can be transformed into a sequential unconstrained minimization 

problem by constructing a pseudo-objective function by using penalty function method [159] i. e.,

N P

T(p, o’j . ̂ ) = -p -  <j$ / , p* )+ X  [(x2 + y  2 + z 2) /(P°)21 (5. i o)
i

where ffcr’j ,p fj) = f(cr^ +crfj -f-paf +p,,)

- yield function. For pressure-dependent materials, Mohr-Coulomb yield function, 

f  = trt (I sin <f>) — cr3 (1 — sin <(>) — 2C cos <(> = 0 , may be used.

For pressure-independent materials von Mises yield function may be used,

f =[(GX - O y)2 +((Jy -CTZ)2 + (oz - o x)2 +6(T2y + T ^ + T ^ ) ] / 6  = T5 i 0 =ct0 i S

cr” - stresses in equilibrium with body force f 0.

cr‘ - stresses in equilibrium with statically applied force f ’ .

cr ̂  - elastic stresses corresponding to the reference force P ° .

<jg - a yield stress for a given material, k is an integer its value dependent on yield function used

in the analysis for Mohr-Coulomb yield function k=I and for Von Mises yield function k=2.

Now the optimization problem becomes,

Min T(p, ct* , p-) (5.11)

It can be solved by any suitable unconstrained optimization algorithm.

The nonlinear optimization approach has been utilized in searching the shakedown load by several 

investigators, among which a sequential unconstrained minimization technique[48] and Hooke and Jeeves 

pattern search algorithm[59] are employed, respectively. However, these algorithms are either very 

difficult in computation aspect or rather time-consuming in search the optimum, especially in solving 

actual engineering problems. To enhance the efficiency in searching shakedown load using nonlinear 

optimization algorithm, the multidirectional search algorithm proposed in [160] is adopted in the current 

study. This algorithm will briefly reviewed in the following section. Detailed description and convergence 

analysis can be found in [161],

For a discretized system of the engineering problem, the determination of the shakedown load using a 

nonlinear optimization technique involves a large number of variables and is very time-consuming. For
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instance, considering the two dimensional problem with EN elements, each element has four nodes. If  we 

use 2 x 2 Gauss-quadrature to calculate stresses within an element, the total optimization variables will be 

12*EN. In the three-dimensional case, the number of variables is 48*EN. In practical engineering 

problems, hundreds of elements are usually used in the finite element model. Therefore, the choice o f an 

optimization algorithm is crucial both in using computation resources and in promoting the accuracy o f the 

numerical results. The multidirectional search algorithm was presented by Toczon[16I] and is rewritten 

below.

Given an initial simplex S0 with vertices (v°, v°,- • -,v°), choose p,0eQ such that 

/* expansion factor */ 

pe(l,-wo), and 

!* contraction factor */

0e(O.l).

for i=0 n

calculate f(vk) 

end 

k <— 0

while (stopping criterion is not satisfied) do 

/* find a new best vertex */ 

j *- arg min, { f(vk) : i=0, .... n} 

swap vk and vk

repeat /

Check the stopping criterion.

!* rotation step */ 

for i= l . ..., n

r,k <- vj -  (vf -  v j ) 

calculate f(r,k) 

end

replaced = (min { f(vk) : i=0,.... n} < f(vk)) 

if replaced then 

/* expansion step */ 

for i= l , ..., n

initialization loop ***/

outer while loop *** !

inner repeat loop **/
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^  <- VS — fi(vf -  vk) 

calculate f(ek) 

end

if (min { f(e,k) : i=0,..., n} < min { f ( rk) : i=0, n})then 

/* accept expansion */ 

vk <- ek for i= I , .... n

else

/* accept rotation */ '

vk <— r,k fori=I,.. .  ,n 

endif 

else

/* contraction */ 

for i= l , ..., n

C,k *— vk - 0 ( v k -  Vg ) 

calculate f(ck) 

end

replaced = (min { f(ck) : i=0,.... n} < f(vk))

/* accept contraction *!

vk < - c k for i=l n

endif

until replaced /* end repeat loop */

k<- k+1

end /***» end while loop ****/

115

5.5 IMPLEMENTATION OF THE NUMERICAL ALGORITHM

The multidirectional search algorithm provides a method to search for best vertex that leads to minimum 

object function. This algorithm as a optimizer is incorporated into a finite element program to determine 

the shakedown load in the current study. The program is developed based on the following procedure:

A . Determining initial simplex S0 with vertices (v“, v”>,
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The initial simplex S0 should contain a vertex close to the solution. To form the initial simplex S0 , the 

following steps are followed. ’

Find minimum load factor among those related to each integral point for a reference load P° using yield 

function i. e..

fk[pcr![(xk,t)] = 0

Ho <-min{pk:k = 1,N} (5.12)

k0 ^-argmin^p.ri  = 1,N}

k0 is the first point to yield under load p 0P° . Then the elastic stress field is shifted to this point that is on 

the yield surface. The initial residual stress field is constructed such that its superposition with the elastic 

stress field will make the yield function to be the minimum value at point k0, while keep the stress state at 

other points within yield surface. Using the initial residual stress superposed with one small disturbance at 

only one component direction of stress forms each vertex. The initial simplex is then constructed by all

these vertices i. e. <v°, v ° ,- • v°).

B. Search for the desired minimum object function related to p0 

The multidirectional search algorithm is used in this step 

to find a direction along which the minimum objective 

function corresponding to p 0 is expected. The search is 

then shifted to this new direction. The search will be 

continued until the objective function satisfies a given 

convergence criterion. There are three possible trial steps 

in the algorithm. They are rotation, expansion, and 

contraction. Each step is defined as following 

Rotation step r < - v 0 - ( v - v 0) i= l , . . . , n

Expansion step r  <—v „ - p ( v - v Q) p e ( l ,+  °o) (5.13)

Contraction step r  « - v0 + 0 ( v - v 0) 0e(O,I). .

The choice of p and 0 is usually dependent on the 

requirement of convergence speed. In this algorithm, the

rotation step is always computed to test for the next best vertex. If a new best vertex has been identified, an 

expansion step along the same direction is computed. If the expansion step is successful, i.e. the objective 

function is smaller than that computed from rotation step, the simplex is updated. Otherwise, the simplex is

Figure 5.1: The Three Possible Steps Given the 
Simplex S with Vertices -^o , v i , v : >.
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updated at rotation step. If the rotation step is not successful, the contraction step is computed and 

automatically accepted. The three steps can be visualized as in Fig. 5.1.

The convergence criterion for this search algorithm is defined as

|T(p,<r*j, Pjj)|< e ' (5.14a)

where s ' is a small positive real number. From the analysis of pseudo-objective function of Eq. (5.10), we

can see that the minimum value of the second term cannot be less than 1 and the third term will approach

zero after a certain number of iterations. Still, within each load step, p is a constant value during the search 

iteration. Therefore, the convergence criterion of Eq. (5.10) can be alternatively rewritten in the following 

form

I T(p., a*j, Py) + p. |< e ' (5.14b)

where e " = 1 + e 0, e0 is a small positive real number and has to be predefined for a given problem.

For a layered pavement system, sand is usually used as subgrade material, which has a high internal 

friction angle (if)) with zero cohesion ( C ). In this case, the yield strength of the material

_ 2Ccos<(> 2Ccos(b
f, = -------------  or fc = ----------

I + sin<j> 1 — sin <j>

goes to zero. The pseudo-objective function reduces to the following form:

N P

T(p,cr*j,Pjj) = -p  + ̂ [ X 2 + Y,2 + Z 2] / ( P ° ) 2 (5.14c)
l

which is identical with the one used in Raad’s optimization algorithm[56].

If the equilibrated finite element model is used in the analysis and assumed that equilibrium condition is 

satisfied throughout the iteration step, the third term in Eq. (5.10) is equal to zero. Then, the pseudo

objective function is reduced to

Tfp.cr’j.pjj) = —p — / f(o-’j.pij) (5.14d)

which is identical with the one used in Belytschko’s formulation[48].

Therefore, Eq. (5.10) represents a general form of pseudo-objective function used in optimization 

algorithm in lower bound shakedown analysis.

In case Eq. (5.14b) is difficult to be satisfied, an alternative convergence condition is used

I T(Pic ,CT*j, py ) - T ( p k_,,ct’j , pjj-1) |<e'  (5.15)
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C. Update load factor based on current

Based on the updated simplex S„ obtained from the last step, the vertex (i.e. the residual stress vector in 

this case) along which objective function reaches minimum value can be extracted. From this residual 

stress field, the shakedown load factor can be updated by solving the yield function for p k at each integral 

point, i. e.

fktf1k'J | ( x k-t)>Pii(Xk)] = 0 k= l.......N

The new load factor can be obtained by

p„ « - min{pk:k = I N}

If the new load factor, p „ , is greater than the previous one, p n_,, the simplex is then updated. The updated 

simplex is also checked to satisfy the requirement that the residual stress field itself has to satisfy the yield 

condition at reference load P° = 0 . i. e.

fk[Pij(xk)] = 0 k= l ....... N

In case this condition is not satisfied, a modification is made to this simplex. Once the yield condition is 

satisfied at every point, a new initial simplex is formed based on this modified simplex. Another round of 

multidirectional search will begin. A new best vertex will be search based on the updated shakedown load 

factor p n. Step B and C will be repeated until the condition

is satisfied, where s is a predefined positive real number, in this case it takes 0.0001.

D. Check p,,(x) to satisfy ffp-;! (x)) < 0

The final residual stress field obtained from the previous step is checked at each integral point by means of 

yield function. If the yield function condition is satisfied at every point, the p,., is taken as the shakedown 

load factor. Otherwise, the residual stress field is modified such that,

fkITPij(xk)] < 0 k= l ....... N

is satisfied.

If the condition is satisfied, the shakedown load factor is calculated by solving

fk[Pk<*![(xkitUpij(x1()]<0

for p k and

Pshkdn <— min{pk:i = 1 N}

If the condition is not satisfied by the modified step, last step load factor, p (, will be taken as the 

shakedown load factor. The flow chart of the algorithm follows.
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Find feasible residual stress vector p

Find new load factor based on the feasible residual stress vector p
flHkCTf (xk-t ) + Pij(xk)] = 0 for k= l.......

p5 <- min{pk:k = 1,...,N} 
which is shakedown load factor.

N

Output shakedown load parameter 
_____________Fs______________

jL k
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5.6 EXAMPLES

Based on the algorithm presented in foregoing sections, a finite element program coupled with a 

multidirectional search technique is developed for shakedown analysis of engineering problems. Several 

classical problems are considered in this section. The numerical results of shakedown analysis using the 

proposed algorithm are compared with available theoretical and numerical solutions. The comparisons 

show that current numerical results agree very well with other results. These results are also compared with 

upper bound results, which show considerable consistency.

5.6.1 EXAMPLE 1

The problem considered in this example is a fixed end 

beam with a roller supporter at the other end. The 

loaded beam is shown in Fig. 5.2. Its dimension and 

material properties have been described in Chapter 

Six. Four different finite element meshes as shown in 

Fig. 5.3 to 5.6 are used in the lower bound 

shakedown analysis. Same as in upper bound 

situation, the lower bound shakedown loads were calculated at three different locations along the beam (i. 

e. L/3, L/2, 2L/3). The results are presented in Table 5.1. From these numerical results, we can see the 

influence of finite element mesh sizes and element side-size ratios on the shakedown load value. Fig. 5.7 

shows the shakedown loads variations with the finite element number used in the mesh. This curve shows 

that coarse mesh gives a higher load value than the finer mesh does. As the mesh become finer, shakedown 

load is convergent to a constant value.

The theoretical formulations to calculate the shakedown load for the beam have been presented by 

Konig [120] and rewritten in Chapter Six. Using these formulations the shakedown loads are calculated at 

locations L/3, L/2, and 2L/3 and given in Table 5.1 along with upper bound load values obtained in 

Chapter Six. The collapse load calculated from Konig’s formulation [120] and computed by using step by 

step finite element analysis are also listed in Table 5.1.

Mesh size influence on both the upper bound (from Chapter Six) and lower bound shakedown load are 

given in Fig. 5.8 for load applied at L/2 along with the theoretical results. From this figure, we can see that 

shakedown load approaches constant value as the finite element mesh becomes finer. However, the 

numerical results of upper bound shakedown load is lower than theoretical value when element numbers of 

the mesh are larger than 36. These results may be caused by the following two factors. One is that the

E

. i t  P,L, (K > 1

Figure 5.2: A Beam with One Fixed End and 
One Roller Supported End.
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Figure 5.7 Finite Element Mesh Influence on Lower Bound Shakedown Load.
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TABLE 5.1: SHAKEDOWN ANALYSIS FOR FIXED END BEAM

ELEMENT LOAD APPLIED AT
No. L /3 L /2 2L/3

Plastic Limit Upper Bound Lower Bound Flastic Limit Upper Bound Lower Bound Plastic Limit Upper Bound Lower Bound

•̂LL ^SH ■̂sn ■̂nt. ■̂Sll \sil ^SH ^Sll
18 5.428 7.676 6.404 5.338 7.204 6.368 5.141 7.183 6.249
36 4.372 7.063 6.14 4.368 5.724 5.399 4.181 5.615 5.31
48 3.897 5.898 5.615 3.955 5.586 5.351 4.233 5.423 5.088
64 3.383 5.642 5.522 3.469 5.076 4.933 3.34 4.987 4.796

Theoretical

Shakedown 3.375 6.75 3.333 5.625 3.62 5.625
Collapse 7.031 5.625 5.625

Step By Step Finite Element Analysis

Collapse 7.129 6.145 6.039

* Shakedown load is equal to load factor*P |herc P = 100 lb.(444 N)|

t

K)
00
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performance of four-point isoparametric plane stress element is not very good in beam bending analysis. 

The second one may be the element locking effects.

5.6.2 EXAMPLE 2 •

The lower bound shakedown load of a thin square plate with a central circular hole subjected to biaxial 

loading at its edges is examined in this example by using the proposed numerical approach. The lower 

bound shakedown load for this classical problem has was computed by Belytschko [48] who used the 

equilibrated finite element method coupled with nonlinear programming technique. The upper bound load 

was given by Carradi et al. [49] by means of compatible finite element method in conjunction with linear 

programming technique. The upper bound solutions for the problem have been presented in Chapter Six by 

using proposed numerical algorithms for the upper bound shakedown analysis. For the same cases 

discussed in Chapter Six, the lower bound shakedown loads are calculated in this example.

Considering that loading and geometry are symmetric in both X and Y axial, only one quarter of the plate 

is used in the analysis. The plate is divided into 40 rectangular elements with 54 nodes as shown in Fig. 

5.9. The numerical results of the lower bound shakedown load are illustrated in Fig. 5.10. Comparing this 

result with theoretical value of 0.47cro [155], it is 7% lower.

The mesh influence on the lower bound load value is also investigated in this example. Accordingly, a new 

different mesh is designed and shown in Fig. 5.11. For different mesh ratios, the lower bound shakedown 

loads are calculated and illustrated in Fig. 5.11. The variation of lower bound shakedown load factors with 

the mesh ratio as plotted in Fig. 5.12. From this plot, we can see that as the meshes become finer, the 

lower bound load is convergent to a constant value. The load factor varies with the finite element meshes 

both for lower bound and upper bound are plotted in Fig. 5.13 along with the analytical result.

5.6.3 EXAMPLE 3

Shakedown analyses o f layered pavement systems for different cases were conducted by Raad et al[56]. In 

this example, shakedown behavior of two-layered pavement system is reexamined using the proposed 

numerical algorithm. The finite element model and the material properties used in the shakedown analysis 

are shown in Fig. 5.14 and Table 5.2, respectively. Two situations were studied in this example. In the first 

situation, the surface layer with 9-in. thickness overlies on a stiff subgrade. Two kind o f materials were 

used for the surface layer (case 3A and 4A). The shakedown loads were calculated at different 

temperatures, which are represented by different elastic modulus as shown in Table 5.2. The numerical 

results are presented in Fig 5.15. From these results, we can see that the increase o f  elastic modulus does
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not raises the shakedown load values, which indicates that the majority part o f the traffic load is carried by 

surface layer. However, the results show that the shakedown load increases with the increase of tensile 

strength of the material, as shown in Fig. 5.15 (case 3 A and 4A). In the second situation, the surface layer 

overlies on two different sub-grade materials (case 1B and 2B) and changes in thickness. The numerical 

results show that the shakedown loads increase with the increase of the thickness of the surface layer. The 

rate of the shakedown load increases with the thickness of surface layer is lower for soft sub-grade than 

that for stiff sub-grade as shown in Fig. 5.16. The numerical results in [56] are also shown in Fig. 5.15 and 

Fig. 5.16 as a comparison. From these figures, we can see that the results are rather consistent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100 300  400 500 600

Figure 5.9: A Finite Element Mesh for a Thin Biaxial Tension Square 

Plate with a Central Hole(Only One Quarter is Shown).
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Figure 5.10: Lower Bound Shakedown Analysis Results of Thin 
Plate with Central Hole.
(**The Value in the Plot is the Ratio of ct/ ct0 ).
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SHAKEDOWN ANALYSIS(LOWER) :

Blase

0.55 0.36 0.444
0.60 0.37 0.454
0.65 0 .38 0.481
0.70 0 .39 0 . 534
0.80 0.42 0.618

Figure 5.11:

Finite Element Mesh and Numerical 
Results of Mesh Influence Analysis 
Bias = l„ / 1|. Shakedown Load in 
the Table is a /c rn . a„ is initial 
yield stress.



UJ



1

0.2  
0.4 0.5 0.6 0.7 0.8 0.9 1

Element Side-Size Ratio
*

Figure 5.12: Finite Element Mesh Size Influence on Lower Shakedown 
Load for a Thin Plate with Circular Central Hole and is 
Subjected Biaxial Tension Stress.
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Figure 5.13: Finite Element Mesh Size Influence on Shakedown Load 
for a Thin Plate with Circular Central Hole and is 
Subjected to Biaxial Tension Stress.
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Figure 5.14: Finite Element Mesh for Two-Layer Pavement
System  in S hakedow n A nalysis( 1 in. =  25.4 m m ).
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Figure 5.15:Variations of Shakedown Load with Elastic Modulus of
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Figure 5.16: The Variations of Shakedown Load with Surface Layer Thickness 

for Stiff Subgrade( 1 in. = 25.4 mm; 1 psi. =6.895 kPa).
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Table 5.2: MATERIAL PROPERTIES USED IN I WO-LAYERED PAVEMENT SYSTEM SHAKEDOWN ANALYSIS

Surface Layer Subgrade Layer

Ki Hi 'i l -, 4>i 1-2 v 2 l \

psi. in. - psi. degree psi. - psi. degree

Case 3 A
0.5 10®

1.0 •10® 9 0.25 100 35" 20000 0.47 20 0"

1.5 10®

3.0 10®

Case 4 A
0.5 10®

10 10® 9 0.25 500 35" 20000 0.47 20 O"
1.5 10®
3.0 10®

Case IB

4

1.5 10® 6 0.25 200 35" 3000 0.47 3 0"
9

15

Case 2B

4

1.5 10®* 6 0.25 200 35" • 20000 . 0.47 20 0"
9

15
** I in. -  25.4 nun I psi. -  6.895 kPa.
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5.7 SUMMARY

The static shakedown theorem is reviewed in this chapter. A numerical algorithm based on the finite 

element method coupled with a nonlinear programming technique is proposed to evaluate approximate the 

lower bound shakedown load. The proposed algorithm is different from others in the following two 

aspects:

1. Both the inequality and equality constraints are included in the pseudo-objective function under 

consideration that the residual stress field is optimized with respect to both conditions. These two 

terms are normalized with yield stress and reference load, respectively, so that the three terms in the 

pseudo-objective function are consistent with the original objective function, a scalar. The penalty 

factors for these two terms are set to unit, so that no iteration is carried out with respect to different 

penalty factors.

2. A multidirectional search algorithm is used in the optimization process to improve the convergence 

speed. As with other search algorithms, the majority part of computation time is spent on search

optimum direction and minimizing the objective function. When a problem becomes large and

involves many variables, convergence is rather slow and the algorithm becomes impractical. A 

multidirectional search algorithm searches the optimum direction in n directions simultaneously, 

which saves a large amount o f computation time. On the other hand, the adoption of a multidirectional 

search algorithm makes it possible to use more integral points to describe the stress state of an element 

rather than only one integral point.

Three examples that include beam, thin plate, and two-layered pavement systems are studied by using the 

proposed numerical algorithm and compared with available analytical and numerical results. The influence 

of finite element mesh size on shakedown loads is also investigated for beam and plate. The numerical 

results show that coarse mesh size usually gives higher shakedown load values than finer mesh sizes. 

However, as the mesh become finer, the shakedown load approaches a constant value.

Current studies reveal some problems that may be subjected to further investigations.

1. The numerical analysis of the shakedown load has shown that the optimization search basically goes

around several critical integral points. Most of the body remains at its initial state during the search. 

Therefore, deduction of search variables and limiting the search within sub-region will greatly cut off 

the computation time in the optimization search process.

2. A unit penalty factor is used in the pseudo-objective function in the current study and the numerical 

results show quite reasonable consistency with available analytical and numerical results. However,
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the penalty factor generally has great influence on the convergence speed and the accuracy of the 

optimization variable. Therefore, further study which looks into how different penalty factors 

influence the shakedown load may be necessary.

3. The numerical results have shown that finite element mesh sizes and element side-size ratios have 

certain influences on shakedown load values. To ground the comparison of different numerical 

algorithms and the accuracy of the analysis results on a common condition, it is suggested that a 

reasonable and identical finite element mesh size, mesh size ratio and element type be used for each 

algorithm.

4. Considering the upper and lower bound character of the approximate influence coefficients obtained in 

equilibrium and displacement finite element models, equilibrium finite element model always provides 

conservative estimate o f shakedown load while displacement finite element model gives higher 

shakedown load value. Therefore, an equilibrium finite element model may be more preferable to use 

in lower bound shakedown analysis.
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C H A P T E R  VI

AN ALGORITHM OF 

KINEMATIC SHAKEDOWN ANALYSIS

6.1 INTRODUCTION

The kinematic shakedown theory, as a complementary to the static shakedown theory [31 J, was established 

by Koiter [162] in 1960, which can be considered as a generalization of kinematic method of limit analysis. 

The difference between these two theories is that in limit analysis one only considers the critical 

kinematically admissible velocity field at the instantaneous moment of collapse; in shakedown analysis one 

has to deal with restricted but unspecified plastic deformation paths over any arbitrary time interval in a 

long term process. During the implementation of kinematic shakedown theorem, difficulties arise in 

constructing the kinematically admissible plastic deformation path and the integration along the path. 

Researches have been carried out to eliminate the time variable from the formulation of the kinematic 

method in shakedown theory. A incremental collapse mode approach has been employed by Gokhfeld 

[163, 164] to reduce the time integrals in Koiter’s kinematic shakedown theorem and evaluate upper bound 

load factor. Subsequently, Sawczuk [165], Gokhfeld and Chemiavski [163], Konig [119] and Nguyen and 

Mcrrelle [in 166], among others, used the same approach to evaluate the safety factor in practical cases. In 

this approach, a special mode of incremental collapse is assumed, i.e. the principal plastic deformation 

orientation is constant. This assumption may not guarantee that the best evaluation in this class equals the 

precise value of the safety factor. A modification to this approach is made by Pham and Stumpf [167] to 

consider more general plastic strain rate fields; therefore, a better upper bound load factor is assumed to be 

obtained. Polizzoto et al [45] approach the problem by replacing the integration over the time interval by 

integration over the set of basic loads, and formulate a kinematic method similar to that of limit analysis. 

An alternative approach is to deduce a kinematical method from the static one by means of mathematical 

programming method. For discretized elastic-plastic systems with piecewise linearized yield surface, 

Corradi et al. [49] formulate the kinematic formulation in the framework of the dual linear programming 

approach, in which the integration along any path is not required. A convex analysis approach is used by 

Kamenjarzh and Weichert [168] and Kamenjarzh and Merzljakov [169] to establish a kinematic method for 

the safety factor evaluation when the yield surface is not necessarily piecewise linear. In this approach, 

they transform the static extremum problem into a standard form of the convex analysis, and derive a dual 

problem by the usual procedure of convex analysis. The derived dual problem is a kinematic one, which is 

defined on a set of kinematically admissible velocity fields. This approach results in an upper bound safety 

factor without integration along any plastic deformation path. An explicit formula for the upper bound is

142
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derived by Kamenjarzh [170] for the shakedown problem with a polyhedron set of variable loads. 

Conditions are established under which the inflmum of upper bounds over a set of regular velocity fields 

equals the safety factor.

Although these proposed approaches have succeeded in eliminating the time variable in the kinematic 

shakedown theorem established by Koiter 162], construction o f kinematically admissible plastic paths is 

still not well resolved in numerical implementation, especially when optimization method is used in 

searching the safety load factor. In the current study, Kamenjarzh's explicit formula for the upper bound is 

employed in the numerical implementation. A algorithm that utilize eigen-mode to construct the admissible 

plastic deformation path is proposed to calculate the safety load factor. A multidirectional search algorithm 

[160] is adopted here to solve the nonlinear mathematical programming problem. *

6.2 FORMULATION OF KINEMATIC THEOREM

The loads applied on a elastic-plastic body may vary independently in sense, direction and intensity, but 

can be characterized by a finite number of loading types that their variation range can be defined by a load 

domain Q. in the r-dimensional space o f the parameters Ps , s=l,2, ..., r. Then the surface traction applied 

on the body, T, (x, t) and body forces F; (x, t) can be expressed by their load parameters,

r

T,(x,t) = ^ P s(t)T’(x), x e S T
s=l

r

F,(x,t) = £ p s(t)F’(x), x e V  (6.1)
s=l

Here, T ‘ , F* are surface traction and body forces in an s_th unit load mode, V stands for body volume and 

ST is that part of its surface on which the stress boundary conditions are prescribed, the remaining part of 

that is denoted by Su. It is assumed that the domain Q is convex, P[,P,: , ..., P" are the comers of the 

domain and o |E ,afjE , ...,o”Eare the unique respective elastic stress field. Also it is assumed that there is a 

real number p > 1, that pp,(t) e f i  .

Based on Koiter’s [162] and Konig’s[121] upper bound formulations, the kinematic shakedown theorem 

can be stated as the following:

The body will not shakedown if there exists a load program P,(t) resulting in elastic stress a E(x, t) and an 

independent cycle of plastic deformations EjjCx, t) such that:
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1° ) increments of the plastic strains over a certain time period ( t , , t , ) constitute a compatible field,

_ fj -  1 _  _ASjj(x) = J Ejj (x, t)dt = —(u j.j + u j j ) Uj = 0  on Su;

2°) the following inequality holds,

£  a !j (x’ l) îj (x- t)dVdt > £  J[ (x, t)}dVdt (6.2a)

where D{ejj} = o-jjEy denotes the rate of internal energy dissipation associated with the plastic strain rate 

Ejj, in which the stresses a,s satisfy the yield condition f ( a fj) = F(Ojj)-k2 = 0. F(Ojj) is a scalar

function of stresses and k is a material constant for perfectly plastic material, u is defined as displacement 

field.

On the other hand, the structure will shakedown in any load path contained within the domain Cl, for any 

plastic strain increments Ae^ (x) , if a number p > 1 can be found that the following inequality holds,

P J*’ J ^ i j  (x, t)Ejj(x, t)dVdt < j*1 D{Ejj(x, t)}dVdt (6.3a)

It has been proved that [119] if a given structure shakes down in a cyclic loading process which contains all 

the comers p1, i=l,2, . . ., n, of a given load domain Cl, then it shakes down in an arbitrary loading path 

contained within the domain. Therefore, considering an arbitrary load paths consisting of all the stress 

fields at the comers of the domain Cl, c ' f  ,cr‘E , ..., cr"E, and pk representing the set o f instants

corresponding to elastic stress field a f  , then the inadaptation condition Eq. (6.2a) reduced to the following 

form:

ctJ^ (x)Ejj (x, t)dtdV > j* ^  D{ejj (x, t)}dVdt (6.2b)

Assuming that the strain rate Ey(x,t) keeps constant orientation within each one of the sets p k , it can be 

expressed as

eJ (x, t) = A(x, t)6j (x) t e  pk (6.4)

where A(x, t) is a scalar function and A(x, t) > 0, A(x,0) = 0, A(x, T) = 1.

The increment of the plastic strains corresponding to instant p k is given by
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AEjj (x )= |  A(x, t)Ejj (x)dt 

It can also be shown that for any plastic strain history ej’ (x, t ) , the following inequality holds[121 ]

f 2 D(e?)dt> D(e|’( t2) - E 1‘’( t l )) = D(As?) (6.5)

By using Eq. (6.4) and Eq. (6.5), the inadaptation condition (6.2a) can be further written in the following 

form

£ X < ( x ) A e ‘ (x)dV> f ^D(AEj(x ) )dV (6.2c)
k = l k = l

Following the same argument the shakedown condition Eq. (3) becomes

r n i* n
H f  (x)As$(x)dV < f X  D(Ae.Ux))dv  (6.3b)

k= I ^  k = l

provided that

B I
^ A e ,i‘ (x ) = - ( u1j + u m) ^ = 0  on S„
k = l ~

In this formulation, as indicated in Eq. (6.4), a constant orientation o f plastic strain rate (x, t) is assumed.

In a practical situation, for a given system, it is difficult to say that the system will fail by a specific 

mechanism. This consideration limits the practical value o f the incremental collapse mode approach.

Alternatively, by means of convex analysis, Kamenjarzh and Weichert[168] formulate the kinematic

shakedown theorem into a standard form of the convex optimization problem and is briefly reviewed 

below.

First, the static shakedown theorem is transformed into the standard convex optimization problem using 

Minkowski function, i.e.

—  = inf{F(p):peZ} (6.6a)
S A

Here, S is a subspace in S that denotes a space of stress fields; F is defined as a convex function. The dual 

extremum problem of static extremum problem is the kinematic extremum problem of the shakedown 

theory and is given by

—  > sup{-G(e):e e  DefV} (6.6b)
Sa
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where, G(e) is Fenchel transformation defines the polar function of the function F with respect to the 

chosen bilinear form G(e)=sup{«j, e>-F(cr): oeS} 

e kinematically admissible strain rate fields 

V is a space of virtual velocity fields 

Def is the strain rate operator

E is a space of kinematically admissible strain rate fields e.

For a polyhedron set o f variable loads, the explicit kinematic extremum problem is given in the following 

form

s-inn . P(<.> + - + ■ * . >  : eE e , s < C W V W
< e , . r ,  > +•••+ < em,Tm > < e , , t ,  > + - - + < e m.xm » 0

where e k denotes kinematically admissible strain rate fields, and is the summation of elastic strain rate 

eeand plastic strain rate ep i.e. ek = e k + e k , 

t k is the elastic stress field corresponding to the load Ik = conv(l, , . . . ,  In),

< e k ’Tk >= l e k T k d V

D(e)=sup{<e, s>:seC}, eeE  

C defines the set of admissible stress fields

s is a stress field. .

A detailed derivation of Eq. (6.6c) was presented by Kamenjarzh[170]. Now, the consideration is given to 

construct an arbitrary kinematically admissible cycle of plastic rate and the upper bound formulation for 

Mohr-Coulomb type materials. For other materials, the same procedure may be followed.

6.3 PLASTIC DISSIPATION AND VIRTUAL WORK

In the application of shakedown analysis to pressure dependent materials such as soil and concrete, the 

mechanical behaviors are usually characterized by Mohr-Coulomb failure criterion. The Mohr-Coulomb 

yield function can be expressed in the following form

f (ct) = cr, (1 + sin (j>) -  <j 3 (1 -  sin <|>) -  2C cos (j) = 0 (6.7)

where a , and ct3 are principal stresses, C is the material cohesion and <j> the angle of internal friction. 

Geometrically, Eq. (6.7) represents an irregular hexagonal pyramid in principal stress space as shown in
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Fig. 6.1. Considering stress discontinuity at the comers of the yield surface, three cases have to be 

examined in deriving plastic energy dissipation for a three-dimensional problem.

Figure 6.1 Drucker-Prager and Mohr-Coulomb Criteria, 
(a) in Principal Stress Space; (b) in the Deviatoric Plane.

Case 1. The yield stress point is at the plane surface of the pyramid where a , >a-, > ct3 holds. By 

assuming plastic deformation follows associated flow rule, the plastic strain can be expressed in following 

form for a given loading path, pk

(6 .8)
J ^ i j

Introducing the yield function Eq. (6.7) into Eq. (6.8), we obtain plastic strain increments,

e,k = mk; Ek =0; e3 = - i .  k>  0 (6.9)

where m is obtained by considering the ratio of principal plastic strains ,

E,k _ Sf /5ci| _ l + sinij)
<3f/<3o3 I — sin

which leads to the following relationship between the plastic strain components,

±k ±k l+sin<j>
e> = 3 -— —  = -m s 3 -1—sm <p

The rate of plastic energy dissipation corresponds to a given loading path, pk within the loading domain Q 

can be calculated by

d = CT,ek +CT,Ek + a 3e$ (6.10)

Introducing Eq. (6.9) into Eq. (6.10), the rate of energy dissipation for a given plastic deformation path, can

be obtained by
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d = (m<T,-<j 3)X (6.11)

Case 2. The yield stress is at the edges of the pyramid, where ct, > cr2 = cr3 . Because two plane surfaces 

intercept at the edge, the stresses at the edge satisfy the two yield functions

me, — <j 3 = f  ̂ (6.12a)

and

mal -CT2 = f (! (6.12b)

By using flow rule, plastic strain increments that are normal to the two yield surfaces defined by Eq. (6.12) 

are given by

(t|k) ‘ = mX,; ( t k)‘ =0; (e3 )‘ =-A.| normal to surfacel
— lc i * • k 1 (0« 13)

( E | ) ' = m X 2; (e2 )"=-A.2 (e3 )‘ =0 normal to surface2.

The plastic strain increments at edge are the summation o f  the two sets of plastic strain increments, i.e.

£k = ( t k) ‘ + ( t k )2 = m(X, +X2);
j ; k  _  ^ k  ,1 , r ^ k  \  2
e 2 = ( e 2 ) ‘ +(e2 ) = -X2; (6.14)

£3k = (t3 )1 + ( t3k )2 = - i l .

The rate of energy dissipation then can be calculated by

d = cT|E,k +cr2E2 + cr3e k =(ma,  - ct3)(A., +A.2) = f̂ X. (6.15)

where fc' = (mcr , -ct3 ) and A.=(X,+X2).

Case 3. The yield stress point is at apex of the pyramid, where cr, = <r2 = a 3. There are six planes surfaces 

intercepting at the apex of the pyramid, the stresses at the apex of the pyramid satisfy the following yield 

functions

ma, - ct3 =CT|(m-l)fj
m a 2 - a 3 = a 2(m - l) f^  (6.16)
m a3 - a ,  = a 3(m -  l)f^

Three sets of plastic strain increments that are normal to plane surfaces of the pyramid can be obtained
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(t,k )' = (m - 1)j.,; (£,k )' = 0; ( t 3k)' = 0;
(Eik)2 =0; (?2k)2 = ( m - l ) X 2; (?3k)2 =0; (6.17)
( e f ) 3 =0; ( t k )3 = 0; (e3 )3(m-  1)A.3

Then, the plastic strain increments at the apex is the summation of the three sets of plastic strain increments

e,k = ( t k)‘ + (e,k )2 +(e,k)3 =(m-l)X,

e2 = ( i 2 )‘ + (e2 )2 + (e2 )3 =(m-l)X.2 (6.18)

e3k = ( t 3 )' +(?3 )2 + (e3 )3 = (m - l ) X 3

The energy dissipation then can be calculated by

dk =CT,e,k + ct2e2 + a 3E3 =a,(m-l)A. ,  +cr2(m-l)X.2 + a 3(m-l)A.3 = f,;X (6.19)

The plastic energy dissipation within an element is the integration of each point over the element, i.e.

Dk = j^ddV = £ ( a , E k +cr2e2 + ct3e3 )dV (6.20a)

Dk = J ^ f ' I d V =  J (̂mCT, - g 3)XdV= ^ -Cc°Ŝ A.dV (6.20b)

where cr, and ct3 satisfy yield function Eq. (6.7).

For the axisymmetric problem, three principal stresses can be obtained from quasi-static analysis; therefore, 

the formulation to calculate the rate of energy dissipation is the same as in the three-dimensional case.

For the two-dimensional problem, the plastic energy dissipation is always confined within a plane and

independent of the third direction. The formulations to calculate energy dissipation in plane stress or in 

plane strain problem are the same. Therefore, only the plane strain problem is considered in the derivation 

of formulation of energy dissipation. p

For the plane strain problem, Mohr-Coulomb yield function is given by Eq. (6.7). From flow rule, the 

plastic increments for a given plastic load path, p k can be calculated by

Ek =mX; e2 =0; s 3 = -X  k> 0 .  (6.21)
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The energy dissipation then can be calculated by

dk = a ,e |k +CT,ek + cr3e3 = (mcr, - ct3)A.= (6.22a)

The plastic energy dissipation rate within an element can be obtained by integrating of Eq. (6.22a) over the 

element domain.

Dk = £  f,;tdV = ^(mcx, - a 3)tdV  = £ ^ Cc°Ŝ dv  (6.22b)

The virtual work rate within an element done by a given load path under any kinematic admissible plastic 

strain rate Ejk (x) is calculated by

Wk = £ a , f  tjkdV

By denoting the bilinear form as.

< e k ,<jkE >= J ^ e k -<7kEdV =  J^CT^EjjdV

Then, we have,

^  k E ____ f _k  kE I , ;  _  f ,- kETrk _ k E ^ k  kE^-k<e ,<r >= I e -a dv = I (<r, e( +ct3 e2 + ct3 e3 )dV

For the plane strain problem, by considering the relationship of strain components, we have,

.  /  _  kE kE \  . /  kE . kE \  • i

< e k, a kE >= f ■ — 3 —  X.dV
•v l-sinij) •

The total plastic energy dissipation rate of considered body for any arbitrary load paths are given by

n M  n

D =  1 Z  D “ ( x ) } d V  = Z  Z  ° k (x)} ( 6  23)
k=l 1=1 k=l

and the total virtual work rate is,

n M  n

W = 1 Z ffliE (x)^ ( x ) d V  = Z  Z C UE(x)^ j (x) (6 24)
k=l 1=1 k=I

where n is the number of comers of the loading domain and M is the number of discretized elements of the 

considered body.
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The upper bound load parameter then can be determined by the following formulation,

j [ 2 ] D { ^ ( X)}dv £ Z Dk£ i >
H < - g - a —  ^ _____________= ± L J d _______  (6 25)
^  U /  ,  n M  n VV

£ £ ® , f ( x ) t * ( x ) d V
k=l j=l k=l

For any loading paths, Eq. (6.25) will compute an upper bound load factor. The infimum of these will give 

us the save upper bound load factor that can be determined by standard the convex optimization technique.

6.4 DETERMINATION OF ADIMISSIBLE PLASTIC STRAIN FIELD

In the implementation of kinematic shakedown theorem, difficulties arise in constructing the kinematically 

admissible plastic deformation paths and integrating along the paths. Although several approaches to 

kinematic shakedown theorem have been proposed, in which the time variable is eliminated in the 

formulations so that mathematical difficulty is reduced to the same order as that of a kinematic limit 

problem, the numerical implementation is rather involved and practical application is limited. With this 

regards, all possible admissible plastic deformation paths have to be constructed in the process of 

optimization, in which each will give us a upper bound shakedown load factor. The safe upper bound load 

factor is extremum that has to be found among all these load factors by a mathematical programming 

technique. By using the properties of eigen-mode that characterize every possible deformation mode of 

loaded body, a numerical procedure is proposed in this section to construct all possible admissible plastic 

paths and to find the safe load factor by using multidirectional search optimization algorithm.

From Lagrange’s Equation [171],

d 3T 8T  5U _
^ 7( 7 — ) - T — '" T —  =  O a ,  ( 6 . 2 6 )
d t  a q j  5 q j  0 q j  1

the equations of motion in generalized coordinates q can be obtained for a elastic system as follows,

[mkl]{q}+[kl!l]{q} = {Q}A (6.27a)

where

1

' k 1

I

T = — ̂ ^ m klq kcj| , the kinematic energy of the system 
^ k 1

u  = ^ 5 2 5 1  k klq kq, , the strain energy„ wkl* 
k I ’
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v  5u: 5u: 
m ki = /  m : ----------- , generalized mass

j

[ k u ] - the generalized stiffness matrix 

Q A - the generalized applied forces, 

u - displacement in geometric coordinate.

The natural frequencies and modes of the system can be determined by solving the eigen-value problem of 

the homogeneous algebraic equation corresponding to Eq. (6.27a), i.e.

[mkl]{q}+[kkl]{q} = 0 (6.27b)

Assuming the displacement in generalized coordinate is given by q = qsin(a)t + a ) . By introducing q into 

Eq. (6.27b), we then have,

([K]-co2M){q}=0 (6.27c)

where [K] is defined as a system stiffness matrix and M is a system mass matrix.

A nontrivial solution to Eq.(6.27c) exists only when its determinant vanishes, that is,

[|[K]-co-M||= 0 (6.27d)

The Eq. (6.27d) is called a characteristic equation of the system. Expansion of the determinant will give an 

algebraic equation of the N th degree in frequency parameter co2 for a system having N degrees of

freedom. The N roots of this equation (coi,co2,--\con) represent the frequencies o f the N modes of

deformation that are possible in the system. The frequency vector is denoted by

co =[co1,o)2,---,ci)n ]T (6.28)

When the natural frequencies of the system have been determined from Eq. (6.27a), the eigen-vector, i.e. 

the deformation modes then can be obtained by solving the homogeneous equation (6.27d) corresponding 

to every eigen-value. The following matrix can denote the natural mode vector

•fhi ‘t’a  *t*iN
21 *(• 22 ” ■ ‘t’iN

<t>NN

(6.29)
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By means of orthogonality relationships of the natural mode given by the following equations:

<j>*K<j>n = 0  m * n  '

the generalized mass, generalized stiffness and generalized force can be obtained by the following 

equations:

Mn =<(>;[ Kn =<|)nTK<j.n; P„(t) = <|>JP(t) (6.30)

Because the eigen-vectors corresponding to N different eigen-values cire linear independent, they constitute 

a basis of a linear space p  (displacement vector space). Thus, each vector in p  can be expressed as a 

linear combination of these basis vectors, that is,
n

q = <Mi = X ^ kT1t =Q^  (6-31)
k = l

with q = [ q l, q 2, - - ,q[t]e 'J :l na normal coordinates in iR" space. For a given displacement vector q, the 

normal coordinate vector q is uniquely determined due to the linear independence of the basis vector O.

To evaluate any arbitrary normal coordinate q k, Eq. (6.31) is multiplied by the product of the transpose of

the corresponding normal vector and the mass matrix, <)>k m , i.e.,

<t>kmq = <|>kmd>q (6.32)

Expanding the right-hand side of Eq. (6.32) gives

<|>fc m<t»q = +<Krm<M::+"-+<t>Jm(|>kq k -t"-~|-<t>Im<t>11 q„ (6.33)

By means of the orthogonality property of eigen-vector with respect to mass, all terms in Eq. (6.33) vanish 

except that corresponding to <|>t . By introducing this one term on the right side of Eq. (6.32) gives

(j)kmq = <|>km<J>kn k

from which,

"■ - ? £ r  (634)<pk m<pk

By using generalized mass, Eq. (6.34) can be rewritten as .
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n <f>klnqHk = -------- (6.35)mk

That the differentiation of Eq. (6.35) with respect to time gives the velocity field,
n

q = X < M k  =<*>Ti (6.36a)
k = l

with the normal coordinate is given by

Ht  -------- (6.36b)m

Eq. (6.36a) indicates that any admissible velocity field at the loading comer can be constructed by means of 

linear combination of eigen-vector <J>. i.e. ■

N

q* s= U .......n
1 = 1

k is a any instance of velocity filed at loading comer and N is the degree of freedom of the system.

Then the admissible plastic strain rate at loading comer is given by,

Ael| =y(qJ!j +qti ) 

where the velocity field q* satisfies the boundary conditions.

6.5 IMPLEMENTATION

Once the arbitrary admissible plastic strain path is constructed, the external work rate and internal plastic 

energy dissipation rate for the discretized system can be calculated by using Eq.(6.20) and Eq. (6.24). The 

upper bound load parameter is determined by Eq. (6.25). The safe upper bound shakedown load is 

determined by finding the infimum of the upper bounds using a nonlinear mathematical programming 

technique. There are two steps involved in the upper bound shakedown analysis. First, a numerical method 

has to be employed to find the stress-strain field at reference state ( P0 ) and velocity basis to construct 

admissible strain rate. Second, a nonlinear mathematical programming technique has to be utilized to find 

the extremum of upper bounds. In this step, multidirectional search is used as an optimizer.

A finite element method coupled with multidirectional search algorithm is employed in this study to 

conduct the upper bound shakedown analysis. The algorithm used in the program is illustrated in the 

following
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ALGORITHM

10 ) For discretized system using FEM to find eigen-vectors corresponding to N degree of freedom system.

Mv + Kv = 0 .

and elastic stress field at loading comers of the domain Q, ct,ie , ajjE ,.... ct"e ,

Kul =P° ............................ L=l,2.......N

a = DBu'

2° )Constructing velocity field at each loading comer by using the linear combination of eigen-vectors.

L

and admissible plastic strain path at each comer,

AeJ = B v'  k=l,2...... n

3°)  Find initial search direction by giving each velocity vector at loading comer a disturbance, which will 

lead to smallest objective function and shift the search in this direction.

4°) Beginning from the initial search direction, multidirectional search is used as a optimizer to find new 

search direction which will lead to smallest objective function.

5°) Check if the convergence criterion has been satisfied, i.e.

iFt.i - P v l < 5

If it is satisfied then go to step 6°) 

else go to step 4°)

6°) Output Load parameter p.

A flow chart can be found in the following page.
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CONTINUE

SEARCH FOR STARTING POINT:
Find a initial search direction (leads to smallest objective function) 

Index <-argmink{p°:s = l,...,n} - 
and shift the search to this direction

OPTIMIZATION:
Use the multidirectional search algorithm as an optimizaer search 
through every loading path and direction to find a best plastic strain
path Ae,j , which leads to smallest objective function i.e.

p k < - min{pk :s = I,2,--,r}
i

I X

n °  ^  
*--------------------------- < C T  Ip  - p i<5

YES

OUTPUT:
Shakedown load parameter p shakedn
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6.6 EXAMPLES

A program has been developed based on the proposed algorithm. The upper bound shakedown analysis is 

conducted for several example problems. These numerical results are compared with available numerical 

and analytical results.

6.6.1 EXAMPLE 1

The proposed numerical approach is used in the 

upper bound shakedown analysis of a beam with 

one fixed end and the other end is simply supported 

by a roller as shown in Fig. 6.2. The cross section 

of the beam is rectangular with thickness B=25.4 

mm(I.O in.), height H=76.2 mm(3.0 in.), and span 

L=304.8 mm(12.0 in.). The material is assumed 

elastic-perfectly plastic and obeys the Von Mises

Figure 6.2: A Beam with One Fixed End and 
One Roller Supported End.

yield criterion. The elastic properties are given by elastic modulus E = 24I*103Mpa.(3.5*107psi.) and 

Poisson ratio v = 0.15. The plastic behavior is characterized by yield stress crQ = 3.5 Mpa. (500.0 psi.).

Four different finite element meshes, as shown in Fig. 6.3 to Fig. 6.6 are used in the analysis. The 

shakedown loads were calculated at three different locations( i. e L/3, L/2 , and 2L/3) and the results are 

presented in Table 6.1. The numerical results show the mesh size influence on the shakedown load. The 

course mesh gives higher load value than the finer mesh. Fig. 6.7 shows the shakedown load variation with 

finite element number used in the mesh. As the mesh become finer, the shakedown load is convergent to a 

constant value.

The theoretical formulations to calculate the shakedown load for the same beam are presented 

by Konig [120] and are rewritten below

P = ^ °

p=-

pL £(2-3£ + £2) 

M„ 2

for £<0.5858 

for £>0.5858
P L  £ ( 3 - 4 £  +  £ 2 )

where M0 is full plastic moment of the cross-section of the beam, P = M0 /M e shape factor and Me is 

yield moment.
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Figure 6.7 Finite Element Mesh Influence on Shakedown Load(Upper Bound).
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Table 6.1:SHAK]EDOWN ANALYSIS FOR FIXED END BEAM(UPPER BOUND)
ELEMENT

No.
LOAD APPLIED AT

L /3 L /2 2L /3

-̂EL *-s h A. ^-SH •̂EL *-s h

18

36

48
64

5.428 7.676 

4.372 7.063 
3.897 5.898 

3.383 5.642

5.338 7.204 

4.368 5.724 

3.955 5.586 
3.469 5.076

5.141 7.183 

4.181 5.615 

4.233 5.423 
3.34 4.987

Theoretical
Shakedown

Collapse
3.375 6.75 

7.031
3.333 5.625 

5.625
3.62 5.625 

5.625
Step By Step Finite Element Analysis

Collapse 7.129 6.145 6.039

* Shakedown load is equal to load factor*P [here P = 100 lb.(444 N)]
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The shakedown load at L/3, L/2, and 2L/3 are calculated using these formulation and listed in Table 6.1. 

From these values in the table, we can see the difference between the theoretical results and the numerical 

results. The difference basically caused by numerical approximation on the one hand and on the other hand 

theoretical formulation is derived from plastic analysis of structural mechanics, while the numerical method 

treat the beam as a two-dimensional continuum problem. The formulae to calculate elastic limit and 

collapse load are also presented by Konig [120] for the beam and given as below.

Elastic limit load

VI  4  r -
P = —2-   for ^ < 2 (1 -1 /VP)

PL ^(2 — 34-h4 )

P = -̂ ~ 2 for § > 2 (1 -1 /VP)
PL « l - 4 )  S '

Collapse load

M„ 2-4
P = -

L $(1-5)

The elastic limit load and collapse load is calculated according these formulations and presented in Table

6.1. The collapse load is also calculated using step by step finite element analysis for the mesh with 64 

elements. The results are shown in Fig. 6.8 to Fig. 6.10 for load applied at L/3, L/2, and 2L/3, respectively.

6.6.2 EXAMPLE 2

A thin square plate with a central circular hole subjected to biaxial loading at its edges as shown in Fig. 

6.11 is examined by the proposed numerical approach. The lower bound shakedown load for the classical 

plane stress problem has been calculated by Belytschko [48]. He use equilibrated finite element method 

coupled with nonlinear programming technique to search for the shakedown load factor. His numerical 

results are relisted in Table 6.2. Based on Maier’s approach[47,153], Carradi and Zavelani [49] use 

compatible finite element method in conjunction with linear programming technique to obtain both lower 

and upper bound shakedown load factors that are also listed in Table 6.2. Fig. 6.12 and Fig. 6.13 illustrate 

Belytschko and Corradi’s shakedown analysis results, respectively. In the current study, the plate is 

divided into 40 rectangular elements with 54 nodes as shown in Fig. 6.14. The numerical results of the 

shakedown analysis are illustrated in Fig. 6.15. Comparing all these numerical results with theoretical 

results of 0.47 ct0 [48], Belytschko’s value is 9% lower than the analytical value, while that o f Corradi ‘s is 

7% higher, and the current results gives 5% higher. The mesh influence on shakedown load is also 

investigated in this study. For the comparison of mesh size influence, a different mesh is generated and 

shown in Fig 6.16. These are 6 rings of element around the circular hole. The ring expands from the hole to 

the edge. The elements within a ring are identical. The element sizes within adjacent rings have a constant
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Figure 6.11 A Thin Plane Stress Plate with a Circular Hole 
and Subjected to Biaxial Tension Stress a.
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Figure 6.12: Elastic, Shakedown and Limit Load Domains for a Thin Plate 
with a Circular Hole Subjected to Biaxial Tension Stress 
Along Its Edges(Adopted from T. Belytschko[10]).
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Figure 6.13: Elastic, Shakedown and Limit Load Domains fora Thin Plate 
with a Circular Hole Subjected to Biaxial Tension Stress 
Along Its Edges(Adopted from L. Corradi[25]).
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Figure 6.14: A Finite Element Mesh for a Thin Biaxial Tension Square 

Plate with a Central HolefOnly One Quarter is Shown).
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Figure 6.15: Shakedown Analysis Results of Thin Plate with Central Hole. 
**The Value in the Plot is the Ratio of a /c r0 .
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Table 6.2: Shakedown Analysis for a Thin Plate with a Circular Hole

Loading

Program Elastic Limit Shakedown Load Factor

Current Belytschko Corradi Current

Upper

Belytschko

Lower

Corradi

Upper

T, = 0 T, = ct 0.263 0.3 0.327 0.574 0.501 0.654

T, =cr T2 = a 0.368 0.231 0.417 0.494 0.431 0.504

**The Values in the Table is the Ratio of Applied Stress/Yield Stress.

side-size ratio. By adjusting this ratio, the meshes around the hole become finer or course accordingly. For 

different mesh ratios, the shakedown loads are calculated and listed in Fig. 6.16. The variation of the 

shakedown load factors with the mesh ratio is shown in Fig. 6.17. It can be seen that as the meshes become 

finer, shakedown load converges to a constant value.

6.6.3 EXAMPLE 3

In this example, the shakedown analysis is applied to geotechnical material. The problem considered is a 

shallow stratum of undrained clay under a uniform strip load. The mechanical behavior of the material is 

considered as elastic-perfectly plastic. The elastic properties are described by elastic modulus

E = 3.5* 107 psi. and Poisson ratio v=0.I5. The plastic behavior obeys the Mohr-Coulomb failure criterion 

with associated flow rule. The boundary conditions are assumed the same as those used by Hoeg [ 172] and 

Chen [173]. The base of the stratum is rigid and perfectly rough, while vertical boundary is assumed to be 

rigid and perfectly smooth. A uniform mesh with 120 nodes and 98 rectangular elements that is same as 

that used by Chen [173] in his limit analysis is employed again in the shakedown analysis. The dimension 

of this stratum and its finite element model are shown in Fig. 6 .18.

Upper bound shakedown load is calculated by using the loading program shown in Fig. 6.19 and the result 

is given in Table 6.3. The limit analysis of the plane strain problem has been conducted by Chen [173], 

among others, using Von Mises yield criterion. These results are also provided in Table 6.3. From Table 

6.3, it can be seen that the upper bound shakedown load is slightly lower than value obtained from limit 

analysis. The collapse load is also calculated in this study by tracing the load displacement curve. The 

result is shown in Fig. 6.20 and the limit load is 104 psi. Therefore, Mohr-Coulomb criterion gives higher 

limit load value than Von Mises criterion.
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Figure 6.18(a): A Stratum Supported by Rigid 
Sublayer Subjected to Uniformly Distributed 
Strip Load( I in. = 25.4 mm. I psi. = 6.895 
kPa.).
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Figure 6 .19 Loading Program Used in Upper Bound Shakedown 
Analysis of a Stratum Supported by Rigid Sublayer.
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Table 6.3 Collapse Loads for the Stratum

Reference Analysis Method Material Model Collapse Load (psi.)

Hoeg Elastic-Plastic Analysis -  F. D. M. Trasca ' 90

Chen Elastic-Plastic Analysis -  F. E. M. Von Mises 92

Valliappan[174] Elastic-Plastic Analysis -  F. E. M. Von Mises 78

Aboustit[53] Limit Analysis -  F. E. M. Von Mises 85

Current Study Elastic-Plastic Analysis -  F. E. M. Mohr-Coulomb 106

Current Study Shakedown Analysis -  Upper Bound Mohr-Coulomb 80

* F. D. M. For Finite Difference Method.

** F. E. M. For Finite Element Method.
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6.6.4 EXAMPLE 4

The approximate lower bound shakedown loads for two-layered pavement system have been calculated in 

chapter V. In this example, the upper bound shakedown loads will be examined for the same problem by 

using the proposed numerical algorithm. The finite element mesh and the material used in the analysis can 

be found in Fig.5.16 and Table 5.2, respectively. The numerical results for different elastic modulus of 

asphalt layer are shown in Fig. 6 2 1. From these curves, we can see that the increases of elastic modulus of 

asphalt layer do not give rise to the shakedown load of the system, which is the same as in lower bound 

situation. Figure 6.22 shows the differences between lower bound and upper bound results. These curves 

show that at higher elastic modulus, lower bound and upper bound shakedown load are very close. The 

variations of upper bound shakedown loads with the thickness of asphalt layer are illustrated in Fig. 6.23 

for two different sub-grade materials. These results indicated that shakedown load increases with both the 

asphalt layer thickness and strength o f sub-grade materials. Figure 6.24 and 6.25 show the differences 

between lower bound loads and upper bound shakedown loads. These results are also compared with the 

results in[56], which show they are rather consistent.
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Figure 6.22: The Variations of Shakedown Load with Elastic Moduli of 
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SUMMARY

The kinematic shakedown theory is briefly reviewed in this chapter. An algorithm that utilize the eigen

mode to construct an arbitrary admissible plastic deformation path is proposed to calculate the safety load 

factor by using Mamanjarzh’s convex analysis approach to the upper bound shakedown problem. This 

proposed numerical algorithm has two distinctive aspects from other approaches.

1. The convex approach proposed by Kamenjarzh does not require the yield surface be piecewise 

linearized.

2. The orientation o f an admissible plastic deformation path constructed by using eigen-mode does not fix 

in a constant direction.

To save computation resource in the search for the optimum direction and to minimize the objective 

function, a multidirectional search algorithm is employed in the optimization process.

Several classical problems are re-examined by using the proposed numerical algorithm. The numerical 

results show very good consistency with the available analytical and numerical results. The influence of a 

finite element size and element side-size ratio is also investigated in this study. The results for the number 

of problems have indicated that as the mesh size becomes small and finer, the upper bound shakedown load 

approaches a constant value.

Comparisons between the upper bound and lower bound shakedown loads are also made among these 

problems. The results show that upper bound values are higher than lower bound values for all of the 

problems and they are very close at some portions of these problems. It may conclude that the true 

shakedown load may lie between these upper and lower values.

The algorithm that uses eigen-mode to construct an admissible plastic deformation path works very well 

with small and medium size problems. The computations converge very quickly to their approximate 

bounding values. However, when the size of the problem becomes large and has a large number of finite 

elements and nodes, the space for storing every eigen-mode and the loop for searching optimum direction 

are also increased. Therefore, convergence speed becomes very slow.

As suggested by Prof. Lee [175], a sensitivity analysis of upper bound values to different mass matrices 

was conducted for the problem with same stiffness matrix. The results show that upper bound shakedown 

loads are dependent on mass matrix. Considering that different approaches in forming mass matrix will 

influence shakedown load values of same stiffness matrix, it is recommended by Prof. Lee [175] that the
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eigen-mode of stiffness matrix be used in the upper bound shakedown analysis to construct arbitrary 

admissible plastic deformation path. With regards to this, further investigation is needed.
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CHAPTER VII 

APPLICATIONS

7.1 INTRODUCTION

In the previous chapters, numerical algorithms have been proposed for fatigue analysis, lower bound 

shakedown analysis, and upper bound shakedown analysis, respectively. Examples were presented in some 

chapters and the numerical results were compared with available analytical, experimental, and numerical 

results. In this chapter, these proposed numerical algorithms are applied to the analysis of actual 

engineering problems.

7.2 TWO-LAYERED PAVEMENT SYSTEM

A two-layered pavement system as shown in Fig. 7.1 is analyzed in this section. The surface layer is made 

of asphalt concrete material with elastic modulus E = 3 o i06Psi (20700 Mpa), Poisson ratio v = 0-35, 

cohesion C = 1100 psi. (7.6 Mpa) and internal friction angle <J) = 48° at temperature T = 10° F- The 

subgrade layer is made of conventional sand material with E = 7800 psi.(54 Mpa), v = 0.45, C = 12 

psi.(0.08 Mpa), and (j, = o° - Fatigue and shakedown behavior were investigated for the system, 

respectively. Combined effects of fatigue and shakedown mechanism will be discussed according to the 

numerical results of fatigue and shakedown analysis.

7.2.1 Fatigue Analysis

Fatigue Analysis was conducted for the two-layered pavement system by using the proposed numerical 

algorithm. Considering fatigue failure mostly occurs in the surface layer, the asphalt concrete layer is 

treated as elastic-plastic material obeys Drucker-Prager yield criterion and the subgrade layer is assumed to 

behave elastically like half elastic space. Every layer is divided into numbers of four-node elements. The 

finite element mesh for the system is shown in Fig. 7.2. Following the numerical procedure that has been 

discussed in chapter IV, fatigue analysis was carried out. Elastic-plastic behavior was analyzed by using 

ABAQUS[148] to obtain load versus displacement and J-integral versus displacement curves for different 

initial crack lengths. These data are then taken as input data of program FLAP1.0 to perform fatigue 

analysis for the whole pavement system. About 20 different load levels were considered in the fatigue 

analysis. The numerical results of fatigue crack growth rate for the system are presented in Fig. 7.3. From 

this figure, we can see that for every load level, fatigue behavior of the system is uniquely represented by

190
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the curve of fatigue crack growth rate under given boundary conditions. For each load level, fatigue life 

was calculated and plotted in Fig. 7.4.

7.2.2 Shakedown analysis

For the same system, shakedown analysis was also conducted to calculate approximate lower bound and 

upper bound load values. In shakedown analysis, both the surface layer and subgrade layer were treated as 

elastic-plastic materials that obey Mohr-Coulomb yield criterion. The finite element mesh of the system for 

shakedown analysis is shown in Fig. 7.5. The existence of crack in the surface layer introduces singularity 

stress fields around the crack tip where the shakedown theory is not applicable. To approximately calculate 

the shakedown load, two steps were taken. First, the sharp crack is replaced by a notch with finite radius at 

its root as shown in Fig. 7.5b. The shakedown analysis was conducted for different notch sizes and the 

results were presented in Fig. 7.6. The numerical results provide us rather low shakedown load values. The 

reason for these is obvious. The elastic solution at the root of the notch under reference load gives very 

high stress values compared with other regions as shown in Fig. 7.7. In actual situation, the material will 

experience elastic-plastic deformation, the high stress level around notch root will redistribute whenever it 

excess yield stress o f the material and plastic zone will form around the root o f the notch. To be consistent 

with the actual situation, the second step was taken. The elements that have rather high stress values around 

notch root were taken out from the shakedown analysis so that higher shakedown load values were 

obtained. The results were also shown in Fig. 7.6. The upper bound shakedown loads were also calculated 

for different notch sizes same as lower bound cases and presented in Fig. 7.6 too.

7.2.3 Fatigue and Shakedown

In fatigue analysis, critical crack lengths with respect to each load level can be calculated, and the curve of 

the load level which vary with crack lengths was developed as shown in Fig. 7.8. Comparing the results of 

shakedown analysis as shown in Fig. 7.6, the shakedown analysis gives much lower values than fatigue 

analysis. Two reasons were considered to cause the differences.

a. Different crack shape. Sharp crack was used in fatigue analysis, while notch was used in shakedown 

analysis.

b. Different finite element mesh . Finer finite element mesh was used in fatigue analysis than that used in 

the shakedown analysis as shown in Fig. 7.2 and Fig. 7.5.

Shakedown behavior of a cracked body has been investigated experimentally, analytically, and 

numerically by Huang and Stein [176-178], As indicated in their studies, the threshold for crack 

propagation in cyclic load condition is due to the shakedown of the cracked body. Therefore, the fatigue 

threshold of cracked body can be predicted by using the shakedown theory. As most fatigue tests have
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shown that the load level at fatigue threshold is lower than the load level when fatigue failure occurs, the 

current results of fatigue and shakedown analysis are consistent with Huang and Stein’s[l 76] results.

7.3 SHAKEDOWN OF THREE-LAYERED PAVEMENT

Shakedown behavior of a three-layered pavement system, as shown in Fig. 7.9, is analyzed in this section. 

Lower and upper bound shakedown loads were calculated for different thickness of the surface layer. The 

influence of material properties such as cohesion and internal friction angle on shakedown load was 

investigated. The numerical results were compared among plane strain, axisymetric, and three-dimensional 

conditions. The surface layer of the pavement system is made of asphalt concrete with cohesion C = 1100

psi.(7.6 Mpa) and the internal friction angle (j> = 35°. The base material is made of gravel with C = 5

psi.(0.0345 Mpa) and <|> = 40o . Silty material is used for subgrade where C = 6 psi. (0.414 Mpa) and

(j) = 0° . The dimension of the pavement system and the material properties are given-in Fig. 7.9 and Table

7.1, respectively.

7.3.1 Results

The actual pavement system can be treated as a plane strain problem (by considering that the traffic load 

applies along longitude direction and deformation is uniformly distributed in the same direction), 

axisymetric (under consideration that the tire load acts on a circular area), and three-dimensional problem. 

Under a plane strain condition, shakedown loads (both the lower and upper bound values) were calculated 

for different thickness of the surface layer as described in Table 7.2. The calculated results are illustrated in 

Fig. 7.10. These results indicate that shakedown loads increase with the thickness of surface layer. For a 

given thickness of the surface layer, lower shakedown loads were calculated for different cohesion and 

internal friction angles of base layer under plane strain and axisymetric conditions. The computed results 

show that internal friction angle does not have significant influence on shakedown load values, which can 

be see from Fig. 7.11 - 7.15. Figure 7.11 shows the lower bound shakedown loads at different cohesion C = 

0, 0.0345, and 0.069 Mpa. It indicates that large C value gives higher shakedown load values. This figure 

also shows that the shakedown load of plane strain condition gives lower value than axisymetric condition 

for C = 0.0345 Mpa. Under plane strain, axisymetric, and three-dimensional conditions, upper bound 

shakedown loads were also calculated for different base materials and are presented in Fig. 7.12. The 

comparison shows that the results between axisymetric and three-dimensional conditions are very close at 

C = 0.0345 Mpa, but the results for plane strain condition are very low when compared with the results for 

axisymetric and three-dimensional conditions. Fig. 7.13 to 7.15 show the difference between lower bound 

and upper bound shakedown loads for different cohesion values.
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7.4 SUMMARY

Fatigue behavior of fiill-depth pavement of asphalt concrete was analyzed using the proposed numerical 

algorithm. Fatigue crack growth rate was obtained for the system and fatigue life was predicted. The 

numerical results show consistency with the fatigue test of asphalt concrete beam[24]. The shakedown 

analysis was also carried out for the same pavement system. To avoid numerical difficulty, the sharp crack 

was replaced by a notch with a finite radius at its root. Several different notch sizes were used to calculate 

the lower bound and upper bound shakedown loads. The variation of shakedown load with notch size was 

compared with the variation of fatigue failure load with crack length. The result show that the shakedown 

load is lower than the fatigue failure load. Two reasons may cause the differences: (a) different crack 

shapes; and (b) different finite element meshes. However, considering that the fatigue threshold is due to 

the shakedown of the cracked body [60-62], the proposed numerical analysis provides a reasonable result.

A shakedown analysis was also conducted for a full-depth three-layered pavement system. The numerical 

analysis results show that:

1. The shakedown load increases with the increase of the thickness of the surface layer.

2. The cohesion parameter of the surface layer has significant influence on shakedown load values.

3. The internal friction angle value of the surface layer does not have significant influence on shakedown 

load values.

4. The shakedown load values have larger difference between plane strain condition and axisymetric 

condition the difference between three-dimensional condition and axisymetric condition.

5. The analysis of finite element size influence on shakedown load does not conduct for these cases 

discussed in this section. However, it is recommended and necessary to use optimum finite element mesh 

size to obtain accurate results.

6. Upper bound shakedown analysis requires large amount of CPU time both in extract egien-value and 

optimization process. Further investigation is necessary to reduce the dimension of optimization 

variables and cut short CPU time.
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Figure 7.5(a): Finite Element Mesh of Two-Lavered Pavement 
System in Shakedown Analysis.
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Table 7.1 Material Properties of Three-Layered Pavement System

Layer Material Thickness Elastic Modulus Possion Ratio Cohesion Friction Angle

- - (mm) Mpa - Mpa deg.

Surface Asphalt Concrete X 6900 0.3 7.6 35

Base Gravel 200 200 0.35 0.035 40

Subgrade Silty 2000 70 0.45 0.04 0

Table 7.2 Shakedown Load for Threc-l.ayered Pavement System

Thickness (mm) Shakedown Load (Mpa.)

Surface Base Subgrade Lower Bound Upper Bound

50 200 2000 0.23 0.66

100 200 2000 0.62 1.24

150 200 2000 1.378I 1.9

200 200 2000 2.177 2.94



CHAPTER VIII 

SUMMARY AND CONCLUSION

Three numerical algorithms have been proposed and the corresponding computer codes have been 

developed herein to simulate fatigue crack growth behavior, to predict fatigue life, and to analyze 

shakedown phenomena of engineering objects and structures subjected to repetitive loading.

Most traditional finite element programs used to simulate fatigue crack growth behavior are unable to 

establish the fatigue crack growth rate equation. Some have to utilize fatigue test data to obtain fatigue 

crack growth rate and to predict fatigue life. The proposed numerical algorithm* utilized the fracture 

mechanics parameters, J-integral and R curve, to simulate the crack propagation, to establish the fatigue 

crack growth rate equation, to determine unstable crack growth, and to predict the fatigue life. Fatigue 

analyses were conducted for several different materials, such as compact specimen of A533B steel, four- 

point beam of soil-cement with different material properties (cohesion and friction), and four-point beam of

asphalt concrete at io°F  and 68° respectively. These numerical results were compared with the 

available fatigue experimental data and showed very good agreement. The proposed numerical algorithm 

was also applied to the fatigue analysis of a full-depth two-layered pavement system. The established 

fatigue crack growth rate was consistent with the data of fatigue test on a four-point beam of the same 

material.

The applicability of J-integral to a growing crack was checked for every example by satisfying the J- 

controlled requirements described in chapter IV. For A533B steel (at 200° R_curve and formulation to 

calculate J-integral for different crack length were available from the experimental data and were used 

directly in fatigue analysis by means o f the proposed numerical algorithm. For the soil-cement and the 

asphalt concrete materials, R curve and formulation to calculate J-integral for different crack length were 

not available and the numerical procedure had to be used to establish R curve and to calculate J-integral 

value. This step was rather time-consuming and took about 95% of total fatigue analysis time. Further 

investigation may be needed for this step to reduce the computation efforts.

Application of the shakedown theory to structural engineering has well been developed. For many simple 

beams and frames, shakedown loads have been calculated and documented [120], Applications of the 

shakedown theory to solid mechanics are very limited. Three reasons may be considered for the causes.

212
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(a) A theoretical elastic solution for general continuum problems, which is needed in a shakedown 

analysis, is limited, especially for complicated problems.

(b) Optimization algorithms used in finding optimum shakedown load factor is rather time-consuming, 

especially for large problems.

(c) There is no a simple approach to construct the arbitrary admissible plastic paths available in solving 

upper bound shakedown load problems.

Based on the available numerical algorithms in the shakedown analysis, a very general numerical algorithm 

was formulated in this study for the lower bound shakedown analysis. For the kinematic shakedown 

analysis, an eigen-vector technique was proposed and used to construct the arbitrary admissible plastic 

paths in searching for the upper bound shakedown load. A multidimensional optimization search algorithm 

was employed in searching for the optimum in both the lower and upper bound shakedown analysis.

Several examples were analyzed using the proposed numerical algorithms. These included a fixed end 

beam, a plane stress plate with a circular hole and subjected to uniformly distributed tensile stress along the 

edges, a stratum under uniformly distributed foundation loading, and a fiill-depth two-layered pavement 

system under traffic load. The numerical results were compared with the available analytical and numerical 

data and they showed very good agreement.

The proposed numerical algorithms were also applied to the shakedown analysis of a full-depth three- 

layered pavement system under consideration of plane strain, axisymmetric, and three-dimensional 

conditions. The results for plane strain condition yielded rather conservative shakedown load values, when 

compared to the results o f axisymmetric and three-dimension conditions. The results for axisymmetric and 

three-dimensional condition were very close.

In the lower bound shakedown analysis, it was found that the optimization search basically goes around 

several critical check points, while most part of the body remains at its initial state. Therefore, deduction of 

the search variables and limiting the search within sub-region will greatly reduce the computation efforts in 

the optimization search process.

In the kinematic shakedown analysis(upper bound analysis), the eigen-vectors for each eigen-value of a 

given system were used to construct the arbitrary admissible plastic fields. The numbers of eigen-value 

increase with the size o f the considered problems. When the problem becomes large, the time needed to 

obtain the eigen-value and the eigen-vector increases. Furthermore, the optimization search is also 

dependent on the dimension of the eigen-vector. When the dimension of the eigen-vector increases, the
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time spent on the optimization search will also increase. Therefore, further investigation to reduce the 

dimension of the eigen-vector may be necessary to reduce computation time.

The influence of the finite element mesh on the shakedown load was also investigated in the current study. 

The numerical results showed that coarse mesh yielded higher shakedown load values. When the mesh 

became finer, the shakedown load approached a constant value. Therefore, it is'recommended that a 

reasonable finite element mesh has to be used in the shakedown analysis. To ground the comparison of the 

results from different numerical algorithms on a common condition, a reasonable and a similar finite 

element mesh, element size ratio, and element type should be used for each algorithm.
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Table A. 1: Function hi for the Compact Specimen in Plane Strain Case

Hardening parameter n

a/b 1 2 3 5 7 10 13 16 20

1/4 2.23 2.05 1.78 1.48 1.33 1.26 1.25 1.32 1.57

3/8 2.15 1.72 1.39 0.97 0.693 0.443 0.276 0.176 0.098

1/2 1.94 1.51 1.24 0.919 0.685 0.461 0.314 0.216 0.132

5/8 1.76 1.45 1.24 0.974 0.752 0.602 0.459 0.347 0.248

3/4 1.71 1.42 1.26 1.033 0.864 0.717 0.575 0.448 0.345

1 1.57 1.45 1.35 1.18 1.08 0.95 0.85 0.73 0.63



229

Table A.2: J curve Data in Fatigue Analysis

Crack Length J-integral value at Different Load Levels (M)

(M) 241.32(MN) 258.56(MN) 275.8CMN) 293.04(MN) 310.28(MN)

0.11722 0.01375 0.02878 0.05744 0.10994 0.20276
0.11798 0.01698 0.03553 0.07092 0.13573 0.25034
0.11875 0.02099 0.04394 0.08770 0.16785 0.30958
0.11951 0.02600 0.05442 0.10862 0.20790 0.38345
0.12027 0.03225 0.06752 0.13476 0.25793 0.47573
0.12103 0.04008 0.08390 0.16746 0.32054 0.59120
0.12179 0.04989 0.10444 0.20846 0.39902 0.73594
0.12256 0.06221 0.13023 0.25995 0.49757 0.91772
0.12332 0.07771 0.16269 0.32473 0.62157 1.14642
0.12408 0.09725 0.20359 0.40638 0.77787 1.43471
0.12484 0.12193 0.25526 0.50951 0.97527 1.79879
0.12560 0.15315 0.32063 0.64000 1.22506 2.25951
0.12637 0.19274 0.40352 0.80546 1.54178 2.84368
0.12713 0.24299 0.50873 1.01547 1.94377 3.58511
0.12789 0.30663 0.64196 1.28141 2.45283 4.52404
0.12865 0.38773 0.81175 1.62033 3.10159 5.72062
0.12941 0.49130 1.02860 2.05320 3.93018 7.24889
0.13018 0.62389 1.30619 2.60729 4.99081 9.20514
0.13094 0.79399 1.66231 3.31817 6.35155 11.71492
0.13170 1.01272 2.12027 4.23231 8.10138 14.94235
0.13246 1.29467 2.71058 5.41064 10.35692 19.10252
0.13322 1.65899 3.47334 6.93320 13.27138 24.47802
0.13399 2.13091 4.46138 8.90545 17.04661 31.44114
0.13475 2.74376 5.74448 11.46667 21.94925 40.48368
0.13551 3.54170 7.41508 14.80140 28.33252 52.25713
0.13627 4.58337 9.59599 19.15477 36.66566 67.62696
0.13703 5.94694 12.45083 24.85339 47.57384 87.74627
0.13780 7.73683 16.19825 32.33370 61.89251 114.15596
0.13856 10.09302 21.13132 42.18072 80.74149 148.92145
0.13932 13.20374 27.64411 55.18105 105.62647 194.81989
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Table A.3: R curve Data in Fatigue Analysis

Crack Length (111) 0.117221 0.117602 0117983 0.118364 0.118745 0.119126 0.119507 0.119888 0 120269 0 12065

J-lntcgral (MN/M) 0 0.225715 0.4172875 0.58086 0.72163 084392 0951335 1 046815 1 13274 1 2110525

Crack Length ( in ) 4.615 4.63 4.645 4.66 4 675 4.69 4.705 4.72 4.735 4 75

J-lnlegral (in.-kips/inA2) 0 1 2898 2 3845 3 3192 4.1236 4.8224 5.4362 5 9818 6.4728 69203

Crack l.ength (nt) 0 121031 0.121412 0 121793 0.122174 0 122555 0.122936 0.123317 0 123698 <1.124079 0.12446

.(-Integral (MN/M) 1.283345 1.3508425 1.41456 1.4753025 1.5337 1.59026 1.648885 16796325 1.7264275 1.754375

Crack Length (in.) 4.765 4.78 4.795 4.81 4 825 4 84 4.855 4 87 4.885 4 9

J-lntcgral (in.-kips/inA2) 7.3334 7.7191 8.0832 8.4303 8.764 9.0872 94222 9.5979 9.8653 10 025

C rack Length (nt) 0.125603 0 124841 0.125222 0.125984 0 126365 0.126746 0 127127 0.127508 0 127889 0.12827

J-lntcgral (MN/M) 1.886675 1.798475 1 842575 1.930775 1 974875 2.018975 2.063075 2 107175 2 151275 2 195375

Crack Length (in.) 4.945 4.915 4.93 4 96 4 975 4 99 5.005 5 02 5.035 5 05

J-lntcgral (in.-kips/inA2) 10.781 10.277 10529 11.033 11.285 11.537 11.789 12 041 12.293 12 545

Crack Length (m) 0.128651 0.129032 0 129413 0.129794 0.130175 0 130556 0 130937 0.131318 0.131699 0 13208

J-lntcgral (MN/M) 2.239475 2.283575 2 327675 2 371775 2 415875 2.459975 2 504075 2 548175 2.592275 2.636375
Crack Length (in.) 5.065 5 08 5.095 5 11 5.125 5 14 5.155 5 17 5 185 5 2

J-lntegral (in.-kips/inA2) 12.797 13.049 13.301 13 553 13.805 14 057 14.309 14 561 14 813 15.065

Crack Length (m) 0.132461 0.132842 0.133223 0.133604 0.133985 0 134366 0.134747 0135128 0.135509 0.13589

J-lntegral (MN/M) 2.680475 2.724575 2.768675 2.812775 2.856875 2.900975 2.945075 2 989175 3 033275 3 077375
Crack Length (in.) 5.215 5.23 5.245 5 26 5 275 5 29 5.305 5.32 5.335 5 35

J-lntcgral (in.-kips/inA2) 15.317 15.569 15 821 16.073 16.325 16.577 16 829 17081 17.333 17.585

Crack Length (m) 0.136271 0.136652 0.137033 0.137414 0.137795 0.138176 0.138557 0.138938 0139319 0 1397

J-lntegral (MN/M) 3 121475 3.165575 3 209675 3 253775 3 297875 3 341975 3.386075 3.430175 3 474275 3 518375
Crack Length (in.) 5.365 5 38 5.395 5.41 5.425 5 44 5 455 5.47 5.485 5 5

J-lntcgral (in.-kips/inA2) 17.837 18.089 18 341 18.593 18 845 19.097 19 349 19.601 19.853 20 105

230



Table A.4: Crack Increments Data in Fatigue Analysis

Crack Tip Location 

(M)

Crack Increment at Different Load Levels (M)

24l.32(MN) 258.56(MN) 275.8(MN) 293.04(MN) 310.28(MN)

0.117221 0.000059 0.000171 0.000046 0.000047 0.000022

0.117983 0.000466 0.000235 0.000118 0.000058 0.000028
0.118745 0.000601 0.000296 0.000148 0.000072 0.000034

0.119507 0.000792 0.000376 0.000185 0.00009 0.000042
0.120269 0.001079 0.000483 0.000233 0.000113 0.000053
0.121031 0.00063 0.000296 0.000141 0.000066

0.121793 0.000839 0.000378 0.000178 0.000082

0.122555 0.001165 0.000489 0.000225 0.000103

0.123317 0.000642 0.000287 0.00013

0.124079 0.000865 0.000369 0.000165

0.124841 0.001221 0.00048 0.00021

0.125603 0.000634 0.000269

0.126365 0.00086 0.000347

0.127127 0.001225 0.000453

0.127889 0.000601

0.128651 0.000818

0.129413 0.001166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table A.5: Crack Increments Data in Fatigue Analysis

Crack Tip Location Modified Crack Increment at Different Load Levels (M)

(M) 241.32(MN) 258.56(MN) 275.8CMN) 293.04fMN) 3 10.28CMN)

0.117221 0.000029 0.000085 0.000323 0.000023 0.000011

0.117983 0.000233 0.000117 0.000059 0.000029 0.000014

0.118745 0.000301 0.000148 0.000074 0.000036 0.000017

0.119507 0.000396 0.000188 0.000093 0.000045 0.000021

0.120269 0.000539 0.000242 0.000117 0.000056 0.000026

0.121031 0.000315 0.000148 0.000071 0.000033

0.121793 0.00042 0.000189 0.000089 0.000041

0.122555 0.000583 0.000244 0.000113 0.000052

0.123317 0.000321 0.000143 0.000065

0.124079 0.000432 0.000184 0.000082

0.124841 0.00061 0.00024 0.000105

0.125603 0.000317 0.000134

0.126365 0.00043 0.000174

0.127127 0.000613 0.000227

0.127889 0.000301

0.128651 - 0.000409

0.129413 0.000583

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table A.6: J-integral Increments Data in Fatigue Analysis

Crack Tip Location J-integral at Different Load Levels (M)

(M) 241.32(MN) 258.56(MN) 275.8(MN) 293.04(MN) 3 10.28(MN)

0.117221 0.072255 0.206883 0.722013 0.057979 0.027599
0.117983 0.53688 0.281371 0.14444 0.071709 0.034101
0.118745 0.677455 0.351275 0.179448 0.088874 0.04221
0.119507 0.862807 0.440524 0.223591 0.110391 0.052348
0.120269 1.114895 0.55558 0.279528 0.137452 0.06505
0.121031 0.705938 0.350843 0.171606 0.081008
0.121793 0.906586 0.442479 0.214899 0.101114
0.122555 1.184748 0.561463 0.270056 0.126526
0.123317 0.718266 0.340777 0.158765
0.124079 0.929789 0.432195 0.199843
0.124841 1.228067 0.551662 0.252455
0.125603 0.710236 0.320273
0.126365 0.925827 0.408389
0.127127 1.231725 0.523855
0.127889 0.677239
0.128651 0.886581
0.129413 1.185502

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table A .8: Crack Increment Data in Fatigue Analysis

Crack l ip l.ocnlion Crack Increments at Different l oad Levels (MM)

(MM) 734 2(N) 700 8(N) 007 5(N) 034.1(N) 600.8(N) 567.4(N) 5.3-UN) 467 2(N) 433.8(N) 400 5(N) .333.8(N) 233.6(N)

3.2992 0 000807 0 000719 0 000035 0 000507 0.000498 0 0004.37 0 00038.3 0000285 0 000244 0 000204 0 000139 0 000067

.VI152-1 0.001019 0000901) 0 000800 0 00071.3 000002 000054.3 0 000470 0 000352 0 000299 0 000253 0 OOOI73 0000083

4 123') 0 001009 0 000948 0000838 0 000730 0 00004 000050 0 000417 0 000353 00003 0 000206 0 1)00098

4 9486 0000907 0 000848 0000738 0 000047 0.000483 0 000408 0 000345 0 000235 0.000113

5 77.14 0.000904 0 00084 0 00073 0 000543 0 000462 0 00039 0 000266 0 000128

6 598 0 000944 0000828 000061 0000522 0000435 0.000301 0 000144

7 4227 0 001045 0 000909 0000671 0000571 0 000482 0 000329 0000159

8 2474 0 001 0 000736 0 000629 000053 0000362 0 OOOI74

9 0721 0 000804 0 000695 000059 0 000395 0000189

9 8968 0 000874 0 000744 0000632 0000431 0000204

10.7215 0 000946 0 000799 0 (100679 0 000463 0000222

11 5462 0 000877 0 000738 0000502 0 000238

12 3709 0 000931 0000783 0000542 0000255

1.4.1050 0 00) 0 000848 0.000571 0 000274

14 0205 , 0 000897 0 000605 0 000294

14.845 0.000955 0.000644 0.000311
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Table A.9: Modified Crack Increment Data in Fatigue Analysis

Crack Tip Location Modified Crack Increments at Different Load Levels (I0**(-3)MM)

(MM) 734.2(N) 700.8(N) 667.5(N) 634.1(N) 600.8(N) 567.4(N) 534(N) 467.2(N) 433.8(N) 400.5(N) 333.8(N) 233.6(N)
3.2992 0.4035 0.3595 0.3175 0.2835 0.249 0.2185 0.1915 0.1425 0.122 0.102 0.07 0.034
3.31524 0.5095 0.453 0.403 0.3565 0.31 0.2715 0.238 0.176 0.1495 0.1265 0.086 0.042
4.1239 0.5345 0.474 0.419 0.368 0.32 0.28 0.2085 0.1765 0.15 0.103 0.049
4.9486 0.4835 0.424 0.369 0.3235 0.2415 0.204 0.1725 0.1175 0.056
5.7733 0.482 0.42 0.365 0.2715 0.231 0.195 0.133 0.064
6.598 0.472 0.414 0.305 0.261 0.2175 0.1505 0.072
7.4227 0.5225 0.4545 0.3355 0.2855 0.241 0.1645 0.08
8.2474 0.5 0.368 0.3145 0.265 0.181 0.087
9.0721 0.402 0.3475 0.295 0.1975 0.094
9.8968 0.437 0.372 0.316 0.2155 0.102
10.7215 0.473 0.3995 0.3395 0.2315 O.lll
11.5462 0.4385 0.369 0.251 0.119
12.3709 0.4655 0.3915 0.271 0.1275
13.1956 0.5 0.424 0.2855 0.137

• 14.0203 i 0.4485 0.3025 ,0.147
14.845 0.4775 0.322 0.1555
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Table A. 10: Cyclic J-integral Data in Fatigue Analysis

Crack Tip Location Cyclic J-integral at Different Load Levels (Mpa-MM)

(MM) 734.2(N) 700.8(N) 667.5(N) 634.1(N) 600.8(N) 567.4(N) 534(N) 467.2(N) 433.8(N) 400.5(N) 333.8(N) 233.6(N)

3.2992 0.00156 0.00145 0.00135 0.00126 0.00118 0.0011 0.00104 0.00092 0.00087 0.00082 0.00074 0.00065

3.31524 0.00181 0.00168 0.00155 0.00144 0.00133 0.00123 0.00115 0.001 0.00094 0.00088 0.00078 0.00067

4.1239 0.00187 0.00173 0.00159 0.00147 0.00135 0.00125 0.00108 0.001 0.00094 0.00082 0.00069

4.9486 0.00175 0.0016 0.00147 0.00136 0.00116 0.00107 0.00099 0.00086 0.00071

5.7733 0.00175 0.00159 0.00146 0.00123 0.00113 0.00105 0.00089 0.00073

6.598 0.00172 0.00158 0.00131 0.00121 0.0011 0.00094 0.00075

7.4227 0.00185 0.00168 0.00139 0.00127 0.00116 0.00097 0.00076

8.2474 0.00179 0.00147 0.00134 0.00122 0.00101 0.00078

9.0721 0.00155 0.00142 0.00129 0.00105 0.0008

9.8968 0.00164 0.00148 0.00134 0.0011 0.00082

10.7215 0.00172 O.OOI55 0.0014 0.00114 0.00084

11.5462 0.00164 0.00147 0.00118 0.00086

12.3709 0.00171 0.00153 0.00123 0.00088

13.1956 0.00179 0.00161 0.00127 0.0009

14.0203 . . 0.00166 0.00131 0.00093

14.845 0.00174 0.00136 0.00095
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Table A. I I : Pretorius Fitting Equations o f  Fatigue Test

Dependent Variable Fatigue Equation Standard Error in 
Independent 
Variable N r

Number o f  Data Points

Initial Strain lo g N f = 9.110 -  0.0578ei 7.24 31

Initial Stress log N , = 7 481 - 0 .0 1 62aj 14.2 25

Initial Radius o f  Curvature 
Ratio logN f = 10.281 -  11.280—

R
l),12 23

I •
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Table A. 12: Asphalt Cement Material Mechanical Properties

Temperature Elastic Modulus Poison Ratio Cohesion Friction Angle
(F ) ( MPa ) ( MPa ) - degree
10° 221 * I0J 0.35 7.584 48°

68° 2.48* 10;' 0.35 4.551 17°

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table A. 13: Crack Increment Data in Fatigue Analysis

Crack Tip Location Crack Increments at Different Load Levels (MM )

(MM) 1668.8(N) 1585.3(N) 1501.8(N) 1418.4(N) 1335(N) 125L6(N) 1168.l(N) 1084.7(N) 917.8(N) 834.4(14) 801(14) 767.6(14)

3.2992 0.00107 0.00095 0.00085 0.00074 0.00065 0.00056 0.00049 0.00042 0.00029 0.00024 0.00022 0.0002

3.300314 0.00132 0.00118 0.00104 0.00092 0.00081 0.0007 0.00061 0.00051 0.00036 0.0003 0.00027 0.00025

4.1239 0.00157 0.0014 0.00124 0.00109 0.00095 0.00083 0.00071 0.00061 0,00043 0.00035 0.00033 0.0003

4.9486 0.00182 0.00161 0.00142 0.00126 0.0011 0.00095 0.00082 0.0007 0.0005 0.00041 0.00037 0.00034

5.7733 0.00161 0.00142 0.00124 0.00108 0.00093 0.0008 0.00056 0.00046 0.00042 0.00039

6.598 0.00159 0.00139 0.00121 0.00104 0.00089 0.00063 0.00051 0.00047 0.00043

7.4227 0.00133 0.00115 0.00099 0.00069 0.00057 0.00052 0.00048
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Table A. 14: Modified Crack Increment Data in Fatigue Analysis

Crack Tip Location Modified Crack Increment at Different Load Levels ( MM )

(MM) 1668.8(N) 1585.3(N) 150l.8(N) 1418.4(N) 1335(N) I251.6(N) 1168.1(N) 1084.7(N) 917.8(N) 834.4(N) 801(N) 767.6(N)

3.2992 0.00053 0.00048 0.00042 0.00037 0.00032 0.00028 0.00024 0.00021 0.00015 0.00012 0.00011 0.0001

3.300314 0.00066 0.00059 0.00052 0.00046 0.0004 0.00035 0.0003 0.00026 0.00018 0.00015 0.00014 0.00013

4.1239 0.00078 0.0007 0.00062 0.00054 0.00048 0.00041 0.00036 0.0003 0.00022 0.00018 0.00016 0.00015

4.9486 0.00091 0.0008 0.00071 0.00063 0.00055 0.00048 0.00041 0.00035 0.00025 0.0002 0.00019 0.00017

5.7733 0.0008 0.00071 0.00062 0.00054 0.00047 0.0004 0.00028 0.00023 0.00021 0.00019

6.598 0.00079 0.00069 0.0006 0.00052 0.00044 0.00031 0.00026 0.00024 0.00022

7.4227 0.00067 0.00058 0.00049 0.00035 0.00028 0.00026 0.00024

ro•uo
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Table A. 15: Cyclic J-integral Data in Fatigue Analysis

Crack Tip Location Cyclic J-integral at Different Load Levels (Mpa - MM )

(MM) 1668.8(N) 1585.3(N) 1501.8(N) 1418.4(N) 1335(N) 1251.6(N) 1168.1(N) 1084.7(N) 917.8(N) 834.4(N) 801 (N) 767.6(N)

3.2992 0.006246 0.005898 0.005577 0.005255 0.004973 0.004711 0004479 0 004264 0.003893 0.003732 0.003672 0.003613

3.300314 0.007025 0006598 0 00617 0005802 0.005451 0.005131 0.004842 0004563 0004103 0003903 0003833 0003764

4.1239 0.007759 0.007244 0006756 0006305 0.005895 0005513 0 005166 0004847 0.004308 0.004077 0 00399 0.003904

4.9486 0.008529 0 007881 0 007317 0.006816 000633 0.005891 0005495 0005132 0.004506 0004239 0004136 0.004046

5.7733 0 007887 0 (107309 0 006773 000628 0005828 0005417 0 004701 0004402 0004287 0 004183

6.598 0 007815 0 007218 0006672 000617 0 0057 0004903 0 004564 0 004439 0 004318

7.4227 0 007051 0.006504 0.005994 0 005099 0.004725 0.004588 0.004457
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Table A. 16: Crack Increment Data in Fatigue Analysis

Crack Tip Location 

(MM)

Crack Increments at Different Load Levels (MM )

600.8(N) 567.4(N) 534(N) 500.6(N) 467.2(N) 433.8(N) 400.5(N) 367.1(N) 333.75(14) 300.4(N) 267(14) 233.6(14)

3.2992 0.00095 0.00085 0.00075 0.00066 0.00057 0.00049 0.00042 0.00035 0.00029 0.00024 0.00019 0.00015

3.300314 0.00118 0.00105 0.00093 0.00082 0.00071 0.00061 0.00052 0.00044 0.00036 0.00029 0.00023 0.00018

4.1239 0.0014 0.00125 0.0011 0.00097 0.00084 0.00073 0.00062 0.00052 0.00043 0.00035 0.00028 0.00021

4.9486 0.00161 0.00144 0.00127 0.00112 0.00098 0.00084 0.00072 0.0006 0.0005 0.0004 0.00032 0.00025

5.7733 0.00183 0.00163 0.00144 0.00127 0.0011 0.00095 0.00081 0.00068 0.00056 0.00046 0.00036 0.00028

6.598 0.00182 0.00161 0.00142 0.00123 0.00106 0.00091 0.00076 0.00063 0.00051 0.0004 0.00031

7.4227 0.00202 0.00178 0.00157 0.00136 0.00117 0.001 0.00084 0.0007 0.00056 0.00045 0.00034

» I



R
e
p
ro

d
u
ce

d
 

w
ith 

p
erm

ission
 

of 
the 

cop
yrig

h
t 

ow
n
er. 

Fu
rth

er 
reprod

u
ction

 
prohibited 

w
ithou

t 
p
e
rm

issio
n
.

Table A. 17: Modified Crack Increment Data in Fatigue Analysis

Crack Tip Location 

(MM)

Modified Crack Increments at Different Load Levels (MM )

600.8(N) 567.4(N) 534(N) 500.6(N) 467.2(N) 433.8(N) 400.5(N) 367.1(N) 333.75(N) 300.4(N) 267(N) 233.6(N)

3.2992 0.00048 0.00042 0.00038 0.00033 0.00029 0.00025 0.00021 0.00018 0.00015 0.00012 9.4E-05 7.3E-05

3.300314 0.00059 0.00053 0.00047 0.00041 0.00036 0.00031 0.00026 0.00022 0.00018 0.00015 0.00012 9E-05

4.1239 0.0007 0.00062 0.00055 0.00048 0.00042 0.00036 0.00031 0.00026 0.00022 0.00017 0.00014 0.00011

4.9486 0.00081 0.00072 0.00064 0.00056 0,00049 0.00042 0.00036 0.0003 0.00025 0.0002 0.00016 0.00012

5.7733 0.00091 0.00082 0.00072 0.00063 0.00055 0.00047 0.00041 0.00034 0.00028 0.00023 0.00018 0.00014

6.598 0.00091 0.00081 0.00071 0.00062 0.00053 0.00045 0.00038 0.00031 0.00025 0.0002 0.00016

7.4227 0.00101 0.00089 0.00078 0.00068 0.00059 0.0005 0.00042 0.00035 0.00028 0.00022 0.00017

I • •
• • •
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Table A. 18: Cyclic J-integral Data in Fatigue Analysis

Crack Tip Location 

(MM)

Cyclic J-integral at Different Load Levels (Mpa - MM )

600.8(N) 567.4(N) 534(N) 500.6(N) 467.2(N) 433.8(N) 400.5(N) 367.1 (N) 333.75(N) 300.4(N) 267(N) 233.6(N)

3.2992 0.00405 0.0037 0.00336 0.00305 0.00276 0.00248 0.00224 0.00201 0.0018 0.00161 0.00144 0.00129

3.300314 0.00483 0.00439 0.00398 0.00359 0.00323 0.00289 0.00259 0.0023 0.00204 0.00181 0.0016 0.00141

4.1239 0.00557 0.00506 0.00457 0.00411 0.00368 0.00328 0.00292 0.00257 0.00227 0.00199 0.00174 0.00153

4.9486 0.00631 0.00571 0.00515 0.00462 0.00413 0.00366 0.00325 0.00285 0.0025 0.00217 0.00189 0.00164

5.7733 0.00704 0.00637 0.00572 0.00513 0.00457 0.00404 0.00357 0.00312 0.00273 0.00236 0.00203 0.00175

6.598 0.00702 0.0063 0.00563 0.00501 0.00442 0.00389 0.00338 0.00295 0.00254 0.00218 0.00186

7.4227 0.00768 0.00687 0.00614 0.00545 0.00481 0.00422 0.00366 0.00318 0.00272 0.00232 0.00197

ro
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APPENDIX B

The fatigue life analysis program conducts fatigue analysis by using R curve and J-integral curve. R curve 

can be constructed by using load-displacement curves as described in chapter IV. Currently, load- 

displacement curves and J-integral-dispIacement curves are obtained by means of elastic-plastic analysis 

using ABAQUS [1]. FLAP then reads in the load-displacement and J-integral-dispIacement data and 

constructs R curves and J-integral curves. The R curve and J-integral curves are then used to establish a 

fatigue crack growth rate equation. From this equation, fatigue life for the considered system can be 

predicted. The definition of the variables used in the program are defined and explained in the followings.

Elastic-plastic Analysis

Elastic-plastic analysis is conducted by using ABAQUS to obtain load-displacement and J-integral- 

displacement data. This step is necessary in fatigue analysis. The input data can be stored in a file with 

extension .inp. ABAQUS can read these data from the file and conduct elastic-plastic analysis.

Input data:

The input data to ABAQUS usually includes node numbers and their coordinates, element 

numbers and their nodes, material properties, boundary conditions and applied loads. For a 

detailed description about how to use ABAQUS, refer to the ABAQUS user’s manual [I ].

Output data:

The output data from ABAQUS are very flexible and usually dependent on the user’s 

requirements. For fatigue life analysis, only load, displacement and J-integral values are needed 

and saved to a separated file, femdx.m. which will interface with the fatigue analysis program. 

FLAP. Each file corresponds to a specific initial crack length. Therefore, the number of load -  

displacement files is equal to the number of different crack lengths. •

Variable Defin ition o f Fatigue L ife  Analysis Program (FLA P )

Fatigue Analysis 

Input data:

HED (I2A6) 

NUMLD (14) 

NUMDX (14) 

NUMLL (14)

NUMDS (14)

Title of the job. which characterizes the problem you are running.

Total number of load displacement curves corresponding to different crack lengths.. 

Total number of crack increments used in constructing R curve.

Total number of load levels in fatigue analysis. For each load level, the program will 

compute fatigue life.

The number o f the displacement levels. It is not used currently.
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DX(F8.4) Displacement increments used in constructing R curve.

ALPHA(F8.4) 0.0. Currently is not used.

BETA(F8.4) 0.0. Currently is not used.

COHEN(F8.4) Material cohesion used for each layer for a layered system. •

PHI(F8.4) Material internal friction angle used for each layer for a layered system.

POW(F8.4) 1.0. Currently is not used.

HARDING(F8.4) This is a correlation factor that will correlate the fatigue crack growth rate obtained by a 

numerical method to best represent experimental data. The value is within 0.0001 -  

0.001.

The following variables are input in free format.

B0 Remaining ligament i. e. WIDTH -  CO.

CO Crack length.

WIDTH Width of a specimen.

THICK Thickness if a specimen.

DICK0 Crack increment.

DIS0 Displacement increment. It is not used currently

ALEN Length of a Specimen.

E0 Elastic modulus of a specimen.

Output data: '

The output data from FLAP basically contains the following information:

(1) Fatigue crack growth increment at each given load level. The data are arranged in columns from 

the highest load level down to the lowest load level.

(2) Cyclic J-integral values corresponding to fatigue crack growth increment at each load level.

(3) Fatigue crack growth rate obtained by fitting fatigue crack growth increment and cyclic J-integral 

values.

(4) Predicted fatigue life for each load level.

All of these output data are stored in the file, fatig.out.

The flow chart is provided on page 249. The listing of the program (FLAP) is stored on the enclosed 

diskette.
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EXAMPLE FOR INPUT DATA

A simple supported beam as shown in the figure below is given as an example to display how to input data 

for fatigue analysis using FLAP. The dimension and material properties are:

Length L = 457.2 MM,

Width W = 76.2 MM.

Thickness T = 76.2 MM,

Initial crack length CO = 3.2992 MM,

Ligament BO = 72.9008 MM. ®

Elastic modulus E = 17300.0 Mpa,

Poisson ratio v = 0.15,

Cohesion C = 2.586 Mpa, Friction angle ^ _ 420 .

mm

The input data to ABAQUS are data defining the finite element model and material properties. The finite 

element model used in this example is the same as in Fig. 4.3. The elastic material properties are described 

as above. The parameters of plastic properties of Mohr-columb material model, C and <j>, have to be 

converted to the parameters of Drucker-Prager material model. K. P, and CT° . The formulations to convert 

these parameters are detailed in the ABAQUS user’s manual [I], In this example they are given by K=1.0. 

(3 = 47° . and a ° = 4 55 Mpa. Static analysis procedure was used. Prescribed displacement was given to 

obtain load displacement data and J-integral displacement data. The output of load displacement data and J- 

integral displacement data are saved in the files. femdx.m.

The input data for fatigue analysis is given in the following:

/’ Job title */

FATIGUE ANALYSIS FOR SIMPLE SUPPORTED BEAM 

/* Control data as defined above */

20 20 15 15 0.0050 0.00 0.00 2.586 42.0 1.0 0.00057

72.9008.3.2992.76.2.762.0.8247.0.030.457.2.17300.0 

/* Load levels used in fatigue analysis */

801.0.767.625.734.25.700.875.667.5.634.125

600.75.567.375.534.0.467.25.433.88.400.5

333.75.267.0.233.625

/’Displacement levels. Currently not used */ 

0.06647,0.06268,0.0592,0.05572,0.05224,0.04875 

0.04527,0.04179,0.03831,0.03482,0.03134,0.02785
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0.02437,0.02089,0.01742

/* Data in the CF array. Currently not used */

3.2992,5.7733,82474,9.0721,9.8968

11.5462.13.1956.14.0203.14.0203.14.0203.14.0203

14.0203.14.0203.14.0203.14.0203.14.0203.14.0203

14.0203.14.0203.14.0203 

/*Crack increments */

0.8247 0.8247,0.8247,0.8247,0.8247,0.8247,0.8247

0.8247,0.8247,0.8247,0.8247,0.8247,0.8247,0.8247

0.8247,0.8247,0.8247,0.8247,0.8247,0.8247

/* Remaining ligaments corresponding to each crack increment */

72.9008,72.0761,71.2514.70.4267,69.602,68.7773,67.9526

67.1279,66.3032,65.4785,63.8291,63.0044,62.1797,61.3550

60.5303,59.7056,58.8809,58.0562,57.2315.56.4068,55.5821

54.7574,53.9327,53.108,522833
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Read in control 
data for fatigue 
life analysis

Output control data

SUBROUTINE READIN: 
Read in each load level 
and displacement levels

Femdl.m
Femd2.m

femdn.m

SUBROUTINE POLYO:
Reduce load displacement data based on 
the output files from ABAQUS

Output load displacement 
data

SUBROUTINE KEYCR:

Establish Key-curve: Ff Apl " I
[ W ’ WJ

SUBROUTINE FOMR1:
Establish R curve based on the K.ey-curve

f ^ L . L  
w  ’ w

SUBROUTINE FATIG:
Establish fatigue crack growth rate by fitting crack

ds
increments and cyclic J-integral: = f(A, B, AJ)

Output fatigue crack 
increments and ^
cyclic J-integral at r 
each load level

SUBROUTINE LIFE:
Predict fatigue life based on fatigue crack growth 
rate

Output

STOP ^
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Output from FLAP:

I FATIGUE ANALYSIS FOR BEAM STRUCTURE

LOAD DISPLACEMENT CURVE NUMBER = 20 
CRACK INCREMENTAL NUMBER = 20 
LOAD LEVEL NUMBER = 15 
DISPLACEMENT LEVEL NUMBER = 15 
DISPLACEMENT DIVISION = 0.0050 
MODIFICATION COEFFICIENT = 0.0000 
MODIFICATION COEFFICIENT = 0.0000 
COHENSIVE COEFFICIENT = 2.5860 
FRACTION COEFFICIENT = 42.0000 
POWER OF FITTING FUNCTION = 1.0000 
POWER OF FITTING FUNCTION = 0.000570

LOAD MATRIX

O.OOOOOOE+OO
0.323600E+03
0.645210E+03
0.835073E+03
0.000000E+00
0.321579E+03
0.640121E+03
0.765253E+03
O.OOOOOOE+OO
0.3I9325E+03
0.634939E+03
0.696910E+03
O.OOOOOOE+OO
0.316946E+03
0.629253E+03
0.690331E+03
0.000000E+00
0.314346E+03
0.623158E+03
0.623158E+03
O.OOOOOOE+OO
0.311547E+03
0.556682E+03
0.556682E+03
O.OOOOOOE+OO
0.308681 E+03
0.550835E+03
0.550835E+03
O.OOOOOOE+OO
0.305535E+03
0.544677E+03
0.544677E+03
O.OOOOOOE+OO
0.302207E+03

0.647766E+02
0.388202E+03
0.708918E+03
0.835073E+03
0.643809E+02
0.38568OE+O3
0.702941 E+03
0.765253E+03
0.639635E+02
0.382982E+03
0.696910E+03
0.696910E+03
0.635053 E+02
0.380035E+03
0.690331 E+03
0.690331 E+03
0.630066E+02
0.376819E+03
0.623158E+03
0.623158E+03
0.624744E+02
0.373412E+03
0.556682E+03
0.556682E+03
0.619134E+02
0.369812E+03
0.550835E+03
0.550835E+03
0.6132I2E+02
0.366006E+03
0.544677E+03
0.544677E+03
0.606917E+02
0.361986E+03

0.I29505E+03 
0.452670E+03 
0.772331 E+03 
0.835073 E+03 
0.128776E+03 
0.449627E+03 
0.765253 E+03 
0.765253 E+03 
0.127927E+03 
0.446408E+03 
0.696910E+03 
0.696910E+03 
0.126945E+03 
0.442862E+03 
0.6903 31 E+03 
0.690331 E+03 
0.125942E+03 
0.439038E+03 
0.623158E+03 
0.623158E+03 
0.124919E+03 
0.434930E+03 
0.556682E+03 
0.556682E+03 
0.123809E+03 
0.430659E+03 
0.550835E+03 
0.550835E+03 
0 .122589E+03 
0.426122E+03 
0.544677E+03 
0.544677E+03 
0 .121322E+03 
0.421243 E+03

0.I94287E+O3
0.517020E+03
0.835073 E+03
0.835073 E+03
0.193055E+03
0.5134I6E+O3
0.765253 E+03
0.765253E+03
0.191786E+03
0.509640E+03
0.696910E+03
0.696910E+03
0.190354E+03
0.505477E+03
0.690331 E+03
0.690331 E+03
0.I88899E+O3
0.500958E+03
0.623158E+03
0.623158E+03
0.187257E+03
0.496076E+03
0.556682E+03
0.556682E+03
0.185542E+03
0.491131E+03
0.550835E+03
0.550835E+03
0.183775E+03
0.485709E+03
0.544677E+03
0.544677E+03
0.181848E+03
0.480181 E+03

0.258949E+03
0.581232E+03
0.835073E+03
0.835073E+03
0.257332E+03
0.577047E+03
0.765253E+03
0.765253E+03
0.255608E+03
0.572524E+03
0.696910E+03
0.696910E+03
0.253736E+03
0.567657E+03
0.690331 E+03
0.690331 E+03
0.251711 E+03
0.562348E+03
0.623158E+03
0.623158E+03
0.249536E+03
0.556682E+03
0.556682E+03
0.556682E+03
0.247179E+03
0.550835E+03
0.550835E+03
0.550835E+03
0.244793 E+03
0.544677E+03
0.544677E+03
0.544677E+03
0.242146E+03
0.538220E+03
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0.538220E+O3
0.538220E+O3
O.OOOOOOE+OO
0.298861E+03
0.474368E+03
0.474368E+O3
O.OOOOOOE+OO
0.295354E+O3
0.468385E+O3
0.468385E+O3
O.OOOOOOE+OO
0.29I674E+03
0.462156E+03
0.462156E+03
O.OOOOOOE+OO
0.287925E+03
0.400478E+03
0.400478E+03
O.OOOOOOE+OO
0.283935E+03
0.394708E+03
0.394708E+03
O.OOOOOOE+OO
0.280015E+03
0.442397E+03
0.442397E+03
O.OOOOOOE+OO
0.275804E+03
0.383140E+03
0.383140E+03
O.OOOOOOE+OO
0.271566E+03
0.376976E+03
0.376976E+03
O.OOOOOOE+OO
0.267303 E+03
0.370726E+03
0.370726E+03
O.OOOOOOE+OO
0.262752E+03
0.313962E+03
0.313962E+03
O.OOOOOOE+OO
0.258315E+03
0.358036E+03
0.358036E+03

0.538220E+03
0.538220E+03
0.600424E+02
0.357885E+03
0.474368E+03
0.474368E+03
0.593572E+02
0.353611 E+03
0.468385E+03
0.468385E+03
0.586502E+02
0.349I00E+03
0.462156E+03
0.462156E+03
0.579172E+02
0.344334E+03
0.400478E+03
0.400478E+03
0.571637E+02
0.339740E+03
0.394708E+03
0.394708E+03
0.563841E+02
0.334836E+03
0.442397E+03
0.442397E+03
0.555845E+02
0.329830E+03
0.383140E+03
0.383140E+03
0.547579E+02
0.324703E+03
0.376976E+03
0.376976E+03
0.539201E+02
0.319503 E+03
0.370726E+03
0.370726E+03
0.530576E+02
0.313962E+03
0.313962E+03
0.313962E+03
0.521794E+02
0.308528E+03
0.358036E+03
0.358036E+03

0.538220E+03
0.538220E+03
0.120016E+03
0.416376E+03
0.474368E+03
0.474368E+03
0.118634E+03
0.411305E+03
0.468385E+03
0.4683 85E+03
0.117210E+03
0.405860E+03
0.462156E+03
0.462156E+03
0.115739E+03
0.400478E+03
0.400478E+03
0.400478E+03
0.114209E+03
0.394708E+03
0.394708E+03
0.394708E+03
0.112677E+03
0.388919E+03
0.442397E+03
0.442397E+03
0.111041 E+03
0.383140E+03
0.383140E+03
0.383140E+03
0.109415E+03
0.376976E+03
0.376976E+03
0.376976E+03
0.107761 E+03
0.370726E+03
0.370726E+03
0.370726E+03
0.106018E+03
0.313962E+03
0.313962E+03
0.313962E+03
0.104212E+03
0.358036E+03
0.358036E+03
0.358036E+03

0.538220E+03
0.538220E+03
0.179880E+03
0.474368E+03
0.474368E+03
0.474368E+03
0.177787E+03
0.4683 85E+03
0.468385E+03
0.468385E+03
0 .175630E+03
0.462156E+03
0.462156E+03
0.462156E+03
0.173435E+03
0.400478E+03
0.400478E+03
0.400478E+03
0.171141E+03
0.394708E+03
0.394708E+03
0.394708E+03
0.168784E+03
0.442397E+03
0.442397E+03
0.442397E+03
0.166318E+03
0.383140E+03
0.383140E+03
0.383140E+03
0 .163830E+03
0.376976E+03
0.376976E+03
0.376976E+03
0.161289E+03
0.370726E+03
0.370726E+03
0.370726E+03
0.158722E+03
0.313962E+03
0.313962E+03
0.313962E+03
0.156014E+03
0.358O36E+O3
0.358036E+03
0.358036E+03

0.53 8220E+03
0.53 8220E+03
0.239495E+03
0.474368E+03
0.474368E+03
0.474368E+03
0.236692E+03
0.468385E+03
0.468385E+03
0.468385E+03
0.233823E+03
0.462156E+03
0.462156E+03
0.462156E+03
0.230820E+03
0.400478E+03
0.400478E+03
0.400478E+03
0.227710E+03
0.394708E+03
0.394708E+03
0.394708E+03
0.224517E+03
0.442397E+03
0.442397E+03
0.442397E+03
0.221290E+03
0.383140E+03
0.383140E+03
0.383140E+03
0.217920E+03
0.376976E+03
0.376976E+03
0.376976E+03
0.214519E+03
0.370726E+03
0.370726E+03
0.370726E+03
0.210989E+03
0.313962E+03
0.313962E+03
0.313962E+03
0.207412E+03
0.358036E+03
0.358036E+03
0.358036E+03

J-INTEGRAL MATRIX FOR LOAD CONTROL

0.122977E-02
0.691242E-03
0.298046E-03
O.OOOOOOE+OO

0.109200E-02 
0.607555E-03 
0.248428E-03 
0.139366E-02

0.984308E-03
0.532638E-03
0.169213E-03
0.124257E-02

0.876636E-03 
0.467330E-03 
0 .107310E-03 
0.110519E-02

0.774928E-03 
0.347650E-03 
0.818201E-04 
0.98341 IE-03
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0.869957E-03
0.364493 E-03
O.OOOOOOE+OO
0.I02175E-02
0.430570E-03
O.OOOOOOE+OO
0.117861E-02
0.498144E-03
O.OOOOOOE+OO
0.133496E-02
0.563564E-03
O.OOOOOOE+OO
O.OOOOOOE+OO
0.637348E-03
O.OOOOOOE+OO
O.OOOOOOE+OO
0.696478E-03
O.OOOOOOE+OO
O.OOOOOOE+OO
0.767570E-03
O.OOOOOOE+OO
O.OOOOOOE+OO
0.847666E-03
O.OOOOOOE+OO
O.OOOOOOE+OO
0.907727E-03
O.OOOOOOE+OO
O.OOOOOOE+OO
0.974582E-03
O.OOOOOOE+OO
O.OOOOOOE+OO
0.106984E-02
O.OOOOOOE+OO
O.OOOOOOE+OO
0.113596E-02
O.OOOOOOE+OO
O.OOOOOOE+OO
0.I21962E-02
O.OOOOOOE+OO
O.OOOOOOE+OO
0.130124E-02
O.OOOOOOE+OO
O.OOOOOOE+OO
O.OOOOOOE+OO
O.OOOOOOE+OO
O.OOOOOOE+OO
O.OOOOOOE+OO
O.OOOOOOE+OO
O.OOOOOOE+OO
O.OOOOOOE+OO
O.OOOOOOE+OO
O.OOOOOOE+OO
O.OOOOOOE+OO

0.756502E-03 
0.308706E-03 
O.OOOOOOE+OO 
0.898I85E-03 
0.366396E-03 
O.OOOOOOE+OO 
0.103378E-02 
0.421541 E-03 
O.OOOOOOE+OO 

0.117588E-02 
0.476441 E-03 
O.OOOOOOE+OO 
0.131492E-02 
0.530254E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
0.588040E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
0.646469E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.719911 E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
0.770493 E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
0.828070E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.900281 E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.954630E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.103465E-02 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
0.109409E-02 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
0.116452E-02 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
0.I24269E-02 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
O.OOOOOOE+OO

0.663043 E-03 
0.211739E-03 
0.146402E-02 

0.780459E-03 
0.250953 E-03 
O.OOOOOOE+OO 

0.900097E-03 
0.286495E-03 
O.OOOOOOE+OO 

0.102428E-02 
0.324066E-03 
O.OOOOOOE+OO 

0.115133E-02 
0.366980E-03 
O.OOOOOOE+OO 
0.127451 E-02 

0.401510E-03 
O.OOOOOOE+OO 
0.139857E-02 

0.441637E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.482594E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.526152E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.564624E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.612712E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.661171 E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.696607E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.738097E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
0.786190E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.835196E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
0.896571 E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 
0.959939E-03

0.581177E-03 
0 .133233E-03 
0.130363 E-02 

0.683493 E-03 
0.157953 E-03 

0.150194E-02 
0.789567E-03 
0.180681 E-03 

O.OOOOOOE+OO 
0.890362E-03 
0.206393E-03 

O.OOOOOOE+OO 
0.100991 E-02 
0.230511 E-03 

O.OOOOOOE+OO 
0.110838E-02 

0.252950E-03 
O.OOOOOOE+OO 

0.121902E-02 
0.279875E-03 

O.OOOOOOE+OO 
0.132917E-02 

0.303101 E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.329838E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.357792E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.382396E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.411746E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.434165E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.464601 E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.497893 E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.528547E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.558305E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.602303E-03

0.429162E-03 
0 .101048E-03 
0.115634E-02 

0.509413 E-03 
0.119745E-03 

0.133553E-02 
0.588726E-03 
0.13 8321 E-03 

O.OOOOOOE+OO 
0.662129E-03 
0.156530E-03 

O.OOOOOOE+OO 
0.744410E-03 
0.175358E-03 

O.OOOOOOE+OO 
0.818562E-03 

0.193859E-03 
O.OOOOOOE+OO 

0.897965E-03 
0.212319E-T)3 

O.OOOOOOE+OO 
0.981042E-03 

0.231275E-03 
O.OOOOOOE+OO 
0.106564E-02 

0.249319E-03 
O.OOOOOOE+OO 
0.115403 E-02 

0.270865E-03 
O.OOOOOOE+OO 
0.124755 E-02 

0.290606E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.311201 E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.334364E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.358784E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.379777E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.397166E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.4253 87E-03 
O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.450973 E-03
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O.OOOOOOE+OO
O.OOOOOOE+OO
O.OOOOOOE+OO

O.OOOOOOE+OO
O.OOOOOOE+OO
O.OOOOOOE+OO

O.OOOOOOE+OO 
O.OOOOOOE+OO 
0.100303E-02

O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.640163 E-03

O.OOOOOOE+OO 
O.OOOOOOE+OO 

0.481196E-03

CRACK GROWTH INCREMENTAL FOR OPTION # 1 (Obtained by Eq. 4.14)

0.000896 0.000807 0.000719 0.000635 0.000567 0.000498 0.000437 0.000383 0.000285 0.000244
0.000204 0.000139 0.000088 0.000067 •
0.000000 0.001019 0.000906 0.000806 0.000713 0.000620 0.000543 0.000476 0.000352 0.000299
0.000253 0.000173 0.000109 0.000083
0.000000 0.000000 0.001069 0.000948 0.000838 0.000736 0.000640 0.000560 0.000417 0.000353
0.000300 0.000206 0.000129 0.000098
0.000000 0.000000 0.000000 0.000000 0.000967 0.000848 0.000738 0.000647 0.000483 0.000408
0.000345 0.000235 0.000148 0.000113
0.000000 0.000000 0.000000 0.000000 0.000000 0.000964 0.000840 0.000730 0.000543 0.000462
0.000390 0.000266 0.000169 0.000128
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000944 0.000828 0.000610 0.000522
0.000435 0.000301 0.000189 0.000144
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001045 0.000909 0.000671 0.000571
0.000482 0.000329 0.000207 0.000159
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001000 0.000736 0.000629
0.000530 0.000362 0.000229 0.000174
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000804 0.000695
0.000590 0.000395 0.000248 0.000189
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000874 0.000744
0.000632 0.000431 0.000270 0.000204
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000946 0.000799
0.000679 0.000463 0.000293 0.000222
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000877
0.000738 0.000502 0.000313 0.000238
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000_ 0.000000 0.000931
0.000783 0.000542 0.000337 0.000255
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001000
0.000848 0.000571 0.000356 0.000274
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000897 0.000605 0.000381 0.000294
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000955 0.000644 0.000408 0.000311

CRACK GROWTH INCREMENTAL FOR OPTION # 2 (Obtained by Eq. 4.22b)

0.000000
0.000283
0.000122
0.000000
0.000357
0.000149
0.000000
0.000419
0.000176
0.000000

0.000448
0.000249
0.000102
0.000000
0.000310
0.000126
0.000000
0.000368
0.000150
0.000000

0.000404
0.000218
0.000069
0.000510
0.000272
0.000087
0.000000
0.000320
0.000103
0.000000

0.000359
0.000191
0.000044
0.000453
0.000238
0.000055
0.000535
0.000280
0.000065
0.000000

0.000318
0.000142
0.000034
0.000403
0.000176
0.000041
0.000474
0.000209
0.000049
0.000000
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0.000483 0.000424 0.000369 0.000324 0.000241
0.000204 0.000173 0.000117 0.000074 0.000057
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000482 0.000420 0.000365 0.000271
0.000231 0.000195 0.000133 0.000085 0.000064
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000472 0.000414 0.000305
0.000261 0.000217 0.000150 0.000094 0.000072
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000523 0.000454 0.000336
0.000285 0.000241 0.000164 0.000104 0.000079
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000500 0.000368
0.000315 0.000265 0.000181 0.000115 0.000087
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000402
0.000347 0.000295 0.000198 0.000124 0.000095
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000437
0.000372 0.000316 0.000216 0.000135 0.000102
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000473
0.000400 0.000339 0.000231 0.000147 0.000111
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000439 0.000369 0.000251 0.000157 0.000119
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000466 0.000391 0.000271 0.000169 0.000127
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000500 0.000424 0.000285 0.000178 0.000137
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000449 0.000302 0.000190 0.000147
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000477 0.000322 0.000204 0.000156

J-INTEGRAL INCREMENTAL

0.001662 0.001555 0.001447 0.001345 0.001261
0.000818 0.000739 0.000677 0.000652
0.000000 0.001813 0.001675 0.001554 0.001440
0.000879 0.000782 0.000703 0.000671
0.000000 0.000000 0.001874 0.001727 0.001592
0.000936 0.000821 0.000728 0.000690
0.000000 0.000000 0.000000 0.000000 0.001749
0.000992 0.000857 0.000751 0.000708
0.000000 0.000000 0.000000 0.000000 0.000000
0.001046 0.000894 0.000776 0.000727
0.000000 0.000000 0.000000 0.000000 0.000000
0.001100 0.000937 0.000801 0.000745

0.001178 0.001103 0.001037 0.000918 0.000868

0.001327 0.001233 0.001151 0.000999 0.000935

0.001468 0.001351 0.001254' 0.001079 0.001001

0.001604 0.001470 0.001360 0.001159 0.001068

0.001746 0.001594 0.001460 0.001232 0.001134

0.000000 0.001721 0.001580 0.001314 0.001207
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0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001845 0.001678 0.001389 0.001267
0.001158 0.000972 0.000823 0.000764
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001789 0.001468 0.001338
0.001217 0.001012 0.000850 0.000782
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001551 0.001418
0.001290 0.001053 0.000873 0.000801
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001636 0.001478
0.001341 0.001096 0.000900 0.000819
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001724 0.001545
0.001398 0.001135 0.000928 0.000841
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001640
0.001470 0.001183 0.000952 0.000861
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001706
0.001525 0.001231 0.000982 0.000881
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001790
0.001605 0.001267 0.001004 0.000904
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.001664 0.001308 0.001035 0.000929
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.001735 0.001356 0.001068 0.000950

FATIGUE LIFE FOR LOAD CASE 4 WITH CRITICAL CRACK LENGTH 2.4741 ARE 

0.4917E+04

REPETITION FOR EACH CRACK INCREMENTAL

0.2I4488E+04
0.369954E+04
0.491675E+04

FATIGUE LIFE FOR LOAD CASE 5 WITH CRITICAL CRACK LENGTH 2.4741 ARE

0.6120E+04 -

REPETITION FOR EACH CRACK INCREMENTAL

0.270606E+04 
0.46293 5E+04 
0.611966E+04

FATIGUE LIFE FOR LOAD CASE 6 WITH CRITICAL CRACK LENGTH 3.2988 ARE 

0.9072E+04

REPETITION FOR EACH CRACK INCREMENTAL

0.335573E+04 
0.574813E+04 
0.759744E+04 
0.907155E+04

FATIGUE LIFE FOR LOAD CASE 7 WITH CRITICAL CRACK LENGTH 4.1235 ARE
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0.433712E+04 
0.7413I3E+04 
0.975530E+04 
0.116103E+05 
0.131158E+05

FATIGUE LIFE FOR LOAD CASE 8 WITH CRITICAL CRACK LENGTH 5.7729 ARE 

0.1962E+05

REPETITION FOR EACH CRACK INCREMENTAL

0.549274E+04 
0.941133E+04 
0.124141 E+05 
0 .147856E+05 
0 .167009E+05 
0.182849E+05 
0.196231E+05

FATIGUE LIFE FOR LOAD CASE 9 WITH CRITICAL CRACK LENGTH 6.5976 ARE

0.2718E+05 ‘

REPETITION FOR EACH CRACK INCREMENTAL

0.730915E+04 
0.124721 E+05 
0.163914E+05 
0.194791 E+05 
0.219594E+05 
0.239935E+05 
0.257135E+05 
0.271752E+05

FATIGUE LIFE FOR LOAD CASE 10 WITH CRITICAL CRACK LENGTH 9.0717 ARE 

0.5799E+05

REPETITION FOR EACH CRACK INCREMENTAL

0.146770E+05 
0.247929E+05 
0.322410E+05 
0.380183E+05 
0.426342E+05
0.463947E+05 -
0.495371 E+05
0.52I789E+05
0.544207E+05
0.563397E+05
0.579899E+05

0.1312E+05

REPETITION FOR EACH CRACK INCREMENTAL
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FATIGUE LIFE FOR LOAD CASE II WITH CRITICAL CRACK LENGTH 11.5458 ARE 

0.8678E+05

REPETITION FOR EACH CRACK INCREMENTAL

0.207216E+05 
0.35I455E+O5 
0.457707E+05 
0.539340E+05 
0.603633 E+05 
0.655825E+O5 
0.699446E+05
0.735514E+05 -
0.766100E+05
0.792823 E+05
0.8I5652E+05
0.835285E+05
0.852590E+05
0.867754E+05

FATIGUE LIFE FOR LOAD CASE 12 WITH CRITICAL CRACK LENGTH 12.3705 ARE 

0 .1391E+06

REPETITION FOR EACH CRACK INCREMENTAL

0.351137E+05 
0.584133E+05 
0.752236E+05 
0.880131 E+05 
0.980885E+05 
0.106195E+06 
0.112796E+06 
0.11816IE+06 
0.122622E+06 
0.126484E+06 
0.129776E+06
0.I32614E+O6 '
0.I35O76E+O6
0.137211 E+06
0.139102E+06

FATIGUE LIFE FOR LOAD CASE 13 WITH CRITICAL CRACK LENGTH 12.3705 ARE 

0.5642E+06

REPETITION FOR EACH CRACK INCREMENTAL

0.174381 E+06 
0.278385E+06 
0.348622E+06 
0.399308E+06 
0.436341 E+06 
0.464393E+06
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0.486590E+06 
0.504150E+06 
0.518208E+06
0.529705E+06 *
0.539195E+06 
0.546957E+06 
0.553537E+06 
0.559262E+06 
0.564175E+06

FATIGUE LIFE FOR LOAD CASE 14 WITH CRITICAL CRACK LENGTH 12.3705 ARE 

0.7947E+07

REPETITION FOR EACH CRACK INCREMENTAL

0.327310E+07 
0.492315E+07 
0.588906E+07 
0.650059E+07 
0.690095E-K)7 
0.718240E+07 
0.738497E+07 
0.753290E+07 
0.764479E+07 
0.772903 E+07 
0.779427E+07
0.784568E+07 *
0.788691 E+07 
0.792055E+07 
0.794718E+07

FATIGUE LIFE FOR LOAD CASE 15 WITH CRITICAL CRACK LENGTH 12.3705 ARE 

0.8378E+08

REPETITION FOR EACH CRACK INCREMENTAL

0.412285E+08 
0.593608E+08 
0.686633E+08 
0.7394I3E+08 
0.77I529E+08 
0.792022E+08 
0.805756E+08 
0.815264E+08 
0.822055E+08 
0.826962E+08 
0.830519E+08 
0.833186E+08 
0.835182E+08 
0.836667E+08
0.837804E+08 ‘
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FATIGUE LIFE FOR LOAD CASE 4 WITH CRITICAL CRACK LENGTH 2.4741 ARE

0.9834E+04

REPETITION FOR EACH CRACK INCREMENTAL

0.428975E+04
0.739908E+04
0.983350E+04

FATIGUE LIFE FOR LOAD CASE 5 WITH CRITICAL CRACK LENGTH 2.4741 ARE 

0 .1224E+05

REPETITION FOR EACH CRACK INCREMENTAL 

0.541213E+04
0.925871E+04 '
0.122393E+05

FATIGUE LIFE FOR LOAD CASE 6 WITH CRITICAL CRACK LENGTH 3.2988 ARE 

0.I814E+05

REPETITION FOR EACH CRACK INCREMENTAL

0.671146E+04 
0.114963E+05 
0.151949E+05 
0.181431 E+05

FATIGUE LIFE FOR LOAD CASE 7 WITH CRITICAL CRACK LENGTH 4.1235 ARE 

0.2623 E+05

REPETITION FOR EACH CRACK INCREMENTAL

0.867423E+04 
0 .148263E+05 
0.195106E+05 
0.232205E+05 
0.262315E+05

FATIGUE LIFE FOR LOAD CASE 8 WITH CRITICAL CRACK LENGTH 5.7729 ARE 

0.3925E+05

REPETITION FOR EACH CRACK INCREMENTAL

0.109855E+05 
0.188227E+05 
0.248283E+05 
0.295712E+05 
0.334018E+05 
0.365697E+05 
0.392463 E+05

FATIGUE LIFE FOR LOAD CASE 9 WITH CRITICAL CRACK LENGTH 6.5976 ARE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



260

0.I46I83E+O5 
0.249442E+05 
0.327828E+05 
0.389582E+05 
0.439188E+05 
0.479871 E+05 
0.5I4270E+05 
0.543504E+05

FATIGUE LIFE FOR LOAD CASE 10 WITH CRITICAL CRACK LENGTH 9.0717 ARE 

0 .1160E+06

REPETITION FOR EACH CRACK INCREMENTAL

0.293540E+05 
0.495859E+05 
0.644819E+05 
0.760366E+05 
0.852685E+05 
0.927894E+O5 
0.990741 E+05 
0.104358E+06 
0.108841 E+06
0.112679E+06 .
0.115980E+06

FATIGUE LIFE FOR LOAD CASE II WITH CRITICAL CRACK LENGTH 11.5458 ARE 

0 .1736E+06

REPETITION FOR EACH CRACK INCREMENTAL

0.414433E+05 
0.702910E+05 
0.915413 E+05 
0.107868E+06 
0.120727E+06 
0.131165E+06 
0.139889E+06 
0.147103 E+06 
0.153220E+06 
0.158565E+06 
0.163130E+06 
0.167057E+06 
0.170518E+06 
0.173551 E+06

FATIGUE LIFE FOR LOAD CASE 12 WITH CRITICAL CRACK LENGTH 12.3705 ARE 

0.2782E+06 *

0.5435E+05

REPETITION FOR EACH CRACK INCREMENTAL
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REPETITION FOR EACH CRACK INCREMENTAL

0.702275E+05 
0 .116827E+06 
0.I50447E+O6 
0.176026E+06 
0.I96177E+O6 
0.212389E+06 
0.225592E+06 
0.236323 E+06 
0.245244E+06 
0.252968E+06 
0.259552E+06 
0.265227E+06 
0.270I52E+06 
0.274423 E+06 
0.278205E+06

FATIGUE LIFE FOR LOAD CASE 13 WITH CRITICAL CRACK LENGTH 12.3705 ARE 

0.1128E+07

REPETITION FOR EACH CRACK INCREMENTAL

0.348761 E+06 
0.556771 E+06 
0.697245E+06 
0.798617E+06 
0.872682E+06 
0.928786E+06 
0.973180E+06 
0.100830E+07 
0.103642E+07 
0.105941 E+07 
0.107839E+07 
0.109391 E+07 
0.110707E+07 
0.111852E+07 
0.112835E+07

FATIGUE LIFE FOR LOAD CASE 14 WITH CRITICAL CRACK LENGTH 12.3705 ARE 

0.1589E+08 .

REPETITION FOR EACH CRACK INCREMENTAL

0.654620E+07 
0.984631 E+07 
0.117781E+08 
0.130012E+08 
0.138019E+08 
0.143648E+08 
('.147699E+08 
0.150658E+08
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0.I52896E+O8 
0.I54581E+O8 
0.155885E+08 
0.1569I4E+08 
0 .157738E+08 
0.15841IE+08 
0.158944E+O8

FATIGUE LIFE FOR LOAD CASE 15 WITH CRITICAL CRACK LENGTH 12.3705 ARE 

0.1676E+09

REPETITION FOR EACH CRACK INCREMENTAL

0.824570E+08 
0 .118722E+09 
0 .137327E+09 
0.147883E+09 
0.154306E+09 
0.158404E+09 
0.16115IE+09 
0.163053E+09 
0.164411E+09 
0 .165392E+09 
0.166104E+09 
0.I66637E+O9 
0.167036E+09 
0.167333E+O9 
0.167561E+09

FATIGUE LIFE FOR LOAD CASE 4 WITH CRITICAL CRACK LENGTH 2.4741 ARE 

0.2950E+04

REPETITION FOR EACH CRACK INCREMENTAL

0.106224E+04 
0.203725E+04 
0.295004E+04

FATIGUE LIFE FOR LOAD CASE 5 WITH CRITICAL CRACK LENGTH 2.4741 ARE 

0.3128E+04

REPETITION FOR EACH CRACK INCREMENTAL

0.113077E+04 
0.216362E+04 
0.312778E+04

FATIGUE LIFE FOR LOAD CASE 6 WITH CRITICAL CRACK LENGTH 3.2988 ARE 

0.4279E+04

REPETITION FOR EACH CRACK INCREMENTAL
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0.119890E+04 
0.229470E+04 
0.331697E+04 
0.427858E+04

FATIGUE LIFE FOR LOAD CASE 7 WITH CRITICAL CRACK LENGTH 4.1235 ARE 

0.5539E+04

REPETITION FOR EACH CRACK INCREMENTAL

0 .128552E+04 
0.245823E+04 
0.354813 E+04 
0.457146E+04 
0.553875E+04

FATIGUE LIFE FOR LOAD CASE 8 WITH CRITICAL CRACK LENGTH 5.7729 ARE 

0.7833E+04

REPETITION FOR EACH CRACK INCREMENTAL

0.137058E+04 
0.262313E+04 
0.378897E+04 
0.488279E+04 
0.591526E+04 
0.689612E+04 
0.783326E+04

FATIGUE LIFE FOR LOAD CASE 9 WITH CRITICAL CRACK LENGTH 6.5976 ARE 

0.9378E+04

REPETITION FOR EACH CRACK INCREMENTAL

0.148071 E+04 
0.283041 E+04 
0.408342E+04 
0.525853E+04 
0.636573E+04 
0.741554E+04 
0.841861 E+04 
0.937849E+04

FATIGUE LIFE FOR LOAD CASE 10 WITH CRITICAL CRACK LENGTH 9.0717 ARE

0.1425E+05 '

REPETITION FOR EACH CRACK INCREMENTAL

0.178847E+04 
0.34073 7E+04 
0.48983 8E+04 
0.629101E+04 
0.760140E+04
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0.884144E+04 
0 .100226E+05 
0.111495E+05 
0 .122274E+05 
0 .132609E+05 
0.142529E+05

FATIGUE LIFE FOR LOAD CASE 11 WITH CRITICAL CRACK LENGTH 11.5458 ARE 

0.1863 E+05

REPETITION FOR EACH CRACK INCREMENTAL '

0.196436E+04 
0.374693 E+04 
0.538865E+04 
0.691794E+04 
0.835133E+04 
0.970680E+04 
0.109977E+05 
0.12223 7E+05 
0.133966E+05 
0.145273 E+05 
0.156103 E+05 
0 .166505E+05 
0 .176554E+05 
0.186251 E+05

FATIGUE LIFE FOR LOAD CASE 12 WITH CRITICAL CRACK LENGTH 12.3705 ARE 

0.2193 E+05

REPETITION FOR EACH CRACK INCREMENTAL 

0.226380E+04
0.429298E+04 -
0.615208E+04
0.787915E+04
0.949861 E+04
0.110254E+05
0 .124698E+05
0 .138348E+05
0.151340E+05
0.163834E+05
0.I75796E+05
0.187290E+05
0 .198346E+05
0.208987E+05
0.219282E+05

FATIGUE LIFE FOR LOAD CASE 13 WITH CRITICAL CRACK LENGTH 12.3705 ARE 

0.3082E+05

REPETITION FOR EACH CRACK INCREMENTAL
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0.348623 E+04 
0.652650E+04 
0.926452E+04 
0.117716E+05 
0.140740E+05 
0.162117E+05 
0.182177E+05 
0.201004E+05 
0.218731 E+05 
0.235522E+05 
0.251458E+05 
0.266551E+05 
0.280989E+05 
0.294891E+05 
0.308227E+05

FATIGUE LIFE FOR LOAD CASE 14 WITH CRITICAL CRACK LENGTH 12.3705 ARE 

0.5787E+05

REPETITION FOR EACH CRACK INCREMENTAL

0.768269E+04 
0.140941E+05
0.196556E+05 '
0.245691E+05 
0.289560E+05 
0.329471E+05 
0.365958E+05 
0.399501 E+05 
0.430590E+05 
0.459379E+05 
0.486257E+05 
0.511445E+05 
0.535188E+05 
0.557645E+05 
0.578722E+05

FATIGUE LIFE FOR LOAD CASE 15 WITH CRITICAL CRACK LENGTH 12.3705 ARE 

0.1007E+06

REPETITION FOR EACH CRACK INCREMENTAL

0 .151970E+05 
0.274347E+05 
0.376791 E+05 
0.464836E+05
0.54I857E+05 •
0.610I23E+05
0.671411E+05
0.726902E+05
0.777588E+05
0.823975E+05
0.866520E+05
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0.905869E+05 
0.942237E+05 
0.975808E+05 
0 .100705E+06
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APPENDIX C

Variable Definition of Static Shakedown Analysis Program (SSAP)

Static shakedown analysis program (SSAP) consists of two functional parts. The first part conducts static 

analysis by means of the finite element method. This part currently is carried out by ABAQUS. The stress 

distribution under reference loads for a given problem is written to an ABAQUS interface file, abafill.fil, 

which will interface with the second part of the program. If ,in addition to repeated load program, a static 

load (time-independent) such as geostatic load in pavements and foundation problem, is also applied to a 

system, the second file, abafil2.fil also has to be provided. The second part of the program is to search for a 

shakedown load by using a multidirectional direct search algorithm. The source code of the second part of 

the program has been developed according to the algorithm discussed in chapter V. This program is coded 

with two kinds of material models. One is a pressure-dependent elastic-perfectly plastic material that obeys 

Mohr-Columb yield criterion. The other is a pressure-independent elastic-perfectly plastic material that 

follows Von-Mises yield criterion. Static shakedown load of two dimensional problem (plane stress, plane 

strain, and axisymetric) can be analyzed. Up to a three-layer pavement system with different materials can 

be modeled in the program. The input data definition and format are described below.

Static Analysis 

Input data:

The input data to ABAQUS usually includes node numbers and their coordinates, element 

numbers and their nodes, material properties, boundary conditions and applied loads. For 

detailed description about how to use ABAQUS, refer to the ABAQUS user’s manual [1]. This 

step is necessary in the shakedown analysis. The input data can be saved to a file with extension 

.inp. ABAQUS can read these data in the file.

Output data:

The output data from ABAQUS are very flexible and usually dependent on the user’s 

requirements. For static shakedown analysis, stresses at each integral point under reference load 

are required and saved to ABAQUS output file, called abafill.fil, which will interface with 

shakedown analysis program, SSAP. If static loads (time-independent) are also applied to the 

system, the stresses at each integral point under these loads are also required and saved to 

another ABAQUS output file, abafil2.fil.

Static Shakedown Analysis 

Input data:

HED (12A6) Title of the job, which characterizes the problem you are running.
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NUMNP (14) Total number of nodal points of a finite element model for a considered problem.

NUMEL (14) Total number of elements used in a finite element model of a considered problem.

NS (14) Column dimension of a strain matrix(B-matrix). It is usually dependent on the number of the 

integral points used in an element and the dimensions of a problem. In a two dimensional 

case, for I integral point, NS = I *4 = 4; for 2 integral points, NS = 2*4"= 8; for 4 integral 

points, NS = 4*4 = 16. This is same for axisymetric problem.

ND (14) The Number of the degrees of freedom of an element in a finite element model. It is the 

degree of freedom times the number of nodes in an element.

NFILE(I4) Total number of interface files. Ifonlyabafill.fi! is used, NFILE = 1. If both abafill.fil and 

abafil2.fil are used, NFILE = 2.

The following input data are in free format.

LAY[3] For a layered system, it defines element numbers within each layer. Up to a three-layer 

system with different materials can be analyzed by the program.

LAY[ 1 ] - defines the ending element number of the first layer. The element within this 

layer should be numbered in the following format: C), e , - • • - eL1 •

LAY[2] - defines the ending element number o f the second layer. The element within this

layer should be numbered in the following format: e , e . e . , •
J  °  c  L l+ I c L I+ 2  C L I+ L 2

LAY[3] - defines the ending element number o f the third layer. The element within this 

layer should be numbered in the following format: e LI+L, +! *■ e L1, L2+-> - • ■ •

e L l+ L 2 + L 3  '

E[3] Defines elastic moduli used for each layer for a layered system.

ANU[3] Poisson ratio used for each layer for a layered system.

COHN[3] Material cohesion used for each layer for a layered system.

PHI[3] Material internal friction angle used for each layer for a layered system.

THICK Thickness used for a plane stress condition in the analysis. For a plane strain condition,

THICK=1.0. For an axisymetric problem, THICK can set to 0.0.

YIELD Material yield stress used for Von-Mises failure criterion.

MATYPE Material type used in the analysis. EQ. 1 for metal material and Von-Mises yield criterion is

Used. EQ. 2 for pressure dependent material and Mohr-columb yield criterion is used. 

FRF1 Square of material yield stress CT . For Von -Mises material, FRF1 = CT2. For Mohr-

Columb material, pRFl = 2C cos (j) 
1 + sin <|>
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RF2 Inverse of the square o f reference load level, pq , i. e. rp 2  = 1 / Po2 , where pQ is the load

used in static analysis to obtain stresses at every integral point.

Two convergence criteria were coded in the program, which can only be changed by changing the code. 

One criterion is that the current objective function minus previous objective function has to be less than

e = io~3 • The other is the shakedown load factor increment, is less than Eq = IO-5 - 

Output data:

Static shakedown load parameter. The shakedown is the reference load multiplied by the 

shakedown load parameter.

The listing of the program (SSAP) is stored on the enclosed diskette. Because SSAP includes ABAQUS 

user’s subroutines, it has to be linked with ABAQUS utility subroutine libraries When it is used. The 

ABAQUS user’s manual [1] gives detailed descriptions about how to compile and link the user’s program 

and subroutines with ABAQUS utility subroutine libraries. After the program is linked with the ABAQUS 

utility subroutine libraries, it can be executed like other programs. The flow chart of the program is 

provided on the following page.

EXAMPLE FOR DATA INPUT

Consider a beam fixed at one end and supported at the other end as shown in the figure. The dimension and 

material properties are:

Span Length L = 12.0 in.(304.8 mm).

Height H = 3.0 in.(76.2 mm).

Thickness T = 1.0 in.(25.4 mm).

Elastic modulus E = 3.5 * io 7 psi. (24.1* 104 Mpa.)

Poisson ratio v = 0.15 

Yield stress CTo = 500.0 psi.(3.45 Mpa.).

The input data to ABAQUS are data defining the finite element model and material elastic properties. The 

beam is divided into 36 elements with 52 nodes as shown in Fig. 5.4. The material elastic properties are 

described as above. Point load, P = 100 bl.(444 N), is applied at node 28. The output file is saved in the 

ABAQUS output file, abafil 1 .fil. The input data for shakedown analysis program are:

I
_1 L_
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I* Job title */

SHAKEDOWN ANALYSIS DATA FOR A BEAM 
/  + Control data * /

52 36 16 8 1
/* The following data format is designed for three-layer system. For non-layered problem, only one value is 

used and the other two values can be assigned to any arbitrary values, as in this example. If the two-layer 

system is considered, the first two values are used and the third one can be any value */

/* Ending element number for each layer. Here only one layer is defined */

36,81,117
/* Elastic modulus for each layer */

3 .0e7,1 .0e4, 1 . 0e4 

/* Poisson ratio for each layer */

0.15,0.45,0.45 
/* Cohesion for each layer */

500..6..6.
/* Internal friction angle for each layer */

42.0.5.0.5.0
/* Yield stress and material type */

1.0.500.0.2
/* Square of yield stress and inverse square of reference load */

2.5E5,1.0E-4

Output data:

Static shakedown load parameter: 5.399
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APPENDIX D

Variable Definition of Kinematic Shakedown Analysis Program (KSAP)

The kinematic shakedown analysis program (KSAP) consists of two functional parts. The first part is to 

find the stress distribution under the reference load and eigen-vectors for a given system by means o f  the 

finite element method. This part currently is carried out by ABAQUS. The static and eigen-value analysis 

provides two output files that interface with the second part of the program. The first file contains stress 

distribution under the reference load. The second file contains eigen-vectors for each eigen-value of the 

system. The second part of the program is to search for the kinematic shakedown load by using a nonlinear 

programming technique. The source code is developed based on the algorithm provided in Chapter VI. The 

second part of the program reads two groups of input data. One is control data that defines finite element 

model and material properties used for a given system. The other that is needed in searching for the 

shakedown load is the stresses and eigen-vectors generated from the static and eigen-value analysis by 

using ABAQUS. This program is coded with two kinds of material models. One is pressure-dependent 

elastic-perfectly plastic material that obeys Mohr-Columb yield criterion. The other is pressure-independent 

elastic-perfectly plastic material that follows Von-Mises yield criterion. The shakedown loads o f two 

dimensional problems (plane stress, plane strain, and axisymetric) and three dimensional problems can be 

calculated. Up to three-layer pavement systems with different materials can be analyzed. The definition of 

the input data and their format are described in the following.

Static and Eigen-value Analysis 

Input data:

The input data to ABAQUS usually includes node numbers and their coordinates, element 

numbers and their nodes, material properties, boundary conditions and applied loads. For 

detailed description about how to use ABAQUS, refer to the ABAQUS user’s manual [ 1 ]. The 

static analysis and eigen-value analysis are conducted separately with two different input files.

Output data:

The output data from ABAQUS are very flexible and usually dependent on user’s requirements. 

For kinematic shakedown analysis, we need to run ABAQUS twice. From static analysis, 

stresses at every integral point are obtained and saved to ABAQUS output file abafill.fil. From 

eigen-value analysis, the eigen-modes corresponding each eigen-value are obtained and saved to 

ABAQUS output file abafil2.fil. These two files will interface with kinematic shakedown 

analysis program,KASP.
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Kinematic Shakedown Analysis

Input data: 

HED (12A6) 

NUMNP (14) 

NUMEL (14) 

NS (14)

ND (14)

NGEV (14)

Title of the job, which characterizes the problem you are running.

Total number of nodal point of a finite element model for a considered problem.

Total number of elements used in a finite element model of a considered problem.

Column dimension of a strain matrix(B-matrix). It is usually dependent on the number of 

the integral points used in an element and the dimensions of a problem. In two 

dimensional case for I integral point, NS = I *4 = 4; for 2 integral points, NS = 2*4 = 8; 

for 4 integral points NS = 4*4 = 16. This is same as in axisymetric condition. In three

dimensional case, for 1 integral point, NS = 1*6 = 6; for 2 integral points, NS = 2*6 = 12; 

for 4 integral points NS = 4*6 = 24.

The Number of the degree of freedom of an element in a finite element model. It is the 

degree of freedom times the number o f nodes in an element.

Total number of eigen-vectors of the system used in shakedown analysis.

The convergence criterion is coded in the program, which can only be changed through the source code. 

The convergence is defined as the value of the current shakedown load factor minus the previous one is less

than e = io~s •

The following input data are in free format.

LAY[3] (314) For a layered system, it defines element numbers within each layer. Up to three layer 

Systems with different materials can be analyzed by the program.

LA Y[ 1 ] - defines the ending element number of the first layer. The element within this 

layer should be numbered in the following format: C[, e 2 > - • • e L! •

LAY[2] - defines the ending element number of the second layer. The element within this 

layer should be numbered in the following format: e , e , . . .  e LI+L1 • 

LA Y[3] - defines the ending element number of the third layer. The element within this 

layer should be numbered in the following format: eu+L2+l» e L1+L2+-> ’ ' ■'

eLI+L2+L3 ‘
E[3] Defines elastic moduli used for each layer for a layered system.

ANU[3] Poisson ratio used for each layer for a layered system.

COHN[3] Material cohesion used for each layer for a layered system.

PHI[3] Material internal friction angle used for each layer for a layered system.

THICK Thickness used for plane stress conditions in the analysis. For plane strain condition.
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THICK=I.O. For axisymetric and three dimensional problem, THICK can set to 0.0. 

YIELD Material yield stress used for Von-Mises failure criterion.

MATYPE Material type used in the analysis. EQ. 1 for metal material with Von-Mises yield criterion. 

EQ. 2 for pressure dependent material with Mohr-columb yield criterion.

Output data:

Kinematic shakedown load parameter. The shakedown is the reference load multiplied by the 

shakedown load parameter.

The program (KSAP) is on the enclosed diskette. Because KSAP includes ABAQUS user’s subroutines, it 

has to be linked with ABAQUS utility subroutine libraries when it is used. The ABAQUS user’s manual 

[1] gives detailed descriptions about how to compile and link user’s program and subroutines with 

ABAQUS utility subroutine libraries. After the program is linked with ABAQUS utility subroutine 

libraries, it can be executed like other regular programs. The flow chart of the program is provided in the 

following page.

EXAMPLE FOR DATA INPUT

Consider a beam fixed at one end and supported at another end as shown in the figure. The dimension and 

material properties are:

Span Length L = 12.0 in.(304.8 mm).

Height H = 3.0 in.(76.2 mm).

Thickness T =  1.0 in.(25.4 mm).

Elastic modulus E = 3.5*107 PS'(  24.1 * 104 Mpa.)

Poisson ratio v = 0.15

Yield stress a  = 500.0 psi.(3.45 Mpa.)

I
-IL_ (K)L

The input data to ABAQUS are data defining the finite element model and material elastic properties. The 

beam is divided into 36 elements with 52 nodes as shown in Fig. 6.4. Static analysis gives stresses at every 

integral point and saved in the file abafill.fil. 95 Eigen-vectors are obtained from eigen-value analysis and 

stored in the file abafil2.fil. These two files will interface with KSAP. The input data for upper shakedown 

analysis are:
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/* Job title */

SHAKE DOWN A N A L Y SIS  DATA FOR A BEAM ( UPPER)

I* Control data for the analysis */

52 36 16 8 95
/* The following data format is designed for a three-layer system. For non-layered problems, only the first 

one value is used and the other two values can be assigned to any arbitrary values, as in this example. If the 

two-layer system is considered, the first two values are used and the third one can be any value */

/* Ending element number for each layer */

36,81,117
/* Elastic modulus for each layer */

3 .0e7, 1 . 0e4, 1.0e4 

/* Poisson ratio for each layer */

0.15,0.45,0.45 
/* Cohesion for each layer */

500..6..6.
/* Internal friction angle for each layer */

42.0.5.0.5.0
/* Yield stress and material type */

1.0.500.0.2 

Output data:

Kinematic shakedown load: 5.724.
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abafill.fil
and
abafil2 .fil

Read in control 
data for kinematic 
shakedown 
analysis

Output Control data

IE
SUBROUTINE GETDAT(): 
Read in ABAQUS output file 
abafil 1 .fil and abafil2 .fil

SUBROUTINE B_MATRIX() 
Form strain matrix (B-Matrix)

SUBROUTINE SHIFT0(): 
Construct every possible plastic 
deformation path and find the initial 
one leads to smallest shakedown 
load parameter

SUBROUTINE OPTIMIZER(): 
Along the initial plastic deformation 
path, search for optimum shakedown 
load using multidirectional optimizer

Output shakedown 
load parameter

STOP ^
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