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Abstract
The Dynamics Explorer mission returned a wealth o f information from its two 

orbiting platforms. O f interest here are the three scanning photometers aboard the high- 

altitude platform DE-1, which obtained hundreds of thousands of global images of Earth, 

beginning in September of 19 8 1, while using broad- and narrow-band filters to isolate 

particular terrestrial emissions. The far-ultraviolet (FUV) emissions include the line 

emissions o f OI (130.4 and 135.6 nm) and the band emissions of N2 LBH. the brightness 

of each yielding information on the composition of the upper atmosphere. The OI 

emissions are related to the column density of atomic oxygen in the upper-atmosphere as 

well as the abundance of thermospheric N2, both of which are affected by geomagnetic 

processes.

This thesis presents a model of the DE-1 response to the OI emissions during periods 

of low geomagnetic activity and uses this model for studies of thermospheric response to 

geomagnetic storms and substorms. Variations in brightness observed after geomagnetic 

events are most often seen as decreases corresponding to reduced thermospheric O 

column densities. The relation between compositional variations in the morning sector at 

middle latitudes and the orientation of the magnetic field embedded in the solar wind is 

investigated. The orientation, which strongly affects the circulation of the thermosphere 

at high latitudes where these variations originate, is shown to be a significant parameter. 

Variations in brightness within the southern polar cap are investigated in the first study 

of its kind, demonstrating 20-30%  decreases in brightness with the onset of magnetic 

activity and revealing structure in composition over distances on the order of -300 km. 

Compositional disturbances are observed immediately after heating takes place, 

demonstrating for the first time that an FUV instrument can detect changes in 

thermospheric composition on time scales under one hour. During these events, mid

latitude composition often remains relatively unperturbed. The first survey of FUV 

images to include ground-based measurements of ionospheric properties demonstrates 

that decreases in OI brightness correspond to decreases in peak F2 electron densities, 

known to be related to the ratio of the densities of O and N2.
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1

Chapter 1 

Introduction

The lowest part of the atmosphere, which humans inhabit, is characterized by daily, 

seasonal, and epochal variations in temperature, water content and bulk atmospheric 

motion (wind). The state of these variables at any one time and place on Earth is a 

description of the local weather. The upper atmosphere (at altitudes of -100-1000 km) is 

also subject to daily and seasonal variations but at these high altitudes the ranges of 

temperature and density are larger and wind velocities are greater overall. The state of 

these variables may also be called weather. The mechanisms controlling these weather 

effects are different, however, and little can be inferred about one region by making 

observations in the other.

One driver that is common to each system is the sun. The seasonal variations 

observed at all altitudes and latitudes are due, directly or indirectly, to changes in the 

average incident solar energy flux with geographic latitude. Variations in total solar 

radiant energy output with the sunspot cycle are on the order of ±0 . 1% over the associated

1 1-year period and as large as several tenths of a percent during periods of strong flare 

variability [Lean, 1989], It has been suggested that the lower atmosphere is affected both 

by prolonged periods o f depressed solar activity on the order of 100 years (e.g.. the Little 

Ice Age of -1400-1850  AD [Burroughs, 1992]) and on shorter time scales as well 

[National Academy of Sciences, 1982], The true magnitude of the effect of variations in 

the total solar energy output on weather and climate in the lower atmosphere is frequently 

debated. On the other hand, temperatures and densities in the upper atmosphere respond 

strongly to solar variations in the 11-year cycle. This reflects the fact that the largest 

variations in the solar spectrum in the course of a solar cycle are in the far- and extreme- 

ultraviolet emissions (FUV and EUV wavelengths, respectively) that interact strongly 

with constituents of the upper atmosphere. Temperatures at positions in the upper 

atmosphere can increase by as much as 100 K with an increase in solar flare activity and 

differ by as much as 500 K between the minimum and maximum of the solar cycle. 

Examples of such large-scale variations can be seen in MSIS-86 model results [Hedin.
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1987], Epochal variations in the upper atmosphere can only be supposed, as no long-term 

observations are available. However, prolonged periods of depressed solar activity and 

decreased UV emissions at the shorter wavelengths would likely be matched by a period 

of decreased temperatures in the upper atmosphere.

A source o f energy that is dissipated primarily in the upper atmosphere (vs. the lower 

atmosphere o f Earth) is the energy extracted from the solar wind by Earth's 

magnetosphere. This highly variable energy source affects temperatures, densities and 

winds in the polar upper atmosphere via energetic particle precipitation along magnetic 

field lines and currents driven through Earth's ionosphere by magnetospheric electric 

fields. The aurora is the optical manifestation of this energy input. During periods of 

auroral substorms [Akasofu, 1964], the impulsive energy input can affect the atmosphere 

well outside o f the polar region [Bums et al., 1991; Bums and Killeen. 1992]. During the 

most energetic geomagnetic storms, where magnetospheric currents can be enhanced for 

many days, upper-atmospheric temperatures and winds are strongly affected on a global 

scale. Composition may also be sufficiently disturbed such that the ratio of the abundance 

of heavy to light species can vary by a factor of 100 at auroral latitudes, where these 

effects are most immediate. Auroral energy inputs are difficult to predict compared to the 

dominant solar input, just as lower-atmospheric equivalents such as hurricanes, blizzards 

and heat waves are difficult to predict during the regularly occurring seasons.

Human activity in space is increasing. Placement of numerous communication 

satellites in low-altitude orbits (300-1000 km) and a planned continuous human presence 

necessitates a continuous knowledge of weather in the upper atmosphere, where many ot 

these activities actually take place. Now, more than ever, it is imperative that humans be 

able to immediately describe and even predict the state of the upper atmosphere, or the 

weather, at a given point or along a satellite’s orbital track. Real-time global observations 

of density and temperature are highly desirable.

Various ground- and space-based methods are now used to quantify in real time 

variations in upper-atmospheric properties. From the ground, radar experiments have 

been performed from which the density of certain upper-atmospheric constituents can be
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3

inferred [Bauer et al., 1970], The DMSP (Defense Meteorological Satellite Program) and 

TtROS/NOAA satellites are polar orbiting platforms that pass through the two auroral 

ovals with each orbit to provide routine measurements of auroral energy fluxes. Global 

parameters describing the global energy influx are subsequently inferred from these 

spatially limited measurements [Evans. 1987]. Analysis of the signals received at the 

ground from the constellation of satellites of the Global Positioning System (GPS) has 

recently been used by Ho et al. [1996] to infer the total electron content (TEC) of the 

ionosphere over large areas of Earth. The TEC. in turn, is related to the density of other 

atmospheric constituents, both neutral and ionized [Prolss, 1993; Rishbeth and Garriot. 

1969],

This thesis concentrates on a method that uses the measurement of solar FUV 

emissions scattered by the upper atmosphere to indirectly infer some properties of upper- 

atmospheric weather. These analyses provide simultaneous observations of the properties 

of the upper atmosphere over a broad range of geographic locations and. when combined 

with observations from other space-based platforms, indicate factors which strongly 

influence the development of upper-atmospheric storms.

1.1 Earth’s Atmosphere

For the sake of classification, regions of Earth’s atmosphere are defined by the 

physical processes or attributes characteristic of a particular altitude range. As examples, 

different regions can be identified by changes in the vertical temperature gradient, by ion 

concentration, or whether the species are evenly mixed or vary in density relative to one 

another with altitude. Profiles of atmospheric neutral temperature and ion and neutral 

number densities are shown in Figure 1-la through I -1 c [Rees. 1989] and will be referred 

to often in this introduction. The atmospheric regions designated by the sign of the 

vertical temperature gradient are indicated in the first panel while electron densities 

shown in the center panel identify the two peaks in density that correspond to the E and F 

regions of the ionosphere. Neutral number density is shown in the last panel. Separation 

between the homosphere, where the relative proportion o f major neutral components
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4

Temperature ( K) Ion density (cm3) Neutral density (cm3)

Figure l - l . Atmospheric regions and identifying parameters. The regions of the 
atmosphere are identified by (a) the sign of the vertical temperature gradient (b) the ion 
density altitude profile (with density maxima at E and F region altitudes) and (ci the 
neutral density gradient. [Figure from Rees. 1989].
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changes little with altitude due to vertical mixing, and the heterosphere, where diffusive 

separation o f heavy and light neutrals occurs, depends on the density of atmospheric 

constituents. While the upper atmosphere is not a strictly defined region, the significant 

ionization o f atmospheric constituents and the diffusive separation of constituents by 

mass are effects measured only at altitudes well above the inhabitable lower atmosphere. 

By these criteria, the lower boundary of the upper atmosphere is between 80 and 90 

kilometers, within the mesosphere (an atmospheric region to be described presently).

The troposphere is the atmospheric region closest to Earth, where the temperature 

decreases with altitude. The solid lower boundary of Earth’s surface efficiently absorbs 

infrared solar radiation, providing heat through direct contact with the atmosphere. The 

temperature gradient in the troposphere is approximately given by

v d z j
, 1. 1:

c
ad

where cp is the specific heat o f dry air and g(z) is the acceleration due to gravity. This 

temperature gradient is often referred to as the adiabatic lapse rate and is -9 .8  K/km for 

dry air [Chamberlain and Hunten, 1987]. At an altitude which is considered the upper 

boundary o f the troposphere (the tropopause), the gradient reverses and temperature 

increases with altitude throughout the stratosphere. The tropopause altitude, on average, 

ranges from 15 to 8 km at tropical to polar latitudes, respectively. The increase in 

stratospheric temperature with altitude is caused by heating due to absorption of middle- 

and near-ultraviolet solar radiation (MUV and NUV wavelengths, respectively) by Ox and 

H20 . which subsequently transfer vibrational energy to major atmospheric constituents 

through collisional deactivation.

Whereas 0 3 provides a source of heat, C 0 2 is effective in radiatively cooling this and 

other atmospheric regions. Collisions between C 0 2 and major constituents excite 

vibrational states in the C 0 2 molecule that re-radiate the energy in the infrared, an 

emission to which the upper atmosphere is largely transparent. Temperature once again 

begins to decrease with altitude around 25-35 km (from high to low latitudes.
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6

respectively) as the value of [CCX/tO^] continues to increase with altitude [Rees. 1987]. 

The position of this temperature gradient reversal is termed the stratopause. above which 

is the mesosphere, for which a temperature gradient of approximately -5  K/km is 

maintained up to the mesopause (at -85 ±5 km altitude), the coldest region in the 

atmosphere. The mesopause altitude varies daily and seasonally and is often not a 

standout feature, rather a temperature plateau. [Webb, 1966]

The region o f the atmosphere studied in this thesis is the thermosphere, so called for 

the increase in neutral temperature with altitude above the mesopause. up to a limiting 

value in the exosphere, the collisionless region where the majority of neutral atmospheric 

constituents have ballistic trajectories. At lower altitudes the boundary between the 

mesosphere and the thermosphere is determined by the balance of different heating 

processes in the thermosphere with the still-present radiative loss due to CO? at lower 

altitudes.

1.2 The Thermosphere

1.2.1 Chemistry and Heating 

The conversion of solar radiative energy into thermal energy in the thermosphere 

requires the action of the dominant atmospheric constituents. Thermospheric 

temperatures are affected mainly by the photo-dissociation and exothermic recombination 

of (X  written, respectively, as

Oi + h v (\ < 242.2 nm)—> O + O + K.E. ( 1.2)

and

O + O + M —̂ O t + M + 5.12 eV. d-3)

'K .E .’ indicates a variable kinetic energy imparted to the products of the reaction, 

depending on the energy of the photon reactant, and M indicates any local neutral 

constituent of the thermosphere. The UV wavelength indicated in Equation 1.2 identities 

the minimum energy (5.12 eV) required to dissociate O2. However, the absorption cross 

section of O2 is extremely small at this wavelength. The 1/e attenuation altitude of L V 

radiation shown in Figure 1-2 [Meier, 1991] illustrates that the attenuation ot radiation at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



u:
c*:
*-Z) 
E—■

2 5 0
A L T IT U D E  OF UNIT OPTICAL D E P T H

•O absorption 
6onds

W A V E L E N G T H  (X)

Figure 1-2. Altitude o f unit optical depth. The altitude at which solar emissions are 
reduced by a factor o f e ' 1 is indicated for a range of wavelengths from 10 A (EL'V) to 
3500 A (NUV) and for two MSIS atmospheres. The wavelength ranges of discrete and 
continuous absorption by O. CF, O?, and N: are also indicated. The two MSIS 
atmospheres represent low and high levels of solar activity resulting in changes in unit 
optical depth at XclOOOA. [Figure from Meier. 1991 ].
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8

X > 175 nm takes place primarily in the mesosphere and stratosphere and is due to 

absorption by O 3. Coincidentally, this 175 nm wavelength limit corresponds to the 

minimum energy necessary to excite the unstable 0 2(B 31 ’ ) state. The photo-dissociative 

reaction most common for thermospheric O2 is. therefore,

0 2 + /iv(66.0 nm < X < 174.8 nm )-> 0 2(B 31 '  )->0(3P) + 0 ( ‘D) + K.E.. ‘ 1 4)

yielding O in ground and metastable excited states, where one of a variety of possible 

product states is given here. The reaction in Equation 1.4 describes the fate of most 

molecular oxygen in the thermosphere that interacts with solar FUV radiation, though 

there are other less probable outcomes.

The extra kinetic energy imparted to the reaction products in Equation 1.4 leads to 

higher average kinetic energies per particle in the thermosphere (i.e.. higher 

temperatures). The excited O ('D ) state may relax to the 0 (JP) ground state through either 

collisional deexcitation (quenching) that transfers additional energy to a thermospheric 

constituent or a spin-forbidden electron transition that releases a photon at either 630.0 or

636.4 nm. An example of such a quenching reaction is

0 ( ‘D) + M - > 0 ( 3P) + M +  1.97 eV. (1.5)

The most likely deactivator is N2. Note that, as opposed to the recombination reaction of 

Equation 1.2, this quenching requires only a two-body interaction. The excited state may 

relax radiatively in the upper thermosphere via the reaction

0 ( lD) 0 ( 3P) + hv(X  = 630.0. 636.4 nm) (1-6)

before being quenched. The half-life of this state is -110 seconds [Rees. 1989] and it 

yields prominent auroral and airglow emissions. The transition energy diagrams for 

atomic and molecular oxygen are given by Meier [1991].

The recombination of atomic oxygen (Equation 1.3) requires a third body to catalyze 

the reaction and as such this reaction occurs mostly in the lower thermosphere, where 

collisions are most frequent. The 5.12 eV of exothermic energy (corresponding to 

A.-242.2 nm) is exactly the energy required to disassociate the 0 2 molecule into two 

ground state oxygen atoms. The 0 2 and M products share this energy, which is quickly
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9

thermalized in the lower thermosphere, adding energy to the neutral gas and increasing its 

temperature. This cycle o f dissociation and recombination is ultimately governed by the 

intensity o f solar FUV and EUV emissions, and an increased reaction rate brought about 

by greater solar UV flux leads directly to higher thermospheric (and exospheric) 

temperatures.

Solar radiation at wavelengths less than 102.6 nm can produce ionization in the form 

of 02  ̂and an electron, and at wavelengths shorter than 66.2 nm the molecular ion product 

is unstable, immediately dissociating to O, 0 +, and e". This, and the photoionization of O 

by solar EUV emissions at wavelengths shorter than 91.1 nm. are the major sources of 

electrons in the ionosphere (to be addressed in the next section).

1.2.2 Ionization and Reactive Chemistry 

Electron and ion densities, though well below neutral densities, are of great 

importance in this region of the atmosphere. The electron density as a function of altitude 

is shown in Figure lb. The electrons and ions are equal in density and tend to vertically 

diffuse upward together above the F-region peak through the process of ambipolar 

diffusion. The E-region electron density peak (occurring between -100  and 120 km) is 

only present during the times where solar photoionization can create ions (i.e.. daytime) 

through the processes

Nt + hv(<79.6 nm) —> N:1-+ e '. (1.7)

O2 + hv(< 102.6 n m )—> 0 :+ + e ',

and

O + hv(<91.1 nm) —» Cf + e~. (L9)

whereas the F-region electron density peak (usually between 280 and 400 km) is a 

consistent feature at all local times, due to the much lower recombination rates at higher 

altitudes [Ratcliffe, I960], Note that the above reactions are a small subset of the possible 

results o f the interaction of solar radiation with neutral atmospheric constituents.
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These reactions are the primary source terms for ions and free electrons in the upper 

atmosphere. Ion density varies with neutral density in the upper thermosphere, with a 

departure from this trend at the F2 peak, below which ion density tends to decrease while 

neutral densities continue to increase. In this region, the loss of ionization through 

chemical reactions is larger than the EUV driven source described above. The loss of 

ionization through radiative recombination of the dissociated constituents {i.e.. the 

reversal of reactions 1.11. 1.12, and 1.13) occurs at a relatively slow rate, due to the low 

concentrations of N2+ and 0 2+ above -200 km and the fact that 0 + + e ' yields a highly 

excited state of O which usually undergoes immediate autoionization [Rees. 19891- A 

more rapid means of removal of ionization involves the intermediate reactions

0 + + N: —» NO+ + N (1.10)

and

0 + + 0 2 —> ( V + 0 .  d . l l )

The reaction of 1.10 (vs. that of 1.11) is the more likely source of molecular ions, since 

N2 is more abundant than 0 2 throughout the upper atmosphere. Ionospheric electrons 

dissociatively recombine with the new charged species via

NO+ + e- —» N + O (1.12)

and

0 2+ + e ' - > 0  + 0  (113)

shunting the energy of ion-electron recombination into the dissociation of the molecular 

species. The products of these two reactions can be in excited electronic states, but 

usually radiate that energy as light and remain neutral. The combination ot the reactions 

listed in 1.7 through 1.13 effectively describe the role of neutrals in determining F2- 

region ionization and height density profile, with 1.7-1.9 indicating source terms and 

1.10-1.13 indicating loss terms. In this manner, the composition of the thermosphere and 

ionosphere are closely related. Changes in the abundance of O or N2 at F-region altitudes 

have a significant effect on the magnitude of electron densities in the upper atmosphere as
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O is an important source of electrons and N2 acts to create molecular ions from O* . 

which then may more readily recombine with electrons.

The important relation between O, N2, and ionospheric electron densities can be seen 

in a comparison of F2 layer maximum electron densities (NmF2) and neutral composition 

measurements for a geomagnetic storm occurring in February. 1973 [Prolss and von 

Zahn, 1974: Prolss, 1980]. Given the opposing effects of O and N2 on electron densities, 

the ratio of their densities is a useful parameter to measure for comparison to electron 

densities. A comparison of 0 /N 2 values at 280-320 km above six ground stations, as 

measured by the mass spectrometer aboard the satellite ESRO 4. and corresponding 

values of NmF2 is shown in Figure l-3a. Observed values of 0 /N 2 are compared to mean 

values, as are the values of NmF2. by calculating the ratio between the observed and mean 

values, resulting in R(Nm) and R (0 /N 2). Thus, unity indicates no deviation from mean 

values. The covariance of these two parameters over the eight-day period is striking. Note 

that these are stations in the Southern Hemisphere, their geographic locations denoted to 

the right of their international (geophysical) abbreviation. Each of these stations was 

equipped with an ionosonde to determine NmF2 values, an instrument further described in 

Chapter 6 . A decrease in ionospheric electron densities from monthly mean values during 

a geomagnetic event is termed a ‘negative’ ionospheric storm effect, while increases are 

described as “positive’ storm effects.

The overall relation of R(Nm) to R(0/N2) is shown in Figure l-3b. where the data 

from another comparison of “negative’ ionospheric storm effects over the Northern 

Hemisphere are included in the data set. Each point represents the R(Nm) and R (0/N 2) 

values over a station on a particular day. The linear relationship between these parameters 

is highlighted by a line with slope of unity. This linear relationship only holds during 

negative storm effects. Strong increases in ionospheric electron densities associated with 

positive storms are not well correlated with increases in R (0 /N 2) [Prolss et al. 1975; 

Prolss, 1980].
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Figure 1-3. Comparison of R(Nm) and R (0/N 2) for negative ionospheric storms. iai 
ESRO-4 neutral composition measurements are compared to electron densities over six 
southern ionosonde stations during a storm in February. 1983. The geographic positions 
of the ionosonde stations are shown to the right of their international symbols, (bi A 
scatter plot of R(Nm) vs. R (0 /N 2) including the 54 daily comparisons shown in Figure 
l-3a is shown, including 36 more comparisons from northern latitude measurements of a 
negative ionospheric storm in October, 1973. A line of slope=l in overlain for 
comparison. [Figure from Proiss. 1980],
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1.2.3 Physics and Composition 

The thermosphere can be described as an atmospheric region in nearly hydrostatic 

equilibrium. The O and Oi source and loss reactions described above have little direct 

impact on total neutral density at any thermospheric altitude [Rees. 1989], However, the 

temperature at the base of the thermosphere directly affects the diffusive equilibrium of 

the various neutral constituents, so the intensity of solar EUV radiation governs the 

neutral densities of the thermosphere. Mass mixing ratios are largely governed by 

processes of atomic and molecular diffusion and may change by orders of magnitude with 

temperature variations at the thermobase. Total mass density as a function of altitude is 

also affected by such variations, but to a much lesser degree.

For the case of hydrostatic equilibrium the balance of gravity and atmospheric 

pressure may be represented in a restatement of the conservation of momentum equation 

by

d  p / d  z -  - p  g . (1.14)

where p is pressure, p is the total neutral mass density and z is altitude. The atmosphere is 

assumed to be an ideal gas where pressure is defined as:

p = n IcT . (1.15)

Given a mean neutral mass, m = p / n  . the momentum equation can now be written as:

—  -f  ~  =  - ( T n g ) f k T  . (1.16)
p d z

which indicates an exponential decrease in pressure with altitude. The inverse of the right 

hand term is often referred to as the scale height. This equation, of course, cannot give an 

exact representation of the pressure at all altitudes for T varies strongly with c. The above 

equation represents an atmosphere in hydrostatic equilibrium which generally describes 

the region below -100 km. If some forcing takes place, large-scale vertical motion of 

mass can occur. This also occurs above 80 km and is discussed in the following section 

on thermospheric dynamics.
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At higher altitudes, the atomic and molecular constituents of the atmosphere can 

move separately from the mass averaged motion; i.e.. the constituents can diffuse through 

the atmospheric medium and m is now w (c). This can occur in atmospheric regions 

where mixing between altitudes takes place at a slower rate than diffusive processes. 

Following the development for hydrostatic equilibrium, but allowing for variations in 

relative abundance of the constituents (of differing mass), one may derive for a particular 

constituent its density as a function of altitude c.

~nz o) '
(\+a, ) \ m ( z ' ) g ( z ' )  ,

n l (z) = n . ( z 0)
. n z ) .

exp -  , dz
_ -o kT^ ‘> J

given a base altitude, density and temperature (zo, n0. and To. respectively). The 

coefficient of thermal diffusion, otj, for certain interactions (such as NVN';) is also 

necessary [Rees, 1989]. The integral containing the inverse of the scale height appears in 

this expression as in Equation 1.9. but is specified for the j-th constituent. The densities 

of heavier constituents such as O and N: will decrease more rapidly with altitude than 

those of light constituents, such as H and He. It is for this reason that H and He have 

greater concentrations than O in the upper thermosphere and exosphere.

1.2.4 Thermospheric Dynamics 

A large temperature gradient exists in the thermosphere between the day and night 

hemispheres due to uneven heating by solar UV radiation. The resulting difference in 

number density at given altitudes sets up significant horizontal pressure gradients, with 

highest pressure in the mid-afternoon sector. The force resulting from this pressure 

gradient, coupled with the coriolis forces of the rotating frame of reference, generates a 

large-scale flow of neutrals, the neutral wind, that is directed from the dayside toward the 

nightside over much of Earth. This can be seen in Figure 1-4, which shows global neutral 

wind vectors at 300-km altitude and 1200 UT calculated using a thermospheric general 

circulation model (TGCM) with 15° resolution in geographic latitude and longitude 

[Dickinson et al ., 1984], The plot is centered at the Greenwich meridian.
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Figure 1-4. General circulation of neutral thermospheric constituents at 1200 L'T. Global 
neutral wind vectors at 300 km altitude are shown at 153 intervals of geographic latitude 
and longitude. The longest vector indicates a horizontal speed of 336 m sec '1. [Figure 
from Dickinson. 1984].
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Diverging from an area at the equator near 1400 hours local solar time (LST). the 

solar-forced winds advect heated portions of the atmosphere most strongly across the 

mid-latitude evening terminator and into the nightside. The winds can be seen to 

converge at -0600 LST. Zonal winds dominate near the equator due in part to the effect 

of coriolis forces present in the rotating system; parcels of air moving north or south from 

the equator will gain an eastward velocity component. Furthermore, the offset of the 

divergence zone towards the afternoon sector and the even stronger offset of the 

convergence zone to the morning terminator are partially the result of the eastward 

corotation o f the atmosphere with Earth. The large wind velocities at the poles are only 

partially caused by solar forcing. Ion-drag forces due to coilisional interaction of 

convecting ions with neutral constituents act in the same direction. The resulting neutral 

winds in the polar regions are the most rapid on the planet.

The direction of the ion flow is determined primarily by magnetospheric electric 

fields imposed on the ionosphere. The motion thus induced in the ionized portion of the 

atmosphere plays an important role in the dynamics of the neutral atmosphere. In the 

approximation that magnetic field lines are equipotentials, electric fields of 

magnetospheric origin map down to the polar regions of Earth, forcing a circulation of the 

ionospheric plasma. Magnetospheric plasma is driven sunward in the distant magnetotail 

through a northward magnetic field comprising the superposition o f Earth's dipole field 

and the field associated with currents generated by the dawn-to-dusk electric field as 

shown in an equatorial cross-section of the magnetosphere in Figure l-5a. The return 

flow of plasma in the flanks near the magnetopause also moves through this field. The 

result of the bulk motion of plasma is the generation of electric fields in the -  v x  B sense 

in the Earth/magnetosphere rest frame. This ‘dynamo’ electric field maps to the 

ionosphere along magnetic field lines, which can be considered equipotentials due to the 

high conductivity in the direction of the field,.

The electric potential pattern due to one possible electric field configuration (actual 

output from AMIE modeling technique discussed in section 1.4) is shown in the inset of 

Figure 1-5. The electric field is directed perpendicular to these potential lines and
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Figure 1-5. Convection of magnetospheric/ionospheric plasma, (a) An idealized cross
section of Earth’s magnetosphere in the Geocentric-Solar-Magnetospheric x-y plane is 
shown from a viewpoint at z>0. Bulk motion of magnetospheric plasma driven by magnetic 
reconnection is shown with large grey arrows. Dipole magnetic Field vectors oriented in the 
+z direction are indicated with crossed open circles. The “dynamo” electric field in the 
-  v x B sense is indicated with dashed arrows, (inset) A representative electric potential 
pattern from AMIE for the northern hemisphere where dipole magnetic Field vectors are 
now everywhere oriented downward. The resultant E x B  drift of ionospheric plasma (at F- 
region altitudes) is (counter-)clockwise in the (morning) evening vortex. [AMIE model 
results from Gang Lu, private communications, 1997],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

generally in the dawn-to-dusk sense (right-to-left) at polar cap latitudes. The low and high 

electric potential values of the pattern are indicated and the dotted lines indicate constant 

geomagnetic latitudes with the outer contour at 50°N. The resultant (nearly horizontal)

E x B  drift of ionospheric constituents describes a two-celled system with (anti-) 

clockwise rotation in the (dawn) dusk sector. The diagrams in Figure 1-5 are for the 

Northern Hemisphere, where the sun is toward the top o f the page in this geomagnetic 

coordinate system.

This plasma convection in the polar regions can strongly affect the general flow of 

thermospheric neutrals. The global neutral wind vectors of Figure 1-4. for example, are 

calculated with an assumed cross-polar cap potential of 60 kV. This large potential 

generated by magnetospheric convection is indicative of strong geomagnetic activity, for 

which the longest vector represents a horizontal wind velocity of 336 m/sec. Note that the 

high latitude winds exhibit ( 1) a very strong anti-sunward flow from the noon sector to 

midnight sector (where pressure-gradient and ion-drag forces are similarly directed) and 

(2) a less intense sunward flow equatorward of the strongest anti-sunward winds (where 

pressure-gradient and drag forces are in opposition). The ion-drag force is a result of ion- 

neutral collisions in the ion circulation vortices described above.

In the absence of collisions, charged particles will gyrate about magnetic field lines 

with a cyclotron angular frequency cox=qB/m and. as noted above, charged particles 

subjected to non-parallel electric and magnetic fields will drift in the E x B  direction. At 

F-region altitudes, the collision frequency of both ions (vm) and electrons (v,,,) with

neutrals is much lower than the cyclotron period of either species and the E x B  drift is 

unimpeded. Collisions between drifting ions and neutrals are frequent enough, however, 

to impart the same general large-scale direction of motion to the neutrals at these high 

altitudes. Observations made by satellites passing through this region have observed the 

strong correspondence between neutral wind velocities and plasma drifts [Killeen et al.. 

1982: Hays et al., 1984],
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At E-region altitudes, the collision frequency of ions with neutrals is greater than their 

gyrofrequency. so the gyromotion-dependent E x B  drift o f ions is impeded. Ions will 

tend not to drift but move in the direction of the electric field. Electrons, with a two- 

thousand-fold larger gyrofrequency, will continue to gyrate about field lines, and 

consequently drift. This differential motion of the two charge species results in a net 

current that is measured by ground-based magnetometers. An array o f magnetometers 

located in the polar regions can provide an indicator of the amount of energy transferred 

from the plasma to the neutral atmosphere [Spiro et al.. 1982|. A portion of this energy 

goes towards heating the atmosphere: this is referred to as Joule heating.

Joule heating of the lower thermosphere is a continuous process, as a dynamo electric 

field of some magnitude is nearly always present in the magnetosphere. Even during 

periods o f low magnetic activity, thermospheric constituents in the auroral region are 

heated and forced upward. The mixing ratio, n j n tntal. of thermospheric constituents is

affected, increasing the density of heavier constituents. Strong forcing can cause 

disturbances in mixing ratios and total densities which extend to middle and low 

latitudes. In what manner disturbed portions o f the atmosphere advect out o f the polar cap 

to eventually appear at mid-latitudes on the dayside is one question this thesis addresses. 

The influence of magnetospheric convection is at once obvious and complicated. The 

two-celled circulation pattern that drives neutrals anti-sunward across the polar cap 

clearly reaches to mid-latitudes during storm events, but the exact configuration of the 

pattern varies strongly with orientation of the interplanetary magnetic field (IMF) [Smith 

et al.. 1988: Thayer et al.. 1987: McCormac et al.. 1985]. Furthermore, strong Joule 

heating can generate composition disturbances, the phase o f which can propagate from 

one polar region to the other [Prolss, 1980] and eventually around Earth.

1.3 The FUV Dayglow

All constituents of the atmosphere interact with solar radiation, and an understanding 

of the interactions enables the observer to interpret atmospheric optical observations.
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Light may be scattered by atmospheric constituents via several different processes and it 

may also be produced by the same constituents via quantum excitation and relaxation 

processes as described previously. The radiation originating in Earth 's atmosphere is 

termed the dayglow and consists of both scattered solar radiation and in-situ emissions.

Resonance scattering occurs when an atom interacts with a photon whose energy is 

very close to that of an accessible electron transition. Often, the photons that resonantly 

interact with an atom have been previously emitted by the same element. This is the case 

for solar emissions by species such as H. He. O and N. which have corresponding 

components in Earth’s atmosphere. Atomic species resonantly scatter incident photons 

much more efficiently than molecular species, as a cascading path through rotational and 

vibrational states is available to the excited molecular electron, resulting in a wide range 

of emissions possible for a given incident photon energy. Often, a photon can be 

resonantly scattered many times by a particular atomic constituent before exiting the 

atmosphere or being attenuated by a different constituent. If a slight amount of energy is 

lost or gained by the photon during the scattering process, the photon will be shifted 

slightly away from line-center and into the Doppler-broadened ‘w ings' of the line. In this 

case, the photon is much less likely to resonate with the related atmospheric constituent. 

Observations of resonant emissions in the thermosphere at high resolution often reveal a 

decrease in line center brightness.

The principal local source of light is due to photoelectrons stripped from O in the 

thermosphere by solar EUV emissions (<91.1 nm). These electrons are energetic enough 

to stimulate the emission of FUV photons by thermospheric O and N : through collisional 

interactions. This is the main source of many dayglow emissions and can contribute to 

resonantly scattered emissions. Dayglow emissions at FUV wavelengths are stimulated 

primarily by photoelectrons, including the N2 Lyman-Birge-Hopfield (LBH) bands 

between 126.0 nm and 152.0 nm and the OI forbidden transition at 135.6 nm. Dayglow 

emissions which have both a resonant and photoelectron stimulated component include 

NI lines between 113.4 nm and 124.3 nm and the bright OI 130.4 nm emission.
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The solar spectrum is. to first order, that of a blackbody with a temperature of 

-6000 K. However, there are many higher energy emissions in the solar spectrum, up to 

and including x-rays, which cannot be represented by a corresponding blackbody 

emission curve. The solar spectrum from FUV to Near -IR wavelengths is shown in 

Figure 1-6 using a logarithmic intensity versus wavelength format, with the overlain 

curves indicating pure blackbody spectra for several temperatures. The solar spectrum 

deviates significantly from a fixed temperature blackbody at short wavelengths. This is 

clearly demonstrated in Figure 1-7 [Meier, 1991] which shows logarithmic solar flux vs. 

wavelengths 0-4000 A (0-^100.0 nm). The monotonic decrease of blackbody radiation 

with wavelength is only evident at A>1300 A (130.0 nm). modified by certain emission 

and absorption lines. Atomic emission lines dominate at shorter wavelengths, with 

intensities thousands of times greater than the respective blackbody. Note that in 

comparing these figures, 1 nm = 10 A.

When viewed from space, the dayside o f Earth also radiates in the same high-energy 

portion o f the spectrum as the sun. The spectrum of these dayglow emissions is shown in 

Figure 1-8 for the near-ultraviolet (NUV) to extreme-ultraviolet (EUV) wavelengths. 

These data are a compilation of measurements from three space-borne satellites, each of 

which observed the dayglow in different wavelength regimes. The dayglow is clearly 

most intense in the NUV range, where the solar UV component is also most intense. This 

dayglow component originates in Rayleigh scattering processes occurring below the 

thermosphere. In the MUV range, absorption by Ch in the Huggins bands becomes 

significant and results in a strong decrease in the albedo. The brightness decreases again 

in the FUV range with absorption by Cb, first in the Schumann-Runge bands, and in the 

similarly named continuum at shorter wavelengths. The trend of decreasing dayglow 

brightness with wavelength is interrupted in the short wavelength end of the FUV range, 

where there are several prominent emissions. These are of both thermospheric and 

exospheric origin and are of most interest here.

The FUV dayglow in the 1200-1400 A (120-140 nm) range is dominated by O. N: . 

and H emissions. This particular range is shown with better resolution in Figure 1-9. The
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Figure 1-6. The solar spectrum. Solar irradiance as a function of wavelength is shown on 
a logarithmic scale. Five sample blackbody irradiance curves are overlain for 
comparison. [Stamnes and Thomas. 1998].
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Figure 1-7. Solar irradiance from X-ray to NUV wavelengths. Strong line emissions at 
wavelengths shorter than -1 3 0 0  A (130.0 nm) are indicated, including those due to 01 
and HI at 1304 A (130.4 nm) and 1214 A (121.4 nm). respectively. The plot is for solar 
minimum conditions. [Figure from Meier. 1991],
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Figure i-8 . Earth’s ultraviolet dayglow. A representative spectrum of Earth's L'V 
dayglow is characterized by log emission rate in the 500-4-200 A (50.0-420.0 nm) 
wavelength range. This plot summarizes three data sets from nadir viewing 
measurements by Barth [1965] in the MUV. Huffman et al. [1980] in the FUV. and 
Gentieu et al. [1979] in the EUV. Ranges in which absorption by O. CL. and CL occur 
are indicated as well as prominent emission bands and lines of thermospheric 
constituents. [Figure from Meier. 1991],
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Figure 1-9. Earth's FUV dayglow. Earth’s dayglow measured from a nadir pointing 
platform at 205 km with a spectral resolution of 7 A (0.7 n m ) . Prominent neutral oxygen 
(OI) emission lines at 1304 A (130.4 nm), 1356 A (135.6 nm) and 1641 A (164.1 nmi 
are identified. The prominent line at 1214 A (121.4 nm) is identified as an emission by 
neutral hydrogen (Hr). The Lyman-Birge-Hopfield (LBH) vibrational band of N; is 
identified as are many discrete lines within the band. [Figure from Meier, 1991].
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H a emission at 1214 A (121.4 nm) is due to resonant scattering of the solar line by 

thermospheric and exospheric neutral hydrogen, with a less significant photoelectron 

stimulated component also present. As mentioned earlier, the emission at 1304 A (130.4 

nm) has both a resonantly scattered (spin-allowed) and a photoelectron induced 

component while the 1356 A (135.6 nm) line is a spin-forbidden transition in O that is 

not resonantly scattered; it is due entirely to photoelectron excitation. The 130.4 nm OI 

emission is actually a triplet, with fme-structure emissions lines at 130.2 nm. 130.4 nm 

and 130.6 nm. The 135.6 nm emission also exhibits fine structure as a doublet with lines 

at 135.8 nm and 135.5 nm [Meier. 1991].

The ratio of the intensity of Earth's UV emission spectrum to that of the solar input at 

Earth is term ed the albedo and is plotted in Figure 1-10 for the same wavelength range as 

in Figure 1-8. From this one should note that at several discrete wavelengths in the FUV 

range the terrestrial FUV output exceeds the solar input. This indicates emissions that are 

due not only to scattering of solar radiation but have a particularly strong photoelectron 

component which is produced locally, in the thermosphere.

1.4 Thermospheric Models

The necessity of describing thermospheric conditions without real-time global-scale 

observations has driven intensive modeling efforts. This complicated problem has been 

approached in many ways. A short overview of these various methods is included here.

Satellite and rocket experiments performed since the 1950s have measured density, 

temperature, degree of ionization, and relative abundance of thermospheric constituents. 

The large amount of data collected has been fitted as a function of several solar and 

geophysical parameters to yield the Mass-Spectrometer-Incoherent Scatter (MSIS) neutral 

atmosphere model [Hedin, 1983, 1987]. Also included in the fitted database are 

temperature and density measurements obtained by ground-based incoherent scatter 

radars. Given a time, position on Earth, Ap index (or 3 hour indices), and solar 10.7-cm 

radio emission values, this empirical model returns average densities and relative 

abundances o f the neutral atmospheric constituents O, Oi, Ni, N, Ar, H and He. as well as
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Figure 1-10. Earth’s UV albedo. The ratio of the intensity of radiation emitted by Earth 
vs. solar radiation received by Earth is shown on a log scale. The two large minima at 
-1700 A (170.0 nm) and -2700 A (270.0 nm) are the result o f strong absorption by O; 
and O 3. respectively. Large excursions above unity in the FUV range suggest local 
production of emissions at the corresponding wavelengths. [Figure from Meier, 1991 ].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

the neutral temperature, at altitudes from -100 to 1000 km. The parameter Ap provides a 

measure of geomagnetic activity and the solar radio flux at 10.7 cm (F t0 -) correlates 

fairly well with the solar EUV and FUV flux [Barth et al.. 1990: Hedin. 1984], This 

interesting correlation between short- and long-wavelength solar radiation is discussed bv 

Lean [1987] and references described therein.

MSIS is useful in representing atmospheric parameters during periods of low 

geomagnetic activity or sustained increased levels of activity. Since the model results are 

based on the weighted average of observations, impulsive storm onsets and associated 

rapid changes in thermospheric parameters cannot be modeled with accuracy. Also, for 

given F[o,7. Ap, day of year and position on Earth, thermospheric parameters can vary 

widely depending on the current dynamical state and electric Field configuration of the 

upper atmosphere. Even so. the MSIS model provides excellent reference values for 

thermospheric composition and temperatures to which experimental values and the 

results of dynamical models are often compared.

The basic limitation of MSIS is that it is not a time dependent model, but presents 

only average values of thermospheric constituents for given geophysical parameters. It is 

not capable of simulating the development o f a thermospheric disturbance due to an 

impulsive heating event. A time dependent model which self-consistently includes winds, 

polar cap electric Fields, and variable heating rates should produce a more realistic 

■picture’ of thermospheric quantities during particular storm events, as opposed to an 

empirical model such as MSIS which is better suited to representing long term trends and 

quiet-time thermospheric composition.

The development of time-dependent models of the upper-atmosphere was begun in 

the 1960s with the First scientific computers and largely came of age in the 1980s. The 

work by Dickinson et al. [1981] describes a Finite-differencing numerical scheme treating 

the dynamics o f the thermosphere. In this effort the focus is to simulate thermospheric 

dynamics. Composition and temperature of the neutral atmosphere are provided by MSIS 

while ion and electron densities are provided by another empirical model [Chiu, 1975]. 

Other necessary numerical inputs include solar flux values, high-latitude heat sources and
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collisional cross-sections to describe ion-drag effects on the neutral atmosphere. This 

model has been refined greatly and is referred to as NCAR-TGCM (National Center for 

Atmospheric Research - Thermosphere General Circulation Model). It has been greatly 

improved [Roble et al.. 1988] to calculate densities for major and minor ion species as 

well as major neutral species throughout the thermosphere. The inclusion of ion 

chemistry codes and effects of auroral particle precipitation [Roble and Ridley. 1987] 

complete a Thermosphere/Ionosphere General Circulation Model (NCAR-T1GCM). 

Another successful model is that developed at the University College in London [Fuller- 

Rowell and D. Rees, 1980; Fuller-Rowell et al.. 1987]. Today, sophisticated models self- 

consistently calculate thermospheric and ionospheric properties while accounting for the 

polarization electric fields which can be generated in the upper-atmosphere. generating 

additional ion and electron drift motion. This electrodynamic NCAR model is entitled 

TIEGCM.

For simulation of actual geomagnetic events or storm time periods, the 

electrodynamic state of the upper atmosphere is included via sophisticated algorithms 

which invert ground magnetometer and incoherent-scatter radar data to resolve current 

systems that drive large-scale motions in the atmosphere. The complex technique is 

described by Richmond and Kamide [1988] and its utilization is described by Richmond 

et al. [1988]. This technique is commonly referred to as the AMIE (Assimilative Mapping 

of Ionospheric Electrodynamics) technique. The results can be incorporated into the 

TIGCM, replacing modeled convection electric field inputs with real-time data. Data 

from geomagnetic events have been compared to simulations of those events in several 

papers that make use of this method [Buonsanto et al.. 1997, Crowley et al.. 1989. Roble 

et al.. 1988].

1.5 Exploring the Thermosphere

1.5.1 Direct Measurements of Thermospheric Properties

Satellite mass-spectrometer measurements of thermospheric constituents have proved 

valuable in describing magnetic storm induced effects on thermospheric weather. Satellite
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data has also helped identify seasonal, IMF and UT-dependent effects. The effect of Joule 

heating on the thermosphere during geomagnetic storms can be summarized in a plot of 

density measurements from a single pass of the ESRO-4 satellite. In this pass, the satellite 

passed over the North American morning sector at approximately 1700 UT during the 

strong magnetic storm of October 29, 1973 [Prolss, 1980]. The planetary K index for that 

day is shown in Figure l- l  la. The changes in densities of Ar, NS, O and He are shown in 

Figure 1-1 lb . as well as the ratio of N2 to O and the change in the total mass density. 

Changes are determined by making comparisons to observations in a quiet-time reference 

orbit. The range of satellite altitudes corresponding to the magnetic latitudes at which 

measurements were made is indicated above the plotted parameters. These altitudes 

change very little from one orbit to the next. Note that the densities of Ar and N: (heavier 

constituents) are strongly enhanced at high geomagnetic latitudes, while He densities are 

depressed. O densities show variability and generally are slightly decreased. The change 

in O/N2 ratio is a good indicator of the degree of thermospheric disturbance (as well as 

negative ionospheric disturbances) and is also used by modelers to trace disturbances 

generated in their simulations.

The development of a thermospheric disturbance can be observed through successive 

orbits of the same satellite. The relative change in the ratio of O /N 2 from a reference orbit 

is again shown in Figure 1-12 but now in the Southern Hemisphere and tor successive 

orbits numbered 1-7 and 9. The top frame o f Figure 1-12 shows hourly average values ot 

the AE index, where values of -1  (iT indicate very strong auroral currents and associated 

Joule heating. Neither the local time (-1100  LT) nor the geographic latitude ot 

observations changes, however the invariant magnetic latitude at with fixed geographic 

latitudes does change with local time (as Earth’s dipole is offset from the rotation axis). 

The 40° and 60°S magnetic latitude increments for each orbit are indicated using vertical 

bars. The geographic latitude scale is fixed and ranges from 75°S to 0°S. ESRO 4 is 

passing closer to the southern polar cap with each orbit.
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M A G N E T I C  LA T I TU D E . . .
Figure l-l 1. Effects of geomagnetic activity on thermospheric composition. iai Time history ot 
geomagnetic activity for October 28-29, 1973 as indicated by Kp. (b) Composition 
perturbations measured during a single orbit of ESRO 4 at -1700 UT on October 29, 1973. In 
the upper plot, the relative change in mass density of four upper atmospheric neutral 
constituents is shown as a function of magnetic latitude. This ratio is calculated by comparing 
measurements from this disturbed period to those from quiet times. In the lower plot, the 
relative change in the N':/0 ratio is shown as well as the change in the total mass density, p. The 
altitude at which these measurements were made is shown on the upper ordinate and the 
magnetic latitude is shown on the lower ordinate. [Figures from Prolss. 1980].
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Figure I-12. Development of composition disturbance zone. The development of a 

composition disturbance is observed in data from eight orbits of ESRO 4. Where the first 
orbit shown is labeled 1, subsequent orbits 2-7 and 9 are plotted here. The upper panel 
indicates the hourly AE indices for this period and the equator-crossing times for each 
orbit during which the composition data were obtained. Eight subsequent panels indicate 
changes in the N2/O ratio relative a sample quiet time orbit for orbits 1-7 and 9 obtained 
at times and geographic longitudes indicated to the right. [Figure from Prolss. 1980].
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Intense geomagnetic activity begins around 1600 UT. The first observation of the 

effect of this activity on the thermosphere is observed around 2000 UT at the highest 

latitude. With the next three orbits the disturbance in the O/N? ratio from quiet-time 

levels apparently propagates from  high to low latitudes with the greatest changes 

appearing in the seventh orbit. By the ninth orbit the level of magnetic activity has 

decreased considerably, but the disturbance is still large in magnitude at high and middle 

latitudes and extends equatorward o f 20°S.

These data are limited in that the mechanism by which the disturbance propagates 

from the polar region to mid-latitudes is not obvious, nor is that which impedes or cancels 

the disturbance at equatorial latitudes. Simple interpretation of the satellite data as the 

propagation of a pressure disturbance from the heating region (auroral oval) to lovv- 

latitudes ignores global neutral winds and possible co-rotational effects. Furthermore, 

even as this disturbance seems large in magnitude and extent. O/N^ ratios at equatorial 

latitudes are nearly unaffected. This is somewhat misleading as the densities of nearly all 

constituents of the Iow-latitude thermosphere rise during geomagnetic storms [Mayr and 

Volland, 1973], and here in such a manner as to not change the O/N": ratio.

These types of satellite data have been very useful in determining the global 

morphology of thermospheric disturbances as well as seasonal and daily trends [Prolss 

1980. 1981; Prolss et al.. 1988]. Density and composition measurements taken by 

orbiting platforms provided data upon which the basic theory and understanding ot the 

thermosphere were developed. Global observations are now necessary to fully separate 

the spatial and temporal variations in thermospheric composition during storm-times.

The development of a composition disturbance zone, its extension to mid-latitudes, 

and subsequent dissipation can be seen in results from the UCL-TGCM shown in Figure 

1-13a through 1 - 13f (from Fuller-Rowell et al., 1994) for 50°-90°N latitude. The six 

panels show the development o f changes in the mean molecular mass at a given pressure 

level (which is in effect a normalization which allows for meaningful global 

comparisons). Each panel represent a step in a time series of atmospheric conditions 6.
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Figure 1-13. Results from UCL-TGCM showing global-scale composition variations. 
The mean molecular mass at a fixed pressure level is shown at six time intervals after the 
onset o f modeled geomagnetic activity. Panels a -f  indicate conditions north of 50°N 
latitude at 6, 12. 18, 24, 36, and 48 hours after onset. Mean molecular mass is given in 
atomic mass units and is indicated by a range of colors, with an appropriate color bar 
next to each panel. [Figure from Fuller-Rowed et al., 1994].
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12, 18, 24, 36 and 48 hours after the onset o f 12 hours of sustained activity beginning at 

1200 UT. The noon sector is at the top of each panel.

Within six hours of onset, large perturbations in the mean molecular mass are found 

at high latitudes. Twelve hours after the onset, strong perturbations are seen throughout 

the nightside. Strong activity ceases at this time and the remaining four panels describe 

the recovery of the thermosphere. The disturbance zone is found mainly at mid-latitudes 

and at later morning sectors at 18 and 24 hours, whereas the polar region has begun to 

equilibrate. This changes by 36 hours from the beginning of activity, as the global neutral 

winds advect the weakened disturbance through the polar region again. Finally. 48 hours 

after the onset o f activity, the disturbance zone is again in the morning sector.

It is just these types of temporal and spatial variations from sophisticated modeling 

efforts that call for validation by global measurements. In-situ observations of neutral 

winds [Roble et al., 1988] and composition [Bums et al. 1992] have been compared to 

TGCM runs to validate model results. However, global observations of storm effects 

would provide a much broader test of thermospheric models.

1.5.2 Global FUV Measurements of Thermospheric Properties 

Performing simultaneous global in-situ thermospheric observations at even a low 

spatial resolution would require continuous reinsertion of detectors into orbits which are 

subject to rapid decay, especially during periods of high solar activity and thermospheric 

heating. Optical observations from a single high-altitude platform may reveal global 

variations in thermospheric constituents, and observations of the FUV emissions ot O and 

Nt should be particularly useful in determining the total oxygen content and the ratio ot O 

to Ni at emission altitudes.

Variations in the intensity of particular dayglow emissions have been linked to auroral 

activity since early observations were made from low-altitude sensors. Meier [1970] 

noted that passes of the polar orbiting OGO-4 satellite over the poles revealed decreased 

OI 130.4 nm and H a 121.4 nm emissions in the polar cap (bounded by the auroral oval). 

Later, Strickland and Thomas [1976] examined data from OGO 6 and determined that the
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strongest decreases in OI emissions occurred at high latitudes during periods of strong 

geomagnetic activity. These nadir pointing satellites were the first instruments to make 

FUV measurements from space. Later missions (e.g. S3-4 [Huffman et al.. 1980; Conway 

et al.. 1988] and STP 78-1 [Bowyer et al., 1981; Parish et al.. 1994]) have yielded further 

understanding of the relationship between the FUV dayglow and local atmospheric 

composition. These missions have provided critical scientific data, the analysis of which 

has provided a foundation for interpretation of global FUV observations [e.g. M eier and 

Lee. 1982; Meier and Anderson. 1983; Conway et al., 1988; Meier. 1994], Sub-orbital 

rocket missions have also made important observations of Earth's FUV dayglow [e.g. 

Fastie et al.. 1964; Rottman et al.. 1973; Strickland et al.. 1996]. Aside from these 

references, rocket missions will not be discussed further in this work.

Early results from DE 1, using the 123-165 nm bandpass filter, revealed decreases in 

OI 130.4 nm dayglow brightness after strong geomagnetic activity similar to those 

observed in earlier missions, but on a global scale [Craven and Frank, 1984; Frank and 

Craven. 1988], A quantitative comparison of the disturbed dayglow to that observed 

during quiet times was first performed by Craven et al. [1994] w'ith a wide range of 

images examined by Nicholas et al. [1997]. These comparisons required the development 

of a model representing the DE-1 FUV imager’s response to the quiet-time dayglow for a 

wide range of observational and solar zenith angles. A similar effort, using different 

modeling methods, is described by Meier et al. [1995]. The geometric model devised by 

Craven et al. has undergone a series of improvements which are described herein. These 

improvements allow for investigation of thermospheric composition in many images of 

the sunlit earth, taken in the effective lifetime of this FUV filter (September. 1981 to 

-1986). With this model as the primary tool, a series of investigations into the wide range 

of effects of geomagnetic activity on the thermosphere have been undertaken. Those 

studies are described herein.

In 1981, Dynamics Explorers 1 and 2 (DE 1 and 2) were launched with the mission of 

making simultaneous low- and high-altitude measurements in Earth's magnetosphere- 

ionosphere-thermosphere system. DE 1 was a placed in a highly eccentric elliptical polar
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orbit to obtain magnetospheric measurements and provide a high apogee-altitude platform 

for global FUV images [Hoffman et al.. 1981; Frank et al. 1981]. DE 2 was placed in a 

nearly circular polar orbit with both apogee and perigee within the thermosphere. Its 

mission included measurements of density, composition, electric fields, and neutral 

winds. The satellites orbits were co-planar, such that DE 2 repeatedly passed directly 

below DE 1. Thus, the satellites were often positioned to make direct comparisons 

between remote FUV and in-situ composition measurements.

W eather satellites now monitor all parts o f the world to infer conditions at the ground 

and their possible impact upon human activities. The measurement and analysis 

techniques described here have the capability of providing users a real-time measure of 

upper-atmospheric conditions. Furthermore, the studies we undertake may provide a 

better basis for predicting the state of the upper atmosphere many hours in advance. Such 

information can make human operations in space more reliable.
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Chapter 2 

Instrumentation

2.1 The Dynamics Explorer Mission 

The Dynamics Explorer 1 satellite was equipped with three spin-scan imaging 

photometers, two of which were configured to sample light in the visible range ( imagers 

A and B), while the third (im ager C) made measurements at far ultraviolet (FL'Vi 

wavelengths. Data presented in this thesis were obtained primarily from the FUV 

instrument. Narrowband and broadband filters (AX-2 and 20 nm for visible and 

ultraviolet filters, respectively) were used to isolate particular atomic emission lines and 

molecular bands from the full auroral and dayglow spectra.

The Dynamics Explorer flight mission began with launch on August 3. 1981. from 

Vandenburg Air Force Base. California, on a Delta 3913 launch vehicle into a 90 ' 

inclination (polar) orbit. The hardware mission consisted of two satellites. DE 1 and 2. 

for remote and in-situ observations of the upper atmosphere and magnetosphere. Once 

separated, DE 2 remained in a low altitude orbit (nominal apogee and perigee of 1300 

and 305 km, respectively), while DE 1 was placed in a highly elliptical polar orbit using 

a solid rocket upper stage. An apogee altitude of -3 .65 Re and a perigee altitude of -570 

km were achieved, with an orbital period of 6.85 hours.

The main components of each imaging photometer are shown in the simplified view 

of Figure 2-1 [Frank et. al., 1981]. A collimator with a series of knife-edge low- 

reflectivity baffles limits and minimizes internal reflection of extraneous light. A 

stepping mirror is the optical component that allows the imager to scan a range of angles 

out of the spin plane of the satellite (described later in Figure 2-2). Its 0.125= incremental 

movement shifts the photometer field of view by 0.25°. The next optical element is a 

parabolic mirror (f= 19.9 cm), focusing incoming light onto a small pinhole <d= 1.13 

mm), behind which is situated a small lens that directs the light into a parallel beam 

through a filter and onto the photocathode of a photomultiplier tube. Brightness of the
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Figure 2-1. Representation of DE-1 spin-scan auroral imager (SAD optics. Components 
such as the collimator, stepping and parabolic mirrors, lens, filter wheel and photometer 
are indicated. [Figure from Frank et al., 1981].
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object field is proportional to detector response, measured in counts per unit time, where 

a count is the result o f  a single event cascade within the multiplier.

The three imaging photometers were calibrated before launch in the laboratory such 

that the brightness of a subject could be measured in Rayleighs ( I06 photons / 

cm2-sec ster) for each of the 12 filters that were mounted in each filter wheel. For 

example, the pre-launch calibration of the FUV instrument using filter #2 showed the 

peak sensitivity of the photometer (Sp) to be 3.08 (counts/kR pixel) at 130 nm. where 

pixel implies an integration time of 3.4 msec. It has been shown that the FUV instrument 

[Rairden. 1986] suffered some degradation after laboratory calibration, resulting in an 

overall reduction in instrument sensitivity from pre-launch values. In particular. Sp of the 

FUV instrument with filter #2 in place was found to be -30%  lower soon after 

operations began in orbit than when measured in the lab. Nevertheless, as this value of 

Sp changed throughout the mission (e.g., reduced another 50% by January. 1983). and 

for the sake of continuity, the pre-launch value of 3.08 counts/!kR-pixel) will be used to 

report dayglow brightness.

The DE-1 satellite was a spin-stabilized platform rotating at 10 revolutions per 

minute with the axis of rotation normal to the orbit plane. The three imagers were 

directed in the plane perpendicular to the rotation axis. This allowed the field o f view of 

each imager to pass over Earth’s disk once each six seconds. During the rotation of the 

satellite, the response of each photometer is registered in 3.9-ms intervals, where 3.4 ms 

of the interval is integration period, f, and the remaining 0.5 ms is off time, t0. In the 

integration time, the imager’s 0.32° instantaneous field of view moves by 0.20° (and by 

0.23° in t,+t0). The imaged area that is within the moving field of view for >0.5 t, 

constitutes a roughly circular area of 0.29°. Considering the difference between the 

motion of the field of view with satellite rotation and its perpendicular incremental 

motion between adjacent scan lines, an image aspect ratio of 23/25=0.92 is obtained. All 

images shown in this work are resized to account for this factor and to present a circular 

Earth.
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The three imagers were mounted aboard DE 1 approximately -120° with their exact 

placement shown in the spin-plane cross-section of the spacecraft in Figure 2-2. The 

stepping mirrors allowed the photometers to sample ±15 degrees out of the plane. This 

range of angles could be covered in 120 steps of the stepping mirror, or 120 6-second 

satellite rotation periods. The resulting time to obtain a full image is 12 minutes.

Twelve filters were mounted on the rotating filter wheel in each imager, as shown in 

Figure 2-1. The sensitivity vs. wavelength profiles for several filters in the FUV imager 

are shown in Figure 2-3. Prominent dayglow emission lines such as the HI 121.4 nm 

(Lyman a )  and OI 130.4 and 135.6 nm emissions are indicated as well as the Lyman- 

Birge-Hopfield (LBH) emission band for Nz- Data obtained using filter #2. with a short 

wavelength half-intensity cutoff at 123 nm and peak sensitivity at -130  nm (as 

mentioned earlier), are used extensively in this thesis. This filter is most sensitive to the 

oxygen em issions of the dayglow. with OI emissions constituting -90%  of the 

instrument response for Earth observations away from the limb. At Earth's limb, the 

contribution by Ni LBH emissions increases considerably, as the thermosphere is 

optically thin to these emissions.

Approximately 20 12-minute images o f the full disk o f Earth could be obtained by 

each imager during a single orbit, though the instruments obtained images throughout 

the entire orbit. The latitude o f apogee changed throughout the mission (as shown in 

Figure 2-4) due to apsidal motion of the satellite orbit. The rate of motion was 

approximately -0 .3° per day in the direction opposite to the motion of the satellite. This 

added provided for imaging at high northern latitude in fall 1981. at midlatitudes and 

equatorial regions by summer 1982, and at high southern latitudes by Spring of 1983.

The imaging instruments were not designed to withstand direct solar illumination. 

Thus twice per year, when the sun crossed the orbit plane of the satellite, the imagers 

were not operated. Exceptions to this procedure were made during special eclipse 

periods later in the mission, when Earth blocked the solar emissions.
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Figure 2-2. Cross-section of DE 1. Placement of visible and FUV wavelength imagers is 
shown to scale in a spin-plane cross-section of the DE-1 satellite. [Figure from Frank et 
al.. 1981],
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Figure 2-3. Sensitivity profiles of several filters used in FUV SAI experiment. 
Sensitivity is shown in units of counts • (kR-pixel)'1 as a function of wavelength. Filter 
#2. which allows measurement of the OI 130.4 and 135.6 nm emissions and. to a lesser 
degree. N: LBH emissions, is used extensively in this thesis. [Figure from Frank et al.. 
1981], "
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S ubsate l l i te  Point a t  A pogee for the  
High A ltitude Satellite

6/30/82

— 06

Apogee in Northern Hemisphere 

Apogee in Southern Hemisphere 

Magnetic Latitude at Siple Longitude

Figure 2-4. Latitude and local time of apogee for DE I. The latitude of apogee of the DE 
1 satellite is shown for northern latitudes with a solid line and a dashed line at Southern 
Latitudes. Just after placement in orbit, apogee was at high northern latitudes, advancing 
to southern latitudes by July. 1982. The regression in local time of apogee occurs at the 
rate of 24 hours per year for this 0° inclination orbit. [Figure from Hoffman et al., 19811.
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2.2 Earth’s Dayglow Observed by DE 1.

A DE-1 FUV image obtained at 1725 Universal Tim e (UT) on October 18. 1981 is 

shown in Figure 2-5. This image was obtained using the #2 Filter, which is sensitive 

mainly to OI emissions. Earth’s disk and bright limb are plainly visible in this image as 

approximately half of the observable Earth is directly illuminated by solar radiation. The 

satellite was approaching apogee over the North Pole, thus the late morning sector on 

Earth is at the top of the image, with local times increasing to afternoon and evening 

hours counterclockwise around the image. The DE-1 orbit plane bisects the image. 

Photometer counting rates are coded by colors which are indicated using the color bar 

below. The pre-launch sensitivity factor of 3.08 kRayleighs/pixel-count is used to 

convert from photometer response to dayglow brightness.

Earth’s limb is the brightest feature of this image, is due to the effect of limb 

brightening. As the photometer takes measurements approaching the physical edge of 

Earth, emissions to which the atmosphere is optically thin (e.g., N;> LBH) contribute to 

an increased integrated response due to the greater atmospheric column length in the 

photometer’s line of sight. At the limb. N2 LBH emissions are dominant, whereas in the 

central disk region. OI 130.4 nm emissions dominate. Auroral emissions of OI and N; 

are also visible in this image. The auroral oval is a consistent FUV feature and can be 

observed in any image of the polar regions taken with this instrument.

The variations from pixel to pixel are statistical variations in the detector (photo

multiplier) counting rates. The sampling distribution for the observed brightness follows 

normal Poisson statistics. Typical sensor count rates for dayside measurements away 

from the limb are <100 counts per pixel. The standard deviation for this counting rate is 

±10 counts per pixel, or ±10%, which is discernible by the eye in these images. This 

percentage is greater at lower counting rates. Analysis o f images is unhindered by these 

variations as smoothing techniques can be used that reduce statistical variations to -3% 

and make clear larger-scale physically-significant variations in the dayglow. Photometer 

response can be averaged over successive images as another means of reducing
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Figure 2-5. FUV image of Earth. This FUV image was obtained in a 12 minute period 
beginning at -1748 UT on Day 269 of 1981 from an altitude of 3.22 Re using filter #2. 
The bright dayglow is evident with strongest photometer response at the limb, where 
optically ‘thin’ No LBH emissions dominate. This image was taken during a period of 
intense geomagnetic activity as evidenced by the bright auroral oval at high northern 
latitudes.
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statistical variations, while losing no spatial resolution. The instrument can collect data 

with an excellent signal-to-noise ratio, reported to be in the range 5 x l0 2 to 5 x l0 4 for the 

observation o f a 1-kR auroral emission with the outer baffle illuminated by sunlight 

[Frank et al.. 1981].

The imaging mission advanced understanding in the fields of magnetospheric. 

thermospheric, stratospheric and auroral physics. Highlights of the imaging mission are 

described by Frank and Craven [1988]. Notable studies include the comparison of DE 2 

thermospheric neutral wind measurements to simultaneous observations of auroral 

morphology by DE 1 [Killeen et al., 1988], global measurements o f total ozone 

concentration derived from comparisons of on- and off-band ozone absorption [Keating 

et al.. 1985], and derivation o f auroral electron characteristic energies and total energy 

flux from visible wavelength images [Rees et al., 1988], This thesis explores another 

application o f the FUV imager: the study of upper atmospheric properties through 

investigation o f Earth’s FUV dayglow.
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Chapter 3

The DE-1 Auroral Im ager’s Response to the FUV Dayglow for 

Thermospheric Studies

3.1 Introduction

Response of the D E-l far-ultraviolet (FUV) photometer to the quiet-time FUV 

dayglow at wavelengths 123-165 nm is investigated in support of studies of variations in 

the FUV dayglow and the sunlit aurora. The emphasis here is the development of a 

means by which the average quiet-time response o f the photometer may be reproduced. 

The results are used to examine the difference between the averaged response and the 

response in individual images from the quiet-time data set over a range of satellite 

altitudes. It is demonstrated that the reference response values accurately represent the 

photometer’s response to the quiet-time dayglow. This method is extremely useful for 

quantitative analyses of variations in thermospheric atomic oxygen (O) density, as the 

dominant contribution from the disk-region dayglow to the photometer’s response is due 

to OI emissions at 130.4 and 135.6 nm. The reference values provided by this method 

also provide background levels for investigations o f the sunlit FUV aurora.

High-altitude observations of the terrestrial dayglow with broadband FUV- 

wavelength filters reveal the expected large-scale variations in brightness, including a 

monotonic increase with decreasing solar zenith angle across the central portion ot the 

sunlit disk and brightening near the limb at all solar zenith angles. Notable exceptions 

are observed after the onset of intense auroral activity, when large (as least as great as 

-50% ) decreases in the brightness o f OI emissions at 130.4 and 135.6 nm are observed 

in the morning sector of local time at auroral and subauroral latitudes [e.g.. Craven et al., 

1994: Meier et al., 1995; Nicholas et al., 1997].

From a preliminary analysis of the photometer’s response over its broad 123-165 nm 

pass band (using filter #2), Craven et al. assigned minimum relative contributions to its 

response for emissions well away from the limb and terminator: -76%  (130.4 nm): -9%  

(135.6 nm); -2%  (Ni LBH band). The remainder was assigned, as a generous upper
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limit, to Lya radiation. A more detailed quantitative analysis by Meier et al. [1995] has 

firmly established the relative contributions to the photometer’s response: 85-90%  

(130.4 nm): 5-8%  (135.6 nm); 5-8%  (LBH). The work of Meier et al. further 

established the interpretation that the decreases in the photometer's response across the 

pass band are associated with changes in thermospheric composition, depending mainly 

on the column density of O. It is clear that broadband observations at these wavelengths 

are directly useful only because of the dominant contribution by the OI emissions. 

Observations with relatively low-altitude satellites at one or more wavelengths and 

narrower pass bands [e.g.. Strickland and Thomas. 1976; Conway et al.. 1988; Parish et 

al.. 1994] have not been hampered by the DE-1 pass band limitation, and have more 

clearly demonstrated that the OI emissions decrease during periods of enhanced 

magnetic activity.

In situ observations of variations in thermospheric composition have been 

extensively reported by Prolss [1980,1981.1984] and Prolss and Roemer [1987] using 

the low-altitude ESRO-4 satellite, and have shown that the thermospheric composition is 

altered in the morning sector at auroral and subauroral latitudes following the onset of 

intense auroral activity. For example, the densities of Ar and N , can increase at the 280

km altitude by factors as great as -1 0 0  and -10, respectively, while He decreases by -10. 

Both increases and decreases in O density are observed, but are generally on the order o( 

only a factor of ~2. The O/N, ratio at the 280-km altitude can decrease by more than a 

factor of 10, and the variations in composition can extend to geomagnetic latitudes 

below 30° during periods of intense magnetic activity. In general, the spatial extent and 

magnitude of the variations increase with increasing magnetic activity.

Low-altitude satellite observations such as these are limited by the absence ot 

sampling out of the orbital plane, with the result that measurements of composition or 

FUV brightness are narrowly confined in geographic longitude during each satellite 

revolution in a high inclination orbit, and that the sampling rate at one local time (e.g.. 

the morning sector) is limited by the orbital period of the satellite. Hence, while the
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latitudinal extent has been well sampled both through in situ observations and indirectly 

at FUV and visible wavelengths, the large-scale spatial extent in longitude has been 

inferred, not measured, and the temporal variations have been measured on the time 

scale of single auroral substorms. The utility of D E-l observations is that the full spatial 

extent within the sunlit hemisphere is revealed in a single image, and multiple images 

are gained over many hours at 12-minute resolution [C ravens al.. 1994],

Analysis of the D E -1 observations can be carried out in the manner of Meier et al. 

[1995] or Gladstone [1994] by making use of highly evolved numerical models and 

computer facilities. Such work is absolutely necessary to establish quantitatively the 

details of the instrument’s response to the dayglow. It is now seen that a relatively 

simple method is available for routine image analysis in order to obtain important details 

on the spatial and temporal variations of the dominant emissions, which in this case are 

the 130.4 and 135.6-nm multiple line emissions of OI. The technique used by Nicholas 

[1993], Craven et al. [1994], Immel et al. [1997], and Nicholas et al. [1997] is to create 

reference values for the photometer’s response during intervals o f magnetic quiescence 

and to then compare the observations during active periods against the quiet-time values.

It is important that the reference values be well established, and it is the purpose here 

to report an improved algorithm for representing the observed response of the DE-1 

auroral imaging photometer to the quiet-time FUV dayglow. The result is constructed 

specifically for the DE-1 broadband 123-165 nm filter #2, but the method used is readily 

applicable for observations with filters of similar or narrower pass bands. The algorithm 

created here is used to systematically detect even small deviations in dayglow brightness 

from quiet-time values in selected images obtained throughout the DE-1 mission.

3.2 Image Selection and Initial Processing 

As discussed in the Introduction, the principal objective here is the creation ot 

refined reference values for the photometer’s response to the FUV emissions in the sunlit 

hemisphere during periods of auroral and magnetic quiescence. Image selection was
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carried out as originally specified by Nicholas [1993], with the requirements that values 

of the AE index must remain below 100 nT for a minimum of six hours, that solar flare 

activity not be high during the six hours prior to imaging, and that there must be a 

favorable imaging geometry. Observations were limited to the period September 23. 

1981 (first day of imaging operations) through February 19. 1982 (last day of operations 

before the first Sun crossing of the imaging field-of-view). An extension to later time 

intervals will require consideration o f systematic decreases in the photom eter's 

sensitivity across the pass band due to degradation of FUV materials (e.g.. lens and 

mirror coatings) in the intense corpuscular radiation fields of the inner and outer Van 

Allen radiation belts [see Rairden et al., 1986], A total of 185 images from 16 days meet 

the selection criteria, and are used here as in the initial development by Nicholas [1993]. 

As is discussed later, however, several of these images are strikingly unrepresentative of 

the remainder of the quiet-time set, with significant deviations of measured brightness 

from average values. These 29 images have been removed from the quiet-time set. so the 

final number of images used in the quiet-time model is 156. These unrepresentative 

images will be discussed in the last section of this report.

Brightness of the dayglow observed with DE 1 increases significantly near the limb, 

as the thermosphere is optically thin to N2 LBH band emissions. Because o f this, 

observations near the limb are not used here, avoiding increased complication for no 

significant gain in the overall objective. Brightness o f auroral emissions at the higher 

magnetic latitudes is comparable with that of the local dayglow and represents a 

“contamination” of the dayglow. Each image has thus been divided into limb, disk and 

auroral regions, as illustrated in Figure 3-1, and only samples (images pixels) from the 

disk region are given further consideration in constructing the algorithm. The altitude- 

dependent angular separation between the limb and the disk boundary, the outer white 

contour in the figure, has been em pirically determined by Nicholas [1993]. The auroral 

region (bounded by the inner contour of smaller dimension) is defined as all 

geomagnetic latitudes > 65°.
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Figure 3-1. Original DE-1 image o f Earth at 1725 UT on October, 18 1981 (day 291). at 
wavelengths 123-165 nm. The Sun is toward the upper left in this full image obtained 
from an altitude o f 3.44 Re. Brightness in kiloRayleighs, kR, is coded below the image. 
Regions dominated by limb brightening effects and the aurora are identified by the outer 
and inner (white) contours, respectively, which bound the central disk region ot interest 
in this work.
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Observations in this investigation are organized using four angles (See Figure 3-2). 

where the First two (S and D) are measured relative to the local zenith direction. Z. at the 

geographic position of an individual pixel, a third (A) is determined by the projections of 

the solar and satellite directions, L and R, respectively, onto the local horizontal plane at 

the pixel, and a fourth (P) is phase angle of the pixel about the sub-solar point. In this 

discussion, a right-hand geocentric coordinate system is used with the x-axis defined bv 

L, the z-axis perpendicular to L in the plane defined by L and Earth's rotation axis, and 

y = z x x . The effective emission altitude for the pixel location is assumed at the outset 

to be 500 km. Selection of this altitude is important, as will be discussed as part of the 

analysis. Following the geometry in Figure 3-2. the solar zenith angle, S. is defined as 

the angle between Z and the sun-earth line, L=L'. The DE-1 satellite zenith angle. D. is 

the angle between Z and the satellite position, R, which is directed from the pixel to DE 

1. Solar insolation is constant along a contour of constant S, which is symmetric about 

L. and, for a homogeneous thermosphere, the FUV brightness would be independent of 

position along this contour. That position is specified by the solar phase angle. P. which 

is measured from the y-axis in the z-x plane. The angle P=0° therefore identifies the 

afternoon sector. The azimuth angle, A is defined as the angle between the projections of 

L ' and R on a plane whose surface normal is Z. This plane is illustrated at the surface of 

the sphere in Figure 3-2, with the projections of L ' and R and the resultant angle A 

shown in the inset. The reference angle A=0° is defined for R in the L '-Z  plane and 

sunward of Z, for which this pixel is anti-sunward of the geocentric radius vector to the 

satellite, T , which is not shown. For the illustrations of Figure 3-2, A=150°.

As an example o f how the four angles vary for the ensemble of pixels in a single 

image, the values of the angles S, D. P and A are shown in Figure 3-3 for the disk region 

of the image shown in Figure 3-1. The general variation in each angle is coded at the 

bottom of the figure. The dependence on S is straightforward (Figure 3-3a). with the 

zenith angle systematically decreasing from 180° toward 0° for pixels approaching L at
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z

Figure 3-2. Graphical illustration of the geometry for DE-1 measurements o f dayglow 
brightness. The satellite (R), solar ( I /) ,  and local zenith (Z) vectors extend outward from 
an arbitrary pixel at an assumed effective emission altitude. The solar and satellite zenith 
angles, S and D respectively, are indicated. The orthogonal coordinate axes are defined 
geocentrically by L  (parallel to L '), z perpendicular to L in the plane containing that 
vector and the earth’s rotation axis, and y = z x x . The phase angle P is defined as the 
angle between the y-axis and the projection of Z into the y-z plane. The azimuth angle A 
is shown in the inset for this pixel, where the satellite, solar, and zenith vectors (R. L. 
and Z) and solar and satellite zenith angles (S and D) are shown. The angle A is drawn 
between the projections of S and D onto the local horizontal.
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Solar Zenith Angle ( S )  Satellite Zenith Angle (D)

(c) (d)

Phase Angle (P )  Azimuth Angle (A)

Angle

Figure 3-3. Angular variables for image of Figure 1. Variation of (a) solar zenith angle S. 
(b) satellite zenith angle D , (c) phase angle P, and (d) satellite azimuth angle A are 
shown for the image pixels of Figure 1. The variation in magnitude of each angle is 
coded below. The four angles are defined in the text and actual values are given.
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the upper left in the figure. The range of D is seen in Figure 3-3b to vary between 0° at 

-T  (directed from the satellite to the subsatellite point and then to the center of the 

projected earth) and -65° near the limb-disk separation. The angle P varies from a low of 

61° in the lower left comer of Figure 3-3c up to 155° in the upper right comer. 

Variations in A are more complex, but for a fixed D (all pixels in a circle about the 

subsatellite point) the values of A shown in Figure 3-3d increase progressively from 0 C 

for pixels towards the lower right (anti-sunward from -T ) to 180° in the sunward 

direction.

3.3 Modeling Method

The initial analysis by Nicholas [1993] and Nicholas et al. [1997] evaluated the 

dependence of the photometer’s response on S and D only, while assuming no 

dependence on A or P. The variation with S dominates, as the response increases by 

-300%  between S=80° and 20°. for example, while the maximum variation for D=10c to 

60° is on the order of -10% . In this new analysis, the response as a function of A and P 

is also determined for given ranges of S and D. Although the dependence of the response 

on these parameters may be slight (in comparison to the strong dependence on S and 

weak dependence on D), some physical properties of the thermosphere may be revealed 

in this analysis. Furthermore, the inclusion of these two angles in the quiet-time analysis 

serves to uniquely specify any point on a surface above Earth in the sun-satellite 

coordinate system described in the previous section.

A photon of the solar 130.4-nm OI emission incident on Earth’s atmosphere is 

readily scattered by thermospheric O through resonance. The thermosphere is optically 

thick to this emission and relatively thin to the 135.6-nm line emission as the latter is 

associated with a spin-forbidden transition and is -1000  times less likely to resonate 

with incident radiation. There is a particular altitude below which the optical depth, t. is 

large enough to prevent a measurement (by DE-1) of the origin ot the thermospheric
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130.4-nm emission. Photons that are not attenuated by 0 2 in the lower thermosphere 

scatter multiple times and appear to originate from this altitude where x = I. For a 

particular set of inputs to MSIS-86 [Hedin, 1987] and at S=30°. for example. Meier 

[1991] determined that at line center the T=1 surface is at an altitude between 500 and 

700 km. This altitude depends on the density altitude profile of O which varies with the 

overall level of solar activity and the corresponding EUV flux. Using this work by Meier 

[1991], we calculate the T=1 O density for line center OI 130.4-nm emission to be 

~5 .5x l0 6/cm J. A large part of the 130.4-nm emission measured by the photometer will 

appear to originate from a surface at the x=l altitude, including the entire photoelectron 

excited component and a large part of the resonance scattered component. A smaller part 

of OI emissions will originate from higher altitudes through single-scattering of solar 01 

in the upper thermosphere.

Variation in the photometer’s response with A at fixed S and D is inherent to this 

analysis of DE-1 images, where all angles are calculated at a fixed altitude. For instance, 

if the altitude used for the calculation is higher than the actual x=l altitude, then the 

response at A=0° (and fixed S and D) will appear to be sm aller than the response at 

A=180°. This reflects the fact that the photometer is actually sampling regions of lower 

S and greater emission rate at the true t= l  surface. The converse is true for observations 

at A=0°. For example, sampling at fixed S, D=45°. and the entire range of A. where the 

angles are calculated at a surface 200 km above the true t= l  surface, for example, will 

yield count rates from portions of the dayglow which are actually > 400 km apart, or 

several pixel widths at DE-1 apogee. There should be no A dependence if the x=l 

altitude is chosen correctly, however this altitude varies with position on the dayside and 

with the degree of heating related to temporally varying solar EUV and FUV inputs. 

Characterization of the photometer’s response with A is performed in the following 

section.
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The column emission rate of 130.4- and 135.6-nm OI emissions varies with solar 

EUV and FUV input. Long-term (>30 days) variations in the EUV flux affect the 

temperature of the thermosphere and the scale heights o f constituents such as N': and O. 

Short-term variations in EUV flux will have a smaller effect on thermospheric 

composition. However, these and related variations in the FUV flux may rapidly affect 

the column emission rate and thus the observed brightness of the FLjV dayglow. A 

known correlation [Hedin 1984; Barth et al., 1990] between solar UV intensities and the 

10.7-cm solar radio flux (FJ is used to characterize these brightness variations. In the 

relatively short period of Five months, from which quiet time images are used for 

modeling, the monthly average values o f F. Fm, range from a maximum of 222.8 Janskys 

(Jy) in October, 1981, to a minimum of 173.4 Jy in January'. 1982 [NOAA. 1984). The 

corresponding decrease in the x=l altitude for this range, calculated using MSIS-86 

[Hedin. 1987], is -8 0  km. where the required input for 24-hour averaged F is set to the 

monthly value. This is calculated at 1000 LT. day 80, Ap=6 . and at the geographic 

location 32°N. 254°E. following the example by Meier [1991]. For this modeling effort, 

it is assumed that overall variations in thermospheric temperatures are small and that 

variations in the solar UV spectrum only affect dayglow brightness and not the t= l 

altitude. It is thus recognized that extreme daily values o f F may have a significant 

effect, as is investigated in a later section.

Variations in thermospheric composition, specifically variations in the O column 

density with local time and latitude, may affect the brightness of the OI dayglow. It is 

therefore important to examine the dependence of the response on P. which, together 

with S, effectively represent local time and latitude. Variations in the x=l altitude with P 

are not investigated here, but can be as great as -150 km between P=0° and 180° (as 

determined at S=66° using MSIS-86 with F=Fm=I73.4 Jy, at 1725 UT of day 291). 

However, this wide range o f P for large S is never observed in individual images, where 

data are taken mainly in the morning sector. Therefore the x=l altitude is determined
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only as a function of S and D. Variations of brightness with P. rather than t  with P. will 

have a more direct effect on the photometer’s response, r. Such variations can be seen at 

high, fixed values of S in model images generated by Meier et al. [1995]. using the 

MSIS model for thermospheric constituents. These images clearly show that contours of 

constant OI brightness do not follow contours of equal S. an effect especially apparent at 

large S.

Variations in brightness with stepping mirror angle are not included in this analysis. 

Rairden’s [1985] analysis of photometer response vx. stepping mirror angle found an 

asymmetry in the reflectivity of the optics (to HI L a emissions) on the order of a factor 

of two between minimum and maximum excursions of the stepping mirror. However, 

our analysis shows nearly uniform reflectivity across most of the mirror, w ith a gradual 

reduction in sensitivity after scan line 80 (of 120) near maximum mirror excursion 

(maximum angle between photometer line-of-sight and DE-1 spin vector). Since the 

outer section of all images (limb region) is excluded from this analysis, brightness 

measurements near maximum excursion are rarely included in the quiet-time data set. 

Furthermore, in this imaging period (late 1981/early 1982) the sunlit portion of Earth is 

found in scans closer to minimum mirror excursion. Variations in mirror reflectivity are 

therefore assumed to have a negligible effect on the photometer’s response in this study.

For an initial demonstration of the relative importance of these parameters, the data 

are binned in S, D and the third parameter of interest, either F. P or A, resulting in values 

for the average response <  r >  as a function of the selected variables. This results in a 

representation of the photometer’s response with greater statistical significance than if 

the data were binned at once in all five parameters. The last step is to separate the 

dependence on F, P and A through an iterative technique which is described in a later 

section. There are two goals: (1) To identify and separate the dependence of <  r >  on F. 

P and A, and (2) To develop the means for normalizing < r >  in images to fixed values
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of these parameters for development of an S and D dependent reference response model. 

The source of variations in <  r >  with each variable will also be investigated.

3.3.1 Dependence on Azimuth Angle

To demonstrate the azimuth dependence, the response for each pixel within the disk 

region of every image (as previously defined) is binned in increments AS=3°. AD=5° and 

AA=30°. where the increments are made as small as possible while maintaining a 

reasonable sample in most sample bins. Throughout this discussion, bins may be denoted 

by the full range of angle values represented, o r more simply by lowest integer value of 

the range (e.g., AS=3°, S=66° indicates the bin for which 66°<S< 69°).

The mean photometer response <  r >;, in counts/pixel, and the standard error of the 

mean. G m j, are computed for the contents of the i-th azimuth bin. As an example. <  r >2 

for 30°<A<60° is shown in the three-dimensional projection of Figure 3-4a with S and D 

in the horizontal plane (x and y axes, respectively) and the mean photometer response in 

the vertical (z) direction. No smoothing has been applied. The number of pixel samples 

accumulated in each S-D bin is given in Figure 3-4b. as coded below the panel. Values 

for <  r >5 ( 120°<A<150°) are presented in Figures 3-4c and 3-4d using the same format. 

The number of samples is significantly larger for the larger values ot A. and there is no 

obvious strong dependence of <  r >  on A. Limitations in sampling for S<20°-60° are 

seen in the figures, where the range of S is largely determined by the latitude and local 

time of apogee.

An analysis o f the dependence on A is provided by investigating variations in <  r > j  

as a function of azimuth (i) for each 3° bin of S and 5° bin of D. This is shown in Figure 

3-5a for three ranges of S at a fixed range of D. The data points give the values ot <  r > j  

for the i-th 30° bin in A, and are plotted at the mean value of A determined from the 

samples in each bin. The coverage in S is insufficient to observe the dayglow in the first
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Figure 3-4. Average counting rate in two bins of azimuth, (a) Mean photometer response 
<  r >  in counts/pixel, as functions of S and D for the azimuth angles 30°<A<60°. (b) 
Number of pixel samples used to determine <  r > . (c, d) Repeat of 4a and 4b for 120° < 
A<150°. The number of samples in each S-D bin is coded in according to the 
accompanying color bar
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Figure 3-5. Dependence of photometer response on azimuth angle, (a) Mean photometer 
response< r >  at 50°<D<55° is shown as a function of azimuth angle for three ranges of 
S. See the text for definitions of the angles. Uncertainty in A is given by the standard 
deviation for all samples in the bin. Uncertainty in <  r >  is the standard error of the 
mean for all samples in the bin. The least-squares fitted slope, m. is negative at 
63°<S<66° and 72°<S<75°, but positive at 81°<S<84°. These three slopes are included 
in the lower center panel in Figure 5b. (b) Values o f m are shown as a function of S tor 
twelve 5° bins of D. The stronger dependence of <  r >  on A at higher values of D is 
evident. Slopes for 60°<D<70° are not shown.
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two or three 30° bins o f A (i=l,2.3), depending on the range of D. Each horizontal bar 

specifies the standard deviation for the values of A in the bin, and the vertical bars 

indicate Gmi for <  r >j. A linear fit is determined for this and all other S-D bins (least- 

squares, weighted by l/CTmj) if three or more values of <  r >j are available to calculate a 

slope and intercept. The sole parameter later used from this fit is the slope, m: the values 

o f which are given in Figure 3-5b for all S and for D up to 60°. The uncertainties in m 

due to the uncertainties in the fit to <  r > j are denoted by vertical bars.

Within the error of the individual fits the slope correctly remains at zero for all 

values of S at D<30°. with the exception of some small number of points. The slope 

deviates from zero at greater values of D, with negative values at S< 810 and positive 

values at S>81°. Negative (positive) slopes indicate a decrease (increase) in brightness 

with increasing azimuth. The overall result is that the dependence of <  r >  on A is 

significant, at least implying the necessity of applying corrections to the low counting 

rates measured at solar zenith angles >81° .  The slopes reported here may be used to 

calculate the corrections necessary to normalize any observed photometer count rate to a 

fixed value of A.

The variations in <  r >  at S<81° are less than 10% of the average count rate, 

suggesting that variations with A can be ignored in the initial phases of investigations or 

for those in which variations on the order of 10% are o f secondary importance. Values of 

m in (counts/degree of A) for D>20° and S>81° are reported in Table 1 of Appendix A. 

as corrections here are o f greater significance compared to the values of <  r >. When 

necessary, corrections of the response to A=90° are carried out using the values ot m for 

all values of S and D which could be calculated from the 156 images in the quiet time 

set. These corrections are for S, D and A calculated at an assumed emission altitude of 

500 km. The non-zero slopes indicate that this choice of emission altitude is too low at 

low solar zenith angles. Conversely, 500 km is too high at values of S on either side ot
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the solar terminator (S=90°). It is believed these results are due to changes in 

thermospheric composition and solar illumination with S. In particular, the effects of 

atmospheric absorption and shadowing by Earth are apparent at S>90°. where the slope 

decreases with increasing S, indicating that the effective emission altitude is increasing 

with S. Local time and latitudinal dependences are ignored for this first analysis, as are 

variations in <  r >  with F.

It is possible to estimate an effective emission altitude by repeating the procedure 

described here at several altitudes and then determining (at each S and D) the m=0 

altitude by means of a linear interpolation of the m values. In practice, the 156 images 

provide only enough coverage in azimuth to establish, with reasonable certainty, the t= l 

altitude at S>60° (note large error bars for slopes at low S in Figure 3-5b). Also, it is not 

possible to determine this altitude for small D. where, by geometric construction, the 

azimuth dependence must be zero. Plots o f the m=0 effective altitude vs. S are shown in 

Figure 3-6a through 3-6c for D=25°. 40° and 55°, respectively, based on a fit to values of 

m calculated at altitudes 200. 400, 500, 600, and 800 km. Note that there is a minimum 

in the x=l altitude at or near S=90° for each value of D.

3.3.2 Dependence on Phase Angle

An initial analysis of the response of the dayglow as a function of S. D and phase 

angle, P. is performed by organizing the data from the 156 quiet-time images in bins ot 

AS=3° and AP=15°. It is determined, but not shown here, that the variation in the phase 

dependence with D is negligible. The mean photometer response, <  r >j, is calculated at 

all S and P, where the index now indicates a 15° bin in P. and is shown in Figure 3-7a as 

a function o f P at S=66°. The standard error of the mean is shown with a vertical 

errorbar. and a linear least squares fit is superposed. This plot clearly shows a trend of 

increasing response with decreasing P. and greatest values in the low-latitude afternoon 

sector. A positive inflection is expected at P~180° as greater values of P indicate points
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Figure 3-6. Emission altitudes inferred from azimuth analysis. Effective emission 
altitude (T=l) calculated for 60°<S<105° in bins of D (AD=5C) at D=25°. 40°. and 55'. 
Vertical bars at each point indicate uncertainties.
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S, where m is indicated with open diamonds. The uncertainty in the value of m is 
indicated with vertical bars. A gaussian curve, least-squares fitted to the data, is overlain.
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on Earth approaching the brighter afternoon sector (as observed here at P e l80°). The 

slope of the fit for each range of S is shown in Figure 3-7b. The standard deviation of S 

is not shown in either plot of Figure 3-7. as it is -1° for each bin.

Corrections with which to convert < r(S ,P )>  to < r(S.P=90°) > are calculated from 

these observed slopes, m. smoothed over bins of S with a 9°-wide boxcar window. A 

least-squares fitted gaussian function, weighted by the inverse of the variance in each 

value of m. is obtained for the data to provide an overall estimate of m where no data are 

available (S<29°) or where large uncertainties are present. This combination of actual 

and fitted values eliminates the large variations between bins of P at low S but preserves 

the observed variations in m at high S. where the gaussian function cannot exactly fit 

both the positive and negative values of m. An artificially weighted data point of m=0 at 

S=0° is provided to control the gaussian fit. This is the correct value since at S=0° all 

values of P indicate the same point on Earth, the sub-solar point.

These data imply that the photometer’s response at a given value of S is a function of 

the position of the observed location about the sun-earth line. Earlier assumptions of 

equal irradiance along a contour of constant S being true, the assumption of equal FUV 

dayglow brightness is not. An understanding of this variation comes from efforts in 

modeling the pertinent thermospheric constituents (O and Ni). CF is not modeled as it 

was shown by Nicholas [1993] that during quiet times, at most approximately 29c of the 

OI dayglow at 130.4 and 135.6 nm is absorbed by this constituent.

A simple graph of constituent densities, calculated using MSIS-86 [Hedin. 1987] 

with the following set of parameters: F=297 Jy, Fm=218 Jy and Ap=6, is shown in Figure 

3-8. where the image in Figure 3-1 is used in selecting S, P and geographic coordinates. 

The densities shown in Figure 3-8 are for 500 km altitude, S=66°, and at geographic 

coordinates corresponding to the observable range of P. This demonstrates the large- 

scale changes in thermospheric densities with increasing phase angles that may well 

affect the observed FUV brightness during periods of low magnetic activity. The oxygen
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P h a s e  Angle

Figure 3-8. Plot o f M SIS-86 number densities for Fixed altitude and geographic position, 
and low geomagnetic activity for a range of local times. This simulates the diurnal 
variations at altitude in O, Ni, and O2 that may be viewed as a phase dependence in 
<  r >  .
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density at 500 km is markedly greater in the afternoon sector at this altitude, while the 

ratio of O to N 2, represented with a dashed line, decreases. The importance of O/N? at 

this altitude to the FUV brightness problem is probably very small. However, the trend 

in the O densities seems similar to variations in <  r >  with P.

To further investigate the relation between thermospheric composition and dayglow 

brightness, an analysis which compares average neutral densities (calculated with MSIS) 

to average photom eter response is performed. The densities of O and N2 are calculated at 

altitudes 200 and 500 km using the correct MSIS inputs for locations given by all pixels 

in the 156 images used in the quiet-time response model. These altitudes are selected to 

(1) investigate the high altitude composition where the OI dayglow is unaffected by N; 

(500 km) and (2) investigate densities at altitudes where N2 may have an effect on the 

FUV OI dayglow and where O presents a good proxy for column densities (200 km). 

The average neutral densities < 0 >  and <Ni> are calculated at each of these fixed 

altitudes as a function of S and P, by replacing the observed count rates in the 156 

images with corresponding number densities. This allows for direct comparison of 

composition variations to the <  r >  vs. P dependence shown for all S in Figure 3-7b. The 

correlation between composition and photometer response as a function of P is 

determined for each 3° bin of S at these two altitudes. Results indicate that during quiet 

times, the observed brightness varies most closely with the O density at 500 km altitude, 

with a correlation factor of .98 (see Appendix B) between the two data sets at S=66c. for 

example. The average correlations of <  r >  to < 0 >  and <0/N :>  over all values of S=0- 

105° at this altitude are 0.47 and -0.37 respectively, indicating a fair overall correlation 

of photometer response with O density. Furthermore, a weak anti-correlation between 

the response and <OfN2> is revealed.

MSIS results for 200 km, where N2 number densities are much closer to those of O. 

indicate a different relationship. At this altitude, where density variations more closely 

reflect the variation in total column density, the correlation of <  r >  with O at S=66° is
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only .37. whereas the correlation of <  r >  with the < 0 /N 2> ratio is .47. The average 

correlations over all S between the average count rate. <  r >. and values of <0> and 

<0/N :>  are -0.10 and 0.26. respectively, indicating a closer relation between < r > and 

<0/N :> at this altitude than at 500 km. This correlation is clearly quite low

In all cases, the percent variations in <  r >  with P at fixed S are less than the 

variations in O. For example, <  r(S=66°) >  has high and low values of 48.1 and 34.6 

counts/pixel at P=45° and P=195°, respectively, corresponding to a decrease of 289c. 

Again utilizing MSIS to provide quiet time values, decreases in < 0>  densities of 31% 

and 55% are observed at 500 and 200 km, respectively. The high and low values of <0>  

concentration at 500km are at P=60° and 195°. respectively, which is reflected in the 

high correlation of < 0 >  and <  r >  described above. The lower correlation of <0> with 

< r >  at 200 km is reflected in the much closer proximity o f high and low values of <0 > 

at P=135° and 195°. respectively.

These calculations suggest that the photometer’s response is representative of O 

density at the higher altitudes. However the O/N: ratio at altitudes where photo-electron 

excitation dominates show a weak correlation with the observed variations in average 

photometer response. That no strong correlation with either parameter was revealed in 

this analysis indicates that the counting rate is controlled by no single parameter. Rather, 

it is influenced by both high altitude O density and by lower-thermospheric 0 /N : ratio. 

Variations in total column density are well represented by variations in O densities at 

lower altitudes, and by this analysis, are not shown to correlate strongly with variations 

in the OI quiet time dayglow brightness.

3.3.3 Dependence on Solar 10.7-cm Radio Emission 

Brightness of the FUV oxygen dayglow is directly related to the intensities of the 

solar EUV and FUV fluxes. An increase in the solar FUV component results in an 

increase of the resonantly scattered OI 130.4-nm dayglow emission. Furthermore, an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7!

increase in related solar EUV emissions [Hinteregger. 1981: Lean. 1987] increases the 

secondary electron flux in the thermosphere, which in turn increases the intensity of the 

collisionally excited portion of the OI 130.4-nm dayglow. It is expected therefore that 

the photometer’s response, for a given observational geometry, will also be closely 

related to the values of the solar EUV and FUV fluxes. Measurements of the full solar 

UV spectrum were not made throughout the time of the quiet-time observations, so as a 

proxy for measurements of ultraviolet solar emissions we utilize the 10.7-cm solar radio 

flux. A long-term correlation between the intensity of the solar FUV and EUV emissions 

and the intensity of the 10.7-cm solar radio flux has been established [Hedin. 1984: 

Barth et al., 1990],

The quiet-time images are averaged in 3° bins of S and are ordered by the discrete 

value of the 10.7-cm solar flux (hereafter denoted simply by F) obtained at local noon in 

Ottawa on that day (1700 UT). It has been determined, but not shown here, that the 

variation in <  r >  with F is similar at all D. The values of F in the quiet-time set range 

from 127.5 Jy on January 13, 1982. to 296.5 Jy on October 18. 1981. and are different on 

each day of the quiet-time observations. The average brightness in the S=66°-69c bin is 

shown as a function of F in Figure 3-9a where the ten points correspond to ten days from 

the quiet-time set. A linear least squares fit, weighted by the inverse of the variance of 

<  r(S.F) >. is shown as a solid line. Note that the positive slope indicates an increase in 

photometer response with increasing F, which is the expected relationship.

Expanding this result to include all S, a linear fit is obtained whenever three or more 

values of F are included in a given bin of S. The value of the slope from each of these 

fits is shown as a single point in Figure 3-9b, with the range of uncertainty in these 

values shown above and below these points using thin solid lines. This range lies almost 

entirely above zero. The effect of variations in solar flux is now evident at all solar 

zenith angles. A fit of the form ( ( l-tanh(S/'a-b))/c)d is provided, where the coefficients 

a, b, c. and d are determined iteratively to be 21.46, 3.030, 6.519 and 1.361. respectively.
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Figure 3-9. Dependence of <  r >  on F. (a) Plot of <  r >  vs. F at 66°<S<69° for ten quiet
time days with separate values of F. Average counts in are indicated with open circles. A 
least-squares Fitted linear function is Fit is overlain and the value o f the slope, m. is 
shown in the Figure, (b) The values of m for all S, where m is indicated with open 
diamonds. The uncertainty in the value of m is indicated with solid lines above and 
below the values of m. An iterative Fit using a function of the form ( ( l-tanh(S/a-b))/c)d 
is performed. The resulting smoothly varying curve is plotted over the values of m.
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The resultant curve is shown in Figure 3-9b as a heavy solid line. This fit provides a 

statistically valid, smoothly varying approximation to the slopes for all S observed in the 

quiet-time set. Furthermore, it provides an estimate of the slopes at smaller values of S 

not observed in this quiet-time set, but which may be observed later in other DE-1 

images and the fit then tested. Images are corrected to F=200 Jy using the values 

resulting from the fit at all S. It should be stated that the coefficients for the fitted 

function, described above, are preliminary and that definitive values are given in the next 

section.

3.3.4 Iterative Technique for Separating Dependences 

The parameters A, P and Fhave been shown to influence the photometer's response 

to dayglow brightness at fixed values of S and D. It is necessary to make corrections so 

that variations in brightness over the entire observed disk region may be reduced to 

variations in S and D only. Modeling of Earth's FUV dayglow as a function of these two 

angles can then be performed. The results of preliminary analyses shown in Figures 3-5. 

3-7. and 3-9 may be used to correct images to fixed values of each parameter. However, 

since the parameters A, P and F were initially examined separately, the analysis of one 

parameter may be compromised by effects of the other two parameters. In an attempt to 

separate these dependences, an iterative technique is developed under the assumption 

that the effects of these parameters are independent, and therefore separable. It is clear 

that this is not entirely true with regard to the probable small change in the azimuth angle 

dependence with phase angle, for example, but the data from 156 images provides 

insufficient coverage to fully characterize all the dependences of dayglow brightness 

simultaneously. Furthermore, the effects of variations in the angle parameters are on the 

order of only 10% of the brightness for most solar zenith angles. A variation in the 

response that depends on the product A P, for example, would presumably have even 

less of an effect over the sunlit disk.
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The dependences on the three parameters F. P. and A are calculated in the following 

manner. First, the initial dependence of <  r >  on F is taken to be that described 

previously and all quiet-time images are corrected to F=200 Jy. Second, the initial 

dependence of <  r(F=200 Jy) >  on P is found and all quiet-time images are normalized 

to P=90°. F=200 Jy. Third, the dependence o f <  r(F=200 Jy, P=90°) > on A is found and 

all images are corrected to A=90°. Images are normalized to P=90° before azimuth 

corrections are determined since symmetry in the t= l surface (A dependence) across the 

Sun-Earth-DE plane is assumed.

In the second iteration, the corrections for A and P alone are applied to quiet-time 

images in order to determine an A- and P-corrected F dependence that is superior to that 

obtained in the first iteration. This is repeated until each dependence changes 

insignificantly between iterations; i.e., values of i-th iteration are all within the range of 

uncertainty o f values from the previous iteration. The analysis shows that the A and P 

dependences determined in the third iteration do not differ significantly from the results 

of the second iteration anywhere in the observed range of S. The F dependence 

determined in the fourth iteration is similar to that found in the third. The values of m 

determined in each iteration for F. P. and A are shown in Figures 3 -10a. 3 -10b and 

3 -10c. respectively, and no error bars are included. The solid line in each plot 

corresponds to the values used to normalize images to fixed values of F. P and A at all S. 

Corrections for A are only shown for 50°<D<55°. The final coefficients of the tits to the 

F and P slopes are reported in Appendix A. as well as the final values for the A slopes, 

described earlier.

3.3.5 Dependence on Solar and Satellite Zenith Angles

The mean photometer response <  r >  is determined as a function of S and D only 

after scaling the value of each disk-region pixel to A=90°, P=90° and F=200 Jy. The 

corrected images are binned in increments AS=1° and AD=6°. The smaller bin size for S
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Figure 3-10. Summary of dependence of < r >  on F, P, and A. Iteratively determined fits 
to slopes of F and P dependences of <  r >  and iteratively determined slopes of A 
dependence at all S. In all cases the heavy line indicates final values, (a) Fit to slope of 
<  r >  vs. F. (b) Fit to slope of <  r >  vs. P. (c) Slope of <  r >  vs. A at 50°<D<55°.
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is needed to characterize the more rapid variations in brightness with S. as compared to 

the weak linear dependence on D. The mean photometer response <  r > is then 

computed for the contents of each bin. Values of <  r >  thus obtained are summarized in 

the 3-D projection o f Figure 3-11 as functions of S and D. The ranges of S and D for 

available measurements were summarized in Figure 3-4 for two examples at fixed A and 

are typical of the other angles.

It is useful to select a well-behaved function to represent the values of <  r > so that it 

can provide a reliable extrapolation o f the photometer's response at values of S and D 

not available in the original quiet-time data set, but which do exist in other images 

obtained in the mission. For example, a least-squares fit to the data with a polynomial 

function of S and D results in values that closely match the data for a large range of S 

and D sampled [Nicholas, 1997]. Such a function does not fit the data over the entire 

observed range of S and D, however, and rapidly departs from a realistic representation 

o f the photometer response at S and D outside the domain of the quiet-time observations. 

The use of a trigonometric function of the form <  r >  = B cosn(S) results in a better fit to 

the data at fixed D and is well-behaved at low values o f S. A linear least-squares fit ot In 

<  r >  as a function o f In cos(S) then yields the coefficients ln(B) and n. Through several 

trials it has been found that this function provides a good fit to the data tor S < 80°. A 

separate treatment is required for greater S. as an attempt to fit the trigonometric 

function for greater zenith angles results in increasingly large deviations ot the tit from 

the data at S>60°.

The trigonometric fit to <  r >  is carried out for S < 80° in each 6° bin ot D shown in 

Figure 3-11, resulting in coefficients In B and n for each bin of D. A linear function is 

then separately fit (least-squares, no weighting) to all the values o f In B and n so that 

values of these coefficients that vary smoothly over the range of D are found. The 

smoothly varying coefficients for each bin of D are given here:
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Figure 3-11. Average response <  r >  of the DE-l FUV photometer for the quiet-time 
data set for Filter #2 (123-165 nm) for zenith angles S=0°-105° and D =0°-65°. The 
response in individual images is normalized to A=90°, P=90° and F=200 Jy.
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In B=(4.32 ± 0.04) + (0.002±0.001 ) D i3. h

n=(0.75 ± 0.04) -  (0.003 ± 0.001 )D  (3.2)

This provides for the calculation of In B and n at any D. The variation of each term with 

D is small but significant. This fit represents improvements to the model since the 

original fit used by Nicholas et al [1997] and shown in Figure 3 of that work.

No fit is performed for 80°<S<105°. as an appropriate function was not determined. 

Instead a table is constructed of values of <  r >  in increments AS=1°. AD=U. A 3 'x3c 

boxcar averaging technique is applied to smooth the data, after empty bins are replaced 

with interpolated values. The edges of the average data array (D=0°.65c and S=105') are 

smoothed by simply averaging over all neighboring bins. Using these data instead of a 

fitted function reduces the large percent deviations that occur when a function such as a 

quadratic is fit to data that ranges from 10 counts (S=80°) to fractional counts (S=105~ >. 

Such a function tends to show large percent deviations from the fitted data at low counts.

A 3-D projection of the reference values <  r > ' calculated from these two methods is 

shown in Figure 3-12 for S = 0°-105° and D = 0°-65°. The trigonometric fit and 

smoothed tabular data meet at S=80°. A final 5°x5c boxcar averaging is performed in the 

overlap region S=75°-85° for all D with smoothing at the array edge performed as 

described previously. This smoothes slight discontinuities between the trigonometric 

function and smoothed values of the data.

A quantitative comparison of the original quiet-time observations (in l =xl = bins) and 

the reference values of Figure 3-12 is obtained by computing the percent deviations ofthe 

data from the reference values:

PD = I00(data-reference value preference value.

Four examples are presented in Figure 3-13 for D=10°. 25°. 40° and 55c over the range 

of S in which measurements were obtained. It is clear that the reference values <  r > ' 

provide an accurate representation of the measured response of the photometer to within
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Figure 3-12. Calculated reference values <  r > ' for the DE-1 FUV photometer response 
normalized to A=90°, P=90°, and F=200 Jy, using Filter #2. The solar and satellite zenith 
angles are S=0°-105° and D=0°-65° respectively.
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Figure 3-13. Percent deviations of the average response <  r >  (Figure 3-11) from the 
reference values <  r > ' (Figure 3-12) for all S and four values o f D: (a) D=10°. (b) 
D=25°, (c) D=40° and (d) D=55°.
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-10%  for all D at S<95-100°, as no larger percent deviations are apparent at these or 

other values of D.

A first application of the resulting reference response values is provided by creating a 

model image of the disk and auroral regions in the format of a standard image, such as 

that presented in Figure 3-1. The limb region is deleted and the observed values for the 

photometer’s response in the disk and auroral regions are replaced by the computed 

reference values. This is done pixel by pixel for each pixel’s individual values of S. D 

and A. The resulting “image’’. Ir, is presented in Figure 3-14. where the response has 

been converted to brightness as coded by the color bar to the right using the conversion 

3.08 counts/kR-pixel, and can be compared directly with the inner regions (disk) of 

Figure 3-1. In preparation for use as an analysis tool, the DE-1 image of Figure 3-1 is 

smoothed using a 5x5 pixel boxcar average to reduce statistical variations. We refer to 

this image as I0 and present it in Figure 3 -15a where the brightness is color coded by the 

bar in the center of the figure using numerical values to the left of the bar. Weak auroral 

emissions at the lower right in the image are difficult to detect in the figure. To 

demonstrate how the reference image in Figure 3-14 compares quantitatively with IQ. the 

percentage deviation of Iq from If is constructed in Figure 3 -15b. and coded using a 

color table representing PD values listed to the right o f the color bar. In this format, the 

auroral emissions are very prominent, as the auroral "contamination” represents a -60% 

increase in brightness from the quiet-time dayglow. At lower latitudes the disk region 

displays local variations on the order of - 10%.

3.4 Series of Images, Quiet

As part of DE-1 imaging operations on October 18, 1981 (day 291), a series ot 

images were obtained with the FUV imager using the 123-165 nm passband filter (#2). 

14 of which are presented here. This took place during a period of low geomagnetic 

activity, and the images obtained were included in the original 185 quiet-time images, 

but not as part of the data set used here to derive the model. The reasons for excluding
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Figure 3-14. Reference image Ir constructed from the original image of 1725 UT on 
October 18, 1981, shown in Figure 1. This image is constructed by replacing, pixel by 
pixel, the original photometer response by that derived from the reference values for the 
corresponding S,D, and A, which are applicable only to the disk region of the original 
image. The color bar to the right of the image gives reference brightness values in 
kiloRayleighs.
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Model Dayglow for Day 291 Image
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Figure 3-15. Comparison of dayglow image to model, (a) Image obtained on October 18. 
1981 at 1725 UT, but with the limb region removed and smoothed using a 5x5 pixel 
boxcar technique. The color bar is coded on its left side with the measured brightness in 
kR. (b) Percent difference image, PD, showing deviations of the measured brightness in 
the original image lo from the reference image Ir. A contour describing regions of 
brightness 20% below reference values indicates only small areas near the terminator. 
The color bar is coded on its right side with the percent deviation range of ±60% .
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these images in the final set will be described later in this section. The images presented 

in this section were taken from altitudes ranging from -1 .3  Re just after perigee to 3.65 

Re at apogee, an altitude which is reached at -1815 UT during the twelfth image. The 

time to obtain these 14 images was -3 .0  hours. During this sequence, the angles S. D 

and P and A change dramatically at each geographical location: D varies from 0° to 65= 

for some pixels and S changes by up to 45° (largest variation at equatorward pixels). The 

solar flux at 1700 UT is 296.5 Jy, the highest of all quiet-time image days.

To examine a series of images with changing viewing geometries, it is useful to 

project them onto a grid of geographic coordinates that clearly shows the morning sector, 

auroral zone and terminator. The 14 PD images are shown in Figure 3-16. each mapped 

to an orthographic grid with the time of the first scan listed above each mapping. A one- 

to-one mapping of pixels from a PD image to their geographic position on the projection 

is performed for all pixels in the disk region. Knowing the coordinates at the center of 

each pixel, the dimension of each pixel is determined using a nearest-neighbors scheme. 

The orientation of Earth in each projection is such that the center of the coordinate grid 

corresponds to a fixed local solar time (1000 LST). effectively fixing the position of the 

terminator for this series.

The AE indices for October 18. 1981, are shown in the upper-left-hand panel of 

Figure 3-16. AE is < 100 nT for nearly the entire day. indicating that the level of 

geomagnetic activity is quite low. The first image, taken at 1536 UT from an altitude of

1.3 Re, is shown below the AE indices. In the 12 minutes required to obtain this image, 

the photometer’s field of view progressed toward the morning terminator (right to left 

inmapped image) as the imager scanned from low to high latitudes and the satellite 

altitude increased to 1.7 Re. The center of this image is at geographic coordinates of 

40°N, 243°E. For each subsequent image the longitude of the center o f the mapping 

decreases by 3°, corresponding to the rotation of Earth between consecutive 12 minute 

images. In this way, the local solar time of an observer is held constant and variations ot
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Figure 3-16. Series of 14 images taken by DE 1 on October 18. 1981 between 1536 and 
1838 UT. Images are shown using an orthographic projection of geographic coordinates, 
with the center of the First projection at 40°N  and 243°E. Constant local solar time is 
maintained through the sequence by decreasing the longitude in the center of the 
projection by 15° per hour o f time elapsed from the beginning of the imaging series (3° 
per successive 12 minute image).
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the dayglow are more easily discriminated from changes in viewing geometry. The 

satellite’s motion to higher latitudes is evident in the changing image field of view, of 

which only the disk region pixels are shown. By the time of the third image < 1600 L'T >. 

the disk region includes part of the terminator. Note also that the image field of view 

covers a significantly larger portion of the sunlit Earth in the images that follow as the 

satellite moves to higher altitudes. Near the time of the last image, taken at 1838 L’T. the 

imager provides less observational coverage of dayglow emissions at subaurorai 

latitudes (than images taken earlier) as the satellite begins to descend in altitude over the 

nightside. Note the signature of the aurora in the polar region.

An analysis of this series of images is used to demonstrate that the photometer's 

response is independent of observing altitude. To do this the percent differences are 

calculated between the number of counts for each disk-region pixel in the original 

images and the corresponding reference values at the same S. D. and A. The number of 

pixels is then counted for each 19c increment of PD values from -100% to +100%. 

Pixels at auroral latitudes (geomagnetic latitude > 65°) are excluded. The results are 

plotted as histograms where, for example, the result for the first image taken at 1536 L'T 

is shown in Figure 3 -17a. The number of samples in each bin is plotted as a function of 

the percent difference. Each data point is represented by an open diamond and the result 

of a gaussian least-squares fit by a smooth line. Parameters of the fit include a peak in 

the distribution of PD values (PDMAx) at -8.9% . with a full-width-at-half-maximum 

(FWHM) of 29.0% (FWHM = 2.35-a). The peak in the percent difference histogram will

be referred to as P D max-

Similar gaussian fits are calculated for the other 13 images in the series and values of 

PDmax are presented in Figure 3 -17b for all 14 images (open diamonds) along with the 

results of a linear least-squares fit. This fit shows a small increase in the average overall 

response of the photometer with respect to modeled values. The value of PDmax ranges 

from -8.9%  to -2.5%  over the series of images while the FWHM of the distributions 

ranges from 29.47c to 38.2%. The larger width values are calculated for later images and
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-1 0 0  -5 0  0 50 100
PD

image in Day 291 Sequence (1 to 14)

Figure 3-17. Statistical distribution of PD values in images from day 291. (a) Frequency 
of percent differences o f photometer response from reference values for all disk-region 
pixels in the image of 1536 UT on October 18. 1981. The most frequently observed 
percent difference value is found by fitting a gaussian function (solid line) which peaks 
at the most probable value of the PD image, (b) Most probable value of percent 
deviation distribution for the 14 images in the series of Figure 14.
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are possibly due to larger percent deviations observed at or near the terminator, an area 

which is not imaged extensively until -1625 UT.

The approximately gaussian distribution of the percent differences can be simulated 

by imposing counting statistics on the calculated reference image Ir to create a noisy 

image. The counting statistics are assumed to reflect a normal distribution, with Poisson 

statistics applied for rates less than 10 counts/pixel and a gaussian distribution used to 

approximate Poisson statistics at greater rates. This is done by constructing a large 

integer array for each count rate, where elements are assigned values at or distributed 

about the reference response. The frequency with which a value appears (say 8 

counts/pixel for an initial rate of 10 counts/pixel) is determined using statistics of a 

normal distribution. A single element is then randomly selected as the noisy count rate 

for the pixel. A histogram of the percent deviations of the noisy synthetic response from 

the noiseless reference values, similar to that in Figure 3 -17a for an actual image, is 

shown in Figure 3-18. The gaussian fit to this distribution is centered approximately at 

0% with a FWHM of 26.6%. The corresponding width of the histogram for the real 

image was shown previously to be 29.0%.

The histograms for all of the 14 synthetic images indicate FWHM values ranging 

from 26.6% to 35.8% over the 14 image sequence, which is nearly identical to the values 

from the histograms derived from original images. Thus the variations in measured 

dayglow brightness for the quiet-time set may be attributed primarily to counting 

statistics inherent to the measuring instrument and viewing geometry. This demonstrates 

that the reference values for instrument response generated from quiet-time images 

provide a statistically valid and accurate measure of dayglow brightness.

There are several possible causes for the small variation in the value o f PDmax over 

the orbit sequence. (1) The dayglow is actually brightening over the three hour imaging 

time; (2) An increase in the response due to increasing length of the optically thin H La 

column emission at 121.6 nm; and (3) The correction to <  r >  to A=90° or P=90° at all 

disk-region pixels is insufficient, due to atmospheric conditions strongly affected by the
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Synthet ic 81 29 1 1 53635_C2h

Percent Difference

Figure 3-18. Histogram of percent deviation from reference values of pixels in a 
synthetic image, Is . This is developed by determining a new response according to 
normal counting statistics for every pixel in the disk region of the reference image Ir 
shown in Figure 14. The resulting percent deviations from the original reference value of 
all pixels are binned in 1% increments. The frequency distribution is depicted here by 
open diamonds, and a gaussian fit is superposed (solid line).
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high solar flux. Regarding the first point, only solar flare activity (or strong geomagnetic 

activity which is not the cause here) could influence the dayglow brightness on these 

short timescales. The ground-based H a solar flare observations [NOAA Solar- 

Geophysical Data, 1984], indicate a flare of importance IN at 1546 UT. The importance 

is based a scale o f I to 4 indicating size and qualifiers F.N.B indicating brightness. It is 

unlikely that the this minor solar flare activity can account for the - 8% variation in the 

dayglow brightness.

The second possible explanation for the increase in P D m a x  with time in the imaging 

series is the increasing column o f H which resonantly scatters solar H L a radiation. 

Confirmation of this effect is difficult in that the post-launch sensitivity of the 123 filter 

(#2) to this emission is known to decrease with time. An upper limit of -13% (S=60c. 

D=20°) for the contribution of H L a  to the total count rate of is established by Craven et 

al. [1994]. while M eier et al. [1995] argue that the contribution of L a  is much smaller 

than this upper limit, as the instrument response for observations well off the limb is 

virtually zero. Rairden et. al. [1986] presented DE-1 measurements of geocoronal H La 

emissions, but their work concentrated on data obtained using the 117A and 120W 

filters, which more readily pass the short wavelength emissions. The portions of their 

work that are useful here are the measured and modeled brightness of the H L a emission 

in the nadir and the variation in the zenith brightness with altitude. Variations in H La 

nadir brightness with altitude using the 120W filter were not measured, but may be 

estimated and compared with the variations observed here.

Rairden et al. give the spin-plane emission profile for H L a brightness, including 

values in the zenith and nadir directions. The observations in the nadir, however, most 

certainly include significant contributions from O and N? emissions, whereas zenith 

observations with the photometer pointed away from the Earth do not. At 1025 UT on 

September 28, 1981 (day 271), DE 1 is located at 53°N, 358°E at an altitude of 2.67 Re. 

The solar zenith angle in the nadir direction is -55°, where the observed brightness of
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the combined H. O, and Ni is -44  kR. Using an iterative radiative transfer code. Rairden 

et al. calculate that 10 kR is due to H La: i.e.. a fourth of the total on-disk response is 

due to H La. Farther along in the orbit as the DE-1 altitude increases from 1.3 Re to 3.6 

Re. the zenith brightness decreases by -1 kR. Assuming that the em ission is isotropic at 

these altitudes, one may infer that the apparent variation in H L a  nadir brightness for 

fixed S and increase in altitude from 1.3 Re to 3.6 Re (similar to the increase on day 

291) is ~+l0% , the largest variation occurring at lower altitudes. If 13% of the 123W 

filtered photometer response were due to H L a emissions, the variation in P D m a x  during 

the day 291 imaging series would be on the order of 1- 2%. which is substantially lower 

than the observed change in PDmax- It appears that the possible increase in H La 

emissions with altitude does not explain the variation over the eleven image series.

To investigate the third possible explanation, the variation in <  r >  with A over the 

day 291 imaging time may be examined, as was done in a previous section for the entire 

quiet-time set. In the absence of other influencing factors, this will provide an indicator 

of the correctness of the assumed t= l  altitude, here 500 km. The azim uth dependence of 

<  r > , not shown here, is such that at all observed S (20° to 105°). <  r >  decreases with 

increasing A. This result indicates that all S and D angles have been calculated at an 

assumed emission altitude which is too low, an interpretation that is not unreasonable in 

light o f the high solar flux value of this and previous days. On October 13-17. the values 

of F increase from 256.2 Jy to 302.9 Jy, the maximum value for the 1980—1981 period. 

The extreme solar flux may have had a significant effect on thermospheric temperatures 

and scale heights. The model developed here does not account for variations in the 

dependence on A due to global changes in the t= l altitude with F.

In any event, these quiet-time images are not included in the quiet-tim e set as there is 

a systematic variation in the PD values with latitude. The decreases in brightness in the 

morning sector at mid-latitudes are o f the order 10%. For similar reasons, images from 

days 266 and 267 also are excluded because large scale decreases as large as -30% are
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observed in the afternoon sector. The earliest images to be included in the model are 

from day 304. That these images passed the quiet-time selection criteria but still 

exhibited significant dayglow decreases is of interest. In each case, some enhancement in 

magnetic activity was observed -2 4  hours previous to imaging. These enhancements 

occurred during periods where the interplanetary field (IMF) had a strong and 

consistently negative y component (By). It has been shown that positive By can speed the 

appearance of disturbed portions of the thermosphere on the dayside in the Nonhem 

Hemisphere [Immel et al., 1997], It is possible that negative By may delay the transport 

of heated air to the dayside, owing to the large difference in neutral circulation patterns 

in the auroral zone [McCormac et al.. 1985: Hernandez et al. 1991], However, the 

question of how the thermospheric disturbance is maintained for 24 hours without 

additional Joule heating input remains. The importance of these ‘quiet but disturbed' 

images will be addressed in a later chapter o f this thesis.

3.5 Summary

A method of calculating reference values for the response of the DE-l imager to the 

quiet-time FUV dayglow in the 123-165 nm bandwidth (filter #2) has been developed. 

The response with this filter is due primarily to the 130.4- and 135.6-nm Ol dayglow 

emissions. A total of 156 FUV images obtained during periods of geomagnetic 

quiescence (AE < 100 nT for the preceding six hours) are selected and binned in solar 

and satellite zenith angles, S and D respectively, observational azimuth angle A and 

phase angle P. and sorted with respect to the solar 10.7-cm radio flux F. The average 

photometer response <  r >  is determined as a function of A, P, and F. and all quiet-time 

images are corrected to A=90°, P=90°, F=200 Jy. The photometer responses in the now 

normalized quiet-time data are binned in increments of AS=1° and AD=6° and reference 

values are created, as a function of S and D only, using a cosine functional form at 

S<80° and smoothed values of the response at S>80°. Images in the large FUV database 

(for filter #2) may be compared to these reference values once small corrections are
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made for the A. P and F dependences. The comparison with quiet-time images verifies 

our assertion that the fitted values of the photometer response <  r > ' are an accurate 

representation o f the FUV brightness during periods of low activity.

The quiet-time reference values provide a baseline FUV brightness for investigation 

o f large scale variations in dayglow brightness that are observed during periods o f strong 

geomagnetic activity [Frank and Craven, 1988; Craven et al.. 1994; [mmel et al.. 1997: 

Nicholas et al.. 1997], With the refinements to the method detailed here (azimuth 

corrections, analysis of effective altitudes, phase and F 107 corrections), it is anticipated 

that oxygen density variations associated with traveling ionospheric disturbances (TEDs) 

and planetary tides may eventually be identified in FUV images.

This method will prove useful in future analyses of the dayglow and may be applied 

to any large set o f spectrally separated FUV data for which S, D. A. and P are known for 

each measurement. A broad range of instruments now constantly monitor the solar UV 

spectrum and the solar wind speed, density, and imbedded magnetic field. All of these 

factors have a direct or indirect effect on auroral intensity and thermospheric 

perturbations. Dayglow perturbations may be monitored globally with 50-100 km spatial 

and 1 minute temporal resolution for as many hours as spacecraft like POLAR are well 

away from perigee (-12  hour periods). Current investigations are well suited to the task 

of generating a large database amenable the type of analysis shown here for DE-1 images 

and of extracting new information about the transfer of energy from the Sun to Earth.
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Chapter 4

Influence of IMF By on Large-Scale Decreases o f O Column Density at

Middle Latitudes

4.1 Introduction

Compositional variations in Earth’s thermosphere indicated by changes in its FUV 

dayglow signature are most often the result of Joule heating in the auroral regions. In 

these regions, the motion of the neutral atmosphere is strongly influenced by 

magnetospheric convection, especially during geomagnetic disturbances. The 

magnetosphere is, in turn, strongly affected by the strength and orientation of the 

interplanetary magnetic field (IMF). The question of whether or not the orientation of the 

IMF has an influence on the development of thermospheric disturbances related to 

enhancements in geomagnetic activity is addressed in this chapter.

For periods of negative IMF Bz, the configuration of the high-latitude. two-cell 

convection pattern is affected by the sign and magnitude of By. while the cross-polar-cap 

potential is affected by the magnitude of Bz. This By effect on ion convection was first 

described by Heppner [1972], later by Heelis [1984], and more recently by Rhohonemi 

and Greenwald [1995]. From these and other works, we know that the Northern 

Hemisphere dusk (dawn) convection cell increases in size relative to its counterpart with 

increasingly positive (negative) By. and that the electric field strength is greater in the 

dusk (dawn) cell for By positive (negative) relative to the field in the cell's counterpart. 

The total cross-cap potential increases with increasing magnitude of negative Bz. as 

described by Reiff et al. [1981] and Doyle and Burke [1983]. The magnitude and 

configuration of the electric field have been empirically modeled as a function of IMF 

orientation by Heelis [1984] and Heppner and Maynard [1987], and more recently by 

Weimer [1994], Rich and Hairston [1994] and Rhohonemi and Greenwald [1996]. These 

studies have clearly demonstrated the strong influence o f the IMF y and z components on 

electric fields and ion convection in the high-latitude regions.
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These IMF components similarly influence the circulation of neutrals at high 

latitudes through collisional interactions between the convecting ions and local neutrals. 

McCormac et al. [1985], Thayer et al. [1987] and McCormac et al. [ i991 ] have 

investigated the By dependence of the neutral circulation patterns using the neutral wind 

measurements taken during thousands o f orbits of the low-altitude Dynamics Explorer 2 

(DE-2) satellite. More recently, the IMF influence on polar cap neutral winds in the 

Northern Hemisphere has been described by Killeen et al. [1995] through studies 

involving ground-based Fabry-Perot interferometrv. These studies have clearly 

demonstrated the enhancement observed in the size o f the northern dusk idavvni 

circulation cell and its increased neutral wind speeds with positive (negative) By. very 

similar to the By effect in the ion convection patterns. An earlier study by Hernandez et 

al. [1991] indicated a sim ilar effect in the Southern Hemisphere, except that the dawn 

(dusk) cell is enhanced with positive (negative) By.

The By dependence has also been investigated with thermospheric models such as 

UCL’s 3D-TD model [Rees et al.. 1986] and N C A R s TGCM [Roble et al.. 1988]. In 

each of these studies, the models were run for IMF conditions observed in late 198 I and 

early 1982 when thermospheric neutral winds and other properties were simultaneously 

measured by instruments aboard DE 2. The simulation by Roble et al. is for a period in 

which IMF By was positive. The model results are characterized by high velocity anti- 

sunward flow in the post-midnight sector of the northern polar cap that is associated with 

an enhanced clockwise dusk circulation vortex. These observations compare well to the 

DE-2 data available for that period. In addition, the UCL results of Rees et al. show, for 

periods of IMF By positive, that the anti-sunward winds drive neutrals into a region of 

the post-midnight sector where strong equatorward-directed winds (out of the polar cap) 

dominate. Hence, this By-dependent mechanism can transport neutrals from the northern 

polar cap to middle latitudes at preferred local times. Compositional disturbances in the 

polar thermosphere due to Joule heating in the surrounding auroral oval are presumably 

also driven into preferred local time sectors. There are other mechanisms by which
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composition disturbances propagate or are transported from the polar cap to the middle 

latitudes, such as those described by Bums et al. [1989] and Fuiler-Rowell et al. [1994], 

It is the magnitude and sign of By that are apparently effective in determining the extent 

and magnitude of compositional disturbances occurring at middle latitudes in the post- 

midnight/moming sectors of the thermosphere, where their occurrence is observed in the 

sunlit hemisphere with DE 1.

4.2 Comparison of Two Images 

Presented here is a comparison of two images for which the time histories of 

magnetic activity are strikingly similar, yet the dayglow brightness in the morning sector 

is markedly different. The PD images presented in Figure 4-1 are constructed from 

selected original FUV images obtained in 1981 on September 24 (day 267) at 1736 UT 

and on October 6 (day 279) at 1713 UT. The altitude of DE 1 was -3 .2  Re for each 

observation. These percent deviations of the measured dayglow brightness from quiet

time values are mapped to an orthographic projection in geographic coordinates, where 

the center of each image is at 40°N and 1100 hours local solar time (LST). thereby 

roughly centering the mapped PD images in the projection. Percent differences in the 

images are coded with the same color scale shown in Figure 3-15. and contours at -2 0 ‘T 

are overlain in white. Auroral emissions represent a "contamination" of the dayglow. 

increasing the measured response and leading to large positive percent differences at 

auroral latitudes. The PD representation used here is similar to that first presented by 

Craven et al. [1994], The effect of the aurora on these PD images is not strong in the 

local noon sector. Also shown above the images in Figure 4-1 are the one-minute AE 

indices for the days in which the images were obtained, with vertical dashed lines 

indicating the two imaging times.

The time histories of AE for the two days are remarkably similar, with each 

characterized by low values during the first -6  hours in the day, slightly elevated values 

for the next 4—5 hours, and then sharp increases to -400—500 nT at 1100—1200 UT. The
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Figure 4-1. AE indices and selected PD (percent difference) images from days 267 and 
279, 1981, respectively, in Figures 4 - la  and 4-lb . The original images of Earth's FUV 
dayglow were obtained at 1736 and 1713 UT on days 267 and 279, respectively. The 
images are mapped to an orthographic projection in geographic coordinates, where the 
center of the projection is 40°N and 1100 LST. White contours indicate a percentage 
decrease o f -20%  from the quiet-time values. A large area of decreased dayglow 
brightness at middle latitudes on day 267 extends from the morning terminator to local 
noon. Values for the color-coded percent deviation are given by the color bar in Figure
3-15.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of 

the 
copyright 

ow
n

er. 
Further 

reproduction 
prohibited 

w
ithout 

p
erm

issio
n

.

September 24, 1981 (day 267) October 6, 1981 (day 279)
1500

'P'
c 1000

Ld
< 5 0 0

0

_ i i i r i | i i i i i | i i i i i

r yvvv
r-* i i ’w+M*Vi 1 i i i i i

| 1 1 1 1 1 _ 1500

1000

w  500 

0

_ i i i i i | i r  r i  i | i i i t i j i i i r i  _

0 6 12 18 
UT (ho urs )

1736:10

24 0

1713:51 UT

6 12 18 24
UT (ho urs )



98

values vary between -200  and -5 0 0  nT over the next five hours. Given this remarkable 

similarity and the correlation between AE and the Joule-heating rates [Baumjohann. 

1984] (i.e., the suggestion of nearly equal heating), the difference between the images is 

striking. The PD representation for the day-267 image (bottom left) shows a region of 

more than a 20% decrease in dayglow brightness extending from the morning terminator 

well into the sunlit hemisphere. This area extends equatorward to 38°N with a minimum 

value of -42%  therein. A similar decrease in brightness is evident in the polar cap. as is 

typical for these levels of geomagnetic activity [Immel et al.. 1994; Chapter 5 of this 

thesis], where the minimum value is -45% . Decreases of at least -10%  are observed at 

nearly all local times at the middle latitudes. In marked contrast is the PD representation 

for the day-279 image (bottom right), where no significant decreases are evident at 

middle latitudes. The dayglow brightness is again diminished in the polar cap. with a 

minimum value o f -38% . However, at nearly all sub-auroral latitudes the dayglow 

brightness is more typical of that observed during quiet times [Immel et al.. 1996], with 

deviations from quiet-time reference brightness generally no greater than about ±7%. 

Together, the observations made on these two days raise the question of how such a 

difference can exist for such similar time histories in geomagnetic activity and. 

presumably, heating.

An investigation o f the Kp and Dst indices (not shown) does not reveal any increase 

in activity that was not indicated in AE. particularly during day 267 where higher activity 

might be expected given the greater compositional disturbance. Furthermore, no 

signature o f intense activity is apparent in any of these three indices for the days 

preceding the two days of interest here. Thus, the levels of magnetic activity observed 

before and during these two periods, as indicated by AE. Kp and Dst- are similar and 

low. These low levels are not normally associated with great disturbances of the 

thermosphere. For example, an earlier survey of such images by Nicholas [1993] tound 

that a dayglow signature similar to that shown from day 279 is typical for the observed
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level of magnetic activity, while the dayglow signature observed on day 267 is more of 

an exception.

A significant difference in the size of the oval or signatures of the auroral substorm 

activity observed on the two days could contribute to an explanation of the great 

difference in dayglow signatures. Images from the previous orbits on both days, taken 

between -1200 and -1500 UT, show that the oval has a maximum equatorward extent of 

-61°N  magnetic latitude in the post-midnight sector during each substorm period. No 

outstanding differences are noted in the progression of the substorms from expansion to 

recovery phase, except that the day-267 substorm sequence begins about one hour earlier 

than that of day 279. These observations suggest that the substorm periods are similar in 

magnitude and spatial extent.

The known influence of the IMF y-z component on ion convection and neutral 

circulation (as previously summarized) requires that we also consider the possibility of a 

large difference in the IMF orientation and magnitude on these two days. The magnitude 

and GSM (geocentric-solar-magnetospheric) By and Bz components for both days, as 

measured by ISEE 3 and averaged over five-minute intervals, are presented in Figure 4

2. The IMF observations are corrected for the transit time of the solar wind to Earth, and 

no interpolations are performed over data gaps. Average solar wind speeds for days 267 

and 279, calculated from hourly averages [NSSDC, 1986], are 324 ±11 and 354 ±13 

km/sec respectively, where standard deviations are given to indicate the degree ot 

variability of the solar wind speed. The average speeds are used to calculate offset times 

of 81 minutes and 72 minutes, respectively, between observations at the LI position and 

Earth. All ISEE-3 times are given with the offset times added.

The dayglow decrease observed on day 267 is preceded by a nine-hour period (0800

1700 UT) in which the By component is positive and generally >10 nT. The Bz 

component is strongly negative from about 0900 to 1700 UT. In sharp contrast. Bx > 0 

(not shown) is the dominant component of the IMF on day 279, except tor a briet period 

after -1100-1200  UT in which increased variations are apparent in the three
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S e o t e r r b e r  2^ ,  "981 (day 2 6 7 )  October  6, 1 9 8 '  ' day  2 _79

U n i v e r s a l  T i n a e  ( h o u r s )  U n i v e r s a l  T i  — i e  ; h o a r s

Figure 4-2. IMF magnitude and the By and Bz components for days 267 and 279. 1981. 
respectively, in Figures 4-2a and 4-2b. Dashed vertical lines indicate the times at which 
the images in Figure 1 were obtained. IMF data are advanced 81 and 72 minutes on days 
267 and 279, respectively, to account for the transit time of the solar wind and imbedded 
IMF from ISEE 3 to Earth. The epsilon parameter, £, is shown in the bottom panel. To 
simplify the comparison of £ in the two days, the £=10^- watt level is highlighted by a 
horizontal dotted line.
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components. Increased auroral (AE) activity begins at -1200  UT. The intermittent 

absence of ISEE-3 data has been partially solved by the equally intermittent presence of 

IMP-8 observations (not shown), which confirm the presence of fluctuations in the IMF 

and indicate that the By and Bz components are weakly negative (~ 0 to -5  nTt at 

-1215-1400 UT. Hence, the two sharp increases in AE at -1200 and -1600  UT are 

associated with negative values of Bz- Simultaneous ISEE-3 and IMP-8 observations 

within the periods -0400-0900 UT and -1700-2400 UT are in good agreement.

The direction of the IMF in the GSM y-z plane is also associated with the rate of 

transfer of energy to the magnetosphere from the solar wind. One index of 

magnetospheric-solar wind coupling is the epsilon parameter described by Akasofu 

[1981]; e = VSwB2 102 sin4(0/2) watts, where tan(9 ) = (I B y I/I Bz I) and 10 = 7 Re is the 

effective radius o f the magnetosphere in the y-z plane. This parameter is provided below 

the IMF data for each day in Figure 4-2. The values of e are determined using the five- 

minute average IMF values shown in the figure, and the hourly solar wind speeds 

interpolated at five-minute intervals. This provides a smoothly varying speed for the 

calculation o f e.

Note that £ is usually greater by a factor of two during the period o f interest on day 

267 than it ever is on day 279, suggesting greater magnetospheric energy input. This is 

due in large part to the strongly negative values of Bz measured on day 267. In contrast, 

the ground-based geomagnetic data shown here indicate that the energy inputs via 

electrojet currents are relatively similar. A possible explanation is that the IMF has 

changed orientation on day 267 in the approximately one-hour propagation time from the 

LI point to Earth so that Bz is less negative and geomagnetic activity less intense. An 

examination o f ISEE-1 IMF observations (not shown), taken from points much closer to 

Earth, reveals that this is not the case, and that the Bz component is as strongly negative 

at Earth as at ISEE 3. ISEE-1 and -3 magnetometer data are similarly well correlated on 

day 279. However, all of this assumes that £ is a fair measure of energy input associated
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with auroral activity, even though it is derived from parameters measured outside the 

magnetosphere. AE. as an index, is more directly related to the physical processes active 

within the auroral region, and thus subject to fewer perturbations by other physical 

processes that can interfere with a correlation between £ and Joule heating. A more 

detailed discussion of this topic is beyond the scope of this chapter.

The difference in the two dayglow signatures can be due to differences in energy 

input, in neutral circulation associated with IMF orientation, or a combination of these 

factors. The ground-based magnetic data support the notion that energy input is roughly 

equal in the two periods, and this interpretation is favored here. Differences in dayglow 

signatures can then be ascribed to different high latitude neutral circulation patterns and 

the subsequent alteration o f neutral composition at lower latitudes, later observed in the 

sunlit morning sector. However, as Bz is strongly negative on day 267 and more nearly 

zero on day 279, a possible large difference in magnetospheric energy input and cross- 

polar-cap potential is suggested, so these observations by themselves cannot 

unambiguously identify whether By or Bz is the most important parameter. We believe 

this is resolved in the next section.

4.3 Four Consecutive Orbits

The two imaging sequences discussed in the previous section were chosen for the 

apparently similar time histories of geomagnetic activity and a similar imaging geometry 

at the same UT. This fortuitous occurrence is not repeated in the late-1981 to early-1982 

DE-1 dataset. To further investigate the effect of IMF orientation on middle-latitude 

compositional disturbances, we have chosen for analysis images obtained in four 

consecutive orbits, with By changing from predominately negative to positive after the 

first two orbits with several cyclic variations in Bz- The AE indices for days 280 and 

281, 1981, are shown in Figure 4-3, along with the IMF’s magnitude and y and z 

components as measured at ISEE 3. The £ parameter is calculated and shown in the 

bottom panel of the figure. The IMF data are corrected in time for the 69 and 58 minute
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Oct. 7, 1981 (dcy  280)  Oct. 8, 1981 (day 281

U n i v e r s e  T i m e  ( h o u r s )

Figure 4-3. AE indices, IMF magnitude, and the Bz and By components for days 280 and 
281. 1981. Dashed vertical lines accompanied by capital letters indicate the times at 
which images A, B, C and D of Figure 4 were obtained. IMF data are advanced 69 and 
58 minutes on days 280 and 281, respectively, to account for transit time of the solar 
wind and imbedded IMF from ISEE 3 to Earth. The epsilon parameter, e, is shown in the 
bottom panel. The time periods 1400—2300 UT and 0400—1300 hours UT (the times 
used in calculations o f < e >) are indicated in the bottom panel by horizontal solid lines. 
To simplify the comparison of e between the two days, the £=10*- watt level is 
highlighted by a horizontal dotted line.
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transit times to Earth at average solar wind speeds of 369 ±9 and 437 ±39 km/sec 

[NSSDC, 1986] on days 280 and 281. respectively. The e values are calculated using 

these five-minute averaged IM F data and hourly average speeds that have again been 

interpolated to estimate the average speeds in five-minute increments.

Images selected to summarize the state of the FUV dayglow in the morning sector 

were obtained at the times indicated by the four vertical dashed lines in Figure 4-3. 

These will be referred to as images A. B, C, and D. Note that images A and C were 

obtained at or following peaks in intense magnetic activity, as indicated in the AE data, 

and that images B and D were obtained after periods of much decreased levels of 

activity. As expected from an examination of the AE and IMF data, the sign of Bz is 

primarily negative (positive) during the periods prior to times A and C (B and D). Note 

also that By is negative prior to the first two imaging times. A and B. that it becomes 

positive just after image B acquisition, and then remains so for the remainder of day 281. 

This includes the imaging times for C and D. In simplest terms, we observe the dayglow 

signatures following two strong Bz negative substorm periods, the first occurring with 

By negative (images A and B) and the second with By positive (images C and D).

PD representations of the four original FUV images A through D are shown in 

Figure 4-4, with image A as Figure 4-4a, etc. They are mapped to an orthographic grid in 

geographic coordinates identical to that used for the images in Figure 4-1. except that the 

center of each grid is 40°N and 1200 LST. Considering image A first, one notes 

immediately the decreased dayglow brightness in the polar cap and the afternoon sector 

near the end of an extended period of substorm activity. Decreases of more than 20% are 

seen to extend -10° equatorward of the auroral oval in the morning sector. The only 

effect of the storm seen in the dayglow eight hours later (image B) is a small area of 

decreased brightness evident between 0700 and 0800 LST. The polar cap appears 

unperturbed, as is expected from numerous DE-1 observations in the hours after AE 

returns to low values [Immel et al., 1994]. The ISEE-3 observations of Figure 4-3 show 

that By is predominately negative throughout the 6-8  hours prior to each ot these
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Figure 4-4. Four selected PD images derived from FUV observations in four consecutive 
DE-1 orbits. Images taken at 2034 UT on day 280 and 0425, 1039, and 1741 UT on day 
281, all in 1981, are shown in Figures 4a, 4b, 4c, and 4d, respectively. The images are 
mapped to an orthographic projection of geographic coordinates, similar to that used in 
Figure 4-1, except that the center of each mapping is at 1200 LST. The images are 
arranged such that those obtained for IMF By negative are shown in the top row (images 
A and B), and for IMF positive in the bottom row (images C and D).
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imaging times, with only short periods of weak (< 2 nT) By positive. It is most important 

to note that the moming-sector dayglow disturbance for By < 0 and Bz < 0 observed 

here is much weaker than the disturbance seen on day 267 (with By > 0 and Bz < 0). 

even though the geomagnetic activity (AE) ande are greater here by a factor of -2.

By then turned positive and remained so for the period in which images C and D 

were obtained. The first of these images (image C), obtained during a period of moderate 

magnetic activity, shows that the dayglow brightness is 10-25% below quiet-time levels 

in an area that extends down to 50°N in the morning and very early afternoon hours. The 

next image (image D) was obtained seven hours later, following the decrease in AE from 

-600  to -100 nT and the later increase to -3 0 0  nT. The dayglow signature shows 

evidence of a strong compositional disturbance, with decreases in brightness to < - 20% 

observed from the morning terminator to beyond local noon and in a portion of the polar 

cap. The area of 10% decreases is observed to extend equatorward of 30°N. This 

dayglow signature is similar to that seen on day 267.

The gaps in the five-minute-average IMF data for day 280 hinder comparison of the 

energy transferred to the magnetosphere during the two series of substorms that are 

present here. However, nearly continuous IMF data for both days are provided by the 

(time-delay-corrected) one-hour averages of IMF and VSw [NSSDC, 1986]. The average 

magnetospheric energy input, < e >, is calculated from hourly values of £ during each of 

the two nine-hour periods indicated by bold horizontal lines in the lowest panel of Figure 

4-3. The nine-hour periods, from 1400 to 2300 UT and 0400 to 1300 UT on days 280 

and 281, respectively, are chosen so that they roughly bound the two prolonged substorm 

periods and also reflect the energy input for the six hours prior to images A and C. The 

results of this calculation are < £ >, = 7.1xlOn and < £ >, = 4 .9 x I0 n Watts, respectively, 

for the two substorm periods. That is, the total solar wind-magnetospheric coupling 

during the first substorm period (By < 0) is approximately half again as great as that 

during the second substorm period (By > 0). This is not an outstanding difference.
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However, the effect on the morning-side thermospheric composition is significantly 

different, with the presence of large-scale perturbations for positive By.

Summarizing, the effects of magnetic substorm activity on the dayside neutral 

composition during periods of By negative (images A and B) and By positive (Images C 

and D) are seen to be quite different. The intense By negative substorm period, with AE 

reaching maximum values at the time of image A, has apparently had only a minor effect 

on the dayside composition, as can be seen in image B. The somewhat less intense By 

positive substorm period (as measured by AE or < e »  occurring prior to and at the time 

of image C has a much more pronounced effect on the dayside thermospheric 

composition, which is clear from image D. We attribute the great difference between 

images B and D to the different IMF By orientations during the two substorm periods. 

These observations are seen to be consistent with an interpretation that the significant 

difference between the two images of Figure 4-1 is due not to the magnitude of Bz but to 

the sign o f the IMF y component.

4.4 Statistical Analysis

These examples are open to other possible interpretations. Single cases, or even four 

orbits of data are not enough to unambiguously determine the influence of IMF 

orientation on dayglow decreases. Further analysis, using many images obtained over 

more than one month's time, is performed here with the goal of statistically determining 

the effect of IMF orientation on dayglow perturbations during periods of magnetic 

activity.

By December 1983, the apogee of DE 1 had advanced to the Southern Hemisphere. 

During this time of the year, the southern polar cap is often fully illuminated by solar 

radiation; particularly so between -0300 and 1100 UT as the magnetic pole is far 

sunward o f the solar terminator. Images obtained at these times afford the opportunity to 

monitor the region where heated portions of the thermosphere are first observed at sub- 

auroral latitudes. It may be seen in thermospheric models [e.g.. Figure 1-11] or interred
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from images of large-scale storms that the greatest decreases are often observed in the 

high latitude morning sector. With the relatively short time at imaging altitudes (—3—4 

hours), compared to the development time of thermospheric storms (5 -10  hours), it is 

difficult to track the development o f  dayglow variations. However, since dayglow 

emissions can be observed about the entire auroral oval, instantaneous comparisons of 

percent variations in dayglow brightness at different locales may be made. The spatial 

extent of dayglow decreases generated by Joule heating can then be compared to IMF 

orientation.

The images chosen for this analysis were selected from a time interval beginning at 

-0600 UT on day 350, 1982, and ending on day 33, 1983, before the sun crossed the 

orbital plane. Images are selected from times where the 123-nm filter was in use and the 

entire auroral oval was sunlit. The year, day and UT hour during which images chosen 

for this statistical analysis were obtained are listed in the first column o f Table 4-1. N’o 

exclusions are made based on geomagnetic activity and the average AE index for the 6 

hours previous to the beginning of the image period is given (to the closest 0.5 nT ) in 

column 2. IMF values as reported by NSSDC [1986] are given for the UT hour shown 

with no correction for transit time to Earth. The absence o f data at the exact time of 

imaging is indicated by NA. Average values of By from data available during the 6 hours 

previous to imaging are shown in column 4. In all, 127 images obtained on 16 days were 

used for this analysis. From the comparison of 23 quiet time images from day 002 and 

011 to the earlier quiet-time model (Chapter 3), a decrease in instrument sensitivity by a 

factor of 0.52 is determined. This is due to degradation of optical surfaces and filter 

sensitivity, with greater loss of sensitivity at the shorter wavelength range of the 123-nm 

filter. No additional correction is made for the large percent decrease in F between quiet 

time sets, aside from the corrections determined from the 1981 data and described in 

Chapter 3.

Each image was examined to determine the latitudinal extent of the auroral oval as a 

function of magnetic local time in order to exclude auroral emissions from the analysis.
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Table 4-1: Listing of Imaging Periods for Statistical By Study

Year, Day, 
UT

<AE>
(nT)

By (nT) <By>
(nT)

F (Jy) adj.

82, 350, 0600 30 + 18 -+ 1 2 213.2
82, 359, 1100 150 +9 ~+5 170.6
8 3 ,001 ,0600 200 -8 - 5 131.4
83, 008,0300 55 -6 - 3 155.9
83 ,010 , 0300 500 NA - 8 144.2
8 3 ,013 ,0600 170 + 1 -0 135.1
83 ,014 , 0900 150 NA ~+3 137.2
83 ,015 ,0600 270 NA -+ 1 2 141.0
83 ,016 , 0300 275 +7 ~+8 140.2
8 3 ,018 ,0300 360 +3 ~+4 134.8
83, 020,0300 220 +7 ~+5 120.5
8 3 ,021 ,0500 100 0 - 1 116.1
83, 022, 0300 75 +2 -+1 1 13.5
83, 023,0500 125 NA - 3 115.4
83, 024, 0400 360 -8 - 7 114.1
83, 025,0600 225 + 1 - 3 122.7
83. 027, 0500 150 -3 - 3 133.6
83, 028, 0300 50 -1 -0 140.6
83, 033,0900 60 -3 ~+l 156.5
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Two sectors o f magnetic local time. 0200-0400 and 0600-0800 MLT. were chosen to 

characterize dayglow emissions in early and middle morning locations and are denoted 

as sectors 1 and 2, respectively. It is in these areas that one might expect to first observe 

the effects o f Joule heating outside of the auroral oval. The latitudinal extent of each 

sector was determined by an upper boundary at the equatorward edge of the auroral oval 

and a lower boundary at 50°S magnetic latitude. These areas can be seen in a series of 

five PD images from day 015. 1983 in Figure 4-5. In this case the images are not mapped 

to geographic coordinates, but are presented in spacecraft coordinates with the limb 

region removed. The noon sector is to the upper left and sectors 1 and 2 are outlined in 

white. Note that the morning sector in these Southern Hemisphere images is to the left of 

the noon meridian, where it was to the right in Northern Hemisphere images from 1981. 

The 1981 quiet-time model is used to calculate reference pixel values as well as 

corrections for A and F. The reference values are then reduced by a factor of 0.53 to 

account for estimated reduced sensitivity of the instrument. No correction for variations 

in <  r >  with P were made as the variation in P between the MLT sectors was not

enough to significantly affect modeled counting rates.

The values of F on the respective imaging days are shown in Figure 4-6 (also in 

Table 4-1), as well as <PD> values calculated for each image day from all pixels at 

S=66° (AS=1°). using open diamonds and Filled circles, respectively. This survey of all 

images from this period reveals that the PD values closely follow variations in F. with an 

overall correlation of 0.87 between F and <PD(S=66°)>. The ~28-day periodicity in F 

values due to reappearance of FUV-bright regions with the solar rotation is evident from 

peaks in F on day 007 and 032. In the interim, F decreases from 165 Jy on day 007 to 

113 Jy on day 023; a 32.5% decrease. The average dayglow brightness in images varies 

similarly. For example, between day 008 and 023 the average photometer response at 

S=66° decreases from 19.4 to 16.4 counts/pixel, a decrease of 15.5%. Corrections to 

model values for the variation in F, as determined from the 1981 quiet-time data 

(Chapter 3), indicate only an additional - 6% correction to quiet time counting rates. This

I 10
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Figure 4-5. AE index and five percent difference (PD) representations of images taken 
during one hour on Day 015, 1983. The sections of the dayglow studied here are those at 
0200-0400 (sector 1) and 0600-0800 (sector 2) MLT, highlighted with solid white 
contours. The magnetic latitude range for each section extends from -50° to the outer 
boundary of the auroral oval. Magnetic midnight is located at the lower right ot each 
image, with the sun to the upper left.
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Figure 4-6. Variation in F and dayglow brightness at fixed S in the study period. Values 
of F and <PD(S=66°)> are shown versus day of year in which images were obtained. 
Open diamonds denote F values and the filled circles indicate <PD> values for pixels 
within 66°<S<67° in the selected images.
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is insufficient to correct for the observed variation in average photometer response, as is 

evident in the trend of PD values at S=66°, which vary from -5%  on day 350. 1982 to -  

34% on day 25. 1983. Ideally. PD values would not vary with F and the correlation 

between F and <PD(S=66°)> would be small No further corrections are necessary for 

this analysis, however, as images are independently analyzed from one day to the next. 

This is, however, an indication that the dependence of <  r >  on F determined in Chapter 

3 is insufficient for these large percent fluctuations in F. and related solar FUV and EUV 

emissions.

The difficulty of comparing images within the set, due to the large variations in FUV 

brightness, is addressed by establishing a measure of the morphology o f each dayglow 

signature independent o f overall brightness and comparing images by this 

characterization. One such comparison can be made by determining the degree to which 

dayglow decreases in the early-morning sector extend to the middle-moming sector PD 

values are calculated for all pixels in images obtained in the 1-2 hour imaging periods 

for each day listed in Table 4-1. The average percent difference values. <PD>. are then 

calculated for the 0200-0400 and 0600-0800 MLT sectors for each imaging period. For 

example, the average percent differences observed in sectors 1 and 2 t<PD>i and <PD>:. 

respectively) from five images on day 015 are -28% and -14%. respectively. The 

difference o f 14% between the sectors is a measure of the degree to which decreases in 

dayglow brightness extend from early to middle morning sectors. The difference is 

calculated for comparison o f all sets of images from days of the imaging period.

Values o f <PD>i and <PD>2 for the individual imaging periods are shown in Figure

4-7a and 4-7b as a function of AE. The data are further separated into By<0 and By>0 

bins, which are indicated by filled circles and open diamonds, respectively. The general 

trend toward greater decreases in brightness (in both sectors) with increased AE 

indicates again that magnetic activity results in decreased dayglow brightness. Dayglow 

brightness is lower in sector 1 than sector 2 in almost all cases. All <PD> values indicate
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A v e r a g e  A E  ( 6  h o u r s ) ,  n T

A v e r a g e  A E  ( 6  h o u r s ) ,  n T

Figure 4-7. Average percent difference (PD) values in sectors I and 2 versus the 
preceding six hour average values of AE. (a) Distribution of average PD in section 1 
(<PD>i) as a function of AE for By negative (solid circles) and By positive (open 
diamonds) for all images, (b) Average PD value for section 2 (<PD>>). Note trend ot 
decreasing brightness with AE in both sectors and difference in relative distribution of 
By positive and negative points between sector 1 and 2.
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brightness lower than the sensitivity-corrected 1981 reference dayglow values. This is a 

clearly a consequence of the very low F values during this period.

The values of <PD>| and <PD >2 are shown again in Figure 4-8a, but now as a 

function of <By> for all days where AE>I00. There is a different value for <By> for 

each day except days for 023, 025 and 027 during which <By>=—3 nT: values of <PD> 

are shown at <By> = -3 .4 , -3.0, and -2.6. The requirement of AE > 100 nT selects days 

where some degree of Joule heating, and subsequent decrease of high-latitude dayglow 

brightness, is expected. The vertical line connecting two <PD> values represents the 

magnitude of the difference between the sectors. The values of <PD>2-<PD>i=APD are 

plotted as a function o f By in Figure 4-8b and a linear least-squares fit is overlain for the 

range of observed By. The values for a and b in the linear function APD=a<Bv> + b are 

a=0.67 ±0.17 nT ' 1 and b=5.97 ±0.95. The slope o f the line, within the uncertainty of the 

determined coefficients, is always positive. The correlation coefficient, r. between APD 

and By is 0.48. With the number o f samples equal to 12, this indicates an approximately 

25% probability that these parameters are unrelated.

The possibility that the level of magnetic activity may influence the relation between 

early morning decreases in brightness to those observed at later MLT is now 

investigated. From several studies of the FUV dayglow, it would not be surprising to 

find that dayglow decreases extend farther toward the noon sector with greater activity. 

Using <AE> as an indicator of the level of Joule heating, the values o f APD are plotted 

in Figure 4-9 as a function of <AE>. A least-squares fit of the form APD=a <AE> + b is 

determined, for which the coefficients are a=0.04 ±0.02 nT ' 1 and b=— 1.2 ±6.1. The 

correlation coefficient for these two parameters is 0.41, slightly less than the correlation 

between APD and By. Within the error of the fit the slope of the fitted function is always 

positive and indicates an increase in the difference in dayglow brightness between the 

two sectors of MLT with greater AE, opposite the expected trend. Thus, there is 

statistical evidence of a correlation between APD and <AE>. Surprisingly, late morning
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Figure 4-8. Difference between PD values of sectors 1 and 2 as a function of By. (a) PD| 
and PD: values for individual study days as a function o f 6-hour average By. 
Observations range from -5  to +12 nT. PD| is represented with diamonds, PD: with 
triangles. Lines connecting the points indicate the relative difference in the dayglow 
decrease observed between the sections, (b) Magnitude of relative difference between 
PDi and PD2 as a function o f By. A linear least-squares fit is performed and overlain. 
Note the trend towards large differences in PD values for increasingly positive By.
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A E

Figure 4-9. Difference between sectors 1 and 2 as a function of <AE>. PD] and PD: 
values for individual study days are shown as a function of 6-hour average AE index. A 
linear least-squares fit is performed and overlain.
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<PD> values (<PD>i) change very little with .AE; the variation in APD values is due 

mainly on the variations in <PD >i.

To determine if the observed dependence of APD on By is separate from the 

dependence on AE. the relation between By and AE is investigated.. For each day of 

observations, the average By and AE values are compared and plotted in Figure 4-10. A 

linear least squares fit of the form <AE>=a<By> + b is overlain, where a=7.36 ±4.17 

and b=187 ±22 nT. The correlation coefficient is 0.41, the least correlation between the 

three parameters. This confirms that the dependence of APD on By described in Figure

4-8b is at least partially influenced by the dependence of APD on AE. Had there been no 

correlation, o r positive slope, in the fit of Figure 4-10, one could deduce that two 

separate effects had been observed. Unfortunately, this is not the case, and this statistical 

analysis does not provide indisputable evidence of IMF influence on the development of 

FUV dayglow decreases.

Although the largest differences in PD values between the two sectors are observed 

when By is positive, the correlation of APD values with AE is nearly as significant. 

Since By and AE also are correlated (to a slightly lesser degree) for this particular 

dataset, the variation in APD cannot be attributed solely to By. One may interpret these 

results as a demonstration that both AE and By have a significant effect on the 

appearance o f  dayglow decreases in the 2^4 MLT sector. An alternative explanation is 

that either AE or By is responsible, with these variables simply correlated due to the 

relation of large By, hence large values of Bt, to large (possibly negative) values of Bz 

which could result in an increase in the AE indices.

4.5 Summary

Observations have been made of deviations in the FUV dayglow from baseline 

brightness values after the onset of moderate (AE < -500  nT) and more intense (AE > 

-900 nT) geomagnetic activity. These variations in brightness are interpreted as being 

due to changes in atomic oxygen column densities induced by heating of the
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Figure 4-10. <AE> indices for images of the 1983 study period as a function ot <By>. 
All values of <AE> over 100 nT are included and a linear least squares fit is performed 
and overlain to demonstrate the trend in the data.
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thermosphere. Large differences in the dayglow signatures between images from day 267 

and 279. 1981. are apparently not due to differences in geomagnetic activity preceding 

the imaging times, as the auroral activity as measured by AE is remarkably similar. The 

main differences in conditions at the imaging times are the orientation and magnitude of 

the IMF. W e conclude from the full set of observations that the duration and magnitude 

of positive By in this case has a significant effect on the mid-latitude thermospheric 

composition, as seen on day 267. Observations on day 279. during which geomagnetic 

activity is remarkably similar to that of day 267. show little variations in dayglow 

brightness at mid-latitudes from quiet-time levels.

Imaging sequences obtained in four consecutive DE-1 orbits during a 

geomagnetically active 21-hour period on days 280 and 281, 1981. have been used to 

clearly establish the influence of IMF By on the development of decreases in O densities 

in the dayside thermosphere. Two substorm periods are present within the four-orbit 

imaging series, the first somewhat more intense than the second. Large-scale decreases 

in O density associated with the magnetic activity are not observed at middle latitudes in 

the morning sector after the first series of substorms, during which the sign of the By 

component is predominately negative. Such large-scale decreases are observed after the 

second series of substorms, during which By is positive. The greatest decreases are seen 

in the last images of the fourth orbit, after a short period o f relative auroral quiescence 

and following -1 2  hours of strongly positive By.

The analysis of 127 images of the high latitude Southern Hemisphere from 

December 1982-January 1983 further demonstrates that IMF By may have an influence 

on the appearance of dayglow decreases on the dayside. The interrelationship of AE and 

By makes a  firm conclusion difficult. This correlation may actually be inescapable as 

large values o f IMF magnitude (Bt) are often associated with more intense periods of 

magnetic activity. Additional imaging observations during periods of By «  -5  nT 

(when IMF magnitude is again large) might provide information to establish that the 

correlation between these parameters observed here is expected, reducing to zero the
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slope of the fit shown in Figure 4-10. Furthermore, from the observations of sections 4.2 

and 4.3. one would expect the greatest effect of Joule heating on dayside composition 

strongly negative values of By, which are not observed during the study period.

It has previously been established that the sign of By has a strong influence on the 

patterns of ion convection and neutral circulation in the thermosphere. It is consistent 

with the known By effect that the anti-sunward circulation associated with positive By 

aids the transport of heated sections of the thermosphere from the northern polar cap and 

auroral oval to the mid-latitude, post-midnight sector, where, through co-rotation, the 

disturbed sections are soon visible in the sunlit hemisphere. This is deemed a reasonable 

explanation for the observations made here: the occurrence of larger areas of strong 

composition disturbances in the morning sector for equal or lesser levels of activity are 

correlated with strong and consistently positive By.

It would be helpful to determine if compositional disturbances are observed more 

often in the evening sector at middle latitudes for By negative storms. Earth's rotation 

plays a large part in the appearance o f Joule-heating related compositional disturbances 

in the morning sector, but images such as that shown in Figure 4-4a suggest that the 

appearance of strong disturbances in the afternoon sector of the Northern Hemisphere 

may be favored during periods of By < 0. The imaging geometry during m id-1982. with 

DE-1 apogee at low latitudes in the afternoon sector, offers an excellent opportunity for 

such an investigation.

Reproduced with permission o fthe  copyright owner. Further reproduction prohibited without permission.



Chapter 5

Variations in Thermospheric Composition within the Polar Caps

5.1 Introduction

The polar cap is the region bounded at low latitudes by the auroral oval. Studies of 

thermospheric dynamics often concentrate on this region because of the strong 

electromagnetic coupling between the magnetosphere and ionosphere, and its collision- 

dominated coupling to the neutral thermosphere. This coupling has been addressed is 

several studies [Hays et al., 1984: Killeen et al., 1988. and others noted earlier in this 

thesis]. The goal of this chapter is to establish the response of the thermosphere within 

the polar cap to impulsive auroral activity. Another goal is to identify the effect of IMF 

on the development of polar cap composition disturbances, as done in Chapter 4 at mid

latitudes. In this work, observations of the Southern Hemisphere polar cap are presented.

Decreases in FUV dayglow brightness at high geomagnetic latitudes were first 

observed with OGO 4 by Meier et al. [1970], and it was noted that these decreases 

appeared during periods of magnetic activity [Meier. 1971], This polar orbiting satellite 

measured OI and No Lyman-Birge-Hopfield (LBH) emissions at the nadir and H La 

emissions at the nadir and zenith. Measurements of dayglow emissions in the polar 

regions frequently revealed decreases in the nadir-direction H L a  and OI emissions, 

while no such variations were observed in the nadir-direction N: LBH or zenith-direction 

H L a  emissions. The absence of decreases in the Ni LBH emissions may be attributable 

to contamination by spacecraft glow and should be interpreted accordingly [private 

communication, Meier, 1998], These decreases in brightness correspond to reductions 

in HI and OI column densities below the satellite in response to auroral Joule heating. 

Another interesting effect that M eier [1970] observed was the absence of decreases in 

the southern polar cap during a week-long period where the northern polar cap exhibited 

consistent brightness decreases. This observation will be discussed again in the last 

section of this thesis.
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Global-scale measurements o f FUV dayglow brightness at OI. H La, and N: LBH 

were obtained with the polar-orbiting DE-1 from September, 1981. through 1989. many 

years after OGO-4. Dayglow decreases within the northern polar cap were noted by 

Nicholas et al. [1997] in a survey of DE-1 images from the first several months of 

imaging. Apsidal motion later brought the apogee of the highly elliptical orbit over the 

South Pole in early 1983, affording excellent viewing of the southern polar cap in 

January while the region is entirely sunlit. With a DE-1 orbit period of approximately 7 

hours, the dayglow signature of the region was sampled repeatedly.

The bulk motion of thermospheric neutrals is also affected during enhancements in 

geomagnetic activity, not only in the auroral oval but throughout the polar cap. Neutral 

winds increase in velocity, driven by increased high-latitude plasma convection. This 

enhancement of convection is caused by strengthened local electric fields imposed by 

more rapid magnetospheric convection. Under different wind field configurations, 

dayglow decreases may develop in a different manner. The relation of the IMF to the 

polar neutral wind field should allow a correlation of the spatial development of davglovv 

decreases with IMF.

5.2 Dynamics Explorer 1 Observations

The quiet-time dayglow reference model developed in Chapter 3 is used here to 

provide reference photometer count rates for individual pixels as a function of solar and 

spacecraft zenith angles, S and D, respectively, and azimuth angle A. Model values are 

also adjusted according to variations in the daily 10.7-cm solar radio flux (F) although, 

as noted in Chapter 4, these corrections are insufficient to account for the low count rates 

which occur during the period of very low values of F later in January. 1983. Corrections 

for phase angle are not made here, as the change in phase angle across the polar cap is 

small. In any case the mechanism for variations in P (diurnal heating by solar EUV) 

measured at middle latitudes may have only have a minor effect within the polar cap. 

Percent differences from the quiet-time model are calculated for the disk-region of the
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images used in this study in the same manner described in Chapters 3 and 4. By January. 

1983, the FUV instrument’s optics had been seriously affected by incident radiation, 

reducing its sensitivity by a factor of 0.52 since launch. This sensitivity correction is 

applied after azimuth and corrections for F are included in the model count rates.

Images obtained during two successive orbit passes with intervening auroral activity 

can reveal the effects o f geomagnetic activity on the polar cap. As an example, four 

image pairs, taken during separate periods of varying geomagnetic activity, are shown in 

percent difference (PD) representations in Figure 5-1. Figure 5 -la shows the 1-minute 

AE indices for January 2, 1983, with the image times o f 0932 and 1609 UT indicated 

with vertical dashed lines. The PD representation o f images obtained during the 12- 

minute periods beginning at the listed times are shown in Figures 5 -lb and 5 -lc . These 

images are smoothed using a 5x5 boxcar averaging technique, as are all other images 

presented in Figures 5-1 and 5-2. Similar to images shown in Chapter 3. the solar 

terminator is to the lower right, but for these images of the southern polar region the 

moming sector is to the lower left. In each image presented here, contours of geographic 

latitudes -40° and -10°  are shown using dashed lines, and PD values are indicated with 

the same color table used in Chapters 3 and 4, with values less than -20%  outlined with 

a solid white contour. Note the offset of the auroral oval from the geographic south pole.

In the time between the images of Figures 5 -lb  and 5-lc. the AE index is seen to 

increase from -100 nT to a peak value of -450 nT at 1400 UT. then drop again to 100 

nT. During the -6.5 hours between images, the auroral oval and southern magnetic pole 

advance clockwise from the evening sector to the near-midnight sector. No significant 

dayglow decreases are present in Figure 5-1 b at polar cap latitudes, though the auroral 

oval is clearly visible. The ±10% percent difference values throughout this image are 

indicative of the low magnetic activity during the previous nine hours. In Figure 5-lc. 

auroral emissions have clearly increased and areas o f decreases of -20% from corrected 

model dayglow values is observed within the oval. No decreases of this significance are 

observed outside the auroral oval, except at the terminator.
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Figure 5-1. Percent Difference (PD) representations of images from successive orbits on 
days 2 ( lb  and lc) and 3 ( le  and 10, 1983. AE indices for days 2 and 3 are shown in 
Figures la  and Id, respectively, where the imaging times are indicated with vertical 
dashed lines. The color scale represents PD values from -60 to +60%. as first presented 
in Figure 3-15.
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The AE indices for a similar image pair obtained on day 3, 1983. are shown in Figure

5 -Id. with vertical dashed lines again indicating the imaging times of 0707 and 1238 

UT. The PD representations of these image are shown in Figures 5 -le  and 5 -If. The AE 

index rises from -1 0 0  nT to -200  nT in the hour prior to the First image time. Visible 

within the polar cap in Figure 5 -le  are small areas where PD values are less than -20% . 

In the -5.5 hours between the images, the AE index rises to -4 5 0  nT. then increases 

rapidly to >900 nT just as the second image is obtained. It is evident in the second image 

that the auroral oval has expanded. Also, decreases to < -20% in dayglow brightness are 

observed throughout the polar cap. Note that the second image is taken from a lower 

altitude, such that it is necessary to map the image to Fixed coordinates to truly discern 

the variation in size of the oval, as is done in later sections.

Using the format of Figure 5-1. the AE indices and a third pair of images obtained on 

day 5, 1983 are shown in Figures 5-2a, 5-2b, and 5-2c, respectively. The AE indices 

demonstrate magnetic activity similar in history to that observed on days 2 and 3: low 

activity (AE <100 nT) preceding the First image (taken at 0724 UT) and a period of 

moderate, variable activity (100 nT < AE < 400 nT) before the second image (taken at 

1308 UT). The auroral oval (near the top of the image) is not entirely visible in the first 

image, as a portion of it lies in the limb region that is not subject to examination by the 

dayglow model. The disk-region polar cap exhibits insignificant decreases in brightness 

less than -20% of the quiet-time values. After the increase in magnetic activity, localized 

brightness decreases of <-20% are evident throughout the polar cap, as shown in Figure

5-2c. This reflects a very moderate effect of magnetic activity on polar cap composition.

The AE indices for day 15, 1983, are shown in Figure 5-2d, with PD representation 

of the images obtained at 1244 and 1904 UT in Figures 5-2e and 5-2f. respectively. The 

image times are indicated with two vertical dashed lines on the AE plot. Significant 

auroral activity during the several hours prior to the First imaging time is evident. 

Between imaging times, a significant increase in auroral activity is evidenced in the AE 

indices, with values briefly >1000 nT around 1600 UT. The auroral oval is evident in
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Figure 5-2. PD representations of images from successive orbits on days 5 (2b and 2c» 
and 15 (2e and 2f), 1983. AE indices for days 5 and 15 are shown in Figures 2a and 2d. 
respectively, where the imaging times are indicated with vertical dashed lines. Color 
scale is the same as for Figure 5-1.
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Figure 5-2e. as are some >20% decreases in the polar cap and in the early morning sector 

at subauroral latitudes. After the large excursion of the AE indices, the oval has 

expanded and increased in brightness relative to the local dayglow emissions, as 

evidenced in Figure 5-2f. Dayglow decreases < -20%  are evident throughout the polar 

cap. reaching a maximum deviation from reference brightness of -52%.

Any auroral emissions occurring within the polar cap would mask decreases in 

dayglow brightness therein. Such emission are known to occur mostly during periods of 

Bz northward, and are often observed as a transpolar arc or other discrete structure. A 

case can be made that the apparent increases in size and magnitude of the thermospheric 

disturbances within the polar cap on the selected days are due to the diminution of 

previously present polar cap auroral emissions with southward turning IMF. It is 

improbable, however, that large scale decreases in dayglow brightness within the polar 

cap can be entirely masked by auroral emissions within the oval. We interpret the 

observed variations as decreases in dayglow emissions due to auroral heating of the 

thermosphere, while acknowledging that a decrease in auroral emissions within the polar 

cap could add to the apparent decrease in dayglow brightness. However, a hypothetical 1 

kR auroral em ission at 130.4 nm at 90° SZA would be seen as an -30%  increase over 

normal dayglow brightness. This is not observed within the polar cap at any time in this 

study, including very quiet times when no decreases in dayglow brightness within the 

polar cap are expected.

5.3 Variations in Polar Cap Dayglow Brightness

5.3.1 Temporal Variability

To obtain a measure o f the rates at which O densities in the polar cap decrease, and 

subsequently recover, the average PD value of the polar cap before and after the 

magnetic events of Figures 5-1 and 5-2 are determined. Images obtained using the 

123-nm Filter (including those shown above) are also available for three consecutive 

orbits on days 3, 5, and 15-16, 1983. Images obtained from two orbits on day 2. 1983.
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shown in Figures 5 - lb  and 5-lc are followed by an orbit during which the 123-nm filter 

was not used. The imaging penods using the 123-nm Filter and supporting information 

are summarized in Table 5-1. Six hours average IMF values are calculated from the 

available data [NSSDC, 1986] for the times prior to each imaging period to characterize 

solar wind conditions. Average <PD> values within the polar cap for each orbit were 

determined from the images by first manually determining the aurora-polar cap boundary 

and digitally removing the surrounding auroral emissions (and subauroral dayglow). PD 

values were calculated for the remaining pixels of each image for a given orbit and then 

averaged over all images to obtain an average <PD> value for the polar cap. These 

average <PD> values for each orbit on days 2, 3, 5. and 15 are shown in the right column 

from top to bottom of Figure 5-3, as well as the AE indices for the 24 hour period during 

which the images were obtained, shown in the left column. The time at which the first 

image in an orbit series was obtained is marked with a vertical dashed line.

In each of these cases, the First two orbits provide images which effectively bracket 

an impulsive increase in geomagnetic activity, and the effect of the activity is a reduction 

in polar cap dayglow brightness, corresponding to a decrease in the oxygen column 

density. In the three cases where a third orbit provides further images, the recovery of 

polar cap FUV brightness to values more representative of pre-enhancement levels is 

evident. The appearance of a composition disturbance and subsequent recovery occurs in 

an approximately 12 hour period. This timescale for disturbances to appear within the 

polar cap (less than seven hours) is similar to that reported in modeling efforts and direct 

compositional measurements [Fuller-Rowell et al., 1994, 1996: Prolss. 1980. 1981. 

1982]. The <PD> values observed in the third orbit on days 3 and 5 indicate an -20 

50% recovery of O densities to pre-enhancement levels in the seven hour orbit period. 

This also is described by Fuller-Rowell et al.[1994,1996] (see also Figure 1-11 of this 

thesis), with a roughly 50% recovery of mass mixing ratios at high latitudes within six 

hours o f the end of activity, though this example is for a very large storm. The day 016 

<PD> value is greater than the pre-storm observed level. This may be due to the polar
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Table 5-1: Images Used in Polar Cap Study and IMF y- and z-components 

during 6 Hours Previous to Imaging

Day of 1983 Orbit number Imaging Times # of Images By. nT B,. nT

002 Orbit 1 0932-1033 UT 6 -3.4 - 1 .4 “

Orbit 2 1456-1734 UT 14 2.3 0.4

003 Orbit 1 0707-0731 UT 3 6.5 1.9

Orbit 2 1137-1250 UT 7 2.1 -2.8

Orbit 3 1937-2002 UT 3 0.2 3 0.4 3

005 Orbit 1 0648-0737 UT 5 5.0 3.0

Orbit 2 1308-1357 UT 5 5.7 -2.8

Orbit 3 1944-2044 UT 6 NA NA

015 Orbit 1 1143-1256 UT nt 12.7 2 5.0"

Orbit 2 1904-1953 UT 5 8.5 2 1.4 2

016 Orbit 3 0306-0354 UT 5 7.2 4 1.8 4

If IMF coverage is incomplete, superscript indicates number of hourly IMF data 

values available in six-hour period.
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Figure 5-3. Average polar cap percent difference values at orbit times indicated in AE 
plots. A plot o f AE indices (left column) during a 24-hour period for which there are 
successive orbits and images with the 123-nm filter. A corresponding plot of average 
polar cap <PD> values (right column) indicates the levels of FUV brightness decreases. 
A dashed vertical line in an AE plot indicate the time, for a given orbit, of the first image 
used in the calculation of <PD>.
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cap being partially in the limb region during this observation, with the low number of 

pixels available for the calculation being slightly affected by limb brightening.

5.3.2 Spatial Variations

The images of Figure 5-3 showing the most significant dayglow decreases are now 

examined in greater detail. Average percent differences are again calculated using ail 

images from each orbit produce an overall <PD> image for the orbit, at first including all 

pixels in the analysis. These are shown in Figure 5-4a through 5-4d, where the <PD> 

image is mapped to an orthographic projection of geomagnetic local time and latitude, 

where the center is the southern magnetic pole and the top is magnetic noon. The right- 

hand portion o f each mapping is the pre-noon sector.

A plot o f <PD> values along the 1100 MLT meridian (continuing beyond the 

magnetic pole to 80°N on the 2300 MLT meridian) is provided to the right of each 

image. Note that auroral emissions are not removed and are evident at about -75 3 to 

-80° magnetic latitude. <PD> values from Days 2 (Figure 5-4a) and 3 (Figure 5-4b). 

1983. show the clear difference between the magnitude of dayglow brightness within the 

polar cap and outside the oval at sub-auroral latitudes. They demonstrate that 

thermospheric densities may be disturbed throughout the polar cap within 2-3 hours of 

the onset of moderate magnetic activity, while densities just equatorward of the dayside 

portion of the oval remain relatively unperturbed. Data from Days 5 (Figure 5-4c) and 15 

(Figure 5-4d), 1983, show a more continuous variation of <PD> values along the 

meridian from sub-auroral latitudes into the polar cap (aside from the intervening auroral 

emissions). For day 15, this is clearly a result of the moderate magnetic activity over 

many hours prior to the imaging sequence. Heated portions of the thermosphere have 

corotated with Earth to appear on the dayside, at subauroral latitudes [Craven et al. 1994: 

Meier et al. 1995].

Note that in these meridional plots, the most significant decreases in dayglow 

brightness sunward of the magnetic pole are just poleward of the oval. This observation
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Figure 5-4. <PD> values calculated from images in the second orbit of each sequence. 
PD values are shown for days 2, 3, 5, and 15 in satellite projections of geomagnetic local 
time and latitude and in plots of <PD> values along the 1100 MLT meridian in Figures 
5a-5d. The center o f the mapped images is -90°S and the top of each map is 1200 MLT. 
Image times correspond to the First in the series of images taken during the orbit.
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is consistent with the interpretation that dayside thermospheric parcels undergo 

significant heating while advecting through the auroral oval. The late morning sector of 

the auroral oval is a region of efficient Joule heating [Fuller-Rowell et al.. 1994], and 

heating of neutrals in this region is demonstrated in simulations by Idenden et al. [1997], 

If these decreases are due to this heating, then it can be stated that there is a FUV 

signature of neutral atmosphere’s heating within one hour of being so affected. This is 

the approximate transit time of an atmospheric parcel into the polar cap from subauroral 

latitudes. Hernandez et al. [1991] clearly show that the neutral winds at the 'throat' 

region are not always directed into the polar cap. However, IMF By is positive for all 

cases presented in this chapter, for which the neutral wind field (in the southern 

hemisphere) favors transport of neutrals through the late morning oval into the polar cap.

The distribution of dayglow decreases within the polar cap is more closely examined 

in Figure 5-5a through 5-5d, where the color bar now represents a range of percent 

decreases of -6 0  to -0%  to better visualize percent difference values. The surrounding 

region of auroral emissions has been digitally removed from each <PD> image, now 

mapped to a Lambert equal-areas projection o f geomagnetic local time and latitude, 

where the noon-midnight meridian is vertical and the morning sector is to the left. This 

projection allows for smoothing with a boxcar technique after the <PD> pixels are 

mapped to geomagnetic coordinates. A 2° x 2° boxcar averaging technique is used to 

bring out variations in dayglow brightness over distances >~300 km. The average 

distribution o f compositional variations within the polar cap are thus shown in each 

image.

The mapped <PD> values from day 2 (Figure 5-5a) indicate a deep decrease in 

brightness to -33%  in the noon sector. Surrounding the polar cap is an area of increased 

brightness, where auroral emissions may not have been entirely excluded: the greatest 

<PD> values are +4%. It is important to note that IMF Bz was northward for at least the 

first hour o f imaging with data unavailable after 1600 UT. This may affect PD values
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Figure 5-5. Average <PD> values within the polar cap for the second orbit of each 
sequence. Four plots of <PD> values within the auroral oval are shown for days 2.3.5. 
and 15 in Figures 5-5(a-d), respectively. Auroral contributions were digitally removed 
from each image used to calculate <PD> values.
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within the polar cap. <PD> values from day 3 (Figure 5—5b) show a very different 

pattern, with the most significant decreases (< -40% ) in the evening sector. In this case. 

Bz is strongly negative throughout this period o f imaging. <PD> values from day 5 

(Figure 5-5c) indicate a different distribution of dayglow variations, with decreases to 

—45% in the midnight sector. No values of IMF Bz are available after 1300 L'T. The plot 

of <PD> values for day 15 (Figure 5-5d) shows strong decreases in the noon and evening 

sectors where the maximum decrease in brightness is -52% . the most significant 

decrease observed in this series. Once again, no IMF Bz data are available for this period 

of imaging.

It is expected that IMF orientation will influence the dayglow signature of Joule 

heating o f the thermosphere [Immel et al. 1997, and Chapter 4 o f this thesis]. In each 

case, the average value of IMF By prior to the imaging period in the second orbit is 

positive (orbit following increased auroral activity), as shown in Table 5-1. This 

indicates that, with adequate entrainment of neutrals by ion drag forces, a dawn neutral 

circulation cell of greater size than the dusk cell will be present along with the associated 

increased noon-to-midnight velocities shifted to the dusk sector.

If the overall neutral circulation patterns at high latitudes are similar, it is not evident 

in the dayglow brightness decreases observed here. In particular, for the second orbit of 

days 2. 3, and 5 which provides images following an increase in activity from quiet 

times, there are three very different dayglow signatures within the polar cap. However, 

that there is a pattern in each mapped <PD> image is interesting in itself, demonstrating 

the detection of spatial variations in thermospheric densities within the polar cap at scale 

sizes of -300  km.

That the patterns within the polar cap are different may be indicative ot differences 

in the timing of substorm onset compared to imaging times. Furthermore, regions ot 

Joule heating may be differently distributed about the oval in each case. Even with 

similar IMF values, it is not unexpected that dayglow signatures within the polar cap 

appear different. The five-to-seven images used to calculate the average PD values
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within the polar cap are. unfortunately, insufficient to track the development and 

subsequent motion of dayglow decreases within the polar cap with an acceptable degree 

of statistical certainty. Determining the origin of dayglow decreases, tracking their 

apparent path, and confirming their motion due to advection by the imposed. IMF 

dependent, windfield requires an imager with greater temporal resolution with longer 

times near apogee.

5.4 Summary

The DE-1 FUV images obtained during January' 1983 provide excellent views of 

decreases in dayglow brightness directly related to compositional variations in the 

thermosphere generated by Joule heating in the auroral oval. This chapter concentrates 

on dayglow decreases within the polar cap. bounded at low latitudes by the auroral oval, 

and an attempt has been made to exclude auroral emissions from the analysis.

Heating during enhancements in auroral activity causes gas expansion and upwelling 

of lower thermospheric constituents to higher altitudes. The time scale on which this 

occurs is on the order of hours, as can be ascertained from DE-I images shown in 

Figures 5-1 and 5-2 (summarized in Figure 5-3). Closer inspection of dayglow brightness 

within the auroral oval reveals deep decreases in brightness in close proximity to regions 

of strong Joule heating in the sunlit late-moming sector and strong gradients in PD 

values across the auroral oval in this area (Figure 5-4). At the same time, the IMF By 

values indicate the likelihood that neutral winds are directed through the heating zone 

and into the area of greatest brightness decrease. This indicates that DE 1 is observing 

perturbations of thermospheric O densities in less than an hour of a heating event, as 

soon as the heated gas enters the polar cap.

These observations of variations in the FUV dayglow on time scales ot less than one 

hour provide the best temporal resolution of compositional variations obtained by an 

orbiting FUV imager. Nadir pointing FUV instruments aboard lovv-altitude polar- 

orbiting spacecraft recorded variations in dayglow values with temporal resolution ot
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one orbit period (typically -90  minutes), but could not make multiple observations at 

fixed geomagnetic positions/local times.

Spatial structure within the polar cap is evident in the mapped <PD> images 

presented in Figure 5-5. Whether the location o f decreases in the evening and midnight 

sectors is due to the imposed neutral circulation or rather to Joule heating patterns is not 

discernible here. Imaging data were not selected which represented IMF orientations 

other than By>0, which is due partly to the fact that the four best cases of isolated storms 

during this imaging period (day 350, 1982 to day 41, 1983) happened to occur during 

periods of positive By. The previous chapter addresses IMF orientation and its effect on 

the appearance of dayglow decreases at subauroral latitudes in the Southern Hemisphere. 

Many cases where By<0 are used in the analysis. However, in a majority of those images 

the polar cap falls mainly in the limb region and cannot be included in the analysis of the 

polar cap. In any case, imaging data with greater temporal resolution and longer imaging 

periods may better be able to simultaneously identify the effects of Joule (and energetic 

particle) heating and the advection of disturbed gas by the wind field.
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Chapter 6

Comparison of Images, Magnetic Indices and Ground-Based Measurements

6.1 Introduction

Response of the DE-1 auroral imager to the FUV dayglow has been characterized as 

functions o f solar flux and Sun-Earth-Satellite geometry [Chapter 3]. Determinations of 

the effects of impulsive magnetic activity [Craven et al., 1994; Nicholas et al.. 1996] and 

the influence of IMF orientation [Immel et al., 1997; Chapter 5] have been made using 

this or related analysis techniques. A larger number of images is now surveyed with the 

goal of testing the utility of the model and searching for more examples of the varied 

effects o f magnetic activity on the thermosphere. Ground-based observations of 

ionospheric variations are also included in this study, with the goal of establishing a 

relation between changes in the F2 peak electron densities at specific locations and PD 

values in FUV measurements.

During this 60-day period, there are several large geomagnetic storms, two of which 

resulted in Dst values less than -100 nT. The Dst index is an indicator o f the magnitude 

of Earth’s ring current, the equatorial drift currents which have greatest current densities 

four-to-six Re from Earth’s surface and which increase with enhancement of convection 

velocities and plasma densities in the magnetosphere. As opposed to the high-latitude 

AE index, Dst is a measure of changes in the magnetic field at equatorial stations, and is 

reported in 1- hour increments. Significant excursions to negative values indicate 

enhanced ring currents and global geomagnetic disturbances, where the greatest ring 

current densities circle Earth at low latitudes and radial distances of 4—6 Re. The values 

of the Dst index for days 266-320, 1981, are shown in Figure 6-1 and will be referred to 

in this analysis. The DE-1 imaging times which are included in this analysis are 

indicated on the Dst plots as vertical dashed lines.

The primary source of electrons in the ionosphere is thermospheric O, via solar EUV 

ionization. Thermospheric storms can lower the column density of thermospheric O at 

middle latitudes on the dayside, as well as increase Nt densities, consequently reducing
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the source term for ionospheric electron production and increasing the loss term. See 

Chapter 1 for a detailed description of these processes. Areas where decreases in OI 

FUV brightness are observed in images have been shown to correlate with points in the 

ionosphere where the density at the F2 peak (NmF2) is lower than that during quiet times 

[Prolss and Craven, 1998]. Ionospheric perturbations are determined using ionosonde 

data taken from fixed ground-based stations. This chapter will expand upon that 

preliminary work, using the improved reference dayglow model and a significantly larger 

set o f ground stations.

An ionosonde transmits an upward propagating EM signal and receives the time 

delayed echo as it sweeps through a range of frequencies (1-20 MHz is common). The 

frequency and time-delay information provide an ionization altitude-profile and peak 

ionization densities at the FI and F2 heights. These altitudes are highly variable but 

easily identified. The FI peak is the lower ionization maximum, generally occurring 

above 120 km, but below 180 km. This is a daytime phenomenon, as solar-ionized 

species at these altitudes can rapidly recombine with the ambient electrons. Without the 

solar EUV input, electron densities rapidly decrease. The F2 peak is a consistent 

ionospheric feature at all local times, as recombination rates at this altitude are much 

lower. Even so, the peak density can vary by a factor of three-to-four between day and 

night. Rishbeth and Garriott [1969] give an excellent review of ionospheric physics and 

observations.

A search of North American, European and Far Eastern stations for those which 

provide f0F2 (peak frequency of the ordinary EM mode returned from the F2 region) 

during the late months of 1981 yielded the select list presented in Table 6-1. These 

stations will be used to provide ionospheric data for comparison with FUV images. Plots 

of ionosonde data from four North American stations are presented in Figures 6-2a.

6-2b, and 6-2c, for September. October, and November of 1981. respectively. Data from 

four European stations are likewise presented in Figures 6-3a, 6-3b, and 6-3c, for the 

respective months. Finally, data from six Russian (Far Eastern) stations are shown in 

Figures 6-4a, 6-4b, and 6-4c, again for the months of September, October, and
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Table 6-1: Ionosonde Stations in Figures 6-2-6-4

Station Latitude Longitude
North America
Boulder 40.0° N 105.4° W

Churchill 58.7° N 94.2° W

Ottawa 45.3° N 75.6° W

Wallops 37.7° N 75.5= W
Europe
Poitiers 46.7° N 0.2° E

Kiruna 67.9° N 20.1° E

Moscow 55.8° N 37.6° E

Archangel 64.4° N 40.5° E
Far East
Tomsk 56.5° N 84.9° E

Irkutsk 52.5° N 104.0° E

Yakutsk 62.0° N 129.5° E

Khabarovsk 47.5° N 135.0° E

Magadan 60.0° N 151.0° E
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November of 1981. Each foF2 trace is color coded, corresponding to a particular station 

listed at the left of each figure. For reference to day numbers, the dates September 1-30 

correspond to days 244-273, October 1-31 corresponds to days 274-304. and November 

1-30 corresponds to days 305-334.

The parameter f0F2 is proportional to (NmF2)l/2. and at this time the variations in 

either parameter will suit the purpose of monitoring day-to-day ionospheric variations. 

Frequency information is shown in the summary plots of ionosonde data and provides 

just as valid an indicator o f ionospheric disturbance as the calculated value o f NmF2. For 

comparison to PD values later in this chapter, the maximum electron densities are 

calculated in order to determine percent deviations of measured densities from monthly 

mean densities.

6.2 Data Selection and Processing

This work uses dayglow images selected from the first 60 days of the DE-1 imaging 

mission. This period is marked by several intense geomagnetic storms, as well as days ot 

very low activity, and several periods o f continuous substorms. The images, obtained 

with the 123-nm filter, are taken in 72 orbits from satellite positions which maximize 

spatial resolution and coverage of the sunlit Earth in the instrument’s field-of-vievv. 

Three consecutive images were systematically selected and processed from each orbit 

using a pre-apogee satellite altitude of -3 .0  Re as a primary criterion. During many 

orbits, filter #2 was not used at all, or was used at other times in the orbit. Images from 

these times are not included as they contribute little to this analysis. This results in gaps 

in coverage of up to two days in length which are evident in Figure 6-1 and the AE 

indices to follow.

PD representations of the three consecutive images from each orbit were mapped to 

geographic coordinates and averaged to produce <PD> values with reduced statistical 

variation, a method similar to that used for the polar cap images of Chapter 4. The <PD> 

values for each resulting image are shown in an orthographic projection of geographic 

coordinates (centered at 50° geographic latitude and local noon) in Figures 6-5(a-h).

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.



143

with nine images shown in each figure. The AE indices for the appropriate period of 

time, including the day prior to that of the first image (Figure 6-5a only), are shown 

above the mapped images. Times at which the three image sequence began are marked 

by vertical dashed lines in the AE plots. A summary of the imaging days presented in 

each of these figures is given in Table 6-2. All available images are presented here, with 

images showing brightness variations at geographic locations in two- or four-day time 

intervals selected for further discussion. Additional discussion is limited to images 

which offer additional insight to earlier work or sections of this thesis. This chapter 

presents a large body of data which can be referenced at a later time.

The daily variation in f0F2 for each ionosonde station is due to the variation in 

electron density with solar zenith angle. Stations at lower latitudes usually report greater 

peak f0F2 values: with the time of the peak (or peaks) in Universal Time depending 

primarily on the longitude of the station. For the purposes of this study, the important 

parameters are the deviation from the daily trend o f electron densities at any given 

station, and the relative difference in f0F2 values between stations. The baseline daily 

trend is inferred from values obtained during periods o f low magnetic activity. Median 

hourly values would provide this but are not shown, avoiding the added complication of 

plotting median hourly values for four-to-five stations in addition to the observed values. 

Ionosonde stations are indicated in the mapped <PD> images by the fir s t  two letters of 

the corresponding station, not their proper international geophysical designation. This is 

for ease of reading. The letters are centered just above the station location. Average 

brightness <PD> values for ionosonde stations are obtained from an ~2°x2° area about 

the location o f the station, which results in uncertainties of -3 —4% in <PD>, depending 

on the actual photometer response.

6.3 Discussion of Images in Survey

6.3.1 Days 267 and 269, 1981

These two days provide an excellent opportunity for comparisons of thermospheric 

conditions over the Far East and North America, with repeated imaging over each sector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 6-2: List of Days for Figure 6-5

Figure 6-5 Range of Days Range of Dates (1981)

a 266-272 September 23-Septem ber 30

b 272-280 September 30-October 7

c 280-290 October 7-O ctober 17

d 290-296 October 17-O ctober 23

e 297-304 October 24-October 31

f 305-311 November 1-Novem ber 7

oo 312-317 November 8-Novem ber 13

h 318-325 November 14-November 21
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With the -6 .85  hour orbital period, the satellite is in nearly the same location above 

Earth every 48 hours. The difference in local time at these locations on the Earth is only 

eight minutes. Thus, images obtained 48 hours apart offer an excellent opportunity to 

compare <PD> values to data from fixed ionosonde stations. Figure 6-5a contains two 

pairs of images obtained exactly two days apart (between days 267 and 269) where the 

same ionosonde stations are in the field of view of the imager. The first pair was taken at 

-0400 UT and shows the dayglow signatures over the Far East on days 267 and 269. The 

second pair, at -1700 UT on the two days, shows the dayglow signature over North 

America. These provide an example o f the correspondence between ionosonde and 

dayglow signatures.

Images taken beginning at 0405 UT, day 267 (24 September), over the Russian Far 

East (top center panel of Fig. 6-5a) show small areas o f decreased brightness at high 

subauroral latitudes extending from Archangel to Magadan. Weak decreases in 

brightness are observed over Tomsk, Irkutsk and Khabarovsk, with <PD> values of 

-8% , -7% , and -10% , respectively. The higher latitude stations Yakutsk and Magadan 

each show <PD> values of -14%  This follows a period of low auroral activity, as 

evidenced in the AE plots. Two days later, at 0347 UT on day 269 (26 September), the 

general level of auroral activity has increased and decreases in brightness are now 

evident over a larger part o f Siberia (right center panel of Fig 6-5a). The stations at 

Yakutsk and Magadan are clearly within a large area o f <  -20%  decreases in dayglow 

brightness, with <PD> values of -22%  and -27% . respectively, where Tomsk. Irkutsk, 

and Khabarovsk are well outside of this region. <PD> values at these stations have 

actually increased to -3% , -5% , and -9% , respectively.

The ionosonde data for these five stations are shown in Figure 6-4a. Days 267 and 

269 correspond to September 24 and 26, 1981, respectively. The ionosonde stations 

report sim ilar maxima in foF2 values at early UTs on day 267. The maximum is reached 

first at Khabarovsk and proceeds to stations farther west. This trend is evident in the 

several days preceding day 267 during the period of low magnetic activity. The 

following two days depart from this trend, with Yakutsk and Magadan reporting -35%
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decreases in peak f0F2 on day 269 relative to day 267 values. Tomsk and Khabarovsk, on 

the other hand continue to report f0F2 values similar to those reported two days earlier. 

This compares well with the observed dayglow decreases over the northernmost stations.

Another pair of image sets obtained on the same two days, but each beginning at 

1724 UT, reveals a similar positive comparison between decreases in <PD> and f0F2 

values in the North American sector. Decreases in FUV brightness in the high latitude 

morning sector are evident in the mapped <PD> image of day 267 (also presented in 

Chapter 4 and Immel et al. [1997]). The region of 20% decreases does not extend to any 

of the three ionosonde stations noted in the Figure. The onset of intense auroral activity 

beginning at -0800  UT on day 269 results in a large area of decreased FUV brightness 

over North America. Ottawa and Boulder are within the area of 20% dayglow brightness 

decrease, but not Wallops. Churchill is well within the area o f decreased brightness and 

is located very close to the auroral oval.

Ionosonde data from these stations indicate f0F2 values on day 267 which reflect no 

strong deviation of ionospheric densities from the normal daily trend at any station, 

though peak values are lower at higher latitude stations. A disturbance is evident on day 

269. with Boulder and Ottawa stations showing the lowest values of f0F2. The two-day 

percent decrease in peak f0F2 values is -1 0 —15% at all stations, but the time histories 

show greater overall perturbation at Boulder and Ottawa than at W allops. There are 

intermittent observations from Churchill which indicate decreases in f0F2 values on the 

order of 40—50%, as well as a transient increase which may be due to auroral 

precipitation.

Percent differences in observed electron densities from monthly mean values. 

PD(Nm), are calculated using the same method as Prolss [1980], as discussed in Chapter 

1, at each Far-Eastern and North American ionosonde station discussed here. The <PD> 

and PD(Nm) values are compared at each station and are shown in Figure 6-6 for values 

on day 267 (asterisks) and day 269 (filled circles). The trend toward more negative 

PD(Nm) values with decreased brightness is evident. The datum from Churchill on day 

269 is excluded, due to the possible contamination of PD values by auroral emissions.
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These examples provide some indication of a positive correlation between decreases in 

FUV dayglow brightness and ionospheric electron density. One should also note the 

absence of any clear trend in the data for PD(Nm) > -20% . which are all from day 267. 

The apparent covariation of these two parameters is only evident where Nm values are 

near or below monthly mean values. This suggests that FUV measurements can provide 

an indication of variations in ionospheric electron densities only during negative 

ionospheric storms, sim ilar to R (0/N i).

6.3.2 Quiet Period of Day 291, 1981

Several images were excluded from the original quiet-time set [Chapter 3] as they 

demonstrated decreases to < -20%  in brightness at high latitudes, even though the quiet

time criteria of low magnetic activity was met. This is the case for images obtained on 

day 291 (October 18), which were exam ined in Chapter 3. The available ionosonde data 

is reviewed in order to determine if an ionospheric disturbance accompanied the 

dayglow decreases. Dayglow decreases observed in three images taken beginning at 

1649 UT. shown in the upper-right panel of Figure 6-5d. demonstrates an area of 

decreased dayglow brightness in the noon sector. Decreases of < -20%  extend to the 

latitude o f Ottawa. This is an interesting dayglow signature, given the very low level of 

activity preceding the time of the image.

The day-291 ionosonde data for Ottawa. Churchill and Wallops (no Boulder data are 

available) are shown in Figure 6-2b and for Far Eastern stations in Figure 6-4b. For days 

during which magnetic activity is very low. Wallops and Ottawa often have very similar 

ionosonde traces. This is the case on day 291 (October 18), where the hourly f0F2 values 

for the two stations are nearly identical for the third consecutive day. These data indicate 

that electron densities are relatively unaffected by geomagnetic activity on these three 

days (289, 290, and 291). The similarity between these two stations may be seen in the 

ionosonde data for any quiet day selected for the analysis in Chapter 3 (e.g., October 31. 

Figure 6-2b (day 304) and November 13, Figure 6-2c (day 317)) except for day 266.
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which was also excluded from the determination of the quiet-time response due to the 

presence o f strong dayglow decreases at high latitudes.

Churchill, the northernmost station, demonstrates no significant deviation from the 

daily trend in f0F2 values. This is significant in that Churchill is very close to the auroral 

oval and tends to show variations in f0F2 values after the weakest of magnetic events. 

Furthermore, it is well within the area of apparent 20% decreases in dayglow brightness.

The explanation of the apparent decrease in dayglow brightness given in Chapter 3 is 

based on the fact that values of F 10.7 for this day are the highest observed in the period in 

which the 156 quiet-time images were obtained. The decrease in brightness with 

increasing azimuth angle of observed pixels is attributed to inordinately high effective 

emission altitudes due to the effect of strong solar EUV flux on the thermosphere, not to 

magnetic activity. Hence, it is a geometric effect for which the model cannot correct in 

the absence of accurate EUV flux measurements. The ionosonde data confirm that there 

is no upper atmospheric disturbance present at this time.

6.3.3 Storm Period o f Days 293 -  296. 1981 

The DE-1 images obtained during the geomagnetic storms of days 293 and 295 

(October 20 and 22, 1981) are marked by strong dayglow decreases over large areas of 

Earth. Images from day 295 were investigated by Craven et al. [1994], Ionosonde data 

from Europe (day 293) and North America (day 295) show extremely strong decreases in 

f0F2 values during this storm period.

Three PD images from day 295 taken at times beginning at 1644 UT are averaged and 

shown in the lower-center panel of Figure 6-5d. Dayglow decreases are observed 

throughout the now large polar cap and at mid-latitudes, with < -20%  decreases in 

brightness extending as far south as Mexico at -1000 LT. The decreases do not extend 

so far south at the noon meridian, where the -20% level is 3—4° north of Wallops. The 

stations at Ottawa and Boulder are well within the area of 20% decreases, showing 

<PD> values of -3 2  and -28% . respectively. Wallops shows a surprisingly small
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deviation from quiet-time values of -3% . Churchill is in an area of auroral emissions and 

just within the polar cap with a <PD> value of -19% .

North American ionosonde f0F2 values for day 295 (October 22) are shown in Figure 

6-2b. Boulder and Ottawa show the most significant decreases in f0F2 for the day. with a 

-70%  decrease at Boulder (from the previous day) and a transient increase at Ottawa 

around the time of imaging. The source of the transient increase at Ottawa is not known. 

Whether this is a traveling ionospheric disturbance (TDD) or result of interference in the 

measurement by auroral precipitation cannot be determined. Wallops shows a decrease 

in f0F2 values of -40%  from the previous day and Churchill provides very intermittent 

data which are not useful for this analysis.

The correspondence between the magnitude of brightness decreases over ionosonde 

stations and the f(>F2 decreases is striking. The percent decreases observed at Boulder 

and Ottawa are much greater than those observed at Wallops, while the ionosonde data 

suggest that electron densities over Wallops are highly affected by the storm. Wallops is 

close to the limb region in the 1644 UT image, and it is possible that limb brightening is 

now greater at the edge of the disk region than in quiet times. This w-ould occur if .V 

scale heights were affected at mid-latitudes, increasing the brightness of LBH emissions 

as N? densities increase in the F region. The model of Chapter 3 includes a linear -10% 

correction to <  r >  values to account for increased photometer response with spacecraft

zenith angle. It appears to be insufficient in this case.

As is clear from the North American ionosonde data and DE-1 images, these storm 

effects (reduction of OI brightness, decreases in f0F2. possible increases in N; emissions) 

represent a greater deviation from quiet times than those o f day 269 (Section 6.3.1). 

Although the storms appear similar in magnitude (by the AE index), the disturbance on 

day 295 is much more intense. The one-hour Dst indices of Figure 6-1 show that the day 

295 event is a classic geomagnetic storm, as is the event on day 293. while the event of 

day 269 may be more aptly described as a series of intense substorms accompanied by a 

gradual increase in magnetospheric convection and ring current intensity.
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Examining other ionospheric data for this period, no significant changes in the daily 

f0F2 trend are observed at Poitiers (Figure 6-3b) or Khabarovsk (Figure 6-4b) after either 

the day 293 event or that of day 295. It is interesting to note that on day 270, Poitiers 

reported an -30%  decrease in fuF2 values (see Figure 6-3b), one of the few significant 

decreases observed at that station in this entire study period. Furthermore, similar 

decreases in f0F2 values are seen at Khabarovsk, the only station farther south in 

magnetic latitude than Poitiers. Unfortunately, no 123-nm imaging data from day 270 are 

available to confirm a disturbance in the FUV dayglow. Also interesting is that f„F2 

values are not nearly so perturbed at Tomsk or Moscow on this day. two stations located 

practically on the great-circle route between Poitiers and Khabarovsk, and at higher 

magnetic latitudes. This suggests the presence o f decreases in O and electron densities 

well away from the high latitude Joule heating region.

6.3.4 Days 307 and 311. 1981

Although the images presented here are separated by 96 hours, they show another 

fine comparison between dayglow decreases and ionospheric perturbations. There are 

actually two image pairs, one taken at early UTs when Yakutsk and Magadan are on 

opposite sides of the noon meridian and another taken at very late UTs (of the same day) 

when the Bering Strait is at the noon meridian and four of the five Far Eastern stations 

have entered the dayside hemisphere. The level o f activity on day 307 (November 3) is 

low, but does not meet the quiet-time condition used in Chapter 3. In the four days that 

follow, the level o f activity increases slowly, with the highest level of activity on day 311 

(November 7).

Images from these times are shown in Figure 6-5f, with the two images from day 307 

in the second row and the two from day 311 in the bottom row. Decreases in brightness 

to < -20%  are not evident in either image of day 307. though decreases of -10%  are 

visible at the higher latitude ionosonde stations at 0248 UT (e.g., <PD> = -13%  at 

Yakutsk), but not later at 2324 UT (<PD> = -2%  at Yakutsk)
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Increases in brightness on the order o f -10%  are observed to the south and east of 

Irkutsk (<PD> = 3%) at 0245 UT on day 311. Other stations are located farther from this 

region of brightness with Magadan and Yakutsk showing <PD> values o f -3%  and -1 %. 

respectively. Near the end of the day. and after an extended period of moderate magnetic 

activity, an area of 20% decreases in brightness is seen at sub-auroral latitudes centered 

over the Bering Sea. This is a highly localized decrease, with PD values of -14% and 

-9%' at Magadan and Yakutsk respectively.

Ionosonde data show only slight disturbances in f0F2 values on day 307. with 

Yakutsk not reporting, but Magadan indicating a transient -15%  decrease at -0500 UT. 

Ionospheric conditions are remarkably consistent for the next three days, with no strong 

deviations from the smoothly varying trend indicative of periods o f low magnetic 

activity. The only change in the trends during this period is that Tomsk reports the 

highest maximum f0F2 values of all the stations on days 307-310. but the lowest values 

on day 311. The trend at the other stations is interrupted at -0000 UT. when f0F2 values 

peak at Khabarovsk, while beginning to decrease at Magadan. Meanwhile. Yakutsk 

appears unaffected, closely following the trend of the previous days.

During periods of magnetic activity, decreases in fuF2 show correspondence with 

dayglow decreases. It can be inferred that no decrease in dayglow brightness occurred 

over Yakutsk from this imaging time through the next day, while dayglow decreases 

over Magadan remain strong or increase on day 312 (November 8). as evidenced in the 

ionosonde data for that day. This disturbance cell is similar to that described by 

Schoendorf et al. [1996], as it is well out of the polar cap and isolated from other 

disturbance zones. Furthermore, it adjoins areas of increased brightness and electron 

densities (from f0F2 at Tomsk and Yakutsk). The inferred decrease in O density in this 

area is matched by areas where increases in brightness and fcF2 suggest increases in O. 

This is in contrast to observations on days 267 and 269 where deviations of f0F2 above 

monthly mean values are shown not to correspond well with increases in brightness. 

Localized increases in FUV brightness have been observed previously by Nicholas 

[ 1993] and Nicholas et al. [ 1997], but in a limited number of cases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This correspondence of highly localized decreases in dayglow brightness with highly 

localized variations in electron density demonstrate that small areas of decreased 

brightness in the FUV images reflect real variations in electron densities that are 

observable from ground stations. The observation of increases in electron density which 

are matched by increases in FUV brightness indicate that cases exist where increases in 

ionospheric electron densities may be related to increased O densities, in contrast to 

results from other days of this study.

6.3.5 Days 312-325. 1981

This set of images clearly demonstrates a trend in the <PD> values observed in the 

images of this survey; that is, the decreasing effect of magnetic disturbances at middle 

latitudes as observations are made nearer to the winter solstice. This then supports the 

results of thermospheric modeling by Fuller-Rowell et al. [1996] and of studies by 

satellite gas-analyzers [Prolss, 1980] which show that magnetic activity has a much 

weaker effect on sub-auroral thermospheric composition in the winter than at equinox or 

in the summer. Without the enhancement of conductivity by solar EUV radiation. Joule 

heating is not as great in the winter hemisphere. Furthermore, the polar cap is farther into 

the nightside. where anti-sunward neutral winds across the terminator are less apt to 

transport composition disturbances out of the polar cap to mid-latitudes. Fuller-Rowell et 

al. [1996] clearly demonstrate the expected difference in thermospheric perturbations 

between solstice and equinox conditions. Figure 1-11 of this thesis (from Fuller-Rowell 

et al., [1994]) show the effects of a storm in the summer hemisphere, which extend 

much farther equatorward than a similarly intense storm simulated for the winter 

hemisphere.

The <PD> images shown in Figure 6-5g and 6-5h were obtained mostly during 

periods of moderate-to-intense magnetic activity and varying orientation of IMF By 

(from ISEE 3, not shown). The AE index exceeds 1000 nT at least once on each of the 

days 312, 315, 316, 318, 321, and 322. The Dst index indicates significant increases in
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Earth's ring current on days 315-316. 318 and 321. By any account, this period is 

marked by significant magnetic events.

There are no large areas {e.g., days 269 or 293) of decreases to < -20%  in FUV 

dayglow brightness observed in the morning sector at any time in the series o f images. 

Small areas of decreased dayglow brightness of this level are visible near the noon sector 

on day 312 (Figure 6-5g, top-center panel), within the polar cap on day 315 (Figure 6-5g. 

center panel), in the moming-to-noon sector of day 316 (Figure 6-5g, bottom left panel), 

and within the polar cap on day 323 (Figure 6-5h. bottom center panel). The appearance 

o f these decreases is in good temporal agreement with the increased magnetic activity. 

Mid-latitude decreases on the order of 10% can be observed in several other images. 

These decreases, at 1259 UT on day 312. 2309 UT on day 321. and 1000 and 1622 UT 

on day 323, also are observed after significant activity.

6.4 Summary

The survey of images presented here tests the ability of the reference model to 

produce photometer responses for comparison with images obtained during periods of 

greatly varying solar flux (F 10.7) and magnetic activity (AE and Dst). Aside from 

increased limb brightening during periods of strong magnetic disturbances {e.g.. Day 

295), the quiet-time dayglow model developed in Chapter 3 provides a good reference 

for measuring the level of compositional perturbation in the thermosphere. Overall, most 

<PD> values observed are negative, with few large areas of increased brightness 

observed. This is normal, as magnetic activity has the effect of (1) reducing O column 

densities and (2) increasing N 2 scale heights. Both of these will result in a reduction of 

the OI 130.4-nm emission, which dominates the DE-1 FUV response when using the 

123-nm filter.

Increases in Nm over monthly mean values can be on the order of 50%. where such 

increases in OI FUV brightness are never observed (aside from the auroral zone). The 

comparison o f <PD> values to PD(Nm) from images over the Far East and North 

America on days 267 and 269 demonstrate that variations in dayglow brightness better
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reflect variations in NmF2 during periods where both show decreases below mean values. 

The relation between <PD> and PD(Nm) where values of PD(Nm) are below +20% show 

a roughly linear relationship, with a variance lower than the set of points as a whole. All 

points are at negative values of PD, where PD(Nm) can be largely positive. This 

corresponds well with the conclusions o f Prolss and von Zahn (1974). that perturbations 

in O/N2 ratios are not responsible for positive ionospheric storms. It is logical that only 

negative ionospheric storms have a FUV signature.

This work provides several more qualitative comparisons between dayglow 

brightness decreases and localized measurements of decreases in ionospheric electron 

density. Gradients in the <PD> values in images correspond to variations in the relative 

level of f0F2 values. Images from day 295 and day 311 show qualitative agreement 

between dayglow brightness decreases and the associated ionospheric disturbances 

observed in ground-based observations. This set of images was taken during a period of 

only moderate activity, but demonstrates a degree of structure in the upper atmosphere 

which is not often seen in images obtained during larger magnetic events.

The ionosonde data confirm that dayglow decreases observed on day 291 are not due 

to the varying levels of geomagnetic activity of previous days, as little disturbance is 

observed in ionospheric electron densities for several days up to and including the time 

of imaging. Rather, the decreases are attributed to the inability of the reference model to 

correct for the high effective emission altitude that follows extreme, though briefly 

maintained, levels of solar radiation flux at Earth.

Studies of the dayglow variations on days 307-311 and 312-325 provide possible 

confirmation of modeling work by Schoendorf et al. [1996] and Fuller-Rowell et al. 

[1996]. Further study should include model runs using AE as a basis for the auroral 

energy inputs measured on these days, in the attempt to reproduce the observed 

variations in thermospheric composition and electron densities (for days 312-325). IMF 

data are available on these days to aid in providing the requisite magnetospheric inputs.

A useful addition to this study would be an investigation of the correspondence of 

dayglow decreases with changes in the FI electron densities, via the f0Fl measurements.
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This parameter provides a measure of electron densities at altitudes where photoelectron 

excitation of OI emissions is also great, but where Ni densities are also much higher than 

at the F2 peak. This could provide information useful in further investigation of 

anomalous decreases in OI dayglow brightness, such as those observed on day 291. 

Unfortunately, many ionosonde stations contributing to the ionospheric database did not 

measure or record this value on these study days. Only the values of f0F2 have been used 

in this chapter.
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Figure 6-1. Dst index for the period under investigation. The hourly values of the Dst 
magnetic index are shown for 55 consecutive days of 1981. Vertical dashed lines 
indicate times at which DE-1 images used in this study were obtained. Significant 
geomagnetic storms are indicated by sudden decreases in Dst values on days 287. 293 
and 295 (October 14. 20 and 22. respectively).
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Figure 6-2. Ionosonde f0F2 values for selected stations in North America, (a) Hourly 
values of f0F2 for Boulder, Churchill, Ottawa and Wallops for September, 1981. 
Following pages: (b) same for November, (c) same for December.
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Figure 6-3. Ionosonde f0F2 values for selected stations in Europe, (a) Hourly values ot 
f0F2 for Kiruna, Archangel, Moscow and Poitiers for September. 1981. Following pages: 
(b) same for November, (c) same for December.
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Figure 6-4. Ionosonde f0F2 values for selected stations in the Far East, (a) Hourly values 
of f0F2 for Tomsk, Irkutsk, Yakutsk, Magadan and Khabarovsk for September. 1981. 
Following pages: (b) same for November, (c) same for December.
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Figures 6-5(a-h). Mapped <PD> images and AE indices for study period. Nine <PD> 
images are shown mapped to an orthographic projection in geographic coordinates. The 
center of each mapping is at 50°N and 1200 Local Solar Time. Images from all days are 
presented in the same format as 6-5a.
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Figure 6-6. Comparison of <PD> and PD(Nm) values for days 267 and 269. Percent 
differences in electron densities from monthly mean values over Far Eastern and North 
American stations are combined and compared to PD values at those stations on day 267 
(asterisks) and day 269 (filled circles).
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Chapter 7 

Synthesis

7.1 Review of Significant Results 

This thesis presents a comprehensive set of observations made with the FUV imager 

onboard the DE 1 satellite that are directly related to large-scale compositional variations 

in Earth’s thermosphere. Quantitative analyses of these perturbations is made possible in 

Chapter 3 by the development of a refined model for the imager’s response under quiet 

geomagnetic conditions in the late 1981-early  1982 era. It is tested through application 

to images from the original quiet time set [Nicholas et al.. 1997] and to over 400 images 

from September 1981-February 1983. The test for quiet time images o f day 291 (Figure 

3-15) shows variations in percent difference (PD) values with satellite position but this is 

attributed to an extremely high effective emission altitude for the period in response to 

unusually large values o f the solar FUV flux (as inferred from 10.7-cm radio 

measurements). Hence, care must be taken to estimate the solar FUV flux.

Corrections for reduced instrument sensitivity with time in orbit are necessary to 

make comparable observations of dayglow brightness at times later in the mission. The 

absolute correction factor o f 0.52 is used to reduce mean pixel response values. <  r > . 

for application to images from early 1983. PD values calculated for quiet time images of 

this period {e.g. day 002, 1983, shown in Figure 5-1) result in -20% < P D < 20^ for most 

image pixels, excluding the auroral oval. However, analysis of southern hemisphere 

images revealed that the relationship between the 10.7-cm solar radio flux. F. and <  r >  

during periods of very low solar activity departs from the linear trend determined from 

the original 1981 quiet-time images. Corrections for F determined from images obtained 

from the 1981 era images did not provide large enough corrections (reduction) to the 

model to match the extremely low values of F in mid-January, 1983, as can be seen in 

Figure 4-6. The variation o f dayglow brightness with large variations in solar radio flux, 

or more importantly, the absolute values for FUV and EUV fluxes, would constitute a 

useful study for improving the method of analysis described in this thesis. Furthermore.
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the replacement of the 10.7-cm solar radio flux with another parameter based on more 

direct solar EUV and FUV brightness would allow better modeling of day-to-day 

variations.

The effects of geomagnetic disturbances with similar geomagnetic index histories are 

investigated in Chapter 4, revealing the influence of IMF orientation on thermospheric 

composition, with the primary influencing factor being the sign and magnitude of the 

geocentric-solar-magnetospheric (GSM) y-component of the IMF. A pair of images 

demonstrates very different FUV signatures of composition variations at mid-latitudes, 

where the only input that is clearly different on the two days is the orientation, 

particularly in the y sense, and magnitude of the IMF (Section 4.2). A series of four 

images provides a time history of observations in a period of significant activity to 

demonstrate again that IM F By is m ost probably the external agent that causes a 

significant effect on dayside composition during storms (Section 4.3). In both sets of 

observations, the development of significant decreases in FUV brightness at sub-auroral 

and middle latitudes occurs under positive IMF By conditions and not during periods of 

negative By. A systematic search for a similar effect in 127 images of the Southern 

Hemisphere shows that the difference between PD values in the late and early morning 

sectors (APD) decreases as IMF By tends toward negative values. This implies that Joule 

heating events have a greater effect on composition at later local times when the high- 

latitude dusk neutral circulation cell is enhanced in size and velocity. However, a rough 

correlation between APD and AE exists, as well as a slightly less significant correlation 

between AE and By. Hence, the variation in APD in the Southern Hemisphere cannot be 

attributed solely to IM F orientation.

Temporal variations in FUV brightness are best examined in the spatially confined 

polar cap regions, where one may expect changes in FUV brightness after even moderate 

magnetic activity. The clear development of such brightness variations within the polar 

cap during a single orbit is observed on days 002 and 003. 1983. during a period in 

which the sub-auroral dayglow remains unaffected. This interesting effect is inferred
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from the distribution of PD values along a high latitude meridian which crosses the 

auroral oval at 11:00 MLT (Section 5.3). Ground-based studies by Hernandez et al. 

[1991] describe high latitude neutral winds in this sector which have a large poleward 

meridional component for the observed IMF orientation. Although these cited data were 

obtained in the winter, as opposed to the images shown in this thesis, the neutral winds 

are similarly influenced by ionospheric convection throughout the year. Knowing that 

thermospheric neutral winds are likely directed through a region of significant Joule 

heating and into an area where strong decreases in brightness are observed, a rapid 

change in thermospheric composition is inferred for the neutral gas passing through the 

auroral oval. Given the limited time at apogee and temporal resolution of the instrument, 

this effect could only be inferred from the strong gradient in brightness. Had the imager 

operated from high altitudes for the duration of each storm period, it would have been 

able to monitor the development of composition variations within the polar cap. A 

continued search of D E -1 images may yet produce images demonstrating the change of 

polar-cap brightness values from quiet-time to perturbed levels during a single orbit. One 

would expect to first view the effect o f Joule heating near the dayside oval.

Select examples of substorm effects on thermospheric composition, from a survey of 

72 orbits, are presented in Chapter 6. These are chosen to take advantage of the fact that 

DE 1 makes FUV observations from nearly identical vantage points over Earth on two- 

day intervals. This simplifies the incorporation of ground-based observations such as 

ionosonde data. As shown in Chapter 1, the ratio o f observed to monthly F2 peak 

electron densities (NmF2) measured by ionosondes can closely follow variations in 

thermospheric 0 /N 2 ratio during negative ionospheric storms. Comparisons of FUV 

percent difference (PD) values to percent differences of NmF2 from monthly mean 

values (PD(Nm)=100*R(Nm), the parameter reported by Prolss) at ionosonde stations in 

the disk region of images in (Section 6.3.1) suggest a relationship between these 

parameters in images where decreases in brightness are observed. Additional 

comparisons o f FUV PD to PD(Nm) for the images shown in this survey will further 

define the relation between these parameters and possibly show a relation of FUV PD
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with PDCO/Ni) through the known relationship of R(Nm) to R(0/N :) (Figure 1-3). In 

future studies, it will be of interest to identify cases where increases in F2 peak electron 

densities are complimented by FUV brightness increases (Section 6.3.4) and compare 

them to cases where such a correspondence is clearly not evident (Section 6.3.1)

The survey also provides a clear indication that mid-latitude FUV brightness 

variations are less prominent during winter than at equinox, in the Northern Hemisphere. 

This observation reflects the fact that composition variations generated by magnetic 

activity generally remain at high latitudes when solar insolation is low in the regions of 

Joule heating. The effect has been measured by mass spectrometers orbiting Earth at 

thermospheric altitudes [Prolss, 1980], is indicated in sophisticated time-dependent 

models of the upper atmosphere [Fuller-Rowell et al. [1994. 1996], and is now clearly 

evident in FUV images.

7.2 Future Work with DE 1 FUV Images 

Future work with DE-1 images could elucidate the large-scale spatial structure of the 

thermosphere and its association with magnetic activity and IMF orientation, and on 

thermospheric compositional variations, particularly at high latitudes. Earlier high- 

latitude measurements by low-altitude nadir-oriented FUV instruments revealed 

surprising differences between the northern and southern polar caps near equinox. In the 

work by Meier [1970], there is a period of approximately one week (First week of April. 

1968) in which OI and HI dayglow decreases are observed at the nadir over the northern 

polar cap, but not the southern polar cap. According to Meier, decreases in the OI FUV 

brightness within the northern polar cap were present “up to about April 7 [.1968]". after 

which the brightness values reflected a less disturbed neutral composition. An 

examination of one-hour-averaged IMF from that period [NSSDC. 1977] shows that 

IMF By was negative for nearly the entire period of March 24—April 5. whereupon LMF 

By switched abruptly to positive values at -0000 UT on April 6. One interpretation is 

that the appearance of dayglow decreases at northern middle latitudes is not favored 

during By negative, thus the associated composition variations are not forced out of the
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polar cap. In the southern polar cap. By negative would favor the transport of disturbed 

parcels out o f the polar cap and to middle latitudes, thus brightness decreases are not 

present in the southern polar cap, while being apparent in the north.

As opposed to this type of low altitude, nadir-directed measurement. DE I cannot, 

during a single orbit, make measurements o f the FUV dayglow brightness within both 

polar caps with comparable spatial and temporal resolution. It can. however, repeatedly 

monitor the dayglow brightness within the polar cap in a particular hemisphere. The 

availability o f IMF data during late 1982 is very good, with higher temporal coverage 

than January, 1983, for instance. This period may offer additional useful images o f the 

polar cap for study. Images from this period have not been used due to an operational 

difficulty with the satellite nadir sensor, resulting in the loss of sampling over a small 

portion of the disk region. Utilizing the averaging techniques developed in Sections 4 

and 5 of this thesis, the effect of this data loss can be minimized, allowing mapping of 

complete <PD> images to geomagnetic coordinates for further investigation of the polar 

cap.

7.3 Present and Future Missions

Global FUV imagers can continue to be useful tools for investigating the 

thermosphere, with current operational instruments providing greater spatial and/or 

temporal resolution than DE 1. Several current missions. POLAR VIS. POLAR UVI. 

GUVI and IMAGE are discussed here, briefly describing their capabilities and 

limitations.

POLAR, launched in 1996, carried two FUV imagers into a highly elliptical, nearly 

polar orbit with apogee over the Northern Hemisphere at an altitude of 8.0 Re. The 

UltraViolet Imaging system (UVI) [Torr et al., 1995] and Visible Imaging System (VIS I 

[Frank et al., 1995] both have FUV sampling capabilities. The VIS system's earth 

camera can obtain global FUV images of Earth and has approximately twice the spatial 

resolution of DE 1, providing full images at the rate of one per minute. The single filter 

has a sensitivity profile similar to filter #2 o f the DE-1 FUV imager used throughout this
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work. Recent studies of FUV dayglow variations with POLAR’s earth camera reveal 

weaker variation in instrument response with magnetic activity than were observed with 

DE 1 [e.g.. Craven et al„ 1996; Immel et al., 1997], It now appears that this may be 

partially attributed to a greater sensitivity o f  this instrument to MUV and NUV 

emissions on the part of the VIS earth camera than the D E -1 imager. The signature of 

clouds is clearly evident in earth camera images as structured increases in FUV 

brightness at mid latitudes, in good spatial correspondence to the appearance of bright 

clouds in GOES visible images. It is not known whether this is due to the modification 

o f the O3 concentration above large storm fronts or actual increases in terrestrial NUV 

emissions from cloud tops. Although infra-red (IR) emissions are a signature of high 

clouds, the suggestion that these apparent increases in UV emissions are actually due 

insufficient rejection of IR is improbable, as there is no apparent variation in brightness 

between continental and ocean surfaces, a clear feature in infrared images of Earth. 

Furthermore, the cloud-related emissions are considerably reduced as the satellite zenith 

angle increases. This is consistent with an increasingly long column of (FUV absorptive) 

O2 and O3 between the emission region and the imager. Infrared emissions would 

presumably not suffer such strong attenuation.

UVI shares the POLAR despun pointing platform with VIS. It operates with a 

selection of filters of much narrower wavelength passband than those used with either 

the DE-1 FUV imager or the POLAR VIS earth camera. These filters largely isolate the 

OI 130.4-nm and 135.6-nm emission lines and different portions of the N; LBH 

emission bands through the use of a sophisticated multilayering technique in their 

construction. Wavelengths outside the narrow passband are strongly attenuated. This 

instrument suffers from a reduction of spatial resolution along one axis of its CCD 

detector, because of a residual spacecraft-induced wobble arising from incorrect 

balancing by the spacecraft manufacturer. UVI does not have the capability (as VIS 

does) to repeatedly shutter its optics during the fastest motion of the field-of-view in the 

10-second period wobble, and as a consequence a specific point in the object field is 

smeared across an approximately 1x15 pixel area in the image field. Furthermore, the
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instrument’s field-of-view does not allow for global imaging, with Earth's disk 

subtending a larger angle than the field of view of the instrument at all times during an 

orbit. Scheduled observations of dayglow brightness at sub-auroral latitudes are minimal, 

[mages from this instrument are more suitable for FUV dayglow studies (like those 

described in this thesis) than those obtained by the VIS earth camera, though the 

spacecraft wobble provides added uncertainty to measurements, as each pixel in the 

image field gains FUV brightness information from a range of solar zenith angles. 

Furthermore, the establishment of quiet-time FUV brightness values would have to be 

established using the relatively small number of image pixels located away from the 

auroral oval. Without up-to-date AE indices, which cannot currently be provided in real 

time, one could not confidently construct a quiet-time model from observations within 

the polar cap, as the results presented in Chapter 5 of this thesis suggest.

The Global Ultraviolet Imager (GUVI) on the TIMED satellite will operate at lower 

altitudes than either DE 1 or POLAR, and will spectroscopically isolate dayglow 

emissions. The TIMED mission launch is currently scheduled for May. 2000. Since the 

brightness measurements are spectroscopically isolated, unique determinations of line 

and band emission intensities can be made, which are not possible when broadband 

filters are used (e.g., DE 1 and POLAR) . Furthermore, the brightness of N; and O 

emissions can be monitored simultaneously, which will yield information on the relative 

scale heights of O and Nt and the ratio of their concentrations (mixing ratio). GUVI will 

offer disk and limb information in each obtained image, as the 16 pixel wide w indow is 

swept up to ±140° perpendicular to the orbit plane of TIMED with a pointing accuracy 

of 0.1°.

IMAGE is to be placed in a highly elliptical near-polar orbit similar to those of 

POLAR and DE 1, though with a lower apogee altitude of only -4.2 Re. more like that 

of DE 1. It will carry 4 instruments for magnetospheric and auroral imaging and is 

scheduled for launch in 1999. The FUV instrument is designed for auroral imaging, with 

possible application to remote sensing of thermospheric composition. The low apogee
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altitude, however, limits observations of the polar regions to intermittent periods of 

much shorter time scale than the 12-15 hour development and subsequent recovery time 

of impulsive polar thermospheric disturbances [Section 5.3.1]. One might surmise that 

the low apogee is in support of the Energetic Neutral Atom imager, which will be 

measuring neutral He with low detection sensitivity. Furthermore, since IMAGE is a 

limited budget mission, it is too expensive to use larger launch vehicles capable of 

placing the satellite in very high apogee orbits. However, one understands that its 

primary mission is in support of the magnetospheric physics community.

To date, the DE-1 FUV imaging mission is unsurpassed by any other imager in 

returning useful information on Earth’s FUV emissions. Data from DE-I and -2 have 

been combined to study the physics of the thermosphere [Killeen et al.. 1988]. This 

thesis establishes the excellence of DE 1 itself as a platform for the study of the 

thermosphere and ionosphere and the response o f these atmospheric regions to 

geomagnetic activity. The nearly 10 years of images it returned will continue to be pan 

of auroral and thermospheric studies, serving as a testament to the utility of the imager. 

Let this thesis, and the new results presented herein, do the same.
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Appendix A Coefficients o f Reference Model

Coefficients reported for the F and P dependences of <  r >  are for functions fitted to

the slopes itif and trip at all S. Once fit, the slopes can be expressed as

mp=((I-tanh(S/a - b))/c)d and 

mp=a exp(-l*((s-b)/4c): ) 

for the ranges of S described in the respective sections in this report. For the F 

dependence, values for a, b, c, and d are 28.92. 3.629, 2.799. 6.582 respectively. For the 

P dependence, values for a, b, and c are -0.0876, 62.45 and 9.183. respectively.

No functional form was used for the dependence of <  r >  on A. In this case, the

slopes, m, of the individual fits are reported in Table A-l for S>81° and D>20°. where 

all values are reported to four significant digits.
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Table A -l : Slopes of Azim uth Dependence of < r >
D i  \ S-» 81°-84° 84°-87° 87°-90° 90°-93° 93°-96° 96°-99° 99c-102c 102°— 

105''
20°-25° 0.0026 0.0050 0.0023 0.0058 0.0064 0.0033 0.0018 0.0003

+ -t- -t- +
0.0029 0.0019 0.0026 0.0021 0.0013 0.0010 0.0010 0.0016

25°-30° 0.0035 -0.0049 0.0038 0.0064 0.0059 0.0059 0.0023 0.0008
± ± ± ± + ±

0.0192 0.0086 0.0034 0.0030 0.0012 0.0021 0.0005 0.0004
30°-35° -0.0058 -0.0024 0.0130" 0.0170 0.0165 0.0070 0.0014 0.0012

± ± ± ± + + ± ±
0.0124 0.0104 0.0028 0.0041 0.0037 0.0012 0.0014 0.0003

35°-40° -0.0017 0.0146 0.0288 0.0257 0.0144 00075” 0.0020 0.00076
± ± ± ± + + ± ±

0.0160 0.0084 0.0052 0.0032 0.0029 0.0014 0.0005 0.0007
40°-45° 0.0144 0.0298 0.0270 0.020 "0T017"" 0.0099 0.0032 0.0011

± + ± ± + +

0.0104 0.0117 0.0033 0.0054 0.0021 0.0010 0.0019 0.0003
45°-50° 0.0328 0.0254 0.0284 0.0234 0.0238 0.0130 0.0049 0.001

± ± ± ± + ± ± ±
0.0169 0.0051 0.0073 0.0032 0.0024 0.0010 0.0018 0.0010

50°-55° 0.0248 0.0324 0.0428 0.0361 0.0258 0.0189 0.0059 0.0025
± + ± + + ± ±

0.0058 0.0028 0.0080 0.0022 0.0024 0.0026 0.0013 0.0015
55°-60° 0.0357 0.0430 0.0470 0.0457 0.0373 0.0268 0.0104 0.0004

± + ± ± ± ±
0.0065 0.0092 0.0117 0.0042 0.0029 0.0041 0.0021 0.0012

60°-66° 0.0444 0.0672 0.0785 0.0734 0.0900 0.0430 0.0226 0.0012
+ ± ± + + + £

0.0273 0.0011 0.0147 0.0169 0.0186 0.0136 0.0045 0.0005
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Appendix B- Statistical Correlation

If a linear relationship exists between between two variables, x and y, the degree of 

correlation. C. can be measured. With N measurements of x and y. the correlation 

coefficient is determined by

The coefficient is always between 1 and -1, where zero indicates no correlation and 1 

(-1) indicates perfect (anti-)correlation. The coefficient indicates a likelihood that the 

variables are not uncorrelated. The percent probability that two uncorrelated ten-element 

vectors will yield IC1 > 0.5 (0.8) , for example, is only 14% (0.5%). Larger sample sizes 

reduce these percent values. Matrix correlation is not performed on matrices in Chapter 

3 as the data presented (binned in S and P) will not fill an m by n matrix. Vectors of data 

points are com pared for all P in fixed ranges of S and the average correlation is reported.

.V

£ ( .v , -  .r)(y, - v )
C = -
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