INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\circ} \times 9^{\circ}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600

TWO-DIMENSIONAL ANALYSIS OF

NATURAL CONVECTION AND RADIATION IN UTILIDORS

Α

THESIS

Presented to the Faculty

of the University of Alaska Fairbanks

in Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

By

PAUL W. RICHMOND III, B.S., M.S.

Fairbanks, Alaska

May 1997

UMI Number: 9722686

UMI Microform 9722686 Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized copying under Title 17, United States Code.

UMI 300 North Zeeb Road Ann Arbor, MI 48103

TWO-DIMENSIONAL ANALYSIS OF

NATURAL CONVECTION AND RADIATION IN UTILIDORS

By

Paul W. Richmond III

RECOMMENDED:

Dr. Debendra Das, Professor of Mechanical Engr.

Dr. Gary Gislason, Professor of Mathematics

Thos. C. Kennes

Dr. Thomas Kinney, Assoc. Professor of Civil and Environmental Engr.

Dr. John Zarling, Professor of Mechanical Engr. and Advisory Committee Chair

ins

Dr. Ronald-Johnson, Professor of Mechanical Engr. and Head, Mechanical Engineering Dept.

APPROVED:

Dr. Paul Reichardt, Dean of the College of Science, Engineering and Mathematics

. Joseph Kan, Dean of the Graduate School

¥-

Date

ABSTRACT

Central heating plants are often used on large building complexes such as university campuses or military bases. Utilidors can be used to contain heat distribution lines and other utilities between a utility station and serviced buildings. Traditional thermal analysis of utilidors is one-dimensional, with heat transfer correlations used to estimate the effects of convection, radiation, and two-dimensional geometric effects. The expanding capabilities of computers and numerical methods suggest that more detailed analysis and possibly more energy-efficient designs could be obtained. This work examines current methods of estimating the convection and radiation that occur across an air space in square and rectangular enclosures and compares them with numerical and experimental data.

A numerical model was developed that solves the energy, momentum, and continuity equations for the primitive variables in two dimensions; radiation between free surfaces was also included. Physical experiments were conducted with two 10-ft-long apparatuses; one had a 1-ft × 1-ft cross section, the other was 2 ft × 4 ft. Several pipe sizes and configurations were studied with the 1-ft × 1-ft apparatus. The 2-ft × 4-ft apparatus was limited to containing 4- and 8-inch insulated pipes. Corresponding numerical studies were conducted. Difficulties in modeling large enclosures or those with large temperature differences (Rayleigh numbers above 10^7) were encountered.

Results showed good agreement between numerical and experimental average heat transfer rates, and for insulated pipe cases these results also compared well with rates obtained from one-dimensional analysis. A new effective conductivity correlation for air in a square enclosure was developed, and its use was demonstrated in numerical conduction solutions and compared with full numerical convection and radiation solutions and with experimental data. Reasonably good results were achieved when there was a small temperature difference across the air gap.

PREFACE

The author expresses his appreciation to the people at the U. S. Army Cold Regions Research and Engineering Laboratory (CRREL) who assisted in this project. Special thanks go to R. Farr who constructed the experimental apparatuses. The work was funded under a number of CRREL projects and was supported in part by a grant of HPC time from the DoD HPC Center, Arctic Region Supercomputing Center, denali.edu.

The author particularly thanks Dr. R. Liston for his continued encouragement and support and Dr. J. Zarling for serving as faculty advisor and Committee Chair. Appreciation is also expressed to the committee members, Drs. T. Kinney, D. Das, and G. Gislason.

TABLE OF CONTENTS

	Page	
List of Figures	vi	
List of Tables	x	
Nomenclature and Abbreviations	xi	
1. Introduction	1	
2. Background	5	
3. Numerical Model	22	
Interpolation Functions	26	
Solution Procedure	29	
Radiation	33	
Model Verification	36	
4. Experimental Procedure		
Experimental Apparatuses	42	
Data Acquisition System	46	
Procedure 50		
5. Results		
General	51	
Experimental	53	
Numerical	57	
6. Analysis	64	
7. Summary	80	
8. Conclusions and Recomendations	82	
9. Literature Cited	84	
Appendix A. Computer Program FECOME		
Appendix B. Computer Program FEVIEW		
Appendix C. Experimental Results		
Appendix D. Numerical Results	163	

- ----

LIST OF FIGURES

Page

vi

1.	Cross sections of two utilidors constructed in the Arctic (from US Army, 1987)	2
2.	Heat transfer correlations for vertical enclosures	
	Cross section of a concentric pipe conduit	
	Rectangular enclosure configuration of Ghaddar (1992)	
	Experimental configuration of Stewart and Verhulst (1985)	
6.	Experimental apparatus of Babus'Haq et al. (1986)	16
7.	Heat transfer equations for pipes in enclosures	17
	Generic utilidors for current utilidor thermal analysis procedure, US Army (1987)	18
9.	A curved isoparametric quadrilateral element	27
10	View factor analysis of F_{1-6}	34
11.	Two-dimensional conduction problem; dashed lines are the analytical solution, solid lines are the numerical solution	37
12	FECOME results for a vertical square enclosure at a Rayleigh number 10 ⁵	39
13.	Grid used for comparing view factors and radiation heat flux calculations	40
14.	1-ft × 1-ft experimental apparatus with lid off	42
15.	Thermal conductivity of expanded polystyrene	43
16.	Schematic cross section of the 1-ft × 1-ft apparatus	43
17.	Thermal conductivity of fiberglass pipe insulation	44

18.	$2-ft \times 4-ft$ enclosure, with 4-inch and 8-inch insulated pipes	45
19.	Schematic diagram of the 2-ft \times 4-ft enclosure	45
20.	Data acquisition system for use with the 1-ft \times 1-ft square enclosure	46
21.	Nusselt and Rayleigh number plot for the 4-inch pipe, in the 1-ft × 1-ft enclosure (experimental data)	55
22.	Nusselt and Rayleigh number plot for the insulated, 4-inch pipe in the $1-ft \times 1-ft$ enclosure (experimental data)	55
23.	Nusselt and Rayleigh number plot for the 2-inch pipe, in the $1-ft \times 1-ft$ enclosure (experimental data)	55
24.	Nusselt and Rayleigh number plot for the 2-inch insulated pipe, in the $1-ft \times 1-ft$ enclosure (experimental data)	55
25.	Nusselt and Rayleigh number plots for the 2-ft × 4-ft enclosure (experimental data)	56
2 6.	Mesh for the 1-ft \times 1-ft enclosure with a 4-inch pipe (3,552 nodes, 1,152 elements, 10,848 d.o.f.)	58
27.	Mesh for the 2-ft \times 2-ft enclosure with a 2-inch insulated pipe (16,704 nodes, 5,972 elements, 48,862 d.o.f.)	59
28.	Mesh for the 2-ft \times 4-ft enclosure, 4-inch and 8-inch insulated pipes (13,338 nodes, 4,356 elements, 38,834 d.o.f.)	60
2 9.	Mesh for the 2-ft \times 2-ft enclosure with two 2-inch pipes (14,759 nodes, 4,824 elements, 42,188 d.o.f.)	60
30.	Nusselt and Rayleigh number for the 4-inch pipe, in the $1-ft \times 1-ft$ enclosure (numerical data)	61
31.	Nusselt and Rayleigh numbr for the insulated 4-inch pipe, in the 1-ft × 1-ft enclosure (numerical data)	61

- .

viii

Page

32.	Nusselt and Rayleigh number for the 2-inch pipe, in the $1-ft \times 1-ft$ enclosure (numerical data)	62
33.	Nusselt and Rayleigh number for the insulated 2-inch pipe, in the 1-ft \times 1-ft enclosure (numerical data)	62
34.	Nusselt and Rayleigh number plots for the 1.27 -ft $\times 1.27$ -ft and 2-ft $\times 4$ -ft enclosures (numerical data)	63
35.	Heat flux from the 4-inch pipe through the 1-ft \times 1-ft enclosure	64
36.	Heat flux from the 2-inch pipe through the $1-ft \times 1-ft$ enclosure	65
37.	Heat flux from the 4-inch insulated pipe through the 1-ft \times 1-ft enclosure	66
38.	Heat flux from the 2-inch insulated pipe through the 1-ft \times 1-ft enclosure	66
39.	Ratio of the effective conductivity to the conductivity of air versus the average interior temperature (4-inch pipe)	67
40.	Ratio of the effective conductivity to the conductivity of air versus the average interior temperature (2-inch pipe)	67
41.	Ratio of the effective conductivity to the conductivity of air versus the average interior temperature (4-inch insulated pipe)	68
42.	Ratio of the effective conductivity to the conductivity of air versus the average interior temperature (2-inch insulated pipe)	68
43.	Effective conductivity correlations	70
44.	Correlation of pipe radius with intercepts	71
45.	Temperature contours for sq4ib65a; solid lines are for the convection and radiation solution, dashed lines are from the conduction solution	72
46.	Inside surface temperatures for sq4ib65a	7 3

- --

Page

ix

47.	Temperature contours for sq2d35c; solid lines are from the convection and radiation solution, dashed lines are from the conduction solution	73
48.	Inside surface temperatures for sq2d35c	74
49.	Temperature contours for sq2ic65a; solid lines are from the convection and radiation solution, dashed lines are from the conduction solution	74
50.	Temperatures around inside surface for sq2ic65a	75
51.	Ratio of effective conductivity to the conductivity of air versus the average interior temperature (2-ft \times 4-ft enclosure)	76
52.	Polynomial curve fits to experimental boundary data	7 7
53.	Finite element mesh used for conduction solution of the 2-ft \times 4-ft enclosure	78
54.	Comparison of experimental and numerical inside insulation surface temperatures, data from 13 Jan 1997	79
A-1.	Subroutine flow chart of FECOME	89

- --

LIST OF TABLES

Page

1.	Methods of determining the effective thermal conductivity of an air gap	20
2.	Comparison of published velocity predictions with FECOME for a vertical enclosure	39
3.	Comparison of view factor calculations	41
4.	Comparison of radiation heat fluxes	41
5.	Test apparatus configurations	44
6.	Locations of thermocouples in the 1-ft \times 1-ft enclosure	47
7.	Locations of thermocouples in the 2-ft \times 4-ft enclosure	49
8.	Enclosure dimensions and effective gap widths	54
9.	Configurations for the numerical experiments	54
10	Coefficients for eq 6-1	70
11	Comparison of effective conductivity correlations	71
12.	Conditions for comparisons between numerical conduction and convection solutions	72
A-	1. Material properties for air (material 1)	91
A- :	2. Thermal conductivities of solid materials	91

_ ...

- - -

х

NOMENCLATURE AND ABBREVIATIONS

A	A heat transfer correlation coefficient
a	Area
В	A heat transfer correlation coefficient
С	A heat transfer correlation coefficient
C_p	Specific heat at constant pressure
C,	Volumetric specific heat, $(C_p \rho)$
CRREL	Cold Regions Research and Engineering Laboratory
d.o.f.	Degrees of freedom
D	Diameter
E	Eccentricity, (eq 2-50)
F	Radiation view factor
FE	Finite element
FECOME	Finite Element Combined Equations (computer code)
FERF	Frost Effects Research Facility
FEVIEW	Computer code using FE to determine radiation view factors
g	Acceleration due to gravity
G	Vertical gap width (eq 2-48)
Gr	Grashof number
h	Convective heat transfer conductance
Η	Inside height of an enclosure
k	Thermal conductivity
L _e	Arc length of an element side
L	Hypothetical gap width $(R-r)$, or characteristic length
Ν	Interpolation functions
	-
n	number of nodes

• _

Р	Perimeter
р	Pressure
Pr	Prandtl number
Q	Internal heat generation
Q_j	Radiation heat flux, through surface j
q	Heat flux
r	Radius of a cylinder
R	Hypothetical radius of a circle with the same parameter as the enclosure
R_{xxx}	Thermal resistance of xxx
Ra	Rayleigh number
S	Boundary surface
Т	Temperature
t	thickness
u	x-direction velocity
ν	y-direction velocity
W	Inside width of an enclosure
x	x coordinate location
Y	Inside height of enclosure
У	y coordinate location
Ζ	z coordinate location
α	Thermal diffusivity
β	Coefficient of thermal expansion
δ_{kj}	Dirac delta function, equal to 1 if $k=j$ and equal to 0 if $k\neq j$.
ε _j	Emissivity of surface j
φ	Heat flux across a boundary s, or dimensionless temperature (eq 2-30)
υ	Kinematic viscosity
μ	Dynamic viscosity

xii

- --

ρ	Density
ξ	Shape function parameter (vertical direction)
η	Shape function parameter (horizontal direction)
σ	Boltzmann's constant
Subscripts	
air	Of air
Ь	Boundary layer or distance traveled by the boundary layer on cylinder (π r)
С	Convection
ci	Inner radius of conduit
cond	Conduction
conv	Convection
D	Diameter
Ε	Exterior casing
eff	Effective
eq	Equivalent
i	Indices for pipe number, directions, inside (pipe diameter or radius), etc.
j	Indices for pipe number, directions, etc.
k	Indices for pipe number, directions, etc.
L	Characteristic length, or perimeter lining
0	Outside (diameter or radius)
р	Pipe
r	Radiation
ref	Reference for the coefficient of thermal expansion
S	Sphere
∞	Reference for convective heat transfer
Superscripts	
а	Area

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- - - - -

Heat transfer correlation coefficient
Element
Indices for iteration numbers
Pressure
A boundary (general)

xiv

TWO-DIMENSIONAL ANALYSIS OF NATURAL CONVECTION AND RADIATION IN UTILIDORS PAUL W. RICHMOND III

1. INTRODUCTION

Many large building complexes, such as military facilities and university campuses, are served by central heat distribution systems. Utilidors are often used to contain the heat distribution lines and other utilities between utility stations and the serviced buildings. These enclosures are generally constructed of concrete and are usually installed below ground level. Other materials, such as wood and sheet metal, are also used. Figure 1 shows cross sections of two utilidors constructed in Arctic regions. In the southern United States, utilidors are referred to as utility trenches and often have their upper side (lid) at ground level. Because utilidors are used to distribute heat (steam or hot water), it is important to know what the heat loss from the utilidor is in order to estimate losses in the heat distribution system and to design for efficient use of insulation. Additionally, the presence of unheated lines (e.g., domestic water, fire protection, or sewer lines), requires that the air temperature within the utilidor remain above freezing. Due to the complexity of the geometry the heat transfer analysis must be done using approximate or numerical procedures.

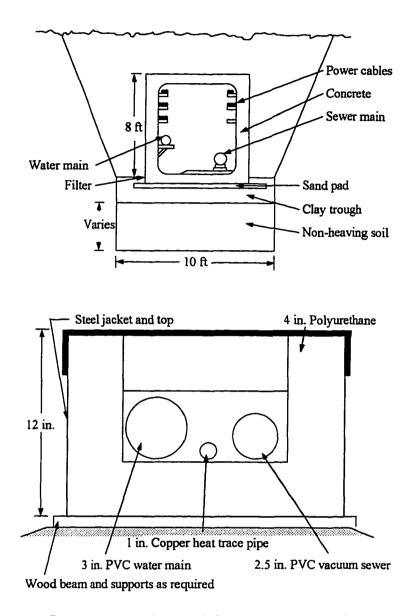


Figure 1. Cross sections of two utilidors constructed in the Arctic (from US Army, 1987).

Recently, numerical methods (finite difference, finite element) have been used to evaluate utilidor performance. Modeling of conductive heat transfer around utilidors and building foundations has been done successfully (Kennedy et al., 1988, Phetteplace et al., 1986, and Zarling and Braley, 1984). Modeling of heat transfer within utilidors is generally done using conductive approximations (Smith et al., 1979). Convection and radiation can have a significant effect on the total heat transfer, and accurate models are necessary. Once available, numerical models and correlations of heat transfer within utilidors can be used in the design process of new utilidors. A second application is in the thermal evaluation of existing utilidors for rehabilitation or renovation, replacing current approximation methods.

Researchers of numerical methods have demonstrated that convection and radiation can be modeled using finite element, finite difference, or other numerical techniques (Gebhart et al., 1988, and Arpaci and Bayazitoglu, 1990). However, these efforts have not been applied to utilidors, and in general have been limited to simple geometries. Additionally, the two modes of heat transfer are not often evaluated in tandem.

Utilidor sizes and shapes are determined by considering the number and sizes of the pipes they will contain, their location relative to the ground surface, and the ease of access desired for maintenance or repairs. Phetteplace et al. (1981) presented the utilidor and pipe sizes for all the utilidors located on Ft. Wainwright, Alaska. They reported approximately 200 different configurations, utilidor sizes ranged from 1-ft \times 1-ft to 7-ft \times 9-ft, and pipe sizes varied from 1 in. to 24 in. in diameter. Clearly, it is not possible to

3

conduct physical experiments using every combination of utilidor size and pipe combination.

The objective of this work was to investigate convection and radiation in enclosures, specifically rectangular utilidors containing one or more heated pipes. The work presented considers the steady-state, two-dimensional problem of convection and radiation within an enclosure. Results of numerical and experimental investigations are combined to obtain a methodology for the two-dimensional thermal analysis of utilidors.

2. BACKGROUND

The governing equations for incompressible Newtonian fluid flow in an enclosure are the Navier-Stokes (momentum) equations, the energy equation and the continuity equation. The steady state, laminar flow momentum equations are

$$\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) + \frac{1}{\rho}\frac{\partial p}{\partial x} - v\left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2}\right) = 0$$
(2-1)

$$\left(\nu\frac{\partial\nu}{\partial y}+u\frac{\partial\nu}{\partial x}\right)-g\beta\left(T-T_{ref}\right)+\frac{1}{\rho}\frac{\partial p}{\partial y}-\nu\left(\frac{\partial^{2}\nu}{\partial x^{2}}+\frac{\partial^{2}\nu}{\partial y^{2}}\right)=0$$
(2-2)

for a two-dimensional flow field, where y is the vertical direction and x is the horizontal direction. The continuity equation is

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{2-3}$$

and the energy equation (neglecting viscous dissipation) is

$$C_{\nu}\left(\nu\frac{\partial T}{\partial y} + u\frac{\partial T}{\partial x}\right) - k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) - Q = 0.$$
(2-4)

The energy equation reduces to

$$-k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) - Q = 0$$
(2-5)

for solid regions with homogeneous, isotropic materials and constant k. These equations are coupled and result in four equations and four unknowns: pressure, temperature, and

⁵

the x and y-components of velocity (p, T, u, and v). For complex geometries, these equations cannot be simplified and solved directly.

Heat transfer correlations for convective heat flow in enclosures are generally expressed in terms of the Nusselt number (Nu) and the Rayleigh number (Ra). These dimensionless parameters are defined as:

$$Nu = \frac{h_c L}{k} \tag{2-6}$$

$$Gr = \frac{g\beta\rho^2 \Delta TL^3}{\mu^2}$$
(2-7)

$$Pr = \frac{\upsilon}{\alpha} \tag{2-8}$$

$$Ra = PrGr = \frac{g\beta\rho^2 \Delta TL^3}{\mu^2} \frac{\upsilon}{\alpha}$$
(2-9)

where g is the acceleration due to gravity, β is the thermal coefficient of expansion, μ is dynamic fluid viscosity, v is the kinematic fluid viscosity, h_c is the heat transfer conductance, α is the thermal diffusivity, and k is the thermal conductivity of the fluid. Pr is the Prandtl number and Gr is the Grashof number. The two remaining undefined terms, ΔT and L, are dependent on the boundary conditions and geometry of the problem. In the simplest case, ΔT will be the temperature difference between a warm surface and a cold surface. The variable L is a characteristic length of the geometry. For concentric cylinders the difference in radii or gap width is often used; other examples are discussed below. Correlations for Nu are found in the form of:

$$Nu = ARa^B \tag{2-10}$$

when a specific material, such as air, is specified or,

$$Nu = AGr^B, \tag{2-11}$$

for the general case of natural convection in fluids or gases.

Heat transfer by radiation between two surfaces can have a large effect on the heat transfer correlations. Experiments and analytical or numerical analysis can include these effects or they can be removed. Radiation is primarily reflected in the heat transfer conductance h, and in general, h should be considered to be the sum of two components, h_r and h_c , i.e., the conductances due to radiation and to convection. It is not always clear when examining heat transfer correlations if this is the case, or if h represents merely h_c .

A vertical rectangular cavity (enclosure) is defined as an enclosure bounded by two vertical surfaces held at different temperatures. The other two parallel surfaces, top and bottom, are taken as insulated (Gebhart et al., 1988). Heat transfer occurs only at the vertical surfaces. The characteristic length, L, for this geometry is the distance between the hot and cold walls, and the characteristic temperature, ΔT , is the difference between the vertical wall temperatures. For an air-filled square enclosure, Ostrach, (1972) summarized the following numerical results for the average Nusselt number in the form of eq 2-11.

<u>Reference</u>	<u>A</u>	<u>B</u>	eq
Newell and Schmidt (1969)	0.0547	0.397	(2-12)
Han (1967)	0.0782	0.3594	(2-13)
Elder (1965)	0.231	0.25	(2-14)

7

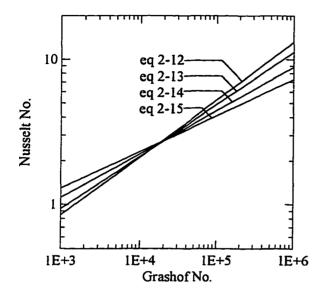


Figure 2. Heat transfer correlations for vertical enclosures.

data at the cold surface yields

$$Nu = 0.14162Gr^{0.2996}.$$
 (2-15)

Equations 2-12 - 2-15 are drawn on Fig. 2.

Correlations have also been developed for vertical enclosures with aspect ratios (height/width) other than one. Gebhart et al. (1988) present several correlations of the form

$$Nu = AGr^{B} \left(\frac{Y}{W}\right)^{C}$$
(2-16)

where Y/W is the height/width ratio, and A, B, and C. These constants are presented below air.

Reference	<u>A</u>	<u>B</u>	<u>C</u>	eq
Newell and Schmidt (1969)	0.155	0.315	-0.265	(2-17)
Eckert and Carlson (1961)	0.119	0.3	-0.1	(2-18)
Jakob (1949)	0.18	0.25	-0.111	(2-19)
MacGregor and Emery (1969)	0.25	0.25	-0.25	(2-20)

He reported tolerable agreement

between these correlations and

Recently, de Vahl Davis and

Jones (1983) presented a numerical

bench mark solution for air in a

square vertical enclosure at Ra

values from 10^3 to 10^6 . Fitting an

equation to their Nusselt number

experiments.

Horizontal rectangular enclosures are described as cavities in which the lower horizontal surface is heated while the upper surface is cooled; the sides are insulated. The correlations obtained by several researchers can be presented in the form of eq 2-10, when the Prandtl number for air is taken as 0.72. The characteristic length, L in the Ranumber is the height of the enclosure. The constants for several correlations are shown in the following Table (Gebhart et al., 1988).

Reference	<u>A</u>	<u>B</u>	eq
Dropkin and Somerscales (1965)	0.0673	0.3333	(2-21)
Silveston (1958)	0.0877	0.31	(2-22)
Kraichnan (1962)	0.1524	0.3333	(2-23)

Probably the most investigated enclosure containing an interior heat source is a concentric pipe system. Gebhart et al. (1988) reviewed the significant number of experimental and numerical investigations of this geometry, noting that different non-dimensional systems have been used in most studies. For correlations based on mean heat transfer rates, gap width (outer radius - inner radius) is often used as the characteristic length (L). An example of this is the following equation by Grigull and Hauf (1966).

$$Nu_{L} = \left[0.2 + 0.145 \left(\frac{L}{D_{i}} \right) \right] Gr^{0.25e^{-0.02 \left(\frac{L}{d_{i}} \right)}}$$

for $30,000 \le Gr_{L} \le 716000$ (2-24)
and $0.55 \le \frac{L}{D_{i}} \le 2.65$

where D_i is the diameter of the internal cylinder. Gap width, however, does not provide all the heat transfer information that may be desired, i.e., the conductances for the two surfaces are not obtained individually, but are lumped together. The results of many studies are presented using an equivalent conductivity, k_{eq} , which is defined as the ratio of actual heat flow to that due to conduction alone across the region. For concentric cylinders, k_{eq} based on the inside and outside surface areas are

$$(k_{eq})_i = \frac{Nu_i}{Nu_{cond}} = \frac{h_i D_i}{2k} \ln\left(\frac{D_o}{D_i}\right)$$
(2-25)

$$(k_{eq})_o = \frac{Nu_o}{Nu_{cond}} = \frac{h_o D_o}{2k} \ln\left(\frac{D_o}{D_i}\right)$$
(2-26)

where

$$Nu_{cond} = \frac{2}{\ln(D_o/D_i)}.$$
(2-27)

The total energy lost by one cylinder equals that gained by the other (i.e., eq 2-25 equals eq 2-26). The subscript *i* refers to the inner cylinder and *o* to the outer one, and Nu_{cond} is the Nusselt number for pure conduction between concentric cylinders (Gebhart et al., 1988).

Kuehn and Goldstein (1978) combined a large amount of data and obtained the following correlations for Pr = 0.7 (air)

$$Nu_{i} = \frac{2}{\ln\left\{1 + 2/\left[(0.5Ra_{D_{i}}^{1/4})^{15} + (0.12Ra_{D_{i}}^{1/3})^{15}\right]^{1/15}\right\}}$$
(2-28)

$$Nu_{o} = \frac{-2}{\ln\left\{1 - 2/\left[(Ra_{D_{o}}^{1/4})^{15} + (0.12Ra_{D_{o}}^{1/3})^{15}\right]^{1/15}\right\}}$$
(2-29)

$$\phi_b = \frac{Nu_i}{Nu_i + Nu_o} = \frac{(\overline{T_b} - T_o)}{(T_i - T_o)}$$
(2-30)

$$Nu_{conv} = \left(\frac{1}{Nu_i} + \frac{1}{Nu_o}\right)^{-1}$$
(2-31)

$$Nu_{cond} = \frac{2}{\ln(D_o/D_i)}$$
(2-32)

$$Nu = \left[(Nu_{cond})^{15} + (Nu_{conv})^{15} \right]^{1/15}$$
(2-33)

$$k_{eq} = \frac{Nu}{Nu_{cond}}$$
(2-34)

where the Nusselt numbers are averaged values for the overall heat transfer around the cylindrical surfaces, and are based on D_o . Ra_{Di} is the Rayleigh number based on D_i and Ra_{Do} is that based on D_o . The temperature difference in Ra is the difference between the inner (T_i) or outer (T_o) surface temperatures and the average fluid temperature (T_b) between the inner and outer cylinder boundary layers. T_b can be determined from ϕ_b , the average dimensionless fluid temperature between boundary layers. An iterative solution to the correlation will be required to obtain the Nusselt numbers. What is significant about this correlation is that the conductances for both surfaces can be obtained along with the mean fluid temperature.

Lunardini (1990) conducted experiments using a conduit system used at many government installations (Fig. 3). He identified four ways to evaluate the thermal resistance of the air gap, R_a given by

$$R_a = \frac{1}{2\pi r_i h},\tag{2-35}$$

from the Federal Guide Specification (1981), where the convective coefficient (*h*) assumes a constant value of 3 Btu/hr $ft^{2o}F$, or

$$R_a = \frac{\ln\left(\frac{r_{ci}}{r_{r_i}}\right)}{2\pi k_{eff}}$$
(2-36)

where

$$k_{eff} = 0.11 Ra_L^{0.29} k_{air}$$
(2-37)

obtained from Grober et al. (1961), or from his own data

$$k_{eff} = 1.463 Ra_L^{0.123} k_{air} , \qquad (2-38)$$

which includes radiation effects, or

$$k_{eff} = 0.68 Ra_L^{0.157} k_{air}, \qquad (2-39)$$

which has had the effect of radiation removed. k_{eff} is the effective conductivity of air,

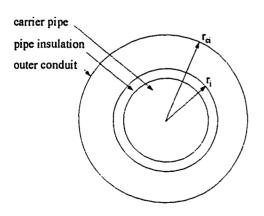


Figure 3. Cross section of a concentric pipe conduit.

 k_{air} is the conductivity of air, r_{ci} is the inner radius of the outer conduit, and r_i is the outer radius of the insulation. The air gap thickness is used as the characteristic length in the Rayleigh number.

Boyd (1981) combined data from

concentric circular cylinders with data from

hexagonal cylinders inside a circular cylinder. He found that the Nu should be based on gap width while Ra should be based on the radius of the internal cylinder. This approach indirectly includes the aspect ratio used by other investigators (e.g., eq 2-24).

Powe and Warrington (1983) and Warrington and Powe (1985) investigated cylinders and spheres mounted in spherical or cubical enclosures. Although their experimental correlations are probably not appropriate to this study, some of their observations are of interest. They used a parameter, L/r_s , as a multiplier to the *Ra* number in correlations similar to those above, where *L* is the gap width, and r_s is the hypothetical spherical radius based on volume. This parameter is used to account for the observation that, as the interior body becomes smaller, the natural convection phenomena can be divided into three regimes. These regimes are: (1) infinite atmosphere solution for large L/r_s , (2) enclosure solutions for moderate L/r_s , and (3) conduction solutions for small L/r_s . Additionally, Warrington and Powe (1985) determined that for nonisothermal internal bodies, analyses using the average body temperature compared well with results from isothermal internal bodies.

Ghaddar (1992) conducted a numerical study of a uniformly heated (constant heat flux) cylinder in an enclosure as shown in Fig. 4. Note that the pipe is not centered vertically, but is in the lower portion of the enclosure. He used a constant wall temperature of 59°F, and varied the heat flux into the cylinder; a mean cylinder temperature was used to calculate the Rayleigh and Nusselt numbers. His numerical

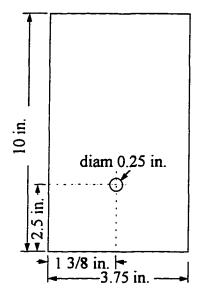


Figure 4. Rectangular enclosure configuration of Ghaddar (1992).

model did not include radiation. The heat transfer correlations developed were:

$$Nu_L = 1.8 \ln \left(Ra_L \left(\frac{L}{r_p} \right) \right)^{0.207}$$
(2-40)

$$Nu_b = 0.604 Ra_b^{0.2083} \tag{2-41}$$

where L is the hypothetical gap width, r_p is the pipe radius, and b is the distance traveled by the boundary layer on the pipe (1/2 the pipe circumference). The hypothetical gap width is defined as the difference between the effective radius of a cylinder that has a

circumference equal to the perimeter of the noncircular enclosure and the radius of the interior pipe. Equation 2-40 becomes eq 2-42 after inserting Ghaddar's test conditions into the L/r_p term:

$$Nu_L = 3.756 Ra_L^{0.207}.$$
 (2-42)

Stewart and Verhulst (1985) presented the results of experiments in which two heated cylinders were in a cooled rectangular enclosure. Figure 5 shows their apparatus, which was filled with distilled water; measurements were made with both cylinders heated and when heated individually. They investigated a number of different characteristic lengths and found that the best correlation (least deviation from the data) occurred when the hypothetical gap width L was used. (When more than one pipe was used to calculate

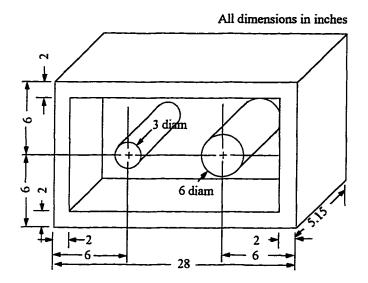


Figure 5. Experimental configuration of Stewart and Verhulst (1985).

L, an effective radius that included both interior pipes was used.)

For both cylinders heated:

 $Nu_L = 0.420 Ra_L^{0.219}$ (*L* includes both cylinders), (2-43)

$$Nu_L = 1.534 Ra_L^{0.169}$$
 (L using large cylinder only), (2-44)

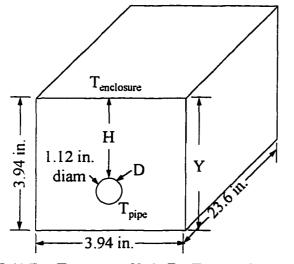
$$Nu_L = 0.231 Ra_L^{0.243}$$
 (L using small cylinder only). (2-45)

For only one cylinder heated:

$$Nu_{L} = 0.256 Ra_{L}^{0.266}$$
 (large cylinder heated, *L* using large (2-46)
cylinder only)
$$Nu_{L} = 0.027 Ra_{L}^{0.371}$$
 (small cylinder heated, *L* using small (2-47)
cylinder only)

Babus'Haq et al. (1986) used interferometric flow visualization to determine the optimized location of a single warm pipe in a cool square enclosure with the anticipated

15

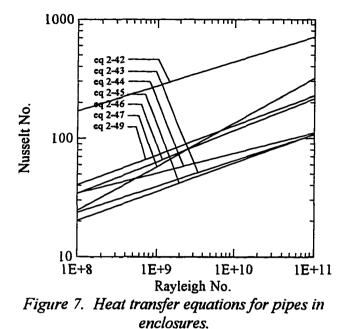

application being district heating distribution lines, i.e., utilidors. Figure 6 is a diagram of their experimental apparatus. Although Babus'Haq et al. did not develop any heat transfer correlations per se, their data for heat loss from a centered pipe to the enclosure walls can be represented by

$$Nu_G = 0.34Gr_D^{0.25} \tag{2-48}$$

where the characteristics lengths G and D are the average vertical gap width, $\binom{(Y-D)}{2}$, and the pipe diameter respectively. This equation can be converted to the following form using their test conditions:

$$Nu_L = 0.4048 Ra_L^{0.25}.$$
 (2-49)

Additionally, they found that the optimal location for a heated pipe in a cooled square enclosure is in the upper part of the enclosure, specifically at E = -0.73, where E is the eccentricity given by



 $55.4^{\circ}~F \leq T_{enclosure} \leq 62.6^{\circ}~F ~~T_{pipe} \leq 104^{\circ}~F$

Figure 6. Experimental apparatus of Babus'Haq et al. (1986).

$$E = \left[\frac{2H}{Y-D}\right] - 1 \qquad (2-50)$$

and H is the distance from the top of the pipe to the inside of the enclosure lid. Y is the interior vertical dimension and D is the pipe diameter. Figure 7 compares the heat transfer correlations based on the hypothetical gap width L. All of

the equations yield Nusselt numbers within 20% of each other with the exception of Ghaddar's (eq 2-42), which is about 260% higher than the mean value of the other equations at a Rayleigh number of 10^8 . This could be due to the pipe location (*E* = 0.52 using eq 2-50), which agrees with the findings of Babus'Haq et al.

(1986) that more heat transfer occurs from hot pipes when placed lower in the enclosure (positive values of E).

Currently accepted practice by Federal agencies, for the thermal analysis of the utilidors shown generically in Fig. 8, is presented by Smith et al. (1979) and by the US Army (1987). Several assumptions are made: 1) the air temperature inside the utilidor is uniform and 2) interior air film resistance can be ignored. The procedure consists of determining the thermal resistances by assuming that the rectangular enclosures can be treated as circular by using a radius calculated from the mean perimeters (P_L and P_E in Fig. 8). If the interior pipe(s) are insulated the conduction resistance of the air gap is neglected. If the interior pipe(s) are uninsulated, then the resistance may be based on both the air film and pipe material. For multiple pipes with differing temperatures, all of the resistances and pipe temperatures are included to obtain an interior air temperature.

It is also possible to determine an effective conductivity of the air that includes all the film resistances, radiation, and natural convection effects. These procedures depend upon estimates of rectangular enclosures as circular and neglecting any effects of eccentricity of the pipe location. These approaches are illustrated as follows: Using the square enclosure in Fig. 8, the heat loss per unit length is

$$Q = \frac{\Delta T}{\sum R}$$
(2-51)

where ΔT is the difference between T_0 and T_3 , and ΣR is the sum of the resistances. With the assumption that the square enclosure can be treated as a cylinder of equal perimeter, the resistances are determined as

$$R_{pipe} = \frac{t_{pipe}}{k_{pipe}P_{pipe} \cdot 1}$$
(2-52)

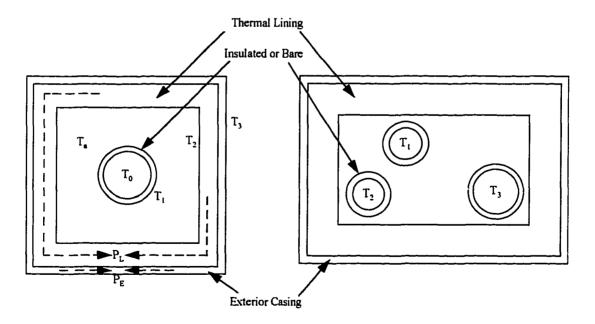


Figure 8. Generic utilidors for current utilidor thermal analysis procedure, US Army (1987).

$$R_{pipe insulation} = \frac{t_{insulation}}{k_{insulation} P_{insulation} \cdot 1}$$
(2-53)

$$R_{air\ gap} = \frac{\ln \frac{D_o}{D_i}}{2\pi k_{eff} \cdot 1}, \text{ or } R_{air\ gap} = \frac{\ln \frac{D_o}{D_i}}{2\pi k_{eff} + A_2 h_r \ln \frac{D_o}{D_i}}$$
(2-54)

where

$$h_{r} = \frac{\sigma(T_{1}^{2} + T_{2}^{2})(T_{1} + T_{2})}{\left[\frac{1}{\varepsilon_{2}} + \frac{A_{1}}{A_{2}}\left(\frac{1}{\varepsilon_{1}} - 1\right)\right]}$$
(2-55)

$$R_{thermal\ lining} = \frac{t_{lining}}{k_{lining}P_L \cdot 1}$$
(2-56)

$$R_{exterior\ casing} = \frac{t_{casing}}{k_{casing}P_E \cdot 1}$$
(2-57)

where k is the conductivity, P is the mean perimeter, D_o is the outside diameter, D_i is the inside diameter (of the air gap), and t is the thickness of the casing or lining. The effective thermal conductivity, k_{eff} ; can be determined using any of the relationships in Table 1. In most cases an iterative solution will be required to determine the air temperature upon which to base thermal properties, if unknown, and the temperature of surface 2. In general, the air properties can be evaluated at the average interior surface temperatures. If the effective conductivity relation includes radiation, then h_r is zero in eq 2-54. For those correlations that do not include radiation, appropriate emissivities can be selected for use in eq 2-55; for those that do, information on the emissivities values used to developed the correlations is limited; the available data is noted in Table 1.

Number	k _{eff}	Source	Comments
1	$\frac{k_{eff}}{0.11Ra_L^{0.29}k_{air}}$	eq 2-37	Based on cylinder, radiation included. ¹
2	$1.463 Ra_L^{0.153} k_{air}$	eq 2-38	Based on cylinder, radiation included. ²
3	$0.34Gr_{D_i}^{0.25} k_{air} \frac{D_o \ln \frac{D_o}{D_i}}{(y - D_i)}$	eq 2-48	Based on rectangular enclosure, y is enclosure height, includes radiation. ³
4	$0.40Ra_L^{0.2}k_{air}$	Holman (1976)	Based on cylinder, radiation not included.
5	$0.68Ra_L^{0.157}k_{air}$	eq 2-39	Based on cylinder, radiation not included.
6	k _{eq} k _{air}	eq 2-28 - 2-34	Based on cylinder, radiation not included.
7	$L81\left(Ra_{L}\frac{L}{r_{p}}\right)^{0.207}k_{air}\frac{D_{o}-D_{i}}{D_{o}\ln\left(\frac{D_{o}}{D_{i}}\right)}$	eq 2-40	Based on rectangular enclosure, radiation not included.
8	$0.23 \left(\frac{T_0 - T_a}{r_p}\right)^{0.25} \frac{1}{\ln\left(\frac{D_o}{D_i}\right)}$	Smith et al. (1979)	Based on cylinder, pipe is uninsulated, T_a is the air temperature, radiation included ⁴ . k_{eff} is zero if the pipes are insulated.

Table 1. Methods of determining the effective thermal conductivity of an air gap.

¹ Emissivities unknown; the correlation is based on work reported in German, circa 1930.

 2 Emissivities were assumed to be 0.5 and 0.9 for the insulated pipe surface (two test conditions), 0.9 for the enclosure.

³ Materials were copper pipe and polymerized methyl methacrylate for the enclosure; no surface treatment or level of copper pipe oxidation was reported.

⁴ This is another "older" correlation; the underlying references were not given, but may be attributed to McAdams (see Grober et al. 1961, pp. 320-321).

A number of investigators (Phetteplace et al. [1986], Kennedy et al. [1988] and

Zirjacks and Hwang [1983]) measured temperatures and heat flows in and around

utilidors. These measurements were generally extensions of modeling efforts and analysis

was limited to confirmation of the conduction models used to predict soil temperatures around the utilidors.

3. NUMERICAL MODEL

A numerical model using a finite-element approach was developed to solve the momentum, energy, and continuity equations in two dimensions for the steady-state case. The following assumptions were made:

1) The fluid (air) is Newtonian and incompressible within the Boussinesq approximation (fluid properties are constant, except for density, which is a function of temperature and only affects the buoyancy term).

2) Fluid flow is laminar.

3) Thermal conductivity is constant for each fluid/material.

Following Gartling (1977) and Jaluria and Torrance (1986), the momentum equations are, as stated earlier,

$$\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right) + \frac{1}{\rho}\frac{\partial p}{\partial x} - v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = 0$$
(3-1)

$$\left(\nu\frac{\partial\nu}{\partial y}+u\frac{\partial\nu}{\partial x}\right)-g\beta\left(T-T_{ref}\right)+\frac{1}{\rho}\frac{\partial\rho}{\partial y}-\nu\left(\frac{\partial^{2}\nu}{\partial x^{2}}+\frac{\partial^{2}\nu}{\partial y^{2}}\right)=0$$
(3-2)

where y is in the vertical direction and x is in the horizontal direction. The continuity equation is

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{3-3}$$

and the energy equation is

$$C_{\nu}\left(\nu\frac{\partial T}{\partial y} + u\frac{\partial T}{\partial x}\right) - k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) - Q = 0$$
(3-4)

which becomes for a solid region without convection:

$$-k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) - Q = 0.$$
(3-5)

The dependent variables p, T, u, and v for the general finite element e are approximated by

$$u^{e} = \sum_{i=1}^{n} N_{i}(x, y) u_{i}$$
(3-6)

$$v^{e} = \sum_{i=1}^{n} N_{i}(x, y) v_{i}$$
(3-7)

$$p^{e} = \sum_{i=1}^{n} N_{i}^{p}(x, y) p_{i}$$
(3-8)

$$T^{e} = \sum_{i=1}^{n} N_{i}(x, y) T_{i} .$$
(3-9)

Applying the Galerkin criterion to element e of an $m+1^{th}$ iterate of the governing equations, the continuity equation becomes (using eq 3-6 and 3-7 and dV = 1 dxdy)

$$\int_{A^{e}} N_{j}^{p} \frac{\partial N_{i}}{\partial x} dx dy u_{i} + \int_{A^{e}} N_{j}^{p} \frac{\partial N_{i}}{\partial y} dx dy v_{i} = 0$$
(3-10)

where N_j is the transpose of N_i . By letting the notation $\langle a, b \rangle$ represent the area integral of ab, eq 3-10 becomes

$$\left\langle N_{j}^{p}, \frac{\partial N_{i}}{\partial x} \right\rangle u_{i} + \left\langle N_{j}^{p}, \frac{\partial N_{i}}{\partial y} \right\rangle v_{i} = 0.$$
(3-11)

A simplification is made at this point in that there are no boundaries with pressure

differences. Using integration by parts on ∂^2 terms in eq 3-1, 3-2, and 3-4, yields

$$\begin{bmatrix} \left\langle u_i^m, N_j \frac{\partial N_i}{\partial x} \right\rangle + 2\upsilon \left\langle \frac{\partial N_i}{\partial x}, \frac{\partial N_j}{\partial x} \right\rangle + \upsilon \left\langle \frac{\partial N_i}{\partial y}, \frac{\partial N_j}{\partial y} \right\rangle + \left\langle v_i^m, N_j \frac{\partial N_i}{\partial y} \right\rangle \end{bmatrix} u_i + \upsilon \left\langle \frac{\partial N_i}{\partial x}, \frac{\partial N_j}{\partial y} \right\rangle + \frac{1}{\rho} \left\langle \frac{\partial N_i}{\partial x}, N_j^p \right\rangle p_i - \upsilon \int_{s} N_i \nabla u^e \bullet \bar{n} ds = 0$$
(3-12)

$$\begin{bmatrix} \left\langle u_{i}^{m}, N_{j} \frac{\partial N_{i}}{\partial x} \right\rangle + 2\upsilon \left\langle \frac{\partial N_{i}}{\partial x}, \frac{\partial N_{j}}{\partial x} \right\rangle + \upsilon \left\langle \frac{\partial N_{i}}{\partial y}, \frac{\partial N_{j}}{\partial y} \right\rangle + \left\langle v_{i}^{m}, N_{j} \frac{\partial N_{i}}{\partial y} \right\rangle \end{bmatrix} v_{i}$$
$$+ \upsilon \left\langle \frac{\partial N_{i}}{\partial y}, \frac{\partial N_{j}}{\partial x} \right\rangle u_{i} + \frac{1}{\rho} \left\langle \frac{\partial N_{i}}{\partial y}, N_{j}^{p} \right\rangle p_{i} - \upsilon \int_{s} N_{i} \nabla v^{e} \bullet \overline{n} ds \qquad (3-13)$$
$$- g\beta \left\langle N_{i}, N_{j} \right\rangle T_{i} + g\beta T_{ref} \left\langle N_{i} \right\rangle = 0$$

$$\begin{bmatrix} C_{\nu} \left\langle v_{i}^{m}, N_{j} \frac{\partial N_{i}}{\partial y} \right\rangle + C_{\nu} \left\langle u_{i}^{m}, N_{j} \frac{\partial N_{i}}{\partial x} \right\rangle + k \left\langle \frac{\partial N_{j}}{\partial x}, \frac{\partial N_{i}}{\partial x} \right\rangle \\ + k \left\langle \frac{\partial N_{j}}{\partial y}, \frac{\partial N_{i}}{\partial y} \right\rangle \end{bmatrix} T_{i} - \left\langle N_{j}, Q \right\rangle - \int_{s} N_{i} k \, \bar{n} \bullet \, \nabla T^{e} ds = 0.$$
(3-14)

Since there will be no forced convection, the velocity at the boundary surface s in eq 3-12 and 3-13 will be zero, thus these two terms drop out. In the global formulation, the equations representing velocity boundary nodes will be set to zero and no other velocity boundary condition will be allowed.

The buoyancy, β , is defined by

$$\beta = \frac{1}{\rho} \left(\frac{\rho_{ref} - \rho}{T - T_{ref}} \right)$$
(3-15)

where T_{ref} is a reference temperature where buoyancy has no effect. Gebhart et al. (1988) suggested using the minimum boundary surface temperature for the reference temperature and that suggestion was followed.

The
$$\langle N_j, Q \rangle$$
 and the $\int_s N_i k \bar{n} \bullet \nabla T^e ds$ terms of eq 3-14 represent heat generated
within an element and the thermal boundary conditions. For this application it is assumed
that there is no heat generated within an element, thus this term is eliminated. Expanding
the remaining term to account for specified heat flux and convective boundaries yields

$$\int_{s} N_{i} k \overline{n} \bullet \nabla T^{e} ds = \int_{s} h N_{j} T_{\infty} ds - \int_{s} h N_{j} N_{i} T_{i} ds - \int_{s} \phi N_{j} ds \qquad (3-16)$$

where h and T_{∞} are the convective heat transfer coefficient and associated temperature and ϕ is the heat flux for the boundaries s.

Summarizing the integrals required for eqs 3-11, 3-12, 3-13, 3-14, and 3-16, the following list is obtained.

$$\left\langle N_{j}^{p}, \frac{\partial N_{i}}{\partial x} \right\rangle$$
(3-17)

$$\left\langle N_{j}^{p}, \frac{\partial N_{i}}{\partial y} \right\rangle$$
(3-18)

$$\left\langle \frac{\partial N_i}{\partial x}, N_j^p \right\rangle \tag{3-19}$$

$$\left\langle \frac{\partial N_i}{\partial y}, N_j^p \right\rangle \tag{3-20}$$

$$\left\langle u_i^m, N_j, \frac{\partial N_i}{\partial x} \right\rangle$$
 (3-21)

$$\left\langle v_{i}^{m}, N_{j}, \frac{\partial N_{i}}{\partial y} \right\rangle$$
 (3-22)

$$\left\langle \frac{\partial N_j}{\partial y}, \frac{\partial N_i}{\partial y} \right\rangle \tag{3-23}$$

$$\left\langle \frac{\partial N_j}{\partial x}, \frac{\partial N_i}{\partial x} \right\rangle \tag{3-24}$$

$$\left\langle \frac{\partial N_i}{\partial x}, \frac{\partial N_j}{\partial y} \right\rangle \tag{3-25}$$

$$\left\langle \frac{\partial N_i}{\partial y}, \frac{\partial N_j}{\partial x} \right\rangle$$
(3-26)

$$\langle N_i, N_j \rangle$$
 (3-27)

$$\langle N_i \rangle$$
 (3-28)

$$\int_{S} N_i \, ds \tag{3-29}$$

$$\int_{S} N_i N_j ds \tag{3-30}$$

Interpolation Functions

In the above equations, the matrix N represents interpolation functions for an arbitrary element. N^{p} are the interpolation functions one order lower than N. Any twodimensional shape element can be used for this set of equations so long as C^o continuity is maintained (Huebner and Thornton, 1982). Considering that most of the utilidor components are rectangular in shape (walls and insulation), it would be convenient to use rectangular elements. However, the presence of pipes requires, at a minimum, triangular

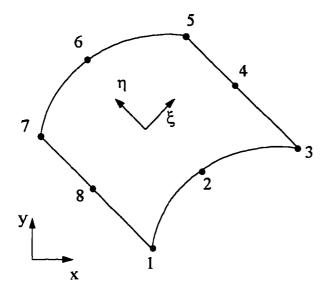


Figure 9. A curved isoparametric quadrilateral element.

elements to model these curved surfaces. Many triangular elements will be required to model the pipes and meld the curved areas to rectangular areas. By using a rectangular element, which can have curved sides, fewer elements will be required.

Ergatoudis et al. (1968) presented the interpolation functions for curved isoparametric, quadrilateral

elements. An element of this shape is shown in Fig. 9; the element is defined by eight nodes, three on each side. The interpolation functions are:

for nodes 1, 3, 5, and 7:

$$N_i(\xi,\eta) = \frac{1}{4}(1+\xi\xi_i)(1+\eta\eta_i)(\xi\xi_i+\eta\eta_i-1) \qquad \xi = \pm 1, \ \eta = \pm 1$$
(3-31)

for nodes 4 and 8:

$$N_i(\xi,\eta) = \frac{1}{2}(1+\xi^2)(1+\eta\eta_i) \qquad \xi = 0, \ \eta = \pm 1 \qquad (3-32)$$

and for nodes 2 and 6:

$$N_i(\xi,\eta) = \frac{1}{2}(1+\xi\xi_i)(1-\eta^2) \qquad \xi = \pm 1, \ \eta = 0 \qquad (3-33)$$

The variables ξ and η are local variables; for an individual element they are related to the global x_i and y_i coordinates by

$$x = \sum_{i=1}^{8} N_i(\xi, \eta) x_i$$
 (3-34)

$$y = \sum_{i=1}^{8} N_i(\xi, \eta) y_i$$
 (3-35)

The derivatives $\frac{\partial N}{\partial \xi}$ and $\frac{\partial N}{\partial \eta}$ can be found directly; however, these derivatives

must be related to ξ and η in order to integrate eq 3-17 through 3-30. This is done using the chain rule of differentiation and the Jacobian matrix *J*; the following relationship is obtained (Huebner and Thornton, 1982).

$$\begin{bmatrix} \frac{\partial N_i}{\partial x} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial y} \frac{\partial N_i}{\partial \eta} \end{bmatrix} = [J]^{-1}, i = 1, 2, ... 8$$
(3-36)

Using the relationship $dxdy = \det J d\xi d\eta$, the above area integrals can all be written in terms of ξ and η and integrated from -1 to 1 using Gaussian quadrature.

The interpolation functions (N^{P}) must be linear (one order lower than N). The same element as in Fig. 9 is used; however, the sides are assumed to be straight and the element is defined only by nodes 1, 3, 5, and 7. The interpolation functions are

$$N_i^p = \frac{1}{4} (1 + \xi \xi_i) (1 + \eta \eta_i)$$
(3-37)

where ξ and η take on their nodal values (Fig. 9 and eq 3-31 - 3-33). The evaluation of

the derivatives and integrals follow the same procedure as above.

The surface integral, eq 3-29, must also be expressed in terms of the parametric variables ξ_i and η_i , and the integration carried out over the boundary specified. In order to simplify programming it is assumed here that the boundary *s* is made up of at least one full side of an element; thus from Fig. 9, side 1 is described by nodes 1, 2, and 3; side two is nodes 3, 4, 5; side three is nodes 5, 6, 7; and side 4 is nodes 7, 8, and 1. In this development no other combinations are allowed; however, more then one side per element can be specified as a boundary segment. For each side either ξ and η will be a constant and *ds* is

$$ds = \frac{1}{2}L_e d\eta \text{ or } ds = \frac{1}{2}L_e d\xi$$
(3-38)

where L_e is the length of the side. The integral is now evaluated from -1 to 1, using Gaussian quadrature. The integration of eq 3-30 is carried out similarly, except that the term $N_i N_j$ is a two-dimensional matrix.

Solution Procedure

The computer model FECOME (Finite Element COMbined Equations, Appendix A) solves eqs 3-11 - 3-14 simultaneously for u, v, T, and p and uses either direct substitution or the Newton-Raphson iteration procedure. The solution procedure requires the use of a previous solution (the *old solution*) or an initial estimate, which is then used to obtain a *new solution*. Both the direct substitution and the Newton-Raphson method can utilize a relaxation procedure between iterations, which consists of

determining the weighted average of the old and new solutions. The equation is

new solution =
$$\theta$$
(old solution) + (1- θ)(new solution) (3-39)

where the weighting or relaxation factor (θ) varies between 0.005 and 0.25 depending on the maximum amount of change from the previous solution and the solution method. This range was determined by trial and error in an effort to improve the convergence rate. No formal optimization approach was attempted, and these values are not necessarily the best values. High values caused oscillations in the direct substitution solutions to high Rayleigh number problems (greater than 10^5) for the vertical enclosure problem, and once large oscillations begin the procedure will not converge to a solution.

The procedure was considered to have converged to the steady-state solution when the largest change in each variable between successive solutions was less than 0.01%. Changes this small or smaller were found to produce no significant difference in the heat flux calculations through the enclosure sides.

The global matrix is 3n+p by 3n+p for the fluid elements plus n by n for the elements that are a solid material, where n is the number of nodes and p is the number of nodes associated with the pressure formulation (four per element). This calculation of matrix size is reduced by the number of solid-fluid boundary nodes (which were counted twice in the above analysis). There are 28 degrees of freedom for each element specified as a fluid and 8 degrees of freedom for those specified as a solid.

The global matrix for the direct substitution method has the form

$$\begin{bmatrix} AA & 0 & 0 & 0 \\ 0 & A3 & A8 & A4 \\ A1 & A9 & A7 & A5 \\ 0 & A4^{T} & A5^{T} & 0 \end{bmatrix} \begin{bmatrix} T \\ u \\ v \\ p \end{bmatrix} = \begin{bmatrix} R2 \\ 0 \\ R1 \\ 0 \end{bmatrix}$$
(3-40)

where

$$AA = k \left[\left\langle \frac{\partial N_i}{\partial x}, \frac{\partial N_j}{\partial x} \right\rangle + \left\langle \frac{\partial N_i}{\partial y}, \frac{\partial N_j}{\partial y} \right\rangle \right] + C_v \left[\left\langle u_i^m, N_j, \frac{\partial N_i}{\partial x} \right\rangle + \left\langle v_i^m, N_j, \frac{\partial N_i}{\partial y} \right\rangle \right] + h \int_s N_i N_j ds$$
(3-41)

$$A3 = \left\langle u_i^m, N_j, \frac{\partial N_i}{\partial x} \right\rangle + 2\upsilon \left\langle \frac{\partial N_i}{\partial x}, \frac{\partial N_j}{\partial x} \right\rangle + \upsilon \left\langle \frac{\partial N_i}{\partial y}, \frac{\partial N_j}{\partial y} \right\rangle + \left\langle v_i^m, N_j, \frac{\partial N_i}{\partial y} \right\rangle$$
(3-42)

$$A7 = \left\langle u_i^m, N_j, \frac{\partial N_i}{\partial x} \right\rangle + \upsilon \left\langle \frac{\partial N_i}{\partial x}, \frac{\partial N_j}{\partial x} \right\rangle + 2\upsilon \left\langle \frac{\partial N_i}{\partial y}, \frac{\partial N_j}{\partial y} \right\rangle + \left\langle v_i^m, N_j, \frac{\partial N_i}{\partial y} \right\rangle$$
(3-43)

$$A4 = -\frac{1}{\rho} \left\langle \frac{\partial N_i}{\partial x}, N_j^p \right\rangle$$
(3-44)

$$A5 = -\frac{1}{\rho} \left\langle \frac{\partial N_i}{\partial y}, N_j^p \right\rangle$$
(3-45)

$$A4^{T} = -\frac{1}{\rho} \left\langle N_{j}^{p}, \frac{\partial N_{i}}{\partial x} \right\rangle$$
(3-46)

$$A5^{T} = -\frac{1}{\rho} \left\langle N_{j}^{p}, \frac{\partial N_{i}}{\partial y} \right\rangle$$
(3-47)

$$A8 = \upsilon \left\langle \frac{\partial N_i}{\partial y}, \frac{\partial N_j}{\partial x} \right\rangle$$
(3-48)

$$A9 = \upsilon \left\langle \frac{\partial N_i}{\partial x}, \frac{\partial N_j}{\partial y} \right\rangle$$
(3-49)

$$R1 = g\beta T_{ref} \left\langle N_i \right\rangle \tag{3-50}$$

$$A1 = g\beta \left\langle N_i, N_j \right\rangle \tag{3-51}$$

$$R2 = \int_{S} h N_{j} T_{\infty} ds - \int_{S} \phi N_{j} ds.$$
(3-52)

The Newton-Raphson method, in its general one-dimensional form, is

$$\omega = \omega_0 - \frac{f(\omega_0)}{f'(\omega_0)} \tag{3-53}$$

where ω is the root of the function f (Hornbeck, 1975). In multidimensional form, following Gartling (1987)

new solution = old solution –
$$J^{-1}$$
 (old solution) R (old solution) (3-54)

where J^{-l} is the inverse of the Jacobian matrix of eq 3-11 - 3-14 and R is the vector of the residuals obtained by substituting the *old solution* into eq 3-11 - 3-14. The Jacobian matrix is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

$$J = \begin{bmatrix} \frac{\partial R_T}{\partial T} & \frac{\partial R_T}{\partial u} & \frac{\partial R_T}{\partial v} & 0\\ 0 & \frac{\partial R_u}{\partial u} & \frac{\partial R_u}{\partial v} & \frac{\partial R_u}{\partial p} \\ \frac{\partial R_v}{\partial T} & \frac{\partial R_v}{\partial u} & \frac{\partial R_v}{\partial v} & \frac{\partial R_v}{\partial p} \\ 0 & \frac{\partial R_p}{\partial u} & \frac{\partial R_p}{\partial v} & 0 \end{bmatrix}$$
(3-55)

where R_T , R_u , R_v , and R_p are eq 3-11 - 3-14, respectively.

The material properties of the fluid (air) can be held constant or reevaluated between iterations using an average temperature obtained using a number of schemes. FECOME averages the temperatures of the zero velocity nodes (the inside surfaces of the enclosure) and calculates new air properties based on this average temperature between each iteration.

Radiation

Large temperature differences can sometimes exist between utilidor steam lines and the utilidor walls. Temperature differences between surfaces cause heat flow via radiation in addition to natural convection. The heat flow due to radiation (radiosity) between surfaces is described by this equation:

$$\sum_{j=1}^{n} \left(\frac{\delta_{kj}}{\varepsilon_j} - F_{k-j} \frac{1 - \varepsilon_j}{\varepsilon_j} \right) \frac{Q_j}{a_j} = \sum_{j=1}^{n} F_{k-j} \sigma \left(T_k^4 - T_j^4 \right)$$
(3-56)

where

.

 σ is Boltzmann's constant,

_ . _

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T is the absolute temperature of surface k or j,

 F_{k-j} is the view factor of surface k to j,

 Q_j is the radiation heat flux into or out of surface j,

 a_i is the area of surface j,

 ε_i is the emissivity of surface *j*, and

 δ_{kj} is equal to 1 if k = j and is equal to 0 if $k \neq j$.

The calculation of the radiation heat flux requires the calculation of the radiation view factors between each radiation surface. There are a number of procedures to make these calculations (Siegel and Howell, 1992). Emery et al. (1991) made accuracy comparisons between several numerical approaches. However, none of the procedures are trivial for complex geometries. For the two-dimensional analysis of utilidors, the surfaces should be considered infinite in depth. By using the finite element boundaries as the edges of

Figure 10. View factor analysis of F_{1.6}.

infinite strips, a special case of two-dimensional geometry is obtained.

A relatively simple method can be used to obtain the view factors for the case of infinite strips; known as Hottel's crossed-string method (Siegel and Howell, 1992), the procedure is developed as follows. To obtain the view factor between surfaces 1 and 6 in Fig. 10, first form the triangle *abc* with the infinite strips 1, 2, and 3. The view factors between these three surfaces can be written as:

$$F_{1-2} + F_{1-3} = 1 \tag{3-57}$$

$$F_{2-1} + F_{2-3} = 1 \tag{3-58}$$

$$F_{3-1} + F_{3-2} = 1. \tag{3-59}$$

Multiply each equation by the area of its surface:

$$a_1 F_{1-2} + a_1 F_{1-3} = a_1 \tag{3-60}$$

$$a_2 F_{2-1} + a_2 F_{2-3} = a_2 \tag{3-61}$$

$$a_3F_{3-1} + a_3F_{3-2} = a_3. \tag{3-62}$$

Substituting the reciprocity relations,

$$a_2 F_{2-1} = a_1 F_{1-2} \tag{3-63}$$

$$a_3 F_{3-1} = a_1 F_{1-3} \tag{3-64}$$

and solving the three equations for F_{1-2} yields

$$F_{1-2} = \frac{a_1 + a_2 - a_3}{2a_1}.$$
(3-65)

Similarly for the triangle *adb*:

$$F_{1-4} = \frac{a_1 + a_4 - a_5}{2a_1}.$$
(3-66)

Noting that

$$F_{1-2} + F_{1-4} + F_{1-6} = 1 \tag{3-67}$$

and solving eq 3-65 - 3-67 for F_{1-6} yields

$$F_{1-6} = \frac{a_2 + a_5 - a_3 - a_4}{2a_1}.$$
(3-68)

This procedure is implemented in the program FEVIEW (Appendix B); also included is a routine to check for the shadowing of surfaces. A surface is considered shadowed if a line connecting the midpoints of two surfaces is intersected by another radiation surface. No effort is made to distinguish partially shadowed elments, and as long as the midpoints can be connected without interference, the view factor is calculated using Hottel's method. The view factors are obtained prior to running FECOME and appended to the FECOME grid data file. A FECOME subroutine uses equation 3-56, nodal temperatures and the view factors, to obtain the radiation heat flux into or out of each of the radiation surfaces.

The radiation heat fluxes are recalculated at each iteration in FECOME using the average nodal temperatures for each surface specified as a radiation boundary. In the global formulation, the radiation flux is handled in the same manner as a boundary heat flux (ϕ) in eq 3-16.

Model Verification

Verification of the model consisted of comparing the model output to known (analytical) or benchmark numerical solutions. Three types of verifications were done to confirm that the model was producing accurate results; these are described in the following paragraphs. Several computer runs were made to verify the energy equation alone and the implementation of the thermal boundary conditions. These runs also served to test the matrix assembly and inversion routines. First, a square grid was constructed in which all the elements were specified as a solid material and two opposite sides were set at different temperatures, with the other two sides having unspecified boundary conditions (this corresponds to a zero heat flux boundary). An exact solution to this simple one-dimensional problem was obtained. A second test in this phase was a two-dimensional conduction problem; here two adjacent sides were set at a constant temperature boundary and as a thermal convection boundary, with the remaining sides having a zero heat flux. The results of this test, compared with the analytical solution given by Özisik (1980), are shown in Fig. 11; good agreement was achieved. A third set of tests was run to confirm

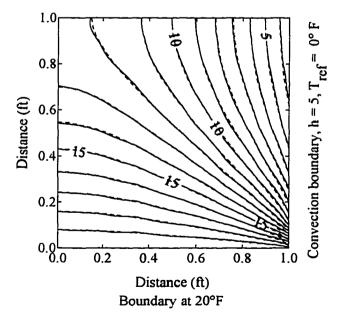
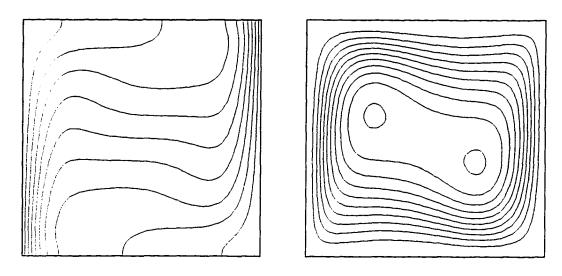
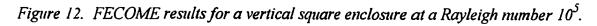


Figure 11. Two-dimensional conduction problem; dashed lines are the analytical solution, solid lines are the numerical solution.


the correct implementation of the heat flux boundary condition. This was done by modeling a square solid material with one side at a constant temperature, the opposite side with a specified heat flux, and the remaining sides unspecified (zero heat flux). This configuration was repeated so that all four directions were tested with both positive (out of an element) and negative (into an element) heat flows.

In order to test the solution of the momentum equations, continuity equation, and their interaction with the energy equation, a comparison with a well-documented benchmark numerical solution was done. As mentioned earlier, de Vahl Davis and Jones (1983) presented benchmark solutions for natural convection in a vertical enclosure and compared their results with other investigators. A vertical enclosure is a closed cavity in which the horizontal surfaces are insulated (zero heat flux boundaries) and the vertical sides are held at two different temperatures. His solutions were for air at Rayleigh numbers of 10^3 , 10^4 , 10^5 , and 10^6 . Table 2 compares the velocity maximums along the *x* = 0.5 and *y* = 0.5 locations. Good agreement is observed, with percent differences less than 1%. Also shown are the values submitted by Gartling (to de Vahl Davis and Jones). Gartling used a model similar to FECOME, but with a different mesh. Figure 12 shows the isotherms and streamlines for a Rayleigh number of 10^5 ; these agree well with those presented by de Vahl Davis and Jones (1983).

vertical enclosure.					
	Maximum	v Velocity	Maximum	Maximum Velocity	
	@ x =	= 0.5	(2), y =	= 0.5	
Source	y-coordinate	x-velocity	<u>x-coordinate</u>	y-velocity	
Benchmark ¹ Ra=10 ³	0.813	3.649	0.178	3.697	
Gartling ¹	0.824	3.696	0.176	3.696	
FECOME	0.825	3.640	0.175	3.697	
Benchmark $Ra = 10^4$	0.823	16.178	0.119	19.617	
Gartling	0.824	16.186	0.119	19.630	
FECOME	0.825	16.185	0.125	19.601	
Benchmark $Ra = 10^5$	0.855	34.73	0.066	68.59	
Gartling	0.854	34.74	0.068	68.63	
FECOME	0.850	34.71	0.067	68.63	
Benchmark Ra = 10^6	0.850	64.63	0.038	219.36	
Gartling	0.854	64.37	0.043	218.43	
FECOME	0.850	64.76	0.033	218.58	


Table 2.	Comparison of published velocity predictions with FECOME for a				
vertical enclosure.					

¹ from de Vahl Davis and Jones, 1983.

a. Temperature contours.

b. Stream lines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Radiation view factor calculations obtained using the computer program FEVIEW were checked by constructing a relatively simple mesh (Fig. 13) and using view factor algebra and tables of view factor equations (Siegel and Howell, 1992) to determine the view factors both manually and using FEVIEW. Results of this analysis are shown in Table 3. Good agreement was obtained.

Figure 13. Grid used for comparing view factors and radiation heat flux calculations.

Implementation of the radiation heat flux boundaries was checked by solving eq 3-56 for the heat fluxes though each of the surfaces in Fig. 13. A shell around the FECOME subroutine RADIATE was used for the input/output requirements. The manual solution (the solution of the simultaneous equations was obtained using a spread sheet) is compared with the computer solution in Table 4; good agreement can be seen.

Table 3. Comparison of view factor calculations.						
Surface 1 to						
Surface:	FEVIEW	Algebraic				
1	0.000000					
2	0.000000	0.000000				
3	0.000000	0.000000				
4	0.000000	0.000000				
5	0.000000	0.000000				
6	0.000000	0.000000				
7	0.000000	0.000000				
8	0.000000	0.000000				
9	0.004405	0.004404				
10	0.012544	0.012548				
11	0.018935	0.018936				
12	0.023108	0.023104				
13	0.015429	0.015427				
14	0.021588	0.021589				
15	0.030854	0.030855				
16	0.044708	0.044707				
17	0.064495	0.064496				
18	0.089417	0.089417				
19	0.112962	0.112962				
20	0.123106	0.123106				
21	0.019586	0.019586				
22	0.036895	0.036893				
23	0.089073	0.089075				
	0.292893	0.292893				
sum	0.999998	0.999998				

Table 4. Comparison of					
radiat	ion heat fl	uxes.			
	Heat Flu	<u>x, Btu/hr</u>			
Surface no.	Algebraic	Numerical			
1	49.33	49.33			
2	64.58	64.58			
3	85.71	85.71			
4	11 2 .47	112.47			
5	-112.47	-112.47			
6	-85.71	-85.71			
7	-64.58	-64.58			
8	-49.33	-49.33			
9	-98.66	-98.66			
10	-111.42	-111.42			
11	-111.42	-111.42			
12	-99 .32	-99.32			
13	-49.33	-49.33			
14	-64.58	-64.58			
15	-85.71	-85.71			
16	-112.47	-112.47			
17	112.47	112.47			
18	85.71	85.71			
19	64.58	64.58			
20	49.33	49.33			
21	9 9 .32	99.32			
22	111.42	111.42			
23	111.42	111.42			
24	99.32	99.32			
sum	0.66	0.66			

41

-

4. EXPERIMENTAL PROCEDURE

Experimental Apparatuses

Two 10-ft-long experimental apparatuses were constructed to simulate sections of typical rectangular utilidors. The first had an internal 1-ft \times 1-ft square cross section, the second was 2 ft \times 4 ft. Figure 14 is the square cross section apparatus with its lid off, with a 4-inch nominal diameter pipe installed. Heat transfer panels surrounded the sides

Figure 14. 1-ft × 1-ft experimental apparatus with lid off.

of the enclosures and a coolant was pumped through them. The interior pipe(s) was filled with high temperature hydraulic oil and heated by an internal, 10-ftlong, 1-kilowatt heating element. The interior of the enclosure was lined with plywood and expanded polystyrene (EPS) insulation; the conductivity of two samples of the EPS was measured according to ASTM standards using a Rapid K apparatus. The results of these tests are plotted in Fig. 15.

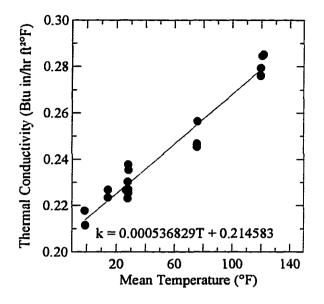


Figure 15. Thermal conductivity of expanded polystyrene.

Removable lid

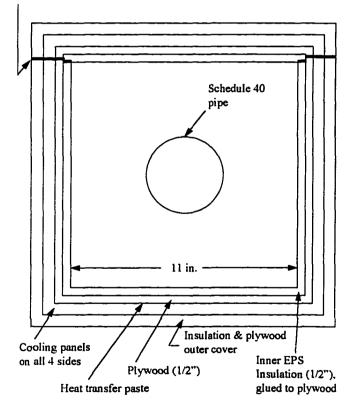


Figure 16. Schematic cross section of the 1-ft × 1-ft apparatus.

Thermocouples were placed on either side of the EPS when installed in the apparatus. The exterior of the apparatus was insulated and covered with plywood. Figure 16 is a cross section of the design.

Initial tests were done in CRREL's Frost Effects Research Facility (FERF), which supplied a glycol solution as cold as -22°F to the apparatus. During these initial tests, it was determined that significantly colder coolant temperatures would be required to obtain temperatures typical of Alaska design conditions (-65°F for outdoor air temperature) and to obtain near-freezing temperatures within the enclosure. Unfortunately, CRREL had at this

43

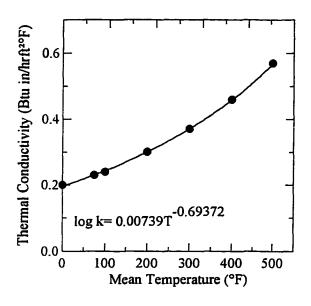


Figure 17. Thermal conductivity of fiberglass pipe insulation.

time recently done away with its extreme low temperature capability for environmental reasons.

Several years after these initial experiments, CRREL regained its extreme low temperature brine capability and the apparatus was moved and replumbed to take advantage of a coolant as low as -70°F. Prior to resuming experiments, the

interior surface-mounted thermocouples were replaced with 30-gage surface-mount thermocouples in order to measure the surface temperatures more accurately.

Once experiments were resumed, further experiments were conducted using the uninsulated 4-inch pipe. When these were completed, experiments continued with various pipe treatments and configurations. Figure 17 is a plot of the thermal conductivity of the fiberglass pipe insulation used. Table 5 summarizes the test apparatus configurations.

The second apparatus was constructed similarly; however, no plywood separated

Enclosure size 1 ft × 1 ft	<u>Nominal pipe diam.</u> 4 inch 2	<u>Pipe treatment</u> uninsulated, painted ¹ , insulated uninsulated, insulated
2 ft × 4 ft	2 8, 4	insulated
¹ The uninsulate	d pipe was painted with	a low emissivity paint (Rust-Oleum Aluminum No. 7715).

Table 5. Test apparatus configurations.

the cooling panels from the insulation, and a metal interior frame was used to help support the cooling panels. Figure 18 shows the $2-ft \times 4-ft$ apparatus prior to installing the lid. Figure 19 shows a cross section with dimensions and pipe locations.

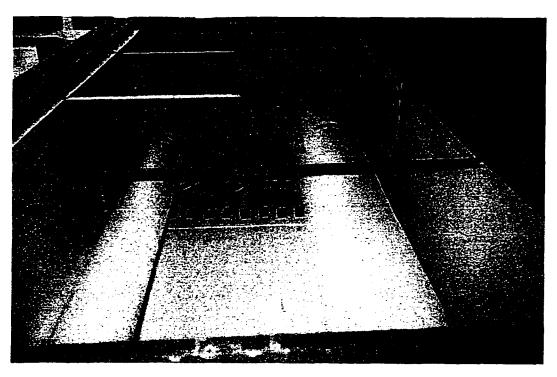


Figure 18. 2-ft \times 4-ft enclosure, with 4-inch and 8-inch insulated pipes.

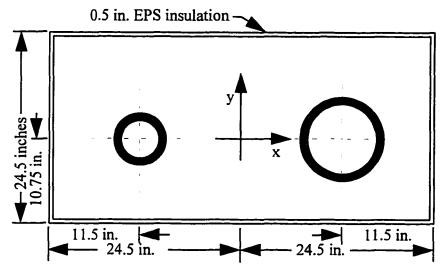


Figure 19. Schematic diagram of the 2-ft \times 4-ft enclosure.

Data Acquisition System

Two different data acquisition systems were used, one for the 1-ft \times 1-ft enclosure and another for the 2-ft \times 4-ft enclosure; type T thermocouples were used to measure temperature, and a power meter was used to measure the power supplied to the pipes.

For the 1-ft x 1-ft enclosure, a personal computer (PC)-based data acquisition system was assembled using an 80286 processor-based computer in conjunction with Industrial Computer Source data acquisition boards. These boards (four total) were mounted in a separate enclosure and were accessed using an 8-channel multiplexor board mounted in one of the PC slots. Figure 20 shows a schematic diagram of the data acquisition system; note that an electronic ice point bath was included in the thermocouple circuit for temperature compensation. The ice point bath was added because, during calibration of the system, it was found that the on-board electronic temperature compensators were not adequately accurate. A data acquisition and display

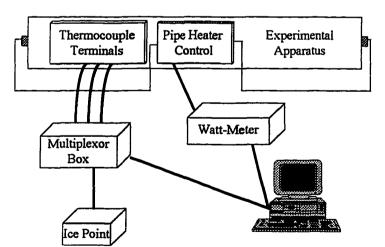


Figure 20. Data acquisition system for use with the $1-ft \times 1-ft$ square enclosure.

program was written to display and store the thermocouple data and measurements of the energy input to the pipe heater(s). This data was stored in ASCII format on floppy disks, for later analysis. Thermocouple locations for the 1-ft \times 1-ft enclosure are in Table 6.

Channel no.	X coord ¹ (in.)	Y coord ¹ (in.)	Description of location
0			3 o'clock on pipe
l			12 o'clock on pipe
2			6 o'clock on pipe
3			9 o'clock on pipe
4	1.5	-3.5	in air at 4.5'
5	6.5	-3.5	in air at 4.5'
6	11.5	-3.5	in air at 4.5'
7	1.5	3.5	in air at 4.5'
8	6.5	3.5	in air at 4.5'
9	11.5	3.5	in air at 4.5'
10			cold coolant inlet
11			right return
12			left return
13			lid return
14			bottom return
15			12 o'clock on pipe at 2'
16	-6.0	11.0	outside insulation on left side
17	-5.5	11.0	inside insulation on left side
18	6.0	2.0	outside insulation on right side
19	5.5	2.0	inside insulation on right side
20	6.0	5.0	outside insulation on right side
21	5.5	5.0	inside insulation on right side
22	6.0	8.0	outside insulation on right side
23	5.5	8.0	inside insulation on right side
24	6.0	11.0	outside insulation on right side
25	5.5	11.0	inside insulation on right side
26	6.0	6.5	outside insulation on right side at 6'
27 ³	5.5	6.5	inside insulation on right side at 6'
28	-6.0	6.5	outside insulation on left side at 6'
29 ³	-5.5	6.5	inside insulation on left side at 6'
30	0.0	0.0	outside insulation on bottom at 6'
31 ³	0.0	0.5	inside insulation on bottom at 6'
32	0.0	0.0	outside insulation on bottom
33	0.0	0.5	inside insulation on bottom
34	3.0	0.0	outside insulation on bottom
35	3.0	0.5	inside insulation on bottom
36	5.5	0.0	outside insulation on bottom
37	5.5	0.5	inside insulation on bottom
38	-3.0	0.0	outside insulation on bottom
39	-3.0	0.5	inside insulation on bottom
40	-5.5	0.0	outside insulation on bottom
+1	-5.5	0.5	inside insulation on bottom

Table 6. Locations of thermocouples in the 1-ft \times 1-ft enclosure.

. _ . _

- ----

Table 6. (Con't.)					
Channel #	X coord ¹ (in)	Y coord ¹ (in)	Description of location ²		
42	-6.0	2.0	outside insulation on left side		
43	-5.5	2.0	inside insulation on left side		
44	-6.0	5.0	outside insulation on left side		
45	-5.5	5.0	inside insulation on left side		
46	-6.0	8.0	outside insulation on left side		
47	-5.5	8.0	inside insulation on left side		
48	0.0	12.0	outside insulation on lid		
49	0.0	11.5	inside insulation on lid		
50	3.0	12.0	outside insulation on lid		
51	3.0	11.5	inside insulation on lid		
52	5.5	12.0	outside insulation on lid		
53	5.5	11.5	inside insulation on lid		
54	-3.0	12.0	outside insulation on lid		
55	-3.0	11.5	inside insulation on lid		
56	-5.5	12.0	outside insulation on lid		
57	-5.5	11.5	inside insulation on lid		
58	0.0	12.0	outside insulation on lid at 6'		
59 ³	0.0	11.5	inside insulation on lid at 6'		
60			inside insulation at tail		
61			outside insulation at tail		
62			inside insulation at head		
63			outside insulation at head		
¹ The x-origin	is at the center o	f the enclosure	the v-origin is at the outside of the		

¹ The x-origin is at the center of the enclosure, the y-origin is at the outside of the bottom insulation panel.

 2 Distances are measured from the end which had inlets and outlets for the cooling panels; this end is designated the "head"; the opposite end, the "tail." Unless otherwise stated the thermocouples were located 5 ft from the head.

³ These thermocouples were moved to 3, 9, 6, and 12 o'clock positions, respectively, on the pipe insulation when it was installed; they were not attached to the 2-inch bare pipe.

The data acquisition system for the 2-ft \times 4-ft apparatus was based on a

Campbell Scientific CR-10 system with four multiplexor expansion boards. One

hundred and twenty two thermocouples were installed. Table 7 contains the x and y

coordinates of thermocouples, these were placed at 66 inches from the coolant

supply end, except where noted. The total interior length was 106 inches.

	X coord. (in)	Y coord. (in)	<u>T. C. No.</u>	X coord. (in)	Y coord. (in)
	ottom insulation		61	24.5	-3
1	-23.5	-10.25	62	24.5	0
2	-21	-10.25	63	24.5	3
3	-18	-10.25	64	24.5	6
4	-15	-10.25	65	24.5	9
5	-12	-10.25	66	24.5	12.25
6	-9	-10.25		pper insulation par	nel
7	-6	-10.25	67	22.5	13
8	-3	-10.25	68	21	13
9	0	-10.25	69	18	13
10	3	-10.25	70	15	13
11	6	-10.25	71	12	13
12	9	-10.25	72	9	13
13	12	-10.25	73	6	13
14	15	-10.25	74	3	13
15	18	-10.25	75	0	13
16	21	-10.25	76	-3	13
17	23.5	-10.25	77	-6	13
	bottom insulation		78	-9	13
18	-23.5	-10.75	79	-12	13
19	-21	-10.75	80	-15	13
20	-18	-10.75	81	-18	13
21	-15	-10.75	82	-21	13
22	-12	-10.75	83	-22.5	13
23	-9	-10.75		upper insulation pa	
23	-6	-10.75	84	22.5	13.5
25	-3	-10.75	85	21	13.5
26	0	-10.75	86	18	13.5
20 27	3	-10.75	80 87	15	
27	6		88	12	13.5
28 29	9	-10.75			13.5
		-10.75	89	9	13.5
30	12	-10.75	90	6	13.5
31	15	-10.75	91	3	13.5
32	18	-10.75	92	0	13.5
33	21	-10.75	93	-3	13.5
34	23.5	-10.75	94	-6	13.5
	ft insulation pane		95	-9	13.5
35	-24	-9.25	96	-12	13.5
36	-24	-6	97	-15	13.5
37	-24	-3	98	-18	13.5
38	-24	0	99	-21	13.5
39	-24	3	100	-22.5	13.5
40	-24	6	101	12 o'clock on rig	
41	-24	9	102	3 o'clock on right	t pipe (8 inch)
42	-24	12.25	103	6 o'clock on right	
Outside of l	eft insulation pan	el	104	9 o'clock, right pi	
43	-24.5	-9.25	105	12 o'clock, right	
					· •

Table 7. Locations of thermocouples in the 2-ft \times 4-ft enclosure.

Table 7 (con't)						
<u>T. C. No.</u>	X coord. (in)	Y coord. (in)	T. C. No.	X coord. (in)	Y coord. (in)	
44	-24.5	-6	106	3 o'clock, right	pipe insulation	
45	-24.5	-3	107	6 o'clock, right	pipe insulation	
46	-24.5	0	108	9 o'clock, right	pipe insulation	
47	-24.5	3	109	12 o'clock on l	eft pipe (4 inch)	
48	-24.5	6	110	9 o'clock on let	ft pipe (4 inch)	
49	-24.5	9	111	6 o'clock on let	ft pipe (4 inch)	
50	-24.5	12.25	112	3 o'clock on let	ft pipe (4 inch)	
Inside of right insulation panel		113	12 o'clock, left pipe insulation			
51	24	-9.5	114	9 o'clock, left p	ipe insulation	
52	24	-6	115	6 o'clock, left p	ipe insulation	
53	24	-3	116	3 o'clock, left p	ipe insulation	
54	24	0	In air, 89 ii	nches from end		
55	24	3	117	-18	-l	
56	24	6	118	-6	-l	
57	24	9	119	6.5	-1	
58	24	12.25	120	20	-1	
Outside of	right insulation p	anel	121	coolant supply		
59	24.5	-9.5	122	coolant return		
60	24.5	-6				

Procedure

Once the apparatus was connected to a coolant supply and electrical power source, several adjustments were possible. The coolant temperature could be adjusted, the coolant flow through each panel could be controlled, and the energy input to the pipe heater(s) could also be adjusted. Experiments consisted of obtaining a range of temperature conditions for both the interior walls of the apparatus and pipe(s) at steady state conditions. Steady state was determined to be obtained once the temperatures along the top of the enclosure were changing by a small amount and in an apparently random fashion. Once a steady state condition was reached, three sets of data from all of the thermocouples and the watt-meter were stored on an approximately hourly basis. Thus for each condition, three sets of data were collected. Temperature data from the 2ft × 4-ft enclosure was collected continuously on an hourly basis.

5. RESULTS

General

Data obtained from the physical and numerical experiments are summarized in Appendixes C and D, respectively. Physical data are based on the average of three hourly readings. Temperatures, Nusselt number, Rayleigh number, heat flow though the interior wall, and the average thermal conductance at the interior enclosure surface are presented. Heat flow through each side, assuming 1 ft of enclosure length, was calculated by using the temperatures around the insulation and averaging the heat flows calculated at each thermocouple location (physical experiments) or the temperatures at each node location (numerical). These values were averaged to obtain a heat flow value for each side (top, bottom, left, and right) and an overall average value. Nusselt and Rayleigh numbers were then calculated using the surface conductances obtained using the average interior surface temperature for material properties and the temperature difference between the average pipe and average insulation surface temperatures, for each side and for the overall average.

The following equations developed from data in Raznjevic (1976) were used for calculating material properties.

Viscosity of air (ft/s^2) :

$$\upsilon = 1.27573E - 04 + 6.1411E - 07T_{AVG}.$$
(5-1)

Density of air (lbm/ft³):

$$\rho_{air} = 8.42416E - 02 - 1.93863E - 04T_{AVG} + 4.16195E - 07T_{AVG}^2.$$
(5-2)

Specific heat of air (Btu/ft³°F):

$$C_v = 0.241 \rho_{air}$$
. (5-3)

Coefficient of thermal expansion (1/°F):

$$\beta = 2.177E - 03 - 4.74865E - 06T_{AVG} + 9.42743E - 09T_{AVG}^{2}$$

-1.04328E - 11T_{AVG}^{3}. (5-4)

Thermal conductivities (Btu/fthr°F):

$$k_{air} = 0.01309 + 2.14766E - 05T_{AVG}$$
(5-5)

$$k_{EPS} = (0.214583 + 5.36829E - 04T_{AVG})/12$$
(5-6)

$$k_{pipe insul} = (0.196851e^{0.00211687T_{AVG}})/12.$$
 (5-7)

 T_{AVG} is the average temperature of the two pertinent surfaces, i.e., for air the average is that of the inside EPS surface and the pipe or pipe insulation surface temperatures.

The hypothetical gap width was used as the length parameter in the Nusselt and Rayleigh number calculations; these values and other enclosure dimensions are in Table 8.

Table 9 shows the physical configurations and radiation emissivity values for the numerical experiments. Three sets of emissivity values were used; two different values for EPS were chosen to represent new (0.6) and old (0.9) insulation. For the pipe and pipe insulation the two values were for painted (0.5) and unpainted (0.9).

Experimental

The complete set of temperature and power measurements are reported in Richmond et al. (1997a). The average Nusselt and Rayleigh numbers obtained for the physical experiments conducted with the 1-ft × 1-ft enclosure are plotted in Figs. 21 - 25. Vertical scatter is due to a temperature effect on the surface conductance; a similar effect is seen in the numerical data, shown in the next section. In Fig. 21, the 1991 data result in slightly higher Nusselt numbers. Some of this difference is due to the temperature effect on the conductance, but some may also be due to the larger thermocouples used to measure surface temperatures. The effect of painting the pipe with the aluminum paint, with a subsequent lower emissivity, is clearly seen, resulting in lower Nusselt numbers compared to the unpainted pipe. Figure 22 shows similar scatter with apparently one significant outlier, which occurred in the data obtained on 28 September 1996 (see Appendix C). By plotting the calculated heat flux data versus the difference between the average interior wall temperature and the average pipe temperature, it was found that a number of data points did not agree with a general linear trend of the data. This was

		Outside radius of	Effective radius of	
Configuration	Pipe description	pipe/insulation	enclosure	Effective gap
I	4 inch, bare	0.18750 ft	0.583568 ft ¹	0.396068 ft
2	4 inch insulated	0.27083	0.583568	0.312738
3	2 inch bare	0.09896	0.583568	0.484608
+	2 inch insulated	0.18229	0.583568	0.401278
5	4 inch insulated ²	0.35416	0.755456 ³	0.401296
6	2 inch insulated	0.18229	1.2201874	1.037897
7	2 and 2 inch insulated	0.364583	1.220187 ⁴	0.855605
8	4 and 8 inch insulated	0.713542 ⁶	1.856808 ^{5,}	1.143266 ⁶
1 l-ft × l-ft enc	$\frac{1}{2}$ losure $\frac{2}{2}$ inches of instant	sulation 3 1.27-ft ×	1.27-ft enclosure	
⁴ 2-ft × 2-ft enc	losure 5^{5} 2-ft × 4-ft enc	losure ⁶ 0.442708	3 and 1.4140, if only 8-i	n. pipe heated.

Table 8. Enclosure dimensions and effective gap widths.

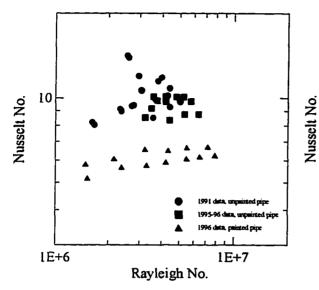

Enclosure outside	Number of	Pipe	Pipe insulation	Emiss	sivity values
dimensions	pipes	diameter(s)	thickness	pipe ¹	insulation
1 ft × 1 ft	1	4.5 inches	0.0 inches	0.9	0.9
	1	4.5	0.0	0.9	0.6
	1	4.5	0.0	0.5	0.9
	1	4.5	0.0	No	Radiation
	1	4.5	1.0	0.9	0.9
	I	4.5	1.0	0.9	0.6
	1	4.5	1.0	0.5	0.9
	I	2.375	0.0	0.9	0.9
	1	2.375	0.0	0.9	0.6
	1	2.375	0.0	0.5	0.9
	1	2.375	1.0	0. 9	0.9
	1	2.375	1.0	0.9	0.6
	1	2.375	1.0	0.5	0.9
	1	2.375	1.0	No	Radiation
1.27 ft × 1.27 ft	1	4.5	2.0	0.9	0.9
2 ft × 2 ft	1	2.375	1.0	0.9	0.9
	2	2.375, 2.375	1.0, 1.0	0.9	0.9
2 ft × 4 ft	2	4.5, 8.625	1.0, 1.0	0.9	0.9
lan mine in an Intion					

Table 9. Configurations for the numerical experiments.

¹or pipe insulation

eventually traced to events involving the low temperature coolant supply and the fact that the low temperature chiller was being run manually. In these cases the coolant became too warm, before an operator was able to get the chiller back on line. This was not observed in the thermocouple data being monitored; while it appeared that steady conditions had been reached, apparently temperatures were still changing slowly.

Figure 22 contains the data for the 2-inch uninsulated pipe, two outliers are observed. Figure 23 contains the data for the 2-inch insulated pipe; two outliers are in this plot although they can not easily be discerned. Those data determined to be outliers are indicated in Appendix C and were not used in further analysis or comparisons.

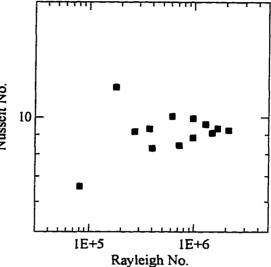


Figure 21. Nusselt and Rayleigh number plot for the 4-inch pipe, in the 1-ft × 1-ft enclosure (experimental data).

Figure 22. Nusselt and Rayleigh number plot for the insulated, 4-inch pipe in the *l-ft* × *l-ft* enclosure (experimental data).

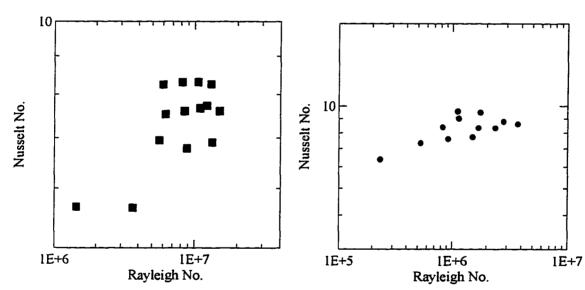


Figure 23. Nusselt and Rayleigh number plot for the 2-inch pipe in the 1-ft × 1-ft enclosure (experimental data).

Figure 24. Nusselt and Rayleigh number plot for the 2-inch insulated pipe in the 1-ft × 1-ft enclosure (experimental data).

Experimental data obtained for the 2-ft \times 4-ft enclosure is somewhat limited. Time constraints resulted in only one pipe configuration, and limited temperature combinations. Steady state temperatures took longer to achieve (compared to the 1-ft \times 1-ft enclosure), and even then may have been influenced by the room temperature, which fluctuated over a \pm 5°F temperature range. Some low temperature tests were attempted with only the 8-in. pipe heated; however, the pipe heater was not able to hold the desired temperature (at or above 235°F) for all desired tests. Figure 25 shows the Nusselt and Rayleigh number plots. Gap width was determined by using an effective radius of the heated pipe(s); the values are in Table 8. The interior temperature range for this data is from about 3°F to 80°F. This almost spans the range of interest for most utilidor designs, even though a rather narrow range of Rayleigh numbers were obtained.

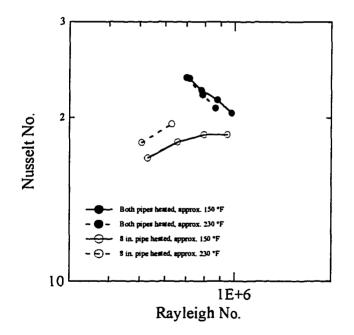


Figure 25. Nusselt and Rayleigh number plots for the 2-ft × 4-ft enclosure (experimental data).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There is significant difference in the curve shapes between the two-pipe heating conditions. This may be due to more stratification of the air in the bottom of the enclosure combined with a larger temperature difference compared to the single heated pipe configuration; this affects the heat conductance (h) in the Nusselt number. Comparing Nusselt numbers for the bottom surfaces (Appendix C), it can be seen that it has a greater change for two heated pipes compared to the single heated pipe. This observation also explains the curved shape of the Nu - Ra number data obtained with numerical data discussed in the next section.

Numerical

The finite-element computer program FECOME, described earlier, was used to obtain additional heat transfer data from numerical experiments. The objective of the numerical experiments was to extend the database of enclosure configurations and boundary conditions, and to make comparisons with the physical experiments. The numerical experiments allowed calculations to be made without radiation boundaries and with different combinations of emissivity values.

Figure 26 shows one of the meshes used for the uninsulated 4-in. pipe in the 1-ft \times 1-ft enclosure. It has the same internal dimensions as the experimental apparatus, including the 0.5-in. layer of EPS insulation enclosing the cavity of air. Temperatures around the outside of the insulation were held constant and the surface representing the outer diameter of the pipe was held at a series of temperatures. Increasing Rayleigh

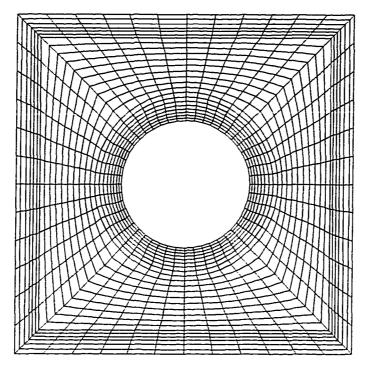


Figure 26. Mesh for the 1-ft × 1-ft enclosure with a 4-inch pipe (3,552 nodes, 1,152 elements, 10,848 d.o.f.).

number values were obtained by decreasing the outside boundary temperatures in 5- or 10-degree increments until FECOME was no longer able to converge to a solution. A small temperature change in boundary conditions, and the use of a previous solution as an initial solution estimate, aided the model in converging to a solution. Towards the end of this study it was found that often FECOME converged to an oscillatory solution, which may actually occur in steady solutions. The temperatures were generally within or close to the convergence criteria, while the maximum velocity and pressure changes were small (2 - 3 %). The solutions reported in Appendix D, which were oscillating are indicated with an asterisk in the file name.

The effect of mesh density was investigated and reported in Richmond (1997b). In general, it was found that mesh density had little effect on average values, but denser meshes were required to obtain solutions at higher Rayleigh numbers. The meshes generated for all of the 1-ft square enclosure configurations are similar to Fig. 26, as is the mesh for the 1.27×1.27 enclosure. Meshes for the other configurations are shown below (Figs. 27-29). A limited number of solutions were obtained for the 2-ft \times 2-ft enclosure with two pipes but none for the 2-ft \times 4-ft enclosure. The reason for this is not clear, as these meshes are as dense as those used for the 1-ft \times 1-ft enclosures. Attempts to solve these configurations required large quantities of memory and cpu time.

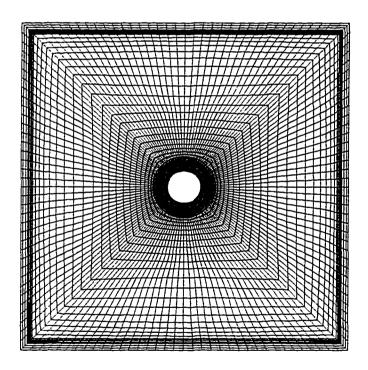


Figure 27. Mesh for 2-ft × 2-ft enclosure with a 2-inch insulated pipe (16,704 nodes, 5,972 elements, 48,862 d.o.f.).

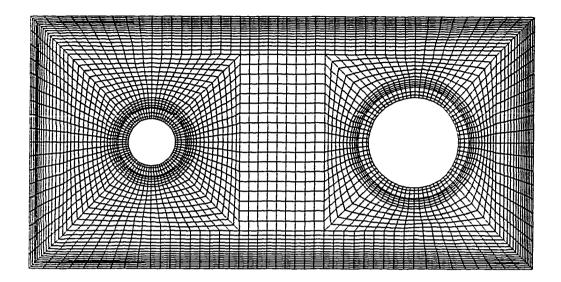


Figure 28. Mesh for 2-ft × 4-ft enclosure, 4-inch and 8-inch insulated pipes (13,338 nodes, 4,356 elements, 38,834 d.o.f.).

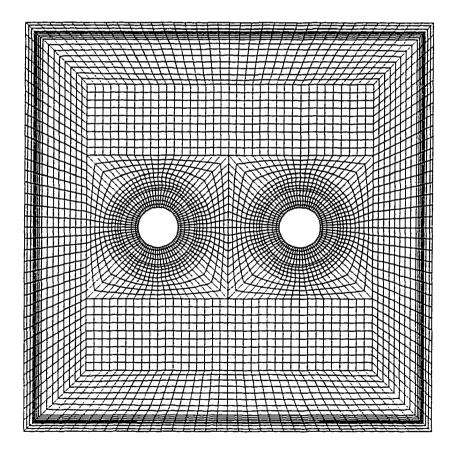


Figure 29. Mesh for the 2-ft × 2-ft enclosure with two 2-inch pipes (14,759 nodes, 4,824 elements, 42,188 d.o.f.).

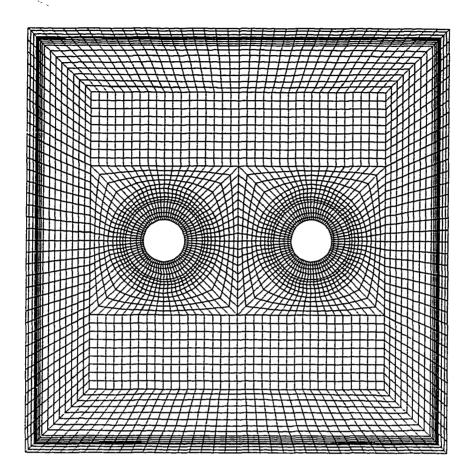


Figure 29. Mesh for the 2-ft × 2-ft enclosure with two 2-inch pipes (14,759 nodes, 4,824 elements, 42,188 d.o.f.).

to solve these configurations required large quantities of memory and cpu time. It appears that the solution methods used by FECOME may not be optimal for these largescale problems. Occasionally reports have been made in the literature in regards to difficulties in obtaining solutions to high (10^7) Rayleigh number problems, but there has been no indication of the best way to solve this problem.

Figures 30-33 display the numerical data in Ra - Nu number format; dashed lines connect data obtained with the same pipe temperatures (values of 250, 150, 100, 80, and

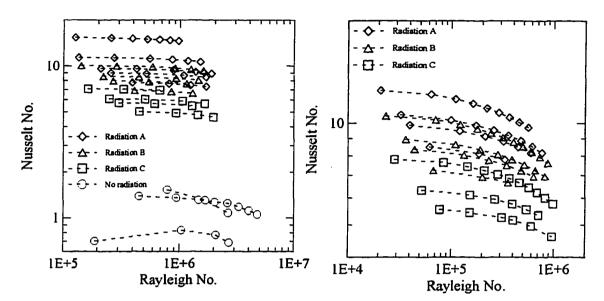
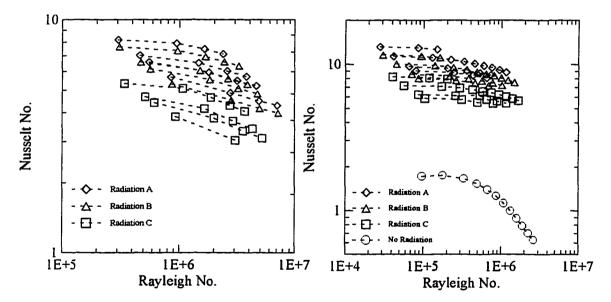



Figure 30. Nusselt and Rayleigh number for the 4-inch pipe, in the 1-ft × 1-ft enclosure (numerical data).

Figure 31. Nusselt and Rayleigh number for the insulated 4-inch pipe, in the l-ft × 1-ft enclosure (numerical data).

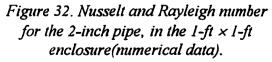


Figure 33. Nusselt and Rayleigh number for the insulated 2-inch pipe, in the l-ft × 1-ft enclosure (mumerical data).

40°F). Data are also shown for the conditions where no radiation was modeled. The three different combinations of radiation emissivities are designated as follows:

Radiation A, Pipe or insulation surface - 0.9, inside insulation surface - 0.9 Radiation B, Pipe or insulation surface - 0.9, inside insulation surface - 0.6 Radiation C, Pipe or insulation surface - 0.5, inside insulation surface - 0.9.

Significant differences are seen for each different radiation condition.

Figure 34 shows the data for the 1.27-ft \times 1.27-ft, and the 2-ft \times 2-ft enclosures. The 1.27-ft \times 1.27-ft enclosure had a 4-inch pipe with two inches of insulation. This resulted in nearly the same effective gap as the 2-inch insulated pipe in the 1-ft \times 1-ft enclosure. The meager amount of data obtained with two pipes is also shown on the plot. The effective gap in this case was obtained using the total area of the two insulated pipes to determine an effective interior radius.

Figure 34. Nusselt and Rayleigh number plots for the 1.27-ft × 1.27-ft and 2-ft × 2-ft enclosures (numerical data).

6. ANALYSIS

The Nusselt Number -Rayleigh Number plots in the previous section showed that no simple direct correlation between these parameters would be found. Comparisons of other parameters are made in this section and a new approximation for the effective conductivity of air is proposed. Comparisons of numerical solutions using this effective conductivity correlation are made with those obtained using FECOME and with experimental data from the 2-ft \times 4-ft enclosure.

Figures 35-38 compare heat flux per foot data from the numerical, and experimental

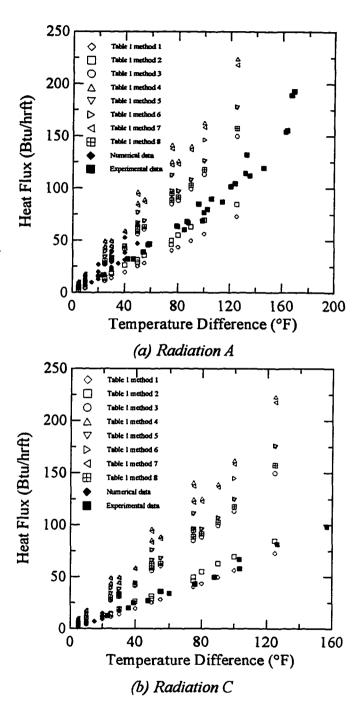


Figure 35. Heat flux from the 4-inch pipe through the $1-ft \times 1-ft$ enclosure.

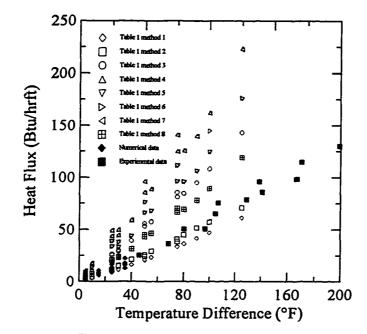


Figure 36. Heat flux from 2-inch pipe though the 1-ft $\times 1$ -ft enclosure.

results with the eight methods presented in Table 1 for four configurations of the 1-ft × 1ft enclosure. Figure 35 (a) and (b) compare the effect of emissivity values for the radiation conditions A and C. In these figures, temperature difference is the total temperature difference for the system; heat flux is through the mean perimeter of the enclosure. Using the methods in Table 1 to determine the effective conductivity of the air, the heat flux was calculated using eqs 2-51 - 2-57. Vertical scatter within a given method is related to the average interior temperatures. The numerical and experimental data compare well in all five plots. For the uninsulated pipes, the best agreement between the numerical and experimental data is with methods 1 and 2, which use eq 2-37 and 2-38 to calculate the effective conductivity. The differences caused by emissivity values can also be seen, with a slightly reduced heat flux observed for the lower emissivity (condition C). For the insulated pipes, there is general agreement between all the methods. This occurs because the thermal resistance due to the air gap becomes small relative to the resistance of the enclosure and pipe insulation.

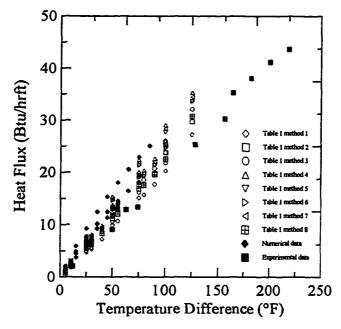


Figure 37. Heat flux from the 4-inch insulated pipe through the $1-ft \times 1-ft$ enclosure.

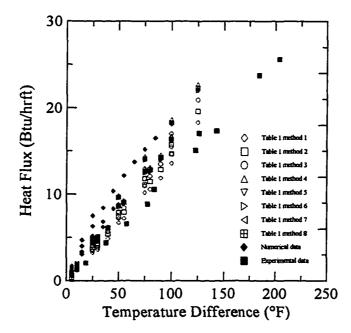


Figure 38. Heat flux from the 2-inch insulated pipe through the 1-ft \times 1-ft enclosure.

Figures 39-41 compare the ratio of effective conductivity to the thermal conductivity of air (k_{eff}/k_{air}) with the average temperature of the interior surfaces.

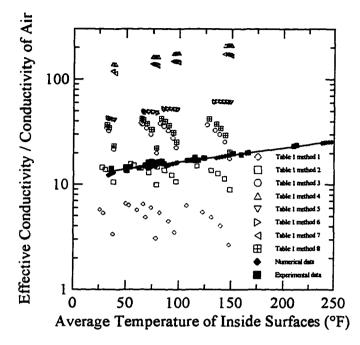


Figure 39. Ratio of effective conductivity to the conductivity of air versus the average interior temperature (4-inch pipe).

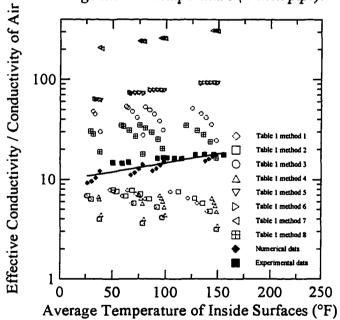


Figure 40. Ratio of effective conductivity to the conductivity of air versus the average interior temperature (2-inch pipe).

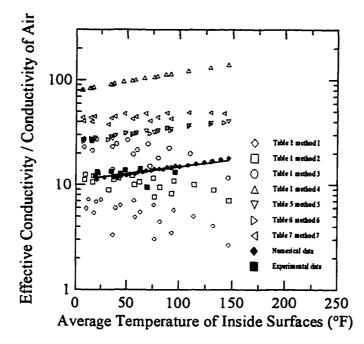


Figure 41. Ratio of effective conductivity to the conductivity of air versus the average interior temperature (4-inch insulated pipe).

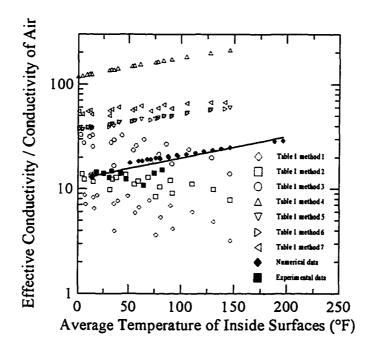


Figure 42. Ratio of effective conductivity to the conductivity of air versus the average interior temperature (2-inch insulated pipe).

The effective conductivity was calculated using eq 2-36 and the heat flow through the inside surface. Good agreement is seen between the numerical and experimental test data, while comparison of the Table 1 methods, in some cases, show effects of temperature difference. Some of the methods show the same trend as the numerical and experimental data but differ in magnitude (for example, method 4 in Fig. 42).

Curves of the following form were fit to the numerical and experimental data in Figs. 39-42, and to the additional numerical data:

$$\frac{k_{eff}}{k_{air}} = A e^{BT_{AVG}}$$
(6-1)

where T_{AVG} is the average of the interior surface temperatures and A and B are defined in Table 10. These equations are plotted in Fig. 43. Comparing eq 6-2 with eq 6-7 and 6-8 shows a reduction of 39% and 15% from radiation conditions A to B and A to C respectively.

In an attempt to correlate the coefficients in eqs 6-2 - 6-6 with a geometric parameter associated with the enclosure, it was found that a slight linear correlation exists between the radius (r) of the interior pipe (or insulation) and the parameter A (the intercept). These data and the correlation are shown in Fig. 44. Using an average value of the slopes (B) results in the following equation:

$$\frac{k_{eff}}{k_{air}} = (9.5031 + 9.9585r)e^{0.00373T_{AVG}}.$$
(6-9)

Table 10. Coefficients for eq 6-1.

Effective	Pipe or				
gap	<u>Insul. radius</u>	<u>A</u>	<u>B</u>	Eq	Description
0.396068	0.1875	12.02 6	0.003094	6-2	4-in. pipe in the 1-ft × 1-ft enclosure, numerical and experimental data, emissivities: pipe, 0.9; enclosure, 0.9.
0.312738	0.27083	10.9327	0.003057	6-3	4-in. insulated pipe in the 1-ft \times 1-ft enclosure, numerical and experimental data emissivities: pipe insulation, 0.9; enclosure, 0.9.
0.484608	0.9896	9.7324	0.004123	6-4	2-in. pipe in the 1-ft \times 1-ft enclosure, numerical and experimental data emissivities: pipe, 0.9; enclosure, 0.9.
0.401278	0.18229	12.4199	0.001706	6-5	2-in. insulated pipe in the 1-ft \times 1-ft enclosure, numerical and experimental data, emissivities: pipe insulation, 0.9; enclosure, 0.9.
0.401296	0.35416	13.2964	0.003680	6-6	4-in. pipe with 2 in. of insulation in the 1.27 -ft \times 1.27-ft enclosure, emissivities: pipe insulation, 0.9; enclosure, 0.9.
0.396068	0.1875	7.205	.0033870	6-7	4-in. pipe in the 1-ft × 1-ft enclosure, numerical and experimental data, emissivities: pipe, 0.9; enclosure, 0.6.
0.396068	0.1875	10.059	0.003424	6-8	4-in. pipe in the 1-ft \times 1-ft enclosure, numerical and experimental data, emissivities: pipe, 0.5; enclosure, 0.9.

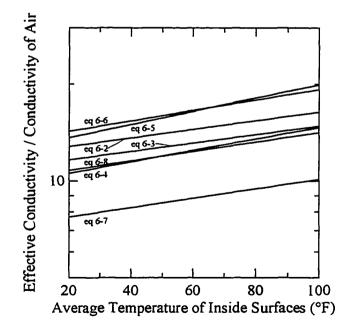


Figure 43. Effective conductivity correlations.

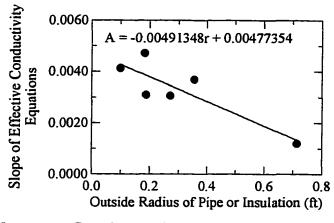


Figure 44. Correlation of pipe radius with intercepts.

Table 11 presents comparisons between eqs 6-2 - 6-5 and 6-9, at three air temperatures. The poorest comparisons are with eqs 6-3 and 6-5, which have differences of -19 and 17% at an air temperature of 100°F.

	Pipe radius (ft)					
	<u>0.1875</u>	<u>0.27083</u>	<u>0.09896</u>	<u>0.18229</u>	<u>0.35416</u>	
T_{AVG}	Eq 6-9, k_{eff}/k_{air}					
20	12.25	13.15	11.30	12.20	14.04	
60	14.22	15.26	13.12	14.16	16.30	
100	16.51	17.72	15.23	16.44	18.92	
	Equations, k_{eff}/k_{air}					
	<u>6-2</u>	<u>6-3</u>	<u>6-4</u>	<u>6-5</u>	<u>6-6</u>	
20	12.79	1.62	10.57	13.65	14.31	
60	14.48	13.13	12.46	16.47	16.5 8	
100	16.39	14.84	14.70	19.88	19.21	
			Residuals			
20	0.543	-1.523	-0.732	1.450	0.273	
60	0.257	-2.12 7	-0.655	2.314	0.284	
100	-0.124	-2.874	-0.531	3.448	0.291	
	% differences					
20	4.2	-13.1	-6.9	10.6	1.9	
60	1.8	-16.2	-5.3	14.1	1.7	
100	-0.8	-19.4	-3.6	17.3	1.5	

 Table 11. Comparison of effective conductivity correlations

The results from three numerical experiments were next compared with corresponding numerical experiments in which the conductivity of air was specified using eq 6-9 and treated as a solid (without radiation); the same FE meshes were used in both cases. Table 12 contains the parameters and description of each comparison. Figures 45-50 compare the inside surface temperatures and temperature contours for each comparison.

 Table 12. Conditions for comparison between numerical conduction and convection solutions.

	Pipe	Outside		Estimated	Keff
Name ¹	temp. (°F)	temp. (°F)	Pipe rad. (ft)	T_{AVG} (°F)	(Btu/hr ft ² °F)
sq4ib65a	150	85	0.27083	100	0.26995
sq2d35c	80	45	0.09896	60	0.18865
sq2ic65a	150	85	0.18229	100	0.25045
Names command to file some in Assortius D					

¹ Names correspond to file names in Appendix D.

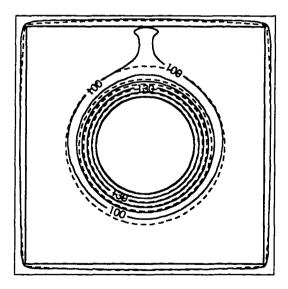


Figure 45. Temperature contours for sq4ib65a; solid lines are from the convection and radiation solution, dashed lines are from the conduction solution.

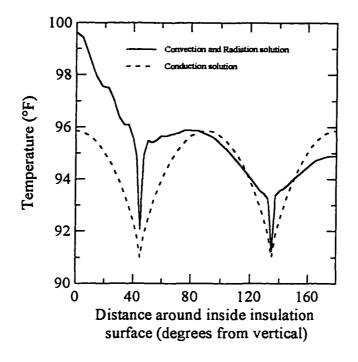


Figure 46. Inside surface temperatures for sq4ib65a.

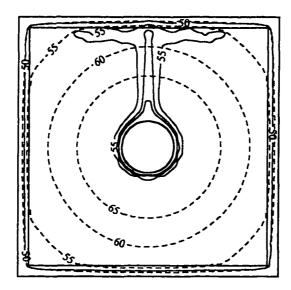


Figure 47. Temperature contours for sq2d35c; solid lines are from the convection and radiation solution, dashed lines are from the conduction solution.

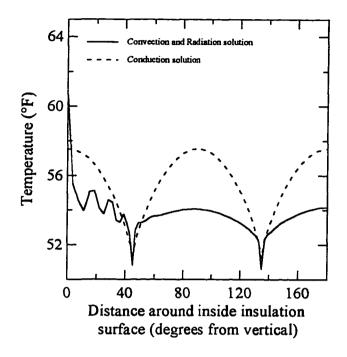


Figure 48. Inside surface temperatures for sq2d35c.

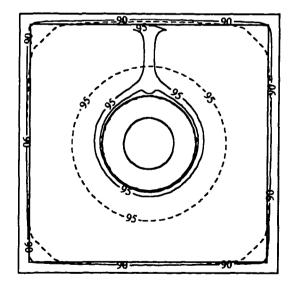


Figure 49. Temperature contours for sq2ic65a; solid lines are from the convection and radiation solution, dashed lines are from the conduction solution.

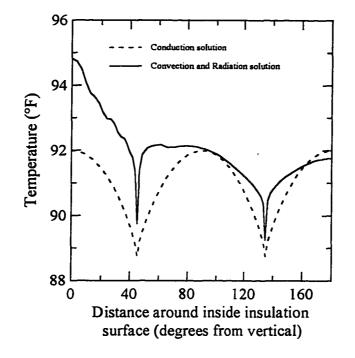


Figure 50. Temperatures around inside surface for sq2ic65a.

In the figures above, it can be seen that using an effective conductivity in lieu of the full convection solution will produce inaccurate temperature distributions in the air. In some cases, the predicted interior surfaces temperatures agree, but the quality of agreement depends on which surface (top, bottom, or sides) are being considered. Better agreement is seen when a small temperature difference exists within the "air," and when the pipe is insulated. Average inside surface temperatures for the three cases were: sq4ib65a: 95.20°F and 95.20°F, sq2d35c: 53.56°F and 55.25°F, sq2ic65a: 91.83°F and 90.82°F, for the convection versus conduction solutions, respectively. These average values agree very well, and if used in calculations of average heat loss, would give comparable values. Examining the insulation enclosure temperature contours, it can be seen that approximately midway through the insulation the temperature contours agree fairly well, but one reason for this agreement is the fixed outer boundary temperatures.

A similar approach was followed using the 2-ft \times 4-ft experimental data. Figure 51 shows the comparison between the methods from Table 1 and the experimental data obtained with both pipes heated; weighted averages of the pipe insulation surface temperatures were used (note that the Table 1 methods are for two pipes heated at the same temperature, and shouldn't be compared with the experimental data for the single heated pipe). These values are much higher than those obtained from the smaller enclosure, and the intercepts do not correlate with pipe (insulation) radius as determined

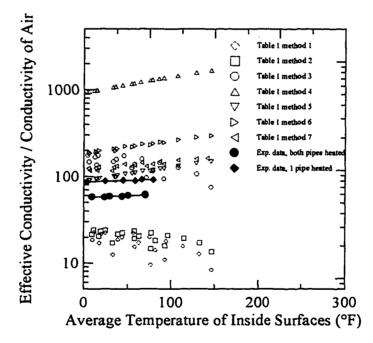


Figure 51. Ratio of effective conductivity to the conductivity of air versus the average interior temperature (2-ft \times 4-ft enclosure).

earlier. The slopes are near zero, and the intercepts (from curve fits) are 56.5836 and 86.6341 for the cases of both pipes heated and a single pipe heated, respectively.

Because no numerical convection and radiation solutions were obtained for this size enclosure, comparisons could be made only with the experimental data. Using the physical experimental data from 13 Jan 1997 and FECOME with an effective conductivity determined by two methods, comparisons were made between predicted and measured interior enclosure surface temperatures. Polynomial curve fits were made to the temperatures measured on the exterior of the 0.5-in. insulation (Fig. 52) and were applied as fixed boundary temperatures to the exterior surface nodes of the mesh shown in Fig. 53. The average pipe temperatures, 142.75°F and 146.20 °F, were used for the 4- and 8- inch pipes respectively. Two values for the effective conductivity of air were used. One value was determined by using the effective radius of the two pipes (0.71354 ft) and

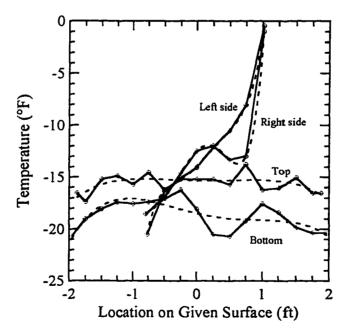


Figure 52. Polynomial curve fits to experimental boundary data.

eq 6-9, which yields a k_{eff} of 0.22863. The other value was 0.752115, determined from $k_{eff}/k_{air} = 56.584$ (the curve fit to the test data in Fig. 51), which resulted in a k_{eff} of 0.1773. The air temperature (9.39°F) from the experimental test data was used to determine k_{air} .

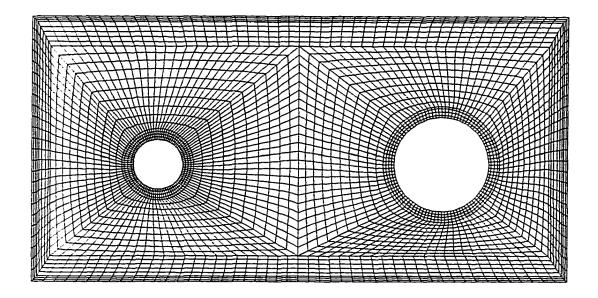


Figure 53. Finite element mesh used for conduction solution of the 2-ft × 4-ft enclosure.

Figure 54 compares the measured and calculated interior insulation surface temperatures. Fair agreement is obtained for all the surfaces except the bottom, where temperatures are much warmer then measured. It can also be observed that the temperatures are not very sensitive to changes in the effective conductivity. The case chosen was that which had the greatest temperature difference across the air gap, and this should be considered when comparing the temperatures. It could also be noted that closeness of the outside boundary conditions to the compared temperatures are ensuring reasonable results. In defense of this, in an actual utilidor design the wall thickness would be much greater, but with well-known thermal properties. Since conduction solutions can be obtained with a high degree of confidence, then temperatures in similar locations will in most cases be known fairly well.

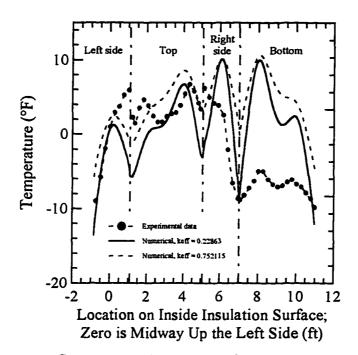


Figure 54. Comparison of experimental and numerical inside insulation surface temperatures, data from 13 Jan 1997.

7. SUMMARY

Three approaches to the thermal analysis of utilidors were investigated: the traditional or currently accepted practice of one-dimensional analysis, numerical analysis with modeling of convection and radiation, and numerical conduction analysis using an effective conductivity to account for convection and radiation effects. Each method has limitations and advantages.

The one-dimensional analysis did not produce good results when uninsulated pipes were modeled; only some correlations can account for multiple pipes, off-center locations, or other two-dimensional design possibilities. However, the method is easy to use, and good agreement with overall heat losses were observed with insulated pipes.

Numerical modeling with convection and radiation was demonstrated, producing good comparisons of heat loss with the experimental data; however, large geometries and/or large temperature differences across the air gap were difficult to model. The inclusion of radiation is required, and effects of surface emissivity values can be observed. Numerical data were obtained only for relatively small utilidors, the primary limitation being related to computational memory requirements and the matrix solution methods. Future improvements in computational methods and storage hardware may make this analysis method practical.

Numerical conduction analysis using an effective conductivity produced reasonable approximations to temperature distributions on inside surfaces, the method was easy to use, and the solutions were all obtained on a personal computer. Twodimensional effects can be differentiated, but the information in regards to temperature distribution within the air gap is inaccurate. The method seems to be most accurate for small temperature differences across the air gap and is relatively insensitive to minor changes in the effective conductivity value.

.

8. CONCLUSIONS AND RECOMMENDATIONS

Average heat losses can be calculated reliably for insulated pipes using onedimensional analysis, and these results will compare well with full (convection and radiation) numerical solutions (of average heat loss).

A full numerical solution will provide the best two-dimensional analysis. However, the current model may not be able to converge to a solution given reasonable computer resources. Ignoring radiation in a numerical convection model of utilidors will have a significant effect on the temperature distribution and will result in lower predicted heat transfer rates.

The use of an effective conductivity for air in a numerical conduction analysis will produce reasonably good temperature distributions on interior surfaces. However, the air temperature distribution will be in error. The procedure is relatively insensitive to the effective conductivity, the pipe and enclosure insulation dominating the heat loss, at least for the cases investigated in this work.

A more efficient and robust numerical modeling approach is required. Two possible improvements are to (1) convert the solution procedure to a "segregated method" where each of the governing equations are solved individually, and a Poisson equation is substituted for the continuity equation, or to (2) incorporate an upwinding scheme such as the Petrov-Galerkin method into the element quadrature procedure.

Some temperature data from actual utilidors are available; comparisons with these data and numerical modeling of the entire soil mass should be done. Additionally,

comparisons with an effective conductivity correlation in a transient conduction model, including the soil mass, and compared with field data, may also produce some interesting results.

9. LITERATURE CITED

- Arpaci, V.S. and Y. Bayazitoglu, Eds. (1990) Fundamentals of natural convection. American Society of Mechanical Engineers, HTD-Vol.140.
- Babus'Haq, R.F., S.D. Probert and M.J. Shilston (1986) Improved pipeline configurations for DHC distribution systems. ASHRAE Transactions, Vol. 92, No. 2, pp. 234-245.
- Boyd, R.D. (1981) A new correlation theory for steady natural convective heat-transport data for horizontal annuli. ASME/AICHE 20th National Heat Transfer Conference, Milwaukee, WI.
- Dropkin, D. and E. Somerscales (1965) Heat tansfer by natural convection in liquids confined by two parallel plates which are inclined at various angles with respect to the horizon. Journal of Heat Transfer, Vol. 87, pp. 77.
- De Vahl Davis, G. and I.P. Jones (1983) Natural convection in a square cavity: A comparison exercise. International Journal for Numerical Methods in Fluids, Vol. 3, pp. 227-248.
- Eckert, E.R.G. and W.O. Carlson (1961) Natural convection in an air layer enclosed between two vertical plates with different temperatures. International Journal of Heat and Mass Transfer, Vol. 2, pp. 23.
- Elder, J.W. (1965) Turbulent free convection in a vertical slot. Journal of Fluid Mechanics., Vol. 23, pp. 99.
- Emery, A.F., O. Johansson, M. Lobo and A. Abrous (1991) A comparative study of methods for computing the diffuse radiation viewfactors for comples structures. Transactions of the ASME, Journal of Heat Transfer, Vol. 113, pp. 413-422.
- Ergatoudis, I., B.M. Irons and O.C. Zienkiewicz (1968) Curved isoparametric, "quadrilateral" elements for finite element analysis. International Journal of Solids, Structures, Vol. 4, pp. 31-42.
- Federal Guide Specification (1981) National Federal Guide Specification (NFGS)-1570S, pp. 15.

- Gartling, D.K. (1977) Convective heat transfer analysis by the finite element method. Computer Methods in Applied Mechanics and Engineering, Vol. 12, pp. 365-382.
- Gartling, D.K. (1987) NACHOS II A finite element computer program for incompressible flow problems, Part I - theoretical background. Sandia National Laboratories, Albuquerque, NM, SAND86-1816.
- Gebhart, B., Y. Jaluria, R.L. Mahajan and B. Sammakia (1988) Buoyancy induced flows and transport. Hemisphere Publishing Corporation, NY.
- Ghaddar, N.K. (1992) Natural convection heat transfer between a uniformly heated cylindrical element and its rectangular enclosure. International Journal of Heat and Mass Transfer, Vol. 35, No. 10, pp.2327-2334.
- Grober, H.S., S. Erk and U. Grigull (1961) Fundamentals of heat transfer. McGraw-Hill Book Company, N.Y.
- Grigull, U. and W. Hauf (1966) Natural convection in horizontal cylindrical annuli. Proceedings of the Third International Heat Transfer Conference, August 7-12, Vol. 2
- Han, J.T. (1967) Numerical solution for an isolated vortex in a slot and free convection across a square cavity. M. S. Thesis, Department of Mechanical Engineering, University of Toronto
- Holman, J.P. (1976) Heat Transfer. Fourth Edition, McGraw-Hill Book Company, New York.
- Hornbeck, R.W. (1975) Numerical Methods. Quantum Publishers, Inc., New York.
- Huebner, K.H. and E.A. Thornton (1982) The finite element method for engineers. Second edition, John Wiley and Sons, NY.
- Jakob, M. (1949) Heat transfer. Wiley, New York.
- Jaluria, Y. and K.E. Torrance (1986) Computational heat transfer. Hemisphere Publishing Corporation, NY.
- Kennedy, F.E., G. Phetteplace, N. Hamilton and V. Prabhakar (1988) Thermal performance of a shallow utilidor. Proceedings of the Fifth International Conference on Permafrost, Trondheim, Norway.

- Kuehn, T.H. and R.J. Goldstein (1978) An experimental study of natural convection heat transfer in concentric and eccentric horizontal cylindrical annuli. Transactions of the ASME, Journal of Heat Transfer, Vol. 100, pp. 635-640.
- Kraichnan, R.H. (1962) Turbulent thermal convection at arbitrary Prandtl number. Physics of Fluids, Vol. 5, pp. 1374.
- Lunardini, V.J. (1990) Measurement of heat losses from a conduit type heat distribution system. Proceedings of the 1990 Army Science Conference, Durham, S.C.
- MacGregor, R.K. and Emery, A.F. (1969) Free convection through vertical plane layers: Moderate and high Prandtl number fluids. Journal of Heat Transfer, Vol. 92, pp. 391.
- Newell, M.E. and Schmidt, F.W. (1969) Heat transfer by laminar natural convection within rectangular enclosures. ASME Paper 69-HT-42.
- Özisik, M.N. (1980) Heat conduction. John Wiley and Sons, New York, pp. 58-60.
- Ostrach, S. (1972) Natural convection in enclosures. Advances in Heat Transfer., Vol. 8, pp. 161.
- Phetteplace, G.L., W. Willey and M.A. Novick (1981) Losses from the Fort Wainwright heat distribution system. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, Special Report 81-14.
- Phetteplace, G., P. Richmond and N. Humiston (1986) Thermal analysis of a shallow utilidor. 77th Conference of the International District Heating and Cooling Association, Ashville, North Carolina, June 8-12, 1986.
- Powe, R.E. and R.O. Warrington Jr. (1983) Natural convection heat transfer between bodies and their spherical enclosure. Transactions of the ASME Vol. 105, pp. 440-446.
- Raznjevic, K. (1976) Handbook of thermodynamic tables and charts. Hemisphere Publishing Corporation, NY.
- Richmond, P.W., H.J. Banker and A.K. Notman (1997a) Temperature data for heated pipes in rectangular enclosures. U.S. Army Cold Regions Research and Engineering Laboratory, Internal Report.

- Richmond, P.W. (1997b) Natural convection and radiation heat transfer from a heated pipe to a square enclosure. Submitted to the Journal of Numerical Heat Transfer, Part A: Applications.
- Siegel, R. and J.R. Howell (1992) Thermal radiation heat transfer. Third edition, Hemisphere Publishing Corporation, NY.
- Silveston, P.L. (1958) Forsch. Geb. Ingenieurwes, Vol. 24, pp. 59. (See Gebhart et al., 1988, pp. 754).
- Smith, D.W., S. Reed, J.J. Cameron, G.W. Heinke, F. James, B. Reis, W.L. Ryan and J. Schibner (1979) Cold climate utilities delivery design manual. U.S. Environmental Protection Agency, Report EPA-600/8-79-027.
- Stewart Jr., W.E. and J.L. Verhulst (1985) Experimental free convection from piping in district heating utilidors. American Society of Mechanical Engineers 85-WA/HT-55.
- Taylor, C. and T.G. Hughes (1981) Finite element programming of the Navier-Stokes equations. Pineridge Press Limited, Sweansea, U.K.
- Thayer School of Engineering (1987) Numerical methods laboratory, LABLIB. Dartmouth College, Hanover, NH.
- U.S. Army (1987) Arctic and subarctic construction: Utilities. Headquarters, Dept. of the Army and the Air Force, Washington, D.C.
- Warrington Jr., R.O. and R.E. Powe (1985) The transfer of heat by natural convection between bodies and their enclosures. International Journal of Heat and Mass Transfer, Vol. 28, No. 2, pp. 319-330.
- Zarling, J.P. and W.A. Braley (1984) Heat loss factors for insulated building foundations. Institute of Water Resources/Engineering Experiment Station, University of Alaska, Fairbanks, Alaska.
- Zirjacks, W.L., C.T. Hwang (1983) Underground utilidors at Barrow, Alaska,: A twoyear history. Proceedings of the 4th International Conference on Permafrost, National Acadamy Press, Washington, D.C., pp. 1513-1517.

APPENDIX A: COMPUTER PROGRAM FECOME

FECOME (Finite Element COMbined Equations) is a FORTRAN code that solves the two-dimensional energy, momentum, and continuity equations. It was developed primarily to solve the steady state natural convection heat transfer problems within enclosures, including radiation effects. The solution procedure was described in the main text; here the various subroutines and their interaction are described.

FECOME is made up of the main program (FECOME), 14 subroutines, and an "include" file, which contains parameter values that define the sizes of the common arrays. Figure A-1 is a flow chart of the subroutine calls.

The subroutine "read" reads the element incidence data, node x and y coordinate data, and boundary condition data from a formatted ASCII file. This data is stored in double precision common arrays. Also read is the optimized element solution order for the frontal matrix solver in subroutine "front3" and radiation view factors, if there are radiation surfaces specified.

"Prefront" determines the location of the first degree of freedom for each node, and the number of degrees of freedom (d.o.f.) for that node. Each node has at least one d.o.f. (temperature); mid-side nodes have up to three d.o.f. (temperature, x-velocity, and y-velocity), corner nodes can have up to four d.o.f. (temperature, x-velocity, y-velocity, and pressure). The material properties designator of the element is used to determine the number of degrees of freedom in each element. The d.o.f. order for each node is temperature, x-velocity, y-velocity, and pressure.

88

For the successive substitution procedure, the subroutine "front3" calls "matrix," which in turn calls "element." These two subroutines assemble local (element) arrays and pass them into "front3." "Front3" contains the matrix inversion routine, which solves each row of the global matrix as assembly of that row and corresponding column is completed. The frontal solution scheme is described by Taylor and Hughes (1981); the

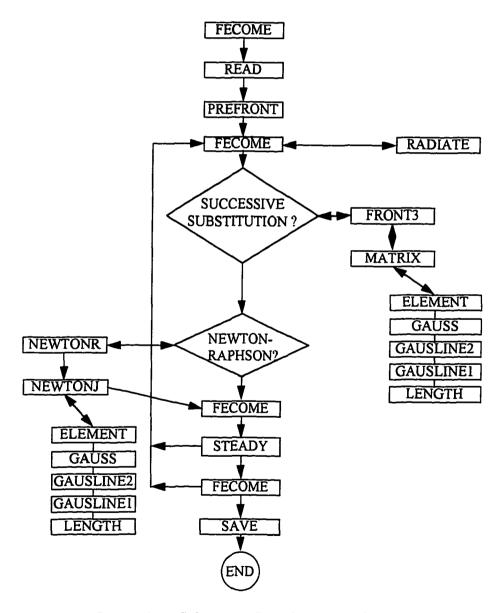


Figure A-1. Subroutine flow chart of FECOME.

code itself was obtained from the Numerical Laboratory at the Thayer School of Engineering at Dartmouth College (Thayer School of Engineering, 1987).

The subroutine "element" calls "gauss," which contains the shape functions and solves the required integrals using 3×3 Gaussian quadrature. Convection boundaries, heat flux, and radiation flux boundaries are also accounted for in this subroutine. Three subroutines ("gaussline," "gaussline2," and "length") are used to determine the required line integrals.

After a number of successive substitutions (input at program start-up) the Newton-Raphson procedure is invoked. First, "newtonr" calculates the residuals; next, "front3" is called, which in turn calls "newtonj" to assemble the element integrals. Returning to FECOME, the old solution is corrected by subtracting the product of the inverse of the Jacobian and the residuals.

Once the global matrix is solved, the subroutine "steady" is called; this subroutine determines the maximum percent change for each d.o.f., compared to the previous solution, the nodes where this occurs, and the maximum values for each d.o.f. (minimum value is determined for temperature). If the maximum percent change of all d.o.f. is less than 0.01% then the solution is considered to have converged to the final solution and is stored in a file by the subroutine "save". If the final solution has not been reached, the current solution is relaxed and stored in place of the previous solution. The process is then repeated using an updated reference temperature and material property values.

.

If there are radiation boundaries specified, the radiation heat flux for each

boundary is recalculated after each iterations (by subroutine "radiate").

After every 20 iterations the current solution is stored using "save," so that in the event of a power failure or computer crash, the program can be restarted using a nearly current solution.

FECOME is configured to use English units, although any consistant set of units may be used. Table A-1 contains the material property values used for air and the equations used to revise these values based on temperatures between iterations. T_{AVG} is the average temperature of the interior surfaces; *REF* is the lowest temperature within an element whose material is air.

Table A-1. Material properties for air (material
--

Material Property	Initial value	Revised by
Viscosity (ft ² /s)	3.0175E-04	1.2753E-04+6.1411E-07* <i>TAVG</i>
Thermal Conductivity	0.0193	0.01309+2.14766E-05* <i>TAVG</i>
(Btu/ft hr °F)		
Density (lbm/ft ³)	0.052	8.42416E-02-1.93863E-04* <i>TAVG</i> +4.16195E- 07* <i>TAVG</i> ²
Specific heat (Btu/ft ³ °F)	0.012614368	0.241*Density of air
Coefficient of thermal expansion (°F ⁻¹)		2.1775E-03-4.74865E-06* <i>REF</i> +9.42743E- 09* <i>REF</i> ² -1.04328E-11* <i>REF</i> ³

Table A-2. Thermal conductivities of solid materials.

Material	Description	Initial value	Revised by
2	Concrete	0.54 Btu/ft hr °F	not revised
3	Styrofoam (EPS)	0.022	$(0.214583+5.36829e-04T_{AVG})/12$
4	Plywood	0.67	not revised
5	Fiberglass pipe insul.	0.03083	$(0.196851e^{0.00211687T}_{AVG})/12$
6	Air	0.0193	not revised

C FECOME.FOR

С FECOME.FOR IS A FINITE ELEMENT CODE FOR THE APPROXIMATION OF С HEAT FLUXES THROUGH ENCLOSURES. THE FLOW FIELD IS ASSUMED TO С BE LAMINAR FREE CONVECTION, THE BOUSSINESQ APPROXIMATION IS С USED. ELEMENTS WHICH ARE PURELY CONDUCTIVE ARE ALLOWED. С ELEMENTS ARE 8 NODE ISOPARAMETRIC AND INTEGRATION IS CARRIED С OUT USING 3X3 GAUSSIAN QUADRATURE. THE 4 GOVERNING EQUATIONS (X MOMENTUM, Y MOMENTUM, CONTINUITY, AND THE ENERGY С С EQUATIONS) ARE SOLVED ITERATIVELY FOR A STEADY STATE С APPROXIMATION. SUCCESSIVE SUBSTITUTION AND NEWTON-RAPHSON С METHODS USED. A FRONTAL SOLUTION TO THE GLOBAL MOMENTUM С EQUATIONS AND ENERGY EQUATION IS USED.

C DEVELOPED BY P. RICHMOND

INCLUDE 'fronto.prm'

CHARACTER*80 CNAME CHARACTER*20 REFILE

COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE),MAP(MXE) COMMON/M5/RHSM(MXTV),RHSMO(MXTV),RHSMM(MXTV) COMMON/M9/NOPP(MXN),NODF(MXN),XBCF(MXTV),IBCF(MXTV)

COMMON/M2/COND(10),CV(10),RHO(10) COMMON/M4/AA(8,8),A1(8,8),A2(8),A3(8,8),A4(8,8),A5(8,8),A6(8),

- & A7(8,8),A8(8,8),A9(8,8) COMMON/M10/DPI(8,8),DP2(8,8),DP3(8,8),DP4(8,8),DP5(8,4),
- & DP6(8,4),DP7(8),DP8(8,8),DP9(8,8),DP10(8,8),DP11(8,8),
- & DP12(8,8),DP13(8,8),DP14(8,8),DP15(8,8)

COMMON/M3/NER(MXB),NSIDER(MXB),RFLUX(MXB),F(MXB,MXB),

& ARAD(MXB,MXB) COMMON/M6/NEH(MXB),NSIDEH(MXB),HFLUX(MXB) COMMON/M7/NEC(MXB),NSIDEC(MXB),H(MXB),TREF(MXB) COMMON/M8/NODET(MXB),BTEMP(MXB),NODEV(MXB)

C INITIALIZE VARIABLES TO ZERO DATA IMAT/MXE*0/ DATA MAP/MXE*0/ DATA X/MXN*0.0/ DATA Y/MXN*0.0/

> DATA RHSMO/MXTV*0.0/ DATA RHSM/MXTV*0.0/ DATA RHSMM/MXTV*0.0/

DATA COND,CV.RHO/30*0.0/ DATA AA,A1,A2,A3,A4,A5,A6,A7.A8,A9/528*0.0/ DATA DP1,DP2,DP3,DP4,DP5,DP6,DP7,DP8/392*0.0/

DATA DP10, DP11, DP12, DP13, DP14, DP15/384*0.0/

ICOUNT=0 INTMED=0 INTCOUNT=0 IRD=0 RESMAX = 99999.999

- С DEFINE MATERIAL PROPERTIES HERE, UNITS ARE IN ENGLISH С VISC: ft^2/sec С COND: Btu/(ft hr F) С CV: Btu/(ft^3 F) С RHO: lbm/ft^3 С VELOCITY: ft/sec С TEMPERATURE: degrees F С HEAT FLUX: Btu/(hr ft^2) С PRESSURE: lbf/ft^2
- C THE COEFFICIENT OF THERMAL EXPANSION (BETA) IS ALSO REQUIRED C FOR MATERIAL 1, BETA IS SPECIFIED IN THE SUBROUTINE ELEMENT
- C RADIATION EMISSIVITIES ARE SPECIFIED IN THE SUBROUTINE RADIATE
- C AIR @300 deg F RHO(1)=0.052 VISC=3.0175D-4 COND(1)=0.0193 CV(1)=1.2614368D-2
- C MATERIAL 2 IS CONCRETE @70 deg F RHO(2)=144.0 COND(2)=0.54 CV(2)=28.8
- C MATERIAL 3 IS STYROFOAM INSULATION (ASHRAE 1985 FUNDAMENTALS) C THIS MATERIAL CONDUCTIVITY IS REDEFINED IN ELEMENT RHO(3)= 1.0 COND(3)=0.022 CV(3)=0.29
- C MATERIAL 4 IS PLYWOOD RHO(4)=34.0 COND(4)=0.67 CV(4)=9.86
- C MATERIAL 5 IS FIBERGLASS INSULATION C THIS MATERIAL CONDUCTIVITY IS REDEFINED IN ELEMENT RHO(5)=15.0 COND(5)=0.03083 CV(5)=0.17

93

C MATERIAL 6 IS AIR @300 deg F, WITHOUT SOLUTION OF MOMENTUM EQ RHO(6)=0.052 VISC=3.0175D-4 COND(6)=0.0193 CV(6)=1.2614368D-2

- С THE FOLLOWING ARE USED IF THE BOUNDARY CONDITIONS ARE TO С BE RAMPED VISCA=VISC CONDA=COND(1) С ************************************ С SET VALUE FOR NON-DIMENSIONALIZING VELOCITIES С TO AGREE WITH BENCHMARK SOLUTIONS DNON = 1.0VELNON = 1.0с VELNON = 4.25d-4С *************** С READ INPUT DATA С LIMIT THE NUMBER OF ITERATIONS FOR TESTING
- WRITE(*,3) 3 FORMAT(2X,'HOW MANY ITERATIONS?') READ (*,*)LIMIT

WRITE(*,13)

13 FORMAT(2X,'BC RAMP FACTOR?') READ (*,*)IRAMP

> WRITE(*,*)'NUMBER OF SUCCESIVE SUBSTITUTIONS TO START' READ(*,*)ISUC

- CALL READ(CNAME,NE,NN,NMATL,NVELB,NTEMP,NHEAT,NCONV,NRAD) C SET UP OTHER ARRAYS FOR FRONTAL SOLUTION CALL PREFRONT(NE,NN,NVELB,NTEMP,NTOTAL,NBT) WRITE (*,*) NTOTAL,MXTV
- C FIND MINIMUN AND MAXIMUN BOUNDARY TEMPERATURES
- TMIN=10000.0 TMAX=-10000.0 DO I=1,NTEMP TMIN=MIN(TMIN,BTEMP(I)) TMAX=MAX(TMAX,BTEMP(I)) END DO WRITE (*,*) ntemp,TMAX,TMIN
- C SET THE INITIAL SOLUTION TO THE AVERAGE BOUNDARY
- C TEMPERATURE AND BOUNDARY CONDITIONS

- ----

TAVG=(TMIN+TMAX)/2.0 DO I=1,NN M = NOPP(I)N = NODF(I)RHSMO(M) = TAVGIF (N.EQ.3) THEN RHSMO(M+1) = 0.0RHSMO(M+2) = 0.0END IF IF(N.EQ.4) THEN RHSM(M+3) = 0.0END IF END DO DO I=1.NTOTAL IF(IBCF(I).EQ.1) RHSMO(I)=XBCF(I) END DO С ********************* С USE AN OLD OUTPUT FILE TO START THE PROGRAM WRITE(*,*)'DO YOU WISH TO USE AN OLD OUTPUT FILE TO START & THIS SOLUTION (1=YES/0=NO)' READ (*,*) ISTART IF (ISTART .EQ. 1) THEN WRITE (*,*) 'INPUT THE NAME OF THE OLD OUTPUT FILE (IN QUOTES)' READ (*,*) REFILE OPEN (UNIT=11.FILE=REFILE,STATUS='OLD',FORM='FORMATTED') DO I=1,NN NNDF = NODF(I)NNP = NOPP(I)IF (NNDF .LT. 3) THEN READ (11,30) II,XI,YI,RHSMO(NNP),VI,UI END IF IF (NNDF .EQ. 3) THEN READ (11,30) II,XI,YI,RHSMO(NNP),RHSMO(NNP+1),RHSMO(NNP+2) END IF IF (NNDF .EQ. 4) THEN READ (11,40) II,XI,YI,RHSMO(NNP),RHSMO(NNP+1),RHSMO(NNP+2), & RHSMO(NNP+3) END IF END DO DO I=1,NTOTAL IF(IBCF(I).EQ.1) RHSMO(I)=XBCF(I) END DO 30 FORMAT (2X, 18, 5F12.6) 40 FORMAT (2X, 18, 6F12.6)

CLOSE (UNIT=11,STATUS='KEEP') END IF

С	************
С	BEGIN ITERATIONS
100	ICOUNT=ICOUNT+1
	INTMED=INTMED+1
С	SET NEW SOLUTION ARRAYS TO ZERO
-	DO I=I,MXTV
	RHSM(I)=0.0
	RHSMM(T)=0.0
	END DO
с	***********
c	RAMP UP THE HIGHER BOUNDARY CONDITION TEMPERATURES OVER
С	IRAMP ITERATIONS
	IF (ICOUNT .LE. IRAMP) THEN
	TADJ=(TMAX-TMIN)*(I.0*ICOUNT/IRAMP)**3.0
	DO I=1,NTEMP
	IF (BTEMP(I).LT. TMAX) THEN
	BTEMP(I)=TMAX-TADJ $M = NODET(I)$
	XBCF(NOPP(M)) = BTEMP(I)
	IF(IBCF(NOPP(M)).EQ.1) RHSMO(NOPP(M))=XBCF(NOPP(M))
	END IF
	END DO
	END IF
С	***********
С	SET THE REFERENCE TEMPERATURE TO THE LOWEST NODE
С	TEMPERATURE IN MATERIAL TYPE 1 (AIR)
	REF = TMAX
	DO K=1,NE IF (IMAT(K).EQ.1) THEN
	DO IN=1,8
	INR = NOPP(NODE(K,IN))
	REF = MIN(REF, RHSMO(INR))
	END DO END IF
	END DO
_	
C	SET THE MATERIAL PROPERTIES FOR AIR AT THE AVERAGE
C C	AIR BOUNDARY TEMPERATURE
-	TAVG=0.0
	DO I=1,NVELB
	M=NOPP(NODEV(I))
	TAVG=TAVG+RHSMO(M)
	END DO

- -- -

_

æ	TAVG=TAVG/NVELB COND(1)=0.01309 + 2.14766E-05*TAVG VISC = I.27573E-04+6.1411E-07*TAVG RHO(1) = 0.0842416-0.000193863*TAVG+4.16195E-07*TAVG**2.0 z -4.77217E-I0*TAVG**3.0 CV(1) = 0.241*RHO(1)
C C	**************************************
C C &	**************************************
С	******
С	ELSE SET UP THE RESIDUAL VECTOR IN RHSM CALL NEWTONR(NE,NTEMP,NVELB,NCONV,NHEAT,NRAD,VISC,REF)
С	SET RESIDUALS EQUAL TO ZERO FOR BOUNDARY CONDITIONS RESMAX = -99999.999 DO I=I,NTOTAL IF (IBCF(I).EQ.1)THEN RHSM(I)=0.0 END IF ABSMAX = ABS(RHSM(I)) RESMAX = MAX(RESMAX,ABSMAX) END DO
C C	
-	SETUP THE ELEMENT EQUATIONS AND SOLVE CALL FRONT3(RHSMM,NBT,NE,NN,NTOTAL,VISC,NTEMP,NVELB,NCONV,NHEAT .NRAD,REF,1)
С	SUBTRACT CORRECTION FROM INITIAL GUESS DO I=1,NTOTAL RHSM(I)=RHSMO(I)-RHSMM(I) END DO END IF
C C	CHECK FOR STEADY STATE CALL STEADY(ITT,IVX,IVY,IVP,TMAG,TDIFFP,TPMIN,VMAGX,VDIFFPX, UBMAX VMACX VDIFFPY VMAAX VMACD VDIFFPD PDMAX NDI TPMAX)

& UPMAX, VMAGY, VDIFFPY, VPMAX, VMAGP, VDIFFPP, PPMAX, NN, TPMAX)

- - --

*********** С С SAVE THE CONDUCTION SOLUTION (1ST ITERATION) IF (ICOUNT .EQ. 1) THEN CALL SAVE (ICOUNT, NN, NE, VELNON, DNON) END IF С ********** IF(ICOUNT.LE.ISUC) THEN С SET THE RELAXATION FACTOR BASED ON PERCENT CHANGE REL = 0.01IF((TDIFFP.LT. 5.0).AND.(VDIFFPX.LT. 5.0).AND.(VDIFFPY.LT. 5.0) & .AND.(VDIFFPP.LT. 5.0)) REL = 0.05 ELSE **REL=.25** IF((TDIFFP.LT. 2.0).AND.(VDIFFPX.LT. 2.0).AND.(VDIFFPY.LT. 2.0) & .AND.(VDIFFPP.LT. 2.0)) REL = 0.75 END IF С APPLY RELAXATION AND SET NEW VALUES TO OLD FOR NEXT ITERATION DO I=1.NTOTAL RHSMO(I) = REL*RHSM(I)+(1.0-REL)*RHSMO(I)END DO VDIFFPXO = VDIFFPX VDIFFPYO = VDIFFPY VDIFFPPO = VDIFFPP TDIFFPO = TDIFFP ********* С С SAVE AN INTERMEDIATE SOLUTION AND WRITE DATA TO SCREEN WRITE (*,251)ICOUNT, TDIFFP, VDIFFPX, VDIFFPY, VDIFFPP, RESMAX, TPMIN & .TPMAX,TAVG IF (INTMED .EQ. 20) THEN С WRITE SOME CONVERGENCE INFORMATION TO THE SCREEN WRITE (*,250)ICOUNT WRITE(*,125)ITT,TMAG,TDIFFP,TPMIN WRITE(*,125)IVX, VMAGX, VDIFFPX, UPMAX/VELNON WRITE(*,125)IVY.VMAGY,VDIFFPY,VPMAX/VELNON WRITE(*,125)IVP,VMAGP,VDIFFPP,PPMAX WRITE(*,*) 'MAXIMUM RESIDUAL WAS', RESMAX WRITE(*,*) 'REFERENCE TEMPERATURE IS', REF WRITE(*,*)'AIR PROPERTIES AT (DEG F)', TAVG CALL SAVE (ICOUNT, NN, NE, VELNON, DNON) WRITE (*,*) 'INTERMEDIATE SOLUTION SAVED' INTMED = 0END IF

125 FORMAT (1X,18,F12.4,F10.2,F12.4)

- ---

98

- 251 FORMAT (1X,I4,4F10.3,F9.6,3F10.3)
- C DETERMINE IF ANOTHER ITERATION IS REQUIRED
- C TDIFFP, ETC ARE IN PERCENT

IF (ICOUNT.LT.LIMIT) THEN IF (TDIFFP.GT. 0.01) GO TO 100 IF (VDIFFPX .GT. 0.01) GO TO 100 IF (VDIFFPY .GT. 0.01) GO TO 100 IF (VDIFFPP .GT. 0.01) GO TO 100 END IF

WRITE LAST VALUES TO AN ASCII FILE CALL SAVE(ICOUNT,NN,NE,VELNON,DNON)

CALL EXIT(0) END

С

SUBROUTINE STEADY(ITT, IVX, IVY, IVP, TMAG, TDIFFP, TPMIN,

- & VMAGX, VDIFFPX, UPMAX, VMAGY, VDIFFPY, VPMAX, VMAGP,
- & VDIFFPP, PPMAX, NN, TPMAX)
- C FINDS THE PERCENT CHANGE IN EACH VARIABLE

INCLUDE 'fronto.prm' COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE),MAP(MXE) COMMON/M5/RHSM(MXTV),RHSMO(MXTV),RHSMM(MXTV) COMMON/M9/NOPP(MXN),NODF(MXN),XBCF(MXTV),IBCF(MXTV)

C DETERMINE PERCENT DIFFERENCE BETWEEN TEMPERATURES, C VELOCITIES AND PRESSURES AND THE PREVIOUS VALUES

> VDIFFX=0.0 VDIFFY=0.0 VDIFFP=0.0 TDIFF=0.0

UPMAX=0.0 VPMAX=0.0 PPMAX=0.0 TPMIN=100000.0 TPMAX=-100000.0

+----

C TEMPERATURES DO 200 I=1.NN NNDF = NODF(I)

```
NNP = NOPP(I)

TD = ABS(RHSM(NNP)-RHSMO(NNP))

IF (RHSM(NNP) .LT. TPMIN) TPMIN=RHSM(NNP)

IF (RHSM(NNP) .GT. TPMAX) TPMAX=RHSM(NNP)

IF (TD.GT.TDIFF) THEN

TDIFF = TD

TMAG = RHSM(NNP)

ITT=I

IF (RHSM(NNP) .NE. 0.0) THEN

TDIFFP=100.0*ABS(TD/RHSM(NNP))

ELSE

TDIFFP=0.0

END IF
```

END IF

```
C PRESSURES

IF (NNDF.EQ.4) THEN

VDP=ABS(RHSM(NNP+3)-RHSMO(NNP+3))

IF (RHSM(NNP+3).GT.PPMAX) PPMAX=RHSM(NNP+3)

IF (VDP.GT.VDIFFP) THEN

VDIFFP=VDP

IVP=I

VMAGP=RHSM(NNP+3)

IF (VMAGP.NE. 0.0) THEN

VDIFFPP=100.0*ABS(VDP/VMAGP)

ELSE

VDIFFPP=0.0

END IF

END IF
```

```
C X-VELOCITIES

IF (NNDF .GT. 1) THEN

VDX=ABS(RHSM(NNP+1)-RHSMO(NNP+1))

IF (RHSM(NNP+1).GT.UPMAX) UPMAX=RHSM(NNP+1)

IF (VDX.GT.VDIFFX) THEN

VDIFFX=VDX

IVX=I

VMAGX=RHSM(NNP+1)

IF (VMAGX.NE. 0.0) THEN

VDIFFPX=100.0*ABS(VDX/VMAGX)

ELSE

VDIFFPX=0.0

END IF
```

END IF

- -- ·-

END IF

C Y-VELOCITIES VDY=ABS(RHSM(NNP+2)-RHSMO(NNP+2)) IF (RHSM(NNP+2).GT.VPMAX) VPMAX=RHSM(NNP+2) IF (VDY.GT.VDIFFY) THEN VDIFFY=VDY

GAUSS POINTS AND WEIGHTS A=-0.7745966692 B= 0.7745966692 D1=0.5555555556**2.0 D2=0.5555555556*.88888888888

DJA(I)=0.0 END DO GAUSS POINTS A

DO I=1,8 PHI(I)=0.0 DPXI(I)=0.0 DPE(I)=0.0 DPX(I)=0.0 DPY(I)=0.0 END DO

DO I=1,4

Z(1)=A Z(2)=0.0 Z(3)=B

С

DIMENSION XL(8), YL(8), UL(8), VL(8), TL(8), Z(9), ZN(9), W(9) DIMENSION PHI(8), DPXI(8), DPE(8), DJA(4), DPX(8), DPY(8) DIMENSION XLP(4), YLP(4)

- & DP12(8,8),DP13(8,8),DP14(8,8),DP15(8,8)
- INCLUDE 'fronto.prm' COMMON/M10/DP1(8,8),DP2(8,8),DP3(8,8),DP4(8,8),DP5(8,4), & DP6(8,4),DP7(8),DP8(8,8),DP9(8,8),DP10(8,8),DP11(8,8),
- SUBROUTINE GAUSS (K,MATL,XL,YL,UL,VL,TL,REF) C 3x3 GAUSSIAN QUADRATURE FOR 8 NODE ISOPARAMETRIC ELEMENTS

RETURN END

200 CONTINUE

IVY=I VMAGY=RHSM(NNP+2) IF (VMAGY.NE. 0.0) THEN VDIFFPY=100.0*ABS(VDY/VMAGY) ELSE VDIFFPY=0.0 END IF END IF END IF

Z(8)=0.0
Z(9)=B
ZN(1)=A
ZN(2)=A
ZN(3)=A
ZN(4)=0.0
ZN(5)=0.0
ZN(6)=0.0
ZN(7)=B
ZN(8)=B
ZN(9)=B
W(1)=D1
W(2)=D2
W(3)=D1
W(4)=D2
W(5)=0.8888888889**2.0
W(6)=D2
W(7)=D1
W(8)=D2

Z(4)=A Z(5)=0.0 Z(6)=B Z(7)=A

C LOOP OVER GAUSS POINTS DO 10 M=1,9 C1=0.0 C2=0.0 C3=0.0 C3=0.0 C4=0.0 C5=0.0 C6=0.0 C7=0.0 C8=0.0

> XI=Z(M) ETA=ZN(M)

W(9)=D1

C CALCULATE BASIS FUNCTIONS PHI(1)=((1.0-XI)*(1.0-ETA)*(-ETA-XI-1.0))/4.0 PHI(3)=((1.0+XI)*(1.0-ETA)*(-ETA+XI-1.0))/4.0 PHI(5)=((1.0+XI)*(1.0+ETA)*(ETA+XI-1.0))/4.0 PHI(7)=((1.0-XI)*(1.0+ETA)*(ETA-XI-1.0))/4.0

> PHI(2)=(1.0-XI**2.0)*(1.0-ETA)/2.0 PHI(6)=(1.0-XI**2.0)*(1.0+ETA)/2.0

PHI(4)=(1.0+XI)*(1.0-ETA**2.0)/2.0 PHI(8)=(1.0-XI)*(1.0-ETA**2.0)/2.0

C DERIVATIVES WITH RESPECT TO XI DPXI(1)=(-(1.0-ETA)*(-ETA-XI-1.0)-(1.0-XI)*(1.0-ETA))/4.0 DPXI(3)=((1.0-ETA)*(-ETA+XI-1.0)+(1.0+XI)*(1.0-ETA))/4.0 DPXI(5)=((1.0+ETA)*(ETA+XI-1.0)+(1.0+XI)*(1.0+ETA))/4.0 DPXI(7)=(-(1.0+ETA)*(ETA-XI-1.0)-(1.0-XI)*(1.0+ETA))/4.0

> DPXI(2)=(1.0-ETA)*(-2.0*XI)/2.0 DPXI(6)=(1.0+ETA)*(-2.0*XI)/2.0

DPXI(4)= (1.0-ETA**2.0)/2.0 DPXI(8)=-(1.0-ETA**2.0)/2.0

C DERIVATIVES WITH RESPECT TO ETA DPE(1)=(-(1.0-XI)*(-ETA-XI-1.0)-(1.0-XI)*(1.0-ETA))/4.0 DPE(3)=(-(1.0+XI)*(-ETA+XI-1.0)-(1.0+XI)*(1.0-ETA))/4.0 DPE(5)=((1.0+XI)*(ETA+XI-1.0)+(1.0+XI)*(1.0+ETA))/4.0 DPE(7)=((1.0-XI)*(ETA-XI-1.0)+(1.0-XI)*(1.0+ETA))/4.0

> DPE(2)=-(1.0-XI**2.0)/2.0 DPE(6)=(1.0-XI**2.0)/2.0

DPE(4)=(1.0+XI)*(-2.0*ETA)/2.0 DPE(8)=(1.0-XI)*(-2.0*ETA)/2.0

C CALCULATE THE JACOBIAN DO I=1,4 DJA(I)=0.0 END DO

> DO 20 I=1,8 DJA(1)=XL(I)*DPXI(I)+DJA(1) DJA(2)=YL(I)*DPXI(I)+DJA(2) DJA(3)=XL(I)*DPE(I)+DJA(3) DJA(4)=YL(I)*DPE(I)+DJA(4) CONTINUE

- 20 CONTINUE DJ=DJA(1)*DJA(4)-DJA(2)*DJA(3)
- C DERIVATIVES WITH RESPECT TO X AND Y DO 30 I=1,8 DPX(I)=(DJA(4)*DPXI(I)-DJA(2)*DPE(I))/DJ DPY(I)=(-DJA(3)*DPXI(I)+DJA(1)*DPE(I))/DJ 30 CONTINUE
- SU CONTINUE
- C INTEGRALS DO 40 I=1,8 C1=C1+UL(I)*PHI(I) C2=C2+VL(I)*PHI(I) C3A=C3A+ref*PHI(I)

- ---

- DPI5(J,I)=DP15(J,I)+(DJ*W(M)*PHI(I)*PHI(J)*C8) 60 CONTINUE DP7(J)=DP7(J)+(DJ*W(M)*PHI(J)*C3A)50 CONTINUE С ****** С CALCULATE THE INTEGRALS WITH LINEAR INTERPOLATION FUNCTIONS С FOR PRESSURE TERMS IF (MATL .EQ. 1) THEN XLP(1)=XL(1)XLP(2)=XL(3)XLP(3)=XL(5)XLP(4)=XL(7)YLP(1)=YL(1)YLP(2)=YL(3)YLP(3)=YL(5) YLP(4)=YL(7)С CALCULATE BASIS FUNCTIONS PHI(1)=(1.0-XI)*(1.0-ETA)/4.0 PHI(2)=(1.0+XI)*(1.0-ETA)/4.0 PHI(3)=(1.0+XI)*(1.0+ETA)/4.0 PHI(4)=(1.0-XI)*(1.0+ETA)/4.0
- DP10(J,I)=DP10(J,I)+(DJ*W(M)*PHI(I)*PHI(J)*C3) DP11(J,I)=DP11(J,I)+(DJ*W(M)*PHI(I)*PHI(J)*C4) DP12(J,I)=DP12(J,I)+(DJ*W(M)*PHI(I)*PHI(J)*C5) DP13(J,I)=DP13(J,I)+(DJ*W(M)*PHI(I)*PHI(J)*C6) DP14(J,I)=DP14(J,I)+(DJ*W(M)*PHI(I)*PHI(J)*C7)

DP8(J,I)=DP8(J,I)+(DJ*W(M)*PHI(J)*PHI(I)) DP9(J,I)=DP9(J,I)+(DJ*W(M)*DPX(J)*DPY(I))

CONTINUE DO 50 J=1,8 DO 60 I=1,8 DP1(J,I)=DP1(J,I)+(DJ*W(M)*PHI(J)*DPX(I)*C1) DP2(J,I)=DP2(J,I)+(DJ*W(M)*DPX(J)*DPX(I)) DP3(J,I)=DP3(J,I)+(DJ*W(M)*DPY(I)*DPY(I)) DP4(J,I)=DP4(J,I)+(DJ*W(M)*PHI(J)*DPY(I)*C2)

C4=C4+TL(I)*DPY(I) C5=C5+UL(I)*DPX(I) C6=C6+UL(I)*DPY(I) C7=C7+VL(I)*DPX(I) C8=C8+VL(I)*DPY(I)

40

C3=C3+TL(I)*DPX(I)

- C DERIVATIVES WITH RESPECT TO XI DPXI(1)=-(1.0-ETA)/4.0 DPXI(2)= (1.0-ETA)/4.0 DPXI(3)= (1.0+ETA)/4.0 DPXI(4)=-(1.0+ETA)/4.0
- C DERIVATIVES WITH RESPECT TO ETA DPE(1)=-(1.0-XI)/4.0 DPE(2)=-(1.0+XI)/4.0 DPE(3)= (1.0+XI)/4.0 DPE(4)= (1.0-XI)/4.0
- C CALCULATE THE JACOBIAN DO I=1,4 DJA(I)=0.0 END DO

DO I=1,4 DJA(1)=XLP(I)*DPXI(I)+DJA(1) DJA(2)=YLP(I)*DPXI(I)+DJA(2) DJA(3)=XLP(I)*DPE(I)+DJA(3) DJA(4)=YLP(I)*DPE(I)+DJA(4) END DO DJ=DJA(1)*DJA(4)-DJA(2)*DJA(3)

- C INTEGRALS (THE DERIVATIVES ARE FROM ABOVE) C DP5 AND DP6 ARE 8X4 MATRICES DO J=1,8 DO I=1,4 DP5(J,I)=DP5(J,I)+(DJ*W(M)*PHI(I)*DPX(J)) DP6(J,I)=DP6(J,I)+(DJ*W(M)*PHI(I)*DPY(J)) END DO END DO END IF
- 10 CONTINUE

RETURN END

- SUBROUTINE GAUSSLINE (NSIDE, DP)
- C 3 POINT GAUSSIAN QUADRATURE FOR 8 NODE ISOPARAMETRIC ELEMENTS

٠

- C SURFACE INTEGRATION
- C PARAMETERS:
- C NSIDE THE NUMBER OF THE ELEMENT SIDE
- C DP THE INTEGRATION VECTOR FOR THE SIDE

- C CALLED BY: ELEMENT
- C CALLS TO : NONE

INCLUDE 'fronto.prm' DIMENSION Z(9),W(3) DIMENSION PHI(8),DP(3)

DO I=1,8 PHI(I)=0.0 END DO

DO I=1,3 DP(I)=0.0 END DO

C GAUSS POINTS AND WEIGHTS A=-0.7745966692 B= 0.7745966692 D1=0.5555556 D2=0.88888889

> Z(1)=A Z(2)=0.0 Z(3)=B Z(4)=A Z(5)=0.0 Z(6)=B Z(7)=A Z(8)=0.0 Z(9)=B

- W(1)=D1 W(2)=D2 W(3)=D1
- C LOOP OVER GAUSS POINTS IF (NSIDE.EQ.1)THEN DO 10 M=1,3 XI=Z(M)
- C CALCULATE BASIS FUNCTIONS ETA=-1.0 PHI(1)=((1.0-XI)*(1.0-ETA)-(1.0-XI*XI)*(1.0-ETA) & -(1.0-XI)*(1.0-ETA*ETA))/4.0 PHI(2)=(1.0-XI**2.0)*(1.0-ETA)/2.0
 - PHI(3)=((1.0+XI)*(1.0-ETA)-(1.0-XI*XI)*(1.0-ETA) & -(1.0+XI)*(1.0-ETA*ETA))/4.0

C INTEGRALS DO I=1,3

IF (NSIDE.EQ.2)THEN DO 40 M=1,3 ETA=Z(M) XI=1.0 C BASIS FUNCTIONS FOR NODES 3,4,5 PHI(1)=((1.0+XI)*(1.0-ETA)-(1.0-XI*XI)*(1.0-ETA) & -(1.0+XI)*(1.0-ETA*ETA)/4.0 PHI(2)=(1.0+XI)*(1.0-ETA*ETA)/2.0 PHI(3)=((1.0+XI)*(1.0+ETA)-(1.0-XI*XI)*(1.0+ETA)

C INTEGRALS DO I=1,3 DP(I)=DP(I)+W(M)*PHI(I) END DO 30 CONTINUE

END IF

- PHI(1)=((1.0-XI)*(1.0+ETA)-(1.0-XI*XI)*(1.0+ETA) & -(1.0-XI)*(1.0-ETA*ETA))/4.0 PHI(2)=(1.0-XI)*(1.0-ETA*ETA)/2.0 PHI(3)=((1.0-XI)*(1.0-ETA)-(1.0-XI*XI)*(1.0-ETA) & -(1.0-XI)*(1.0-ETA*ETA))/4.0
- DO 30 M=1,3 ETA=Z(M) XI=-1.0C BASIS FUNCTIONS FOR NODES 7,8,1 PHI(1)=((1.0-XI)*(1.0+ETA)-(1.0-XI)*XI)*(1.0+ETA)
- DP(I)=DP(I)+W(M)*PHI(I) END DO 20 CONTINUE END IF

IF (NSIDE.EQ.4)THEN

INTEGRALS DO I=1,3

С

- IF (NSIDE.EQ.3)THEN DO 20 M=1,3 XI=Z(M) ETA=1.0 C BASIS FUNCTIONS FOR NODES 5,6,7 PHI(1)=((1.0+XI)*(1.0+ETA)-(1.0-XI*XI)*(1.0+ETA)
- DP(I)=DP(I)+W(M)*PHI(I) END DO 10 CONTINUE END IF

& -(1.0+XI)*(1.0-ETA*ETA))/4.0 С **INTEGRALS** DO I=1,3 DP(I)=DP(I)+W(M)*PHI(I)END DO 40

SUBROUTINE GAUSSLINE2 (NSIDE, DC)

NSIDE - THE NUMBER OF THE ELEMENT SIDE

DC - THE INTEGRATION MATRIX FOR THE SIDE

3 POINT GAUSSIAN QUADRATURE FOR 8 NODE ISOPARAMETRIC

ELEMENTS SURFACE INTEGRATION FOR CONVECTION (RETURNS 3X3 MATRIX)

CONTINUE

PARAMETERS:

CALLED BY: ELEMENT

CALLS TO : NONE

INCLUDE 'fronto.prm'

DIMENSION Z(9), W(3) DIMENSION PHI(8), DC(3,3)

GAUSS POINTS AND WEIGHTS

DO [=1,8 PHI(I)=0.0 END DO

DO I=1,3 DO J=1.3 DC(I,J)=0.0 END DO END DO

Z(1)=AZ(2)=0.0 Z(3)=B Z(4)=A Z(5)=0.0Z(6)=B Z(7)=A Z(8)=0.0

A=-0.7745966692 B= 0.7745966692 D1=0.55555556 D2=0.88888889

END IF

RETURN END

С

С

С

С

С

С

С

С

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Z(9)=B

W(1)=D1 W(2)=D2 W(3)≈D1

DO 10 M=1,3 XI=Z(M)ETA=-1.0

INTEGRALS DO I=1.3 DO J=1,3

LOOP OVER GAUSS POINTS IF (NSIDE.EQ.1)THEN

CALCULATE BASIS FUNCTIONS

-(1.0-XI)*(1.0-ETA*ETA))/4.0 PHI(2)=(1.0-XI**2.0)*(1.0-ETA)/2.0

-(1.0+XI)*(1.0-ETA*ETA))/4.0

PHI(1)=((1.0-XI)*(1.0-ETA)-(1.0-XI*XI)*(1.0-ETA)

PHI(3)=((1.0+XI)*(1.0-ETA)-(1.0-XI*XI)*(1.0-ETA)

С

С

С

&

&

- Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
- DC(I,J)=DC(I,J)+W(M)*PHI(I)*PHI(J)END DO END DO 10 CONTINUE END IF IF (NSIDE.EQ.3)THEN DO 20 M=1,3 XI=Z(M)ETA=1.0 С **BASIS FUNCTIONS FOR NODES 5,6,7** PHI(1)=((1.0+XI)*(1.0+ETA)-(1.0-XI*XI)*(1.0+ETA) & -(1.0+XI)*(1.0-ETA*ETA))/4.0 PHI(2)=(1.0-XI**2.0)*(1.0+ETA)/2.0 PHI(3)=((1.0-XI)*(1.0+ETA)-(1.0-XI*XI)*(1.0+ETA) -(1.0-XI)*(1.0-ETA*ETA))/4.0 & С **INTEGRALS** DO I=1,3 DO J=1,3 DC(I,J)=DC(I,J)+W(M)*PHI(I)*PHI(J) END DO END DO 20 CONTINUE END IF IF (NSIDE.EQ.4)THEN DO 30 M=1,3 ETA=Z(M) XI = -1.0С **BASIS FUNCTIONS FOR NODES 7,8,1**

PI=3.1415926536 ASLEN=0.0 ALEN=0.0 BLEN=0.0

С DEFINE THE SIDE NODES

INCLUDE 'fronto.prm' COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE),MAP(MXE) DIMENSION LS(3)

CALULATE ARC LENGTH

SUBROUTINE LENGTH (K,NSIDE,ASLEN)

RETURN END

С

- END DO END DO 40 CONTINUE END IF
- PHI(2)=(1.0+XI)*(1.0-ETA*ETA)/2.0 PHI(3)=((1.0+XI)*(1.0+ETA)-(1.0-XI*XI)*(1.0+ETA) & -(1.0+XI)*(1.0-ETA*ETA))/4.0 С **INTEGRALS** DO I=1,3 DO J=1,3 DC(I,J)=DC(I,J)+W(M)*PHI(I)*PHI(J)
- DO 40 M=1,3 ETA=Z(M) XI=1.0 С **BASIS FUNCTIONS FOR NODES 3,4,5** PHI(1)=((1.0+XI)*(1.0-ETA)-(1.0-XI*XI)*(1.0-ETA) & -(1.0+XI)*(1.0-ETA*ETA))/4.0
- С INTEGRALS DO I=1.3 DO J=1.3 DC(I,J)=DC(I,J)+W(M)*PHI(I)*PHI(J) END DO END DO 30 CONTINUE END IF

IF (NSIDE.EQ.2)THEN

PHI(1)=((1.0-XI)*(1.0+ETA)-(1.0-XI*XI)*(1.0+ETA) & -(1.0-XI)*(1.0-ETA*ETA))/4.0 PHI(2)=(1.0-XI)*(1.0-ETA*ETA)/2.0 PHI(3)=((1.0-XI)*(1.0-ETA)-(1.0-XI*XI)*(1.0-ETA) -(1.0-XI)*(1.0-ETA*ETA))/4.0 &

```
LS(1)=NODE(K,1)
       LS(2)=NODE(K,2)
       LS(3)=NODE(K,3)
       END IF
       IF (NSIDE.EQ.2) THEN
       LS(1)=NODE(K,3)
       LS(2)=NODE(K,4)
       LS(3)=NODE(K,5)
       END IF
       IF (NSIDE.EQ.3) THEN
       LS(1)=NODE(K,5)
       LS(2)=NODE(K,6)
       LS(3)=NODE(K,7)
       END IF
       IF (NSIDE.EQ.4) THEN
       LS(1)=NODE(K,7)
       LS(2)=NODE(K,8)
       LS(3)=NODE(K,1)
       END IF
С
       SET UP COORDINATES
       X1=X(LS(1))
       YI=Y(LS(1))
       X2=X(LS(2))
       Y2=Y(LS(2))
       X3 = X(LS(3))
       Y_{3}=Y(LS(3))
С
       FIND LENGTH
С
       DETERMINE IF THE SIDE IS A STRAIGHT LINE
       ASLEN=0.0
       XM=ABS(X3-X1)
       XN = ABS(X3 - X2)
       YM=ABS(Y3-Y1)
       YN=ABS(Y3-Y2)
       IF (ABS(XM-XN) .LT. .000001) ASLEN=SQRT((Y3-Y1)**2.0)
      IF (ABS(YM-YN) .LT. .000001) ASLEN=SQRT((X3-X1)**2.0)
      IF (ASLEN .NE. 0.0) GO TO 100
       ASM1=(Y3-Y1)/(X3-X1)
       ASM2=(Y2-Y1)/(X2-X1)
```

IF (NSIDE.EQ.1) THEN

IF (ASM1 .GT. 0.0 .AND. ASM2 .LT. 0.0) GO TO 50 IF (ASM1 .LT. 0.0 .AND. ASM2 .GT. 0.0) GO TO 50 IF (ABS(ASM1-ASM2) .LT. .000001) THEN

```
END IF
IF (NNDF .EQ. 3) THEN
WRITE (14,30) I.X(I)/DNON,Y(I)/DNON,RHSM(NNP),
```

```
IF (NNDF .LT. 3) THEN
WRITE (14,30) I,X(I)/DNON,Y(I)/DNON.RHSM(NNP),0.0,0.0
```

```
DO I=I,NN
NNDF = NODF(I)
NNP = NOPP(I)
```

OPEN (UNIT=14,FILE='conduct.dat',FORM='FORMATTED',

```
& STATUS='UNKNOWN')
ELSE
OPEN (UNIT=14,FILE='velout.dat',FORM='FORMATTED',STATUS='UNKNOWN')
END IF
```

COMMON/M5/RHSM(MXTV),RHSMO(MXTV),RHSMM(MXTV) COMMON/M9/NOPP(MXN),NODF(MXN),XBCF(MXTV),IBCF(MXTV)

COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE),MAP(MXE)

INCLUDE 'fronto.prm'

IF (ICOUNT.EQ.1) THEN

- C IS USED (I.E. THE INITIAL VELOCITIES ARE ZERO
- C CONDUCT.DAT CONTAINS THE CONDUCTION SOLUTION IF NO START UP FILE
- C SAVES THE TEMPERATURE, VELOCITY AND PRESSURE DATA IN ASCII FILES

SUBROUTINE SAVE (ICOUNT, NN, NE, VELNON, DNON)

100 RETURN END

С

50

END IF

HLEN=SQRT(BLEN**2.0-ALEN**2.0) RLEN=((CLEN**2.0/(4*HLEN))+HLEN)/2 ASLEN=RLEN*(ASIN(CLEN/(2*RLEN)))

- IF (ASLEN .EQ. 0.0) THEN CLEN=SQRT((X1-X3)**2.0+(Y1-Y3)**2.0) ALEN=CLEN/2.0 BLEN=SQRT((XI-X2)**2.0+(Y1-Y2)**2.0) DLEN=SQRT((X3-X2)**2.0+(Y3-Y2)**2.0) BLEN=(BLEN+DLEN)/2
- THE SIDE IS AN ARC OF A CIRCLE

ASLEN=SQRT((X3-X1)**2.0+(Y3-Y1)**2.0) END IF & RHSM(NNP+1)/VELNON,RHSM(NNP+2)/VELNON END IF

IF (NNDF.EQ.4) then WRITE (14,40) I,X(I)/DNON,Y(I)/DNON,RHSM(NNP), & RHSM(NNP+1)/VELNON,RHSM(NNP+2)/VELNON,RHSM(NNP+3)

END IF END DO

- 30
 FORMAT (2X,18,5F12.6)

 40
 FORMAT (2X,18,6F12.6)
 - FORMAT (2X,18,6F12.6) CLOSE (UNIT=14,STATUS='KEEP')

RETURN END

- -- -

SUBROUTINE ELEMENT (K,NTEMP,NVELB,NCONV,NHEAT,NRAD,

COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE),MAP(MXE) COMMON/M9/NOPP(MXN),NODF(MXN),XBCF(MXTV),IBCF(MXTV) COMMON/M5/RHSM(MXTV),RHSMO(MXTV),RHSMM(MXTV)

COMMON/M4/AA(8,8),A1(8,8),A2(8),A3(8,8),A4(8,8),A5(8,8),A6(8),

COMMON/M10/DP1(8,8),DP2(8,8),DP3(8,8),DP4(8,8),DP5(8,4),

COMMON/M7/NEC(MXB),NSIDEC(MXB),H(MXB),TREF(MXB) COMMON/M8/NODET(MXB),BTEMP(MXB),NODEV(MXB)

COMMON/M6/NEH(MXB),NSIDEH(MXB),HFLUX(MXB)

DIMENSION XL(8), YL(8), UL(8), VL(8), TL(8), DC(3,3), DP(3)

BETA=0.0021775-4.74865e-06*ref+9.42743E-09*(ref**2.0)

COMMON/M3/NER(MXB),NSIDER(MXB),RFLUX(MXB),F(MXB,MXB),

- & VISC, REF, MATL)
- С ELEMENT INTEGRATION FOR ENERGY, MOMENTUM AND CONTINUITY EQ.
- С PARAMETERS:
- **K** ELEMENT NUMBER С
- С NTEMP - NUMBER OF FIXED TEMPERAUTRE NODES
- С **NVELB - NUMBER OF VELOCITY BOUNDARY NODES**
- С **NCONV - NUMBER OF CONVECTION SURFACES**
- С NHEAT - NUMBER OF HEAT FLUX SURFACES
- С NRAD - NUMBER OF RADIATION SURFACES
- C VISC - VISCOSITY OF AIR
- С **REF** - REFERENCE TEMPEARTURE FOR BUOYANCY
- С MATL - MATERIAL NUMBER FOR THE ELEMENT

COMMON/M2/COND(10),Cv(10),rho(10)

& DP12(8,8),DP13(8,8),DP14(8,8),DP15(8,8)

& DP6(8,4),DP7(8),DP8(8,8),DP9(8,8),DP10(8,8),DP11(8,8),

- С CALLED BY :MATRIX, NEWTONJ

- С
- CALLS TO :GAUSS, GAUSSLINE, GAUSSLINE2, LENGTH

INCLUDE 'fronto.prm'

& A7(8,8),A8(8,8),A9(8,8)

& ARAD(MXB,MXB)

MATL=IMAT(K)

GRAVITY=-32.17

& -1.04328e-11*(ref**3.0)

beta=0.00132

С

- - DO [=1,8 NODEL=NODE(K,I) XL(I)=X(NODEL) YL(I)=Y(NODEL)

NOPPL=NOPP(NODEL) IF(MATL.EQ.1) THEN UL(I)=RHSMO(NOPPL+1) VL(I)=RHSMO(NOPPL+2) TL(I)=RHSMO(NOPPL) ELSE UL(1)=0.0 VL(I)=0.0 TL(I)=RHSMO(NOPPL) END IF END DO DO I=1.8 DO J=1,8 DP1(I,J)=0.0 DP2(I,J)=0.0DP3(I,J)=0.0 DP4(I,J)=0.0 DP8(I,J)=0.0 DP9(I,J)=0.0 DP10(I,J)=0.0 DP11(I,J)=0.0 DP12(I,J)=0.0 DP13(I,J)=0.0 DP14(I,J)=0.0 DP15(I,J)=0.0 AA(I,J)=0.0 A1(I,J)=0.0A3(I,J)=0.0 A4(I,J)=0.0 A5([,J)=0.0 A7(I,J)=0.0 A8(I,J)=0.0 A9(I,J)=0.0 END DO DP7(I)=0.0 A2(I)=0.0 A6(I)=0.0 END DO DO [=1,8 DO J=1.4 DP5(I,J)=0.0 DP6(I,J)=0.0 END DO END DO

CALL GAUSS (K, MATL, XL, YL, UL, VL, TL, REF)

IF((MATL.EQ.3).OR.(MATL.EQ.5)) THEN C REDEFINE PROPERTIES OF INSULATION MATERIALS TLAVG=0.0 DO I=1,8 TLAVG=TLAVG+TL(I) END DO ` TLAVG=TLAVG/8.0 COND(3)=(0.214583+0.000536829*TLAVG)/12.0 COND(5)=(0.196851*EXP(0.00211687*TLAVG))/12.0 END IF

> DO 20 I=1,8 DO 30 J=1,8

- C THE ENERGY EQUATION AA(I,J)=COND(MATL)*(DP2(I,J)+DP3(I,J))
- C ADD MOMENTUM COMPONENTS TO ENERGY MATRIX IF (MATL .EQ. 1) THEN AA(I,J)=AA(I,J)+Cv(1)*3600.0*(DP4(I,J)+DP1(I,J))
- C X-VLEOCITY COMPONENETS A3(I,J)=(DP1(I,J)+DP4(I,J))+VISC*(2.0*DP2(I,J)+DP3(I,J)) A8(i,j)=VISC*DP9(I,J)
- C Y-VELOCITY COMPONENTS A7(I,J)=(DP1(I,J)+DP4(I,J))+VISC*(DP2(I,J)+2.0*DP3(I,J)) A9(i,j)=VISC*DP9(J,I) A1(i,j)=GRAVITY*BETA*DP8(I,J)END IF
- 30 CONTINUE
- IF (MATL .EQ. 1) THEN C BUOYANCY TERM ON RHS OF VELOCITY EQUATION A2(1)=GRAVITY*BETA*DP7(I)
- C THE CONTINUITY EQUATION AND PRESSURE TERMS C GRAVITY PUTS PRESSURE IN TERMS OF lbf/ft^2 DO J=1.4 A4(I,J)=-GRAVITY*DP5(I,J)/rho(1) A5(I,J)=-GRAVITY*DP6(I,J)/rho(1)

END DO END IF

- 20 CONTINUE
- C RHS OF ENERGY EQUATION IF (MATL .NE. 1) THEN
- C CHECK FOR CONVECTION BOUNDARIES

AA(N3,N2)=AA(N3,N2)+CONS*DC(3,2)AA(N3,N3)=AA(N3,N3)+CONS*DC(3,3) RHS OF CONVECTION BOUNDARIES CALL GAUSSLINE(NSIDEC(I), DP) CONS = ARC*H(I)*TREF(I)/2.0

A6(N1)=A6(N1)+CONS*DP(1)A6(N2) = A6(N2) + CONS + DP(2)A6(N3)=A6(N3)+CONS*DP(3)

END IF END DO END IF

С

С HEAT FLUX BOUNDARIES

CALL GAUSSLINE2 (NSIDEC(I),DC)

AA(N1,N1)=AA(N1,N1)+CONS*DC(1,1)AA(N1,N2)=AA(N1,N2)+CONS*DC(1,2)AA(N1,N3)=AA(N1,N3)+CONS*DC(1,3)AA(N2,N1)=AA(N2,N1)+CONS*DC(2,1)AA(N2,N2)=AA(N2,N2)+CONS*DC(2,2)AA(N2,N3)=AA(N2,N3)+CONS*DC(2,3)AA(N3,N1)=AA(N3,N1)+CONS*DC(3,1)

DO I=1,NCONV IF (NEC(I) .EQ. K) THEN CALL LENGTH (NEC(I), NSIDEC(I), ARC) CONS=ARC*H(I)/2.0 IF (NSIDEC(I).EQ.1) THEN NI=IN2=2 N3=3 END IF IF (NSIDEC(I).EQ.2) THEN N1=3 N2=4 N3=5 END IF IF (NSIDEC(I).EQ.3) THEN N1=5 N2=6 N3=7 END IF IF (NSIDEC(I).EQ.4) THEN N1=7 N2=8 N3=1 END IF

IF (NSIDEH(I).EQ.4) THEN N1=7 N2=8 N3=1 END IF A6(N1)=A6(N1)-ARC*DP(1)*HFLUX(I)/2.0 A6(N2)=A6(N2)-ARC*DP(2)*HFLUX(I)/2.0 END IF END DO RADIATION FLUX BOUNDARIES

C RADIATION FLUX BOUNDARIES DO I=1,NRAD IF (NER(I).EQ.K) THEN CALL LENGTH(NER(I),NSIDER(I),ARC) CALL GAUSSLINE(NSIDER(I),DP)

DO I=1, NHEAT

N1=1 N2=2 N3=3 END IF

N1=3 N2=4 N3=5 END IF

N1=5 N2=6 N3=7 END IF

IF(NEH(I).EQ.K) THEN

IF (NSIDEH(I).EQ.1) THEN

IF (NSIDEH(I).EQ.2) THEN

IF (NSIDEH(I).EQ.3) THEN

CALL LENGTH(NEH(I),NSIDEH(I),ARC) CALL GAUSSLINE(NSIDEH(I),DP)

IF (NSIDER(I).EQ.1) THEN N1=1 N2=2 N3=3 END IF IF (NSIDER(I).EQ.2) THEN N1=3 N2=4 N3=5 END IF IF (NSIDER(I).EQ.3) THEN N1=5 N2=6 N3=7

- ---

118

• ·-- ···

END IF END DO RETURN END

END IF IF (NSIDER(I).EQ.4) THEN N1=7 N2=8 N3=1 END IF

A6(N1)=A6(N1)-ARC*DP(1)*RFLUX(I)/2.0 A6(N2)=A6(N2)-ARC*DP(2)*RFLUX(I)/2.0 A6(N3)=A6(N3)-ARC*DP(3)*RFLUX(I)/2.0 SUBROUTINE READ(CNAME, NE, NN, NMATL, NVELB, NTEMP, NHEAT, NCONV, NRAD)

- C READ.F
- C READS A FORMATTED ASCII FILE

INCLUDE 'fronto.prm'

CHARACTER*16 GFILE CHARACTER*80 CNAME CHARACTER*50 DUMMY

COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE),MAP(MXE) COMMON/M3/NER(MXB),NSIDER(MXB),RFLUX(MXB),F(MXB,MXB),

& ARAD(MXB,MXB)

COMMON/M6/NEH(MXB),NSIDEH(MXB),HFLUX(MXB) COMMON/M7/NEC(MXB),NSIDEC(MXB),H(MXB),TREF(MXB) COMMON/M8/NODET(MXB),BTEMP(MXB),NODEV(MXB)

- C OPEN THE DESIRED FILES WRITE(*,10)
- 10 FORMAT (2X,'INPUT THE ASCII GENESIS FILE (IN QUOTES)') READ (*,*)GFILE

OPEN(UNIT=22,FILE=GFILE,STATUS='OLD',FORM='FORMATTED')

READ(22,*)CNAME WRITE(*,*)CNAME

READ(22,11)DUMMY,NE WRITE(*,*) DUMMY,NE

READ(22,12)DUMMY,NN WRITE(*,*) DUMMY,NN

READ(22,13)DUMMY,NMATL WRITE(*,*) DUMMY,NMATL

- 11 FORMAT(2X,A20,I8)
- 12 FORMAT(2X,A20,I8)
- 13 FORMAT(2X,A21,I8)
- READ(22,14)DUMMY 14 FORMAT(2X,A15)
- READ(22,20)(K.X(I),Y(I),I=1,NN) 20 FORMAT(2X,I8,2F12.6)

READ(22,25)

25 FORMAT(//2X,A39)

- READ(22,65)(K,NEC(I),NSIDEC(I),H(I),TREF(I),I=1,NCONV) FORMAT(2X,318,2F8.3) READ(22,70)DUMMY,NHEAT WRITE(*,*) DUMMY,NHEAT 70 FORMAT(//,2X,A41,I8) READ(22,75)(K,NEH(I),NSIDEH(I),HFLUX(I),I=1,NHEAT) 75 FORMAT(2X,318,F8.2)
- С OPTIMIZED ELEMENT ORDER MAP DO I=1.NE READ(22.80)K,MAP(I) END DO

- -- ---

- 65
- FORMAT(//,2X,A32,I8)
- WRITE(*,*) DUMMY,NCONV 60
- READ(22,58)NSD2,SX,SY READ(22,58)NSD3,SX,SY END DO FORMAT(2X,318) FORMAT(6X,18,2F10.6)

READ(22,60)DUMMY,NCONV

WRITE(*,*) DUMMY,NRAD FORMAT(//,2X,A26,I8) DO I=1,NRAD READ(22,55)K,NER(I),NSIDER(I)

READ(22,58)NSD1,SX,SY

50

55

58

READ(22,45)(K,NODEV(I),I=1,NVELB) 45 FORMAT(2X,2I8)

READ(22,50)DUMMY,NRAD

- READ(22,42)DUMMY,NVELB WRITE(*,*) DUMMY,NVELB 42 FORMAT(//,2X,A32,I8)
- WRITE(*,*)DUMMY,NTEMP 35 FORMAT(//,2X,A24,I8) READ(22,40)(K,NODET(I),BTEMP(I),I=1,NTEMP) С WRITE(*,40)(I,NODET(I),BTEMP(I),I=1,NTEMP) 40 FORMAT(2X,18,18,F11.5)
- 30 READ(22,35)DUMMY,NTEMP
- READ(22,30)(K,(NODE(I,J),J=1,8),IMAT(I),I=1,NE) FORMAT(2X, I8, 814, 2X, I4)

80 FORMAT(2X,18,18)

C READ IN THE VIEW FACTORS FOR RADIATION

- C FEVIEW MUST BE RUN FIRST (ONCE FOR EACH DATA FILE)
- C AND THE VIEW FACTORS APPENDED TO THE MESH DATA FILE IF (NRAD.NE. 0) THEN DO I=1,NRAD READ (22,90) (K,JK,F(K,J),J=1,NRAD) END DO END IF
- 90 FORMAT (2X,15,15,F12.6)

CLOSE(22) RETURN END

. ...

NBT - IS THE TOTAL NUMBER OF B.C.'S

- **INCLUDE** 'fronto.prm' COMMON/MI/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE),MAP(MXE) COMMON/M9/NOPP(MXN),NODF(MXN),XBCF(MXTV),IBCF(MXTV) COMMON/M8/NODET(MXB), BTEMP(MXB), NODEV(MXB) С ************* С MAKE A LIST OF THE NUMBER OF VARIABLES AT EACH NODE - NODF С ALL NODES HAVE AT LEAST 1 DEGREE OF FREEDOM (TEMPERATURE) DO I=I.NN NODF(1)=1END DO DO I=1,NE IF (IMAT(I).EQ.1) THEN DO J=1,8 M=NODE(I,J) IF((J.EQ.1).OR.(J.EQ.3).OR.(J.EQ.5).OR.(J.EQ.7))THEN NODF(M)=4ELSE NODF(M)=3END IF END DO END IF END DO С LIST OF DEGREE OF FREEDOM NUMBER FOR FIRST VARIABLE AT EACH NODE С AND DETERMINE THE TOTAL NUMBER OF VARIABLES - NTOTAL NOPP(1)=1NTOTAL=NODF(1) DO I=2,NN NOPP(I)=NOPP(I-1)+NODF(I-1) NTOTAL=NTOTAL+NODF(I) IF(NTOTAL.EQ.MXTV) THEN WRITE(*,*)'INCREASE VALUE OF MXTV' STOP END IF WRITE(*,*)I,NOPP(I),NODF(I) С END DO BOUNDARY CONDITION LISTS С С XBCF - HAS THE ACTUAL VALUE (TEMPERATURE AND VELOCITY) С IBCF - IS 1 OR 0 (A FLAG FOR FIXED B.C.'S)
- SUBROUTINE PREFRONT(NE,NN,NVELB,NTEMP,NTOTAL,NBT)

FRONTAL SOLUTION METHOD THAT ARE NOT GENERATED BY READ

THIS SUBROUTINE CREATES THE ARRAYS AND INFORMATION NEEDED BY THE

С

С

С

- DO IT=1,NTEMP M=NODET(IT) XBCF(NOPP(M))=BTEMP(IT) С SET DOF'S LOCATION TO 1 IF A FIXED TEMPERATURE IBCF(NOPP(M))=1NBT=NBT+1 END DO
- С WRITE(*,*)IB,M,XBCF(NOPP(M)+1) END DO
- С SETS THE DOF'S LOCATION TO 1, IF A ZERO VELOCITY BOUNDARY IBCF(NOPP(M)+1)=1IBCF(NOPP(M)+2)=1
- NBT=0 DO IB=1,NVELB M=NODEV(IB) С SETS THE VELOCITY VALUE XBCF(NOPP(M)+1)=0.0XBCF(NOPP(M)+2)=0.0

DO I=I,NTOTAL XBCF(I)=0.0 IBCF(I)=0 END DO

NBT=NBT+2

RETURN END

• -- --

300

SUBROUTINE RADIATE(IRD,NRAD) INCLUDE 'fronto.prm'

COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE),MAP(MXE) COMMON/M5/RHSM(MXTV),RHSMO(MXTV),RHSMM(MXTV)

COMMON/M3/NER(MXB),NSIDER(MXB),RFLUX(MXB),F(MXB,MXB), & ARAD(MXB,MXB)

COMMON/M9/NOPP(MXN),NODF(MXN),XBCF(MXTV),IBCF(MXTV)

DIMENSION TRR(MXB), RTEMP(MXB), JR(MXB+50), NR(3) **DIMENSION ES(20)**

- С RSIGMA IS THE STEFAN-BOLTZMANN CONSTANT (BTU/(hr*FT^2*R^4)) RSIGMA=0.17123E-8
- С EMISSIVITIES, COORESPOND TO FECOME MATERIAL NUMBERS ES(1)=0.9 **!EMISSIVITY OF BARE STEEL PIPE (BLACK)** С ES(1)=0.5 **!EMISSIVITY OF LOW EMISSIVITY PAINT** ES(6)=0.9 **!SAME AS 1** ES(3)=0.6 **!EMISSIVITY OF SYTROFOAM INSULATION (NEW)** С ES(3)=0.9
 - **!EMISSIVITY OF STYROFOAM INSULATION (OLD)**
 - ES(5)=0.9 **!EMISSIVITY OF PIPE INSULATION (COVER)**

DO I=1,MXB RTEMP(I)=0.0 TRR(I)=0.0 END DO

IF (IRD.EQ.0) THEN

- IRD=I
- С ASSIGN EMISSIVITIES AND CALCULATES LHS AND INVERTS MATRIX ONLY С ONCE
- ******************* С

DO K=1,NRAD

DO J=1,NRAD EM=(1-ES(IMAT(NER(J)))/ES(IMAT(NER(J))) IF (J.EQ. K) KD = 1.0IF (J.NE. K) KD = 0.0

- С CALL LENGTH(NER(J), NSIDER(J), ASLEN)
- ARAD(K,J)=((KD/ES(IMAT(NER(J))))-F(K,J)*EM)
- ASLEN! CALL LENGTH AND DIVIDE BY ASLEN FOR FLUX IN BTU/HR с
- С WRITE(*,*)K.J.F(K.J).ASLEN,ARAD(K.J) END DO END DO

с	
C	INVERSION OF ARAD, FROM NUMERICAL METHODS, HORNBECK PD=1.0
	N=NRAD
	DO 124 L=1,N
	DD=0.0
	DD=0.0 DO 123 K=1,N
123	DD=DD+ARAD(L,K)*ARAD(L,K)
125	DD=SQRT(DD)
124	PD=PD*DD
147	DO 125 L=1,N
125	JR(L+20)=L
	DO 144 L=1,N
	CC=0.0
	M=L
	DO 135 K=L,N
	IF((ABS(CC)-ABS(ARAD(L,K))).GE.0.0) GOTO 135
126	M=K
	CC=ARAD(L,K)
135	
127	IF(L.EQ.M) GOTO 138
128	K=JR(M+20)
	JR(M+20)=JR(L+20)
	JR(L+20)=K
	DO 137 K=1,N
	RS=ARAD(K,L)
	ARAD(K,L)=ARAD(K,M)
137	ARAD(K,M)=RS
13 8	ARAD(L,L)=1.0
	DO 139 M=1,N
139	ARAD(L,M)=ARAD(L,M)/CC
	DO 142 M=1,N
	IF (L.EQ.M) GOTO 142
129	CC=ARAD(M,L)
	IF (CC.EQ.0.0) GOTO 142
130	ARAD(M,L)=0.0
	DO 141 K=1,N
141	ARAD(M,K)=ARAD(M,K)-CC*ARAD(L,K)
142	CONTINUE
144	CONTINUE
	DO 143 L=1,N IE (ID(1+20)) EO L (COTO 142)
131	IF (JR(L+20).EQ.L) GOTO 143 M=L
131	M=L M=M+l
152	IF(JR(M+20)).EQ.L) GOTO 133
136	IF (N.GT.M) GOTO 132
133	JR(M+20)=JR(L+20)
	DO 163 K=1,N
	CC=ARAD(L,K)
	ARAD(L,K) = ARAD(M,K)
163	ARAD(M,K)=CC
	JR(L+20)=L

- . --

- С FIND THE AVERAGE TEMPERATURE FOR EACH RADIATION BOUNDARY DO I=1.NRAD TR=0.0 IF (NSIDER(I).EQ.1) THEN NR(1)=NODE(NER(I),1) NR(2)=NODE(NER(I),2) NR(3)=NODE(NER(I),3) END IF IF (NSIDER(I).EQ.2) THEN NR(1)=NODE(NER(I),3) NR(2)=NODE(NER(I),4) NR(3)=NODE(NER(I),5) **END IF** IF (NSIDER(I).EQ.3) THEN NR(1)=NODE(NER(I),5) NR(2)=NODE(NER(I),6) NR(3)=NODE(NER(I),7) END IF IF (NSIDER(I).EQ.4) THEN NR(1)=NODE(NER(I),7) NR(2)=NODE(NER(I),8) NR(3)=NODE(NER(I),1) END IF DO J=1.3 M=NOPP(NR(J)) TR=TR+RHSMO(M)+460.00 END DO TRR(I)=(TR/3.0)**4.0 END DO С CACLULATE THE RHS OF THE RADIATION EQUATION DO K=1,NRAD DO J=1,NRAD RTEMP(K) = RTEMP(K) + (F(K,J) * RSIGMA*(TRR(K) - TRR(J)))END DO END DO С CALCULATE NEW RADIATION FLUX DO K=1,NRAD
 - C CALCULATE NEW RADIATION FLUX DO K=1,NRAD RFLUX(K)=0.0 END DO RADSUM=0.0

DO K=1,NRAD

- --- ---

143

CONTINUE END IF DO J=1,NRAD RFLUX(K)=RFLUX(K)+ARAD(K,J)*RTEMP(J) END DO RADSUM=RADSUM+RFLUX(K) IF(IMAT(NER(K)).EQ.1) RFLUX(K)=0.0 IF(IMAT(NER(K)).EQ.6) RFLUX(K)=0.0

- END DO
- C WRITE(*,*)'RFLUX SUM=',RADSUM

RETURN END SUBROUTINE MATRIX(RHS,ALOCAL,K,NTEMP,NVELB, & NCONV,NHEAT,NRAD,VISC,REF)

- C ASSEMBLES THE ELEMENT MATRIX FOR THE FRONTAL SOLVER C THE MATRIX IS 28x28
- C PARAMETERS:
- C RHS LOCAL RHS OF EQUATION
- C ALOCAL LOCAL ELEMENT MATRIX
- C K CURRENT ELEMENT NUMBER
- C NTEMP NUMBER OF FIXED TEMPERATURE NODES
- C NVELB NUMBER OF ZERO VELOCITY NODES
- C NCONV NUMBER OF CONVECTION SURFACES
- C NHEAT NUMBER OF HEAT FLUX SURFACES
- C NRAD NUBER OF RADIATION SURFACES
- C VISC VISCOSITY OF AIR
- C REF REFERENCE TEMPERATURE FOR BUOYANCY
- C CALLED BY : FRONT3, NEWTONR
- C CALLS TO : ELEMENT
- C MODIFIES : RHS, ALOCAL

INCLUDE 'fronto.prm'

COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE),MAP(MXE) COMMON/M5/RHSM(MXTV),RHSMO(MXTV),RHSMM(MXTV) COMMON/M9/NOPP(MXN),NODF(MXN),XBCF(MXTV),IBCF(MXTV)

COMMON/M4/AA(8,8),A1(8,8),A2(8),A3(8,8),A4(8,8),A5(8,8),A6(8), & A7(8,8),A8(8,8),A9(8,8)

DIMENSION ALOCAL(28,28), RHS(28)

DO I=1,28 DO J=1,28 ALOCAL(I,J)=0.0 END DO RHS(I)=0.0 END DO CALL ELEMENT(K,NTEMP,NVELB,NCONV,NHEAT,NRAD,VISC,REF,MATL) IF(MATL .EQ. 1) THEN I=0 IK=0 DO 300 IJ=1,8

C TEMPERATURE [=I+1

> ALOCAL(I,1)=AA(IJ,1)ALOCAL(I,2)=0.0ALOCAL(I,3)=0.0

ALOCAL(I,4)=0.0

ALOCAL(I,5)=AA(IJ,2) ALOCAL(I,6)=0.0 ALOCAL(I,7)=0.0

ALOCAL(I,8)=AA(IJ,3) ALOCAL(I,9)=0.0 ALOCAL(I,10)=0.0 ALOCAL(I,11)=0.0

ALOCAL(I,12)=AA(IJ,4) ALOCAL(I,13)=0.0 ALOCAL(I,14)=0.0

ALOCAL(I,15)=AA(IJ,5) ALOCAL(I,16)=0.0 ALOCAL(I,17)=0.0 ALOCAL(I,18)=0.0

ALOCAL(I,19)=AA(II,6) ALOCAL(I,20)=0.0 ALOCAL(I,21)=0.0

ALOCAL(I,22)=AA(IJ,7) ALOCAL(I,23)=0.0 ALOCAL(I,24)=0.0 ALOCAL(I,25)=0.0

ALOCAL(I,26)=AA(IJ,8) ALOCAL(I,27)=0.0 ALOCAL(I,28)=0.0

C X-VELOCITY I=I+1

> ALOCAL(I,1)=0.0 ALOCAL(I,2)=A3(IJ,1) ALOCAL(I,3)=a8(IJ,1) ALOCAL(I,4)=A4(IJ,1)

ALOCAL(I,5)=0.0 ALOCAL(I,6)=A3(IJ,2) ALOCAL(I,7)=A8(IJ,2)

ALOCAL(I,8)=0.0 ALOCAL(I.9)=A3(IJ,3) ALOCAL(I,10)=A8(IJ,3) ALOCAL(I,11)=A4(IJ,2)

ALOCAL(I,12)=0.0

- -

+-

ALOCAL(I,13)=A3(IJ,4) ALOCAL(I,14)=A8(IJ,4)

ALOCAL(I,15)=0.0 ALOCAL(I,16)=A3(IJ,5) ALOCAL(I,17)=A8(IJ,5) ALOCAL(I,18)=A4(IJ,3)

ALOCAL(I,19)=0.0 ALOCAL(I,20)=A3(IJ,6) ALOCAL(I,21)=A8(IJ,6)

ALOCAL(I,22)=0.0 ALOCAL(I,23)=A3(IJ,7) ALOCAL(I,24)=A8(IJ,7) ALOCAL(I,25)=A4(IJ,4)

ALOCAL(I,26)=0.0 ALOCAL(I,27)=A3(IJ,8) ALOCAL(I,28)=A8(IJ,8)

C Y-VELOCITY I=I+1

> ALOCAL(I, I)=A1(IJ, 1) ALOCAL(I,2)=A9(IJ, 1) ALOCAL(I,3)=A7(IJ, 1) ALOCAL(I,4)=A5(IJ, 1)

> ALOCAL(I,5)=A1(IJ,2) ALOCAL(I,6)=A9(IJ,2) ALOCAL(I,7)=A7(IJ,2)

ALOCAL(I,8)=A1(IJ,3) ALOCAL(I,9)=A9(IJ,3) ALOCAL(I,10)=A7(IJ,3) ALOCAL(I,11)=A5(IJ,2)

ALOCAL(I,12)=A1(IJ,4) ALOCAL(I,13)=A9(IJ,4) ALOCAL(I,I4)=A7(IJ,4)

ALOCAL(I,15)=A1(IJ,5) ALOCAL(I,16)=A9(IJ,5) ALOCAL(I,17)=A7(IJ,5) ALOCAL(I,18)=A5(IJ,3)

ALOCAL(I,19)=A1(IJ,6) ALOCAL(1,20)=A9(IJ,6) ALOCAL(I,21)=A7(IJ,6)

ALOCAL(I,22)=A1(IJ,7) ALOCAL(I,23)=A9(IJ,7) ALOCAL(I,24)=A7(IJ,7) ALOCAL(I,25)=A5(IJ,4)

ALOCAL(I,26)=A1(IJ,8) ALOCAL(I.27)=A9(IJ,8) ALOCAL(I,28)=A7(IJ,8)

C PRESSURE IF ((IJ.EQ.1).OR.(IJ.EQ.3).OR.(IJ.EQ.5).OR.(IJ.EQ.7)) THEN I=I+1 IK=IK+I

> ALOCAL(I,1)=0.0 ALOCAL(I,2)=A4(1,IK) ALOCAL(I,3)=A5(1,IK) ALOCAL(I,4)=0.0

> ALOCAL(I,5)=0.0 ALOCAL(I,6)=A4(2,IK) ALOCAL(I,7)=A5(2,IK)

ALOCAL(I,8)=0.0 ALOCAL(I,9)=A4(3,IK) ALOCAL(I,10)=A5(3,IK) ALOCAL(I,11)=0.0

ALOCAL(I,12)=0.0 ALOCAL(I,13)=A4(4,IK) ALOCAL(I,14)=A5(4,IK)

ALOCAL(I,15)=0.0 ALOCAL(I,16)=A4(5,IK) ALOCAL(I,17)=A5(5,IK) ALOCAL(I,18)=0.0

ALOCAL(I,19)=0.0 ALOCAL(I,20)=A4(6,IK) ALOCAL(I,21)=A5(6,IK)

ALOCAL(I,22)=0.0 ALOCAL(I,23)=A4(7,IK) ALOCAL(I,24)=A5(7,IK) ALOCAL(I,25)=0.0

ALOCAL(1,26)=0.0 ALOCAL(1,27)=A4(8,IK) ALOCAL(1,28)=A5(8,IK) END IF

300 CONTINUE

ELSE JCT=0 DO I=1,8 LODFMI=NODF(NODE(K,I)) DO LJ=I,LODFMI JJCT=0 JCT=JCT+1

DO J=1,8 LODFMJ=NODF(NODE(K,J))

DO LJJ=1,LODFMJ JJCT=JJCT+1 IF ((LJJ.EQ.1) .AND. (LJ.EQ.1)) THEN

ALOCAL(JCT,JJCT)=AA(I,J) ELSE ALOCAL(JCT,JJCT)=0.0 END IF

END DO END DO END DO END DO

END IF

C RIGHT HAND SIDE (VELOCITY) RHS(3)=A2(1) RHS(7)=A2(2) RHS(10)=A2(3) RHS(14)=A2(4) RHS(17)=A2(5) RHS(21)=A2(6) RHS(24)=A2(7) RHS(28)=A2(8)

C RIGHT HAND SIDE (TEMPERATURE) RHS(1)=A6(1) RHS(5)=A6(2) RHS(8)=A6(3) RHS(12)=A6(4) RHS(15)=A6(5) RHS(19)=A6(6) RHS(22)=A6(7) RHS(26)=A6(8)

> RETURN END

> > • -

_

SUBROUTINE FRONT3(DSOLN,NTYPE1,NELEM,NPOIN,NTOTV,VISC,NTEMP,NVELB, & NCONV,NHEAT,NRAD,REF,ISI)

INCLUDE 'fronto.prm'

DIMENSION RLOCAL(MXDOF), ALOCAL(28,28), GLOBAL(MXF, MXF), &RHS(MXTV), LHEDV(MXF), PNORM(MXF), NDEST(MXDOF), LOCEL(MXDOF)

LOGICAL*1 LOGICL(MXE,MXEN)

- C BUFFER ARRAYS INTEGER*2 ISTORE(2,MXSTORE),IWHO(2,MXSTORE,2),NEQ(MXW) DIMENSION XSTORE(2,MXSTORE),NBUF(MXW),IBC(MXTV) DIMENSION DSOLN(MXTV)
- C EXTERNAL SUBROUTINE ARRAYS COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE),MAP(MXE) COMMON/M9/NOPP(MXN),NODF(MXN),XBCF(MXTV),IBCF(MXTV) COMMON/M5/RHSM(MXTV),RHSMO(MXTV),RHSMM(MXTV)
- C REWIND TAPES PRIOR TO SOLUTION PROCEDURE
- C THIS FEATURE HAS BEEN DISABLE SINCE SUN FORTRAN
- C DOES NOT SUPPORT THE LARGE BINARY WRITE STATEMENTS
- C REQUIRED.
- C OPEN(4,STATUS='SCRATCH',FORM='UNFORMATTED')
- C BUFFER INITIALIZATIONS

ICURRENT = 1 IRESERVE = 0 IARRAY = 1 IEQ = 0 IBUF = 0 LEND = 0 IWRITE=0

> DO I=I,MXTV IBC(I)=IBCF(I) END DO

DO I=1,MXDOF LOCEL(I)=0 NDEST(I)=0 END DO

DO I=1,MXF LHEDV(I)=0 PNORM(I)=0.0 END DO

DO I=1,MXSTORE

- ----

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DO I=1,MXTV IF(ISI.EQ.1) THEN RHS(I)=RHSM(I)

-

50 CONTINUE

DO 50 IFRON=1,MXF DO 50 JFRON=1,MXF GLOBAL(IFRON,JFRON)=0.

C REWIND 4

NFRON=0

- C INITIALIZE HEADING AND GRAND FLUID MATRIX
- 40 CONTINUE
- 30 CONTINUE

LASTE=0

- 20 CONTINUE LOGICL(LASTE,LASTN)=.FALSE.
- DO 10 INODP=1,MXEN IF(NODE(MAP(IELEM),INODP).NE.IPOIN)GO TO 10 LASTE=MAP(IELEM) LASTN=INODP GO TO 20 10 CONTINUE
- DO 15 IELEM=1,NELEM DO 15 INODE = 1,MXEN 15 LOGICL(IELEM,INODE) = .TRUE.

DO 30 IPOIN=1,NPOIN

DO 20 IELEM=1,NELEM

C ON FIRST ITERATION ONLY FIND LAST APPEARANCE OF EACH NODE

DO I=1,MXS10 IWHO(1,I,1)=0 IWHO(2,I,1)=0 IWHO(2,I,2)=0 END DO DO I=1,MXW NBUF(I)=0 NEQ(I)=0

END DO

ISTORE(1,I)=0 ISTORE(2,I)=0 XSTORE(1,I)=0.0 XSTORE(2,I)=0.0 END DO DO I=1,MXSTORE ELSE RHS(I)=0.0 END IF DSOLN(I)=0.0 END DO

C START ASSEMBLY BY FORMING ELEMENT MATRIX KELEM=0 KEEEM=0 60 CONTINUE KEEEM=KEEEM+1

KELEM=MAP(KEEEM) DO 65 I=1,MXDOF RLOCAL(I)=0.0 DO 65 J=1,MXDOF

ALOCAL(I,J)=0.0

65

IF(ISI.EO.0) THEN CALL MATRIX(RLOCAL, ALOCAL, KELEM, NTEMP, NVELB, NCONV, NHEAT, NRAD &.VISC,REF) IL=1 DO 63 I=1,MXEN IRP=NOPP(NODE(KELEM,I)) IRF=NODF(NODE(KELEM,I)) RHS(IRP)=RHS(IRP)+RLOCAL(IL) IL=IL+1 IRP=IRP+1 IF (IRF.GT.1) THEN RHS(IRP)=RHS(IRP)+RLOCAL(IL) IL=IL+1 IRP=IRP+1 RHS(IRP)=RHS(IRP)+RLOCAL(IL) IL=IL+1 IRP=IRP+1 ELSE [L=IL+2 END IF IF (IRF.EQ.4) THEN RHS(IRP)=RHS(IRP)+RLOCAL(IL) IL=IL+I

ELSE IF((I.EQ.1).OR.(I.EQ.3).OR.(I.EQ.5).OR.(I.EQ.7)) THEN IL=IL+1 END IF END IF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- -- --

NDEST(IEVAB)=NFRON LHEDV(NFRON)=KTOTV GO TO 120 110 CONTINUE NDEST(IEVAB)=KFRON LHEDV(KFRON)=KTOTV 120 CONTINUE

- --

С

IF(NFRON.LE.MXF) GOTO 100 WRITE(6,2000) STOP 100 CONTINUE

NFRON=NFRON+1

- **80 CONTINUE** 90 CONTINUE
- DO 120 IEVAB=1,MXDOFf KTOTV=LOCEL(IEVAB) IF(NFRON.EQ.0)GO TO 90 DO 80 IFRON=1,NFRON KFRON=IFRON IF(IABS(KTOTV).EQ.IABS(LHEDV(KFRON)))GO TO 110
- 70 CONTINUE

DO 70 IODFM=1.LODFM KEVAB=KEVAB+1 LOCEL(KEVAB)=IADFM+IODFM-I IF(LOGICL(KELEM,INODP).EQ. .FALSE.)LOCEL(KEVAB)=-LOCEL(KEVAB)

DO 70 INODP=1,MXEN KPOIN=NODE(KELEM,INODP) IADFM=NOPP(IABS(KPOIN)) LODFM=NODF(IABS(KPOIN)) MXDOFF=MXDOFF+LODFM

MXDOFF=0

C CREATE GLOBAL DOF ARRAY FOR EACH LOCAL ELEMENT DOF

KEVAB=0

END IF

ELSE

CONTINUE

63

CALL NEWTONJ(ALOCAL, KELEM, NTEMP, NVELB, NCONV, NHEAT, NRAD &.VISC,REF)

PIVOG=GLOBAL(IFRON, IFRON) IF(ABS(PIVOG).LT.ABS(PIVOT))GO TO 170 PIVOT=PIVOG LPIVT=IFRON

C SEARCH FOR LARGEST PIVOTAL VALUE

170 CONTINUE

IF(NFSUM.EQ.0)GO TO 60 KTOTV=IABS(LHEDV(LPIVT)) IF(ABS(PIVOT).GT.1d-12)GO TO 180 WRITE(6,2010)KTOTV,PIVOT STOP

180 CONTINUE

C NORMALIZE PIVOTAL EQN

GLOBAL(IFRON, IFRON)=1. 160 CONTINUE

150 CONTINUE

PIVOT=0.

DO 170 IFRON=1,NFRON IF(LHEDV(IFRON).GE.0)GO TO 170 NFSUM=1 IF(IBC(IABS(LHEDV(IFRON))).NE.1)GO TO 160 KTOTV=IABS(LHEDV(IFRON)) IBC(KTOTV)=-1 IF(ISI.EQ.I) THEN RHS(KTOTV)=0.0 ELSE RHS(KTOTV)=XBCF(KTOTV) END IF DO 150 LFRON=1,NFRON GLOBAL(IFRON, LFRON)=0.

С CHECK LAST APPEARANCE OF EACH DOF PROCESS BOUNDARY CONDITIONS

DO 130 IEVAB=1.MXDOFf IFRON=NDEST(IEVAB) DO 130 JEVAB=I,MXDOFf JFRON=NDEST(JEVAB) GLOBAL(JFRON, IFRON)=GLOBAL(JFRON, IFRON)+ALOCAL(JEVAB, IEVAB) 130 CONTINUE IF(NFRON.LT.NCRIT.AND.KEEEM.LT.NELEM)GO TO 60 140 CONTINUE NFSUM=0

RHS(ITOTV)=RHS(ITOTV)-FACOR*RHSID
290 CONTINUE
300 CONTINUE
IF(IABS(IBC(KTOTV)).EQ.1)GO TO 310
C WRITE OUT NON-FIXED PIVOTAL EQN ON TAPE
IF(IABS(IBC(KTOTV)).EQ.1) GOTO 310
IF(LEND+NFRON .LE. MXSTORE .AND. IWRITE.EQ.0) THEN
DO 901 IFRON = 1,NFRON

DO 290 IFRON=LPIVT+1,NFRON FACOR=GLOBAL(IFRON,LPIVT) IF(LPIVT.EQ.1)GO TO 270 DO 260 JFRON=1,LPIVT-1 GLOBAL(IFRON-1,JFRON)=GLOBAL(IFRON,JFRON)-FACOR*PNORM(JFRON) 260 CONTINUE 270 CONTINUE DO 280 JFRON=LPIVT+1,NFRON GLOBAL(IFRON-1,JFRON-1)=GLOBAL(IFRON,JFRON)-FACOR*PNORM(JFRON) 280 CONTINUE ITOTV=IABS(LHEDV(IFRON))

210 CONTINUE IF(LPIVT.EQ.NFRON)GO TO 230 DO 220 JFRON=LPIVT+1,NFRON GLOBAL(IFRON,JFRON-1)=GLOBAL(IFRON,JFRON)-FACOR*PNORM(JFRON)
220 CONTINUE
230 CONTINUE
ITOTV=IABS(LHEDV(IFRON)) RHS(ITOTV)=RHS(ITOTV)-FACOR*RHSID
240 CONTINUE
250 CONTINUE

GLOBAL(IFRON, JFRON)=GLOBAL(IFRON, JFRON)-FACOR*PNORM(JFRON)

C ELIMINATION OF PIVOTAL EQUATION REDUCING FRONT WIDTH

RHSID=RHS(KTOTV)/PIVOT RHS(KTOTV)=RHSID

IF(LPIVT.EQ.1) GOTO 250 DO 240 IFRON=1,LPIVT-1

FACOR=GLOBAL(IFRON,LPIVT) IF(FACOR.EQ.0.0) GOTO 210 DO 200 JFRON=1,LPIVT-1

IF(LPIVT.EO.NFRON)GO TO 300

190 CONTINUE

200 CONTINUE

DO 190 IFRON=1,NFRON PNORM(IFRON)=GLOBAL(LPIVT,IFRON)/PIVOT

```
ISTORE(IARRAY, IFRON+LEND) = LHEDV(IFRON)
   XSTORE(IARRAY, IFRON+LEND) = PNORM(IFRON)
 901 CONTINUE
   IEQ = IEQ + 1
   LEND = LEND + NFRON
   IWHO(IARRAY, IEQ, 1) = NFRON
   IWHO(IARRAY,IEQ,2) = LPIVT
   ELSE
C IBUF = IBUF + 1
С
    WRITE(4)NFRON,LPIVT,(LHEDV(IFRON),PNORM(IFRON),IFRON=I,NFRON)
С
    IWRITE = 1
       WRITE(6,2020)mxstore,lend+nfron
      STOP
   END IF
310 CONTINUE
   DO 320 IFRON=1,NFRON
   GLOBAL(IFRON,NFRON)=0.
   GLOBAL(NFRON, IFRON)=0.
320 CONTINUE
   IF(LPIVT.EQ.NFRON)GO TO 340
   DO 330 IFRON=LPIVT,NFRON-1
   LHEDV(IFRON)=LHEDV(IFRON+1)
330 CONTINUE
340 CONTINUE
   NFRON=NFRON-1
С
  ASSEMBLE ELIMINATE OR BACK SUBSTITUTE
   IF(NFRON.GT.NCRIT)GO TO 140
   IF(KEEEM.LT.NELEM)GO TO 60
   IF(NFRON.GT.0)GO TO 140
С
  BACK SUBSTITUTION
   DO 350 ITOTV=1,NTOTV
      IF(ISI.EQ.1)THEN
      DSOLN(ITOTV)=0.0
      ELSE
   DSOLN(ITOTV)=XBCF(ITOTV)
      ENDIF
   IBC(ITOTV)=-IBC(ITOTV)
350 CONTINUE
   DO 370 ITOTV=1,NTOTV-NTYPEI
      IF(IBUF.GT.0) THEN
С
      BACKSPACE 4
С
      READ(4)NFRON,LPIVT,(LHEDV(IFRON),PNORM(IFRON),IFRON=1,NFRON)
      ELSE
      NFRON = IWHO(IARRAY,IEQ,1)
      LPIVT = IWHO(IARRAY, IEQ, 2)
  DO 921 IFRON = 1,NFRON
```

- -----

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LHEDV(NFRON+1-IFRON) = ISTORE(IARRAY,LEND+1-IFRON) IEQ = IEQ-1LEND = LEND - NFRON **ENDIF** KTOTV=IABS(LHEDV(LPIVT)) TEMPR=0. PNORM(LPIVT)=0. DO 360 IFRON=1,NFRON

TEMPR=TEMPR-PNORM(IFRON)*DSOLN(IABS(LHEDV(IFRON)))

2000 FORMAT(//10H PROGRAM H, 10HALTED FRON, 10HTWIDTH IS .

2010 FORMAT(//10H PROGRAM H, 10HALTED ILL-, 10HCONDITIONI,

2020 FORMAT(//'THE PARAMETER MXSTORE IS TOO SMALL', 2110//)

-2HNG,//10H D.O.FREED,7HOM ,I4,/10H PIVOT VAL,

PNORM(NFRON+1-IFRON) = XSTORE(IARRAY,LEND+1-IFRON)

360 CONTINUE

ENDIF

370 CONTINUE

RETURN

-3HUE ,E9.2)

END

-9HTOO SMALL)

- ---

IF(IBUF.GT.0) THEN

BACKSPACE 4

IBUF = IBUF - 1

С

С

С

С

921 CONTINUE

DSOLN(KTOTV)=RHS(KTOTV)+TEMPR

C CLOSE(UNIT=4,STATUS='DELETE')

SUBROUTINE NEWTONR(NE, NTEMP, NVELB, NCONV, NHEAT, NRAD, VISC, REF)

- C THIS SUBROUTINE CREATES THE R(V^N) VECTOR (RESIDUALS FOR THE
- C NEWTON RAPHSON METHOD. I DOSE THIS BY ASSMEMBLING THE DOF
- C EQUATIONS ELEMENT BY ELEMENT AND THEN BACK SUBSTITUTING THE
- C CURRENT SOLUTION (RHSMO) AND STORING THE RESIDUALS IN RHSM.
- C MODIFIES : RHSM
- C PARAMETERS:
- C K ELEMENT NUMBER
- C NTEMP NUMBER OF FIXED TEMPERAUTRE NODES
- C NVELB NUMBER OF VELOCITY BOUNDARY NODES
- C NCONV NUMBER OF CONVECTION BOUNDARY NODES
- C NHEAT NUMBER OF SPECIFIED HEAT FLUX BOUNDARIES
- C NRAD NUMBER OF RADIATION SURFACES
- C VISC VISCOSITY OF AIR OR
- C REF REFERENCE TEMPERATURE FOR AIR
- C CALLS: MATRIX

INCLUDE 'fronto.prm'

COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE),MAP(MXE) COMMON/M9/NOPP(MXN),NODF(MXN),XBCF(MXTV),IBCF(MXTV) COMMON/M8/NODET(MXB),BTEMP(MXB),NODEV(MXB)

COMMON/M5/RHSM(MXTV),RHSMO(MXTV),RHSMM(MXTV) COMMON/M2/COND(10),CV(10),RHO(10)

COMMON/M4/AA(8,8),A1(8,8),A2(8),A3(8,8),A4(8,8),A5(8,8),A6(8), & A7(8,8),A8(8,8),A9(8,8)

DIMENSION RHS(28), ALOCAL(28,28), RLOCAL(28), RL(28)

DO K=1,NE DO I=1,28 RL(I)=0.0 RLOCAL(I) = 0.0 END DO

MATL=IMAT(K) CALL MATRIX(RHS,ALOCAL,K.NTEMP,NVELB,NCONV,NHEAT,NRAD,VISC,REF)

C SET UP RLOCAL IL=1 DO 63 I=1,8 IRP=NOPP(NODE(K,I)) IRF=NODF(NODE(K,I))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- -

......

END IF END IF 63 CONTINUE IF(MATL.NE.1) THEN UNCONDENSE ALOCAL DO I=1,28 DO J=1,28 ALOCAL(I,J)=0.0 END DO END DO I=0 DO [J=1,8 I=I+IALOCAL(I,1) = AA(IJ,1)ALOCAL(I,5) = AA(IJ,2)ALOCAL(I,8) = AA(IJ,3)ALOCAL(I,12) = AA(IJ,4)ALOCAL(I,15) = AA(IJ,5)ALOCAL(I, 19) = AA(IJ, 6)ALOCAL(I,22) = AA(IJ,7)ALOCAL(I,26) = AA(IJ,8)[=**I**+2 IF((IJ.EQ.1).OR.(IJ.EQ.3).OR.(IJ.EQ.5).OR.(IJ.EQ.7))THEN I=I+1END IF END DO END IF

С

IL=IL+1

IRP=IRP+I ELSE IL=IL+2 END IF IF (IRF.EQ.4) THEN RLOCAL(IL)=RHSMO(IRP) IL=IL+1ELSE IF((I.EQ.I).OR.(I.EQ.3).OR.(I.EQ.5).OR.(I.EQ.7)) THEN

IF (IRF.GT.1) THEN RLOCAL(IL)=RHSMO(IRP) IL=IL+1 IRP=IRP+1 RLOCAL(IL)=RHSMO(IRP) IL=IL+1

RLOCAL(IL)=RHSMO(IRP) IL=IL+1 IRP=IRP+I

- C MULTIPLY ALOCAL TIMES RLOCAL DO I=1,28 DO J=1,28 RL(I)=RL(I)+ALOCAL(I,J)*RLOCAL(J) END DO RL(I)=RL(I)-RHS(I) END DO
- C PUT RL INTO GLOBAL RHSM IL=1 DO 73 I=1,8 IRP=NOPP(NODE(K,I)) IRF=NODF(NODE(K,I))

RHSM(IRP)=RHSM(IRP)+RL(IL) IL=IL+1 IRP=IRP+1

IF (IRF.GT.1) THEN RHSM(IRP)=RHSM(IRP)+RL(IL) IL=IL+1 IRP=IRP+1

RHSM(IRP)=RHSM(IRP)+RL(IL) IL=IL+1 IRP=IRP+1 ELSE IL=IL+2 END IF

IF (IRF.EQ.4) THEN RHSM(IRP)=RHSM(IRP)+RL(IL) IL=IL+1 ELSE IF((I.EQ.1).OR.(I.EQ.3).OR.(I.EQ.5).OR.(I.EQ.7)) THEN IL=IL+1 END IF END IF

73 CONTINUE END DO RETURN END

.

SUBROUTINE NEWTONJ(ALOCAL,K,NTEMP,NVELB, & NCONV,NHEAT,NRAD,VISC,REF)

- C THIS SUBROUTINE ASSEMBLES THE LOCAL ELEMENT MATRIX FOR
- C THE JACOBIAN USED IN NEWTON-RAPHSON, THE GLOBAL EQUATIONS
- C ARE ASSEMBLED IN FRONT3.F
- C THE MATRIX ALOCAL IS 28X28
- C MODIFIES : ALOCAL
- C PARAMETERS:
- C ALOCAL LOCAL ELEMENT MATRIX
- C K CURRENT ELEMENT NUMBER
- C NTEMP NUMBER OF BOUNDARY TEMPERATURES
- C NVELB NUMBER OF VELOCITY BOUNDARIES
- C NCONV NUMBER OF CONVECTION SURFACES
- C NHEAT NUMBER HEAT FLUX SURFACES
- C NRAD NUBER OF RADIATION SURFACES
- C VISC VISCOSITY OF AIR
- C REF REFERENCE TEMPERATURE FOR BUOYANCY EQUATION
- C CALLED BY : FRONT3
- C CALLS TO : ELEMENT

INCLUDE 'fronto.prm'

COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE),MAP(MXE) COMMON/M9/NOPP(MXN),NODF(MXN),XBCF(MXTV),IBCF(MXTV) COMMON/M5/RHSM(MXTV),RHSMO(MXTV),RHSMM(MXTV)

COMMON/M4/AA(8,8),A1(8,8),A2(8),A3(8,8),A4(8,8),A5(8,8),A6(8),

& A7(8.8),A8(8,8),A9(8,8)

COMMON/M10/DP1(8,8),DP2(8,8),DP3(8,8),DP4(8,8),DP5(8,4),

- & DP6(8,4),DP7(8),DP8(8,8),DP9(8,8),DP10(8,8),DP11(8,8),
- & DP12(8,8),DP13(8,8),DP14(8,8),DP15(8,8)

COMMON/M2/COND(10),CV(10),RHO(10)

DIMENSION ALOCAL(28,28) DO I=1,28 DO J=1,28 ALOCAL(I,J)=0.0 END DO END DO

CALL ELEMENT(K.NTEMP,NVELB,NCONV,NHEAT,NRAD,VISC,REF,MATL) IF(MATL.EQ.1) THEN I=0 IK=0 DO 300 J=1,8 C TEMPERATURE I=I+1

> ALOCAL(I,1)=AA(J,1) ALOCAL(I,2)=3600.0*CV(MATL)*DP10(J,1) ALOCAL(I,3)=3600.0*CV(MATL)*DP11(J,I) ALOCAL(I,4)=0.0

> ALOCAL(I,5)=AA(J,2) ALOCAL(I,6)=3600.0*CV(MATL)*DP10(J,2) ALOCAL(I,7)=3600.0*CV(MATL)*DP11(J,2)

ALOCAL(I,8)=AA(J,3) ALOCAL(I,9)=3600.0*CV(MATL)*DP10(J,3) ALOCAL(I,10)=3600.0*CV(MATL)*DP11(J,3) ALOCAL(I,11)=0.0

ALOCAL(I,12)=AA(J,4) ALOCAL(I,13)=3600.0*CV(MATL)*DP10(J,4) ALOCAL(I,14)=3600.0*CV(MATL)*DP11(J,4)

ALOCAL(I,15)=AA(J,5) ALOCAL(I,16)=3600.0*CV(MATL)*DP10(J,5) ALOCAL(I,17)=3600.0*CV(MATL)*DP11(J,5) ALOCAL(I,18)=0.0

ALOCAL(I,19)=AA(J,6) ALOCAL(I,20)=3600.0*CV(MATL)*DP10(J,6) ALOCAL(I,21)=3600.0*CV(MATL)*dp11(j,6)

ALOCAL(I,22)=AA(J,7) ALOCAL(I,23)=3600.0*CV(MATL)*DP10(J,7) ALOCAL(I,24)=3600.0*CV(MATL)*DP11(J,7) ALOCAL(I,25)=0.0

ALOCAL(I,26)=AA(J,8) ALOCAL(I,27)=3600.0*CV(MATL)*DP10(J,8) ALOCAL(I,28)=3600.0*CV(MATL)*DP11(J,8)

C X-VELOCITY I=I+1

> ALOCAL(I,1)=0.0 ALOCAL(I,2)=A3(J,1)+DP12(J,1) ALOCAL(I,3)=A8(J,1)+DP13(J,1) ALOCAL(I,4)=A4(J,1)

ALOCAL(I,5)=0.0 ALOCAL(I,6)=A3(J,2)+DP12(J,2) ALOCAL(I,7)=A8(J,2)+DP13(J,2) ALOCAL(I,8)=0.0 ALOCAL(I,9)=A3(J,3)+DP12(J,3) ALOCAL(I,10)=A8(J,3)+DP13(J,3) ALOCAL(I,11)=A4(J,2)

ALOCAL(I,12)=0.0 ALOCAL(I,13)=A3(J,4)+DP12(J,4) ALOCAL(I,14)=A8(J,4)+DP13(J,4)

ALOCAL(I,15)=0.0 ALOCAL(I,16)=A3(J,5)+DP12(J,5) ALOCAL(I,17)=A8(J,5)+DP13(J,5) ALOCAL(I,18)=A4(J,3)

ALOCAL(I,19)=0.0 ALOCAL(I,20)=A3(J,6)+DP12(J,6) ALOCAL(I,21)=A8(J,6)+DP13(J,6)

ALOCAL(I,22)=0.0 ALOCAL(I,23)=A3(J,7)+DP12(J,7) ALOCAL(I,24)=A8(J,7)+DP13(J,7) ALOCAL(I,25)=A4(J,4)

ALOCAL(I,26)=0.0 ALOCAL(I,27)=A3(J,8)+DP12(J,8) ALOCAL(I,28)=A8(J,8)+DP13(J,8)

C Y-VELOCITY I=I+1

> ALOCAL(I,1)=A1(J,1) ALOCAL(I,2)=A9(J,1)+DP14(J,1) ALOCAL(I,3)=A7(J,1)+DP15(J,1) ALOCAL(I,4)=A5(J,1)

> ALOCAL(I,5)=A1(J,2) ALOCAL(I,6)=A9(J,2)+DP14(J,2) ALOCAL(I,7)=A7(J,2)+DP15(J,2)

ALOCAL(I,8)=A1(J,3) ALOCAL(I,9)=A9(J,3)+DP14(J,3) ALOCAL(I,10)=A7(J,3)+DP15(J,3) ALOCAL(I,11)=A5(J,2)

ALOCAL(I,12)=A1(J,4) ALOCAL(I,13)=A9(J,4)+DP14(J,4) ALOCAL(I,14)=A7(J,4)+DP15(J,4)

ALOCAL(I,15)=A1(J,5) ALOCAL(I,16)=A9(J,5)+DP14(J,5)

ALOCAL(I, 17) = A7(J, 5) + DP15(J, 5)ALOCAL(I,18)=A5(J,3) ALOCAL(I,19)=A1(J,6) ALOCAL(I,20)=A9(J,6)+DP14(J,6) ALOCAL(I,21)=A7(J,6)+DP15(J,6) ALOCAL(1,22)=A1(J,7) ALOCAL(I,23)=A9(J,7)+DP14(J,7) ALOCAL(I,24)=A7(J,7)+DP15(J,7) ALOCAL(I,25)=A5(J,4) ALOCAL(I.26)=A1(J.8)ALOCAL(1,27)=A9(J,8)+DP14(J,8) ALOCAL(I,28)=A7(J,8)+DP15(J,8) ********** IF ((J.EQ.1).OR.(J.EQ.3).OR.(J.EQ.5).OR.(J.EQ.7)) THEN I=I+1IK=IK+1 ALOCAL(I,1)=0.0 ALOCAL(I,2)=A4(1,IK)ALOCAL(I,3)=A5(1,IK) ALOCAL(I,4)=0.0 ALOCAL(I,5)=0.0 ALOCAL(I,6)=A4(2,IK)ALOCAL(I,7)=A5(2,IK) ALOCAL(I,8)=0.0 ALOCAL(I,9)=A4(3,IK)ALOCAL(I,10)=A5(3,IK) ALOCAL(I,11)=0.0 ALOCAL(I,12)=0.0 ALOCAL(I,13)=A4(4,IK) ALOCAL(I,14)=A5(4,IK) ALOCAL(I,15)=0.0 ALOCAL(I, 16) = A4(5, IK)ALOCAL(I,17)=A5(5,IK) ALOCAL(I,18)=0.0 ALOCAL(I,19)=0.0 ALOCAL(I,20)=A4(6,IK)ALOCAL(I,21)=A5(6,IK) ALOCAL(I,22)=0.0 ALOCAL(I,23)=A4(7,IK) ALOCAL(I,24)=A5(7,IK)ALOCAL(1,25)=0.0

С

148

_ __ __

ALOCAL(I,26)=0.0 ALOCAL(I,27)=A4(8,IK) ALOCAL(I,28)=A5(8,IK)

LODFMI=NODF(NODE(K,I))

LODFMJ=NODF(NODE(K,J))

ALOCAL(JCT,JJCT)=AA(I,J)

ALOCAL(JCT,JJCT)=0.0

IF ((LJJ.EQ.1) .AND. (LJ.EQ.1)) THEN

DO LJ=1,LODFMI

DO LJJ=1,LODFMJ JJCT=JJCT+1

END IF

ELSE JCT=0 DO I=1,8

JJCT=0 JCT=JCT+1

DO J=1,8

ELSE

END IF END DO END DO

END DO END DO

END IF RETURN END

- --- --

- ---- - -

CONTINUE

APPENDIX B: COMPUTER PROGRAM FEVIEW

- C FEVIEW.FOR
- C THIS PROGRAM WILL DETERMINE THE VIEW FACTORS FOR EACH ELEMENT.
- C USING HOTTEL'S CROSSED STRING METHOD.

INCLUDE 'fronto.prm' CHARACTER*80 FNAME CHARACTER*50 DUMMY COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE) COMMON/M3/NER(MXN),NSIDER(MXN),RFLUX(MXN) COMMON/M8/NODET(MXN),BTEMP(MXN),NODEV(MXN)

DIMENSION FABX(1000,1000) DIMENSION NSD1(MXN),NSD2(MXN),NSD3(MXN) DIMENSION AX(4),AY(4),BX(4),BY(4)

- C WRITE(*,9)
- C 9 FORMAT(2X,'INPUT THE RADIATION FILE (IN QUOTES)')
- C READ (*,*) RFILE
- OPEN(UNIT=22,FILE='view.in',STATUS='OLD',FORM='FORMATTED') C

READ(22,*)FNAME READ(22,11)DUMMY,NE READ(22,11)DUMMY,NN READ(22,12)DUMMY,NMATL

- 11 FORMAT(2X,A20,I8)
- 12 FORMAT(2X,A21,I8)

READ(22,14)

14 FORMAT(2X,A15)

READ(22,20)(I,X(I),Y(I),J=1,NN) 20 FORMAT(2X,I8,2F12.6)

READ(22,25)

- 25 FORMAT(//2X,A39)
- READ(22,30)(I,(NODE(I,J),J=1,8),IMAT(I),k=1,NE) 30 FORMAT(2X,I8,8I4,2X,I4)

READ(22,35)DUMMY,NTEMP

DO II=I.NRAD DO I2=1,NRAD FABS = 1.0FABSUM = 0.0AREASUM = 0.0tp=0.0 IF (I1.EQ.I2) GOTO 1000 +(Y(NSD1(I1))-Y(NSD3(I1)))**2.0) ELENB = SQRT((X(NSD1(I2))-X(NSD3(I2)))**2.0

+(Y(NSD1(I2))-Y(NSD3(I2)))**2.0)

IF (I1.GT.I2) GOTO 1000

AX(1)=X(NSD1(I1))

USE RECIPROCITY RELATION IF POSSIBLE

- С FIND THE LENGTH OF ELEMENT A IN THE X-Y DIRECTION ELENA = SQRT((X(NSD1(I1))-X(NSD3(I1)))**2.0
- &
- С FIND THE LENGTH OF ELEMENT B IN THE X-Y DIRECTION

- С **********
- 100 FORMAT (2X,'INPUT THE VIEW FACTOR FILE NAME') С READ (*,*) FFILE OPEN (UNIT=11,FILE='view.out',STATUS='UNKNOWN',FORM='FORMATTED')

ASSIGN COORDINATE VALUES TO LOCAL VARIABLES FOR ELEMENT A

С WRITE(*,100) С

&

С

С

- С ************************
- 58 FORMAT(6X,18,2F10.6)
- 55 FORMAT(2X,3I8)

DO J=1,NRAD READ(22,55)I,NER(I),NSIDER(I) READ(22,58)NSD1(I),SX,SY READ(22,58)NSD2(I),SX,SY READ(22,58)NSD3(I),SX,SY **ENDDO**

- READ(22,50)DUMMY,NRAD 50 FORMAT(//,2X,A26,I8)
- FORMAT(//,2X,A32,I8) READ(22,45)(I,NODEV(I),j=1,NVELB) 45 FORMAT(2X,2I8)
- 40 FORMAT(2X, I8, I8, F8, 2) READ(22,42)DUMMY,NVELB 42
- 35 FORMAT(//,2X,A25,I8) READ(22,40)(I,NODET(I),BTEMP(I),j=1,NTEMP)

AY(1)=Y(NSD1(11)) AX(2)=X(NSD3(11)) AY(2)=Y(NSD3(11))

- C ASSIGN COORDINATE VALUES TO LOCAL VARIABLES FOR ELEMENT B BX(1)=X(NSD1(12)) BY(1)=Y(NSD1(12)) BX(2)=X(NSD3(12)) BY(2)=Y(NSD3(12))
- C CHECK IF ELEMENTS ARE ON SAME VERTICAL PLANE, IF SO SKIP IF((BX(1).EQ.BX(2)).AND.(AX(1).EQ.AX(2))) THEN IF((BX(1).EQ.AX(1)).AND.(AY(1).NE.BY(1))) THEN
- C WRITE(*,*) 'CAUGHT AT 1' FABS = 0.0 GOTO 1000 END IF END IF
- C CHECK IF ELEMENTS ARE ON SAME HORIZONTAL PLANE, IF SO SKIP IF((BY(1).EQ.BY(2)).AND.(AY(1).EQ.AY(2))) THEN IF((BY(1).EQ.AY(1)).AND.(AX(1).NE.BX(1))) THEN
- C WRITE(*,*) 'CAUGHT AT 2' FABS = 0.0 GOTO 1000 END IF END IF
- C IN CASE SURFACE IS CURVED REDEFINE MIDPOINTS AX5=(AX(1)+AX(2))/2.0 AY5=(AY(1)+AY(2))/2.0 BX5=(BX(1)+BX(2))/2.0 BY5=(BY(1)+BY(2))/2.0
- C USE THE MID-POINT TO CHECK FOR SHADOWING
- C IF THE MID POINTS OF TWO ELEMENTS CAN'T BE CONNECTED
- C WITHOUT INTERCEPTING ANOTHER THE RADIATION SURFACE THEN
- C THE SURFACE IS SHADOWED
- C AND THE VIEW FACTOR IS ZERO FABS = 1.0

.

DO I3=1,NRAD IF ((I2.NE.I3) .AND. (I1.NE.I3)) THEN

C SEARCH THROUGH THE SURFACES FOR SHADOWING X1=X(NSD1(I3)) Y1=Y(NSD1(I3)) X2=X(NSD3(I3)) Y2=Y(NSD3(I3)) CALL SHADOW(AX5,AY5,BX5,BY5,X1,X2,Y1,Y2,FABS) C IF(I2.EQ.17) THEN IF (FABS.EQ.0.0) THEN WRITE(*,*)I1,I2, 'SHADOWED BY',I3 C WRITE(*,2001)IS,AX5,AY5,BX5,BY5,X1,X2,Y1,Y2 IF(FABS.EQ.0.0) GOTO 1000 END IF END IF END IF END DO

- C IF THE SURFACE A IS ON A MESH BOUNDARY THEN THE RAY
- C MUST PASS THROUGH THE ELEMENT OF A
- C THIS OCCURS WITH BARE PIPES IN MESH
- C OR IF THE SURFACE A IS ON AN INSULATION BOUNDARY
- C THEN THE RAY CAN NOT PASS THROUGH THE ELEMENT OF A
- C THIS WILL OCCURS WITH PIPE INSULATION

FABS = 1.0 DO IS=1.4

C WRITE(*,*)I1,I2,NSIDER(I1),IS IF (NSIDER(I1).NE.IS) THEN IF(IS.EQ.1) THEN IS1=1 IS2=3 END IF

> IF(IS.EQ.2) THEN IS1=3 IS2=5 END IF

IF(IS.EQ.3) THEN IS1=5 IS2=7 END IF

IF(IS.EQ.4) THEN IS1=7 IS2=1 END IF

X1=X(NODE(NER(I1),IS1)) Y1=Y(NODE(NER(I1),IS1)) X2=X(NODE(NER(I1),IS2)) Y2=Y(NODE(NER(I1),IS2))

CALL SHADOW(AX5,AY5,BX5,BY5,X1,X2,Y1,Y2,FABS)

END IF

- C END DO
- C WRITE(*,*)I1,I2,FABS
- C WRITE(*,2001)IS,AX5,AY5,BX5,BY5,X1,X2,Y1,Y2 END DO
- 2001 FORMAT(I4,8F6.2)
- C WRITE(*,*)'FABS',FABS,IMAT(NER(11))

IF ((FABS.EQ.I.0).AND.(IMAT(NER(I1)).EQ.1)) THEN WRITE(*,*)I1,I2,'NOT THROUGH ELEMENT' FABS=0.0 GOTO 1000 END IF IF ((FABS.EQ.0.0).AND.(IMAT(NER(I1)).NE.1))then WRITE(*,*)I1,I2,'THROUGH ELEMENT' GOTO 1000 END IF

FABS=1.0

- C CALCULATE FEVIEW FACTORS USING HOTTEL'S METHOD
- C DISTANCE BETWEEN THE NODES 1 AND 2, FOR SURFACES A AND B B1=((AX(1)-BX(1))**2.+(AY(1)-BY(1))**2.)**0.5 B2=((AX(1)-BX(2))**2.+(AY(1)-BY(2))**2.)**0.5 B3=((AX(2)-BX(1))**2.+(AY(2)-BY(1))**2.)**0.5 B4=((AX(2)-BX(2))**2.+(AY(2)-BY(2))**2.)**0.5

IF((B1.LE.B2).AND.(B3.GE.B1)) THEN AL1=B1 AL2=B2 AL3=B4 AL4=B3 tp=1 END IF

IF((B2.LE.B1).AND.(B4.GE.B2)) THEN ALI=B2 AL2=B1 AL3=B3 AL4=B4 tp=2 END IF

IF((B3.LE.B4).AND.(B1.GE.B3)) THEN

AL1=B3 AL2=B4 AL3=B2 AL4=B1 tp=3 END IF IF((B4.LE.B3).AND.(B2.GE.B4)) THEN AL1=B4 AL2=B3 AL3=B1 AL4=B2 tp=4 END IF FABSUM=AL2+AL4-AL1-AL3 IF(FABSUM.LT.0.0) THEN FABSUM=ALI+AL3-AL2-AL4 END IF FABX(11,12)=FABSUM/(2*ELENA) IF(FABSUM.LT.0.0) THEN

- C WRITE(*,*)'TYPE',TP C WRITE(*,*)B1,B2,B3,B4
- C WRITE(*,*)AL1,AL2,AL3,AL4 END IF
- 1000 IF(FABS.EQ. 0.0) FABX(I1,I2)=0.0 IF(I1.EQ.I2) FABX(I1,I2)=0.0 IF(I1.GT.I2) FABX(I1,I2)=FABX(I2,I1)*ELENB/ELENA ENDDO

WRITE(11,1001) (I1,I,FABX(I1,I),I=1,NRAD)

C WRITE(*,1001) (I1,I,FABX(I1,I),I=1,NRAD) 1001 FORMAT (2X,I5,I5,F12.8) ENDDO

> CALL EXIT(0) END

SUBROUTINE SHADOW(AX5,AY5,BX5,BY5,X1,X2,Y1,Y2,FABS) INCLUDE 'fronto.prm' COMMON/M1/NODE(MXE,8),X(MXN),Y(MXN),IMAT(MXE) COMMON/M3/NER(MXN),NSIDER(MXN),RFLUX(MXN)

X3=AX5 Y3=AY5 X4=BX5 Y4=BY5

C1=Y4-Y3 !RAY E1=Y2-YI !OBSTRUCTION

- C BOTH RAY AND OBSTRUCTION ARE HORIZONTAL IF ((C1.EQ.0.0) .AND. (E1.EQ.0.0)) THEN IF(Y1.EQ.Y3) THEN IF(((X3.LE.X4).AND.(X3.LE.X2).AND.(X4.GE.X2)))
 & .OR.((X4.LE.X3).AND.(X3.GE.X2).AND.(X4.LE.X2)))THEN
 - FABS=0.0 END IF END IF END IF
- C BOTH RAY IS HORIZONTAL, OBSTRUCTION IS NEITHER IF ((C1.EQ.0.0) .AND. (E1.NE.0.0).AND.(X2.NE.X1)) THEN E=(Y2-Y1)/(X2-X1) F=Y2-E*X2 XPX=E/(Y3-F) IF(((XPX.GE.X3).AND.(XPX.LE.X4)).OR.((XPX.LE.X3).AND.(XPX.GE.X4)))
 - & THEN IF(((Y3.GE.Y1).AND.(Y3.LE.Y2)).OR.((Y3.LE.Y1).AND.(Y3.GE.Y2))) & THEN
 - FABS=0.0 END IF END IF END IF
- C RAY IS VERTICAL. OBSTRUCTION IS HORIZONTAL IF((C1.NE.0.0).AND.(E1.EQ.0.0).AND.(X3.EQ.X4)) THEN

IF(((Y3.LE.Y4).AND.(Y3.LE.Y2).AND.(Y4.GE.Y2)) & .OR.((Y4.LE.Y3).AND.(Y3.GE.Y2).AND.(Y4.LE.Y2)))THEN

- IF(((X3.LE.X2).AND.(X3.GE.X1)) & .OR.((X3.GE.X2).AND.(X3.LE.X1))) THEN
- FABS=0.0 END IF END IF END IF
- C RAY IS VERTICAL, OBSTRUCTION IS NEITHER VERTICAL OR HORIZONTAL IF((C1.NE.0.0).AND.(E1.NE.0.0).AND.(X1.NE.X2).AND.(X3.EQ.X4))
 - & THEN

E=(Y2-Y1)/(X2-X1) F=Y2-E*X2 XPY= E*X3+F

- .-

IF(((XPY.GE.Y3).AND.(XPY.LE.Y4)).OR.((XPY.LE.Y3).AND.(XPY.GE.Y4))) & THEN

- IF(((X3.GE.X1).AND.(X3.LE.X2)).OR.((X3.LE.X1).AND.(X3.GE.X2))) & THEN
 - FABS=0.0 END IF END IF END IF
- C RAY IS NOT HORIZONTAL, OR VERTICAL, OBSTRUCTION IS HORIZONTAL IF((CI.NE.0.0).AND.(E1.EQ.0.0).AND.(X3.NE.X4)) THEN
 - IF(((Y3.LE.Y4).AND.(Y1.GE.Y3).AND.(Y1.LE.Y4)).OR. & ((Y4.LE.Y3).AND.(Y1.GE.Y4).AND.(Y1.LE.Y3))) THEN E=(Y3-Y4)/(X3-X4) F=Y3-E*X3 XP=(Y1-F)/E IF(((X1.LE.X2).AND.(X1.LE.XP).AND.(XP.LE.X2)).OR.
 - & ((X2.LE.X1).AND.(X2.LE.XP).AND.(XP.LE.X1)))THEN FABS=0.0 END IF END IF END IF
- C RAY IS HORIZONTAL, OBSTRUCTION IS VERTICAL IF((C1.EQ.0.0).AND.(E1.NE.0.0).AND.(X1.EQ.X2)) THEN
 - IF(((Y1.LE.Y2).AND.(Y1.LE.Y3).AND.(Y2.GE.Y3)).OR. ((Y2.LE.Y1).AND.(Y2.LE.Y3).AND.(Y1.GE.Y3))) THEN
 - IF(((X3.LE.X4).AND.(X1.LE.X4).AND.(X1.GE.X3)).OR. ((X4.LE.X3).AND.(X1.LE.X3).AND.(X1.GE.X4)))THEN
 - & ((X4.LE.X3).AND.(X1.LE.X3).AND.(X1.GE.X4)))THEN FABS=0.0 END IF END IF END IF
- C BOTH RAY AND OBSTRUCTION ARE VERTICAL IF((C1.NE.0.0).AND.(E1.NE.0.0).AND.(X3.EQ.X4) & .AND.(X1.EQ.X2)) THEN
 - IF(X1.EQ.X3) THEN IF(((Y3.LE.Y4).AND.(Y3.LE.Y2).AND.(Y4.GE.Y2)) & .OR.((Y4.LE.Y3).AND.(Y3.GE.Y2).AND.(Y4.LE.Y2)))THEN FABS=0.0 END IF END IF
 - END IF END IF

- ----

C IF RAY IS NOT HORIZONTAL OR VERTICAL, OBSTRUCTION

C IS VERTICAL IF ((C1.NE.0.0).AND.(E1.NE.0.0).AND.(X3.NE.X4) & .AND.(X1.EQ.X2)) THEN

IF(((Y2.LE.Y1).AND.(YP.GE.Y2).AND.(YP.LE.Y1)).OR.

((Y1.LE.Y2).AND.(YP.GE.Y1).AND.(YP.LE.Y2))) THEN IF(((X3.LE.X4).AND.(X3.LE.X2).AND.(X4.GE.X2)).OR

((X4.LE.X3).AND.(X4.LE.X2).AND.(X3.GE.X2))) THEN

IF ((C1.NE.0.0).AND.(E1.NE.0.0).AND.(X3.NE.X4)

IF(((X2.LE.X1).AND.(XP.GE.X2).AND.(XP.LE.X1)).OR.

((X1.LE.X2).AND.(XP.GE.X1).AND.(XP.LE.X2))) THEN IF(((X3.LE.X4).AND.(XP.GE.X3).AND.(XP.LE.X4)).OR.

((X4.LE.X3).AND.(XP.GE.X4).AND.(XP.LE.X3))) THEN

NEITHER RAY NOR OBSTRUCTION IS VERTICAL OR HORIZONTAL

C=(Y4-Y3)/(X4-X3)

.AND.(X1.NE.X2)) THEN C=(Y4-Y3)/(X4-X3) D=Y4-C*X4 E=(Y2-Y1)/(X2-X1)

IF((E-C).NE.0.0) THEN XP=(D-F)/(E-C)

IF((E.EQ.C).AND.(D.EQ.F)) THEN

D=Y4-C*X4 YP=C*X2+D

FABS=0.0

F=Y2-E*X2

FABS=0.0 END IF END IF END IF

FABS=0.0 END IF END IF

RETURN END

END IF END IF END IF

&

&

С

&

&

&

APPENDIX C: EXPERIM	ENTAL RESULTS
----------------------------	---------------

			Tempera)													age heat
		Pipe	Inside				Bo	ottom	Rig	ht Side	Lef	l Side		Гор	Av	erage	Flux	Conductance
Date	Pipe	Insul.	EPS	EPS	Dtemp ¹	TARO 2	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr ft2°F)
1-ft × 1-ft enclosu	ire, 4.5 i	nch pip	e, unpair	nted											_			
28-Jun-91	57.25		42.68	33.59		49.95	6.08		7.31	1.58E+06	8.34	1.62E+06	10.44	1.42E+06	8.20	1.62E+06	15,709	0.294
1-Jul-91	58.23	-	43.14	33.91	15.09	50.68	6.03	1.89E+06	7.11	1.64E+06	8.17	1.66E+06	10.15	1.48E+06	8.03	1.67E+06	15,955	0.288
2-Jul-91	81.32		56.07	38.72	25.25	68.36	6.96	2.65E+06	7.74	2.32E+06	9.01	2.35E+06	11.23	2.09E+06	8.97	2.35E+06	30.602	0.331
3-Jul-91	80,96		55.90	38.47	25.06	68.45		2.65E+06	7.93	2.29E+06	8,98	2.35E+06	11.42	2.07E+06	9.08	2.34E+06	30.722	0.334
5-Jul-91	80.91		56.08	38.71	24.83	68.51		2.63E+06		2.25E+06				2.06E+06	9.14	2.32E+06	30.658	0.337
8-Jul-91	102.66	_	69.06	44.81	33.61	85.86	6.96	3.09E+06	<u>8.1</u> 4	2.62E+06	9,62	2.66E+06	11.94	2.36E+06	9.38	2.69E+06	43.752	0.355
11-Jul-91	102.13		67.92	43.06	34.21	85.01	6.93	3.18E+06	8.15	2.68E+06	9.59	2.73E+06	12.18	2.41E+06	9.43	2.76E+06	44.681	0.356
15-Jul-91 A	150.32		98.13	54.83	52.18	124.25	7.91	3.54E+06	9.05	2.95E+06	10.83	3.01E+06	13.68	2.68E+06	10.66	3.05E+06	81.452	0.426
15-Jul-91 B	150.25		97.77	54.35	52.47	123.99	7.88	3.56E+06		2.97E+06	10.79	3.04E+06	13.67	2.70E+06	10.63	3.07E+06	81.603	0.424
17-Jul-91 A	200,67		132.26	68.10	68.40			3.40E+06						2.61E+06		2.94E+06	126.810	0.506
17-Jul-91 B	199.90		131.49	67.20	68.41	165.48	_	3.43E+06	10.13	2.83E+06		2.92E+06		2.62E+06			126.858	0,506
22-Jul-91	252.45		172.59	83.81	79.86	212.41		3.01E+06		2.47E+06		2.58E+06		2.10E+06		2.54E+06	184.986	0.632
23-Jul-91	249.65		170.00	82.74	79.65	209,74		3.05E+06		2.52E+06		2.61E+06		2.13E+06		2.58E+06	180.722	0.619
8-Aug-91	50.63		22.64	3.81	27.99	36,66		4.16E+06		3.46E+06		3.49E+06		3.07E+06			30.635	0,299
9-Aug-91	104.34		60.26	25.44	44.08	84.03		4.35E+06		3.39E+06		3.64E+06		3.18E+06		3.65E+06	60,639	0.375
13-Aug-91	101,56		51.07	13.51	50.48	76.30		5.11E+06				4.22E+06		3.74E+06		4.39E+06	63,854	0.345
14-Aug-91	147.96		80.20	24.15	67.76			4.95E+06		4.35E+06		4.14E+06		3.71E+06	10.23		99,744	0.401
15-Aug-91	148.67		80.67	24.59	68.00	114.62	7.72	4.94E+06	7.98			4.14E+06		3.71E+06	10.20		99,886	0.401
16-Aug-91	201.56		117.55	39.23	84.00			4.33E+06	9.17			3.65E+06		3.33E+06		3.79E+06	147.720	0.480
7-Oct-91	150.29		80.27	18.54	70.02	115.27		5.23E+06		4.25E+06		4.29E+06	_	3.75E+06		4.39E+06	109.427	0.426
9-Oct-91	193.32		110.13	29.66				4.69E+06		3.86E+06		3.87E+06		3.41E+06		3.97E+06	149.191	0.489
10-Oct-91	100.25		44.43	J.30	55.82	72.33	6.57	6.04E+06	8.18	4.92E+06	10.30	4.90E+06	14.00	4.22E+06	<u>9.69</u>	5.03E+06	73,456	0.359
								·										• <u> </u>
27-Oct-95	102.95		58.14	23.36	44.81	80.55	_	4.41E+06		3.59E+06		3.71E+06	_	3.27E+06		3.76E+06	60,305	0.367
28-Oct-95	102.66		53.73	15.78	48.93	78.20		4.97E+06		3.99E+06	10.18	4.13E+06	13.23	3.61E+06	9.70	4.19E+06	64.923	0,362
2-Nov-95	102.71		45.95	0.18	56.75	74.33		6.07E+06	8.20	4.77E+06	10.57	4.90E+06	13.69	4.29E+06	9.87	5.03E+06	76.186	0.366
3-Nov-95	102.51		39.47	-11.53	63.03	70.99	6.60	6.97E+06	8.02	5.45E+06	10,30	5.66E+06	<u>13.78</u>	4.85E+06	<u>9.</u> 74	5.75E+06	83.067	0.359
28-Nov-95 *	103.18		61.16	30.93	42.02	82.17	5.89	4.19E+06	8.05	3.28E+06	9.95	3.36E+06	12.67	2.99E+06	9.18	3.47E+06	53.066	0.344
29-Nov-95	147.98		89.45	42.54		118.71		4.35E+06		3.37E+06	10.92	3.46E+06		3.05E+06	10.15	3.57E+06	85.994	0.401
30-Nov-95	147.83		81.39	27.11		114.61		5.16E+06		3.94E+06	10.98	4.05E+06		3.54E+06	10.14	4.19E+06	97.010	0.398
1-Dco-95	147.63		73.75	12.43		110.69	_	5.97E+06		4.49E+06		4.64E+06		4.03E+06		4.81E+06		0.395
2-Dco-95	147.52		68.43	1.84	79.09	107.97	6.24	6.58E+06	8.64	4.90E+06	11.05	5.07E+06	14.68	4.38E+06	10.10	5.26E+06	113.996	0.393
			1		10.55									(·
3-Dec-95 *	80.30		37.47	8.86				5.32E+06		4.13E+06	9.05	4.23E+06		3.73E+06		4.37E+06		0.303
4-Dec-95	78.62		29.07	-6.33	49.56			6.60E+06		4.97E+06	_	5.13E+06	_	4.43E+06		5.31E+06		0.315
5-Dec-95	78.43		21.36	-20.29	57.08	49.89	5,03	8.02E+06	7.59	5.92E+06	9.72	6.10E+06	<u>13.35</u>	5.22E+06	8.77	6.35E+06	65.629	0.314

-			Tempera)											-	Aver	age heat
		Pipe	Inside			-	Bo	ttom	Righ	nt Side	Lef	Side	·	Гор	Av	crage	Flux	Conductance
Date	Pipe	Insul.	EPS	EPS	Dtemp ¹	TANG	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr ft ² °F)
6-Dec-95	78.93		46.42	24.75	32.52	62.68	5.31	3.86E+06	7.75	3.04E+06	9.02	3.12E+06	12.01	2.74E+06	8.54	3.20E+06	37.130	0.311
l-ft × 1-ft enclosu	ire, 4.5 li	nch pipe	, painte	d alumi	num				_									
29-Aug-96	79.14		62.49	56.01	16.65	70.81	3.03	1.76E+06	5.27	1.44E+06	5.47	1.49E+06	7.09	1.38E+06	5.20	1,52E+06	11.711	0.192
30-Aug-96	79.15		54.25	43.46	24.90	66.70	3.28	2.79E+06		2.25E+06	6.05	2.31E+06	8.19	2.08E+06	5.69	2.36E+06	19.049	0.209
31-Aug-96	79.45	_	46.26	31.42	33.19	62.86	3.22	3.90E+06	5.46	3.12E+06	6.09	3.20E+06	8.67	2.80E+06	5.77	3.26E+06	25.619	0.211
1-Sep-96	79.30		<u>38.35</u>	19.21	40.95	58.82		5.05E+06		3.98E+06		4.08E+06		3.56E+06		4.18E+06	32.281	0.215
5-Sep-96	79.20		28.24	3.19	50.95	53,72	3.25	6.72E+06		5.17E+06	6.60	5.32E+06	9.53	4.56E+06	6.10	5.46E+06	40.974	0.219
6-Sep-96	79.16		20.92	-8.74	58.24	50.04		8.06E+06		6.11E+06		6.28E+06		5.32E+06	6.21	6.47E+06	47.389	0.222
7-Sep-96	79.21		11.46	-24.29	67.75	45.33	3.23	9.96E+06	5.75	7.43E+06	6.82	7.64E+06	10.30	6,37E+06	6.28	7.88E+06	55.351	0.223
9-Sep-96	147.54		48.11	-8.92	99.42	97.82		9.03E+06		6.78E+06		6.94E+06		5,87E+06		7.19E+06	94.143	0.258
10-Sep-96	147.64		65.86	21.15		106.75		6.73E+06		5.21E+06		5.36E+06		4.58E+06		5.49E+06	78.004	0.260
11-Sep-96	147.78		79.77	44.63		113.77		5.21E+06		4.14E+06		4.22E+06		3.65E+06		4.32E+06	63.915	0.256
12-Sep-96 *	147.90		94.35	67.26		121,12		3.81E+06		3.08E+06		3.14E+06		2.76E+06		3.21E+06		0.261
	147.92		109.88			128,90		2.51E+06		2.06E+06		2.11E+06		1,89E+06		2,15E+06		0.244
	147.95			108.88	27.40	134,25	3.69	1.71E+06	5.72	1.41E+06	6.02	1.47E+06	7.89	1.33E+06	5.84	1.49E+06	23.645	0.235
1-ft × 1-ft enclose					<u> </u>													<u></u>
19-Sep-96 *	148.30							4.43E+05		3.35E+05		3.69E+05		3.38E+05		3.73E+05	15.292	0.445
20-Sep-96 *	148.71	68.38			12.53	62.12		7.17E+05		5.68E+05		5.98E+05		5,49E+05		6.11E+05	21.318	0.464
22-Sep-96	149.27					43.97		1.18E+06	_	8.89E+05		9.50E+05		8.27E+05		9.66E+05		0.397
23-Sep-96	149.70				20.01	21.74		1.85E+06		1.34E+06		1.42E+06		1.21E+06		1.46E+06		0.395
24-Sep-96	148.81	99.95	92.43	86.06	7.52	96,19	6.65	3.22E+05	8.28	2.42E+05	9.27	2.70E+05	11.32	2.46E+05	9.18	2.71E+05	12.264	0.445
																		······
27-Sep-96	79,32	70.22	68.45	67.37	1.77	69,34		9.75E+04		5.02E+04				8.86E+04		8.08E+04	1.993	0.307
28-Scp-96 *	79.58							2.58E+05	_	1.11E+05				1.59E+05		1.78E+05	6.791	0.546
29-Sep-96	80.11	41.73				38.52		4.71E+05		3.47E+05				3.62E+05		3.95E+05	8.703	0.369
30-Sep-96	80.40	23.93	14.37	6.47	9.55	19.15	5.48	8.77E+05	7.55	6.51E+05	8,96	6.99E+05	11.174	6.31E+05	8.45	718794.4	12.771	0.365
					1									· · · · · · · · · · · · · · · · · · ·				
1-Oct-96	197.52	_				48.51		1.59E+06						1.06E+06	9.60	the second se	36.410	0.434
2-Oct-96	197.88		22.04			35.02		2.09E+06		1.51E+06		1.61E+06		1.35E+06	9.35		39.400	0.414
3-Oct-96	197.94							2.72E+06						1.68E+06	9.26			0.401
4-Oct-96	197.68	73.06			20.05	63.04	0.51	1.20E+06	8.50	9.02E+05	10.353	9.46E+05	13.741	8.10E+05	9.93	969424.1	33.720	0.459
1-ft × 1-ft enclos					0.02	R R	4.20	1.000.001		1.247.04	6.04			1. (17).44				
17-Oct-96 *	80.30		71.28					1.58E+06		1.34E+06		1.43E+06		1.41E+06		1.44E+06	5.704	0.172
18-Oct-96 *	82.31		60.37					4.02E+06		3.53E+06		3.62E+06		3.41E+06		3.65E+06	13.732	0.171
19-Oct-96	80.80		48.95					6.33E+06		5.42E+06		5.55E+06		5.16E+06		5.63E+06		0.208
20-Oct-96	82.47	ļ	35.22		47.25			9.96E+06		8.64E+06		8.78E+06		7.91E+06		8.84E+06		0.201
21-Oct-96	83.13	l	17.38	-13.39	65.75	50.26	4.71	1.53E+07	5.93	1.31E+07	7.11	1.33E+07	<u>9.86</u>	1.17E+07	<u>6.91</u>	1.34E+07	48.662	0.202
	1		1 07 7-														r 	
25-Oct-96	142.32	l	87.98	62,18	54,34	115,15	5.68	6.91E+06	6.74	6.14E+06	7.61	6.22E+06	<u>9.65</u>	5.70E+06	7,53	6.25E+06	48.215	0.242

			Tempera)													age heat
		Pipe	Inside	Outside			Bo	ottom	Rig	nt Side	Lef	l Side	1	`op	Av	crage	Flux	Conductance
Date	Pipe	Insul.	EPS	EPS	Dtemp	TANG ²	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr ft2°F)
26-Oct-96	143.27		73.28	38.66	70.00	108.28	5.66	9.50E+06	6.66	8.37E+06	7.67	8.48E+06	10.05	7.65E+06	7.61	8.51E+06	62.106	0.242
27-Oct-96	143.60		58.65	14.85	84.95	101.13	5.64	1.23E+07	6.58	1.08E+07	7.76	1.09E+07	10.40	9.72E+06	7.67	1.09E+07	75.270	0.242
30-Oct-96	143.87		51.61	2.85	92.26	97.74	5.57	1.39E+07	6.63	1.20E+07	7.81	1.22E+07	10.68	1.07E+07	7.73	1.22E+07	81.952	0.242
31-Oct-96	146.23		37.88	-20.55	108.34	92.05	5.33	1.73E+07	6,43	1.48E+07	7.75	1.50E+07	10.86	1.31E+07	7.61	1.51E+07	93.938	0.236
1-Nov-96	191.00		65.44	-8.27	125.56	128.22	6.10	1.48E+07	6.94	1.28E+07	8.39	1.30E+07	11.30	1.14E+07	8.26	1.30E+07	124.294	0.270
2-Nov-96	191.32		82.66	21.04	108.66	136.99	6.24	1.19E+07	7.18	1.04E+07	8.35	1.05E+07	11.03	9.40E+06	8,31	1.06E+07	109,540	0.275
3-Nov-96	190.85		101.02	52.13	89,83	145.93	6.38	9.08E+06	7.27	8.08E+06	8.29	8.16E+06	10.74	7.39E+06	8.31	8.18E+06	91.663	0.278
4-Nov-96	190.72		120.44	83.95	70.28	155.58	6.44	6.56E+06	7.32	5.88E+06	8.21	5.96E+06	10.39	5.47E+06	8.25	5.97E+06	72.102	0.280
1- ft × 1- ft enclos	sure, 2.3	75 inch	pipe, ins	ulated														
6-Nov-96	192.99	88.75	75.46	66.67	13.29	82.11	6.36	1.33E+06	8,10	1.08E+06	9.17	1.13E+06	11.79	1.01E+06	9.03	1.14E+06	16.291	0.334
7-Nov-96 *	193.50	66.10	49.68	38,00	16.42	57.89	6.06	2.13E+06	8.21	1.67E+06	9.67	1.74E+06	13.60	1.48E+06	9.48	1.76E+06	20.391	0.339
8-Nov-96	193.82	43.64	23.15	9,28	20.50	33.40	5,61	3.37E+06	7.71	2.69E+06	9.01	2.76E+06	12.67	2.35E+06	8.78	2.80E+06	22.710	0.302
9-Nov-96	194.61	29.64	6.51	-9,11	23.12	18.07	5.26	4.54E+06	7.54	3.58E+06	8.86	3.66E+06	12.92	3.05E+06	8.61	3.72E+06	24,509	0.289
10-Nov-96	150.12		17.36	7.14				2.84E+06		2.27E+06		2.34E+06		2.01E+06	8.34	2.37E+06	16.568	0.283
11-Nov-96	149.89	48.93	35.40	26,90		42.17		1.99E+06	_	1.61E+06	_	1.67E+06		1.47E+06		1.69E+06	14.419	0.291
12-Nov-96 *	149.55	64.50		46.42			_	1.32E+06		1.06E+06		1.12E+06		9.75E+05		1.12E+06	13.291	0.343
13-Nov-96	148.55	<u>79.04</u>	70.07	64.58	8.97	74,56	5.91	9,58E+05	7.78	7.60E+05	8.47	8.23E+05	10.71	7.45E+05	8,39	8.24E+05	10.099	0.307
14-Nov-96	80.59							2.84E+05	-	1.68E+05	_	2.41E+05		2.33E+05		2.35E+05		0.230
15-Nov-96	80.96			42,83				6.19E+05		4.48E+05	_	5.29E+05	8.82	5.01E+05	7.33	5.28E+05	4.214	0.258
16-Nov-96	81.54	34.24		23.89				1.08E+06		8.35E+05	_	9.10E+05	_	8.48E+05	_	9.24E+05	6.294	0,260
17-Nov-96	82.00	18.47	9,51	4.23	8,96	13.99	4.92	1.78E+06	7.29	1.40E+06	7.96	1.48E+06	10.32	1.34E+06	7.71	1.51E+06	8.456	0.257

¹ Dtemp is the temperature difference between the average pipe or pipe insulation surface temperature and the inside EPS temperature.

² T_{AVG} is the average of the two temperatures used to calculate Dtemp.
• These data were found to be faulty and were not included in the analysis.

				Temper	rature (*F)														Ave	rage heat
	F	lipe	โทรเ	alation, j	pipe	Insulat	ion, EPS			B	ottom	Rig	ht Side	Le	it side		Тор	A	verage	Flux	Conductance
Date	left (4 in.)	right (8 in.)	left	right	wt avg.	Inside	Outside	Dtemp ¹	TAND	Nu	Ra	Nu	RA	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr ft ¹ F)
Data from	the 2-ft × 4	l-ft apparatu	s, both p	oipes he	ated																
10-Jan-97	147.9	147.1	75.4	76.0	75.8	65.1	55.8	9.2	70.4				7.48E+05				9.13E+05	23.59	7.17E+05	54.69	0.425
11-Jan-97	147.4	145.7	57.3	57.7	57.5	43.4	31.8	11.6	50.5	17.32	6.00E+05	23.47	8.20E+05	19.87	6.94B+05	30.79	1.08E+06	22.44	7.82E+05	65.15	0.384
12-Jan-97	146.8	144.2	38.0	38.0	38.0	20.8	7.2	13.5	29.4	15.38	6.22E+05	22.31	9.13E+05	19.00	7.78E+05	32.09	1.31E+06	21.54	8.78E+05	72.13	0.349
13-Jan-97	146.6	143.1	19.8	19.3	19.5	-0.7	-15.7	15.0	9.4	13.14	6.23E+05	20.91	1.01E+06	17.86	8.63E+05	33.61	1.62E+06	20.37	9.78E+05	75.65	0.312
25-Jan-97	226.9	226.4	38.0	38.4	38.3	9.0	-13.1	22.1	23.7		5.17E+05		9.27E+05		7.73E+05						0.324
27-Jan-97	227.8	228.4	56.1	57.0	56.7	30.6	9.8	20.9	43.7				8.46E+05								0.362
29-Jan-97	230.1	234.7	80.9	82.3	81.7	59.1	39.6	19.5	70.4	17.77	5.21E+05	25.29	7.53E+05	21.83	6.49E+05	33.43	1.00E+06	23.69	7.02E+05	112.97	0.416
		l-ft apparatu			_																
15-Jan-97		142.6	-3.0	13.7	13.7	-6.7	-18.0	11.2	3.5		the second s		1.06E+06				1.43B+06	_	9.46E+05		0.228
16-Jan-97	21.2	143.7	16.9	32.7	32.7	15.0	5.3	9.7	23.9				9.29E+05						7.97E+05		0.241
17-Jan-97	37.9	144.8	38.1	52.2	52.2	37.2	29.2	8.0	44.7				7.90E+05								0.247
18-Jan-97	56.5	147.1	60.3	72.2	72.2	60.4	54.6	5.8	66.3	14.70	4.60E+05	20.30	6.38E+05	12.82	4.01E+05	20.30	6.38E+05	16.86	5.29E+05	34.40	0.244
20-Jan-97		236.8	69.0	90.6	90.6	68.3	56.5	11.8	79.5				6.17E+05								0.263
21-Jan-97	52.3	233.5	48.0	70.7	70.7	46.0	31.9	[14.1]	58.4	15.38	4.94E+05	23.17	7.55E+05	14.85	4.81E+05	26.00	8.47E+05	19.45	6.30E+05	79.78	0.270

¹ Diemp is the temperature difference between the weighted average pipe insulation surface temperature and the inside EPS temperature. ² T_{APD} is the average of the two temperatures used to calculate Dtemp.

٠ ł

£

APPENDIX D: NUMERICAL RESULTS

_				ature (°F)										Aver	age heat
		Pipe	Inside	Outside			Bot	lom	Si	ide	T	lop	Av	erage	Flux	Conductance
Filename	Pipe	Insul.	EPS	EPS	Dtemp ¹	TANG ²	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr ft²°F)
1-ft × 1-ft e	nclosur	e, 4.5-i	nch pipe	e, no rad	iation											<u>م کور کو کار جنو</u> ک
sq4d10m	300		290.45	290	9.55	295.22	0.0074	1.98E+05	0.43	1.92E+05	1.98	1.75E+05	0.70	1.89E+05	1.21	0.035
sq4d50m	300		252.70	250	47.30	276.35	0.0002	1.10E+06	0.37	1.07E+06	2.76	9.22E+05	0.83	1.04E+06	6.92	0.040
sp4d90m	300		214.71	210	85.29	257.36	0.0000	2.20E+06	0.31	2.15E+06	2.65	1.85E+06	0.77	2.08E+06	11.35	0.036
sq4d110m	300		195.26	190	104.74	247.63	0.0000	2.84E+06	0.26	2.78E+06	2.38	2.42E+06	0.69	2.70E+06	12.26	0.032
sq4h10c	80		71.01	70	8.99	75.51	0.0005	8.76E+05	0.87	8.24E+05	5.13	6.36E+05	1.53	7.88E+05	1.87	0.057
sq4h20c	80		61.77	60	18.23	70.89	0.0000	1,83E+06		1.75E+06		1.36E+06		1.67E+06	3.21	0.048
sq4h30c	80		52.26	50	27.74	66.13	0.0000	2.86E+06	0.42	2.77E+06	3.94	2.21E+06	1.08	2.65E+06	4,01	0.039
sq4k10a	150		140.89	140	9.11	145.45		4.99E+05		4.71E+05		3.81E+05		4.55E+05	1.90	0.057
sq4k20a	150		131.76	130	18.24	140.88	0.0003	1.03E+06	0.72	9.81E+05	4.63	7.76E+05	1.35	9.41E+05	3.68	0.055
sq4k30a	150		122.60	120	27.40	136.30		1.60E+06	0.64	1.53E+06	4.68	1.20E+06		1.46E+06	5,33	0.053
sq4k40a	150		113.39	110	36.61	131.70	0.0000	2.21E+06	0.57	2.12E+06	4.66	1,65E+06	1.27	2.02E+06	6,83	0.051
sq4k50a	150		104.22	100	45.78	127.11	0.0000	2,86E+06	0.53	2.75E+06	4.69	2.13E+06	1.24	2.62E+06	8.34	0.050
sq4k60a	150		94.88	90	55.12	122.44	0.0000	3.56E+06	0.47	3.44E+06	4.51	2.66E+06	1.18	3.27E+06	9.45	0.047
sq4k70a	150		85.47	80	64.53	117.74	0.0000	4.31E+06	0.42	4.17E+06	4.32	3.25E+06	1.11	3.97E+06	10.39	0.044
sq4k80a	150		76.00	70	74,00	113.00	0.0000	5.11E+06	0.38	4.96E+06	4,11	3.89E+06	1.05	4.73E+06	11.17	0.041
1-ft × 1-ft e		e, 4.5-1		e, emissiv												
sq4gr05p	150		147.22	145	2.78	148.61	10,42	1.41E+05	10.89	1.38E+05	12.36	1.31E+05	11.38	1.36E+05	4.77	0.468
sq4gr10p	150		144.44	140	5.56	147.22	10,34	2.85E+05	10,80	2.80E+05	12.42	2.63E+05	11.33	2.74E+05	9.48	0,465
sq4gr20p	150		138.88	130	11.12	144.44	10.21	5.82E+05	10.62	5.72E+05	12.38	5.34E+05	11.20	5.59E+05	18.67	0.458
sq4gr30p	150		133.29	120	16.71	141.65	10.09	8.91E+05	10.44	8.78E+05	12.22	8.19E+05	11.04	8.57E+05	27.54	0.449
sq4gr40p	150		127.67	110	22.33	138.83	9.96	1.21E+06	10.26	1.20E+06	12.00	1.12E+06	10.85	1.17E+06	36.07	0.440
sq4gr50p	150		122.03	100	27.97	136.01	9,83	1.55E+06	10.09	1.53E+06	11.77	1.43E+06	10.68	1.50E+06	44.29	0.432
sq4gr05r	100		97.05	95	2.95	98,53	8,68	2.21E+05	9.16	2.16E+05	10.81	2.02E+05	9.65	2.12E+05	4.01	0.371
sq4gr10r	100		94.10	90	5.90	97.05	8,59	4.48E+05	9,06	4.39E+05	10.85	4.07E+05	9.58	4.29E+05	7.94	0.367
sq4gr20r	100		88.17	80		94.08	8.46	9.20E+05	8.84	9.04E+05	10,70	8.35E+05	9.40	8.82E+05	15,56	0.359
sq4gr30r	100		82,16	70		91.08	8,32	1.42E+06	8.61	1.40E+06	10.37	1.30E+06	9.17	1.36E+06	22.78	0.348
sq4gr35r	100		79,13	65	20.87	89.57	8.24	1.68E+06	8.50	1.66E+06	10.18	1.54E+06	9.05	1.62E+06	26.25	0.343
sq4gr40r	100		76.08	60	23.92	88.04	8.17	1.94E+06	8,38	1.92E+06	9.98	1.79E+06	8.92	1.88E+06	29.60	0.337

_			Temper	ature (°F)										Aver	age heat
		Pipe	Inside	Outside			Bott	om	S	lide	J	`op	Av	erage	Flux	Conductance
Filename	Pipe	Insul.	EPS	EPS	Dtemp ¹	T_AFG 2	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr ft2°F)
sq4gr05t	80		76,98	75	3.02	78.49	8.02	2.69E+05	8.52	2.63E+05	10.24	2.44E+05	9.00	2.57E+05	3.71	0.336
sq4gr10t	80		73.96	70	6.04	76.98	7.94	5.46E+05	8.40	5.35E+05	10.26	4.93E+05	8.93	5.22E+05	7.36	0.332
sq4gr20t	80		67.86	60	12.14	73.93	7.80	1.12E+06	8.15	1.11E+06	10.01	1.02E+06	8.70	1.08E+06	14.35	0.322
sq4gr30t	80		61.67	50	18.33	70.83	7.65	1.74E+06	7.91	1.72E+06	9.58	1.59E+06	8.44	1.68E+06	20.92	0.311
sq4gr05v	40		36.84	35	3.16	38.42	6.79	4.13E+05	7.29	4.03E+05	9,17	3.69E+05	7.77	3.94E+05	3.16	0.273
sq4gr10v	40		33.67	30	6.33	36.84	6.71	8.41E+05	7.14	8.23E+05	9.11	7.51E+05	7.66	8.02E+05	6.23	0.269
sq4gr15v	40		30.45	25	9.55	35,23		1.28E+06	6.97	1.26E+06		1.15E+06	7.50	1.23E+06	9.17	0.262
sq4gr20v	40		27.20	20	12.80	33.60	6.53	1.75E+06	6.82	1.72E+06	8.56	1.58E+06	7.33	1.68E+06	12.00	0.256
														······		
sq4gr10z	250		245.08	240	4.92			1.31E+05		1.30E+05		1.24E+05		1.27E+05	12.84	0.711
sq4gr20z	250		240.16	230	9.84	245.08		2.67E+05		2.63E+05		2.50E+05		2.57E+05	25.40	0.704
sq4gr30z	250		235.26	220	14.74	242.63		4.06E+05		4.00E+05		3.80E+05		3.92E+05	37.68	0.697
sq4gr40z	250		230.35	210		240,18		5.48E+05		5.41E+05		5.13E+05		5.29E+05	49.67	0.689
sq4gr50z	250		225.45	200		237.73		6.95E+05		6.87E+05		6.50E+05		6.71E+05	61.36	0.682
sq4gr60z	250		220.55	190		235.27		8.46E+05		8.36E+05		7.91E+05		8.17E+05	72.75	0.674
sq4gr70z	250		215.65	180	34.35	232.82		1.00E+06		9.90E+05	15.53	9.36E+05	14.57	9.67E+05	83.85	0.666
1-ft × 1-ft er		<u>e, 4.5-1</u>								1.465.06	11.20	1 265 06	10.07	1. 100.00	4.4.5	
sq4gr05q	150		147.07	145		148.54		1.49E+05		1.46E+05		1.36E+05	_	1.43E+05	4.45	0.414
sq4gr10q	150		144.14	140		147.07		3.02E+05		2.96E+05		2.73E+05		2.89E+05	8.83	0.411
sq4gr20q	150		138.27	130	11.73	144.13		6.18E+05		6.07E+05		5.55E+05		5.91E+05	17.38	0.404
sq4dr30q	150		132.36	120	17.64			9.48E+05		9.34E+05		8.53E+05		9.08E+05	25.58	0.395
sq4dr40q	150		126.39	110		138.20		1.29E+06		1.28E+06	_	1.17E+06		1.24E+06	33.42	0.386
sq4dr50q	150		120.39	100	29.61	135.20	8.48	1.65E+06	8.72	1.64E+06	10.66	1.51E+06	9,34	1.59E+06	40,93	0.377
10010050	100	·	96.91	95	3.09	98.46	7.50	2.33E+05	9.04	2.28E+05	10.05	2.08E+05	0.66	10 00E 105	2 72	0.320
sq4gr05s	100		90.91	95 90	6.19	96.91		4.73E+05		4.63E+05		2.08E+05 4.20E+05		2.22E+05	<u>3.73</u> 7.38	0.329
sq4gr10s	_			90 80		90.91				4.63E+05			_	4.51E+05		0.325
sq4gr20s	100 100		87.58 81.25	70	12.42 18.75	93.79		9.73E+05 1.50E+06		9.33E+03		8.64E+05 1.35E+06	_	9.29E+05	14.42	0.317
sq4gr30s	100		01.23	/0	10.75	90.02	/.18	1,505-00	1.47	1.400100	9.34	1.556+00	8,00	1.44E+06	21.04	0.306
sq4gr05u	80		76.84	75	3.16	78.42	6.93	2.83E+05	7 47	2.76E+05	9.56	2.51E+05	8 00	2.70E+05	3.45	0.298
sq4gr10u	80		73.68	70	6.32	76.84		5.76E+05		5.63E+05		5.08E+05		5.48E+05	6.83	0.298
sq4gr20u	80		67.28	60	12.72	73.64		1.19E+06	_	1.17E+06		1.05E+06		1.13E+06	13.28	0.285
sq4gr05w	40		36.71	35	3.29	38.36		4.33E+05		4.22E+05		3.78E+05		4.11E+05	2.93	0.243
	40		33.40	30	6.60	36.70		8.83E+05		8.63E+05		7.70E+05		8.38E+05	5.77	0.238

-			Temper	ature (°F)										Aver	age heat
		Pipe	Inside	Outside			Bot	lom	S	ide	1	Гор	Ave	erage	Flux	Conductance
Filename	Pipe	Insul.	EPS	EPS	Dtemp ¹	T _{AVO} ²	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr fl ²⁰ F)
sq4gr15w	40		30.04	25	9.96	35.02	5.71	1.35E+06	6.06	1.32E+06	8.32	1.19E+06	6.64	1.29E+06	8.47	0.232
1-ft × 1-ft e	nclosur	e, 4.5-i	nch pipe	, emissiv	ity of p	ipe: 0.5,	emissivity (of EPS: 0.9								
sq4gr05x	150		146.66	145	3.34	148,33	6.24	1.70E+05	6,74	1.66E+05	8.09	1.56E+05		1.63E+05	3.56	0.291
sq4gr10x	150		143.32	140	6.68	146.66	6,19	3.44E+05	6.68	3.36E+05	8.19	3.13E+05	7.06	3.30E+05	7.08	0.289
sq4gr20x	150		136.63	130	13.37	143,32	6.08	7.07E+05	6.53	6.91E+05	8.19	6.40E+05	6.95	6.78E+05	13.91	0.284
sq4gr05y	100		96.53	95	3.47	98.26		2.61E+05		2.55E+05		2.36E+05	6.10	2.50E+05	2.98	0.234
sq4gr10y	100		93.05	90	6.95	96.53		5.31E+05		5.18E+05		4.76E+05		5.08E+05	5.91	0,232
sq4gr20y	100		86.05	80	13.95	93.02		1.10E+06		1.07E+06		9.83E+05	5.90	1.05E+06	11.49	0.225
sq4gr30y	100		78.89	70	21.11	89.45	4.91	1.70E+06	5.24	1.67E+06	6.89	1.54E+06	5.66	1.64E+06	16.60	0.214
sq4gr05z	80		76.48	75	3.52	78.24		3.16E+05		3.07E+05		2.83E+05		3.01E+05	2.76	0.214
sq4gr10z	80		72.94	70	7.06	76.47		6.43E+05		6.26E+05		5.72E+05		6.13E+05	5.46	0.211
sq4gr20z	80		65.80	60	14.20	72.90	4.65	1.33E+06	5.05	1.30E+06	6.83	1.19E+06	5.48	1.27E+06	10.55	0.203
/																
sq4gr05a	40		36.37	35	3.63	38,19		4.78E+05		4.63E+05		4.21E+05		4.54E+05	2.35	0.177
sq4gr10a	40		32.72	30	7.28	36.36		9.75E+05		9.50E+05		8.58E+05		9.28E+05	4.61	0.173
sq4gr15a	40		29.01	25	10.99	34.50		1.50E+06		1.46E+06		1.32E+06		1.43E+06	6.73	0.167
sq4gr20a	40		25.24	20	14.76	32.62		2.04E+06		2.00E+06		1.82E+06	4.62	1.95E+06	8.70	0.161
1-ft × 1-ft e																
sq4ib05a			145.95	145	0.86	146.38		2.26E+04		2.15E+04		1.92E+04		2.09E+04	2.04	0.649
sq4ib15a			137.67	135	2.46	138.90		6.94E+04		6.54E+04		5.69E+04		6.33E+04	5.64	0.626
sq4ib25a			129.28	125	4.03	131.30		1.21E+05		1.14E+05		9.78E+04		1.10E+05	8.88	0.600
sq4ib35a			120.82	115	5.62	123.63		1.79E+05		1.69E+05		1.43E+05		1.63E+05	11.87	0.576
sq4ib45a		_	112.32	105	7.23	115.94		2.46E+05		2.31E+05	14.41			2.22E+05	14.66	0.553
sq4ib55a			103.78	95	8.87	108.22		3.22E+05		3.02E+05		2.50E+05		2.90E+05	17.25	0.530
sq4ib65a		105.76		85	10.56	100.48		4.10E+05		3.83E+05		3.14E+05		3.68E+05	19.67	0.508
sq4ib75a	150	98.88		75	12.30	92.73		5.12E+05		4.76E+05		3.87E+05		4.57E+05	21.91	0.486
sq4ib85a	150	92.00	77.92	65	14.08	84.96	7.44	6.30E+05	8.90	5.83E+05	13.62	4.70E+05	9.73	5.59E+05	23.96	0.464
																
sq4ib05b	100	96.79		95	0.91	96.34		3.60E+04		3.38E+04		2.96E+04		3.29E+04	1.72	0.514
sq4ib15b	100	90.03	87.43	85	2.59	88.73		1.10E+05		1.03E+05		8.76E+04		9.95E+04	4.66	0.490
sq4ib25b	100	83,11	78.88	75	4.24	81.00		1.93E+05		1.81E+05		1.51E+05		1.74E+05	7.27	0.468
sq4ib35b	100	76.15		65	5.90	73.21		2.89E+05		2.70E+05		2.22E+05		2.60E+05	9,67	0.447
sq4ib45b	100	69,17	61.58	55	7.59	65.38	7.11	4.01E+05	8.38	3.74E+05	12.84	3.03E+05	9.21	3.59E+05	11.87	0.427

с 1

_			Temper	ature (°F))										Aver	age heat
		Pipe	Inside	Outside			Bot	tom	5	lide	1	lop	Av	erage	Flux	Conductance
Filename	Pipe	Insul.	EPS	EPS	Dtemp ¹	TANO ²	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr ft ²⁰ F)
sq4ib55b	100	62.19	52.87	45	9.32	57.59	6.74	5.33E+05	8.05	4.95E+05	12.66	3.97E+05	8.88	4.74E+05	13.90	0.407
sq4ib65b	100	55.20	44.10	35	11.10	49.65	6.38	6.88E+05	7.73	6.37E+05	12.43	5.06E+05	8.54	6.10E+05	15.73	0.386
sq4ib75b	100	48.17	35.24	25	12.93	41.71	6.02	8.69E+05	7.40	8.02E+05	12.08	6.35E+05	8.17	7.68E+05	17.33	0.365
					_											
sq4ib05c	80	76.79	75.85	75	0.93	76.32	8.05	4.39E+04	9.25	4.13E+04	12.38	3.57E+04	9.88	4.00E+04	1.59	0.466
sq4ib15c	80	69.98	67.34	65	2.64	68.66	7.57	1.34E+05	8.77	1.26E+05	12.48	1.06E+05	9.50	1.21E+05	4.29	0.442
sq4ib25c	80	63.03	58.71	55	4.32	60.87	7.16	2.37E+05	8.38	2.22E+05	12.47	1.82E+05	9.15	2.13E+05	6.67	0.421
sq4ib35c	80	56.03	50.02	45	6.01	53.02	6.79	3.56E+05	8.02	3.33E+05	12.39	2.70E+05	8.83	3.19E+05	8.84	0.402
sq4ib45c	80	49.01	41.28	35	7.73	45.15		4.98E+05		4.64E+05	12.24	3,71E+05	8.50	4.44E+05	10.83	0.382
sq4ib55c	80	41.99	32.49	25	9.50	37.24	6.06	6.65E+05	7.36	6.17E+05	12.04	4.89E+05	8.17	5.90E+05	12.63	0.363
sq4ib05d	40	36.76		35	0.98	36.28		6.77E+04	_	6.33E+04		5.36E+04		6.12E+04	1.35	0.378
sq4ib15d	40	29.87	27.13	25	2.74	28.50		2.07E+05		1.94E+05	11.37	1.59E+05		1.86E+05	3.57	0.356
sq4ib25d	40	22.84		15	4.47	20.61		3.70E+05	_	3.46E+05		2.76E+05	7.80	3.31E+05	5,53	0.338
										: 0.9, cmissi						
sq4ib05e		146.86			0.96	146.38		2.56E+04		2.42E+04		2.13E+04		2.35E+04	1.93	0.546
sq4ib15c		140.25		135	2.74	138.88		7.76E+04		7.31E+04		6.22E+04		7.06E+04	5.29	0.527
sq4ib25e		133.47		125	4.47	131.23		1.35E+05		1.27E+05		1.06E+05		1.22E+05	8.28	0.505
sq4ib35e		126.62		115	6.20	123,52		1.98E+05		1.87E+05		1.54E+05		1.80E+05	11.03	0.485
sq4ib45c		119.72		105	7.94	115,75		2.71E+05		2.55E+05		2.07E+05		2.44E+05	13,57	0.466
sq4ib55e		112.80			9.70	107.95		3.53E+05		3.33E+05		2.67E+05		3.18E+05	15.90	0.447
sq4ib65e		105.87	94.37	85	11.49	100.12		4.47E+05		4.21E+05		3.35E+05		4.01E+05	18,06	0.429
sq4ib75c	150	98.94	85.61	75	13.32	92.27		5.56E+05		5.21E+05		4.11E+05		4.97E+05	20.05	0.410
sq4ib85c	150	91.99	76.8 0	65	15.20	84,40		6.80E+05		6.36E+05	_	4.99E+05		6.06E+05	21.86	0.392
sq4ib95e	150	85.01	<u>67.9</u> 1	55	17.11	76.46		8.22E+05		7.67E+05		6.00E+05	7.93		23.44	0.374
s4ib105c	150	77.98	58.94	45	19.05	68.46	5.60	9.85E+05	6.80	9.17E+05	11.64	7.17E+05	7.62	8.76E+05	24.78	0.355
								<u></u>		 						
sq4ib05f	100	96.84	95.83	95	1.02	96.34		4.02E+04		3.78E+04		3.23E+04		3.66E+04	1.62	0.434
sq4ib15f	100	90,12	87.27	85	2.85	88.70	6.77		7.91			9.45E+04	8.65	1.10E+05	4.34	0.415
sq4ib25f	100	83.23	78.59	75	4.64	80.91		2.12E+05	7.54			1.61E+05		1.91E+05	6.74	0.396
sq4ib35f	100	76.26		65	6.41	73.05		3.15E+05		2.96E+05		2.36E+05		2.83E+05	8.91	0.379
sq4ib45f	100	69.25	61.04	55	8.21	65.14		4.34E+05		4.08E+05	_	3.21E+05		3.89E+05	10.88	0.362
sq4ib55f	100	62.21	52.19	45	10.03	57.20		5.74E+05		5.38E+05		4.19E+05		5.12E+05	12.69	0.345
sq4ib65f	100	55,16		35	11.88	49.22		7.36E+05		6.89E+05		5.33E+05		6.55E+05	14.30	0.328
sq4ib75f	100	48.04	34.28	25	13.76	41.16	5.03	9.25E+05	6.13	8.63E+05	10.99	6.67E+05	6.96	8.22E+05	15.69	0.311

•

				ature (°F))										Aver	age heat
		Pipe	Inside	Outside			Bot	tom	S	ide	1	Гор	Av	erage	Flux	Conductance
Filename	Pipe	Insul.	EPS	EPS	Dtemp ¹	T_{APG}^2	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr ft²ºF)
sq4ib05g	80	76.83	75.80	75	1.03	76.32	6.59	4.88E+04	7.74	4.58E+04	11.10	3.88E+04	8.37	4.43E+04	1.49	0.394
sq4ib15g	80	70.06	67.17	65	2.89	68.62	6.20	1.47E+05	7.30	1.38E+05	11.30	1.13E+05	8.05	1.33E+05	3,98	0.375
sq4ib25g	80	63.12	58.43	55	4.70	60.78	5.89	2.58E+05	6.94	2.43E+05	11.39	1.94E+05	7.77	2.32E+05	6.16	0.358
sq4ib35g	80	56.10	49.61	45	6.49	52.86	5.60	3.86E+05	6.63	3.63E+05	11.35	2.85E+05	7.50	3.45E+05	8.12	0.341
sq4ib45g	80	49.04	40.74	35	8.30	44.89	5.32	5.35E+05	6.35	5.03E+05	11.22	3.90E+05	7.23	4.78E+05	9.89	0.325
sq4ib55g	80	41.96	31.81	25	10.15	36.89	5.04	7.11E+05	6.09	6.66E+05	11.01	5.13E+05		6.33E+05	11.48	0.309
·												·				
sq4ib05h	40	36.80	35.73	35	1.07	36.27	5.49	7.44E+04	6.61	6.95E+04	10.19	5.75E+04	7.25	6.70E+04	1.26	0.321
sq4ib15h	40	29,93	26.97	25	2.96	28.45	5.12	2.25E+05	6,15	2.11E+05	10.45	1.68E+05	6.93	2.02E+05	3.30	0.304
sq4ib25h	40	22.89	18.09	15	4.80	20.49		3.98E+05		3.74E+05		2.90E+05	6.66	3.56E+05	5.07	0.288
1-ft × 1-ft e																
sq4ib051		146.98		145	1.17	146.39		3.08E+04	7.37	2.91E+04		2.59E+04		2.85E+04	1.73	0.405
sq4ib151		140,48		135				9.20E+04	7.12	8,64E+04	10.08	7.44E+04	7.65	8.40E+04	4.70	0.393
sq4ib25l		133.78		125	5.26	131.15		1.58E+05		1.48E+05	10.14	1.25E+05		1.44E+05	7.30	0.379
sq4ib351		126.98		115	7.23	123.37		2.31E+05	6.62	2.17E+05	10.18	1.81E+05	7.25	2.10E+05	9.67	0.365
sq4ib451		120.11		105	9.19	115.52		3.14E+05		2.94E+05	10.19	2.41E+05	7.06	2.83E+05	11.84	0.351
sq4ib551			102.03	95	11.14	107.61	5.08	4.07E+05	6.17	3.81E+05	10.13	3.09E+05	6.86	3.66E+05	13.80	0.338
sq4ib651		106.20	93.09	85	13.10	99.64		5.12E+05		4.79E+05		3.85E+05		4.59E+05	15.57	0.324
sq4ib751	150		84.10	75	15.08	91.65		6.31E+05		5.90E+05		4.71E+05		5.65E+05	17.18	0.311
sq4ib851	150		75.05	65	17.09	83.59		7.67E+05		7.16E+05		5.70E+05		6.86E+05	18,58	0.297
sq4ib951	150	85.02	65.91	55	19.10	75.47		9.23E+05		8.60E+05		6.83E+05		8.24E+05	19.77	0.282
s4ib105l	150	77.79	56.68	45	21.11	67.23	4.03	1.10E+06	5.09	1.02E+06	9.15	8.13E+05	5.76	9.81E+05	20,71	0,268
									····							
sq4ib05j	80		75.71	75	1.21	76.32		5.70E+04		5.34E+04		4.58E+04		5.19E+04	1.33	0.298
sq4ib15j	80		66.90	65	3.33	68.57	İ			1.58E+05		1.31E+05		1.53E+05	3.48	0.285
sq4ib25j	80		57.99	55	5,35	60.66		2.94E+05		2.75E+05		2.22E+05		2.64E+05	5.36	0.274
sq4ib35j	80	56.31	48.99	45	7.32	52.65		4.36E+05		4.07E+05		3.24E+05		3,90E+05	7.02	0.262
sq4ib45j	80		39.93	35	9.28	44.57		5.99E+05		5.60E+05		4.40E+05		5.35E+05	8.49	0.250
sq4ib55j	80	42.04	30,80	25	11.24	36.26	3.64	7.91E+05	4.64	7.38E+05	8.85	5.77E+05	5.34	7.05E+05	9.77	0.237
sq4ib05i	40		35.65	35	1.23	36.26		8.52E+04		7.95E+04		6.67E+04		7.71E+04	1.11	0.246
sq4ib10i	40		31.20	30	2.31	32,35		1.68E+05	4.88	1.56E+05		1.28E+05		1.51E+05	2.03	0.240
sq4ib20i	40		22.21	20	4.36	24.39		3.46E+05	4.60	3.23E+05	8.54	2.56E+05		3.10E+05	3.66	0.229
sq4ib25i	40	23.03	17.68	15	5.35	20,36	3.50	4.45E+05	4.48	4.16E+05	8.57	3.26E+05	5.17	3.97E+05	4.39	0.224

				ature (°F)										Aver	age heat
		Pipe	Inside	Outside			Bot	tom	S	lide	•	Гор	Av	erage	Flux	Conductance
Filename	Pipe	lnsul.	EPS	EPS	Dtemp ¹	TAVG ²	Nu	Ra	Nu	Ra	Nu	Ra	Nu _	Ra	(Btu/hr ft)	(Btu/hr ft2ºF)
sq4ib35i	40	15.87	8.55	5	7.32	12.21	3.30	6.67E+05	4.26	6.23E+05	8.48	4.83E+05	4.97	5.94E+05	5.69	0.212
sq4ib50i	40	4.96	-5.29	-10	10.25	-0.17	3.01	1.08E+06	3.94	1.01E+06	8.09	7.77E+05	4.62	9.60E+05	7.27	0.193
1-ft × 1-ft e	nclosur	e, 2.375	S-inch pi	ipe, emis	sivity of	pipe ins	ulation: 0.	9, emissivity	y of EPS	s: 0.9						
sq2d05a	150		146.60	145	3.40	148.30	7.44	3.14E+05	7.85	3.09E+05	9.30	2.92E+05	8.20	3.04E+05	3.44	0.276
sq2d15a	150		139.73	135		144.87	7.23	9.70E+05	7.54	9.58E+05	9.06	9.03E+05		9.43E+05	9,99	0.265
sq2d25a	150		132.64	125		141.32		1.67E+06	7.16	1.66E+06	8.39	1.58E+06	7.50	1.64E+06	15,89	0.250
sq2d35a	150		125.41	115	24.59	137.71	6,70	2.42E+06	6.85	2.41E+06	_ 7.81	2.31E+06	7.13	2.38E+06	21.30	0.236
sq2d05b	100		96.47	95	3.53	98.24	6.25	4.82E+05	6.66	4.74E+05	8.31	4.43E+05	7.05	4.66E+05	2.86	0.221
sq2d15b	100		89.21	85	10.79	94.61	5.92	1.51E+06		1.49E+06	7.55	1.41E+06	6,53	1.47E+06	8.06	0.204
sq2d25b	100		81.69	75	18.31	90.85	5.62	2.62E+06	5.77	2.60E+06	6.72	2.50E+06	6.04	2.57E+06	12.59	0.187
sq2d35b	100		74.09	65	25.91	87.05	5.42	3.81E+06	5.50	3.80E+06	6.22	3.68E+06	5.72	3.76E+06	16.79	0.177
sq2d05c	80		76.41	75	3.59	78.21	5.79	5.82E+05	6.20	5.72E+05	7.91	5.32E+05	6.60	5.62E+05	2.64	0.201
sq2d15c	80		68.98	65	11.02	74.49	5.41	1.83E+06	5.64	1.81E+06	6.90	1.71E+06	5.97	1.78E+06	7.31	0.181
sq2d25c	80		61.30	55	18.70	70.65	5.13	3.19E+06	5.25	3.17E+06	6.08	3.05E+06	5.49	3.14E+06	11.35	0.165
sq2d35c	80		53.57	45	26.43	66.79	4.95	4.65E+06	5.01	4.63E+06	5.66	4.50E+06	5.22	4.59E+06	15.15	0.156
sq2d05d	40		36.29	35	3.71	38.15	4.89	8.81E+05	5.28	8.65E+05		8.00E+05		8.49E+05	2.22	0.163
sq2d15d	40		28.49	25	11.51	34.25	4.45	2.80E+06		2.78E+06		2.65E+06	4.87	2.74E+06	5.87	0.139
sq2d25d	40		20.54	15	19.46	30.27		4.90E+06		4.88E+06	4.95	4.73E+06	4,50	4.84E+06	9.10	0.127
sq2d35d	40		12.58	5	27.42	26.30	4.10	7.18E+06	4.12	7.17E+06	4.67	6.97E+06	4.30	7.10E+06	12.19	0.121
1- ft × 1-ft e	enclosu	re, 2.37	5-inch p	sipe, emi	ssivity o	f pipe: 0	.9, emissiv	ity of EPS:			_					
sq2d05e	150		146.53	145	3.47	148.26	6.74	3.23E+05	7.25	3.16E+05	9.11	2.94E+05	7.67	3.11E+05	3.28	0.257
sq2d15e	150		139.49	135	10.51	144.75	6.55	9.99E+05	6.92	9.83E+05	8.82	9.12E+05	7.38	9.65E+05	9.50	0.247
sq2d25e	150		132.24	125	17.76	141.13	6,31	1.72E+06	6.57	1.70E+06	8.08	1.60E+06	6.96	1.67E+06	15.07	0.231
sq2d35e	150		124.86	115	25.14	137.44	6,11	2.49E+06	6.29	2.47E+06	7.45	2.35E+06	6.61	2.44E+06	20.16	0.219
sq2d45e	150		117.41	105	32.59	133.72	5.95	3.30E+06	6.07	3.29E+06	7.00	3.16E+06	6.34	3.25E+06	24.96	0.209
sq2d05f	100		96.40	95	3.60	98.20	5.63	4.95E+05	6.14	4.84E+05	8.19	4.45E+05	6.59	4.75E+05	2.73	0.207
sq2d15f	100		88.99	85	11.01	94.50	5.36	1.55E+06	5.67	1.53E+06	7.34	1.42E+06	6.07	1.50E+06	7.65	0.189
sq2d25f	100		81.33	75	18.67	90.67		2.68E+06	5.30	2.66E+06		2.53E+06		2.63E+06		0.174
sq2d35f	100		73.58	65	26.42	86.80		3.90E+06		3.88E+06		3.74E+06		3.84E+06	15.85	0.164
<u></u>			·					•			·					
sq2d05g	80		76.35	75	3.65	78.17	5.21	5.98E+05	5.71	5.84E+05	7.81	5.34E+05	6.16	5.73E+05	2.52	0.188

Ŧ

			Temper	ature (°F)											Aver	age heat
		Pipe	Inside	Outside			Bott	tom	S	ide	1	lop	Av	erage	Flux	Conductance
Filename	Pipe	Insul.	EPS	EPS	Dtemp ¹	T_{AVG}^2	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr ft²ºF)
sq2d15g	80		68.77	65	11.23	74.39	4.91	1.87E+06	5.18	1.85E+06	6.70	1.73E+06	5.55	1.82E+06	6.93	0.168
sq2d25g	80		60.95	55	19.05	70.48	4.68	3.26E+06	4.83	3.24E+06	5.81	3.10E+06	5.09	3.20E+06	10.72	0.154
sq2d35g	80		53.09	45	26.91	66.55	4.53	4.75E+06	4.62	4.73E+06	5,37	4.57E+06	4.84	4.68E+06	14.30	0.145
sq2d05h	40		36.23	35	3,77	38.11		9.03E+05		8.83E+05		8.03E+05		8.64E+05	2.11	0.152
sq2d15h	40		28.30	25	11.70	34.15		2.86E+06		2.83E+06		2.68E+06		2.79E+06	5.55	0.129
sq2d25h	40		20.22	15	19.78	30.12		5.00E+06		4.97E+06		4.79E+06		4.92E+06	8.58	0.118
sq2d35h	40		12.15	5	27.85	26.08		7.32E+06		7.30E+06	4.43	7,08E+06	3,99	7.23E+06	11.49	0.113
1-ft × 1-ft e		re, 2.37														
sq2d05i	150		146.17	145		148.09		3.54E+05		3.48E+05		3.28E+05		3.43E+05	2.52	0.179
sq2d15i	150		138.42	135				1.10E+06		1.08E+06		1.02E+06		1.07E+06	7.22	0.170
sq2d25i	150		130.36	125	19.64	140.18		1.91E+06		1.89E+06		1.80E+06		1.87E+06	11.14	0.155
sq2d35i	150		122.12	115		136.06		2.78E+06		2.76E+06		2.66E+06		2.73E+06	14.53	0.142
sq2d45i	150		113.83	105	36.17	131.92	3.77	3.71E+06	3.89	3.68E+06	4.50	3.58E+06	4.06	3.66E+06	17.69	0.133
sq2 d 05j	100		96.08	95	3.92	98.04		5.36E+05		5.26E+05		4.90E+05		5.18E+05	2.11	0,147
sq2d15j	100		87.99	85	12.01	94.00	3.62	1.69E+06		1.66E+06		1.57E+06		1.64E+06	5.73	0.130
sq2d25j	100		79.56	75	20.44	89.78		2.95E+06		2.92E+06		2.82E+06		2.90E+06	8.57	0.114
sq2d35j	100		71.06	65	28.94	85.53	3.15	4.31E+06	3.26	4.29E+06	3.83	4.17E+06	3.41	4.25E+06	11.16	0,105
										·						
sq2d05k	80		76.04	75	3.96	78.02		6.44E+05		6.31E+05		5.86E+05		6.21E+05	1.95	0.135
sq2d15k	80		67.80	65	12.20	73.90		2.04E+06		2.01E+06		1.91E+06		1.99E+06	5.14	0,115
sq2d25k	80		59.24	55	20.76	69,62		3.57E+06		3.54E+06		3.43E+06		3.51E+06	7.63	0.100
sq2d35k	80		50.67	45	29.33	65,34	2.87	5.23E+06	2.97	5.20E+06	3.49	5.06E+06	3.11	5.16E+06	10,00	0.093
												·····				
sq2d051	40		35.96	35	4.04	37.98		9.64E+05		9.44E+05		8.73E+05		9.28E+05	1.64	0.110
sq2d151	40		27.39	25	12.61	33.70		3.08E+06	2.85	3.05E+06	3.66	2.93E+06	3.04	3.02E+06	4.01	0.087
1-ft × 1-ft e											~					
sq2ib05a			145.22	145	1.86			1.07E+05		9.88E+04		8.07E+04		9.61E+04	0.48	0.070
sq2ib10a			140.40		3.31	142.06		1.97E+05		1.82E+05		1.46E+05		1.76E+05	0.85	0.070
sq2ib20a			130.68	130	5.84	133.60		3.69E+05		3.43E+05		2.72E+05		3.31E+05	1.42	0.066
sq2ib30a			120.88	120	8,15	124.95		5.46E+05		5.11E+05		4.08E+05		4.93E+05	1.80	0.060
sq2ib40a			111.02	110	10.33	116.19		7.35E+05		6.93E+05	4.37	5.62E+05	1.40	6.69E+05	2.06	0.054
sq2ib50a			101.12		12.41	107.32	2.28E-04	9.41E+05	0.78	8.91E+05	3.91	7.36E+05		8.63E+05	2.20	0.048
sq2ib60a	150	105.58	91.17	90	14.42	98.38	1.18E-04	1.17E+06	0.69	1.11E+06	3,44	9.35E+05	1.13	1.08E+06	2.25	0.043

.

	Temperature (°F)														Average heat	
	Pipe Inside Outside				Bot	tom	S	ide	נ	`op	Av	erage	Flux	Conductance		
Filename	Pipe	Insul.	EPS	EPS	Dtemp ¹	TAPO ²	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr ft20F)
sq2ib70a	150	97.53	81.19	80		89.36	6.40E-05	1.42E+06	0.62	1.35E+06	3,01	1.16E+06	1.00	1.32E+06	2.24	0.037
sq2ib80a	150	89.38	71.18	70		80.28	3.60E-05	1.69E+06	0.55	1.63E+06		1.42E+06	0.89	1.59E+06	2.19	0.033
sq2ib90a	150	81.13	61.16	60		71.15				1.93E+06		1.71E+06		1.89E+06	2.10	0.029
sq2ib1a	150	72.80	51.13	50		61.97			0.45	2.28E+06	-	2.05E+06	0.70	2.23E+06	2,00	0.025
sq2ib2a	150		41.10	40		52.74				2.66E+06		2.42E+06	0.63	2.62E+06	1.91	0.022
1-ft × 1-ft enclosure, 2.375-inch pipe with 1 inch of insulati																
sq2ic05a		146.45		145	0.81	146.04		4.41E+04		4.26E+04		3.95E+04		4.19E+04	1.77	0.595
sq2ic15a*		139.16		135	2.35	137.99		1.36E+05		1.31E+05		1.20E+05		1.29E+05	4.95	0.575
sq2ic25a		131.78		125	3.86	129.85		2.38E+05		2.30E+05		2.08E+05		2.25E+05	7.82	0.553
sq2ic35a*		124.34		115	5.38			3.54E+05		3.41E+05		3.06E+05		3.34E+05	10.44	0,530
sq2ic45a*		116.86		105	6.90	113.42		4.85E+05		4.67E+05		4.15E+05		4.57E+05	12.83	0.507
sq2ic55a		109.35		95	8.43	105.15		6.35E+05		6.11E+05		5.39E+05		5.96E+05	15.01	0.486
sq2ic65a*		101.81		85	9.98	96.84		8.06E+05		7.76E+05		6.79E+05		7.56E+05	17.00	0.465
sq2ic75a*	150			75		88.50		1.00E+06		9.65E+05		8.38E+05		9.40E+05	18.80	0.444
sq2ic85a*	150	86.68	73.53	65	13,15	80.13	7.38	1.23E+06	8.24	1.18E+06	11.80	1.02E+06	8.85	1.15E+06	20.40	0.423
sq2ic05d	100	96.46	95.59	95	0.86	96.03		6.98E+04		6.71E+04	11.44	6.13E+04	9.70	6.58E+04	1.50	0.474
sq2ic15d	100	89.13	86.66	85	2.47	87.90		2.15E+05	8.92	2.06E+05	11.50	1.85E+05	9.41	2.02E+05	4.12	0.454
sq2ic25d*	100	81.68	77.64	75	4.04	79.67	7.68	3.77E+05	8,56	3.63E+05	11.44	3.21E+05	9.08	3.54E+05	6.41	0.433
sq2ic35d*	100	74.15	68.56	65	5,59	71.36	7.36	5.63E+05	8.22	5.41E+05	11.33	4.74E+05	8.76	5.28E+05	8.47	0,413
sq2ic45d*	100	66,56	59.43	55	7.14	63.01	7.03	7.79E+05	7.89	7.48E+05	11.19	6.49E+05	8.45	7.29E+05	10.31	0.394
sq2ic05h	80	76.46		75	0.88	76.02		8.51E+04		8.17E+04		7.43E+04		8.02E+04	1.40	0.431
sq2ic15h	80	69.11	66.60	65	2.52	67.86		2.62E+05		2.51E+05		2.24E+05		2.46E+05	3.79	0.411
sq2ic25h	80	61.62	57.53	55	4.10	59.58		4.61E+05		4.42E+05		3.88E+05		4.32E+05	5,87	0.391
sq2ic35h*	80	54.05	48.39	45	5.66	51.23	6,72	6.91E+05	7.58	6.63E+05	10.83	5.75E+05	8.13	6.46E+05	7.72	0.372
sq2ic05k	A	196.44		195	0.76	196.06		2.93E+04		2.84E+04		2.67E+04		2.79E+04	2.05	0.736
sq2ic15k*		189.17		185	2.21	188.06		9.01E+04		8.73E+04	14.63	8.09E+04		8.57E+04	5.83	0.718
sq2ic25k*		181.83		175	3.67	180.00		1.58E+05		1.52E+05		1.40E+05	12.65	1.50E+05	9,30	0.692
1-ft × 1-ft e							ion, emissi	vity of pipe				the second s				
sq2ic05b		146.49		145	0.88			4.82E+04		4.64E+04		4.24E+04	10.05	4.55E+04	1.70	0.526
sq2ic15b	150	139.27	136.73	135	2.53	138.00	8.39	1.48E+05	9.32	1.42E+05	12.02	1.27E+05	9.82	1.39E+05	4.73	0.509
					4.1.6	100.05	0.10	0.000.00	0.00			0.100.00	0.00	0 4017 . 00		0.400
sq2ic25b	150	131.92	127.77	125	4.15	129.85	8.10	2.57E+05	8,99	2.48E+05	11,98	2.19E+05	9,53	2.42E+05	7.43	0.488

	Temperature (°F)														Average heat Flux Conductance	
	Pipe Inside Outside		Bot	Bottom		Side		Тор		Average		Conductance				
Filename	Pipe	Insul.	EPS	EPS	Dtemp ¹	T_{AFO}^2	_Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr ft20F)
sq2ic45b	150	117.05	109.68	105	7.37	113.38	7.52	5.20E+05	8.35	5.01E+05	11,79	4.34E+05	8.94	4.88E+05	12.10	0.448
sq2ic55b	150	109.55	100.57	95	8.98	105.08	7.24	6.78E+05	8.05	6.54E+05	11.65	5.62E+05	8.66	6.36E+05	14.12	0.429
sq2ic65b		102.01	91.41	85	10.60	96.74	6.96	8.59E+05	7.75	8.28E+05		7.06E+05		8.04E+05	15.94	0.410
sq2ic75b	150	94.45	82.21	75	12.24	88.36	6.68	1.07E+06	7.45	1.03E+06		8.69E+05	8.10	9.97E+05	17.57	0.392
sq2ic85b	150	86.85	72.96		13.89	79.95		1.30E+06		1.26E+06		1.05E+06		1.22E+06	19.01	0.373
sq2ic95b	150	79.21	63.66	55	15.55	71.48	6.13	1.57E+06	6.85	1.52E+06	10,99	1.26E+06	7.53	1.47E+06	20.26	0.355
0.05	100	06.60	95.57	95	0.02	96.03	7.01	7.600.041	0.16	7 9 17 . 04	10.64	6 61 7 . 0 4		G 107.04	1 40	<u> </u>
sq2ic05c	100	96.50 89.22	86.58	<u> </u>	0.93	87.90		7.56E+04 2.31E+05		7.24E+04 2.21E+05		6.51E+04		7.10E+04	1.43	0.420
sq2ic15c sq2ic25c	100		77.50		4.30	79.65		4.04E+05		3.87E+05		1.95E+05 3.35E+05	_	2.16E+05 3.78E+05	3.90 6.05	0,403
sq2ic35e	100	74.28	68.35	65	5.93	71.33		4.04E+05		5.77E+05		4.93E+05		5.61E+05	7.96	0.366
sq2ic35e	100	66.70	59.15		7.55	62.94		8.27E+05		7.95E+05		4.93E+05		7.72E+05	9.65	0.349
sq2ic55c	100				9.17	54.50		1.09E+06		1.05E+06		8.75E+05		1.01E+06	11.15	0.349
										110011-00	10.00	10.100		1.010.00		0.334
sq2ic05i	80	76.50	75.55	75	0.95	76.03	6.65	9.20E+04	7.61	8.79E+04	10.18	7.85E+04	8.05	8.61E+04	1.33	0.383
sq2ic15i	80	69.19	66.51	65	2.68	67.86	6.35	2.80E+05	7.26	2.68E+05	10.37	2.34E+05	7.77	2.62E+05	3.59	0.365
sq2ic25i	80	61.72	57.38	55	4.35	59.56	6.07	4.91E+05	6.92	4.71E+05	10.40	4.03E+05	7.48	4.58E+05	5.53	0.347
sq2ic35i	80	54.16	48.18	45	5.98	51.18	5.80	7.33E+05	6.61	7.04E+05	10.34	5.94E+05	7.20	6.83E+05	7.23	0.330
		104.10	100.00													<u> </u>
sq2ic051			195.65		0.83			3.22E+04		3.11E+04		2.88E+04		3.06E+04	1.98	0.648
sq2ic151			186.87	185	2.41			9.87E+04		9.52E+04		8.67E+04		9.33E+04	5.59	0.632
sq2ic251		_	178.03	175		180.02		1.72E+05		1.66E+05		1.50E+05	11.14	1.62E+05	8.89	0.609
1-ft × 1-ft c sq2ic05c			145.55		1.10			5.98E+04						6 (07) 04	1.61	0.076
sq2ic15c*		139.63		145	3.10			1.80E+05		5.76E+04 1.73E+05		5.33E+04		5.68E+04	1.51	0.376
sq2ic15c+			127.43	135	5.01	129.94		3.09E+05		2.97E+05		1.57E+05 2.66E+05		1.70E+05	4.17	0.367
sq2ic25c*		125.14		125	6.87	129.94		4.53E+05		4.35E+05				2.92E+05	6.52	0.355
sq2ic35c*		117.76		105	8.69				· · · · · · · · · · · · · · · · · · ·			3.85E+05		4.26E+05	8.61	0.342
sq2ic45c*		117.70	99.81	95	8.09			6.13E+05 7.92E+05		5.88E+05 7.61E+05		5,16E+05		5.76E+05	10.50	0.329
sq2ic55c*		102.80		85		96.68						6.60E+05		7.43E+05	12.20	0.317
				75	12.28			9.95E+05		9.55E+05		8.21E+05		9.32E+05	13.71	0.305
sq2ic75c*	150		81.18		14.04	88.23		1.22E+06		1.18E+06		1.00E+06		1.14E+06	15.05	0.292
sq2ic85c*	150		71.79		15.80	79.73		1.49E+06		1.43E+06		1.21E+06		1.39E+06	16.20	0.280
sq2ic95c*	150	79.88	62.35	55	17.53	71.17	4.37	1.78E+06	5.11	1.71E+06	8.72	1.43E+06	5.67	1.66E+06	17.18	0.267

	Temperature (°F) Pipe Inside Outside														Average heat	
		Pipe						tom		Side	•	Гор	Av	erage	Flux	Conductance
Filename	Pipe	Insul.	EPS	EPS	Dtemp ¹	T _{AVO} -	Nu	Ra	Nu	Ra	Nu	Ra	Nu	Ra	(Btu/hr ft)	(Btu/hr ft20F)
sq2ic05f	100	96.63	95.50	95	1.13	96.07	5.11	9.15E+04	5.93	8.78E+04	7.86	8.00E+04	6.25	8.64E+04	1.27	0.305
sq2ic15f	100	89.53	86.38	85	3.15	87.96	4.91	2.74E+05	5.75	2.62E+05	8.16	2.33E+05	6.13	2.57E+05	3.42	0.296
sq2ic25f*	100	82.21	77.17	75	5.04	59.58	4.86	5.67E+05	5.70	5.43E+05	8.56	4.76E+05	6.14	5.32E+05	5.26	0,285
sq2ic35f	100	74.77	67.90	65	6.87	71.35	4.52	6.95E+05	5.34	6.66E+05	8.37	5.74E+05	5.80	6.50E+05	6.89	0.273
sq2145f	100	67.23	58.57	55	8.65	62.99	4.34	9.47E+05	5.14	9.07E+05	8.40	7.73E+05	5.63	8.84E+05	8.32	0.262
sq2ic55f*	100	59.60	49.20	45	10.40	54.43	4.16	1.24E+06	4.94	1.18E+06	8,39	9.98E+05	5.45	1.15E+06	9.57	0.251
sq2ic05j	80	76.63	75.48	75	1.14	76.06	4.74	1.10E+05	5.57	1.05E+05	7.60	9.54E+04	5.90	1.04E+05	1.17	0.280
sq2ic15j	80	69.47	66.32	65	3.15	67.90	4.53	3.29E+05	5.37	3.14E+05	7.94	2.77E+05	5.77	3.08E+05	3.13	0.271
sq2ic25j	80	62.10	57.06	55	5.04	67.90	4.29	5.26E+05	5.10	5.03E+05	7.99	4.35E+05	5.53	4.92E+05	4.80	0.260
sq2ic35j	80	54.59	47.75	45	6.85	51.19	4.15	8.39E+05	4.96	8.02E+05	8.17	6.84E+05	5.44	7.82E+05	6.25	0.249
																_
sq2ic05m	200	196.65	195.59	195	1.06	190.12	7.21	4.24E+04	7.93	4.11E+04	9.49	3.85E+04	8.24	4.05E+04	1.78	0,456
sq2ic15m*	200	189.69	186.67	185	3.02	188.18	7.01	1.23E+05	7.77	1.19E+05	9.67	1.10E+05	8.13	1.17E+05	4.98	0.449
sq2ic25m			177.68	175		180.14		2.12E+05		2.04E+05		1.86E+05		2.01E+05	7.87	0.436
						_					_	ivity of EPS				
sq1-410b*			141.06	140		141.56		5.42E+04		5.33E+04	*****	4.90E+04		5.19E+04	2.93	0,634
sq1-420b	_		132.08	130	1.96			1.17E+05		1.14E+05		1.05E+05		1.11E+05	5.62	0.605
sq1-430b*			123.10	120	2.99			1.91E+05		1.86E+05		1.69E+05	14.75	1.81E+05	8.22	0.579
sq1-440b*			114.12	110	4.07			2.78E+05		2.71E+05		2.44E+05	14.31	2.64E+05	10.74	0.556
sq1-450b*			105.13	100	5.22		12.30	3.82E+05	13.00	3.72E+05	16.26	3.32E+05	13.81	3.61E+05	13.13	0.530
sq1-460b*	150	102.55	96.12	90	6.42	99.36	11.72	5.06E+05	12.46	4.92E+05	15.91	4.35E+05	13.29	4.77E+05	15.37	0,504
											<u> </u>					
sq1-405c_	80		75.50					5.36E+04		5.17E+04		4.71E+04		5.06E+04		0,455
sq1-415c	80			65		67.25		1.70E+05		1.65E+05		1.48E+05		1.61E+05		0.435
sq1-425c 2-ft × 2-ft e	80		57.34	55		58.73		3.13E+05		3.03E+05		2.69E+05	11.54	2.95E+05	5.43	0,413
$\frac{2-11 \times 2-11}{2s2ii1}$			2-inch 1 145.46	145				1.29E+06		1.28E+06		1.24E+06	11.92	1.27E+06	2.06	0.001
2s2ii2*			140.88	145		142.28		2.42E+06		2.40E+06		2.31E+06		2.38E+06		0.001
2s2ii3		129.54		140				7.52E+06		7.48E+06		7.11E+06		7.39E+06		0.003
	1.00		1 44 44 , TT 1	1.0				1.524.00	11.72	L1.405.00	1.17.34	17.112.00	14, J7	1.371.700	10.32	0.010

¹ Dtemp is the temperature difference between the average pipeor pipe insulation surface temperature and the inside EPS temperature.

.

 2 T_{APG} is the average of the two temperatures used to calculate Dtemp.

* These data were from oscillating solutions.