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Abstract

A non-linear growth model that solves the surface energy balance and heat conduction 

equations was developed to estimate thermal and physical properties of sea ice. The 

model incorporates several mechanisms that affect the salinity profile, including initial 

brine entrapment, brine expulsion, and gravity drainage, and is a non-linear extension 

of the model initially developed by Cox and Weeks (1988). Simulations were run to 

investigate the effects of the non-linear feedbacks which exist between the ice growth 

velocity and the thermal properties of the resulting ice. A comparison of the growth 

rate versus accumulated ffeeze-days was performed on the linear model, the non-linear 

model, and empirical formulas based on field observations. Allowing the model to 

run through the summer months with retarded ice growth and making an attempt at 

modelling summer desalinization processes produced second and third-year ice with 

proper temperature and salinity profiles.

The ice growth model was then coupled to a Lambertian surface backscattering model 

for radar. By calculating the average dielectric constant of the penetration depth and using 

this value in the backscattering model, a comparison of the predicted signature variations 

in first-year sea ice was performed against observed backscattering values from ERS-1 

SAR images of Dease Inlet, Alaska. The agreement between calculated and observed 

backscatter was surprisingly good considering that other factors may also influence radar 

returns. However, the more surprising result was the rescaling of the predicted first year 

ice signature by + 6 dB produced a remarkable fit to observed backscattering values 

of multiyear ice. The predicted backscatter values and ice thicknesses were then used 

in conjunction with ERS-1 SAR imagery of the high Arctic to estimate areal coverage 

of the three major ice types in a 100x100 km2 area. Heat and mass flux calculations 

were then performed to produce daily estimates of energy loss and salt infusion for the 

winter months of October 1991 through March 1992.
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1

Chapter 1 General introduction

1.1 Dissertation Objectives

This dissertation is a study of several different aspects of the geophysics of sea ice. 

The first chapter sets the stage for what is to follow by briefly discussing some of the 

overall attributes of sea ice and why sea ice is currently of interest to the scientific 

community. Of particular interest here is the role sea ice plays in important regional and 

global interactions that effect the health of our planet. Also discussed is the role that 

remote sensing can play in exploring aspects of these interactions.

Chapter 2 investigates the surface energy balance of sea ice and further develops 

a growth model that is capable of estimating important properties of undeformed sea 

ice sheets. This chapter also discusses the physical properties of both first year and 

multiyear ice and how these properties change with time.

Chapter 3 is a theoretical discussion of the interaction of sea ice and synthetic 

aperture radar. It develops a formalism that enables one to predict sea ice backscatter 

coefficients (<r°) using the output of the growth model. It also compares these predictions 

with time-series measurements of o° for fast ice located near Barrow, Alaska using data 

obtained by the European Space Agency’s ERS-1 satellite.

Chapter 4 uses the theories and models developed in the previous two chapters in 

conjunction with images from ERS-1 to determine the temporal and areal extent of the 

three main ice classes: open water/new ice, first year ice, and multiyear ice. This chapter 

also attempts to characterize the ice thickness distribution in the High Arctic during the 

winter months using an approach based on SAR observations.

In chapter 5 the total heat and mass fluxes for an area of 100 x 100 km centered 

at 81.5° N and latitude 170.0° W longitude (see Figure 1) are calculated for October 

1991 to March 1992 based on the SAR observations and the model calculations. The
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Fig. 1. Map Showing Study Areas.

estimates include the energy released to the atmosphere and the total influx of salt 

injected into the mixed layer of the ocean.

The final chapter 6 summarizes the findings of the previous chapters and suggests 

additional aspects of this general problem for future study.

1.2 Sea Ice and the Earth’s Climate Machine

The earth may be viewed as a system which stores, transports and radiates energy. In 

a simplified view the earth is a sphere with energy entering along the equator and exiting

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



at the poles with the storage and transportation from the wanner equatorial regions 

to the colder poles generally performed by the oceanic and atmospheric advection of 

heat. While the atmosphere is believed to be the major contributor to this transportation 

process, the greater heat capacitance of the ocean makes it the main vehicle for energy 

storage. These processes may be seen in the weather patterns of the atmosphere and 

in the circulation of the ocean.

To better understand this view of the earth one must look at how the sun’s radiation 

interacts with the varied components of the planet’s surface and atmosphere. The solar 

radiation that reaches the upper layers of the atmosphere is either absorbed, reflected 

or transmitted depending on the characteristics of that particular part of the atmosphere. 

For example, water vapor in the form of high cirrus clouds tends to reflect much of the 

solar radiation, while the absence of water in the atmosphere creates an environment 

that transmits the radiation to lower levels.

The same type of situation occurs at the Earth’s surface where the presence of ice 

and snow may lead to much of the radiation being reflected while the presence of open 

water or bare land leads to greater absorption. The reflection process generally reduces 

the amount of absorption and subsequent heat storage. This is generally true when 

the energy entering the system is at a different wavelength than the energy exiting the 

system, as is the case for the earth. The difference is, of course, the result of the fact 

that the surfaces of the Earth and the Sun are at vastly different temperatures. The Sun’s 

surface temperature of about 6,000 K  produces a maximum intensity of radiation at 05  

\im which is in the blue-green range of visible light while the Earth’s lower temperature 

of 300 K  results in a black body radiation maximum in the thermal infrared band at about

9.7 pm. The difference in the two radiation maxima is the reason why the earth is said to 

receive its energy by shortwave radiation while losing its energy by long wave radiation.

Clearly, any substance that effects the radiation balance at the Earth’s surface has 

the potential to effect the Earth’s climate if it covers enough of the Earth’s surface. Sea

3
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ice, the ice that forms when sea water freezes, is just such a material. It is particularly 

important since changes in sea ice extent have the ability to effect climate, while changes 

in climate, in turn, have the ability to effect sea ice extent. There are complex feedbacks 

involved. Although sea ice only represents about 0.1% of the total volume of snow and 

ice on the Earth’s surface, it effects an extremely large area: between 6 and 7% of the 

total surface of the Earth and between 10 and 12% of the total surface of the ocean. At 

its maximum extent, sea ice covers about 10% of both the northern and the southern 

hemispheres affecting a total area of 20x106 km2 in the south and 15x10? kn? in the 

north. This represents an area of about two times that of the contiguous 48 states in 

the north and three times that in the south. At minimum ice extent, areal coverage 

drops to 50% of the maximum in the north and to about 15% of the maximum in the 

south. This makes sea ice the most important transient feature affecting heat and mass 

exchange between the ocean and atmosphere. In fact it ranks second only to snow as the 

most important transient feature affecting heat and mass exchange between the Earth’s 

surface and the atmosphere. Here it must also be remembered that the occurrence of 

snow on the surface of large oceanic areas is only possible because sea ice supports 

the snow acting as its floating platform.

As a player in the climate system, sea ice works in a variety of ways, some of which 

are rather surprising. Foremost, the presence of sea ice causes a major change in the 

albedo (a) of the surface of the sea. Considering that sea ice invariably supports some 

snow cover, an ice covered region will typically exhibit albedos ranging between 0.80 to 

0.90 while the open ocean exhibits an albedo of approximately 0.06 -  0.15. This results 

in a drastic change in the amount of shortwave radiation that is absorbed by the ocean 

during spring and summer when the sun is high in the sky, and sea ice is absent. As the 

ice is also a good insulator and its snow cover is an even better insulator, the presence 

of sea ice causes a major change in the transfer of heat and mass between the ocean and 

atmosphere from summer to winter. In winter, polar air temperatures may consistently

4
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be below -40° C. Yet, underneath the sea ice cover at depths of a few tens of centimeters 

to at most a few meters, sea water temperatures are -1.8°C. These differences in air 

and ocean temperatures, which are only possible because of the presence of the ice 

cover, are among the largest naturally occurring temperature gradients to be found on 

the surface of the Earth if localized phenomena such as the suriicial extrusion of molten 

magma are excluded. Moreover ice itself is a major thermal buffer with a specific heat 

of 2.1 Ox 10s]  kg'1 Kr1 and a heat of fusion of 335.xlO?J kg~]. Therefore the freezing 

and melting of ice requires the exchange of large quantities of heat.

Furthermore, the presence of ice greatly modifies the other physical interactions 

between the atmosphere and the ocean by modifying the transfer of momentum. It also 

modifies the surface wave field by essentially eliminating the shorter period wave. This 

tends to reduce vertical mixing in the upper ocean favoring the existence of a 50-m-thick 

low salinity surface layer in the Arctic Ocean that forms as the result of the desalinization 

processes associated with ice formation and the influx of fresh water from the large rivers 

of northern Siberia. This low salinity, cold surface layer contributes to the decoupling 

between the surface and the comparatively warm (temperatures of up to +3°Q  but 

denser water direcdy underlying the surface layer and prevents it from affecting the ice 

cover, an interaction that would further decrease sea ice extent and thickness.

As sea ice rejects approximately two-thirds of the salt initially present in the sea 

water from which it formed, its formation corresponds to a distillation process producing 

a low salinity component (the ice layer) and a high salinity component (the rejected 

brine). Both of these components play important geophysical roles. Most of the brine 

which is cold, rich in CO2 and dense sinks to the bottom and ultimately contributes to 

the formation of deep water in the World Ocean. Although the importance of this process 

in removing CO2 from the Earth’s surface is still being debated, this clearly provides a 

connection between short-term near-surface process and long-term deep ocean process; 

clearly a matter of potential climate importance. Additionally, it has been shown by

5
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Sarmiento and Toggweiler (1984) that three-quarters of the water masses of the World 

Ocean acquire their properties from high latitude regions which account for only about 

five percent of the global ocean surface. Thus, the polar regions are an important factor 

in determining the overall state of the ocean.

The freshened surficial layer of sea ice and lower salinity seawater are also of 

considerable interest, at least in the Arctic. The discharge of this lower salinity material 

occurs via the East Greenland Drift Stream between Svalbard and Greenland where it 

represents a freshwater transport of 2800 krr^lyear. This is a discharge that is second 

only to the Amazon River. Currently there is speculation that in the past this freshwater 

flux may have been sufficient to even stop or at least alter the convective regimes 

of the Greenland, Iceland and Norwegian Seas. If this proves to be true, this is a 

sea-ice-driven, small scale equivalent of the so-called halocline catastrophe that has 

been proposed for past deglaciations when large quantities of meltwater from retreating 

glaciers are believed to have altered convective regimes in part of the World Ocean. 

Needless to say, these are matters of considerable interest to climatologists.

1.3 Sea Ice and Remote Sensing

To deal with the types of problems discussed in the previous section, one needs both 

a thorough understanding of the geophysics of sea ice formation and decay as well as an 

all weather method for monitoring the behavior of large areas of pack ice. In that some 

of the important geophysical processes only operate on a large scale, field sampling can 

be very difficult being hampered by low temperatures, long periods of darkness, poor 

working conditions and isolated field locations. Since sea ice is essentially a surface 

or a near-surface phenomenon, satellite-based remote sensing would seem to be the 

answer to many of the observational problems. Unfortunately, until recently the remote 

sensing capabilities that were available lacked the resolution to observe the sea ice in 

adequate detail and with continuous coverage. Where there was adequate coverage,

6
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such as with passive microwave sensors, the resolution was very coarse (>10 km) and 

where the resolution was adequate as with visible or infrared sensors, the coverage was 

limited because of darkness or cloud limitations. It is only recently with the launch 

of the Synthetic Aperture Radar (SAR) system on the European Space Agency (ESA) 

satellite ERS-1 that these problems are greatly reduced. Although coverage is not as 

extensive as might be desired, the SAR system offers both reasonably high resolution and 

all-weather capability. As SAR is an active instrument supplying its own “illumination” 

and operating at a frequency that penetrates clouds, it is a true all-weather system. In 

addition, its synthetic aperture produces images with resolutions that approach those 

available through high resolution instruments operating in the visible range.

While SAR appears to eliminate many of the past problems of remote sensing as 

applied to sea ice, it creates a series of new challenges. The images that are produced 

represent the response of a material that we only partially understand to a frequency 

of electromagnetic radiation with which we are not intimately familiar. We are unlike 

Superman in that we do not see with X-ray or radar eyes and therefore the interpretation 

of SAR imagery is far from straightforward to our eyes. Previously it was believed 

that SAR imagery could not be directly utilized to estimate ice thickness. Ice thickness, 

the one parameter that every student of sea ice wants measured, was believed to be 

valid only if obtained from ‘remote sensing’ systems operating either on or within a 

few meters of the sea ice surface.

The research upon which this thesis is based, was an attempt to circumvent the ice 

thickness problem by utilizing SAR in a manner that would allow one to obtain the ice 

thickness distribution, or at least the thin end of the distribution, via an indirect method 

using a combination of both SAR and modelling. In fact, we initially hoped to utilize 

ERS-1 imagery to keep track of the development of leads within the moving pack ice. 

Once an area of open water or thin ice was identified, we proposed to track it with 

SAR. Knowing when the lead formed, we could calculate how thick it would be at any

7
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future time through the use of a growth model and meteorological data. As time passed, 

we planned to develop an ice thickness distribution for the thinner ice classes and to 

produce a time series of estimated heat, moisture and salinity fluxes that could serve 

as input into coupled atmosphere-ice-ocean models. Unfortunately, coverage limitations 

as well as restrictions on the amount of imagery available to any one project, restricted 

our ability to identify specific lead areas for adequate periods of time. It should be 

mentioned here that we still believe that our initial goals should be achievable when the 

wide-swath imagery becomes available upon the launch of Radarsat.

If we couldn’t track leads for long periods of time, was there any possibility of 

using short sequences of images to obtain estimates of ice thickness that could be used 

with an ice growth model to calculate heat and mass fluxes? To do this, one would need 

an adequate ice growth model that would allow one to estimate fluxes if thicknesses 

could be estimated. One would also have to explore the possibility of obtaining better 

estimates of ice thickness, at least for undeformed first-year (FY) ice, directly from 

backscatter measurements made via ERS-1. Could this be done? We didn’t know, but 

we thought that, if one tried, some interesting answers might be found and that some 

new questions might surface. It is hoped that you will agree that this is indeed the case.

8
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9

Chapter 2 Sea Ice Growth Model

2.1 Introduction

The ice growth and properties model developed in this study is an extension and 

combination of several different earlier models. The surface energy balance routine is 

based on work of Maykut and Untersteiner (1971) and Maykut (1978). The ice property 

routines, such as brine volume, brine salinity, bulk salinity, brine expulsion, gravity 

drainage and ice densities are based on work by Cox and Weeks (1975;1988a). The 

non-linear temperature profile and the position of the freezing interface is determined 

by the finite-difference model that was developed for geothermal problems by Goodrich 

(1974). The initialization of the growth rate for the first layer utilizes the empirical 

ice growth relations of Bilello (1961), while the thermal properties such as latent heat, 

thermal conductivity and thermal capacitance are based on work by Schwerdtfeger 

(1963), Ono (1975) and Yen (1981).

Many of the original programming algorithms were initially developed by Cox in 

Rocky Mountain Basic. In that Rocky Mountain has not proven to be a commonly 

used programming language, a task that had to be completed in the initial stages of this 

study was to recode the initial Cox/Weeks program into a language that would allow the 

program to be run on a workstation. The recoding was carried out in Fortran 77 and 

utilizes NCAR GKS Graphics. This also allowed comparisons to be made between the 

original program and the more flexible and realistic program that will be developed here.

2.2 Program Structure

The ice growth program has five major parts:

1) an initialization of the first layer,

2) a calculation of the surface energy balance,

3) a determination of the properties of the ice at different levels in the ice sheet,
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4) a treatment of the different aspects of the desalination process, and

5) a finite-difference routine to estimate the changes in the temperature profile 

and growth rate.

Although each of the major program components accomplishes a specific task, there 

are rather complex interdependencies between many of the components. For example, 

the finite-difference routine determines the position of the freezing interface and the 

temperature of each layer, but to do this it requires the ice surface temperature and 

the thermal properties of each of the layers. The ice surface temperature is determined 

by the surface energy balance routine and the thermal properties of each layer are 

determined by subroutine calls for each property.

The basic scheme of the program is as follows:

2.2.1 Initialization

The user specifies the number of days of ice growth, the starting day relative to 

September 1 and the snow accumulation rate. The program then reads the meteorological 

conditions (air temperature, wind speed and snow fall) for the site under study and 

determines the air temperature for the first freezing day. It then estimates the growth 

rate for the initial layer of ice by determining the freezing degree-day equivalent of one 

time step (7/2 hr) for the first freezing day (relative to - 1.8°C) and estimates, using the 

Anderson empirical formula (Anderson 1961) discussed later, the amount of ice that will 

grow in that time thereby establishing an initial estimated growth rate. From this growth 

rate, the initial salinity may be determined and the surface energy balance calculated. 

The surface energy balance determines the surface temperature of the ice allowing the 

program to calculate the brine volume, the thermal conductivity, the latent heat and the 

heat capacitance for that layer (Yen 1981). After the initialization has been completed, 

the program continues on through the normal program loop with the exception of the 

desalination process which only occurs if there are at least two layers (2 cm) of ice 

present. One layer of ice is equal to 1 cm which also the node spacing.

10
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2.2.2 Finite-Difference Routine

The normal program loop calls a finite-difference routine that solves the Stefan 

Problem of heat conduction involving a phase change. It accomplishes this by 

substituting the moving boundary condition of the phase change interface with an 

apparent latent heat source term added to the heat conduction equation. It then uses a 

forward looking and a backward looking Gaussian elimination process to localize the 

phase change interface between two nodes. For the element containing the ice-seawater 

interface, the routine uses a technique that follows the position of the moving interface 

and maintains the non-linearity of the problem (Goodrich 1978).

The finite-difference model is initialized with the first layer of ice having the 

thermal properties calculated during the initialization procedure. The remaining layers 

are assumed to have the thermal properties of a mixture of ice and sea water in a ratio 

of 1:3 at a temperature of -1.8°C. The reasons for this will become apparent later. 

The program steps through each time step of 1/2 hour, locating the freezing interface 

and establishing the temperatures at each node. After each time step, the ice thickness 

is checked and the program calculates the snow thickness, determines the ice surface 

temperature for the next iteration and updates the ice properties for all layers.

2.2.3 Surface Energy Balance Routine

The ice surface temperature is determined by the surface energy balance equation via 

the use of an iterative procedure. The air temperature, wind speed and snow thickness 

are derived from the meteorological data and input from a file. The incoming shortwave 

radiation, the incoming longwave radiation and the relative humidity, for each day, 

are estimated from a smoothed data set. Variations in the albedo as a function of ice 

thickness are estimated from the field measurements of Weller (1972). The latent heat 

flux is then related to the surface temperature through the specific humidity (Maykut 

1978). The emitted longwave radiation, the latent heat flux, the sensible heat flux and

11
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the conducted heat flux, are then iterated as a function of the ice surface temperature 

until the surface energy equation is balanced.

2.2.4 Ice Properties Routine

The ice properties routine first determines the snow cover and then calls the surface 

energy balance routine to determine the ice surface temperature. The program calculates 

the growth velocity from the ice thickness and the amount of time it took to grow 

the new layer. It then determines the initial salt entrapment and calculates the average 

temperature of the new layer. Using the average temperature and the initial salt 

entrapped, the brine salinity and the brine volume are determined and the latent heat 

and the heat capacity of the new layer are calculated.

2.2.5 Desalinization Process

If the program has grown more than two layers of ice, desalination of the layers above 

the new layer is initiated. For each layer above the new layer, the desalination process 

determines the average temperature of that layer. It also recalls the average temperature 

of that layer the last time desalination was called. It then uses this temperature change to 

determine the brine salinity and brine volume change, and calculates the salinity change 

due to brine expulsion. The salinity of the layer is then adjusted with the expelled brine 

going to the layer, either above or below, containing the higher brine volume (the brine 

is transferred to the adjoining layer with the higher permeability).

The temperature gradient between the layers, the brine volume and the time since 

last desalination are also used to calculate the salinity change due to gravity drainage. 

If the gravity drainage from the layer above is larger than the gravity drainage of the 

current layer, the difference is added to the current layer. If there is a layer of ice 

that has a brine volume less then 50 ppt, the gravity drainage is set to zero for all 

those layers above it. After the thermal properties of all the layers are updated, the

12
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program enters the finite-difference routine and continues to grow ice until the number 

of target days has been reached.

2.3 Detailed Model Description

2.3.1 Surface Energy Balance

2.3.1.1 Introduction

The surface energy balance routine is largely based on work by Maykut (1978) 

and Maykut and Untersteiner (1971). The routine uses the Newton-Raphson iterative 

method to establish the ice surface temperature by taking as daily inputs incoming 

longwave radiation, incoming shortwave radiation, relative humidity, air temperature, 

wind speed and snow accumulation. It then determines the ice surface temperature 

by balancing the energy fluxes at the ice surface according to the following formula, 

valid for freezing conditions:

( 1 — c t ) F r — I a +  Fi —• Fe  +  Fa 4- Fe +  Fc +  F0 =  0 (2.1)

where

Fr = incoming shortwave radiation,

aFr = reflected shortwave radiation where a  is the ice albedo, 

lo = net influx of radiation passing into the interior of the ice,

Fi = incoming longwave radiation,

Fg = emitted longwave radiation,

Fs = sensible heat flux,

Fe = latent heat flux,

Fc = conductive heat flux,

F0 = oceanic heat flux.

13
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Fig. 2. Energy Flux Indices for Atmosphere-Ice-Ocean.

The convention that a flux towards the surface is positive (figure 2) will be followed 

here.

2.3.1.2 Incoming Shortwave Radiation (Fr)

The incoming shortwave radiation (Fr) values were taken from the monthly values 

given by Marshunova (1961). Each value was assumed to be representative of the 

middle of each month. Daily values were obtained by applying a polynomial smoothing 

function to the monthly values following the procedures of Maykut and Untersteiner
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(1971). In that the origin of Fr is the sun which has a surface temperature of roughly 

6000 K, the wavelength of the radiant energy peak (in fim) can be calculated 

from Wien’s Displacement Law

^max =  ~7p * 10 (2.2)

giving a value of 0 5  \im.

2.3.1.3 Net Influx of Radiation to the Interior of the Ice (I0)

The net influx of radiation (/<,) passing into the interior of the ice becomes

Io  =  io  ( 1 -  a  ) Fr (2.3)

Based on measurements by Weller (1972), the albedo of the ice can be represented by 

a polynomial that is a function of the ice thickness H  and is given by

a  =  Po +  P i H  +  p 2 H 2 +  /33 H 3 (2.4)

where H  is in cm and

Po =  2.386 X IO-1

P i =  6.015 X 10-3

p 2 -  -4 .8 8 2  X 10-5

p3 =  1.267 X 10-7

For ice thicker than 100 cm, a  is 0.47. The suggestion by Maykut and Untersteiner (1971) 

that the net influx of radiation into the ice (i0) is approximately 17% of the net shortwave

radiation will be adopted here. This value of 17% is based on temperature profile

15
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observations made during the melt season by Untersteiner (1964) and a heat balance 

suggested by Fletcher (1965). It is in conflict with Untersteiner’s own estimate of 32% 

and is an area that needs further study. In that this study is largely concerned with the 

ice growth period when Fr values are near zero, this is not an major consideration here.

2.3.1.4 Incoming Longwave Radiation (F/)

The values for the incoming longwave radiation (F/) were also taken from 

Marshunova (1961) and treated in the same manner as the incoming shortwave radiation. 

That is, they were fit with a smoothing polynomial.

2.3.1.5 Emitted Longwave Radiation (Fe)

The emitted longwave radiation is given by the Stefan-Boltzmann Law,

FE = e a  (2.5)

where e is the emissivity of the material, a  is the Stefan-Boltzman constant (5.67 x 

K t8 W n r2 Kr4) and T0 is the ice surface temperature in degrees Kelvin. In the specific 

cases considered here, e is the longwave emissivity of the surface layer of ice or snow 

and is taken to be equal to 1. In that the Earth’s average surface temperature is of 

the order of 250 K, equation (2.2) indicates that the radiation emitted by the Earth will 

have a peak wavelength of roughly 12 pm.

2.3.1.6 Sensible Heat Flux (Ff)

The sensible heat flux is estimated by

Fg =  pa Cp C a it ( Ta — To ) (2.6)

pa the average air density (1.3 kg nr3),

Cp the specific heat at constant pressure (1006 J  kg^K-1),
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Cj the sensible heat transfer coefficient (0.003), 

u the wind speed in m s '1, and

T0 and Ta the ambient and ice surface temperatures in degrees Kelvin.

2.3.1.7 Latent Heat Flux (Fe)

The latent heat flux (Fe) is calculated from equation (2.7)

Fc — Pa Ft C c u  ( qa Qo ) (2.7)

which contains the following parameters

pa the average density of the air (1.3 kg m~3),

L the latent heat of vaporization ( /  kg'1),

Ce the evaporation coefficient (0.00175), 

u the wind speed, and

qa -  q0 the specific humidities at some reference level above the ice qa (in this

case at 10 m) and at the surface q0.

In equation 2.7 the latent heat of vaporization can be calculated from

L  -  [ 2.5 X 106 -  2.274 X 103 X ( Tn -  273.15 ) ] (2.8)

where L is again expressed in J  kg'1 and Ta is in degrees Kelvin. The difference in

specific humidity can be calculated using a relation obtained by Maykut (1978)

(9 a -  q o )  =  X  [ a ( / T a4 -  Tc4 ) +

& ( / T 3 - T 3 ) + c{fTl - T % ) + (2'9)

d (f Ta - T0 ) +  e (f - 1 )]
where p0 is the surface atmospheric pressure (1013 millibars),/is the relative humidity, 

and a,b,c,d, and e are experimentally determined constants

a  =  2.7798202 X 10“ 6 ( K 4)
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b =  -2 .6913393  X IO-3  ( K 3)

c =  9.7920849 X 10-1  ( K 2)

d  =  -1 .5863779  X 102 (K )

e =  9.6531925 X 103.

2.3.1.8 Conductive Heat Flux (Fc)

The conductive heat flux can be calculated from

Fc =  4  ( Tb -  T o ) (2.10)
i l

where H  is the ice thickness in meters, Tb is the temperature of the ice-water interface 

(-1.8° C). The thermal conductivity (k) of the surface ice layer of sea ice, or of any other

layer, may be calculated using a relation developed by Ono (1975)

k  =  k i ( 1 — Vb ) +  k b Vb (2.11)

where ki (’Wm~1K~I ) is the conductivity of pure ice, equal to

ki =  4.186 X 104 X

[5 .35  X 10“ 3 - 2 .5 6 8  X IO-5  ( T; -  2 7 3 .1 5 ) ] .

The thermal conductivity of the brine (kb) is

k b =  4.186 X 104 X [ 1.25 X 10-3  +

3.0 X 10-5  X ( Ti -  273.15 ) +  (2.13)

1.4 X 10“ 7 X (T i  -  273.15 )2 ].

The relative brine volume (VbIV) can be calculated from

Vb _  pSj 
V  ~  F i(T )

(2.12)

(2.14)

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



where p is the bulk density in Mg m~3 and can be determined from

P =
Pi Pb s b

(2.15)
[ Pb Sb — Si ( pb -  Pi ) ]

where 5/ is the salinity of the ice in ppt, and values for Fj(T) are obtained from a

least-squares polynomial fitted to experimental data (Cox and Weeks, 1983)

Fi ( T i )  =  ao  4- “ i Ti +  «2 T f  4- a z  T f  (2.16)
where

ato =  -4.732 - 2  > T; >  -22.9

a x =  -2 .2 4 5  X 10+1 - 2  > Ti >  -2 2 .J

a 2 =  -6 .3 9 7  X IO-1  - 2  > Ti > -2 2 .9

or

a z  =  -1 .0 7 4  X 10"

a 0 =  —9.899 X 103

- 2  >  Ti >  -22.9  

-22 .9  >  Ti >  -3 0

a i  =  1.309 X 103 - 2 2 .9  > Ti >  - 3 0

a 2 =  5.527 X 101 22.9 >  Ti >  - 3 0

a z  =  7.160 X 10-1  - 2 2 .9  >  Ti >  - 3 0

The change in the coefficients at -22.9°C is the result of the fact that this is the 

temperature where the solid salt N aC tefyO  crystallizes from the brine included in the 

sea ice. Since V/Fi(T) = pb Sb, the brine volume Vb can be determined from

P Si
Vb =

Pb Sb
(2.17)
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Table 1. Table of Snow Accumulation Options.

20

OPTION Sept. - Oct. Nov. - Apr. May TOTAL

0 0 0 0 0

I 0 -1 0  cm 10 - IS cm 0 cm 15 cm

2 0 - 20 cm 20 - 25 cm 0 cm 25 cm

3 0 - 30 cm 30 - 35 cm 0 cm 35 cm

8
% of total snow 

accumulation
% of total snow 

accumulation
% of total snow 

accumulation
% of total snow 

accumulation

9
actual snow 

accumulation
actual snow 
accumulation

actual snow 
accumulation

actual snow 
accumulation

2.3.1.9 Oceanic Heat Flux (F0)

The oceanic heat flux, while an important component of the energy equation has 

not been adequately parameterized at this time. Estimated values range from less than 1 

W m~2 to over 40 W m~2 depending upon the location and the time of year. Although 

the model is capable of handling variable oceanic heat fluxes, for the lack of a better 

parameterization a constant value of 2 W m~2 will be used in the present simulations.

2.3.1.10 Snow

The model is capable of handling snow cover in several different ways. The basic 

assumptions for snow are that for an ice thickness H, with a total snow thickness h and 

with the thermal conductivities of ice and snow given by ki and ks, the temperature at 

the snow/ice interface Ti can be calculated from

=  h  ki Tb +  H  ka Tq (2.18)
h k i  +  H k 8

where T0 is the surface temperature of the snow. The thermal conductivity of the snow 

is assumed to be ks = 031 W rtf1 K '1, and its albedo is taken as a  = 0.8.
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There are five snow options available with three standard accumulation rates (Table 

1). Options 1, 2 and 3 are standardized snow accumulation rates which follow ramp 

functions according to Table 1. Option 9 uses the actual snow fall, while option 8 

allows the user to define the accumulated snow as a percentage of the actual snow 

fall. Phrased another way, in option 9 the snow only accumulates and does so at 

the measured rate while option 8 accumulates snow at some percentage of the actual. 

Option 8 was introduced here because, while the actual amount of snow that fell at a 

given location may occasionally have been measured, the amount that accumulates on 

the ice may be appreciably different as a result of wind-induced drifting as well as a 

number of other possible factors. Unfortunately, of the many things that we do not 

know about sea ice, one of the most glaring problems is the absence of quantitative data 

on the temporal and spatial distribution as well as the thermal properties of its snow 

cover. Therefore, all computer simulations in this study are run with zero accumulated 

snow fall unless stated otherwise.

2.3.2 Ice Properties

2.3.2.1 Introduction

The following additional ice properties routines are described in the following section:

initial sea ice salinity, 

brine salinity, 

brine density, 

latent heat of fusion, and 

heat capacitance.

2.3.2.2 Initial Salt Entrapment

The initial salinity of an ice layer is determined by the growth rate and the salinity 

of the underlying seawater. The initial salinity of the ice (Si) is given by

Si =  k e f f  S w (2.19)

21
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where keff is the effective distribution coefficient and Sw is the salinity of the underlying 

seawater. The effective distribution coefficient may be estimated from the experimental 

work of Cox and Weeks (1975), who studied salt entrapment using radioactive sodium 

as a tracer. The relation that they suggested

0.26

22

f e e / /  — (2.20)
. 0.26 +  0.74 exp ( -7 2 4 3  V  ) 

is valid for growth velocities greater than 3.6xl0~5 cm s '1. Here V is the sea ice 

growth velocity in cm s '1. For lower values of V between 3 .6xl0r5 to 2.0x10~6, the 

distribution coefficient is given by

k ef f  =  0.8925 +  0.0568 In V  (2.21)

Finally, for velocities less than 2.0x1 Or6 cm s '1 the distribution coefficient is assumed 

to be constant with a value of 0.12.

2.3.23 Brine Salinity

The brine salinity may be calculated from equations derived by Cox and Weeks 

(1986)

Sb =  r*o +  <*i T{ +  02 i f  +  q-3 T f  (2.22)

where T, is the ice temperature (°C) and Sb is the brine in ppt.

a 0 =  -3 .9 9 2 1  -  2 >  Tj >  - 2 2 .9

« i  =  -2 2 .7 0 0  — 2 >  Ti >  - 2 2 .9

a.2 =  -1 .0 0 1 5  - 2  >  Ti >  - 2 2 .9

a 3 =  -0 .0 1 9 9 5 6  - 2  > Ti >  - 2 2 .9
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or

a 0 =  206.24 -2 2 .9  >  25 >  -4 4

a i  =  -1.8907 -  22. 9 >  T i>  -4 4

a 2 =  -0.060868 -  22. 9 >  Ti >  -4 4

a 3 =  -0.0010247 -  22.9 >  25 >  -4 4

2.3.2.4 Brine Density

The brine density (pb) can be calculated from an equation by Zubov (1945)

Pb — 1 +  cSb (2.23)

where c is a constant (0.0008 Mg m~3 (ppt)"1).

232.5  Latent Heat of Fusion

The latent heat of fusion, expressed in J kg'1, for sea ice can be calculated from 

a relation given by Yen (1981)

Si
L =  [79.69 -  0.505 25 -  27.3 Si +  4311.5 ( - f  )] X 4188 (2.24)

with Ti the temperature of the ice (°C) and Sb is the salinity (ppt).

2.3.2.6 Heat Capacitance

The heat capacitance (HQ of sea ice is

H  C  =  Cs pi =

S ' L  ,  ^ ( C m _ C i )  +  C i (2-“ >
0.0182 X I f  0.0182 X l i v '

where Cw = 4.23 x 10s (J kg'1 ° C 1) and C; = 2.01 x 103 (J kg'1 °C '1).
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2.3.3 Desalinization Process

2.3.3.1 Introduction

Natural sea ice shows a wide range of salinities ranging from as high as 20 ppt in 

newly-formed ice to near 0 ppt in the upper parts of old multiyear floes. The exact values 

are affected by a variety of processes including the amount of salt initially entrapped 

(see Section 2.3.2.2), brine expulsion, gravity drainage, brine pocket migration, and if 

the ice survives a melt season, by flushing.

The two dominant mechanisms involved in the desalination process of first year sea 

ice are brine expulsion and gravity drainage. Brine expulsion takes place in the ice 

during periods when the temperature is deceasing, reducing the volume of the individual 

brine pockets and increasing the fluid pressure as the result of the volume increase 

associated with the formation of ice from liquid phase. Gravity drainage, on the other 

hand, is the convective response due to the density instability resulting from cold, 

dense brine overlying warmer, less dense brine in the interconnected brine drainage 

networks that exist in sea ice.

2.3.3.2 Brine Expulsion

When ice initially forms, the dendrite nature of the freezing interface results in 

the entrapment of salt as inclusions within the ice. These so-called brine pockets are 

composed of a concentrated salt solution (brine) with a composition specified only by 

the temperature (Assur, 1958). As the ice sheet cools, additional ice forms thereby 

removing water from the brine causing the remaining brine to become more saline and 

the volume of the remaining brine to decrease (the brine pocket becomes smaller in 

volume). However the ice that forms during this process occupies approximately 10% 

more volume than liquid water that was replaced. Therefore, although the volume of the 

brine is decreasing, the total volume of ice and brine increases over that of the initial 

brine pocket. In that the brine pocket is encased in ice and is not free to expand, this
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produces an increase in the internal pressure of the brine. If the brine pressure rises 

above the pressure required to cause the ice to fail in tension, a crack results allowing 

the brine to escape. This process has been termed brine expulsion (Bennington, 1963; 

Untersteiner, 1967). Equations for describing the process have been developed by Cox 

and Weeks (1986). For gas-free sea ice during a cooling trend the equation is

S j ( T 2 ) 
Si ( Ti )

Sb ( T2 ) 
L Sb ( Ti )

P b ( T 2 )
P b ( T i ) (2.26)

exp
Pi{5 fe ( Ti  ) -  Sb ( T2 )}

where Si is the ice salinity, Sb is the brine salinity, pb is the brine density, Vb is the 

brine volume at temperatures Tj and T2, pi is the density of pure ice taken as 918 kg 

m~3, and c is equal to dpbldT (0.8 kg m~3). The values of Sb and pb can be calculated 

from information presented in Cox and Weeks (1986) as noted earlier in this paper. For 

warming conditions, when T2 > 7j, there is no brine expulsion.

2.3.3.3 Gravity Drainage

The second mechanism of the desalination process is gravity drainage. This process 

occurs whenever there is a layer of more dense brine above a layer of less dense brine. 

For sea ice during the winter, this is nearly always the situation in that, during the 

ice growth season, the ice sheet is invariably warmer at the bottom than at the top. 

Since the brine density and brine volume are functions of temperature, this positive 

temperature gradient (downward) causes the brine at the top of the sheet to be more 

dense then the warmer brine at the bottom, resulting in an unstable condition. The 

convective process that occurs from this instability is termed gravity drainage. Again, 

this process has been studied by Cox and Weeks (1975) using tracer techniques and
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for brine volumes greater than 50 ppt

1.68 >

(2.27)

3.37 X 10-7

These equations for brine expulsion and gravity drainage were used in the ice 

growth program after each time step. Calculated salinity changes in a given layer were 

redistributed as follows. For brine expulsion the salinity change was removed from the 

layer and placed in the layer either above or below according to the following rules. If 

90% of the brine volume of the upper layer is greater than 100% of the brine volume 

of the lower layer, the expelled brine is placed in the upper layer. Otherwise the brine 

is moved down into the lower layer. These differences in percentages were used in 

this scheme primarily to overcome a small oscillation of the temperature in the upper 

part of the ice sheet that is a by-product of the finite-difference routine. For gravity 

drainage, if the layer just above the current layer lost more salt than the current layer, 

the difference was added to the current layer. If the layer above lost less salt than the 

current layer, no additional salt was added.

2.3.4 Finite Difference Routine

2.3.4.1 General

The finite-difference routine for the ice growth program is based on the work of 

Goodrich (1978). The technique involves solving the heat conduction equation

(2.28)
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which applies in the frozen and unfrozen regions on either side of the moving phase

of the material. At the freezing interface (x=z) the following condition holds true

at the moving phase change interface. The plus (+) sign indicates a release of heat 

(i.e. that freezing is occurring).

In this treatment, the moving interface is replaced by a latent heat source term 

added to the conduction equation which leads to a heat conduction equation with an 

effective heat capacitance as follows.

where

Ceff is the effective heat capacity per unit volume,

Cu is the heat capacity per unit volume of the unfrozen medium,

Cf is the heat capacity per unit volume of the frozen medium

Lv is the latent heat per unit volume, and

9 = 6 ( Tj c ) = unfrozen volumetric moisture content.

boundary. Here C is the heat capacity per unit volume and k is the thermal conductivity

(2.29)

and

T (z , t )  =  T f  =  constant

(2.30)

with

C ef f  =  C u f o r  T  > T f

and

Ce f f  =  C f  +  L v —  f o r  T <  T f (2.31)
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* i - 1

* U 1

X i +  2
Fig. 3. Finite-Difference Grid Indices.

For a layered system with N  layers (Figure 3), the difference equation may be 

written as

HCi ( T/"+ l -  27" ) =

C N i- !  (  T ^ 1 -  T™+1 +  T ^ 1 -  I f 1 )  +  (2.32)

CNi ( T ^ 1 -  T/"+1 +  IJJj -  T /") 

where the space indices are the subscripts (i), the time indices are the superscripts (m) 

and the i node temperature at time m for a time step A t is T?71 =  T (a ? j, m A f ) .

The heat capacity coefficients (//C) and the conductance coefficients (CN) are 

defined as

=  +  C iA x .)  (2.33)
A t
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and

(2.34)

where k,• is the thermal conductivity of element i, C,- is the volumetric heat capacity 

of element i and A x  is the node spacing.

Equation 2.32 may be rearranged such that

by a Gaussian elimination procedure. Since the temperatures at the upper and lower 

surfaces (i=0 and i=N) are known, the remaining node temperatures may be determined 

by using a forward and backward Gaussian elimination.

2.3.4.2 Forward Elimination 

For forward elimination

-  C N i- !  T ? * 1 +

( H Ci +  C N i- i +  C N i ) X
T m+1 _  C N . T m+1 _  R H S .

(2.35)

where the right-hand side (RHSi) is equal to

R H Si =  C N i- i T £ t +

( H Ci -  C N i_ i -  CNi ) I f 1 (2.36)

+  CNi
These equations represent a system of linear algebraic equations which may be solved

(2.37)

S,o 0 (2.38)

( R H Sj +  CN j- i  Ej-x ) 
D

(2.39)

(2.40)
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where T0m+1 is known and

D  =  HCi +  C N i-l +  CNi -  C N ^  S;_i (2.41)

with i varying from i=l to N -l. Once the coefficients £/ and S; are evaluated, they 

may be substituted into

T rn + 1  _  5 . j i M + l  +  E . (2> 42)

where i is decreased from/=lV-7 to 1 and 7Vn+/ is a known temperature.

2.3.4.3 Backward Elimination

30

For backward elimination

En  =  T™+1 (2.43)

=  0 (2.44)

B , m  <glTg, +  ™ r, B i+ l)_ (2.45)

C N i 
D'

SN =  - ^  (2.46)

where Tff*+1 is known and

D' =  HCi +  C N i-1 +  CNi -  CiVi 5 i+i (2.47)

/ /
with i decreasing from i=N-l to 1. Again, once the coefficients E\ and 5; are evaluated, 

the node temperatures may be determined from

Tjn+i _  s ' T m+i +  E '_ (2 48)
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Fig. 4. Finite Difference Grid for Region Containing the Phase Boundary.

withi=/ to N -l and T0m+1 known.

The use of the forward and backward elimination localizes the phase change interface 

between two nodes. From here the element may be split into two regions (a and b) 

with thermal properties Ca, ka and Cb, kb (Figure 4). The heat balance at the upper 

node where i=p is

where G  =  ^  ( G m +  G m  ) and Gm+1 and Gm are the distances of the 

phase change interface from at the end and beginning of the time step, respectively.
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The heat balance at the lower node where i=p+l is

32

A t
fT7*n+l
-Vfi +

1P+1 +  T£ i )

1 ( C w A  *„+! +  Cb H ) (  T™+' -  I™ .,)
2 “

(2.50)„  — p t i  I -p+2 ........................

1 H
2 H

where H  ~  A x p  — G . The moving boundary condition may be approximated by 

the following difference equation

L v ( G m+1 -  G m ) _
A f  +

+  rp - l )  -  +  I £ - l ) }  =  (151)

1 ( i ^ w  +  i y )  1 ( r ^ t 1 +  i y > )

5 * * ------------------6  +  2 k b  a ------------------

The coefficients Et and 5/ can be determined from the forward elimination formula by 

evaluating them successively from i=l to p-1. The heat balance equation for node 

i=p leads to

Ep =

___________ CNp-1 ( a " ,  +  Bp-1 )____________

Cp-i +  %r +  % +  CJVP-1 ( 1 -  SP-1 ) (152)

( q - 1  ~  CJVP-1 -

< V i  ^ i r 1 +  +  %  +  CJV i  ( i  -  S p - i )

and the node temperature at i=p becomes Tpm+1=Sp Tf+ Ep, where Tf is the phase change 

temperature. Using backwards elimination for the region below the freezing interface, 

the equations give Tp+]m+I = E p+i, where E t and S i  are evaluated successively from

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



33

i=N-l to i=p+2 leading to the equation

■®p+i —
___________ CJVp+l (  T £ 2 +  )

c p+i — +  % r  +  ^  +  c ^p+ i  (  1 “  5p+2 ) (2*53)
(c ^ ^ £ p -  +  % f  -  c i V i  -

c p+ i  Aa ? 1 +  % r  +  §  +  c jv p+ i ( 1 “  SIH-2 )

2.4 Meteorological Data

Model estimates of the meteorological conditions for the high Arctic were obtained 

from the Unidata Program Center located in Boulder Colorado. The generation of 

this data set is managed by the University Corporation for Atmospheric Research and 

is sponsored by the National Science Foundation. Unidata is a national program for 

providing near-real-time meteorological data to university users. The data are transmitted 

by a satellite downlink under contract with Zephyr Weather Information Service, Inc.

Meteorological variables of zonal and meridional wind speeds u and v (m/s), 

temperature T (K), geopotential height H (m), and relative humidity R (%) are available 

at 2.5° latitude and 5° longitude grid points. These variables are obtainable at vertical 

levels of 1000, 850, 700,500,400,300,250,200,150 and 100 mb for forecast times of 

0,6 ,12,18,24,30,36,42,48  and 60 hours. The 0 hour forecast designates the observed 

(assimilated and initialized) data of the NMC Medium Range Forecast Model. The daily 

0 hour and 12 hour temperature and wind forecasts at the 1000 mb vertical level were 

averaged and used as the inputs to the sea ice growth model for the high Arctic study 

area. The accuracies of these data are unknown at this time. Of general concern here 

are the surface temperatures which may be overestimated by several degrees due to the 

presence of local inversions which the numerical model fails to parameterize correctly.

Meteorological data from the NOAA Air Sampling Station located just northeast of 

the village of Barrow, Alaska were also used for the model calculations involving the
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D ays f ro m  S e p t 1

Fig. 5. Comparison of Unidata air temperatures verses NOAA Station air temperatures.

state of fast ice in the Dease Inlet/Elson Lagoon region of the Alaskan Beaufort Sea 

coast Because of the nearness of the NOAA station to these fast ice sites as well as the 

extreme flatness of the terrain, these data are believed to be particularly representative. 

The mean wind and surface temperature measurements were used as the model inputs.

Figure 5 shows a plot of temperatures at Point Barrow taken from the NOAA 

Station and as derived from Unidata.
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2.5 Model Results

2.5.1 First Year Ice

In the following section, the growth model will be used to examine some of the 

complex interrelations between the meteorological conditions, the amount of ice grown, 

and the resulting sea ice properties. Although the large scale feedbacks on a regional to 

global scale between sea ice and climate parameters have recently received considerable 

attention in the literature, it is well to note that the “simple” problem of sea ice growth 

also contains complex feedbacks, although on a local scale. The following figures 

(Figures 6 and 7) show the computer temperature, salinity and brine volume profiles for 

first year sea ice “grown” via the growth model using the meteorological inputs for Point 

Barrow, Alaska as representative of the nearby Dease Inlet as discussed above. In Figure 

6 the ice was allowed to grow for 200 days beginning on 10 October 1991 (day 40) and 

ending on 8 May 1992 (day 240). As this was approximately the maximum length of 

time sea ice could have grown during this year, the resulting ice thickness of 176 cm 

can be taken as representing a maximum first year ice profile for this region. Note the 

non-linear temperature profile with a warming temperature wave propagating downward. 

This figure will be referred to again in the section on the radar backscatter of sea ice.

The figure (Figure 7) shows the temperature, salinity and brine volume profiles for the 

same date (8 May 1992) for ice that began growing 39 days later on 18 November 1991 

(day 78). When comparing these plots, the most marked difference is observed in the 

salinity profile. The more rapid growth rate of the ice that initially formed in November, 

as a result of the lower temperatures in November (-30°C) than in October (-14°C), 

caused an increase in the initial salt entrapment in the ice resulting in high salinity and 

brine volumes in the upper layers of the November ice sheet This decreased the thermal 

conductivity of these layers and ultimately slowed the growth of this particular ice sheet

The next two figures (Figures 8 and 9), which are representative of first year ice 

growth in the high Arctic, demonstrate the importance of the salinity and brine volume
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Fig. 6. Dease Inlet First Year Ice Profile 1; growth started on 10 October 1991.

profiles in determining the conducted heat flux through the ice and thus the overall 

thickness. They also demonstrate the curious fact that, within limits, during a period of 

continuous ice growth the ice sheet that formed first is not necessarily thicker, or even 

as thick, as an ice sheet that formed a few days later. Figure 8 shows the profiles 

of an ice sheet on 19 March 1992 (day 210) that began growing on 1 November 1991 

(day 61) and grew for 149 days. Figure 9 shows the results for an ice sheet that began 

growing 2 days later (day 63) and grew 2 days less at only 147 days. The interesting
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Fig. 7. Dease Inlet First Year Ice Profile 2; growth started on 18 November 1991.

point here is the fact that the ice that grew for a shorter period of time actually grew 

9.4 cm (6.2%) more ice (149.4 cm verses 140.0 cm) than the ice that grew for 149 days. 

The reason this occurred is the result of the different meteorological conditions that took 

place at the onset of freezing for each ice sheet On 1 November 1991 the temperature 

was -18°C with a 12 mlsec. wind; conditions that promote rapid ice growth resulting in 

an initial ice layer with a very high salinity. The high salinity and resulting high brine
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Fig. 8. High Arctic First Year Ice Profile; growth started on 1 November 1991.

volume of this initial ice would reduce the thermal conductivity thereby lowering the 

conducted heat flux. This, in turn, would slow subsequent ice growth.

The ice that began growing on 3 November 1991 had a temperature of -10°C with 

a 7 m/sec wind blowing. These are significantly less severe freezing conditions than 

previously encountered resulting in a lower initial growth rate. However, the fresher 

ice, resulting from the lower growth rate, would have an increased thermal conductivity
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Fig. 9. High Arctic First Year Ice Profile; growth started on 3 November 1991.

thereby resulting in a higher conducted heat flux; a situation that would eventually 

produce a thicker ice sheet than in the previous situation.

2.5.2 Multiyear Ice

To date there have been no serious attempts to model the first year to multiyear 

transition. Therefore a preliminary attempt was made to explore this problem by 

producing an approximation of the multiyear ice formation process by growing the
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Fig. 10. Multiyear Ice on September 1 without Meltwater Desalinization.

maximum amount of first year ice during the freezing season and then restricting the 

ice surface temperature to -5S°C  (to prevent ablation at the lower interface) during 

the summer months. This arrested ice growth during the summer while continuing to 

desalinate the ice sheet through gravity drainage. The inputs to the growth model for 

these simulations were smoothed average values for the central high Arctic as described 

earlier with the following exceptions. The summer inputs for days between 212 and 

365 were held constant at their day 212 value. After day 365 the inputs for days
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Fig. 11. Multiyear Ice on January 1 without Meltwater Desalinization.

1-365 were repeated. For example, the growth model inputs for day 366 would be 

identical to those for day 1.

The next three figures (Figures 10, 11 and 12) show the temperature, salinity and 

brine volume profiles for the second year ice on 1 September, 1 January and 15 May. 

From Figure 10 it can be seen that the total ice thickness is 1975 cm and the temperatures 

of the ice and surrounding water are nearly isothermal at -2.0  to -1.8°C. However the 

salinity and brine volume profiles are more typical of first year ice than multiyear ice
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Fig. 12. Multiyear Ice on May 15 without Meltwater Desalinization.

(the small bump at the bottom of the ice is due to the small amount of growth during 

the summer). From the next two figures (Figures 11 and 12) it is evident that this 

process simply grows thicker first year ice. This result is not particularly surprising since 

the model is missing the desalinization processes of summer. Most notably missing is 

the process of flushing that occurs when a portion of the top layer melts and drains 

through the ice sheet This process has been suspected of contributing greatly to the 

desalinization of multiyear ice (Untersteiner, 1967) and the previous simulations would
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Fig. 13. Average MY Salinity Profiles for Hummocked (A), Depressed Ice (B) 

and Average MY Profile from Station Alpha(C). (Cox and Weeks 1975).

tend to confirm this hypothesis. Unfortunately there is no detailed formulation of this 

important process in the literature.
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Fig. 14. Multiyear Ice on September 1 with Meltwater Desalinization.

In a completely arbitrary attempt to produce reasonable salinity and brine volume 

profiles, the following procedure was devised. After growing the maximum amount of 

first year ice during the first winter, at the end of the following summer the entire ice 

sheet was reduced in salinity in a linear fashion such that the top of the sheet was 

reduced by 90% and the bottom was reduced by 0%. This process produced salinity 

and brine volume profiles for the second year ice that more closely approximated those 

measured in multiyear ice (Figure 13).
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Fig. 15. Multiyear Ice on January 1 with Meltwater Desalinization.

The following three figures (Figures 14,15 and 16) show the temperature, salinity 

and brine volume profiles for the multiyear simulations on 1 September, 1 January 

and 15 May, respectively.

Although the resulting multiyear profiles are encouraging, they do show significant 

deviations from reality. For instance, the upper portion of the ice sheet (above the sea 

level or freeboard) has not been desalinated to the degree that is commonly observed 

in nature (Schwazacher, 1959; Cox and Weeks, 1974) where this part of the multiyear
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Fig. 16. Multiyear Ice on May 15 with Meltwater Desalinization.

2 .7 7

profile commonly shows values that are near 0 ppt. The salinities in the lower portion 

of the ice are, however, quite reasonable showing values roughly 5.5 ppt. The difference 

here again is that the present modeling does not attempt to adequately formulate the 

process of flushing. It is believed that the present results suggest that if a realistic 

parameterization of this process could be added to the current model then the resulting 

combination should be capable of simulating the complete ice growth, ice temperature, 

ice salinity and brine volume of an undeformed sea ice sheet from the formation of
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the initial ice skim to the development of a Zubovian steady state floe. The flushing 

component of the model would presumably be activated by the initiation of surface 

melting in either the snow pack or the top level of the sea ice. The model would 

also have to include a consideration of the apparent fact that flushing works differently 

in the above-sea-level portion of the ice sheet than in the below-sea-level portion. 

In the above-sea-level portion the mechanism is presumably simple drainage while in 

the below-sea-level region the salinity is probably reduced by dilution into a diffusion 

limited environment (i.e. there is no convection as the lowest salinity brine is located 

in the upper part of the ice).

2.6 Model Comparisons

2.6.1 Introduction

There are several important differences between the current model and previous 

linear temperature profile models. The first difference is the use of a finite-difference 

routine to establish the freezing interface and to characterize each layer. The assumption 

of a linear temperature profile for the ice sheet is not an unreasonable assumption by 

itself in that the ice sheet generally has a temperature profile that closely resembles a 

straight line except during times of abrupt atmospheric temperature fluctuations. This is 

a point stressed by Maykut (1986) and clearly supported by the temperature profiles in 

Figures 8 and 9. Even during sudden changes in temperature, the ice responds within 

several days and returns to a linear profile fairly quickly. The problem arises, not from 

the linear temperature profile assumption, but from the assumption of a uniform thermal 

conductivity throughout the ice sheet This difficulty is exacerbated when this uniform 

conductivity is assumed to be equivalent to that of the top layer as was assumed by 

Cox and Weeks (1988a).

The top of the ice sheet is generally the coldest part of the ice and, because 

the thermal conductivity is a strong function of brine volume and brine volume is a
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strong function of temperature, the cold top layer has a high thermal conductivity (low 

temperature = >  low brine volume ==> high thermal conductivity). This high value 

when used for the bulk thermal conductivity of the ice sheet, produces high conductive 

heat fluxes and correspondingly high growth velocities. However, the factor limiting the 

ice growth velocity is the upward conduction of the latent heat of formation liberated 

at the phase change boundary. This heat must pass through the bottom layers and on 

up to the ice surface where it is released into the atmosphere. In reality, it is not the 

thermal conductivity of the top layer that restricts the conductive heat flux, but rather 

the lower thermal conductivities of the bottom layers where the ice is warm with high 

brine volume and a resulting low thermal conductivity.

Hie linear models generally assume a bulk thermal conductivity and fixed values for 

the latent heat of formation and heat capacitance even though these parameters are also 

functions of the brine volume and change significantly with temperature. In fact, during 

the ice growth season the bottom layers of the ice sheet are invariably warmer, resulting 

in higher brine volumes, higher heat capacitances, lower densities and lower latent heat 

of formation and lower thermal conductivities than in the upper portion of the ice sheet

Also the linear models assume that the values of these parameters are linear with 

temperature, which they are not. Due to this assumption, the linear models have higher 

latent heat of formation, lower ice sheet heat capacitances, higher conductive heat 

fluxes, higher ice surface temperatures and higher growth velocities. In fact, as will be 

shown in the next section, a comparison of observed sea ice thickness as a function 

of freezing-degree-days for the linear model and the non-linear model shows that the 

linear model tends to grow too much ice by a factor of nearly two (see Figure 17). Cox 

and Weeks (1988) were aware of this general problem in the linear model, but not of 

its cause. They specifically noted that, when they attempted to use the more rigorous 

description of the latent heat of freezing developed by Ono (1967, 1975), unrealistically 

high growth rates and ice salinities were obtained. They also recommended that this
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difficulty be studied in future investigations.

2.6.2 Ice Thickness

It is, of course, desirable to compare the results of the linear and non-linear models 

with observed data. Unfortunately this proved to be difficult as the result of a lack of 

field sites where simultaneous growth rate, meteorological data and salinity profiles are 

available. While there is ice thickness information available for a number of sites in 

the North American Arctic (Bilello, 1961), the specifics of the incoming radiation and 

meteorological data are invariably lacking as is any information on the salinity of the ice. 

Therefore it was decided to utilize several of the general ffeezing-degree-day equivalent 

formulas available in the literature as a test set. Figure 17 shows ice thickness plotted 

as a function of accumulated freezing-degree-days for the linear model, the current non- 

linear(J:3) model, the current non-linear(1:1) model and four empirical models discussed 

in Bilello (1961). The two different non-linear models represent different initialization 

and will be discussed later. A brief description of each of the empirical models follows.

The Lebedev equation (Figure 17) was derived from ice station measurements in 

the Kara, East Siberian, Chukhotsk, Barents and Laptev Seas taken over a 24 year 

period. The resulting equation was

h =  1.33 (S  0)0,58 (2.54)

where h = ice thickness in cm and S 6 = accumulated degree days. The Graystone 

equation

h =  1.53 (S  0)0,59 (2.55)

was fitted to ice thickness data taken in Button Bay near Churchill, Manitoba. The data 

on which this curve was based are a bit “peculiar” in that the field site was near the 

mouth of a large river which accounts for the fact that more ice grew at this site for 

a given number of accumulated degree days than at any of the “normal” sea ice sites.
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Fig. 17. Growth Rate Comparison.

Graystone and Langleben (1963) also reported that the ice showed salinities that were 

lower then normal sea ice. The Zubov equation

h? +  50 h =  8 S  9 (2.56)

was derived from ice station observations made in the Kara and Chukhotsk Seas. This 

relation also provides a reasonable fit to ice growth observations made at 5 stations 

(Alert, Eureka, Isachsen, Mould Bay and Resolute) in the Canadian Arctic as reported 

by Bilello (1961). The final equation is by Anderson (1961) which was fitted to thin ice
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growth observations made at Tule, Greenland and is also identical in form to Zubov’s 

relation in that it includes both h and Tt2 terms.

h2 +  5.1 h =  6.7 S  9 (2.57)

A note on the growth rate seems in order here. While the current ice growth model 

attempts to incorporate as much physics as possible, there are still effects of certain 

tuning parameters that greatly influence the overall growth rate of the model. Perhaps the 

major tuning parameter for the growth rate is the initialization of the thermal properties 

of the fluid phase in the finite-difference program. Figure 17 also shows the effects 

of changing the thermal properties of the fluid phase. The line labeled non-linear(7:3) 

represents the ice growth for the model with the initial thermal properties of the fluid 

phase having the characteristics of ice-to-water at a ratio of 1:3. The non-linear(/:7) line 

shows the growth rate of the model with the initial thermal properties changed such that 

the properties were 50% water and 50% ice (i.e. conductivity = 3.18xl0~3 cal cnT1 see-1 

°C~1 and heat capacity = 0.729 cal cm~3). This produces a higher thermal conductivity 

and lower heat capacitance than for the 1:3 ice/water combination (i.e. conductivity = 

2.12 xl(t~3 cal enr1 sec'1 °C~1 and heat capacity = 0.972 cal cm~3) for the first plot.

The reason that this particular change in the program has such a large effect upon 

the overall growth rate is detailed as follows. In any finite-difference program there is an 

approximation made about the conditions between each spatial node. The space between 

the nodes is assumed to be of a uniform material (ice, water, etc.) and does not change 

until the freezing interface travels completely through to the new node at which time the 

material properties are updated. So, if the freezing interface is just past a node and we 

have initialized the space between this node and the next to have the thermal properties 

of water, we will be increasingly incorrect as the interface progresses downward through 

the layer. On the other hand, if we initialize the layer as having the thermal properties 

of ice, we will begin with an incorrect value and get increasingly more accurate as the
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interface progresses through the layer. In both cases, the finite difference scheme is only 

truly correct when the interface is exactly at the node.

The important point to remember is that if we initialize the liquid phase with thermal 

properties of water, the thermal conductivity will be too low and the model will grow 

too little ice. However, if we initialize the liquid phase as having thermal properties of 

ice, the thermal conductivity will be too high and the model will grow too much ice. So 

the thermal properties of the liquid phase were chosen (i.e. 113 ice and 213 water) such 

that in the absence of snow the model would grow approximately the correct amount of 

ice according to the empirical formulas. This choice also appears reasonable when we 

realize that sea ice does not freeze at a planar interface. The bottom of sea ice contains 

a "lacy" skeletal layer that is mostly an interlayer mixture of ice and water.

It should be noted here that the choice of the liquid phase thermal properties of 1:3 

was driven by the fact that the simulations were run in the absence of a snow cover 

and this ratio produced ice thicknesses that approximated reality (i.e. the model was 

“tuned”). A simulation was run to determine the thermal properties required to grow the 

correct amount of ice in the presence of 20 cm of accumulated snow on the ice. This was 

done using snow fall option 8 of the program with 40% of the actual snowfall (51 cm) at 

Dease Inlet for the 1991-92 ice season and growing ice for the length of the ice growth 

season (200 days). The approximate first year ice thickness for this region was 170-175 

cm (R. Glen personal communique) and the ice growth model with 1:3 ice to water ratio 

grew 176 cm. Changing the ice to water ratio to 1:1 and allowing a total of 20 cm of 

snow to accumulate the ice growth model also produced ice of 176 cm. Thus the result 

of changing the ice to water ratio offset the thermal insulating effect of the snow.

2.6.3 Ice Properties

The validation of the salinity profiles encountered the same difficulties as the growth 

rate validation effort. While there are data available that, during one winter, characterize 

the salinity profiles for given sites such as Eclipse Sound ( Nakawo and Sinha, 1981),
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the incoming radiation and meteorological data were not readily available. The approach 

to validation of salinity and brine profiles was to utilize the linear temperature profile 

model of Cox and Weeks (1988a) . This linear model grows approximately two times 

the desired amount of ice, yet it produces salinity and brine profiles at any given 

thickness, that are near those observed.

While we have determined that the linear models tend to grow too much ice because 

their growth velocities are high, the question arises as to why then do these models give 

the correct salinity profiles? Since the initial salt entrapment is a function of the growth 

velocities, why do the linear models produce salinity profiles that are correct when their 

growth velocities are too high? It would seem that with high growth velocities, these 

models should produce salinity profiles that are too saline.

The current model utilizes a finite-difference routine to calculate the heat conduction 

through each layer and determines the position of the freezing interface. In addition, the 

program uses a non-linear latent heat of formation and the heat capacitance for each layer 

to calculate the heat conduction through that layer and ultimately the temperature. These 

factors, coupled with the fact that the conductive heat flux is determined by the thermal 

conductivity of the bottom layers and not the upper layers, reduce growth velocity and 

the initial salt entrapment. This reduced growth velocity produces roughly the correct 

amount of ice but the overall salinity of the ice sheet is below those typically encountered.

The solution to the problem of low salinities for the current model was found by 

observing that the linear model of Cox and Weeks calculates the brine expulsion and 

gravity drainage for each layer and simply removes this quantity of brine from the 

entire ice sheet In reality the brine from one layer must migrate to one of the layers 

above or below and can only leave the ice sheet through the top or bottom layer. In 

the current model the excess brine from layer to layer moves within the ice sheet and 

largely escape through the bottom layer.

This is also the reason the earlier models produced the correct salinity profiles while
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growing about twice as much ice as normally seen. The growth velocities were high, 

producing high initial salt entrapment, while the brine expulsion and gravity drainage 

were correct for each layer but overestimated for the ice sheet as a whole. Thus, 

the combination of entrapping too much salt and over desalinization of the ice sheet 

produced correct salinity profiles proving that two negatives make a positive.

The current model generally produces lower growth velocities and therefore, the 

initial salt entrapments are lower than the linear model. The process of placing the brine 

from one layer back into the next layer (i.e. conserving brine) and allowing the brine to 

escape only through the bottom layer, keeps the overall salinities within realistic values.
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Chapter 3 Synthetic Aperture Radar

3.1 Introduction

The scale, remoteness and frequently inhospitable nature of the polar regions make 

them difficult areas to study. The considerable expense involved with mounting polar 

expeditions, the long periods of darkness and the extremely low temperatures during the 

winter plus the large variations in climate and terrain all contribute to these problems. 

Conversely these factors also appear to make the polar regions an ideal place to apply 

remote sensing procedures. In many senses this is true. Unfortunately, remote sensing 

procedures also have their limitations when applied in these regions.

Ideally, remote sensing of the polar regions would utilize systems that operate at 

either visible or infrared frequencies. There are several reasons for this. First, both 

visible and infrared sensors result in imagery that is of sufficiently high resolution to 

resolve almost all sea ice features of interest. Second, visible sensors produce images 

that are similar to what one sees. As such they provide information that we “think” 

we understand, or at least are comfortable with. Although infrared images are quite 

different from what one sees, there are compensations in that IR delineates open water 

and thin ice area “hot spots” very clearly, which is information that is of considerable 

use. Unfortunately, visible and IR remote sensing in the polar regions is confronted 

with two primary problems: the long periods of darkness during the winter months 

and the common occurrence of fog and clouds during the summer months. These 

two factors make visible and infrared sensors impractical for long-term monitoring in 

that they are limited by both clouds and darkness respectively, making it impossible 

to obtain data on demand.

This problem does not affect imagery collected by microwave systems since these 

function independent of clouds and darkness, providing a practical opportunity to monitor 

the polar regions with consistent coverage. However, to date the passive microwave

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



systems that have been deployed on satellites are only capable of coarse resolutions 

(>10 km) which do not resolve most sea ice features of interest. Also the interpretation 

of the resulting data is far from simple (see the discussions in Carsey, 1992).

The advent of satellite-borne synthetic aperture radar (SAR) has given the polar 

researcher a much needed tool for remote sensing since such radar systems both penetrate 

darkness, clouds and fog as well as provide adequate resolution to identify specific sea 

ice features. This is not to suggest that the use of active microwave techniques is simpler 

than using passive ones, only that individual small scale features can be identified in 

most SAR images which is of considerable assistance in image interpretation.

SAR systems achieve their high resolution by sequentially using a large number 

of low resolution returns obtained by a small antenna to numerically synthesize the 

equivalent of a high resolution return as obtained from a very large antenna. For the 

ERS-1 satellite this is done by using the satellite’s speed of roughly 8 km/sec and the 

phase information of the radar to computationally create the equivalent of a large antenna.

As the SAR satellite moves over the Earth’s surface, it transmits and receives a 

radar pulse every few meters. In the case of the ERS-1 satellite, this distance is every 

4 meters. Therefore data will be collected from 1000 returns as the satellite travels 4 

kilometers. In that the satellite is travelling at roughly 8 kilometers per second and has 

no on-board storage or data compression capability the data have to be transmitted to 

ground stations such as the Alaskan SAR Facility at very large data transmission rates 

between the satellite and the ground (105 Mbits/s). At the ground station these data 

are digitally processed to form an image by using 1000 returns to synthesize the high 

resolution return at each point It is the 4 kilometers the satellite traveled during these 

1000 returns that is important since this distance represents the size of the synthetic 

high resolution aperture (Ulaby et al. 1982).

There are several points that the radar observer must keep in mind while viewing 

radar imagery. Since the radar uses a different wavelength than visible light, the
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interaction of the radiation with the material that it impinges upon is very different 

than that of visible light Electromagnetic radiation that impinges on a medium from 

above will divide its energy between a backward scattering component and a forward 

transmitted component that will penetrate the lower medium. If the lower medium 

is homogeneous and semi-infinite, the surface backscattering component is the only 

contributor and the problem is one of surface scattering. However, if the lower medium 

contains inhomogeneities, there will be a contribution due to volume scattering from 

these discontinuities. Surface scattering is characterized by the difference in dielectric 

constants between the two media and the surface "roughness". In general, for a given 

surface, the greater the difference in dielectric constants between the two media the 

greater the surface scattering. If the difference in dielectric constants is small, there will 

be very little surface scattering from the interface.

The apparent roughness of a surface is dependent on the frequency of the radiation 

and a surface that appears rough to visible light may appear "smooth" for radar 

frequencies. Two parameters that define the roughness of a surface are the standard 

deviation of the surface height variation (or rms height) and the surface correlation 

length. In other words, the "roughness" of a surface depends upon the height of the 

deviations and the distance between them relative to the wavelength of the radiation. 

This means that more surfaces will appear "rough" to a C-band radar than an L-band 

radar because the C-band radar has a smaller wavelength than the L-band. However, 

the L-band radar will penetrate deeper into most materials than the C-band and therefore 

volume scattering may become a bigger factor in determining the radar backscatter.

The C-band SAR on the ERS-1 satellite is a active microwave radar operating at 

a wavelength (A) of 5.6 cm with vertical transmit and receive polarization (VV). The 

microwave signature is the result of the two basic scattering mechanisms, surface and 

volume scattering. For surface scattering: a) the scattering strength is proportional to the 

relative complex dielectric constant of the surface and b) its angular scattering pattern
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is governed by the surface roughness. For volume scattering: a) the scattering strength

inhomogeneities and b) its angular scattering pattern is determined by the roughness of 

the boundary surface, the average dielectric constant of the medium and the geometric 

size of the inhomogeneities relative to the incoming wavelength.

For a radar with the antenna serving as both the transmit and receive antennae, the 

basic radar equation may be written as (Ulaby et al. 1986)

where Pt( 8 , <f>) defines the incident direction of the transmitted power at polarization t, 

R is the range distance to the target, Gt and Gr are the transmitter and the receiver gain, 

A is the radar wavelength, A is the area and a° is the scattering coefficient of the target 

scattering behavior for a given frequency and incident angle. The scattering coefficient

of the transmitted power, the gain of the receiver, the range and the area of illumination.

broken into surface scattering and volume scattering components. The digital number 

(DN) obtained is a measure of the received radar intensity and includes the system 

noise, the range effects, the effects of the area of illumination, and any gain variations in 

receiving and during processing. Thus, a correction to cr° is usually made to eliminate 

these factors and allow comparisons between images.

One method to determine the relative contribution of surface scattering and volume 

scattering is to calculate the depth of penetration of the radar pulse. The depth of 

penetration is a measure of the "active layer" of the medium which is sea ice in our 

case and is the depth to which the radiation may penetrate and still give a signal return 

that is discernible. The depth of penetration (Sp = ll(  2 a  )) is defined as the depth 

at which the power falls to 1/e of the power at the surface of the medium. The field

is proportional to the dielectric discontinuities inside the medium and the density of the

area

(3.1)

is a measure of the medium’s reaction to radar frequency radiation and is independent

It is a function of the scattering medium (and the roughness of its surface) and may be
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attenuation coefficient a  is generally defined as

2x
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(3.2)

where e = e/ -  iez is the relative dielectric constant and \ 0 = 5.6 cm is the radar 

wavelength of the ERS-1 SAR. The imaginary part of the complex dielectric constant 

(V e) is equal to

I m  (y/e) =  ( e\ +  ef )*  X sin
ta n ' -1 (?) (3.3)

The primary parameter for influencing the dielectric constant in sea ice is the brine 

volume (Vant et al. 1978). An expression for the relative dielectric constant ( for the

5.3 Ghz C-Band radar) as a function of brine volume (V*) may be calculated utilizing 

the equations by Kim (1984) and Vant (1978)

ex =  ( 0.995 -  0.00154 X (5.3) ) e'i (3.4)

e2 =  ( 0.914 -  0.00546 X (5.3) ) e2 (3.5)

where the brine volume dependence of the coefficients is

ei =  3.05 4- 7.20 Vb (3.6)

C2 =  0.024 +  3.29 Vb (3.7)

Once the penetration depth has been established, the relative magnitudes of the two 

scattering mechanisms (surface and volume) becomes evident. A rough approximation 

of the relative dielectric constant for the ice was made by assuming the brine volume 

of the top layer was representative of the entire ice sheet and the depth of penetration
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was calculated using the above equations. While it is true that the brine volume of the 

top layer was generally lower than anywhere else in the ice, this gives an estimate of 

the theoretical maximum depth of penetration and is therefore a maximum measure of 

the thickness of the "active layer". In that, this layer represents the majority of the ice- 

radar interactions; its properties will determine the intensity of the radar backscattering 

signature received by the antenna.

3.2 Surface Scattering

The C-band backscatter coefficient for sea ice is generally a strong function of the 

surface scattering coefficient. The primary reason for this is that most sea ice surfaces 

appear "rough" to the small wavelength of the C-band radar. The two surface parameters 

that characterize the ice surface are the standard deviation of surface height (<r) and the 

surface correlation height (1). The standard deviation of surface height is

(3.8)

(3.9)

and

(3.10)

The surface correlation length is defined as the displacement x  for which

p ( 0  =  -e
(3.11)
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where
ix .2
J  z (x )  z ( x  +  s6) dx

-Sx.
p ( i )  =  - X — i -----------------------  (3.12)

/  z 2(x ) d x  
~ ¥

is the one-dimensional autocorrelation function for a surface z ( x  ) where the 

autocorrelation function is a measure of the similarity between the points x  and x .

There are many different criteria for the "smoothness" or "roughness" of a surface, 

some are more stringent than others. One measure of the surface is given by the Rayleigh 

criterion and another is the phase dependent Fraunhofer criterion. The Rayleigh criterion 

defines a "smooth" surface as one that has a standard deviation less than

<r <  ----- ———— (3.13)
8 cos (9)

where 0 is the incidence angle and A is the radar wavelength. For the C-band SAR of 

ERS-1 the incidence angle is 6 = 23° and the wavelength is A = 5.6 cm. This means 

that a surface with a standard deviation less than a = 0.76 cm or less will be considered 

"smooth" by the Rayleigh criterion.

For a surface to be considered “rough”, the Rayleigh criterion is such that the 

standard deviation must be greater than

o- <  -------------------------------------------------- (3.14)
4.4 cos (9)

which for the ERS-1 SAR translates to a standard deviation greater than a = 1.38 cm.

This means that the height difference in the standard deviation between a smooth and a

rough surface is less then 0.7 cm according to the Rayleigh criterion.

The Fraunhofer criterion is an even more restrained criterion in that it requires the 

maximum phase difference between incoming rays to be less then n 18 radians. For a 

smooth surface, this leads to a standard deviation for the surface height of

o’ <-------   (3.15)
32 cos (9)
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Therefore for a C-band radar a "smooth" surface would have a surface standard deviation 

er = 0.19 cm or less. These values for smoothness criteria demonstrate why most 

surfaces appear "rough" to a C-band radar.

The backscattering coefficient for a "slightly rough" surface, where both the surface 

standard deviation and the correlation length are smaller than the radar wavelength 

(Ulaby et al 1986) may be represented by the equation

<r°a =  8fc4<r2 cos4 9 \R (9 )\2W (2 k  sin 0 ,0 ) (3.16)

where cr is the standard deviation of the surface roughness, W( 2 ksin 0,0) is the Fourier 

transform of the surface correlation coefficient or the normalized roughness spectrum, 

and is the complex Fresnel reflection coefficient. For a surface with an

isotropic roughness spectrum or Gaussian correlation coefficient with correlation length 

/ and wave number k = 2w I A this equation may be rewritten as
f t  r

W (2 k  sin 0) =  — exp — (JbI sin 0)2 
2 *-

The Fresnel reflection coefficient is given by

cos 9r — y / r  cos ( | )  j +  r  sin2
W r ) |  =

where

cos 0r +  y /r  cos j +  r  sin2 ( | )  

9 =  ta n -1
Lei sin2 9,

(3.17)

(3.18)

(3.19)

(3.20)r  =  ( [e x — sin2 0r ]2 +  €2 ) '

and 9r is the angle of incidence and ej and 62 are the real and imaginary part of the 

complex dielectric constant.

Inserting these expressions into the equation for the surface backscattering coefficient 

leads to

=  8fe4<r2 cos4 9 |H (0 ) |2 — exp — ( k ls in 9 )2
2 L

(3.21)
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For a given surface with standard deviation a and correlation length /, the only 

parameter in this equation that is independent of the surface characteristics is the 

complex Fresnel reflection coefficient. Therefore for a given surface, this equation 

may be rewritten as

<7® =  C\R(0)\2 (3.22)

where C is a constant whose value depends upon the surface characteristics and the 

incidence angle and may be determined for each radar image.

3.3 Volume Scattering

In general, most natural media contain numerous dielectric inhomogeneities. If the 

medium has some transparency to the radiation wavelength, these dielectric discontinuities 

will cause volume scattering. The magnitude of the volume scattering will be established 

by two factors: 1) the effective depth of penetration and 2) the difference in dielectric 

constant between the media and the inhomogeneities.

The second term in a radar return is the volume backscattering coefficient which 

may be represented by the following equation.

. . N  tTb cos (0 l
l ------ (3.23)

£2W
In this expression N  is the number of scatterers per unit volume (all assumed to be

identical), crb is the backscattering cross-section of one scatterer, Ke is the extinction
1 9coefficient of the scattering layer, and 1/(0 ) is the two way loss factor indicative of the 

medium. The loss factor may be represented by

L2 (#) =  [ exp ( Ke d sec 0 ) ]2 (3.24)

where d is the round trip distance in the medium, Ke is the extinction coefficient and 

0 is the incidence angle.
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In general, the volume scattering term for first year sea ice is relatively small when 

compared to the surface scattering term. For multiyear ice, the volume term is no longer 

insignificant, however, the dominant scattering occurs at the air inclusions rather than 

the brine pockets. At least during the winter, these air bubbles would not be expected 

to vary appreciably with time nor temperature and the volume scattering term tends to 

remain stable. It is for these reasons that the volume scattering term may be replaced by 

a constant which depends upon whether the model characterizes first year or multiyear 

sea ice. Therefore the equation for the volume backscattering coefficient becomes

(6) =  D  (3.25)

where D is different for first year and multiyear ice.

There is a one word of caution required for this treatment that relates to the incidence 

angle dependence of the volume scattering. This dependence may or may not be a 

significant influence on the backscattering signature of the ice. It is a function of the 

relative contribution of the volume scattering term to the overall return and its effect 

will vary depending upon its magnitude. For example, if the volume scattering term 

has a large contribution relative to the overall return the incident angle dependence for 

volume scattering will be significant. However, if the volume scattering contribution 

is small then the incidence angle dependence will also be small. The incidence angle 

dependencies, whether they be volume or surface, are characteristics of the scattering 

medium and are not removed during image calibration which only removes instrument 

system dependencies.

3.4 Sea Ice Backscattering Model

Neglecting any surface and volume interactions, the scattering coefficient may be 

broken down into its surface scattering and volume scattering components and treated as 

a combination of these two effects. For sea ice, the total radar backscattering coefficient
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may be represented by the following equation
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( 0 f )
v T  L 2 (9 ')

(3.26)tr° =  <r°a +  Y 2 (0)
I *>- y* ) _

where o°s is the backscattering coefficient due to the surface scattering, Y2(0) is the two 

way power transmissivity, a°v is the volume scattering, <j°i is the backscatter from the 

ice-water interface, and L?(tf) is the two way loss factor and is equal to

L 2(9>) =  exp ( t i e d ——- )  (3.27)
\  cos 0 )

where d is the layer thickness, 9 is the incidence angle and Ke is the extinction coefficient 

As the freezing interface of sea ice is a dendritic structure with a negligible scattering 

coefficient, the interface scattering term of the backscattering coefficient for sea ice may 

be neglected and equation 3.26 may be written as

<r° =  <r° +  Y 2 (6) o% (3.28)

Here the two-way transmissivity (Y2 ( 9 )) is equal to

Y 2 (0) =  exp  (3-29)
\  cos 8 }

where r  is referred to as the "optical thickness" and is defined by
T2

r ( i* i ,r 2) =  J Kedr  (3.30)

r i
Here ne is the extinction coefficient or power attenuation coefficient.

Substituting the expressions for the surface scattering term and the volume scattering 

term into the total radar backscattering equation for sea ice above, leads to the equation 

tr°(0) =  8 k 4 <t2 cos4 8 X | R (9 ) \2 X

— exp [— (k I s in 0 )2] +  
2 (3.31)

N  <ri cos (0

2 Ke
1 -

exp (  !$£jL\V
\  cos# ) \
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ICE TYPE C VALUE (dB) D VALUE (dB)

FIRST YEAR ICE 188.9 -35.0

MULTIYEAR ICE 188.9 -29.0

where the first term is the surface scattering contribution and the second is that due to 

volume scattering. Making the assumptions about each term as in the previous sections 

the equation becomes

a 0 =  C  \R (9)\2 +  D  (3.32)

The form of equation 3.31 using assumptions based on work by Kim, et al. (1985) 

was first formulated by Soulis et al. (1989).

The theoretical sea ice backscattering model uses the output of the ice physical 

properties from the ice growth model to determine the penetration depth as outlined in 

the section 3.1. It then determines the average ice properties for a layer whose thickness 

is equal to the penetration depth and uses these characteristics to calculate the predicted 

backscattering coefficient using the following values.

The values in the previous table were established from ERS-1 SAR measurements 

of first year ice in the Dease Inlet area near Point Barrow, Alaska. First, images from 4 

September 1991 to 7 June 1992 were radiometrically corrected according to the procedure 

outlined in Appendix A and backscattering values were noted from a representative area 

of first year ice. Next, the mean and variance of these measurements were calculated 

and compared to the mean and variance of the predicted Fresnel coefficients. Then, 

the values for the constants C and D were adjusted in order to scale and translate the 

predicted values to match the range and mean of the measured values. The resulting 

values are shown in Table 2.
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3.5 Incident Angle Dependence

The ERS-1 SAR has a look angle of 23° at the center of the image. In reality, 

the look angle (or incident angle) ranges from 20° at the near range to 26° at the far 

range. Although the range dependency of the antenna may be taken out of the image 

by making the corrections for <r0 as outlined in Appendix A, there remains an incident 

angle dependency that is a function of the backscattering medium. To better understand 

this effect we need to look at the backscattering model.

In the current model for the radar backscattering coefficient, the signature is a 

function of the Fresnel coefficient which, in turn, has a look angle dependence in the 

form of cos 6r. The strength of this dependency is a function of the dielectric constant 

and will vary with brine volume. Figure 18 shows the theoretical backscatter as a 

function of look angle for brine volumes of 20, 60, 100, 140,180, 220, 260 and 300 

ppt with the highest returns from the highest brine volumes.

3.6 SAR Model Results

3.6.1 First Year Backscatter Values

To determine the usefulness of this technique, it was important to obtain, over a 

nearly complete ice growth season, SAR images of sea ice whose thicknesses were fairly 

well known, from an area where meteorological conditions were measured during the 

greater portion of the ice growth season. The Dease Inlet area east of Point Barrow 

Alaska (Figure 19) seemed like a reasonable candidate in that the barrier islands just 

north of the inlet trapped the ice, allowing the thermal history to be documented while 

the meteorological station at Barrow (approximately 50 km to the west) collected the 

required meteorological data. While the exact thickness of the ice growing in the Dease 

Inlet was not known, a reasonable estimate can be obtained from the ice growth model 

and from past field experience in this region
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Fig. 18. Look Angle Dependence.

Figure 20 shows the relevant radar characteristics of the growing sea ice at Dease 

M et from 10 October 1991 to 28 April 1992. The physical properties of this ice sheet on 

8 May 1992 may be seen in figure 6 in chapter 2. The values of the penetration depth, 

brine volume and temperature are those of the “active layer” as described earlier and 

represent the value for any given day. It should be noted that the backscatter values ia°) 

are plotted against theoretical thickness rather than days of growth. Because there was no 

melting, each day has associated with it a unique theoretical thickness associated with it.

ERS-1 SAR images were obtained for the Dease Inlet/Point Barrow area covering
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the time period mentioned above, except for a period during December 1991 when the 

satellite orbit was altered. These images were corrected radiometrically as described in 

Appendix A and average backscattering values were taken from two areas highlighted 

by a square and an oval in Figure 19. This image was taken 17 January 1992 and shows 

the area of measurements for Dease Inlet profile 1 as a square and the area for Dease 

Inlet profile 2 as an oval. A comparison with the measured values from this area with 

the predicated values generated by the model is shown in figure 21.

The gap in measurement data between 80 cm and 100 cm is due to a change in 

the orbit of the satellite from the Commissioning Phase to the Ice Phase. The upward 

trend in the curves that occurs around 150 cm is a result of the warming trend of the 

ice. The mismatch beginning at this point may be due to many things that are not taken 

into account in this model such as brine salinity changes, the presence of liquid water 

in the snow cover and surface roughness changes.

The agreement between the calculated and observed backscatter is surprisingly good 

considering that other factors may also influence radar returns. The general trend of 

the backscatter is a slowly decreasing function of time with the effects of short-term 

temperature fluctuations superimposed. The slope of this decease depends strongly upon 

the date of formation of the ice; for instance ice that forms in the fall shows a more 

pronounced decrease in a0 with time than ice that forms during the colder periods. The 

general decrease in backscatter is believed to be the combined result of a general decrease 

in the salinity of the upper portion of the ice with time and a simultaneous cooling 

of the penetration layer; both effects leading to a decrease in the complex dielectric 

constant. Removing the temperature fluctuations from the return and correlating the 

resulting signal with ice growth suggests that a0 may be used to estimate ice thickness 

throughout much of the ice growth season.

If the predicted values are representative, this technique provides a means of 

estimating the approximate thickness of sea ice from the backscattering values of SAR
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Fig. 19. Measurement Areas Near Point Barrow, Alaska, showing the two areas analyzed.

images. As stated earlier the general downward trend of the backscattering values is 

believed to be a combination of cooling and desalinization of the ice. As the ice gets 

colder, the brine volume deceases, the dielectric constant goes down and the backscatter 

drops. It appears that SAR indirectly senses the thermal state of the ice through the 

sensitivity of the brine volume to temperature change. If this is true, there should be
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REAN ICE TEHPERATURE v> DATS SICRA-2ER0 ». THICKNESS

Fig. 20. Dease Inlet Profile 1.

a thickness signal imbedded within the backscattering plot which is due to the lower 

mean temperatures and brine volumes of thicker ice.

This may be more easily visualized by considering the conducted heat flux through 

both thick ice and thin ice. If the ocean and atmosphere are at different temperatures, 

then there exists some temperature gradient between them. The amount of heat that is 

conducted along this gradient is a function of the thermal conductivity and the thickness 

of the ice. For instance, for similar thermal conductivities, thick ice conducts less heat
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SIGMA_0 vs THICKNESS(91-92 Dease Inlet)

PREDICTED THICKNESS I CM I 

Fig. 21. Predicted vs Measured Backscatter for Dease Inlet 1.

than does thin ice which effects the temperature of the ice which changes the brine 

volume and the dielectric constant and ultimately the radar backscatter.

Figure 22 shows the predicted backscatter a0 as a function of the number of days 

since the first of September for ice of different thicknesses. This simulation was run 

using constant inputs for the air temperature (Tdr = -15°Q, wind speed (UwM = 5 

m/sec) and snow (0 snow fall). Under these conditions ice that began growing earlier 

will always be thicker than ice that started growing later. Each line represents a 40 day
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SIGMA-ZERO vs DAYS

DAYS S IN C E SEPT 1

Fig. 22. Backscatter vs days for ice with initial growth starting on various days -  Ideal.

delay in growth and therefore a decrease in thickness. The key point in this simulation is 

the fact that the thicker ice always has a lower backscattering value than the thinner ice.

While figure 22 shows much promise, in reality the situation is much more 

complicated as may be seen in figure 23. In this figure the actual meteorological data 

are used resulting in a rather confusing plot. However on close examination it can 

be seen that even here the thicker ice commonly shows a lower backscattering value 

than the thinner ice. Both the thick and thin first year ice respond to the atmospheric
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SIGMA-ZERO vs DAYS

DAYS S IN C E SEPT  1

Fig. 23. Backscatter vs days for ice with initial growth starting on various days -  Reality.

temperature fluctuations in similar ways with the thinner ice amplifying the upward 

trends more than the thick ice.

The basic idea behind using this technique to estimate ice thickness is as follows. 

A SAR image for a given date would be obtained and the backscatter value measured 

for the ice of interest. The backscattering value of the ice could be compared to the 

values in figure 23 for that date and an estimate of the beginning date of growth 

would be established.
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THICKNESS (CM)

Fig. 24. Predicted vs Measured Backscatter for Dease Inlet 2.

A second comparison between measured and predicted values was performed on a 

lead that opened just north of Point Barrow some time between 18 November and 21 

November 1991 (there exists an uncertainty of up to 3 days due to the 3 day repeat cycle 

of the satellite). Backscatter measurements were taken of this lead from 21 November 

1991 to 17 February 1992 when the ice was swept away. The results are seen in figure 

24. The area of these measurements is shown as the oval in the top of the image 

of figure 19. It should be noted that the results of the predicted backscatter are very 

sensitive to the date of opening and the time of the first observation of the lead. If the
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Fig. 25. Dease Inlet Profile 2.

lead opened on 18 November, just after the satellite passed over, by 21 November (the 

first observation of the lead) the ice would have grown over 20 cm in thickness and the 

mean ice temperature would have been much colder and the backscatter lower then if 

the lead had opened on the 20 of November only 1 day before the first observation.

It is the initial cooling of the ice and subsequent reduction of brine volume that 

produces the large drop in backscatter that may be seen in the u° vs thickness plot 

of figure 25 (the lower right hand figure). The ice temperature by way of the brine
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DAYS SINCE SEPT 1 

Fig. 26. Measured Backscatter for Multiyear Ice.

volume sets the actual backscattering value while the thickness decreases or increases 

the fluctuations. The thicker the ice becomes the more the fluctuations are damped.

3.6.2 Multiyear Backscatter Values

Low-resolution ERS-1 SAR images were obtained for an area in the high Arctic 

within a radius of 30 km located at 81.5°N latitude and 170.0°W longitude for the period 

of 1 October 1991 to 30 March 1992. As might be expected this area is dominated 

by multiyear ice with a typical area percentage cover of 95-97% In an attempt to 

measure the stability of the backscatter from multiyear sea ice, values were extracted
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DAYS S IN C E SEPT 1 

Fig. 27. Multiyear Predicted and Measured Backscatter.

from the ERS-1 images every three days and corrected radiometrically according to the 

procedure outlined in Appendix A. The recorded values are shown in Figure 26. Also 

shown is the predicted backscatter curve for first year ice. One of the most obvious 

features of this plot is the similarity to the backscattering plots of first year sea ice, 

showing generally decreasing values plus a scatter presumably caused by short-term 

temperature fluctuations. Multiyear returns appear to be approximately +6 dB above 

the first year returns.

Figure 27 shows the result of rescaling the first year ice backscatter values by adding
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+ 6 dB to the original values. The fit to this curve is quite reasonable and the results are 

very surprising in that multiyear ice seems to react to the meteorological temperature 

fluctuations in the same manner as first year ice.
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Chapter 4 Ice Thickness Estimates

4.1 Introduction

Although on a large scale, the ice cover may appear to be a uniformly smooth 

sheet of ice, in reality it consists of a large grouping of individual pieces with a variety 

of geometrical, physical, chemical and thermal properties. One of the major factors in 

determining the properties of sea ice is its overall thickness. Variations in thickness 

have a substantial influence upon the mechanical strength (compressive, flexural and 

tensile), the growth rate, the surface temperature, the thermal exchange between the 

ocean and atmosphere, the salt content of the ice and the salt rejection rate into the 

ocean. The ice thicknesses in any given region of the polar ocean may range from 

zero in open leads and polynyas to tens of meters for highly deformed ice in rubble 

fields and ridges. Each thickness class of the ice reacts differently to the mechanical 

and thermal forcing which are continually transforming the pack depending upon its 

internal structure and growth history.

The thickness at any point on the ice cover is the result of two processes: first, the 

thermodynamic processes of freezing and melting which are ramifications of changes 

in the heat balance between the ocean and atmosphere and second, the mechanical 

processes of ridging and lead formation which are a response to the internal and external 

stresses exerted on the ice cover. Each of these actions tends to generate ice of 

specific thicknesses if allowed to operate for a specific period of time. For example, the 

thermodynamics of ice growth and decay will ultimately produce ice tending towards a 

mean ice thickness determined by the meteorological conditions of the region (Zubov, 

1945; Maykut and Untersteiner, 1971). On the other hand, the mechanical processes 

of ice dynamics tend to create a deformation continuum ranging from many small 

deformation features to a few extreme features. The end result of these deformations
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shifts the ice thickness distribution by adding both to the very thin end via the formation 

of thin ice in leads and to the thick end by the ridging process.

The problem of delineating the thickness distribution in pack ice areas has been 

addressed by many investigators since the idea was put forth by Thorndike et al. 

(1975). Even though most of these attempts have not been particularly successful, most 

investigators agree that the mean thickness of undeformed multiyear ice in the Arctic is 

in the range of 3 to 5 meters. The reason for this variation is that the ice thickness is 

extremely variable in both time and space. This characteristic of sea ice and the fact that, 

at present, there is no instrument that will measure ice thicknesses on anything other than 

a very local scale, makes estimating the ice thickness distribution a very difficult problem.

Ice thickness estimations fall into three major categories (Wadhams and Comiso, 

1992); direct measurements, indirect measurements and theoretical approaches. The direct 

approach utilizes such instruments as upward-looking sonar and active electromagnetic 

devices such as laser profilometers and impulse radars. All of the direct methods are 

limited by their narrow swath widths and the major expense of operating an instrument 

platform such as an aircraft or submarine. Also, to date, only a limited amount of the 

upward-looking sonar data that has been collected by the Navy has been made available 

to the science community. The indirect methods generally infer the ice thickness by 

measuring some ice thickness-dependent quantity such as emitted passive microwave 

energy. For instance, passive and active microwave observations can be used to place 

ice in the multiyear (MY) category which also implies that its thickness is > 2 5  m. The 

major problem with inferring the thickness is the lack of adequate models which are 

required to relate the measurements with real ice thicknesses.

The theoretical approach has been outlined by Thorndike et al. (1975), and Thorndike 

(1992). In this approach the evolution of the thickness distribution is described by a 

differential equation involving the three terms of advection, growth and redistribution. 

Once accurate estimates of each of the terms are available this approach could lead to
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an adequate statistical characterization of pack ice on the regional scale.

In the present study a combination of theoretical and indirect measurements will be 

utilized to estimate the distribution of ice thickness. Three ice types will be defined and 

ice classifications will be performed on SAR images to determine the percentage of area 

covered by each type. Each image will then be divided into percentages of new ice/open 

water, of first year ice and of multiyear ice. In addition, the theoretical ice growth model 

developed here will be used to provide an estimate of the ice thickness for each ice type.

Each ice type will have a thickness that depends on the date of observation. For 

example, first year ice in October will have a maximum possible thickness which is 

much lower than the maximum possible thickness of I T  ice in March. While it is 

possible the FY ice observed in March will have the same thickness as that observed in 

October, it is not possible for ice observed in October to have the same thickness as that 

observed in March. Therefore, it seems incorrect to use the same ice thickness estimate 

for all cases and since the thickness distributions within each class are unknown, the 

mean of all possible thicknesses was chosen.

The thickness estimate for the new ice/open water ice type will be 112 the maximum 

theoretical thickness grown from the previous 2 days. For the first year ice type, the 

thickness will be 112 the maximum thickness of the oldest first year ice (i.e. 112 the 

thickness of the ice that began growing on the first day of freeze-up which was taken to 

be 1 October 1991). Multiyear ice estimates will be calculated for ice with a starting 

thickness of 200 cm and 300 cm on 1 October 1991.

4.2 Supervised Ice Type Estimates

Low-resolution (240 m) SAR images were obtained within a 30 km radius of 81.5°N 

latitude 170.0°W longitude on approximately a three day repeat cycle beginning on 

1 October 1991 and ending on 30 March 1992. These images were radiometrically 

corrected to remove the system noise and to correct for any antenna or range variations
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present in the image. The digital values for each pixel were processed and converted 

to the log values corresponding to the differential backscattering coefficient (a0). The 

a0 values were then mapped onto a 255 level grey scale representing a dynamic range 

for the signal from -25.5 dB to 0.0 dB where the grey scale value of 0 representing 

a a0 of -25.5 dB. A more extensive explanation of these radiometric corrections is 

provided in Appendix A.

A supervised ice classification was performed on each image by executing a 

clustering routine on the pixels in the intensity domain to determine the dominant ice 

types. Then, a training area was manually defined for each ice class present in the 

image and statistics were generated to determine the maximum, minimum, mean and 

standard deviation. A theoretical backscattering value for first year ice was calculated 

each day using the ice growth and backscatter models of the previous chapters. These 

predicted values were used as the mean for the FY ice class and applied to the image 

corresponding to the day of the prediction. The statistics from the training areas for MY 

ice and new ice/open water and the predicted FY ice values were then used as inputs into 

an optimal thresholding technique based on a maximum likelihood classification scheme.

The maximum likelihood classification provides an optimal approach to labeling 

pixels when the expected variations within each ice type are large and the distributions 

are well known. The pixels are classified such that for a given pixel value x  and 

ice cluster C„ the distribution densities p(x/Ci) and the a priori probabilities P(Q) are 

maximized so that

x ~  Ci P(c i) P(x/ Ci) =  maximum (4.1)

Table 12 in Appendix B shows the percent coverage values derived from the supervised 

classification scheme as described above giving the areal coverage and an estimate of 

the predicted maximum ice thickness for each ice type as a function of date. Figure 

28 shows the areal percent coverage of each ice type with the multiyear ice type scale 

reduced by 90 (i.e. values of 8 for multiyear ice represent 98% coverage).
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PERCENT ICE COVERAGE ARCTIC(91-92)
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DAYS FROM SEPT 1

Fig. 28. Area Coverage For multiyear (MY), first year (FY) and new ice/open water (NI/OW).

The data gap between 1 December 1991 and 1 January 1992 was due to a change 

in the satellite orbital parameters. Prior to 1 Jan. 92 the ERS-1 satellite was in the 

Commissioning Phase (6 Aug. 91 to 9 Dec 91) of the mission. This portion of the 

mission was designed to allow the satellite systems to stabilize prior to reaching full 

operational capacity. However, in retrospect, the data collected by the satellite during the 

Commissioning Phase proved to be quite acceptable. At the end of the Commissioning 

Phase, ERS-1 was repositioned into a stable three day repeat orbit with the satellite 

track displaced approximately 40 km west of the orbits of the Commissioning Phase.
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This new orbital course was known as the Ice Phase which began 28 Dec. 91 and 

ended on 2 Apr. 92.

A discussion seems appropriate here regarding the general interpretation of the sea 

ice types in SAR imagery. At the present time, there is a controversy concerning the 

multiyear ice fraction in the high Arctic. Passive microwave estimates of the multiyear 

ice fraction range from 54 to 92% with a typical value around 80% (Parkinson et al. 

1987). The 54% value is derived from the difference in total ice extent in the winter and 

summer with the reasoning that the ice that exists at the end of summer will become 

the multiyear ice fraction in the winter. The current SAR inteipretation of the winter 

multiyear ice fraction range between 90 to 95% (Kwok personal communication). The 

90 to 95% values were also observed in this study with the following caveat. While 

observing MY ice in SAR images from October to the end of March, the multiyear ice 

backscatter progressively darkens (see figure 26). The darkening appears in the form 

of “blotchy” or “grainy” areas within the larger assumed multiyear floes. These dark 

areas were also observed by Gineris and Fetterer (1993) and the generally accepted 

interpretation of these dark areas is that they are melt ponds on top of multiyear ice 

floes. However, the backscattering values and the backscatter history with its slow 

decrease are consistent with those of first year ice. As these darker areas represent 15 

to 20% of the total multiyear area, they would have a substantial impact on the heat 

flux if they were FY ice or melt ponds. It seems that if there were a substantial amount 

of open water in the high Arctic during the summer, that random close packing of 

the multiyear floes during the winter would produce a high percentage of open spaces 

which would eventually become first year ice. This is an important point that needs 

further investigation. However, for this study the conventional view will be taken and 

the interpretation of the dark grainy areas will be that of melt ponds over multiyear ice.
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4.3 Unsupervised Ice Type Estimates

Unsupervised classifications were performed on each of the images within the 

study area. This was accomplished by utilizing the automatic ice classification scheme 

currently being run by the Geophysical Processing System at the Alaskan SAR Facility. 

This system lauses a clustering approach to the problem of identifying various ice 

types plus a lookup table established by R. Kwok, E. Rignot and B. Holt (Kwok et 

al. 1992). It is also assumed that the multiyear signature remains stable throughout 

the winter with a value of -10.0 dB. As was noted earlier in this study, observations 

show that this is not true. The ice type look-up table currently in use in the GPS 

software is presented in Table 3.
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Tkble 3. Lookup Table for JPL Classification Algorithm.

Principal Type 

Ice type

Mixtures of ice 

types

Backscatter Table 

in dB with (S.D.)

Multiyear/Old Ice
Multiyear, Deformed First Year, 

Ridges
-10.0 dB (1.0)

Fisrt Year type 2 Deformed First Year -14.0 dB (1.0)

First Year Type 1 Undeformed FY -17.0 dB (1.3)

Open Water/New Ice
Smooth ice, new ice, 

Nilas, Smooth open water
-22.0 dB (1.7)

It should be noted that the unsupervised ice classification scheme by JPL is only 

believed to be accurate between the day of the year (DOY) 270 and 120 for locations 

north of 73° latitude and at temperatures below -10°C. For the 1991-92 ice season, this 

translates into the days between 27 September 1991 to 29 April 1992.
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Tkble 4. Supervised vs Unsupervised Ice Coverage Comparison.

Classification

Scheme
<OW/NI percentago

<First Year Ice 

percentage>

<Multiyear Ice 

percentage>

Supervised 0.7 1.6 97.7

Unsupervised 0.1 5.0 94.9

The table 13 (Appendix B) presents the ice types as classified by the unsupervised 

scheme of the GPS with the two classes (FY and Ice Type 4) combined into one 

first year class.

There are several major differences in the estimated percentages for the various 

ice types between the supervised and the unsupervised classification schemes. This 

is not particularly surprising since it is clearly very difficult to develop an adequate 

unsupervised classification considering the large signature variation shown by sea ice. In 

general, the supervised classification produced higher percentages for both the multiyear 

ice and open water/new ice classes, while the unsupervised scheme produces a higher 

percentage of first year ice as shown in Table 4.

In addition, the unsupervised classifier occasionally classified the entire image as first 

year ice (25 Feb.92, and 2 Mar.92), a condition that is extremely unlikely considering 

the high latitude of the area and time of year. The cause of this difficulty would 

appear to be the slow decrease in the backscatter of multiyear ice which decreased 

almost 4 dB during the study period while, as mentioned earlier, the classifier assumed a 

constant value for multiyear backscatter of -10.0 dB with a standard deviation of 1.0 dB. 

When the multiyear ice signature drops below about -12.0 dB, the classifier considers 

these pixels to be first year ice. The slow drift in the backscatter values for multiyear 

ice also cause an increase in the percentage of multiyear ice that is misclassified as 

deformed first year ice. The result is a clear overestimate of first year ice occurrence 

and an underestimate of multiyear ice in the unsupervised classification. Therefore the
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supervised classification scheme is believed to be superior and its results are taken as 

the better estimate of the areal coverage of the different ice types. The heat and mass 

fluxes that follow were made using these results.
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Chapter 5 Flux Calculations

5.1 Introduction

Sea ice is an excellent insulator with the amount of heat that flows through an ice 

sheet in the Arctic influenced by many factors such as the thickness, thermal conductivity, 

heat capacity, and density of the ice as well as the meteorological conditions. While 

examples of the importance of the meteorological conditions and the thermal properties 

of the ice have been discussed in the previous sections, the major variable controlling the 

heat flux through the ice at any given time is its thickness. Thin ice conducts far more 

heat per unit area from the ocean to the atmosphere than does thick ice. For example, 

thin ice will be shown to have a heat flux density up to 30 times greater than thick 

ice. Nevertheless, the major contributor to the overall heat flux in the 100x100 km high 

Arctic area under study is the thicker multiyear ice which accounts for approximately 5 

times the heat flux of thin ice as the result of the fact that over 95% of the ice (areally) 

in this part of the Arctic appears to be multiyear ice.

All of the following flux calculations are derived from the basic surface energy 

balance equation (2.1) as described in Chapter 2 with smoothed data inputs for the 

incoming shortwave and longwave radiation and actual meteorological inputs for the 

ambient air temperature and wind speed. The reader is again reminded that the snow 

accumulations were set to zero in these simulations for lack of quantitative data. Also 

the reader should be aware that there is an error introduced by using smoothed incoming 

radiation inputs in conjunction with real meteorological inputs as the result of emitted 

longwave, the incoming shortwave, and the turbulent heat flux being coupled to the 

meteorological inputs. This will be discussed in the final chapter.

In the following discussion, several descriptive terms will be used that are defined 

as follows:

Net Radiation =  ( 1 — a )  Fr — J 0 +  — Fe  (5.1)
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Turbulent Heat =  Fs +  Fe (5.2)

Emitted Longwave =  Fe (5.3)

with the standard terms calculated as defined previously. Using the descriptive terms 

and rearranging, the surface energy balance equation becomes

For convenience, throughout the remainder of this dissertation the term heat flux 

density (W/m2) will be used as the units for all terms in equation 5.4.

A word of caution is in order here regarding the average values calculated in the next 

several sections. There are two methods of calculating the average flux and they result in 

different values. The first method takes the average value of the daily flux densities and 

multiplies by the average area covered. The other method involves taking the average 

value of the daily fluxes. In the following tables the first method was utilized.

5.2 New Ice / Open Water Fluxes

The ice thickness estimate for open water/new ice will be a function of the timing 

of the image data taken to observe the amounts of the different ice types present. As 

the SAR repeat interval was generally every 3 days, the ice thickness estimate for the 

open water/new ice class will be taken as 1/2 of the maximum ice thickness grown 

in the previous 2 days as explained previously. The estimates of the daily heat flux 

values for this ice category are given in Appendix C. On the average during the whole 

study period from 1 October 1991 to 30 March 1992, the heat flux for this ice type 

in the high Arctic study area was -250.4 Wint2. Taking the average areal coverage of 

0.7% for this ice type from the supervised classification presented in Table 4, the area

Net Radiation +  Turbulent Heat — — Fc — F0 (5.4)
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Table 5. New Ice/Open Water Heat and Salt Flux Summary.

New Ice /  Open Water Ice Class Thickness Range ( 5.3 - 6.9 cm )

Average Percentage of Total Area 0.7%

Average Area Covered 70.0 Mm*2

Average Heat Flux Density -250.4 W/m*2

Average Heat Flux -17.5 GW

Area Averaged Heat Flux Density -1.8 W /nf2

Average Salt Flux Density 1.5 kg/day/m*2

Average Salt Flux 96.3 Mkg/day

Area Averaged Salt Flux Density 0.0096 kg/day/m*2

covered by this category is 70x70** n? which contributes an average of -175x10? W or 

-175  GW of heat. However, for an area averaged flux density value, this corresponds 

to a value of only -1.8 Win?.

To get a better feel for these numbers, an average heat flux density of -250.4 Win? 

is equivalent to lighting a 250 W light bulb every meter on a 1 meter grid for an area 

with dimensions of 8.4x8.4 km. To obtain an area averaged flux density of -1.8 Win? 

the 250 Watt bulbs would be replaced by a 1.8 Watt bulb. Additional values for the 

new ice/open water class are shown in Table 5.

The salt fluxes which consist of the initial brine rejection plus the expulsion and 

drainage through the bottom ice layer can also be calculated from the growth velocity 

and the brine expulsion and gravity drainage terms as discussed in Chapter 2. The 

initial salt rejection can be estimated from

Fsaltr — Pi [l ~  keff\ Sw (5.5)

where

pi is the density of the ice (918 kgln?), 

f(H) is the growth velocity (mis),
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Thble 6. First Year Ice Heat and Salt Flux Summary.

First Year Ice Class Thickness Range (7.8 - 80.9 cm)

Average Percentage o f Total Area 1.6%

Average Area Covered 160.0 Mm‘2

Average Heat Flux Density -43.9 W/nT2

Average Heat Flux -7 .0  GW

Area Averaged Heat Flux Density -0 .7  W/m“2

Average Salt Flux Density 0.33 kg/day/m*2

Average Salt Flux 52.8 Mkg/day

Area Averaged Salt Flux Density 0.0053 kg/day/m*2

keff  is the effective distribution coefficient, and 

Sw is the salinity of the unfrozen sea water.

The daily salt flux values are presented in Appendix D and represent the sum of the 

initial rejection, the expulsion term and the drainage term for each day. For the new 

ice/open water category the average salt flux contribution per square meter is about 7-5 

kg m~2 per day, while the area averaged value, which represents the total new ice/open 

water contribution distributed over the entire 100x100 km area, is only 9.6 g m~2 per 

day. So, while the local salt contribution can be very high, the area-wide contribution 

is still fairly low. In fact, although the total new ice/open water salt flux is higher than 

the contribution from the first year ice, it is only roughly 7/7 of the salt flux from the 

2 m multiyear and 7/5 that of the 3 m multiyear.

5.3 First Year Ice Fluxes

The ice thickness estimate for first year ice will also be a function of the time of year 

the ice classification image was taken. In this study the thickness estimates for the first 

year ice type will be assumed to be 7/2 the maximum thickness of the oldest first year 

ice (i.e. 7/2 the thickness of the ice that began growing on the first day of freeze-up).
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Table 6 shows the representative values of both the heat and mass fluxes for first 

year ice. The average flux density for first year ice ranging in thickness between 7.8 

and 80.9 cm from 1 Oct. 1991 to 30 Mar. 1992 is 43.9 W m~2. Using the average 

percentage of first year ice from the supervised ice classification scheme of 1.6%, the 

total average area is 160x10^ m~2 and the total average heat flux for first year ice is 7.0 

GW. This corresponds to an area averaged value of 0.7 W n r2. The average percentage 

of first year ice from the unsupervised ice classification scheme is 5.0%, representing a 

total area of 500x1(fi m2 and producing an average heat flux for first year ice of 22.0 

GW and an area average contribution of 2.2 W m~2.

The area-average salt fluxes for first year ice are generally an order of magnitude 

lower than those of both thicknesses of multiyear ice. The salt flux density of first year 

ice is about 113 kg per square meter per day which is equivalent to 333 g d a y1 m~2. 

However, the area-averaged contribution is 5 3  g d a y1 n r2.

5.4 Multiyear Ice Fluxes

Multiyear ice flux density calculations were performed using ice thickness estimates 

of 200 cm and 300 cm on 1 October 1991. The ice thickness was then allowed to 

grow as the season progressed producing ice of 243.3 cm and 3303 cm by 30 March 

1992. The two ice thicknesses were used to estimate the effect that a 33% increase in 

ice thickness would have on the overall flux estimates, with the result showing only an 

11%) decrease in the average heat flux contribution.

Tables 7 and 8 show the average flux and mass values for the two different 

thicknesses of multiyear ice. The large percentage of area covered by multiyear ice 

makes it the biggest contributor to both the overall heat loss to atmosphere and the 

salt infused into the ocean mixed layer. While the flux densities of multiyear ice are 

relatively small when compared to the younger ice types, when multiplied by the huge 

area covered the resulting effect is a large flux component For example, the heat flux
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■fable 7. 2m Multiyear Ice Heat and Salt Flux Summary.

2m Multiyear Ice Class Thickness Range ( 199.1 - 239.4 cm )

Average Percentage o f Total Area 97.7%

Average Area Covered 9770.0 Mm‘2

Average Heat Flux Density -8.4 W/m*2

Average Heat Flux -82.1 GW

Area Averaged Heat Flux Density -8 .2  W/m-2

Average Salt Flux Density 0.067 kg/day/m‘2

Average Salt Flux 6S4.6 Mkg/day

Area Averaged Salt Flux Density 0.066 kg/day/m‘2

■fable 8. 3m M ultiyear Ice Heat and Salt Flux Summary.

3m Multiyear Ice Class Thickness Range (299.9 - 330.3 cm )

Average Percentage o f Total Area 97.7 %

Average Area Covered 9770.0 Mm‘2

Average Heat Flux Density -7.5 W/m-2

Average Heat Flux -73.1 GW

Area Averaged Heat Flux Density -7.3 W/m-2

Average Salt Flux Density 0.044 kg/day/m*2

Average Salt Flux 431.9 Mkg/day

Area Averaged Salt Flux Density 0.043 kg/day/m'2

density of the new ice/open water type is -250.4 W m~2 which is more than 30 times

that of both multiyear ice values (-8,4 W m~2 for 2m and -7 5  W m~2 for 3m). However, 

while the area averaged value of new ice/open water goes down to -1.8 W m~2, the 

values for multiyear ice remain nearly the same as the unaveraged values at -8.2 W 

m~2 for 2-m and -7 3  W m 2 for 3-m.

An interesting calculation that can be made is the crossover percentage where 

the new ice/open water area averaged heat flux contribution becomes larger than the 

multiyear contribution. If the only two ice types were present in the study area were
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Fig. 29. Area Total Heat Flux For MY-2m, MY-3m, FY and NI/OW.

open water/new ice and multiyear ice and using the average values for the heat flux 

densities, at what percentage would the two contributions be equal? This cross-over 

point is around 3% open water/new ice (97% multiyear ice) with the value being slightly 

higher for the 2-m  multiyear ice and slightly lower for the 3-m  multiyear ice.

Figure 29 is a plot of the total heat flux contribution by each ice type with the 

negative sign indicating a flux away from the ice surface and into the atmosphere. In 

general, the thinner ice types contribute 5 to 10 times less heat over the growth season 

than the multiyear ice contribution, except early in the winter when the new ice/open
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fable 9. Monthly Heat Flux Densities After (Maykut, 1982).

W/m‘2 Oct. Nov. Dec. Jan. Feb. Mar. Averge

NI/OW -1.7 -2.5 -1.5 -1 .2 -0.7 -1 .5 -1.5

FY -5.1 -9 .7 -12.3 -7 .3 -4.8 -5.5 -7.5

MY -12.9 -13.5 -11.6 -11.6 -12.5 -8.6 -11.9

TOTAL -19.7 -25.7 -25.4 -20.1 -18.0 -15.6 -20.9

fab le 10. M onthly Heat Flux Densities for Current Study.

W/m‘2 Oct. Nov. Dec. Jan. Feb. Mar. Average

NI/OW -2.5 -2 .2 -1 .0 -1.4 -1.5 -1 .4 -1 .7

FY -0 .2 -0 .5 -0 .4 -0.6 -0.7 -0 .6 -0.5

2m-MY -5.9 -8 .4 -9.1 -10.7 -11.1 -11.1 -9 .4

TOTAL-2m -8.6 -11.1 -10.5 -12.7 -13.3 -13.1 -11.6

3m-MY -5.5 -5 .7 -6.1 -7 .6 -8 .2 -8 .9 -7 .0

TOTAL-3m -8 .2 -8 .4 -7 .5 -9.6 -10.4 -10.9 -9 .2

fab le 11. Soviet NP-23 and N P-4 Heat Fluxes.

W/m‘2 Dec. Jan. Feb. Mar. Average

NP-23 -7 .0 -11.2 -14.7 -16.8 -12.4

NP-4 -9.1 -13.3 -14.7 -7 .0 -11.0

TOTAL-2m -10.5 -12.7 -13.3 -13.1 -11.6

TOTAL-3m -7.5 -9.6 -10.4 -10.9 -9 .2

water term actually exceeds that of the multiyear. This figure (Figure 29) also represents 

the area averaged flux densities as indicated by the scale on the right-hand side of the plot.

5.5 Comparison of Flux Results With Previous Studies

Figures 9 and 10 show the monthly heat flux densities as estimated by Maykut 

(1982) and the equivalent values calculated in this study.
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A more recent study by Makshtas (1991) calculates the heat flux of multiyear ice 

from observations taken at the Soviet ice camp North Pole 23 during the 1976-77 ice 

season and North Pole 4 during the 1956-57 season. The errors in the linear temperature 

profile assumption were estimated and removed from the calculations and the results for 

December through March with the current totals for the 2 m and 3 m multiyear ice are 

presented in figure 11 . The results of the Soviet study are in much better agreement 

to the findings of the present study.

Area averaged salt flux calculations during the ice growth season by Maykut (1982) 

indicate a range from 1 to 5 kg mo-1  m-2  compared to the current values of 1.7 kg mo-1  

m-2  and 2.4 kb mo-1  m-2  derived from the 3m-MY and the 2m-MY totals respectively.
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Chapter 6 Summary and Recommendations

6.1 Sea Ice Growth

The growth of sea ice appears to be a simple problem when a linear temperature 

profile and constant thermal conductivity are assumed. However, in reality, the non­

linearities and the inter-dependencies between the growth rate, desalinization processes 

and the various thermal parameters create a very complex feedback structure which 

can have a profound effect on the ice. It was discovered that the initial freezing 

conditions encountered by a given ice sheet could enhance or retard the overall growth 

rate by altering the conducted heat flux. A forming ice sheet with initially high growth 

velocities will entrap excessive amounts of brine in its upper layers causing an increase 

in the salinity, brine volume and thermal capacity, which in turn, will lower the thermal 

conductivity, conducted heat flux and ultimately long-term growth rate.

The development of a non-linear ice growth model has facilitated our understanding 

of the growth processes and physical properties of sea ice. The program produces realistic 

ice thicknesses and ice properties when the meteorological conditions are known. It 

does have the shortcoming of using an averaged and smoothed incoming solar radiation 

primarily due to the fact that these types of measurements are not readily available. The 

major difficulty in using this approach arises from the fact that the emitted longwave 

radiation, which is the major contributor of outgoing energy in the winter, is a function 

of the incoming shortwave and longwave radiation and the ambient air temperature and 

these terms are not independent variables. It is difficult to estimate the error introduced 

in using this approximation primarily because the correlation between the incoming 

radiation and the ambient air temperature is not well understood, especially with the 

introduction of a cloud cover. For example, under cloudy conditions the incoming 

shortwave is reduced, the incoming longwave is increased, the ambient temperature 

generally increases and the emitted longwave is high. In the model, if the temperatures
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are above the average the ice surface temperature will generally be higher and the 

longwave emitted will be overestimated because, using the average value, the incoming 

longwave will have been underestimated. For these conditions the ice growth will 

be overestimated. In the reverse case, where the temperatures are low relative to the 

average, it is even difficult to estimate the direction of the error, since in cold conditions 

the skies may be clear or there may be ice fog each altering the estimates in different 

directions. Figure 30 shows the 1991-92 Unidata predicted ambient air temperatures for 

the high Arctic plotted against the historical average air temperatures which correspond 

to the averaged incoming radiation. Any deviation from the mean temperature would 

introduce an error in the flux calculations as mentioned above. Unfortunately, the 

effects of cloud cover on incoming solar radiation and air temperature are beyond the 

scope of this thesis, although it is quite evident that this is an area that needs further 

research and parameterization.

The results of the multiyear ice simulations were very encouraging. With the 

very arbitrary desalinization routine that was implemented the calculated salinities 

and temperature profiles were within reasonable limits. In addition, while running 

the simulations with only gravity drainage and brine expulsion through the summer, 

a qualitative estimate of the important role that meltwater flushing plays in the 

desalinization of multiyear ice was highlighted. The need for a parameterization of 

these processes is evident.

Although the multiyear simulations were initially a sideline, it is believed that the 

present results indicate that if a realistic parameterization of the summer desalinization 

processes could be added to the current model that the resulting combination should be 

capable of simulating the complete ice growth, ice temperature, ice salinity and brine 

volume of an undeformed sea ice sheet from the formation of the initial ice skim to 

the development of a steady state floe.
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Fig. 30. Arctic Air Temperatures vs Average Air Temperatures.

The most obvious missing factor in the ice growth model simulations was the 

absence of snow. While the current model does have the capably to consider the 

effects of a snow cover on all aspects of sea ice growth and the effect is known to 

be significant, a lack of quantitive data necessitated its removal from the simulations. 

However, an estimate of the overall snow effect on the growth rate of first year sea 

ice may be seen in figure 17 where the accumulated freezing-degree-days were plotted 

for two versions of the non-linear model. The difference in growth rate between the 

1:1 non-linear and the 1:3 non-linear model was equivalent to an accumulated snow
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depth of 20 cm. Once a reliable parameterization of the snow cover is formalized 

its incorporation into the model is straightforward. This is obviously an area that is 

desperately in need of sequential field observations.

6.2 Backscattering Model

The radar backscattering model for first year sea ice that was developed in this thesis 

was based on the assumptions of a Lambertian surface and a strong dielectric dependence 

on brine volume. Using the calculated physical properties of the ice growth model, 

the penetration depth for C-band radar was determined and the active layer dielectric 

constant was input to the surface scattering model to produce predicted cr° values for first 

year sea ice. The comparison of the predicted first year ice a0 values to those obtained 

from ERS-1 SAR images of landfast ice at Dease Inlet proved to be surprisingly good 

considering the assumptions of the model. The large variations in the backscatter were 

strongly correlated to changes in the dielectric constant caused by the high sensitivity 

of the brine volume to temperature and desalinization. Thus, SAR imagery indirectly 

senses the thermal state of first year sea ice, and the possibility of detecting an ice 

thickness signal through the brine volume sensitivity becomes real. However, while 

the high sensitivity to temperature opens the possibility of a thickness signal, the large 

variations in thermal forcing as a result of changing meteorological conditions tend to 

mask the signal behind a noisy background making retrieval more difficult.

With the thermal state sensing in mind, another possible view of SAR imagery is 

to exploit the thermal sensing capabilities more and the thickness estimating ability less. 

The temperature of the upper portion of the ice sheet will have a significant effect on the 

brine volume and subsequently the radar return. If the quantities of interest here are the 

fluxes through the ice surface, it may be possible to relate the radar return to the surface 

temperature, similar to passive microwave, and produce high spacial resolution thermal
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maps of the ice rather than ice thickness maps. In this sense it would be interesting to 

explore the results of the coupled application of SAR and infrared (IR) data.

The agreement between the predicted u° values and the observed values, although 

generally satisfactory, showed marked differences in areas where the model clearly 

failed. A clear example of this may be seen late in the season when the ice temperature 

begins to rise. The discrepancy in signals during this general warming may be due 

to the presence of liquid water in the snow layer which has the effect of dramatically 

decreasing radar backscatter. The use of a more sophisticated backscattering model 

which incorporates the effects of liquid water in the snow layer as well as a more 

extensive treatment of volume scattering would undoubtedly increase the applicability 

and hopefully increase the effectiveness of the current model.

One result which was completely unexpected was the reasonable fit of the rescaled 

first year ice predicted signature with that of the observed multiyear backscatter. It 

appears that the multiyear ice reacts to the meteorological forcing in much the same 

way as the first year ice with the exception of an increased multiyear return. While 

the finding was unexpected, in retrospect, the results appear reasonable considering 

multiyear ice generally consists of a low density layer above the water level or freeboard 

and looks basically like first year ice below. It appears that the low density layer with 

its high bubble content produces an additional backscatter component which remains 

relatively constant during meteorological fluctuations, while the lower layers produce 

variations in the return similar to the signature seen in first year ice. This result casts 

considerable doubt on the generally accepted view that the winter signature of multiyear 

remains stable near -10 dB.

6.3 Areal Coverage of Ice Types and Thickness Estimates

In chapter 4 the results of the previous chapters were utilized along with an ice 

classification scheme to produce estimates of the areal coverage for three main ice types.
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The results of this procedure indicated that the dominant ice type in the high Arctic 

during the winter months was clearly multiyear ice with an average percentage of 97.7% 

(supervised) or 94.9% (unsupervised). These results were based on the conventional 

SAR view that the winter multiyear fraction in the Arctic was near 95% and that the 

darkening seen in the time sequence of images was due to the appearance of refrozen 

melt ponds. The wisdom of this choice needs to be investigated further since preliminary 

results show that the area involving the melt ponds consists of nearly 20% of the total 

image and would have a significant effect on any flux calculations if these areas differ 

appreciably from multiyear ice. The signature history of these dark areas appears to 

be consistent with first year ice in that the winter returns initially show values near 

multiyear ice and are followed by a slow decease in backscatter with the final signatures 

approaching the first year values. However the response during the middle of the season 

is unique, with values dropping much slower initially than those of first year ice. These 

signatures have some characteristics of first year ice and some of multiyear ice and 

obviously need to be investigated further.

In the classification scheme utilized for ice discrimination, the predicted first year 

backscatter value was used as the mean value statistic for the first year ice class. This 

procedure provided only a minimal use of the predictive capabilities of the backscattering 

model. The digital image analysis problem of unique pixel clustering for classes with 

closely similar DN values is a very difficult one and is further compounded by the 

presence of speckle (a type of SAR noise). However, with backscattering values of thin 

first year and multiyear ice being very similar, this would be an excellent area for further 

research and could result in an increased ice discrimination capability through the use of 

SAR images. A method that would use the relationship of neighboring pixels to classify 

a given ice area would show marked improvement over the current method. If such a 

method were available a scheme to classify ice in thicknesses bins would be possible 

and the thickness estimates would be greatly enhanced.
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6.4 Flux Calculations

In Chapter 5, heat and mass flux calculations were made for a 100x100 km area 

using the estimates and model outputs from the previous chapters. The most notable 

difference in this study and those done previously is the fact that the flux densities 

are generally lower in the present study. This is not completely unexpected since the 

majority of the previous studies utilize the linear assumptions discussed in Chapter 2 

with the noted results of overestimating the conducted heat flux by a factor approaching 

2. While there are considerable differences between the Maykut findings and those of 

the current study, most notably in the first year ice class, the new ice/open water class 

values are fairly similar. The multiyear class results are reasonable considering the 

differences in conducted heat flux between the two studies. That is to say, the thick 

ice heat fluxes from the Maykut study were expected to be roughly twice those of the 

current investigation due to the higher conducted heat flux in the linear model. In the 

thin ice types where the difference in thermal conductivity between the top and bottom 

of the ice is less, the dissimilarities in the estimated conducted heat fluxes between the 

two model would also be expected to be less.

The most interesting flux result was seen in the area-wide calculations, with the 

finding that the multiyear ice was the major contributor to the overall flux. This is 

somewhat surprising and contrary to previous indications that the new ice and first year 

ice were the major contributors to the flux. The fact that the multiyear ice areal coverage 

was so much larger than the younger ice types resulted in its contribution dominating 

the overall flux. The younger ice types were only able to approach the multiyear ice 

in flux contributions during the early winter when the bottom of the multiyear ice was 

still responding to the warming of the past summer.

An illuminating calculation and one that shows the importance of accurate ice type 

estimates maybe done by assuming the presence of only two ice types in the imagery 

(e.g. OW/NI and MY or FY and MY) and estimating the areal coverages needed to
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produce equal flux contributions. Using the average heat flux densities of -250.4 W m-2  

for OW/NI, -43.9 W m-2  for ET and -7.5 W m-2  for MY, the percentage of 3% OW/NI 

and 97% MY or 15% IT  and 85% MY would have equal heat flux contributions.

In conclusion, although this thesis has clarified some aspects of the riddle known 

as sea ice, it has revealed many more problems than it has solved. The encouraging 

feature is that in almost all of these cases approaches to resolving the problems are 

reasonably clear. In a sense this thesis can be taken as verifying the adage that the 

more you know, the more you don’t know.
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Appendix A image Radiometric Corrections

The standard image product from ASF is a full-resolution image of 8192 by 8192 

pixels in a 255-level grey scale representations of the received radar amplitude from 

the sensor. The Low-resolution image is a simple 8 pixel by 8 pixel average of the 

Full-res image which results in a 1024 pixel by 1024 pixel image. The pixels of each 

image are presented as 8 bits of amplitude.

The amplitude value contains the radar backscatter intensity, system noise, antenna 

and range variations and processor variations such as gain control. For the scientific 

user who is interested in the backscattering coefficient for the objects in the image, he 

must radiometrically correct these amplitude values.

The radiometric corrections are outlined in "User’s Guide To Products". To eliminate 

the noise and to make the necessary corrections for the antenna pattern, range to the 

target and incidence of angle, three coefficient (noise scaling, linear conversion and 

offset) and 256 noise values are required. These values are provided in the Radiometric 

files of the CEOS leader file accompanying the raw data file.

The coefficients, noise values and data numbers are related to the radar backscatter 

coefficient (a0) by the following formula

<r0 =  10 log [«2 (d2 — o in ( r ) )  +  0 3] (A.1)

where n(r) is the noise value as a function range. The value of ( /  a; n(r) ]2) is the 

amplitude value of the noise.

The user must be aware that the radiometric corrections are handled differently 

depending on wether or not the data were processed during or after the Commissioning 

Phase. During the Commissioning Phase the coefficients given within the radiometric 

file are in error and they must be calculated from the following functions.
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The noise scaling coefficient is

0 1  =  406.0 X 10(7) (A.2) 

and the linear conversion coefficient is

0 2 =  1.2 X 10"W  (AJ)

where 7  is the processor gain divided by 70. After the Commissioning Phase (i.e.

after Image ID 7000) the coefficient are included within the radiometric correction file

of the CEOS leader.
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Appendix B Ice Classification Tables

Table 12. Supervised Ice Classification Results.

Date NI/OW (%) NI/OW Max. 
Thickness (cm) FY (%) FY Max. 

Thickness (cm) MY (%)

10/01/91 0.6 11.6 0.1 15.6 99.3

10/04/91 0.6 11.0 0.0 22.0 99.4

10/07/91 2.3 10.6 0.2 27.1 97.5

10/10/91 0.6 11.2 0.0 31.5 99.4

10/13/91 2.7 10.6 0.6 35.9 96.7

10/16/91 0.7 11.2 0.7 39.6 98.6

10/19/91 0.8 10.8 0.2 43.2 99.0

10/23/91 0.6 12.0 0.2 48.2 99.2

10/26/91 0.6 13.4 0.4 51.8 99.0

10/29/91 0.6 12.2 0.5 55.8 98.9

11/02/91 0.6 12.0 0.3 59.8 99.1

11/11/91 0.6 11.6 0.5 66.1 98.9

11/14/91 0.5 13.4 0.4 69.0 99.1

11/19/91 1.4 11.0 2.0 74.1 96.6

11/23/91 0.7 12.4 2.1 77.9 97.2

11/28/91 0.8 13.0 1.5 82.4 97.7

12/01/91 0.6 12.4 1.3 84.8 98.1

01/01/92 0.8 12.4 1.0 107.2 98.1

01/05/92 0.8 13.6 0.7 110.1 98.5

01/08/92 1.1 13.0 2.4 112.3 96.5

01/11/92 0.7 13.2 2.0 114.5 97.3

01/14/92 0.0 13.8 1.4 116.7 98.7

01/17/92 0.4 13.2 2.5 118.8 97.2

01/20/92 0.5 13.8 0.9 120.8 98.6

01/23/92 0.7 13.8 2.1 122.8 97.2

01/26/92 0.3 13.8 1.7 124.8 97.9
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Table 12. (Continued) Supervised Ice Classification Results.

Date NI/OW (%) NI/OW Max. 
Thickness (cm)

FY (%)
FY Max. 

Thickness (cm)
MY (%)

01/29/92 0.3 13.2 2.1 126.7 97.5

02/01/92 0.7 133 2.1 128.6 97.2

02/04/92 0.9 13.8 2.1 130.6 97.0

02/07/92 0.6 13.0 2.5 132.6 96.8

02/10/92 0.5 13.0 13 134.6 98.3

02/13/92 0 3 13.0 2.3 136.5 97.3

02/16/92 0.4 12.6 2.4 138.4 97.1

02/19/92 0.3 12.6 3.1 140.2 96.5

02/22/92 0.5 11.6 1.8 142.1 97.6

02/25/92 0.5 13.4 5.0 143.8 94.5

02/28/92 0.5 13.0 1.7 145.5 97.7

03/02/92 0.7 12.6 1.8 147.1 97.6

03/05/92 0.6 12.6 1.8 148.8 97.5

03/08/92 0.4 ' 13.0 1.6 150.5 98.1

03/11/92 0.6 13.4 1.7 152.1 97.7

03/14/92 1.1 13.8 2.3 153.7 96.6

03/17/92 0.7 12.0 2.6 155.2 96.7

03/20/92 0.6 11.4 2.5 156.8 96.8

03/23/92 0.4 12.8 2.6 158.3 97.0

03/25/92 0.6 12.8 4.2 159.8 953

03/28/92 0.7 11.0 4.0 160.7 95.3

03/30/92 0.4 12.0 1.6 161.7 98.0

Average 0.7 12.5 1.6 107.0 97.9
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Table 13. GPS Ice Classification Results.

Date NI/OW (%)
NI/OW Max. 

Thickness (cm)
FY (%)

FY Max. 

Thickness (cm)
MY (%)

10/01/91 n/a 11.6 n/a 15.6 n/a

10/04/91 n/a 11.0 n/a 22.0 n/a

10/07/91 n/a 10.6 n/a 27.1 n/a

10/10/91 n/a 11.2 n/a 31.5 n/a

10/13/91 0.6 10.6 0.5 35.9 98.9

10/16/91 0.1 11.2 1.0 39.6 98.9

10/19/91 n/a 10.8 n/a 43.2 n/a

10/23/91 0.0 12.0 0.7 48.2 99.3

10/26/91 n/a 13.4 n/a 51.8 n/a

10/29/91 0.0 12.2 1.3 55.8 98.7

11/02/91 0.0 12.0 0.9 59.8 99.1

11/11/91 n/a 11.6 n/a 66.1 n/a

11/14/91 n/a 13.4 n/a 69.0 n/a

11/19/91 n/a 11.0 n/a 74.1 n/a

11/23/91 n/a 12.4 n/a 77.9 n7a

11/28/91 n/a 13.0 n/a 82.4 n/a

12/01/91 n/a 12.4 n/a 84.8 n/a

01/01/92 0.0 12.4 2.9 107.2 97.1

01/05/92 0.0 13.6 6.2 110.1 93.8

01/08/92 0.4 13.0 3.1 112.3 96.6

01/11/92 0.0 13.2 2.5 114.5 97.5

01/14/92 n/a 13.8 n/a 116.7 n/a

01/17/92 0.0 13.2 2.4 118.8 97.5

01/20/92 0.0 13.8 7.9 120.8 92.1

01/23/92 0.0 13.8 3.7 122.8 96.3

01/26/92 n/a 13.8 n/a 124.8 n/a

01/29/92 0.0 13.2 12.0 126.7 88.0

02/01/92 n/a 13.2 n/a 128.6 n/a

02/04/92 0.1 13.8 3.7 130.6 96.1

02/07/92 0.0 13.0 3.7 132.6 96.2
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Table 13. (Continued) GPS Ice Classification Results.

Date NI/OW (%)
NI/OW Max. 

Thickness (cm)
FY (%)

FY Max. 

Thickness (cm)
MY (%)

02/10/92 0.0 13.0 8.5 134.6 91.5

02/13/92 n/a 13.0 n/a 136.5 n/a

02/16/92 n/a 12.6 n/a 138.4 n/a

02/19/92 0.0 12.6 10.5 140.2 89.5

02/22/92 n/a 11.6 n/a 142.1 n/a

02/25/92 0.0 13.4 99.9 143.8 0.0

02/28/92 n/a 13.0 n/a 145.5 n/a

03/02/92 0.0 12.6 100.0 147.1 0.0

03/05/92 n/a 12.6 n/a 148.8 n/a

03/08/92 0.0 13.0 1.9 150.5 98.0

03/11/92 0.0 13.4 12.6 152.1 87.4

03/14/92 0.0 13.8 11.3 153.7 88.7

03/17/92 0.0 12.0 3.0 155.2 97.0

03/20/92 0.0 11.4 13.4 156.8 86.6

03/23/92 0.0 12.8 2.6 158.3 97.4

03/25/92 0.0 12.8 2.4 159.8 97.6

03/28/92 n/a 11.0 n/a 160.7 n/a

03/30/92 0.0 12.0 6.8 161.7 93.3

Average 0.0 12.5 5.0 107.0 97.
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Appendix C Daily Heat Flux Tables

Tkble 14. Daily Flux Densities for NI/OW and FY Ice.

Date
NI/OW 1/2 Max. 
Thickness (cm)

NI/OW Flux 
Density (W/m*2)

FY 1/2 Max. 
Thickness (cm)

FY Flux Density 
(W/m*2)

10/01/91 5.8 -240.9 7.8 -164.4

10/04/91 5.5 -258.9 11.0 -69.0

10/07/91 5.3 -302.6 13.6 -106.2

10/10/91 5.6 -308.2 15.8 -87.3

10/13/91 5.3 -202.3 18.0 -65.0

10/16/91 5.6 -273.3 19.8 -78.4

10/19/91 5.4 -369.3 21.6 -71.8

10/23/91 6.0 -158.5 24.1 -55.6

10/26/91 6.7 -236.5 25.9 -79.4

10/29/91 6.1 -171.3 27.9 -58.6

11/02/91 6.0 -144.0 29.9 -28.3

11/11/91 5.8 -416.4 33.0 -39.0

11/14/91 6.7 -260.2 34.5 -63.2

11/19/91 5.5 -404.8 37.0 -52.6

11/23/91 6.2 -171.6 39.0 -47.3

11/28/91 6.5 210.7 41.2 -39.9

12/01/91 6.2 -163.0 42.4 -31.5

01/01/92 6.2 -206.3 53.6 -39.1

01/05/92 6.8 -307.3 55.1 -42.0

01/08/92 6.5 -239.4 56.2 -36.7

01/11/92 6.6 -234.0 57.3 -34.2

01/14/92 6.9 -230.0 58.4 -34.7

01/17/92 6.6 -239.3 59.4 -38.1

01/20/92 6.9 -292.1 60.4 -31.4

01/23/92 6.9 -264.6 61.4 -37.1

01/26/92 6.9 -230.3 62.4 -39.0
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Table 14. (Continued) Daily Flux Densities for NI/OW and FY Ice.
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Date
NI/OW 1/2 Max. 
Thickness (cm)

NI/OW Flux 
Density (W/m*2)

FY 1/2 Max. 
Thickness (cm)

FY Flux Density 
(W/m*2)

01/29/92 6.6 -294.3 63.4 -39.1

02/01/92 6.6 -278.8 64.3 -34.8

02/04/92 6.9 -329.5 65.3 -35.5

02/07/92 6.5 -228.4 66.3 -34.6

02/10/92 6.5 -247.2 67.3 -30.2

02/13/92 6.5 -285.9 68.3 -31.3

02/16/92 6.3 -206.6 69.2 -30.5

02/19/92 6.6 -274.0 70.1 -28.5

02/22/92 5.8 -387.2 71.1 -29.4

02/25/92 6.7 -276.0 71.9 -27.1

02/28/92 6.5 -228.5 72.8 -31.0

03/02/92 6.3 -159.0 73.6 -29.7

03/05/92 6.3 -199.0 74.4 -25.5

03/08/92 6.5 -234.9 75.3 -26.1

03/11/92 6.7 -276.3 76.1 -25.3

03/14/92 6.9 -226.0 76.9 -27.3

03/17/92 6.0 -132.6 77.6 -27.6

03/20/92 5.7 -240.4 78.4 -25.5

03/23/92 6.4 -210.6 79.2 -22.9

03/25/92 6.4 -224.1 79.9 -24.3

03/28/92 5.5 -389.4 80.4 -25.5

03/30/92 6.0 -155.9 80.9 -26.8

Average 6.3 -250.4 53.5 -43.9
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"Bible 15. Daily Heat Fluxes for NI/OW and FY Ice.

Date
NI/OW Flux 

Density 
(W/m*2)

NI/OW (%) NI/OW Flux 
(GW)

FY Flux 
Density 
(W/m*2)

FY (%) FY Flux 
(GW)

10/01/91 -240.9 0.6 -14.4 -164.4 0.1 -1.6

10/04/91 -258.9 0.6 -15.5 -69.0 0.0 0.0

10/07/91 -302.6 2.3 -69.6 -106.2 0.2 -2.1

10/10/91 -308.2 0.6 -18.5 -87.3 0.0 0.0

10/13/91 -202.3 2.7 -54.6 -65.0 0.6 -3.9

10/16/91 -272.3 0.7 -19.1 -78.4 0.7 -5.5

10/19/91 -369.3 0.8 -29.5 -71.8 0.2 -1.4

10/23/91 -158.5 0.6 -9.5 -55.5 0.2 -1.1

10/26/91 -236.5 0.6 -14.2 -79.4 0.4 -3.2

10/29/91 -171.3 0.6 -10.3 -58.6 0.5 -2.9

11/02/91 -144.0 0.6 -8.6 -28.3 0.3 -0.9

11/11/91 -416.4 0.6 -25.0 -39.0 0.5 -2.0

11/14/91 -260.2 0.5 -13.0 -63.2 0.4 -2.5

11/19/91 -404.8 1.4 -56.7 -52.6 2.0 -10.5

11/23/91 -171.6 0.7 -12.0 -47.3 2.1 -10.0

11/28/91 -210.7 0.8 -16.9 -39.9 1.5 -6.0

12/01/91 -163.0 0.6 -9.8 -31.5 1.3 -4.1

01/01/92 -206.3 0.8 -16.5 -39.1 1.0 -3.9

01/05/92 -307.3 0.8 -24.6 -42.0 0.7 -2.9

01/08/92 -239.4 1.1 -26.3 -36.7 2.4 -8.8

01/11/92 -234.0 0.7 -16.4 -34.2 2.0 -6.8

01/14/92 -230.0 0.0 0.0 -34.7 1.4 -4.8

01/17/92 -239.3 0.4 -9.6 -38.1 2.5 -9.5

01/20/92 -292.1 0.5 -14.6 -31.4 0.9 -2.8

01/23/92 -264.6 0.7 -18.5 -37.1 2.1 -7.8

01/26/92 -230.3 0.3 -6.9 -39.0 1.7 -6.6

01/29/92 -294.3 0.3 -8.8 -39.1 2.1 -8.2

02/01/92 -278.8 0.7 -19.5 -34.8 2.1 -7.3

02/04/92 -329.5 0.9 -29.7 -35.5 2.1 -7.6

02/07/92 -228.4 0.6 -13.7 -34.6 2 5 z._ -8.7
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Table 15. (Continued) Daily Heat Fluxes for NI/OW and FY Ice.
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Date
NI/OW Flux 

Density 
(W/m'2)

NI/OW (%) NI/OW Flux 
(GW)

FY Flux 
Density 
(W /iri^)

FY (%) FY Flux 
(GW)

02/10/92 -247.2 0.5 -12.4 -30.2 1.2 -3.6

02/13/92 -285.9 0.3 -8.6 -31.3 2.3 -7.2

02/16/92 -206.6 0.4 -8.3 -30.5 2.4 -7.3

02/19/92 -274.0 03 -8.2 -28.5 3.1 -8.8

02/22/92 -387/2 0.5 -19.4 -29.4 1.8 -5.3

02/25/92 -276.0 0.5 -13.8 -27.1 5.0 -13.6

02/28/92 -228.5 0.5 -11.4 -31.0 1.7 -5.3

03/02/92 -159.0 0.7 -11.1 -29.7 1.8 -5.3

03/05/92 -199.0 0.6 -11.9 -25.5 1.8 -4.6

03/08/92 -234.9 0.4 -9.4 -26.1 1.6 -4.2

03/11/92 -276.3 0.6 -16.6 -25.3 1.7 -4.3

03/14/92 -226.0 1.1 -24.9 -27.3 2.3 -6.3

03/17/92 -132.6 0.7 -9.3 -27.6 2.6 -7.2
03/20/92 -240.4 0.6 -14.4 -25.5 2.5 -6.4

03/23/92 -210.6 0.4 -8.4 -22.9 2.6 -6.0

03/25/92 -224.1 0.6 -13.4 -24.3 4.2 -10.2

03/28/92 -389.4 0.7 -27.2 -25.5 4.0 -10.2

03/30/92 -155.9 0.4 -6.2 -26.8 1.6 -4.3

Average -250.4 0.7 -17.7 -43.9 1.6 -5.5
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Tcible 16. Daily Heat Fluxes for 2 Meter Multiyear Ice.

Date 2m-MY Thickness 
(cm)

2m-MY Flux Density 
(W/m*2) MY (%)

2m-MY Heat 
Flux (GW)

10/01/91 199.1 -6 .2 99.3 -61.6

10/04/91 199.4 -5.7 99.4 -56.7

10/07/91 199.7 -5.4 97.5 -52.7

10/10/91 200.0 -6 .0 99.4 -59.6

10/13/91 200.4 -5.8 96.7 -56.1

10/16/91 200.7 -6 .0 98.6 -59.2

10/19/91 201.1 -6.6 99.0 -65.3

10/23/91 201.7 -6.9 99.2 -68.4

10/26/91 202.2 -6.7 99.0 -66.3

10/29/91 202.6 -7.7 98.9 -76.2

11/02/91 203.3 -7.7 99.1 -76.3

11/11/91 205.1 -8.2 98.9 -81.1

11/14/91 205.7 -8.3 99.1 -82.3

11/19/91 206.8 -8.5 96.6 -82.1

11/23/91 207.6 -9.0 97.2 -87.5

11/28/91 208.7 -9.5 97.7 -92.8

12/01/91 209.5 -9.3 98.1 -91.2

01/01/92 216.8 -10.6 98.1 -104.9

01/05/92 217.9 -10.1 98.5 -99.5

01/08/92 218.7 -10.8 96.5 -104.2

01/11/92 219.5 -11.1 97.3 -108.0

01/14/92 220.4 -10.5 98.7 -103.6

01/17/92 221.3 -10.9 97.2 -106.0

01/20/92 222.2 -11.3 98.6 -111.4

01/23/92 223.1 -11.2 97.2 -108.9

01/26/92 224.0 -11.2 97.9 -109.7

01/29/92 224.9 -11.6 97.5 -113.1

02/01/92 225.8 -11.1 97.2 -107.9

02/04/92 226.7 -11.3 97.0 -109.6

02/07/92 227.6 -10.9 96.8 -105.5
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Date 2m-MY Thickness 
(cm)

2m-MY Flux Density 
(W /nf2) MY (%)

2m-MY Heat 
Flux (GW)

02/10/92 228.5 -11.1 98.3 -109.1

02/13/92 229.5 -11.1 97.3 -108.0

02/16/92 230.4 -11.5 97.1 -111.7

02/19/92 231.3 -11.7 96.5 -112.9

02/22/92 232.3 -12.1 97.6 -118.1

02/25/92 233.2 -11.8 94.5 -111.5

02/28/92 234.2 -11.9 97.7 -116.3

03/02/92 234.8 -11.6 97.6 -113.2

03/05/92 235.7 -12.2 97.5 -119.0

03/08/92 236.7 -11.5 98.1 -112.8

03/11/92 237.6 -11.6 97.7 -113.3

03/14/92 238.5 -11.6 96.6 -112.1

03/17/92 239.4 -11.1 96.7 -107.3

03/20/92 240.3 -11.2 96.8 -108.4

03/23/92 241.3 -10.8 97.0 -104.8

03/25/92 241.9 -11.5 95.2 -109.5

03/28/92 242.8 -11.7 95.3 -111.5

03/30/92 243.3 -11.4 98.0 -111.7

Average 220.7 -9 .9 97.7 -96.2
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"Bible 17. Daily Heat Fluxes for 3 Meter Multiyear Ice.

Date
3 m MY Thickness 

(cm)
3 m MY Flux Density 

(W /nf2)
% MY 3m MY Heat 

Flux (GW)

10/01/91 299.9 -5.4 99.3 -53.6

10/04/91 300.2 -6.1 99.4 -60.6

10/07/91 300.6 -5.8 97.5 -56.6

10/10/91 300.9 -5.8 99.4 -57.7

10/13/91 301.2 -5.6 96.7 -54.2

10/16/91 301.6 -5.5 98.6 -54.2

10/19/91 301.9 -5.6 99.0 -55.4

10/23/91 302.3 -5.2 99.2 -51.6

10/26/91 302.6 -5.5 99.0 -54.5

10/29/91 302.9 -5.4 98.9 -53.4

11/02/91 303.3 -5 .0 99.1 -49.6

11/11/91 304.3 -5.8 98.9 -57.4

11/14/91 304.7 -6 .0 99.1 -59.5

11/19/91 305.3 -6.1 96.6 -58.9

11/23/91 305.8 -6  2 97.2 -60.3

11/28/91 306.5 -5.8 97.7 -56.7

12/01/91 306.7 -6.2 98.1 -60.8

01/01/92 311.5 -7.2 98.1 -70.6

01/05/92 312.2 -7.8 98.5 -76.8

01/08/92 312.7 -8.0 96.5 -77.2

01/11/92 313.2 -7.3 97.3 -71.0

01/14/92 313.8 -7.6 98.7 -75.0

01/17/92 314.3 -8.3 97.2 -80.7

01/20/92 314.9 -7.6 98.6 -74.9

01/23/92 315.5 -8.3 97.2 -80.7

01/26/92 316.3 -7.7 97.9 -75.4

01/29/92 316.9 -8.2 97.5 -80.0

02/01/92 317.5 -8.4 972 -81.6

02/04/92 318.1 -7.7 97.0 -74.7

02/07/92 318.7 -8.4 96.8 -81.3
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Date 3 m MY Thickness 
(cm)

3 m MY Flux Density 
(W/m*2) % MY 3m MY Heat 

Flux (GW)

02/10/92 319.4 -7 .6 98.3 -74.7

02/13/92 320.0 -7.7 97.3 -74.9

02/16/92 320.7 -8.7 97.1 -84.5

02/19/92 321.3 -9 .0 96.5 -86.9

02/22/92 322.0 -9 .0 97.6 -87.8

02/25/92 322.6 -8 .6 94.5 -81.3

02/28/92 323.3 -9 .0 97.7 -87.9

03/02/92 324.0 -8.8 97.6 -85.9

03/05/92 324.7 -8.7 97.5 -84.8

03/08/92 325.4 -9 .0 98.1 -88.3

03/11/92 326.1 -8 .8 97.7 -86.0

03/14/92 326.8 -9 .6 96.6 -92.7

03/17/92 327.5 -9 .0 96.7 -87.0

03/20/92 328.0 -9.5 96.8 -92.0

03/23/92 328.7 -9.5 97.0 -92.2

03/25/92 329.1 -9.5 95.2 -90.4

03/28/92 329.9 -9 .2 95.3 -87.7

03/30/92 330.3 -9 3 98.0 -91.1

Average 314.5 -7.5 97.7 -73.1
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"fable 18. Daily Total Heat Fluxes.

Date NI/OW 
Flux (GW)

FY Flux 
(GW)

2m-MY Heat 
Flux (GW)

3m-MY 
Heat Flux 

(GW)

2m-MY 
Total Heat 
Flux (GW)

3m-MY 
Total Heat 
Flux (GW)

10/01/91 -14.4 -1 .6 -61.6 -53.6 -77.6 -69.6

10/04/91 -15.5 0.0 -56.7 -60.6 -72.2 -76.1

10/07/91 -69.6 -2.1 -52.7 -56.6 -124.4 -128.3

10/10/91 -18.5 0.0 -59.6 -57.7 -78.1 -76.2

10/13/91 -54.6 -3 .9 -56.1 -54.2 -114.6 -112.7

10/16/91 -19.1 -5 .5 -59.2 -54.2 -83.8 -78.8

10/19/91 -29.5 -1 .4 -65.3 -55.4 -96.2 -86.3

10/23/91 -9.5 -1.1 -68.4 -51.6 -79.0 -62.2

10/26/91 -14.2 -3 .2 -66.3 -54.5 -83.7 -71.9

10/29/91 -10.3 -2 .9 -76.2 -53.4 -89.4 -66.6

11/02/91 -8 .6 -0 .9 -76.3 -49.6 -85.7 -59.1

11/11/91 -25.0 -2 .0 -81.1 -57.4 -108.1 -84.4

11/14/91 -13.0 -2 .5 -82.3 -59.5 -97.8 -75.0

11/19/91 -56.7 -10.5 -82.1 -58.9 -149.3 -126.1

11/23/91 -12.0 -10 .0 -87.5 -60.3 -109.5 -82.3

11/28/91 -16.9 -6 .0 -92.8 -56.7 -115.7 -79.6

12/01/91 -9 .8 -4 .1 -91.2 -60.8 -105.1 -74.7

01/01/92 -16.5 -3 .9 -104.9 -70.6 -125.3 -96.2

01/05/92 -24.6 -2 .9 -99.5 -76.8 -127.0 -104.3

01/08/92 -26.3 -8 .8 -104.2 -77.2 -139.3 -112.3

01/11/92 -16.4 -6 .8 -108.0 -71.0 -131.2 -94.2

01/14/92 0.0 -4 .8 -103.6 -75.0 -108.4 -79.8

01/17/92 -9 .6 -9 .5 -106.0 -80.7 -125.1 -99.8

01/20/92 -14.6 -2 .8 -111.4 -74.9 -128.8 -92.3

01/23/92 -18.5 -7 .8 -108.9 -80.7 -135.2 -107.0

01/26/92 -6.9 -6 .6 -109.7 -75.4 -123.2 -88.9

01/29/92 -8.8 -8 .2 -113.1 -80.0 -130.1 -97.0

02/01/92 -19.5 -7 .3 -107.9 -81.6 -134.7 -108.4

02/04/92 -29.7 -7 .6 -109.6 -74.7 -146.9 -112.0

02/07/92 -13.7 -8 .7 -105.5 -81.3 -127.9 -103.7

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



121

Table 18. (Continued) Daily Total Heat Fluxes.

Date
NI/OW 

Flux (GW)
FY Flux 

(GW)
2m-MY Heat 
Flux (GW)

3m-MY 
Heat Flux 

(GW)

2m-MY 
Ib tal Heat 
Flux (GW)

3m-MY 
Total Heat 
Flux (GW)

02/10/92 -12.4 -3 .6 -109.1 -74.7 -125.1 -90.7

02/13/92 -8.6 -12 -108.0 -74.9 -123.8 -90.7

02/16/92 -8.3 -7 .3 -111.7 -84.5 -127.3 -100.1

02/19/92 -8.2 -8 .8 -112.9 -86.9 -129.9 -103.9

02/22/92 -19.4 -5 .4 -118.1 -87.8 -142.9 -112.6

02/25/92 -13.8 -13.6 -111.5 -81.3 -138.9 -108.7

02/28/92 -11.4 -5.3 -116.3 -87.9 -133.0 -104.6

03/02/92 -11.1 -5 .3 -113.2 -85.9 -129.6 -102.3

03/05/92 -11.9 -4 .6 -119.0 -84.8 -135.5 -101.3

03/08/92 -9.4 -4 .2 -112.8 -88.3 -126.4 -101.9

03/11/92 -16.6 -4 .3 -113.3 -86.0 -134.2 -106.9

03/14/92 -24.9 -6 .3 -112.1 -92.7 -143.3 -123.9

03/17/92 -9 3 -7 .2 -107.3 -87.0 -123.8 -103.5

03/20/92 -14.4 -6 .4 -108.4 -92.0 -129.2 -112.8

03/23/92 -8 .4 -6 .0 -104.5 -92.2 -118.9 -106.6

03/25/92 -13.4 -10.2 -109.5 -90.4 -133.1 -114.0

03/28/92 -27.2 -10.2 -111.5 -87.7 -148.9 -125.1

03/30/92 -6 .2 -4 .3 -111.7 -91.1 -122.2 -101.6

Average -17.4 -5 .5 -96.2 -73.1 -119.2 -96.2
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Appendix D Daiiy Salt Flux Tables

Table 19. Daily Salt Flux Densities for First Year Ice.

Date

NI/OW 1/2 
Max. 

Thickness 
(cm)

NI/OW Salt 
Flux 

(kg/day/ 
m*2)

NI/OW (%)
FY 1/2 Max. 

Thickness 
(cm)

FY Salt Flux 
(kg/day/ 

m*2)

FY
(%)

10/01/91 5.8 1.006 0.6 7.8 0.966 0.1

10/04/91 5.5 0.881 0.6 11.0 0.646 0.0

10/07/91 5.3 1.148 2.3 13.6 0.788 0.2

10/10/91 5.6 1.176 0.6 15.8 0.643 0.0

10/13/91 5.3 0.727 2.7 18.0 0.587 0.6

10/16/91 5.6 1.104 0.7 19.8 0.585 0.7

10/19/91 5.4 1.275 0.8 21.6 0.545 0.2

10/23/91 6.0 1.425 0.6 24.1 0.455 0.2

10/26/91 6.7 1.501 0.6 25.9 0.509 0.4

10/29/91 6.1 1.284 0.6 27.9 0.438 0.5

11/02/91 6.0 1.207 0.6 29.9 0.406 0.3

11/11/91 5.8 1.351 0.6 33.0 0.349 0.5

11/14/91 6.7 1.655 0.5 34.5 0.457 0.4

11/19/91 5.5 1.513 1.4 37.0 0.381 2.0

11/23/91 6.2 1.320 0.7 39.0 0.427 2.1

11/28/91 6.5 1.268 0.8 41.2 0.310 1.5

12/01/91 6.2 1.161 0.6 42.4 0.240 1.3

01/01/92 6.2 1.310 0.8 53.6 0.335 1.0

01/05/92 6.8 1.732 0.8 55.1 0.266 0.7

01/08/92 6.5 1.564 1.1 56.2 0.285 2.4

01/11/92 6.6 1.691 0.7 57.3 0.263 2.0

01/14/92 6.9 1.957 0.0 58.4 0.270 1.4

01/17/92 6.6 1.532 0.4 59.4 0292 2.5

01/20/92 6.9 1.932 0.5 60.4 0.240 0.9
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Table 19. (Continued) Daily Salt Flux Densities for First Year Ice.

Date

NI/OW 1/2 
Max. 

Thickness 
(cm)

NI/OW Salt 
Flux 

(kg/day/ 
m*2)

NI/OW (%)
FY 1/2 Max. 

Thickness 
(cm)

FY Salt Flux 
(kg/day/ 

m*2)

FY
(%)

01/23/92 6.9 1.974 0.7 61.4 0.266 2.1

01/26/92 6.9 2.005 0.3 62.4 0.257 1.7

01/29/92 6.6 1.727 0.3 63.4 0.298 2.1

02/01/92 6.6 1.719 0.7 64.3 0.267 2.1

02/04/92 6.9 1.767 0.9 65.3 0.273 2.1

02/07/92 6.5 1.644 0.6 66.3 0.269 2.5

02/10/92 6.5 1.577 0.5 67.3 0.234 1.2

02/13/92 6.5 1.693 0.3 68.3 0.229 2.3

02/16/92 6.3 1.590 0.4 69.2 0.218 2.4

02/19/92 6.6 1.678 0.3 70.1 0.215 3.1

02/22/92 5.8 1.496 0.5 71.1 0.226 1.8

02/25/92 6.7 1.768 0.5 71.9 0.224 5.0

02/28/92 6.5 1.501 0.5 72.8 0.231 1.7

03/02/92 6.3 1.209 0.7 73.6 0.201 1.8

03/05/92 6.3 1.544 0.6 74.4 0.193 1.8

03/08/92 6.5 1.645 0.4 75.3 0.184 1.6

03/11/92 6.7 1.603 0.6 76.1 0.184 1.7

03/14/92 6.9 1.997 1.1 76.9 0.207 2.3

03/17/92 6.0 1.176 0.7 77.6 0.206 2.6

03/20/92 5.7 0.934 0.6 78.4 0.192 2.5

03/23/92 6.4 1.457 0.4 79.2 0.184 2.6

03/25/92 6.4 1.475 0.6 79.9 0.179 4.2

03/28/92 5.5 1.319 0.7 80.4 0.192 4.0

03/30/92 6.0 l .f ’ 6 0.4 80.9 0.197 1.6

Average 6.3 1.4.'1 0.7 53.5 0.334 1.6
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Table 20. Daily Salt Fluxes First Year Ice.

Date
NI/OW Salt 
Flux Density 
(kg/day/m*2)

NI/OW
(%)

NI/OW  Salt 
Flux 

(Mkg/day)

FY Salt Flux 
Density 

(kg/day/m*2)

FY
(%)

FY Salt Flux 
(Mkg/day)

10/01/91 1.006 0.6 60.4 0.966 0.1 9.7

10/04/91 0.881 0.6 52.9 0.646 0.0 0.0

10/07/91 1.148 2.3 264.0 0.788 0.2 15.8

10/10/91 1.176 0.6 70.6 0.643 0.0 0.0

10/13/91 0.727 2.7 196.3 0.587 0.6 35.2

10/16/91 1.104 0.7 77.3 0.585 0.7 41.0

10/19/91 1.275 0.8 102.0 0.545 0.2 10.9

10/23/91 1.425 0.6 85.5 0.455 0.2 9.1

10/26/91 1.501 0.6 90.1 0.509 0.4 20.4

10/29/91 1.284 0.6 77.0 0.438 0.5 21.9

11/02/91 1.207 0.6 72.4 0.406 0.3 12.2

11/11/91 1.351 0.6 81.1 0.349 0.5 17.5

11/14/91 1.655 0.5 82.8 0.457 0.4 15.2

11/19/91 1.513 1.4 211.8 0.381 2.0 85.4

11/23/91 1.320 0.7 92.4 0.427 2.1 89.7

11/28/91 1.268 0.8 101.4 0.310 1.5 46.5

12/01/91 1.161 0.6 69.7 0.240 1.3 31.2

01/01/92 1.310 0.8 104.8 0.335 1.0 33.5

01/05/92 1.732 0.8 138.6 0.266 0.7 18.6

01/08/92 1.564 1.1 172.0 0.285 2.4 68.4

01/11/92 1.691 0.7 118.4 0.263 2.0 52.6

01/14/92 1.957 0.0 0.0 0.270 1.4 37.8

01/17/92 1.532 0.4 61.3 0.292 2.5 73.0

01/20/92 1.932 0.5 96.6 0.240 0.9 21.6

01/23/92 1.974 0.7 138.2 0.266 2.1 55.9

01/26/92 2.005 0.3 60.2 0.257 1.7 43.7

01/29/92 1.727 0.3 51.8 0.298 2.1 62.6

02/01/92 1.719 0.7 120.3 0.267 2.1 56.1

02/04/92 1.767 0.9 159.0 0.273 2.1 57.3

02/07/92 1.644 0.6 98.6 0.269 2.5 67.3
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Tbble 20. (Continued) Daily Salt Fluxes First Year Ice.

Date
NI/OW Salt 
Flux Density 
(kg/day/m‘2)

NI/OW
(%)

NI/OW Salt 
Flux 

(Mkg/day)

FY Salt Flux 
Density 

(kg/day/m‘2)

FY
(%)

FY Salt Flux 
(Mkg/day)

02/10/92 1.577 0.5 78.9 0/234 1.2 28.1

02/13/92 1.693 0.3 50.8 0.229 2.3 52.7

02/16/92 1.590 0.4 63.6 0.218 2.4 52.3

02/19/92 1.678 0.3 50.3 0.215 3.1 66.7

02/22/92 1.4% 0.5 74.8 0.226 1.8 40.7

02/25/92 1.768 0.5 88.4 0.224 5.0 112.0

02/28/92 1.501 0.5 75.1 0.231 1.7 39.3

03/02/92 1.209 0.7 84.6 0.201 1.8 36.2

03/05/92 1.544 0.6 92.6 0.193 1.8 34.7

03/08/92 1.645 0.4 65.8 0.184 1.6 29.4

03/11/92 1.603 0.6 % .2 0.184 1.7 32.3

03/14/92 1.997 1.1 219.7 0.207 2.3 47.6

03/17/92 1.176 0.7 82.3 0.206 2.6 53.6

03/20/92 0.934 0.6 56.0 0.192 2.5 48.3

03/23/92 1.457 0.4 58.3 0.184 2.6 47.8

03/25/92 1.475 0.6 88.5 0.179 4.2 75.2

03/28/92 1.319 0.7 92.3 0.192 4.0 76.8

03/30/92 1.876 0.4 75.0 0.197 1.6 31.5

Average 1.481 0.7 95.8 0.334 | 1.6 42.0
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Tkble 21. Daily Salt Fluxes for Multiyear Ice.

Date
3m-MY Salt 
Flux Density 
(kg/day/m*2)

3m-MY Salt 
Flux (Mkg/day) MY (%)

2m-MY Flux 
Density 

(kg/day/m^)

2m-MY Salt 
Flux 

(Mkg/day)

10/01/91 0.030 297.9 99.3 0.030 297.9

10/04/91 0.029 288.3 99.4 0.030 298.2

10/07/91 0.028 273.0 97.5 0.030 292.5

10/10/91 0.029 290.0 99.4 0.031 308.1

10/13/91 0.028 270.8 96.7 0.033 319.1

10/16/91 0.028 276.1 98.6 0.034 335.2

10/19/91 0.027 267.3 99.0 0.036 356.4

10/23/91 0.027 267.8 99.2 0.039 386.9

10/26/91 0.027 270.0 99.0 0.042 415.8

10/29/91 0.028 276.9 98.9 0.045 445.1

11/02/91 0.028 277.5 99.1 0.045 446.0

11/11/91 0.030 296.7 98.9 0.053 524.2

11/14/91 0.031 307.2 99.1 0.055 545.1

11/19/91 0.033 318.8 96.6 0.054 521.6

11/23/91 0.034 330.5 97.2 0.057 554.0

11/28/91 0.035 342.0 97.7 0.056 547.1

12/01/91 0.036 353.2 98.1 0.061 598.4

01/01/92 0.044 431.6 98.1 0.070 686.7

01/05/92 0.043 423.6 98.5 0.073 719.1

01/08/92 0.044 424.6 96.5 0.073 704.5

01/11/92 0.045 437.9 97.3 0.074 720.0

01/14/92 0.046 454.0 98.7 0.077 760.0

01/17/92 0.046 447.1 97.2 0.077 748.4

01/20/92 0.047 463.4 98.6 0.078 769.1

01/23/92 0.048 466.6 97.2 0.079 767.9

01/26/92 0.049 479.7 97.9 0.080 783.2

01/29/92 0.049 477.8 97.5 0.080 780.0

02/01/92 0.050 486.0 97.2 0.081 777.6

02/04/92 0.051 494.7 97.0 0.081 785.7

02/07/92 0.048 474.4 96.8 0.081 784.1
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Tfeble 21. (Continued) Daily Salt Fluxes for Multiyear Ice.

Date
3m-MY Salt 
Flux Density 
(kg/day/m'2)

3m-MY Salt 
Flux (Mkg/day) MY (%)

2m-MY Flux 
Density 

(kg/day/m‘2)

2m-MY Salt 
Flux 

(Mkg/day)

02/10/92 0.052 511.2 98.3 0.081 796.2

02/13/92 0.052 506.0 97.3 0.082 797.9

02/16/92 0.054 524.3 97.1 0.082 796.2

02/19/92 0.054 521.1 96.5 0.082 791.3

02/22/92 0.054 527.0 97.6 0.083 810.1

02/25/92 0.055 519.8 94.5 0.083 784.4

02/28/92 0.056 547.1 97.7 0.083 810.9

03/02/92 0.056 546.6 97.6 0.083 810.1

03/05/92 0.057 555.8 97.5 0.082 799.5

03/08/92 0.057 559.2 98.1 0.082 804.4

03/11/92 0.057 556.9 97.7 0.082 801.1

03/14/92 0.058 560.3 96.6 0.081 782.5

03/17/92 0.058 560.9 96.7 0.081 783.3

03/20/92 0.057 551.8 96.8 0.081 784.1

03/23/92 0.058 562.6 97.0 0.080 776.0

03/25/92 0.057 542.6 95.2 0.077 733.0

03/28/92 0.058 552.7 95.3 0.075 714.8

03/30/92 0.059 560.5 98.0 0.079 774.2

Average 0.044 431.9 97.7 0.67 648.5
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Table 22. Daily Total Salt Fluxes.
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Date

3m-MY 
Salt Flux 

(Mkg/ 
day)

2m-MY Salt 
Flux (Mkg/ 

day)

FY Salt Flux 
(Mkg/ 
day)

NI/OW Salt 
Flux (Mkg/ 

day)

2m-MY Total 
Salt Flux 
(Gg/day)

3m-MY 
Total Salt 

Flux 
(Gg/day)

10/01/91 297.9 297.9 9.7 60.4 368.0 368.0

10/04/91 288.3 298.2 0.0 52.9 351.1 341.2

10/07/91 273.0 292.5 15.8 264.0 572.3 552.8

10/10/91 290.0 308.1 0.0 70.6 378.7 360.6

10/13/91 270.8 319.1 35.2 196.3 550.6 402.3

10/16/91 276.1 335.2 41.0 77.3 453.5 394.4

10/19/91 267.3 356.4 10.9 102.0 469.3 380.2

10/23/91 267.8 386.9 9.1 85.5 481.5 362.4

10/26/91 270.0 415.8 20.4 90.1 526.3 380.5

10/29/91 276.9 445.1 21.9 77.0 544.0 375.8

11/02/91 277.5 446.0 12.2 72.4 530.6 362.1

11/11/91 296.7 524.2 17.5 81.1 622.8 395.3

11/14/91 307.2 545.1 15.2 82.8 643.1 405.2

11/19/91 318.8 521.6 85.4 211.8 818.8 616.0

11/23/91 330.5 554.0 89.7 92.4 736.1 512.6

11/28/91 342.0 547.1 46.5 101.4 695.0 489.9

12/01/91 353.2 598.4 31.2 69.7 699.3 454.1

01/01/92 431.6 686.7 33.5 104.8 825.0 569.9

01/05/92 423.6 719.1 18.6 138.6 876.3 580.8

01/08/92 424.6 704.5 68.4 172.0 944.9 665.0

01/11/92 437.9 720.0 52.6 118.4 891.0 608.9

01/14/92 454.0 760.0 37.8 0.0 797.8 491.8

01/17/92 447.1 748.4 73.0 61.3 882.7 581.4

01/20/92 4*3.4 769.1 21.6 96.6 887.3 581.6

01/23/92 466.6 767.9 55.9 138.2 962.0 660.7

01/26/92 479.7 783.2 43.7 60.2 887.1 583.6

01/29/92 477.8 780.0 62.6 51.8 894.4 592.2

02/01/92 486.0 777.6 56.1 120.3 954.0 662.4

02/04/92 494.7 785.7 57.3 159.0 1002.0 711.0
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Ibble 22. (Continued) Daily Ibtal Salt Fluxes.
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Date

3m-MY 
Salt Flux 

(Mkg/ 
day)

2m-MY Salt 
Flux (Mkg/ 

day)

FY Salt Flux 
(Mkg/ 
day)

NI/OW Salt 
Flux (Mkg/ 

day)

2m-MY Ibtal 
Salt Flux 
(Gg/day)

3m-MY 
Ib tal Salt 

Flux 
(Gg/day)

02/07/92 474.4 784.1 67.3 98.6 950.0 640.3

02/10/92 511.2 796.2 28.1 78.9 903.2 618.2

02/13/92 506.0 797.9 52.7 50.8 901.4 609.5

02/16/92 524.3 796.2 52.3 63.6 912.1 640.2

02/19/92 521.1 791.3 66.7 50.3 908.3 638.1

02/22/92 527.0 810.1 40.7 74.8 925.6 642.5

02/25/92 519.8 784.4 112.0 88.4 984.8 720.2

02/28/92 547.1 810.9 39.3 75.1 925.3 661.5

03/02/92 546.6 810.1 36.2 84.6 930.9 667.4

03/05/92 555.8 799.5 34.7 92.6 926.8 683.1

03/08/92 559.2 804.4 29.4 65.8 899.6 654.4

03/11/92 556.9 801.1 32.3 96.2 929.6 685.4

03/14/92 560.3 782.5 47.6 219.7 1049.8 827.6

03/17/92 560.9 783.3 53.6 82.3 919.2 696.8

03/20/92 551.8 784.1 48.3 56.0 888.4 656.1

03/23/92 562.6 776.0 47.8 58.3 882.1 668.7

03/25/92 542.6 733.0 75.2 88.5 896.7 706.3

03/28/92 552.7 714.8 76.8 92.3 883.9 721.8

03/30/92 560.5 774.2 31.5 75.0 880.7 667.0

Average 431.9 648.5 42.0 95.8 786.3 567.7
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