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ABSTRACT

This thesis explored several aspects of the hormonal and cardiovascular physiology 

in pinnipeds (seals and sea lions). Plasma concentrations o f the vasoactive hormones 

angiotensin II (Ang II), arginine vasopressin (AVP, the antidiuretic hormone) and atrial 

natriuretic peptide (ANP) were studied in six species of seals and sea lions. Resting levels 

of AVP, ANP and Ang II in these pinnipeds were similar to those reported for other 

vertebrate species, including humans. Age-related differences were found in the 

concentrations o f these hormones in seals and sea lions. Geographic differences in 

hormone concentrations were found in Steller sea lions and harbor seals.

To address the endocrine and cardiovascular responses to breath-holding (apnea) 

in marine mammals, heart rates and plasma levels of Ang n , AVP and ANP were studied 

in Weddell seal (Leptonychotes weddellii) and northern elephant seal (Mirounga 

angustirostris) pups during periods o f spontaneous breathing (eupnea) and apnea. Ang II, 

AVP, and ANP, as well as the autonomic nervous system, were found to contribute 

differently to the control of heart rate in seal pups, depending whether the respiratory 

system was in eupnea or apnea. Because of changes in seals of different ages, it appeared 

that the integration of cardiorespiratory and hormonal function is not fully mature at birth, 

but develops post-natally, probably simultaneously to the development of diving behavior. 

These studies also suggested that the factors affecting cardiorespiratory function, 

including hormones, may differ by species.

Plasma concentrations of AVP, ANP and Ang II were measured during food 

limitation and fasting in captive Steller sea lions (Eumetopias jubatus) and compared to 

levels in free-ranging conspecifics. The results suggest that Steller sea lions have a 

remarkable capacity to maintain hydrosmotic and endocrine balance during short-term 

food limitation and fasting. Hormonal studies did not provide conclusive evidence that 

Steller sea lions in Alaskan waters are currently affected by long-term food limitation.
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1. INTRODUCTION

The structure (anatomy and histology) and function of the marine mammal 

endocrine system appear to fit a general mammalian model (for a review see 40). 

However, little is known about the cellular mechanisms of action of some o f the major 

hormones in marine mammals, including their biosynthesis rate, half-life, control of 

secretion, receptors, second messengers and signal transduction. Important hormonal 

systems, such as neurotransmitters and neuromodulators, gastrointestinal hormones and 

hormonal regulation of calcium homeostasis have not been studied in marine mammals. 

The interaction of hormones with development and metabolic regulation, and their 

integration with the nervous, cardiovascular and respiratory systems are areas that need to 

be explored, especially as they relate to the natural capacity of marine mammals for 

relatively prolonged periods of breath-holding and fasting.

In this project, various aspects of the role of the hormonal systems in coordinating 

physiological processes and maintaining cardiorespiratory homeostasis in marine mammals 

have been examined. I studied plasma concentrations of angiotensin II (Ang II), arginine 

vasopressin (AVP, the antidiuretic hormone) and atrial natriuretic peptide (ANP) in seals 

and sea lions. These hormones were selected for this study based on their ability to 

modulate resistance of blood vessels, their purported intervention in the control of 

cardiorespiratory function, and their participation in the maintenance o f water and 

electrolyte balance. Of these vasoactive hormones, only AVP has been previously studied 

in marine mammals, and exclusively in its antidiuretic role (49, 50, 58).

A first step in studying hormonal effects and interactions with other systems is to 

establish baseline, or control, concentrations in the subjects at rest. I obtained plasma 

samples from sue species of captive and free-ranging pinnipeds (seals and sea lions), to 

measure baseline levels of Ang n , ANP and AVP. These results are presented in Chapter

2. Differences in hormone levels among age groups, species and geographic locations
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were found. Potential implications to the biology, ecology and health of these animals are 

discussed.

The specific role of the vasoactive hormones in cardiorespiratory function is 

addressed in Chapter 3. For this phase of the project, aspects o f the hormonal and 

cardiovascular response to breath-holding (apnea) in marine mammals were studied.

Blood samples to measure plasma concentrations of ANP, AVP and Ang II and heart 

rates were collected from Weddell seals (Leptonychotes weddellii) and northern elephant 

seals (Mirounga angustirostris) during periods of spontaneous breathing (eupnea) and 

sleep-associated apnea. Possible interactions between the vasoactive hormones, heart rate 

and breathing status (eupnea or apnea) are considered.

Developmental aspects of the cardiorespiratory function and hormonal 

contribution in phocid pups are presented in Chapter 4. During this stage of the project, 

age-dependent changes in heart rate and plasma levels of ANP, AVP and Ang II of 

Weddell seal and northern elephant seal pups during periods o f spontaneous eupnea and 

apnea were examined.

Chapter 5 reviews the differential effects of the sympathetic and parasympathetic 

nervous contribution to eupneic and apneic heart rate in Weddell seal and northern 

elephant seal pups. Indices of the activity of each component o f the autonomic nervous 

system were obtained from instantaneous heart rate measurements using a computer 

program (Coarse Grain Spectral Analysis, University of Toronto, Canada) designed and 

validated for humans.

Chapter 6 summarizes results from studies of hormone levels in Steller sea lions

held in captivity and fed controlled diets. Changes in plasma levels o f ANP, AVP and Ang
%

II in response to food limitation and fasting are reported and compared to hormone 

concentrations in free-ranging Steller sea lions. Possible use o f these vasoactive hormones 

as indicators of health and nutritional status of pinniped populations is addressed.

2
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A general conclusion, prospects for future research, and how these results may be 

applied in biomedical research are presented in Chapter 7. The specific topics discussed in 

the individual chapters will be introduced by reviewing relevant aspects of the 

cardiovascular physiology of marine mammals and the characteristics of the hormonal 

systems (ANP, AVP and Ang II) that comprise the core of this thesis.

1.1. Cardiovascular Adjustments to Apnea in Marine Mammals

Seals have a high tolerance for long duration apnea associated to diving (up to 2 

hours) (42) and sleep (25 minutes) (18), which, in contrast to terrestrial mammals, is not 

linked to pathologic disturbances. Furthermore, the changes in heart rate and blood flow 

distribution observed in seals during sleep-associated apnea are quite similar to those 

changes recorded during natural dives (18). The ability to withstand long apneic periods 

may be an adaptive process in seals, in which the congenital neonatal resistance to apnea is 

not lost during early development, as in most mammals (7, 20), but is maintained and even 

enhanced through adulthood.

Marine mammals reduce heart rate (bradycardia) and cardiac output, increase 

hematocrit and redirect blood flow in order to manage oxygen stores during apnea (17,

34, 53, 66, 67), but maintain a relatively constant blood pressure (27, 36). Selective 

vasoconstriction ensures that, by decreasing blood supply to kidneys, liver, and skeletal 

muscle (15, 28, 84), oxygen-dependent tissues (i.e., central nervous system and the brain) 

are maintained under optimum working conditions (53).

In marine mammals, the central control of the cardiovascular system during diving 

appears to be exerted primarily through the hypothalamus (8). During diving apnea, while 

an increase in parasympathetic activity may initiate bradycardia (14, 15), peripheral 

vasoconstriction may be mediated by sympathetic efferents via a-adrenoreceptors (23). In 

those birds and mammals which hold their breath upon expiration, removal of the 

excitatory influences from central inspiratory neurons and pulmonary afferent feedback
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contribute to the initial bradycardia (13). At the end of the dive, cardiovascular recovery 

does not result merely from the removal of inhibitory and commencement of excitatory 

sensory stimuli (13). Sympathetic a-receptors could be involved in increasing cardiac 

stroke volume (30) and/or in the vasodilation occurring upon surfacing (15), perhaps 

including an element of sympathetic cholinergic activity (51).

1.2. Endocrine Control o f Heart Rate

The cardiovascular system is a natural oscillator that receives input from 

respiration (61), blood pressure waves (12), and vasomotor activity (38). The cardiac 

response to these factors is mostly due to nervous transmission, primarily autonomic drive 

to the heart (37, 63). Only a few studies have focused on identifying contributions from 

vasoactive hormones in the overall pattern of heart rate control (1, 11, 26, 33). However, 

some of the factors involved in the endocrine control of heart rate and cardiovascular 

function are markedly influenced by experimental conditions, such as anesthesia, drugs and 

surgery, which are likely to distort our understanding of the integrated function of the 

circulation.

Existing data suggest an endocrine role in the control of mammalian heart rate. In 

terrestrial mammals, the tone of veins and arteries is, to an extent, determined by the 

circulating concentrations of the vasoactive hormones Ang n, AVP and ANP. While Ang 

II and AVP produce constriction of the vascular smooth muscle (11, 19, 64), ANP has a 

vasorelaxing effect (4). Vasoconstriction increases the resistance against which the heart 

must pump, causing a rise in blood pressure (10, 60); vasorelaxation has the opposite 

effects (6, 41). These changes in blood pressure, via the baroreceptor reflex and/or 

interactions with the nervous system, may translate into changes in heart rate and cardiac 

output (74). Both a direct and an indirect action of AVP to decrease heart rate have been 

observed (26, 45). By resetting the baroreceptor reflex to a lower pressure, AVP can elicit 

a large decrease in heart rate for a given increase in blood pressure (45). The action of
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ANP appears to reset the baroreceptor control o f the heart towards cardioinhibition in 

humans (78). It has been suggested that Ang II resets the baroreflex control o f heart rate 

to a higher blood pressure, such that a given increase in blood pressure is accompanied by 

a mild bradycardia (82). It has also been postulated that this hormone may stimulate 

ventilation in dogs (55). Thus, through these effects, the vasoactive hormones can affect 

blood pressure, blood flow, cardiac output and heart rate both directly and indirectly.

1.2.1. The Renin-Angiotensin System

Renin is an internal secretion of the kidney. It is different from most hormones in 

that it does not act on a tissue, but on a protein in the blood, angiotensinogen, effectively 

acting as an enzyme (59, 62). Angiotensinogen is synthesized in the liver as a prohormone 

with molecular weight o f approximately 58,000 daltons (79). From it renin splits off the 

inactive decapeptide angiotensin I (Ang I) (56, 81). Further cleavage o f the dipeptide 

histidyl-leucine from the C terminal end of Ang I results in the formation of Ang n, a 

polypeptide containing eight amino acid residues (73). Synthesis of Ang II is catalyzed by 

angiotensin converting enzyme (ACE), and occurs primarily in the pulmonary vascular 

endothelium (57).

Decreased blood flow to the kidney, changes in posture, or blockade of one or 

both renal arteries may lead to increased production of renin by the kidney (5, 80), and 

therefore increased levels of Ang II (Figure 1.1). The circulating Ang II is rapidly 

metabolized in part by proteolytic enzymes in the blood, but also to a large degree by a 

poorly characterized mechanism in the peripheral vascular bed that appears to remove the 

peptides from the circulation. Its half-life in humans is less than one minute; renin has a 

somewhat longer half-life, about 30 to 60 minutes, and is catabolized mainly in the liver 

(54, 71).

Some of the physiological properties ascribed to Ang II are the regulation of renin 

secretion, renal excretory function, adrenal steroidogenesis, smooth muscle contraction
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and nervous activity. All o f these effects are pertinent to regulating blood volume and 

blood pressure (22, 57, 72, 75, 77, 81) (Figure 1.1). By a direct action on the adrenal 

cortex, Ang EL stimulates the secretion of aldosterone and cortisol, influencing metabolism 

of electrolytes and water (2, 48). It also causes the release of catecholamines from the 

adrenal medulla and stimulates renal reabsorption of sodium, which in turn favors water 

retention. Angiotensin II acts on the vascular smooth muscle to produce constriction of 

small arteries and arterioles. This increases the resistance against which the heart must 

pump, causing a rise in both systolic and diastolic blood pressure (60). In addition, Ang II 

affects baroreceptor control of heart rate (11) and baroreflex control of lumbar 

sympathetic activity (65). However, there is evidence that Ang II does not exert a direct 

action on either the carotid sinus or aortic arch baroreceptors (33). Receptor sites for Ang 

13 have been found on the plasma membrane of target cells in blood vessels, kidney, brain, 

adrenal glands, and other tissues (16, 76).
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FIGURE 1.1. The role of Angiotensin II in the regulation of cardiovascular function in 

mammals.
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1.2.2. Arginine Vasopressin

Arginine vasopressin, also known as the antidiuretic hormone (ADH), is a peptide 

with molecular weight of 1,087 daltons and half-life o f 7.8 minutes in humans (25). 

Synthesized in the hypothalamus by proteolytic cleavage from its precursor molecule,

AVP is stored in neurosecretory granules until it is released to the circulation. Secretion of 

AVP is stimulated by reduction in blood and extracellular fluid volume, decreased mean 

arterial pressure, and by increased blood osmolality (68) (Figure 1.2). Secretion of AVP 

may also be stimulated by insulin and hypoglycemia (86). Circulating levels of AVP are 

mainly controlled by extracellular fluid tonicity (24, 68). The sensitivity and osmotic 

threshold for AVP secretion appear to be in part genetically determined (85).

Vasopressin has two major physiological actions, contraction of vascular smooth 

muscle and movement of water and sodium across epithelial tissue in the distal tubule of 

the mammalian kidneys. This hormone has been shown to exert a variety of effects on the 

cardiovascular system, including increases in arterial and atrial pressures (19), decreases in 

heart rate and cardiac output, and changes in baroreflex function (64). These effects are 

mediated via V, receptors (44).

While AVP may not be required for a normal reflex decrease in heart rate (10), it 

appears to increase the sensitivity or gain of the baroreceptor reflex (65), such that it 

elicits a larger decrease in heart rate for any given increase in pressure (45). However,

AVP does not appear to potentiate the baroreflex in rats as it does in dogs (70).

Bonjour and Malvin (9) presented evidence that AVP secretion is stimulated by 

increases in plasma Ang II levels. Subsequent reports demonstrated that 

intracerebroventricular (icv) injection o f Ang II also increases AVP release (39).

However, in experiments performed in anesthetized animals, intravenous (iv) infusion o f a 

wide range o f doses of Ang II consistently failed to stimulate AVP secretion (69).

8
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FIGURE 1.2. The role of Arginine Vasopressin in the regulation of cardiovascular 

function in mammals.
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1.2.3. Atrial Natriuretic Peptide

The heart can act as an endocrine organ secreting ANP (21). ANP is a peptide 

composed of 28 amino acids with molecular weight o f 3,062 daltons and a half-life of 3.1 

minutes in humans (83). The principal source of ANP is atrial cardiocytes, where the 

hormone is synthesized and stored.

Secretion of ANP is stimulated by atrial distension, via mechanoreceptors sensitive 

to volume changes, increased central blood volume, and increased blood pressure (3, 47) 

(Figure 1.3). The release of ANP may also be stimulated by chronic sodium loading, 

changes in posture, AVP, and water immersion (29, 52).

The main physiological action of ANP is to induce diuresis and natriuresis. This is 

achieved via a modification of the intrarenal distribution of blood flow which increases 

medullary flow (31, 47). Administration of ANP evoked a marked and sustained increase 

in glomerular filtration rate in rats (35). Interactions o f ANP with other hormonal systems 

include inhibition of aldosterone production, inhibition of renin release, inhibition of AVP 

secretion, and counteracting vasoconstrictor effects o f Ang II (3, 43).

Cardiovascular actions of ANP include shifting fluid from the intravascular to 

interstitial compartments, thus increasing hematocrit (46), lowering cardiac output and 

cardiac filling pressure (41), and dose-dependent reductions in arterial blood pressure (32, 

46). However, the blood pressure-lowering effect o f ANP is not consistently associated 

with the expected reflex tachycardia (1). Therefore, it appears that the actions of ANP 

reset the baroreceptor control in the heart towards cardioinhibition. Some of the 

cardiovascular effects of ANP are accomplished by interactions with autonomic control 

mechanisms (78).

10
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FIGURE 1.3. The role of Atrial Natriuretic Peptide in the regulation of cardiovascular 

function in mammals.
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2. PLASMA ANGIOTENSIN II, ARGININE VASOPRESSIN AND ATRIAL 

NATRIURETIC PEPTIDE IN  FREE RANGING AND CAPTIVE SEALS AND SEA 

UONS}

2.1. Abstract

We used radioimmunoassay methods to quantify arginine vasopressin (AVP), atrial 

natriuretic peptide (ANP) and angiotensin II (Ang II) in plasma samples from harbor seals 

(Phoca vitulina richardsii), Weddell seals (Leptonychotes weddellii), northern elephant 

seals (Mirounga amgustirostris), ringed seals (Phoca hispida), California sea lions 

(Zalophus cali/omianus) and Steller sea lions (Eumetopias jubatus). Plasma 

concentrations of AVP, ANP and Ang II in these pinniped species were within the ranges 

reported for other vertebrates under resting conditions. However, there were species, 

geographic and developmental variations in these hormones: Levels of AVP in plasma 

samples from adult Steller sea lions and harbor seals were higher than in pups of the same 

species; higher levels of plasma ANP were found in wild captured Alaskan Steller sea lions 

and in hunted ringed seals; differences in plasma levels of all three hormones were found 

throughout the geographic distribution of harbor seals and Steller sea lions in Alaska.

This is the first report on circulating concentrations of vasoactive hormones in pinnipeds, 

and demonstrates that further studies are needed to ascertain the natural variability in these 

levels with the impact of molting, fasting, diving and environmental factors.

‘Plasma angiotensin n, arginine vasopressin and atrial natriuretic peptide in free 

ranging and captive seals and sea lions. Zenteno-Savin, T. and M. A. Castellini. 

Comparative Biochemistry and Physiology, in press.
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2.2. Introduction

As vasoactive hormones, the role of both angiotensin II (Ang II) and arginine 

vasopressin (AVP) is to produce constriction of vascular smooth muscles (16, 51), while 

that o f atrial natriuretic peptide (ANP) is to antagonize such constrictor effect (7). 

Deviations from baseline plasma concentrations of ANP, AVP, and Ang II during exercise 

and water-immersion have been reported for a variety o f vertebrate species. In humans 

and other mammals, plasma concentrations of ANP, AVP and aldosterone, and plasma 

renin activity increase in response to exercise in an intensity-related fashion (26, 34). 

During head-out immersion the plasma level of ANP increases in humans (22) and dogs 

(47), while AVP (14, 30, 39) and the renin-angiotensin-aldosterone systems (RAAS) (14) 

are inhibited. Freshwater turtles responded to water immersion and diving with changes in 

circulating vasoactive hormones (6) similar to those observed in humans and dogs. It is 

possible that Ang n , AVP and ANP participate in the control o f the changes in heart rate, 

blood pressure and redistribution of blood flow observed in marine mammals during 

natural diving- and sleep-associated apnea (10, 11,21). However, in order to explore this 

hypothesis it is first necessary to obtain information on the circulating levels of these 

hormones in marine mammals at rest. Of these hormones, only AVP has been studied in 

marine mammals, and mostly in its antidiuretic role (43, 44, 50). The purposes o f the 

present study were to determine plasma concentrations o f ANP, AVP, and Ang II in a 

variety of diving mammals and to establish potential species and geographic differences.

2.3. Materials and Methods

Blood samples were collected from Steller sea lions (Eumetopias jubatus) and 

harbor seals (Phoca vitulina) at haul-out sites and rookeries at various locations in the 

Aleutian Islands and the Gulf of Alaska. Weddell seals (Leptonychotes weddellii) were 

studied in McMurdo Sound, Antarctica, while northern elephant seals (Mirounga 

angustirostris) were studied at Aiio Nuevo State Reserve, California. Additional samples
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were obtained from Steller sea lions that had been captured as pups in the wild and raised 

at the Vancouver Aquarium, Vancouver, British Columbia, Canada, and from harbor seals 

maintained at SeaWorld-Hubbs Research Institute, San Diego, CA. Samples were also 

obtained from California sea lions (Zalophus califomicmus) from SeaWorld-Hubbs 

Research Institute, San Diego, CA, and from ringed seals (Phoca hispida) from native 

hunters in Barrow, AK. We analyzed plasma samples from 181 Steller sea lions, 161 

harbor seals, 6 California sea lions, 33 Weddell seals, 10 elephant seals and 5 ringed seals. 

Age was estimated based on morphometric data as follows: newly-born to 16 week old 

animals were classified as pups, yearlings were animals from the weaning period to about 

1 year old, subadults were estimated to be 2 to 3 years old, and adults were estimated to 

be at least 4 years old. During sampling, pups and yearlings were manually restrained. 

Steller sea lion adults and subadults, as well as some pups, were darted with Telazol® and, 

if necessary, further anesthetized with either Halothane® or Telazol® (33); some Steller sea 

lion pups were anesthetized with Halothane®, and adult harbor seals (Prince William 

Sound) were anesthetized with ketamine/diazepam intramuscularly (i.m.) at standard doses 

(28).

Blood samples (5 ml) were taken by venipuncture from either a hind flipper vein, 

the extradural vein (phocid seals), or the dorsal pelvic vein (sea lions), immediately 

transferred into a chilled test tube containing 0.125 M ethylenediaminetetraacetic acid 

(EDTA) (Vacutainer 6450, Becton-Dickinson Ltd., Rutherford, NJ) and centrifuged at 

4000 x g for 10 min. An angiotensin-converting enzyme (ACE) inhibitor, o- 

phenanthroline (0.025 M, 100 //1/ml plasma, P-9375, Sigma Chemicals, St Louis, MO)

(19) was added to the recovered plasma. Samples were placed in a liquid nitrogen-cooled 

CryoPac shipper (-196°C) and transported to the University of Alaska Fairbanks, where 

they were archived at -70°C until extraction for radioimmunoassay (RIA). Plasma 

osmolality (OsnipJ was not measured; osmometers were not available at the remote field

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



locations. In our hands, freezing/thawing of plasma samples significantly compromises the 

accuracy of the Osm,,, determinations.

Immunoreactive (ir) material was extracted from plasma by using prepacked 

octadecasilyl-silica cartridges (Sep-Col Clg, Phoenix Pharmaceuticals, Mountain View,

CA) according to a method adapted from Hartter (31). Each cartridge was used for only 

one sample. The cartridge was sequentially washed with 100% methanol (glass distilled, 

HPLC grade, Sigma Chemicals), 90% methanol in 0.5% trifluoroacetic acid (TFA 

HPLC/Spectrograde, Sigma Chemicals), and distilled water. Thawed plasma (1 to 2 ml) 

was slowly passed through the cartridge, which was then washed with 8 ml distilled water, 

and the immunoreactive material was eluted with a 90% methanol-0.5% TFA solution.

The eluate was dried in a vacuum sample evaporator and concentrator (Labconco, Kansas 

City, MO) and stored at -20°C for RIA on the next day. Prior to analysis, samples were 

reconstituted to their original volume with RIA buffer (Phoenix Pharmaceuticals). The 

percent recovery from the extraction procedure was determined by adding known amounts 

o f synthetic peptide (5 to 100 pg/ml, Phoenix Pharmaceuticals) to pooled plasma (quality 

control). Measurements of extracted plasma samples were not corrected for extraction 

efficiency, which ranged from 90 to 110%. Biochemical identity of the ir material obtained 

from pinniped plasma samples has not yet been assessed; thus, in this paper will be 

referred to as ANP-, AVP-, and Ang II-like ir material, accordingly.

The concentrations of AVP-, ANP-, and Ang II-like ir material in plasma samples 

were analyzed using commercially available RIA kits, which include antibodies raised in 

rabbits against the human peptides (Phoenix Pharmaceuticals). Using a second antibody, 

goat anti-rabbit immunoglobulin G serum, the antibody-bound material was removed.

After centrifugation at 3000 x g for 30 min at 4°C, the supernatant was aspirated, and the 

radioactivity in the bound fraction was counted using an automatic gamma counter 

(Micromedic 200+, Micromedic Systems Inc., Horsham, PA). During all RIA procedures 

reagents and samples were kept on ice. All samples were run in duplicate, and replicates
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were run within the same assay. Each assay included a standard curve generated with 

serial dilutions of the synthetic peptide provided by the manufacturer, and the quality 

control for the species for which unknown samples were being analyzed in that assay.

Only values that fell within 20 to 80% of the maximum of the dose-response curve (the 

linear portion o f the curve) were considered. All dilutions were made using RIA buffer. 

Cross-reactivity between antibodies and the material extracted from pinniped plasma 

samples was determined by assaying pooled plasma serially diluted in RIA buffer and then 

comparing the resulting curve with that given by the standard peptide dilutions. The 

amount of the pooled plasma which yielded 50% inhibition of binding of the labeled 

hormone to the antibody was compared with the amount of standard peptide giving the 

same inhibition, and expressed as percentage of that of the standard (12). This test was 

performed in all pinniped species for each hormone analyzed.

Data were analyzed using ANOVA followed by multiple comparison Student- 

Neuman-Keuls tests, and non-paired t-tests with Bonferroni adjustment for multiple 

comparisons (66), running the statistical software, SYSTAT® (SPSS, Chicago, EL). 

Significance was assumed when P < 0.05. Final results are presented as mean ±  standard 

error of the mean. Information on gender and age was not available for all samples; 

results were analyzed and are presented for the subset where this information was 

procured.

2.4. Results

Concentrations of AVP-, ANP-, and Ang II-like ir material extracted from 

pinniped plasma samples are presented in Table 2.1. Results are expressed as picograms 

of ir material per milliliter (pg/ml) of extracted plasma.
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TABLE 2.1. Plasma concentrations o f arginine vasopressin (AVP), atrial natriuretic 

peptide (ANP), and angiotensin II (ANG II) in several pinniped species. Data are 

expressed as pg/ml extracted plasma and presented as mean ± SEM. N = Number of 

samples assayed.

SPECIES N AVP ANP ANG II

STELLER SEA LIONS

ADULTS 20 14.2 ± 1.5 139.3 ± 7.8 b 55.8 ± 11.9

SUB ADULTS 1 6.5 6.5 20.5

YEARLINGS 5 6.2 ± 1.7“ 32.0 ± 13.6“ 24.6 ± 4.0

PUPS 155 7.2 ± 0 .4 “ 88.3 ± 6.4 “ 46.9 ±3.3

TOTAL/AVERAGE 181 7.9 ± 0.4 b 92.0 ±5.7 47.0 ±3.1

CALIFORNIA SEA LIONS

ADULTS 1 10.2 26.9 8.4

PUPS 5 4.7 ± 1.0 31.7 ± 5.4 7.6 ±0.8

TOTAL/AVERAGE 6 5.6 ± 1.2 30.9 ±4.5 7.7 ±0.6

HARBOR SEALS

ADULTS 68 15.9 ±2.5 30.4 ±4.4 29.5 ±3.7

SUB ADULTS 41 11.4 ±1.3 23.7 ±4.5 34.2 ± 6.6

YEARLINGS 15 16.2 ± 4.0 46.8 ± 13.9 29.0 ± 9.6

PUPS 17 8.4 ± 2 .0 d 25.3 ±9.1 1 24.0 ± 5.5

UNKNOWN 20 10.2 ± 1.3 20.3 ± 2.8 20.8 ± 2.9

TOTAL/AVERAGE 161 13.3 ± 1.2* 28.5 ±2.7  v 29.0 ± 2.6 1

continued...
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... continued

SPECIES N AVP ANP ANG II

WEDDELL SEALS

ADULTS 2 12.0 ±0.1 20.3 ± 0.2 9.0 ± 0.2

YEARLINGS 10 7.5 ± 2.2 52.8 ±3.8 13.7 ±2 .6

PUPS 21 2.6 ± 0.5 18.2 ±2.3* 17.0 ±2.5 a

TOTAL/AVERAGE 33 4.4 ± 0.8 b 24.5 ±3.1 w 15.6 ± 1.8 1

ELEPHANT SEALS

PUPS 10 7.9 ± 4.9 23.5 ±2.8 33.2 ±3.4

TOTAL/AVERAGE 10 7.9 ±4.9 23.5 ± 2.8 33.2 ±3.4

RINGED SEALS

ADULTS 5 9.3 ± 1.8 126.8 ± 38.4b 14.0 ±6.0

TOTAL/AVERAGE 5 9.3 ± 1.8 126.8 ±38.4 14.0 ± 6.0

* = P < 0.05 compared to Steller sea lions.b = P < 0.05 compared to harbor seals. c = P < 

0.05 compared to ringed seals. d = P < 0.05 compared to adults of the same species.
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The sensitivity of the RIA systems (50% depression of tracer binding) for each 

hormone was as follows: AVP, 1.8 ± 0.2 pg/tube; ANP, 6.4 ± 0.6 pg/tube; Ang n, 4.1 ± 

0.3 pg/tube (n=15). Intra-assay errors (coefficient of variation percent) were: AVP, 3.7 ± 

0.1 %; ANP, 3.9 ± 0.3 %; Ang n , 3.1 ± 0.2 % (n=10). Inter-assay coefficients of variation 

were: AVP, 5.3 ± 0.2 %; ANP, 4.2 ± 0.4 %; Ang II, 5.6 ± 0.3 % (n=15). For all three 

hormones, the least detectable concentration was 0.1 pg/ml. Dilutions o f all seal and sea 

lion species showed parallelism with the synthetic peptides provided by the manufacturer, 

yielding 75 to 85% cross-reactivity (Figure 2.1).

No diurnal, seasonal or annual cyclic patterns in hormone concentrations were 

detected because insufficient information precluded testing for effects of time of day or 

year. There was no statistically significant effect of gender or anesthesia on AVP-, ANP- 

or Ang II-like ir material concentration in any of the pinniped species analyzed. Thus, 

data was combined for further statistical analyses and the results presented include data for 

both males and females, as well as anesthetized and manually restrained animals.
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* steller sea lion 
+ standard

ANP (pg/ml)

FIGURE 2.1. Representative estimation of the percentage cross-reaction from the amount 

of material required to produce 50% inhibition in the radioimmunoassay. Results shown 

are for estimating cross-reactivity between the atrial natriuretic peptide (ANP) standard 

provided by the manufacturer (Phoenix Pharmaceuticals) and Steller sea lion plasma.

Solid line, standard; dashed line, Steller sea lion pooled plasma.
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2.4.1. Vasopressin

The use o f antibodies raised against human AVP yielded 80% cross-reactivity with 

pinniped plasma samples. The concentration of AVP-like ir material in plasma samples 

from all seal and sea lion species analyzed ranged from 1 pg/ml to over 16 pg/ml and 

demonstrated significant developmental and regional differences. Steller sea lion pups and 

yearlings and harbor seal pups had lower levels of AVP-like ir material compared to adults 

of the same species (Table 2.1). Additional analyses revealed that AVP-like ir material 

was significantly lower (P < 0.05) in Steller sea lion pups from Southeast Alaska (4.7 ±

0.4 pg/ml, n=41) (where the population is stable) than in pups from Aleutian Islands (7.8 ± 

0.6 pg/ml, n=46) and Gulf of Alaska (8.8 ± 0.9 pg/ml, n=53), both locations at which the 

populations are declining. Harbor seal pups sampled in Southeast Alaska (stable 

population) appeared to have higher concentrations of AVP-like ir material (26.1 ± 9.1 

pg/ml, n=2) than did captive harbor seals in California (6 .2  ± 1.4 pg/ml, n=l 1) and wild 

harbor seals in Prince William Sound (5.6 ± 0.5 pg/ml, n=4) (population declining). 

However, this pattern changed in yearlings, such that harbor seal yearlings from Kodiak 

(population increasing) appeared to have lower levels of AVP-like ir material (8.4 ± 2.6 

pg/ml, n=2) than yearlings from Prince William Sound (20.3 ± 7.2 pg/ml, n=8)

(population decreasing).

2.4.2. Atrial Natriuretic Peptide

Anti-human ANP serum displayed a 75% cross-reactivity with pinniped plasma 

samples and also showed patterns by region, age and species. The average levels of ANP- 

like ir material in plasma samples from Steller sea lions and ringed seals were significantly 

higher than in samples from harbor seals, Weddell seals, and elephant seals (P < 0.05) 

(Table 2.1). Adult Steller sea lions had significantly higher (P < 0.05) levels of ANP-like 

ir material than did younger conspecifics. Among the Steller sea lion pups, those sampled 

in the Aleutian Islands (115.2 ± 13.1 pg/ml, n=46) and the Gulf of Alaska (118.9 ± 10.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

pg/ml, n=55) (declining populations) had significantly higher (P < 0.05) levels of 

circulating ANP-like ir material than those from Southeast Alaska (31.6 ± 3.5 pg/ml, 

n=41) (population stable) and those kept at the Vancouver Aquarium (21.7 ± 0.6 pg/ml, 

n=9). Levels o f ANP-like ir material in hunted ringed seals (126.8 ± 38.4 pg/ml, n=5) were 

as high as those in Steller sea lions (all age classes) from Aleutian Islands (113.4 ± 12.9 

pg/ml, n=47) and Gulf of Alaska (124.3 ± 7.7 pg/ml, n=75) (declining populations). This 

pattern was age-dependent and subadult harbor seals in Southeast Alaska had higher levels 

of ANP-like ir material (59.1 ± 20.2 pg/ml, n=3) than subadult harbor seals in Kodiak 

(16.2 ±5.1 pg/ml, n=6) and Prince William Sound (21.6 ± 5.0 pg/ml, n=28) (P<0.05).

2.4.3. Angiotensin II

Plasma samples from pinnipeds exhibited an average 85% cross-reactivity with the 

human Ang II antiserum. Samples from Steller sea lions had a higher average 

concentration of Ang II-like ir material than harbor seals, and Weddell seals, (P < 0.05). 

However, there was no statistically significant effect of age on circulating levels of Ang II- 

like ir material in any of the seal and sea lion species analyzed. The concentration of Ang 

II-like ir material in plasma samples o f Steller sea lion pups from the Gulf of Alaska (69.2 

± 6.4 pg/ml, n=49) was significantly higher (P < 0.05) than that in samples of pups from 

the Aleutian Islands (32.4 ± 4.8 pg/ml, n=43), Southeast Alaska (40.7 ± 5.4 pg/ml, n=41) 

and the Vancouver Aquarium (23.8 ± 2.0 pg/ml, n=9). Plasma samples of harbor seals of 

all ages from Prince William Sound had significantly (P < 0.05) higher Ang II-like ir 

material (36.2 ± 4.7 pg/ml, n=79) than did samples of harbor seals from Southeast Alaska 

(20.3 ±1 .7  pg/ml, n=45).
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2.5. Discussion

Sufficient cross-reactivity was obtained between each of the antibodies against the 

human peptides and plasma samples from pinnipeds to justify the use of commercial kits. 

Successful determination of AVP- ANP- and Ang II-like ir material in plasma samples 

from Weddell seals, harbor seals, northern elephant seals, ringed seals, California sea lions 

and Steller sea lions was achieved by the use of commercially available antibodies. This 

suggests not only that these hormones are present in the plasma of pinnipeds, but also that 

the amino acid sequences of the pinniped peptides are similar to those o f humans. This is 

consistent with the highly conserved sequences reported for these peptide hormones 

among vertebrates (1,36, 64). However, detailed biochemical analyses are needed in 

order to verify the biochemical identity of the ir material found in seal and sea lion plasma 

samples.

2.5.1. Vasopressin

The levels of AVP-like ir material in pinnipeds (Table 2.1) were higher than those 

reported for humans, in which the average circulating AVP concentration is 4 pg/ml (52). 

However, plasma AVP concentrations in rabbits (9.4 ± 3.2 pg/ml, 37) and rats (10.4 ± 2.5 

pg/ml, 65) are similar to values found in the pinnipeds sampled in this study. Similarly, the 

levels of plasma AVP-like ir material found in all pinniped species were comparable to 

those found in a previous study on fasting, postweaned northern elephant seal pups (34.8 

± 18.2 pg/ml (early fasting) to 4.8 ±  1.3 pg/ml (late fasting), 50). The northern elephant 

seal pups in the present study were in the mid to late fasting stage. In general, pups had 

lower levels of AVP-like ir material than adults, but this was statistically significant 

(P<0.05) only for Steller sea lions and harbor seals. Johnson et al. (35) reported higher 

plasma AVP concentration in healthy elderly than in younger humans; however, Clark et 

al. (13) did not find differences between healthy young and old subjects. In addition, 

some of the yearling, subadult and adult harbor seals were molting at the time of sampling.
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Evidence suggests that hypophysial peptides may regulate molting in vertebrates and 

invertebrates (20, 46, 53).

2.5.2. Atrial Natriuretic Peptide

The ANP-like ir material detected in plasma samples from California sea lions, 

Weddell seals, harbor seals and northern elephant seals were similar to values reported for 

humans (54.0 ± 5.0 pg/ml, 25) and fresh water turtles (47.0 ±3.5 pg/ml, 6). However, the 

concentrations of ANP-like ir material were relatively high in samples from adult Steller 

sea lions and ringed seals (Table 2.1).

2.5.3. Angiotensin II

The concentration of Ang II-like ir material in samples from northern elephant 

seals, ringed seals, harbor seals, Weddell seals, and California sea lions (Table 2.1) were 

similar to values reported for humans (12.0 ± 2.1 pg/ml, 59) and other terrestrial mammals 

(rabbit, 18.5 ± 4.0 pg/ml, 58; rat, 29.3 ± 3.5 pg/ml, 65; calf 57.2 ± 1.0 pg/ml, 8).

Unlike samples collected from all other species, samples from ringed seals were 

taken from animals that had been shot, which may explain the elevated ANP-like ir 

material concentrations in this species. However, their levels of AVP- and Ang II-like ir 

material were not distinct from other species. All other seals and sea lions were captured 

when they were on land, and presumably had been on land for some time. It is unlikely 

that the high levels of ANP-like ir material found in Steller sea lions were brought about 

by differences in sample manipulation or the diving history of the animals just prior to 

blood sampling. Molting may not by itself be responsible for these higher values since, 

unlike the harbor seals, Steller sea lions were not molting at the time of sampling.

Plasma ANP levels as high as those found in Steller sea lion and ringed seal plasma 

samples are typically found in humans with congestive lung disease and pulmonary artery 

hypertension (3), and in experimental situations, in humans after 60 minutes water
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immersion (39), in fresh water turtles during diving (6) and in pigs breathing a mixture of 

89% N2 and 11% 0 2 for 15 minutes (2). Plasma Ang II and ANP levels similar to those 

found in Steller sea lion plasma samples were observed in humans with impaired left 

ventricular systolic function (62).

Most interestingly, the circulating levels of ANP- and Ang II-like ir material in 

Steller sea lion samples collected in the Aleutian Islands and the Gulf of Alaska were 

higher than those from Steller sea lions in Southeast Alaska and the Vancouver Aquarium. 

Similarly, the concentration of AVP- and Ang II-like ir material in harbor seal samples 

from Prince William Sound was higher than that in harbor seal samples from Kodiak, 

Southeast Alaska and California. Furthermore, concentrations of the vasoactive peptides 

in samples of Steller sea lions and harbor seals from Southeast Alaska, the Vancouver 

Aquarium and California were closer to those in California sea lions, northern elephant 

seals and Weddell seals, as well as to those in terrestrial mammals.

The populations of Steller sea lions and harbor seals at the Aleutian Islands, Gulf 

o f Alaska and Prince William Sound have been declining for the past 20 years (41, 54) to 

the point that Steller sea lions have recently been proposed as "Endangered" (23). The 

cause o f the decline is not obvious, but we are addressing the possibility that the hormonal 

differences we found may reflect nutritional, physiological and/or genetic distinctions 

among the populations.

Malnutrition and eating disorders are accompanied by disturbances in the 

metabolism of vasoactive hormone systems. Abnormal concentrations of ANP, AVP and 

Ang n , and impaired responses to these hormones have been reported in patients with 

bulimia and anorexia nervosa (18, 45, 49), acute and chronic starvation (40), and also in 

rats with dietary obesity (15). Dietary copper deficiency has been shown to increase 

plasma concentrations of ANP (9), to increase the angiotensin-converting enzyme (ACE) 

activity in renal microvilli (56), to decrease both plasma ACE activity and blood pressure 

in weanling rats (24) and to increase blood pressure in mature rats (42). Zenteno-Savin et
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al. (67) reported that plasma levels of the acute phase protein haptoglobin (Hp) in samples 

o f harbor seals and Steller sea lions in the Gulf of Alaska, the Aleutian Islands and Prince 

William Sound are elevated as compared to those in samples of animals from Southeast 

Alaska. Besides increases in Hp and other plasma proteins, the acute phase response 

involves vasodilation (38). This is consistent with our findings of relatively elevated levels 

o f circulating ANP-Iike ir material in samples o f Steller sea lions and harbor seals from the 

Gulf o f Alaska, the Aleutian Islands and Prince William Sound. In addition, certain Hp 

phenotypes appear to be associated with the risk of developing hypertension in humans 

(17, 32). Hypertension is normally accompanied by a rise in circulating ANP and 

activation of the RAAS (61, 63). Conversely, Hp levels were significantly lower in human 

transplant recipients who had been given angiotensin-converting enzyme inhibitors (29). 

Other pathologic states in which Hp, ANP and the RAAS may be increased include some 

types of anemia (5, 48, 60, 62), heart failure (27, 57), and pericarditis (4, 55).

In summary, the plasma concentrations of AVP-, ANP- and Ang II-like ir material 

in samples from northern elephant seals, harbor seals, Weddell seals and California sea 

lions are similar to those reported for many terrestrial mammals, but showed interesting 

natural variation. Studies in our laboratory are being conducted to address the possibility 

that the differences in vasoactive hormone concentrations found in Alaskan pinnipeds may 

be inherent to genetic stocks or may be due to physiological and/or pathological states. 

Clearly, further research is needed to evaluate interactions among vasoactive hormones 

and physiotogical events pertinent to the natural histories of seals and sea lions, such as 

molting, fasting and diving.
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3. CHANGES IN  THE PLASMA LEVELS OF VASOACTIVE HORMONES DURING 

APNEA IN  SEALS?

3.1. Abstract

Prolonged and repetitive breath-hold periods (apnea) during diving and sleep are a 

routine component in the ecological physiology of marine mammals. Seals are among the 

few mammals in which control of heart rate (HR) can be studied independent of 

respiration, without pharmacochemical manipulation. We hypothesized that the vasoactive 

hormones angiotensin II (Ang II), arginine vasopressin (AVP) and atrial natriuretic 

peptide (ANP) were involved in the control o f cardiovascular function in seals, and that 

the relationship was dependent upon input from the respiratory system. Venous plasma 

samples were collected and electrocardiograms were recorded from northern elephant seal 

(Mirounga cmgustirostris) and Weddell seal (Leptonychotes weddellii) pups during both 

spontaneous breathing (eupnea) and apnea. Instantaneous HR and simultaneous plasma 

levels of ANP, AVP and Ang II from periods of eupnea and apnea were compared. In 

these seal pups, apnea was associated with bradycardia, increased ANP and decreased 

AVP and Ang H  The results support the hypothesis of a complex involvement between 

the vasoactive hormones and the control of cardiovascular function, and provide evidence 

for differential levels o f control during periods of eupnea and apnea.
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2Changes in the plasma levels of vasoactive hormones during apnea in seals. 

Zenteno-Savin, T. and M. A. Castellini. Comparative Biochemistry and Physiology, in 

press.
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3.2. Introduction

Of the cyclical factors (respiration, blood pressure (BP), vasomotor activity, neural 

regulation and thermoregulation) that drive heart rate (HR) and HR variability, breathing 

has the strongest influence in determining the prevailing HR (33). The study of intrinsic 

HR patterns and the factors that affect them in mammals, independent o f respiratory 

influences, requires a unique model. Prolonged and repetitive breath-hold periods (apnea), 

associated with diving (reviewed in 34) and sleep (10, 12), are a routine component in the 

respiratory patterns of seals. Apnea in seals is characterized by decreases in HR and 

cardiac output, peripheral vasoconstriction and redistribution of blood flow (61), as well 

as increases in hematocrit (9, 12). However, systolic, mean and diastolic arterial BP 

remain relatively unchanged (24, 32).

Several studies using terrestrial mammals suggest that the vasoactive hormones 

may be important factors in the control of cardiorespiratory function. The vasoactive 

hormones arginine vasopressin (AVP, the antidiuretic hormone), angiotensin II (Ang II) 

and atrial natriuretic peptide (ANP) affect vascular resistance, thus modifying, directly or 

indirectly, blood flow, cardiac output and HR (36, 59, 60). In addition, AVP has a direct 

cardiodepressant action in rabbits (23), Ang II stimulates ventilation in dogs (44), and 

ANP resets the baroreceptor control of the heart towards cardioinhibition in humans (59).

This project studied the changes in HR and plasma levels of ANP, AVP and Ang II 

in northern elephant seal (Mirounga angustirostris) and Weddell seal (Leptonychotes 

weddellii) pups during periods of spontaneous eupnea and apnea. We hypothesized that in 

seals, as in other mammals, HR and HR variability are strongly driven by respiration, and 

that in the absence of ventilation, the integrity of cardiovascular function is maintained, at 

least in part, in response to the interaction of the vasoactive hormones ANP, AVP and 

Ang n . Furthermore, we hypothesized that the bradycardia and decreased cardiac output 

driven by apnea at a constant arterial pressure would increase intra-cardiac pressure, thus 

increasing plasma levels of ANP and decreasing the concentrations of AVP and Ang n.
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We speculated that differences between seal species in the intensity or extent o f the 

interaction o f the vasoactive hormones and the cardiorespiratory system may reflect 

differential diving capacities.

3.3. Materials and Methods

The endocrine control of cardiorespiratory function was estimated in 10 northern 

elephant seal pups from Aiio Nuevo State Reserve, CA, and 5 Weddell seal pups from 

McMurdo Sound, Antarctica. Because most of these animals were tagged when bom as 

part of long-term population studies, their age was known. When birth-dates were not 

known, age was calculated from morphometric data. Pup age ranged between 4 and 16 

weeks. The mean age for Weddell seal pups was 6 weeks. Northern elephant seal pups 

were divided by age into two groups, mean ages 8 and 14 weeks. Handling and sampling 

techniques followed routine procedures for the study of sleep-associated apnea in northern 

elephant seals (10, 12). Briefly, seals were captured, transported to laboratory facilities 

(Long Marine Laboratoiy, University o f California Santa Cruz (elephant seals), or an 

adapted fish-hut anchored on the sea ice at McMurdo Sound (Weddell seals)), and 

weighed. Body mass was, for elephant seal pups 74.2 to 95.2 kg; for Weddell seal pups 

106 to 130 kg. Under light anesthesia (3.0 mg/kg ketamine, Ketaset®, Aveco Co., New 

York, NY, and 1.25 //g/kg Diazepam®, Abbott Laboratories, North Chicago, IL) and 

sterile conditions, a percutaneous catheter (14 gauge, 5 V*. inch, Becton Dickinson, Sandy, 

UT) was implanted in the extradural intravertebral vein and needle electrodes (21 gauge, 

1.5 inch stainless needles) were anchored subdermally across the thoracic area to monitor 

HR. An antibiotic was administered intravenously (iv) (0.5 g Keflin®, Lilly Co., New 

York, NY). Animals were allowed to recuperate from this minimal anesthesia for at least 3 

hours. The northern elephant seal pups were studied while they slept or rested in a large, 

quiet room. The Weddell seal pups were examined while they slept or rested between 

diving bouts; they had free access to water through a hole in the sea ice under the
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laboratory hut (reference for general method: 11). The animals were not handled or 

restrained during the sampling period. After the experiment was completed, the antibiotic 

dosage was repeated, the electrodes and catheter were removed, and the animals were 

kept for an additional period (up to 12 hours) for observation. After this time, the seals 

were returned to the colonies.

Heart rate was recorded continuously by directing the electrocardiogram signal 

through a cardiotachometer (BIOTACH, ufi, Morro Bay, CA). Heart rate and respiratory 

chest movement were simultaneously collected directly into a multichannel physiological 

recorder (Microscribe, Houston Instruments, The Recording Co., San Marcos, TX) for 

later analysis. Heart rate polygraphic data was digitized (DrawingBoard n , CalComp 

Digitizer Products Group, Scottsdale, AZ) to obtain mean and instantaneous HR for each 

eupneic and apneic period.

Venous blood samples were collected for hormone analysis during at least 5 

independent periods of spontaneous eupnea and apnea. Samples were collected 1 to 2 min 

into apnea and 2 min after the first breath. If  an apneic period lasted more than S min, 

additional samples were taken at 1 to 2 min intervals. Blood samples (5 ml) were collected 

into chilled test tubes containing 0.125 M EDTA (Vacutainer 6450, Becton-Dickinson 

Ltd., Rutherford, NJ). Plasma was separated by centrifugation at 4000 x g at 4°C for 10 

min. To the recovered plasma an angiotensin-converting enzyme inhibitor, o- 

phenanthroiine (0.025 M, 100 //I/ml plasma, Sigma Chemicals, St Louis, MO) was added 

(21). All samples were stored at -70 °C, transported to University o f Alaska Fairbanks 

(UAF) and kept frozen until analyzed.

Prior to analysis, samples were thawed and immunoreactive (ir) material was 

extracted by using prepacked octadecasilyl-silica cartridges (SepCol, Phoenix 

Pharmaceuticals, Mountain View, CA), according to a method adapted from Hartter (29, 

63). The percent recovery from the extraction procedure was determined by adding 

known amounts of synthetic peptide (5 to 100 pg/ml, Phoenix Pharmaceuticals) to pooled
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plasma (quality control). Measurements of extracted plasma were not corrected for 

extraction efficiency, which ranged from 89 to 112%.

The vasoactive hormone concentrations were analyzed in plasma samples using 

radioimmunoassay (RIA) kits for AVP, ANP and Ang II (Phoenix Pharmaceuticals), 

which include antibodies raised in rabbits against the human peptides. We have found 

sufficient cross-reactivity between antisera raised in rabbits against the human peptide 

hormones and ir material in plasma samples of several species of seals and sea lions using 

these kits (63). All plasma samples were run in duplicate, and replicates were run in a 

single assay, along with a quality control sample for the species for which unknown 

samples were being analyzed in that assay. Only values that fell within the linear portion of 

the dose-response curve (20 to 80%) were considered. All dilutions were made with RIA 

buffer. The sensitivity of the RIA systems (50% depression of radiolabeled hormone 

binding to antibody) (17) for each hormone was as follows: AVP, 1.8 ± 0.2 pg/tube; ANP, 

6.4 ± 0.6 pg/tube; Ang n , 4.1 ±  0.3 pg/tube (n=15). Intra-assay errors (coefficient of 

variation percent) were: AVP, 3.7 ± 0.1%; ANP, 3.9 ± 0.3%; Ang II, 3.1 ± 0.2% (n=10). 

Inter-assay coefficients of variation were: AVP, 5.3 ± 0.2%; ANP, 4.2 ± 0.4%; Ang II, 5.6 

± 0.3% (n=15). The least detectable concentration for all three hormones was 0.1 pg/ml. 

Samples from both seal species showed parallelism with the synthetic peptides provided by 

the manufacturer, yielding 75 to 85% cross-reactivity. Biochemical identity of the ir 

material obtained from elephant seal and Weddell seal plasma samples has not yet been 

assessed; thus, in this paper will be referred to as ANP-, AVP- and Ang II-like ir material, 

accordingly.

Statistical analyses were carried out as follows: Differences in HR and hormone 

concentrations between periods o f eupnea and apnea were identified using paired t-tests 

and non-paired t-tests with Bonferroni adjustment for multiple comparisons where 

applicable (62) (SYSTAT®, SPSS Inc., Chicago, IL). Interactions between HR 

breathing status (eupnea or apnea, scored as 1 or 0, respectively) and hormone
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concentrations were detected with analysis of covariance (ANCOVA) (62) (SYSTAT®, 

SPSS Inc.). Predictors of breathing status based on HR and hormone concentrations were 

obtained using discriminant analysis (DA) (62) (SYSTAT®, SPSS Inc.). Significance 

was assumed when P < 0.05. Data are presented as mean ± standard error of the mean 

(SE). Heart rate units are beats per minute (bpm), and hormone concentrations are 

expressed as picograms of ir material per milliliter (pg/ml) of extracted plasma.

3.4. Results

In all cases, average HR values during periods of apnea were lower (P < 0.05) than 

those during eupnea in northern elephant seal and Weddell seal pups (Table 3.1). The HR 

recorded for seal pups during eupnea was not significantly different between species or 

among age groups. The HR obtained during periods of sleep-associated apnea was lower 

(P < 0.05) in the 14 week old than in the 8 week old elephant seal pups. Apneic HR in 

Weddell seal pups (6 week old) was lower (P < 0.05) than that in elephant seal pups of 

either age group.

Plasma concentrations of ANP-, AVP- and Ang II-like ir material in northern 

elephant seal and Weddell seal pups during periods of eupnea and apnea are also presented 

in Table 3.1. Circulating levels o f ANP-like ir material in Weddell seal pups was 

significantly (P < 0.05) higher during apnea than during eupnea. Mean concentrations o f 

Ang II- and AVP-like ir material were significantly (P < 0.05) lower during periods of 

apnea than eupnea in Weddell seal pups, as well as in the older (14 weeks old) elephant 

seal pups.
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TABLE 3.1. Mean heart rate and average concentrations of vasoactive hormones in 

extracted plasma samples from northern elephant seal and Weddell seal pups during 

periods of eupnea and apnea. Data are presented as mean ± standard error o f the mean. 

HR= heart rate; ANP= atrial natriuretic peptide; Ang H= angiotensin II; AVP= arginine 

vasopressin. Sample size is indicated in parentheses.
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HR

(bpm)

ANP

(pg/ml)

Ang II 

(pg/ml)

AVP

(pg/ml)

Northern Elephant Seal Pups 

age 8 weeks

Eupnea (40) 

Apnea (52)

93.7 ± 1.6 

63.9 ± 1.4*

22.7 ±3.6 

24.1 ±3.3

24.3 ± 4.6 

17.7 ±3.0

1.7 ±0.3

1.8 ± 0.1

age 14 weeks 

Eupnea 

Apnea

(29)

(53)

93.9 ±2.0 

53.2± 1.1*

20.9 ± 2.2 

26.3 ± 1.8

30.9 ± 1.4 

16.5 ±0.9*

3.9 ±0.5 

2.5 ± 0.2*

Weddell Seal Pups 

age 6 weeks 

Eupnea 

Apnea

(32)

(35)

94.0 ± 1.4 

46.2 ± 0.6*

12.5 ±0.5 

30.6 ± 1.2*

39.6 ± 1.7 

12.2 ±0.4*

7.2 ± 0.4

3.2 ± 0.1*

*P < 0.05 compared to values during eupnea.
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Graphical representations of the relationships between HR and hormone 

concentrations for northern elephant seal and Weddell seal pups are displayed as 

scattergrams in Figures 3.1, 3.2, and 3.3; opened and closed circles distinguish periods of 

eupnea and apnea, respectively. These scatter-plots, also known as casement plots, show 

separate graphs for each possible pair of variables (HR, ANP-, Ang II-, and AVP-like ir 

material) in a single matrix-style display (16). The density plots on top o f each column 

show the relative concentration of data points for each variable during periods of apnea 

(solid line) and eupnea (dashed line), in which case the plotted variable is displayed in the 

X-axis and number of cases in the Y-axis.

In the younger elephant seal pups (average age 8 weeks) only HR was significantly 

different between periods of eupnea and apnea (Figure 3.1, Table 3.1). In this group of 

younger elephant seal pups, Ang II- and AVP-like ir material and breathing status (eupnea 

or apnea) were significant in explaining HR (ANCOVA, P < 0.05), and AVP-like ir 

material and HR significantly contributed to predicting breathing status (ANCOVA, 

R ^ .7 1 9 , P < 0.05). Classification functions for eupnea and apnea were determined as 

follows (DA, Wilk’s Lambda = 0.281, P < 0.05): Eupnea = -48.723 + 1.057 Heart Rate + 

0.051 ANP - 0.091 A n g II- 0.111 AVP, and Apnea = -22.900 + 0.710 Heart Rate + 0.044 

ANP - 0.063 A n g II-0.050 AVP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

FIGURE 3.1. Scattergram showing separate plots for each possible pair of variables, heart 

rate (HR, bpm) and hormone concentrations (ANP= atrial natriuretic peptide, ANG= 

angiotensin n , AVP= arginine vasopressin, pg/ml), during eupnea (open circles) and apnea 

(closed circles) in 5 northern elephant seal pups, average age 8 weeks. The density plots 

on top of each column show the relative concentration of data points for each variable 

during eupnea (dashed line) and apnea (solid line).
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The relationships between HR and the vasoactive hormone concentrations in the 

older elephant seal pups (Figure 3.2) differ in slope and dispersion compared to those of 

the younger elephant seal pups (Figure 3.1). In this group of older elephant seals, 

circulating levels of Ang II- and AVP-like ir material increased with HR (Figure 3.2). 

Regression and descriptive functions between variables were different for periods of 

eupnea and apnea; for example, Ang II-like ir material tended to decrease with ANP-like ir 

material during eupnea but not during apnea (Figure 3.2). In this group of elephant seal 

pups, ANP-like ir material and breathing status (eupnea or apnea) significantly contributed 

to describing HR (ANCOVA, P < 0.05), and breathing status could be predicted from HR 

and Ang II- and AVP-like ir material (ANCOVA, RMJ.SSO, P < 0.05). Classification 

functions for eupneic and apneic episodes were determined as follows (DA, Wilk’s 

Lambda = 0.150, P < 0.05): Eupnea -  -73.311 + 1.232 Heart Rate + 0.347 ANP + 0.466 

Ang II  +2.070 AVP, and Apnea = -27.742 + 0.735 Heart Rate + 0.289 ANP + 0.254 Ang 

11 + 1.234 AVP.
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FIGURE 3.2. Scattergram showing separate plots for each possible pair o f variables, heart 

rate (HR, bpm) and hormone concentrations (ANP= atrial natriuretic peptide, ANG= 

angiotensin n , AVP= arginine vasopressin, pg/ml), during eupnea (open circles) and apnea 

(closed circles) in 5 northern elephant seal pups, average age 14 weeks. The density plots 

on top of each column show the relative concentration of data points for each variable 

during eupnea (dashed line) and apnea (solid line).
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Periods of eupnea and apnea are completely separated and easily identifiable in 

Weddell seal pups, average age 6 weeks (Figure 3.3). Circulating levels of Ang II- and 

AVP-like ir material increased, while concentrations of ANP-like ir material decreased 

with HR. The concentration of AVP-like ir material increased with Ang II-like ir material 

during periods of eupnea, and increased with ANP-like ir material during apnea. Ang II- 

and AVP-like ir material and breathing status (eupnea or apnea) contributed significantly 

to explaining HR (ANCOVA, P < 0.05), while ANP- and AVP-like ir material and HR 

had the highest significance in predicting breathing status (ANCOVA R2=0.953, P < 

0.05). Classification functions for eupnea and apnea were determined as follows (DA 

Wilk’s Lambda = 0.047, P < 0.05): Eupnea = -143.194 + 2.696 Heart Rate + 0.628 ANP 

- 0.132 Ang II - 4.006 A VP, and Apnea = -52.399 + 1.398 Heart Rate + 1.130 ANP -

0.015 Ang 11+ 1.385 AVP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

FIGURE 3.3. Scattergram showing separate plots for each possible pair of variables, heart 

rate (HR, bpm) and hormone concentrations (ANP= atrial natriuretic peptide, ANG= 

angiotensin n , AVP= arginine vasopressin, pg/ml), during eupnea (open circles) and apnea 

(closed circles) in 5 Weddell seal pups, average age 6 weeks. The density plots on top of 

each column show the relative concentration of data points for each variable during 

eupnea (dashed line) and apnea (solid line).
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3.5. Discussion

In both northern elephant seals and Weddell seals, apneic HR was significantly 

lower than eupneic HR, consistent with previous findings (reviewed in 14). Respiratory 

sinus arrhythmia (RS A), acceleration of the heart during inspiration and slowing o f the 

heart during the expiratory phase of respiration, was observed in the three groups o f seal 

pups (data not shown). In all cases, apnea was initiated after exhalation and the apneic HR 

was maintained at the average rate recorded during expiration in the course of 

spontaneous breathing. The differences between eupneic and apneic HR were smaller in 

the younger elephant seals and largest in the Weddell seals, suggesting development of 

RSA and control of the cardiorespiratory function to a higher degree in the 14 week old 

than in the 8 week old elephant seal pups, as was reported by Castellini et al. (13), and 

higher in Weddell seals than in the northern elephant seal pups. Differences between 

species may be associated with the development of a strong RSA at an earlier postnatal 

age in Weddell seal pups than in elephant seal pups.

Circulating levels of ANP-, Ang II- and AVP-like ir material in elephant seal and 

Weddell seal pups were within the ranges reported for a variety of terrestrial and marine 

mammals (27, 46, 48, 54, 63). In both elephant seal and Weddell seal pups, concentrations 

of the three hormones were found to change rapidly under resting conditions, in some 

cases within 5 minutes. This suggests that in seal pups there is a fast turnover rate for 

these vasoactive hormones, which is consistent with the short half-life reported for these 

hormones in terrestrial mammals (Ang II, 2 min (4); ANP, 2-3 min (15); AVP, 7.8 min 

(22)).

In parallel with HR data, the differences between apneic and eupneic hormone 

concentrations were larger in Weddell seal pups than in elephant seal pups and among the 

latter, in the 14 week old than in the 8 week old pups. These differences between periods 

of eupnea and apnea suggest both a developmental and a species-specific component to 

the integration of cardiorespiratory function in seal pups.
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Circulating levels of ANP-like ir material were elevated, while concentrations of 

Ang II- and AVP-like ir material (except in the youngest elephant seal pups) were lower 

during periods of apnea in elephant seals and Weddell seals. It may be expected, following 

the terrestrial mammal model, that as a consequence of decreased HR during breath- 

holding, CO would decrease and thus, arterial BP would decrease while cardiac filling 

would increase. The latter is a known stimulus for increased ANP and decreased AVP 

concentrations. In order to maintain a relatively constant BP, as has been reported to 

occur in seals during periods o f apnea, the activity of the baroreceptors will result in 

vasoconstriction and increased Ang II levels. However, Ang II-like ir material was lower 

during apnea than during eupnea in both Weddell seal and elephant seal pups (Table 3.1). 

Zapol et al. (61) reported that during breath-hold diving in the Weddell seal, blood flow to 

the kidneys virtually ceased. It may be that, during apneic periods, although the reduced 

blood flow to the kidneys is a stimulus for renin secretion and synthesis of Ang II (45), the 

former would not have access to the general circulation, delaying the increase in Ang II 

levels until blood flood were re-established. However, we do not have direct 

measurements of renal blood flow in these seals to corroborate this idea.

In agreement with increased hematocrit (data not shown) and lower HR during 

breath-holding in seals, ANP induces shifting fluid from the intravascular to the interstitial 

compartments, and increases vagal afferent sensitization (31, 57). Also, ANP lowers 

cardiac output in sheep and rats (5, 39), and inhibits renin and AVP secretion (52, 57).

One of the main effects of ANP is to reduce BP (20). The ANP-induced decrease in BP 

appears to be related to the degree of renin stimulation (38). The lower Ang II-like ir 

material in elephant seal and Weddell seal pups suggests that renin stimulation was 

minimal during periods of apnea, thus the ANP-induced lowering of BP would not be 

observed.

The vast majority of biologically active Ang II is produced as blood passes through 

the lungs (47). There is scarce information on pulmonary circulation in seals. Nevertheless,
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in breath-hold diving the cardiac output, and thus pulmonary blood flow, is reduced. This 

response is accompanied by a decrease in pulmonary arterial diastolic pressure to the same 

level as the right atrial pressure (55, Eisner personal communication). It is possible that the 

same hemodynamic changes occur during sleep apnea when marked cardio-inhibitory 

effects are observed. In any event, the combined restoration of blood flow to the kidneys 

and lungs when eupnea is resumed would release renal renin to the general circulation, 

starting the series of reactions which will ultimately lead to an increase in Ang II levels.

Compatible with our finding relatively higher levels of Ang II-like ir material in 

seal plasma samples during breathing, the effects of Ang II include, besides a strong 

vasoconstriction and increases in BP, HR and sympathetic activity, stimulation of 

respiration (8,28, 44). The increases in HR may result from the ability o f Ang II to inhibit 

vagal tone to the heart (49, 51), or its direct chronotropic effect (43). Angiotensin II also 

stimulates AVP release from the posterior pituitary (7, 53).

In general, AVP is thought to decrease HR via Vt receptors and to increase HR 

via V2 receptors. In dogs and rats, AVP was shown to increase HR by acting at V, and V2 

receptors (6, 35, 58). Small increases in plasma AVP increased temperature, pulse and 

respiration (18,42). Studies in humans demonstrated a biphasic effect of AVP, such that 

higher doses of the peptide cause vasodilation, an effect which appeared to be mediated by 

nitric oxide (56). Microinjection of AVP into the nucleus tractus solitarius produced 

tachycardia in rats (40). If circulating AVP-like ir material is able to cross the blood-brain 

barrier, the higher levels of this peptide may contribute to the increased HR during eupnea 

in elephant seal and Weddell seal pups.

One of the most striking features o f breath-holding in seals is that arterial BP 

remains relatively constant in the face o f decreasing HR, apparently because of 

simultaneous increases in vascular resistance (reviewed in 24, 25). Angell-James et a l.{  1) 

demonstrated that during breath-hold diving the baroreceptor control o f HR in seals is 

reset towards bradycardia at a given level of mean arterial BP. All three hormones, ANP,
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AVP and Ang n , affect the baroreceptor reflex control of HR by resetting its set point 

and/or altering vagal activity (3, 30, 35, 39). The actions of ANP appear to induce 

resetting of the baroreceptor control o f HR towards cardioinhibition (59), while those of 

AVP amplify the increase in HR produced by hypotension (6) and those of Ang II reset 

the baroreflex control of HR without changing its sensitivity (50, 51). Furthermore, Wong 

et al. (60) suggested that basal levels o f endogenous Ang II exert a tonic action on the 

cardiac baroreflex to increase the set-point around which the baroreflex regulates HR. The 

observed increases in circulating ANP-like ir material during sleep apnea and the higher 

levels of AVP- and Ang II-like ir material during eupnea in elephant seal and Weddell seal 

pups could contribute to the mechanisms by which the baroreceptor reflex is modified by 

breath-holding. However, we do not have direct evidence that baroreflex was reset in 

these animals during periods of spontaneous apnea.

Several reviews of the mechanisms of cardiovascular adjustments to breath-holding 

in marine mammals, with major emphasis on autonomic nervous system interactions, have 

been published (19, 24, 26). From these, it appears that seals are primarily defending BP 

during apneic episodes. It is possible that, since northern elephant seal and Weddell seal 

pups exhale at the onset of apnea, the combined influence from glossopharyngeal and 

trigeminal baroreceptors, chemoreceptors and pulmonary stretch receptors, as 

demonstrated by Angell-James et al. (2) in harbor seals (Phoca vitulina richardsii), 

initiates the activation of cardiac vagal motomeurons and thus leads to a decrease o f HR. 

Under these circumstances, following the conventional responses to baroreceptor 

activation (41), BP would tend to increase. The observed increase in ANP-like ir material 

will ensure that normal BP is maintained. Conversely, HR is restored to pre-apneic levels 

with the first breath; this sudden increase in HR, via the baroreceptor reflex, would tend to 

lower BP, a known stimulus for secretion of both AVP and Ang II. The combined action 

of these peptide hormones would explain the maintenance of a relatively constant BP 

during the eupnea/apnea cycles in seals.
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These results provide support for the hypothesis of a complex involvement among 

the vasoactive hormones and the control of cardiovascular function and suggest 

differential levels of control during periods of eupnea and apnea in seal pups. The data 

from Weddell seal and northern elephant seal pups are in agreement with the hypothesized 

increase in plasma levels of ANP and decrease in levels of AVP and Ang II in response to 

apnea-driven bradycardia and lowered cardiac output. We assume that these changes in 

HR and hormone concentrations are driven by apnea rather than sleep since a few samples 

obtained from awake animals during breath-holding periods yielded identical results (data 

not shown).

Differences in HR and vasoactive hormone concentrations between elephant seal 

pups at 8 and 14 weeks of age suggest that in these seals the factors affecting 

cardiorespiratory function, including vasoactive hormones, are modified during 

development. Differences in HR and circulating levels of ANP-, AVP- and Ang II-like ir 

material among species may reflect the more precocious development of diving behavior in 

Weddell seal pups compared with northern elephant seal pups. We propose that the 

intervention of the vasoactive hormones ANP, AVP and Ang II maintains the functional 

integrity of the cardiovascular system in seals during repetitive cycles of eupnea and 

apnea.

To resolve the question of whether differences in cardiorespiratory and endocrine 

function among species are indeed due to differential rates of diving development, further 

studies using pups of the same age and at the same developmental stage, as well as seal 

species which start diving at a younger age, are needed. Expanding these studies to 

include measurements of BP and other determinants of cardiovascular function and 

variablility would provide a better understanding of the factors that control 

cardiorespiratory function in seals. Whether the observed changes in vasoactive hormone 

concentrations during sleep-associated apnea also occur during breath-hold diving remains 

unknown.
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4. POSTNA TAL DEVELOPMENT OF CARDI0RESP1RA TORY AND ENDOCRINE 

FUNCTIONS IN  SEALS.3

69

4.1. Abstract

We have previously reported that in seals the vasoactive hormones angiotensin II 

(Ang II), arginine vasopressin (AVP) and atrial natriuretic peptide (ANP) are involved in 

the control of cardiovascular function, and provided evidence for differential levels of 

control during periods of eupnea and apnea. We have expanded this study to test the 

hypothesis that the control of cardiorespiratory function and the involvement of these 

vasoactive hormones is under postnatal development in seal pups. Heart rate and plasma 

levels of ANP, Ang II and AVP were measured in northern elephant seal (Mirounga 

angustirostris) and Weddell seal (Leptonychotes weddellii) pups during spontaneous 

breathing (eupnea) and breath-holding (apnea). The observed changes with age in both 

eupneic and apneic heart rate and vasoactive hormone levels suggest a developmental, as 

well as a species-specific, component to the integration of cardiorespiratory function, 

which may be related to diving behavior.

3Postnatal development of cardiorespiratory and endocrine functions in seals. 

Zenteno-Savin, T. and M. A. Castellini.
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4.2. Introduction

In mammals, lung function starts at birth when asphyxia, due to blockade of the 

umbilical vessels, plus cooling of the body activate the respiratory center. When the lungs 

first fill with air, pulmonary resistance increases inducing a large blood flow through the 

lungs to the left atrium and increased left atrial pressure. Progressive anatomical and 

physiological changes in the pulmonary and cardiovascular systems occur over a period of 

weeks after birth. Concomitant to the entrainment and fine-tuning of the cardiopulmonary 

system, changes in circulating and tissue concentrations of vasoactive hormones have been 

observed in newborn mammals (19, 32, 34). At the same time, seal pups develop high 

tolerance for long-duration apnea and the ability to dive deeper and longer within a few 

weeks after birth.

The ability to withstand prolonged and repetitive breath-hold periods (apnea) may 

be an adaptive process in seals, in which the congenital neonatal resistance to apnea is not 

lost early in development, as occurs in most mammals (4, 14), but is maintained and even 

enhanced through adulthood. Long-duration apneas, associated with diving (reviewed in 

20) and sleep (7, 9), are a routine component in the respiratory patterns of seals. Apnea in 

seals is characterized by decreases in HR and cardiac output, peripheral vasoconstriction 

and re-distribution of blood flow (36), as well as increases in hematocrit (6, 9). One of the 

most striking features of breath-holding in seals is that arterial BP remains relatively 

constant in the face of decreasing HR because of simultaneous increases in vascular 

resistance (reviewed in 16, 17).

This project studied postnatal age-dependent changes in HR and plasma levels of 

ANP-, AVP- and Ang H-like immunoreactive (ir) material of northern elephant seal 

(Mirounga angustirostris) and Weddell seal (Leptonychotes weddellii) pups during 

periods of spontaneous eupnea and apnea. We hypothesized that in these seal pups the 

integrity of cardiovascular, respiratory and endocrine functions are under post-natal 

developmental control.
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4.3. Materials and Methods

High quality electrocardiograms (EKG), respiration data and plasma samples from 

5 northern elephant seal pups (M. angustirostris) and 5 Weddell seal pups (L. weddellii) 

were collected during periods of eupnea and apnea. Weddell seal pups were sampled in 

the austral summer of 1994 near McMurdo Station, Antarctica, and northern elephant seal 

pups were studied in spring of 1995 in Ano Nuevo State Reserve, CA. Because these 

animals were tagged when bom as part of long-term population studies, their age was 

known. Pup age ranged between 37 and 107 days. The mean age for Weddell seal pups 

was 42 days and for northern elephant seal pups 98 days.

Handling and sampling techniques followed routine procedures for the study of 

sleep-associated apnea in northern elephant seals (7, 9). Briefly, seals were captured, 

transported to laboratory facilities (Long Marine Laboratory, University o f California 

Santa Cruz (elephant seals), or an adapted fish-hut anchored on the sea ice at McMurdo 

Sound (Weddell seals)), and weighed. Under light anesthesia (3.0 mg/kg ketamine, 

Ketaset®, Aveco Co., New York, NY, and 1.25 n g/kg Diazepam®, Abbott Laboratories, 

North Chicago, IL) and sterile conditions, a percutaneous catheter (14 gauge, 5 % inch, 

Becton Dickinson, Sandy, UT) was implanted in the extradural intravertebral vein and 

needle electrodes (21 gauge, 1.5 inch stainless needles) were anchored subdermally across 

the thoracic area. An antibiotic was administered intravenously (iv) (0.5 g Keflin®, Lilly 

Co., New York, NY). Animals were allowed to recuperate from this minimal anesthesia 

for at least 3 hours. The northern elephant seal pups were studied while they slept or 

rested in a large, quiet room. The Weddell seal pups were examined while they slept or 

rested between diving bouts; they had free access to water through a hole in the sea ice 

under the laboratory hut (reference for general method: 8). The animals were not handled 

or restrained during the sampling period. After the experiment was completed, the 

antibiotic dosage was repeated, the electrodes and catheter were removed, and the animals
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were kept for an additional period (up to 12 hours) for observation. After this time, the 

seals were returned to the colonies.

The EKG signal was directed through a cardiotachometer (BIOTACH, ufi, Morro 

Bay, CA), and heart rate and respiratory chest movement were simultaneously collected 

into an analog multichannel physiological recorder (Microscribe, Houston Instruments,

The Recording Co., San Marcos, TX) for later analysis. Heart rate polygraphic data was 

digitized (DrawingBoard n , CalComp Digitizer Products Group, Scottsdale, AZ) to 

obtain mean and instantaneous HR for each eupneic and apneic period.

Blood samples were collected for hormone analysis during at least 5 independent 

periods of spontaneous eupnea and apnea. Samples were collected 1 to 2 minutes into 

apnea and 2 minutes after the first breath. Blood samples (5 ml) were collected into chilled 

test tubes containing 0.125 M EDTA (Vacutainer 6450, Becton-Dickinson Ltd., 

Rutherford, NJ). Plasma was separated by centrifugation at 4000 x g at 4°C for 10 

minutes. To the recovered plasma an angiotensin-converting enzyme inhibitor, o- 

phenanthroline (0.025 M, 100 //1/ml plasma, Sigma Chemicals, St Louis, MO) was added 

(15). All samples were stored at -70 °C, transported to University of Alaska Fairbanks 

(UAF) and kept frozen until analyzed. The vasoactive hormone concentrations were 

analyzed in plasma samples using radioimmunoassay (RIA) kits for AVP, ANP and Ang II 

(Phoenix Pharmaceuticals, Mountain View, CA), which include antibodies raised in rabbits 

against the human peptides. We have found sufficient cross-reactivity between antisera 

raised in rabbits against the human peptide hormones and ir material in plasma samples of 

several species o f seals and sea lions using these kits (38). For all three hormones, 

recovery during the extraction procedure was typically about 90%; the mean intra-assay 

coefficient of variance was 6%. All plasma samples were run in duplicate in a single assay. 

Biochemical identity of the ir material obtained from elephant seal and Weddell seal 

plasma samples has not yet been assessed; thus, in this paper will be referred to as ANP-, 

AVP- and Ang II-like ir material, accordingly.
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Statistical analyses were carried out as follows: To assess age-dependent changes 

in HR and hormone concentrations, separate linear regressions for each variable were 

performed. Interactions between HR, breathing status (eupnea or apnea, scored as 1 or 0, 

respectively), hormone concentrations and age were detected with analysis of covariance 

(ANCOVA) (37) (SYSTAT®, SPSS Inc.). Predictors of HR based on breathing status, 

hormone concentrations and age were obtained using discriminant analysis (37). 

Significance was assumed when P < 0.05. Data are presented as mean ±  standard error of 

the mean (SE). Heart rate units are beats per minute (bpm), and hormone concentrations 

are expressed as picograms of ir material per milliliter (pg/ml) of extracted plasma.

4.4. Results

The HR recorded for seal pups during eupnea was not significantly different 

between species (Table 4.1). Apneic HR in Weddell seal pups was lower (P < 0.05) than 

that in elephant seal pups. During eupnea, the concentration of ANP-like ir material was 

lower (P < 0.05), and the concentrations of Ang II- and AVP-like ir material were higher 

(P < 0.05) in Weddell seal pups than in elephant seal pups. During apnea, the 

concentration of Ang E-like ir material was lower (P < 0.05) and the concentration of 

AVP-like ir material was higher (P < 0.05) in Weddell seal pups than in elephant seal pups.
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TABLE 4.1. Mean heart rate and average concentrations of vasoactive hormones in 

extracted plasma samples from northern elephant seal and Weddell seal pups during 

periods of eupnea and apnea. Data are presented as mean ± standard error of the mean. 

HR= heart rate; ANP= atrial natriuretic peptide; Ang 11= angiotensin II; AVP= arginine 

vasopressin. Sample size is indicated in parentheses.
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HR

(bpm)

ANP

(pg/ml)

Ang II 

(pg/ml)

AVP

(pg/ml)

Northern Elephant Seal Pups 

mean age 98 days 

Eupnea (29) 

Apnea (53)

93.9 ±2.0 

53.2 ± 1.1*

20.9 ± 2.2 

26.3 ± 1.8

30.9 ± 1.4 

16.5 ±0.9*

3.9 ±0.5 

2.5 ± 0.2*

Weddell Seal Pups

mean age 42 days 

Eupnea (32) 

Apnea (35)

94.0 ± 1.4 

46.2 ± 0.6*J

12.5±0.5J 

30.6 ± 1.2*

39.6 ± 1.7J 

12.2±0.4*J

7.2 ± 0.4J

3.2 ± 0.1*J

*P < 0.05 compared to values during eupnea. JP<0.05 compared to elephant seal pups.
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Among the northern elephant seals (age 95 to 107 days) average eupneic and 

apneic HR were higher (P < 0.05) in the youngest animals (Figure 4.1 A). Average ANP- 

like ir material during eupnea and apnea was lower (P < 0.05) in the younger pups (age 95 

and 96 days) (Figure 4.1 B). Apneic Ang II-like ir material did not vary with age (Figure 

4.1 C), but apneic AVP-like ir material was higher (P < 0.05) in the older pups (age 100 

and 107 days) (Figure 4.1 D). In these elephant seal pups, age accounted for 8.4% 

(P=0.035) of apneic HR variability and 5.3 % (P=0.231) o f eupneic HR variability. In 

elephant seal pups, age, ANP-like ir material and breathing status (eupnea or apnea) were 

the most significant variables describing HR (ANCOVA, P < 0.05): Heart Rate = 91.898 - 

0.369 Age + 38.546 Breathing - 0.131 ANP + 0.134 Ang II  - 0.346 A VP (R^O.841).
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FIGURE 4.1. Heart rate (A: HR, bpm) and hormone concentrations (B: ANP= atrial 

natriuretic peptide, C: ANG= angiotensin n, D: AVP= arginine vasopressin, pg/ml) 

against age (days) during eupnea (broken line) and apnea (continuous line) in 5 northern 

elephant seal pups. *P<0.05. +P<0.1.
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Among Weddell seals (Figure 4.2 A-D), the average eupneic HR was higher (P < 

0.05) and ANP-like ir material was lower (P < 0.05) in the youngest pup (age 37 days). 

However, eupneic Ang II- and AVP-like ir material did not show variation with age (P <

0.1). Except for HR, which was lower (P < 0.05) in the oldest (50 days old) pup, there 

was no change in the measured parameters with age during apnea in Weddell seal pups. 

Age accounted for 19.3% (P=0.008) and 34.9% (P=0.001) of apneic and eupneic HR 

variability, respectively, in Weddell seal pups. Levels of Ang II- and AVP-like ir material, 

age and breathing status (eupnea or apnea) were the most significant variables explaining 

HR (ANCOVA, P < 0.05): Heart Rate = 74.998 - 0.783 Age + 48.270 Breathing - 0.218 

ANP + 0.458 A n g II- 2.228 AVP (R^O.971).
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FIGURE 4.2. Heart rate (A: HR, bpm) and hormone concentrations (B: ANP= atrial 

natriuretic peptide, C: ANG= angiotensin n, D: AVP= arginine vasopressin, pg/ml) 

against age (days) during eupnea (broken line) and apnea (continuous line) in 4 Weddell 

seal pups. *P<0.05. +P<0.1.
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4.5. Discussion

The differences between eupneic and apneic HR were smaller in the younger seal 

pups. This suggests development of respiratory sinus arrhythmia (RSA) to a higher degree 

in the older seal pups, as was reported for northern elephant seals by Castellini et al. (10). 

Differences between species may be associated with the development o f a strong RSA at 

an earlier postnatal age in Weddell seal pups than in northern elephant seal pups. In 

parallel with HR data, the differences between apneic and eupneic hormone concentrations 

were larger in Weddell seal pups than in elephant seal pups, and within each species in the 

older than in the young pups. These differences suggest both a developmental and a 

species-specific component to the integration and control of the cardiorespiratory function 

in seal pups.

Circulating levels of ANP-, Ang II- and AVP-like ir material changed with age in 

both elephant seal and Weddell seal pups. ANP-like ir material tended to increase and Ang 

II-like ir material tended to decrease with age in both species, while AVP-like ir material 

appeared to increase in elephant seals and decrease in Weddell seals. Plasma 

concentrations o f ANP decreased with age in newborn humans (3). ANP levels may be a 

consequence of the pulmonary haemodynamics during the perinatal period (after 33). In 

rats and humans, plasma angiotensin-converting enzyme (and presumably Ang II) levels 

display a biphasic pattern, rising a few days after birth and decreasing toward adult values 

within the first month of life (12, 31). Changes in plasma levels of AVP during the early 

postnatal period are correlated to development of the hypothalamo-hypophyseal- 

adrenocortical system in mammals (13). Thus, it is possible that ANP, Ang II and AVP 

contribute to the adaptation of the neonate mammal to extrauterine life, as related to blood 

volume homeostasis and development of cardiovascular, pulmonary and/or renal 

structures and functions (1, 29, 32).

During the first days and months after birth, the circulation of the newborn is in a 

transitional state, constantly changing. In the pig the mean pulmonary arterial pressure at
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birth falls by about 50% in 12 hours, and by 6 months of age the pulmonary arterial 

pressure and resistance are down to adult levels (14, 28). Development of the sympathetic 

nervous system is incomplete at birth in the rat, chick, mouse, and sheep (11, 21, 22), and, 

because there is no baroreflex feedback control of the sympathetic outflow, the 

cardiovascular control is still not fully mature (25). Simultaneously, the vascular smooth 

muscle contractile mechanisms that mediate noradrenergic vasoconstriction are maturing 

rapidly during this period (26). Resting blood pressure in the early postnatal period is 

maintained near the physiologic level by circulating noradrenergic vasoactive substances, 

including AVP and Ang n , in rats (27). Similarly, the actions of ANP induce resetting of 

the baroreceptor control o f HR towards cardioinhibition (35), while those of AVP amplify 

the increase in HR produced by hypotension (5) and those of Ang II reset the baroreflex 

control of HR without changing its sensitivity (30). Thus, ANP, AVP and Ang II affect 

control of HR by resetting the baroreceptor reflex set point and/or altering its vagal 

activity (2, 18, 23, 24). The observed changes in circulating ANP-, AVP- and Ang II-like 

ir material with age in elephant seal and Weddell seal pups could contribute to the 

maintenance of blood pressure during the early postnatal stages.

These results provide support for the hypothesis that in Weddell seals and northern 

elephant seals the factors affecting cardiorespiratory function, including vasoactive 

hormones, are modified during postnatal development, and provide a suggestion for 

differential levels of control during periods of eupnea and apnea in seal pups. We propose 

that the intervention o f the vasoactive hormones ANP, AVP and Ang II maintains the 

functional integrity o f the cardiovascular system in developing seals during repetitive 

cycles of eupnea and apnea.
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5. DIFFERENTIAL CONTRIBUTION FROM THE AUTONOMIC NERVOUS SYSTEM  

TO THE CONTROL OF CARDIORESPIRATORY FUNCTION IN  SEALS*

5.1. Abstract

Spectral analysis of continuous electrocardiogram records allows identification of 

contributing factors to heart rate (HR) and its variability. However, some of the 

properties of HR variability inherent to the cardiovascular system, as well as interactions 

with other systems, may be concealed by movements due to respiration. Seals are the only 

mammals able to hold their breath for a sufficiently long period at normal body 

temperatures to allow studies of HR control and variability independently of the 

respiratory input. We used northern elephant seal (Mirounga angustirostris) and Weddell 

seal (Leptonychotes weddellii) pups as models of differential nervous contribution to the 

control of cardiovascular function, by comparing spectral peaks during spontaneous 

breathing (eupnea) and long-duration breath-holding (apnea). We found differential 

contribution of the autonomic nervous system to the control of HR in the these seal pups 

dependent on the input from the respiratory system. The results from this study provide 

evidence for distinct levels of cardiovascular control during periods of apnea and eupnea 

in both Weddell seal and elephant seal pups, and suggest that the factors affecting 

cardiorespiratory function are under developmental control and may differ by species.
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5.2. Introduction

The cardiovascular system is a natural oscillator that receives input from 

respiration (17), blood pressure (BP) waves (2), and vasomotor activity (13). Spectral 

analysis of beat-to-beat heart rate (HR) variability has been an important tool in identifying 

these cyclical factors and is widely used to assess cardiovascular function (13, 14). It is 

well established that the cardiac response to these factors is mostly due to nervous 

transmission, primarily autonomic drive to the heart (12, 18). Additional influences (for 

example, from the endocrine system) may contribute to integrate incoming signals from 

the lungs and blood vessels.

Spectral analysis provides a means for separating sources of variance to a time- 

based phenomenon, such as HR, if these sources can be distinguished in the frequency 

domain. While spectral analysis of HR is a very powerful tool, it remains difficult to 

differentiate cardiorespiratory pathologies with this technique because intrinsic patterns in 

HR variability may be masked by mechanically induced changes in breathing pattern (11, 

20). For example, to gain a clearer view of the hormonal control of HR essentially 

requires a study where the subject is not breathing. Consequently, only a few studies have 

focused on identifying contributions from the endocrine system in the overall pattern of 

HR control (25). Furthermore, some of the factors involved in the control of HR and 

cardiovascular function are markedly influenced by experimental conditions, such as 

anesthesia, drugs and surgery, which are likely to distort our understanding of the 

integrated function of the circulation. Inevitably, the relative dominance or priority when 

cardiovascular responses and reflexes interact can be studied only in an intact preparation.

Studying HR patterns in the absence o f respiratory influences calls for a different 

kind of model. In this sense, seals offer a unique opportunity. Prolonged and repetitive 

breath-hold periods (apnea), associated to dive (up to 2 hours) and sleep (25 min) (4, 6,

16), are a routine component in the ecological physiology of pinnipeds (seals and sea 

lions). The ability to withstand long apneic periods may be an adaptive process in seals, in
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which the congenital neonatal tolerance o f apnea is not lost early in development, as 

occurs in most mammals (1, 10), but is maintained and even enhanced through adulthood. 

Changes in HR, cardiac output, distribution of blood flow and hematocrit are 

characteristic o f  dive- and sleep-apnea in seals (3, 23).

This project studied medical aspects of how marine mammals can withstand both 

long duration and repetitive apnea during sleep. We explored the differential contribution 

of the nervous system to the control of HR by comparing spectral signatures o f HR from 

northern elephant seal (Mirounga angustirostris) and Weddell seal (Leptonychotes 

weddellii) pups during normal ventilation (eupnea) and breath-holding. The working 

hypotheses were that during eupneic periods in seals, HR variability was strongly driven 

by respiration; that in the absence of ventilation, with the withdrawal of mechanical 

influences from chest movements, intrinsic characteristics of HR and HR variability would 

prevail; and that, under these circumstances, internal variation of HR occurred as a 

response to differential input from the nervous system.

5.3. Materials and Methods

High quality electrocardiograms (EKG) and respiration data from northern 

elephant seal and Weddell seal pups during periods of apnea and eupnea (scored as 0 and 

1, respectively) were collected as part of a larger study on developmental changes in sleep 

apnea in seals (6, 7). Cardiorespiratory variability in these data was quantified and 

correlated to endocrine patterns in the plasma samples; these results have been reported 

elsewhere (25).

Northern elephant seal pups were sampled in spring of 1994 and 1995 in 

California, and Weddell seal pups were sampled in the austral summer o f 1994 near 

McMurdo Station, Antarctica. Because most of these animals were tagged when bom as 

part of long-term population studies, their age was known. When birth-dates were not 

known, age was calculated from mor phometric data. Pup age ranged between 4 and 16

8 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

weeks. The mean age for Weddell seal pups was 6 weeks. Northern elephant seal pups 

were divided by age into two groups, mean ages 8 and 14 weeks. Handling and sampling 

techniques followed routine procedures for the study o f sleep-associated apnea in northern 

elephant seals (4, 6). Briefly, seals were captured, transported to laboratory facilities 

(Long Marine Laboratory, University o f California Santa Cruz (elephant seals) or an 

adapted fish-hut anchored on the sea ice at McMurdo Sound (Weddell seals)), and 

weighed. Under light anesthesia (3.0 mg/kg ketamine, Ketaset®, Aveco Co., New York, 

NY, and 1.25 ^g/kg Diazepam®, Abbott Laboratories, North Chicago, IL), needle 

electrodes were anchored subdermally across the thoracic area. Animals were allowed to 

recuperate from this minimal anesthesia for at least 3 hours. The northern elephant seal 

pups were studied while they slept or rested in a large, quiet room. The Weddell seal pups 

were examined while they slept or rested between diving bouts; they had free access to 

water through a hole in the sea ice under the laboratory hut (for general method see: 5). 

The animals were not handled or restrained during the sampling period. After the 

experiment was completed, the electrodes were removed, and the animals kept for an 

additional period (up to 12 hours) for observation. After this time, the seals were returned 

to the colonies.

Data on time, EKG, HR and chest breathing movements were simultaneously 

collected. Sample sets were obtained for at least 5 independent eupneic and apneic 

periods from each animal. Cardiorespiratory data were obtained from a total of 5 Weddell 

seal pups and 10 northern elephant seal pups. Heart rate was recorded continuously by 

directing the electrocardiogram signal through a cardiotachometer (BIOTACH, ufi, Morro 

Bay, CA). Heart rate and respiratory chest movement were simultaneously collected 

directly into an analog multichannel physiological recorder (Microscribe, Houston 

Instruments, The Recording Co., San Marcos, TX) for later analysis.

Analog electrocardiograms were digitized (Drawing Board II, CalComp Digitizer 

Products Group, Scottsdale, AZ), instantaneous HR calculated and data transformed to
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interbeat (RR) intervals in milliseconds. Discrete Fourier transformations and power 

spectral analyses were applied to HR data to identify spectral peaks. To assess the relative 

contribution of the sympathetic (SNS) and parasympathetic (PNS) innervation to the 

spontaneous HR and HR variability during eupneic and apneic periods, coarse graining 

spectral analysis was applied using computer software (CGSA, Toronto, Ontario,

Canada). Briefly, the total power of HR variability was broken down into harmonic and 

nonharmonic (fractal) components, and the contribution of the fractal component to total 

HR variability power was calculated (22). The high-frequency (0.15-0.5 Hz) component 

may be used as a marker of PNS modulation of HR, while the ratio of low- (0.04-0.15 Hz) 

to high-frequency indicates activity of the cardiac SNS component.

Paired t-tests with Bonferroni adjustment were applied to instantaneous HR and 

indices of PNS and SNS activity to determine differences between species (24) 

(SYSTAT®,SPSS Inc., Chicago, IL). Stepwise discriminant analysis and analysis of 

covariance (ANCOVA) were applied to the full data set. This introduced the variables 

(HR, breathing status -eupnea or apnea, scored as 1 or 0, respectively-, and indicators of 

PNS and SNS activity) into the analysis in the order of their ability to discriminate 

between the two groups (eupnea and apnea) and at the same time brought out the 

correlation structure of the variables. Predictors of breathing status based on HR and PNS 

and SNS indices were obtained using logistic regression (15) (SYSTAT®, SPSS Inc.). 

Significance was assumed when P < 0.05. Data are presented as mean ± standard error of 

the mean (SE). Heart rate units are beats per minute (bpm), indices of SNS and PNS 

activity are dimension-less.

5.4. Results

Results obtained for instantaneous HR, RR interval, and indices of SNS and PNS 

activity for northern elephant seal and Weddell seal pups are summarized in Table 5.1.
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TABLE 5.1. Instantaneous heart rate (HR, beats per minute), interbeat interval (RR 

Interval, milliseconds), and indicators of the parasympathetic (PNS) and sympathetic 

(SNS) activity estimated for periods of eupnea and apnea from digitized electrocardiogram 

records of northern elephant seal and Weddell seal pups. Data are presented as mean ± 

standard error. Sample size is indicated in parenthesis.

HR RR Interval PNS SNS

Northern Elephant Seal Pups 

mean age 8 weeks 

Eupnea (34) 96.1 ±3.0 

Apnea (39) 66.4 ±1.8*

643.7 ±19.1 

928.9 ± 24.6*

0.715 ±0.010 

0.814 ±0.007*

0.321 ±0.019 

0.211 ±0.008*

Northern Elephant Seal Pups 

mean age 14 weeks 

Eupnea (28) 95.4 ±1.6 

Apnea (55) 53.3 ±0.5*

629.1 ±10.9 

•1125.9 ± 10.5*

0.628 ±0.015 

0.714 ±0.011*

0.479 ±0.031 

0.205 ±0.012*

Weddell Seal Pups 

mean age 6 weeks 

Eupnea (22) 90.8 ±3.0 

Apnea (29) 47.3 ± 3.9*

682.6 ± 32.7 

1249.9 ± 54.5*

0.672 ± 0.029 

0.751 ±0.022b

0.543 ± 0.078 

0.390 ± 0.045

*= P<0.05, b= PO.Ol as compared to eupnea for the same species.
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As expected, RR interval was lower, and conversely HR was higher, during 

spontaneous breathing as compared to apneic periods in both seal species. Respiratory 

sinus arrhythmia (RSA), acceleration o f the heart during inspiration and slowing of the 

heart during the expiratory phase of respiration, was observed in all seal pups (data not 

shown). In all cases, apnea was initiated after exhalation and the apneic RR interval was 

maintained at the average interval recorded during expiration in the course of spontaneous 

breathing. The differences between eupneic and apneic HR and RR interval were smaller 

in the younger elephant seal pups and largest in the Weddell seal pups.

Representative power spectra o f the instantaneous HR from a northern elephant 

seal pup (Figure 5.1) and from a Weddell seal pup (Figure 5.2) show that during apnea the 

high frequency peaks corresponding to respiration (0.4 Hz) are absent from the power 

spectra, and that during this period HR is characterized by peaks in the low frequencies 

(frequency < 0.1 Hz). The indicator of PNS activity was higher during apnea than during 

eupnea in both elephant seals and Weddell seals (Table 5.1). The indicator of SNS activity 

was higher during eupnea than during apnea in elephant seal pups (Table 5.1).

In the younger group of elephant seal pups (average age 8 weeks) breathing status 

(eupnea or apnea) and SNS index were the most significant variables explaining HR 

(ANCOVA, P < 0.05): Heart Rate = 63.7+ 32.7 Breathing - 26.8 SNS +7.9 PNS 

(R2=0.702). Logistic regression produced the following model to distinguish between 

periods of eupnea and apnea: Breathing = exp (0.210 + 0.338 HR + 0.006 SNS + 0.045 

PNS) / (I + exp (0.210 + 0.338 HR + 0.006 SNS + 0.045 PNS)), where exp represents an 

exponential function.
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Northern Elephant Seal Pup
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FIGURE 5.1. Representative power spectra of the instantaneous heart rate from one 

episode of sleep eupnea (A) and one of apnea (B) in a northern elephant seal pup (age 7 

weeks).
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Weddell Seal Pup

Frequency (Hz)

FIGURE 5.2. Representative power spectra of the instantaneous heart rate from one 

episode o f sleep eupnea (A) and one of apnea (B) in a Weddell seal pup (age 5 weeks).
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In the older group of elephant seal pups (average age 14 weeks) breathing status 

(eupnea or apnea), PNS and SNS indices were all significant variables describing HR 

(ANCOVA P < 0.01): Heart Rate = 28.7+ 39.8 Breathing + 14.0 SNS + 31.1 PNS 

(RMl.803). Logistic regression produced the following model to distinguish between 

periods of eupnea and apnea: Breathing = exp (0.100 + 0.647 HR - 0.198 SNS + 0.054 

PNS) / ( I  + exp (0.100 + 0.647HR - 0.198 SNS + 0.054PNS)), where exp represents an 

exponential function.

In the Weddell seal pups (average age 6 weeks) breathing status (eupnea or apnea) 

and SNS index were the most significant variables explaining HR (ANCOVA P < 0.01): 

Heart Rate = 51.8 + 49.1 Breathing - 9.4 SNS - 2.7 PNS (R^O.949). Logistic regression 

produced the following model to distinguish between periods of eupnea and apnea: 

Breathing = exp (0.144 + 0.348 HR + 0.043 SNS + 0.047PNS) /  (1 + exp (0.144 +

0.348HR + 0.043 SNS + 0.047PNS)), where exp represents an exponential function.

5.5. Discussion

Instantaneous HR and RR interval recorded during spontaneous breathing were 

significantly different to those recorded during sleep-associated apnea in both elephant seal 

and Weddell seal pups (Table 5.1), consistent with previous findings (reviewed in 8). 

Simultaneously, differences between apneic and eupneic HR and RR interval were not 

quantitatively equivalent among the groups, indicating development of RSA as has been 

previously suggested (7, 25), and control of cardiorespiratory function to a higher degree 

in the 14 week old than in the 8 week old elephant seal pups, and in Weddell seal pups 

(average age 6 weeks) than in the northern elephant seal pups. Differences between 

species may be associated with the development of a strong RSA at an earlier postnatal 

age in Weddell seal pups than in elephant seal pups.

Spectral analyses of the RR interval from northern elephant seal and Weddell seal 

pups suggest that during sleep apnea, HR was characterized by peaks in the lower
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frequencies and absence of peaks in the higher frequencies (the region of the respiratory 

frequency) in northern elephant seal and Weddell seal pups (Figures 5.1, 5.2). These 

results indicate differential contributions to the control o f HR during periods of eupnea 

and apnea. Because Weddell seals were sleeping on the surface of the ocean (water 

temperature -1 °C) during sampling, additional peaks in the spectra may reflect activity of 

the nervous system and/or thermoregulatory mechanisms.

It is well established that in mammals, increases in HR are the product of cardiac 

SNS activation and parasympathetic withdrawal. Differential contribution of the 

autonomic innervation to cardiorespiratory function was indicated by the higher index of 

PNS activity during apnea in both species and the lower index of SNS activity during 

apnea in elephant seal pups. These results indicate PNS withdrawal and increased activity 

of the SNS component of HR during eupnea, and increased PNS activity during apnea in 

these seal pups. At the same time these data suggest predominance of the vagal inflow, 

which correlates with HR being lower during breath-holding. These results are consistent 

with Daly et al. (9) who concluded that in harbor seals (Phoca vitulina) bradycardia due 

to diving apnea is vagal in origin. In a study using human subjects, Sakakibara and Hayano 

(21) suggested that voluntarily slowed respiration increases the cardiac PNS activity in 

humans.

Although eupneic HR was lower in the older elephant seal pups and lowest in 

Weddell seal pups, PNS indicators did not increase as would be expected. The index of 

SNS activity was higher in the older elephant seal pups and highest in Weddell seal pups, 

which may suggest finer control of peripheral vascular muscle tone in the older elephant 

seal pups and Weddell seal pups. These data suggest changes in the autonomic balance 

with age and between species which may contribute to the different eupneic (taken in this 

context as basal) HR, may be related to post-natal development of cardiorespiratory 

function, and may correlate to the development of diving behavior in seal pups. At the 

time of birth in the rat (and at other times in different species) there is a period of potential
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autonomic imbalance when the PNS innervation to the heart is established but the SNS 

innervation is not yet well developed (in 19).

These results cannot be taken as conclusive due to the fact that indicators of SNS 

and PNS activity in elephant seal and Weddell seal pups were obtained from computer 

programs designed and validated for use mostly with HR data from humans. The 

significance of the indicators of nervous activity as obtained from elephant seal and 

Weddell seal HR data needs to be evaluated. Nevertheless, these preliminary results 

suggest differential nervous input to the control of cardiorespiratory function in seal pups.
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6. EFFECTS OF FOOD LIMITATION AND FASTING ON PLASMA VASOACTIVE 

HORMONE LEVELS IN  JUVENILE STELLER SEA LIONS.5
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6.1 .Abstract

Significantly elevated levels o f plasma atrial natriuretic peptide (ANP) in the 

declining populations of Steller sea lions from the Aleutian Islands and the Gulf of Alaska 

have been revealed. Because food limitation can alter levels of osmoregulatory hormones 

under certain conditions in mammals, this project measured plasma concentrations of 

ANP, arginine vasopressin (AVP), and angiotensin II (Ang II) at weekly intervals during a 

4-week restricted-intake diet and a 14-day total fast in juvenile Steller sea lions 

(Eumetopias jubatus). Neither food limitation nor fasting affected ANP or AVP levels, but 

at the end of both trials, plasma Ang II levels were significantly higher than initial values, 

although within physiological levels for mammals. These results suggest that Steller sea 

lions have a remarkable capacity to maintain hydrosmotic and endocrine balance during 

short-term food limitation and fasting. However, significant differences in plasma hormone 

concentrations between age-matched free-ranging Steller sea lions throughout their 

geographic distribution in Alaskan waters, compared with healthy conspecifics in captivity 

may provide preliminary evidence that Steller sea lion populations in Alaskan waters are 

affected by longer-term food limitation. The results of this study are important to 

understanding how sea lions are affected by limited food resources and crucial for 

interpreting data collected on free-ranging Steller sea lions.

5Effects o f food limitation and fasting on plasma hormone levels in juvenile Steller 

sea lions. Preliminary results from an on-going project. Zenteno-Savin, T., L. D. Rea and 

M. A. Castellini.
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6.2. Introduction

Some populations of Steller sea lions (Eumetopias jubatus) in Alaskan marine 

waters have been declining in numbers over the past two decades (20, 23, 29). With the 

evidence available to date, the decreases in these populations cannot be directly attributed 

to either environmental or anthropogenic causes. One of the hypotheses for the decline in 

pinniped populations is inadequate food supply, quantity and/or quality, affecting juveniles 

and subadults (44).

Food restriction in humans and terrestrial mammals is often associated with 

dehydration and electrolyte imbalance (32, 35). Maintenance of sodium and water 

homeostasis depends on a balance between intake (thirst and sodium appetite) and output 

(mostly via the kidneys). Osmoregulatory hormones have an important role in maintaining 

this balance: Renal water excretion is largely dependent on the action of arginine 

vasopressin (AVP, the antidiuretic hormone), and sodium excretion is controlled by the 

renin-angiotensin-aldosterone system (RAAS) and atrial natriuretic peptide (ANP). Thirst 

and sodium appetite are controlled by the same hormones acting at specific sites within the 

brain (27, 28, 37, 38).

The plasma concentrations of these osmoregulatory hormones may be useful as 

indirect indicators o f nutritional status. Recent research in other mammals suggests the 

involvement of the endocrine system in the observed responses to fasting, weight-cycling 

and malnutrition (7, 9, 18, 21). Starvation was accompanied by impaired secretion of 

AVP, ANP and Angiotensin II (Ang II) (7, 12, 22, 25). In humans, acute and chronic 

starvation produced a significant reduction in serum angiotensin converting enzyme (ACE) 

(16, 22), presumably reducing the levels o f circulating Ang n . However, fasting did not 

alter the vascular responsiveness to Ang II in rats (7, 8). The mean plasma level o f ANP in 

patients with anorexia nervosa was significantly higher than that in age-matched healthy 

subjects, and was related to an elevated cardiac atrial pressure (25). In addition, isotonic 

volume expansion did not increase plasma ANP concentration in anorexics, as occurs in
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healthy humans (25). Patients with anorexia nervosa had lower plasma AVP levels and, 

although the average concentration of the peptide in the cerebrospinal fluid (CSF) did not 

differ from normal concentrations, the CSF-to-plasma ratio of AVP was often reversed

(12). Following weight gain, ACE activity, ANP and AVP levels were restored to normal 

(12, 22, 25). These combined results suggest that Ang n, AVP and ANP secretion may be 

impaired during food limitation and fasting in mammals.

Unlike from most mammals, seals and sea lions are adapted to withstand long 

duration fasting as part of their reproductive and molting cycles. During these periods of 

food deprivation, phocid seals remain relatively active while progressively decreasing their 

dependence on lean tissue for energy. As the fast proceeds, total body metabolism 

decreases, and utilization of non-esterified fatty acids and ketone bodies replaces protein 

degradation as a source of energy (5). Therefore, metabolic needs are met without 

compromising the requirements for thermoregulation and maintenance of muscle mass. 

Fast-induced changes in metabolism and biochemistry in otariids are not well known and 

have only recently been studied (3, 31). It would be expected that seals and sea lions retain 

endocrine balance during their routine fasting cycles. However, under states of starvation 

or prolonged malnutrition the hormonal indicators of osmoregulation and hemodynamics 

are expected to react in a similar fashion to that observed in other mammals. Therefore, 

undernourished Steller sea lions would be expected to have lower concentrations of Ang 

II and AVP, and higher concentration of ANP, compared to healthy animals.

6.3. Materials and Methods

Effects of food limitation and fasting were studied in captive Steller sea lions that 

had been captured as pups in the wild and raised at the Vancouver Aquarium, Vancouver, 

British Columbia, Canada. Before, and immediately after the experimental regimes each 

animal was fed 8 kg herring per day.
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6.3.1. Food Limitation

Four juvenile (4 years old) Steller sea lions (3 males and 1 female) were maintained 

on a restricted herring diet for 4 weeks, such that the animals lost mass at a consistent rate 

(approximately 0.5 kg per day) over the experimental period. Thus, during this time, food 

supply was limited to 4 kg herring per day. Blood samples were collected from each 

animal at the beginning of the study as controls (Day 0), and on Day 7, 14, 21 and 28 of 

reduced food intake.

6.3.2. Fasting

Two juvenile male Steller sea lions underwent a complete fast for 14 days. No 

food was given during the experimental period, but ice cubes were given at training 

sessions and fresh water was available at all times. Blood samples were collected after 0,

3, 7 and 14 days o f fasting.

6.3.3. Free-ranging Steller Sea Lions

Blood samples were collected from Steller sea lions at haul-out sites and rookeries 

at various locations in the Aleutian Islands, the Gulf of Alaska and Southeast Alaska. Only 

samples from free-ranging Steller sea lion pups and yearlings were considered in this 

study, in an attempt to match the ages of the sea lions in captivity. In the wild, same age 

class (i.e., 3-4 year old) Steller sea lions are seldom found at the haul-out sites.

6.3.4. Blood Sample Analyses

Captive animals were held in a restraining cage and free-ranging sea lions were 

manually restrained for blood sampling. In all cases, blood samples (5 ml) were taken by 

venipuncture from the dorsal pelvic vein. Each sample was transferred to a blood 

collection tube containing 0.125 M ethylenediaminetetraacetic acid (EDTA) (Vacutainer 

6450, Becton-Dickinson Ltd., Rutherford, NJ), and immediately chilled. Plasma was
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separated from the red blood cells by centrifugation at 4000 x g for 10 minutes. For 

hormone analyses, an angiotensin-converting enzyme inhibitor, o-phenanthroline (0.025 

M, 100 /zl/ml plasma, Sigma Chemicals, St Louis, MO) was added to the recovered 

plasma (10). All samples were stored frozen at -80 °C for later analysis at the University of 

Alaska Fairbanks. Whole blood and plasma samples were submitted to the local veterinary 

laboratory for hematology and clinical chemistry panels, including spun hematocrit and 

mean corpuscular hemoglobin content (MCHC). These results are presented in detail 

elsewhere (31, Rea et al. unpublished).

6.3.5. Hormone Analyses

Prior to hormone analysis, samples were thawed and immunoreactive material (ir) 

was extracted by using prepacked octadecasilyl-silica cartridges (SepCoI, Phoenix 

Pharmaceuticals, Mountain View, CA), according to a method adapted from Hartter (15, 

42). The percent recovery from the extraction procedure was determined by adding 

known amounts o f synthetic peptide (5 to 100 pg/ml, Phoenix Pharmaceuticals) to pooled 

plasma (quality control). Measurements o f extracted plasma were not corrected for 

extraction efficiency, which ranged from 92 to 112%.

Hormone concentrations were analyzed in plasma samples using 

radioimmunoassay (RIA) kits for AVP, ANP and Ang II (Phoenix Pharmaceuticals), 

which include antibodies raised in rabbits against the human peptides. We have found 

sufficient cross-reactivity between antisera raised in rabbits against the human peptide 

hormones and ir material in plasma samples o f several pinniped species using these kits 

(42). All plasma samples were run in duplicate, and replicates were run in a single assay, 

along with a quality control (pooled plasma) sample. Biochemical identity of the ir 

material obtained from Steller sea lion plasma samples has not yet been assessed; thus, in 

this paper will be referred to as ANP-, AVP- and Ang II-like ir material, accordingly.
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Statistical analyses were carried out as follows: Repeated measures analysis of 

variance (ANOVA) was used to identify significant differences in hormone concentrations 

over the experimental period (41). Pearson correlation coefficients (PCC) were 

determined to evaluate interactions between hormone concentrations and clinical 

chemistry parameters (41). To assess differences between food limitation and fasting, t- 

tests were applied on hormone concentrations at Day 0, 7 and 14 (41). Significance was 

assumed when P < 0.1. Data are presented as mean ± standard error of the mean (SE). 

Hormone concentrations are expressed as picograms of ir material per milliliter (pg/ml) of 

extracted plasma.

6.4. Results

6.4.1. Food Limitation

Initial (Day 0) hormone concentrations in plasma samples from the captive Steller 

sea lions were as follows: AVP-like ir material, 7.4 ±3.1 pg/ml; ANP-like ir material, 20.8 

± 2.8 pg/ml; Ang II-like ir material, 5.7 ± 1.3 pg/ml. By the end (Day 28) of the 

experimental regime, plasma concentration of Ang II-like ir material was significantly 

elevated over initial values (P < 0.1) (Figure 6.1). Under these circumstances, plasma 

levels of ANP-like ir material were correlated to plasma levels of Ang II-like ir material 

(PCC = 0.630), and both hormones were correlated to MCHC (data not shown) (PCC = -

0.690 and -0.369, respectively).
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FIGURE 6.1. Plasma concentration o f arginine vasopressin (AVP), atrial natriuretic 

peptide (ANP) and angiotensin II (Ang II) in four Steller sea lions under a food limitation 

regime. * P < 0.1 compared to initial values. Values shown are mean ± standard error.
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6.4.2. Fasting

Plasma hormone concentrations at Day 0 of the fasting regime were: AVP-like ir 

material, 4.1 ±  0.6 pg/ml; ANP-like ir material, 32.1 ± 10.6 pg/ml; Ang II-like ir material, 

6.5 ± 1.0 pg/ml. At the end of the 14-day long fast, plasma levels o f Ang II-like ir material 

were significantly higher than initial values (P < 0.1) (Figure 6.2). During the fasting 

regime, plasma concentrations of ANP-like ir material and Ang 0-like ir material were 

negatively correlated (PCC = -0.487). Plasma concentrations of ANP-like ir material were 

also negatively correlated to plasma water (PCC = -0.523), and plasma levels of Ang II- 

like ir material were positively correlated to serum water and MCHC, but negatively 

correlated to plasma specific gravity (data not shown) (PCC = 0.578, 0.574 and -0.759, 

respectively).
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Day

FIGURE 6.2. Plasma concentration of arginine vasopressin (AVP), atrial natriuretic 

peptide (ANP) and angiotensin II (Ang II) in two Steller sea lions under an experimental 

fasting regime. * P < 0.1 compared to initial values. Values shown are mean ±  standard 

error.
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There were no statistically significant differences in plasma hormone 

concentrations between food limitation and fasting at Day 0 (Table 6.1). By Day 7, plasma 

levels of Ang II-like ir material in fasted Steller sea lions were significantly higher than in 

food-limited animals (P < 0.1). This difference was also observed at Day 14.

6.4.3. Free-ranging Steller Sea Lions

Plasma levels of AVP-, ANP- and Ang II-like ir material in young Steller sea lions 

sampled in Alaskan waters are presented in Table 6.2 and Figure 6.3. The concentrations 

of AVP- and ANP-like ir material in Steller sea lions from the Aleutian Islands and the 

Gulf of Alaska were significantly higher than in animals from Southeast Alaska and in 

those held at the Vancouver Aquarium (P < 0.1). However, plasma Ang II-like ir material 

levels in Steller sea lions from the Gulf of Alaska and Southeast Alaska were significantly 

higher than those in sea lions from the Aleutian Islands and the Vancouver Aquarium (P < 

0.1).
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TABLE 6.1. Plasma concentrations o f arginine vasopressin (AVP), atrial natriuretic 

peptide (ANP) and Angiotensin II (Ang II) in juvenile Steller sea lions under two different 

feeding regimes. Sample size is indicated in parentheses.

I l l

AVP

(pg/ml)

ANP

(pg/ml)

Ang II 

(pg/ml)

FOOD LIMITATION (n=4)

DayO 7.4 ±3.1 20.8 ± 2.8 5.7 ± 1.3

Day 7 4.1 ± 1.1 21.7 ±2.8 7.9 ±2.0

Day 14 7.2 ± 2.4 25.1 ±3.0 9.2 ±0.8

FASTING (n=2)

DayO 4.1 ±0.6 32.1 ± 10.6 6.5 ± 1.0

Day 7 5.5 ±2.1 22.0 ± 0.9 13.1 ±0.8 * +

Day 14 4.5 ±0.1 18.2 ±4.1 22.6 ± 5.0 * +

* P < 0.1 compared to values at Day 0. + P < 0.1 compared to food-limited Steller sea 

lions.
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TABLE 6.2. Plasma concentration of vasopressin (AVP), atrial natriuretic peptide (ANP) 

and angiotensin II (Ang II) in Steller sea lions across their distribution range in Alaskan 

waters. Sample size is indicated in parentheses.

AVP

(pg/ml)

ANP

(pg/ml)

Ang II 

(pg/ml)

Aleutian Islands (46) 7.8 ± 0.5 * 59.8 ±3.4 * 24.8 ± 2.9

Southeast Alaska (41) 4.7 ± 0.4 29.1 ±2.8 37.4 ± 4 .6*

Gulf of Alaska (55) 8.7 ±0.9 * 64.2 ± 3 .7 * 36.5 ±3.7 *

Vancouver Aquarium (9) 5.9 ±0.4 21.6 ±0.6 23.8 ± 1.9

* P < 0.1 compared to concentrations in other areas.
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FIGURE 6.3. Plasma concentration o f vasopressin (AVP), atrial natriuretic peptide (ANP) 

and angiotensin II (Ang II) in Steller sea lions across their distribution range in Alaskan 

waters. ALEUTS= Aleutian Islands; GOA= Gulf o f Alaska; SEAK= Southeast Alaska; 

VANC= Vancouver. * P < 0.1 compared to concentrations in other areas.
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6.5. Discussion

Plasma concentrations of AVP- and ANP-like ir material in samples from Steller 

sea lions at Day 0 of both experimental protocols were comparable to levels reported for a 

variety o f free-ranging pinniped species at rest (42). However, levels of Ang II-like ir 

material in these captive Steller sea lions were lower than those previously reported for 

wild animals (42). Low plasma Ang II levels are associated with decreased plasma 

osmolarity and sodium concentration (14).

Neither short-term food limitation nor fasting affected the plasma AVP- or ANP- 

like ir material levels in Steller sea lions. However, at the end of both experimental 

regimes, plasma concentrations o f Ang II-like ir material were significantly higher than 

initial values (Day 0). These findings are not entirely surprising and suggest that 

hydrosmotic balance was maintained in Steller sea lions during the experimental food 

limitation and fasting. Maintenance of plasma AVP- and ANP-like ir material levels during 

the imposed fasting may be, in part, due to access to fresh water and ice cubes. Plasma 

metabolite concentrations did change progressively during long periods of under-nutrition 

in Steller sea lions (Rea et al. unpublished), suggesting increased reliance on body fat 

stores for energy and metabolic water production from lipid catabolism. Adequate 

hydration state in fasting marine mammals is maintained by metabolically-derived water 

(26, 4). Maintenance of the plasma levels of thyroid hormones, corticosterone and insulin 

in fasting emperor penguins (Aptenodytes forsteri) and king penguins {A. patagonicus)

(13), and of plasma concentrations of AVP- and ANP-like ir material in fasting Steller sea 

lions (this study) suggest a remarkable achievement of hydrosmotic and endocrine balance 

in fasting-adapted species.

During phase II (protein sparing phase) fasting, there is an increase in plasma 

levels o f corticosterone and aldosterone in king penguins (6, 19). These results, and the 

fact that Ang II induces aldosterone secretion in mammals (30), are in agreement with our 

finding increasing plasma levels of Ang II-like ir material during food-limitation and
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experimental fasting in Steller sea lions. Humans suffering from anorexia nervosa 

accompanied by dehydration and low plasma levels of potassium and sodium also had an 

enhanced activity of the RAAS (11,40), which may be related to an excessive amount of 

sodium excreted during the first week of fasting (36).

Correlations found between plasma levels o f Ang II- and ANP-like ir material and 

MCHC, plasma specific gravity and plasma and serum water during food limitation and 

fasting in Steller sea lions suggest that transvascular fluid shifting may also be a 

mechanism whereby these animals maintain hydrosmotic balance. Both ANP and Ang II in 

terrestrial mammals are involved in modulating vascular permeability and extracellular 

fluid partitioning (17, 24, 38), either by modifying pre- and post-capillary vascular 

resistance (39) or by altering tissue-specific protein transport (37, 43).

Differences in plasma concentrations of AVP-, ANP- and Ang II-like ir material 

were found over the geographic range of Steller sea lions in Alaskan waters. Although the 

average concentrations of AVP-like ir material in Steller sea lions sampled in the Aleutian 

Islands and Gulf of Alaska were significantly higher than those in the animals sampled in 

Southeast Alaska and those held in the Vancouver Aquarium, the ranges overlapped, 

suggesting these differences may be associated with physiological states rather than 

pathological conditions.

Interestingly, ANP-like ir material concentrations in Steller sea lions from the 

Aleutian Islands and the Gulf of Alaska, both areas where sea lion populations are 

declining, were significantly higher than concentrations in sea lions from Southeast Alaska 

and the Vancouver Aquarium. Elevated concentrations of ANP have been found in 

humans with congestive lung disease (1) and in patients with anorexia nervosa (2, 25).

We hypothesized that if Steller sea lions in Alaska were suffering nutritional 

deficiencies, secretion of all three hormones (Ang II, ANP and AVP) would be impaired 

leading to abnormal circulating hormone levels, similar to findings in rats and humans (12, 

21, 25). The only evidence that might support this hypothesis are the significantly elevated
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levels of plasma ANP-like ir material in the declining populations in the Aleutian Islands 

and the Gulf o f Alaska. It is possible that different biochemical and physiological 

mechanisms operate during short-term and chronic food limitation, compensating for 

changes in blood volume, blood osmolality and blood pressure, and lead to distinct levels 

of endocrine balance.

Research on the effects of prolonged and repeated fasts on pinniped endocrinology 

should increase our understanding of the biochemical and physiological mechanisms 

involved in long-term survival. The results generated from this research may be useful in 

enabling researchers and wildlife managers to identify, in comparative studies, the 

nutritional status and general health of wildlife populations.
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7. CONCLUSIONS

This thesis explored several inter-related aspects of the endocrinology and 

cardiovascular physiology of pinnipeds. Baseline plasma levels of AVP-, ANP- and Ang 

II-like ir material were determined in Weddell seals, harbor seals, northern elephant seals, 

ringed seals, California sea lions and Steller sea lions, and were similar to values reported 

for other vertebrate species. However, age, species and geographic differences were 

found. Inherent physiological differences between species and developmental stages, the 

post-weaning or molting fast, or a combination of these factors could account for the 

observed differences in plasma levels o f AVP-like ir material with age and among species. 

At this time, there is not a satisfactory explanation for the higher levels of ANP- and AVP- 

like ir material in Steller sea lions from the Aleutian Islands and the Gulf o f Alaska and of 

AVP- and Ang II-like ir material in harbor seals from Prince William Sound, all areas 

where the pinniped populations are declining. A number of pathologic states in humans are 

associated to elevated concentrations o f these hormones; among them, congestive lung 

disease, hypertension, heart failure, pericarditis and some types of anemia.

Changes in vasoactive hormones and heart rate during sleep-associated apnea were 

studied in northern elephant seal and Weddell seal pups. In both seal species, heart rate 

and circulating levels of Ang II- and AVP-like ir material were lower while concentrations 

of ANP-like ir material were higher during periods of apnea. These data support the 

hypothesis that plasma levels of ANP increase and levels of AVP and Ang II decrease in 

response to apnea-driven bradycardia, lowered cardiac output, and increased central blood 

volume. Whether the observed changes in vasoactive hormone concentrations during 

sleep-associated apnea also occur during breath-hold diving needs to be established.

Differences between apneic and eupneic heart rates among age groups suggest 

development o f respiratory sinus arrhythmia (RSA) to a higher degree in the 14 week old 

than in the 8 week old northern elephant seal pups. RSA was greater in Weddell seal pups 

(6 weeks) than in the northern elephant seal pups of either age group. Similarly,
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differences in vasoactive hormone concentrations and apnea duration with age suggest 

that the cardiorespiratory and hormonal functions are under post-natal development. 

Differences between the species may reflect the fact that the Weddell seal pups start diving 

at a younger age than northern elephant seal pups, suggesting that the respiratory, 

cardiovascular and hormonal systems develop in parallel to diving behavior.

The contribution of the autonomic nervous system to heart rate in response to 

sleep-associated apnea was also studied in northern elephant seal and Weddell seal pups. 

During normal ventilation, heart rate variability in all seal pups was strongly driven by 

respiration, while apneic heart rate was characterized by peaks in the lower frequencies 

with no peaks in the higher (respiratory) frequencies. A higher index of parasympathetic 

nervous system activity during apnea in both species and lower index of sympathetic 

nervous activity during apnea in elephant seal pups were found. The results indicate that in 

these seal pups the prevailing heart rate was preferentially influenced by the sympathetic 

nervous system during eupnea, and that the apneic bradycardia is mostly due to vagal 

input. The results are consistent with the expected increases in cardiac parasympathetic 

nervous activity in response to lower respiratory rates.

The combined results from these projects provide evidence of differential 

contribution of the endocrine and autonomic nervous systems to cardiovascular function in 

Weddell seal and northern elephant seal pups, dependent on the respiratory input. In these 

seal pups, sinus arrhythmia, apnea duration, heart rate and autonomic nervous activity are 

apparently correlated and under developmental influence. Furthermore, it is possible that 

the intervention of the vasoactive hormones maintains the functional integrity o f the 

cardiovascular system in seals during repetitive breath-holding cycles. The significance of 

the role of the hormones during apneic episodes becomes apparent when one keeps in 

mind that seals maintain a relatively constant blood pressure even when heart rate, cardiac 

output and vessel resistance are changing, and that the actions of AVP, ANP and Ang II, 

directly or indirectly, modify blood pressure. In this sense, it would be interesting to
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determine if the intervention of AVP, ANP and Ang II in resetting the baroreflex set point 

and altering vagal activity, as observed in terrestrial mammals, also occurs in seals.

The results of these projects have potential applications in biomedicine and 

cardiovascular biology. In contrast to marine mammals, humans do not tolerate long 

duration breath-holding. Sleep apnea syndrome, respiratory distress syndrome, and sudden 

infant death syndrome (SIDS) are examples of how apnea is maladaptive in humans.

Power spectral signatures o f heart rate of seals can be compared to those from humans in 

studies of pathological sleep apnea in adults and infants. Delineating hormonal profiles in 

humans, similar to the AVP, ANP, and Ang II profiles we have produced in seals, may 

prove to be of diagnostic and therapeutic value at different stages of various 

cardiovascular and pulmonary diseases. Studying the factors that control cardiorespiratory 

function in seal pups and how they develop with age will shed light on the integration of 

respiratory and cardiovascular systems in newborn mammals, and could point out ways in 

which failure to achieve such functional integration leads to SIDS.

Conversely, wildlife biology and management of pinniped species would benefit 

from studies in laboratory mammals. For example, since secretion rates and metabolism of 

ANP, AVP and Ang II are disrupted in response to weight cycling in rats and eating 

disorders (anorexia nervosa, bulimia) in humans, these hormones may be useful in 

exploring the hypothesis that the population decline of Steller sea lions and harbor seals in 

Alaskan waters is due to nutritional deficiencies.

To address the hypothesis that ANP-, AVP- and Ang II-like ir material in 

pinnipeds in Alaska may be related to malnutrition, Steller sea lions kept in the Vancouver 

Aquarium were subjected to a restricted diet for 28 days and an experimental fast for 14 

days. Neither short-term food limitation nor fasting affected the plasma AVP- or ANP-like 

ir material levels in Steller sea lions, suggesting that hydrosmotic balance was maintained. 

At the end of both experimental regimes, plasma concentrations of Ang II-like ir material 

were significantly higher than initial values, although they were within the range reported
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for healthy mammals under resting conditions. More importantly, significant correlations 

found in Steller sea lions between Ang II- and ANP-like ir material and MCHC, plasma 

specific gravity and plasma and serum water during food limitation and fasting suggest 

that transvascular fluid shifting may have occurred. The only evidence that Steller sea lion 

populations in Alaskan waters are affected by long-term food limitation that we can 

provide at this time are the significantly elevated levels of plasma ANP-like ir material in 

the declining populations at the Aleutian Islands and the Gulf of Alaska.

Clearly, further research is needed to evaluate interactions among hormones and 

physiological events pertinent to the natural histories of seals and sea lions, such as 

molting, fasting and diving. Little is known about the biosynthesis rate, half-life, control of 

secretion, cellular mechanisms of action, receptors, second messengers and signal 

transduction of the major hormones in marine mammals. Insufficient information is 

available regarding renal blood flow, pulmonary circulation, control of blood pressure and 

baroreflex set-point and sensitivity during diving and sleep-apnea in marine mammals. 

Neither fetal nor postnatal development of these functions have been studied in these 

animals. The increasing availability of diverse techniques in endocrinology, molecular 

biology, immunology, biochemistry and physiology may provide tools to compensate for 

the difficulties posed by the marine environment and the natural history of marine 

mammals, and allow us to answer some of these questions.

To provide an overall view of the mechanisms discussed in this thesis, schematic 

representation of the interactions of the respiratory, cardiovascular, hormonal and 

autonomic nervous systems during periods o f breath-holding and spontaneous breathing in 

seal pups are shown in Figures 7.1 and 7.2, respectively. Seals hold their breath on the 

expiratory part of the breathing cycle. In mammals, this leads to stimulation of the 

trigeminal nerves and sympathetic vasomotor neurons, which in turn results in decreased 

heart rate and cardiac output, increased hematocrit and peripheral vasoconstriction (Figure 

7.1). With vasoconstriction, blood is displaced from the peripheral tissues to the lungs and
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heart in terrestrial mammals and the abdominal vena cava in marine mammals (Daly pers. 

com.). This increased “central” blood volume is a known stimulus for secretion of ANP. 

The actions o f ANP will oppose any tendency for pressure to increase following peripheral 

vasoconstriction, thus maintaining an almost constant blood pressure. Additional effects of 

ANP include inhibition of AVP and the RAAS; cardioinhibition and increased activity of 

the PNS, enhancing bradycardia and lower cardiac output; and increased capillary 

permeability and contraction of the spleen, leading to increased hematocrit.

Filling of the lungs with the first breath after an episode of apnea stimulates central 

inspiratory neurons and pulmonary stretch receptors (Figure 7.2). As a result, heart rate 

increases, while total peripheral resistance and blood pressure decrease. When the 

peripheral circulation opens again, blood flow returns to the pre-apneic normal 

distribution. This re-shifting of blood volume stimulates secretion of AVP and Ang II, 

resulting in increased blood pressure. In addition, AVP resets the baroreflex to a higher 

heart rate, Ang II stimulates SNS and inhibits vagal tone to the heart, and both AVP and 

Ang II stimulate ventilation and breathing movements.

Both AVP and Ang II stimulate contraction of vascular smooth muscle in 

mammals. However, neither plasma levels of AVP nor Ang II increased in seal pups 

during periods of sleep apnea, when strong vasoconstriction is expected to occur. It is 

possible that stimulation of sympathetic vasomotor neurons and hypothalamically directed 

reflexes involving increased vagal outflow are sufficient to induce vasoconstriction; 

perhaps blood vessels of seals are not as sensitive to the effects of ANP, AVP and Ang II 

as in terrestrial mammals, or the actions of other vasoactive hormones override the effects 

of these. The studies described here show that we are only at the beginning of 

understanding the complex interactions in these unique mammals.
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FIGURE 7.1. Schematic representation of the integrated function of the respiratory 

cardiovascular, hormonal and nervous systems in seal pups during sleep apnea.
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FIGURE 7.2. Schematic representation of the integrated function of the respiratory 

cardiovascular, hormonal and nervous systems in seal pups during spontaneous breathing.
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