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ABSTRACT

Volcanic and non-volcanic partings occur in coal beds o f  the N eogene Beluga and 

Sterling Form ations along the shores of the Kenai low land, Alaska. The partings were 

system atically characterized to determ ine their potential geological applications. Two- 

thirds o f the partings originated as air-fall tephra. O f these, partly altered, Pliocene tephra 

typically contain volcanic glass + feldspar ±  m ontmorillonite ±  quartz ±  kaolinite ±  opal- 

CT. H ighly  altered  M iocene partings are characterized  by fe ldspar ±  kaolinite ±  

montmorillonite ±  quartz ±  crandallite ±  altered volcanic glass, where crandallite appears 

to  have form ed by replacement o f volcanic glass prior to clay formation. About one-third 

o f the partings are of detrital origin and contain detrital chlorite + illite +  smectite + quartz 

±  feldspar ±  siderite ±  kaolinite.

A Pliocene pumice parting near the top o f the Sterling Form ation was correlated from 

the northw estern  to  the southeastern K enai low land on the basis o f  sim ilar g lass 

m orphologies, an absence o f opaque minerals, and geochem ical similarities. A crystal- 

tuff near the middle o f the section could be traced across the Kenai lowland as one or two 

ash-falls, based on inertinite contents of adjacent coal, m ineralogy, and geochemistry. 

Some other prom inent tephras could not be correlated.

The tephra partings are time-equivalent to DSD P (Deep Sea D rilling Program) cores 

from  the G ulf o f A laska and along the Aleutian Island chain. Tephras occur every 125

500 yr in the lower part o f the Beluga Formation, and their deposition probably coincides 

w ith a volcanic pulse 10.5 m.y. ago. This pulse is not w ell recorded in nearby DSDP 

cores. In the upper part o f the Beluga Formation, during volcanic quiescence, tephras are 

recorded at an average rate o f one every 9,000 yr. T im e equivalent D SD P cores show a 

near absence o f  tephras. A volcanic pulse occurred during the deposition of the lower
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Sterling Form ation, about 7.5 m.y. ago, with intervals betw een volcanism  which 

averages 11,000 yr o r longer. Volcanic sources appear to  have been distant, which is 

consistent with an absence o f tephra layers in a G ulf o f Alaska core. A bout 5 m .y. ago, 

concurrent with the deposition o f the upper Sterling Form ation, the thicknesses o f the 

tephra layers dramatically increase and the frequency increases to an average o f one tephra 

every 2,000 years. This increase is recorded in DSDP cores as well.
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Introduction

Outcrops o f  Tertiary coal-bearing units occur in sea-cliffs around the K achem ak Bay 

and Cook Inlet shores o f the Kenai lowland, Alaska. These sedim ents were deposited in 

the Cook Inlet basin and are o f  fluvial, estuarine, and deltaic origin (Hayes and others, 

1976; Fisher and M agoon, 1978; Rawlinson, 1979).

Volcanism  related to the uplift o f the Alaska Range and A laska Peninsula (K irschner 

and Lyon, 1973) produced ash that was deposited as layers in the coal swamps. As a 

result, the coal beds o f the N eogene B eluga and Sterling Form ations contain num erous 

partings o f volcanic origin. Detrital partings are also common.

Background o f the Kenai Group

Dali and Harris (1892) originally defined 600 to 900 m o f coal-bearing strata exposed 

in the southw estern part o f  the Kenai low land as the K enai G roup, and assigned an 

Eocene age. A fter years o f  considerable confusion regarding the age and nomenclature o f 

these "Kenai G roup" sedim ents, Barnes and Cobb (1959) changed the designation to the 

Kenai Form ation. An estim ated 1,400 m  o f section were m easured along the northwestern 

shore o f K achem ak Bay; total thickness was uncertain because neither top nor base had 

yet been recognized.

As a result o f  the initial petroleum  exploration in the area in the 1960’s, Kelly (1963) 

show ed that the K enai Form ation was actually 5,500 to  7 ,600 m  thick, contained at least 

tw o unconform ities, five thick sedimentary sequences o f  contrasting lithology, and basal 

beds o f  probable Paleocene age. The Kenai Form ation was reinstated to group status by 

Calderwood and Fackler (1972), who also nam ed five lithostratigraphic formational units. 

These rock units were defined on the basis o f well samples and electric-log characteristics

1
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2

and supported by palynology and heavy mineral studies. The formations from  the oldest 

to the youngest are: The W est Foreland Formation, the Hemlock conglom erate (where oil 

was first discovered in the Cook Inlet basin), the Tyonek Form ation (identified by thick 

sandstone and thicker coal beds than the overlying Beluga Form ation), the Beluga 

Form ation, and the Sterling Form ation. Fisher and M agoon (1978) do not include the 

west Foreland Formation in the Kenai Group because it is mainly volcaniclastic sediments 

with only small amounts o f coal. The Kenai Group was originally considered a "coal- 

bearing group" (Dali and H arris, 1892), so the inclusion o f the west Foreland Formation 

in the Kenai Group is technically incorrect (Rawlinson, 1979).

Beluga and Sterling Formations

Outcrops o f  the Beluga and Sterling Form ations were described in detail by Barnes 

and Cobb (1959) and subdivided into the H om erian and the Clam gulchian provincial 

paleobotanical Stages by W olfe and others (1966). Tephra partings in coal beds near the 

Homerian-C lam gulchian boundary were K-Ar and fission-track dated to be about 8  m.y. 

old by Tripleham  and others (1977).

C alderw ood and Fackler (1972), Hartman and others (1972), and Hayes and others 

(1976) interpreted the deposits o f the Beluga Form ation to  be o f braided stream  origin, 

and Rawlinson (1979) interpreted them  as o f both braided-stream  and m eandering stream 

origin. These H om erian stream s flow ed on a low  gradient, northw estw ard-sloping, 

wooded alluvial plain and deposited sediments characterized by fining-upward sequences. 

The coal form ed in poorly drained flood basins.

Clam gulchian streams also flow ed on a northwestw ard, low-gradient, alluvial plain 

similar to that o f  Homerian times. Coarse-grained channel and point bar deposits, as well
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as fine-grained oxbow  lake deposits, are characteristic o f  C lam gulchian sedim ents 

(Raw linson, 1979). The flood basins were largeF than during H om erian tim e, which 

resulted in greater lateral continuity and thicknesses o f C lam gulchian coal beds (Sterling 

Formation) as com pared with Homerian beds (Beluga Formation).

Focus o f  Thesis

The focus o f  this thesis is on the origin, mineralogy, geochem istry, correlation, and 

frequency o f  the partings in  the B eluga and S terling Form ations, and the thesis was 

prepared as three separate m anuscripts. The first paper (ChapteF 1) em phasizes the origin, 

m ineralogy and geochem istry o f  the partings and was subm itted for publication to Clays 

and Clay M inerals. The second paper (Chapter 2) em phasizes correlation o f the partings, 

and the third paper (C hapter 3), the frequency o f the partings as re la ted  to Tertiary 

volcanism . The latter two papers were subm itted to the G eological Society o f  America  

Bulletin. The first paper provided the foundation for the subsequent papers, and provided 

the first system atic description o f  partings in the Beluga and Sterling Form ations. As a 

result, correlation across the K enai low land becam e possible. In a pioneering effort, 

tephra partings in coal beds were used for interpreting past volcanic history. Coal beds 

may, thus, provide a new tool for interpreting the frequency o f  past volcanism.

Chapter 1: volcanic versus non-volcanic partings

M ineral m atter from  coal beds in Alaska, including those from  the Kenai lowland, 

were previously studied mostly in terms o f coal utilization (Rao and W olff, 1982). Barnes 

and Cobb (1959) described m ineral m atter in the coal beds o f  the Beluga and Sterling 

Form ations in such term s as "dirty coal" (Barnes and Cobb, 1959). A dkison and others 

(1975), T riplehom  and others (1977), R aw linson (1979), and Turner and others (1980)
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recognized m ineral matter as separate partings, including tephra partings. N o systematic 

descriptions or analyses, how ever, were perform ed for any of the partings. C hapter 1 

addresses these m issing aspects. Partings o f volcanic and non-volcanic origins w ere 

ca refu lly  d iffe ren tia ted  based  on m inera logy  (including  clay  m in era lo g y ) and 

geochem istry. It was discovered that tephra and detrital partings can be distinguished 

based on original and alteration m ineral assemblages. G eochem istry and m ineralogy 

showed that some partings have high concentrations o f phosphates; X -ray diffraction 

revealed that they are new occurrences o f crandallite, a hydrated calcium -alum inum - 

phosphate-hydroxide. The classification o f the partings as volcanic and non-volcanic 

provided important background information necessary for later correlation.

Chapter 2: the significance of correlation

T ephra partings in coal are time horizons and as such are useful fo r correlation. 

B iostratigraphy (Adkison and others, 1975) and lateral tracing of coal beds ev er short 

distances (Barnes and Cobb, 1959; Adkison and others, 1975; M erritt and others, 1987) 

were the only prior attempts at correlation in the Kenai lowland. Radiom etric ages were 

obtained for 17 tephra partings (Triplehom  and others, 1977; Turner and others, 1980) 

but do not give consistent individual dates; therefore, such dates could not be used to aid 

the correlations. However, the dates appear to be reliable as a general age fram ework for 

the Beluga and Sterling Formations.

Correlation o f Q uaternary tephra partings using geochem istry and m ineralogy is 

com m on (W estgate and E vans, 1978; W estgate and Gorton, 1981; Juvignd and 

Porter, 1985; B ogaard and Schm incke, 1985; Sam a-W ojcicki and others, 1987). It is 

m ore difficult to  correlate Tertiary or older partings because o f alteration and reworking.
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Trace elem ent analyses o f  bulk sam ples, how ever, have been used  successfully  to 

correlate pre-Quatem ary tephra layers (Huff, 1983).

M ost partings in the B eluga Form ation are entirely  altered. Som e partings in the 

S terling Form ation are altered, w hereas som e are nearly unaltered. It was possible to 

correlate a few partings using m ajor oxide analyses of volcanic glass in combination with 

trace elem ent analyses and m ineralogy o f w hole-rock samples, glass m orphology, and 

idiosyncrasies o f  individual partings. These correlations in general conform  w ith the 

established biostratigraphy (A dkison and others, 1975), and may be useful in the future 

for correlation o f the Kenai lowland with the subsurface o f Cook In le t

Chapter 3: frequency o f the partings

A fter com pleting the second chapter, it becam e clear that the abundance o f  tephra 

partings varied considerably from  the Beluga to  the Sterling Formations and within each 

form ation. This was particularly obvious because the coal beds that record the partings 

occur at regular intervals. Therefore, it could be deduced that the frequency o f the ash-falls 

varied through time. Some interesting im plications arose from  this observation. From 

previous work with deep sea cores (the Deep Sea Drilling Program), it w as suggested that 

volcanism  occurs in pulses at approxim ately 2.5 m.y. intervals (Scheidegger and Kulm. 

1975; Hein and others, 1978; Rea and Scheidegger, 1979; Scheidegger and o thers, 1980). 

W ould tephra partings in the coal beds also show this periodicity? In general, periodicity 

can be observed on a broad scale, but in detail it is not maintained. The coal beds show a 

m ore detailed tephra record, how ever, i.e. m any m ore partings are preserved than in the 

DSD P cores for any specific age during w hich both the coal and the deep sea sediments 

were deposited. O n the other hand, the DSD P cores show a more com plete sedimentary
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section. Since coal beds m ay provide inform ation about past volcanism , carefu l 

examination o f other coal beds in Alaska may provide additional information. M uch more 

work needs to be done to establish a relationship between partings preserved in coal beds 

and D SD P cores.
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Chapter 1 
Mineral Assemblages Characteristic of Partings of Volcanic and Non- 
volcanic Materials in Tertiary Coal Seams, Kenai Peninsula, Alaska, 

(accepted by Clays and Clay Minerals)

ABSTRACT

V olcanic and non-volcanic partings are exposed in coal beds o f the Tertiary Beluga 

and Sterling Formations along the shores o f  the Kenai lowland, Alaska. About two-thirds 

o f the partings originated as air-fall tephra which fell in coal-forming swamps. The tephra 

partings in the Pliocene strata are unaltered or slightly altered with a characteristic mineral 

assemblage of volcanic glass ±  m ontmorillonite, ±  kaolinite ±  opal-CT. M iocene strata 

are slightly to totally  altered to m ainly kaolinite and m ontm orillon ite  w ith m ineral 

assemblages o f feldspar ±  kaolinite ±  montmorillonite ±  quartz ±  crandallite ±  altered 

volcanic glass. Crandallite - a hydrated calcium , aluminum phosphate m ineral appears to 

have form ed early in d iagenesis by replacing volcanic glass before the form ation o f  

m ontmorillonite and kaolinite. The phosphate for the formation o f crandallite m ay have 

been derived m ainly from  organic colloids and/or apatite. A bout one-third o f the partings 

originated as detrital sediments derived from  surrounding m etam orphic and sedimentary 

terranes and were deposited by occasional floods. M ixtures o f  tephra partings and detrital 

sedim ents also occur and are difficult to distinguish in the field. D etrital partings are 

characterized by detrital chlorite, illite, smectite, quartz, feldspar ±  siderite ±  kaolinite. The 

chlorite in these strata is allogenic. Smectite is less common in detrital parting.

INTRODUCTION

T ertiary coal seams are well exposed along the shores and coastal canyons o f the 

K enai low land o f  the Kenai Peninsula in  the Cook Inlet area o f  A laska. These coals 

9
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form ed from  a series o f swamps in poorly drained flood basins associated with fluvial 

sedim entation o f  the Cook Inlet basin (H ayes and others, 1976; F isher and M agoon, 

1978; Rawlinson, 1979).

V olcanic activity was com m on in the C ook Inlet area during the m iddle and late 

Tertiary, related to underthrusting along the Aleutian Trench and the resulting uplift of the 

Alaska Range and the Kenai-Chugach M ountains (K irshner and Lyon, 1973). Layers of 

air-fall tephra (here called tephra partings) as well as fluvial clastic sediments (here called 

detrital partings) were incorporated into the coal swamps and are now exposed as partings 

in the coal beds. The alteration o f these partings has resulted in characteristic m ineral 

assemblages.

The purpose o f this study is to: 1) demonstrate that tephra and detrital partings can be 

differentiated based on their clay and whole-rock m ineral assemblages 2 ) interpret the 

mineral assemblages in terms o f position o f  the partings in the sections 3) describe a new 

occurrence o f  a hydrated aluminum phosphate mineral.

GEOLOGIC SETTING

Some o f  the earliest investigators in the Cook inlet area, D ali and H arris (1892), 

originally defined about 600-900 m o f coal-bearing strata exposed in the southwestern pan 

o f the Kenai Peninsula as the Kenai Group. Barnes and Cobb (1959) changed the rank of 

the "Kenai Group" to the Kenai Form ation. The total thickness could not be determ ined 

because neither top nor base w ere recognized . D uring  early  phases o f petro leum  

exploration in the area, Kelly (1963) showed that the Kenai Form ation was actually about 

5500-7600 m thick, included five thick sedim entary sequences o f  contrasting lithology, 

and that the basal beds were probably o f  Paleocene age. The K enai Form ation w as re
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elevated to group status by Calderwood and Fackler (1972), who defined and nam ed five 

form ations on the basis o f well samples and electric log characteristics, supported by 

palynology and heavy mineral studies.

The W est Foreland Form ation is the oldest unit, overlain in ascending order by the 

Hem lock Conglom erate, the Tyonek Form ation, the Beluga Form ation and the Sterling 

Form ation (Figure 1.1). F isher and M agoon (1979) do not include the W est Foreland 

Formation in the Kenai Group because it is mainly volcaniclastic with only small amounts 

o f coal, while the Kenai Group was originally defined as a "coal-bearing group" (Dali and 

H arris, 1892).

This study focuses on the Beluga and the Sterling Form ations which crop out along 

the shores o f  the Kenai lowland. The outcrops were described in detail by Barnes and 

Cobb (1959) and were subdivided into the H om erian and the C lam gulchian provincial 

paleobotanical Stages by W olfe and others (1966). The boundary between these stages, 

which approxim ates the lithostratigraphic boundary betw een the Beluga and Sterling 

Form ations, has been assigned an age o f 7.9 ±  1.0 m.y. based on K-Ar age estim ates for 

plagioclase and fission-tracks in zircon from  tephra interbedded in coal (T riplehom  and 

others, 1977). Calderw ood and Fackler (1972), H artm an and others (1972), H ayes and 

others (1976) and Rawlinson (1979) describe in detail the sedimentologic characteristics 

o f the B eluga and Sterling Form ations and interpret the environm ents o f  deposition as 

meandering and braided fluvial systems.

SAMPLE SITES AND SAMPLE SELECTION

Close to 100 partings were sampled from  coal beds in outcrops along the shores o f the 

K enai low land (Figure 1.2). They were sam pled according to their thickness, abundance
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Figure 1.2 Index map showing tha location of tha study araa. Samplad sactlons ara 
shown as lines of continuous dots. K-Ar radiometric ages of plagioclaae near 
Ninllchik and McNail Canyon are from Triplahorn and others (1977): Radiometric ages 
are not available from the oldar DC section. CG= Clam Gulch, NINs Ninllchik, DCs 
Diamond Creek, MC= McNeil Canyon and FC= Fox Creek.
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and inferred origin as follows: Partings less than 1/2 cm  w ere generally  not sam pled 

unless they were the only available partings in a thick section o f  coal beds or displayed 

unusual properties. M ost partings sampled varies from 1 to 10 cm thick. Partings o f both 

volcanic and non-volcanic origin occur, although partings o f volcanic origin are m ost 

com m on. W ith few  exceptions, both subjective and objec tive d istinc tions betw een 

volcanic and non-volcanic partings were m ade during sam pling. V ery thin and  fine

grained partings w ere difficult to  characterize as volcanic or non-volcanic in the field. 

Splits in the coal o f obvious detrital origin were not sampled. S ixty-tw o sam ples were 

obtained from the Diam ond Creek (DC) section o f the Beluga Form ation. "Sections" here, 

as illustrated in Figure 1.2, signify continuously sampled outcrops, and do not necessarily 

coincide with the m easured sections described by B am es and C obb (1959), A dkison 

(1975), R aw linson (1979) o r M erritt and others (1987). Partings are especially  w ell- 

preserved in the coal o f the D C  section which contains by far the m ost numerous coal beds 

and thus m ore partings than the other sampled sections. Thirty-five samples were collected 

from  the M cNeil Canyon (MC), Fox Creek (FC), Ninilchik (NIN), and C lam  Gulch (CG) 

sections. In these sections, coal beds and partings are not as com m on. Three volcanic ash 

partings in  the Fox Creek area and one in the D iam ond C reek area w ere sam pled from  

siltstone rather than from coal, and two partings were collected from Holocene peat in the 

Diamond Creek area.

METHODS OF ANALYSES

W hole rock  and clay fractions (<2p.m) w ere analyzed  using a R igaku X -ray 

diffractometer with Ni-filtered C u K a radiation and a scanning rate o f  8°20/m in.
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Clay fractions: Sample preparation

Clay sam ples were disaggregated in d istilled water using an ultrasonic probe. The 

suspension was transferred into a 250 ml glass centifuge botde and centrifuged at 1000 

rpm  for four minutes. Tim e and speed were controlled to leave only the <2|j.m size grains 

in suspension, follow ing methods o f Jackson (1974). The <2|im  fraction thus obtained 

was suction-deposited on a porous, unglazed ceramic plate, resulting in a thin (< lm m ) but 

firm , oriented clay film in which the basal planes are preferentially oriented parallel to the 

plate surface (K inter and D iam ond, 1956). Each sample was scanned from  2 °  to 35°20 

after air drying and from  2 °  to  2O°20 after vapor-phase, ethylene glycolation for one 

w eek and step-w ise heating to  300° and 550°C  respectively, for one hour or longer in 

order to differentiate and identify chlorite, illite, smectite and kaolinite.

E ight o f  the purest sm ectite samples w ere randomly selected and treated w ith LiCl 

according to  the test devised by Greene-Kelly (1955). The relative peak heights from 

qualitative analyses o f the clay fractions were used as indicators o f the relative am ount of 

sm ectite. The heights ra ther than the areas o f the reflections w ere m easured because 

strictly quantitative information is not deem ed necessary for the results o f this study.

Whole rock sample preparation

W hole rock sam ples w ere ground to  a <200 mesh pow der in a  Rockslab tungsten 

shatter box w ith a carbide grinding head, pressed into aluminum sample holders and X- 

ray  (X RD) scanned (2°  to 65°20). Small chips o f whole rock sam ples w ere selected 

according to m ineral composition (as determ ined by XRD), m ounted on alum inum  stubs 

and sputter-coated with gold-palladium alloy. Significant minerals were photographed and
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analyzed using a JEO L (JSM35 model) scanning electron microscope (SEM) at 15 kV and 

a Kevex Unispec System 7000 energy dispersive X-ray spectrometer (EDX).

Attem pts at m aking standard petrographic thin sections were unsuccessful for all but 

seven tephra sam ples because o f their clayey or crum bly, non-indurated texture. Sand

sized coarse fractions were obtained from  16 samples by using an ultrasonic probe while 

continuously rinsing  the sam ples w ith w ater and discarding the clay fraction. These 

samples were thin-sectioned as grain mounts.

A Perkin-Elm er 283B infrared (IR) spectrophotometer was used to determ ine whether 

kaolinite is present in ten randomly selected chlorite-rich, detrital samples. A direct current 

p lasm a (D CP) atom ic em ission spectrom eter (Beckm an SpectraSpan V) was used  to 

determ ine the m ajor elements in all samples. Barium and strontium contents were included 

as m ajor oxides rather than trace elements because o f their relatively high concentrations.

RESULTS

Partings in the outcrop

Tephra partings are up to 10 cm thick. They are clayey, plastic, indurated or coarse

grained (more so than detrital partings) and crumbly, and present a "clean" homogenous 

texture. They w eather to a bleached p inkish white color on the surface exposures. Colors 

are com m only 10R6/3 pale red to 10R2.5/2 very dusky red (M unsell Soil C olor Charts). 

O rganic m aterials including coalified stem s and leaves, if  present, show no preferred 

orientation. Pum ice fragments may be visible, especially in indurated partings, but also as 

"dispersed pum ice-fragments partings" in the coal itself.

D etrital partings tend to be flaky, fissile o r crum bly and only locally indurated. They 

are finer grained, thicker and have a m ore heterogenous texture than most tephra partings.
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Colors are commonly 10YR7/1 light gray to  10YR3/1 very dark gray, locally having blue 

or green tinges. W hen w eathered, they com m only retain their original color or m ay 

develop a "faded" appearance. Organic m aterials are oriented parallel to the fissility - 

probably the bedding plane. Pum ice fragm ents o r o ther v isible products o f  volcanic 

activity are absent

Mineralogy of tephra samples

The mineralogy of samples o f volcanic origin differs characteristically from samples of 

non-volcanic origin. Outcrop dissim ilarities and differences in chem ical com positions 

(Table 1.1) o f tephra and detrital partings reinforce this distinction (Reinink-Smith, 1987). 

Sm ectite. Smectite is the dom inant component in the clay fraction o f  altered volcanic ash 

partings. A typical XRD pattern shows a large, fairly broad 001 peak at about 12-14 A 

which in all samples expands to 17.0 A with ethylene glycol solvation. Some smectite in 

the air-dried preparations appears to be poorly crystalline, w ith short and broad  XRD 

peaks, but will expand to  prom inent 17.0 A peaks w ith ethylene glycol solvation. Such 

samples commonly contain abundant volcanic glass.

The 060 reflections o f the random  pow der patterns range from  1.49 to 1.50 A and 

indicate dioctahedral smectite. The LiCl test (G reene-Kelly, 1955) o f  the eight randomly 

selected samples established those smectites as m ontmorillonites, and it is assum ed that 

the sm ectites in the o ther partings o f  volcanic o rig in  are a lso  m on tm orillon ites. 

M ontm orillonite occurs in a typically crenulated m orphology in sm ectite-rich samples 

(Figure 1.3a). In a  few patterns, neither smectite nor any other expandable component is 

present, and kaolinite dominates these patterns (Table 1.2).
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TABLE 1.1 THE AVERAGE AND RANGE O F CONCENTRATIONS OF MAJOR 

O XIDE ANALYSES FOR THE TEPHRA AND DETRITA L PARTINGS 

O F A LL THE SAMPLED SECTIONS

From Reinink-Smith (1987)
TEPH RA  PARTINGS 

49 D C  samples 
Mean Min.

DETRITA L PARTINGS 
17 DC samples

S i0 2 48.53 7.16
AI2O 3 28.35 15.39
Fe2 0 3* 2.52 0.41
MgO 1.45 < 0 .0 1
CaO 6.64 0.99
Na20 1.93 0.15
k 2o 0.47 0.11
TiO 0.95 0.31
MnO 0.04 < 0 .0 1
P2 O 5 6.44 0 .0 2
BaO 1.13 0 .0 1
SiO 0.89 < 0 .0 1

Max. Mean

66.52 57.21
40.57 17.48
36.16 20.42

2.97 2.51
12.97 1.40
4.34 1.17
1.98 1.95
2.52 0 .7 6
1.05 0.41

28.79 0 .2 1
5.68 0 .14
5.28 0 .07

Min. Max.

13.10
6.10
4.33
1.80
0.51
0.22
0.29
0.17

<0.01
0.02

<0.01
<0.01

68.74
23.84
65.21

3.86
4.35
2.73
2.91
1.00
1.82
0.62
0.39
0.34

TEPH R A  PARTINGS 
23 CG, NIN, M C, and

Mean
FC  samples 

Min. Max.

S i0 2 66.80 57.40 76.85
M 2O 3 18.99 14.15 24.89
Fe2 0 2 3.13 0.38 10.83
MgO 1.19 0.13 3.02
CaO 3.39 1.26 7.39
Na20 2.84 1.16 5.30
k 2o 1.93 0 .30 4.57
TiO 0.57 0 .16 1 .2 2
MnO 0.06 0 .0 1 0.54
P 2O 5 0.48 0 .0 2 3.92
BaO 0.18 0 .04 0.79
SiO 0.14 0 .0 1 0.47

DETRITA L PARTINGS 
8  CG, NIN, MC, and 

FC  samples 
Mean Min. Max.

57.21 31.14 67.15
18.53 8.67 27.84
13.58 3.95 49.95

2 .2 1 1.77 2.46
2.40 1 .1 1 7.11
2 . 8 6 0.93 4.85
1.72 0.64 2.25
0 .79 0.43 0 .96
0 . 2 2 0.04 1.17
0.15 0.03 0.31
0 .09 0 .0 2 0.15
0 .04 0 .0 1 0.09

Note: The analyses are calculated on a moisture free basis. The num ber o f  samples 

q u a d r^ ic a te  before ^  sample names- Each sample was analyzed in
* Total Fe calculated as Fe2 C>3 .
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Figure 1.3 SEM micrographs of samples from the DC section, a) Montmorillonite 
occurring in crenulated, "cornflakes"-ilke morphology In clayey, bentonitic samples 
(original magnification = 6,000 x, sample DC 21). b) Montmorillonite replacing skeletal 
plagioclase microllte (4,400 x) sample DC 21).
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Figure 1.3 (continued) c) The surface of 8 plagioclaso grain is partially altered to 
montmorillonite (3,000 x, sample DC 65). d) Pseudohexagonal kaolinite platelets In a 
smectltic matrix (2,000 x, sample DC 37).
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TABLE 1.2 MINERALOGY FOR INDIVIDUAL SAMPLES AS 
DETERMINED BY XRD

SAMPLE KAOL SM ILL CHLILL(SM) CHL(SM) SID CRAN Q FO TH

1 S T S s s4 (K) S* M M-L L s6 K S* M L L s7 K T* S M L s
8 M M-L T s
8A
8B

T L
M-L

M
s

M
9
10 
12 
13

T

T
T

M

M
M

S
T

S-M
M
M
s

17 (K) T* M s ? L s
18 S
21
22

S
T

L
L S SLL

23 S M
24 S M L

c
25
27
28

S
S
K

M
T* M L

S
L

o
M

M-L
s

29
30

L
(K)

M
S* M M

T S
L

s
s

31 K 7* M L L s
31A (K) T* M M L s
32 (K) T* M M M-L s35
36

M
T

S
M

S
T

T
7

s
s

37 S S s s
38 K L* M L S L s39 L S T L
40 S M-L s T-S40A S L T c
40D
40G
42

T M

?

M-L
M-L
M-L44

45
46

L

M(K)

S*

S*

S

S

S

S

M
?
L

M
M
s

48 K s* s S-M L s T50 S s s s
50A M s T s s
51 S T s s
51A T S M
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TABLE 1.2 (Com.)

SAMPLE KAOL SM ILL CHLELL(SM) CHL(SM ) SID CRAN Q  F  OTH

DC 53 S M* T s
DC 54 s M
DC 55 S-M S T T
DC 56 (K) L M-L L
DC 57 T
DC 58 S T* T S
DC 59 M T T T
DC 60 T M
DC 60AA S M
DC 60A L
DC 60 A I S S*
DC 60B
DC 60C L S*
DC 61 L
DC 63 L
DC 65 L
DC 6 6 K M-L* S
DC 67 S S* M M
DC 6 8 L T
DC 6 8 A L L
DC 69 S M
DC 70 L(K ) S S
DC 71 M S
DC 72 L S
DC 73 M M s

MC 1 T
MC 1A T M
MC IB K M* S M
MC 1C M

MC 2 T M-L
MC 3 T S-M
MC 4 L

FC 1 K M* M
FC 2 S(K ) S* s
FC 3 s
FC 4 T
FC 5 (K) T* M
FC 5A T
FC 6 T L
FC 7 G LA '
FC 8 T T

S
GLA SS

S M-L
S M-L
? S
S 7

S M-L
T L S

M S
S s

T
M S

S S

M S
T M

M-L
L

L S-M
M T
S
T L

S M
S M
S T M
S S T

M T

S M
S M

M-L T
T T A?

T T
T S-M
T S A?

L S
L s
S M 0 ?
S S
L S
S T
S T
T T
T O

L
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TABLE 1.2 (Cont.)

SAMPLE KAOL SM ILL CHL ILL(SM)CHL(SM) SID CRAN Q F OTH

FC  9 T M T
FC 10 T M S
FC 11 (K) S* S M M S
FC 12 S-M S S
FC  13 L S s
FC 14 S T
FC  15 GLASS T T

NIN 1 K L* M  M L s
NIN 2 T L M M-L
NIN 3 S S s
NIN 4 S T* T L M-L O
NIN  5 (K) L* S M-L L s
CG 1 M M  A?
CG 4 (K) L* S M-L S T
CG 5 M T T  O
CG 6 T L S T
CG 8 T S-M M S

Note: KAOL=kaolinite, SM=smectite, ILL=illite, CHL=chlorite. ILL(SM )=illite and 
CHL(SM)=chlorite in those samples where it "contracts" with glycolation in conjunction 
with the expandable component. SID=siderite, CRAN=crandallite-like mineral, 
Q=quartz, F=feldspar, OTH =other minerals that may be present in trace amounts. 
Siderite, crandallite, quartz and feldspar are measured from the pow der XRD patterns. 
The relative intensity o f the peaks are noted in the different columns: L=large intensity, 
M =medium intensity, S=small intensity, T=trace intensity. K = kaolinite present in small 
amounts as determined by IR. (K )= kaolinite assumed to be present in small amounts 
based on similar samples where kaolinite was determined by IR. 0 =  opal-CT and 
A=amphibole. An asterisk(*) by the intensity of the smectite peak indicates that smectite 
could be determined only by ethylene glycol solvation. Sample numbers are arranged by 
sampled sections, not necessarily in stratigraphic succession. H owever, the numerical 
order of the DC section, from lower to higher numbers, represents younger to older 
parts, respectively.
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K aolinite. Kaolinite occurs as a distinct component o f the clay fraction in the majority of 

tephra partings in the DC section. Exceptions are two glassy, recent partings (DC 60A1 

and DC 60B) from  the D iam ond Creek area that were collected fo r m inera logical 

com parisons from  a 3 m thick Holocene peat overlying the D C  section. Kaolinite is a 

lesser com ponent in the clay fractions o f partings in the younger FC, NIN, CG, and MC 

sections. These partings tend to be less altered than those from the D C  section and are, 

based on SEM and optical microscope investigations, mostly com posed o f volcanic glass. 

Several partings in these sections contain no detectable kaolinite.

The kaolinite generally has sharp reflections at 7.14 to 7.25 A in oriented samples o f 

the < 2 |im  fractions, but occurs as w eak peaks in patterns o f  the random ly oriented 

samples. Kaolinite does not appear to occur in typical hexagonal plates o r in vermiform  

aggregates, as com m only reported for tonsteins, but rather in small pseudohexagonal or 

irregular platelets. Based on EDX analyses, Figure 1.3d likely shows irregular kaolinite 

platelets on a smectitic substrate.

C randa llite  m inerals. Three partings in the DC section were previously reported to contain 

hydrated alum inum -phosphate m inerals o f  the plum bogumm ite series (R einink-Sm ith, 

1987). Further investigation revealed that at least 15 partings (Table 1.2) in the DC section 

contain these minerals. Crandallite was identified from the whole rock diffraction patterns 

(Figure 1.4) with a reflection maximum at 2.96 A. Reflections from  the oriented patterns 

are not distinct, suggesting the crystals lack a platy morphology. E D X  analyses revealed 

crandallite present in som e samples in am ounts too sm all for detection by XRD. The 

plum bogumm ite series was originally defined by Palache and others (1951) and has been 

renam ed the crandallite group by Fleisher and o thers (1984). The general formula o f  this
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Figure 1.4 Randomly oriented XRD pattern of crandallite. Crandallite la Identified by Its broad reflections, with the major 
peak at 2.96 A. C= crandallite, Q= quartz and K= kaolinite. Sample DC 60 .
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solid solution series is X A l3 (P 0 4 )2 (0 H )5 -H2 0  w here X m ay be Sr (goyazite), Ba 

(gorceixite) or Ca (crandallite).

H ydrated alum inum -phosphate m inerals are considered uncom m on in coal-bearing 

strata. Perhaps the presum ed infrequency o f  these m inerals in coal-bearing sedim ents 

should be reconsidered because several authors report the presence o f crandallite minerals 

in coa l-bea ring  sequences: C randallite  w ere m en tioned  from  M ississippian  and 

Pennsylvanian coal-bearing sequences by W ilson and others (1966), P rice and D uff 

(1969) and R ichardson and Francis (1971). C randallite m inerals have been reported in 

Cretaceous, coal-bearing sequences by T riplehom  and B ohor (1983) from  the D akota 

Group and from the overlying Mowry Shale. In Alaska, crandallite m inerals are present in 

Cretaceous coals in the Northern Alaska Coal Field near Cape Lisbum e, where P2 O 5  may 

reach 16% (D.M. Triplehom , 1988, personal com m un.). Rao and Smith (1986) reported 

crandallite m inerals from  the Chuitna River Coal Field, w est o f Anchorage. B rownfield 

and others (1986) have identified crandallite minerals in the M iocene coal-bearing Tyonek 

Formation in south-central Alaska, and L am berson and Spackman (1986) report apparent 

crandallite m inerals in high temperature ash from  the Canyon C reek coal district north

west o f Anchorage. Crandallite minerals occur in the DC section o f the Beluga Formation 

and are concentrated in  the low er part o f  the form ation, w hich is identical to  m easured 

section lb  o f A dkison and others (1975, p.51).

Values o f  P 2 O 5 , BaO, and SiO higher than any yet reported from  Tertiary Alaskan 

coal sequences w ere obtained from  the samples o f the D C  section. The P 2 O5  content o f 

sample D C  60A is 28.79% (Table 1.3). This can be com pared with a m axim um  o f 17.1% 

P 2 O 5  in  coal ash from  the C huitna R iver coal (Rao and  Sm ith, 1986). B arium  and 

strontium values from  sample DC 60A are as high as 5.68% and 5.28% respectively.
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TABLE 1.3 M AJOR OXIDE  ANALYSES OF CRANDALLITE-BEARING PARTINGS

SA M PLE: DC 1 DCS DC 12 DC 29 DC 40  DC 40a D C5I DC51a DC53 DC57 DC58 D C60 DC60a DC69 DC70 DC71

S i0 2 23.23 46 .29 36.70 52.47 42.93 43.85 16.48 39.55 40.41 41.92 54.98 33.73 7.16 36.87 17.94 40.72
AI2O3 34.67 30.36 30.34 31.60 33.76 33.00 40 .57 34.72 30.36 29.67 24.30 28.83 39.62 2.9.98 34.28 31.13
Fe2 0 3 * 1.66 2.28 1.19 2.22 0.97 1.02 0.41 0 .70 0.94 1.46 3.48 1.39 0.48 0.62 2.03 1.12

MgO 0.67 2.03 1.03 1.84 1.58 1.75 0.20 <0.01 0 .90 0 .50 1.75 1.37 0.08 0.98 1.45 0.81
CaO 7.29 4 .10 10.85 2.62 4.60 4.91 10.60 8.77 10.50 11.37 3.38 11.24 10.32 11.33 8.75 8.41
Na0 2 0.15 0.38 1.01 1.10 1.04 1.00 1.10 1.51 4 .22 4.21 1.69 2.23 0.75 3.43 0.50 3.19
K2O 1.98 0.33 0.18 0 .38 0.17 0.13 0.17 0.21 0 .32 0.12 1.91 0.31 0.11 0.19 0.59 1.15
T i0 2 1.79 2.41 0.81 2.08 0.60 0.61 0.46 0.68 0 .66 0.56 0.95 2 .16 0.96 0.69 2.52 0.98
M nO 0.03 0.01 0.01 0.01 <0.01 <0.01 < 0.01 <0.01 0.04 0.02 0 .04 0.01 <0.01 <0.01 0.03 0.01
P 20 5 21.87 9.64 15.09 3.93 9.28 9.15 22.32 10.42 9.67 8.29 5.77 15.57 28.79 12.41 22.68 8.91
BaO 4.30 1.35 1.82 0.64 2.67 2.61 3.74 0.85 1.67 1.19 0.85 2.42 5.68 1.75 5.51 2.08
SrO 2.60 0.91 1.25 0 .32 2.50 2.36 4.38 1.16 1.18 0.99 0.68 1.77 5.28 1.55 3.48 1.52

Total 100.24 100.09 100.27 99.21 100.10 100.39 100.43 98.57 100.87 100.29 99 .78 101.02 99.23 99.79 99.76 100.03

N ote: The values are calculated on a m oisture-free basis. Each parting was analyzed in quadruplicate.

* Total Fe calculated as F e2C>3 .
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Crandallite minerals apparently do not occur in tephra partings o f the Sterling Formation. 

XRD patterns and chemical analyses o f 35 tephra samples have failed to reveal crandallite 

m inerals or chemical compositions (such as elevated concentrations o f  Ca, Ba, Sr, or P) 

suggesting the presence o f crandallite.

It is difficult to identify specific crandallite mineral species by XRD or SEM  because 

o f solid solution com positional variations and the general lack o f characteriza tion . 

Elem ental analyses and EDX show that average barium values for the D iam ond Creek 

samples are higher than for strontium; calcium  is higher than either barium  o r strontium. 

High calcium  values indicate a composition closest to  the crandallite end m em ber and, for 

the sake o f sim plicity , the m ineral is here called crandallite. SEM  m icrographs o f 

crandallite show nodular, bulbous and unspecified structures that are com m only hollow 

(Figures 1.5a and 1.5b).

O pal-C T . Opal-CT is present as a trace constituent in three samples (FC 8, NIN 4 and CG 

5) o f the whole rock fraction. Small, broad peaks at 4.05 A are present in tw o samples 

(FC 8 and CG 5) that contain little or no feldspar which could  in terfere w ith the 

identification. No other opal-CT peaks are present in these sam ples. In N IN  4, which 

contains feldspar, the height of the 4.04 A feldspar peak is relatively enlarged, and small 

opal-CT peaks at 3.13 A and 2.49 A are present.

Q u a rtz . The relative amounts o f quartz were measured from the XRD patterns o f  the 

whole rock samples. Quartz is present in 45 o f the 68 tephra partings, com m only in  small 

am ounts. Besides being determ ined by XRD, volcanic quartz  was observed  in  thin 

sections o f the coarse fractions. The quartz is unaltered, shows straight extinction, 

subhedral and angular shapes and occasional embayments. In less altered  sam ples, 

angular quartz grains may show glassy fringes.
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Figure 1.5 SEM micrographs of crandallite-ilke minerals: a) Straight-edged contacts 
of hollow structures that may be crandalllte-replaced, volcanic bubble-wall shards. 
Note the holes on the surface (arrows) indicating the hollow interior (2,200 x, sample 
DC 60A). b) Possible pseudomorphs of hollow bubble-wall shards. Two of the 
"bubbles" on the left side of the photo have had their tops sheared off and the empty 
interiors are clearly visible (3,000 x, sample DC 60A).
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Figura 1.5 (continuad) c) Tha alongatad structuraa with curlad adgas 
of tha columnulas dascribad by Wlsa and Waavar (1979) and Wlsa and 
(3,000 x, sampla DC 60A). d) Smactita, lining a cavity of grain with a 
composition (3,600 x, sampla DC 68).

ara raminiscant 
Ausburn (1980) 
crandallita-lika
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Feldspar. Feldspar occurs in 61 o f the 68 tephra partings. In petrographic examinations of 

the coarse fractions, plagioclase is m uch m ore com m on than potassium  feldspar. The 

plagioclase occurs as equant, angular and euhedral crystals indicating m inim al or no 

transportation and suggesting a volcanic origin. H ighly zoned plagioclase is com m on, 

indicating disequilibrium  during crystallization, supporting the idea that it m ight represent 

airfall tephra m aterials. Albite tw inning is also com m on. SEM  com m only shows pitted 

and etched surfaces on some plagioclase grains, and alteration to smectite o f others.

Extremely glass-rich partings (such as FC  7, FC  8, FC 15 and D C  60A) contain little 

feldspar and few m ineral grains o f any kind. The feldspars that are present occasionally 

display glass fringes. Sanidine is present in trace am ounts o f  the volcanic ash partings 

from  which the coarse fraction was extracted. Tephra partings in A laska typically contain 

m ore plagioclase than potassium  feldspar, w hereas the opposite is true in the Rocky 

M ountain area (D .M . Triplehom , 1988, personal com m un.).

O ther m inerals. Am phibole (green hornblende), pyroxene, some polycrystalline quartz, 

volcanic rock fragm ents, opaques, traces o f olivine, zircon and biotite, and rare muscovite 

also m ay be present. The paucity o f  biotite may be due to selective loss during coarse 

fraction separation. Alternatively, biotite m ay have been rare in the original sample or 

rapidly w eathered in the swamp. The few m uscovite grains found are probably detrital. 

Presence o f amphiboles is questionably indicated by trace peaks on XRD patterns o f a few 

randomly oriented samples.

Mineralogy of detrital partings

Dlite and sm ectite. Illite and smectite are described together because o f their apparently, 

superim posing 001 reflections in  the X RD  patterns o f  air-d ried  sam ples. T he 001
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reflection of illite is at 10.0 A, and the smectite 001 peak appears to be hidden by this illite 

peak. The intensity o f  the illite 10.0 A peak decreased with ethylene glycol solvation in 

conjunction with the appearance o f  a broad, w eak peak at 17.0 A (Figure 1.6). A t 300° 

and 550°C , the 17.0 A peak collapsed to about 10.1 A. K -saturation o f  these sam ples 

produced identical XRD results, suggesting that the expandable com ponent is smectite. In 

the FC section, a decrease in intensity o f the 10.0 A illite peaks did not occur. Instead, the 

14 A chlorite peak lost intensity after glycolation.

A lthough sm all am ounts o f  various m ixed-layer com ponents m ay be present, 

deviations from  regularity o f basal reflections are minimal. However, it is possible that a 

spectrum  o f small amounts o f  random ly m ixed-layer illite/sm ectite (I/S) and chlorite- 

expandable com ponent are present. B ased on EDX, illitic and sm ectititic material form  a 

ridge-like morphology on a chlorine background (Figure 1.7a).

Chlorite . Chlorite is present as a separate phase in the clay fraction o f the air dried samples 

in each sample containing illite and the expandable component. The chlorite 002 peak is in 

general considerably sharper and  m ore prom inent than the 001 peak. B ased on  EDX 

spectra, chlorite (Figure 1.7a) appears to occur in irregular platelets that are m erged into a 

"groundmass." F igure 1.7b shows spherules with the same com position as the chlorine 

platelets they are mixed with.

Kaolinite. Because o f  the presence of chlorite, it is difficult to determine whether kaolinite 

is present. Even-order chlorite peaks nearly superim pose on the the kaolinite basal 001 

and 002 XRD peaks. If both chlorite and kaolinite were present in about equal am ounts, 

the 005 chlorite peak and the 003 kaolinite peak could be used to  differentiate the two 

phases. The ch lorite 005 peak is com m only present but the kaolinite 003 peak  is not, 

indicating that kaolinite may not be present or may be present only in small concentrations.
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Figure 1.6 Characteristic XRD patterns of en oriented elsy ssmple (<2pm) from e non- 
volcanic parting. Sampla DC 4 shows a sharp, prominent peak typical of detrital 
chlorite and illite. CHL= chlorite, 1= illite, S= smectite, and K= kaolinite.
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Figura 1.7 SEM micrographs showing tha morphology of ehlorlta, illite and smactita.
a) Illite and smactita form "rldgas" on a chioritic groundmass (3,000 x, sampla DC 56).
b) In sampla DC 4, chioritic matarial occurs as alther platalats or as roundad 
spharulas which ara composad of minlscula chlorita platalats. Cranulated smactita is 
present In the upper right part of tha photo (4,400 x).
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H ow ever, X R D  scanning (2°20 /m in  at 20 m m /m in) o f  some sam ples show s a small 

shoulder o r peak on the low-angle side of the 004 chlorite peak, which may indicate partial 

resolution o f a kaolinite peak. Furtherm ore tw o 060 reflections o f  1.54 and 1.49 A, 

com m only appeared on the X RD  patterns o f random ly m ounted powders that contain 

chlorite, illite and the expandable component. This indicates that both trioctahedral and 

dioctahedral m inerals are present.

B ecause o f  these problem s in detecting kaolinite, IR , which can detect very small 

am ounts o f  kao lin ite  no t detectab le by X R D , w as u tilized  (V an der M arel and 

Beutelspacher, 1976). Small am ounts o f  kaolinite are present, as evidenced by bands at 

3694 - 3700 cm ' 1 and at 3620 c m '1. Thus, m any, if  not m ost o f the detrital partings are 

assum ed to contain small amounts of kaolinite (Table 1.3).

S id e rite . S iderite occurs in the whole rock fractions o f  five samples that contain chlorite 

and illite in  the clay fractions (detrital partings). Partings with siderite are rem arkably 

uniform , coarse-grained, dark-brow n-gray to nearly black layers in the coal; in  one case 

the siderite consists o f  concretions in a silty layer. Three o f  the sideritic partings occur in 

one particular coal seam. Tw o o f these are indurated and coarse-grained and one is flaky 

with the appearance o f  a shale parting. W hen siderite is present, sharp, prom inent and 

characteristic peaks are present on the XRD patterns.

Q u a r tz .  A ll o f  the 27 detrital partings contain quartz. It was measured from the XRD 

patterns o f  the w hole-rock, pow dered samples. The patterns show sharp and prom inent 

quartz peaks that are clearly defined com pared with quartz peaks for tephra partings. It 

was not readily feasible to extract the coarse fraction from  m any detrital partings due to 

their fine-grained texture, but the quartz that was extracted is seen optically to  be sub- 

equant.
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O th e r m inera ls. Tw enty-four out o f the 27 detrital partings contain feldspar, in variable 

am ounts, as determ ined by pow der XRD scanning o f  the w hole rock as random powder 

mounts. From the coarse fractions, most feldspar grains are well rounded plagioclase with 

etched, pitted and altered surfaces. Sanidine was not detected.

Because only a few thin sections could be prepared of detrital partings, it is not 

possible to  give an accurate overall account o f accessory constituents. However, shale, 

chert, and metamorphic, chlorite-rich rock fragments are present. M uscovite and traces of 

epidote also occur.

DISCUSSION

About 2/3 o f  all the collected partings are o f volcanic origin and 1/3 are o f  non- 

volcanic origin. T ephra and detrital partings are characterized  by specific m ineral 

assemblages.

M ineral assemblages of tephra partings

D iam ond  C reek . The m ost common mineral assemblage in the tephra partings o f the D C 

section consists o f plagioclase feldspar ±  kaolinite ±  m ontm orillonite ±  quartz ±  crandallite 

±  altered volcanic glass. Kaolinite and smectite are probably the alteration products o f  

volcanic glass as well as perhaps feldspar, amphibole and pyroxene. Illite and chlorite 

which are present in trace amounts in a few sam ples, probably are derived from  detrital 

m aterial interm ixed w ith tephra partings. Sedim entary structures are absent in all but one 

thick (33cm) tephra parting, which is unusual in that it contains ripple marks and cross 

lamination. Contam ination o f some tephra partings with terrigenous detritus transported 

by wind o r w ater seems likely considering the abundance o f  detrital partings.
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Grim  and G uven (1978), and Senkayi and others (1984) reported that kaolinite is a 

stable phase resu lting  from  intense leaching o f volcanic ash. T he D C  section has 

apparently been leached more extensively than the Pliocene section, and kaolinite may be 

the stable end-product. The formation o f kaolinite requires a high Al:Si ratio which can 

result from  silica removal during leaching under appropriate conditions (K eller, 1956). 

Sam ples from  the DC section contain the highest A l:Si ratios, (Table 1.2) possibly 

indicating more severe leaching than the other sections. Although kaolinite formation also 

requires the rem oval o f  ca tions such as C a, M g, N a and K, the fo rm ation  o f 

montmorillonite requires at least partial retention of such ions (Keller, 1956). Therefore, a 

delicate balance o f these ions, or a sequence of events is required in the DC section where 

kaolinite and m ontm orillonite coexist. It seems likely that m ontm orillonite proceeded 

kaolinite and that the two clays coexist in equilibrium as a result o f insufficient leaching o f 

Ca, M g and Na as well as Si. Figure 1.3d shows delicate, irregular kaolinite platelets 

(based on EDX ) that extend from a smectitic surface. The delicate and surficial nature of 

these platelets indicate formation in situ  after smectite formation. In general, it is uncertain 

w hether kao lin ite  can form  direc tly  from  vo lcan ic glass o r if  an in term ed ia te 

m ontm orillonite phase is required. A pparently, these Tertiary tephra partings have not 

been sufficiently leached over a long enough period o f  time for the form ation o f  pure 

kaolinite, as have their counterpart tonsteins in the Perm ian and Carboniferous coal o f 

Europe. The European coals could, however, have had different parent m aterials, which 

perhaps could account for the differences in alteration.

M ontmorillonite (identified as such, based on the Greene-Kelly (1955) test) is present 

in nearly  all teph ra partings o f  the D C  section. In  a few  sam ples (T able 1.3)
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montmorillonite occurs without kaolinite - these partings are typically clayey bentonites. 

Fresh glass is rare, but relics and clay-pseudo morphs o f glass can com m only be found.

The restriction of crandallite to the D C  section suggests that specific conditions of 

diagenesis m ay have played a dom inant role, with selective post-depositional phosphate 

enrichm ent of some partings. Phosphorus is an essential trace elem ent for plant growth, 

therefore the peat that formed the coal swamps could itse lf have been the source. Some 

bulbous structures o f  crandallite are hollow and may indicate that volcanic bubble wall 

shards were directly replaced by crandallite (Figures 1.5a and 1.5b). Shard m orphologies 

are present and volcanic glass is com m on in some sam ples (Figures 1.5c, 1.8a,b, and 

1.9). The elongated structures in Figures 1.5c resem ble the "colum nules" described by 

W ise and W eaver (1979) and W ise and A usbum  (1980). Colum nules are described as 

d iagnostic o f a volcanic origin and are believed by them  to represent highly deform ed 

glass shards o f w elded tuff that have been replaced by sm ectite. The colum nules are 

illustrated as cham ber-like features which are filled with oriented sets o f  smaller, hollow 

chambers or rod-like bodies.

Triplehom  and Bohor (1983) reported that goyazite form ed before o r concurrently  

with kaolinite in kaolinitic claystones in the Cretaceous M owry Form ation and D akota 

Group near D enver, C olorado, because it  d id  not appear to  rep lace kaolin ite . The 

crandallite on the Kenai lowland may have formed in a sim ilar fashion, before kaolinite 

formation and perhaps before or concurrently with smectite formation. A fine, crenulated, 

sm ectite-like surface envelopes all crandallite-containing grains (Figure 1.5). H ow ever, 

EDX analyses show this to be o f  the sam e com position as the underlying m ateria l. 

K aolinite is rarely present in typical hexagonal plates, but occurs instead in irregular
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Flgura 1.8 Microphotographs of volcanic glass shown undar transmlttad light, a) 
Unaltarad pumlca fragmants darlvad from tha coarsa fraction (256 x, sampla FC 15).
b) Glass fragmants and bubbls shards (256 x, sampla FC 8).
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Figure 1.9 SEM micrographs ol crandalilts with a shard-llko morphology: a) Kaollnlts 
rsplacss crandallite (arrows) In the form of Irregular platelets and one rare kaolinite 
book. Note how the kaolinite appears to have replaced a smooth surface which has 
collapsed from the infilling of kaolinite platelets (4,400 x, sample DC 60A). b) Same 
photo at higher magnification (7,200 x, sample DC 60A).
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m asses that appear intergrow n with the crandallite. K aolinite also occurs as irregular 

platelets and (rarely) as kaolinite books replacing crandallite (Figure 1.9).

T here are no  clear diagnostic m acroscopic characteristics o f  partings containing 

crandallite, nor do these partings occur in any particular position within the coal seams. 

Only one parting of m any in a particular coal seam  m ay contain crandallite. The only 

similarities betw een partings with crandallite are their hom ogenous fine-grained nature. 

This is not d iagnostic , how ever, because partings w ithout crandallite may also be 

homogeneous and fine grained.

It m ay not be possible to establish the exact origin o f these crandallite m inerals. In 

particular, the source o f the phosphorus required for crandallite formation is enigmatic. 

Phosphate-bearing sedim ents in coal basins are usually attributed to m arine or brackish- 

w ater influence. H ow ever, the coals on the Kenai low land have (with the exception o f 

Hemlock Conglom erate) been consistently interpreted as non-m arine (Hayes and others, 

1976; Hite, 1975; Raw linson, 1979; Rao and W olff, 1982). It seems likely that apatite- 

bearing tephra m ay be responsible for some o f  the phosphorus. Some ash-falls m ay have 

contained m ore apatite than others, and therefore crandallite may have formed selectively 

in some partings.

Triplehom (1976) reported that heavy mineral separates from one sample in Kachemak 

Bay contained several percent apatite on a whole-rock basis. It seems unlikely though, that 

apatite can be the sole source for the high percentages (as much as 28.79% ) o f  P 5 O 2  

found in som e sam ples from  the D iam ond C reek area. W ilson and others (1 9 6 6 ) 

suggested that the phosphorus required  for crandallite  form ation in C arboniferous 

tonsteins m ay have been derived from  soil colloids produced by peaty, coal-form ing 

plants. Bones and fecal m atter are probably not im portant factors, o r account for only
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m inor am ounts of phosphorus. Vertebrate fossils are very rare from  the Kenai low land 

(Dorr, 1964; Rawlinson and Bell, 1982).

A com bination o f the above m entioned possibilities and a means o f concentrating and 

com bining the phosphorus as phosphates m ust have been necessary. Percolating connate 

and vadose w ater may have aided this process and some tephra partings may have acted as 

relatively im perm eable layers im peding the dow nw ard m ovem ent o f  m ineral-enriched 

fluids.

Calcium is one o f the more common elements in ground water and is readily available 

for crandallite formation. The abundance of calcium  during diagenesis is conspicuous in 

calcium -cabonate cem ented sandstone, siltstone and various concretions betw een coal 

seams. Strontium may originate in Ca-bearing minerals and glass where it replaces Ca and 

is also found in apatite. Barium may partly replace K in K-feldspar or in C aC O j.

The crandallite occurs in nodular and spherical forms that occasionally resem ble opal- 

CT. X R D  and ED X  analyses, how ever, indicate that these are separate occurrences; 

crandallite and opal-CT do not occur together.

Q uartz is no t as abundant in tephra partings as in detrital partings. E ither quartz was 

not a common com ponent o f  the air-fall ejecta or some quartz has been altered. Alteration 

o f quartz seems unlikely considering the general resistance of quartz to  decom position, 

and the euhedral and angular shapes o f the observed quartz grains. The lesser am ount o f 

quartz in tephra partings com pared to detrital partings agrees w ith the observations of 

Senkayi and others (1984 and 1987), w ho reported that volcanic strata o f  the lignitic 

Y egua Form ation contain significantly less quantities o f  quartz than associa ted  non- 

volcanic layers. The geologic origin o f  the tephra partings o f the Kenai low land m ay be 

similar in certain respects.
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Some o f the quartz in the tephra partings occurs as subrounded grains and m ay be o f 

detrital origin. Slight contamination o f or mixing with tephra may have occurred by wind

blown or w ater-deposited detritus. Locally, increased am ounts o f  quartz in the w ide

spread S tafford Tonstein resulted from m ixing o f  ash with norm al sedim ents (Spears, 

1970). V ariable amounts o f quartz present in individual, altered tephra partings has been 

reported by Triplehom  and Bohor (1981). Thus, the characteristics o f  quartz grains (such 

as (3-quartz m orphology, em baym ents, straight extinction, etc .) likely presents better 

evidence for volcanic-ash origin than the amount o f quartz p resent 

Y o u n g er sections. The tephra partings o f  the younger sections are characterized by the 

presence o f plagioclase feldspar + m ontm orillonite ±  kaolinite ±  quartz ±  opal-C T ±  

volcanic glass. Kaolinite is less abundant in younger sections than in the D C  section, 

Altschuler and others(1963).

M ontm orillonite is m ore abundant than kaolinite in tephra partings o f the FC, CG, 

MC, and NIN sections, and the partings have lower bulk Al/Si ratios. All tephra partings 

o f the younger sections are less altered as evidenced by the presence o f  easily detected, 

unaltered glass. Some partings are essentially unaltered and are com posed alm ost entirely 

o f  glass shards (F igure 1.8). XRD analyses, how ever, show  trace am ounts o f 

m ontm orillonite. A ssum ing relatively slow  and progressive diagenesis, the absence o f 

appreciable alteration may be a result o f the younger age o f these partings and the attendant 

lesser time for leaching.

T ephra does not always alter to bentonite and instances o f  interbedded, altered and 

unaltered ash are known (Swineford and others, 1955). In such occurrences it has been 

suggested that wet ash was apparently deposited as separate layers alternating with dry 

ash, and that the wet ash altered to bentonite whereas the dry did not. There m ay be some
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sim ilarities in the present study - some of the partings o f the FC  section are totally 

unconsolidated - perhaps a "dry" ash fell in an environment that was drier than fo r the DC 

section and, thus, diagenetic processes have proceeded very slowly. If  an aqueous 

environment did not develop, devitrification and hydration might have been retarded or did 

not occur. A coal swamp with a desiccated surface could develop during dry spells and 

resu lt in surface and subsurface burning o f  the peat (Stach and others, 1982). Some 

indications o f  a  drier environm ent can be seen in the coal com ponents (m acerals) o f  the 

coal seam s from  the Sterling Form ation where inertinites (remnants o f oxidized and/or 

Fire-charred vegetation) are m ore com m on than for the Beluga Form ation (M erritt and 

others, 1987). Inertinites, in general indicate a d rier environm ent. Thus, the lack o f 

alteration o f certain partings may have resulted from a combination o f a younger age with 

a relatively dry environment and dry ash-falls.

The absence of crandallite in the younger sections may be due to the near absence o f 

alteration and thus a lack o f replacem ent or enrichm ent o f elements. The com positions o f 

volcanic ash may also have not been favorable for phosphate formation. Additionally, the 

initial com position o f volcanic ash o r other detrital o r organic material o f  the D C  section 

may have been different compared with the younger sections.

O pal-C T  occurs in only three partings in the FC, CG, NIN and M C sections. 

Considering that the partings o f  these younger sections are relatively less devitrified and 

altered, such m inor opal-CT presumably form ed as a secondary mineral from  am orphous 

silica released during the initial stages o f  devitrification o f  volcanic glass. It m ay have 

precipitated from  excess silica in a similar fashion to that described by G rim  (1968) and 

Henderson and others (1971). The presence o f  opal-CT w ould support the idea o f  less 

leaching in the younger sections, w hich is also consistent with the considerably higher,
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w hole-rock silica concentrations o f these partings com pared to the partings o f the DC 

section (Table 1.1). Opal-CT occurrence likely represents a transient phase that disappears 

with silica depletion, and attendant kaolinite formation.

Detrital mineral assemblages

The detrital partings are probably the products o f overbank flood events and represent 

detritus washed into the swamp environm ent The partings characteristically contain quartz 

+ feldspar + smectite + chlorite + illite ±  siderite ±  kaolinite. This assemblage occurs both 

in the D C  section and the FC, MC, CG and NIN sections, although it occurs m ore often 

in the DC section which contains more non-volcanic partings.

Chlorite occurring with illite is w idespread and abundant in the detrital sedim ents of 

the Cook Inlet area. The high percentage o f Fe2 C>3 in detrital partings and prom inent 002 

chlorite peaks, suggest a trioctahedral, iron-rich chlorite o f allogenic origin derived from 

meta-sedim entary rocks such as those of the Kenai-Chugach terrane. This interpretation is 

supported by chem ical analyses o f these sam ples showing high iron contents when 

siderite is not present (Table 1.1).

The significance o f the reduction in size o f  the illite o r chlorite XRD  peaks with 

glycolation is som ew hat unclear. H ow ever, there are several possibilities: illite  and 

sm ectite m ay occur in discrete physical m ixtures, with the interlayer chem istry o f the 

smectite being different (perhaps more potassium) than for the smectite o f volcanic origin. 

In the reduction  o f  the chlorite peaks, discrete sm ectite (12-15 A) may be hidden, 

undetected, under the 14 A region. Some o f  this smectite m ay be the alteration products o f 

volcanic material that has been intermixed with the detrital partings.
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Hayes and o thers (1976) reported analyses of the <2jim  clay fraction o f mudstones in 

the Beluga and Sterling Form ations. They found that well-crystallized dioctahedral mica 

and trioctahedral chlorite dom inate the clay fraction o f  the m udstones in the Beluga 

Form ation, w hereas m ontm orillonite dom inates the S terling Form ation , along w ith 

variable amounts o f  m ica and chlorite. The clay mineral suites o f Hayes and others (1976) 

therefore, generally conform  with suites o f  non-volcanic partings in coals o f  the Beluga 

and Sterling Formations.

S iderite is a sensitive environm ental indicator because equilibrium  Eh-values are 

equivalent to those in a moderately reducing environm ent Thus, the reducing environment 

o f a coal swamp may provide an ideal setting for in situ siderite-formation. In fact, siderite 

formation is considered alm ost exclusively authigenic (Blatt and others, 1972). Carbon 

dioxide probably reacted with iron introduced by groundw ater, by organic com plexes, o r 

from degradation o f  detrital m inerals. In at least one case observed, volcanic ash may be 

indirectly responsible for siderite formation. An unusual, 33 cm -thick, w aterlaid  tephra 

parting from  the CG section (CG 5) that contains ripple marks and cross lam inations is 

underlain by a siderite parting (CG 4). The contact is gradual. The parting contains mostly 

volcanic glass and iron-bearing minerals such as hornblende and biotite, which m ay have 

dissolved to  provide iron for siderite formation.

In another observed parting, siderite occurs as nodules in a silty m atrix. Potter and 

Pettijohn (1977) suggest that concretions which are form ed late during diagenesis tend to 

occupy zones o f  h igh perm eability . This seems to be the case on the K enai low land, 

where nodules have form ed as silty concretions and are the product o f post-depositional 

local precipitation o f  siderite. Because siderite concretions are nearly always associated 

with organic com pounds, it is surprising that concretions are not m ore com m on in the
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sampled coal seams. Tree stumps replaced by siderite, however, are common in the coal, 

especially in the McNeil Canyon area.

SUMMARY

1. Volcanic ash and detrital sediments were deposited in Miocene and Pliocene coal 

swamps and preserved as laterally continuous layers/partings.

2. The tephra and detrital partings can generally be distinguished in the outcrop by 

differences in thickness, texture and color. Some thin, fine-grained partings are 

difficult to differentiate as volcanic or nonvolcanic.

3. U naltered  and sligh tly  altered  tephra partings are com m on in the younger 

(Pliocene) parts o f  the sections. Here the partings contain mostly volcanic glass 

and/or montmorillonite ±  opal-CT. Kaolinite is not abundant.

4 . Tephra partings in the o lder (M iocene) parts o f  the section are m ore intensely 

altered. Rem nant structures o f  pum ice fragm ents are som etimes present. The 

alteration products are m ainly kaolinite, montmorillonite and crandallite.

5. Crandallite has been considered as an unusual mineral in coal-bearing sequences; 

here it is present in at least 15 partings, and appears to  replace volcanic glass. 

A patite, organic colloids, and m inor bones and fecal m atter m ay have supplied 

some, i f  not all, o f the phosphate required for crandallite formation. The origin of 

the additional phosphate noted in bulk sedim ent analyses is not readily apparent, 

however.

6 . The detrital partings are characterized by detrital chlorite, illite, quartz, feldspar, 

with authigenic siderite and (minor) kaolinite.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

ACKNOWLEDGEMENTS

I thank D. M. Triplehom , D. M. Kopkins, R. K. Crowder, S. A. Naidu, and T. C. 

M ow att for their constructive criticism  o f the manuscript. I am indebted and grateful for 

the support o f P. D. Rao, associate director o f M ineral Industry R esearch Laboratory. J. 

E. Smith provided invaluable laboratory assistance.

The research for this paper, the result o f w hich is a partial requirem ent for m y Ph.D. 

degree, was funded  in part by Sohio and M arathon Oil Com panies, and the State o f 

Alaska.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Volcanic Ash Partings as Correlation Tools of Tertiary Coal-bearing Strata 

from the Kenai Lowland, Alaska.

(submitted to the Geological Society of America Bulletin)

ABSTRACT

Tephra partings are exposed in coal beds o f the M iocene and Pliocene B eluga and 

Sterling Form ations along the shores o f the Kenai low land on the northw estern Kenai 

Peninsula, A laska. Tephra was studied in detail to im prove the geochronology o f  the 

Sterling Form ation and to test prior correlations which were based on palynology and 

physical tracing o f coal beds over short distances. Published radiom etric dates suggest an 

age span o f  about 4 m.y., but give discordant ages for individual sam ples depending on 

dating techniques. Thirty-two partings were sampled, and to the extent that alteration and 

rew orking perm itted, a com bination o f glass morphologies, w hole-rock, coarse fraction 

and glass m ajor oxide analyses, trace elem ent analyses, coal petrology and individual 

idiosyncrasies o f partings were used for correlation.

A  pum ice parting deposited near the top o f the Sterling Form ation is preserved at two 

localities on the northwestern and the southeastern sides o f the Kenai low land. Similar 

glass m orphologies, an absence o f  opaques, and geochem ical sim ilarities characterize 

these samples as a single ash-fall and allow regional correlation. A crystal tuff parting near 

the m iddle o f  the section was traced across the Kenai lowland as one or two ash-falls 

based on inertinite contents o f adjacent coal and geochemistry and m ineralogical analyses 

that are incomplete due to alteration and reworking. Several other prom inent ash-falls with 

multiple glass populations and characteristic glass morphologies could not be correlated.

49
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INTRODUCTION

C oal-bearing clastic sedim ents o f Cenozoic age underlie the Cook Inlet basin, Alaska. 

M iocene and Pliocene beds that comprise the upper part o f the sequence are well exposed, 

prim arily  around the shores of western Kenai Peninsula (Kenai low land), northw est of 

K achem ak Bay (Fig. 2.1). M ost o f the exposed coal occurs in the B eluga and Sterling 

Form ations, w hich are interpreted as representing a regressive m arine cycle and low 

energy depositional environment (Kirschner and Lyon, 1973).

Volcanic ash fell episodically into the coal swamps, resulting in interlayered tephra 

within the coal beds (T riplehom  and others, 1977; Turner and others, 1980; Reinink- 

Sm ith, 1989a). A sh-falls have excellen t preservation poten tial w hen deposited  in 

undisturbed coal-form ing swamps. Shallow standing water, dense vegetation and a lack 

o f re lie f leave the coal swamp protected from  wind, running w ater and o ther agents o f 

erosion. V olcanic eruptions and floods are unlikely to  occur sim ultaneously. Thus, 

con tam ination  o f  tephra with detrital sedim ents is m in im ized . T h ese  favorable 

circum stances may have contributed to the preservation of unaltered and altered tephra 

layers (partings) in coal beds o f the Kenai lowland.

In contrast to correlating lithology, which m ay or may not have relationship to time, 

partings can serve as im portant isochronous m arker beds and can be used to correlate 

strata. This is im portant in  order to estim ate coal reserves and to develop biostratigraphy 

w hich can then be applied to  other regions. A lack of stratigraphic control has m ade it 

d ifficult to establish chronologic or lithologic correlations across the Kenai lowland. One 

o f the main problems is that visual m arker beds - coal beds have been faulted and folded. 

N evertheless, coal beds and palynology have been used to  correla te short distances 

(Barnes and Cobb, 1959; Adkison and others, 1975; M erritt and others, 1987).
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Figure 2.1. Location map. Sections (0*92 m) are extrapolated from beach exposures 
and modified from Barnes and Cobb (1959). Vertical exaggeration is 5 x. There are are 
no exposures south of Cape Starlchkof and in the Homer area.
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The two m ain objectives o f this paper are to establish the nature o f  the tephra partings 

and to use them  as tools to provide better correlation across the Kenai lowland. Criteria 

such as apparent stratigraphic position o f the partings, texture, m ineralogy, geochemistry 

o f w hole-rock samples and glass, glass shard m orphology, petrology o f  adjacent coal, 

and especially  id iosyncrasies o f specific tephra partings w ere used to trace a few 

diagnostic partings. This paper focuses on these criteria.

PREVIOUS WORK

Sedim entary rocks along the northw est shore o f K achem ak B ay near H om er (Fig. 

2.1) w ere assigned to the Hom erian provincial paleobotanical Stage (W olfe and others, 

1966) w hich coincides approxim ately with the B eluga Form ation. Y ounger sedim ents 

along the shores o f  C ook Inlet and K achem ak Bay were assigned to the Clam gulchian 

Stage. The boundary between the two stages, approxim ately coinciding with the boundary 

betw een the B eluga and Sterling Form ations, was defined as the top o f  the B-bed, near 

M cN eil C anyon on the K achem ak Bay side (F igs.2 .1,2.2) in section 143 o f Barnes and 

Cobb (1959). A radiom etric age o f approximately 8  m.y. was assigned to a tephra parting 

near the B -bed  (T rip lehom  and others, 1977; T urner and o thers, 1980). T his stage 

boundary has not been located on the Cook Inlet side.

Several attem pts have been made to correlate some o f  the major coal beds (Barnes and 

Cobb, 1959; M erritt and others, 1987), but the discontinuity and the "multiple-bed" nature 

o f som e individual beds were severe lim itations. Barnes and Cobb (1959) physically 

traced the C ooper bed (exposed in beach outcrops near Hom er) for about 6.5 km  and beds 

E  and F  (in beach outcrops northeast o f M cN eil Canyon) fo r several kilometers. Adkison 

and others (1975) roughly correlated parts o f lithological units o f  the Beluga and Sterling
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Figure 2.2. Stratlgraphlc sections, modified from Barnes and Cobb (1959) and Merritt and others (1987). Thicknesses of 
coal beds are not to scale. Plagloclase and hornblende were K-Ar dated and zircon and apatite were flsslon-track dated 
(Triplehorn and others, 1977; Turner and others, 1980).
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Form ations using similarities o f pollen taxa. For a detailed account o f the differences in 

the lithology of the Sterling and Beluga Form ations see Hayes and others (1976), H ite

(1976), and Lueck and others (1987).

STATEMENT OF PROBLEM

Stratigraphy and structure

In attempts to correlate tephra partings, it is necessary to assess the effects o f folding 

and faulting. From  photography (see methods section) and previous investigations by 

Barnes and Cobb (1959), it can be determined that the Tertiary-Quaternary boundary north 

of C lam  Gulch is covered, and that the exposures from  Clam  Gulch southwest to 3 km 

south of N inilchik are characterized by broad, gentle, barely perceptible synclines and 

an ticlines (Fig. 2 .1) with dips generally less than 10°. T he large, shallow  anticline 

betw een Corea C reek and N inilchik has a t least one sm all an ticline and syncline 

superimposed on the larger structure (not illustrated in Figure 2.1).

A minimum o f three faults with known displacements up to 25 m occur between Clam 

Gulch and Ninilchik; in each case the northeast block is downthrow n (Barnes and Cobb, 

1959). H owever, the displacem ents o f  som e faults are unknown. M uch o f  the faulting 

may be com pensated by the folding so that the total interval exposed is less than might be 

expected; that is, the section betw een C lam  Gulch and D eep C reek m ay be q u ite  

continuous rather than successively older in a southwestern direction.

The C lam gulchian section on the K achem ak Bay side m ay be hundreds o f  meters 

thicker (in exposed outcrop) than the section on the C ook In let side. H ow ever, the 

thickness is som ew hat uncertain because continuous m easured sections are lacking 

(Barnes and Cobb, 1959; A dkison and others, 1975; M erritt and others, 1987). The
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Kachemak Bay section gets progressively younger in a northeastward direction (Fig. 2.1). 

In the western tributary to Fox Creek, glacial gravel overlies the Tertiary sediments with a 

sharp disconform ity. M any small faults occur at irregular intervals in beach sections, 

adding to uncertainties concerning continuity  and possible changes in stratigraphic 

thicknesses. M ost faults are upthrown to the northeast. Known offsets are as high as 23 m 

and some faults have unknow n displacem ents (A dkison and others, 1975). Beikm an 

(1974) suggested that a m ajor concealed fault with a downthrown northw est block trends 

northeastw ard from just east o f Hom er. The displacem ent is unknow n, but if  there was 

little or no displacem ent, a pre-T ertiary erosion  surface that d ipped  steeply to the 

northw est m ust have existed (A dkison and  others, 1975). Folding is prevalen t only 

southwest o f McNeil Canyon.

Radiometric dating

Radiometric dating of tephra partings (Triplehom and others, 1977; Turner and others, 

1980) has improved a general chronological frame work previously based on paleobotany 

(W olfe and others, 1966). H ow ever, the dates have lim ited accuracy and precision 

because o f possible detrital contamination, undetected alteration, and the inherent statistical 

limits o f  radiom etric dating. The reported radiom etric ages are com m only discordant for 

different m inerals within a single sample and for different m ethods (K -A r versus fission- 

track m ethods). On the other hand, there is little variance o f  the average ages throughout 

the sections. Overall it appears that radiometric ages provide a reliable general time frame, 

but leave much uncertainty about detail.

Z ircon crystals, in general, have good track stability in fission-track  dating and 

consequently may yield more reliable dates than K-Ar dates for plagioclase or hornblende.
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H owever, zircons (as well as plagioclase) o f detrital origin are abundant in many partings 

on the K enai Peninsula (Turner and o thers, 1980; Reinink-Smith, 1989). Detrital zircons 

may not have been detected, especially if they were close in age to the enclosing material 

(C.W . N aeser, 1988, personal commun.). Some m inerals dated by Triplehom  and others

(1977) and T urner and others (1980) m ay also have had some undetected alteration (D.M. 

T riplehom , 1988, personal commun.).

Parting occurrences

Tephras arc, although uncommon in the Sterling Formation, im portant for correlation 

since they represent time horizons. There are no exposures in the interior Kenai lowland, 

and a single ash-fall may be represented by only tw o parting occurrences, one on the 

C ook Inlet side and one on the Kachem ak Bay side. H ow ever, some partings from  this 

scarce pool o f samples should correlate.

Partings from  different ash-falls are sim ilar in  appearance and often cannot be 

differentiated in  the outcrop. They are light-colored, fine-grained, between 1-10 cm  thick, 

w eather to a bleached, off-white color, and do not show internal layering. They do vary in 

hardness, ranging from clayey-plastic to  well-indurated, but this difference cannot be used 

fo r correla tion  purposes. H ow ever, som e partings, in form ally  designated  "pumice" 

partings, stand out in that they possess a com bination o f coarse-grained texture, minimum 

alteration and ligh t color (Fig. 2.3a, d). A few distinctive partings term ed "crystal tu f f ’ 

partings, are coarse-grained and have a dark color (Fig. 2.3b, c). Attem pts at correlation 

in this paper have focused on these two varieties because o f  their unusual characteristics.
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Figure 2.3. Photographs of some of the partings that were sampled. A) Pumice 
fragment parting FC 15 (arrow). Note person for scale. B) Crystal tuff parting CG 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

METHODS 

Field work

A total o f  32 tephra partings were sam pled along beach outcrops and in a few 

canyons. All occur in coal except two tephra layers from siltstone and sandstone, and one 

from  a H olocene peat bed overlying beach outcrops northw est o f  H om er. The interior 

Kenai lowland could not be sampled. The tephra partings com prise about two-thirds o f all 

the partings in the coal (Reinink-Sm ith, 1989a). The other third are o f  detrital o r  mixed 

origin and will not be examined further here.

As part o f a study reported by M erritt and others, 1987, color slides were taken along 

the Cook Inlet, from Clam Gulch to several km  southwest o f Ninilchik. Hand-held camera 

equipm ent was used from  a helicopter. The result was a  continuous photo-m osaic o f 

structural relationships along coastal outcrops. Locations o f  some sam ples equivalent to 

those in this study were noted in Triplehom  and others (1975) and T urner and others 

(1980). For locations from  Merritt and others (1987) see Appendix 1.

Analytical methods

A direct current plasm a (DCP) atomic em ission spectrom eter (Beckm an SpectraSpan 

V) was em ployed fo r analyses o f w hole-rock m ajor oxides. M ajor oxides and trace 

elements (including the rare earth elements) o f  selected samples were also analyzed by a 

com bination o f  DCP, X-ray fluorescence (X RF), and instrum ental neutron activation 

(INAA). M ajor element com positions o f  glass and opaque oxides from  selected samples 

were determ ined on a model Cam ebax Cam eca Electron M icroprobe (EM ). G lass shard 

m orphologies were studied and photographed using a JEO L (JSM 35 m odel) scanning 

electron microscope (SEM) at 15 kV.
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The m ineralogy o f texturally similar partings was compared. Samples w ere washed 

and  the clay rem oved in suspension. S tandard and polished thin sections (as grain 

m ounts) of the resulting sand-sized coarse fractions were compared for physical properties 

o f phenocrysts, for mineral assemblages, and for supplemental information such as glass 

morphologies. M ineral separates used for K-A r dating by Triplehom  and others (1979) 

and Turner and others (1980) were checked for alteration.

C luster analyses were perform ed from  m ajor oxide data of w hole-rock, coarse- 

fraction, and glass sam ples, and for trace elements and opaque analyses to determ ine 

degrees of similarity between different partings. A single-linkage hierarchical procedure 

was employed. Samples that are compositionally most alike link at the lower values o f  the 

distance coefficients. The value o f the lowest linkage depends on the num ber o f samples 

and on the num ber o f  variables used for each sample.

Thirty-one variables (elements) were used to determine the similarity o f trace elements. 

How ever, Ag, B e, Br, Cd, G e, Hf, Se, Ta, W  and Ir were not included due to either their 

low detection lim its or low variabilities. The results of the cluster analyses for the whole- 

rock compositions partially influenced the selection o f subsequent analytical procedures.

Methodological problems

Q uaternary tephras are m ainly correlated on the basis o f  glass chem istry w hich is 

thought to be constant within a narrow com positional range for a single, discrete ash 

fallout zone (W estgate and Gorton, 1981; Sama-W ojcicki and others, 1984; Bogaard and 

Schm incke, 1985). Discrim inant analyses and other statistical methods have been used to 

successfully correlate tephras from large ( 1 0 0 +) pools o f such samples.
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In the late Tertiary tephras discussed here, glass is com m only partly or totally altered 

to clay m inerals (Reinink-Sm ith, 1989a). O nly 16 sam ples contained glass sufficiently  

unaltered that it could be analyzed. Therefore the chem ical compositions o f w hole-rock 

samples were used  for initial correlation, follow ed by further d iscrim ination based  on 

glass analyses w here possible. C orrelation based on w hole-rock chem istry is further 

com plicated because uneven alteration from place to  place m ay have resulted in variable 

com positions for a single parting. This is shown, for exam ple, by the relatively high 

linkage o f sam ples M C 1 and M C  la  (Fig. 2.4a) which were collected from  the same 

parting within a  lateral distance o f 100 m. M inor transport after deposition may also have 

occurred, as indicated by variations in thicknesses o f  some partings. H ooding  m ay have 

introduced detrital sediments, adding to the problem.

Some o f the variability may be inherent; that is, the range o f whole-rock compositions 

(which is quite large) from  one parting to another, can probably be accounted for, at least 

partially, by the differences in original tephra com position. V olcanic ash may also have 

been subjected to fractionation during atmospheric transport (W estgate and Gorton, 1981; 

Juvignd and Porter, 1985). Thus, the original com position o f  tephra resulting from  a 

single event m ight be expected to vary to  some degree. How ever, this is unlikely to be 

im portant over the relatively small area (~2,800 km^) o f  the Kenai lowland. D espite all 

these hypothetical com plications, w hole-rock m ajor oxide and trace elem ent chem istry 

have been used successfully  to correlate tephra beds over large distances (Bow les and 

others, 1973).
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A W H O L E -R O C K  MAJOR O XIDES

Figure 2.4. Dendrograms of chemical analyses. Grouping, of clusters are emphasized by solid, stippled and dotted lines. 
A) Whole-rock, major oxides.
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B TRACE ELEMENTS C  "HOLE-ROCK. MAJOR OXOES

E COARSE FRACTION, MAJOR OXDES

Figure 2.4 (continued) B) Whole-rock, trace element analyses. C) Whole-rock, major oxide analyses, by Nuclear 
Activation Services, Inc. D) Glass analyses. Note that CG 7 and CG 11 are each represented by two populations ot 
glass. MC 4 represents two analyses from the same sample. Holocene sample DC 60a Is Included tor comparison. E)
Coarse fraction, major oxides. F) Oxides of tltanlferous magnetite. Total Iron as F e jO j. G) Oxides of tltanlferoue ^
magnetite. Iron as FeO and Fe203- w
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RESULTS AND INTERPRETATION

Correlation of a pumice parting

A 10 cm -thick, light-colored pum ice parting represented by sample Clam  G ulch 12 

(CG 12) occurs in a thin coal bed about 175 m below the inferred top o f the Sterling 

Form ation, near the mouth of Clam Gulch (Figs. 2.1, 2.5). CG 12 appears to be identical 

to a  22 cm -thick parting, Fox Creek 15 (FC 15), exposed in a w estern tributary to Fox 

Creek (Fig. 2.3a) which occurs in a 43 cm -thick coal bed 40 m  from the "local top" of the 

unit. In both cases these partings occur in the highest recognizable coal bed. N o other 

equally  distinct pumice partings were detected in the equivalent strata o f the S terling 

Formation. These criteria formed the initial assumption for correlation o f these samples. 

R ad iom etric  dating . Zircon from sample CG 12 (Fig. 2.5) has a fission-track age o f  6.6 ±  

0.7 m.y. (Fig. 2.2) (Triplehorn and others, 1980). Sample FC 15 has not been dated. 

However, hornblende and plagioclase from  a parting in the U-seam  (FC 12), about 320 m 

below  sam ple FC  15 (=CG 12), yielded an average K-Ar date o f  4.5 ± 1 .0  m.y. Zircon 

and plagioclase in a parting from the T-seam  (FC 11), about 330 m  below sample FC 15, 

yielded fission-track and K-Ar ages o f 4.9 ±  0.8 m.y. to 7.6 ±  0.7 m.y.

M in era lo g y . Samples FC 15 and CG 12 contain mainly unaltered and altered pum ice 

fragments but also quartz, plagioclase, hornblende, and traces of zircon and biotite. Quartz 

is euhedral or angular with jagged edges. Plagioclase is zoned and commonly etched, and 

because o f  relatively low abundance o f  tw inned grains, com positions could not be 

determined. N either sample appears to be reworked or to have any opaque minerals except 

for an amorphous-appearing reddish substance of probable organic origin.

C hem ical d a ta . To verify correlation o f partings CG 12 and FC 15, chem ical analyses of 

whole-rock samples, coarse and volcanic glass fractions were compared. The w hole-rock
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Figure 2.5. Stratigraphlc sections modified from Barnes and Cobb (1959) and Merritt and others (1987). All samples used 
for this study are marked. The thicknesses of the coal beds are not to scale. For Identification of coal bed symbols, see 
Figure 2.2. For inertlnlte contents from all the coal beds, see Merritt and others (1987).
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values do not prove the affinity o f the two partings nor do they exclude it. FC 15 shows 

higher percentages o f SiC>2 , P2 O 5 , BaO and SrO, and CG 12 has higher percentages of 

MgO and Na2 0  (Table 2.1). The dendrogram  from  w hole-rock analyses (Fig. 2.4a) 

shows that samples FC 15 and CG 12 occur in the same m ain cluster but not in the same 

"sub cluster."

T aking this into consideration, the coarse fractions (m ostly volcanic glass) were 

analyzed for m ajor oxides, the results o f which show a nearly perfect m atch (Table 2.2, 

Fig. 2.4e). The m atching coarse fraction com positions suggest that the differences in 

whole-rock chemistry were caused by alteration o f  mainly glass.

The higher value o f K 2 O  for coarse fraction sample CG 12 can probably be explained 

in terms of uneven concentrations o f  phenocrysts. In addition, potassium  values (also 

sodium) are m ore severely affected by post-depositional processes than o ther elements 

(Sama-W ojcicki and others, 1984). Evidence o f alteration o f individual phenocrysts and 

pum ice grains, which is m anifested by reduced silica and increased calcium  compared to 

the glass analyses, persists in the coarse fraction.

W ith the exception o f  a slight difference in K 2 O  contents, m ajor oxide analyses o f 

glass (Table 2.3) for CG 12 and FC  15 are very similar. Both samples show higher silica 

contents and low er calcium  and iron contents than their respective coarse fractions. The 

glass analyzed by EM is assumed to  have been unaltered (except for NIN 4). Therefore, 

the higher silica and low er calcium  and iron contents are indicative o f the original glass 

com positions. The glass analyses are illustrated by the clusters in the dendrogram  of 

Figure 2.4d.

Trace element contents including the rare earths, are very similar for FC 15 and CG 12 

(Table 2.4). Zirconium  however, is an exception; CG 12 has 30 ppm  whereas FC 15 has
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TABLE 2.1 M AJOR OXIDES OF W HOLE-ROCK SAMPLES AND COARSE 

FRACTIONS 

SAMPLES FROM  THE KACHEM AK BAY SIDE:

FOX CREEK CANYON SECTION

67

S102  AI2O3 Fc2 0 3 + MgO CaO Na2Q k20 T1O2 MnO P2O5 BaO SiO Total

FC 15 75.85 14.89 1.24 0.13 1.26 2.26 2.96 0.16 0 .1 2 0.36 0.39 0.33 99.95r t  15* 74.97 15.28 1.16 0.49 1.72 2.84 2 .8 8 0.15 0.14 0.31 0.15 0.06 99.94Aver 75.44 15.09 1 .2 0 0.31 1.49 2.55 2.92 0.16 0.13 0.34 0.27 0 .2 0FC 14 70.48 16.78 3.20 0.28 2.40 2.23 2.65 0.78 0.11 1.13 0.43 0.36 99.82FC 14* 69.28 17.21 3.08 0.69 2.81 2.34 2.82 0.79 0.13 1.14 0.28 0.18 100.29Aver 69.38 17.00 3.14 0.48 2.61 2.29 2.74 0.79 0 .1 2 1.14 0.36 0.27FC 3 59.35 2 1 .2 0 3.87 1.65 7.39 3.33 0.87 0.60 0.05 1.06 0 .2 1 0.19 99.77FC 4 57.40 21.63 2.23 1.69 6.76 3.15 1.93 1 .2 2 0 .1 0 3.92 0.79 0.47 101.30FC 5a 71.41 15.97 3.02 0.75 2 .1 1 3.24 2.78 0.75 0.06 0.13 0.04 0.03 1 0 0 .2 2FC 6 69.56 16.29 3.82 1.07 2.25 2.90 2.93 0.75 0.06 0.14 0 .1 2 0.03 99.92FC 6 * 69.82 16.74 4.09 1.29 2.16 1.99 2.81 0.79 0.09 0.16 0 .1 2 0.03 99.94Aver. 69.69 16.52 3.96 1.18 2 .2 1 2.45 2.87 0.77 0.08 0.15 0 .1 2 0.03FC 7 75.66 14.15 1.52 0.33 1.45 2.45 3.92 0 .2 2 0.05 0.04 0.09 0 .0 1 99.90FC 8 74.36 14.52 1.60 0.13 1.29 3.05 4.57 0.35 0.04 0.09 0 .1 0 0 .0 2 1 00 .11FC 8 * 74.03 14.59 1.63 0.32 1.19 2 .6 8 4.41 0.36 0.05 0.08 0 .1 2 0 .0 2 99.34Aver 74.20 15.56 1.62 0.23 1.24 2.87 4.49 0.36 0.05 0.09 0.11 0 .0 2FC 12 72.29 17.44 1.58 0.54 2 .8 8 1.44 2 .2 0 0.28 0.06 0.11 0.17 0.14 99.14FC 11 60.31 17.38 10.83 2.50 1.69 1.17 2.06 0.91 0.54 0.30 0.18 0.11 98.00FC 10 66.45 19.26 4.87 1.43 2.85 1.49 1.78 1.04 0.06 0 .2 0 0.16 0 .1 2 99.70FC 13 65.56 21.47 1.76 1.23 4.57 1.58 0.71 0.39 0 .0 1 0.50 0.38 0.38 98.55

M CNEIL CANYON SECTION

MC4 66.06 20.67 2.73 1.30 4.05 3.24 1 .1 2 0.34 0 .0 1 0.17 0.08 0 .1 0 99.86MC 4* 66.55 20.83 3.01 1 .6 8 4.19 2.53 1.01 0.34 0 .0 2 0.16 0 .1 0 0.13 100.32Aver 66.31 20.75 2.87 1.49 4.12 2.89 1.07 0.34 0 .0 2 0.17 0.09 0 .1 2MC3 60.28 23.41 3.63 1.58 5.72 3.50 0.36 0.64 0 .0 1 0.44 0.09 0.09 99.75MC2 63.86 21.24 5.06 2.94 3.15 1.44 0.35 0.79 0 .0 1 0.35 0.09 0 .1 0 99.38MC 1c 62.69 21.64 4.59 3.02 3.68 1.16 0.30 0.84 0 .0 1 0.70 0.17 0.15 98.94MC la 60.25 24.89 2.30 1 .1 0 5.28 4.28 0.49 0.45 0 .0 1 0.43 0.06 0.16 99.68MCI 60.83 24.41 2.41 1 .2 2 5.02 4.24 0.51 0.42 0 .0 1 0.57 0.09 0 .2 0 99.95MC 1* 59.78 24.61 2.50 1.36 5.18 3.77 0.40 0.42 0 .0 1 0.87 0.15 0.35 98.90Aver 60.31 24.51 2.46 1.29 5.10 4.01 0.46 0.42 0 .0 1 0.72 0 .1 2 0.28
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TA BLE 2.1 (Com.)

SAMPLES FROM  TH E COOK INLET SIDE 

CLAM GULCH  SECTION

S1O2  AI2O3 Fe2 0 3 + MgO CaO Na2 0 k 20 T1O2 MnO P2O5 BaO SiO Total

CG 10 62.28 19.91 3.59 1.97 4.91 1 .8 8 1.56 1.47 0.08 0.73 0.18 0.05 98.60
CG 11 69.87 16.14 2.21 0.62 3.53 2.23 2.79 0.30 0.07 0.27 0.17 0.04 98.26
GG 11* 71.98 16.63 1.97 0.65 2.54 2.47 3.08 0.28 0.08 0.25 0.18 0.07 99.93
Aver 70.93 16.39 2.09 0.64 3.04 2.35 2.94 0.29 0.08 0.26 0.18 0.06
CG 12 72.12 14.82 1.58 0.52 1.85 3.11 2.94 0.20 0.13 0.17 0.11 0.02 98.98
CG 12* 73.90 14.30 1.53 0.63 1.86 2.99 3.41 0.18 0.14 0.16 0.13 0.03 99.10
Aver 73.01 14.56 1.56 0.58 1.86 3.05 3.18 0.19 0.14 0.17 0.12 0.03
CG 6 70.98 15.96 2.17 0.78 2.14 3.80 3.27 0.32 0.04 0.09 0.09 0.04 99.67
CG 5 72.04 15.79 1.69 0.67 2.24 3.48 3.56 0.20 0.03 0.13 0.10 0.05 99.98
CG 5* 73.05 16.37 1.68 0.91 2.12 2.24 3.46 0.21 0.04 0.08 0.10 0.06 100.16
Aver. 72.55 16.08 1.69 0.79 2.18 2.86 3.51 0.21 0.04 0.11 0.10 0.06
CG 1 58.00 21.72 3.95 2.37 7.11 4.85 0.64 0.69 0.08 0.12 0.01 0.02 99.57
CG 1* 56.47 22.36 4.32 2.16 7.87 4.65 0.24 0.97 0.08 0.04 0.04 0.15 99.16
Aver 57.24 22.04 4.14 2.27 7.49 4.75 0.44 0.83 0.08 0.08 0.03 0.09

COREA CREEK

CC1 56.45 21.44 4.54 2.64 7.49 4.49 0.31 0.81 0.10 0.09 0.03 0.11 98.48
CC1* 57.17 22.17 4.79 2.79 7.54 4.49 0.27 0.84 0.11 0.04 0.03 0.13 100.21
Aver 56.81 21.81 4.67 2.72 7.52 4.49 0.29 0.83 0.11 0.07 0.03 0.12
CC2 63.20 16.10 2.60 1.07 4.27 3.05 2.58 0.36 0.06 0.15 0.09 0.06 99.73

N IN ILC H IK

NIN 4 72.79 17.10 0.38 0.13 2.16 5.12 1.90 0.18 0.02 0.02 0.08 0.04 99.92
NIN 2 63.17 21.27 2.01 0.50 5.39 5.30 1.18 0.51 0.02 0.06 0.04 0.11 99.57
NIN 2* 63.90 21.30 2.16 0.98 5.60 4.63 1.14 0.50 0.03 0.03 0.05 0.15 100.27
Aver 63.54 21.29 2.09 0.74 5.50 4.97 1.16 0.51 0.03 0.05 0.05 0.13
NIN 1 63.85 19.41 5.46 2.34 2.27 3.41 1.96 1.00 0.04 0.14 0.07 0.03 99.99
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OTH ER (from canyons N-E of Homer)

TABLE 2.1 (Cont.)

SiC>2 AI2O 3 Fe2 0 3 + M g O  C aO  N a2 0  K20  T 1O 2  M nO  P 2O 5 B aO  S iO  T o ta l

U N 6 6 .2 6 17 .85 2 .6 3 1 .6 4 4 .6 3 2 .4 7 1 .9 4 0 .3 6 0 .0 5 0 .0 5 0 .0 8 0 .0 8 9 8 .0 5
G R A V 62 .7 7 1 9 .92 2 .5 4 1 .01 6 .3 0 4 .1 2 1 .0 9 0 .3 9 0 .0 6 0 .1 2 0 .0 6 0.11 9 8 .51
G R A V * 6 3 .9 6 2 0 .3 8 2 .5 2 1 .18 6 .2 3 4 .2 0 1 .1 2 0 .3 8 0 .0 7 0.11 0 .1 0 0 .1 5 10 0 .1 5
A v e r 6 3 .3 7 2 0 .1 5 2 .5 3 1 .1 0 6 .2 7 4 .1 6 1.11 0 .3 9 0 .0 7 0 .1 2 0 .0 8 0 .1 3

Note: Samples are grouped in descending stratigraphic order, from top to base, for the 
Kachemak bay side and for the individual groups on the Cook Inlet side. All samples 
were analyzed by DCP in quadruplicate unless otherwise noted. The analyses were based 
on samples heated to 1000°C, and the concentrations were normalized.
Standards were M ount Royal Gabbro (M RG-1), National Bureau o f  Standards (NBS) 
Plastic Clay (98a), NBS standard Argillaceous Limestone (lc) , Canadian Syenite rock 
standard (SY-3). NBS Basalt Rock standard (688) was used as a check.

* Duplicate samples analyzed by XRF, by N uclear Activation Services, Inc. and the 
values are averaged into the other data (= A v e r)

+ Total Fe calculated as Fe2 (>j
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TABLE 2.2 MAJOR OXIDE ANALYSES OF COARSE FRACTIONS

SiC>2 AI2O3 Fe2C>3+ MgO CaO Na20 k20  T1O2 MnO P2O5 BaO SiO Total

CG  12 72.24 14.30 1.72 0 .52 2.47 2.70 4 .42 0 .20 0 .1 2 0 .17 0.11 0 .0 2 98.56
C G  1 56 .30 22.29 4 .09 1.83 7.85 4.82 0.26 0.94 0 .07 0 .05 0.01 0 .0 6 98.59
C C  1 56 .70 22.14 4 .5 6 2.51 7.89 4.69 0.28 0 .86 0 .09 0 .07 0 .02 0 .1 2 99.93
N IN  2 62 .79 20.78 1.83 0.29 6.29 5.05 1.24 0.55 0 .0 2 0 .05 0.05 0 .12 99 .06
FC  15 72 .39 15.14 1.51 0 .47 2.85 2.98 2.64 0 .23 0 .12 0 .23 0.12 0 .03 98.70
M C  4 61 .87 22.13 1.99 0.53 6 .67 4.43 0 .80 0 .44 0 .0 2 0.11 0 .06 0 .13 99.17
G RA Y 62.77 19.92 2.54 1.01 6 .30 4 .12 1.09 0 .39 0 .0 6 0 .12 0.05 0 .13 98.51

+ total iron as Fe203
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TABLE 2.3 MAJOR OXIDE ANALYSES OF GLASS

S i02  AI2 0 3  Fe20 3 + MgO CaO Na20  K20  T O  Cl #  analyses

CG 11 
St. Dev.

69.79
1.07

16.83
0.28

3.17
0.29

0.75
0.15

2.84
0.41

3.93
0 .80

2.20
0.12

0.44
0.16

0.04
0.03

12

CG 11 
St. Dev.

75.13
0.25

14.56
0.10

1.71
0.11

0.11
0.03

0.91
0.08

3.18
0.45

4.30
0.33

0.06
0.03

0.03
0.02

11

CG 12 
St. Dev.

77.08
0 .18

14.29
0.10

0.99
0.07

0.36
0.03

1.16
0.03

3.09
0.21

2.77
0.27

0.11
0.03

0.05
0 .02

11

C G 7  
St. Dev.

75.91
0 .38

14.26
0.66

0.84
0.32

0.18
0.03

0.31
0.04

2.25
0.14

6.10
0.17

0.04
0.04

0.10
0.17

5

CG 7 
St. Dev.

75 .99
0 .3 6

14.61
0.43

1.08
0.11

0.32
0.04

1.89
0.16

2.84
0.49

3.18
0.63

0.09
0.04

0.02
0 .02

12

CG 1 
St. Dev.

76.45
0 .27

14.41
0.16

1.24
0.13

0.40
0.05

1.93
0.12

2.58
0.34

2.71
0.40

0 .16
0 .04

0.11
0.03

10

CC 2 
St. Dev.

76 .58
0 .19

14.14
0.15

1.12
0.08

0.35
0.02

1.46
0.07

2.34
0.37

3.84
0.65

0.11
0.02

0.08
0.03

16

FC 15 
St. Dev.

77.28
0 .34

14.50
0.16

0.89
0.10

0.35
0.03

1.18
0.07

3.22
0.46

2.45
0.19

0.07
0.02

0.05
0.03

13

FC 14 
St. Dev.

71 .82
0 .34

14.57
0.09

3.26
0.11

0.61
0.04

2.02
0.08

4.21
0.44

2.67
0.10

0.59
0.04

0.25
0.05

18

FC 5 a* 
St. Dev.

71.93
1.05

14.88
0.35

3.26
0.38

0.60
0.14

1.76
0.32

4.17
0.68

2.76
0.30

0.61
0.09

0.03
0.02

24

FC 6 
St. Dev.

73.25
1.05

14.73
0 .30

2.73
0.33

0.48
0.11

1.37
0.30

3.48
1.09

3.38
0.42

0.53
0 .10

0.04
0 .02

27

FC  6a 
St. Dev.

73.41
0 .59

14.73
0.13

2.73
0.25

0.47
0.05

1.39
0.17

3.39
0.44

3.30
0.23

0.54
0 .06

0 .04
0 .02

10

FC 6b 
St. Dev.

74.18
0.45

14.95
0.23

2.78
0.21

0.50
0.07

1.40
0.20

1.92
0.40

3.66
0.24

0.57
0 .12

0.04
0.02

8

FC 6c 
St. Dev.

72.57
0 .30

14.57
0.05

2.63
0.14

0.44
0.03

1.23
0.09

4.83
0.33

3.23
0.09

0.47
0.04

0.03
0.01

7
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TABLE 2.3 (Corn.)

S1O 2 AI2O3 Fe2C>3+ MgO CaO N a20 k 2o TiO Cl # analyses

FC 6 d 
St. Dev.

70 .14
0 .6 0

15.62
0.35

4.05
0 .49

1 .0 2
0 .2 2

2.71
0.36

3.72
1.83

2.50
0.13

0.81
0.11

0.03
0 .0 1

6

FC 6 e 
St. Dev.

75 .39
0 .26

13.80
0 .46

1.63
0 . 2 0

0.17
0 .1 0

0.41
0.18

2.77
0 .89

5.16
0.35

0.35
0.07

0.04
0 .0 1

3

FC 7 
St. Dev.

78 .10
0 .25

12.32
0.09

1.06
0.07

0.15
0.05

0 .8 8
0 .09

3.05
0.32

4.08
0.47

0.13
0 .03

0 .2 2
0.03

17

FC 8 
St. Dev.

75 .00
0 .47

14.03
0.26

1.53
0 .18

0.27
0.03

0.91
0.09

3.83
0 .6 8

4.57
0 .50

0.05
0 . 0 2

0 .1 2
0 .24

11

FC 12 
St. Dev.

77.41
0 .24

13.41
0 .1 2

1 .2 0
0 . 1 0

0.29
0 .0 2

1.56
0.06

3.54
0 .46

2.32
0.29

0 .14
0 .04

0 .14
0 .04

17

M C 4 
St. Dev.

77.37
0.45

13.72
0.48

1.07
0 .09

0.30
0.03

1.70
0 .1 0

2.45
0 .29

3.17
0 .19

0.13
0 .0 6

0.09
0.03

1 0

MC 4 
St. Dev.

77.41
0 .24

13.53
0.13

1.15
0 .16

0.31
0.05

1.60
0.05

2.57
0 . 2 0

3.19
0 .24

0.15
0.09

0.08
0.04

11

UN
St. Dev.

77.18
0 .28

13.53
0.13

1.18
0 . 1 2

0 .32
0.03

1.69
0 .1 0

2 .40
0.38

3.46
0 .59

0 .16
0.05

0.07
0.03

16

GRAV 
St. Dev.

76.65
0 .29

14.00
0 .2 1

1.43
0 .19

0.40
0.07

1.89
0.11

2 .62
0 .36

2.75
0.48

0.17
0.03

0.09
0.05

14

NIN 4§ 
St. Dev.

82.03
2 .56

10.95
1.46

0.15
0 .13

0.08
0.08

0.97
0.33

4.02
0.54

1.67
0.87

0.06
0.04

0.07
0.07

14

DC 60a 
St. Dev.

** 77 .70  
0 . 2 0

13.12
0.08

1 .2 2
0.11

0.34
0.03

1.89
0.08

3.74
0.09

1 .6 6
0.08

0.19
0.06

0.13
0.05

1 0

N ote: All ox ide  va lues are norm alized w eigh t percen ts . T he standard  fo r N a, F e , K , A1 and Si w as g lass 
standard C C N M -2 1 1 (obtained from  D .G .W . Sm ith  fo r the X -ray  A nalysis L abora tory  o f  the G eology 
D epartm ent a t W ashing ton  State  U niversity ), fo r M g and  C a , N B S  glass K -4 1 1, fo r T i, sphene 1 a  and  for 
C l, KC1 (ob tained  from  C harles T aylor). T he coun t tim e  w as 10 seconds. Sam p les C G  7 and  CG  11 are 
reported a s tw o separate  populations o f  glass. T w enty  seven (ou t o f  34) se lec ted  analyses w ere averaged 
for sam ple  FC  6 . T h is  sam ple w as subdiv ided  into f ive  d ifferen t g lass popu la tions ( in  italic) from  the  
original 34 analyses. Sam ple M C 4  is reported  in  duplicate.
* T here  m ay  be  m ore  than one popula tion  o f  g lass in  th is  sam ple .
+  T otal iron  as Fe2C>3.

§ The glass from  th is sam ple  is p robably  altered.
** T his sam ple is from  a  H olocene peat overly ing  beach  ou tc rops no rthw est o f  o f  H om er and is 
included for com parison.
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T A B L E  2.4 T R A C E  AND RA RE E A R T H  E L E M E N T S O F W H O L E  R O CK  SA M PLES 

PPM CG 11.CG 12.CG 5, CC 1, CG 1, FC 6, FC 8, FC 14.FC 15.GRAV, MC 1, MC 4, NIN 2, Method
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<3 <3
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1.2 0.7 0.3 3.0 4.5
0.17 0.15 0.07 0.51 0.68 
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8
1.7 1.0
0.3 0.3
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1.4 0.6
0.23 0.11

22 17 24 16

<0.5

6
1.3 
0.5 

<0.5 
1.2 0.4
0.20 0.14

12 8
15

2.0
0.7 0.7 0.5

<0.5 <0.5 <0.5 
0.3 0.3 0.4
0.07 0.08 0.07

DCP
INAA
INAA
DCP
XRF
DCP
INAA
DCP
INAA
XRF
INAA
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INAA
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230 ppm  Zr. This difference can probably be explained in term s o f the rare and therefore 

perhaps inconsistent occurrences o f zircons in these sam ples. It also em phasizes the 

problems of whole-rock analyses.

O th er approaches. Glass morphology from different vents m ay show large variations and 

has been useful for correlation (Bogaand and Schmincke, 1985). Shard shapes are reliable 

as diagnostic indicators o f  a particular tephra layer because properties o f the m agm a and 

the eruptive m echanism  control the m orphologies (W estgate and G orton, 1981). Glass 

m orphologies in this study com m only d iffer from  one parting to another (Fig. 2.6). The 

shard shapes o f  sam ples CG 12 and FC 15 are practically identical (Fig. 2.6a, b). They 

are the same size (<0.5 - 1mm fraction), and they are colorless with elongate pipe vesicles 

that control the overall shape. Vesicles are parallel or coalesce and curve into ovoids. 

P um ice fragm ents have delica te, irregular surfaces w ith little  adhering dust. The 

morphological similarity o f the shards supports the proposed correlation between CG 12 

and FC 15. No other partings investigated by SEM  contain glass that exhibits this same 

overall configuration. Exam ples o f  contrasting morphologies from  samples FC  8 and CG 

7 are shown in Figures 2.6c and d.

Im p lic a tio n s . I t  is clear from  the above observations that radiom etric ages are not 

concordant w ith the correlation o f CG 12 and FC  15. Too much em phasis should not be 

placed on this age d isparity  considering the problem s o f  possible undetected detrital 

contam ination and the discordant ages obtained from  different m inerals from  a  single 

parting.

Some m anipulation o f the radiom etric age estim ates for sam ples CG 12 and FC  12 

may be useful. W ithin two standard deviations the dates for the two tephras are quite close 

providing the 2 a  value o f 0.7 m.y. is subtracted from  the zircon fission-track age o f  6.6 ±
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Figure 2.6. SEM micrographs of volcanic ash: A) A representative pumice fragment 
from sample CG 12. Original magnification is 200 (200 x). B) Pumice fragment from 
sample FC 15 (200 x).
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D

Figure 2.6 (continued) C) Broken pumice and bubble shard fragments from sample FC 
8 (200 x). D) Fine grained ash from sample CG 7. Note the slight rounding of the 
shards indicating possible reworking (2,000 x).
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0.7 m.y. (CG 12) and 1.4 m.y. is added to plagioclase K -A r age o f  4.2 ± 1 .4  m.y. (FC 

12) (Figs. 2.2, 2.5). The resulting ages are 5.9 (CG 12) and 5.6 m.y. (FC 12). The 2 a  

values are only estimates of uncertainty (Triplehom and others, 1977) and the uncertainty 

m ay actually  be greater than the estim ated values. Thus, the tw o ages m ay not be 

significantly different. Therefore the sedim ents, 320 m  above FC 12, from  w hich FC  15 

was obtained, may also be o f the same age. Detrital zircons were not detected in parting 

D T 75-200 (CG 12) (C.W . N aeser, 1988, personal com m un.), bu t may have been 

present, nevertheless, giving the parting a slightly older age. Alteration does not seem  to 

have played  a significant role. R egardless o f  sam ple, none o f  the hornblende and 

plagioclase from m ineral separates dated by Triplehom  and others (1977) and T urner and 

others (1980) appeared to be altered more than 1%.

Correlation of a crystal tuff

Samples from Clam Gulch (CG 1), C orea Creek (CC 1) and possibly Ninilchik (NIN 

2) are correlative from about 5 km  southw est o f  Clam  Gulch (Fig. 2.5) at the m outh o f 

Falls C reek (CG 1), southw est to  ju s t north o f  C orea C reek (CC 1) and southw est to 

about 2 km  north o f Ninilchik (NIN 2). These samples are from  crystal tuff partings with 

sand-sized grains (Fig. 2.3b, c). NIN 2 m ay be correlative with sam ples GRAV o r UN 

(Fig. 2.5) from the H om er escarpm ent, and e ither G R A V  or U N  m ay correlate with 

sample M cNeil Canyon 4 (MC 4), from  2 km  northeast o f M cNeil Canyon. This indicates 

that the six samples m ay represent tw o ash-falls. M C 4  was sam pled  from  the far 

northeastern flank o f a shallow anticline which m ay be an extension o f the anticline 

between Corea Creek and N inilchik (Fig. 2.1).
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GRA V is betw een the W oodman and Fletcher beds, whereas UN is probably above 

the W oodm an Bed, and positively above G R A V . The stratigraphic positions o f  G RAV 

and UN are som ew hat uncertain because they were sam pled relative to  the W oodm an 

(Fig. 2.2, section 12, bed  3) and F letcher (Fig. 2.2, sections 12 and 13, bed  4) beds. It 

was not possible to determine the exact positions o f  those coal beds in Figures 2.2 and 2.5 

and they m ay be displaced 10-20 m up or down section. The distance betw een the coal, 

however, is correct.

R ad io m etric  d a tin g . The plagioclase o f sample CG 1 was originally K-Ar dated at 8.8 ±

0.5 m .y. and the hornblende at 7.2 ±  0.7 m .y., This is sample 7-13-73-6 o f  T rip lehom  

and others (1979) (Fig. 2.2). It is also identical with or within the sam e bed as sam ple D T 

75-201 o f  Turner and others (1980) which has a K-A r plagioclase age o f 5.9 ±  0.5 m.y. 

and a hornblende age o f  5.0 ±  0.8 m.y. The discrepancies o f the two sets o f  ages are 

believed by Turner and others (1980) to be due to detrital contamination o f sam ple 7-13

73-6, o r a disconform ity between two partings in the coal bed. O nly one parting (CG 1) 

was observed while sampling for this study. A  disconformity in the middle o f the coal bed 

also seems very unlikely, considering there is no evidence of an erosion surface.

Sam ple CC 1 is probably identical to, or strati graphically very close to, sam ple 7-13

73-9 o f Trip lehom  and others (1977). The plagioclase o f this sample was K -A r dated at

6.8 ±  0.7 m.y. Sam ple NIN 2 is close o r equal to sample 7-14-73-3 o f Triplehom  and 

others (1987). The plagioclase was K -A r dated at 8.7 ± 1 .0  m.y. and zircon fission-track 

dated at 8.3 ± 1 .0  m.y.

The three sam ples above were tentatively placed in a  stratigraphic position w ithin 150 

m  o f each o ther by Triplehom  and others (1977) and Turner and others (1980), w ith 

sample 7-14-73-3 (NIN 2) the oldest and 7-13-73-6 (CG 1) the youngest. The younger
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age (6.8 ± 0.7 m.y.) of "intermediate" sample 7-13-73-9 (CC 1) was explained in terms 

of "structural complexities" when com pared to the initial dates o f 8.8 ±  0.5 and 7.2 ±  0.7 

m.y. for sam ple 7-13-73-6 (CG 1). It was suggested that samples 7-13-73-9 (CC 1) and 

7-13-73-6 (CG 1) may be stratigraphically reversed. However, it will be shown here that 

they are identical and that NIN 2 m ay also be identical to these or at least in very close 

stratigraphic proximity, perhaps even younger.

No radiom etric ages are available for samples GRAV or UN, or for any partings from 

nearby coal beds. However, based on the low est known stratigraphic occurrence of 

Rugaepollis kachemakensis, strata from  approximately 10 m  below the Fletcher bed w ere 

tentatively correlated with strata a few m  below the E-bed (A dkison and others, 1975) 

shown as the correlation from  sections 12 to 14 in Figure 2.5. M C 4 has not been dated, 

but plagioclase in a parting about 50 m  below the E-bed (uncertain location) was dated at

7.9 ±  0.8 m .y. and zircon at 7.9 ±  1.0 m.y.

M inera logy . Altered glass, quartz, plagioclase, am phibole, opaques and volcanic rock 

fragments are mutual constituents for this crystal tuff. The plagioclase com position was 

determ ined optically by the M ichel-Levy m ethod to be approximately Ab4 5  ^ n55 fOT CG 

1, CC 1, NIN 2, MC 4 and U N, indicating an andesitic com position. The p lagioclase 

composition in  sample GRAV was determined from only three grains as Ab5 g An4 2 - The 

amphibole is a  green, strongly pleochroic hornblende (som ew hat paler for M C 4) that 

occurs as long, narrow, commonly splintery fragments. It is m ost abundant in CG 1, CC 

1 and G RA V , and least abundant in M C 4. Ilm enite occurs as inclusions in some 

hornblende from  CC 1. The opaques, based on chemical analyses (Table 2.5) are mostly 

titaniferous m agnetite with some apatite inclusions. R are pyrite inclusions occur in 

titaniferous m agnetite from  sam ple U N. Volcanic rock fragm ents com m only contain
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TABLE 2.5 TITANIFEROUS MAGNETITE ANALYSES

SiC>2 AI2O 3 FC2O 3 FcO MgO T i(>2 M nO C r20 3 1 O V20 3 Total FCO+FC2O 3 # analys

CG 1 0.03 0 .56 47.82 22.84 0.89 26.98 0.24 0.03 0.04 0.21 99.64 73.24 15
St. Dev. 0.03 0.05 0.71 0.33 0.09 0.46 0.05 0.05 0.08 0.06 0.54

CC 1 0.05 0.58 48 .30 22.61 0.89 26.74 0.25 0.02 0.05 0.21 99 .70 73.43 14
St. Dev. 0.03 0 .04 0.85 0 .40 0.06 0.51 0.03 0.02 0 .06 0.04 0.52

CC 2 0.04 0.53 49.47 21.80 0.83 25.87 0.35 0.02 0.03 0.10 99 .04 73.71 15
St. Dev. 0.03 0.03 0.41 0.29 0 .06 0.29 0.05 0.02 0.03 0.06 0.43

N1N 2 0.05 0.49 46.52 23.17 0.99 27.64 0.25 0.03 0.05 0.18 99.37 72.47 14
St. Dev. 0.03 0 .05 0.66 0 .29 0.13 0.51 0.03 0.03 0 .10 0 .07 0 .76

1C 12 0.05 0 .47 47.70 22 .50 0.92 26.75 0.24 0.02 0.05 0.21 98.91 72.71 16
Si. Dev. 0.04 0.03 0.74 0 .32 0.05 0.38 0.03 0.02 0.05 0.05 0.75

UN 0.04 0 .46 46.43 23 .03 0 .96 27.48 0 .30 0.04 0.04 0.20 98.98 72.03 15
St. Dev. 0.04 0.05 1.49 0.65 0.15 0.95 0.04 0.01 0.04 0.04 1.04

MC 4 0.07 0 .44 46.26 23.14 1.01 27.67 0.30 0.02 0 .02 0 .22 99.15 71.74 14
St. Dev. 0.04 0 .04 1.31 0.62 0.15 0.93 0.05 0.02 0.04 0.05 1.17

M C la 0.04 0 .50 46 .82 23.33 1.02 27.82 0.23 0.02 0.02 0.23 100.03 72.75 14
St. Dev. 0.02 0.09 1.25 0.42 0.15 0.66 0.08 0.02 0.03 0.05 0.84

Note: T he standard for Mg, A1 and C r w as chrom ite #5 (obtained by the X -ray Analysis L aboratory o f  the G eology 
D epartm ent at W ashington State U niversity from Charles Taylor). The standard for Fe and Ti w as ilm cnitc from the Ilmen 
M ountains in the U SSR (obtained from  E. Jaroscvich), U SN M  96819. The standard for Mn w as MnTiC>3 (from Cam eca), for 
V w as pure V and for Nb, I ^ N a N b s O ts  (from Charles T aylor). The standard for Si w as SiC>2. The count lime w as 10
seconds. oo
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hornblende and skeletal plagioclase m icrolites in a glassy matrix. Thin sections o f NIN 2 

and M C 4 contain a few, very small, altered biotite flakes. These m ay be o f accidental or 

detrital origin, but they may also have occurred as trace constituents in the original ash. 

Biotite has not been found in CG 1, CC 1, GRAV and UN. A few altered K -spar grains 

were found in NIN 2 and M C 4 and trace amounts o f  zircon occur in thin sections CG 1, 

M C 4, G RAV and UN.

The samples show different degrees of alteration o f the constituent minerals. CG 1 and 

GRAV are the least altered and NIN 2 the m ost altered. Pumice grains from  C C  1 and 

NIN 2 are en tire ly  altered to clay, bu t re lic glass structures are present. In N IN  2, 

plagioclase and hornblende appear etched and pitted, and a few skeletal biotite fragments 

and rare py rite  are present. A ltered glass fringes occur on som e p lag ioclase and 

hornblende grains. A lthough m ost pumice fragments are altered, some fresh glass fringes 

occur on plagioclase and hornblende grains in CG 1, GRAV, UN and M C  4.

Sample NIN 2 was reworked to some degree as evidenced by slight rounding o f  some 

grains and the presence o f  trace am ounts o f epidote, chlorite and rare sphene. Chlorite is 

an abundant detrital component in the Cook Inlet basin (Triplehom, 1976). MC 4  was also 

som ewhat rew orked as evidenced by slight rounding o f plagioclase and pum ice grains. 

Thin section CC 1 contains one m uscovite grain o f  detrital o rig in . M inor detrital 

contamination m ay have taken place, possibly by wind, but the parting itse lf is somewhat 

dispersed in the coal which contradicts the idea o f  reworking. CG 1 and G R A V  were 

apparently not rew orked. A ll grains are angular, and m inerals o f  detrital origin are not 

present.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

Thus, the m inor differences in m ineralogy o f the above samples can be attributed to 

alteration and detrital contamination. The apparent absence or presence of biotite o r zircon 

probably depends on sample size since these minerals are scarce.

C hem ical D ata. W hole-rock, major oxide analyses show the closest affinities between CG 

1 and  CC 1, NIN 2 and G RAV, and between UN and M C 4, respectively (Table 2.1). 

The andesitic compositions of CG 1 and CC 1 are strikingly similar, especially compared 

with the m ore dacitic and rhyolitic com positions o f  other samples. This, and the fact that 

they are both crystal tuff partings occurring in the opposite lim bs o f a very shallow 

anticline within 4  km  o f one another, makes correlation alm ost certain , especially since 

partings o f  crystal tuff are rare.

The w hole-rock analyses o f NIN 2, MC 4, UN and G RAV in general show higher 

SiC>2 and K2 O  and low er Fe2 C>3 , M gO and CaO contents than for CG 1 and CC 1. This 

m ay not be too significant though, considering the som ew hat altered  and possibly 

rew orked state o f the former group (except for GRAV). H owever, higher S i0 2  and K 2 O 

contents in combination with lower Fe2 0 3 , M gO and CaO may indicate that samples NIN 

2, M C 4, UN and GRAV originated from a volcanic source that had undergone greater 

m agmatic evolution (Scheidegger and Kulm, 1975) than the source o f CG 1 and CC 1.

Despite the many factors that might affect the composition o f  the partings, whole-rock 

analyses w ere useful for general grouping o f  the various sam ples as show n in the 

dendrogram  o f Figure 2.4a. Sam ples GRAV, NIN 2, UN and M C 4 are grouped in the 

same cluster w ith three other M C samples and a CC sample. CC 1 and CG 1 are grouped 

separately in a small cluster.

M ajor oxide analyses o f the coarse fractions strengthen the proposed correlation of CG 

1 and CC 1. The only real difference (Table 2.1) is shown by Fe2 C>3 and M gO which may
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be the resu lt o f uneven distribution o f the coarse fraction phenocrysts. Coarse fraction 

compositions o f NIN 2, M C 4 and G RAV match more closely with CG 1 and CC 1, than 

the equivalent whole-rock compositions did, but not close enough for definite correlation. 

Sam ple G RAV has somewhat higher values o f Fe2 C>3 and M gO than NIN 2 and M C 4. 

Coarse fraction separation was not possible for sample UN.

The oxides o f  titaniferous magnetite were determined for those samples that contained 

abundant opaques (Table 2.5). The com positional variations are small. How ever, it is not 

a coincidence that the dendrogram  in Figure 2.4f, show the greatest affinities betw een 

samples CG 1 and CC 1, and that these are part o f a larger cluster with sam ples NIN 2, 

GRAV, and U N  (and FC 12).

The affinities in term s o f  the glass com positions are illustra ted  in  F igure 2.4d. 

Samples CG 1, G rav, UN and M C 4 are grouped in a small cluster with CC 2. Sam ples 

NIN 2 and CC 1 could not be included because o f the absence of fresh glass.

O th e r  a p p ro ach e s. Regional clim atic changes may result in different coal com positions 

which m ay aid in correlation. Late M iocene to early Pliocene times probably record a dry 

period with fluctuating w ater levels in the coal-form ing swamps o f the K enai low land 

(M erritt and others, 1987). Peat-degradation occurred due to frequent oxidation. The 

surfaces o f the peat swamps were consequently m ore vulnerable to fires. As a result, the 

coal o f the S terling Form ation has h igher inertinite contents (rem nants o f  charred  and 

oxidized plant m aterial) than the coal o f  the Beluga Formation. M erritt and o thers (1987) 

reported that some coal beds contain up to 31% inertinite which occurs as bands in the 

coal and can be used to aid correlation. Inertinite levels, in two groups o f  9-15%  and 15

31%, were com piled from M erritt and others (1987) and placed in correct stratigraphic
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order in Figure 2.5. From this it can be seen that the inertinite is concentrated in the lower 

and m iddle part o f the Sterling Formation (Fig. 2.5).

An inertinite-rich coal bed consistently occurs about the same distance below the coal 

that contains partings CG 1, CC 1 and NIN 2 (Fig. 2.5). It is 35 m below G C  1, 27 m 

below CC 1 and 29 m under NIN 2, and repeated several times laterally from Falls Creek 

to south o f N inilchik because o f folding. The uniform  distance o f the inertinite-rich coal 

below  these partings (10.7% , 12.3% , and 31.0% inertin ite, respectively) supports 

correlation o f the three partings. This high inertinite band can probably be correlated with 

one bed (19.6%  inertinite) that is equal to or close in stratigraphic position to the 

W oodm an bed and, thus, located below  sample GRAV (Fig. 2.5, sections 12 and 13). 

The W oodm an bed(?) is in turn correlated with the G-bed w hich has inertinite levels o f 

15.7% .

T he inertin ite  levels o f  the W oodm an bed from  the H om er escarpm ent to the 

Kachem ak Bay side are apparently time transgressive: Parting M C 4 (in the F-seam) is 

stratigraphically 12 m below  the inertinite-rich G-seam, w hereas the four partings CG 1, 

CC 1, NIN 2 and GRAV are above the inertinite-rich bands. This is entirely  possible, 

considering the swamps m ay have responded differently to  a dry period through time 

depending on groundwater levels, altitude and swamp vegetation. The lateral continuity of 

the high inertinite coal, in general, is com patible with the correlation based on the lowest 

occurrence o f Rugaepollis kachemakensis (Adkison and others, 1975).

Im plications. Chem istry suggests that CG 1 and CC 1 are the same tephra, structure that 

CG 1, CC 1, and NIN 2 are one and the same tephra, and inertinite bands that CG 1, CC 

1, N IN  2, G R A V , and M C 4 record the sam e tephra. Glass contents, m orphology of 

altered glass, grain size, and other characteristics o f the thin section samples, how ever,
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suggest the crystal tu ff can be divided into two groups of three sam ples each (CG 1, CC 

1, and G RAV, and NIN 2, UN, and MC 4), possibly representing tw o discrete ash-falls 

deposited within short intervals o f each other. If this is the case, structural complexities 

must be invoked to explain the position o f sample NIN 2. It was established that NIN 2 

may be equivalent o r in close stratigraphic proximity to CG 1 and CC 1. According to 

Triplehom  and others (1977), NIN 2 (their sample 7-14-73-3) is older than CG 1 or CC

1. H ow ever, the closer petrographic resem blance o f  NIN 2 to UN  (w hich overlies 

GRAV) would be explained if NIN 2 is younger than samples CG 1 and CC I. A fault at 

Corea Creek separates the two sections from which these sam ples w ere collected. The 

southw estern block is upthrown but the displacem ent is unknow n (Fig. 2.1). If  the 

displacem ent is m inor in com bination with "favorable" folding, NIN 2 actually m ay be 

younger. For exam ple, assuming the folding predated the faulting, a general southwestern 

dip o f  the fault blocks m ay have facilitated the preservation o f  the overlying, younger 

sediments.

The relationship o f  these samples to one another m ay never be entirely  resolved. 

Dendrogram s o f the chem ical com positions, neither verify nor exclude correlation. In 

general, CG 1 and CC 1 cluster separately. NIN 2, G RA V , U N , and M C 4 always 

cluster, although not always in the same order. CG 1 and CC 1 most likely were produced 

from one ash-fall and  they may correlate with one, two or three but not all four o f the 

other samples. Although the six partings cannot be positively differentiated into separate 

tephras, it seems certain that ash-falls with similar com positions fell during a relatively 

short tim e period and resulted in a narrow succession o f partings, o f  which only one o r 

two are preserved in each sampled section. All six samples were probably extruded by a 

similar eruptive m echanism, perhaps from a single vent. In summary: samples CG 1 and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

CC 1 correlate, and based on structural relationships and an adjacent inertinite band, they 

appear to correlate with NIN 2, GRAV and M C 4. Petrographic and chem ical analyses, 

however, suggest two separate, compositionally similar tephras within close stratigraphic 

position o f each other.

A coarse-grained parting compared to the crystal tuff

The correlations above can be further substantiated by discussing another conspicuous 

tephra parting. For exam ple, a 10 cm  thick, laterally continuous, coarse-grained parting, 

collected as MC 1 and M C la , occurs in an inertinite-rich (16.7% inertinite) coal bed about 

10 m  beneath  the A -bed  (Fig. 2 .5). B ased on visual inspection  this parting  was 

prelim inarily interpreted to correlate with the crystal tu ff discussed above. M erritt and 

others (1987) tentatively thought that this inertinite-rich coal bed lay at a level close to the 

coal that m ay be the W oodm an bed (19.6% inertinite), bu t geochem istry o f  the tephra 

partings indicates that this is not the case.

The dendrogram  in Figure 2.4a, c (w hole-rock, m ajor oxides) loosely groups MC 1 

and M C l a  with the crystal tu ff (samples CG 1, CC 1, NIN 2, and G RA V ), bu t thin 

section analyses contradict any correlation. A lthough plagioclase fe ldspar w ith albite 

twinning (Ab47 An53) is present and zoning is common in sam ples M C 1 and M C la , 

m ost plagioclase grains are rounded. Fresh or altered glass is not present. P rism atic, 

subrounded epidote crystals are common. Other constituents are quartz, skeletal biotite, 

chloride lithic(?) fragm ents, detrital sphene, opaques and organic fragm ents. H ornblende 

and zircon were not detected in M C 1 and M C la  whereas the crystal tu ff has abundant, 

com m only prom inent hornblende. M C 1 and M C la  are, thus, m ost likely o f  detrital 

origin though they m ay include some highly reworked volcanic material.
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Plagioclase, apatite and zircon, from samples 7-21-73-5 and D T 75-203 o f Triplehom  

and others (1977) and Turner and others (1980), which are close to or possibly equivalent 

to samples M C 1 and M C la , w ere K-A r and fission-track dated to  8.8 ±  0.9, 12 ±  5.1, 

and 7.9 ±  1.0 m.y. respectively. These dates do not, however, support correlation with 

the crystal tu ff since the dated  grains m ay have been detrital. In spite o f  this, the 

radiometric ages o f M C 1, M C la  and the crystal tu ff are within two standard deviations 

of one another.

MC 1 and M C la  appear to actually be situated several hundred meters below  the 

crystal tuff; Adkison and others (1975) correlated strata from near the base o f the A-bed to 

below the C abin bed (Fig. 2.5, section 12, bed 2) based on the low est occurrence of 

inaperturate(?) psilate-scabrate pollen form s (Fig. 2.5, sections 12 to 14). They also 

correlated strata from  230 m below  the A -bed with a level 32 m below  the Cooper Bed 

(Fig. 2.5, section 10, bed 1), based on the low est occurrence o f L a rix  o r P seudotsuga  

(Fig. 2.5, sections 10 to  14). A lthough, the latter correlation transects a correlation o f 

Barnes and Cobb (1959) near this level, it does not contradict the crystal tuff correlations 

or the correlation higher in the section. It would, however, contradict correlation between 

the crystal tuff and M C 1 and M C la.

Other possible correlations

D endrogram s o f w hole-rock  m ajor oxides reveal consisten t groupings o f o ther 

samples as w ell (Fig. 2.4). This m ay indicate som e general o r specific relationship o f 

those samples. In general, sam ples FC 5a, FC  6, FC 7, FC 8, CG 5, CG 6 and CG 7, for 

example, group together. FC 5a and FC  6 are preserved in siltstone, separated by 20  m o f 

sediments and were possibly ejected from the same vent o r set o f  vents. They have similar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



88

texture, shard size, chem istry, and thicknesses o f up to 2 m. FC 6 has five glass 

populations (Table 2.3) whereas FC 5a has more than one. FC 6 was deposited in  or 

rew orked by w ater as indicated by the presence of abundant diatom  tests. A fresh-w ater 

diatom  species, M elosira  sp cf. dis ta n s , w as identified by S. A bella (1988, personal 

com m un.). FC  5a was probably also rew orked by water. N either o f  these sam ples, 

however, displays any diagnostic sedimentary structures.

The great thicknesses and small shard size o f FC 5a and FC 6 are nearly duplicated in 

a water-laid tephra parting, 30 to 50 cm-thick, from which samples CG 5, CG 6 and CG 7 

were co llected  at different levels. This parting is enclosed in a coal bed im m ediately 

northeast o f  the fault near Falls Creek (Fig. 2.1) and shows distinct ripple m arks and 

cross laminations. EM  analyses reveal that CG 7 contains two different glass populations 

(Table 2.3) which do not, however, match any o f  the five populations from FC 6.

Samples CG 5, CG 6 and CG 7 were collected from the thickest recognizable tephra 

parting on the Cook Inlet side, and are approximately at the same stratigraphic level where 

thicknesses o f  tephras start to increase upsection, near the U -bed on the Kachem ak Bay 

side (Figs. 2.2, 2.5) (Reinink-Sm ith, 1989c). CG 5, CG 6 and CG 7 represent the only 

relatively thick tephra on the Cook Inlet side and contain glass size fractions similar to FC 

5 a and FC 6. O ther thick ash-falls m ay have been deposited as indicated by a few  thick 

tephra-appearing layers (not sampled) dispersed in the sandstone and siltstone. Detrital 

grains dom inate these layers. Both sets o f samples are located between the pumice and the 

crystal tuff. Thus, these voluminous, fine-grained tephra layers on either side o f the Kenai 

low land m ay have been extruded during the a short time period o f highly explosive, 

phreatom agm atic volcanism , although they m ay not have originated from  the same 

vent(s).
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The w hole-rock  chem istry is very sim ilar fo r sam ples FC  7 and FC 8 and the 

m orphologies and  size fractions o f the shards from  FC 8 are nearly identical to those o f 

FC 7 and FC 14. Since the latter samples are stratigraphically above FC  8 (Fig. 2.5), they 

cannot be the sam e ash-fall. H owever, they probably originated from  volcano(es) with 

similar m agm a and eruptive histories. These are very siliceous partings and probably 

related to highly differentiated m agma. No counterparts to these partings were discovered 

on the Cook Inlet side.

SUM M ARY AND CONCLUSIONS

Tertiary volcanic ash partings in coal seams are exposed in beach outcrops, in  the 

H om er escarpm ent and in the Fox Creek Canyon area o f  the Kenai Peninsula lowland. 

The strata are folded into gentle anticlines and synclines. Normal faults with up to 25 m  of 

known d isplacem ent cu t the folds. The C lam gulchian (upper M iocene and Pliocene) 

section on the Cook Inlet side is repeated by folding, and apparently is hundreds o f  meters 

thinner than the equivalent section on the K achem ak Bay side. This is probably the result 

o f slower rates o f deposition and non-deposition at this location than on the K achem ak 

Bay side, and it is m anifested by a lower number o f  partings on the Cook Inlet side.

Past correlations have been based on lithology , palynology, and on visual m arker beds 

such as coal beds. However, these correlations have not connected the northwestern side 

with the southeastern side of the Kenai lowland. Published radiom etric K -A r and fission- 

track ages m ay only be accurate on a general scale due to  detrital contam ination and 

possible alteration o f the dated minerals. A lthough the dates do not closely coincide with 

the correlations they m ay do so more within tw o standard deviations. A lteration, detrital 

contam ination and a paucity o f  partings m akes correlation difficult. A com bination o f
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macroscopic and m icroscopic characteristics, whole-rock, coarse-ffaction and glass m ajor 

oxide, trace and rare earth element analyses, however, largely overcome these limitations.

This investigation focused  on the crystal tu ff and pum ice partings, w hich have 

distinctive characteristics, o f w hich the larger grain size is m ost important. The pum ice 

parting was correlated across the Kenai lowland from  the northern side o f C lam  Gulch 

(CG 12) to strata near the top o f the section in a w estern tributary to Fox Creek Canyon 

(FC 15). All data, with the exception o f  some o f the whole-rock m ajor oxides and prior 

radiometric dating, confirm  the correlation. Stratigraphic position, glass morphology and 

the lack o f opaques were especially useful for correlation.

Six sam ples o f  crystal tu ff origin can be traced as one o r possibly tw o ash-falls. 

Precise correlation o f  all six samples is not possible from the available analytical data. 

M ore specifically , the orientation o f  the folds and the presence of a coal bed with 

persistently high inertinite levels underlying the coal bed from  w hich samples CG 1, CC 1 

and NIN 2 were collected, suggest that CG 1, CC 1, and NIN 2 represent one ash-fall. 

NIN 2 has been rew orked, however, and affinity cannot be established with certainty. In 

any case, should CG 1 and CC 1 not correlate with NIN 2, they are at least in very close 

stratigraphic proximity.

Sam ples CG 1, CC 1 and N IN  2 also m ay correlate w ith sample UN  from  an  

unnamed canyon in the H om er escarpment. UN, which overlies GRAV is more sim ilar to 

NIN 2 and M C 4 than is CG 1 and CC 1 based on the presence o f larger proportions of 

altered pumice fragments and somewhat smaller grain size. Samples CG 1, CC 1 and  NIN 

2 obviously cannot correlate with both G RAV and U N , and they in turn cannot both 

correlate with M C  4. It seems clear, though, that a certain section o f strata m ay correlate
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based on these tephra partings. Furtherm ore, these correlations are com patible with prior 

palynology correlations.

There is no conclusive evidence that any o ther partings correlate . H ow ever, the 

thickest ash layers, those in Fox Creek Canyon (FC 5 and FC 6) and those adjacent to the 

north side o f  the fau lt near F alls  C reek (CG 5, CG 6 and CG 7), are in sim ilar 

stratigraphic positions, are very fine-grained and contain more than one population o f 

glass. Based on m ajor oxide analyses o f  the glass, however, none o f the glass populations 

are the same. It seems likely, though, that the same eruptive m echanism  was responsible 

for these ash-falls and that they originated within the same time period.

Other partings with distinctive glass m orphologies occur in the Fox C reek Canyon 

area (samples FC 7, FC 8 and FC 14). Based on the chem ical analyses, sam ples FC  7 and 

FC 8 were probably extruded from  the same vent(s). Correlative partings from  the Cook 

Inlet side have not been found, probably because the partings were not preserved there.
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APPENDIX 1. ADDITIONAL INFORMATION ON LOCATIONS

M any o f  the samples from this study were sampled from  coal beds that were included 

in stratigraphic sections m easured by M erritt and others (1987). T heir coal sam ple 

num bers are m atched with sample num bers from  this study: CG 12 = 86JL51-1 and 

86JL51-3, FC  15 = from  coal directly above sandstone sam ple 86SM 12-5, CG 1 = 

86JL30-1, CC 1 = 86JL26-1 and 86JL25-1, NIN 2 = 86JL13-1 and 86JL11-1, M C 4 = 

86SM 06-12. The high inertinite coal seam directly underlying the bed containing partings 

CG 1, C C  1 and NIN 2 was sam pled by them  as sam ples 86JL29-1, 86JL27-1 and 

86JL15-1.
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Chapter 3 
Relative Frequency of Tertiary Volcanic Events as Recorded in Coal 

Partiiip  firam tho Kmnl Potimqiln, A bdta 

-  A Comparison with Deep Sea Core Data. 
(submitted to the Geological Society of America Bulletin)

ABSTRACT

Tephra layers occur as partings in Neogene coal beds, Kenai Peninsula, Alaska. The 

coal is time equivalent of DSDP cores from the Gulf of Alaska and along the Aleutian 

Islands, and appears to preserve a more detailed but less complete record of volcanism. 

Coal from the lower Beluga Formation has abundant thin (<10 cm) and dispersed partings 

recording an eruption for every 123-300 yr of peat accumulation, probably coinciding 

with a volcanic pulse mare than 10.5 m.y. ago. This pulse is not well recorded in any 

nearby DSDP cores, possibly because of bioturbation and distance from source vents. 

Coal beds in the upper Beluga Formation were probably deposited during a period of 

reduced volcanic activity 10.5-7.5 m.y. ago and record volcanism an average of every 

9,000 yr. This is also manifested in a near absence of tephra layers in DSDP cores of 

equivalent age.

A volcanic pulse occurred about 7.5 m.y. ago, concurrently with the deposition of the 

lower Sterling Formation. However, intervals between volcanic events averages 11,000 

yr or longer. An absence of tephra layers in the Gulf of Alaska DSDP core indicates that 

volcanic centers were distant A dramatic change in frequency and magnitude of volcanism 

occurred about 5 m.y. ago. Tephra layers recur at intervals of 1,700-2,400 yr, and 

thicknesses of some layers exceed 2 m. This increase in volcanism is recorded in DSDP
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cores. Average silica values of 75.57% from partings of the upper Sterling Formation 

compare to high silica values from DSDP cores during the 5 m.y. pulse.

INTRODUCTION

Tephra layers (partings), unaltered, partly altered, or altered to bentonite or tonstein occur 

in Miocene and Pliocene coal beds of the Kenai lowland on the Kenai Peninsula. Several 

major changes in volcanic activity and style can be demonstrated from this record.

An abundance of coal beds and the characterization of the partings as tephras make 

these observations comparable to those of Steward (1975), Scheidegger and Kulm 

(1975), Hein and others (1978), Rea and Scheidegger (1979), and Scheidegger and others 

(1980) who recognized a record of volcanic pulses in sediments cored by the Deep Sea 

Drilling Project (DSDP) along the Aleutian Islands and in the Gulf of Alaska. Explosive 

volcanism apparently occurred in pulses in the Aleutians and the Alaska Peninsula, 21.0, 

16.5, 10.5(+), 7.5, 5.0, 2.5 and 0.5 m.y. ago, or approximately every 2.5 m.y. (Hein 

and others, 1978). The cause of such cyclic eruptions is still somewhat controversial. One 

current hypothesis invokes irregular spreading rates (and thus, subduction) associated 

with convergent plate boundaries (Kennett and Thunell, 1975; Kennett and others, 1977). 

Compositional trends are also recorded from unaltered volcanic glass in tephras from the 

DSDP cores. Cyclic variations in silica content appear to coincide with the pulses of 

volcanic eruptions (Scheidegger and Kulm, 1975; Scheidegger and others, 1980).

The purpose of this study is to 1) show that tephra partings in coal beds can be used to 

interpret the frequency of volcanic eruptions; 2) demonstrate that the frequency of tephra 

partings recorded in coal beds is broadly similar to tephra layers in DSDP cores; and 3)
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show that partings in coal beds have preserved a more detailed eruptive record than tephra 

layers from DSDP cares.

GEOLOGIC BACKGROUND

Tertiary sediments of the Kenai lowland were deposited in the Cook Inlet basin, a 

sedimentary, structural and topographic basin. Late Miocene and Pliocene time, in the 

Cook Inlet area, was characterized by a regressive marine cycle (Kirschner and Lyon,

1973). Low-energy, fresh-water deposition in braided and meandering-stream 

environments predominated the eastern part of the basin and resulted in a sequence of 

silts tone, shale and coal deposits that comprise the Beluga Formation of middle and late 

Miocene age (Calderwood and Fackler, 1972; Hite, 1975; Hayes and others, 1976; 

Rawlinson, 1984). At this time, die Alaska Range had not yet developed significant relief, 

and terrigenous clastic sediments were derived from the Kenai-Chugach terrene on the 

eastern flank of the basin (Kirschner and Lyon, 1973; Hite, 1975).

The overlying Sterling Formation of latest Miocene and Pliocene age was deposited in 

a meandering stream environment during the final phase of regression and is characterized 

by thicker sandstone and coal beds and less shale than the Beluga Formation (Kirschner 

and Lyon, 1973; Rawlinson, 1984). The Alaska Range was actively being uplifted and its 

diorites, rather than the graywackes of the Kenai-Chugach Mountains, were the main 

source of sediments.

The Beluga and Sterling Formations were deposited during periods of contrasting 

volcanic activity in the surrounding region of southern Alaska. This is reflected by the 

differences in the abundance of tephra partings of the two formations. Volcanic activity
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was most likely related to the rise of the Alaska Range and the underthrusting of the 

Pacific plate along the Alaska Peninsula and the Aleutian Trench.

The lower part of the Beluga Formation (the Diamond Creek section) is exposed from 

Mutnaia Gulch to Diamond Creek (Fig. 3.1). Exposures of the upper pan of the Beluga 

Formation extend from the mouth of Diamond Creek, southeastward, around the tip of the 

Kenai lowland to the B-bed of Barnes and Cobb (1959) near the mouth of McNeil 

Canyon. A continuous section is not available because the Homer area, between Diamond 

Creek and Kachemak Bay, lacks outcrop. Other parts of the section are discontinuous or 

inaccessible and cannot be correlated with measured parts. A normal fault, down thrown 

on the southeast, is concealed at the mouth of Diamond Creek. The amount of 

displacement, and thus the amount of missing section, is unknown (Adkison and others, 

1975). In addition, another major concealed fault, the Seldovia Fault, cuts northeastward, 

separating die Homer escarpment and the Kachemak Bay area. The northwest side of this 

fault is probably downthrown but the amount of displacement is unknown (Beikman,

1974).

Sediments of the Sterling Formation are exposed along the Cook Inlet and Kachemak 

Bay sides of the Kenai lowland as well as in Fox Creek Canyon (Fig. 3.1). Although 

exposures of the upper Sterling Formation are discontinuous, some stratigraphic control 

was achieved by coal bed correlations made by Barnes and Cobb (1959) and Merritt and 

others (1987).

PREVIOUS INVESTIGATIONS

Barnes and Cobb (1959) described all the coal-bearing units of the Kenai lowland for 

the purpose of evaluating coal reserves, mining potentials and alternative means of coal
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utilization. Partings in the coal were dismissed in such terms as "dirty coal", and only a 

few tephra layers were recognized. Adkison and others (1975) measured detailed 

stratigraphic sections all around the Kenai lowland except on the northwestern side. Some 

partings of pyroclastic origin in coal were mentioned but not investigated in detail. Merritt 

and others (1987) re-measured sections that are approximately equivalent to those 

measured by Barnes and Cobb (1959). Major tephra partings were located, but their 

occurrences in the coal beds were not emphasized. Triplehom and others (1977) and 

Turner and others (1980) recognized the partings as tephra and used radiometric dating 

techniques to give age estimates to the sections. Reinink-Smith (1989 a, b) investigated 

geochemistry and mineralogy of the partings and attempted correlation from these data.

DSDP TEPHRA RECORD

Several workers have recognized volcanic pulses in the North Pacific by studying 

tephra layers from Deep Sea Drilling Project (DSDP) cores. From their observations the 

following can be established: Few tephra layers were recorded in Gulf of Alaska cores 

between 10-14 m.y. ago (Steward, 1975). A volcanic pulse occurred about 10.5 m.y. ago 

and is recorded at DSDP sites 184 and 192 (Fig. 3.2). This pulse is synchronous with a 

worldwide, 8-11 m.y. volcanic period "of less magnitude" (Scholl and others, 1976; 

Kennett and others, 1977). Steward (1975) noted that tephra, in sufficiently large volumes 

to form discrete layers, began to accumulate at a rate of one layer/m.y. about 10 m.y. ago 

at DSDP site 178,450 km southeast of the Alaska Peninsula, in the Gulf of Alaska. A 

major volcanic episode between 8.5-6.5(+) m.y. ago is recorded at DSDP sites 184,185, 

186, 188, 189, 190, 191 and 192, north and south of the Aleutian Islands (Fig. 3.2) 

(Hein and others, 1978). Hogan and others (1978) reported, based on 40Ar-39Ar dates,
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that layers of explosive volcanic origin extend back at least 6.5 + 0.1 m.y. ago in DSDP 

core 178, at that time located 364 km southeastward o f its present position. Explosive 

volcanism was recorded 4.5 to S.O m.y. ago from sites 188, 189 and 191 in the central 

and western Aleutians. A more local cycle was recorded at 5.5 m.y. at site 184 (Hein and 

others, 1978). Kennett and Thunell (1975) found that a global increase in volcanism also 

occurred about 5 m.y. ago. Steward (1975) reported sporadic increases in ash layers from 

DSDP site 178 about 4 m.y. ago. Pulses o f explosive volcanic activity, 5.0,2.5 and 0.5 

m.y. ago, coincide with high silica tephra layers recovered from site 178 (Scheidegger and 

Kulrn, 1975).

METHODS

The locations and thicknesses of partings from all accessible coal beds were recorded 

in detail. For purposes o f this paper, "coal bed" is defined as a combination of coal, 

carbonaceous shale, silt and tephra partings that stand out as a single, erosionally resistant 

unit. Barnes and Cobb (1959) and Adkison and others (1975) regarded some of these 

units as two or more coal beds. Coal layers less than 20 cm thick and not included with a 

larger coal unit, were not considered as "beds" and, therefore, were included with the 

enclosing siltstone and sandstone as the equivalent of DSDP "lost intervals".

All tephra partings thicker than 0.5 cm were sampled, with the exception of those that 

consist mainly of pumice fragments dispersed in the coal and those that are very lenticular. 

Reinink-Smith (1989 a) investigated some partings of non-volcanic origin far the purpose 

of verifying the distinction from the tephra partings. The two types o f partings could 

generally be distinguished in the outcrop but more reliably by X-ray diffraction of their 

different clay mineral suites.
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Alm ost all the tephra partings in the Beluga Formation are altered, and fresh volcanic 

glass is not available for analysis. H ow ever, clay pseudom orphs o f shards and altered 

pum ice (lapilli) fragm ents attest to their volcanic origin. In the upper Sterling Formation, 

about 1/3 o f the partings contained sufficiently unaltered glass for the determ ination o f 

m ajor oxides (Reinink-Sm ith, 1989b).

RESULTS AND INTERPRETATIONS

Age estimates

Fifteen radiom etric ages, m ost o f which are discordant to  some degree, were obtained 

from  the upper Beluga and Sterling Formations. (Triplehom  and o thers, 1977; Turner and 

others, 1980). Individual ages m ay not be accurate because different m inerals from  the 

same sample yielded different ages which may indicate the presence o f  undetected detrital 

contam ination  o r m ineral alteration  (D .M . T rip lehom , 1988, personal com m un.). 

H owever, the dates appear to  be m ore reliable on a larger scale. F ission-track dates based 

on zircon are probably m ore accurate than the K-Ar plagioclase dates which m ay be based 

on samples that include some detrital grains. Zircon crystals, in general, have good track 

stability.

Plagioclase from  tephra in a coal bed o f  the Seldovian paleobotanical Stage, which 

underlies the H om erian Stage in the Beluga coal field north of Cook Inlet, was K-Ar dated 

at 15.8 ± 1 .8  m .y. (m iddle M iocene) (Turner and o thers, 1980). B ased  on this age 

(Triplehom  and Turner, 1981) and on m ega-fossil floras (W olfe and Tanai, 1980) the 

S eldovian-H om erian  boundary  was es tim ated  at 11-16 m .y. and  13-14-m .y.-old, 

respectively.
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The D iam ond Creek section (Fig. 3.1) was defined by W olfe and others (1966) as the 

low er part o f the type section o f  the Hom erian Stage, and is at least partly o f  late-middle, 

or late M iocene age. The Diam ond Creek section is likely older than 10 m .y., and (part o f 

it?) possibly may be as old as 14 m.y. No radiom etric ages are available. However, strata, 

at least 300 m above the top o f the D iamond Creek section yielded zircon fission-track and 

plagioclase K -A r ages o f 8.6 ± 1 .0  m .y. and 11.0 ±  0.7 m.y. P lagioclase and zircon in a 

tephra parting about 100 m above that, at the H om erian-Clam gulchian boundary, yielded 

fission-track and K-Ar ages o f 7 .6 ±  0.7 and 8.1 ±  0.7 m .y., respectively. This boundary 

approximately coincides with the contact between the Beluga and the Sterling Formations. 

If  the fission-track date o f 8.6 ±  1.0 m.y. for strata 300 m  above the D iam ond Creek 

section is accepted as more reliable than the K-Ar date o f 11.0 ±  0.7 m .y., then an age o f 

10-12 m.y. for the Diam ond Creek section seems a reasonable assum ption. T he beds of 

the upper Beluga Formation would, then, range in age from approximately 10 to 8 ra y .

Turner and others (1980) obtained concordant K -A r dates o f 4 .2  ± 1 .4  m.y. on 

plagioclase and 4.7 ± 1 .4  m.y. on hornblende from  a tephra parting in the U -bed o f the 

Sterling Form ation (Fig. 3.1). These are the youngest dates that have been obtained from  

the Kenai lowland. M ore than 200 m o f  sediments overlie the U-seam . Thus, the Sterling 

Form ation spans about 4 m.y.

Peat accumulation and compaction rates

In order to estim ate the frequency o f  volcanic eruptions during intervals o f  peat 

deposition, several factors including coal rank, peat accum ulation and  com paction rates 

m ust be taken into account. Coal o f  the K enai low land varies in rank  from  lignite to 

subbitum inous B, (Barnes and  Cobb, 1959; M erritt and o thers, 1987). T he B eluga
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Form ation coal is m ostly subbitum inous C and B and the Sterling Form ation coal is 

mostly lignite and subbituminous C.

The coal o f  the B eluga and Sterling Form ations was probably derived m ostly from 

forested sw amps as indicated by the presence o f several stump horizons. Some o f  these 

"petrified forests" extend along exposed coal surfaces into the m odem  intertidal zones 

adjacent to c liff  exposures. O ther stumps are sideritized remnants extending upw ards a 

short distance into siltstone or sandstone. In addition, am ber is com m on in several coal 

beds, especially in the lower part o f the Diam ond Creek section.

In the temperate zone the annual accumulation rate for swamp peats is estim ated at 0.5 

to 1.0 mm/yr; warm er climate and forest growth favor the higher rate o f peat accumulation 

(Stach and others, 1982). The clim ate o f  south-central A laska was tem perate during the 

late M iocene and cool temperate during the Pliocene (W olfe and others, 1966). Therefore, 

a peat accum ulation rate o f 1.0 m m /yr is a reasonable assum ption fo r the late M iocene 

Diam ond Creek section.

Even though estim ates vary greatly, com paction from  peat to  lignite to  bituminous 

coals is in general thought to be in the proportion o f  6:3:1 (Stach and others, 1982). 

Estimates o f 1,000-3,000 yr have been given for the formation o f one m eter o f  lignite, and 

6,000-9,000 yr fo r one m eter o f bitum inous coal. Forest peats com press less than reed 

peats (Stach and others, 1982). Thus, peat accum ulating at a rate o f  1.0 m m /yr for 1,000 

years w ould  p roduce a 100 cm  peat bed, w hich afte r approxim ately  3 ,000 y r o f 

com paction w ould result in 25-35 cm  o f  subbitum inous coal (as for the D iam ond Creek 

section). For the cooler clim ate o f the late M iocene to Pliocene Sterling Form ation a peat 

accumulation rate o f 0.5 to 0.7 mnVyr seems reasonable. One m eter o f Sterling Formation
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lignite w ould represent about 1,500 to 2,000 yr o f peat accum ulation and it w ould take 

about 1,000 yr for 50% compaction.

Some o f the coaly intervals o f the D iam ond Creek section contain m ore than half 

organic-rich shale and siltstone which are probably the resu lt o f flooding by nearby 

streams. These detrital sediments should represent "fairly instantaneous" events compared 

to the rate o f  peat accumulation and may reduce the time o f  accumulation to about 500 yr 

for the production o f  a 100 cm impure coaly interval. The total deposition o f the precursor 

material for these coal units may, therefore, have occurred at a rate faster than 1 mm/yr. 

T hick detrital layers are rare within the coal beds o f the upper B eluga Form ation and the 

Sterling Formation.

Comparison o f coal beds and DSDP cores

It is im portant to recognize that similar appearing sequences o f tephra layers m ay be 

interpreted differently in terrestrial and marine settings. A sequence o f deep-sea m arine 

sedim ents should contain a blurred but relatively com plete record  o f ash-falls. The 

terrestrial record o f tephra in coal beds is more like a series o f sharply recorded snap-shots 

separated by diastems and sediments other than coal.

M ost investigators o f D SD P cores considered only d iscre te ash layers in their 

discussion o f  Cenozoic volcanism . Scheidegger and K ulm  (1975) and Stew ard (1975) 

suggested, however, that volum inous volcanic ash production appears to be atypical, but 

that only the most voluminous and explosive ash eruptions were recorded in the core from 

DSDP site 178 (Fig. 3.2). A lthough thought to be the result o f  rew orking, K ennett and 

Thunell (1975) included layers o f dispersed tephra in their discussion o f volcanic history; 

Hein and others (1978) also included pods o f tephra, dispersed tephra and bentonite. Thin
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tephra layers in D SD P cores are more likely to be dispersed by bioturbation and may as a 

consequence be similar in appearance to the surrounding deep sea sediments which in turn 

are subject to  possible rew orking by currents, seafloor fauna, slumping, alteration by 

diagenesis and assimilation by seafloor subduction (Hein and others, 1978).

The cores through m arine sedim ent sequences rarely achieve 100% recovery. For 

example, Steward (1975) noted that core recovery was 39% in the tephra-rich intervals of 

DSD P site 178, and that as little as 20% was recovered at site 183. The frequency o f ash- 

falls at each core site was estim ated by using each recovered interval as a sam ple of the 

ash-fall rate for that particular interval (Steward, 1975).

C oal beds rep resen t analogous discontinuous sam ples o f the ash -fall record. 

However, a coal-form ing environm ent is commonly protected from rew orking. If  it was 

not so, the swamp w ould not be preserved as a coal bed or "unit" and thin and dispersed 

partings w ould not be preserved within. Thus, reworking as an explanation for the evenly 

distributed, dispersed pumice in the coal beds seems improbable.

Occurrences and  frequencies of coal beds and  partings

L o w er B eluga F o rm atio n . Coal beds represent about 10% o f the total D iam ond Creek 

section and conta in  at least 100 m inor tephra partings. H om ogenous, consolidated 

partings are m ost common but are not thicker than about 10 cm. Many "partings" are not 

discrete layers bu t consist o f sparsely scattered pum ice fragm ents (Fig. 3.3). Even the 

thinnest and/or m ost altered partings are preserved, although they m ay be discontinuous as 

a result o f differential com paction o f the coal. A few thicker partings consist o f discrete 

pum ice fragm ents dispersed in the coal. For exam ple, seam 25 (Fig. 3.4b) has pum ice 

fragm ents scattered throughout practically all the coal and m ay record repeated eruptions
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appearance are remnants of leaves (coal maceral = cutlnlte).
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o f a very active vent fairly close to the deposition site. Every tephra, including some only 

a few  m illim eters thick and others that are dispersed or lenticular have been noted in 

Figure 3.4a, b. Only two tephras were found in a non-coal lithology. Sam ples DC 50aa 

and D C  70 were collected from carbonaceous siltstone not enclosed by coal (not in Figure 

3.4). Even though the Diamond Creek section consists m ostly o f sandstone and siltstone 

in w hich tephra is norm ally not preserved, the num ber o f recorded volcanic eruptions is 

impressive.

O ne parting occurs for every 31 cm  o f coal in the low er part o f the D iam ond Creek 

section, and one parting for every 19 cm  occurs in  the upper part (Figs. 3.4a, b); this 

translates to one volcanic event every 250-500 yr. About 45 partings o f detrital origin also 

occur in the Diam ond Creek coal beds. These are generally m uch thicker (up to 50 cm) 

than the tephra partings. I f  the shale and siltstone, which com prises up to  50% o f some 

coal beds are trea ted  as nearly instantaneous events, the accum ulation ra te  for the 

enclosing beds is greatly increased, and the frequency o f recorded volcanic events may be 

as high as one every 125 to 250 yr. Only coal bed 29, the low est coal exposed in the 

low er Beluga Form ation, lacks partings (Fig. 3.4b).

Upper Beluga Formation. In general, the upper part o f the Beluga Form ation contains 

more and thicker sandstone units, less shale and fewer coal beds than the D iam ond Creek 

section. The coal beds are quite different from those in the D iam ond Creek section in that 

m ost lack partings o f any kind, especially  in the low est parts o f  the upper B eluga 

Form ation (section lb  o f  Adkison and  o thers, 1975). In  coal o f  inaccessib le c liff 

outcrops, this absence o f  partings is apparent even from  a distance. E vidently , the 

subsidence o f the coal-form ing basin during deposition o f the upper B eluga Form ation 

was slow and the coal swamps were rarely flooded.
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The paucity o f partings, com bined with the discontinuity o f section, m ade it difficult to 

thoroughly sample tephra partings and did not permit detailed descriptions similar to those 

o f the D iam ond Creek section. The few partings mainly consist o f coaly shale or shaly 

coal, but a pyroclastic or a  mixed origin for some is suggested by a brow nish color. All o f 

the partings are more carbonaceous and m ore indurated than those in the D iam ond Creek 

section, and the dispersed tephra that is so common in the Diam ond Creek coal does not 

occur in the upper Beluga Formation.

Structural com plexities m ade it im possible to  determ ine w hether the decrease in 

frequency o f  volcanic events from the lower to the upper parts o f the Beluga Form ation is 

abrupt or gradational. O n the southwest side o f the Seldovia fault, one thin tephra parting 

occurs fo r approxim ately every fourth coal bed. Some o f these partings are coarse

grained, ind icating  rela tive ly  nearby volcanic vents. M ost coal beds are very clean, 

how ever, and lack partings o f  either volcanic o r fluvial origin. Thus, ash-falls m ust have 

been infrequent and probably occurred only once every 8,000 to 10,000 yr.

Lower Sterling Formation. A t least 60 coal beds have been recorded by Barnes and Cobb 

(1959), A dkison and others (1975) and M erritt and others (1987) within the S terling 

Form ation. R aw linson (1979) m easured a 230-m  section, from  the B -bed to the K -bed 

(Fig. 3.1), that includes 17 coal beds more than 50 cm  thick and comprises a total o f 17 m 

o f coal. If one includes coal beds thinner than 50 cm, coal comprises 21 m  (about 11%) o f 

the total thickness. Eleven beds are thicker than one meter. Nine beds, m ost o f w hich are 

at least one m eter thick, contain tephra partings.

The style and frequency o f volcanic eruptions do not appear to change significantly 

from  the upper B eluga Form ation to the low er Sterling Form ation. Partings (<10 cm 

thick) occur about one for every 5.5 m  o f coal. Assuming the same rate o f  accumulation o f
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peat as for the D iam ond Creek section, one distinguishable volcanic ash-fall was deposited 

about every 11,000 yr. A cooling climate in  the P liocene may actually have resulted in 

slower peat accumulation rates. If the rate w as as low as 0.5 mm/yr, volcanic ash-falls are 

recorded at 22,000 yr-intervals.

The non-volcanic partings are silt, and occur on the average about one for every two 

meters of coal. These silt partings are o f about the same thickness as the ash partings. 

U p p er S terling F orm ation . About 560 m o f section lies between approximately the M-bed 

and the highest exposed part of the Sterling Form ation (Fig. 3.1). The section contains

32.5 m  o f coal (about 6% o f the total section) in 59 beds, most o f which are less than 50 

cm thick. Thirteen beds are over one m thick.

It is difficult to estimate the frequency o f  tephras in the lowest 200 m; that is, the strata 

approxim ately betw een the M -bed and the R -bed (Fig. 3.1). The coal is thin, and 

sandstone and siltstone dom inate the section. In the low er part o f  the upper 360 m  o f 

section, from  approxim ately the R-bed to the U-bed, tephra partings increase in number, 

and from the U-bed to the top o f the section, individual tephra layers become substantially 

thicker. In addition, some tephra layers can be recognized in siltstone and sandstone 

probably because o f  the greater preservation potential o f  thicker tephras. F igure 3.5 

illustrates som e o f  these thick tephra layers, and their proxim ity to nearest coal beds. 

A lthough the section from  roughly the R-bed to the top o f the section incorporates 33 coal 

beds (24.5 m  o f coal, o r about 7% o f the total section), m ost are less than 20 cm thick and 

are not shown in Figure 3.5.

A m ajor change in rate and style and/or proxim ity o f  volcanism  appears to  have 

occurred at the 5 m .y level, approximately 360 m  from the top o f the section. The thickest 

coal beds, m ost o f  w hich encompass several tephra partings, com prise 10.8 m  o f  coal.
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Figure 3.5 Coal beds, partings and tephra layers of the upper Sterling Forma 
Cobb (1959) are identified. This Is a composite section and the intervals betwt
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T here are 19 tephra partings in these beds, representing an average frequency o f one 

tephra per 60 cm  o f coal, thus, one tephra every 1,700 to 2 ,400  yr. T his frequency is 

considerably higher than for the upper Beluga and low er Sterling Form ations, but not as 

high as for the lower Beluga Formation in the Diam ond Creek section.

The thickness and texture o f tephras indicate that eruptions during deposition o f  the 

upper Sterling Form ation were closer and/or o f  larger m agnitude than earlier. One tephra 

layer is more than 200 cm  thick (sample FC 5a) and is not enclosed by coal (Fig. 3.5). 

The presence o f M elosira  sp. c f distans, a freshw ater diatom  (S. Abella, 1988, personal 

com m un.) indicates that this tephra was probably deposited in a pond. Reworking and 

internal lam inations are absent and the glass shards are angular. A lteration is minimal as 

well (Reinink-Smith, 1989a). This ash layer and another, nearly equally thick (sample FC 

5a), are very fine-grained, and consist m ostly o f 10 to 30 um  particles o f stretched pumice 

and bubble-wall shards. M ost other tephras are coarser grained (Reinink-Smith, 1989b).

DISCUSSION

Volcanic frequencies com pared to DSDP data

L ow er B eluga F o rm atio n . The m ultitude o f thin tephra partings in the coal units o f the 

Diam ond Creek section were probably deposited during and/or shortly before the 10.5(+) 

m .y. volcanic pulse recorded  by D SD P sites 184 and 192 (Figs. 3.2, 3.6) (Hein and 

others, 1978). V olcanism  m ay have begun as early as 14 m .y. ago, during the period of 

relative quiescence, but was not recorded/preserved at DSDP sites 184 and 192 because it 

was local to the Cook Inlet area. Thus, the 16.5-10.5 m .y. period that in deep sea cores 

appears to have been volcanic quiescence, was so only in a general sense. The number of
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Age (m.y.)

Figure 3.6 A summary diagram showing the age and frequency ranges of tephra 
partings in the Beluga and Sterling Formations. The horizontal, dotted lines show the 
approximate time ranges and the vertical, solid lines show the probable maximum 
ranges of frequencies of the partings during a particular time frame.
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tephra partings increase upsection in the Diamond Creek record, probably coinciding with 

the 10.5(+) m.y. pulse.

The probable range o f frequencies for the D iam ond C reek partings are plotted in 

Figure 3.6. O ne ash-fall every 125-500 yr translates into 2,000-8,000 ash-falls/m.y. This 

is rem arkably different from DSD P site 178, which during this tim e recorded only one 

tephra layer/m .y (Steward, 1975). W hole sections o f m inor ash-falls o r dispersed ash 

com parable to the one-layer pum ice fragments observed in the coal beds m ay have gone 

unnoticed in site 178, or local volcanism in the Cook Inlet area did not reach site 178. In 

addition, N inkovich and Donn (1977) believed that prio r to  the last several m .y. of 

seafloor spreading, many DSDP sites may have been situated beyond the range o f air-fall 

tephra from  the active volcanic centers. In summary, volcanism  in the vicinity o f  Cook 

Inlet appears to have been quite continuous during the 10.5(+) m .y. pulse and to have 

begun perhaps as early as 14 m.y. ago.

U pper B eluga F orm ation . The upper Beluga Formation was probably deposited between 

the 10.5(+) and -7 .5  m .y. volcanic pulses. Since the few partings in the upper Beluga 

Form ation are not thicker than about 10 cm, their m arine equivalents were probably not 

recorded at D SDP site 178 (Fig. 3.2) which was then considerably further away from  the 

volcanic centers than at present. This, in fact, may explain the paucity o f recorded tephra 

layers at this site the last 10 to 4  m.y. (Steward, 1975; H ogan and others, 1978). Since 

the Kenai Peninsula, which is stable relative to  the volcanic centers, did not receive any 

significant volcanic influx during this same period o f time, it can be speculated that plate 

motion was an insignificant factor in the paucity o f partings in the DSD P 178 site.

L ow er S te rlin g  F o rm ation . The 7.5 m .y episode o f volcanism  recorded in m ost o f the 

D SDP sites o ff the Aleutian Islands is not recorded in the low er S terling Form ation.
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Evidently the Kenai Peninsula was rem ote from  the active volcanic centers o f the late 

Miocene. Site 185, the nearest D SDP site to record the 7.5 m.y. cycle was some 750 km 

to the southwest. However, with favorable wind patterns, m ajor volcanic eruptions can 

produce discrete ash layers 1,000 to 2,000 km  from the source vents (N inkovich and 

others, 1966; H orn and others, 1969). O ne m ust speculate, then, that the m ajor part of 

volcanism  during the 7.5 m.y. pulse occurred in the central o r western Aleutian Islands 

and that the Kenai Peninsula received only the m ost distal ash-falls. Since the Kenai 

Peninsula received few tephra layers during this pulse, the same should be true for DSDP 

site 178, and this appears to  be the case (Steward, 1975; N inkovich and D onn, 1977; 

Hogan and others, 1978).

U pper S terling F orm ation . The record of explosive volcanism recorded by the increase in 

numbers o f observed tephra partings, from  the R-bed to  the U -bed in the upper Sterling 

Form ation probably corresponds to the increased volcanism  in D SD P cores noted by 

Hogan and others (1978) around 6.5 m.y. ago. Plagioclase, from  a tephra parting near the 

R-bed, was K -A r dated by Turner and others (1980) to 6.9 ±  0.5 m .y. The increase in 

volcanism  about 4-5 m .y. ago probably coincides w ith the increase in num ber and 

thicknesses of tephra layers in the upper 360 m  o f the Sterling Form ation (Figs. 3.5, 3.6).

Compositional trends and implications

Tephras derived from  highly evolved volcanic arcs on th ick  crust, such as the 

Kamchatka and A laska Peninsulas, com m only have a silica contents exceeding 70%, 

whereas those derived from thinner, less evolved parts o f volcanic arcs have low er values 

(Scheidegger and others, 1980). C hem ical analyses o f  tephra can provide im portant
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inform ation on com position and timing o f highly explosive (i.e., siliceous) eruptions 

derived from volcanic arcs.

T he 0.5 and 2.5 m .y. pulses are apparently younger than the youngest part o f the 

Sterling Form ation. However, samples were obtained that may correspond to the 5.0 m.y. 

pulse. Tw enty glass analyses o f samples from  the middle and upper Sterling Formation 

w ere com piled by Reinink-Smith (1989b). The silica values from  these analyses range 

from  69.79%  to 78.10% (weight percent), and average 75.57% . These values are as high 

o r higher than silica values reported by Scheidegger and K ulm  (1975), w ho analyzed five 

D SD P tephra sam ples ranging in age from 3.61 to 7.75 m.y. F ive analyses from  the 

S terling Form ation are com pared with the analyses for sam ples o f sim ilar ages from 

Scheidegger and Kulm  (1975), in T able 3.1. The high degree o f fragm entation o f the 

thickest, high silica partings m ay indicate highly explosive phreatom agm atic eruptions 

(Heiken, 1985). The relatively great thicknesses make it likely that the sources were close.

Highly differentiated m agm a results in relatively silica-rich tephra, less differentiated 

m agm as resu lt in tephra o f less siliceous com positions. Less d ifferentiated, low silica 

m agm as are characterized by low viscosity, low w ater contents and low er gas volumes 

(Scheidegger and K ulm , 1975). C onsequently, gases are ex truded  less violently  and 

sm aller volumes o f ash would be produced that would tend to be confined near the source.

This m ay have interesting im plications for the tephra partings o f  D iam ond Creek, 

because their thinness m ay, then, be a direct consequence o f  the original com position. 

Since m any o f the very thin partings are fairly coarse-grained, one can assum e that they 

were not often produced by distant eruptions, but by nearby events. It can further be 

speculated that the volcanoes, from where the ash was derived, were linked to a part o f the 

arc that was not as highly evolved as it was during the 5 m .y. cycle and at present.
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TABLE 3.1 VOLCANIC GLASS ANALYSES

1 * FC 15+ 2 * FC 12+ 3* CG 1 + 4* CG 12+ 5* M C 4

sio2 65.12 77.28 73.74 77.41 76.56 76.45 73.82 77.08 66.45 77.30
AL2 0 3 18.46 14.50 13.64 13.41 12.93 14.41 13.80 14.29 15.56 13.53
FeO * 3.49 1.97 0 .98 1.91 3.93
Fe20 3 0.89 1 .2 0 1.24 0.99 1.17
MgO 0.62 0.35 0.23 0.29 0.06 0 .40 0.27 0.36 1.15 0.36
CaO 5.05 1.18 1.62 1.56 1.46 1.93 1.57 1.16 4.67 1.79
Na20 4.64 3.22 4.22 3.54 3.76 2.58 4.76 3.09 4.78 2.51
k 2o 2.24 2.45 4.26 2.32 4.14 2.71 3.49 2.77 2 .8 6 3.11
T i0 2 0.40 0.07 0.31 0 .14 0 .1 0 0.16 0.37 0.11 0.60 0.17

1 0 0 .0 2 99.94 99.99 99.87 99.99 99.88 99.99 99.85 1 0 0 .0 0 99.94

Age: A B C D E F G H I J

Note: Key to column headings: 1 to 5 are core/section/intervals in centimeters; 1. 33/1/94
95 2 .34/5 /105-110 3.37/3 /60-65  4 .39/5 /119-120 5. 44/4/70-80 (Scheidegger and 
Kulm , 1975). Samples FC 12 an d F C  15 are illustrated in Figure 3. Sam ples CG 1 and 
CG 12 (Clam  Gulch 1 and 12) are from  the Sterling Formation near C lam  G ulch (Fig. 1). 
The strata of the Sterling Formation, on the Cook Inlet side, is thinner than on the 
Kachem ak Bay side because o f  folding and possible unconformities. Sample M C 4 
(M cNeil Canyon 4) was collected from  about 100 m  above the Homerian-Clamgulchian 
boundary, near M cNeil Canyon (Fig. 1 ).

* Si was determined by colorimetry, the other oxides by atomic absorption 
spectrophototom etry (Scheidegger and K ulm , 1975). These samples were originally 
reported to include water contents o f 4  to 5%. Here, the analyses have been recalculated 
on a dry basis.

+ O xides determined on a Cam eca Microprobe by the X-ray Analysis Laboratory o f the 
G eology Department at the W ashington State University.

A) 3.610 m.y. B) 4.5 ±  1.0 m.y. C) 4.285 m.y. D) 4.5 ±  1.0 m .y. E) 4.900 m.y. 
F) 5.5 ±  0.7 m.y. G) 6.000 m.y. H) 6 .6  ±  0.7 m.y. I) 7.750 m .y. J) 7.9 ±  0.9 m.y.
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Unfortunately, the absence of unaltered volcanic glass shards makes it difficult to estimate 

the original silica composition for the D iam ond Creek partings. W hole-rock analyses of 

m ajor elements were conducted but yield com positions closer to the alteration products 

than to the original ash (Reinink-Smith, 1989).

SUMMARY

1. A ltered and partly altered tephra layers are p reserved  in Tertiary coal beds 

exposed along the shore and in coastal canyons o f  the Kenai lowland, Alaska.

2. Tephra and detrital partings can be differentiated, and because the tephra partings 

represent individual ash-falls, the relative frequency o f  volcanic eruptions is 

recorded by the coal beds.

3. The volcanic record preserved in coal beds is a partial equivalent o f the DSDP 

record in marine sediments. Because preservation o f  ash-falls is m ainly restricted 

to coal beds, which constitute a m ere fraction o f  the sequence, the terrestrial 

record o f  volcanism is less com plete than the m arine record. On the o ther hand, 

tephra layers in coal are likely to be better preserved in term s o f  textural details 

and separation of individual events then their m arine equivalents. Volcanic pulses 

and com positional trends that are recorded by D SD P cores are also recorded by 

the coal beds although the correlation is not perfect.

4 . Coal beds in the low er part o f the Beluga Form ation and probably o f late or 

m iddle M iocene age are characterized  by a m ultitude o f  thin partings and 

d ispersed  ash. Depending on peat accum ulations rates, one ash-fall has been 

recorded every 125 - 500 yr, a m uch higher frequency than that reported from 

tim e-equivalent DSD P cores. T hese thin tephras probably fell during and/or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120

(shortly?) prior to the 10.5 m.y. cycle, and may have been local in nature because 

they are not no ted  in D SD P cores. A lternative ly , rew orking  and seafloor 

spreading may have prevented their preservation in D SDP cores.

5. The coal beds o f the upper part o f the late M iocene Beluga Form ation record an 

ash-fall for approxim ately every 8,000 - 10,000 yr. The partings are o f sim ilar 

thicknesses to those o f the D iam ond Creek section, but dispersed ash does not 

occur. The paucity o f tephra layers indicates that volcanism was minimal between

10.5 and 7.5 m .y. ago. This interpretation is supported by the near absence o f 

tephra partings from DSDP cores during this time interval.

6 . The frequency o f  volcanic events does not appear to have changed significantly at 

the time o f  deposition o f the lower Sterling Form ation o f  late M iocene age. Ash- 

falls are recorded about once every 11,000 yr. D SD P data suggests that a m ajor 

volcanic pulse occurred about 7.5 m.y. ago, but this is apparently not recorded in 

the coal beds o f  the low er Sterling Formation. The volcanism  recorded by DSDP 

cores may have been concentrated in the w estern and central A leutians, and only 

the most distal ash m ay have reached the Kenai Peninsula.

7 . A m ajor increase in rate and a change o f style o f volcanism  about 5 - 6  m.y. ago 

is recorded in the upper Sterling Formation. Tephra falls are recorded here once 

every 1,700 to 2,400 yr, and the thicknesses o f some partings are much greater 

than before. The increase in num ber and thicknesses o f the partings coincide with 

the pulse o f explosive volcanic activity 5 m .y. ago recorded by D SD P site 178 

and other DSD P sites.
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