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ABSTRACT

Mapping and analyses have defined the distribution, morphology, character, and age 

of marine, fluvial, glacial, eolian, and lacustrine sediments of the late Cenozoic Gubik 

Formation in approximately 12,000 km2 of the Alaskan central Arctic Coastal Plain, and 

allowed interpretations of the depositional, climatic, and tectonic histories.

Amino-acid analysis of wood and some shell materials has defined broad age groups: 

young, middle and old. The old group has been abandoned because of probable leaching 

of acids or other modification. These groups are the basis for correlation of deposits 

between areas and have been assigned minimum relative ages. The young group is at least 

Sangamonian and the middle group is probably at least middle Pleistocene.

Notable among interpretations of the surficial geology and morphology are:

1. Transgression of early Wisconsinan and perhaps Sangamonian seas as far as 9 km 
inland from the present coast.

2. Tertiary glacial advances as far north as uplands near Kavik airstrip and perhaps the 
headwaters of the Kachemach and Miluveach Rivers.

3. Three marine terraces as old as middle to late Pliocene and three late Pleistocene 
alluvial terraces east of the Colville River.

4. Middle Pleistocene minimum age for the Ugnuravik gravel is indicated by wood of 
the middle amino-acid group.

5. Coexistence of coniferous and nonconiferous wood on the Coastal Plain in middle 
to early Pleistocene time is possibly explained by greater accumulation of summer 
warmth associated with a continental climate resulting from greater exposure of the 
continental shelf.

6. Late Pliocene through Pleistocene outwash and alluvium and ITolocene aiiuvium 
compose the Canning gravel.

iii
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7. Folding of the Coastal Plain in western ANWR and up to 95 m of uplift in the 
Sadlerochit Mountains since latest Pliocene time.

8. Late middle through late Wisconsinan age for the Beechey sand.

9. Late Wisconsinan through early Holocene age for thaw lakes in which broad-based 
mounds formed.

While other findings and interpretations may be less significant, collectively they 

have allowed a start toward definition of the surficial geology.
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CHAPTER 1 - INTRODUCTION

Location

The primary area of study of the surficial geology and morphology comprises about 

12,000 km2 in 24 quadrangles that cover the near-coastal, central part of the Arctic Coastal 

Plain1 in northern Alaska (figures 1.1,1.2, and 1.3). The Colville and Canning Rivers, which 

approximately bound the state-owned part of the study area on the west and east, 

respectively, flow northward from headwaters in the Brooks Range, through Foothills of the 

Brooks Range, and across the Arctic Coastal Plain to the Beaufort Sea. The Brooks Range, 

Arctic Foothills, and Arctic Coastal Plain are three of 12 physiographic divisions of Alaska 

described by Wahrhaftig (1965). The Arctic Coastal Plain is the northernmost of these 

divisions and described as a broad, level plain underlain by continuous permafrost.

The west side of the Colville River and delta is the east boundary of the National 

Petroleum Reserve, Alaska (NPRA), which includes most of the Coastal Plain westward 

to the Chukchi Sea. The west side of the Staines River, the westernmost distributary of the 

Canning River, is the west boundary of the Arctic National Wildlife Refuge (ANWR), 

which includes the Coastal Plain eastward to the Canadian border (figure 1.1). State land 

between these two areas of federal land, and inland to 70° north latitude and to 69° 45’ 

north latitude near and within ANWR (variable distances between 25 and 65 km), composes 

most of the study area; the east study-area boundary has been extended into ANWR to 

allow a better understanding of the geology within the adjacent state land (figure 1.3). All

'Harrison Bay A-l, A-2, B-l, B-2; Beechey point A-l, A-2, A-3, A-4, A-5, B-2, B-3, B-4, 
B-5, C-4, C-5; Flaxman Island A-l, A-3, A-4, A-5; Mount Michelson D-l, D-2, D-3, D-4, D-5.

1
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Figure 1.1 Map of the Arctic Coastal Plain of Alaska showing locations discussed in the text.
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Figure 1.2 M ap of the western part of the study are„ showing locations discussed in the text. Stars near the White 
Hills mark locations of erratic boulders.
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Figure 1.3 Map of the eastern part of the study area showing locations discussed in the text. Dot south of the Kavik 
River marks the location of erratic boulders.
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of these lands are within the North Slope Borough, which includes the land north of the 

Brooks Range (figure 1.1).

Problem and Objectives

Little was known of the surficial geology of the Alaskan Arctic Coastal Plain until 

the past decade. However, beginning late in the 1970s and continuing into the 1980s, 

federal land west and, to a lesser extent, east of state-owned areas being explored and 

developed for petroleum was studied through systematic mapping, topical research, and 

new analytical techniques. These studies added considerably to the base of knowledge; in 

particular, marine and eolian depositional histories were defined. However, interest in the 

central Coastal Plain during that time was largely oriented toward recovery of petroleum 

resources. Lacking in studies were systematic and detailed mapping and characterization 

of the unconsolidated surficial sediments, without which the late Cenozoic depositional, 

paleoclimatic, and tectonic histories could not be defined.

The purpose of this study is to define the late Cenozoic depositional, climatic, and 

tectonic histories in the central part of the Alaskan Arctic Coastal Plain. Because a large 

percentage of sediments within the study area is fluvial, this work provides a link with 

marine and eolian depositional histories that are important in adjacent areas. The study 

is based on the primary objectives of mapping and characterization of surficial sediments 

in that area. A further objective is to systematically present baseline sediment data such 

as: grain size, age, and included microfossils, pollen, and wood taxa. Such data for the 

Alaskan central Arctic Coastal Plain are not available systematically and in quantity in any 

other source.
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Primary users of information collected in this study are (1) state agencies and the 

North Slope Borough for area plans, permitting, land leases, and geologic-materials sales; 

(2) geotechnical and environmental consultants working for these agencies and the 

petroleum industry; (3) the petroleum industry; and (4) researchers interested in 

understanding the geologic history of the area during the late Cenozoic Era.

Scope

Field work within the state-owned part of the study area was done each summer 

from 1981 through 1985 and a short winter project to log boreholes was done in 1985. 

Field work on the Arctic Coastal Plain in the Canning River Delta area and elsewhere 

within ANWR was also done in 1985 in a cooperative study with L. David Carter of the 

USGS. In 1987, another cooperative study with Carter in the Colville River Delta and 

eastern NPRA provided additional data on the delta and allowed extension of the study 

area farther west. Maps of surficial sediments in quadrangles within ANWR2 that were 

done in the 1985 cooperative study are included as part of the study area; however, 

discussion of the geology in these quadrangles is not emphasized to avoid preempting 

interpretations and probable publication of these interpretations by Carter.

Organization

The dissertation consists of three parts: narrative, appendices, and sheets. The 

narrative provides introductory information in Chapter 1, including previous work; 

geographic information in Chapter 2, including location, topography, climate, permafrost

2Flaxman Island A-l, A-3, A-4; Mount Michelson D-l, D-2, D-3, D-4.
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and related features, vegetation, and soils; and geologic information on pre-late Cenozoic 

sediments in Chapter 3. Discussion of pre-late Cenozoic sediments is included to establish 

an understanding of the rocks that underlie, or by being eroded, have contributed to the 

late Cenozoic unconsolidated sediments of the Gubik Formation.

In Chapters 4 through 8, emphasis is given to the unconsolidated sediments of the 

Gubik Formation, primarily because these are most prevalent within the study area. Each 

of these chapters discusses a different type of unconsolidated sediment of the Gubik 

Formation: marine, fluvial or glaciofluvial, glacial, eolian, and lacustrine. Fluvial and 

glaciofluvial sediments discussed in Chapter 5 compose the greatest percentage of the 

unconsolidated sediments within the study area, yet had been among the least studied. 

The relative great abundance of these sediments and general paucity of information 

regarding them, prompted their emphasis in this dissertation; hence, the apparent 

disproportionate coverage of these sediments within the narrative.

One or more literature-derived summaries of relevant information (e.g., marine 

transgressions on the Coastal Plain in Chapter 4, or glaciations in the central Brooks Range 

in Chapter 6) are included in frontal sections of each chapter to familiarize readers with the 

nomenclature, general distribution, character, or chronology of the particular type of 

sediment on the Coastal Plain.

Chapter 9 summarizes and correlates the Cenozoic events and deposits based on 

previous discussions and presents an integrating conceptual model for these events and 

deposits. Chapter 10 concludes the dissertation with a listing of key findings and 

interpretations. Appendices A through D present information relevant to included maps,
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and appendices E through K present analytical data relevant to samples collected in the 

study. Sheets 1 through 6 are the maps, usually in blocks of four quadrangles, of the study 

area from west to east, respectively.

Methods

Interpretations of surficial geology and morphology in the study area are based on: 

(1) detailed geologic mapping and observations (sheets 1 through 6 and appendices A 

through D); (2) grain-size analysis, radiocarbon and thermoluminescence dating, analysis 

of amino acids in mollusk shells and wood, identification of wood types, and microfossil 

and pollen contents (appendices E through K); and (3) review of literature and discussions 

with colleagues.

The surficial geology was mapped from 1:60,000-scale, color-infrared photographs 

while consulting 1:250,000-scale, black-and-white and false-color Landsat images and 

1:18,000-scale, natural-color photographs. Mapping was transferred from the photographs 

to 1:63,360-scale base maps using a zoom-transfer scope. Surficial-geology units and the 

morphology were field checked and boundaries were revised as necessary. Field activities 

were concentrated along the coast and rivers where surficial deposits are best exposed, and 

in gravel pits that exposed sediments to about 19 m below the ground surface. During 

field operations, 464 stratigraphic sections or locations were measured or described, or 

both, and 678 samples were collected for various analyses. Grain-size analysis was done 

to aid interpretation of depositional environments and to characterize or compare 

sediments; all other analyses were done to aid interpretations of chronology, paleoclimates, 

or paleoenvironments.
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Grain-size analysis and determination of whether wood was coniferous or 

nonconiferous were done in the DGGS sediment laboratory by staff under supervision. 

Grain-size analysis included sieving at quarter-phi intervals for coarse fractions, and 

pipetting and later use of a Rapid Sediment Analyser for fine fractions, in accordance with 

established laboratory procedures. Data reduction was done using a computer program 

written by DGGS staff. Determination of whether wood was coniferous or nonconiferous 

was based on microscopic examination of the wood structure, in particular, presence or 

absence of marginal pits.

All other analyses were done by commercial, university, or governmental laboratories 

as appropriate; with one exception, these laboratories are listed on the appendix cover 

sheet. The exception is Micropaleo Consultants in San Diego, California because they did 

not assign an internal laboratory number to each submitted sample.

Background

The western part of the area was first geologically studied when Schrader (1904) 

traversed the Brooks Range and Anaktuvuk and Colville Rivers, and proceeded westward 

along the coast to Cape Lisburne on the Chukchi Sea (figure 1.1). Leffingwell (1919) spent 

nine summers and six winters on the Arctic Coastal Plain between 1906 and 1914, making 

traverses inland across the Coastal Plain, east along the coast to Herschel Island, and west 

along the coast to Barrow to document the geology and morphology. Although not the 

earliest, his was the first systematic geological study.
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The area is included in regional map reports by Payne and others (1952) and 

Lathram (1965) that resulted from work done between 1944 and 1953 to evaluate the 

petroleum resources of the Coastal Plain west of the Colville River, the area then called 

Naval Petroleum Reserve 4 (Reed, 1958). As part of this resource evaluation in 1949 and 

1950, Black (1964) studied surficial deposits in the Petroleum Reserve and the western 

part of the study area. O’Sullivan (1961) also studied deposits of the western Coastal Plain, 

and made interpretations of late Cenozoic sea levels that extend into the western part of 

the study area. Walker (1983) summarized his work since 1966 on the morphology and 

processes of the Colville River Delta.

The primary focus in the central and eastern parts of the Coastal Plain during the 

1960s was exploration for petroleum resources; there was little work on the surficial 

sediments. Yeend (1973a,b) mapped surficial sediments in a proposed transportation 

corridor that crossed the study area southeast from Prudhoe Bay to near the Sadlerochit 

Mountains (and on to the Canadian border in subsequent reports). A terrain analysis by 

Sellman and others (1975) was based on the size and orientation of thaw lakes and included 

the central part of the Coastal Plain. Updike and Howland (1979) mapped the surficial 

geology and discussed processes specific to the Prudhoe Bay oil field.

Geologic and other scientific investigations of the central part of the Coastal Plain 

accelerated with initiation of the Outer Continental Shelf Environmental Assessment 

Program (OCSEAP) in the mid to late 1970s. As part of OCSEAP, Hopkins and Hartz 

(1978) discussed deposits and morphology of the Coastal Plain and erosion of the coast. 

In subsequent studies reported in quarterly and annual OCSEAP publications, Hopkins 

and colleagues expanded geological knowledge of the area and established a base for further
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studies in the 1980s. Concurrently, Cannon and Rawlinson (1981) investigated surficial 

sediments and processes within the study area and mapped the geomorphology and flood 

hazard in the Colville, Kuparuk, Sagavanirktok, and Canning River Deltas.

In 1976, Naval Petroleum Reserve 4 was placed under jurisdiction of the U.S. 

Department of the Interior and renamed the National Petroleum Reserve, Alaska. 

Systematic mapping and exploration for petroleum resources were consequently done by 

personnel of the USGS between 1976 and 1981. Carter and Galloway (1985a) mapped 

surficial sediments in the Harrison Bay Quadrangle, which includes the western part of the 

study area, and Carter and others (1986c) mapped surficial sediments in the eastern part 

of the area.

Other mapping and topical research (e.g., Carter and Robinson, 1981; Carter and 

Galloway, 1982, 1985a,b; Carter, Brouwers, and Marincovich, 1988); amino-acid studies 

(e.g., Brigham and Miller, 1983; Brigham, 1984,1985), and fossil studies (e.g., Hopkins and 

others, 1981a; Brouwers and others, 1984; McDougall and others, 1986) advanced 

understanding of the late Cenozoic marine transgressions and regressions on the Coastal 

Plain. Studies of offshore stratigraphy (e.g., Dinter, 1982, 1985; Smith, 1985; Wolf and 

others, 1985, 1987; and Foster, 1988) aided interpretations of the onshore stratigraphy.

Mapping of coastal morphology has been done over the past two decades (e.g., 

Short, 1973; Wiseman and others, 1973; Short and others, 1974; Barnes and others, 1977; 

Lewellen, 1977; Harper, 1978; Naidu and others, 1984; and Reimnitz and others, 1988).

11
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Between 1981 and 1985, Rawlinson (1986b,c,d,e,f) mapped surficial deposits within 

the central Beechey Point Quadrangle, which includes the Prudhoe Bay and Kuparuk oil 

fields. Hickmott (1986a,b) mapped surficial deposits in the eastern Beechey Point 

Quadrangle. A field trip to these oil fields and other parts of Arctic Alaska, led by 

Rawlinson for the Fourth International Conference on Permafrost held in Fairbanks in 

1983, was the impetus for a guidebook on permafrost and related features in the Prudhoe 

Bay area (Rawlinson, 1983).

Cooperative mapping between Carter of USGS and Rawlinson of DGGS was done 

in the western Coastal Plain of ANWR in 1985 and in the Colville Delta area in 1987. 

Results of these studies not previously published are included as part of this dissertation.
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CHAPTER 2 - GEOGRAPHY

Topography

The Arctic Coastal Plain becomes narrower eastward, reflecting a northeast bend 

in the trend of the Arctic Foothills and Brooks Range. With this narrowing, the gradient 

of the Coastal Plain also increases eastward. Discounting areas of higher elevation along 

the southern boundary of the study area that are underlain by Tertiary deposits of the 

Sagavanirktok Formation and locally by Pliocene deposits of the Gubik Formation, the 

southern boundary of the Coastal Plain within the study area is about 60-m elevation in the 

west and about 300-m elevation in the east. The Coastal Plain slopes northward to 

elevations of only a few meters at the Beaufort Sea coast and is underlain by Quaternary 

deposits of the Gubik Formation. Low-lying barrier islands, also underlain by sediments of 

the Gubik Formation, are discontinuously present along the coast in the study area 

(figures 1.2 and 1.3).

The Colville River and delta incise higher terrain to the west and east. East of the 

river and delta, marine and alluvial terraces are cut into this high terrain (sheet 1). The 

northern front of this terrain grades into a rolling alluvial plain, which becomes nearly flat 

near the coast (sheet 2). The Coastal Plain between a distinct scarp of an alluvial terrace 

west of the Kuparuk River and the east bank of the Sagavanirktok River is nearly flat 

(sheets 2 and 3). East of the Sagavanirktok River, the terrain is again a rolling alluvial plain 

that becomes nearly flat along the coast. This alluvial plain is incised by the Kadleroshilik 

and Shaviovik Rivers, which have associated flood plains and terraces (sheets 3 and 4). East 

of the Shaviovik River, a gently sloping outwash fan stretches to the Canning River and its

13
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terraces (sheets 4 and 5). Near the Sadlerochit Mountains, moraines on both sides of the 

Canning River create a rolling topography that grades northward east of the river to a 

gently sloping outwash plain. Both the outwash plain and the moraines have been folded 

into northeast-southwest trending anticlines and synclines by late Cenozoic tectonism 

(sheet 5) (Carter and others, 1986c). Folded terrain and gravel-covered bedrock extend east 

approximately to the Sadlerochit River. Near the east end of the Sadlerochit Mountains, 

the Sadlerochit and Hulahula Rivers incise moraines, and to the north, incise sand-covered 

outwash (sheet 6). All of sheet 5 and most of sheet 6 join mapping of Robinson and others 

(1989). However, Quaternary sediments are mapped in less detail in Robinson and others 

(1989), so not all contacts or units match across the map boundary.

Climate

The central part of the Arctic Coastal Plain is within the Arctic Climatic Zone as 

defined by Koppen (1936), and has a modified Arctic coastal maritime climate (Brown, 

1975). Details of the climate are presented by Searby and Hunter (1971), Selkregg (1975), 

and Dingman and others (1980). Mean monthly temperatures between 1970 and 1979 at 

the ARCO Alaska Camp at Prudhoe Bay ranged from 7° C in July to minus 30° C in 

February; the mean annual temperature was minus 13° C. The lowest recorded temperature 

during that time was minus 49° C in February 1971 and 1976, and the highest temperature 

was 28° C in July 1975. Temperatures along the coast are cooler than inland temperatures 

during spring and summer, and warmer during fall (Walker, 1980). Soil temperatures are 

up to 10° C higher than air temperatures 1 m above the ground (Conover, 1960; Kelly and 

Weaver, 1969; Weller and Holmgren, 1974).

' 14
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Total annual precipitation on the Coastal Plain ranges between 10 and 22 cm, of 

which 35 to 50 percent is rain. These recorded amounts may be 100 to 400 percent low, 

because of stormy conditions during snowfalls (Black, 1954; Benson, 1982; Woo and others, 

1983). Rainfall occurs between June and September, with the greatest amounts in late 

summer. Snowfall is greatest in October, with half of the annual snowfall occurring by the 

end of December (Carter and others, 1987).

Winds on the Coastal Plain are generally from the east and northeast in summer 

and from the west and northwest in winter. A summer high-pressure center to the north 

and a winter low-pressure center to the south dictate these wind directions. The mean 

annual wind velocity is 22 km/hr, with the highest means in spring, early summer, and fall, 

and the lowest means in late winter (Gamara and Nunes, 1976). Westerly summer winds 

are generally associated with storms and are responsible for surge waters that sometimes 

inundate low areas of the Coastal Plain inland to several kilometers (Reimnitz and Maurer, 

1979).

Permafrost

The Arctic coastal maritime climate maintains permafrost, which is essential to 

development of ice wedges and ice-wedge polygons, thaw lakes, pingos, and thaw streams. 

Permafrost and seasonal freezing and thawing are conducive to frost processes that develop 

frost boils, peat rings, hummocks, and reticulate ground.

The distribution and amount of ice in permafrost on the Coastal Plain greatly affect 

the surface morphology. Ice there tends to be concentrated in the top few meters of the
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permafrost (Sellman and others, 1975). Of several types of ice in the near-surface 

sediments, segregated ice and ice wedges represent as much as 85 percent of the ground 

by volume, with the former contributing a much greater amount (75 percent) than the ice 

wedges (Brown, 1967). Natural and man-induced differential thawing of this near-surface 

ice generally results in uneven lowering of the ground surface, which may lead to ponding 

of water or preferential erosion, or both.

Coastal Plain Permafrost

The Coastal Plain is within the zone of continuous permafrost (Ferrians, 1965) 

where the ground is perennially frozen except locally beneath bodies of water that do not 

freeze to the bottom during the winter (those deeper than about 2 m). At Prudhoe Bay, 

the mean ground-surface temperature is about minus 10° C (Lachenbruch and others, 

1982b). Water bodies there represent relatively warm spots that thaw or warm underlying 

ice-rich permafrost and cause extreme modification of the landscape (Lachenbruch and 

others, 1982b). Little data are available on the depth of thaw and degree of warming below 

bodies of water on the Coastal Plain, although Sellman and others (1975) reported thawing 

to 58 m below a lake near Barrow. The depth of seasonal thaw, the active layer, is largely 

dependent on soil texture and varies between about 0.5 and 1.0 m on the Coastal Plain 

(Everett, 1980b).

Gold and Lachenbruch (1973) suggested that permafrost first formed beneath the 

Coastal Plain during the first glacial episode of the Pleistocene and has existed continuously 

since that time. However, the base and top of the permafrost have likely risen and fallen 

in response to climatic variations. Presently, permafrost on the Coastal Plain typically
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extends to depths of several hundred meters with little variance in individual thermal 

gradients (figure 2.1). At Prudhoe Bay, however, permafrost reaches a depth of about 

600 m (Lachenbruch and others, 1982a,b; Osterkamp and others, 1985). At this depth the 

thermal gradient flattens significantly, representing a probable change in thermal 

conductivity caused by the presence of interstitial water rather than ice (figure 2.1). 

Lachenbruch and others (1982a) suggested that the significantly thicker permafrost at 

Prudhoe Bay results from the presence of highly conductive, siliceous, ice-rich sediments in 

that area. Other factors, such as long-term exposure during extreme cold periods, or the 

lack of extensive and long-term marine inundation could also have contributed to 

development of thick permafrost.

Offshore Permafrost

Hopkins (1979) suggested that permafrost formed beneath the Beaufort Sea about 

18 ka ago during the peak of the last Wisconsinan glacial stade when the continental shelf 

was exposed to about the minus-90-m isobath, about 70 to 80 km north of the present coast. 

However, between the early Wisconsinan Simpsonian transgression and the start of 

Holocene time, sea level probably did not rise higher than the 25-m isobath (Hopkins, 

1982), a distance of about 25 km from the present coast (Lachenbruch and others, 1982b). 

Even in mid-Holocene time, when sea level reached near its present level, the Coastal Plain 

probably extended considerably north of its present coast (Naidu and others, 1984), 

maintaining conditions for preservation of permafrost in an area since inundated by the 

sea. Thus, much of the offshore permafrost probably is as old as early Wisconsinan 

(Lachenbruch and others, 1982b), postdating the Simpsonian transgression; or if this and
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Figure 2.1 Plot of subsurface thermal gradients at various locations on the Arctic Coastal 
Plain. Small-dashed lines are extrapolated. Lined area on inset map is the study 
area. From Gold and Lachenbruch (1973).
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earlier transgressions were of insufficient duration to completely thaw the existing 

permafrost, some of the offshore permafrost could be much older.

The rise of the base of offshore permafrost from a depth of 600 m at Prudhoe Bay 

following inundation by seawater was estimated by Lachenbruch and others (1982b) to be 

10 m during the first 2 ka, and 15 m/ka thereafter. These investigators indicated that the 

base of permafrost would be between 400 and 500 m deep if inundation occurred since the 

beginning of the Holocene, and in excess of 300 m if inundation occurred as a result of 

rising sea level after the peak of the last Wisconsinan glacial stade. According to 

Lachenbruch and others (1982b), 40 ka is the approximate maximum time required to thaw 

600 m of permafrost following inundation by the sea. This implies that under present 

conditions offshore permafrost will remain, albeit continuously thinning, for up to 30 ka.

Island Permafrost

Islands along the coast of the central Arctic Coastal Plain are of two types: 

tundra-covered islands and constructional sand-and-gravel barrier islands. The tundra- 

covered islands are mostly remnants of once more extensive coastal plain. Parts of the 

apparently constructional islands may actually be lag deposits of remnant islands; examples 

of such islands are Stump Island and Long Island, both of which are in the Return Islands 

group west of Prudhoe Bay (figure 1.2). On the basis of borehole and seismic data, ice- 

bonded permafrost is pervasive under the tundra-covered islands and generally absent under 

constructional islands (Rogers and Morack, 1978; Harrison and Osterkamp, 1979; Morack 

and Rogers, 1981). However, permafrost is indicated by thermal-contraction cracks in older 

parts of constructional islands where repeated freezing and thawing reduce salt brines in the
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sediments and allow them to freeze. Permafrost generally forms in 40 to 50 years in these 

islands (Hopkins and Hartz, 1978). Permafrost under Stump Island is thought to be relic 

permafrost (Hopkins and Hartz, 1978; Rogers and Morack, 1978), perhaps formed when the 

island was covered with tundra.

Permafrost- and Seasonal-frost-related Landforms

Variations in the climate, and in the stability, width, surface gradient, and types of 

sediments of the Coastal Plain play an important role in creating and modifying landforms. 

Permafrost and seasonal freezing and thawing are primary controlling factors of landforms, 

vegetation, and soils which, in the Prudhoe Bay area, are strongly correlated (Everett, 1975; 

Webber and Walker, 1975; Everett and others, 1978, 1980; Walker and others, 1980). 

Common permafrost-related forms on the Coastal Plain are ice-wedge polygons and pingos; 

common seasonal-frost-related forms are nonsorted circles and nets.

Ice-wedge Polygons. Ice wedges are masses of ice that taper downward and develop 

by water or snow repeatedly filling thermal-contraction cracks and subsequently freezing 

or refreezing (Lachenbruch, 1962). Ice wedges are generally less than 6 m wide and 10 m 

deep (Black, 1976). However, syngenetic ice wedges on the Coastal Plain are known to 

be as much as 3 m wide and 26 m deep (Carter, 1988). Ice wedges are typically linked in 

polygonal forms, which initially may exceed 100 m in diameter. Through time, these 

polygons subdivide into secondary polygons commonly 4 to 8 m in diameter, which further 

subdivide into tertiary polygons commonly 1 to 3 m in diameter (Black, 1952).
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Orthogonal ice-wedge polygons are common in drained lake basins, river flood 

plains, and river terraces; the shorelines act as anisotropic borders where first cracks are 

oriented normal to the greatest tension, which is either perpendicular or parallel to the 

shoreline depending on the temperature field and distance from shore. Because these 

cracks are oriented, subsequent orthogonal cracks are oriented (Lachenbruch, 1966). 

Nonorthogonal ice-wedge polygons are common in areas that show little modification by 

lacustrine or fluvial processes.

Ice-wedge polygons are high centered or low centered depending on whether the 

center is high or low relative to the rim, Leffingwell (1919) first described low-centered 

and high-centered polygons and Black (1952) noted gradations between these extremes. 

Lachenbruch (1966) and French (1974) suggested that the occurrence of low- or high- 

centered, ice-wedge polygons is largely determined by the type of material in which they 

form. Low-centered, ice-wedge polygons form in material that has finite shear strength 

when thawed, e.g., long-fiber peat and some silt. This material is extruded into the active 

layer where it accumulates as peripheral ridges. High-centered, ice-wedge polygons form 

in material that is fluid when thawed, e.g., silt and clay. When this material flows and 

disperses into the active layer, it leaves either no surface trace of the polygon, or a trough 

over the ice wedges. High-centered, ice-wedge polygons may also form when polygonal 

troughs are deepened by erosion and peripheral ridges, when present, are destroyed 

(Lachenbruch, 1966).

Pingos. Pingos are ice-cored conical mounds that grow and persist in areas of 

permafrost (Washburn, 1980). On the Arctic Coastal Plain, pingos form in drained lake 

basins where moisture-rich lacustrine sediments are exposed to freezing temperatures
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(Muller, 1959). The substrate must be permeable and sufficiently thick that the thawed 

basin extends into permafrost. Pore water is expelled from below the freezing front as 

permafrost aggrades into the thaw bulb and freezes at the front, forming an ice core 

(Mackay, 1973,1978). The ice core grows and pushes up the ground surface as pore water 

is continually supplied to the ice core. The tops of some pingos may alternately rise or fall 

in response to the rate of the accumulation and loss of pore water (Mackay, 1977). Closed- 

system pingos stop growing when unfrozen pore water is gone.

Walker and others (1985) mapped two types of closed-system pingos in the Prudhoe 

Bay area: those with large basal diameters, gentle slopes, and not occurring within 

distinguishable lake basins; and those with small basal diameters, steep side slopes, and 

occurring within distinguishable lake basins. These investigators termed the former type 

broad-based mounds because of the uncertainty of origin. On the basis of morphology and 

one borehole in a broad-based mound (C-60 pingo) east of the KUP C gravel pit (Brockett, 

1982), many of the broad-based mounds apparently are true pingos and thus formed within 

lake basins that have subsequently been destroyed by younger thaw lakes. The mean 

diameter of the broad-based mounds is 242 m and the mean slope is 3°. The height of 

these mounds ranges approximately from 2 to 12 m, with the mode being approximately 

5 m (Walker and others, 1985).

The mean diameter of the steep-sided pingos is 72 m and the mean slope is 8°. 

The height of the steep-sided pingos ranges approximately from 2 to 13 m, with the mode 

being approximately 4 m (Walker and others, 1985). The distribution of the steep-sided 

pingos is more uniform across the study area than is the distribution of broad-based
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mounds. Because the steep-sided pingos occur within well-defined lake basins and most 

show little sign of collapse, they are probably not older than several thousand years.

Williams and others (1977) and Galloway and Carter (1978) mapped pingos in the 

NPRA, and Hickmott (1986a,b) and Rawlinson (1986b, c, d, e, f; sheets 1 through 6) 

mapped the surficial geology, including both types of pingos, in the area between the 

Colville River Delta and the Hulahula River in ANWR. The obviously smaller number of 

thaw lakes and pingos in the eastern part of the Coastal Plain is adequately explained by 

the generally coarser sediments, greater slope, and better drainage, which preclude 

thaw-lake and pingo development.

Nonsorted Circles. Nonsorteo circles are those that have a marked uniformity in 

the distribution of grain sizes between the border and the interior (Washburn, 1956). 

These circles range from 0.5 to 5 m in diameter (Washburn, 1980). Excavations of 

nonsorted circles typically show sandy, silty clay laterally surrounded by humic peat and 

sand at and near the surface, and marginal disturbance; the central fine-grained soil is 

continuous with fine-grained soil below the sandy, peaty border (Washburn, 1969). These 

relationships indicate displacement of underlying fine-grained soil into overlying coarse

grained soil.

Two types of nonsorted circles are frost boils, also referred to as frost scars 

(Hopkins and Sigafoos, 1951) or mud boils (Shilts, 1978), and peat rings, which evolve from 

frost boils. Frost boils generally occur on well-drained surfaces, whereas peat rings occur 

where a peaty substrate and shallow permafrost inhibit drainage. Upward heaving along 

with lateral thrusting during freezing (and pushing aside of peat deposits to form a peat
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ring) has long been thought to be the formative mechanism (Hopkins and Sigafoos, 1951); 

although diapirism of poorly sorted, silty soil with low liquid and plastic limits during 

periods of thaw is also a probable mechanism (Shilts, 1978; Washburn, 1980).

Nets. A net is patterned ground with a mesh that is intermediate between a circle 

and a polygon. Two common nonsorted types are hummocks and reticulate ground. 

Hummocks range from 0.3 to 2 m in diameter and have a convex or flattened top that is 

0.2 to 0.8 m high (Zoltai and Pettapiece, 1973; Walker and others, 1980). Hummocks 

generally occur on slopes greater than 6° and have been documented on slopes up to 20° 

(Sharp, 1942). Development of hummocks is not well understood. Washburn (1969) 

concluded that hummocks in Greenland formed by downslope movement at the net border 

with concurrent upward displacement of the central mineral soil by frost processes, termed 

cryoturbation. According to Zoltai and Pettapiece (1973), cryoturbation is a factor in the 

development of most hummocks. Although the presence of permafrost is conducive to 

development of hummocks in some localities (Zoltai and Tarnocai, 1974), it is not essential 

(Washburn, 1980).

Reticulate ground includes nonsorted, high-centered polygons that are generally 

less than 1 m in diameter and have a hummocky microrelief (Walker and others, 1980). 

This form is common in moderately well-drained areas. Excavations of reticulate ground 

show that underlying silt, silty sand, and fine sand generally intrude a peaty layer below 

the surface troughs. The formative mechanism is thought to be frost heaving followed by 

convective overturn of light, saturated sediments near the frost table under denser, drier, 

overconsolidated material at the surface (Hallet and Prestrud, 1986). Because reticulate 

ground often grades downslope into hummocks, Walker and others (1980) proposed that
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hummocks are derived from reticulate ground; they suggested that thermal and slope- 

runoff erosion accentuate the relief of the polygons and modify the polygonal pattern to a 

net pattern.

Vegetation

Walker and Webber (1980) distinguished four groups of vegetation in the Prudhoe 

Bay area as defined by the moisture regime at various sites (table 2.1). Of 42 types of 

vegetation recognized within the four groups, 22 types are common and have distinctive 

taxa (table 2.2). This vegetation is probably representative of lowlands within the study 

area.
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Table 2.1. Vegetation groups at Prudhoe Bay as defined by site moisture regime. From 
Walker and Webber (1980).

B Vegetation on dry, barren, or exposed sites

U Vegetation on moist, well-drained upland sites or well-drained
microsites

M Vegetation on wet or lowland sites

E Vegetation on sites where lowland water is present during the entire
growing season
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Table 2.2. Common vegetation types and characteristic taxa in the Prudhoe Bay area, as 
defined by site moisture regime. From Walker and Webber (1980).

26

Vegetation tvpe Common taxa

B1 Dryas integrifolia, Oxytropis nigrescens
B2 Dryas integrifolia, Saxifraga oppositifolia
B3 Saxifraga oppositifolia, Juncus biglumis
B4 Epilobium latifolium, Artemisia arctica
B5 Dryas integrifolia, Kobresia myosuroides
B6 Dryas integrifolia, Astragalus alpinus
B7 Brccya purpurascens, Anemone parviflora
B9 Efymus arenarius var. mollis, Dupontia fisheri
B13 Salix ovalifolia, Artemisia borealis
U1 Carex aquatiiis, Ochrolechia frigida
U2 Eriophorum vaginatum, Dryas integrifolia
U3 Eriophorum angustifolium, Dryas integrifolia
U4 Carex aquatilia, Dryas integrifolia
U8 Salix lanata, Carex aquatiiis
U9 Dryas integrifolia, Eriphorum angustifolium
Ml Carex aquatiiis, Carex rariflora
M2 Carex aquatiiis, Drepanocladus brevifolius
M4 Carex aquatiiis, Scorpidium scorpioides
M5 Carex aquatiiis, Salix rotundifolia
E l Carex aquatiiis
E2 Arctophila fulva
E3 Scorpidium scorpioides

Table 2.3 shows 12 landforms in the Prudhoe Bay area and the associated vegetation 

types as mapped by Everett (1980a).

Soils

Four soil orders in the Prudhoe Bay area, which is probably representative of much 

of the study area and especially the lowland areas, are Entisols, Inceptisols, Mollisols, and 

Histosols. Entisols, including Psamments and Orthents, are poorly developed soils. 

Inceptisols, including Aquepts, are mineral soils that have horizons with distinctive chemical
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Table 2.3. Common landforms and associated vegetation types in the Prudhoe Bay area. 
Compiled from Everett (1980a) and Walker and Webber (1980).

Landform

High-centered polygons (center-trough relief >0.5 m) 

High-centered polygons (center-trough relief <0.5 m) 

Low-centered polygons (rim-center relief >0.5 m) 

Low-centered polygons (rim-center relief £.0.5 m) 

Mixed high- and low-centered polygons 

Frost-boil tundra

Strangmoor or disjunct polygon rims, or both

Hummocky terrain

Reticulate ground

Nonpatterned ground

Alluvial flood plain

Pingo

Sand dunes

Vegetation type

Bl, B2, U3

Bl, B2, U2, U3

U3, U4, M2, M4

U3, U4, M2, M4

Bl, B2, U3, U4, M2, M4

B3

U4, M3, M4, U l, U2, M l 

Bl

U2, U3

M l, M2, M4

B4, U8, M5, B6, B7, U9

Bl

B9, B13, B5

and physical characteristics. Mollisols, including Borolls and Aquolls, are dark 

base-saturated soils. Histosols, including Fibrists and Saprists, contain organic material in 

the top 0.4 m of the soil profile.

Suborders of the soil orders reflect a soil-forming factor and are prefixed by the 

great-group designator, which describes aspects of the center soil profile. A prefix of "Cry" 

indicates a soil with a mean annual temperature between 0 and 8° C. Subordinate soil- 

forming processes that modify characteristics of the dominant process are emphasized by
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the subgroup. In the nomenclature, the subgroup precedes other descriptions. The terms 

"pergelic", "ruptic", and "histic", apply to soils in the Prudhoe Bay area. Pergelic denotes 

permafrost, ruptic denotes soil interruption, and histic denotes organic material (Everett, 

1980b).

Everett (1980b) mapped eight soils as distinct morphologic entities in the Prudhoe 

Bay area and described a ninth for dunes near the mouth of the Sagavanirktok River. 

These soils are typically associated with specific landforms (table 2.4). Association of soils 

with landforms in the Prudhoe Bay area illustrates, in part, the interdependence of many 

environmental factors active on the Coastal Plain.

Table 2.4. Common soils and associated landforms in the Prudhoe Bay area. From Everett
(1980b).

Soil unit Associated landforms

Pergelic cryoboroll 

Pergelic cryaquoll 

Pergelic ruptic aqueptic ciyaquoll 

Histic pergelic cryaquept

Pingos, high-centered polygons 

Steam banks, slightly convex interfluves 

Frost boils

Pergelic ciyorthent 

Pergelic cryopsamments

Pergelic cryohemists 

Pergelic cryosaprists

Low-centered polygons, disjunct polygon 
rims and strangmoor

Low-centered polygons (center)

Low-centered polygons (rim), 
high-centered polygons

River flood plains and terraces

Active or partially stabilized sand dunes
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CHAPTER 3 - GEOLOGIC FRAMEWORK

Introduction

Pre-late Tertiary sediments discontinuously surround the study area, underlie 

sediments of the Gubik Formation in the study area, or by being eroded, have contributed 

to the unconsolidated sediments of the Gubik Formation. Sediments of the Gubik 

Formation are by far the most widespread within the study area, and thus are the primary 

focus of this dissertation.

The pre-late Tertiary sediments represent several depositional environments and 

probably range in age from Late Cretaceous through Oligocene (figure 3.1). These 

sediments are designated from oldest to youngest, the Prince Creek and Schrader Bluff 

Formations, and the Sagavanirktok Formation. Sediments of the Sagavanirktok Formation 

underlie considerably more of the study area than those of the other two formations and 

are thus emphasized in this chapter.

Prince Creek and Schrader Bluff Formations

Gryc and others (1951) named the Prince Creek Formation for poorly consolidated 

nonmarine conglomerate, sandstone, siltstone, shale, carbonaceous shale, and coal exposed 

along Prince Creek, a tributary of the Colville River. The Prince Creek Formation and its 

intertonguing marine equivalent, the Schrader Bluff Formation, underlie the Foothills of the 

Brooks Range south of the Arctic Coastal Plain. The Schrader Bluff Formation is named
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Figure 3.1 Stratigraphic column of late Mesozoic and Cenozoic geologic formations of the central and eastern Arctic 
Coastal Plain of Alaska.

o



for marine sandstone, siltstone, and shale exposed at Schrader Bluff on the lower Anaktuvuk 

River.

Exposures of the Prince Creek and Schrader Bluff Formations are isolated but 

widespread. In addition to the type sections, these formations are well exposed along the 

lower Colville River. The Prince Creek Formation is also exposed near Sagwon on the 

Sagavanirk j ! ;  River and along the Kavik River. The most complete section of the Schrader 

Bluff Formation is along the Canning River west of the Sadlerochit Mountains (figure 1.3); 

most exposures of this formation occur between the Sagavanirktok and Jago Rivers 

(Detterman and others, 1975).

Brosg6 and Whittington (1966) assigned nonmarine sediments exposed along the 

west side of the Colville River from south of the southern boundary of the study area 

northward to Ocean Point to the Kogosukruk Tongue of the Prince Creek Formation 

(figure 1.2). Fluvial and flood-plain sediments, especially channel-fill and overbank 

sediments, compose most of the Kogosukruk Tongue, but lacustrine and palustrine 

sediments are also present (Spicer and Parrish, 1987). Nonmarine sediments near Ocean 

Point interfinger up section with fine-grained interdistributary bay sediments, which are 

overlain by marine sediments; both the bay sediments and marine sediments are assigned 

to the Schrader Bluff Formation (Phillips, 1988). Frederiksen and others (1988) reported 

a stratigraphically higher nonmarine sand, perhaps of the Kogosukruk Tongue, on the 

Colville River 6 km east of Ocean Point. Possibly correlative Late Cretaceous marine 

sediments of the West Sak sands and an overlying shale-mudstone unit, and the overlying 

nonmarine Ugnu sands, all units that underlie the Kuparuk and Prudhoe Bay oil fields 

(Werner, 1987), are considered to be part of the Sagavanirktok Formation by Collett and

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bird (1990). However, because most recent literature discusses the Sagavanirktok 

Formation as being Tertiary, this convention is used herein to avoid confusion.

Late early Eocene was once considered a near-maximum age for the Prince Creek 

Formation based on a fission-track date of 50.9 + /- 7.7 Ma on tephra near the base of the 

Kogosukruk Tongue sediments exposed near Ocean Point (Carter and others, 1977) 

(figures 1.1 and 1.2). However, based on spores, pollen grains, and dinoflagellate cysts, 

Frederiksen and others (1988) assigned a Maestrichtian age to sediments of the Kogosukruk 

Tongue near Ocean Point. Hadrosaurian dinosaur remains present in these sediments are 

not diagnostic of age (Parrish and others, 1987). Macbeth and Schmidt (1973) considered 

benthic foraminiferal assemblages from the intertonguing Schrader Bluff Formation at 

Ocean Point to be late Campanian. However, re-examination of the foraminifers indicates 

an early Maestrichtian age (McDougall, 1986). Brouwers and others (1984) and 

Marincovich and others (1985, 1986) considered the marine beds to be Paleocene to early 

Eocene based on mollusk and ostracode faunas and palynological data. Frederiksen and 

others (1988) placed the Cretaceous-Tertiary boundary along the Colville River 8 km 

northeast of Ocean Point and assigned a mid-Maestrichtian age to nonmarine sediments 

below this boundary.
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Sagavanirktok Formation

33

Subdivision to Members

Gryc and others (1951) named the Sagavanirktok Formation for poorly consolidated 

conglomerate, sandstone, siltstone, and lignitic coal exposed along the east side of the 

Sagavanirktok River at Franklin Bluffs.

Increased investigations on the Arctic Coastal Plain brought on by discovery of oil 

at Prudhoe Bay provided disparate data that resulted in confusion as to which strata to 

include in the Sagavanirktok Formation. To eliminate confusion, Detterman and others 

(1975) assigned all Tertiary sediments overlying the Prince Creek Formation but underlying 

the Gubik Formation to the Sagavanirktok Formation. These investigators also subdivided 

the formation into three members, from oldest to youngest, Sagwon, Franklin Bluffs, and 

Nuwok.

Sagwon Member. The type section of the Sagwon Member begins along the west 

side of the Sagavanirktok River at Benchmark Gard, about 1.4 km northwest of Sagwon, and 

continues northward along the river bluff for about 1.6 km (figure 1.2). At the type section, 

the member is 143 m thick. Sediments of the Sagwon Member are not exposed east of the 

Canning River, and the westernmost sediments occur in the White Hills, 32 km northwest 

of the type section (Detterman and others, 1975).

Lignite and carbonaceous shale, interbedded with dark gray and brown shale and 

siltstone containing ironstone nodules compose the lower part of the Sagwon Member.
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The upper part of the member consists of poorly consolidated sandstone and conglomerate. 

The sandstone is dominantly quartz and chert, but includes feldspar and carbonaceous 

material. Cross-bedding in the sandstone is suggestive of a nonmarine shallow water to 

deltaic depositional environment (Detterman and others, 1975).

Floras from the coal-bearing part of the Sagwon Member are correlated with 

Paleocene and Eocene beds elsewhere in Alaska (Detterman and others, 1975). This age 

range is consistent with ages determined for stratigraphically higher members.

Franklin Bluffs Member. The type section of the Franklin Bluffs Member is along 

a stream that cuts the west side of Franklin Bluffs 1.8 km southwest of Benchmark Greta 

(figure 1.2 or 1.3). The member is 105 m thick at the type section, but other exposures 

along stream banks in the northernmost low hills on the Arctic Coastal Plain between the 

White Hills and the Niguanak River (figures 1.2 and 1.3) indicate a total thickness of 

between 900 and 1,500 m (Detterman and others, 1975).

The Franklin Bluffs Member consists of four or five cycles of laminated brown and 

gray clay and silt composed of quartz and feldspar overlain by thick beds of pink, brown, 

orange, and yellow sand and gravel. The fine-grained part of a cycle is dominantly clay but 

includes mud lumps and organic material along bedding planes, and randomly distributed 

small pebbles and zones of limonite. Desiccation cracks are preserved in some of these 

beds. The composition, textures, and structures of the fine-grained part of the cycle suggest 

a semiarid lacustrine environment. The coarse-grained part of the cycle includes 

interbedded volcanic ash and limonitic zones, and large cross-bedding. The composition,
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textures, and structures of this part of the cycle suggest deposition by fluvial and eolian 

processes in a semiarid environment (Detterman and others, 1975).

Ager and others (1986) suggested an Eocene age for the sediments at Franklin 

Bluffs based on included pollen grains.

Nuwok Member. The type section of the Nuwok Member is east of Carter Creek 

in the core of the Marsh Creek anticline 2.4 km south of Camden Bay (figure 1.3), and is 

represented by the upper 80 m of strata at this location. Detterman and others (1975) 

placed the contact with the Franklin Bluffs Member between a 3-m-thick, poorly 

consolidated sandstone and an underlying 10-m-thick clayey silt and indicated that the 

contact is gradational and conformable. However, both Brouwers and Marincovich (1988) 

and McNeil and Miller (1990) included the basal clayey silt with the Nuwok Member.

Fouch and others (1990) have identified at least 220 m of Nuwok-like strata on the 

north limb of the Marsh Creek anticline, significantly adding to the previously described 

80-m-thick type section. Brouwers and Marincovich (1988) indicated that Nuwok Member 

sediments are also present on Barter Island and at Manning Point based on ostracodes at 

both localities and mollusks at Manning Point. Brigham (1985) described a widespread 

marine clay at Skull Cliff, termed the Papigak clay, and suggested that it may correlate with 

sediments of the Nuwok Member. The Papigak clay has since been shown to be Campanian 

and thus not correlative (W. Elder, personal communication to D. Hopkins, 1990).

The basal clayey silt and overlying sandstone in the Nuwok Member type section 

contain mollusk shells that suggest normal marine salinity, temperate water, and deposition
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on the deeper inner shelf to middle shelf (Brouwers and Marincovich, 1988). The sandstone 

is capped by a pebble conglomerate, which is overlain by pebbly siltstone and mudstone with 

interbeds of silty limestone (Detterman and others, 1975). These fine-grained sediments 

contain glendonite crystals, which are calcite pseudomorphs after original minerals of 

unknown composition, perhaps calcium carbonate hexahydrate. This precursor mineral is 

probably diagnostic of organic-rich sediments rapidly accumulating in cold bottom waters 

(Suess and others, 1982). A high-latitude lagoonal environment was suggested by Detterman 

and others (1975) for the fine-grained sediments. Faunas included in these sediments do 

indicate a cold temperate marine climate, but are more indicative of deposition on the 

middle shelf in the lower part and on the deeper inner shelf in the upper part (Brouwers 

and Marincovich, 1988). Pebbly sandstone about 15 m thick caps the fine-grained 

sediments. This sandstone is unconsolidated except where locally cemented by limonite; 

Detterman and others (1975) suggested that the texture and cross-bedding of these 

sediments indicate a barrier island environment. However, Brouwers and Marincovich 

(1988) suggested that included faunas indicate environmental conditions and a depositional 

environment like those of the bottom part of the section.

Age estimates for the Nuwok Member based on included mollusks range from 

Miocene to Pliocene (MacNeil, 1957; Brouwers and Marincovich, 1988). A Pliocene age 

was based on ostracodes and mollusks (Brouwers and Marincovich, 1988) and ages based 

on benthic foraminifers range from Oligocene to Pliocene (Todd, 1957; Detterman and 

others, 1975; Young and McNeil, 1984; McNeil, 1989). Re-evaluation of ages based on 

foraminifers indicates a late Oligocene age (McNeil and others, 1982; Young and McNeil, 

1984; McNeil, 1989). Strontium-isotope ratios calculated from three samples of benthic
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foraminifers and a single mollusk substantiate a late Oligocene age (McNeil and Miller, 

1990).

Sediments Not Assigned to Members or Informal Units

Carter and Galloway (1985a) discussed nonmarine and marine sediments of the 

Sagavanirktok Formation exposed along the west side of the Colville River, and nonmarine 

sediments exposed along the Miluveach and Kachemach Rivers, that have not been assigned 

to members or units. The marine sediments have since been shown to be Maestrichtian and 

were assigned to the Schrader Bluff Formation by Frederiksen and others (1988). On the 

basis of well-correlation sections, Collett and Bird (1990) discussed nonmarine and marine 

sediments of the Sagavanirktok Formation that overlie the early Tertiary, nonmarine Ugnu 

sands below the Kuparuk and Prudhoe Bay oil fields.

Nonmarine Sediments. Unassigned nonmarine sediments of the Sagavanirktok 

Formation, consist of conglomerate, gravelly sand, sand, and pebbly shale with 

subbituminous coal and lignitic wood. These sediments overlie marine sediments along 

the Colville River that were discussed by Carter and Galloway (1985a) and that are now 

assigned to the Maestrichtian Schrader Bluff Formation. A late Paleocene to early Eocene 

age for the nonmarine sediments is indicated by fungal spores (Lentin, 1984, written 

communication cited in Carter and Galloway, 1985a); however, pollen assemblages are like 

those of early Paleocene assemblages in Siberia and northwest Canada. The pollen 

assemblage includes many coniferous taxa, along with other deciduous broadleaf and shrub 

taxa, that suggest a temperate, moist climate (T. Ager, written communication cited in 

Carter and Galloway, 1985a).
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The finer grained sediments typically have zones of oxidation near the top of a given 

stratigraphic section and zones of disseminated sulfur deeper in the section that give the 

beds a mottled orange and gray or yellow and gray appearance. Gravel-sized clasts of schist, 

gneissic granite, granite, greisen, rhyolite, rhyolite tuff, and andesite in these sediments do 

not occur in potential source drainage basins to the south. Older sediments that might have 

been reworked to contribute these clasts are also known not to exist in these drainage basins 

(Carter and Galloway, 1985a). Probable correlative sediments are exposed along the 

Ublutouch River west of the Colville River and along the Miluveach and Kachemach Rivers 

east of the Colville River (Carter and Galloway, 1985a). The source and full extent of these 

sediments are unknown.

A pebble, cobble, and boulder gravel, informally termed the Kuparuk gravel by 

Carter (1983b), overlies the unassigned nonmarine Paleocene to Eocene sediments. This 

gravel forms bluffs on the upper slopes of valleys in the upper drainage areas of the 

Miluveach and Kachemach Rivers but is truncated at a scarp that probably represents the 

shoreline and maximum inland extent of one or both of the two oldest marine transgressions 

represented by the Gubik Formation. These transgressions likely occurred between 2.4 and

3.5 Ma ago (Carter and Galloway, 1985a; Carter and others, 1986a). Fluvial terraces 

associated with erratic boulders of the late Tertiary Gunsight Mountain glaciation 

(Hamilton, 1979a,b) are younger than the Kuparuk gravel (Carter and Galloway, 1985a).

Clasts of the Kuparuk gravel include chert, quartz, quartzite, chert-pebble 

conglomerate, and siliceous sandstone, types common to potential source basins in the 

Brooks Range. Clasts up to several meters in diameter may be glacial erratics, a concept 

supported by diamicton sediments at one location in the Miluveach and Kachemach Rivers
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area. If so, a Tertiary advance of ice from the Brooks Range reached farther north than 

previously thought (Carter and Galloway, 1985a).

Collett and Bird (1990) discussed a 250- to 300-m-thick, subsurface interval of many 

upward-fining, channel sandstone and overbank siltstone units. This nonmarine interval 

reportedly overlies the Ugnu sands and predates overlying Eocene marine beds. How this 

interval, and perhaps part of the Ugnu sands, correlate with outcropping probable Paleocene 

and Eocene sediments discussed by Carter and Galloway (1985a) is unknown.

Marine Sediments. No Tertiary marine sediments that have not been assigned to 

a member or informal subsurface unit crop out in the study area. A 200- to 300-m-thick 

sequence of interbedded marine sandstones and mudstones reportedly overlies the 

nonmarine fluvial sediments that overlie the Ugnu sands (Collett and Bird, 1990). 

According to Collett and Bird (1990), this sequence was deposited during a basin-wide 

marine transgression in Eocene time. In the Sagavanirktok River Delta area, the upper 

boundary of the marine unit is an erosional unconformity; the unconformity apparently 

disappears to the southwest into the Kuparuk River area. The apparent proximity of the 

age of these marine sediments to the age of the Nuwok Member sediments prompts the 

notion of possible correlation. Overlying rocks are nonmarine and represent a delta-plain 

environment (Collett and Bird, 1990).

Gubik Formation

Gryc and others (1951) assigned all Pleistocene sediments on the Coastal Plain to 

the Gubik Formation. Black (1964) included Holocene sediments in the formation and
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subdivided the formation into three lithologic units, from oldest to youngest: Skull Cliff, 

Meade River, and Barrow. These units are now known to be facies of the Gubik Formation 

that differ both in age and distribution across the Coastal Plain based on field work by 

personnel of the USGS between 1976 and 1981 (Brigham, 1985).

The Gubik Formation as presently defined includes all late Pliocene and Quaternary 

unconsolidated marine and nonmarine sediments on the Coastal Plain. Marine sediments 

in part of the type section along the west side of the Colville River are now known to be 

Pliocene (Repenning, 1983). Brigham subdivided marine sequences of the Gubik Formation 

in western Alaska into five informal members based on amino-acid signatures of mollusk 

shells; each member corresponds to an aminozone, which represent a period of 

transgression and deposition. Leffingwell (1919) assigned glaciomarine sediments exposed 

on Flaxman Island and elsewhere along the coast to the Flaxman Formation, but Dinter 

(1985) reduced this formation to a formal member of the Gubik Formation.

Rawlinson (1986a) subdivided nonmarine sediments approximately between the 

Colville and Canning Rivers into lithologic units. The names Ugnuravik gravel and 

Ugnuravik sand were coined for widespread gravel and overlying sand between the Colville 

and Kuparuk Rivers. On the basis of surface morphology and apparent similar stratigraphy 

and age, these names were also used for sediments approximately between the 

Sagavanirktok and Shaviovik Rivers. Outwash gravel between the Shaviovik and Canning 

Rivers was named the Canning gravel. The names Put alluvium and Put outwash, 

collectively the Put gravel, were coined for alluvium and outwash between the Kuparuk and 

Sagavanirktok Rivers. Herein, the Ugnuravik sand has been renamed the Beechey sand to 

avoid confusion with the Ugnuravik gravel.
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CHAPTER 4 - MARINE SEDIMENTS OF THE GUBIK FORMATION

Introduction

Prior to the last decade, the number and extent of late Cenozoic marine 

transgressions on the Coastal Plain were only hypothesized and based mainly on study of 

a few outcrops of marine sediments and elevation contours (figure 4.1). Within the last 

decade, however, knowledge of marine transgressions on the Coastal Plain and their 

correlation with transgressions recognized along the Bering Sea coast has been considerably 

increased by David M. Hopkins, Julie Brigham-Grette, L. David Carter, and Darrell S. 

Kaufman (Hopkins, 1967; Hopkins and others, 1981a; Brigham, 1984, 1985; Carter and 

others, 1986a; Carter and others, 1988; Kaufman and others, 1989; and Kaufman and others, 

1990).

Marine Transgressions

Six late Cenozoic marine transgressions have been well defined and correlated across 

the Coastal Plain by analysis of amino acids in mollusk shells (table 4.1), and two additional 

transgressions may be represented in deposits of the Gubik Formation (Carter and others, 

1986a). Sediments of certainly four and probably five of these transgressions have been 

recognized within the study area3. In order of decreasing age, these are the Colvillian, 

Bigbendian, Fishcreekian, Pelukian, and Simpsonian; the presence of Pelukian sediments

^ h e  terms Colvillian I and Colvillian II were first used by Carter and Galloway (1982), 
and subsequently by Rawlinson (1986a) and Carter and others (1986a, Table 9-1). However, 
the latter paper also described the Colvillian and Bigbendian transgressions, the terms now 
preferred for the Colvillian I and II transgressions, respectively.
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Figure 4.1 Map of the western Arctic Coastal Plain showing marine shorelines proposed prior to 1973: (A) Late 
Sangamonian or mid-Wisconsinan (O’Sullivan, 1961); (B) Wisconsinan (Black, 1964); (C) Sangamonian (O’Sullivan, 
1961); (D) middle Pleistocene (O’Sullivan, 1961); and (E) late Pliocene (O’Sullivan, 1961). Map modified from 
Sellman and others (1975).
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Table 4.1 Correlation chart of marine sequences of the Gubik Formation in northern Alaska based on amino-acid analysis 
of marine mollusks. Modified from Carter and others (1986a).

a H e / B e '

T ra n s g re s s io n

M a x im u m  
E le v a tio n  
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W a in w rig h tia n 20 5 0 0  k a " 0 .0 3 8  ±  0 .0 0 7
4
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in d ic a te s  th a t  o n ly  o n e  v a lv e  w a s  a n a ly z e d .
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is uncertain. The following summaries of these transgressions are derived entirely from 

published literature.

Colvillian Transgression. West of the study area, sediments of the Colvillian 

transgression unconformably overlie Cretaceous or lower Tertiary sediments along the 

Colville River from the Kikiakrorak River downstream for about 10 km; this exposure of 

Colvillian sediments is the type section. The sediments are a basal gravelly sand up to 1 m 

thick and an overlying clayey silt up to 2.5 m thick. Unconsolidated fluvial and eolian 

sediments 11 to 12 m thick overlie the Colvillian sediments except in the northern part of 

the exposure, where 1 to 1.5 m of sediments of the Bigbendian transgression overlie the 

Colvillian sediments and separate them from the fluvial and eolian sediments (Carter and 

others, 1986a).

The gravelly base of the Colvillian sediments includes cobbles and boulders of 

well-indurated sandstone and chert-pebble conglomerate, and of metamorphic, intrusive, and 

volcanic rocks. Grain sizes of the sandstone and conglomerate resemble those of similar 

clasts in the Kuparuk gravel and are derived from like rocks nearby in the Brooks Range. 

The other rock types do not occur in potential source areas of the Brooks Range, but are 

present in Paleocene boulder-bearing beds exposed along the Colville River and that 

underlie the Kuparuk gravel. These boulders were likely eroded from the Paleocene 

boulder-bearing beds and the Kuparuk gravel during the Colvillian transgression and 

incorporated with other Colvillian sediments (Carter and others, 1986a).

Sediments of the Colvillian transgression are also present along the Miluveach River 

east of the Colville River; at the Marsh Creek anticline in ANWR; and at Skull Cliff near
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Barrow. Colvillian sediments at Skull Cliff were mapped by Brigham (1985) as the Nulavik 

allomember (table 4.1). Colvillian sediments at Marsh Creek contain distinctive ostracode 

faunas, which include an Atlantic form that does not presently inhabit Arctic waters. The 

climate during the Colvillian transgression was apparently much warmer than today (Carter 

and others, 1986a).

Minimum and maximum ages for the Colvillian transgression are provided by taxa 

found in the deposits. Samples of the marine mollusk Hiatella arctica from these deposits 

yielded a mean alloisoleucine (aIle)/isoleucine (lie) ratio of 0.236 + /-  0.022 (table 4.1) 

(Carter and others, 1986a). Such a ratio indicates correlation with Brigham’s (1985) 

aminozone 5, which is >2.2 Ma. Taxa of Pacific origin in the deposits indicate that the 

Bering Strait was open and thus provide a maximum age for the Colvillian transgression; 

the Bering Strait opened between 3 and 3.5 Ma ago (Hopkins, 1972; Gladenkov, 1981).

Bigbendian Transgression. Along the big bend of the Colville River from near 

Ocean Point upstream for about 10 km, sediments of the Bigbendian transgression 

unconformably overlie Cretaceous or lower Tertiary rocks, or locally a thin deposit of 

Colvillian sediments; this exposure is the type section. Type Bigbendian sediments are a 

1-m-thick basal gravelly sand with cobbles and boulders like those in the basal Colvillian 

sediments, and overlying sandy silt about 4 m thick (Carter and others, 1986a).

The pollen assemblage from the Bigbendian sediments is dominated by Picea, but 

includes a significant amount of Betula, and minor amounts of Pinus and Abies. Such floras 

suggest a mild climate much like that of present-day, south-central Alaska (Nelson, 1981; 

Nelson and Carter, 1985). Fossil remains of a sea otter (Enhydral) (Repenning, 1983) and
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the mollusks Littorina squalida (Rosewater, written communication to Marincovich cited in 

Carter and Galloway, 1985a) and Clinocardium califomiense (Deshayes) (Marincovich, oral 

communication cited in Carter and Galloway, 1985a) also indicate a mild climate. The 

present northern limit of these mollusks is the Bering Strait and sea otters are not tolerant 

of severe sea ice, which suggests that the Beaufort Sea may have been only seasonally frozen 

during the Bigbendian transgression (Carter and others, 1986a).

Shells of Hiatella arctica from Bigbendian sediments in the type section yielded a 

mean alle/Ile ratio of 0.136 + /-  0.014. This value indicates correlation with the Killi Creek 

allomember defined by Brigham (1983); with sediments exposed along part of the Miluveach 

River; and with sediments on St. George Island attributed to the second Beringian 

transgression defined by Hopkins (1967) (Repenning, 1983). Marine beds on St. George 

Island are at least 2.19 Ma old based on radiometric dates of overlying basalt flows 

(Hopkins, 1967). On the basis of evolutionary development of the sea otter remains, 

Repenning (1983) suggested that the Colvillian and Bigbendian sediments at Ocean Point 

are between 1.7 and 2.2 Ma old. Carter and others (1986a), however, indicated that this 

evidence is not sufficiently precise to preclude a greater age. Repenning and others (1987) 

indicated that a rodent fauna from stratigraphically higher Fishcreekian sediments indicates 

a minimum age of 2.4 Ma. If Repenning and others are correct, then both the Bigbendian 

and Fishcreekian transgressions occurred between 2.4 and 3.0 Ma ago, the older limit being 

the earliest time that the Bering Strait opened.

Fishcreekian Transgression. Type sediments of the Fishcreekian transgression are 

exposed on the north side of Fish Creek about 6 km west of the confluence with Judy 

Creek. Sediments at this location were grouped by Carter and others (1979) into four units,
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the bottom two of which are marine. The basal marine sediments are 3 to 4 m of dark gray 

silt with granules of chert and quartz, some interbeds of sand and sand-filled burrows, 

scattered mollusk fragments, and some woody stems. Overlying marine beds are 5 to 9 m 

of fossiliferous brown to gray sand, pebbly sand, and silt, all with detrital wood and fine 

organic debris. The lithology, stratigraphy, and faunas of these marine sediments suggest 

a bay-mouth or estuary depositional environment (Carter and others, 1979; Carter and 

Galloway, 1985a).

Amino-acid analysis of Hiatella arctica from these sediments yielded a mean alle/Ile 

ratio of 0.086 + /- 0.004 (Carter and Galloway, 1985a). On the basis of amino-acid analysis, 

the type Fishcreekian sediments correlate with sediments exposed in the Marsh Creek 

anticline and with the Tuapaktushak allomember mapped by Brigham (1983) along the 

Chukchi Sea coast (Carter and others, 1986a).

The extralimital mollusks Naticajanthostonia and Littorina squalida (L. Marincovich, 

Jr., written communication cited in Carter and others, 1986a) and femur and molar of a 

fossil sea otter (Enhydral) collected from the marine sediments provide evidence that 

Fishcreekian marine waters were warmer than present Arctic waters (Carter and Galloway, 

1985a).

Interpretable pollen assemblages from the upper marine sediments include 

herbaceous taxa, Ericaceae, Betula (dwarf birch ?), Larix, Alnus, Picea, and Pinus; the last 

three genera probably represent reworking of older sediments or long-distance transport. 

These assemblages suggest a severe terrestrial climate, in contrast to the postulated mild 

marine conditions. Vegetation was shrub-herb tundra with scattered Larix trees, much like
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the modern taiga of northeast Siberia (Carter and Galloway, 1985a). The Fishcreekian 

transgression may have been nearly coincident with glaciation in the Brooks Range, perhaps 

the Gunsight Mountain advance of Hamilton (1981). Glacial dropstones, striated-boulder 

pavements, and deformational structures in the correlated Tuapaktushak beds of Brigham 

(1983) support this hypothesis (Carter and Galloway, 1985a).

Pollen assemblages in the basal marine sediments are similar, but the amounts of 

Betula, Picea, and Pinus are greater. During deposition of the basal sediments, Picea and 

Pinus were either growing nearby or regional wind directions were different, or both (Carter 

and Galloway, 1985a). Paleomagnetic and amino-acid data suggest that the basal and upper 

marine sediments were deposited during a single marine transgression. Differences in 

pollen assemblages of the two units probably result from minor variations in climate (Carter 

and Galloway, 1985a).

Carter and Galloway (1985a) proposed that the Fishcreekian transgression likely 

occurred between 1.87 and 2.48 Ma ago, based on paleomagnetic, palynologic, and 

paleontologic data. Reversed magnetic polarity of the sediments limits them to the 

Matuyama Superchron, which began 2.48 Ma ago. This maximum age is corroborated by 

the presence of tundra or Larix taiga vegetation indicated by pollen assemblages. This 

vegetation is unlikely to have been present on the Arctic Coastal Plain during an 

interglaciation prior to a world-wide cooling trend that occurred near the Gauss-Matuyama 

boundary (Carter and Galloway, 1985a). The mollusk faunas are more similar to boreal 

mollusks in the Tjornes beds in Iceland than to Arctic mollusks in the overlying Breidavik 

beds, which are interbedded with tillites (Carter and Galloway, 1985a). According to 

Gladenkov (1981), the top of the Tjornes beds is about 2 Ma old and the base of the
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Breidavik beds is stratigraphically just above the Olduvai Chron, which began 1.87 Ma ago. 

Carter and others (1986b) suggested that the Fishcreekian transgression corresponds to a 

2.41-Ma O18 minimum recorded in North Atlantic deep-sea cores, the only such minimum 

in these cores that predates 2.4 Ma.

However, strontium-isotope dates of mollusk shells from Fishcreekian and 

corresponding Taupaktushak beds suggest that the Fishcreekian transgression occurred 

between 1 and 1.5 Ma ago (Kaufman and others, 1990; J. Brigham-Grette, personal 

communication, 1990). This age range is coincident with that proposed by Brigham (1985) 

based on possible long-term rates of amino-acid epimerization. Brouwers and others (1984) 

used the rates of epimerization and a tenuous correlation with unfossiliferous marine 

sediments on the Pribilof Islands to propose an age of 1.2 Ma4.

Pelukian Transgression. Hopkins (1967) defined the Pelukian transgression as 

occurring during the Sangamonian Interglaciation and producing shoreline features and 

sediments at elevations up to 10 m above the present mean level. Carter and Robinson 

(1981) reported beach sand and gravel from this transgression at elevations between 1 and 

10 m from near Barrow eastward to Harrison Bay. Sediments of the Pelukian transgression 

near Barrow and along the Chukchi Sea coast were termed the Walakpa allomember by 

Brigham (1983).
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Hopkins and others (1981a) suggested that foraminifera and ostracode faunas in the 

Pelukian sediments indicate a warmer climate and more open-water conditions than today. 

Brigham (1983), however, indicated that these faunas and the molluskan faunas are similar 

to those in the modern Arctic nearshore environment, and thus that conditions were similar 

to modern conditions. Carter and others (1986a) concurred with interpretations of Hopkins 

and others (1981a) based on the faunas and abundant Picea driftwood in the Pelukian 

sediments. Abundant Picea, if derived from the Arctic Coastal Plain, supports an 

interpretation of warmer climate because the modern northernmost extent of Picea in 

Alaska is south of the continental divide in valleys of the Brooks Range based on 

investigations for the Trans-Alaska Pipeline System (Viereck and Little, 1972; R. D. Reger, 

personal communication, 1990).

Carter and others (1986a) cited four lines of evidence that the Pelukian 

transgression correlates with oxygen-isotope stage 5e of Shackleton and Opdyke (1977): the 

mean alle/Ile ratio (0.014 + /- 0.002) of Hiatella arctica shells from Pelukian (Walakpa) 

sediments along the Chukchi Sea is essentially the same as that of modern specimens, 

precluding an age older than the Sangamonian Interglaciation (Brigham, 1983); the O18 

contents of Astarte borealis shells from Pelukian sediments are very similar to O 18 contents 

in modern Astarte borealis shells (J.R. O’Neill, written communication to Carter, 1984); 

thermoluminescence dates of the Pelukian beach and underlying sediments average

123.5 ka (Carter and Galloway, 1985a); and the 10-m-maximum elevation of the Pelukian 

sediments is essentially the same as the maximum eustatic sea level cited for oxygen-isotope 

stage 5e (Cronin and others, 1981).
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Simpsonian Transgression. As defined by Dinter (1985), the Flaxman Member of 

the Gubik Formation was deposited during the Simpsonian transgression. The type section 

for the member is on Flaxman Island; however, Flaxman sediments are also well exposed 

at Cape Simpson and Simpson Cove, and discontinuously along much of the Beaufort Sea 

Coast up to 7 m elevation. The Flaxman Member consists of clayey silt and silty sand with 

exotic erratic clasts of dolomite, diabase, pyroxenite, granite, and quartzite. The granite 

typically has red or pink feldspar, and the quartzite is typically pink or purple; both 

lithologies are very distinctive. Regressive marine sand, beach sand and gravel, deltaic silt 

and sand, or fluvial sand and gravel typically overlie the Flaxman sediments. The regressive 

marine sand may be deposits of a younger transgression (Carter and others, 1988).

The erratic clasts have been the subject of many papers primarily addressing 

lithologies, distribution, process, and provenance (MacCarthy, 1958; Rodeick, 1979; 

Hopkins, 1982). Hopkins (1982) indicated that erratic clasts were being supplied at the 

peak of the transgression as shown by their occurrence to within a few hundred meters of 

the inland extent of transgressive marine sediments. Breakup of an ice sheet in the 

Canadian Arctic and rafting of the erratic clasts on icebergs is now widely accepted.

Repenning (1983) reported remains of a ribbon seal, Histriophoca fasciata, and a 

gray whale, Eschrichtius sp., both Pacific mammals, in sediments of the Flaxman Member, 

indicating connection of the Arctic Ocean with the Bering Sea. Even though these water 

bodies were connected, benthic macrofaunas and microfaunas in the Beaufort Sea during 

the Simpsonian transgression were sparse. Hopkins and others (1981a) reported 16 taxa 

of foraminifera in the Flaxman Member, and Carter and others (1988) reported 15 taxa of 

ostracodes and only seven bivalve-mollusk taxa.
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Mollusk shells from the Flaxman Member are enriched in O18 relative to modern 

specimens from the Beaufort Sea, suggesting that during the Simpsonian transgression more 

glacial ice was present than exists today (Carter and others, 1986a). An apparent large 

volume of glacial ice concurrent with eustatic transgression was explained by Cronin and 

others (1984) by floating ice in the polar regions. The erratic clasts of the Flaxman Member 

corroborate floating ice. Carter and others (1986a) proposed a surge of polar ice as a 

possible mechanism for providing a large volume of floating ice. A rapid rise in sea level 

resulting from such a surge (Mercer, 1978; Hollin, 1982) could break up unstable marine- 

based ice over the central Canadian Shield (Denton and Hughes, 1983) and release it to the 

polar region.

Faunas also suggest that water less than 20 m deep during the Simpsonian 

transgression may have been slightly warmer than today. Turbidity was also high relative 

to present day. However, seasonal variations in temperature and salinity were probably 

similar to the present. East of Flaxman Island, salinities were less than today, perhaps from 

a high influx of fresh meltwater from icebergs (Carter and others, 1988).

Carter and Galloway (1985a) reported 11 thermoluminescence dates for sediments 

of the Flaxman Member that range from 53 to 81 ka. Six of these dates range between 

71 and 76 ka, and a uranium-series date on the whale bone is 75 ka. Finite radiocarbon 

dates reported by Carter (1983b) for organic material from Flaxman sediments are 

apparently erroneous. Carter (personal communication, 1989) indicated that an Accelerator 

Mass Spectrometer radiocarbon analysis done at the University of Arizona yielded a date 

of >55 ka, corroborating erroneous finite radiocarbon dates.
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The Simpsonian transgression apparently represents an eustatic high stand of sea 

level, which is corroborated by marine sediments that were deposited near sea level on the 

Atlantic Coastal Plain about 75 ka ago (Cronin and others, 1981; Cronin and others, 1984).

Sediment Distribution, Character, and Age 

Colviile River Marine Terraces

Carter and Galloway (1982) described three terraces that bound the east side of the 

Colville River Delta, and suggested that the oldest and youngest, respectively Terraces I 

and III, have counterparts on the west side of the delta. Carter and Galloway (1985a) 

showed that on the east side of the Colville River Delta, the oldest and youngest terraces 

can be further subdivided, giving a total of five terraces. Mapping for this study concurs 

with subdividing the oldest and youngest terraces but subdivides the youngest terrace into 

three terraces, giving a total of six, herein and on the sheets referred to as Terraces A 

through F, from oldest to youngest. Mapping for this study also differs as explained below 

in assignment of sediment types mapped by Carter and Galloway (1985a) for Terrace II 

(Terrace C) and Terrace III (Terraces D, E, and F) (figure 4.2).

On the basis of field mapping with Carter of the USGS, Terrace A probably was cut 

by and includes sediments of the Colvillian and perhaps Bigbendian transgressions; 

Terrace B was probably cut by and certainly includes sediments of both these transgressions 

and perhaps the Fishcreekian transgression; and Terrace C was possibly cut by and may
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Figure 4.2 Map of the Colville River Delta and vicinity showing marine (A, B, and C) and 
alluvial (D, E, and F) terraces. Lower case letters denote stratigraphic sections 
measured on these terraces; a. HBA2-2, b. HBA2-4, c. HBB2-1, d. HBA1-1, e. 
HBA1-2, f. HBA1-3, g. HBA1-4, h. HBA1-5, i. HBA1-6, j. HBB2-13, k. HBA1-8, 
1. None,m. HBA1-10,n.HBAl-ll,o.HBAl-12,p. HBBl-9,q.HBBl-10,r. HBB1-11, 
HBB1-12 s. HBB1-13, t. HBB1-14, u. HBB1-4, v. HBB1-7. Map is based on Carter 
and Galloway (1982) (Inset), Carter and Galloway (1985a), and this study.
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include sediments of the Fishcreekian transgression. Terraces D, E, and F are composed 

primarily of alluvial or deltaic, or both, types of sediments (figure 4.3) and are discussed 

under "Colville River Alluvial Terraces" in Chapter 5.

Terrace A is the oldest and most extensive of the Colville River Delta terraces and 

has, perhaps along with Terrace B, a counterpart west of the river. East of the Colville 

River Delta, approximately 32 km upstream on the Miluveach River, Terrace A truncates 

a Tertiary upland along a remarkably straight, but degraded scarp that trends approximately 

50° azimuth and can be traced to a point about 30 km south of the Beaufort Sea coast, 

where it intersects nonmarine sediments of the Gubik Formation at an elevation of 40 m 

(Rawlinson, 1986a). The elevation across the scarp changes from about 60 m on the terrace 

tread to 100 m on the upland. The upland is composed of probable Paleocene nonmarine 

sediments and Kuparuk gravel of the Sagavanirktok Formation, and of overlying eolian 

deposits of the Gubik Formation (Carter and Galloway, 1985a).

On the basis of mapping for this study, marine sediments near the base of section 

HBA1-11 (figures 4.2 and 4.4) are those exposed most upstream along the Miluveach River 

and probably represent the Colvillian or Bigbendian transgressions, or both. This location 

is approximately 23 m above mean sea level, 17 m lower than the highest confirmed 

occurrence of Colvillian sediments (40 m), and about 12 m lower than the highest confirmed 

occurrence of Bigbendian sediments (35 m) along the west side of the Colville River. 

(Carter and Galloway (1985a) cited maximum elevations shown in parentheses above). 

However, fragments of mollusk shells are present in measured section HBA1-10 (figures 4.2
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Figure 4.3 Cross-sectional diagram along the Miluveach River of Colville River Terraces A  through E. View is to the 
southwest.
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and 4.4) and were found by the author on channel bars of the Miluveach River on 

Terrace A with decreasing frequency to an elevation of about 27 m within about 5 km of 

the degraded scarp (figure 4.2, point 1). These shell fragments and the straight scarp along 

the upland suggest that the terrace is a bench cut by marine waters into nonmarine silt, 

sand, and gravel sediments of the Sagavanirktok Formation, and that marine sediments are 

present below the level of exposure. The bench has since been covered with alluvium and 

eolian sediments (figures 4.3 and 4.4).

Cobbles and boulders of rock types characteristic of the Kuparuk gravel (Carter, 

1983b; Carter and Galloway, 1985a) and the underlying Paleocene gravel (Carter and 

Galloway, 1985a) are associated with sediments known to be Bigbendian and Colvillian 

based on amino-acid analysis. Schist and sandstone cobbles characteristic of these gravels 

are associated with marine sediments in section HBA1-11 and in similar sediments in 

section HBA1-12 (figures 4.2 and 4.5). A 0.9-m-diameter boulder of gneissic granite, a rock 

type and size characteristic of the Kuparuk gravel, is on the river shore at section HBA1-12 

and presumably eroded from the adjacent bluff. Presence of these types and sizes of clasts 

within or near the marine sediments corroborates that the deposits are from the Colvillian 

or Bigbendian transgressions, or both. Downstream of sections HBA1-11 and HBA1-12 and 

along the Kachemach River, alluvial sediments are rich in fragments of marine mollusk 

shells, which presumably were reworked from these sediments or from older marine 

sediments, perhaps of the Colvillian transgression, farther upstream.

Terrace B, the older of the two more recently mapped terraces, is marked by an 

indistinct and discontinuous scarp that trends southwest to northeast, roughly parallel to the
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other terraces, from a scarp bounding the Itkillik River flood plain to at least the 

Kachemach River, and with less certainty to the Miluveach River (figure 4.2 and sheet 1). 

The elevation of the terrace tread adjacent to the Itkillik River flood plain is approximately 

38 m; the lowest elevation of the terrace tread is 30 m.

Terrace B is also likely a bench cut by marine waters. Carter (personal 

communication, 1989) reported amino-acid ratios indicative of both the Colvillian and 

Bigbendian transgressions from shells in sections measured on Terrace B. Unequivocal 

marine sediments were not found on Terrace B in this study, although reworked shell 

fragments are common in measured sections HBA1-4, HBA1-5, and HBB1-9 (figures 4.2 

and 4.5).

Terrace C (Terrace II) is 3 to 4 km wide and bounded by well-defined scarps that 

trend roughly parallel to the other terraces (figure 4.2). The highest elevation of the terrace 

tread along the back scarp is approximately 30 m; the elevation decreases northeastward to 

about 15 m near Kalubik Creek. At the Miluveach River, the elevation of the tread at the 

back scarp is about 23 m. Across the tread, the elevation varies generally less than 5 m and 

is especially uniform northeast of the Miluveach River. Carter and Galloway (1982) 

assumed that at least the northeastern part of the terrace resulted from a single marine 

transgression based on uniform elevation.

Sediments exposed along the Kachemach and Miluveach Rivers on Terrace C, 

however, provide little support for the concept of a marine origin. Of four measured 

stratigraphic sections along the Kachemach and Miluveach Rivers on Terrace C (figures 4.2 

and 4.6), only section HBA1-6 has sediments that may be marine; this section includes thin
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beds of sandy gravel with abundant fragments of marine mollusk shells. However, the 

absence of intact shells suggests nonmarine redeposition.

Two additional sections on Terrace C, both along the Miluveach River, contain 

fragments of marine mollusk shells. However, shell fragments in these sections are 

distributed throughout the sediments, which are likely fluvial and were probably reworked 

from older sediments.

Marsh Creek Anticline

On both the north and south limbs and along the crest of the Marsh Creek 

anticline, sediments of the Colvillian and Fishcreekian transgressions (Carter and others, 

1986c; Dinter and others, 1987), and of the Bigbendian transgression based on amino-acid 

analysis of shells collected in this study, overlie marine and nonmarine sediments of the 

Sagavanirktok Formation and underlie a gravel sheet (e.g., sections MMD2-11 and 

MMD2-25, sheet 6). The composition of the gravel sheet that overlies the sediments of the 

Fishcreekian transgression differs from the composition of a younger gravel sheet elsewhere 

within ANWR. Details of the Gubik Formation stratigraphy and character in this area 

have yet to be determined and are being considered by L. David Carter. However, the 

entire sequence of sediments is undoubtedly folded in the anticline.

Coastal Outcrops

Rodeick (1975, 1979) recognized a chert facies and a dolomite facies for gravels 

along the Beaufort Sea coast. The chert facies includes chert of various colors, brown and
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black being dominant; sandstone; siltstone; shale; limestone; coal; and occasional igneous 

clasts. Clasts of this facies are derived from the Brooks Range. The dolomite facies 

includes exotic clasts belonging to or reworked from the Flaxman Member; within the study 

area along the coast, sediments from other marine transgressions have not been identified. 

Dolomite from this member composes up to 80 percent of the gravel clasts along the 

Beaufort Sea coast (Hopkins and Hartz, 1978).

Along the modern beaches from a point about half the distance between Oliktok 

Point and Milne Point to Howe Island off the mouth of the Sagavanirktok River Delta, and 

on adjacent barrier islands, the presence of Flaxman Member sediments is most obviously 

indicated by individual or patches of exotic erratic clasts of pink granite, red and purple 

quartzite, and black diabase. Within the study area, these clasts have not been observed 

along the coast west of a point half the distance between Oliktok Point and Milne Point or 

within the Colville River Delta.

Occurrences of individual or patches of erratic clasts resume east of the 

Sagavanirktok River Delta and continue intermittently along the coast to beyond the 

Canadian border; these occurrences have been mapped as part of this study to the Canning 

River Delta (sheets 2 through 5). Notable patches of erratic clasts between Oliktok Point 

and the Canning River occur at an unnamed estuary southeast of Milne Point, Heald Point, 

Tigvariak Island, and Flaxman Island. The "boulder patch" is a well-documented and 

publicized occurrence of erratic clasts offshore from the Sagavanirktok River Delta that 

represents lag deposits derived from erosion of Flaxman Member sediments (Reimnitz and 

Ross, 1979).
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West of Flaxman Island, outcrops of gray clayey silt of the Flaxman Member are 

sometimes associated with the coastal patches of erratic clasts. These outcrops are typically 

at or just below beach level and were originally thought to be modern accumulations of 

sediments formed from beach processes. However, these sediments at Heald Point are 

present in the base of the exposed bluff and extend below beach level as exposed in trenches 

dug across the beach.

Sediments of the Flaxman Member on Flaxman Island are best exposed on the 

seaward side of the island. There, bluffs are typically between 5 and 6 m high and the 

beach, when present, is very narrow. Waves often undercut the bluff resulting in failure of 

large blocks of sediment along ice wedges and collapse into the sea. This type of erosion 

along the seaward side of the island results in rapid retreat of the shore, approximately

3.5 m/yr averaged over 19 years (Lewellen, 1977), and continually presents fresh exposures 

of sediment.

Stratigraphic section FIA4-4 is typical of exposures on the seaward side of Flaxman 

Island (figure 4.7). The bottom 1.4 m of this section is pebbly clayey silt (sample FIA4-4B, 

appendix E), or what is commonly termed Flaxman mud. The overlying 1.4 m of pebbly 

medium sand is regressive marine and the top 2.8 m of interbedded peat and sand are 

thaw-lake sediments. The modal diameter of exotic pebbles in the marine units is less 

than 1 cm, but diameters range up to 6 cm. Cobble- and boulder-sized clasts are present 

on the beach but not in the section at this location.
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(e.g., FIA4-4A). The location of this section is shown on sheet 5.
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Elsewhere, exotic boulders are typically distributed throughout the section. 

Indentation of boulder-sized clasts into underlying marine sediments and draping of 

sediments over the clasts indicate that the boulders sank into the marine deposits and were 

subsequently covered. The presence of boulder-sized clasts on the ground surface, such as 

on Tigvariak Island and elsewhere, suggests that many of the boulders have moved upward 

in the section, probably by frost heaving. Boulders present in thaw-lake deposits have either 

been heaved up-section or indicate reworking of marine sediments, or both.

Inland Outcrops

The inland extent of the Simpsonian transgression is uncertain except in a few areas 

where Flaxman mud or regressive marine sediments, or both, are present; and in areas 

where exotic erratic clasts are present or there is a change in ground surface wetness that 

suggests a variation in the subsurface lithology. One measured stratigraphic section about 

5 km inland includes Flaxman mud in the bottom part of the section based on the presence 

of exotic lithologies on the river berm, sediment texture like that of the type Flaxman mud, 

and similar altitude with Flaxman mud along the coast (figure 4.8, section FIA4-8). This 

stratigraphic section is on a topographically high area that diverts the Canning River 

eastward and then northward where it empties into the Beaufort Sea, and which is probably 

underlain by Flaxman mud.

Five additional stratigraphic sections within the study area include sand or gravel, 

or both, and exotic clasts that are interpreted to be regressive marine sediments: 

MMD3-15, FIA3-5, and BPA1-12 (figure 4.8), BPA2-I3 and BPA2-14 (figure 4.9). 

Stratigraphic section BPA1-12 is approximately 1 km inland along the east side of the first
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unnamed stream east of the Shaviovik River. The bottom part of this section includes sandy 

gravel that is overlain by pebbly silt. Whether this silt, which is only 0.3 m thick, is the 

Flaxman mud is uncertain. Approximately 1 m of regressive marine sediments overlie the 

silt and a thin gravelly sand bed within this part of the section yielded Elphidium sp., 

cf. E. groenlandicum Cushman. Stratigraphic section MMD3-15 is near the southern end 

of an unnamed estuary that empties into Camden Bay and section FIA3-5 is on a lake 

shoreline about 2.5 km east of the Tamayariak River. Both sections are approximately 5 km 

inland from the present coast.

Two remaining stratigraphic sections that may represent the Flaxman Member, 

BPA2-13 and BPA2-14 (figure 4.9), are between 8 and 9 km inland on the east side of the 

Sagavanirktok River. Within several hundred meters south of section BPA2-13, a slight but 

distinct break in topography trends perpendicular to the Sagavanirktok River for several 

kilometers (sheet 3). Whether this topographic break represents an ancient shoreline is 

undeterminable because of the lack of exposure. However, no marine sediments have been 

found south of this break.

Both sections BPA2-13 and BPA2-14 yielded marine microfaunas, which in both 

cases were probably reworked from underlying deposits, respectively by lacustrine processes 

and by fluvial and eolian processes. A single specimen of Elphidium clavatum was collected 

about 4 m below the surface in section BPA2-13 and ostracodes were collected about 0.6 m 

below the surface in section BPA2-14. Exotic clasts (e.g., pink quartzite) were also present 

on the river berm adjacent to section BPA2-14. Analysis of sediments from throughout 

section BPA2-13 for palynomorphs yielded mostly dark brown to black organic material, a 

variety of single pollen grains undoubtedly reworked from older deposits, and several rarely
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(2 to 5 grains) and frequently (6 to 15 grains) occurring taxa. Rarely occurring taxa include 

undifferentiated bisaccates, Tasmanaceae, Caryophyllaceae, Lycopodiumsporites sp., 

Sphagnumsporites sp., Laevigatosporites sp., and Osmundacidites sp. A frequently occurring 

taxum is Ilexpollenites sp. (appendix K).

A 1-m-thick silt bed at the base of section BPA2-13 is at least 36.8 ka old based on 

a thermoluminescence date of overlying probable fluvial sediments, which in turn are 

overlain by eolian sediments. Whether the silt represents the Flaxman mud or earlier 

marine sediments is unknown.

Exotic erratic clasts on the ground surface at many locations within the study area 

suggest that marine sediments may be present in the shallow subsurface. Most occurrences 

of erratic clasts are within a few kilometers of the coast (MacCarthy, 1958). However, at 

section BPA1-30, approximately 9 km inland on the east bank of the Shaviovik River 

(sheet 4), a boulder of pink granitic rock in the river adjacent to the section suggests that 

marine sediments underlie the exposed eolian sediments. These occurrences suggest that 

the Coastal Plain north of an imaginary line connecting sections BPA2-13 and BPA1-30 may 

be underlain with marine sediments of the Simpsonian and perhaps older transgressions. 

This part of the Coastal Plain has a higher density of small thaw lakes than on the Coastal 

Plain south of this line.

Exotic erratic clasts, numerous thaw lakes, and occurrences of Flaxman mud 

(e.g., section FIA4-8) strongly suggest that topographically high ground north of the Canning 

River and between Brownlow Point and the mouth of the Canning River, and on the 

Coastal Plain east of the Canning River to an unnamed estuary that empties into Camden
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Bay south of Konganevik Point (sections MMD3-15 and FIA3-5), is underlain by sediments 

of the Simpsonian transgression and perhaps by sediments of the Pelukian transgression. 

A lower slope and the presence of marine sediments in the latter area undoubtedly are 

factors controlling the greater number of thaw lakes there than on the Coastal Plain 

adjacent to the south.

The inland extent of the Simpsonian transgression in the vicinity and west of 

Prudhoe Bay is more uncertain than to the east of the bay. Exotic clasts and Flaxman mud 

at Heald Point and along the east side of Prudhoe Bay, and exotic clasts along the coast 

between the Putuligayuk River and the Kuparuk River (sheet 3), imply a shoreline 

somewhere south of the present coast in these areas. No shoreline is obvious and for 

mapping purposes the marine sediments are assumed to extend to the boundaries of 

surrounding fluvial sediments.

Marine pebbly sand (appendix E, sample BPB3-25T) was dredged from a lake at 

the bottom of the northernmost (PUT 2) of three gravel pits along the east side of the 

Putuligayuk River, but near the west side of the broad Putuligayuk River flood plain 

(sheet 3). PUT 2 gravel pit is 2.9 km inland from the shore of Prudhoe Bay at a surface 

elevation of 3 m above mean sea level. Sediments are exposed in section BPB3-25 to 

approximately 12 m below the surface, or 9 m below sea level: 0.5 m peat and fluvial sandy 

silt overlying 11.5 m of fluvial and glaciofluvial interbedded pebbly sand, sandy gravel, and 

gravel (figure 4.10). The fluvial sediments are discussed in Chapter 5. The marine 

sediments were adjacent to the lake and stratigraphic relationships had been obscured by 

digging. Although disturbed, the sediments are not believed to be from significantly lower 

in the pit because the lake is shallow.
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Figure 4.10 Stratigraphic section BPB3-23 measured in the PUT 1 gravel pit and section 
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The pebbly sand contains Macoma calcarea (Gmelin), Astarte borealis (Shumacher), 

Yoldia arctica (Gray), Musculus niger (Gray), and Cyrtodaria kurriana (Dunker), all of which 

are extant species that typically inhabit cold, shallow, marine waters (R. Allison, personal 

communication, 1985). Sample BPB3-25U from the pebbly sand was analyzed for 

microfossils and yielded calcispheres, shell fragments, Guttulina sp., Elphidium clavatum and 

frequent ostracodes. These faunas suggest a marginal marine to inner neritic environment.

Amino-acid analysis of three Astarte borealis specimens yielded a tight group of 

aUe/Ile ratios with a mean ratio of 0.016 + /- 0.002 (appendix H, sample BPB3-25V), which 

suggests that the specimens are no older than the Sangamonian Interglaciation (G. Miller, 

written communication, 1986).

Significant Findings, Implications, and Interpretations

Geologic mapping, observations, and analyses of samples from marine deposits 

across the study area collectively allow interpretations regarding the age of the Colville 

River Terrace C; correlation of boulders along the mainland coast with those on adjacent 

islands; the relationship between lake population, broad-based mounds, and substrate; and 

the inland extent of Quaternary marine transgressions.

Fishcreekian Age for Colville River Terrace C

Carter and Galloway (1982) suggested that at least part of their Terrace II, 

Terrace C of this study, was formed as a result of the middle Pleistocene Kotzebuan 

transgression of Hopkins (1967). However, the middle Pleistocene transgression is now
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considered the Anvilian transgression of Hopkins (1967) and tentatively correlated with the 

Wainwrightian transgression (Kaufman and others, 1989; Kaufman and others, 1990), which 

is named for fine-grained marine sediments exposed at Karmuk Point near Wainwright 

(Carter and others, 1986a). Sediments from this transgression are known eastward to the 

Kogru River and up to 20 m above sea level (Carter and others, 1986a; Dinter and others, 

1987). Because the Wainwrightian transgression reached a maximum elevation of 20 m, 

association with the next older and higher reaching marine transgression, the Fishcreekian, 

seems more plausible to have formed the northeastern part of Terrace C. This assumes 

validity of Carter and Galloway’s (1982) assumption that the terrace resulted from marine 

transgression. Amino-acid analysis of shells from the west side of the Colville River 

indicates the presence of Fishcreekian seas in the vicinity of the Colville River and delta 

(Carter, personal communication, 1989). The Fishcreekian transgression may have cut this 

or higher terraces, but associated sediments apparently have been eroded.

Correlation of Coastal Exotic Boulders

Exotic erratic boulders, pebbly silty sand, or sandy silt, or combinations of these 

representing the Flaxman Member, are present on most of the nearshore, tundra-covered 

islands as far west as Pingok Island. Contrarily, Hopkins and Hartz (1978) suggested that 

some of the Jones and Return Islands that bound Simpson Lagoon are cored with Pelukian 

beach sediments; and Hopkins (personal communication, 1984) suggested that these islands 

are a continuation of a Pelukian beach ridge that extends eastward from Barrow to Harrison 

Bay (Carter and Robinson, 1981). This interpretation, though, is inconsistent with the 

presence of exotic clasts from the Flaxman Member on the islands and the adjacent 

mainland coast. If the exotic clasts were ice rafted from the Canadian Arctic, which all
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evidence seems to indicate, the probability of a berg bypassing a high-standing beach ridge 

and grounding further inland seems prohibitively low.

Alternatively, the island chain may not represent a high-standing Pelukian beach 

ridge and the mainland and island chain may have been joined, perhaps until only a few 

thousand years ago (Naidu and others, 1984). These authors suggested that Simpson 

Lagoon formed from coalescence of Coastal Plain thaw lakes followed by thaw subsidence. 

Although Reimnitz and others (1985, 1988) disagreed, perhaps correctly so, with the 

mechanism presented by Naidu and others (1984) for the formation of coastal Arctic 

lagoons, the two groups of authors agree that within the past 1 ka the Coastal Plain was 

continuous and extended offshore well beyond the present coast. Thus, exotic clasts or fine

grained marine sediments, or both, present on the islands are correlative with similar 

sediments discontinuously present along the mainland coast.

Inland Extent of Quaternary Marine Transgressions

The apparent Sangamonian or younger age and the 9-m depth below sea level of 

marine sediments in the PUT 2 gravel pit suggest that the sediments were deposited in an 

embayment, perhaps a precursor to Prudhoe Bay. These sediments could have been 

deposited during either the Pelukian or Simpsonian transgressions; or as suggested by 

L. David Carter (personal communication, 1986), they may be only slightly older than the 

overlying alluvium. Radiocarbon analysis of wood (sample BPB3-23G) from a sandy-silt 

horizon in probably corresponding overlying alluvium in the PUT 1 gravel pit upstream 

yielded a date of 37 + 10/-4.3 ka. This date should be considered infinite because of the 

large counting error and is a minimum age for the underlying marine sediments.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In addition to the marine sediments exposed at the bottom of PUT 2 pit, two exotic 

clasts were found but not in place. One clast, a cobble of pink granite, was found near the 

bottom of the PUT 2 pit; the other clast, a boulder of light-purple quartzite, was found on 

a ramp that provided access into the pit, approximately two-thirds of the distance up the 

stratigraphic section from the bottom of the pit. Even though these clasts were not in place, 

they indicate that sediments of the Simpsonian transgression might be present in the 

stratigraphic section above the highest occurring clast, or in the vicinity of the pit. In-place 

marine sediments have not been found in the section, leaving only the possibility that the 

clasts were reworked from upstream of the pit. This being the case, the presence of exotic 

clasts in pit PUT 2 does provide a maximum age of early Wisconsinan for sediments in the 

top one-third of the section.

Marine sediments apparently do not extend inland much beyond pit PUT 2 because 

they have not been recognized in either of the two gravel pits farther inland along the 

Putuligayuk River. Nonrecognition of the marine sediments in these pits may have occurred 

because the pits have not been excavated sufficiently deep to expose the sediments. 

Another possibility is that Carter’s hypothesis, that the marine sediments are relatively 

young (personal communication, 1986), is correct. Radiocarbon dating of the shells or 

thermoluminescence dating of the sediments, or both, should be done in future studies to 

resolve the uncertain age. However, based on available evidence, marine deposits in PUT 2 

pit are thought to have been deposited during the Pelukian transgression.

The Coastal Plain adjacent to the west of the Putuligayuk flood plain is the most 

likely source for the exotic clasts in PUT 2 pit. The discontinuous occurrence of exotic 

clasts along most of the coast there, and in the area between the Kuparuk and Colville
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Rivers, indicates that the Simpsonian transgression reached an undetermined distance inland 

in both areas. Marine sediments are not exposed in either of the MP or KUP E gravel pits, 

which are located approximately within 5 km of the coast between the Kuparuk and Colville 

Rivers. These pits are sufficiently deep to have encountered marine sediments emplaced 

near or slightly above sea level; that is, sediments of the Simpsonian and Pelukian 

transgressions. Thus, these pits mark the maximum possible inland extent of these 

transgressions between the Kuparuk and Colville Rivers.

On the basis of stratigraphic relationships in the western part of the Coastal Plain, 

the Pelukian transgression reached elevations perhaps as high as 10 m (Carter and 

Galloway, 1985a). This suggests that mean sea level, typically 3 m lower than the maximum 

elevation (Hopkins, personal communication, 1990) was close to the plus 6 + /-  2 m 

maximum eustatic sea level cited for oxygen-isotope stage 5e (Cronin and others, 1981). 

Thus little, if any, tectonism has occurred in the western part of the Coastal Plain since at 

least about 124 ka ago (Carter and others, 1986a); however, ongoing minor tectonism might 

account for linear features that cut Holocene sediments in the study area.

West of the Colville River, sediments of the Pelukian and Simpsonian transgressions 

are superposed, and the existence of a Pelukian beach ridge that extends from near Barrow 

to Harrison Bay is well accepted. Why then, are Pelukian sediments not found inland of 

the probable maximum inland extent of the Simpsonian transgression east of the Colville 

River? One possibility is that the Coastal Plain extended sufficiently north during the 

Sangamonian Interglaciation to preclude transgression onto this area. Alternatives are that 

Pelukian marine sediments are still present but have since been buried, perhaps in
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conjunction with subsidence; or that these sediments once were present, but have since been 

eroded, perhaps in conjunction with uplift.

A combination of the first two alternatives is most probable. As shown by absence 

of Pelukian sediments in the KUP E and MP gravel pits, the inland extent of inundation 

between the Colville and Kuparuk Rivers was not as great as east of the Kuparuk River. 

Subsidence, especially east of the Kuparuk River, followed by alluviation may have buried 

Pelukian sediments well below sea level as is the probable case in the PUT 2 gravel pit. 

Absence of Pelukian marine sediments in the SAG C and END pits may have resulted from 

delta development at the mouth of the Sagavanirktok River. Pelukian marine sediments 

probably underlie the Coastal Plain between the Sagavanirktok River and Canning River 

fan.

Lake Number and Marine Substrate

A large number of relatively small thaw lakes and a small number of broad-based 

mounds as far as 9 km inland in the area between the Sagavanirktok River and the Canning 

River fan may be tied to a marine substrate. Whether this is a function of a lower gradient, 

and thus poorer drainage, is unknown. The gradient certainly is less there than to the 

south, and in continuous permafrost, poor drainage is expected where the gradient is lower.

A definite demarcation between parts of the Coastal Plain with numerous lakes and 

with few lakes occurs approximately 3 to 5 km inland along the front of the Canning River 

fan between Bullen Point and the Staines River (sheets 4 and 5). Although gradient
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probably influences the number of lakes near the coast, the many occurrences of exotic 

clasts suggest that the primary control is a substrate of marine sediments.
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CHAPTER 5 - FLUVIAL, DELTAIC, AND OUTWASH SEDIMENTS 

OF THE GUBIK FORMATION

Introduction

Fluvial, deltaic, and outwash sediments share the attribute of being transported and 

deposited by running water, whether by precipitation or melting of snow or glacial ice. 

Thus, regardless of a glacial, interstadial, or interglacial climate, the process and effects of 

running water have been ongoing on the Coastal Plain through time, albeit at different rates 

and locations. These sediments compose a large percentage of sediments present on the 

Coastal Plain, yet have received only a small percentage of the attention given to the 

Coastal Plain.

During the winter, fluvial processes on the Coastal Plain are greatly diminished and 

commonly restricted to sub-bed flow (Harden and others, 1977). Spring ice-breakup on the 

rivers occurs over the first few days of a three-week period of flooding in late May through 

early June. Up to 80 percent of the flow occurs during this period (Walker, 1973). Spring 

flood waters inundate large areas of the deltas, and upon reaching the coast, spread over 

stable grounded and floating ice up to 15 km from shore (Arnborg and others, 1967; 

Walker, 1974; Barnes and others, 1988).

The boundary between fluvial and deltaic sediments in a river and delta system is 

frequently arbitrary. The term "delta" implies that the transition from river to delta 

environment is where distributary streams first occur. For the Sagavanirktok and Canning 

Rivers, this point is far inland and the area between there and the coast can better be
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described as a flood plain. Nevertheless, the first occurrence of distributary streams has 

been used by some researchers, including the author, to define boundaries of the deltas 

(e.g., Alaska Outer Continental Shelf Office, 1979). In this text and on the accompanying 

sheets, the transition from river to delta is approximately where distributary streams first 

occur and modern accumulations of fine sediment are laterally extensive. An exception is 

the Colville River Delta where only the first criterion is used.

Amino-acid Analysis

The extent of amino-acid diagenesis (epimerization or racemization) in shell 

material, and perhaps also in wood, is a means of determining absolute and relative ages 

beyond the limits of other dating techniques. Temperature is the most critical of several 

variables that affect the rate of amino-acid racemization (Brigham, 1985). Despite 

demonstrated temperature variations on the Coastal Plain during the Pleistocene (Carter 

and others, 1986b), reproducible and consistent results have been realized for samples of 

shells from the Coastal Plain that date to several million years (Brigham, 1985).

Brigham (1985) indicated that the potential for amino-acid analysis providing useful 

age data on wood samples much older than 100 ka has not been thoroughly demonstrated. 

According to Rutter (1986), results are commonly erratic and dextrorotary/levorotatory 

(D/L) ratios lower than expected. Some data suggest that samples greater than that age 

have undergone diagenetic changes involving mineralization, selective leaching of acids, 

bacterial attack, or variations of the rate of racemization. However, D /L  ratios for aspartic 

acid in wood are sufficiently consistent to differentiate late to middle Wisconsinan samples 

from early Wisconsinan to Sangamonian samples and to correlate and determine relative
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ages of Pleistocene sediments within a given area. Rutter (1986) further indicated that the 

rate of racemization in wood tends not to be greatly sensitive to variations in temperature 

or genera of taxa.

Realizing probable limitations of amino-acid dating on wood, samples of wood from 

fluvial sediments and of shell from marine sediments underlying fluvial sediments were 

analyzed for amino acids to correlate sediments between areas and to tentatively assign 

minimum relative ages to groups within which the samples fall. Most of the samples are 

from relatively old sediments exposed in deep gravel pits between the Colville and 

Sagavanirktok Rivers, and from exposed bluffs within ANWR.

Amino-acid analysis conducted by staff of the University of Alberta on the submitted 

samples suggests three age groups defined by the D /L  ratio of aspartic acid in the total 

hydrolysate: (1) a young group with a mean ratio of 0.2037 + /- 0.0536; (2) a "relatively old" 

middle group with a mean ratio of 0.3156 + /- 0.0156; and (3) an "old" group with an 

anomalously low mean ratio of 0.0543 + /- 0.0182 (figure 5.1). The aspartic-acid ratios 

within each group are consistently higher with age except in the old samples, which revert 

to very low ratios. This reversal is apparently common (N. Rutter, written communication, 

1986) and may be attributable to leaching of acids or other modification of the samples 

(J. Brigham-Grette, personal communication, 1990). The old samples, without exception, 

are from locations within ANWR, and are probably significantly older than samples of the 

middle group. However, location of all the old samples in ANWR probably reflects 

preferential collecting, and does not imply that old samples do not exist elsewhere. Four 

additional samples that had unexpectedly low ratios (mean 0.2202 + /-  0.0239) for perhaps 

the same reason were assigned to the middle group based on stratigraphic position. If these
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are considered part of the middle group, the mean ratio becomes 0.2732 + /- 0.0535, 

showing significant overlap with the young group.

Information in figure 5.1 suggests that the old group should be abandoned, except 

perhaps in cases when other acids are absent. Absence of other acids may indicate a very 

old age; however, leaching of these acids is certainly a possible alternative. The middle and 

young groups are retained, albeit with caution, because the mean values are widely 

separated and one standard deviation is not excessively large. Even if the anomalous 

samples are considered, the mean ratio of the middle group is greater than that of the 

young group.

Rrigham (1985) established temporal aminozones numbered 1 through 5 based on 

alle/Ile ratios for mollusk shells from the Gubik Formation and estimated absolute ages 

for these aminozones of 125 ka, 475 ka, 1 to 1.4 Ma, >2.4 Ma, and >3.8 Ma, respectively. 

Correlation of the young and middle groups of this study with these aminozones can be 

approximated by aspartic-acid D /L  ratios reported by Brigham (1985) for wood and shells 

from the Gubik Formation. Wood samples known to correspond to aminozone 1 yielded 

a mean D /L  ratio of 0.1464 + /- 0.0200; shell samples that correspond to aminozone 1 

yielded a mean ratio of 0.0785 + /- 0.0078; wood samples that correspond to aminozone 2 

yielded a mean ratio of 0.2110 + /- 0.0686; and a shell sample that corresponds to 

aminozone 3 or an older aminozone yielded a mean ratio of 0.4460 (figure 5.1). Further, 

Rutter (1986) cited Sangamonian (aminozone 1) ratios to range between 0.13 and 0.16 and 

mid-Pleistocene ratios (aminozone 2) to range between 0.18 and 0.29; these ratios were 

determined for aspartic acid in wood from the Coastal Plain.
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The mean ratio of the young group falls between the mean ratios that correspond 

to aminozones 1 and 2, suggesting an approximate minimum relative age of 125 ka for the 

young group (figure 5.1). The young group is probably slightly less than 125 ka old based 

on infinite radiocarbon dates and on an aHe/Ile ratio indicative of a Sangamonian age for 

shell material from a location stratigraphically below where a young-group sample was 

collected. The mean aspartic acid D /L  ratios of the queried middle group and the middle 

group both exceed the ratio that corresponds to aminozone 2, suggesting that the assigned 

age of 475 ka for aminozone 2 could represent a minimum age for the middle group.

Sediment Distribution, Character, and Age

West of Colville River

With the exception of sediments of small modern streams and terrace deposits 

discussed as part of the Colville River, most fluvial sediments that crop out adjacent to the 

study area west of the Colville River belong to the Sagavanirktok Formation.

Colville River and Delta

The Colville River drains 60,000 km2, 29 percent of the Coastal Plain, and has the 

largest delta, 600 km2, of rivers within the study area (Wright and others, 1974; 

Walker, 1983) (sheet 1). Distributary channels from the Colville River first occur about 

40 km upstream of its eastern mouth; the confluence of the Itkillik River and the Colville 

River is just south of this point. The former head of the Colville River Delta was about 

5 km upstream of its present position as shown by abandoned flood plains of distributary
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channels. This shift in the position of the delta head and the lobate morphology of the delta 

front indicate that the delta is river-dominated and prograding.

The delta is morphologically similar to other river-dominated deltas around the 

world; the delta is dissimilar by being subject to arctic processes and the presence of 

seasonal sea ice and continuous underlying ice-rich permafrost. Arctic processes and 

underlying permafrost are responsible for many features on the delta and influence the 

nature of deposition and erosion on the delta, and the timing, volume, and character of river 

discharge (Naidu and Mowatt, 1975; Walker, 1983). Exposure of these ice-rich sediments 

to the sun, currents, and waves during summer months results more in melting than in 

mechanical removal; these bluffs tend to be dominated by ice-related, mass-wasting 

processes: ground-ice slumps and thermoerosional falls.

During the spring flood, up to 65 percent of the Colville River Delta may be 

inundated and with this comes considerable deposition of organic-rich, fine-grained 

sediment. Deposition of nearly 0.3 m of sediment in only a few weeks is not uncommon. 

Most of the sediment is deposited on point bars, in lake beds that are connected to a 

channel, and on the delta front (Walker, 1983). Sediments exposed in a deep cold-storage 

cellar at the Helmricks’ homestead near the delta front are similar both in texture and 

structure to sediments exposed in a shallow test pit dug on the delta front. Alternating 

laminae of organic material, silt, and dominantly very fine sand typically show current-ripple 

structure. These sediments at the delta front are unvegetated, whereas at the Helmricks’ 

about 1 m of peat and fine sand form a continuous cover.
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Upstream from the delta front, channel bars and point bars are fine to medium sand 

and typically unvegetated; slightly elevated areas sometimes have a sparse vegetative cover. 

Gravel-sized clasts are rare on bars throughout the delta. The few exceptions are in 

locations where a channel has cut into probable Paleocene nonmarine deposits of the 

Sagavanirktok Formation. At these locations (e.g., approximately 100 m north of section 

HBA2-4, sheet 1), fine gravel and cobbles up to 30 cm in diameter are present on the 

channel shore. Gravel clasts at this locality include sandstone, conglomerate, schist, 

limestone, and gneiss.

Many stratigraphic sections measured on the Colville River Delta show alluvial sand 

overlain by eolian sand (figure 5.2, section HBB1-2). A lens of peat approximately 0.4 m 

below the contact of alluvial and eolian sand in section HBB1-2 is probably a remnant of 

vegetation that existed on this abandoned flood plain prior to deposition of eolian sand. 

This peat (sample HBB1-2A) yielded a radiocarbon date of 7.440 + /- 0.100 ka 

(BETA 23739), which is a minimum age for the alluvial sediments and a maximum age for 

the overlying eolian sediments.

Fibrous reddish-brown peat is a primary constituent of abandoned flood plains in 

the Colville River Delta. Many measured stratigraphic sections show almost exclusively 

peat, which may be overlain by eolian sand (figure 5.2, section HBB1-1), or interbedded 

peat and sand (figure 5.2, section HBB2-5). Sand interbedded with peat is typically fluvial 

in the bottom part of the section and eolian in the top part of the section. Distinction of 

these depositional modes is made based on a finer grain size, parallel laminae, and inclusion 

of fine organic material in the alluvial sand; the eolian sand is commonly cross-bedded.
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Radiocarbon ages of peat in the Colville River Delta suggest that all emergent sediments 

and features of the delta are Holocene.

Colville River Alluvial Terraces

Terraces D, E, and F on the east side of the Colville River Delta are composed of 

alluvial (deltaic) sediments presumably of the Colville River (figure 4.2 and sheet 1). This 

presumption is based on southwest to northeast trends of the terrace scarps, roughly parallel 

with the adjacent modern Colville River channel. The southeasternmost scarp of these 

terraces, that between Terraces C and D, terminates near the mouth of Kalubik Creek.

A probable remnant of Terrace D is present southwest of the Kachemach River, 

near where several of the terraces originate northeast of the Itkillik River. Terrace D is 

well defined northeast of the Kachemach River by scarps that separate it from Terrace C 

to the southeast and Terrace E to the northwest. The scarp separating Terraces D and E 

is traceable to near the mouth of Kalubik Creek, where it meets the mouth of the Colville 

River at Harrison Bay. Elevations on Terrace D vary between approximately 18 and 2 m, 

and the width increases from about 2 km near Kachemach River to about 4 km at Kalubik 

Creek.

Terraces D and E coincide roughly with the northeast half of Terrace III defined by 

Carter and Galloway (1982) and with Quaternary alluvium and marine sediments east of 

the Colville River mapped by Carter and Galloway (1985a). Terrace F coincides with the 

southwest half of Terrace III and with Quaternary alluvium mapped by Carter and Galloway 

(1985a). The boundary between Terraces E and F is marked by a well-defined scarp that
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trends southeast to northwest across Terrace III from the approximate downstream point 

where the Kachemach River leaves Terrace D to the main channel of the Colville River 

(figure 4.2). Elevations on both Terraces E and F vary approximately between 15 and 2 m; 

although elevations are slightly more uniform and lower on Terrace F.

Stratigraphic sections along the Miluveach River on Terrace D show dominantly 

pebbly sand with interbeds of fine gravel; shell fragments are also present (figure 5.3, 

sections HBB1-13 and HBB1-14). However, sediments in these sections are interpreted to 

be fluvial or deltaic based on the presence of reworked sediments and organic-rich beds, 

some with detrital wood. Coal fragments in beds of sand in these sections are almost 

certainly derived from the Sagavanirktok Formation. Sections on Terrace E include 

interbeds of peat and are similar to sections in the Colville River Delta (figure 5.3, sections 

HBB1-4 and HBB1-7). A section on the Kachemach River on Terrace F (figure 5.3, section 

HBB2-13) is primarily gravelly sand; shell fragments are absent, but organic-rich beds with 

detrital wood are present.

Carter and Galloway (1982) reported Picea, Alnus, and Populus wood from various 

sites on Terrace III, all of which yielded radiocarbon dates greater than 48 ka. These 

investigators indicated that these genera suggest deposition of the terrace during an 

interglacial or relatively warm interstadial, and proposed the Sangamonian, but did not rule 

out one or more interstadials during Illinoian or early Wisconsinan time.

Terrace III (Terraces D, E, and F of this study) of Carter and Galloway (1982) has 

a counterpart on the west side of the Colville River Delta. The western counterpart is 

apparently a single terrace tread. On the basis of sediment types reported by Carter and
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Galloway (1985a), Terraces D and E may correspond to the northwestern part of the 

western counterpart and Terrace F may correspond to the southern and northeastern parts 

of the western counterpart. However, Terraces D and E are most like the western scarp 

in terms of elevation, but the differences in elevation are slight and may not be significant.

According to Carter and Galloway (1985a), Terraces D and E and the northwestern 

part of the western counterpart consist of alluvium overlying marine sediments, and 

Terrace F and the southern and northeastern parts of the western counterpart consist only 

of alluvium. However, mapping for this study provided no unequivocal evidence of marine 

sediments in Terraces D and E, and no exposures of marine sediments are known on the 

western counterpart within the study area. The presence of marine sediments presumably 

was inferred from such sediments west of the Ublitok River.

A remnant of a terrace older than Terrace D /E /F , but younger than A or B, is 

present at the south end of the western counterpart of Terrace D /E /F . Stratigraphic 

section HBA2-2 (figure 5.4) is representative of this terrace and shows a 0.5 m veneer of 

fine sand, probably eolian, overlying 1.5 m of sandy gravel, which in turn overlies 2 m of 

interbedded gravelly sand and sandy gravel. Wood (sample HBA2-2A) collected 0.3 m 

below the contact of the sandy gravel and the interbedded sand and gravel is most probably 

Larix?, but may be Picea, and yielded a radiocarbon date of >40.730 ka (BETA 23741). The 

presence of Larix wood in this section may indicate that the terrace remnant is Fishcreekian,

92

5Wood taxa collected in this study were identified by personnel of the U.S. Department 
of Agriculture, Forest Products Laboratory, Center for Wood Anatomy Research in 
Madison, Wisconsin; determinations of coniferous and nonconiferous wood were made by 
personnel of the Alaska Division of Geological and Geophysical Surveys using procedures 
and literature supplied by the Center.
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because sediments of this age contain much Larix pollen and wood. If so, the terrace 

remnant probably corresponds to Terrace C on the east side of the Colville River.

Stratigraphic sections representative of the western counterpart of Terraces D, E, 

and perhaps F collectively, are HBA2-4 and HBB2-1 (figures 5.4 and 5.5). Section 

HBA2-4 is on the west bank of Nechelik Channel, 2.5 km directly northwest of Nuiqsut 

(sheet 1). The top 1.3 m of the section consists of eolian and probable lacustrine sand and 

silt, with peat; the remainder of the section, to 9 m below the terrace surface, is alluvium 

consisting of pebbly fine sand. This pebbly sand yielded no datable material. Sediments 

here presumably overlie unnamed Paleocene or Eocene sediments of the Sagavanirktok 

Formation. About 100 m downstream from section HBA2-4, fine gravel and cobbles up to 

0.3 m in diameter of exotic lithologies typical of that unit crop out near river level.

Section HBB2-1 is 8.8 km directly northwest of HBA2-4, adjacent to a side channel 

of Nechelik Channel (sheet 1). The section exposes an 8-m-wide sand wedge that tapers 

downward into alluvial sand of the terrace (figure 5.5). The unusually large width of this 

sand wedge compared with a maximum width of 3 m reported by Carter (1983c) for sand 

wedges west of the Colville River suggests that it may be a composite ice and sand wedge. 

The sand wedge is split by two ice-wedge pseudomorphs that have been filled with organic- 

rich lacustrine sediments. Detrital Salix (sample HBB2-1G) collected 0.2 m below the top 

of the terrace alluvium yielded a radiocarbon date of 29.100 + /- 0.860 ka (BETA 23743). 

This date represents a maximum limiting age for cessation of alluviation on the terrace and 

for the start of development of the sand wedge. Organic silt (sample HBB2-1E) collected 

from within one of the ice-wedge pseudomorphs yielded a radiocarbon date of 9.400 + /- 

0.110 ka (BETA 23742). This date represents a minimum age for the sand wedge and
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an approximate maximum age for the thaw lake.
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Kalubik Creek to Kuparuk River West Terrace

Kalubik Creek approximately marks the boundary between sediments of Colville 

River Terraces A through C and dominantly old fluvial sediments that extend eastward to 

a well-defined, alluvial-terrace scarp 2 to 5 km west of the Kuparuk River (figure 5.6 and 

sheet 2). The boundary is uncertain because of overlying eolian and lacustrine sediments 

and poor exposure. Deep exposure of the old fluvial sediments is provided in five gravel 

pits designated KUP C, D, E, and F, and MP. KUP C, D, and F are inland, whereas 

KUP E and MP are within several kilometers of the Beaufort Sea coast (figure 5.6 and 

sheet 2). Stratigraphic sections were measured in each of these pits and samples were 

collected for various analyses.

KUP C Gravel Pit. KUP C pit is along the Ugnuravik River about 21 km from the 

coast. The elevation of the Coastal Plain at the pit is 18 m above sea level and the pit was 

excavated to 15 m below the surface. The general stratigraphy exposed in KUP C (section 

BPB5-32) is given in figure 5.7.

Section BPB5-32 is the type section for the informally designated Ugnuravik sand 

(eolian sediments) and Ugnuravik gravel (fluvial or glaciofluvial sediments, or both) defined 

by Rawlinson (1986a). Sangamonian and Illinoian ages originally assigned to the Ugnuravik 

gravel are now considered to be minimum ages based on further field and laboratory 

studies, and on recent studies that suggest the thermoluminescence dating technique tends 

to underestimate actual ages, especially in samples greater than 100 ka (Wintle, 1987; Lu
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sheet 2.
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and others, 1988; Rendell and Townsend, 1988; Wintle and Packman, 1988; Berger, 1989). 

The original age assignments were based on apparently finite thermoluminescence ages. 

The overlying Ugnuravik sand is herein changed to the Beechey sand to avoid confusion 

with the gravel unit.

A sand wedge is present at the top of the interbedded pebbly sand and sandy gravel 

unit in section BPB5-32. The underlying sandy-gravel unit contains thin ice wedges, 

ice-wedge pseudomorphs, and thin, discontinuous silty-sand and fine-sand beds. These thin 

beds typically fill cut-and-fill structures and mark changes of modal and maximum grain 

sizes. Abundant detrital wood is associated with these fine-grained beds. Two wood 

samples, BPB5-32L and BPB5-32R, collected 6.6 m and 12.3 m, respectively, below the 

ground surface are Larix. Two other wood samples, BPB5-32P and BPB5-32Q, both 

collected 12.3 m below the ground surface, are nonconiferous, probably Salix. The Beechey 

sand and the sandy gravel below 12.4 m deep are not oxidized; the interbedded pebbly sand 

and sandy gravel is oxidized, and the sandy gravel above 12.4 m deep has both oxidized and 

unoxidized zones.

Wood (sample BPB5-32M) collected 8.8 m below the ground surface yielded a 

radiocarbon date of >38.4 ka (G X 10657); sediment (sample BPB5-32N) collected from the 

same bed yielded a thermoluminescence date of >200 ka (ALPHA 2599). 

Thermoluminescence analysis of sediment (sample BPB5-32T) collected 12.4 m below the 

ground surface, yielded a date of 150.2 + /- 0.011 ka (ALPHA 1528). Although apparently 

finite, this date is not in stratigraphic sequence with the infinite date on sample BPB5-32N 

and is beyond the reliable limit of thermoluminescence dating. Thus, it is also considered 

a minimum age. Sample BPB5-32D was collected at the base of the eolian sand in section
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BPB5-32 for thermoluminescence analysis to provide a maximum age for the sand; results 

of this analysis are discussed in Chapter 7.

Amino-acid analysis of Salix wood (samples BPB5-320 and BPB5-32S) collected 

respectively from 8.8 m and 12.3 m below the ground surface yielded respective aspartic-acid 

D /L  ratios of 0.3075 + /- 0.0045 (UA 1769) and 0.2526 + /- 0.0004 (UA 1770); sample 

BPB5-32S also yielded an alle/Ile ratio of 0.034 + /-  0.004 (AAL 4643), which is identical 

to the alle/Ile ratio determined for Salix wood (sample BPA3-10O) from 14.3 m below the 

ground surface in the SAG C gravel pit to the east. Sample BPB5-32S was questionably 

assigned to the middle group, with the caveat that the 0.2526 aspartic-acid D /L  ratio was 

low (suggesting a younger age). However, based on stratigraphic position this and other 

gravel-pit samples with unexpectedly low aspartic-acid D /L  ratios (mean 0.2202 + /-  0.0239) 

belong in the middle group.

KUP D Gravel Pit. KUP D pit is about 3 km northwest of KUP C at an elevation 

of 15 m (sheet 2). The pit reportedly reached a depth of 19 m (4 m below sea level), but 

a section could only be measured to 12 m because of flooding (figure 5.7, section BPB5-30). 

An occurrence of shells at the bottom of the pit, as reported by oil-field workers, remains 

unsubstantiated because of the lake in the pit. Similar to KUP C, the bottom two units are 

oxidized above the organic-rich, silty-sand and fine-sand bed 12.4 m below the surface 

(figure 5.7).

Wood (samples BPB5-30F and BPB5-30G) from 9.7 m below the ground surface in 

KUP D is Larix; wood (sample BPB5-30E) from the same level is coniferous and probably
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also Larix. Amino-acid analysis of sample BPB5-30E shows that the aspartic-acid D /L  ratio 

is 0.3415 + /- 0.0230 (UA 1767), putting this sample in the middle group.

KUP E Gravel Pit. KUP E pit is actually two adjacent pits along the Ugnuravik 

River about 5 km inland from the Beaufort Sea coast (figure 5.6). The elevation of the 

ground surface at the easternmost of the two pits is 6 m, and the pit is excavated 14 m 

deep. The general stratigraphy exposed in KUP E is given in figure 5.8, section BPB5-31. 

Similar to the KUP C and D pits, the interbedded pebbly sand and sandy gravel unit is 

oxidized and sand-filled, ice-wedge pseudomorphs are present near the middle of the unit. 

The underlying interbedded sandy-gravel and gravel unit contains sand wedges.

The top of section BPB5-31 is partially covered with colluvium emplaced during 

excavation of the pit. Sand and pebbly silty sand (appendix E, samples BPB5-31B and 

BPB5-31D, respectively; sample BPB5-31D termed pebbly silt prior to analysis; pre-analysis 

term used in figure 5.8) between 2.0 and 2.9 m below the surface were initially thought to 

be coarse variations of Flaxman mud because their colluvium obscures the lateral extent. 

The texture, color, proximity to the coast, and 3.8-m elevaf''on supported this concept. 

However, thermoluminescence analysis of sample BPB5-31F from the pebbly silty-sand bed 

yielded a thermoluminescence date of 11.9 + /- 1.8 ka (ALPHA 1493), which if correct, 

precludes the sediment from being emplaced by the Simpsonian transgression. Subsequent 

excavation confirmed that the bed is not laterally extensive and it is now considered to be 

eolian. The underlying sand, most of which is covered, may also be eolian but is considered 

to be fluvial based on stratigraphic position.
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A wood-rich, silty-sand bed similar to those in other KUP pits is also present in 

section BPB5-31; it fills cut-and-fill structures and an ice-wedge pseudomorph 10.2 m below 

the ground surface.

Thermoluminescence analysis of sediment (sample BPB5-31K) from this bed yielded 

a date of 221.4 + /-  17 ka (ALPHA 1529). Even though the date is apparently finite, it is 

considered a minimum for reasons previously discussed. Wood (sample BPB5-31H) 

collected 10.2 m below the surface and wood (sample BPB5-31I) collected at 10.5 m are 

both nonconiferous, probably Salix. Wood (sample BPB5-31J), also collected at 10.5 m, is 

definitely Salix. Rawlinson (1986a) incorrectly reported the presence of Larix in this bed. 

Amino-acid analysis of sample BPB5-31I yielded an aspartic-acid D /L  ratio of 0.2141 + /- 

0.0052, which places it in the young group. However, the sample was assigned to the middle 

group based on similarity of these sediments with those exposed in other gravel pits in the 

Kuparuk area; perhaps the sample has been subjected to bacterial attack or other 

modification.

KUP F Gravel Pit. KUP F pit is located west of the east fork of Kalubik Creek, 

approximately 11 km inland from Harrison Bay (figure 5.6). The elevation of the ground 

surface at pit KUP F is 21 m and the pit is excavated approximately 14 m deep. A lake fills 

the deepest part of the pit so that the exposed stratigraphic section is 12 m high (figure 5.8, 

section HBB1-19). Section HBB1-19 provides a view of the Coastal Plain approximately at 

the proposed boundary between the Colville River marine and alluvial terraces and alluvial- 

plain sediments to the northeast. The section consists entirely of nonmarine sediments and 

is most like sections exposed in the other KUP gravel pits, suggesting that the location of 

the approximate boundary is correct.
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The 3.8-m-thick sand near the top of section HBB1-19 is uniform throughout except 

for occasional zones of pebbles and alternating zones of oxidation and nonoxidation. Eolian 

sediments near the top of other KUP gravel pits are typically about half this thickness; 

therefore, this unit may in part be fluvial or glaciofluvial. Thermoluminescence analysis of 

sand (sample HBB1-19E) from the base of the unit, 4.1 m below the surface, yielded a date 

of 140 + /-  30 ka (ALPHA 2600). If this is considered a minimum age, it is consistent with 

at least part of the sand being fluvial or glaciofluvial. Prior to obtaining the 

thermoluminescence date on sample HBB1-19E, wood (sample HBB1-191) from 4.9 m below 

the surface yielded a radiocarbon date of >40 ka. This date supports the minimum 

thermoluminescence date on sample HBB1-19E and the concept of at least part of the 

"eolian" sand being fluvial or glaciofluvial. Data suggest that eolian sediments near the top 

of sections exposed in the other gravel pits are Wisconsinan.

Pollen analysis of sediment (sample HBB1-19H), also from 4.9 m, revealed a mixture 

of woody fusinitic and herbaceous materials, and only rare occurrences of undifferentiated 

bisaccates. Reworking of Tertiary and perhaps older sediments likely contributed the 

woody fusinitic material and herbaceous tundra probably contributed the herbaceous 

material. Consistent with most of the other gravel pits, ice-wedge pseudomorphs, 

alternating zones of oxidation and nonoxidation, and large woody material are present in 

the deeper exposed gravelly sediments of section HBB 1-19. Sample HBB1-19N, from 9.3 m 

below the surface, is a 0.1-m-diameter log of Larix or possibly Picea.

MP Gravel Pit. The MP pit is 3.8 km inland from the Beaufort Sea coast west of 

an unnamed stream that empties into the Beaufort Sea as an estuary west of Kavearak 

Point (figure 5.6). The Coastal Plain surface there is 5 m above sea level and the pit was
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excavated approximately 18 m deep. Walls of the MP pit are exceptionally steep and as 

in most of the other gravel pits, a lake occupies the deepest part. Stratigraphic section 

BPB4-16 (figure 5.9) is a composite of two sections. Most of the section was measured near 

the southwest corner of the pit but the basal 2 m were measured near the northeast corner. 

Samples BPB4-16H and BPB4-16I were also collected from the northeast corner of the pit. 

Sand near the top of the section may be fluvial overbank sediments; however, an eolian 

interpretation is more likely based on the presence of similar sediments near the tops of all 

other gravel pit sections. All sediments below 0.7 m are interpreted to be fluvial or 

glaciofluvial based on sediment textures and structures.

Section BPB4-16 includes discrete beds of sandy gravel and organic silt between the 

eolian sand and the underlying interbedded sand and gravelly sand. The organic silt (sample 

BPB4-16B) yielded a radiocarbon date of >44 ka, which is a minimum age for the 

underlying interbedded sand and gravelly sand or sandy gravel. Wood collected from the 

sand and sandy gravel beds between 10.3 and 16.3 m below the surface is all nonconiferous, 

some of which (samples BPB4-16D and BPB4-16F) have been determined to be Salix. 

Amino-acid analysis of samples BPB4-16D and BPB4-16H, respectively from 10.3 m and 

15.1 m below the ground surface, yielded respective aspartic-acid D /L  ratios of 0.2189 + /- 

0.0008 and 0.1952 + /-  0.0021. These ratios place both samples in the young group. 

However, the samples were assigned to the middle group based on similarity of these 

sediments with sediments exposed in other gravel pits in the Kuparuk area; perhaps these 

samples have been subjected to bacterial attack or other modification.
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A distinct change in the color, from gray to oxidized yellowish brown, and texture, 

from sandy gravel to medium sand, of sediments below 16.3 m in the stratigraphic section 

prompted microfossil and pollen analyses on sample BPB4-16K, one of two samples 

collected from this unit. Sample BPB4-16K was barren of microfossils but included black 

woody fusinitic and amorphous materials and undifferentiated bisaccates and indeterminate 

spore fragments. The fusinitic material is probably coal reworked from Tertiary coal- 

bearing sediments of the Sagavanirktok Formation.

Kuparuk River West Terrace to Sagavanirktok River East Shore

The Coastal Plain between a 2- to 5-km-wide alluvial terrace immediately west of 

the Kuparuk River and the Sagavanirktok east shore generally includes thicker sections of 

younger sediments, chiefly alluvium and outwash, compared with adjacent areas to the west 

and east. Three areas between the Kuparuk River and the east shore of the Sagavanirktok 

River that do not fit this generalization of younger sediments were mapped by Rawlinson 

(1986a); however, one of these areas, between the west and east channels of the 

Sagavanirktok River, is now interpreted to be Holocene (figure 5.6). The remaining two 

large areas of older sediments are near the coast and were discussed in Chapter 4 as being 

associated with Simpsonian marine sediments west of the Putuligayuk River and at Heald 

Point.

Inland between the Kuparuk and Sagavanirktok River, younger alluvial sediments 

are separated by small isolated areas of older sediments capped by Holocene sediments 

similar to areas near the coast and the area west of the Kuparuk River.
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Walker and Acevedo (1987) mapped most of the area between the Kuparuk west 

terrace and the east shore of the Sagavanirktok River as flat thaw-lake plain and indicated 

only one broad-based mound. This mound, and vegetation similarities with the rolling thaw- 

lake plain west of the Kuparuk River, are presumed to be the basis for designating areas 

on either side of the Kuparuk River Delta as rolling thaw-lake plain. However, based on 

morphology, this assignment seems incorrect; and the author considers the area east of the 

Kuparuk River Delta (and west, as will be explained later) to be flat thaw-lake plain.

Deep exposure of the Coastal Plain between the Kuparuk and Sagavanirktok Rivers 

is provided in two gravel pits along the Putuligayuk River and two gravel pits along the 

Sagavanirktok River. Another gravel pit along the Putuligayuk River has since been 

converted to a sanitary landfill. The two accessible pits along the Putuligayuk River from 

south to north are designated PUT 1 and PUT 2; and the two pits on the Sagavanirktok 

River are designated SAG C and END (figure 5.6).

Kuparuk River West Terrace. The alluvial terrace west of the Kuparuk River 

truncates rolling thaw-lake plains at a well-defined scarp. Thaw lakes have obscured the 

terrace scarp north of where it meets the line of truncation of broad-based mounds and the 

terrace tread cannot be distinguished from flat thaw-lake plains adjacent to the west. 

Rather than turning to the east as postulated by Walker and Acevedo (1987), the terrace 

is interpreted to continue its trend to the present coast (figure 5.6 and sheet 3).

Stratigraphic sections measured in the more upstream positions on the terrace west 

of the Kuparuk River (e.g., sheet 2, sections BPA4-6 and BPA4-10) typically show from top 

to bottom about 0.5 m each of organic silt or peat and overbank sand, both overlying sandy
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gravel. In downstream positions on the terrace (e.g., section BPB4-31), sand dominates the 

section but interbeds of silt and pebbly sand are also present. The terrace tread is typically 

3 to 6 m high above the adjacent Kuparuk River flood plain.

Samples of peat collected from on top or near the top of the gravel in two different 

stratigraphic sections yielded radiocarbon dates that approximately represent the end of 

active flood-plain deposition. Peat (sample BPA4-6A) collected 0.6 m below the terrace 

surface between underlying overbank sand and overlying flood-basin pebbly silt yielded a 

radiocarbon date of 5.120 + /- 0.235 ka (GX 10660). Peat (sample BPA4-10A) collected 

from within a 0.5- to 0.8-m-thick bed of sandy gravel about 2.0 m below the surface yielded 

a radiocarbon date of 4.320 + /- 0.100 ka (BETA 23740). Gravel of this bed filled cut- 

and-fill structure in the underlying gravel and so may represent a second period of 

deposition resulting from migration of the stream channel. The upper 1.5 m of the section 

consists of interbedded organic-rich silt, fine sand, and peat that probably represent fluvial, 

lacustrine, and eolian deposition in a flood-basin environment.

PUT 1 Gravel Pit. PUT 1 pit is 5.2 km up the Putuligayuk River from Prudhoe Bay 

at an elevation of 6.1 m above sea level. The pit exposes sediments to a depth of 14 m: 

0.7 m peat and fluvial sandy silty overlying 13.3 m of fluvial or glaciofluvial interbedded 

pebbly sand, sandy gravel, and gravel; sandy gravel is dominant (figure 4.10). Hopkins and 

others (1981b) reported more than 4 m of "Sagavanirktok River" alluvium below 0.9 m of 

bedded oxbow-lake sediments in this pit. Detrital peat 0.9 m below the top of this alluvium,

1.8 m below the surface, yielded a radiocarbon date of 5.470 + /-  0.110 ka (USGS 1-10642).
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Sandy-silt beds that Hopkins and Robinson (1979) considered to be interstadial or 

interglacial horizons are present 7.5 and 10.5 m below the ground surface in PUT 1 pit. 

These beds contain peat and detrital wood and likely correspond to organic horizons in the 

landfill pit that yielded radiocarbon dates of 26.3 + /- 0.370 ka (USGS 505) (Hopkins and 

Robinson, 1979) and 35.6 + /- 0.550 ka (USGS 504), respectively (Hopkins and 

others, 1981b).

The lower sandy-silt bed in PUT 1 pit overlies and often fills cut-and-fill structures. 

Gravel below the lower sandy-silt bed is oxidized and coarser grained than sandy gravel 

higher in the section. Detrital wood also occurs in lenses of pebbly sand in the bottom half 

of the section. Salix wood (sample BPB3-23G) from the lower sandy-silt bed yielded a 

radiocarbon date of 37 +10/-4.3 ka (GX 10656), which because of the wide standard 

deviation is considered a minimum age. If this bed correlates with the lower sandy-silt bed 

in the landfill pit, the apparently finite age of 35.6 ka reported by Hopkins and 

others (1981b) should also be considered a minimum age. Thermoluminescence analysis 

of sediment (sample BPB3-23I) from the lower of the two organic-rich horizons yielded a 

date of 142 + /- 8.8 ka6 (ALPHA 2601). Although possibly unreliable and apparently too 

old, the thermoluminescence date suggests that the lower sandy-silt bed and underlying 

oxidized gravel are Sangamonian. Thaw probably reflecting an interglacial climate is 

essential to oxidation of the sediments. Such an age is consistent with probable 

Sangamonian marine sediments at the bottom of the PUT 2 gravel pit.
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'This age was determined using only the Regen technique. The thermoluminescence 
within the sample was saturated, therefore negating use of the Residual and Rbeta 
techniques. Without these techniques, zeroing of the sample in nature cannot be 
determined. However, if the sediment was of primary deposition and the sensitivity to 
bleaching is high, as suggested by the analysis, the probability of being zeroed is high. If 
these assumptions are valid, the age would be a minimum.
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PUT 2 Gravel Pit. PUT 2 pit is 2.3 km northeast of PUT 1 pit at an elevation of 

3 m (figure 5.6). The general stratigraphy of sediments exposed in the pit and discussion 

of marine sediments at the base of PUT 2 pit were presented in Chapter 4 (figure 4.10). 

Most of the section consists of fluvial or glaciofluvial sediments.

A thin, pebbly-sand bed with abundant detrital wood overlies and fills cut-and-fill 

structure 6.8 m below the surface. Rawlinson (1986a) reported this bed at 8.3 m below the 

surface. This depth was based on a section measured in a topographically higher part of 

the pit; the bed in both sections is the same. The pebbly-sand bed likely corresponds to the 

bottom sandy-silt bed in PUT 1 pit because they differ only slightly in depth below sea level 

(4.2 m in PUT 1 and 3.8 m in PUT 2) and gravel below this bed is oxidized as in PUT 1. 

As expected because of the elevation difference, a counterpart to the upper sandy-silt bed 

in PUT 1 pit is not present in PUT 2 pit. An ice-wedge pseudomorph is present 3.2 m 

below the surface and thin sand lenses with small pieces of detrital wood and peat are 

present in the middle one-third of the section.

Wood from 3 m (sample BPB3-25D), 6.8 m (sample BPB3-25N), and 7.4 m (sample 

BPB3-25Q, Salix) below the surface all yielded radiocarbon dates of >31.6 ka (respectively 

GX 11762, GX 11761, and GX 11766). Peat (sample BPB3-25H) from 6.6 m below the 

surface yielded a radiocarbon date of 4.075 + /- 0.115 ka (GX 10781). If this date is valid7, 

Holocene alluvium composes almost one-third of the section and disconformably overlies 

probable Sangamonian fluvial sediments; wood (sample BPB3-25D) from 3 m that yielded 

and infinite date was likely reworked from older sediments. In addition to the infinite

I l l

7Dates on peat tend to be reliable in terms of representing the approximate age of the 
enclosing sediment, because reworking would disaggregate the peat in a short time.
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radiocarbon dates of samples BPB3-25N and BPB3-25Q, amino-acid analysis of sample 

BPB3-25Q yielded an aspartic-acid D /L  ratio of 0.2416 + /- 0.0006 (UA 1774), which places 

it within the young group of analyzed samples.

Sediments in PUT 2 pit between an uncertain contact 11.5 m below the surface and 

marine sediments adjacent to the lake at the bottom of the pit are presumed to be in place. 

These sediments were exposed adjacent to the lake, separate from the continuous section. 

Salt efflorescence on the surface of these sediments suggests a marine origin; however, 

gravelly sand (sample BPB3-25S) from the approximate middle of this unit was barren of 

microfossils. The sediments are likely fluvial and the efflorescence resulted from exclusion 

of salt as brackish pore-water froze. Amino-acid analysis of marine mollusks from 

sediments at the bottom of PUT 2 pit suggests that the sediments are not older than 

Sangamonian.

Sediments exposed in the Putuligayuk River gravel pits are likely of equivalent ages 

based on the presence of the sandy-silt bed and underlying oxidized gravel in both pits. 

Sediments exposed in approximately the bottom one-half of PUT 1 pit were deposited 

during the Sangamonian Interglaciation, the middle Wisconsinan nonglacial Boutellier 

interval, and into the Duvanny Yar interval of Hopkins (1982) based on radiocarbon dates 

on peat and wood in both pits, a thermoluminescence date in the PUT 1 pit, and amino- 

acid dates in the PUT 2 pit. This alluvium is overlain by outwash derived from late 

Wisconsinan glaciation in the Brooks Range and by Holocene alluvium. Approximately the 

bottom one-half of PUT 2 pit is alluvium deposited during the Sangamonian Interglaciation; 

no Wisconsinan alluvium or outwash overlies this alluvium.
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Rawlinson (1986a) termed the older alluvium exposed in the PUT 1 and 2 pits, and 

the landfill pit, the Put alluvium; and termed overlying outwash exposed in PUT 1 pit and 

the landfill pit, the Put outwash. To avoid confusion between the two units, and because 

the units cannot always be visually distinguished from each other, the collective term of Put 

gravel defined by Rawlinson (1986a) is now preferred.

SAG C Gravel Pit. The SAG C pit is within the active flood plain of the 

Sagavanirktok River 11.2 km south of the Beaufort Sea coast and about the same distance 

southeast of PUT 1 gravel pit (figure 5.6). The flood-plain surface at SAG C pit is between 

3 and 4 m above mean sea level. SAG C pit is the deepest on the Coastal Plain, exposing 

sediments to 19 m below the surface. As in the other pits, a lake occupies the deepest part.

The general stratigraphy of the SAG C pit is given in figure 5.10 (section BPA3-10). 

A thin paleosol 5.1 m below the surface separates unoxidized gravel and underlying oxidized 

gravel. The interval with sand beds and lenses contains some small chips of detrital wood; 

whereas the interval between 14 m and the bottom of the pit contains abundant large pieces 

of wood. Salt efflorescence is present on the sediments below 7.5 m and, as for nonmarine 

sediments in the PUT 2 pit, possibly resulted from exclusion of salt as brackish pore-water 

froze. The possibility that the salt efflorescence is associated with marine deposition was 

checked by a series of samples analyzed for microfossils. Sediment collected at 7.7 m 

(sample BPA3-10S) was barren of microfossils.

Samples for pollen analysis were also collected throughout the section. Sediment 

(sample BPA3-10D) from 7.7 m below the surface contained indeterminant spores and one 

occurrence of the Devonian spore Hymenozonotriletes lepidophytus, which presumably was
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reworked from Devonian rocks that crop out along the crest of the Brooks Range (Payne 

and others, 1952). This sample also contained woody fusinitic material.

Sediment (sample BPA3-10G) from 10.5 m contained undifferentiated Bisaccates 

and woody fusinitic material. Sediment (sample BPA3-10M) from 13.4 m contained 

indeterminant spores and woody fusinitic and herbaceous materials. Sediment (sample 

BPA3-10O) from 14.5 m contained undifferentiated Bisaccates and indeterminant spores, 

as well as woody fusinitic and herbaceous materials. Sediment (sample BPA3-10S) from 

18.7 m contained mostly herbaceous material and was barren of palynomorphs. Woody 

fusinitic material in these samples is suggestive of reworking of older deposits, probably 

coal-bearing sediments of the Sagavanirktok Formation.

Peat (sample BPA3-10C) from the paleosol 5.1 m below the ground surface yielded 

a radiocarbon date of 4.640 + /- 0.090 ka (GX 10779). Because this horizon marks the 

boundary between unoxidized and underlying oxidized alluvial gravels, it probably also 

represents the boundary between the Holocene alluvium and older sediments. Wood 

(sample BPA3-10E) from 8.7 m below the surface yielded a radiocarbon date of >38.4 ka 

(GX 10658).; however, as suspected for similar detrital samples from other sections, this 

wood may have been reworked from older deposits.

Amino-acid analysis of Salix wood (sample BPA3-10O) from an ice-wedge 

pseudomorph 14.5 m below the surface yielded an aspartic-acid D /L  ratio of 0.3152 +/- 

0.0040 (UA 1766), and an alle/Ile ratio of 0.034 + /- 0.004 (AAL 4642). These ratios place 

the wood in the middle age group; they are perhaps broadly correlative with sediments 

exposed in the KUP and MP pits. Alnus wood (sample BPA3-10R) from 18.7 m below the
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surface corroborates this age group with an aspartic-acid D /L  ratio of 0.3135 + /- 0.0080 

(UA 1775). In addition to wood mentioned above, wood from 12.6 m (sample BPA3-10H) 

and 13.0 m (samples BPA3-10J and BPA3-10L) is Salix. Wood (BPA3-10N) from 13.6 m 

is nonconiferous.

END Gravel Pit. The END pit is within the Sagavanirktok River abandoned flood 

plain approximately 2 km east of the SAG C pit and 12 km inland from the Beaufort Sea 

coast (figure 5.6). The elevation of the flood plain at the pit is 3 m and the pit is excavated 

to 16 m below the surface. The general stratigraphy of sediments exposed in the END pit 

is given in figure 5.10 (section BPA3-16).

Undisturbed exposure of sediments is limited to near the base of the pit. All 

samples were collected from a 0.6-m-thick, organic-rich sand that crops out between 13.9 

and 14.5 m below the surface. Organic material in places consists of matted deciduous 

leaves. Wood samples are nonconiferous (sample BPA3-16A) or Salix (sample BPA3-16G). 

Amino-acid analysis of sample BPA3-16A yielded an aspartic-acid D /L  ratio of 0.3002 + /- 

0.0117 (UA 1773), which places it in the middle age group. Sediment (sample BPA3-16D) 

contained herbaceous material and was barren of pollen. Sediment (sample BPA3-16F) was 

barren of microfossils.

Inland Exposures. Exposures of younger sediments between the Kuparuk and 

Sagavanirktok Rivers are limited to cut banks of streams and thaw lakes. Stratigraphic 

section BPA4-1 (sheet 2) on the east bank of the Kuparuk River shows 0.5 m of lacustrine 

and eolian silty peat and sand overlying more than 3 m of alluvial sand and sandy gravel. 

A radiocarbon date of 8.475 + /- 0.335 ka (GX 10659) on a basal peat (sample BPA4-1A)
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is the minimum age for underlying alluvial sediments. Banks of thaw lakes in the area 

typically provide little, if any, exposure of the subsurface. An exception is section BPA3-2, 

which exposes 0.7 m of lacustrine peat and pebbly sand overlying about 1 m of fluvial silty 

sand. Peat (sample BPA3-2C) from 0.7 m below the surface yielded a radiocarbon date of 

10.540 + /-  0.310 ka (GX 10780), which is a minimum age for underlying alluvial sediments. 

Walker and others (1985) and Hopkins and others (1981b) reported radiocarbon dates that 

range between 1.2 and 3.5 ka for basal peat from flood plains to the north.

Sagavanirktok River to West Edge of Canning River Fan

The Coastal Plain between the east shore of the Sagavanirktok River and the 

western edge of the Canning River fan has much the same morphology as the Coastal Plain 

west of the Kuparuk River west terrace. Walker and Acevedo (1987) mapped this area as 

rolling thaw-lake plain. However, near-coastal parts of this eastern area should be classed 

as flat thaw-lake plain along with the area north of the line of truncation of broad-based 

mounds west of the Kuparuk River.

No gravel pits that provide deep exposure have been excavated in the area between 

the east bank of the Sagavanirktok River and the western edge of the Canning River fan. 

However, cut banks of streams and a few thaw lakes in this area provide relatively good 

exposure.

Sagavanirktok River Outcrops. Perhaps the best exposure is along the east bank of 

the Sagavanirktok River, where sections range up to 12 m thick but most are less than half 

this thickness. Stratigraphic sections along the Sagavanirktok River from the coast to about
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9 km inland generally consist of lacustrine, eolian, and fluvial sediments, and sometimes 

underlying marine gravelly sand and silt.

More than 9 km inland, a typical stratigraphic section representative of alluvial-plain 

sediments is much like the top part of a section in the Kuparuk oil field and consists from 

top to bottom of lacustrine peat and silt, eolian sand, and fluvial or glaciofluvial sandy gravel 

or gravelly sand, or both. Stratigraphic sections BPA2-8, BPA2-9 and BPA2-10 (figure 5.11 

and sheet 3) illustrate this approximate consistency from south to north along the east bank 

of the Sagavanirktok River.

In addition to sediment samples collected for grain-size analysis (appendix E), 

samples were collected from several of the Sagavanirktok River sections to ascertain 

chronology and depositional environment. Organic-rich silt (sample BPA2-8D) from a bed 

near the base of thaw-lake sediments in stratigraphic section BPA2-8 yielded a radiocarbon 

date of 11.180 + /- 0.430 ka (GX 10321). This bed probably represents the basal 

organic-rich layer typical in a sequence of thaw-lake sediments and suggests that the 

overlying sediments were deposited during a second cycle of thaw-lake activity.

Organic material from thaw-lake sediments above the dated organic bed consists 

almost entirely of light-colored herbaceous material, indicative of tundra growing on the 

Coastal Plain. Rarely occurring palynomorphs from these upper sediments include 

Sphagnumsporites sp., and Lejeunia sp.; frequently occurring palynomorphs include an 

indeterminant large spore and fungal hyphae. Organic material from thaw-lake sediments 

below the dated organic-rich bed consists almost entirely of dark-brown, woody fusinitic
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material that is almost certainly reworked from older deposits. Rarely occurring, reworked 

palynomorphs from these lower sediments include indeterminant forms, Striatites richteri, 

and Micrhystridium sp.; a frequently occurring reworked palynomorph is Laciniadinium 

biconiculum.

The first cycle of thaw-lake sediments overlies sandy gravel from which no datable 

material was recovered. Analysis of the sandy gravel for palynomorphs yielded only poorly 

preserved indeterminant pollen, precluding inferences of age, and an equal mix of amber 

amorphous organic material and dark-brown, woody fusinitic material. The fusinitic 

material is probably reworked from coal-bearing sediments of the Sagavanirktok Formation.

Alluvial-terrace sediments in sections BPA3-13, BPA3-14, and BPA3-15 (figure 5.12 

and sheet 3) differ little from the alluvial-plain sediments in that they show approximately 

the same sequence of sediments; albeit, sand-sized sediments in section BPA3-13 were more 

fluvial than eolian. With this exception, these sections show 0.4 to 2 m lacustrine peat and 

silt overlying 1.5 to 2 m eolian sand. Section BPA3-15 exposes sandy gravel below the 

eolian sand and sandy gravel is presumed to be also present below the depth of exposure 

in section BPA3-14. No datable material was recovered from nonlacustrine sediments in 

either section BPA3-14 or PBA3-15.

A bed of silt with peat 7 m below the ground surface in section BPA3-13 

(figure 5.12) is laterally discontinuous and varies up to 1 m thick over the approximate 

distance of 20 m that it could be traced. Caution should be taken in interpreting the 

stratigraphy in cases where the adjacent river may have cut and filled a niche with modern 

sediments; these sediments, especially once frozen, are often difficult to distinguish from 

in-place sediments. Top and bottom contacts of the silt bed with adjacent sediments suggest
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Figure 5.12 Stratigraphic sections BPA3-13, BPA3-15, and BPA3-14 measured along the 
east bank of the Sagavanirktok River, showing similarity of alluvial-terrace sediments 
with alluvial-plain sediments to the west and east. The small black squares represent 
samples; sample numbers are adjacent to the right (e.g., BPA3-13A). C14 denotes 
radiocarbon and TL denotes thermoluminescence. Locations of these sections are 
shown on sheet 3.
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that the bed is in place. Analysis of the silt for microfossils and palynomorphs indicated one 

specimen of the foraminifer Cyclammina cf. C. pacifica, which was undoubtedly reworked 

from older deposits, and freshwater shell fragments. Rarely and frequently occurring 

palynomorphs included Lycopodiumsporites sp. and Betulaceae, respectively.

Peat (sample BPA3-13D) from the top part of the silt bed, 7.4 m below the surface, 

yielded a radiocarbon date of >34.8 ka (GX 10319), which is not unexpected considering 

similar dates from approximately this depth elsewhere on the Coastal Plain. A 

thermoluminescence date of the silt (BPA3-13G) from 8.1 m below the surface, however, 

yielded the unexpectedly young date of 3.140 + /- 0.500 ka (ALPHA 1494). The analysis 

is reported to have run well and showed excellent internal agreement between the three 

thermoluminescence dating methods used (Regen, Residual, and R-Beta). This young date 

can be explained by one of several alternatives. The simplest explanation is that for some 

unknown reason the thermoluminescence date is incorrect and the sediments are >34.8 ka 

as shown by the radiocarbon date. This explanation assumes that the radiocarbon date is 

valid; there is no reason to believe otherwise.

An alternative is that the silt bed is Holocene, having been deposited in a niche cut 

during the time that the river level was approximately 5 m higher than at present, or during 

a time when flood stage reached that height above present mean stage. This alternative 

assumes that the peat date is either incorrect or that it is correct and the peat is reworked 

from older deposits, and that lateral erosion by the river has been less than the depth of the 

niche. The alternative is less likely than the simple explanation for two reasons: (1) fibrous 

peat typically yields reliable radiocarbon dates because unless frozen, it disaggregates 

rapidly; and (2) most modern stream-cut niches are only a few meters deep, probably less
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than the lateral erosion of the bluff over a period of several thousand years based on 

modern erosion rates.

Kadleroshilik River and Shaviovik River Outcrops. Stratigraphic sections similar 

to those along the Sagavanirktok River are exposed along the Kadleroshilik River 

(e.g., sections BPA2-20, BPA2-23, BPA2-24) and Shaviovik River (e.g., sections BPA1-22, 

BPA1-25, and BPA1-27) and illustrate the consistency of sediments across this part of the 

Coastal Plain (figure 5.13). Sediments for grain-size analysis were collected from each of 

these sections (appendix E). Datable organic material is sparse with the exception of such 

material associated with lacustrine sediments at the top of each of these sections. Peat 

(sample BPA2-20A) from the base of lacustrine sediments 0.4 m below the surface in 

section BPA2-20 yielded a radiocarbon date of 12.360 + /- 0.410 ka (GX 10320). This date 

is the oldest of all the lacustrine basal peat samples collected as part of this study and 

among the oldest of reported dates for lacustrine sediments on the Coastal Plain.

Canning River Fan

The coastline of the Canning River fan forms a symmetrical convex-northward arc 

that stretches approximately 60 km from an unnamed stream 5 km east of the Shaviovik 

River eastward to near the confluence of the Tamayariak and Canning Rivers (sheets 4 

and 5). The apex of the fan is approximately 35 km inland from the coast, where the trend 

of the Canning River turns from northwesterly to northeasterly. There, outwash terraces 

cut into glacial till have been dissected by more recent alluvial terraces, some of which are 

exposed to approximately 14 m below the ground surface. Northward along the river, 

exposed sections of the fan are less high. On the fan surface, the only exposure is along
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banks of small stream and thaw lakes. Exposure of the fan along the coast is typically less 

than 1 m high except where originally higher areas have not been dissected by flow. These 

areas typically stand several meters above sea level and expose lacustrine silt, sand, and 

organic material overlying eolian sand, which in turn overlies marine Flaxman mud.

The eastern part of the fan is currently active, with the Canning River and associated 

alluvial terraces covering approximately one-third of the fan surface. The central part of 

the fan is inactive except for drainage that originates on the fan surface, and consists of 

sandy-gravel outwash covered with a thin veneer of fluvial and eolian sand. The western 

part of the fan is sandy-gravel outwash covered with eolian sand that was deposited as subtle 

southwest-trending longitudinal dunes presumably when the central part of the fan was 

active and unvegetated. Elongated thaw lakes with long axes parallel to the trend of the 

dunes are present between the dunes. As in the central part of the fan, drainage that 

originates on the fan surface cuts transversely through the dunes to the Beaufort Sea.

Canning Gravel. Rawlinson (1986a) termed outwash sediments of the Canning 

River fan the Canning gravel and indicated that these sediments were questionably 

underlain by sediments equivalent to the Ugnuravik gravel. Rawlinson further suggested 

a late Wisconsinan age for the Canning gravel. This age was contested by Dinter and others 

(1987); however, with clarification given below, views presented by Rawlinson and Dinter 

and others are not conflicting.

On the basis of offshore seismic investigation, Wolf and others (1985) suggested that 

the Canning River fan extends into the submarine environment as a delta and that 

deposition of the fan has been more or less continuous through at least several marine
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transgressions and regressions. Because the apex of the fan is nearly coincident with the 

northernmost limit of recognizable glacial till, deposition of the fan can probably be 

extended back at least to the onset of presumed early Pleistocene glaciation in the Canning 

River drainage. Apparent deposition from a focus inland on the Canning River since at 

least the early Pleistocene makes it unlikely that the Ugnuravik gravel extended eastward 

to the Canning River.

Wolf and others (1985) suggested that the Canning River fan and delta includes five 

unconformities: surface 3, surface 4, bottom of the Flaxman Member, top of the Flaxman 

Member, and the present sea floor and isolated areas within the lagoons. Surfaces 3 and 

4 are two erosional surfaces of seven seismic reflectors identified by Wolf and others (1985). 

Foster (1988) recognized six stratigraphic units, which he termed sequences A through E 

based on offshore seismic investigations between the Colville River and Prudhoe Bay, and 

correlated Wolf and others’ unit between surfaces 3 and 4 with his sequence C, and the unit 

below surface 3 with his sequence D (table 5.1). Foster also correlated his sequence E, 

which underlies sequence D, with the upper part of Rawlinson’s (1986) Ugnuravik gravel. 

Foster suggested that these units represent the latter half of the middle Pleistocene, but 

reiterated the argument that the presence of Larix in the Ugnuravik gravel may imply a 

Fishcreekian age. However, he also indicated that the Ugnuravik gravel may be deposited 

over Fishcreekian-aged sediments.

Eolian or lacustrine sediments, or both, which unconformably overlie Flaxman mud 

near the coast and outwash inland of the coast, are present on topographically high areas 

along the seaward margin of the fan, and on Flaxman Island and the adjacent 

topographically high area that includes Bullen Point. Topographically high areas stand as
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Table 5.1 Correlation chart of offshore and onshore stratigraphic units. Modified from Foster (1988).
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remnants of post-Flaxman fan sediments that correlate with Wolf and others’ (1985) unit 

above surface 4 (or possibly below surface 5), and with Rawlinson’s (1986a) Beechey 

(formerly Ugnuravik) sand (table 5.1). Post-Flaxman fan sediments were eroded (Wolf and 

others, 1985) and replaced with more recent sandy gravel and gravel, which compose most 

of the near surface part of the fan and, as suggested by Rawlinson (1986a), are probably 

outwash associated with late Wisconsinan glaciation within the Canning River drainage. 

The sand sheet on the western part of the fan may have developed during and shortly after 

deposition of this outwash.

Terrace Deposits. Terraces near the apex of the Canning River fan are capped by 

Holocene alluvial sand and sandy gravel (figure 5.14, section MMD5-10, and sheet 4), or 

consist entirely of such sediments. The terrace represented by stratigraphic section 

MMD5-10 is among the oldest of several terraces cut into older outwash sediments. From 

top to bottom, this section shows 4.6 m of interbedded alluvial sand and sandy gravel 

unconformably overlying 6.3 m of presumably Wisconsinan outwash sandy gravel. The 

modal diameter of clasts in the outwash is approximately 0.2 m, but some are up to 0.7 m 

in diameter. No organic material was found, which is typical of outwash sediments.

Detrital wood (sample MMD5-10A) from 0.6 m above the outwash contact yielded 

a radiocarbon date of 8.455 + /- 0.195 ka (GX 11753). Other detrital wood (sample 

MMD5-10B) from 0.3 m above the contact with the underlying outwash yielded a 

radiocarbon date of 7.300 + /- 0.440 ka (GX 11752), which is not in expected sequence. 

Thus, one or the other, or both, wood samples have apparently been reworked from older 

sediments; the youngest date can be taken as a maximum age for the upper alluvial 

sediments.
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Figure 5.14 Stratigraphic sections MMD5-10, MMD5-8, and MMD4-14 measured near the 
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The span of time represented by most of the terraces near the fan apex is provided 

by radiocarbon dates of peat in a section representing an abandoned flood-plain surface 

about 5 km upstream of section MMD5-10. Section MMD5-8 (figure 5.14) shows 1 m of 

peat capping 7.7 m of interbedded alluvial sand, sandy gravel, silty sand, and sand. Peat 

(sample MMD5-8A) from 2.5 m below the surface yielded a radiocarbon date of 5.335 + /- 

0.205 ka (GX 11755), and peat (sample MMD5-8C) from 4.6 m below the surface yielded 

a radiocarbon date of 6.300 + /- 0.235 ka (GX 11754). Thus, most alluvial terraces near the 

apex of the Canning River fan were deposited approximately between 9 and 5 ka ago.

Alluvial terraces on the fan surface downstream of the apex are also probably 

Holocene. On the basis of elevation above stream level and a consistent surface 

morphology, an alluvial terrace along the east side of the Canning River is perhaps among 

the oldest of such terraces on the fan. The stratigraphy of this terrace is shown in 

figure 5.14 (section MMD4-14). Peat (sample MMD4-14A) from 0.1 m above the contact 

with the sandy gravel yielded a radiocarbon date of 9.710 + /- 0.155 ka (GX 11749), which 

is approximately the time when channel deposition was replaced by overbank deposition at 

this locality.

Flood-plain surfaces on the Canning River fan are presumably mid-Holocene or 

younger based on the approximate 5.335 ka date obtained for sample MMD5-8A.
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Canning River East Bank to the Hulahula River

131

Sediments on the Coastal Plain within approximately the western half of the ANWR 

are dominated by outwash and fluvial sandy gravel and gravel. As with the Canning River 

fan, outwash sediments underlie or have been cut by erosion and subsequently covered with 

Holocene alluvium. Walker and others (1982) mapped much of the area covered by 

outwash sediments as foothills and by the more recent alluvium as river flood plains. 

Between the east bank of the Canning River and the Katakturuk River, these outwash and 

fluvial sediments are primarily present from the coast inland 15 to 20 km. Holocene 

alluvium approximately 13 km south of the mouth of the Canning River is cut by northeast- 

to southwest-trending lineaments similar to those observed on aerial photographs of the 

area between the Kuparuk and Sagavanirktok Rivers. These lineaments, which are 

discernable on the ground as a slight drop in elevation on the north side of the lineament, 

are probably faults. Biswas and Gedney (1978) indicated that the northeast part of the 

Coastal Plain is seismically active. Such seismicity may result from continuing tectonism in 

the area and perhaps much of ANWR. Between Itkilyariak Creek and the Hulahula River, 

fluvial and outwash sediments extend inland to the Sadlerochit Mountains, approximately 

35 to 40 km. The area between the Tamayariak River and Itkilyariak Creek has been 

folded and uplifted, and with a few exceptions, alluvium caps underlying sediments of the 

Sagavanirktok Formation or older formations.

Outwash Deposits. Outwash deposits in ANWR vary considerably in age and 

composition. Most outwash deposits between the Canning and Tamayariak Rivers are north 

of and probably associated with an extensive moraine that was likely deposited during an 

early Pleistocene glaciation. However, within this area some outwash, such as thai at
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locality MMD4-21, has been folded and includes older, metamorphosed rocks not found in 

later outwash; thus it may be associated with an older, perhaps Tertiary, glacial advance. 

Locality MMD4-21 is on the north limb of the northern of two parallel anticlines (sheet 5). 

Outwash there is composed of subrounded to rounded clasts of rock types present in 

drainage basins of the Canning River south of the Sadlerochit Mountains: argillite; 

sandstone presumably of the Sadlerochit Group; and lesser amounts of quartz-pebble 

conglomerate; chert-pebble conglomerate; limestone presumably of the Lisburne Group; 

mafic volcanic rock with green vug filling, possibly Katakturuk greenstone; and mafic, 

aphanitic rock. The modal diameter of these clasts is 0.05 m and the maximum clast 

observed is 0.3 m in diameter.

Outwash probably associated with the early Pleistocene glaciation was deposited 

around the areas uplifted in the anticlines and on the Coastal Plain north of the northern 

anticline. Folding of these anticlines must have been concurrent with deposition of the 

moraine to have resulted in folding of the moraine and selective deposition of the associated 

outwash. The early Pleistocene outwash is exposed at locality MMD3-3 on the east end of 

the northern anticline. Clasts present at locality MMD3-3 include rock types common in 

the Sadlerochit and Shublik Mountains: sandstone presumably of the Sadlerochit Group; 

chert-pebble conglomerate; limestone presumably of the Lisburne Group; dolomite 

presumably of the Katakturuk Dolomite; and the mafic, aphanitic rock. Metamorphosed 

rocks are absent in the younger outwash. As at locality MMD4-21, these clasts are 

subrounded to rounded, have a modal diameter of 0.05 m, and a observed maximum 

diameter of 0.4 m.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Outwash sediments on the Coastal Plain north of the northern anticline are covered 

by eolian sand overlain by lacustrine silt and peat. This sand is well exposed at locality 

MMD4-18. There, the lacustrine sediments are 0.4 m thick and the underlying eolian sand 

is 4.1 m thick. A basal sample of the sand (MMD4-18B) yielded a thermoluminescence date 

of 26 + /-  2.9 ka (ALPHA 2602), a probable young minimum age for the underlying outwash 

sediments.

Outwash sediments covered by eolian sand are also present between the Sadlerochit 

River and Nataroarok Creek, and east of the Hulahula River. Dominant clast types in 

outwash there are common to drainage basins of the Sadlerochit and Shublik Mountains and 

of the Brooks Range south and east of these mountains: gray and brown sandstone 

presumably of the Sadlerochit Formation; schist; and granitic rock. Present in lesser 

amounts are dolomite presumably of the Katakturuk Dolomite; limestone presumably of 

the Lisburne Group; and gray-green volcanic rock . The outwash and overlying eolian sand 

are probably equivalent in age to these types of sediment between the Canning and 

Tamayariak Rivers. The rationale for the proposed age equivalency is that, as in the 

Canning River drainage, outwash in the vicinity of the Sadlerochit and Hulahula Rivers is 

north of and probably associated with a moraine of early Pleistocene till. This moraine was 

left by a glacial advance down the Hulahula River drainage and is the most extensive 

recognizable moraine in that drainage.

Flood-plain surfaces and constituent gravels in the vicinity of the Sadlerochit and 

Hulahula Rivers, as in other parts of ANWR and on the Canning River fan, are mid- 

Holocene or younger. These surfaces are incised into older terrace deposits, which at
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locality MMD1-7, are capped by peat that yielded a maximum age of 5.870 + /- 0.090 ka 

(GX 11747).

Gravel Sheets. Elevated terrain between the east fork of the Tamayariak River and 

the Sadlerochit River, and in particular, fan-shaped surfaces with apices near the Sadlerochit 

Mountains, are capped with alluvial gravel. On the basis of topography and cross-cutting 

relationships, this gravel predates adjacent till, outwash, and alluvial sediments (Carter and 

others, 1986c; sheets 5 and 6). Variations in composition and clast size in two sections in 

particular, MMD2-4 and MMD2-18 (figure 5.15), suggest that two distinctly different gravel 

sheets are present.

Stratigraphic section MMD2-4 clearly shows the two gravel sheets superposed. The 

underlying gravel at this locality is estimated to be 5 m thick, which is generally 

representative of many locations. This older gravel consists chiefly of rocks common to the 

core of the eastern Sadlerochit Mountains and drainage basins of the Brooks Range: 

metamorphic rocks like those of the Neruokpuk Formation, but including lesser amounts 

of Sadlerochit Formation sandstone; Lisburne Group limestone; shale; quartz-pebble 

conglomerate; and dolomite. Clasts are subrounded to rounded and, as at many other 

localities, have a modal diameter of 0.05 m; the observed maximum clast diameter is 0.2 m. 

The younger gravel is chiefly rock types common in the Sadlerochit Mountains: Sadlerochit 

Formation sandstone and Lisburne Group limestone, but including lesser amounts of 

Katakturuk Dolomite. The modal diameter of clasts is 0.05 m and the observed maximum 

is 0.4 m. The thickness of the younger gravel at this location is approximately 20 m.
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SANDY GRAVEL: GRAY.
BROWN, AND RED SANDSTONE: 
GRAY QUARTZITE;
DOLOMITE: WEATHERED 
LIMESTONE; DENSE 
GRAY LIMESTONE;
ABUNDANT WOOD;
ORGANIC MUD AT BASE.
0.05M THICK; CLASTS 

-TO 0.15M, SUBROUNDED

17.2
-MMD2-18A (CONIFEROUS WOOD)

-MMD2-188 (ORGANIC)

GRAVEL AS ABOVE; 
LESS WOOD

21.4
MMD2-18C (CONIFEROUS WOOD) 

MMD2-18D MED. SAND

Figure 5.15 Stratigraphic sections MMD2-4 and MMD2-18 m easured north o f the 
Sadlerochit M ountains, suggesting that two distinctly different aged gravel sheets are 
present on some surfaces north of these mountains. The small black squares 
represent samples; sample num bers are adjacent to the right (e.g., M M D2-18A). 
Locations of these sections are shown on sheet 6.
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In section MMD2-18, 16.6 m of gravel like that capping section MMD2-4, but with 

clasts up to 0.6 m in diameter, apparently disconformably overlie the older gravel. However, 

the older gravel in section MMD2-18 includes rock types common to drainage basins in the 

Brooks Range south of the Sadlerochit and Shublik Mountains: quartzite but none of the 

other metamorphic rocks typical at other representative older gravel localities; gray and 

brown sandstone; and limestone, all of which are deeply weathered. Clasts are up to 0.2 m 

in diameter. The top 0.8 m of the older gravel contains abundant coniferous wood and is 

separated from underlying similar but wood-free sediments by a 0.05-m-thick, organic-rich 

mud. The underlying gravel is 4.2 m thick and overlies sand that is rich in coniferous wood 

and at least 1.4 m thick; colluvium covers the section below this point. The sand may be 

part of the Sagavanirktok Formation.

Gravel along the tops of ridges in the Marsh Creek anticline is the older of the two 

gravel sheets based on inclusion of metamorphic clasts and other rock types not typical of 

the younger gravel sheet. In stratigraphic sections MMD2-30 and MMD2-25 (sheet 6), 

which are on the north and south limbs of the Marsh Creek anticline, respectively, the older 

gravel overlies marine sediments of the Gubik Formation, which in turn overlie silty sand 

of the Sagavanirktok Formation. The Gubik Formation marine sediments in section 

MMD2-30 consist of 3 m of sand underlain by 2 m of silt; both the sand and silt contain 

marine shells.

Specimens of Astarte borealis (sample MMD2-30A) from the silt were analyzed for 

aspartic acid and other amino acids, and for alle/Ile; the aspartic-acid D /L  ratio is 

0.2544 + /- 0.0016, and some other acids are absent, suggesting an old age. The free
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(naturally hydrolyzed) and total (free plus peptide bound) acid hydrolysate fractions in each 

of three Astarte valves were analyzed and yielded the aUe/Ile ratios given in table 5.2.

137

Table 5.2 Results of amino-acid analysis on Astarte borealis (sample MMD2-30A). 
Analyses were conducted by staff of the University of Alberta.

Sample No. Lab No. Free Total
MMD2-30A UA 1781A 0.721 + /- 0.039 0.080

UA 178IB 0.681 0.139 + /- 0.008
UA 1781C 0.643 0.120

Despite the high alle/Ile ratio of the free hydrolysate fraction of sample UA 1781 A, 

the alle/Ile ratio of the total hydrolysate fraction indicates an age equivalent to the 

Fishcreekian type section. The 0.139 and 0.120 alle/Ile ratios of the total fractions of lab 

samples UA 1781B and UA 1781C indicate a Bigbendian age, suggesting that the specimens 

are probably reworked (J. Brigham-Grette, written communication, 1986). These ages agree 

with separate amino-acid analyses previously conducted on shells from this locality (Carter, 

personal communication, 1985).

The older of the two gravel sheets, then, postdates the Fishcreekian transgression, 

which perhaps occurred between 1.87 and 2.48 Ma ago. Wood from the older of the two 

gravel sheets at localities MMD2-27 and MMD2-9 is coniferous. Wood (sample MMD2-9A) 

from the second of these localities yielded an aspartic-acid D /L  ratio of 0.0802 + /- 0.0016. 

Nonconiferous wood (sample MMD2-UA) from silt underlying the old gravel at locality 

MMD2-11 yielded an aspartic-acid D /L  ratio of 0.0379 + /- 0.0011. Such low ratios in 

obviously old samples based on stratigraphic position suggest bacterial attack or other 

modification. Wood from the Nuwok Member of the Sagavanirktok Formation in section 

MMD2-8 is nonconiferous. The single wood sample (MMD3-12A) analyzed from the
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younger gravel sheet yielded an aspartic-acid D /L  ratio of 0.0471 + /- 0.0026; this sample 

too has probably been subjected to bacterial attack or other modification.

Significant Findings, Implications, and Interpretations

Geologic mapping, observations, and analysis of samples from fluvial sediments 

across the study area collectively allow interpretations regarding or relating to drainage 

history, vegetation and climate, correlation of sediments, and tectonism.

Drainage History

Alluviation in the Prudhoe Bay area and presumably in nearby areas has been 

ongoing since the Tertiary Period as shown by nearly 500 m of alluvium overlying 

Cretaceous bedrock (Sohio Alaska Petroleum Company, 1982).

In addition to obvious sources of sediments in the area between the Colville River 

and the Canning River fan, Tertiary uplands to the south and drainage basins of the 

Kuparuk, Sagavanirktok, Kadleroshilik, and Shaviovik Rivers, sediment may have been 

derived from the Colville River drainage basin. On the basis of terraces identified on aerial 

photographs and satellite images, Cannon and Rawlinson (1979) hypothesized that the 

Colville River once continued its northeastward trend south of the White Hills and Franklin 

Bluffs uplands and drained across the Coastal Plain, rather than turning northward near 

Umiat as it does today. This drainage was hypothesized to first drain across the Coastal 

Plain in the vicinity of the modern Kadleroshilik and Shaviovik River drainages, and later 

in the vicinity of the Sagavanirktok River drainage.
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Such a former trend of the Colville River was corroborated by Carter and Galloway 

(1985b), who mapped an extensive gravel terrace along the Colville River near Umiat that 

can be traced eastward to where it merges with the gravel surface across which the Kuparuk 

River now flows. Capture of the Colville River and later the Itkillik River by north-flowing 

streams northeast of Umiat resulted in abandonment of the eastward channel (Dinter and 

others, 1987). The time of capture probably postdates the early Pleistocene Anaktuvuk 

River glaciation because major downcutting on tributaries of the Colville River west of the 

Anaktuvuk River postdates this glacial advance (Hamilton, 1986b). The probable 

post-Fishcreekian age of the highest alluvial terrace east of the Colville River corroborates 

an early Pleistocene age for the time of stream capture.

Surface morphology identified on aerial photographs and satellite images further 

suggests a complex drainage history for the area between the Kuparuk and Sagavanirktok 

Rivers. Sheet 3 shows cross-cutting relationships of streams in this area. Drainage from 

the Sagavanirktok River area appears to have once flowed northwest to the Kuparuk and 

Putuligayuk drainages. The present Putuligayuk River is underfit relative to the size of the 

flood plain and associated terraces, which near the mouth at Prudhoe Bay are collectively 

4 km wide, essentially the width of Prudhoe Bay (sheet 3). The width of these terraces 

suggests that they are more the result of greater drainage from the Sagavanirktok River 

area than of drainage solely from the Putuligayuk River basin. Analysis of the compositions 

of clasts in the Putuligayuk and Sagavanirktok drainages has not been done to test this 

hypothesis. Further, correspondence of the terrace width with the width of Prudhoe Bay 

suggests that the formation of Prudhoe Bay is related to the terrace sediments (Cannon and 

Rawlinson, 1979). Prudhoe Bay may have started as an estuary of a larger stream, or may 

have formed from preferential erosion of the terrace sediments, or both.
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The time when the Sagavanirktok River drained into the Kuparuk and Putuligayuk 

drainages may be indicated by dates obtained for the organic-rich, fluvial beds exposed deep 

in the gravel pits along the Putuligayuk River. These dates suggest active alluviation in that 

area back to the Sangamonian Interglaciation.

Probable Pelukian marine sediments exposed at depth near the mouth of the 

Putuligayuk River may push the time of drainage from the Sagavanirktok River area to 

pre-Sangamonian. An embayment in which these sediments were likely deposited may have 

been an early Prudhoe Bay formed from preferential erosion of the terrace sediments, or 

an estuary of a larger river. The latter interpretation would also have terrace sediments in 

place at the time of the Pelukian transgression.

On the basis of amino-acid analysis of wood exposed near the base of the SAG C, 

END, KUP, and MP gravel pits, deeper sediments in the Sagavanirktok River drainage and 

perhaps underlying most of the area between the Kuparuk and Sagavanirktok Rivers, 

correlate with the Ugnuravik gravel exposed deep in the KUP and MP pits. The probable 

exception is the Putuligayuk River drainage, as suggested by radiocarbon, 

thermoluminescence, and amino-acid dates. Although most of the deposits in these areas 

are correlative, and perhaps date to the middle Pleistocene or older, no coniferous wood 

has been found in the gravel pits along the Sagavanirktok or Putuligayuk Rivers.

Coniferous and Nonconiferous Wood

During at least part of the time that the Ugnuravik gravel was deposited, both Larix 

and perhaps Salix were growing north of the Brooks Range, suggesting a climate much like
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that of interior Alaska today. The wood-rich zones in these sediments tend to be associated 

more with oxidized beds, supporting association of the wood with a warmer climate. If 

nonoxidation of some beds implies freezing soon after deposition and a continuous frozen 

state since that time, the stratigraphic section records alternating conditions conducive and 

not conducive to development of permafrost.

Hopkins (personal communication, 1985) suggested that because Larix seems to be 

an important palynomorph in sediments associated with the Fishcreekian transgression, 

Lnrac-bearing sediments in the Kuparuk and Milne Point oil fields may be of that age. The 

probable cross-cutting relationship of sediments in the Kuparuk oil field with sediments in 

Terrace C on the east side of the Colville River argues against this interpretation and 

suggests that the oil-field sediments are younger than Fishcreekian. Reworking of 

Fishcreekian sediments could have contributed Larix to sediments of the Kuparuk and 

Milne Point oil fields; however, the apparent abundance of this taxon argues against this 

interpretation. Amino-acid analysis suggests a minimum relative age of middle Pleistocene.

Growth of certain taxa in specific areas, perhaps controlled by local microclimates, 

is one alternative to reworking of older sediments to provide coniferous wood to fluvial or 

glaciofluvial sediments in the Kuparuk and Milne Point areas. Presumably, microclimates 

are responsible for stands of nonconiferous trees in a few modern North Slope drainage 

basins. This alternative falters when considering the modern distribution of Larix in Alaska. 

Today Larix is restricted to moist soils in drainages north to the Brooks Range and south 

to the Alaska Range (Viereck and Little, 1972), indicating less tolerance to dry soils and 

cold than Salix. The distribution of Larix and Salix wood in the gravel pits suggests that 

Larix and Salix were concurrently present on the Coastal Plain, except in the Sagavanirktok
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and Kuparuk drainages, where Larix was not present. This distribution is opposite that 

expected based on the modern distribution of these taxa in Alaska.

Perhaps the best alternative explanation for the apparent lack of Larix in sediments 

exposed deep in the area between the Kuparuk and Sagavanirktok Rivers is that sediments 

there are younger than sediments in the adjacent area to the west, and were deposited 

during a warmer, moister climate. The correlation based on amino-acid analysis is 

sufficiently wide that sediments exposed in the KUP and MP pits could be older than 

sediments exposed in the SAG and END pits. This interpretation implies that coniferous 

trees, including Larix, were growing on the Coastal Plain later than suggested by other 

investigators (Ager and Brubaker, 1985).

The presence of tree taxa, but especially Larix, deep in any of the gravel pits 

presents a paradox: how could locally warmer temperatures necessary to establish tree taxa 

on the Coastal Plain coexist with the colder global temperatures associated with lower sea 

level? Assuming that the gradient of the Coastal Plain has not varied significantly since the 

early Pleistocene, or perhaps as far back as the Fishcreekian, sea level would have to be 

lower by at least the same depth as wood in the pits; that is, between 10 and 15 m.

Carter and others (1986b) may provide a solution to the paradox. These 

investigators concluded that 85 percent of the period since Fishcreekian time has been 

dominated by cold climates. Fifteen percent of that period, however, was brief intervals 

(5 to 10 ka) of climate as warm as or warmer than today. The time required for tree taxa 

to move into an area following climatic amelioration is on the order of hundreds of years 

(Haugen and others, 1971; Viereck and Van Cleve, 1984); whereas, the time required for
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sea level to respond to climatic change is greater. On the basis of the Bermuda sea level 

curve, sea level rose from minus 121 + /- 5 m during the last glacial maximum to near the 

present level at rates between 4 and 24 m/ka (Fairbanks, 1989). Additionally, even though 

the mean annual temperature was low, exposure of the continental shelf could have resulted 

in a more continental climate with summers warmer than present. The northern limits of 

tree species of Larix, Betula, Alnus, and Salix are largely controlled by threshold amounts 

of accumulated summer warmth (Hopkins and others, 1981c). Thus, during brief warm 

intervals, especially during the summer months, these tree taxa could have been established 

while sea level rose only a small amount.

Correlation of Rolling Thaw-lake Plains

Coastal Plain sediments between the Sagavanirktok River and the western edge of 

the Canning River fan are thought to be approximately equivalent in age to sediments west 

of the Kuparuk River west terrace. Only a minimum radiocarbon date (>34.8 ka, at minus 

7.4 m, sample BPA3-13D) and a thermoluminescence date (36.8 + /- 4.0 ka, at minus 5.7 m, 

sample BPA2-13J) are available for sediments deep below the surface east of the 

Sagavanirktok River. These dates are associated with eolian or fluvial sands that either 

overlie or probably overlie sandy gravel and gravel. Abundant wood and old dates reported 

from the Kuparuk and Milne Point areas are associated with sandy gravel and gravel that 

underlie the eolian or fluvial sandy sediments.

Most gravel pits west of the Kuparuk River have been sited adjacent to existing 

streams after extensive exploratory borehole programs for gravel resources. These preferred 

sitings may indicate that sediments exposed in the pits were deposited by streams coincident
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with modern streams. This interpretation implies that sediments of the Coastal Plain 

between the streams may be different from in the pits. However, KUP D pit is an 

exception to siting adjacent to existing streams. The stratigraphy of this pit, along with 

proprietary borehole logs, suggest that the Coastal Plain between the streams in the area 

is not significantly different.

Surface morphology also suggests correlation of sediments west of the Kuparuk 

River with those east of the Sagavanirktok River. Both areas are rolling thaw-lake plains 

and exhibit numerous broad-based mounds. Broad-based mounds in the area between the 

Sagavanirktok River and the Canning River fan are abundant near the base of upland 

Tertiary sediments (Walker and Acevedo, 1987; sheets 3 and 4). The number of these 

mounds decreases northward. North of an imaginary line where marine sediments perhaps 

are present in the subsurface, mounds are either not present or only a few are present. 

Only one such mound was mapped in this study north of this line; this occurrence is 

between the Sagavanirktok and Kadleroshilik Rivers. Walker and Acevedo (1987) mapped 

five broad-based mounds in this area and one between the Kadleroshilik and Shaviovik 

Rivers. The distribution of the mounds east of the Sagavanirktok River suggests that 

marine inundation or the presence of marine sediments, or both, might have some relation 

with the distribution of the mounds.

Gravel Sheets and Tectonism

Because the Fishcreekian marine sediments and the overlying gravel were uplifted 

in the Marsh Creek anticline, the range of 1.87 to 2.48 Ma (Carter and others, 1986a) or 

possibly 1 to 1.5 Ma (Kaufman and others, 1990; J. Brigham-Grette, personal
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communication, 1990), is a maximum age for uplift of the anticline, and presumably for 

deformation and uplift of terrain to the south. The concept of recent and rapid uplift in the 

area was initiated by L. David Carter based on his USGS geological mapping program in 

ANWR. Carter will likely publish his concept with considerably more data than presented 

here and may or may not concur with this preliminary interpretation of age and extent of 

uplift.

A series of five terraces in the Katakturuk River canyon in the Sadlerochit 

Mountains provides further evidence of recent rapid uplift in the ANWR. The Katakturuk 

River is an antecedent stream that flows from Ignek Valley south of the Sadlerochit 

Mountains, through the Sadlerochit Mountains, and onto the Coastal Plain of ANWR. The 

highest of the terraces is approximately 95 m above the river flood plain and capped by the 

younger of two gravel sheets. On a profile roughly parallel to the Katakturuk River, this 

terrace falls along the slope angle of the highest terrain between the mountain front and the 

southern apex of a fan-shaped, gravel-covered bedrock surface between the Katakturuk 

River and the east fork of the Tamayariak River; the terrace and bedrock surface were 

presumably once connected (figure 5.16). Thus, since deposition of the younger gravel, the 

Sadlerochit Mountains have been uplifted as much as 95 m. The older gravel, which is 

present east of the Katakturuk River, may be from sources south of the Sadlerochit 

Mountains.

Southwest- to northeast-trending linear features identified on aerial photographs 

between the Kuparuk River and the Sagavanirktok River (sheet 3) and in several areas 

within ANWR (sheets 4 and 5) suggest structural instability during Holocene time. 

Although ground investigation showed no indication of such features south of Prudhoe Bay, 

the possibility of recent tectonism there should not be dismissed. Such tectonism could
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Figure 5.16 Profile of terrain west of the Katakturuk River in the Sadlerochit Mountains and northern Foothills, showing 
positions of a gravel-capped terrace and surface capped with gravel. Dashed line suggests past slope of surface and 
TP refers to a turning point in the profile.
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account for possible subsidence in the Prudhoe Bay area since at least Sangamonian time 

as suggested by the minus-9-m elevation of Pelukian sediments in the PUT 2 pit.
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CHAPTER 6 - GLACIAL SEDIMENTS OF THE GUBIK FORMATION

Introduction

Glacial sediments in the central Brooks Range have been studied in considerable 

detail by personnel of the USGS. Presumably correlative glacial sediments occur within or 

near the study area. These correlative sediments had previously received only 

reconnaissance study, essentially only small-scale mapping of the distribution and general 

descriptions of the characteristics. Detail is still lacking because of the enormity of the task 

of interpreting complex glacial sediments over this broad area.

With the exception of erratic boulders, unequivocal till is present in the study area 

only in the vicinity of the Sadlerochit Mountains. Elsewhere within the study area, erratic 

boulders and diamicton sediments hint at one or possibly two pre-Quaternary glaciations 

that extended well beyond the previously identified maximum limit of glacial advance on the 

Arctic Coastal Plain.

Glacial Episodes in the Brooks Range

Hamilton (1986a, 1986b) discussed four major glaciations in the Brooks Range and 

Foothills based primarily on investigations of till complexes and erratics in the central part 

of the range. Each glacial phase was apparently separated by long periods of weathering 

and erosion, as the degree of denudation of each till complex is distinctly different. 

Multiple glacial advances presumed to have occurred during each of the four glaciations are 

only distinguishable among the younger till complexes.
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Gunsight Mountain Glaciation. Hamilton (1979a) informally named the Gunsight 

Mountain glaciation for localized till with little topographic expression and erratic boulders 

near Gunsight Mountain on the north side of the Brooks Range (figure 1.1). The erratic 

boulders are present on pediments and uplifted plateaus, according to Detterman and others 

(1963) up to 25 km north of the limits of recognizable Pleistocene till; Gunsight Mountain 

till, therefore, is considered to be late Tertiary. The boulders are generally found 

weathering from alluvial gravel in which they were redeposited during a long period of 

stream erosion and pedimentation. During that time, stream courses north of the Brooks 

Range stood 50 to 100 m above present levels (Hamilton, 1986a). Surfaces formed by 

erosion after the Gunsight Mountain glaciation are related to extinct tributaries of the 

Colville River (Hamilton, 1986a), when it flowed from near Umiat eastward toward the 

Kuparuk and Sagavanirktok drainages.

Anaktuvuk River Glaciation. Detterman (1953) named the Anaktuvuk River 

glaciation for erratic boulders and till with subdued, yet easily recognizable morainal 

topography that extend 65 km north of the range along the Anaktuvuk River (Hamilton, 

1986b). Till of this glaciation is considered to be early Pleistocene (Hamilton, 1986a). 

Extensive moraines are continuous but subdued and show mature drainage and complex 

lake basins (Hamilton, 1986a). Till in the terminal moraine at the type locality is covered 

with silt and few erratic boulders are exposed (Hamilton, 1986b). Drainage channels in 

the Brooks Range during the Anaktuvuk River glaciation were approximately 100 m higher 

than modern channels. Subdued and discontinuous scarps visible on aerial photographs of 

terrain east of the headwaters of the Miluveach River (sheet 2) are perhaps also related to 

this elevated drainage.
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Sagavanirktok River Glaciation. Detterman (1953) named the Sagavanirktok River 

glaciation for till with morainal topography that extends approximately 50 km north of the 

Brooks Range along the Ivishak River, which on older maps was incorrectly labeled the 

Sagavanirktok River (Hamilton, 1986b). Till of this glaciation is considered to be middle 

Pleistocene and was deposited after a long period of valley enlargement and pedimentation 

that followed the Anaktuvuk River glaciation (Hamilton, 1986a). Some valleys contain two 

distinct sheets of till, which are thought to have been deposited early and late during the 

Sagavanirktok River glaciation. Moraines of the Sagavanirktok River glaciation, although 

subdued by mass wastage, retain much of the original topography and have immature 

drainage. Erratic boulders are also more prevalent than on older till (Hamilton, 1986a).

Itkillik and Walker Lake Glaciations. The fourth major glaciation occurred in the 

late Pleistocene and included two distinct advances, the older of which is termed the Itkillik 

glaciation (Detterman, 1953; Detterman and others, 1958), while the younger is designated 

the Walker Lake glaciation (Fernald, 1964). The Walker Lake glaciation is equivalent to 

the Itkillik II and late Itkillik II glacial phases of Hamilton and Porter (1975) and Hamilton 

(1979a). Tills of these glaciations are generally little eroded and can be distinguished from 

each other based on soil development, the degree of solifluction, and sharpness of 

morphology. Moraines of Itkillik glaciation till are oxidized to 1 m below the ground 

surface where drainage is good, and have been modified by solifluction and formation of 

patterned ground; whereas moraines of Walker Lake age show negligible solifluction and 

in many locations are still cored with ice (Hamilton, 1986a).

Hamilton (1979a, 1982) showed that the Itkillik glaciation is older than 50 ka. The 

glaciation is suspected to not be older than early Wisconsinan because some of the till
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included ice until the Holocene and some mountain valleys in the Brooks Range retained 

glacial ice between the Itkillik and Walker Lake glaciations. Radiocarbon dates of organic 

material in till of the Walker Lake glaciation are late Wisconsinan, ranging from 29 to

11.5 ka (Hamilton, 1986a).

Sediment Distribution, Character, and Age 

Sadlerochit Mountains Area

Glacial till is unequivocally present within the study area in the vicinity of the 

Sadlerochit Mountains (figure 6.1). Four distinctive moraines are present within or 

associated with the Canning River drainage west of these mountains and are presumed to 

correspond to the four Pleistocene glaciations recognized elsewhere in the Brooks Range. 

The oldest two moraines, presumably from the Anaktuvuk River and Sagavanirktok River 

glaciations, extend into the study area (Carter and others, 1986c; Robinson and others, 1989; 

sheets 4 and 5). The extent of the Itkillik (?) moraine adjacent to the west of the Canning 

River, as indicated by Robinson and others (1989), is now thought to be about 2 km too 

great; the moraine actually extends about as far north as on the east side of the river.

Tills presumably from the Anaktuvuk River and Sagavanirktok River glaciations are 

also present within Ignek Valley between the Sadlerochit and Shublik Mountains to the 

south, and within the Sadlerochit and Hulahula River drainages east of these mountains as 

isolated outcrops and well-defined moraines. Robinson and others (1989) indicated that 

the oldest two moraines in the Sadlerochit and Hulahula River drainages presumably 

correspond to the Sagavanirktok River and Itkillik River glaciations. However, these 

moraines more likely correlate with the Anaktuvuk River and Sagavanirktok River moraines
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Figure 6.1 M ap showing locations of glacial sediments in the vicinity of the Sadlerochit and Shublik M ountains. The 
location of erratic boulders in this area is shown on figure 1.3.

t o



in the Canning River drainage based on similar morphology and extent.
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Tills of the Anaktuvuk River and Sagavanirktok River glaciations are not well 

exposed in the study area in the Canning River drainage. Cuts made into these tills by the 

Canning River and tributaries are generally colluviated and vegetated. As with moraines 

of this presumed age in the central Brooks Range (Hamilton, 1986b), eolian, colluvial, and 

in some places lacustrine silts fill topographically low areas. However, the sediments are 

well exposed in sections MMD4-11 and MMD4-9, both of which are within the Anaktuvuk 

River till (figure 6.1 and sheet 5).

Section MMD4-11 is 12 m of till with the exception of a zone of bedded silt in the 

middle of the section that may represent intercalated ice-contact lacustrine sediments. This 

silt, collected 5.8 m above the Canning River flood plain by Carter and Rawlinson in 1985, 

has normal magnetic polarity (L. David Carter, personal communication, 1986).

Section MMD4-9 is lacustrine silt overlying probable ice-contact lacustrine sediments 

(figure 6.2). The topmost lacustrine silt varies in thickness up to 5 m and unconformably 

overlies the ice-contact sediments. Peat (sample MMD4-9A) from the base of the upper 

lacustrine silt yielded a radiocarbon date of 9.640 + /- 0.510 ka (GX 11746), indicating that 

the silt probably represents an early Holocene thaw lake that formed in a depression in the 

moraine. The underlying probable ice-contact lacustrine sediments are sandy gravel with 

tillstones and other clasts up to 0.6 m  in diameter with zones of bedded silt. Peat (sample 

MMD4-9C) from a 0.6-m-thick silt about 2 m below the contact with the upper lacustrine 

silt (7 m below the surface) yielded a radiocarbon date of >25 ka (GX 11745).
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Slope failure below where the peat was sampled precludes further stratigraphic 

inferences. Bones, including a 0.2-m-long femur (sample MMD4-9E), scattered on top of 

the slumped deposits were initially thought to be from those deposits. The femur, however, 

yielded a radiocarbon date of 1.185 + /- 0.070 ka (GX 11937), which suggests that it was 

derived from the upper lacustrine silt.

Probable pre-Pleistocene erratic boulders, some 2 m in diameter, are present several 

kilometers south of the Kavik River airstrip in the hills west of the Kavik River (figure 6.1). 

Approximately 16 km north of Kavik River airstrip, diamicton sediments crop out on an 

upland at locality MMD5-3 (sheet 4). The sediments north of Kavik airstrip consist of iron- 

stained gravel, chiefly deeply weathered pebbles and cobbles of sandstone, in a muddy 

matrix.

Kachemach and Miluveach Rivers Area

Carter (1983b) first reported erratic boulders within and south of the study area in 

the headwater basins of the Miluveach and Kachemach Rivers. These erratic boulders 

occur in the Kuparuk gravel, which may be till or alluvium into which the erratics have been 

redeposited. One erratic boulder of chert-pebble conglomerate is 10 m in diameter. David 

M. Hopkins (personal communication to L. David Carter, 1986) suggested that this boulder 

may not be an erratic, but formed by secondary cementation of in-place gravel (Carter, 

personal communication, 1987). Whether the boulder is an erratic is unknown; if it is 

eventually determined to be so, the till versus alluvium origin of the Kuparuk gravel will be 

resolved because a boulder of that size certainly exceeds the competence of nearly all 

streams.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Kuparuk gravel is truncated by Colville River marine Terrace A. However, 

erratic boulders occur as erosional lag at least 10 km north of the southern Terrace A scarp, 

indicating that glacial ice extended to within 30 km of the present coast (Carter and 

Galloway, 1985a; Dinter and others, 1987). When this glacial advance occurred is uncertain. 

The maximum age is established by Paleocene sediments that underlie the Kuparuk gravel; 

the minimum age is established by the late Tertiary Colvillian marine transgression, which 

occurred between 2.4 and 3.5 Ma ago and formed the Terrace A southern scarp. The 

Kuparuk gravel is further known to be older than fluvial terraces associated with the 

Gunsight Mountain glaciation (Carter and Galloway, 1985a; Dinter and others, 1987).

Significant Findings, Implications, and Interpretations 

Pre-Pleistocene Till and Tectonism

Erratic boulders in the hills south of Kavik airstrip are well beyond the western limit 

of the early Pleistocene till in the Canning River drainage, but must have been associated 

with glaciers in the Canning River drainage because the Kavik River drainage basin seems 

too small to have supported such a large advance of glacial ice.

Whether pre-Pleistocene till was ever present in the study area north of the 

Pleistocene tills associated with the Canning, Sadlerochit, and Hulahula Rivers is unknown. 

However, the presence of erratic boulders west of Kavik River suggests that pre-Pleistocene 

till, perhaps in association with the Gunsight Mountain glaciation, may have been present 

in those areas. If so, that till has since been covered or reworked. Further, outwash from 

pre-Pleistocene glaciation probably represents much of the older subsurface parts of the
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Canning River fan and adjacent areas, and of fans associated with the Sadlerochit and 

Hulahula Rivers.

Diamicton sediments in the upland north of Kavik airstrip have always been assumed 

to be older Tertiary because of the deformation, deep weathering, and iron staining. 

Outwash sediments covered with silt occur north of these diamicton sediments. The 

diamicton and outwash sediments have been uplifted and may be part of the north limb 

of an eroded anticline.

The upland is immediately north of the trend of an anticlinal axis that can be traced 

discontinuously from west of the Tamayariak River to west of the Canning River. The 

anticline has folded the Anaktuvuk River till, but not the Sagavanirktok River till in the 

Canning River drainage. Uplift of the anticline, and perhaps the upland north of the Kavik 

River airstrip, thus predates the middle Pleistocene Sagavanirktok River glaciation. Uplift 

of the anticline was likely initiated in the late Tertiary and continued through the early 

Pleistocene. Uplift of the upland during this time would not preclude association of the 

diamicton and outwash sediments exposed in the upland with the late Tertiary Gunsight 

Mountain glaciation or the earlier Tertiary glaciation with which the Kuparuk gravel is 

associated. Whether the diamicton is associated with the Gunsight Mountain glaciation, or 

is older Tertiary, has yet to be determined.

Anaktuvuk River Glaciation and the Olduvai Chron

On the basis of morphology and extent, the most extensive recognizable moraine in 

the Canning River drainage correlates to the early Pleistocene Anaktuvuk River glaciation.
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Normal magnetic polarity of the sediments thus restricts the age to either the Olduvai or 

Jaramillo chrons. The Olduvai chron, which occurred between 1.72 and 1.88 Ma ago 

(Harland and others, 1982) seems more probable because of better representing early 

Pleistocene time; the Jaramillo chron occurred late in the early Pleistocene. Alternatively, 

the modern normal polarity may have over-printed an earlier polarity. Nonconiferous 

wood (sample MMD4-11B) from the slope about 2 m above the Canning River flood plain 

at this locality yielded an aspartic-acid D /L  ratio of 0.0518 + /- 0.0003 (UA 1776). Such a 

low ratio in an obviously old sample based on stratigraphic position suggests bacterial attack 

or other modification.
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CHAPTER 7 - EOLIAN SEDIMENTS OF THE GUBIK FORMATION

Introduction

Although eolian sediments are ubiquitous within the study area, they had received 

little study. In contrast, considerable attention has been given to eolian deposits in the 

Foothills of the Brooks Range and on the Coastal Plain west of the study area by personnel 

of the USGS. These USGS studies have resulted in interpretations on past climates that 

are certainly applicable to the study area.

Eolian sediments on the Coastal Plain range from loess and very fine sand in sheets, 

to fine and medium sand in sheets, dunes, and sand wedges. The loess and very fine sand 

are primarily present on the Foothills of the Brooks Range and adjacent inner edge of the 

Coastal Plain up to several tens of meters thick (Carter, 1988) and have been termed 

"Foothill Silt" (O’Sullivan, 1961) and "Upland Silt" (Williams and others, 1978; Carter and 

others, 1986c). With the exceptions of the coastal zone west of Harrison Bay and some 

Holocene alluvial terraces, the fine and medium sand is present elsewhere on the Coastal 

Plain up to several tens of meters thick (Dinter and others, 1987).

Eolian Sediments and Past Climates

Carter and others (1984) described four periods during the Wisconsinan and early 

Holocene of contrasting seasonal climate in Arctic Alaska based on studies of upland loess 

and of extensive sand deposits in NPRA, termed the Ikpikpuk dunes (e.g., Carter, 1981, 

1983a,c). These periods emphasize eolian sand transport, soil development, and contrasting

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



fluvial regimes, and roughly correlate with Beringian climatic periods defined by Hopkins 

(1982) (table 7.1).

Sediment Distribution, Character, and Age

Beechey Sand

Rawlinson (1986a) named as the Ugnuravik sand eolian sediments that overlie the 

Ugnuravik gravel in the KUP C gravel pit. Herein, to avoid confusion with the Ugnuravik 

gravel, the Ugnuravik sand is renamed the Beechey sand, after the Beechey Point 

Quadrangle where it is most widespread. The new term follows the old term in its 

application to widespread eolian sediments on the Coastal Plain between the Colville River 

and the westernmost terrace scarp of the Kuparuk River, between the Sagavanirktok and 

Shaviovik Rivers, and along the coast between the Shaviovik and Canning Rivers. 

Additionally, the new term applies to the area adjacent to the east of the Canning River, 

but north of the Pleistocene till, and to isolated areas near the coast and inland between the 

Kuparuk River and the east bank of the Sagavanirktok River. The isolated areas were not 

specified in Rawlinson (1986a), although they were shown in figure 11-1 of that report as 

being covered by the sand.

Figures 7.1 and 7.2 show envelopes of cumulative-frequency-percent curves or individual 

curves and a gravel-sand-mud plot, respectively, based on grain-size analysis of Beechey sand 

from gravel pits in the area between Kalubik Creek and the Kuparuk River, section 

BPA2-23 east of the Sagavanirktok River, and section MMD4-18 east of the Canning River 

(appendix E). The following textural categories are apparent: samples consisting
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Table 7.1 Conditions during Wisconsinan and Holocene periods of contrasting seasonal 
climate recognized by Carter and others (1984).

Chronology

Period 1 

? - 36 ka

Period 2 

36 - 13.5 ka

Period 3

13.5 - 11 ka

Hopkins (1982) Mid-Boutellier Mid-Boutellier Early Birch 
Interval

Temperature

Precipitation

Flora

Fauna

Eolian

Drainage

Other

Equal to or 
slightly less 
than present

- Duvanny Yar 

Cold

Drier than Drier than 
present; wetter period 1 and 
than period 2; present; patchy 
moderate 
snow cover

Abundant wood 
and organic 
debris;
discontinuous 
shrub tundra on 
interfluves

Warming; 
warmer than 
present

Wetter than 
present

Period 4 

11 - 8 ka 

Late Birch

Warmer than 
present

Drier than 
present

snow cover

Very little 
wood; dwarf 
birch gone

Abundant wood Abundant wood 
and organic and organic
debris debris

Ikpikpuk dunes 
active; upland 
loess deposition

Herbivores 
prior to 28 ka; 
few remains 
between 28 and
14.5 ka

Eolian 
processes 
dominated 
landscape 
development; 
Ikpikpuk dunes 
upland loess 
deposition

Ikpikpuk dunes 
stable at 12 ka

Sand movement; 
sand sheet on 
much of Coastal 
Plain; ceased 8 
ka ago

Ice wedges; 
paleosols; 
ice-wedge 
pseudomorphs

Not through- Through-flowing Through-flowing
flowing in in Foothills in Foothills
Foothills

Syngenetic ice Organic soil Organic soil
wedges; sand development; ice development
wedges, most wedges initiated
active late in north and east of
period Ikpikpuk dunes
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Figure 7.1 Envelopes of cumulative-frequency-percent curves for 11 Beechey sand samples 
and plots of curves for Beechey sand samples MMD4-18C and HBB1-19B. Most of the 
samples are sand with insignificant percentages of coarser and finer grains (cross
hatched pattern); some samples are sand with small percentages of coarser and finer 
grains (diagonal pattern); and samples MMD4-18C and HBB1-19B are gravelly muds. 
Locations of sections MMD4-18 and HBB1-19 are shown on sheets 5 and 1, 
respectively.
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Figure 7.2 Gravel-sand-mud plot of Beechey sand samples shown in figure 7.1. G - gravel; 
sG - sandy gravel; msG - muddy sandy gravel; mG - muddy gravel; gS - gravelly sand; 
gmS - gravelly muddy sand; gM - gravelly mud; (g)S - slightly gravelly sand; (g)mS - 
slightly gravelly muddy sand; (g)sM - slightly gravelly sandy mud; (g)M -slightly gravelly 
mud; S - sand; mS - muddy sand; sM - sandy mud; M - Mud. Diagram and 
nomenclature are from Folk (1980).
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dominantly of silt and clay; dominantly of sand and silt; and dominantly of sand. Samples 

of silt and clay typically have less than one percent sand, and samples of sand and silt 

generally include up to five percent of fine gravel. Amounts of silt and clay, and of sand 

and silt, respectively, in samples of the first and second categories, each vary between 40 

and 60 percent of the total sample by weight. Eight of 13 samples (62 percent) of Beechey 

sand are composed of between 90 and 99 percent sand, most of which is fine or very fine; 

medium sand is present in lesser amounts and gravel may be present in trace amounts. The 

remaining five samples are either mud, sandy mud, or muddy sand, all of which but two 

have a trace amount of gravel. Gravel in the Beechey sand is typically polished or 

ventifacted and probably was introduced into the sand from underlying deposits by frost- 

related processes.

The silt and clay sample HBB1-19B occurs at the top of the inland KUP F pit, which 

also yielded two dominantly sand samples. The other dominantly sand samples are from 

the near-coast MP and KUP E pits. Thus, position within the area west of the Kuparuk 

River seems not to be a factor in determining the distribution of each textural category. 

The other silt and clay sample, MMD4-18C, is from a location on the east bank of the 

Canning River and may be representative of most eolian sediments in that area. 

Redeposited eolian sediments that overlie gravel sheets and outwash deposits east of the 

Canning River are qualitatively described as organic silt.

The Beechey sand is essentially barren of dateable organic materials, suggesting that 

when it was deposited conditions were not conducive to propagation or preservation of such 

materials. Such a time was the second climatic regime proposed by Carter and others 

(1984), which occurred between 36 and 13.5 ka ago (table 7.1). The few
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thermoluminescence dates of basal Beechey sand indicate that it was deposited primarily 

during the latter part of this climatic regime. Sample BPB5-32D from the base of the 

Beechey sand in the type section, 1.7 m below the surface, yielded a thermoluminescence 

date of 24.6 + /- 1.5 ka (ALPHA 2598). A similar thermoluminescence date of 26.0 + /-

2.9 ka (ALPHA 2602) was obtained from a basal eolian sand sample in section MMD4-18, 

adjacent to the east of the Canning River. There, the sand is 4.1 m thick and overlies 

sandy-gravel outwash.

Thermoluminescence analysis of probable fluvial sand (sample BPA2-13J) 5.7 m below 

the surface in section BPA2-13 yielded a date of 36.8 + /-  4.0 ka (ALPHA 1530). The dated 

sand is the lowest of several such beds interbedded with fine sandy gravel over a 

stratigraphic interval of 1.4 m. Eolian sand 3.4 m thick overlies this interval of interbedded 

sediments. A date for the basal part of the eolian sand is not available; however, the 

1.4-m-thick interval between this sand and the dated horizon may account for the 

approximate 13 ka age difference of other basal Beechey sand samples.

Although of similar thickness, the 1.7-m-thick eolian sand exposed near the top of the 

KUP E gravel pit (figure 5.8, section BPB5-31; samples BPB5-31A and BPB5-31B) is 

apparently younger than the Beechey sand elsewhere. Silt (sample BPB5-31F) underlying 

this sand yielded a thermoluminescence date of 11.9 + /-1 .8  ka (ALPHA 1493), suggesting 

that the sand is Holocene. Eolian sand exposed near the top of MP gravel pit (figure 5.9, 

section BPB4-16) is only 0.5 m thick. No age data are available for this sand; however, 

underlying organic silt (BPB4-16B) yielded a radiocarbon date of >44.0 ka.
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Upland Loess

Wide, unvegetated flood plains on the Coastal Plain during the Wisconsinan are 

undoubtedly responsible for much of the loess that mantles upland areas within and south 

of the study area. Radiocarbon and thermoluminescence dates from materials in 

stratigraphic sections south and west of the study area show that loess deposition was 

ongoing in the middle Wisconsinan, but was particularly active during the Walker Lake 

glaciation (Carter, 1988). Although no age information is available, silt that overlies gravel 

sheets and early Pleistocene till in ANWR is probably of equivalent age; much of this silt 

has been retransported and thus includes a large Holocene organic component.

Holocene Sand Deposits

Following stabilization of Coastal Plain eolian sediments approximately 8 ka ago, small 

parabolic and longitudinal dunes were deposited over the Ikpikpuk dunes west of the 

Colville River. This renewed sand deposition may have resulted from destabilization of the 

sand surface brought on by a cooler and drier climate associated with late Holocene 

neoglaciation in the Brooks Range (Dinter and others, 1987).

Similar Holocene dunes, some of which have been stabilized by vegetation or a thin 

tundra mat, are present within or downwind of nearly all the active river and delta systems 

and along the seaward edge of tundra-covered barrier islands that have a beach. Such 

deposits associated with the Sagavanirktok and Colville River Deltas are particularly well 

developed. Longitudinal dunes downwind of the Sagavanirktok River Delta and river flood 

plains are up to 4.5 km long and 6 m high, although most are smaller. These dunes and a
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veneer of sand downwind of the dunes locally fill thaw-lake basins and low-centered, 

ice-wedge polygons. Unstabilized dunes associated with the Sagavanirktok River Delta are 

commonly eroded into yardangs.

Dunes on the Colville River Delta occur as transverse ridges along the upwind margin 

of abandoned flood-plain surfaces adjacent to active channels. The longitudinal component 

of these dunes is relatively small, often because of spatial constraints. Examples of such a 

surface and overlying dunes are exposed at sections HBB2-4 and HBB 1-2 (sheet 1). At 

section HBB2-4, eolian sand up to 5 m thick overlies 2 m of peat with interbedded fluvial 

sand. The eolian sand includes organic interbeds that indicate alternating periods of 

stability and renewed deposition, probably the result of channel migration. At section 

HBB1-12, 0.8 m of interbedded roots and peat overlies approximately 2 m of eolian sand, 

which in turn overlies 2.6 m of sandy alluvium. A lens of peat (sample HBB1-2A) in the 

alluvium 0.4 m below the contact with the eolian sand yielded a radiocarbon date of 

7.440 + /-  0.100 ka (BETA 23739). This maximum age for the eolian sand is consistent with 

the concept of renewed eolian activity associated with Holocene neoglaciation.

Significant Findings, Implications, and Interpretations 

Beechey Sand and Broad-based Mounds

A truncation of broad-based mounds 3 to 15 kilometers inland between the Colville and 

Kuparuk Rivers, and a similar truncation between the Sagavanirktok and Shaviovik Rivers 

may result from an insufficient thickness of Beechey sand near the coast (figure 5.5 and 

sheets 2 and 3). However, marine sediments, which are possibly part of the substrate
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between the Sagavanirktok and Shaviovik Rivers, may also be involved with the truncation 

in that area. The broad-based mounds contribute to the gently rolling thaw-lake plains of 

Walker and others (1985). Thus, the line of truncation also separates gently rolling thaw- 

lake plains from flat thaw-lake plains, contrary to mapping by Walker and Acevedo (1987).

Williams and others (1977) and Galloway and Carter (1978) indicated that pingos 

preferentially form in thaw-lake basins that have formed in ice-rich eolian sand or eolian 

sand that has been reworked by fluvial processes. Hopkins (personal communication, 1990) 

also suggested that pingos form readily when gravel (e.g., the Ugnuravik gravel) underlies 

such ice-rich sediments. Radiocarbon dates of basal organic material in thaw-lake sediments 

indicate that thaw lakes, and thus pingos, did not exist on the Coastal Plain prior to about 

12 ka ago. On the basis of morphology and one borehole in a broad-based mound (C-60) 

east of the KUP C gravel pit (Brockett, 1982), many of the broad-based mounds apparently 

are true pingos and thus formed within lake basins that have subsequently been destroyed 

by younger thaw lakes. If the Beechey sand was sufficiently thick to preferentially support 

thaw lakes only south of the line of truncation in the latest Wisconsinan and early Holocene, 

that area might have been where thaw lakes first developed and consequently where the 

oldest of the pingos are now located.

Thermoluminescence dates and the absence of organic material in the Beechey sand 

indicate that the sand is late middle to late Wisconsinan. Relatively young eolian sand at 

the top of the KUP E pit (section BPB5-31) and the thin eolian sand at the top of the MP 

pit (section BPB4-16) suggest deposition later than most of the Beechey sand. The few 

broad-based mounds north of the line of truncation might be explained by isolated areas of 

early deposition of sand.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The orientation of the oldest of the Ikpikpuk dunes west of the Colville River shows 

that the wind direction has been northeasterly since at least the first climatic period 

proposed by Carter and others (1984). The geometry of the Coastal Plain undoubtedly 

provides sufficient area upwind to supply sand to the area south of the line of truncation 

and increasing thickness of sand at the foot of downwind uplands is expected.

Eolian sand deposited during the first climatic period discussed by Carter and others 

(1984) is apparently limited or absent east of the Colville River. Paucity of these sediments 

there suggests either that such sand was present and subsequently eroded, or that sand 

composing the early Ikpikpuk dunes was derived from the Colville River flood plain and 

delta, and areas to the east. The apparently long hiatus between deposition of the 

Ugnuravik gravel and the Beechey sand suggests that erosion rather than deposition has 

been the dominant process on interfluves east of the Colville River since the middle 

Pleistocene. Further, proximity of Foothill and mountainous areas to the coast and steeper 

topographic gradients east of the Colville River undoubtedly provided a setting conducive 

for braided outwash streams during the Wisconsinan; such streams still dominate the 

Coastal Plain east of the Colville River. The wide, typically unvegetated flood plains of 

braided streams are recognized to be sources of enormous amounts of eolian sand and 

loess, especially during glacial climates (Washburn, 1980).
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CHAPTER 8 - LACUSTRINE SEDIMENTS OF THE GUBIK FORMATION

Introduction

Thaw lakes and associated sediments are ubiquitous on much of the Coastal Plain 

including the study area. These lakes have received considerable attention by previous 

investigators, especially in the vicinity of Barrow and on the western part of the Coastal 

Plain; this preferential attention is more related to proximity of the former Naval Arctic 

Research Laboratory rather than unique attributes of lakes at that location. Although 

simple in concept, an adequate description of the ideal and typical stratigraphic section 

through thaw-lake sediments had not been presented until recently (Hopkins and Kidd, 

1988).

Water bodies on the Coastal Plain range from ponds several meters long to elongated 

lakes typically up to 15 km long and 5 km wide (Black and Barksdale, 1949). The depth of 

these lakes ranges from 0.6 to 6 m and is related to the volume of ice in the ground, local 

relief, and possibly the age of the basin (Sellman and others, 1975). Teshekpuk Lake, the 

largest lake on the Coastal Plain, is 40 km long and 28 km wide, and formed by coalescence 

of several large lakes. Flat surfaces underlain by fine-grained sediments that contain a high 

percentage of ground ice are conducive to development of large lakes (Sellman and others, 

1975); such conditions exist in the area around Teshekpuk Lake.
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Thaw-lake Cycle

A thaw-lake cycle originally presented by Britton (1957) is fundamental to development 

of the regional landscape of the Coastal Plain. Through the thaw-lake cycle, lakes tend to 

form, drain, and reform in different places over the Coastal Plain, resulting in an overall 

lowering of the ground surface from loss of ground ice. Billings and Peterson (1980) 

elaborated on the thaw-lake cycle by noting: (1) emergence of the Coastal Plain sediments; 

(2) development of permafrost; (3) formation of thermal contraction cracks in permafrost; 

(4) growth of ice wedges; and (5) development of low-centered, ice-wedge polygons 

(figure 8.1).

Formation of thaw lakes is related to melting of permafrost, which can be caused by 

disruption of the vegetation mat by mass movement, the action of wind or water, or 

accelerated thaw beneath pools at intersections of ice wedges or the centers of ice-wedge 

polygons (Hopkins, 1949; Billings and Peterson, 1980). Pools of water coalesce by thawing 

to form thaw ponds; once formed, they continue to enlarge by thawing and slumping at the 

pond margins. Most shorelines of the ponds and lakes are scalloped because of preferential 

erosion along ice wedges. Wave erosion of thawed banks becomes an important process 

after the lake has attained a diameter of about 30 m (Hopkins, 1949; Black, 1969).

In flat, undissected terrain, expansion of the lake by thaw and erosion removes interlake 

divides, resulting in coalescence of lakes. In dissected or rolling terrain, lakes usually 

expand into lower ground. Expansion of a given lake continues until drainage lines open 

and the lake is partially or completely drained. A surface pattern of ice-wedge polygons 

rapidly develops in the drained basin if previously existing ice wedges were not completely
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contraction cracks in permafrost, the top of which is shown by the dashed line; (2) ice 
wedges and low-centered, ice-wedge polygons develop in the sediments; (3) thaw ponds 
form by erosion and coalescence of low-centered, ice-wedge polygons; (4) a mature, but 
shallow thaw lake with benches; polygons remain visible on the benches because of 
persistence of ice wedges; (5) a drained, shallow thaw lake; (6) a shallow thaw-lake 
basin in which old ice wedges are re-established; (7) a deep, large thaw lake with 
underlying thaw bulb. Diagram is modified from Billings and Peterson (1980).
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thawed earlier in the cycle (Walker and others, 1980). In lakes less than 2 m deep, where 

seasonal ice freezes to the bottom, incomplete thawing may result; conversely, a perennial 

thaw bulb rapidly develops under lakes sufficiently deep to have water present all year. 

Even when ice wedges are completely thawed, permafrost and ice-wedge polygons are 

eventually re-established in the basin. Subsequent thawing of these ice wedges and 

permafrost, and displacement of the soil, results in a pool of surface water that may 

eventually become another lake.

Orientation of Thaw Lakes

Elongated thaw lakes on the Arctic Coastal Plain are generally oriented between 9 and 

21° west of north (Rex, 1961). Cannon and Rawlinson (1979) reported that lakes in the 

Prudhoe Bay area are oriented 10° west of north. Field observations, hydrodynamic theory, 

mathematical and experimental models, and wind records most support the concepts of Rex

(1961) and Carson and Hussey (1962) presented below. The concept of Carson and Hussey

(1962) was most recently supported by Kaczorowski (1977).

Rex (1961) concluded that elongation [and thus orientation] of a lake on the Coastal 

Plain results from relative differences in rates of littoral drift, and thus rates of erosion, 

around the margin of the lake. Maximum rates of erosion occur at the ends of a lake 

perpendicular to the prevailing wind, where littoral drift is highest, causing a deficit in 

sediment supply. Rex’s conclusion was based primarily on conclusions of Bruun (1953) that 

minimum littoral drift along a curved beach occurs directly downwind, and maximum drift 

occurs at a 50° angle between the deep-water angle of the waves and a line perpendicular 

to the shoreline. Rex (1961) explained the square to rectangular shape of lakes on the
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Coastal Plain by considering the wave orthogonals as an array from a sector, rather than as 

unidirectional.

Through detailed field investigations, Carson and Hussey (1960,1962) determined that 

the zones of maximum current velocity and littoral drift in a lake on the Coastal Plain, as 

predicted by Rex (1961), are valid in lakes with a fetch greater than 550 m. Carson and 

Hussey also validated Rex’s interpretation of lake shores as equilibrium forms adjusted to 

variations in the rate of wind-induced littoral drift.

Carson and Hussey (1962) further showed that wave-generated, equilibrium bottom 

profiles off downwind shores are quickly established in small, enlarging lake basins and that 

these profiles rapidly adjust to changes in lake depth. The result of this process is 

sublittoral shelves that insulate permafrost and damp storm waves, thus limiting lake 

expansion parallel to the prevailing wind, but not impeding expansion perpendicular to the 

wind. Carson and Hussey (1962) proposed that these sublittoral shelves are the most 

important factor in lake elongation during nearly all stages of lake enlargement.

Carter and others (1987) provided a historical overview of studies and explanations for 

the orientation of thaw lakes on the Arctic Coastal Plain, beginning with the initial study 

by Cabot (1947).
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Sediment Distribution, Character, and Age
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Multiple Lake Sequences

Multiple sequences of lake sediments are often preserved in the stratigraphic record. 

Section HBB2-1 west of the Colville River (figure 5.5) provides evidence of two thaw lakes. 

Deposits of the first lake lack a basal organic horizon; organic silt directly overlies late 

Wisconsinan alluvium, eolian sand, and a sand wedge that has intruded the alluvium. The 

organic-rich lake sediments are 0.6 m thick and fill two ice-wedge pseudomorphs in the sand 

wedge; these pseudomorphs presumably formed when the lake thawed the wedge ice. 

Organic silt (sample HBB2-1E) from one of the pseudomorphs yielded a radiocarbon date 

of 9.400 + /- 0.110 ka (BETA 23742). Sandy peat, 0.3 m thick and containing freshwater 

gastropods, overlies the organic silt of the first thaw lake.

The second lake is represented from bottom to top by a thin organic bed, which 

overlies the peat of the first lake, 0.6 m of bedded organic-rich silt, and 0.2 m of sandy root 

mat. A sample of the basal organic layer (HBB2-1A) was collected for eventual radiocarbon 

dating.

The radiocarbon date obtained from the first of the two lake cycles exposed at section 

HBB2-1 is consistent with other dates for lake sediments in the Prudhoe Bay area. These 

dates suggest that thaw lakes have existed on the Coastal Plain only since about 12 ka ago 

(Lewellen, 1972; Everett, 1975,1980a; Hopkins and others, 1981b; Rawlinson, 1983; Walker 

and others, 1985), when the climate ameliorated from previous glacial conditions; most of 

the dates tend to be younger than 9 ka. Hopkins and Kidd (1988) reported that the oldest
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of existing lakes on the Coastal Plain are between 4 and 5 ka, but that most lakes typically 

persist 2.5 to 3 ka.

Ideal Thaw-lake Section

As the margins of a lake erode, massive blocks of peat are moved short distances into 

the lake; fine-grained organic materials and sediments are carried to the lake center 

resulting in a peripheral zone of peat that grades laterally to a fine-grained sediment zone. 

This sequence is also preserved in the vertical stratigraphic section as the lake enlarges 

(Britton, 1957). The lower part of the ideal thaw-lake section thus has a basal zone of 

organic material that is commonly overlain by organic-rich silt or fine sand (Hopkins and 

Kidd (1988). The thickness of this part of the section is generally less than 1 m. The 

presence or absence of the basal organic component, and the composition of the clastic 

component, depend greatly on the character of the sediments being reworked by the thaw 

lake.

Lake-fill processes typically establish a cap of peat or roots, or both, up to 1.5 m thick 

above the clastic component. Fresh-water gastropods, commonly Physa sp. (R. Allison, 

personal communication, 1985) are sometimes present in the peat. The peat is generally 

vertically foliated, presumably from compressional and tensional stresses associated with 

thawing and freezing of the sediments between bounding ice wedges. The contact of the 

peat and the underlying fine-grained sediments is often irregular, with the peat 

interfingering into the sediments in the form of apex-down cones. Small lenses of peat are 

usually present in the underlying sediments, or less often, lenses of sediment are present in 

the base of the peat.
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In areas where thaw lakes are prevalent, gravelly muddy sand or similar sediment 

commonly overlies or, less commonly, is interbedded with the peat (figure 4.8, section 

BPA1-12; and figures 8.2 and 8.3). This muddy sand is widespread and usually less than

0.5 m thick. When wet, the muddy sand is gray; when dry, it is very light gray and shows 

a horizontal platy parting. Thin segregated ice is common in the muddy-sand bed; when 

thawed, the void space exhibits a boxwork structure. The origin of the muddy sand is 

uncertain.

Significant Findings, Implications, and Interpretations 

Coastal Erosion and Coastline Reconstruction

The relatively young lake basins that have been truncated by erosion along the Beaufort 

Sea coast attest to the reported rapid rates of coastal retreat (e.g., Dygas and Burrell, 1976; 

Lewellen, 1977; Hartz, 1978; Hopkins and Hartz, 1978; Cannon and Rawlinson, 1981; 

Kovacs, 1983; and Naidu and others, 1984). Thaw-lake basins that are truncated by coastal 

erosion are generally the sites of higher erosion rates (Cannon and Rawlinson, 1979). 

Because the basins are lower than the surrounding terrain, they are more subject to 

inundation by surge waters during storms. This inundation has the effects of thawing more 

ground ice, which lowers the surface even more, and of killing the wave-resistant tundra. 

Once the lake basin is near or below base level and much of the tundra is gone, wave 

impact results in mechanical erosion.

I l l
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Figure 8.3 Gravel-sand-mud plot of muddy-sand sample BPA1-8A in section BPA1-8; 
sheet 4. Refer to figure 7.2 for an explanation of the nomenclature. The diagram and 
nomenclature are from Folk (1980).
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Reconstruction of the outline of truncated lakes based on the remaining basinal outline, 

in conjunction with radiocarbon dates of enclosed organic material, may allow time-series 

reconstruction of the past coastline. Such reconstruction assumes that radiocarbon dates 

could be obtained that closely estimate the time of lake drainage.

Lake Orientation by Dunes and Structure

Some thaw lakes, especially in the eastern part of the Coastal Plain, tend to be oriented 

parallel to the prevailing northeasterly wind direction, or tend to be less elongate and 

roughly square. Many lakes on the west side of the Canning River fan are oriented parallel 

to the prevailing wind. There, the orientation is apparently controlled by low-relief 

longitudinal dunes. Small sand dunes or irregularities in the topography of eolian deposits 

may also account for some square lakes on the Coastal Plain. A few elongated lakes on the 

eastern part of the Coastal Plain are within synclines and thus trend parallel to the synclinal 

axis.

Widespread Muddy Sand

Hopkins (personal communication, 1984) suggested that the muddy sand commonly 

present at the top of exposed thaw-lake sediments is eolian and derived from deflation of 

drained lake basins. Although this interpretation is probable, most drained thaw-lake basins 

when not frozen tend to be moist and thus relatively stable. The muddy sand is more likely 

to have been derived from deflation of active and inactive flood-plain sediments, especially 

those deposited during spring flooding. The muddy sand is generally overlain by a thin layer 

of active vegetation and the associated root mass. Depending on location, a thin layer of 

fine eolian sand may be present between the vegetation and the muddy-sand bed.
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CHAPTER 9 - SUMMARY OF AGES AND CORRELATIONS

Introduction

One objective of nearly all mapping-oriented geologic investigations, including this 

study, is to define the past events and sediments for the area of study. Such definition 

provides for better understanding of present geological and environmental conditions and 

information can be used to better understand a larger area such as the Coastal Plain 

bordering the Beaufort Sea.

Cenozoic Events and Sediments Within the Study Area

The past several million years on the Alaskan Arctic Coastal Plain, particularly the 

central part, have been a time of considerable change. Few places have experienced marine 

transgressions and regressions, glaciations, tectonism, major drainage changes and associated 

deposition and erosion, development of permafrost, desertification, and lake development 

within such a short period of time. Such events are recorded by the unconsolidated 

sediments of the Sagavanirktok and Gubik Formations at or the near the ground surface 

or by surface morphology within the study area (table 9.1).

Marine Transgressions and Regressions

Certainly four and perhaps five of six late Cenozoic marine transgressions are recorded 

within the central part of the Coastal Plain. The Colvillian transgression and the younger

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 9.1 Correlation chart of events aimenb

HOLOCENE 

10 ko

IATE
WISCONSINAN

MIDDLE

WISCONSINAN

3  EARLY
WISCONSINAN

I IS  ko

SANGAMONIAN 

128 ko

MIDOLE
PLEISTOCENE

EARLY
PLEISTOCENE

EOCENE

PALEOCENE

MARINE

SIMPSONIAN 
TRANSGRESSION 
FLAX MAW MEMBER 

(BETWEEN 8 0 -  70ka)

PELUKIAN 
TRANSGRESSION 
(BETWEEN U 0 - 1 2 0 k o )

POSSIBLYFISHCREEKIAN
TRANSGRESSIONT

F IS H C R E EK IA N  
TRANSGRESSION 

] BIGBENDIAN 
I TRANSGRESSION 

I COLVIlLtAN 

i  TRANSGRESSION

FLUVIAL 

MODERN STREAM 
ALLLMAL TERRACES

PUT
OUTWASH

PUT
ALLUVIUM

DRAINAGE FROM 
SAGAVANIRKTOK RIVER 

TO KUPARUK AND 
PUTUUGAYUK RNERS. 
ENCLOSED WOOD 
ASSIGNED TO "YOUNG" 
AMINO-ACID CROUP. 
PUT CRAVEL

UGNURAVIK GRAVEL 
ENCLOSED WOOD 
ASSIGNED TO "MIDDLE" 
AMINO-ACID GROUP.

DEVELOPMENT OF 

CANNING FAN

T
GRAVEL SHEETS IN ANWR

1

KUPARUK CRAVEL 

UNASSIGNED 
NONMARINE SEDIMENTS

GLACIAL

1
WALKER LAKE 
GLACIATION 

2 9 -1 1 .5  ko

T

m clLUK GLACIATION; 

SECOND ADVANCE 
(BETWEEN 73 -3 5ko )T
fTKILUK GLACIATION; 

FIRST ADVANCE 
(BETWEEN 105-87ko)

SAGAVANIRKTOK 
RIVER GLACIATION; 
TWO ADVANCES.T

ANAKTUVUK RIVER 
GLACIATION.

(BETWEEN 1.88 ANO 1.72ka?>

GUNSIGHT MT. 
GLACIATION;
ERRATIC BOULDERS 
SOUTH O F  KAVIK?

T
DIAMICTON NORTH 

O F  KAVIK

UNASSK3NED MARINE 
SEDIMENTS WEST OF 

COLVILLE RIVER

FPL IAN 
LOWLAND LOESS

CANNING FAN 

SAND SHEET

BEECHEY SAND

X
IKPIKPUK DUNES. 

FOOTHILL LOESS

LACUSIBlNg

THAW.LAKES ON FAULTIN' 
COASTAL PLAIN AND SC. 
( l2 ko  TO PRESC PUTUUC-'

COASta .
OP CA*. 
STABLE.
su e s .:
PRUD -

MARSH 

ANTIC U- 

FOLDi‘i •

INITIAL 
SADLEP' 
EROSC'-.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



relation chart of events aiments within the study area.
182

FOLtAN 
n LAND LOESS

IZ FAN 

SHEET

LACUSTRINE irrroNiSM

THAW LAKES OH FAULTING: ANWR 
COASTAL PLAIN AND SOUTH OF 
(12ko TO PRESf PUTUUGAYUK RNER

EY SAND

_L
UK DUNES.
'L I LOESS

COASTAL PLAIN WEST 

OF CANNING RIVER 
STABLE: POSSIBLE 
S U B S ID E N C E  A T  

P R U D H O E  B A Y

MARSH CREEK 

ANTGUNE AND OTHER 
FOLDING IN ANWR

I N m  UPLIFT OF 
SADLEROCHfT UTS. 

EROSION T

MODERN PRUDHOE BAY

DOWNCUTTING OF 
AREA BETWEEN 
KUPARUK AND 

SAGAVANIRKTOK 
RIVERS.

EARLY PRUDHOE BAY ? 

?

EROSION OF FISHCREEKIAN 

AND OLDER DEPOSITS?

VALLEY ENLARGEMENT 

AND PEDIMENTATION 
IN BROOKS 
RANGE ANO 
FOOTHILLS

FOOTHILL EROSIONAL 
SURFACES RELATED 

TO EAST-FLOWING 
COLVILLE RIVER 
(POST GUNSIGHT MT. 
GLACIATION)

c l im a t e

SEE TABLE 7.1

I
GLACIAL REGIME

MARINE WATERS SLIGHTLY 
WARMER; SEASONAL 
VARIATION SAME AS 

TODAY.

GLACIAL REGIME

1NTERGLACIAL REGIME 
MARINE WATERS MORE 
OPEN. WARMER 
THAN TODAY.

GLACIAL REGIME

SEASONAL SEA JCE; 

WARMER THAN TODAY

GLACIAL REGIME

GLACIAL REGIME

PERMAFROST

DEVELOPMENT OF 

OFFSHORE FERUAFROST

DEVELOPMENT OF 

PERMAFROST ON 

COASTAL PLAIN.

OTHER 

STEEP-SIDED PINGOS

OFTG5NIC SOILS 
BROAO-BASED m o u n d s

COLVILLE RIVER 
TERRACES E AND F; 
POSSIBLY D.

?

?

1
COLVILLE RIVER 
TERRACE 0?

I
?

O P T U R E  OF COLVILLE 

R V E R  (POST EARLY 
PLDSTDCENE GLACIATION

BROOKS RANGE 
DRAINAGE CHANNELS 
1 0 0 U  HIGHER THAN 
MODERN CHANNELS

COLVILLE RIVER 

TERRACE C

COLVILLE RVER 

TERRACES A  ANO B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bigbendian transgression, both probably between 2.48 and 3.5 Ma old (Carter and others, 

1986a), are recorded by sediments east and west of the Colville River and at Marsh Creek 

within ANWR, and by Terraces A and B east of the Colville River. The Fishcreekian 

transgression, between 1.87 and 2.48 Ma old (Carter and others, 1986a) or possibly between 

1 and 1.5 Ma old (Kaufman and others, 1990; J. Brigham-Grette, personal communication, 

1990), is recorded by sediments at Marsh Creek and perhaps by Terrace C east of the 

Colville River.

The Pelukian transgression, which probably correlates with oxygen-isotope stage 5e and 

is between 120 and 130 ka old (Carter and others, 1986a), is probably represented by 

marine sediments approximately 15 m below the ground surface near the mouth of the 

Putuligayuk River and may underlie younger marine, eolian, and lacustrine sediments as far 

as 9 km inland between the Sagavanirktok and Canning Rivers. Correlation of the 

sediments at the Putuligayuk River with the Pelukian transgression is uncertain because 

dating control is limited to infinite radiocarbon dates and amino-acid analysis of Astarte 

valves for which the alle/Ile ratios do not differ significantly from modern values (G. Miller, 

written communication, 1986). However, these sediments are certainly not older than 

Pelukian.

The Simpsonian transgression, which probably correlates with oxygen-isotope stage 5a 

between 70 and 80 ka ago (Carter and others, 1986a), is represented by glaciomarine 

sediments, including exotic clasts, of the Flaxman Member. These sediments are 

discontinuously present in the study area along the coast generally inland to several 

kilometers, but are as much as 9 km inland between the Sagavanirktok and Canning Rivers.
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Glaciations

The oldest two of four distinct moraines, presumably from the early Pleistocene 

Anaktuvuk River and middle Pleistocene Sagavanirktok River glaciations (Hamilton 

1986a,b), extend into the study area in the Canning River drainage west of the Sadlerochit 

Mountains. Assuming an early Pleistocene age, normal magnetic polarity of ice-contact 

lacustrine silts interbedded with till near the terminus of the oldest moraine suggests an age 

of one of several normal-polarity chrons, perhaps the Olduvai chron, which occurred 

between 1.72 and 1.88 Ma ago (Harland and others, 1982).

Erratic boulders, which may correspond to the pre-Pleistocene Gunsight Mountain 

glaciation, or perhaps an older Tertiary glaciation, west of the Kavik River suggest that pre

Pleistocene till may have been present north of the Pleistocene till associated with the 

Canning, Sadlerochit, and Hulahula Rivers. If so, outwash from that glaciation probably 

represents much of the older subsurface parts of the Canning River fan and adjacent areas, 

and of the fans associated with the Sadlerochit and Hulahula Rivers.

Diamicton sediments cropping out on an upland north of Kavik River airstrip may be 

associated with the Gunsight Mountain glaciation; or more likely, with an older Tertiary 

glaciation, perhaps the glaciation that deposited possible erratic boulders in the Kuparuk 

gravel in the headwater basins of the Miluveach and Kachemach Rivers. The age of the 

Kuparuk gravel, which may be till or alluvium into which the possible erratics have been 

redeposited, is bracketed by underlying Paleocene sediments and formation of Colville River 

Terrace A by the late Tertiary Colvillian transgression (Carter and Galloway, 1985a).
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Drainage, Alluviation, and Erosion

Deltaic, fluvial, and outwash sediments compose a large percentage of sediments 

present on the Coastal Plain, yet have received only a small part of the total attention given 

to the Coastal Plain.

Drainage from more than one-fourth of the Coastal Plain crosses the Colville River 

Delta in the western part of the study area (Walker, 1983). Upstream from the delta front, 

channel bars and point bars are fine to medium sand. Gravel-sized clasts are rare on bars 

throughout the Colville Delta and other deltas within the study area. Stratigraphic sections 

of banks on the Colville River Delta typically show almost exclusively alluvial sand or peat, 

or interbedded sand and peat overlain by eolian sand. Radiocarbon dating of organic 

material in the Colville River Delta sediments suggests that all emergent sediments and 

features of the delta are Holocene. This age is also applicable to deltaic, flood-plain, and 

most low terrace sediments elsewhere on the Coastal Plain.

Terraces D, E, and F on the east side of the Colville River (Terrace III of Carter and 

Galloway, 1982) comprise alluvial or deltaic, or both, sediments presumably of the Colville 

River. These terraces have a counterpart west of the Colville River Delta that is apparently 

represented by a single terrace tread. On the basis of sediment type, Carter and Galloway 

(1985a) related Terraces D and E to the northwestern part of the single tread and 

Terrace F to the southern and northeastern parts of the single tread. However, based on 

elevation, Terraces D and E are most like the western single tread.
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Plant genera from Terraces D, E, and F suggest deposition during an interglacial or 

relatively warm interstadial according to Carter and Galloway (1982) who proposed the 

Sangamonian Interglaciation, but did not rule out one or more interstadials during Illinoian 

or early Wisconsinan times. Radiocarbon dates from the northeastern part of the single 

tread west of the Colville River (possibly correlative with Terrace F) suggest that the age 

is middle to late middle Wisconsinan.

Deep exposure of the Coastal Plain between the Colville River terraces and the 

Sagavanirktok River is provided in nine gravel pits designated KUP C, D, E, and F; MP; 

PUT 1 and 2; SAG C; and END.

The section exposed in KUP C pit is the type section for the informally named eolian 

Ugnuravik sand, herein renamed the Beechey sand, and the fluvial or glaciofluvial, or both, 

Ugnuravik gravel defined by Rawlinson (1986a). These units are exposed in all the gravel 

pits within the area west of the Kuparuk River, possibly in the SAG C gravel pit, and are 

thought to underlie the area east of the Sagavanirktok River to the Canning River fan. The 

Ugnuravik gravel was originally thought to be Sangamonian to Illinoian based on 

thermoluminescence dates of several hundred-thousand years; these dates are now 

considered minimum relative ages. Amino-acid analysis of wood samples from the gravel 

pits suggests a minimum age of middle Pleistocene. Deposition of sediments exposed in the 

pits may have been coincident with the latter part of a long period of erosion in the Brooks 

Range (Hamilton, 1986a).

The Coastal Plain between an extensive terrace west of the Kuparuk River and the east 

shore of the Sagavanirktok River includes thicker sections of younger sediments, chiefly
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alluvium and outwash, than the adjacent areas to the west and east. Alluvium, termed the 

Put alluvium (Rawlinson, 1986a), in approximately the bottom one-half of PUT 1 pit was 

deposited during the Sangamonian Interglaciation, the middle Wisconsinan nonglacial 

Boutellier interval, and into the Duvanny Yar interval of Hopkins (1982) based on 

radiocarbon dates on peat and wood in both the Put 1 and 2 pits, a thermoluminescence 

date in the PUT 1 pit, and amino-acid dates in the PUT 2 pit. This alluvium is overlain by 

outwash derived from late Wisconsinan glaciation in the Brooks Range and by Holocene 

alluvium. Approximately the bottom one-half of PUT 2 pit is alluvium deposited during the 

Sangamonian Interglaciation; no Wisconsinan alluvium or outwash overlies this alluvium.

Aerial photographs and satellite images suggest that the Sagavanirktok River once 

flowed northwest to the Putuligayuk and Kuparuk Rivers. Dates from organic-rich fluvial 

beds exposed deep in the PUT 1 and 2 gravel pits suggest active alluviation in the 

intermediate area since the Sangamonian Interglaciation. Probable Pelukian marine 

sediments exposed at depth near the mouth of the Putuligayuk River may indicate drainage 

from the Sagavanirktok River as early as pre-Sangamonian time. The embayment in which 

these marine sediments were likely deposited may have been an early Prudhoe Bay formed 

from preferential erosion of Putuligayuk River terrace sediments. The modern Prudhoe Bay 

likely correlates with the rise of sea level into the Putuligayuk River flood plain and terraces 

following the late Wisconsinan Walker Lake glaciation.

Rawlinson (1986a) applied the term Canning gravel to outwash sediments of the 

Canning River fan and indicated that these sediments were questionably underlain by 

sediments equivalent to the Ugnuravik gravel. However, apparent deposition from a focus 

inland on the Canning River since at least the early Pleistocene Anaktuvuk River glaciation
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makes it unlikely that the Ugnuravik gravel extended eastward to the Canning River. Eolian 

sand unconformably overlying Simpsonian Flaxman mud at the coast and outwash near the 

coast was eroded and replaced with more recent sandy gravel and gravel. This gravel 

composes most of the near-surface part of the fan and is probably outwash associated with 

late Wisconsinan glaciation within the Canning River drainage.

The dominant sediments on the Coastal Plain within the approximate western half of 

ANWR are outwash and alluvial sandy gravel and gravel. Most outwash sediments between 

the Canning and Tamayariak Rivers are north of and probably associated with an extensive 

early Pleistocene moraine. However, within this area some outwash sediments may be 

associated with a Tertiary glacial advance, perhaps correlative with the Gunsight Mountain 

glaciation. The northernmost outwash is overlain by late Wisconsinan eolian sand and 

Holocene lacustrine silt and peat. A similar, probably equivalent-aged sequence exists 

between the Sadlerochit River and Nataroarok Creek and east of the Hulahula River.

Alluvial gravels of two distinctly different compositions and ages cap elevated and 

folded surfaces between the east fork of the Tamayariak River and the Sadlerochit River 

and, in particular, fan-shaped surfaces with the apices near the Sadlerochit Mountains. The 

older of the two gravel sheets is younger than the Fishcreekian transgression. The younger 

gravel sheet is older than the early Pleistocene Anaktuvuk River glaciation based on 

topography and cross-cutting relationships.
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Tectonism

The maximum elevation of Pelukian sediments on the western part of the Coastal Plain 

is perhaps as much as 10 m (Carter and others, 1986a). Similarity of this elevation with the 

maximum eustatic sea level estimated for oxygen-isotope stage 5e suggests little (2 to 6 m), 

if any, uplift of that part of the Coastal Plain since at least 124 ka ago. However, recorded 

seismicity (Biswas and Gedney, 1978) and demonstrated late Cenozoic folding suggest that 

the eastern part of the Coastal Plain is tectonically active. Where the Coastal Plain 

becomes relatively inactive to the west is uncertain. Tectonism as far west as the Kuparuk 

River may be indicated by photolineaments that cross Holocene sediments near the 

southern boundary of the study area between the Kuparuk and Sagavanirktok Rivers. 

Subsidence may be indicated in the Prudhoe Bay area based on the presence of Pelukian 

marine sediments 9 m below sea level near the mouth of the Putuligayuk River.

Folding west of and within ANWR apparently was most pronounced following the 

Fishcreekian transgression through early Pleistocene time, but possibly also occurred in the 

Tertiary. Uplift of the upland north of Kavik airstrip has always been assumed to have 

occurred early in the Tertiary, but possible association with anticlinal folding could place the 

deformation much later. An anticline that can be traced discontinuously from west of the 

Tamayariak River to west of the Canning River folds Anaktuvuk River till but not 

Sagavanirktok River till in the Canning River drainage. Uplift of the anticline and perhaps 

the upland north of the Kavik River airstrip is thus restricted to the time between latest 

Tertiary and middle Pleistocene.
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The older of the two alluvial gravel sheets overlies Fishcreekian marine sediments; 

these in turn, overlie silty sand of the Sagavanirktok Formation. Because the Fishcreekian 

marine beds and the overlying gravel were uplifted in the Marsh Creek anticline, the range 

of 1.87 to 2.48 Ma (Carter and others, 1986a) or possibly 1 to 1.5 Ma (Kaufman and others, 

1990; J. Brigham-Grette, personal communication, 1990), is a maximum age for uplift of the 

anticline and presumably for deformation and uplift of terrain to the south.

Recent rapid uplift in ANWR, a concept initiated by L. David Carter of the USGS, is 

indicated by a series of terraces in the Katakturuk River canyon in the Sadlerochit 

Mountains. The highest terrace is capped by the younger of the two alluvial gravel sheets. 

The Sadlerochit Mountains apparently have been uplifted as much as 95 m after deposition 

of the younger gravel. The older gravel, present east of the Katakturuk River, may be from 

sources south of the Sadlerochit Mountains based on composition.

Desertification and Eolian Activity

Eolian sediments are nearly ubiquitous on the Alaskan Arctic Coastal Plain. Most were 

deposited during four periods of contrasting seasonal climate identified by Carter and 

others (1984). The first period started during the Wisconsinan and ended 36 ka ago; the 

second period occurred between 36 and 13.5 ka ago; the third period occurred between 13.5 

and 11 ka ago; and the fourth period occurred between 11 and 8 ka ago. The Beechey sand 

was deposited primarily during the latter half of Carter’s second climatic regime. Following 

stabilization of Coastal Plain eolian sediments approximately 8 ka ago, small parabolic and 

longitudinal dunes were deposited in the Colville River Delta and over the Ikpikpuk dunes 

west of the Colville River. Similar Holocene dunes are present within or downwind of
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nearly all the active river and delta systems and along the seaward edge of tundra-covered 

barrier islands that have a beach.

Lacustrine Activity and Deposits

Radiocarbon dates suggest that thaw lakes have existed on the Coastal Plain only since 

about 12 ka ago, when the climate ameliorated from previous glacial conditions. Most of 

the dates tend to be younger than 9 ka and the oldest of existing lakes on the Coastal Plain 

are about 5 ka old.

Integrating Conceptual Model

Table 9.1 identifies events and sediments relative to time but does not identify how they 

relate to each other. A conceptual model that integrates events and sediments, time, and 

cause and effect is presented below not withstanding that much data are lacking and time 

intervals are poorly known.

Tectonism and processes influenced by climate, that is, temperature are primarily 

responsible for development and modification of the Coastal Plain. Temperature variations 

result in wind and precipitation, which relate to glaciation, which relates to sea level. Each 

of these processes affects erosion, sediment transport, and deposition, the rates and timing 

of which are also affected by tectonism.
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Middle Tertiary

During part of the middle Tertiary, temperatures were sufficiently cold and 

precipitation was sufficiently great to result in glaciation on the Coastal Plain. The time and 

extent of this glaciation are poorly understood, but associated glacial ice may be responsible 

for transporting and depositing probable erratic boulders of the Kuparuk gravel present near 

the headwaters of the Miluveach and Kachemach Rivers and diamicton sediments exposed 

in an upland north of Kavik airstrip. Whether the Kuparuk gravel is till or outwash from 

this glaciation has not been determined. This glaciation is more extensive than any later 

glaciations recognized on the Coastal Plain. With such an extensive glaciation, sea level was 

likely much lower than that estimated for the most extensive of the Pleistocene glaciations, 

minus 90 m, and the Coastal Plain extended far offshore beyond its present position. 

Outwash sand and gravel from this glaciation likely represent a large percentage of the deep 

fluvial sediments of the Coastal Plain.

Late Tertiary

Early during the late Tertiary, temperatures were again sufficiently cold to initiate 

glaciation. The Gunsight Mountain glaciation may be responsible for erratic boulders 

present in an upland south of the Kavik airstrip and outwash sand and gravel from this 

glaciation likely compose deeper, older sediments of the Coastal Plain between the Colville 

and Shaviovik Rivers, the Canning River fan, and the Coastal Plain within ANWR.
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Late during the late Tertiary, the climate ameliorated and sea level rose to well above 

its present level on three separate occasions: the Colvillian, Bigbendian, and Fishcreekian8 

transgressions. Waters of these transgr essions cut three marine benches, Terraces A, B, and 

C, on uplands in the vicinity of the present Colville River Delta; marine sediments remain 

on the two higher benches, but have been eroded from the lower bench. The inland extent 

of the Colvillian, Bigbendian, and Fishcreekian transgressions between the Colville River 

terraces and the Canning River fan is unknown; however, sediments from these 

transgressions are present on uplifted terrain to 10 km inland south of the Marsh Creek 

anticline. The Colville River at this time flowed eastward at least to the present Kuparuk 

River drainage, possibly extending south of Franklin Bluffs to the present Kadleroshilik 

River and Shaviovik River drainages, where it emptied into these transgressed seas; the 

Canning River fan likely was a delta during the marine transgressions.

Erosion of mountainous terrain south of the Sadlerochit Mountains and fluvial 

transport of metamorphic and other rock types resulted in a gravel sheet that overlies 

uplifted Fishcreekian marine sediments in and near the Marsh Creek anticline. Uplift of 

the Sadlerochit Mountains, northern Foothills, and eastern Coastal Plain apparently started 

after the Fishcreekian transgression. Coniferous wood present in the gravel suggests a 

climate similar to that of interior Alaska today. A relatively warm, regressing Fishcreekian 

sea adjacent to a relatively cold landmass (Carter and others, 1986b) resulted in increased 

precipitation and thus active erosion of the uplifted terrain and fluvial transport of sediment 

necessary to deposit the gravel sheet. Continued uplift of the Sadlerochit Mountains,
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8In this text, the Fishcreekian transgression is considered to have occurred between 
1.87 and 2.48 Ma ago. Events or deposits discussed herein that are bracketed by the 
Fishcreekian transgression will have to be pushed forward if the transgression is eventually 
confirmed to have occurred between 1 and 1.5 Ma ago.
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Foothills, and eastern Coastal Plain in this climate conducive to fluvial processes resulted 

in erosion of bedrock, sediment transport, and deposition of another gravel sheet composed 

primarily of limestone and sandstone common in these mountains.

Permafrost possibly began to develop at this time where the sea had regressed, but 

probably did not become thick until initiation of Pleistocene glaciation.

Early Pleistocene

Onset of the Anaktuvuk River glaciation resulted in sea level dropping and ice 

advancing well onto the Coastal Plain down the Canning and Hulahula Rivers, leaving 

distinct terminal moraines. Anticlinal folding was initiated in the eastern part of the Coastal 

Plain concurrently with the onset of glaciation. The moraine in the Canning River drainage 

was deformed as folding continued.

Glaciofluvial processes associated with the Anaktuvuk River glaciation began to erode 

marine sediments between the Colville and Canning Rivers and on low terrain within 

ANWR, and to deposit outwash sediments in their place and on the Canning River fan.

Early Pleistocene glaciation was followed by a long period of fluvial processes in the 

Brooks Range and on the Coastal Plain; these processes continued to erode the marine 

sediments. Valleys were enlarged in the Brooks Range, the eastward-flowing Colville River 

was captured and began flowing northward, and alluvium was deposited on low areas of the 

Coastal Plain including the Canning River fan. Fluvial processes associated with the north- 

flowing Colville River possibly eroded Fishcreekian sediments on Terrace C and deposited

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



alluvium in their place. Alluvium deposited between the Colville and Canning Rivers is the 

basal Ugnuravik gravel, which interfingers with alluvium deposited on the Canning River 

fan. During this time, uplifted terrain in ANWR was dissected by fluvial processes and 

eroded sediments were deposited on the Coastal Plain, which then extended far beyond the 

present shoreline.

Middle Pleistocene

Fluvial process eroded any remaining marine sediments and alluviation on the extensive 

Coastal Plain continued; this alluvium represents much of the Ugnuravik gravel and 

sediment wedges recognized offshore between the Colville River and Canning River fan. 

Even though the mean annual temperature was low, exposure of the Coastal Plain resulted 

in a continental climate with summers warmer than today. During brief intervals of warm 

climate, especially during the summer months, coniferous and nonconiferous trees coexisted 

on the Coastal Plain.

The climate became significantly colder later during the middle Pleistocene, and ice of 

the Sagavanirktok River glaciation advanced onto the Coastal Plain down the Canning 

River, leaving a distinctive moraine. Outwash sand and gravel were deposited on the 

Canning River fan and elsewhere on the Coastal Plain. Folding in the eastern Coastal Plain 

had either stopped or slowed by this time.
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Late Pleistocene

Sangamonian. The climate ameliorated and Pelukian seas inundated the Coastal Plain 

between 130 and 120 ka ago depositing marine sediments as far inland as 9 km between the 

Colville River and the Canning River fan and to unknown distances in low terrain in 

ANWR. Pelukian sediments in the vicinity of modern Prudhoe Bay were deposited in an 

embayment, perhaps an early analog of the modern bay. Colville River Terrace D may have 

formed at this time in response to an elevated base level. The Coastal Plain west of the 

Canning River was either stable or subject to minor tectonism, possibly including 

subsidence; whereas, the eastern Coastal Plain probably continued to be slowly uplifted. 

Such tectonic conditions have not changed to the present.

Early Wisconsinan. The climate again began to deteriorate and between 105 and 97 ka 

ago ice of the Itkillik glaciation advanced in the Brooks Range and down the Canning 

River drainage to near the Coastal Plain, leaving a distinctive moraine. Sea level fell to well 

below the present level and permafrost that exists today in the offshore began to form. 

Glaciofluvial processes associated with the Itkillik glaciation began to erode sediments 

between the Kuparuk and Sagavanirktok Rivers and on low terrain within ANWR, and to 

deposit outwash sediments in their place and on the Canning River fan. Deposition over 

Pelukian marine sediments probably also started this time.

Between 80 and 70 ka ago, an apparent surge of polar ice resulted in a rise of sea level 

and breakup of unstable marine-based ice (Carter and others, 1986a). Simpsonian seas 

inundated the Coastal Plain typically less than a few kilometers inland of the present 

coastline except between the Sagavanirktok River and Canning River fan, where the sea
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transgressed as much as 9 km inland. Colville River Terrace E may have formed at this 

time in response to an elevated base level. Between 75 and 55 ka ago, glaciofluvial 

processes associated with a second advance of Itkillik ice continued to erode and deposit 

sediments as during the first advance.

Middle and Late Wisconsinan. The climate early during this time was similar to that 

of today except for being drier. Alluviation continued in the area between the Kuparuk and 

Sagavanirktok Rivers, and elsewhere on the Coastal Plain. Discontinuous vegetation on 

interfluves allowed deflation, initiating deposition of loess in upland areas and of sand on 

the Coastal Plain. Late during this time, the climate turned cold and even drier eventually 

resulting in the Walker Lake glaciation between 29 and 11.5 ka ago, and hence deposition 

of outwash sediments. Vegetation was also sparse. Eolian processes dominated the 

landscape, resulting in considerable deposition of loess and sand derived from broad, 

unvegetated flood plains.

Holocene. Amelioration of climate after 11.5 ka ago to conditions warmer than today 

resulted in development of shrub tundra and organic soils by 8 ka ago. Extensive sand 

sheets were stabilized and thaw lakes developed where eolian deposits were best developed. 

Pingos formed in these early thaw lakes are the broad-based mounds common on the 

Coastal Plain. Also at this time, sea level rose to near its modern level. Prudhoe Bay 

formed from inundation of low flood-plain and terrace sediments associated with 

Wisconsinan streams that drained northwest and north from the Sagavanirktok River area. 

The nearshore islands also formed from this inundation. Cooler, drier climate associated 

with neoglaciation in the Brooks Range resulted in destabilization of the surface after 8 ka 

ago and renewed deposition of sand. Many of the dunes formed at that time have since
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been stabilized by a thin tundra mat or sedge vegetation. Thaw lakes remained present on 

the Coastal Plain throughout the Holocene; steep-sided pingos have developed in relatively 

recent lakes.

Holocene variations in climate and sea level may be reflected in alluvial terraces along 

the major rivers. Limited data suggest that most of the terraces near the apex of the 

Canning River fan formed near or soon after the middle Holocene deterioration of climate. 

An extensive terrace west of the Kuparuk River is middle Holocene and perhaps Terrace F 

along the Colville River Delta also formed at this time.

Lineaments that cross Holocene sediments on the Coastal Plain within ANWR and as 

far west as the Kuparuk River may indicate renewed tectonism in those areas.

Cenozoic Events and Sediments Along the Beaufort Sea Margin

In 1984, investigators from the United States and Canada participated a workshop in 

Calgary to present and synthesize current knowledge of late Cenozoic events and sediments 

of the margin of the Beaufort Sea. Creation of a detailed correlation chart of events and 

sediments for this region was a major goal. A correlation chart, supporting discussions, and 

references were published by Heginbottom and Vincent (1986). Table 9.2’ presents a 

version of the regional correlation chart that incorporates events and sediments identified
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’References specific to Table 9.2: American Commission on Stratigraphic
Nomenclature, 1970; Ashley and others, 1984; Beg6t and others, 1990; Black, 1964; Brigham, 
1985; Carter, 1981, 1983a,b; Detterman, 1953; Detterman and others, 1958; Dinter, 1985; 
Fernald, 1964; Hamilton, 1969, 1979b, 1980, 1982; Hamilton and Porter, 1975; Hopkins, 
1967; Hopkins and others, 1980; Keroher and others, 1966; MacNeil, 1957; North American 
Commission on Stratigraphic Nomenclature, 1983; Porter, 1964; Repenning, 1983; Smith, 
1985; Westgate and others, 1983.
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Table 9.2 Correlation chart of events and sediments around the 
and Vincent (1986).
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iiments around the Beaufort Sea margin. Chart modified from Heginbottom
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in table 9.1. Changes in the chart that reflect information provided by this study are: re

assignment of the Canning gravel to the early Pleistocene; renaming of the Ugnuravik sand 

to the Beechey sand; reassignment of the Ugnuravik gravel to the middle Pleistocene; 

assignment of the Canning gravel to the early Pleistocene; and assignment of erratic 

boulders south of Kavik airstrip and diamicton sediments north of Kavik airstrip to the late 

Tertiary. Normal polarity of the Anaktuvuk River glaciation is also indicated. The area 

influenced by glaciations recognized in the Brooks Range has been changed to include 

basins to the north; such basins specific to this study are drainages of the Canning, 

Sadlerochit, and Hulahula Rivers in the vicinity of the Sadlerochit Mountains. The Foothill 

loess has been assigned to the late Wisconsinan based on Carter (1988). The Old Crow 

Tephra has been reassigned to the late middle Pleistocene, based on Begdt and others 

(1990).

The provisional nature of this updated chart and the chart in Table 9.1 is emphasized 

herein as the editors did for the first Beaufort Sea margin correlation chart. The intent is 

that these charts will be corrected, updated, and expanded based on future investigations 

within Alaska and Canada. Reassignment of events and sediments applicable to Canadian 

locations in Table 9.2 are beyond the scope of this dissertation.
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CHAPTER 10 - CONCLUSIONS

Introduction

Mapping and analyses have defined the distribution, morphology, character, and age 

of marine, fluvial, glacial, eolian, and lacustrine sediments of the late Cenozoic Gubik 

Formation in approximately 12,000 km2 of the Alaskan central Arctic Coastal Plain, and 

allowed interpretations of the depositional, climatic, and tectonic histories. Further, 

considerable baseline data have been compiled on grain size; radiocarbon, 

thermoluminescence, and amino-acid dates; microfossils; pollen; and wood taxa. Additional 

information such as field notes, lab reports, and complete grain-size analysis has been 

deposited and is available for viewing at DGGS in Fairbanks, Alaska.

Key Findings and Interpretations

Laboratory Analyses

Radiocarbon, thermoluminescence, and amino-acid analyses have yielded information 

on the chronology of deposition, although some data have to be accepted with caution, or 

be considered in stratigraphic context. This need is most apparent with the 

thermoluminescence and amino-acid analyses. With only two exceptions, Wisconsinan 

thermoluminescence dates seem reliable; one date was apparently far too young and one 

date was too old based on other analyses. Post-Wisconsinan thermoluminescence dates, 

many of which are apparently finite, have to be considered minimum ages in most cases 

based on stratigraphic position and results of amino-acid analysis.
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Amino-acid analysis of wood and some shell materials from within the study area has 

defined broad age groups: young, middle, and old. The old group has been abandoned 

because of the high probability that amino acids in the samples have been leached or some 

other modification has occurred. On the basis of the aspartic-acid D /L  ratio, the young 

group is probably at least Sangamonian and the middle group is probably at least middle 

Pleistocene.

Field Observations and Mapping

Interpretations of the surficial geology are based on the laboratory analyses and on 

field observations and mapping. Some of these interpretations are new and some are 

contrary to previously held notions. Notable among these interpretations are:

1. Extensive transgression of early Wisconsinan and perhaps Sangamonian seas. Pelukian 

sediments were likely deposited in an embayment in the vicinity of present day Prudhoe 

Bay. The inland extent of the Simpsonian transgression in this area was not great, 

probably only a few kilometers south of the present coast. However, the Simpsonian 

transgression and possibly the Pelukian transgression extended as far as 9 km inland 

in the area between the Sagavanirktok River and the west side of the Canning River 

fan.

2. Glacial advances in excess of previous known limits. Probable extensive Tertiary 

glaciation in parts of the Coastal Plain is indicated by diamicton sediments in an upland 

north of Kavik airstrip and probable erratic boulders near the headwaters of the 

Kachemach and Miluveach Rivers. Similar erratic boulders in an upland south of Kavik
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airstrip may represent extensive late Tertiary glaciation, perhaps correlative with the 

Gunsight Mountain glaciation.

3. Colville River marine and alluvial terraces. Six terraces are identified east of the 

Colville river and designated A through F from oldest to youngest. Terraces A and B 

correlate with Carter and Galloway’s (1982) Terrace I; Terrace C correlates with their 

Terrace II; and Terraces D, E, and F correlate with their Terrace III. Terraces A and 

B formed during the Colvillian and Bigbendian marine transgressions and Terrace C 

probably formed during the Fishcreekian transgression. Terraces D, E, and F are 

alluvial and probably formed during the late Pleistocene.

4. Middle Pleistocene minimum age for the Ugnuravik gravel. Fluvial sediments of the 

Ugnuravik gravel include wood of the middle amino-acid group, and underlie the near

surface part of the Coastal Plain between the Colville River marine terraces and the 

western edge of the Canning River fan. These sediments abut older marine and 

overlying alluvial and eolian sediments of the Colville River marine terraces 

approximately along the trend of Kalubik Creek.

The Ugnuravik gravel has been eroded and is overlain by Wisconsinan and Holocene 

fluvial sediments approximately between the Kuparuk and Sagavanirktok Rivers.

5. Coexistence of coniferous and nonconiferous wood on the Coastal Plain in middle to 

early Pleistocene time. Wood from coniferous trees (specifically Larix) and 

nonconiferous trees (specifically Salix) is included in sediments now thought to be at 

least middle Pleistocene, but probably younger than early Pleistocene. A Fishcreekian
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age based on the abundance of Larix seems not to be viable. The particular taxa 

present suggest a climate similar to that of present-day interior Alaska. Oxidation of 

the wood-rich beds exposed in deep gravel pits suggests that the sediments remained 

thawed for some time following deposition or were subsequently thawed.

There is a paradox here: how did locally warmer temperatures necessary for these tree 

taxa coexist with the generally colder global temperatures at that time? This might 

be explained by greater accumulation of summer warmth associated with a continental 

climate. Such a climate could result from greater exposure of the continental shelf 

related to lower sea levels.

The apparent absence of coniferous wood in deep gravel pits along the Sagavanirktok 

River may indicate slightly younger sediments (but still within the middle amino-acid 

group) and a warmer, moister climate. Alternatively, coniferous wood may be present 

but has yet to be identified.

6. Late Pliocene through Holocene age for the Canning gravel. Sediments of the Canning 

River fan, termed the Canning gravel, include outwash from the Pleistocene glaciations 

and probably include outwash from late Tertiary glaciations. Terraces near the apex 

of the fan and near-surface alluvial and eolian sediments of the fan are Holocene.

7. Recent and rapid uplift and folding in western ANWR. Bedrock surfaces and folded 

terrain within ANWR are capped by one or both of two gravel sheets that differ in age 

and composition. The older gravel sheet and underlying Fishcreekian marine beds are 

folded in the Marsh Creek anticline, indicating post-Fishcreekian tectonism. Similarly,
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early Pleistocene till but not middle Pleistocene till is folded in anticlines to the west, 

suggesting latest Pliocene to middle Pleistocene folding. The younger of the two gravel 

sheets caps terraces now 95 m above the present flood plain of the Katakturuk River 

in the Sadlerochit Mountains, suggesting up to that amount of uplift since latest 

Pliocene time.

The western part of the Coastal Plain has previously been considered tectonically 

inactive, but this may not be entirely true. Linear features that cut Holocene alluvium 

in ANWR and south of Prudhoe Bay are thought to be fault terraces. If so, they 

suggest modern tectonism on the Coastal Plain at least as far west as the Kuparuk 

River. Such tectonism may be associated with subsidence in the Prudhoe Bay area 

since at least Sangamonian time.

8. Late middle through late Wisconsinan age for the Beechey Sand. Thermoluminescence 

analysis of basal samples of Beechey sand indicate a maximum age of approximately 

26 ka in the area between the Colville River and western edge of the Canning River 

fan. The Beechey sand north of the limit of broad-based mounds is thin and probably 

younger. Sand wedges in the Beechey sand indicate a cold, dry climate.

9. Late Wisconsinan to early Holocene age for thaw lakes in which broad-based mounds 

formed. A borehole in one of the broad-based mounds suggests that these features are 

true pingos. If these mounds formed as closed-system pingos in drained lake basins, 

as do modern pingos on the Coastal Plain, they indicate a warm climate similar to 

today. There is no evidence to indicate that thaw lakes were present on the Coastal 

Plain prior to climatic amelioration of the latest Wisconsinan and Holocene; their age
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is further constrained by late middle through late Wisconsinan ages for the Beechey 

sand, on which the lakes formed. The much larger size of the mounds relative to 

modern pingos, and the fact that they have been modified by existing thaw lakes, 

suggest that the broad-based mounds formed in the earliest late Wisconsinan and 

Holocene lakes.

Findings and interpretations itemized above are highlights of numerous others within 

the text. While the others may be less significant, collectively they have allowed a start 

toward definition of the depositional, climatic, and tectonic histories of the area. 

Interpretations herein are considered to be provisional; it is intended that other 

investigators will revise interpretations as new data become available.
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APPENDICES

Information pertinent to Appendices A through K, is consolidated below.

Lithologic designations, from Folk (1980); parentheses indicate small amount:

S = Sand cS = Clayey sand
sC = Sandy clay mS = Muddy sand
sM = Sandy mud M = Mud
zS = Silty sand sZ = Sandy silt
Z  = Silt G = Gravel
msG = Muddy sandy gravel sG = Sandy gravel
gM = Gravelly mud gmS = Gravelly muddy sand
gS = Gravelly sand g(s)M = Gravelly sandy mud
(g)S = Gravelly sand mS = Muddy sand
g(m)S = Gravelly muddy sand sM = Sandy mud

Sample numbers are derived as follows:

First two letters designate the quadrangle name; third letter and number designate the 
quadrangle; and, the last letter is the stratigraphic position from top to bottom.

Quadrangle Names:

BP = Beechey Point FI = Flaxman Island
HB -  Harrison Bay MM = Mount Michelson
SG = Sagavanirktok

Laboratory names:

AAL = University of Colorado 
ALPHA = Alpha Analytical Incorporated 
BETA = Beta Analytical, Incorporated
GX = Krueger Enterprises Incorporated - Geochron Laboratories Division 
UA = University of Alberta

Abbreviations:

Nonconif. = Nonconiferous wood
Conif. = Coniferous wood
Decid. = Deciduous
ND = Not Determined
unk. = Unknown; sample taken from slope
NA = not available

Depth: All depths are in meters

Field notebooks are on deposit at the Alaska Department of Natural Resources, Division 
of Geological and Geophysical Surveys; 3700 Airport Way, Fairbanks, Alaska 99709-4699. 
Map numbers are cross-referenced to field numbers in Appendix C.
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APPENDIX A 

MAP SYMBOLS AND UNIT DESCRIPTIONS

Map Symbols

■ I . .  - L  ,1 .. I .

- j— ■ i

“ j - *

Contact.

Inferred Contact.

Scarp; commonly separates like units. Tick marks on lower surface. 

Plunging anticlinal axis.

Anticlinal axis.

Synclinal axis.

Photolineament.

Measured section or observations, or both, with number.

Facility or disturbed area.

O  Broad-based mound.

Pingo.
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Map Unit Descriptions

Active Marine Sediments

Qb BEACH DEPOSITS - Gravelly sand and fine to medium sand deposited
along the coast and nearshore islands by mass-wasting and marine processes. 
Along the coast and on tundra-covered islands these deposits include detrital 
peat. The mode size of pebbles is 3 cm. The deposits are continuously 
frozen but seasonally thawed to about 1 m. The surface is barren or has 
sparse halophytic vegetation.

Qtf TIDAL-FLAT DEPOSITS - Moderately to well-sorted silt and fine sand with
organic material deposited by wave action. Deposits are laterally continuous 
and unvegetated, and commonly occur along the shore of lake basins that 
have been breached by the sea. The thickness of these deposits is uncertain, 
but probably less than several meters.

Qsm SALT-MARSH DEPOSITS - Moderately to well-sorted silt and fine sand,
with organic material deposited by inundation of marine waters during 
storms. Deposits are laterally discontinuous, generally less than 0.5 m thick, 
and occur over peat or lacustrine sediments in lake basins that have been 
breached by the sea. Deposits may be sparsely covered with hylophytic 
vegetation.

W WATER - Indicated when necessary to clarify a boundary between units.

Deltaic Sediments

Qd ACTIVE DELTA DEPOSITS - Silt, fine sand, and finely disseminated peat
deposited in channels and flats of modern deltas by deltaic processes; these 
deposits are moderately sorted. Subrounded to rounded pebbles are 
sometimes present on these deposits especially in areas of the delta proximal 
to the adjoining river. The unit is continuously frozen but seasonally thawed 
to about 1 m deep; it is also thawed in thin zones below channels with water 
greater than 2 m deep. Surfaces are unvegetated or support sparse covers 
of halophytic vegetation.

Qdi INACTIVE DELTA DEPOSITS - Peat and silt or fine sand, or mixtures or
interbeds of all three, deposited in deltaic overbank environments by fluvial, 
eolian, and lacustrine processes. These deposits generally consist of a 
topmost bed of peat up to 0.5 m thick, underlain by interbedded silt or fine 
sand and peat. Exposures of these deposits rarely exceed 2 m high and are 
generally less than 1 m high. The unit is continuously frozen but seasonally 
thawed to about 0.6 m deep. Surfaces support thin covers of halophytic and 
tundra vegetation.

Qda ABANDONED DELTA DEPOSITS - Peat and silt or fine sand, or mixtures
or interbeds of all three, deposited in deltaic overbank environments by 
fluvial, eolian, and lacustrine processes. These deposits generally consist of
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a topmost bed of peat up to 1 m thick, which is often cryoturbated and 
vertically foliated, and underlying interbedded silt or fine sand and peat. 
Exposures of these deposits rarely exceed 3 m high and are generally less 
than 2 m high. Segregated ice and massive ice in the form of wedges are 
common in these deposits; the unit is continuously frozen but seasonally 
thawed to about 0.6 m deep. Surfaces support tundra vegetation and are 
marked by low-centered, ice-wedge polygons. Centers of polygons support 
sedges and grasses.

Lacustrine Sediments

Qt THAW-LAKE DEPOSITS - Peat and pebbly silt or fine sand, or mixtures or
interbeds or all three, deposited in basins of thaw lakes by lacustrine and 
eolian processes. A topmost bed of peat and often a basal bed of peat bound 
interbeds of peat and silt or fine sand. These beds rarely exceed 2 m total 
thickness and are generally less than 1 m thick; superposition of deposits 
accounts for the thicker deposits. The deposits are often cryoturbated. The 
unit is continuously frozen but seasonally thawed to 0.6 m. deep. The surface 
is featureless or marked by indistinct large-diameter, ice-wedge polygons and 
very wet. Aquatic vegetation is common.

Qti ICE-RICH THAW-LAKE DEPOSITS - Peat and pebbly silt or fine sand, or
mixtures or interbeds or all three, deposited in basins of thaw lakes by 
lacustrine and eolian processes. A topmost bed of peat and often a basal bed 
of peat bound interbeds of peat and pebbly silt or fine sand. These beds 
rarely exceed 2 m total thickness and are generally less than 1 m thick; 
superposition of deposits accounts for the thicker deposits. Cryoturbation 
is common. The deposits are continuously frozen but seasonally thawed to
0.6 m deep. They contain segregated ice and massive ice in the form of 
wedges. The surface is marked by low-centered, ice-wedge polygons and 
ranges from wet to dry. Tundra is the dominant vegetation.

Fluvial Sediments

Qf ACTIVE FLOOD-PLAIN DEPOSITS - Fine to medium sand or sandy gravel,
or both, deposited in channels of modern flood plains by fluvial processes. 
Sandy gravel is the dominant type of these deposits. When present, sand 
deposits are moderately sorted and generally 0.5 m or less thick, and overlie 
poorly sorted sandy gravel with a sharp contact. Subrounded to rounded 
pebbles and cobbles are common in the sandy gravel. Deposits extend up 
to 1 m above the mean stream surface. The unit is continuously frozen but 
seasonally thawed to about 1 m deep. It is also thawed in zones below 
channels with water greater than 2 m deep. Surfaces of sandy gravel are 
unvegetated. Sandy surfaces are unvegetated or support sparse covers of 
grasses, sedges, and willow. Surfaces flood annually.

Qfi INACTIVE FLOOD-PLAIN DEPOSITS - Peat and pebbly silt or fine to
medium sand, or mixtures or interbeds of all three, deposited in flood plain 
overbank environments by fluvial, eolian, and lacustrine processes, and
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underlying sand, sandy gravel, or gravel, or interbeds of all three, deposited 
in channels by fluvial processes; sandy gravel is the dominant type of these 
underlying deposits. Overbank deposits generally consist of a topmost bed 
of peat up to 0.5 m thick and underlying pebbly silt or sand about 0.5 m 
thick. These deposits are in sharp contact with underlying channel deposits. 
Subrounded to rounded pebbles and cobbles are common in the channel 
deposits; these clasts are sometimes imbricated. Exposures of these deposits 
rarely exceed 2 m high and are generally less than 1 m high. The unit is 
continuously frozen but seasonally thawed to about 0.6 m high. Surfaces 
support thin covers of sedges, grasses, and tundra, and flood annually.

Qfa ABANDONED FLOOD-PLAIN DEPOSITS - Peat and pebbly silt or fine to
medium sand, or mixtures or interbeds of all three, deposited in flood plain 
overbank environments by fluvial, eolian, and lacustrine processes, and 
underlying sand, sandy gravel, or gravel, or interbeds of all three, deposited 
in channels by fluvial processes; sandy gravel is the dominant type of these 
underlying deposits. Overbank deposits generally consist of a topmost bed 
of peat up to 1 m thick that is often cryoturbated and vertically foliated, and 
underlying interbedded pebbly silt, pebbly fine sand, and peat all up to 2 m 
thick. These overbank deposits generally contain segregated ice and massive 
ice in the form of wedges. The overbank deposits are in sharp contact with 
underlying channel deposits. Subrounded to rounded pebbles and cobbles 
are common in the channel deposits; these clasts are sometimes imbricated. 
Exposures of these deposits rarely exceed 3 m high and are generally less 
than 2 m high. Scarps that bound the unit are indistinct. The unit is 
continuously frozen but seasonally thawed to 0.6 m deep. Surfaces support 
tundra and are marked by low-centered, ice-wedge polygons. Centers of 
polygons support sedges and grasses. Surfaces flood infrequently, although 
low areas may flood annually.

Qat ALLUVIALrTERRACE DEPOSITS - Peat and pebbly silt or fine to medium
sand, or mixtures or interbeds of all three, deposited in flood plain overbank 
environments by fluvial, eolian, and lacustrine processes, and underlying sand, 
sandy gravel, or gravel, or interbeds of all three, deposited in channels by 
fluvial processes; sandy gravel is the dominant type of these underlying 
deposits. Overbank deposits generally consist of a topmost bed of peat up 
to 1 m thick that is often cryoturbated and vertically foliated, and underlying 
interbedded pebbly silt and fine sand and peat up to 2 m thick. These 
overbank deposits generally contain segregated ice and massive ice in the 
form of wedges. The overbank deposits are in sharp contact with underlying 
channel deposits. Subrounded to rounded pebbles and cobbles are common 
in the channel deposits; these clasts are sometimes imbricated. Exposures 
of these deposits rarely exceed 4 m high and are generally less than 3 m high. 
Scarps that bound the unit are distinct. The unit is continuously frozen but 
seasonally thawed to 0.6 m deep. Surfaces support tundra and are marked 
by low-centered, ice-wedge polygons. Centers of polygons support sedges and 
grasses. The surface is not subject to flooding by the adjacent river.

Qaf ALLUVIAL-FAN DEPOSITS - Poorly to moderately sorted silt, sand, and
gravel deposited at valley mouths by fluvial processes. Surface generally 
smooth; dissected by a few stream channels. Suiface slopes less than 20° and
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slightly concave upward. Gravel clasts are subangular to subrounded and 
range up to boulder size; cobbles and boulders are common. Compositions 
of clasts match rock types in the associated drainage basin. Inactive fan 
surfaces often capped by overbank silt and sand.

Qau UNDIFFERENTIATED ALLUVIUM - Peat and silt or fine sand, or mixtures
or interbeds of all three, deposited in flood plain overbank environments by 
fluvial, eolian, and lacustrine processes, and underlying sand, sandy gravel, 
or interbeds of all three, deposited in channels of flood plains by fluvial 
processes; sandy gravel is the dominant type of these underlying deposits. 
Overbank deposits are up to 5 m thick but average 2.5 m thick. Peat and 
peat-rich pebbly silt compose up to 4.5 m of the top of these deposits but the 
average thickness is 1 m. These deposits are often cryoturbated and 
vertically foliated. Pebbly silt, silty sand, and fine sand compose up to 3.5 m 
of the bottom of these deposits but the average thickness is 1.5 m. Channel 
deposits are poorly to moderately sorted; pebbles and cobbles are common 
and subrounded to rounded. Scarps that bound the unit are indistinct. The 
unit is continuously frozen but seasonally thawed to 0.6 m deep. The ground 
surface is marked by low-centered ice-wedge polygons and generally wet.

Qsg ALLUVIAL-PLAIN DEPOSITS - Pebbly fine eolian sand, and underlying
interbedded pebbly fine to medium sand and gravel, and sandy gravel 
deposited by braided-river processes on an alluvial plain. The topmost part 
of the section often consists of peat 0.3 to 1.3 m thick, with an interbed of 
pebbly sandy silt 0.1 to 0.4 m thick, and sometimes underlying thaw-lake 
deposits. The pebbly sandy silt is dark grayish brown when wet and light gray 
when dry. When dry, it shows a boxwork structure caused by melting of 
segregated ice. The pebbly sandy silt is most likely loess because its 
distribution is extensive. Thaw-lake deposits undoubtedly often overlie the 
pebbly fine sand, but are not mapped because they cannot be recognized 
outside lake-basin boundaries on aerial photographs. The pebbly fine sand 
is gray to olive gray but often oxidized brownish yellow. Pebbles in the sand 
are most commonly brown and black chert; all are polished and some are 
ventifacted. These deposits are up to 4 m thick including the peat, loess, and 
thaw-lake deposits. The top part of the alluvial-plain deposits often consists 
of interbedded pebbly fine and medium sand and sandy gravel. When 
present, the interbedded interval is up to 6 m thick, but the average is 3 m 
thick. The modal size of the gravel is 3 cm; pebbles are subrounded to 
rounded. The bottom part of the alluvial-plain deposits is dominantly sandy 
gravel, although thin beds of gravel, sand and organic-and wood-rich silt are 
present. Alluvial-plain deposits have been measured in deep gravel pits to 
16 m below the surface. The modal size of the gravel varies from 2 to 5 cm; 
cobbles are common and boulders are sometimes present near the base of 
the section. Thin beds of sand and organic- and wood-rich silt sometimes 
mark changes in the clast mode. Discontinuously along the coast and up to 
9 km inland, pebbly marine mud, interbedded sand and gravelly sand, and 
cobbles and boulders of the Flaxman Member crop out at or near sea level. 
These deposits are generally less than 1 m thick and are overlain by the 
eolian pebbly fine sand. The unit is continuously frozen but seasonally 
thawed to 0.6 m deep. Segregated ice and massive ice in the form of wedges 
are concentrated in the top 3 m. The surface is moist to dry and marked by
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low- and high-centered ice-wedge polygons.

Eolian Sediments

Qs SAND COVER DEPOSITS - Fine to medium sand derived from dune
deposits (Qsd) and deposited downwind in a sheet by eolian processes. 
Deposits proximal to the dunes are several meters thick, and thin downwind 
from the dunes. The deposits are mapped only where they can be seen on 
aerial photographs to infill low-centered ice-wedge polygons, thaw ponds, and 
small thaw lakes. The deposits are continuously frozen but seasonally thawed 
to about 1 m deep. Surfaces support grasses, sedges, and tundra.

Qsd SAND DUNE DEPOSITS - Fine and medium sand derived from barren flood
plain, delta, and beach deposits and deposited in dune form by eolian 
processes. Dune deposits are up to 6 m thick but generally range from 1 to 
4 m thick. The dunes are most commonly longitudinal and trend northeast 
to southwest. Vegetated dunes are continuously frozen and often contain 
pore ice; they are seasonally thawed to about 1 m deep. Unvegetated dunes 
are actively being reworked and yardangs are common.

Colluvial Sediments

Qrg RETRANSPORTED GRANULAR DEPOSITS - Poorly to moderately sorted
silt and sand retransported from the site of initial deposition by colluvial and 
fluvial processes. At most localities, the primary cause of retransport is 
thawing of constituent massive and segregated ice, resulting in subsidence and 
movement downslope. These deposits are typically several meters thick.

Qc UNDIFFERENTIATED COLLUVIUM - Very poorly to moderately sorted
silt, sand and gravel on steep slopes, derived from underlying or nearby 
bedrock or unconsolidated deposits and left on slopes by frost creep and 
gelifluction. Size distribution of clasts is dependent on source deposit or 
bedrock. Where present, gravel clasts are subangular to subrounded and 
range up to boulder size. The sediments include disseminated, fine-grained 
organic material, and in some places, detrital wood, or chunks of peat, or 
both. Deposits are typically 1 to 10 m thick. Topography generally smooth, 
and follows the contour of the underlying bedrock surface (modified from 
Carter and Galloway, 1985a; and Carter and others, 1986c.)

Terrace Sediments

QtF ALLUVIAL-TERRACE F DEPOSITS - As QtE deposits; however, deposits
are younger.

QtE ALLUVIAL-TERRACE E DEPOSITS - Predominantly fluvial gravelly sand,
sand, silty sand and peat, overlain by eolian sand. Pelecypod shell fragments 
are not present.
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QtD ALLUVIAL-TERRACE D DEPOSITS - As QTtC deposits, but without basal
possible marine sediments.

QTtC ALLUVIAL-AND MARINE-TERRACE C DEPOSITS - Predominantly fluvial
silty sand with granules and pebbles, but includes minor sandy pebble gravel 
and peat, overlain by eolian sand and peat. Fluvial sediments contain 
pelecypods fragments throughout; however, basal gravelly sand in more 
upstream sections along Terrace C that is particularly rich in shell fragments 
may be marine. Terrace C is hypothesized to have been cut by the 
Fishcreekian transgression (modified from Carter and Galloway, 1985a.)

QTtB ALLUVIAL-AND MARINE-TERRACE B DEPOSITS - Variable composition,
but deposits generally consist of stratified marine gravelly sand, silty sand, 
silt and minor clay, overlain by fluvial gravelly sand, silty sand, and minor 
organic silt, which in turn is overlain by eolian sand. The marine deposits 
are absent in some exposures; where present, they are fossiliferous. Amino- 
acid analysis of enclosed shells suggests that the marine deposits are from 
the Colvillian and Bigbendian transgressions. The fluvial deposits typically 
contain fragments of pelecypod shells, presumably reworked from the marine 
deposits, peat, and logs of coniferous and nonconiferous trees. Tsg deposits 
are exposed below the fluvial deposits along the more upstream part of the 
Kachemach River on Terrace B (modified from Carter and Galloway, 1985a.)

QTtA ALLUVIAL-AND MARINE-TERRACE A DEPOSITS - Deposits consist of
Tsg deposits along the Kachemach River and the more upstream part of the 
Miluveach River on Terrace A, overlain by fluvial gravelly sand, silty sand, 
and silt and minor clay, which in turn is overlain by eolian sand. The fluvial 
deposits typically contain peat and logs of coniferous and nonconiferous 
trees. Marine deposits are absent; however, fragments of pelecypod shells 
in the stream channel along the more downstream part of the Miluveach 
River on Terrace A suggest their presence below exposed levels. Marine 
deposits, if present, would likely be from the Colvillian or Bigbendian, or 
both transgressions (modified from Carter and Galloway, 1985a.)

Tgs UNDIFFERENTIATED GRAVELLY SAND - Moderately sorted gravelly sand
to sandy gravel. Clasts are predominantly pebble-sized, well-rounded chert 
and quartz. Unit is poorly exposed, but is estimated to be 1 to 3 m thick 
(modified from Carter and Galloway, 1985a.)

Outwash sediments

Qso SILT AND SAND OVER OUTWASH GRAVEL - Eolian silt and fine sand
overlying glaciofluvial gravel, gravelly sand, and minor silty sand. The eolian 
deposits are stratified, include disseminated organic material, and range in 
thickness between 2 and 10 m. Sand is generally predominant over silt within 
a few kilometers of the coast. The underlying outwash gravel is described 
as unit Qo. Along parts of the coast, marine pebbly mud interfingers with 
the outwash gravel to several kilometers inland (modified from Carter and 
others, 1986c.)
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Qo OUTWASH GRAVEL - Stratified pebble, cobble, and boulder gravel, gravelly
sand, and minor silty sand deposited by proglacial streams. Clasts are 
subrounded to well rounded and composed of a wide varity of rock types 
derived from within the Brooks Range. Clast size decreases northward. 
Wood is absent or rare. Along parts of the coast, marine pebbly mud 
interfingers with the outwash gravel to several kilometers inland, except 
where post-transgression outwash has eroded and replaced the marine 
deposits (modified from Carter and others, 1986c.)

Glacial Sediments

Qsgtj SILT AND SAND OVER MIDDLE PLEISTOCENE (?) TILL - Middle
Pleistocene till (Qgt?) covered by eolian and colluvial silt and sand in layers 
up to several meters thick.

Qgt3 MIDDLE PLEISTOCENE (?) TILL - Presumed to correspond to the middle
Pleistocene glacial episode. Present in Ignek Valley and as large lobate 
moraines on Canning and Hulahula Rivers. Moraines are gently irregular, 
but not as subdued as moraine of early Pleistocene till along the Canning 
River. Rounded ridges are discemable, and lakes are present in Canning 
River moraine. Moraines on Hulahula River are possibly early Pleistocene.

Qsgt, SILT AND SAND OVER EARLY PLEISTOCENE (?) TILL - Early
Pleistocene till (Qgt4) covered by eolian and colluvial silt and fine sand in 
layers up to several meters thick.

Qgt4 EARLY PLEISTOCENE (?) TILL - Presumed to correspond to the early
Pleistocene glacial episode. Present in Ignek Valley and as large lobate 
moraine extending eastward along Canning River to Tamayariak River. 
Lobate moraine subdued and rolling, with lakes near its terminus. Till 
deposits to the east more subdued and possibly older. Based on extent, early 
Pleistocene (?) till should occur along streams east of the Sadlerochit 
Mountains. These correlate with similar deposits on the coastal plain. 
However, available evidence indicates that early Pleistocene (?) till is not 
present (see discussion of middle Pleistocene (?) till); it may have been 
reworked or is covered by later outwash and eolian deposits.

Tg GRAVEL - Poo'-ly to moderately sorted pebble, cobble, and boulder gravel
termed the Kup. ruk gravel. Clasts are predominantly rock types common 
in nearby parts of the Brooks Range, including chert, quartz, sandstone, and 
chert-pebble conglomerate. Glacial erratics to 1.5 m in diameter are 
common. Parts of deposit may have silty matrix and may be till. Deposits 
are poorly exposed, but estimated to be up to 20 m thick (modified from 
Carter and Galloway, 1985a.)

Gravel Sheet Sediments

QTsg SILT AND SAND OVER GRAVEL, GRAVELLY SAND, AND SAND - Eolian
silt and fine sand overlying fluvial and possibly glaciofluvial, gravel, gravelly
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QTg(’)

QTgm

Bedrock

Ts

Tmg

Tsmg

sand, sand, and silty sand. The silt and fine sand contains disseminated fine
grained organic material and is indistinctly stratified. Underlying fluvial 
deposits are stratified and include clasts of a wide range of rock types 
derived from the interior of the Brooks Range. The eolian deposits are up 
to 15 m thick and the underlying fluvial deposits range between 10 and at 
least 25 m thick (modified from Carter and others, 1986c.)

SAND AND GRAVEL - Poorly to moderately sorted sand and gravel 
deposited on high-level bedrock surfaces by fluvial processes. Subangular to 
rounded pebbles, cobbles, and boulders with a matrix of fine sand is the 
dominant texture. Modal gravel sizes range from 0.03 to 0.05 m, with clasts 
to 0.6 m in diameter; in general, clast size decreases northward away from 
the Sadlerochit Mountain front. Three lithologies are dominant: Sadlerochit 
Group sandstone or Lisburne Group limestone, or both, plus or minus 
Katakturuk Dolomite. Lithologic sequences represented by clasts indicate 
selective exposure over time or change of source, or both. Maximum 
measured thickness is 21 m; most deposits about half this thickness. In some 
localities, wood is abundant in sand lenses; some coniferous wood is present. 
Deposits mapped and indicated with a prime (’) mark are the most recent 
of these deposits. Best exposed on ridges adjacent to river valleys and on 
knolls (modified from Robinson and others, 1989.)

GRAVEL OVER SAND, SILT, AND CLAY - Poorly to moderately sorted 
pebble, cobble, and boulder gravel of fluvial and possibly glaciofluvial origin 
overlying marine sand, silt, and clay. The gravel is stratified and contains 
clasts composed of a wide range of rock types derived from the interior of 
the Brooks Range. These deposits are up to 10 m thick. The marine 
deposits are stratified and includes sediments of the Bigbendian and 
Fishcreekian marine transgressions. The marine deposits are about 10 m 
thick (modified from Carter and others, 1986c.)

UNDIFFERENTIATED SILTSTONE, SHALE, AND SANDSTONE - Poorly 
to moderately sorted marine and nonmarine siltstone, shale, sandstone, and 
minor conglomerate. The deposits are poorly indurated and thin to medium 
bedded. The thickness of these deposits is unknown (modified from Carter 
and others, 1986c.)

MUDDY CONGLOMERATE (DIAMICTON) - Very poorly sorted, poorly 
indurated pebble to cobble conglomerate with a silty to clayey matrix; matrix 
locally may be bentonitic. Clast rock types include siliceous sandstone, 
siltstone, quartz, and possibly tuff. These deposits are at least 50 m thick 
(modified from Carter and others, 1986c.)

SILT AND MUDDY CONGLOMERATE - Quaternary eolian and 
retransported silt and fine sand overlying Tmg deposits. Silt and fine sand 
deposits include disseminated organic material, are indistinctly stratified, and 
range up to 10 m thick.
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Tsg UNDIFFERENTIATED SAND, GRAVELLY SAND, CONGLOMERATE, AND
PEBBLY MUD - In the western part of the study area, the composition of 
the deposits varies from conglomerate to sandy gravel, gravelly sand, sand, 
and pebbly mud. Some of the deposits include clasts up to 1.2 m in diameter 
composed of metamorphic, intrusive, and volcanic types that do not occur 
in nearby parts of the Brooks Range. The deposits locally contain lignitized 
logs of large coniferous trees, and disseminated sulfur. The exposed 
thickness of these deposits ranges between 2 and 8 m; the total thickness is 
much greater, but unknown. These deposits are overlain by predominantly 
eolian silt and fine sand up to 10 m thick. In the central and eastern parts 
of the area, the deposits consist of poorly sorted and poorly indurated pebble 
to cobble conglomerate with a sandy matrix. Clast rock types include 
siliceous sandstone, silicified siltstone, chert, and quartz. These deposits are 
at least 85 m thick (modified from Carter and Galloway, 1985a; and Carter 
and others, 1986c.)

Kp SANDSTONE, SILTSTONE, SHALE, AND PYROCLASTIC ROCKS - In the
western part of the study area, deposits are moderately sorted nonmarine 
sandstone, siltstone, and shale with minor coaly beds and thin tephra layers. 
The deposits are thin to thickly bedded and poorly to moderately indurated. 
These beds are part of the type section for the upper part of the Kogasukruk 
Tongue of the Prince Creek Formation (BrosgS and Whittington, 1966). In 
the eastern part of the area, the deposits consist of silicified tuff and 
bentonitic shale with minor silty shale (modified from Carter and Galloway, 
1985a; and Carter and others, 1986c.)
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APPENDIX B - MAP-UNIT CO I
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1. Represents the Beechey sand; overlies Ugnuravik gravel
2. Represents silt and sand that overlies Pleistocene outwash
3. Represents s ilt that overlies corresponding till
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3 - MAP-UNIT CORRELATION
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APPENDIX C

STRATIGRAPHIC SECTIONS OR FIELD OBSERVATIONS

Log: Y = stratigraphic section measured 
N = observations only

QUAD FLD NO. MAP NO. LATITUDE LONGITUDE LO(

BPA1 81TIG1 BPA1-1 N 70°12’32" W 147°14’12" Y

BPA1 82KAD1 BPA1-10 N 70°10'42" W 147°18’20" Y

BPA1 83SHAV1 BPA1-11 N 70°10’04" W 147°18’46" Y

BPA1 82SHAV1 BPA1-12 N 70°09’02" W 147ol l ’08" Y

BPA1 82SHAV2 BPA1-13 N 70°09’12" W 147°10’04" Y

BPA1 82SHAV3 BPA1-14 N 70°09’24" W 147°08’24" Y

BPA1 82SHAV4 BPA1-15 N 70°09’22" W 147°07’02" Y

BPA1 84COA2 BPA1-16 N 70°09’20" W 147°06’30" Y

BPA1 82SHAV5 BPA1-17 N 70°09’14" W 147°05’14" Y

BPA1 84COA1 BPA1-18 N 70°09’17" W 147°00’41" Y

BPA1 83SHAV20 BPA1-19 N 70°07’37" W 147°00’13" Y

BPA1 81TIG2 BPA1-2 N 70°12’37" W 147°14’08" Y

BPA1 84SHAV4 BPA1-20 N 70°06’27" W 147°27’17" Y

BPA1 83SHAV9 BPA1-21 N 70°00’34" W 147°29’24 ” Y

BPA1 81SHAV6 BPA1-22 N 70°00’54" W 147°27’18" Y

BPA1 82SHAV7 BPA1-23 N 1Q°0V54" W 147°17’30" Y

BPA1 83SHAV8 BPA1-24 N 70°02’15" W 147°09’52" Y

BPA1 83SHAV14 BPA1-25 N 70°04’06" W 147°15’34" Y

BPA1 83SHAV5 BPA1-26 N 70°04’48" W 147°12’30" Y

BPA1 81SUAV4 BPA1-27 N 70°09’06" W 147°15’30" Y

238

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



239

QUAD FLDNO . MAP NO. LATITUDE LONGITUDE LOG

BPA1 81SHAV5 BPA1-28 N 70°05’07" W 147°15’48" Y

BPA1 84SHAV3 BPA1-29 N 70°05’25” W I47°16’52" Y

BPA1 81TIG3 BPA1-3 N 70°12’34" W 147°13’52" Y

BPA1 83SHAV6 BPA1-30 N 70°06’20" W 147014’25" Y

BPA1 83SHAV7 BPA1-31 N 70°06’24" W 147012’16" Y

BPA1 83SHAV4 BPA1-32 N 70°07’06" W 147° WOO" Y

BPA1 83SHAV3 BPA1-33 N 70°07T9" W 147°12’42" Y

BPA1 82SHAV6 BPA1-34 N 70°07’29" W 147°14’11" Y

BPA1 83SHAV2 BPA1-35 N 70°08’00" W 147°14’08" Y

BPA1 87SR35 BPA1-36 N 70°06T0" W 147°14’30" Y

BPA1 81TIG4 BPA1-4 N 70°12’49" W 147D14’20” Y

BPA1 82KAD4 BPA1-5 N 70°11’52" W 147°28’42" Y

BPA1 82KAD3 BPA1-6 N 70°11’28" W 147°26’28" Y

BPA1 81SHAV2 BPA1-7 N 70°11’13" W 147°24’12" Y

BPA1 81SHAV1 BPA1-8 N 70°11T2" W 147°24’26" Y

BPA1 82KAD2 BPA1-9 N 70°11’07" W 147°21’48" Y

BPA2 83ESAG4 BPA2-1 N 70°14T1" W 147°51’48" Y

BPA2 82SAG9 BPA2-10 N 70°08’56" W 148°08’20" Y

BPA2 84ESAG6 BPA2-11 N 70°10’50" W 148°00’20" Y

BPA2 84ESAG5 BPA2-12 N 70°11’02" W 147o59’50" Y

BPA2 83ESAG10 BPA2-13 N 70°12’57" W 147°59’17" Y

BPA2 83ESAG9 BPA2-14 N 70°11’52" W 147°58T2" Y

BPA2 81SAG9A-C BPA2-15 N 70°13’04" W 148°01’26" Y

BPA2 83ESAG6 BPA2-16 N 70°12’56" W 147°56’20" Y
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QUAD FLDNO . MAP NO. LATITUDE LONGITUDE LOG

BPA2 83ESAG1 BPA2-17 N 70°13’03" W 147°53’00" Y

BPA2 83ESAG2 BPA2-18 N 70°13’02" W 147°52’56" Y

BPA2 83ESAG5 BPA2-19 N 70°13’56" W 147°53’28" Y

BPA2 82SAG5 BPA2-2 N 70°13’03" W 147°45’48" Y

BPA2 83ESAG3 BPA2-2 N 70°13’53" W 147°50’20" Y

BPA2 82KAD6 BPA2-20 N 70°01’30" W 147°44’32" Y

BPA2 83KAD6 BPA2-21 N 70°02’30" W 147°42’03" Y

BPA2 83KAD5 BPA2-22 N 70°04’55" W 147°43’00" Y

BPA2 83KAD4 BPA2-23 N 70°08’27" W 147°39’24" Y

BPA2 83KAD3 BPA2-24 N 70°10’20" W 147°39’21" Y

BPA2 82KAD5 BPA2-25 N 70°11,34" W 147°36’22" Y

BPA2 87SR34 BPA2-26 N 70° 11’02" W 147°59’50" Y

BPA2 82SAG3 BPA2-3 N 70°13’36" W 147°49’24" Y

BPA2 82SAG4 BPA2-4 N 70°13’20" W 147°48’22" Y

BPA2 82SAG6 BPA2-6 N 70°12’38" W 147°42’40" Y

BPA2 83KAD1 BPA2-7 N 70°11’38" W 147°39’24" Y

BPA2 83ESAG7 BPA2-8 N 70°01’51" W 148°11’41" Y

BPA2 83ESAG8 BPA2-9 N 70°07’47" W 148°10’22" Y

BPA3 84WSAG3 BPA3-1 N 70°02’55" W 148°45’42" Y

BPA3 85SAGC BPA3-10 N 70°14’33" W 148°15’47" Y

BPA3 81SAG5 BPA3-11 N 70°00’56" W 148°30’18" Y

BPA3 81SAG7 BPA3-12 N 70°03’50" W 148°20’56" Y

BPA3 82SAG7 BPA3-13 N 70°00’24" W 148°27’30" Y

BPA3 82SAG8 BPA3-14 N 70°04’51" W 148°15’16" Y
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QUAD FLDNO . MAP NO. LATITUDE LONGITUDE LOG

BPA3 83ESAG11 BPA3-15 N 70°05’20" W 148°13’24" Y

BPA3 84WSAG2 BPA3-2 N 70°06’35" W 148°37’58" Y

BPA3 81SAG1 BPA3-3 N 70°01’30" W 148°40’32" Y

BPA3 81SAG3 BPA3-4 N 70°00’27" W 148°34’16" Y

BPA3 84WSAG4 BPA3-5 N 70°0r45’’ W 148°37’32" Y

BPA3 81SAG6 BPA3-6 N 70°03’46" W 148°28’02" Y

BPA3 84WSAG1 BPA3-7 N 70°06’14" W 148°29’00" Y

BPA3 81SAG8A BPA3-8 N 70°12’18" W 148°18’34" Y

BPA3 81SAG8B BPA3-9 N 70°12’24" W 148018’18" Y

BPA4 84KUP2 BPA4-1 N 70°03’02" W 149°13’47" Y

BPA4 84KUP4 BPA4-10 N 70°06’05" W 148°59’59" Y

BPA4 87SR26 BPA4-10 N 70°10’35" W 149°06’50” Y

BPA4 87SR26-1 BPA4-10 N 70°10’40" W 149°07’04" Y

BPA4 84KUP3 BPA4-2 N 70°03’09" W 149°13’44" Y

BPA4 83KUP1 BPA4-3 N 70°05’35" W 149014’18" Y

BPA4 84KUP1 BPA4-4 N 70°05’34" W 149°13’18" Y

BPA4 82KUP2 BPA4-5 N 70°10’29" W 149°06’48" Y

BPA4 84KUP5 BPA4-6 N 70°10’29" W 149°07’04" Y

BPA4 84WSAG6 BPA4-7 N 70°00’04" W 149°14’06" Y

BPA4 84WSAG5 PBA4-8 N 70°00’36" W 149°08’16" Y

BPA5 82KUP5 BPA5-1 N 70°03’03" W 149°48’00" Y

BPA5 82KUP6 BPA5-2 N 70°03’34" W 149°44’08" Y

BPA5 82KUP4 BPA5-3 N 70°00’02" W 149°34’04" Y

BPA5 87SR27 BPA5-4 N 70°00’35" W 149°31T8" Y
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QUAD FLDNO . M AP NO. LATITUDE LONGITUDE LOG

BPB2 82SAG2 BPB2-1 N 70°19’45" W 148°03’38" Y

BPB2 82SAG1 BPB2-2 N 70°17’34" W 148°11’40" Y

BPB2 81SAG10 BPB2-3 N 70°15’44" W 148°03’20" Y

BPB3 81SR01 BPB3-1 N 70°24’42" W 148°42’50" Y

BPB3 81WDOCK2 BPB3-10 N 70°22’43" W 148°31’24" Y

BPB3 81WDOCK5 BPB3-11 N 70°21’21" W 148°28’04" Y

BPB3 81WDOCK7 BPB3-12 N 70°21’04" W 148°27’58" Y

BPB3 81WDOCK8 BPB3-13 N 70°21’01" W 148°27’50" Y

BPB3 81WDOCK9 BPB3-14 N 70°20’04" W 148°27’25" Y

BPB3 7/18/81-1 BPB3-15 N 70°18’28" W 148°19’30" Y

BPB3 7/18/81-2 BPB3-16 N 70°18’33" W 148°19’17" Y

BPB3 7/16/81-1 BPB3-17 N 70°19’02" W 148°18’08" Y

BPB3 7/16/81-2 BPB3-18 N 70°19’07" W 148°17’44" Y

BPB3 7/16/81-3 BPB3-19 N 70°19’16" W 148°17’18" Y

BPB3 81SR02 BPB3-2 N 70°24’38" W 148°42’24" Y

BPB3 84PRU1 BPB3-20 N 70°20’42" W 148°12’32" Y

BPB3 84PUT3 BPB3-21 N 70°15’50" W 148°38’08" Y

BPB3 84PUT4 BPB3-22 N 70°16’06" W 148°37’18" Y

BPB3 84PUT1 BPB3-23 N 70°16’45" W 148°32’36" Y

BPB3 81WRD10 BPB3-24 N 70°17’29" W 148°31’16" Y

BPB3 85PUT2 BPB3-25 N 70°17’45" W 148°30’44" Y

BPB3 PUOWR2 BPB3-26 N 70°15’08" W 148°19’02" Y

BPB3 81SAG3 BPB3-27 N 70°16’19" W 148°15’48" Y

BPB3 87SR36 BPB3-28 N 70°20’29" W 148°13’06” Y
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QUAD FLDNO . MAP NO. LATITUDE LONGITUDE LOG

BPB3 81SR03 BPB3-3 N 10’24T9" W 148°40’42" Y

BPB3 81SR04 BPB3-4 N 70°24’05" W 148°70°40" Y

BPB3 81SR05 BPB3-5 N 70°23’59" W 148°40’25" Y

BPB3 81SR06 BPB3-6 N 70°24’H" W 148°38’20" Y

BPB3 81SR07 BPB3-7 N 70°23’38" W 148°37T2" Y

BPB3 81SR08 BPB3-8 N 70°23’54" W 148°36’00" Y

BPB3 81WDOCK1 BPB3-9 N 70°22’44" W 148°32’00" Y

BPB4 81KAV2 BPB4-1 N 70°29’44" W 149°20’34" Y

BPB4 81BEE2 BPB4-10 N 70°27’51" W 149°03’50" Y

BPB4 81WRD3 BPB4-11 N 70°19T4" W 149°22’42" Y

BPB4 81WRD4 BPB4-12 N 70o19’18" W 149°22’40" Y

BPB4 81WRD5 BPB4-13 N 70°19’22" W 149°19’24" Y

BPB4 81WRD1 BPB4-14 N 70°19’47" W 149°23’38" Y

BPB4 81WRD2 BPB4-15 N 70°19’52" W 149°23’58" Y

BPB4 85MP1 BPB4-16 N 70°27’23" W 149°21’20" Y

BPB4 81KAV1 BPB4-I7 N 70°27’56" W 149°20’42” Y

BPB4 81WRD6 BPB4-18 N 70°19’02" W 149°13’02" Y

BPB4 81WRD7 BPB4-19 N 70°18’49" W 149<T0’00" Y

BPB4 81KAV3 BPB4-2 N 70°29’59" W 149°20’20" Y

BPB4 82KUP1 BPB4-20 N 70°16’19" W 148°56’30" Y

BPB4 81KUP4 BPB4-21 N 70°17’31" W 148°57’48" Y

BPB4 81KUP5 BPB4-22 N 70°17’45" W 148°56’58" Y

BPB4 81KUP1 BPB4-23 N 70°18’04" W 148°56’50" Y

BPB4 81KUP2 BPB4-24 N 70°18’15" W 148°57’20" Y
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QUAD FLDNO . MAP NO. LATITUDE LONGITUDE LOG

BPB4 81KUP3 BPB4-25 N 70°18’04" W 148°58’00" Y

BPB4 81KUP11 BPB4-26 N 70°18’06" W 149°00’18" Y

BPB4 81KUP10 BPB4-27 N 70°18’15" W 149°00’38" Y

BPB4 81KUP9 BPB4-28 N 70o18’19" W 149°00’50" Y

BPB4 84KUPB BPB4-29 N 70°19’51" W 148°59’30" Y

BPB4 81KAV4 BPB4-3 N 70°29’54" W 149°19’40" Y

BPB4 84KUPA BPB4-30 N 70°20’00" W 149°00’40" Y

BPB4 84KUPC BPB4-31 N 70°20’08" W 149°01’06" Y

BPB4 81KUP6 BPB4-32 N 70°22’25" W 148°52’34" Y

BPB4 81KUP7 BPB4-33 N 70°23’0T W 148°55’28" Y

BPB4 81KUP8 BPB4-34 N 70°23’12" W 148°56’40" Y

BPB4 81KAV5 BPB4-4 N 70°29’33" W 149°18’28" Y

BPB4 81KAV6 BPB4-5 N 70°29’30" W 149°18T0" Y

BPB4 81KAV7 BPB4-6 N 70°29’32" W 149°17’42" Y

BPB4 81KAV8 BPB4-7 N 70°29’19" W 149°14’40" Y

BPB4 81KAV9 BPB4-8 N 70°29’25" W 149°14’14" Y

BPB4 81BEE1 BPB4-9 N 70°29’14" W 149°10’02" Y

BPB5 820LIK3 BPB5-1 N 70°27’50" W 149°59’59" Y

BPB5 810LIK9 BPB5-10 N 70°29’32" W 149°48’22" Y

BPB5 81OLIK10 BPB5-11 N 70°29’35" W 149°47’50" Y

BPB5 810LIK11 BPB5-12 N 70°29’32" W 149°47’38" Y

BPB5 810LIK12 BPB5-13 N 70°29’15" W 149°46’58" Y

BPB5 810LIK13 BPB5-14 N 70°29’06" W 149°46’30" Y

BPB5 810LIK14 BPB5-15 N 70°28’51" W 149°46’00" Y
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BPB5 81UGR1 BPB5-16 N 70°28’57" W 149°45’40" Y

BPB5 81UGR2 BPB5-17 N 70°29’04" W 149°45’53" Y

BPB5 81UGR3 BPB5-18 N 70°29’24" W 149°45’59" Y

BPB5 81UGR4 BPB5-19 N 70°29’33" W 149°45’52" Y

BPB5 820LIK4 BPB5-2 N 70°29’59" W 149°59’16" Y

BPB5 81UGR5 BPB5-20 N 70°29’46" W 149°45’40" Y

BPB5 81UGR6 BPB5-21 N 70°29’36" W 149°44’40" Y

BPB5 81UGR7 BPB5-22 N 70°29’46" W 149°44’06" Y

BPB5 81UGR8 BPB5-23 N 70°29’47" W 149°43’04" Y

BPB5 81UGR9 BPB5-24 N 70°29’51" W 149°43’00" Y

BPB5 81UGR10 BPB5-25 N 70°29’49" W 149°41’56" Y

BPB5 81UGR11 BPB5-26 N 70°29’52" W 149°40T0" Y

BPB5 81UGR2-2 BPB5-27 N 70°29’59" W 149°37’20" Y

BPB5 81UGR2-4 BPB5-28 N 70°29’57" W 149°35’40" Y

BPB5 81UGR2-5 BPB5-29 N 70°29’45" W 149°33’59" Y

BPB5 820LIK5 BPB5-3 N 70°28T5" W 149°58’59" Y

BPB5 84KUPD BPB5-30 N 70°20’28" W 149°42’40" Y

BPB5 84KUPE BPB5-31 N 70°27’41" W 149°41’18" Y

BPB5 85KUPC BPB5-32 N 70°19’20" W 149°38’00" Y

BPB5 81UGPIT1 BPB5-33 N 70°19’15" W 149°37’30" Y

BPB5 81UGPIT2 BPB5-34 N 70o19’15" W 149°37’30" Y

BPB5 81UGPIT3 BPB5-35 N 70°19T5" W 149°37’30" Y

BPB5 81UGPIT4 BPB5-36 N 70°19’15" W 149°37’30" Y

BPB5 820LIK6 BPB5-4 N 70°28’55" W 149°57’00" Y
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BPB5 810LIK4 BPB5-5 N 70°28’08" W 149o50’10" Y

BPB5 810LIK5 BPB5-6 N 70°29’56" W 149°49’54" Y

BPB5 810LIK6 BPB5-7 N 70°29’51" W 149°49’44" Y

BPB5 810LIK7 BPB5-8 N 70°29’41" W 149°49’34" Y

BPB5 810LIK8 BPB5-9 N 70°29’30" W 149o49’10" Y

BPC4 81BOD3 BPC4-1 N 70°31’32" W 149°15’22" Y

BPC4 81BOD2 BPC4-2 N 70°31’52" W 149°15’59" Y

BPC4 81BOD1 BPC4-3 N 70°31’51" W 149°15’06" Y

BPC5 810LIK1 BPC5-1 N 70°30’22” W I49°51T0” Y

BPC5 81PIN4 BPC5-10 N 70°33’22" W 149°34’08" Y

BPC5 81PIN5 BPC5-11 N 70°33’20" W 149°32’56" Y

BPC5 81PIN6 BPC5-12 N 70°33’36" W 149°32T6" Y

BPC5 81PIN7 BPC5-13 N 70°33’06" W 149°28’3 r ' Y

BPC5 810LIK2 BPC5-2 N 70°30’16" W 149°51’04" Y

BPC5 810LIK3 BPC5-3 N 70°30’02" W 149°50’20" Y

BPC5 81UGR2-1 BPC5-4 N 70°30’04" W 149°38’26" Y

BPC5 81UGR2-3 BPC5-6 N 70°30’04" W 149°36’40" Y

BPC5 81PIN1 BPC5-7 N 70°33’18" W 149°34’40" Y

BPC5 81PIN2 BPC5-8 N 70°33’22" W 149°34’28" Y

BPC5 81PIN3 BPC5-9 N 70°33’22" W 149°34’08" Y

FIA1 85SR134 FIA1-1 N 70°01’45" W 144°19’54" N

FIA3 85SR165 FIA3-1 N 70t’01’59" W 145°45’40" Y

FIA3 85SR164 FIA3-2 N 70°03’04" W 145°43’00" Y

FIA3 85SR166 FIA3-3 N 70°00’23" W 145°43’00" Y
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FIA3 85SR167 FIA3-4 N 70°01’20" W 145°39’59" N

FIA3 85SR168 FIA3-5 N 70o01’04" W 145°35’42" Y

FIA4 85SR157 FIA4-1 N 70°08’22" W 146°15’22" Y

FIA4 81CAN10 FIA4-10 N 70°01’56" W 145°54’30" Y

FIA4 81CAN12 FIA4-11 N 70°01’10" W 145°52’12" Y

FIA4 81CAN8 FIA4-12 N 70°01’15" W 145°51’18" Y

FIA4 81CAN9 FIA4-13 N 70°01’15" W 145°51’08" Y

FIA4 85SR158 FIA4-2 N 70°08’2 r W 146°07’00" N

FIA4 81FLAX1 FIA4-3 N 70°11’10" W 145°57’32" Y

FIA4 84FLAX1 FIA4-4 N 70° 11’00" W 145°57’48" Y

FIA4 85SR159 FIA4-5 N 70°02’35" W 146°01’30" Y

FIA4 85SR161 FIA4-6 N 70°05’14" W 145°56’30" Y

FIA4 85SR160 FIA4-7 N 70°05T9" W 145°53’00" N

FIA4 85SR162 FIA4-8 N 70°04’49" W 145°48’20" Y

FIA4 81CAN11 FIA4-9 N 70°0r49" W 145°54’32" Y

FIA5 83SHAV17 FIA5-1 N 70°03’35" W 146°52’48" Y

FIA5 83SHAV18 FIA5-2 N 70°05’57" W 146°56’24" Y

FIA5 83SHAV19 FIA5-3 N 70°07’02" W 146°58’48" Y

FIA5 83SHAV21 FIA5-4 N 70°08’20" W 146°59’42" Y

FIA5 84COA3 FIA5-5 N 70°10’14" W 146051’24" Y

FIA5 84COA4 FIA5-6 N 70°10’32" W 146°40’12" Y

FIA5 84COA5 FIA5-7 N 70°11’07" W 146°31’30" Y

HBA1 84KAC1 HBA1-1 N 70°07’43" W 150°28’00" Y

HBA1 84MIL4 HBA1-10 N 70°11’56" W 150°H’18" Y
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HBA1 87SR21 HBA1-11 N 70°13’36" W 150°15’20" Y

HBA1 87SR19 HBA1-12 N 70°13’55" W 150°15’54" Y

HBA1 87SR22 HBA1-2 N 70°08’34" W 150°26’24" Y

HBA1 84KAC2 HBA1-3 N 70°11’35" W 150°23’40" Y

HBA1 84KAC3 HBA1-4 N 70°H’56" W 150°23’40" Y

HBA1 84KAC4 HBA1-5 N 70°13’26" W 150°26’30" Y

HBA1 84KAC5 HBA1-6 N 70°14’52" W 150°29’30" Y

HBA1 83MIL1 HBA1-7 N 70°05’11" W 150°05’08" Y

HBA1 84MIL3 HBA1-8 N 70°08’49" W 150°06’16" Y

HBA1 87SR20 HBA1-9 N 70°09’59" W 150°08’50" N

HBA2 87SR33 HBA2-1 N 70°08’45" W 151°03T9" Y

HBA2 87SR37 HBA2-2 N 70°09’00" W 151°01’48" Y

HBA2 87SR38 HBA2-3 N 70°07’47" W 151°01’08" Y

HBA2 87SR40 HBA2-4 N 70°14’17" W 151o01’00" Y

HBA2 87SR30 HBA2-5 N 70°02’43" W 150°52’52" Y

HBA2 87SR31 HBA2-6 N 70°05T5" W 150°53’59" Y

HBA2 87SR32 HBA2-7 N 70°08’12" W 150°50’50" Y

HBA3 87SR39 HBA3-1 N 70°04’43" W 1 5 r i4 ’00" Y

HBA3 87SR46 HBA3-2 N 70°13’48" W 151°17’00" N

HBB1 87SR14 HBB1-1 N 70°22’45" W 150°35’30" Y

HBB1 84MIL2 HBB1-10 N 70°17’32" W 150°21’36" Y

HBB1 84MIL5 HBB M l N 70°18’23" W 150°23T5" Y

HBB1 84MIL6 HBB1-12 N 70°18’25" W 150°23’22" Y

HBB1 84MIL7 HBB 1-13 N 70°19T0" W 150°23’40" Y
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HBB1 84MIL8 HBB1-14 N 70°19’25" W 150°24’28" Y

HBB1 87SR03 HBB1-15 N 70°19’42" W 150°05’45" N

HBB1 84KAL3 HBB1-16 N 70°20’H" W 150°03’56" N

HBB1 87SR02 HBB1-17 N 70°20’31" W 150°04’20" N

HBB1 84KAL2 HBB1-18 N 70°21’20" W 150°03’24" N

HBB1 87SR01 HBB1-19 N 70°20’16" W 150°00’10" Y

HBB1 87SRI2 HBB1-2 N 70°25’47" W 150o34’12" Y

HBB1 84KAL1 HBB1-20 N 70°24’52" W 150°04’08" N

HBB1 87SR04 HBB1-21 N 70°24’52" W 150°05T8" Y

HBB1 820LIK1 HBB1-22 N 70°25’57" W 150°05’38" Y

HBB1 820LIK2 HBB1-23 N 70°27’38" W 150°00T8" Y

HBB1 87SR11 HBB1-3 N 70°25’54" W 150°32’52" Y

HBB1 87SR08 HBB1-4 N 70°20T7" W 150°30’12" Y

HBB1 87SR10 HBB1-5 N 70°26’57" W 150°26T8" Y

HBB1 87SR09 HBB1-6 N 70°26’40" W 150°25’00" Y

HBB1 87SR06 HBB1-7 N 70°24’22" W 150°23’32" Y

HBB1 87SR05 HBB1-8 N 70°25’09" W 150°19’15" Y

HBB1 84MIL1 HBB1-9 N 70'T6’03" W 150°19’28" Y

HBB2 81COL6 HBB2-1 N 70°18’22" W 151°07’00" Y

HBB2 87SR15 HBB2-10 N 70°24’21" W 150°40’22" Y

HBB2 81COL8 HBB2-11 N 70°24’46" W 150°39’00" Y

HBB2 81COL9 HBB2-12 N 70°25T8" W 150°38’28" Y

HBB2 84KAC6 HBB2-13 N 70°16’10" W 150°37’10" Y

HBB2 87SR07 HBB2-14 N 70°21’05" W 150°37T4" Y
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HBB2 87SR41 HBB2-2 N 70°16’38" W 151°00’38" Y

HBB2 81COL5 HBB2-3 N 70°17’04" W 150°55’42" Y

HBB2 87SR16 HBB2-4 N 70°19’47" W 150°49’50" Y

HBB2 87SR17 HBB2-5 N 70°21’08" W 150°49’25" Y

HBB2 81COL3 HBB2-6 N 70°16’03" W 150°48T0” Y

HBB2 81COL4 HBB2-7 N 70°16’07" W 150°47’59" Y

HBB2 81COL7 HBB2-8 N 70°2T37" W 150°42T8" Y

HBB2 87SR13 HBB2-9 N 70°23’17" W 150°40’40" N

HBB3 87SR45 HBB3-1 N 70°15’25" W 151°43’00" N

HBB3 87SR43 HBB3-2 N 70°21’26" W 151°24’50" Y

HBB4 87SR44 HBB4-1 N 70°24’55" W 151°49’22" Y

MMC2 85SR101 MCC2-2 N 69°36’15" W 144°45’45" N

MMC1 85SR153 MMC1-1 N 69°44’48" W 144°29’30" Y

MMC1 85SR150 MMC1-2 N 69°44’00" W 144°15’40" N

MMC2 85SR102 MMC2-1 N 69°35’32" W 144°50’00" N

MMC2 85SR100 MMC2-3 N 69°39’07" W 144°44’34" N

MMC2 85SR144 MMC2-4 N 69°44’36" W 144°49’50" N

MMC3 85SR65 MMC3-1 N 69°43’03” W 145°47’20" N

MMC3 85SR73 MMC3-2 N 69°39’22" W 145°38’53" N

MMC3 85SR74 MMC3-3 N 69°29’58" W 145°35’47” N

MMC3 85SR70 MMC3-4 N 69°36’40" W 145°35’34" N

MMC3 85SR71 MMC3-5 N 69°37’03" W 145°35’00" N

MMC3 85SR72 MMC3-6 N 69°38’31" W 145°35’41" N

MMC3 85SR78 MMC3-7 N 69°39’06" W 145°31’25" N
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MMC3 85SR77 MMC3-8 N 69°39’49" W 145°28’44" Y

MMC3 85SR135 MMC3-9 N 69°42’01" W 145°19’15" Y

MMC4 85SR103 MMC4-1 N 69°30’02" W 146°18’30" Y

MMC4 85SR44 MMC4-1 N 69034’15" W 146°08,01" N

MMC4 85SR36 MMC4-1 N 69°37’06" W 146°05’44" N

MMC4 85SR35 MMC4-12 N 69°37’33" W 146°05’59" N

MMC4 85SR37 MMC4-13 N 69°37’40" W 146°04’30" N

MMC4 85SR40 MMC4-14 N 69°37’H" W 146°03’51" N

MMC4 85SR41 MMC4-15 N 69°37’36" W 146°02’08" N

MMC4 85SR43 MMC4-16 N 69°37’49" W 146°02’27" N

MMC4 85SR42 MMC4-17 N 69°37’50" W 146°03’22" N

MMC4 85SR39 MMC4-18 N 69°37’41" W 145°59’51" N

MMC4 85SR38 MMC4-19 N 69°37’46" W 145°59’14" N

MMC4 85SR105 MMC4-2 N 69°30’41" W 146°15’54" N

MMC4 85SR45 MMC4-20 N 69°34’53" W 146°02’15" N

MMC4 85SR46 MMC4-21 N 69°34’23" W 145°58’27" N

MMC4 85SR47 MMC4-22 N 69035’15" W 145°56’30" N

MMC4 85SR48 MMC4-23 N 69°33’56" W 145°55’04" N

MMC4 85SR49 MMC4-24 N 69°34’35" W 145°53’25" Y

MMC4 85SR56 MMC4-25 N 69°40’06" W 145°54’20" N

MMC4 85SR57 MMC4-26 N 69°40’16" W 145°53’30" N

MMC4 85SR58 MMC4-27 N 69°40’26 " W 145°53’21" N

MMC4 85SR59 MMC4-28 N 69°41’09" W 145°54’39" N

MMC4 85SR60 MMC4-29 N 69°42T4" W 145°52’42" N
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MMC4 85SR104 MMC4-3 N 69°30’42" W 146°14’39" N

MMC4 85SR63 MMC4-30 N 69°38’49" W 145°49’47" N

MMC4 85SR64 MMC4-31 N 69°39’20" W 145°48T0" N

MMC4 85SR62 MMC4-32 N 69°40’05" W 145°48’32" N

MMC4 85SR61 MMC4-33 N 69°40T8" W 145°49’15" N

MMC4 85SR52 MMC4-4 N 69°37’05" W 146°16’35" N

MMC4 85SR106 MMC4-5 N 69°35’01" W 146°17’38" Y

MMC4 85SR33 MMC4-6 N 69°44’06" W 146° 18’04" Y

MMC4 85SR32 MMC4-7 N 69°44’00" W 146°14’20" N

MMC4 85SR51 MMC4-8 N 69°14’25" W 146°14’02" Y

MMC4 85SR50 MMC4-9 N 69°34’46" W 146°10’31" N

MMC5 85SR10 MMC5-1 N 69°42’59" W 146°57’00" Y

MMC5 85SR06 MMC5-2 N 69°36’54" W 146°54’41" N

MMC5 85SR01 MMC5-3 N 69°39’14" W 146°51’26" Y

MMC5 85SR07 MMC5-4 N 69°38’05" W 146°49’38" Y

MMC5 85SR08 MMC5-5 N 69°36’45" W 146°40’45" N

MMC5 85SR09 MMC5-6 N 69°31’42" W 146°32’24" N

MMD1 85SR146 MMD1-1 N 69°52’56" W 144°3T20" N

MMD1 85SR155 MMD1-10 N 69°5T40" W 144°02’00" Y

MMD1 85SR17 MMD1-2 N 69°56’22" W 144°27’26" N

MMD1 85SR148 MMD1-3 N 69°50’07" W 144°26’08" N

MMD1 85SR149 MMD1-4 N 69°50’08" W 144°25’04" N

MMD1 85SR147 MMD1-5 N 69°51’47" W 144°24’20" N

MMD1 85SR133 MMD1-6 N 69°58’41" W 144°23’35" Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



253

QUAD FLDNO . MAP NO. LATITUDE LONGITUDE LOG

MMD1 85SR152 MMD1-7 N 69°45’39" W 144°21’58" Y

MMD1 85SR154 MMD1-8 N 69°49’34" W 144°15’22" N

MMD1 85SR151 MMD1-9 N 69°45T2" W 144°08’59" Y

MMD2 85SR95 MMD2-1 N 69°45’21" W 145°09T1" N

MMD2 85SR80 MMD2-10 N 69°54’54" W 144°55’42" N

MMD2 85SR79 MMD2-11 N 69°55’32" W 144°55’05" Y

MMD2 85SR131 MMD2-12 N 69°57’45" W 144°57’01" Y

MMD2 85SR137 MMD2-13 N 69°49’55" W I45°03’19" N

MMD2 85SR138 MMD2-14 N 69°48’41" W 145°00’20" N

MMD2 85SR141 MMD2-15 N 69°46’50" W 144°54’08" N

MMD2 85SR143 MMD2-16 N 69°49’24" W 14 4 °5 rir N

MMD2 85SR91 MMD2-17 N 69°49’31" W 144°50’42" Y

MMD2 85SR140 MMD2-18 N 69°49’31" W 144°50’42" Y

MMD2 85SR142 MMD2-19 N 69°50’23" W 144°53’40" N

MMD2 85SR136 MMD2-2 N 69°45’59" W 145°04’44" N

MMD2 85SR139 MMD2-20 N 69°50’29" W I44°55’07" Y

MMD2 85SR89 MMD2-21 N 69°51’46" W 144°54’45" Y

MMD2 85SR90 MMD2-22 N 69°51’57" W 144°55’44" N

MMD2 85SR88 MMD2-23 N 69°52’25" W 144°50’10" N

MMD2 85SR145 MMD2-24 N 69051’24" W 144°37’38" N

MMD2 85SR86 MMD2-25 N 69°54’23" W 144°39’20" Y

MMD2 85SR22 MMD2-26 N 69°56’39" W 144°42’43" N

MMD2 85SR18 MMD2-27 N 69°56’42" W 144°39’47" Y

MMD2 85SR20 MMD2-28 N 69°57’02" W 144°40’58" N
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MMD2 85SR87 MMD2-29 N 69°57’09" W 144°42’00" N

MMD2 85SR92 MMD2-3 N 69°50’40" W 145°11’25" N

MMD2 85SR21 MMD2-30 N 69°57’16" W 144°42’37" Y

MMD2 85SR19 MMD2-31 N 69057’17" W 144°39’13" N

MMD2 85SR132 MMD2-32 N 69°57’49" W 144°38’00" N

MMD2 85SR93 MMD2-4 N 69°51’32" W 145°09’40" N

MMD2 85SR85 MMD2-5 N 69°51’52" W 145°03’12" N

MMD2 85SR84 MMD2-6 N 69°53'45" W 145°03'02" N

MMD2 85SR82 MMD2-7 N 69°54’33" W 145o02’17" N

MMD2 85SR83 MMD2-8 N 69°55’04" W 144°58’08" N

MMD2 85SR81 MMD2-9 N 69°55T8" W 144°58’07" N

MMD3 85SR120 MMD3-1 N 69°46’15" W 145°40’20" Y

MMD3 85SR121 MMD3-10 N 69°51’20" W 145°25’20" N

MMD3 85SR123 MMD3-11 N 69°45’54" W 145°22’59" N

MMD3 85SR76 MMD3-12 N 69°47’30" W 145°I8’46" N

MMD3 85SR94 MMD3-13 N 69°49’48" W 145°21’30" N

MMD3 85SR122 MMD3-14 N 69°51’37" W 145°17’05" Y

MMD3 85SR130 MMD3-15 N 69°58’1T W 145°19’59" Y

MMD3 85SR119 MMD3-2 N 69°46’42" W 145°41’00" N

MMD3 85SR75 MMD3-3 N 69°58’32" W 145°42’12" N

MMD3 85SR128 MMD3-4 N 69°58’15" W 145°45’16" N

MMD3 85SR129 MMD3-5 N69°58’31" W 145°37’24" N

MMD3 85SR68 MMD3-6 N 69°50’06" W 145°33T2" N

MMD3 85SR69 MMD3-7 N 69°50’30" W 145°34’00" Y
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MMD3 85SR118 MMD3-8 N 69°50’25" W 145°33’08" Y

MMD3 85SR117 MMD3-9 N 69°52’48" W 145°33’00" N

MMD4 81CAN1 MMD4-1 N 69°59T2" W 146°17’24" Y

MMD4 85SR30 MMD4-10 N 69°53’35" W 146°2T26" Y

MMD4 85SR28 MMD4-11 N 69°53’55" W 146°22’00" Y

MMD4 85SR116 MMD4-12 N 69°53’00" W 146°12’34" Y

MMD4 85SR124 MMD4-13 N 69°66’57" W 146°14’44" Y

MMD4 85SR125 MMD4-14 N 69°56’57" W 146°07’38" Y

MMD4 85SR114 MMD4-15 N 69°51’34" W 146°03’58" N

MMD4 85SR115 MMD4-16 N 69°55’30" W 146o02’14" Y

MMD4 85SR126 MMD4-17 N 69°57’30" W 145°59’36" Y

MMD4 85SR127 MMD4-18 N 69°59’33" W 145°54’38" Y

MMD4 85SR112 MMD4-19 N 69°48’26" W 145°56’32" N

MMD4 81CAN2 MMD4-2 N 69°59’01" W 146°16’00" Y

MMD4 85SR113 MMD4-20 N 69°51’27" W 145°57’06" Y

MMD4 85SR67 MMD4-21 N 69°53’22" W 145°48’40" N

MMD4 85SR66 MMD4-22 N 69°47’19" W 145°49’30" N

MMD4 81CAN3 MMD4-3 N 69°58’55" W 146°16’51" Y

MMD4 81CAN4 MMD4-4 N 69°59’30" w i46°mr Y

MMD4 81CAN5 MMD4-5 N 69°59’11" W 146ol l ’02" Y

MMD4 81CAN6 MMD4-6 N 69°57’35" W 146°08’32" Y

MMD4 81CAN7 MMD4-7 N 69°56’50" W 146°07’28" Y

MMD4 85SR34 MMD4-8 N 69°45’38" W 146°23’00" Y

MMD4 85SR109 MMD4-9 N 69°52’36" W 146“22’28" Y
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QUAD FLDNO . MAP NO. LATITUDE LONGITUDE LOG

MMD5 83SHAV16 MMD5-1 N 69°57’08" W 146°59’59" Y

MMD5 85SR108 MMD5-10 N 69°49T4" W 146°27,10" Y

MMD5 85SR26 MMD5-11 N 69°49’50" W 146°24’22" N

MMD5 85SR25 MMD5-12 N 69°50’01" W 146°26’20" Y

MMD5 85SR24 MMD5-13 N 69°50’55" W 146°27’59" N

MMD5 85SR27 MMD5-14 N 69°51’05” W 146°26’42” N

MMD5 85SR23 MMD5-15 N 69°54’04" W 146°25’14" N

MMD5 85SR11 MMD5-2 N 69°45’08" W 146°52’28" Y

MMD5 85SR12 MMD5-3 N 69°49’20" W 146°51’20" N

MMD5 85SR13 MMD5-4 N 69°50’48" W 146°53’48n N

MMD5 85SR14 MMD5-5 N 69°53’31" W 14b”54’00" N

MMD5 85SR111 MMD5-6 N 69°50’39" W 146°42’02" N

MMD5 85SR107 MMD5-8 N 69°46’47" W I46°24’48” N

MMD5 85SR31 MMD5-9 N 69°48’58" W 146°24’30" N

SGC1 85SR05 SGC1-1 N 69°37’31" W 147°01’55" N

SGC1 85SR04 SGC1-2 N 69°38’34" W 147°02’55" N

SGC1 85SR03 SGC1-3 N 69°40’39" W 147°06’04" N

SGC1 85SR02 SGC1-4 N 69°40’59" W 147°03’30" N

SGD1 83SHAV11 SGD1-1 N 69°57’24" W 147°32’10" Y

SGD1 83SHAV10 SGD1-2 N 69°59’15" W 147°3ri6“ Y

SGD1 83SHAV12 SGD1-3 N 69°57’26" W 147°17T0" Y

SGD1 83SHAV13 SGD1-4 N 69t>59’43" W 147°16’00" Y

SGD1 85SR15 SGD1-5 N 69°52’39" W 147°00’40" N

SGD1 85SR16 SGD1-6 N 69°54’04" W 147°05T6" Y
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QUAD FLDNO. MAP NO. LATITUDE LONGITUDE LOG

SGD1 83SHAV15 SGD1-7 N 69°58’07" W 147°02’40" Y

SGD2 83KAD8 SGD2-1 N 69°56’59" W 147°49’04" Y

SGD2 83KAD7 SGD2-2 N 69°59’39" W 147°46’05" Y

SGD3 81SAG2 SGD3-1 N 69°59’45" W 148°43’00" Y

SGD3 81SAG4 SGD3-2 N 69°59’25" W 148032’16" Y

SGD5 83KUP3 SGD5-1 N 69°58’39" W 149°51’56" Y

SGD5 83KUP2 SGD5-2 N 69°59’06" W 149°43’10" Y

UMD1 87SR28 UMD1-1 N 69°57’35" W 150°31’48" N

UMD2 87SR25 UMD2-1 N 69°58’28" W 150°50’35" Y

UMD2 87SR24 UMD2-2 N 69°57’36" W 150°46’29" N

UMD2 87SR29 UMD2-3 N 69°59’52" W 150°45’40" N
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APPENDIX D

SAMPLES
Analyses:

TX = grain-size analysis WO = wood analysis
C14 = carbon-14 analysis AA = amino-acid analysis
MF = microfossil analysis TL = thermoluminescence analysis
PO = pollen analysis

SPL NO FLD SPL DEPTH MATL ANALYSES

BPA1-11A 83SR55 0.7 zS TX

BPA1-11B 83SR56 1.4 S

BPA1-11C 83SR57 1.5 S TX

BPA1-11D 83SR58 1.5 zS TX

BPA1-11E 83SR59 2.6 Organic

BPA1-12A 82SR13 0.2 (g)sM TX

BPA1-12B 82SR14 1.1 gmS MF/TX

BPA1-12C 82SR15 1.4 sG TX

BPA1-12D 82SR16 2.0 g(m)S TX

BPA1-12E 82SR17 2.3 S TX

BPA1-12F 82SR18 2.8 gS TX

BPA1-12G 82SR19 2.9 (g)S TX

BPA1-12H 82SR20 3.0 gS MF/TX

BPA1-12I 82SR21 3.5 (g)s TX

BPA1-12J 82SR22 3.7 msG TX

BPA1-12K 82SR23 3.9 gmS TX

BPA1-14A 82SR24 0.3 Peat

BPAi-14B 82SR25 0.9 mS TX

BPA1-14C 82SR26 3.4 gmS TX
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SPLNO  FLD S PL  DEPTH M ATL ANALYSES

BPA1-18A 84SR108 1.7 sG TX

BPA1-19A 83SR119 0.1 (g)niS TX

BPA1-19B 83SR120 0.7 gmS TX

BPA1-19C 83SR121 1.5 (g)niS TX

BPA1-1A 81SR96 0.3 sM TX

BPAM B 81SR97 1.0 g(m)S TX

BPA1-20A 84DH38 0.3 Peat

BPA1-21A 83SR78 2.2 (g)mS TX

BPA1-21B 83SR79 2.8 (g)niS TX

BPA1-21C 83SR80 3.4 gs TX

BPA1-21D 83SR81 4.2 gmS TX

BPA1-21E 83SR82 4.7 msG TX

BPA1-23A 82SR52 1.5 g(s)M TX

BPA1-23B 82SR53 1.8 g(m)S TX

BPA1-23C 82SR54 2.4 msG TX

BPA1-23D 82SR55 3.0 msG TX

BPA1-24A 83SR76 0.6 (g)mS TX

BPA1-24B 83SR77 1.1 (g)mS TX

BPA1-25A 83SR95 0.4 (g)mS TX

BPA1-25B 83SR96 2.8 msG TX

BPA1-25C 83SR97 3.1 (g)S TX

BPA1-25D 84DH37 3.1 (g)S TX

BPA1-25E 83SR98 3.4 G TX

BPA1-25F 83SR99 3.6 sG TX
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SPL NO FLD SPL DEPTH M ATL ANALYSES

BPA1-25G 83SR100 3.9 (g)S TX

BPA1-25H 84DH36 4.2 sG TX

BPA1-26A 83SR71 0.6 gmS TX

BPA1-26B 83SR72 0.9 msG TX

BPA1-27A 81SH06 0.4 Peat

BPA1-27B 81SH07 0.8 g(m)S TX

BPA1-28A 81SH08 0.9 Peat

BPA1-29A 84SR113 0.6 Peat

BPA1-2A 81SR98 0.7 Peat

BPA1-30A 83SR74 0.3 gmS TX

BPA1-30B 83SR101 1.6 sG TX

BPA1-31A 83SR75 0.6 (g)mS TX

BPA1-32A 83SR68 0.7 gS TX

BPA1-32B 83SR69 1.1 msG TX

BPA1-32C 83SR70 1.5 gmS TX

BPA1-33A 83SR64 1.4 gs TX

BPA1-33B 83SR65 2.0 sG TX

BPA1-33C 83SR66 2.4 sG TX

BPA1-33D 83SR67 2.7 gmS TX

BPA1-34A 82SR50 0.5 S TX

BPA1-34B 82SR51 0.7 msG TX

BPA1-35A 83SR61 0.8 Peat

BPA1-35B 83SR62 0.9 sG TX

BPA1-35C 83SR63 1.1 Peat
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SPL NO FLD SPL DEPTH M ATL ANALYSES

BPA1-37A 81SH05 0.1 zS TX

BPA1-4A 81SR99 0.2 sM TX

BPA1-5A 82SR46 2.6 mS TX

BPA1-7A 81SH02 0.4 mS TX

BPA1-7B 81SH03 0.6 (g)S

BPA1-7C 81SH04 0.9 mS TX

BPA1-8A 81SH01 0.3 gmS TX

BPA1-9A 82SR45 2.0 gs

BPA2-10A 82SR44 1.2 mS TX

BPA2-11A 84SR66 5.9 sZ

BPA2-11B 84SR67 5.9 sZ TX

BPA2-11C 84SR65 6.0 sG TX

BPA2-12A 84DH01 3.6 sG TX

BPA2-12B 84DH03 5.4 Z TX

BPA2-12C 84DH02 6.3 sG TX

BPA2-13A 83SR22 0.5 S MF/PO

BPA2-13A 84SR63 3.3 (g)S TX

BPA2-13B 84SR64 1.9 gM TX

BPA2-13C 83SR23 2.7 S MF/PO

BPA2-13D 83SR24 3.2 z PO

BPA2-13F 83SR25 4.2 z PO/TX

BPA2-13G 83SR26 4.3 sG PO/TX

BPA2-13H 84SR60 5.1 msG TX

BPA2-13I 84SR62 5.4 (g)mS TX
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SPLNO FLD SPL DEPTH M AIL ANALY

BPA2-13J 84TL07 5.7 Z TL

BPA2-13K 84SR51 5.7 sZ TX

BPA2-13L 84SR61 5.8 G TX

BPA2-14A 83SR18 0.6 (g)s MF/TX

BPA2-14B 83SR19 0.8 gmS TX

BPA2-14C 83SR20 1.1 (g)S TX

BPA2-14D 83SR21 1.8 gS

BPA2-15A 81SR137 0.1 zS TX

BPA2-15B 81SR138 0.1 sZ TX

BPA2-15C 81SR139 0.4 (g)s

BPA2-17A 83SR01 0.3 (g)S

BPA2-17B 83SR02 0.7 Peat

BPA2-18A 83SR03 0.7 (g)mS TX

BPA2-19A 83SR04 0.2 M TX

BPA2-19B 83SR05 0.5 M TX

BPA2-20A 82SR56 0.4 Peat C14

BPA2-20B 82SR57 0.8 gmS TX

BPA2-21A 83SR46 0.7 (g)s TX

BPA2-21B 83SR45 1.2 Wood C14

BPA2-23A 83SR40 0.7 S TX

BPA2-23B 83SR41 1.7 s TX

BPA2-23C 83SR42 2.2 s TX

BPA2-23D 83SR43 2.6 gmS TX

BPA2-23E 83SR44 3.2 msG TX
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SPL NO FLD  SPL DEPTH M A IL

BPA2-24A 83SR36 0.5 sZ

BPA2-24B 83SR37 2.0 (g)mS

BPA2-24C 83SR38 2.7 gmS

BPA2-24D 83SR39 3.8 sG

BPA2-25A 83SR33 1.6 Peat

BPA2-25B 82SR47 1.7 Wood

BPA2-25C 83SR34 2.1 sZ

BPA2-25D 83SR35 3.8 zS

BPA2-3A 82SR11 1.3 g(s)M

BPA2-3B 82SR12 1.4 Peat

BPA2-7A 83SR30 0.8 (g)mS

BPA2-7B 83SR31 1.1 gS

BPA2-7C 83SR32 1.7 gmS

BPA2-8A 83SR06 0.6 (g)S

BPA2-8B 83SR07 1.3 gs

BPA2-8D 83SR09 2.1 Organic

BPA2-8E 83SR10 2.4 gs

BPA2-8F 83SR11 2.9 sG

BPA2-8G 83SR12 3.0 Peat

BPA2-9A 83SR13 0.9 (g)sM

BPA2-9B 83SR14 1.6 gmS

BPA2-9C 83SR15 1.9 (g)S

BPA2-9D 83SR16 2.9 (g)S

BPA2-9E 83SR17 3.7 (g)S

ANALYSES

TX

TX

TX

TX

TX

TX

TX

TX

PO

C14

PO

PO

TX

TX

TX

TX

TX
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BPA3-10A 84SR02 4.3 Wood

BPA3-10B 84SR03 4.3 gs TX

BPA3-10C 84SR01 5.1 Peat C14

BPA3-10D 85SAGC-3 7.7 gS M F/PO/TX

BPA3-10E 84SR68 8.7 Peat C14

BPA3-10F 84SR09 10.5 (g)S MF/TX

BPA3-10G 84SR10 10.5 Organic PO

BPA3-10H 84SR69 12.6 Wood WO

BPA3-10I 84SR08 12.9 gs TX

BPA3-10J 84SR04 13.0 sG TX/WO

BPA3-10K 84SR05 13.0 Organic WO

BPA3-10L 84SR06 13.0 gs WO

BPA3-10M 84SR07 13.4 gs M F/PO

BPA3-10N 84SR70 13.6 gs WO

BPA3-10O 84SR11 14.5 gs AA/PO

BPA3-10P 84SR12 14.5 gs

BPA3-10Q 84SR13 14.5 gs TX

BPA3-10R 85SAGC-1 18.7 Wood AA/WO

BPA3-10S 85SAGC-2 18.7 z M F/PO/TX

BPA3-11A 81SR127 0.1 M TX

BPA3-12A 81SR131 0.2 (g)S

BPA3-12B 81SR132 0.3 gM TX

BPA3-13A 82SR39 1.0 mS TX
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SPL NO FLD SPL DEPTH M ATL ANALYSES

BPA3-13B 82SR40 1.0 gmS TX

BPA3-13C 82SR41 7.4 sZ M F/PO/TX

BPA3-13D 82SR42 7.4 Organic C14

BPA3-13E 84SR52 7:4 Wood

BPA3-13F 84SR53 7.4 Z TX

BPA3-13G 84TL08 8.1 Z TL

BPA3-14A 82SR43 1.9 g(m)S TX

BPA3-15A 83SR27 1.0 gmS TX

BPA3-15B 83SR28 1.4 (g)s TX

BPA3-15C 83SR29 2.8 g(s)M TX

BPA3-16A 85END3 14.0 Wood AA/WO

BPA3-16B 85END4 14.0 Z TL

BPA3-16C 85END5 14.0 M TX

BPA3-16D 85END1 14.4 Organic PO

BPA3-16E 85END2 14.4 Organic

BPA3-1A 84SR76 0.1 Peat

BPA3-1B 84SR77 0.4 Peat

BPA3-2A 84SR73 0.4 Peat

BPA3-2B 84SR74 0.5 g(s)M TX

BPA3-2C 84SR75 0.7 Peat C14

BPA3-3A 81SR121 0.5 Peat

BPA3-4A 81SR124 0.5 (g)S

BPA3-5A 84SR78 0.2 (g)s

BPA3-6A 81SR128 0.4 sM TX
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SPL NO FLD SPL DEPTH M ATL

0.5 PeatBPA3-6B 81SR129

BPA3-6C 81SR130

BPA3-7A 84SR72

BPA3-8A 81SR133

BPA3-8B 81SR134

BPA3-9A 81SR135

BPA3-9B 81SR136

BPA4-10A 87SR26-2

BPA4-10B 87SR26-1

BPA4-1A 84SR81

BPA4-2A 84SR82

BPA4-3A 83SR124

BPA4-3B 83SR125

BPA4-4A 84SR33A

BPA4-4B 84SR33

BPA4-5A 82SR31

BPA4-5B 82SR32

BPA4-5C 82SR33

BPA4-5D 82SR34

BPA4-6A 84SR85

BPA4-6B 84SR86

BPA4-6C 84SR86A

BPA4-7A 84SR80

BPA4-8A 84SR79

0.6 M

0.3 (g)S

0.1 Peat

0.4 (g)S

0.2 mS

0.3 sZ

1.6 Peat

1.7 Peat

0.4 Peat

0.9 Peat

0.7 S

1.2 sG

0.6 Peat

0.7 Peat

0.3 gmS

0.6 gmS

1.2 msG

1.5 msG

0.6 zS

1.7 Peat

1.7 Organic

0.2 Peat

0.1 Peat

ANALYSES

TX

TX

TX

C14

C14

TX

TX

TX

TX

TX

TX

C14/TX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



267

SPL NO FLD SPL DEPTH M ATL

BPA4-9A 84SR83 0.6 (g)S

BPA4-9B 84SR84 0.7 sM

BPA5-1A 82SR36 1.6 Wood

BPA5-1B 82SR37 1.8 Wood

BPA5-1C 82SR38 2.2 Wood

BPA5-2A 82SR35 1.7 Wood

BPA5-4A 87SR27-2 0.7 (g)S

BPA5-4B 87SR27-1 2.6 gs

BPB2-1A 82SR10 1.6 zS

BPB2-2A 82SR07 0.5 zS

BPB2-3A 81SR140 1.8 zS

BPB3-10A 81SR15 0.2 sZ

BPB3-10B 81SR29 0.2 g(m)S

BPB3-10B 81SR30 0.3 Peat

BPB3-10C 81SR31 1.0 (g)S

BPB3-11A 81SR32 0.2 sM

BPB3-12A 81SR33 0.2 Peat

BPB3-12B 81SR34 0.4 Peat

BPB3-12C 81SR35 0.8 Peat

BPB3-14A 81SR36 0.3 sM

BPB3-15A 81SR20 0.3 (g)S

BPB3-15B 81SR21 0.5 sZ

BPB3-15C 81SR22 0.6 (g)S

BPB3-15D 81SR23 1.0 Peat

ANALYSES

TX

TX

TX

TX

TX

TX

C14

TX

C14

TX

TX
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SPL NO FLD SPL DEPTH MATL

1.4 mSBPB3-15E 81SR24

BPB3-16A 81SR125

BPB3-16A 81SR25

BPB3-16B 81SR126

BPB3-16B 81SR26

BPB3-16F 85END6

BPB3-16G 85END7

BPB3-17A 81SR01

BPB3-17B 81SR02

BPB3-17C 81SR03

BPB3-17D 81SR04

BPB3-17E 81SR05

BPB3-18A 81SR06

BPB3-18B 81SR07

BPB3-18C 81SR08

BPB3-19A 81SR10

BPB3-19B 81SR11

BPB3-19C 81SR09

BPB3-1A 81SR88

BPB3-1B 81SR89

BPB3-21A 84DH04

BPB3-22A 81SR118

BPB3-22B 84DH05

BPB3-22C 84DH06

0.2 zS

0.8 sM

0.2 zS

1.4 mS

14.4 Organic

14.4 Organic

0.1 mS

0.3 (g)S

0.6 Peat

1.6 g(m)S

1.8 gmS

0.2 sZ

0.6 g(m)S

1.2 g(m)S

0.4 zS

0.4 sZ

0.8 Peat

0.2 sZ

0.6 gmS

0.1 Peat

0.3 Peat

0.3 Peat

0.6 Wood

TX

TX

TX

TX

TX

MF

WO

TX

C14

TX

TX

TX

TX

TX

TX

TX

TX

ANALYSES
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SPL NO FLD SPL DEPTH MATL ANALYS

BPB3-22D 84SR119 0.6 (g)S

BPB3-22E 81SR120 1.4 sM TX

BPB3-23A 84SR14 0.7 Peat

BPB3-23B 82SR03 0.8 Z TX

BPB3-23B 84SR15 1.0 Wood

BPB3-23C 81SR108 1.0 mS TX

BPB3-23D 81SR109 1.2 sG TX

BPB3-23E 84SR19 6.5 Wood WO

BPB3-23F 84SR18 7.8 Wood C14/WO

BPB3-23G 84SR16 10.7 Wood C14/WO

BPB3-23H 84SR17 10.7 Wood

BPB3-23I 84TL10 10.7 Z TL

BPB3-24A 81SR110 0.5 Z TX

BPB3-24B 81SR111 1.0 sZ TX

BPB3-25A 85PUT2-1 1.0 S TX

BPB3-25B 85PUT2-2 1.1 Organic

BPB3-25C 85PUT2-3 2.1 Peat

BPB3-25D 85PUT2-10 3.0 Wood C14

BPB3-25E 85PUT2-4 4.7 Wood AA

BPB3-25F 85PUT2-5 4.7 Peat

BPB3-25G 85PUT2-6 5.8 sG TX

BPB3-25H 84SR58 6.6 Wood C14

BPB3-25I 84SR54 6.8 Wood

BPB3-25J 84SR55 6.8 Wood
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BPB3-25K 84SR56 6.8 sZ TX

BPB3-25L 84SR57 6.8 Wood WO

BPB3-25M 84TL09 6.8 Z

BPB3-25N 85PUT2-7 6.8 Organic C14

BPB3-250 85PUT2-8 6.8 Z TX

BPB3-25P 85PUT2-9 7.2 sG

BPB3-25Q 85PUT2-11 7.4 Wood C14

BPB3-25R 85PUT2-12 7.4 Z

BPB3-25S 85PUT2-13 12.8 sG MF/TX

BPB3-25T 85PUT2-14 16.3 Z TX

BPB3-25U 85PUT2-15 16.3 Z MF

BPB3-25V 85PUT2-16 16.3 Shell AA

BPB3-26B 81SR17 0.7 zS

BPB3-28A 87SR36-1 Beach M

BPB3-29A 81SR12 Surface sZ TX

BPB3-2A 81SR90 0.3 g(m)S TX

BPB3-32A 81SR13 Surface zS TX

BPB3-34A 81SR14 0.2 zS

BPB3-35A 81SR107 1.0 g(m)S TX

BPB3-6A 81SR91 0.4 cS TX

BPB3-6B 81SR92 0.5 Peat

BPB3-8A 81SR93 0.1 S TX

BPB3-8B 81SR94 0.3 (g)S

BPB3-8C 81SR95 0.5 g(m)S TX
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BPB3-9A 81SR27 Beach gs TX

BPB3-9B 81SR28 0.4 sM TX

BPB4-11A 81SR102 0.2 mS TX

BPB4-11B 81SR103 0.3 g(m)S TX

BPB4-14A 81SR100 0.3 zS TX

BPB4-15A 81SR101 0.3 sM TX

BPB4-16A 85MP6 0.3 S TX

BPB4-16B 85MP5 1.3 Z C14

BPB4-16C 85MP4 1.7 gS TX

BPB4-16D 85MP3 10.5 Wood AA/WO

BPB4-16E 85MP2 10.5 Wood WO

BPB4-16F 85MP1 14.8 Wood WO

BPB4-16G 85MP11 15.0 S MF

BPB4-16H 85MP9 15.3 Wood AA/WO

BPB4-16I 85MP10 15.3 Organic

BPB4-16J 85MP7 16.8 S TX

BPB4-16K 85MP8 17.5 S M F/PO/TX

BPB4-17A 81SR65 0.4 zS TX

BPB4-17B 81SR66 10.0 g(m)S TX

BPB4-18A 81SR104 0.5 g(m)S TX

BPB4-19A 81SR105 0.2 zS

BPB4-1A 81SR67 0.8 g(m)S MF/TX

BPB4-20A 82SR30 10.0 cS TX

BPB4-21A 81SR116 0.6 zS TX
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1.0

0.7

gs

Peat

BPB4-21B 81SR117

BPB4-23A 81SR112

BPB4-23B 81SR113

BPB4-23C 81SR114

BPB4-24A 81SR115

BPB4-26A 81SR148

BPB4-27A 81SR147

BPB4-28A 81SR146

BPB4-29A 84DH08

BPB4-2A 81SR68

BPB4-30A 84DH07

BPB4-31A 84DH10

BPB4-31B 84DH09

BPB4-32A 81SR141

BPB4-33A 81SR143

BPB4-33B 81SR142

BPB4-34A 81SR144

BPB4-34B 81SR145

BPB4-4A 81SR69

BPB4-6A 81SR70

BPB4-6B 81SR71

BPB4-7A 81SR72

BPB4-9A 81SR82

BPB4-9B 81SR73

0,2 mS

0.4 mS

0.6 Peat

0.5 Peat

0.2 zS

0.5 S

0.5 S

0.9 gmS

0.3 S

0.2 Peat

5.4 Organic

0.3 Peat

0.5 Peat

10.0 sZ

0.7 Organic

1.1 Peat

0.5 gmS

0.3 Peat

0.8 S

0.4 gmS

0.5 Peat

2.0 sZ

TX

TX

TX

TX

TX

TX

TX

C14

TX

TX

TX

ANALYSES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



273

SPL NO FLD SPL DEPTH MATL ANALY

BPB5-10A 81SR47 2.0 mS TX

BPB5-13A 81SR48 0.2 mS TX

BPB5-13B 81SR49 10.0 Peat

BPB5-14A 81SR50 0.8 Peat C14

BPB5-15A 81SR51 0.9 zS TX

BPB5-15B 81SR52 1.0 Peat

BPB5-16A 81SR53 0.3 zS

BPB5-17A 81SR54 0.2 sM TX

BPB5-18A 81SR56 0.2 mS TX

BPB5-1A 82SR29 0.5 g(s)M TX

BPB5-26A 81SR58 0.3 cS TX

BPB5-28A 81SR61 0.3 mS

BPB5-28B 81SR62 1.2 g(m)S

BPB5-30A 84SR20 1.7 sZ TX

BPB5-30B 84SR21 2.5 g(s)M TX

BPB5-30C 84TL1 2.5 S

BPB5-30D 84SR22 2.9 gs TX

BPB5-30E 84SR23 9.7 Wood AA/WO

BPB5-30F 84SR24 9.7 Wood WO

BPB5-30G 84SR25 9.7 Wood WO

BPB5-31A 84SR44 2.1 S TX

BPB5-31B 84SR90 2.1 s TX
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BPB5-31C 84SR45 2.7 zS TX

BPB5-31D 84SR87 2.7 zS TX

BPB5-31E 84SR88 2.7 G

BPB5-31F 84SR89 2.7 Z TL

BPB5-31G 84SR47 10.2 S TX

BPB5-31H 84SR48 10.2 Wood WO

BPB5-31I 84SR49 10.7 Wood AA/WO

BPB5-31J 84SR50 10.7 Wood WO

BPB5-31K 84TL06 10.7 Z TL

BPB5-32A 84SR26 1.7 sZ TX

BPB5-32B 84TL01 1.7 S

BPB5-32C 85KUPC-1 1.7 gS TX

BPB5-32D 85KUPC-2 1.7 s I L

BPB5-32E 84TL02 2.7 s

BPB5-32F 82SR06 3.0 s TX

BPB5-32G 84SR27 3.5 s TX

BPB5-32H 85KUPC-3 4.6 Organic C14

BPB5-32I 85KUPC-4 4.6 S

BPB5-32J 84SR28 6.4 (g)S TX

BPB5-32K 85KUPC-5 6.4 S

BPB5-32L 84SR32 6.6 Wood WO

BPB5-32M 84SR29 7.7 Wood C14

BPB5-32N 84TL03 7.7 S TL

BPB5-320 85KUPC-6 7.7 Wood AA/WO
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BPB5-32P 84SR30 10.7 Wood WO

BPB5-32Q 84SR31 10.7 Wood wo

BPB5-32R 84SR32A 10.7 Wood wo

BPB5-32S 85KUPC-7 10.7 Wood AA

BPB5-32T 84TL04 11.0 Z TL

BPB5-33A 81SR38 0.8 s TX

BPB5-33B 81SR39 1.0 mS TX

BPB5-33C 81SR40 10.0 sG TX

BPB5-5A 81SR44 0.3 S

BPB5-7A 81SR45 0.2 g(s)M TX

BPB5-7B 81SR46 0.8 gmS TX

BPC4-1A 81SR78 0.5 gmS TX

BPC4-1B 81SR79 0.9 gmS TX

BPC4-1D 81SR81 0.0 S TX

BPC4-2A 81SR76 1.2 g(m)S TX

BPC4-2B 81SR77 1.6 gM TX

BPC4-3A 81SR74 0.4 Peat C14

BPC4-3B 81SR75 0.5 mS TX

BPC4-1C 81SR80 1.1 gmS TX

BPC5-10A 81SR85 0.6 Peat C14

BPC5-10B 81SR86 0.6 S TX

BPC5-10C 81SR87 1.0 sZ TX

BPC5-1A 81SR41 0.2 Z

BPC5-1B 81SR42 0.7 g(m)S TX
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BPC5-3A 81SR43 0.5 M TX

BPC5-5A 81SR59 0.4 mS TX

BPC5-6A 81SR60 0.4 mS TX

BPC5-8A 81SR83 0.1 gM TX

BPC5-8B 81SR84 1.6 g(s)M TX

FLA3-5A 85SR168-1 1.7 M TX

FIA4-11A 81SH23 0.2 Peat

FIA4-1A 85SR157-1 0.9 Peat

FIA4-3A 81SH24 0.4 g(m)S TX

FIA4-3B 81SH25 0.9 Peat

FIA4-3C 81SH26 1.8 mS TX

FIA4-4A 84SR112 3.5 (g)S TX

FIA4-4B 84SR111 4.9 c

FIA4-5A 85SR159-1 1.0 Peat

FIA4-8A 85SR162-1 2.1 gs

FIA4-8B 85SR162-2 2.9 gS

FIA4-8C 85SR162-3 3.0 gs

FIA5-1A 83SR111 0.2 gmS TX

FIA5-2A 83SR112 0.3 msG TX

FIA5-3A 83SR113 0.2 gmS TX

FIA5-3B 83SR114 0.7 Organic

FIA5-3C 83SR115 0.8 Ash

FIA5-3D 83SR116 0.9 Organic

FIA5-3E 83SR117 1.0 gmS TX
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FIA5-3F 83SR118 1.3 sG

FIA5-4A 83SR122 0.4 Z

FIA5-4B 83SR123 0.8 G

FIA5-6A 84SR109 2.3 sZ

FIA5-6B 84SR110 4.2 S

FIA5-7A 84DH34 0.6 s

FIA5-7B 84DH35 1.9 sG

HBA1-10A 84DH20 5.0 M

HBA1-10B 84DH17 7.6 S

HBA1-10C 84DH18 7.6 Wood

HBA1-10D 84DH15 8.0 gs

HBA1-10E 87SR18-1 8.7 Wood

HBA1-10F 84DH16 9.6 sZ

HBAMOG 84DH19 Beach Shell

HBA1-11A 87SR21-1 8.0 S

HBA1-11B 87SR21-2 Beach Rock

HBA1-12A 87SR19-5 5.8 S

HBA1-12B 87SR19-4 6.2 Shell

HBA1-12C 87SR19-3 6.8 gS

HBA1-12D 87SR19-2 6.9 Shell

HBA1-12E 87SR19-1 6.9 gS

HBA1-1A 84SR91 0.2 gs

HBA1-1B 84SR92 0.4 gs

HBA1-1C 84SR93 0.4 gM

TX

TX

TX

TX

TX

TX

TX

TX

TX

WO

TX

ANALYSES

TX

TX

TX
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HBA1-1D 84SR94 0.9 sG TX

HBA1-3A 84SR95 0.8 sM TX

HBA1-4A 84SR96 2.0 sG TX

HBA1-4B 84SR97 2.5 S TX

HBA1-5A 84SR98 1.6 S TX

HBA1-5B 84SR99 3.1 gs TX

HBA1-6A 84SR100 0.8 s TX

HBA1-6B 84SR101 2.2 gs TX

HBA1-6C 84SR102 4.5 gs TX

HBA1-7A 83SR131 1.1 sZ TX

HBA1-7B 83SR132 1.6 sM TX

HBA1-7C 83SR133 3.7 sZ TX

HBA1-7D 83SR134 4.2 gM TX

HBA1-7E 83SR135 4.6 S TX

HBA1-7F 83SR136 5.3 S TX

HBA1-7G 83SR137 7.0 sZ TX

HBA1-8A 84DH11 0.5 S TX

HBA1-8B 84DH12 2.0 sG TX

HBA1-8C 84DH13 4.0 sG TX

HBA1-8D 84DH14 6.3 gs TX

HBA2-2A 87SR37-1 2.3 Wood C14

HBA2-2B 87SR37-2 2.3 Wood

HBA2-3A 87SR38-1 3.9 Wood

HBA3-1A 87SR39-1 6.0 Shell
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HBB1-10A 84SR43 2.9 (g)S TX

HBB1-10B 84SR42 4.2 gs TX

HBB1-10C 84SR41 6.2 S TX

HBB1-10D 84TL05 6.2 Z

HBB1-10E 84SR40 7.0 Shell

HBB1-11A 84DH21 1.5 gs TX

HBB1-11B 84DH22 3.0 sG TX

HBB1-11C 84DH23 5.0 sG TX

HBB1-12A 84DH24 0.4 Peat

HBB1-13A 84DH30 2.6 sG

HBB1-13B 84DH28 2.8 gs TX

HBB1-13C 84DH29 3.5 Coal

HBB1-13D 84DH27 7.8 Organic

HBB1-13E 84DH26 7.9 sZ TX

HBB1-13F 84DH25 8.0 sG TX

HBB1-14A 84DH31 2.4 gS TX

HBB1-14B 84DH32 2.5 Wood

HBB1-14C 84DH33 3.8 gs TX

HBB1-19A 85KUPF-1 0.3 S TX

HBB1-19B 85KUPF2 0.4 M TX

HBB1-19C 85KUPF3 2.3 gs TX

HBB1-19D 85KUPF4 4.1 S TX

HBB1-19E 85KUPF5 4.1 S TL

HBB1-19F 85KUPF6 4.3 sG TX
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HBB1-19G 85KUPF7 4.9 sG

HBB1-19H 85KUPF8 4.9 sG PO

HBB1-19I 85KUPF9 4.9 sG C14/TX

HBB1-19J 85KUPF10 4.9 Wood WO

HBB1-19K 85KUPF11 5.2 sG TX

HBB1-19L 85KUPF12 5.6 gs TX

HBB1-19M 85KUPF13 6.0 sG TX

HBB1-19N 87SR01-1 9.4 Wood WO

HBB1-1A 87SR14-2 2.8 Peat

HBB1-1B 87SR14-1 4.2 Peat

HBB1-21A 87SR04-2 4.4 S

HBB1-21B 87SR04-1 4.8 Organic

HBB1-22A 82SR27 0.4 zS TX

HBB1-23A 82SR28 0.2 Organic

HBB1-2A 87SR12-1 3.1 Peat C14

HBB1-4A 87SR08-1 1.4 Organic

HBB1-5A 87SR10-1 0.4 Z

HBB1-5B 87SR10-2 1.0 Organic

HBB1-7A 87SR06-2 0.4 Organic

HBB1-7B 87SR06-1 1.2 Peat

HBB1-8A 87SR05-1 0.3 S

HBB1-9A 84SR34 2.6 S

HBB1-9B 84SR35 4.1 S TX

HBB1-9C 84SR36 4.8 sG TX
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HBB1-9D 84SR37 6.3 Organic

HBB1-9E 84SR38 6.7 Wood

HBB1-9F 84SR39 7.4 sG TX

HBB2-13A 84SR103 0.5 Peat

HBB2-13B 84SR104 0.9 zS TX

HBB2-13C 84SR105 1.6 Organic

HBB2-13D 84SR106 2.3 Organic

HBB2-13E 84SR107 3.0 sG

HBB2-14A 87SR07S-1 0.7 Peat

HBB2-15A 87SR07N-2 0.5 Peat

HBB2-15B 87SR07N-1 0.8 S

HBB2-1A 87SR42-4 0.8 Organic

HBB2-1B 81SH14 1.5 Peat

HBB2-1C 87SR42-5 1.7 Z

HBB2-1D 81SH15 2.0 mS TX

HBB2-1E 87SR42-1 2.0 Organic C14

HBB2-1F 87SR42-2 2.0 S

HBB2-1G 87SR42-3 2.0 S C14/WO

HBB2-2A 87SR41-2 2.2 Wood

HBB2-2B 87SR41-1 5.0 Peat

HBB2-3A 81SH13 2.4 Peat

HBB2-5A 87SR17-1 1.6 Peat

HBB2-5B 87SR17-2 3.3 Peat

HBB2-7A 81SH12 0.4 S TX
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HBB2-7B 81SH12A 1.3 Z

HBB2-8A 81SH16 0.5 sZ TX

HBB3-2A 87SR43-2 1.0 Organic

HBB3-2B 87SR43-1 2.6 Organic

HBB4-1A 87SR44-2 2.6 Peat

HBB4-1B 87SR44-1 4.3 Peat

MMC3-8A 85SR77-2 2.5 Peat C14

MMC3-8B 85SR77-3 4.7 Peat

MMC3-8C 85SR77-1 10.1 Organic AA/WO

MMC4-24A 85SR49-1 18.3 Organic

MMC5-1A 85SR10-1 Surface Wood

MMC5-1B 85SR10-2 20.8 Rock

MMC5-3A 85SR01-1 Unknown Coal

MMD1-7A 85SR152-1 1.7 Peat C14

MMD2-11A 85SR79-1 Unknown Wood AA/WO

MMD2-12A 85SR131-1 4.4 Z

MMD2-17A 85SR91-1 20.0 Wood

MMD2-18A 85SR140-1 16.8 Wood WO

MMD2-18B 85SR140-2 17.2 Z

MMD2-18C 85SR140-3 21.5 Wood WO

MMD2-18D 85SR140-4 21.5 S TX

MMD2-20A 85SR139-1 2.6 Wood C14/WO

MMD2-21A 85SR89-1 0.3 Peat

MMD2-24A 85SR145-1 Unknown Rock
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MMD2-27A 85SR18-1 Unknown

MMD2-30A 85SR21-1 7.4

MMD2-8A 85SR83-1 Unknown

MMD2-8B 85SR83-2 Unknown

MMD2-9A 85SR81-1 Unknown

MMD3-12A 85SR76-1 Unknown

MMD3-12B 85SR76-2 Unknown

MMD3-15A 85SR130-1 6.2

MMD3-15B 85SR130-2 6.2

MMD3-15C 85SR130-3 Beach

MMD3-7A 85SR69-1 7.9

MMD4-11A 85SR28-2 6.0

MMD4-11B 85SR28-1 10.0

MMD4-12A 85SR116-1 0.8

MMD4-13A 85SR124-1 0.3

MMD4-13B 85SR124-2 0.4

MMD4-14A 85SR125-1 0.7

MMD4-16A 85SR115-1 0.8

MMD4-18A 85SR127-1 2.0

MMD4-18B 85SR127-2 4.4

MMD4-18C 85SR127-3 4.4

MMD4-19A 85SR112-1 Surface

MMD4-2A 81SH17 0.2

MMD4-4A 81SH18 0.6

MATL ANALYSES

Wood WO

Shell AA

Wood WO

Wood

Wood AA/WO

Wood AA/WO

Wood

Peat

zS

Rock

gS TX

Z

Wood AA/WO

Peat

S

sG C14

Z C14

sG TX

Bone

(g)S TL

M TX

Rock

msG TX

zS TX
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MMD4-4B 81SH19

MMD4-5A 81SH20

MMD4-6A 81SH21

MMD4-7A 81SH22

MMD4-9A 85SR109-2

MMD4-9B 85SR109-5

MMD4-9C 85SR109-4

MMD4-9D 85SR109-3

MMD4-9E 85SR109-1

MMD5-10A 85SR108-2

MMD5-10B 85SR108-1

MMD5-13A 85SR24-2

MMD5-13B 85SR24-1

MMD5-1A 83SR106

MMD5-1B 83SR107

MMD5-1C 83SR108

MMD5-1D 85SR110-1

MMD5-1E 85SR110-2

MMD5-2A 85SR11-2

MMD5-2B 85SR11-3

MMD5-2C 85SR11-1

MMD5-3A 85SR12-1

MMD5-8A 85SR107-3

MMD5-8B 85SR107-2

DEPTH MATL

1.0 Peat

0.8 Peat

0.2 mS

0.8 (g)S

4.9 Peat

6.8 gs

6.9 Organic

6.9 Z

14.0 Bone

4.0 Wood

4.6 Wood

1.9 Organic

12.6 Wood

0.7 zS

0.9 Ash

0.9 mS

1.6 sG

1.6 sG

0.2 Peat

0.3 Z

0.6 Peat

Unknown Rock

2.5 Organic

4.1 Peat

ANALYSES

TX

C14

TX

C14

C14

C14

C14

C14

TX

C14

C14

C14

C14
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MMD5-8C 85SR107-1 4.6 Peat C14

SGD1-1A 83SR88 0.4 mS TX

SGD1-1B 83SR89 1.4 (g)S TX

SGD1-1C 83SR90 2.9 s TX

SGD1-1D 83SR91 5.8 s TX

SGD1-2 83SR83 0.7 M TX

SGD1-2B 83SR84 1.7 Peat

SGD1-2C 83SR85 1.8 M TX

SGD1-2D 83SR86 2.9 M TX

SGD1-2E 83SR87 3.4 (g)mS TX

SGD1-3A 83SR92 0.5 gs TX

SGD1-3B 83SR93 1.0 sG TX

SGD1-4A 83SR93.5 0.9 gmS TX

SGD1-4B 83SR94 1.4 sG TX

SGD1-6A 85SR16-1 0.4 Peat

SGD1-7A 83SR102 0.6 (g)S TX

SGD1-7B 83SR103 1.0 gmS TX

SGD1-7C 83SR104 1.3 gmS

SGD1-7D 83SR105 1.6 G

SGD1-8B 83SR109 3.1 zS TX

SGD2-1A 83SR48 0.8 sZ TX

SGD2-1B 83SR49 1.5 Organic C14

SGD2-1C 83SR50 1.7 zS TX

SGD2-1D 83SR51 2.3 S TX
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SGD2-1E 83SR52 2.6 cS

SGD2-2A 83SR47 0.4 gs TX

SGD3-1A 81SR122 0.2 Peat

SGD3-1B 81SR123 0.4 sM TX

SGD5-1A 83SR128 0.5 sZ TX

SGD5-1B 83SR129 1.1 Peat

SGD5-1C 83SR130 1.4 S

SGD5-2A 83SR126 1.6 sZ TX

SGD5-2B 83SR127 2.3 msG TX

UMD2-3A 87SR29-2 3.3 zS

UMD2-3B 87SR29-1A 4.6 zS
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APPENDIX E 

GRAIN-SIZE ANALYSIS

SILT CLAY MUD LITH

BPA1-11A 0.0 83.7 12.3 4.0 16.3 zS

BPA1-11C 0.0 95.2 3.0 1.8 4.8 S

BPA1-11D 0.0 64.6 26.7 8.7 35.4 zS

BPA1-12B 15.5 55.6 20.1 8.7 28.8 gmS

BPA1-12C 38.7 57.1 2.2 2.0 4.2 sG

BPA1-12D 2.0 87.1 6.7 4.3 11.0 g(m)S

BPA1-12E 1.0 93.4 3.5 2.1 5.6 S

BPA1-12F 9.3 86.4 2.6 1.8 4.40 gS

BPA1-12G 2.1 95.3 1.2 1.4 2.6 (g)S

BPA1-12H 10.0 87.1 2.5 1.1 3.6 gs

BPA1-12I 4.4 91.8 1.7 2.1 3.8 (g)S

BPA1-12J 36.7 52.7 6.4 4.2 10.6 msG

BPA1-12K 10.6 70.1 12.8 6.4 19.20 gmS

BPA1-14C 16.6 73.1 4.6 5.7 10.3 gmS

BPA1-18A 44.6 54.9 0.5 0.0 0.5 sG

BPA1-19A 5.0 53.6 22.0 19.4 41.4 (g)mS

BPA1-19B 6.6 77.3 10.7 5.4 16.1 gmS

BPA1-19C 0.8 88.4 6.8 4.0 10.8 (g)mS

BPA1-1A 0.5 48.1 27.6 23.8 51.4 sM

BPA1-21C 5.3 86.0 2.8 5.9 8.6 gS

BPA1-21D 10.2 69.0 13.9 6.9 20.8 gmS

BPA1-21E 56.9 29.3 8.6 5.2 13.8 msG
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BPA1-1B 1.0 87.7 5.5 5.9 11.4 g(m)S

BPA1-21A 1.7 79.1 10.5 8.7 19.2 (g)mS

BPA1-21B 3.7 68.6 16.1 11.6 27.7 (g)mS

BPA1-23A 3.8 25.4 37.5 33.3 70.8 g(s)M

BPA1-23B 3.2 76.2 10.1 10.5 20.6 g(m)S

BPA1-23C 37.4 51.7 7.0 4.0 11.0 msG

BPA1-23D 59.5 34.0 3.6 2.8 6.4 msG

BPA1-24A 4.4 57.5 25.7 12.4 38.1 (g)mS

BPA1-24B 4.4 78.1 10.8 6.7 17.5 (g)niS

BPA1-25A 2.0 73.3 12.3 12.5 24.8 (g)mS

BPA1-25B 46.7 45.7 4.7 2.9 7.6 msG

BPA1-25C 0.0 100.0 0.0 0.0 0.0 (g)S

BPA1-25D 0.5 98.1 1.4 0.0 1.4 (g)S

BPA1-25E 91.4 8.0 0.6 0.0 0.6 G

BPA1-25G 56.3 43.2 0.5 0.0 0.5 sG

BPA1-25H 0.8 98.8 0.4 0.0 0.4 (g)S

BPA1-25I 55.5 43.2 1.3 0.0 1.3 sG

BPA1-26A 5.6 80.8 7.6 6.0 13.6 gmS

BPA1-26B 72.7 23.8 3.5 0.0 3.5 msG

BPA1-27B 4.0 75.7 9.3 11.0 20.3 g(m)S

BPA1-30A 8.2 72.0 11.6 8.2 19.8 gmS

BPA1-30B 77.2 21.9 0.9 0.0 0.9 sG

BPA1-31A 1.7 84.6 8.4 5.3 13.7 (g)mS

BPA1-32A 6.1 85.1 4.5 4.3 8.8 gs
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tsFAl-32B 53.3 40.5 2.6 3.6 6.2 msG

BPA1-32C 10.2 73.8 6.0 10.0 16.0 gmS

BPA1-33A 8.8 82.2 6.3 2.7 9.0 gS

BPA1-33B 34.4 61.5 4.1 0.0 4.1 sG

BPA1-33C 50.4 45.1 1.7 2.8 4.5 sG

BPA1-33D 27.1 58.1 9.3 5.5 14.8 gmS

BPA1-34A 0.1 90.1 4.4 5.4 9.8 S

BPA1-34B 72.9 22.7 1.5 3.0 4.5 msG

BPA1-35B 32.9 66.0 1.1 0.0 1.1 sG

BPA1-37A 0.0 57.2 29.6 13.2 42.8 zS

BPA1-4A 0.1 35.0 26.5 38.4 64.9 sM

BPA1-5A 0.8 81.1 7.0 11.0 18.0 mS

BPA1-6A 1.0 85.0 6.6 7.5 14.1 mS

BPA1-7A 0.1 83.9 7.7 8.2 15.9 mS

BPA1-8A 6.1 73.2 13.9 6.9 20.8 gmS

BPA2-10A 0.1 85.0 8.7 6.3 15.0 mS

BPA2-11B 0.0 23.0 69.3 7.7 77.0 sZ

BPA2-11C 40.2 58.8 1.0 0.0 1.0 sG

BPA2-12A 39.8 58.7 1.5 0.0 1.5 gM

BPA2-12B 0.0 0.0 70.5 29.5 100.0 Z

BPA2-12C 49.9 50.1 0.0 0.0 0.0 sG

BPA2-13A 0.1 94.9 2.5 2.5 5.0 (g)S

BPA2-13B 13.9 15.8 38.6 31.7 70.3 gM

BPA2-13F 0.0 0.0 73.7 26.3 100.0 Z
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BPA2-13G 60.3 38.3 1.4 0.0 1.4 sG

BPA2-13H 52.2 36.7 6.8 4.3 11.1 msG

BPA2-13I 1.3 88.9 4.6 5.2 9.8 (g)mS

BPA2-13K 0.0 27.2 51.9 20.9 72.8 sZ

BPA2-13L 84.0 4.5 5.9 5.6 11.5 G

BPA2-14A 3.3 92.0 3.4 1.3 4.7 (g)S

BPA2-14B 23.3 65.6 6.1 5.0 11.1 gmS

BPA2-14C 0.4 95.5 2.5 1.6 4.1 (g)S

BPA2-15A 0.0 61.7 28.0 10.2 38.2 zS

BPA2-15B 0.0 47.2 37.9 15.0 52.9 sZ

BPA2-18A 0.5 47.2 32.9 19.4 52.3 (g)mS

BPA2-19A 0.0 0.0 54.2 45.8 100.0 M

BPA2-19B 0.0 0.0 61.0 39.0 100.0 M

BPA2-20B 6.2 84.2 4.1 5.5 9.6 gmS

BPA2-21A 4.9 94.4 0.7 0.0 0.7 (g)S

BPA2-23A 0.0 95.4 4.6 0.0 4.6 S

BPA2-23B 0.0 95.2 4.8 0.0 4.8 S

BPA2-23C 0.0 96.4 2.0 1.6 3.6 S

BPA2-23D 17.2 70.2 7.9 4.7 12.6 gmS

BPA2-23E 58.1 35.0 4.6 2.3 6.9 msG

BPA2-24B 2.5 86.7 6.5 4.3 10.8 (g)mS

BPA2-24C 8.3 80.1 7.7 3.9 11.6 gmS

BPA2-24D 66.3 31.1 2.6 0.0 2.6 sG

BPA2-25D 0.0 50.7 37.1 12.2 49.3 zS
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BPA2-3A 4.4 45.8 26.3 23.5 49.8 g(s)M

BPA2-7A 4.9 61.5 23.6 10.0 33.6 (g)mS

BPA2-7C 6.2 80.6 7.7 5.5 13.2 gmS

BPA2-8A 0.5 90.7 5.5 3.3 8.8 (g)S

BPA2-9A 0.1 87.7 7.6 4.6 12.2 (g)sM

BPA2-9B 8.1 78.2 8.5 5.2 13.7 gmS

BPA2-9C 1.1 93.4 3.1 2.4 5.5 (g)S

BPA2-9D 2.8 90.2 2.8 4.2 7.0 (g)S

BPA2-9E 0.4 95.6 2.1 1.9 4.0 (g)S

BPA3-10B 5.9 92.0 2.1 0.0 2.1 gs

BPA3-10D 0.0 99.9 0.1 0.0 0.1 gs

BPA3-10F 2.8 93.0 4.2 0.0 4.2 (g)S

BPA3-10I 9.8 89.0 1.2 0.0 1.2 gs

BPA3-10J 55.9 44.0 0.1 0.0 0.1 sG

BPA3-10Q 5.3 90.8 3.9 0.0 3.9 gS

BPA3-10S 0.0 0.2 71.7 28.1 99.8 z

BPA3-12B 12.6 12.5 64.5 10.4 74.9 gM

BPA3-13A 0.7 87.8 5.0 6.5 11.5 mS

BPA3-13B 25.8 61.7 5.4 7.1 12.5 gmS

BPA3-13C 0.0 41.9 42.6 15.6 58.2 sZ

BPA3-13F 0.0 0.0 88.2 11.8 100.0 Z

BPA3-14A 2.0 80.5 8.4 9.2 17.6 g(m)S

BPA3-15A 9.4 75.2 8.6 6.8 15.4 gmS

BPA3-15B 1.5 91.1 5.1 2.3 7.4 (g)S
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BPA3-15C 39.6 53.9 2.0 4.5 6.5 g(s)M

BPA3-16C 0.0 0.0 75.7 24.2 99.9 M

BPA3-2A 3.5 40.4 48.6 7.5 56.1 g(s)M

BPA3-6A 0.0 14.2 49.1 36.7 85.8 sM

BPA3-6C 0.0 8.6 42.5 48.9 91.4 M

BPA3-9A 0.0 58.1 23.3 18.6 41.9 mS

BPA3-9B 0.0 25.3 52.7 22.0 74.7 sZ

BPA4-14B 0.4 84.5 6.6 8.6 15.2 mS

BPA4-3A 0.0 98.5 1.5 0.0 1.5 S

BPA4-3B 64.3 35.7 0.0 0.0 0.0 sG

BPA4-9B 11.6 38.1 37.6 12.7 50.3 sM

BPB2-1A 0.0 50.0 33.4 16.6 50.0 zS

BPB2-2A 0.0 69.4 22.1 8.5 30.6 zS

BPB2-3A 0.0 44.8 45.2 10.0 55.2 sZ

BPB3-10A 3.6 53.6 17.7 25.1 42.9 g(m)S

BPB3-11A 0.2 48.6 24.2 27.0 51.2 sM

BPB3-14A 0.4 40.1 27.8 31.7 59.5 sM

BPB3-15B 0.0 17.0 56.3 26.8 83.1 sZ

BPB3-15D 0.0 14.3 45.0 40.7 85.7 sM

BPB3-15E 0.7 77.1 11.1 11.1 22.2 mS

BPB3-16A 0.2 15.9 33.8 50.2 84.0 sM

BPB3-16B 0.6 88.3 5.3 5.9 11.2 mS

BPB3-17A 0.0 81.3 12.1 6.5 18.6 mS

BPB3-17D 2.8 77.1 11.4 8.68 20.1 g(m)S
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BPB3-17E 5.2 74.1 15.4 5.3 20.7 gmS

BPB3-18A 0.0 18.5 73.0 8.6 81.6 sZ

BPB3-18B 2.3 62.9 31.2 3.7 34.9 g(m)S

BPB3-18C 2.3 78.9 12.1 7.0 19.1 g(m)S

BPB3-19B 0.0 37.4 56.2 6.4 62.6 sZ

BPB3-1A NA NA NA NA NA sZ

BPB3-1B 8.6 63.8 14.8 13.2 28.0 gmS

BPB3-22E 0.0 49.2 23.9 26.9 50.8 sM

BPB3-23C 0.0 87.6 6.7 5.5 12.2 mS

BPB3-23D 55.1 43.0 0.9 1.0 1.9 sG

BPB3-24A 0.0 8.9 59.0 32.2 91.2 Z

BPB3-24B 0.0 11.2 70.2 18.7 88.9 sZ

BPB3-25A 0.0 100.0 0.0 0.0 0.0 S

BPB3-25G 79.3 20.7 0.1 0.0 0.1 sG

BPB3-25K 0.0 27.2 60.8 12.0 72.8 sZ

BPB3-250 0.0 0.0 83.0 17.0 100.0 Z

BPB3-25P 70.8 29.1 0.1 0.0 0.1 sG

BPB3-25S 45.7 53.8 0.6 0.0 0.6 sG

BPB3-25T 0.6 0.9 70.4 28.1 98.5 Z

BPB3-26A 0.0 31.2 46.6 22.2 68.8 sC

BPB3-29A 0.0 29.5 65.2 5.3 70.5 sZ

BPB3-2A 1.4 65.0 10.5 23.1 33.6 g(m)S

BPB3-32A 0.0 81.7 18.3 0.0 18.3 zS

BPB3-35A 1.3 83.2 7.7 7.7 15.4 g(m)S
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BPB3-6A 0.6 60.0 12.4 27.0 39.4 cS

BPB3-8A 0.4 91.4 2.5 5.7 8.2 S

BPB3-8C 1.8 54.7 16.6 26.9 43.5 g(m)S

BPB3-9A 21.5 78.4 0.0 0.0 0.0 gs

BPB3-9B 0.8 48.8 23.6 26.8 50.4 sM

BPB4-11A 0.8 75.1 12.0 12.0 24.0 mS

BPB4-11B 2.8 77.8 7.5 11.8 19.3 g(m)S

BPB4-14A 0.0 59.7 27.7 12.6 40.3 zS

BPB4-15A 0.2 29.5 40.0 30.3 70.3 sM

BPB4-16A 0.0 98.8 1.2 0.0 1.2 S

BPB4-16C 5.9 94.0 0.1 0.0 0.0 gS

BPB4-16J 4.4 95.6 0.0 0.0 0.0 s

BPB4-16K 0.0 99.6 0.4 0.0 0.4 s

BPB4-17A 0.3 77.7 16.0 6.0 22.0 zS

BPB4-17B 2.9 85.0 9.7 2.4 12.1 g(m)S

BPB4-18A 1.5 77.8 8.9 11.9 20.8 g(m)S

BPB4-1A 2.4 83.7 5.2 8.7 13.9 g(m)S

BPB4-20A 0.4 76.8 7.1 15.8 22.9 cS

BPB4-21A 0.0 61.7 31.8 6.5 38.3 zS

BPB4-21B 11.9 83.2 2.2 2.8 5.0 gs

BPB4-23B 0.0 59.8 23.9 16.3 40.2 mS

BPB4-23C 0.1 78.1 12.7 9.2 21.9 mS

BPB4-27A 0.0 70.1 21.5 8.4 29.9 zS

BPB4-2A 7.2 65.8 16.9 10.1 27.0 gmS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



295

SPL NO G RVL SAND SILT CLAY MUD LITH

BPB4-33B 0.3 34.8 52.5 12.5 65.0 sZ

BPB4-4A 5.3 51.1 16.6 27.0 43.6 gmS

BPB4-5A 2.9 66.7 21.7 8.7 30.4 gmS

BPB4-5B 9.9 70.3 14.2 5.6 19.8 gmS

BPB4-5C 52.9 38.7 5.7 2.8 8.5 msG

BPB4-5D 52.4 40.8 4.5 2.3 6.8 msG

BPB4-6B 0.4 90.4 4.2 5.1 9.3 S

BPB4-7A 8.1 67.3 7.6 17.0 24.6 gmS

BPB4-9B 0.0 20.8 54.5 24.8 79.3 sZ

BPB5-10A 0.6 89.9 5.0 4.5 9.5 mS

BPB5-13A 0.0 67.5 19.1 13.4 32.5 mS

BPB5-15A 0.0 70.2 20.3 9.5 29.8 zS

BPB5-16A 0.0 72.2 22.6 5.2 27.8 zS

BPB5-17A 0.5 46.5 23.6 29.4 53.0 sM

BPB5-18A 0.1 80.3 13.1 6.5 19.6 mS

BPB5-1A 2.7 52.5 37.5 7.3 44.8 g(s)M

BPB5-26A 0.1 55.1 14.8 30.1 44.9 cS

BPB5-28A 1.0 47.5 2.9 22.9 25.8 mS

BPB5-28B 4.9 77.1 9.0 9.0 18.0 g(m)S

BPB5-30A 0.0 48.2 40.2 11.7 51.9 sZ

BPB5-30B 1.9 45.2 41.7 11.2 52.9 g(s)M

BPB5-30D 13.9 84.2 1.9 0.0 1.9 gS

BPB5-31A 0.0 98.6 1.5 0.0 1.5 S

BPB5-31B 0.0 98.5 1.5 0.0 1.5 s
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BPB5-31C 0.0 62.7 26.3 11.0 37.3 zS

BPB5-31D 0.0 55.3 32.2 12.5 44.7 zS

BPB5-31G 0.0 96.8 3.3 0.0 3.3 S

BPB5-32A 0.0 75.8 22.2 2.0 24.2 sZ

BPB5-32C 0.0 95.9 4.1 0.0 4.1 gS

BPB5-32F 0.0 95.4 4.7 0.0 4.7 s

BPB5-32G 0.0 99.3 0.7 0.0 0.7 s

BPB5-32J 3.0 96.6 0.3 0.0 0.3 (g)S

BPB5-33A 0.0 95.1 2.6 2.3 4.9 s

BPB5-33B 0.0 87.9 6.8 5.3 12.1 mS

BPB5-33C 58.7 38.8 1.2 1.3 2.5 sG

BPB5-7A 3.0 50.4 22.5 24.1 46.6 g(s)M

BPB5-7B 12.5 67.6 13.0 7.0 20.0 gmS

BPC4-1A 3.1 72.5 10.1 14.2 24.3 gmS

BPC4-1B 5.6 84.9 3.4 6.6 10.0 gmS

BPC4-1C 14.9 60.6 19.4 5.1 24.5 gmS

BPC4-1D 0.0 99.8 0.2 0.0 0.2 S

BPC4-2A 1.8 81.4 11.7 5.2 16.9 g(m)S

BPC4-2B 21.4 55.2 9.5 14.1 23.6 gM

BPC4-3B 0.1 85.6 7.4 6.9 14.3 mS

BPC5-10B 0.0 99.7 0.3 0.0 0.3 S

BPC5-10C 0.0 40.4 50.2 9.4 59.6 sZ

BPC5-1B 1.1 64.2 17.9 16.8 34.7 g(m)S

BPC5-3A 0.0 2.6 34.0 63.4 97.4 M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



297

SPL NO G RVL SAND SILT C LA Y  MUD LITH

BPC5-5A 0.0 79.6 11.8 8.6 20.4 mS

BPC5-6A 0.0 55.8 19.9 24.3 44.2 mS

BPC5-8A 5.9 38.3 25.4 30.5 55.9 gM

BPC5-8B 2.4 41.3 26.8 29.4 56.2 g(s)M

FIA3-5A 0.0 0.0 60.4 39.5 99.9 M

FIA4-3A 1.8 39.9 24.4 33.9 58.3 g(m)S

FIA4-3C 0.2 83.2 7.7 8.8 16.5 mS

FIA4-4A 2.9 89.4 4.4 3.3 7.7 (g)S

FIA5-1A 11.2 55.5 18.4 14.9 33.3 gmS

FIA5-2A 50.6 25.1 13.6 10.7 24.3 msG

FIA5-3A 5.1 59.1 19.1 16.7 35.8 gmS

FIA5-3E 11.4 73.1 9.6 5.9 15.5 gmS

FIA5-3F 68.4 30.3 1.3 0.0 1.3 sG

FIA5-4B 84.4 14.6 1.0 0.0 1.0 G

FIA5-6A 0.0 43.3 45.9 10.8 56.7 sZ

FIA5-6B 0.0 92.6 7.4 0.0 7.4 S

FIA5-7A 0.0 94.1 5.9 0.0 5.9 S

FIA5-7B 40.5 57.7 1.8 0.0 1.8 sG

HBA1-7E 0.0 98.1 1.9 0.0 1.9 S

HBA1-10A 0.0 0.3 67.2 32.5 99.7 M

HBA1-10B 0.0 99.2 0.8 0.0 0.8 S

HBA1-10D 8.2 91.0 0.8 0.0 0.8 gS

HBAMOF 0.0 57.2 32.7 10.1 42.8 sZ

HBA1-1A 25.5 73.9 0.7 0.0 0.7 gS
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HBA1-1B 7.4 83.8 7.4 1.4 8.8

HBA1-1C 18.1 46.2 18.5 17.2 35.7

HBAM D 34.0 65.7 0.3 0.0 0.3

HBA1-3A 0.0 25.8 50.5 23.7 74.2

HBA1-4A 39.9 59.9 0.3 0.0 0.3

HBA1-4B 0.0 99.5 0.6 0.0 0.6

HBA1-5A 0.0 98.8 1.2 0.0 1.2

HBA1-5B 26.0 73.8 0.2 0.0 0.2

HBA1-6A 0.0 91.4 8.6 0.0 8.6

HBA1-6B 18.4 81.5 0.1 0.0 0.1

HBA1-6C 23.4 76.4 0.3 0.0 0.3

HBA1-7A 0.0 25.6 68.9 5.6 74.5

HBA1-7B 0.0 30.3 51.4 18.5 69.9

HBA1-7C 0.0 24.6 70.6 4.9 75.5

HBA1-7D 28.3 32.1 32.9 6.8 39.7

HBA1-7F 0.0 99.6 0.4 0.0 0.4

HBA1-7G 0.0 18.6 67.4 14.0 81.4

HBA1-8A 0.0 94.4 5.6 0.0 5.6

HBA1-8B 43.0 57.0 0.1 0.0 0.1

HBA1-8C 42.3 57.7 0.0 0.0 0.0

HBA1-8D 28.8 71.0 0.2 0.0 0.2

HBB1-10A 2.8 96.1 1.1 0.0 1.1

HBB 1-10B 14.5 84.5 1.0 0.0 1.0

HBB1-10C 0.0 92.6 7.4 0.0 7.4
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HBB1-11A 24.9 75.9 0.1 0.0 0.1

HBB1-11B 37.1 62.1 0.8 0.0 0.8

HBB1-11C 58.8 41.0 0.2 0.0 0.2

HBB1-13B 26.9 72.5 0.6 0.0 0.6

HBB1-13E 0.0 38.7 44.8 16.5 4.3

HBB1-13F 68.1 31.6 0.4 0.0 0.4

HBB1-14A 12.3 87.7 0.0 0.0 0.0

HBB1-14C 23.2 76.7 0.1 0.0 0.0

HBB1-19C 0.0 99.3 0.7 0.0 0.7

HBB1-19D 0.0 99.0 1.0 0.0 1.0

HBB1-19F 54.8 45.1 0.1 0.0 0.1

HBB1-19K 73.8 25.5 0.7 0.0 0.7

HBB1-19L 8.3 91.6 0.1 0.0 0.1

HBB1-19M 52.5 47.5 0.1 0.0 0.1

HBB1-22A 0.0 62.9 25.6 11.5 37.1

HBB1-9B 0.0 97.2 2.8 0.0 2.8

HBB1-9C 56.7 43.1 0.2 0.0 0.2

HBB1-9F 35.7 64.1 0.2 0.0 0.2

HBB1-19B 0.0 0.1 47.4 52.6 100.0

HBB2-13B 0.0 85.5 13.0 1.6 14.6

HBB2-13E NA NA NA NA NA

HBB2-1D 0.4 81.1 11.5 7.0 18.5

HBB2-7A 0.0 91.2 4.3 4.4 8.7

HBB2-8A 0.0 24.3 64.1 11.6 75.7
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MMD2-18D 1.3 98.1 0.6 0.0 0.6

MMD3-7A 0.0 0.6 77.0 22.4 99.4

MMD4-16A 73.1 26.8 0.1 0.0 0.1

MMD4-18C 0.0 0.8 56.9 42.3 99.2

MMD4-2A 37.4 31.7 27.0 3.8 30.8

MMD4-4A 0.0 80.6 13.8 5.6 19.4

MMD4-6A 0.0 70.1 13.7 16.2 29.9

MMD4-9B 0.0 0.5 67.6 32.0 99.6

MMD5-1C 0.0 87.0 8.5 4.5 13.0

SGD1-1A 0.0 57.0 25.8 17.2 43.0

SGD1-1B 0.8 93.4 4.0 1.8 5.8

SGD1-1C 0.0 94.9 4.0 1.1 5.1

SGD1-1D 0.0 97.2 2.8 0.0 2.8

SGD1-2A 0.0 0.0 38.0 6.2 100.0

SGD1-2C 0.0 0.0 59.0 41.0 100.0

SGD1-2D 0.0 0.0 51.3 48.7 100.0

SGD1-2E 1.5 80.5 11.5 6.5 18.0

SGD1-3A 8.4 82.7 4.4 4.5 8.9

SGD1-3B 76.9 22.0 1.1 0.0 1.1

SGD1-4A 14.1 73.9 7.1 4.9 12.0

SGD1-4B 71.5 28.0 0.5 0.0 0.5

SGD1-7A 0.5 91.4 4.8 3.3 8.1

SGD1-7B 23.8 57.8 12.0 6.4 18.4

SGD1-7C 10.3 77.5 8.0 4.2 12.2
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SGD1-7D 98.6 1.2 0.2 0.0 0.2 G

SGD1-8B 0.0 68.3 21.4 10.3 31.7 zS

SGD2-1A 2.0 85.1 8.8 4.1 12.9 sZ

SGD2-1C 0.0 88.3 8.7 3.0 11.7 zS

SGD2-1D 0.0 93.3 4.8 1.9 6.7 S

SGD2-2A 8.5 82.5 5.6 3.4 9.0 gS

SGD5-1A 0.0 16.9 68.1 15.1 83.2 sZ

SGD5-2A 0.0 25.6 63.3 11.1 74.4 sZ

SGD5-2B 31.2 39.1 20.1 9.7 29.8 msG
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APPENDIX F

RADIOCARBON ANALYSIS

SPL NO LAB SPL MATL DEPTH AGE

BPA2-20A GX10320 Organic 0.4 12,360 + /- 410

BPA2-21B GX10322 Wood 1.2 3,585 + /- 320

BPA2-8D GX10321 Organic 2.1 11,180 + /- 430

BPA3-10C GX10779 Peat 5.1 4,640 + /- 90

BPA3-10E GX10658 Wood 8.7 >38,400

BPA3-13D GX10319 Organic 7.4 >34,800

BPA3-2C GX10780 Peat 0.7 10,540 + /- 310

BPA4-10B BETA23740 Peat 1.7 4,320 + /- 100

BPA4-1A GX10659 Peat 0.45 8,475 + /- 335

BPA4-6A GX10660 Peat 0.6 5,120 + /- 235

BPB3-10B BETA4801 Peat 0.3 7,700 + /- 100

BPB3-12C BETA4802 Peat 0.8 4,830 + /- 65

BPB3-17C BETA4800 Peat 0.55 2,900 + /- 60

BPB3-23F GX11763 Wood 7.8 >33,100

BPB3-23G GX10656 Wood 10.5 37 + 10/-4.3 ka

BPB3-25D GX11762 Wood 3.0 >31,600

BPB3-25H GX10781 Peat 6.6 4,075 + /- 115

BPB3-25N GX11761 Wood 6.8 >31,600

BPB3-25Q GX11766 Wood 7.4 >31,600

BPB4-16B GX11760 Organic 1.3 >44,000

BPB4-6A BETA4804 Peat 0.3 4,815 + /- 85

BPB5-14A BETA4803 Peat 0.8 7,640 + /- 75
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SPL NO LAB SPL M ATL DEPTH AGE

BPB5-32H GX11765 Wood 4.6 24.9 +4.6/-2.9 ka

BPB5-32M GX10657 Wood 7.7 >38,400

BPC4-3A BETA4805 Peat 0.4 5,785 + /- 100

BPC5-10A BETA4806 Peat 0.6 4,195 + /- 75

HBA2-2A BETA23741 Wood 2.3 >40,730

HBB1-19I GX 11764 Wood 4.8 >40,000

HBB1-2A BETA23739 Organic 3.1 7,440 + /- 100

HBB2-1E BETA23742 Organic 2.0 9,400 + /- 110

HBB2-1G BETA23743 Wood 2.0 29,100 + /- 860

MMC3-8A GX 11756 Peat 2.5 6,345 + /- 90

MMD1-7A GX 11747 Peat 1.7 5,870 + /- 90

MMD2-20A GX11748 Wood 3.4 7,330 + /- 175

MMD4-13B GX11750 Wood 0.4 Insufficient Sample

MMD4-14A GX11749 Peat 0.7 9,710 + /- 155

MMD4-9A GX11746 Peat 5.0 9,640 + /- 510

MMD4-9C GX11745 Peat 7.0 >25,000

MMD4-9E GX11937 Bone Unknown 1,185 + /- 70

MMD5-10A GX11753 Wood 4.0 8,455 + /-  195

MMD5-10B GX11752 W tid 4.6 7,300 + /- 440

MMD5-13A GX11757 Organ'" 2.2 Laboratory Error

MMD5-1D GX11751 Organic 1.7 9,790 + /- 345

MMD5-2A GX11758 Peat 0.17 1,430 + /- 95

MMD5-2C GX11759 Peat 5.3 3,160 + /- 255

MMD5-8A GX 11755 Peat 2.5 5,335 + /- 205
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MMD5-8C GX11754 Peat 4.6 6,300 + /- 235

SGD2-1A GX10323 Organic 1.5 >34,900

SPL NO LAB SPL M ATL DEPTH AGE
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APPENDIX G

THERMOLUMINESCENCE ANALYSIS

SPL NO FLD  SPL LAB SPL DEPTH AGE

BPA2-13J 84TL07 ALPHA 1530 5.7 36.8 + /- 4.0 ka

BPA3-13G 84TL08 ALPHA1494 8.1 3.14 + /- 0.5 ka

BPB3-23I 84TL10 ALPHA2601 10.7 142.0 + /- 8.8 ka

BPB5-31F 84SR89 ALPHA 1493 2.5 11.9 + /- 1.8 ka

BPB5-31K 84TL06 ALPHA1529 10.4 221.4 + /- 17.2 ka

BPB5-32D 85KUPC-2 ALPHA2598 1.7 24.6 + /- 1.5 ka

BPB5-32N 84TL03 ALPHA2599 7.7 >200,000

BPB5-32T 84TL04 ALPHA1528 11.0 150.2 + /- 11.0 ka

HBB1-19E 85KUPF-5 ALPHA2600 4.1 140.0 + /- 30.0 ka

MMD4-18B 85SR127-2 ALPHA2602 4.4 26.0 + /- 2.9 ka
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APPENDIX H

AMINO-ACID ANALYSIS

alle/Ile = D- alloisoleucine/L- isoleucine ratio of total amino-acid hydrolysate 
Aspartic = D- aspartic/L- aspartic ratio of total amino-acid hydrolysate 
Age Group: Y = young group

M = middle group 
M? = middle group, uncertain 
O = old group

Sample No.
Lab. Sample 
No. Material alle/Ile Aspartic Age C

BPA3-10O AAL4642 Salix 0.034 NA

BPA3-10R UA1775 Wood NA 0.3135 M

BPB2-1A UA1773 Nonconif. NA 0.3002 M

BPB3-25Q UA1774 Salix NA 0.2416 Y

BPB3-25V AAL4641 Astarte 0.016 NA P

BPB4-16D UA1771 Salix NA 0.2189 M?

BPB4-16H UA1772 Nonconif. NA 0.1952 M?

BPB5-16N UA1769 Nonconif. NA 0.3075 M

BPB5-17E UA1767 Conif. NA 0.3415 M

BPB5-18I UA1768 Nonconif. NA 0.2141 M?

BPB5-32S AAL4643 Salix 0.034 NA
UA1770 Nonconif. NA 0.2526 M?

FIA4-4B UA1766 Salix NA 0.3152 M

MMC3-8A UA1778 Nonconif. NA 0.1658 Y

MMD2-9A UA1780 Conif. NA 0.0802 O

MMD2-30A UA1781(A) Astarte 0.745 0.2544 O

MMD3-12A UA1777 Conif. NA 0.0471 O

MMD4-11A UA1779 Nonconif. NA 0.0379 O

MMD4-11B UA1776 Nonconif. NA 0.0518 O
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SPL NO. FLD SPL

APPENDIX I 

WOOD ANALYSIS

DEPTH DEOD/OONIF T A X /

BPA3-10H 84SR69 12.6 Decid Salix

BPA3-10J 84SR04 13.0 Decid Salix

BPA3-10L 84SR06 13.0 Decid Salix

BPA3-10N 84SR70 13.6 Decid ND

BPA3-10O 84SR11 14.5 Decid Salix

BPA3-10R 85SAGC1 18.7 Decid Alnus

BPA3-16A 85END3 14.0 Decid Larix

BPA3-16G 85END7 14.4 Decid Salix

BPB3-10K 84SR05 13.0 Decid ND

BPB3-23E 84SR19 6.5 Decid Salix

BPB3-23F 84SR18 7.8 Decid Salix

BPB3-23G 84SR16 10.5 Decid Salix

BPB3-25L 84SR57 6.8 Decid ND

BPB4-6D 85MP3 10.5 Decid Salix

BPB4-16E 85MP2 10.5 Decid ND

BPB4-16F 85MP1 14.8 Decid Salix

BPB4-16H 85MP9 15.3 Decid ND

BPB5-16P 84SR31 10.7 Decid ND

BPB5-30E 84SR23 9.7 Conif Larix

BPB5-30F 84SR24 9.7 Conif Larix

BPB5-30G 84SR25 9.7 Conif Larix
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SPL NO. FLD SPL DEPTH DECID/CONIF TAXA

BPB5-31H 84SR48 10.2 Decid ND

BPB5-31I 84SR49 10.7 Decid ND

BPB5-31J 84SR50 10.7 Decid Salix

BPB5-32L 84SR32 6.5 Conif Larix

BPB5-320 85KUPC6 7.7 Decid Salix

BPB5-32P 84SR30 10.7 Decid ND

BPB5-32Q 84SR31 10.7 Decid ND

BPB5-32R 84SR32A 10.7 Conif Larix

HBA1-10E 87SR18-1 8.7 Conif Larix/Picea!

HBA2-2B 87SR37-2 2.3 Conif Picea/Larix!

HBB1-19N 87SR01-1 9.4 Conif Larix/Picea?

HBB2-1G 87SR42-3 2.0 Decid Salix

MMC3-8C 85SR77-1 unk. insuf. spl. insuf. spl.

MMD2-8A 85SR83-1 unk. insuf. spl. insuf. spl.

MMD2-8B 85SR83-2 unk. Decid ND

MMD2-9A 85SR81-1 unk. Conif ND

MMD2-11A 85SR79-1 unk. Decid ND

MMD2-18A 85SR140-1 16.8 Conif ND

MMD2-18C 85SR140-3 21.5 Conif ND

MMD2-20A 85SR139-1 2.6 Decid ND

MMD2-27A 85SR18-1 unk. Conif ND

MMD3-12A 85SR76-1 unk. Conif ND

MMD4-11B 85SR28-1 10.0 Decid ND
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APPENDIX J

MICROFOSSIL ANALYSIS

SPL NO. FLD SPL MATL DEPTH TAXA

BPAM2B 82SRI4 gmS 1.1 Barren

BPA1-12H 82SR20 gs 3.0 Elphidium sp.

BPA2-13A 83SR22 S 0.5 Barren

BPA2-13C 83SR23 s 2.7 Elphidium sp.

BPA2-14A 83SR18 (g)S 0.6 Cassidulina sp.

BPA3-10F 84SR09 (g)S 10.5 Barren

BPA3-10M 84SR07 gs 13.4 Barren

BPA3-13C 82SR41 sZ 7.4 Cyclammina sp.

BPA3-16F 85END6 Organic 14.4 Barren

BPB3-25S 85PUT2-13 sG 12.8 Barren

BPB3-25U 85PUT2-15 Z 16.3 Guttulina sp.

BPB4-16D 85SAGC-3 gS 7.7 Barren

BPB4-16G 85MP11 s 15.0 Barren

BPB4-16K 85MP8 s 17.5 Barren

BPB4-16S 85SAGC-2 z 18.7 Barren

BPB4-1A 81SR67 g(m)S 0.8 Shell fragments
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APPENDIX K

POLLEN ANALYSIS

Symbols used in this appendix to show abundance of taxa represent the following quantities: 
V = very rare (single grain); R = rare (2-5 grains); F = frequent (6-15 grains).

SAMPLE NO. TAXA MATERIAL

BPA2-8B Sphagnumsporites sp. (R)
Lejeunia sp. (R)

BPA2-8C Indeterminate large
spore (F)
Fungal hyphae (F) Sphagnumsporites sp.
(R)
Compositae (Taraxacum- 
type) (V)

BPA2-8E Laciniadinium biconiculum (F)
Indeterminate pollen (R)
Striatites richteri (R)
Micrhystridium sp. (R)
Baltisphaeridium sp. (V)

BPA2-8F Indeterminate pollen? (R)

BPA2-13A Undifferentiated bisaccates (R)
Compositae (Helianthus- 
type) (V)

BPA2-13C Undifferentiated bisaccates (R)
Lycopodiumsporites sp. (R) 
Tasmanaceae (R)
Compositae (Helianthus- 
type) (V)
Compositae (Taraxacum- 
type) (V)
Lycospora sp. (V)

BPA2-13D Undifferentiated bisaccates (R)
Lycopodiumsporites sp. (R) 
Sphagnumsporites sp. (R) 
Caryophyllaceae (R) 
Micrhystridium sp. (V)

herbaceous

herbaceous 
amorphous organics

70% woody-fusinitic

50% woody-fusinitic 
50% amber amorphous 
organics

70% herbaceous 
20% woody-fusinitic

70% dark, reworked

50% brownish, reworked
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SAMPLE NO. TAXA MATERIAL

BPA2-13F Laevigatosporites sp. (R) 
CaryophyUaceae (V) 
Polemoniaceae (V) 
Paraalnipollenites confusus (V)

60% dark, reworked

BPA2-13G Ilexpollenites sp. (F) 
Osmundacidites sp. (R)

80% dark, reworked

BPA3-10D Hymenozonotriletes Lepidophytm (F) 
Indeterminate pollen (V)

woody-fusinitic 
spore fragments

BPA3-10G Undifferentiated bisaccates (V) woody-fusinitic

BPA3-10M Indeterminate spore frag
ments (R)

woody-fusinitic 
spore fragments 
herbaceous-amorphous

BPA3-10O Indeterminate spores? (R) 
Undifferentiated bisaccates (V)

60% woody-fusinitic 
40% herbaceous

BPA3-10S Barren herbaceous

BPA3-13C Betulaceae (F) 
Lycopodiumsporites sp. (R) 
Ericaceae (V)

herbaceous

BPA3-16D Barren herbaceous

BPB4-16K Indeterminate spore frag
ments (R)
Undifferentiated bisaccates (R)

spore fragments
woody-fusinitic
amorphous

HBB1-19H Undifferentiated bisaccates (R) woody-fusinitic
herbaceous
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