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ABSTRACT

I used mark and recapture, and radio telemetry to describe movements 

and population dynamics of polar bears of the Beaufort Sea. Rates of 

movement were lowest for females with cubs in spring, highest for females 

with yearlings in winter, and varied from 0.30-0.96 km/h. Total distances 

moved each month and year were 186-492 km and 1,454-6,203 km 

respectively. Highest and lowest levels of activity were in June and 

September. Activity levels were highest from mid-day to late evening. 

Females with cubs were more active than other bears. Annual home ranges 

varied from 12,730 km2 to 596,800 km2. The Beaufort Sea population 

occupied a 939,153 km2 area extending 300 km offshore from Cape Bathurst, 

Canada, to Pt. Hope, Alaska. Maternal denning in the Beaufort Sea region 

was common, but 52% of discovered dens were on the drifting pack ice.

Bears denning on pack ice drifted as far as 997 km ( x = 385 km). Bears 

followed to >1 den did not reuse sites. Consecutive dens were 20-1,304 km 

apart, but radio-collared bears were faithful to substrate and locale of previous 

dens. Of 44 polar bears that denned along the Beaufort Sea coast, 80% were 

located between 137°00’W and 146°59’W. Of those 44, 20 (45%) were on the 

Arctic National Wildlife Refuge, including 15 (34%) in the 1002 coastal plain 

area, which may contain >9 billion barrels of recoverable oil. Data indicated, 

however, that spatial and temporal restrictions on developments could prevent 

most disruptions of denned bears. Survival of adult female polar bears was 

higher than previously thought (S = 0.96). Survival of cubs (S = 0.65) and 

yearlings (S = 0.86) was lower than for adults, but increased rapidly with age.
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Shooting accounted for 85% of the documented deaths of adult females. The 

population grew to -1500 animals (>2% per year) from 1967-1992. Condition 

of adult females, survival of young, and litter sizes declined, while age of 

maturity and reproductive interval appeared to increase. The population may 

have approached carrying capacity by the end of the study.
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Introduction

Bears (Ursidae) occur on all continents except Australia and Antarctica, 

and are prominent parts of many ecosystems (Nowak 1991). Bears are of 

current interest in many regions of the world because they comprise a portion 

of the endangered fauna. In other areas they are economically significant as 

game animals, as subsistence for indigenous people, or as depredators of 

crops and livestock. Ancient lore and recent legend are replete with accounts 

regarding bears (Rennicke 1987). Bears are relatively large compared with 

most other terrestrial mammals (Bourliere 1975; Bunnell andTait 1981; 

Gittleman 1985). Their size and strength, ability to walk bipedally, and their 

secretive nature have spawned fear and respect among humans (Larsen 

1978; Kaniut 1983; Rennicke 1987). Perhaps more than any other family of 

animals, bears have captured the human imagination, yet many aspects of 

their ecology and life history are poorly understood.

The polar bear (Ursus maritimus) is the largest of the extant bears 

(DeMaster and Stirling 1981; Stirling and Derocher 1990). Large adult males 

may weigh 800 kg (DeMaster and Stirling 1981), over twice the mass of a lion 

(Panthera leo) or tiger (Panthera tiarisl (Nowak 1991). The polar bear is the 

apical predator of the Arctic marine ecosystem. Seals (Phoca hispida. 

Erianathus barbatusl are the primary prey of polar bears (Smith and Stirling 

1975; Stirling and Archibald 1977; Smith 1980), but polar bears also have 

been known to kill much larger prey such as walruses (Odobenus rosmarusl 

and belugas (Delphinapterus leucasl (Killiaan and Stirling 1978; Fay 1982; 

Calvert and Stirling 1990; Stirling and Derocher 1990).
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Polar bears occur in most ice-covered seas of the Northern Hemisphere, 

including the coastal waters of the Bering, Chukchi and Beaufort seas (Frame 

1969). Periodically polar bears are as far south in the eastern Bering Sea as 

St. Matthew Island and the Pribilof Islands (Ray 1971) and as far north as 

88°N latitude (Stefansson 1921; Papanin 1939). Sea ice disappears from 

most of the Bering and Chukchi Seas in summer, and polar bears occupying 

these areas apparently make extensive northerly migrations to stay with the 

southern edge of the pack ice. Pack ice is more persistent in coastal areas of 

the Beaufort Sea, and polar bears occur in those waters throughout most 

years (Frame 1969).

The global distribution of polar bears has long been known, but until 

recently, it was assumed that polar bears wandered across the polar basin as 

one fully mixed population (Pedersen 1945). Multi-year mark and recapture 

studies of polar bears conducted during the last 25 years have shown that 

bears often were recaptured near the sites at which they were first marked; 

and Stirling et al. (1980; 1984) concluded that polar bears are faithful to 

seasonal activity areas. At the start of this study, however, patterns in 

philopatry were not known. Short-term and long-term patterns of movement 

and activity, were only poorly understood, and bounds of the populations were 

uncertain.

Polar bears, like other ursids, have small litters and reach breeding age 

late in life. Most breeding appears to occur between March and June (Lone 

1970). Ovulation is thought to be induced by coitus (Wimsatt 1963). 

Implantation is delayed until autumn, and gestation is 195-265 days (Uspenski
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1977). Precise estimates of breeding rates, litter sizes, or survival were not 

available at the start of this project, and the factors regulating these critical 

life-history parameters were uncertain. Reliable estimates of the abundance 

of polar bears in the Beaufort Sea or trends in population levels also were not 

available.

Despite their large adult sizes, the young of bears are among the most 

altricial of placental mammals (Ramsay and Dunbrack 1986). New-born polar 

bears have hair, but are blind and weigh only 0.6 kg (Blix and Lentfer 1979). 

The undeveloped young are nurtured within the protection of a maternal den 

until approximately 3 months old. Pregnant polar bears excavate the dens in 

snow and ice in early winter (Harington 1968; Lentfer and Hensel 1980; 

Ramsay and Stirling 1990), and give birth in those dens in December or early 

January (Kostyan 1954; Harington 1968; Ramsay and Dunbrack 1986). In 

most areas of the Arctic, family groups (mother bears accompanied by young) 

emerge from dens in late March or early April.

When this study began, the known world-wide distribution of birth dens 

consisted of a few widely scattered concentration areas on land (Harington 

1968; Ramsay and Andriashek 1986). Among the best known denning 

concentrations were: the Svalbard Archipelago north of Norway (Larsen 1985); 

Franz Josef Land, Novaya Zemlya, and Wrangel Island, in Russia (Uspenski 

and Chernyavski 1965; Uspenski and Kistchinski 1972); and the west coast of 

Hudson Bay in Canada (Ramsay and Stirling 1990). Denning was either 

thought to be uncommon or was overlooked in gaps between these denning 

concentrations; and fidelity to denning areas, presumably an indication of
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limited availability of necessary habitats, was assumed (Ramsay and 

Andriashek 1986). The Beaufort Sea of northern Alaska and Canada lies in 

the largest of gaps between denning areas that had been identified at the start 

of this project (Harington 1968). Hence the numbers of dens, the distribution 

of dens, and the chronology of denning in the Beaufort Sea were unknown 

when this study began.

Human interactions with polar bears have been largely one-sided since 

the white bears first were encountered. Early Eurasian explorers viewed polar 

bears as fearless marauders, and killed many in self-defense, or before they 

could become a threat (Larsen 1978). Seton (1937) wrote “For centuries, it 

has been the custom of Arctic travelers to kill all polar bears they could. It did 

not matter whether the bears were a menace, or whether the travelers needed 

the carcasses or not.” Mowat (1985) suggested that explorers to the north 

killed polar bears at nearly every opportunity, and he attributed the present 

distribution to extirpation of polar bears from more southern climes rather than 

to a preference for existence in the polar regions. Prior to 1900, polar bears 

occupied St. Matthew Island in the Bering Sea west of Alaska. Unlike polar 

bears of the Beaufort Sea, many of these individuals spent the summer on 

land instead of remaining with the sea ice as it retreated to the north. Polar 

bears in Hudson Bay and some parts of the Canadian arctic archipelago still 

follow this lifestyle. Commercial hunters in search of seal skins and whale oil 

eliminated polar bears from St. Matthew Island by the early 1900’s (Hanna 

1920). In addition, over-wintering commercial whalers along with local 

residents may have reduced the number of bears that once denned along the
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north coast of Alaska (Leffingwell 1919). From ca.1920 to ca.1950, polar 

bears in Alaska were taken in smaller numbers primarily for subsistence 

purposes and for the sale of hides by Native people hunting with dog teams. 

Guided hunting by aircraft which occurred between the early 1950’s and 1972 

again resulted in excessive harvests. The average annual take between 1960 

and 1972 was 260 animals (Amstrup et al. 1986).

In recognition of the polar bear’s increasing vulnerability to human 

activities, the five nations (the Soviet Union, Canada, Denmark, Norway, and 

the United States) with jurisdiction over polar bear habitats negotiated the 

International Agreement on Conservation of Polar Bears (Agreement). The 

Agreement, negotiated in 1973 and ratified in 1976, prohibited the taking of 

polar bears from aircraft or large motor vessels or in areas where they have 

not been taken by traditional means in the past. This prohibition created a 

defacto sanctuary in the central arctic basin. A resolution appended to the 

Agreement requested governments to prohibit the taking of cubs or females 

with cubs and hunting in denning areas, during periods when pregnant 

females are moving into them or are denning. Another resolution requested 

governments to establish an international system to identify and control the 

trafficking of illegal hides (See Lentfer [1974] and Stirling [1986] for more 

comprehensive reviews). Finally, the Agreement required each signatory 

nation to conduct research, and to cooperate in management and research of 

populations that overlap jurisdictional boundaries.

In Alaska, the Agreement was implemented by passage of the Marine 

Mammal Protection Act (MMPA) of 1972. The MMPA vested management of
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polar bears with the federal government. Under the MMPA, only Native people 

are allowed to take polar bears for subsistence. Nonetheless, hunting of polar 

bears will continue in the Beaufort Sea (Treseder and Carpenter 1989; Nageak 

et al. 1991), and there is now talk of resumed hunting in nearby areas of 

Russia where polar bears have not been harvested since 1955.

Current events in Arctic regions may cause new disruptions to the 

populations of polar bears. The discovery of the world’s 10th-largest oil field at 

Prudhoe Bay, resulted in dramatic increases in human populations in Alaska’s 

arctic. The influx of cash, as a result of oil and gas development, into 

previously cash-poor areas improved efficiency of harvest of polar bears. As 

humans increasingly invade the Arctic, harassment and other direct 

interactions between humans and bears will increase. In order to understand 

how perturbations related to hydrocarbon exploration and development, 

increased hunting, or other human activities may affect polar bear populations 

and how widespread effects may be, the status of populations must be known. 

With increasing human presence in the Arctic and a continuing or expanded 

harvest, informed management will be necessary if polar bears are not to go 

the way of some other large predators (Cain et al. 1972). Managers will need 

to be informed about natural history parameters such as survival and 

recruitment, population size, movements, and habitat use patterns, if they are 

to mitigate negative effects that may be caused by these changes.

Theoretical Background

Organisms are commonly described as “r- or K-selected.” “r-selection” is 

usually associated with high and “K-selection” with low reproductive potential
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(Pianka 1970). Species described as “r-selected” typically mature early, put 

large effort into reproductive output but little effort into parental care, and 

usually are not long-lived. Conversely, “K-selected” species show deferred 

reproduction, long life, and extended parental care. Populations of species 

described as “r- and K-selected” are regulated primarily by different factors. 

Fluctuations in the environment generally keep “r-selected” species below the 

levels at which density-dependent effects occur, whereas “K-selected” species 

are more resilient to environmental fluctuations and more likely to be controlled 

by factors related to density. Undoubtedly, all species are influenced by a 

combination of density-independent and density-dependent factors. Just as 

obvious is that carrying capacity of any environment for most organisms is 

dynamic rather than static. Further, the degree to which species fit one term 

of reference or the other depends, to some extent, upon geographic locality 

and climatic variation (Cody 1966).

Most large mammals fall on the “K-selected” end of the “r-K” scale. 

Intraspecific competition for resources is generally intense in large mammals. 

Increasing competition at higher densities is reflected in changes in various life 

history traits. Unlike smaller organisms that can respond numerically and 

dramatically to short-term changes in the environment; large mammals are 

more likely to respond functionally with changes in diet, shifts in movement 

patterns, and changes in behavior. Changes in age of maturity, numbers of 

young produced, survival (particularly of juveniles), and rates of body growth 

are expected results of sustained changes in relative population density 

(Bourliere 1975; Fowler 1987).
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Their great longevity and low potential rate of increase suggest bears are 

among the most “K-selected" of all mammals (Cowan 1972). Nonetheless, 

researchers generally have not addressed the role of density or have 

concluded density plays little or no role in population regulation of ursids 

(Knight and Eberhardt 1985; Rogers 1987; Taylor et al. 1987). For example, 

after long-term studies of black bears (Ursus americanusl. Rogers (1987:51) 

concluded that, “reproduction in black bears is controlled mainly in a 

density-independent manner by fruit and mast supplies." Bunnell and Tait 

(1981) also concluded that reproduction in bears was regulated largely by 

nutritional factors in a density-independent manner while survivorship was 

regulated by density-dependent factors such as forced emigration of young. 

Density-dependent responses have been documented for two populations of 

ursids (McCullough 1981; Young and Ruff 1982; Stringham 1983). Also, 

Rogers (1987) claimed that bears in his study area that made use of 

supplemental food at dumps raised cubs at rates comparable to bears in a 

Pennsylvania study area characterized by higher fecundity and recruitment. 

Bears that used dumps produced more cubs because they faced lower relative 

densities than those that competed only for natural foods. Hence, Rogers’ 

(1987) argument against density-dependent responses in reproduction 

actually may be evidence for a density response.

Purpose

The polar bear is significant from the standpoint of subsistence, regional 

economics, circumpolar ecology, and world-wide vicarious appreciation. 

Perturbations of polar bears will increase as humans place increasing
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pressures on the resources of the Arctic. Also, polar bears may be among the 

first large mammal species to show effects of broad scale environmental 

problems such as global warming (Stirling and Derocher 1993). Questions 

related to polar bear management and management of the polar ecosystem 

will increase in the future. Those questions can only be answered after a solid 

baseline of population information and knowledge of the effects of past 

perturbations is available. The purpose of this study was to continue 

development of that baseline by quantifying the movements and distribution of 

polar bears in the Beaufort Sea, and describing the dynamics of the 

population.

Strategy

I employed the following strategy during this study: First, I attempted to 

define the bounds of the population of polar bears under consideration. 

Estimates of size or life history parameters are most relevant when the 

population has been defined. Second, I determined survival and recruitment 

rates, and described the composition, status, and trend of the polar bear 

population in the Beaufort Sea. Next, I determined the distribution, timing, and 

numbers of maternal dens in the Beaufort Sea from 1981-1992. Finally, 

because I thought polar bears might be most vulnerable to human activities 

during the time of maternal denning, I examined available data regarding 

exposures of bears in dens to various kinds of human activities.

Polar bears live a long time. In order to be most successful at using their 

habitat in the long run, they must become familiar with their environment. 

Strong fidelity to particular geographic areas would be expected. In the case

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

of animals dependent upon seasonally-variable substrates, however, fidelity 

might be only seasonal in nature. Rates of movement, distances moved, and 

activity levels, after all, must be controlled by environmental conditions that 

vary by season and year. Fidelity in this situation may or may not lead to well- 

defined activity areas or population bounds. Changes in activity or mobility 

associated with maturation of dependent young must be superimposed over 

the pattern of variations due to changes in habitat. The costs of 2 years of 

lactation and other parental care to polar bear females must be great and must 

vary with age of young. These factors should result in cyclical variations in 

movements and activities. I formalized these predictions and tested 

hypotheses based upon them in Chapter II. That chapter, which is based upon 

thousands of satellite radio-telemetry locations, describes the movements, 

distribution, and population bounds for polar bears in the Beaufort Sea. 

Chapter II was prepared for submission to the Canadian Journal of Zoology.

In studies of polar bears and in studies of large mammals in general, 

survival rate is among the most difficult of parameters to estimate. In Chapter 

111,1 describe how satellite radio-telemetry data from known individual bears 

were used to establish estimates of survival rates for adult female polar bears 

and dependent young. Those estimates were used where necessary, in 

subsequent chapters, to estimate other population dynamics variables.

Chapter III appears here as it was accepted for publication in the Canadian 

Journal of Zoology.

In the Beaufort Sea, the intensity of hunting varied greatly after the turn of 

the century. The variation in harvest levels and the resultant changes in the
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Beaufort Sea population of polar bears became one of the important tools I 

used to evaluate the status and trend in that population. For many years prior 

to the popularization of aerial hunting, polar bears in Alaska were harvested in 

limited numbers by subsistence hunters, but otherwise had been unperturbed 

since the early part of the century (Amstrup and DeMaster 1988). It is 

reasonable to conclude, therefore, the population prior to aerial hunting was 

high, possibly near “K-carrying capacity.” After 1972, polar bear hunting by 

airplane ceased. This change in Alaska followed the 1968 introduction in 

Canada of harvest quotas in response to concerns over a possible over

harvest there (Stirling 1986). Harvests by local indigenous people continue to 

the present in both countries (Treseder and Carpenter 1989; Nageak et al. 

1991). Those harvests, however, are thought to be below maximum 

sustainable yield. I reasoned, therefore, that the population must have grown 

after 1972.

As a population increases, the first negative effect of its own density is 

presumed to be increased mortality of young (Eberhardt 1977). At still-higher 

densities, age of maturity increases and then productivity of mature animals 

declines. Finally, at the highest densities, survival of adults may decline 

(Eberhardt 1977). If the population of polar bears in the Beaufort Sea 

continued to grow into the 1990’s, density-related changes in population 

structure would be expected. In Chapter IV, I formally tested whether the 

population in the Beaufort Sea was showing density-related changes that 

should occur if the population was growing during my study. Chapter IV, which 

also was written for submission to the Canadian Journal of Zoology, was
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based upon hundreds of capture and recapture records from 1981-1992. 

Comparisons were made between those records and capture and recapture 

records in archives of the Fish and Wildlife Service from 1967-1974, years in 

which the population should have shown evidence of over-harvest. Data from 

the Canadian portion of the Beaufort Sea (courtesy of I. Stirling) were 

combined with Alaskan data in order to assure that the study represented the 

whole population.

Historically, maternal denning of polar bears was known from many 

locales, but had been reported in the Beaufort Sea region only rarely (Lentfer 

and Hensel 1980). Yet, polar bears were thought to be year-round residents of 

the Beaufort Sea. I predicted polar bears did den in the Beaufort Sea region 

in large enough numbers to maintain the population, and that the distribution 

of dens would be uniform along the Beaufort Sea coast. I used radio 

telemetry to test these and other predictions about maternal denning in 

northern Alaska and adjacent Canada. Results of those studies are described 

in Chapter V which appears as it was published in the Journal of Wildlife 

Management (Amstrup and Gardner 1994). In Chapter VI, which was 

published in the journal Arctic (Amstrup 1993), I tested the sensitivity of polar 

bears in dens to human disturbances (Belikov 1976; Amstrup et al. 1986).

Chapter VII, the final chapter, encapsulates the findings of this study. 

Therein, I describe progress toward the objectives outlined here, and the 

outcomes of my tests of hypotheses. I also suggest a course for future polar 

bear research.
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CHAPTER II

ACTIVITIES, MOVEMENTS, AND DISTRIBUTION OF POLAR BEARS IN 

THE BEAUFORT SEA1

S. C. Amstrup and G. M. Durner

1 Prepared for submission to the Canadian Journal of Zoology:
Amstrup, S. C., and G. Durner. 19____ . Activities movements and

distribution of polar bears in the Beaufort Sea. Can. J. Zool. 00:000-000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Polar bears (Ursus maritimus) occur in most ice-covered seas of the 

northern hemisphere and are known to cross international boundaries. They 

are at the apex of the Arctic food chain, and may be indicators of the welfare of 

Arctic and global ecosystems. Humans are increasingly invading habitats of 

polar bears, and capabilities to deal with effects of those invasions vary among 

jurisdictions. Yet, little is known about how polar bears utilize their 

environment, and data resolving boundaries of sub-populations are 

unavailable. To improve information regarding movements and activities of 

individual polar bears and boundaries of the sub-populations they comprise, 

we fitted 153 satellite radio collars (PTT’s) to 106 adult female polar bears in 

the Beaufort Sea and relocated them 37,277 times between 1985-1993. Polar 

bears were observed to move over 4 km/h for extended periods, but mean 

hourly rates of movement varied from 0.30-0.96 km/h. Females with cubs had 

lower hourly rates of movement than females with yearlings and those (single 

females) without young (P = 0.05). Movement rates varied significantly among 

months, and generally were lowest in spring and late summer and highest in 

early winter. Geographic displacements from the beginning to the end of each 

month were smaller for females with cubs of the year than for single females, 

and larger in November than in April (P = 0.05). In May, June, July, and 

August, radio-collared bears shifted locations to the north (all P’s < 0.01).

Collared bears moved back to the south in October (P = 0.01). Mean total 

distances moved each month ranged from 186-492 km. Total movements in 

December were larger than those measured in April, May, July, August, and 

September (P = 0.05), and total monthly movements of females with cubs
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were lower than those of single females (P = 0.05). Total annual movements 

ranged from 1,454-6,203 km. Bears that spent part of the year in dens moved 

less than others, but nondenning classes of bears did not differ in total annual 

movement (P = 0.7). Females with cubs were generally the most active group, 

and single females the least active. Highest and lowest levels of activity were 

recorded in June and September (P = 0.05), but there also was a strong 

activity peak in early winter. Activity levels were lowest in the early morning 

and higher from mid-day through late evening. Peaks in activity may be linked 

to haul-out patterns of ringed seals (Phoca hispida). the favored prey of polar 

bears. Indices of activity and mobility were not entirely concordant among 

months or reproductive categories of females. Annual activity areas, 

calculated with the harmonic mean method and defined as contours 

surrounding 95% of relocation sites, ranged from 12,730 km2 to 596,800 km2. 

Monthly activity areas ranged from a mean of 344 km2 for females with cubs in 

April to 11,926 km2 for females with yearlings in December. The Beaufort Sea 

population occupied an area extending up to 300 km offshore from Cape 

Bathurst in Canada to Pt. Hope, Alaska, and enclosed 939,153 km2. Animals 

originally captured along the Beaufort Sea coast spent approximately 25% of 

their time in the northeastern Chukchi Sea, but animals captured in the 

Chukchi Sea ventured into the Beaufort Sea only 6% of the time. Bears 

captured in the Beaufort Sea were largely faithful to summer activity areas in 

the central portion of the Beaufort Sea.
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Introduction

The polar bear, apical predator of the Arctic marine ecosystem, occurs 

in most ice-covered seas of the Northern Hemisphere (DeMaster and Stirling 

1981). Along the coast of Alaska and western Canada, the winter distribution 

of polar bears includes the Bering, Chukchi and Beaufort seas (Ray 1971; 

Amstrup and DeMaster 1988). Polar bears occur as far south in the eastern 

Bering Sea as St. Matthew Island and the Pribilof Islands (Ray 1971), and 

have been reported as far north as 88°N latitude (Stefansson 1921; Papanin 

1939). In summer, ice in the Bering and Chukchi seas melts and polar bears 

retreat to the north. Much of the Beaufort Sea is ice-covered all year, however, 

and polar bears are permanent residents there (Frame 1969).

Polar bears are known to move across international boundaries, and 

although hunting occurs in most jurisdictions, management strategies vary. 

Humans are increasingly invading habitats of polar bears for purposes other 

than hunting (Amstrup et al. 1986). Effects of activities occurring in one 

jurisdiction could have ramifications in others (Lentfer 1983). Prevention and 

management of adverse effects only will be successful on an international 

level, and only after population boundaries are defined.

Polar bears are thought to occur in several largely discrete sub-groups, 

rather than one homogeneous pan-Arctic population (Harington 1968). 

Relatively little has been published about the movements of individual polar 

bears composing hypothesized sub-populations. Lentfer (1983) concluded 

that males and females did not move differently, but Messier et al. (1992)
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concluded from radio-telemetry data, that females in different reproductive 

categories had different movement and activity patterns. Areas of seasonal 

and annual activity are poorly understood for all classes of polar bears, and 

daily and seasonal patterns of activity are unknown. Mark and recapture data 

suggest polar bears may be seasonally faithful to particular geographic areas 

(Stirling et al. 1980; 1984). Mark and recapture data however, cannot provide 

objective assessments of fidelity because recaptures are too infrequent to 

quantify patterns of distribution.

The role of polar bears in the ecosystem and their absolute 

dependence on sea ice as a foraging substrate, suggest that they may be 

important indicators of human perturbations of the environment. Effects of 

global warming on sea ice, for example, are likely to be reflected in alterations 

in movements, activity patterns, and changes in areas occupied by season or 

year; even before changes in population dynamics occur (Stirling and 

Derocher 1993). As human populations increase, we will more frequently 

compete for space used by polar bears. Therefore, managers need a more 

thorough understanding of movements and activities of polar bears. The 

objective of this study was to use satellite radio telemetry, which overcomes 

many logistical difficulties in polar bear studies, to describe activities of polar 

bears in the Beaufort Sea.

Females in high-latitude populations of polar bears have a reproductive 

cycle >3 years long (DeMaster and Stirling 1981; Ramsay and Stirling 1986; 

Amstrup and DeMaster 1988). This cycle results because young generally are
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not weaned until early in their third year of life. Hence, we had the opportunity 

to examine activities of female bears in 4 different reproductive classes: 1) 

accompanied by cubs of the year, 2) accompanied by yearlings, 3) 

accompanied by 2-year-olds, and 4) not accompanied by young of any age 

(single). Reproduction is expensive (Oftedal 1985). Costs of reproduction in 

bears and other carnivores are not as well known as they are in some 

herbivores (Oftedal and Gittleman 1989). The costs of 2 years of lactation and 

other parental care to polar bear females, however, must be high. Costs of 

reproduction also must vary with time of the reproductive cycle. During their 

first year of life, cubs are entirely dependent on their mothers for nutrient 

uptake (Stirling and Latour 1978). Cubs (usually 2) are born in December or 

January weighing approximately 0.6 kg. They emerge from the den in March 

or April weighing 8-15 kg, and finish their first year of life weighing 60-150 kg 

(Amstrup unpubl. data). This rapid growth is achieved at great cost to the 

maternal female. Females with new cubs emerge from the den with fat 

reserves largely depleted (Derocher et al. 1992), and must begin foraging 

immediately. At this time, the cubs are growing rapidly, nourished solely by 

lactation, but are relatively immobile. Hence, the needs of the female to forage 

for resources necessary to nourish cubs must be balanced by the cub's 

immobility.

Through their second year, young continue to be a nutritional burden to 

their mothers—most continue to nurse, and they share in consumption of kills. 

They do, however, become more mobile, so that foraging needs of females are 

no longer compromised by immobility of young. Young polar bears apparently
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do not effectively provision for themselves until near the time of weaning 

(Stirling and Latour 1978). For 2 years, therefore, energy demands placed on 

females provisioning for young remain high. We predicted that rates of 

movement and distances moved by adult females would be small when the 

cubs are very young and would increase as mobility of cubs improves through 

the age of 2 years. Females accompanied by 2-year-olds have few mobility 

limitations, and we predicted they should have movement patterns similar to 

those of single females. Although females with younger cubs should be less 

mobile than those with older cubs, the younger cubs require more attention in 

terms of frequency of nursing, grooming, and general supervision. Hence, we 

predicted that females with the youngest cubs would have high levels of 

activity. Superimposed over the pattern of increasing mobility with age of 

cubs, we also predicted that rates of movement and distances moved would 

be larger in spring when many bears hunt for seals in subnivian lairs, and 

smaller in summer and fall, when still-hunting is thought to predominate 

(Stirling and Latour 1978). Hence, we tested the following null hypotheses: 

rates of movement and levels of activity are independent of reproductive status 

and month of observation and time of day; geographic displacements,

(shortest distance from first location for each month and the last location for 

each month) are independent of the month and the reproductive status of the 

female; total distances moved (sum of the distances between sequential 

relocations) by radio-collared polar bears do not differ among bears of differing 

reproductive status nor among months.

Because polar bears must hunt on the sea-ice throughout the year
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(Amstrup and DeMaster 1988), we expected that net displacements in location 

would vary seasonally with the condition of the sea ice. Bears should move to 

the north, for example, as ice melts away from the coast in summer, and they 

should move to the south with freeze-up in fall and early winter. Therefore, we 

tested the null hypothesis that azimuths of geographic displacements are 

independent of month.

If distances moved by polar bears increased with increasing age of their 

accompanying young, it would also seem reasonable that areas occupied 

would increase. We predicted that areas occupied by female polar bears 

increase with increasing age of cubs, and the largest activity areas are 

occupied by single females that are unencumbered by cubs but which must 

build up their energy reserves to prepare for the birth of their next litter. We 

tested the null hypothesis that sizes of areas occupied by female polar bears 

are independent of reproductive status. Because polar bears catch seals 

mainly by still-hunting (Stirling and Latour 1978), we expected the volatile 

summer and fall ice would minimize predictability of seal hunting opportunity. 

That would necessitate wider ranging movements than during winter and 

spring. Hence, we predicted that monthly activity areas would be larger for all 

classes of bears in the summer and fall than during other times of the year.

We tested the null hypothesis that sizes of areas occupied by polar bears are 

independent of the month of the year.

Polar bears live a long time and potentially can produce several litters 

during their lifetimes. Success in exploiting the environment should be
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enhanced by knowledge gained from previous experiences. Fidelity to 

seasonal foraging areas, therefore, should be strong, and we predicted that 

polar bears would occupy the same seasonal and annual activity areas 

repeatedly. We tested the null hypothesis that polar bears lacked multi-annual 

fidelity to monthly activity areas. We also tested whether the portion of the 

population area used by individual polar bears is independent of the location at 

which they are captured.

Materials and Methods

Field Procedures

Polar bears were captured alive, marked, and released each spring 

(except for 1990) from 1985 to 1992. Polar bears also were captured and 

marked in autumn 1985, 1986, 1988, and 1989. Autumn captures occurred in 

October and November each year, and spring captures occurred between 

March and May. We captured bears throughout the Alaskan Beaufort Sea, 

which extends from Point Barrow, Alaska, (ca. 157°W) to the Canadian border 

(141°W). Our Canadian counterparts captured bears in the Canadian 

Beaufort Sea for us to radio-track. We captured polar bears by injecting 

immobilizing drugs [phencyclidine hydrochloride (Sernylan®, Park, Davis and 

Co.), etorphine hydrochloride (M-99®, Lemmon Co.), and tiletamine 

hydrochloride plus zolazepam hydrochloride (Telazol®, Warner-Lambert Co.)] 

with projectile syringes fired from helicopters (Larsen 1971; Schweinsburg et 

al. 1982; Stirling et al. 1989). Capture protocols were approved by an 

independent animal care and welfare committee.
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Each year we marked a limited number (x =23) of adult females with 

radio-transmitter collars. To be certain of attaching collars to adults, we radio

collared only females with accompanying young, those that showed evidence 

of prior lactation, or those with zygomatic widths exceeding 18 cm—the 

smallest width observed for bears accompanied by young. Our collars were 

ultra high-frequency Platform Transmitter Terminals (PTT’s) that were relocated 

by satellite. PTT’s transmitted for short periods (e.g., 4-8 h) every 3-7 days.

The high proportion of dormant time was designed to maximize battery life. 

Sensors on all PTT's recorded temperature of the collar and 2 indices of 

activity. Geographic locations of collared animals were determined by sensors 

on the satellite that interpreted frequency shift patterns caused by changes in 

relative positions of the satellites and animals. (Fancy et al. 1988). Data 

retrieved from PTT’s were processed by the Argos Data Collection and 

Location System (ADCLS; Fancy et al. 1988). Collars carrying PTT’s also 

carried VHF beacons that we located with aircraft (Chapter V).

Activity patterns of polar bears were recorded by closing or opening of a 

mercury tip switch inside each PTT. “Long-term” activity counters recorded the 

number of seconds during which the switch was actuated in the 72 h (or in 

some cases, the 24 h) prior to each transmission. Thus, for each 24 or 72 h 

period we received one measure of the percentage of time the bear was 

active. Short-term counters provided the number of seconds of activity for the 

minute prior to each transmission of data to the satelite. Short-term data were 

primarily useful as a near real-time indication that the bear was still alive and 

still wearing the collar. We compiled modal values of long-term activity
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measures for each week of monitoring; and used those modal values to 

compare seasonal or monthly activity patterns and to examine differences 

among females of varying reproductive status. Long-term counters did not 

allow interpretation of diel activity patterns, and could not detect brief peaks or 

troughs in the percentage of time bears were active. Therefore, between 

1988-1992, we attached PTT’s with sensors that also recorded activity level on 

an hour-by-hour basis for 24-h periods. These “activity” PTT’s could record up 

to 8 categories of activity for each hour of the day. Preliminary analyses of 

data on long-term activity suggested that average polar bear activity levels 

were low. To most accurately evaluate hourly activities, therefore, we 

programmed sensors so that more subdivisions were available for the lower 

levels of activity than for higher levels. Thus, “activity PTT’s” tallied activity 

levels for each hour into one of the following 8 categories: 0: 0-179 seconds 

of activity; 1: 180-359 seconds of activity; 2: 360-539 seconds of activity; 3: 

540-899 seconds of activity; 4: 900-1439 seconds of activity; 5: 1440-2159 

seconds of activity; 6: 2160-2879 seconds of activity; 7: 2880 or more 

seconds of activity.

We located PTT-equipped polar bears using position fixes from 

satellites, radio-tracking from aircraft, and with visual sightings. We used 

Loran-C or very low frequency positioning devices to plot locations of bears 

located by aircraft on sea ice. All data were recorded in or converted to Alaska 

Standard Time. Instrumented females were single (not accompanied by young 

of any age), or accompanied by cubs (young aged < 1 year), yearlings (aged 

1-2 years), or 2-year-olds (aged 2-2.5 years). Changes in reproductive status,
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(e.g. losses of young) were verified by visual observations. Reproductive 

status of animals that were not reobserved frequently enough for confirmation 

were classified in a “suspected” reproductive category.

Analyses

All data generated by PTT’s and transmitted to the ARGOS satellites 

were available for analyses. When examining movements, however, we 

deleted all observations for which the reported location may not have been 

within 1000 m of the true location of the animal (Harris et al. 1990). Also, 

although we usually recorded multiple observations during each transmission 

day, we deleted all but the one with the highest location quality.

We used Albers Conic Equal-Area projection (ESR11992) for plotting 

recorded locations of radio-collared polar bears. In areas like the Beaufort 

Sea, that extend more in east-west than north-south directions, Albers 

projected shapes have minimal distortion, and are proportional to the same 

areas on the earth (ESRI 1992). All locations of bears were recorded in north 

latitude and west longitude.

Females of all reproductive classes did not occur in all months. Hence 

analyses were temporally subdivided. In most analyses, females with 

yearlings and single females could be compared throughout the year.

Females with 2-year-olds were available for monitoring only between January 

and April of each year, and were compared to females with yearlings and 

single females during that time. Movement patterns of females with cubs,
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single females, and females with yearlings were compared for the period April- 

December. Comparisons of movements and activities within each of these 

periods were accomplished with analysis of variance (ANOVA).

Rates of hourly movement were determined by measuring the linear 

distance between consecutive radio locations and dividing by the number of 

hours separating those locations. Rates of movement recorded for females of 

known reproductive status were compared, over all time periods, with those for 

which reproductive status was only suspected with the Wilcoxon 2-Sample test 

(Conover 1980:215). The null hypothesis was that measured rates of 

movement are independent of whether status was confirmed. Differences 

among rates of hourly movement for bears of different confirmed status and 

during different months were evaluated with 3-factor ANOVA. Multiple 

comparisons among factor level means were made with the Tukey Studentized 

Range (HSD) test. The null hypothesis was that rates of movement are 

independent of reproductive status (e.g., female accompanied by cubs, female 

accompanied by yearlings, single female, female accompanied by 2-year-olds) 

and month of observation. Because we had numerous observations on each 

bear, we introduced an added factor, individual bear, in this and all other 

ANOVA’s reported here. This allowed separation of the variability that was due 

to individual bears from that associated with the factors of interest. Hence, the 

partial sums of squares due to variation among individual bears did not 

influence our hypothesis tests.

Geographic displacement, or net shift in geographic position, of each
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animal in each month was defined as the linear distance between the first and 

last radio locations recorded for that month. Total distance moved during each 

month was calculated by summing the distances (km) between consecutive 

satellite reobservations of each bear each month. Total distance moved and 

displacement for each month were measured only if >20 days lapsed between 

the first and last locations. Total distance moved per year was calculated by 

summing the distances (km) between consecutive relocations for the whole 

year. Independence of total distances moved and total displacements from 

month and status was compared with 3-factor ANOVA and Tukey’s test.

Direction moved from the first to the last location of each month (mean 

azimuth and angular deviation or “dispersion” from the mean) was determined 

by converting angles to the appropriate trigonometric functions (Zar 

1984:422). We determined whether there were significant directional 

tendencies by comparing azimuths of displacements for each month with 

Rayleigh’s test of uniformity of distribution (Zar 1984:443). Total annual 

distances moved were calculated only for bears that were monitored for at 

least 292 days (80% of a 365 day year), and only if information gaps in their 

relocation records were shorter than 1 month. If a bear was monitored for 

>365 days, a 2nd tracking year was designated. Similarly, if monitoring time 

exceeded 730 days, a 3rd tracking year was designated. Tracking years did 

not coincide with any standardized calendar. Rather, they ran for 365 days 

beginning on the date of the first satellite observation for each bear. Gaps in 

relocation information >73 days (20% of a monitoring year) were not allowed, 

unless an animal occupied a maternal den during the gap in observations.
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Because reproductive status of female polar bears changes during any year, 

we categorized animals, for analyses, according to the most common (modal) 

status for each year of monitoring. Annual movements of bears in each status 

were compared with 2-factor ANOVA.

Variations in activity levels among months were determined by 

comparisons of data recovered from long-term activity counters as well as 

hourly counters. The null hypothesis that the “long-term” percent of time bears 

are active was independent of month and reproductive status was tested with 

a 3-factor ANOVA and Tukey’s test. Data on hourly activity were analyzed two 

ways. First, the frequency of each of the 8 activity categories was analyzed 

with contingency tables. Because there were different levels of reproductive 

status, month, and hour of the day, as well as the 8 categories of activity, a 

three-way contingency analysis was required. The necessary log-linear 

computations were performed with the “CATMOD” procedure of SAS V. 6.0 

(SAS Institute Inc., Cary, NO). The large number of categories in this analysis 

resulted in many empty cells. Empty cells required collapsing of categories for 

the calculations to be completed; and this limited the number of comparisons 

that could be made. Categorical analysis was possible only when the number 

of activity categories was collapsed to 3 (0-359, 360-1439, and 1440 to 2880 

seconds of activity per hour), when months of December to February were 

excluded from consideration, and when females with 2-year-old young were 

combined with single females.

Upon evaluation, these data reductions required by categorical
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analyses appeared unduly restrictive. To gain insights into as many 

comparisons as possible, we did a second analysis in which the data were 

treated as if they were continuous rather than discrete. The number of 

seconds identified by the midpoint of each category was converted (to 

simulate continuous data) to an activity percentage for the hour [e.g., category 

1 (180-359 s) was coded as 7.5% active). The mean activity level for each 

month, hour, and class of bear was derived by averaging the midpoints of each 

category . All observations for all bears during each hour of the day were then 

averaged to estimate the percentage of each hour polar bears were active.

The hypothesis that diel activity patterns are independent of reproductive 

status, month, and hour of the day was tested with 4-factor ANOVA and 

Tukey’s test.

Areas used by polar bears were analyzed on monthly and annual 

bases. We calculated areas of annual activity only for bears that were 

monitored for at least 292 days (80% of a 365 day year), and for which there 

were at least 25 high-quality relocations. We used the same criteria for the 

start and finish of each year of monitoring as described in calculation of annual 

movements. We calculated monthly activity areas for each month in which an 

individual bear generated at least 8 high quality relocations over a minimum 

period of 20 days within that month.

Activity areas were examined with the harmonic mean (Dixon and 

Chapman 1980), adaptive kernal (Worton 1989), and convex polygon (Hayne 

1949) methods. We used program CALHOME V. 1.0 (Kie et al. 1994), for all

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



activity area calculations. Worton (1989) has shown that adaptive kernal 

estimators of activity area size are preferred, from both descriptive and 

probabilistic standpoints, over other models. In the Beta test version (1.0) of 

CALHOME, however, adjustment of the smoothing parameter to fit the 

distribution of data points was not possible. The multimodal nature of polar 

bear activity areas and the presence of long-distance movements away from 

core areas of use mandated a smaller smoothing parameter than used in this 

version of CALHOME (Worton 1989). The coarse smoothing parameter 

resulted in a poor fit of activity areas, derived by adaptive kernal methods, to 

observed data. The convex polygon method, as expected (Dixon and 

Chapman 1980), also provided a poor fit to our data, although we have 

reported some convex polygon estimates for comparisons to earlier studies. 

Conversely, harmonic mean contours closely-approximated the observed 

distribution of reobservations for most bears (Spencer and Barrett 1984; Lair 

1987; Hayward et al. 1993). Therefore, we used the harmonic mean method 

to compare activity areas. We tested the null hypothesis that sizes of activity 

areas are independent of reproductive status and month with 3-factor ANOVA 

and Tukey’s test.

Sizes of activity areas, theoretically, can be underestimated if 

observations are temporally-autocorrelated (Schoener 1981; Swihart and 

Slade 1985a,b; Solow 1989). Autocorrelation of sequential observations was 

evaluated with the distribution-free Multi-Response Permutation Procedure 

(Mielke et al. 1981; Biondini et al. 1988; Mielke 1991) in the sequence 

permutation (MRSP) subroutine of program BLOSSOM (Slauson et al. 1991).
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We found significant autocorrelation, even when fewer than one location per 

month was considered. This apparent autocorrelation may have resulted from 

temporal and spatial clumping of data. Such clumping among relocations of 

radio-collared polar bears was neither seasonally nor annually predictable and 

varied among individuals of the same reproductive class. Hence, there was no 

way to minimize autocorrelation by partitioning the data. Because all animals 

were treated the same, however, any biases—whatever they may have been— 

were probably consistent and did not, we believe, affect comparisons among 

animals or time periods.

We examined fidelity of polar bears to monthly activity areas by 

comparing centers of activity (COA) calculated with the harmonic mean 

method for bears observed in the same month during different years. The 

hypothesis that fidelity to activity areas is independent of month was tested 

with 2-factor ANOVA and Tukey’s test. When reproductive efforts are 

successful, the reproductive status of an individual female will only be 

repeated each 3 years. Hence, sample sizes were insufficient to evaluate 

monthly fidelity according to reproductive status. We evaluated fidelity of polar 

bears to locales where they were captured by comparing numbers of 

reobservations of bears in each of 6 longitudinal zones to the numbers of 

captures in each zone. Longitudinal zones were 10° wide, and extended from 

127° to 167°. Because, in this analysis, we were interested in selection of 

geographic areas at the level of the population, we combined locations of all 

bears originally captured in each zone. We assumed that these noncorrelated 

samples from individuals on different days and under differing environmental
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conditions, represented independent samples of spatial use patterns. This 

analysis incorporated data collected in the Chukchi Sea by G. W. Garner 

(unpubl.) that are not used elsewhere in this report.

To determine the bounds of the Beaufort Sea polar bear population we 

pooled all relocations of all bears originally captured in the Beaufort Sea 

(127° N to 160° N latitude) and calculated contours using the harmonic mean 

method (Dixon and Chapman 1980). Because program CALHOME could not 

handle sample sizes as large as ours, we plotted the distribution of 10 random 

subsamples of the total number of radio locations available. We defined the 

area occupied by the Beaufort Sea population as the mean 95% harmonic 

mean contour, excluding land, of those sampled points. The core use area 

was defined as the mean of the 50% contours.

Our criteria for different analyses were not identical (e.g., rates of hourly 

movement were not limited to months with at least 20 days of tracking).

Therefore, sample sizes varied somewhat among different categories of 

analyses. The Tukey HSD family confidence level was held at P = 0.05 in all 

ANOVA’s. We report actual probabilities of other statistical tests performed 

unless E < 0.001. In all Chi-squared analyses, cells with few occurrences 

were combined until expected values were at least 1, and fewer than 20% of 

the cells had expectations < 5 (Conover 1980:156). Statistical analyses were 

performed on a Data General AVIION 6200 computer (Data General Corp., 

Westboro, MA) running SAS version 6.07 software (SAS Institute, Inc., Cary,

NC). Routine compilations of data were performed on a Power Macintosh
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7100 computer running Excel (Microsoft Corp., Redmond, WA).

Results

We deployed 153 PTT’s onto 106 adult female polar bears and obtained 

37,277 location records between autumn 1985 and spring 1992. We excluded 

multiple daily locations and those with inadequate precision, leaving for 

analysis 10,678 location records from 106 individuals.

Movements

Rates of Movement

Polar bears were capable of making long movements over short periods 

of time, and sometimes maintained rapid movement rates for long periods.

Five animals sustained movement rates of > 4 km/h for periods of > 20 h. One 

bear moved 4.3 km/h for a minimum of 45 h. Another moved 4.5 km/h for over 

41 h, and a third bear moved 4.0 km/h for 46 h. Maximum movement rates 

must have exceeded these, because we suspect bears seldom moved along 

the straight lines we recorded.

We calculated 2,296 estimates of hourly movement rate for females 

confirmed to be with young of various ages and 2,576 estimates for females 

suspected of being with young. Movement rates of females known to be 

accompanied by cubs or yearlings were lower than movement rates of those 

suspected to have cubs or yearlings (Table 1). Therefore, we limited 

subsequent analyses to animals of confirmed status.
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We measured 4,427 movements between consecutive relocations of 

instrumented bears with confirmed reproductive status. These relocations 

were separated by as little as 10 h and as much as 1 month. Hourly rates of 

movement declined as the interval between relocations increased. This 

decline was logarithmic and neared an asymptotic value when intervals 150

200 h or longer were used (Figure 1). Hourly movement rates measured at 

intervals of 100 h or less were significantly higher (x = 0.59 km, SE = 0.009) 

than those measured at longer intervals (x = 0.42 km, SE = 0.009; t = 13.58, 

df = 3,764, P < 0.001). Therefore, we used 3,071 observations separated by 

intervals of 100 h or less for comparisons of movement rates among animals 

of differing status and among months of the year.

Mean hourly rates of movement (km/h) varied from 0.96 for females 

accompanied by yearlings in December, to 0.30 for females with yearlings in 

March (Table 2). Rates of movement differed among months and reproductive 

categories. Comparisons of April-December movements indicated a 

significant difference in movement rates among females with cubs, females 

with yearlings, and single females (F = 5.13, df = 2, P = 0.006). Tukey 

pairwise comparisons revealed that females with cubs moved at lower rates 

overall than did single females or females with yearlings (HSD = 3.316, df =

2572, E = 0.05). Other differences in the main factor “reproductive status” 

were not observed. We recorded many differences in movement rates among 

months, however (Table 2). In all comparisons, spring and late summer 

months were characterized by the shortest hourly movements, whereas early 

winter (November-December) movements were the longest. We had correctly
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predicted low rates of movement in summer; but the data did not support our 

prediction of high rates of movement in spring and low rates in autumn.

There were significant interactions among the main factors “month” and 

“status” in all 3 ANOVAs, suggesting caution in interpreting main effects of 

both factors. Although movement rates of females with cubs and single 

females increased from April to May, movement rates of females with yearlings 

declined in the same interval. Also, females with yearlings made longer hourly 

movements in February than in March, but females with 2-year-olds made 

shorter hourly movements in February than March. Likewise, single females 

made their longest hourly movements in November and moved much less in 

December whereas females with yearlings, which had very similar overall 

movement rates, increased movements from November-December (Table 2).

Monthly Displacement

There were few significant variations, among months or reproductive 

categories, in displacement (Table 3). Females with cubs corroborated our 

hypothesis that young cubs are relatively immobile, and moved significantly 

less distance from the beginning to the end of each month than single females 

(E = 2.54, df = 2, P = 0.08; HSD = 3.33, df = 384, P = 0.05). Contrary to our 

predictions, however, monthly displacements in November, averaged over all 

bears, were greater than they were in April (F = 1.62, df = 8, P = 0.12; HSD = 

4.41, df = 384, P = 0.05). Other differences between status or month were not 

significant, and there were no significant interactions.
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The azimuths of monthly movements recorded for instrumented polar 

bears were not independent of the month of measurement (Table 4). In 

February, March, April, September, and December, directions of polar bear 

movements were highly variable, and uniformly distributed around the

compass rose. In January, however, the average polar bear movement was
\

easterly, and the distribution of azimuths was significantly different from 

uniform. In May, June, July, and August, movements of polar bears deviated 

from uniformity, all in northerly directions as we predicted. In October, polar 

bears moved significantly south, as we predicted. Directions of polar bear 

movements in November did not differ from uniform. November 

displacements, however, appeared to be bimodal, with most animals moving 

either westerly or easterly.

Total Distances

Mean total distances moved per month varied from 186-492 km (Table

5). As with movement rates and displacements, distances moved did vary 

among months and reproductive categories of females. Total movements 

during April, May, July, August, and September were less than those in 

December (E = 1.88, df = 8, P = 0.06; HSD = 4.41, df = 384, P = 0.05). 

Movements each month of females with cubs also were lower than those of 

single females (F = 2.97, df = 2, P = 0.05; HSD = 3.33, df = 384, P = 0.05).

Other differences among months and classes of female were not significant, 

and there were no interactions.

Annual movements of PTT-equipped polar bears ranged from 1,454-
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6,203 km (x = 3,415, SE = 103). When total annual movements of bears in 

each confirmed reproductive status were compared, there were no significant 

differences (F = 0.32, df = 2, P = 0.73).

Activity Levels

Long-term Sensors

Activity estimates derived from long-term sensors indicated variation 

among bears of differing reproductive status and among months. The highest 

activity levels were consistently reported in May, June, and July, with the 

highest peak in June (Table 6). Winter activity levels were lower, and autumn 

and early spring levels were often the lowest. Single females were 

consistently recorded less active than females accompanied by young (Table 

6). Month and status interacted only from April to December; hence, monthly 

trends among different classes of bears were largely concordant.

Hourly Sensors

We recorded 177,892 observations of hourly activity from 59 bears 

equipped with diel counting PTT’s. We excluded from analysis animals in 

uncertain reproductive status and those that had entered maternity dens; 

leaving 69,563 records of hourly activity from 43 bears of varying reproductive 

status.

We were able to examine hourly activity levels during April through 

November for 19 single bears, 18 bears accompanied by cubs, and 16
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accompanied by yearlings with multi-way contingency tables. This analysis, 

which included 54,780 individual activity records, suggested highly significant 

differences among categories of reproductive status (x 2 = 201, P < 0.001), 

months (%2 = 1349, P< 0.001), and hours of the day (%2 = 426, P < 0.001). 

Also there were significant interactions between status and month (%2 = 630, 

P < 0.001). The interaction between status and hour (%2 = 116, P = 0.05) 

appeared to depend on females with cubs. When females with yearlings and 

single females were examined without females accompanied by cubs, the 

interaction between status and hour was not significant (54, P = 0.21) while all 

other tests remained highly significant.

When hourly activity levels were analyzed as continuous rather than 

discrete data, patterns in the conclusions were identical to those apparent 

from the categorical analyses. The continuous data approach, with ANOVA, 

however, provided more information on more categories of comparisons, and 

greater resolution of the variation in activity levels. During the months of April 

through December, 60,839 records of hourly activity were compared. During 

that period, 18 females with cubs were active a mean 20.2% (SE = 0.17) of 

each hour. They were more active than 16 females with yearlings (x = 17.9%, 

SE = 0.17) which were more active than 19 single females (x = 16.2%, SE = 

0.14; F = 223.55, df = 2, P < 0.01; HSD = 3.32, df = 60,175, P = 0.05). There 

also were significant main effects of month (F = 199.49, df = 8, P < 0.001) and 

hour of the day (F = 24.35, df = 23, P < 0.001). Activity levels, averaged over 

all hours, were highest in June followed by December, May, and November.

July and October activity levels were higher than in April, January, February,
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August, and September (HSD = 4.39, df = 60,175, P = 0.05; Table 7). Hourly 

activity levels generally were lowest in the early morning and higher in late 

morning and afternoon [HSD = 5.14, df = 60,175, P = 0.05 (Table 8)]. There 

were no interactions between reproductive status and hour of the day (F =

I.17, df = 46, P = 0.21). There were, however, significant interactions between 

month and status (F = 32.35, df = 15, P < 0.001), and month and hour (F =

5.96, d f=  184, E <  0.001).

Most females that were single when instrumented in spring or fall 

entered dens by December of each year. Relatively few bears, compared to 

the total number used in movements analyses, were instrumented with activity 

collars. Of single females fitted with activity collars, a small number may not 

have entered dens. Continuous darkness between late November and mid- 

February precluded visual confirmation that they were not in dens in that time 

period, however; and transmission patterns were not conclusive. Therefore, 

we did not report activity levels for females confirmed single between 

December and February. Between March and November, however, 40,281 

records of hourly activity, including those from single bears, were compared. 

Activity levels of 19 single females (x = 16.2%, SE = 0.14) were lower than 

those for 19 females with yearlings (x = 16.9%, SE = 0.16; F = 37.17, df = 1,

P <0.001). Main effects of month (F = 276.62, df = 8, P < 0.001) and hour (F =

II.30 , df = 23, P < 0.001) also were significant. Activity levels were higher in 

May and June than in other months of this period, and lowest in March,

August, and September (HSD = 4.39, df = 39,819, P = 0.05; Table 7). The 

highest levels of hourly activity, for all bears pooled, occurred between 1100

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and 1500; and activities were generally higher after noon than before (Table 

8). The lowest hourly activities occurred between 0000 and 0600. Differences 

in hourly activity were present throughout the day (HSD = 5.14, df = 39,819, P 

= 0.05), and there were significant interactions between months and hours (F 

= 5.02, df = 184, P < 0.001), indicating that diel activity patterns are not 

constant through the year. Reproductive status and month also interacted 

significantly (F = 17.01, df = 8, P < 0.001), but reproductive status and hour of 

the day did not (F = 1.24, df = 23, P = 0.195).

Between January and March, 8,576 records of hourly activity were 

compared. Six females with 2-year-olds spent more of each hour active (x =

14.1 %, SE = 0.43) than 9 females with yearlings ( x = 13.0%, SE = 0.26; £  = 

7.09, df = 1, P = 0.008). Radio-collared bears were more active in January 

and February than in March [F = 30.6, df = 2, P < 0.001; HSD = 3.32, df =

8419, P = 0.05 (Table 7)], but February activity did not differ from January 

activity. Also, hourly activity levels varied through the diel cycle. Minimal 

activity occurred in the early mornings, and the highest activity levels occurred 

in afternoon and early evening [F = 6.57, df = 23, P < 0.001; HSD = 5.15, df = 

8419, P = 0.05 (Table 8)]. Females with 2-year-olds, which were most active in 

late morning, were an exception to this overall trend. There were significant 

interactions between reproductive status and month (F = 20.36, df = 2, P <

0.001) and hour and month (F = 1.62, df = 46, P = 0.005). Interactions 

between hours and status were apparent (Figures 2-6), but not significant (F = 

1.14, df = 23, P > 0.29).
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Although there were many differences among months, hours, and bears 

of differing status, activity levels in March, September, and August were 

usually the lowest recorded, whereas October—December and May and June 

consistently showed higher activity (Table 7, Figure 2). This pattern was 

confirmed by evaluation of month as a main factor with all classes of bears 

pooled (F = 223.32, df = 11, P < 0.001; HSD = 4.62, df = 69,234, P = 0.05). 

Activity levels generally were lowest in early morning and highest in the 

afternoon. When all months and all bears were pooled (Table 8), activity levels 

were highest between 1200 and 1300, and in general higher in the afternoon 

and evening than during earlier parts of the day (F = 28.02, df = 23, P < 0.001; 

HSD = 5.14, df = 69,234, P = 0.05). The lowest hourly activity levels were 

recorded between 0000 and 0600. There were exceptions to the overall 

trends, however. In March, April, July, October, and November, elevated levels 

of activity occurred between 0600 and 1000 (Figures 2-6). For single bears 

and females with 2-year-olds, March activity was highly elevated.

Diel activity curves for bears in most reproductive categories were 

similar (Figures 2-6). Similar patterns in hourly activity among bears of 

different classes were corroborated by the absence of interactions between 

the main factors of status and hour in all comparisons. Daily activity appeared 

to peak in late morning in January-March and October-December, but in 

afternoon and early evening in May-July. Daily activity peaks in March and 

April occurred in morning and early evening yielding a bimodal distribution of 

activity. March peaks for single bears and those with 2-year-olds were the 

highest recorded even though overall March activity was low. Activities in
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August and September show the least variation among hours of any months, 

whereas the highest activities and the highest relative peaks in activity were in 

June.

Activity Areas

We calculated 96 annual activity areas for PTT-equipped polar bears 

(Table 9). Activity area estimates were derived from 29 to 166 (x =74) 

satellite relocations. Contours developed by the harmonic mean method 

provided the best fit to actual observations. Most contours estimated for 

individual bears included only sea ice habitats and small portions of land near 

den locations. Some unoccupied areas, however, were included in activity 

area estimates. A few estimated activity areas, based upon crescent-shaped 

distributions of relocations overlapped significant portions of land that were not 

occupied (Figure 7). Annual activity areas were large and varied among 

individual bears. They varied among individuals and with differences in 

reproductive status (Table 10), and ranged from 12,730 km2 to 596,800 km2. 

Single females and females accompanied by yearlings occupied the largest 

areas. The differences in sizes of areas were not significant for either 95% 

contours (F = 0.87, df = 2, P = 0.44) or for core activity areas within 50% 

harmonic mean contours (F = 0.69, df = 2, P = 0.52), apparently because the 

magnitude of variation among individual bears was so great. Hence, we failed 

to reject the null hypothesis that activity area size was independent of 

reproductive status. The annual variation in activity areas of individual bears 

verified that multiple years of monitoring are necessary to describe the
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geographic distribution of polar bears in the Beaufort Sea. Over periods of at 

least 3 years, however, the activity areas of polar bears might reasonably be 

called home ranges (Figures 7 and 8).

We calculated 582 estimates of monthly activity areas for 95 individual 

polar bears. Of those, 289 were derived for 64 animals that were not in dens, 

and for which reproductive status was known. Variation in areas occupied was 

dependent upon month and reproductive class (Table 11). Our prediction that 

areas occupied would be largest in summer was not supported however. Two- 

factor ANOVA’s, performed for time periods when each reproductive status 

was present, showed that only differences among months were significant, 

corroborating the analysis of annual activity areas. Therefore, all animals of 

known status were pooled to examine overall monthly differences with a 2- 

factor ANOVA. That analysis confirmed both that 95% contour areas occupied 

in December exceeded those of all other months except January, and that 

there were no differences among months January-November (F = 2.44, df =

11, P < 0.007; HSD = 4.67, df = 214, P = 0.05). Mean January activity areas 

were much smaller than those of December. The difference was not 

significant, apparently because of the large associated standard error (Table 

11).

Geographic Patterns 

Bounds of the Population

Ten random samples (405-500 points each) were taken from 9,568
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relocations of polar bears equipped with PTT’s in the Beaufort Sea. We 

excluded 1,110 relocations of polar bears originally captured outside of the 

Beaufort Sea from this boundary-definition process. The population boundary 

calculated as the mean of the 10 samples surrounded the region from Cape 

Bathurst in Canada to south of Pt. Hope on the Chukchi Sea coast of Alaska 

and extended approximately 300 km north of the coast (Figure 9). The 

perimeter of this region excluding land areas, was 8,655 km long, and the area 

was 939,153 km2 (SE = 9,304). The core area (50% contour) of this 

population was the 122,089 km2 (SE = 3,960) extending from the Beaufort 

Sea coastline to approximately 100 km offshore, and ranging from the 

Canada-US border in the east, to Barrow, Alaska in the west.

When the area occupied by the population was divided into 10° 

longitude zones, it was clear that PTT-equipped polar bears did not use the 

whole area equally (Figure 10). Bears captured along the Canadian and 

eastern Alaskan coast most commonly moved west when they left their area of 

capture. Only 8% of the relocations of bears marked near Tuktoyaktuk (127°- 

137°) were made east of Cape Bathurst. On the other hand, nearly 50% of 

the relocations of bears captured in the Tuktoyaktuk zone were in the zone 

west of their capture, and nearly 20% were 2 zones to the west. Bears 

captured between Barrow and 147° longitude were broadly distributed from 

Cape Lisburne to western Canada, and appeared as likely to move west or 

east from capture locations. Bears captured between Barrow and 147° 

longitude, however, seldom (<8%) were reobserved west of 167°. Overall,

25% of the relocations of bears originally captured in the zone from Barrow to
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Cape Bathurst were west of Barrow. Conversely, only 6% of relocations of 

bears originally captured west of Barrow were in the zones east of Barrow 

(Figure 10). Bears captured in the Chukchi and Bering seas west or south of 

Cape Lisburne were rarely (<3%) reobserved east of Pt. Barrow. Likewise, 

polar bears instrumented in Canada east of Cape Bathurst were only observed 

in the Beaufort Sea 12% of the time, and only in the very eastern portions.

Seasonal Concentrations and Philopatry

There were significant differences in fidelity to monthly harmonic mean 

activity centers (F = 8.61, df = 11, P < 0.001). The greatest local fidelity 

occurred in July, when harmonic mean activity centers, for individual bears, 

among years averaged 202 km apart (Table 12). The least local fidelity 

occurred in December when activity centers were 450 km apart. Monthly 

differences in fidelity to geographic area were reflected in patterns of spatial 

use. Multi-year relocations of polar bears in July were concentrated in the 

Beaufort Sea between Barrow and the Canadian Border. Lines connecting 

centers of activity for bears monitored in more than one July were shorter than 

in other months, as reflected in Table 12, and they did not leave the Beaufort 

Sea (Figure 11). From July, the dispersion of multi-year locations increased 

each month through mid-winter, reached a peak in December, and declined 

through spring and early summer (Table 12). Polar bears captured along the 

Beaufort Sea coast frequently occupied different geographic regions during 

first and subsequent winters of location, but they returned to the central 

Beaufort Sea each summer. This is added evidence that areas occupied by
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polar bears over multi-year periods can legitimately be called home ranges.

Discussion

Movements 

Rates of Movement

Differences in movement rates between females of known and 

suspected status are unexplained. They may indicate losses of dependent 

young that were not verified, but which would have altered movement patterns 

of the females involved. Females with cubs, after all, did move less than 

females without young. Conversely, females with yearlings actually made 

longer hourly movements than single females. Also, few females lost young in 

their second year (Chapter IV), and 2-year-old young are mobile enough that 

they do not limit their mother’s mobility. Actual movements of bears surely 

differed from those we recorded because bears did not walk in straight lines 

between relocation points. The fact that we examined only movement rates 

that were measured over periods of 100 h or less, however, provided us with 

more accurate representations of actual movements than would have 

measurements made over a longer duration.

Our recorded movements also differed from reality because the ice of 

the Beaufort Sea is constantly moving. Amstrup (unpubl. data) found that 

polar bears occupying dens built upon the pack ice drifted up to 0.7 km/h, and 

that the winter-long average drift was 0.15 km/h. The predominant drift 

direction was westerly. Hence, movement rates relative to the ice surface
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could have been much lower than we recorded (Table 1) if bears were traveling 

to the west. Bears walking eastward may sometimes have been displaced to 

the west. Bears walking to the east would have had to walk 0.15 km/h, on 

average, in order to stay in the same place. Average movements of sea ice, 

like average polar bear movements, however, are of limited value. During this 

study, we observed pulses of ice movement, in both easterly and westerly 

directions, during which ice moved at rates of 2 km/h for periods of up to 3 or 4 

days. Buoys placed on the ice and monitored by satellite, and satellite borne 

synthetic aperature radar may allow more meaningful corrections for 

movements of polar bears in the future.

As we predicted, rate of movement varied significantly among most 

months. Hence, rate of movement was not independent of the time of the 

year. Contrary to our predictions, however, movement rates generally were 

lowest in spring and greatest in winter (Table 2). Movement rates also were 

high in June and July but lower again in September. Movement rates might be 

tied to the pace of change in the pack ice environment. Bears had the highest 

rates of movement in November and December as the sea-ice was rapidly 

solidifying, and June and July when ablation began in earnest. Many other 

interpretations are possible, however, and these data confirm that interactions 

between polar bears, their prey, and the sea ice are not presently understood.

Messier et al. (1992) reported that peak movements of instrumented 

polar bears in Viscount-Melville Sound in the Canadian High Arctic occurred 

from May to July, and that movements were reduced from October-March.
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Our observations deviated substantially from those. In the Beaufort Sea, 

movements rates were higher in November and December than in other 

months, and they were low in May. In the Beaufort Sea, movement rates were 

still high in January but began to decline thereafter. Contrasting 

measurements in the Canadian Arctic indicated an increasing trend in mobility 

from January through spring (Messier et al. 1992). Overall, the rates of 

movements reported for northern Canada were much lower than we observed. 

The peak movement of 0.46 km/h (Messier et al. 1992: Table IV), like ours, 

was for females with yearlings. However, theirs occurred in June, and was half 

the magnitude of ours which occurred in December. Likewise, the lowest 

movement rate (0.05 km/h for single females in January) recorded by Messier 

et al. (1992: Table IV) was far below our minimum of 0.30 km/h which occurred 

in March.

Low winter-time mobility among polar bears in the Viscount-Melville 

Sound area may result from the land-fast, multi-year ice that is most common 

there (Messier et al. 1992), and from the very low densities of ringed seals 

(Kingsley et al. 1985). By comparison, the mostly annual ice of the Beaufort 

Sea is more dynamic, supports a higher density of ringed seals (Stirling et al. 

1982; Kingsley et al 1985) and may allow more foraging opportunities through 

winter. Polar bears in the Beaufort Sea may spend more time actively 

foraging, and those in the Viscount-Melville Sound area spend more time 

resting and conserving energy. Messier et al. (1992) reported that long 

periods of “sheltering” were common among bears wintering in Viscount- 

Melville Sound, and attributed this behavior to the poor foraging conditions
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there. Another factor may be the greater predictability of the foraging 

conditions in the stable ice of Viscount-Melville Sound (Gloersen et al., 1992). 

With little change in the status of the sea-ice after freeze-up, polar bears may 

be able to determine the profitable hunting areas early on, and therefore 

minimize mid-winter searching for good hunting areas. The constantly 

changing sea ice of the Beaufort Sea, however, can require major 

modifications of strategy from month to month, or even day to day.

Contrary to our prediction that movement rates of females should 

increase steadily as their cubs aged, the only differences among reproductive 

classes we recorded were for females with cubs. Derocher and Stirling (1990) 

reported a maximum mean movement rate of 0.15 km/h for polar bears of all 

classes on land near Hudson Bay. Family groups, adult males, and subadult 

females moved less in September than during other months. Pregnant 

females, the only class of bears to vary from others in Hudson Bay, made 

shorter movements in November than in other months. This apparently 

indicates that females constrained their activities during the pre-denning 

period. In the Beaufort Sea, November movement rates were high for all 

bears. We did not detect reduced rates of movement of pregnant females, 

although those same bears were significantly less mobile upon emerging from 

their dens with cubs in the spring. We expected that movement patterns 

reported by Derocher and Stirling (1990) would differ from ours, because the 

bears observed near Hudson Bay were “trapped on land” throughout the 

period of monitoring, and they were not actively foraging for seals.

Nonetheless, our bears, like theirs, showed relatively low movement rates in
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September (Table 2).

Using mark and recovery data, Lentfer (1983) reported a mean 

movement rate for polar bears on the sea ice of 10.7 km/d (= 0.45 km/h if 24 

hour days are used) with no differences among different sex and age groups. 

Garner et al. (1990) reported mean movement rates of polar bears in the 

spring of 0.6 km/h, with peak movements of 1.7 km/h. During summer, mean 

movement rates we measured were 0.53 km/h with a maximum observed rate 

of 2.7 km/h. In autumn, movement rates increased to a mean 0.7 km/h and 

the maximum remained 2.7 km/h. Winter movements were 0.45 km/h with the 

maximum observed remaining at 2.7 km/h. By comparison to the monthly 

analyses we performed, much information is potentially lost when data are 

pooled over quarterly periods. Nonetheless, the patterns reported by Garner 

et al. (1990) were comparable to ours and may suggest that polar bears in the 

Chukchi Sea are responding to environmental patterns similar to those in the 

Beaufort Sea.

Monthly Displacements

Measured displacements of polar bears were not independent of the 

status of the bear or the time of year. As we predicted, females with cubs 

changed positions less noticeably than other bears. As with rates of 

movement, displacements in November were large. Still-hunting at breathing 

holes in the newly forming ice was the predominant form of hunting we 

observed in the fall. The volatile nature of the ice at that time may result in 

widely separated ephemeral patches of good hunting to which bears must
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respond quickly. Hence, even though the method of hunting in those patches 

may require little movement, movements between hunting sites may be long.

Our prediction that movements in the fall would be small because still-hunting 

was prevalent, did not account for volatility in acceptable still-hunting locales.

Variations in rates of movement and measured displacements among 

different classes of bears and different months were largely but not entirely 

concordant (Tables 2 and 3). Rates of movement, therefore, and travel are 

not necessarily the same thing. For example, monthly displacements of 

females with cubs were different than those of single females but not different 

from females with yearlings. Movement rates of females with cubs, on the 

other hand, differed from both of those groups. The greatest contrast 

appeared to be that females with yearlings had higher movement rates than 

single females but smaller geographic displacements. There also were 

inconsistencies among months. The lowest movement rates were in March, 

for single females and females with yearlings, but only single females had their 

smallest displacements in March. Also, mean displacements and movement 

rates for January-April were much different. Only one pair-wise comparison of 

monthly geographic displacements was significant, and there were no 

significant interactions.

At any one time, some radio-collared bears moved in one principal 

direction while others moved in the opposite direction. Examination of monthly 

displacements failed to discern any principal directionality of movement during 

6 months of the year. The only significant deviations from uniformity were in
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May-August when measured displacements were significantly to the north, in 

October when they moved south, and in January when they moved east.

Those movements appeared to be correlated with general patterns of ice 

formation and ablation. Between May and August, the ice of the southern 

Beaufort Sea is degrading (Gloersen et al. 1992), and polar bears appear to 

displace themselves to the north accordingly. October is usually the month of 

freeze-up and may be the first time in months when near-shore ice is available. 

Polar bears appear to move into near-shore foraging habitat when it becomes 

available in October, and they disperse easterly and westerly as it solidifies in 

November. Stirling (1990) also reported seasonal north-south movements of 

polar bears in the Beaufort Sea.

Variation in monthly displacements did not explain all seasonal patterns 

of distribution. Plots of centers of monthly activity revealed an affinity of 

Beaufort Sea polar bears for the central Beaufort Sea in summer and a 

tendency for them to disperse to the east and west in winter. Hence, although 

analyses of monthly displacements suggested only north-south trends in 

movement, radio-collared polar bears that were in the eastern portions of the 

Beaufort Sea in late winter consistently moved to the west in late spring and 

summer. Likewise, bears that had moved into the Chukchi Sea in winter 

consistently moved back to the east as summer approached. Lentfer (1972;

1974; 1983) reported that polar bears moved significantly to the east in spring 

of the year. Our observations of monthly displacement as well as analyses of 

activity centers verify that some bears moved easterly in the spring, but that 

such movements did not constitute the pattern for all individuals in the
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population. Rather, between February and April, there was no measurable net 

displacement of polar bears in any direction.

Total Distances

Lentfer (1983), Schweinsburg et al. (1981) and Stirling et al. (1980; 

1984) reported from mark and recovery locations that distances moved by 

animals of different sex and age class were not different. Although sample 

sizes were small in those studies, and the main focus was on differences 

between males and females, the findings were consistent with our observation 

of few differences in total movements among bears of varying status. We 

recorded that total monthly travels of single females exceeded those of 

females with cubs, but other differences were not significant. Because we 

could not instrument young bears that were still growing, or male bears of any 

age, quantitative analysis of the movements of subadults of both sexes and 

comparisons of males and females is still needed.

Garner et al. (1990) reported a mean annual movement for polar bears 

in the Chukchi Sea of 5,542 km ±634 for a sample of 6 PTT-equipped polar 

bears. Our mean of 3,436 km/year was lower, indicating that polar bears in 

the Chukchi Sea may be more mobile than those in the Beaufort Sea. This 

difference may be due to the radical fluctuations of ice in the Chukchi Sea that 

require extensive north-south movements of bears (Garner et al 1990; Garner 

et al. 1994).

Movement rates, monthly displacements, and total distances moved
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each month followed similar monthly patterns. Contrary to our null 

hypotheses, variations in all 3 were dependent upon reproductive status and 

month. They were not entirely concordant, however (Figure 12). Principal 

conclusions from all 3 evaluations were: females with cubs move less, and 

early winter movements by most classes of bears were large.

Activity Levels

Variations in activity levels of polar bears were strongly dependent upon 

hour of the day, month, and reproductive status. Early mornings were 

consistently characterized by the lowest activity levels. Activity levels 

increased in late morning, often reaching broad peaks in afternoon and early 

evenings (Figures 2 and 6). There were no interactions between reproductive 

class and hour, indicating that trends in hourly activity were similar among all 

reproductive classes even though absolute levels of activity did differ among 

reproductive classes. Activity levels also varied among months (Table 8).

Bears were typically more active in October-December and May and June 

than in other months, and less active in January-March and September.

Activity levels we recorded often were not concordant with our recorded 

movement patterns (Figure 12).

Messier et al. (1992) reported activity as well as mobility peaks in 

summer and lulls of both in winter. We observed high activity levels in May 

and June with declining activity through summer, but we also observed a peak 

of activity especially notable in females accompanied by young, during autumn 

and early winter. Messier et al. (1992) reported that single females were more
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active than females with cubs in May, but that no other categories differed in 

activity levels. In contrast, we observed numerous differences in activities 

among reproductive categories; single females were often the least active 

class of bear, whereas females with cubs were often the most active (Table 6, 

Figures 3 and 6). Single females, on the other hand, made longer monthly 

movements than all other bears and occupied large areas; whereas females 

with cubs moved shorter distances than other bears and occupied small 

activity areas (Tables 3 and 10). As with human parents, high activity with little 

actual movement seems a reasonable observation for females with cubs.

Estimates of activity derived from 72-hour or long-term counters were 

similar to those derived from the hourly sensors (Tables 6 and 7). Long-term 

activity sensors, however, failed to detect the pulse in early winter activity 

recorded by hourly activity counters. Reasons for that failure are unknown, but 

it does reflect a limitation of sensors that record activity over long periods of 

time. This limitation also could account for the differences between our winter 

activity trends and those reported by Messier et al. (1992).

Messier et al. (1992) speculated that the similarity in activity levels of 

females with cubs and those with yearlings was an indication of comparable 

parental investment. Our data are not directly comparable to those of Messier 

et al. (1992) because they monitored fewer animals during a shorter duration 

of study and did not confirm reproductive status. Nevertheless, our data 

indicate significant differences between movements and activities of females 

with young of different ages. Differences were fewer when only long-term
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sensors were evaluated, suggesting that measures of long-term activity or 

movement do not always accurately convey activity or mobility trends. Without 

substantial ground-truthing, neither long-term nor hourly activity 

measurements should simplisticly be related to parental investment. Mobility 

of females with cubs was low, but the investment in young cubs, in the form of 

milk, is high, and could overshadow other parental activities occurring at that 

time. Parental investment involves many behavioral, ecological, and even 

physiological phenomena (Verme 1969; Trivers and Willard 1973). Changes in 

movement patterns or activity patterns could reflect varying levels of 

investment. They could, however, reflect many other considerations faced by 

polar bears, and much more information regarding post-parturient care of 

young would be necessary in order to establish relationships.

Knudsen (1978) reported that polar bears were inactive 87% of the time 

in summer. Lunn and Stirling (1985) also reported that polar bears summering 

on land were largely inactive. Activity levels among bears feeding at the dump 

were much higher, however (Lunn and Stirling 1985). Knudsen (1978) 

speculated he underestimated the amount of time bears are really active 

because his samples were heavily biased toward mid-day, and because his 

bears were stranded on land and unable to hunt as they do on the sea ice.

Activity level somehow must be related to opportunities to feed or engage in 

other essential activities. While trapped on land and unable to feed, the most 

essential activity is rest. It appears, however, that even polar bears actively 

hunting on the sea ice spend much time inactive. Our long-term activity 

sensors recorded that polar bears were active only 3-22% of the time (Table
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6). Messier et al. (1992) recorded similar activity levels (5-24%) with long-term 

activity sensors on PTT-equipped polar bears in the Canadian High Arctic.

After over 600 h of visual observations, Stirling (1974) reported that 

polar bears spent 65.4% of their time in activities that sensors on PTT’s would 

register as inactive. Stirling (1974) also reported that in summer, polar bears 

spent the most time sleeping during late afternoon and evening, with minimum 

time sleeping between 0100 and 0700. He attributed this pattern to: 1) the 

fact that greatest numbers of ringed seals hauled out on the surface of the ice 

in afternoon and fewest hauled out in the early morning, and 2) the relatively 

higher success rate polar bears had in catching seals by still-hunting at 

breathing holes as opposed to stalking seals that were hauled out. Overall, 

activity levels of female polar bears in the Beaufort Sea reached broad peaks 

from late morning to early evening. Further, activity levels we observed were 

universally low in the early morning (0000-0600). Polar bears in the Beaufort 

Sea did not maximize their rest activity in the afternoons and evenings, as 

those hours were the hours in which polar bears were most often active.

However, because still-hunting at breathing holes and resting might transmit 

similar activity patterns to the satellite, we cannot overlook the possibility that 

Beaufort Sea bears still-hunt extensively in the mornings.

Kelly and Quakenbush (1990) observed that ringed seals (Phoca 

hispidal occupied their subnivian lairs most frequently in late evening and 

early morning (1800-0230) in March and April, but shifted to midday 

occupancy (1030-1630) in May and June. Kelly and Quakenbush (1990)
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concluded the March and April haulout pattern served to minimize under-ice 

activities (e.g. foraging) during the darkest periods of the day. They further 

concluded that 24-hour daylight, available by May, removed any constraints on 

under-ice activities due to low visibility, and that the mid-day haul-out might be 

associated with the beginnings of the molting cycle—the warm temperatures 

of mid-day augmenting blood flow to the skin. Activities of radio-collared polar 

bears in the Beaufort Sea were elevated between 1800 and 0230 during 

March and especially April, or relatively constant (Figures 2-6). In May and 

June, on the other hand, activity levels of all classes of polar bears we 

observed were at local or absolute maxima shortly after midday. High mid-day 

activity levels in late spring and summer could correspond with basking 

behavior of seals in lairs and on the surface of the sea ice after snow melts.

High activity levels in late spring fit our predictions more closely than any of the 

measurements of movement. In spring, polar bears actively search out ringed 

seal lairs (Smith and Stirling 1975; Smith 1980). Physical, physiological, and 

perhaps other unidentified constraints may determine when seals occupy lairs. 

Whatever the factors that determine temporal pattern of lair occupancy, it 

appears that polar bears may take advantage of the resultant pattern.

Activity Areas

Seasonal and Annual Activity Areas

Areas of annual activity for Beaufort Sea polar bears were large and 

variable (Table 10), reflecting, as did other measurements, the great mobility of 

this species. Areas of monthly activity also were large and provided more
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evidence of the lack of concordance among various mobility and activity 

indices. Polar bears often are highly active and even highly mobile, while 

confining movements to previously established areas (Figure 12). Although 

significant differences among reproductive categories were not detected, 

females with yearlings did occupy larger areas in nearly all months than other 

classes. Yearling polar bears are large but not yet hunting effectively on their 

own (Stirling and Latour 1978). Therefore, females accompanied by yearlings 

have large energy demands. The large areas they occupy may reflect the 

exploration necessary to secure resources to meet those demands when 

availability of prey is fluctuating.

Annual activity areas of females monitored for multi-year periods 

showed that some new area was occupied in some new years, but also that 

core areas of activity were used each year. This observation suggests that 

activity areas of polar bears, when viewed over multi-year periods, can be 

called home ranges. It simply takes a long time for a polar bear to occupy all 

of its home range. The labile nature of the sea ice results in a variable 

distribution of food. Therefore, female polar bears cannot find adequate 

nutritional resources if they maintain the same defended territories each year. 

Likewise, males cannot defend territories if they are, each year, to maximize 

their potential for finding mates (Ramsay and Stirling 1986). This conclusion 

fits nicely with our observations of large activity areas of which only a portion 

may be used in any one season or year.

PTT-equipped polar bears in the Chukchi Sea occupied average activity
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areas of 244,463 km2 (Garner et al. 1990). Movements and activity areas in 

the Beaufort Sea appear to be intermediate in magnitude between those 

reported for the Chukchi Sea and those reported from parts of the Canadian 

Arctic Archipelago (Schweinsburg and Lee, 1982; Messier et al. 1992). 

Schweinsburg and Lee (1982) hypothesized that movements of polar bears 

should be inversely proportional to body stature and to habitat richness.

Seasonal and annual variability in sea ice cover and character, and the 

resulting variation in availability of prey, may overshadow considerations of 

habitat richness, however (Garner et al. 1990). The sea ice of the Chukchi 

and Beaufort seas is more dynamic and unpredictable than the ice of the 

Canadian archipelago (Gloersen et al. 1992), and the mobility of polar bears 

appears to respond to that variability.

Best (1982) and Hurst et al. (1982a,b) concluded from treadmill tests 

that polar bears are inefficient walkers, using much more energy for 

locomotion than other similar sized animals. They attributed this to aspects of 

polar bear morphology, specifically the massive limbs evolved for capture of 

prey. Economy of transport, they suggested, was compromised by 

considerations of thermo-regulation and hunting strategy. Treadmill tests, 

however, do not appear to tell the whole story. Taylor et al. (1974) found that 

differing configurations and weights of limbs, even among diverse groups of 

mammals, had little effect on relative costs of locomotion. Also, costs of 

locomotion among very diverse groups of herbivores, including domesticated 

animals which are largely insulated from natural selection for mobility, are very 

similar (Fancy and White 1985). It seems unlikely, therefore, that polar bears
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which as our studies suggest, have been under great selective pressure to be 

mobile, could be so relatively inefficient. Another inconsistency in these 

treadmill tests was the discovery that energy expenditures of the largest 

animal tested were very near the line for other mammals (Hurst et al. 1982b). 

Empirical observations (Taylor et al. 1985) suggest that rapid movement, at 

least, becomes more expensive as size of polar bears increases.

Our measurements, which were derived from many observations of 

numerous individuals, are unequivocal and indicate polar bears are among the 

most mobile of all quadrupeds. In some months, movements of polar bears 

may have been necessary to stay on the changing sea ice. For most months, 

however, all of our measurements suggested polar bears were highly mobile 

when stable sea ice would not have necessitated any movement at all. Large 

and rich food items might compensate somewhat for inefficiencies in travel.

But, in the long run, a foraging strategy that includes extensive travel, would 

place strong selective pressure on developing efficient means of achieving that 

travel. High energy expenditures of polar bears walking on treadmills may 

have been due to levels of excitation resulting from the cramped and strange 

surroundings. Such excitation could result in posturing costs (Schmidt-Nielsen 

1972; Fancy and White 1985) over and above the costs of the exercise being 

observed. We have shown that polar bears sometimes move long distances 

very rapidly. They typically move at relatively low rates of speed, however. 

Perhaps, treadmills used in energetics experiments were running at speeds 

that do not represent sustained movement rates for polar bears. We believe 

that enough questions about polar bear energetics remain that existing
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conclusions regarding the efficiency of mobility in polar bears should be 

revisited.

Our mobility and activity measurements were largely but not entirely 

concordant (Figure 12). The most obvious deviations from concordance for 

single females were: peak monthly travel in February when activity was at the 

12-month low, and May, June, and July, activity level peaks when activity area 

sizes were low. All indices were high for females with cubs in October- 

December. However, activity level also was near the peak in May, June and 

July, when activity area sizes were at their lowest levels. Also, in summer, the 

other movement indices were high relative to activity area. Clearly, neither 

activity nor linear movement were consistent predictors of activity area size. 

High rates of late winter movement combined with low levels of activity might 

reflect lots of travel while looking for relatively few places where hunting could 

be productive. High activity levels coupled with little movement in summer 

might reflect the opposite condition.

Geographic Patterns

Bounds of the Population

We confirmed Lentfer’s (1983) conclusion that there is some movement 

of polar bears along the mainland coast of the Beaufort Sea between Canada 

and Alaska. We also demonstrated that the movement between Canadian and 

Alaskan Beaufort Sea areas is more extensive than previously suspected, and 

we quantified the amount of movement across the north coast.
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Stirling et al. (1978; 1984) and Schweinsburg et al. (1981) concluded 

that polar bear populations are comprised of many animals with overlapping 

home-ranges. Separation of sub-populations, therefore, might not be 

predictable from year to year. Schweinsburg et al. (1981) concluded that 5

10% of bears in any one area commonly disperse to adjacent areas. Our 

observations substantiate the hypothesis of small amounts of dispersal among 

adjacent areas. Nonetheless, bears captured in the eastern Beaufort Sea 

generally moved to the west as they dispersed from capture sites, and 

returned seasonally to the eastern portions of the Beaufort Sea. Bears 

captured in the Western Beaufort Sea generally moved to the east from their 

capture locations and returned seasonally to the west. This seasonal 

dispersal pattern, and the observation of summer fidelity of most bears to the 

central Beaufort Sea, suggest that this population is discrete enough to be 

managed as a unit. Stirling et al. (1978) also concluded movements of 

animals adjacent to various Arctic settlements are seasonally local enough 

that the concept of discrete subpopulations applies for management purposes.

After only 2 years of study, the cumulative activity area of 20 

PTT-equipped polar bears in the Chukchi and Bering seas west of Alaska was 

865,000 km2 (Garner et al. 1990). With additional monitoring of more animals, 

that area is sure to increase. Polar bears in the Chukchi Sea may be more 

mobile than in other areas under consideration.
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Seasonal Concentrations and Philopatry

Amstrup and Gardner (Chapter V) reported that maternal polar bears in 

the Beaufort Sea were faithful to denning substrate and to general geographic 

area, but not to specific den sites. Movements of nonpregnant bears appear 

to follow the same pattern. There was fidelity, in some seasons, to general 

areas but not to specific locales, and the degree of that fidelity varied 

according to time of the year. Maximum fidelity was in summer and minimal 

fidelity in mid-winter, with a pattern of decentralization from and 

concentralization back to summer areas in the Beaufort Sea. Thus, fidelity to 

late winter and spring activity areas was greater than that for mid-winter, but 

less than that demonstrated in summer (Figure 11). Even our summer season 

fidelity was relative, however, as consecutive centers of activity were 

separated by over 200 km (Table 12). Stirling et al. (1980; 1984) concluded 

polar bears in the Canadian High Arctic showed a high degree of fidelity to 

spring feeding and breeding areas. Schweinsburg et al. (1981) reported a 

high degree of geographic fidelity during March, April and May. Lentfer (1983) 

reported polar bears were most commonly recovered, in late winter and early 

spring, in the areas where they were marked in previous spring seasons. 

Schweinsburg et al. (1981) concluded polar bears disperse from late winter- 

spring activity areas as the ice breaks up, and return to those areas again in 

late winter. The pattern we observed in the Beaufort Sea has sharpened the 

image of seasonal distribution and movement patterns of polar bears and 

suggested that there may be broad geographical differences in those patterns.
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Polar bears of Manitoba return each summer to the same stretch of the 

Hudson Bay coastline (Derocher and Stirling 1990). This pattern apparently is 

caused by similar annual patterns of ice ablation in Hudson Bay and by the 

fact that polar bears stay with the sea ice as long as possible. Similarly, the 

distribution of Beaufort Sea ice is most constrained in summer, the time when 

polar bears showed the greatest degree of fidelity. As summer progresses, 

Beaufort Sea ice deteriorates most quickly near Barrow, where the Beaufort 

Gyre meets the Chukchi Gyre, and in the east where the Cape Bathurst 

Polynya expands westerly and the flow of the MacKenzie River is constantly 

putting fresh water into the system. By mid-summer the most stable ice in the 

Beaufort Sea is in the central portion between Lonely and the Canadian 

border (Gloersen et al. 1992), and bears gravitate toward that area every year 

(Figure 11). Hence, although there are no geographic barriers to movement 

out of the Beaufort Sea, a relatively discrete subpopulation may be maintained 

by the general pattern of ice formation and ablation. Changes in that pattern, 

as reflected by changes in polar bear movement, may be among the first hard 

indications of the effects of global warming.
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Table 1. Movement rates of satellite radio-collared female polar bears in the Beaufort Sea, 1985-93, 
comparing known and suspected reproductive status. Reproductive status was confirmed if visual 
observations were obtained regularly enough to know that young survived through each stage of life.

Movement Rate (km/h)

Reproductive Status na X S.E. Wilcoxon Z pb

Females With Cubs

Confirmed 1012(34) 0.51 0.016

Suspected 776(38) 0.59 0.020
4.39 0.0001

Females With Yearlings

Confirmed 1100(39) 0.55 0.020

Suspected 1301(39) 0.60 0.010
2.74 0.0060

Females With 2-Year-Olds

Confirmed 184(13) 0.44 0.030

Suspected 499(26) 0.49 0.020
1.07 0.2850

aNumbers of satellite relocations (numbers of individual PTT-equipped polar bears).

Probability of difference this great between females of confirmed and suspected status occurring

by chance.
o
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Table 2. Movement rates (km/hr) of satellite radio-collared female polar bears in the Beaufort Sea, 1985-93. Rates were calculated only if reobservation 
interval was less than 100 hours. Significant differences among months (Tukey’s HSD) are shown by non-overlapping lines.

FEMALES/CUBS SINGLE FEMALES FEMALES/YEARLINGS FEMALES/2-YR-OLDS MONTHLY TOTALS SIGNIFICANTLY DIFFERENT
MONTH a Mean S.E. Obs. Bears Mean S.E. Obs. Bears Mean S.E. Obs. Bears Mean S.E. Obs. Bears Mean S.E. Obs. Bears p = 0.05

Mar 0.48 0.06 45 8 0.30 0.05 55 7 0.49 0.11 29 6 0.40 0.04 129
21 I

Feb 0.50 0.07 14 3 0.42 0.05 52 5 0.37 0.08 26 5 0.42 0.04 92 13 | |
Apr 0.47 0.03 109 15 0.63 0.05 102 18 0.49 0.08 32 4 0.54 0.03 243 37 11
Jan 0.68 0.15 23 3 0.61 0.07 90 8 0.44 0.07 27 5 0.59 0.05 140 16 |

SubTotal 0.50 0.03 191 29 0.53 0.03 299 38 0.45 0.04 114 20 0.50 604 87

Apr 0.36 0.03 100 23 0.47 0.03 109 15 0.63 0.05 102 18 0.49 0.02 311 56
Sep 0.43 0.04 33 8 0.53 0.02 166 29 0.45 0.07 26 8 0.50 0.02 225 45
May 0.44 0.03 85 12 0.57 0.03 284 31 0.48 0.04 91 11 0.53 0.02 460 54
Aug 0.50 0.04 36 8 0.60 0.03 170 29 0.48 0.06 35 7 0.57 0.02 241 44
Oct 0.60 0.08 75 11 0.58 0.05 129 21 0.64 0.07 47 8 0.59 0.04 251 40
Jul 0.5B 0.06 44 8 0.62 0.03 192 31 0.59 0.06 49 8 0.61 0.02 285 47
Jun 0.52 0.06 43 8 0.71 0.03 243 30 0.67 0.06 65 9 0.68 0.02 351 47 1
Nov 0.62 0.04 142 13 0.93 0.11 49 6 0.75 0.06 114 15 0.72 0.04 305 34
Dec 0.79 0.07 154 10 0.67 0.15 12 3 0.96 0.08 83 7 0.84 0.05 249 20 |

SubTotal 0.57 b 0.02 712 101 0.61 0.01 1354 195 0.66 0.02 612 91 0.61 2678 387

Mar 0.48 0.06 45 8 0.30 0.05 55 7 0.38 0.04 100 15
Feb 0.50 0.07 14 3 0.42 0.05 52 5 0.43 0.04 66 8
Sep 0.53 0.02 166 29 0.45 0.07 26 8 0.52 0.02 192 37
Apr 0.47 0.03 109 15 0.63 0.05 102 18 0.55 0.03 211 33
May 0.57 0.03 284 31 0.48 0.04 91 11 0.55 0.02 375 42
Aug 0.60 0.03 170 29 0.48 0.06 35 7 0.58 0.03 205 36
Oct 0.58 0.05 129 21 0.64 0.07 47 8 0.59 0.04 176 29
Jul 0.62 0.03 192 31 0.59 0.06 49 8 0.62 0.03 241 39
Jan 0.68 0.15 23 3 0.61 0.07 90 8 0.62 0.06 113 11
Jun 0.71 0.03 243 30 0.67 0.06 65 9 0.70 0.03 308 39
Nov 0.93 0.11 49 6 0.75 0.06 114 15 0.80 0.05 163 21
Dec 0.67 0.15 12 3 0.96 0.08 83 7 0.93 0.07 95 10 I

SubTotal 0.60 0.01 1436 209 0.61 0.02 809 111 0.61 2245 320

a Interaction effects between month and status were noted in all time periods (P < 0.05).
b Females with cubs made shorter hourly movements than single females or those with yearlings (F = 5.13, df = 2, P = 0.006; HSD = 3.32, df = 2572, P = 0.05). Other differences among 

status categories were not significant.
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Table 3. Linear displacement (km) from first to last location each month for satellite radio-collared female polar bears in the Beaufort 
Sea, 1985-93. n = # bears each status sampled each month. Significant differences are footnoted.

FEMALES/CUBS SINGLE FEMALES FEMALES/YEARLINGS FEMALES/2 YROLDS MONTHLY TOTALS

MONTH MEAN S.E. n MEAN S.E. n MEAN S.E. n MEAN S.E. n MEAN S.E. n

Jan 251 116 4 193 72 9 101 29 8 169 39 21

Feb 213 15 3 175 40 6 96 27 8 144 22 17

Mar 162 39 8 72 12 8 172 89 8 135 32 24

Apr 121 21 15 116 31 12 140 28 4 122 16 31

TOTALS 159 22 30 136 23 35 125 27 28

Apr 79 14 10 121 21 15 116 31 12 108 14 37

May 129 18 15 162 17 56 125 19 15 150 12 86

Jun 105 25 12 201 20 53 136 29 12 176 16 77

Jul 130 24 10 144 12 50 177 38 12 148 11 72

Aug 125 27 12 170 16 40 166 30 11 161 12 63

Sep 155 28 11 171 18 37 178 73 6 169 16 54

Oct 171 39 10 195 36 20 131 38 7 176 23 37

Nov 194 39 15 196 44 6 215 50 13 202b 26 34

Dec 138 40 11 174 65 3 225 49 9 177 28 23

TOTALS 137a 10 106 170 7 280 161 13 97

Jan 251 116 4 193 72 9 211 59 13

Feb 213 15 3 175 40 6 188 27 9

Mar 162 39 8 72 12 8 117 23 16

Apr 121 21 15 116 31 12 119 18 27

May 162 17 56 125 19 15 154 14 71

Jun 201 20 53 136 29 12 189 18 65

Jul 144 12 50 177 38 12 150 12 62

Aug 170 16 40 166 30 11 169 14 51

Sep 171 18 37 178 73 6 172 18 43

Oct 195 36 20 131 38 7 179 29 27

Nov 196 44 6 215 50 13 209 36 19

Dec 174 65 3 225 49 9 212 39 12

TOTALS 171 7 295 158 12 120

aFemales with cubs moved significantly less each month than single females (F = 2.54, df = 2, P = 0.08; HSD = 3.33, df = 384, P = 0.05). 
b Mean monthly displacements were larger in November than in April (F = 1.62, df = 8, P = 0.12; HSD = 4.41, df = 384, P = 0.05).
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Table 4. Azimuths (degrees true) of displacement from the beginning to the end of each month 
among satellite radio-collared female polar bears in the Beaufort Sea. All reproductive 
categories are combined.

Month Mean Azimuth 
of

Displacement

Angular
Dispersion3

Rayleigh's 
Z-Test Value3

Probability
Level

P

Number of 
Animals 

n
January 81 65.3 6.03 0.005 49
February 36 79.7 0.04 0.5 39
March 58 77.9 0.27 0.5 48
April 296 76.9 0.78 0.5 80
May 26 71.3 6.11 0.005 122
June 4 71.6 5.32 0.005 111
July 328 67.0 10.44 0.001 105
August 44 71.9 4.15 0.02 92
September 88 74.8 1.53 0.2 70
October 167 68.6 5.14 0.01 64
November 250 72.7 1.98 0.1 52
December 83 76.2 0.58 0.5 51

aZar (1984)

o
VO



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 5. Total distances (km) moved per month by satellite radio-collared female polar bears of varying reproductive status in the Beaufort 
Sea, 1985-93. n = # bears each status sampled each month.

FEMALES/CUBS SINGLE FEMALES FEMALES/ YEARLINGS FEMALES/2 YROLDS MONTHLY TOTALS

MONTH MEAN S.E. n MEAN S.E. D MEAN S.E. n MEAN S.E. n MEAN S.E. n

Jan 347 114 4 283 66 9 215 32 8 269 37 21

Feb 492 225 3 244 43 6 200 32 8 267 47 17

Mar 280 34 8 186 33 8 312 103 8 259 38 24

Apr 228 31 15 268 47 12 275 57 4 249 24 31

TOTALS 284 33 30 249 25 35 247 33 28

Apr 192 44 10 228 31 15 268 47 12 231 23 37

May 251 21 15 305 19 56 238 24 15 284 14 86

Jun 192 25 12 345 19 53 296 28 12 313 16 77

Jul 252 47 10 291 17 50 305 36 12 288 15 72

Aug 227 23 12 316 22 40 267 35 11 290 16 63

Sep 249 24 11 296 23 37 268 62 6 283 18 54

Oct 294 43 10 338 39 20 218 56 7 303 27 37

Nov 317 41 15 347 29 6 337 62 13 330 30 34

Dec 418 74 11 333 65 3 420 92 9 408b 50 23

TOTALS 267 a 14 106 310 8 280 291 17 97

Jan 347 114 4 283 66 9 302 55 13

Feb 492 225 3 244 43 6 326 82 9

Mar 280 34 8 186 33 8 233 26 16

Apr 228 31 15 268 47 12 245 27 27

May 305 19 56 238 24 15 291 16 71

Jun 345 19 53 296 28 12 336 17 65

Jul 291 17 50 305 36 12 294 15 62

Aug 316 22 40 267 35 11 305 19 51

Sep 296 23 37 268 62 6 292 22 43

Oct 338 39 20 218 56 7 307 33 27

Nov 347 29 6 337 62 13 340 43 19

Dec 333 65 3 420 92 9 398 70 12

TOTALS'1 311 8 295 281 15 120

aFemales with cubs moved less each month than single females (£ = 2.97, df = 2, P = 0.05; HSD = 3.33, df = 384, P = 0.05). 
bDecember movements exceeded movements in April, May and July-September (F = 1.88, df = 8, P = 0.06; HSD = 4.41, df = 384, P = 0.05). 
cOther differences were not significant.
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Table 6 . Monthly activity levels (%  of time active) of satellite radio-collared fem ale polar bears in the Beaufort S ea , 1985-93 , as determ ined by long term (24 or 72  
hour) activity counters on satellite radio collars. Activity levels shown are m eans of the modal levels for each polar bear in each reproductive class for each week. 
Months that did not differ significantly are overlapped by lines in the final column of the table. Months and reproductive categories interacted significantly in all time  
periods. Significance of differences determined by ANO VA and Tukey's HS D  procedure.

MONTH

FEMALES/CUBS  

MEAN S.E. N

SINGLE FEMALES 

MEAN S.E. N
FEMALES/YEARLINGS  

MEAN S.E. N

FEMALES/2 YROLOS  

MEAN S.E. N

MONTHLY TOTALS 

MEAN S.E. N

SIGNIFICANTLY DIFFERENT  

 P =  0 .05

M a r 11 .7 1 .8 4 5 1 2 .0 1 .4 4 3 1 9 .5  1 .3 0 3 7 1 4 .1 0 .9 1 2 5

Jan 8 .9 1 .5 2 2 1 5 .2 0 .9 4 2 1 6 .2  1 .4 0 4 1 1 4 .3 0 .7 1 0 5

Feb 6 .4 1 .5 1 9 1 5 .5 1 .5 3 4 1 8 .7  1 .8 0 4 0 1 5 .0 1 .1 9 3

A pr 1 5 .4 1 .3 9 2 1 8 .6 1 .5 8 2 2 1 .9  2 .8 0 2 1 1 7 .5 1 .0 1 9 5

SubTotal
a

1 2 .7 0 .8 1 7 8 1 5 .9 0 .8 2 0 1 1 8 .6  0 .8 0 1 3 9

Sep 1 1 .5 1 .0 0 5 2 9 .5 0 .5 1 9 6 1 0 .3 0 .7 4 3 1 0 .0 0 .4 2 9 1

Aug 1 3 .9 1 .0 0 5 5 1 2 .8 0 .6 1 9 9 1 6 .2 0 .9 4 8 1 3 .6 0 .5 3 0 2

A pr 1 0 .6 0 .9 0 9 3 1 5 .4 1 .3 9 2 1 8 .6 1 .5 8 2 1 4 .7 0 .8 2 6 7

Oct 1 9 .0 1 .3 0 6 1 1 3 .1 1 .0 1 2 2 1 6 .4 1 .3 4 3 1 5 .3 0 .7 2 2 6

Nov 1 9 .0 1 .1 0 6 6 1 5 .4 1 .7 4 4 1 5 .7 1 .2 6 6 1 6 .8 0 .7 1 7 6

Dec 1 9 .9 1 .4 0 5 2 9 .7 1 .3 2 1 1 7 .1 1 .5 4 1 1 7 .0 0 .9 1 1 4

J u l 2 0 .0 1 .2 0 5 3 1 8 .6 0 .7 2 4 1 2 2 .3 1 .4 5 7 1 9 .4 0 .6 3 5 1

May 19 .1 1 .2 0 7 3 2 0 .4 0 .8 2 5 2 1 9 .0 1 .4 6 8 1 9 .9 0 .6 3 9 3

Jun 2 1 .0 1 .2 0 5 1 2 2 .0 0 .8 2 4 2 2 1 .4 1 .6 5 1 2 1 .7 0 .7 3 4 4

SubTotal b
1 6 .7 0 .4 1 5 5 6 1 6 .5 0 .3 1 4 0 8 1 7 .7 0 .5 4 9 9

Sep 9 .5 0 .5 1 9 6 1 0 .3 0 .7 4 3 9 .6 0 .4 2 3 9

M a r 1 1 .7 1 .8 4 5 1 2 .0 1 .4 4 3 1 1 .8 1.1 8 8

Feb 6 .4 1 .5 1 9 1 5 .5 1 .5 3 4 1 2 .2 1 .2 5 3

Jan 8 .9 1 .5 2 2 1 5 .2 0 .9 4 2 1 3 .1 0 .8 6 4

Aug 1 2 .8 0 .6 1 9 9 1 6 .2 0 .9 4 8 1 3 .5 0 .5 2 4 7

Oct 1 3 .1 1 .0 1 2 2 1 6 .4 1 .3 4 3 1 3 .9 0 .8 1 6 5

Dec 9 .7 1 .3 2 1 1 7 .1 1 .5 4 1 1 4 .6 1 .2 6 2

Nov 1 5 .4 1 .7 4 4 1 5 .7 1 .2 6 6 1 5 .6 1 1 1 0

A pr 1 5 .4 1 .3 9 2 1 8 .6 1 .5 8 2 1 6 .9 1 1 7 4

J u l 1 8 .6 0 .7 2 4 1 2 2 .3 1 .4 5 7 1 9 .3 0 .6 2 9 8

May 2 0 .4 0 .8 2 5 2 1 9 .0 1 .4 6 8 2 0 .1 0 .7 3 2 0

Jun 2 2 .0 0 .8 2 4 2 2 1 .4 1 .6 5 1 2 1 .9 0 .8 2 9 3

SubTotal 1 2 .7 0 .3 1 4 9 4 1 6 .9 0 .4 6 1 6

a Activity levels of all classes of fem ales differed (F  = 5 .75 , df =  2 , P =  0 .003 , H S D  =  3 .3 3 , df =  451 , P =  0 .05).

b Single fem ales were less active (F = 4 .45 , df =  2 , P < 0 .001, H S D  = 3 .3 2 , df =  2 35 2 , P =  0 .0 5 ) than fem ales with yearlings. 

c Fem ales with yearlings were significantly more active than single fem ales (F  =  6 .41 , df =  1, p =  0 .01). 

d Month and reproductive status interacted significantly only in this time period (F  =  2 .8 4 , df =  16, P <  0 .0 0 1).
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Table 7. Monthly activity patterns (% of hour active) of satellite radio-collared female polar bears of different 
reproductive status in the Beaufort Sea, 1988-93. All hours are included in each group. Months that did not 
differ significantly are overlapped by vertical lines. Significant differences (P < 0.05) determined by ANOVA and 
Tukey's HSD procedure.

Single Females and those 
with Cubs or Yearlings

Single Females and those 
with Yearlings

Month Mean Significance Month

Single Females and those 
with 2-Yr-Olds or 

Yearlings
All Females of Known Status

Jan Jan Mar 12.0 | Sep 10.3
Feb Feb

■
Feb 13.6 I Aug 12.1

Mar Sep 9.6 Jan 14.2 j Mar 12.6
Sep 10.3 Mar 10.2 | | Apr Feb 13.6
Aug 12.1 Aug 11.3 | May Jan 14.2
Apr 14.6 Oct 14.6 Jun Apr 14.6
Jul 18.0 I Jul 17.2 Jul Jul 18.0
Oct 18.8 | Apr 17.4 Aug Oct 18.8
Nov 21.0 Nov 17.8 Sep Nov 21.0
May 21.4 May 22.5 I Oct May 21.4
Dec 21.7 Jun 23.3 | Nov Dec 21.7
Jun 23.3 Dec Dec Jun 23.3
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Table 8. Hourly activity patterns (% hour active at each hour) of satellite radio-collared female polar bears in the Beaufort Sea, 
1988-93. Hours that did not differ significantly are overlapped by vertical lines. Significant differences 
(P < 0.05) determined by ANOVA and Tukey’s HSD procedure.

Single Females and those 
with Cubs or Yearlings, 
April through December

Single Females and those with 
Yearlings, March through November

Single Females and those with 
2-Yr-Olds or Yearlings, 
January through March

All Females of Known Status, 
All months

Hour Mean Significance Hour Mean Significance Hour Mean Signficance Hour Mean
4 8.8 4 13.2
5 9.3 5 13.6
1 9.4 3 13.7
2 9.6 2 13.9
3 9 .6 1 14.4
0 10.4 6 14.7
6 11.5 0 15.3

23 11.5 7 16.2
7 12.1 2 3 17.1
2 2 12.3 8 17.4
1 9 12.3 21 17.8
21 12.7 2 2 17.9
1 8 13.8 2 0 18.1
1 6 14.2 1 9 18.4
1 5 14.3 9 18.7
2 0 14.5 1 8 18.9
1 4 15.0 1 6 19.2
1 7 15.1 1 7 19.4
8 15.5 1 0 19.6
1 3 15.9 1 4 19.8
9 16.8 1 1 19.8
1 2 16.8 1 5 19.9
1 1 17.2 1 2 20 .0
1 0 17.6 1 3 20.1

4 13.8
5 14.2
3 14.3
2 14.5
6 15.1
1 15.3
0 16.0
7 16.8
8 17.6

2 3 17.9
21 18.5
2 0 18.6
2 2 18.7
9 18.9
1 9 19.2
1 8 19.5
1 6 19.8
1 0 19.9
1 7 19.9
1 1 20 .2
1 4 20 .5
1 2 20 .5
1 3 20 .6
1 5 20 .7

4
2
3
5 
1 
0
6

2 3
7 
22  
21
8 

20  
1 9 
9
1 8 
1 0 
1 1 
1 7 
1 6 
1 2 
1 3 
1 4 
1 5

12.6
12.9
13.0
13.1
13.2
13.9
13.9
15.5
15.6 
15.8
16.2 
16.5
16.7
17.2
17.3
17.8 
18.0 
18 .2  
18.2
19.2
19.2  
20 .0  
20.1
20 .4
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Table 9. Sizes (km2) of annual activity areas for 96 satellite radio-collared 

female polar bears in the Beaufort Sea, 1985-93. Contours surrounding 95% 

and 50% of observed points are shown for both the adaptive kernal and 

harmonic mean methods. Convex polygon areas are shown for comparisons 

to other studies.

Method Mean Minimum Maximum Std. Error

Adaptive kernal

95% contour 197,130 25,580 644,800 13,874

50% contour 34,851 2,979 112,700 2,619

Harmonic mean

95% contour 162,124 12,730 596,800 13,194

50% contour 20,238 1,553 61,760 1,456

Convex polygon 178,033 14,440 616,800 13,762

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table 12. Fidelity of satellite radio-collared female polar bears to monthly 
activity areas in the Beaufort Sea, 1985-93. Distances are separations of 
activity centers, calculated by harmonic mean, among years. Fidelity to 
monthly activity areas was greatest in July and least in December. Months that 
did not differ significantly are overlapped by vertical lines. (F = 8.61, df =
11, P < 0.001; HSD = 4.64, df = 732, P = 0.05).

Month N Mean Std. Error Significance
July 8 2 2 0 1 . 7 1 0 16 . 0 1 8
May 1 1 0 2 4 0 . 4 7 9 2 0 . 2 1 0

August 7 7 2 4 8 . 5 4 6 1 9 . 2 3 0
June 101 2 5 8 . 3 5 0 24 . 281

September 7 2 2 8 4 . 2 9 3 1 7 . 9 0 4
Apri l 1 08 2 9 2 . 7 5 7 2 3 . 4 9 9

February 1 9 3 8 8 . 1 7 7 6 0 . 8 4 3
October 6 6 352 . 05 1 2 3 . 1 6 6

November 7 9 3 7 7 . 4 8 4 2 8 . 6 4 7
March 3 8 3 9 2 . 3 9 2 3 5 . 5 0 5

January 2 4 4 1 3 . 6 0 3 59 . 671
December 3 7 450 .1  16 49 . 981

‘ Significance patterns for October and February do not follow relative values 
of their means due to higher variation among measures in those months.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table 11. Monthly activity area sizes (km2)for radio-collared female polar bears of different reproductive status in 
the Beaufort Sea, 1985-1992. Activity areas were calculated with 95% contour of the harmonic mean method (Dixon 
and Chapman 1980) using a minimum of 8 locations per month. Differences among status were not significant. 
December areas were larger than all others, except January (F = 2.44, df = 11, P < 0.007, HSD = 4.67, df = 214,
P = 0.05). Other differences among months were not significant.

Females/Cubs Single females Females/Yearlings Females/2-Year-Olds TOTALS
Month MEAN S.E. n MEAN S.E. n MEAN S.E. n MEAN S.E. a MEAN S.E. n

Jan 9148 6693 2 3577 3053 6 744 228 2 4124 2222 10
Feb 1417 1 2620 841 4 856 350 3 1808 513 8
Mar 2792 1718 3 572 205 5 154 14 2 1155 580 10
Apr 2367 931 9 2505 1355 8 1548 601 3 1692 489 29

Totals 3293 1092 15 2384 908 23 901 246 10

Apr 344 110 9 2367 931 9 2505 1355 8 1709 543 26
May 1411 319 11 2888 784 34 1968 631 9 2434 512 54
Jun 509 335 7 2370 460 25 5447 2650 5 2434 508 37
Jul 2124 925 5 1984 409 20 5278 4168 6 2644 838 31

Aug 427 117 6 2367 663 15 663 326 4 1629 437 25
Sep 1183 418 4 2600 901 15 740 273 2 2153 661 21
Oct 1634 529 8 2948 862 11 1802 1045 5 2271 483 24
Nov 4460 1637 10 2268 848 6 5397 3584 9 4271 1428 25
Dec 8701 3710 8 4996 4789 2 11926 6111 5 9282 2793 15

Totals 2461 580 68 2547 272 137 4113 1040 53

Jan 9148 6693 2 3577 3053 6 4770 2725 8
Feb 1417 1 2620 841 4 2379 695 5
Mar 2792 1718 3 572 205 5 1404 704 8
Apr 2367 931 9 2505 1355 8 2431 779 17
May 2888 784 34 1968 631 9 2695 633 43
Jun 2370 460 25 5447 2650 5 2883 594 30
Jul 1984 409 20 5278 4168 6 2744 988 26

Aug 2367 663 15 663 326 4 2009 548 19
Sep 2600 901 15 740 273 2 2381 806 17
Oct 2948 862 11 1802 1045 5 2590 671 16
Nov 2268 848 6 5397 3584 9 4146 2162 15
Dec 4996 4789 2 11926 6111 5 9946 4528 7

Totals 2637 279 143 3718 856 68
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Table 12. Fidelity of satellite radio-collared female polar bears to monthly 
activity areas, in the Beaufort Sea, 1985-93. Distances are separations of 
activity centers, calculated by harmonic mean, among years. Fidelity to 
monthly activity areas was greatest in July and least in December. Months that 
did not differ significantly are overlapped by vertical lines. (F = 8.61, df =
11, P < 0.001, HSD = 4.64, df = 732, P = 0.05).

Month N Mean STd. Error S ignificance’
July 8 2 2 0 1 . 7 1 0 1 6 . 0 1 8
May 1 1 0 2 4 0 . 4 7 9 2 0 . 2 1 0

August 7 7 2 4 8 . 5 4 6 1 9 . 2 3 0
June 101 2 5 8 . 3 5 0 24 . 2 81

September 7 2 2 8 4 . 2 9 3 1 7 . 9 0 4
Apri l 1 08 2 9 2 . 7 5 7 2 3 . 4 9 9

February 1 9 3 8 8 . 1 7 7 6 0 . 8 4 3
October 6 6 3 5 2 . 0 5 1 2 3 . 1 6 6

November 7 9 3 7 7 . 4 8 4 2 8 . 6 4 7
March 3 8 3 9 2 . 3 9 2 3 5 . 5 0 5

January 2 4 4 1 3 . 6 0 3 59 . 671
December 3 7 4 5 0 . 1 1 6 4 9 . 981

‘ Significance patterns for October and February do not follow relative values 
of their means due to higher variation among measures in those months.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Hours between Relocations
Figure 1. Mean and 95% confidence intervals on the relationship between rate of 
movement of polar bears in the Beaufort Sea and time interval separating 
satellite telemetry relocations. Measurements from 106 females radio collared 
between 1985-1992. The steep slope of the left-hand end of the fitted curve 
suggested more realistic movement rates could be derived if relocation interval 
was kept shorter than 100 hours.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 2. Diel activity patterns (% hour active at each hour) of satellite radio-collared 
female polar bears in the Beaufort Sea, 1988-93. Bears of all reproductive status 
categories are pooled in this figure to illustrate overall activity patterns.
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Figure 3. Diel activity (% hour active at each hour) of satellite radio-collared female 
polar bears not encumbered by young of any age in the Beaufort Sea, 1988-93.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pe
rc

en
ta

ge
 

of 
Ea

ch
 

Ho
ur

 B
ea

rs 
W

er
e 

Ac
tiv

e

121

35 

30 

25 

20 

15 

30 

25 

20 

15 

10 

35 

30 

25 

20 

15 

10 

5 

0

Hour of the Day
Figure 4. Diel activity patterns (% hour active at each hour) of satellite radio-collared 
female polar bears accompanied by cubs of the year, in the Beaufort Sea, 1988-93.
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Figure 5. Diel activity patterns (% hour active at each hour) of satellite radio-collared 
female polar bears accompanied by yearlings in the Beaufort Sea, 1988-93.
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Figure 6. Diel activity patterns (% hour active at each hour) of satellite radio-collared 
female polar bears accompanied by 2-year-old young in the Beaufort Sea, 1988-93.
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BEAUFORT SEA

Figure 7. Activity area boundaries calculated with the harmonic mean method for satellite radio-collared 
polar bear #1734. Boundaries shown enclose 95% of the locations recorded in each year. Note 
variation in geographic areas occupied among years.

to



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

BEAUFORT SEA

t$

---------------

r
I

CHUKChT
SEA

* ' -JA-*
..--/rVf’SrC C-fi't \

'.v.j, : L ' - ;C r ' \

V
ALASKA

i-tfi

i **>t
« v

\  ^  iw\ V3W'3S-.«a
*-rt«

T-SVjfS <» «^T 'arT .-s . 
7 r * f *

<£? *f%4

,N

_S't
CANADA

1987
1988
1989 
4000 200

km

Figure 8. Activity area boundaries calculated with the harmonic mean method for satellite radio-collared 
polar bear #6201. Boundaries shown enclose 95% of the locations recorded in each year. Note 
variation in geographic areas occupied among years.

toLrt



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Chukchi

Cape 
Lisburne 

•  .

i  Pt. Hope

Barrow 

Wainwnght

Prudhoe 
•  Bay

Kotzebue

'\

t7 +■

JSS%’ K
SB.>J *  - -

* ti -i f 1vl*
'  . A la s k a  !

■ ■ ■ '  • . ̂ rSw*iy ̂
o^V7Jp.t

"S*fciS
A*

 ̂  ̂ v x~ -\ J

200 4001
km

\
Figure 9. Approximate bounds (95% contour) of the Beaufort Sea polar bear population (solid), and core (50% contour) 
activity area (dashed) determined by harmonic mean analysis of satellite radio-telemetry data collected 1985-1993. Not 
including land areas, the population boundary enclosed 939,153 km2 and the core area enclosed 122,089 km2. Also 
shown are place names used in the text.

too\



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Figure 10. Numbers and positions of relocations (bears) of satellite radio-collared polar bears captured in each of 6 longitudinal 
zones within the Beaufort Sea. Histograms illustrate proportions of those relocations made in each zone (e.g., 32% of the 2226 
relocations of bears originally captured in the Lonely zone were recorded in the Barter Island zone; 47% of the 1079 relocations
of bears captured in the Wainwright zone were recorded in the Chukchi zone). i—
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Figure 11. Monthly harmonic mean centers of activity for satellite radio-collared female polar 
bears in the Beaufort Sea, 1985-93. All bears and all years are grouped by month. Lines con
nect activity centers from one year to the next for the same individual bears. Note that bears 
were most likely to return to the vicinity of previous activities during the summer months.
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CHAPTER III

SURVIVAL RATES OF RADIO-COLLARED FEMALE POLAR BEARS 

AND THEIR DEPENDENT YOUNG1

S. C. Amstrup and G. M. Durner

1 Accepted for publication in the Canadian Journal of Zoology, 17 March 1995: 
Amstrup, S. C., and G. M. Durner. 19____ . Survival rates of radio

collared female polar bears and their dependent young. Can. J. Zool. 
00 :000-000 .
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Polar bears (Ursus maritimus! are hunted throughout most of their 

range. In addition to hunting, polar bears of the Beaufort Sea region are 

exposed to mineral and hydrocarbon extraction and related human activities 

such as shipping, road-building, and seismic testing. As human populations 

increase and demands for polar bears and other arctic resources escalate, 

reliable estimates of survivorship of polar bears are needed to predict and 

manage impacts of those activities. We used the Kaplan-Meier model to 

estimate annual survival (with 95% confidence intervals) for radio-collared 

female polar bears and their dependent young that were followed during a 12 

year study in the Alaskan Beaufort Sea. Survival of adult female polar bears 

was higher than previously thought S = 0.969 (0.952-0.983). If human caused 

mortalities were deleted, the computed survival rate was S = 0.996 (0.990

1.002). Survival of young from den exit to weaning was S = 0.676 (0.634

0.701). Survival during the second year of life S = 0.860 (0.751-0.903) was 

substantially higher than that of the first year S = 0.651 (0.610-0.675).

Shooting by local hunters accounted for 85% of the documented deaths of 

adult female polar bears. Conversely, 90% of documented losses of young 

accompanying collared females were not directly caused by humans. Deaths 

of dependent young were independent of litter size (P = 0.36), indicating that 

parental investment in single cubs was not different from investment in litters of 

2 or more. Precise estimates of survival of independent juveniles and adult 

males still need to be developed.
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Introduction

Compared with most mammals, polar bears are slow to mature, have 

long interbirth intervals, and small litters (DeMaster and Stirling 1981; Amstrup 

and DeMaster 1988). Some specifics of polar bear population dynamics, 

however, remain unknown. Production of cubs by polar bears, for example, 

often has been underestimated (Stirling et al. 1975; Lentfer et al. 1980; 

DeMaster and Stirling 1983; Amstrup et al. 1986). Under-sampling of cubs 

can prevent accurate descriptions of age structures, and prohibit estimates of 

survival. In polar bears and other animals that are constrained by their 

evolutionary histories to long delays in maturation, adult survival is the 

parameter that has the greatest impact on population growth (Eberhardt and 

Siniff 1977; Eberhardt 1985; Taylor et al. 1987). However, obtaining useful 

estimates of survivorship is one of the most difficult challenges in population 

analysis (Eberhardt 1985). Annual survival rates for adult females in the high 

90-percentile range are thought to be necessary to sustain population 

numbers for large mammals with low reproductive potential (Eberhardt 1985). 

Previous estimates of survival rates for polar bears, which were derived from 

age-structure or mark and recapture data, were between 80% and 94% 

(DeMaster and Stirling 1981; Furnell and Schweinsburg 1984; Amstrup et al.

1986; Amstrup and DeMaster 1988; Ramsay and Stirling 1988; Derocher 

1991) and, in most cases, insufficient to maintain polar bear populations if 

existing estimates of recruitment are accurate. For polar bears, the only useful 

estimates of age structures are subject to many limitations because they are 

composites constructed from multi-year data (Spinage 1972; Amstrup et al.
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1986). Similarly, heterogeneity in mark and recapture data has reduced 

accuracy and precision of survival estimates derived from them (Amstrup et al. 

1986; Amstrup and DeMaster 1988). We hypothesized that survival rates of 

polar bears must be higher than indicated by previous estimates.

Polar bears are hunted throughout most of their range. In addition to 

hunting, polar bears of the Beaufort Sea region are exposed to mineral and 

hydrocarbon extraction and related human activities such as shipping, road- 

building, and seismic testing. As human populations increase and demands 

for polar bears and other arctic resources escalate, reliable estimates of 

survivorship and reproduction of polar bears are needed to predict and 

manage impacts of those activities. The objective of this study was to develop 

reliable estimates of survival of adult and juvenile polar bears in the Beaufort 

Sea.

Materials and Methods

Field Procedures

We captured and marked polar bears each spring between 1982 and 

1992, except for 1990. Bears also were captured in autumns of 1981-86,

1988, and 1989. Autumn captures occurred in October and November each 

year, and spring captures occurred between March and May. We captured 

polar bears throughout the Alaskan Beaufort Sea, which extends from Point 

Barrow, Alaska, at approximately 157°W, to the Canadian border, at 141 °W, 

and in bordering areas to the east and west. We immobilized polar bears by
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injecting drugs [phencyclidine hydrochloride (Sernylan®, Park, Davis and Co.), 

etorphine hydrochloride (M-99®, Lemmon Co.), and tiletamine hydrochloride 

plus zolazepam hydrochloride (Telazol®, Warner-Lambert Co.)] with projectile 

syringes fired from helicopters (Larsen 1971; Schweinsburg et al. 1982;

Stirling et al. 1989). Capture and marking protocols were approved by an 

independent animal care and welfare committee.

Each year, we collared a limited number (x =27) of adult females with 

radio transmitters. We attached very high frequency (VHF) radio collars to 

polar bears between 1981 and 1985 and relocated them approximately 4 

times per year with aircraft (Amstrup and Gardner 1994). After autumn 1985, 

we mostly deployed ultra high frequency platform transmitter terminals (PTT’s) 

that were relocated by satellite. Sensors on PTT’s recorded temperature of 

the collar and 2 indices of activity. Positions of collared animals were 

determined by sensors on the satellite that interpreted frequency shift patterns 

caused by changes in relative positions of the satellites and animals (Fancy et 

al. 1988). Collars carrying PTT’s also carried VHF beacons that we located 

with aircraft. Survival of radio-collared bears was determined by periodic 

reobservations from aircraft, and by movement and activity patterns 

discernible from sensors on PTT’s. PTT’s provided data at least weekly. We 

attempted to reobserve radio-collared polar bears by aircraft every 2-3 months. 

Reobservations were not always evenly distributed in time, however, and were 

most frequent during spring and autumn when the combination of ice 

conditions and daylight were most suited to visual observations. Hence, we 

divided reobservations into spring (January-June) and autumn (July-
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December) time intervals.

Analyses

Cementum annuli from extracted premolar teeth were counted to 

estimate ages of radio-collared animals (Hensel and Sorensen 1980; Stirling 

et al. 1980). Counts were performed at the Laboratory of Polar Bear and Seal 

Research, University of Alberta, Edmonton, Alberta Canada. Survival rates for 

adult females and the young accompanying them were estimated by following 

radio-collared polar bears and determining their fates. Data were analyzed 

using the Pollock et al. (1989) staggered entry modification of the Kaplan and 

Meier (1958) survivorship model. We chose this method because of 1) its 

elegant simplicity (computations similar to those used in life tables), 2) the 

ease with which the model deals with censored animals (animals that 

disappear from the study and for which neither subsequent death nor 

continued life can be documented), and 3) the broad basis in survival theory. 

Pollock et al. (1989) censored animals (deleted them from numbers at risk) 

during the first time period in which they were missed by the search effort. 

Because our time intervals were long (e.g., 2 periods per year) we decided to 

censor animals during the period in which they were last observed rather than 

waiting for the first period in which they were not observed. This resulted in 

lower estimates of survival. With the variation in our reobservation intervals 

and the long time periods used, however, we felt that the more conservative 

estimates were safer. Numerous animals left the study when they shed their 

radios or when their radios failed and then re-entered the study as new
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animals at risk when they were recaptured and fitted with new radio collars.

Some animals were censored and then found dead several time periods later. 

These deaths provided information on mortality patterns, but due to the need 

to be consistent in reporting whether animals died or were censored, we could 

not use them in calculation of mortality rates.

Pollock et al.’s (1989) mode! estimates a survival rate and confidence 

interval on that rate for the telemetry study duration, in our case 12 years. We 

converted survival estimates for the whole study to the parameter of interest, 

annual survival, by taking the 12th root of the point and interval estimates.

“Total” and “natural” survival were calculated. Computations of total survival 

included all documented deaths. Natural survival was estimated by censoring 

animals that died due to human-causes rather than recording them as deaths.

We also calculated survival of young between age 0-1 and 1-2 with the 

procedure of Trent and Rongstad (1974). That procedure is simply a 

comparison of the observed losses with binomial expectations (e.g. the mean 

survival rate for the Ẑ 7 period of monitoring is s, = *' ~ Yi, where Xj represents
xi

the number of animals monitored in the Ẑ 7 period and y/ represents the 

numbers of animals dying in the Ẑ 7 period). For dependent young, we 

examined two time periods: 1. when young were aged “0-1”, and 2. when 

young were aged “1-2”. We modified the Trent and Rongstad (1974) 

procedure by assuming that censored animals died at the same rate as non

censored animals. Those assumed deaths were then added to deaths (y/) 

actually observed. For example, if Sj = 0.8, then 20% of censored animals
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were assumed to have died and that 20 was added to the number of known 

mortalities. Also, rather than estimating confidence intervals from a published 

table of approximations (Trent and Rongstad 1974), we generated individual 

binomial distributions with the binomial probability function in SAS version 6.07 

(SAS Institute Inc., Cary, NC) to establish our interval estimates. We report 

survival as “point estimate or mean” followed by 95% confidence interval, 

when interval estimates were available.

Results

Survival was estimated from attachment of 297 radio collars to adult 

female polar bears between 1981 and 1992 (Table 1). We estimated survival 

over the 12-year study period at 0.684 (0.553-0.816). This 12-year survival 

rate translated into a constant annual survival rate of S = 0.969 (0.952-0.983). 

Radio-collared females ranged in estimated age from 3 to 27 years. Survival 

estimates for females aged 3-10 were S = 0.964 (0.906-0.998) (Table 2). For 

ages 11-27, the estimates were S = 0.962 (0.933-0.984) (Table 3). Although 

fewer animals died between the ages of 3 and 10 than from 11-27, the 95% 

confidence intervals around the estimates for each age group overlapped 

extensively suggesting that the difference was not significant. Deletion of 

mortalities caused by humans resulted in an estimated natural survivorship of 

0.996 (Table 4) with a 95% confidence interval that overlapped unity (0.990

1.002).

Only 26 deaths of radio-collared adult female polar bears were 

documented during the 12 years of monitoring. These included: 3 natural
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deaths, 1 death caused by consumption of ethylene glycol from an unknown 

source (Amstrup et al. 1989), and 22 bears (85% of the detected mortality) 

shot by coastal hunters. Six of those deaths (1 natural death plus 5 hunting 

mortalities) could not be included in Kaplan-Meier calculations because the 

deaths were not discovered by radio-telemetry, and the animals had been 

censored, due to radio failure, long before their deaths. Two of the natural 

deaths of radio-collared polar bears apparently were caused by fatal fights with 

other bears. The cause of the third natural mortality was not determined due 

to weather and the distance to the site of death; however human intervention 

seemed unlikely. During the course of the study, we also were able to 

determine the causes of deaths of 3 unmarked bears that were serendipitously 

found dead. One of these, a large male, died of gastric dilatation and volvulus 

(Amstrup and Nielsen 1989), one adult female died of complications arising 

from blockage of the bile duct by gall stones, and a third was apparently killed 

and eaten by a large male. Hence, agonistic behavior was the apparent cause 

of 3 of the 5 natural deaths we observed.

Survival of young from den exit through the time of weaning was 

S = 0.676 (0.634-0.701) (Table 5). Most of the mortality of young occurred 

during the first year of life (Table 6), when the annual survival rate was 

S = 0.651 (0.610-0.675). Survival during the second year of life S = 0.859 

(0.751-0.903) was much higher (Table 7). Binomial estimates of cub (x =

0.71; 0.63-0.82) and yearling (x = 0.87; 0.85-0.93) survival (Trent and 

Rongstad 1974) were higher than Kaplan-Meier estimates.
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Deaths of five cubs or yearlings were associated with the harvest of 

their radio-collared mothers. We concluded the 2 yearlings accompanying the 

radio-collared bear that died of ethylene glycol poisoning also died, but 

because they were not radio-collared, their remains were not found. The 61 

other documented deaths of young of radio-collared females were due to 

unidentified natural causes. Fifty of 68 documented deaths of young were 

from litters of 2. We recorded 20 deaths of single young from litters of two, 

and loss of 15 whole litters of two. Rates of disappearance of young as 

singles or as whole litters were not significantly different (%2 = 0.83, df = 1, P 

= 0.36). Likewise, the rate of loss of litters of single cubs (16 of 102 litters) did 

not differ from the rate of loss of litters of twin cubs (15 of 106) (%2 = 0.072, df 

= 1, P = 0.79).

Discussion

Annual variability in mortality of adult females (Tables 1-3) mainly 

resulted from annual variation in numbers of bears killed by hunters. Hunter 

kill was regulated by the availability of bears near coastal settlements.

Proximity of radio-collared bears to the coast and hence their vulnerability to 

harvest, varied with weather and sea-ice conditions, among years. The polar 

bear’s evolutionary strategy of long life would suggest that variations in 

mortality of adults caused by natural factors will occur infrequently and 

irregularly, and that annual survival of adults should be treated as a constant 

(Eberhardt 1977). Hence, an estimate of annual mortality calculated over a 

period of several years is more useful than shorter-term measurements that
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are influenced by serendipity.

These are the first estimates of survival for polar bears that were 

determined by following known individuals over time. Hence, they are not 

subject to a variety of assumptions (e.g., stable age structure, equal probability 

of capture) that can be violated when relying on other methods. Estimates 

based on age structure analyses can be reliable if the assumptions are met 

(Caughley 1966; 1967; 1977). However, such methods have dealt with 

“synthetic cohorts” and are subject to many questions (Spinage 1972) to which 

we seldom have answers. DeMaster and Stirling (1983) and Larsen (1985) 

used changes in numbers and sizes of litters seen to estimate survival of 

young. Age structure estimates are particularly dubious for cubs, because 

new cubs in the spring, the first group in the age structure, may be 

under-sampled (Amstrup and DeMaster 1988). Other published estimates of 

survival of young have been based on mark/recapture data. Reliability of both 

age structure and mark/recapture data from polar bear studies usually is 

limited by small sample sizes and heterogeneity of the capture samples.

This study has shown that survival rates of polar bears are higher, at 

least in the Beaufort Sea, than previous estimates have indicated. Estimated 

survival rates of adult bears approached 1 when they were unperturbed by 

humans. These estimates were sufficient to allow the growth in the population 

that has been observed in recent years (Amstrup unpubl.). Also, these 

estimates corroborated the conclusions of Eberhardt (1985) that marine 

mammal populations can be sustained only if survival of adults is in the high
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90% range. Even the lower extremes of our interval estimates fall within the 

range prescribed by Eberhardt (1985).

Two caveats on our estimates of survival rate for adults should be 

considered. First, if a disproportionate number of censored subjects were 

undiscovered deaths, our survivorship estimates could be biased upward.

Second, the difference between our estimates of total and natural survival 

does not include the possibility of density-dependent compensation.

We believe our search efforts were successful in preventing survival 

estimates from becoming significantly biased. If animals dying of natural 

causes tended to sink, preventing subsequent transmissions, or if all radios 

quit at the time of death, a bias could have emerged. We discovered many 

premature failures of the radio hardware, and we discovered many cases of 

bears shedding their radios at various times after attachment. Simultaneous 

death and radio failure appeared highly unlikely, and in our experience, bears 

that die of natural causes are not likely to sink. Bears that were sick sought 

firm substrates in which to rest and ultimately die (Amstrup et al. 1989;

Amstrup and Nielsen 1989; Amstrup unpubl.). If many instrumented animals 

were dying during this study, we would have found them.

If animals were illegally killed and their collars destroyed they would 

have been undetected. We are confident that “illegal kills” were not common.

The taking of a polar bear is a big event in the coastal villages of the Beaufort 

Sea and difficult to keep secret. Also, polar bear hunters in the Beaufort Sea 

make a concerted effort to police themselves (Treseder and Carpenter 1989;
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Nageak et al. 1991). Hence, we believe the vast majority of our censored 

animals were shed radios or radio failures and not undetected deaths, and we 

feel our estimate of total survival is largely unbiased.

Some compensation in mortality of polar bears in the Beaufort Sea 

seems likely. Amstrup (unpubl.) reported strong evidence of a density 

response involving survival of young and stature of adult females. With a 

population size lower than 2000 and a harvest of approximately 80 (Amstrup et 

al. 1986; Treseder and Carpenter 1989; Nageak et al. 1991; Amstrup unpubl.) 

density responses involving even small numbers noticeably could alter 

estimated rates. Hence, for purposes of simulation, estimates of natural 

survival rate between 0.969 and 0.996 also should be considered.

We are more confident in the Kaplan-Meier estimates than we are in 

our binomial (Trent and Rongstad 1974) estimates because of the systematic 

method in which censored animals are incorporated. Our treatment of 

censored animals in the binomial model was sensible, but “ad-hoc.”

Survivorship of dependent young was independent of the litter sizes of 

which they were a part. This implies that parental investment does not 

diminish for single cub litters as suggested by Tait (1980). Polar bears breed in 

the spring, implantation occurs in the autumn, and birth occurs in mid-winter 

(Ramsay and Stirling 1988). The altricial young then must be nurtured for 

months inside a birth lair, and then for up to two years following emergence 

(Ramsay and Dunbrack 1986). During any reproductive cycle, therefore, many 

physiological and ecological unknowns could intervene between conception
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and birth, and between birth and weaning. A bear with a litter of any size has 

overcome many of the hurdles it faces in attempts to reproduce. It would 

make no sense for such a bear, assuming sufficient resources are available to 

raise the cub, to make a decision to abandon or otherwise reduce investment 

in a single cub. The next cycle, after all, may be worse from the standpoint of 

foraging opportunity, snow cover for denning, or even the opportunity to 

encounter an acceptable mate. Furnell and Schweinsburg (1984) concluded 

that mortality of dependent young occurred primarily by loss of whole litters. 

Females that cannot care for 2 young, they reasoned, cannot care for 1. Our 

data refute that conclusion also. Events that lead to loss of a portion of a litter 

do not necessarily result in loss of all litter members. In fact, often it may be 

the case that a female is inadequately nourished to provision for multiple 

young, but could provide for a single cub.

Eberhardt (1977) observed that juvenile marine mammals were most 

vulnerable to relative scarcity of resources. Young and Ruff (1982) 

demonstrated that social interactions in black bears can directly influence 

recruitment of young to adult age even when food resources are not in short 

supply. We observed that survival of dependent polar bears improved with 

age. We were unable, however, to examine survival of independent juveniles 

(aged 2-3) with radio-telemetry. We have observed juvenile bears scavenging 

kills of more experienced animals, and Stirling (1974) and Smith (1980) 

presented evidence of the potential importance of such scavenging to 

recruitment. We also have observed that larger bears often chase smaller 

bears away from kills, and sometimes even kill them. This suggests that
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successful foraging among independent juveniles, and their survival, may be 

influenced by social factors as well as availability of seals.

Male polar bears cannot be followed by radio telemetry for extended 

periods because their necks are larger than their heads, and radio-collars do 

not stay attached. Hence, we have no radio-telemetry data on survivorship of 

adult males. Adult males are of course, necessary for population 

maintenance. Males also may be vectors of population regulation 

(McCullough 1981; Young and Ruff 1982). Population dynamics of polar bears 

will be fully understood only with better estimates of survival of independent 

juveniles and adult males; and with clarification of the possible roles males 

may play in regulating population size.
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according to Pollock et al. (1989). Instantaneous mortality in each period calculated as M  = lo g e(s ,) (Krebs 1989).

Table. 1. Kaplan-Meier survival rate estimates calculated from female polar bears of all ages that were radio-collared in the Beaufort Sea of

Alaska and Canada 1981-1992. Staggered entry of new animals into the study, and calculation of finite survival rate (s ,) were handled

SEASON New Radios 

Applied

Total Number 

at Risk 

ri .

Censored Deaths

di

Survival

s,

Mortality

M

Var |S , j Minimum 95%  

Interval on S,
Maximum 95% 

Interval on S,

sp81 15 15 13 0 1.000 0.000 1.000 1.000

au81 14 16 1 0 1.000 0.000 0.000 1.000 1.000

sp82 14 29 6 0 1.000 0.000 0.000 1.000 1.000

au82 5 28 6 0 1.000 0.000 0.000 1.000 1.000

sp83 24 46 7 0 1.000 0.000 0.000 1.000 1.000

au83 6 45 12 0 1.000 0.000 0.000 1.000 1.000

sp84 24 57 20 1 0.982 0.018 0.000 0.949 1.016

au84 1 37 10 1 0.956 0.027 0.001 0.891 1.021

sp85 42 68 8 2 0.928 0.030 0.001 0.869 0.987

au85 4 62 8 0 0.928 0.000 0.001 0.866 0.990

sp86 16 70 24 2 0.901 0.029 0.001 0.835 0.968

au86 1 45 11 0 0.901 0.000 0.002 0.819 0.984

sp87 14 48 15 0 0.901 0.000 0.002 0.821 0.981

au87 0 33 2 1 0.874 0.031 0.003 0.768 0.980

sp88 15 45 9 2 0.835 0.045 0.003 0.736 0.934

au88 28 62 2 0 0.835 0.000 0.002 0.751 0.920

sp89 10 70 13 1 0.823 0.014 0.002 0.742 0.904

au89 27 83 17 0 0.823 0.000 0.001 0.749 0.898

sp90 0 66 23 6 0.748 0.095 0.002 0.658 0.839

au90 0 37 3 0 0.748 0.000 0.004 0.627 0.869

sp91 14 48 11 1 0.733 0.021 0.003 0.626 0.840

au91 0 36 7 1 0.712 0.028 0.004 0.588 0.837

sp92 23 51 16 2 0.684 0.040 0.003 0.579 0.790

au92 0 33 33 0 0.684 0.000 0.004 0.553 0.816

Total 297 Annual Survival Rate 0.969 0.952 0.983
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according to Pollock et al. (1989). Instantaneous mortality in each period calculated as M = lo g e(s,) (Krebs 1989).

Table. 2. Kaplan-Meier survival rate estimates calculated from female polar bears aged 3-10 that were radio-collared in the Beaufort Sea of

Alaska and Canada 1981-1992. Staggered entry of new animals into the study, and calculation of finite survival rate (s ,j were handled

SEASON New Radios 

Applied

Total Number 

at Risk 

ri

Censored Deaths

di

Survival

s ,

Mortality

M
Var (S,) Minimum 95% 

Interval on S,
Maximum 95% 

Interval on S,

sp81 11 11 10 0 1.000 0.000 1.000 1.000

au81 9 10 5 0 1.000 0.000 0.000 1.000 1.000

sp82 10 15 4 0 1.000 0.000 0.000 1.000 1.000

au82 3 14 5 0 1.000 0.000 0.000 1.000 1.000

sp83 16 25 4 0 1.000 0.000 0.000 1.000 1.000

au83 4 25 8 0 1.000 0.000 0.000 1.000 1.000

sp84 14 31 16 1 0.968 0.033 0.001 0.907 1.029

au84 1 15 7 1 0.903 0.069 0.005 0.761 1.045

sp85 25 32 7 0 0.903 0.000 0.002 0.806 1.001

au85 3 28 5 0 0.903 0.000 0.003 0.799 1.007

sp86 8 31 8 2 0.845 0.067 0.004 0.728 0.962

au86 1 22 10 0 0.845 0.000 0.005 0.706 0.984

sp87 9 21 10 0 0.845 0.000 0.005 0.703 0.987

au87 0 11 1 0 0.845 0.000 0.010 0.648 1.042

sp88 12 22 6 1 0.807 0.047 0.006 0.658 0.955

au88 20 35 3 0 0.807 0.000 0.004 0.689 0.924

sp89 5 37 12 0 0.807 0.000 0.003 0.692 0.921

au89 9 34 18 0 0.807 0.000 0.004 0.687 0.926

sp90 0 16 10 2 0.706 0.134 0.009 0.518 0.893

au90 0 4 1 0 0.706 0.000 0.037 0.331 1.081

sp91 6 9 6 0 0.706 0.000 0.016 0.456 0.956

au91 0 3 1 0 0.706 0.000 0.049 0.273 1.139

sp92 9 11 5 1 0.642 0.095 0.013 0.415 0.869

au92 0 5 8 0 0.642 0.000 0.030 0.305 0.978

Total 175 Annual Survival Rate 0.964 0.906 0.998
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according to Pollock et al. (1989). Instantaneous mortality in each period calculated as M = lo g  |s ,j (Krebs 1989).

Table. 3. Kaplan-Meier survival rate estimates calculated from female polar bears aged 11-27 that were radio-collared in the Beaufort Sea of

Alaska and Canada 1981-1992. Staggered entry of new animals into the study, and calculation of finite survival rate (s ,j were handled

SEASON New Radios 

Applied

Total Number 

at Risk

n

Censored Deaths

di

Survival

s,

Mortality

M

Var (S ,) Minimum 95% 

Interval on S,
Maximum 95% 

Interval on S,

Sp81 2 2 1 0 1.000 0.000 1.000 1.000

au81 5 6 0 0 1.000 0.000 0.000 1.000 1.000

sp82 6 12 4 0 1.000 0.000 0.000 1.000 1.000

au82 2 10 3 0 1.000 0.000 0.000 1.000 1.000

sp83 8 15 4 0 1.000 0.000 0.000 1.000 1.000

au83 2 13 3 0 1.000 0.000 0.000 1.000 1.000

sp84 10 20 7 0 1.000 0.000 0.000 1.000 1.000

auB4 1 14 2 0 1.000 0.000 0.000 1.000 1.000

sp85 19 31 3 3 0.903 0.102 0.003 0.804 1.002

au85 1 26 4 0 0.903 0.000 0.003 0.795 1.011

sp86 11 33 13 0 0.903 0.000 0.002 0.807 0.999

au86 0 20 3 0 0.903 0.000 0.004 0.780 1.026

sp87 4 21 7 0 0.903 0.000 0.004 0.783 1.023

au87 0 14 0 1 0.839 0.074 0.008 0.662 1.015

sp88 3 16 4 1 0.786 0.065 0.008 0.608 0.964

au88 8 19 2 0 0.786 0.000 0.007 0.623 0.950

sp89 7 24 2 1 0.754 0.043 0.006 0.604 0.903

au89 7 28 4 0 0.754 0.000 0.005 0.615 0.892

sp90 6 30 9 3 0.678 0.105 0.005 0.541 0.816

au90 1 19 1 0 0.678 0.000 0.008 0.505 0.851

sp91 10 28 5 1 0.654 0.036 0.005 0.511 0.796

au91 1 23 6 0 0.654 0.000 0.006 0.497 0.811

sp92 9 26 10 1 0.629 0.039 0.006 0.482 0.776

au92 0 15 14 0 0.629 0.000 0.010 0.435 0.823

Total 123 Annual Survival Rate 0.962 0.933 0.984

Ul
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to Pollock et al. (1989). Instantaneous mortality in each period calculated as M  = l 0 9e( S,) (Krebs 1989). Natural survival rates were calculated by 

censoring animals that were killed by humans rather than including them as deaths.

Table. 4. Kaplan-Meier estimates of natural survival rate calculated from female polar bears of all ages that were radio-collared in the Beaufort Sea

of Alaska and Canada 1981-1992. Staggered entry of new animals into the study, and calculation of finite survival rate (s,) were handled according

SEASON New Radios 

Applied

Total Number 

at Risk 

0

Censored Deaths

di

Survival

s,

Mortality

M
Var (s ,) Minimum 95% 

Interval on S,
Maximum 95% 

Interval on S,

sp81 15 15 13 0 1.000 0.000 1.000 1.000

au81 14 16 1 0 1.000 0.000 0.000 1.000 1.000

sp82 14 29 6 0 1.000 0.000 0.000 1.000 1.000

au82 5 28 6 0 1.000 0.000 0.000 1.000 1.000

sp83 24 46 7 0 1.000 0.000 0.000 1.000 1.000

au83 6 45 12 0 1.000 0.000 0.000 1.000 1.000

sp84 24 57 21 0 1.000 0.000 0.000 1.000 1.000

au84 1 37 10 1 0.973 0.027 0.001 0.921 1.025

sp85 42 68 10 0 0.973 0.000 0.000 0.935 1.011

au85 4 62 8 0 0.973 0.000 0.000 0.933 1.013

sp86 16 70 26 0 0.973 0.000 0.000 0.936 1.010

au86 1 45 11 0 0.973 0.000 0.001 0.926 1.020

sp87 14 48 15 0 0.973 0.000 0.001 0.928 1.018

au87 0 33 3 0 0.973 0.000 0.001 0.918 1.028

sp88 15 45 11 0 0.973 0.000 0.001 0.926 1.020

au88 28 62 2 0 0.973 0.000 0.000 0.933 1.013

sp89 10 70 14 0 0.973 0.000 0.000 0.936 1.010

au89 27 83 17 0 0.973 0.000 0.000 0.939 1.007

sp90 0 66 28 1 0.958 0.015 0.001 0.911 1.005

au90 0 37 3 0 0.958 0.000 0.001 0.895 1.021

sp91 14 48 12 0 0.958 0.000 0.001 0.903 1.014

au91 0 36 *  8 0 0.958 0.000 0.001 0.894 1.022

sp92 23 51 18 0 0.958 0.000 0.001 0.904 1.012

au92 0 33 33 0 0.958 0.000 0.001 0.891 1.025

Total 297 Annual Survival Rate 0.996 0.990 1.002
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calculated as M = lo g 8(s ,j (Krebs 1989).

Table. 5. Kaplan-Meier estimates of survivorship between den emergence and weaning for young of female polar bears that
were monitored with radiotelemetry in the Beaufort Sea, 1981-1992. Staggered entry of new animals into the study, and

calculation of finite survival rate (s,) were handled according to Pollock et al. (1989). Instantaneous mortality in each period

SEASON Total Number 

at Risk 

0

Censored Deaths

d>

Survival

s,

Mortality

M
Var Minimum 95% 

Interval on S,

Maximum 95% 

Interval on S,

sp81 3 3 0 1.000 0.000 0.000 1.000 1.000

au81 10 5 3 0.700 0.357 0.015 0.462 0.938

sp82 10 3 1 0.630 0.105 0.015 0.392 0.868

au82 10 4 1 0.567 0.105 0.014 0.336 0.798

sp83 6 4 0 0.567 0.000 0.023 0.268 0.866

au83 3 0 0 0.567 0.000 0.046 0.145 0.989

sp84 20 9 4 0.454 0.223 0.006 0.307 0.601

au84 8 3 2 0.340 0.288 0.010 0.149 0.532

sp85 10 3 2 0.272 0.223 0.005 0.128 0.416

au85 7 1 2 0.194 0.336 0.004 0.065 0.324

sp86 23 2 5 0.152 0.245 0.001 0.095 0.209

au86 16 3 1 0.143 0.065 0.001 0.078 0.207

sp87 24 13 1 0.137 0.043 0.001 0.086 0.187

au87 10 0 7 0.041 1.204 0.000 0.016 0.066

sp88 14 4 2 0.035 0.154 0.000 0.017 0.053

au88 34 4 4 0.031 0.125 0.000 0.021 0.041

sp89 42 12 9 0.024 0.241 0.000 0.017 0.032

au89 48 6 2 0.023 0.043 0.000 0.017 0.030

sp90 46 27 10 0.018 0.245 0.000 0.013 0.024

au90 13 4 4 0.013 0.368 0.000 0.006 0.019

sp91 23 5 3 0.011 0.140 0.000 0.007 0.015

au91 17 6 1 0.010 0.061 0.000 0.005 0.015

sp92 34 17 4 0.009 0.125 0.000 0.006 0.012

au92 13 13 0 0.009 0.000 0.000 0.004 0.014

Annual Survival Rate 0.676 0.634 0.701

UlOn
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calculated as M  =  l o g j s , )  (Krebs 1989).

Table. 6. Kaplan-Meier estimates of survivorship between den emergence and age one for young of female polar bears that
were monitored with radiotelemetry in the Beaufort Sea, 1981-1992. Staggered entry of new animals into the study, and

calculation of finite survival rate (s,) were handled according to Pollock et al. (1989). Instantaneous mortality in each period

SEASON Total Number 

at Risk

n

Censored Deaths

di

Survival

s,

Mortality

M

Var (S ,) Minimum 95% 

Interval on S,
Maximum 95% 

Interval on S,

sp81 3 3 0 1.000 0.000 0.000 1.000 1.000

au81 10 5 3 0.700 0.357 0.015 0.462 0.938

sp82 10 3 1 0.630 0.105 0.015 0.392 0.868

au82 10 4 1 0.567 0.105 0.014 0.336 0.798

sp83 6 4 0 0.567 0.000 0.023 0.268 0.866

au83 3 0 0 0.567 0.000 0.046 0.145 0.989

Sp84 17 6 4 0.434 0.268 0.006 0.278 0.589

au84 8 3 2 0.325 0.288 0.009 0.140 0.510

sp85 10 3 2 0.260 0.223 0.005 0.121 0.399

au85 7 1 2 0.186 0.336 0.004 0.062 0.310

sp86 21 0 5 0.142 0.272 0.001 0.085 0.198

au86 16 3 1 0.133 0.065 0.001 0.072 0.193

sp87 15 4 1 0.124 0.069 0.001 0.065 0.183

au87 10 0 7 0.037 1.204 0.000 0.015 0.060

sp88 11 1 2 0.030 0.201 0.000 0.013 0.048

au88 34 4 4 0.027 0.125 0.000 0.018 0.036

Sp89 37 7 9 0.020 0.279 0.000 0.014 0.027

au89 48 6 2 0.019 0.043 0.000 0.014 0.025

sp90 27 8 10 0.012 0.463 0.000 0.008 0.017

au90 13 4 4 0.008 0.368 0.000 0.004 0.013

Sp91 20 2 3 0.007 0.163 0.000 0.004 0.010

au91 17 6 1 0.007 0.061 0.000 0.004 0.010

sp92 27 10 4 0.006 0.160 0.000 0.004 0.008

au92 13 13 0 0.006 0.000 0.000 0.003 0.009

Annual Survival Rate 0.651 0.610 0.675

c/i' j
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Table. 7. Kaplan-Meier estimates ot survivorship between age 1 and age 2 tor young of female polar bears that were monitored 

with radiotelemetry in the Beaufort Sea, 1981 -1992. Staggered entry of new animals into the study, and calculation of finite 

survival rate (s,) were handled according to Pollock et al. (1989). Instantaneous mortality in each period calculated as

M  = l 0 g s(S() (Krebs 1989).

SEASON Total Number 

at Risk 

ri

Censored Deaths

4
Survival

s,

Mortality

M

Var |S , j Minimum 95% 

Interval on S,
Maximum 95% 

Interval on S,

sp81 3 3 0 1.000 0.000 0.000 1.000 1.000

au81 1 1 0 1.000 0.000 0.000 1.000 1.000

Sp82 6 3 1 0.833 0.182 0.019 0.561 1.106

au82 4 4 0 0.833 0.000 0.029 0.500 1.167

sp83 5 3 0 0.833 0.000 0.023 0.535 1.132

au83 3 0 0 0.833 0.000 0.039 0.448 1.218

sp84 10 9 1 0.750 0.105 0.014 0.518 0.982

auB4 1 1 0 0.750 0.000 0.141 0.015 1.485

sp85 5 3 1 0.600 0.223 0.029 0.267 0.933

au85 3 1 0 0.600 0.000 0.048 0.171 1.029

sp86 14 2 1 0.557 0.074 0.010 0.363 0.751

au8S 11 2 0 0.557 0.000 0.012 0.338 0.776

sp87 19 13 1 0.528 0.054 0.007 0.365 0.691

au87 5 0 2 0.317 0.511 0.014 0.087 0.546

sp88 6 4 1 0.264 0.182 0.009 0.083 0.445

au88 7 2 0 0.264 0.000 0.007 0.096 0.432

sp89 28 12 2 0.245 0.074 0.002 0.166 0.324

au89 22 3 0 0.245 0.000 0.002 0.156 0.334

sp90 40 27 6 0.208 0.163 0.001 0.151 0.266

au90 7 4 0 0.208 0.000 0.005 0.071 0.346

sp91 15 3 2 0.181 0.143 0.002 0.098 0.263

au91 10 2 1 0.162 0.105 0.002 0.070 0.255

sp92 19 14 0 0.162 0.000 0.001 0.096 0.229

au92 5 5 0 0.162 0.000 0.004 0.032 0.293

Annual Survival Rate 0.859 0.751 0.903

U\
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CHAPTER IV

POPULATION DYNAMICS OF POLAR BEARS IN THE BEAUFORT SEA1

S. C. Amstrup and G. M. Durner

1 Prepared for submission to the Canadian Journal of Zoology:
Amstrup, S. C., and Durner, G. M. 19____ . Population dynamics of

polar bears in the Beaufort Sea. Can. J. Zool. 00:000-000.
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Polar bears (Ursus maritimus) are hunted throughout most of their 

range. In addition to hunting, polar bears of the Beaufort Sea region are 

exposed to mineral and hydrocarbon extraction and related human activities 

such as shipping, road-building, and seismic testing. Yet, population size and 

status for polar bears in the Beaufort Sea, and reproduction and survival 

rates—values necessary to manage human perturbations—were not well 

known at the start of this study. We estimated the size and trend of the polar 

bear population in the Beaufort Sea. Also, we estimated rates of recruitment 

and survival, and examined population regulatory factors. This study was 

divided into a hypothesized over-harvested early period (1967-1974) and a 

later recovered period (1981-1992). We analyzed archived records of 589 

captures of 534 bears from the early period and 1,087 captures of 789 bears 

obtained in the late period. Also during the late period, we radio-collared 302 

adult females and relocated them 1,450 times by aircraft and thousands of 

times by satellite. The number of polar bears in the Beaufort Sea grew at 

more than 2% per year through 1992, reaching a population ca.1500 animals. 

There was a compensatory relationship between total population size and 

recruitment of subadults (P = 0.02). Population size alone explained 55% of 

the variation in proportions of 2-and 3-year-olds in annual samples. Large 

populations recruited proportionately few juveniles, and smaller populations 

recruited higher proportions of juveniles. Condition of single adult females and 

those with cubs, as reflected in measurements of axial girth, declined 

significantly as the population grew (P < 0.003), and population size alone 

explained 75% of the variation in axial girth of reproductive age females.
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Although numbers of young produced per female when the population was 

small (x = 0.40) and when it was large (x = 0.38) were similar (P = 0.88), 

litters of more than one yearling were more frequent when the population was 

small (P = 0.06). Temporal differences in sampling during the 2 periods may 

have prevented comparisons of litter sizes of cubs and 2-year-olds and other 

comparisons as well. Observed reproductive intervals of 3.4 and 3.7 years in 

early and late periods were suggestive of change, but not significantly different 

(P = 0.19). The age structure of the small population was younger than that of 

the larger population of later years (males: P < 0.001; females: P < 0.001). 

Survival of adults, as calculated from life tables, was higher and survival of 

young lower when the population was large. At the close of this study, the 

population was thought to be approaching carrying capacity. Despite the lack 

of individual significance in some tests for density effects associated with 

approaching K, the fact that all 8 changes we evaluated were in the direction 

predicted by density theory was significant (P = 0.004). Although numbers of 

bears at the close of the study were relatively large, absolute numbers of 

bears were small. The additional loss of as few as 30 bears each year might 

push the total take from the population to maximum sustained yield. Excess 

take did precipitate a decline in the 1960’s and 1970’s. Hence, managers must 

be alert to possible changes in human activities, including hunting and habitat 

alterations, that could precipitate another decline.
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Introduction

Polar bears residing in the Beaufort Sea of Alaska and Canada have 

been hunted at varying levels of intensity for decades (Amstrup et al. 1986; 

Stirling 1986). Recently, polar bears have been exposed to increased potential 

risks associated with oil and gas exploration and development and mineral 

extraction (Amstrup et al. 1986; Amstrup et al. 1989; Stirling 1990). As human 

populations increase and demands for polar bears and other Arctic resources 

escalate, managers need reliable estimates of breeding rates, reproductive 

intervals, litter sizes, and survival of young and adults. Survival of adult 

females is the parameter that has the greatest effect on population growth in 

polar bears and other animals that are constrained by their evolutionary 

histories to long delays in maturation (Eberhardt and Siniff 1977; Eberhardt 

1985; Taylor et al. 1987). Amstrup and Durner (Chapter III) have developed 

precise estimates of survival for polar bears in the Beaufort Sea. The meaning 

of those estimates, however, to population dynamics is not clear without 

accurate assessments of reproduction and factors regulating population size. 

Unfortunately, knowledge of polar bear reproduction is inchoate. Denning 

areas in the Beaufort Sea have only recently been described (Chapter V), and 

available estimates of litter size, reproductive intervals, and age-specific 

productivity of females are dated and have not included the whole Beaufort 

Sea.

Despite the absence of many parameter estimates necessary to 

determine yield, polar bears long have been hunted throughout most of their 

range. In the Beaufort Sea, the intensity of hunting varied greatly after the turn
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of the century. The highest harvests occurred from 1961-1972 when airborne 

hunters operating in the Beaufort and Chukchi seas of Alaska killed an 

average of 260 bears per year (Amstrup et al. 1986). Although managers, at 

the time thought that the aerial harvest was being sustained (Lentfer et al.

1980), it was later suggested that populations were smaller, and had declined 

substantially as a result of aerial hunting (Amstrup et al. 1986). For many 

years prior to the popularizing of aerial hunting, polar bears in Alaska were 

harvested in limited numbers by subsistence hunters, but otherwise had been 

unperturbed since the early part of this century (Amstrup and DeMaster 1988). 

It is reasonable to conclude, therefore, the population prior to aerial hunting 

was high, possibly near “K-carrying capacity.” After 1972, polar bear hunting 

by airplane was outlawed. The ban on aerial hunting in Alaska followed the 

1968 introduction in Canada of harvest quotas, in response to concern about 

the possibility of over-harvest there (Stirling 1986). Harvests by local 

indigenous people continue to the present in both countries. Those harvests, 

however, are thought to be below maximum sustainable yield. We reasoned, 

therefore, that the population must have grown after 1972. We tested the 

hypothesis that the size of the population in an early study period (1967-1974) 

influenced by aerial hunting did not differ from that in a later study period 

(1981-1992) during which recovery was suspected (Amstrup et al. 1986).

As a population increases, the first negative effect of its own density is 

presumed to be increased mortality of young (Eberhardt 1977). At still-higher 

densities, age of maturity increases and then productivity of mature animals 

declines. Finally, at the highest densities, survival of adults may decline
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(Eberhardt 1977). If the population of polar bears in the Beaufort Sea 

continued to grow into the 1990’s, we would expect to see some or all of these 

density-related changes in population structure. Eberhardt (1977) observed in 

general, that juvenile marine mammals are the most vulnerable to relative 

scarcity of resources and that restricted availability of resources will affect 

survival of juveniles before affecting other population parameters. Polar bears 

are weaned at 2.3 years, and for up to 2 years thereafter may be more 

vulnerable to a variety of hazards than older age classes. Stirling (1974) 

observed that bears seldom consume all of a seal they have killed, and 

concluded that scavenging the leftovers is important to survival of juveniles, 

and hence to recruitment. Smith (1980) also documented that polar bears 

often scavenge kills of other bears. The greatest effect of increased 

competition for resources, therefore should fall on young, independent polar 

bears that are still learning survival skills and are most dependent on 

scavenging. We further reasoned that we might see poorer survival and 

weaker representation in the age structure of juveniles when population levels 

were high, and we tested the null hypotheses that survival of litter members 

and independent juveniles are independent of total population size and 

numbers of adults.

We observed juvenile bears scavenging kills of more experienced 

animals. We also observed that larger bears often chase smaller bears away 

from kills suggesting that successful foraging among independent juveniles, 

and their survival, may be influenced by social factors as well as relative 

availability of food resources. If juveniles are most vulnerable to such
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incidents (Eberhardt 1977; Young and Ruff 1982), these observations suggest 

agonistic behavior may be a limiting factor in polar bear populations. If 

carrying capacity is set by the environment, we should expect to see survival 

of young in litters decline, and age of first reproduction and reproductive 

intervals increase. Finally, adult stature will diminish as their condition 

declines, and production of litters will decline (Eberhardt 1977). If the carrying 

capacity is not reached because social phenomena intervene, we may see 

survival of subadults as the principal limiting factor. To evaluate this, we tested 

the hypothesis that physical stature of female polar bears is not related to 

population size. We compared reproductive patterns in the early period of 

study, when the population was low, to the latter period when it was higher, 

and tested the hypothesis that litter sizes of young do not vary between 

periods when the population sizes differ. We also tested whether reproductive 

intervals and age-specific productivity, both of which contribute to production of 

young, varied between periods when the population was small and when it 

was larger.

Because sex ratios of young are thought to be indicative of population 

status (Verme 1969;Trivers and Willard 1973) we tested whether the sex ratio 

of young differed from even during either lows or highs in the population.

Recovery from the aerial polar bear harvest, should have resulted in 

significant changes in the age structures and survivorship schedules of male 

and female polar bears (Amstrup et al. 1986). We examined this by testing the 

hypothesis that age structures during the period of low numbers did not differ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



166

from that of the period of high numbers.

Materials and Methods

Field Procedures

We captured and marked polar bears each spring between 1982 and 

1992, except for 1990. Bears also were captured in autumns of 1981-86, 1988 

and 1989. Autumn captures occurred in October and November each year, 

and spring captures occurred between March and May. We captured polar 

bears in coastal areas of the southern Beaufort Sea, from Point Barrow,

Alaska, at ~157°W, to Cape Bathurst in Canada at ~127°W. Bears also were 

captured in bordering areas east and west of the Beaufort Sea. We used 

logistical bases at Barrow, Prudhoe Bay, and Kaktovik, Alaska; and 

Tuktoyaktuk Northwest Territories, Canada (Fig. 1). We immobilized polar 

bears by injecting drugs [phencyclidine hydrochloride (Sernylan®, Park, Davis 

and Co.), etorphine hydrochloride (M-99®, Lemmon Co.), and tiletamine 

hydrochloride plus zolazepam hydrochloride (Telazol®, Warner-Lambert Co.)] 

with projectile syringes fired from helicopters (Larsen 1971; Schweinsburg et 

al. 1982; Stirling et al. 1989). Capture and marking protocols were approved 

by an independent animal care and welfare committee.

We tattooed polar bears on both sides of the upper lip, and tagged their 

ears with polyethylene tags. Measurements, including axial girth and 

zygomatic width, were recorded for each captured bear. A vestigial premolar 

tooth was removed from each captured bear, and cementum annuli were
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counted for age determination (Hensel and Sorensen 1980; Stirling et al.

1980). Each year, we tallied new captures and recaptures, and updated 

capture and reproductive histories of previously marked animals. We 

examined capture data in archives of the U. S. Fish and Wildlife Service for the 

period 1967-1980 (Lentfer 1968; Lentfer et al. 1980). Those data were 

collected by personnel of the Alaska Department of Fish and Game and the U.

S. Fish and Wildlife Service between 1967 and 1972, and by the U. S. Fish 

and Wildlife Service thereafter. Data collected in the Canadian portions of the 

southern Beaufort Sea (between 127°—137° west longitude and south of 72° 

north latitude) were provided by the Canadian Wildlife Service for the periods 

1971-1979, and 1983-1987, 1989, and 1992. Unless otherwise specified, 

analyses for any particular period were performed on combined data from the 

southern Beaufort Sea of both Canada and Alaska. Latitude and longitude 

values used in this manuscript are degrees north and west, respectively.

Each year after 1980, we collared a limited number (x = 27) of females 

with radio transmitters. We wanted to monitor only adult females, and initially 

radio-collared only females with young, those that showed evidence of prior 

lactation, or those that appeared to have reached adult size. After 1983, we 

radio-collared females with zygomatic widths >18 cm. This was the smallest 

width we observed for bears accompanied by young, and provided a more 

objective assessment of adult stature. We attached very high frequency (VHF) 

radio collars to polar bears between 1981 and 1985 and relocated them 

approximately 4 times per year with aircraft (Chapter V). After autumn 1985, 

we mostly deployed ultra high frequency platform transmitter terminals (PTT’s)
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that were relocated by satellite. Sensors on PTT’s recorded temperature of 

the collar and 2 indices of activity. Positions of collared animals were 

determined by sensors on the satellite that interpreted frequency patterns 

caused by changes in relative positions of the satellites and animals. (Fancy et 

al. 1988). Collars carrying PTT’s also carried VHF beacons that we located 

with aircraft. Radio tracking often was used to aid recaptures of polar bears.

Unless otherwise specified, however, “capture” is used in this paper to 

describe only those events where polar bears were encountered non- 

selectively during normal visual searching bouts.

Analyses

Amstrup et al. (1986) reported that evidence of recovery from 

over-harvest was apparent in the age structure beginning in 1975. From 1975 

to 1980, patterns in the age structure were intermediate between those of the 

over-hunted period and more recent conditions. Hence, age structure data 

were divided, for comparison, into an early over-hunted period (1967-1974) 

and a later recovered period (1981-1992). Between 1986 and 1992, a main 

goal of the capture work was to attach PTT’s to adult females. Because of the 

need to deploy all PTT’s that had been purchased each season, we 

sometimes overflew rather than capture animals that were clearly males. This 

bias was most strongly associated with the largest of males, and could have 

altered recapture probabilities and minimized representation of old males in 

age structures from the late period of study.
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Population Size and Trend

We attempted to estimate population size with Jolly-Seber (Pollock et 

al. 1990) and log-linear (Cormack 1989) mark and recapture models. 

Estimates derived from those models, however, varied so greatly among years 

that they were of no use. Radical fluctuations in the population estimates 

derived from these models apparently stemmed from capture heterogeneity 

which resulted in poor estimates of the numbers of marks available in each 

year (see also page 176: methods of calculating survival). Because of 

problems with these multi-year models, we estimated population size with the 

Petersen model (Seber 1973:60). The Petersen model, as conceived, did not 

provide for births, deaths, immigration, or emigration, and thus was not 

applicable to multi-year data sets like ours. We modified the procedure, 

however, for multi-year use by applying independent estimates of survival to 

determine the numbers of marked animals available for recapture in each year. 

Age-specific survival rates determined by radio telemetry were weighted by 

the relative strength of each age class and averaged. The average survival 

rate was applied iteratively to determine the number of marked animals 

available for capture in each year. That estimate of the number of animals 

available for recapture was revised each year and used in a series of 

independent annual estimates. We further refined the annual estimates of 

marks available for the early part of the study, by correcting for the proportion 

of tagged animals unavailable for capture. From 1967-1980, 74% of the polar 

bears tagged in the southern Beaufort Sea were captured and marked near 

Barrow between 154° and 160° longitude (Fig. 1). Our satellite-telemetry work
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verified that bears captured in that longitude zone spent 47% of their time west 

of 160°, where their probability of recapture was nil. Only 2 polar bears 

included in this study were captured west of 160° before 1981. Our 

modification of the Petersen model relied upon independent estimates of 

numbers of marks available and accounted for at least some of the 

heterogeneity in capture probabilities. Fluctuations in Petersen estimates 

were less severe than estimates from other models, and interval estimates for 

some years were tight enough to engender some confidence.

We also examined patterns of population size in the southern Beaufort 

Sea, with Leslie (1945; 1948) matrix models. Our projections began with the 

population estimate generated by the modified Petersen index for 1975. We 

used the southern Beaufort Sea age structure derived for the 1967-1974 

period. Numbers of animals aged “0” were determined by dividing observed 

numbers of yearlings by the calculated survival from age 0 to 1. Reproductive 

input for matrix models was the age-specific production (mx) of female young.

For age classes 0-17, we used the 1967-1974 rates. For age classes >18, 

which were not present in the early study period, we used rates calculated 

from 1981-1992. Survival rate inputs for Beaufort Sea projections were those 

calculated from radio-telemetry data for adults, cubs, and yearlings. Survival 

of animals aged 2-3 was assumed to be equal to that of cubs and yearlings.

We evaluated the sensitivity of the population to variation in survival rates by 

substituting the low point in the 95% confidence interval on survival rates, for 

the point estimate. These substitutions were made for all ages, juveniles only, 

and adults only. We made matrix projections for polar bears in Hudson Bay,
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based on parameter estimates of Derocher (1991) and the same starting 

number of animals used for Beaufort Sea projections. Age structures and 

productivity schedules for Hudson Bay in the early 1980’s, when reproductive 

values were thought to be higher, and late 1980’s, were used alternately. The 

best estimate of survival from Hudson Bay (Derocher 1991) was used 

alternately with our Beaufort sea survival estimate as an added sensitivity test.

We also used the Leslie matrix approach to estimate the maximum rate 

of increase possible (R m ax) for this polar bear population (Rm in Caughley and 

Birch 1971). After determining that most of the documented mortality of polar 

bears in the southern Beaufort Sea was caused by human activities— 

principally subsistance hunting, Amstrup and Durner (Chapter III) used the 

Kaplan-Meier procedure (Pollock et al. 1989) to estimate the “natural” mortality 

rate for polar bears. We estimated R max by applying that natural survival rate 

for adult animals to our Leslie matrix model. In addition, because we were 

interested in the maximum possible rate, we used the upper confidence 

interval values, rather than the point estimates, for survival of juvenile animals.

We used the same values from the Beaufort Sea for recruitment as we used 

before.

Reproductive Patterns

Sizes of litters captured with adult females in each period and litter 

sizes observed in autumn and spring were compared with chi-square 

contingency tables. Numbers of male and female young captured as litter 

members, and losses of single young relative to losses of whole litters of 2
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young, were compared to a hypothesized equal occurrence with chi-square 

goodness of fit tests. In all chi-square analyses, cells with few occurrences 

were combined until expected values were at least 1 and fewer than 20% of 

the cells had expectations less than 5 (Conover 1980:156).

Reproductive interval was calculated from life histories of individually 

marked polar bears for which recapture intervals allowed verification of 

reproduction. The minimum successful interval of reproduction was defined as 

the minimum number of years separating births of cubs that were 

subsequently weaned. For example, the reproductive interval for a female 

producing cubs in spring 1985, weaning them in 1987, and producing a new 

litter in 1988 would be 3 years. Conversely, if a female was first observed with 

cubs in 1985, her last opportunity to wean young would have been 1984. If 

she lost the cubs from 1985, produced and lost another litter in 1986 and 

finally produced a litter in 1987, weaning them in 1989, she would have had a 

5 year minimum reproductive interval. Reproductive intervals in early and late 

periods were compared with the normal approximation to the Mann-Whitney 

test (Zar 1984:142).

We calculated age-specific productivity (numbers of cubs produced per 

female) as the number of offspring produced by females in each age group 

divided by the number of females in that age group (Stirling et al. 1980). Age 

group representation was from the estimated standing age structure. To 

increase the numbers of females from which data could be included, females 

with yearlings as well as females with cubs were included in computations of
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productivity as: = (c* + (vx+1)( J-j ] — where: mx = specific
V Fx "*■ Fx+i

productivity at age “x”, Cx = no. cubs of females aged “x”, Yx+i = no. yearlings 

of females aged “x+T, S, = estimated survival of young to age 1, Fx = no. 

females aged “x”, Fx+i = no. females aged “x+1”

Numbers of yearlings were corrected back to numbers of cubs with 

division by an estimate of the survival rate developed from radio-telemetry 

data (Chapter III) for cubs between ages of 0 and 1. We felt that the yearling 

component of this estimate was reliable, because female polar bears in the 

southern Beaufort Sea accompany their young for >2 years after birth. Often, 

however, 2-year-olds were weaned before their mothers were encountered in 

the spring, so the presence of those animals was not a reliable indicator of 

numbers of 2-year-olds, and we did not back-calculate from litters of 2-year- 

olds. The number of litters produced at each age was estimated using the 

same equation and substituting numbers of litters for numbers of young. The 

derived estimate of mx was divided by 2 to represent the age-specific 

production of females (fecundity, assuming an equal sex ratio) as it is used in 

life tables or matrix (Leslie 1945; Caughley 1977) projection models. Overall 

production of young in early and late periods was compared with the Z-test for 

equality of ratios (Cochran 1977:180).
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Survival Patterns 

Analysis of the Age Structure

The age structure was analyzed with life table methods (Caughley 

1977; Seber 1973). Life tables were constructed from the multi-year capture 

data for the early and late periods. Numbers of animals each age captured in 

all years were added together to form approximations of the standing age 

structures for both study periods. The derived life tables, therefore, were of the 

composite time-specific type (Seber 1973:400; Amstrup et al. 1986). Cubs, 

animals aged “0”, appeared to be under-sampled in all age structures 

examined. Hence, we estimated numbers of cubs that must have been 

present by dividing numbers of yearlings, the first fully represented age group, 

by the survival rate we estimated for the first year of life. Survival rates used 

were derived from radio telemetry (Chapter III). Composite age structures 

were characterized by over-representation of some age classes. That is, more 

animals in one age group than in the group or groups that preceded it. Such 

“bumps” in the age structure prevent life table calculations, because higher 

representation in the Agex+i category than in the Agex category imply survival 

rates >1. Therefore, we smoothed the age structure, by first transforming age 

frequency tallies to their natural logarithms. Then quadratic and cubic 

least-squares regressions were calculated with Y = ln(Age Frequency) and X-j, 

X2, and Xg corresponding to age, age2, and age3 (Caughley 1966; 1977).

The age frequencies for each life table were smoothed with the polynomial 

regression providing the greatest adjusted multiple coefficient of determination
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(R2) value. The adjusted R2 indicates the power of the independent variables 

to explain patterns in the dependent variables while accounting for the loss of 

degrees of freedom as additional independent variables are added to 

regression models (Neter et al. 1985). Shapes of smoothed age structures 

were strongly affected by the erratic and low representation in older age 

classes. Hence, we smoothed age structures only through the first year class 

represented by 1 or 0 observations. We constructed life tables including ages 

0-20 whenever sufficient data were available.

Parameters comprising the tables were: the age category “x”, the 

frequency of animals observed in each age group Nr  the smoothed frequency 

of animals observed in each age group Nx' (which is used in place of Nx for

subsequent calculations), the proportion surviving to age x, lx = —  ,
N0

proportion dying in each age group, dx = 4 "  (*+/> mortality rate at each age 

qx = - j -, and survival rate at each age px = 1 - qx. In addition to the most
*x

common life table parameters, the average proportion of animals alive (Lx ) in 

each age interval and the total number of animal-time intervals lived (Tx ) also 

were included in each life table (Seber 1973:394). Population mortality rate,

-  N / \q = „ * , and age-specific life expectancy \ex> (Caughley 1966; 1967;
5 X
y=*

1977), as well as the proportion alive in each age interval (Cx) (Eberhardt 

1988) also were determined. Population mortality rate (q) represents the 

weighted mean mortality rate for animals aged x onward. The age-specific life
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expectancy (ex ) represents the number of years of further life expected by 

animals that have survived to a particular age x. Age-specific survival also 

was evaluated with S the Heincke geometric survival estimate (Seber 

1973:415). The Heincke survival estimate is related to Caughley’s (1967;

1977) population mortality (q ) as simply 1 - q  and so is compatible with the 

other life table statistics. Confidence intervals are available for Heincke’s S 

but not for Caughley’s q. We used confidence bounds on S to test whether 

age-specific survival rates observed during the early and late study periods 

were different. We also tested for overall differences in age structures 

developed for the two time periods and for males and females with “n by 2” chi- 

square contingency tables (Caughley 1966).

Mark/Recapture Analysis

We attempted to estimate survival rates from capture and recapture 

patterns of animals marked between 1967 and 1992 using the Jolly-Seber 

approach (Pollock et al. 1990), and a log-linear model (Cormack 1989).

Survival estimates from the Jolly-Seber and log-linear models that were 

neither realistic nor reasonable apparently resulted because of heterogeneity 

of capture probabilities. Estimates of annual survival rates fluctuated markedly 

providing many estimates below the range necessary to sustain populations 

(Eberhardt 1985), and many estimates greater than unity. Estimates of 

numbers of marks available for recapture, derived by the Jolly-Seber models, 

sometimes exceeded the numbers of marks previously attached—an 

impossible situation. Mark and recapture estimates of survival, therefore, were
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not used in subsequent analyses.
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Population Regulation

We used step-wise linear least-squares regression to examine the 

relationships between variations in population composition and total population 

size (McCullough 1981). Dependent variables we examined included: 

numbers of cubs/adult, yearlings/adult, 2-year-olds/adult, 3-year-olds/adult, 

and numbers of 2+3-year-olds/adult. Polar bears 6 years and older were 

defined, for the purposes of these regressions, as adults. Independent 

variables were population size estimated from Leslie matrix models, number of 

adult males, number of adult females, and total number of adults in the annual 

samples. Finally, we tested whether axial girth, the only measure of stature 

collected consistently for the entire period of study, was independent of 

population size and structure. Axial girth is significantly related to body mass 

(Durner and Amstrup unpubl.; Kolenosky et al. 1989), and thus provided an 

indication of changes in body condition over time. We averaged both 

dependent and independent variables over successive 3-year periods 

beginning with 1967. This reduced the number of time intervals considered 

(e. g., one data point for 3 years rather than one per year), but it also 

minimized fluctuations introduced into the data by annually variable sample 

sizes.

The step-wise procedure first calculated the best one-variable model, 

then tested all remaining independent variables to establish the best 2-variable 

model and so on. We were willing to accept multiple regression models only if
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the addition of another independent variable resulted in an improved 

coefficient of determination (adjusted R2), and if the partial F for that variable 

was significant at the 0.05 level. We used the sequential Bonferroni procedure 

to evaluate “table-wide” significance of regression models related to density 

effects (Rice 1989). The collective significance of observed shifts in 

reproduction, survival, and physical stature was determined with the sign test 

(Zar 1984:386).

Statistical analyses were performed on a Data General AVIION 6200 

computer (Data General Corp., Westboro, MA) running SAS version 6.07 

software (SAS Institute, Inc., Cary, NC). Routine compilations of data, Leslie 

matrices, and life table computations were performed on a Power Macintosh 

7100 computer running Excel version 4.0 software (Microsoft Corp., Redmond, 

WA). We report actual probabilities of statistical tests performed unless 

P <  0.001.

Results

We analyzed 3,243 captures of 2,663 individual polar bears occurring 

between 1967 and 1992. During the early period (1967-1974), there were 589 

captures of 534 individual polar bears. During the late period (1981-1992) 

there were 1087 captures of 789 bears. During the early and late study 

periods respectively, an additional 397 captures of 381 bears and 494 

captures of 418 bears were recorded in areas adjacent to the southern 

Beaufort Sea. Capture data from adjacent areas were used only to provide a 

framework for analyses of the Beaufort Sea data, and were not used in
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analyses reported here unless specifically stated. The concentration of 

marking was heavily weighted toward the western Beaufort Sea through 1980, 

with 74% of animals captured within ± 3° longitude of Barrow. Capture effort 

was geographically more evenly distributed between 1981 and 1992 (Fig. 1).

Also in the late period, we attached 439 radio-collars to 302 individual female 

polar bears. We relocated collared bears 1,450 times with aircraft and many 

thousands of times by satellite. Data collected with different sampling designs 

(e.g., radio-telemetry vs. mark and recapture) could not always be combined 

or compared. Also, some measurements were occasionally not obtained. 

Therefore, sample sizes reported may vary somewhat among different 

categories of analyses.

Population Size and Trend

Mark and recapture estimates indicated that the polar bear population 

of the southern Beaufort Sea grew during this study. The most precise 

Petersen estimates from the early part of the study (835 total animals, and 598 

females) were derived in 1976 (Tables 1 and 2). The precision achieved then, 

apparently resulted from the large number of tags applied in years leading up 

to and including 1976 (DeMaster et al. 1980). This resulted in many surviving 

marked animals that were available for capture in 1976. Large numbers of 

marks available and large sample sizes resulted in tight confidence intervals 

again in 1985—1987. The population was estimated at 744 females and 1417 

total animals in 1986. The estimated instantaneous growth rates, between 

1976 and 1986, for females only and the total population, respectively, were
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0.022 and 0.053. Projection of the population size to 1992 based upon the 

range of calculated growth rates through 1986, yielded 887 females, and 2165 

males and females combined. If the population really was 60% female (see 

“analysis of the age structure”, this chapter), 887 females would have meant 

there were 1479 males and females in 1992.

The Leslie (1945) matrix also projected growth of the population during 

the study period. When matrix inputs included the age structure we observed 

in the early period, survival schedules (including all sources of mortality) 

calculated from telemetry, a cub production schedule from the early period for 

ages <17 and from the late period for females aged >18; the southern Beaufort 

Sea population was estimated to have grown to a final population of 883 

females by 1992 (Fig. 2). This estimate represented a finite rate of change of 

1.024, an instantaneous rate of change of 0.024 (Krebs 1989) and was very 

near the 0.022 instantaneous growth rate estimated for females by the 

Petersen procedure (Seber 1973). If the 1992 population was 60% females, 

the total population size was 1472, which is very close to the population 

estimated above with the Pedersen procedure (Seber 1973).

The indicated rate of growth was very sensitive to the survival rate 

estimates applied. For example, if the survival rates for adult ages was 

lowered to the lower limit of the 0.95 interval, the population grew at a finite 

rate of only 1.009 for the 16-year period. If survival of young were set at the 

lower limit of the 0.95 confidence interval, the finite rate of growth was only 

1.006. If both values were held at the lower confidence interval limits, the
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population declined at a finite rate of 0.988 (Fig. 2). The sensitivity of polar 

bears to survival estimates also was demonstrated by projections done using 

age structure, survival, and productivity values estimated from the Hudson Bay 

region (Derocher 1991). Despite empirical evidence that the Hudson Bay 

population of polar bears has grown over the past 20 years, projection 

matrices based upon parameters estimated from that population predicted a 

finite rate of decline of 0.997. If our higher survival estimates determined from 

radio telemetry were substituted for those estimated in Hudson Bay, however, 

the population was projected to grow at a finite rate of 1.029 for the first 16 

years of projection (Fig. 2).

The sensitivity of rate of growth to the survival rates chosen also was 

apparent in our attempt to establish R m ax- When the natural survival rate was 

used for adults, and the upper confidence interval values used for juveniles, 

the instantaneous rate of population growth was projected to be 0.060. This 

unencumbered rate of growth could be thought of as the maximum sustainable 

yield (MSY) rate for this population. The maximum number that could be 

removed would then be the product of this rate and the population size at MSY.

Reproduction

In the early and late periods we captured 102 and 271 females 

accompanied by young of various ages (Table 3). Small sample sizes may 

have contributed to variations in estimated age-specific productivity during the 

early period. In the late period, however, production of cubs appeared to be 

relatively stable from ages 6-24. The oldest females producing cubs were 17
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and 24 years old in the early and late periods respectively. Age-specific 

productivity determined from females captured by conventional methods did 

not differ from that determined from radio-collared bears (Z = 0.18, P = 0.86). 

Conventional capture and radio-telemetry data, therefore, were pooled to 

increase sample size. Mean values for overall cub production in the early 

(0.40) and late (0.38) study periods, when the population was small and larger 

respectively, did not differ (Z = 0.15, P = 0.88). Nonetheless, production of 

cubs was higher for many year-classes of females in the early period than in 

the late period, and the dearth of older females in the early period may have 

inhibited comparisons. In the early period when the population was small 2% 

of 4-year-old females, 14% of 5-year-old females, and 42% of 6-year-old 

females produced cubs. In the late period, when the population was larger, 

these values were 2%, 7%, and 24% (Table 3), suggesting some delay in 

maturation relative to the earlier period even if differences were not significant.

Mean litter sizes of cubs, yearlings, and 2-year-olds were 1.58, 1.71, 

and 1.48 in the early period, and 1.63, 1.49, and 1.38 in the late period (Table 

3). Litters of multiple cubs (x2 =1.89, df = 1, P = 0.17) and 2 year-olds (%2 = 

0.41, df = 1, P = 0.52) were equally frequent in the 2 time periods. Litters 

comprised of more than one yearling, however, were marginally more frequent 

during the early period than during the late period (x2 = 3.48, df = 1, P =

0.06). This also may be an indication of a decline in reproductive performance 

when the population was larger.

The average minimum interval of successful reproduction calculated
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from Alaskan data only was shorter in the early study period when the 

population was small (x =3.36, n = 14) than when the population was larger 

(x = 3.68, n = 47), but the difference was not significant (Mann-Whitney U =

284.5, Z = 0.89, P = 0.19). The sensitivity of these comparisons also probably 

was reduced by the divergent sample sizes.

In the early period, spring and autumn litter sizes could not be 

compared because of inadequate sampling in fall. During the late study 

period, litters of multiple cubs were more frequent in the spring than they were 

in the autumn (%2 = 7.41, df = 1, P = 0.007). Yearling litter sizes, however, did 

not differ between seasons (%2 = 0.12, df = 1, E = 0.73; Table 4). More young 

aged 0-2 were females in both study periods (Table 5), but the ratio of male to 

female young did not differ significantly from unity (%2 = 3.03, df = 5, P =

0.70). The average rates of litter production calculated as the inverse of the 

reproductive interval (Amstrup and DeMaster 1988) were 0.30 and 0.27 in the 

early and late periods.

Survival Patterns

Analysis of the Age Structure

In the early period, ages of 222 captured males and 361 captured 

females (62% females) were estimated. Similarly, ages were determined for 

432 males and 643 females (60% females) captured in the late period. The 

oldest age determined for a female polar bear encountered in this study was 

27 years. The oldest male was 23. Old animals were more frequent in the late
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period than in the early period (Figs. 3 and 4). In the early period, one female 

was captured at age 17 and another at 21, and only 7 (2%) were aged 15+. 

The oldest male captured in the early period was 17 years old, and only 2 

males (1%) were >15. This contrasted with the late period, when 44 (10%) 

captured males and 78 (12%) captured females were >15 years of age. In 

both periods, the male age structures were comprised of fewer old animals 

than the female age structures (early: y2 = 32.8, df = 16, P = 0.008; late: y j =

43.5, df = 16, P < 0.001). The age structures for both sexes were comprised 

of a higher proportion of young and a lower proportion of old animals in the 

early period (Figs. 3 and 4) (males: y1 = 60.3, df = 16, P < 0.001; 

females: y j = 75.6, df = 16, P < 0.001). Rejection of a hypothesis that age 

structure and population size are independent clearly was indicated.

Examination of life tables revealed higher overall survival rate (px) for 

both males and females in the late period. Changes in survival, however, were 

not consistent across all age groups. For both males and females, periods of 

high survival rate (px) of old animals were associated with lower survival rate 

(px) of young (Fig. 4). Estimated survival rate (px) of males through age 5 was 

lower during the late period than during the early period (Tables 6 and 7). Life 

expectancies (ex) and survivorship (S and px) of males profoundly increased 

from birth into the prime ages of 5-9 during the late study period but declined 

after birth during the early period. Survival rates (px) for females from 0-4 

years of age also were higher in the early period (Tables 8 and 9), and survival 

(px) of adult females was higher in the late period. As with males, early period 

life expectancies (ex) and measures of survival (S and px) of females

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



185

declined after age 0, and they increased until maturity during the latter study 

period. According to Heincke’s S, males aged 2-9 survived at significantly 

higher rates during the latter study period when populations were high than 

they did when populations were lower (Tables 6 and 7). Females aged 3-13 

also survived at significantly higher rates during the period of higher 

population according to S. Because S incorporates survival of older age 

classes into the calculation of survival at each age (after all, it is a component 

of the age-specific life expectancy), it provides an inflated estimate, relative to 

px, of survival for the early ages. Hence, the indication of S that survival of 2 

and 3-year-olds was higher in the latter period is an artifact. The higher 

survival of prime age and older animals, however, corroborates the trends in 

px estimates. Rejection of the hypothesis of independence of survival rates 

and population size is in order; and higher survival for prime age animals 

during years of high population is an inescapable conclusion.

Population Regulation

Numbers of young animals in the southern Beaufort Sea polar bear 

population were inversely related to the total population size, and to numbers 

of old animals. Although numbers of cubs (P = 0.16) and yearlings (P = 0.10) 

were not significantly related to population size or other independent variables, 

the relationship was strong among independent subadults. In terms of 

regression, population size alone explained 56% of the variation (R2 = 0.56) in 

the proportion of 2-year-old animals and 55% of the variation in the proportion 

of 2+3 year-olds (Table 10; Figure 5). Population size alone also explained
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75% of the variation in axial girth for adult females with cubs (Figure 6) and for 

adult females without young of any age. Population size explained 48% of 

variation in axial girths of females accompanied by yearlings. None of the 

independent variables other than mean population size both improved the 

coefficient of determination and provided significant partial regressions; so 

only simple linear regressions are reported (Table 10).

In previous sections, we predicted that as the polar bear population in 

the Beaufort Sea increased we would see: 1) age of maturity increase; 2) 

reproductive interval increase; 3) litter size decline; 4) age specific production 

of young decline; 5) survival of litter members decline; 6) survival of 

independent young decline; 7) a shift in age structure to older animals; and 8) 

a decline in physical stature of adults. Although many of these predictions did 

not pass tests of individual statistical significance, all 8 predictions were 

upheld qualitatively. According to the sign test (Zar 1984, Table B.25), the 

probability that all 8 indices would shift the same direction by chance alone is 

0.004. Hence, despite the lack of individual significance in some tests, the 

collective shift of all 8 indices in the direction predicted by density theory is 

significant.

Discussion

Population Size and Trend

Available data confirmed that the population of polar bears in the 

southern Beaufort Sea was higher in the 1981-1992 study period than it had 

been earlier. Projection matrices and the modified Petersen index both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



indicated population growth at a rate of -2% per year after 1975. The total 

population size in 1992 apparently was near 1500 animals. Capturing females 

that could be fitted with radio collars was the main focus of field efforts in 

Alaska between 1986 and 1990. Adult males can be consistently 

distinguished from females, even from a helicopter. In order to save time and 

fuel for capture of more females, many adult males that were encountered 

during these years, were not captured. Therefore, old males were under

represented in life tables for the latter study period. Hence, survival of prime- 

age males in the late period may have been higher than we calculated, and 

differences in proportions of males and females may have been smaller. If the 

sex composition of the population was closer to 50% females, the total 

population estimate for 1992 might have been near 1800 animals at the close 

of this study. Many caveats on population size estimates could be suggested, 

and absolute numbers could be debated. That the population has been 

growing, however, is not debatable. Estimates derived from mark-recapture 

and matrix projections converged on the same range of values, and reports 

from local residents and oil field workers as well as our casual observations 

verified substantially more polar bear sightings in coastal regions of the 

Beaufort Sea in recent years. Because adult males were known to be under

sampled in the latter period of study, the total population size in 1992 may 

have been higher than 1500. Conversely, the instantaneous growth rate of 

0.053 estimated for males and females combined, seems too large, casting 

doubt on the highest estimate (2165) we obtained. Hence, although using 

-1500 is preferred because it assures we manage conservatively, the estimate
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of -1800 may be the most realistic of our estimates.

Although the population has been growing, the margin of growth has 

been small enough that relatively small changes in population dynamics 

features, particularly survival, could dramatically alter the growth rate. Even 

without human interference in survival patterns, R max for polar bear 

populations is small. Lower estimates of survival than those we calculated 

with radio telemetry, even with higher estimates of productivity, such as those 

estimated in Hudson Bay, did not allow us to project population growth. This 

supports the observation of Eberhardt (1985) that survival for large K-selected 

animals must be in the high 90% range to allow populations to sustain 

themselves.

Reproduction

Although we could not reject many hypotheses that reproductive output 

was independent of population size, most measures of reproductive 

performance indicated declines between the early and late years of the study. 

These declines appeared to be related to increases in relative density of polar 

bears in the Beaufort Sea. For example, onset of reproduction in the Beaufort 

Sea region appeared to be later now than it was during the period 1967-1974 

when the total population size was lower. Higher proportions of 5- and 6-year- 

olds produced litters when the population was small than they did when the 

population was larger. Minimum reproductive intervals appeared to be longer, 

and litter sizes were apparently smaller when the population was high. If 

production of young is among the last of population parameters to be affected
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by increased density (Eberhardt 1977), declines in these measurements, even 

if individually non-significant, should collectively be considered significant.

Reproduction among female polar bears began as early as age 4 but 

was not common until age 6 (Table 3). After age 6, reproductive output may 

be relatively stable beyond age 20. Lentfer et al. (1980) also reported the 

most common age of first reproduction in Alaska was 6 years, and Stirling et 

al. (1975) suggested that some 4- and 5-year-olds produce litters, but litter 

production among polar bears in the eastern Beaufort Sea did not occur 

commonly until age 6. Many female polar bears in the central Canadian 

Arctic, Hudson Bay, the Canadian High Arctic, and southeast Baffin Island 

produced cubs at 5 years of age (Stirling et al. 1980; Furnell and 

Schweinsburg 1984; Ramsay and Stirling 1988). This could indicate that 

undersampling of cubs, or other problems in data collection may have caused 

an overestimate of age of first reproduction in the Beaufort Sea. Our results, 

however, corroborate those of Stirling et al. (1976), and Lentfer et al. (1980), 

and confirm that onset of reproduction in the Beaufort Sea is later than in 

some of those other regions.

Our estimate of cubs produced per female (-0.40), averaged over all 

ages of reproductive females (Table 3), was lower than rates calculated for 

some other areas. Derocher (1991) and Ramsay and Stirling (1988) reported 

production of cubs among all adults at rates of between 0.6 and 0.9 cubs per 

female. Young are often weaned as yearlings in the Hudson Bay area 

(Ramsay and Stirling 1988, Derocher 1991). Weaning young as yearlings

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



would permit a rate of cub production much higher than in the southern 

Beaufort Sea or most other areas of the Arctic where young are weaned at 

ages >2. Our estimates of litter sizes also were lower than those estimated for 

Hudson Bay (Ramsay and Stirling 1988). DeMaster and Stirling (1983) 

speculated that the average litter size at birth in Alaska is probably very close 

to 2.0. We calculated a mean litter size of 1.6 from observations made at or 

near the time of den emergence, however. Perhaps many cubs are lost before 

they are available to be observed. Post-emergence declines in litter sizes we 

documented may be a continuation of losses begun in the den. Also, as 

counts of yearlings suggest, litter sizes could have declined since the study of 

DeMaster and Stirling (1983).

In lieu of a correction for mortality of young between pre-weaning age 

classes, estimates of age-specific parturition rates that rely on numbers of 

young older than cubs (Stirling et al. 1980; Lentfer et al. 1980) may have been 

too low. Because of that limitation, Furnell and Schweinsburg (1984) 

concluded parturition rate should be estimated from the proportion of mature 

females with young-of-the-year litters only. Ramsay and Stirling (1988) 

discussed other caveats in use of data on yearlings in estimating rates of 

reproduction. This is a problem particularly in areas, like the Beaufort Sea, 

where under-sampling of cubs is chronic. Nonetheless, our more reliable 

estimates of survival of young make quality estimates of cub production or 

parturition rate possible from captures of yearlings and 2-year-olds, even if 

cubs are not captured.
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Our derived parturition rate (litter production rate) of 0.25 was very 

close to that calculated as the inverse of the reproductive interval (0.27). Also, 

the rate of 0.25 multiplied by our observed mean litter size of 1.6 revealed an 

average production of 0.40 cubs per reproductive age female, equal to the 

production rate calculated directly from captures of cubs (0.40, Table 3). The 

reproductive interval for polar bears in the Beaufort Sea is longer than that 

reported for Hudson Bay, where young are often weaned as yearlings 

(Ramsay and Stirling 1988; Derocher 1991), but similar to that reported for 

other high latitude populations (Furnell and Schweinsburg 1984). The long 

reproductive interval and low rate of cub production we calculated suggest that 

previous low estimates of reproduction in the Beaufort Sea were not entirely 

due to sampling problems as suggested by Amstrup and DeMaster (1988). 

Productivity rates may have been higher than we calculated in the early years 

of the project because we used the same correction for cub survival as we did 

in the later years. It seems unlikely that such an underestimate, if real, could 

account for all of the difference observed. Reproductive output in the Beaufort 

Sea region does appear to be lower than in many other areas.

Because our analyses of reproductive trends were based on synthetic 

cohorts developed from composite age structures, they smooth annual 

variations in recruitment. Clearly, there are annual variations, but long life 

spans of polar bears mean many age classes are involved in reproduction. 

Hence variation in recruitment into any particular age class is damped, and 

errors in assessing variation in rates are likely to be greater than the true 

variation (Gerrodette 1987). Therefore, our smoothed estimates of
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reproductive parameters appear to be appropriate for modeling the polar bear 

population.

Litters of cubs were under-sampled throughout this study. Information 

available from radio-collared females (Chapter V) verified that this under

sampling occurred in part, because much field work, especially in the early 

study period, occurred when cubs were still in dens. This corroborated 

conclusions of Lentfer et al. (1980) regarding sampling of young. DeMaster 

and Stirling (1983) also suggested that young of-the-year litters were not 

randomly sampled. The births of many cubs on pack-ice at high latitudes also 

may explain some of the under-sampling we observed. Amstrup and Gardner 

(Chapter V) reported that approximately half of the cubs born to bears 

inhabiting the southern Beaufort Sea are born on the pack ice. Many of those 

birth dens were so far offshore they were beyond the normal operation range 

of helicopters and therefore could not have been detected by researchers.

Different timing of field research in the early and late periods of study 

may explain why litter sizes of cubs and 2-year-olds in the early and late 

periods did not differ, while litters of yearlings larger than one were less 

common in the late period. In the early period, much research was 

accomplished in March of each year. Many females with cubs were still in 

dens and not available for capture or observation in March (Chapter V). Also, 

fewer bears were denning on land at that time (Chapter V). Consequently, 

relatively few cubs were captured. Conversely, litters of 2-year-olds were still 

with their mothers in almost all cases. During the late period, most capturing

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



193

was done in April. Proportionately less was done in March, and many 

captures occurred in May. This temporal difference allowed us to catch more 

cubs than had previously been encountered, but by April, many 2-year-olds 

had been weaned. Therefore, we probably under-sampled litters of 2-year- 

olds. Even if there were differences in frequencies of cub and 2-year-old litters 

or their sizes, the biases in our sampling may have overshadowed them. 

Because female polar bears in the Beaufort Sea keep yearlings with them all 

year, and because they do not enter winter dens, the samples of that age 

group were not biased by temporal differences in capture effort.

Survival Patterns

Analysis of the Age structure

The age structures of both males and females differed between our 2 

study periods in ways that corroborate the hypothesis of over-harvest during 

the first period and recovery during the latter period of study (Tables 6-9). 

Higher survival of adults and lower apparent survival of young in the period of 

high population are consistent with apparent changes in a population 

approaching K—carrying capacity (Eberhardt 1977; McCullough 1981).

Higher survival of adults in the latter period of study, by itself, could be 

explained solely by the removal of the excessive aerial harvest. The relatively 

sharper decline in proportions of young, however (Figures 3 and 4), could not 

be explained by removal of hunting pressure alone.

Survival rates of adults during the late period were higher than rates
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previously calculated from similar data (Amstrup et al. 1986; DeMaster et al. 

1980). A potential problem with our estimates was the use of composite age 

structures rather than an observed standing age structure (Caughley 1966; 

1967; 1977). Estimation of a standing age structure from a series of time- 

specific life tables assumes a stationary population and a stable age structure 

(Spinage 1972). If the population is not stationary, the apparent survival rate 

is actually the true survival rate divided by the population growth rate 

(Eberhardt 1988). Therefore, estimates of survival, over the period from which 

the composite was constructed, are low when the population is growing and 

high when the population is declining. Because both empirical observations 

(e.g., observations of polar bears and various signs of polar bears, by 

residents of Beaufort Sea coastal areas and personnel working there) and 

projection models indicated population growth during this study, it is 

reasonable to conclude that the survival rates we estimated from the age 

structure are low. This conclusion is corroborated by radio-telemetry estimates 

of survival of adult polar bears that were higher than those indicated in life 

tables. Amstrup and Durner (Chapter III) used telemetry to generate point and 

95% interval estimates of survival of adult females at S = 0.969 (0.952-0.983). 

The radio-telemetry estimate of survival during the first year S = 0.651 (0.610

0.675) of life was lower than that estimated from the age structure, but the 

telemetry estimate of survival for the second year S = 0.860 (0.751-0.903) 

was higher.
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Population Regulation

Taylor et al. (1987) concluded that density effects on recruitment in 

polar bears are inconsequential in most circumstances. If this were true, all 

available females should breed, and birth rates and survival of young should 

be high regardless of population level. Derocher et al. (1992) found that 

female polar bears in Hudson Bay continued to breed and get pregnant even 

as their body condition declined. Such an observation, in itself, may lead to a 

conclusion that density has minimal effect on reproduction in bears. 

Pregnancies, however, and even births do not tell the whole recruitment story. 

Derocher et al. (1992) also noted that full term pregnancies, as indicated by 

emergence from the den with or without cubs, did decline with declining 

condition among females, as did apparent survival of cubs after leaving the 

den. Our observations corroborate those of Derocher et al. (1992). 

Concomitant with higher numbers and greater survival rates of adults, we 

observed lower rates of cub production. Litter sizes of yearlings were smaller 

when the population was larger. Although the differences were not significant, 

observed inter-birth intervals were longer and parturition rates lower when the 

population was high. Proportions of young and their survival were negatively 

correlated with population size. Derocher and Stirling (1992) speculated that 

declining survival of litter members may be the most prominant effect of 

increased density in their Hudson Bay study area. Survival of young 

apparently declined as a result of declining condition of adult females, and the 

condition of females declined because of relative unavailability of food. Also, 

there was evidence that age at first reproduction and inter-birth interval may
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have increased in Hudson Bay in recent years, just as it has in the Beaufort 

Sea (Derocher and Stirling 1992).

We have observed a strong tendency for polar bears to follow the tracks 

of other bears. Young polar bears often follow tracks of other bears and 

scavenge kills. We have seen adult males drive smaller bears from kills.

Hence, scavenging behavior may increase risks of agonistic encounters with 

larger bears at the same time it increases foraging success. This suggests 

that successful foraging among independent juveniles, and their survival, may 

be influenced by social factors as well as availability of seals and other 

resources. Young and Ruff (1982) have shown that social interactions in bears 

can directly influence recruitment of young even when food resources are not 

in short supply. Also, McCullough (1981) suggested that agonistic behavior of 

adult males may be a major regulating factor in some populations. Indeed, 

agonistic behavior caused 3 of the 5 natural deaths for which we were able to 

determine a cause. These dead were adult animals, but juveniles usually are 

more vulnerable to such incidents (Eberhardt 1977; Young and Ruff 1982).

Our observations, nonetheless, do not support the hypothesis that agonistic 

behavior is an important limiting factor in the polar bear population of the 

southern Beaufort Sea. We did observe large bears drive smaller ones from 

kills. Such observations were recorded less than once per year, however, and 

even combined with the 3 deaths described above, they account for a small 

proportion of the interactions among bears we observed. Also, population size 

emerged as the principal independent variable explaining variations in all 

dependent variables examined. Further, after population size was in the
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models, neither numbers of adult males nor numbers of adult females nor any 

other independent variable added significant explanatory power. Restricted 

availability of resources resulting from high relative densities appears to be the 

main factor limiting the polar bear population in the Southern Beaufort Sea. 

Derocher and Stirling (1992) drew the same conclusion in regard to the polar 

bear population of Hudson Bay.

Polar bears in the Beaufort Sea and elsewhere eat mainly ringed seals 

fPhoca hispidal (Smith and Stirling 1975; Stirling and Archibald 1977; Smith 

1980). The distribution of bears is thought to be closely related to the 

distribution of seals, and changes in the dynamics of polar bear populations in 

response to transitory changes in ringed seal populations have been 

documented (DeMaster and Stirling 1981). Hence, ringed seals are the most 

likely resource to limit polar bear numbers. In a simple predator-prey system 

such as the one involving polar bears and ringed seals, where the predator is 

heavily dependent upon one species of prey; equilibrium points with high 

numbers of predators (e.g., K—carrying capacity) must be characterized by 

lower numbers of prey than occur at lower densities of predators (Caughley

1979). Data from the Beaufort Sea, with which this hypothesis could be 

tested, unfortunately are limited.

Surveys of ringed seals in the Beaufort Sea region have documented 

changes in density and distribution of seals within and among seasons (Burns 

and Harbo 1972; Stirling et al. 1982; Frost et al. 1988; and Kingsley 1990). 

Evaluation of long-term trends in seal numbers, however, has been less
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clear-cut than assessment of short-term variations. For example, Frost et al. 

(1988: Table 35, mean of all years and strata) reported that densities of ringed 

seals, in land-fast ice of the Beaufort Sea, averaged 1.16 seals/km2. Those 

surveys were conducted during the time when we determined the population 

of polar bears was high. The estimate of Frost et al. (1988), contrary to the 

pattern described by Caughley (1979), was substantially higher than the 0.463 

seals/km2 reported by Burns and Harbo (1972: Table 3, strata lll-VI) when the 

polar bear population was low. On the other hand, the estimated density of 

0.354 seals/km (Frost et al. 1988: Table 34, mean of all years and strata) for 

the pack ice of the Alaskan Beaufort Sea was very similar to estimates for 

combined pack and fast-ice areas in the Canadian Beaufort Sea (0.345 seals/ 

km2; Stirling et al. 1982: Table 7, mean of all years and strata). Although they 

used different platforms for observations, Stirling et al. (1982) and Frost et al. 

(1988) used similar survey designs, suggesting their results should be more 

comparable than were those of Burns and Harbo (1972) and Frost et al. (1988) 

which used much different designs. If those surveys are comparable, they 

suggest an absence of long-term changes in seal numbers. More realistically, 

methodologies probably were too insensitive to detect long-term changes in 

numbers of seals because of vagaries in annual and seasonal conditions, 

differences in observation platforms, and different areas of survey.

The available survey data may not be precise enough to detect long

term trends in numbers. They may, however, allow a test of whether polar 

bears, at current densities, could be significantly affecting seal numbers.

Ringed seals are thought to be most common in land-fast ice habitats, and in
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waters of moderate (50-100 m) depth (Kingsley 1990). Also, they are thought 

to be much less common at water depths beyond 175 m (Kingsley 1990) than 

in shallower waters. Land-fast ice in the Beaufort Sea consistently occurs at 

depths less than 20 m. The surface area of land-fast ice (water depths 0-20 m 

between Barrow and Cape Bathurst) is -51,099 km2. When we doubled the 

estimated density (1.16 seals/km2; Frost et al. 1988) of seals in the land-fast 

ice, to account for seals in the water and hence missed by survey crews, and 

multiplied that estimate (2.32 seals/km2) by the area of land-fast ice; we 

obtained an estimated number of ringed seals in the land-fast ice of 118,550. 

To estimate numbers of seals in the pack ice, we ignored the preference 

ringed seals show for water depths less than 175 m (Kingsley 1990), and 

assumed they are equally numerous to depths of -2000 m. Then, we doubled 

the estimated density of seals in the pack ice (0.354 seals/km2; Frost et al. 

1988) and multiplied that number (0.708 seals/km2) by the 293,798 km2 of 

pack ice over waters of 20-2000 m depth to estimate 208,009 ringed seals in 

the pack ice. The estimated total number of ringed seals in the Beaufort Sea, 

then, was -326,560.

Kingsley (1990) estimated that polar bears require approximately 40 

seals/year to meet demands of maintenance and reproduction. If our estimate 

of -1500 polar bears in the Beaufort Sea is accurate, polar bears annually 

would consume 60,000 ringed seals. This suggests that polar bears in the 

Beaufort Sea consume 18% of the seal population annually. Ringed seals do 

not reproduce until age 6 and produce only one young per year thereafter 

(Kingsley 1990). Therefore, losses of 18% of the population per year to polar
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bears could not be sustained. Perhaps our estimates of energy requirements 

of polar bears are too high or our estimates of numbers of seals in the 

Beaufort Sea are too low. Certainly, dealing with average values based upon 

many assumptions has its limitations. Nonetheless, these calculations may be 

evidence that numbers of polar bears in the Beaufort Sea are high enough that 

they could be suppressing growth in ringed seal numbers; which in turn, would 

invoke density responses among the polar bears. Hammill and Smith (1991) 

documented levels of predation on ringed seals by polar bears that were great 

enough, at least in localized areas, to suppress population growth. Our 

conclusion that polar bears are showing a density response associated with 

relative unavailability of resources, namely ringed seals, therefore, appears 

plausible.

McCullough (1981) reported significant negative correlations between 

numbers of adult grizzly bears (Ursus arctosl and unweaned young. 

McCullough (1981) attributed this phenomenon to possible infanticide by large 

males. Cubs and yearlings also are the age classes of polar bears most 

vulnerable to cannibalism (Stirling 1974; Taylor et al. 1985). We documented 

some intraspecific killing, but numbers of adult males, when entered into our 

regression models, did not help explain variation in numbers of young. Hence, 

agonistic social interactions did not appear to be important regulatory factors 

in the population of polar bears in the southern Beaufort Sea. Higher relative 

densities for grizzly bears than for polar bears, larger sizes of activity areas for 

polar bears, and the inability of polar bears to defend territories all are 

differences that may reduce infanticide among polar bears. Also, major

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



201

portions of the population analyzed by McCullough (1981) regularly used 

human waste dumps for feeding. Such feeding artificially concentrated bears, 

and may have led to infanticide that otherwise would not have occurred.

Recently weaned young, ages 2 and 3, are among the fastest and most 

agile of polar bears, and should be much less likely than litter members to fall 

victim to cannibalism (Taylor et al. 1985). It was in these earliest ages of 

independence, however, where we observed the greatest depression in 

numbers. Differences in the foods and feeding patterns as well as spatial use 

patterns of grizzly and polar bears may explain this difference. The main foods 

of grizzly bears are diffused and come in small bundles that are easily handled 

by small bears (e.g., berries, pine nuts). Also, many grizzly bear foods, 

although difficult to find, are not difficult to catch. Polar bears, on the other 

hand, feed on marine mammals, principally seals. These are large parcels of 

food that are widely dispersed in time and space, and which require learned 

skills and a threshold physical size to secure (Stirling 1974). The diet of grizzly 

bears is more similar to that of black bears (Ursus americanus) than it is to the 

diet of polar bears. Black bears can be self-sufficient at less than 6 months of 

age (Erickson 1959), suggesting rapid assimilation of the skills necessary to 

survive. Perhaps the learning curve for young grizzly bears also is steeper 

than it is for young polar bears. This apparent difference between grizzly 

bears and polar bears may reflect our observation that infanticide is not a 

significant regulating factor in polar bear populations.
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Conclusion

We learned that the polar bear population of the southern Beaufort Sea 

adjacent to northern Alaska and northwestern Canada was higher at the close 

of this study than it had been for many years. Also in this study, we found 

evidence that those increases in numbers were correlated with changes in the 

nature of the population itself. During the time when the polar bear population 

in the southern Beaufort Sea was low, there were few old animals and 

proportionately more young animals than there were in the latter years of the 

study when the population was high. Recent survival rates of adults were 

high, but survival rates of juveniles were lower. Smaller proportions of young 

females produced cubs when the population was high, suggesting that the 

onset of reproduction may have been later when the population was relatively 

high than it was when the population was lower. Minimum reproductive 

intervals increased and litter sizes may have decreased as the population 

rose. Numbers of young animals were significantly inversely-related to total 

population size, and physical stature of reproductive age females declined as 

the population rose.

These observations, taken collectively, suggested that the population was 

approaching “K-carrying capacity” by the close of this study in 1992. The 

changes we observed are precisely those that should occur as a population of 

K-selected animals approaches carrying capacity (Eberhardt 1977; Derocher 

and Stirling 1992). Despite the fact that this population is high in relative 

terms, in absolute terms it is very small. The population of the entire southern 

Beaufort Sea may have included only 1500 animals at the end of this study. If
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the population was growing at a rate of approximately 2% per year, loss of an 

additional 30 animals, to hunting or other perturbations, would place the 

annual removal at or near maximum sustainable yield. Hence, room for 

significant perturbations, beyond those to which the population already is 

exposed, may be limited. Because the population appears to be near K, 

however, some density-dependent compensation could occur if perturbations 

affected only polar bears themselves. Hence, added hunting or direct 

mortalities related to incidental takes by industry, may have less effect on the 

population than simple addition or subtraction could predict. Some added 

takes might simply substitute for deaths that are already occurring. 

Unfortunately, data suggest that most mortalities of bears in the Beaufort Sea 

already are human caused (Chapter III), so the number of added takes 

tolerable might be small indeed. Alterations of habitat that negatively affect 

numbers or productivity of seals, apparently would not be easily absorbed. 

Available data indicated that present numbers of polar bears already may be 

strongly influencing ringed seal populations. Likewise, human activities that 

disrupt maternal denning or altered survival of dependent young, might not be 

easily compensated. Managers, therefore, must remain alert for changes in 

human activities that could precipitate direct mortalities of polar bears. They 

also must be alert for habitat alterations that could adversely affect maternal 

denning or the availability of ringed seals. Proposed activities that could have 

any of these effects should be preceded by studies that more accurately 

determine numbers of polar bears and ringed seals and the dynamics of the 

interactions between these two species.
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Table 1. Estimates of numbers of female polar bears in the Beaufort Sea derived from 
modified Lincoln-Petersen (Seber 1973) procedure. Numbers of marks available each year 
were estimated by applying the survival rate (determined from radio telemetry) to the estimated 

number of marks available during the previous year. Availability of marks also was corrected, 

in years 1967-1981, for the proportion of time marked animals were west of longitude 160° W 
in areas where they could not be captured.

Year Number

Caught

Number

Previously

Marked

Number

Unmarked

Number

Released

Estimated

Marks

Available

Estimated

Population

N

Confidence 

Limit on Pop. 

±CL

CL
N

1 9 6 7 1 9 0 1 9 1 9 0 0 0.00
1 9 6 8 5 8 2 5 6 5 8 1 7 191 3 0 0 1 . 5 7

1 9 6 9 1 8 2 1 6 1 8 6 3 2 1 7 3 5 6 1 . 6 4

1 9 7 0 3 9 4 3 5 3 9 6 9 2 9 9 4 0 3 1 . 3 5

1 97 1 3 7 1 3 6 3 6 9 0 9 2 8 1 8 9 0 2 . 0 4

1 9 7 2 8 3 6 7 7 8 2 1 0 9 7 0 4 8 4 8 1 . 2 0

1 9 7 3 1 4 4 1 0 1 4 161 2 5 8 3 1 3 1 .21

1 9 7 4 9 7 1 1 8 6 9 7 1 4 9 6 5 1 5 9 7 0 . 9 2

1 9 7 5 5 5 1 0 4 5 5 5 2 0 4 5 5 5 5 1 6 0 . 9 3

1 9 7 6 61 1 1 5 0 6 1 2 1 7 5 9 8 5 3 4 0 . 8 9

1 9 7 7 7 1 6 7 2 3 2 4 9 5 9 1 0 1 . 8 4

1 9 7 8 2 0 3 1 7 2 0 2 0 7 58 1 8 5 4 1 . 4 7

1 9 7 9 2 5 1 2 4 2 5 1 9 5 1 3 5 6 2 7 5 7 2 . 0 3

1 9 8 0 2 5 7 1 8 2 5 191 3 3 0 331 1 . 0 0

1 9 8 1 2 6 3 2 3 2 6 181 6 5 5 9 8 5 1 . 5 0

1 9 8 2 4 5 4 41 4 5 1 78 1 0 3 9 1 2 2 6 1 . 1 8

1 9 8 3 6 5 9 5 6 6 3 1 90 9 2 3 6 7 0 0 . 7 3

1 9 8 4 3 8 1 0 2 8 3 7 2 1 3 6 2 8 3 5 4 0 . 5 6

1 9 8 5 1 1 8 2 8 9 0 1 1 2 2 0 8 7 9 9 2 4 8 0 .31

1 9 8 6 9 8 3 3 6 5 9 7 2 5 4 7 4 4 1 8 6 0 . 2 5

1 9 8 7 6 2 2 3 3 9 6 2 2 7 7 7 3 0 2 1 5 0 . 2 9

1 9 8 8 6 8 1 7 51 6 8 2 7 5 1 0 5 8 3 9 5 0 . 3 7

1 9 8 9 7 2 2 9 4 3 7 2 2 8 4 6 9 3 1 7 7 0 . 2 6

1 9 9 0 0 0 0 0 2 8 4 2 8 5 0 0.00
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Table 2. Estimates of size of the Beaufort Sea polar bear population derived from modified 

Lincoln-Petersen (Seber 1973) procedure. Numbers of marks available each year were 

estimated by applying the survival rate (determined from radio telemetry) to the estimated 

number of marks available during the previous year. Availability of marks also was corrected, 

in years 1967-1981, for the proportion of time marked animals were west of longitude 160° W 

in areas where they could not be captured.

Year Number

Caught

Number

Previously

Marked

Number

Unmarked

Number

Released

Estimated

Marks

Available

Estimated

Population

N

Confidence 

Limit on Pop.  

±CL

CL
N

1 9 6 7 3 2 0 3 2 3 2 0 0 0.00
1 9 6 8 8 4 3 81 8 4 2 8 3 3 4 4 8 7 1 . 4 6

1 9 6 9 2 5 3 2 2 2 5 9 5 3 3 2 4 9 1 1 . 4 8

1 9 7 0 6 2 6 5 6 6 2 1 0 2 4 9 2 5 8 2 1 .18

1 9 7 1 6 3 1 6 2 6 2 1 3 7 2 3 5 5 4 8 8 4 2 . 0 7

1 9 7 2 131 9 1 2 2 1 2 8 1 72 1 2 1 8 1 2 6 2 1 . 0 4

1 9 7 3 2 5 4 21 2 5 2 5 3 7 0 3 9 4 2 1 . 3 4

1 9 7 4 1 7 4 1 9 1 5 5 1 7 4 2 3 9 1 1 1 5 8 0 8 0 . 7 3

1 9 7 5 1 1 3 1 9 9 4 1 12 3 4 3 1 0 4 0 7 3 8 0 .7 1

1 9 7 6 1 1 5 2 7 8 8 1 15 3 7 9 8 3 5 4 8 0 0 . 5 8

1 9 7 7 1 7 5 1 2 1 7 4 0 6 6 4 8 7 3 4 1 . 1 3

1 9 7 8 4 6 8 3 8 4 6 3 6 4 101  1 1 0 4 9 1 . 0 4

1 9 7 9 4 8 7 41 4 8 3 5 0 1 1 4 0 1 2 6 9 1 .11

1 9 8 0 4 0 9 31 4 0 3 4 0 7 4 2 7 0 7 0 . 9 5

1 9 8 1 4 3 3 4 0 4 3 3 2 3 1 89 1 2 9 5 7 1 . 5 6

1 9 8 2 101 1 8 8 3 10 1 3 1 5 1 0 7 1 65 1 0 .61

1 9 8 3 9 9 1 1 8 8 9 7 3 4 7 2 1 1  6 1 4 5 2 0 . 6 9

1 9 8 4 5 5 1 3 4 2 5 4 3 7 6 1 2 5 3 6 4 9 0 . 5 2

1 9 8 5 2 0 2 4 4 1 5 8 1 9 4 3 6 3 1 5 2 7 3 9 2 0 . 2 6

1 9 8 6 1 8 6 5 8 1 2 8 1 8 5 4 4 6 1 4 1 7 2 7 7 0 . 2 0

1 9 8 7 1 2 7 4 3 8 4 1 2 7 4 9 9 1 4 5 3 3 2 9 0 . 2 3

1 9 8 8 1 0 0 2 0 8 0 1 0 0 5 0 7 2 4 4 3 8 9 0 0 . 3 6

1 9 8 9 9 2 3 0 6 2 9 2 51 1 1 5 3 4 4 2 1 0 . 2 7

1 9 9 0 0 0 0 0 4 9 8 4 9 8 0 0.00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table 3. Numbers of litters and cubs produced by female polar bears captured at all ages in the Beaufort Sea. Age specific cub production 

was calculated as: a m„ — j  (To calculate age specific litter production rate, numbers of litters was substituted for

yearlings and cubs.). Overall litter sizes are the mean of the products of #'s of litters and litter sizes at each age.

Earty Study Period: 1967-1974 Late Study Period: 1981-1992b

Age W /O ut
Young

#Cub
Litters

M ean
Cub
Utter
Size

#Yrf.
Utters

M ean
Yri.

Utter
Size

#2Yr.
Utters

Mean
2Yr.
Utter
Size

Age
Specific
Litters

per
fem ale

Age 
Specific 

Cubs per 
female

W /O ut
Young

#Cub
Utters

Mean
Cub
Utter
Size

#Yrt.
Utters

M ean
Yri.

Utter
Size

#2Yr.
Litters

Mean
2Yr.
Utter
Size

Age
Specific
Utters

per
fem ale

Age 
Specific 

Cubs per 
fem ale

0 18 0 0.00 0 0 .00 0 0 .00 0.00 0 .00 98 0 0.00 0 0 .00 0 0.00 0 .00 0.00
1 42 0 0.00 0 0 .00 0 0.00 0 .00 0 .00 91 0 0.00 0 0 .00 0 0.00 0 .00 0.00
2 39 0 0.00 0 0 .00 0 0 .00 0 .00 0.00 66 0 0.00 0 0 .00 0 0 .00 0 .00 0 .00
3 40 0 0.00 0 0 .00 0 0 .00 0.00 0.00 36 0 0.00 0 0 .00 0 0 .00 0 .00 0.00
4 40 0 0.00 0 0.00 0 0 .00 0.02 0.02 40 0 0.00 0 0 .00 0 0.00 0 .02 0.04
5 31 2 1.50 1 1.00 0 0 .00 0.14 0.19 40 3 1.33 1 2 .00 0 0 .00 0 .07 0.11
6 12 6 1.17 4 1.25 1 1.00 0.42 0.61 47 11 1.27 3 1.67 0 0 .00 0 .24 0.31
7 8 2 1.50 8 1.63 3 1.33 0.27 0.45 28 16 1.38 11 1.27 0 0 .00 0 .35 0 .44
B 10 4 1.50 7 1.71 6 1.67 0.28 0.53 24 10 1.90 13 1.15 1 1.00 0.27 0.45
9 7 2 2.00 7 2.00 9 1.44 0.39 0.70 27 11 1.64 12 1.58 B 1.25 0.24 0 .36
10 3 1 1.00 9 1.78 3 1.67 0.23 0.38 17 11 1.82 9 1.33 7 1.43 0.23 0 .40
11 3 4 2.00 4 1.75 4 1.50 0.26 0.53 18 11 1.73 5 1.60 3 1.00 0.34 0.51
12 3 1 1.00 1 2 .00 1 1.00 0.25 0.56 9 B 1.50 7 1.29 3 1.00 0 .44 0.62
13 1 1 2.00 1 3 .00 1 2 .00 0.13 0.25 12 4 1.50 11 1.36 3 1.67 0 .30 0.43
14 1 1 2.00 0 0 .00 2 1.50 0.51 1.02 9 3 1.67 7 1.43 1 2.00 0 .42 0.71
15 0 0 0.00 1 2 .00 0 0 .00 0.62 0.62 9 5 2.00 10 1.70 0 0.00 0 .32 0.58
16 0 1 2.00 2 1.00 1 1.00 0.20 0.40 10 7 1.71 7 1.71 1 2.00 0 .27 0 .49
17 0 1 2.00 0 0 .00 0 0.00 1.00 1.00 B 3 2 .00 3 2 .00 4 1.50 0 .23 0.41
18 0 0 0 .00 0 0 .00 0 0 .00 0 .00 0 .00 5 5 2.00 3 1.67 2 2 .00 0 .40 0 .80
19 0 0 0.00 0 0 .00 0.00 3 2 2.00 3 2.00 1 1.00 0 .30 0 .60
20 0 0 0.00 0 0.00 0.00 1 2 2.00 2 2 .00 3 1.67 0.41 0.73
21 1 0 0.00 0 0.00 0.00 2 3 1.33 3 1.67 0 0 .00 0.23 0.31
22 2 2 1.00 0 0.00 1 1.00 0.22 0 .22
23 2 1 2.00 0 0 .00 1 1.00 0.11 0 .22
24 2 3 1.33 0 0 .00 0 0.00 0.50 0.62
25 3 0 0.00 1 1.00 0 0.00 0 .00 0 .00
26 1 0 0.00 0 0.00 0 0.00 0.00 0 .00
27 1 0 0.00 0 0.00 0 0.00 0 .00 0 .00
28 0
29 0
30 0

259 26 1.58 45 1.71 31 1.48 0 .2 4 ° 0 .4 0 ° 611 121 1.63 111 1.49 39 1.38 0 .25c 0 .38c

a C * =  # Cubs of fem ales aged “V . Yx * 1  =  # Yearlings of fem ales aged ■x+t", S, =  0.65 =  estimated survival ol young to age 1. Fx = n Fem ales aged "x",
Fx+t = #  Fem ales aged "x+t".

b Conventional capture and radio-telemetry data combined.
cOverall cub production (Sum  of age specific numbers of cubs/Sum  of Age specific numbers of fem ales) did not differ between the 2  periods (Z  =  0 .11 , E  = 0 .84). 

m eans shown here are for ages (4 -17) in which reproduction w as recorded during early p e rio d . 216
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Table 4. Litter sizes of polar bear young captured or observed in the Beaufort Sea during spring and fall

seasons between 1967 and 1992.

Cub Litter Sizea Yearlinq Litter 2- Year-Old Litter

S ize13 Size

1967-1974 1 2 3 1 2 3 1 2 3 Totals

Spring 11 15 0 17 32 2 18 16 0 111

Fall 0

Sub-Total 11 15 0 17 32 2 18 16 0 111

1981-1992 0

Spring 22 55 2 48 45 1 30 20 0 223

Fall 36 37 0 25 27 0 1 0 0 126

Sub-total 58 92 2 73 72 1 31 20 0 349

Total 69 107 2 90 104 3 49 36 0 460

aLitters of more than one cub were more frequent in spring than in fall ( x 2 =7.41, df = 1, P = 0.007), 
during the late period of study. Other differences in litter size between spring and fall were not 
significant.
bLitters of more than one yearling were marginally more frequent in the early period of study than in 
the late period ( x 2 =3.48, df = 1, P = 0.06).
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Table 5. Sexes of polar bear young captured in the Beaufort Sea, 1967-1974 and 1981-1992. 

Sex ratios of dependent young did not differ from even (x2 =3.03, df = 5, P = 0.70).

1967-1974 1981-1992

Offspring Age 0 1 2 0 1 2

No. Males 1 4 45 32 63 71 33

No. Females 1 8 42 39 74 73 52

Males/Female 0.78 1.07 0.82 0.85 0.97 0.63
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Table 6. Composite life table3 constructed from the sample of male polar bears captured in the Beaufort Sea,1967-1974.

X N b /* dx Qx Px Lx Tx q S S - S + Sx Cx
0 69 57 1.00 0 .15 0 .15 0.85 0 .93 4 .30 0.21 0 .7 9 0 .74 0 .84 4 .3 0 0.21
1 45 49 0 .85 0 .15 0.18 0 .82 0 .78 3 .37 0 .22 0 .7 8 0 .72 0 .83 3 .95 0 .18
2 32 4 0 0 .7 0 0 .1 4 0.21 0 .79 0 .6 3 2 .59 0 .2 4 0 .7 6 0 .70 0 .83 3 .70 0.15
3 25 32 0 .56 0 .13 0 .23 0 .77 0 .49 1.96 0 .25 0 .7 5 0 .68 0 .83 3 .5 3 0 .12
4 28 25 0 .43 0.11 0.25 0 .75 0 .38 1.47 0 .25 0 .7 5 0 .66 0 .83 3 .4 4 0 .09
5 24 1 9 0 .32 0 .08 0.26 0 .74 0 .28 1.10 0 .26 0 .7 4 0 .65 0 .84 3 .4 0 0 .07
6 1 6 1 4 0 .24 0 .0 6 0 .27 0 .73 0.21 0 .82 0 .2 5 0 .7 5 0 .63 0 .86 3 .4 2 0.05
7 1 2 1 0 0 .17 0 .05 0 .27 0.73 0 .15 0.61 0.25 0 .7 5 0.61 0 .89 3 .5 0 0 .04
8 6 7 0 .13 0 .03 0 .28 0 .72 0.11 0.46 0 .2 4 0 .7 6 0 .59 0 .92 3 .6 4 0.03
9 4 5 0.09 0 .02 0.27 0 .73 0 .08 0.35 0 .23 0 .7 7 0 .58 0 .95 3 .8 4 0.02

1 0 6 4 0 .0 7 0 .0 2 0 .27 0 .73 0 .06 0 .27 0 .22 0 .7 8 0 .58 0 .9 8 4 .0 9 0.01
1 1 1 3 0 .05 0.01 0.26 0 .74 0 .0 4 0.21 0 .20 0 .8 0 0 .55 1.05 4 .3 9 0.01
1 2 4 2 0 .04 0.01 0 .24 0 .76 0 .03 0 .17 0 .19 0.81 0 .55 1.07 4 .7 3 0.01
1 3 2 2 0 .03 0.01 0 .22 0.78 0 .02 0 .14 0 .18 0 .8 2 0.48 1.16 5 .06 0.01
1 4 1 1 0 .02 0.00 0 .20 0 .80 0 .02 0 .12 0 .17 0 .8 3 0 .40 1.26 5 .3 5 0.00
1 5 1 1 0 .02 0.00 -0 .0 1 1.01 0 .02 0.10 0 .1 7 0 .8 3 0 .32 1.35 5 .5 4 0.00
1 6 0 1 0 .02 0.00 0.00 1.00 0 .02 0 .08 0 .20 0 .8 0 0 .02 1.58 4 .5 0 0.00
1 7 1 1 0 .02 0.00 0.00 1.00 0 .0 2 0 .06 0 .25 0 .7 5 -0 .1 0 1.60 3 .50 0.00
1 8 0 1 0 .02 0.00 0.00 1.00 0 .02 0 .04 0 .33 0 .6 7 2 .50 0.00
1 9 0 1 0 .02 0.00 0.00 1.00 0 .02 0 .03 0 .50 0 .5 0 1 .50 0.00
20 0 1 0 .02 0 .02 1.00 0.00 0.01 0.01 1.00 0.00 0 .50 0.00

aX= age class, Nx = no. each age, Nx = A/x smoothed according to Caughley (1966), lx = survival to age X, dx = mortality age X, qx = mortality 
rate at X, px = 1-gx, Lx = average alive in interval X, Tx = number of time intervals lived for animals aged X(Seber 1973:415), q = Caughley's

(1967) population mortality, S = ' \ -q  = Heincke survival rate (Seber 1973:415), S - = lower limit 0.95 Cl, S+ = upper limit 0.95 Cl, ex = age 
specific life expectancy (Caughley 1966,1967), cx = proportion alive at X(Eberhardt 1988).

13N0 calculated by dividing A/j by the survival rate estimated, for ages 0-1 (0.65), from radio telemetry.
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Table 7. Composite life table3 constructed from the sample of male polar bears captured in the Beaufort Sea,1981-1992.

X N b'  X n ; lx dx Qx Px L x Tx q S s - S  + © x Cx
0 109 99 1.00 0.31 0.31 0 .69 0 .8 4 4 .10 0.22 0 .78 0 .74 0 .82 4 .0 9 0 .28
1 71 68 0 .69 0 .19 0 .28 0 .72 0 .5 9 3 .26 0 .19 0.81 0 .77 0 .85 4.71 0 .19
2 33 49 0 .50 0 .12 0 .25 0 .75 0 .4 4 2 .67 0 .17 0 .83 0 .79 0 .87 5 .33 0 .14
3 37 37 0.37 0 .08 0 .22 0 .78 0 .3 3 2 .23 0 .16 0 .84 0 .80 0 .89 5.91 0 .10
4 43 29 0 .29 0 .06 0 .19 0.81 0 .2 7 1.90 0 .14 0 .86 0.81 0 .90 6.41 0 .08
5 29 24 0 .24 0 .04 0 .16 0 .84 0 .2 2 1.63 0 .14 0 .8 6 0.81 0.91 6 .7 8 0 .07
6 1 1 20 0 .20 0 .03 0 .14 0 .86 0 .1 9 1.41 0 .13 0 .87 0.81 0 .92 7.01 0 .06
7 1 6 1 7 0 .17 0 .02 0 .12 0 .88 0 .1 6 1.23 0 .13 0 .87 0.81 0 .92 7 .09 0 .05
8 21 1 5 0 .15 0 .02 0.11 0 .89 0 .1 4 1 .07 0 .13 0 .87 0.81 0 .93 7 .02 0 .0 4
9 1 3 1 3 0 .13 0.01 0 .10 0 .90 0 .1 3 0 .92 0 .14 0 .86 0 .80 0 .93 6.81 0 .04

1 0 1 1 1 2 0 .12 0.01 0 .09 0.91 0 .1 2 0 .80 0 .14 0 .86 0 .78 0 .93 6 .48 0 .03
1 1 1 5 1 1 0.11 0.01 0 .08 0 .92 0.11 0 .68 0 .15 0 .85 0 .77 0 .93 6 .06 0 .03
1 2 7 1 0 0 .10 0.01 0 .08 0 .92 0 .10 0 .58 0 .16 0 .84 0 .7 4 0 .93 5 .57 0 .0 3
1 3 1 1 9 0 .09 0.01 0 .09 0.91 0 .09 0 .48 0 .18 0 .82 0 .72 0 .92 5 .03 0 .0 3
1 4 7 8 0 .08 0.01 0 .10 0 .90 0 .08 0 .39 0.20 0 .80 0 .68 0 .92 4 .4 6 0 .02
1 5 6 8 0 .08 0.01 0.11 0 .89 0 .0 7 0.31 0.23 0 .7 7 0 .6 4 0.91 3 .88 0 .02
1 6 9 7 0 .07 0.01 0 .12 0 .88 0 .0 6 0 .2 4 0 .26 0 .74 0 .58 0 .89 3 .28 0 .02
1 7 1 0 6 0 .06 0.01 0 .14 0 .86 0 .0 6 0 .17 0 .32 0 .68 0 .49 0 .88 2 .67 0 .02
1 8 2 5 0 .05 0.01 0 .16 0 .84 0 .0 5 0 .12 0.40 0 .60 0 .33 0 .88 2 .02 0.01
1 9 4 4 0 .04 0.01 0 .19 0.81 0 .04 0 .07 0.55 0 .45 0 .14 0 .76 1.31 0.01
20 6 3 0 .04 0.01 0.21 0 .79 0 .03 0 .03 1.00 0.00 0.00 0.00 0 .50 0.01

aX =  age class, Nx = no. each age, Nx = Nx  smoothed according to Caughley (1966), lx = survival to age X, dx = mortality age X, qx = mortality 
rate at X, px = 1 -qx, Lx = average alive in interval X, Tx = number of time intervals lived for animals aged X  (Seber 1973:415), q = Caughley's

(1967) population mortality, S = ~\-q = Heincke survival rate (Seber 1973:415), S - = lower limit 0.95 Cl, S +  = upper limit 0.95 Cl, ex = age
specific life expectancy (Caughley 1966 ,1967 ) ,  cx = proportion alive at X (Eberhardt 1988).

bA/0 calculated by dividing A/j by the survival rate estimated, for ages 0-1 (0.65), from radio telemetry.
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Table 8. Composite life table3 constructed from the sample of fem ale polar bears captured in the Beaufort Sea, 1967-1974.

X N b' X Nx '* dx dx Px Lx T* q S S - S + e* ox
0 65 50 1 .00 0 .03 0 .0 3 0 .97 0 .99 7 .55 0 .1 2 0 .88 0 .84 0.91 7 .55 0 .12
1 42 49 0 .9 7 0 .05 0 .0 5 0 .95 0 .95 6 .57 0 .1 4 0 .86 0 .83 0 .90 6 .74 0 .12
2 39 46 0 .93 0 .07 0 .0 7 0 .93 0 .89 5 .62 0 .15 0 .85 0.81 0 .89 6 .06 0 .1 2
3 40 43 0 .8 6 0 .08 0 .09 0.91 0 .82 4 .72 0 .1 7 0 .83 0 .79 0 .88 5 .49 0.11
4 40 39 0 .7 8 0 .09 0.11 0 .89 0 .73 3 .90 0 .18 0.82 0 .77 0 .87 5.01 0 .1 0
5 34 34 0 .6 9 0 .09 0 .1 4 0 .86 0 .64 3 .17 0 .20 0 .80 0 .75 0 .86 4 .59 0 .0 9
6 23 30 0 .6 0 0 .09 0 .1 6 0 .84 0 .55 2 .52 0.21 0 .79 0 .72 0 .85 4 .23 0 .0 7
7 21 2 5 0 .5 0 0 .0 9 0 .1 8 0 .8 2 0 .46 1.97 0 .23 0 .77 0 .70 0 .85 3 .92 0 .0 6
8 27 21 0.41 0 .08 0 .2 0 0 .80 0 .37 1.52 0 .24 0 .76 0 .68 0 .84 3 .66 0 .0 5
9 25 1 7 0 .3 3 0 .07 0.21 0 .79 0 .30 1.14 0 .25 0 .75 0 .65 0 .84 3 .42 0 .0 4

1 0 1 6 1 3 0 .2 6 0 .06 0 .2 3 0 .7 7 0 .2 3 0 .84 0 .27 0 .73 0.61 0 .85 3 .22 0 .0 3
1 1 1 5 1 0 0 .2 0 0 .05 0 .2 5 0 .75 0 .18 0.61 0 .28 0.72 0 .57 0 .8 7 3 .05 0 .0 2
1 2 6 8 0 .15 0 .04 0 .2 7 0 .73 0 .13 0 .44 0 .29 0.71 0.51 0.91 2 .90 0 .0 2
1 3 4 5 0.11 0 .0 3 0 .2 9 0.71 0 .09 0.31 0 .3 0 0 .70 0 .45 0 .94 2 .79 0.01
1 4 4 4 0 .0 8 0 .02 0 .30 0 .70 0 .0 7 0.21 0.31 0 .69 0 .40 0 .9 7 2 .70 0.01
1 5 1 3 0 .0 5 0 .02 0 .32 0 .68 0 .05 0 .15 0 .32 0 .68 0.31 1.06 2 .66 0.01
1 6 4 2 0 .0 4 0.01 0 .3 4 0 .6 6 0 .0 3 0 .10 0 .3 2 0 .68 0 .28 1.09 2 .67 0 .0 0
1 7 1 1 0 .02 0.01 0 .3 5 0 .65 0 .02 0 .0 7 0.31 0 .69 -0 .2 1 1.60 2 .77 0 .00
1 8 0 1 0 .02 0 .00 -0 .2 5 1 .25 0 .02 0 .05 0 .29 0.71 3 .00 0 .0 0
1 9 0 1 0 .0 2 0 .00 0 .00 1 .00 0 .0 2 0 .03 0 .5 0 0 .50 1.50 0 .0 0
20 0 1 0 .0 2 0 .02 1.00 0 .00 0.01 0.01 1 .00 0 .00 0 .50 0 .00

a X =  age class, Nx = no. each age, Nx = Nx smoothed according to Caughley (1966), l * =  survival to age X, dx = mortality age X, qx = mortality 
rate at X, px = ~\-qx, Lx = average alive in interval X, Tx = number of time intervals lived for animals aged X  (Seber 1973:415), q = Caughley's

(1967) population mortality, S = 1 -g  = Heincke survival rate (Seber 1973:415), S - = lower limit 0.95 Cl, S+ = upper limit 0.95 Cl, ex = age 
specific life expectancy (Caughley 1966,1967), cx = proportion alive at X (Eberhardt 1988). 

k N0 calculated by dividing N-j by the survival rate estimated, for ages 0-1 (0.65), from radio telemetry.

to
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Table 9. Composite life table3 constructed from the sample of fem ale polar bears captured in the Beaufort Sea, 1981-1992.

X N b
X n ; lx d x Qx Px Lx Tx q S S - S + Sx Cx

0 1 1 2 95 1.00 0 .24 0 .24 0 .76 0 .88 6 .4 4 0 .1 4 0 .8 6 0 .8 3 0 .8 8 6 .43 0 .1 4
1 73 72 0 .76 0 .15 0 .20 0 .80 0 .69 5 .56 0 .13 0 .8 7 0 .84 0 .90 7 .25 0.11
2 52 58 0.61 0 .10 0 .16 0 .84 0 .56 4 .8 7 0 .12 0 .88 0 .85 0.91 7 .93 0 .09
3 35 48 0.51 0 .0 7 0 .13 0 .87 0 .48 4.31 0.11 0 .89 0 .86 0 .92 8 .39 0 .07
4 37 42 0 .44 0 .05 0.11 0 .89 0 .42 3 .83 0.11 0 .89 0 .86 0 .92 8.61 0 .06
5 34 37 0 .40 0 .03 0 .09 0.91 0 .38 3.41 0.11 0 .89 0 .86 0 .92 8 .59 0 .06
6 50 34 0 .36 0 .03 0 .07 0 .93 0 .35 3 .03 0.11 0 .89 0 .8 5 0 .92 8 .35 0 .05
7 3 7 32 0 .34 0 .02 0 .06 0 .94 0 .33 2 .68 0 .12 0 .88 0 .8 4 0 .92 7 .94 0 .05
8 33 30 0 .32 0 .02 0 .05 0 .95 0.31 2 .36 0 .13 0 .87 0 .83 0 .92 7 .40 0 .05
9 38 28 0 .30 0 .02 0 .05 0 .95 0 .29 2 .05 0 .14 0 .86 0 .82 0.91 6 .79 0 .04

1 0 27 27 0 .28 0 .0 2 0 .06 0 .94 0 .2 8 1.76 0 .1 5 0 .8 5 0 .8 0 0 .90 6 .13 0 .04
1 1 23 25 0 .27 0 .02 0 .0 7 0 .93 0 .26 1.48 0 .17 0 .83 0 .7 7 0 .89 5 .48 0.04
1 2 1 7 24 0 .25 0 .02 0 .08 0 .92 0 .24 1.22 0 .19 0.81 0 .74 0 .88 4 .84 0 .04
1 3 22 22 0 .23 0 .0 2 0.11 0 .8 9 0 .22 0 .98 0.21 0 .79 0.71 0 .87 4 .25 0 .03
1 4 1 3 1 9 0 .20 0 .03 0 .13 0 .8 7 0 .19 0 .77 0 .24 0 .76 0 .67 0 .86 3 .69 0 .03
1 5 1 8 1 7 0 .18 0 .03 0 .16 0 .84 0 .16 0 .58 0 .27 0 .73 0 .62 0 .83 3 .17 0.03
1 6 1 8 1 4 0 .15 0 .03 0 .19 0.81 0 .13 0.41 0.31 0 .69 0 .55 0 .82 2 .68 0 .02
1 7 1 0 1 1 0 .12 0 .03 0 .23 0 .77 0.11 0 .28 0 .37 0 .63 0 .4 6 0 .8 0 2.21 0 .02
1 8 9 9 0 .09 0 .02 0 .27 0 .73 0 .08 0 .17 0 .45 0 .55 0 .33 0 .77 1.73 0.01
1 9 7 6 0 .07 0 .02 0.31 0 .69 0 .06 0 .09 0 .59 0.41 0 .12 0 .70 1.19 0.01
20 4 4 0 .0 5 0 .0 2 0 .3 6 0 .6 4 0 .0 4 0 .0 4 1 .00 0 .00 0 .00 0 .00 0 .50 0.01

aX = age class, Nx = no. each age, Nx = Nx smoothed according to Caughley (1966), l* =  survival to age X, dx = mortality age X, qx = mortality 
rate at X, px= 1-gx. Lx = average alive in interval X, Tx = number of time intervals lived for animals aged X  (Seber 1973:415), q =Caughley's

(1967) population mortality, S = l - q  = Heincke survival rate (Seber 1973:415), S -  = lower limit 0.95 Cl, S +  = upper limit 0.95 Cl, ex=age 
specific life expectancy (Caughley 1966,1967), cx = proportion alive at X(Eberhardt 1988).i_

Nq calculated by dividing A/j by the survival rate estimated, for ages 0-1 (0.65), from radio telemetry.
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Table 10. Relationships in the capture samples, between population size of polar 
bears in the Beaufort Sea, proportion of young in the population, and axial girth of 
females in various reproductive stages.

Dependent 

Variable a

Independent 

Variable a

Coefficient 

Value b

Mean Square ,2b P_c

2-year-olds/Adult Intercept 0.681 Model 0.0867

Population Size -0.0007 Error 0.010 0.56 0.021

3-year-olds/Adult Intercept .485 model 0.038

Population size -0.0005 Error 0.007 0.42 0.059

2+3-year- Intercept 1.17 Model 5.23

olds/Adult

Population Size -0.001 Error 0.161 0.55 0.023

Axial Girth for Intercept 142.76 Model 228.9

Females with

Cubs

Population Size -0.040 Error 10.7 0.75 0.002*1

Axial Girth for Intercept 136.75 Model 121.8

Single Females

Population Size -0.037 Error 5.9 0.75 0.003d

Axial Girth for Intercept 142.03 Model 182.9

Females with

Yearlings

Population Size -0.033 Error 27.8 0.48 0.037

a To minimize "noise11 introduced by annually variable capture samples, we averaged observations for 3 year 
periods.
b Simple coefficients of determination are shown.
Significance level of individual F tests. Addition of other independent variables resulted in significant partial F 
tests, so only simple regression models were used.
dThese tests significant at “table-wide" probability levels of 0.05 (Rice 1989).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 1. Logistical bases, sampling areas, and relative effort for polar bear capture and marking, 1967-1992. Shaded 
areas show approximate aerial distribution of sampling near each base. Histogram shows relative marking effort near each 
base before and after 1981. The Canada-Alaska border lies along 141 ” W longitude and Pt. Barrow lies at ca. 157” W. 
Other place names used in text also are shown.

224



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Year of Projection
Figure 2. Leslie matrix population projections for female polar bears. Solid shapes indicate age structure and 
productivity values from the Beaufort Sea (BS). Survival rates for the BS were estimated with radio-telemetry for ages 
0,1 and 4-30; rates for ages 2,3 were assumed to be equivalent to those for ages 0,1. Hollow shapes indicate survival 
and productivity values and age structure derived in Hudson Bay (HB, Derocher 1991). Starting population size in each 
projection was 598 females. B=point survival estimates, •dower 95% interval survival estimate for adults, Adower 
95% interval estimate for young, ♦=lower 95% interval estimate for all ages, D=early 1980's HB productivity estimates, 
Odate 1980's HB productivity estimates, A=early 1980's productivity estimates plus BS point estimates of survival. 225
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Figure 3. Proportions of polar bears in each age group captured in the Beaufort Sea during the period affected 
by aerial hunting (1967— 1974) and in the period of recovery from that hunting (1981— 1992). Note the weaker 
representation of post-weaning animals and the stronger representation of old animals in the 1981-1992 period. 
Note that the weak representation of zero age animals in the early study period resulted because sampling was 
done in early spring before many cubs emerged from dens.

to
toOn

AGE 
OF 

BEARS 
CAPTURED 

D
U

R
IN

G
 

THE 
PERIOD 

OF 
R

EC
O

V
ER

Y



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Age Class of Polar Bears
Figure 4. Smoothed (Caughley 1977) lx curves for polar bears in the Beaufort Sea during 1967-1974 and 
1981-1992 study periods. Note that survival early in life was poorer and survival later in life greater during 
the 1981-1992 study period.
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The fitted line was significantly different from “0” (P = 0.02). An r2 of 0.56 
means that 56% of variation in the proportion of 2-year-olds was explained 
by population size alone.
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CHAPTER V

POLAR BEAR MATERNITY DENNING IN THE BEAUFORT SEA1

S. C. Amstrup and C. Gardner

1 Published, as shown here, in the Journal of Wildlife Management:
Amstrup, S. C., and Gardner, C. 1994. Polar bear maternity denning in 

the Beaufort Sea. J. Wildl. Manage. 58: 1-10.
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POLAR BEAR MATERNITY DENNING IN THE BEAUFORT SEA

STEVEN C. AMSTRUP, Alaska Fish and Wildlife Research Center, U.S. Fish 

and Wildlife Service, 1011 E. Tudor Road, Anchorage, AK 99503 

CRAIG GARDNER, Alaska Fish and Wildlife Research Center, U.S. Fish and 

Wildlife Service, 1011 E. Tudor Road, Anchorage, AK 99503 

Abstract: The distribution of polar bears (Ursus maritimus) is circumpolar in 

the Northern Hemisphere, but known locations of maternal dens are 

concentrated in relatively few, widely scattered locations. Denning is either 

uncommon or unknown within gaps between known denning concentration 

areas. The Beaufort Sea region of Alaska and Canada lies in the largest of 

those gaps. To understand effects of industrial development and proposed 

increases in hunting, the temporal and spatial distribution of denning in the 

Beaufort Sea must be known. We captured and radiocollared polar bears 

between 1981 and 1991 and determined that denning in the Beaufort Sea 

region was sufficient to account for the estimated population there. Of 90 

dens, 48 were on drifting pack ice, 38 on land, and 4 on land-fast ice. The 

proportion of dens on land was higher (P = 0.029) in the last half of the study. 

Bears denning on pack ice drifted as far as 997 km (x = 385 km) while in 

dens. There was no difference in cub production by bears denning on land 

and pack ice (£ = 0.66). Mean entry and exit dates were 11 November and 5 

April for land dens and 22 November and 26 March for pack-ice dens. Female 

polar bears captured in the Beaufort Sea appeared to be isolated from those 

caught east of Cape Bathurst in Canada. Of 35 polar bears that denned along 

the mainland coast of Alaska and Canada 80% denned between 137°00’W
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and 146°59’W. Bears followed to >1 den did not reuse sites and consecutive 

dens were 20-1,304 km apart. However, radio-collared bears were largely 

faithful to substrate (pack-ice, land, land-fast ice) and the general geographic 

area of previous dens. Bears denning on land may be vulnerable to human 

activities such as hunting and industrial development. However, predictable 

denning chronology and lack of site fidelity indicate that many potential 

impacts on denning polar bears could be mitigated.

J. WILDL. MANAGE. 58(11:1-10 

Key Words: Alaska, Arctic, Canada, denning, hibernation, pack ice, polar 

bears, radio telemetry, reproduction, satellite, Ursus maritimus.

Polar bears inhabit most ice-covered seas of the Northern Hemisphere 

(Amstrup and DeMaster 1988). Their distribution is circumpolar, and they 

normally occur in low densities (1 bear/141-269 km2) (DeMaster and Stirling 

1981, Amstrup et al. 1986, Amstrup and DeMaster 1988). Known locations of 

maternal birth dens are concentrated in a few, widely scattered locations 

(Harington 1968, Ramsay and Andriashek 1986). Among the best known 

denning concentration areas are the Svalbard Archipelago, north of Norway 

(Larsen 1985); Franz Josef Land, Novaya Zemlya, and Wrangel Island, in 

Russia (Uspenski and Chernyavski 1965, Uspenski and Kistchinski 1972); and 

the west coast of Hudson Bay in Canada (Ramsay and Stirling 1990).

Denning is either uncommon or has been overlooked in gaps between 

known denning concentration areas. The Beaufort Sea region of northern 

Alaska and Canada lies in the largest of those gaps (Harington 1968:Fig. 2).
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As many as 2,000 polar bears occur in the Beaufort Sea throughout the year, 

and >140 females should seek dens there each fall (Amstrup et al. 1986). Yet, 

11 years of study, plus analysis of historic sightings dating from 1910, revealed 

only 35 dens (U.S. Fish and Wildlife Service, unpubl. data). Lentfer and 

Hensel (1980) suggested that suitable denning habitat along Alaska’s north 

coast was limited. Polar bears are hunted by local native people in Canada 

and Alaska, and Canadian hunters believed that the harvest in Alaska was 

being sustained by production of polar bears in Canada (Stirling and 

Andriashek 1992). Recently, hunting along the nearby Russian coast, where it 

was banned in 1956 (Uspenski and Belikov 1991), has been proposed. 

Therefore, the sources of the bears frequenting the Beaufort Sea is an 

international management concern.

Known denning areas at the start of this project were on land. Lentfer 

(1975a) and Lentfer and Hensel (1980) reported 2 dens and observations of 

cubs and cub footprints on the pack ice north of Alaska. Larsen et al. (1983) 

also observed footprints of females with cubs on the pack ice far from land. 

However, the possibility that polar bears might commonly den on pack ice had 

not been proposed as an explanation for the dearth of dens between known 

land-denning areas. In addition, fidelity to denning areas, presumably an 

indication of limited availability of necessary habitats, has been assumed 

(Ramsay and Andriashek 1986) but not verified.

Polar bears in dens cannot be legally hunted in Canada, and hunting of 

bears in dens is discouraged in Alaska. Also, hunting seasons in Canada 

usually begin after female bears are thought to enter dens (Treseder and
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Carpenter 1989). Industrial activities are a potential threat to polar bears, 

especially as they might affect bears in dens (Stirling 1990, Stirling and 

Andriashek 1992). Temporal as well as spatial management of hunting and 

industrial activities may be critical to coexistence of polar bears and humans. 

Yet, knowledge of den entry and emergence and the duration of denning is 

limited (Lone 1970, Lentfer and Hensel 1980, Kolenosky and Prevett 1983, 

Larsen 1985, Messier etal. 1992).

Our objectives were to determine the (1) origin of polar bears occurring in 

the Beaufort Sea, (2) frequency of denning on pack ice relative to land, (3) 

relative production of females using land and pack-ice dens, (4) polar bear 

geographic preferences for and fidelity to den sites, and (5) denning 

chronology.

This manuscript was prepared in partial fulfillment of the requirements of S. 

C. Amstrup for a Ph.D. from the Department of Biology and Wildlife, University 

of Alaska Fairbanks. Amstrup directed and performed all aspects of the 

research including collection and analysis of data. Gardner worked as field 

and office assistant to Amstrup, and aided with collection of data and some of 

the initial analyses. Principal funding was provided by the U.S. Fish and 

Wildlife Service. The Minerals Management Service, U.S. Department of 

Interior; the National Oceanic and Atmospheric Administration, U.S. 

Department of Commerce; AMOCO Inc.; ARCO Alaska, Inc.; BP Exploration 

Alaska, Inc.; Dome Petroleum Ltd.; Beaudrill/Gulf Canada Ltd.; and the 

Northern Oil and Gas Assessment Program of Canada (through cooperation 

with the Departments of Renewable Resources of the Northwest Territories
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and the Yukon Territory) also contributed. We thank D. Andriashek, G. W. 

Garner, E. Henderson, and I. Stirling for assistance and advice in the field, 

office, and laboratory. We are grateful for observations related to us by K. J. 

Frost, B. P. Kelly, A. Kovaks, L. F. Lowry, J. J. Burns, J. Rose, and S. Schliebe. 

R. T. Bowyer, F. C. Dean, F. H. Fay, E. H. Follmann, D. R. Klein, S. D. Miller, 

and I. Stirling reviewed this manuscript. Use of corporate names, brand 

names, and trademarks does not constitute endorsement by the U.S. 

Government.

METHODS 

Field Procedures

We captured polar bears by injecting immobilizing drugs (phencyclidine 

hydrocholoride [Sernylan®, Park, Davis and Co.], etorphine hydrochloride [M- 

99®, Lemmon Co.], and tiletamine hydrochloride plus zolazepam 

hydrochloride [Telazol®, Warner-Lambert Co.]) with projectile syringes fired 

from helicopters (Larsen 1971, Schweinsburg et al. 1982). Capture protocols 

were approved by an independent animal care and welfare committee. Up to 

47 (g = 30) female polar bears were captured and radiocollared annually 

during spring (Mar-May) or autumn (Oct-Nov) from 1981-91. We captured 

bears throughout the Beaufort Sea, which extends from Point Barrow, Alaska, 

at approximately 157°W, to Cape Bathurst, Northwest Territories, Canada, at 

approximately 127°W, and in bordering areas to the east and west. Canadian 

cooperators captured and radiocollared bears (for us to radiotrack) in the 

Canadian Beaufort Sea and Amundsen Gulf east of Cape Bathurst. Analyses 

were concentrated on bears that were captured and denned within the
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Beaufort Sea and adjacent land areas.

We attached very high frequency (VHF) radio collars to polar bears 

between 1981 and 1985 and relocated them with aircraft (Fig. 1). After 

autumn 1985, we mostly deployed ultra high frequency platform transmitter 

terminals (PTTs) that were relocated by satellite. Sensors on PTTs recorded 

the animal’s location, temperature of the collar, and 2 indices of activity (Fancy 

et al. 1988). A short-term activity counter recorded the number of seconds of 

movement during the minute prior to transmission. A long-term activity 

counter recorded the proportion of time the bear was moving in the 72 hours 

prior to transmission. Collars carrying PTTs also carried VHF beacons that we 

located with aircraft.

We located dens of radio-collared polar bears with satellite position fixes, 

aircraft radio tracking, and visual sightings. Den locations were placed in 3 

substrate categories: land, either offshore islands or the mainland coast of 

Alaska and Canada; land-fast ice, sea ice that was frozen to the ocean bottom 

or attached to ice that was frozen to the bottom, and generally did not move 

(Parkinson et al. 1987); and drifting pack ice, which was in constant motion. In 

analyses, dens on land-fast ice were included with land dens. Den locations 

on land were plotted on 1:63,360 topographic maps. We used Loran-C, or 

very low frequency positioning devices to plot dens found with aircraft on pack 

ice. Locations recorded for pack-ice dens were those observed at the time of 

den entry. Dates of den occupation were determined by low-level aerial 

telemetry and visual observation or by changes in temperature and activity 

sensors on the PTTs. When a bear entered her den, transmitter temperature
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increased and remained above 0 C (10-40 C warmer than ambient) and both 

activity counts declined. When a bear left her den, location changed, 

transmitter temperature decreased, and activity increased. Whenever 

possible, den locations of bears fitted with PTTs were also verified by aerial 

telemetry. Unless otherwise stated, we reported results only for dens that 

were confirmed by consistent PTT temperature and activity output, repeated 

radio tracking and visual observations, or both. Unconfirmed locations were 

classified as suspected dens.

We located dens of bears without radio collars (incidental dens) by 

searching coastal areas, with light aircraft, for openings in the snow. Searches 

consisted of opportunistic flights related to capture activities during spring and 

autumn 1981-91. We also flew aerial transect den surveys between Herschel 

Island, Yukon Territory (69°30’N, 139°30’W) and the Colville River delta 

(70°30’N, 150°30’W), in spring 1988, 1989, and 1990. A pilot and 1 observer 

conducted the survey in 1989, and a pilot and 2 observers did the 1988 and 

1990 surveys. We flew at altitudes of 50-150 m and speeds of 110-150 km/h. 

We scheduled surveys according to previously observed peak periods of 

emergence from dens. Surveys were divided into areas of high and low 

probability of encounter based upon the 1965-88 distribution of maternal dens 

and the availability of habitats with snow-catching topography. We flew a 

transect along the beach and a series of transects parallel to the beach 

extending 20 km inland. Transects were separated by 0.8 km in high- and 1.6 

km in low-probability areas. The mainland coastal bluffs, river channels, and 

barrier islands were surveyed by flying parallel to the relief features and
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deviating to search connecting features. We also recorded dens observed by 

local residents and other scientists.

We determined whether a denning attempt was successful (emergence of 

>1 cub) by locating and observing radio-collared females within 30 days of 

emergence from the den. Success of unmarked bears was determined by 

observation at the den site or by counting footprints in the snow left by the 

bears as they abandoned the den.

Analyses

We used 2 methods to test whether the distribution of our capture effort 

biased the distribution of dens we located by radio telemetry. First, we divided 

the study area into 4 longitudinal zones and compared the distribution of 

captures in each zone to the distribution of subsequent denning attempts in 

each zone with a Chi-square contingency table. Second, we compared 

locations where bears were captured to locations where they denned with the 

distribution free Multi-Response Permutation Procedure (MRPP) (Mielke et al.

1981, Biondini et al. 1988).

We evaluated selection of substrate or geographic areas by denning polar 

bears by comparing the observed distribution of dens on land and on pack ice, 

and in each of 4 longitudinal zones along the coast, with Chi-square 

goodness-of-fit tests. Annual variations in denning substrate, differences in 

distributions of incidental dens and dens located by radio telemetry, fidelity of 

denning bears to substrate, and fidelity to either the eastern or western half of 

the study area were examined with Chi-square contingency tables. We tested 

for deviations from randomness among den entry and emergence dates with
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the non-parametric runs test (Zar 1984:419). We used the Student’s t-test to 

compare distances between sequential land and pack-ice dens. To evaluate 

long-term fidelity we used Student’s t to compare latitudes and longitudes of 

incidental dens we found with dens found in the 1970s (Lentfer and Hensel

1980). We compared entry and exit dates and durations in dens for bears on 

land and pack ice with a 2-factor ANOVA. We report actual significance levels 

resulting from statistical tests performed except where P < 0.001 and where 

test statistics calculated for the runs test exceeded tabled values (Zar 

1984:627-635). Differences were significant at P < 0.05.

RESULTS

Between 1981 and 1991, radio-collared polar bears were followed to 125 

suspected maternity dens (Fig. 2). We confirmed 90 of those dens and 

evaluated success for 59. During the same time interval, we located 31 

suspected incidental dens, confirmed 26, and evaluated success for 17. We 

examined 14 dens on the ground. All were constructed of ice and snow only, 

and both single- and multiple-chambered dens were observed. Half of 

examined dens and many others were in areas of minimal topographic relief, 

where denning might not have been suspected without the aid of radio 

telemetry.

The longitudinal distribution of locations where bears were captured and 

radiocollared was different than the distribution of locations where they denned 

( y j  = 49.35, 9 df, P < 0.001; MRPP: P < 0.001). Thus, locations of dens we 

found were not biased by capture efforts.
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Den Distribution by Substrate

We confirmed 48 (53%) dens of radio-collared bears on drifting pack ice,

38 (42%) on land, and 4 (4%) on land-fast ice. When all years were

considered, numbers of dens on pack ice and land were not different

(y2 = 0.25, 1 df, P = 0.62). Numbers of dens on land and pack ice appeared

to vary among years (Fig. 3). Variations among all years were not significant

( y2 = 13.2, 9 df, P = 0.16), but the proportion of land dens found from 1986-90

was higher than that found from 1981 -85 (y- = 4.74, 1 df, P = 0.029).

Productivity

We observed 28 radio-collared bears within 30 days of emergence from 

pack-ice dens. Of those, 16 produced 26 cubs (x = 0.93/den, SD = 0.90). 

Twenty-one of 31 land-denning bears, observed within 30 days of emergence, 

produced 33 cubs (x = 1.1/den, SD = 0.85). Productivity of females that used 

pack-ice dens and that of females that denned on land was not different ( y- = 

0.81, 2 df, P = 0.66). The power of this test, however, was only 0.11 because 

of small sample size.

Geographic Distribution of Dens

Radio-collared polar bears denned between Victoria Island in Canada, and 

Wrangel Island in Russia (Fig. 2). Only 3 bears, enroute to dens, moved 

between the Beaufort Sea and points east of 127°W. Thirteen bears captured 

in the Beaufort Sea denned west of 157°W, but only 1 denned on Russian soil.

Dens on land were concentrated in far northeastern Alaska and the 

northern Yukon Territory of Canada, including Herschel Island. Of 42 land 

dens, 35 (mainland dens) were along the mainland coast between 127°W and
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167°W. The distribution of mainland dens (Table 1) was different among 10° 

longitude zones (^ 2 = 56.7, 3 df, P < 0.001).

Of 26 incidental dens known to be on land, 11 were observed from 

137°00’W to 146°59’W, 6 were observed from 147°00’W to 156°59’W, and 9 

were west of 157°W. This distribution was different from that observed by 

radio telemetry (^ 2 = 11.3, 3 df, P = 0.01), reflecting the higher frequency of 

incidental dens in western Alaska.

Whereas dens on land were located in a narrow band ranging inland 

0.02-61 km, the south and north extremes of pack-ice dens were over 700 km 

apart. The latitudinal range of pack-ice dens was 70°12’N to 77°48’N (x = 

73°05’N, n = 48), and 37 dens (77%) were north of 72°00’N, including 22 

(46%) north of 73°00’N. Bears captured in the Beaufort Sea entered dens on 

pack ice as far east as 117° 18’W and as far west as 178°54’W (x = 146°33’W, 

n = 48). Polar bears drifted 19-997 km (x = 357 km, SD = 246 km, n = 37) 

while in dens on pack ice. Successful females drifted 114-816 km (x = 385 

km, SD = 218 km, n = 16). Drift bearings for 34 of 37 dens, for which complete 

drift information was available, ranged 226-350°. Drifting with the sea ice 

imparted some risks to denning bears. In winter 1985-86, 6 polar bears in 

pack-ice dens were swept past Point Barrow and southwest into the Chukchi 

Sea, due to unusually unstable ice. Only 1 denned successfully.

Den Site Fidelity

We followed 27 polar bears to >1 suspected or confirmed maternity den. 

One radio-collared polar bear was followed to 4 maternal denning sites, 7 were 

followed to 3 dens each, and 19 to 2 dens. Confirmed sequential dens were
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separated from their precursors by a mean of 308 km (SD = 262, n = 30). 

Distances separating sequential land dens were not different from those 

separating sequential pack-ice dens (t = 0.5, 19 df, P = 0.62).

Bears that denned once on pack ice were more likely to den on pack ice 

than on land in subsequent years, and vice versa (^ 2 = 4.9,1 df, P = 0.03). 

Similarly, bears that denned once east of 146°59’W, the midpoint of the 

longitudinal range of mainland dens, were more likely to den there than to the 

west in subsequent years (^ 2 = 5.5, 1 df, P = 0.02). Also, neither latitudes (t = 

0.05, P = 0.96) nor longitudes (t = 0.75, P = 0.46) of incidental dens we found 

in northern Alaska differed from those reported in the 1970s (Lentfer and 

Hensel 1980; U.S. Fish and Wildl. Serv., unpubl. data).

Denning Chronology

Successful land-denning bears entered dens between 8 October and 24 

November and emerged between 13 March and 18 April, for durations of 96

183 days. Successful pack-ice denning bears entered dens between 17 

October and 13 December and emerged between 4 March and 29 April, for 

durations of 81-164 days (Table 2). Duration of land denning did not differ 

from that of pack-ice denning (F = 0.31, 1 df, P = 0.58), and there was no 

interaction between success and substrate (F = 1.42, 1 df, P = 0.24).

However, successful bears remained in dens longer than bears that did not 

produce cubs (F = 9.41,1 df, P = 0.004). Also, entry (n̂  = 16, n2= 16, ji = 8, P 

= 0.005) and exit (n1 = 16, n2 = 18, = 11, P = 0.05) dates varied in a non

random pattern that probably reflected annual variations in weather. However, 

data were not sufficient to confirm that relationship.
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DISCUSSION

Polar bears commonly den in the Beaufort Sea region. We found over 10 

dens/year by annually radiocollaring 1.5% of the population (Amstrup et al.

1986). Extrapolation to the estimated population size would account for the 

total numbers of dens projected for the Beaufort Sea, indicating a population 

that is not dependent on reproduction from other known denning areas. 

Distribution of Dens by Substrate

Our data suggest denning on pack ice occurs frequently. Lentfer and 

Hensel (1980) recognized the occurrence of dens on pack ice but suggested 

that denning on pack ice was limited to bears that could not make it to shore. 

Larsen et al. (1983) reported footprints of new cubs deep in the pack ice 

between Greenland and Svalbard but did not discuss whether those cubs 

might have been born in dens on the pack ice, and Harington (1968) 

concluded that denning on ice was not preferred.

Radio-collared bears denned on land more often in the latter half of this 

study than in the first half. Because sample sizes were small, variation in 

denning substrate we observed among years could be due to chance. We 

believe, however, that the higher proportion of land denning late in the study is 

real. We found more incidental land dens than earlier investigators despite 

their greater search effort (Lentfer and Hensel 1980; U.S. Fish and Wildl.

Serv., unpubl. data). Also, researchers working in the Canadian Beaufort Sea 

found more dens and evidence of dens on land in the 1980s than during 

studies conducted there in the 1970s (Stirling et al. 1988, Stirling and 

Andriashek 1992). The apparent absence of onshore denning for many years
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before this study may have resulted from hunting that began with Yankee 

whalers in the late 1800s and early 1900s (Hanna 1920, Mowat 1984), and 

continued, after modern firearms became available to local residents, until the 

1960s (Leffingwell 1919, Van de Velde 1957, 1971, Stirling and Andriashek 

1992). Because polar bears reproduce slowly (DeMaster and Stirling 1981, 

Taylor et al. 1987, Amstrup and DeMaster 1988), and are largely faithful to 

denning substrate, even a limited continuing harvest in the early and mid- 

1900s could have prevented the re-establishment of land denning until now. 

Increases in numbers of polar bears in the western Chukchi Sea (Uspenski 

and Belikov 1991) and the large numbers of bears recently reported denning 

on the mainland Chukchi Sea coast of Russia (Stishov 1991) support the 

hypothesis of increasing numbers of land dens in Alaska and adjacent areas.

Lentfer and Hensel (1980) concluded that suitable denning habitat along 

Alaska’s north coast is limited due to the lack of topographic relief. Our 

observations refute that conclusion. If polar bears in the Beaufort Sea region 

moved as far inland to den as bears do in Hudson Bay (Ramsay and Stirling

1990), they would find substantial variation in elevations, slopes, and aspects. 

Further, in many areas of the Alaskan North Slope micro-relief is adequate to 

catch the snow needed for denning. Finally, factors other than topographic 

relief apparently affect capture of snow. Several dens were found, only 

because of telemetry, in an almost imperceptible series of swales, 30 km west 

of Kaktovik.

Productivity

Reported polar bear litter sizes have varied from 1.58 to 1.9 (Harington
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1968, Stirling et al. 1977, Lentfer et al. 1980, Larsen 1985, Ramsay and 

Stirling 1988). By comparison, production in our study area of about 1 cub per 

den seems low. However, previous estimates of litter size did not include 

unsuccessful reproductive attempts. After excluding unsuccessful females, 

litter sizes we observed within 1 month of den exit averaged 1.6.

Harington (1968), Lone (1970), and Lentfer and Hensel (1980) suggested 

that risks in denning on pack ice should make it a less preferred habitat for 

denning. A polar bear entering a den in pack ice cannot know the nature of 

habitat, availability of food, or geographic location where she will emerge 

months later. Also, currents, winds, or other factors related to the dynamics of 

pack ice can disrupt bears in dens. Polar bears using dens on the pack ice 

were subjected to risks caused by ice instability and movement, but we did not 

find that those risks reduced productivity. Low power of the Chi-square tests 

we performed indicated that conclusions regarding productivity of bears 

denning on land and pack ice must be viewed with caution.

Geographic Distribution of Dens

Patterns of polar bear denning we observed indicate that polar bears 

occurring across the mainland coast of the Beaufort Sea in Alaska and 

Canada are from the same population, but female bears occurring east of 

127°W may be segregated from those in the Beaufort Sea. Lentfer (1975b) 

concluded that polar bears occurring along Alaska’s west coast were members 

of a population discrete from that along the northern coast. Our data indicated 

that segregation between bears of northern and western Alaska is less distinct 

than the segregation at the eastern end of the Beaufort Sea.
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The northeastern corner of Alaska and adjacent Yukon Territory coast of 

northwestern Canada comprised 23% of the longitudinal range of the 

mainland denning area but accounted for 80% of the total mainland dens. The 

higher-than-expected use of this area raises management concerns because 

this part of the Arctic holds promise of large recoverable reserves of 

hydrocarbons (Weeks and Weller 1984). Overlap of exploration and 

development activities with polar bear denning and other activities has already 

occurred, and many of those activities have potential to disrupt polar bear 

denning (Stirling 1990, Stirling and Andriashek 1992).

Fidelity to Den Sites

The large and predictable concentrations of dens in some regions 

(Uspenski and Chernyavski 1965, Uspenski and Kistchinski 1972, Larsen 

1985, Ramsay and Andriashek 1986, Ramsay and Stirling 1990) indicate high 

fidelity to maternity denning areas. Polar bears we followed by radio telemetry 

were faithful to denning substrate and to general geographic areas. They were 

not faithful, however, to particular places. Our data on den distribution and 

fidelity of females to denning areas indicated there are both pack-ice and land- 

denning bears. Den substrate switching appeared to be limited. This 

segregation may have begun when some females were prevented from 

reaching land in the fall. They continued to den on pack ice because of the 

philopatry we observed.

When all years were considered, denning polar bears preferred some 

areas over others, but no areas were used by collared bears in all years. 

Weather, ice conditions, and prey availability, all of which varied annually,
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probably determined where bears denned. Those annual variations and the 

long-distance movements of polar bears (Amstrup 1986, Garner et al. 1990) 

made seasonal recurrence at exactly the same location unlikely.

Limited data indicate that polar bears denning on the west shore of Hudson 

Bay have higher fidelity to previous denning sites than we observed (Ramsay 

and Stirling 1990). Polar bears in Hudson Bay are forced to remain on land 

between July and October of each year because sea ice there melts 

completely (Stirling et al. 1977, Ramsay and Andriashek 1986). While 

landlocked, they cannot forage and have much time to seek preferred denning 

locations. Because polar bears at higher latitudes continue to forage on the 

drifting pack ice until just before den entry, their locations at den entry time are 

less predictable.

Denning Chronology

Little information on den entry or emergence dates of polar bears has 

been available. Larsen (1985) reported that most dens on Svalbard were 

opened in late March and vacated by mid-April. Lentfer and Hensel (1980) 

reported late March and early April departure times in Alaska. Kolenosky and 

Prevett (1983) and Ramsay and Andriashek (1986) reported emergence in 

late February and early March in Hudson Bay. Lentfer and Hensel (1980) 

reported polar bears came ashore to den in late October and early November. 

Messier et al. (1992) reported den entry dates in early September and 

emergence in March and April for polar bears in the high Canadian Arctic. 

Those data may indicate a more protracted denning period at higher latitudes 

than we recorded (Table 2), but Messier et al. (1992) observed only 5 bears,
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and neither den occupancy nor outcome were visually confirmed.

Initiation of denning depends on sufficient snow accumulation to allow 

excavation of a den cavity. Timing of sea ice formation can also alter the onset 

of denning on land or sea ice. For dens on pack ice, entrance times and 

physical locations are especially dependent on ice type and consolidation. 

Dens must be in ice stable enough to stay intact for 81-164 days while being 

pushed by currents for hundreds of kilometers.

MANAGEMENT IMPLICATIONS

Contrary to previous hypotheses (Stirling and Andriashek 1992), 

substantial polar bear denning occurs in the Beaufort Sea region of northern 

Alaska and adjacent Canada. Bears that den on pack ice are subject to risks 

not encountered by bears that den on land. Unstable, moving ice caused early 

abandonment of dens and, apparently, loss of cubs. However, the persistence 

of pack-ice denning indicated that those risks are not overwhelming. 

Conversely, human perturbations, such as hunting or industrial activities, may 

have a disproportionately high influence on land-denning bears.

Most bears that denned on land selected sites in the northeastern corner 

of Alaska or adjacent Canada where oil and gas exploration has occurred or is 

likely (Weeks and Weller 1984, Stirling 1990). Fidelity to denning substrate 

suggests bear population recovery from perturbations that unequally affect 

either land or pack-ice dens will be slow. For example, the increase we 

observed in land denning may have resulted from a decline in hunting of 

denning areas that began decades ago. The potential for disruptions of 

denning areas, therefore, should be of concern to managers of proposed
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developments. The absence of site fidelity, however, indicated that denning 

habitats are not limiting. The chronology of denning is predictable. Therefore, 

temporal and spatial management of hunting and industrial developments 

should mitigate many human impacts on denning bears.
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Table 1. Geographic distribution of polar bear maternal dens, located and confirmed by 

radio telemetry, along the mainland coast of the Beaufort Sea and adjacent 

northwestern Alaska, 1981-91.

Longitudinal zones Denning substrates

where dens were located Landa Pack ice Totalb

127°00' — 136°59' 1 8 9

137°00' — 146°59‘ 28 15 43

147°00' — 156°59' 3 14 17

157°001 — 166°59' 3 8 11

includes dens on land fast ice.
bTen dens east or west of the 127o00,-166°59' mainland zone are not included.
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Table 2. Entry and exit dates of polar bears radiotracked to confirmed dens in the Beaufort 

Sea region (1981-1991). Included are bears for which success (production of >1 cub) was 

evaluated within 1 month of den emergence.

Substrate Success

Den entry dates Den exit dates Duration in den

n X SD n X SD n X SD

Land No 8 25 Nov 17.1 8 11 Mar 25.3 8 106 34.1

Land Yes 20 11 Nov 22.1 18 5 Apr 8.8 18 147 22.3

Pack ice No 12 19 Nov 22.3 10 8 Mar 35.7 10 112 43.7

Pack ice Yes 16 22 Nov 20.7 10 26 Mar 13.1 10 130 27.5
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Figure 1. Approximate radio-tracking routes for polar bears flown 4 times per year, 1983-1987, and twice 
per year, 1988-1991. Also shown are place names used in the text.
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CHAPTER VI

HUMAN DISTURBANCES OF DENNING POLAR BEARS IN ALASKA1

S. C. Amstrup

1 Published, as shown here, in Arctic:
Amstrup, S. C. 1993. Human disturbances of denning polar bears in 

Alaska. Arctic, 46: 246-250.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Human Disturbances of Denning Polar Bears In Alaska

STEVEN C. AMSTRUP 

Abstract: Polar bears (Ursus maritimus) give birth in dens of snow and ice.

The altricial neonates cannot leave the den for >2 months post-partum, and 

are potentially vulnerable to disturbances near dens. The coastal plain (1002) 

area of Alaska’s Arctic National Wildlife Refuge (ANWR) lies in a region of 

known polar bear denning, and also may contain >9 billion barrels of 

recoverable oil. Polar bears in dens could be affected in many ways by 

hydrocarbon development, but neither the distribution of dens nor the 

sensitivity of bears in dens has been known. I documented the distribution of 

dens on ANWR between 1981 and 1992, and observed responses of bears in 

dens to various anthropogenic disturbances. Of 44 dens located by 

radiotelemetry on the mainland coast of Alaska and Canada, 20 (45%) were 

on ANWR and 15 (34%) were within the 1002 area. Thus, development of 

ANWR will increase the potential that denning polar bears are disturbed by 

human activities. However, perturbations resulting from capture, marking, and 

radiotracking maternal bears did not affect litter sizes or stature of cubs 

produced. Likewise, 10 of 12 denned polar bears tolerated exposure to 

exceptional levels of activity. This tolerance and the fact that investment in the 

denning effort increases through the winter, indicated spatial and temporal 

restrictions on developments could prevent the potential for many disruptions 

of denned bears from being realized.

Keywords: Alaska, ANWR, Arctic, denning, disturbance, impact, oil
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development, polar bear, reproduction, Ursus maritimus

INTRODUCTION

Pregnant polar bears excavate dens of snow and ice in early winter 

(Harington, 1968; Lentfer and Hensel, 1980; Ramsay and Stirling, 1990), and 

give birth in December or early January (Kostyan, 1954; Harington, 1968; 

Ramsay and Dunbrack, 1986). The altricial neonates need to remain in the 

protective den for >2 months post-partum and therefore, are potentially 

vulnerable to disturbances near dens. Section 1002 of the Alaska National 

Interest Lands Conservation Act (ANILCA) set aside 600,000 ha of the coastal 

plain of ANWR in northeastern Alaska for special study. This “1002” area may 

contain >9 billion barrels of recoverable oil, and may be the most promising 

onshore oil and gas exploration area in the United States (U. S. Dep. Interior,

1987). Lentfer and Hensel (1980) and Amstrup et al. (1986) suggested many 

ways bears in dens might be impacted by hydrocarbon related activities, and 

Amstrup and Gardner [1994 (Chapter V)] reported that polar bears denned 

most commonly along the northeastern coast of Alaska. Despite speculation, 

however, neither the distribution of dens on ANWR nor the sensitivity of bears 

to disturbances near their dens has been known.

This report documents the use of ANWR for denning by polar bears 

between 1981 and 1992. Also, it summarizes information on responses of 

polar bears in dens to aircraft, over-snow vehicles, and foot traffic.

METHODS

Dens of female polar bears were located by satellite telemetry, very high
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frequency (VHF) aircraft telemetry, and aerial sightings of opened dens in fall 

and spring. The nature and frequency of exposures of bears at den sites to 

human activities were recorded, and notes were kept on responses by bears 

and the subsequent outcome of the denning event. Responses of unmarked 

bears to various human activities were recorded opportunistically. These 

observations were few, but some disturbances caused by researchers were 

similar to those that might accompany industrial development and other 

endeavors. Therefore, responses of denned polar bears to research activities 

also were recorded.

The ultimate measure of den-site disturbances is reproductive output. 

Therefore, I compared numbers (determined by observation, capture, or by 

counting footprints in the snow), weights, and skull measurements (the sum of 

condylobasal length and zygomatic width) of cubs produced by radiocollared, 

marked, and new females captured after leaving dens. New females were 

subjected to no human disturbances prior to their capture upon emergence 

from the den in early spring. Marked and radiocollared females were exposed 

to one or more capture by helicopter darting [Amstrup and Gardner, 1994 

(Chapter V)] prior to denning and subsequent recapture in the spring with new 

cubs. Radiocollared females were exposed, while in dens, to several 

overhead passes and circles with helicopters or fixed-wing aircraft in order to 

pinpoint their locations. Flights were conducted at altitudes of 150 m to 500 m 

(unless otherwise stated), depending on weather conditions and topography. 

Activity levels of denned bears were determined, during aerial monitoring, by 

fluctuations in rate and strength of pulsed transmissions. Once den sites were
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accurately known, continued occupation of dens of radiocollared females was 

confirmed with more distant flights or activity and temperature data recorded 

by satellite radiocollars [Amstrup and Gardner, 1994 (Chapter V)].

Litter sizes of cubs produced by new, marked, and radiocollared females 

were compared with chi-squared-contingency-tables, and measurements of 

cubs were compared with the chi-squared approximation of the Kruskal-Wallis 

(KW) test (Conover, 1980). Statistical analyses were performed on a Data 

General AVIION 6200 computer (Data General Corp., Westboro, MA) running 

SAS version 6.07 software (SAS Institute, Inc., Cary, NC).

RESULTS

DEN LOCATIONS

Using radiotelemetry between 1981 and 1992,1 located 44 dens on 

land or land fast ice along the mainland coast of Alaska and Canada. Of 

those, 20 (45%) were within the bounds of ANWR, and 15 (34%) were within 

the bounds of the 1002 area (Fig. 1). The ANWR and 1002 coasts comprise 

only 13% and 10% of the longitudinal range over which mainland dens were 

observed. In addition to the 20 dens within ANWR, 1 was on lands controlled 

by the Village of Kaktovik and surrounded by ANWR lands, and 2 others were 

just offshore of the 1002 area on land fast ice. Numerous dens also were 

found in Canada just east of ANWR (Fig. 1).

POTENTIAL DISTURBANCES AT DENS

Litters of 38 radiocollared bears (including #s 3, 4, 9, and 11 below), 28 

marked bears, and 52 new bears were captured after emergence from 

maternity dens in the spring (Table 1). Four denned bears were exposed to
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more intense than usual aircraft activity associated with this study, and 8 were 

exposed to activities of persons engaged in other endeavors (Table 2). 

Responses to Aircraft

We recorded 40 cases (including #s 1-4 below) of potential disruptions of 

denning by research aircraft. Motions detectable among collared bears within 

dens did not appear to be elevated during telemetry flights, and only bears #1 

and #3 left their dens. Production of cubs (Table 1) by radiocollared, marked 

and new bears did not differ (%2 = 1.31, df = 2, P = 0.519). Likewise, skull 

measurements (KW. = 4.1, df = 2, P = 0.13) and body weights (KW. yj  = 

2.79, 2 df, P = 0.25) of cubs born to females in each group did not differ.

Responses of 4 denned bears exposed to greater than usual levels of 

aircraft disturbance during this study were mixed. Bear #1 was seen digging 

her den in a deep snow bank when the helicopter flew over her, on 30 October 

1984, at an altitude of approximately 100 m. She fled, but was captured, 

instrumented, and released adjacent to her excavation. After recovery, #1 

wandered extensively until 2 December when she was relocated in another 

den 64 km west of her capture.

Bear #2 was observed in her open den on 19 October 1981. She came to 

the entrance when the helicopter hovered 300 m in front of and 100 m over her 

den. Bear #2 was observed in the entrance of her den 3 more times before 28 

October when blowing snow closed the den for the winter. Those sightings 

included a slow 50 m high overhead flight that occurred by accident on 26 

October. Because bear #2 was an unmarked bear, her presence through the 

winter was not verified. However, a female with 2 cubs was observed by a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



local resident at the den site on 22 March 1982.

Bear #3 ran from her open den on 5 November 1983 (the third day she had 

been seen there) when the helicopter hovered 100 m overhead and 100 m in 

front of her den. She was caught and released adjacent to her den, but 

traveled as far away as 120 km before entering a second den 20 km from her 

first. Bear #3 was monitored by radiotelemetry through the winter, and 

emerged from her den in the spring with 2 cubs.

The closed den of bear #4 was first located on 19 March 1991 by several 

200 m high overhead flights, with a twin engine turboprop aircraft. The 

transmitter signal indicated no detectable activity of the bear in the den during 

these flights. On 27 March no signal was heard, despite numerous passes at 

30-50 m altitudes. I assumed #4 had left her den, but learned later the radio 

receiver had malfunctioned. On 5 April the den was open and polar bear 

footprints led from the den to a point 100 m to the south and then returned to 

the den. On 7 April, more footprints leading away from and back to the den 

were observed. Also, snow machine tracks circled the polar bear footprints 

and approached to within 10 m of the den exit. Bear #4 left the den on 13 

April 1991, and was recaptured with a single cub 5 km north of the den. Bear 

#4 remained in her den despite numerous exposures to low-level aircraft and 

the close approach of a snow machine, and emerged later, presumably without 

human influence.

Unmarked bear #5 was exposed to humans on foot as well as aircraft. On 

8 March 1981, B. P. Kelly observed a den opening on a north shore barrier 

island. On approaching the den (by helicopter) to investigate, bear #5 and a
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single cub emerged and fled north onto the sea ice. The helicopter landed at 

the den site. Kelly entered the den, recorded some notes regarding its 

structure, made a sketch, and departed. On 11 March 1981, Kelly returned to 

the den site by helicopter, landed and walked to the den to make more notes, 

but bear #5 was back. Bear #5 and cub were observed, by helicopter, to 

occupy the den area until 13 March. Kelly did not visit the den thereafter.

Exposure to Over-Snow Vehicles and Activities

The sealed den of bear #6 was radio located on a Canadian north shore 

island on 12 January and 9 March 1984. She left the den shortly thereafter, 

however, and was next observed without cubs in June 1984. A local resident 

hunter later reported seeing a running polar bear, in late March, near the draw 

where the den of #6 was located. The hunter thought the bear had just come 

from a den, but he did not investigate whether cubs may have been left 

behind. The bear he observed might have been #6, and it is possible that the 

passing of his snow machine induced her to abandon her den.

Two maternity dens (bears 7 and 8) were found on the south shore of a 

barrier island in spring 1991 within 2.8 km of an oil production plant employing 

80-90 people. Vehicle traffic, human activity and associated noises were 

constant throughout the denning period. Bear #8 was followed from her den, 

captured, and radiocollared. Her 2 cubs were known to survive at least 6 

months thereafter. Tracks of 2 cubs emerged from the den of #7, but their 

survival after leaving the den was not known.

Bear #1, which had been disturbed by helicopter at her first den site in fall 

of 1984, may have been disturbed from the site to which she relocated. She
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was in her second den on 2 and 27 December 1984, but on 11 February 1985 

she was alone on the sea ice near Barrow. Examination of her den location 

revealed a single Rollagon tractor (Crowley All-Terrain Corp., Anchorage, AK) 

path within 250 m of the den site, and a well-traveled Rollagon path parallel to 

the coast at a distance of 450-500 m from the den site. Rollagon tractors 

weigh approximately 27,000 kg, and trailers weigh between 17,000 and 20,000 

kg. Both tractors and trailers ride on tall, wide, low pressure tires, and ground 

impact is 0.30 kg/cm2 (4.2 psi).

Two denning animals were exposed to 3-dimensional seismic exploration 

(Yilmaz, 1987) and Rollagon traffic during the winter of 1988-1989. A satellite 

radiocollared bear (#9) denned on a north coast barrier island on 20 October 

1988, and an unmarked bear (#10) was observed in a den just east of the den 

of #9 on 1 November 1988. The eastern most receiver line of the seismic grid 

was 1000 m west of the den of #9 and 2000 m west of the den of #10. The 

parallel seismic lines were approximately 10 km long, spaced at intervals of 50 

m, and extended 27 km east to west. The Rollagon traffic approached to 

within 2500 m and 3400 m of the dens of #10 and #9 respectively.

Bear #9 and her 2 cubs remained in their sealed den as the Rollagon units 

passed and during the time the seismic crews were nearest (1000 m).

Temperature and activity data relayed from the satellite radiocollar of #9 

suggested she opened her den between 8 and 11 February when seismic 

testing was done on source lines 1900 to 2500 meters west of her den, and 

left her den on 12 March when activity occurred 6300 m west of her. Bear #9 

was captured with 2 cubs of the year on 9 April 1989, 29 days after leaving the
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den. Footprints of a female and two cubs at the den of bear #10, on 1 April, 

may be evidence that she left the den with cubs, but her success was not 

substantiated by subsequent observations.

A heavily-used ice road passed 400 m in front of the den of Bear #11 

when her opened den was located on 22 March 1992. Footprints around the 

den exit indicated #11 and cubs had been in and out of the den several times 

by 22 March. Road construction started 22 December 1991, and was 

concluded 28 January 1992. Drilling, 6 km down the road from the den, began 

on 7 February, and was completed in April. At least 6 light vehicles and 1 

large truck passed in front of the den every other day, and at least 4 runs each 

day were made by both a blade type snow plow and a rotary snow blower.

Traffic was heavier during and after snow or wind storms, and during 

construction. The mean den entry date recorded for the Beaufort Sea area 

was 20 November, and all bears that produced cubs entered dens on land 

before 24 November [Amstrup and Gardner, 1994 (Chapter V)]. Therefore, 

bear #11 must have been in her den when construction work began. Workers 

on the road and drilling project were unaware of the presence of the bear, and 

the bear apparently tolerated the relative nearness of the construction 

activities and traffic. On 25 March, #11 took her 2 cubs north across the ice 

road and onto the sea ice.

Unmarked bear #12 emerged from and reentered her open den as a 

survey party traveling in a 7000 kg tracked vehicle and 2 light snow machines 

approached to within 65 m on the morning of 19 March 1993. The survey 

party, which was staking seismic shot lines, withdrew, and ceased operations.
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Subsequent observations from a 400-500 m high Cessna 185 aircraft and a 

knoll 680 m from the den, verified that #12 and her 2 cubs used the area 

around the den and the den itself until the morning of 21 March, when they 

walked north to the sea ice. Records verified that the same survey crew 

passed within 46 m of the den, which was closed then, on 9 March 1993.

They also surveyed the lines 270 m and 135 m from the den on 13 and 18 

March, respectively. Thus, #12 tolerated several close approaches to her den 

and left later, in the absence of human activity.

DISCUSSION

Polar bears denned on ANWR and the 1002 area more frequently than 

would have been expected if they denned uniformly along the mainland coast. 

Amstrup and Gardner [1994 (Chapter V)] documented that the preponderance 

of dens in the northeastern coastal area of Alaska represented a statistically 

significant preference. The potential for disruption of dens in that area, 

therefore, must be taken seriously.

On the other hand, most bears in this study showed substantial tolerance 

for human activities. Pinpointing the locations of the dens of radiocollared 

polar bears by aircraft required more overhead flights, at lower altitudes, than 

most other kinds of aircraft travel. Also, live capture and marking, were 

probably more disruptive to bears than other possible perturbations. Yet, 

recruitment of cubs through the time of emergence from the den and sizes of 

cubs were not affected by those disruptions. Ramsay and Stirling (1986) 

reported that capturing and handling female polar bears in Canada did not 

negatively affect numbers or sizes of cubs.
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Interactions of denned polar bears and industrial activities have not been 

reported elsewhere. However, observations of grizzly bears (Ursus arctos), 

which are closely related to polar bears, also suggested substantial tolerance 

of such activities. McLellan and Shackleton (1989) found that summer active 

grizzly bears were not displaced from the immediate vicinity of seismic testing 

supported by helicopters. Reynolds et al. (1986) reported some movements 

and possible increased heart rates when denned grizzly bears were exposed 

to seismic testing activities. However, they also observed that similar 

movements and heart rate patterns sometimes occurred in absence of human 

activities, and they concluded that “effects on the bears were probably 

minimal” (Reynolds et al., 1986:174).

After studying sounds and vibrations detectable in artificial dens, Blix and 

Lentfer (1992) observed that only seismic testing less than 100 m from a den, 

and a helicopter taking off at a distance of 3 m produced noises inside the 

dens that were notably above background levels. Blix and Lentfer (1992) also 

concluded that a polar bear in its den is unlikely to feel vibrations unless the 

source is very close. They did not address, however, the formation of ice and 

the increasing density of snow that occurs when a den is occupied all winter 

and which would reduce insulation quality of the snow. Nor did they address 

the great individual variation in behaviors of polar bears.

Many questions about how bears in “real dens” are affected by 

disturbances remain unanswered. Bear#s 2, 4, 5, and 7-12 tolerated various 

activities near their dens, and bears exposed to research-related disturbances 

were not negatively affected. These observations corroborated the conclusion
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of Blix and Lentfer (1992) that bears in dens are well insulated from outside 

sounds and vibrations. The possible den abandonment by bears #1 and #6 

may be evidence to the contrary. However, during this study, 22 radiocollared 

bears, not exposed to human disturbances, abandoned their dens without 

cubs. Thus, although I cannot rule out a cause and effect relationship, it is 

equally likely the departures of #1 and #6 were unrelated to human activities. 

Kelly et al. (1988) demonstrated that efforts generating large sample sizes that 

lend themselves to hypothesis testing can quantify effects of industrial 

disturbances. Unequivocal conclusions regarding sensitivities of denned polar 

bears to industrial disturbances will be available only from similar controlled 

studies.

Polar bears may be more willing to abandon dens in fall than later in the 

denning period. Belikov (1976) reported that polar bears were easily disturbed 

from their dens in the fall, and I observed 2 bears (#1 and #3) abandon their 

fall dens in response to disturbances that appeared less severe than those 

tolerated by some bears in the spring. Also, evidence for the 2 cases (bears 

#1,#6) of possible human-induced abandonment of dens in spring was only 

circumstantial.

Bears have less to lose by leaving a den in the fall than they do by leaving 

nearer the time of parturition or afterward. Amstrup and Gardner [1994 

(Chapter V)] confirmed that the survival of cubs prematurely forced out of their 

dens, by movements of the sea ice, was poor. They also concluded that 

individual polar bears have strong ties to general areas and substrata, but not 

to particular denning sites and that most bears enter dens in November. It is
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less expensive for a bear that is looking for a den site to find an alternate 

location than it is to abandon an occupied den and create another elsewhere. 

Therefore, initiation of intense human activities in October or November, would 

give bears enroute to land dens the opportunity to den in less disturbed areas. 

Also, bears already in dens could relocate more easily when parental 

investment is low. The 2 bears I captured at dens in the fall reentered dens at 

other locations, and 3 bears disturbed from dens near Hudson Bay in autumn 

also relocated to other den sites (Ramsay and Stirling, 1986).

CONCLUSIONS

Polar bears preferred to den on and near ANWR, and if hydrocarbon 

development occurs there, the potential for disturbance of denning polar bears 

will increase. Loss of a large portion of the present productivity of polar bears 

denning on ANWR would undermine recruitment in the Beaufort Sea 

population. However, data indicate that many denned bears exposed to 

human activities are likely not to be affected in ways that aiter their 

productivity. Also, rigorous adherence to flexible management strategies, 

including spatial and temporal restrictions of developments, could prevent the 

potential for many disruptions of dens from being realized.
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Table 1. Litter sizes, skull measurements, and weights of cubs captured with female polar 
bears after emerging from maternity dens in the spring. Differences among classes of females 
were not significant.

Litter size Skull sizes(cm)1 Weight (kg)

Female class2 N Mean St. dev. N Mean St. dev. N Mean St. dev.

New 52 1.65 0.48 19 26.43 2.07 23 29.48 6.65

Marked 28 1.53 0.51 23 27.43 1.87 18 35.78 11.29

Radiocollared 38 1.66 0.48 36 27.41 1.87 34 30.59 9.95

1 Skull measurements shown are the sum of condylobasal length and zygomatic width.
2,,New" females had never been captured before; "Marked" females were captured and marked 
or radio-collared prior to entering their dens, but were not located in dens by aircraft radio 
telemetry; "Radio-collared" females were captured and radio-collared prior to denning and 
located in their dens by low-altitude aircraft radio telemetry.

278



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

I

Table 2. Summary of observations of polar bears exposed to human activities while in dens. Numbers of 
cubs observed upon emergence and subsequent survival of those cubs are shown.

Bear

No.

Possible

P ertu rba tion

Time of 

Disturbance

Distance To 

D isturbance

Behaviora l

Response

No.

Cubs

M in im um

S u rv iva l

1 Aircraft, Capture 30 Oct 100 m Redenned N/A N /A

1 Rollagon Train Early Jan 250 m Left Den? 0 N /A

2 A ircra ft O verflight 19 Oct <50 m None 2 Unknown

3 Aircraft, Capture 5 Nov 100 m Redenned 2 Weaned

4 Aircraft, Snow Machine M a r-A p r < 50 m None 1 <6 months

5 Aircraft, Foot Traffic 8-11 Mar <50 m Left & Returned 1 Unknown

6 Snow Machine Late Mar -2 0 0  m Left Den? 0 N /A

7 Oil Field Operations Continuous 2.8 km None 2 Unknown

8 Oil Field Operations Continuous 2.8 km None 2 >6 months

9 Seismic Survey J a n -A p r 1000 m None 2 <6 Months

1 0 Seismic Survey J a n -A p r 2 km None 2 >1 month

1 1 Oil Field Operations D ec-A pr -4 0 0  m None 2 >1 month

1 2 Field Survey 9-19 Mar 46 m None 2 N/A
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Figure 1. Locations of dens found by radiotelemetry along the Alaskan and Canadian mainland coasts 

between 1981 and 1992 (modified from Amstrup and Gardner, 1994: Fig. 2). Of the Dens Located, 45 

and 34 % were on ANWR and the 1002 area. Also shown are place names used in the text.
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CHAPTER Vli 

SUMMARY AND CONCLUSIONS

S. C. Amstrup
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Few researchers are afforded the opportunity to spend over a decade in 

continuous study of a single species. Fewer still are able to focus such an 

opportunity onto a species like the polar bear, which by virtue of its distribution 

and population dynamics can only be understood through very long-term 

research (Derocher and Stirling 1992). I am fortunate to have had such an 

opportunity. I am doubly fortunate that I had access to data collected in the 

Alaska Beaufort Sea by other researchers for more than a decade before my 

studies began—a period during which the population was severely 

over-harvested. I also had access to data collected by colleagues in the 

Canadian Beaufort Sea and in the Chukchi Sea. This study could not have 

been so successful without those data. Finally, I was fortunate to have access 

to advanced radio-telemetry technologies that gave me the ability to follow 

large numbers of individuals over time.

The above factors allowed me to describe the movements of many 

individuals and determine bounds of the population of polar bears occupying 

the Beaufort Sea. They allowed me to estimate numbers of animals and 

compare the status of the population in the late 1980’s and early 1990’s to 

what it had been 20 years earlier. Finally, I was able to determine where 

Beaufort Sea polar bears are born; erasing a long standing mystery 

surrounding this population. The result was a much better understanding of 

polar bears now than we had at the outset of this study.
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Movements and Activities of Polar Bears

I have shown that there is a population of polar bears that resides largely 

within the confines of the Beaufort Sea. Bears of this stock or population 

almost never move eastward of Cape Bathurst, the point of land separating the 

Beaufort Sea from Amundsen Gulf to the east. Although they do make 

frequent seasonal movements into the eastern Chukchi Sea, most return to 

the Beaufort Sea when the sea ice extent is reduced each summer. Members 

of this population probably are not genetically isolated from members of 

adjacent populations, or probably from any other polar bear population (Cronin 

et al. 1991). However, the rapid numerical response to locally-applied 

pressures suggests they should be managed as a separate Beaufort Sea 

population.

I was able to confirm, with large sample sizes, the great mobility of polar 

bears. Some bears made linear movements of over 5,000 km annually, and 

sustained movement rates of over 4 km/hr. Polar bears were not nomads, 

however. Those that were followed for periods of 2 or more years 

demonstrated seasonal fidelity, particularly in summer (albeit to large 

geographic areas), and occupied definable activity areas.

The travel rates of female polar bears varied according to both the time of 

the year and reproductive status, and I can speculate about some of those 

variations. As might have been expected, females with cubs traveled at slower 

rates than those with older young or those not encumbered by young, but were 

more active. The lowest movement rates generally occurred in late winter, 

when suitable foraging habitats are fewest and when many bears may have

283

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



restricted movements to conserve energy (Messier et al. 1992; 1994), or when 

bears may have figured out the best places to be in the relatively stable ice of 

late winter. Highest movement rates were in early winter when the greater 

volatility of sea ice may have necessitated higher levels of mobility among 

bears looking for favored foraging locations.

My descriptions of movements and activities have raised as many 

questions as they have answered. Additional information, not collected in this 

study will be necessary, however, to answer those questions. For example, I 

recorded that bears shifted their geographic positions to the north through the 

summer months and back to the south in winter. Summer movements 

corresponded with ablation of sea-ice in shallow coastal waters, and the fall 

movements corresponded with refreezing of that ice. Movements of polar 

bears from the central Beaufort Sea toward the east and west in winter, may 

be related to the persistent leads that develop where the sea ice is influenced 

by the Chukchi Gyre to the west, and the MacKenzie River to the east.

Movements of bears back to the central Beaufort Sea in summer appeared to 

coincide with the earlier deterioration of sea ice in those easterly and westerly 

areas. Unfortunately, patterns in the sea ice of the Beaufort Sea have been 

described only generally (Stirling and Cleator 1981; Gloersen et al. 1992).

Hence, I can only speculate about explanations of these movements.

Polar bears in the Beaufort Sea eat mainly ringed (Phoca hispida) and 

bearded (Erianathus barbatusl seals, and the distribution of bears is thought 

to be closely related to the distribution of seals (DeMaster and Stirling 1981).

The distribution and availability of seals, in turn, must ultimately be controlled
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by the movements and condition of the sea ice. The southerly shift in 

geographic location among most bears during October, for example, may have 

brought bears summering on the persistent pack ice back into the annual ice 

zone nearer shore, where seal densities are thought to be higher. Also, polar 

bears can have a significant impact on ringed seal populations (Hammill and 

Smith 1991). Predation by bears has modified the behaviors of northern 

hemisphere ice seals (Stirling 1977), and may have modified distribution of 

seals. High levels of activity among polar bears in late morning and afternoon, 

during the summer, might correspond with times when seals are hauled out in 

their subnivian lairs or on the surface of the ice and thus more available to 

bears (Kelly and Quakenbush 1990). Unfortunately, little is known about the 

distribution, abundance, and activities of seals; and explanations of 

interactions between bears and seals are lacking.

As a result of this study, I was able to provide the best yet descriptions of 

movements and activities of polar bears for the Beaufort Sea. If we are to 

explain movements and activities of polar bears, however, we need to learn 

the details of the predator/prey interactions between bears and seals, and 

understand how that interaction is mediated by the volatile sea ice platform 

upon which both seals and bears depend. Many logistical difficulties will make 

understanding seals, sea ice, and the movements of polar bears a formidable 

task. Given the fact that polar bears may be important indicators of the 

welfare of the Arctic and the world (Stirling and Derocher 1993), overcoming 

the obstacles will be worth it.

Another topic not addressed in this study is movements of male polar
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bears. The necks of adult male polar bears are larger than their heads, and at 

present there is no satisfactory method of long term attachment of transmitters 

to males. Consequently, I have no information on movements or activities of 

male bears. Males may move much differently than females (Derocher and 

Stirling 1990), or they may move similarly (Lentfer 1983). Not knowing what 

males do is a limitation, because males are necessary to maintenance of the 

population, and because they also may play a role in limiting population size 

(McCullough 1981; Young and Ruff 1982; Stringham 1983). Males also 

appear to be more vulnerable to hunters. Polar bear populations apparently 

can sustain higher takes of males than of females (Taylor et al. 1987); but 

population effects of sexual biases in the take are not understood. Clearly, 

then, future research must more carefully consider the movements, 

distributions and behaviors of male members of polar bear populations as well 

as the effects those members have on the rest of the population.

Population Dynamics of Polar Bears

Amstrup et al. (1986) suggested the Beaufort Sea population had declined 

substantially by the early 1970’s due to over-hunting. This study corroborated 

that decline. Also during this study, the population of the Beaufort Sea region 

was shown to grow at a rate of at least 2% per year. That is near the 

maximum that could be expected given the population is still subjected to 

some harvest (Taylor et al. 1987). The close agreement of 2 largely 

independent estimates engendered confidence that the growth rate I 

estimated was real, and that the population estimate was reasonable.

Major changes in population size often provide important opportunities to
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understand population dynamics (McCullough 1979). My observations of 

changes in numbers, for example, allow the status of the population relative to 

K, and therefore K, to be estimated. Amstrup et al. (1986) presented evidence 

that the population in the early 1980’s was approximately the same size as it 

had been in the late 1950’s—the early years of aerial hunting. Amstrup et al. 

(1986) also indicated that the population had been much lower during the 

intervening period as a result of that aerial hunting. Prior to the popularizing of 

aerial hunting, polar bears in Alaska were largely unperturbed, with a harvest 

limited to small numbers taken by subsistence hunters (Amstrup and 

DeMaster 1988). Hence, it is reasonable to conclude the population prior to 

aerial hunting was high, and probably near K. The population has continued to 

grow since the estimate made in the early 1980’s. Therefore, at the end of this 

study the Beaufort Sea population must have been as large or larger than it 

was before aerial hunting became popular in the 1950’s when it should have 

been near K. That the Beaufort Sea population is now near K is substantiated 

by the fact that changes in age structure, reproduction, and survival, such as 

those I observed, occur mainly at population levels very near K (Fowler 1981).

In this study, I found evidence that density was suppressing survival of 

young and indications that reproduction also may have been affected. During 

the time when the polar bear population in the Beaufort Sea was low, there 

were few old animals and proportionately more young animals than there were 

in the latter years of the study. Recent survival rates of adults, as evidenced 

by radio telemetry and the age structure, are high, but survival rates of 

juveniles are lower. Numbers of young animals were significantly
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inversely-related to total population size and estimated numbers of adults. 

Newly independent young, that would be expected to feel the brunt of density 

related competition for resources, appeared to be the most influenced by 

population size. Litters of more than one yearling, however, also were 

significantly less frequent late in the study than they were earlier. Derocher 

and Stirling (1992) speculated that production and survival of litter members 

may be the feature most affected by increased density in their Hudson Bay 

study area. They also reported that age at first reproduction and inter-birth 

interval may have increased as the population grew (Derocher and Stirling 

1992).

As a population increases toward K, the first negative effect of its own 

density is increased mortality of young (Eberhardt 1977). At still-higher 

densities, age of maturity increases and then productivity of mature animals 

declines. Finally, at the highest densities, survival of adults may decline 

(Eberhardt 1977). The changes in population composition, survival, and 

recruitment I observed, follow that pattern and appear to be typical signs of a 

population approaching K-carrying capacity (Eberhardt and Siniff 1977; 

McCullough 1979). Also, they are similar to patterns recently reported in 

Hudson Bay where the polar bear population also has grown (Derocher and 

Stirling 1992).

Although I observed density effects on the population, I was not able to 

learn how density influenced reproduction or survival. In terrestrial bears, 

harassment, or infanticide by large males may be a principal mechanism of 

density dependent population regulation (Young and Ruff 1982; McCullough
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1981; Stringham 1983). Harassment of subadults by adult males at 

scavenging sites (Smith 1980) may be an important regulating factor among 

polar bears. Any effect male polar bears have on their population, however, is 

yet to be confirmed.

Their life history features, and my observations, suggest that polar bears 

should be among the most K-selected of wild animals. They are not 

completely invulnerable to short-term perturbations of their environment, 

however. Survival and production of young in the Beaufort Sea population 

dropped dramatically in response to abnormally harsh winter conditions in 

1974-75 (DeMaster et al. 1980). That response occurred in a density 

independent fashion and at a time when population size was low (Rogers 

1987; DeMaster 1981). An understanding of predator/prey interactions and 

how those interactions are mediated by weather and sea-ice conditions is 

needed to understand the population dynamics of polar bears.

One of the most significant contributions of this study was the improved 

estimate of survival rates of litter members and adult polar bears. Reliable 

estimates of survival rates in polar bears were not available at the start of my 

research, and in general, obtaining reliable estimates of survival is a major 

obstacle to population dynamics analyses (Eberhardt 1985). I estimated, with 

95% confidence, that annual survival of adult female polar bears is between 

0.946 and 0.980. This is higher than any previous estimate, and in line with 

what appears to be needed to sustain populations of large mammals 

(Eberhardt 1985). My estimates of survival of litter members were much lower, 

but eminently reasonable. It was these survival estimates and knowledge of
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the movements of bears, gathered by radio telemetry, that allowed me to 

determine the size and trend of the Beaufort Sea polar bear population.

Polar bears in the Beaufort Sea now appear to be at or near K, and are 

showing significant density-related effects. The fact of density-dependent 

responses in reproduction and survival and the effect of those responses on 

management decisions, however, may be quite different. The degree to which 

density dependent responses are useful in managing a species depends upon 

the height and shape of the “yield curve.” A tall yield curve, that is nearly 

symmetrical, such as is characteristic of white-tailed deer (McCullough 1979) 

means that many more young are produced when a population is near 

maximum sustained yield (MSY) than when it is near K. Less fecund species, 

like polar bears have a shorter yield curve that is strongly skewed to the left 

(Fowler 1981). Such a curve indicates that total numbers of young produced 

by a population at K are nearly as numerous as the total number produced at 

MSY, and that recovery of the population after over-exploitation necessarily will 

be slow. If the difference in yield is small, the relative gains in harvestable 

numbers are not great enough for managers to take the risks of managing at 

MSY. The growth rate I observed, and the growth rate potential for polar bears 

(Taylor et al. 1987), suggest that managing at MSY might yield relatively few 

additional harvestable animals. The risks of destabalizing the population if it 

were pushed below MSY (McCullough 1979) and the long recovery period that 

would be necessary, then, might be too great to justify MSY as a management 

target.

Because the Beaufort Sea population of polar bears has grown over the
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last 2 decades, it is clear that the existing harvest is within sustained yield. If 

an increased harvest, to a stable point (fixed removal yield; McCullough 1979) 

near MSY becomes the management objective, much better and more timely 

estimates of population size and K will be needed.

Denning Ecology of Polar Bears

In all recorded history before this project started, only 35 locations of polar 

bear maternity dens in Alaska were published (Lentfer and Hensel 1980).

Many of those 35 were known only approximately, from reports of local 

residents and early explorers, and the degree of confirmation was highly 

variable. This dearth of records of dens led many to wonder what was going 

on, and others to speculate that “Alaska’s” polar bears were really not 

“Alaska’s” but visitors from breeding areas in other countries. I found over 100 

dens during this study, and verified that there are sufficient numbers of dens in 

the Beaufort Sea region of Alaska and Northwest Canada to account for the 

estimated population size here. Over 1/2 of the denning in this region is on 

offshore sea ice, a discovery that was not expected, and may help explain the 

failure of earlier workers to find sufficient numbers of dens. The discovery of 

offshore denning also may explain why cubs of the year were chronically 

under-sampled in early capture studies.

In addition to the discovery of large numbers of maternal dens in the off

shore sea-ice, I discovered that polar bears, contrary to popular beliefs, did not 

den in the same place each time they were pregnant. Polar bears were largely 

faithful to the substrates of previous dens, either land or sea-ice, but faithful 

only to general geographic areas of previous dens. That is, a bear that
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denned once along the eastern Alaska coast of the Beaufort Sea was likely to 

den in eastern Alaska or Western Canada the next time, but not at the same 

site. Most bears entered their dens in mid-November (11 and 22 November 

for land and pack ice dens). They appeared to continue foraging right up to 

the time of den entry. Then, they denned near where they happened to be 

foraging. The fact that polar bears of the Beaufort Sea den only in ice and 

snow, rather than in the soil under the snow, combined with the annually 

variable autumn snow and ice conditions undoubtedly mediated where bears 

denned each year.

I found more dens at sea than on land, but land denning along the 

Beaufort Sea coast appeared to be increasing through the duration of the 

study. The sea ice is a less stable platform for denning than land. Bears that 

denned at sea drifted up to nearly 1000 km during the winter. Hence, even if 

the den remained intact through the winter, the predictability of resources upon 

emergence of the female and her new cubs from their den was limited. I 

observed that natural phenomena sometimes disrupted dens. The production 

of cubs from dens at sea, however, was not significantly different than that 

from dens on land; and dens on land were more vulnerable to a variety of 

human-caused disruptions.

In addition to questions of the security of animals while in dens, the 

phenomenon of pack ice denning also suggests questions about navigation 

capabilities of polar bears . No other vertebrate is passively transported this 

far “in the blind.” So, not only do polar bears range far and wide, they are able 

to determine where they are and return to previously used areas after long
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distances of passive transport. How polar bears accomplish this is unknown.

The preferred region for land denning was the northeast corner of Alaska 

and adjacent Canada. This region, which includes the “1002 area” of the 

Arctic National Wildlife Refuge, also holds the highest potential for discovery of 

commercial hydrocarbon deposits in the U. S. Loss of a large portion of the 

productivity of the dens from this area could undermine recruitment of polar 

bears into the Beaufort Sea. Clearly, there is the potential for many 

disruptions of dens in this region. Observations of polar bear dens that were 

exposed to varying levels of human disturbance, however, indicated that many 

denned bears that are exposed to human activities will not be exposed in ways 

that alter their productivity. The low density of dens in the Beaufort Sea region 

and the nature of proposed human activities also indicated that many dens 

simply would not be exposed. Rigorous adherence to flexible management of 

human activities, including spatial and temporal restrictions, should prevent the 

potential for many disruptions of dens from being realized.

The general distribution of dens in the Beaufort Sea region is now known, 

but it is largely unexplained. Why, for example, more bears chose to den in the 

far-eastern corner of Alaska and adjacent Canada, is unknown. The 

influences of slope, aspect, and elevation are not understood, although we do 

know that some bears make mistakes in their choices (Clarkson and Irish

1991). Why more than half of the bears I monitored, denned at sea when sea- 

ice denning is unknown right next door in the Canadian High Arctic (Messier et 

al. 1994), also is unknown. For the present, it may be sufficient to know where 

polar bears tend to den, and that they are not as sensitive to disturbance as
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previously thought (Belikov 1976). If pressures on other resources of the 

Arctic increase, however, we also will need to know why they den there. 

Conclusion

With reasonable management flexibility, the welfare of the polar bear 

population occupying the Beaufort Sea seems assured. Members of the 

population range widely within the Beaufort Sea, but seldom move far into 

adjacent areas. The population is relatively high, perhaps near carrying 

capacity. Denning is widely scattered in remote areas, and much of the known 

denning occurs on the pack ice where human interference is unlikely. It 

appears that only major local perturbations, or widespread changes such as 

global warming can adversely affect polar bears of this region in the immediate 

future. On the other hand; although the population is relatively high, it is small 

in absolute terms. Effects of perturbations lowering survival or recruitment 

could occur swiftly. Conversely, detecting those effects and responding to 

them with management actions likely will be slow. The biological potential for 

recovery from any perturbation is low because of the low reproductive rate of 

polar bears in the Beaufort Sea. Hence, vigilance is mandatory despite the 

relatively optimistic outlook.
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