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ABSTRACT

Prolific primary production and spectacular populations of 

marine birds and mammals in the northern Bering Sea were for many 

years considered to be a paradox of an environment that should have 

had low production, as is typical of shallow continental shelves 

elsewhere. However, a "river" of oceanic water, Anadyr Water, 

originating along the continental slope of the Bering Sea carries a 

perpetual supply of nutrients and biota onto this northern shelf that 

transforms part of the region into one that is extremely productive at 

all trophic levels. Diatoms grow profusely throughout the ice-free 

season and, together with oceanic zooplankton advected in the Anadyr 

stream, provide the energy base for rich pelagic and benthlc food 

webs.

Contrasting with the highly productive pelagic regime is one 

associated with Bering Shelf Water and Alaskan Coastal Water. Both of 

these water masses originate over the shallow shelf of the northern 

and eastern Bering Sea, and are typically nutrient-poor following the 

spring phytoplankton bloom. Terriginous nutrients introduced by the 

Yukon and other rivers are not sufficient to elevate primary 

production above a low level typical of inner shelf regions. The 

oceanic zooplankton are excluded from this environment, and 

populations at higher trophic levels are small. The consequence of 

these contrasting physical regimes is that discrete oceanic and inner 

shelf food webs coexist in a small geographic region where only a 

coastal ecosystem is expected.

iii
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INTRODUCTION

The Bering Sea has long been important to many nations because 

of its vast renewable resources, particularly fishes and marine 

mammals. Although not important in the international economy, marine 

birds are extremely abundant and are utilized by most native 

residents. The environmental, biological and ecological reasons for 

such plentiful populations of marine animals at high trophic levels 

remained obscure well into the 1970's (Hood and Kelley 1974, including 

papers therein and cited therein), and it was not until late in that 

decade that significant progress was made toward an understanding of 

how the Bering Sea ecosystem works (Hood 1986, including papers 

therein and cited therein).

Primarily because there are no major fisheries in the northern 

Bering Sea or southern Chukchi Sea, i.e., on the Bering - Chukchi 

continental shelf, comprehensive, integrated oceanographic 

investigations of this region were not undertaken until the 

mid-1980's. This is surprising, since a number of unrelated parochial 

studies and local knowledge all indicated that the region was 

extremely productive of marine mammals and birds, if not of 

commercially important fishes, and that the production base, that is 

the annual growth of phytoplankton, was unusually high for such a 

shallow continental shelf area apparently far removed from sources of 

essential nutrients.

The work reported here began in 1976 with descriptive studies 

of seabird colonies in the eastern Chukchi Sea. One of the major

1
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2

goals of that and subsequent work was the elucidation of seabird food 

habits and trophic dependencies. Seabirds are the most numerous, 

diverse and conspicuous of the upper trophic level vertebrates in 

pelagic food webs in this region, and because of their accessibility, 

they have proved to be excellent subjects for studying pathways of 

energy flow. Clear patterns in the distribution of seabird species 

and numbers, and highly variable levels of reproductive success 

between years in some species throughout the region all seemed to be 

related to food availability, and thus provoked a number of 

ecosystem-level questions concerning meteorology, oceanography, 

primary and secondary productivity, levels of interannual variability 

in these factors, and the relationship of any or all of them to the 

biology of the birds. The answers to many of these questions are 

emerging, and we now have a much improved understanding of most of the 

larger, general features that make the Bering - Chukchi shelf one of 

the spectacular marine areas in the world. It is the purpose of this 

thesis to describe the current state of knowledge regarding the 

principal pelagic food webs in this region.

The following chapters describe pelagic production regimes, 

from phytoplankton, the primary producers, to zooplankton and birds. 

Fishes, which stand between the zooplankton and certain species of 

birds, are difficult to study and information about them has come 

indirectly from detailed analyses of prey remains recovered from the 

birds. The order of the chapters mirrors the trophic order, with 

Chapters 1 and 2 devoted to primary production and zooplankton 

communities, respectively. Chapter 3 describes the relationships of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



avian planktivores to their prey in the northern Bering Sea, the 

northern limit of their breeding range, and compares the situation 

there to that in other hydrographic and biological domains to the 

south. Chapters 4 and 5 describe the food habits of piscivorous 

seabirds on the Bering - Chukchi shelf in relation to the average 

environmental conditions, as well as to environmental variability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1 

Patterns of Primary Production
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INTRODUCTION

Physical processes that resupply nutrients to the euphotic 

zone during summer over temperate and high-latitude continental 

shelves are crucial to regional production regimes. In general, much 

of the annual primary production away from upwelling areas occurs 

during the spring bloom, at which time nutrients are stripped from the 

whole water column in coastal areas less than about 50 m deep and from 

the upper mixed layer, above the seasonal pycnocline, over the deeper 

middle and outer shelf. Cross-shelf diffusion and advection are often 

slow, and this is related, in part, to the presence of physical 

structural fronts that impede horizontal exchange (Coachman and Walsh 

1981). However, these fronts can facilitate the vertical transport of 

nutrients, enhancing local production (Iverson et al. 1979). If the 

front is located near an ice edge, diffusion can replenish nutrients 

in localized physical cells where it is thought that primary 

production is temporarily high prior to the spring bloom (McRoy and 

Goering 1974; Niebauer and Alexander 1985). On a larger scale, 

wind-induced mixing of nutrient-rich water from beneath the pycnocline 

into the euphotic zone after the termination of the bloom can increase 

annual primary production by as much as 30% in the New York Bight 

(Walsh et al. 1978) and the southeastern Bering Sea (Sambrotto and 

Goering 1983). Likewise, subsurface intrusions of Gulf Stream water 

onto the continental shelf of the southeastern United States can yield 

an additional 15% to the annual production there (Yoder et al. 1985).

The continental shelf of the northern Bering and southern
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6

Chukchi seas, beginning several hundred kilometers from the shelf 

break (Fig. 1), is generally less than 50 m deep, and geographically 

is an inner shelf environment. The feature that distinguishes the 

Bering Strait region from other shallow continental shelves is the 

flow of water through the narrow, shallow strait, predominantly from 

south to north, and the origins of the water masses that constitute 

that flow. As a result, the area receives a continual supply of 

nutrients that promotes abundant phytoplankton growth throughout 

summer.

Three water masses comprise the bulk of the primarily 

barotropic flow through Bering Strait. Total transport averages about 

0.8 Sv (1 Sv = 106 m 3 s_l) to the north on an annual basis, but it is 

generally higher in the summer, up to about 1.5 Sv (Coachman 1986). 

Alaskan Coastal Water, in the east, originates in the southeastern 

Bering Sea. It has a low salinity owing to fresh water input from 

mainland rivers, is further diluted by the Yukon River which empties 

into Norton Sound, and warms rapidly in suironer following the retreat 

of sea ice. Anadyr Water, in the west, is a high-salinity water mass 

that is a northern branch of the Bering Slope Current (Coachman et al. 

1975; Kinder et al. 1975). It originates along the shelf break at 

about 100-200 m and consequently contains nutrients at high 

concentrations characteristic of the Bering Sea basin. The nutrients 

are conserved during the northward transit across the continental 

shelf apparently because Anadyr Water remains sequestered beneath the 

euphotic zone until it reaches the shallow Bering Strait area.

Typical nitrate concentrations throughout summer in Anadyr Water on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

Figure 1. The Bering-Chukchi shelf, with generalized circulation 
patterns and origins of the principal water masses flowing north 
through Bering Strait (from Coachman et al. 1975). In the inset 
AW = Anadyr Water, BSW = Bering Shelf Water, and ACW = Alaskan 
Coastal Water.
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the Bering-Chukchi shelf are In the range of 20-30 ug at I-1 CHusby 

and Hufford 1969; McRoy et al. 1972, this study), and the advective 

nitrate flux in Anadyr Water is comparable to that in the Peruvian 

upwelling system (Walsh et al. 1988). Anadyr Water and Alaskan 

Coastal Water are separated by Bering Shelf Water which originates on 

the northern shelf south of St. Lawrence Island. Because of similar 

densities, Anadyr and Bering Shelf waters are we 11-mixed along their 

boundary and a sharp front is not always present between them as it is 

between Bering Shelf Water and Alaskan Coastal Water. The nominal 

boundaries separating Anadyr Water from Bering Shelf Water from 

Alaskan Coastal Water are the 32.5 ppt and 31.7 ppt isopleths, 

respectively (Coachman 1986).

Rapid phytoplankton growth (2-4 g C nr2 d-1) has been measured 

previously in the Bering Strait region at various times during summer 

(McRoy et al. 1972? Sambrotto et al. 1984), and Sambrotto et al.

(1984) estimated a yearly carbon production of 324 g m~2 over 2.12 x 

10* km2 of the northwestern Bering Sea shelf. The apparent paradox of 

such high productivity in an inner shelf environment was solved by 

knowledge of the source of Anadyr Water. In this chapter I describe 

the primary production regime on the Bering-Chukchi shelf in light of 

more extensive data from 1985 - 1987. Patterns of phytoplankton 

production and biomass indicate a highly dynamic system, with large 

spacial and temporal variability.
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METHODS

The work was carried out onboard the RV Alpha Heltx and the RV 

T.G. Thompson on cruises during July - September 1985 - 1987 (Fig. 2). 

The study area extended from Anadyr and Shpanberg straits north to 69° 

or 70° N latitude, depending on the extent of seasonal sea ice and the 

duration of the various cruises. I was unable to sample west of the 

United States - Soviet Union Convention Line because of international 

politics. Water column temperature and salinity were profiled with a 

Neil Brown CTD, and discrete 5 1 water samples were collected at 5 m 

intervals between the surface and near bottom at all stations. 

Subsamples from each depth were analysed for chlorophyl1-a using a 

Turner - Designs fluorometer and an acetone extraction fluorescence 

procedure similar to that described by Parsons et al. (1984). 

Additional subsamples were taken from each depth for dissolved 

nutrient analyses, which were done on a Technicon Autoanalyser onboard 

the ship.

Primary productivity measurements were made at a subset of the 

survey stations. Subsurface light penetration was determined with a 

LI-COR underwater sensor, and 30 1 water samples were collected from 5 

depths corresponding to 100%, 50%, 30%, 15% and 1% of the surface 

lrradiance. Subsamples from each depth were taken for the 

determination of dissolved nutrient concentrations and carbon and 

nitrogen uptake rates. The results of the nutrient analyses other 

than nitrate (Whitledge unpubl. data) and nitrogen uptake rate 

measurements (Hansel! and Goering unpubl. data) will be reported
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Figure 2a. Locations of stations sampled on selected cruises in 1985. Carbon uptake rates 
measured at stations identified by solid circles.
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Figure 2b. Locations of stations sampled on selected cruises in 1986. Carbon uptake rates 
measured at stations identified by solid circles.
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Figure 2c. Locations of stations sampled on selected cruises in 1987. Carbon uptake rates 
measured at stations identified by solid circles.
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e 1sewhere.

Carbon productivity samples were collected in 175 ml bottles,

2 light bottles and 1 dark bottle, inoculated with 5 uCi 1̂ C-labelled 

sodium bicarbonate and incubated on deck for about 4 hr at simulated 

light intensities corresponding to the respective sampling depths 

using perforated nickel screens. The incubators were bathed in 

seawater taken from a depth of about 2 m. At the end of the 

incubation period the samples were filtered through Gelman A/E glass 

fiber filters, the filters were sealed in scintillation envelopes with

3 ml Sc inti verse (Fisher brand SO-X-1), and the activity was counted 

on a Beckman liquid scintillation counter. Additional subsamples from 

each light depth were preserved in Lugol's solution for elucidation of 

the principal taxa of phytoplankton. Incident photosynthetically 

active radiation (400 - 700 nm) during each day and incubation period 

was measured with a LI-COR quantum sensor.

In an earlier, related study of pelagic food webs in the 

coastal zone of the eastern Chukchi Sea, I collected water samples for 

chlorophyll every few days from June 17 - August 28, 1983 at a station 

near Cape Lisburne. The station was located about 3 km east of the 

Cape and 2 km from shore in 15 m of water. Water samples from three 

depths (lm, 5 m and 15 m) were filtered in the field, buffered with 

magnesium carbonate, and frozen until they could be returned to the 

laboratory and analysed using the same procedure as that used for the 

shipboard samples. The absolute values determined for chlorophyll in 

these samples are probably somewhat lower than actual, but the pattern 

of seasonal change should be accurate.
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To compare estimates of dally primary production between 

cruises in the region of enhanced phytoplankton growth, or the plume,

I defined the plume as the region where integrated chlorophyll was 

greater than 25 mg Chi m-z between 0-15 m, which corresponded 

approximately to the depth of the euphotic zone. Although the average 

depth of the 1% light level was 22 m, little carbon uptake occurred at 

that depth - most of the growth occurred above the 15% light depth, 

which was closer to 15 m. I then determined the surface area between 

adjacent isopleths for the plume south of Bering Strait, estimated the 

average daily production in each contour interval using the 

appropriate regression equations from Table 1, and summed the results 

for each interval to give an estimate of the total daily production 

within the plumes. The standing stock of phytoplankton carbon in the 

plumes was estimated in a similar manner, by calculating the standing 

stock of chlorophyll and then converting it to carbon using a 

carbon:ch1orophy11 ratio of 45:1 (see Walsh et al. 1988). The 

standing stock of phytoplankton carbon beneath the euphotic zone, 

defined here as the bottom layer, was calculated in the same way, but 

using the integrated chlorophyll values between 20 m and the bottom. 

Because the survey coverage of the shelf north of Bering Strait was 

relatively incomplete, I did not attempt these analyses for that 

region.
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RESULTS

Boundary conditions

In 1985, Anadyr Water (salinity > 32.5 ppt) in Anadyr Strait 

was overlain by coastal water (salinity < 31.8 ppt) from at least July 

through early September, as illustrated in Fig. 3. The coastal water 

apparently originated in the northwestern Bering Sea, particularly the 

Gulf of Anadyr where the Anadyr River discharges. Layering by coastal 

water in 1986 was confined to the central and western part of Anadyr 

Strait, with Bering Shelf Water (32.5 ppt > salinity > 31.8 ppt) 

overlying and replacing Anadyr Water and coastal water in the eastern 

strait throughout summer (Fig. 4). The water mas9 distribution across 

Anadyr Strait in 1987 was similar to 1985 (Fig. 5), with coastal water 

overlying Anadyr and Bering Shelf Water across the whole strait. 

Although rich in nutrients, the purest Anadyr Water (water with the 

highest salinities) carried low stocks of phytoplankton. The 

relatively abundant chlorophyll beneath the pycnocline in eastern 

Anadyr Strait in 1987 was probably produced upstream from recent 

growth like that seen beneath Station 14 in Fig. 5. Bering Shelf 

Water and Alaskan Coastal Water in Shpanberg Strait were low in both 

nutrients and chlorophyll.

There appears to have been a localized "island effect" on 

primary production under conditions that brought Anadyr Water, i.e., 

nutrients, near St. Lawrence Island in 1985 and 1987. Chlorophyll was 

relatively concentrated near the island in eastern Anadyr Strait and 

western Shpanberg Strait during both years (Figs. 3 & 5). Such was
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Figure 3. Vertical cross-sections through Anadyr Strait and 
Shpanberg Strait in mid-July 1985.
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Figure 5. Vertical cross-sections through Anadyr Strait and 
Shpanberg Strait in mid-July 1987.
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not the case, however, at any time in 1986 (Fig. 4). The difference 

appears to be related to the distribution of Anadyr Water during the 

three years. In 1985 and 1987, Anadyr Water apparently occupied a 

greater proportion of Anadyr Strait and extended farther east than in 

1986. Moreover, in 1985 and 1987 a portion of Anadyr Water split off 

of the main flpw and travelled around the southern and eastern sides 

of St. Lawrence Island. Such a flow pattern is indicated by the 

presence of high-salinity, high-nitrate water in western Shpanberg 

Strait. This flow pattern was further confirmed by the presence of 

oceanic zooplankton, which are carried in the Anadyr stream, in the 

waters of western Shpanberg Strait (Chapter 2).

Area) b l9magsLdi.aic.iJay.tion
Phytoplankton biomass, as represented by chlorophyll, was 

concentrated in two persistent areas, or pools, one north and one 

south of Bering Strait, connected by a narrow band between them (Figs. 

6-8). Elsewhere, chlorophyll was usually less than about 10-20 mg 

m_z. The distribution of chlorophyll corresponded to the mixing zone 

of Anadyr Water with Bering Shelf and Alaskan Coastal water. The 

highest concentrations in the two pools tended to occur near the 

center of east-west “loops" in the otherwise northward trajectory of 

the current through the area, particularly north of Bering Strait.

The loops traced streamlines in the currents, which are guided by the 

bottom topography (compare Fig. 1 to Figs. 6-8), as described for the 

region by Coachman et al. (1975).

Cross-sections through the chlorophyll pool south of Bering
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Figure 6. Distribution of chlorophyll, nitrate, bottom 
salinity and bottom temperature on the Bering-Chukchi 
shelf, 12-24 July 1985.
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Figure 7. Distribution of chlorophyll, nitrate, bottom 
salinity and bottom temperature on the Bering-Chukchi 
shelf. 11-26 July 1986.
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Figure 8. Distribution of chlorophyll, nitrate, bottom 
salinity and bottom temperature on the Bering-Chukchi 
shelf, 20 July - 2 August 1987.
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Strait show that phytoplankton biomass was consistently greatest west 

of fronts between Anadyr and Bering Shelf water. For example, in 

1986, the concentration of chlorophyll was highest on transect A on 

July 16, when vertical stratification of the water column was strong 

and the pycnocline and nutrlcline were shallow toward the western end 

of the transect (Fig. 9). The pycnocline was formed by shelf and 

coastal water over-riding Anadyr Water. Phytoplankton were growing 

just beneath the pycnocline at a depth of 10-15 m, and biomass 

apparently was accumulating and settling at the front between Anadyr 

Water and Bering Shelf Water. Chlorophyll was low in the core of 

Anadyr Water near the bottom beneath the level of rapid growth. Nine 

days later on July 25, vertical density stratification was slight and 

very near the surface in the western half of the transect, and 

resulted primarily from surface heating of Anadyr Water (Fig. 9). 

Phytoplankton were growing near the surface where nitrate was 

plentiful, and chlorophyll was more uniformly distributed throughout 

the water column below, probably because of the absence of a density 

gradient. The pycnocline and nutricline were deeper on transect B on 

July 14 and 15, about 15-20 m, and were formed by Bering Shelf Water 

overriding Anadyr Water from the east (Fig. 10). Again, chlorophyll 

was most concentrated just beneath the pycnocline and west of the 

front between the two water masses.

The cross-sections shown in Figs. 9 & 10 illustrate the level 

of temporal variability that can exist in biomass distribution, and 

presumably in primary production. Not surprisingly, day-to-day 

changes are probably small, while weekly changes can be large.
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Figure 9 . Vertical cross-sections through the southern 
chlorophyll pool taken 1 week apart in July 1986. See Figure 2, 
HX85, for transect location.
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Figure 10. Vertical cross-sections through the southern 
chlorophyll pool taken 1 day apart in July 1986. See Figure 2, 
HX85, for transect location.
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South of Bering Strait, the standing stock of phytoplankton 

carbon In the plume (based on a carbon:chi orophy11 ratio of 45:1) was 

not a good predictor (r = 0.71, P > 0.05) of the amount of carbon in 

the bottom layer on 6 cruises where reliable contours could be drawn 

(Table 1). Also, the correlation between the areal extent of the 

plume and the area of elevated chlorophyll In the bottom layer (Table 

1) was not significant (r = 0.65, P > 0.05). Relations between the 

chlorophyll stocks and areas In the plume and the bottom layer for 

three of those cruises (shown in Figs. 6-8) are illustrated In Figs. 

11-13. There was, however, a strong correlation (r = 0.97, P < 0.01) 

between the area of elevated chlorophyll in the bottom layer and the 

highest Integrated value of chlorophyll (surface to bottom) in western 

Shpanberg Strait (Table 4).

Primary productivity

Carbon uptake was significantly correlated with biomass in the 

euphotic zone for all cruises (Table 2). Uptake rates within the 

production plume ranged between about 1-16 gC nr2 d_l, while outside 

of the plume rates were usually less than 1 gC nr2 d_l (Figs. 11-13). 

The averages of the assimilation numbers (PB ) ranged between 2.0-6.7 

mgC mgChl-a-1 h- 1, and those of the photosynthetic index (P.I.) ranged 

between 31-75 mgC mgChl-a-1 d~' (Table 3).

Growth efficiencies, or a (mgC mgChl-1 E-1 m 2), for all 

productivity stations varied by a factor of over 20, with about half 

of the stations having values below 2 and about half with values above 

2.0. Variable irradlance did not explain a significant portion of the
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Table 1. Sizes of the regions south of Bering Strait with 
concentrations of chlorophyll > 25 mg nr* in the plume and the 
bottom layer, the standing stock of phytoplankton carbon in the two 
regions (derived from chlorophyll concentrations within the 25 mg 
Chi nr* isopleths using a carbon:chiorophy11 ratio of 45;1), and 
the highest water column level of chlorophyll in western Shpanberg 
Strai t.

Station

Area 
<xlO~10 m*)

Carbon Standing Stock 
CxlO-'* g)

Chiorophy11 
(mg m-i)

Plume Bottom layer Plume Bottom layer Water column

HX72 0.48 2.7 1.4 11 193

HX84 0.74 1.7 2.6 4.0 97

HX85 0.63 1.1 3.6 4.1 33

HX88 0.92 1.3 2.0 4.5 94

TT212 1.0 3.5 5.5 15 211

TT213 2.1 3.9 5.8 22 259
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Figure 11. Distributions of plume and bottom layer chlorophyll and carbon uptake rates on the 
Bering-Chukchi shelf, 12-24 July 1985. The dotted line on the right panel is the 10 mg Chi nr2 
isopleth from the right panel.
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Figure 12. Distributions of plume and bottom layer chlorophyll and carbon uptake rates on the 
Bering-Chukchi shelf, 11-26 July 1986. The dotted line on the right panel is the 10 mg Chi nr2 
isopleth from the right panel.
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Figure 13. Distributions of plume and bottom layer chlorophyll and carbon uptake rates on the 
Bering-Chukchi shelf, 20 July - 2 August 1986. The dotted line on the right panel is the 
10 mg Chi m-i isopleth from the right panel.
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Table 2. Regression results for carbon production (mgC m-2 d~', = y) 
v biomass (mgChl m 2, = x), where y = Ax + B; r = correlation 
coefficient; n = number of stations. Production and biomass 
integrated between surface and 1% light depth. See Fig. 3 for 
cruise dates. Significance level of r = 0.05, + = significant.

Cruise A B r Sig. n

HX71 28 191 .98 + 5

HX72 21 452 .86 + 9

HX74 15 936 .61 + 14

HX85 37 450 .75 + 16

HX88 26 183 .79 + 10

TT213 17 1621 .58 + 20

TT214 26 535 .59 + 17
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Table 3. Geometric mean values and ranges of assimilation 
numbers <PB = mgC mgChl-1 h-1) and productivity indices 
(P. I. = mgC mgChl-1 d_l). See Fig. 3 for cruise dates.

Cru i se pB Range P.I. Range n

HX71 4.6 1.9-12 54 22-134 5

HX72 2.9 1.2-7.3 36 15-84 9

HX74 3.7 2.1-6.5 47 24-91 14

HX85 6.7 3.1-14 75 45-124 16

HX88 3.2 1.4-6.9 33 15-75 10

TT213 2.6 1.0-6.4 33 14-79 20

TT214 2.0 0.97-4.3 31 11-84 17
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variability in P B values (Table 3). However, if the stations in the 

two groups ( a < 2 and > 2) are considered separately, the correlations 

between irradiance and P B are improved, particularly for the a < 2 

group (Table 4). The geometric mean of the light utilization index 

values ( ¥) for stations with a < 2 was 0.52 mgC mgChl-a-1 E-1 m z 

(range = 0.28 - 1.0).

Areal produc t i on
The estimated daily production within the plume varied between 

cruises, and was highly correlated with chlorophyll in the upper 15 m 

of the water column (Fig. 14). It was considerably higher in 1987 

than in 1985 or 1986. The ratio of dally production to biomass, an 

estimate of the specific growth rate, averaged 0.96 d-1 (range = 

0.73-1.3 d"1).

E l S O

The phytoplankton community in the plume was dominated by 

typical boreal diatoms, such as Chaetoceros and Thalassioslra. 

Flagellates greatly outnumbered diatoms at stations outside the plume. 

The correlation coefficients for the diatom : flagellate ratio 

compared to a for 5 stations on each of HX72 and HX74 were -0.74 and 

-0.86, respectively, with the growth efficiency ( a )  Increasing as the 

diatom : flagellate ratio decreased.

Secina. hl.pgm
The presence of sea ice precluded extensive sampling during
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Table 4. Regression results for assimilation number (P8 = mgC mgChl"' 
h_l, = y) i irradiance (Einsteins nr2 h- 1, = x), where y = Ax + B; 
r = correlation coefficient; n = number of stations; a = mgC mgChl-1 
E"1 m 2. The slope of the regression equation (A) = the light 
utilization index (4'). See Fig. 3 for cruise dates. Significance 
level of r = 0.05; + = significant, - = not significant.

Cruise A B r Sig. n

a  < 2 . 0

HX71 .24 2.6 1 2
HX72 .46 2.7 .30 - 7
HX74 .90 .11 1 2
HX85 .53 .56 .99 + 6
HX88 .43 .38 .95 + 4
TT213 1.6 -.92 .90 + 11
TT214 .32 .83 .34 - 13

a > 2.0

HX71 .11 1.1 .95 _ 3
HX72 -.12 5.2 1 2
HX74 .61 5.2 -.14 - 12
HX85 .12 1.1 .60 + 10
HX88 .17 .66 .64 - 6
TT213 4.9 -.24 .80 + 9
TT214 -2.8 7.5 -.61 - 4

All Stations

HX71 .06 2.2 .40 5
HX72 .002 3.6 .01 - 9
HX74 .06 1.3 -.26 - 14
HX85 .08 1.7 .33 - 16
HX88 .15 .87 .61 - 10
TT213 .99 2.1 .28 - 20
TT214 .58 1.0 .20 - 17
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Figure 14. Relation between the estimated daily production and 
plume chlorophyll south of Bering Strait.
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the period of the spring bloom in all years. Chlorophyll 

concentrations were high in the ice-free region south of Bering Strait 

during May 28 - June 4, 1986 (Fig. 15). Because ice cover was still 

extensive, these concentrations might be representative of the spring 

bloom. However, the presence of oceanic zooplankton throughout most 

of the survey area at that time confirms the presence of Anadyr Water 

(Chapter 2), which could also explain the high phytoplankton biomass. 

Oceanic zooplankton were absent from only two stations during this 

cruise, those nearest the mainland coast where chlorophyll was low.

The 1983 chlorophyll time series from Cape Lisburne shows the 

abruptness and magnitude of the decline in production following 

nutrient depletion in early summer (Fig. 16). This series probably 

did not include the full bloom period, since open water had been

present for several days prior to our first sampling.

DISCUSSION

The Plume

The size of the area south of Bering Strait that I have

defined as the plume has been smaller on all of our cruises than the

area estimated by Sambrotto et al. (1984), averaging about 0.87 x 1010 

m z (range = 0.52-1.4) compared to 2.1 x 1010 m 2. The difference 

arises from the fact that I am considering all waters inside the 25 mg 

Chi nr2 isopleth as the plume, while they defined the plume on the 

basis of reported nutrient and chlorophyll distributions, and by 

making the logical, but erroneous, assumption that productivity was
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Figure 15. Areal distribution of 
chlorophyll, bottom salinity and 
bottom temperature, 28 May - 
4 June 1986.
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Figure 1 6 . Chlorophyll time series from Cape Lisburne in 1983.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

high wherever nutrients and chlorophyll were high. This raises the 

question of why qrowth is not greater in Anadyr Water in the western 

strait area, north and west of St. Lawrence I., where euphotic zone 

nutrients are high.

One explanation is that turbulence in the Anadyr stream 

generally is sufficiently great that the critical depth criterion for 

net phytoplankton production is not met. The water depth is between 

30 - 55 m, while the 1% light depth is seldom deeper than about 20 - 

30 m. Hydrographic data taken along the Convention Line between 

Anadyr Strait and Bering Strait indicate that the water column is 

often we 11-mixed in this region. Chlorophyll was consistently most 

concentrated, i.e., phytoplankton growth was highest, just beneath the 

pycnocline when the water column was stratified. Sufficient 

stratification apparently can be generated in several ways - for 

example, by simply heating the surface of Anadyr Water, or by the 

layering of coastal or shelf water over Anadyr Water from either the 

west or the east. The displacement of the whole plume downstream from 

St. Lawrence Island might further be related to current speeds and the 

time needed for diatom populations to respond to a regime of abundant 

1ight and nutrients.

Variability in the flow field, and the resulting nutrient and 

phytoplankton distributions, is substantial at time scales of a month 

and year (Figs. 3 & 4), and at the scale of a week. The range of 

daily variability is probably always much smaller. Variability in the 

flow field and in vertical stability apparently derives principally 

from wind forcing, which can significantly affect the transport and
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trajectory of Anadyr Water through Anadyr Strait (Nlhoul et al. 1986), 

the mixing depth, and thus the ensuing production regime. Such 

variability might explain why the low areal production value for HX72 

(mid-July 1985) was inconsistant with the relatively high chlorophyll 

inventory beneath the pycnocline.

The area of the northern shelf with elevated bottom layer 

chlorophyll (mean = 2.1 x 1010 m 2) was always larger than the area of 

the plume (mean = 0.87 x 10'0 m 2). Although the bottom layer area was 

not significantly correlated with the area of the plume, it was well 

correlated with the highest value of integrated chlorophyll (surface 

to bottom) in western Shpanberg Strait (r = 0.97, P < 0.01). This 

relation suggests that an important factor governing the areal 

distribution of phytoplankton biomass on the northern shelf of the 

Bering Sea is the amount of Anadyr Water that flows around the south 

side of St. Lawrence I. and through western Shpanberg Strait. Such a 

flow pattern transports a considerable biomass of phytoplankton onto 

the northcentral shelf that was apparently grown upstream as well as 

locally - the two productivity stations occupied near eastern St. 

Lawrence I. both had uptake rates of over 2 gC m'2 d_l (Figs. 11 &

13).

The size of the area of elevated chlorophyll in the bottom 

layer south of Bering Strait averaged 2.1 x 1010 m 2, which is the same 

size as the area of the plume estimated by Sambrotto et al. (1984). 

This area, however, was 2.4 times larger than that of the plume (0.87 

x 1010 m 2) during 1985-1987. Therefore, it appears that Sambrotto et 

al. (1984) overestimated the extent of the region of high production
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on a dally or weekly basis, but they were accurate In estimating the 

size of the area affected by it.

Sr..w .th...gff ls isn c -lss
The average values of P B for all cruises were higher than the 

value of 1.5 mgC mgChl-1 h_l reported for the southern Chukchi Sea by 

Hameedl <1978), who commented on the low assimilation efficiency of 

the phytoplankton compared to that reported from high arctic stations, 

which ranged between 3.6 and 7,2 mgC mgChl-1 h~' (Smith and English 

1973; Pautzke 1974; cited in Hameedl 1978) and which are similar to 

ours. All of these values are still only about half of the unusually

o
high P values of around 15 mgC mgChl-1 h_l found on the continental

shelf of the southeastern United States (Yoder et al. 1985).

Harrison et al. (1982) reported mean photosynthetic index 

(P.I.) values of 4.0 mgC mgChl-a-1 d_l for Baffin Bay and 6.7 mgC 

mgChl-a-1 d-1 for all waters in the eastern Canadian Arctic up to 80° 

N. Our mean P.I. values ranged from 31-75 mgC mgChl-a-1 d_l, 

indicating a much higher dally efficiency.

The lack of a correlation between P B and lrradiance, and the 

highly variable values of ¥ for all stations combined differs from the

observations of Falkowski (1981) for the New York Bight, where T was

valid over three orders of magnitude of chlorophyll, as well as highly 

variable nutrient and temperature conditions and species composition 

of the community. The average value of f for stations with a < 2, 

0.58, was similar to measured and modeled estimates in other 

high-latitude regions (Falkowski 1981, Yoder et al. 1985).
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Annual production

Using the estimates of the total daily production (gC d~‘) in 

the plume and the area (m2) of the plume for cruises where contouring 

was reliable south of Bering Strait, I calculated an average daily 

productivity value for the plume. The estimates ranged between 

1.5-5.4 gC m-2 d-1, with a mean of 2.7 gC nr2 d_l, which supports the 

estimate made by Sambrotto et al. <1984) of 2.7 gC m~2 d-1. Sambrotto 

et al. further calculated an annual production value of 324 gC m-2 y-' 

using the daily rate and an annual growing season of 120 days, which 

integrated seasonal changes in irradiance and ice cover. The 

principal difference between their results and mine, therefore, is in 

the estimate of the area of rapid growth.

Still higher production would be expected in the southern 

Chukchi Sea, where euphotic zone chlorophyll reached over 1000 mg nr2 

and productivity reached 16 gC m-2 d_l (McRoy et al. in prep). 

Concurrent benthic process studies found anoxic sediments and a 

reduced stock of invertebrate macrofauna near the center of the pool 

in the southern Chukchi Sea, which could have resulted from a heavy 

rain of phytodetritus (Grebmeier 1987; Henrlksen and Blackburn unpubl. 

data).

Productivity at stations outside of the plume on four cruises 

where carbon uptake rates were measured and where I was able to 

reliably contour the chlorophyll distribution averaged 0.50 gC nr2 d_l 

(range = 0.27-0.92, n = 13). During a growing season of 120 days 

(Sambrotto et al. 1984), 60 gC nr2 would be fixed. Assuming an
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average productivity of 2.0 gC m-2 d- ' during the intense spring bloom 

period (Walsh and McRoy 1986), which lasts about 10 days in the 

southeastern Bering Sea (Sambrotto and Goering 1983), an additional 20 

gC would be fixed, yielding a total of 80 gC m-2 y-'.

Neither the estimate of Sambrotto et al. (1984) for annual 

production in the plume nor my estimate of annual production elsewhere 

includes the contribution from epontic algae, which may be in the 

order of 20% of the annual production for shelf waters in the Bering 

Sea (McRoy and Goering 1976), or from ice edge blooms which are 

thought to predate and to be distinct from the major spring bloom in 

the Bering Sea (Niebauer and Alexander 1985). Because epontic algae 

may tend to be nutrient (NOa) limited (Maestrini et al. 1986), 

production by this community might be relatively high under the ice 

bathed by Anadyr Water.

CONCLUSIONS

The flow of water through Bering Strait is the only connection 

between the Pacific and Arctic oceans, and is an unusual example of a 

physical process that supplies nutrients to a shallow continental 

shelf during the summer production season. An estimated average of 

0.87 x 104 km2 of the continental shelf south of Bering Strait, and 

probably an even larger area in the southern Chukchi Sea, experienced 

high primary production following the spring bloom in 1985-1987. 

Phytoplankton growth rates were elevated in a plume that ran generally 

south - north through Bering Strait, with persistent pools of high
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productivity and phytoplankton biomass in the northern Bering and 

southern Chukchi seas. The pool3 corresponded to regions of stability 

in loops of the stream lines where Anadyr Water mixed with Bering 

Shelf Water and Alaskan Coastal Water.

An even larger area over the shelf beneath the euphotic zone 

between St. Lawrence I. and Bering Strait (mean = 2.1 x 10** km2) 

exhibited elevated phytoplankton biomass (as chlorophyll). The size 

of this area on individual cruises was not well correlated with the 

size of the plume, but was strongly correlated with the water column 

concentration of chlorophyll in western Shpanberg Strait, which 

reflected the relative proportion of Anadyr Water flowing south around 

St. Lawrence I. rather than through Anadyr Strait. The flow of Anadyr 

Water through western Shpanberg Strait carried phytoplankton biomass 

grown upstream onto the northcentral shelf and promoted locally high 

productivity, thereby enlarging to the east the size of the area 

influenced by flow through Anadyr Strait.

The fertilization of these shelf waters by physical processes 

maintained the flora in eutrophic bloom conditions, and interrupted 

normal community development in the plume. Large, chain-forming 

diatoms flourished among the phytoplankton, while elsewhere, small, 

solitary diatoms and flagellates typical of oligotrophlc waters and 

later successional comnunities dominated.

As a result, the structure of food webs supported by the two 

production regimes is dramatically different. Most of the diatom 

production in the plumes goes to the bottom. South of Bering Strait 

the flux is sufficient to support dense benthic faunal populations, up
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to an average of 5000 individuals nr: of ampeliscid amphipods and 

tell in id bivalves (Stoker 1981; Grebmeier 1987), which in turn support 

a large biomass of walruses and gray whales (Frost and Lowry 1981a;

Fay 1982). Near the center of the pool in the southern Chukchi, 

however, the diatom fallout might be great enough to account for 

anoxic sediments and a dominant microbial food web. Whereas the 

macrofaunal community accounts for about 60-70 % of the total carbon 

mineralization in the northern Bering Sea, microbes contribute about 

50-95% in the southern Chukchi Sea (Grebmeier 1987; Henrlksen and 

Blackburn, unpubl. data).

The phytoflagellates are thought to participate in an 

efficient pelagic microheterotrophic food web (Andersen 1986), and 

they also undoubtedly go through a more direct route via herbivorous 

zooplankton to fishes and birds (Chapter 2; Springer et al. 1987). 

Benthic biomass outside of the plume is only about 10 - 50% of that 

under the plume, and the diversity and number of marine birds along 

the mainland coast are very low compared to the islands (Sowls et al. 

1978). The juxtaposition of such highly contrasting environments and 

food webs within a small geographic area will continue to provide an 

unusual opportunity to follow patterns of community structure and 

development, energy production and allocation, and the effects on 

biological processes of dynamic physical variability at time scales of 

days, seasons and years.
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INTRODUCTION

The continental shelf of the northern Bering Sea and southern 

Chukchi Sea has been recognized for many years as a region of 

unusually high marine production at several trophic levels, from 

primary producers (McRoy et al. 1972) to benthic invertebrates (Stoker 

1981), seabirds (Fay and Cade 1959; Bedard 1969a,b), and marine 

mammals (Nasu 1974; Fay 1982). The abundant flora and fauna seemed 

paradoxical, since the region is generally less than 50 m in depth and 

distant from the known source of nutrients at the shelf edge, several 

hundred kilometers in either direction, that could support such dense 

populations of marine biota. However, recent studies have greatly 

improved our understanding of the physical processes on the 

Bering-Chukchi shelf, and the conclusion which has emerged is that the 

advection of oceanic water from far to the south is responsible for 

the biological richness (Sambrotto et al. 1984; Springer and Roseneau 

1985; Springer et al. 1987; Walsh et al. 1988; Chapter 1).

The oceanic water, Anadyr Water, is the northern branch of the 

Bering Slope Current that originates along the continental shelf break 

of the Bering Sea (Coachman et al. 1975; Kinder et al. 1975) (Fig.

17). It is a marine “river" flowing north through western Bering 

Strait and carrying abundant nutrients onto the shallow northern 

shelf. The nutrients, primarily nitrate, allow for prolific primary 

production throughout summer over a large portion of the Bering Strait 

region (McRoy et al. 1972; Sambrotto et al. 1984; Chapter 1).

In addition to nutrients, and probably more important to
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Figure 17. The Bering-Chukchi shelf, with generalized circulation 
patterns and origins of the principal water masses flowing north 
through Bering Strait (from Coachman et al., 1975). In the inset 
AW = Anadyr Water, BSW = Bering Shelf Water, and ACW = Alaskan 
Coastal Water.
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pelagic food webs on the northern self, Anadyr Water carries with it a 

considerable biomass of oceanic zooplankton. An obvious example of 

the trophic Importance of the zooplankton are the immense populations 

of auklets (Aethia spp.) in the northern Bering Sea that feed 

primarily on Neocalanus cristatus and IL. Plumchrus (Bedard 1969a; 

Springer and Roseneau 1985). Although these and other oceanic species 

of zooplankton are normally excluded from the expansive shelf 

shoreward of the middle front in the southern Bering Sea (Iverson et 

al. 1979; Cooney 1981; Smith and Vidal 1984), they are known to enter 

the Chukchi and Beaufort seas (Johnson 1956, 1958; Wing 1974) and even 

the Arctic basin (Johnson 1963), and their presence there has, in a 

general sense, been attributed to the flow of water through Bering 

Strait.

In the southeastern Bering Sea, the herbivorous zooplankton of 

the oceanic and outer shelf domains, primarily the large calanoid 

copepods Neocalanus cristatus. Ik Plumchrus. EucalanMS, bvnflii and 

Metridia Pacifica (Cooney 1981; Smith and Vidal 1984), apparently can 

control the spring diatom bloom (Kokur 1982), and are important in the 

allocation of carbon to pelagic and benthic food webs (Cooney and 

Coyle 1982; Dagg et al. 1982; Dagg and Wyman 1983). Because the 

biomass of oceanic species advected onto the northern shelf is 

substantial, as indicated by the numbers of planktivorous seabirds, 

they could be important in regional carbon budgets there as well. To 

assess this possibility I sampled the zooplankton as part of ISHTAR 

(Inner SHelf Transfer and Recycling), a continuing, multidisciplinary 

study of the oceanography of the Bering-Chukchi continental shelf.
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The primary objectives of the zooplankton study were to determine the 

distribution of the oceanic community in the study area and to 

estimate their biomass.

METHODS

Vertical tows from about 1 m above the bottom to the surface 

were made during cruises of the RV Alpha HelIx in the summers of 1985 

and 1986 (Fig. 18). No samples could be taken west of the United 

States - Soviet Union Convention Line because of international 

politics. A i m  diameter, 505 urn mesh net was used on all cruises 

except HX72 (12-24 July 1985), when a 0.5 m diameter, 303 urn mesh net 

was used. The larger net did not adequately sample small species of 

zooplankton, i.e., those smaller than Pseudoca1 anus spp., so they are 

considered below only for HX72. The smaller species are the subject 

of a related study of pelagic food webs in the coastal zone (Springer 

et al. 1987, unpubl. data). All samples were preserved in 5% formalin 

in seawater.

To estimate the biomass of zooplankton, 1 weighed individuals 

of most species after drying them at 65°C for 12 hours and corrected 

the weights for an estimated 40% loss due to formalin preservation 

(Vidal and Smith 1986), or I relied upon literature values (Harris 

1985; Vidal and Smith 1986). Saaitta e 1eaans were divided into three 

size groups, small, medium and large; Olkopleura spp. and Aolanthe 

dlqitale were divided into two groups, small and large, and the 

average weight of the groups was determined. Individuals in each
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sample were then tallied by group so that a more appropriate estimate 

of biomass could be made. A single weight was used for each species 

of copepod except Calanus marshallae. which was divided into two 

weight groups represented by stage III copepodids and adults.

The boundary between Anadyr Water and Bering Shelf Water 

occurred at a salinity of about 32.5 ppt in 1985 and 1986 (Coachman 

1986); that is, water with a salinity of 32.5 ppt consisted of 

approximately equal proportions of the two water masses. Oceanic 

copepods, however, frequently crossed this isopleth and on several 

cruises were found in waters with bottom salinities as low as 32.0 

ppt, particularly north of Bering Strait. Since there was no 

difference between copepod numbers west of 32.5 ppt, the nominal 

boundary, and numbers between 32.5 and 32.4 ppt (Kruskal1-Wal1 is test, 

P < 0.05), we used the 32.4 ppt isopleth of bottom salinity and the 

32.4 ppt envelope to partition shelf waters for subsequent analyses.

To assess spatial and temporal variability in zooplankton 

numbers and biomass, I first determined if there were differences from 

west to east of the 32.4 ppt Isopleth of bottom salinity and from 

south to north of Bering Strait by comparing the values in four 

quadrants - southwest, northwest, southeast and northeast. Adjacent 

quadrants west and east of 32.4 ppt were lumped if no significant 

differences were found between them (Kruskal1-Wal1 is test, Multiple 

Comparisons Procedure, p < 0.05) and they were then compared to each 

other, i.e., west versus east.

I estimated the flux of zooplankton biomass into the study 

area in two ways. In Method 1 I assumed that most of the individuals
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of oceanic origin were contained within the 32.4 ppt cross-sectional 

envelope in Anadyr Strait, which marked the nominal boundary between 

Anadyr Water and water from elsewhere. Results from vertically 

stratified sampling over Anadyr Water in 1987 supported that 

assumption (Springer et al. unpubl. data). Based on cross sections 

presented by Coachman et al. (1975), I extended the boundary from its 

depth at our western-most station in Anadyr Strait to near the 

Siberian coast. I could then estimate the concentration of 

zooplankton in the water mass, i.e., the biomass m-3, and an 

approximate volume percent of Anadyr Water in Anadyr Strait. By using 

transport data from the same periods during summer, presently 

available for 1985 only, I estimated the transport of biomass of 

oceanic species into the study area. This method was modified for 

estimating the transport of total zooplankton by calculating the 

concentration of animals using the full sampling depth and by using 

the total transport through Anadyr Strait. The transport of 

zooplankton through Shpanberg Strait was calculated using this 

modification. In Method 2 I used the width of each strait (Anadyr 

Strait = 85 km, Shpanberg Strait = 175 km) the average velocity of the 

water flowing through them at the time of each cruise (about 45 and 40 

cm s_l in Anadyr Strait on HX72 and HX74, respectively, and about 10 

and 15 cm s-1 in Shpanberg Strait on HX72 and HX74, respectively) and 

the average biomass (m-2) of zooplankton for each transect to estimate 

the flux.

I have reported data for only those taxa of zooplankton that 

were either abundant or had distributions diagnostic of hydrographic
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conditions and circulation. I used the transects from cruise HX72 

(21-23 July 1985) to Illustrate the distribution of zooplankton across 

Anadyr Strait and Shpanberg Strait, the "zooplankton boundary 

conditions," because the samples were collected with a smaller mesh 

net that better represented all species. My sampling coverage of the 

study area was most complete on HX85 (12-25 July 1986), and I have 

used these data to illustrate the general pattern of areal 

distribution of the zooplankton north of Anadyr and Shpanberg straits.

Most samples were obtained as part of the ISHTAR project. 

Additional samples of zooplankton were provided by R. Highsmith for 

the period 28 May - 4 June 1986. All of the unpublished physical data 

referred to throughout this paper were taken from ISHTAR hydrographic 

reports for 1985 and 1986 (Institute of Marine Science, University of 

Alaska, Fairbanks), and the nutrient data are from T. Whitledge 

(unpubl. data).

RESULTS

Hydrography

The northward flow of water through Bering Strait is primarily 

barotropic, resulting from a north - south atmospheric pressure 

differential that tilts the sea level down toward the north (Coachman 

et al. 1975). The calculated mean annual transport has varied between 

0.56 - 0.91 Sv during the past 85 years, and is generally 

wel1-correlated with the north - south component of the local wind 

(Coachman MS). On average, the transport is larger and less variable
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in the summer months, 1.1 + 0.2 Sv, than in the winter, 0.4 + 0.4 Sv.

The origins of the three principal water masses on the 

northern shelf differ, which leads to distinctive physical and 

chemical signatures of each. Anadyr Water originates at depth along 

the continental slope of the Bering Sea, Bering Shelf Water originates 

over the middle shelf of the northern Bering Sea south of St. Lawrence 

Island, and Alaskan Coastal Water originates over the inner shelf of 

the southeastern Bering Sea (Coachman et al. 1975; Kinder et al.

1975). Alaskan Coastal Water is further freshened by the discharge of 

the Yukon River into outer Norton Sound. The nominal boundaries 

separating Anadyr Water from Bering Shelf Water, and Bering Shelf 

Water from Alaskan Coastal Water are defined as the 32.5 ppt and 31.8 

ppt isopleths, respectively, across Anadyr Strait and Shpanberg Strait 

(Coachman 1986). Cross sections through these two straits in mid-July 

of 1985 and 1986 illustrate the hydrographic boundary conditions on 

the northern shelf and interannual variability in the flow field3 

(Fig. 19).

Anadyr Water was prominent in Anadyr Strait in summer of both 

years, but was replaced in the eastern strait by Bering Shelf Water. 

Both of these water masses were overlain by coastal water, in this 

case coastal water originating along the Siberian coast. Anadyr Water 

occupied a greater proportion of Anadyr Strait in 1985 than in 1986, 

and part of it traveled eastward around the south side of St. Lawrence 

Island in 1985, entering the study area through western Shpanberg 

Strait. Bering Shelf Water and Alaskan Coastal Water accounted for 

the remainder of the volume in Shpanberg Strait in 1985 and for the
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ANADYR 15 JUL 85 SHPANBERG 13 JUL 85
STATIONS

ANADYR 15 JUL 86 SHPANBERG 12 JUL 86
STATIONS

DISTANCE (km)

Figure 19. Cross-sections of salinity and nitrate in Anadyr 
and Shpanberg straits in mid-July 1985 and 1986. High 
salinity and nitrate are indicative of Anadyr Water in Anadyr 
Strait in both years, and in western Shpanberg Strait in 1985 
only.
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North of Anadyr and Shpanberg straits, topographic steering 

led to general circulation patterns that tended to conform to the 

bathymetry (Fig. 20, compare isopleths of bottom salinity and 

integrated nitrate to bathymetry in Fig. 17), as described for this 

region by Coachman et al. (1975). Anadyr Water was held to the west 

by the lighter shelf and coastal waters, except in a broad mixing 

region in the southern Chukchi Sea where the flow looped eastward.

Zooplankton boundary conditions

Among the copepods, the oceanic species Neocalanus cristatus. 

£L Plumchrvg, Evcalanvig bungji and Metrldia Pacifica occurred 

predominately in Anadyr Strait (Fig. 21). Small numbers were 

occasionally found in western Shpanberg Strait in 1985 presumably 

because of the eastward flow of Anadyr Water south of St. Lawrence 

Island. Calanus marshallae predominated in Bering Shelf and Alaskan 

Coastal water in Shpanberg Strait, but was replaced in eastern 

Shpanberg Strait by Pseudocalanus spp. and by Eurvtemora spp. and 

Acartia lonoiremis which are typical nearshore species (Cooney 1981). 

Pseudocalanus spp. and another small copepod, Oithona simi1 is. were 

generally wide-spread and abundant compared to the rest. Centropaaes 

abdominal is was not encountered in Shpanberg Strait on this cruise, 

but was cannon there at other times.

Euphausiid furcilia, primarily Thvsanoessa raschii. and the 

larvacean Oikopleura spp. were abundant in Anadyr Strait but not 

Shpanberg Strait (Fig. 22). T. raschii is apparently most abundant

to ta l volume in 1986.
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Figure 20. Areal distribution of bottom salinity and 
integrated nitrate, 12-24 July 1985 (above) and 11-26 

July 1986 (below).
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over the shelf of the northwest Bering Sea and is replaced by L. 

lonaipes in oceanic water off the shelf (Motoda and Minoda 1974). 

Larvaceans are considered oceanic species that do not effectively 

penetrate shelf waters (Cooney 1981; Shiga 1982). However, the 

abundance of individuals in Anadyr Strait, in the range of 2000 - 6000 

m-z at all but the eastern-most station, was as high as the highest 

values (3000 - 4500 m~z south of Kamchatka) in the N. Pacific, 

including the Bering Sea, reported by Shiga (1982).

Saai.t.ta eleqans and Aalanthe diaitale. the dominant 

carnivores, were more or less evenly distributed across both straits 

(Fig. 23). S. eleaans in Anadyr Strait were generally larger than 

those in Shpanberg Strait, however, and juvenile h*. diaitale were 

present in Anadyr Strait, but not Shpanberg Strait, indicating 

differences in the production regimes of the two water masses. 

Eukronhia hamata. an oceanic chaetognath (Bieri 1959; Kotori 1976), 

occurred at one station in Anadyr Strait on 13 July 1985 (HX72), as 

well as at stations in and near Anadyr Strait on other cruises.

Limacina helicina entered the study area principally through 

Anadyr Strait, and most Clione 1imacina entered through western 

Shpanberg Strait (Fig. 24). According to Motoda and Minoda (1974), 

both species of pteropods are distributed mainly over the central and 

western Bering Sea, but also occur over the eastern shelf.

Copepods accounted for about half of the estimated dry weight 

biomass of zooplankton in Anadyr Strait, except near St. Lawrence 

Island where there was little else (Fig. 25). After copepods, the 

biomass of the pteropods and larvaceans were next highest, with the
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Sag/tta e/egans

ANADYR SHPANBERG

Agtanthe digitate

Figure 23. Distribution of abundance and biomass of Sagitta elegans 
and Aglanthe diaitale across Anadyr and Shpanberg straits, 21-23 
July 1985.
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Figure 25. Distribution of zooplankton biomass across Anadyr and 
Shpanberg straits, 21-23 July 1985.
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contribution from other taxa being relatively small. Because of their 

large size during mid-July 1985, the larvaceans contributed up to 

nearly 5 g dry weight m-2, or 37%, to the total biomass of the 

herbivores in Anadyr Strait. Although often quite numerous, the 

juvenile euphausilds were of relatively minor importance in terms of 

biomass, contributing at most about 1 g dry weight m-2, or about 7%, 

to the total. The large biomass of the “Other zooplankton" category 

at Station 101 was due to an unusual abundance of juvenile 

Parathemisto spp. Copepods and larvaceans were the dominant taxa in 

the western part of Shpanberg Strait, except near St. Lawrence Island 

where larvaceans were uncommon, as they were nearshore in eastern 

Anadyr Strait (Fig. 25). Copepods predominated across the eastern 

portion of Shpanberg Strait. Taxa other than copepods and larvaceans 

were not important anywhere.

The four oceanic species of copepods, Neocalanus cristatus. Jjj. 

Plumchrus. Eucalanus bungii and Metridia Pacifica, contributed 70% - 

90% of the copepod biomass in Anadyr Strait in July 1985, while 

Calanus marshallae accounted for a similar proportion in Shpanberg 

Strait (Fig. 26). The geometric mean copepod biomass (9.0 g dry 

weight nr2) and highest value (27 g m-2) at the five stations in 

Anadyr Strait are similar to estimates of peak standing stocks of 9.9 

g m-2 (Ikeda and Motoda 1978), 8 - 40 g m-2 (Cooney 1981) and 10 - 14 

g nr2 (Vidal and Smith 1986) over the continental slope and outer 

shelf of the southeastern Bering Sea. The mean biomass in Shpanberg 

Strait, excluding the three western-most stations where Anadyr Water 

contributed substantially to the total flow, and the two eastern-most,
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Figure 26. Distribution of copepod biomass across Anadyr and 
Shpanberg straits, 21-23 July 1985.
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nearshore stations, was 5.2 g dry weight m-2. This value is similar 

to the estimate of a peak standing stock of 3.9 g m-2 in the middle 

domain of the southeastern Bering Sea in August 1975 (Cooney 1981), 

and an estimated range of about 2.5 - 6.0 g m-2 over the northern 

shelf reported by Motoda and Minoda (1974). It was nearly 4 times 

greater than copepod biomass over the middle domain in early June 1980 

(Vidal and Smith 1986), but this might be expected since the middle 

shelf community reaches its greatest biomass several weeks after that 

of the oceanic community. The average copepod biomass at the two 

nearshore stations in Shpanberg Strait, numbers 112 and 113, was 1.5 g 

nr2, of which about half was Pseudocalanus spp. and half was Acartia 

longiremis. This value is similar to a previous estimate of 1.3 g m-2 

in the nearshore zone of the southeastern Bering Sea in August 1975, 

the apparent period of peak zooplankton abundance there (Cooney 1981).

Areal distributions

The areal distributions of the zooplankton over the shelf 

between St. Lawrence Island and Bering Strait on all cruises conformed 

to their distributions in Anadyr and Shpanberg straits. The oceanic 

copepods generally were found west of the 32.4 ppt isopleth of bottom 

salinity (Fig. 27), where they were always significantly more 

abundant, with numbers 33 - 619 times greater and biomass 26 - 1005 

times greater west of 32.4 ppt than east of it. Eastward excursions 

across 32.4 ppt by the oceanic species were greater north of Bering 

Strait, probably because of turbulence and increased mixing through 

the strait. In comparison, Calanus marshallae was generally (Fig.
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Figure 27. Areal distribution of abundance of 
oceanic copepods, 11-26 July 1986. Combined 
numbers of Neocalanus cristatus. tL plumchrus. 
Eucalanus bungii and Metridla Pacifica).
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28), but not always (Fig. 29) most abundant east of the 32.4 ppt 

isopleth. The tendency toward westward excursions was particularly 

pronounced in 1986.

Pseudocalanus spp. was more wide-spread than were the larger 

copepods, particularly south of Bering Strait (Fig. 30), although it 

was more abundant west of 32.4 ppt on all but the July 1985 cruise 

(see below). Pseudoca1 anus is widely distributed in the southeastern 

Bering Sea also, being common in the oceanic, middle and inner shelf, 

and nearshore communities (Cooney 1981). Since several species 

comprise the group of Pseudoca1 anus spp. (Smith and Vidal 1984), 

differences in numbers across the northern shelf could be due to 

changing species distributions. Centropages abdominal is was absent 

from many stations, somewhat more in the north, and tended to occur 

around the perimeter of the sampling area (Fig. 31). abdominal is 

is considered to be a neritic species (Motoda and Minoda 1974; Cooney 

1981), and probably enters the northern shelf region in both Alaskan 

Coastal Water and coastal water originating along the Siberian coast 

that is entrained in the overall northward flow.

Euphausiid furcilia and the hyperiid amphipod Parathemisto 

pacifica were western species (Figs. 32 and 33), but not necessarily 

oceanic ones. &*. pacifica is characteristically found in the western 

and central Bering Sea, while L  raschi1 is most abundant on the 

northwest shelf (Motoda and Minoda 1974). Crab and shrimp zoea were 

shelf taxa that were generally not abundant or evenly distributed 

(Figs. 34 and 35). Oikooleura spp., which is not shown here, was very 

abundant in Anadyr Strait in mid-July 1985, but was nearly absent
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Figure 28. Areal distribution of abundance of 
Calanus marshallae. 11-26 July 1986.
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Figure 29. Proportions of Calanus marshallae east and west of 
the 32.4 ppt isopleth of bottom salinity.
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Figure 30. Areal distribution of abundance of 
Pseudocalanus spp., 11-26 July 1986.
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Figure 31. Areal distribution of abundance of 
-C.en.tropageg abdominal is. 11-26 July 1986.
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Figure 32. Areal distribution of abundance of 
Thvsanoessa raschii furcilia, 11-26 July 1986.
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Figure 33. Areal distribution of abundance of 
Parathemisto pacifica. 11-26 July 1986.
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Figure 34. Areal distribution of abundance of 
crab zoea, 11-26 July 1986.
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Figure 35. Areal distribution of abundance of 
shrimp zoea, 11-26 July 1986.
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during the same period in 1986, occurring at only 10% of all stations 

sampled.

Saaitta e 1eaans was wide-spread, but there was a marked 

difference in the distribution of size classes (Fig. 36). The 

majority of the larger individuals were confined to the west, i.e., 

were arriving from the southwest, while the smaller sized individuals 

were arriving from the east. This pattern for large Saaitta was 

repeated on all cruises, while small ones were occasionally more 

evenly distributed east to west. Large Aglanthe diaitale were widely 

distributed across the shelf both north and south of Bering Strait 

(Fig. 37). On this cruise, in contrast to the same date in 1985, 

juveniles were most abundant in shelf water, particularly north of 

Bering Strait, again suggesting differences in production cycles of h j. 

diaitale in the two regimes.

Limacina hellcina and ClJone 1Im&gj na arrived from the 

southwest, but, by the time they had reached the Chukchi Sea, both had 

spread far to the east of 32.4 ppt (Figs. 38 and 39). 1imacina was

significantly more abundant in the southwest than in the southeast, 

yet it was more abundant in the northeast than in the northwest. Such 

a skewed distribution indicates that they resided primarily in the 

surface layer and possibly were carried east by wind-generated surface 

currents. Their predominance in the surface layer was confirmed in 

1987 (Springer et al. unpubl. data).

The dependence of the areal distributions of zooplankton on 

mixing patterns of Anadyr Vater with Bering Shelf and Alaskan Coastal 

water is further illustrated by comparing vertical cross-sections of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

Figure 36. Areal distribution of abundance of large (left) and small 
(right) Saaitta eleaans. 11-26 July 1986.
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Figure 37, Areal distribution of abundance of large Cleft) and small 
(right) Aolanthe digltaie. 11-26 July 1986.
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Figure 38. Areal distribution of abundance of 
Cl ione 1 imacina. 11-26 July 1986.
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Figure 39. Areal distribution of abundance of 
Limacina helicina. 11-26 July 1986.
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salinity to horizontal distributions of copepods north of St. Lawrence 

Island. Between the island and Bering Strait in mid-July 1986, Anadyr 

Water and Bering Shelf Water were separated by a front beginning at 

the surface near Station 26 and continuing from a depth of about 20 m 

to the bottom between Stations 22 and 23 (Fig. 40). Oceanic copepods 

declined gradually from west to east as the relative amount of oceanic 

water declined until Station 22 when they abruptly ended. Calanus 

marshallae was scarce in the west, increased gradually to the east, 

with an abrupt increase beginning at Station 23, where the bulk of the 

shelf water was met. The mixing zone between Anadyr and Bering Shelf 

water was much broader north of Bering Strait during the same period, 

and the abundance of oceanic copepods declined steadily over a 

distance of more than 100 km, while the numbers of Calanus marshallae 

changed little (Fig. 41).

Six-weeks later, in early September 1986, a thick layer of 

shelf water overlay Anadyr Water at least as far west as the 

Convention Line between St. Lawrence I. and Bering Strait (Fig. 42). 

The oceanic copepods extended east past Station 31 about the same 

distance as during the previous cruise, and were common in water with 

salinities as low as 32.0 ppt. Ca1 anus marsha11ae. on the other hand, 

apparently underwent a pronounced westward excursion as a result of 

the upper-layer spreading of shelf water. It was least abundant, and 

the oceanic species most abundant, at Station 26 where Anadyr Water 

domed upwards from a depth of about 30 m.
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Figure 40. Cross-shelf distribution of salinity and abundance 
of copepods in the northern Bering Sea. (transect A in Fig. 18, 
HX85), 14 July 1986. Values for the oceanic copepods as in 
Fig. 27.
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Figure 41. Cross-shelf distribution of salinity and abundance 
of copepods in the southern Chukchi Sea (transect B in Fig.18, 
HX85), 19-22 July 1986. Values for the oceanic copepods as in 
Fig. 27.
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Figure 42. Cross-shelf distribution of salinity and abundance 
of copepods in the northern Bering Sea (transect C in Fig. 18, 
HX88), 29 August 1986. Values for the oceanic copepods as in 
Fig. 27.
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Variability

With one exception, the abundance of each of the four oceanic 

species of copepods west of 32.4 ppt was the same north and south of 

Bering Strait. This relationship greatly facilitated the analysis of 

temporal variability, therefore, since nearly all data for each cruise 

could be reduced to a single value, i.e., the mean number west of 32.4 

ppt.

Individually, Neocalanus cristatus was the least abundant of 

the oceanic species (Fig. 43). {L. Plumchrus, Eucalanus bunoii and 

Metridia pacifica were all about equally abundant in July of both 

years. Because of the small sample size in mid-July 1985 (HX72), I do 

not attach too much importance to the apparent difference in numbers 

between this and other cruises. iL Plumchrus, but not the other 

species, declined significantly in abundance in late summer.

In the only case of a north - south difference in abundance of 

the oceanic copepods, Metridia pacifica was about an order of 

magnitude more numerous in the southwest than in the northwest in 

early September 1986. This difference possibly represents an influx 

of -iL. pacifica into the study area, and might indicate a change 

between years in the development of the population off the shelf. 

Unlike the other oceanic species which produce one or possibly two 

cohorts each year, IL. pacifica apparently reproduces continuously 

during spring and early Sumner (Batchelder 1985; Smith and Vidal

1986), and this strategy could lead to a different pattern of 

abundance between years for them compared to the others.

The combined biomass of the four oceanic species was similar
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Figure 43. Abundance of oceanic copepods west of the 32.4 ppt 
isopleth of bottom salinity. Geometric means, range of + 1 
standard deviation.
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between years (Fig. 44). The biomass was highest in early July at 4 - 

6 g dry weight nr2 and declined by about 50% - 60%, to 2 g nr2, by 

September. Although these trends were not significant, they fit with 

the expected pattern because of the seasonal decline in biomass in the 

southeastern Bering Sea (Cooney 1981; Smith and Vidal 1984).

The abundance and biomass of Calanus marshallae east of 32.4 

ppt were not different between cruises in either year, except that 

both were significantly lower in June 1986 than at any other time 

(Fig. 45). Numbers and biomass were significantly lower throughout 

1986 than in 1985.

Pseudoca1 anus spp. was usually more abundant west of 32.4 ppt 

(Fig. 46). I have not included data from the July 1985 cruise (HX72) 

in Fig. 46, since those samples are not comparable with the others 

because of the smaller net used then. Unlike all other cruises, the 

abundances east and west on HX72 were not different, and the overall 

average of 19,000 m-2 (range = 6,600 - 55,000) was the highest 

recorded. Pseudoca1 anus spp. was significantly more abundant (by a 

factor of 3 - 4) both east and west of 32.4 ppt in September 1985 than 

in September 1986.

The numbers of Oikopleura spp. showed distinct spatial and 

temporal trends (Fig. 47). On both cruises in 1985, large individuals 

were found only in and near Anadyr Strait, although they were less 

numerous in September. Some anal 1 individuals, as well as large ones, 

were present in the west in September 1985, but not in July. Only 

small ones occurred east of 32.4 ppt. In contrast, large individuals 

were found at just 3 stations in all of 1986, and those were east of
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Figure 44. Biomass of oceanic copepods west of the 
32.4 ppt isopleth of bottom salinity and in Anadyr 
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Figure 29.
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Figure 45. Biomass of Calanus marshallae east of the 
32.4 isopleth of bottom salinity and in Shpanberg Strait. 
Geometric means, range of + 1 standard deviation.
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Figure 46. Abundance of Pseudocalanus spp. east and west of the 
32.4 ppt isopleth of bottom salinity. Geometric means, range of + 1 
standard deviation.
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Oikopleura spp.
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Figure 47. Abundance of Oikopleura spp. east and west of 
the 32.4 ppt isopleth of bottom salinity. Geometric means, 
range of + 1 standard deviation.
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32.4 ppt. Also, in 1986 neither adults nor juveniles materialized in 

the west; the increase in the northwest in September probably resulted 

from layering of shelf water westward over Anadyr Water. In the east, 

the numbers of juveniles attained similar maximum values in both 

summers, but there was apparently a shift in the timing of the 

production cycle, with 1985 different than 1986 by as much as 6 weeks. 

The seasonal decrease in numbers in 1985 and the increase in 1986 were 

both significant.

Large, presumably adult, Saoitta e 1eoans predominated in the 

western portion of the study area, and exhibited little seasonal or 

interannual difference in abundance (Fig. 48). The abundance of large 

individuals in the east also was stable over time, but was 

significantly lower (by a factor of 5 - 10) than in the west. The 

east - west difference in abundance was less pronounced for small 

individuals, except in mid-July 1985 when they were extremely 

abundant, at least in Shpanberg Strait. Again with the exception of 

mid-July in the east, interannual differences in abundance were not 

significant. When all three size classes are considered together, the 

distribution of biomass was more uniform from east to west than was 

the distribution of abundance (Fig. 49). There was no difference 

between years in the combined abundance or biomass of Sj. e 1eoans in 

the west, but both were significantly lower in the east in 1986 than 

in 1985 (Fig. 49). Also, both were significantly greater in the west 

than in the east each year.
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Figure 48. Abundance of large and small Sagitta eIegans 
east and west of the 32.4 ppt isopleth of bottom salinity. 
Geometric means, range of + 1 standard deviation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

S a g i t ta  e legans

1000 r  WEST

ABUNDANCE 
(no. • m'2 )

BIOMASS 
(mg • m-2)

100

10

0—

OOrr

10

■ • ■

-o

WEST

1 9 8 6

1985
4

1986

1985

Figure 49. Combined abundance and biomass of all 
Saaitta e 1eaans east and west of the 32.4 ppt 
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Transport

The estimates of the daily transport of zooplankton biomass 

using the two methods were similar, particularly for Shpanberg Strait 

(Table 5). The average coefficient of variability <CV> for each pair 

of estimates in Anadyr Strait (0.17) was much higher than that for 

Shpanberg Strait (0.05). The CV's of the estimates of transport of 

total zooplankton using Method 1 and of oceanic copepods and 

larvaceans using Method 2 through Anadyr Strait were equal (0.17).

The transport of zooplankton through Anadyr Strait apparently 

declined during summer in 1985 (Table 5). Transport of total 

zooplankton declined by about 75%, from an average of 45 x 10s g d_l 

to 11 x 103 d-1. The change was accounted for by a loss of about 20% 

in total water transport, from an average of about 1.25 Sv in mid-July 

to about 1 Sv in early September (Coachman 1986), and by a decline of 

about 70% in the standing stock of zooplankton, mainly pteropods and 

larvaceans, from about 14 g m_z to 4.1 g m-2. The transport of 

oceanic copepods declined by about 30%, and was due primarily to the 

decline in total transport and to a decline of about 33% in the 

estimated volume percent of Anadyr Water in the strait, from about 72% 

to about 48% (Fig. 50). The transport of larvaceans changed the most, 

falling over 99% mainly because of the large decline in the standing 

stock. The relationship between the estimated volume percent of 

Anadyr Water in Anadyr Strait and the biomass of oceanic copepods 

(Fig. 51), indicates that the transport of zooplankton biomass in 1986 

would have been lower than in 1985 unless the current speeds in 1986 

were considerably higher than in 1985.
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Table 5. Estimated transport of zooplankton biomass through Anadyr and 
Shpanberg straits. Estimation Methods 1 and 2 are described in the text.

Cruise
(Date) Taxon

Transport 
(g dry weight d*1, xlO-3)

Anadyr Strait Shpanberg Strait

Method 1 Method 2 Method 1 Method 2

HX72
<21-23 Jul 85) Total zooplankton 41 35 5.6 6.4

Oceanic copepods 11 18

Calanus marshallae 1.8 2.1

Oikopleura s p p. 4.5 4 0.065 0.073

HX74
(7-8 Sep 85) Total zooplankton 11 8 7.1 7.1

Oceanic copepods 10 8

Calanus marshallae 4.8 4.5

Oikopleura s p p. 0.014 0.016 0.00036 .00039
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Figure 50. Distribution of Anadyr Water in Anadyr Strait. The values 
are the approximate percentages of the total cross-sectional volume in 
Anadyr Strait occupied by water with salinity greater than 32.4 ppt.
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in Anadyr Water, and the estimated volume percent of Anadyr Water in 
Anadyr Strait.
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The transport of total zooplankton biomass through Shpanberg 

Strait was lower than through Anadyr Strait, and changed little during 

summer (Table 5). The transport of Calanus marsha11ae increased about 

240%, from an average of about 2 x 109 g d-1 to about 4.7 x 10s g d_l, 

in response to an increase in the standing stock (Fig. 45) and a 33% 

rise in total water transport, from an average of about 0.5 Sv in the 

first half of July to about 0.75 Sv in late August - early September 

(Coachman 1986). In contrast, the transport of larvacean biomass 

declined by over 99%, as in Anadyr Strait.

DISCUSSION

Distribution of zooplankton

Three zooplankton communit1es occurred on the Bering - Chukchi 

shelf during the study, one originating primarily in the oceanic 

domain of the Bering Sea that is advected northward with the flow of 

Anadyr Water, a second originating over the shelf shoreward of the 

middle front near the 100 m isobath in Bering Shelf and Alaskan 

Coastal water, and a third nearshore community. The biomass of 

herbivores in the oceanic community was dominated by the calanoid 

copepods Neocalanus cristatus. {L Plumchrus. Eucal.anMS bunaii. and 

Metrldia Pacifica. They were replaced in waters of primarily shelf 

origin by Calanus marshallae. the only large copepod normally found 

inshore of the middle front. Nearshore, C. marshallae declined to low 

numbers, leaving only small species, particularly Pseudocalanus spp. 

and Acartla longlremis. Unlike longlremis. PgeudPcaJ.flntiS spp. was
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common in all three communities, but was generally most abundant in 

Anadyr Water, even though its contribution in terms of total biomass 

there was small. Oithona similis also was wide-spread and at times 

extremely numerous, but because of its very small size, it contributed 

little to the overall biomass of copepods.

Other species of zooplankton also were distributed according 

to the hydrography. Oikopleura spp., Clione 1imacina. Limacina 

hel icina. Thvsanoessa raagh.ii. and ParatheniigtO. Pagj.f ig.ft were al 1 

oceanic species, while meroplanktonic crab and shrimp zoea were 

primarily shelf taxa.

The major carnivores, Saaitta eleaans and Aalanthe diaitale. 

were cosmopolitan species, but there were obvious differences in the 

distributions of size classes across the shelf. Large Si. eIeaans were 

essentially confined to Anadyr Water, while small and medium-sized 

individuals were much more abundant in shelf water. Large Aj. diaitale 

were fairly widely distributed, but small ones, like small fL eleaans. 

were generally associated with shelf water.

Dy.nflniig a
While the distribution of the oceanic zooplankton community 

over the Bering - Chukchi shelf depended on factors governing the 

eastward spreading of Anadyr Water, the abundance of the various 

species at any time was probably more a function of events in their 

natural history far to the south. Among the important variables over 

the outer shelf and slope are the timing of the annual production 

cycles and the levels of reproductive success, which vary considerably
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between years (Cooney 1981; Motoda and Minoda 1974; Smith and Vidal 

1984, 1986), as well as purely physical factors that determine the 

volume and velocity of water transported first in the Bering Slope 

Current, and then in the "river" of Anadyr Water.

Of the biological variables, seasonal patterns of abundance of 

the four oceanic species on the northern shelf appeared to reflect 

seasonal changes in the abundance of each in the southeastern Bering. 

In the southeast, Neocalanus cristatus and IL. plumchrus peak earlier 

than Eucc lanus bun.gj 1 and Metridia oaclf lea (Cooney 1981; Smith and 

Vidal 1986), as they apparently did in the north. There were no 

differences in abundance between 1985 and 1986, except for fcL 

Pacifica, which apparently increased earlier in 1985.

Over the outer shelf of the southeastern Bering Sea, copepod 

biomass increases rapidly beginning in early April and peaks in about 

mid-May, even though the numbers of each species do not follow this 

pattern, e.g., Metridia paclflca. (Cooney 1981; Smith and Vidal 1984; 

Vidal and Smith 1986). Anadyr Water travels about 400 km from the 

point of bifurcation of the Bering Slope Current to Anadyr Strait, and 

about 800 km from a point mid-way along the slope to the southeast.

At an average speed of 20 cm s-1, it would take 3 weeks for an event 

to propagate north to Anadyr Strait from the fork, and 6 weeks from 

mid-slope. Six weeks from mid-May, when the biomass over the outer 

shelf is probably near its peak, is early July, when the biomass on 

the northern shelf is probably near maximum. JL. Pacifica has a 

somewhat later, protracted period of peak abundance from May and June 

to possibly as late as August in the southeastern Bering (Cooney 1981;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

Smith and Vidal 1986). The apparent Influx of 6L pacifica to the 

northern shelf between July and September 1986, therefore, might 

indicate that the production cycle was later that year than in 1985, 

when numbers were already high by mid-July in the south and by 

September in the north.

The biomass of Oikopleura spp. exhibited pronounced 

fluctuations both seasonally and annually. The decline from July to 

September 1985 could be explained if adults died after spawning, as 

suggested by Shiga <1982). The differences between 1985 and 1986 

might be related to a change in the timing of the annual production 

cycle, thus I could have missed catching them because of the sampling 

schedule, or to a change in the annual production of the population. 

Shiga (1982) reported significant interannual variability in the 

numbers and size composition of Oikopleura labradoriensis off the 

shelf of the Bering Sea over a period of 13 years.

The flux of oceanic zooplankton onto the northern shelf is 

further governed by the volume transport of Anadyr Water, which varies 

seasonally and annually. Although the transport calculations for 1986 

are not complete, the proportion of Anadyr Water in the overall flow 

through Anadyr Strait apparently was less than in 1985. The 

relationship between the volume percent of Anadyr Water and copepod 

biomass in Anadyr Strait suggests possibly a compound effect of water 

transport on biomass flux.

Calanus marshallae. the indicator species of water of shelf 

origin, was much less abundant in 1986 than in 1985. Like Metridia 

pacifica. its breeding season is protracted and apparently at least
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two generations are produced (Cooney 1981; Vidal and Smith 1986). At 

an average current velocity through Shpanberg Strait in the order of 

10-20 cm s-1 (Coachman 1986), the transit time of plankton from 

Shpanberg Strait to Bering Strait would be 2-5 weeks, which could 

allow for changes in biomass through local production and growth to be 

expressed. Bering Shelf Water was more pervasive in 1986, and it was 

highly stratified, with temperatures in the upper layers generally 

warmer than in 1985, while the bottom temperatures were generally 

colder (Coachman 1986). These changes might be related to the decline 

in biomass in the east of marshal lae and Saoitta eleoans.

Food webs and carbon flow

The delivery of nutrients in Anadyr Water to the euphotic 

zone maintains a sizable area in eutrophic bloom conditions during 

most of summer, with diatoms producing up to 1-4 g C m-2 d-t (Chapter 

1). Elsewhere, nutrient depletion during the spring bloom leads to a 

flora) succession from large diatoms to phytoflagellates, and 

productivity falls to 0.25-1 g C nr2 d-1. Although daily production 

is less than in the region influenced by Anadyr Water, the production 

efficiency is much higher and this difference seems to characterize 

energy ascension in the two domains.

Grazing experiments with the oceanic copepods during the 

spring bloom over the outer shelf of the southeastern Bering Sea 

indicated rates of consumption of 28 mg C g dry wt-1 d-1 for the 

community as a whole (Cooney and Coyle 1982), and about 10% of body 

carbon d-1 animal-1 (Dagg et al. 1982). At these rates, the average
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biomass of oceanic copepods of about 5 g dry wt nr2 on the northern 

shelf west of 32.4 ppt could graze 140 - 500 mg C r 1 d_l , At the 

highest levels of about 20 g dry wt m-2, the community could graze 560 

- 2000 mg C nr2 d"'. This is a significant fraction of the estimated 

daily primary production, particularly around the margin of the area 

of high production over Anadyr Water (Chapter 1). There are presently 

no estimates of the daily consumption by the larvaceans, but a species 

of similar size in the northwest Atlantic, Oikopleura vanhoeffeni. can 

clear up to 15 1 d- 1 animal-1 and ingests large species of armored 

diatoms (Deible and Turner 1985), such as those found in the the 

northern Bering Sea. At a clearance rate of just 10 1 d"1, the 

population of Oikopleura spp. of 2000 - 6000 animals m-2 in Anadyr 

Strait in July 1985 could clear up to 20 - 60 m 3 d- 1, or about 50% - 

150% of the water column. Thus, the combined effect of the oceanic 

grazers could be important in the pattern of carbon flow to pelagic 

and benthlc food webs over part of the area. Nevertheless, persistent 

and predictable regions of high primary productivity and phytoplankton 

biomass (Chapter 1) indicate that, on average, the herbivores are 

unable to fully control the prolific diatom growth.

In 1985 when Calanus marshallae averaged about 1 g m-2 outside 

of the highly productive region and east of 32.4 ppt, they could 

consume 28 - 50 mg C nr2 d-1 if they fed at the same rate as the 

oceanic species. This demand is considerably below the average daily 

production, but at their highest biomass of about 7 g dry wt m-2, and 

with the addition of as much as 3 g m-2 of small copepods that graze 

at a rate of about 75 mg C g dry wt-1 d-1 (Cooney and Coyle 1982), the
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shelf community could remove about 420 - 575 mg C r z d- ', which 

approaches the daily primary production over much of the region. 

Considering that some of the fixed energy probably passes through 

microheterotrophs prior to reaching the zooplankton (Andersen 1986; 

Frost 1987), such a rate is an even greater proportion of that 

available. In 1986, when £L marshallae was less abundant by a factor 

of 5-10, the grazing stress would have been considerably lower, with a 

corresponding increase in the benthic carbon flux.

If the transport of zooplankton biomass through Anadyr Strait 

estimated for July 1985 was typical for about 45 days in mid-summer, 

and that estimated for September was typical for 75 days in early and 

late summer, in the order of 2.9 x 10*2 g dry weight, or 1.4 x 1012 g 

C, was carried onto the northern shelf during June - September. The 

flux of shelf species through Shpanberg Strait could add approximately 

another 30%, bringing the total to about 1.8 x 1012 g C. To place 

this export in perspective, it represents an amount equal to; 1) 15% - 

70% of estimates of the total standing stock of zooplankton in the 

Arctic Basin (calculated from data in Hopkins, 1969); 2) using annual 

production estimates for the outer domain of 30 - 40 g C m-2 (Cooney 

1981; Vidal and Smith 1986), 35% to 50% of the calculated annual 

secondary production over the 13 x 10'0 m 2 outer shelf domain of the 

southeastern Bering Sea, the region from which much of the oceanic 

zooplankton on the northern shelf probably originates; and 3) about an 

order of magnitude greater than the annual carbon loss to the walleye 

pollock (Theragra chalcogramma) fishery, which operates primarily over 

the outer domain and is the largest single-species fishery in the N.
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Pacific Ocean (Bakkala et al. 1986).

The most conspicuous beneficiaries of the transport of 

zooplankton biomass in the northern Bering Sea are the planktivorous 

auklets, which derive the bulk of their dietary needs from oceanic 

species. Auklets are endemic to the Bering Sea, and the breeding 

colonies on islands in the Bering Strait region, principally St. 

Lawrence I. and the Diomede Islands, contain millions of birds and are 

probably the largest in the world (Sowls et al. 1978). However 

numerous, the birds are small - each increment of 10fi least auklets 

probably removes in the order of only 2.7 x 106 g C d_l, and each 106 

crested auklets removes about 8.1 x 106 g C d_l (Springer et al.

1987). If there are 3 x 10s of each species in the region, the 

combined daily ration would be about 32 x 106 g C, or < 0.3% of the 

daily influx of oceanic copepods through Anadyr Strait in July and 

September.

Other animals undoubtedly feed on the zooplankton also, 

including fishes such as Arctic cod <Boreoaadus saida) and capelin 

(Mai lotus vi1losus). which are important in the diets of piscivorous 

seabirds, primarily murres (Uria spp.) (Springer et al. 1987), as well 

as marine mammals (Frost and Lowry 1981b). Murres on St. Lawrence I., 

which has the largest population of all the regional colonies, consume 

in the order of 1.5 x 107 g C d-1 of fish biomass (Springer et al.

1987). Nevertheless, fish stocks are apparently low compared to 

elsewhere, as indicated by the lack of commercial fin-fisheries. The 

dominant pelagic baleen whale, the bowhead whale (Balaena mvsticetus). 

only migrates through the region in early spring and late autumn.
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Since there were generally no differences in the numbers of copepods 

north or south of Bering Strait, the combined loss to predators 

appears to be insignificant, and most of the biomass arriving on the 

shelf of the northern Bering Sea must be added to pelagic and benthic 

flux calculations in the Chukchi Sea and Arctic Ocean.

CONCLUSIONS

One of the chief working hypotheses of the ISHTAR project is 

that biological rates and processes on the Bering - Chukchi shelf are 

determined primarily by the Influx of water, nutrients and biota from 

the south. The data on zooplankton support that concept for the 

western, oceanic part of the shelf, while local factors, as well as 

advection, are probably important in the east.

Circulation patterns of the water masses in the northern 

Bering Sea and southern Chukchi Sea clearly determined the areal 

distribution of the oceanic and shelf zooplankton communities.

Looking at this relationship from the other direction, it can be said 

that the composition of the zooplankton in a given location was 

apparently a reliable indicator of the composition of the associated 

water. For example, oceanic copepods were found east of St. Lawrence 

I. in Shpanberg Strait on both cruises in 1985, but on none of the 

cruises in 1986, suggesting that a measureable change occurred between 

the two years in the circulation pattern of Anadyr Water entering the 

study area. Cross-sections of salinity and nitrate in Anadyr and 

Shpanberg straits during mid-July of 1985 and 1986 confirmed the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

change in the flow regime between the two years. Anadyr Water 

apparently occupied a greater proportion of Anadyr Strait in 1985 than 

in 1986, particularly on the eastern side, where it extended virtually 

to the coast of St. Lawrence I. Moreover, in 1985 a portion of Anadyr 

Water split off of the main body and travelled around the south side 

of the island, carrying oceanic zooplankton into the study area 

through western Shpanberg Strait. In contrast, during the same 

interval in 1986, all of the Anadyr Water, and oceanic zooplankton, 

entered through Anadyr Strait.

North of St. Lawrence Island, the cross-shelf distribution of 

zooplankton was further affected by lateral spreading and layering. 

Anadyr Water tended to be held to the west by Bering Shelf Water and 

Alaskan Coastal Water, which restricted the eastern limit of the 

oceanic community, particularly south of Bering Strait. Still, in 

July and September 1986 oceanic copepods were common in water with 

salinities between 32.0 ppt and 32.5 ppt, thus documenting the areal 

extent of Anadyr Water that was not apparent from physical 

characteristics alone. Turbulence in Bering Strait and the prominent 

downstream, eastward loop in the trajectory of the current led to a 

broad mixing zone between the three water masses in the southern 

Chukchi Sea and an eastward extension of the range of the oceanic 

species, again in water with intermediate physical characteristics.

The layering of Bering Shelf and Alaskan Coastal water westward over 

Anadyr Water similarly expanded the range of Calanus marshallae.

Primary production induced by the nutrients carried in Anadyr 

Water is uncontrolled by the herbivores on average, and provides for
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rich benthic food webs, while the constant supply of zooplankton 

biomass advected in the flow accounts for the abundant marine avifauna 

on islands in the Bering Strait region. East of the area Influenced 

by Anadyr Water, flagellates succeed diatoms following the spring 

bloom, annual primary producton is low because of nutrient limitation, 

and zooplankton communities of smaller shelf and coastal species 

replace the oceanic one. The availability of energy to higher trophic 

levels in pelagic food webs is consequently less, and the number and 

diversity of coastal avian populations is low (Springer et al. 1987).

There was little difference between years in the abundance of 

oceanic copepods in Anadyr Water. Some of the variability was 

apparently related to fluctuations in the amount of water transported 

through Bering Strait, and in the proportion of the total contributed 

by the three sources. In contrast, the abundance of Calanus 

marshaliae was significantly lower during summer in 1986 than 1985, in 

connection with notable changes in the hydrography between years. It 

is questionable if such a decline was important to planktivores on the 

northern shelf because of the surplus of oceanic species, but in as 

much as zooplankton stocks in the north may be indicative of 

conditions elsewhere, fishes and birds over the middle shelf farther 

south might have been affected by the drop in the abundance of 

important prey (Springer et al. 1986). Moreover, the grazing stress 

on phytoplankton probably would have decreased by a similar amount 

between years, which could have led to a proportional increase in the 

benthic carbon flux.

Like Calanus marshallae, the numbers and biomass of Sagitta
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e 1eaans were significantly lower east of 32.4 ppt in 1986 than in 

1985. There was no difference west of 32.4 ppt. Thus, the principal 

species of herbivore and carnivore of the shelf community both 

exhibited large interannual variability in abundance and biomass that 

contrasts with the apparent stability of the same taxa in the oceanic 

community.

Most of the zooplankton entrained in the Bering Slope Current 

are probably returned to the Bering Sea with the larger fork which 

turns south near Cape Navarin on the Siberian coast (Coachman et al. 

1975). In spite of that, the transport of oceanic species in Anadyr 

Water creates a plume of uncharacteristically high biomass on a 

shallow continental shelf. The annual flux is large compared to 

production estimates of the community at its source and to standing 

stock estimates of endemic zooplankton in the sink, and should be 

considered when calculating carbon budgets for the Bering and Chukchi 

seas.
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CHAPTER 3

Food Habits of Planktivorous Seabirds in the Bering Sea

This Chapter has been published as:

Springer, A.M. and D.G. Roseneau. 1985. Copepod-based food webs: 
auklets and oceanography in the Bering Sea. Mar. Ecol. Prog. 
Ser. 21: 229-237.
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INTRODUCTION

A series of three physical fronts in the southeastern Bering 

Sea divides the continental shelf area into three hydrographic 

domains: a fourth domain lies over deep water seaward of the shelf 

break (see reviews by Iverson et al. 1979: Kinder and Schumacher 

1981a). The inner front is located at approximately the 50 m isobath 

(Schumacher et al. 1979): the middle front at the 100 m isobath 

(Coachman and Charnel 1 1979), and the shelf break front at the 200 m 

isobath (Kinder and Coachman 1978). The fronts derive variously from 

interactions between tidal mixing, wind mixing and stratification. 

Interfrontal domains are characterized physically by patterns of 

vertical structure, temperature and salinity.

Characteristic assemblages of organisms and food webs are 

found within each domain (Iverson et al. 1979). For example, the 

middle front limits the cross-shelf distribution of zooplankton, 

particularly copepods (Cooney 1981, Smith and Vidal 1984) which are 

key elements in the transfer of energy between primary producers and 

higher trophic levels in regional pelagic food webs (Walsh and McRoy 

1986; Smith and Vidal 1984). Large herbivorous copepods, Neocalanus 

cristatus. £L plumchrus and Eucalanus feimsil, which are restricted to 

the oceanic and outer shelf domains, account for a greater shunt of 

carbon through pelagic food webs than do the smaller, less efficient 

grazers such as Pseudocalanus spp., Calanus marshallae and AsadLi.ft 

spp., which predominate in the middle shelf domain (Cooney and Coyle 

1982). The most recent estimates of carbon flux from phytoplankton to
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zooplankton in the southeastern Bering Sea suggest that there is a 

more than two-fold difference in transfer rates between domains, i.e., 

68 g C nr2 yr-1 in the outer shelf domain and 26 gC m-2 yr-1 in the 

middle shelf domain (Walsh and McRoy 1986). Thus, the outer shelf 

domain is dominated by a pelagic food web including walleye pollock 

(Theraara chalcoaramma). which now supports the largest single-species 

fishery in the north Pacific Ocean (Bakkala and Traynor 1984). The 

middle domain is dominated by benthic food webs supporting large 

standing stocks of epifaunal invertebrates (Jewett and Feder 1981) and 

the commercially important yellow-finned sole (Limanda asoera)

(Iverson et al. 1979).

Large-scale patterns of copepod distribution corresponding to 

the outer and middle sheif domains might be expected to influence the 

distribution of planktivores other than fishes. Least auklets (Aethia 

pusi1 la) nest only on offshore islands in the Bering Sea (Sowls et al. 

1978) and, during the breeding season, they feed primarily on large 

calanold copepods (Bedard 1969b; Searing 1977; Hunt et al. 1981a). In 

this chapter, I examine the hypothesis that the location of the 

insular breeding colonies relative to the large hydrographic domains 

determines the numbers and distribution of least auk let populations, 

and an alternative hypothesis that invokes interspecific competition 

and physical processes other than those maintaining hydrographic 

domains as the more important factors in the biogeography of least 

auklets in the Bering Sea. I present food habits data of these birds 

from St. Matthew I. and St. Lawrence I., compare them to similar data 

from St. Lawrence I. and the Prlbllof Is. from other studies, and
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examine the distribution of least auklets in relation to: 1) the 

biological domains of the Bering Sea, 2) the distribution of other 

members of copepod-based food webs in the Bering Sea, and 3) 

oceanographic features that may act to concentrate prey biomass in the 

vicinity of breeding colonies.

METHODS

Least auk let food samples were obtained on St. Lawrence I. in 

1981 and on St. Matthew I. in 1982-83 (Fig. 52). Adult birds were 

collected during the chick period (late July to mid-August) while 

returning to the colonies from feeding, or they were trapped at the 

colonies as they arrived. The contents of the sublingual pouches were 

removed after collection; trapped birds regurgitated spontaneously. 

Auklets carry food to chicks in the sublingual pouch, and because it 

is some distance from the intestinal tract, little digestion takes 

place between the time the prey are captured and the time they are fed 

to the chicks. Accurate determinations of the numbers and identities 

of the various prey taxa consumed are therefore possible.

Prey items were stored in 70% ethanol in the field and were 

later identified in the laboratory using preserved reference material 

and standard taxonomic keys. Prey were measured and assigned to size 

categories according to Bedard (1969a), who determined volume indices 

(number of individuals of a given taxon per ml) for the principal 

zooplankton taxa in each size category in auklet diets during his 

study. The categories are I., 0.0-7.0mms II., 7.1-15.0mm; and III.,
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Figure 52. Locations of principal least auklet colonies in 
the eastern Bering Sea. Generalized circulation patterns 
are from Kinder et al. (1975), Kinder and Schumacher (1981b)
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>15.1mm. Bedard did not report a volume Index for Neocalanus 

plumchrus so we used his value for Calanus marshallae. a species of 

similar size. The volume index and number of individuals of each 

taxon were used to estimate their respective biomass contributions to 

the total diet.

In order to compare my results on a biomass basis with the 

previous studies, I applied the volume indices to food habits data 

from St. Lawrence I. in 1964-66 and 1976 using information on prey 

numbers and sizes reported by Bedard <1969a) and Searing (1977), 

respectively. Hunt et al. (1981a) reported relative numbers 

(percentages) of the various prey taxa of auklets on the Prlbllofs 

during 1975-1978, but did not report any sizes. Therefore, I 

estimated the proportions of each taxon in the three size categories 

on the Pribilof Is. using the mean proportions obtained on St. Matthew 

I. in 1982-83 and then applied the appropriate volumetric index value 

to the resulting numbers.

RESULTS AND DISCUSSION

Food habits

Prey of least auklets from St. Matthew I. and St. Lawrence I. 

are listed in Table 6 and Table 7, respectively. Table 7 also 

contains data from St. Lawrence I. for 1964-1966 (from Bedard 1969a) 

and for 1976 (from Searing 1977). Auklet prey from the Pribilof Is. 

in 1975-78 (from Hunt et al. 1981a) are listed in Table 8.

Copepods contributed by far the greatest biomass to auklet
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Table 6. Prey of least auklets on St. Matthew I.

Taxon

1982 (n=29) 1983 <n=40>

Number Volume <%> Number Volume (%>

Ca_!anus marshal lae 18,658 89 17,668 84

N. plumchrus 0 0 1 <0.1

Hyperi idae 150 5 59 3

Gammaridae 216 4 209 9

Decapod zoea 187 1 460 3

Thvsanoessa s p p . 10 <0.1 8 1

Limacina helicina 73 <0.1 8 <0.1

Other 1 <0.1 1 <0.1
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Table ?. Prey of least auklet9 on St. Lawrence 1. Data for 1964-66 are from Bedard 
(1969a): data for 1976 are from Searing (1977).

Taxon

1964-66 <n=124> 1976 (n=12) 1981 (n=24)

Number Volume (%) Number Volume (%) Number Volume (%>

Calanus marshallae 77,908 65 344 3 3,132 26

N. Plumchrus 0 0 9,047 90 6,205 50

tL sdstaiug 1,444 8 32 2 197 11

Eucalanus bunaii 169 <1 9 <1 0 0

Hyperlldae 2,102 9 57 1 32 <1

Gammaridean 533 3 9 <1 21 <1

Decapod zoea 2,808 3 47 <1 643 7

Thvsanoessa sod. 2,325 7 2 <1 1 <1

Limacina helicina 6 <1 34 <1 3 <1

Other 311 1 31 <1 0 0
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Table 8. Prey of least auklets on the Pribilof 
Is., 1975-78. Numbers (%> are from Hunt et al.
C1981a)j volume <%) is according to text; N=258.

Taxon Number <%> Volume (%>

Calanus marshallae 65 30

N. plumchrus 11 5

N. cristatus 24 48

Hyperi idae 2 9

Gammaridae 2 5

Decapod zoea 0 0

Thvsanoessa s d p . < 1 2

Limacina helicina 0 0

Other 0 0
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diets on all three islands in all years, ranging from about 74% on St. 

Lawrence I. in 1964-1966 to about 95% on St. Lawrence I. in 1976. No 

other taxon contributed more than about 9% to prey biomass in any 

year. Calanus marshallae was essentially the only species of copepod 

taken by auklets on St. Matthew I.; one Individual of Neocalanus 

Plumchrus was identified. Calanug macshallae, N9pg.aian.us gristatus 

and Nj. Plumchrus all contributed importantly to auklet diets on St. 

Lawrence I. and on the Pribilofs.

Relations to hvdrocnraphic domains

St. Matthew I. lies near the center of the middle shelf domain 

(Fig. 52). The nearly exclusive occurrence of Calanus marshallae in 

auklet diets is consistent with the distributional data on copepods in 

the southeastern Bering Sea, which show that this species is 

characteristic of the middle shelf domain but not of the outer shelf 

or oceanic domains (Cooney 1981; Smith and Vidal 1984). Least auklets 

on St. Matthew I. apparently do not fly as far as the outer shelf 

domain to feed, a distance of about 40-50 km.

The Pribilof Is. are geographically within the middle shelf 

domain, but they lie near the middle front. Although Calanus 

marshallae was numerically dominant in least auklet diets on the 

Prlbilofs, the outer shelf copepods contributed nearly twice as much 

biomass to auklet diets there, with the most important species being 

Neocalanus cristatus. the largest of the calanoid copepods in the 

Bering Sea.

Prey of least auklets on St. Lawrence I. include species
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characteristic of both the outer and middle shelf domains as on the 

Pribilofs. However, St. Lawrence I. lies in shallow water less than 

50 m deep; the 50 m isobath generally delimits the position of the 

inner front separating the coastai and middle shelf domains in the 

southeastern Bering Sea. This apparent inconsistency can be explained 

by an examination of the flow regime of the Bering Sea. which consists 

of strong currents across the northern shelf, but which originates far 

to the south.

Circulation over most of the Bering Sea shelf is characterized 

by a coastal current and a pattern of transport oriented from 

southeast to northwest in the middle and outer shelf domains (Fig.

52). Currents are weak except along the shelf break and slope where 

the Bering Slope Current flows at mean speeds of about 10-25 cm sec-1: 

net transport in the Bering Slope Current is about 5 Sv to the 

northwest (Kinder et al. 1975). A portion of the flow is entrained in 

a strong, northward barotropic current passing through Bering Strait 

(Coachman et al. 1975). The total volume transport averages about 1 

Sv and consists of three distinct water masses as defined by three 

temperature-salinity (T-S) envelopes. Alaskan Coastal Water, 

originating in Norton Sound, is a warm, low-salinity water mass 

similar to coastal domain water in the southeastern Bering Sea.

Bering Shelf Water and Anadyr Water are both cold, high-salinity water 

masses originating in the basin of the Bering Sea. Anadyr Water is 

composed of approximately 80-90% Bering Sea water cooled by the 

achilxture of cold water from the central Gulf of Anadyr during its 

transit of the outer Gulf; likewise Bering Shelf Water is thought to
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be water from the Bering Sea that is modified on the middle shelf 

(Coachman et al. 1975).

The hydrographic structure of the northern shelf is maintained 

by density differences between adjoining water masses, which lead to 

the formation of fronts. In contrast, boundary processes lead to 

front formation in the southeastern Bering Sea, which then allows the 

development of distinctive interfrontal hydrographic domains (Iverson 

et al. 1979; Kinder and Schumacher 1981a). Thus, the physical

processes on the northern shelf are fundamentally different than those

in the southeastern Bering Sea.

The consequences of the flow regime for the ecology of the 

northern shelf are profound. Because a major fraction of Anadyr Water 

apparently remains beneath the pycnocline in summer, i.e., below the 

euphotic zone, nitrate levels remain high during the transit across 

the shelf. In the vicinity of Bering Strait, nitrate levels of 20-30 

ug-at I-1 have been recorded during summer (Husby and Hufford 1971;

McRoy et al. 1972; Sambrotto et al. 1984; Chapter 1). Shoaling depths

and a narrowing of the channel in Anadyr and Bering straits constrict 

the flow and accelerate the currents leading to vertical eddy 

coefficients as high as 10 cm1 sec-1 in the Bering Strait region 

(Coachman et al. 1975). The turbulence is sufficient to raise the 

nutrient-rich water through the pycnocline into the euphotic zone, 

creating a functional upwelling system (Fig. 53). Consequently, 

primary production in the flow field is prolific throughout the 

summer, making this one of the most productive regions in the world 

(McRoy et al. 1972; Sambrotto et al. 1984; Walsh et al. 1988; Chapter 1).
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Figure 53. Water mass distribution in the Bering Strait region. 
Turbulence raises cold Anadyr Water (light shading) to the surface 
northwest of St. Lawrence I. and through Bering Strait: upwelling 
of Anadyr Water along the southwest coast of St. Lawrence I. is also 
pronouced. Warm Alaskan Coastal Water follows the mainland from 
Norton Sound (obscured by clouds) through the eastern Chukchi Sea.
NOAA 4 infrared imagery; temperature enhancement scale is -1° to 12°C.
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In comparison, primary production in the outer and middle 

shelf domains Is estimated at only 166 and 162 g C nr* yr-1, 

respectively (Walsh and McRoy 1986). Annual production In both 

domains results primarily from a typical bloom period In spring after 

the water column has stabilized, and interannual variation in total 

carbon fixation is a function of the frequency and Intensity of summer 

storms that can disrupt the pycnocline and resupply nutrients to the 

euphotic zone (Sambrotto and Goering 1983). As in the case of the 

physical processes, the primary production regimes of the southeastern 

shelf and the northern shelf are fundamentally different.

Besides fertilizing the northern shelf waters with nutrients, 

the flow also seeds the region with zooplankton, as indicated by the 

composition of auklet prey on St. Lawrence I. Endemic Bering Sea 

zooplankters, Including copepods characteristic of the outer shelf 

domain, have been found far downstream in the eastern Chukchi Sea 

(Johnson 1956). Zooplankton grazers cannot control the growth of 

phytoplankton, however, which leads to a major benthic flux of carbon 

and explains the high standing stocks of benthic invertebrate 

macrofauna on the Bering-Chukchl shelf reported by Stoker (1981). In 

this regard the northern shelf is similar to the middle shelf, where 

nearly 80% of the annual primary production enters the detritus pool 

(Walsh and McRoy 1986).

Interspecific competition for copepods

Walleye pollock reach their greatest density in the outer 

shelf domain, although some, principally one-year-old fish, range well
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onto the middle shelf (Smith 1981). Spawning occurs predominantly 

along the southeast outer shelf and 0 age-class juveniles have been 

found in large numbers in the vicinity of the Prlbllof Is. (Smith 

1981). The diet of the larvae consists mainly of copepod nauplii, 

changing to larger copepodids, adult copepods and other zooplankton 

during the first year (Clarke 1978; Smith 1981; Nishiyama in prep). 

Whales, primarily fin whales (Balaenoptera Phvsalus). are common in 

the southeastern Bering Sea and along the shelf break (Nasu 1974), 

where they also feed on copepods as well as other zooplankters (Nemoto 

1957, 1959). Pollock and whales are, therefore, direct competitors 

with auklets for copepod biomass. Smith and Vidal (1984) suggested 

that declines in numbers of Neocalanus cristatus and fcL Plumchrus from 

the outer shelf domain during spring represent losses to vertebrate 

predators. A decline of about 80% in survivorship of these copepods 

occurred during April-May, predating the onset of egg-laying by 

auklets at the colonies and possibly affecting the size of the 

population.

Pollock are rarely found on the northern shelf, where they are 

replaced by Arctic cod (Boreogadus saida) and saffron cod (Eleolnus 

graci1 is) (Wolotira et al. 1979; Frost and Lowry 1981a). Probably 

because of harsher environmental conditions, populations of these 

cods, as well as of other fishes, are small compared to those in the 

southeastern Bering Sea as indicated by test fishery data (Wolotira et 

al. 1979) and by the absence of a commercial fishery on the northern 

shelf. In summer the baleen whales are represented by the
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grey whale (Eschrichtius robustus) which feeds primarily on benthic 

amphipods (Frost and Lowry 1981a). Thus, competition among auklets, 

whales and fishes for copepods is probably low compared to that in the 

outer shelf domain.

Pollock is the largest contributor of biomass to diets of 

piscivorous seabirds on the Pribilof Is. (Hunt et al. 1981a) and St. 

Matthew I. (Springer et al. 1986). On St. Lawrence I., piscivorous 

seabirds feed on a variety of fishes including Arctic cod, sand lance 

(Ammodvtes hexapterus) and capelin (Mai lotus vi1losus) (Springer et 

al. 1987). The ratio of the numbers of murres (Urla spp.), the 

numerically dominant avian piscivores at Bering Sea breeding colonies, 

to the numbers of least auklets (Fig. 54) indicates a shift in the 

proportions of available fish and copepod biomass from predominantly 

fish in the southeast to predominantly copepods in the north. This 

trend is consistent with the reported distribution of pollock, and 

with the inferred competition for copepods in the southeastern Bering 

Sea.

Local Physical features

Areas of cold, upwelled water surrounding the Pribilofs and 

St. Matthew I. are common features in summer (Figs. 55 & 56). Kinder 

et al. (1983) found the edge of this zone around St. Paul I. (Pribilof 

Is.) to correspond to a front approximately at the 50 m Isobath. The 

density of feeding murres was significantly higher at the front 

surrounding St. Paul I. than in nearby waters on either side of It. 

Auklets showed no association with the front but were all within the
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COLONY

Figure 54. Relative numbers of murres and least auklets at colonies 
in the Bering Sea, from Sowls et al. (1978) and Roseneau et al. 
(1985).
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Figure 56. Upwelling around St. Matthew I. Shading, source and 
enhancement as in Figure 53.
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area of well-mixed water between the front and the island. Such 

observations indicate that zooplankton and possibly fishes are also 

relatively more abundant within the mixed zone and in the front, a 

conclusion supported by numerous examples of the enhancement of 

productivity and biomass in similar situations elsewhere (e.g., Owen 

1981). During early August 1983 on St. Matthew I., southerly winds 

apparently caused strong, localized upwelling along the northeastern 

coastline as indicated by a shift in the feeding areas of least 

auklets from offshore north and northeast of the island to a zone 

within 10 m to about 1 km of shore. The majority of least auklets 

nesting on the northeastern side of the island fed in this zone during 

that time. Horizontal plankton tows taken in the upper 10 m of the 

water column nearshore during the upwelling episode contained 

primarily EgevdosaUnvs spp., Acartia spp. and Calanus marshal lae In 

densities in the order of 10* nr3, 400 m-3 and 200 m~3, respectively.

Upwelling at the edge of St. Lawrence I. (Fig. 53) is also 

common. It occurs during periods of strong northeasterly winds that 

establish Ekman transport offshore on the west side of the island, and 

possibly under other conditions as well. Bedard (1969a) first pointed 

out the effect that this process has on feeding auklets on St.

Lawrence I.; during upwelling the birds fed intensively along the 

western shoreline, while at other times they fed over a broad area 

offshore. In 1981 we saw a similar episode when auklets shifted their 

feeding from generally north of the island in Anadyr Strait to the 

western coast line within 12 hours after the onset of strong northeast 

winds. Growth rates of least auklet chicks during upwe11ing were
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significantly greater than when the birds fed elsewhere (Roseneau et 

al. 1985). The prey taken near shore was similar to that from Anadyr 

Strait, consisting primarily of the outer self Neocalanus Plumchrus 

(Table 9). In contrast, the smaller number of auklets that fed south 

of the island, apparently outside of the area affected by upwelling, 

fed mainly on the middle shelf Calanus marsha11ae.

CONCLUSIONS

The physical and biological characteristics of the continental 

shelf of southeastern Bering Sea are fundamentally different than 

those on the northern shelf. The formation of fronts over the 

southeastern shelf leads to the development of distinctive domains by 

restricting cross-shelf advective and diffusive processes governing 

the distribution of nutrients and biota. In contrast, on the northern 

shelf the juxtaposition of water masses with differing physical 

properties creates fronts between them, and the role of advection is 

paramount in creating a domain with prolific primary production and a 

wel1-developed copepod-based food web.

The location of the offshore islands in the Bering Sea 

relative to the major hydrographic domains apparently is a criterion 

determining the numbers of least auklets at breeding colonies. The 

distribution of the principal copepod prey species, however, is a less 

important factor than is the distribution of copepod biomass. Copepod 

biomass could be affected by predation and by physical features that 

act to concentrate the animals in the vicinity of the island colonies.
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Table 9. Comparison of copepod prey of least auklets feeding in 
three areas near St. Lawrence I. Number of individuals (% volume).

Area

Prey

C. marshallae N. plumchrus N. cristatus

Anadyr Strait 266 <6) 3,210 (74) 130 (20)

SW of island 2,576 (81) 600 (19) 0

Nearshore, W coast 185 (6) 2,395 (79) 67 (15)
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Examples of such physical mechanisms are insular upwelling and 

associated local frontal systems like those around the Pribilof Is. 

and St. Matthew I., and the presence of the Bering Slope Current that 

sweeps oceanic zooplankton onto the northern shelf.

The relation between numbers of piscivorous murres and 

planktivorous auklets at breeding colonies in the Bering Sea suggests 

a gradient in the relative proportions of fish and copepod biomass 

available to avian consumers: there are relatively more murres in the 

southern Bering and more auklets in the northern Bering. Competition 

among vertebrate consumers of copepods in the outer shelf domain could 

limit the number of auklets there, while the absence of competition on 

the northwest shelf might explain, in part, the immense auklet 

populations in the Bering Strait region. Differences in the relative 

proportions of nesting habitat available to auklets and murres on the 

islands (talus for auklets and cliffs for murres) might contribute to 

the differences in species composition, although the effect is 

probably secondary to that of differential prey abundance.

If pollock act to enhance populations of piscivores and 

depress populations of other planktivores, declines in the abundance 

of pollock in the past decade (Bakkala and Traynor 1984) could account 

for recent patterns in the reproductive success and numerical tends in 

seabird populations in the Bering Sea. Between 1969 and 1973 the 

catch per unit effort (CPUE) of the commercial pollock fishery in the 

southeastern Bering fell by about 70%, suggesting a significant 

decline of the pollock population. The CPUE has not recovered since 

then. The reproductive success of black-legged kittiwakes (Rissa
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tridactvla). a piscivorous gull that also feeds on pollock, on the 

Pribllof Is. during the late 1970s (Hunt et al. 1981b) was relatively 

low compared to other colonies in Alaska during the same time 

(Springer et al. 1985). Kittiwakes on the Pribilof Is. and St.

Matthew I. have had very low reproductive success since 1981 (Springer 

et al. 1986; V. Byrd unpubl. data). In contrast, the least auklet 

population on St. Lawrence I. might have doubled between 1966 and 1976 

(Searing 1977), and between 1976 and 1982 least auklets on the 

Pribilof Is. may have increased also (Craighead and Oppenheim 1985). 

Similar multi-species interactions have been reported elsewhere and 

often signal changes in ecosystems of major proportions (May et al. 

1979; Vesin et al. 1981).
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Food Habits of Piscivorous Seabirds in the Northern Bering Sea
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INTRODUCTION

The marine environment of the Bering Strait region of the 

northern Bering Sea leads to one of the most highly productive 

ecosystems in the N Pacific Ocean, with primary productivity reaching 

2-4 g C nr* d- 1 during much of the summer (McRoy et al. 1972: 

Sambrotto et al. 1984). Such rates result from the interaction of 

distinct water masses (Chapter 1) flowing north from the Bering Sea,

through Bering Strait and into the Chukchi Sea (Fig. 57). Bering

Strait provides the only connection between the Pacific and Arctic

oceans and the transport of water through the strait may be important

to the global marine CO2 budget (Walsh et al. 1988).

Anadyr Water, on the northwestern shelf, originates as a

bifurcation of the Bering Slope current that traverses the Bering Sea 

along the continental shelf break (Coachman et al. 1975: Kinder et al. 

1975). It is cold, 0 - 2° C, and saline, 32.7 - 33.0 ppt, and,

because it originates at depth in the Bering Sea and remains

sequestered beneath the euphotic zone during its transit of the 

northern shelf, it has very high nutrient levels, e.g., 25 ug at NOa 

I-1, throughout summer (Husby and Hufford 1969: McRoy et al. 1972; 

Chapter 1). This nitrate is primarily responsible for the prolific 

phytoplankton growth over the shelves of the northern Bering and 

southern Chukchi seas. Also, because of its origin, Anadyr Water 

carries a considerable biomass of zooplankton onto the northern shelf, 

including the large oceanic copepods Eucalanus bungi1. Neocalanus 

alumchEUS, tL cristatus and Metridia Pacifica (Chapter 2; Springer
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Figure 57. The Bering-Chukchi shelf and generalized circulation 
patterns from Coachman et al. (1975).
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and Roseneau 1985), species that are otherwise restricted to the outer 

shelf and oceanic domains of the Bering Sea (Cooney 1981; Smith and 

Vidal 1984).

In contrast to Anadyr Water, Alaskan Coastal Water on the 

northeastern shelf is a low-salinity, seasonally warm water mass 

composed of coastal water from the southeastern Bering Sea. It is 

augmented considerably in Norton Sound by the Yukon River. Primary 

production is low during most of the summer following a spring bloom 

(Chapter 1), and the zooplankton community is typical of the coastal 

zone farther south, being composed of small-bodied grazers such as 

Acartia clausi. Centrooaaes abdominal is and Tortanus discaudatus. as 

well as the cladocerans Podon s p p .  and Evadne s p p . and various taxa of 

meroplankton (Neimark 1979; Cooney 1981; Chapter 2).

The physical and biological differences between the water 

masses on the northern shelf could be expected to lead to 

characteristic pathways of energy flow to upper trophic levels, and to 

characteristic communities of vertebrate consumers. Most of the 

carbon fixed over the northern shelf enters benthic food webs and 

supports very large populations of invertebrate macrofauna (Stoker 

1981), which in turn support important numbers of the walrus (Odobenus 

rosmarus) and gray whale (Eschrichtlus robustus) populations of the 

Pacific Ocean (Frost and Lowry 1981a; Fay 1982). There are, 

additionally, we 11-deve1 oped pelagic food webs, and the transport of 

zooplankton in Anadyr Water probably accounts for the immense breeding 

populations of planktivorous auklets (Aethia s p p . ) on St. Lawrence I. 

and other Islands in the Bering Strait region (Springer and Roseneau
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1985). These auklets do not nest on islands in or near Norton Sound, 

i.e., entirely within the influence of Alaskan Coastal Water, probably 

because of inadequate food availability. Similarly, the thick-billed 

murre (Uria 1omv1 a) is an uncommon breeding species in Norton Sound 

(Drury et al. 1981). while on St. Lawrence I. it numbers in the order 

of 0.25 x 10fi birds (Roseneau et al. 1985). In fact, of the 13 

seabird species known to breed in the Bering Strait region (Sowls et 

al. 1978), only two, the common murre (Uk aa1ae) and black-legged 

kittiwake (Rlssa tridactvla) nest in substantial numbers <ca. 2-3 x 

10*) in Norton Sound (Springer et al. 1985: Murphy et al. 1986), as 

well as at all of the other regional colonies. Such an uneven 

breeding distribution of seabirds across the northern shelf suggests 

an uneven distribution of seabird food webs.

Seabirds nest at many colonies in the Bering Strait region, 

including other sites on the mainland coast and on other islands 

(Sowls et al. 1978). During the breeding season they are the most 

numerous, conspicuous and accessible of the higher trophic level 

vertebrates, and are, therefore, appropriate subjects for use in 

studying food webs and patterns of energy flow in ecosystems. Several 

studies have described the regional colonies and numerous aspects of 

the breeding biology of the seabirds at them (Swartz 1966; Drury et 

al. 1981; Roseneau et al. 1985; Springer and Roseneau 1985; Springer 

et al. 1984, 1985: Murphy et al. 1986). In this chapter, I compare 

the diets of common murres and kittiwakes from Norton Sound with those 

from St. Lawrence I., and I compare the diets of these species at both 

locations with the diets of thick-billed murres on St. Lawrence I.
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The diversity of marine environmental conditions near and around St. 

Lawrence I. should lead to a variety of food webs supporting seabirds, 

while in Norton Sound, the small number and low diversity of seabirds 

there might result from an impoverished prey base which depends on the 

maintenance of a warm, low-salinity environment throughout summer.

METHODS

Murres and kittlwakes were collected at Bluff, the largest 

colony in Norton Sound, and at the western end of St. Lawrence I. as 

they returned to the colonies from feeding. These collections were 

made from a raft at least 2-3 km from the colonies. Two additional 

samples of thick-billed murres were collected from St. Lawrence I., 

one of 6 birds while they fed within about 1 km of shore on the north 

coast, and another of 12 birds from shore as they flew over the beach 

during a period of inclement weather when boating was impossible. A 

sample of 4 common murres was also collected from the beach.

Kittlwake chicks were collected at Bluff in 1983, but not adult 

kittiwakes or murres.

The stomach contents were preserved in 70% ethanol within 1-2 

hours of collection. Fish prey were counted and identified on the 

basis of otoliths, dense bones of the inner ear that resist digestion 

and have species-specific configurations. Because otoliths grow with 

the fishes, the biomass of prey in the diets can be estimated by using 

regression equations relating otolith length to fish length and fish 

length to fish weight. Details of this type of analysis and
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discussions of its limitations, as well as the regression equations, 

can be found in Springer et al. <1984, 1986), except that the equation 

relating the length and weight of sand lance (Ammodvte3 hexaoterus) 

is:

log weight <g) = -6.45 + 3.47 x log length (mm); from D. 

Schmidt and P. Craig, unpubl. data.

Invertebrates generally were too fragmented to allow accurate 

counting, and we have indicated their importance only by their 

frequency of occurrence, i.e., presence or absence.

Repeated observations were made from several locations along 

the north shore of Norton Sound and from around the northern and 

western half of St. Lawrence I. of the directions murres and 

kittiwakes were flying when going to and coming from feeding areas. 

These observations provide a general indication of the locations of 

important feeding areas and are helpful to understanding relationships 

between environmental conditions and seabird food webs.

Throughout this chapter I use published and unpublished data 

to describe various aspects of the physical and chemical environment, 

primary production and zooplankton communities of the Bering - Chukchi 

shelf. The unpublished data have been acquired as part of ISHTAR 

(Inner Shelf Transfer and Recycling), a larger, interdisciplinary 

study of this region administered by the University of Alaska.
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RESULTS

Food habits

Saffron cod (Eleainus araci1 is). including young-of-year cods 

that presumably were saffron cod, and sand lance were overall the most 

important prey of both common murres and kittiwakes at Bluff (Tables 

10 & 11). Young-of-year flatfish (Pleuronectidae) was the only other 

taxon contributing appreciably to diets of common murres, and then 

only in 1982, while Arctic cod (Boreooadus saida) was the only other 

species that might have been important to kittiwakes, during 

mid-summer. Invertebrates were encountered much less frequently than 

fishes, occurring in common murres in only one year and in kittiwakes 

in only two years.

The estimated biomass of fish in murre diets at Bluff was 

variable but not significantly different (Kruskal Wallis p < 0.05) 

between years (Table 12). In 1984, four collections were made between 

10-17 July, during which time fish biomass increased by over an order 

of magnitude (Fig. 58). The change was due to increasing numbers of 

saffron cod through 16 July and to more sand lance in the 17 July 

collection; 4 of 6 murres collected on 17 July had eaten sand lance 

compared to only 1 of 25 collected between 10-16 July (xz = 14.0, v = 

1, P < 0.005). The increase in fish biomass occurred during a period 

of rapid warming of the coastal zone when the water temperature rose 

8° C in 7 days. Fish biomass in kittiwake diets was also variable 

(Table 13), but not significantly different between years.

Arctic cod contributed by far the greatest biomass to the
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Table 10. Occurrence of major taxa in diets of common murres at Bluff.

1978 1980 1981 1982 1984
<9-12 Aug) <22 Jul) <11-21 Jul) <16 Jul) <10-17 Jul)

n %' n V n %' n %' n V

Number examined 22 <100) 12 <100) 19 <100) 5 <100) 31 <100)
Number empty 0 <0) I <8) 0 <0) 0 <0) 2 <6)
Frequency of invertebrates 0 0 0 0 0 0 1 20 4 14
Frequency of fishes 22 100 11 100 19 100 5 100 29 100

A. Freauencv of Occurrence

Saffron cod 13 59 8 73 8 42 4 80 19 66
Arctic cod 0 0 0 0 0 0 0 0 0 0
Walleye pollock 0 0 0 0 0 0 0 0 3 10
Cods 0 0 0 0 1 5 0 0 0 0
Y-O-Y cods 4 18 0 0 8 42 3 60 7 24
Sculpins 0 0 6 55 1 5 1 20 8 28
Y-O-Y sculpins 0 0 1 9 0 0 0 0 7 24
Sand lance 8 36 5 45 14 74 0 0 5 17
Capelin 0 0 0 0 1 5 0 0 1 3
Y-O-Y flatfishes 0 0 0 0 2 11 2 40 2 7
Unidentified fishes 9 41 2 18 0 0 1 20 1 3

Shrimps 0 0 0 0 0 0 0 0 1 3
Mysids 0 0 0 0 0 0 0 0 2 7
Crustaceans 0 0 0 0 0 0 0 0 2 7

B. Numbers of Individuals

Saffron cod 62 2 30 50 16 4 11 4 48 10
Arctic cod 0 0 0 0 0 0 0 0 0 0
Walleye pollock 0 0 0 0 0 0 0 0 5 1
Cods 0 0 0 0 1 <1 0 0 0 0
Y-O-Y cods 104 39 0 0 14 3 175 7 193 41
Sculpins 0 0 8 13 3 <1 1 <1 a 2
Y-O-Y sculpins 0 0 2 3 0 0 0 0 12 3
Sand lance 91 34 18 30 401 90 0 0 188 40
Cape 1i n 0 0 0 0 1 <1 0 0 11 2
Y-O-Y flatfishes 0 0 0 0 8 2 58 24 9 2
Unidentified fishes 13 5 2 3 0 0 0 0 1 <1

C. Estimated Wet Welaht <a)

Saffron cod 582 47 1,606 90 289 15 172 60 1,481 37
Arctic cod 0 0 0 0 8 <1 0 0 0 0
Walleye pollock 0 0 0 0 0 0 0 0 90 2
Cods2 0 0 0 0 0 0 0 0 0 0
Y-O-Y cods 112 9 0 0 7 <1 89 31 97 2
Sculpins 0 0 31 2 5 <1 3 I 35 <1
Y-O-Y sculpins 0 0 1 <1 0 0 0 0 6 <1
Sand lance 530 42 135 8 1,626 84 0 0 2,163 55
Capelin 0 0 0 0 2 <1 0 0 24 1
Y-O-Y flatfishes 0 0 0 0 4 <1 30 10 5 <1
Unidentified fishes3 26 2 4 <1 0 0 0 0 2 <1

1 Values in parentheses represent the frequency among the total number of 
birds examined. Values not in parentheses represent the percent frequency, 
numbers, or weight, respectively, among birds containing identifiable prey 
remains.
2 Weight = weight of saffron cod.
3 Weight = 2 g/fish.
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Table 11. Occurrence of major taxa in diets of black-legged kittiwakes at Bluff.

1970 
<9-12 Aug)

1980 
<22 Jul)

1981 
<11-21 Jul)

1902 
<16 Jul)

1983' 
<17 Aug) (10

1984
-17 Jul)

n V n V n V n V n V n V

Number examined 7 <100) 7 <100) 17 <100) 15 (100) 6 (100) 6 (100)
Number empty 1 (14) 0 <0) 1 <6> 1 (7) 1 (17) 2 (33)
Frequency of invertebrates 0 0 0 0 0 0 4 29 0 0 1 25
Frequency of fishes 6 100 7 100 16 100 11 79 5 100 4 100

A. Frequency of Occurrence

Saffron cod 2 33 2 29 3 19 4 29 3 60 2 50
Arctic cod 0 0 0 0 1 6 0 0 2 40 0 0
Walleye pollock 0 0 0 0 0 0 0 0 0 0 0 0
Cods 0 0 0 0 0 0 0 0 0 0 0 0
Y-O-Y cods 1 17 0 0 1 6 1 7 0 0 0 0
Sand lance 4 66 5 71 11 69 7 50 2 40 2 50
Y-O-Y flatfishes 0 0 0 0 0 0 0 0 2 40 0 0
Unidentified fishes 0 0 0 0 0 0 2 14 1 20 1 25

Crustaceans 0 0 0 0 0 0 2 14 0 0 0 0
Polychaetes 0 0 0 0 0 0 1 7 0 0 0 0

Insects 0 0 0 0 0 0 0 0 0 0 1 25

B. Numbers of Individuals

Saffron cod 4 9 3 13 3 4 6 10 6 27 2 11
Arctic cod 0 0 0 0 3 4 0 0 2 9 0 0
Walleye pollock 0 0 0 0 0 0 0 0 0 0 0 0
Cods 0 0 0 0 0 0 1 1 0 0 0 0
Y-O-Y cods 1 2 0 0 1 1 0 0 0 0 0 0
Sand lance 40 89 21 07 62 90 53 87 11 50 15 83
Y-O-Y flatfishes 0 0 0 0 0 0 0 0 2 9 0 0
Unidentified fishes 0 0 0 0 0 0 2 3 1 5 1 6

C. Estimated Wet Weiaht (a)

Saffron cod 127 29 212 50 231 48 169 32 86 59 22 30
Arctic cod 0 0 0 0 102 21 0 0 19 13 0 0
Walleye pollock 0 0 0 0 0 0 0 0 0 0 0 0
Cods3 0 0 0 0 0 0 1 <1 0 0 0 0
Y-O-Y cods 1 <1 0 0 1 <1 0 0 0 0 0 0
Sand lance 317 71 211 50 147 31 362 68 40 27 50 68
Y-O-Y flatfishes 0 0 0 0 0 0 0 0 1 <1 0 0
Unidentified fishes3 0 0 0 0 0 0 4 1 2 1 2 3

1 Chick regurgitations.
- Values in parentheses represent the frequency among the total number of birds examined. Values
not in parentheses represent the percent frequency, numbers, or weight, respectively, among birds
containing identifiable prey remains.

3 Weight = weight of saffron cod.
3 Weight * 2 g / bird.
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Table 12. Estimated wet weight (g) of fishes in diets of 
common murres at Bluff. Geometric mean (range + 1 SD); 
ND = no data.

Year 10-13 Jul 16-17 Jul 21-22 Jul 9-12 Aug

1984 11 (2-65) 
n = 18

78 (18-340) 
n = 13

ND ND

1982 ND 33 (7-170) 
n = 4

ND ND

1981 23 (3-170) 
n = 9

ND 34 (6-200) 
n = 9

ND

1980 ND ND 48 (6-360) 
n = 12

ND

1978 ND ND ND 24 (5-120) 
n = 22
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Figure 58. Weight of fish in diets of Common Murres 
at Bluff, and nearshore water temperature in July 1984. 
Geometric mean weight <g> with a range of + 1 SD.
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Table 13. Estimated wet weight (g> of fishes in diets of black-legged 

kittiwakes at Bluff. Geometric mean (range + 1 SD): ND = no data.

Year 11-12 Jul 13-17 Jul 16 Jul 16-21 Jul 21-22 Jul 9-12 Aug

1984 ND 7 (2-30) 

n = 5

ND ND ND ND

1982 ND ND 13 (2-81) 
n = 9

ND 9 (1-81) 

n = 6
ND

1981 10 (2-60) 

n = 12

ND ND 11 (3-41) 

n = 5

ND ND

1980 ND ND ND ND 38 (12-120) 

n = 7
ND

1978 HD ND ND ND ND 32 (6-170) 
n = 7
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diets of common murres on St. Lawrence I. (Table 14). Arctic cod were 

not taken by common murres at Bluff, nor were walleye pollock 

(Theragra chalcogramma) or capelin (Mai lotus vi1losus). as they were 

at St. Lawrence I., while saffron cod were taken at both colonies. 

Kittiwakes at St. Lawrence I. took sand lance almost exclusively 

(Table 14). As at Bluff, invertebrates were infrequently found in 

either species, particularly common murres.

Arctic cod was also the most important of the fishes to 

thick-billed murres on St. Lawrence I., although none of the other 

species of cods was present in their diets (Table 14). Thick-billed 

murres fed more often on sculpins (Cottidae) and invertebrates than 

did common murres. Invertebrates were much more frequent in the birds 

collected while feeding near the north shore on 19 July (83%, n = 6) 

than in birds collected when returning from feeding offshore northwest 

of the island between 21 July - 3 August (29%, n = 14). Gammaridean 

amphipods were present in 75% and euphausiids in 50% of the northshore 

samples. Also, sculpins and sand lance were the only fishes eaten by 

thick-billed murres in the coastal collection, while Arctic cod was 

eaten by 71% of those that fed offshore to the north.

Common murres contained an estimated average biomass of fish 

prey of 92 g (geometric mean; range, + 1 SD = 31-270 g; n = 14).

There was no difference (Kruskal Wallis p < 0.05) between the biomass 

of fish in birds collected flying over the beach and those collected 

from the raft, nor between these and any of the samples from Bluff. 

There was, however, a difference (Kruskal Wallis p < 0.01) between the 

amount of fish in thick-billed murres collected on the north shore and
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T a b le  14. O ccu rrence  o f  m a jo r ta x a  in  d ie t s  o f  t h i c k - b i l l e d  m u rre s  
(TBMU), common m u rre s  (COIfU). and b la c k - le g g e d  k i t t iw a k e s  (B L K I)  on 
w e s te rn  S t .  Lawrence I . .  19 J u ly  -  3 A ugust 1981.

TBMU com BLKI

n V n V n A'

Number exam ined 32 (1 0 0 ) 14 (1 0 0 ) 19 (1 0 0 )
Number empty 2 (6 ) 0 ( 0 ) 4 (2 1 )
Frequency o f  in v e r te b r a te s 10 33 1 7 8 53
Frequency o f  f is h e s 27 90 14 100 11 73

A. F reauencv o f  O ccurrence

S a ff ro n  cod 0 0 1 7 0 0
A r c t ic  cod 15 56 9 64 0 0
W a lleye  p o l lo c k 0 0 1 7 0 0
Cods 1 4 2 14 0 0
Y-O-Y cods 0 0 1 7 0 0
S c u lp in s 4 15 1 7 0 0
Y-O -Y s c u lp in s 5 19 1 7 0 0
Sand lance 6 22 5 36 8 67
Cape 1i n 0 0 3 21 1 8
Y-O-Y f la t f i s h e s 1 4 0 0 0 0
U n id e n t i f ie d  f is h e s 0 0 0 0 0 0

S hrim ps 3 11 0 0 0 0
Ganm aridea 4 15 0 0 2 17
M ysids 0 0 0 0 1 1
P a ra th e m is to  spp . 1 4 0 0 1 8
E u p h a u s iid s 4 15 0 0 0 0
M ys ids 1 4 1 7 0 0
P o ly c h a e te s 1 4 0 0 2 17

B. Numbers o f  In d iv id u a ls

S a ff ro n  cod 0 0 2 2 0 0
A r c t ic  cod 54 48 38 33 0 0
W a lleye  p o l lo c k 0 0 6 5 0 0
Cods 4 4 3 3 0 0
Y-O-Y cods 0 0 1 1 0 0
S c u lp in s 9 8 2 2 0 0
Y-O-Y s c u lp in s 26 23 16 14 0 0
Sand lance 18 16 43 37 78 99
C a p e lin 0 0 5 4 1 1
Y-O-Y f la t f i s h e s 1 1 0 0 0 0
U n id e n t i f ie d  f is h e s 0 0 0 0 0 0

C. E s tim a te d  Wet W e iah t ( a )

S a ff ro n  cod 0 0 40 2 0 0
A r c t ic  cod 2 ,5 8 5 86 1 ,452 77 0 0
W a lle ye  p o l lo c k 0 0 148 8 0 0
Cods 99 3 39 2 0 0
Y-O-Y cods 0 0 1 <1 0 0
S c u lp in s 195 7 19 1 0 0
Y-O-Y s c u lp in s 13 <1 4 <1 0 0
Sand la nce 107 4 115 6 183 95
C a p e lin 0 0 65 3 10 5
Y-O-Y f l a t f i s h e s 1 <1 0 0 0 0
U n id e n t i f ie d  f is h e s 0 0 0 0 0 0

■ V a lu e s  in  p a re n th e s e s  re p re s e n t  th e  f re q u e n c y  among th e  t o t a l  
number o f  b i r d s  exam in ed . V a lu e s  n o t in  p a re n th e s e s  re p re s e n t  th e  
p e rc e n t f re q u e n c y , num bers, o r  w e ig h t ,  r e s p e c t iv e ly ,  among b i r d s  
c o n ta in in g  i d e n t i f i a b l e  p re y  re m a in s .
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flying over the beach, which were equal, and the amount in birds 

collected from the raft, which was larger (N shore, x = 3 g, range = 1 

- 10 g, n = 6; beach, x = 7, range = 1 - 60, n = 12: returning, x =

80, range = 1 0 - 4 2 0 ,  n = 14).

Feeding areas

There was no direction consistently taken by murres or 

kittiwakes departing the Bluff colony to feed, nor was there any 

direction from which they tended to return. Most birds appeared to 

feed offshore except when sand lance were abundant along the coast.

Approximately half of the murres breeding on St. Lawrence I. 

nest on the northcentral coast and the other half nest on the 

southwestern coast (Roseneau et al. 1985). During July and August 

1981, the majority of birds from both of these areas fed northwest of 

the island. Comparatively small numbers of murres fed near shore

around the western half of the island and offshore south of it.

Kittiwakes, in contrast to murres, fed mainly near shore, particularly 

along the north and south coasts.

DISCUSSION

Distribution of seabirds and their prev '

Three species of fishes constituted the majority of the 

biomass of all fishes in the diets of murres and kittiwakes - saffron 

cod and sand lance in Norton Sound, and Arctic cod and sand lance on

St. Lawrence I. Indeed, gadids and sand lance are important prey of
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these and other piscivorous seabirds at large colonies elsewhere in 

northern Alaska: walleye pollock, a gadid, appears to be the single 

most important species offshore on the Pribilof Is. and St. Matthew I. 

(Hunt et al. 1981a; Springer et al. 1986); sand lance are similarly 

important at Cape Peirce, a mainland colony in Bristol Bay in the 

southeastern Bering Sea (Lloyd 1985); and Arctic cod. saffron cod and 

sand lance are all important at Cape Thompson and Cape Lisburne in the 

eastern Chukchi Sea (Swartz 1966; Springer et al. 1984).

The differential occurrence of Arctic cod on the northwestern 

shelf and saffron cod in Norton Sound fits with other data on the 

distribution of these two species (Wolotira et al. 1979: Frost and 

Lowry 1981b). Arctic cod are most abundant in Arctic Ocean waters, 

such as the Chukchi and Beaufort seas, and generally do not range very 

far south of St. Lawrence I., where they are replaced by pollock and 

Pacific cod (Gadus macrocephalus). Saffron cod, on the other hand, 

are found in the greatest numbers in Norton Sound, and are common in 

the eastern Chukchi and western Beaufort seas (Wolotira et al. 1979: 

Craig and Haldorson 1981; Springer et al. 1984), apparently because of 

the warm coastal jet. Although infrequent, the occurrence of saffron 

cod and walleye pollock, in addition to Arctic cod, in common murre 

diets on St. Lawrence I. is not surprising considering the diversity 

of environmental conditions in the surrounding waters.

The differences in prey taken by thick-billed and common 

murres on St. Lawrence I. were similar to differences that have been 

found in other mixed-species colonies on St. Matthew I. and in the 

eastern Chukchi Sea (Swartz 1966; Springer et al. 1984, 1986), i.e.,
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thick-billed murres take more sculpins and benthic invertebrates, 

while common murres generally take more of the pelagic species such as 

sand lance and capelin. In the eastern Chukchi Sea, both species of 

murres feed on Arctic cod and saffron cod, but common murres generally 

take a greater proportion of saffron cod than do thick-billed murres 

(Springer et al. unpub 1. data). The absence of thick-billed murres in 

Norton Sound, therefore, might indicate the lack of a sufficiently 

productive and suitable community of benthic prey to supplement the 

primarily pelagic prey of young age classes of cods. This possibility 

is supported by fisheries surveys that found sculpins more abundant by 

a factor of about 2-4 on the northern shelf outside of Norton Sound 

than Inside of it (Wolotira et al. 1979), and invertebrate surveys 

that have found a much lower benthic macrofauna biomass in Norton 

Sound, 5-10 g C m~l , compared to the region north of St. Lawrence I., 

20-30 g C nr2 (Stoker 1981; Grebmeier 1987).

Carbon budget

Because the feeding distribution of seabirds from the colonies 

on St. Lawrence I. and in Norton Sound are not well known, that is, we 

do not know the extent of the feeding areas even though we know the 

general locations - it is difficult to estimate the relationship 

between production at lower trophic levels and carbon transfer to the 

birds in an areal budget. This is complicated by the strongly 

advective nature of both regions, particularly on the northwestern 

shelf, and the role of food web organisms transported from the south 

in the economy of upper level consumers. Such transport is clearly
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important to the planktivorous auklets on St. Lawrence I. (Springer 

and Roseneau 1985), and might also increase overall prey availability 

to the piscivores there, as suggested by the occurrence of pollock 

among the prey of common murres.

Nevertheless, we can get some perspective on the levels of 

carbon transfer through the food webs in the different regimes by 

simply estimating the absolute daily carbon requirements of the birds. 

For example, in the order of 0.5 x 106 murres, roughly equal numbers 

of the two species, nest on St. Lawrence I., and most of them feed in 

the same general area (Roseneau et al. 1985). Using an average body 

weight for murres of 1 kg and a conservative daily food requirement of 

30% of their body weight (Wiens and Scott 1975), they consume about 

1.5 x 10s g (wet weight) d- ', or 1.5 x 107 g C d“1. The kittiwakes, 

which number about 0.1 x 10fi and weigh about 450 g, consume about 1.4 

x 10fi g C  d'1. In addition, the planktivores remove approximately 8 x 

106 g C d-1 of zooplankton biomass, assuming populations (Sowls et al. 

1978) of 1 x 106 least auklets (Aethia pusi1 la) that weigh about 100 g 

and 0.5 x 106 crested auklets (&,. cristatella) that weigh about 300 g. 

Thus, the combined carbon requirement of the principal species of 

seabirds on St. Lawrence I. is in the order of 2.4 x 107 g C d-t . In 

contrast, the major species at Bluff, about 3 x 10* murres and 2 x 10* 

kittiwakes (Murphy et al. 1986, MS), consume a total of only 1.2 x 10s 

g C d~1 .

The murres and kittiwakes at Bluff appear to feed generally 

over a broad area offshore of the colony. If we assume that they feed 

generally within a radius of 40 km, as they do on the Pribilof I.
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(Wiens 1984), and that they are consolidated around the colony for 120 

days each year, then the areal carbon requirement would be 40 rag C r 2 

yr- '. Using the same feeding radius for kittiwakes, their consumption 

would be 12 mg C m -2 yr_i .

Cooney (1981) estimated that the annual secondary production 

of zooplankton on the inner shelf of the southeastern Bering was about 

4 g C m-2 yr-1. A similar level of production in Norton Sound, where 

annual primary productivity may be in the order of 50 g C nr2 yr- '

(Walsh et al. 1988), would imply a flux of less than 10% of the annual

phytoplankton production through the pelagic food web, with greater 

than 90% going to the benthos. If we further assume an ecological 

efficiency of 10% between the zooplankton and planktivorous fishes, 

fish production would be in the order of 400 mg C nr2 yr-1, or a 

factor of about 8 greater than the requirement of the birds.

Food webs and the environment

Fish abundance in Norton Sound apparently varies considerably 

between years, as indicated by large fluctuations in the reproductive 

success of murres and kittiwakes at Bluff (Murphy et al. 1986, MS). 

There is a strong correlation between seabird productivity and 

environmental temperature, with warm years being good and cold years 

being poor (Springer et al. 1985; Murphy et al. 1986). An analysis of

seabird prey in the coastal zone of the eastern Chukchi Sea over

several years indicated that warm years were also generally favorable 

for certain fishes, particularly sand lance, which were larger by age 

class and were much more abundant in warm years than in cold years
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(Springer et al. 1984).

The connection between water temperature and fish abundance 

might be direct, that is, water temperature might affect the 

distribution and growth rates (i.e., metabolism) of various fishes 

having given thermal preferences, or it might be indirect, by 

affecting the development of zooplankton prey populations that support 

the fishes. For example, in the coastal eastern Chukchi downstream of 

Norton Sound in summer 1983, a cold year north of Bering Strait, the 

five most numerous taxa of prey consumed by sand lance that year were 

not abundant in the water column until late summer, at the same time 

that sand lance began to be caught by seabirds (Fig. 59). The 

seasonal increases in zooplankton and sand lance abundance followed by 

about two weeks a significant rise in water temperature. In 

comparison, the rapid increase in fish biomass in murre diets during 

the warming period in Norton Sound in 1984 demonstrates possibly a 

direct response of the fishes to temperature, such as seeking out 

favorable, i.e., warm, areas. In 1976, also a cold year in Norton 

Sound, sand lance were generally scarce, but they were found 

concentrated in Golovin Bay (Barton 1977), a shallow, we 11-protected 

bay in Norton Sound that undoubtedly warms early.

The coastal zooplankton community not only tolerates the 

characteristically large annual fluctuations in both temperature and 

salinity, but many taxa probably depend on the seasonal warming for 

successful reproduction (Neimark 1979; Cooney 1981). The same 

apparently applies to certain fishes, such as sand lance. Thus, the 

anomolous eastward excursion of Anadyr-Bering Shelf water across the
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Figure 59. Water temperature, water column 
concentrations of zooplankton prey of sand 
lance, and the frequency of occurrence of 
sand lance In diets of murres and kittiwakes 
at Cape Lisburne in 1983.
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northern shelf and into Norton Sound during summer 1984 (Fig. 60), 

rather than possibly stimulating productivity by infusing nutrients, 

phytoplankton and zooplankton, disrupted the food web to the point 

that murres and kittiwakes suffered the poorest breeding season in at 

least a decade and some adult kittiwakes even starved to death (Murphy 

et al. MS).

The environment of the northwestern shelf influenced by the 

flow of cold Anadyr Water tends to be more thermally and chemically 

stable than that in Norton Sound during summer, and the animals that 

live there do not have to adjust to such a large seasonal range of 

temperature and salinity. How much difference this makes to their 

population stability is not known. Clearly, much depends on the 

abundance of zooplankton in the flow, which presumably is determined 

by physical and biological factors far to the south. The prolific 

primary production and the rich supply of zooplankton should certainly 

enhance in situ production at the higher trophic levels.

Besides this oceanic-based food web, a second pelagic system 

like that in Norton Sound can develop in summer in the coastal zone 

around St. Lawrence I., and includes sand lance and their prey, which 

is probably similar to that along the mainland coast, i.e.,

Pseudoca1 anus spp. and other small zooplankters. In 1981, a warm 

year, sand lance were so abundant near the island that the growth 

rates of kittlwake chicks were the highest we have recorded in 

northern Alaska (Roseneau et al. 1985), where growth rates are often 

much higher than elsewhere in the species' range. Interestingly, such 

a trophic pathway apparently is poorly developed around the Pribilof
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Figure 60a. NOAA 7 infrared image of the northern Bering Sea shelf 
showing the typical distribution of cold Anadyr Water (lighter 
shading) northwest of St. Lawrence I. and warm Alaskan Coastal Water 
(darker shading) in Norton Sound and downstream in the eastern Chukch 
Sea, 18 July 1982.
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Figure 60b. Imagery showing the extent of anomolous circulation 
across the northern shelf from late June through mid-August 1984, 
i.e.. cold Anadyr and Bering Shelf water from the west extending 
eastward and deeply into Norton Sound, 16 July 1984.
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Figure 60 <c). Hydrographic cross section from eastern St. Lawrence I. to the Yukon River 
delta showing the typical condition, 17-18 August 1983 (left), (d). Hydrographic cross 
sections from eastern St. Lawrence I. to Nome confirming the anomoly shown in (b) above,
1 July 1984 (right) (from J. Grebmeier, unpubl. data). 162
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Is. or St. Matthew I. to the south, judging from the infrequent 

occurrence of sand lance in seabird diets there (Hunt et al. 1981a; 

Springer et al. 1986, unpub 1. data).

As along the mainland coast, sand lance around St. Lawrence I. 

are not available each summer. Sand lance availability was apparently 

low in 1976 and 1984, as it was elsewhere in northern Alaska in those 

years (Springer et al. 1984). Both summers were environmentally cold, 

and kittiwakes throughout the northern Bering and eastern Chukchi had 

very poor reproductive success.

CONCLUSIONS

Murres and black-legged kittiwakes, with circumarctic 

distributions, are among the most abundant and widespread of all 

seabirds. They are found throughout Alaska wherever suitable nesting 

habitat, i.e., sea cliffs, occurs (Sowls et al. 1978). The 

distribution of the two species of murres is not uniform, however. 

Common murres are much more numerous than thick-billed murres at 

coastal colonies in the Gulf of Alaska and the Bering Sea, while 

thick-billed murres predominate at offshore insular colonies such as 

the Pribilof Islands. Auklets, which are unique to the North Pacific, 

nest only on offshore islands with ready access to large-bodied taxa 

of zooplankton, particularly copepods and euphausiids characteristic 

of oceanic waters.

On the basis of the location of St. Lawrence I., that is, on 

the inner shelf within shallow waters less than 50 m deep, one would
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not expect to find large populations of thick-billed murres and 

auklets that are typically associated with more oceanic food webs.

Yet the numbers of these species on St. Lawrence I. and other Islands 

near Bering Strait, e.g., the Diomede Islands and King Island, are 

among the largest known in Alaska. Indeed, least auklets (Aethla 

pusi1 la) and crested auklets (£b. cristatella) probably attain their 

greatest numbers there, even though the islands are geographically 

within the coastal zone (Iverson et al. 1979). This apparent paradox 

is a result of the transport of waters of the Bering Sea into the 

Chukchi Sea through Bering Strait, and more particularly, of Anadyr 

Water, which originates in the oceanic domain along the continental 

shelf break and constitutes an important part of the northward flow.

It transforms the otherwise coastal oceanographic nature of much of 

the Bering - Chukchi shelf into one characterized by sustained, high 

levels of primary production commonly associated with upwelling areas, 

large standing stocks of zooplankton, a diversity of forage fishes and 

spectacular populations of marine birds and mammals.

In contrast to this system, a typically coastal environment is 

found nearshore around St. Lawrence and within the domain of Alaskan 

Coastal Water, including Norton Sound. In Norton Sound, primary and 

secondary production are both relatively low, oceanic zooplankton are 

absent, suitable species of forage fishes are few and the seabird 

populations are small. The transfer of energy through the coastal 

food web to higher trophic levels Is apparently dependent on seasonal 

warming and the effect it has on the biology of zooplankton and 

fishes. Thus, in the northern Bering Sea, marine food webs, and hence
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seabird populations, are related as much to the advective 

oceanographic regime as to the apparent geographical setting in 

relation to hydrographic and biological domains existing farther 

south.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Food Habits of Piscivorous Seabirds in the Eastern Chukchi Sea

CHAPTER 5

This Chapter has been published as:

Springer, A.M., D.G. Roseneau, E.C. Murphy and M.I. Springer. 1984. 
Environmental controls of marine food webs: food habits of 
seabirds in the eastern Chukchi Sea. Can. J. Fish. Aquat. Sci. 
41: 1202-1215.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



167

INTRODUCTION

Two breeding colonies in the eastern Chukchi Sea, Cape 

Thompson and Cape Lisburne, support about 500,000 piscivorous 

seabirds, of which approximately 90% are murres (Uria spp.), and 9% 

are Black-legged Kittiwakes (Rissa tridactvla) (Swartz 1966s Springer 

et al. 1985b). In 1976 the reproductive success of the kittiwakes was 

extremely low at both colonies. Symptoms of the breeding failure were 

characteristic of season-long food shortage: few birds developed brood 

patches , copulation was seldom seen, few eggs were laid, egg laying 

occurred late in the breeding season, and most of the few chicks that 

hatched died, apparently of starvation. Reproductive success improved 

incrementally between 1977 and 1979 and remained relatively high in 

1980 (Springer et al. 1985b). The recovery was typified by 

progressively earlier laying dates, larger clutch and brood sizes, and 

fewer empty nests. Growth rates of kittiwake chicks were high in most 

years after 1976, indicating good late-season food availability in 

those summers.

These changes, and similar changes in the breeding biology of 

murres (Springer et al. 1985b), signal variability of comparable 

magnitude in regional food webs. In this chapter, I show that the 

diets of murres and kittiwakes varied within breeding seasons and 

between years, variations that corresponded in time to interannual 

changes in water temperature and sea ice cover. I review recent and 

long-term climatic variability in northern Alaska and discuss possible 

interactions between climate, oceanography, and the fish populations
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supporting marine birds in the eastern Chukchi Sea.

METHODS

Field work was conducted during portions of each summer of 

1976-1979 at Cape Thompson and 1976-1980 at Cape Lisburne (Fig. 61). 

Except in 1976 at Cape Lisburne, murres and kittiwakes were collected 

at intervals during each breeding season as they returned to the 

colonies from offshore feeding areas. Most birds fed at considerable 

distances from both colonies and to visit those areas to collect 

specimens was not practical . The stomach contents and the lining of 

the proventriculus of each bird were removed and stored in 70% ethanol 

and the prey remains were identified in the laboratory using taxonomic 

keys and preserved reference material.

Because food items were usually in an advanced stage of 

digestion when the birds returned to the colonies, invertebrate prey 

were often identified from parts such as rostra, jaws, uopoda. and 

eyes, and fishes were identified from otoliths. Sculpins (Cottidae) 

were counted and identified using preopercular bones as well as 

otoliths.

The sizes of most fish prey recovered from murres and 

kittiwakes were reconstructed from regressions of fish length on 

otolith length, and from fish weight on fish length (Table 15). 

Sculpins were often not identifiable to species or genera, and for 

analytical purposes regression equations for Mvoxocephalus 

guadricornis were used to estimate their size. JL guadricornis was
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Figure 61. Map of the study area in northwestern Alaska.
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Table 15. Regression equations for estimating lengths and weight of fish identified in prey 
remains of murres and kittiwakes.

Fish Equation N r Source

Arctic cod Fish lng. (cm) = 2.198
x otolith lng. (mm) + 1.588 202 0.981 Frost and Lowry 1981b

log wt. (g) = -5.196 + 3.031 log lng. (mm) 277 0.98 Craig et al. 1962

Saffron cod Otoliths > 8.5 mm 
Fish lng. (cm) = 2.323

x otolith lng. (ram) - 4.839 110 0.963 Frost and Lowry 1981b
Otoliths < 8.5 mm 
Fish lng. (cm) = 1.740

x otolith lng. (mm) - 0.090 36 0.932 Frost and Lowry 1981b
log wt. (g) = -5.610 + 3.233 log Ign. (mm) 180 0.94 Craig and Haidorson 1981

Sculpins* Fish lng. (cm) = 4.009
x otolith lng. (nm> - 4.364 

log wt. (g) = -6.016
+ 3.46 log lng. (mm) 272 0.98

K. Frost and L. Lowry, 
unpub). data

Craig and Haidorson 1981

Sand lance Fish lng. (mm) = 4.01
x otol1th lng. (uni ts)®+ 19 31 0.91 This study

Capelin Fish lng. (mm) = 3.42
x otolith lng., (units)8+ 29 12 0.99 This study

Êquations were derived from specimens of Mvoxocephalus guadricornis. 
*12.5 units mm-1.
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the only species of sculpin In the eastern Chukchi Sea for which size 

data were available.

Intact sand lance (Ammodvtes hexapterus) and capeiin (MaJlotus 

vi1losus). from which otolith length - fish length regression 

equations were derived, were found on beaches near the colonies after 

storms or after they were dropped by birds. They were generally 

partially desiccated, making their wet weights unreliable. Based on 

the average weight and length of 14 relatively fresh sand lance (mean 

weight = 3.0 g, s = 1.9: mean length = 88 mm, s = 16) collected at 

Cape Lisburne in 1978, and the mean length of all colony/year samples, 

we estimated the average weight of individual sand lance consumed by 

seabirds by colony and year.

Most of the capelin collected by us were adult fish and were 

much larger than those taken by murres and kittiwakes. In 1978 at 

Cape Lisburne, two specimens in the smaller size class were obtained 

(mean weight = 4.0, s = 3.0; mean length = 94 mm, s = 16). We used 

these values to estimate the average weight of individual capelin in 

each colony/year sample in the same way as for sand lance. The values 

(grams) we used for mean individual wet weights are as follows:

Cape Lisburne Cape Thompson

Sand lance 1977 3 2

1978 3 3

1979 3 4

1980 4 —
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Cape I i  n 1977 2

1979 2 3

1980 3

Righteye flounders (Pleuronectidae) were generally young-of-year fish 

and were assigned an average weight of 1.0 g, based on the weight of 

one intact specimen. A variety of taxa. including snail fishes 

(Cyclopteridae, especially Liparis s p p .). pricklebacks (Stichaeidae. 

especially Stichaeus punctatus and Chirolophus spp.), and herring 

(Clupea harenaus). were categorized as "other fishes." They were 

generally small: the weight of three pricklebacks and one herring 

averaged 2 g each (s = 1.8).

Many otoliths were broken and could not be accurately 

measured, even though they could be identified and the number of fish 

they represented could be determined. Therefore, weights of the 

various taxa of fishes in individual birds were estimated by 

multiplying the number of a given taxon in each bird by the average 

weight of all individuals of that taxon in that year. The average 

weight of a taxon was estimated by measuring a subsample of all intact 

otoliths and using the appropriate equations (Table 15), or it was 

based on the above weight estimates.

Cod otoliths could not always be identified to species. In 

such cases, the unidentified cod were apportioned to the two species 

(Arctic cod, gareofladug saida. and saffron cod, &l<tqinv.g gracilis) 

according to the proportions of Arctic and saffron cod that were 

identified in all specimens collected in a given interval, e.g. 1-20
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July 1977, Cape Lisburne.

Sand lance were aged by counting opaque and hyaline zones of 

otoliths (Reay 1972). Arctic cod, saffron cod, and sculpins were aged 

by comparing the calculated body lengths with length distributions of 

known-aged fishes reported by Craig and Haldorson (1981). Capelin 

were aged on the basis of similar data provided by Pitt (1958a).

Intact invertebrates were measured and average weights were 

used to estimate weights of certain groups. The average weight of 13 

amphipods (Amphipoda) was 0.2 g (s = 0.15 g); of 10 mysids (Neomysis 

spp. and Mvsis spp.) it was 0.2 g (pooled sample); of 20 euphausiids 

(Thvsanoessa spp.), 0.1 g (pooled sample); of 17 shrimps 

(predominantly Pandalus spp. and Eualus spp.), 0.5 g (s = 0.3 g); and 

of 2 polychaetes (Nereis spp.), 1 g (s = 0.2 g). "Other 

invertebrates," including hermit crabs (Labidochirus solendescens). 

squids (Cephalopoda), and snails (Gastropoda), were assigned an 

average weight of 1 g; no Intact specimens in this group were 

recovered.

Information on murre and klttlwake feeding areas was obtained 

by land-based observations of directions taken by birds as they flew 

to and from the colonies, and by similar boat-based observations along 

the coastline up to 60 km from the colonies. In 1978 an aircraft was 

used to supplement the land- and boat-based observations during 25 - 

29 July and 18 - 19 August. Transects were flown offshore up to 130 

km from the colonies.

In analyzing differences in the lengths and biomass of fishes 

in seabird diets between colony/year samples, I first conducted
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Kruskal-Wal1 is tests. If the test result was significant <p < 0.05),

I then used a multiple comparisons procedure (Conover 1980) to 

determine which samples differed from one another. I have used the 

notation K-W/MCP, p < 0.05 to indicate when these tests revealed 

significant differences between mean values.

Limi tat ions

A general limitation of this study, and one common to most 

food habits studies, is the problem of accurately determining the 

number and size of prey organisms consumed by the birds. Birds were 

collected as they returned to the colonies from feeding; however, 

differences between individuals in the time spent feeding and time 

since feeding are unknown. This problem is complicated by 

differential digestibility of fish and invertebrate prey. Bradstreet 

(1980) concluded that the number of fish otoliths in murre stomachs 

provided a satisfactory index of the number of fishes recently 

ingested. Also, as I have done, he attempted to reduce bias by using 

invertebrate parts to estimate the number and size of the various taxa 

consumed by murres.

A related question is whether invertebrates found in bird 

stomachs were eaten by the birds directly, or indirectly after they 

were first eaten by fishes that subsequently became prey. With the 

exception of cumaceans, larval crustaceans, and copepods, I have 

assumed that all invertebrates in a bird stomach were intentionally 

consumed.

A specific limitation of this study is the use of weight
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estimates of sand lance, capelin, flatfishes, and "other fishes" based 

on small numbers of specimens. While the values I used can be 

improved upon with additional data, I applied the estimates in a 

uniform manner that should provide indices of the relative importance 

of these taxa in seabird diets within and between years. Likewise, 

the following data should provide indices for assessing other changes 

in diets, such as in the total biomass consumed, although the values I 

report probably underestimate the actual consumption when it is 

calculated on the basis of the energy requirements of seabirds (Wiens 

and Scott 1975).

RESULTS

Food habits

The food habits of murres and kittiwakes during all years 

combined were similar at the two colonies (Tables 16 and 17) and were 

similar to those reported previously for Cape Thompson (Swartz 1966).

A notable difference between the colonies was the near absence of 

mysids and euphausiids in diets at Cape Thompson. The two species of 

murres fed on similar kinds of fishes, although common murres (Uria 

aalge) took many fewer sculpins, flatfishes, and other fishes, but 

more sand lance and capelin, than did thick-billed murres (1L. lomvia). 

Thick-billed murres took a greater number of invertebrates than did 

common murres. Kittiwakes rarely fed on sculpins of flatfishes, 

benthic taxa that would generally not be available to them because 

they feed only on prey that are at or near the surface. Polychaetes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 16. Occurrence of major taxa in diets of thick-billed murres (TBMU). 
common murres (COMU), and black-legged kittiwakes (BLKI) at Cape Thompson.
1976-79.

TBMU COMU BLKI

n %' n V n V

Number examined 246 (100) 62 (100) 116 (100)
Number empty 33 (13) 13 (21) 11 (9)
Frequency of invertebrates 115 54 6 12 20 19
Frequency of fishes 182 85 45 92 91 87

A. Freauencv of Occurrence

Cods 85 40 29 59 55 52
Sculpins 87 41 14 29 0 0
Sand lance 45 21 20 41 32 30
Capelin 26 12 12 24 17 16
FIatf ishes 19 9 3 6 0 0
Other fishes 28 13 3 6 3 3
Shrimps 69 32 3 6 4 4
Amphipods 29 14 3 6 0 0
Mysids 0 0 0 0 1 1
Euphausiids 1 <1 0 0 0 0
Polychaetes 18 8 0 0 12 11
Other invertebrates 36 17 1 2 7 7

B. Numoers of Individuals

Cods 350 8 203 26 241 27
Sculpins 835 25 137 17 0 0
Sand lance 213 6 271 34 325 36
Capelin 199 6 138 18 146 16
Flatfishes 180 5 4 <1 0 0
Other fishes 271 8 16 2 6 <1
Shrimps 244 7 4 <1 34 4
Amphipods 910 27 12 2 0 0
Mysids 0 0 0 0 2 <1
Euphausiids 1 <1 0 0 0 0
Polychaetes 36 1 0 0 137 15
Other invertebrates 73 2 1 <1 14 2

C. Estimated Wet Weioht (o)

Cods 2574 43 2210 59 2626 63
Sculpins 1555 26 414 11 0 0
Sand lance 497 8 694 19 975 23
Capelin 595 10 383 10 415 10
Flatfishes 180 3 4 <1 0 0
Other fishes 130 2 32 <1 12 <1
Shrimps 122 2 2 <1 17 <1
Amphipods 312 5 2 <1 0 0
Mysids 0 0 0 0 1 <1
Euphausi ids 1 <1 0 0 0 0
Polychaetes 36 <1 0 0 137 3
Other invertebrates 73 1 1 <1 14 <1

Values in parentheses represent the frequency among the total number of 
birds examined. Values not in parentheses represent the percent frequency, 
numbers, or weight, respectively, among birds containing identifiable prey 
remains.
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Table 17. Occurrence of major taxa in diets of thick-billed murres (TBMU). 
common murres (COMU). and black-legged kittiwakes (BLKI) at Cape Lisburne.
1977-80.

TBMU COMU BLKI

n V n %' n V

Number examined 198 (100) 48 (100) 71 (100)
Number empty 16 (8) 3 (6) 4 (6)
Frequency of invertebrates 05 47 9 20 22 33
Frequency of fishes 173 95 45 100 60 90

A. Freauencv of Occurrence

Cods 99 54 35 78 28 42
Sculpins 89 49 10 22 4 6
Sand 1ance 75 41 25 56 29 43
Capelin 13 7 2 4 7 10
FI atf ishes 15 8 7 16 0 0
Other fishes 8 4 1 O£. 5 7
Shrimps 39 21 1 2 1 1
Amphipods 48 26 2 4 4 6
Mysids 19 10 3 7 0 0
Euphausiids 15 8 1 2 8 12
Polychaetes 12 7 0 0 13 19
Other invertebrates 11 6 1 2 2 3

B. Numbers of Individuals

Cods 660 13 202 31 158 5
Sculpins 529 10 17 3 5 <1
Sand lance 838 16 255 39 263 8
Capelin 55 1 60 9 29 <1
Flatfishes 123 2 83 13 0 0
Other fishes 22 <1 6 <1 7 <1
Shrimps 165 3 5 <1 1 <1
Amph i pods 985 19 4 <1 1318 42
Mysids 295 6 9 1 0 0
Euphausiids 1544 29 6 <1 1626 51
Polychaetes 8 <1 0 0 51 2
Other invertebrates 25 <1 3 <1 2 <1

C. Estimated Wet Weioht (a)

Cods 5028 51 1034 53 912 36
Sculpins 1135 12 18 1 30 1
Sand lance 2703 27 669 34 830 33
Capel in 132 1 122 6 87 3
Flatfishes 123 1 83 4 0 0
Other fishes 44 <1 12 <1 14 <1
Shrimps 83 <1 3 <1 1 <1
Amphipods 197 2 <1 <1 264 10
Mysids 59 <1 2 <1 0 0
Euphausiids 155 2 <1 <1 163 7
Polychaetes 8 <1 0 0 52 2
Other invertebrates 25 <1 3 <1 • 2 <1

1 Values in parentheses represent the frequency among the total number of 
birds examined. Values not in parentheses represent the percent frequency, 
numbers, or weight, respectively, among birds containing identifiable prey 
remains.
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were taken more frequently by kittiwakes than by murres at both 

colonies, as were euphausiids at Cape Lisburne. Polychaetes are 

usually members of the benthic infauna, but they spawn in the water 

column (Johnson 1943) and the heteronereis worms become available to 

seabirds at that time. The apparently large contribution of amphipods 

to the diets of the kittiwakes at Cape Lisburne is misleading, since 

all but eight were recovered from a single bird.

Temporal changes in diets

Throughout the summer of 1976 at Cape Thompson, thick-billed 

murres fed on cods, sculpins, and other fishes (Fig. 62), while common 

murres and kittiwakes fed almost entirely on cods alone (Fig. 63).

Sand lance were uncommon and capelin and flatfishes were absent in the 

birds' diets. Sand lance and capelin comprised an increasingly larger 

proportion of prey from one interval to the next in the summer of 

1977, and they were important summer-long in 1979. The same pattern 

was apparent at Cape Lisburne (Figs. 62 and 63): sand lance and 

capelin became progressively more important in murre and kittiwake 

diets later in the summer of all years, and they became more important 

earlier in the summer in successive years. Flatfishes occurred in the 

diets of thick-billed murres only in 1978-1979 at Cape Thompson and in 

1979-1980 at Cape Lisburne.

Besides the changes in the proportions of various fish taxa in 

seabird diets, there is an indication that the absolute quantity of 

prey in thick-billed murre diets also changed. With only one 

exception, both the number of fishes (Table 18) and the estimated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



179

C A P E  T H O M P S O N

Figure 62. Percent contribution of various taxa to the total biomass 
of fishes in diets of thick-billed murres at Cape Thompson and Cape 
Lisburne.
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Figure 63. Percent contribution of various taxa to the total biomass 
of fishes in diets of common murres and black-legged kittiwakes at 
Cape Thompson and Cape Lisburne.
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Table 18. Numbers of fishes in diets of thick-billed murres (arithmetic mean 
number per bird). ND = no data.

Jun 1-20 Jul 21 Jul-10 Aug 11-31 Aug

n x s n x s n x s n x s

Cape Thompson

1976 11 1.2 0.6 8 1.4* 1.4 15 1.1® 1.6 11 6.4 11
1977 32 1.0 2.6 9 6.4 8.1 20 25 54 45 8.7 14
1978 ND ND ND 14 10 15
1979 ND 26 15 3.7 34 7 8 8 7 7

Cape Lisburne

1977 6 5 7 22 5.6 7.8 15 6.6 8.7 9 9 12
1978 ND 17 8 14 29 20c 20 10 15 13
1979 ND 17 12 14 ND 19 23 25
1980 ND ND 32 6.2 8.4 ND

“Value is less than in 1-20 Jul 1979 (K-W/MCP, p < 0.05). 
8Value is less than in 21 Jul-10 Aug 1977 and 1979. 
cValue is greater than in 21 Jul-10 Aug 1977 and 1980.
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biomass of those fishes (Table 19) in the diets of the birds from Cape 

Lisburne increased between years in each of the three intervals for 

which we have multi-year data. Although few of the differences were 

significant due to the large variability among birds in the amount of 

prey in their stomachs, there is the appearance of a trend of 

increasing consumption of fishes in successive years. Such a trend is 

less apparent in the data from Cape Thompson except that fish numbers 

and biomass in 1976 were generally lower than they were in later 

years.

Invertebrates constituted a small proportion of prey biomass 

compared with that of fishes in the diets of all three species of 

birds. However, the apparent importance of invertebrates to 

thick-billed murres changed within and between years (Fig. 64). 

Invertebrates were least important in late summer of most years at 

both colonies, and they were less important summer-long in successive 

years. The decline in the consumption of invertebrates between years 

corresponded to the apparent trend of increasing consumption of 

fishes.

Characteristics of prev populations

The average size of most of the principal taxa of fishes eaten 

by murres and kittiwakes in the eastern Chukchi Sea increased between 

most years (Fig. 65). Although the annual contribution of various age 

classes to the total take of individual taxa undoubtedly changed, many 

of the differences between years apparently can be accounted for by 

changes in size-at-age of the fishes.
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Table 19. Weight of fishes in diets of thick-billed murres (arithmetic mean wet 
weight (g) per bird). ND = no data.

Jun 1-20 Jul 21 Jul-10 Aug 11-31 Aug

n X s n x s n x s n x s

Cape Thompson

1976 11 11 17 8 34 40 15 15fi 28 11 11 21
1977 32 3.8 8.3 9 44 54 20 30 32 45 18 30
1978 ND ND ND 14 17 16
1979 ND 26 24 29 34 25 26 8 61B 66

Cape Lisburne

1977 6 10 13 22 19« 29 15 14° 18 9 23 36
1978 ND 17 23 44 29 43 70 10 53 55
1979 ND 17 64 81 ND 19 57 67
1980 ND ND 32 54 84 ND

*Value is less than in 21 Jul-10 Aug 1977 and 1979 (K-W/MCP, p < 0.05).
8Value is greater than in 11-31 Aug 1976-1978.
cValue is less than in 1-20 July 1979.
°Value is less than in 21 Jul-10 Aug 1978 and 1980.
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Cape L isburne

1977

June 21 Jul-IOAug

Figure 64. Frequency of occurrence of invertebrates in diets of 
individual thick-bi1 led murres.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LE
N

G
T

H
 

(m
m

)

185

140

120

100

80

60

40

20

160

Saffron Cod

— *  Cape Thompson 
—o  Cope L isburne

--o  Cope L isburne ,
(excluding 2+ fish  in 1977)

Arctic Cod

_L
1976 1977 1978 1979 1980

YEAR

Figure 65. Average length of fishes eaten by murres and kittiwakes 
in the eastern Chukchi Sea. Bars indicate the 95% confidence 
interval.
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The average length of sand lance was longer each successive 

year between 1977 and 1980 at both colonies (K-W/MCP, P < 0.05). 

Capelin were larger in 1979 than in 1977 at Cape Thompson and were 

larger in 1980 than in 1979 at Cape Lisburne. Most sand lance were 

age class 1+, with a few age class 0+ individuals; sand lance older 

than age class 1+ were uncommon except at Cape Lisburne in 1977 when 

age class 2+ fish accounted for an unusual bimodal size distribution 

that year. Andriyashev (1954) noted that sand lance in the coastal 

zone of Murmansk also were predominantly age class 1+. Capelin were 

predominantly age class 1+ juveniles, although remains of a few larger 

adults were recovered. The adult capelin were spawning as shown by 

developing reproductive products in both males and females.

Arctic cod at Cape Lisburne exhibited the same trend of 

increasing average size in later years, and the differences between 

1977-78 and 1978-79 were significant. Size distributions of Arctic 

cod tended to be bimodal: smaller fish were predominantly age class 1 

and larger fish were predominantly age class 3. The annual increases 

in average size of Arctic cod at Cape Lisburne resulted from changes 

in relative numbers of the two age classes between years, as well as 

from apparent increases in average sizes of age class 1 fish. Craig 

and Haidorson (1981) reported that the sizes of age classes 1-5 Arctic 

cod in Simpson Lagoon (northeast of Cape Lisburne in the Beaufort Sea) 

were all larger in 1978 than in 1977, and the difference was 

significant for age class 2 fish, which averaged 15 mm longer in 1978 

(P < 0.001). At Cape Thompson the average size of Arctic cod 

decreased between 1976 and 1977, because of a large change in
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proportions of age classes. However, the average sizes of individual 

age classes appeared to increase between years, especially between 

1977 and 1979, as they did at Cape Lisburne and Simpson Lagoon.

The majority of sculpins in all years were age classes 0-2, 

and the average length increased between most years at both Cape 

Thompson and Cape Lisburne. The increases were significant between 

1976 and 1977 at Cape Thompson and between 1978 and 1980 at Cape 

Lisburne.

Saffron cod were considerably smaller than Arctic cod (Fig. 

65), and most were age class 0 fish with a few age class 1 fish.

Unlike the other species, saffron cod were smaller in successive years 

at both colonies, except between 1978 and 1979 at Cape Thompson. A 

change in age class strength probably explains the difference in size 

of saffron cod between 1978 and 1979 at Cape Thompson.

The sizes of sand lance, capelin, sculpins, and Arctic cod 

tended to increase with decreasing latitude. Within all years that 

samples were collected at both Cape Thompson and Cape Lisburne, 

sculpins and capelin were always significantly larger at Cape 

Thompson. Sand lance also tended to be larger at Cape Thompson than 

at Cape Lisburne, significantly so in 1979.

Arctic cod were significantly larger at Cape Thompson than at 

Cape Lisburne in 1977. Increasing size with decreasing latitude has 

been reported by Andriyashev (1954) for sand lance in the Barents Sea, 

and by Lowry and Frost (1981), who showed that Arctic cod in the 

Bering Sea were larger than in the Chukchi and Beaufort seas. In 

contrast, saffron cod tended to be larger at Cape Lisburne that at
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Cape Thompson. Wolotira et al. (1979) found a similar north to south 

decline in size-at-age of saffron cod in the Bering and Chukchi seas 

in 1976.

Feeding areas

The majority of murres from Cape Thompson fed south of the

colony in all years during June and most of July. In 1976, flight

directions shifted somewhat to the west in August, but few murres were 

ever seen flying north. A clear shift to the north occurred in late 

July of 1977 and by early August nearly all murres from Cape Thompson 

fed north of the colony. A similar shift occurred in 1978, although

there was somewhat less distinction between early and late season

feeding areas. We observed a few murres during aerial surveys 

offshore of Cape Thompson in 1978 and there was no obvious pattern of 

distribution at sea. In 1979, murres fed over a broader area 

throughout the summer than during previous years: flight directions 

were widely scattered between south and west in early July. About 

half of the murres shifted to the west and north by early August, and 

thereafter murres could be seen flying to and from nearly all offshore 

directions.

Few murres were seen on the water between Cape Thompson and 

Cape Lisburne, except in the immediate vicinity of a colony at Cape 

Lewis, during any of our aerial surveys or during numerous flights we 

made when going between field camps. Therefore, when murres from Cape 

Thompson fed north of the colony, they probably mingled with birds 

from Cape Lisburne. In August of 1978 we intercepted several flocks
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of southbound murres west of Cape Lisburne and followed them to Point 

Hope in our survey aircraft. At Point Hope we watched other flocks 

arriving from the same direction and subsequently confirmed that they 

were returning to Cape Thompson.

Murres at Cape Lisburne fed northeast of the colony in Ledyard 

Bay during June and most of July in 1977-79. By early August they 

foraged generally north of the colony, and gradually shifted more to 

the northwest by late August. Early-season observations were not made 

in 1976; however, in late August murres were flying in directions more 

to the west than in any subsequent year. Observations made during 

aerial transects flown in July 1978 indicated that murres were feeding 

nearshore and in the center of Ledyard Bay near the interface of two 

water masses.

Kittiwake feeding areas tended to be closer to the colonies, 

but generally lay in the same direction as those of murres in June and 

July. Beginning sometime between mid-July and early August of all 

years except 1976, kittiwakes concentrated along the coastline north 

and south of Cape Thompson and east of Cape Lisburne. The shift to 

coastal feeding occurred when sand lance or capelin arrived near shore 

east of Cape Lisburne and north of Cape Thompson, and it occurred 

earlier in summer in later years. In 1976 when sand lance and capelin 

were absent, kittiwakes foraged widely offshore throughout the summer.
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DISCUSSION

The patterns of change in the diets of murres and kittiwakes 

at Cape Thompson and Cape Lisburne between 1976 and 1980, i.e., an 

apparent increase in fish biomass in diets of thick-billed murres 

concurrent with a decrease in the importance of invertebrates and an 

increase in the proportions of sand lance and capelin in diets of 

murres and kittiwakes. are consistent with an hypothesis that the 

availability of fish biomass to seabirds in the eastern Chukchi Sea 

was relatively low in 1976, but increased in successive years. The 

annual increases in the average size of several of the fishes support 

this view and suggest that differences in fish availability between 

years could have been related to environmental conditions that affect 

fish growth, reproduction, and distribution. Sea ice and seawater 

temperature, important elements of the highly variable environment of 

northern Alaska, fluctuated considerably during the past decade and 

the fluctuations could have caused changes in regional food webs and 

hence in seabird breeding biology.

Regional Physical processes

The southern extent of winter ice in the Bering Sea 

characteristically varies considerably between years, a consequence of 

changing weather patterns (Walsh and Johnson 1979; Johnson 1980; 

Niebauer 1980). Beginning in 1973, anomalous atmospheric circulation 

resulted in the progressive cooling of the Bering Sea and led to large 

negative deviations from normal sea-surface temperature and shelf
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bottom water temperature and a large positive deviation from normal 

ice cover by 1976 (Dickson and Namias 1979; Niebauer 1980). Between 

fall 1976 and spring 1979 the trend reversed: sea-surface temperature, 

which was 1.40 C below normal in 1975, rose 0.7-0.8° C yr-1. Sea 

ice, which reached its maximum southern extent in the winter of 

1975-76, decreased about 10% yr- ' from 1977 through 1979 (Niebauer 

1980). Annual changes in ice cover and sea-surface temperatures were 

not confined to the Bering Sea, but were also pronounced in the

eastern Chukchi Sea (Fig. 66).

The eastern Chukchi Sea is dominated year-round by a strong 

barotropic current flowing north out of the Bering Sea (Coachman et 

al. 1975; Coachman and Aagaard 1981). Water velocity of 150 cm s- 1 

through Bering Strait is common and mean volume transport is in the

order of 1-2 Sv. In summer the total flow is composed of three

distinct water masses, Anadyr Water, Bering Shelf Water, and Alaskan 

Coastal Water. Anadyr Water and Bering Shelf Water are cold, 

high-salinity water masses. Alaskan Coastal Water, in contrast, is a 

warm, low-salinity water mass found in the northeastern Bering and 

eastern Chukchi seas. Alaskan Coastal Water tends to follow the 40-m 

isobath north of Bering Strait, which takes it eastward toward the 

Cape Thompson-Point Hope region. North of Point Hope the current 

tends to follow the Alaskan coast, flowing northeast around Cape 

Lisburne and into the Beaufort Sea east of Barrow (Fleming and 

Heggarty 1966; Hufford 1973; Coachman et al. 1975).

Alaskan Coastal Water develops annually on the shallow shelf 

of the northeastern Bering Sea (Fig. 67) from cold, relatively saline
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Figure 66. Percent ice cover over the northern Bering Sea and eastern 
Chukchi Sea. Numbers in parentheses are sea-surface temperatures 
measured near Cape Lisburne (mean date = 16 July, s = 3 d). Water 
temperatures were measured directly or from infrared imagery.
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Figure 67a. Alaskan Coastal Water development. Warm Alaskan 
Coastal Water (darker shading) from Norton Sound and the Yukon River 
intrudes into the ice-covered Chukchi Sea, 7 June 1980. NOAA 4 
infrared imagery with a temperature enhancement scale of -3° to 12,;'C.
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Figure 67b. With the dissipation of sea ice, the warm coastal jet 
flows through the eastern Chukchi Sea past Cape Lisburne, 29 July 
1980. Shading, source and enhancement as in (a).
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water that is diluted by melting ice and river input, primarily from 

the Yukon River, and rapidly heated by insolation (Coachman et al. 

1975). The temperature of coastal water flowing through Bering Strait 

may rise from near 0 to lO0 C during the first month following 

dissipation of sea ice (Bloom 1964; Ingraham 1981). The seasonal 

development of the Alaskan Coastal Water mass, therefore, apparently 

depends on the winter extent of ice into the Bering Sea and its rate 

of retreat in spring.

Seabird food webs

The Bering Sea shelf shoreward of about the 100 m isobath has 

high levels of primary productivity, about 166 g C m~2 yr-1 (Walsh and 

McRoy 1986). Poor coupling to pelagic herbivores, however, results in 

a relatively inefficient system, with a major fraction of the annual 

production being lost to endemic pelagic food webs (Cooney and Coyle 

1982). High nitrate concentrations in Anadyr Water (Husby and Hufford 

1969; Sambrotto et al. 1984) promote primary production rates as high 

as 4 g C nr2 d_l , rates comparable to those in the major upwelling 

areas of the world (McRoy et al. 1972). The only limitation to the 

total yearly phytoplankton growth in the western strait area appears 

to be the length of time suitable water column light and stability 

conditions prevail (Chapter 1). Because of the volume and speed of 

water transported through Bering Strait, a significant portion of the 

carbon fixed there during summer is swept downstream. Particulate 

organic matter advected from the northern Bering Sea shelf, plus that 

originating in the southern Chukchi Sea, could be important to the
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annual carbon budgets of the food webs of seabirds at Cape Thompson 

and Cape Lisburne.

The flow of water also plays an important role in determining 

the composition and abundance of zooplankton assemblages on the 

Bering-Chukchi shelf. Endemic Bering Sea copepods, including 

Neocalanus cristatus. tL Plumchrus. Eucalanus bunfl.il and Metridia 

pacifica are advected into the Chukchi Sea during summer, and 

contribute significantly to the diversity and standing stock of 

zooplankton (Johnson 1956! Redburn 1974; Chapter 2). The intrusion of 

warm Alaskan Coastal Water creates a temperature regime favorable for 

the rapid development of zooplankton, and as a result zooplankton 

biomass is about an order of magnitude greater than in the colder 

central Arctic Ocean (Redburn 1974).

Sand lance are seasonal predators of the nearshore 

zooplankters and are considered to be a coastal, shallow-water species 

except in winter when they move into deeper water and spawn 

(Andriyashev 1954; Macy et al. 1978; Rogers et al. 1979). Shoaling 

year class 1+ fish run onshore in summer in northern Alaska (pers. 

obs.) and in the Barents Sea (Andriyashev 1954), presumably in 

response to the abundance of prey. Sand lance in the eastern Chukchi 

Sea feed on the coastal copepods Acartia spp. and Pseudocalanus spp., 

the cladocerans Podon spp. and Evadne spp.. and meroplankton, 

particularly bivalve larvae (Springer et al. 1987). In the Barents 

Sea, sand lance feed on Calanus finmarchicus and larvae of barnacles, 

euphausiids and amphipods during early summer, and shift to small 

copepods, particularly Microsetella spp., ftgaLtla spp. and Qithooa
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spp., towards late summer (Andriyashev 1954). Sand lance in the 

northern Gulf of Alaska feed predominantly on calanoid copepods and 

barnacle larvae (Rogers et al. 1979; Blackburn et al. 1981). The 

abundance of several species of coastal zooplankton in Norton Sound 

and the eastern Chukchi Sea is well correlated with warming water 

temperature (Nlemark 1979: Springer et al. 1987), and temporal 

patterns of distribution of barnacle larvae in the eastern Chukchi Sea 

near Barrow, Alaska, are strongly influenced by the dynamic 

hydrographic regime imposed by the seasonal intrusion of Alaskan 

Coastal Water (Redburn 1974). Therefore, the occurrence of sand lance 

earlier in the summer each year after 1976 and concurrent increases in 

their abundance could have been functions of the rate of development 

of prey populations, a rate that apparently depends on the pattern of 

spring warming of the coastal zone.

Smaller average sizes of sand lance in colder years in the 

eastern Chukchi Sea, as reported for sand lance on the Grand 

Bank(Winters 1981), could have resulted from poor coupling to seasonal 

prey because of delayed development of prey populations. Also, sand 

lance size might be influenced directly by the effect of water 

temperature on the fish. For example, the emergence of sand lance (Aj. 

marinus) in spring from the sand where they overwinter is related to 

warming water temperatures (Winslade 1974), and the incubation time of 

sand lance eggs increases from 13 d at 16° C to 33 d at 6° C (Inoue et 

al. 1967). Delays in emergence dates and prolonged incubation times 

of eggs in colder years could shorten the growing season for sand 

lance and aggravate the effects of relatively low prey availability.
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Annual differences In seasonal water temperatures in the 

eastern Chukchi Sea could likewise account for the annual differences 

in abundance and size of capelin. Pitt <1958b) reported that capelin 

on the Grand Bank will spawn in a rather broad range of water 

temperatures, but spawning and embryonic development are delayed in 

colder years. Although adult capelin do not feed while spawning, 

Juveniles feed intensively throughout the summer, predominantly on 

copepods (Vesin et al. 1981). Therefore, the presence or absence of 

juvenile capelin near Cape Thompson and Cape Lisburne in summer could 

be related to the presence or absence of seasonally abundant food, as 

proposed in the case of sand lance. Pitt (1958b) also showed that 

growth rates of capelin were slower in colder years than in warmer 

years and suggested that the difference was a factor of water 

temperature and food conditions.

The most abundant and widespread fishes in the eastern Chukchi 

Sea are Arctic cod and sculpins (Alverson and Wllimovsky 1966; Craig 

and Haidorson 1981; Craig et al. 1982). Arctic cod feed on copepods, 

amphipods, and mysids (Lowry and Frost 1981; Craig et al. 1982).

Small sculpins feed mainly on mysids, amphipods, and isopods (Craig 

and Haidorson 1981). The degree to which these food webs might be 

affected by seasonal warming patterns or subsidized by particulate 

carbon imported from the Bering Sea is unknown. If there is a 

positive effect, then it should be greater in warmer years when the 

annual production cycle begins relatively early in summer, and it 

should be greatest near Bering Strait where the particulate load would 

be highest. Increasing sizes of Arctic cod and sculpins between 1976
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and 1980, and from north to south, suggest such effects.

Unlike other fishes, saffron cod apparently decreased In size 

from 1976 to 1978 at Cape Thompson and from 1977 to 1979 at Cape 

Lisburne, in spite of improving environmental conditions. Saffron cod 

are found in greatest numbers in summer in the northern Bering Sea and 

southern Chukchi Sea (Lowry and Frost 1981) and are the most abundant 

species in Norton Sound (Wolotira et al. 1979). Saffron cod are also 

found along the coast of the Beaufort Sea as far east as the Mackenzie 

Delta and Tuktoyaktuk Peninsula, but are not generally numerous (Craig 

and Haidorson 1981). They were the more common of the two species of 

cods taken by the birds in late summer in the eastern Chukchi Sea, 

comprising 67% of 312 individual cods identified to the species level 

in the 11-31 August interval of all years combined. In contrast, 

Arctic cod comprised 84% of 391 cods in the combined intervals from 

June to 10 August.

Neimark (1979) found that 80% of the diet of saffron cod in 

Norton Sound consisted of copepods and 20% consisted of cladocerans. 

Copepods and cladocerans are also important food of sand lance and 

capelin, and because sand lance, capelin, and saffron cod are all 

found nearshore in summer, competition among them for prey could 

occur. Vesin et al. (1981) suggested that declines in numbers of 

capelin in the northeast Newfoundland-Labrador area could have 

increased copepod availability sufficiently to influence growth and 

development of other zooplankton consumers. They cited recent 

dramatic increases in the abundance of Arctic cod and short-finned 

squid (11 lex i1lecebrosus) as evidence of such a relationship. In the
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eastern Chukchi Sea, the numbers and sizes of capelin and sand lance 

increased during the years that saffron cod declined in size, 

suggesting similar competitive interactions among these coastal 

zooplanktivores.

Finally, the absence of flatfishes in the diets of 

thick-billed murres in the earlier, colder years of this study also 

could have been a function of water temperature. Pruter and A Iverson 

(1962) believe that the spawning of HlPPpglQSSQides robU9tU3 and 

Limanda aspera. the two most abundant pieuronectlds in the Chukchi 

Sea, is generally unsuccessful because of the harsh temperatures 

offshore and because the coastal jet would sweep the pelagic eggs and 

larvae north into an even more severe environment. They suggested 

that the presence of these two species of flatfishes in the Chukchi 

Sea depends instead on the transport of eggs, larvae, and juveniles 

from the Bering Sea. The abundance of flatfishes, which is very low 

throughout the Chukchi Sea compared with the Bering Sea (Pruter and 

Alverson 1962), could be expected to be greater in warmer years, 

however, when the Alaskan Coastal Water mass develops early in the 

summer.

Biology of murres and kittiwakes

Summer foraging patterns of murres and kittiwakes and 

differences in those patterns between years could have been related to 

changes in the physical environment and the effects I suggest these 

changes had on food webs and prey availability. The case of 

kittiwakes appears relatively simple. During early summer of all
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years, kittiwakes foraged widely offshore. When sand lance or capelin 

arrived nearshore, kittiwakes shifted their feeding accordingly. The 

shift occurred between early July and mid-August, depending on the 

year; it was earlier in warmer years and later in colder years. In 

the very cold summer of 1976 when neither sand lance nor capelin were 

present, kittiwakes fed offshore throughout the summer.

Changes in murre foraging areas during the summer and between 

years are not as straightforward as those of kittiwakes. In June and 

early July of all years, murres from Cape Thompson fed south of the 

colony toward Bering Strait where energy levels are higher than in the 

Chukchi Sea. However, zooplankton, for example copepods, which are 

abundant in the northern Bering Sea and Bering Strait region as eggs, 

nauplii, and copepodids in early summer, are carried north into the 

eastern Chukchi Sea. The northward movement of an assemblage of 

organisms, including zooplankton and their fish predators, could lead 

to the shift in murre feeding areas at Cape Thompson from south to 

west to north during summer. By mid-August of most years, the center 

of murre prey abundance appeared to be situated north and west of Cape 

Lisburne, since large numbers of murres from both colonies fed there. 

Wing (1974) showed that copepod biomass and diversity in the eastern 

Chukchi Sea were greatest in a region of relatively warm water 

northwest of Cape Lisburne in September-October 1970. The occurrence 

of a variety of fish species was also higher there at that time than 

in the surrounding waters (Ingham et al. 1972). Annual variations in 

foraging patterns of murres at Cape Thompson could be explained by 

differences in the timing of annual production cycles in the northern
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Bering Sea-Bering Strait region, and consequently the timing and rate 

of export of food web organisms.

The feeding distribution of murres offshore of Cape Lisburne 

in July 1978 coincided with the position of a frontal zone between 

warm Alaskan Coastal Water and cold Arctic Ocean water. Such fronts 

often have significant biological effects by mechanically 

concentrating organisms and enhancing productivity (Owen 1981). A 

front between Alaskan Coastal Water and Arctic Ocean water is 

apparently a regular physical feature in summer that could account for 

the regular use of Ledyard Bay by feeding seabirds. The position of 

the front might vary depending on the season and the year, explaining 

the variability of feeding patterns of murres from the Cape Lisburne 

colony.

Changes in the breeding biology of murres and kittiwakes 

between 1976 and 1980 and the corresponding changes in prey 

populations represent adjustments to the large-scale environmental 

fluctuations that occurred during that period. Although many details 

are lacking, effects of the climatic oscillation during the 1970's 

were apparently manifested in at least two different food webs: arctic 

benthic and demersal food webs that Include Arctic cod, sculpins, and 

flatfishes and boreal pelagic food webs that include sand lance and 

capelin. Furthermore, environmental effects on seabirds and their 

food webs in northern Alaska were not restricted to Cape Thompson and 

Cape Lisburne. The same pattern of breeding failure followed by 

recovery in kittiwakes and common murres at Bluff in Norton Sound was 

documented between 1975 and 1980 (Drury et al. 1981; Springer et al.
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1985). Food availability at Bluff also seemed to be the most 

important factor in determining annual levels of reproductive success. 

Apparent food shortages likewise led to a poor breeding season for 

murres and kittiwakes on St. Lawrence Island in 1976 (Searing 1977). 

Murres and kittiwakes in Norton Sound feed primarily on sand lance and 

saffron cod, and on St. Lawrence Island they feed on cods, sand lance, 

and capelin (Springer et al. 1987). St. Lawrence Island and Norton 

Sound are located in the headwaters of the current that flows out of 

the Bering Sea and into the Chukchi Sea. Breeding seabirds throughout 

the northern Bering Sea-eastern Chukchi Sea region may be related, 

therefore, by common food web dependencies that are influenced by 

similar physical processes.

If energy flow through food webs in northern Alaskan waters 

waxes and wanes in response to patterns of environmental change during 

intervals of a few years, as It apparently did in the 1970/s, it might 

also adjust to longer term fluctuations in the environment (Cushing 

and Dickson 1976; Walsh 1978). For example, between the late 1940's 

and mid-1960's, sea-surface temperature over the bulk of the northern 

Pacific Ocean (15-60° N and 130° E - 110° W) was generally normal or 

above; only three years in the mid-1950's were slightly below normal 

(Namias and Cayan 1981). Since 1964, however, sea-surface temperature 

has been above normal in only three years. Such differences in the 

physical environment might alter energy budgets in northern Alaska 

sufficiently to account for the large declines in numbers of murres 

that we have documented at Bluff and at Cape Thompson (Springer et al. 

1985). Be 1ow-average temperatures for many years could have resulted
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In relatively less energy available to murres, relatively low levels 

of natality, and the recent numerical decline as recruitment fell 

below adult mortality. At Cape Thompson, murre numbers were highest 

in 1960, a time when water temperatures had been above normal for 

several preceding years. However, relatively cold temperatures 

prevailed from the mid-1960's until 1976. A simulation analysis 

predicted that murre numbers at Bluff would increase beginning in 1983 

(Springer et al. 1985), a consequence of improved reproductive success 

associated with the recent warming trend, if the population decline 

resulted from climatic fluctuations and not other causes.
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SUMMARY

Hydrography

The exceptionally broad continental shelf of the Bering Sea is 

divided by a series of three fronts generated by the interaction of 

wind mixing and tidal pumping. Once established in spring, the fronts 

restrict cross-shelf diffusion and advection and allow the development 

of distinct hydrographic domains. Advection is strong along-shelf, 

however, with the Bering Slope Current flowing northwest along the 

shelf break and a coastal current following the mainland north.

Anadyr Water, a northern branch of the Bering Slope Current, converges 

with Alaskan Coastal Water, the coastal flow, and with Bering Shelf 

Water between St. Lawrence Island and Bering Strait. Density fronts 

separate these water masses, creating three hydrographic domains with 

distinct physical and chemical characteristics within a small 

geographic area. Current velocities are high on the northern shelf, 

and the primarily northward flow patterns are determined by the 

interaction of atmospheric pressure gradients, wind forcing and 

topographic steering. Lighter Bering Shelf Water and Alaskan Coastal 

Water tend to override the denser Anadyr Water, providing vertical 

stability to an often turbulent water column.

Because of its origin on the shallow inner shelf, Alaskan 

Coastal Water tends to warm rapidly in spring following the 

dissipation of sea ice. The rate of retreat of sea ice from the 

Bering Sea, which exhibits pronounced interannual variability, is 

related to the rate of warming of the coastal water, such that
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seasonal temperature patterns also vary greatly between years.

Production regimes

Annual primary production is not especially high in the outer 

and middle shelf domains of the Bering Sea, and is low in the inner 

domain. The production derives primarily from a spring bloom 

subsequently augmented by smaller scale events induced by wind mixing 

below the nutricline, except in the shallow inner domain, where 

nutrients are stripped from the entire water column during the bloom. 

The feature that makes the outer domain particularly productive at 

higher trophic levels in pelagic food webs appears to be the efficient 

use made of the diatom bloom by herbivorous oceanic zooplankton. Such 

tight coupling between the primary producers and primary consumers may 

serve as a model for the nature of energy transfer throughout pelagic 

food webs. The large grazers are restricted to deeper water primarily 

because of the middle front, and in the middle and inner domains the 

zooplankton communities are unable to harvest the spring bloom 

efficiently . This leads to a proportionally high benthic flux of 

phytoplankton and large benthic biomass in the middle domain, while 

primary production in the inner domain is so low that neither benthic 

nor pelagic biomass is large.

Were it not for Bering Strait, the northern Bering and 

southern Chukchi seas probably would be typical of the inner shelf 

elsewhere, with low annual production because of nutrient limitation. 

However, the advective, virtually inexhaustable supply of nutrients to 

the Bering - Chukchi shelf via the "river" of Anadyr Water changes all
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that by promoting a eutrophlc, high-production regime in the shallow 

waters of a large part of the region. Phytoplankton grow profusely 

summer-long in a plume running generally south to north through the 

western Bering Strait area along the interface between Anadyr Water 

and Bering Shelf Water. The vertical stability provided by horizontal 

layering of the water masses apparently satisfies the critical depth 

criterion for net phytoplankton growth.

Anadyr Water also carries with it oceanic zooplankton that are 

key links in the transfer of energy to higher trophic levels in the 

pelagic food web. Because zooplankton are continuously supplied to 

the northern shelf during summer, several vertebrate species at higher 

trophic levels have prospered, particularly planktivorous marine 

birds. On average, the oceanic zooplankton cannot control the diatom 

population in the high-production region, as they apparently do over 

the outer shelf, and most of the phytoplankton production in the plume 

sinks and is converted into rich benthic communities. The flux of 

phytodetritus is apparently so large near the center of the 

high-production zone in the southern Chukchi Sea that invertebrates 

are largely eliminated, apparently because microbial activity leads to 

anoxia near bottom.

Planktivores in the Bering Strait region seem to have little 

effect on the overall abundance of zooplankton, just as the 

zooplankton do not control the diatoms. This uncoupled pelagic food 

web contrasts with that in the outer domain of the Bering Sea, where 

it is thought that the zooplankton efficiently graze the annual 

phytoplankton production and are themselves controlled by higher
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trophic levels.

Adjacent to this highly productive ecosystem, but sharply 

separated from it. is an impoverished, nutrient-limited one typical of 

most of the inner domain farther south. Following the spring diatom 

bloom, production by the successional phytof1 age 1 late community in the 

inner domain, although efficient, is nevertheless low. The high, 

post-bloom growth efficiency of the primary producers is probably 

mirrored in tightly coupled pelagic food webs, including 

microheterotrophs and small herbivorous and omnivorous zooplankton. 

Oceanic zooplankton are excluded, and higher trophic level populations 

are small. Planktivorous seabirds are absent, and the piscivorous 

species often experience severe interruptions in energy availabilty 

that are apparently related to interannual variation in water 

temperature and its effects on food web organisms.

The food webs

Carbon is fixed in the high production plume on the Bering - 

Chukchi shelf primarily by large silicious diatoms in the genera 

Chaetoceros and Thalassiosira spp., which are common in the Bering 

Sea. The successional development of the floral community is arrested 

because of the heavy nutrient load of Anadyr Water. The dominant 

herbivores are the imported oceanic copepods Neocalanus cristatus. N. 

P.lMmchrvg, Eucalanus bungi i and Metridia Pacifica. Depending on the 

season and year, zooplankton biomass is augmented to varying degrees 

by the oceanic larvacean Oikopleura labradoriensis and by resident 

shelf species, particularly Calanus marshallae.
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Neocalanus STiSlaiUS, tL Plumchrus and Calanus marshallae are 

the most important prey of planktivorous least auklets, the most 

abundant seabird breeding in the Bering Strait region. Crested 

auklets, the second most abundant seabird, also feed on copepods, as 

well as on other taxa. Other marine birds, particularly murres, are 

by far the most numerous of the piscivorous pelagic consumers.

Seabirds are also the most diverse group, with nine primarily 

piscivorous species breeding in the northern Bering and eastern 

Chukchi seas. Murres that feed in waters influenced by the Anadyr 

stream consume chiefly Arctic cod, and supplement their diets with 

saffron cod, capelin, sand lance, sculpins and pollock. Like the 

large copepods, pollock also are expatriates from the south.

Contrasting with the highly productive, oceanic-based food web 

associated with the flow of Anadyr Water is that found in the 

environmentally inner shelf region to the east. The depletion of 

nutrients by diatoms in spring leads to the development of a 

successional flora, with flagellates dominating the phytoplankton 

community during most of the productive season. The herbivores are 

mainly Calanus marshallae and small copepods, particularly 

Pseudocalanus spp. and Acartia longiremis. Arctic cod are replaced in 

the warm coastal environment by saffron cod, which attain their 

greatest biomass in Norton Sound. Young age classes of saffron cod 

are likely important consumers of zooplankton during summer. In some 

years, juvenile sand lance occur in very large numbers near shore, 

where they also feed on zooplankton.

Fishes are essentially the only vertebrate planktivores near
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shore in the northern Bering Sea and eastern Chukchi Sea, since the 

auklets seldom venture far from the bounty to the west. The number 

and diversity of the piscivorous seabirds in the coastal zone is 

generally low, with primarily only three species populating the small 

colonies in Norton Sound and Kotzebue Sound. Saffron cod and sand 

lance are the most important prey of murres and kittiwakes in Norton 

Sound. The avifauna is larger and more diverse at Cape Thompson and 

Cape Lisburne in the eastern Chukchi Sea than at coastal colonies 

farther south, possibly because the birds have access to feeding areas 

influenced by the Anadyr stream.

Unanswered questions

Many questions about the production regime on the Bering - 

Chukchi shelf remain unanswered. Foremost among them is why 

phytoplankton do not bloom wherever Anadyr Water provides nutrients to 

the euphotic zone. The principal hypothesis is that of the 

requirement for vertical stability in a turbulent water column. The 

stability can be provided by layering of coastal water from the 

western Bering Sea, Bering Shelf Water or Alaskan Coastal Water over 

Anadyr Water. The role of the oceanic zooplankton in affecting the 

areal extent of the plume also is questionable. On average the 

grazers are unable to control the bloom, but they might be able to 

limit the size of the area of high phytoplankton biomass.

Another major question is what becomes of all of the nitrate 

exported from the Bering Sea in Anadyr Water. Is it fully utilized by 

phytoplankton in the Chukchi Sea? Unfortunately, physics and politics
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so far have combined to prevent us from solving this problem. That 

is, because of international politics we have been unable to sample 

west of the U.S. - U.S.S.R. convention line, where the bulk of Anadyr 

Water apparently flows north of Bering Strait. The answer is 

particularly important in assessing the role of primary production on 

the Bering - Chukchi shelf in the global carbon budget.

There is as yet little information on the level of interannual 

variability in primary production within the plume on the northern 

shelf. Differences between years in production are probably related 

to meteorological effects on the total transport of Anadyr Water 

through the area, as well as on the trajectory of the water through 

Anadyr Strait and on the pattern of vertical stability. Unless it is 

of unexpected proportions, such variability in carbon fixation will 

likely have little significance to higher trophic levels in pelagic 

food webs, since a high rate of phytoplankton growth is maintained 

throughout summer in most years. Variability in primary production 

could have a much greater effect on benthic food webs, which depend on 

the rain of phytoplankton to support their dense populations.

Of potentially greater importance to pelagic organisms could 

be fluctuations in the supply rate of oceanic copepods to the region. 

Differences between years could have two sources, one being 

fluctuations in the transport of Anadyr Water, and the other being 

interannual changes in secondary production in the oceanic region of 

the Bering Sea. The continual replenishment of zooplankton through 

advection, however, would tend to damp food web effects that might 

otherwise result from fluctuations in the abundance of zooplankton off
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the shelf where they originate. Small-scale physical features, such 

as localized upwelling around islands and fronts that concentrate 

zooplankton, probably are more important to upper trophic levels, 

particularly planktivorous seabirds, than is the annual primary and 

secondary production.

Little is known also about variability in annual primary 

production in the shelf area outside the boundaries of the plume. 

Because water depths are shallow and the spring bloom apparently 

removes from the water column essentially all of the nitrate 

regenerated over winter, there is no source for resupply during 

summer, the Yukon River not withstanding. Therefore, it seems likely 

that differences between years in primary production are small.

The small taxa of phytoflagellates are probably grazed 

efficiently by microheterotrophs and zooplankton. Still, in situ 

secondary production is necessarily low, and is subject to 

destabilizing effects of fluctuations in water temperature, which are 

extreme in the coastal zone of the northern Bering Sea and eastern 

Chukchi Sea between seasons and years. Breakdowns in energy transfer 

to higher trophic levels, particularly seabirds, do occur, apparently 

in response to fluctuations in water temperature, but it is not yet 

known which trophic levels get decoupled or why. Water temperature 

affects the production of the small coastal zooplankton, which in turn 

are the food of fishes that support many seabirds. Water temperature 

can also have a direct effect on the productivity and growth of the 

fishes themselves, and may be responsible for interannual differences 

in their distribution, hence availability to predators, if not in
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their absolute numbers. The ultimate breeding performance of 

kittiwakes throughout the region, for example, appears to be dependent 

on the availability of sand lance, a fish that may be both directly 

and indirectly influenced by water temperature.
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