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Abstract

The Combined Release and Radiation Effects Satellite (CRRES) was a NASA funded cam­

paign designed to study a variety of plasma processes in the Earth's space environment. 

These space plasma processes were studied using a chemical release technique whereby 

a neutral gas is injected into the Earth's ionosphere or magnetosphere. The neutral vapor 

ionizes and both neutral and ion components are optically observable which enable the 

direct measurement of plasma processes. The ion cloud is coupled to the ambient medium 

via Alfven waves which transport momentum away from the cloud in directions parallel 

to the ambient magnetic field. The purpose of this study was to provide an in-depth anal­

ysis of the coupling between the release cloud and the ambient plasma while looking for 

signatures of Alfven's critical ionization velocity (CIV) effect. Moreover, chemical releases 

represent a general physical system with broad application to such geophysical and astro- 

physical phenomena as cometary environments, Io's plasma torus, and the auroral regions 

of the ionosphere and magnetosphere.

An analysis of the optical observations from the CRRES G l, G9, and G11A releases, in 

conjunction with results from a three-dimensional hybrid code simulation, showed that 

CTV was not present and that the momentum transfer was significantly diminished by a 

current limiting process. The simulation results suggest that the decoupling of the ion 

cloud from the ambient plasma occurred via parallel electric fields associated with inertial 

Alfven waves propagating in filamentary current layers at the edges of the ion cloud. The 

observations indicate that parallel electric fields were present, but other sources of parallel 

electric fields that should be considered include a variety of plasma instabilities that are 

appropriate to this physical system.
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Chapter 1

Introduction

1.1 General

Chemical release techniques have been employed in ionospheric and magnetospheric re­

search since the advent of the research rocket in the 1950s [Dcrois, 1979; Haerendel, 1986). 

Early releases of sodium, lithium, aluminum and nitric oxide at altitudes above 50 km 

were used as tracers of atmospheric transport processes. Later, in the 1960s and 1970s, 

the use of barium in thermite and shaped charge release techniques provided optically ob­

servable ion and neutral components in the release vapor, enabling the measurement of 

plasma processes in the Earth's space environment. These plasma releases have been used 

in a wide range of such geophysical applications as the production of artificial comets, au­

roral studies, geomagnetic field line tracing, and particle trapping in the Van Allen belts.

Recently a series of chemical releases were made as a part of the NASA's Combined 

Release and Radiation Effects Satellite (CRRES) campaign. These releases were designed 

to study a variety of basic plasma processes in the space environment [Bernhardt, 1992; 

Reasoner, 1992]. The first set of releases, made in the fall of 1990, were designed to inves­

tigate the critical ionization velocity (CIV) effect in space [Wescott et al., 1994]. The second 

series of releases, made in the summer of 1991, were designed to study such processes as 

diamagnetic cavity formation, structuring of the expanding plasma, plasma wave dynam­

ics, magnetic conjugacy, and the coupling between a release and the ambient ionospheric 

plasma.

12
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Of particular interest here is the CIV effect. CIV has been verified in laboratory experi­

ments [Piel, 1990; Danielsson, 1973]; however, the results from a variety of rocket-bome CIV 

experiments [Haerendel, 1982; Stenbaek-Nielseti et al.; 1990b,a; Torbert, 1990] and the CRRES 

campaign are inconsistent at best. These results have generated considerable interest in 

the topic and have provided the motivation for this thesis.

In an attempt to isolate observable signatures of the CIV process, we broadened our 

analysis to a general investigation of all physical processes that are associated with the 

early phase (f <  5 s) of a barium release. The goal is to identify observable morphological 

features in a barium cloud and affiliate each feature with a specific physical process. For 

the analysis we used video data from the CRRES G l, G9 and G11A releases in conjunction 

with the results from a three-dimensional hybrid code simulation. Although CIV provided 

the motivation for the study, the results from the simulation are applicable to the general 

system of an ionizing neutral gas streaming across an ambient magnetized plasma. Thus 

the results are relevant, for example, to cometary environments and to the design of future 

release experiments.

1.2 Critical Ionization Velocity Effect

The critical ionization velocity (CIV) effect occurs when a neutral gas ionizes while passing 

through a magnetized plasma. [Newell, 1985; Piel, 1990; Torbert, 1990; Brenning, 1992]. The 

requirement for the CIV ionization is that the neutral gas traverse a magnetized plasma 

with a relative critical velocity that is perpendicular to the magnetic field. This critical 

velocity corresponds to the kinetic energy that equals the ionization potential of the neutral 

particles, or

where m„ is the mass of the neutral particles, va  is the critical velocity in the plasma refer­

ence frame, and e<{), is the ionization energy. If the velocity exceeds z then free energy is 

available for the plasma interactions that drive a self-sustaining ionization mechanism.

The CIV effect was first proposed by Alfven [1954] in his band structure theory on the 

origin of the solar system. He theorized that neutral gases accelerating gravitionally to­

ward a central body (the sun) will ionize via the CIV mechanism. The subsequent ionized

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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gas will then experience a Lorentz force due to the magnetic field of the central body (IMF) 

and concentrate toward an equatorial plane as dictated by the field lines. The accumula­

tion of mass, according to his theory, will occur at a distance

_ GMm
Ri = — —  (1.2)

e<t>i

from the central body where G is the gravitational constant, M is the mass of the central 

body, m is the mass of the gas particles. This suggests that mass will accumulate at various 

distances as governed by the critical velocity given in equation 1.1. For instance, O, C, N, 

and Ne have critical velocities of roughly 13 km /s which corresponds to the region (band) 

where Jupiter, Saturn, Uranus and Neptune lie. However, the chemical composition of 

these planets do not consistently resemble the bands that supposedly gave rise to their for­

mation. As a result, Alfven's theory is not widely accepted. But successful laboratory CIV 

experiments have sparked continued interest in potential applications of the CIV mech­

anism in space physics and astrophysics. Some of these applications include cometarv 

coma ionization [Formisano et al., 1982], Io's plasma torus [Galeev and Chabibrachmanov, 

1983], space shuttle glow [Hunton, 1989], and the lunar transient phenomena [Cameron,

1991]

A fully self-consistent theory for the CIV effect has yet to be formulated, though consid­

erable progress has been made by Moghaddam-Taaheri and Goertz [1993] with their numer­

ical quasi-linear study. Perhaps the most common element to any CIV theory is the role 

of the modified two-stream instability for electron heating [McBride et al., 1972; Mobius, 

1983]. Given a seed ionization mechanism (i.e. photoionization or collisional processes), 

polarization charge layers form at the boundaries of the cloud as the heavy ions out run the 

magnetized electrons as showm in figure 1.1. The ions are assumed to be unmagnetized for 

time scales < <  co, (the ion gyro frequency). The resulting electric field that is set up by the 

charge separation gives rise to subsequent E x B drift of the electrons which excites w aves  

described by the modified two-stream instability. This instability can heat the electrons to 

energies in excess of the neutral ionization potential and electron-neutral collisions com­

plete what is now a feedback process. If the neutral densities are high enough to allow for 

at least one electron-neutral collision then the feedback process can result in an avalanche 

of ionization [Brenning, 1982].
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Figure 1.1: An ionization front. Note the charge separation and the cross field current J 
associated with the electron E x B drift.

Another possible mechanism for electron heating was proposed by Machida [1986] 

where heating arises from elastic collisions of electrons with neutrals. In this model the 

neutrals are again considered streaming with velocity v perpendicular to a strong mag­

netic field. Upon ionization, the electron is magnetized and in the frame of reference of the 

neutral beam there is a static electric field given by E = v x B. In this frame the electrons 

drift opposite to the electric field and gain energy through elastic collisions with the neu­

trals. This heating mechanism is referred to as resistive heating as it is associated with the 

Pedersen current. Clearly, this "resistive" CIV requires a high neutral density whereas the 

heating via modified two-stream instabilities can be relatively low.

The first experimental indication of CIV in space plasmas was from the lunar impact 

measurements with the Apollo 13 launch vehicle on April 13,1970. [Neiuell, 1985]. The im­

pact liberated a cloud of neutral particles comprised of vaporized plastics from the rocket 

as well as lunar surface particles. As the gas bubble expanded into the solar wind and into 

the sunlight a small population of photoions were expected. However, the actual number 

of ions observed suggested the presence of an additional ionization mechanism, possibly 

CIV.

More recently, a number of experiments using chemical releases have been conducted 

to test the CIV effect in space. Table 1.1 summarizes the results these CIV experiments. 

Moghaddam-Taaheri and Goertz [1993] demonstrated that the fastest growing mode of the 

lower-hybrid waves generated from the modified two-stream instability will resonate with
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Experiment Angle to B % ionization Reference
... . ______ i

Chachalaca 10-15 0 ~ 5 Wescott et al. [1975] ;
Porcupine 28° 24-32 Haerendel [1982]
Bubble Machine 90° 10~4 Deehr et al. [1982]
Star of Lima 90° <  2 x 10"3 Wescott et al. [1986b]
Star of Condor all angles <  3 x 10-5 Wescott et al. [1986a] I
George Orwell 90° 0 Newell [1985]
CritI 45° <  10"2 Torbert et al. [1992]
C ritll 57° 0.6 Stenbaek-Nielsen etal. [1990b] j
SR90 45° 0 Wescott et al. [1990]
CRRES (CIV I, c r v  H) 80° 0.014, 0.40 Wescott et al. [1994]

Table 1.1: CIV chemical releases

the electrons most efficiently at a release angle, 9 = 30°, to the magnetic field. This is con­

sistent with the Porcupine results [Haerendel, 1982]. However, they also point out that the 

time scale for CIV ignition for a 90° release should be the same as the 30° case because 

of the availability of more free energy. Why then are the ion yields so small for the other 

experiments? Further complications for the analysis arise when other competing ioniza­

tion mechanisms are considered as a source of contamination to the observed ion yield. 

Other ionization processes to consider are charge stripping, charge exchange, and associa­

tive ionization. Investigations of these competing ionization mechanisms have been made 

by Hampton [1996]; Hunton [1995]; Hunton et al. [1997]; Wolf and Hunton [1997]. Hampton 

[1996] found that charge exchange is the dominant collisional process in the CRRES CIV re­

leases and that contributions from CIV are extremely small. These results therefore pose a 

serious challenge for a definitive identification of the CIV processes in the CRRES chemical 

releases.

1.3 The Anatomy of a Chemical Release

Techniques for injecting chemical vapor into the ionosphere and magnetosphere include 

the shaped charge and thermite releases. Shaped charges provide an anisotropic vapor 

beam, either confining the vapor to a plane (radial) or to a narrow beam (conical). Shaped 

charges are commonly used for rocket experiments for the purpose of injecting the vapor

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.
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Species Mass
(AMU)

Photoionization 
time constant (sec)

Emission Lines 
Neutral (nm) Ion (nm)

Lithium 7.0 3450 670.8 19.9
Calcium 40.0 422.7 396.8

Strontium 87.6 2000 460.7 421.6
Barium 137.3 28 553.5 455.4

Europium 152.0 466.2 420.5

Table 1.2: Chemical Properties for CRRES releases

along or across the magnetic field. Thermite releases, used in CRRES, provide an isotropic 

distribution of vapor relative to the release canister where the bulk flow of the cloud with 

respect to the magnetic field is given by the satellite velocity. The discussion that follows 

will be confined to the CRRES thermite releases.

The relatively low ionization potentials (5-6 eV) of Lithium, Calcium, Strontium, Bar­

ium, and Europium make these elements appropriate for plasma releases. All have emis­

sion lines in or near the visible for the additional requirement of making optical obser­

vations. Table 1.2 summarizes the properties of the CRRES chemicals Bernhardt [1992]. 

Barium provides an excellent combination of prompt ionization and optically observable 

fluorescent and resonant emission lines. Detailed studies of barium emission rates have 

been performed by Stenbaek-Nielsen [1989]; Stenbaek-Nielsen et al. [1993] enabling reliable 

ion inventories for the observed release clouds.

The CRRES releases proceeded via an exothermic boron-titanium reaction that burned 

at a temperature of 2750 K, vaporizing roughly 40% of the release element [Huba et al., 

1992b,a]. Observations of the CRRES CIV release clouds by Wescott et al. [1994] provided 

a velocity distribution of the neutral vapor of the form

f ( v ) = e - [{v- Vo)/v‘>'f (1.3)

where v is the radial velocity, Vq = 1.33 km /s and v0/v th = 4.5. The spherical shell of vapor 

moved at satellite velocity (~  9.5 km/s) leaving behind a trail of magnetized ions (figure 

1.2).

The releases were generally made during local dawn or dusk so that the optical sites 

were in darkness and the release cloud was exposed to sunlight. The CIV releases were
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Figure 1.2: Chemical release cloud. Schematic (not to scale) of a typical chemical release 
cloud. Initially the neutral cloud moves in the direction indicated at satellite velocity leav­
ing behind a trail of ions.

made just below the solar terminator to isolate the non-photoionization processes, and the 

geographic location of the release was selected so that any ions created would move up 

the magnetic field and into sunlight where they could be observed. The CRRES G l, G9, 

and G11A releases, analyzed in Chapter 2, were all fully sunlit barium releases.

1.4 Studies of Cloud Expansion Processes

Much of the previous work on the expansion processes of a chemical release cloud is rele­

vant to the early (f <  5 s) phase of the release, though long-term processes have also been 

examined [Milinevsky et al., 1993; Hunton, 1993]. Interest stems primarily from observed 

morphological characteristics of the ion clouds and from in situ measurements of densities, 

temperature, and field quantities.

In the case of a passive release, designed such that the ions serve as tracer particles, 

one would expect a distribution of ions across the magnetic field that is consistent with 

the velocity distribution of the neutrals and the ionization time constant. In the case of the 

CRRES releases, a uniform and amorphous ion cloud should result. This is, however, not 

the case. Irregularities, striations, and density inhomogeneities are commonly observed.
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For many years, field-aligned striations and other small scale inhomogeneities have 

been scrutinized [Linson and Workman, 1970; Davis et al., 1974; Goldman et al., 1976; Bern­

hardt et al., 1993; Milinevsky et al., 1994]. These field-aligned structures develop in times 

ranging from seconds to minutes after the release. The striations are elongated with respect 

to the rest of the cloud which suggests a modification to the particle velocity distribution. 

Plasma instabilities such as the gradient drift and Farley-Buneman instabilities have been 

cited as the cause of these striations [Gokhman and Ivanov, 1991; Blaunstein et al., 1993]. 

However, Zaitsev et al. [1996] and Scales and Bernhardt [1991] have both found, using two­

dimensional electrostatic computer models, that ion filaments occurring within seconds 

after the release could be explained by non uniform polarization of the ion cloud which 

causes bifurcation on the back side of the cloud. Bernhardt et al. [1993], on the other hand, 

suggests that short-term striations can also arise from a so-called "cycloid bunching" effect. 

This is a geometric effect from the ion cycloid motion that occurs when the perpendicu­

lar injection velocity of the neutrals is greater than the characteristic expansion speed of 

the cloud. As the ions gyrate, density inhomogeneities separated by a distance given bv 

X = 2kv„ /co, occur, where vn is the injection velocity and co, is the ion gyrofrequency. These 

density inhomogeneities can lead to both field-aligned striations and non-field-aligned ir­

regularities.

Another avenue of interest deals with polarization charge layers associated with the 

chemical release. These charge layers form due to charge separation at the boundaries of 

the ion cloud as demonstrated by Galvez and Borovsky [1991] with two-dimensional electro­

static particle-in-cell computer simulations. In situ measurements of the resultant electric 

fields and plasma waves were made by Koons and Pongratz [1981]; Koons and Roeder [1995] 

and Brenning et al. [1991b]. Brenning et al. [1991a] demonstrated that these electric fields 

significantly affected the barium ion motion. Related studies have also been made regard­

ing space charges surrounding rocket payloads [Neubert et al., 1990; Gatsonis and Hastings,

1992], and results applied to the chemical release environment as well. [Gatsonis and Hast­

ings, 1991; Neubert et al., 1992].

If the polarization electric fields are sufficiently strong, then the ion cloud can E x B 

drift across the magnetic field. This drift motion of the ion cloud was observed in the 

CRRES releases, but only during the early phase of the release. An initial simulation study

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



20

of this process, termed "skidding", was provided by Huba et al. [1992b] who found that the 

"skidding" of the cloud was limited to within the first 2 seconds due to current dissipation 

in the ambient plasma. It should be noted, however, that the analysis in chapter 2 shows 

that much of the cloud skidded for at least 6 to 10 seconds. Issues regarding the transfer 

of momentum from the cloud to the ambient plasma are clearly important and will be 

revisited later in the thesis.

Finally, a number of relevant computer simulation studies have been made. Ma and 

Schunk [1990] started with a two-dimensional model for plasma expansion in the iono­

sphere which later was developed into a three-dimensional code [Ma and Schunk, 1991]. 

Their code was then applied directly to barium clouds [Ma and Schunk, 1993] and later in­

cluded the coupling of the cloud to the ambient ionospheric plasma [Ma and Schunk, 1994], 

Neubert et al. [1992] developed a three-dimensional electromagnetic code for investigating 

the dynamics of low-(3 plasma clouds. This code treated the cloud as a uniform distri­

bution of plasma and successfully demonstrated many of the fundamental features of the 

system including polarization charge layer formation and the associated ambient response 

which inhibited cross-field motion of the plasma. In an effort to estimate an upper limit to 

anomalous ion production for CIV release experiments, Biasca et al. [1993] developed an 

implicit particle-in-cell (PIC) code. This code simulated a neutral beam (nitric oxide) prop­

agating across an ambient oxygen plasma with electron elastic collisions, non-resonant and 

resonant charge exchange and electron impact ionization.

1.5 A Hybrid Code

Our goal for modeling a chemical release is to include both ion kinetic effects1 and the 

momentum coupling to the ambient ionospheric plasma. The gyroradius of a barium ion at 

450 km in the equatorial ionosphere is roughly 0.5 km. The momentum coupling proceeds 

via Alfven waves which propagate in the ionosphere with velocities of order 102 to 103 

km /s. This poses a serious challenge to the computational feasibility of this problem.

'T he term "kinetic" pertains to the motion of particles. Kinetic effects refer to processes that result from 
the individual particle motion rather than the average motion of the particles in the plasma. Fluid models 
consider only the average motion of the particles while kinetic models include the motion of each individual 
particle. Kinetic effects are especially important when size scales are on the order of the ion gyroradius.
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Specifically, the grid must be fine enough to resolve ion kinetic effects, yet coarse enough 

to span the large ionospheric volume.

Previous simulation studies have either neglected kinetic effects, or are limited, in the 

case of electromagnetic codes, by the electrostatic interaction. Electromagnetic codes pro­

vide the most complete description of a plasma but unfortunately the time stepping is 

severely constrained by the electron plasma period and the Courant condition2 is set with 

respect to the velocity of light. Such a code would require too many grid points and too 

many time steps to be feasible with current state-of-the-art computers.

A hybrid code, of the type posed by Hamed [1982], provides a reasonable solution at the 

expense of neglecting electron inertia. The release ions are treated as fully kinetic particles, 

the electrons as a massless fluid, and the ambient plasma as an magnetohydrodynamic 

(MHD) fluid. The code assumes quasi-neutrality eliminating the aforementioned prob­

lems of the electrostatic interaction. It is non-radiative thereby removing the constraint on 

the Courant condition with respect to the speed of light. In particular, the electric fields are 

solved for algebraically from the electron momentum equation rather than from the com­

putationally intensive Poisson's equation. Ampere's law provides the electron bulk flow 

velocity and Faraday's law provides the magnetic field update. Further details regarding 

the hybrid code can be found in chapter 3.

Using a three-dimensional hybrid code, a direct comparison between the optical obser­

vations and the simulation results can be made. A projection of the ion densities onto the 

plane of observations provides a synthetic image from which morphological comparisons 

can be made. The code also serves as a diagnostics platform for investigating the effects 

of electron heating on the ion cloud morphology. This is a valuable numerical experiment 

for investigating effects that might be attributed to CIV.

1.6 Thesis Content and Organization

This thesis contains an observational analysis of the CRRES G l, G9, and G11A releases, 

a complementary simulation study using a three-dimensional hybrid code, and a recon­

2The Courant condition ensures numerical stability by requiring that the maximum physical velocity be 
less than the lattice speed Ax/At where Ax is the minimum grid size and At is the simulation time step.
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ciliation of the observations with the simulation results. The observational analysis has 

been published [Delamere et al., 1996] and is contained in chapters 2 and 3. Preliminary 

information and setup of the hybrid code are discussed in chapter 4. Chapter 5 contains 

simulation results while chapter 6 is reserved for discussions of the simulation results and 

the comparison of those results with observations.
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Chapter 2

Observations

This chapter details the analysis of the CRRES G l, G9 and G11A barium release optical 

data. First we present the optical data which reveals skidding, structuring of the ion cloud, 

and an expanding disk of particles that is centered 20 to 30 km downstream from the 

release point. We then follow with an analysis of the ion distribution along the satellite 

path and a discussion of our quantitative image analysis technique.

2.1 CRRES chemical releases

The Combined Release and Radiation Effects Satellite (CRRES), jointly sponsored by the 

National Aeronautics and Space Administration (NASA) and the Department of Defense 

(DOD), was launched on July 25, 1990, on the first commercial Atlas I rocket [Johnson and 

Kierein, 1992], The purpose of the mission was threefold: to conduct a series of chemical 

release experiments in the ionosphere and magnetosphere, to study the effect of the earth's 

natural radiation environment on state-of-the-art microelectronic components, and to mea­

sure naturally occurring ionospheric irregularities using LASSEI (Low Altitude Satellite 

Studies of Ionospheric Irregularities) instruments. Although these projects were some­

what unrelated it should be noted that the LASSII instruments were particularly beneficial 

to the chemical releases mission by providing in situ measurements of various ionospheric 

parameters such as electron densities.

The CRRES orbit was 350 x 33,584 km with an inclination of 18.1 3 providing a wide

23
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range of altitudes for conducting a variety ionospheric and magnetospheric chemical re­

lease experiments labeled G l through G14. The CRRES payload consisted of 16 large can­

isters and 8 small canisters that were ejected from the satellite either singly or in pairs. The 

releases occurred in three phases. The first phase consisted of low-altitude releases (near 

perigee) over the South Pacific in September of 1990. This included the G13 and G14 CIV 

releases. The second phase were high-altitude releases (from 6000 to about 33,500 km) over 

North America in January and February of 1991. Finally the third phase were low-altitude 

releases over the Caribbean in July and August of 1991 among which were the G l, G9 and 

G11A releases.

The CRRES G l, G9, and G11A barium releases were all made under similar conditions. 

At the time of release the satellite was in full sunlight and moving nearly perpendicular 

to the geomagnetic field with an orbital velocity of 9.6 km /s. Release altitudes ranged 

between 400 and 500 km. The neutral barium cloud expanded as a spherical shell (equation 

1.3) at 1.3 km /s [Wescott et al., 1994] and photoionized with a time constant of 23s Hallinan 

[1988]; Hoch and Hallinan [1993]. Table 2.1 summaries the release parameters of these three 

releases. One important difference to note is that G9 was made using two large canisters 

that were separated by 6 km while G l and G11A were made using single small canisters.

Optical observations were made from a number of ground-based stations and from 

two instrumented Air Force KC-135 aircraft operated by the 4950th Test Wing at Wright 

Patterson Air Force Base, Ohio. This analysis uses the video data taken from the aircraft, 

numbered 127 and 131, by members of a team of scientists from the University of Alaska 

Fairbanks, Geophysical Institute. Figure 2.1 shows the location of the aircraft with respect 

to the releases. Aircraft 127 was flying southwest of the releases looking nearly perpen­

dicular to the geomagnetic field, while aircraft 131 was flying to the northwest looking 

mostly up and along the field. The data were taken using intensified CCD (ICCD) TV 

cameras mounted on gyrostabilized platforms. The field of view was 11° x 14°. For these 

three releases the cameras were initially run unfiltered at TV frame rates (30 frames per 

second) for the purpose of quickly and accurately locating the release cloud. Later, 455.4 

nm (the dominant barium emission line) filters were applied and the video signal inte­

grated, but those images are well beyond the times of interest here. Because of the rapid 

separation of the ion and neutral clouds, the ion cloud could be unambiguously identified
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Gl G9 G11A
Date (July 13,1991) (July 19, 1991) (July 22,1991)
Time, UT 0835:25 0837:07 ' 0838:24
Latitu de,0 N 17.8 17.4 16.8
Longitude,0 E -62.9 -62.6 -60.3
Altitude, km 495 441 411
Solar screening height, km 247.8 192.1 217.1
Angle, v-sun 31.87 34.06 34.68
Angle, B-sun 66.89 67.80 70.93
Angle, B — v 94.78 98.35 102.41
v, k m /s  (total satellite velocity) 9.53 9.58 9.61
:>!|, k m /s 0.79 1.39 2.07
i>_, k m /s 9.50 9.48 9.39
Amount of Ba released, g 1468 10,405 1471
Moles at 40% efficiency 4.3 30.3 4.3
Atoms at 40% efficiency 2.6 x 1024 1.8 x 1025 2.6 x 1024
B ,nT  ' 31,089 31,637 31,310
Gyrofrequency, Hz 3.5 3.5 3.5
Gyroradius, m 443.0 433.0 431.6
Ambient electron density. m ”3 9.0 x 1011 

Aircraft 127 position
5.0 x 1 0 " 1.5 < 1012

Latitude, 0 N 12.5 12.9 13.0
Longitude,c E -67.3 67.5 -67.4
Altitude, km 11.0 11.0 11.0

Aircraft 127 look angles
Azimuth 38.5 44.7 62.2
Elevation 28.5 27.1 18.3
Slant range, km 916.2 852.1 1039.9

Angles between directional vectors. Aircraft 127
Look-sun 54.24 50.51 41.74
Look-v 64.33 58.56 45.15 !
Look-B 93.15 

Aircraft 131 position
94.94 99.22 !

Latitu de,0 N 21.0 20.9
Longitude,0 E -67.0 -67.0
Altitude, km 11.0 11.0

Aircraft 131 look angles
Azimuth 131.4 121.2
Elevation 32.2 20.9
Slant range, km 750.7 955.0

Angles between directional vectors. Aircraft 131
Look-sun 84.32 72.18
Look-v 54.40 40.76
Look-B 152.08 142.79 |

Table 2.1: CRRES (low altitude) Sunlit Release Experiment Parameters. Aircraft 131 did 
not fly for the G l release.
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Figure 2.1: The location of the CRRES G l, G9 and G11A releases.

in the unfiltered images. Other groups did observe the release with filtered cameras from 

ground-based locations.

2.2 Optical Data

Samples of the optical data from the three releases are shown in figures 2.2,2.4, and 2.6. The 

original data from the ICCD cameras were recorded on 3 /4 "  U-matic and VHS video tape. 

Individual frames were digitally captured as 512 x 486 byte arrays in a Targa format. These 

images represent the raw and unprocessed data. However, for the purpose of illustration, 

subarrays of the complete image were extracted so the field of view does not necessarily 

reflect that of the camera system.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



27

2.2.1 G l

Figure 2.2 shows 8 frames of the G l release from 3 to 14 seconds after release from Aircraft 

127. The look direction is approximately the same with respect to the bottom left comer 

in all 8 frames. Note that the cameras were tracking the neutral cloud so the ion cloud 

began to leave the field of view at 14 seconds. The release point in the images is next to the 

star, indicated by the arrow, in the 3 second frame. The geomagnetic field line through the 

release point is indicated in the 7 second frame and the satellite velocity vector is indicated 

in the 3 second frame. The ion and neutral clouds are labeled in the 12 second frame1. Note 

that the bright neutral cloud saturated the CCD detector during this time causing light to 

bleed vertically. This accounts for the column of light above and below the neutral cloud 

and for the "tongue" of light below the circular neutral cloud. Finally, the distance scale 

only applies along the satellite velocity vector.

The images show several interesting features. With respect to the release point, we note 

that the edge of the ion cloud is roughly 10 km down the satellite path as clearly seen in the 

7 second frame. However, luminosity is also seen expanding backwards along the satellite 

path. At 3 and 4 seconds this luminosity appears as two "prongs" and by 5 seconds a 

substantial amount of material is actually visible behind the release point. The ion cloud 

shows a "herringbone" structure2 (8 s) within roughly 40 km of the release point as well as 

elongation along the geomagnetic field. Associated with this elongation is a faint striation 

along the release edge of the ion cloud. Figure 2.3 illustrates these observed features.

2.2.2 G9

Unlike the G l release, both Aircraft 127 and 131 were flying for the G9 release. Figure 2.4 

shows 4 unprocessed images from each aircraft at 5, 7, 9 and 11 seconds. The geomagnetic 

field and satellite velocity are indicated in the 7 second frame by the directional vectors B 

and v respectively. The vector origin is placed at the release point and the distance scales 

are given along the satellite path.

’ ions are neutrals are easily differentiated in color images. The dominant barium ion emission line is blue 
while the dominant barium neutral emission line is green. Color observations of the CRRES releases confirm 
the separation of the ions and neutrals as indicated in figure 2.2

2The herringbone is not an artifact of the discrete digitization levels.
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Figure 2.2: G l observations from Aircraft 127. The release point is indicated with an arrow 
in the t = 3s. The satellite velocity is into the page, down and to the right. The geomagnetic 
field is into the page, down and to the left.
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Figure 2.3: G l cloud morphology. An illustration of the morphological structures observed 
in the G l release.

As was the case with G l, a striation is visible along the release edge of the ion cloud. 

However, due to the brightness of this large release, ion cloud structures are masked by 

the saturated detector during this time. In addition, this was a double canister release, 

so the superposition of the two ion clouds may obscure the herringbone structures in the 

G l release. Of particular interest, though, is a similar "backjet" of material as seen from 

Aircraft 127. By comparing with images from Aircraft 131, we see that this backjet is actu­

ally a disk of material that is expanding perpendicular to the geomagnetic field at satellite 

velocity with respect to the release point. The disk is not an artifact of vignetting and was 

definitively shown by triangulation to coincide with the backjet seen from Aircraft 127. It 

is important to note that the center of the disk is not at the release point but some 20-40 km 

downstream. The geometry is illustrated in figure 2.5.

2.2.3 G11A

Finally, samples of the data from the G11A release at 4, 6, 8, and 12 seconds are shown in 

figure 2.6. This data set confirms the expanding disk seen in the G9 releases, however, the 

detector was overdriven to 10 seconds, masking ion cloud structures. Nevertheless, the ion 

cloud from Aircraft 127 appears elongated or striated along the release edge of the cloud 

in the 8 second frame. By 12.2 seconds the ion cloud nearest to the release point is clearly 

elongated, and a herringbone structure could be present as well. A definitive identification 

of ion cloud structures and the "pronged" backjet found in the G l release are affected by
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Aircraft 131 Aircraft 127

Figure 2.4: G9 observations from Aircraft 131 and Aircraft 127. The release point is at the 
origin of the directional vectors indicated in the 7s frames.

B
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Figure 2.5: Expanding disk of particles. An illustration of the expanding disk of particles 
observed in the G9 release.

the image quality and the viewing geometry of the release. These images appear blurred 

compared to the G l images and the angle between the look vector and the satellite velocity 

vector is only 45.2° compared to 64.3° for Gl. The ideal angle for viewing these structures 

would be 90°.

2.3 Image Analysis

A simple visual inspection of the video data reveals many of the qualitative morphological 

features of the ion cloud, however it is also possible to quantify the analysis by performing 

a particle inventory. Such an inventory provides information regarding the spatial distri­

bution of particles which is crucial to this analysis.

2.3.1 Vignetting corrections

The video signal from the chemical releases and stars was well above the background noise 

of the detector so there was no need to integrate a sequence of video frames to enhance the 

signal. The only correction made to the data were for vignetting effects. Vignetting is a 

radial decrease in signal from the center of the detector toward the edges. This is due 

to the diminished light gathering capabilities of the optics off of the optical axis. Figure

2.7 illustrates the vignetting effect and the correction made to "flat-field" the images. The 

first image is the raw data of a star field. The image was smoothed and a second order
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Figure 2.6: G11A observations from Aircraft 131 and Aircraft 127.
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Figure 2.7: Image flat-fielding. The technique for removing vignetting effects. The original 
image is divided by a normalized vignetting profile giving a flat-field image.

polynomial surface, shown as the second image, was fitted to it. The edges of this surface 

were normalized to unity so that dividing the original data by the vignetting surface yields 

a flat-fielded image. Typically the center of the images were a factor of 3 brighter than the 

edges. The vignetting surfaces were unique to a given camera so we calculated a vignetting 

surface for each camera and each release.

2.3.2 Image Calibration

The calibration technique uses stars found in the flat-fielded images as absolute references. 

Given the photon flux from the star folded together with the camera (ICCD) response func­

tion, we can correlate the number of counts registered by the CCD detector with a given 

flux. The Smithsonian Astronomical Observatory catalog provides information regarding 

star location, spectral type, and visual magnitude, allowing for a positive identification of 

each star in the image. A library of stellar spectra3 of 161 stars spanning a range of different 

spectral types was made by Jacoby et al. [1984]. Using these representative spectra folded 

with the ICCD response function, we compared our image stars with those from the Jacoby 

library of the same spectral type. The flux from our stars is related to the flux of the Jacoby 

stars by

4  =2.531_<mi_m2) (2.1)
h

where m is the visual magnitude and /  is the photon flux measured at the surface of the 

earth and where subscripts 1 and 2 refer to the image star and the related Jacoby star re­

spectively. After performing a background subtraction, the detector counts attributed to

3These spectra were published de-reddened to eliminate extinction due to interstellar gases and dust. We 
used their algorithm to redden the spectra for comparison with Earth-based observations.
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the star are then related to the photon flux assuming a linear proportionality. Typical cali­

bration curves are shown in figure 2.8.

Each image was calibrated independently to account for time varying atmospheric ab­

sorption effects and the numerous adjustments made to the detector sensitivity following 

the release. Calibration uncertainties vary depending on the number of stars available in 

the image, and on the background signal in the detector. The number of stars within the 

field of view and the range of visual magnitudes represented by the ensemble is really a 

matter of chance. Often stars lie behind the release cloud itself which makes the detector 

counts attributed to the star very sensitive to background subtraction. In general, the Gl 

and G9 images contained a very small background signal and we feel these calibrations 

are reliable with uncertainties based on linear regression of 7% and 5% respectively. The 

G11A calibrations, on the other hand, were hampered by a large background signal and by 

stars representing a narrow range of visual magnitudes. Thus, the G11A calibrations were 

somewhat less reliable with an uncertainty of 15%.

2.3.3 Ion Inventories

Given a reasonable image calibration an ion inventory can be performed. Barium emis­

sions occur at several different wavelengths within the range of detector sensitivity. Ta­

ble 2.2 summarizes the dominant emission lines, the associated normalized detector 

response, T(ki), and the emission rates, £„ calculated by Stenbaek-Nielsen [1989] with a 

Doppler correction appropriate to the observing conditions for these experiments. We are 

assuming that the photon flux and detector counts are linearly related over the full range 

of detector sensitivity, so the total number of counts expected from the contribution of all 

emission lines is

C =  -XT(Xi)«Df (2.2)
a  i

where the summation is over all emission lines, C is detector counts, <)>, is the flux, and a  is 

the constant of proportionality determined from the star calibration. For an optically thin 

cloud of ions emitting at a distance r from the detector, the flux is

<“ >
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Figure 2.8: Image calibration. Image calibration examples, photon flux 0 vs. detector 
counts C. We have assumed a linear relation of the form 0 = aC. For the examples shown 
for G l, G9, and G11A, a  = 45.9 ±3.1 ,90 .7  ± 5 .1 , and 25.7 ± 3 .8  respectively.
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A. (nm) e (photons/sec/ion) T eT
455.4 1.90 0.59 1.12
493.4 1.01 0.95 0.96
585.4 0.51 0.47 0.24
614.2 0.31 0.28 0.09
649.7 0.09 0.67 0.06

1  = 2.47

Table 2.2: Emission rates for a barium cloud in full sunlight. The total emission rate is 
the sum of contributions from 5 dominant emission lines folded together with the ICCD 
response (T).

where N is the number of emitting ions. Thus, the total number of ions is given by

xr 47i r 2a C
N =  v  r n  w <2-4)

The value for C is determined by integrating the region of the image containing the ions of 

interest and subtracting out the background detector noise and contributions from stars. 

We found that the average of several image values sampled from regions near the ion 

cloud provided a reasonable background value.

2.3.4 Ion cloud profiles

Using our star calibration technique, we quantified the ion distribution along the satellite 

path which we shall henceforth refer to as the x direction. Figures 2.9, 2.10, and 2.11 illus­

trate the image analysis. The images shown represent the samples from the Aircraft 127 

data archive where the entire ion cloud is within the field-of-view at the latest possible 

time, and where the detector is not saturated. These criteria were satisfied at 12.0 s for the 

G l release, 19.3 s for G9, and 30.7 s for G11A.

The images were first rotated to vertically align the geomagnetic field as indicated. The 

intensity scan (solid stepped line) shown below each image was generated by integrating 

the signal in each column (bin) of the image. Using equation 2.4 thus gives the number of 

ions in each field-aligned bin. The x axis distance scale applies to the satellite path where 

x = 0 is the release point. Note that the images have been scaled to roughly match the 

.t axis scale. The background stars that appear in the images were mostly removed from
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the intensity scan using a median filter which replaces the value of each pixel with the 

median value of several neighboring points. The presence of the neutral cloud to the right 

in each image is suggested by the shading. In the case of G l, contributions to the profile 

include both neutral emissions and detector overdrive which is present in the top right 

comer of G l image. The dotted line represents a theoretical profile which assumes that 

all ions produced are magnetized and therefore remain at the location where they were 

formed. The implications of the difference between the observed and theoretical profiles 

relate to the key issue in this thesis and will be discussed in the next chapter.

The release point is indicated (x) in each image. Note that the edge of the ion cloud is 

located several km from the release point in each release. These distances for G l, G9, and 

G11A are 9.6, 17.5, and 7.5 ±  1.0 km respectively. We also note that the ion distribution 

peaks at nearly 60 km from the release point in the G11A release. Beyond this peak the 

signal is contaminated by neutral emissions from the nearly stationary neutral cloud (the 

neutral cloud began slowing after 20 s). The dashed line therefore illustrates a possible 

continuation of the ion cloud profile since we cannot differentiate between ions and neu­

trals beyond 80-90 km with unfiltered detectors. Keep in mind that the neutral emission 

rates are roughly an order of magnitude greater than the ion emission rates, so the signal 

can be greatly enhanced on the flanks of the neutral cloud. In the case of G l and G9 we 

infer that the ion profile peaks just beyond 60 km and 100 km respectively.
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Figure 2.9: G l ion cloud profile from Aircraft 127 at t =  12.0 s. The image was rotated so 
that the geomagnetic field is vertically aligned and the release point is indicated (x). The 
calibrated ion profile (solid stepped line) is the integrated intensity along the magnetic field 
in a bin of one pixel in width. The dotted line is the expected profile for 100% magnetized 
ions, and the shaded region represents contamination to the signal from neutral emissions 
and instrumental effects.
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Figure 2.10: G9 ion cloud profile from Aircraft 127 at f = 19.3 s. The image was rotated so 
that the geomagnetic field is vertically aligned and the release point is indicated ( x ). The 
calibrated ion profile (solid stepped line) is the integrated intensity along the magnetic field 
in a bin of one pixel in width. The dotted line is the expected profile for 100% magnetized 
ions, and the shaded region represents contamination to the signal from neutral emissions.
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Figure 2.11: G11A ion cloud profile from Aircraft 127 at t = 30.7 s. The image was rotated so 
that the geomagnetic field is vertically aligned and the release point is indicated (x). The 
calibrated ion profile (solid stepped line) is the integrated intensity along the magnetic field 
in a bin of one pixel in width. The dotted line is the expected profile for 100% magnetized 
ions. The shaded region represents contamination to the signal from neutral emissions 
and the dashed line illustrates the possible continuation of the ion profile into the region 
containing neutral emissions.
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2.4 Summary

The optical data show three notable features which this thesis attempts to explain. The 

first is the observation is that the edge of the ion cloud is displaced from the release point 

by 10 to 20 km and that the ion cloud profile is different from the expected profile for the 

case where all ions produced are magnetized. Secondly, we observed a striation along the 

release edge of the ion cloud and structures within the ion cloud itself. The G l release 

in particular showed structures that resemble a herringbone. Finally, our third observable 

was a disk of particles expanding at the satellite velocity perpendicular to the geomagnetic 

field. This disk first appeared at 2-3 seconds after the release and continued to expand from 

within the ion cloud for 5-8 seconds after the release. A summary of the observations is 

given in Table 2.4.
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Gl G9 G11A
Release size 

Data Quality

Small

Clear, sharp images. Ion 
cloud begins to leave field 
of view at 13 s.

Large

Ion cloud overdriven to 18 
s. Image clear and sharp 
otherwise.

Small
Ion cloud overdriven to 10 
s. Image appears blurred. 
Full view of ion cloud at 
30 s.

Ion cloud morphology
Herringbone structure, 
faint striation along 
release edge of cloud.

Distinct striation along re­
lease edge of cloud.

Fuzzy image, not much 
structure visible.

Distance from release 
point to edge of ion cloud, 
±  1.0 km.

9.6 17.5 7.5

Time duration of backjet, s 2-4 3-8 2-5

Total number of ions ob­
served in the ion cloud (at 
time observed).

8 x 1023 (10.3 s) 9 x 1024, (19.3 s) 1.4 x 1024(30.7s)

Distance from release 
point to ion profile peak, 
(±  5 km)

> 6 0 >  100 60

Table 2.3: A summary of the observations made of the CRRES Gl, G9, and G il A sunlit barium releases.

NJ



Chapter 3

Inferred Processes

Figure 3.1 shows various energy parameters for the G l, G9, and G11A releases: the total 

kinetic and thermal barium release energies, and the ambient magnetic and v x B electric 

field energies enclosed by the neutral release cloud according to equation 1.3. Initially, the 

dense ion population can form a high beta plasma. Diamagnetic cavities were observed in 

the higher-altitude releases [Singer, 1992], but in the releases considered here the magnetic 

field energy exceeds the kinetic and thermal energy at 1 s and with an ionization rate of 

3% per second a diamagnetic cavity cannot be expected beyond 1 s. However, it is clear 

that the cloud has sufficient energy to propagate cross the field for a significant time, and 

therefore the analysis will focus on processes associated with the cross-field propagation.

This chapter addresses the role of polarization electric fields in cross field propaga­

tion of the ion cloud. It is this so-called "skidding" [Huba et al., 1992b] of the ions that is 

presumably responsible for the difference between the observed ion cloud profile and the 

magnetized profiles shown in Figures 2.9, 2.10, and 2.11. We will also show that the polar­

ization electric fields are further related to the ion cloud morphology and the expanding 

disk composed of what turns out to be neutral barium particles.

3.1 General Model Considerations

In full solar UV light, barium neutrals have been observed to ionize with a time constants 

of 13 ±  2 s, 17 ±  2 s, 23 ±  2 s [Hallinan, 1988; Hoch and Hallinan, 1993]. Hoch and Hallinan

43
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Figure 3.1: Energy parameters for the CRRES releases. The release energy represents the 
total kinetic energy of the released neutrals (thermal contributions are negligible). The 
magnetic and electric field energy represents the total ambient magnetic and v x B  electric 
field energy enclosed by the expanding neutral cloud.

[1993] concluded that the variability is due to nonsolar processes since the ultraviolet solar 

flux does not vary by a factor of 2. Drapatz [1972] and Carlsten [1975] calculated a photoion­

ization time constant of 28 ±  6 s which is consistent with the picture of nonsolar ionization 

processes contributing to the net ionization of a barium release cloud. Our analysis of the 

CRRES data is consistent with a time constant of roughly 23 s. It turns out that our model 

results are insensitive to the choice of ionization time constant, so we elected to use a value 

of 23 s for the remainder of the analysis.

The 23 s time constant is valid for an optically thin cloud in radiative equilibrium with 

the solar radiation. Photoionization requires photons with a wavelength shorter than 326.5 

nm. With an ionizing solar photon flux of 4 x 1015 photons/cm2/s  [Banks and Kockarts, 

1973], the 23 s time constant would correspond to an ionization cross section of 10"17 cm2. 

The neutral cloud can then be assumed optically thin to the ionizing solar light when the 

column density decreases below 1017 cm-2 . For the large G9 release with 2 x 1025 neutrals 

expanding isotropically at 1.3 km /s, this column density will be reached in a time of order 

20 ms, which is less than the duration of the release process (<200 ms). We therefore can
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reasonably assume that the release is optically thin to solar UV at all times.

The ionization results from the combination of a number of transitions involving meta­

stable states and the 23 s time constant is for a neutral barium cloud in radiative equilib­

rium with the solar radiation. This cannot be expected to be the case at release. Model 

calculations by Stenbaek-Nielsen [1989] indicate that equilibrium is reached within 2 s for 

an initially cold cloud. A reexamination of the calculations has shown that the important 

metastable-stable states are rapidly populated indicating that significant ionization will 

start almost immediately after release. A more quantitative evaluation is difficult, but as it 

turns out our model results do not critically depend on this point, only that there will be 

significant ionization produced at an early time. Therefore we shall assume the 23 s time 

constant valid from release.

The release process takes less than 0.2 s (C. S. Stokes, private communication, 1994) 

corresponding to orbital distance of about 2 km. The skidding distance to the edge of 

the ion cloud is ~  10 km or more, corresponding to one or more seconds along the orbit, 

considerably larger than the distance or time associated with the release process itself. 

Hence we will also assume that the release is instantaneous. The assumptions of a time- 

independent 23 s ionization time constant and an instantaneous release simplify modeling 

calculations considerably.

3.2 Skidding

The observed distribution of ions along the satellite path shown in figures 2.9, 2.10, and

2.11 demonstrates that a significant fraction of the early ion population has propagated 

across the geomagnetic field in the satellite direction (x direction). This so-called "skid­

ding" [Huba et al., 1992b] effect is foremost responsible for the gap between the release 

point and the edge of the field-aligned ion cloud. This gap is not a geometrical effect due 

to the motion of the aircraft, nor is it due to general ionospheric convection, which for these 

releases was less than 100 m /s. As argued above (section 3.1), the release process can be 

considered instantaneous, and that significant ionization occurs immediately; therefore, 

this initial skidding distance cannot be attributed to a delay in the onset of ionization.

Beyond the initial skidding distance of ~  10 or more km, our analysis shows that many
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of the ions must continue skidding. The magnetized ion cloud profiles (dotted lines in fig­

ures 2.9,2.10, and 2.11) represent the expected ion profiles for a neutral cloud ionizing with 

a 23 s time constant. The difference between these profiles, where the expected is greater 

than the observed, represents an ion population that must be redistributed downstream. 

Hoiv far do these early ions skid? Unfortunately, the data cannot answer this question due to 

limitations in the field of view of the camera combined with "contamination" from neutral 

emissions. The dashed line in figure 2.11 suggests a possible continuation of the ion pro­

file into the neutral regime, but a definite profile is not possible. Further investigation of 

skidding processes will require a detailed investigation of the related physics.

Skidding occurs when the ion cloud polarizes and the resulting polarization electric 

field enables the ions to E x B drift with the neutral cloud. The polarization, essentially, 

is the formation of charge layers at the edges of the ion cloud due a charge separation 

between ions and electrons gyrating in different directions, and the inability o f the background 

plasma to neutralize the space charges. In the case of ions produced from an expanding neutral 

barium cloud described by equation 1.3, the initial polarized ion population will maintain 

the shape of the neutral distribution and E x B drift with the neutral cloud. Subsequent 

ionization will be added to the skidding ion core which will increase in both radius and 

density. However, eventually the radius of the core perpendicular to the ambient magnetic 

field will be limited by the ambient plasma density and all ions produced beyond this 

radius will be magnetized forming a trail of ions behind the neutral cloud.

The skidding core will continue to move in the release direction but will erode as 

the outer polarization charge layers are peeled off. The charge required to maintain the 

-v ^ t  x B = 300 m V /m  electric field within a spherical core is very small compared to the 

total number of released particles suggesting that the core is capable of skidding well be­

yond the early times that are of interest here. Our observations indicate that the core disin­

tegrated relatively fast as suggested by the distance to the peak ion density, and therefore 

other processes such as coupling to the ionospheric plasma must be included. Some as­

pects of the coupling have been considered by Haerendel [1982], Brenning et al. [1991b,a], 

and Huba et al. [1992b], and will be addressed by the hybrid code below. These stud­

ies show that the polarization electric fields will decay through current dissipation in the 

ambient ionosphere, but for the simple model calculations that follow in this chapter we
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disregard the coupling effects.

3.2.1 Calculated initial skidding distance

We constructed a simple computer model based on the assumptions and discussion above 

to estimate the initial skidding distance of the ion cloud (i.e., the distance from the release 

point to the edge of the ion cloud). The model first estimates the density of ions contained 

within the neutral cloud as a function of time. The location of the polarization charge 

layers with respect to the neutral cloud center is then determined by the limiting case 

where the ion density equals the ambient density. Ions inside the charge layer are added 

to the polarized core, while ions outside are added to the magnetized ion trail.

From the neutral barium velocity distribution function (1.3), the neutral cloud density 

as a function of cloud radius, r, and time, t, in the satellite reference frame is given by

nn(r.t) =  (3>1)
4nr*tct

where N0 is the total number of released particles, v0 is the radial expansion velocity of 

the neutral cloud (1.33 km /s), vt)t is the thermal expansion velocity of the Gaussian profile 

(0.29 km /s), and a  = is the normalization factor. The ion density within the neutral

cloud can be obtained from (3.1) by replacing N0 with an expression for the total number of 

ions, ANi, that are contained within the moving neutral cloud at a given time. To determine 

AN u consider first the ionization rate which is given by

dNi Xre~‘tx _
- i r = M 0   (3.2)at x

where x is the ionization time constant (23 s). For a magnetized ion, the time that the ion 

spends in the neutral cloud is on average half of the transit time of the neutral cloud , or

Af =  Vot/Vsat (3.3)

where viat is the satellite velocity (9.6 km /s). So the total number of ions within the neutral 

cloud created in At at time f is
AXr N0e - ‘^v0t
AN, = ---------------  (3.4)
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and the ion density within the neutral cloud is

n,(r. t) = N°g ‘/Zvo g-(r-p.tf/ftwi2 (3 5)
4ftr CCtVsat

For the model calculation, time is advanced according to 3.3, and the radius of the polariza­

tion charge layer from the neutral cloud center is set where n, equals the ambient plasma 

density Equation 3.5 is then numerically integrated at each time step to determine the 

total number of ions internal and external to the charge layer. Note that the internal ions 

move with the neutrals because of the polarization electric field and the external ions are 

magnetized. Therefore, ions internal to the charge layer are added to the core, while ions 

external to the charge layer are added to the ion trail. The core ions skid for the duration 

of the calculation without contributing to the ion trail. The free parameters in the model 

are then the total number of barium neutrals in the release and the ionospheric plasma 

density.

Numerical values for the three releases investigated are given in Table 2.1. A complex­

ity arises, however, in the case of G9. While the G l and G11A releases were each from 

one small canister, the G9 release was a simultaneous release from two large canisters. At 

the time of release the G9 canisters were about 6 km apart. Because of this separation the 

two release clouds would not interact before about 2.2 s after release, at which time the 

neutral clouds have moved about 22 km from the release point, which is farther than the 

17.5 km skidding distance observed. For the model calculation we therefore used only half 

the number of neutrals given in Table 2.1 for the G9 experiment.

Figures 3.2 are the model results (re-sampled to a uniform grid) showing the number 

of ions left behind the skidding core as a function of distance from the release point. The 

results are presented for three ionospheric densities: the observed density, a higher and a 

lower density. The densities used are given in the figures in num ber/m 3. Also shown is 

the trace that would have resulted if there had been no skidding, that is, all ions trapped 

in B.

The ion trail traces show that initially, when the neutral cloud is very dense, the re­

sulting high ionization rate will create a polarized ion cloud containing essentially all ions 

produced. This accounts for the initial low number of ions in the trail. The neutral den­

sity will decrease as t-3 , while the size of the cloud only increases as t , resulting in a
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Figure 3.2: Skidding model results for G l, G9, and G11A. Ion trail profiles correspond 
to the ambient electron densities shown (number/m3). The solid lines correspond to the 
electron densities measured by LASSI, and the dotted lines illustrate the sensitivity of the 
results to a higher and a lower electron density. The observed skidding distances are indi­
cated.
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decrease in the ion density. As the ion density becomes comparable to the background, a 

rapidly increasing fraction of the ions produced will be magnetized as demonstrated by 

the sudden increase in the number of trail ions. Eventually all ions produced will add to 

the magnetized trail.

The model traces are very similar to the trace from an actual image shown in Figures 

2.9, 2.10, and 2.11. The ions in the polarized core would be the difference between the no 

skidding curve and the ion trail curve. Although not addressed in the model, we would 

anticipate that ions eroding from the core would cause the ion trail curve (solid line) to 

raise above the no skidding curve and eventually fall back to the no skidding level as 

the core is dissipated, providing qualitative agreement with the observations illustrated in 

Figures 2.9, 2.10, and 2.11.

We also note that the initial skidding distances inferred from the model are in good 

agreement with the observations of 9.6, 7.5, and 17.5 km for Gl, G11A, and G9 (Table 

2.4) as indicted in Figure 3.2. The steep inner edge of the barium ion trail is very well 

reproduced, and the skidding distance appears to be sensitive to the ionospheric plasma 

density.

3.3 Expanding Neutral Disk

The expanding disk of material, seen as the "backjet" from Aircraft 127 and as a disk from 

Aircraft 131 (figure 2.4), is neutral barium. Our unfiltered optical data cannot confirm this 

conclusion, but the 10 km /s expansion velocity perpendicular to B results in a disk that is 

much larger than the 430 m barium ion gyroradius. This conclusion is further supported 

by filtered data at 455.4 nm, the dominant Ba+ emission line, taken by the Lockheed group 

(R. Rairden, personal communication, 1994) from aircraft 127. Here we observed that the 

disk did not appear as Ba+ until roughly 15-20 s after release. This is consistent with neutral 

barium photoionizing with a time constant of 23 s. Thus we conclude that the expanding 

disk is neutral barium.

We made an estimate of the disk's neutral population by performing an inventory on 

the backjet. Assuming that the backjet represented a fraction of a circular disk, we ex­

trapolated the inventory to a full disk. Because of the delayed onset of the backjet the
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extrapolation was based on the assumption that the disk was centered 20-30 km (depend­

ing on the size of the release) downstream from the release point. Using a neutral emission 

rate that is an order of magnitude greater than the ion emission rate, we calculate that the 

G l, G9, and G11A disks contained a total of 8 x 1021, 1 x 1023, and 1.8 x 1022 neutrals atoms 

or 0.3%, 0.7%, and 0.7% of the released material respectively. The uncertainties associated 

with these neutral inventories stem from the image calibrations, the neutral emission rates, 

assumptions with regard to the extent of the disk, and background subtraction (especially 

in the case of G il A). These values should therefore be considered as an order of magnitude 

estimate.

The neutrals in the disk cannot come directly from the canister evacuation. They must 

be the result of some process acting after the release. One possible process that could be 

responsible for this disk is charge exchange between barium ions and neutrals. Lion et al. 

[1996] and Hampton [1996] have examined the process in connection with an evaluation of 

the CIV experiments and find a weakly velocity dependent charge exchange cross section 

of 1 x 10-14 cm2 which is roughly an order of magnitude larger than the barium-barium 

collision cross section. Since the releases were essentially perpendicular to B, the magne­

tized ions are held by the magnetic field while the neutrals stream past. This situation 

clearly favors charge exchange, and because there is no momentum exchange and the ions 

have essentially no velocity parallel to B, the charge exchange neutrals will form a disk 

perpendicular to B.

3.3.1 Calculated Neutral Disk Inventory

A quantitative assessment of the efficiency of the Ba-Ba+ charge exchange process can be 

made using the model derived for the skidding calculations. Charge exchange will only 

involve the ions outside the skidding core. These ions are assumed frozen into the back­

ground magnetic field and thus will gyrate around B with the release velocity while the 

neutrals stream past. Hence this counterstreaming between neutrals and ions will result 

in a high probability for charge exchange.

The skidding model provides the ion and neutral densities and the radius of the skid­
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ding core as functions of time. In general, the net charge exchange rate is given by

where fi(r .v .t) and f„(r.v .t) are the ion and neutral distribution functions, v, and vn are ion 

and neutral velocities, and a(|o, — y„|) is the charge exchange cross section. For a neutral 

particle moving past a magnetized ion the relative speed averaged over one gyroperiod is 

vr = Ivsat/K . We will assume therefore that the ion population is stationary and that the 

neutral population has velocity vr . In this case, the distribution functions now take the 

form n(r.t)8(v). Also, since the Ba-Ba+ charge exchange cross section is weakly velocity' 

dependent, we will treat a  as a constant. With these simplifications, the charge exchange 

rate integrated over the nonskidding part of the cloud is

where rp is the radius of the polarization charge layer. To estimate to the total number of 

charge exchanges, p(t) can be multiplied by the interaction time of the ion and neutral pop­

ulations. We assumed the average interaction time to be the transit time of the Gaussian 

distribution at full width, or Ivtht/Vsat-

peak production is seen to be at 1 s for the small releases and 2.5 s for the large. Also, 

the process is limited to the early phase of the release. This is in good agreement with the 

appearance of the neutral disk in the video. Again, the calculation for the G9 release, which 

consisted of two canisters 6 km apart, is for one canister only. However, in this case the 

clouds begin to interact during peak production, and thus the single canister model will 

lead to an underestimate. The amount of neutral barium produced in the model and the 

fraction of released barium vapor for the G l, G9, and G11A releases are 8.5 x 1021 (0.33%),

3.3 x 1022 (0.36%), and 1.2 x 1022 (0.47%). The corresponding observed amounts of neutrals 

in the disk for G l, G9, and G11A were 8 x 1021, 1 x 1023, and 1.8 x 1022. The observed and 

calculated values are in good agreement especially since the G9 calculation would be an 

underestimate.

The charge exchange process favors ions moving nearly perpendicularly to B. These 

ions will spend the most time within the denser part of the neutral cloud and hence are

p(t) — 47t J , t)fn(r.vn.t)\vt -  u„|a(|u, -  VnD^drd^v^Vn (3.6)

(3.7)

Figure 3.3 shows the charge exchange rate as function of time for the releases. The
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Figure 3.3: Calculated charge exchange rates versus time.
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most likely to charge exchange. Therefore the produced neutrals would have velocities 

primarily perpendicular to B, and the resulting neutral cloud should, as observed, appear 

as a disk perpendicular to B and centered a few tens of kilometers from the release.

The charge exchange process only affects ions produced within the first few seconds 

after release, and with an ionization rate of 3% per second it is a significant fraction of 

the early time ions that are affected. Additionally, most of the early time ionization is 

inside the polarized core and therefore not subjected to charge exchange. Therefore, the 

importance of barium ion neutral charge exchange process will be highly dependent on 

the actual release geometry.

3.4 Ion Cloud Morphology

Our model of the skidding ion core is consistent with the observed initial skidding distance 

and the formation of the neutral disk. The observed ion cloud structures are presumably 

also related to the evolution of the core. However, this simple model can only describe the 

initial formation of the core and cannot address issues regarding the evolution of the core 

after about 1 second. In particular, we cannot address the herringbone structure with this 

model, so further discussion will follow with the hybrid code simulation. The observations 

do indicate, though, the presence of parallel electric fields. The ion cloud shows parallel 

elongation for 2-3 seconds after the release particularly at the striated release edge of the 

cloud. Despite the effects of highly mobile electrons along the field line, parallel electric 

fields are present and have been measured in the CRIT I experiment by Brenning et al. 

[1991a]. In this section we will consider the effects of a parallel electric field on the ion 

cloud morphology.

3.4.1 Polarization Electric Field Model

To evaluate the effects of parallel electric fields on the G l ion cloud development, a three­

dimensional particle simulation model was developed using the general model considera­

tions described above. The computer model follows a large number (~  10s ) of particles in 

the geomagnetic field under the influence of an imposed polarization electric field. Each 

neutral Ba particle was initialized with the satellite velocity of 9.6 km /s plus an appro­
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priate cloud expansion velocity so that the velocity distribution of the particle ensemble 

satisfied 1.3. These particles were then ionized according to a Monte Carlo algorithm us­

ing a 23 s time constant.

The imposed polarization electric field is assumed to be that of a polarized sphere. In 

a vacuum model of the release the field outside the polarization charge layers is dipolar. 

One consequence of this is that the electric field will have a component parallel to B. The E 

field inside the polarized cloud will result in an electrostatic potential across the ion cloud, 

and closure of the potential contours implies a parallel electric field in the vicinity of the 

ion cloud. Clearly, the ionospheric response to the potential drop along B will quickly limit 

the parallel fields, but for the sake of simplicity we are neglecting this response in order to 

model the effects of parallel fields on the ion cloud morphology.

In Cartesian coordinates with x along the orbit, y along —v x B, and z along B, the 

electric field inside the sphere in the satellite frame of reference is

where is Q is the polarization charge on the sphere and R is the radius of the expanding 

cloud. The skidding electric field is —v x B/B2, which for the three releases is about 300 

mV/m. Outside the sphere the electric field is dipolar:

where the dipole moment p = 4QR/3 and r = y/x2 + y2 + z2 . Hence the electric field is de­

termined everywhere given the radius R of the polarized core.

Note that the electric field configuration described by 3.8 and 3.9 requires of the order 

of a gyroperiod (0.3 s) to be established. Therefore a more accurate model would be a 

rotating dipole which begins in the x direction and rotates to the y direction as described 

by Brenning et al. [Brenning et al., 1991a]. The rotating dipole has also been verified in the 

simulation work done by Genoni et al. [1995]. For the present calculations, however, we 

assume that 3.8 and 3.9 hold from the beginning.

The polarization charge Q controls the magnitude of the electric field. We used the 

observed skidding distance of 9.6 km for the G1 release as the criterion for setting the value 

of Q . For the first second the model uses E,n =vB = 300 m V/m  to simulate the skidding.

(3.8)

(3.9)
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Figure 3.4: Early ion cloud structuring. Simulation results showing the early ion cloud 
structuring due to an imposed polarization electric field.

The value for Q corresponding to E,„ = 300 m V/m  at 1 s is then used to determine the 

electric fields for the remainder of the simulation.

The results from the simulation at 8 s after release are shown in Figure 3.4. The sim­

ulation image shows the results projected onto the xz plane to approximate the viewing 

geometry of G l from aircraft 127. The model image is to be compared with the corre­

sponding observed images. Note that the ion cloud shows a distinct striation along the 

release end of the ion cloud and shows considerable structure extending 20-25 km into the 

ion cloud. This is in good agreement with the observations.

While the model results are encouraging, it should be noted that the actual physical 

mechanism for supporting a parallel electric field is yet unknown. As mentioned above, 

the vacuum model of the release is unrealistic due to the mobility of the electrons along 

the magnetic field line. Brenning [1995] argues that the vacuum model may hold for up to 

0.3 s after release, but not for 2-3 seconds as the observations suggest. Other possibilities 

include plasma instabilities or ambipolar diffusion resulting from CIV electron heating. 

Further discussion will follow in chapter 6.
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3.5 Closure

This preliminary analysis of the G l, G9, and G11A optical data has yielded the following 

insights into the early ion dynamics of the CRRES releases:

• A dense core of ions is formed during the first few seconds of the release. This core 

polarizes and propagates across the geomagnetic field (i.e. skids) in the satellite di­

rection for several seconds after the release. The analysis also suggests that the initial 

skidding distance is a function of the ratio between the barium ion density and the 

ambient plasma density.

• Charge exchange between barium ions and neutrals is responsible for the neutral 

disk that expands perpendicular to B at the satellite velocity of 9.6 km /s. Significant 

charge exchange does not occur until 1-2 seconds after release when magnetized ions 

are produced outside of the skidding core. As the cloud expands and ion densities 

decrease, the number of charge exchanges decreases to essentially zero by 5-8 sec­

onds after release.

• A parallel electric field is responsible for the elongation of the ion cloud near the re­

lease point. Parallel fields are an essential feature of a spherical, polarized cloud, but 

the highly mobile ambient electrons will quickly modify the charge distribution that 

is responsible for this parallel field. Instead, ambipolar diffusion or plasma instabili­

ties may play an important role in the formation of the parallel electric fields.

Although this preliminary analysis has yielded new insights into the coupling between 

a partially ionized neutral gas and an ambient plasma, we still lack a quantitative under­

standing of the processes responsible for the structure, the effects of the release on the 

ambient environment and the dissipation of the kinetic energy of the barium ions. In par­

ticular, important questions still to be addressed include:

• Can the inner edge striation and ion cloud elongation be accounted for by anomalous 

electron heating?

• Do conditions exist for the generation of the modified two-stream instability?
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• How do charge exchange processes alter the ion and neutral distribution functions?

• How rapidly does the barium plasma cloud exchange momentum and energy with 

the ambient plasma, and how does this propagate away from the ion cloud? That is, 

how does the skidding core couple to the ambient plasma, and what is its lifetime?

The next chapter introduces the hybrid code simulation that we used to address these 

questions.
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Chapter 4

Hybrid Code

The CRRES chemical releases represent a challenging physical system for numerical simu­

lation. Kinetic processes associated with the barium ions must be addressed, while the mo­

mentum coupling of the barium ions to a vast ambient ion population must be included. 

Ideally, we would use a full electromagnetic code and treat all species as discrete particles. 

However, the time stepping scheme for an electromagnetic code is limited by the propa­

gation of light. The Courant condition for numerical stability requires that At <  A„„„/ z" 

where Amtn is the minimum grid spacing and |o| fastest propagation velocity on the space 

mesh. Moreover, the electromagnetic code contains the electrostatic interaction which re­

quires time stepping to resolve the electron plasma oscillation. Both of these constrains 

require too small a time step to be feasible.

The hybrid code of the type developed by Hamed [1982] offers a reasonable solution. 

The hybrid code assumes quasi-neutrality, and treats the barium ions as fully kinetic par­

ticles, and the electrons as a massless fluid. The ambient ionospheric plasma, considered 

here as composed entirely of oxygen ions, exhibits little kinetic behavior, and thus the com­

putation is greatly simplified by treating this component as an MHD fluid. The inclusion 

of an ion fluid into the hybrid code was demonstrated by Swift [1996] whose algorithms 

are detailed below.

59
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4.1 Algorithms

The equations of motion for the Ba+ ion particles, the 0 + ion fluid, the massless electron 

fluid, and the update of the electric and magnetic fields are described in this section. The 

electric fields are determined algebraically from the electron momentum equation and the 

magnetic field update follows using Faraday's law. The algorithm is entirely explicit and 

there is no requirement for the solution of Poisson's equation or any other elliptic equa­

tions.

First, the electron momentum equation is

me - jp  = —q E '-q u e x B' -  mev(ue -  u,) -  ^VP (4.1)

Dividing both sides by mo- simplifies the expression for the sake of computational conve­

nience so that the electric fields can be written explicitly as

E = - u e x B - v ( u e- u , j - r ^ - V P  (4.2)
at

where E is the electric field in units of 0 + ion acceleration, B is the magnetic field in units 

of 0 + ion gyro frequency, P is the pressure in units of 0 + ion velocity squared, v is the 

ion-electron collision frequency, r is the electron-to-ion mass ratio, ue is the electron flow 

velocity, and u, is the total ion bulk flow velocity, given by

nP n fu, = — Up + — U f  (4.3)
n n

where the subscripts p and /  represent the particle and fluid constituents of the bulk flow.

It should be noted that from here forward, explicit references to barium and oxygen 

ions will be replaced by references to particle and fluid components respectively. The 

particle, fluid, and total densities are np, nf, and n. The second term in 4.2 represents 

the ion-electron frictional dissipation necessary to stabilize the code against a nonlinear 

interaction between the particles and fields [Sivift, 1995, 1996]. As it turns out, this term 

was for the most part unnecessary for the CRRES simulation. Note that the final term 

in 4.2 is an optional pressure term that can be used to evaluate the effects of anomalous 

electron heating. Given that the electron fluid is assumed massless, and hence electron 

inertial effects are considered insignificant, equation 4.2 simplifies to

E =  - u f x B - v ( u f - U i ) - V P  (4.4)
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Clearly the electron pressure term requires an additional equation for energy transport for 

a fully self self-consistent code. However, this pressure term is used without an energy 

transport equation simply to provide a diagnostic tool for evaluating the effects of anoma­

lous (CIV) electron heating on the ion cloud morphology.

The electron flow speed is evaluated from Ampere's law

where in mks units, a  = and where mo- is the ion fluid mass. The value of a  is used to
w o -

scale the simulation particle densities to their appropriate physical values.

Faraday's law is then used to update the first order magnetic fields

Note that B = Bo + Bi, where Bo is the ambient curl free geomagnetic field, and B] is the 

variable field. With the equation for the magnetic fields written in this form, it can be 

shown that the first term on the right hand side is responsible for the propagation of the 

whistler mode, and the second term, together with the particle/fluid equations, propa­

gates the Alfven modes.

Using 4.3, 4.4, and 4.5, the equation for ion (Ba+) particle motion is

(4.6)

which upon using 4.4 and 4.5 yields,

(4.7)

(4.8)

where

(4.9)

Similarly, the ion ( 0 +) fluid velocity is

where

(4.10)

(4.11)
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Note that the expressions for Ep and Ef  are different than the expression for E given by 4.4 

and 4.5. This ordering of the terms was made for the sake of computational convenience.

Finally, as was mentioned in chapter 3, the barium cloud is basically a low-beta plasma. 

Figure 3.1, shows that any substantial perturbation to the ambient magnetic field is likely 

to occur only within the first second. Although we expect diamagnetic effects and mag­

netic field line compression associated with the skidding core, the ambient fluid is assumed 

fixed. Ambient density fluctuations due to electrostatic snowplow effects discussed by 

Schunk and Szuszczewicz [1991] will therefore not be present in this simulation. Errors re­

lated to the assumption of fluid incompressibility are accounted for in the momentum 

conservation of the hybrid code.

4.2 Time Stepping Algorithm

Equations 4.4, 4.7, 4.5, 4.8, and 4.10 represent the basis of the simulation. This section 

describes the subcycle time stepping scheme of Swift [1996] and the numerical algorithms 

that were used to solve this set of equations.

The time stepping scheme uses two time intervals. The barium particles are updated 

with one time step while the fluid and fields are updated on 10 subcycle time steps. This 

scheme provides substantial time savings as the number of particles in the simulation in­

creases. Moreover, the subcycle time step is governed by the Courant condition with re­

spect to the whistler mode which is much smaller than the time step that is required for 

resolving the barium ion gyromotion. Thus, it is not necessary for the particles to follow 

the fluid and field time stepping. Figure 4.1 illustrates the temporal relationship between 

the particle, fluid, and field quantities.

For the particle update, the half time step velocities are used to move the particles to 

the next whole time step. First, we assume that B and Uf are given at the whole time 

step. The update of vp from n-^ to n + j requires Ep at the whole time step. However, 

Ep is calculated from up which is only given at the half time steps, so the scheme uses a 

provisional extrapolation of up to the whole time step

Up = 1.5up-  ̂ -0 .5u p-  ̂ (4.12)

Now, Ep can be calculated at the whole time step.
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n-3/2 n-1

Particle Update
n -l/2  n n+1/2

J I L J I L I I 1 L

n+1 n-t-3/2

u„
u„

Provisional Extrapolation

u„

dt

m-3/2 m-1
Fluid & Field Update

m -l/2  m m +1/2 m+1 m+3/'2

B 5f

Ur

JL
Predictor Step 

B ---------

Corrector Step

B

B

Figure 4.1: The time stepping algorithm. A summary of the time stepping algorithm show­
ing the temporal relationship between particle, fluid, and field variables. The particle 
positions (densities) at the half time step, n+1/2, are used to update the fluid and field 
quantities (on the subcycle time step) from time level n to n+1. The subcycle time step, 8f, 
is df/10.
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Next the algorithm uses the substitution of

v± qp y E £  (4.13)

into 4.8. The second order velocity advance is now given by

v+ =  v~ + ^  (v+ + v_) x Bn (4.14)

and by computing the dot and cross products of 4.14 with B we find that the explicit ex­

pression for v+ is

.  1v = 1 + B ^ ^1 — v + Af(v x B ) + y (v  B)B (4.15)

However, before solving 4.14 for vn+: we use

vn = y (v + + v -) (4.16)

to calculate an improved up. The procedure is then repeated to obtain a final value for 

vn+: . Given the half time step velocities, the particle positions and densities are updated 

to the next whole time step (n+1).

The fluid and field values are updated on the subcycle time step from time level n to 

n+1 using the particle bulk flow and density at n+|. It should be noted that Swift [1996] 

found negligible differences between using the half time step values and using the values 

interpolated to the correct second-order subcycle time step. Thus we used up+! and h"’’: 

for the duration of the subcycle loop. The ion fluid velocity, Uf, is updated on the subcv- 

cle half time steps using the same procedure as described above for the discrete particle 

advancement. We first substitute

u± = u” ±sqFyEf  (4.17)1 Sf.

into 4.10. This yields

 ̂ n„8f /  ̂ \ _ n„8t /  ̂ \
u/ = u7 + i r  (u/ + u/ ) x B + u7 ) (4-18)

Solving explicitly for ujt gives

u/  = [(P -  Q2B2)u / + Q(1 + P)(vif x B) + Q2( 1 + P)(U/-  • B)B (4.19)
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where

P =
np5t 2n (4.20)

1+v

and

Q = 2n (4-21)

Substituting this result into 4.17 gives the updated velocity at the half time step. Note that 

in the regions where the ion particle density vanishes (i.e. outside of the release region), 

the second and third terms disappear, considerably simplifying 4.19.

The convective term in 4.11 was solved using a Lax-Wendroff scheme [Fletcher, 1991). 

Under this scheme, the convective derivative of the form du/dt = -u d u /d x  can be numeri­

cally represented by

originates from a second-order representation for the term du/dt from a Taylor series ex­

pansion. Our numerical algorithm for (uj  • V)u/ is thus represented by the second and third 

terms in 4.22. We added an adjustable coefficient for the diffusive term to ensure numeri­

cal stability, but in general found this to be unnecessary. Since Ef is required at the whole 

subcycle time step, a provisional extrapolation of Uf was made to the whole time step, and 

as was the case with the particle update, we improved the extrapolated value using uy and 

repeated the calculation. Also, an upwind differencing scheme was used, but this scheme 

was overly diffusive so we elected not to use it.

Finally the magnetic field update uses a leapfrog-trapezoidal, or predictor-corrector 

technique [Zalesak, 1979). The predictor step applied to Faraday's law (4.6) is

(4.22)

The last term on the right hand side is diffusive and is an expression for d2u/dx1 which

Bm+i =  Bm_1 _  28f (V x E)m (4.23)

where Em is evaluated using u! ~ \ ( u/° 1 + U)n+I) • The corrector step is

gm+l — Bm _  5f (V x E)m+! (4.24)

where the value of Em+i is evaluated with j(B m+1 + Bm)
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2

(Bo)

Figure 4.2: An illustration of the simulation coordinate system. The satellite velocity is in 
the x direction and the geomagnetic field is in the z direction

4.3 Simulation Coordinates and Grid Structure

The CRRES simulation coordinate system is illustrated in figure 4.2. The neutral cloud 

moves along the satellite orbit which is defined as the x direction. The ambient geomag­

netic field is in the z direction, and the y  direction completes the right-handed coordinate 

system. This Cartesian system represents a simplification to the inherently curvilinear 

geometry of the earth's dipole magnetic field; however, in the localized region of space 

occupied by the release cloud, geomagnetic curvature and gradients are negligible and the 

magnetic field can thus be considered constant. Beyond the release region the exact mag­

netic field topology is assumed to be of little importance as we are interested simply in the 

momentum coupling of the cloud to an arbitrary volume of ambient plasma. Boundary 

conditions at the conducting E-regions above (southern conjugate point) and below the 

cloud are clearly important and will be addressed in the next section.

To accommodate the large volume of ambient plasma, a non-uniform grid in the z 

direction is used. In the release region, the grid cell dimensions are one barium ion gyrora- 

dius as is necessary to resolve the ion gyromotion. Away from the release region, the grid
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Figure 4.3: The coordinate cell. The coordinate cell showing the relationship between the 
main and dual cells, and the components of the electric and magnetic fields. The dotted 
line illustrates the line integral used for the advancement of By.

spacing is increased. The technique for performing vector operations on this non-uniform 

grid follows the procedure outlined by Swift [1996] for curvilinear coordinates.

The technique is illustrated in figure 4.3 which shows the orthogonal main grid cell and 

its partner, the dual cell. The center of the main cell is at the grid point (/./'. k), and the center 

of the dual cell is at the main cell comer, ( i+ \ .j+ \ .k + j ) .  Note that on an irregular grid, 

the dual cell center and the geometric center of the dual cell will not necessarily coincide. 

The electric field components are defined on the main cell faces, or contravariant positions, 

and the magnetic field components are defined on the main cell edges (dual cell faces), 

or covariant positions. Under this convention, all other vector quantities are given at the 

contravariant positions.

The magnetic field advancement applies Stokes' theorem to Faraday's law

(4.25)

Numerically, 4.25 applied to the point (i + \ .j,k+  |) as shown in figure 4.3 on the dual cell
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face gives

(4.26)

All curl operations follow this convention. Note, however, that in the case of Ampere's 

law, the curl operation is done on the main cell faces instead.

The formation of scalar and vector products require that the components of both vec­

tors be located at the same point in space. This is particularly important in the case of 

the cross product, (V x B) x B, which involves both covariant and contravariant vectors. 

The quantities are first interpolated to the main cell center where the vector operations 

are performed, and the results are interpolated back to the contravariant positions. All 

interpolations are linear.

The particle update uses a standard particle-in-cell (PIC) algorithm where the field and 

fluid quantities that are interpolated to the position of each particle using PIC weighting 

[Potter, 1977]. Likewise, the particle density, which is specified at the main cell center, is 

interpolated to the contravariant positions for the field and fluid updates. This method is 

illustrated in figure 4.4. The particle is located at the point P, and the eight nearest grid 

points are indicated. For example, the normalized weight for the quantity located at grid 

point 6 is (xiyiZi)/(AxAyAz) where Ax, Ay, and Az are the grid dimensions. In short, the 

weighting volume for each grid point is the subvolume in the opposite comer of the cell.

As a final point, the grid leaves the divergence of the magnetic field at the dual cell cen­

ter divergenceless provided that the initial magnetic field configuration is divergenceless. 

This can be shown by applying the divergence theorem to 4.25, which over one grid cell is

Note that the sum of the line integrals exactly cancel leaving the magnetic field divergence­

less for all subsequent time steps.

(4.27)

faces faces
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x

Figure 4.4: PIC weighting. An illustration of the particle-in-cell (PIC) weighing algorithm 
for interpolating fluid and field quantities to the particle positions and particle densities 
to the grid positions. The normalized weight for each grid point is the subvolume of the 
opposite comer of the cell divided by the cell volume.

4.4 Boundary Conditions

The simulation boundaries lie on dual cell faces, so we must specify the normal compo­

nent of B (B jJ  and the tangential components of E (Ey) on the dual cell boundary face. 

Once Ey has been determined, Faraday's law gives By which in turn provides E_ through 

Ampere's law. The normal component of B is determined by requiring that the divergence 

of B at the dual cell center just inside the boundary remain zero. This is the simplest of the 

two boundary conditions and applies to all boundaries. The tangential components of E 

on the other hand can be specified in a number of ways. The easiest condition is for that 

of a conducting (reflecting) boundary where Ey = 0. We used this condition to simulate 

the conducting E-regions above1 and below the release region. For the side boundaries 

perpendicular to Bo, we used d^Ey = 0 to specify Ey on the boundary. This condition en-

'The top boundary represents the conjugate E-region in the southern hemisphere. The Alfven transit time 
to the conjugate point and back is on the order of several seconds, or certainly much longer than the time of this 
simulation. Although the proximity of this boundary to the simulation particles was unphysical (symmetric 
with the lower boundary), the Alfven waves did not interact with this boundary during the simulations.
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sured that the normal component of the fluid flow was continuous across the boundary 

and therefore is termed an outflow boundary condition [Swift, 1996]. Another option is 

to specify d^By = 0  on the boundary in which case Ey is determined from Ampere's law; 

however, this specification tended to make the boundary rigid and reflecting (i.e. E, = 0) 

rather than continuous as desired for an outflow boundary. The particles were confined to 

the central region of the simulation domain and thus never crossed the boundaries. Hence, 

particle boundary conditions were not necessary.

4.5 Energy and Momentum Conservation

Expressions for energy and momentum conservation for this hybrid code are derived in 

Appendix A and B. The result for energy conservation is

i , ( ^ U B'd3x) - l ^ dA <4-28)
This expression says that the time rate of change of particle and fluid kinetic energy, '£, 

and volume integral of magnetic field energy density is equal to the poynting flux at the 

boundary surfaces. Note that the electric field does not contribute to the energy conser­

vation. We also account for ion fluid fluxes through the boundary surfaces, assuming no 

discrete particle fluxes through the boundaries.

The expression for momentum conservation is

X  mp ~jjr + mf nf  J  = f s T -  mf nf  J (V • u/)u/if3.r (4.29)

where the stress tensor, T, is given as

T‘! =  ^  ( B«B, -  ^ M 2)  -  mf nf Uf ,Uf, <4 3 0 >

In 4.29, the total change in momentum of the system is equal to the stresses at the bound­

aries plus the second term on the right hand side which is the error that is introduced from 

our assumption that the ambient plasma density is fixed and thus incompressible. It turns 

out that this error is indeed small; however, a subroutine was added to solve the ion fluid 

continuity equation should it be needed.
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Chapter 5

Simulation Results

5.1 Introduction

The results of five separate runs of the hybrid code are presented in this chapter. Results 

from a 2.6 s G9-type simulation provide the basis of the presentation, while four smaller 1.2 

s Gl-type runs illustrate the sensitivity of the code to the variation of several parameters. 

These parameters include barium ion density, ambient 0 + density, charge exchange and 

collisional processes, and electron temperature. The parameters for these five simulations 

are summarized in simulation units in table 5.1. All values presented here will be given in 

simulation units as discussed in the previous chapter.

Note that the initial magnetic field and ambient plasma density are constant over the 

entire simulation domain. We are only concerned with the momentum transfer from the 

particles to the ambient fluid medium, so the exact details of the variation of the ambient 

parameters away from the particle cloud are assumed to be of little importance to the 

simulation results. Furthermore, the physical extent of the simulation domain is limited 

to a region of the ionosphere where only the ambient plasma density varies significantly 

and as will be shown below, variations to the ambient plasma density do not significantly 

affect the results.

The conducting boundaries at z = 0 and z =  nz were placed sufficiently far from the 

release region so that the Alfven mode never reached the boundaries. If the momentum- 

carrying Alfven wave should reach the boundaries, then the resulting magnetic tension

71
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from the reflected wave would tend to further decelerate the skidding ion cloud. The 

irregular grid in the z direction facilitated the distant placement of these boundaries with­

out adding an excessive number of grid points. In the release region the grid was uniform 

with a sufficient number of grid points to resolve the barium ion gyration, while the grid 

spacing along z was linearly increased from the minimum dz to the maximum dz shown in 

Table 5.1.

The ionization of the barium particles was initiated at 0.2 seconds, corresponding to the 

canister evacuation time. The ionization process used a Monte Carlo algorithm with a time 

constant of 23 s. We used this time constant for all five runs based on the observational 

evidence supporting this value. It turns out, regardless, that the results were insensitive to 

changes in the time constant within observational uncertainties. For the large G9 simula­

tion, 500,000 particles were used, and 100,000 particles were used for the small G l simula­

tions. This ensured that at least 10 particles were present in each grid cell throughout the 

volume occupied by the particles.

5.2 G9 Release

Projections of the barium ion cloud in the xy (perpendicular) and .tz (viatB) planes are 

shown in figure 5.1 at 0.2 s intervals. The color bar provides a relative intensity scale 

for the color scheme used. First, we note the formation of the dense skidding core. In 

the xy plane this core is a structure of roughly 2-3 km in diameter as expected from the 

preliminary calculations of Chapter 3. An asymmetry is also present where the core has 

drifted in the direction of the ion gyromotion. The .rz plane projections show that the core 

has expanded along the magnetic field into a cylindrical structure as would be expected 

from the initial velocity distribution of the neutral cloud.

5.2.1 Skidding

Figure 5.1 shows that the core begins to lag behind the neutral cloud starting at 1.0 s. Note 

that the neutral cloud is coincident with the leading edge of the ion cloud. By the end 

of the simulation the core is only ~  16 km from the release point while the center of the 

neutral cloud is roughly 25 km from the release point. Figure 5.2 shows the distribution of
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#1 #2 #3 #4 #5

Release size. No 1.8 x lO25 2.6 x 1024 2.6 x 1024 2.6 x 1024 2.6 x 1024 |
Particle array size 500,000 100,000 100,000 100,000 100,000 |
Time step. At (s) 0.004 0.004 0.002 0.004 0.004 i
Number of time steps 600 250 500 250 250 |
Subcycle time step, Sf (s) 0.0004 0.0004 0.0002 0.0004 0.0004 |
B0 (T, s ' 1) 3.0 x 1 0 '5. 179.8 |
VsatBo (k m /s2) 1726.1
ne (k m '3) 1.0 x 1021 1.0 x 1021 5.0 x 1020 1.0 x 1021 1.0 X 1021 ’
T A  K) 0 0 0 0 1 - 1CP ‘
Alfven speed (k m /s) 163.8 163.8 231.6 163.8 163.8 ;
Max whistler m ode speed (k m /s) 641.3 641.3 1241.9 641.3 641.3 ;

Grid dimensions
nx 93 43 43 43 43 !
ny 67 31 31 31 31 1
nz 301 151 251 183 183

Physical extent of grid
dx (km) 0.4 0.4 0.4 0.4 0.4
dy (km) 0.4 0.4 0.4 0.4 0.4
minimum dz (km) 0.5 0.5 0.5 0.5 0.5 ;
maximum dz (km) 6.5 4.5 4.5 4.5 4.5 '
.t (km) 37.2 17.2 17.2 17.2 17.2
y (km) 26.8 12.4 12.4 12.4 12.4
c (km) 921.0 369.1 539.0 369.1 369.1

Collisional Processes
Charge Exchange No No No Yes No
Billiard Collisions No No No Yes No ;

Table 5.1: Parameters for the five hybrid code simulation runs of the CRRES releases.
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Figure 5.1: Projections of the barium ion densities in the xy and xz planes. The color bar 
shows the relative integrated column densities on a linear scale.
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Figure 5.2: G9 ion distribution along the satellite path.
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the ions along the satellite track (x axis) at the same 0.2 s intervals. These profiles are for 

comparison with the observed profiles in figures 2.9,2.10, and 2.11. The simulation clearly 

shows that the core should have lost nearly all of its momentum by 2.6 s.

5.2.2 Ion cloud morphology

Figures 5.3, 5.4, and 5.5 illustrate the structures found within the ion cloud at 1.6 s. An 

asymmetry in the xy plane is evident. Much of the core remains intact; however, high 

density regions appear lagging behind and below as well as above and ahead of the main 

core. Cycloid bunching is evident in the xz-plane projections of figure 5.1 as well as the 

region between x = 16 km and x = 19 km in figure 5.3. The xz-plane slice in figure 5.4 

reveals that the core has split into two parts with a herringbone structure forming from the 

trailing ions. The three-dimensional composite image shows that the split core appears in 

a localized region in the y direction.

5.2.3 Field and fluid quantities near the release region

Figures 5.6 through 5.17 show a comparison of the electric fields, first order magnetic fields, 

fluid flow, and currents in the vicinity of the particle ion cloud. The first frame in each fig­

ure is a contour plot of the particle density in the indicated plane. The electric, magnetic, 

and fluid velocities are illustrated by a representative vector field with magnitude of the 

longest vector specified to the right of the plot in simulation units (see Table 5.1 for refer­

ence values). The last frame shows a contour plot of the parallel currents passing through 

the xy plane in figures 5.6 to 5.11. In figures 5.12 to 5.17 the currents are shown with a 

vector field representation. Note that the xy-plane slices were taken from 1-4 grid points 

above the midplane of the ion cloud for the purpose of showing the parallel currents. The 

aspect ratio was maintained in these figures so the distance scale on the y and z axis is the 

same as the x axis.

The electric field as seen in the xy plane is dipolar and decays steadily in accordance 

with the momentum losses of the ion cloud. The magnetic field shows a circulation pattern 

that is consistent with the parallel current contours. The currents are filamentary and have 

an electron flow speed of up to 40 km /s initially. A higher grid resolution produced sub-
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Figure 5.3: Ion cloud in the xy plane with electric field. Ion cloud in the xy plane at z =  149 
and t =  1.6 s. The color scale to the right indicates the ion densities and the electric field 
vectors are shown.
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Figure 5.4: Ion cloud in the xz plane with electric field. Ion cloud in the xz plane at y = 30 
and t = 1.6 s. The color scale to the right indicates the ion densities and the electric field 
vectors are shown.
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Figure 5.5: Slices of the ion cloud rendered in three-dimensions.

stantially higher electron flow speeds as the resolution of the current filaments increased. 

Slices taken below the midplane show a reversed magnetic field circulation which is con­

sistent with the frozen-in condition for the particles and magnetic fields. This reversal is 

seen clearly in the xz plane slices both in the magnetic field and the parallel current flow. 

Also in the xz plane we see evidence of a diamagnetic cavity in the core region as well 

as circulation that implies a current flowing in the xy plane and forward of the core. The 

magnitude of the perpendicular current is roughly equal to the ion flow velocity of 5 to 10 

km/s.

5.2.4 Field and fluid quantities away from release region

The particle momentum is carried away from the cloud primarily via Alfven waves prop­

agating along the magnetic field. The high frequency whistler modes propagate faster but 

carry very little momentum. Figures 5.18 through 5.23 illustrate the relationship between 

the field and fluid flow variables associated with this wave propagation at 2.6 s after the 

release in the midplane of the cloud. The grid has been resampled to a uniform grid for
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xy plane, z = 151, t = 0.4 s
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Figure 5.6: Field and fluid quantities in the xy plane at z = 151 and t = 0.4 s.
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xy plane, z =  152, t =  0.8 s 
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Figure 5.7: Field and fluid quantities in the xy plane at z = 152 and t = 0.8 s.
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xy plane, z = 152, t = 1.2 s
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Figure 5.8: Field and fluid quantities in the xy plane at z = 152 and f = 1.2 s.
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xy plane, z = 153, t = 1.6 s
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Figure 5.9: Field and fluid quantities in the xy plane at 2 =  153 and t =  1.6 s.
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Figure 5.10: Field and fluid quantities in the xy plane at z = 154 and f = 2.0 s.
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xy plane, z = 155, t = 2.4 s
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Figure 5.11: Field and fluid quantities in the xy plane at z =  155 and t = 2.4 s.
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xz plane, y = 30, t = 0.4 s
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Figure 5.12: Field and fluid quantities in the xz plane at y = 30 and t = 0.4 s.
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xz plane, y = 30, t = 0.8 s

x (km)

Figure 5.13: Field and fluid quantities in the xz plane at y = 30 and t = 0.8 s.
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Figure 5.14: Field and fluid quantities in the xz plane at y =  30 and t = 1.2 s.
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xz plane, y = 30, t = 1.6 s
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Figure 5.15: Field and fluid quantities in the xz plane at y =  30 and f = 1.6 s.
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xz plane, y = 30, t = 2.0 s
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Figure 5.16: Field and fluid quantities in the xz plane at y = 30 and t = 2.0 s.
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xz plane, y = 30, t = 2.4 s
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Figure 5.17: Field and fluid quantities in the xz plane at y = 30 and f = 2.4 s.
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all of these figures. Since the ion cloud is moving in the x direction, the wave disturbance 

along z is a function of time and hence the structure of the perturbation to the ambient 

medium is called an Alfven wing [Wright and Southwood, 1987]. Furthermore, perpendic­

ular slices throughout the Alfv6n wing will reveal the same vector field structures as seen 

in figures 5.6 through 5.11.

The perturbation magnetic field is asymmetric about the release midplane such that the 

components of Bi of the upward propagating wave have the opposite sign of the down­

ward propagating wave as seen in figures 5.18 and 5.19. This magnetic field configuration 

carries the parallel currents shown in figure 5.20. This is also consistent with the frozen-in 

condition for the particles and the magnetic field. Figure 5.21 shows the magnetic field 

topology where much of the ambient magnetic field has been dragged with the skidding 

ion core. From this point of view it is clear that skidding of the ion core is limited by a 

strong magnetic tension force.

The polarization electric field is mapped symmetrically up and down the magnetic 

field by the Alfv£n waves as seen in figures 5.22 and 5.23. Consistent with these electric 

fields is the ambient fluid flow shown in figures 5.24 and 5.25. Here we see that the y 

component of the fluid flow changes sign so that the total momentum in the y direction is 

zero. Thus, (iif)x carries the momentum away from the ion cloud and the total momentum 

of the system is conserved (Appendix B).
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Figure 5.18: Bx contours in the xz plane at y = 32 and f = 2.6 s.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



93

10 20 
x (km)

30

Figure 5.19: By contours in the xz plane at y = 35 and t = 2.6 s.
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Figure 5.21: Magnetic Field topology in the xz plane at y = 32 and t =  2.6 s.
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Figure 5.22: Ex contours in the xz plane at y = 32 and t = 2.6 s.
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Figure 5.23: Ey contours in the xz plane at y = 32 and t =  2.6 s.
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Figure 5.24: iifx contours in the xz plane at y = 32 and t =  2.6 s.
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Figure 5.25: Ufy contours in the xz plane at y = 32 and t = 2.6 s.
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5.3 G1 and G11A Releases

Simulation runs #2 to #5 modeled the smaller G1 and G11A releases. The second run was 

used to compare skidding distances with the large G9 simulation. The third and fourth 

rims compare the effects of a reduced ambient density and collisional processes on skid­

ding distances, while the fifth run examines the effects of electron pressure on the ion 

cloud morphology. Again, only the results are presented here. The discussion will follow 

in Chapter 6.

Small release, #2

Figure 5.26 summarizes the evolution of a small release ion distribution along x. The dis­

tance from the release point to the peak core density is only 6 km as compared to roughly 

16 km in the large G9 simulation. The same ion cloud structures and field topology was 

present, but on a smaller scale since the skidding core was quickly stopped.

Sensitivity to a reduced ambient density, #3

The third run used an ambient density of 5 x 1011 m-3 . This is a factor of 2 smaller than 

the previous runs which used 10 x 10n m-3 . The ion cloud profile is summarized in figure 

5.27. The peak ion density is at roughly 7 km from the release point.

Charge exchange and collisional processes, #4

The effects of charge exchange and Ba-Ba+ collisions on the skidding distance were inves­

tigated using a Monte Carlo collision algorithm using the ion densities and the neutral 

densities given by 1.3. The charge exchange cross section used was 1 x 10“ 16 m2 and the 

Ba-Ba+ momentum exchange cross section was 5.9 x 10-17 m2. For the purpose of obtain­

ing an upper limit estimate of the effects of billiard collisions on the skidding distance we 

increased the neutral density by a factor of 5. The thermite release mixture consists of 43% 

barium, 1.7% strontium, 38.2% titanium and 17.1% boron by weight. Recall that only 40% 

of the barium actually vaporizes leaving a large cloud a barium particulates. Likewise, the 

titanium-boron mixture also exists in some particulate cloud form. In the limiting case (and
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Ion distribution along satellite path, #2
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Figure 5.26: Small release ion distribution along the satellite path.
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Ion distribution along satellite path, #3
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Figure 5.27: Small release ion distribution along the satellite path using ne = 5 x 1011 (m-3 ), 
or half of the ambient density of the run shown in figure 5.26.
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Ion distribution along satellite path, #4
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Figure 5.28: Small release ion distribution along the satellite path with Ba-Ba+ charge ex­
change and billiard collisions.
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Figure 5.29: Small release charge exchange rates using 1 x neutral densities.

presumably unlikely case) these particulates will have a diameter of a Ba atom. Hence we 

considered all of the release mass as barium neutrals, or roughly 5 times the actual barium 

vapor.

Figure 5.28 shows the ion cloud profile for this simulation. Now the distance to the 

peak ion density is about 8.5 km from the release point. The ion particle energy was 

boosted by roughly 30% by these charge exchange and collisional interactions. Figures 

5.29 and 5.30 show the charge exchange rates and the billiard collision rates respectively. 

The total number of charge exchange interactions was roughly 1.5% of the released ma­

terial. The collision rates start at zero and increase to a maximum as the core slows and 

interacts with the densest part of the neutral cloud.

Electron pressure, #5

The electron pressure term was included to simulate the effects of electron heating on the 

ion cloud morphology. Heating mechanisms include, in particular, the CIV effect which 

is driven by counter-streaming ions and electrons in the ion particle cloud. Hence the
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Figure 5.30: Billiard collision rates using 5x neutral densities.

electron temperatures were elevated only in the vicinity of the ion cloud by weighting the 

temperature with the ratio of particle density to total density, or Tenp/n. The pressure gra­

dient arises from contributions from the temperature gradient and the density gradient. 

We used several different values for Te, however, only the results for Te = 105 K are pre­

sented here. For values of 104 K or smaller the pressure term had a negligible effect on the 

ion cloud morphology. Figure 5.31 shows a cross section of the ion cloud in the xz plane 

at t = 1.2 s. The release end of the cloud is elongated along the magnetic field in a manner 

similar to the observations, but on a smaller spatial scale. The maximum parallel electric 

field that was generated at Te =  105 K was roughly 200 km /s2 at t = 0.6 s. For the sake of 

comparison, see figure 5.4 and note that the pressure gradient tends to remove the density 

inhomogeneities in the ion core.
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Figure 5.31: Ion cloud in the xz plane at y =  13 and t = 1.2 s with electron pressure. The 
electron temperature is 1 x 103 K. Figure 5.3 shows an analogous cross section from the G9 
simulation without electron pressure. Notice that the pressure term smooths the density 
inhomogeneities associated with the core.

5.4 Summary

The main findings of the hybrid code simulation of the CRRES releases are summarized 

below:

• A skidding ion core forms from the initially dense ion cloud.

• The perpendicular extent of the core is limited to a few kilometers. The core expands 

freely in the parallel direction forming a cylindrical structure. During this parallel 

expansion, the core splits into two parts.

• The ions trailing the core begin to form a herringbone structure.

• The skidding distance of the core is limited to roughly 16 km for a large release and 

6 km for a small release.
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• Reducing the ambient density by a factor of 2 increases the skidding distance of the 

core from 6 km to 7 km.

• Ba-Ba+ charge exchange and billiard collisions extend the skidding distance from 6 

km to an upper limit of 8.5 km.

• Electron temperatures exceeding 1 x 105 K are sufficient to elongate the ion cloud and 

smooth density inhomogeneities along the magnetic field.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Chapter 6

Discussion and Conclusions

The hybrid code simulation of the CRRES releases has added substantial insight into the 

coupling of an ionizing neutral cloud to an ambient magnetized plasma. Numerical exper­

iments, performed using a variety of release parameters, have demonstrated that many of 

the observed morphological characteristics of the barium ion clouds are consistent with the 

formation of a dense skidding ion core. However, the simulated ion cloud profiles show 

a substantially shorter skidding distance of the ion core than the observations show, thus 

indicating that one or more key processes are still missing. In this chapter we will attempt 

to reconcile the differences between the simulated and observed ion cloud profiles and we 

will show that the skidding core is the basis for the observed ion cloud structures.

6.1 Cloud-Ionosphere Coupling

The hybrid code simulation shows that the ion core should have skidded for distances of 

6 km and 16 km for the small and large releases respectively. The skidding distance is 

defined as the distance from the release point to the peak ion density in the .v direction. 

This differs substantially from the observations which show skidding distances of at least 

60 km and 100 km for the small and large releases respectively. This represents a difference 

of at least one order of magnitude in the case of the small release and at least a factor of — 

6 for the large release.

In an attempt to reconcile these differences we first examined the sensitivity of the

108
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skidding distance to the ambient plasma density. Figures 5.26 and 5.27 show the results 

of the numerical experiment where the ambient density was reduced by a factor of two 

from 10 x 1011 m-3 to 5 x 10n m -3 . This increased the skidding distance from 6 km to 

~  7 km. Since the momentum transfer rate is proportional to the Alfven speed which 

increases as 1 / yfrTe, one would expect the skidding distance to increase because the total 

ambient mass that is coupled to the barium cloud via the Alfven waves decreases. In a 

physical ionosphere the plasma densities will decrease both up the down the magnetic 

field line from the release. However, for a typical ionospheric density profile, the Alfven 

waves would have to travel at least 200 km (~  1 s) from the release region before the 

ambient densities are reduced by one order of magnitude. Already in this transit time there 

is enough ambient mass to stop the skidding core according the hybrid code simulation 

results. We therefore conclude that reductions in ambient density cannot explain the observed 

skidding distances.

Conducting boundaries also present a severe restriction to the skidding distance. If the 

Alfven waves reflect from a conducting boundary then the resulting increased magnetic 

tension will further decelerate the ion core. Physically, when the wave is reflected the fluid 

flow reverses direction but the perturbation magnetic field increases in magnitude. Since 

the magnetic field is fixed at the boundary surface, the increased perturbed field creates 

the increased magnetic tension. Alternatively, the conducting boundaries will short out 

the polarization electric fields and stop the skidding. Figure 5.21 illustrates the distortion 

of the magnetic field caused by the ion cloud and shows that the simulated barium cloud 

was isolated from breaking effects of the conducting boundaries. In the actual release 

scenario we expect that the Alfven wave will be reflected from the conducting E-region 

of the ionosphere within the first 2 seconds after release. Furthermore, reflections can be 

expected if the Alfven waves propagate into regions of higher density which may have 

been the case in the CRRES releases. (Recall that the CRRES release occurred at dawn and 

thus the ionospheric electron density profile is unknown as solar photoionization modified 

the altitude dependent density profile.) Therefore, it appears that the core managed the obseroed 

skidding distances despite the breaking effects o f the conducting E-region and zuave reflections due 

to ambient plasma density gradients.

According to the hybrid code simulation results, momentum is rapidly transfered from
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the barium cloud to the ambient plasma. Before considering plasma processes that may 

limit the momentum transfer rate, we will first examine sources of momentum from the 

neutral cloud. As the neutral cloud sweeps past the ions, momentum is added to the ion 

population via direct billiard collisions and charge exchange interactions. The momentum 

boost provided by charge exchange occurs indirectly when neutrals with their original 

momentum are added to the ion population and ions that have already lost momentum 

are removed to the neutral population. Both interactions were included for the numerical 

experiment shown in figure 5.28. The neutral densities were increased (5x) to represent the 

upper limit for billiard interactions with not only barium neutrals, but also the particulate 

cloud composed of unvaporized barium, boron and titanium. The interaction rates for 

both processes are shown in figures 5.29 and 5.30. The billiard interactions represented the 

primary (~  30%) momentum boost, but still the overall skidding distance of the core is not 

significantly affected. It therefore appears that the momentum coupling must be limited by a 

physical mechanism that is not included in the hybrid code.

From considerations of momentum conservation, the fundamental requirement for ex­

tended skidding would be a process to damp the Alfven waves. This would clearly limit 

the momentum transfer to the ambient plasma. Since the Alfven waves propagate a paral­

lel current, wave damping is equivalent to a current limiting process which would conse­

quently invoke a magnetic-field-aligned electric field. Figure 6.1 illustrates this idea. The 

question is, how are the parallel currents limited in a barium release?

The topic of current limiting processes in Alfven wings has been considered by Bren­

ning [1995]. The ion cloud will draw a current in response to the cloud's polarization. The 

upper limit to this current is the electron saturation current which is simply the thermal 

electron velocity of the ionosphere, Brenning [1995] argues that if the cloud diameter 

is sufficiently small (i.e. 0.5 km) then the Alfven waves generated by the cloud would re­

quire currents that exceed the saturation current. As a consequence, some process must 

necessarily limit the field-aligned drift velocity of the electrons.

The hybrid code simulations showed that the parallel currents are limited to sheath 

regions at the edges of the ion cloud and are filamentary in structure. We experimented 

with several grid resolutions and found that the parallel electron flow velocities exceeded 

the ambient saturation current for cell sizes of 100 m or less. The random thermal electron
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Figure 6.1: Alfven wave damping. An illustration of the current system that is propagated 
by the Alfven wave. The observed skidding of the ion core requires a mechanism to damp 
the Alfven wave. This damping mechanism is represented by the resistive load in the 
current sheaths.
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drift velocity, Vo ~  (u, — u,,)., associated with the saturation current is roughly 180 km /s 

assuming an ionospheric temperature of 1000 K. Given that the core remains a relatively 

small spatial structure in the perpendicular direction, it is possible that the current limiting 

processes described by Brenning [1995] could continue for a significant period of rime.

Another consequence of the limited perpendicular extent of the core and its associ­

ated current filaments are inertial Alfven waves. When the perpendicular wavelength is 

smaller than the ion gyroradius (p, = 500 m) the ions, unlike the electrons, cannot follow 

the magnetic line of force. Charge separations result and the wave is then coupled to the 

electrostatic mode [Hasegawa and Uberoi, 1982]. The dispersion relationship for the kinetic 

Alfven wave is

1 +̂ P?(| + ̂ ) (6‘1}

where Te and T, are the electron and ion temperatures. If the plasma is relatively cold such

that ve th <  VA then electron inertia becomes important and the dispersion relationship for

the inertial Alfven wave is
2 & VA

“  "  l + t p !  ( 6 ' 2 )

where X? is the electron inertial length (see Appendix C). As the perpendicular wavelength 

approaches the electron inertial length then the second term in the denominator becomes 

important. An expression for the polarization of the inertial wave is

£- c2uP-

co2 = ki VA

tanQ (6.3)

which shows that for 0 >  0, Ez will always be nonzero. Therefore the Alfven modes alone 

can produce the required parallel electric fields that are necessary for current limitation 

provided that the perpendicular extent of the current filaments approaches the electron 

inertial length (~  5-10 m at release altitude). As the hybrid code simulation suggests, the 

perpendicular extent of the current filaments approach X, and hence inertial Alfven waves 

are a likely candidate for the parallel electric fields.

Lysak and Carlson [1981] studied the effect of microscopic turbulence on the inertial 

Alfven wave. They found that in the presence of an effective collision frequency term in the 

equation describing the inertial Alfven wave, a parallel electric field was generated. In the 

limiting case, where the effective collision frequency is greater than the Alfven frequency, 

the parallel potential drop equaled the perpendicular potential.
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Other current limiting mechanisms discussed in the literature include plasma instabil­

ities, double layer formation, and magnetic reconnection which all involve parallel electric 

fields. The Buneman instability is destabilized if the parallel electron drift velocity, VD, 

is larger than the electron thermal speed [Buneman, 1959; Lysak and Carlson, 1981]. lizuka 

et al. [1979] and Raadu [1988] claim that in narrow structures, such as the current sheaths 

found in our simulation, the Buneman instability may lead to the formation of double layer 

structures which are electrostatic structures contained within a current carrying plasma 

that sustain a net potential difference. However, Maggs [1976] argues that Buneman and 

Langmuir instabilities are not likely to occur in narrow channels because these high fre­

quency waves (oj ~  Qe) propagating near the resonance cone angle will have a group ve­

locity perpendicular to the magnetic field. Also, Kindel and Kennel [1971] showed that 

the current-driven ion cyclotron instability will be excited when Vq/ v1 >  l3Tt/T e which 

generally involve drift velocities lower than ve Other plasma instabilities such as the 

lower-hybrid-drift instability and the ion-acoustic instability can provide the "anomalous 

resistivity" for generating the parallel electric fields that are necessary for magnetic re­

connection [Birk and Otto, 1991]. Figure 5.21 shows that if the barium particles are truly 

frozen to the magnetic field, then substantial magnetic tension will result if the ion core 

manages to cross-field propagate over the observed distances. It is possible that magnetic 

reconnection processes occur which allow the ions to slip across the magnetic field. Figure

6.2 illustrates this process for the barium release where perturbed field lines (bold) recon­

nect with neighboring unperturbed field lines (Antonious Otto, personal communication, 

November 1997).

There is an abundance of observational evidence that supports the existence of parallel 

electric fields in chemical releases. First, the elongation of the ion cloud in the G1 releases 

shows that the ions were accelerated along the magnetic field line. Further evidence was 

provided by in situ measurements made by Brenning et al. [1991b] in the CRIT I and CRIT 

II CIV rocket experiments. CRIT I and H were shaped charge releases, injected at roughly 

45° to the magnetic field and directed at the main instrumented payload. The velocities of 

the vapor beam ranged from 3.5 to 13.0 km /s. Parallel electric fields measured at the main 

payload ranged from 450 m V /m  to 600 m V/m  in the CRIT I release. (Recall that for the 

CRRES releases vsatB = 300 mV/m .) Furthermore, Swenson [1992] reports the measurement
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Before After

Figure 6.2: Magnetic reconnection. An illustration of the magnetic reconnection process. 
The x component of the magnetic field is antiparallel in the midplane of the ion cloud 
and it is across this boundary that reconnection occurs. In this illustration the bent field 
lines reconnect with their neighboring unperturbed field lines which are external to the ion 
cloud.

of 100 eV electrons at the CRIT II main payload with energy fluxes exceeding 5 x 1010 

keV cm-2 s -1 ster-1, indicative of the strong electric fields. These measurements were 

made within the first 0.2 s following the release and the perpendicular electric fields were 

directed back along the neutral stream. This is consistent with an ionization front at the 

leading edge of the cloud where the large-gyroradius ions simply outrun the magnetized 

electrons. Brenning et al. [1991b] proposed that these parallel electric fields existed because 

the barium stream demanded currents that exceeded the ambient thermal electron current 

as discussed above.

6.2 Neutral Disk

Charge exchange processes probably do not significantly alter the ion velocity distribution. 

Consistent with observations, the initial analysis of chapter 3 was based on the assump­

tion that the skidding ion core moves with the neutral cloud during the first few seconds 

of the release. The calculated charge exchange rates agreed with neutral disk inventories
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and with the time evolution of the neutral disk as measured by the initial appearance of 

the backjet. The hybrid code, on the other hand, could not reproduce these results because 

of the "enhanced" momentum coupling to the ambient plasma. However, we note that 

the charge exchange rates in figure 5.29 start at a minimum and increase to a maximum 

as the ion core interacts with the densest part of the neutral cloud. The total yield will 

therefore be greater in the hybrid code calculation since the core directly interacts with the 

neutral cloud while the densities are still high. (Recall, the observed neutral disk invento­

ries were roughly 0.3-0.7% of the released material while the hybrid code results showed 

about 1.5%.) In the actual release, it is unlikely that charge exchanges occurring while the 

neutral cloud sweeps past the core will have any significant impact on the outcome of the 

skidding or other cloud structuring processes.

6.3 Ion Cloud Morphology

Although the simulated ion core skidding distances differed from the observations by 

nearly one order of magnitude, the simulated ion cloud structures are consistent with ob­

servation. The observables, shown in figures 2.2, 2.4, and 2.6, include the herringbone 

structure, the pronged backjet of the neutral disk, and the elongation of the cloud along 

the magnetic field. The spatial extent of these structures is a function of the lifetime of the 

skidding core. In the case of the hybrid code simulation the structuring only occurs within 

the first 2 seconds. Once significant momentum has been transfered away from the core, 

the release is passive and no further structuring should be expected.

Figures 5.1, 5.3, 5.4, and 5.5 illustrate the simulated ion cloud structures. It appears 

that the structure of the ion cloud is affected by a combination of processes which include, 

foremost, cycloid bunching, ion gyromotion, the polarization electric field topology, and 

parallel electric fields.

Cycloid bunching is a periodic ion density enhancement in the x direction which occurs 

when an ionizing cloud is streaming perpendicular to a magnetic field [Bernhardt et al., 

1993). The bunching distance is given by X = 2nviat/ co, which for these releases is ~  2.8 

km. In the xz projections of the ion cloud (figure 5.1), these bunching structures appear 

as striations that are separated by roughly 3 km as expected. In the xy plane projections a
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group of ions are seen trailing the main ion core again by roughly 3 km. It therefore appears 

that cycloid bunching is responsible for partitioning the skidding ion core. Depending on 

the densities of the various core fragments, the respective potential skidding distances of 

these fragments will vary. In addition, figure 5.3 shows structures in the neutral cloud 

region between 16 and 19 km. This is consistent with the observations of the high altitude 

(6180 km) G2 release where the cycloid bunching distance was ~  10 km [Bernhardt et al., 

1993]. Note that the small spatial scale of the G l, G9, and G11A cycloid bunching made 

observation of bunching structures difficult. However, [Milinevsky et al., 1994] reports the 

observation of ion filaments in the G9 release near the release edge of the ion cloud that are 

presumably attributed to cycloid bunching. The hybrid code clearly confirms this effect 

and even though these structures seem observationally insignificant one should keep in 

mind that the initial structuring of the core may have long term ramifications for the overall 

ion cloud structure.

Cycloid bunching is a geometric consequence of the ion gyromotion and this gyro mo­

tion also contributes directly to the structure of the ion core. Figures 5.1 and 5.3 show 

resulting asymmetries of the ion core due to the clockwise gyration of the ions. The dens­

est regions tend to drift in the —y direction as the ions become magnetized due to the 

momentum transfer from the ion core to the ambient plasma. Notice the ions that have 

been extracted from the densest portion of the core are displaced roughly one gyrodiame- 

ter in the —y direction from the midplane of the release cloud. These xy plane asymmetries 

in turn affect the polarization electric field topology.

Figure 5.1 shows a group of ions above (+y direction) and ahead (+.t direction) of the 

densest portion of the core. This group of ions first appears at 1.2 s and continues to de­

velop until at least 1.6 s staying forward of the main ion core for the remainder of the 

simulation run. This feature is unexpected as the ion gyromotion would dictate displace­

ments in the —y direction only. The explanation for this feature stems from the polarization 

electric field topology. The electric field is primarily in the -t-y direction throughout the ion 

cloud. However, near the fringes of the cloud the electric field is dipolar. As the ion core 

is displaced in the - y  direction, ions see the dipolar field of the dense ion core and there­

fore obtain a drift component in the +y direction. Observational evidence of a similar 

(or perhaps identical) event was obtained from the AMPTE artificial comet experiments
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[Valenzuela et al., 1986] where the comet head was observed to displace transverse to the 

solar wind flow or in the +y direction for our coordinate system. Unfortunately, the CR- 

RES optical data do not provide conclusive evidence for such a displacement because of 

the combination of a non-ideal viewing geometry along the magnetic field line (xy plane 

projection) and detector saturation. Further studies of the AMPTE comet using the hybrid 

code should be conducted.

In the xz plane we see that the ions expand freely along the magnetic field and con­

sequently the core acquires cylindrical symmetry. However, as figures 5.4 and 5.5 clearly 

show, the core splits into two highly localized parts. To either side of these dense regions 

(±y) the core density is uniform along the magnetic field. The pronged backjet of the 

neutral disk lends observational support to this finding. If these density inhomogeneities 

along B did exist then the charge exchange rates would also be elevated in these regions, 

resulting in a pronged backjet. Keep in mind that we have not yet considered the effects 

of ambipolar diffusion which would tend to smooth these density gradients along the 

magnetic field. Figure 5.31 shows that electron temperatures on the order of 1CP K are suf­

ficient to remove the density gradients. If the elongation of the ion cloud was caused by 

CIV heated electrons, then we might not see the pronged backjet.

The explanation for the split ion core stems from the neutral particle distribution. Recall 

that the neutral cloud is a shell-like structure with a Gaussian profile while the core is a 

cylindrical structure that is confined radially by the magnetic field but that expands freely 

along B. Initially the core moves with the neutral population and sweeps up any fresh 

ions that have been created in its path. The resulting density profile of the ion core can 

therefore be described qualitatively by projecting the neutral distribution onto the ion core. 

Figure 6.3 illustrates this projection. The shaded regions show that the number of fresh 

ions created within the path of the core at any given time is larger at the ends of the core 

compared to the central region. Furthermore, notice that the near-90° pitch angle particles 

will be extracted from the core by the magnetic field since the densities are lower here 

relative to the rest of the core.

This description o f the core's evolution is consistent with the formation o f the observed herring­

bone structures. Namely, ions will be preferentially extracted from the core starting with 90c 

pitch angles and increasing at a rate that is proportional to the neutral cloud expansion.
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Ion Core Profile

Figure 6.3: An illustration of the mechanism for generating density gradients in the core 
along the magnetic field. The neutral cloud shell and the cylindrical ion core are labeled. 
The three shaded regions multiplied by the density cf ions produced in the neutral cloud 
show that a larger number of ions will be added to the skidding core at the ends compared 
to the center.
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Ultimately, however, the density profile of the core along B will be modified as the core 

loses momentum and falls back to the rear flanks of the neutral cloud where a larger por­

tion of 90° pitch angle particles will be added to the core. We observed in the G1 release 

that the processes responsible for the herringbone structure last for roughly 3-4 seconds. 

From this we infer that the core probably fell behind the neutral cloud at this time.

Another consideration regarding the herringbone structure is the direction of the paral­

lel electric fields. Figure 6.1 indicates that the parallel electric fields are asymmetric about 

the core. This configuration is consistent with a potential electric field where

which requires that the parallel components be equal and opposite in the opposing current 

filaments. Consequently, ions will be accelerated away from the core on one side and 

toward the core on the other side. Figure 3.4 illustrates the effect of a potential electric 

field on the ion cloud morphology. The enhanced density in the z = 0 midplane are the

the result of outward directed parallel fields. This suggests that a potential electric field 

will further accentuate the herringbone structure by moving ions to the z = 0 midplane of 

the ion cloud.

Finally, questions regarding the observed double herring bone structure remain unre­

solved. It is possible that the core was fragmented initially via the cycloid bunching pro­

cess which created two separate core structures with different densities. The low density 

core would be responsible for the first herringbone and the larger core might be responsible 

for the second. Insight into this problem would require a model with effective momentum 

transfer rates that allow for the long term skidding.

6.4 Conclusions

Optical observations of the CRRES chemical releases have revealed several features that 

provided clues to the coupling between the ion cloud and the ionosphere. These features 

included cross-field propagation, the formation of a neutral disk due to charge exchange 

interactions, and ion cloud morphology. Our goal was to understand the physical pro­

(6.4)

result of inward directed parallel fields while the elongation of the ion cloud along z are
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cesses associated with these optical features using a three-dimensional hybrid code simu­

lation. Ultimately, we wanted to link optical signatures with the processes associated with 

the Critical Ionization Velocity effect (CIV). Conclusive evidence for CIV is still lacking; 

however, new insights into the cloud-ionosphere coupling mechanisms have been uncov­

ered as a result of this study. The main findings of this thesis are summarized below.

Skidding

The hybrid code simulation demonstrated that filamentary current sheaths surrounding 

the ion cloud are propagated by Alfven waves. The skidding ion core draws a large cur­

rent, and hence the current density in these sheaths exceeds the random thermal current of 

the ionosphere. A possible consequence of the high current density are plasma instabilities 

that generate parallel electric fields. These parallel electric fields damp the Alfven wave 

and thus diminish the transfer of momentum from the skidding ion core to the ionosphere. 

If the perpendicular extent of the current filaments is limited to electron inertial lengths, 

then inertial Alfven waves will propagate a parallel electric field. Numerical experiments 

with the hybrid code suggest that the perpendicular extent of the current filaments scale 

with the grid resolution and hence scale lengths comparable with electron inertial lengths 

are expected.

Neutral Disk

Charge exchange processes play an insignificant role in the evolution of the ion core and 

the associated cloud structures. However, the double-pronged structure of the disk pro­

vided useful diagnostic information regarding the split structure of the skidding core.

Ion Cloud Morphology

Parallel electric fields are responsible for the observed elongation of the ion cloud along 

the magnetic field line, and the herringbone structures observed in the G l release are con­

sistent with the evolution of the skidding ion core. Conclusive information regarding the 

double-herringbone structure is still lacking, although it is possible that fragmentation of 

the skidding core could have been a contributing factor.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



121

CIV

Although electron energies in excess of 100 eV have been observed in previous release ex­

periments, it is not clear whether electron acceleration is solely responsible for the parallel 

electric fields. If ambipolar diffusion occurs due to electron heating, then inhomogeneities 

in the ion core along the magnetic field would be smoothed. But without the split core 

structure, as found in the hybrid code simulation, a pronged backjet would not be possi­

ble. Therefore, the observation of the pronged backjet does not support CIV.

6.4.1 Future extensions of this study

Although solid observational evidence for the CIV effect in the CRRES releases is still lack­

ing, this study has demonstrated the importance of electron inertial effects in limiting the 

momentum transfer from an ionizing neutral cloud to an ambient plasma. These findings 

will have direct application to the design of future chemical release experiments. Careful 

attention must be given to passive release experiments where the release particles are in­

tended to serve as field line tracers. If the initial ion cloud densities are too high, then the 

perturbing effects of skidding may persist for an unwanted period of time. Perturbing re­

lease experiments should be conducted to investigate, specifically, the coupling processes 

discussed in this thesis. Rather than positioning the diagnostic payload 0.2 s downstream 

of the release as in the CRIT I and II releases, instrumentation might be placed 1-2 seconds 

downstream and (hopefully) in the path of the skidding core. At this point the full po­

larization electric fields would have developed and the measurement of parallel electric 

fields would verify the current limitation processes suspected in the CRRES releases.

The results of past chemical releases should also be reinvestigated. A hybrid code 

simulation of the AMPTE release, for example, may provide insight into the unexpected 

perpendicular displacement of the comet head. Also, the skidding core should be con­

sidered in the analysis of previous CIV experiments. If the momentum transfer rates are 

diminished, then more energy is available in the ion cloud to drive CIV processes.

From the perspective of numerical simulation, the CRRES optical data set provided 

a unique opportunity for the development of a hybrid code and its application to space 

plasma simulation. The simulation was used to diagnose the physical processes responsi­
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ble for the observations, while the observations served to verify to the code. The impor­

tance of electron inertia, as indicated in the conclusions of this study, suggest that extreme 

caution be exercised with future space plasma simulations. Any simulation of a system 

where sharp density gradients exist, or where density gradients steepen, should account 

for electron inertia. Presently it is computationally prohibitive to include electron inertia 

into a three-dimensional hybrid code simulation of the magnitude of this CRRES chemical 

release simulation. However, as increasing computational resources permit, the inclusion 

of electron inertia seems vital.

Finally, the CRRES releases represent a general physical system that can be found in a 

variety of space physics and astrophysical applications to which the results of this study 

can be applied. Sharp density gradients, like those associated with the skidding ion core, 

are commonly found in the ionosphere and on auroral field lines [Persoon et al., 1988]. 

It is possible that parallel electric fields and filamentary current layers associated with 

these density gradients could have application to fine-structured auroral arcs (thickness — 

100 m). Other systems similar to a chemical release include cometary environments, the 

interaction of Io with the Jovian magnetosphere, and any system where Alfven's CIV effect 

is suspected as a source of anomalous ionization.
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An energy conservation theorem for 
the hybrid code

First consider the non-dissipative equation for ion motion for the kth particle [Sivift, 1996].

u V t
mp— =q(E'(xk) + vk x B'(xfc)) (A.l)

where

E'(x*) = J  S ( x - x k)E'(x)d3x (A.l)

B'(xfc) = J  S ( x - x k)B'(x)d3x

and where mp and nif are the respective masses of the particle and fluid components, and  

S(x — x*) is the particle shape function. Summing over all particles gives
|V , ^

X  m p -jjr  = /  + u p x B')rf3*  (■A.3)

where S(x — xfc) = tip and Y.kl x vkS(* — *k) -  npup. Or in the simulation units

iii d\k f  dup r .
\ mp~ d t ~ mpJ np~ d t = m f J  "p(E + uP x B>>d x (A'4)

where E = qE'/rrif and B = qB1 /trif. Similarly, the analogous expression for the fluid mo­

mentum integrated over all space is

niftif J  -^ -d 3x = mfnf  / ( E  + Uf x B)d3.t (A.5)
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Appendix A
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Next we take the scalar product of A.4 and A.5 with up and \if respectively and add the 

two expressions to get the total energy,£ , of the combined particle/fluid plasma

where a  = To zeroth order the electron flow is perpendicular to the electric field so 

E • ue = 0. Now recall that

Using this vector identity together with Faraday's law and the divergence theorem, we can 

now write the expression for energy conservation as

Notice that this expression does not contain any electric field energy density due to the as­

sumption of quasi-neutrality and neglect of the displacement current. The energy conser­

vation for the hybrid code is therefore the particle and fluid kinetic energy and the volume 

integral of the magnetic field energy density minus the Poynting flux at the boundaries. 

Figure A .l shows the energy conservation diagnostic output from the large G9 simulation.

(A.6)

E • (V x B) = B • (V x E) -  V • (E x B) (A.7)

(A.8)
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Figure A .l: Energy conservation for the large G9 simulation. The total energy is composed 
of the particle kinetic energy fluid flow kinetic energy, and the perturbation magnetic field 
energy. The normalized energy is the total energy divided by the input particle kinetic 
energy.
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Appendix B

A momentum conservation theorem 
for the hybrid code

N J
nif I + up x B^ 3;i (B.l)

We start with the non-dissipative equation for particle ion motion derived in Appendix A. 

In the simulation units
•v' dvk

'h
k= 1

where E = qE'/nif and B = qB'/nif. Using the electron momentum equation and Ampere's 

law gives the following expression for the electric field,

V x B
E =

an
nf .-  — u„ + — u x B (B.2)

So
V x B n nf

an  -u D — -u f x B + u„ x B d3x

The analogous expression for the fluid momentum integrated over all space is

(B.3)

mf nf  f  ̂ 3-r = mf nf  J
_  . V x B np tif

-U f • V u f + ------------- -\i„ — -u  f x B  + U f x B
1 1 v an n y n ! '

d3.t (B.4)

The expression for conservation of total momentum is
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‘V.^ 4  dvk f  due ,  r V  X B£ m„ _ + w y . = m/y — x

-  my J (HpUp +  MyUy) x  Bd3*

+  my J ( t i pUp + n fU f)  x  Bd3*

-  nifKf J ( u f  ■ V)uyd3x

/
V x  B f
— ——  x  B d3x  — n ift if  I  (u^ • V )ufd3.r

B d x

Recall that

( V x B ) x B  = ( B V ) B - i v B 2

1.
(B  • V )B  +  (V  • B )B  — ^ V B 2

Also note that

(Uy • V)uy =  (Uy • V)uy +  (V  • Uy)Uy -  (V  - Uy)uy 

So we can now introduce a stress tensor of the form

such that

— trie
(V-T),  = -1  

1 a
(B  • V )B ; +  (V  • B)Bj  — 2  V /B2

Now B.6 can be rewritten to give the following conservation expression

N,

X  mp ~ ^  + mf nf  f  ~ d f ^ 3x = T '^a ~ mf nf  j ^ ' u f ) u f rf3-x (B.10)

The total change in momentum of the system is therefore equal to the maxwell stress 

on the boundaries plus an error term for the assumption of incompressibility. Figure B.l 

shows the momentum conservation diagnostic output from the large G9 simulation which 

includes particle and fluid bulk flow momentum, maxwell stresses at the boundary sur­

faces, and the input particle momentum.

(B.5)

(B.6)

(B.7)

(B.8)

-  myrty [(Uy • V)uy +  (V  • Uy)Uyj (B .9)
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Figure B.l: Momentum conservation for the large G9 simulation. Columns 1, 2, and 3 
show the x, y, and z components of the momentum respectively. The respective rows show 
the momentum associated with the particle bulk flow, fluid flow momentum, maxwell 
stresses at the boundary surfaces, input particle momentum, and the normalized momen­
tum which is the sum of the of rows 1-3 divided by the input momentum.
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Inertial Alfven waves

Appendix C

The dispersion relation for electromagnetic waves in a cold plasma is [Stix, 1992]

where

and where

n2 =
B ± F  
2A

F 2 = (RL — PS)2sin4d + 4 P 2D 2cos2Q

B = RSsiti2Q + PS(l + cos^Q)

A  =  S s in 2Q +  P cos2Q

p  _  i  E l  £1
co2

CO
EL 

co2

R = 1 -
co;•pe co;p<

co(co -  Qe)

L

S

D

= 1 -
co;

co(co + £2,-)
•y

■pe co;
P'

co(co + £2c) co(co —£2,)

(C.l)

(C.2)

(C.3)

The angle 0 is the angle between Bo and n where n = kc/co.

We will first assume that co ~  £2, and later look at the limiting case where co < <  £2,. It 

follows that £2e > >  £2„ £2e > >  co, and cope > >  co. For typical ionospheric plasma parameters
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note that C0pS > >  Qs. Using these approximations we have that

p  -  - s ?  (C 4>
CO?, CO?,

03(0) -  Qe) C0(C0 + £2,)
CO?, CO?,w pe pi

co£2e co(co + £2,)
CO2 CO2pi pt

co£2, co(co+£2,)

£2,(co +  £2 j)

L  _  ^  , C 6 )
co(co+£2e) co(co —£2,) ‘

CO2,  CO2p^ pi

co£2e co(co -  £2,-)
CO2 CO2pi pi

co£2, co(co -  £2,)
co2p«

£2,(£2, -  co)
co2

s ■ «C7>

„  “ m CO

D = <C8)

In the limiting case where co < <  £2, we have that R ~  L ~  co2 /£22, so D ~  0. The disper-
P1

sion relation is
2 _ RLsiti2B + PS(l+cos20) ±  (RL — PS)sin29

2Ssin2Q + 2Pcos2Q '
Consider the - sign first, so

2 RLsin2 9 + PS(1 + cos29) + PSsin2 9 _
"  *   2Ssin2B + 2Pcos28--------------------------------  (C 10)

.  S ? . ! ^ 29-  g ^  + ̂ 9>* £ n ^ * " 29

2 J ^ s m 20 - 2 2 ? c o s 2efir—to2 w-

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



131

Now in the limit where w2 < <  Q f and using -4- = - f  we haveI & CO- c-

=  — 1 3 * —  ( C U )

£-SI>l20 -^ C O S 20VA “*
t

Given the electron inertial length, the dispersion relation for inertial Alfven waves

is
2 v a& r

( C 1 2 )

where = fc2sm20 and Id =  ldcos2Q. For perpendicular propagation with size scales on the 

order of electron inertial lengths, the dispersion relation is modified by the second term in 

the denominator.

Now look at the polarization. From Stix [1992]

E- cosQsinQ
Ex sin2e - P / n 2 

(das2

(C.13)

tanQ

Thus for 0 >  0, E:  will always be nonzero.
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