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ABSTRACT

The major result of this thesis is the determination of the magnetic signatures 

of the dayside cusp region. These signatures were determined by comparing the 

magnetic observations to optical observations of different energy particle precip­

itation regions observed in the cusp. In this thesis, the cusp is defined as the 

location of most direct entry of magnetosheath particles into the ionosphere. Op­

tical observations show that the observing station rotates daily beneath regions 

of different incident energy particles. Typically, the station passes from a region 

in the morning of high energy particles into a region near magnetic noon of very 

low energy precipitation, and then returns to a region of high energy precipita­

tion after magnetic noon. A tentative identification of the cusp is made on the 

basis of these observations. The optical observations also are used to determine 

the upward field aligned current density, which is found to be most intense in the 

region identified as the cusp. The magnetic field measurements are found to cor­

relate with the optical measurements. When the characteristic energy is high, the 

spectrogram shows large amplitude broad band signals. The Pc5 component of 

these oscillations is right hand polarized in the morning, and left hand polarized 

in the afternoon. During the time the optics detect precipitation with a minimum 

characteristic energy, the magnetic spectrogram shows a unique narrow band tone 

at 3-5 mHz. The occurrence statistics of the magnetic oscillations are compared 

to DMSP satellite observations of the cusp and low latitude boundary layer. The 

pulses that make the narrow band tone are found to come in wave trains that are 

phase coherent. These trains of coherent pulses are found to be separated by phase 

jumps from adjacent wave trains. These jumps in phase occur when a new field 

aligned current appears on the equatorward edge of the cusp. This combination 

of phase coherent wave trains associated with poleward propagating auroral forms 

which are shown to contain intense field aligned currents may be the signature of 

newly reconnected flux tubes in the ionosphere.
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CHAPTER 1 

Introduction

Since the 1930’s, the interaction of the solar wind with the terrestrial dipolar 

magnetic field has been shown to result in a current carrying layer that surrounds 

the earth. This layer of current, called the magnetopause, serves as the boundary 

across which mass, energy and magnetic flux gain entry into the earth’s magne­

tosphere. Chapman and Ferraro, [1931] point out that in the simplifying case of 

a plane current sheet oriented perpendicular to the solar wind velocity that the 

current layer has two points where the magnetic field is perpendicular to the mag­

netopause. This causes the magnetic field pressure to be zero at these points and, 

in principle, allows entry of magnetosheath plasma to the ionosphere. This is the 

simplest explanation of the cusp; a region where magnetosheath plasma is allowed 

entry to ionospheric levels due to the magnetic field geometry.

Figure 1.1 shows the resulting magnetic field topology based on the empirical 

model of Tsyganenko [1989]. In this figure the magnetic field lines are shown for 

winter solstice and a Kp disturbance level of 6 at 12:00 universal time (UT). Notice 

the dayside portion of the magnetosphere is compressed due to the solar wind, while 

the night side is stretched out into a tail. This figure shows that at high latitudes 

the field lines stop closing on the dayside, and start closing on the nightside. While 

the model is based on a  closed magnetosphere, it still indicates that some latitude 

exists where there will be access to the ionosphere of magnetosheath particles, and 

is the general location of the cusp. Such a model can only be used in a general sense 

however because it does not include the dayside current systems which modify the 

dayside magnetic field.

1
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z 2

Note th a t the summer cusp is sunlit while the winter cusp is not sunlit.

From its original inception then the concept of the magnetospheric cusp has 

at least two im portant different ideas associated with it. First is the magnetic 

field topology th a t results from the interaction of the solar wind and the terrestrial 

magnetic field. The second is the resulting plasma entry due to this topology and 

the implications of this plasma entry into the ionosphere. Since the cusp repre­

sents different ideas to different people, the literature surrounding this broad topic 

reflects this dichotomy. Some authors concentrate on the magnetic topology of 

the region, see for instance Spreiter and Summers, [1967], Dungey, [1958], while
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others concentrate on the plasma characteristics observed at ionospheric heights, 

see HeikillaandWinningham [1971]. This introductory chapter is a blend of these 

two ideas, with the emphasis being given to the latter, that is the observational 

effects of the magnetosheath plasma gaining entry through the cusp into the iono­

sphere. After this brief introduction to the literature I present the basic conceptual 

framework for the analysis and discussion that follows in the body of the thesis.

1.1 Early observations of the cusp

Airborne optical observations made by Eather andMende, [1971] showed that a 

region of low energy precipitating particles existed poleward of the of the auroral 

oval near the midday meridian. These particles had electron energies of 100-200 

eV and Eather and Mende, [1971] postulated that these particles came from the 

magnetosheath. The cusp has been identified at least since the 1960’s as a source 

of large amplitude ULF fluctuations in the E arth’s magnetic field. Feldstein and 

Zaitzev [1968], report data taken during the IGY that show the “...polar electrojet 

with westward current is located at <j> ~  65° at midnight and <j> ~  76° at midday 

...”. Zmuda etal. [1970] report crossings of the high latitude dayside by satellite, 

and show large transverse magnetic field fluctuations centered on magnetic noon 

and falling between 77° and 80° invariant latitude. Zmuda et al. [1970] attributed 

these fluctuations to passage of the satellite through currents flowing along the 

field lines. Burch [1968] and Heikkila and Winningham [1971] show that the high 

latitude dayside region is the area of direct access of magnetosheath like plasma to 

low altitudes. According to Heikkila and Winning ham [1971] this plasma “...flux is 

related to a number of geophysical phenomena, including magnetospheric surface 

currents, daytime auroras, VLF and LF emissions, ionospheric irregularities, and 

geomagnetic fluctuations.” These early papers show the basic division of observa­

tions of the cusp with both ground and satellite observations playing an important
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role. However all reinforce the idea that the cusp is the a region of enhanced elec­

tromagnetic turbulence and particle entry into the dayside ionosphere. This idea 

is presented by Heikkila et al. [1972] in one of the first attempts to combine optical 

observations made in aircraft, with particle measurements made by satellite.

1.2 Satellite observations of the cusp

This section deals with the satellite observations of the cusp, and is arranged 

into three main areas by the type of observation. The first subsection studies the 

observed precipitating particles in the cusp, while the second studies the magnetic 

and electric fields associated with currents and waves in the cusp region. The 

third studies the optical emission resulting the interaction of the first two with the 

ionospheric plasma. These three differing measurements tend to complement each 

other, and yield different types of information. The particle measurements have 

been the major discriminant used in morphological determinations because they 

map locations of plasma with similar characteristics. In this vein the measurement 

of field aligned currents also yield morphological results. In general the particle and 

current measurements give a macroscopic view of cusp physics. The field measure­

ments yield insight into source mechanisms, and tend to give a more microscopic 

view of the cusp physics. The optical measurements are something of a combina­

tion, having been used for both morphological exploration of the dayside and also 

being used to determine such microphysical details as the cusp temperature.

1.2.1 Particles

Along with Heikkila and Winningham [1971] early particle measurements were 

carried out by Burch [1968], Frank andAckerson [1971], and Frank [1971]. All these 

papers indicate that a region of low energy electron precipitation exists at latitudes 

higher than the typical auroral zone, and that these particles are indicative of
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magnetosheath like parameters. Frank [1971] and Heikkila and Winningham [1971] 

both attribute these particles directly to entry of magnetosheathlike characteristics.

McDiarmid et al. [1976,1975,1972] report on particle precipitation in the high 

latitudes. These measurements do not distinguish between particles in the cusp 

and those in the boundary layers. Rather they treat the entire ensemble as one 

entity with a wide distribution in local magnetic time and geomagnetic latitude, 

which they call the cleft. M cDiarmidetal [1976] gives a statistical argument to  show 

a difference in the particle energy specrum before and after magnetic local noon. 

Due to this, and the fact that they make no distinction between the boundary layer 

particles and the central cusp, McDiarmid et al. [1976] argue for the cleft particles 

to be on closed field lines.

The question of whether particles originating in the magnetosheath penetrate 

to the ionosphere is fundamental given our definition of the cusp. Reiff etal. [1977] 

and Shelly et al. [1976] show that the observations of ions at mid altitudes are 

consistent with injection of magnetosheath plasma at the equatorward edge of the 

cusp. Due to a constant E x B  drift as the ions propagate down the field lines there 

will be a dispersion on parallel energies with latitude. The higher energy ions 

will penetrate faster, and hence be convected poleward a shorter distance. Reiff 

et al. [1977] and Shelly et al. [1976] show that this is the case for most of the 

measurements made of the m id-altitude cusp. Burch et al. [1982] use ion energy 

measurements from the DE-1 satellite and a model of the expected ion energy 

pitch angle distribution to estim ate that cusp ions seen at DE-1 had their injection 

point a t distances of 8 earth  radii (Re). This again shows that the cusp ions have 

a magnetosheath origin. All these studies are based on a relatively few satellite 

crossings, and hence do not allow a detailed mapping of the the cusp with latitude 

and magnetic local time. However they do seem to show that indeed magnetosheath
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Figure 1.2. Ionospheric map of the cusp/cleft from Figure 12 of Kremser and 
Lundin [1990]. The plot shows outlines of four regions of precipitation as determined 
by the Viking satellite. Region A is the cusp proper, region B is the entry layer, 
region C is the low latitude boundary layer, and region D is the plasma mantle.

ions penetrate to ionospheric levels, and are consistent with intermittent injections 

at the equatorward boundary of the cusp.

Kresmer and Lundin [1990] address the statistical question of where the cusp 

maps in the ionosphere, and the results are shown in Figure 1.2. Using the Viking 

satellite which orbits at mid-altitudes from 817 km to 13,530 km they distinguish 

between four regions in the cusp/cleft system. They define the central cusp as a re­

gion with magnetosheath like ion characteristics containing no accelerated electron 

events. Connected to the equatorward edge of this central cusp is the entry layer, 

which contains both magnetosheath-like ions, and accelerated electrons. Kremser

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and Lundin [1990] consider both the entry layer and the central cusp to be part 

of the cusp, but separate them with the distinction that the entry layer shows 

signs of electron acceleration. Equatorward of the central cusp is the low-latitude 

boundary layer which they feel maps to the magnetospheric boundary layer. Fi­

nally poleward of the central cusp is the mantle, which has strong antisunward 

flows and has its origin in the magnetosheath.

Using the energy flux and energy spectral measurements of precipitating par­

ticles on the dayside ionosphere Newell and Meng [1992] have characterized the 

populations of the cusp and boundary layer region in the lower ionosphere. These 

measurements are made on the Defense Meterological Support Program (DMSP) 

and are detailed over a series of articles; see Newell etal. [1991a;c], Newell andMeng 

[1989],and Newell and Meng [1988]. In these papers the authors use the average 

energy and energy flux of the ions and electrons as parameters to distinguish be­

tween different particle precipitation regions in the dayside ionosphere. The seven 

different regions defined in these papers are, following Newell and Meng [1992] , 

polar rain, mantle, cusp, low latitude boundary layer (LLBL), boundary plasma 

sheet (BPS), central plasma sheet (CPS), and regions void of significant particle 

fluxes. These definitions were applied along the track of each orbit and statistics 

kept on the location of the differing particle precipitation regions. Comparing to 

the Viking data we see that the DMSP measurements have added additional cate­

gories in terms of the CPS and BPS, while not distinguishing between the central 

cusp and entry layer as did Kremser and Lundin [1990].

Figure 1.3 reviews the results reported by Newell and Meng [1992], and is 

figure 2 of that paper. Figure 1.3 displays a typical statistical mapping of the par­

ticle populations to the DMSP altitude of 835 km. These results are the average 

of approximately 60,000 crossings of the dayside ionosphere over both poles. The 

display is in magnetic coordinates using the PACE model for magnetic local times
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□  Polar Rain 

f H  Mantle

Cusp

LLBL

Traditional CPS 

Traditional BPS □  Void

Figure 1.3. Map of particle precipitation regions in the ionosphere. From 
Newell and Meng [1992], their Figure 2. This is a statistical view of the dayside 
precipitation regions, note that the cusp is seen at about 78-79 “magnetic latitude 
from about 10:30 MLT to 13:30 MLT.
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and latitudes, Baker and Wing [1989]. As can be seen the cusp at this altitude is 

detected over some 2.5 hours in local time, and is located at about 78 degrees mag­

netic latitude. Equatorward of the cusp is the region of the low latitude boundary 

layer, and poleward of the cusp is the m antle region. Poleward of the mantle is 

the region of polar rain, while the CPS and BPS intrude around the flanks of the 

dayside regions. While representing no individual day this statistical picture is 

still a good overview of the differing precipitation regions, and is in good general 

agreement with that found by Kremser and Lundin [1990].

In addition to determining the mapping of these different regions to the iono­

sphere, the DMSP work has looked at effects of the interplanetary magnetic field 

on the location of these plasma boundaries. Newell etal. [1989], Burch et al. [1986] 

and Carbary and Meng [1986] show that the cusp position shifts equatorward with 

increasing negative Bz, while Newell et al. [1989a] also shows that cusp lattitude 

has little dependence on the magnitude of northward Bz. Thus the cusp responds 

nonuniformly to changes in Bz. Newell et al. [19S9] also show that the component 

of By is im portant only when the Bz component is negative. When Bz is negative 

and By is positive, then the cusp moves towards dusk in the northern hemisphere, 

and when Bz is negative and By is negative the cusp moves toward dawn in the 

northern hemisphere. Carbary and Meng [19S6] also show a pronounced move­

ment of the cusp with Bz and also correlate this movement with the AE index, 

[see Mayaud, 1980]. They note that the poleward edge of the cusp shows a higher 

correlation coefficient with both Bz and AE than the equatorward edge of the cusp.

In two companion papers NewellandMeng [1988b,1989b] show a  distinct asym­

m etry in cusp latitude and particle precipitation characteristics with dipole tilt 

angle. Newell and Meng [1988b] show that when the cusp is toward the sun the 

ion energy flux increases by 61 ±  11 percent over the cusp that is away from the 

sun. They also find that the average energy decreases in the summer hemisphere.
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The winter cusp has a higher energy because the tailward flowing ions have accel­

erated to a higher velocity by the time they get to the cusp. They believe that 

only the higher energy ions and electrons can then penetrate the stagnation region 

surrounding the cusp. Newell and Meng [19S9b] show statistically that the posi­

tion of the cusp in latitude changes with dipole tilt angle, and hence season. They 

find that between solstices the cusp will move in latitude by about four degrees of 

magnetic latitude, with the cusp being furthest equatorward in the winter solstice. 

They also find in this paper that the low-latitude boundary layer does not show as 

pronounced a shift due to dipole tilt angle, and its average seasonal dependence is 

only about 2 degrees.

1.2.2 Fields

In addition to the particle precipitation data there have been many studies of 

the electromagnetic field measurements in the cusp region. Magnetic field mea­

surements can be used to determine locations of field aligned currents into and out 

of the cusp ionosphere. Sugiura and Potemra [1976] show that net currents indeed 

flow along field lines into and out of the ionosphere. lijima and Potemra [1976a] 

show that these field aligned currents are in two basic regions, the poleward one 

called region 1 and the equatorward called region 2. They also show that the sense 

of current flow to the ionosphere is opposite for the two regions, with the region 

1 currents flowing into the ionosphere before magnetic noon, and out of the iono­

sphere after magnetic local noon. lijima and Potemra [1976a] also point out that 

the region 1 currents seem to be a permanent feature, and continue to exist for 

very small disturbance levels.

Erlandson et al. [1988] show that while the Region 1 current flows into the 

ionosphere before ’’noon” , and away from the ionosphere after ’’noon”, the line 

demarking ’’noon” actually moves in magnetic local time in response to the sign of
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the IMF By component. If By is positive the line moves towards dusk, and if By 

is negative the line demarking ’’noon” moves towards dawn. This movement with 

the IMF By component is the same as found for the cusp as shown by Newell et 

a i  [1989], and it is tempting to conclude that the Region 1 currents are divided on 

the dayside by the cusp.

The Region 2 currents on the other hand seem to be well correlated with the 

nightside westward electrojet, and disappear during very low disturbance levels. 

lijima and Potemra [1976a] find the largest Region 1 current density is between 

0700 and 0800 MLT, and that at this time the Region 1 field aligned current is at 

about 75 degrees magnetic latitude. lijima and Potemra [1976a] speculate that the 

source of the region 1 current is the dayside magnetospheric boundary layer. This 

view is supported by Bythrow et al. [1981] who use combined magnetometer and 

particle precipitation measurements to determine that the region 1 currents arise 

in the boundary layer of the magnetosphere. Potemra et al. [1987] also come to 

this conclusion using Viking satellite measurements.

lijima and Potemra [1976b] discuss the field aligned currents associated with 

the cusp. These currents are found poleward of the region 1 current system, and 

generally have the opposite sense of direction form the region 1 currents, that is 

the cusp currents are out of the ionosphere in the morning and into the ionosphere 

in the afternoon. Bythrow et al. [19SS] show that these cusp currents are associated 

with the mantle precipitation regions, that is they are poleward of the cusp as 

defined by particle precipitation. A summary of the Birkeland current systems as­

sociated with the dayside ionosphere is shown in Figure 1.4, taken from Erlandson 

etal. [1988]. Figure 1.4 shows the relative position of the Region 1, Region 2 and 

Cusp Current systems with respect to local time and magnetic latitude for positive 

and negative By orientations. Also shown are the DPY currents, which are zonal 

Hall currents that flow in between the Region 1 and Cusp current system. It is
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Figure 1.4. Position of Region 1, Region2, and Cusp field aligned current 
systems as a function of By, taken from Erlandson et al. [1988]. Notice that the 
line demarking where the Region 1 currents flow into and out of the ionosphere is 
not fixed, but follows By.
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consistent with the statistical data of Newell and Meng [1989] to put the cusp as 

defined by the particle precipitation data in the gap between the Region 1 currents 

systems in this figure.

• Measurements onboard satellites can also be used to look for areas of rapidly 

changing magnetic and electric fields at the magnetopause, magnetosphere, or in 

the ionosphere. At the magnetopause Russell et al. [1971], Scarf et al. [1972], 

Fredricks and Russell [1973] and Fredricks etal. [1973] use satellite da ta  from OGO 

5 during the very disturbed day (Kp =  8+) of 1 November 1968 to show that the 

boundary layers of the cusp are rich in ULF fluctuations and plasma wave energy, 

specifically ion cyclotron wave modes. D'Angelo [1973] revisit this data set, and 

interpret the observations in terms of a Kelvin-Helmholtz instability. D'Angelo et 

al. [1974] discuss measurements made with the HEOS 2 satellite of 20 crossings 

of the cusp and its boundary. Again D'Angelo et. al. [1974] favor the Kelvin - 

Helmholtz instability when describing the observed results. D ’Angelo et al. [1974] 

also point out that magnetic field fluctuations are common on one or both of the 

boundaries of the cusp. Tsurutani et al. [1981] shows that at the boundary layer just 

inside the magnetopause, electrons and ions with kilovolt energies are observed.

The upstream bow shock has been noted to be turbulent when the angle the 

IMF makes with the normal to the bow shock becomes small, [Greenstadt 1972]. 

This orientation can lead to the generation of ULF pulsations in the upstream 

region, and flood the magnetosheath with ULF noise, see Russell et al [1983]. 

Engebretson et al. [1987] and Luhmann et al. [1986] verify that the Earth’s mag­

netosphere is flooded with Pc3-4 pulsations when the IMF cone angle is small. 

Engebretson et al. [1987] shows further that these pulsations happen in two main 

categories, the first is broad band compressional wave power centered around mag­

netic noon, and the second are more monochromatic with periods identical to that 

seen in the solar wind upstream of the bow shock. Engebretson et al. [19S7] find

13
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Figure 1.5. Obsevables and source regions in the cusp, taken from figure 1.4 
of Glassmeier [1989].
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that the narrow band pulsations are seen at higher latitudes. All this leads En­

gebretson et al. [1987] to conclude that upstream wave power can leak into the 

cusp via compressional waves and serve as a source for Pc3 pulsations at lower 

latitudes. Engebretson et al. [1991] feel that the source of this coupling may be 

that the ionospheric conductivity is modified by particle precipitation that occurs 

at the frequency of the compressional wave that penetrates the cusp. This modified 

conductivity causes the ionospheric currents to be modulated, which in turn can 

modulate the Region 2 field aligned currents. This modulation of the ionospheric 

currents causes a modulation of the Region 2 currents and is proposed as the source 

of the coupling of upstream wave energy into the lower latitudes.

Erlandson et al. [1987] also report that the equatorward side of the cusp is a 

site of intense electrostatic waves with frequencies between the electron plasma and 

cyclotron frequency. They find a strong correlation between this region and the 

downward flowing region 1 current system. This has also been reported by Maynard 

et al. [1991] who also show that the equatorward side of the cusp has intense 

field aligned currents associated with it, with current densities of 10 pamps ■ m ~2. 

Maynard et al. [1991] attribute these intense field aligned currents to an Alfven 

wave packet of finite dimensions, which is at the equatorward side of the cusp.

A summary of the observables in the cusp and the possible source regions of 

these observables is given by Glassmeier [1989], and reproduced here as Figure 1.5. 

This figure reinforces the idea that the cusp/boundary layer system is an area with 

both accelerated particles, and large amplitude wave fields that arise in both local 

and remote locations.

15
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1.2.3 Optical Emissions

The final type of observations that are relevant to this section are optical emis­

sions detected from satellite. Among the first satellite photos of the aurorae were 

those taken by the DMSP satellite. The DMSP does not actually take a two di­

mensional image rather the satellite scans from side to side along the flight path. 

The intensity in a filtered photometer is recorded for each scan angle, and the 

image is built in this method. Rogers and Nelson [1974] report that the DMSP 

spectral response peaks in the near IR at 0.S0 pm , and falls to 50 percent of the 

maximum by 0.59 and 1.01 pm. This response thus integrates over the forbidden 

0  I lines of 5577 A, the 0  I allowed 8446 A,and the 6300 6364 A doublet, as well 

as a  majority of the N2 first positive, OH, and Nj}" Meinel system, [Chamberlain, 

1961]. Snyder and Akasofu [1976] showed that the midday oval was different from 

the rest of the auroral oval, with distinct arcs that term inate around local noon, 

instead of a continuous band of arcs across local noon. Dandekar and Pike [1978] 

give this observation the title of the midday gap, and explain it in terms of a lack of 

discrete arcs seen through the midday time. Dandekar [1979] show this gap is seen 

two thirds of the time. Dandekar [1979] feels that the appearance of discrete arcs 

in the dayside gap is connected to to the the IMF Bz component and to substorm 

phase. The question of whether the night side substorm and dayside aurora are 

linked is very interesting, and Meng and Lundin [1986] argue that there is no corre­

lation between the two. They also use DMSP imagery to come to this conclusion. 

Their conclusion is that the dayside arcs that are seen around the central midday 

gap are connected to the low-latitude boundary layer, which means that the two 

systems are unconnected.

Meng [1981] uses both optical and particle precipitation data from the DMSP 

to look at the midday gap in the oval. He reports on one instance when the midday 

gap is determined to be the cusp using particle precipitation data. A more recent
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article by Newell et al. [1992] using particle data from DMSP and imaging data 

from the Polar Bear satellite reveals that the arcs seen on the dayside oval are 

found to map to the interfaces of the distinct plasma regions as identified by the 

DMSP particle data.

The ISIS-II spacecraft carried photometers with filters centered around the 

6300, 5577 and 3914 A lines. Shepherd and Thirkettle [1973] report that the cusp 

has enhanced emissions in the 6300 A band compared to the rest of the auroral 

oval. This is consistent with low energy electron precipitation, [e.g. Shepherd et al., 

1976]. Shepherd et al. [1976] show that during a pass at 13.1 hours local magnetic 

time the ratio of the red to green (6300 to 5577 A) forbidden lines intensity was 

about 8. This points out that the midday gap is not really a lack of all emissions, 

but rather a distinct decrease in the structured green arcs that are caused by the 

higher energy electron precipitation, which is normally lacking in the cusp. They 

also report that in the cusp itself the electron temperatures were about 3500 °K, 

while the ion temperature rose to almost 7000 °K somewhat poleward of the cusp, 

and the peak in the F region electron density was about 2.0x10s cm-3. Cogger et 

al. [1977] reports that the N | 3914 A band is observed to decrease as well during 

the midday gap, but does not totally disappear. Shepherd [1979] reviews these 

and other articles and summarizes the state of the measurements at the end of the 

1970’s.

1.3 Ground Based Magnetic Observations of the Cusp

The ambient magnetic field at cusp latitudes has an inclination angle of about 

10 degrees from the vertical. The total field is about 53,000 nT, with only about 

7500 nT in the horizontal component of the field. Thus a large perturbations of 

75 nT in horizontal plane is only a 1 percent fluctuation of the total horizontal
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component. W ith this introduction to the ambient field the fluctuations observed 

in this ambient field are now reviewed.

As mentioned, ground based observations of the magnetic field fluctuations in 

the high latitude dayside have a long history. Using a chain of fluxgate magne­

tometers in Canada, Samson et al. [1971] report on the latitudinal variation of 

long period magnetic field fluctuations. They find that the polarization of the 

magnetic perturbation vector has a distinct variation with latitude and magnetic 

local time. Samson etal. [1971] find that at geomagnetic latitude 75° the polar­

ization of the 5 mHz signals are right handed in the morning sector, and switch to 

left handed about 1300 hours MLT. They suggest that this reversal in polarization 

again be explained by a Kelvin-Helmholtz instability driven vortex caused by the 

shear flow of the solar wind around the magnetopause. This causes perturbations 

in a counterclockwise (as viewed looking along the field) - or left hand sense in the 

morning hours, and this sense switches to right after magnetic local noon. They 

note however that the latitudinal variations of polarization seen in their results 

do not fit with this simple explanation. The Kelvin - Helmholtz instability driven 

idea is further developed by many authors in terms of resonant oscillations of the 

geomagnetic field in response to an input of energy onto the field lines. Chen and 

Hasegawa [1974], and Southwood [1974] show that the polarization changes ob­

served by Samson etal. [1971] can be explained by this field line resonance model.

Lee et al. [1981] show the inner edge of the magnetopause is unstable to the 

Kelvin-Helmholtz instability. They also show the inner edge of the magnetopause 

will have a  right handed polarization in the morning and a left handed polariza­

tion in the afternoon, while the magnetosheath side of the magnetopause will be 

of opposite handedness. Both authors also confirm that a latitudinal change of the 

polarization as observed on the ground could be due to this instability. Rostoker et

18
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al. [1972] allude to such a switch in polarization with latitude as the demarcation 

line on the ground for cusp latitude fluctuations.

Bol'shakova and Troitskaya [1977] also report on ground observations at high 

latitudes and find a latitudinally dependent tim e of maximum power of long period 

(3 -7 minutes) oscillations. They call these oscillations ipcl: long period irregular 

pulsations. In this paper they suggest that the latitude of the cusp can be found by 

measuring this maximum occurrence tim e at a  single station, and comparing it to 

the results from a known line of stations. Kleymenova etal. [1982], report on use of 

the Greenland chain of magnetometers to define an empirical fit to the offset in time 

of the maximum of the ipcl’s from magnetic noon to find the latitude of the cusp. 

Troitskaya andBol’shakova [1977] report on the diurnal variation of the latitude of 

the cusp with U.T. time as derived from this method. Troitskaya [1985] explains 

this effect in terms of the angle between the magnetic pole and the earth-sun line. 

She finds this daily variation is on the order of 5°. Stasiewicz [1991] uses the 

Tsyganenko field models, version 1987 and 1989 Tsyganenko [1987,1989], to look 

at the cusp latitude and reports a similar diurnal variation. However Stasiewicz

[1991] concludes that this variation is an artifact of the coordinate system used 

to report the data, and shows that use of corrected magnetic coordinates reduces 

this diurnal variation to approximately ±  1°. The variation shown by Troitskaya 

[1985] is similar in nature to but larger in m agnitude with a slightly offset peak in 

UT tim e from the results found by using the invariant coordinate system as seen 

in Figure 7 of Stasiewicz [1991]. Thus it is not yet clear if the diurnal variations 

reported by Troitskaya [1985] are totally explained by the the coordinate system 

used for reporting the results, or if indeed there exists a residual diurnal variation 

of the current systems on the dayside with UT time.

Lanzerotti et al. [1986,1987] report on cusp latitude pulsations caused by hydro- 

magnetic waves. They find large amplitude, (100 nT), low frequency (2 mHz) single
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cycle pulsations. The polarization of these events is predominantly right handed, 

with linear polarization at the time of occurrence of the maximum amplitude of the 

event. Lanzerotti et al. [1990] examine magnetic data from cusp latitude ground 

stations at the South Pole and a conjugate site in Iqaluit, Northwest Territories. 

In this report they again focus on the large amplitude, low frequency events with 

large perturbations in the vertical direction. They interpret these events as a single 

cycle of an odd mode Alfven wave. This work is followed by Lanzerotti etal. [1991] 

which is a statistical study of such events. The selection criteria for each event 

are that it has to be present within an 8 minute window at both conjugate sites, 

and the perturbation in the vertical direction has to be greater than 50 nT, while 

the perturbations in the horizontal plane have to be larger than 40 nT. Statisti­

cal results from this report show such events occur more often at local magnetic 

times away from noon. Specifically peaks of the occurrence distributions at Iqaluit 

occur at 0830 MLT and at 1330 MLT. A strong minimum in occurrence of these 

impulsive signals is seen around local noon. Lanzerotti etal. [1991] also show that 

such signals occur more frequently during the solstice periods. Again these signals 

are interpreted as the ground observations of single cycle odd mode Alfven wave 

along a near magnetopause flux tube. No source mechanism for the Alfven wave is 

mentioned. In contrast to their earlier work, no general trend in the polarization 

state is seen in these events.

Other cusp latitude magnetic studies are carried out using the Greenland Mag­

netometer Array. Using meridional chains of magnetometers on the East and West 

coast of Greenland, Friis-Christensen et al. [1988] find the ionospheric signature 

of a pair of tailward convecting vortices. These vortices are found to move toward 

the midnight sector in the ionosphere a t constant magnetic latitude. These vor­

tices are interpreted in terms of a pair of field-aligned current systems. They find 

the line joining the two field-aligned currents is roughly parallel to the direction

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of convection. This alignment is used to argue that the field-aligned currents are 

being caused by a readjustment of the magnetopause due to changes in the solar 

wind pressure.

• McHenry et al. [1990a] show that these vortices can come in multiple sets of 

events. The peak amplitudes of the associated disturbances are found to be at 

approximately 75 degrees invariant latitude. Simultaneous observations with the 

Sondrestrom radar indicate to McHenry et.al. [1990a] that the vortices fall close 

to the convection reversal boundary. They also find, using simultaneous DMSP 

overpasses, that the vortices are on field lines that are associated with plasma from 

the low latitude boundary layer, and they place the vortices on the inner edge of 

the boundary layer. All these indications lead McHenry et al. [1990a] to conclude 

that the probable source mechanism of these vortices was the Kelvin-Helmholtz 

instability on the inner edge of the boundary layer.

McHenry et al. [1990b] then follow with a statistical study of these traveling 

ionospheric vortices. They find no correlation between the IMF and solar wind 

pressure and occurrence of the vortices. They find a slight increase in occurrence 

of vortices with slow solar wind speed. They also report a larger percentage of 

occurrence for the post local magnetic noon time periods rather than the pre noon 

time periods. They note that the last two facts seem counter to their explanation 

of the Kelvin-Helmholtz instability. They state however that they are biased due 

to experimental constraints to detecting large slow moving vortices, and this may 

explain why they see larger numbers in the post noon sector. They also note that 

geometry effects may play an important role in determining when they can observe 

the vortices. The Greenland chain of magnetometers is tilted approximately 20 

degrees with respect to the lines of constant invariant latitude, and this may make 

detecting vortices in the afternoon easier than detecting them in the morning.
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The auroral zone signatures of traveling vortices are reported by Glassmeier 

et al. [1989]. The auroral zone measurements show the centers of the vortices 

to be at approximately 73 degrees invariant latitude, in good agreement with the 

Greenland Array data. In contrast to the higher latitude studies, Glassmeier et al. 

[1989] find a pronounced peak in the probability of occurrence for the 0800 MLT 

time period. Glassmeier [1992] and Glassmeier and Heppner [1992] continue to 

study the twin vortex structure. They model the vortices as a pair of field aligned 

currents driven by Alfven waves launched from a moving partial compression in the 

dayside magnetopause. While this theory is very attractive it seems to contradict 

the findings of McHenry etal. [1990b] who show no particular increase in occurrence 

in vortices with solar wind pressure. It is possible that the pressure perturbations 

involved are spatially localized in nature, and the sparse coverage of solar wind 

parameters do not measure these localized changes in pressure. The careful studies 

by McHenry et al. [1990a and 1990b], and Glassmeier et al. [1989], Glassmeier 

[1992], and Glassmeier and Heppner [1992], seem to indicate that even when a 

meridional chain of magnetometers is used, sorting out the resulting signals can be 

a daunting task.

Olson [1989] shows that as well as moving zonally that current filaments can 

propagate poleward. Using magnetometers at two stations in Cape Parry and 

Sachs Harbor, N.W.T. which are positioned approximately along a line of constant 

magnetic longitude, Olson [1989] was able to track individual large amplitude pulses 

from the southern station to the northern station. Using a sliding cross-correlation 

analysis, Olson [1989] determined that the correlation was maximized between the 

two time series when the two stations were offset by approximately 60 seconds, 

yielding an apparent poleward speed of 2 - 5 km • s-1 . These pulsations were 

found to be large in amplitude, 20 - 50 nT, and uncorrelated with each other.

22
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Engebretson etal. [1986,1989] show that the South Pole Station cusp site is an 

area of intense Pc3 pulsations. They show that these Pc3 pulsations are associated 

with small IMF cone angles, suggesting an upstream source for these waves in 

the bow shock region. Engebretson eta l. [1990] also show that the Pc3 pulsations 

present in the magnetic data  are associated with pulsations in the optical emissions. 

Engebretson etal. [1990] believe that this indicates that the incoming precipitation 

modifies the conductivity of the darkened ionosphere, and this causes horizontal 

currents to flow, resulting in the magnetic pulsations observed on the ground. 

This paper demonstrates that inclusion of optical information derived from the 

same location can be crucial in interpreting the magnetometer observations.

1.4 Ground Based Optical Observations of the Cusp

Observations of the high latitude dayside using optical techniques from ground 

or airborne platforms date back at least to the airborne observations of Eather 

in 1968 and the NASA Airborne Auroral expedition of 1969, Eather [1969] and 

Eather and Mende [1971]. Eather [1969] report that a zone of soft electron pre­

cipitation exists poleward of the normal auroral zone. Eather and Mende [1971] 

extend this work, and show that the energy of the precipitating particles decreases 

with increasing latitude. Eather and Mende [1971] also identify these precipitating 

particles as coming from the magnetosheath. Sivjee and Hultqvist [1975] report 

on a comparison of particle precipitation energies as determined by using ratios 

of optical emissions and as obtained from satellite observations. During the 1969 

NASA Airborne Auroral expedition the jet flew along the same path as the ESRO 

IA satellite. Sivjee and Hultqvist [1975] compare the results for the derive energy 

and energy flux of the precipitating particles and show good agreement between 

the two platfoms. Sivjee and Hultqvist [1975] used the ratios of the two forbidden 0  

I lines of 6300 A and 5577 A and the N j 1NG (0,1) band of 4278 A, as described
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in Rees and Luckey [1974] to determine the energy and energy flux of the particles 

from the aircraft observations. Since the satellite orbital speed is large compared 

to the aircraft the two were over the same point only at 08:27 UT on 13 December 

1969. However the particle precipitation energy as a function of latitude agrees 

very well between the two observations, and the assumption is that the incoming 

particle precipitation characteristics did not substantially change in the time it 

took the aircraft to fly the same ground track as the satellite.

Deehretal. [1980] report on the multinational campaign in Svalbard, Norway 

to observe the dayside cusp using optical techniques. They report that scattered 

sunlight is a very important contributor to the N £ 4278 A band, so that the use 

of the 6300 A to 5577 A ratio is warranted in the dayside. They found significant 

contributions to the N J 4278 A band from solar resonance even with solar depres­

sion angles of 22.5 °. Since the solar shadow height is roughly given in kilometers 

by the square of the solar depression angle in degrees, this means that some of the 

4278 A emission had to be coming from past the solar shadow height of 400 km. 

Using triangulation techniques they found the lower borders of the 5577 A arcs 

at 140 km and the lower borders of some 6300 A and 4278 A arcs as high as 220 

km. Deehretal. [1980] point out that the midday gap is really a paucity of 5577 

A emissions during the midday due to the low energy of incoming particles. They 

do find localized injections of high energy particles, even during the midday gap, 

but on the main the midday lacks the higher energy particles that give rise to the 

green 5577 A emissions.

Stamnes et al. [1985] calculate the effect of solar extreme ultraviolet (EUV) 

radiation for different solar zenith angles. They find that at solar zenith angles of 

104 0 the EUV radiation has little impact on photoionization. They do find however 

that solar fluorescence of the N j is the dominant source of 4278 A emissions even 

at these large solar zenith angles. Stamnes etal. [1985] conclude by saying that the
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4278 A band should not be used on the dayside for energy input measurements 

because of this solar fluorescence problem. This conclusion is somewhat at odds 

with that of Sivjee [1976] who calculates that the effect of solar fluorescence is 20 

%•. The differences in the two calculations seems to be in the calculation of the 

N j column density since the g factors used in the fluorescence are almost equal. 

In any event, use of the 4278 A band in calculating energy flux must be viewed 

with caution on the dayside where solar fluorescence can play a role. Stamnes et al. 

[1985], and Sivjeeetal. [1982] suggest that the use of the 0  II 7320 A doublet would 

be more appropriate for the dayside since it does not undergo solar resonance.

Eather etal. [1979] present a statistical summary of the dayside oval morphology 

using results from a ground based meridian scanning photometer similar to that 

used in the airborne experiments described above. Eather etal. [1979] find that the 

dayside oval position is in good agreement with oval positions predicted by Starkov 

[1969]. The main topic of this paper is whether the dayside oval responds more to 

substorm activity or shifts in Bz. Eather et al. [1979] take pains to point out that 

they can find instances where the oval position responds to Bz, but that statistically 

the position is better correlated with the AE index, a general measure of substorm 

activity. Using Meridian scanning photometer and all sky camera data, Sandholt 

et al. [1983] counter this conclusion with individual examples where a substorm 

occurs on the night side with little or no effect on the dayside aurora. Sandholt 

et al. [1983] feel that these observations indicate that the dayside auroral oval is 

influenced by both IMF Bz changes and night side activity, with the most important 

factor being the IMF Bz contributions. This is also supported by Meng [1983] who 

report on the cusp position using particle precipitation data during selected large 

geomagnetic storms. Meng [1983] finds that the cusp latitude is determined by the 

IMF Bz component, and is not closely associated with substorm activity. More 

ground based case studies are provided by Sandholt et al. [1985,1986a], to again
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demonstrate correlation between the IMF Bz and the cusp latitude. Sandholt et 

al. [1985] also show th a t a distinct By effect can be seen in the ground based 

magnetometer data  in the near field of the cusp. A single example is shown where 

the amplitude of the local magnetometers seems to correlate “by eye” to  the By 

component of the IMF. Thus it appears that there is some confusion as to how 

strongly the dayside auroral oval position is dictated by either the IMF or some 

measure of nightside activity such as the AE index.

1.5 Conceptual Overview

The data for this study have all been taken at the Nordlysstasjonen in Sval­

bard Norway. The Nordlysstasjonen (literally Northern Lights Station) is located 

outside the town of Longyearbyen on the West Spitsbergen Island in the Sval­

bard archipelago, and has taken measurements of the dayside cusp aurorae since 

December of 1978, see Deehr et al [1980]. The station is located at geographic 

north latitude 78.2 degrees, and east longitude of 15.4 degrees. This corresponds 

to magnetic latitude 75.0, longitude 114.5 using the PACE system of Baker and 

Wing [1989], with magnetic local noon occurring at approximately 0830-0900 hours 

(UT). At this magnetic latitude the station is normally equatorward of the cusp, 

which Newell and Meng [1992] show is found at magnetic latitudes of 78-79 degrees 

in the PACE system. McHarg and Olson [1992] show a correlation between the 

ratio of the integrated 6300 A and 5577 A emission, and the spectrogram of the 

induction magnetometer at this station.

Figure 1.6 is shown to introduce the overall relationship between the ground 

based observations and the ionospheric footprint of the cusp. Several im portant 

observational facts are presented without proof in this overview. The right panel 

of Figure 1.6 is a schematic illustration portraying the station at Svalbard ro ta t­

ing underneath the cusp/boundary layers. As shown, the normal position of the

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Optical/M agnetometer Comparison  
9 January 1991

04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00

TIM E (UT)

Figure 1.6. Conceptual view of the ground based observations of the iono­
spheric cusp, see text for details.
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cusp/boundary layers is North of our station at magnetic noon. Nevertheless it 

should be noted that variations in the activity level will place the cusp/boundary 

layer system directly overhead, and sometimes south of our station. The op­

tical data from the MSP is particularly useful in tracking the position of the 

cusp/boundary layer system in latitude on a daily basis. The left panel of Fig­

ure 1.6 compares the optical and magnetic signals for 9 January 1991, with the 

optical data displayed above the magnetic data. The optical data are presented 

with the the ordinate showing the scan angle in degrees with North to the top 

of the figure, and South to the bottom. Universal Time (UT) in hours is shown 

on the abscissa, and the ratio of the intensities of the 6300 A to 5577 A emission 

are color coded in the image displayed. Such diagrams are called keograms “... 

derived from the Eskimo word ‘keoeeit’ for aurora”, and were first used by Eather 

et al. [1976]. The magnetic data are presented below the optical data, in a color 

contoured spectrogram format with 50 mHz being the Nyquist frequency of our 

system. On this particular day the northern hemispheric cusp is poleward of the 

term inator, and the southern hemispheric cusp is sunlit.

Looking at the optical observations we see what appears to be the boundary 

regions, characterized by high energy particles precipitating in discrete auroral 

arcs. This can be seen by the low red to green ratio lasting from 0430 - 0730 

before magnetic noon, and from 1030 - 1230 after magnetic noon. Such a low 

ratio in indicative of high energy particles. The boundary regions are known to be 

associated with high energy particles, and are an area of discrete arcs, see Hansen 

etal. [1992], Tsurutani etal. [1981], Sandholt [1990], Newell and Meng [1992]. Newell 

etal. [1992] specifically show that the interfaces are sites of discrete auroral arcs.

The optical central cusp is seen in Figure 1.6 as an area with a relative increase 

in the red to green ratio by a factor of 2 and is north of the zenith, lasting from 

approximately 0730- 1030 (UT). This patch of large red to green ratio is the lower
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energy particles precipitating directly into the ionosphere from the magnetosheath. 

While individual arcs cannot be seen in this figure, inspection of the data from 6300 

A and 5577 A channels show that the periods identified as boundary regions are 

rich in structured arcs. The period of the optical central cusp is seen in the 6300 

A channel to as having some structure, which shows in this figure as the enhanced 

red to green ratios in the central cusp.

The magnetic spectrogram also shows a distinct difference between the periods 

identified as boundary regions and the central cusp. The time period of 0430 - 

0730, identified as the boundary layer in the optical data, shows a broad band 

increase in power in the spectrogram above 20 mHz. This time period also shows 

an intense narrow bandwidth polarized signal in the Pc5 band. This broad band 

increase of power corresponding to the boundary regions is seen to repeat in the 

afternoon sector between 1030 - 1230 (UT). During the period of 0730 - 1030, 

which the optics identify as the central cusp, the spectrogram shows a marked 

decrease in power above 20 mHz. A narrow band tone is seen at approximately 5 

mHz, and the frequency of this tone seems to rise and then fall during this period. 

This feature is referred to as the “arch” due to its rising and falling tendency in 

frequency. The low frequency narrow band tone which starts a t the beginning of 

the boundary layer, rises and continues through the central cusp period, and then 

falls in frequency again in the post noon boundary layer has a substantial polarized 

component. Polarization information not shown here reveals that the narrow band 

tone is right hand polarized before magnetic noon, and left hand polarized after 

magnetic noon.

The overall temporal correspondence between the optical and magnetic data 

is striking. Figure 1.6 is representative of the data, and another example will be 

presented later in the thesis. When the optical data indicate high energy particles 

the magnetic data show a broad band increase in power. When the optical data
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show low energy particles in a confined area the arch is present in the magnetic 

data. This correspondence leads me to postulate that on a daily basis as the station 

rotates beneath the dayside oval, it first passes underneath the boundary regions, 

then passes the cusp, and finally exits out the afternoon side through the afternoon 

boundary layer.

The observations described are a common occurrence. In Chapter 2 the optical 

data  are discussed in detail, and I find that the particle precipitation energy as­

sociated with the area identified as cusp in Figure 1.6 is in good agreement with 

the energies of incident particles into the cusp as described by Newell and Meng

[1992]. The magnetic data  are discussed in Chapter 3, where it is shown that the 

magnetic data are so repeatable that only three major variations of the example 

spectrogram shown for 9 January 1991 are found. The data taken within each of 

these three major categories are found to have common IMF orientations. Chap­

ter 4 discusses the coherence length of the pulses found in the boundary regions 

and central cusp, as well as the possible sources of the observations seen in both 

the magnetic and optical data. Chapter 5 concludes and recommends further av­

enues of cusp research using the unique combination of optical and magnetic data 

available from the Svalbard site.
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CHAPTER 2 

Optical observations of the cusp

Use of optical observations in cusp latitudes is necessarily restricted to the 

dark winter months. This limited period of coverage is made up for by the rich 

nature of material that can be gleaned from the optical observations. All the 

measurements were made at the Nordlysstasjonen in Svalbard, Norway. The four 

major forms of optical observations carried out are the all-sky television (ASC)

, meridian scanning photometer (MSP), Fabry-Perot interferometer (FPI), and 

spectrometer. These instruments combine to give information on the spectral, 

temporal, and spatial nature of the optical emissions from the dayside aurorae. 

The ASC gives the most dynamic information because of its two-dimensional, large 

field of view coverage combined with a 30 frames/second data rate. The ASC is 

currently an analog device, which makes using digital analysis techniques difficult 

due to the prohibitive expense of digitization of large amounts of data. Further, 

the ASC collects white light which maximizes the signal but prohibits gathering 

spectral information. The FPI and spectrometers gather spectral information over 

a narrow bandwidth, but currently offer poor spatial and temporal coverage of the 

sky.

The MSP is something of a compromise ofFering a large one-dimensional field 

of view, moderate time resolution, while also providing moderate spectral informa­

tion. The MSP uses filtered photometers to digitally record the intensity of light in 

five narrow optical passbands. This chapter describes the use of the MSP in obser­

vations of the dayside aurorae associated with the cusp. The first section describes 

the MSP operation, while the second section shows how intensity ratios between 

several of the observed emissions can be used to infer the energy and energy flux
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of the electrons incident on the ionosphere. The third section details how the data 

taken from the MSP can be mapped to latitude, and the last section describes 

actual MSP data taken from the cusp Svalbard location and its interpretation.

2.1 Description of Meridian Scanning Photometer

The meridian scanning photometer used in Svalbard is described by Deehretal. 

[1980]. The MSP consists of a rotating flat mirror and a set of five filtered photome­

ters, each with a 1 degree wide field of view. The MSP scans along a meridional 

line 45 degrees west of geographic north, which corresponds approximately to the 

geomagnetic meridian at our station. The filters on the photometers restrict the 

wavelength of light reaching the photometer to a passband of about 3 A centered 

on the wavelength of choice called the peak wavelength. The filters are tilted so 

the passband wavelength is off the peak wavelength every other pass to record the 

background light level. The corrected brightness measurement is equal to the dif­

ference between the peak and background measurement. The mirror rotates once 

every 4 seconds, and 2 peak scans and 2 background scans are averaged to produce 

a complete peak minus background scan. The effective data rate is one complete 

peak minus background scan every 16 seconds. Calibration of the MSP is achieved 

through the use of a calibrated lamp. The lamp output falls on two lambertian 

screens to diffuse the light and to reduce the intensity recorded at the photometer 

to intensities comparable to the aurorae. Knowing the spectral intensity of the 

calibration lamp and the filter characteristics allows computation of the amount 

of light in the passband falling on the photometer, which, in conjunction with the 

number of counts recorded at this time, allows calibration for each photometer.

Figure 2.1 shows the transmitted intensity of of the 6300 A filter as a function of 

wavelength at different tilt angles. This measurement was taken at the Geophysical 

Institute with the help of Joe Minow and Duane Bostow. It is obvious that, as the
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Figure 2.1. Relative transmission of 6300 A Filter. Note th a t as the filter is 
tilted with respect to the light path the center of the passband moves to shorter 
wavelength, and the peak of the transmission curve decreases.

filter is tilted the center of the transmission curve moves to shorter wavelengths, 

the peak of the transmission curve decreases, and the width of the transmission 

curve increases. Table 1 shows the area under the curves normalized to the case of 

normal incidence.

Figure 2.1 demonstrates why the filter is tilted: as the tilt angle increases the 

peak of the transmission curve moves off the emission feature under observation to 

a  region of continuum, which provides the background continuum measurement. 

This type of tilting filter arrangement is described in greater detail by Eather and 

Reasoner [1969], who show that the change in the center of the passband wavelength
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TABLE 2.1. Relative Transmission of 6300 A filter at different wavelengths 

Angle Off Integrated Fraction Center Passband

Normal (degrees) of Normal___________ Wavelength (A)
Normal 1. 6303.

2 0.99 6301.

4 0.93 6297.

6 0.78 6290.

8 0.63 6285.

is proportional to the square of the change in the angle off the normal. The data 

in Table 2.1 are in substantial agreement with this prediction.

The emission features commonly observed in dayside aurorae are summarized 

in Table 2.2 along with the respective spectroscopic information and lifetime of 

the states. Following Chamberlain [1961] the lower energy level is specified first in 

atomic spectra, and the higher energy level is specified first in molecular spectra. 

Emissions from the two forbidden oxygen transitions of 5577 A and 6300 A are 

the dominant features in the dayside cusp, Deehr et al. [1980]. The lifetime of 

green 0 ( 1S) is much shorter than the red 0 ( 1D) emission: 0.74 seconds compared 

to approximately 110 seconds, Chamberlain [1961]. For reasons dealt with in the 

next section, the 5577 A emission is generally regarded as being an indicator of 

higher energy precipitation particles. The 4278 A emission is due to the (0,1) band 

of N j, and is also regarded as being an indicator of higher energy particles. The 

4278 A emission is difficult to interpret on the dayside under conditions where the 

tops of the arcs may be sunlit.
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TABLE 2.2. Emissions Observed with MSP

Wavelength (A) Emission Source Transition Lifetime (sec)

6300 [OI]21 ^ 2 - ^ 2 110

5577 [0 1 )3 2 i D2-1S0 0.74

4278 N+ 1N(0,1) B2E+ -»X2E+ < 1 0 - 6

7320 (doublet) [OII]32 2 n o  2X302ori 2 2 2
5

6563 Ha 22P° - 3 2D < 10“6

2.2 Use of Spectral Ratios for Cusp Observations

One of the most physically interesting uses of the spectral information collected 

by the MSP is to infer the energy and energy flux of the incoming particles that 

cause the emissions under observation. This technique relies upon taking ratios of 

the integrated field aligned emission rates of several different emissions as well as 

individual intensities. The inferred value of the energy and energy flux is subject 

to a number of assumptions, and understanding these assumptions, as well as the 

basic technique, is necessary in interpreting the results. In the end, I believe that 

these techniques give a  result representative of the real energy and energy flux, but 

the accuracy of the absolute magnitude of the results is uncertain due to the large 

number of assumptions that go into the technique. Since no published uncertainty 

values are available, confidence limits on the resulting calculations can not be given.

There are two basic ideas behind the use of spectroscopic ratios in determining 

the energy and energy flux of incoming precipitation. The first is the basic fact 

that higher energy particles penetrate farther into the atmosphere, and the second
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is that the actual intensity of emission for different transitions depends upon the 

altitude of the emission. The emission intensity also depends upon the altitude 

because the intensity depends on both the excitation and de-excitation processes.

• As an example of the interplay between excitation and quenching, consider the 

6300 A emission from [OI]2i- Rees andRoble [1986] point out tha t there are at least 

five different processes that lead to the excitation of the 0 ( JD) excited state. In 

addition to excitation by direct impact of precipitating electrons, the 0 ( XD) state 

can be excited by the high energy tail of the thermal electrons since the excited 

state is only 1.96 eV above the ground level, [Chamberlain 1961]. This effect is im­

portant in the cusp where the electron tem perature in the cusp can be above 3000 

K, and cause significant increase in the 6300 Aemission, [Rees and Roble 1986], In 

addition, there are de-excitation processes due to collisional quenching, which are 

particularly important for consideration in the case of the 6300 A emission. Since 

the 3P2-1D2 is an electric-quadrupole transition it has a low transition probability, 

(see Chamberlain [1961]), and the 0 ( 1D) state  thus has a relatively long tim e con­

stant of about 110 seconds. At altitudes below approximately 180 km, collisional 

quenching by N2 depopulates the excited state, resulting in very small amounts 

of 6300 A emission, Rees and Lucky [1974]. The result of the energy dependent 

range and quenching effects is that most of the observed 6300 A emission comes 

from higher altitudes, and corresponds to softer particle precipitation. The 6300 

A column integrated emission thus depends on the energy and the energy flux of 

the precipitating particles.

As a second example, consider the 4278 A emission from N j • The process for 

direct electron impact ionization-excitation of N j is given by Mende etal. [1984].

N 2 + e -*  N +[ lNG )  + 2e. 2.1
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Rees [1989] reports that since the ionization level of N2 is 18.75 eV, excitation by 

the high energy tail of the thermal electron distribution will not be significant. 

Since the number density of N2 drops by two orders of magnitude from 100 km 

to 140 km, see Rees [1989], the particles must be able to penetrate to these lower 

altitudes. Once the particles have enough energy to penetrate to where there are 

significant densities of N2 the integrated column emission depends mainly upon 

the energy flux, and not the energy of the particles, Rees and Lummerzheim [1989].

Since the 4278 A emission rate is almost independent of incoming particle 

energy, and the 6300 A emission rate depends both on the energy and the energy 

flux, the ratio of these two emission rates is a  measure of the characteristic energy 

of the particles, and the integrated 4278 A emission rate is a measure of the energy 

flux of the particles. As mentioned before use of the 4278 A emission in the cusp 

is debatable due to possible resonant scattering above 220 km. However another 

transition used in place of N j (0,1) band is the transition resulting in 5577 A 
emission. Such ratios have been used extensively: Rees and Lucky [1974] point out 

th a t Eather and Mende [1972] and Gattinger and Vallance Jones [1972] recorded 

spectroscopic ratios on the series of NASA flights and that Eather and Mende 

[1972] used these ratios to determine the existence of soft energy precipitation on 

the dayside of the auroral oval. Approximate analytic descriptions of the integrated 

column intensity using simulations with a range of input energy and energy flux 

regimes have been published. Rees and Roble [1986] give approximate formulae ([8] 

through [10] of their paper) for the integrated column emission rates of 6300 A 
and 4278 A, which are repeated here along with the equation for the approximate 

field-aligned column integrated emission rates due to the forbidden oxygen 5577 A 
line, see Rees etal. [1988].

4W(63MA)gyldgks = ^  < ^ < 2 ^  ,  2
erg-cm -2 s~l

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

W { V K -A y r a ,k ig h ,  _  <  a  < 2 M e V  2 3
erg-cm~2'S~l

' =  M M o - «  0.1 <  a  <  5.0fceV 2.4
erg-cm-2-s~l

, o . . . -  =  ‘2.0a_1, 0 .1 < a < 2 .0  keV  2.5
toI(b27%A)rayleighs

M ^m -A )ra,kighs = Q Ja_„ 0J<a< , m y ^
Aw I  (5577X)r ay leighs 

where a  represents the characteristic energy of an incoming beam of electrons with 

a Maxwellian energy distribution. Note that equations 2.2- 2.6 are only valid 

when integrating directly up the field line, and when the characteristic energy of 

the precipitating electrons is higher than 100 eV I have extrapolated equation 2.6 

to energies less than 100 eV to investigate the precipitation energies in the cusp.

Note that the dependence on the energy is minimal in equation 2.3, while 

equation 2.2 shows the 6300 A emission depends to a larger degree on the energy. 

Equation 2.4 shows that the 5577 A emission is also less sensitive to the incoming 

particle energy and thus can be used in place of the 4278 A emission, however a 

much less precise result will be achieved since the details of the 5577 A emission are 

not yet fully understood,[Rees e ta l 1988]. Equation 2.6 was obtained by dividing 

equation 2.2 by equation 2.4. To the best of my knowledge, the uncertainties 

associated with using these analytic fits have not been published, and is the major

drawback in using them. The investigation of how much uncertainty is present

when using these analytic fits off the zenith is a separate question which is addressed 

in the next section.
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2.3 Mapping of MSP scan angle to latitude

Mapping of MSP data to geographic or geomagnetic coordinates is important 

so that optical data can be compared to other data sets. There are two commonly 

used mapping techniques employed if data from only one station are available. 

The first method assumes a constant altitude for all emissions, and then maps 

scan angle to latitude. The second technique, described by Eather et al. [1976], 

assumes that all the emissions for one scan angle, or pixel, come from one point in 

space, and uses spectral ratios of that pixel to determine its altitude of emission. 

Each pixel is then mapped to its own latitude, and the results are then displayed 

for the entire pixel map. I will call this mapping technique the Eather map for the 

rest of this section.

Both techniques have their drawbacks; the flat map takes the arc and effectively 

projects its down onto the assumed emission height, see Figure 2.2. This results in 

an error in the inferred latitude from the station as well as a spread in the inferred 

latitudinal width of the emission. The Eather map assumes a particularly simple 

geometry, that is a long thin arc, with no arcs or background glow in front of or 

behind the arc, see the top panel of Figure 2.3. To quote Eather et al. [1976] about 

this assumption: “But on a synoptic basis, simple geometries are more the rule 

than the exception, so we believe that the approach is useful and superior to the 

obviously invalid assumption of height constancy.” The bottom panel of Figure

2.3 shows an extreme example of how this mapping technique can fail. If diffuse 

aurorae cover large amounts of latitude, or in this case two layers of emission cover 

large amounts of latitude, then the inferred emission altitude at one scan angle is 

incorrect. The latitude inferred from this incorrect latitude is equal to neither the 

latitude of the red or the blue emission along the line of sight of the MSP. The 

question of which method is better, or even how they compare requires knowledge
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Figure 2.2. Geometry of the fiat latitude map. Since the observer maps the 
emission at A to A in the flat map, there will be a difference in the real emission 
latitude and that inferred from the mapping.

of the input so that the output can be compared to each other and reality. This 

section analyzes the two techniques using synthetic MSP data.

2.3.1 Manufacturing Synthetic MSP Data

Finding the amount of light measured by an MSP involves integrating the emis­

sion profile along the line of sight path of the optical instrument. The emission 

profile describes the number of photons per unit volume per second em itted as a 

function of altitude. Determining this emission profile is a research topic in itself; 

e.g. see [Rees and Lummerzheim 1989]. Briefly, this emission profile is determined 

by first solving for the ionization rate as a function of altitude given a  particular
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Earth

High Altitude 
Emission

Low Altitude 
Emission

Figure 2.3. Geometry of the Eather map. T^ltUlp panel shows the idealized 
view of the Eather map. If the height (AB) and the MSP scan angle are known 
then the difference in latitude from the station to the arc can be determined. 
The bottom panel shows an extreme example of how the method can fail. If two 
diffuse layers of emission exist, then along one scan angle the altitude inferred 
(AB) is equal to neither of the two emission altitudes and an error in latitude of 
the emission results.
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Figure 2.4. Emission Profile of 6300 A from 1.3 keV particles and energy flux 
of 3.3 ergs • cm-2 • sec-1.

energy distribution function of incoming particles. The ionization rate is turned 

into an excitation rate for a particular atomic or molecular state in a model a t­

mosphere. This state is quenched by collisions as well as depopulated by optical 

radiation, and so the problem also requires detailed modeling of the chemistry in 

the upper atmosphere. The resulting emission profile is thus a complicated mix­

ture of competing effects in both excitation and quenching processes. With these 

caveats once the emission profile is determined, the position of the emission in 

relation to the measuring station is known, and the altitude of the emission is 

known, then the integration along the line of sight is performed for each MSP scan 

angle. The emission profile for the forbidden oxygen 6300 A line and the N j 427S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A band resulting from a beam of electrons with a Maxwellian energy distribution 

of n(E)dE  = N0Eexp(~EtE^d E  and a characteristic energy E0 of 1.3 keV is given 

in Figure 2.4, (D. Lummerzheim University of Alaska, personal communication, 

1993). Note that the 6300 A line peaks at higher altitudes than the 4278 A band. 

The 6300 A emission line is also much broader in altitude than that of the 4278 A 
band.

The MSP integrates all the light em itted along its viewing path that falls within 

its solid angle field of view. If the field of view is restricted so that the emitting 

object fills the field of view then a useful measure of the amount of light measured 

by the MSP is the Rayleigh, see Chamberlain [1961]. The Rayleigh is equal to 

47T times the surface brightness if the emission is isotropic and no scattering or 

reradiation occurs along the path from the emission to the detector. To obtain 

the brightness in Rayleighs when looking along the field line we must integrate the 

emission profile in altitude and use the conversion factor 1 Rayleigh=106 photons • 

cm-2 • sec-1. The field aligned integrated brightness of the 6300 A emission profile 

in Figure 2.4 is 1058 Rayleighs.

For the case where the observer is not looking up the field line, the emission 

profile must be integrated along the line of sight from the observer. This integral 

requires that either the emission profile be changed for each angle considered, or 

that a change of variable be performed in the integration. The latter seems to 

be the easier task considering the amount of work necessary for computing an 

emission profile in the first place, and is the tack I took in solving this problem. 

In principle, the emission profile is integrated over only the height of the emission 

profile intersected by the line of sight, and the change of variable takes care of the 

difference in path length along the line of sight compared to along the vertical.

Some initial assumptions must be made about the orientation of the emission 

before this change of variable can be performed. The model I use assumes an arc
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Earth

Figure 2.5. Geometry of integration along the line of sight for the MSP from 
an observer at point 0 . The line of sight first intersects the arc at a height z,n 
(AB), and then exits the arc at height zout (A’B’). These heights set the limits on 
the integral over the emission profile to obtain the integrated intensity along any 
one scan angle.
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that follows radials from the Earth’s center rather than a dipole geometry, see 

Figure 2.5 for a schematic of the geometry in this situation. For any one position 

of this arc with respect to the station the intensity recorded by the MSP at any 

scan angle can be calculated using the integral shown below,

where Re is the radius of the Earth, and z  is the height above the surface of 

the Earth to the integration point. Note that the scan angle is related to the 

angle /?, but not equal to it. The difference in the latitude of the poleward and 

equatorward edge of the arc from the station’s latitude are the angles Ap and Ae. 

The MSP scan angle is taken to be 0 degrees towards the pole, and 180 degrees 

towards the equator. The integration technique used is a modified trapezoidal rule 

with a variable step size to accommodate the altitudes supplied in the emission 

profile. The assumption of the arc following radials instead of dipole field lines 

is, admittedly, a simplification. For a case of dipole geometry, the z,„ and zout 

and angle f3 would have to be calculated separately, but the integral performed to 

obtain the surface brightness would remain the same as that shown in equation

2.7.

In addition to the emission profile shown in Figure 2.4 I have used a uniform 

emission profile over the entire region. This is caused by a low level uniform diffuse 

precipitation, and the emission profiles for 6300 A and 4278 A are shown in Figure 

2.6 . This emission profile corresponds to an input of particles with a characteristic 

energy of 70 eV, and an energy flux of 0.03 ergs • cm-2 • sec-1. This background 

was added to the arc when the integrated MSP scan was manufactured.

The result of the integrated line of sight response to a uniform background is 

shown for the 6300 A emission in Figure 2.7. Here the intensity in Rayleighs is 

plotted versus the scan angle of the MSP. Note the increase in the intensity as the
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Figure 2.6. Background emission profiles for 6300 A and 4278 A from 70 eV 
particles with an energy flux of 0.03 ergs • cm-2 • sec-1.

scan angle goes towards either horizon. This increase is due to the increased path 

length of integration.

When the arc intensity resulting from the emission profile of Figure 2.6 is 

superimposed onto this background, the complete MSP scan is shown in Figure

2.8. In Figure 2.8 the arc is 2.25 degrees poleward of the observing station. Note 

the peak in the 6300 A scan does not occur at the same angle as the peak in 

the 4278 A scan even though the arc is at the same latitude. This is due to the 

extended height of the arc; effectively the red is higher up the arc than the blue. 

Note that the shape of the peak intensities as a function of angle are different. 

Again, this is due to the difference in the 6300 A and 4278 A emission profiles.
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Scan Angle(Degrees)

Figure 2.7. Background intensity versus scan angle.

2.3.2 Analysis o f Synthetic MSP Data

To investigate how this output changes as an arc moves over the station, I have 

taken the output of this integration and stored it in a two dimensional array for 

each wavelength channel. As an input to the integration, I have used the modeled 

distribution shown in Figure 2.9. In this figure the upper panel shows the input 

energy of the incoming particles, and the lower panel shows the input energy flux 

as a function of latitude and time. As can be seen the width of the precipitation 

region was kept constant as the arc moved equatorward over the station. This 

input was used to generate the synthetic MSP scans as described in the previous 

section, and an image of the resulting 6300 A emission is shown in the upper panel
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Scan Angle(Degrees)

Figure 2.8. Background plus arc intensity versus scan angle for 6300 A and 
4278 A. The arc is 1.25 degrees poleward of the station in this example.

of Figure 2.10, with the greyscale to the right showing the intensity in Rayleighs. 

As can be seen the apparent width of the intensity changes as the arc moves 

overhead, and this is due solely to the change in perspective. A similar image for 

the 4278 A emission is shown in the lower portion of Figure 2.10. Note again the 

difference between the 4278 A and the 6300 A emissions are mainly due to the 

difference in the emission profiles. This series of figures demonstrates that large 

distortions occur when the MSP integrates all light along its line of sight and maps 

the intensity as a function of latitude to intensity as a function of scan angle.
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Figure 2.9. Map of actual characteristic energy and energy flux of precipitat­
ing particles used as input to synthetic MSP scans. The upper panel shows the 
energy of the incoming particles, while the lower panel shows the energy flux of 
the incoming particles. The modeled arc moves to the south at a constant rate of 
4.5 degrees per hour. In both panels the abscissa is time in decimal hours, and the 
ordinate is degrees latitude from the station.
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Figure 2.10. Keogram of 6300 A and 4278 A emission versus scan angle. The 
top portion of the figure is 6300 A and the lower portion is 4278 A. The ordinate 
in both images is scan angle, with 0 degrees as the top of the image being towards 
the pole. The abscissa values are time in decimal hours, and the image is built up 
of succesive scans. The intensity scale in Rayleighs is shown to the right in the 
greyscale.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3.3 Flat Mapping Scan Angle to Latitude

The examples shown in Figure 2.10 are in the same form as actual raw data 

collected by the MSP: th a t is, the data are a function of scan angle, not latitude. 

As mentioned above, the two different techniques used to map the scan angle back 

to latitude are based on two different assumptions. The flat map is the easiest to 

explain. If a constant height is assumed for the emission, then a simple mapping 

to latitude is available and a uniformly sampled set of MSP scan angles results in 

a nonuniform sampling in latitude.

This mapping is demonstrated in Figure 2.11, which shows the 4278 A emission 

mapped to 125 km and the 6300 A emission mapped to 225 km. In both cases the 

uniform scan angle is mapped to a nonuniform latitude grid, which is subsequently 

interpolated onto a linear grid in latitude. Notice that the spiral shape seen in 

the 4278 A plot of Figure 2.10 has been straightened due to the mapping to lati­

tude. Note however in both instances that the inferred width becomes larger with 

increasing difference in latitude from the station. This is one of the undesirable 

artifacts of the mapping process.

The more interesting question, after you map the scan angle back to latitude, 

is: “W hat geophysical parameters can be obtained from such measurements?” In 

Section 2.2, the Rees andLucky [1974] method of using the ratio of the 6300 to 4278 

emission was described, which in principle, allows the calculation of the energy and 

integrated energy flux of the precipitating particles. If this ratio is made from the 

latitude representation, then the area of precipitation can be compared to that 

which was actually used.

The upper panel of Figure 2.12 shows the characteristic energy in keV for 

the case where the 4278 A emission has been mapped to 125 km, and the 6300 A 
emission has been mapped to 225 km by using equation 2.5. The lower panel of 

Figure 2.12 shows the energy flux in ergs • cm-2 • sec-1 derived from equation
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Figure 2.11. Flat map of 4278 A emission mapped to 125 km, and 6300 A 
emission mapped to 225 km. The upper panel is the 6300 A emission, and the 
lower panel is the 4278 A emission. In both panels the intensity is displayed versus 
latitude on the ordinate and tim e on the abscissa.
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Figure 2.12. Map of characteristic energy and energy flux of precipitating 
particles inferred with 4278 A mapped to 125 km and 6300 A mapped to 225 km. 
The upper panel shows the inferred energy, and the lower panel shows the inferred 
energy flux using the flat mapping. The format is similar to Figure 2.11.
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2.3 for the case where the 4278 A emission has been mapped to 125 km. The 

use of equation 2.3 requires the characteristic energy to be known, however the 

dependence on this energy is minimal. Note that for both the energy and energy 

flux, the resulting map to latitude is different from the input. This is due to the 

distortions that come about due to the assumption of constant altitude.

Comparison to the real input data, shown in Figure 2.9 for the energy and 

the energy flux reveals tha t only when the arc is overhead is good agreement 

obtained with the actual input values. This makes sense physically because only 

when you are looking up the field line do you include all the emission in the 

integration. Looking at the arc from the side distorts the true integrated intensity, 

and thus distorts measurements that are inferred from ratios of these integrated 

intensities. Figure 2.13 shows the difference between the input and measured 

energy of precipitation for this example. Note that not only is the peak energy 

wrong in the inferred measurement for times when the arc is not overhead, but that 

the width of the precipitation region changes with the angle in degrees from the 

stations latitude. This effect is due to the fact that the arc is distributed in height, 

and is actually narrower than what is represented in the flat mapping. Attem pting 

to correct for this problem is the idea that is the heart of the Eather mapping.

2.3.4 Eather Mapping o f Scan Angle to Latitude

Eather etal. [1976] point out that Rees and Lucky [1974] showed that the ratio 

of the 6300 A to 4278 A emission profiles depends to a much larger extent on the 

altitude than the energy of the precipitating particles. This led Eather to propose 

using the 6300 A to 4278 A ratio in the MSP scan angle to determine the height 

for each individual scan angle, and then remap the entire scan angle to latitude.

An example of this method is shown in Figure 2.14. Again, in this example, 

the arc is 1.25 degrees poleward of the station. Here the red to blue ratio is used
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Figure 2.13. Difference of inferred characteristic energy of precipitating parti­
cles using the 4278 A emission mapped to 125 km and the 6300 A emission mapped 
to 225 km with the input characteristic energy. Note that only overhead is there 
relatively good agreement
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Scan Angle(Degrees)

Figure 2.14. Inferred emission altitude for one scan using the red to blue 
ratio for each scan angle as an estimate of the altitude in that scan angle, this is 
called the Eather method. The arc is 1.25 degrees poleward of the station for this 
example. Note the uniform background is inferred to be at approximately 300 km 
while the bottom of the emission is at approximately 180 km.

to infer the altitude of the emission along the line of sight for each scan angle 

using the values from Rees and Lucky [1974]. Note that the uniform background is 

inferred to be at a  constant height of approximately 300 km, and the lower border 

of the emission is at about ISO km. Figure 2.4 shows that the peak intensity of 

the 4278 A emission is actually about 120 km rather than the 180 km estimated 

by the Eather method. The 180 km estimate is higher than the real height of 

the emission because the background 6300 A emission integrated along the line 

of sight contaminates the ratio and thus affects the height estimate. Obviously
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Scan Angle(Deg)

Figure 2.15. Inferred latitude for one scan using the Eather method. The arc 
is 1.25 degrees poleward of the station for this example.

the background and arc emissions are coming from different altitudes along the 

line of sight, and this violates the basic assumption behind the Eather mapping 

technique. Once the emission height is determined as in Figure 2.14, the latitude 

of the emission is calculated as before.

Figure 2.15 shows an example of the inferred latitudes of the emission versus 

scan angle. Since these latitudes are dependent upon the calculated height of 

emission, the latitudes are not necessarily monotonic with scan angle as they were 

with a constant height mapping. Thus the Eather mapping moves certain pixels
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Latitude from  Station(Deg)

Figure 2.16. One 6300 A scan mapped to latitude using the Eather method. 
The arc is 1.25 degrees poleward of the station for this example.

(scan angles) nonuniformly given the calculated height of emission. This has the 

desired effect of narrowing the distribution of emission over latitude.

The results of this mapping for the 6300 A emission is shown in Figure 2.16 

where the MSP intensity is mapped to latitude using the Eather mapping tech­

nique. The actual arc location is shown as the vertical line in Figure 2.16. Note 

that the background emission poleward of the station has also been remapped, and 

this causes the artificial increase in the intensity poleward of the arc.

Figure 2.17 plots both the flat map to 225 km and the Eather mapping of 

the 6300 A line, again the actual arc location is shown as the vertical line in the 

figure. Note that the peak in the Eather mapping is closer to the actual location
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Latitude from Station(Deg)

Figure 2.17. Comparison of Eather map and flat map for one 6300 A scan. The 
arc is 1.25 degrees poleward of the station for this example, note that the inferred 
emission location for the Eather map is close to the actual latitude of emission.

of the arc compared to the flat mapping. This comes at the cost of the distortion 

in the background emission for those scan angles that the MSP line of sight does 

not intersect the arc.

The Eather map can be applied, scan by scan, and the entire two dimensional 

array again imaged to show the position of the mapped emissions. Figure 2.18 

show images of the Eather map applied to the 4278 A and 6300 A emissions. The 

distortion in the 6300 A emission at latitudes greater than the arc emission, and 

the mismatch of the arc latitude for the 4278 A emission are both due to the
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Figure 2.18. Keogram of the 4278 A and 6300 A emissions using the Eather 
map. The upper panel is 4278 A , the lower panel is 6300 A. Note that the latitude 
of the 4278 A emission at 0 and 1 hours is larger than that in the flat map case. 
This is because the inferred altitude in the Eather map is higher than the 125 km 
used in the flat map case, due to the 6300 A background emission.
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height of the emission being improperly estimated. As noted before this improper 

estimation is due mainly to the large 6300 A emission assumed in the model.

Taking these arrays and applying the Rees and Roble [1986] formulae results in 

characteristic energy and energy flux maps of the precipitating particles as inferred 

by the Eather map. These are displayed in Figure 2.19. Comparison to the real 

input energy and energy flux, shown in Figure 2.9, reveals that the large 6300 

A background in this example has made the altitude of emission too high. This 

causes scan angles with large blue contributions to be mapped to too large a 

latitude, resulting in the poor comparison to reality.

This is demonstrated in Figure 2.20, which shows the 6300 A emission scan 

for the Eather map with the normal amount of background and a case where the 

background has been reduced by a factor of 20. Note that for the case where the 

background is reduced the arc is narrower, and the peak of the emission is closer to 

the actual arc position. This clearly shows the limitations of the Eather method: 

as the background becomes high, the method fails.

The above example points out the problems associated with using the Eather 

map. To the extent that you do not have emission from one point along the line of 

sight, the method will return poor estimates of the height, and hence latitude of 

the emission. One way around this problem might be to fit an analytic background 

curve to the experimental data  to try to remove as much of the background con­

tamination as possible. Eather etal. [1976] did fit airglow and extinction curves to 

the experimental 6300 A and 5577 A data to remove some of the background.

This discussion shows that the mapping of scan angle back to latitude always 

has inherent errors. These errors reflect the different assumptions that go into the 

two mapping techniques. The flat map would be appropriate for cases where there 

are two stratified layers of emission spread over a large range of latitude. The
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Figure 2.19. Plot of the inferred characteristic energy and energy flux of pre­
cipitating particles using the Eather map. The upper panel is the energy and 
the lower panel is the energy flux. Note that since the 4278 A has been mapped 
incorrectly the inferred energy and energy flux are also incorrect. There is fair 
agreement with the input data when the arc is directly overhead.
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Latitude from Station(Deg)

Figure 2.20. Comparison of Eather map of 6300 A emission with high and 
low background. In the low background case the background has been reduced by 
a factor of 20. The arc is 1.25 degrees poleward of the station for this example, 
note that the inferred emission location for the low background case is closer to 
the actual latitude of emission.

Eather map is appropriate for thin arcs with a minimum of background. The next 

section shows how this type of analysis can be used on real data.

2.4 Ground based optical observations of the cusp

This section uses the mapping and analysis discussed earlier in the chapter 

to examine data taken from the cusp latitude station in Svalbard Norway. I will 

use the Eather mapping technique since the dayside auroral oval is characterized 

by very tall arcs, sometimes extending well past 400 km in altitude, see Deehr
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eta l. [1980]. The 6300 A to 5577 A spectroscopic ratio is used to determine the 

characteristic energy and energy flux since significant solar resonant contamination 

of the the 4278 A band can occur in the sunlit tops of the tall dayside arcs, [Deehr 

etal. 1980].

The satellite particle precipitation measurements offer the most direct measure 

of the cusp at ionospheric altitudes, which is defined as the presence of sufficiently 

high fluxes of particles with magnetosheath characteristics at these altitudes. The 

major drawback to the satellite measurements is that data  are only taken along the 

satellite path. Thus local time variations in the location of the cusp and boundary 

layers are necessarily inferred from statistical studies of many such passes. The 

ground station using optical observations has the advantage of good local time cov­

erage since it rotates underneath the footprint of the cusp each day. The drawback 

to the ground station is that the energy and energy flux of the incoming electrons 

must be inferred from the optical observations, and thus the identification of re­

gions similar to those in the satellite measurements is correspondingly less assured. 

This confusion is due to the fact that when the optical methods are used only the 

average energy and energy flux can be determined, while all energy dependence 

is lost in the measurement. In addition to this limitation the calculation of aver­

age energy and energy flux can confused due to several factors. For instance the 

red line emission rate may be contaminated by the high energy tail of the very 

high temperature electrons that precipitate in the central cusp. Another problem 

encountered when using ground based optical data is that the Rees and Luckey 

optical method is applicable only to emissions caused by electron precipitation. 

While emissions from proton precipitation do exist, [Eather andMende 1971], they 

are not included in the Rees and Lucky method. W ith these caveats in mind, the 

ground station measurements offer a good snapshot view of one days cusp data.
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Figure 2.21. Keogram of 6300 A and 5577 A emission from 9 Jan 1991. The 
upper panel is the 6300 A emission, while the lower panel is the 5577 A emission. 
In both cases the intensity of emission is given in kRayleighs, and the Keogram 
lasts from approximately 0400 UT to 1215 UT. Magnetic noon occurs at 0900 UT. 
Note that the intense 6300 A emission is predominately north of the station, while 
the 5577 A emission is more uniformly distributed in latitude.
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Magnetic Local Noon in UT
Longyearbyen (Pace) @ 0 km

Figure 2.22. Universal time of magnetic local noon at Nordlysstasjonen from 
September 1990 to March 1991 according to the PACE coordinate system. The 
variation in time of local noon is approximately 30 minutes at this latitude due 
to the inclination of the Earth’s equator with respect to the sun, and the slight 
eccentricity of Earth’s orbit, [Baker and Wing 1989]. Note that during the time 
when optical observations are made, from late November to late January, that 
local magnetic noon occurs between 0830 to 0910 (UT).

Figure 2.21 shows the 6300 A and 5577 A emission for 9 January 1991, from 

approximately 0400 (UT) to 1215 (UT). The upper panel shows the 6300 A emis­

sion, while the lower panel shows the 5577 A emission. Magnetic noon occurs at 

approximately 0900 (UT) on this day. This is demonstrated in Figure 2.22 which 

shows the variation in universal tim e of local magnetic noon during the winter 

months. This variation is mainly due to the inclination of the Earth’s equator
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with respect to the Earth sun line, and the slight eccentricity of the Earth’s or­

bit. Returning to Figure 2.21 we see that during this day the 6300 A emission 

is mainly seen poleward of the station. An intensification in the emission is seen 

around 0930 to 1015 (UT) in scan angles poleward of the station. Note that the 

5577 A emission is more uniformly distributed in scan angle when compared to the 

6300 A data. There is a noticeable decrease in the 5577 A emission after 0700 (UT) 

th a t lasts for approximately two hours. This decrease in the intensity of the green 

line is probably what led to the term  “dayside gap” of Dandekar and Pike [1978]. 

Note that after 0930 (UT), the intensity of the 5577 A emission increases again 

both poleward and equatorward of the station, with scan angles directly overhead 

continuing to show a minimum amount of emission. IMF data are not available 

since IMP-8 was inside the magnetopause at this time.

Figure 2.21 is mapped to latitude using the Eather mapping, and the character­

istic energy and energy flux are found using the ratio of 6300 A to 5577 A emission 

as described in section 2.2. Figure 2.23 shows the inferred characteristic energy 

of the particle precipitation mapped to magnetic latitude from the station. Note 

that this figure covers ten degrees of the high latitude dayside from approximately 

0400 to 1230 UT, or 0730 to 1600 MLT. This graphically demonstrates the ability 

of the MSP to give a snapshot of one day’s passage underneath the dayside cusp 

region.

There are two important features in this figure. First note that between 0500 

and 0700 UT there is a region of higher energy particles, with the highest energy 

precipitating particles in these local times on the equatorward side of the station. 

To a lesser extent this region of higher energy particles exists after magnetic noon, 

which is at approximately 0900 on this day. Second note that from 0700 to 1030 

UT there exists a spatially confined region of extremely low energy precipitation. 

This region of low energy precipitation extends from magnetic latitudes 75 to
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Figure 2.23. Inferred characteristic energy of precipitating particles for 9 Jan 
1991 for magnetic latitude differences from the station of plus and minus five 
degrees. Note the broad latitude and local time distribution of higher energy 
particles both before and after magnetic noon at 0900 UT. Also note the very low 
energy particle precipitation region to the north of the station from approximately 
0730 to 1030 UT. This region of very low energy particles is spatially confined 
to approximately 75 to 78 degrees magnetic latitude. The location and particle 
precipitation characteristics are consistent with cusp precipitation.
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Figure 2.24. Inferred characteristic energy flux of precipitating particles for 9 
Jan 1991 for magnetic latitude differences from the station of plus to minus five 
degrees. Note that this figure is derived from the 5577 A emission, so it also shows 
a  broad area of higher energy flux precipitation before and after local noon.
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approximately 78 degrees. The upper latitude is in question since it is poleward 

of the zenith, and the last section clearly showed that even when the Eather map 

is used some residual uncertainty is associated with the results. It is important 

however that while the exact poleward edge of the region of low energy particles 

is in question, it clearly has such a poleward border. Using equation 2.4, Figure 

2.24 shows a map of the the intensity of the energy flux derived from the 5577 A 
emission. It shows that the region of higher energy particles before magnetic noon 

is also a region of significant energy flux. The region of very low energy particles 

discussed above is found to have a correspondingly low energy flux.

The maps of average energy and energy flux shown in Figure 2.24 and 2.23 are 

very suggestive. Newell and Meng [1992] shows the cusp in an average sense having 

a width of approximately 2.5 hours, centered around magnetic noon. The average 

latitudinal width of the cusp Newell and Meng [1992] give is approximately one 

degree. This description fits very well the observations made on the 9th of January

1991. In addition to this region of very low energy particles we see a region before 

and after magnetic noon with higher energy particles. Newell and Meng [1992] show 

that the region of structured precipitation on the dayside is most like the night 

side aurorae, which they call the boundary plasma sheet, extends around to almost 

10 magnetic local time at 75 degrees latitude. Such a region fits very well with the 

higher energy particles seen before magnetic local noon on the 9th of January.

The one plasma region in the Newell and Meng [1992] work which is not obvious 

in the the 9 January 1991 data is the low latitude boundary layer (LLBL). The 

LLBL is thought to be the boundary layer on the magnetosphere side of the mag­

netopause. It consists of particles with both magnetosheath and magnetospheric 

properties. Newell et al. [1991c] note that the low latitude boundary layer re­

gion has precipitating electron energy and energy flux characteristics with values 

between that of the boundary plasma sheet and the cusp. The average electron
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characteristic energy of the LLBL is typically below 200 eV, but there is significant 

spatial and temporal variation in the spectra. This reflects the thought that the 

LLBL is an admixture of the magnetosheath and magnetospheric plasma regions. 

In Newell and Meng [1992] the cusp has characteristic electron energies below 100 

eV, and very large number fluxes. The boundary plasma sheet serves as the catch­

all category in the soft energy precipitation regimes of Newell et al. [1991c]. The 

boundary plasma sheet is characterized by electrons with energies below 1 keV 

and with highly structured arc forms within it. Thus the LLBL has energies above 

those characteristic of the cusp, greater than 100 eV, and below those characteristic 

of the BPS.

This definition lies at the heart of the problem with optical identification of the 

LLBL. The BPS and cusp categories are sufficiently distinct that optical means 

can tell the difference between them. The question is where the LLBL fits into the 

picture when looking at the optical data. Only the characteristic energy and energy 

flux of the incoming particles are inferred using optical techniques. To identify the 

difference between the cusp and the LLBL the satellite particle measurements many 

times rely upon information about the ion energy and flux measurements. The cusp 

is characterized by a factor of 10 larger ion flux than the LLBL. Using the optical 

techniques described we cannot make this distinction. The same problem comes 

about with respect to the difference between the LLBL and the boundary plasma 

sheet. The LLBL can have structured arcs in it as well as the boundary plasma 

sheet, it simply has a lower average energy than the boundary plasma sheet. Newell 

and Meng [1991c] and Sandholt [1990] both point out the difficulties in making the 

distinction using optical techniques.

Figure 9 of Newell et al. [1991a] shows a schematic which is reproduced as 

Figure 2.25. This schematic shows the location of the the LLBL in relation to the 

central cusp and boundary plasma sheet. It serves as a transition region between
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Fig. 9. A modification of the figure of Vasyliunas based on our 
observations. The mantle forms a latitudinally narrow ring pole­
ward of the other boundary layers.

Figure 2.25. Schematic of magnetospheric source of ionospheric precipitation 
from Newell et al. [1991a]. Note that the LLBL extends to earlier and later 
magnetic local times from the cusp. It is also equatorward of the cusp around 
magnetic noon, but at roughly equal latitudes at magnetic times before and after 
local noon.

the two regions, and is a t similar latitudes as the cusp at magnetic times away 

from local magnetic noon. Again remember that this schematic is true only in a 

statistical sense. Comparison to  any one days data is unknown at this tim e due to 

the sparse coverage of the dayside sector by satellite on any one day.

To summarize the results from the optical data shown in Figures 2.24 and 

2.23 we make the following very tentative identifications. The central cusp is 

the region of very low energy precipitation lasting from 0730-1030 (UT), which 

corresponds from 1030-1330 magnetic local time. This region extends from just
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poleward of the station to latitudes roughly 2-3 degrees poleward of the station. 

This region exhibits variable latitudinal width, but has a poleward edge to it. 

The boundary plasma sheet is identified as the region of higher energy particles, 

above characteristic energies of 0.4 keV in this case, extending from approximately 

0500-0700 (UT) and being predominately found equatorward of the station.

Identifying characteristics of the LLBL is most open to question. It is tempting, 

and at least consistent with Figure 2.23 to view the LLBL at the region poleward 

of the station in the 0500-0700 (UT) times. Thus the BPS is equatorward of the 

LLBL and, and then drops out a t 1000 magnetic local time. The LLBL would 

primarily extend at local magnetic times before and after magnetic noon in this 

picture. As stated these characteristics are consistent with that of the LLBL, but 

in my view inconclusive in this case. To be conclusive would require an overflight 

of a satellite which could delineate the LLBL from the boundary plasma sheet and 

central cusp. Until such events happen, and the comparison of optical and satellite 

identifications agree in a statistically valid way, we are forced to the conclude that 

the identification LLBL using optical methods is not feasible in this instance.

The paradigm that I find useful is given by the schematic in Figure 2.25. As 

the station rotates in magnetic time underneath the footprint of the dayside auro­

ral oval there is a transition from the boundary plasma sheet to the LLBL, into the 

central cusp, and then out through the LLBL and finally into the boundary plasma 

sheet on the afternoon side of the oval. If we are willing to accept the uncertainty 

associated with the location of the LLBL, then it seems that the optical data sup­

port this paradigm. The optical observations show that there is a transition from 

the region of higher energy particles, which are characteristic of the the dayside 

extension of the nightside auroral oval, to that of very low energy particles which 

characterize the cusp that are centered around magnetic noon. This transition in
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the optical data  is not unusual, as exemplified by the data collected 7 January

1992.

The optical data for 7 January 1992 are similar to that of 9 January 1991 in 

that a transition from higher energy to lower energy particles are visible. The data 

sets are different in that the transition comes earlier in the morning, and that the 

transition, while still clearly apparent is not as distinct as the data from 9 January

1991. This points out that daily variation in the dayside oval is an important 

feature in the real data.

The data presented for the 7 January 1992 case are similar in format to that 

shown in Figure 2.23. Figure 2.26 shows the characteristic energy data for the 

date of 7 January 1992. Note the region of higher energy particles poleward and 

equatorward of the station that lasts until almost 0900 UT. W ithin this region 

is an area of low energy particles that stretches from 0600-0830 UT and from 

approximately 2 degrees poleward of the station to 1 degree equatorward of the 

station. The energy in this region falls below the level of detectability (lOOeV) 

from 0830 to 0930, and then slowly increases back up to the 200 eV level from 

0930 to 1030. From 1030 to 1400 this region continues to show alternating very 

low energy particles, interspersed with short time duration regions of higher energy 

particle precipitation. At 1200 UT a region of higher energy particles appear 

extending from about 1 degree equatorward of the station. Note the region from 

1130 to 1330 UT that is in the zenith shows spatially small energetic injections of 

particles. Exact identification of this region as LLBL is not possible since there 

is not correlative DMSP satellite information for this time, however it is very 

consistent with the definition of the LLBL, and very similar to the LLBL optical 

data examined by Sandholt and Newell [1992].

Two other important parameters can be derived once the energy and energy 

flux have been determined. These parameters are the field aligned current density
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Figure 2.26. Inferred characteristic energy of precipitating particles for 7 Jan
1992. The energy is determined using the Eather mapped 6300 A to 5577 A ratio. 
See text for discussion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of electrons above 100 eV and the height integrated conductivity of the ionosphere 

in the E region. The field aligned current density above 100 eV is derived from the 

average energy and energy flux information. The basic definition of the average 

energy for particles with an energy distribution function of f(E) is;

- f l mazE f ( E ) d ET? ___ J  E m m   ̂ o

H z z m d E '

where the integral in the denominator is the number flux (j), and the numerator 

is the energy flux ($g) of the field aligned current. To obtain the current density, 

all that is required is to solve for this number flux, and multiply by the charge on 

an electron, i.e. J  = je . Note that this derived upward field aligned current is not 

the total field aligned current. It is the component of the total current due to the 

number flux of downward flowing electrons. I have included energies with less than 

100 eV in this caculation for the same reason that equation 2.6was extrapolated 

to energies less than 100 eV. This downward flowing electron contribution to the 

total current will be offset by any return upwelling electrons, as well as any ions 

that add to the total field aligned current. Thus the component due to downward 

flowing electrons is only a partial measure of the total field aligned current.

W ith the caveats above in mind, Figure 2.27 shows the calculated component 

due to downward flowing electrons of the field aligned current density for 9 January 

1991. Note first that the most intense current densities are 5 -7  fiam ps-m ~2. This 

is a substantial fraction of typical substorm field aligned current densities, see Arm­

strong etal. [1975] and Kamide etal. [1989]. Also note that the most intense field 

aligned currents are on the equatorward side of the region of lowest energy precip­

itation. These intense field aligned currents only last a few minutes, and while the 

most intense portions are on the equatorward side of the cusp, the currents have a 

latitudinal distribution as well. These intensities are also in agreement with other 

observations of field aligned current densities in the cusp, see Maynard etal. [1991],
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Figure 2.27. Inferred downward flowing electron component of the field aligned 
current density for 9 January 1991. Note that the most intense field aligned cur­
rents are seen on the equatorward side of the region that had the lowest energies. 
Also note the latitudinal extent of the current density in the the region of lowest 
energy.
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and Sandholt and Egeland [1988]. Maynard and Johnstone [1974] directly measured 

the downward flowing electron number flux in the cusp using particle detectors 

on a two rockets launched out of Hall Beach, Northwest Territories Canada. This 

independent measure of the cusp electron number flux serves as a check on the ob­

served values seen in Figure 2.27. Maynard and Johnstone [1974] infer field aligned 

current densities in a similar manner to that used in the optical measurements and 

find an intensity of 1.3 (i amps • m ~2. On the same series of rocket flights from 

Hall Beach, Ledley and Farthing [1974] report on the field aligned current density 

as deduced from onboard magnetometer measurements. Ledley and Farthing [1974] 

found that the field aligned current density had a horizontal scale size of 1 km, and 

peak intensities between 9 x 10-5 and 10-4 amps • m -2. Taken together these two 

papers indicate that the current density as inferred from the electron number flux 

is a major portion of the total field aligned current density in the cusp.

The field aligned current density for 7 January 1991 is shown in Figure 2.28. 

While the intensities are comparable in magnitude to those on the 9 January 1991 

data, we see that the most intense currents are distributed over a larger time period 

on the 7 January 1992 data. Such intense field aligned currents are seen to be a 

common occurrence in the dayside ionosphere, and are an important observation 

in terms of the physical interpretation of what physical processes go on in the cusp. 

Sandholt et al. [1989b] also reported poleward moving enhanced regions of both 

red and green emission which was correlated with field aligned current densities 

in the few //amps ■ m“2. In this study Sandholt et al. [1989b] used mnagnetome- 

ter measurements from the DMSP satellite to determine the field aligned current 

densities. This topic will be presented in Chapter Four which discusses possible 

physical mechanisms of the observed magnetic and optical observations.

The height integrated conductivities can also be calculated using the results 

of Robinson et al. [1987]. In this work, the authors have a wide range in input
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Figure 2.28. Inferred downward flowing electron component of the field aligned 
current density for 7 January 1992. Note that the intense field aligned currents 
are distributed over a larger tim e period when compared to the d a ta  for 9 January 
1991.
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energy and energy flux particle distributions on a model atmosphere. The ioniza­

tion profile is determined by the range method of Rees [1963], and the the 1000 

degree exosphere neutral atmosphere model of Banks and Kockarts [1973] is used 

to calculate the ion-neutral collision frequency. The resulting temperature, colli­

sion frequencies and electron densities are used to calculate the conductivities, see 

Rees [1989], and the height integrated conductance is then obtained. The resulting 

integrated conductance is parameterized with the average energy and energy flux, 

and the published parametric equations of Robinson etal. [1987] are;

2.9
16 + £ 2 £

=  0.45£ass, 2.10
Ep

where Ep is the Pedeson, and E# is the Hall conductance in mhos, the average 

energy (E ) in keV, and the energy flux ($ e )  in ergs • cm-2 • sec-1 .

Using the above relations, and the average energy and energy flux found for 

these days, the height integrated conductivities are shown for 7 January 1992 in 

Figure 2.30, and for 9 January 1991 in Figure 2.29. Notice in Figure 2.29 that large 

conductance gradients exist across the boundary between the areas of higher energy 

precipitation and lower energy precipitation. This is also seen in Figure 2.30. 

These large conductance gradients will cause a nonuniform ionospheric reflection 

coefficient to incident electric fields that map down from the magnetosphere, as 

well as a rotation angle of other than 90 degrees of the incident electric fields and 

the equivalent currents driven in the ionosphere, see Glassmeier [1984]. The values 

of the Pederson and Hall conductance are in rough agreement with those of Hardy 

etal. [1987].
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Figure 2.29. Inferred height Integrated Hall and Pederson Conductivity for 9 
January 1991. The upper panel is the height integrated Pederson conductivity, 
and the lower panel is the Hall conductivity.
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Figure 2.30. Inferred height Integrated Hall and Pederson Conductivity for 7 
January 1992. The upper panel is the height integrated Pederson conductivity, 
and the lower panel is the Hall conductivity.
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2.5 Identification of Boundary Regions and Central Cusp

The sequence of figures shown for the days of 9 January 1991 and 7 January 

1992 shows that the transition from higher energy precipitation regions to low 

energy precipitation regions happens on a daily basis at high latitudes. While 

daily variations exist, the general feature can almost always be seen. Inspection 

of the red to green ratios as derived from the scan angle plots, not presented in 

this thesis, shows that the trend from regions with high energy to low energy and 

back to high energy is common. This conclusion is not new, as discussed in the 

introduction, [see particularly Deehr et al. 1980, Sandholt et al. 1989a, and Eather 

etal. 1979]. Using Figure 2.29 as a general guide, it seems appropriate to identify 

the time of the transition region between the dayside cusp and the remnants of the 

nightside oval as the period where both higher energy precipitating particles, and 

lower energy precipitation particles coexist at the same time. The energy I use to 

mark this transition is 400 eV. This energy is well above the minimum detectable 

by the Rees and Lucky technique, and seems to be a general feature in the data. 

Thus the transition region in the 9 January 1991 data set is from 0500-0700 UT; 

and the region lasts from 0500-0800 UT and 1200-1400 UT on the 7 January 1992 

data  set. Note that using a definite criterion, such as 400 eV, causes the absence 

of the post-magnetic noon transition region in the 9 January 1991 data set. While 

the energy of the precipitating particles increases from about 1030 UT onward, in 

this case it never reaches the threshold of 400 eV.

Since the LLBL is difficult to separate from the boundary plasma sheet and the 

cusp, I hesitate to label the transition region as the LLBL. Satellite data indicate 

that the LLBL exists in this region somewhere, we just do not yet know where it 

is when looking from the ground. I thus propose calling this region the boundary 

region as a compromise between where I think it maps to and my lack of ability 

to exactly pin down the location of the LLBL. Identifying the central cusp as the
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region of extremely low energy particles, basically those particles below the 100 eV 

level, seems safer when looking at the data from 9 January 1991. Such regions in 

the 7 January 1992 data are sparser in nature, but still exist. Both these definitions 

are somewhat arbitrary, and looking at the actual data on a day to day basis seems 

to make the most sense.

This chapter has attem pted to explain the basic optical observations and their 

use in identifying regions of dayside precipitation. In the next chapter, I show that 

the two regions identified in the optical data correlate with particular signatures in 

the magnetic field perturbations as measured by the induction coil magnetometers. 

This correspondence is important since the diurnal variations of the boundary 

regions and cusp position can then be described in a statistical sense using the 

magnetic observations.
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CHAPTER 3 

Magnetic observations of the cusp

One advantage gained when using ground-based magnetometers for cusp obser­

vations is that the seasonal and weather restrictions that limit optical observations 

do not apply to the magnetometer. However, the magnetometer signal is collected 

from the entire sky, and this limits the spatial resolution of the magnetometers. A 

second problem is that magnetometers measure magnetic fields, or the time rate 

of change of the magnetic field, and the interpretation of these measurements to 

obtain information about the ionosphere is difficult. To alleviate these problems I 

use the optical observations in conjunction with the magnetometer measurements. 

As shown in the last chapter, the identification of particular precipitation regions 

using the optics is a challenging prospect, and this challenge is magnified when 

applied to observations of the magnetic pulsations. My basic philosophy is to use 

the optical identification of different regions to look for signatures of these regions 

in the frequency-time spectrograms. As I will show, such signatures exist in the 

magnetometer data, and are a common occurrence in the spectrograms.

Two different types of magnetic field measurements are made at Nordlysstasjo- 

nen. Measurements of the vector magnetic field are made using fluxgate magne­

tometers, while induction magnetometers measure the time rate of change of the 

magnetic field. The data presented in this chapter are primarily induction mag­

netometer data, and will be displayed in frequency time spectrograms. See Olson 

and Domke [1985] for a complete description of the system. Note that the data 

collection period is 10 seconds, resulting in a Nyquist frequency of 50 mHz.

The first two sections of this chapter introduce the ULF pulsation spectra and 

compare these spectra to the optical observations. The result of the combined
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observations are the magnetic signatures of the cusp and boundary region passage. 

The th ird  section shows how these signatures are distributed in magnetic local 

time, and compares these distributions to satellite measurements of the locations 

of the cusp and low latitude boundary region (LLBL). In the final two sections 

of the chapter, I discuss how the magnetic pulsation data can be separated into 

three distinct categories. These categories are determined from the frequency time 

spectrograms spanning two years of magnetic pulsation data taken at Svalbard. I 

show that these categories correspond to different states of the interplanetary solar 

magnetic field during the tim e that the ground-based data were taken.

3.1 Introduction to magnetic pulsation observations of the cusp

Figure 3.1 shows the frequency tim e spectrogram of the magnetic ULF pul­

sations for 9 January 1991. In each panel, frequency in Hertz (Hz) is shown on 

the ordinate axis, with the Nyquist frequency of 50 mHz being the largest value 

displayed. The tim e axis, in Universal Time (UT) hours, runs along the abscissa of 

each panel, and the entire "24 hour period is shown. The power in each frequency­

tim e bin is shown at fixed contours of 10 dB down from a relative maximum. The 

spectrograms were made by taking the fast fourier transform (FFT) of the the data 

in the two spatially perpendicular induction coils and constructing the spectral ma­

trix for each frequency estimate. The time window used in the spectrogram is one 

hour (360 points) wide, and has been offset by 15 minutes (90 points) for each 

new estim ate. The resulting power spectra are smoothed three times in the fre­

quency domain, resulting in approximately 12 equivalent degrees of freedom in the 

am plitude estim ate, (J.V . Olson, personal communication, 1993). The frequency 

resolution is correspondingly three times the normal value of 1/3600.

The lower panel of Figure 3.1 shows the total power deduced from both in­

duction coils by taking the trace of the spectral matrix. The middle panel shows
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Figure 3.1. Frequency time spectrogram for ULF pulsations on 9 Jan 1991. 
Magnetic noon occurs at approximately 08:50 (UT) on this day. See text for a 
complete description of the format of this figure. Looking at the bottom panel, note 
the broad-band increase in power before magnetic noon that lasts at all frequencies 
from 04:30 - 07:45 (UT). The power at frequencies above 20 mHz fall by 10 dB 
from 07:45 - 09:45, and then increases again from 09:45 to 12:00.
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the amount of power in the circular right-hand polarization state for this day, and 

the upper panel is amount of power in the circular left-hand polarization state,[see 

Samson and Olson 1981a,b]. The two top panels have been multiplied by the degree 

of polarization, see Olson and Samson [1979], and thus represent only polarized 

components of the signal; no unpolarized signal is left in these two panels. This 

explains why the noise floor on the two upper panels is reduced by approximately 

10 dB in comparison to the lower panel. This format for frequency time spectro­

grams will remain unchanged throughout this chapter unless specifically noted in 

the figure caption.

In the bottom panel of Figure 3.1, note the broad-band increase in power 

before magnetic noon that lasts from 04:30 - 07:45 (UT) at all frequencies. The 

power at frequencies above 20 mHz falls by 10 dB from 07:45 - 09:45, and then 

increases again from 09:45 to 12:00. The power at frequencies below 20 mHz has 

a more complicated nature during the midday period from 07:00 - 10:00. Starting 

at approximately 07:00, the constant power contour labeled -30 dB is seen to rise 

in frequency to a maximum of about 3-6 mHz and then fall again after magnetic 

noon to lower frequencies. I will refer to this characteristic spectral feature as the 

“arch” because of its shape.

The upper two panels of Figure 3.1 show information concerning the polariza­

tion state of the signal. Notice that in the 1 - 5 mHz frequency band the broad 

band increase in power that lasts from 04:30 - 07:45 (UT) has a 10 dB increase 

in the right-hand circular polarization state before noon, and that the left-hand 

polarization state predominates after magnetic noon. The frequencies above 5 

mHz do not show this strong asymmetry about magnetic noon. This asymmetry 

is consistent with the observations of Samson etal. [1971].

Summarizing, the two defining characteristics of the dayside pulsation spectrum 

are the broad frequency band increase in power before and after local magnetic
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noon, and the unique spectral feature I have called the arch. Assuming for the 

moment that such occurrences are typical of the data, the question of how to 

interpret these two spectral characteristics is paramount. I have used the optical 

data  to guide the interpretation of the magnetic pulsation data. This assumes that 

the two data sets both show some signature of the passage of the boundary region 

and cusp. Since I have identified the optical signature of the boundary region and 

cusp, I will look at the spectrograms at the times identified as boundary region 

and cusp to try to find the corresponding magnetic signatures of these features.

3.2 Identification of cusp and boundary region signature using ULF magnetic 

observations

Figure 3.2 shows the comparison of the optical and magnetic da ta  for 9 January 

1991. In Chapter 2, the periods from 04:30 - 07:45 and from 09:45 - 12:00 were 

identified as boundary regions. Note tha t during these times, the spectrogram 

shows a broad band increase in the power. This is accompanied by a narrow band, 

very intense low frequency tone at about 3 mHz. The period identified as the 

cusp using the optical data, lasting from 07:30 - 10:30 (UT) is concurrent with 

the arch in the magnetic data. This is a  commonly observed association. When 

the higher energy particles inferred from the optical signal are detected, a broad­

band increase in the magnetic pulsation spectrograms is seen. W hen the low energy 

particle precipitation is seen in the optical data  the arch is seen in the spectrogram.

This comparison identifies the signatures of the boundary regions and cusp 

features in the magnetic pulsation spectrograms. This should not be interpreted 

as a causal link between the signatures observed in the magnetic perturbations 

and the actual cusp or boundary region. Since the magnetometers are a wide 

field of view instrument, it provides no information as to the location of the signal 

sources. Thus when I  refer to the magnetic signature o f the cusp or boundary
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Figure 3.2. Comparison of the Optical MSP and Magnetic Pulsation data for 
9 January 1991. The top panel shows the characteristic energy of the precipitating 
particles using the Eather mapping to latitude. This is the same as shown in 
Figure 2.23. The bottom panel shows the total power from the magnetic pulsation 
spectrogram for the same time period. The boundary regions identified in the 
optics axe seen to happen at the same time as the broad band increase in the 
pulsation spectrogram. The cusp period identified using the optical data, lasting 
from 07:30 - 10:30 (UT) is concurrent with the arch in the magnetic data.
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region, the reader should clearly understand that I mean a particular signature in the 

magnetic observations that were observed at the same time that I infer from the optical 

observations either the cusp or boundary region was in the field o f view o f the station. 

These signatures can however be used as a hypothesis for a statistical survey of the 

magnetic pulsation data. If the result of such a statistical study yields results that 

agree with other statistical studies of cusp and boundary region positions, such as 

satellite particle precipitation measurements for instance, then confidence in the 

hypothesis is increased. The next section looks at the results of such a statistical 

study.

3.3 Statistical occurrence of cusp and boundary region signatures

Induction magnetometer data from two years of observations at Svalbard have 

been included in this statistical study. Due to limitations in the data collection 

hardware, only 253 days yielded usable data during this two year period. In ad­

dition to these spectrograms, I produced an integrated version of the spectrogram 

which shows the amount of power in different spectral bands during each day’s 

data. This makes identification of the times of boundary regions significantly eas­

ier as shown below. The four frequency bands used in this integrated spectrogram 

are;

Band 1: 0 - 1.6 mHz,

Band 2: 1.6 - 10 mHz (Pc5),

Band 3: 10 - 20 mHz,

Band 4: 20 - 50 mHz (Pc3).

Figure 3.3 shows the Pc-5 band integrated spectra from 9 January 1991 and

shows both the total power and the circular left and right hand components of the

polarized signal. Note that the boundary regions are clearly evident as an increase 

in the total power and are centered at approximately 06:00 and 11:25 (UT). The
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Figure 3.3. Pc-5 integrated spectra from 9 January 1991 showing both the total 
power and the circular left and right hand components of the polarized signal. Note 
that the boundary regions are evident as an increase in the total power and are 
centered at approximately 06:00 and 11:25 (UT). The area underneath each curve 
has been normalized to unity to allow comparison of spectral shape. Note that 
the prenoon boundary region is predominantly right handed, and the post noon 
boundary region is predominantly left handed.

area underneath each curve has been normalized to unity to allow comparison of 

spectral shape. The utility of this kind of integrated spectrogram is that it allows 

a particular time to be established for the boundary regions. The peak, or if highly 

asymmetric, the center, of the increased power region was chosen as the time of 

occurrence for the boundary region. The time of occurrence of the cusp was chosen 

to be the middle of the arch as observed in the frequency-time spectrograms. A 

visual inspection of the spectrograms was used to detect the arch, and hence cusp ,
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Figure 3.4. Probability of observing cusp and boundary region signatures ver­
sus magnetic local time. Note th a t the cusp probability distribution has only one 
peak, and this peak of the distribution is centered pre-magnetic local noon at 11:00 
magnetic local time (MLT). The boundary layer probabilities are centered at 09:00 
and 13:30 MLT

so it should be understood that not all of the cusp events might have been detected 

due to this visual inspection. In addition, the spectrograms were all produced with 

a threshold between levels of 10 db. Using a 3 db threshold for each level displayed 

on the spectrogram might result in more days showing the arch/cusp. Clearly an 

automated scheme for finding the arch would be an improvement in this regard.

3.3.1 Ground-based ULF signature o f the boundary regions and cusp

Frequency-time spectrograms similar to Figure 3.2 were made for each day and 

visually inspected. For each day, I tabulated the UT time of the signature of the
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boundary regions and arch/cusp. These UT times were transformed into magnetic 

local time using the PACE coordinate transforms. A histogram of the occurrences 

of these times produces a probability amplitude versus magnetic local time for the 

signatures of the boundary regions and cusp. Such a probability distribution is 

shown in Figure 3.4, where the bin width in MLT is 30 minutes. The total area 

underneath the boundary region and cusp curves is normalized to unity. Note in 

Figure 3.4 that the peak cusp probability is located before magnetic local noon at 

11:00 magnetic local time (MLT). The centers of the boundary region probabilities 

are at 09:00 and 13:30 MLT. These times agree in principle with Figure 2.25.

The signatures identified as the boundary region and arch/cusp are a consistent 

occurrence in the data set, with the arch/cusp being seen 36 percent of the time, 

and the boundary regions are seen 65 percent of the time. The magnetic local times 

of the boundary regions agree fairly well with the satellite particle measurements 

seen in Figure 2.25. The cusp probability is located at magnetic times in between 

the two boundary regions but is offset from magnetic local noon towards the pre- 

noon hours. A detailed comparison of the ground-based observations of boundary 

region and cusp signatures with satellite particle precipitation data is the subject 

of the next subsection.

3.3.2 Comparison o f ground based signature to satellite based signatures o f the LLBL 
and cusp

Figure 3.5 shows the probability of observing the LLBL and cusp as obtained by 

DMSP particle precipitation, (P.T. Newell, Applied Physics Laboratory, personal 

communication, 1992). The upper panel of this figure shows the probability of 

observing the cusp in magnetic latitude versus magnetic local time (again using 

PACE coordinates). The lower panel shows the probability of observing the LLBL 

in the same format. In both cases, the total probability of detection has been
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Figure 3.5. Probability distribution function in magnetic latitude versus mag­
netic time of the low latitude boundary region (LLBL) and cusp as observed by 
satellite measurement (courtesy of Dr P. Newell, APL). The darker regions have 
a higher probability of observation. The upper panel is the probability of detect­
ing the cusp, and the lower panel is the probability of detecting the LLBL. A 
strong asymmetry about magnetic noon is evident in the probability of detecting 
the LLBL, while the probability of observing the cusp is seen to be approximately 
symmetric about magnetic local noon.
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normalized to unity. Note that the LLBL probability is asymm etric with respect 

to magnetic local noon, while the cusp is symmetric with respect to magnetic 

local noon. The peak of the LLBL probability distribution is from 77-79 degrees 

latitude, and the corresponding latitude for the cusp is 78-80 degrees.

Figure 3.5 displays the probability distribution in both latitude and MLT. How­

ever, to compare the satellite observations to the magnetometer da ta  requires that 

the probability distribution must be integrated in latitude so only the MLT depen­

dence is left. This is because the magnetometer is a wide field of view instrument. 

To integrate the two dimensional particle precipitation data in latitude requires an 

assumption about the source geometry. The simplest geometry to analyze is that 

of a line current filament lying in a horizontal plane at some distance R from the 

station. The Biot-Savart law shows that the magnetic field a t the station due to 

such a line filament is;

96

To integrate the latitude dimension out of Figure 3.5 we assume that the de­

tected magnetic field comes from line filaments with the same probability distri­

bution as given in Figure 3.5. Thus we obtain the probability of detection at the 

ground station versus magnetic time to be;

P (t)d t = I P(t,0)cos{0 -  6station)d0dt\ 0 = degrees latitude, 3.2 
J Latitude

where the c o s ( 0  — 6 station) term takes care of the weighting by inverse distance 

as prescribed in equation 3.1. The height of the line current is not included in 

this equation because the entire distribution is normalized to unity. Figure 3.6 

shows the results of such an integration for the LLBL and the cusp. The station 

latitude used in equation 3.2 is 75 degrees magnetic, corresponding to the magnetic
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Figure 3.6. Latitude integrated probability distribution of LLBL and cusp, 
The distributions of Figure 3.5 have been integrated over latitude with an inverse 
distance weighting to account for an assumed line current distribution, see text for 
details. Note that the integrated probability distribution for the LLBL is strongly 
asymmetric about local magnetic noon, while the cusp is slightly asymmetric about 
magnetic noon.
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latitude of the Svalbard. Note that the cusp probability distribution is slightly 

asymmetric about magnetic noon due to the integration over latitude, while the 

LLBL probability retains its basically asymmetric nature.

' The ground-based and satellite based observations may now be directly com­

pared. Figure 3.7 shows the probability of observing the ground-based signatures 

of the boundary regions and cusp along with the satellite based signatures of ob­

serving the LLBL and cusp. All the probabilities have been normalized to unity, 

and the satellite probabilities have been integrated over latitude as described in 

equation 3.2. Note that the shape and magnitude of the ground based signature 

of the cusp and the satellite-based signature of the cusp resemble each other, but 

the ground-based observations are offset pre-magnetic noon by about an hour. At 

this time this offset is not fully understood. It may represent a real offset in time of 

some current system with respect to the cusp, for example the high latitude DPY 

currents, [see Friis-Christensen andWilhjelm, 1975]. It may also represent a bias in 

the ground-based data due to the IMF state during the limited 253 days of data. 

This will be discussed late in Section 3.5

Inspection of Figure 3.7 shows the LLBL and boundary region probabilities 

do not greatly resemble each other in either shape or magnitude. It is interest­

ing to note that the peak in the LLBL probability is roughly at the same local 

magnetic time as the peak in the ground based signature of the cusp. Thus we 

can see that the general comparison between the ground-based and satellite-based 

measurements is good for the cusp probabilities, white the comparison between 

the LLBL as definded by the satellite and the boundary regions as defined by the 

magnetic pulsations is not that good. This reflects the idea that the ground-based 

signatures of the boundary region are not correlated to the LLBL.
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Figure 3.7. Comparison of ground based ULF signatures and satellite signa­
tures of the boundary regions, cusp and LLBL. Note the satellite signatures have 
been integrated in latitude according to equation 3.2. The top panel shows the 
probabilities for the satellite and ground based cusp and the lower panel compares 
the LLBL and boundary regions. Note that the satellite and ground based signa­
ture of the cusp resemble each other in shape, but that the ground based signature 
of the cusp is offset by approximately one hour pre magnetic noon. The ground 
based signature of the boundary regions does not match well with the LLBL satel­
lite signature.
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3.4 Spectral categories observed in magnetic ULF observations

In addition to the ground-based signatures of the boundary regions and cusp,

I have found that the observed spectra fall into five main spectral categories. The 

spectral shapes of these categories are defined below and the first three shown in 

Figures 3.8, 3.9 and 3.10.

Category 1: Distinct pre- and post- magnetic noon boundary layers with at 

least a 10 dB decrease in signal power above 20 mHz in the central cusp. An 

example is shown in Figure 3.8.

Category 2: No distinct boundary regions, but at least a 10 dB increase in 

signal power located around local magnetic noon. In some of these cases we see 

indications of one, but never both boundary regions. An example is shown in 

Figure 3.9.

Category 3: A combination of the above two features. Distinct pre- and post- 

magnetic noon boundary regions and significant signal power in the central cusp 

above 20 mHz. An example is shown in Figure 3.10.

Category 4: Extremely quiet, No significant increase in the signal power over 

the background level.

Category 5: Other, Those days which do not fit into the above four categories.

Table 3.1 shows the occurrence statistics for the five categories in the data  set. 

As can be seen, categories 1 - 3 make up approximately 85 percent of the total 

da ta  set. Because of this, I believe that the categories are representative of the 

entire data set seen during the winter cusp.

In addition to  the basic statistic of the the times of the signatures of boundary 

region and cusp events I counted the actual number of arch/cusp events, and the
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Figure 3.8. Example of Category 1 spectrogram taken at the winter cusp. 
The format is the same as in Figure 3.1. Notice that the boundary regions are 
prominent at 06:00 and 10:30 (UT) and there is a marked diminution in power 
at frequencies above 20 mHz between the boundary regions. The 9 January 1991 
spectrogram fits into this category. The pre-magnetic noon boundary region is 
predominantly circularly right hand polarized.
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Figure 3.9. Example of Category 2 spectrogram taken at the winter cusp. The 
format is the same as in Figure 3.1. In this category no boundary regions are seen; 
rather a relative increase in the power at all frequencies is seen in the times around 
local magnetic noon. Again there is a dominance of circular right hand power in 
the spectra before magnetic noon.
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Figure 3.10. Example of Category 3 spectrogram taken at the winter cusp. 
The format is the same as in Figure 3.1. This category has features of both 
the previous categories. The boundary regions are observed in the spectrograms, 
but the higher frequency components retain broad band power during the times 
between the boundary regions.
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TABLE 3.1. Occurrence Statistics of Spectral Categories

Category Number Percent of total

1 85 33

2 55 22

3 79 31

4 5 2

5 29 12

TABLE 3.2. Cusp signature and Pc3 Statistics, Percent Relative to Category

Category Cusp Pc3

1 48 55

2 30 42

3 44 78

Total 36 60

number of “Pc3 "events. To be counted, the Pc3 event had to have signal power 

in the Pc3 band that was at least 10 dB above the ambient signal around it. Table

3.2 shows the occurrence of the cusp and “Pc3" type signals, again broken down 

by category. This table clearly demonstrates that these signals are common, with 

the cusp signature being seen approximately 40 percent of the time and the “Pc3” 

type event happening 60 percent of the time. Thus the 9 January 1991 event is 

not an isolated occurrence.
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Figure 3.11. Distribution of cusp occurrences by spectral category. Note that 
category 2 is bimodal while categories 1 and 3 are single peaked. The area under­
neath each curve represents the relative contribution toward the total. The area 
underneath all three curves sums to unity.

To test if the probability of cusp occurrence shows any dependence on category 

type, the cusp occurrences are sorted by category and the occurrence probability 

plotted as a function of MLT. Figure 3.11 shows the results of this analysis. In this 

figure, we use the area underneath each category curve to represent the relative 

contribution to the total cusp distributions. In other words, the sum of the areas 

of the three categories is unity. Since there are fewer numbers in each category the 

bin width has been increased to 60 minutes. Note that Category 1 is narrow and 

single peaked, while Category 2 has a bimodal distribution, with a pre- and post- 

magnetic noon peak. Category 3 shows a single peak that is slightly wider in time
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Figure 3.12. Ratio of the power in the pre-noon to post-noon boundary region. 
Note the peak of the distribution is above 1, thus the pre-noon boundary layer 
statistically has more power in the ULF fluctuations as observed at Svalbard.

than Category 1. Thus it seems that the temporal location of the cusp varies with 

category type, and to a lesser extent the width of the cusp varies with category 

type. For completeness, I also tabulated the occurrence statistics by category for 

the boundary region probability of occurrence, and find no particular differences 

between Category 1 and Category 3. Category 2 is not considered because by 

definition it does not have both boundary regions visible in the spectra.

One result of this study is that the power in the pre-noon boundary region 

is found to be larger than the power in the post-noon boundary region. This 

was evident in the single case of for 9 January 1991 as seen in Figure 3.1. To
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dem onstrate this statistically Figure 3.12 shows the probability distribution for 

the ratio of the pre- to post- noon boundary region power as obtained from the 

integrated spectra in the Pc5 band. When this ratio is larger than 1 the pre-noon 

boundary region has more power than the post-noon boundary region. Figure

3.12 shows tha t the pre-noon boundary region has more power in the perturbation 

magnetic field than the post-noon boundary region 90 percent of the tim e. Figure

3.12 also shows that the peak of the ratios distribution is between 1 and 2. Since 

there are a few very large ratios, the average of this distribution is 3.6 ±  8.6. The 

pre-post noon asymmetry in pulsation amplitude has been predicted by several 

authors including Lee and Olson [1980] and L e e e ta l\  1981]. I believe this is the first 

tim e th a t such an asymmetry has been observed at cusp latitudes and described in 

term s of an actual difference in the ionospheric currents flowing in the boundary 

regions of the cusp.

3.5 IM F correlations with spectral categories seen in magnetic ULF observa­

tions

The categories established in the previous section are based on the general 

spectral shape seen during the dayside hours in MLT. To see if days in the same 

period have some measurable physical param eter in common, we turn to the solar 

wind interplanetary magnetic field (IMF) measurements during these days. Use 

of IMF correlations is traditional in cusp research, Newell et al [1989], but the 

assumptions behind such correlative studies deserves review.

Spreiter and Stahara [1985] show that the entire magnetopause streamline is 

defined by a spatially small streamline that comes through the bow shock within 

a small radius of the subsolar point. Thus a measurement of the IM F along this 

stream line should be representative of the IMF over the entire magnetopause. If
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the exchange of energy, mass and momentum between the solar wind and the mag­

netosphere is dominated by magnetic reconnection, then this IMF orientation is 

obviously an important parameter to measure. For instance, Crooker [1979] be­

lieves that the locus of points on the magnetopause where the IMF is antiparallel 

to the dipole field is the location with maximum merging rate. The entire mag­

netopause is mapped to the cusps by the magnetic field topology, so it is logical 

to think that the ionospheric cusps are a location to look for direct IMF corre­

lations. This line of reasoning is the basis for looking for IMF correlations with 

ground-based observations.

I think it is important to treat such studies on a statistical basis for the following 

reasons. First: the location of the measuring satellite is almost never along the 

subsolar streamline, thus a correlation with a measurement off this streamline 

requires the assumption that the coherence length of the IMF is the same size as 

the distance the satellite is off the earth sun line. Le and Russell [1992] show an 

example where this assumption is false. Le and Russell [1992] show that if the 

satellite is in the foreshock region as defined by Greenstadt and Bmun [1986] then 

the IMF measurements are cclearly different from that found at the subsolar point. 

Second: the bow shock modifies the IMF as it passes into the magnetosheath, and 

modeling of the exact nature of this modification is in its infancy, again see Spreiter 

and Stahara [1985]. The third reason is that to compare IMF data with ground- 

based data in a one-to-one correlation will require that the travel time for the IMF 

from the point of measurement to the ionosphere be known. Due to the problems 

reviewed above, the exact offset time would be difficult to calculate exactly, however 

an estimate is in order. The solar wind speed is known to normally be in the range 

of 300-800 km/sec, [Parks 1991], and the IMP-8 satellite used in this correlative 

study has an orbit that reaches upstream to about 30 earth radii (Re). Picking 

a solar wind speed of 630 km/sec gives 6 Re/minute. Even though the speed is
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greatly decreased across the bow shock, and must include an Alfven transit time to 

reach the ionosphere, a 15 minute offset time seems to be a good first estimate. This 

offset time has also been used by Sandholt et al. [1986b], Rishbeth etal. [1985] and 

Lockwood e ta l [1986]. The offset time problem is alleviated if the IMF is treated 

on a statistical basis over several hours of time. This is because errors in the offset 

tim e of 15 - 30 minutes are small compared to the several hours over which the 

data are considered. The problems of coherence length of the measurement off the 

streamline, and modification of the magnetic field geometry by the bowshock seem 

more intractable, and I can only offer the hope that if a correlation is found then 

somehow these problems are alleviated and the analysis is worth the effort.

The magnetometer measurements used were supplied by NSSDC, and come 

from the IMP-8 satellite from the periods November 1990 through July 1991. The 

data were measured by a three axis magnetometer, and the data  collection rate is 

one sample every 15.4 seconds. Of the 253 days used in the ground based study, 

only 36 overlap with the available IMP-8 data due to the spacecraft orbit. This still 

gives a representative look at all the categories described above, with the coverage 

by category given in Table 3.3.

The IMF data were binned into histogram format for each component magni­

tude in all three GSM coordinates with bin widths of 0.2 nT. The frequency of 

occurrence of these bins are collected for the periods under study. The times used 

in the frequency histogram were different for each category, but the criteria for 

choosing these times remains constant within each category. The time periods and 

the criteria for choosing them, are given in Table 3.4. In all cases the IMF times 

were offset by 15 minutes to account for the travel time from the measurement to 

the ionosphere.

Figure 3.13 shows the GSM component histogram for the entire data set. Note 

that the Bx component is bimodal, with the larger peak centered around +  3nT,
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TABLE 3.3. IMF Coverage broken down by ground-based spectral category

110

Category Number of days of IMF coverage

1 11

2 9

3 12

4 3

5 1

Total 36

TABLE 3.4. IMF time selection criteria for ground-based spectral category

Category Criteria for Selecting Times

1 From pre-noon to post-noon boundary region

2 ±  1 hour from time of maximum power

3 Same criteria for category 1

4 ±  2 hours from magnetic noon

5 Same criteria for category 4

while the By component is strongly negative. This large negative By component 

is a possible reason why the ground-based probability of observation of the cusp 

is approximately one hour earlier than the satellite-based observation of the cusp, 

see Figure 3.7. Newell et al. [1989] show that a By negative component moves 

the cusp toward the dawn hours when Bz is negative. A similar trend is found by 

Aparicio etal. [1991] who find tha t the sign of By independent of Bz can move the
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Figure 3.13. IMF GSM Component Histogram for all five categories. The top 
panel is the GSM X component, the middle panel is the GSM Y component, the 
bottom  panel is the GSM Z component. Note that all three components show 
some level of occurrences between ±  5nT. The Bx component is bimodal, with 
the larger peak centered around +  3nT. The By component is strongly negative, 
suggesting that during this period the earth is above the suns current sheet. The 
Bz component is asymmetric about zero, and is has a peak centered about +3 nT.
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Figure 3.14. IMF GSE Angle Histogram for total data set. The upper panel 
shows the cone angle histogram for the entire data set, while the lower panel shows 
the “garden hose” angle in the GSE X-Y plane for the entire data set. Note that 
the garden hose angle histogram shows that this data set is centered around -50 
degrees, with a  smaller peak centered around +120 degrees. The relative size of 
the peaks shows that this period was dominated by a toward sector, which agrees 
very well with the GSM X and Y components shown in Figure 3.13.
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cusp in magnetic local time. Aparicio etal. [1991] also find tha t the cusp moves to 

earlier MLT’s for a  negative By component. I interpret the large peaks centered 

around +2.5 nT in X and - 3. nT in Y as a manifestation of the Parker spiral 

for this period. This is confirmed in Figure 3.14 which shows the cone angle and 

the “garden hose” angle for the entire data set. The garden hose angle is simply 

the angle the IMF makes in the GSE X-Y plane as it crosses the Earth’s orbit, 

[Parks, 1991]. The angle is measured counter clockwise positive from the plus X 

direction, so the large peak seen at -50 degrees corresponds to a period when the 

IMF is coming up from the ecliptic south, and heading towards the sun. This is 

consistent with the earth being above the IMF ecliptic current sheet. The cone 

angle is the angle between the GSE X axis and the magnetic field direction, 0xb , 

and is defined as;

=  3.3

Figure 3.15 shows the IMF histogram for the days where the ground based 

ULF spectral category was 1. The Bx component is distributed in three large 

groups, and shows no real trends. The By component is dominated by magnitudes 

less than zero, or towards the dawn side of magnetopause. More interesting in 

Figure 3.15 is the Bz component. Note that the distribution in the Bz component 

is asymmetric about zero, with values larger than zero dominating values less than 

zero. This seems to  indicate that the Category 1 days are the Bz north state of 

cusp ULF pulsations. The chief features of the category 1 days are the observation 

of the boundary regions and the relative decrease in power above 20 mHz for times 

between the boundary regions. If the Bz north state is accepted as the quiet state 

of the magnetosphere then the Category 1 spectra would seem to reflect this quiet 

state, and the other categories are then perturbations on this quiet state.
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Figure 3.15. IMF GSM Component Histogram for Category 1. The format 
is the same as Figure 3.13. Note tha t for this category the GSM z component is 
asymmetric about zero, with the Bz greater than zero occurrences having a center 
value of approximately 2 nT.
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Figure 3.16. IMF GSM Component Histogram for Category 2. The format 
is the same as Figure 3.13. Note that the Bz component is bimodal, with two 
distinct peaks at roughly ±  4 nT. The By component is also bimodal and peaks 
at approximately +5 nT and -4 nT.
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Figure 3.16 shows the component histogram for spectral Category 2. Note that 

the Bz and By component are bimodal, while the Bx component shows a single 

peak around +  2nT. These are clearly times when the Bz and By components 

are within a certain range. The main feature in spectral Category 2 was that the 

boundary regions were not both present and that there was power above 20 mHz. 

The large By excursions could explain why both the boundary regions were not 

seen on these days. Friis-Christensen et al. [19S5] show that the high latitude 

ionospheric currents in the cusp region, which they label the DPY currents, show 

a strong azimuthal variation with By. Thus the large By components associated 

with the Category 2 days cause an azimuthal shift in the ionospheric current system 

responsible for the pulsations and one or the other of the boundary regions are not 

present.

Figure 3.17 shows the GSM Category 3 histogram. The main difference between 

this and Category 1 is that the the Category 3 Bx component is single peaked 

around 4 nT. The main difference in the ground-based ULF spectrograms is that 

the Category 3 spectra have significant power in the frequencies above 20 mHz at 

times between the boundary regions. The explanation for this difference is found 

in Figure 3.18 which shows a histogram of the cone angle for each Category.

Figure 3.18 shows that the cone angles for Categories 2 and 3 are similar in 

that they have a relative minimum around 90-100 degrees, with relative maxima 

on either side of this minima. Category 1 on the other hand has a large peak that 

is centered around 100 degrees. As noted in the introduction Greenstadt [1972] 

showed that the bow shock is turbulent in the quasi-parallel shock geometry. The 

magnetosheath is seen to fill with ULF noise when in this geometry, see Russell etal. 

[1983], and Luhmann etal. [19S6]. Engebretson et al. [1987] use satellite measure­

ments in the magnetosheath and upstream of the bow shock to show that broad 

band compressional waves are detected in the 10-100 mHz frequency band near
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Figure 3.17. IMF GSM Component Histogram for Category 3. The format is 
the same as Figure 3.13. Note that all three components are single peaked. The 
Bz and Bx components are strongly positive, while the By component is strongly 
negative.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

0.025>>|  0.020 
o 0.015A
2 o.oioa.

0.005
0.000

0.030
GSE Cone angle Cat 1

100
Cone Angle (Deg)

150

GSE Cone angle Cat 2

Cone Angle (Deg)

GSE Cone angle Cat 3

Cone Angle (Deg)

Figure 3.18. GSE IMF Angle Histogram for Categories 1-3. The cone angle for 
Categories 1-3 is shown in the upper, middle and lower panels respectively. The 
cone angle is the angle the magnetic field makes with the GSE X axis. Note that 
for Category 1 the main part of the distribution is centered about 100 degrees. For 
Categories 2 and 3 there is a relative minimum in the distribution of occurrences at 
90-100 degrees. This makes Category 1 a quasi-perpendicular shock, and reduces 
the amount of wave activity produced in the upstream bowshock. Categories 2 
and 3 are more quasi-parallel shocks, producing more wave activity, which results 
in the ULF Pc-3 power observed in the cusp.
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magnetic local noon and are correlated to small cone angles in the IMF. Engebret- 

son etal. [1987] attribute these broad band compressional waves to destabilization 

of the bow shock due to the quasi-parallel geometry of the magnetic field with 

respect to the bow shock. While the distribution of angles shown for Categories 2 

and 3 would not for the most part be considered quasi-parallel at the nose of the 

bow shock, they are clearly more quasi-parallel than Category 1. It seems that the 

presence of broad band wave activity in the periods between the boundary regions 

correlates with intermediate cone angles in the IMF.

Figure 3.19 shows the GSM histogram for the Category 4 days. The ground- 

based ULF pulsations show very quiet spectra during these days. This is under­

stood by the very large positive and negative values of the Bz component seen in 

Figure 3.19. These large Bz values move the dayside oval equatorward or poleward, 

and out of the field of view of the magnetomenter. These days are very rare, Table

3.1 showing that they happen only 2 percent of the time. Figure 3.20 shows the 

histogram for the single Category 5 day that also has IMF data. The ground-based 

spectrogram resembles a confused Category 3. This is understood when looking at 

Figure 3.18, which shows the extreme variability in the Bz component. The IMF 

is unsteady enough during this time that the resulting spectrogram does not easily 

fit into the usual patterns observed. Table 3.1 shows that this type of spectrogram 

is observed 12 percent of the time.

3.6 Discussion

The signatures of the boundary regions and the arch/cusp make up a consis­

tent way to order the data. Even if the source of the signatures described is not 

associated with the boundary regions or cusp, the data are still found to follow this 

pattern. I have shown that this pattern occurs on a daily basis, and the probabil­

ity  of finding the features identified as boundary region or cusp fall within a fairly
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GSM Bx

Bx (nT)
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Figure 3.19. IMF GSM Component Histogram for Category 4. The format 
is the same as Figure 3.14. Note the extreme values of the Bz component. The 
ground-based ULF pulsation spectrograms show very little activity on Category 4 
days. The large values of Bz move the cusp in latitude equatorward or poleward, 
and result in the quiet pulsation spectra on the ground.
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Figure 3.20. IMF GSM Component Histogram for Category 5. The format is 
the same as Figure 3.14. T he groundbased ULF pulsation spectrogram for this day 
shows a distinct pre-noon boundary layer, and then a large amount of power at 
frequencies above lOmHz during the rest of the dayside hours. The IM F histogram 
shows that the Bz component was extremely variable for this day.
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narrow window in MLT. This identification is useful when correlative studies are 

undertaken as exemplified by the IMF correlation presented earlier. Further, the 

probability distribution versus MLT of the arch/cusp is in rough agreement with 

the satellite data of Newell and Meng [1992].

In addition to the basic identification, I have shown that about 85 percent of 

the daily spectrograms fall into one of three categories. These categories represent 

different states of the current systems in the high latitude ionosphere, and by 

inference represent different states of the dayside magnetosphere. The following is 

a summary of these states based on the correlative IMF study.

Category 1 represents the quiet state of the dayside current system. The his­

togram of the GSM components, see Figure 3.17, shows that the Bz component 

is asymmetric and favors positive values. The cone angle is seen in Figure 3.18 

to have a large maximum at 100 degrees. This makes a perpendicular bow shock 

which is unlikely to be accompanied by ULF noise in the Pc3 range, see Greenstadt 

[1972], Russell et al. [1983], and Luhmann et al. [1986]. The spectrogram for this 

category is characterized by a  boundary region that is more intense in the morning 

than in the afternoon, and has a distinct minimum in power above 20 mHz in the 

central cusp.

Category 2 is thought to be an azimuthally rotated current system due to 

the large values of By in the GSM component histogram of Figure 3.18. Friis- 

Christensen [1985] show that the effects of By variations in the IMF are to cause 

an increase in the ionospheric currents on one side or the other of magnetic noon 

preferentially with the sign of By. Thus the relative increase in signal amplitude 

seen at our one station around local magnetic noon is seen as an azimuthal rotation 

due to the By effect.

Category 3 has power in the Pc3 frequency band near the cusp because the cone 

angle is small. This causes the bow shock to destabilize, see Greenstadt [1972], and
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the magnetosheath to fill with compressional Pc3 wave activity, see Engebretson et 

al. [1987]. This causes Pc3 activity in the cusp, see Engebretson et al. [1990], and 

accounts for the increase in signal seen in the central cusp periods for this category.

■ It is interesting that no category was found with a predominately Bz south 

IMF, which would be expected for a state driven by reconnection. Analysis of the 

IMF data reveal that there is no statistical difference in the IMF between the days 

that have an arch and those days with no arch. If the arch is to be assoicate with 

reconnection at the dayside magnetopause then this observation seems to indicate 

that the amount of time the IMF Bz component is negative is not statistically 

important. However the arch may not be a direct result of reconnection, but 

rather the vibrating of the last closed field line on the magnetopause. I will return 

to these two possibilities in further detail in Chapter 4.

This chapter has shown that the ground-based ULF pulsation spectrograms 

are correlated with the optical data in a consistent manner, and that taken as 

an entire data set, give a broad description of the dayside morphology as seen at 

cusp latitudes. The three main spectral categories observed in the ULF pulsations 

are seen to have different IMF distributions. The next chapter turns from this 

morphological view of the dayside ULF spectrum and concentrates on specific 

quantitative measurements taken from the time series of individual days.
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CHAPTER 4 

Analysis of cusp magnetic observations

In this chapter, I will concentrate on the cusp magnetic spectrum and time 

series, and look at the possible sources of the magnetic perturbations. The mor­

phological categories described in Chapter 3 are used to order the observations. 

This allows us to differentiate the signals observed during the boundary region 

passage from those which occur when the cusp was in the “field of view” of the 

magnetometer.

The first two sections of this chapter deal with the power spectrum of the cusp 

ULF perturbations. I find that the spectral amplitudes can be fitted using a power 

law dependence on the frequency, and the spectral index of this fit is found to vary 

with the solar depression angle. This analysis suggests that there exists a pref­

erential geometry for transmission of higher frequency ULF perturbations during 

the course of the year with the summer cusp having larger high frequency ampli­

tudes. The third section presents the magnetic perturbations in the time series 

format. The fourth section of the chapter covers the temporal coherence length 

of the observed magnetic pulsations in the boundary regions and central cusp. I 

will show that the boundary regions have large amplitude pulses, and these pulses 

are phase incoherent with each other. The central cusp is characterized by phase 

coherent pulses which form wave trains, and are separated by the appearance of 

intense field aligned currents on the equatorward edge of the cusp. The fifth section 

discusses the origin of the pulsations observed, and tries to put the observations 

into context of overall knowledge about the cusp. The sixth section is a summary 

of the important findings in this chapter.
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4.1 Study of cusp ULF power spectra

In this section, I analyze the power spectra for 315 days spanning October 1990 

to April 1992. This is the same data set used in Chapter 3, with an additional 

62 days of data  from February to April 1992. Olson [1986] first published the 

observed power spectra of the cusp ULF perturbations, and noted that the data 

between 1 mHz and and 1 Hz are fit with a power law distribution of f-2 6. This 

power law fit represents an ensemble average over 237 days taken at Cape Parry 

Canada centered around the summer of 1983. The rms fluctuation of the ULF 

perturbations was found to be 5.9 nT, yielding an rms current variation amplitude 

of 2.9 x 103 A. Assuming a resistance of the cusp ionosphere of a few ohms, Olson 

[1986] finds the joule heating in the ionospheric cusp to be on the order of 4 x 107 

W.

I calculated the power spectral density for the entire data set, using the time 

periods as described in Table 3.4. Using the criteria outlined in Table 3.4 has the 

benefit of allowing the distinction between the boundary regions and cusp to be 

made, and is the major difference between this study and Olson [1986], who binned 

all 237 days into magnetic local time irrespective of variations of cusp location in 

magnetic time.

Figure 4.1 shows the power spectral density (psd) covering a  six hour time 

span on 9 January 1991. The upper panel is derived from the induction coil 

magnetometer, while the lower panel is derived from the fluxgate magnetometer. 

In both panels, the psd is shown on a log-log graph, with the best fit line between 

frequencies of 1 and 50 mHz plotted over the actual psd. I will refer to the slope 

of this best fit line as the spectral index. Note that the slope of the fluxgate psd 

decreases towards zero above 10 mHz. This is an artifact of the instrument. This 

response can be compared to the induction coil magnetometer and shows that 

the induction coil magnetometers are more sensitive at higher frequencies. These
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Figure 4.1. Example of power spectral density and power law fit for 9 January 
1991. This power spectral density is the average of 6 hours worth of data lasting 
from 05:52 to 11:52 UT. The data  are presented on a log-log scale, with the best 
fit line from 1 - 50 mHz shown plotted over the actual psd. The upper panel is 
derived from the induction coil magnetometer, and the lower panel is derived from 
the fiuxgate magnetometer. Note the psd for the fluxgate magnetometer flattens 
at higher frequencies.
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differences in the frequency response between the induction coil magnetometer and 

the fluxgate magnetometer led me to use the induction coil in all the studies that 

dealt with the psd of the magnetic fluctuations.

• Using Parseval’s theorem, the total variance in the original time series data can 

be found by integrating over frequency in the psd, [(see Jenkins and White 1968]). 

Such an integral results in a total variance in the 1 to 50 mHz range of 12.7 nT2 or 

an rms variation of 3.55 nT. This is slightly less than Olson [1986], who found an 

rms variation of 5.9 nT. These field amplitudes are equivalent to that which would 

be produced by a line current of approximately 1800 Amps if the line current 

were 100 km away or 3400 Amps if the line current were 190 km away. These 

estimates are determined by using Equation 3.1. Hardy etal. [1987] gives a height 

integrated Pederson conductivity value on the noon-midnight meridian plane at 75 

degrees magnetic latitude of 1.25 to 1.5 mhos. This conductivity is due to particle 

precipitation, since when the sun is below the horizon, particle precipitation is the 

dominant source of ionization. This conductivity corresponds to a resistance of

0.67 to 0.8 Ohms. Using this resistance and the above currents, we obtain a joule 

heating rate of 2.2 x 106 to 9.2 x 106 W atts, differing from that of Olson [1986] 

because Olson used a larger ionospheric resistance.

I computed the power spectral density of all 315 days of data and fitted a 

straight line to each day’s psd. The variance and spectral index were determined 

for each day, along with the category of the day as described in Chapter 3. The 

solar depression angle was also computed, and used to order the data. The solar 

depression angle is defined as the solar zenith angle minus 90 degrees, where the 

solar zenith angle is the angle between the zenith and the line to the sun. Thus, the 

solar depression angle is positive when the sun is below the horizon, and negative 

when the sun is above the horizon. A sketch of the geometry is shown in Figure 

4.2. The solar depression angle should have an effect on the magnetic fields because
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Figure 4.2. Geometry for relation between Solar Depression and Solar Zenith 
Angle. Note that when the sun is below the horizon the solar depression angle 
is positive, and when the sun is above the horizon the solar depression angle is 
negative.

the variation of solar EUV will have a significant im pact on the ionization rate and 

hence electron number density and ionospheric conductivity. If the conductivity 

changes with solar depression angle, I expect a change in the currents, and thus 

the measured magnetic fields on the ground. In the following figures the spectral 

index and the variance for each day are shown versus solar depression angle

Figure 4.3 shows how the spectral index, variance and photoionization rate 

vary with solar depression angle for the entire da ta  set. The top panel shows how 

the spectral index varies with solar depression angle. Each data  point represents 

the best fit of one day’s data. The data clearly fall around a straight line, and
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Figure 4.3. The top panel shows how the spectral index varies with solar 
depression angle. The best fit line and uncertainty bands associated with the best 
fit parameters are also shown. The middle panel shows the variance in the 1 - 
50 mHz frequency band versus solar depression angle. Again the best fit line and 
fit parameters are shown. The lower panel shows the ratio of the photoionization 
rates at 105 and 120 km to the rate at 105 km and -40 degrees solar depression 
angle versus solar depression angle.
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the ensemble has been fit with a line and the slope and intercept are shown along 

with the uncertainties in the slope and intercept. This best fit line, along with 

the uncertainty bars associated with the uncertainties in the fit parameters, and 

the fit parameters themselves, are also shown. I find the slope of this line, 5  =  

—1.7 x 10-2 ±  1.7 x 10~3, a statistically significant variation in the spectral index 

is seen with solar depression angle. The middle panel shows the variance in the 

1 - 5 0  mHz frequency range of the induction coils versus solar depression angle. 

Again a variation with solar depression angle is seen. The intercept at 0 degrees 

solar depression angle is at approximately 36 nT2, in very good agreement with the 

average over 237 days reported by Olson [1986]. The lower panel shows the ratio of 

the photoionization rate at 105 and 120 km as a function of solar depression angle 

to the photoionization rate at 105 km and -40 degrees solar depression angle. These 

photoionization rates were calculated using equation 2.3.4 described in Rees [1989], 

with the MSISE-90 model atmosphere being used to calculate number densities of 

O, N2, and 0 2, see Hedin [1991]. This ratio shows that for solar depression angles 

larger than approximately -20 degrees the photoionization rate is less than half 

of what it was at -40 degrees. This is important because most of our data have 

solar depression angles greater than -20 degrees. Thus most our data are collected 

in periods when the contribution of ionization rate due to photoionization is the 

least.

Three important features of Figure 4.3 are that the spectral index, and the 

variance of the magnetic pulsations vary with solar depression angle, and that most 

of the data were taken when photoionization was at a relative minimum. The 

spectral index and variance are measures of the magnetic perturbations, which 

are proportional to the perturbations in the current density in the ionosphere as 

described by Ampere’s law. Fukushima [1976] shows that for a uniform conductivity 

and vertical line currents, the magnetic perturbations measured on the ground are
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due only to the Hall current since the perturbations due to the Pederson currents 

are canceled by the perturbations caused by the vertical line currents. Hughes 

[1974] also showed that the ionosphere serves to screen out micropulsation signals 

incident on it from the magnetosphere, while Hughes and Southwood [1976] showed 

that horizontal spatial variations in micropulsations incident on the ionosphere 

which were smaller than a scale height of the ionospheric height, approximately 

120 km, were screened out from ground observations. Glassmeier [1984] extends 

this work for the case of nonuniform conductivity, and achieves the same basic 

result, with the modification that the Pederson currents are not totally screened 

when the conductivity is non-uniform. To first order then, the perturbations giving 

rise to  the spectral index and variance can be modeled as perturbations in the Hall 

current density in the ionosphere.

These Hall current density perturbations can be written in a simplified Ohms 

law as;

SJh = C7H6Eion, 4.1

where 8Eion is the electric field amplitude in the ionosphere. To determine the 

spectral index of the power spectral density requires that the fourier transform of 

equation 4.1 be taken, and this leads to two possible results. If the conductivity is 

constant in time, then the changes in spectral index must be attributed to changes 

in the electric field source psd. If the conductivity is allowed to vary in time during 

the course of one day, then the result of the fourier transform will be a convolution 

in frequency. I have sorted the data by category as described in Chapter 3, with 

hopes that this will shed light on which of these two assumptions dominates the 

observations. Any changes in the spectral index due to conductivity changes should 

be seen in all three categories assuming that no differences due to the characteristic 

energy of the precipitating particles exist between the three different categories. In
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chapter 3, I showed that the categories represent different IMF states at the bow 

shock, and by inference different states of the dayside magnetosphere. If changes in 

the spectral index appear in the one or two of the categories, but not all three, then 

the dominating influence will be changes in the electric field, which is a reflection 

of the electric field of the magnetosphere which is mapped down to the ionosphere.

Figures 4.4, 4.5, and 4.6 show the variation of the spectral index and variance 

versus solar depression angle for Categories 1,2, and 3 respectively. Note that the 

three figures have different scales on the ordinate. Note that the slope of the best 

fit line of the spectral index for Category 1 is statistically smaller than that of 

Category 2 and 3. This slope is also smaller than that found in the overall data 

set as shown in Figure 4.3. A similar trend is seen in the variances, but the effect 

is less pronounced. This is an important result that helps answer the question of 

whether the conductivity changes or electric field source changes are driving the 

change in spectral index.

I believe the evidence given shows that the changes in the ionospheric electric 

field, the 8E{on in equation 4.1, may be responsible for the changes seen in the 

spectral index with solar depression angle. As discussed in Chapter 3 the IMF cor­

relations with Categories 2 and 3 showed cone angle distributions that indicated 

quasi-parallel shock geometries, while Category 1 was associated with a perpendic­

ular shock geometry, see Figure 3.17. I interpret this as indicating that the source 

of the higher frequency ULF perturbations in the cusp is dominated by upstream 

wave activity caused in the bow shock when the IMF cone angle is in the con­

figuration shown for Categories 2 and 3. This high frequency (20-50 mHz) noise 

observed within the cusp is increased when the solar depression angle is small, and 

the spectral index is reduced as well. The central cusp in Category 1 does not 

have a large component of high frequency (20 - 50 mHz) noise, and hence does 

not show the same variation in solar depression angle. I know of no apriori reason
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r  vs Solar Depression Angle
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Figure 4.4. Spectral index, and variance versus solar depression angle for 
Category 1. The top panel is the spectral index versus solar depression angle, and 
the lower panel is the variance versus the solar depression angle. Note that the 
spectral index variation with solar depression angle is statistically less than that 
found for the entire data set. This is also true for the variance as a function of 
solar depression angle.
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Figure 4.5. Spectral index, and variance versus solar depression angle for 
Category 2. The top panel is the spectral index versus solar depression angle, and 
the lower panel is the variance versus the solar depression angle. Note that the 
spectral index variation with solar depression angle is larger than that found for the 
entire data set. This is also true for the variance as a function of solar depression 
angle.
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Figure 4.6. Spectral index, and variance versus solar depression angle for 
Category 3. The top panel is the spectral index versus solar depression angle, and 
the lower panel is the variance versus the solar depression angle. Note that the 
spectral index variation with solar depression angle is larger than that found for the 
entire data  set. This is also true for the variance as a function of solar depression 
angle.
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to believe that the time scale of conductivity changes with category. This would 

indicate that a significant effect in the spectral index due to conductivity changes 

should show the same general trends in all three categories. Since the Category 

1 spectral index has a much smaller response to the solar depression angle when 

compared to Categories 2 and 3, I think that the changes seen in the spectral 

index are dominated by the power spectral density changes in the electric field in 

the ionosphere.

A physical model of the dependence of the spectral index with solar depression 

angle can be gained from looking at the mapping of the cusp field geometry with 

season, and assuming that the source of the higher frequency portion of the psd 

is upstream noise associated with instability in the subsolar region of the bow 

shock. Figure 4.7 shows the magnetic field line map of the magnetosphere using 

the Tsyganenko 1989 model, see Tsyganenko [1989]. This map is calculated for the 

winter solstice, and also shows the bow shock location, calculated via the empirical 

fits o(SlavinandHolzer [1981]. As noted before, any noise generated in the subsolar 

portion of the bow shock dominates the source of the high frequency noise in 

the magnetosheath. This means differences in the propagation geometry through 

the magnetosheath and into the cusp will play an important role in the received 

spectra in the summer and winter cusp. In terms of magnetic field topology, the 

cusp is roughly the location where closure of magnetic field lines switches from 

the dayside to the nightside of the earth. Figure 4.7 clearly shows a difference 

of the summer and winter cusp with respect to the axis of the earth-sun line. 

The summer cusp has easier access to the the higher frequency noise generated in 

the bow shock, and thus its spectral index is reduced. This difference is mainly 

due to the orientation of the earth’s rotation and dipole axes with respect to the 

solar ecliptic. In this explanation, the change in the spectral index is caused by 

the differing propagation paths that the high frequency noise must take to enter
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Figure 4.7. Topology of magnetic field and bow shock location for winter 
solstice in GSM coordinates. The magnetic field topology is calculated using the 
Tsyganenko field model, and the bow shock is calculated using the empirical fits 
of Siavin and Holzer. The dotted line is at 79 degrees magnetic latitude, and 
represents the average latitude of the cusp. Note that with respect to the earth 
sun line, the x axis, that the two cusp field geometries are very different. The 
summer cusp has easier access to the higher frequency noise generated in the bow 
shock, and thus has a reduced spectral index.
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the cusp at ionospheric levels. This change in geometry is continuous during the 

year, and the effect roughly follows the solar depression angle. Thus the spectral 

index data are ordered by the solar depression angle not because of changes in the 

ionosphere, but by a geometry change in the magnetic field topology that follows 

the solar depression angle.

The variance of the ground magnetic perturbations is changing because the 

photoionization rate clearly changes with the solar depression angle. The Hall 

conductivity is proportional to the electron number density, see Rees [1989], and 

the number density is driven by the ionization rate. Thus as the ionization rate 

increases with smaller solar depression angle the conductivity increases, and hence 

the observed currents and magnetic fields change. If this explanation is accepted 

then a rough calculation of the change in conductivity between winter and summer 

solstice is available, and is the subject of the next section.

4.2 Estimation of cusp current system parameters

Given the assumptions detailed in the previous section, several cusp current 

system parameters can now be estimated. The magnetic perturbations are pro­

portional to the perturbations in the current density, which is proportional to the 

conductivity. Since the variance in the magnetic field perturbations is proportional 

to the square of these perturbations, we obtain the conductance ratio;

So, _  / Var 8Be, 49
So2 V Var 6Bg2 ’

where

Var 6B0l =  S61 +  / ,  4.3

and
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Var SB$2 — SO2 +  / .  4.4

Here the slope (5) and intercept ( /)  are taken from the best fit parameters deter­

mined in Figure 4.3.

Using the solar depression angles of 13.9 and -32.7 degrees for the winter and 

summer solstice, respectively, we obtain a ratio of the conductivity changes be­

tween winter and summer of 2.5 ±  0.6. This can be compared to other empirical 

estimates of dayside height integrated conductivity such as Hardy et. al. [1987], 

who calculates the conductivity due to precipitating particles. The conductivity 

due to precipitating particles can be combined with the solar ionization produced 

conductivity of Robinson and Vondrak [1984] by summing in quadrature, see Wallis 

andBudzinski [1981]. I used a solar 10.7 cm flux (5a) of 200 (10-22 W m“2 Hz-1) 

in the calculation of solar contribution to conductivity, and added a background of 

1 mho for the case when the solar zenith angle was greater than 90 degrees. The 

solar contribution to the conductivity is;

S p =  0.88(Sacosx)°-5, 4.5

while the contribution due to particle precipitation is taken from Figure 6 of Hardy 

et. al [1987], and is 1.75 - 2.0 mhos. This gives a total conductivity of 4.6 mhos at 

the summer solstice, and 2.23 mhos at the winter solstice, yielding a ratio of 2.1 

in good agreement with my calculation based on magnetometer variance fits over 

the 315 days of data.

As noted earlier the variance can also be used to predict the current flowing 

in the ionospheric cusp region as a function of distance from the measurement 

location assuming the current is a line current. This results in the following; is;
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r  2 n R < /S 0 T 7  . .■'ion(amps) = ----------------- , 4.6
N

where again S  is the slope and I  is the intercept from the variance best fits with 

solar depression angle shown in Figure 4.3, and R  is the assumed distance to the 

current filament.

4.3 Time series of magnetic perturbations

The arch as described in Chapter 3 was found by looking at the spectrogram 

version of the data. The spectrograms were made from the induction coil data, and 

it is of interest to look at the fluxgate data during this time to see if any identifying 

characteristics in the time series can be seen.

Figure 4.8 shows an expanded version of the fluxgate and induction coil mag­

netometer signals for 9 January 1991 from 04:00 to 12:00 UT. In this figure the 

H induction coil, and the x component of the fluxgate are positive along magnetic 

north, and the D induction coil, and y component of the fluxgate are along mag­

netic east. The z component of the fluxgate is positive down. Magnetic north is 

45 degrees west of geographic north.

Note that from 05:00-07:30 and 10:30 to 11:30 the induction coils show the 

largest pulsations, and this corresponds to the times identified as the boundary 

regions in the spectrograms. During the boundary regions the fluxgate magne­

tometers show large amplitude (approximately 40-50 nT) pulses. During the cen­

tral cusp period from 7:30-10:30 there are small amplitude (approximately 3-5 nT) 

pulsations in the fluxgate data in all three components. These small amplitude 

oscillations are typical of the data observed during the arch on many days. While 

each day is unique, the time series shown is representative of the Category 1 data. 

I have found that in general the boundary layers are the easiest to spot in the time
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Figure 4.8. Time series for magnetometer on 9 January 1991. The top two pan­
els are the H and D induction coils, the bottom three panels are the X,Y,Z fluxgate 
components respectively. Note the large amplitude pulses seen in the boundary re­
gion from 05:00-07:30 and from 10:30-11:30. Also note the small amplitude pulses 
from 07:30-10:30 UT
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series of the magnetic data. The small amplitude pulses in the central cusp can 

typically be seen, but many times looking at the spectrogram is necessary to find 

the exact time of the arch.

' Large amplitude pulses in the boundary regions are also seen by Sakurai et 

al. [1993] who show time series data  taken on 4 November 1989 at Godhaven 

Greenland. While the fluxgate data  are not shown in enough resolution to see the 

small oscillations during the central cusp period, the boundary regions are clearly 

visible in both the induction coil and fluxgate measurements. Sakurai et al. [1993] 

also report that the enhanced region of ULF wave activity seen at the  cusp is 

accompanied by a negative excursion of the FI (North-South) flux gate magnetic 

field. They interpret this to be the station passing underneath a westward directed 

current system in the ionosphere. This period corresponds to the boundary region 

passage at their station, and Sakurai etal. [1993] state that such negative deviations 

on the H component are recurrent in their data.

4.4 Temporal coherence length of cusp pulsations

In this section, I use the Hilbert transform to manufacture the analytic portion 

of the magnetometer signal and look at the instantaneous phase angle of these 

signals. I will show th a t the magnetic pulses seen in the boundary regions are 

phase incoherent from each other. This means that a large jump is seen in the 

instantaneous phase between each pulse. I show that the pulses in the central cusp 

region are phase coherent over approximately 5-10 periods, and th a t one train 

of coherent pulses ends and another begins in the central cusp when a downward 

electron flux appears on the equatorward side of the cusp. As described in Chapter 

2 this downward electron flux can be considered the component of field aligned 

current carried by the elctrons. In the rest of this chapter I will refer to such 

observations as field aligned currents, or FAC’s. The difference between the pulses

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in the boundary region and the central cusp is important when trying to decide on 

their possible sources.

Bracewell [1965] gives an excellent discussion of the use of the Hilbert transform 

to manufacture the analytic part of a signal that has a quasi-monochromatic signal 

in time, f (t).  The analytic part of the signal can be constructed as /(<) =  /(<) — 

where;

This allows determination of the phase of the quasi-monochromatic part of the 

phase via $  =  tan -1 ^ imag( f ) / rea l ( f )  j  . For a signal that is broad band, and 

not quasi-monochromatic, the reconstructed phase angle will have random jumps 

in it and this method will fail. However in our application I have shown in Chapter 

3 that the arch is dominated by a narrow band tone at approximately 3-5 mHz, 

and that the boundary regions have a signal in the low Pc5 range that is 10 dB 

above the rest of the frequency spectrum.

I have used the Hilbert transform in the MATLAB package to perform such 

an analysis on the data from 9 January 1991. This Hilbert transform routine is 

based on the Kolmogorov method as described by [Claerbout, 1976]. Figure 4.9 

shows the x component of the fluxgate for 9 January 1991. The upper panel shows 

the unfiltered data, while the middle panel shows the same data after having been 

passed through a low pass filter with a corner frequency of 6 mHz. The lower panel 

shows the phase using the analytic signal reconstructed from the Hilbert transform.

The low pass filter was applied to insure that the higher frequency components 

of the boundary regions did not cause random phase jumps in the Hilbert trans­

form. The filter is a third order elliptical filter with 1 db of ripple in the passband, 

and the corner frequency 50 db down from the passband. The filter has been 

applied in the forward and backwards direction to insure casuality in the data,
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Unfilitered X 9 Jan 1991

Hours (UT) 
Filtered X 9  Jan 1991

Hours (UT) 
Phase Angle X 9 Jan 1991

Hours (UT)
Figure 4.9. Fluxgate x component phase diagram, 9 January 1991. The top 

panel is the unfiltered x component of the fluxgate, the middle panel is the same 
data low pass filtered with a corner frequency of 6 mHz. The bottom panel is the 
phase angle of the filtered data, note the large phase jumps after each of the large 
pulses in the boundary region. Also note that the phase is very steady from 08:00 
to 09:00, and then has interm ittent phase jumps after that time.
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resulting in an effective sixth order filter. Inspection of the filter characteristics in 

the frequency domain, not shown here, reveal that the filter has only very small 

phase variations with frequency.

• Figure 4.9 shows that after each one of the large pulses in the 05:00 - 07:00 

UT time period there is a jum p in the phase angle. In particular, the pulse that 

ends at 05:30 shows a  large phase jump. The next large pulse that starts at 06:00 

is begun with a large phase jum p, again showing the impulsive nature of the large 

amplitude pulses in the boundary region. W ithin the time period of the central 

cusp, 07:30-10:30 (UT), there are periods with stable phase separated by jumps in 

the phase angle. For instance in Figure 4.9 from roughly 07:30 - 08:30 UT the 

phase angle remains very stable, with no large jumps in the phase angle. During 

this period these pulses can be considered part of a phase coherent train of pulses, 

that have a coherence length of about 10 periods. This number was determined by 

counting the actual number of periods between the phase jumps. The large pulse 

seen at 11:00 again shows a  phase jum p, although not as dramatic as that in the 

prenoon boundary region. Thus the pulses in the central cusp form wave trains 

that suffer interm ittent phase jumps, while the pulses in the boundary region are 

impulsive in nature.

Another example of the phase coherency of the central cusp is seen in Figure 

4.10, which presents data  from a Category 2 day. Remember the Category 2 days 

do not show prominent boundary region signatures, and the data from Figure 4.10 

show that there are no large amplitude pulses which are impulsive in nature. The 

spectrogram for this day, not shown here, shows an arch centered at 06:00 UT. 

Notice that the period from 05:00 UT to 07:00 UT is filled with small amplitude 

(approximately 5 nT) pulses, that seem to come in phase coherent trains that 

last from 7-10 periods. The tim e period from 05:00 to 05:50 shows phase jumps, 

however the period starting at 05:50 and lasting to 6:45 does not show large jumps
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Figure 4.10. Fluxgate X component phase diagram, 8 November 1990. Similar 
format to Figure 4.9. This day is from Category 2, and the spectrogram shows an 
arch centered at 06:00 UT. Notice the lack of large amplitude pulses that charac­
terize the boundary layers in Categories 1 and 3. Also notice the small amplitude 
pulses th a t have a constant phase from just before 06:00 UT and last to about 
06:40 UT. Again these pulses form a phase coherent train that lasts 7-10 periods.
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in the phase. This example shows that the pulses seen in the time series when the 

arch is evident in the spectrogram are consistent across different categories.

Figure 4.11 is the final example of the phase coherency of the pulses in the 

arch. The data for this example were measured on 22 December 1990, which was 

a Category 3 day. The spectrogram showed an arch centered at 08:30 UT on 

this day, with the pre-noon boundary region being much stronger than the post- 

noon boundary region. Notice the 20 nT pulse seen at 07:30, characteristic of the 

boundary regions. The phase angle is seen to jump at end of this pulse at 07:40. 

A smaller amplitude pulse lasting from 07:40 to about 07:50 also terminates in a 

small phase jump, and then the phase angle shows very steady growth with no 

phase jumps from 08:00 until just before 09:00. Small amplitude pulses forming a 

phase coherent train are seen during this entire period.

As seen in Figure 4.9, there is a jump in the phase angle of the x fluxgate at 

approximately 09:00 UT on 9 January 1991. This phase jump is associated with 

an intense field aligned current that appears at the equatorward edge of the cusp 

and moves poleward. Figure 4.12 shows the upward field aligned current (FAC), 

as derived from the downward flowing number flux of the electrons, for the periods 

05:00- 11:00 UT on 9 January 1991. The upper panel is the usual two dimensional 

map in latitude versus time. The lower panel is a time series made from the data 

by integrating over latitude. The time series shows that, starting around 06:00 UT, 

the latitude integrated FAC increases, and shows variations in intensity until after 

10:30 when it decrease back to ambient levels. One large spike is seen at 05:30 UT 

that is associated with a FAC directly over the station. The time series also shows 

a pronounced dip at 07:00 UT which is due to a data drop out. The large FAC’s 

seen at 08:00, 09:00 and 09:30 all show evidence of poleward propagation. Since 

the MSP is a one-dimensional instrument such interpretations can be in error, but 

it is fair to say that regions of equal intensity are seen poleward at later times.
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Figure 4.11. Fluxgate Y component phase diagram, 22 December 1990. Similar 

format to Figure 4.9. This day is from Category 3, and the spectrogram shows an 
arch centered at 08:30 UT. Notice the large amplitude pulse at 07:30 is terminated 
with a phase jump, and then the smaller pulses after it also show a small phase 
jump at approximately 07:50. The period of the arch, after 08:00 to just before 
09:00, shows stable phase growth.
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Figure 4.12. Inferred component of the field aligned current (FAC) carried by 
downward flowing elctrons on 9 January 1991. The upper panel shows latitude 
versus UT hours over the period 05:00 - 11:00 UT. The lower panel is a  tim e series 
of the same data with the latitudinal portion integrated out, the resulting units 
are am ps/m . Notice there is an distinct equatorward boundary to the the intense 
FAC at approximately 0.5 degrees north of the station. The dip in the tim e series 
at 07:00 and 11:00 UT is due to data  drop out.
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The phase jumps seen in the X component of the flux gate at 09:00 and 09:30 are 

seen to be associated with the large poleward propagating FAC’s.

Figure 4.13 further demonstrates this correlation. In this figure the upper 

panel is the low pass filtered X component of the fluxgate, the next panel is the 

latitude integrated FAC, the next panel is the phase angle diagram for the X 

component, and the bottom panel is the phase angle diagram for the Y component 

of the fluxgate. Notice that the large amplitude pulse in the boundary region that 

ends in a phase jump at 05:30 is associated with a FAC directly over the station. 

The next large amplitude pulse that begins with a phase jump at 06:00 does not 

show any signs of an associated FAC. At 06:30 UT there is an increased FAC seen 

associated with the phase jumps in the X component. At 07:00 UT both the X 

and Y components show phase jumps, but there is only a slight increase in the 

FAC. It seems clear however that the phase jumps in the Y component at 08:00 

UT are accompanied by a large FAC , and similarly for the X component at 09:00 

and 09:30 UT.

That the boundary regions have phase incoherent pulses is not a new observa­

tion. Olson [1986] also referred to individual pulses seen in flux gate data taken 

at a cusp station in Cape Parry that were not coherent. Looking at Olson [1986] 

figures 8 and 11, it is clear that the pulses mentioned are in the pre-noon bound­

ary region, and are of the large phase incoherent pulses presented in this section. 

Olson [1989] uses a combination of two stations at Sachs Harbor and Cape Parry 

to show that these pulses propagate poleward with velocities between 1-5 km/sec. 

As mentioned, Sakurai et al. [1993] also report impulsive pulses in the Pc5 fre­

quency range during the boundary region period. Sakurai et al. [1993] also show 

data for the same day from an auroral latitude station at Syowa, and its conjugate 

station at Husafell. Their measurements indicate that while the Pc5 oscillations 

are impulsive at the cusp latitude station the auroral latitude stations show wave
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Figure 4.13. Comparison of Latitude Integrated FAC’s and magnetometer 
phase jumps in the X and Y components of the fluxgate on 9 January 1991. The 
upper panel shows the filterd X component of the flux gate, the next panel the 
latitude integrated FAC, the next panel the phase diagram for the X component 
and the bottom panel the phase diagram for the Y component of the fluxgate. See 
text for discussion.
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train like signatures that are consistent with field line resonances on closed field 

lines. From these observations Sakurai et al. [1993]conclude that ".. the Pc5 pulsa­

tions observed at Godhaven seem to have a  signature of a source wave, while the 

pulsations observed in the auroral latitudes show continuous wave train with more 

enhanced power.” It seems then that the Pc5 oscillations are separable into two 

distinct classes, those seen in the boundary layers, and those seen in the central 

cusp. The possible physical sources of these two different classes are investigated 

in the next section.

4.5 Possible sources of cusp pulsations

This section investigates the physical sources that might explain the observa­

tions seen in the magnetometer data. I will investigate the pulsations seen in the 

boundary region first, and then those seen in the central cusp, since the two have 

different observables.

4.5.1 Boundary Region Phenomena

It seems appropriate before starting the search for physical sources of the 

boundary region pulsations to review the important observations already presented. 

The examples presented in the last section, and the work by Olson [1986,1989], 

Lanzerotti e ta l. [1986,1987,1991], Lanzerotti [1990] and Sakurai e ta l. [1993] lead 

me to conclude that the periods I call the boundary regions are characterized by 

large amplitude, impulsive pulses which are phase incoherent. These pulses are 

caused by filaments of ionospheric current of approximately 105 Amps that propa­

gate poleward with velocities of 1-5 km /sec,[Olson, 1989]. Poleward propagation of 

these current filaments may be associated with the poleward propagating optical 

forms reported by Vorobjev et al. [1975], Horowitz and Akasofu [1977], Sandholt et 

al. [1986b], Sandholt e ta l [1989a;c], and Fasel et al. [1992]. Some of the poleward
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propagating forms mentioned are in the boundary region, see Fasel et al. [1992], 

while some are in the cusp region, see Sandholt et al. [19S9a;c]. I will deal in this 

section with those in the boundary regions.

' These boundary region oscillations seem to be associated in time with field line 

resonances a t auroral latitudes, Sakurai etal. [1993]. The oscillations are seen in the 

conjugate hemisphere at the same time, Sakurai e ta l [1993], Lanzerotti etal. [1990] 

and Lanzerotti et al. [1991]. Lanzerotti et al. [1991] report field aligned currents 

associated with the very large amplitude oscillations (95 nT in the Z component) 

of approximately 2 X 10~7 amps- m~2. This can be compared with the factor of 

10 more intense field aligned current presented in the boundary regions seen on 9 

January 1991, and presented earlier in Figure 4.11.

The other set of observations that pertain to the boundary region observations 

are the traveling vortices reported by Friis-Christensen et al. [1988], McHenry et 

al. [1990a], McHenry et al. [1990b], Glassmeier et al. [1989], Glassmeier [1992] and 

Glassmeier and Heppner [1992]. These observations, when taken as whole, indi­

cate the existence of very large scale, 3000 km in longitude by 2000 km vortices 

with oppositely directed field aligned currents aligned on an east-west axis, which 

propagate tailward, Glassmeier and Heppner [1992]. The propagation velocity is 

approximately 5-10 km/sec measured in the ionosphere, Glassmeier and Heppner 

[1992]. The parallel currents associated with these vortices are found to be directed 

downward on the tailward side of the vortices, Glassmeier [1992]. Given this bewil­

dering array of observational facts, it is not surprising that several different possible 

physical sources have been postulated for these pulsations. I will discuss four of 

the sources briefly and comment on the observational evidence supporting them. 

These sources are in order of their appearance in the text: 1. Kelvin-Helmholtz 

instability; 2. Solar wind pressure pulses; 3. Impulsive plasma penetration; and

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. Magnetic reconnection. A good review of the final three sources is given by 

Glassmeier [1992] in connection with traveling ionospheric vortices.

The Kelvin-Helmholtz instability is one of the first explanations of the ob­

served reversal of ellipticity around magnetic noon in Pc5 observations, Samson 

eta l. [1971], and Rostoker et al. [1972]. The Kelvin-Helmholtz instability occurs 

when a shear flow exists in a plasma such as the magnetopause boundary. The 

magnetosheath flow picks up speed as it proceeds away from the subsolar point, 

Spreiter and Stahara [1985], while the magnetopause and then the inner magneto­

sphere both have a slower flow rate. Thus Lee et al. [1981] show that the Kelvin- 

Helmholtz instability can exist both in the interface between the magnetosheath 

and the magnetopause, and on the inner boundary between the magnetopause and 

the magnetosphere. They also show that growth of the instability in the magne­

topause is not only dependent upon the speed of the shear flow, but the relative 

orientation of the magnetic fields in the two plasma regions. The inner boundary 

between the magnetosphere and the inner boundary region is almost always unsta­

ble, and is insensitive to the orientation of the magnetic field in the magnetosheath. 

Lee and Olson [1980] show that the onset of the Kelvin-Helmholtz instability not 

only has a velocity threshold, [see Southwood 196S], but is controlled by the angle 

between the magnetic field in the magnetosheath and magnetosphere.

The Kelvin-Helmholtz instability can be linked to lower latitudes using the 

field line resonance model of Southwood [1974] and Chen and Hasegawa [1974]. 

In this model, the Kelvin-Helmholtz instability on the magnetopause can couple 

the energy of the surface wave into the inner magnetosphere, and the energy is 

transm itted to the ionosphere via a shear Alfven wave. This model is successful at 

describing many of the observed features at auroral latitudes, specifically the tilt 

of the polarization ellipse in the morning and afternoon, as well as the reversal of 

the ellipticity about magnetic noon. In a similar idea, Samson et al. [1991] show
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that a cavity mode can be set up between the ionosphere and the magnetosphere 

can be a source of low frequency oscillations.

The Kelvin-Helmholtz instability would seem to be a good candidate for de­

scribing the pulses seen in the boundary region away from local noon since the 

flow speed in the flanks is greater than at the subsolar point. However the Kelvin- 

Helmholtz instability does not describe why pulses would be seen to propagate 

poleward; rather we would expect them to show an azimuthal movement. While 

the instability has been shown to exist over a large scale size, (Wei and Lee, sub­

m itted to J. Geophvs. Res.. March 1992), it does not predict the observed oppositely 

directed field aligned currents seen in the tailward moving twin vortices. Despite this, 

McHenry et al [1990a] use the Kelvin-Helmholtz instability as the source of the twin 

vortices.

Friis-Christensen et al. [1988], in the first report on twin ionospheric convecting 

vortices, linked the appearance of the vortices to a sudden change in the solar wind 

pressure. Farrugia et al. [1989] show magnetometer data from ISEE 1 and ISEE 2 

that indicate an azimuthally propagating compression of the magnetosphere, and this is 

correlated with a twin vortex system. Glassmeier [1992] and Glassmeier and Heppner 

[1992] show convincing evidence that on a theoretical basis, a short duration change 

in the solar wind pressure can lead to a compression of the magnetopause, which can 

lead to a twin system of oppositely directed field aligned currents. These field aligned 

currents lie along the axis of propagation of the compression of the magnetopause, and 

will propagate tailward with the solar wind flow. These tailward propagating vortices 

might be the cause of the longitudinal phase variations reported by Olson adn Rostoker 

[1978]. It is interesting to note that two of the large pulses seen in Figure 4.13 in the 

boundary region at 05:30 and 11:30 UT are associated with large upward field aligned 

currents. This might be evidence of the near field magnetic perturbations associated 

with twin convecting vortices. The field aligned current amplitude matches well with
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that calculated by Glassmeier and Heppner [1992]. Thus it would seem that pressure 

changes in the solar wind can better explain the twin convecting vortices seen at cusp 

latitudes. Sibeck [1990] points out that pressure fluctuations in the solar wind can 

generate many of the same features that are associated with magnetic reconnection.

The next two possible sources of boundary region pulsations are magnetic recon­

nection and impulsive plasma penetration. In both cases, plasma containing mass and 

hence momentum is allowed to cross the magnetopause boundary. This transfer perturbs 

the closed field lines inside the magnetopause each time the event happens, and this 

perturbation causes the field lines to oscillate. Each of these oscillations is seen as an 

impulsive event on the outer field lines that thread the magnetopause, and hence maps to 

cusp latitudes. The lower latitude field lines respond via the field line resonance already 

described in the Kelvin-Helmholtz instability. In the field line resonance model it little 

matters what the source of the surface perturbation is, only that it exists.

Magnetic reconnection at the dayside magnetopause traces it roots back to Dungey 

[1961]. The interplanetary magnetic field interacts with the terrestrial magnetic field 

and field lines that were closed in the magnetosphere are now open to the solar wind. 

This magnetic merging between the IMF and the terrestrial field allows access to the 

magnetosphere of magnetosheath particles, and serves as a source of kinetic energy 

for the plasma due to the conversion of magnetic field energy, [Parker, 1957]. The 

steady-state version of reconnection presented by Dungey [1961] has been modified as 

observations started to appear, [Russell and Elphic, 1978,1979]. For an early review of 

this dynamic area, [see Cowley 1982].

Impulsive penetration is a competing view to reconnection that seems more con­

troversial. Heikkila et al. [1989] point out an isolated instance where an impulsive 

event is seen to occur on closed field lines, which they think shows that it did not 

happen because of reconnection. In their view “  ... impulsive penetration of solar wind 

plasma on an interplanetary magnetic flux tube took place through the magnetopause,
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ending up in the low latitude boundary region.”  Heikkila et al. [1989] show that for 

impulsive penetration to happen, the MHD frozen in condition must not apply, and that 

the inductive term in Faraday’s law must play a significant role in the electrodynamics. 

Itremains to be seen whether the idea will hold up, but the theory does point out that 

questioning the basic assumptions behind commonly accepted view points is often worth 

while.

In summary, the pulsations seen in the boundary region can have a variety of 

sources. The Kelvin-Helmholtz instability was an early explanation of ULF pulsations 

in the magnetosphere, and still seems a good candidate, especially when considering 

the time periods of the boundary regions. In Chapter 3 the statistical occurrences of 

the boundary regions were shown to be in the pre-noon and post-noon sectors. These 

magnetic local times would map to the flanks where the shear velocity is larger than the 

nose of the magnetopause. On theoretical grounds the solar wind pressure pulse idea 

seems to be able to explain most of the observed features of the twin convecting vortices, 

but the observational evidence of McHenry et al. [1990b] finds no correlation of the 

vortices with pressure variations in the solar wind. Magnetic reconnection as a source of 

impulsive events in the boundary regions is somewhat hard to understand given the MLT 

distribution of the pulsations. However Friis- Christensen etal. [1985] have shown that 

the IMF By can control the high latitude current systems. The pulsations seen during 

the boundary regions may simply be a reflection of the location of these ionospheric 

currents. Since the By control is presumably brought about by the interaction of the IMF 

with the terrestrial field via reconnection, the idea that reconnection can be the source 

for the boundary region pulsations is at least possible.

In conclusion, I divide the pulsations seen in the boundary layers into two different 

groups, with the tailward moving forms associated with the twin convecting vortices 

being obviously different from the poleward propagating forms of Olson [1989]. The 

work of Sakurai et al. [1993] point out that the impulsive events seen at cusp latitudes
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are seen at auroral latitudes as wave trains due the field line resonance. This raises the 

tempting thought that the impulsive events seen in the boundary regions at cusp latitudes 

are the source of the lower latitude resonant wave trains. It seems that the boundary 

regions are a collection of impulsive events that have in common the magnetic local 

time of their occurrence.

4.5.2 Central Cusp Phenomena

Again I begin this section with a quick review of the important observations. The 

time period of the arch, which I take to be the central cusp, shows small amplitude 

pulses that form coherent wave trains for approximately 10 pulses. The frequency of 

these pulses can vary, but is typically seen to be approximately 5 mHz. The phase 

coherent wave trains are separated by the appearance of field aligned currents on the 

equatorward side of the cusp with intensities of a few p  amps • m-2. These field aligned 

currents propagate poleward. These phase coherent wave trains are found during the 

time the arch is seen on the spectrogram arches irrespective of which category is under 

observation. The statistical distribution of these events in magnetic local time was 

presented in Chapter 3. I can think of two different possible source mechanisms for 

such pulsations, first would be a field line oscillation on the last closed field lines just 

equatorward of the cusp, and the second is direct entry of the helical field associated 

with multiple X line reconnection on the dayside magnetopause.

A field line oscillation driven by some impulsive event could explain the phase 

coherent wave train of pulses that occasionally suffers a phase jump. In this picture the 

field line resonance is excited by either an intermittent pressure pulse or reconnection. 

The field line oscillates in phase at its resonant frequency until a new impulsive event 

re-excites it. If the re-excitation driving process is stocastic, the phase change will be 

random. The resonance period of high latitude field lines is on the order of 3-5 mHz, see 

Rostoker et al. [1972]. The model fails to describe why such oscillations are not seen
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Figure 4.14. Multiple X Line Reconnection Geometry taken from Figure 1. of Lee 
and Fu [1985]. “  (a)At time t = tu the field lines reconnect at the sites marked with 
ann "X". (b) At t =  ti, two helical lines lines A1A2 and F 2F1 are formed, (c) At t — t3, 
the helical lines A1A2 and F2F1 are wrapped by the newly formed field lines A [A 2 and 
F2F{.”

in the data during the boundary regions, which seem to be rich in possible excitation 

mechanisms. As shown, the coherent wave trains are seen in the central cusp, not the 

boundary regions. However the major trouble with this model is that it fails to describe 

why the phase jumps seen in the data are associated with an intense FAC. One way 

out of this dilemma is to say that the excitation mechanism is sporadic multiple X line 

magnetic reconnection on the dayside.

This explanation is similar to that of Lee et al. [1988], who extend the work of Lee 

andFu  [1985] pertaining to multiple X line reconnection. Figure 4.14 is a reproduction
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of Figure 1 of Lee and Fu [1985]. Panel (a) of Figure 4.14 shows three lines of 

reconnection, called X lines from now on, lying in the Y-Z plane. The open field lines 

from the IMF are shown as solid, and the terrestrial field lines are shown in dotted 

lines. The field lines reconnect along the X lines at the points marked with an x in 

panel (a). At some later time t 2 the newly reconnected filed lines will move due to the 

magnetic tension of the curved field geometry. This is shown in panel (b) of Figure

4.14, and now there are two tubes of flux that have moved away from each other. If 

By ^  0 then a helical magnetic field exists inside the flux tube. This is caused because 

the central X line is assumed to be longer than the top and bottom X line so that the 

field line marked A x can come in from the IMF side and intersect the middle X line 

first. A similar line marked A 2 exists on the magnetopause side. This helical field line 

is referred to as a type W line because of its resemblance to the letter W. The lines 

B XB 2 CxC2 D xD2 E xE 2 all reconnect only once, and form a more conventional 

single X line reconnection shape, and are called type V lines due to their resemblance to 

the letter V. A similar series events happens to the lower flux tube with F2FX forming 

the type W lines, and G2GX H2H X I2I X J2J X lines forming the type V lines. In 

panel (c) we see a later time t 3, here newly reconnected lines A'x A'2 are wrapped around 

the lines A XA 2 and the flux tube continues to grow until the reconnection process halts. 

Lee andFu  [1985] maintain that this is similar to the nonlinear saturation of the tearing 

instability. In this manner flux tubes are generated that have an internal helical magnetic 

field, and are associated with single X line reconnection fields on the poleward sides. 

This geometry relies upon the B y^  0 component, and also has the added advantage of 

automatically predicting parallel currents J|| in conjunction with the helical field. The 

sign of By determines the direction of J\\ since for By positive the helix is right handed 

going into the magnetopause. The current must support this right handed helix, so 

J|l • B 0 >  0. The sign of By also shows that J|| will flow into the post-noon sector in the
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Figure 4.15. Field Aligned currents associated with multiple X line reconnection, 
take from Figure 2. of Lee et al. [1988]. “  A perspective view of the three- dimensional 
magnetic field configuration associated with die multiple X line reconnection process on 
the dayside magnetopause. Field lines labeled with A,B,C and D are type V open field 
lines, and those labeled with type E and F are type W open field lines. The convection 
electric fields inside the elongated plasma clouds are denoted by E. The field aligned 
currents Jv are associated with elongated plasma clouds, while the field-aligned currents 
Jw are associated with the helical flux tubes.”

northern hemisphere for By > 0 and out of the pre-noon sector for By < 0. This is due to 

the fact that in Figure 4.14 only the line at A 2 will have access to the magnetopause.

Figure 4.15 is reproduced from figure 2 of Lee et al. [1988]. It shows a three 

dimensional view of the multiple X line reconnection configuration already described. 

In addition to the parallel current associated with the type W line described in Figure

4.14, it has two parallel currents associated with the type V lines marked A and B. These 

parallel currents are driven by the polarization charge that is built up by the convection
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electric field in the elongated plasma cloud that sits in the type V lines poleward of 

the flux tubes with helical magnetic field geometry. It should be noted that these 

field aligned currents will be insensitive to the sign of By, and will be symmetric when 

observed in opposite hemispheres. They are controlled by the direction of the convection 

electric field, and this is assumed to be dawn to dusk for Bz south conditions. The field 

aligned currents due to the type W lines will be asymmetric in opposite hemispheres, 

because the field aligned current must come out of the southern hemisphere and go into 

the northern hemisphere for By > 0.

The intensity of these field aligned currents is somewhat in question. Glassmeier 

and Heppner [1992] estimate the field aligned current density at the magnetopause 

due to reconnection at about 7.7 x I0_u amps • m-2. This is at odds with a recent 

calculation by Lin and Lee [1993b] who calculate the field aligned current density at 

the magnetopause to be 1.4 x 10-8 amps • m-2. In both cases the authors then map 

this field aligned current density to the ionosphere assuming conservation of flux, and 

the densities are thus increased in the ionosphere by the ratio of the magnetic fields at 

the magnetopause and in the ionosphere. This increases both estimates by a factor of 

1000. The difference between the two calculations is striking and demands resolution. 

It should be noted that Glassmeier and Heppner [1992] made estimates of the parallel 

current density based upon physical scaling laws, while Lin and Lee [1993a] used a 

resistive MHD code and a hybrid particle code to calculate the density. In the case of 

Lin and Lee [1993b], the field aligned current comes from the relaxation of twisted field 

lines caused by a rotational discontinuity on the inner magnetopause of reconnection. 

This is much the same as described by Lee et al. [1988] for the type J\v lines. It is 

unfortunate that the calculations differ by such a large amount. My observations of 

inferred field aligned currents in the cusp are on the order of 10_6 amps • n r 2, which is
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Figure 4.16. Geometry of ULF waves due to multiple X line reconnection, Figure 
3 from Lee et al. [1988].“ The magnetic field configuration in the meridian plane. The 
elongated plasma clouds are located poleward to the magnetic islands. Closed field lines 
are compressed and distorted by the magnetic islands and elongated plasma clouds. The 
dashed area LMNK is the domain of the simulations in Figure 4. Field lines labeled with 
Vu V(, Vi and V2', are type V open field lines.”

two orders of magnitude larger than those of Glassmeier and Heppner [1992] and one 

order of magnitude smaller than those of Lin and Lee [1993b].

The intensity of the field aligned currents are now set aside and I return to the 

explanation given by Lee at al. [1988] to describe how multiple X line reconnection can 

cause ULF pulsations. Figure 4.16 is a reproduction of Figure 3 of Lee et al. [1988], and 

shows a meridional view of the multiple X line process. The elongated plasma clouds 

are shown poleward of the islands associated with the helical magnetic fields. Lee et al.

[1988] believe that as the elongated clouds move poleward due to the Maxwell stress
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in the type V lines labeled \ \  V2 and V3, the closed field lines are compressed. The 

compressions on one point of a closed field line are repeated every time an elongated 

cloud or magnetic island propagates past that point. Thus the fundamental frequency in 

the closed field line is given by the repetition rate of reconnection. Lee etal. [1988] use 

a repetition rate of 5-10 minutes, and quote Daly et al. [1984]; Rijnbeek et al. [1984] 

and Saunders et al. [1984]. This gives a fundamental frequency of 2-8 mHz. Lockwood 

and Wild [1993] have reviewed the question of the observed repetition rate of FTE’s and 

find that there are really two intervals of interest. While the average repetition rate is 

about 8 minutes, the distribution is highly asymmetric, and the maximum probability of 

occurrence happens at approximately 3-5 minutes, with an extended tail that is centered 

at approximately 18 minutes. Using a 4 minute repetition rate yields a frequency of 4 

mHz.

There are two major problems with the explanation as presented by Lee etal. [1988]. 

The assumption Lee et al. [1988] make is that the time between passage of an elongated 

plasma cloud or magnetic island past a fixed point on the closed field line represents a 

driving frequency for the field line. Figure 4.16 shows the actual configuration, there 

are multiple dimples on the field line spaced at a distance apart which is determined by 

the velocity and time between FTE occurrences. This entire chain of elongated plasma 

clouds and magnetic islands propagates poleward with the velocity of the plasma after 

reconnection. It is not at all clear what the response of the closed field lines to such a 

driving force will be. To represent this as a driving frequency given by the repetition rate 

seems overly simplified. No doubt the closed field line will respond to this compression, 

and the frequency of response may even be in the Pc5 range because the resonant 

frequency of the last closed field lines is in this range, Lanzerotti and Maclennan [ 1988]. 

The second problem which relates to the observations detailed above is that there seems 

no compelling reason to think that any oscillations that come about because of this type
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of compression will be phase coherent for approximately 10 pulses and then suddenly 

suffer a phase jump.

An explanation that might explain the phase coherency is contained within the 

multiple X line reconnection configuration. As the type W helical field lines relax they 

will launch an Alfven wave similar to that described by Lin and Lee [1993b]. As this 

Alfven wave enters the ionosphere the wave field will cause horizontal currents to flow 

in the ionosphere, which can be detected on the ground. These oscillations will be phase 

coherent over the time that the wave field is incident in the local area of the station. 

Given that the radius of the flux tubes is approximately 1 RE, and conserving magnetic 

flux from the magnetopause to the ionosphere with a ratio of the fields being 103, the 

radius of the flux tube in the ionosphere will be approximately 200 km. Glassmeier 

[1984] and Hughes and Southwood [1976] show that wave fields with a transverse size 

small compared to the height of the ionosphere will be highly damped on the ground 

due to the fact that the magnetic field below the ionosphere is due to the source free part 

of the ionospheric currents. The 200 km radius is larger than the approximately 100 km 

height of the ionosphere, so the fields can in principle be detectable on the ground. The 

existing flux tube propagates poleward and this explains the poleward propagation of 

the FAC. When a new reconnection event occurs a new Alfven wave will be launched 

into the ionosphere. The phase will change because there is no relation between the 

phase angles of the two flux tubes, and will remain coherent over the time the next flux 

tube is in view.

While this explanation is attractive from the observational standpoint it has several 

drawbacks. First the frequencies of oscillation are unknown because the wave number 

is unknown. However using the observed frequency on the ground of 3-5 mHz, and 

an Alfven speed at the magnetopause of approximately 100 km/sec, we can find the 

required wave number of approximately 3 x 10~4 km-1 which results in a wavelength 

of 2 x 104 km. Such a length would be approximately one third the length of the total
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flux tube of 10 Re, and while this wavelength is possible, it is not yet proven in either 

measurement or theory. The second problem is that the wave field amplitude on the 

ground has not yet been calculated.

■ We are left then with two ideas, both of which have problems explaining the 

observations. Both the ideas have the additional problem that the incoming particles 

will also divert into horizontal currents in the ionosphere and thus cause magnetic field 

perturbations on the ground. This signal must be sorted out from the incoming wave 

fields. This effect has not been accounted for in either model. In Appendix 1 I have 

formulated the electrodynamic problem of what happens when a field aligned current 

comes into an ionosphere with arbitrary height integrated conductivity. As shown in 

Appendix 1 this problem can be converted to an electrostatic potential problem and 

solved numerically assuming the conductances and field aligned currents are known. 

As shown in Chapter 2 while the conductances can be estimated using the optical data, 

only the upward field aligned currents are known. In addition to the problem of not 

knowing the downward field aligned currents the formulation offered in appendix 1 

will be subject to the assumed boundary values of the potential on the border of the 

simulation. Such attempts are not new, McHenry and Clauer [1987], Lanzerroti et al. 

[1990] both calculate the field perturbations due to field aligned currents impinging on 

the ionosphere. However, in both cases, they assume a uniform conductance profile, 

which as shown in Chapter 2 is simply not realistic.

4.6 Summary

In this chapter I have shown that the observed magnetic perturbations offer a rich 

source of information. Analysis of the magnetic spectrum shows not only the diurnal 

cycle presented in Chapter 3, but a seasonal variation as well. This seasonal variation 

is ordered by the solar depression angle in the case of the total variance of the signals 

because of the change in conductivity due to solar EUV photoionization. The spectral
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index variation with solar depression angle is due to the variation of the magnetic field 

geometry of the cusp with season. These waves are preferentially produced in the bow 

shock during quasi-parallel IMF conditions and propagate into the cusp. The summer 

and winter cusp have very different magnetic field geometries with respect to the bow 

shock, and the resulting penetration of the Pc3 waves into the summer cusp is relatively 

easier. This results in large amplitude high frequency components in the summer cusp 

spectrum, and thus the spectral index is less steep.

In addition to the spectral analysis, I have presented analysis of the time series of the 

fluxgate data that show the large amplitude ( 50 nT) boundary region pulses are phase 

incoherent, while the smaller amplitude ( 5 nT) pulses in the central cusp are phase 

coherent over 5-10 periods and then suffer a change in phase. This phase change is 

accompanied by the appearance of an intense field aligned current on the equatorward 

edge of the cusp. This correlation between the phase change and the apprearance of the 

field aligned current is a clear indication that the pulsations seen are somehow associated 

with processes as yet undetermined that occur at the magnetopause.

The source mechanisms of the boundary region and central cusp pulsations have 

been reviewed. The boundary regions are a collection of impulsive events from several 

different sources. The Kelvin-Helmholtz instability, solar wind pressure variations, 

impulsive plasma penetration and magnetic reconnection have all been used to explain 

some portion of the signals seen. It seems sensible to separate the pulsations into two 

categories; first those events that have an azimuthal or tailward motion, and second 

those events that have a poleward motion, which may be connected to the poleward 

motion of auroral forms.

The best candidate for the central cusp pulsations seems to be some variation on 

the multiple X line reconnection idea. In this model the elongated plasma clouds and 

magnetic islands are formed at the FTE occurrence frequency. These plasma clouds 

and magnetic islands propagate poleward, and compress the last closed field lines that
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thread the magnetopause. These field lines respond by launching Alfven waves into the 

ionosphere, and the field aligned current associated with the waves is what is observed 

in the central cusp when the phase changes are seen. One main problem with this 

idea is the lack of understanding of what happens to the closed field lines as they are 

compressed by the poleward propagating islands. The second is that the time scale of the 

FTE occurrence is somehow turned into the frequency of the pulsations on the ground. 

The mechanism for this seems unclear at this time. The observational facts do seem 

clear however, intense field aligned currents on the equatorward edge of the cusp are 

associated with changes in the phase between wave trains of pulses. These pulses are 

small amplitude, and occur mainly in the 3-5 mHz frequency range.
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CHAPTER 5 

Review and recommendations for future work

The objective of this thesis is to understand the morphology and electrody­

namics of the cusp using ground based magnetic and optical observations. In this 

chapter I summarize the important findings and review how these fit with current 

thinking on the cusp. I will end this thesis with recommendations for future work.

5.1 Review

The cusp is defined in this thesis as the location of the most direct entry of 

magnetosheath particles into the ionosphere. The cusp as observed from the ground 

then offers a view of processes that happen at the dayside magnetosheath, and 

thus serves as a unique site for observations. The observations detailed in the 

thesis were carried out at Longyearbyen Norway on the island of Svalbard. This 

site allows optical observation of the cusp ionosphere for the two months around 

winter solstice, and these optical observations have served as a key to unlock the 

magnetic field measurements.

The optical emissions from the cusp ionosphere were observed with a meridian 

scanning photometer. This instrument is described in Chapter 2, along with a 

method to render the observations into geomagnetic coordinates and display lat­

itude from the station and magnetic local time. The ratio of the intensity in the 

6300 A and 5577 A emissions is used to determine the height of emission for this 

mapping. The remapped intensities are then used to calculate the characteristic 

energy of the incoming electrons that cause the emission along with the energy 

flux of these incoming particles.
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I find that as the station rotates underneath the dayside ionosphere several 

different regions of energy and energy flux are sampled on a  daily basis. The 

optical observations indicate that from approximately 08:30 to 10:30 magnetic 

local time (MLT) that the particles have a characteristic energy of 0.5 keV on the 

equatorward side of the station and a slightly smaller energy of 0.4 keV poleward 

of the station. From 10:30 through 13:30 MLT the energy of the particles is greatly 

reduced, and on one day a distinct region is seen where the energy is less than the 

resolution of the measurement which is 0.1 keV. As the station rotates into the 

afternoon sector the characteristic energy increases again to the 0.2-0.4 keV energy 

level. I interpret this very low energy region to be the cusp, and the higher energy 

regions to the side I call the boundary regions. No satellite da ta  were available to 

collaborate the identification of these regions.

The measurement of the characteristic energy and energy flux allows the com­

ponent of field aligned current density carried by electrons to be determined. I find 

that in the region identified as the cusp there are large field aligned currents with 

intensities of a few /ramp ■ m~2. These field aligned currents are most intense on 

the equatorward side of the region identified as cusp, and the field aligned currents 

were observed to propagate poleward. During the interval of the cusp passage 

there were four such poleward moving field aligned currents with intensities over 

1 /ramp • m~2. The regions identified as boundary regions had significantly less 

intense field aligned currents, and the two occasions when field aligned currents 

were seen in the boundary regions they were not observed to move poleward.

In addition to the field aligned currents, the measurements of characteristic 

energy and energy flux allow calculation of the height-integrated Pederson and 

Hall conductances. The Pederson conductance in the boundary layers was found 

to be 2.-2.5 mhos with large latitudinal and tem poral gradients evident. The central 

cusp Pederson conductance was found to be very low, less than 0.2 mho. The Hall
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conductances were found to be in the range of 1 mhos in the boundary regions, 

and 0.1 mho in the central cusp. The Hall conductance also showed gradients in 

both latitude and time.

• The magnetic measurements are introduced in Chapter 3 and a correlation be­

tween the magnetic and optical measurements established. The boundary regions 

are found to have broad-band, large amplitude magnetic perturbations that are 

dominantly right-hand polarized pre-noon in the Pc5 band and left-hand polarized 

post noon. In the period between the boundary regions, a unique narrow band 

oscillation is observed with a center frequency of 3-5 mHz. This event is called the 

arch due to the resemblance the spectrogram to that of an arch. The post-noon 

boundary layer was again observed in the magnetic pulsations to have large broad 

band amplitude perturbations.

The spectrograms for 256 days were inspected, and sorted into three main cat­

egories. These categories were determined by spectral shape, and found to contain 

85 percent of the data. The arch was observed on 36 percent of the days inspected. 

The occurrence statistics of the boundary regions and arches were collected and 

graphed versus magnetic local time. The boundary regions are consistently found 

to have maximum probability of occurrence away from local magnetic noon, with 

the center of the pre-noon boundary regions found to occur at 09:00 MLT, and the 

center of the post-noon boundary region found at 13:00 UT. The arch was found to 

have a maximum occurrence between the boundary regions with the peak falling 

at 10:30-11:00 MLT.

These occurrence statistics were compared to the statistics collected on the 

cusp and low latitude boundary regions by the DMSP satellite. The distribution 

of arches was found to resemble the distribution for the cusp, but as stated the 

peak was from 10:30-11:00 and the peak of the cusp distribution as determined by 

the DMSP particle precipitation data was 11:30-12:00 MLT. The boundary region
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distribution distribution does not resemble the distribution of the low latitude 

boundary layer.

The distribution of arches was found to change for the different categories. 

This is explained by a study of interplanetary magnetic field orientation for each 

category. It was found that the first category represents a quiet Bz north state, 

while the second category was found to have large By variations. This causes the 

distribution of the arch for Category 2 to be bimodal, responding to the variation 

in By. The third category was found to have a quasi-parallel component in the IMF 

cone angle distribution which results in increased higher frequency Pc3 pulsations 

evident in the central cusp period. This is thought to be linked to the formation 

of upstream waves in the bow shock when the cone angle is small. Thus I find 

that division of the data into similar looking spectrograms has a physical basis. 

This identification of the boundary regions and central cusp in the magnetic data 

greatly facilitates performing statistical studies since the variation of the cusp in 

magnetic local time can now be accounted for.

Chapter four deals with the details of the cusp magnetic spectrum and analysis 

of the time series associated with pulsations in the boundary regions and central 

cusp. The ordering by Category described above was used to study the magnetic 

spectrum across the boundary regions and central cusp. I find that a power law 

distribution fit the power spectral density of the spectra. I fit 315 days of data 

taken over the two year interval of 1990 to 1992 with this power law distribution. 

I find the total variance of the magnetometer data changes with solar depression 

angle. As the solar depression angle becomes more negative, or as the sun comes 

above the horizon, the variance in the data increased. This is due to the increase 

in conductivity in the polar ionosphere due to the EUV photoionization of the sun. 

The data are well represented by a straight line fit, and I was able to determine 

the relative cusp conductivity in the summer compared to the fall. This ratio is
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2.5 ±  0.6, which is in agreement with conductivity estimates made from particle 

precipitation and solar contributions.

I find that the spectral index of the power law fit across the entire data set also 

changes with solar zenith angle. I find however that the Category 1 type data  do 

not change spectral index with solar zenith angle, but that Category 2 and 3 data  

do change with solar zenith angle. Since the IMF study showed that Category 2 

and 3 had a quasi-parallel component to the cone angle distribution, I believe this 

is not an effect of the sun, but rather due to the different propagation geometry 

between the summer and winter cusp with respect to the bow shock. The quasi­

parallel geometry of the IMF causes the bow shock to destabilize and produce Pc3 

band pulsations. These pulsations can propagate to the cusps, but the geometry 

for entry favors the summer cusp. This causes the summer cusp to have a larger 

amplitude high frequency component, and thus the apparent variation with solar 

angle.

The boundary region is found to be comprised of large amplitude pulses (40-50 

nT) of varying periods. This is in agreement with the broad band nature of the 

spectrogram. The central cusp shows small amplitude (5 nT) perturbations that 

are very periodic in appearance, again in agreement with the narrow band nature 

of the spectrogram. Using an analytic reconstruction of the magnetic signals in the 

fluxgate magnetometer I find that the boundary region pulses are phase incoherent, 

while the pulses in the central cusp come in wave trains of phase coherent pulses. 

These trains of coherent pulses are separated by phase jumps and each train  is 

seen to last 7-10 periods. The phase jumps between adjacent wave train in the 

central cusp are found to be associated with the appearance of an intense field 

aligned current of the equatorward edge of the cusp. These field aligned currents 

propagate poleward and the pulses in the wave train are coherent while one field
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aligned current structure is in view. VVlien the next field aligned current structure 

appears in the equatorward side of the cusp the phase again changes.

These poleward propagating field aligned currents which accompany the phase 

change in the magnetic perturbations are good candidates for the ionospheric foot­

print of a  multiple X line reconnection event. As a flux tube propagates poleward 

the field aligned current in the ionosphere moves poleward, and either a wave field 

from the kinked magnetic field associated with the reconnection event or a closed 

field line oscillation driven by the passage of the flux tube causes the magnetic field 

perturbations on the ground. Both models have problems as detailed in Chapter 4, 

and it seems that much work remains to be accomplished in describing the details 

of these observations.

5.2 Recommendations for future work

Further work is required in both the optical and magnetic observations de­

scribed in this thesis. The method used to reconstruct the optical meridian scan­

ning photometer needs to have a background subtraction added. The study begun 

in this thesis to try to find out how to put error bars on the resulting energy and 

energy flux measurements needs to be continued. In particular the basic govern­

ing relations between the ratios of the 6300 A and the 5-577 A emission to height 

need to be reevaluated. The relations used here were developed 20 years ago, and 

while they are useful, the field has progressed in its understanding over that time. 

In addition the latest relations between energy and energy flux and conductances 

should be incorporated into the optical data base.

In addition to these changes in method I suggest the entire optical data base 

should be put into energy and energy flux format. This will allow a check between 

the magnetic and optical data on a one to one basis. Since the magnetic categories 

have been shown to be the basis of different IMF magnetospheric states I venture
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the prediction that a similar categorization will be found in the optical data if it 

is searched for. Use of the meridian scanning photometer to look for the expected 

field aligned currents associated with the traveling vortices in the boundary regions 

should also be investigated. In addition to the energy and energy flux data, a valid 

map of the high latitude conductances would be invaluable to the global modeling 

community. I think that this should have first priority in future work in the optical 

arena.

The magnetic pulsations are still a rich area for research. I did not look at the 

Pc3 band data other than to catalog its existence. A strong correlation between 

the Pc3 data and IMF cone angle exists, and the ground based cusp measurements 

will help define the details of this relationship. A network of stations on Svalbard 

would also be of utility to sort out the details of the poleward propagating filaments 

in the central cusp. The final area of research in this area must be theoretical. 

The observations are now in place, and a solid theory is lacking. The combined 

requirement for phase coherent wave trains associated with poleward propagating 

field aligned current structures seems to be a defining idea that can be turned into 

a physical model.
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APPENDIX A l 

Ground magnetic fields caused by field aligned currents

This appendix derives a method of calculating the ground magnetic field per­

turbation due to a field aligned current impinging on an ionosphere of known 

conductivity. A potential formulation of the problem is derived which must be 

solved numerically. From the potential the electric fields, and hence currents that 

flow in the ionosphere due to the field aligned currents can be deduced. The cur­

rents are used as inputs to the Biot-Savart law to calculate the magnetic fields on 

the ground.

A l . l  Assumptions and governing equations

The governing equations used are Faraday’s law of induction,

V x i = - f  (A.l)

Ohm’s Law,

f = a - E  {A. 2)

and the current continuity equation,

V - J  =  - ^  « 0 .  (A3)

I will assume that the field aligned current density, Jz{x,y)  , and the height in­

tegrated Pederson and Hall conductances, Ep{x,y)  and E #(x, y) , are known. I

will also assume that the electric field in the horizontal plane is independent of
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Figure A .I. Geometry for ionospheric slab with arbitrary conductance and field 
aligned current. Note that the coordinate system is right handed with x directed 
to magnetic north, y directed magnetic east, and z positive downwards along the 
field line.

height, that no electric field exists in the vertical direction, and that §f =  0. The 

assumption that charge density does not change in time is justified because the 

tim e scales of interest are ULF periods and are very long, thus causing this term  

to be approximately zero. The geometry for the problem is shown in Figure A.I.

Assume that ^  is approximately 0 in the conducting ionosphere, (see Glass­

meier [1984] for a discussion of this assumption),so equation A .l can be written 

as:

d E y d E x .

w ~ w = 0 - ( A ' 4 )
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Rewriting equation A.3 we obtain,

djh
dz

0JX dJj
dx by (A.5)

and using Ohm’s law;

f  <*P - o h  0 \

J  = o  - E  , where o = o h  o p  0 

\  0 0 o0)

where op is the Pederson conductivity, op  is the Hall conduclr/ity, and oq is the 

field aligned conductivity, Parks [1991].

Jx — (OpEx OpEy^Gx

Jy  -- (0HE x “1" OpEy'jCy (A. 6)

A1.2 Derivation of Potential Equation

The objective of this section is to obtain a differential equation governing the 

electric scalar potential in the ionosphere that results from a field aligned current 

impinging on the ionosphere with a known spatial conductance. To obtain the 

conductance integrate equation A.3 over height and obtain;

- J x  =  ^ ( Z p E x  -  Z u E y )  +  ^ ( Z h E x -  X p E y )  ( A . l )

where Ep =  /  opdz is the height inetgrated Pederson conductivity, and 

f  opdz is the height integrated Hall conductivity. Performing the partial differen­

tiation yields eight terms which when collected by like coefficients yield:
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j - F ( d * P  ^  d Z H d E x d E y 9 E X d E y- j ,  -  E , ( - S 7 + w ) + E , ( - w - - S F ) + s P( 1 - + 1 ¥ )+r:s (-d i - w )

■ M - 8 )

Since V x E  =  0, E  can be derived from a scalar potential, E  =  — V<f>, and we 

then obtain the potential formulation of the problem;

^  +  +  ~  J ^ X , y  ̂ =  ° ’ ( A -9 ^

where

^ — T T - T T  ( A 1 0 )

Note that since A(x,y)  and B{x,y)  are known, equation A.9 can be solved for the 

electrostatic potential <f>(x,y). Once the potential solution is obtained the electric 

field in the horizontal plane can be reconstructed, and this used to obtain the 

surface currents flowing in the ionosphere.

A1.3 Determining the surface currents and the magnetic field

Once the electric field has been determined from the electric potential the 

surface currents are determined, and the Biot-Savart law is used to integrate the 

currents to determine the magnetic field on the ground. The surface currents are 

given by;

K x = I Jxdz = I l p E x — IjffEy (A.11)
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Figure A.2. Integration geometry for the Biot-Savart law. The vector f  is the 
vector from the origin to the integration point, the vector r  is the vector from the 
integration point to the field point, which is at vector rp from the origin.

K y = J Jydz — h HE x +  T,pEy (A. 12)

where the surface currents K x and K y have units of amps • m -1. The Biot-Savart 

law for surface and field aligned current densities is given in MKS units by Griffiths

[1989];

i S  =  j j i ^ x i W

47t r 3

AB =  * r V r ' (A.14)
4z r3
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where r* is the vector to the integration point, and r  is the vector from the inte­

gration point to the field point, see Figure A.2 for the geometery. Using the vector 

relation that r =  r p — r*, the Biot-Savart law gives for the surface currents;

~ _

B  =  0  A  x A ,  ( M  ̂ ) A'» '  4»( :V L , / t +  

and th a t due to the field aligned current density Jz:

Given that the ionosphere is at a height — h above the ground, and that the field 

point rp is at the origin the resulting perturbation magnetic field on the ground 

has components given by:

A B v =

4 i ~  +

y 47T r 3

[ x ' K . - y ' K ^A B z =  | x %  -  y 'K x | (A.15)
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APPENDIX A2 

Emission height determination in the Eather map

This appendix details the determination of the emission height in the Eather 

mapping technique. As described in Chapter 2 this twchnique relies upon the de­

termination of the height of emssion for each scan angle angle. This determination 

is made by taking a ratio of two of the eimissions at the same scan angle. I present 

in the following list the emission height and ratio of 6300 A /  5577 A and 6300 A /  
4278 A. These values were hand digitized from Figure 2 of Rees andLuckey [1974].

Ratios Used to determine emission height

Emission Height (km) 6300/5577 6300/4278

100 4. e-4 6. e-4

120 1.8 e-2 4.2e-2

140 6.3 e-2 0.35

160 0.16 1.3

180 0.32 3.

200 0.51 6.

220 <Z
> bo 10.

240 1.3 14.

260 2.1 25.

280 3.5 39.

300 5.3 53.

320 7.1 70.

340 8.1 110.
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