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Abstract

Based on a comprehensive radiative transfer model, algorithms suitable for arctic
conditions are developed to retrieve broadband surface albedo and water cloud
properties from National Oceanic and Atmospheric Administration (NOAA) Ad-
vanced Very High Resolution Radiometer (AVHRR) narrowband measurements.
Reflectance anisotropy of snow surfaces is first simulated by a discrete ordinates
radiative transfer formulation, and is then included in the comprehensive model
for the retrieval. Ground-based irradiance measurements made by NOAA Climate
Monitoring and Diagnostics Laboratory (CMDL) in Barrow, Alaska are compared
with retrieved albedo and downwelling irradiances computed from retrieved cloud
optical depth and effective radius. The good agreement found between satellite
estimates and ground-based measurements indicates that the retrieval algorithms
proposed in this thesis are suitable for arctic conditions. It is found that the ef-
fects of snow bidirectional reflectance on the retrieval of the broadband albedo are
significant, and that the Lambertian approximation could lead to a 30% under-
estimate of the surface albedo. It is also found that cloud effective radius in the

Arctic is generally smaller as compared with mid- and low-latitudes.
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Chapter 1

Introduction

It is well known that clouds strongly modulate the energy balance of the Earth-
atmosphere system through their interaction with solar and terrestrial radiation.
Clouds reflect part of the solar energy back to space and thus have a cooling
effect on the Earth-atmosphere system. On the other hand, clouds can also have
a greenhouse effect. They absorb part of the longwave radiation from the Earth’s
surface, re-emit about half of the absorbed energy back to the Earth’s surface and
thus warm the Earth’s surface and lower atmosphere. The polar regions constitute
a radiative energy sink whereas the equatorial region is a source. The persistent
presence of snow/ice cover in the Arctic may change the cooling effect of clouds to
a slight heating due to the generally higher albedo of snow/ice as compared with
clouds ( T'say et al., 1989).

Surface albedo controls the amount of incident solar energy absorbed by the
ground surface. While remaining high for much of the year, the surface albedo

in the Arctic decreases dramatically during the spring and summer and becomes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[S)

highly variable both spatially and temporally.

Surface albedo and cloud properties are of great interest for understanding the
global radiation budget and climate change. The arctic region has received more
and more attention by climate researchers because it is believed to be particularly
sensitive to climate change due to greenhouse warming.

However, the spatial coverage of ground-based radiation measurements in the
arctic is sparse as compared with mid- and low-latitudes. Cloud measurements
by aircraft are also sparse. With their considerable spatial and temporal vari-
ability, clouds are among the most difficult components of the climate system to
study. Satellite-borne sensors, on the other hand, can, at least in principle, provide
continuous and global measurements with high temporal and spatial resolution.

The Earth’s lower atmosphere is composed of gas molecules, cloud droplets
and aerosol particles. The interaction between solar radiation and the Earth-
atmosphere system includes absorption, scattering, and reflection. Figure 1.1 il-
lustrates the most important physical processes occurring when solar radiation
interacts with the Earth-atmosphere system. The radiation from the Sun is partly
absorbed by aerosols, clouds, and molecules (mainly H>O and O;), on its way
through the atmosphere. Part of the solar radiation is scattered back to space by
clouds, aerosols and molecules in the atmosphere. The rest of the solar radiation
reaches the Earth surface. The surface absorbs part of the incident energy and
reflects the remainder. The solar radiation reflected by the surface also interacts
with the molecules, cloud droplets and aerosol particles in the atmosphere which
transmits a fraction of it to space, reflects another fraction of it back to the surface,

and absorbs the remaining portion. The Earth surface emits thermal radiation,
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which is partly absorbed by molecules, mainly H,O, CO,, and Os, and partly
scattered and absorbed by cloud droplets and aerosol particles before it reaches
the top of the atmosphere. Clouds, aerosols and molecules in the atmosphere also
absorb and emit thermal radiation.

Satellites sensors detect a combination of radiation emitted and reflected from
the surface of the earth and transmitted by the atmosphere, as well as radiation
emitted by the atmosphere or scattered into the field of view of the satellite sensor
by particles and molecules in the atmosphere. The task is to determine what part
of the radiation comes from the ground and what part comes from various regions
in the atmosphere, and to use this information to deduce surface and atmospheric
conditions from satellite measurements.

The above physical processes of absorption, emission and scattering determine
the transport of radiation throughout the Earth-atmosphere system. This trans-
port of solar and terrestrial radiation is described quantitatively by the radiative
transfer equation. The radiance measured by satellite sensors can be used in con-
junction with radiative transfer calculations to infer some important features of
the underlying surface and cloud particles.

Based upon radiative transfer theory, the purpose of this thesis is to study the
reflectance anisotropy of snow surfaces under arctic conditions, and further to de-
velop retrieval algorithms, suitable for arctic conditions, to infer surface albedo and
water cloud properties from Advanced Very High Resolution Radiometer (AVHRR)
measurements. The retrieved results are tested against ground-based field mea-
surements.

Rather than relying on the Lambertian (isotropic) approximation which is com-
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Figure 1.1 Interaction mechanisms between electromagnetic radiation and the atmosphere.
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monly used in the remote sensing of surface and cloud properties from satellite
measurements, the bidirectional reflectance of snow is taken into account in this
thesis, based on Mie theory which assumes (1) spherical snow particles and (2) well
separated snow particles. Although these assumptions may not be representative
of natural snow surfaces on some occasions, the retrieval results show that this
snow model offers a clear advantage over the Lambertian approximation.

In chapter 2, background information is briefly reviewed, including AVHRR
instrumentation, field irradiance measurements, and existing knowledge about re-
mote sensing of surface albedo and water cloud parameters.

In chapter 3, an improw;ed physical model is developed to compute bidirectional
reflectance based on the radiative transfer code DISORT (DIScrete Ordinate Ra-
diative Transfer), which precisely accounts for multiple scattering processes. A
comparison is made between it and Hapke's model which relies on a simplified
treatment of multiple scattering. The results show that the improved model per-
forms much better than Hapke’s model for media with large single scattering albedo
and asymmetry factor.

In chapter 4, an algorithm is developed to infer broadband surface albedo us-
ing NOAA AVHRR channel 1 and 2 measurements over arctic snow and tundra
under cloud-free conditions. This algorithm obviates the need for “anisotropic cor-
rections” which are also commonly used for retrieval of the surface albedo from
AVHRR data. Comparisons of satellite-retrieved surface albedo, upward, down-
ward and net irradiance with ground-based field measurements made by NOAA
CMDL in Barrow, Alaska show good agreement. It is also found that the Lamber-

tian approximation can lead to an underestimation of surface albedo by as much
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as 30 %.

In chapter 5, algorithms are developed to retrieve visible optical depth, effective
radius and cloud top temperature for liquid water clouds in the Arctic using NOAA
AVHRR images obtained under overcast conditions. For water clouds over dark
surfaces (tundra and ocean), channel 1 (0.64 um), channel 3 (3.75 ym) and channel
4 (11 pm) are used. For water cloud over bright surfaces (snow and ice), the
reflectance in channel 1 is not sensitive to cloud optical depth due to the multiple
reflection between cloud base and the underlying surface, so that channel 2 (0.85
pm) is used, together with channel 3 and 4 to infer cloud optical depth, effective
radius and cloud top temperature. As shown in chapter 5, the snow model adopted
in this thesis does not yield multiple solutions as the Lambertian approximation
does at large solar zenith angles. Downwelling irradiances at the surface computed
using the retrieved cloud optical depth and effective radius agree well with field
irradiance measurements.

Finally, a summary of the thesis is given in chapter 6.
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Chapter 2

Background

In this chapter, the definitions used in discussions of radiation, AVHRR instru-
mentation, field irradiance measurements, and existing knowledge about remote

sensing of surface albedo and water cloud parameters will be briefly reviewed.

2.1 Definitions

In a radiation field where the light is uncollimated, the amount of power at position
r crossing unit area perpendicular to the direction of propagation (2, traveling into
unit solid angle about Q, is called the radiance and will be denoted by I(r,).
Radiance is often also called specific intensity, or simply intensity, or brightness.
Note the difference between irradiance F', which refers to power per unit area of a
beam, and radiance I, which is the power per unit area per solid angle (Figure 2.1).
F is simply a flow of energy, and it may or may not have an implied direction.

Irradiance F is given by the integration of the normal component of radiance
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I(r,Q) over the entire solid angle 0
F= / I(r, ) cos(8)dQ (2.1)

where @ is the zenith angle of the beam, which is the angle between the normal
direction of the area and the beam. For an isotropic (Lambertian) radiation field,
I is independent of angle €2, so that F' = wI. Satellite sensors measure reflected
or emitted radiances (I) by Earth-atmosphere system. The ground based instru-

ments, described in section 2.3 measure irradiances (F).

Irradiance = power/unit area Radiance = power/unit area/unit solig angie

Figure 2.1 Irradiance and radiance.
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Table 2.1 Spectral band widths (um) of the AVHRR .

Channel NOAA-6,-8,-10 NOAA-7,-9,-11,-12, -14 IFOV (mr)

1 0.58-0.68 0.58-0.68 1.39
2 0.725-1.10 0.725-1.10 141
3 3.55-3.93 3.55-3.93 1.51
4 10.5-11.5 10.3-11.3 1.41
5 10.5-11.5 11.5-12.5 1.30

2.2 AVHRR Instrumentation

2.2.1 General Information

Since 1978, regular satellite coverage of the polar regions has been provided by
the National Oceanic and Atmospheric Administration (NOAA) polar orbiters
equipped with AVHRR instruments. The NOAA series satellites were designed to
operate in a near-polar, sun-synchronous orbit (with an inclination of around 99°).
The orbital period is about 102 minutes which produces 14.1 orbits per day. The
sub-orbital tracks do not repeat on a daily basis because the number of orbits per
day is not an integer, while the satellite passes at the same local solar time for any
latitude.

The AVHRR is a cross-track scanning system, featuring four or five channels.
The spectral band widths (in ym) of the AVHRR channels are shown in Table 2.1.
In addition, the Instantaneous Field of View (IFOV) in milliradians is included
for each channel in Table 2.1. According to Table 2.1, the IFOV of each channel

is approximately 1.4 milliradians leading to a resolution at the satellite subpoint
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Figure 2.2 AVHRR spectral response functions. [Adapted from Kidwell (1995)].

of 1.1 km for a nominal altitude of 833 km. The spectral response functions for
NOAA-9 AVHRR are shown in Figure 2.2. The two-wavelength descriptions in
Table 2.1 indicate the range of wavelengths to which a radiometer is sensitive. By
convention, these wavelengths are specified by the half-power points of the response
functions.

All meteorological data on the NOAA series satellites are continually broadcast
to Earth. These direct broadcasts are called high-resolution picture transmission
(HRPT). In addition to the HRPT mode, about ten minutes of data may be selec-
tively recorded on each of two recorders on board the satellite for later playback.

These recorded data are referred to as LAC (Local Area Coverage) data. LAC and
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HRPT data have identical formats. The full resolution data is also processed on
board the satellite into GAC (Global Area Coverage) data. GAC data contains
only one out of three original AVHRR lines and the data volume and resolution are
further reduced by averaging every four adjacent samples and skipping the fifth
sample along the scan line. HRPT data are used in this thesis. They are archived
digitally at the Arctic and Antarctic Research Center (AARC) at the Scripps Insti-
tution of Oceanography, and processed by the TeraScan software (SeaSpace, Inc.)
installed at the Alaska Data Visualization and Analysis Laboratory.

More details on the AVHRR instrumentation are given by Kidwell (1995).

2.2.2 Calibration and Accuracy

AVHRR channel 1 and 2 are calibrated in the laboratory before launch by com-
parison with a known input. Twelve matched, quartz-iodide lamps, which emit
known radiance, are used. By turning on combinations of the lamps, a plot of
radiance versus output digital count is constructed for each chanpel. The slope
S; and intercept L; of the straight line that best fits this plot is used to linearly
convert digital counts C returned by the satellite into albedo (percent) A; at the
top of the atmosphere

Ai=SC+ L. (2.2)

A spectrally averaged radiance can be calculated by

F

I'=Avoomw

where F is integrated solar spectral irradiance, weighted by the spectral response

function of the channel, and W is equivalent width of the spectral response func-
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tion. Until now, there are no on-board calibration capabilities. There is evidence
that pre-launch calibration coefficients (the slope S; and intercept L; in equation
(2.2)) of the AVHRR visible (channel 1) and near-infrared (channel 2) channels
have changed in orbit. Many attempts have been made to estimate the degrada-
tion rates through ground-based experimental techniques (Brest and Rossow, 1992;
Kaufman and Holben, 1993; Rao and Chen, 1995). As part of NASA’s AVHRR
Pathfinder program, investigations of Rao and Chen indicated that the relative
annual degradation rates for the two channels are 1.2 % and 2.0 % (NOAA-11),
respectively.

AVHRR channel 3, 4, z;.nd 5 are calibrated in flight by viewing hot and cold
objects. During each rotation of a mirror, a telescope views both cold space and the
instrument housing, which is painted black and equipped with platinum resistance
thermometers to accurately measure the housing temperature (roughly 290 K). The
radiance of the instrument housing (calculated from its measured temperature)
plus the digital counts for the housing and for space (essentially zero radiance)
allow digital counts for Earth scenes to be linearly converted to radiance (Lauritson
et al., 1979). The equivalent blackbody temperature of the scene can then be
determined from the Planck function. Due to instrument aging and the variation
of thermal environment in the orbit, the linearity of response may change slightly.
To account for nonlinearities, NOAA National Environmental Satellite, Data, and
Information Service (NESDIS) provides corrections in channel 4 and 5 using a
quadratic function of radiance.

NOAA specifications for AVHRR channels 3-5 require the equivalent blackbody

temperature of a 300 K scene to be determined within +0.12 K. This is equivalent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

to radiance errors of 2.1, 16.9, and 14.6 mWm™2sr~'um™! at 3.7, 11, and 12 um,
respectively. Because the sensors measure radiance, the radiance error for each
channel is approximately constant. The temperature error, however, varies with
scene temperature as specified by the Planck function. At 250 K, for example, the
temperature error will be approximately 1.1, 0.20, and 0.18 K at 3.7, 11, and 12

pm, respectively.

2.2.3 Atmospheric Attenuation in AVHRR Channels

The interaction of electromagnetic waves with the atmosphere involves different
processes in different spectral regions. The scattering by particles which are small
compared with the wavelength of the light is called Rayleigh scattering. Rayleigh
scattering by molecules depends inversely on the forth power of the wavelength
and is therefore important for solar radiation (A < 3.5 um), but negligible for
thermal infrared radiation (A > 3.5 um). When the scattering particle is compa-
rable to or larger than the wavelength of the light, a diffraction peak is formed
in the forward direction. In this case, the interaction of light with the particle
is described in terms of Maxwell’s equations. Solutions to Maxwell’s equation for
the electromagnetic wave interacting with a spherical dielectric particle is usually
referred to as Mie Scattering. Scattering of solar radiation by aerosols and cloud
droplets is characterized by strong forward scattering.

Figure 2.3 illustrates a diagram of atmospheric transmission in the visible and

infrared regions. Gases responsible for atmospheric absorption are also shown in

Figure 2.3. In AVHRR channel 1 and 2, absorption by H,0, CO,, O,, and O3
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Figure 2.3 Atmospheric transmission in the visible and intrared regions. Gases responsible for atmo-
spheric absorption are shown. [Adapted from Sabins (1987)].
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are weak, while Rayleigh scattering by molecules and Mie scattering by aerosols
are significant. For channel 3 water vapor line absorption is the principal mech-
anism but several minor constituents, notably CO; as well as the water vapor
continuum, also have a significant effect on the attenuation of solar radiation. Mie
scattering by aerosols is highly variable depending on the turbidity of the atmo-
sphere. AVHRR channel 4 and 5 are located within an atmospheric window where
the atmospheric transmittance is high. The water vapor continuum absorption is
the main absorption mechanism. Rayleigh Scattering by molecules is negligible in

channel 4 and 5. CO; has a significant absorption band in channel 4.

2.3 Instrumentation for Ground-based Irradiance
Measurements

Surface solar radiation measurements in Barrow, Alaska (71°18' N, 156°47 W)
provided by the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL)
are utilized in this thesis for the testing of satellite-inferred albedo and irradiance
at the surface. Broadband solar radiation measurements by Eppley pyranometers,
covering the wavelength range 0.3 - 2.8 um, include upward and downward global
solar irradiances. The thermopile detector of the Eppley pyranometer is made
from a coiled constantan wire which is partially plated with copper to produce a
set of junctions. Half of the junctions are thermally connected to the blackened
detector surface and half to the instrument body which acts as a heat sink. The

detector is covered with a double glass dome arrangement which serves two pur-
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poses. Firstly it protects the surface of the thermopile, and secondly it defines the
operating wavelength range. The inner dome improves the stability of the instru-
ment by reducing the longwave radiation exchange between the outer dome and
the thermopile. A removable dessicant holder contains silica gel to keep the inside
of the instrument dry, thus avoiding condensation on the inside of the dome.

The sensitivity of the thermopile is temperature-dependent and the manufac-
turers incorporate a thermistor-resistor compensation circuit. According to the
Eppley data this reduces the variation to better than +1 % for the sink tempera-
ture range 233 K to 303 K.

The decrease of sensitivity for clear sky downwelling radiation with the angle
of incidence of direct radiation on the pyranometer is well known from laboratory
measurements (e.g. Foot et al., 1986). Differences of up to 10 % arise for zenith
angle of 80° but are < 2% for zenith angle of < 60°. A variation in sensitivity
with azimuth angle exists in the instrument because its sensitivity is not isotropic.
Ground-based laboratory measurements have shown the effect to be less than 1 %
for 8 < 60°. All these effects become negligible in conditions of diffuse illumination
which applies to upwelling radiative irradiance measurements and downwelling
irradiance measurements under an overcast sky. An annual calibration is necessary
to measure any significant changes in zenith angle and azimuth angle dependences
of the sensitivity under clear skies.

A recent estimate of the accuracy of the shortwave irradiance measurements is

2% according to Saunders et al. (1991).
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2.4 Previous Work on Remote Sensing of Surface

Albedo

Previous investigators have developed techniques for retrieving surface albedo
and solar irradiances from satellite-measured radiances (e.g. Saunders, 1990;
Stuhlmann and Bauer, 1991; Pinker and Laszlo, 1992; De Abreu et al., 1994). Most
of this work, however, has concentrated on lower latitudes. On the other hand,
most methods (Pinker and Laszlo, 1992; Stuhlmann and Bauer, 1991; De Abreu
et al., 1994) apply an “anisotropic correction” to TOA bidirectional reflectance to
account for target-Sun-satellite geometry. The anisotropic correction depends on
solar zenith angle, satellite zenith angle, and relative azimuth angle between the
Sun and the satellite. This is usually done by multiplying the TOA albedo obtained
by assuming that the reflected radiation is isotropic, with an anisotropic correction
factor. Taylor and Stowe (1984) determined anisotropic correction factors for the
TOA reflectances over various surface types, using broadband NIMBUS 7 Earth
Radiation Budget (ERB) data. The investigation by De Abreu et al. (1994) re-
vealed that estimated visible and near-infrared AVHRR albedo values at the TOA
derived from Taylor and Stowe's (1984) anisotropic coefficients are about 25 %
larger than those derived under the assumption that the TOA radiation field is
isotropic over snow-covered sea ice in the Arctic. This study also indicated that
the accuracy of surface albedo values derived from AVHRR data is very sensitive to
the anisotropic coefficient employed. However, it is difficult to assess the accuracy

of Taylor and Stowe’s (1984) anisotropic coefficients. Besides the anisotropic cor-
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rection, it is also customary to assume that the underlying surface is a Lambertian

(isotropic) reflector (Stuhimann and Bauer, 1991).

2.5 Previous work on Remote Sensing of Liquid
Water Cloud Parameters

Liquid water path (LWP), effective particle radius and cloud top temperature are
three important parameters for liquid water clouds. In the visible the optical depth
is proportional to the ratio of the liquid water content, LWC, and the effective
radius. Thus, knowledge of LWC and effective radius allows us to infer the optical
depth. Optical properties of water clouds depend almost exclusively on their liquid
water path and effective radius (Hu and Stamnes, 1993). In addition, outgoing
longwave radiation is mainly determined by the temperature at cloud top.

The climatic effects of clouds are difficult to estimate due to their temporal and
spatial variability. Cloud microphysical properties are usually measured through
field experiments. Satellite remote sensing techniques are also needed for a global
knowledge of these parameters. Field experiments can provide necessary tests of
the satellite retrieval algorithms. Several investigators have attempted to deter-
mine cloud optical depth and effective particle radius from visible and near-infrared
measurements using radiometer deployed on aircraft (Hansen and Pollack, 1970;
Twomey and Cocks, 1982, 1989; King, 1987; Foot, 1988; Rawlins and Foot, 1990;
Nakajima and King, 1990; Nakajima et al., 1991) and satellites, such as AVHRR
onboard the NOAA polar orbitors (Curran and Wu, 1982; Arking and Childs, 1985;
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Durkee, 1989; Rossow et al., 1989; Platnick and Twomey, 1994; Han et al., 1994;
Nakajima and Nakajima, 1995; and Platnick and Valero, 1995). The principle be-
hind these techniques is based on the fact that the reflection function of clouds at a
nonabsorbing channel in the visible wavelength range is primarily a function of the
cloud optical depth, whereas the reflection function at a water absorbing channel
in the near-infrared is primarily a function of cloud droplet size. The channel at
3.7 um on AVHRR is ideal for inferring cloud particle size because the water ab-
sorption is greater as compared with shorter near-infrared wavelengths, although
the thermal component at this channel has to be taken into account. However,
AVHRR becomes more a.nd more popular due to its long-time availability.

A number of field observations of clouds, aerosols, and radiation have been
conducted since 1986, such as FIRE-I/II Cirrus (First ISCCP Regional Experi-
ments, 1986 and 1991, respectively), ASTEX (Atlantic Stratocumulus Transition
Experiment, 1992). Most of these cloud retrieval algorithms and field experiments,
however, have focused on low- and mid-latitudes. To date only a few studies have
been carried out for high latitudes. Field observations include the Arctic Stratus
Cloud Experiment (1980), Leads Experiment (LEADEX) in the Beaufort Sea north
of Alaska during April 1992, Beaufort and Arctic Storms Experiment (BASE),
and the Arctic Radiation Measurements in Column Atmosphere-surface System
(ARMCAS) conducted on the North Slope of Alaska and over the Beaufort Sea
area during June, 1995.

At high latitudes, the surface is covered by snow/ice most of the time through-
out a year. Solar elevation is low so that the solar zenith angle is generally greater

than 50°. Precipitation is mainly in the form of snow, which implies that the atmo-
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spheric humidity is low. Temperature inversions occur over snow/ice surfaces even
in summertime. Solar radiation reflected by clouds in the visible is not sensitive
to cloud optical depth for clouds overlying snow/ice surfaces because of the low
contrast between cloud and surface albedo, and the multiple reflections between
cloud base and the underlying snow/ice surface.

Key (1995) used the AVHRR near-infrared channel 2 (0.85 ym) to infer water
cloud optical depth for clouds over snow/ice surfaces, based on the premise that the
reflected solar radiation at 0.85 ym is primarily a function of water cloud optical
depth which is nearly independent on wavelength in the visible and near-infrared
regions. Because of the weak wavelength dependence, the value of cloud optical
depth inferred from channel 2 is almost the same as that inferred in the visible.
The Lambertian approximation is adopted for snow surfaces under cloudy condi-
tions in Key's (1995) algorithm. Key (1995) found that multiple solutions occur
at small optical depths and large solar zenith angles. This method was applied to
AVHRR images over the Beaufort Sea in the Arctic. The reflected solar radiation
at channel 3 (3.7 pm) was used by Key (1995) to retrieve cloud effective radius
over snow/ice surfaces, while the thermal component at channel 3 was removed by
using the measurement of channel 4. Lubin et al. (1994) proposed an empirical
parameterization for cloud optical depth as a function of the brightness tempera-
ture difference between AVHRR channel 3 and 4 (11 g#m), which was derived for
cloud fields over the ocean and applied to nearby cloud fields over snow and ice.

This technique was applied to three test AVHRR images over Antarctica.
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