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ABSTRACT

Seismic refraction and wide-angle reflection data from the U.S. Geological 

Survey’s Trans-Alaska Crustal Transect is used to investigate the upper crustal 

structure of southcentral Alaska. The data consist of two intersecting refraction lines: 

the 135-km Chugach profile which follows the E-W strike of the Chugach Mountains 

and the 126-km Cordova Peak profile which follows the N-S regional dip. The four 

shots of the Chugach profile and the five shots of the Cordova Peak profile were 

recorded on 120 portable seismic instruments spaced at 1-km intervals.

Interpretation of data from the Chugach terrane indicates that near-surface 

unconsolidated sediment and glacial ice overlie rocks of unusually high average 

compressional velocities (5.4-6.9 km/s) in the upper 10 km of cmst. A thick unit 

correlated with a metasedimentary and metavolcanic flysch sequence has velocities of 

5.4-5.9 km/s. It is underlain by mafic to ultramafic metavolcanic rocks (6.0-6.4 km/s) 

correlated with the terrane basement. Mid-crustal layers beneath the Chugach terrane 

contain two velocity reversals (6.5 and 6.7 km/s) attributed to off-scraped oceanic 

sedimentary rocks which are underlain by mafic to ultramafic oceanic volcanic crust 

(7.0-7.2 km/s).

Interpretation of data from the Prince William terrane indicates systematically 

lower velocities in Prince William terrane rocks as compared to Chugach terrane rocks

iii
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at comparable depths. The upper 10 km of crust, having average compressional 

velocities of 3.0-6.2 km/s, is correlated with clastic sedimentary and volcanic rocks 

which are overlain by younger terrigenous sedimentary rocks. A 2-km thick layer at 

10-12 km depth is correlated with mafic to ultramafic Prince William terrane basement 

rocks. The difference in velocity structure between the Chugach and Prince William 

terranes suggests that the Contact fault zone is a terrane boundary which extends to a 

depth of at least 10-12 km. Deep structure beneath the two terranes is not well 

constrained by the seismic refraction data. Potential field data support the 

interpretation that a thick low-velocity zone occurs at a 12-15 km depth and may 

contain subducted continental rocks of the Yakutat terrane, which is currently accreting 

to and being thrust beneath the North American continent along the Gulf of Alaska 

margin.
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PREFACE

Southern Alaska is a geologically and tectonically complex area which offers a 

modem setting for the study of subduction zone environments and accretionary 

processes. It is a collection of tectonostratigraphic terranes which were accreted to the 

North American continent along the convergent North American-Pacific plate 

boundary (Figure 1). Each of these terranes is believed to represent a distinct, fault- 

bounded geologic entity with a geologic history distinct from its neighbors [Howell et 

al., 1985]. Numerous geologic studies have focused on the surface expression of this 

environment, while seismological studies have examined its deep crustal structure and 

dynamics. A recent contribution towards our understanding of the plate tectonic 

development of Alaska has come from Trans-Alaska Lithospheric Investigation (TALI) 

project, an ongoing program of geological studies and crustal seismic investigations 

which started in the Gulf of Alaska and continues northward [Stone et al., 1986].

The focus of this thesis is to increase our general understanding of the tectonic 

processes of plate margins, and in particular, our knowledge of the accretionary 

terranes of southern Alaska. In the following chapters, a three-dimensional model for a 

part of southern Alaska is developed from an interpretation of two intersecting

1
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Figure 1. Regional tectonic map of southern Alaska [modified from Jones et al. [1981; 1987]. Arrows indicate relative 

motion between Pacific and North American plates [M insteret al., 1974; Lahr and Plafker, 1980],
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seismic refraction profiles from the U.S. Geological Survey’s Trans-Alaska Crustal 

Transect (TACT) using two-dimensional asymptotic ray theory (Figure 2). Chapter 

1 provides a geologic and tectonic framework with which to view the seismic 

refraction data. Here the major tectonic problems are presented. The refraction data 

is then used to resolve or at least to provide constraints for some of these problems.

Chapters 2 and 3 contain manuscripts which were written as distinct entities for 

publication in professional journals and are included here with minor revisions. The 

first paper, Upper Crustal Structure o f the Accreted Chugach Terrane, Alaska, deals 

exclusively with the Chugach refraction profile, a 135-km line which consists of 

four reversed shots and which follows the regional E-W strike of structures in the 

Chugach Mountains. The paper was co-authored by Dr. Alan Levander and 

published in the Journal o f Geophysical Research, vol. 94, B4, 4457-4466,1989.

Dr. Levander’s role was to guide the interpretation and data analysis by offering 

expertise in methodology and computing facilities at Rice University. He also 

contributed editorial suggestions. The second paper, Chapter 3, contains an analysis 

and interpretation of the Cordova Peak seismic refraction profile, a 126-km line 

which consists of five reversed shots and which is parallel to the N-S regional 

structural dip. The Cordova Peak manuscript is currently in preparation for 

submission to the Journal of Geophysical Research. Although the primary focus of
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Figure 2. Generalized geologic map of southern Alaska showing locations of TACT 
seismic refraction profiles. Heavy solid lines correspond to cross sections in Figures 
10 and 23. Chugach refraction profile extends from SP 17 to SP 20; Cordova Peak 
profile extends from SP 11 to SP 37. Small dots indicate receiver locations; large 
crosses indicate shot points 17, 18, 19, and 20 in strike profile and shotpoints 11, 12, 
19, 38 and 38 in dip profile. Units Kvv, Kvg, Kjm = metavolcanic rocks; Kvs = 
metamorphosed flysch: Kvg = rocks in Chugach Metamorphic Complex; Tg = igneous 
intrusive rocks; To, T1 = sedimentary and volcanic rocks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5

the second manuscript is the interpretation of data from the Cordova Peak seismic 

refraction line, the paper incorporates the model for the Chugach profile, derived for 

the previous paper, into a three-dimensional picture of the subsurface structure in the 

vicinity of the TACT corridor. In addition to the possible geologic interpretations 

presented in Cordova Peak paper, an attempt is made to integrate the two seismic 

models with other geophysical data, such as that from potential field and physical 

properties studies.

The interpretations and possible models of upper crustal structure presented in 

the two manuscripts are woven together in Chapter 4. In this chapter, the major 

conclusions drawn from analyses of the two seismic refraction profiles are outlined 

and discussed within the context of the regional geologic and tectonic setting. An 

ancilliary discussion concerning the methodology and accuracy of asymptotic ray 

theory used in the interpretation is given in the Appendix.
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INTRODUCTION

Overview.

The Chugach and Prince William terranes of southern Alaska form part of a 

tectonically complex transition zone which is situated at the eastern end of the 

convergent North American-Pacific plate boundary (Figures 1 and 2). In the western 

portion of the zone, convergent structures dominate, while in the east, transform 

motion is distributed along a series of discrete fault zones. The subsurface 

relationships of the two terranes to each other and to the currently subducting plate 

have been the focus of much research but remain uncertain.

Determining the subsurface structure of southern Alaska is an important step 

towards developing an understanding of the complex tectonics and geologic history 

of this area and of accretionary processes in general. In an effort to gain such 

insight, the U.S. Geological Survey began the Trans-Alaska Crustal Transect 

(TACT), an integrated program of geological studies and crastal seismic 

investigations which started in the Gulf of Alaska and continued northward through 

the Chugach Mountains and beyond. The focus of the following study is the 

interpretation of two of the TACT seismic refraction lines, the Chugach and the 

Cordova Peak profiles, which were shot in southern Alaska in 1984 and 1985.

6
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Experiment details.

The objective of the seismic refraction experiment was to provide constraints 

on the crustal structure of southern Alaska beneath the Chugach and Prince William 

terranes. The orientations of the profiles were chosen to match, as closely as 

possible, the regional strike and dip directions. Accessibility and roads in southern 

Alaska are limited, however, and place major restrictions on the profile locations.

The 135-km Chugach profile consists of four reversed shots spaced at intervals 

of 25-60 km. It is intersected by the 126-km Cordova Peak profile, which consists 

of five reversed shots spaced at intervals of 25-40 km. Shots in the Chugach profile 

were located exclusively within rocks of the Chugach terrane, whereas those in the 

Cordova Peak profile sampled both the Chugach and the Prince William terranes.

All shots were recorded by 120 portable seismic recorders spaced at approximately 

1 -km intervals. Recorders were laid out in a fixed array for each profile to allow ray 

paths from shots to cross-sample subsurface structures and to enable a two­

dimensional solution to be calculated for those areas with reversed coverage.

Since the Chugach profile follows the regional strike, it was assumed that the 

data would image relatively flat-lying, homogeneous layers and would therefore 

provide a "control" on the crustal velocity structure of the terrane for use in the 

interpretation of the dip profile. The Cordova Peak profile crosses, from north to 

south, the Chugach terrane, the Contact fault zone and the Prince William terrane.
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has been described as a suture boundary which separates the Chugach terrane from the 

Prince William terrane [Winkler and Plafker, 1981: Plafker et al., 1986]. One 

objective of the Cordova Peak refraction experiment was to provide information on the 

nature of this boundary in the subsurface.

The profile lengths as well as the shot and receiver spacings were chosen to image 

as deeply as possible without sacrificing resolution within the upper crustal layers. A 

length of approximately 130 km can usually image, to some degree, the upper 20-25 

km of crust. The shot and receiver spacing used in the experiments was sufficient to 

identify major lithologic interfaces but did not permit modelling of small features (< 5­

10 km in length) with much detail. With this kind of resolution, one might hope to 

gain some insight into the following problems: 1) the subsurface structure of accreted 

rocks and their tectonic development. 2) the nature of terrane boundaries, and 3) the 

geometrical relationships between lower and upper crustal structure.
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CHAPTER 1: GEOLOGIC AND TECTONIC SETTING

Although the TACT corridor covers only a small area of the overall tectonic 

regime of southern Alaska, it occupies a strategic position between a classic 

convergent margin, represented by subduction of the Pacific plate along the Aleutian 

trench, and a textbook transform margin, represented bv right-lateral strike-slip 

motion along the Fairweather fault system. In addition, the TACT corridor is 

located near the Yakutat terrane, which provides a modem example of terrane 

accretion and continental collision. The transect affords a glimpse into the dynamic 

processes of a tectonically complex zone, the implications of which extend beyond 

the area of the TACT project.

1.1 Relative plate motions.

Figure 1 illustrates the relative motion vectors between the Pacific and North 

American plates in the Gulf of Alaska region. The motions are based on the RM1 

model proposed by Minster et al. [1974] in which relative motion is described by a 

small circle rotation about an Euler pole. The average rate of relative motion 

between these two plates (6 cm/yr) cannot be attributed entirely to a single, sharply

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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defined boundary, as is indicated by recent motion on faults and internal 

deformation of continental rocks inland of the Gulf of Alaska [Jacob, 1986].

Estimated relative motion rates shown for different areas in Figure 1 illustrate a 

complex tectonic problem. The Yakutat terrane is thought to be moving with the 

Pacific plate but at a slightly slower speed [Lahr and Plafker, 1980; Jacob, 1986]. 

These estimates are in agreement with recent very long baseline inferometry (VLBI) 

data [Ma et al., 1989]. The difference between rates for the Yakutat terrane and for 

the Pacific plate in the eastern portion of the Gulf of Alaska range from 0.4-1.0 

cm/yr [Lahr and Plafker, 1980; Ma, et al., 1989]. This difference in relative motion 

needs to be accounted for by internal deformation of the Yakutat terrane and/or by 

movement on reactivated or newly-developed faults [Jacob, 1986]. In a more recent 

study, Plafker [1987] suggests that previously proposed estimates of convergence 

and displacement are too low. The rate of convergence is important for determining 

how much of the Yakutat terrane has been subducted. To understand the plate 

tectonics of southern Alaska, it is important to know the subsurface boundaries of 

the Yakutat terrane and its structural relationship to the accreted Chugach and Prince 

William terranes.
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1.2 T errane descriptions.

The Chugach and Prince William terranes are part of an accretionary complex 

which extends from a convergent tectonic regime in the west to a transform margin 

in the east (Figure 1). To the north, the Chugach terrane is bounded by the Border 

Ranges fault system, a zone of northward dipping faults along which the Chugach 

terrane has been thrust beneath the older composite Peninsular/Wrangellia terrane 

[Winkler et al., 1981]. To the south lies the Contact fault system, which is thought 

to form a steeply dipping suture boundary between the Chugach and Prince William 

terranes [Winkler and Plafker, 1981]; its attitude at depth and its vertical extent are 

not known. The Prince William terrane is bounded to the east by the younger 

Yakutat terrane and to the south by the Aleutian trench, where subduction of the 

Pacific plate begins.

1.2.1 Chugach terrane.

The Chugach terrane is composed of highly deformed, accreted and 

metamorphosed clastic sedimentary rock and oceanic crust (Figure 2). It has been 

divided, from north to south, into three major fault-bounded sequences: the Upper 

Jurassic or older Liberty Creek schists, the Upper Jurassic or older to Lower 

Cretaceous McHugh Complex and the Upper Cretaceous Valdez Group [Winkler et 

al., 1981; Silberling and Jones, 1984; Plafker et al., 1989].
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The Liberty Creek schists are exposed locally along the northern margin of the 

Chugach terrane. They comprise an oceanic assemblage of basalt flows, breccia and 

tuff, with minor amounts of marine sedimentary rocks, which were regionally 

metamorphosed to greenschist and locally blueschist facies at estimated depths of 

22-36 km [Winkler et al., 1981; Turner, 1981]. Thickness of the Liberty Creek 

schist sequence is estimated to be at least 5 km [Plafker et al., 1989]. Its contact 

with the Peninsular terrane on the north is marked by a shear zone of highly 

deformed ultramafic rocks [Plafker et al., 1989]. To the south, the contact of the 

Liberty Creek schists with the McHugh Complex is identified by a zone of highly 

sheared and altered mafic and ultramafic rocks [Plafker et al., 1989].

The McHugh Complex in the area of the transect corridor consists mainly of 

faulted and metamorphosed tholeiitic pillow basalts and other mafic volcanic rocks, 

with minor amounts of associated pelagic and continent-derived siliciclastic 

sediments [Winkler et al., 1981]. Rocks throughout most of the unit have been 

metamorphosed to prehnite-pumpellyite facies as the result of subduction to depths 

less than 13 km and of temperature increases not in excess of 300 degrees C [Plafker 

et al.,1989; Turner, 1981]. Rocks in the McHugh Complex show some evidence of 

south-verging structure, but lack the degree of schistosity seen to the south and north 

[Plafker et al., 1989]. Because of its structural complexity, stratigraphic thickness of 

the McHugh Complex is not known; its estimated structural thickness is about 20
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km [Plafker et al.. 1989]. The McHugh Complex is juxtaposed with rocks of the 

Valdez Group along its faulted southern margin.

The Valdez Group consists of a thick wedge of accreted sedimentary and 

volcanic rocks which were later exposed to low-pressure/high-temperature 

metamorphism [Hudson and Plafker, 1982; Sisson and Hollister, 1988]. 

Metasedimentary rocks of the Valdez Group are primarily turbidites consisting of 

interbedded graywacke and pelite [Winkler et al., 1981]. Metavolcanic rocks are 

mainly tholeiitic flow and pillow basalts, which increase in abundance southward 

towards the Contact fault zone [Winkler et al., 1981; Winkler and Plafker, 1981]. 

Clastic sedimentary rocks, predominantly sandstones, are thought to have been 

deposited in a deep-sea fan directly onto oceanic crust, represented by basalts and 

related volcanic rocks [Plafker et al., 1989]. The Valdez Group was thrust beneath 

the McHugh Complex and is highly deformed along this boundary [Plafker et al., 

1989]. In some areas, it underlies the Haley Creek terrane. a thin, rootless sheet 

composed of plutonic and metamorphic rocks [Wallace, 1985]. Progressive 

metamorphism of the Valdez Group began in Early to Middle Eocene time [Plafker 

et al.,1989]. Near the west end of the Chugach refraction profile, rocks of the 

Chugach terrane have been metamorphosed to greenschist facies [Hudson and 

Plafker, 1982], The metamorphic grade of the Valdez Group increases eastward to 

amphibolite facies in the Chugach Metamorphic Complex, located east of the
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Copper River [Hudson and Plafker, 1982]. The stratigraphic thickness of the Valdez 

Group is estimated at several kilometers; its structural thickness is estimated to be at 

most 20 km [Plafker et al., 1989]. Along its southern edge, the Valdez Group is 

bounded by the Contact fault system, which separates the Chugach terrane from the 

younger Prince William terrane.

1.2.2 Prince William terrane.

The Prince William terrane contains rocks of the Orca Group, a late Paleocene 

to Eocene deep-sea fan deposit interbedded with pillow and flow basalts, tuff- 

breccia and minor pelagic sediments, and intruded by diabase sills [Winkler and 

Plafker, 1981; Plafker, 1987], The Orca Group, which forms the basement of the 

Prince William terrane, was accreted to the Chugach terrane and metamorphosed to 

zeolite to greenschist facies about 50 Ma ago [Plafker, 1987]. Since that time, no 

major horizontal displacement has occurred along the suture zone [Plafker, 1987], 

The stratigraphic thickness of the Orca Group is estimated to be 6-10 km [Winkler 

and Plafker, 1981].

Overlying the Orca Group are Late Eocene or older to Quaternary siliciclastic 

sedimentary rocks which were deposited in shelf and slope basins on a subsiding 

continental margin and which comprise as much as 4 km of section [Plafker, 1987], 

Unlike rocks of the Orca Group, these more recent sedimentary rocks are relatively
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undeformed and were most likely deposited near or at their present latitude [Rau et 

al., 1983; Plafker, 1987],

Similarity in the lithology and depositional history between rocks of the 

Chugach and the Prince William terranes has raised some question as to the 

distinction between the two terranes and the position of their boundary [Dumoulin, 

1988]. In the area near western Prince William Sound, little metamorphism or 

deformation is observed within the terranes and no well-defined boundary between 

them exists [Dumoulin, 1988]. It has been argued, therefore, that the minor 

differences seen in the rocks of the two terranes in other areas may simply reflect a 

metamorphic gradient and that the Contact fault zone may be no more than a series 

of thrust faults in a developing accretionary prism.

1.2.3 Yakutat terrane.

The Yakutat terrane lies to the east of and structurally below the Prince William 

terrane on the Gulf of Alaska margin. It is bounded to the east by the Fairweather 

fault system, to the north by the Chugach-St. Elias fault system, to the west by the 

Kayak Island zone and to the south by the Transition Fault (Figure 1). The precise 

location and character of the subsurface boundary between the Prince William and 

Yakutat terranes, however, is unknown. Basement rocks of the Yakutat terrane west 

of the Dangerous River zone, an old boundary which separates different types of
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terrane basement, consist of Paleogene oceanic crust [Plafker, 1987]. East of the 

Dangerous River rone, basement rocks are continentally derived and consist of the 

upper Mesozoic flysch and melange of the Yakutat Group [Plafker, 1987]. The 

flysch sequence was intruded by Eocene felsic rocks and may be correlative with the 

flysch sequence of the Valdez Group [Plafker et. al., 1989].

Overlying the basement rocks are primarily Lower Eocene to Quaternary clastic 

sequences [Winkler and Plafker, 1981; Plafker, 1987]. Paleogene sandstones 

indicate an igneous and high-grade metamorphic provenance, whereas the upper 

Cenozoic sequence is thought to be derived locally from erosion of the Chugach and 

St. Elias Mountains, as the result of uplift from collision and underthrusting of the 

Yakutat terrane [Plafker, 1987], This history would suggest that the Yakutat terrane 

was attached to the Prince William terrane by middle to late Cenozoic time.

The Pamplona zone (Figure 1) is a major tectonic boundary which separates an 

active fold-and-thrust belt in the northwestern part of the Yakutat terrane from the 

relatively undeformed southeastern part of the terrane [Plafker, 1987]. This 

boundary is clearly expressed in the offshore seismic reflection data collected to the 

southeast of the TACT corridor [Bruns, 1983].
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1.3 Eocene plutonism.

Felsic to intermediate hypabyssal and plutonic rocks were intruded into the 

Chugach and Prince William terranes in Eocene time, following the start of regional 

metamorphism of the Valdez Group [Winkler et al., 1981; Plafker et al., 1989].

They consist of dikes, sills and small stocks, ranging from tens of meters (for dikes) 

to a few square kilometers (for small stocks) [Plafker et al.. 1989]. Intrusion of these 

rocks provided a thermal pulse which contributed to progressive low pressure/high 

temperature metamorphism in areas surrounding the intrusions [Sisson and Hollister, 

1988].

Intrusions near the transect consist mainly of steeply dipping dikes, dike 

swarms and small stocks [Plafker et al., 1989]. The number and size of intrusions 

increase south and east of the transect profiles through the Chugach and Prince 

William terranes. The hypabyssal rocks are younger than the Paleocene to Eocene 

Orca Group [Plafker et al., 1989]. They also post-date major motion along the 

Border Ranges and Contact fault zones, and are seen to crosscut the latter east of the 

transect [Winkler and Plafker, 1981].

1.4 Summary of geologic and tectonic history.

Geologic studies indicate that the Chugach terrane consists of clastic
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sedimentary rocks which were deposited along a continental margin onto oceanic 

rocks at a location to the south of their current latitude. They were later transported 

northward to their present location, accreted and deformed in several stages which 

are estimated to have begun in Cretaceous and continued to Tertiary time [Plafker, 

1987].

Prince William terrane rocks were deposited in a deep-sea fan complex onto 

oceanic volcanic rocks. Paleomagnetic studies indicate that the Orca Group rocks, 

which form the basement of the Prince William terrane, could have travelled from as 

far as 40 degrees south of their present location [Plumley and Plafker, 1983]. 

Estimates for accretion of the Prince William terrane to North America range from 

Early to Middle Eocene time [von Huene et al., 1985; Plafker et al., 1989]. 

Paleogene strata overlying the Orca Grcup“Were thought to be deposited in place 

[Plafker et al., 1989].

Rocks of the Chugach and Prince William terranes were intruded by felsic to 

intermediate hypabyssal and plutonic rocks in an Early to Middle Eocene event. 

Intrusions form dikes, sills and small stocks which increase in both number and size 

south and east of the transect corridor. Intrusions are responsible for some contact 

metamorphism, particularly in the Chugach Metamorphic Complex [Hudson and 

Plafker, 1982; Sisson and Hollister. 1988],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

Rocks of the Yakutat terrane form two distinct segments: in the western 

portion, basement rocks are oceanic and to the east, continental margin flysch. 

Geologic studies suggest that the Yakutat terrane was transported approximately 

400-600 km northward to its present position by right-lateral strike-slip motion 

along the Fairweather and Queen Charlotte fault systems [von Huene, 1985; Plafker, 

1987]. It reached its current location and was thrust beneath the Prince William 

terrane by Early Eocene time [Plafker, 1987]. The Yakutat tenane is currently 

accreting to southern Alaska.

The previous discussion of the Chugach, Prince William and Yakutat terranes 

of southern Alaska brings to light several questions which are important to an 

inteipretation of the seismic refraction data: 1) Are the Chugach and Prince William 

terranes distinct geologic entities with different histories? 2) What is the nature of 

the boundary between the two terranes and how is it expressed in the seismic record?

3) What structural features seen in surface geology are seen in the refraction data?

4) Where are the boundaries of the subducting Yakutat terrane? 5) How do deep 

structural relationships affect observations in the upper crust and vice versa? and 6) 

How well can the seismic refraction data help to clarify or constrain the 

interpretations made from geological data and other geophysical data sets?
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CHAPTER 2: CHUGACH SEISMIC REFRACTION PROFILE1

2.1 Abstract.

We have developed a model for the upper crustal structure of the Chugach terrane 

of southcentral Alaska from U.S. Geological Survey seismic refraction data using two­

dimensional asymptotic ray tracing. The refraction profile, acquired as part of the 

Trans-Alaska Crustal Transect program, extends approximately 135 km in an east-west 

direction along the local strike of the Chugach Mountains. The refraction survey 

consists of four shots, recorded by 120 portable seismic instruments spaced at 1-km 

intervals. We observe a velocity-depth profile which has unusually high velocities at 

shallow depths and at least two velocity reversals. The average velocity increases from 

4.0 km/s at the surface to 6.9 km/s at a depth of 9 km. Near-surface velocities in 

Cretaceous Valdez Group rocks increase eastward following the metamorphic gradient 

observed by Hudson and Plafker [1982], Lower layers may be correlated with rocks 

mapped to the south of the Contact fault zone, a suture boundary between the Chugach 

and Prince William terranes, and with units not having surface expression. The first

Chapter 2 contains the text of the manuscript, Upper Crustal Structure o f the Accreted 
Chugach Terrane, Alaska by Wolf and Levander as published in the Journal of 
Geophysical Research, 94, 4457-4466,1989. To avoid repetition, the reader may 
wish to proceed to the Data and Analysis section (2.4).
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velocity reversal occurs at a depth of 9 km. This 1- to 2-km zone has velocities which 

vary laterally from 6.0 to 6.9 km/s and pinches out to the east in the profile. This unit 

may represent a zone comprising Tertiary intrusions and country rock. It is underlain 

at a depth of 10 km by a layer with velocities of 7.20-7.23 km/s. The second velocity 

reversal occurs at a depth of 12 km. Velocities within this layer range from 6.6 to 6.7 

km/s and may correlate with underplated oceanic crust. Higher velocities of 7.35-7.40 

km/s are attributed to a thin unit at a 14-km depth associated with ultramafic and mafic 

rocks. The deepest unit is modelled as a 5-km layer having velocities of 7.20-7.25 

km/s. This layer may be undeiplated Prince William terrane rocks, oceanic crust, or 

some portion of the Yakutat terrane. The refraction data alone do not resolve deeper 

structure.

2.2 Introduction.

The Chugach Mountains of southern Alaska are located north of the Gulf of 

Alaska and east of Anchorage along the convergent North American-Pacific plate 

boundary. Crustal structure of this area involves compressional tectonics due to 

subduction of the Pacific plate beneath the North American plate. Geologic mapping 

indicates the region comprises three distinct terranes: the Prince William terrane, the 

Chugach terrane and the Peninsular/Wrangellia terrane (Silberling and Jones, 1984).

To understand better the geologic history and subsurface structure of these terranes and
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of Alaska as a whole, the U.S. Geological Survey began a program of geologic 

mapping and crustal seismic investigations (Trans-Alaska Crustal Transect (TACT)) 

which started in the Gulf of Alaska and continued northward through the Chugach 

Mountains and beyond. A 135-km seismic refraction profile through the Chugach 

terrane, shot in 1985, parallels the regional strike of the Chugach Mountains (Figure 1). 

By integrating geologic surface mapping [Winkler et al., 1981; Plafker et al., 1986; 

Nokleberg et al., 1989] with our seismic refraction interpretation, we have correlated 

the subsurface velocity model with different geologic units for the Chugach area. We 

observe unusually high velocities (4.0 to 6.9 km/s) within the upper 9 km of crust. 

Layers extending to a depth of 5 km are correlated with Cretaceous Valdez Group 

rocks which crop out along the refraction line and to the south. These layers are 

followed by a 3- to 4-km unit having an average velocity of 6.9 km/s, with localized 

areas having a velocity of 7.4 km/s. We observe two velocity reversals below the third 

layer. Velocities in the first reversal are laterally variable and range from 6.05 to 6.90 

km/s. Velocities within the second are laterally consistent, averaging 6.65 km/s within 

the 2-km-thick layer.

2.3 Geologic Setting.

The Chugach terrane is a Mesozoic accretionary complex in a modem 

compressional tectonic regime. It is bounded to the north by the Border Ranges fault
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system, a zone of northward dipping faults which show the Chugach terrane 

underthrust beneath the older composite Pennisular/Wrangellia terrane [Winkler etal., 

1981: Wallace, 1981; 1984]. To the south, the Chugach terrane is bounded by the 

Contact fault system, a zone of northward dipping faults which appear to separate the 

Chugach terrane from the younger Prince William terrane [Winkler and Plafker, 1981], 

The structural trend in the area is approximately east-west.

The Chugach terrane has been divided into three major sequences: the Upper 

Jurassic or older Liberty Creek schists, the Upper Jurassic to Lower Cretaceous 

McHugh Complex, and the Upper Cretaceous Valdez Group [Winkler et al., 1981; 

Silberling and Jones, 1984], The Chugach seismic refraction profile lies within the 

Valdez Group (Figure 1), an accretionary prism consisting of interbedded graywackes, 

siltstones and mudstones, with minor mafic volcanics and conglomerates [Winkler et 

al., 1981 ]. Rocks of the Valdez Group are accreted sediments which were exposed to 

low-pressure/high-temperature metamorphism subsequent to deposition [Hudson and 

Plafker, 1982; Sisson and Hollister, 1988; Sisson et al., 1989], Near the west end of 

the refraction profile, at shotpoint 17, Valdez Group rocks have been metamorphosed 

to greenschist facies. The metamorphic grade increases eastward to amphibolite facies 

in the area beyond the Copper River. This area, known as the Chugach Metamorphic 

Complex, has an elongate surface expression approximately 25 km wide and at least
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180 km wide [Hudson and Plafker, 1982]. Rocks in the complex are intruded by felsic 

to intermediate sills, dikes and plutons.

2.4 Data and analysis.

The Chugach profile lies approximately west-east, 135 km from shot point 17 to 

shot point 20, with a slight southward bend in the area of shot point 18 (Figure 2). It is 

a reversed profile consisting of four shots, each recorded by approximately 120 

portable seismic recorders spaced at 1-km intervals and laid out in a fixed array [Daley 

et al., 1985]. Approximately 30 km west of shot point 20, the seismic line crosses the 

Copper River, which marks the western boundary of the Chugach Metamorphic 

Complex [Hudson and Plafker, 1982], All shot points lie within Valdez Group rocks, 

but only shot point 20 is located within the complex. The profile is aligned with the 

regional east-west structural trend. The four shots of the Chugach profile have been 

interpreted using two-dimensional ray tracing based on asymptotic ray theory [Cerveny 

et al.. 1977; Luetgert, 1987] to match both travel times and amplitudes. Travel times 

were fit to within 0.05 s, except in places where the limitations of the ray tracing 

algorithm would not allow small-scale modeling of the velocity structure.

Synthetic seismograms were used to match amplitudes and refine the velocity 

model. Ray synthetic seismograms were produced by two different programs: SEIS83 

[Cerveny and Psencik, 1984] and R86PLT [Luetgert, 1987]. Field records and
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synthetic seismograms are shown as trace-normalized record sections, with a reduction 

velocity of 6 km/s (Figures 3, 4, 5, and 6). Only results using R86PLT are shown in 

Figures 3-6.

Figures 3 ,4 ,5 , and 6 contain field data from each shot point with calculated travel 

times and synthetic seismograms from the best-fit model. The best-fit to travel times 

and amplitudes is the result of over 50 iterations of adjustments to the model. Each 

figure contains reduced travel time curves overlain on the record section, a velocity - 

depth profile for the appropriate shot point, a synthetic record section, and a ray 

diagram. Ray diagrams are included to illustrate the areas sampled in different layers, 

but for simplification, only representative rays are shown. The ray trace models are 

plotted with a 2x vertical exaggeration; sea level corresponds to a 2-km depth in the 

model. Topography, as determined from receiver elevations, is included in the model.

The first layer is 1-2 km thick and locally contains large pockets of 

unconsolidated sediment. Surface compressional velocities range from a low of 2.1 

km/s, associated with sedimentary rocks, to a high of 5.6 km/s near exposed bedrock. 

Delays in travel times and some complexity in the record section near shot point 18 

indicate the presence of a 1-km-thick sedimentary pile to the west of the shot point 

(Figures 3 and 4). Primary arrivals from the first layer immediately to the west of shot 

point 18 show substantially lower velocities than those immediately to the east. The 

presence of large bodies of ice scattered along the profile may contribute to lateral
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Figure 3. Reduced-time record section with calculated travel time curves, synthetic record section, ray diagram, and 
velocity-depth profile for SP17. Calculated travel times from same branch are connected and overlie trace-normalized 
record section. Velocities given in kilometers per second. Arrivals from the second low-velocity zone as well as pegleg 
multiples are indicated by dotted lines. Some curves are omitted to avoid clutter in the diagram. Amplitudes are not 
modeled beyond 100 km because of limited accuracy at long offsets (see text).
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Figure 4. Reduced-time record section with calculated travel time curves, synthetic record section, ray diagram, and 
velocity-depth profile for SP18. Calculated travel times from same branch are connected and overlie trace-normalized 
record section. Velocities given in kilometers per second. Arrivals from the second low-velocity zone as well as pegleg 
multiples are indicated by dotted lines. Some curves are omitted to avoid clutter in the diagram. Amplitudes are not
modeled beyond 100 km because of limited accuracy at long offsets (see text). ix>
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Figure 5. Reduced-time record section with calculated travel time curves, synthetic record section, ray diagram, and 
velocity-depth profile for SP19. Calculated travel times from same branch are connected and overlie trace-normalized 
record section. Velocities given in kilometers per second. Arrivals from the second low-velocity zone as well as pegleg 
multiples are indicated by dotted lines. Some curves are omitted to avoid clutter in the diagram. Amplitudes are not 
modeled beyond 100 km because of limited accuracy at long offsets (see text).
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Figure 6. Reduced-time record section with calculated travel time curves, synthetic record section, ray diagram, and 
velocity-depth profile for SP20. Calculated travel times from same branch are connected and overlie trace-normalized 
record section. Velocities given in kilometers per second. Arrivals from the second low-velocity zone as well as pegleg 
multiples are indicated by dotted lines. Some curves are omitted to avoid clutter in the diagram. Amplitudes are not 
modeled beyond 100 km because of limited accuracy at long offsets (see text).
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velocity variations in the near surface. The second layer in the model is 1-2 km thick 

and has velocities which range from 6.1 to 6.5 km/s. There is some lateral variation in 

the velocity of this layer, particularly in the area near shot point 19. Velocities in 

shallow layers increase eastward throughout the model, with the first layer showing 

more variability than the second.

The third layer is modelled as 4-5 km in thickness, with velocities ranging from

6.6 to 7.1 km/s. This layer thins slightly to the west in the region between shot points 

19 and 17. First arrivals from this unit indicate the presence of discontinuous high- 

velocity material throughout the third layer. Travel times at offsets of approximately 

40 km to the east and west of shot point 19 can be better modelled by including 

laterally limited high-velocity features, about 1-2 km in thickness and several 

kilometers in length, within the layer. These high-velocity features were modelled 

using the Cerveny and Psencik program, SEIS83. They are estimated to have 

velocities of 7.4 km/s and account for the discrepancy between calculated and observed 

travel times of primary arrivals at offsets of 15-40 km (Figure 5).

Arrivals from layer 4 on the shot point records suggest a change in the geometry 

of the units. Layers form a broad arch beneath shot point 19. dipping slightly more to 

the east than to the west. The fourth layer is modelled as a thin unit in which the 

velocity ranges from 6.0 to 6.8 km/s. The presence of this low-velocity layer is 

indicated in the record sections from shot points (SP) 17, 18, and 19 by high-amplitude
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second arrivals at offsets of approximately 18-40 km and reduced times of 0.0-0.5 s. In 

the record from SP17, high-amplitude second arrivals occur at offsets of 18-37 km 

(Figure 3). In the record from SP18, high-amplitude second arrivals appear at similar 

distances on both sides of the shot point (Figure 4). In the record from SP19, however, 

no symmetry in the offsets of high-amplitude second arrivals is observed (Figure 5).

To the east, the first of these arrivals is seen at an offset of approximately 18 km and 

0.5 s (labeled as 6.5 km/s phase), but to the west, high-amplitude second arrivals are 

not observed until approximately 28 km and 0.25 s (labeled as 6.3-6.9 phase). Arrivals 

attributed to the first low-velocity zone are not evident in the record section from shot 

point 20 (Figure 6). The first later-arriving high-amplitude pulse does not occur until 

an offset of 50 km and 0.0 s.

Because continuous high-amplitude second arrivals from the low-velocity layer 

are not seen in the data from all shots, the layer is assumed to be laterally limited 

(Figure 7). Layer 4 is therefore shown to pinch out approximately 30 km east of shot 

point 19. Laterally varying velocities in layer 4 produce high-amplitudes in some areas 

and low amplitudes in others. Arrivals from the low-velocity layer are often coincident 

with arrivals from a high-velocity layer beneath it, thus accounting for the amplitudes 

observed at some offsets. Models lacking the first low-velocity zone fail to produce 

the high-amplitude second arrivals seen in the data from shot points 17, 18, and 19.

The preferred model, which includes this laterally limited fourth layer, produces better
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Figure 7. Comparison of observed data from shot points 17 and 20. High-amplitude 
second arrivals appearing 20-37 km from SP 17 at 0.5 s reduced time are attributed to 
the low-velocity layer (Figure 7a). A similar phase is absent in the record from SP 20 
at comparable ranges and travel times, suggesting that the layer does not extend 
eastward to SP 20 (Figure 7b).
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amplitude matches in some areas. The inability of ray methods to model accurately 

some types of complex structures made it difficult to match amplitudes to the east of 

shot point 19. where the fourth layer pinches out. An example of this limitation is 

discussed later.

Layer 5 is a high-velocity layer which underlies the low-velocity zone. It is 

approximately 2 km thick, with velocities ranging from 7.20 to 7.23 km/s. The high 

velocities in layer 5 are required to produce first arrivals beyond 60 km, the offset at 

which first arrivals from layer 3 die out (Figures 3,4, 5. and 6). The lack of prominent 

first arrivals beyond 80 km in the record sections suggests that the fifth layer is thin. 

Large-amplitude second arrivals at offsets of approximately 60 km and 0.0 s (labeled 

as 6.6-6.7 km/s phase) and delayed first arrivals in the observed data (Figures 3,4, 5 

and 6) indicate a second low-velocity zone beneath layer 5. The delay in travel times 

suggests that this second low-velocity zone, layer 6, is thicker than the first. The 

velocity of layer 6 ranges from 6.6-6.7 km/s, with little lateral variation.

Layer 7 has velocities which range from 7.35 to 7.40 km/s. Because the 

maximum velocity in this unit is not much higher than that in layer 5, refraction is 

weak, resulting in indistinct phases at offsets greater than 80 km. First arrivals appear 

in refractions where layer 7 velocities exceed those in layer 5 above. The data do not 

provide good constraints on the velocities or geometries beneath layer 6. as can be 

evidenced by the ray trace diagrams in Figures 3, 4, 5, and 6. Rays from reversed shots
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which penetrate deeper layers do not illuminate much of the structure because they 

intersect in only a small area in the central part of the model.

Figure 8 illustrates the limitations of the modelling technique in matching the 

amplitudes of synthetic seismograms with field data. The effect of minor changes in 

model parameterization on trace-normalized synthetic seismograms is pronounced. 

Figure 8 shows the result of lowering the fourth interface (bottom of the third layer) by 

0.10 km at a distance of 117 km in the model, just east of the pinchout of layer 4. 

Synthetic seismograms of the two models are very similar close to shot point 20, but 

the ray synthetic traces at long offsets are dramatically different. The reliability of ray 

synthetic seismograms at large offsets is questionable when the structures are thin and 

pinch out.

Original interpretations of the Chugach profile postulated the existence of four 

pairs of alternating low-/high-velocity layers [Page et al., 1986]. Shingled events in 

the record section provided the evidence for low-velocity layers [Fuis and Ambos, 

1986; Wolf et al., 1986]. Further analysis has suggested that later "steps" in the travel 

time curves are multiple reflections within shallow low-velocity layers [E. Flueh et al., 

Crustal structure of the Chugach Mountains, southern Alaska: A study of pegleg 

multiples from a low-velocity zone, submitted to Journal of Geophysical Research, 

1988]. Using ray trace methods, we have successfully matched travel times of some
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Figure 8. Comparison of two ray synthetic seismogra/ns from SP20 showing effects of minor changes in the model, (a) the
effect on synthetics of moving the lower boundary of layer 3 at 117 km in the model upwards by 0.1 km; (b) generated
using the final model. Synthetics compare well at small offsets but are dramatically different at long offsets. The pinchout
in layer 4 contributes to instability.
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some later high-amplitude arrivals by modelling pegleg multiples within layer 6. 

Readers are referred to work by E. Flueh et al. for detailed modelling of multiples 

using reflectivity methods.

2.5 Geologic interpretations.

A geologic interpretation and detailed velocity model of the upper crustal 

structure of the Chugach terrane are shown in Figures 9 and 10. Rocks at the surface 

along the length of the profile have been mapped as Upper Cretaceous Valdez Group 

rocks [Winkler and Plafker, 1981]. Near-surface features such as ice and pockets of 

unconsolidated sediment contribute to substantial variation in shallow velocities 

(Figure 9). In particular, the area immediately west of shot point 18 shows delays in 

first arrivals, suggesting the existence of a 1 -km-thick pocket of sediment. The 

mapped western boundary of the Chugach Metamorphic Complex correlates well with 

the increase in the shallow velocity structure to the east of shot point 19. Rocks within 

this complex have been metamorphosed to amphibolite facies [Hudson and Plafker, 

1982] and have average near-surface velocities of 5.0-5.3 km/s. Rocks outside the 

complex (west of the Copper River) have been metamorphosed to greenschist facies 

and have slightly lower average velocities (4.4-5.0 km/s) (Figure 9). Increasing 

velocities to the east of shot point 19 occur only in the upper layers, evidence which 

suggests the metamorphic gradient does not extend below a 5-km depth.
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Figure 9. Detailed velocity model and possible geologic model based on seismic refraction interpretation from the USGS 
Chugach profile. Upper two layers are correlated with Valdez Group rocks. Layer 4 represents a low-velocity zone possibly 
containing Tertiary intrusives and country rock or oceanic sediments. Layer 5 is a high-velocity unit correlated with mafic 
or highly metamorphosed rocks Layer 6 marks the second velocity reversal, which may correspond to underthrust oceanic 
sediments above ultramafic and mafic rocks. Although units below the third are shown to contain some Tertiary intrusives 
and Prince William terrane rocks, they could represent rocks not having surface expression. (See text for other 
interpretations.)
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Figure 10. Fence diagram of geologic cross sections along lines indicated in Figure 2. East-west cross section corresponds to one geologic 
interpretation of refraction data from the Chugach terrane. Other interpretations are discussed in the text. Connecting cross sections are based on 
surface geology [Winkler and Plafker, 1981]. Earthquake foci indicate approximate location of subducting plate (western line from Stephens, et 
al., [1984]; eastern line from Wolf et al., [1986]). The Contact fault zone (CFZ) marks the boundary of the Chugach with the Prince William 
terrane to the south. The terrane boundary is inferred to extend to at least 10-12 km depth. Geometry of the CFZ is not well constrained but is 
modelled with a moderate northward dip, consistent with geologic and gravity data [Winkler and Plafker, 1981; Page et al., 1986]. Elongate 
features in layer 3 correspond to high-velocity areas discussed in text. Variation in shading east of SP 19 marks the boundary of the Chugach 
Metamorphic Complex [Hudson and Plafker, 1982],



Further reproduction 
prohibited 

w
ithout perm

ission.

C H U G A C H  T E R R A N E



39

Approximately 10-25 km south of the Chugach profile is an elongate outcrop belt 

of Upper Cretaceous metavolcanic rocks, such as mafic metatuffs and massive 

greenstones, and metasedimentary rocks, such as marine argillites, sandstones, 

siltstones, and minor conglomerates [Winkler and Plafker, 1981]. Projecting this 

section downdip to the refraction line would place these rocks approximately within 

the upper 6 km of the model (Figure 10).

Based on the regional dip of units inferred from surface geology, the first two 

layers (approximately the upper 5-6 km of section) are correlated with Valdez Group 

rocks. Numerous thin mafic dikes and sills (up to 20 km long but tens of meters thick) 

have been mapped in these rocks [Winkler et al., 1981]. These small features increase 

the average velocity of a given layer and contribute to the lateral velocity variation 

within the first two units.

It is difficult to correlate the mapped surface geology with layers beneath the 

second. One possible interpretation is that layer 3, which has an average velocity of 

6.9 km/s, contains subducted volcanic oceanic crust. The velocity of layer 3, as well as 

those of layers 5 and 7, is similar to that associated with gabbros in ophiolites and 

subducted mafic to ultramafic oceanic crust [Salisbury and Christensen, 1978; Spudich 

and Orcutt. 1980]. A second interpretation for layer 3 is that it contains Valdez Group 

rocks which are not exposed at the surface. The average velocity is compatible with 

ranges for highly metamoiphosed rocks [Birch, I960], Localized regions of very high
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velocity (7.4 km/s) from within layer 3 beneath shot point 19 are difficult to explain. 

These localized areas of high velocity may represent thin slivers of mantle material 

which were thrust into place by a downgoing plate or highly metamorphosed mafic to 

ultramafic rocks which were intruded during a syn-tectonic or post-tectonic event.

More than one interpretation can also be offered for layer 4, the first low-velocity 

layer. One possibility is that layer 4 consists of underplated oceanic sediment. The 

high-velocity material in layer 5 would then correspond to mafic oceanic crust. Ranges 

of velocities for oceanic crust and ophiolites at the depths of burial postulated for these 

units are in agreement with those made by Christensen [1978]. This velocity model 

and structural interpretation explain the time delays and high amplitudes in the record 

section. The model seems to presume, however, two relict subduction complexes 

above the currently subducting plate. Such a package of alternating low-/high-velocity 

pairs is not commonly seen in similar environments.

An alternative interpretation of layer 4 is that it contains Tertiary intrusive rocks 

equivalent to those appearing elsewhere at the surface. Both the Tertiary sedimentary 

rocks of the Prince William terrane and the Mesozoic metasedimentary rocks of the 

Chugach terrane have been intruded locally by Eocene felsic to intermediate rocks. 

Velocities in the first low-velocity layer vary laterally and may represent a composite 

of intrusions and surrounding flysch (Figure 9). Velocities in layer 5 are compatible
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with those of layer 3 and suggest that layer 5 may be a downward continuation of that 

unit.

Possible geologic interpretations of the velocity model are shown in Figures 9 and 

10. Layers 1 and 2 contain Valdez Group rocks exposed at the surface between the 

refraction line location and the Contact fault zone. Layers beneath the second do not 

project to the surface and therefore several geologic interpretations are indicated in 

Figure 9. Layer 3 could be a continuation of Valdez Group rocks or subducted oceanic 

volcanic rocks. Layer 4 is presented as a zone containing Tertiary intrusions and 

flysch or subducted oceanic sediments, underlain by a high-velocity layer (layer 5). 

Layer 6, the second low-velocity zone, is correlated with oceanic sediments but could 

possibly be underthrust Prince William terrane rocks from farther south. Higher 

velocities in layer 7 are compatible with mafic to ultramafic rocks which form the 

basement to sedimentary rocks in the Prince William terrane [Winkler and Plafker, 

1981] or with relict subducted volcanic oceanic crust. Velocities below a 20-km depth 

in the model are not well constrained. These velocities could correspond to Prince 

William terrane basement rocks, to subducted oceanic crust or to rocks within the 

Yakutat terrane. The subsurface boundaries of the Yakutat terrane are not well known, 

and the relationship of the Yakutat terrane and the North American-Pacific plate 

boundary in southcentral Alaska is unclear [Bruns, 1983; Stephens et al., 1984],
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2.6 Discussion and summary.

The velocity model we present for the Chugach refraction profile is grossly 

similar to that of Page et al. [1986]: a crustal velocity profile having unusually high 

velocities within the upper 10 km and two velocity reversals. We have refined the 

structure and velocity model for the upper crustal layers to a 22-km depth and offer 

several different geologic interpretations. Unfortunately, the data do not resolve the 

deeper structure. To match observed travel times and amplitudes, primary arrivals 

from lower layers must be delayed. Delays in travel times at long offsets from each of 

the shotpoints cannot be adequately accomodated by including many alternating low- 

high velocity pairs in the model, because arrivals from deeper high velocity layers 

appear at offsets greater than are observed in the data.

An attempt to tie the model presented here with the interpretation of the dip line to 

the north and south [Fuis and Ambos, 1986] and the mapped surface geology [Winkler 

and Plafker, 1981] is illustrated by the fence diagram in Figure 10. This composite 

diagram illustrates the inferred structure beneath the Chugach profile as determined 

from the refraction data and projects it southward based on the mapped surface 

geology. The relationships of structures adjacent to the Contact fault system are not 

clear. On the surface, the Contact Fault appears to mark a major suture zone which 

separates two geologically different areas [Winkler and Plafker, 1981]. We present in 

Figure 10 the interpretation that sediments have been accreted to and thrust under rocks
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of the Chugach terrane. Lower layers are presented as rocks which lack surface 

expression and do not extend southward beyond the Contact fault zone [Fuis and 

Ambos, 1986]. These lower layers have velocities compatible with those found for 

oceanic crust, and it is suggested that they comprise different layers of an underthrust 

subduction package. Earthquake focal depths are believed to delineate the top of the 

current subducting plate at approximately a 30-km depth and provide a lower limit to 

the upper crustal package (Figure 10). The refraction data lack evidence of a sharp 

velocity contrast at this depth, a finding which suggests that the bottom of the 

overriding crust and the top of the subducting plate may have similar composition. 

Refraction data alone are insufficient to uniquely determine the complex geometries 

and relationships of deep structure beneath 22 km, between the accreted Chugach and 

Prince William terranes and the subducting plate.
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CHAPTER 3: CORDOVA PEAK SEISMIC REFRACTION PROFILE2

3.1 Introduction.

Southern Alaska is a geologically and tectonically complex area which offers a 

modem setting for the study of subduction environments and accretionary processes 

(Figure 1). It consists of a collection of tectonostratigraphic terranes which were 

accreted to the North American continent along a convergent margin. A recent 

contribution towards our understanding of the tectonic processes and geologic history 

of southern Alaska has come from data collected as part of the U.S. Geological 

Survey’s Trans-Alaska Crustal Transect (TACT) project, an ongoing program of 

geological and crustal seismic investigations. In this paper, a three-dimensional crustal 

model for a part of southern Alaska is developed from an interpretation of two 

intersecting TACT seismic refraction profiles, the Chugach and the Cordova Peak 

profiles. A detailed model based on the Chugach profile was developed in a previously 

published study [Wolf and Levander, 1989] and is incorporated into the Cordova Peak 

model developed in this paper.

2Chapter 3 contains the text of a manuscript entitled, Upper Crustal Structure o f  
Southcentral Alaska: An Interpretation o f TACT Seismic Refraction Data to be 
submitted to the Journal o f Geophysical Research. To avoid repetition, the reader 
may wish to proceed to the Data and Analysis section (3.3).
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The 126-km Cordova Peak seismic refraction line is a N-S trending dip profile 

which crosses both the Chugach and Prince William terranes. At its midpoint, the 

Cordova Peak line intersects the Chugach line, a 135-km profile which parallels the 

regional E-W strike of structures in the Chugach Mountains (Figure 2). The Chugach 

and Prince William terranes form an accretionary complex divided by the Contact fault 

zone, a zone of steeply dipping faults along which rocks of the Prince William terrane 

have been thrust beneath older rocks of the Chugach terrane. In the western part of the 

Gulf of Alaska, the Aleutian trench forms the southern boundary of the Prince William 

terrane, separating it from the subducting Pacific plate. In the central Gulf region, the 

eastern boundary of the Prince William terrane is a fault contact with the Yakutat 

terrane along the Kayak Zone.

3.2 Regional and tectonic setting.

Southern Alaska has been divided into tectonostratigraphic terranes which 

represent distinct, fault-bounded geologic entities with different geologic histories 

[Jones et al., 1981; 1987; Howell et al., 1985; Stone and Wallace, 1987]. The 

Chugach, Prince William and Yakutat terranes are three such entities which lie north of 

the Gulf of Alaska (Figures 1 and 2). The TACT corridor is located in a transitional 

area influenced by both convergent and transform tectonic margins. To the west, the 

Pacific plate is subducting beneath the North American plate, beginning along the
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Aleutian trench. To the east, transform motion is distributed along the Fairweather 

fault system.

3.2.1 Plate interactions.

Relative motion between the Pacific and the North American plates was described 

by the RM1 model [Minster et al., 1974] to be approximately NNW at a rate of 6 

cm/yr, an estimate which is in agreement with more recent models for this region 

[Engebretson et al., 1985]. Within this transition zone between convergent and 

transform margins, motion cannot be accomodated entirely by a well-defined 

boundary, as indicated by new or reactivated faults and by internal deformation of 

inland continental rocks [Perez and Jacob, 1980; Jacob, 1986; Lahr and Plafker, 1980]. 

Estimates of convergence rates and paleolatitudes suggest that the terranes in southern 

Alaska contain rocks that were originally deposited south of their present latitudes and 

later travelled northward as the result of plate motions [Stone and Panuska, 1982; von 

Huene et al., 1985]. They were then accreted to and/or subducted beneath southern 

Alaska along the Gulf of Alaska margin.

3.2.2 Terrane descriptions.

The Chugach terrane consists of highly deformed, accreted and metamorphosed 

clastic sedimentary rocks and oceanic crust [Winkler et al., 1981]. It has been divided,
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from north to south, into three major fault-bounded sequences: the Upper Jurassic or 

older Liberty Creek schists, the Jurassic or older to Lower Cretaceous McHugh 

Complex and the Upper Cretaceous Valdez Group [Winkler et al., 1981; Silberling and 

Jones, 1984; Plafker et al., 1989].

The Valdez Group, which forms the bulk of the Chugach terrane, consists mainly 

of continentally-derived sediments which were eroded from a magmatic arc and 

deposited in a deep-sea fan [Winkler et al., 1981; Plafker et al., 1989]. Beneath the 

deposited sedimentary rocks, mafic volcanic oceanic rocks form the terrane basement 

[Winkler et al., 1981]. The Chugach terrane moved northward to its present location, 

forming a thick accretionary prism which was progressively deformed and 

metamorphosed in a low pressure/high temperature event beginning in latest 

Cretaceous and continuing in Paleogene time [Hudson and Plafker, 1982].

An observed metamorphic gradient in Valdez Group rocks increases from 

greenschist facies in the west to amphibolite facies east of the Copper River in the 

Chugach Metamorphic Complex [Hudson and Plafker, 1982; Sisson and Hollister, 

1988]. To the south, metavolcanic rocks exposed at the surface are juxtaposed with 

sedimentary rocks of the Prince William terrane along the Contact fault zone. The 

total stratigraphic thickness of the Chugach terrane is unknown.

The Prince William terrane contains rocks of the Orca Group, a late Paleocene 

and Early through Middle Eocene deep-sea fan deposit interbedded with oceanic
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basalts [Winkler and Plafker, 1981; Plafker, 1987], There is evidence that these rocks 

were deposited south of their present latitude and were later transported northward, 

accreted and metamorphosed to zeolite to greenschist facies [Plafker, 1987; Plumley 

and Plafker, 1983; Panuska and Stone, 1985]. The Orca Group forms the basement of 

the Prince William terrane, with an estimated thickness of 6-10 km. Overlying the 

Orca Group are Late Eocene or older to Quaternary siliciclastic sedimentary rocks 

which were deposited in shelf or slope basins at their current locations [Plafker, 1987]. 

These younger sedimentary rocks constitute a relatively undeformed sequence 

estimated to be less than 4 km thick [Plafker, 1987].

Similarity in lithology and depositional environment between the sandstones of 

the Chugach and Prince William terranes has raised some question as to whether the 

two terranes are geologically distinct entities and properly can be called terranes 

[Dumoulin, 1988]. In the western Prince William Sound, little metamorphism or 

deformation is observed in these terranes and no well defined compositional boundary 

exists at the Contact fault zone [Dumoulin, 1988]. Because of this similarity, it has 

been argued that the minor differences seen in rocks of the two terranes in central 

Prince William Sound may simply reflect a metamorphic gradient and that the Contact 

fault zone may be a series of thrust faults in a developing accretionary prism rather 

than a terrane boundary.
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Felsic to intermediate Eocene hypabyssal and plutonic rocks were intruded into 

the Chugach and Prince William terranes at about 50 Ma ago, following the start of 

regional metamorphism [Plafker et al., 1989]. The intrusions form dikes and dike 

swarms, as well as sills and small stocks which crop out in the vicinity of the seismic 

transect. Crosscutting relationships indicate that intrusions post-date deposition of 

Orca Group rocks and major motion along the Contact Fault [Winkler and Plafker, 

1981].

The Yakutat terrane is to the east of the Prince William terrane and southeast of 

the TACT corridor. Although rocks of the terrane are not seen along the transect, 

subsurface boundaries of the terrane may well extend westward to the transect and 

beyond. The Yakutat terrane can be subdivided into two segments: west of the 

Dangerous River zone, the basement is composed of Paleocene to Early Eocene 

oceanic crust, and to the east, the basement is composed of continentally derived upper 

Mesozoic flysch and melange of the Yakutat Group [Plafker, 1987], Overlying the 

basement rocks are Lower Eocene to Quaternary clastic sequences, some of which are 

thought to be derived locally from erosion of the Chugach and St. Elias Mountains 

after collision and underthrusting of the Yakutat terrane [Plafker, 1987]. There is 

evidence that the Y akutat terrane originated to the south and travelled approximately 

400-600 km northward to its present location [von Huene et al., 1985; Plafker, 1987]. 

Studies indicate that the Yakutat terrane is currently accreting along the Gulf of Alaska
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margin. It appears to be moving with the Pacific plate but at a slightly lower rate, 

which suggests that remaining motion must be accomodated by faulting or internal 

deformation of the terrane [Perez and Jacob, 1980; Lahr and Plafker, 1980; Plafker, 

1987; Brans, 1983].

3.3 Data and analysis.

The N-S Cordova Peak profile extends from the Border Ranges fault zone to the 

Gulf of Alaska (Figure 2). It is a reversed profile consisting of five shots, each 

recorded by approximately 120 portable seismic recorders spaced at 1-km intervals in a 

fixed array [Wilson et al., 1987]. Shot points 11,12 and 19 lie within McHugh 

Complex and Valdez Group rocks of the Chugach terrane. Shot points 38 and 37 lie 

south of the Contact fault zone, within rocks of the Prince William terrane. Shot point 

19 marks the intersection of the Cordova Peak dip line with the Chugach strike line.

3.3.1 Procedure.

The five shots of the Cordova Peak profile have been interpreted using two­

dimensional asymptotic ray tracing [Luetgert, 1987] and the standardized procedure 

discussed in the Appendix. Field records indicate that the seismic data are of good 

quality except at long offsets, where signal to noise ratios make it difficult to pick first 

arrivals in some record sections. Calculated travel times were generally fit to within
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0.05-0.10 s, except at long offsets or in areas where the ray-tracing algorithm did not 

permit small-scale modelling. These areas are discussed in more detail below.

Synthetic seismograms produced using the program R86PLT [Leutgert, 1987] were 

used to match amplitudes in the observed data and to refine the velocity structure 

within the model.

Results of the modelling are shown in Figures 11-15. Each figure contains a 

comparison of the field data from one shot point with the calculated travel times and 

synthetic seismograms from the preferred model. Record sections are plotted with a 

reduction velocity of 6 km/s and are trace normalized. Ray diagrams illustrate the 

subsurface areas sampled in different layers, but for simplification, only representative 

rays are shown. Sea level corresponds to a depth of 2 km in the model. Simplified 

topography is drawn from local maxima and minima as determined from receiver 

elevations [Wilson et al., 1987].

The starting model for the Cordova Peak interpretation was constructed from a 

synthesis of one-dimensional models from each of the shot points, a model based on 

surface geology and geologic cross-sections, and the previously derived model for the 

intersecting Chugach line (Figure 9) [Wolf and Levander, 1989]. The starting model 

was then iteratively adjusted and revised. Several assumptions made in these initial 

attempts at matching travel times and phases yielded poor results. For instance, it was 

difficult to constrain rigorously the Cordova Peak dip model at shot point 19 (the
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Figure 12. Reduced-time record section with calculated travel time curves, synthetic 
record section and ray diagram for shot point 12 (SP 12). Calculated travel times from 
same branch are connected and overlie trace-normalized record section. Velocities 
given in kilometers per second. Some curves are omitted to avoid clutter in the 
diagram. Amplitudes for offsets beyond 60 km are not well constrained because of 
limited accuracy at long offsets (see text).
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Figure 11. Reduced-time record section with calculated travel time curves, synthetic 
record section and ray diagram for shot point 11 (SP11). Calculated travel times from 
same branch are connected and overlie trace-normalized record section. Velocities 
given in kilometers per second. Some curves are omitted to avoid clutter in the 
diagram. Amplitudes for offsets beyond 60 km are not well constrained because of 
limited accuracy at long offsets (see text).
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Figure 13. Reduced-time record section with calculated travel time curves, synthetic 
record section and ray diagram for shot point 19 (SP 19). Calculated travel times from 
same branch are connected and overlie trace-normalized record section. Velocities 
given in kilometers per second. Some curves are omitted to avoid clutter in the 
diagram. Amplitudes for offsets beyond 60 km are not well constrained because of 
limited accuracy at long offsets (see text).
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Figure 14. Reduced-time record section with calculated travel time curves, synthetic 
record section and ray diagram for shot point 38 (SP 38). Calculated travel times from 
same branch are connected and overlie trace-normalized record section. Velocities 
given in kilometers per second. Some curves are omitted to avoid clutter in the 
diagram. Amplitudes for offsets beyond 60 km are not well constrained because of 
limited accuracy at long offsets (see text). M  indicates travel time curves for surface 
multiples.
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Figure 15. Reduced-time record section with calculated travel time curves, synthetic 
record section and ray diagram for SP  37. Calculated travel times from same branch 
are connected and overlie trace-normalized record section. Velocities given in 
kilometers per second. Arrivals from surface multiples are marked with asterisks. 
Some curves are omitted to avoid clutter in the diagram. Amplitudes for offsets 
beyond 60 km are not well constrained because of limited accuracy at long offsets (see 
text). M *  indicates travel time curves for surface multiples.
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intersecting point of the two lines) with the velocity-depth function from shot point 19 

in the Chugach model. Velocities of the strike line were systematically too high to 

match travel times in the dip line, unless a fairly significant lateral velocity gradient 

was invoked. Once the constraint from the velocities observed in the strike direction 

was relaxed, model adjustments met with more success. At least two possible 

explanations can be presented for the velocity-depth function discrepancies between 

the strike and dip models. First, energy recorded along the strike direction could 

represent rays travelling out-of-the-plane of section. Secondly, velocity-depth 

discrepancies could reflect anisotropy in rock properties. This second possibility is 

discussed in more detail below.

A second assumption made in the starting model was that units appearing at the 

surface in the Prince William terrane could be projected downdip to the north in the 

model, beneath the Chugach terrane. Attempts to follow this approach required 

unreasonable velocity increases from south to north within the layers. For instance, an 

attempt to carry layer 3B downdip to the north required an increase in average velocity 

from 5.6 km/s to 6.7 km/s (Figure 16). This steep gradient is more likely to indicate a 

compositional change than a change due to an increase in velocity with depth or 

metamorphic grade.
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Figure 16. Seismic model showing average velocities, gravity and magnetic data, and 
possible geologic structure based on seismic refraction interpretation of USGS 
Cordova Peak profile: (a) Gravity from Barnes [1977] and D.F. Barnes [written 
commun.,1984]; magnetic profile modified from Page et al. [1986], Andreason et al. 
[1964] and U.S. Geological Survey [1979a, 1979b]. (b) Velocity model showing 
average velocities for model layers; shaded portion denotes areas sampled by rays from 
reversed shots. Velocities and boundaries outside shading are not well constrained, (c) 
Possible geologic interpretation based on seismic model and cross section from G. 
Plafker et al.[1989].
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3.3.2 Seismic model.

The seismic velocity model derived for the Cordova Peak profile is shown with 

observed gravity and magnetic data and a possible geologic model in Figure 16 a-c.

The seismic model consists of 18 layers, each displayed with average compressional 

velocities for specific areas in the model. The upper layers are grouped according to 

terrane, with layers 1A-5A corresponding to rocks of the Chugach terrane, and layers 

1B-6B corresponding to rocks of the Prince William terrane. Mid-crustal and deeper 

layers are treated separately. Table 1 contains a summary of layer information, listing 

layer thicknesses, velocity ranges and depth ranges.

3.3.2-1 Chugach terrane.

Layers 1A-5A represent rocks of the Chugach terrane, most of which have surface 

expression north of the Contact fault zone [Winkler et al., 1981]. Compressional 

velocities at the surface in the Chugach terrane range from average lows of 4.0 km/s to 

average highs of 5.8 km/s in exposed bedrock. Clearly observed primary arrivals and 

prominent reflections generally provide good constraints on depths to interfaces of the 

first four layers (Figures 11,12 and 13). A comparison of arrivals at offsets within 20 

km to the north and south in the record from shot point 19 indicates a change in the 

near-surface structure and a steepening of the northward dip (Figure 13). The record 

section exhibits clear first arrivals and little complication at offsets within 20 km north
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TABLE 1: CORDOVA PEAK MODEL

Chugach terrane
LAYER AVERAGE STRUCTURAL VELOCITY RANGE AVERAGE VELOCITY GEOLOGIC INTERPRETATION

THICKNESS (KM) (KM/S) (KM/S)

1A 1 4.00-5.15 4.5 Unconsolidated sediment
2A 6 4.73-5.90 5.7 Metamorphosed flysch
3A 3 5.80-6.40 6.2 Mafic metavolcanics
4A 2 6.40-7.40 6.9 Mafic to ultramafic metavolcanics
5A 3 5.90-6.10 6.0 Metamorphosed flysch and 

igneous intrusive rock
Mid-crustal layers

LVZ I 2 6.40-6.50 6.5 Underplated oceanic sediments or 
zones of high porosities

HVZ 1 2 6.85-7.00 6.9 Mafic to ultramafic oceanic crust
LVZ 2 2 6.60-6.70 6.6 Mafic oceanic crust
HVZ 2 3 

Prince William terrane
7.10-7.25 7.2 Mafic to ultramafic oceanic crust

IB 1 3.70-3.75 3.7 Unconsolidated sediments
2B 2 4.50-5.40 5.2 Metasedimentary rocks
3B 3 5.60-5.70 5.7 Metasedimentary rocks
4B 3 5.00-6.10 5.6 Sedimentary, metasedimentary and 

igneous intrusive rocks
5B 6 6.10-6.30 6.2 Interbedded metasedimentary and 

volcanic rocks
6B 2 6.70-7.00 6.9 Mafic to ultramafic volcanic 

rocks
Deep crustal layers

YB 6? 6.40-6.80 6.5 Terrigenous sedimentary rocks 
overlying oceanic crust

SCI 6? 6.60-7.20 7.0 Mafic to ultramafic oceanic crust
SC2 ? 7.05-7.25 7.2 Mafic to ultramafic oceanic crust
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of shot point 19. No high-amplitude reflection occurs until approximately a 23-km 

offset and 0.75 s. To the south, wide-angle reflections from shallow layers occur much 

closer to the shot point and contribute to complication in the waveforms. The 

difference in observations of energy travelling northward versus southward from shot 

point 19 is attributed to an increase in thickness of the second layer and to the pinch 

out of layer 3A (Figure 13).

Layer 3A, exposed at the surface just north of the Contact fault zone, has high 

average velocities (6.2 km/s) which cannot be continued northward much beyond shot 

point 19 in the model. Attempts to carry this layer northward over the length of the 

profile without invoking a substantial lateral velocity gradient resulted in travel times 

greater than 0.25 s too fast for refracted rays within the layer. As an alternative, the 

thickness of layer 2A was increased to the north; this approach provided a more 

successful match not only to travel times but also to amplitudes.

Slower apparent velocities observed in all shot records in the area beneath Mt. 

Billy Mitchell provide evidence of a low-velocity area in layer 2A, located at 80-90 km 

from the south end of the model (Figure 16). In the data from shot point 11, a delay in 

the travel time curve is seen at approximately 40-50 km offset (Figure 11). A similar 

delay is seen in the record southward from shot point 12 at approximately 15-20 km 

offset (Figure 12). Because it is observed in the same location even from shots at far 

offsets, the delay is associated with a near-surface feature in layer 2A (Figures 14 and
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15). Coincident with the travel time anomaly is a loss of high frequency energy in the 

area near Mt. Billy Mitchell (Figures 11 and 13). The combination of these two 

attributes in the same location indicates that some structural complexity, such as a 

fault, may exist in this area.

Although layers 4A and 5A do not extend to the surface, they have been grouped 

with units associated with the Chugach terrane in the model. The primary rationale for 

grouping these layers with layers 1A-3A above comes from seismic reflection data 

collected in the northern portion of the model [Fischer et al., 1989]. A clear difference 

in the character of signal is seen in the reflection data between the upper crust and mid- 

crustal layers (Figure 17). The data show that the upper 10 km of crust of the Chugach 

terrane contains several discontinuous reflections with various orientations, while 

layers below approximately 10-12 km have prominent, more continuous reflections 

[Fischer et al., 1989].

In the record from shot point 12, a clear wide-angle reflection at a 17-km offset to 

the south indicates the location of the interface between layers 2A and 4A (Figure 12). 

To the north, the shot record lacks such a strong arrival, evidence which may suggest a 

smaller velocity contrast between layer 2A and the unit below. Layer 5A was 

introduced to the model to accomodate differences seen to the north and south in the 

shot record. Velocities near the top of layer 5A are similar to those in the layer above,
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an observation which is supported by a lack of a distinct, continuous high-amplitude 

wide-angle reflection at near offsets in the data from shot point 11 (Figure 11).

Observed travel times of rays refracted to the south of shot point 19 at offsets of 

20 km and 0.0 s in the field data are slightly faster than those calculated from the 

model (Figure 13). A similar discrepancy appeared in the comparison of calculated 

and observed travel times from SP19 in the Chugach data at offsets of 40 km (Figure 

5). These early primary arrivals are attributed in both cases to refracted rays which 

cross lens-shaped high-velocity areas (7.4 km/s) in layer 4A in the Cordova Peak 

model (layer 3 in the Chugach model). Because no discrepancy in the travel times 

occurs to the north of shot point 19, the high-velocity areas are assumed to pinch out.

A discussion on the modelling of these lenses appears in the paper on the Chugach 

profile [Wolf and Levander, 1989].

3.3.2-2 Mid-crustal layers.

The group of mid-crustal rocks containing low/high velocity pairs begins at 

approximately 8 km beneath shot point 19 in the model (Figure 16). The model 

contains two low-velocity layers, the first of which has an average velocity of 6.5 km/s 

and is shown to pinch out at approximately 35 km to the north of shot point 19 in the 

Cordova Peak model (and 30 km to the east in the Chugach model (Figure 9)).

Directly beneath the first velocity reversal is a sharp increase in average velocity to 6.9
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km/s. corresponding to a high-velocity layer. The second low-velocity layer, occurring 

at about 10-12 km depth in the model, has an average velocity of 6.6 km/s and is 

shown to be thicker and more homogeneous than the first. It is again followed by a 

high-velocity layer, having an average velocity of 7.2 km/s. The low-velocity zones 

are indicated in the refraction data by high-amplitude second arrivals (thought to result 

from energy reflecting from the base of the low-velocity layers), complication in the 

record section, and delays or skips in the travel time curves. En echelon arrivals are 

especially apparent in the refraction data from the Chugach strike line and are 

discussed in detail in that analysis (Figures 3-6) [Wolf and Ijevander, 1989].

Energy arriving beyond an offset of 25 km to the north in the record from shot 

point 19 is similar in character to that arriving at offsets of 10-25 km to the south 

(Figure 13). In both directions, high-amplitude secondary arrivals are attributed to 

impedance contrasts between low- and high-velocity layers and to the almost 

coincident arrival of reflections from the base of the low-velocity layers (6A and 8A) 

with refracted energy from the high-velocity layers (7A and 9A) below (Figure 13). In 

the record from shot point 11, for instance, complication and numerous high-amplitude 

arrivals as well as increased velocities are observed beyond an offset of 45 km, as rays 

pass through crust containing the velocity reversals and high-velocity layers.

Distinct horizons appearing in the Chugach seismic reflection data were used in 

the refraction model to provide some constraint on the depths to interfaces of these
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low-/high-velocity layers, since they cannot be well modelled from refraction 

information alone (Figure 17). The reflection data were also used to provide 

information on the continuity of layers at the model’s northern boundary, since mid- 

crustal and deeper layers there lack reversed ray coverage; the subsurface area along 

the profile actually sampled by the rays from reversed shots is shown by shading in 

Figure 16.

A preliminary model of the Chugach line used four low-/high-velocity pairs to 

match en echelon arrivals observed in the data [Fuis and Ambos, 1986; Page et al., 

1986]. This model resulted in primary arrivals from the higher velocity layers 

occurring at distances not seen in the field data. A more successful approach was to 

model en echelon arrivals in the data from the Chugach strike profile as multiple 

reflections within the second low-velocity zone using reflectivity methods [Flueh et al., 

in preparation]. Although the reflectivity method is more exact, it is also considerably 

more computationally expensive. Results of modelling multiples using the ray series 

approximation are displayed and discussed in more detail in the interpretation of the 

Chugach strike line [Wolf and Levander, 1989].

3.3.2-3 Prince William terrane.

The velocity of surface layers in the Prince William terrane range from average 

lows of 3.7 km/s to average highs of 5.6 km/s (Figure 16). Layer IB, used to represent
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surficial deposits in the shoreline area south of shot point 37, thickens southward near 

the model boundary. This end of the profile does not have reversed coverage and has 

not been well modelled. The Contact fault zone is modelled as a wedge (layer 2B) in 

an attempt to represent a system of faults. Its average velocity is 5.2 km/s. The wedge 

boundaries correlate with the mapped positions of the Rude River and Gravina faults, 

thought to be splays of the Contact Fault [Winkler and Plafker, 1981]. A maximum 

delay in arrivals of approximately 0.25 s and a loss in high-frequency energy are seen 

in all shot records in the area of the Contact fault zone (Figures 11-15).

Layer 3B and a portion of layer 4B (about 30 km from the south end of the model) 

are shown to have average velocities of 5.6 km/s. Although these two layers are 

modelled as separate units, a similarity in their respective velocities indicates that they 

may represent duplicated sections of the same rock type (Figure 16). The proximity of 

the fault zone and intrusive rocks make it difficult to identify phases in arriving energy 

and therefore the geometry of layers in this area of the model is not well constrained.

A slight delay occurs in primary arrivals approximately 17 km south of shot point 38 

(Figure 14). This travel time delay may provide evidence of a structural feature, 

possibly a fault, which could produce a duplication of section. Downdip to the north 

and below layer 3B (30-60 km from the south end of the model), the average velocity 

of layer 4B increases from 5.6 to 6.0 km/s (Figure 16). A larger velocity contrast 

between layer 3B and 4B in this area of the model is suggested in the data from shot
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point 38, where a clear reflection is observed at 10-15 km offset to the south (Figure 

14). This lateral increase in velocity is believed to represent a lithological change 

rather than a change due to increasing depth or degree of metamorphism because the 

gradient is steep. Layers 3B and 4B are shown to terminate at or near the Contact fault 

zone in the model. As discussed earlier, attempts to project these units northward 

required an unrealistic velocity gradient (see 3.3.1).

Primary arrivals from shot point 38, which is located within the wedge (layer 2A) 

in the model, are fairly symmetric within 15 km of the shot point (Figure 14). Since 

the structure is assumed to be north-dipping on the basis of geologic data [Plafker et 

al., 1986], a similarity in apparent velocity of rocks to the north would represent higher 

velocity material than that to the south. On a broader scale, the significant decrease in 

velocities within Prince William terrane rocks as compared with those within the 

Chugach terrane at comparable depths is clearly evidenced in the shot records. In the 

data from shot point 12, for instance, the slopes of primary arrivals decrease as energy 

passes from the Chugach terrane into the Prince William terrane, as seen at offsets 

beyond 60 km (Figure 12).

Layer 5B and 6B do not appear at the surface in the model. They are grouped 

with rocks of the Prince William terrane on the basis that they represent units which 

appear on the surface to the south and agree with geologic estimates of thickness (see 

1.1.2) [Plafker, 1987]. Layer 5B is a thick, homogeneous unit having an average
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velocity of 6.2 km/s and a small vertical velocity gradient (Figure 16b and Table 1). It 

is underlain by a thinner layer having average velocities of 6.9 km/s and a much 

steeper vertical gradient.

Evidence for the velocities and geometries of layers 5B and 6B is best seen in the 

field data from shot point 37 (Figure 15). This shot record is significantly different 

from other shot records of the Cordova Peak profile. It is characterized by clear, 

obvious arrivals with few complications. A high-amplitude second arrival is observed 

at approximately a 33-km offset and 0.6 s. This secondary pulse is associated with 

refacted energy arriving from layer 6B, almost coincidently with strong reflections 

from the base of layer 5B.

3.3.2-4 Deep structure.

The velocity structure of deeper layers beneath the Chugach and Prince William 

terranes is not well constrained. Layer YB is shown to terminate at a boundary with 

SCI at about 90 km from the south end of the model (Figure 16). Several assumptions 

were made in dividing this area of the model into two units with significantly different 

average velocities (6.5 km/s for YB and 7.0 km/s for SCI). As mentioned previously, 

the geometry and velocities of deeper layers in the northern part of the profile are 

outside the region of reversed shot coverage. Layer interfaces and velocities for this 

area are based on the northward continuation of layers in the model’s central portion
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and on locations indicated by interpretations of other data to the north [Fuis et al., in 

preparation; Fischer et al., 1989]. Velocity-depth functions from Fuis et al. [in 

preparation] indicate average velocities from 7.0-7.5 km/s for depth ranges 

corresponding to layers YB and SC I. These are averaged in layer SCI to 7.0 km/s. 

Smoothed versions of the velocity functions used by Fuis et al. are incorporated into 

the processing of reflection data to the north [Fischer et al., 1989]. Primary arrivals in 

the Cordova Peak profile at offsets beyond 100 km, however, indicate average 

velocities of about 6.4-6.5 km/s (Figures 11 and 15). The deep areas sampled by these 

rays are between 50-80 km from the south end of the model (Figure 16). These two 

somewhat conflicting estimates of the velocities associated with layers YB and SCI 

can be accomodated by introducing a boundary into the model at the location shown by 

the hatched area in Figure 16. Since a precise location for such a boundary cannot be 

determined from the data, it is represented in the model by a lateral velocity gradient.

There is little evidence in the refraction data for the top interface of layer SC2. 

Evidence for a boundary at this location comes primarily from earthquake data and 

seismic reflection data. Earthquake hypocenters for events located within the 

subducting plate can be traced northward from the Aleutian trench to approximately 

this depth along the profile direction [Davies, 1975; Lahr. 1975; Stephens et al., 1984; 

Page et al., in preparation]. These hypocenters were used to provide a lower limit for 

the overriding crust [Wolf and Levander, 1989]. In the reflection data acquired along
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the northern section of the Cordova Peak line, a prominent reflection which might be 

correlated with the top of the subducting plate is observed at a depth approximately 

corresponding to the top of SC2 in the model [Fischer et al., 1989]. On the basis of 

these two data sets, layer SC2 was included in the refraction model. The lack of a 

prominent arrival could be the result of a low impedance contrast in some areas of the 

profile or of high noise levels in the data at far offsets.

An interesting feature in the record from shot point 37 is the longer period and 

associated delay of both primary and secondary arrivals seen in the vicinity of Mt.

Billy Mitchell. Since these arrivals occur at similar offsets (60-70 km) but 

significantly different times (0.6 s and 0.8 s), they have been modelled as multiple 

reflections within the near surface layer south of the topographic high. Multiple 

reflections for the later arrival correspond in travel time to reflections from the base of 

YB which are again reflected at the surface. Although a somewhat successful match to 

travel times of these arrivals was made, attempts to match amplitudes in this area of the 

model and at far offsets were not successful. Amplitudes produced by the synthetic 

seismogram algorithm are extremely sensitive to complex structures which exist in the 

region of the terrane boundary; therefore very slight changes in boundary geometries 

produce dramatically different results. (See earlier discussion on Figure 8.)

At approximately a 75-km offset and 3.0 s in the record from shot point 37, a 

high-amplitude phase is observed (Figure 15). In the shot record from shot point 11, a
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similar phase is observed at approximately a 90-km offset and 3.0 s (Figure 11). 

Although these phases have not been modelled, they are roughly correlative in time to 

refracted waves in layer SC2 which reflect off the surface to form multiple arrivals. 

Another possibility is that they represent converted phases at the SC2 boundary. By 

reciprocity, these two arrivals can be associated with rays sampling the same layer in 

the model.

3.4 Geologic interpretation.

A possible geologic interpretation with a detailed velocity model of the upper 

crustal structure along the Cordova Peak refraction profile is shown in Figure 16. Low 

velocities in the near-surface (layers 1A and IB) are associated with alluvial sediments 

in river valleys and with glacial sediments which form a thin cover over rocks with 

much higher velocities. Rocks along the length of the profile in the Chugach terrane 

have been mapped as belonging to the McHugh Complex and Valdez Group. These 

consist primarily of metamorphosed flysch overlying mafic oceanic crust [Winkler et 

al., 1981]. Rocks along the profile in the Prince William terrane have been mapped as 

Orca Group rocks, consisting of interbedded metasedimentary and metavolcanic rocks, 

which are overlain by late Eocene to Quaternary clastic sedimentary rocks [Winkler 

and Plafker, 1981]. The geologic model represents an attempt to correlate layers in the 

seismic model with mapped geology.
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3.4.1 Chugach terrane.

Layers 1A-5A are correlated primarily with metamorphosed flysch and volcanic 

rocks of the Valdez Group. Rocks of the McHugh Complex probably occur near the 

north end of the profile but are covered by surficial deposits [Winkler et al., 1981]. 

Complication in the record from shot point 11 close to the shot point may represent a 

subsurface contact between rocks of the Valdez Group and McHugh Complex or may 

be the result of diffracted or scattered energy from dikes which have intruded nearby 

areas of the transect [Winkler et al., 1981; Plafker et al., 1989]. Travel times in the 

shot record are difficult to match in this area and require substantial lateral velocity 

variation from shot point 11 southward (Figure 11). The dikes may contribute to 

higher average velocities in the northern portion of layer 2A, but are too small to be 

modelled as separate units. Another geologic feature which may contribute to the 

complicated arrival pattern and average increase in near-surface velocities is the 

rootless Haley Creek terrane, a thin sliver of metasedimentary and metavolcanic rocks 

which has been thrust over Chugach terrane rocks in this area of the transect [Wallace, 

1985; Plafker et al., 1989; Nokleberg et al., 1989]. Advanced travel times indicated by 

primary arrivals at offsets of 10-30 km from shotpoint 11 are attributed to energy 

travelling through this piece of the Haley Creek terrane (Figure 11). Shot spacing and 

receiver density make detailed modelling of the structural relationships between rocks
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of the Haley Creek terrane and those of the Chugach terrane difficult because the 

features are too small.

Long crossover distances and a lack of an early prominent reflection from the base 

of layer 2A in the records from shot point 11 and 12 provide evidence of the layer’s 

thickness. The change in thickness from shot point 19 to shot point 11 is in part due to 

the northward dip, but may also be due to imbrication and thrust faulting within the 

accretionary complex. Further evidence of faulting within layer 2A is provided by 

travel time delays seen beneath Mt. Billy Mitchell.

Layer 5A is interpreted to be a downward continuation of the metamorphosed 

flysch in layer 2A. The lack of a strong continuous reflection in the data until about a 

32-km offset from shot point 11 indicates a low impedance contrast between these two 

layers and raises the possibility that they are compositionally similar (Figure 11). The 

geometry of layer 5A suggests it may represent a thickening of the flysch sequence, 

possibly containing intrusive rocks. Felsic to intermediate Eocene hypabyssal and 

plutonic rocks, in the form of dikes , sills and small plutons. have been observed in the 

vicinity of the transect throughout both the Chugach and Prince William terranes 

[Winkler et al., 1981; Winkler and Plafker, 1981; Plafker et al., 1989]. Absence of a 

continuous secondary arrival in the data from shot points 11 and 12 may be in part the 

result of scattered and diffracted energy from these intrusions.
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Layer 3A to the south corresponds to an elongate outcrop belt of mafic volcanic 

rocks just north of the Contact fault zone (Figure 2). High velocities thought to be 

associated with these rocks were also seen in the Chugach seismic refraction data 

[Wolf et al., 1986; Wolf and Levander, 1989]. This volcanic unit makes a good marker 

for subsurface structure, because it produces prominent reflections and clear refracted 

arrivals in the seismic data. The change in the velocity-depth function between shot 

point 19 and shot points 11 and 12 requires that layer 3A, with its high velocities, 

pinch out to the north (Figure 18).

The preferred interpretation of layer 4A is that it represents a continuation of 

metavolcanic rocks associated with layer 3A. Mafic volcanic oceanic crust is seen at 

the base of the Chugach terrane and, assuming an increase in velocity with depth, layer 

4A could represent a continuation of layer 3 A above or a deeper, mafic to ultramafic 

portion of oceanic crust. Lateral velocity variations within the fourth layer could be 

attributed to structural deformation from imbrication and/or compositonal layering of 

mafic to ultramafic rocks within the oceanic crust.

3.4.2 Mid-crustal layers.

Layers beneath the third are difficult to interpret because they are not seen in the 

mapped surface geology. Possible geologic interpretations have been discussed in the 

analysis of the Chugach strike profile [Wolf and Levander, 1989]. The dip profile in
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Figure 18. Velocitv-depth functions shown for locations along the Chugach and 
Cordova Peak seismic refraction profiles. Near-surface rocks have highest velocities 
near SP 20. located in the Chugach Metamorphic Complex. In general, velocities are 
highest near SP 19. Average velocities of rocks in the Prince William terrane are lower 
at comparable depths to those in the Chugach terrane and provide evidence for a 
terrane boundary that extends to at least 10-12 km. Velocities and thicknesses of low- 
velocity zones are not well constrained.
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the Chugach terrane does not provide information which would clearly eliminate any 

of the possibilities discussed. The preferred interpretation of the data is that there exist 

at least two low-velocity zones in the Chugach terrane: one which pinches out both to 

the north and to the east and a deeper one which appears to be thicker and more 

laterally homogeneous (layers 4 and 6 in Figure 9; layers 6A and 8A in Figure 16).

Low velocities could represent subducted oceanic or terrigenous clastic sediments in 

which variable porosity contributes to lateral and vertical velocity variations. High- 

velocity layers, which underlie the low-velocity zones, are thought to consist of mafic 

to ultramafic rocks, possibly comprising relict subducted oceanic crust.

3.4.3 Prince William terrane.

The Cordova Peak dip profile provides valuable insight into the subsurface 

structure of the Prince William terrane. Lateral variations in velocity within the upper 

5 km of crust provide evidence for faulting, which may be associated with imbrication 

of accretionary sedimentary rocks. An increase in velocity towards the north in layer 

4B may be attributed to felsic intrusions near the fault zone. Although not observed at 

the surface directly along the refraction line, felsic sills and plutons are seen nearby 

[Winkler and Plafker, 1981; Plafker et al., 19861. From a depth of 5 to 10 km, vertical 

velocities in layer 5B vary little. Layer 5B has velocities (6.2 km/s) consistent with 

those of sedimentary rocks which may have been metamorphosed. A sharp increase in
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velocities and a high-amplitude reflected phase suggest a lithologic change beneath 

layer 5B. Mafic volcanic rocks, mainly basalts, have been observed in the Prince 

William terrane to the south of the transect and may pro ject northward to occur at 

approximately this depth along the transect [Winkler and Plafker, 1981]. These mafic 

rocks in contact with sedimentary rocks could provide an impedance contrast which 

would account for the high-amplitude secondary arrivals seen in the data (Figure 15). 

Layers 5B and 6B are correlated with rocks of the Orca Group, which have thicknesses 

compatible with those estimated from the mapped geology [Winkler and Plafker, 1981; 

Plafker, 1987]. Layers 1B-4B are also in agreement with thickness estimates for 

sedimentary rocks which overlie the Orca Group [Plafker, 1987].

3.4.4 Contact fault zone.

The seismic refraction data do not provide good constraints on the subsurface 

location of the Contact fault zone, except where shots are located nearby. The location 

and attitude of the fault are even less discemable with increasing depth, as resolution 

decreases. The best-fit model shown in Figure 16 is the result of iterative trials of over 

15 different configurations of the Contact fault zone. Based on geologic investigations 

[Winkler and Plafker. 1981; Plafker et al., 1986], potential field data (discussed below) 

and the best-fit seismic model, the Contact fault system is shown as having moderate 

northward dips (approximately 45 degrees). Layer 4B in the model appears to crosscut
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the fault zone and may represent intrusive igneous rock. This crosscutting relationship 

has been observed at the surface along the Contact fault zone [Plafker et al., 1986]. 

Although the precise geometry and location at depth of the boundary between the 

Prince William and Chugach terranes are not known, the seismic refraction data 

indicate very different velocity-depth functions for the two terranes to at least a 10- to 

12-km depth (Figures 18 and 19). The difference in velocities at comparable depths in 

the two terranes provides evidence for a boundary which separates two distinct 

geologic rock assemblages to at least a 10-km depth.

3.4.5 Deep structure.

Interpretation of the data for information on the deep structural relationships is 

speculative, since the area covered by rays from reversed shots is limited (Figure 16).

A flattening of the reduced travel time curves to approximately 6.5 km/s at offsets 

greater than about 50-60 km precludes the downward continuation of the high 

velocities associated with mid-crustal layers (Figures 11,12 and 13). The requirement 

of a low-velocity layer (YB) at a depth of 15-20 km in the model may provide evidence 

that the continental crust of the Yakutat terrane extends from its mapped surface 

location in the southeast to an area along or beyond the transect line (Figures 1 and 16).
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Velocity information from interpretations of seismic reflection and refraction surveys 

in the northern Chugach terrane suggests that layer YB does not continue to the north 

of the Cordova Peak line. Layer YB is therefore shown to terminate in the northern 

portion of the model. One possible rationale is that this termination marks a boundary 

between the Yakutat terrane and relict subducted oceanic crust (layer SCI).

Layer SC2 is correlated with the subducting Pacific plate on the basis of 

interpretations of earthquake foci [Davies, 1975; Stephens et al., 1984; Page et al., in 

preparation]. Earthquake hypocenters can be traced from the Aleutian trench 

northward to a depth of 25-35 km beneath the Chugach Mountains. The top of layer 

SC2 in the model represents the approximate location of the plate interface based on 

the assumption that the hypocenters correspond to seismic events occurring in the 

upper portion of the subducting plate. There is no compelling evidence for a sharp 

velocity discontinuity at the depths postulated for the subducting plate based on the 

refraction data. For this reason, layer YB was modelled with a moderately steep 

vertical velocity gradient in some areas to reduce the amplitudes of reflected energy 

from its lower boundary. A steep vertical velocity gradient would be consistent with 

the composition of the western portion of the Yakutat terrane, which consists of 

sedimentary rocks underlain by higher velocity mafic volcanic rocks [Plafker, 1987],
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3.5 Discussion of other geophysical data.

3.5.1 Gravity, magnetic and seismicity data.

Complete Bouguer gravity data are shown for southcentral Alaska in Figure 20 

[Bames, 1977]. Observed gravity and magnetic data from more recent contributions 

are presented in Figure 16 [Page et al., 1986]. Gravity and magnetic data provide 

restrictions on the crustal structure determined from seismic refraction data alone. 

Along the Cordova Peak line, gravity values range from a high of approximately +20 

mgal (2.0 x 10‘4 m/s2) to a low of -80 mgal (-8.0 x 10~4 m/s2) (Figure 16). A broad 

gravity high is located approximately 55-85 km from the south end of the model. 

Magnetic data along the transect also show a relative high (approximately 350 nT) just 

to the north of the Contact fault zone (47-55 km from the south end of the model) and a 

gradual northward decrease (Figure 16). Both highs correlate well with high-velocity 

mafic rocks which crop out between the Contact fault zone and shot point 19 (Figures 

2 and 16). Detailed gravity modelling suggests that the apparent dip of the Contact 

fault zone is approximately 45 degrees to the north in the upper layers, an 

interpretation which agrees with the seismic model [D. Campbell, personal 

communication, 1988]. Neither gravity nor seismic data, however, constrain the 

attitude of the fault in deeper layers.
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Both gravity and magnetic values decrease northward in the dip direction, in areas 

corresponding to thickened sequences of flysch and steepened dip of the subducting 

plate (Figure 16). Along the strike profile, gravity data are difficult to interpret 

because the profile parallels a gravity ridge (Figure 20) [Barnes, written 

communication. 1988]. A relative high appears in the area of shot point 19, a trend 

which correlates well with the high velocities observed near that shot point. Gravity 

values decrease both to the east and west along the strike direction, following the trend 

in velocities seen in the seismic refraction data (Figure 18). Rough modelling of the 

gravity field to be expected for the seismic model shown in Figure 16a was done using 

a range of densities commonly associated with velocities indicated in the model. The 

results indicate that observed gravity values are well within the envelope of values 

generated by the model [D. Stone, written communication, 1989].

On a regional scale, there is a difference in the orientation of gravity contours 

from east to west of the RM1 line (Figure 20); contours to the east trend NW-SE and 

reflect higher negative values than those to the west, which trend SW-NE. The RM1 

line is a segment of a small circle about the Euler pole which describes the relative 

motion between the Pacific and North American plates [Minster et al., 1974], This line 

is constrained to pass through the eastern boundary of the Wadati-Benioff zone in 

interior Alaska [Davies, 1975; Stone. 1983]. The line corresponds to a marked change 

in earthquake seismicity from east to west and intersects the transect near shot
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Figure 20. Regional gravity and seismicity map for southcentral Alaska. Locations 
shown of receivers (dotted lines) and shot points (stars). Epicenter locations are 
plotted for seismic events occurring below 30 km and the location of the inferred plate 
interface. RM1 line from Stone [1983] based on relative plate motions from the RM1 
model of Minster et al. [1974], Note change in seismicity from Aleutian Benioff to 
Wrangell Benioff zones on either side of the RM1 line. Inferred depth to Wrangell 
Benioff zone is shown by contours [Page et al., in press]. Corresponding contours of 
Aleutian Benioff zone are outside the area of the transect to the west and northwest.
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point 12. Only epicenters for events located at 30 km or deeper are shown in the figure 

to reduce clutter from events in shallow layers. The majority of the events shown are 

thought to originate from failure in the upper portion of the subducting plate, and, if 

this assumption is correct, provide some indication of the depth to the lower plate in 

southcentral Alaska in map view. An apparent offset of Wadati-Benioff zone contours 

based on earthquake hypocenters occurs in the vicinity of the transect [Davies. 1975; 

Lahr and Plafker, 1980] and these contours roughly parallel those seen on the gravity 

map (Figure 20). Page et al. [in preparation] have postulated a buckle in the 

subducting plate as the cause of the offset. Others have suggested that a tear is 

responsible for the anomaly. Both the refraction and gravity data indicate that the crust 

of the overriding plate thickens to the north along the transect, but neither distinguishes 

whether a buckle rather than a tear exists in the lower plate.

Magnetic data in the offshore area also provide some insight into possible 

structural relationships in the lower crust. Figure 21 is a simplified map showing the 

magnetic lineations in the Pacific plate. These lineations are truncated by a NW-SE 

trending line, called the slope anomaly [Schwab et al., 1980; Bruns, 1983]. The slope 

anomaly has been postulated to represent a lithologic change which marks the contact 

of the Pacific plate with the Yakutat terrane. Based on the westward extent of the 

slope anomaly, it has been suggested that the Yakutat terrane extends at least as far as 

the transect in the subsurface [Bruns, 1983], This westward continuation of the
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Figure 21. Map of magnetic anomalies shown in relation to major tectonic features [modified from Schwab et al., 1980; 

Bmns, 1983[.



anomaly would support the correlation of the lower low-velocity zone in the seismic 

model with the Yakutat terrane.

3.5.2 Rock velocity studies.

As pan of the integrated effort of the TACT project, rock samples were collected 

along the transect for measurements of compressional velocities. Experimental results 

are described in more detail in other work [Brocher et al., 1989; Fuis et al., in 

preparation]. Some of the results of studies on anisotropy in rocks of the Chugach 

terrane are shown in Figure 22 [Brocher et al., 1989]. These results show that 

compressional velocities in samples of Valdez Group rocks vary with the orientation of 

foliation. Energy travelling parallel to the foliation direction is significantly faster than 

that travelling perpendicular to foliation. In addition, the study shows that the effects 

of anisotropy in the rocks can be seen to pressures of at least 600 MPa (6 kB). Figure 

19 contains a comparison of primary arrival times in the records from shot point 19 

along both the dip and strike profiles. Primary arrival times indicate higher average 

velocities along the strike direction (approximately parallel to foliation) than along the 

dip direction. From the data in Figure 19, it is difficult to determine if anisotropy 

contributes to velocity variation. A meaningful comparison of primary arrivals shown 

in Figure 19 for the purpose of determining anisotropy within the same rock unit 

cannot be carried beyond 20 km, where the energy travelling to the south crosses the
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Figure 22. Laboratory measurements (made by N. Christensen) of compressional velocities in Valdez Group phyllite 
measured normal (solid curve) and parallel (dashed curves) to foliation [taken from Brocher et al., 1989].
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Contact fault zone and enters the Prince William terrane. Laboratory measurements, 

however, indicate that anisotropy contributes to velocity variations to pressures of 600 

MPa (6 kB) or approximately an 18-km depth, a finding which may account for 

differences between velocity-depth functions for the strike and dip directions (Figure 

18).

A comparison of the velocity-depth functions from the Chugach profile with those 

from the Cordova Peak profile shows that velocities seen in data from the Cordova 

Peak line are approximately 2-4 % slower than those observed at comparable depths 

along the Chugach line. In the initial model, attempts to apply the velocity-depth 

function from the Chugach refraction data computed for the area beneath shot point 19 

resulted in calculated travel times faster than those observed in the dip direction.

These discrepancies can be resolved by assuming that anisotropy indicated by the 

difference between velocity-depth functions for the strike and dip directions results 

from fracture or foliation orientations, out-of-the-plane reflections, and changes in 

porosity and metamorphic grade.

In general, velocities in the Chugach terrane are unusually high, particularly in the 

region near shot point 19 (Figure 18). Direct measurements of compressional 

velocities of rocks sampled along the transect, although not always definitive, help to 

justify geologic interpretations of observed velocities. Average velocities often 

attributed to mafic or ultramafic oceanic rocks (6.3-7.0 km/s at 300 MPa) are observed
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in metasedimentary- rocks of the Valdez Group [N. Christensen, written 

communication. 1988]. Average velocities at similar pressures for metavolcanic rocks, 

such as pillow basalts, are even higher (6.8-7.1 km/s) [N. Christensen, written 

communication, 1988]. It should be noted, however, that measurements of velocity in 

different samples of a single rock type from the same location have shown variations of 

up to 0.3 km/s. This degree of variability means that velocities alone cannot provide 

definitive correlations with rock types. They can. however, provide some insight into 

relative changes within and between units.

3.5.3 Thermal history.

Valdez Group rocks of the Chugach terrane have undergone high- 

temperature/low-pressure metamorphism not easily explained by mechanisms 

traditionally proposed for such regional events in subduction zone environments 

[Hudson and Plafker, 1982; Sisson and Hollister. 1988], These rocks, originally 

deposited in Campanian-Maastrichtian time, were later accreted and regionally 

metamorphosed. A second and more localized thermal event in Early to Middle 

Eocene time resulted in metamorphism to amphibolite facies in the core of the 

Chugach Metamorphic Complex. Petrologic studies of the Chugach Metamorphic 

Complex indicate that temperatures during this time regionally increased near the core.
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and locally increased at contacts with Eocene felsic intrusions [Hudson and Plafker. 

1982],

The significance of thermal history studies for the refraction interpretation is that 

they provide evidence that low-pressure/high-temperature metamorphosed rocks can 

occur at relatively shallow depths in subduction-zone environments and that associated 

dewatering of sediments can produce zones of high fluid pressures and high porosities 

at mid-crustal depths. Studies by Sisson and others [1988; 1989] of mineralogy and 

COj-rich fluid inclusions indicate that amphibolite facies metamorphism of the rocks 

occurred at approximately a 10-km depth. Several mechanisms have been proposed by 

which the ambient temperature of the rocks could be raised to the required 

temperatures at such shallow depths. One such history assumes a two-stage process: 

massive vertical and horizontal transport of heat by fluids followed by injection of 

melts, both of which originate from a downdip source such as subducted young, hot 

oceanic crust [Hudson and Plafker, 1982; Sisson and Hollister. 1988] or a subducted 

spreading ridge [Marshak andKarig, 1977].

Progressive metamorphism of sedimentary rocks in a wedge and associated 

dewatering of sediments is seen in modem accretionary environments [Moore et al., 

1987] and is thought to result in areas of high fluid pressures and high porosities. The 

low-velocity zones seen in the refraction data as well as the strong reflections seen in 

the seismic reflection data might be attributed to zones of high porosity. Areas of high
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porosity have lower velocities and probably result in high impedance contrasts with 

surrounding areas. Dewatering of underplated sediments from subducted oceanic crust 

could create areas of high fluid pressures and porosity, which could in turn account for 

low-velocity zones in mid-crustal areas. This hypothesis has been suggested by 

Hyndman [ 1989] in his interpretation of geophysical data from offshore British 

Columbia. He asserts that increased porosity in crustal layers can result in velocity 

reductions of up to 15%, a figure which would more than adequately account for the 

velocity reversals seen in the southcentral Alaska data.

3.6 Discussion and summary.

An attempt to tie the model for the Chugach strike line with an interpretation of 

the Cordova Peak dip line to the north and south and with the mapped surface geology 

[Winkler and Plafker. 1981] is illustrated by the fence diagram in Figure 23. This 

composite diagram shows the inferred structure beneath the Chugach profile as 

determined from the refraction data and projects it southward based on the mapped 

surface geology and refraction interpretation for the Cordova Peak line. The upper 

layers along each refraction line have been modelled to correspond with mapped 

contacts between surface rocks and to reflect observed structure as far as the ray- 

tracing algorithm would permit.
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Figure 23. Fence diagram of geologic cross sections along lines indicated in Figure 2. East-west cross section corresponds to one geologic 
interpretation of refraction data from the Chugach terrane. Other interpretations are discussed in the text. Connecting cross sections are based on 
surface geology [Winkler and Plafker, 1981], Earthquake foci indicate approximate location of subducting plate (western line from Stephens, et 
al., [1984]; eastern line from Wolf et al., [1986]). The Contact fault zone (CFZ) marks the boundary of the Chugach with the Prince William 
terrane to the south. The terrane boundary is inferred to extend to at least 10-12 km depth. Geometry of the CFZ is not well constrained but is 
modelled with a moderate northward dip, consistent with geologic and gravity data [Winkler and Plafker, 1981; Page et al., 1986]. Elongate 
features in layer 3 (E-W panel) and layer 4A (N-S panel) correspond to high-velocity areas discussed in text. Variation in shading east of SP 19 
marks the boundary of the Chugach Metamorphic Complex [Hudson and Plafker, 1982].
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Much lateral velocity variation exists within the upper 5 km of crust in both the 

Chugach and Prince William terranes. In both terranes. this variation is attributed to 

local areas of surficial deposits, to changes in metamorphic grade and to laterally 

discontinuous igneous rocks which were intruded into country rock during an Eocene 

event. Both the Chugach and Cordova Peak refraction data contain travel time delays 

of energy passing through the upper layers. One possible interpretation is that these 

delays are the seismic expression of faults associated with the development of 

imbricate fans in an accretionary prism. This faulting contributes to the thickening of 

the upper crust, particularly in the area north of shot point 19 in the Chugach terrane.

The geometries of structures adjacent to the Contact fault system beneath layer 3A 

are not clear. On the surface, the Contact fault zone appears to mark a major suture 

which separates two geologically different rock assemblages along the transect 

[Winkler and Plafker, 1981]. The interpretation presented in Figures 16 and 23 is that 

Prince William terrane rocks have been accreted to and thrust under rocks of the 

Chugach terrane along the Contact fault zone. To the north of the Contact fault zone, 

mafic metavolcanic rocks (layer 3A) contribute to high values in gravity and magnetic 

data, as well as to high compressional velocities. The velocity-depth functions for the 

northern portion of the Cordova Peak profile indicate that these high velocities are not 

seen farther to the north at comparable depths. Although layer 3A is shown to pinch 

out near shot point 19 in the model, it may be part of an imbricated structure involving
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layer 4A below. Velocities of layer 5A are similar to those in layer 2A above and may 

represent a downward continuation of the metamorphosed flysch. Complications in the 

shot record and increased velocities in the northern portion of the refraction line may 

be attributed to igneous intrusive rocks and fault-bounded rock units which affect the 

velocity structure but which are too small to model.

Mid-crustal layers beneath the Chugach terrane are assumed to be rocks which 

lack surface expression and do not extend southward beyond the Contact fault zone 

[Fuis and Ambos. 1986; Wolf and Wallace, 1988], These lower layers have velocities 

compatible with those of oceanic crust, and it is suggested that they comprise layered 

oceanic crust that was imbricated during large-scale subduction. Velocity reversals 

may represent subducted sedimentary rocks which have zones of high porosity.

Model layers in the Prince William terrane correlate well with current geologic 

interpretation. Layers 1B-4B are correlated with sedimentary rocks which overlie 

rocks of the Orca Group, correlated with layers 5B and 6B. A sharp velocity contrast 

is observed between layers 5B and 6B, which may correspond to a compositional 

change between a thick sequence of interbedded sedimentary and volcanic rocks 

described in geologic interpretations [Winkler and Plafker, 1981; Plafker. 1987].

The velocity-depth functions of the Chugach and Prince William terranes are 

significantly different, particularly below a 5-km depth. Velocities in the Prince 

William terrane are much slower and the layer boundaries are less steeply dipping than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

those of the Chugach terrane. Attempts to project layers in the upper 10 km of the 

Prince William terrane northward beyond the fault zone by using a reasonable velocity 

gradient produce calculated travel times faster than those observed in the shot records. 

The preferred model treats rocks of the Prince William terrane as separate geologic 

assemblages from those of the Chugach terrane. separated by a boundary which 

extends to at least a 10- to 12-km depth.

Earthquake foci are believed to delineate the top of the subducting Pacific plate at 

approximately a 30-km depth below the Chugach refraction line and provide a lower 

limit for the upper crustal package (Figure 23). Although several models exist to 

describe the geometry of the Wadati-Benioff zone, the refraction data do not yield 

much information which would better define its shape. The refraction data lack 

evidence of a sharp velocity contrast at the inferred location of the plate interface, a 

finding which suggests that the bottom of the overriding crust and the top of the 

subducting plate may have similar composition or physical properties. The lack of a 

distinct boundary at this depth may also raise the possibility that the subducting plate is 

actually much deeper and that earthquake events represent brittle failure in the 

overriding crust, or perhaps more specifically, in the subducted Yakutat terrane. 

Refraction data alone are insufficient to determine uniquely the complex geometries 

and structural relationships of the accreted Chugach, Prince William and Yakutat 

terranes, especially with respect to deep structure. The data do, however, provide some
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constraints on the geometries, composition and structural relationships within the upper 

crust, particularly when synthesized with geologic and other geophysical data.
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CHAPTER 4. CONCLUSIONS

The seismic model presented in this study represents an interpretation of two 

intersecting TACT seismic refraction profiles which are combined to yield a three­

dimensional model for a part of southcentral Alaska. The model is based on a 

synthesis of the refraction interpretation with geologic information, potential field data 

and earthquake seismicity. The upper crustal velocity profile indicates unusually high 

velocities within the upper 10 km of crust and two mid-crustal velocity reversals. In 

the deeper crust, the refraction data provide evidence for a thick low-velocity zone at 

approximately 15-25 km depth which does not appear to extend northward beyond the 

Cordova Peak profile.

The refraction data from the Chugach and Cordova Peak profiles provide good 

restraints on crustal features which have dimensions of at least several kilometers. 

Faults, likely to be associated with imbricated layers in an accretionary prism, are 

indicated in the field data by travel time delays, loss of high frequency energy and 

complication from scattered or diffracted energy. At several locations, repeated or 

similar velocity structures provide evidence for duplicated rock assemblages. Effects 

of regional and local metamorphism are indicated by lateral velocity gradients within 

near-surface layers, where increasing velocities coincide with rocks of increasing 

metamorphic grade.
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Mid-crustal low-/high-velocity layers are believed to be associated with high- 

amplitude secondary arrivals, en echelon travel time delays, and complication in traces 

on the shot records. These features are only seen when energy arriving from the shot 

has passed through the low-/high-velocity areas beneath the Chugach terrane. These 

features are not observed in the data from Prince William terrane to the south.

Distinct differences in arrival patterns and velocity-depth functions for the Prince 

William and Chugach terranes indicate that these two terranes represent distinct 

geologic rock assemblages. These differences continue to a depth of at least 10-12 km, 

a finding which indicates a minimum depth for the boundary between the two terranes.

The Chugach and Cordova Peak profiles offer some insight into the effects of 

rock anisotropy in the upper crust. Foliation orientation appears to affect observed 

velocities and may account for the different velocity-depth functions derived for the 

strike and dip directions. Although it is uncertain how deep the effects of anisotropy 

can be seen, the seismic model and experimental studies indicate that anisotropy may 

be important to depths of at least 10 km. Realization of the influence of structural 

properties on observed velocities in the TACT data underscores the importance of 

anisotropy for other crustal surveys, particularly in highly deformed areas such as fold 

and thrust belts and accretionary margins.

Several tectonic models have been proposed for the deep crustal structure in 

southcentral Alaska [e.g., Plafker et al.. 1989; Lahr and Plafker, 1980; Davies, 1975;
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Bains. 1983]. The preferred model is based on the interpretation of the Chugach and 

Cordova Peak refraction lines and synthesized with information from geologic, seismic 

and potential field studies is shown in Figures 16 and 23.

Structural relationships in the geologic model indicate that the Chugach and 

Prince William terranes are relatively thin accretionary complexes, extending to a 

maximum depth of 15 km. Mid-crustal layers beneath the Chugach terrane consisting 

of low-/high-velocity zones are believed to pre-date accretion of the Prince William 

terrane, since there is no evidence that they continue south of the suture zone. 

Significantly different velocity-depth functions on either side of the Contact fault zone 

imply that the boundary between the two terranes extends to at least a 10-km depth.

The best-fit seismic model in combination with geologic evidence and gravity data 

suggest that the Contact fault zone comprises a system of moderately to steeply north- 

dipping faults, at least in the upper layers. According to the seismic model. Prince 

William terrane rocks have been accreted and thrust beneath the mafic metavolcanic 

rocks which form the basement of the Chugach terrane. There is an indication from the 

seismic data and from geologic interpetations that one of these underthrust layers 

contains plutonic rocks which have been intruded into the terranes.

Travel times observed at long offsets in the shot records from the Cordova Peak 

line indicate the presence of a thick low-velocity layer in the lower crust. This layer is 

correlated with subducted continental crust of the Yakutat terrane which is currently
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accreting along the Gulf of Alaska margin. The subducting Pacific plate is inferred to 

be beneath the Yakutat terrane in the model. Relative motion rates in the Gulf of 

Alaska suggest that the Yakutat terrane is moving in the same direction as the Pacific 

plate, but at a slightly slower rate. This discrepancy in motion can be accomodated in 

several ways in the model: 1) decoupling between the Pacific plate and the overriding 

Yakutat terrane. 2) internal deformation of the Yakutat terrane both in the Gulf and in 

the subsurface, and 3) strike-slip motion along inland faults. The proposed boundary 

of the Yakutat terrane along the dip profile correlates well with observed changes in 

earthquake activity on either side of the RM1 line (Figures 16 and 20). How the 

Yakutat terrane or, more generally, accreting continental crust, influences the stress 

regime, the thermal regime, the mechanical response of the plates and the pattern of 

earthquake occurrence are important questions which remain to be answered.
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APPENDIX 

Methodology.

Data analysis of the Chugach and Cordova Peak seismic refraction lines followed 

a systematic procedure commonly used in interpreting refraction data. Particulars of 

the experiment, such as shot sizes, receiver locations, etc., were obtained from the data 

reports [Daley et al., 1985; Wilson et al., 1987]. Data from both profiles were made 

available by the U.S. Geological Survey for the purpose of interpretation. Software 

was provided by Cerveny and Psencik (SEIS83) [1984] and by Luetgert (RAY86 and 

R86PLT) [1987], Trace-normalized shot records were produced and compared with 

true-amplitude records. Differences between the two were minimal and because trace- 

normalized record sections are easier to view, they were used in the analysis and for 

illustration.

The first stage in developing a starting model for use in the ray tracing programs 

was to synthesize information from the shot records with geologic information. The 

procedure was as follows:

1) Primary and secondary arrivals were determined from shot records, which 

were plotted at a reducing velocity of 6 km/s. This reduction velocity was 

chosen because it represents an average crusted velocity and therefore
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allows deviations from the average to be recognized more easily. Arrival 

times were picked from a video monitor. The program used automatically 

adjusts the pick to the nearest seismic trace [Luetgert. 1987]. This method 

reduces error in determining offset distances and allows for a subjective 

determination of arrival times.

2) Once primary arrival times were determined, a one-dimensional model for 

each shotpoint was derived based on apparent velocities and intercept times 

of the main refractors.

3) One-dimensional models were then combined for adjacent shotpoints to 

produce a two-dimensional model. Contacts on published geologic maps 

were correlated with locations along the profile and average values for dips 

of contacts and bedding were incorporated into model layers. The model 

was then parameterized for use in the raytracing programs, SEIS83 

[Cerveny and Psencik, 1984] and RAY86 [Luetgert, 1987] and iteratively 

adjusted to match calculated travel times of primary and secondary arrivals 

with those of the observed data.

4) The two-dimensional models were expanded to include shotpoints at 

progressively farther offset distances to image deeper structure, once 

satisfactory matches to near offsets were acheived. In short, development 

of the model proceeded from the surface downward.
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5) Once most calculated travel times were fit to within 0.05-0.10 s of observed 

arrivals, synthetic seismograms were generated to match phases and to 

model amplitudes.

Computational programs.

Both ravtracing programs used in the analysis are based on a ray series solution to 

the equation of motion. This solution is a high-frequency approximation, and as such, 

can only be applied to smooth media in which the characteristic dimensions of 

inhomogeneities are much larger than the prevailing wavelength of the propagating 

wave. The predominant frequency of the TACT data was approximately 10 Hz.

SEIS83 uses the method of two-point ravtracing with a modified shooting method. 

Given a starting angle, the program iteratively "shoots” rays through an angle sweep 

until an endpoint (or receiver location) is reached. RAY86 uses initial value ravtracing 

and interpolates between nearest endpoints for information at a specific receiver 

location. Hence the RAY86 program is faster but less precise.

Once first-arriving energy on the shot record is matched, critical points are 

adjusted by shifting between sharp vertical velocity discontinuities to transition zones 

or by changing gradients. Velocities versus depths can also be manipulated. For 

shallow structure, there is a "trade off' between velocity and depth to a particular layer. 

That is. to match arrivals for near offsets, a boundary can be raised or lowered, or
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alternatively, the velocity can be slowed or increased. As offsets increase, however, 

travel times become less sensitive to changes in depth than to corresponding changes in 

velocities. Amplitude information and other waveform characteristics provide some 

constraint on the structure at this point in the modeling process.

Ray synthetics from SEIS83 (SYNPLT) are based only on real-valued solutions 

from dynamic raytracing. Details of this method can be found in Cerveny [1985]. 

Essentially, five real-valued wave quantities (the real travel time and two real-valued 

numbers for the two components of displacement) are calculated and stored with 

endpoint information. Elementary wave quantities are summed and, for a specified 

receiver location, are interpolated between stored endpoints. In R86PLT [Luetgert, 

1987], complex-valued amplitudes are calculated and a geometric spreading factor is 

applied. Phase and amplitude information are then convolved with a source-time 

function to produce the synthetic seismogram.

Accuracy of rav methods.

Amplitude information generated by ray methods provides constraints on the 

velocity structure. There are, however, certain limitations of the method because it is 

approximate. Ray methods are not reliable in shadow zones, for complex structures 

(e.g., pinch-outs, fault zones, etc.) or for near-critical arrivals. Exact methods, such as 

finite differencing and reflectivity, are more useful for modelling diffractions, arrivals
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from complex structure, and multiples because they more completely describe the 

wave field.

The best-fit model presented in the text is non-unique. Where identification of 

phases is straightforward, wide-angle reflections give good estimates of depths to 

interfaces [Meissner. 1986]. Mismatches on the order of a few tens of milliseconds 

yield estimated depth errors of no more than several hundred meters, if an average 

crustal velocity of 6.0 km/s is assumed. Additional uncertainties are encountered in 

low-velocity zones, where a trade-off exists between velocity and depth to the 

interface. Depths to these boundaries are estimated to be accurate to about 10%.

Where available, reflection data has been used to provide a constraint on the depths to 

interfaces.

An additional example of non-uniqueness of solution is in the choice between 

using a velocity discontinuity (or interface) or a steep velocity gradient. Amplitude 

information can be used to assist in making this choice. Steeper gradients cause the 

rays to diverge more rapidly, resulting in smaller amplitudes. Amplitudes also change 

with respect to angle of incidence, and therefore can be used model interface locations 

[Meissner. 1986]. Rays travelling closest to the critical angle and to the turning angle 

produce the greatest amplitudes. Matching relative amplitudes of secondary-arriving 

energy can refute impedance contrasts to within a few percent for individual interfaces 

within the model.
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On the basis of amplitude information, the best-fit model represents the closest 

overall match to travel times and phases identified in the refraction data. Other models 

may be equally plausible. Because of the associated uncertainties in the refraction 

modelling, rationales for the geometry of layers for each profile are discussed in the 

sections entitled "Data and analysis." Funher constraints on the model provided by 

geologic and other geophysical data sets are discussed in separate sections following 

the data analysis.

Despite the limitations of ray methods as a forward modelling technique, 

reassurance of its validity and a feeling for its accuracy can be found in comparisons 

with exact methods such as finite-differencing and reflectivity [Cerveny, 1979; 

Cerveny, 1985; Vidale, 1988]. Given that major phases in the data are properly 

identified, the configuration of velocity contours will not change upon re-analysis 

[Blundell, 1984],
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