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ABSTRACT

The microbial ecology of a 1976 experimental crude oil spill in an Alaskan 

taiga black spruce forest was investigated in this study. Substantial oil residue 

remained in the soil, and several microbial parameters showed evidence of long-term 

oiling effects. Overall, the data suggest that the surviving community in the oiled plot 

has shifted toward using oil C for growth. Numbers of hydrocarbon degrading 

microbes, and specific hydrocarbon mineralization potentials, were significantly 

elevated in the oiled (OIL) plot compared to an adjacent oil-free, reference (REF) 

plot. Glutamate mineralization potentials and soil C mineralization, on the other hand, 

were not different between treatments, suggesting that OIL plot heterotrophs were 

well-acclimated to the oil. Despite little difference between OIL and REF soils in total 

C mineralized in vitro, net N mineralized was lower and net nitrification was absent in 

OIL soils. Analysis of the residual oil indicated minimal amounts of N were added 

with the spilled oil. Biomasses of total fungi and bacteria, and numbers of protozoa, 

showed no consistent effects due to oiling, but metabolically active fimgal and 

bacterial biomasses were uniformly lower in OIL samples. Community-level multiple 

substrate metabolism (Biolog) was assessed using a new technique for extracting 

kinetic data from the microplates. This analysis suggested that the microbial 

population diversity in the OIL soils was lower than in REF soils. Further, these data 

indicated that the surviving populations in the OIL plot may be considered metabolic 

generalists. Some evidence of crude oil biodegradation was seen in the chemistry 

data, but enrichment of the oil residue in higher molecular weight components, 

duration of contact with soil organic material, and slow rates o f C mineralization 

indicate the crude oil will persist at this site for decades. Contamination of Alaskan 

taiga soil at this site has yielded observable long-term microbial community effects 

with larger-scale consequences for ecosystem function.
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INTRODUCTION

In the 1970’s, development of large petroleum reserves in the Canadian and 

Alaskan Arctic raised concerns that transport of crude oil across arctic and subarctic 

terrain would likely result in recurrent spills (Jenkins et a i, 1978). As there was little 

information about environmental impacts from terrestrial crude oil spills in northern 

regions, several groups of researchers implemented studies identifying the effects of 

such spills on local ecosystems (e.g., Hutchinson and Freedman, 1978) and the natural 

mechanisms likely responsible for recovery of affected areas (e.g., Jobson et al.,

1974). Following the decision to construct the Trans-Alaskan Pipeline System, one 

group of investigators conducted experimental crude oil spills designed to mimic the 

effects of an oil leak resulting from a pipeline failure in permafrost terrain (Johnson et 

al'., 1980). In 1976 two 7570 liter spills (one in February and one in July) o f hot (57 

°C) Prudhoe Bay crude oil were conducted in an open black spruce (Picea mariana) 

forest at the Caribou-Poker Creeks Research Watershed (CPCRW). There were four 

overall objectives of the study (Johnson et a i, 1980): i) to determine the physical 

effects of the oil on the forest, with attention to contaminant transport, area of impact 

over time, and permafrost effects; ii) to determine the fate of petroleum in subarctic 

terrestrial systems; iii) to determine the effect of crude oil on soil microbial 

populations; and iv) to determine the effects of oil on subarctic vegetation. Spill- 

related effects were evaluated for two years following the spill (Sparrow et al., 1978; 

Jenkins et a i, 1978), and two additional follow-up studies were conducted after 10 

(Sparrow and Sparrow, 1988; microbiology and chemistry) and 15 years (Collins et 

al., 1994; chemistry, and physical and vegetation effects).

During the period from spring thaw through autumn freeze-up in 1994 and 1995,

I re-visited the 1976 spill site at CPCRW. A substantial quantity (ca. 0.3 g • g dry 

soil’1) of crude oil remained in the soil at the site 18 years after it was spilled. Given the 

long-term presence of the oil in this system, two interrelated questions were raised.
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First, what was the effect of the crude oil on the microbial community in the affected 

soil? Second, were soil microbes breaking down the oil? I wished to know if the oil 

eliminated components of the microbial community essential for “proper” functioning 

of the soil system. Among the challenges was the search for measurements of the 

microbial community that would discriminate between oiled and oil-free soils. Further,

I sought to resolve questions regarding community structure; in other words, was the 

diversity of the oiled microbial community increased or decreased relative to that of 

nearby, oil-free soils? Biodegradation of organic compounds like crude oil represents 

one of the lowest impact cleansing mechanisms available as it relies on natural 

element-cycling processes (Madsen, 1991; Dixon, 1996). I wished to understand the 

reasons for the crude oil’s persistence and whether soil microbial potentials extant in 

the spill-affected community ultimately will be sufficient for biotic destruction of the 

residual oil.

One of the tasks facing soil ecologists is to assess the behavior o f the soil 

community and relate the community’s structure to its function (Schimel, 1995). No 

single tool currently available allows definitive assessment of the microbial community. 

Rather, the approach typically entails evaluating multiple lines of evidence to infer 

characteristics about the behavior of the system (Madsen, 1991). In this effort new 

tools offering a window into microbial community behavior are always welcome. 

Garland and Mills (1991) presented a promising new tool (Biolog multiple substrate 

microplates) to characterize microbial communities by their response to an array of 

carbon sources, generating a community-level “metabolic fingerprint.” My attempts to 

use Biolog plates were beset by several problems with the published methodology. 

These included issues regarding how to objectively quantify the community response 

to the substrates, and the problem of varying inoculum densities affecting substrate 

response rates. Chapter One of this dissertation provides my solution to problems with 

Biolog, wherein I suggest that estimating parameters describing the kinetic response of
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communities to each substrate offered provides objective criteria for assessing 

community-level integrated metabolisms.

Freed from concerns of how to quantify community-level responses to multiple 

substrates, I wished to move beyond generating community metabolic fingerprints. I 

applied my new kinetic approach to assessing microbial community structure. Other 

investigators have demonstrated that communities’ metabolic responses to multiple 

substrates can discriminate communities according to environmental treatments (e.g., 

Garland and Mills, 1991; ZaketaL, 1994; Bossio and Scow, 1995), but evidence of 

changes in community diversity and structure due to these treatments has remained 

elusive (Haack et a i, 1995). Chapter Two of this dissertation addresses measuring the 

relative functional diversity of microbial communities by coupling my kinetic approach 

to quantifying community-level substrate responses with common sample dilution 

techniques. Using kinetic parameters estimated for each substrate used by soil 

communities inoculated into the assay microplates, I evaluate changes in community 

self-similarity across dilutions and demonstrate how information contained in these 

microplate responses can be extracted and used.

Despite the ongoing search for new techniques in microbial ecology, however, 

traditional microbiological techniques are still useful for assessing microbial 

community behavior and structure. As suggested by Mills and Wassel (1980, p. 586), 

“Diversity, measured by any procedure, will never become a total answer to the 

determination of low-level stress effects, but when coupled with methods such as 

activity measurements, biomass evaluations, and other descriptors of community 

structure, the property may become a valuable addition to the arsenal of ecological 

tools held by the microbial ecologist and may be used to further understand the 

world.” Chapter Three of this dissertation contains an assessment of a variety of 

physical, chemical and microbiological soil parameters at my study site. Microbial 

biomass, mineralization potentials, and other data pertaining to the soil populations at
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the site are examined in an effort to determine the microbiological factors involved in 

the persistence of crude oil in these soils almost twenty years after it was spilled.

The results of this research provide a view of microbial life in taiga soil subject to 

the stresses associated with heavy oil contamination. Assessments of microbial 

biomass and activities suggest that, after decades o f exposure to oil, microbial 

communities have adapted to the oil but the associated population shift has disrupted 

mineral N  cycling in these soils. Substrate-specific mineralization potentials and assays 

for specific functional populations provide evidence of microbial communities with 

diminished diversity, metabolically focused by petroleum hydrocarbons. Community 

acclimation to hydrocarbons has led to C mineralization rate potentials that are 

virtually indistinguishable from oil-free soils. Despite enrichment of the oiled soils in 

favor of hydrocarbon-acclimated populations, the shift in substrate use from soil 

organic matter to crude oil has resulted in diminished net N mineralization. This, 

coupled with the increasing recalcitrance o f residual oil with time, may be responsible 

for the slow removal of crude oil from this site. Accordingly, it is anticipated that the 

spilled oil will persist as a feature of this taiga site for decades.
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MICROBIAL COMMUNITY ANALYSIS: A KINETIC APPROACH 

TO CONSTRUCTING POTENTIAL C SOURCE UTILIZATION PATTERNS1"

JON E. LINDSTROM1, RONALD P. BARRY2 and JOAN F. BRADDOCK1

department of Biology and Wildlife, and Institute of Arctic Biology, University of 

Alaska Fairbanks, Fairbanks, AK; 

department of Mathematical Sciences, University o f Alaska Fairbanks, Fairbanks, AK.

SUMMARY

The analysis of multiple substrate metabolism by assemblages of bacterial strains 

may be used to differentiate inocula from environmental samples. Biolog plates, 96- 

well microtiter plates containing nutrients, a single carbon test substrate in each well 

and a tetrazolium redox dye to monitor substrate oxidation, have been used for this 

purpose. One of the difficulties faced by users of this technique is determining which 

substrates have been metabolized. Reliance on single-time-point absorbance data for 

each well is problematic due to variably non-linear rates of color development for each 

well. Previous efforts to use color-normalized single plate readings have been 

successful in discriminating between environmental sample types, but substrate-use 

contributions to sample classifications vary depending on duration of the plate 

incubation period. We present a model based on the logistic equation for density- 

dependent population growth providing a good (low %) fit to the sigmoidal kinetics of 

color development data. The kinetic parameters generated by the model can be used as 

surrogates for single-time-point data in constructing carbon source utilization patterns, 

and contribution of substrate use to sample classification does not depend on 

incubation time. This technique obviates the need to arbitrarily choose the time 

following inoculation to read the plate absorbance data and also provides two kinetic

r Accepted for publication and in press in Soil Biology and Biochemistry
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parameters that are invariant with respect to inoculum density. We provide a 

comparison of community potential substrate use analyses using single-time-point 

microplate data and parameters from our kinetic model.

INTRODUCTION

Patterns of carbon substrate metabolism recently have been used to characterize 

microbial communities from environmental samples (e.g., Garland and Mills, 1991; 

Winding, 1994; Z a k e t a l 1994; Bossio and Scow, 1995; Garland, 1996). Most of 

these efforts have involved use of commercially available microtiter plates containing 

95 carbon test substrates and a tetrazolium redox dye (e.g., Biolog GN Microplates; 

Biolog, Inc., Hayward, CA). While these plates originally were designed to classify 

isolates based on their pattern of substrate use, community-level analysis entails 

inoculating the plates with whole environmental samples (e.g., soil suspensions, 

hydroponic solutions, etc.). Substrate use patterns are then quantified by comparing 

tetrazolium dye color development in each of the 95 wells of the plate with a control 

well containing no test substrate. Substrate metabolism typically is reported either by 

establishing minimum threshold values of color density to generate binary data 

(presence or absence of metabolism in a given well; Zak et a l, 1994) or by comparing 

color densities of wells after subtracting the measured density of the control well (Zak 

et a l, 1994; Bossio and Scow, 1995). Whichever method is used, the data are then 

subjected to multivariate analysis (e.g., principal components analysis) to both 

discriminate communities based on their substrate use patterns and reduce the 

dimensionality of the data set generated from the 95 variables (substrates) measured.

Analysis of community level metabolic diversity, as reflected by microplate C 

source use patterns, is restricted by the ability o f microbes to metabolize substrates in 

the microplate environment. It cannot, therefore, be seen as a tool to directly assess 

total microbial functional diversity in environmental samples. However, functional 

diversity of the organisms able to metabolize microplate substrates in vitro can be a
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useful tool to differentiate environmental samples if care is taken to protect against 

biases introduced in the analysis of microplate responses. When these biases are 

removed, it may be possible to associate in vitro metabolic diversity to phenomena in 

situ.

One problem faced by researchers using this technique is that the rate of color 

development in wells is a non-linear process depending on both time and inoculum 

density. As a result, color densities and/or binary data regarding substrate use patterns 

vary depending on the time of incubation following inoculation (Haack et a l,  1995). 

One way around this problem has been to read optical density (OD) o f the microplate 

wells at a set time following inoculation or onset of color development in the 

microplate (Garland and Mills, 1991; Bossio and Scow, 1995). However, this is 

problematic as inoculum density variably affects the lag time from inoculation to onset 

of color development in any given well. Garland (1996) showed that the time to 

achieve a given average microplate well color development (AWCD) value was 

negatively correlated with inoculum density. Among the data analysis options he 

suggested were comparing samples’ substrate use patterns when the plates had 

equivalent AWCD values, and normalizing each substrate’s color density datum at a 

given time by dividing by that sample’s AWCD at that time. While each technique was 

successful in discriminating his rhizosphere samples, he pointed out that the specific 

substrates contributing to the separation of sample types varied depending on duration 

of the incubation period prior to reading the plate. Faster developing wells were shown 

to be more influential in classifications based on plate readings after short incubations, 

and more slowly developing wells contributed more to sample separations after longer 

incubations. Haack et al. (1995) suggested that the kinetics of color development, 

rather than degree of development at a given time, could be used as data to assess the 

functional diversity of the organisms growing in the microplate.

We have used Biolog GN plates to detect differences in whole environmental 

samples from different field treatments and in axenic and mixed laboratory cultures.
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Our approach avoided some of the pitfalls associated with single-time-point 

determinations by repeatedly measuring color density in each well over the period of 

several days. Our technique also allowed us to compare samples with different initial 

population levels by relying on analysis of kinetic parameters which are invariant with 

respect to inoculum density. We modeled the course of color development using a 

modified logistic equation and fit the data to the three parameters in this model. 

Patterns of potential C substrate metabolism were then analyzed using the kinetic 

parameters of the model, rather than the single-time-point color absorbance data 

commonly used. Each parameter provides an alternative to single-time-point optical 

density data for analysis by multivariate techniques. To allow comparison of our 

approach to previous methods, we analyzed our microplate data using the kinetic 

approach, AWCD-normalized single-time-point OD, and the method of comparing 

samples’ ODs at equal AWCDs.

MATERIALS AND METHODS

We used both well-characterized isolate cultures and soil suspensions as 

microplate inocula in the various experiments of this study. The first experiments used 

soil suspensions in time course measurements of test well OD to produce the color 

development curves for our kinetic model. A second set of experiments also used a 

soil suspension to determine cell growth in the Biolog microplate during color 

development. A third group of experiments used laboratory-grown isolates axenically 

or as a mixture to evaluate the effect of mixed cultures and inoculum density on our 

kinetic model’s parameters.

Microplate Data

All experiments reported here used Biolog GN microplates (Biolog, Inc., 

Hayward, CA) incubated at 21° C to assess multiple substrate metabolism.

Absorbance data were collected at 595 nm using a Bio-Rad Model 3550-UV
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microplate reader (Bio-Rad Laboratories, Hercules, CA). This wavelength was 

selected because it provides maximum absorbance for tetrazolium violet; however, 

turbidity from cell growth may also contribute to OD at this wavelength. To resuspend 

any cells or precipitate which had settled to the bottom of the well, each plate was 

shaken for 5 seconds 3 times prior to reading. Plates were read within one hour 

following inoculation and again repeatedly over the course of a week or two (in 8 to 

24 h intervals depending on the experiment) to generate color development curves.

Environmental sampling

The soil samples used in the development of our kinetic model were collected 

from the Caribou-Poker Creeks Research Watershed (referred to as the “field site”) 

located 48 km northeast of Fairbanks, Alaska. The sampling area, an open black 

spruce (Picea mariana) forest, is the site of an experimental crude oil spill which took 

place in February 1976 (Collins etal., 1994). Samples were collected as soil cores in 

both the oiled area (OIL) and an adjacent, oil-free area (REF) and placed in coolers 

immediately following collection. The O horizon was separated from the A horizon 

(Brady, 1990), homogenized by sieving (2 mm mesh) twice, placed in sterile plastic 

bags, and refrigerated until further processing. Microplates were inoculated with these 

O horizon samples within 48 h of sampling.

Microplate inocula

Ten 5 g organic horizon soil samples from the study area were diluted 1000-fold 

in sterile saline solution (Ringer solution; Collins et a l,  1989). Thus tetrazolium dye 

reduction (color development) could be monitored with minimal interference from 

suspended and dissolved soil components. The original soil samples used as inocula 

had initial total bacterial populations (determined by direct count at Oregon State
7 g

University’s Soil Microbial Biomass Services Laboratory) ranging from 7x10 to 7x10 

cells • g dry soil'. Final inoculum density was ca. 10s-10* cells • ml . These samples
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were used as microplate inocula in the first time course studies to produce the kinetic 

curves used to generate our model. To determine cell growth during color 

development in the microplates, we used a soil suspension from a single REF field 

sample (9.05 x 10? cells • m l' inoculum) in the second set of experiments.

Cultures of Eschericia colt (ATCC #25922; Difco, Detroit, MI) and Enterobacter 

aerogenes (ATCC #13048; Difco, Detroit, MI) were used as Biolog plate inocula to 

evaluate single isolate contributions to microplate well OD kinetics in the third group 

of experiments. These organisms were chosen for their rapid growth rates and because 

both enteric organisms would likely use many of the same substrates on the 

microplates. This would allow us to compare the kinetic parameters for each substrate 

metabolized by both isolates. Overnight flask cultures (nutrient broth; Difco, Detroit, 

MI) were harvested by centrifugation and resuspended in saline twice to wash residual 

nutrients from the cultures. These suspensions were used either as pure cultures or as 

a mixture of the two cultures as inocula in the Biolog plates. Inoculum density of 

axenic cultures and of the mixture was adjusted so that the total cell numbers were 

approximately equal for all treatments (ca. 4 x 10? cells • m l').

To assess the effect of inoculum density on the parameters of the kinetic model, 

we used four densities of E. coli as inocula. After washing an overnight culture of this 

organism as described above, three dilutions of the final suspension were made. This 

provided inocula representing four orders of magnitude (ca. 2 x 10̂  - 10? cells • ml') of 

cell densities.

Kinetic analysis and model development

To evaluate dye reduction and color development following inoculation of the 

microplates, we used suspensions from five samples from each field site (OIL and 

REF) for the first set of experiments. These plates were read at approximately 8 hour 

intervals for one week following inoculation. From the time course change of each 

used substrate’s OD at 595 nm, kinetic curves were determined to be sigmoidal in
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shape, suggesting a density-dependent logistic growth curve. Using these data, a 

model based on a modified form of the logistic equation was developed (see Results).

Cell growth and color development

To determine the relationship between changing OD values in microplate wells 

and microbial densities, we enumerated populations of microorganisms growing on 

two of the substrates (P-hydroxy butyrate and L-glutamate) in the GN microplates 

over time in a second experiment. P-hydroxy butyrate and glutamate were selected as 

substrates representing two groups of compounds, a common microbial storage 

product and an amino acid. Glutamate has previously been shown to be a good 

representative substrate for measuring heterotrophic microbial activity (Griffiths et al., 

1977). Using a single REF soil suspension from the study site diluted 1000-fold, we 

inoculated 15 GN microplates. The plates were read at 24 hour intervals for 5 days 

following inoculation. After each reading, 100 ftl of culture was removed from the 3- 

hydroxy butyrate and L-glutamate wells in three of the plates not yet sampled, and 

placed in 900 fj.1 o f filtered (0.45 (tm) formalin (1.8% v/v; Sigma Chemical Co., St. 

Louis, MO). Three 100 |tl aliquots of the inoculum were collected and preserved in a 

similar manner prior to inoculating the plates to determine initial cell density.

The formalin-preserved samples were enumerated by acridine orange direct count 

epifluorescent microscopy (Hobbie et a i, 1977) as modified by Braddock et al. 

(1984). A minimum of ten fields per filter were counted unless fewer than 30 cells per 

field were observed, in which case more fields were counted until 300 cells were 

enumerated.

Optical density of every well in each of the plates in this experiment was 

determined at 24 hour intervals with the exception of the two wells in those plates 

which had already been sampled for microbial enumeration. Due to this destructive 

sampling, the mean OD for these two substrates was calculated using three fewer data
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points for each successive sampling period (i.e., n=15 for initial and 24-h readings, 

n=12 for 48-h readings, etc.).

Evaluation of kinetic model

The reproducibility of the kinetic model parameters fit to the color development 

time course data was evaluated using laboratory-grown isolates in a third group of 

experiments. First, Biolog GN plates were inoculated in triplicate using equivalent cell 

densities of E. coli, E. aerogenes or mixtures of the two organisms in a 1:1 ratio. 

Inocula were prepared as described above. The plates were read immediately following 

inoculation and at eight time points over a period of 120 hours. Production of 

polysaccharides by Enterobacter species that may yield false positive microplate 

responses was checked by observing that the control well did not develop color (as 

recommended by the manufacturer; Biolog, 1992).

Another experiment used E. coli at several cell concentrations to evaluate the 

effect of inoculum density on the model parameters. We inoculated triplicate Biolog 

plates with four concentrations of inoculum and read the twelve plates immediately 

after inoculation and repeatedly over the course of the next 330 hours.

Data analysis

Raw OD data at a given reading time for every test well were corrected by 

subtracting that plate’s blank well OD. Initial OD values for all wells in the plate 

ranged from ca. 0.250 to 0.450. Substrates with a final corrected OD less than 0.200 

were omitted from the data set to be fit with the model. The corrected data for each 

substrate showing color development were fit to our kinetic model, and its parameters 

were estimated with the personal computer-based data analysis program, Origin 

(version 3.5; Microcal Software, Inc., Northampton, MA). This software uses the 

Levenberg-Marquardt algorithm and the simplex method for nonlinear least-squares 

curve fitting. A simple macro written in Origin script language was used to fit the time
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course OD data set for each well in the plate and produced estimates of the model 

parameters and their standard errors along with an estimate of the goodness of fit (x2). 

Using a Pentium processor-based personal computer, data for 95 test wells from a 

given microplate could quickly be fit to our model (ca. 3 minutes per plate). Curve 

parameters with standard errors larger than the parameter value were taken as 

evidence of a bad fit and the kinetic data for these substrates were not used. Only 

about 5% of the curves generated for the environmental samples (45 of 824) were 

excluded from further analysis. All parameters used in the analysis came from fit 

curves with x2 values less than 0.01. Each kinetic parameter was then used to 

construct a data matrix for calculation of principal components (PCs). Thus a kinetic 

parameter from the model fit to the time course data for each substrate metabolized 

was used in place of the single-time-point datum commonly used in evaluating 

substrate use patterns. Separate sample analyses were performed using each of the 

three model parameters as data.

To compare our kinetic data analysis results with the single-time-point approach 

typically used in community-level substrate metabolism studies, we used two other 

methods to prepare our microplate data for analysis. Average well color development 

(AWCD; Garland, 1996) data were calculated for each sample at each reading time, 

and time points providing equivalent microplate AWCDs for each sample were 

selected from the data sets for laboratory culture and environmental inocula. The first 

comparative analysis used blank-corrected OD data from sample microplates measured 

at equivalent AWCDs. Negative corrected OD data were set to zero for all single- 

time-point data analyses. Sample AWCDs at the selected reading times were 

determined to be not different (p > 0.10) by testing for significant differences among 

samples with a one-way analysis of variance using each plate’s 95 substrates’ OD data 

as input. The second comparative data treatment involved normalizing each sample’s 

single-time-point OD datum by dividing it by the sample’s AWCD at that time. Both
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OD data types were then subjected to the same multivariate analysis as the kinetic 

parameter data.

Principal components analysis (PCA) of both the single-time-point OD and kinetic 

data’s correlation matrices and other statistical analyses were performed using Systat 

software (version 5.05; SPSS, Inc., Chicago, IL).

RESULTS

Kinetic model

The first set of experiments showed test well dye reduction was non-linear in 

microplates inoculated with the soil samples, and the shape of the color development 

curve was generally sigmoidal (Fig. 1-1). Test well OD values over time suggested a 

kinetic model based on the density-dependent logistic growth equation of the general 

form

K
N(t) = ------------------  (Equation 1; Ricklefs, 1990)

1 + be'rt

to describe a population of individuals, N(t), at time t exhibiting density-dependent 

growth under conditions of environmental constraint. In this equation, the exponential 

rate of population change is determined by the exponent r and is expressed in units of 

reciprocal time. K  represents the “carrying capacity” of the system, or asymptote 

approached by the curve. The unitless coefficient b affects the horizontal displacement 

of the curve.

We modified Equation 1 to a form providing parameters which could be more 

readily interpreted with respect to the shape of the OD kinetic curve and to the 

underlying microbiological behavior driving its shape (Equation 2).

K
y = OD5 9 5  nm = ------------------  (Equation 2)

(I + e - ^ )
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Fig. 1-1. Kinetics o f average well color development for an oil-free (REF)
environmental sample. Absorbance values (■) are the mean of 95 substrate well 
absorbances corrected by subtracting reference well absorbance at each time
point. Error bars are standard errors. The solid line (-------- ) is a plot of the
equation fit to the mean absorbance data and the dotted lines ( .........) represent
upper and lower 95% confidence limits for the fit equation. Kinetic model K, r 
and s parameter data for the fit equation are presented (standard errors in 
parentheses) along with the %2 value of the fit to the absorbance data.
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In this equation, K  represents the asymptote (y = K) that the test well OD curve 

approaches, r determines the exponential rate of OD change, and t is the time 

following inoculation of the microplate. We have included Equation l ’s coefficient b 

as the exponential parameter s  in the denominator of Equation 2. The parameter s is 

the time to the midpoint of the exponential portion of the curve (when y = KJ2). The 

value of s  is expressed in units of time and is related to b in Equation 1 as

In b

s = ---------  , or b = ers (Equation 3).
r

Cell growth and color development

Microbial growth during OD change in two microplate substrate wells (J3- 

hydroxybutyric acid and L-glutamic acid) for the second experiment is presented in 

Figure 1-2. Cell numbers changed linearly with OD (^=0.70 for (3-hydroxybutyric acid 

and 1^=0.90 for L-glutamic acid; n=12) from the initial values at inoculation (9.05 x 

107 cells • ml ') through the third sampling (i.e., prior to decrease in rate of color 

change). Beyond the time when OD change began to level off, little change in 

microbial population was observed. The kinetic model fit to the OD data for the two 

substrate wells yielded r parameter values of 0.135 and 0.172, respectively, for 0- 

hydroxybutyric acid and L-glutamic acid. When we fit our kinetic model to the direct 

count data, the r parameter values were lower than those derived from OD data (r = 

0.069 and 0.139 for P-hydroxybutyric acid and L-glutamic acid, respectively).

Effect of inoculum density on kinetic model parameters

The triplicate plates inoculated with washed cells of E. coli at cell concentrations 

ranging over four orders of magnitude demonstrated the stability of the model’s K  and 

r parameters with changing inoculum density in the third experiment. The values for
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Fig. 1-2. Kinetics of color change (OD595) and population increase (cells - ml ) in two 
Biolog GN microplate substrate wells. Inoculum biomass was 9.05 x 10 
cells • ml"'. OD data for (A) P-hydroxybutyric acid ( • )  and (B) L-glutamic 
acid (A ) are presented as mean corrected absorbance of replicate plates not yet 
sampled for cell enumeration (n=15 at 0 h and 24 h, n=12 at 48 h, n=9 at 72 h, 
n=6 at 96 h, and n=3 at 120 h) in this experiment. Cell number data (O - P- 
hydroxybutyric acid; A - L-glutamic acid) are presented as the mean of replicate 
samples (n=3) removed from the plates at each time indicated. Error bars are 
standard errors.
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the s  parameter generally decreased with increasing inoculum density. The general 

behavior of the kinetic model’s parameters with changing inoculum density can be seen 

in plots of average well color development (AWCD) over time for the four sets of 

plates (Fig. 1-3). Each plot in Figure 1-3 presents the mean OD change over time in 

the 285 blank-corrected test wells of the three replicate plates. Similar results were 

seen in the OD kinetic data for each individual substrate used. The values of K  and r 

for each metabolized substrate and their coefficients of variation (CV) were calculated 

for all twelve plates in the experiment to assess the invariance of these parameters with 

changing inoculum density. The mean CV (± s.e.) for all substrates across four orders 

of magnitude of inoculum density was 0.11 (± 0.01) for K  data and 0.20 (± 0.02) for r 

data.

Spearman rank correlation coefficients (rs; Zar, 1984) were calculated to

determine the relationship between inoculum density and the value of the kinetic 

parameters for each metabolized substrate. Correlation coefficients (rg) for K  values

appeared to be randomly distributed among the substrate variables, ranging from 

-0.605 to 0.777 with a mean rs (± s.e.) of 0.217 (±0.054); p >0.5. The r parameter

correlation values ranged from -0.648 to 0.820 with a mean rs (± s.e.) of 0.000 

(+0.068; p >0.5), also indicating no correlation with inoculum density. The value of 

the model’s 5 parameter, on the other hand, was negatively correlated with the initial 

cell number in the inoculum. All but two substrates had s values negatively correlated 

with initial cell density. The range of correlations for s with inoculum density was from 

0.259 to -0.972, with a mean Spearman rank correlation coefficient (± s.e.) of -0.747 

(±0.043); p <  0.001.

Data ordination using single-time-point OD data or kinetic parameters

Principal components analysis was used to detect differences between sample 

types in the pure culture experiments as well as with the field site samples. Single- 

time-point OD data from plates at equivalent AWCD values, AWCD-normalized OD
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Fig. 1-3. Kinetics of average well color development (O ) for suspensions of E. coli at 
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cells • m l a n d  (D) 2 x 10J cells • ml . The solid line (------- ) is a plot of the
equation fit to the mean absorbance data and the dotted lines ( .......... ) represent
upper and lower 95% confidence limits for the fit equation. Kinetic model K, r 
and s parameter data for the fit equation are presented (standard errors in 
parentheses) along with the yj value of the fit to the absorbance data for each 
curve.
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data at various incubation times, and kinetic parameter values from our model fit to 

the OD time-course data were used in this analysis. Each substrate (variable) from a 

microplate generated three kinetic variables (K, r and s\ see Equations 2 and 3) which 

were used individually to calculate principal components.

Principal component plots derived from the pure culture experiment OD data are 

shown in Figure 1-4. The component scores calculated using single-time-point OD 

data from plates with equivalent AWCDs (0.2 and 0.3), using AWCD-normalized OD 

data at 24, 48 and 72 h, and using each kinetic parameter (K, r and s) for the 

laboratory-grown cultures are plotted for the first and second PCs in this figure. In all 

analyses using the laboratory cultures, the first two PCs explain at least 80% of the 

data variance. The percentage of variance explained by each PC plotted is displayed on 

each plot’s axes. Plates with AWCD values of 0.2 and 0.3 generated component 

scores providing separation of pure cultures along the first principal axis (Fig. 1-4 A 

and B). At AWCD of 0.2, separation of the E. aerogenes data from the data for the 

1:1 mix of cultures was achieved along the second component axis (Fig. 1-4 A), while 

this did not occur at AWCD of 0.3 (Fig. 1-4B). Ordination of the AWCD-normalized 

single-time-point OD data (Fig. 1-4C, D and E) also separated the pure cultures along 

the first principal component axis, though only the 48 and 72-hour normalized data 

sets discriminated the pure culture samples from the mixed cultures. The K, r and s 

kinetic parameter data (Fig. 1-4F, G and H) all resulted in separation of the axenic 

cultures of E. coli and E. aerogenes from each other as well as from the 1:1 mix.

A similar analysis was applied to the microplate data generated by soil 

suspensions from the field site. Single-time-point OD data at a microplate AWCD 

value of 0.8, AWCD-normalized data at 48, 72 and 96 h, and the three kinetic model 

parameters were used to compute PCs for the environmental samples. In general, the 

first two PCs explained much less of the variance in these data than for the laboratory 

culture experiments presented in Figure 1-4. Data ordination plots of the first two 

principal components for the various data treatments are presented in Figure 1-5 along
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Fig. 1-4. Ordination produced from laboratory culture microplate OD data using 
single-time-point OD values or kinetic parameters from time course OD data fit to 
the logistic model. Component scores for E. coli (□  ), E. aerogenes (O ), and a 
1:1 mix of the two cultures (A ) are plotted for first two principle components 
calculated using correlation matrices constructed from each metabolized 
substrate’s datum. Percent variance explained by each PC axis is given in 
parentheses. (A) principal component (PC) scores determined for OD data when 
microplate AWCD = 0.2. (B) scores for OD data when AWCD = 0.3. (C) scores 
for 24 h AWCD-normalized OD data. (D) scores for 48 h AWCD-normalized OD 
data. (E) scores for 72 h AWCD-normalized OD data. (F) principal component 
scores calculated from logistic model K parameter values. (G) scores calculated 
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Fig. 1-5. Ordination produced from field site soil suspension microplate OD data using 

single-time-point OD values or kinetic parameters from time course OD data fit 
to the logistic model. Component scores for oiled (OIL, □  ) and oil-free (REF,A) 
environmental sample soil suspensions are plotted for first two principal 
components calculated from correlation matrices constructed from each 
metabolized substrate’s datum. Percent variance explained by each PC axis is 
given in parentheses. (A) component scores determined for OD data when 
microplate AWCD = 0.8, (B) scores for 72 h AWCD-normalized OD data,
(C) scores for 96 h AWCD-normalized data, (D) scores calculated from logistic 
model K parameter values, (E) scores calculated from model r parameter values, 
(F) scores calculated from model s parameter values.
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with the percent variance explained by each PC. Separation of oiled (OIL) and oil-free, 

reference (REF) samples along the first PC axis was generally successful for the OD 

data set taken at an AWCD of 0.8, with the exception of a single OIL sample (Fig. 1­

5 A). Normalizing the OD data through division by AWCD failed to discriminate OIL 

and REF samples at 48 h and 72 h (72 h AWCD-normalized OD data shown in (Fig. 

1-5B). PC A of 96 h AWCD-normalized data resulted in separation of OIL and REF 

samples along the first PC axis (Fig. 1-5C). PC A of kinetic parameter K  and r data 

was generally successful at separating oiled and oil-free, reference samples with the 

exception of a single OIL sample in each case (Fig. 1-5D and E). Use of the s' 

parameter data separated OIL and REF samples along the first PC (Fig. 1-5F).

DISCUSSION

The use of multiple substrate microtiter plates to evaluate community functional 

diversity has until now relied upon determination of substrate well color development 

at a single time point. The decision regarding the proper time to make this 

measurement in various studies has been based on differing criteria. These include 

achievement of a given color development threshold relative to the well with maximum 

absorbance on the plate (Haack et al., 1995) and reading at a set time following onset 

of color development (Bossio and Scow, 1995). Efforts to normalize the single-time- 

point OD data using AWCD values appear to succeed in correcting for biomass 

differences to the extent that the rate of reaching a given AWCD correlates with 

biomass (Garland, 1996). However, the relative contribution of any substrate to a 

pattern of potential C source use characteristic of a given sample depends on the time 

chosen to evaluate substrate use. Differences among rapidly metabolized substrates 

dominate principal component scores generated after short incubation times, while 

their contribution to principal components is eclipsed by differences in more slowly 

metabolized substrates after longer incubation periods. For example, at 48 h and 72 h, 

AWCD-normalized data failed to discriminate OIL and REF samples, while 96 h
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normalized data succeeded (see Fig. 1-5), suggesting that AWCD-normalized 

substrate use patterns of the sample types diverged after 72 hours.

Concerns over the effect o f inoculum density on rate of color development are 

founded on the observation that a denser inoculum typically produces a positive well 

response more quickly than a less dense culture. Garland (1996) demonstrated that the 

time following inoculation to achieve a given AWCD value was inversely proportional 

to the inoculum density. Using our kinetic technique to fit the time course of OD 

change showed that this is an artifact of a shorter “lag” period in test well color 

development for denser inocula. The average rate of color change from inoculation to 

reading time includes this lag period, causing less dense cultures to exhibit an 

apparently slower rate of dye reduction. Thus, the rate of OD change from the time of 

inoculation to a given AWCD (as opposed to the rate from an OD of zero to AWCD), 

and therefore the AWCD-normalized substrate use pattern, depends on the inoculum 

biomass and not its functional metabolic diversity or “taxonomic richness”.

Fitting the kinetic model to the color development data removed the effect of the 

lag period, and the actual rate o f color change (from zero absorbance to K) was 

determined. This technique yielded color development rates that were insensitive to 

inoculum density in a range up to four orders of magnitude lower than suggested in 

the microplate manufacturer’s standard protocol (Biolog, 1992) and that were 

sensitive to the community composition in the well. Two of the kinetic parameters (K 

and r) do not vary with inoculum density and, subject to the limitations discussed 

below, reflect the composition o f the microbial assemblage in each test well. Because 

the kinetic approach uses all the time course OD data, rather than individual sampling 

times (either equivalent AWCD set points or AWCD-normalized data), the relative 

contributions of substrates (variables) to characteristic potential C source utilization 

patterns do not vary with sampling time or inoculum density. The model parameters 

provide at least three data options (parameters K, r and s) for inclusion in substrate- 

use analysis schemes.
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The parameter K  in our model is most similar to the data currently used in 

multiple substrate metabolism analysis as both are measures of optical density. It 

represents the asymptote that the modeled absorbance curve approaches and may be 

viewed as an estimate of the maximum potential extent of dye reduction seen in a 

given test well for a particular inoculum. The parameter r, an estimate of the 

exponential rate of color development, provides information about a different aspect of 

the same community in the test well, i.e., how rapidly reducing power is generated in 

the well. The inverse relationship o f s  with inoculum density suggests that, in general, 

this may not be a useful descriptive parameter for environmental samples since the 

inoculum biomass is likely to vary among samples. The fact that .s increases with 

decreasing inoculum density while the actual rate of color change (from zero 

absorbance to K) remains constant (see Fig. 1-3) is consistent with Garland’s (1996) 

observation that time to a midpoint in the AWCD for his rhizosphere samples was 

negatively correlated to biomass. This implies there is a minimum active biomass 

threshold necessary for dye reduction to be detected. Thus growth rate and induction 

of the necessary catabolic enzymes likely play roles in the lag period prior to onset of 

color development in the wells.

K  and r appear to be constant over a range of inoculum densities, but their values 

for a metabolized substrate may depend both on abiotic and biological factors. One 

abiotic factor that could affect K  is complete reduction of the tetrazolium redox dye 

prior to nutrient limitation. In the absence of abiotic limits to K , the traditional 

biological interpretation ofK as  “carrying capacity” is possible. Considering each 

microplate well as a 150 |il batch culture, K  represents a biologically imposed limit on 

dye reduction in the wells. Such biological factors as efficiency of reducing power 

production (affecting reduced tetrazolium yield per cell) or cell growth, exhaustion of 

substrate or mineral nutrients, temperature, oxygen limitation, accumulation of waste 

products, or production of secondary metabolites may affect the values of K  and r. 

Metabolite production may allow growth of organisms unable to grow on the well’s
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designated C source, or may inhibit organisms otherwise able to grow. Thus, K  and r 

will be affected by synergistic or antagonistic effects due to the mix and relative 

abundance of culturable organisms in the test wells. In other words, K  and r  are 

constants at a fixed temperature that depend on the taxonomic richness (metabolic 

diversity) of microplate-culturable organisms and their relative abundance, not on 

inoculum density per se. Evidence of this is seen in the separation o f laboratory-grown 

cultures (Fig. 1-4) and, to a lesser extent, environmental samples based on K  and r 

parameter data (Fig. 1-5).

Our curve fitting technique fits closely the time course OD data for microplate 

test wells and is useful for extracting kinetic parameter data that reflect the response of 

culturable organisms in the microplate inoculum. The resemblance of the model to a 

batch culture growth curve, however, does not imply that strict physiological 

interpretations may be ascribed to its parameters. For example, Figure 1-2 displays 

field sample OD and population kinetics for two microplate substrates whose microbial 

growth rate constants were substantially lower than r values calculated for the OD 

change in the wells. This may be due to differences in cell yields of the dominant 

organisms selected by the substrate in each test well. Also, since color change depends 

on production of reducing power in the microplate well, microbial energy spilling 

reactions not tied to ATP production, cell growth or maintenance (Tempest and 

Neijssel, 1987) may provide dye reduction rates (r) or extents (K) above those directly 

attributable to microbial growth.

Our experience with environmental samples and laboratory cultures suggests that 

plates’ ODs should be read repeatedly for as long as one week following inoculation. 

This allows more slowly developing test wells the opportunity to achieve their ultimate 

OD (K value). Longer incubation periods may be useful for less dense inocula than 

were used in this study (i.e., less than ca. 104 cells • ml’1), but care should be taken to 

inhibit evaporation of liquid from the wells causing increased OD values. Frequent
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plate readings (i.e., at intervals less than 24 h) tend to provide data yielding better fits 

(lower x2 values) when model parameters are estimated.

The primary drawback of our approach is that the construction and analysis of 

data matrices based on our model’s kinetic parameters entails more data collection 

work than the single-time-point data approach. Frequent readings over the course of 

several days need to be compiled to provide time course OD data for each substrate. 

The kinetic model needs to be fit to the data and model parameters estimated. The 

kinetic parameter data then need to be screened for the quality of their fit to the time 

course OD data (based on standard errors of estimates and x2 values). Only after these 

several steps are the data ready to be analyzed by multivariate techniques. Despite the 

extra work involved, however, we believe the benefits of this approach outweigh the 

drawbacks. This method removes concerns regarding variable inoculum densities in 

environmental samples. Our technique provides objective data parameters for 

community analysis and frees investigators from the need to choose the AWCD values 

for comparing microplates or the time at which single-time-point data are normalized. 

Thus, the contribution of test substrates to a sample’s C source metabolism pattern is 

no longer an artifact of the incubation period or inoculum density. The kinetic 

approach provides a method for gathering data from multiple substrate microtiter 

plates which is reproducible and amenable to data analysis techniques currently used in 

multiple substrate metabolism studies. Future work using kinetic data analysis may 

illuminate further the precise relationship between population dynamics, microbial 

physiology and dye reduction in these microplates.
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SUMMARY

Terrestrial petroleum spills commonly have been shown to increase the proportion 

of heterotrophic microbes in the soil community able to metabolize hydrocarbons. 

Previous studies have demonstrated the potential utility o f multiple substrate 

metabolism analysis to fingerprint microbial communities, and recent methodological 

improvements have provided new options for extracting and analyzing microplate 

data. Assessing microbial community diversity has remained an elusive goal, however, 

as complex population interactions occur in microplate wells. This has precluded 

evaluation of community population diversity based on substrate use patterns alone 

since these patterns may arise from a variety of population interactions in the 

microplate. We report here evidence of diminished population diversity in soil 

communities at a taiga site exposed to crude oil for 19 years based on observed 

changes with dilution in microplate kinetic response patterns. The microplate data also 

suggest that surviving populations in the oiled soils may be considered physiological 

generalists.

1 Prepared for submission to Soil Biology and Biochemistry
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INTRODUCTION

Microbes frequently have been used as indicator organisms to examine 

environmental conditions otherwise difficult to assess (e.g., fecal coliforms indicating 

fecal contamination, APHA 1989; petroleum-oxidizing bacteria indicating exposure to 

hydrocarbons, Braddock et al., 1996). In addition to measuring densities of indicator 

microbial taxa, evaluating microbial diversity and community structure, rather than 

numbers of organisms per se, may be used to assess environmental perturbation or 

stress (e.g., Atlas, 1984b; Hood et a i, 1975). Microbial diversity may be considered 

from a variety of perspectives. As stated by DeLong (1996), “trophic, physiological or 

functional diversity, intraspecific genetic diversity, or phylogenetic diversity of species 

or higher taxa” are all levels of diversity of concern to the microbial ecologist. 

Observed community-level functional diversity may be due to the activity of a diverse 

assemblage of specialized populations or that of a few populations possessing a broad 

array of capabilities. Kawanabe (1996) proposed that the diversity of ecological 

relationships among life forms (e.g., competition, cooperation, etc.) is a more 

important part of biodiversity than “simply the diversities among creatures.” This 

suggests that synergistic and competitive interactions are a critical feature of 

community functional diversity (Atlas, 1984b). Microbial community structure changes 

and diversity generally decreases as a response to chemical (e.g., pollution; Mills and 

Wassel, 1980; Atlas, 1984a; Atlas et al., 1991; Fritze and Baath, 1993) and physical 

stresses (Holder-Franklin et al., 1978; Bell et al., 1982). Changes in relative 

abundances of organisms due to pollution should yield altered interactions among 

community member populations and be reflected in a shift in the community functional 

diversity (Atlas, 1984a).

The role soil microbial diversity may play in ecosystem function depends on the 

scale (i.e., microbial, process, landscape, or global) at which the ecosystem is 

examined, as well as whether the function examined is considered as a “broad” process 

(e.g., C mineralization) or a more specialized “narrow” process (e.g., cellulolytic
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activity; Schimei, 1995). For processes requiring specialized physiologies, reduced 

microbial functional diversity may have significant consequences for an ecosystem’s 

behavior. In the context o f hydrocarbon pollution, for example, Wunsche et al. (1995) 

suggested that successful bioremediation depends in part on the composition of 

microbial communities and their degradative potential. Salonius et al. (1970) pointed 

out that populations of soil microbes have been shown capable of synergistic 

decomposition o f soil substrates, but capable of much less activity when acting 

individually, emphasizing the role of integrated metabolisms in processing soil matter. 

Even ecosystem functions not considered to be specialized (e.g., litter decomposition) 

may suffer the effects of decreased microbial diversity due to the absence o f key taxa 

that represent substrate processing “bottlenecks” (Clein and Schimei, 1994; Schimei, 

1995). Salonius (1981) showed that forest soil populations of artificially reduced 

diversity were “considerably diminished” in metabolic capability (respiration measured 

as O2 uptake) compared to full soil populations. This was attributed to a reduction in 

the variety of enzymes generated by a community of reduced species diversity.

The response o f a soil microbial community to crude oil pollution represents the 

integration of the reactions of individual organisms and populations. The addition of 

oil into the soil system often enhances the hydrocarbon-oxidizing potential of the 

community (Atlas, 1981). This community adaptation for hydrocarbon mineralization 

may be due to induction or repression of specific enzymes, genetic changes yielding 

new metabolic capacities, and/or selective enrichment of component populations able 

to transform the compound of interest (Leahy and Colwell, 1990). The various 

chemical components of the oil may inhibit, enhance or have no effects on growth or 

metabolism of different community member populations (Pfaender and Buckley,

1984). Individual organisms can metabolize only a limited range of hydrocarbon 

substrates and biodegradation of the complex chemical mixture found in oil appears to 

require assemblages of mixed populations together possessing broad enzymatic 

abilities (Leahy and Colwell, 1990).
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While there have been several studies documenting an observed increase in 

hydrocarbon-degrader populations (e.g., Sexstone and Atlas, 1977) and hydrocarbon 

mineralization potentials (e.g., Jobson etal., 1974) following petroleum soil pollution, 

fewer studies have investigated the broader effects on population structure and 

community-level metabolism. Walker et al. (1975) found that sediments contaminated 

by crude and refined oils exhibited shifts in functionally-defined (e.g., proteolytic, 

lipolytic, chitinolytic) populations. In a study of community characteristics in 

petroleum-contaminated and pristine aquifer soils, exposure to petroleum altered 

microbial community structure (Long etal., 1995). These investigators found that 

petroleum contaminants exert toxic effects on the active soil microbial community at 

high concentrations, while enrichment of specific degraders occurred at lower 

concentrations of dissolved contaminants. Chemical pollutants have been implicated in 

reduction of microbial taxonomic and genetic diversity in environmental samples, with 

evidence that surviving populations had enhanced physiological tolerances and 

substrate use capabilities (Atlas etal., 1991). Wiinsche etal. (1995) found that 

hydrocarbon addition to soils resulted in shifts in substrate use patterns, as well as 

changes in the occurrence of specific bacterial groups in the soils. Little information 

exists regarding community-level oil pollution effects and the relationship between 

organismal and community functional diversity.

Microtiter plates (Biolog) have been used to measure community multiple 

substrate utilization profiles at a set time following inoculation to characterize or 

“fingerprint” soil microbial communities (e.g., Winding, 1994; Haack etal., 1995; 

Wunsche etal., 1995). Despite the fact that this technique relies on growth of 

microbes from environmental inocula and suffers some of the biases of other culture- 

based methods, it has been used to document changes in profiles correlated with 

environmental influences (Zak et al., 1994; Bossio and Scow, 1995). We recently have 

developed a method for evaluating substrate use kinetics over time in these microtiter 

plates that yields profiles reflecting the integrated metabolisms of community member
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populations inoculated into the microplate without unduly weighting individual 

substrates based on how quickly they are metabolized following inoculation 

(Lindstrom et al. in press; see Chapter 1). It has been suggested that using microplates 

to determine community-level multiple substrate use patterns provides data that “are 

rich in information about functional biodiversity of bacteria” (Zak et a i, 1994). While 

this may be true, microplate substrate use patterns determined at a single time and 

inoculum density do not allow assessment of the influence of a soil community’s 

structure on its functional diversity. As suggested above, acclimation of a community 

exposed to hydrocarbons may be the result of changes in the genetic expression of 

individual populations, of selective enrichment of community member populations, or 

of some combination of these factors.

In this study of a nearly 20-year-old experimental oil spill, we wished to determine 

if oiled taiga soils exhibited distinctive substrate use patterns compared with pristine 

reference soils, and whether differences in community substrate use patterns could be 

related to differences in diversity of bacterial types. This entailed the use of 

multivariate analysis of multiple substrate microplate kinetic data coupled with serial 

dilution of environmental samples to compare substrate use patterns of oiled and 

pristine taiga soils at various dilutions and across the growing season. We present here 

evidence of decreased organismal diversity associated with changes in community- 

level substrate use in oil-polluted soils.

MATERIALS AND METHODS

Site Description

The soil samples used for microplate inocula in this study were collected from the 

Caribou-Poker Creeks Research Watershed located 48 km northeast of Fairbanks, 

Alaska. The sampling area included the site of a 7570 L experimental crude oil spill 

that occurred in February 1976 (Johnson et al., 1980). The vegetation at the site is an 

open black spruce (Picea mariana) forest (total tree canopy cover less than 60%) with
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a shrub understory of Labrador tea {Ledum decumbens), blueberry {Vaccinium 

uliginosum), resin birch (Betula glandulosa) and willow (Salix spp.). The ground 

surface is covered with mosses and fruticose lichens with scattered cotton grass 

tussocks {Eriophorum vaginatum\ Johnson et al., 1980). Spilled oil generally flowed 

between the tussocks, killing the moss and lichen surface cover. The area is underlain 

by permafrost, with an active layer thickness o f40-60 cm. A typical soil profile in the 

unoiled area consists of a 5 cm moss and lichen surface layer above a 15 cm 

undecomposed peat horizon (01), a 5 cm decomposed dark brown peat horizon (02), 

a 5 cm dark grayish-brown silt loam horizon (Al), and a grayish-brown silt loam 

mineral soil (C; Collins et al., 1994). Oiled area soil samples contained substantial 

residual oil (Collins et al. 1994; average concentration of 0.285 g oil • g dry soil'1, see 

Chapter 3) and had no living plant matter on the surface. All organic material above 

the C horizon in these samples was used in the study.

Sample Collection and Preparation

Sampling for this study took place on three visits to the site in 1995: in early July 

when soil temperatures were above freezing and vegetation at the site was growing; in 

early September after senescence of local vegetation, but before the first hard frost; 

and in mid-October, after several days of below freezing air temperatures and with 

shallow subsurface (10 cm) soil temperatures near freezing. Twenty-eight samples 

were collected as soil cores from an oiled area (OIL, N=13; n = 3 for July, n = 5 for 

September, and n = 5 for October) approximately 10 m by 16 m, and from an adjacent, 

oil-free reference area (REF, N=15; n = 5 for each sampling visit) approximately 10 m 

by 20 m. Samples were collected through the moss/lichen layer, between E. vaginatum 

tussocks, meters apart at randomly selected locations within the sampling areas and 

placed in coolers immediately following collection. The 02/A1 horizon was separated 

from the C horizon in the laboratory, homogenized by sieving (2 mm mesh) twice,
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placed in sterile plastic bags, and refrigerated until further processing. Microplates 

were inoculated with the samples within 48 h o f sampling.

Five g soil samples from the study area were serially diluted 103-, 104-, and 10s- 

fold (w/v) in sterile saline solution (Ringer solution; Collins etal., 1989). The original 

soil samples used as inocula had initial total bacterial populations (determined by direct 

count at Oregon State University’s Soil Microbial Biomass Services Laboratory)
7 8 *1ranging from ca. 8x10 to 6x10 cells • g dry soil . Final inoculum density was 

therefore ca. 105 - 106 cells • ml' for the 103 dilution.

Hydrocarbon Degrading Microbes

Numbers of hydrocarbon degrading microbes in the soil samples were estimated 

by the most probable number (MPN) “Sheen Screen” technique of Brown and 

Braddock (1990). Samples were diluted in C-free mineral nutrient broth and sterile 

crude oil was added to provide a carbon source for microbial growth. After incubation 

for three weeks at 21°C, oil degrader presence or absence in each replicate tube of the 

MPN array was determined by observing whether or not emulsification of the added 

oil had occurred.

Microplate Data

We used Biolog GN microplates (Biolog, Inc., Hayward, CA) incubated at 21° C 

to evaluate the kinetic responses of our soil suspensions to the substrates presented. 

Raw absorbance (OD) data were collected at 595 nra using a Bio-Rad Model 3550- 

UV microplate reader (Bio-Rad Laboratories, Hercules, CA). Plates were read within 

one hour following inoculation and again repeatedly over the course of 7 to 10 days 

(in 8 to 24 h intervals) to generate color development curves for each microplate 

substrate. Raw OD data at a given reading time for every substrate well were 

corrected by subtracting that plate’s blank well OD. Initial OD values for all wells in 

the plate ranged from ca. 0.250 to 0.450. Color change greater than 0.2 OD units was
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never observed in the control well of any microplate. Substrates with a final corrected 

OD less than 0.200 were omitted from the kinetic data set, as this represented a color 

change value less than twice that ever seen in the control well. The corrected data for 

each substrate showing color development were fit to a logistic equation (Equation 1) 

as described previously (Lindstrom et al. in press; see Chapter 1), and the three kinetic 

parameters (K, r  and s) were estimated for each substrate.

K (Equation 1)
O D 5 9 5  =

l + e ' ^

Two of the parameters (K, representing extent of dye reduction in OD units, and r,

representing the exponential rate of color change per unit time, er, following the lag 

after inoculation) are insensitive to inoculum density in the range of inocula used in 

this study (Lindstrom et al. in press; see Chapter 1). Curve parameters with standard 

errors larger than the parameter value were taken as evidence of a bad fit and the 

kinetic data for these substrates were not used. All parameters used in the analysis 

came from fit curves with x 2 values less than 0.01.

Correlation matrices constructed from the K o r r  parameter data for all samples at 

all dilutions were used to calculate principal components (PCs). Principal components 

analysis (PCA) provides a technique for succinctly expressing the variance in samples’ 

kinetic responses to the 95 substrates contained in the microplate. By including all 

dilutions in the analysis, differences among sample types’ (i.e., whether OIL or REF, 

and season samples were collected) microplate responses could be evaluated for their 

sensitivity to dilution. Samples exhibiting similar responses to microplate substrates 

will tend to have similar PC scores, while differing PC scores indicate samples with 

dissimilar substrate responses. Principal components analysis (PCA) of both AT and r 

parameter data correlation matrices and various univariate analyses were performed 

using Systat software (version 5.05; SPSS, Inc., Chicago, IL).
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Samples’ responses to microplate substrates also were examined as binary data 

(presence or absence of substrate metabolism) by observing which substrates had 

kinetic parameters estimated. Substrates were defined as “positive” for community 

metabolism if their color development curves met the criteria described above for 

kinetic analysis and were defined as “negative” otherwise.

RESULTS 

Total Bacteria and Hydrocarbon Degraders

Mean total bacterial populations varied with season, but no obvious difference 

due to oiling was seen (Table 2-1). Numbers o f hydrocarbon degrading microbes were 

ca. three orders of magnitude higher in OIL than in REF samples for all seasons 

sampled (Table 2-2). Hydrocarbon degrader estimates represented between one and 

three percent of total bacterial cells in OIL samples (Table 2-2), indicating microbial 

community acclimation to crude oil in these samples. Hydrocarbon degrader 

populations also were present in REF samples, but represented at most 0.005% of 

total bacteria in these samples (Table 2-2).

Principal Components

The environmental samples’ kinetic data (r and K  values) at all three dilutions 

were analyzed together by PC A to assess variance of kinetic responses (rate or extent 

of dye reduction) to Biolog microplate substrates within and among treatments and 

sampling dates, and across dilution factors. The results of PCA for r parameter 

(exponential rate constant for dye reduction) data are plotted as mean PC scores and 

standard errors of OIL and REF samples (by season) for the first two PC axes in 

Figure 2-1, which explain 23.8% and 5.5% of the data variation, respectively. This 

figure plots samples’ scores at each dilution factor and generally shows separation of 

OIL and REF samples along the first PC axis, though at the 10‘5 dilution (Fig. 2-1C) 

the separation of treatment types is less clear due to the scores for July REF samples.
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Table 2-1. Mean (± SJE.) bacterial populations in each soil sample type. Data are 
based on n = 5 soil samples of each type, except for July OIL samples with n = 3.

Month Treatment

Bacteria 

(cells • g dry soil"1)

July REF 1.4E+08 (±8.7E+06)

July OIL 5.7E+08 (±9.3E+07)

September REF 2.5E+08 (±1.8E+07)

September OIL 2.0E+08 (±1.5E+07)

October REF 1.1E+08 (±1.9E+06)

October OIL 7.9E+07 (±3.5E+06)

Table 2-2. Mean (± S.E.) numbers o f hydrocarbon (HC) degraders estimated by Sheen 
Screen MPN enumeration and percent of total bacterial cells in the soil these 
degraders represent. Data are based on n= 5 soil samples of each type, except for 
July OIL samples with n = 3.

HC degraders Percent of Total Bacteria

Month Treatment (cells • g dry soil') (%)

July REF 7.1E+03 (±5.4E+03) 0.0052

July OIL 1.0E+07 (±6.7E+06) 1.8321

September REF 7.9E+02 (±3.2E+02) 0.0003

September OIL 2.1E+06 (±6.2E+05) 1.0154

October REF 9.3E+02 (±7.1E+02) 0.0009

October OIL 1.8E+06 (±8.4E+05) 2.3353
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Fig. 2-1. Principal component (PC) scores plotted for the first two components 
determined from r kinetic parameter data. Mean PC data for each season’s OIL 
(solid symbols) and REF (open symbols) samples are plotted. Error bars are 
standard errors of the means. Percent of data variance explained by each PC axis is 
given in parentheses. Scores were calculated from a data correlation matrix 
constructed using all sample dilutions, but each dilution factor (DF) is plotted 
separately for clarity. (A) mean component scores for I O'3 dilution, (B) mean 
scores for 10"1 dilution, and (C) mean scores for 10‘5 dilution.
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Clear separation of OIL and REF samples by season within a given dilution can also be 

seen. Inspection of the principal components for the r  value data shows that, for those 

substrates loading most strongly on the first PC (41 substrates with component 

loadings greater than 0.500), most were amino acids or amines (25 substrates) with the 

remainder being carbohydrates (9 substrates) or carboxylic acids (7 substrates; data 

not shown). Figure 2-1 also shows that the OIL samples were generally more tightly 

clustered (lower diversity in kinetic responses to microplate substrates) in PC space 

than were REF samples at any given dilution. Evidence of this is seen by comparing 

standard errors for the mean PC values calculated for OIL and REF samples across all 

sampling seasons (Table 2-3). Standard errors for PCs at each dilution were generally 

smaller for OIL than for REF samples (except at the 10'3 dilution for PCI). Further, in 

general the OIL samples’ microplate responses varied less with increasing dilution, 

while the REF samples’ responses varied more with increasing dilution (Fig. 2-1, Table

2-3). Principal component scores also varied less across dilutions for OIL samples than 

for REF samples (Fig. 2-1 A, B and C) as reflected by their lower standard errors for 

each sampling season (Table 2-4). Mean r value PC scores and standard errors for all 

samples by season, treatment and dilution factor are presented in Table 2-5.

A similar analysis was performed for K  parameter (extent of dye reduction) data. 

Mean PC scores and standard errors are plotted for the first two PC axes (accounting 

for 18.7% and 11.1% of data variation, respectively) in Figure 2-2. As with 

component scores for r value data, samples’ PC scores for K  value data generally 

plotted OIL samples as discrete from REF samples at any given dilution, an exception 

only occurring for the July REF samples at the 1CT4 dilution (Fig. 2-2B). All samples 

also were clearly separated by treatment (OIL vs. REF) at each season of sampling 

within a given dilution (Fig. 2-2). The OIL samples were generally more tightly 

clustered (lower standard errors) along the first PC axis than REF samples within a 

given dilution, though this trend was not seen for the second PC (Table 2-6). No clear 

trend in variation across all dilutions was observed for OIL and REF samples’ K
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Table 2-3. Means and standard errors (S.E.) of principal component scores using 
kinetic r values for oiled soil (OIL; n = 13 for each dilution) and oil-free soil (REF; 
n = 15 for each dilution) for all sampling seasons. Standard errors for PCs at each 
dilution are generally smaller for OIL than for REF samples, and decrease with 
increasing dilution for OIL samples’ PCs while they generally increase for REF 
samples.

Sample and Dilution Mean PCI S.E. PCI Mean PC2 S.E. PC2

OIL DF = 10'3 0.231 0.168 -0.561 0.156

OIL DF = 1C4 -0.616 0.114 -0.269 0.131

OIL DF = 10'5 -0.987 0.059 0.011 0.093

REF DF = 10'3 1.244 0.141 -0.400 0.230

REF DF = lfr4 0.617 0.204 0.714 0.292

REF DF = 10'5 -0.622 0.183 0.412 0.318

OIL All DFs (N=39) -0.468 0.100 -0.274 0.079

REF All DFs (N=45) 0.413 0.149 0.242 0.173
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Table 2-4. Means and standard errors (S.E.) for r  value principal components for each 
sampling season and treatment calculated across all dilutions. There were n = 15 
samples for each season and treatment, except for July OIL which had n = 9. Each 
season’s samples’ microplate responses are more similar (lower S.E.) across 
dilutions for OIL than for REF treatments.

Season and Treatment Mean PCI SE . PCI Mean PC2 S.E. PC2

July OIL -0.367 0.190 -0.248 0.130

July REF 0.163 0.328 0.158 0.217

September OIL -0.320 0.216 -0.257 0.135

September REF 0.740 0.252 -0.376 0.320

October OIL -0.618 0.125 -0.298 0.132

October REF 0.358 0.207 0.743 0.283
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Table 2-5. Mean r value PC scores and standard errors (S.E.) for each sample type 
(season, treatment and dilution); n = 3 for July OIL samples and n = 5 for all other 
samples. Excepting July REF samples, the REF samples’ PC scores generally 
increase in variability with increasing dilution while OIL samples show the 
opposite trend.

Season and Treatment Dilution Mean PCI S.E. PCI Mean PC2 S.E. PC2

July REF I0'3 1.203 0.436 -0.214 0.417

10“* 0.324 0.489 0.668 0.394

10'5 -1.036 0.256 0.020 0.248

July OIL IO'3 0.253 0.310 -0.488 0.352

lcr4 -0.513 0.141 -0.054 0.170

I0‘5 -0.840 0.052 -0.201 0.045

September REF icr3 1.492 0.130 -1.254 0.482

KT4 1.031 0.318 0.078 0.539

10'5 -0.302 0.339 0.047 0.516

September OIL 10'3 0.545 0.293 -0.547 0.315

KJ4 -0.485 0.257 -0.188 0.043

icr5 -1.019 0.153 -0.038 0.235

October REF 10*3 1.097 0.139 0.077 0.144

io-4 0.531 0.275 1.200 0.501

10‘5 -0.554 0.313 0.953 0.644

October OIL 10*3 -0.073 0.217 -0.610 0.198

io-4 -0.754 0.156 -0.420 0.271

10'5 -1.028 0.065 0.137 0.102
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Fig. 2-2. Principal component (PC) scores plotted for the first two components 
determined from K  kinetic parameter data. Mean PC data for each season’s OIL 
(solid symbols) and REF (open symbols) samples are plotted. Error bars are 
standard errors of the means. Percent of data variance explained by each PC axis is 
given in parentheses. Scores were calculated from a data correlation matrix 
constructed using all sample dilutions. Each dilution factor (DF) is plotted 
separately. (A) mean component scores for 10'3 dilution factor, (B) mean scores 
for 1CT4 dilution, and (C) mean scores for I O'5 dilution.
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Table 2-6. Means and standard errors (S.E.) of principal component scores using 
kinetic K  values for each treatment type for all sampling seasons. Mean scores for 
each dilution factor (DF) are given along with mean scores for all dilutions 
together.

Sample and Dilution Mean PCI S.E. PCI Mean PC2 S.E. PC2

OIL DF = 10'3 0.894 0.136 -0.255 0.166

OIL

1oi—̂llPMP

0.432 0.174 0.822 0.212

OIL DF = 10‘5 -0.454 0.143 1.179 0.107

REF DF = 10'3 0.482 0.260 -1.076 0.146

REF DF = 1C4 -0.060 0.189 -0.364 0.192

REF DF = 10*5 -1.121 0.194 -0.099 0.174

OIL AllDFs 0.265 0.119 0.582 0.130

REF All DFs -0.233 0.155 -0.513 0.113
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values (Table 2-7). Mean K  value PC scores and standard errors for all samples by 

season, treatment and dilution factor are presented in Table 2-8.

Substrate Use Bv Treatment

An alternative to analysis of kinetic data by PCA is to determine which substrates 

had been used by all samples in a given season, treatment and dilution. This entails 

transforming kinetic data into binary data (presence or absence of substrate use) 

according to a dye reduction threshold (see Methods). Table 2-9 presents the number 

of substrates used by all samples of a given type according to dilution. Each sample 

type exhibited universal use of fewer substrates with increasing dilution and, at the 

highest dilution (10's), REF samples used fewer substrates than OIL samples, 

particularly in July and October. At this dilution, substrates most represented in OIL 

samples were amino acids or amines (14 substrates in July, 13 in September and 10 in 

October) and carboxylic acids (18 substrates in July, 13 in September and 12 in 

October). Amino acids or amines were used by all REF samples at this dilution rarely 

in July (1 substrate) and October (3 substrates), but more in September (9 substrates). 

For REF samples at this dilution, carboxylic acids were used by all samples only in July 

(3 substrates) and September (10 substrates).
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Table 2-7. Means and standard errors (S.E.) for K  value principal components for each 
sampling season and treatment calculated across all dilutions.

Season and Treatment Mean PCI S.E. PCI Mean PC2 S.E. PC2

July OIL 0.429 0.329 0.935 0.283

July REF 0.320 0.392 0.046 0.182

September OIL 0.289 0.215 0.565 0.256

September REF -0.065 0.185 -0.664 0.231

October OIL 0.177 0.155 0.442 0.173

October REF -0.749 0.162 -0.806 0.136
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Table 2-8. Mean AT value PC scores and standard errors (S.E.) for each sample type 
(season, treatment and dilution); n = 3 for July OIL samples and n = 5 for all other 
samples.

Season and Treatment Dilution Mean PCI S.E. PCI Mean PC2 S.E. PC2

July REF icr3 1.742 0.176 -0.495 0.295

IO"4 0.607 0.341 0.494 0.292

10‘5 -1.389 0.460 0.140 0.224

July OIL IO'3 0.943 0.241 0.037 0.340

10-4 0.753 0.658 1.506 0.319

10‘s -0.408 0.525 1.263 0.351

September REF icr3 0.359 0.352 -1.304 0.215

io-4 0.108 0.259 -0.845 0.274

icr5 -0.662 0.161 0.158 0.398

September OIL 10'3 0.856 0.326 -0.404 0.310

io-4 0.375 0.302 0.760 0.400

icr5 -0.364 0.311 1.340 0.194

October REF io*3 -0.330 0.255 -1.329 0.132

io-4 -0.657 0.170 -0.635 0.185

icr5 -1.258 0.308 -0.454 0.248

October OIL icr3 0.732 0.222 -0.275 0.221

10"* 0.335 0.191 0.572 0.298

10'5 -0.538 0.117 1.029 0.121
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Table 2-9. Number of substrates used by every sample of a given type by season and 
treatment at each dilution factor (DF); n = 3 for July OIL samples and n = 5 for all 
others. Chemical classes of substrates used by all samples of a given type at the 
10'5 dilution are given in parentheses.

Season and Treatment

Number of Substrates Used by All Samples

DF = 10'3 DF = 10“* DF = 10'5

July OIL 65 54 49 (14A, 18CA, 80H, 7CH, 2P)a

July REF 61 39 4 (1A 3 CA)

September OIL 46 40 38 (13A, 13CA 50H, 6CH, IP)

September REF 59 50 30 (9A 10CA, 5OH, 4CH, 2P)

October OIL 53 46 38 (10A, 12CA 60H, 8CH, 2P)

October REF 55 40 4 (3A 1 OH)

a A = amino acid/amine, CA = carboxylic acid, OH = alcohol, 

CH = carbohydrate, P = polymer.
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DISCUSSION

The continued presence of crude oil at our study site since 1976 (Collins et al.,

1994) has led to detectable differences between OIL and REF soils in the collective 

physiology of their microbial communities, as revealed by PCA of kinetic microplate 

data. The technique of collecting kinetic dye reduction data allowed discrimination of 

OIL and REF community responses by treatment, and also generally according to 

season of sampling, with more homogeneous responses within and across dilutions for 

the OIL samples. Similarities among OIL samples’ substrate metabolism patterns 

irrespective of season indicate these soils’ communities exhibited little seasonal 

variation in physiology compared to those in REF soils. Moreover, we suggest that 

homogeneity of substrate response patterns across dilutions implies that OIL soil 

communities were composed of fewer distinct functional populations than were those 

in REF soils.

The use of multiple substrate metabolism analysis to evaluate community 

structure is complicated by the fact that color development in a given well of the 

microplate is a consequence of many unknown interacting factors. Bacterial growth is 

known to occur in the microplate wells (Garland and Mills, 1991; Lindstrom et al. in 

press; see Chapter 1), but rate and extent of color development are not strictly 

correlated to the wells’ population densities (Haack et al., 1995). Rather, the color 

response of a given microplate substrate well to a particular inoculum is the result of 

the integrated metabolisms of the mixture of microbes present (Lindstrom et al. in 

press; see Chapter 1).

Attempts to use microplates to evaluate community diversity have typically relied 

on assessing numbers and types of substrates used at a selected plate reading time 

(e.g., Zak et al., 1994). However, since the average rate of color development 

following inoculation depends on inoculum density (Haack et al., 1995) as well as the 

mix of microbes in the inoculum, analysis of microplate substrate responses based on 

OD at a single time will reveal little information regarding relative functional diversity
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of microbial communities from samples of differing total bacterial biomass. Even with 

samples of similar bacterial densities, substrate use patterns determined at a single time 

vary depending on duration of incubation following inoculation (Bossio and Scow,

1995). In addition, measurable dye reduction eventually will occur in most substrate 

wells in the microplate if enough populations are included in the inoculum to allow for 

synergistic interactions.

To circumvent the problems described above, we examined the change in kinetic 

patterns as individual populations were removed from the community through 

dilutions. By determining dye reduction kinetic parameters not sensitive to inoculum 

density and observing how they change with dilution, we may infer differences in 

community structure and functional diversity that depend on the relative contribution 

of member populations. The presence in a community of a large number of 

metabolically distinct microbial types or “species” (high diversity) allows for numerous 

inter-specific relationships (Atlas, 1984a). Conversely, a community of low diversity 

(low species richness) has fewer potential opportunities for unique combinations of 

interactions. A microbial community of high population diversity will have larger 

numbers of rare populations than one of low diversity with a similar total microbial 

biomass. Given two communities of similar total population densities but of differing 

microbial diversity, the numbers and types of interactions, and hence the kinetic 

responses to microplate substrates, will be more greatly affected by dilution in the 

more diverse community because member populations that are relatively rare will be 

more quickly diluted to extinction. Thus a community of lower diversity will vary less 

in microplate response across a range of dilutions than a community of relatively 

higher population diversity. Focusing on changes in substrate use patterns that occur 

with dilution at the community level necessarily ignores physiological diversity that 

may exist within a population. However, it does allow one to link changes in 

community physiology to organismal diversity within the community.
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The dilution response of OIL and REF samples to microplate substrates, as 

measured by the r parameter (rate of dye reduction from no color development to a 

maximum), provided evidence of decreased population diversity in the OIL sample 

communities. Principal components o f r  data for diluted samples from a given season 

showed greater variation across dilutions for REF than for OIL samples (Table 2-4). 

Also, OIL samples within a given dilution showed similar responses to substrates (Fig.

2-1, Table 2-3) whether the samples were collected during summer (July), autumn 

(September) or early winter (October), while the REF samples exhibited greater 

seasonal variation. This is in spite of the fact that the OIL samples varied more in total 

bacterial population with season compared to the relatively stable seasonal biomass 

estimates for REF samples (see Table 2-1). Despite the greater population fluctuation 

in OIL samples, their responses to microplate substrates (based on dye reduction rate) 

appeared more similar over time than did REF samples.

The K  parameter data did not exhibit the strong trend with dilution seen for the r 

parameter data. Principal component scores for K  data did discriminate OIL from REF 

samples but, unlike the r data, the standard errors for the OIL PC scores were not 

uniformly smaller than those for REF samples (Tables 2-3 and 2-6, and Tables 2-4 and

2-7). The different meanings of the kinetic parameters may explain why the trend seen 

in the r parameter data was not seen for K  data. The extent of dye reduction (K) seen 

in a microplate well represents the sum of reducing power generated in that well 

before limitation occurs due to exhaustion of metabolic resources or redox dye, or 

buildup of toxic metabolites (Lindstrom et al. in press; Chapter 1). On the other hand,

rate of dye reduction (e0  represents the maximum rate of reduction by one or several 

populations in the well. Production of metabolites by one population in a well may 

produce a usable substrate for another population in the well not able to grow at the 

expense of that well’s designated substrate, or may produce metabolic inhibitors for 

populations that could otherwise grow (Bouma and Mills, 1994). Thus the extent of 

dye reduction (K) could be higher or lower than might occur in the absence of
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metabolic intermediates from the community in the well (i.e., if the only C source 

present were the well’s designated substrate). However, the rate of reduction in the 

well would still be limited by the metabolic rate of the population growing at the 

expense of the well’s designated substrate, as other populations could not be affected 

by the metabolite (not originally present in the well) fester than it was produced. 

Therefore, one can consider the K  parameter as the sum of a collection of metabolisms 

in a microplate well, while r represents the metabolic rate of the population (or 

populations) able to most rapidly turn over the substrate presented as the well’s sole C 

source. K  may be thought of as the maximum possible reducing power generated from 

the carbon available in the well (designated C source plus metabolites) and r represents 

the rate limiting step in substrate processing specifically related to the well’s 

designated substrate. To the extent that community-level population interactions affect 

dye reduction in the microplate well, these interactions are expected to yield greater 

variation in K  than in r parameter data.

The role of population interactions within communities inoculated into the 

microplate is evident when one examines the number of substrates used by all samples 

of a given type (Table 2-9). At the low dilutions (103-fold dilution), where populations 

of relatively lower abundance in the community are present, all samples (OIL or REF) 

used many substrates irrespective o f season. With increasing dilution, however, fewer 

substrates were used by all samples of a given type. The number of substrates used by 

all samples diminished faster with dilution for REF than for OIL samples and, at the 

highest dilution, all REF samples used only ca. 10% of the total number of substrates 

used by OIL samples in July and October. Less difference between OIL and REF was 

observed in substrates used in September samples.

Compared to REF soils, the selective pressure provided by hydrocarbon 

contaminants enriched the microbial community in hydrocarbon-oxidizing populations 

at our OIL site (Table 2-2). This enrichment is in concert with findings from other 

petroleum contamination studies (e.g., Hood etal., 1975; Wunsche etal., 1995). The
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associated diminished population diversity implied by such enrichment in our study is 

also consistent with observations made of other hydrocarbon-polluted samples (e.g., 

Sayler etal., 1983).

Our data suggest not only that the population composition of the OIL soil 

community is less diverse than that of REF soils, but also the populations surviving the 

oiling exhibit enhanced nutritional versatility. Atlas etal. (1991) found that 

communities exposed to petroleum hydrocarbons exhibited diminished genetic 

diversity relative to undisturbed reference communities, but displayed increased 

physiological tolerances and substrate utilization capabilities. In other words, the 

populations surviving the hydrocarbon disturbance were characterized as “generalists”, 

not physiological “specialists.” Ecologically generalist populations have broad niches 

and tend to sacrifice efficiency in using a narrow range of resources for the ability to 

survive using a broad range of resources (Smith, 1992). By contrast, specialists are 

more narrowly focused in ability to exploit niche resources. Crude oil contamination at 

our OIL site represents a perturbation of the soil environment with respect to changes 

in temperature and perhaps oxygen tension (Collins et al., 1994), as well as additions 

of organic carbon as variously toxic, degradable or inert petroleum components 

(Leahy and Colwell, 1990). Altering the soil environment in this way may have 

eliminated many specialized niches actively exploited in REF soils, thereby excluding 

from the OIL soil communities several specialized populations. Eliminating 

metabolically efficient specialist populations from competition in the OIL soil 

community may have provided opportunities for the less efficient generalists to exploit 

niche space previously unavailable (“competitive release”; Smith, 1992).

Bacterial populations exposed to crude oil have been shown to demonstrate 

enhanced abilities to use carboxylic acids and hydrocarbons (Atlas et al., 1991), and 

several studies have shown that additions of petroleum hydrocarbons to a soil 

community can have significant long-term effects on the metabolic activity of the 

community (see Pfaender and Buckley, 1984). Our data appear to confirm this
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observation. OIL samples’ kinetic responses (r values) to substrates were more 

consistent across dilutions and seasons compared with REF samples (implying lower 

diversity; Tables 2-3 and 2-4), and OIL samples consistently used more and a greater 

variety of substrates (notably amines and carboxylic acids) than REF samples when 

diluted I05-fold (Table 2-9). This increased nutritional versatility cannot be attributed 

solely to higher numbers and varieties o f bacterial types in OIL samples, as the relative 

densities of bacteria vary from greater than REF in July to less than REF in October 

(Table 2-1).

Evaluation o f our soil samples’ community-level kinetic responses to serial 

dilutions suggests that the microbial communities from OIL soil samples exhibit 

reduced population diversity compared to REF soils. Increasing the dilution factor or 

varying the season of sampling had a more pronounced effect on REF samples, 

reflecting the greater site heterogeneity and likelihood of a higher variety of microbial 

interactions compared to OIL samples. Despite the fact that our soils were collected in 

spatially (across meters) and temporally (summer, early autumn, late autumn) 

dispersed samplings, the OIL soils’ microplate behaviors exhibited relatively little 

variation with respect to dilution, location or season.

Our data appear to be consistent with those from other oil spill studies showing 

decreased diversity, but enrichment favoring metabolic generalists, in oiled soils (Atlas 

et al., 1991). A substantial amount of residual oil remained at the study site nearly 20 

years after the experimental crude oil spill (Collins et al., 1994). This disturbance of 

the soil system may have caused diverse specialist populations to be displaced by fewer 

populations of generalists. To the extent that substrate processing (either soil organic 

matter or added oil) depends on key taxa of specialists now absent from these soils, 

this reduced diversity may have larger scale consequences for long-term site recovery.
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OF CRUDE OIL IN A TAIGA SPRUCE FOREST
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Alaska Fairbanks, Fairbanks, AK;

SUMMARY

Crude oil spilled in terrestrial impact experiments in 1976 was abundant at the 

taiga spill site through 1995. Measurements of physical, chemical and microbiological 

parameters were made to assess the effect of the oil on the site’s soil microbial 

community and to examine the reasons for the oil’s persistence. Fungi dominated the 

microbial biomass in both oiled (OIL) and oil-free, reference (REF) soils. Total fungal 

and bacterial biomass, as well as protozoal abundance and soil C respiration 

measurements, showed no differences between OIL and REF soils. Metabolically 

active fungal and bacterial biomasses, however, always were depressed in OIL soils. 

Net N mineralization was lower and net nitrification was never observed in OIL 

samples. Numbers of hydrocarbon degraders and specific hydrocarbon mineralization 

potentials indicated that oil-acclimated microbial populations were present in OIL soil 

samples, and some evidence of hydrocarbon oxidation was seen in the petroleum 

chemistry data. These data indicate a shift in substrate use in favor of oil has occurred 

in the microbial communities o f the OIL plot. Changes in microbial community 

function associated with this shift are likely responsible for a disruption in normal 

nutrient cycling in the OIL plot. This has implications for revegetation and site 

recovery as the crude oil residue is expected to persist for decades.
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INTRODUCTION

Microbiological activity in soils directly influences soil productivity and plant 

health in the natural environment (Brady, 1990). “Soil microbial biomass has been 

called the eye of the needle through which all the natural organic material that enters 

the soil must pass” (van Veen et al., 1984, p. 257), and microbial biomass serves as 

the source of labile nutrients available for plant roots and soil microbes (Coleman and 

Crossley, 1996). All living organisms participate to some extent in the biogeochemical 

cycling of materials, but microorganisms are the major players in driving these cycles 

due to their ubiquity, diverse metabolic capabilities, and high enzymatic activity (Atlas 

and Bartha, 1992). Thus, the vitality and structure of soil and plant communities are 

affected by the capabilities of the microbial participants in the soil community.

Environmental stress of any sort will have an impact on the soil microbial 

community and, by extension, soil productivity. “Stress” may be defined as anything 

that increases the maintenance requirements of an organism above its usual (“non­

stressed”) condition (Atlas, 1984). Stress to specific soil populations will alter the 

natural organization of the microbial community. Due to these selective pressures, the 

microbial diversity of a soil under stress may be lower than otherwise (Atlas, 1984). 

Despite the common reduction in microbial diversity due to pollutants (Alexander, 

1994), the effects of stress may not be visible in all soil functions. Studies on the 

effects of toxic chemicals on nutrient cycling have yielded a variety of responses, 

ranging from reduced C and N mineralization to diminished enzyme activity to 

increased rates of respiration, depending on the chemicals’ concentrations and target 

organisms (see Hendricks, 1997).

Terrestrial crude oil spills provide a complex source of hydrocarbons able to both 

destroy and enrich various components of a soil microbial community (Leahy and 

Colwell, 1990). Organic matter processing that depends on this community ultimately 

determines the fate of the oil and the ability of the ecosystem to recover functions lost 

as a result of the spill (Baker, 1994). As suggested above, the stress to a soil
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community from hydrocarbons may yield a variety of responses; petroleum spills in 

Alaska are no exception. Crude oil addition has been found to either stimulate 

heterotrophic microbial populations in northern soils (Sexstone etal., 1978b) or to 

depress them (Sparrow and Sparrow, 1988). These discrepancies may be due to 

differing methods among studies, time following the spill, or site-specific soil or 

contaminant conditions. Whatever the response of the soil community to spilled 

petroleum, understanding the microbial ecology of the system in question is essential 

to any effort to enhance biological removal of the contaminant.

We examined microbiological, physical, and chemical parameters at the site of a 

nearly 20-year old terrestrial crude oil spill in the subarctic. Our objective was to study 

the spill’s effects on various populations of the microbial community and their 

activities, and to determine the factors causing long-term persistence of the oil.

MATERIALS AND METHODS

Site Description

The study area was located in the Caribou-Poker Creeks Research Watershed 48 

km northeast of Fairbanks, Alaska. The sampling areas included the site of a 7570 L 

experimental crude oil spill conducted in 1976 to investigate the long-term effects of 

crude oil contamination on subarctic taiga (see Collins et al., 1994). For the original 

1976 study the oil was applied at the top of a plot established on a west-facing, low 

angle slope and allowed to flow downslope. Soil samples were collected from both the 

oiled site (OIL) and an adjacent oil-free, reference site (REF) located just upslope 

from the spill area.

Local vegetation at the site is open black spruce (Picea mariana) forest (total tree 

canopy cover less than 60%) with a shrub understory of blueberry (Vaccinium 

uliginosiim), Labrador tea (Ledum decumbens), resin birch (Betula glandulosa) and 

willow (Salix spp.). The ground surface is covered by mosses and lichens with 

scattered (10% of cover) cotton grass (Eriophorum vaginatum) tussocks (Collins et
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al., 1994). The area is underlain by permafrost, with an active layer thickness of 40-60 

cm, and the soil is classified as a histic pergelic cryaquept (Jenkins et al., 1978). A 

typical soil profile consists of a 5 cm moss and lichen surface layer above a 15 cm 

undecomposed peat horizon (01), a 5 cm decomposed dark brown peat horizon (02), 

a 5 cm dark grayish-brown silt loam horizon (Al), and a grayish-brown silt loam 

mineral soil (C; Collins etal., 1994).

In the OIL plot, most of the oil flowed between Eriophorum tussocks. As a 

result, almost all mosses, lichens and shrubs in the upper 10 to 15 m below the source 

of the spill were killed by the oil. In 1995, moss and lichen surface vegetation was 

generally dead and incorporated into the 02  and A l horizons. With few exceptions the 

only surviving vegetation in this area of the OIL plot was scattered E. vaginatum 

tussocks, some of which apparently increased “dramatically in size” since the spill 

(Collins etal., 1994).

Sampling

In both OIL and REF areas soil cores were collected at randomly selected 

locations between the Eriophorum tussocks, with OIL sample cores collected only in 

the upper 10 m just downslope from the source of the oil spill. Samples were collected 

with a 2.5 cm diameter stainless steel coring device fitted with plastic sleeves for 

holding sample cores (Ben Meadows Co., Atlanta, GA). Prior to sampling, the plastic 

sleeves were washed with soap and water, rinsed three times with distilled water, then 

disinfected by rinsing with a 3% solution of hydrogen peroxide. To collect a sufficient 

amount of soil for the many analyses to be performed, six cores were taken at each 

location within the site to be combined later into a single sample for analysis. The 

sample cores were placed in coolers immediately following collection at the site and 

kept at ca. 4°C until processing the next day in the laboratory.

Upon return to the laboratory, samples were removed from the plastic core 

sleeves and their horizons separated. After removing the surface layer of live and/or
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undecomposed dead plant material, the cores were separated into organic (02  plus 

Al) and mineral (C) horizons. OIL samples had little or no surface plant material 

present and all surface organic material was used for the organic fraction. Following 

segregation of the organic and mineral fractions, the separate horizons from the six 

cores were mixed and homogenized by sieving (2 mm mesh) twice. The samples were 

then placed in sterile plastic bags and refrigerated until further processing for 

microbiological assays the following day. At that time a sample of approximately 10 g 

(wet weight) o f the homogenized soil was placed in pre-combusted glass jars with 

dichloromethane (DCM)-rinsed lids and frozen for later hydrocarbon extraction and 

analysis.

Sampling took place on 13 July, 11 August, 20 September, and 11 October 1994, 

and on 5 July, 5 September and 17 October 1995. The sampling dates represented 

' seasonally distinct times of the year with the July and August sampling occurring 

during the middle and late parts o f the growing season, respectively, September 

sampling occurring while the dominant vegetation in the area was senescing, and 

October sampling following several days o f freezing weather.

Physical and Chemical Parameters

Soil temperatures at 10 cm depth were determined at each core sampling location 

in the study area. Field moisture in each homogenized soil sample was determined 

gravimetrically. Soil saturation or water holding capacity (WHC) also was determined 

for field-moist homogenized soil (Forster, 1995). The degree of saturation upon 

sample collection (% WHC) was calculated from field moisture and WHC data. Soil 

pH was determined in soil slurries (1 part soil to 2 parts distilled water) for the 

homogenized organic soil fractions.

Soil total C and total N were determined for each homogenized organic horizon 

sample after oven-drying and grinding. Ground samples’ C and N were measured in 

triplicate (1994 samples) or duplicate (1995 samples) using a C-N-S analyzer (Leco
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2000 CNS Analyzer, Leco Inc., St. Joseph, MI). Carbon and nitrogen content of 

material extracted from the soil with DCM (i.e., “petroleum”, see below), also was 

determined using the CNS analyzer after evaporating off the DCM. Organic matter 

content was determined for each organic horizon sample by loss on ignition (450°C).

Due to the small quantity o f soil remaining in each sample following the many 

analyses performed, only selected samples were analyzed for inorganic nitrogen 

(NCV-N and NHf-N) and extractable phosphorus. Previously frozen soil samples 

were extracted with 2M KC1 and the extracts analyzed by the University of Alaska 

Fairbanks Agricultural and Forestry Experiment Station. Some of these samples (seven 

REF and eleven OIL) also were assayed for inorganic nitrogen after a 30-day 

respiration assay to determine net N  mineralization.

Petroleum Hydrocarbons

The mass of petroleum hydrocarbons in soil samples was determined by 

extracting each sample with DCM. Frozen samples were thawed, placed in pre­

combusted glass beakers, and mixed for drying with an equivalent mass of pre­

combusted Na2S0 4 . This mixture was then placed in a new or DCM-extracted Soxhlet 

extraction thimble containing ca. one g of infusorial earth (“filter aid”). A DCM- 

extracted cotton wool plug was placed on top of the soil/sodium sulfate mixture to 

prevent loss of solid material during the extraction process. Extractions were 

performed on a Soxhlet extraction apparatus modified for rapid extractions (Soxtec 

System HT 1043 Extraction Unit; Tecator AB, Hoganas, Sweden) allowing sample 

extraction times to be reduced to 2 h per sample. Each sample thimble was placed on 

the apparatus and extracted by boiling in 50 ml DCM at 85°C for one hour. Thimbles 

were next rinsed for one hour with the solvent, and the rinsate containing extracted 

solute was collected. After evaporating away the DCM, the extracted residue was 

precisely weighed and its mass recorded. Data were recorded as g DCM-extractable 

material • g dry soil ' after correcting for soil moisture. Following residue mass

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

determination, the residue was returned to solution by adding 5 ml fresh DCM. Four 

ml of the DCM-residue solution was then placed in pre-combusted 4 ml amber glass 

vials with DCM-rinsed, Teflon-lined silicone septum caps. These solutions were stored 

in a freezer (-20°C) for future chemical analyses.

Efficiencies of hydrocarbon extraction were measured using uncontaminated soils 

spiked with fresh Prudhoe Bay crude (PBC) oil and 14C-labeled hexadecane, 

naphthalene and phenanthrene. Gravimetric residue recoveries for nine spiked samples 

ranged from 78% to 89% of added fresh oil mass. Hexadecane recovery was 96%; 

phenanthrene recovery was 92%, and naphthalene recovery was 52%. Based on these 

data we concluded that most of the weathered oil residue in the soil samples would be 

recovered by this extraction method, though oil fractions boiling below 85°C or 

exhibiting appreciable volatility at this temperature would not be recovered 

quantitatively.

DCM extracts were characterized according to gross chemical gravimetric 

composition by a series of extractions coupled with preparatory chromatography.

Some extract fractions were further characterized by gas chromatographic analysis. 

Raw DCM extracts were first treated to precipitate large, high molecular weight 

compounds (“asphaltene” fraction) by placing one ml extract in 9 ml pentane and 

centrifuging the solution (5000 x g for 10 min.). Two ml of supernatant was removed, 

solvent evaporated and residue mass determined to obtain “total pentane-soluble” 

mass fraction. Remaining supernatant was treated to remove any residual polar 

material by solid phase extraction (SPE; silica solid phase; Extract-Clean Silica 1000 

mg tubes, Alltech Associates, Inc., Deerfield, IL). SPE tubes were pre-conditioned by 

adding 5 ml pentane, allowing the pentane to drain off and leaving the silica bed “wet.” 

The SPE tube was next loaded with 5 ml of the pentane-soluble sample and eluted 

with two additional aliquots of 5 ml pentane. Fifteen ml of eluate was collected for 

each sample (see below). Five ml eluate was removed and its solvent evaporated to 

determine the residue mass (pentane-soluble, non-polar fraction). Remaining eluate
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was placed in amber glass septum vials and frozen (-20°C) for later gas 

chromatographic (GC) analysis.

To determine whether our SPE preparatory process allowed complete elution of 

non-polar alkane and aromatic hydrocarbons, recovery of model alkane and aromatic 

compounds in SPE pentane eluate was assessed. We added 14C-labeled hexadecane 

(50 pi, 2 pg • pi'1 in acetone, ca. 740 Bq) or phenanthrene (50 pi, 2 pg • p f1 in 

acetone, ca. 1455 Bq) to one ml of raw DCM extract from an OIL sample, and 

proceeded with the protocol as described above. The material was sequentially eluted 

from the tube with four 5 ml aliquots of pentane. Each eluted aliquot was collected 

separately and its radioactivity determined by liquid scintillation counting, as described 

above. Based on this procedure, it was determined that greater than 95% of added 

radioactivity for both hexadecane and phenanthrene was recovered in the first two 

aliquots of pentane. Thus, we were assured that the pentane-soluble, non-polar 

hydrocarbon fraction containing alkanes and aromatics present in our soil extracts 

would be effectively recovered after the SPE step.

The pentane-soluble, non-polar fractions of DCM soil extracts recovered from the 

SPE were further characterized by a contract laboratory (Boreochem Mobile 

Laboratory, Fairbanks, AK) using a gas chromatograph equipped with a flame 

ionization detector (GC/FID; Model 9300B GC, SRI Instruments, Inc., Torrance, CA) 

and a splitless injector. Five pi aliquots of each extract were analyzed using a 30 m, 

0.53 mm i.d. Silcosteel (TM) column (MXT-5 stationary phase; Restek, Inc., 

Bellefonte, PA), with H2 carrier gas at a flow rate of 25 ml • min"1 on a temperature 

programmed run (5 min @ 40°C, ramp @ 10°C • min"1 to 350°C, 10 min @ 350°C; 

total run time of 46 min).

Chemical composition and degree of weathering compared to fresh 1976 PBC oil 

were assessed by evaluating relative amounts of various chromatographic fractions 

(based on relative GC retention times) using integrated areas calculated from baseline 

to chromatogram peak valley. Weathering also was evaluated by comparing “resolved”
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peak areas to total integrated area in a manner similar to that of Sexstone et al. 

(1978a); “resolved” peak area was defined by re-drawing the chromatogram baseline 

from valley to valley for every peak in the chromatogram.

Microbiological Parameters

Homogenized soil samples (stored at 4°C) were assayed for microbial populations 

within one week of sample collection. All organic horizon samples were examined for 

abundance of bacterial cells and fungal hyphae, and for “active” fungi and bacteria. 

Most probable number (MPN) assays were performed to enumerate hydrocarbon 

oxidizing microbes and protozoa. Soil respiration was measured in each sample and 

radiorespirometric assays were performed on samples collected in 1994.

Microbial biomass content of organic soil fractions was determined by 

microscopic examination of diluted samples by the Microbial Biomass Services 

Laboratory (Oregon State University, Corvallis OR). Bacterial biomass was estimated 

by the direct microscopy technique of Babiuk and Paul (1970). Total fungal biomass, 

as well as metabolically active fungal and bacterial biomass, was estimated using an 

agar film technique (Bottomley, 1994) with fluorescein diacetate (FDA) as an activity- 

indicating stain. Biomasses were calculated from biovolumes using an average 

bacterial density of 0.33 g • cm'3 and an average fungal hyphae density of 0.41 g * cm'" 

(Van Veen and Paul, 1979).

Numbers of hydrocarbon degraders were estimated in organic soil fractions using 

the method of Brown and Braddock (1990). Soil samples were decimally diluted in 

carbon-free Bushnell-Haas broth (Atlas, 1993) in a 24-well microtiter plate, and five 

replicates of each dilution were provided one drop of sterile Prudhoe Bay crude oil as 

sole carbon source. Plates were incubated at 21°C for three weeks. Inoculated wells in 

the plate were scored positive for microbial growth on crude oil if the oil sheen on the 

broth surface exhibited emulsification. All plates were read by one person and positive 

wells were checked by comparison with a sterile, uninoculated microtiter plate treated
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as an environmental sample. Numbers o f hydrocarbon degraders were determined by 

an MPN algorithm (Koch, 1994) and recorded as cells • g dry soil"1.

Protozoa also were enumerated in organic horizon samples using a MPN 

technique as described by Ingham (1994) using REF sample organic horizon soil 

extract agar and Ringer solution (Collins et al., 1989) as growth medium. Enumeration 

plates were incubated at 21 °C for 10 days to 2 weeks. Presence of protozoa in each 

microplate well was determined by microscopic examination. Presence of general 

morphological class was noted for flagellate, amoeboid and ciliated protozoa.

Microbial potentials for specific glutamate, hexadecane, and phenanthrene 

substrate use were assayed radiorespirometrically by the method of Brown et al.

(1991) in July, August and September 1994 samples. Time course data were collected 

to determine optimum incubation durations for all substrates in nutrient amended 

(Bushnell-Haas broth, BH; Atlas, 1993) slurries. Nutrient amendments were used to 

evaluate the potential activity of the extant microbial populations irrespective of the 

nutrient status of each soil sample assayed. Samples were diluted 10-fold (wet weight 

basis) in BH, 10 ml slurry placed in 40-ml glass septum vials, and each vial spiked with 

50 pi of a 2 p g • pi*1 solution of a radiolabeled substrate (UL-14C L- glutamic acid in 

water, ca. 830 Bq; 1-14C n-hexadecane in acetone, ca. 680 Bq; or 9-l4C phenanthrene 

in acetone, ca. 1230 Bq). Samples were incubated at 21°C until soil respiration was 

stopped by addition of 1 ml 10N NaOH to the vial. Glutamate sample time courses 

were incubated 0, 6, 12, 18, and 24 h, hexadecane time courses for 0, 24, 47 and 72 h, 

and phenanthrene time courses for 0, 47, 72, and 97 h. Based on the time course 

assays, samples were incubated 18 h for glutamate mineralization potential 

determinations and 67 h for hexadecane and phenanthrene. Final mineralization 

potentials were recorded as pg substrate C mineralized • g dry soil'1 • d \

Total soil C mineralization potentials were measured for all organic horizon 

samples in 1994 and 1995. Ten g homogenized soil samples were placed in half-pint 

canning jars (Mason jars; Alltrista Corp., Muncie, IN) equipped with sealable lids
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fitted with butyl rubber septa for headspace gas sampling. Soil moisture was adjusted 

to 60% WHC, and samples were allowed to equilibrate for a few (ca. 2 to 4) days. Jars 

were then sealed and incubated at 15°C. Soil C mineralization was determined by 

measuring CO2 evolved in the jar headspace by gas chromatography (Shimadzu GC- 

14A gas chromatograph; Shimadzu Corp., Kyoto, Japan) at ca. one week intervals.

Jars were vented to the atmosphere after each measurement to maintain aerobic 

conditions in the jar. Headspace CO2 concentration was converted to pg C mineralized 

and soil C mineralization rate calculated from incubation durations.

Community-level substrate utilization in 1995 samples was evaluated using Biolog 

GN microtiter plates (Biolog Inc., Hayward, CA) and the kinetic data extraction 

technique of Lindstrom etal. (in press; see Chapter 1). Each sample was diluted 103-, 

104- and 10s-fold before being inoculated into the microplates. Plates were incubated 

at 21°C for 7 to 10 days. Dye reduction rates due to substrate oxidation in each 

microplate well were measured (595 nm) on a microplate reader (Model 3550-UV, 

Bio-Rad Laboratories, Hercules, CA) over the course of the incubation period. The 

technique has been used elsewhere in this study to assess community population 

diversity by multivariate analysis of substrate metabolism patterns (see Chapter 2). 

Community-level substrate use rates for individual substrates are reported here to 

evaluate soil communities’ N mineralization potentials.

Data Treatment

To express the microbiologically relevant data per unit mass of original soil 

matrix, we wished to correct for added crude oil mass in each OIL sample. However, 

attempts to correct for the contribution of oil C to soil total C were not successful. 

Total C and M analysis of DCM-extractable material (N = 28) from several OIL 

samples (n = 17) indicated a mean value (± s.e.) of 85.9% (± 0.45%) carbon and 

0.31% (±0.02%) nitrogen in the residue. The mass of DCM-extractable residue for 

each sample was multiplied by the average residue C content (i.e., 0.859 g C • g DCM
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extract"'), and this value was then subtracted from the total soil C value obtained for 

each sample. The “corrected” mean soil C (± s.e.) was 0.123 (±0.015) g C • g dry soil' 

for REF samples and 0.046 (± 0.006) g C • g dry soil"' for OIL samples. This suggested 

that OIL sample soil organic C not attributable to crude oil was ca. 37% that of REF 

samples, a finding not supported by other studies at this site (e.g., Sparrow and 

Sparrow, 1988). A similar correction procedure also was used in an unsuccessful 

effort to correct the organic matter (as mass loss on combustion) data by subtracting 

the DCM-extract mass from organic matter.

Because we were unable to correct for added crude oil C or organic matter mass 

in the soil samples, all microbiological data expressed as mass or number per g soil 

were transformed from a g dry soil basis to a g inorganic matter basis. Physical and 

chemical data were transformed the same way when necessary for correlation to 

microbiological data. This was accomplished by dividing the dry soil datum by g 

inorganic matter • g dry soil'1 for that sample. As organic matter content was 

significantly higher in OIL than in REF samples, normalizing data per unit inorganic 

matter was considered the most reliable way to compare samples without unduly 

biasing the data as a result of oiling treatment. By expressing values per g inorganic 

matter, the data are expressed in units that likely have not changed as a result of crude 

oil treatment.

Some microbiological data also were transformed to a g organic matter basis.

Data were considered per g organic matter to expose microbiological effects due to 

substrate quality (see Discussion). These data were transformed in a manner similar to 

the inorganic matter data.

Student’s t-tests, analyses of variance and various other statistical analyses were 

performed with Systat for Windows (version 5.05; SPSS, Inc. Evanston, IL), and best- 

fit linear regressions and all graphics were accomplished using Microcal Origin data 

analysis and graphing software (version 4.00; Microcal Software, Inc., Northampton,
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MA). Where multiple comparisons were used, appropriate Bonferroni-adjusted 

probabilities are reported for the number of comparisons made (Zar, 1984).

RESULTS

Physical and Chemical Parameters

Soil temperatures were higher in the OIL plot than in the REF plot at each 

sampling (p < 0.001), with the exception of the October samplings for each year (p > 

0.5; Table 3-1). Evidence of hydrophobic oil in the soil matrix of OIL samples can be 

seen in the generally reduced soil moisture and WHC for OIL samples compared to 

the values for REF samples on the same sampling date (see Table 3-2). On a dry soil 

basis, DCM-extractable material (residual “oil”) was negatively correlated with water 

holding capacity (Spearman rank; rs = -0.53) and soil moisture (rs =-0.63) in the soil 

samples (n = 74). Soil moisture was similar between the two sample types in summer 

o f 1994 (p = 1) but was generally higher in REF samples later that season and in 1995 

samples (p < 0.05; except September 1995, p = 1). Mean values for WHC varied less 

among samples that were oiled (range of 1.42 to 2.40 g H20  • g dry soil'1) than among 

REF samples (range of 1.52 to 4.36 g H20  • g dry soil'1). Despite the overall greater 

moisture per g dry soil mass in REF samples however, degree of saturation at time of 

sample collection was similar for both treatments due to the relatively higher WHC of 

REF samples (Table 3-2). In September 1994 REF samples were more saturated than 

OIL (p = 0.001) and in October 1995 OIL samples were more saturated than REF 

(p = 0.011); there was no difference (p > 0.2) in soil saturation between treatments on 

all other sampling dates.

Soil pH for both REF and OIL organic horizon samples was quite low and ranged 

from 4.10 to 4.95. Mean (± s.e.) pH was 4.58 (± 0.03) for REF samples and 4.47 

(± 0.03) for OIL samples, indicating little influence of oiling on the natural pH of the 

horizon. Soil pH did not vary with season or with year of sampling (p >0.2).
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Table 3-1. Soil temperatures for each sampling date in 1994 and 1995. Mean
temperatures for all samples are presented and standard errors o f means are given 
in parentheses. Except for October samplings, OIL plot soil temperatures were 
always warmer (p < 0.001) than those in the REF plot.

Date n

REF Plot

Soil Temperature (°C) n

OIL Plot

Soil Temperature (°C)

7/13/94 6 0.0 (0.0) 9 5.7 (0.2)

8/11/94 6 7.9 (0.7) 9 13.1 (0.6)

9/20/94 6 0.9 (0.2) 9 4.1 (0.2)

10/11/94 5 0.4 (0.1) 5 0.7 (0.1)

7/5/95 5 4.8 (0.6) 3 11.5(0.4)

9/5/95 5 2.0 (0.1) 5 6.7 (0.4)

10/17/95 5 0.2 (0.4) 5 1.3 (0.3)
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Table 3-2. Soil moisture data for each sampling date and sample type (OIL or REF 
samples). Mean field moisture, water holding capacity (WHC) and percent 
saturation data are presented as mean values for all samples collected. Standard 
errors of the mean values are given in parentheses. Sample sizes are the same as 
those given in Table 3-1 for each treatment.

Mean Field Moisture 
(g H20  • g dry soil'1)

Mean Soil WHC 
(g H20  • g dry soil'1)

Mean Soil Saturation 
(fraction o f WHC)

Date REF OIL REF OIL REF OIL

7/13/94 0.80
(0.09)

0.82
(0.07)

1.64
(0.22)

1.66
(0.15)

0.499
(0.032)

0.491
(0.013)

8/11/94 0.77
(0.06)

0.74
(0.06)

1.52
(0.17)

1.83
(0-13)

0.514
(0.022)

0.404
(0.021)

9/20/94 1.20
(0.08)

0.85
(0.03)

1.82
(0.25)

1.74
(0-14)

0.694
(0.069)

0.501
(0.029)

10/11/94 1.98
(0.13)

0.83
(0.06)

4.36
(0.27)

2.40
(0.18)

0.454
(0.016)

0.349
(0.023)

7/5/95 1.36
(0.13)

0.83
(0.12)

2.78
(0.46)

1.45
(0.14)

0.518
(0.050)

0.569
(0.047)

9/5/95 1.48
(0.14)

1.27
(0.15)

2.19
(0.31)

1.69
(0.18)

0.693
(0.038)

0.753
(0.030)

10/17/95 2.12
(0.19)

1.23
(0.11)

3.24
(0.48)

1.42
(0.19)

0.697
(0.078)

0.890
(0.049)
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The organic matter and total soil C content of the samples reflected their origins, 

with REF samples generally having lower values than OIL samples (Table 3-3). The 

two independent measures of soil carbon content were strongly correlated when all 

dates and treatments were included in the analysis, with a correlation coefficient of 

0.779 (p < 0.001). With the exception of the October 1994 samples, total soil C was 

significantly higher (p < 0.06) in OIL than in REF samples. Overall, mean total C 

(± s.e.) was 0.169 (± 0.011) g ■ g dry soil'1 for REF samples (n = 34) and 0.295 

(± 0.011) g • g dry soil'1 for OIL samples (n = 45). Organic matter also was generally 

higher in OIL than in REF samples, though the mean values for September and 

October 1994, and July 1995, were not significantly different (p > 0.1) between 

treatments.

Overall, soil total N on a soil dry mass basis was very similar between the OIL 

and REF treatments, with mean values (± s.e.) of 0.63 % (± 0.02 %) for OIL samples 

and 0.68 % (± 0.04 %) for REF samples. Soil total inorganic N (essentially all 

NH/-N) was higher in REF samples (n = 7) than in OIL samples (n = 12; p < 0.001) 

examined, but averaged ca. 1000-fold lower than total soil N (data not shown), 

suggesting that almost all N present is organically bound. Mean NOs'-N concentrations 

in both OIL and REF samples were essentially zero (averaging <1 |ig • g dry soil*1) and 

showed no treatment effects (p > 0.3). Mean NEL+-N values were somewhat higher 

than N0 3 *-N, but still quite low, with a higher mean concentration in REF samples 

(p < 0.001; mean ± s.e. of 7.4 ± 0.6 jag • g dry soil'1) than in OIL samples 

(1.0 ± 0.2 jag • g dry soil'1). Extractable P was not different between the two 

treatments (p > 0.5) and averaged (± s.e.) 3.7 (± 1.0) jag • g dry soil'1 for REF samples 

and 3.2 (±0.3) jag ■ g dry soil'1 for OIL samples.

The ratio of soil total C to total N  was quite constant per g inorganic matter 

across all sampling dates for each treatment, with OIL samples’ ratios more than twice 

those seen in REF samples. Total C was strongly correlated with total N for both REF 

(r2 = 0.96, p < 0.001) and OIL (r2 = 0.82, p < 0.001) samples. The mean ratio (± s.e.)
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Table 3-3. Mean soil organic matter and total soil C for OIL and REF samples. 
Sample sizes are the same as given in Table 3-1 for each treatment. Standard 
errors of the mean values are given in parentheses.

Organic Matter 
(g • g dry soil"')

Total C 
(g * g dry soil"1)

Date REF OIL REF OIL

7/13/94 0.279 (0.039) 0.514(0.041) 0.107 (0.016) 0.295 (0.024)

8/11/94 0.118 (0.021) 0.346 (0.016) 0.107(0.009) 0.253 (0.011)

9/20/94 0.201 (0.005) 0.315 (0.033) 0.163 (0.011) 0.251 (0.020)

10/11/94 0.357 (0.035) 0.326(0.051) 0.267 (0.018) 0.313 (0.034)

7/5/95 0.300 (0.017) 0.336 (0.045) 0.197 (0.016) 0.297 (0.039)

9/5/95 0.203 (0.047) 0.368 (0.039) 0.167 (0.009) 0.336 (0.017)

10/17/95 0.400 (0.035) 0.594 (0.052) 0.204 (0.019) 0.395 (0.038)
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of C to N was 23.0 (± 0.8) for REF samples and 52.7 (± 3.8) for OIL samples

(p<  0.001).

Petroleum Hydrocarbons

Dichloromethane (DCM) -extractable material was present in much higher 

amounts in OIL than in REF samples (p <0.001; Table 3-4). Concentrations of DCM- 

extractable material did not vary among seasons or between years o f sampling for REF 

samples (p = 1.0). All OIL samples generally had uniform concentrations of this 

material irrespective of year or season of sampling (data not shown), with most 

samples showing no significant differences among seasons or between years 

(p > 0.38). October 1995 samples appeared to contain somewhat higher 

concentrations than other OIL samples, with a mean (± s.e.) value of 0.368 (± 0.053) 

g DCM-extractables • g dry soil"'. Samples from this date (n = 5) had significantly 

higher extractable material than August (n = 8; p = 0.048) or September (n = 8; 

p = 0.004) 1994 samples.

Gravimetric analysis of DCM extracts showed that a significant fraction of the 

material in OIL samples was “asphaltene” (high molecular weight, pentane insoluble) 

in nature (Table 3-4). We were unable to detect asphaltene fractions in REF samples 

with our protocol (all less than 0.001 g • g dry soil'1). The pentane-soluble extract 

components were amber to light green in color, with much higher levels in OIL 

samples, and low REF sample values almost equivalent to their total DCM-extractable 

amounts (Table 3-4). A large fraction of pentane-solubles was removed in the solid 

phase extraction (SPE) step, and all color in the original pentane solution was retained 

in the polar solid phase of the SPE tube. Mean concentrations of residue in the SPE 

eluate (Table 3-4) were ten-fold higher in OIL than in REF samples. This final fraction 

was subjected to analysis by GC/FID as described above. Samples from the REF site 

had too little of this fraction for GC analysis (i.e., analytes were below detection 

limits).
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Table 3-4. Gravimetric hydrocarbon concentrations for OIL (n = 41) and REF (n = 11) 
soil samples. Data are mean values per g dry soil for all samples measured; 
standard errors are given in parentheses. Asphaltenes were not detected (ND) in 
REF samples.

Gravimetric Datum OIL REF

DCM-extractable material 0.285 (0.015) 0.017(0.001)

asphaltenes 0.052 (0.007) ND

pentane soluble material 0.234(0.015) 0.016(0.001)

SPE eluate 0.041 (0.002) 0.004 (0.001)
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Analysis of pentane-soluble, SPE eluate for the 32 OIL samples characterized by 

GC/FID showed that relatively little low molecular weight (MW) material was present 

and that heavier components of the mixture were present in abundance increasing with 

MW (Table 3-5). The GC conditions for this analysis allowed detection of material up 

to ca. C44 compounds (corresponding to MW of ca. 620). Comparison of 

“resolvable” GC/FID chromatographic fractions to total area integrated also showed 

that the residual hydrocarbons were weathered and appeared to provide evidence of 

biodegradation. The ratio of “resolved” peak to total area integrated for 32 OIL 

samples ranged from a minimum of 0.061 to a maximum of 0.221 (median of 0.115), 

with a mean value (± s.e.) of 0.117 (± 0.007). This ratio was not calculated for the 

fresh Prudhoe Bay crude (PBC) oil spilled at this site, but Sexstone et al. (1978b) 

calculated the value for both fresh and artificially weathered (by blowing sterile air 

over the oil for 96 h) PBC oil from 1976, the year PBC oil was applied to our study 

site. The ratio was 0.312 for fresh 1976 PBC oil and 0.206 for the artificially 

weathered material.

Microbiological Parameters

Fungal biomass was the predominant contribution to soil microbial biomass in
4 -1

both OIL and REF samples, averaging ca. 10 |ig • g soil inorganic matter for both 

soils (Fig. 3-1). No clear difference due to oiling was evident for fungal biomass; on 

some sampling dates fungal biomass was greater in the OIL samples and on others it 

was greater in REF samples. Rainfall events prior to the October 1994 sampling (see 

soil moisture data, Table 3-2) appear to have stimulated fungal growth in the REF 

samples (Fig. 3-1), but this stimulation was not seen in OIL samples from the same 

date. Active fungal biomass (Fig. 3-2), as determined by fluorescein diacetate staining, 

was orders of magnitude lower than the total fungal value for each treatment. Biomass 

of active fungi by this assay was typically 10- to 100-fold higher in REF samples than 

OIL samples for every sampling date. As a fraction of total fungal biomass, REF
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Table 3-5. Composition of SPE eluate determined from gas chromatographic data for 
OIL samples (n = 32) and comparison to a Prudhoe Bay crude (PBC) oil sample 
(estimated from data in National Research Council, 1985). Approximate C chain 
length of each fraction was estimated from n-alkane retention time standards. 
Approximate molecular weights are for n-alkanes of the given chain length. 
Percent total area represents the mean percentage of the total chromatogram area 
for all samples analyzed. Standard errors of the mean are given in parentheses. 
Data for PBC represent approximate mass fraction percentages corresponding to 
boiling point ranges for each fraction listed.

Carbon chain length Molecular weight % Total Area PBC

<C12 MW < ca. 170 1.3% (0.2%) 30%

C12 to C16 MW 170 to 226 13.7% (0.5%) 28%

C16 to C24 MW 226 to 340 40.8% (0.5%) 24%

>C24 MW > ca. 340 44.3% (0.9%) 18%
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Fig. 3-1. Total fungal biomass per g inorganic matter in REF and OIL samples for all 
sampling dates. Column height represents mean value of all samples for that date; 
error bars are standard errors of the mean. Sample sizes are the same as given in 
Table 3-1 for each sampling date and sample type.
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Fig. 3-2. Active fungal biomass per g inorganic matter in REF and OIL samples for all 
sampling dates. Column height represents mean value of all samples for that date; 
error bars are standard errors of the mean. Note broken scale on biomass axis 
allowed REF sample for October 1994 to be displayed on graph. Sample sizes are 
the same as given in Table 3-1 for each sampling date and sample type.
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samples always had more active fungi, but this never represented more than ca. 5% of 

the total (Fig. 3-3A). The peak in REF total fungal biomass seen in Figure 3-1 for 

October 1994 also is seen for the REF active fraction on the same date (Fig. 3-2).

Total bacteria appeared to represent a minor fraction of the microbial biomass 

present in these soils, with values ranging from ca. 5 to 175 pg biomass (ca. 107 to 109 

cells) • g soil inorganic matter1 (Fig. 3-4). OIL sample bacterial biomass values 

exhibited greater variation across seasons than REF sample values, but no clear trend 

was evident with respect to season or treatment. Active bacterial biomass always was 

higher in REF than in OIL samples (Fig. 3-5) but, as with the total bacterial biomass, 

no obvious seasonal trend was seen. The ratio of active to total bacterial biomass (Fig.

3-3B) was higher than the ratio of active to total fungal biomass (Fig. 3-3A) for both 

treatments, and active bacterial biomass was as high as ca. 60% of the total.

Most probable number (MPN) enumerations of hydrocarbon degrading microbes 

indicated that, compared to REF samples, OIL samples were enriched for organisms 

adapted to crude oil (Fig 3-6). Assuming this MPN assay primarily measures bacterial 

hydrocarbon degraders, OIL samples’ bacterial populations were ca. 1% to 10% 

hydrocarbon degraders. REF samples also contained microbes able to emulsify crude 

oil, but MPN values for REF samples were uniformly two or three orders of 

magnitude lower than those for OIL samples (Fig. 3-6). Populations o f hydrocarbon 

degraders per g inorganic matter essentially were constant across sampling dates in 

OIL samples, with no seasonal trend. Greater variation in numbers with respect to 

sampling date was exhibited in REF samples, but hydrocarbon degrader cell numbers 

were never more than 0.01% of total bacterial numbers.

Protozoan MPN data were quite variable both within and among sampling dates 

for both treatments, as can be seen for flagellate protozoa (Fig. 3-7). Flagellates were 

the most common protozoa observed in all soil samples at all dates (data not shown) 

and were used as an index of total protozoal abundance in these soils. Amoebae 

generally were present in numbers ca. 10- to 100-fold fewer than flagellates, and
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given in Table 3-1 for each sampling date and sample type.
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ciliates only were observed three times in two years. No seasonal or treatment trends 

were seen in these data, with relative abundance of flagellates in REF samples ranging 

from ca. 0.5 to 4 times that in OIL samples from the same date.

The general trends in biomass data expressed per g inorganic matter were also 

seen when the data were transformed to an organic matter basis. The abundant 

additional C associated with the crude oil tended to depress values expressed per unit 

organic matter for OIL samples relative to REF samples, and differences attributable 

to oiling seen per unit inorganic matter were more pronounced in these data. Total 

fungal biomass trends showed the greatest change on transformation to an organic 

matter basis, with every sampling date’s REF mean higher than the corresponding OIL 

mean. Total bacterial biomass differences remained essentially the same on data 

transformation; the main effect appears to have been a reduction in the amount of 

variability shown by REF sample means across seasons. As with inorganic matter data, 

active fungal and bacterial biomasses per g organic matter were uniformly higher in 

REF than in OIL samples collected the same date. Hydrocarbon degraders were two 

to three orders of magnitude higher in OIL than in REF samples, but protozoa (as 

flagellates) were similar across treatments (data not shown).

Substrate-specific mineralization potentials determined by radiorespirometry for 

soil samples collected in July, August and September of 1994 demonstrated 

differences between treatments in the potential activities of hydrocarbon-degrading soil 

microbial populations. Glutamate time course data were similar for both REF and OIL 

soil samples assayed (Fig. 3-8 A). Time course data for hexadecane (Fig. 3-8B) and 

phenanthrene (Fig. 3-8C) radiorespirometry assays showed differences in hydrocarbon 

acclimation associated with treatment. Hexadecane mineralization potential for the 

REF samples reached approximately the same level as the OIL samples after 72 h (Fig.

3-8B), but it took longer to achieve this level, indicating slower in vitro acclimation of 

hexadecane-degrading microbial populations in REF samples than OIL samples. 

Phenanthrene mineralization time courses showed that OIL soil samples were well-
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adapted to phenanthrene (Fig. 3-8C). In contrast, REF sample time course data 

indicate little ability of the extant microbial population in the slurry to acclimate to the 

presence of phenanthrene after a 96 h incubation (Fig. 3-8C).

Organic horizon mineralization potentials per g inorganic matter for glutamate 

based on short-term (18 h) incubations were similar for OIL and REF samples (Fig. 3- 

9A and B); July and August 1994 REF samples were not different from OIL samples 

( p > 0  .5), while in September 1994 they were slightly higher (p < 0.01). Organic 

horizon hexadecane (Fig. 3-9C and D) and phenanthrene (Fig. 3-9E and F) 

mineralization potentials per g inorganic matter, on the other hand, were significantly 

lower (p < 0.001) in REF than OIL samples for all months. OIL sample hexadecane 

(Fig. 3-9D) and phenanthrene (Fig. 3-9F) mineralization potentials were highest in July 

1994 and decreased through September 1994. REF samples’ hexadecane potentials 

(Fig. 3-9C) showed no seasonal trend and averaged ca. 20% of the OIL samples’ 

rates, while phenanthrene mineralization potential rates were uniformly low for REF 

samples (Fig 3-9E) and averaged ca. 8% of the OIL samples’ rates.

On transformation to an organic matter basis, glutamate mineralization potentials 

showed treatment differences, with REF samples’ potentials at least twice those of the 

OIL samples (data not shown). The transformed data also indicate populations in the 

OIL plot were well-acclimated to hydrocarbon mineralization; OIL samples’ mean 

potentials were higher for both hexadecane and phenanthrene substrates, with one 

exception. Hexadecane mineralized per g organic matter did not differ between OIL 

and REF samples in August 1994, suggesting REF populations from that date were 

likely acclimated to this substrate in situ.

Mean organic soil C mineralization rates essentially were constant over the course 

of the 30-day assay (data not shown) and the average daily rates per g inorganic 

matter are presented in Figure 3-10. Mean REF soil respiration rates generally were 

not significantly different (p = 1) from those seen in OIL samples from the same dates, 

with the possible exception of the July 1994 (p = 0.07) and October 1995 (p <0.001)
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Fig. 3-9. Substrate C in vitro mineralization rates for glutamate (A, REF samples; B. 
OIL samples), hexadecane (C, REF samples; D, OIL samples), and phenanthrene 
(E, REF samples; F, OIL samples). Substrate C mineralization data are plotted per 
g inorganic matter for nutrient-amended soil slurries as described in the text. 
Column height represents the mean of all samples for that sampling date and 
sample type; error bars are standard errors of the mean. Sample sizes are the same 
as given in Table 3-1 for each sampling date and sample type.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

sampling dates. When the data were considered per g organic matter, REF samples’ 

rates showed seasonal variation, while OIL samples’ rates were essentially constant 

across seasons and years (Fig. 3-11). REF samples’ rates were often higher than the 

OIL samples’, though the differences were less pronounced in late season.

The few samples assessed for net N  mineralization showed that, over the course 

of the 30-day assay, net nitrogen mineralization occurred in both REF (n = 7) and OIL 

(n = 11) samples. Net change in ammonium was not significantly different between the 

two treatments (p = 0.444). No net nitrification was observed in OIL samples, but 

REF samples’ net nitrification was significantly higher (p<0.1). Differences seen 

between OIL and REF samples in N mineralization were not affected by data 

transformation. Per unit organic or inorganic matter, total net N mineralization was 

higher in the REF soils assayed (p < 0.1).

Dye reduction rate data collected from Biolog GN plates provides further 

information about N mineralization in OIL and REF samples. These microplates carry 

95 carbon substrates, of which 34 contain nitrogen and 20 are amino acids. When data 

from all three dilutions (103-, 104- and 105-fold) for each treatment were considered 

together to calculate principal components (PCs), 41 substrates in the microplate had 

high loadings (> 0.500) on the first PC which accounted for ca. 24% of the total 

variance in the data set (see Chapter 2). Twenty-two of these 41 substrates contained 

N (carboxylic acids, amino acids and nucleosides), and all N-containing substrates in 

this group were metabolized faster (higher r values; Lindstrom et al. in press; Chapter

1) by REF samples (p<0.001). When all 34 N-containing substrates were examined at 

each dilution, REF samples used 19 substrates faster (p < 0.05) at the 103 dilution, 22 

substrates faster (p < 0.05) at the 104 dilution, and 15 substrates faster (p < 0.10) at 

the 105 dilution. Statistical theory would predict that fewer than four substrates would 

be significantly different by random chance at the 90% significance level. No N- 

containing substrates were used faster by OIL samples.
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Organic soil respiration rate per g inorganic matter was strongly correlated in OIL 

samples with soil total C content and total N  content, but much less so in REF samples 

(Table 3-6). Multiple regression analysis showed that total soil C (p < 0.001) and 

active bacterial biomass (p = 0.001) had the greatest influence in predicting soil 

respiration per g inorganic matter overall (multiple regression r2 = 0.733). Multiple 

regression analysis was applied to OIL and REF samples independently. For OIL 

samples only soil total C (p < 0.001) had predictive value for soil respiration 

(r2 = 0.867). In REF samples a fairly weak linear relationship (r2 = 0.36) between soil 

respiration and total soil C was seen. Respiration per g inorganic matter in OIL 

samples was well-correlated with glutamate, hexadecane, and phenanthrene 

mineralization potentials, but these correlations were low in REF samples (Table 3-6). 

Soil respiration was not correlated with total or active bacterial or fungal biomass, or 

with protozoal numbers for either OIL or REF samples (Table 3-6). Biomass estimates 

for OIL samples were not correlated with soil C or N (with the possible exception of 

active bacterial biomass), while REF samples’ total and active bacterial and fungal 

biomass estimates were fairly well correlated with soil C and N (Table 3-6). No 

correlation was observed between concentrations of hydrocarbons, or hydrocarbon 

fractions, and any biomass or respiration measurement, except for the clear differences 

in hydrocarbon degraders and active biomass estimates as a result of oiling (data not 

shown).

Expressed per g organic matter, soil respiration in both OIL and REF samples 

was positively correlated to total soil C and N  (OIL: r2 =0.66 for soil C and r2 = 0.50 

for soil N; REF: r2 = 0.89 for C and r2 = 0.85 for N; p < 0.001 in all cases). The 

influence of soil C and N  on soil respiration per g organic matter was examined in OIL 

and REF samples independently by multiple regression. For REF samples, a strong 

linear relationship (r2 = 0.847) between respiration per g organic matter and total soil 

C (p <0.001) and total soil N (p = 0.031) was seen. The same analysis for OIL samples 

showed a weaker relationship (r2 = 0.625), and demonstrated that soil C was a good
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Table 3-6. Correlations between various microbial and soil parameters. Soil 
respiration and specific substrate respiration data are mineralization potentials 
measured as described in Material and Methods. Bacterial and fungal data are 
biomass estimates, and protozoal data are numbers o f flagellate protozoa. All data 
are compared on a g  inorganic matter basis. Coefficients of determination (r2) for 
parameter correlations are presented for each treatment (OIL or REF) along with 
the p-value indicating the statistical significance of the calculated correlation 
coefficient (r).

Parameters compared r2

OIL

p-value r2

REF

p-value

Soil respiration Total soil C 0.87 <0.001 0.36 0.005

Soil respiration Total soil N 0.69 <0.001 0.30 0.022

Soil respiration Glutamate respiration 0.57 <0.001 0.24 0.020

Soil respiration Hexadecane respiration 0.46 <0.001 0.02 0.570

Soil respiration Phenanthrene respiration 0.52 <0.001 0.07 0.290

Soil respiration Total bacteria 0.01 0.720 0.13 0.030

Soil respiration Active bacteria 0.14 0.010 0.09 0.040

Soil respiration Total fungi 0.20 0.002 0.12 0.030

Soil respiration Active fungi 0.01 0.860 0.05 0.140

Soil respiration Protozoa 0.01 1.000 0.07 1.000

Total bacteria Total soil C 0.01 0.460 0.45 <0.001

Total bacteria Total soil N 0.01 0.560 0.50 <0.001

Active bacteria Total soil C 0.28 0.007 0.41 0.001
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Table 3-6 (continued). Correlations between various microbial and soil parameters.

Parameters compared

r2

OIL 

p-value

REF 

p-value

Active bacteria Total soil N 0.29 0.005 0.40 0.002

Total fungi Total soil C 0.17 0.003 0.54 <0.001

Total fungi Total soil N 0.22 0.001 0.65 <0.001

Active fungi Total soil C 0.01 1.000 0.41 0.001

Active fungi Total soil N 0.01 1.000 0.53 <0.001
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predictor of respiration (p <0.001), while N had no predictive value for soil respiration 

(p = 0.5). No biomass estimates per g organic matter were correlated with soil C or N 

in OIL samples, while several of these parameters were positively correlated with soil 

C and N in REF samples. Total bacteria and total fungi per g organic matter were 

correlated with soil C (r2 -  0.53 for bacteria and 0.85 for fungi) and soil N (r2 =0.51 

for bacteria and 0.89 for fungi; p <0.001 in all cases). Active fungi also were positively 

correlated with soil C (r2 = 0.59) and soil N (r2 = 0.65) in REF samples.

DISCUSSION

Effects of the 1976 crude oil spill could still be seen in the site’s physical, 

chemical and microbiological soil parameters almost 20 years after the event. The 

long-term presence of petroleum in the OIL plot caused alterations to the soil matrix 

that affected the physical and chemical milieux in which the microbial community 

resides. This selective pressure resulted in a shift in microbial community structure, as 

indicated in some of our microbiological measurements. Some of the traditionally 

measured microbial parameters clearly reflected this shift, while others appeared not to 

be affected by oil.

The choice of units for expressing the microbiological data carries with it implicit 

assumptions about the role of the added crude oil in the soil system. We wished to 

evaluate the data in a way that would detect treatment effects in microbial behavior 

unbiased by added oil mass. This implies oil is an inert soil “diluent” which would tend 

to depress values in the OIL plot as a result of the increase in mass content of the soil 

due to oiling. This assumption is only partly true, however, as the composition of 

crude oil includes both readily metabolizable and recalcitrant carbon substrates, as well 

as some compounds of known toxicity. By expressing the data per g inorganic matter, 

though, we may consider the microbial response to added oil substrates based on a 

conservative tracer that should not have changed as a result o f oiling (i.e., little 

inorganic matter was added with the oil).
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In order to examine the microbial response to oil in another light, we also 

expressed our microbial data per g organic matter (i.e., oil plus soil organic matter in 

the OIL plot). This assumes that oil is part of the total organic substrate pool for 

microbes, which also is only partly true due to its toxicity to some components of the 

microbial community, as well as the virtually undegradable nature of the asphaltene oil 

fraction. The value of this expression, however, is that it allows evaluation of the 

effect of substrate quality associated with the added oil. Thus, we have chosen to 

present microbial data mainly per g inorganic matter as a conservative tracer, but have 

also examined the data per g organic matter to assess oil C substrate quality effects.

Physical and Chemical Parameters

The soil temperatures measured at each sampling time always were higher in the 

OIL plot compared to the REF plot. The OIL plot’s elevated temperatures are likely 

due to several soil physical changes caused by the spilled petroleum. The decreased 

albedo of the OIL plot’s surface, and the death of the insulative moss layer, increased 

soil warming from insolation, resulting in an increased thaw depth and active layer 

thickness of the OIL plot (Collins etal., 1994).

Crude oil residue in the OIL plot also affected the moisture regime of the soil 

matrix. The sorption of petroleum in the soil matrix decreased the soil’s capacity to 

absorb water, resulting in relatively lower water holding capacities for OIL samples. 

Soil moisture on a g dry soil basis also was generally lower in OIL samples than in 

REF samples (Table 3-2), a phenomenon observed in other studies at this site 

(Johnson et al., 1980; Sparrow and Sparrow, 1988). Changes in soil water potentials 

associated with the added petroleum probably also reflect a change in the soil 

microbial habitat.

The pH of the soil samples in our study was somewhat lower than reported for 

the site in 1980 (pH 4.8 to 5.6; Johnson et al., 1980), but was in accordance with the 

mean reported by Sparrow and Sparrow (1988; pH 4.5), indicating no change in pH
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over the last seven years. There was no difference in pH between OIL and REF plots, 

an observation consistent with other oil spill studies at this site (Johnson et a l, 1980; 

Sparrow and Sparrow, 1988) and others in Alaska (e.g., Sexstone et al., 1978a).

Organic matter and total C on a dry soil mass basis overall were significantly 

higher in OIL than in REF samples (Table 3-3), as expected from OIL samples’ added 

petroleum, while their total soil N  was not different. The oil residue from the site had a 

C to N ratio of ca. 280 (85 % C and 0.3 % N  by weight) so it would not be expected 

to contribute much to the soil N. Despite the fairly wide range in organic matter 

content of both sample types, their respective C to N  ratios were quite constant (C/N 

of 23.0 for REF and 52.7 for OIL), though somewhat lower than values reported 

earlier (C/N of 30.9 for REF and 71.7 for OIL; Sparrow and Sparrow, 1988). Sparrow 

and Sparrow (1988) described similar results for organic C in their study, but found 

significantly higher total N  in OIL compared to REF samples. Unlike studies 

undertaken earlier (e.g., Johnson etal., 1980; Sparrow and Sparrow, 1988), we were 

not able to readily discriminate soil C from that introduced by the petroleum. 

Gravimetric recoveries of DCM-extractable material (“oil”) in our study were similar 

to those reported by Sparrow and Sparrow (1988; 13.63 kg “oil” • m"2 at a soil bulk
A  .  |

density of 48.5 kg • m , yielding a concentration o f ca. 0.28 g • g dry soil ), but 

substantially higher than estimated by Collins et al. (1994; 0.004 m3 • m'2 at an 

assumed oil specific gravity of 0.89 and soil bulk density of 48.5 kg • m"2, yielding ca.

0.07 g • g dry soil *). Extract residue analysis indicated C content (0.85 g C • g 

residue'1) similar to that reported by Sparrow and Sparrow (1988), as well.

Differences in our soil C and N results from those of Sparrow and Sparrow 

(1988) may partially be explained through differences in sampling and analytical 

protocols between the two studies. Sample collection and treatments in this and 

Sparrow and Sparrow’s study were similar for OIL organic horizon samples, yielding 

comparable values for “petroleum”, and C and N data. However, REF samples in 

Sparrow and Sparrow (1988) included the live moss layer for C and N analysis, while
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this layer was not included in our study. Thus, our mean (± s.e.) total C value for REF 

samples (0.169 ± 0.011 g C • g dry soil*1) was somewhat lower than that reported in 

their study (7.08 kg • m*2 at a soil bulk density o f 36 kg • m'2, yielding organic C 

content of ca. 0.2 g organic C • g dry soil*1), and our calculated REF C to N  ratio of 23 

was lower than their reported value of 30.9. They also reported that total soil N on an 

areal basis was substantially higher in OIL than in REF samples in their study (REF 

total N of 0.23 kg • m*2 vs. OIL total N  of 0.29 kg • m*2), but when the differing bulk 

densities of their OIL and REF samples are considered (REF soil bulk density of 36 

kg • m*2 vs. OIL soil bulk density of 48.5 kg • m*2), total soil N concentrations in their 

OIL and REF study plots agreed well with our values (ca. 0.006 g N • g dry soil*1).

Our inability to achieve similar soil organic C values between REF and OIL 

samples after subtracting DCM-extract residue C from samples is more difficult to 

explain, but may be a result of our hydrocarbon extraction and organic matter 

determination protocols. Sparrow et al. (1978) corrected their soil data by subtracting 

oil residue mass from soil mass, and Sparrow and Sparrow (1988), using the same 

protocol, found no difference in soil (“non-oil” ) organic C between REF and OIL 

samples using benzene-extracted residue mass to correct for petroleum C. Our soil 

organic matter and C data were determined using a CNS analyzer on oven-dried 

(105°C) soil samples and extractable hydrocarbons were measured using boiling DCM 

(80°C) to extract sodium sulfate-dried field moist samples, while Sparrow and 

Sparrow (1988) determined soil C using a wet chemical analytical procedure and 

determined extractable hydrocarbons in soils dried at 65°C. Thus, in our samples, 

hydrocarbon mass fractions exhibiting appreciable volatility between 65°C and 105°C 

were not measured as components of OIL sample organic matter or total C, yet some 

of this fraction was included in the value for gravimetrically determined “oil” residue. 

As a result, it appears “non-oil” soil organic matter and C data for our OIL samples 

are lower than would have been the case had our samples been treated at lower 

temperatures. Contrary to our expectations, this suggests that a significant proportion
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of total hydrocarbon mass in our OIL samples resides in low boiling components (at 

least between 80° and 105°C) almost 20 years after the spill event. It also explains the 

lower C/N value for our OIL samples than reported previously.

Petroleum Hydrocarbons

Gravimetric recoveries of petroleum from OIL plot soil samples agreed well with 

values reported by Sparrow and Sparrow (1988) for their study of this site ten years 

after the initial spill and study. This suggests that, in the second decade after the spill, 

little mass loss of residual oil, either due to biotic or abiotic processes, occurred. 

Values for “spill intensity” of surface oiling in the OIL plot were reported by Collins et 

al. (1994) in units of m3 • m'2, and yielded an estimate of ca. 0.07 g oil • g dry soil'1. 

However, as the authors foiled to report soil bulk density data, we relied on Sparrow 

and Sparrow’s (1988) soil bulk density data for our calculation. It is possible that the 

low value from Collins et al. (1994) resulted as a calculation artifact from 

overestimating soil bulk density. Alternatively, their single surface sample for the 

winter oil spill plot may not have been representative of average degree of oiling at this 

site. Sparrow and Sparrow (1988) collected at least 20 soil cores in their study, and 

we determined extractable oil mass in 41 samples with a range of 0.069 to 0.502 g oil • 

g dry soil'1. Thus, while Collins et al. (1994) reported a concentration in the range of 

values we found, it is likely our data and those of Sparrow and Sparrow (1988) more 

closely reflect the mean and range of oil concentrations at the site.

While our protocol did not provide for quantitative discrimination of all major 

hydrocarbon fractions in extracted petroleum residue, some information regarding 

gross residue composition may be drawn from the data we collected. The mean (± s.e.) 

asphaltene concentration of ca. 18% (± 3%) g • g residue'1 we measured agrees closely 

with the value reported for the fresh crude oil spilled in 1976 (22% asphaltene; Jenkins 

et al., 1978), suggesting little or no relative change for this petroleum fraction. 

Asphaltenes occur in crude oil as higher molecular weight (1,000 to 10,000)
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hydrocarbon and nitrogen- sulfur- and oxygen-containing compounds, and typically 

consist of 10 to 20 fused rings with aliphatic and naphthenic side chains (National 

Research Council, 1985). Their complexity, high molecular weight, and low solubility 

render them resistant to microbial degradation (Atlas, 1981), though evidence exists 

that they may be degraded co-metabolically under optimum conditions (Leahy and 

Colwell, 1990). Our data suggest that no change in this fraction has occurred relative 

to other fractions in our extracted residue. This suggests that either minimal 

degradation of this fraction occurred coupled with little mass loss in the remaining 

fractions (biotransformation with little mineralization), or that mineralization 

equivalent to that of the remaining petroleum mass occurred, yielding an unchanged 

proportion.

Based on the gas chromatographic data from our pentane-soluble SPE eluates, it 

appears that the extracted oil has become relatively enriched in higher MW 

hydrocarbons. The mass fractions in our samples exhibit relative abundances that 

increase with molecular weight, while the reverse is the case for similar fractions in 

fresh PBC oil (estimated from data contained in National Research Council, 1985; see 

Table 3-5). As this range of hydrocarbons boils above 205°C and is relatively insoluble 

and non-volatile, this selective enrichment in favor of heavier fractions suggests 

preferential removal of the lower MW components by some mechanism other than 

evaporation or dissolution in water and loss due to leaching.

Evidence that hydrocarbon oxidation has occurred in our OIL samples is seen in 

the difference between pentane-soluble extracts before and after SPE treatment. While 

ca. 82% of the DCM extract was soluble in pentane, only ca. 14% of the extracted 

mass was eluted through the polar matrix of the SPE tube, implying increased polarity 

of the pentane fraction compared to fresh crude oil. It has been observed that, in 

general, the relative amount of polar material in petroleum increases as it becomes 

more weathered (National Research Council, 1985). As we found that both alkane 

(hexadecane) and aromatic (phenanthrene) hydrocarbons were effectively recovered
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through the SPE procedure, this suggests that the material present in the extract has 

undergone substantial chemical or biological oxidation since the oil was spilled in 

1976. Collins et al. (1994) found that oil extracts of soil samples from this site 

exhibited compositional changes from the original spilled oil ranging from very 

weathered to almost unchanged after 15 years. Their data indicated that surface 

samples were more degraded than subsurface samples and that degraded samples 

showed evidence of biodegradation. Analysis o f relative abundance of alkanes and 

aromatics indicated that, to the extent that any biodegradation of the oil occurred, this 

degradation proceeded at similar rates in both alkane and aromatic fractions.

Sexstone etal. (1978b) also found a lack of change in hydrocarbon class 

composition seven years after crude oil was spilled in tundra soils in Barrow. They 

suggested that the ratio of resolved to total integrated area of gas chromatograms 

would be a more sensitive index of biodegradation. As petroleum becomes more 

weathered, more of the sample is detected chromatographically in an “unresolved 

complex mixture” (UCM) and less is detected as discrete sample peaks in the 

chromatogram (National Research Council, 1985). By comparing relative areas of 

resolved and UCM components in residual oil to those in oil subjected to physical 

weathering, Sexstone et al. (1978b) concluded that bio-oxidation of their oil samples 

had occurred. Fresh oil for their 1976 study contained 31.2% resolvable compounds, 

artificially weathered oil contained 20.6 % resolvable material, and oil recovered seven 

years later from a wet meadow contained only 1.9% resolvable material. They noted 

that the decrease in this ratio could not be due to evaporative weathering since it was 

very much lower than that of the artificially weathered oil. Their evidence led them to 

their conclusion that “in the cold, nutrient limited soils” that they studied, 

“biodegradation occurs slowly with no major preferential utilization” of hydrocarbon 

classes (Sexstone etal., 1978b).

In addition to our evidence of hydrocarbon oxidation based on increases in polar 

compounds, our data indicate that some bio-oxidation of the oil may have occurred.
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The percent of total integrated area that showed resolvable component peaks in our 

gas chromatograms ranged from 6.1% to 22.1% with a mean value o f 11.7%, 

indicating that most o f our samples were substantially weathered. Compared to the 

value reported by Sexstone et al. (1978a) for artificially weathered 1976 PBC oil 

(20.6%), our samples’ resolvable components appear on average to be depleted by ca. 

43%. Without other mechanisms for oxidation, this suggests some biodegradation of 

petroleum has occurred.

It is possible that other, non-biological, oxidation reactions may have increased 

the relative amount o f UCM in our samples. Photooxidation of aromatic compounds 

can be a major contributor to hydrocarbon oxidation, but this process is not thought to 

contribute significantly to alkane oxidation and is typically limited to low molecular 

weight aromatics (National Research Council, 1985). As our extraction procedure was 

performed at 80°C, it is expected that relatively little low molecular weight aromatic 

material was included in our GC analysis. Humification reactions in the soil matrix may 

contribute to oxidation of hydrocarbons, causing transformation of the parent material 

to intermediates that are subsequently incorporated into soil organic components 

(Shannon and Unterman, 1993). This process may be involved with decreasing the 

desorption potential and bioavailability of soil contaminants (Bollag et al., 1988).

Microbiological Parameters

Biomass estimates o f the microbial community in both OIL and REF samples 

indicate that, compared to fungi, bacteria may play a relatively minor role in soil 

activity at this site. Flanagan (1978) found that bacteria constituted less than 10% of 

total microbial biomass in his subarctic tundra and black spruce forest taiga sites and 

that fungi were the predominant decomposers in these systems. Our data show similar 

results, with total bacterial biomass never exceeding ca. 5% of total microbial biomass 

in either OIL or REF samples. The predominant ground cover at our field site 

(mosses, lichens and E. vaginatum), coupled with the saturated and permafrost-
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underlain soils, suggest our site has characteristics similar to both black spruce forest 

and tundra (Van Cleve et al., 1983). Fungi may dominate the soil microbial biomass at 

our site due to the selective pressures of low pH and abundance of recalcitrant carbon 

substrates in the form of peaty residues in the organic horizons. Fungi are better 

equipped for causing decay of and metabolizing insoluble plant remains than are 

bacteria, due to their physical form, mode of growth and enzymatic capabilities (Carlile 

and Watkinson, 1994).

Total fungal biomass estimates generally exhibited no differences attributable to 

oiling in our study (Fig. 3-1). Different results were seen in fungal biomass 

determinations based on direct microscopic observation in another oil spill study using 

northern soils (Miller et al., 1978). They found that oil depressed fungal hyphae for 

three seasons following experimental crude oil spills on tundra near Barrow, Alaska. 

Our OIL plot data showing depressed active fungal biomass are consistent with 

filamentous fungal inhibition due to oiling. Total fungal biomasses were estimated in 

our study by phase-contrast microscopic observation of fungal hyphae. Thus our total 

fungal estimates simply reflect observable hyphae irrespective of whether actively 

respiring cytoplasm is present and do not necessarily represent metabolically active 

fungi.

Estimates of active fungal biomass based on FDA staining were very much lower 

than total fungal biomass in both OIL and REF samples (see Fig. 3-3 A), but active 

fungal biomass was always lower in OIL than REF samples at each sampling (Fig. 3­

2). We found active fungi were depressed in OIL samples by ca. 10- to 100-fold 

compared to REF samples (Fig. 3-2) and, as a proportion of total observed fungal 

hyphae, FDA-active hyphae were always more abundant in REF than OIL samples 

(Fig. 3-3A). These data also are consistent with the data of Sparrow and Sparrow 

(1988) showing ATP levels in OIL samples that were significantly lower than those 

found in samples from their control plot ten years after the original spill. They 

interpreted the diminished ATP levels in the oiled plot as suggestive of fungal growth
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inhibition, as fungi represent the predominant microbial biomass in subarctic forest 

soils.

Total bacterial biomass estimates showed no obvious trend with respect to oiling 

(Fig. 3-4), but FDA-active bacterial cells always were lower in OIL than in REF 

samples (Fig. 3-5). As a fraction of total bacterial biomass, as well, REF soils often 

had higher proportions of active cells (Fig. 3-3B). Ten years after the spill Sparrow 

and Sparrow (1988) found evidence of microbial biomass and activity inhibition in 

oiled soils. As this was based on lower ATP levels in the oiled soil, they could not 

distinguish fungal from bacterial biomass or activity. However, their data are 

consistent with the relatively lower FDA-active fungal and bacterial biomasses we 

found in our OIL samples. The lower active microbial biomasses in OIL samples, both 

in absolute terms and as a fraction of total biomass measured, indicate that the quality 

of available substrate in REF soils may be superior to that in OIL soils. Alternatively, it 

may reflect a generally more toxic environment in the OIL compared to REF soils.

Evidence of microbial population shifts due to oiling can be seen in hydrocarbon 

degrader enumerations (Fig. 3-6) and hydrocarbon mineralization potentials (Fig. 3- 

9C, D, E and F). Enrichment of crude oil-emulsifying bacteria by at least two orders of 

magnitude was seen in OIL samples compared to REF soils. This observation is 

consistent with those made in other terrestrial hydrocarbon spills (e.g., Sexstone et al., 

1978b; Atlas et al., 1991; Long et al., 1995). The increase in numbers o f hydrocarbon 

degraders in OIL compared to REF samples appears to coincide with elevated 

mineralization potentials for hexadecane (Fig. 3-9C and D) and phenanthrene (Fig. 3- 

9E and F). Samples with relatively higher mineralization potentials in this assay contain 

relatively more abundant and/or metabolically active microbial populations capable of 

using the substrate (Brown et al., 1991). The much higher hexadecane mineralization 

potentials (Fig. 3-9C and D) in the OIL samples imply that populations in these 

samples have become acclimated to the n-alkane hexadecane, a common component of 

PBC oil (National Research Council, 1985). Interestingly, REF samples exhibited
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significant mineralization potentials for hexadecane in this assay, as well (Fig. 3-9C). 

Time course data collected to determine optimum incubation periods for this assay 

(Fig. 3-8B) suggest that REF populations may have acclimated to the labeled- 

hexadecane in vitro during the first 48 h of the assay. OIL samples appear to contain 

populations of sufficient abundance and activity to mineralize a significant amount of 

added hexadecane within 24 h of inoculation, implying in situ acclimation of OIL 

populations. The hexadecane mineralization potentials of REF samples suggest that 

the genetic potential for catabolizing this substrate, while much lower than OIL 

samples, is still present in these microbial populations. This finding is not surprising 

when considering the likely high abundance of bio waxes from plants in this terrestrial 

system. Long-chain alkanes derived from plant lipid components (i.e., “biogenic 

hydrocarbons”) have been demonstrated to acclimate microbial populations to 

catabolize oil hydrocarbons (Leahy and Colwell, 1990; Sugai etal., 1997). By 

contrast, REF samples showed no appreciable potential for phenanthrene 

mineralization (Fig. 3-9E), while OIL samples demonstrated relatively high potential 

rates (Fig. 3-9F). Time course data for phenanthrene mineralization (Fig. 3-8C) 

suggest that REF samples possess little potential to mineralize phenanthrene, even 

after several days’ exposure to the substrate in a nutrient-rich environment, while OIL 

samples rapidly metabolized the substrate following inoculation. This suggests that 

REF sample microbial communities rarely encounter phenanthrene-like substrates in 

the soil matrix and thus have no need to express or amplify the genetic potential for 

phenanthrene catabolism. It is evident that nearly two decades’ exposure to crude oil 

has provided microbial populations in the OIL samples ample opportunity to acclimate 

to this common crude oil component.

Protozoal abundances showed no consistent effect due to oiling (Fig. 3-7). This 

general resistance to oil stress has been observed previously by other researchers 

(Rogerson and Berger, 1981; Foissner, 1994). The numbers of protozoa we found in 

different morphological classes were not evenly distributed, however. Ciliates were
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rarely seen in any sample and were never seen in an OIL sample. Flagellates were 

numerically dominant, with naked amoebae 10- to 100-fold lower in abundance. It is 

generally thought that trophic interactions between bacteria and protozoa in soils 

result in inverse relationships in their population densities due to protozoal preferences 

for bacterial prey (Pussard et al., 1994). Additionally, there is evidence that they may 

alter bacterial prey population distributions in favor of faster growing species (Sinclair 

and Alexander, 1989). It is not clear, however, what role protozoa play in affecting 

microbial community structure and activity in our soils. Our data show no correlations 

between protozoal numbers and bacterial biomass, fungal biomass, inorganic N or N 

mineralization, though the complexity of trophic and physical interactions involving 

protozoa likely precludes detailed resolution of protozoal effects from our data in 

these soils. It is apparent, however, that as indicator organisms in these soils, 

protozoal populations are poor predictors of oil stress or soil processes.

Total soil C mineralization rates expressed per g inorganic matter showed no 

consistent differences with respect to oiling (Fig. 3-10), a result also reflected in the 

glutamate mineralization data (Fig. 3-9A and B). Sparrow and Sparrow (1988) found 

similar results for in vitro soil respiration in their study of this site ten years after the 

spill, and suggested this indicated that oiled and unoiled soils contained similar 

amounts of available substrate. In studies of the Athabasca oil sands in Canada, 

Wyndham and Costerton (1981) showed that, despite enrichment in numbers of 

hydrocarbon degraders and elevated petroleum degradation rates, there was no 

difference in rates of glutamate uptake and soil respiration between oil sands and 

unoiled controls. This suggests that pre-exposure of the soil community is an 

important factor affecting these kinds of activity measurements (Pfaender and Buckley, 

1984). Immediately after the spill at our site in 1976, in vitro respiration rates were 

significantly depressed in oiled soils compared to reference soils, while after one year 

they were significantly higher (Johnson e ta l, 1980). These data suggested that the 

initial inhibition response to the spilled oil reflected toxicity due to abundant low MW
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volatile hydrocarbons in the fresh oil. The elevated respiration seen one year later was 

attributed to a burst of microbial growth and activity due to release of readily utilizable 

carbon substrates from plants killed by oil. These authors noted that a lag time may 

occur before oil is utilized after a spill because of the time needed for development of 

abundant microbial populations able to degrade the oil. Our data indicate that, after 

nearly twenty years exposure to the crude oil at our site, the OIL soils’ microbial 

populations have adapted to the oil to the extent that common indices of heterotrophic 

activity no longer discriminate between treatments.

When the soil respiration data are considered on both an inorganic and organic 

matter basis, there is evidence of both superior and seasonally varying substrate quality 

in REF soils and well-adapted hydrocarbon degrader communities in OIL soils. On an 

inorganic matter basis, the strong dependence (r2 = 0.867) o f OIL soil respiration on 

soil C (p = 00 .001) but not on N (p = 0.479) reflects the relatively consistent quality 

of the substrate most abundant in these soils (petroleum hydrocarbons with very little 

organic N) and the hydrocarbon-adapted microbial populations using it. Soil 

respiration per inorganic matter was relatively constant irrespective of season in OIL 

samples, with the exception of July 1994 and October 1995 samplings (Fig. 3-10). 

Further evidence of the role the hydrocarbon-acclimated population plays in the OIL 

plot is seen in the relatively strong correlations of total soil C respiration with 

hydrocarbon mineralization potentials (r2 = 0.46 and 0.52 for hexadecane and 

phenanthrene, respectively). Additionally, glutamate mineralization potential was well- 

correlated with hexadecane potentials in OIL samples (r2 = 0.49), a finding in concert 

with the observed increase in amino acid degraders associated with alkane-specific 

degraders (Long et al., 1995) and with crude oil contamination (Atlas et al., 1991). In 

contrast, REF samples’ respiration rates showed no correlation with hydrocarbon 

mineralization potentials (r2 < 0.1 for both substrates). The relatively weaker 

relationship (r2 = 0.36) of REF soil respiration with soil C (p = 0.031) and N 

(p = 0.160) on an inorganic matter basis implies greater variation in available labile
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substrate from sample to sample, as might be expected in the heterogeneous 

environment of undisturbed taiga soils (Smith, 1992) with seasonally varying soil C 

inputs from litterfall and root exudates (van Elsas and Smalla, 1997). REF sample 

respiration (expressed either per g organic or per g inorganic matter) exhibited 

substantial seasonal variation (Figs. 3-10 and 3-11). OIL sample respiration data per g 

organic matter showed no variation with respect to season (p = 0.47; see Fig. 3-11). 

Multiple regression of the data per g organic matter revealed that REF soil respiration 

depended strongly (r2 = 0.847) on both total soil C (p < 0.001) and soil N (p = 0.031), 

while OIL soils’ relation to soil C and N was weaker (r2 = 0.625) and did not depend 

on soil N  (p = 0.5). This suggests that C mineralization in the OIL plot is not coupled 

tightly with N mineralization while the opposite is true in REF soils.

The evidence for disrupted N mineralization capabilities in the OIL soils from soil 

respiration data is supported by our observations of net N mineralization. Net nitrogen 

mineralization in the samples we assayed was not similar in OIL and REF samples (p 

<0.1). Net nitrification was different between treatments (p = 0.09), and no net 

nitrification was observed in any OIL sample assayed. Mineral N (NHT-N) was also 

more abundant in REF than in OIL field samples. Higher ammonium uptake or lower 

N mineralization rates in the OIL field plot may account for this observation.

In addition to our net N mineralization data, the Biolog multiple substrate use 

assay provides evidence of greater ability for REF samples to mineralize organic N. At 

all dilution factors, significantly more N-containing substrates were used faster by REF 

samples than would be predicted if there were no difference between treatments. No 

N-containing substrates were ever used faster by OIL samples at any dilution. While 

this assay measures dye reduction due to oxidation of the C source in the microplate 

wells and does not directly measure N mineralization, these data indicate that the REF 

soil communities are better able to metabolize N containing compounds. These data 

are consistent with the higher net N mineralization we saw in REF samples.
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As there is evidence of little difference in soil C respiration potentials between 

OIL and REF samples, indicating no difference in available substrates, the questions 

arise as to what effect the oil has had on soil microbial populations and why the 

pollutant persists. Some of the answers lie in what our assays measure, as well as in 

the nature of the contaminant itself. The in vitro respiration assay we used measures 

the integrated effects of soil C substrate quality and the activity of the extant microbial 

community. Thus, what constitutes “available” substrates depends in part on the 

metabolic capabilities of the microbes present. We have found orders of magnitude 

higher populations of hydrocarbon degrading microbes (crude oil emulsifiers) in OIL 

than in REF samples (Fig. 3-6), and the genomic potentials for alkane and polynuclear 

aromatic hydrocarbon (PAH) degradation are present (Fig. 3-9D and F). Further, there 

is evidence of oil weathering, some of which may be biologically mediated (Collins, 

1991 and our data). This evidence points to microbial communities in OIL soils that 

have been altered with respect to population structure and metabolic potential for 

hydrocarbon degradation. Therefore, it is likely that much of the respired C we 

measured in OIL plot samples was derived from crude oil components in these soils.

The lowered overall net N mineralization in OIL samples indicates a soil 

environment o f diminished functional ability due to pollution. Analysis of community- 

level substrate metabolism in soils from this site suggests a lower diversity of 

populations exists in OIL soil communities, and these populations may be less 

specialized physiologically (see Chapter 2). Absence of nitrification in OIL samples 

may be due to inhibition or loss of the nitrifying populations from oiling; only a small 

group of related bacteria is involved and potential physiological redundancy for this 

process across different populations is limited (De Boer et al., 1996). In most soils 

availability ofNFLf is a principal factor controlling autotrophic nitrification, though 

acidity and low 0 2 availability may also control rates (Firestone and Davidson, 1989). 

As pH was similar between the two soils, and we measured N mineralization in aerobic 

jar assays, these factors are not likely to account for the differences observed.
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Ammonium limitation is a possibility, as we measured less ammonium in OIL than in 

REF field samples, though measurable ammonification occurred in both OIL and REF 

jar assays. Nitrifiers are considered to be poor competitors for ammonium compared 

to heterotrophic microbes (Firestone and Davidson, 1989), populations similarly active 

in OIL and REF jar assays. The much higher C/N ratio in OIL compared to REF soils 

(ca. 52 and 23, respectively) suggests the likelihood o f N immobilization associated 

with heterotrophy would be higher in OIL than in REF soils, given their similar 

amounts of available carbon (based on soil respiration). Additionally, the key enzyme 

responsible for autotrophic nitrification, ammonium mono-oxygenase, has broad 

specificity and has been shown to oxidize a variety of low MW hydrocarbons (Hyman 

eta l., 1988; Hyman et al., 1985). It is possible that nitrifying microbial populations 

have been “starved” to extinction in the OIL plot, either through inability to compete 

with heterotrophs for NHt+-N, through wasting energy on incidental oxidation of oil 

hydrocarbons, or a combination of these factors.

Despite evidence that OIL soils’ community structure has shifted towards an 

enhanced potential for hydrocarbon degradation, crude oil remains abundant at the 

site. Enrichment of this residue in higher MW components (see Table 3-5) suggests 

that mineralization of crude oil is occurring at the expense of the lower MW 

hydrocarbons present. Minimal change in asphaltene content of the residue from values 

reported when the spill occurred (see Table 3-4) indicates that little mass loss in 

residual oil is associated with metabolism of these compounds. Initial degrees of oiling 

reported when the spill occurred are quite variable and range from ca. 7% to 190% oil 

in the organic soil horizons (02/A1; Johnson et al, 1980), so a precise determination 

of oil mass loss from 1976 is not possible. However, little change in residual crude oil 

mass has occurred in the ten years since Sparrow and Sparrow (1988) visited the site 

(see Table 3-4). In situ respiration data were not collected, so we do not have 

information regarding rates of petroleum mineralization in the field, but as 

hydrocarbon degraders are abundant and the genomic potential for hydrocarbon
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mineralization is present, this suggests other factors may be responsible for the oil’s 

persistence.

There is a growing body of evidence (e.g., Leahy and Colwell, 1990; WeiBenfels 

e ta l, 1992; Providenti et al., 1993) that sorption of hydrocarbons to organic matter in 

soil may limit their uptake and degradation by soil microbes. WeiBenfels et al. (1992) 

found that sorption of PAHs to soil organic matter decreased the amount biodegraded 

in soils from contaminated sites. Mihelcic and Luthy (1988) showed that the 

desorption rate of the PAHs acenaphthene and naphthalene was a factor influencing 

their biodegradation. Boethling and Alexander (1979) found that low solution 

concentration of synthetic organic chemical substrates may be an important factor 

limiting their biodegradation by natural microbial communities. Sorption to soil 

organic matter can remove these compounds from the dissolved state and, in general, 

sorption of neutral hydrophobic compounds depends on soil organic C content 

(Providenti et al., 1993). It has been shown that the duration of contact with soil 

matrix components (“aging”) affects the desorption, bioavailability and 

biodegradability of hydrocarbons, even when organic matter is not abundant 

(Hatzinger and Alexander, 1995). Humification reactions in the soil matrix, mentioned 

above, may cause transformations of residual hydrocarbons to compounds 

incorporated into recalcitrant soil organic matter pools (Shannon and Unterman,

1993). It is possible that slow degradation of lower and moderate MW oil fractions 

not protected by soil organic matter is proceeding in OIL soils at rates comparable to 

that for labile substrates in REF soils, within the limits imposed by temperature and 

inorganic nutrient availability. Enrichment of the oil in higher MW hydrocarbons, 

coupled with soil aging and sorption effects, implies that this residue will become less 

degradable with time, as higher MW components are, in general, considered to be 

more recalcitrant to degradation (Atlas, 1991).

We can use our in vitro gross soil C mineralization data coupled with crude oil 

residue concentration data to estimate the minimal time the crude oil is expected to
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remain at the site. The mean oil concentration for our OIL samples was ca. 0.541 g 

oil • g inorganic matter'1, with a C content of 85%, and mean in vitro soil C 

mineralization potentials were 72 fig C - g inorganic matter'1 • d'1. Assuming that soil in 

the OIL plot is warm enough for significant microbial activity for 100 days per year, 

we calculate a residence time of ca. 64 years for the crude oil at the site. This 

calculation is based on potential rates determined under optimized laboratory 

conditions, and assumes that all C respired in our assay came from the oil and that all 

crude oil carbon is equally available and labile. Therefore, rates of oil disappearance 

based on these assumptions are overestimates and in situ rates will be much slower.

The effects of this oil spill on the microbial community may have broader 

ecological consequences in the OIL plot. While total C mineralization potentials are 

similar between OIL and REF soils, net N mineralization and data collected regarding 

community-level multiple substrate use show that OIL soils’ microbial communities 

are relatively constrained in their ability for organic N transformations. Mineralization 

of cmde oil C substrates releases little or no associated N, so any available inorganic N 

would tend to be immobilized by oil degraders. Oiling also appears to inhibit nitrifiers. 

As soil organic matter in tundra and taiga ecosystems constitutes potentially the most 

readily available reserve of nutrients for plant growth (Van Cleve, 1977), diminished N 

mineralization capabilities by soil microbial communities may have significant 

implications for plant recolonization and recovery at the site.

Vegetation recovery in the OIL plot may provide evidence that this microscopic 

perturbation has visible effects. Most mosses, lichens and shrubs were killed shortly 

after the oil spill (Jenkins et a l, 1978) and generally remain absent in surface oiled 

areas, and no sign of black spruce recovery (new seedling establishment or new 

growth on damages trees) was seen through 1994 (Collins et a l, 1994). While much 

of this mortality was probably due to direct toxicity of petroleum on plant roots and 

shoots (solvent effect on lipid membrane structures of the cells; Bossert and Bartha, 

1984), plant community recovery following oil spills has been shown to be limited by
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nutrient availability (Odu, 1972). Almost twenty years after the spill, essentially the 

only plants surviving in the oiled area are E. vaginatum tussocks which appear to have 

flourished since the original experimental spill (Collins et a i, 1994). Other 

observations of ecological disturbance in Alaska (e.g., tundra fires) have shown these 

plants to benefit from removal of other species, probably due to competitive release 

(Racine et a i, 1987). It has been suggested that tussocks are resistant to spilled oil 

due to their elevated growth form and annual root growth penetrating to unoiled 

mineral soil (Johnson, 1980), thus minimizing exposure to oil. In a recent study at this 

site (Collins etal., 1994), however, excavations o f Eriophorum tussocks demonstrated 

that oil was present within the root mass, suggesting that root toxicity alone does not 

explain slow plant recovery at the site. Studies of this plant species have indicated that 

organically bound soil nutrients, including N, cycle 3-10 times more rapidly within the 

tussock than beneath it due to increased tussock soil temperatures and the ability o f 

individual tussocks to retain their own organic nutrient capital within tussock soil 

(Chapin et al., 1979). It may be that E. vaginatum litter within the tussocks provides 

higher nutrient quality (higher organic N) substrate than the surrounding oiled soils, 

allowing higher N mineralization and nutrient cycling rates that benefit these plants. 

Removal of shading shrubs and insulative moss layers probably account for recovery 

of £  vaginatum in the OIL plot, but nutrient cycling within the tussocks must be 

occurring for these plants to flourish.

We have seen that adding crude oil to our taiga field site has resulted in 

substantial changes to soil microbial communities. Long-term exposure to oil has led 

to an adapted community able to respire oil carbon in the OIL plot at rates similar to 

soil carbon in the REF plot. Multiple regression analysis suggests that N mineralization 

is occurring as organic matter is degraded in REF soils, but the high C/N ratios and 

shift to a predominantly oil-degrading community in the OIL plot has resulted in lower 

N mineralization in OIL soils. Absence of nitrification in OIL soils suggests that an 

important functional component of the microbial community has been disrupted due to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

oiling, probably either due to toxicity or competitive exclusion by active heterotrophs. 

As the oil becomes ever more enriched in higher MW compounds due to hydrocarbon 

biodegradation and spends more time in contact with organic matter in the soil, it will 

likely become less degradable. Therefore, despite the presence of a well-acclimated 

microbial community of hydrocarbon degraders at this site, we expect that residual 

crude oil will persist for decades. Further, as long as natural biodegradation of the oil 

residue continues, disruption of normal mineral nutrient cycling activity in the OIL plot 

is probable.
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CONCLUSIONS

The experimental oil spill plot at Caribou-Poker Creeks Research Watershed 

provided us a unique opportunity to examine the effects of long-term crude oil 

contamination in a subarctic environment. In the context of ongoing efforts to exploit 

the remaining oil reserves in the Arctic, research regarding the factors affecting 

recovery of spill-affected northern terrestrial systems assumes ever greater importance. 

Nearly twenty years after the spill occurred at this taiga site, a substantial amount of 

crude oil remained in the soil. The continued presence of this environmental 

contaminant resulted in changes to the soil’s physical, chemical and biological 

properties. We used this site to study the factors contributing to the long-term 

persistence of the oil and its influence on the composition and function of the native 

microbial community.

Among the variables assessed at the site, several parameters characterizing some 

functional aspects of the microbial community were measured. Broad-based 

microbiological data exhibited similar responses between oiled and oil-free soils at the 

site, while more narrowly-focused assays suggested more profound changes in the 

microbial community structure as a result of oiling. Soil respiration, total bacterial and 

fungal biomass, and soil protozoan assays showed no consistent differences 

attributable to oiling between oil and oil-free soils. However, active bacterial biomass, 

active fungal biomass, net N mineralization and nitrification, substrate-specific 

mineralization and microbial (bacterial) community diversity assays showed differences 

in soils likely attributable to oiling.

We measured whole soil C mineralization potentials and found little difference 

overall in respiration rates between oiled and oil-free soils. This suggests that, for the 

microbial communities present in the two soil types, similar amounts of labile carbon 

were available, or that other environmental factors (e.g., nutrient limitation, 

temperature, etc.) common to both soils have resulted in similar soil community
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responses. However, regression analysis of these data suggest that C mineralization in 

unoiled soils, but not oiled soils, is tightly coupled to N mineralization. This 

information, combined with our microbial enumeration and substrate-specific 

mineralization data, indicates that the selective pressure generated by the contaminant 

has shifted microbial community metabolism toward petroleum substrate use, but this 

does not appear to be sufficient for rapid destruction of the residual crude oil.

Net nitrogen mineralization and nitrification for the samples we assayed were 

different between oiled and oil-free soils, and no net nitrification was observed in oiled 

soil samples. Our inability to detect net nitrification in oiled soils indicates that the two 

soil treatments have differing microbial populations. It is possible that hydrocarbon 

toxicity has eliminated nitrifiers from the soil system. Alternatively, competition from 

heterotrophs for ammonium may have resulted in loss of their metabolic energy 

source. In either case the N dynamics of the oiled soils are different from oil-free soils, 

another indication of altered soil ecology due to crude oil presence. As N 

mineralization from soil organic matter represents the primary source of inorganic N 

for plant growth, reduced N mineralization due to oiling may have implications for 

revegetation and long-term recovery of the site.

The use of multiple substrate analysis to assess community diversity indicates 

oiled soil community diversity was relatively lower than that in our oil-free soils. These 

data are consistent with the information we collected regarding oil-induced population 

enrichment, as total biomass estimates were similar between the two treatments. 

Reductions in population diversity appear to correspond to selection for metabolic 

“generalists” in oiled soils (see chapter 2), but the communities so affected exhibited 

slower N substrate oxidation rates overall (see chapter 3). These data provide further 

evidence that oil pollution at the site has disrupted the soil system’s normal nutrient 

cycling processes.

In vitro respiration measurements suggest that C mineralization potentials were 

similar between oiled and oil-free soils, but there was little apparent mass loss in crude
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oil residue in the second decade after the spill. Calculations based on these in vitro 

measurements under optimized conditions and average oil concentrations imply the oil 

will persist for at least another six decades. This estimate assumes that all components 

of the residual oil are equally available labile C sources and that all respired C is from 

the oil. Given the molecular complexity and size of some o f the heavier crude oil 

components remaining, the high natural organic matter content of the oiled soils, and 

the length of time since the spill (increasing the probability of “protecting” oil 

substrates from microbial attack), however, 60 years is an optimistic estimate.

Long-term presence of crude oil at this site has disrupted some of the organic 

soil’s gross functional characteristics. We found that some traditional microbiological 

assays were insufficient for discriminating soil treatments at our site, suggesting these 

techniques alone would be inappropriate for monitoring the site’s recovery. Assays 

focusing on specific functions, on the other hand, were able to readily differentiate 

soils based on treatment. In particular, the multiple-substrate assay not only 

discriminated samples by treatment but also by season sampled, indicating detectable 

temporal bacterial heterogeneity. Thus, microbiological assessment of soils appears to 

be of potential utility in evaluating the effects of contaminant stress in soils, but the 

assays chosen need to be of the proper metabolic resolution.

The broad-scale physiologies assessed through total C mineralization and total 

biomass estimates showed little difference between oiled and oil-free soils due to 

treatment (oiling), though clearly the two treatments yielded different ecosystem 

effects in the two decades following the spill (e.g., increased active layer thickness, 

widespread plant death and little plant recolonization in the oiled plot). Viewed from 

the perspective of broadly-defined physiology, the oiled and oil-free areas’ 

microbiological components behaved similarly. The apparent loss of microbial 

populations due to oiling, however, has caused a metabolic shift in the surviving 

communities affecting processes important for normal functioning of the taiga
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ecosystem. Without human intervention, it is anticipated this site will remain 

contaminated and devoid of a healthy plant community for the foreseeable future.
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