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Abstract

Basic plasma processes associated with driven collisionless magnetic reconnection
at the Earth’s dayside magnetopause are studied on the basis of particle simula-
tions. A two-and-one-half-dimensional (23-D) electromagnetic particle simulation
model with a driven inflow boundary and an open outflow boundary is developed
for the present study. The driven inflow boundary is featured with a driving electric
field for the vector potential, while the open outflow boundary is characterized by a
vacuum force free condition for the electrostatic potential. The major findings are
as follows. (1) The simulations exhibit both quasi-steady single X line reconnection
(SXR) and intermittent multiple X line reconnection (MXR). The MXR process is
characterized by repeated formation and convection of magnetic islands (flux tubes
or plasmoids). (2) Particle acceleration in the MXR process occurs mainly in O
line regions as particles are trapped within magnetic islands, not in X line regions.
The MXR process results in a power law particle energy spectrum of f(E) ~ E—*.
(3) Field-aligned particle heat fluxes and intense plasma waves associated with the
collisionless magnetic reconnection process are also observed. (4) When applied to
the dayside magnetopause, simulation results show that the MXR process tends to
generate a simultaneous magnetic field perturbation on both sides of the dayside
magnetopause, resembling the observed features of two-regime flux transfer events
(FTEs). (5) An intrusion of magnetosheath plasma bulge into the magnetosphere
due to the formation of magnetic islands may lead to the layered structures ob-
served in magnetospheric FTEs. (6) In the current sheet, the enhanced tearing
mode instability caused by the driving force applied at the driven inflow bound-
ary creates an energy source at a specific wavenumber range with k,L ~ 0.3 in

the modal spectrum of the magnetic field B, component. An inverse cascade of

i
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iv
the modal spectrum of B leads to the formation of the large-scale ordered mag-
netic island structures observed in the simulations. (7) In addition, the results of
a theoretical study show that the tearing mode instability, and hence the magnetic

reconnection at the dayside magnetopause, do not exhibit strong dependence on

the magnetosheath 3 values.
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Chapter 1 Introduction

Magnetic field reconnection is believed to play a crucial role in many important
plasma processes, ranging from cosmic plasma environments to controlled labora-
tory plasma experiments. One of the most important features of magnetic recon-
nection process is the release and conversion in a very short time period of huge
amounts of energy stored in the magnetic field into plasma kinetic energy, accom-
panied by a change of magnetic field topology. For example, solar flares are a
manifestation of such explosive energy release and conversion. For a typical solar
flare, an energy of 3 x 1032 ergs can be released and converted within 30 minutes
[e.g., Priest, 1985].

Magnetic reconnection was first proposed by solar physicists to explain solar
flares [e.g., Giovanelli, 1946, 1947]. The concept of magnetic reconnection was
then applied to the earth’s magnetosphere to explain the geomagnetic storm and
auroral activities {Hoyle, 1949; Dungey, 1961]. The magnetic reconnection process
was subsequently identified in other astrophysical and interplanetary objects, e.g.,
Jovian magnetosphere [Nishida, 1984] and comets [Niedner, 1984], as well as in
laboratory plasmas, such as tokamaks {Paré, 1984] and reversed field pinch (RFP)
devices [Baker, 1984].

There are several different ways to define the magnetic reconnection process.
Vasyliunas [1975] defined magnetic reconnection as a process whereby plasma flows
across a surface that separates regions containing topologically different magnetic
field lines. In this definition, the surface that separates different magnetic field line

regions is called a separatrix and the two separatrix branches intersect at a line
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called a separator [Vasyliunas, 1984; Sonnerup, 1985]. The reconnection rate refers
to the amount of magnetic flux transported per unit time across a unit length of
the separator. The unit for the reconnection rate is the same as the unit of electric
field.

The basic reconnection geometry is illustrated in Figure 1.1. The field line a,
originally located in domain 3, moves toward the separatrix surface and lies in that
surface at location 5. When reconnection occurs, the field lines at the separator
break into components c and d, located in domains 1 and 2, respectively. In general,
however, the magnetic field along the entire separator is not zero. Therefore, a field
component By may be present along that line. The term separator is synonymous
with reconnection line, merging line, or X line. The phrases neutral line and null
line are also used when the magnetic field along the entire separator is zero.

Alternatively, some authors emphasize the electric field component parallel
to the separator (E;) as the distinguishing characteristic of reconnection process
le.g., Cowley, 1976; Sonnerup, 1985|. In this case, magnetic field reconnection is
defined to occur in a plasma whenever E| is present along a magnetic separator
[Sonnerup, 1985]. The electric field, E, is proportional to the reconnection rate
defined above. Finally, other authors emphasize the localized breakdown of the
frozen-in field condition and the resulting changes of connection as the basis of
magnetic reconnection [e.g., Axford, 1984). They define magnetic reconnection as a
process involving a violation of the magnetohydrodynamic frozen field theorem in
which higher order effects such as resistivity, normally negligible in the large scale,
become locally dominant with dramatic consequences in the nature of the large-
scale flow and magnetic field configuration which could not be achieved otherwise.

These three definitions of magnetic reconnection are equivalent. For exam-

ple, Vasyliunas [1975] argued that the plasma flow across a separatrix requires an
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Figure 1.1 Basic geometry for the magnetic field reconnection process
[Sonnerup, 1985].
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electric field component E| along the separator, which in turn implies a localized
violation of ideal Ohm’s law and breakdown of the frozen-in field condition [Baum
and Bratenahl, 1980; Vasyliunas, 1984]. Specifically, if an electric field component
E) is present along the separator, the plasma will move across the separatrix under
the influence of E x B force. On the other hand, the topology of magnetic field
is changed when a plasma flows across the separatrix, leading to the presence of
an induction electric field E; along the separator. If a plasma is frozen-in with
magnetic field, then it cannot move across any magnetic field lines; whereas, if a
plasma flows across a separator that is also a part of magnetic field line, then the
frozen-in field condition is violated in the vicinity of the separatrix; and vice versa.

To further illuminate the concept of magnetic reconnection, an example of
the time evolution of magnetic field configuration in a laboratory reconnection
experiment is shown in Figure 1.2 [Gekelman et al., 1982]. The reconnection process
is illustrated by the topology change of the pair of field lines a — a and 5 ~ b (heavy
lines). During reconnection, plasma and magnetic flux are transferred from cells 1
and 2 to cells 3 and 4. The separator is located at the center of the figure, along
with the reconnection electric field E, is perpendicular to the plane of the paper.

As an effective mechanism for energy release and conversion, magnetic field
reconnection has attracted a lot of attention among theoretical, experimental, and
computational physicists [e.g., see Magnetic Reconnection in Space and Laboratory
Plasmas ed. by Hones, 1984 and Physics of Magnetic Fluz Ropes ed. by Russell
et al., 1990]. Magnetic reconnection has been used to explain solar flares, mag-
netospheric storms and substorms, and many other plasma processes observed in
natural and laboratory plasma environments. Magnetic field reconnection is now
believed to be one of the most important processes in the transfer of solar wind

mass, momentum, and energy into the earth’s magnetosphere [e.g., Vasyliunas,
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Figure 1.2 The time evolution of magnetic field configuration in the labo-
ratory reconnection experiment [Gekelman et al., 1982).
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1975; Sonnerup, 1979; Cowley, 1982; Haerendel and Paschmann, 1982; Pudovkin
and Semenov, 1985; Lundin, 1988; Heikkila, 1990].

The discovery of flux transfer events (FTEs) [Russell and Elphic, 1978, 1979]
provided the first observational evidence for magnetic reconnection at the earth’s
dayside magnetopause [Paschmann et al., 1979; Sonnerup et al., 1981]. Obser-
vations of FTEs based on ISEE 1 and ISEE 2 satellites, as well as the recent
AMPTE/UKS, AMPTE/IRM, and AMPTE/CCE spacecraft, reveal many new fea-
tures associated with FTEs that have dramatically changed our understanding of
the reconnection process at the dayside magnetopause [see recent review by Russell,
1990; Elphic, 1990]. It is now well accepted that the dayside magnetic reconnection
is an intermittent process rather than the steady-state process suggested by Dungey
[1961].

Satellite observations have revealed that many distinct magnetic field and
plasma characteristics are associated with FTEs. These characteristics include the
bi-polar B, signatures [Russell and Elphic, 1978, 1979; Rijnbeek et al., 1984], the
high-speed plasma flows [Saunders et al., 1984], the presence of a mixture of mag-
netosheath and magnetospheric plasma populations [Speiser and Williams, 1982;
Rijnbeek et al. 1984|, and the presence of energetic particles and particle heat flux
[Daly et al., 1981; Scholer et al., 1981; Sonnerup et al., 1981; Daly and Kepler,
1983; Sibeck et al., 1987; Scudder et al., 1984; Thomsen et al., 1987; Klumpar et
al., 19891.

GObservations of FTEs have fascinated many researchers in the space physics
community. Various theoretical models have been proposed and many computer
simulations have been carried out to examine the features associated with FTEs.
One of the many attempts to explain the occurrence and properties of FTEs is

the multiple X line reconnection (MXR) model proposed by Lee and Fu [1985] and
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simulated by Fu and Lee [1985]. In the Lee-Fu model [Lee and Fu, 1985], multiple
X line reconnection can be considered as a magnetic reconnection process between
two approaching magnetized plasmas, carrying opposite-directed magnetic fields.
Multiple X line reconnection is not a steady process. At first, the reconnected mag-
netic field lines form magnetic flux tubes. Then, as the magnetic flux tubes grow
to a size much larger than the original current sheet thickness, the reconnection of
magnetic field lines will slow down and eventually stop due to nonlinear saturation
of the tearing mode instability. Subsequently, reconnection will resume when the
saturated magnetic flux tubes are convected out of the reconnection region. Re-
peated formation and convection of magnetic flux tubes during the MXR process
would lead to the observed features of FTEs at the dayside magnetopause. Fu and
Lee’s simulation [Fu and Lee, 1985] and other MHD simulations of MXR process
performed by Lee and Fu [1986), Fu and Lee [1986), Shi et al. [1988], Fu [1989],
and Fu et al. {1990) have confirmed the above speculation.

Although MHD simulations provide much useful information about the mag-
netic reconnection and FTEs, the plasma kinetic effects associated with the day-
side magnetic reconnection process and FTEs, such as the generation of energetic
particles and particle heat flux, can rarely be studied based on MHD simulations.
Furthermore, in MHD simulations of the magnetic reconnection process, the anoma-
lous resistivity that is required for reconnection to take place has to be arbitrarily
assumed. The assumed spatial and temporal variations of resistivity may not be
realistic in the collisionless magnetospheric plasma. For this reason, it is important
to use particle simulations to study the particle kinetic features associated with
collisionless magnetic reconnection process at the dayside magnetopause. The par-
ticle code has a distinct advantage over an MHD code in the simulation study of

the magnetic reconnection process. In a particle code simulation, the anomalous
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8
resistivity can be generated naturally by the non-MHD effects, such as particle in-
ertia and/or wave-particle interaction in the collisionless plasma |[Vasyliunas, 1975;
Sonnerup, 1979].

This thesis reports on a series of particle simulations of the dayside magnetic
reconnection process. In the simulations, both one-component (ions only) particle
code and two-component (ions and electrons) particle code are used. Many features
associated with the dayside magnetic reconnection process, such as the acceleration
and heating of particles, the generation of energetic particle and particle heat flux,
and the generation of plasma waves are examined in the simulations. The field
and particle signatures obtained in the simulations are compared with the satellite
observations of FTEs at the dayside magnetopause.

Specifically, this thesis is organized as follows: Chapter Two presents an
overview of the historical development of the concept of magnetic field reconnec-
tion, the observational features of FTEs, and the Lee-Fu MXR model. In Chapter
Three, the linear theories of collisional and collisionless tearing mode instabilities
are reviewed; also examined is the effect of plasma g, the ratio of plasma pressure
to magnetic pressure, on the tearing mode instabilities. Chapter Four presents
the magnetoinductive particle simulation model used in the present study and the
boundary conditions necessary for the simulation of the driven collisionless magnetic
reconnection process. The one-component particle simulation of the dayside mag-
netic reconnection process is reported in Chapter Five, where application of sim-
ulation results to flux transfer events is also discussed. Based on two-component
particle simulations, the driven collisionless magnetic reconnection process is ex-
amined in Chapter Six and the results are compared with satellite observations of
FTEs. This chapter further examines the driven collisionless magnetic reconnection

from another point of view, the perspective of self-organization. In Chapter Seven,
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particle acceleration processes in the collisionless magnetic reconnection are studied
based on full particle code simulations. Finally, a summary and discussion on the

present thesis study is included in Chapter Eight.
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Chapter 2 An Overview of Magnetic Field Reconnection and

Flux Transfer Events

Since Giovanelli (1946, 1947] proposed the neutral sheet model for solar flares,
magnetic reconnection process has been studied for more than four decades. After
Dungey [1961] applied the concept of magnetic field reconnection to the earth’s
magnetosphere and Russell and Elphic (1978, 1979] discovered flux transfer events
(FTEs) at the dayside magnetopause, magnetic reconnection process has been ac-
cepted as one of the prevailing mechanisms for interaction between the solar wind
and the magnetosphere. In one of the many attempts to explain FTEs, Lee and
Fu [1985] proposed a multiple X line reconnection model for the dayside magne-
topause. This chapter contains an overview of the historical development of the
study of magnetic field reconnection, the observational features of FTEs, Lee and
Fu’s MXR model and other theoretical FTE models, and computer simulations of

the dayside magnetic reconnection.

2.1 Historical Development of the Concept of Magnetic Field Reconnec-

tion

The concept of magnetic field reconnection (magnetic field line merging, or mag-
netic field annihilation) was originally proposed by solar physicists to explain solar
flares based on the neutral point theory. Giovanelli [1946] first proposed that the
optical emission from solar flares originates from atoms excited by electrons which

are accelerated in the induced electric fields near neutral points in the evolving

10
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magnetic fields of sunspots. Fascinated by the remarkable resemblance between
magnetic storms and solar flares, Hoyle {1949] suggested that the primary auroral
particles which bombard the earth’s polar atmosphere are accelerated at neutral
points formed by the combination of an interplanetary field and the geomagnetic
field.

The application of magnetic reconnection theory to the earth’s magnetosphere
was formally completed by Dungey [1961], who proposed an open magnetosphere
model in which the interplanetary magnetic field (IMF) connects with the geomag-
netic field both at the dayside magnetopause and in the nightside magnetotail. A
schematic diagram of Dungey’s model is sketched in Figure 2.1. Region 1 repre-
sents the earth’s internal magnetic field, while region 2 is the external geomagnetic
field. The thick lines are the separatrices. The open field lines in region 3 are con-
nected to both the interplanetary magnetic field and the geomagnetic field. The
field lines on the left side represent the southward IMF. Two X lines are present,
indicating magnetic reconnection at both the dayside magnetopause and the mag-
netotail. In Dungey’s model, magnetic reconnection in the earth’s magnetosphere

is a steady-state process.

Mathematically, magnetic field reconnection process is governed by the mag-

netic induction equation,

0B cn .,

where B is the magnetic field strength, ¢ is time, U is the plasma flow velocity, c is
the speed of light, and 7 is the resistivity. This equation is derived from Maxwell’s
equations and Ohm’s law. If the second term on the right hand side of (2.1) is much

larger than the first term, then (2.1) reduces to the magnetic diffusion equation,

B c*n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.1 A schematic diagram of the open magnetosphere model pro-
posed by Dungey [1961], in which magnetic reconnection takes place both
at the dayside magnetopause and in the nightside magnetotail.
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On the other hand, if the first term dominates, then (2.1) becomes the magnetic

convection equation,

%E:—:VX(UXB) (2.3)

The ratio of the first term to the second term on the right hand side of (2.1)
yields a dimensionless quantity, the magnetic Reynolds number R, = 47U L/c?7,
where U and L are respectively the characteristic speed and scale length of the
physical process concerned. A large magnetic Reynolds number obviously shows
that magnetic convection is important, while a small magnetic Reynolds number
indicates that magnetic diffusion is dominant.

It is clear from the above that the basic magnetic field configuration for the
reconnection process consists of two parts: a diffusion region and a convection re-
gion. The diffusion region is a small domain in the neighborhood of the magnetic
neutral point. In the diffusion region, the scale length (L) is small and the resis-
tivity (n) is important, leading to a small magnetic Reynolds number (R,,), and
diffusion of magnetic fields dominates the process. The convection region is the
outer part of the reconnection configuration. Here the scale length (L.) is large
and the resistivity () is unimportant, resulting in a large magnetic Reynolds num-
ber, and the plasma and magnetic fields are frozen-in and move together because
of the negligible magnetic field diffusion.

A steady-state reconnection configuration can be obtained when magnetic field
configuration does not change with time, i.e., 3B/3t = 0. To describe the steady-
state magnetic reconnection process, several theoretical models have been proposed

[Parker, 1957; Sweet, 1958; Petschek, 1964; Sonnerup 1970; Yeh and Axford, 1970].
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As pointed out by Vasyliunas [1975|, the above theoretical models are fundamen-
tally consistent, representing different aspects of the reconnection process. Some
characteristics associated with different models will be briefly described below.
The first reconnection model that describes the diffusion region in a neutral
sheet was proposed by Parker [1957] and Sweet [1958]. In the Sweet-Parker model
(Figure 2.2a) opposing magnetic field lines are carried by the plasma toward the
diffusion region. The length of the diffusion region is 2L and the width is 26. If
the inflow and outflow speeds respectively are U; and U, then it is found from the

conservation of plasma mass that U;L = U,§, and hence

Uz = U1 (2.4)

for an incompressible fluid with p; = p = p. If the magnetic field outside the
current sheet is By, then from the momentum equation it is obtained that BZ/8r =

pU2/2, and hence,

B,
U, = _\/ﬁ—; = Va1 (2.5)

where V4; is the Alfvén speed based on B;. In the diffusion region, the convection
of the magnetic field is balanced by magnetic field diffusion. Therefore, the diffusion
time (t4 = 4m6?/c*n) must equal the convection time (¢, = §/U;). With tq4 = t., it

is obtained that

6 cn

During magnetic reconnection, the reconnection rate, with a unit similar to
that of electric field as discussed in Chapter One, refers to the amount of magnetic
flux transported per unit time across a unit length of the separator. However, a
dimensionless quantity (Alfvén Mach number M, = U;/V,;) is also used conven-

tionally as a measure of the rate for reconnection process [Vasyliunas, 1975]. In the
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Figure 2.2 MHD reconnection models, (a) Sweet-Parker model [Parker,

1957; Sweet, 1958) and (b) Petschek mode! [Petschek, 1964).
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following, to distinguish the dimensional reconnection rate from the dimensionless
reconnection rate, reconnection electric field ( Egr) refers to the reconnection rate in
its dimensional unit, while the Alfvén Mach number (Af4) refers to the dimension-
less reconnection rate. The relation between the Alfvén Mach number (M,) and
the reconnection electric field (Egr) can be written as M, = cEg/V,4;B,. Since
Uy = MV, is the speed of the steady-state magnetized plasma inflow toward
the diffusion region, a large reconnection rate Af4, hence a large inflow speed U,
indicates that more magnetic energy is released and converted into plasma kinetic
energy; a small reconnection rate M4, hence a small inflow speed U, indicates that
less magnetic energy is released and converted. For the reconnection processes in
the solar atmosphere and the earth’s magnetosphere, a typical reconnection rate
M4 with a value of 0.1 ~ 1.0 is needed.

From (2.4) — (2.6) and after some straightforward algebra, it is found that the

reconnection rate (M ,4) in the Sweet-Parker model can be expressed as

U. 1
Mpy=—=—= 2.7
AT Va VERn (2.7)
where R, = 4mLVa;/c?n is the magnetic Reynolds number based on the cur-

rent sheet length L and the Alfvén speed V4;. The typical value of the magnetic
Reynolds number (R,,) for solar flares is 108 ~ 10!°. Therefore, it is found that
the reconnection rate M, in the Sweet-Parker model is too small, by a factor of
107° to 107%, to account for the rapid energy conversion observed in solar flares.
This is also true for magnetospheric substorms.

In order to increase the reconnection rate, Petschek [1964] proposed that the
diffusion region is confined to a small area only, with four slow shocks attached
to the central diffusion region, and the conversion of magnetic field energy into

plasma kinetic energy is accomplished mainly through the acceleration and heating
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of plasmas by the slow shocks. Figure 2.2b shows Petschek’s model, in which the
length of the diffusion region is only 2, while the scale length of the system is 2L.
The reconnection rate in Petschek’s model is found to have a weak dependence on
the magnetic Reynolds number, Af4 ~ 1/In(R,,). Therefore, a larger reconnection
rate with a typical value of 0.01 ~ 0.1 is obtained.

A new reconnection model that also contains four slow shocks was developed
independently by Sonnerup {1970] and Yeh and Axford [1970]. However, as pointed
out by Vasyliunas {1975], in the Sonnerup-Yeh-Axford model, the plasma flow to-
ward the diffusion region is a divergent flow, in which the plasma experiences a slow
mode expansion; in Petschek’s model, the plasma flow is a convergent one, in which
the plasma experiences a fast mode expansion. The upper limit of the reconnection
rate obtained in the Sonnerup- Yeh- Axford model can be as large as 2 + 1.

In their study of linear steady-state reconnection processes, Priest and Forbes
(1986} found that magnetic reconnection configuration is very sensitive to the con-
ditions imposed at the inflow and outflow boundaries. They obtained a unified
family of models for incompressible, steady-state magnetic reconnection processes.
As shown in Figure 2.3, reconnection configurations other than the Petschek and
Sonnerup models, such as a slow compression model, a hybrid expansion model,
and a flux pile-up model, may be obtained as different special cases in this family
of models, depending on the upstream inflow boundary conditions.

Recently, Priest and Lee [1990] proposed a nonlinear model for the fast steady-
state magnetic reconnection process. In the Priest-Lee model, the inflow region
possesses highly curved magnetic field lines, which is different from that in the
classical Petschek model, and a separatrix jet of plasma is ejected from the cen-
tral diffusion region along the magnetic separatrix. It is shown in Priest and Lee

(1990] that boundary conditions, both at the upstream inflow boundary and the
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Figure 2.3 A unified family of models for incompressible, steady-state mag-
netic reconnection [Priest and Forbes, 1986).
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downstream outflow boundary, are important in determining the reconnection con-
figurations; and, that plasma outflow across the separatrix jet can be slowed down
by fast-mode shocks or speeded up by slow-mode shocks, depending on downstream
boundary conditions.

In the above reconnection models, the magnetic field configuration is symmet-
ric about the current sheet, i.e., the magnitude of magnetic field on both sides of
the current sheet is the same. At the dayside magnetopause, however, the mag-
netosheath field generally is smaller than the magnetospheric field. Therefore, the
reconnection configuration at the dayside magnetopause would be asymmetrical.
Levy et al. [1964] applied Petschek’s reconnection model to the dayside magne-
topause and modified Dungey’s open magnetosphere model. In the model of Levy
et al. {1964], shown in Figure 2.4, the magnetospheric field is larger than that in
the magnetosheath side. Shocked solar wind plasma flows in from the left side only,
with a vacuum condition in the magnetosphere on the right. Plasma acceleration
is accomplished through a large amplitude Alfvén wave or rotational discontinuity.
A slow expansion fan is formed inside the magnetopause. In Levy et al. model,
the reconnection rate could reach as high as 2. Recent simulation results of Shi
and Lee [1990] have shown that in asymmetric dayside reconnection configurations,
intermediate shocks may also be formed in the magnetosheath region, while weak
slow shocks are formed inside the magnetopause.

All the theoretical models for the steady-state reconnection process described
above are two-dimensional and based on the MHD equations. Except for Sweet-
Parker’s model [Parker, 1957; Sweet, 1958], all other models are characterized by
the presence of slow shocks [Petschek, 1964; Sonnerup, 1970; Yeh and Axford, 1970;
Priest and Forbes, 1986] or large-amplitude intermediate waves and slow expansion

fan [Levy et al., 1964] in the external convection region. The incoming plasma
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is accelerated to the Alfvén speed by the slow shocks or the Alfven waves. The
features of the reconnection process in a collisional plasma are described by these
classical models based on MHD equations. However, in a collisionless plasma, the
picture of the reconnection process is quite different.

The first collisionless, self-consistent neutral current sheet model was proposed
by Alfvén [1968]. In Alfvén’s model, shown in Figure 2.5, a neutral sheet with
B = 0 lies in the ¢ — y plane between oppositely directed magnetic fields. During
the collisionless reconnection process, plasma flows from both sides toward the
neutral sheet under the influence of the E x B drift. When they reach the neutral
sheet, particles are ejected in the fy-direction (+y for ions and —y for electrons).
The incoming flux of plasma kinetic energy and magnetic energy are balanced by
acceleration and ejection of the charged particles forming the current sheet. This
current generates a self-consistent magnetic field, with a gradient across the neutral
sheet. Note that in the collisionless neutral sheet model, plasma is ejected at a speed
comparable with the inflow Alfvén speed along the direction of current, which is
different from that in the MHD neutral sheet models. Alfvén’s neutral sheet model
was further developed by Dessler [1968], Speiser {1970], Eastwood [1972], Cowley
[1973], and Lyons and Speiser [1985].

If the current sheet system is bounded by a plane of conducting walls separated
by a distance L, then the total potential drop across the current sheet system is
uniquely determined by the self-consistent requirement. The total potential drop,
known as the Alfvén potential, was first derived by Alfvén [1968]. It is given by

Bz
~ 4nNe (28)

¢4

where B is the magnetic field outside the current sheet such that the inflow plasma

speed (U) is cE/B, the plasma density in the current sheet region is N, and the
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magnitude of an electron charge is e. The electric field is determined by E = ¢ 4/ L.

The reconnection rate for the collisionless neutral sheet system is given by Cowley

[1973] as

I\IA:%:(%) (2.9)
where V4 = B/+/4rNm; is the inflow Alfvén speed, \; = ¢/wpi is the jon inertial
length, and w,; = \/m is the ion plasma frequency. For both solar flares
and magnetospheric substorms, the ion inertial length A; is generally much smaller
than the system length L. Thus, the reconnection rate given by (2.9) is very small,
similar to that obtained with the Sweet-Parker model. Therefore, the above colli-
sionless neutral sheet models describe the inner diffusion region for the collisionless
reconnection process.

On the other hand, a collisionless model for the external reconnection re-
gion is provided by Hill [1975], who generalized the Alfvén-Speiser-Eastwood self-
consistency condition for a current sheet to obtain collisionless reconnection con-
figurations. A schematic picture of Hill's model is plotted in Figure 2.6. The key
feature of Hill’s collisionless reconnection model is that the magnetic field reversal
takes place mainly along the current sheet (R). Across the four shocks (S), there is
only a small amount of field line bending. The magnetic tension force associated
with the central current sheet may provide most of the particle energization. Al-
though the acceleration mechanism in Hill’s model differs from that of the MHD
model, its plasma flow pattern is similar to that in Petschek’s model. The reconnec-

tion rate in Hill’s model is closely related to the angle (x) between the separatrix

line and the field reversal plane, so that

M, = sinxcosy (2.10)
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Figure 2.6 Hill's [1975] collisionless reconnection model.
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Collisionless magnetic reconnection between arbitranly oriented asymmetric mag-
netic fields was also discussed by Hill [1975].

In the early epoch of reconnection study, the attention of most researchers was
concentrated on the simplest reconnection process, i.e., two-dimensional, symmet-
ric or asymmetric, steady-state magnetic reconnection, based on either the MHD
equations or collisionless plasma models [see reviews by Vasyliunas, 1975; Sonnerup,
1979, 1985; Cowley, 1985]. For the reconnection process at the earth’s dayside
magnetopause, Levy et al. [1964] pointed out that a component of magnetic field
normal to the magnetopause and high-speed plasma flows should be observed at
the dayside magnetopause as a consequence of dayside magnetic reconnection. The
presence of the normal magnetic field component would indicate that the magne-
tosphere is open, whereas the presence of high-speed plasma flows would indicate
that plasma acceleration occurs when the magnetic energy is converted into plasma
kinetic energy during the reconnection process.

However, in the late 1960s and early 1970s, these predicted signatures of an
open magnetosphere and the reconnection process at the dayside magnetopause
were not observed as often as expected. Therefore, the reconnection process at the
dayside magnetopause remained in doubt until the ISEE satellites provided am-
ple observational evidence [Russell and Elphic, 1978, 1979; Paschmann et al., 1979;
Sonnerup et ai., 1981]. Although the satellite observations confirmed that the recon-
nection occurs at the dayside magnetopause, the observed characteristics of FTEs
indicated that the dayside magnetic reconnection process is different from the pre-
dictions of Dungey’s steady-state model. Further observations of FTEs showed that
the dayside magnetic reconnection is a three-dimensional, intermittent or patchy
process [see reviews by Elphic, 1990; Russell, 1990]. With these new observations,

theoretical modeling study of the magnetic reconnection process entered a new era,
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characterized by the three-dimensional, time-dependent reconnection models and

large-scale 2-D and 3-D computer simulations of magnetic reconnections.

2.2 Observational Features and Theoretical Models of FTEs

In the late 1970s, Russell and Elphic {1978, 1979] discovered a distinct magnetic
field and plasma structure in the ISEE satellite data. They identified this structure
as a flux transfer event (FTE) in which magnetic flux is transferred from the solar
wind into the earth’s magnetosphere. Subsequently, previous observations of im-
pulsive erosion of magnetic flux tubes [Haerendel et al., 1978] were also identified as
FTEs [Rijnbeek and Cowley, 1984]. The discovery of FTEs marked a new departure
in the study of the reconnection process at the dayside magnetopause. Since then,
the intermittent reconnection has become one of the accepted hypotheses for the
transfer of solar wind mass, momentum, and energy into the magnetosphere at the
dayside magnetopause.

Over the past decade, the satellites ISEE 1, ISEE 2, and HEOS 2, have pro-
vided many valuable observations of FTEs. Recently, high resolution measure-
ments of FTEs have become available from the AMPTE/UKS, AMPTE/IRM, and
AMPTE/CCE spacecraft. So far, many observational features of FTEs have been
identified and examined, including magnetic field B, electric field E, plasma waves,
plasma density, plasma temperature, plasma flows, energetic particles, particle heat
flux, and layered structures inside the FTEs [e.g., Russell and Elphic, 1978, 1979;
Daly et al., 1981, 1984; Scholer et al., 1981, 1982; Sonnerup et al., 1981, 1987;
Cowley, 1982; Berchem and Russell, 1982, 1984; Paschmann et al., 1982, 1986;
Rijnbeek et al., 1982, 1984, 1987; Daly and Keppler, 1983; Rijnbeek and Cowley,
1984; Saunders et al., 1984; Scudder et al., 1984; Daily et al., 1985; Heikkila, 1986;
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Chaloner et al., 1986; Smith et al., 1986; Southwood et al., 1986; Elphic and South-
wood, 1987; LaBelle et al., 1987; Farrugia et al., 1987, 1988; Thomsen et al., 1987;
Papamastorakis et al., 1989; Klumpar et al., 1989; Elphic, 1990; Gosling et al.,
1990].

Figure 2.7 shows an example of magnetosheath FTEs observed on October 23,
1978 by ISEE 1 (heavy line) and ISEE 2 (light line) {Saunders et al., 1984]. The
plasma data are plotted in the top five panels, while the magnetic field data are
shown in the bottom five panels. In Figure 2.7, Np is the total plasma density, while
‘Np and N are respectively the densities of energetic ions and energetic electrons.
The plasma bulk flow velocity is plotted, approximately, in the geocentric solar
ecliptic (GSE) coordinate system. (The origin of the GSE coordinates is located at
the center of the earth, with X pointing sunward, Z northward and perpendicular
to the ecliptic plane, and Y duskward and completing the right-hand orthogonal
triad.) V is the magnitude of the bulk flow velocity, Vx and Vy are the components
of the bulk flow velocity. The magnetic field data are plotted in the boundary
normal coordinate system, in which By is outward along the boundary normal,
Bp is along the projection of the geocentric solar magnetospheric (GSM) Z-axis
in the magnetopause plane, and Bps completes the orthogonal triad and points
westward [Russell and Elphic, 1978]. (The origin of the GSM coordinates is at
the center of the earth, with X pointing sunward, Z northward and in the plane
determined by X and the earth’s magnetic dipole, and Y duskward and completing
the right-hand orthogonal triad.) The field angle in the L — M plane is defined by
arLpm = tan_l(BM/BL). ISEE 1’s position is given at the base of the figure in terms
of geocentric radial distance ( R) in Earth radii, and GSM local time (LTgsps) and
latitude (LATgsnm). At 1326 UT, ISEE 1 and ISEE 2 were separated by 5540 km
along the N-direction with ISEE 2 leading the orbit.
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Figure 2.7 An example of magnetosheath FTEs observed by ISEE 1 and
ISEE 2 [Saunders et al., 1984].
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Figure 2.7 shows three magnetosheath FTEs labelled by (a), (b), and (c).
During each FTE, indicated by the bi-polar signature in By, energetic particle
density increases, while the total plasma density slightly decreases; plasma bulk
flow velocity and magnetic field strength are enhanced. It is also observed that the
magnetic field component and flow perturbations approximately satisfy the Walén
relation [Walén, 1944]: Av = +Av 4, where v, = B/{/4mp is the Alfvén speed.

In addition to magnetosheath FTEs, magnetospheric FTEs have also been
observed inside the magnetopause [e.g., Daly and Keppler, 1982; Berchem and
Russell, 1984; Rijnbeek et al., 1984, 1987; Farrugia et al., 1987, 1988]. Rijnbeek et
al. [1984] showed that the magnetosheath FTEs and magnetospheric FTEs have
similar recurrence times and similar scale sizes, and that the magnitude of the mag-
netospheric FTE By signatures is generally smaller than that of the magnetosheath
FTEs. This indicates that the magnetosheath FTEs and magnetospheric FTEs are
part of the same physical phenomenon at the dayside magnetopause. A summary
of the observed properties of FTEs is listed below.

(1) FTEs have a strong correlation with the B, component of the interplanetary
magnetic fields (IMF). Large FTEs with a duration about 2 minutes are observed
to occur repeatedly approximately every 10 minutes when the IMF has a southward
B, component.

(2) FTEs, which originate in low-latitude regions, are observed both inside
and outside the magnetopause and in both the northern and southern hemispheres.
Two-regime FTEs characterized by a simultaneous FTE signature both exterior
and interior to the dayside magnetopause have been reported by Farrugia et al.
[1987]. Simultaneous FTE signatures have also be observed at both northern and

southern hemispheres [Elphic and Southwood, 1987].
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(3) FTEs are distinguished by the bi-polar signature in the B, component of
the magnetic field and a strong guiding field, or core field, in the B, component.
Standard FTEs are FTEs with an outward followed by an inward (positive-negative)
perturbation in the By component. Reverse FTEs are FTEs with an inward fol-
lowed by an outward (negative-positive) perturbation in By component. However,
irregular FTEs, with either a single inward (negative) or outward (positive) pertur-
bation, or a more complex variation in the By component, have also been observed
[Rijnbeek et al., 1984].

(4) Early observations show that during FTEs the magnetic field strength
typically is enhanced [Russell and Elphic, 1979]. It was first pointed out by Rijnbeek
et al. [1984] that the magnetic field strength during FTEs may decrease as well
as increase. Crater-like FTEs with a magnetic field strength enhancement at the
edges and a reduction at the center have been identified in the magnetospheric FTEs
[LaBelle et al., 1987; Farrugia et al., 1988). Penetrating deep into an FTE, satellites
have also observed a magnetic cavity structure (magnetic hole) characterized by a
simultaneous large decrease in the magnetic field strength and increase in plasma
density with a nearly constant total pressure. [Lihr and Klocker, 1987].

(5) Associated with FTEs, the electric field shows significant perturbations in
the En and Ejs components with an average magnitude of 3.5 mV/m, and the flux
tubes move across the magnetopause plane at an average E x B speed of 125 km/s
with respect to the ambient flow.

(6) Some dayside auroral activities are optical signatures of FTEs in the iono-
sphere, which are usually found at the equatorward edge of the polar cap [Cowley,
1984; Goertz et al., 1985; Sandholt et al., 1986; Lanzerotti et al., 1986; Freeman and
Southwood, 1988; Lockwood et al., 1989]. The vortex-like plasma flows observed in

the ionosphere associated with the field-aligned current system [e.g., Goertz et al.,
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1985; Todd et al., 1986] are believed to be caused by the motion of magnetic flux
tubes formed during FTEs [Southwood, 1985, 1987; McHenry and Clauer, 1987).

(7) Magnetospheric FTEs have a multilayered structure with distinct and sys-
tematic behavior in fields and charged particle populations: an outside draping field
region, an inside twisting field region, and between them an intermediate boundary
layer region.

(8) High-speed plasma flows and field-aligned particle heat fluxes are observed
in the boundary layer region of FTEs, indicating particle acceleration and heating
during the continued magnetic reconnection process. An enhancement in energetic
particle densities is usually observed during magnetosheath FTEs, while a reduction
in energetic particle densities is often observed during magnetospheric FTEs. Inside
the FTEs, the total pressure, consisting of thermal and magnetic pressures, is
usually higher than that outside the FTEs.

(9) For large FTEs, the area of the flux tube cross-section is typically 1 R%
and elongated in the L-direction of the boundary normal coordinate system, which
is approximately the north-south direction in GSM. A moving deHoffmann-Teller
(HT) frame of reference can be found for an FTE, in which the local plasma veloc-
ities are nearly antiparallel to the local B vector and have magnitudes in the range
70% — 90% of the local nominal Alfvén speed [Papamastorakis et al., 1989].

(10) Twisted magnetic field lines are observed in the open flux tubes, indicat-
ing the presence of field-aligned currents Jj. The field-aligned current produces the
ground magnetic signatures of FTEs, e.g., unipolar and bipolar profiles of the ver-
tical magnetic field [Goertz et al., 1985; McHenry and Clauer, 1987; Wei and Lee,
1990]. Statistical studies show a correlation between FTEs and transversely polar-
ized Pc 4 pulsations with periods between 60 and 120s [Gillis et al., 1987]. FTEs

may also contribute to certain Pc 5 magnetic variations [Lanzerotti and Maclennan,
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1988]. The cusp region ultralow frequency (ULF) hydromagnetic waves associated
with FTEs may be generated by the sporadic multiple X line reconnection process
at the dayside magnetopause {Lee et al., 1988].

(11) Associated with FTEs, intense electrostatic and electromagnetic plasma
waves are observed, ranging from below the ion gyrofrequency (~ 1Hz) to above
the electron plasma frequency (~ 50kHz). For waves associated with FTEs, the
power spectrum of electric field fluctuation is proportional to f~2, and the power
spectrum of magnetic field is proportional to f~*, where a is between 3.3 and 4.7.

Various observational features associated with FTEs have fascinated many re-
searchers and attracted the attention of the solar-terrestrial space physics commu-
nity. Since the discovery of FTEs at the dayside magnetopause, theoretical models
for the magnetic reconnection process have undergone a significant change: from
steady-state to time-dependent reconnection models {Lee, 1988]. It is now widely
accepted that dayside magnetic reconnection is basically an intermittent process,
even though the detailed picture of the time-dependent reconnection process re-
mains a controversial issue, and hence an active research topic.

To explain the intermittent nature of the dayside magnetic reconnection pro-
cess associated with FTEs, a number of theoretical models have been proposed.
These include: (1) the elbow-shaped flux tube model {Russell and Elphic, 1978,
1979}, (2) the cusp region reconnection model {[Podgorny et al., 1980}, (3) the tear-
ing hole model [Sonnerup, 1984|, (4) the multiple X line reconnection model [Lee
and Fu, 1985], (5) the split separator line merging model [Crooker, 1985], (6) the
stochastic percolation model [Galeev et al., 1986], (7) the bursty single X line re-
connection model [Scholer, 1988; Southwood et al., 1988}, (8) the three-dimensional

tearing model [Kan, 1988], (9) the vortex induced tearing model [Liu and Hu, 1988],
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(10) the turbulent reconnection model [Song and Lysak, 1989], and (11) the three-
dimensional general magnetic reconnection model [Hesse et al., 1989]. Note that all
the theoretical FTE models listed above are related to the magnetic reconnection
process at the dayside magnetopause.

The first morphological FTE model, the elbow-shaped flux tube model of Rus-
sell and Elphic (1978, 1979] (Figure 2.8), proposes that the relaxation of the bent,
elbow-shaped flux tubes intermittently formed during the patchy reconnection at
the dayside magnetopause results in the observed features of FTEs. Although
this model successfully explained the FTE signatures, the question of how the re-
connection process leads to the intermittent formation of such flux tubes remains
unsolved.

To explain the intermittent formation of the elbow-shaped flux tubes, Son-
nerup {1984] proposed a tearing hole model for FTEs. In this model, the nonlinear
development of the tearing mode instability at the dayside magnetopause results
in patchy and intermittent reconnection, which in turn leads to the formation of
elbow-shaped flux tube pairs in both the northern and southern hemispheres. The
pair of elbow-shaped flux tubes form a hole structure at the dayside magnetopause.
This model implies that reconnection might occur at multiple sites during the for-
mation of the flux tube pair. Sonnerup also speculated that a threshold, other than
the southward IMF B,, might control the onset of patchy and intermittent recon-
nection and that under certain circumstances, quasi-steady reconnection could also
be established at the dayside magnetopause.

Considering the coupling of the solar wind and the earth’s magnetosphere as a
driven process in which the interaction between solar wind and the magnetosphere
leads to the intermittent reconnection at the dayside magnetopause, Lee and Fu

[1985] proposed a multiple X line (MXR) reconnection model for FTEs. The most
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Figure 2.8 The elbow-shaped flux tube FTE model {Russell and Elphic,
1978, 1979].
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important and distinguishable feature of Lee and Fu’s MXR model is that the
interplanetary magnetic fields (IMF) reconnect with the geomagnetic fields along
several reconnection lines (X lines). Figure 2.9 is a perspective picture of the
MXR model at the dayside magnetopause. In this model, the FTE signatures
are generated by the convection of the magnetic flux tubes that are intermittently
formed during the MXR process. The MXR process tends to occur in a system with
a characteristic length (L) much larger than the characteristic thickness (I) of the
current sheet. As demonstrated in the simulations [Fu and Lee, 1985, 1986; Lee and
Fu, 1986; Ding et al., 1986; Shi et al., 1988|, the multiple X line reconnection takes
place in a highly nonlinear driven system so that the MXR process is intrinsically
time-dependent. Like Sonnerup’s tearing hole model, Lee-Fu’s MXR model also
seems to have a threshold that controls the onset and subsidence of the MXR
process. Lee and Fu suggested that the threshold might be closely related to the
nonlinear saturation of the tearing mode instabilities at the dayside magnetopause.

Magnetic reconnection at multiple sites was observed by Dubinin et al. [1980]
and Podgorny et al. [1980] in their laboratory plasma experiments, which inves-
tigated the interaction between a supersonic or super-Alfvénic collisionless plasma
flow and a magnetic dipole. These experiments showed that for a southward IMF
B,, both single X line reconnection and multiple X line reconnection may occur
at the dayside magnetopause. When the solar wind Alfvén Mach number is small
(M4 ~ 1), a single X line is formed at the low-latitude subsolar region of the mag-
netopause; when the solar wind Alfvén Mach number is large (M4 ~ 10), two X
lines are formed at the high-latitude polar cleft regions and a huge O line, also
called magnetic curl, is formed at the front nose of the dayside magnetopause. In-
side the magnetic curl, several small magnetic islands are present due to the tearing

mode instability. However, the open field lines associated with the magnetic curl
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are dragged by the solar wind in the equatorial direction. Therefore, the topology
of magnetic field lines in Podgorny et al. {1980] is very different from that proposed
by Lee and Fu [1985], since in the Lee-Fu model the multiple X line reconnec-
tion is allowed to occur near the subsolar point of the dayside magnetopause and
the poleward convection of magnetic islands leads to the observed B,, signature of
FTEs.

To obtain a unified picture that can explain both the subsolar region reconnec-
tion and the cusp region reconnection, Crooker [1985] proposed a split separator
line merging model for the dayside magnetopause. In this model, the dayside mag-
netic field configuration is determined by the superposition of three magnetic field
components that include (1) the geomagnetic dipole field, (2) the magnetic field
caused by the Chapman-Ferraro current, and (3) the interplanetary magnetic field
(IMF). Depending on the orientation and the magnitude of the IMF, one can obtain
both multiple X line reconnection at either the subsolar region or the cusp region,
and single X line reconnection at the subsolar region. In Crooker’s model, the re-
connection takes place at multiple merging lines. Reconnection with classical single
X line geometry occurs at the outer merging lines, producing accelerated boundary
layer flows. Reconnection in the subsolar region, between the separator lines, leads
to the formation of magnetic islands, producing the signatures of FTEs. However,
Crooker’s model is mainly a topological one without any information about the
dynamics, except the predicted location of accelerated boundary flow layers.

Galeev et al. [1986] pointed out that the magnetic surface at the dayside mag-
netopause could be destroyed by the growth and overlapping of magnetic islands.
The stochastic meandering of magnetic field lines between the destroyed surfaces
would result in the magnetic percolation, i.e. the appearance of a topological con-

nection of interplanetary and geomagnetic field lines. Galeev et al. suggested that
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a percolation process of this kind might lead to the patchy reconnection at the
dayside magnetopause, and hence the signatures of FTEs.

To explain the intermittence of dayside reconnection, Sonnerup {1984] and Lee
[1986] suggested the existence of a threshold that controls its onset and subsidence.
A detailed mechanism for such a threshold was proposed in the magnetic perco-
lation model by Galeev et al. [1986]. Based on the coupling of the drift-tearing
mode to the ion-acoustic waves, Galeev et al. obtained a saturation mechanism for
the magnetic percolation process: the ion-acoustic waves carry away the wave en-
ergy from the interaction region, thereby leading to the nonlinear saturation of the
tearing mode inside the magnetopause current sheet, and hence, the interruption
of the percolation process. However, in this model, the most favourable condition
for the percolation process to occur is a magnetic field rotation of about g = 70°
within the magnetopause, where 6p is the angle between the magnetic fields in the
magnetosheath and magnetosphere. This seems to be inconsistent with the satellite
observations that FTEs occur when the IMF has a large negative B, component,
i.e. the magnetic field rotates about §g = 180° within the magnetopause.

Recently, several authors argued that the FTE signatures may also be produced
by a bursty reconnection process occurring at a single reconnection line at the
dayside magnetopause [Scholer, 1988; Southwood et al., 1988]. The bursty single
X reconnection (SXR) process can be caused by an enhancement and a subsequent
reduction of the reconnection rate at the reconnection region. Figure 2.10 shows a
schematic sketch of the bursty single X line reconnection (SXR) model, in which the
bursty reconnection process leads to the formation of magnetic bulges at the dayside
magnetopause. A magnetic bulge formed at the low-latitude region propagating to
the high-latitude region produces magnetic perturbations and energetic particle

features similar to that of FTEs. In the bursty SXR model, all of the reconnected
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Figure 2.10 A schematic drawing of the bursty single X line reconnection
model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39



40
magnetic field lines are open field lines, a loop-like structure is produced, and
no magnetic flux tubes are formed. Therefore, the footprints on the ionosphere
produced by the bursty SXR are expected to be much different than those generated
by the magnetic flux tubes. On the other hand, the physical mechanism that
controls the bursty nature of the bursty SXR process has not been clearly identified.

Based on the argument of three-dimensional tearing of the magnetopause cur-
rent sheet and three-dimensional component reconnection on the dayside magne-
topause driven by the solar wind, Kan [1988] proposed a patchy and intermittent
reconnection model for FTEs. In Kan's three-dimensional tearing (3DT) model,
the patchiness of FTEs is caused by the structure of the three-dimensional tearing
on the dayside magnetopause. The intermittent nature of the FTEs is externally
controlled by the fluctuation of IMF and internally modified by the ionospheric
line-tying effect. For the 3DT model, both single X line reconnection, bursty or
quasi-steady, and multiple X line reconnection may take place.

At the dayside magnetopause, sheared velocity and magnetic fields have been
observed. The Kelvin-Helmholtz instability may be excited due to the presence of
the sheared plasma flows [e.g., Southwood, 1968; Miura, 1984; Wu, 1986]. Large
scale fluid vortices may be formed because of the development of the Kelvin-
Helmholtz instability. Considering such a response of magnetic field lines to the
fluid vortices, Liu and Hu [1988] proposed a vortex-induced patchy reconnection
model for the formation of FTEs. In this model, FTE signatures are produced
by helical magnetic vortex tubes formed during the vortex-induced reconnection
process that may occur at both the low-latitude region and the cusp region of the
dayside magnetopause when the IMF has a large southward B,.

Based on their study of the changing of magnetic helicities during magnetic

reconnection, Song and Lysak [1989] suggested that three-dimensional magnetic
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reconnection was a self-organized evolution process of a nonequilibrium dissipative
system. During magnetic reconnection, the internal and external magnetic helic-
ities are redistributed, although the total helicity is nearly conserved. A dynamo
effect is introduced by a turbulent electric field that is produced by the helicity
conversion. Applying their theory to the dayside magnetopause, Song and Lysak
proposed a multiple-site turbulent reconnection model for FTEs. During the turbu-
lent reconnection, fluctuating velocity and magnetic fields cause an average nonzero
electric field, leading to the formation of many small twisted flux tubes. Then, the
self-organization of the small twisted tubes results in a coalescence process and
hence the formation of large twisted FTE flux tubes. In the Song-Lysak model,
the twisted FTE flux tubes represent a mixed state with minimum energy and
maximum cross helicity during the three-dimensional magnetic reconnection.

Recently, three-dimensional magnetic reconnection has attracted more and
more attention in the theoretical study of reconnection process [e.g., Greene, 1988;
Schindler et al., 1988; Hesse and Schindler, 1988; Fu, 1989; Fu et al., 1990]. After
examining the three-dimensional topological structure of magnetic field lines in a
model magnetosphere, Hesse et al., [1989] proposed a magnetic flux knot model for
FTEs. They showed that a localized perturbation at the magnetopause can open a
closed magnetosphere, leading to magnetic connection across the magnetopause and
the formation of FTE magnetic flux tubes. However, the three-dimensional mag-
netic reconnection topology is different from the traditional viewpoint: the linkage
of magnetic flux tubes results in the formation of a magnetic flux knot without
the presence of any neutral points; and a complicated filamentary substructure of
magnetic field lines is present with a decrease of magnetic shear at the magne-
topause. One feature of the magnetic flux knot model is the simultaneous presence

of ionospheric signatures of the same single FTE flux rope in both the southern and
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and northern hemisphere, because the flux rope is connected to both hemispheres
at the same time.

Many observational features associated with FTEs are summarized in this sec-
tion. Various theoretical FTE models have also been reviewed. Magnetic recon-
nection and formation of FTEs at the dayside magnetopause are complicated. The
theoretical models discussed above provide many possible explanations for dayside
reconnection and FTEs. Computer simulation provides a powerful and useful tool
for examining the feasibility of these theoretical models for magnetic reconnection
and FTEs at the dayside magnetopause. Both MHD simulations and particle sim-
ulations have been carried out to study dayside magnetic reconnection processes
and FTEs. Computer modeling of magnetic reconnection and FTEs at the dayside

magnetopause is discussed in the next section.

2.3 Necessity of Particle Simulation for Magnetic Field Reconnection

Study

With the development of large-scale, high-speed computer technology, com-
puter modeling has been widely used in many research areas. Computer simulation
provides a unique tool to bridge the gap between theoretical and experimental re-
searches. Theoretical analysis, experimental observation, and computer modeling
today have become three inseparable parts of scientific research. Computer simu-
lation studies of the dayside magnetic reconnection process and FTEs have been
carried out by many researchers. These studies include both MHD simulations and
particle simulations.

The first two-dimensional (2-D) MHD simulation of FTEs, namely the simu-

lation of multiple X line reconnection, was reported by Fu and Lee {1985]. Later, a
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series of simulations were performed to study the intermittent MXR process based
on a 2-dimensional slab model [Lee and Fu, 1986; Fu and Lee, 1986]|. Both steady-
state SXR and time-dependent MXR were observed. The results show that when
the simulation system is long and resistivity is small, intermittent reconnection
occurs at multiple sites, leading to the repeated formation of magnetic islands; oth-
erwise, steady-state single X line reconnection take place as the system length is
reduced. Lee and Fu [1986] and Fu and Lee [1986] demonstrated that for a given
current sheet thickness the steady-state single X line reconnection magnetic field
configurations of the Sweet-Parker model [Sweet, 1958; Parker, 1957], the Sonnerup
model [Sonnerup, 1970}, and the Petschek model [Petschek, 1964] can be obtained,
depending on the length of the current sheet.

The simulations of Fu and Lee (1985, 1986] and Lee and Fu [1986] were based
on the 2-D slab model with limited system lengths, imitating the reconnection
process at the subsolar region of the dayside magnetopause. To study the dayside
reconnection on a global scale, Shi et al. [1988] simulated the interaction between
the interplanetary magnetic field and the earth’s geomagnetic field at the dayside
magnetopause when the IMF has a southward B, component with a 2-D global
MHD code. They found that when the magnetic Reynolds number ( R,,) is small,
the SXR process takes place; when R, is large, MXR occurs. They also found
that when the solar wind Mach number {M4) is small, dayside reconnection takes
place in the low-latitude region; when M 4 is large, reconnection occurs at the high-
latitude region. These results are consistent with the laboratory experiment of the
dayside reconnection [Dubinin et al., 1980; Podgorny et al., 1980].

2-D MHD simulations of FTEs were also performed by Scholer [1989a, 1989b],
who simulated the bursty single X line reconnection process with both symmetric

and asymmetric magnetic configurations. Note that in a symmetric magnetic field

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44
configuration, the antiparallel magnetic fields on the two sides of the current sheet
have the same magnitude. The simulation results indicate that magnetic bulges can
indeed be formed as a result of the bursty reconnection process. The simulation
results also show that when the magnetic field is symmetric, magnetic bulges can be
formed on both sides of the current sheet; when the magnetic field is asymmetric,
the magnetic bulge can only be formed on the side with a weaker magnetic field,
i.e., the magnetosheath.

The magnetic reconnection process in the real world is a three-dimensional
phenomenon. Although the 2-D simulations have revealed many important features
of the reconnection process, the lack of the third dimension definitely limits our
understanding of magnetic reconnection in the 3-D environment. As large scale
supercomputers became available, three-dimensional computer simulations of the
FTEs at the dayside magnetopause were also carried out.

The first 3-D MHD simulation of the formation of FTEs was reported by Sato
et al. [1986]. The simulation of the interaction between the solar wind, which has a
southward IMF B, component, and the earth’s magnetosphere is based on a semi-
global simulation model. They found that twisted magnetic flux tubes are formed as
a result of repeated reconnection between the IMF and the geomagnetic field near
the equatorial plane and that these flux tubes subsequently propagate to higher
latitudes. The flux tube structure observed in the simulation is similar in many
respect to the FTEs observed at the dayside magnetopause. Their 3-D simulation
result basically confirmed the multiple X line reconnection model proposed by Lee
and Fu [1985].

Another global 3-D MHD simulation of FTEs was carried out by Ogino et al.
[1989]. They found that when R,, is high, the reconnection is intermittent and

twisted flux tubes can be formed. The formation of flux tubes is closely associated
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with the orientation of the interplanetary magnetic field. A strongly twisted and
localized flux tube is formed when the IMF has a strong B, component, whereas
twin flux tubes are formed when the IMF has a small B, component. Both of the
flux tubes show characteristics similar to that observed during the FTEs. However,
the magnetic flux tube is twisted due to the high viscosity used in their simulation.

Recently, Fu [1989] and Fu et al. [1990] simulated the MXR process based
on a 3-D MHD model. The simulation is conducted in a local rectangular box.
Under the driven boundary conditions, through which a constant plasma flow and
a magnetic inflow flux are imposed, the MXR process is triggered self-consistently
without using a localized resistivity enhancement. In the presence of a finite By,
helical magnetic flux tubes can be formed as a consequence of the MXR process.
At the ends of a helical flux tube, a complicated topological feature of the magnetic
field lines is revealed. During the MXR process, tube-aligned plasma flows are
observed inside the helical magnetic flux tubes. The simulation also showed that
the magnetic flux ropes formed during the 3-D reconnection have frayed ends.

By using MHD simulation methods, the reconnection process can be imitated
on a macroscopic scale. Large-scale changes of magnetic field topology, electric
current distribution, plasma density, plasma flow, and plasma pressure during the
reconnection process can be examined with MHD simulations. However, in MHD
simulations the value of anomalous resistivity and its variations in time and space,
which are crucial for the reconnection process, have to be arbitrarily assumed.
For example, in Fu and Lee [1985, 1986] and Lee and Fu [1986], a uniform and
constant resistivity profile was used. In Scholer [1989a, 1989b], a localized and
time-dependent resistivity model was used. Other resistivity models, such as the
current-enhanced resistivity model and the temperature-enhanced resistivity model

were also used in the simulations [Ugai, 1983, 1984; Ogino et al., 1989]. However,
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the assumed value of the anomalous resistivity, as well as its temporal and spatial
distributions, may not be a realistic representation of collisionless magnetospheric
plasmas.

In addition to MHD simulations, particle simulations have also been carried
out to study the magnetic reconnection process and FTEs at the dayside magne-
topause. One of the advantages of particle simulations of magnetic reconnection is
that the anomalous resistivity can be naturally generated by particle inertia or by
wave-particle interaction. Temporal and spatial variations of the resistivity there-
fore can be self-consistently determined during the simulation. Although MHD
simulations have been successfully used to study the macroscopic properties of the
reconnection process, particle simulations are more suitable for examining the mi-
croscopic features of the reconnection processes, such as particle acceleration and
heating, the particle energy spectrum, particle distributions in the phase space, and
nonlinear wave particle interactions. Therefore, particle simulation of magnetic re-
connection is of basic importance to the study of the magnetic reconnection process
at the dayside magnetopause and in the nightside magnetotail [e.g., Terasawa, 1981;
Leboeuf et al., 1982; Swift, 1982, 1983, 1986; Ambrosiano et al., 1983, 1986; Ding
et al., 1986; Hoshino, 1987; Lee and Ding, 1987; Swift and Allen, 1987; Hewett et
al., 1988; Francis et al., 1989; Allen and Swift, 1989; Ding and Lee, 1990].

The reconnection process in a collisionless plasma is believed to be closely
associated with collisionless tearing mode instabilities. Particle simulations of col-
lisionless tearing mode instabilities contribute significantly to our understanding of
the collisionless reconnection process. Terasawa [1981] investigated the collisionless
tearing mode instability with one-component (ion) particle simulations and found
that the simulation results, in which an explosive phase of the nonlinear tearing

mode instability was observed, were consistent with analytical theories. Leboeuf
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et al. [1982] studied the plasma dynamic process associated with the time-varying
magnetic X points. They observed that the electrostatic field and the finite Larmor
radius effects play an important role in the development of tearing mode instabili-
ties and that hot tails are formed in the particle distribution functions during the
magnetic island coalescence. The effects of a background plasma on the tearing
mode instability was examined by Ambrosiano et al. {1983]. In Ambrosiano et al.
[1986], it was found that the temperature anisotropy with T, > T} can enhance
significantly the tearing instability.

Particle simulations of the dayside magnetic reconnection were also performed
by Swift [1986], Hoshino [1987], and Allen and Swift [1989]. Swift [1986] and
Hoshino [1987] examined the electrostatic effect on the collisionless tearing mode
instability and found that the electrostatic interaction could modify the tearing
growth rate. The electrostatic effect increases the tearing mode growth rate at
the dayside magnetopause where the magnetic field is not antiparallel, while it
decreases the tearing growth rate in the magnetotail where the magnetic field is
antiparallel. Allen and Swift [1989] studied the collisionless tearing mode under
conditions characteristic of the dayside magnetopause, in which the magnetic field
configuration is asymmetric about the magnetopause and has a magnetic shear.
They have found that the tearing growth rate is a sensitive function of 8y, the
angle between magnetic field vectors on two sides of the magnetopause and that
the largest growth rate corresponds to the magnetic configuration with g = 180°.
A particle simulation study of plasma waves and particle heat fluxes associated with
magnetic reconnections at the dayside magnetopause has also been carried out by
Ding and Lee [1990].

In the above simulations [e.g., Leboeuf et al., 1982; Swift, 1986; Hoshino,
1987; Allen and Swift, 1989; Ding and Lee, 1990], an artificially small mass ratio
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of ions to electrons (m;/m, = 10 ~ 25) was used to save computing resources
and to satisfy the numerical stability requirement. Recently, particle simulation
of magnetic reconnection with a realistic mass ratio of ions to electrons (m;/m,
up to 2000) has been reported by Hewett et al. [1988] and Francis et al. [1989].
They investigated collisionless magnetic reconnection by using an implicit particle
in cell (PIC) code. For large ion-electron mass ratios (m;/m. > 200), electrostatic
ringing was observed in the simulation, in which electrons jetting into the magnetic
O lines built up an ambipolar potential that in turn drove electrons back out of
the magnetic islands. Their simulation also confirmed previous results [e.g., Allen
and Swift, 1989] that the inclusion of a guiding magnetic field (magnetic shear)
severely reduced the tearing mode growth rate, slowing down the initial stage of
the magnetic reconnection. If the magnetic shear is large enough, the electrostatic
ringing also may be totally damped out.

Although previous particle simulations of tearing mode instabilities and day-
side magnetic reconnections have provided much useful information about colli-
sionless magnetic reconnection, the periodic boundary conditions imposed in the
simulations limit the long term nonlinear evolution of the magnetic islands formed
during the simulations. Because of the periodic boundary conditions, the simula-
tions would end up in an asymptotic quasi-steady configuration. Since the obser-
vations of FTEs show that the dayside reconnection is intrinsically an intermittent
process, the periodic boundary conditions seem to be inappropriate for simulating
the intermittent reconnection process.

Furthermore, to simulate the driven reconnection process in the collisionless
magnetospheric plasma environment, a driven boundary is needed to imitate the

incoming plasma and an open boundary is essential to allow the plasma to convect
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out of the simulation domain. Therefore, an important part of present thesis re-
search was the development of a particle simulation model in which both driven and
open boundaries were included to simulate the driven reconnection process in the
collisionless plasma. Using this particle simulation model, a series of simulations
were carried out to investigate the properties associated with the driven reconnec-
tion process at the dayside magnetopause, such as the MXR and SXR processes,
the generation of energetic particles and particle heat fluxes, and the characteristics
of the plasma waves observed during the simulations. The simulation results are

compared with FTEs observed at the dayside magnetopause.

2.4 Summary

During the past four decades, magnetic field reconnection has been applied to
explain solar flares, magnetospheric substorms, flux transfer events, and other space
and laboratory plasma processes. In this chapter, a historical review of magnetic
reconnection and flux transfer events is presented. Both MHD reconnection models
and collisionless reconnection models are discussed. Magnetic reconnection is one of
the important hypotheses for the interaction between the solar wind and the earth’s
magnetosphere. Since the discovery of flux transfer events, magnetic reconnection
has become a well-accepted mechanism at the dayside magnetopause for the transfer
of solar wind mass, momentum, and energy into the magnetosphere. Satellite
observations at the dayside magnetopause show that FTEs have many distinct
plasma and electromagnetic field signatures. A summary of the observed FTE
features is presented. Many theoretical models have been proposed to account
for the occurrences and characteristics of FTEs. Since FTEs mainly occur during

the period when the interplanetary magnetic field has a southward B, component,
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magnetic reconnection models of FTEs are favored. Eleven of them are discussed
here. Computer simulation has provided a unique tool for modeling the dayside
reconnection process and FTEs. Both MHD simulations and particle simulations
of the dayside magnetic reconnection and flux transfer events are briefly reviewed.
The advantages of particle simulations over MHD simulations are discussed.

Single X line reconnection and multiple X line reconnection present one of
the major controversies for explaining the dayside reconnection process. Results
of laboratory experiments and computer simulations indicate that single X line re-
connection takes place in the subsolar region of the dayside magnetopause when
the solar wind Mach number is small, whereas multiple X line reconnection oc-
curs at the high-latitude region when the solar wind Mach number is large. It is
also demonstrated that single X line reconnection takes place when the magnetic
Reynolds number is small, while multiple X line reconnection occurs when the mag-
netic Reynolds number is large. However, as pointed out in Ding et al. {1990], single
X line reconnection can be considered as one of the two extremes of the multiple X
line reconnection process, in which the reconnection rate at one end of a magnetic
island is dominantly larger than at another end of the magnetic island. Another
extreme case of the multiple X line reconnection is where the reconnection rates at
both ends of a magnetic island are equal. Generally, the reconnection rates at the
two ends of a magnetic island are different.

Since magnetic field reconnection is closely related to tearing mode instabil-
ities, a review of the linear theories of collisional and collisionless tearing mode
instabilities is presented in the next chapter. Satellite observations show that more
high-speed plasma flows are detected when the ratio of plasma pressure to magnetic
pressure in the magnetosheath (3,) is small, indicating that the dayside magnetic

reconnection may occur preferentially for a small 3, [Paschmann et al., 1986]. This
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phenomenon may be indirectly related to the tearing mode instabilities. Therefore,
a survey of the 3-dependence of tearing mode instabilities at the dayside magne-

topause is also carried out in the next chapter.
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Chapter 3 Collisional and Collisionless Tearing Mode Instabili-

ties

As mentioned in the previous chapters, magnetic reconnection plays an important
role in the interaction between the solar wind and the magnetosphere. However,
the causal mechanism for magnetic reconnection has not been discussed yet. At
present, it is widely believed that the magnetic reconnection process is triggered
by a tearing mode instability. The tearing mode instability occurs when a finite
resistivity exists in a field reversal region, leading to disruption of the magnetic
surfaces, filamentation of the current sheet, and the formation of magnetic islands.
If the tearing mode instability is allowed to grow, its nonlinear development results
in large-scale magnetic reconnection.

As an example, the change of magnetic field configuration caused by the devel-
opment of the tearing mode instability is schematically drawn in Figure 3.1. Figure
3.1a shows the unperturbed neutral sheet magnetic field configuration at ¢t = 0,
while Figure 3.1b shows the perturbed magnetic field configuration in the presence
of the tearing mode perturbation at £ > 0. It can be seen from Figure 3.1 that dur-
ing the development of the tearing mode instability, the previously uniform current
sheet is broken into filaments and magnetic islands are formed.

Finite resistivity plays an important role in the development of the tearing
mode instability. According to the different mechanisms through which finite re-
sistivity is generated, tearing mode instabilities can be divided into two categories:
the collisional tearing mode instability and the collisionless tearing mode instability.

For the collisional tearing mode instability, also called the resistive tearing mode
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(a)

(b)

Figure 3.1 Change of magnetic field configuration caused by the develop-
ment of the tearing mode instability, (a) unperturbed neutral sheet magnetic

field configuration at ¢ = 0, and (b) magnetic field configuration perturbed
by the tearing mode instability at ¢ > 0.
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instability, the finite resistivity is generated by Coulomb collisions between par-
ticles, particularly between electrons and ions. For the collisionless tearing mode
instability, the finite resistivity is caused by other mechanisms.

In fusion plasmas as well as space plasmas, when the plasma density becomes
so low that the mean free path of electrons becomes much larger than the char-
acteristic system length and the classical resistivity due to the Coulomb collisions
becomes very small, the plasma becomes collisionless. In a collisionless plasma,
the finite resistivity for the collisionless tearing mode instability may be generated
due to electron inertia, pressure gradients, Hall effect, or any other terms in the
generalized Ohm’s law equation that are not related to the Coulomb collisions.
The finite resistivity can also be generated by wave particle resonance mechanisms
through inverse Landau damping in the current sheet region. Here, a brief review of
collisional and collisionless tearing mode instabilities is presented and growth rates
of collisional and collisionless tearing mode instabilities will be derived. Analysis
of the collisional tearing mode instability is based on the MHD equations, while
analysis of the collisionless tearing mode instability is based on Maxwell-Vlasov
equations.

At the dayside magnetopause, the magnetospheric field is generally larger than
the magnetosheath field. The magnetospheric plasma usually has a higher temper-
ature and lower density than the magnetosheath plasma. Thus the ratio of plasma
pressure to magnetic pressure changes significantly from the magnetosheath to the
magnetosphere. The typical value for the ratio of plasma pressure to magnetic
pressure in the magnetosphere (8,) is 0.1 ~ 0.3, whereas the value for the ratio
of plasma pressure to magnetic pressure in the magnetosheath (3,) can be as large
as 10. Recent satellite observations at the dayside magnetopause indicate that the

magnetic reconnection process may occur preferentially when the ratio of plasma
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pressure to magnetic pressure in the magnetosheath has a small value (3, < 2)
[Paschmann et al., 1986]. This observational feature can be related to the devel-
opment of the tearing mode instability in the asymmetric dayside magnetopause
current sheet. In an attempt to explain the above observation, a study of the

B-dependence of the tearing mode instability is also included in this chapter.

3.1 Linear Theory of the Collisional Tearing Mode Instability

The tearing mode instability is a long-wavelength and low-frequency, macroscopic

electromagnetic instability whose source of energy is the magnetic field. It develops
in a limited region where k - B is small (k is the wave number vector and B is
the magnetic field), and finite resistivity plays an important role. Plasma diffusion
then takes place across the magnetic field. The diffusion makes the plasma break
up into filaments, a process which releases magnetic energy.

In an ideal MHD plasma, the plasma is frozen to the magnetic field lines
(Alfvén, 1963]. Thus most instabilities involve motion of magnetic field and plasma
together, and the characteristic time scale for the motion is the Alfvén time t4, =
L/v4, where L is the characteristic length scale and v4 is the Alfvén speed. How-
ever, in a nonideal MHD plasma, where resistivity (n) is present, the plasma can
diffuse across magnetic field lines. The resistive instabilities in the nonideal plasma
develop at a characteristic time scale that is a hybrid combination of the Alfvén time
t4 and the diffusion time t; = 4w L?/c?n, where c is the speed of light. Therefore,
it is generally assumed that 1/tq < v < 1/t4, where v is the growth rate of the
resistive instabiiities. The resistive instabilities were first systematically studied by

Furth et al. [1963] and the tearing mode was one of the resistive instabilities they
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found in their study. In the following, the growth rate for the collisional tearing
mode is derived based on the linear MHD theory.

The basic equations used in the derivation are

Op
b v A = .
B +V-(pu)=0 (3.1)
du 1
pz = —Vp + ZJ x B (32)
1B
UxE=——— .
% c Ot (3.3)
1
E+-uxB=7J (5.4)
VxB=2"g (2 5)
c
p = p(p) (3.6)

where p is the plasma mass density, u is the plasma flow velocity, p is the plasma
pressure, J is the current density, E is the electric field, ¢ is the speed of light,
and d/dt = 0/0t + u -V is the convective derivative. With the assumption of an
incompressible plasma, i.e., V- u = 0, and after some straightforward algebra, the

above equations are reduced to

dp
E+U-Vp—-0 (3.7)
du 1
VX( E):Z‘;VX [(BV)B] (3.8)
6B ctne .,
) —Vx(uxB)+—47rV B (3.9)

The above equations can be linearized under the assumption that p = po(z) +
pi(z)expli(kyy + k.2) + vt], B = Byo(z) + B (z)exp[i(k,y + k,2) + 7], and u =
u;(z)exp(i(kyy + k.2z) + 7t], where the subscripts 0 and 1 denote the zeroth order

unperturbed quantities and the first order perturbed quantities, respectively; k,
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and k., are, respectively, the y- and z-component of the wave number vector k; and

v is the growth rate of the tearing mode instability. The linearized equations are

given by
Yp1 + ujg - Vpo =0 (3.10)
1
‘7V X (poul) = GV X [(Bo - V)Bl + (Bl . V)Bo] (311)
-
‘)’Bl ZVX(UI XBO)+;V Bl (3-12)

The equation (3.10) can be further reduced to

YP1 + U1zpy = 0 (3.13)

where u,. is the z-component of perturbed plasma flow velocity u; and p; =

dpo/dz is the derivative of the unperturbed plasma density. The equation (3.11)
has three components, i.e., (3.11),, (3.11),, and (3.11),. By subtracting k,(3.11),
from k,(3.11)y, a new equation is found

; (k-B

Po 4mpo

(k- B,)"
(k- By)

v(uy, — kPuyz) = [ Biz + BY, —k’By;] (3.14)

where ' denotes the derivative with respect to z and k? = k;‘; + k%. In the above
manipulation, the equivalence V-u; = u;,+ik-u; = 0and V-B; = Bj_ +ik-B, =
0 have been used. Similarly, by subtracting k,(3.12), from k,(3.12),, another

equation is obtained
= i(k 0 o 2
7Blz = ‘l.( . Bo)ulz + E(Blz -k B]:) (315)

By introducing the dimensionless variables z* = z/L, v* = ~t4, k* = kL,

B* =B/B, u' = —i(k*/y*)uts/L, p* = p/p, and F = (k* -Bg)/k”. the equations
(3.13) to (3.15) can be written as

'
U1z Pg

pr= i = (3.16)
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1
Blz + ‘ll.le = ;(B;’z - szlz:) (317)
" ¢ ! F F" 12
(1/kS)(uy — Ko + P20l ) = (-5 Bie + B, ~ K*Bi)  (3.18)
Po Po

where ty = 4wL?/c?7 is the diffusion time, t4 = L/v4 = L\/37p/B is the Alfvén
time, S = t4/ta is the Lundquist number. In the above equations, the * sign,
denoting the dimensionless variables, has been dropped for convenience. Since
the diffusion time (t;) is generally much larger than the Alfvén time (t4), the
Lundquist number (§ = t4/t4) is much larger than unity. For example, t4 ~ 1sec,
tq ~ 10'%ec, and S ~ 10!° are typical values for solar flares [Priest, 1985]. Based
on the assumption discussed earlier that the resistive tearing instability develops at
a characteristic time scale which is the combination of the Alfvén transit time and
the diffusion time, it can be shown that the normalized growth rate of the tearing

mode instability has the following property:

1<K S (3.19)

Because the tearing mode instability occurs only in a small region in which
k - Bg ~ 0, the function F has the following properties: 1) F(zo) = 0, where
z¢ is determined by k- By = 0 and 2) near zo, the function can be expanded as
F(z) >~ F'(z¢)(z — z9), where F' = dF/dz is the derivative of function F with
respect to z. By introducing a new variable £ = z — z4, F(z) can be written as
F(§) ~ F'(0)¢. It is easy to verify that, with the new variable £, (3.16) - (3.18)
remain unchanged. Therefore, for the sake of convenience, z, instead of £, will be
used as the new variable. From now on, z is the relative distance measured from
zo unless it is specified otherwise.

As discussed earlier, resistivity plays a crucial role in the development of the

tearing mode instability. However, it is important only in the very small inner
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region where the magnetic field is very small or the wave number vector (k) is nearly
perpendicular to the magnetic field (Bg), where the magnetic field diffusion takes
place, and the Ohm’s law can be approximated as E = nJ. Outside that region,
the effect of the resistivity is negligible, the magnetic field convection is dominant,
and Ohm’s law can be approximated as E = —u x B/c. Because different terms in
Ohm’s law dominate in different regions, (3.16)—(3.18) have to be solved separately
for both the inner region and the outer region. Then, the solutions obtained for the
inner region and the outer region must be matched at the boundary that separates
the two regions.

Since the resistivity is negligible in the outer region, the right hand side of

(3.17) can be ignored. Because of § > 1, the left hand side of (3.18) can also be
neglected. Thus, (3.17) — (3.18) become

Bic+ Fuy, =0 (3.20)

F”
B;’:: - (kz + —FT)Blz =0 (321)
(3.21) can be solved for B, when the function F is specified. For simplicity,

F = tanh(z) is assumed in the following analysis. By substituting F = tanh(z)

into the equation, (3.21) becomes
B}, — (k* - 2sech®’z)B;, =0 (3.22)

It is easy to verify that (3.22) has a solution

By, = {exp(—k:c)[l + ttanhz], z > 0; (3.23)

exp(+kz)[1 — tanhz], z <0
The solution (3.23) has a discontinuous derivative at z = 0, and the jump in the

logarithmic derivative of B, is found to be

Bi.(0") — Bi,(07)

r —o(l_
Al = (0] =2(; — k) (3.24)
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The jump in the logarithmic derivative of B, associated with other forms of F was

also discussed by Furth et al. [1963]. For k <« 1, they showed that the jump in the

logarithmic derivative of B;, could be approximated as

Loyl 4 L
A—k(F(O))(FEvaF;) (8.25)

where F_, = F(z = —o0) and F, = F(z = +00).

Although decoupled in the outer region, (3.17) — (3.18) remain coupled in the
inner region. Thus, they have to be solved together and then matched with the
solutions of the outer region at the boundary. Since z < 1 in the inner region, F
can be approximated as F(z) ~ F'(0)z and B;.(z) can be assumed as a constant,
respectively. Because the tearing mode is a long wavelength instability, within
the inner region B{, > k?B;, and u}, > k®u;, are used to further simplify the
analysis. It is also assumed that the logarithmic derivative of u}, is much larger

than the logarithmic derivative of py, e.g., uy; > (py/po)u.. Then, (3.17) — (3.18)

can be written as

B”
Bix(0) + F'(0)ou, = 2= (3.26)
F'(0
(kS ul, = S le B (3.27)

By matching it to the outer region solution, the solution of (3.27) can be

written as

(‘Y/kS)zpo(O) oo idt‘ — A,

F'(0)B1.(0) (3.28)

—oco
where an assumption has been made about the asymptotic behavior of 1, to extend
the integral to +00. By substituting (3.27) into (3.26), a new equation is derived

as

, 0
2B,1,(0) + F'(0)a? sz — F”("O()—k)js—zu;; =0 (3.29)
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By introducing
z = [po(0)y/(F'(0))*k>S?]1/%¢
and
uiz = [k*S%/po(0)Y(F'(0))*]'/* B1(0)x(£)
(3.29) can be simplified as
X"(€) - €x(¢) =¢ (3.30)

which can be solved analytically. The solution for (3.30) can be expressed as

X(©) = =% [ duexa(—3€)(1 - )

Now the Corresponding matching condition becomes

+oo _n
75/4p0(0)1/4(F1(0))—1/2k—1/25—1/2 / %dg =A' (331)
By substituting the solution of x into (3.31), it is obtained

75/4p0(0)1/4(};ﬂ(0))—1/2k—l/zs—l/zwllj‘g_:;;?i% =A' (332)

Thus, the growth rate for the tearing mode instability is found to be

4/5
F(1/4) —-1/5( 2/51.2
= [ ==L k2/5 G2/5( A1\4/5
(WM /4)) po(0) /3 (F(0)) /5 KE/5 5715 () (3.33)
Notice that (3.33) is in the dimensionless form, in which the * sign denoting the

dimensionless quantities has been dropped for convenience. The growth rate, in its

dimensional form, is easily found as

4/5
_M P \iys ' 275 2/5,~3/5,-2/5 na/s
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For F' = tanh(z/L), the example used in calculating (3.22) - (3.24), the tearing

growth rate is found to be

- (B e

P \1/5,-3/5,~2/5
<[(3/4) G a(0) PN (3.35)

It can be seen clearly from (3.35) that ¢4 ~ §%/% > 1 and vt4 ~ §73/° « 1.
Since t4 < 1/4 < t4, the tearing mode instability takes place at a characteristic
time scale that is much larger than the Alfvén transit time and much smaller than
the diffusion time. It also can be seen from (3.35) that the tearing mode insta-
bility only occurs when kL < 1. Hence, the thinner the current sheet is, or the
larger the perturbation wavelength is, the easier the tearing mode becomes unsta-
ble. The preceeding treatment shows that the tearing mode instability is caused by
the inhomogeneity in the magnetic field, i.e., F""/F < 0 when resistivity is present.
However, the tearing mode instability may also be modified if compressibility, ther-
mal conductivity, and viscosity are taken into account [e.g. Coppi et al., 1966].
The above analysis is based on the linear theory that describes the initial stage in
the development of the tearing mode instability. When the width of the magnetic
islands becomes comparable or larger than the current sheet thickness, the nonlin-
ear effects of the tearing mode instability must be considered, which is beyond the
scope of the present review. The nonlinear theory of the tearing mode instability

can be found in reviews by White {1983, 1986] and the references therein.

3.2 Theoretical Study of the Collisionless Tearing Mode Instability

The study of collisionless tearing mode instability originated from study of the

stability of plasma equilibrium in a sheet pinch, where the magnetic field has a
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neutral plane. Such a magnetic configuration is very important both in the con-
trolled plasma devices and in the space plasma environment, such as the earth’s
magnetosphere. In the collisionless tearing mode, either the Hall current, pressure
gradients, or Landau resonance mechanism replace the finite resistivity, which plays
an important role in the collisional tearing mode. Electron inertia may also be re-
sponsible for the detachment of plasma from magnetic field lines. In this case, the
kinetic effects of particles can no longer be properly described by MHD equations.
To describe collisionless plasma, Vlasov-Maxwellian equations are necessary. In
this section, a historical review of the study of the collisioniess tearing mode insta-
bility is presented first. Then, the growth rate for the collisionless tearing mode is
derived.

Furth [1962] was the first to discuss the stability of a collisionless neutral sheet.
He used a drift Maxwellian distribution and obtained a magnetic field configuration
with a neutral sheet, B(z) = Bytanh(z/L), where L is the width of the current
sheet. He showed that originally straight magnetic field lines in the vicinity of the
neutral sheet tend to connect across the neutral sheet and form magnetic islands
when kL < 1, where k is the wave number along the magnetic field. The correctness
of the marginal stability argument used by Furth [1962] was rigorously proved by
Pfirsch [1962].

Using the same energy method, Laval and Pellat [1964) and Laval et al. [1966)]
calculated the growth rate of the collisionless tearing mode instability for both the
neutral sheet magnetic field configuration and the magnetic field configuration with
a magnetic shear, which is due to the presence of a guiding magnetic field along
the current sheet. They found that the growth rate obtained based on the colli-
sionless Vlasov equation is in better agreement with the experiment observations

than the resistive theory of Furth et al. [1963]. The results obtained based on
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the energy method were applied to the geomagnetic tail dynamics by Coppi et al.
[1966]. Based on the linear Vlasov theory, Schindler {1966] used a slightly different
variational method and also obtained a necessary and sufficient stability criterion
for the collisionless tearing mode. Schindler and Soop {1968] included an equilib-
rium electrostatic field in their variational analysis of the collisionless tearing mode
instability.

However, the energy method is only one of the approaches used to deal with the
collisionless tearing mode instability. Another method used to analyze the instabil-
ity is one which calculates the perturbed quantities by completing the integration
along the unperturbed particle orbits [e.g., Laval et al., 1966; Coppi et al., 1966].
Using this method, Hoh {1966] calculated the growth rate for the collisionless tear-
ing mode instability in the small Larmor radius limit. He found that the instability
is driven by a small group of electrons located within a Larmor radius of the neutral
plane and drifting about the neutral plane with zero velocity along the field lines.
The kinetic energy of these particles is the energy source of the instability, which
develops fastest for a critical perturbation wave length on the order of several times
the sheet thickness L due to a resonance mechanism of the inverse Landau damp-
ing. Hoh’s results were consistent with the previous results obtained based on the
energy method [e.g., Laval et at., 1966].

Because the particle orbits used in Hoh {1966] were complicated, his final results
were achieved with the supplement of numerical extrapolation. Dobrowolny [1968]
demonstrated that analytical results similar to Hoh’s could be obtained by using a
simplified particle orbit model, in which the orbits of particles that move across the
neutral sheet are approximated as pieces of straight lines, while the orbits of the
particles that do not cross the neutral sheet are approximated as Larmor circles.

The tearing mode instability is insensitive to the orbits of particles because the
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instability is driven only by a small group of resonance electrons located in the
neutral sheet region.

So far, only the linear effects of the collisionless tearing mode have been ex-
amined. The nonlinear effects of the tearing instability were first considered by
Biskamp et al. {1970] based on the quasi-linear theory. They found that the non-
linear effects tend to stabilize the instability. Nonlinear effects of the tearing mode
have also been investigated by Galeev and Zelenyi [1975a, 1975b]. The effects of
the magnetic field component perpendicular to the current sheet, which tend to
magnetize electrons in the current sheet region and hence stabilize the instability,
were discussed by Biskamp et al. [1970] and Galeev and Zelenyi [1976].

Drake and Lee [1977] studied the transition of the tearing instability from
the collisional to the collisionless regimes in a strong guiding field configuration
by solving the Fokker-Planck equation and found a semi-collisional region for the
tearing mode instability. They also examined the drift tearing mode caused by the
electron and ion gradient drifts in the collisional, semi-collisional, and collisionless
regimes. The collisionless drift tearing mode was also investigated by Coppi et al.
[1979] and Galeev et al. [1985].

In the previous works, the collisionless tearing mode instability in both the
neutral sheet configuration and the strong guiding field configuration has been ex-
amined. The collisionless tearing mode instability in the neutral sheet configuration
has been applied to the magnetotail to explain the magnetic substorms [e.g., Coppi
et al., 1966]. However, at the dayside magnetopause, the magnetic field configura-
tion generally has neither a neutral sheet nor a strong guiding field, because the

guiding field component (B,) is usually less than or comparable to the antiparallel

component (B,).
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Based on the OGO 5 magnetometer data, Greenly and Sonnerup {1981] found
location, orientation, amplitude, and frequency of magnetic oscillations at the day-
side magnetopause to be consistent with the collisionless tearing mode theory.
Quest and Coroniti [1981a, 1981b] investigated the collisionless tearing mode insta-
bility for the typical magnetic field geometry and plasma parameters at the dayside
magnetopause. They found that the linear growth rate of the tearing mode is a
sensitive function of the IMF orientation, magnetopause thickness, and electron
number density. Larger tearing growth rates tend to be obtained when the angle
between the IMF and the geomagnetic field is large, the dayside magnetopause is
thin, and the electron number density is low. The nonlinear evolution and the
nonparallel propagation (k x B # 0) of the tearing mode instability at the dayside
magnetopause were further examined by Coroniti and Quest {1984} and Quest and
Coroniti [1985].

The collisionless tearing mode at the dayside magnetopause was also investi-
gated by Kuznetsova and Zelenyi [1985], Galeev et al. [1986], and Gladd [1990].
In addition to the usual tearing mode perturbations (cylindrical geometry m > 2
modes) in a slab current layer with sheared magnetic field, Kuznetsova and Zelenyi
[1985] found that a set of special tearing mode perturbations (slab geometry of
m = 1 cylindrical modes) with larger growth rates could also be excited and that
the saturation mechanism caused by the coupling tearing perturbations to the ion
sound waves could only affect the usual tearing modes. Based on an analytical
calculation of the stability of the dayside magnetopause, Galeev et al. [1986] found
that the growth and overlapping of magnetic islands due to the drift tearing mode
could destroy the magnetic surfaces at the magnetopause and that the stochastic
wandering of the magnetic field lines between the destroyed magnetic surfaces could

lead to the magnetic field line percolation, i.e., patchy magnetic reconnection. A
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magnetopause stability threshold was obtained by Galeev et al. [1986]. They also
found that the drift tearing mode could be stabilized by its coupling to the ion
sound waves. These analytical results were later confirmed and further extended
by numerically solving the eigenmode equations [Gladd, 1990].

Thus far, most of the works mentioned above deal with the collisionless tearing
mode instability in an isotropic plasma, i.e., T, = T, where T, and T} are tem-
peratures perpendicular and parallel to the magnetic field, respectively. However,
in the collisionless plasma, the motion of particles parallel to the magnetic field
is decoupled from the perpendicular motion and temperature anisotropy can be
maintained even in thermal equilibrium, which may also affect the development of
the tearing mode.

The collisionless tearing mode instability in the anisotropic plasma has been
examined by several authors. For example, Laval and Pellat [1968] showed that
the tearing mode can be stabilized by a weak electron anisotropy, in which the
perpendicular temperature (T, ) is smaller than the parallel temperature (T).
Forslund [1968] found that the tearing growth rate can be enhanced when T, is
slightly larger than T,j. Chen and Davidson [1981] demonstrated that the range
of wave number for unstable modes is reduced for T;; < Tj; and is increased for
T;1 > T;; when an ion temperature anisotropy is present.

Traditionally, in calculating the growth rate for the collisionless tearing mode
instability, a two-region approximation and a constant eigenfunction assumption
are used. In the inner region, where particles move across the neutral sheet, the
orbits of particles are assumed to be pieces of straight lines and the eigenfunction
is assumed to be a constant; whereas in the outer region, particles do not cross the
neutral sheet and the orbits of particles are approximated as the Larmor circles.

Then, the asymptotic solutions are matched at the boundary that separates the
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two regions. In the two-region approximation, the intermediate region where ions
still move across the neutral sheet while electrons can no longer do so, has been
neglected. For example, Dobrowolny [1968] obtained the dispersion relation of
tearing mode by matching the asymptotic solutions at the boundary separating the
electron inner and outer regions, while neglecting the contributions of ions to the
dispersion relation.

Chen and Palmadesso [1984] studied the collisionless tearing mode instability
in an anisotropic neutral sheet. They found that even though it is a good approx-
imation for the isotropic plasma, the two-region approximation is inadequate for
the anisotropic neutral sheet. They proposed a three-region approximation model
for the particle orbits to include the contribution from the intermediate region.
Including the ion contribution in the intermediate region, they found that an ion
temperature anisotropy with T;; > Tj; can enhance the tearing growth rate by
an order of magnitude, while an ion anisotropy with T;; < T} tends to strongly
stabilize the instability.

An integro-differential formalism was developed by Chen and Lee [1985] to
solve the collisionless tearing mode in a neutral sheet geometry. With the integro-
differential formalism, the constant eigenfunction assumption is no longer needed
and the orbits of particles are treated exactly. When applied to a non-Maxwellian
distribution, the integro-differential method produced an enhanced tearing growth
rate, which can be one or two orders of magnitude larger than that obtained from
the previous best analytical approximation, the three-region approximation [Chen
and Lee, 1985; Burkhart and Chen, 1989a, 1989b]. A quadratic-form analysis of
the collisionless tearing mode was also reported by Chen and Lee [1988].

Previous theoretical works on the collisionless tearing mode instabilities have

been reviewed above. The simulation studies of the collisionless tearing mode have
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also been carried out and will be discussed later. In the following, the growth
rate and the eigenfunction of the tearing mode instability in a slab neutral sheet
are derived. For the calculation of the tearing growth rate and eigenfunction in
a current sheet with a sheared magnetic field, readers are referred to Laval et al.
(1966}, Galeev and Zelenyi [1978], Quest and Coroniti [1981b], Galeev [1984], Galeev
et al. {1986}, Gladd {1990), and references therein.

To calculate the growth rate for the collisionless tearing mode instability, a set
of Vlasov-Maxwellian equations is used. With the Coulomb gauge, V- A = 0, these

basic equations can be written as

9fa Ofa | 9o vxB, 0fa _
5 +v B +ma(E+ . ) . =0 (3.36)
Vg = -47quQ/fadv (3.37)

2 4n
V%A = - Qo | Vfadv (3.38)
10A

E=-V¢--—— (3.39)
B=VxA (3.40)

where fo is the particle distribution of the a species, g4 and m,, are, respectively,
the charge and mass for a particle of the a species, v is the particle velocity, 8/0x =
(0/0z)e +(8/0y)ey + (8/0z)e., 3/0v = (0/0v.)e. + (8/0vy)e, +(8/8v.)e,, ¢ is
the electrostatic potential, and A is ihe vector potential. As defined before, E, B,

and c are, respectively, the electric field, the magnetic field, and the speed of light.

Under the assumption that

fa(x?v’t) = fOOt(xvv) + fla(xvv’t)
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d(x,t) = d1(x,1)
A(x,t) = Ag(x) + Ajy(x,1)

where 0 denotes the zeroth order quantities in an equilibrium and 1 denotes the first
order perturbed quantities, which are much smaller than the zeroth order quantities,
the equations of (3.36) - (3.40) can be separated into two sets of equations, one
describing the zeroth order equilibrium state and the other describing the first

order perturbed state. The zeroth order equations are

aan 9e [V X(VXAO) aan =
V- x +m—a[ - ] v =0 (3.41)
2 4=
VeAy = - ge | Vfoadv (3.42)
Eo=0 (3.43)
Bo =V x Ao (344)
and the linearized first order equations are
dfla _ afltx afla Qa [V X (V X AO) aflcx
dt 0t +v.3x+ma[ c I ov
o 10A; v x(VxA)), 8fa
B ma[ Vér c Ot + c - ov (3.45)
Vi = 47 g / fradv (3.46)
2 4w
VA, = - 9a | Vfiadv (3.47)
10A,
B] =V x Al (349)
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It is easy to verify that the self-consistent current sheet model of Harris [1962]

is an equilibrium solution for the zeroth order equations, in a reference frame in

which

ui _ U 3.50
Ti_ Tc ( )

where U; (U.) and T; (T.) are the drift speed and temperature of ions (electrons),
respectively. With the assumption that jons drift in the y-direction and electrons

drift in the —y-direction and that the current sheet lies at = = 0, the Harris solution

can be written as

fou = n(z);;;;}-‘;;;zexp[—”ﬁ o lel (3.51)
n(z) = nosechz(%) (3.52)

Eo =0 (3.53)

B, = Botanh(%)ez (3.54)

where Vipa = /2T /mq is the particle thermal speed for a species, n(z) is the par-

ticle number density profile, which is the same for both ions and electrons, ng is the

particle number density in the current sheet, L = 1/2c2T;/4mnee?U%(1 + T./T;) is

the current sheet thickness, and By = /8mn(T; + T.) is the magnitude of magnetic
field outside the current sheet. After some straightforward algebraic manipulation,

it is found that for the Harris current sheet model

Pa Ua
= (3.55)

where po = Vina/Qa = (¢/wpa) VTa/(Ti +T.), Qo = eBy/cm,, and Wpe =
V/4mnee? /mq are, respectively, the particle gyroradius, the particle gyrofrequency,

and the plasma frequency for the species a.
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To solve the first order equations, further assumptions are made for the first

order perturbed quantities, i.e.,

fra(x,v,t) = fia(z, v)exp(ik.z + ~t) (3.56)
A1 =0 (3.57)

A1y(x,t) = Ay(z)exp(ik,z + vt) (3.58)
Ay, =0 (3.59)

$1(x,t) = ¢1(z)exp(ik.z + 7t) (3.60)

where k, is the wave number of the first order perturbation along the zeroth order
magnetic field and « is the growth rate for the collisionless tearing mode. With the

above assumptions, and after some algebraic manipulation, (3.45) can be rewritten

as

. o UsAy -
fla:;— UC L _d’l)an
¢ UIA ! -
L f g’t-,{[—y——}—’—qs,(z')]exp[ik,(z'—z)+v(t'—t)}}f«m(x',v')dt' (3.61)

where the integration is performed along the unperturbed particle orbit and the
result of (3.51) is used. For the neutral sheet with an isotropic Maxwellian distri-
bution, described by Harris [1962], it is reasonable to assume that near z ~ 0 the
eigenfunctions are approximately constant, i.e., A;(z') >~ 4;(z) and ¢,(z') ~ ¢1 ().
Similarly, the particle density profile is approximated as n(z') = n(z). Also from
Pyoa = Mavy + (ga/c)Ay = const, where P, is the y-component of particle canon-
ical momentum for the a species, it is found that vy >~ v, in the z ~ 0 region. It is

also found that v} =~ v, since v;? +v;? = v2 +v2 = const and that z' — z = v,(t' — t)
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because of v}, = v, = const. After completing the integration along the unperturbed

particle orbit, (3.61) is deduced to

= _ gg Uax‘i] qc, 'UyAl _ 7 'L‘)’
fia = 7. e $1) foa + T —(— . ¢1)k,v, 5 foa (3.62)
and the first order distribution function is found to be
QO: k 2V v Al q Al

After substituting (3.63) into (3.46) - (3.47) and completing the integration,

two coupled equations are obtained.

2 — q UaAl
V3, = 41rn(:c)z —*) (3.64)

th.oz
VzAxy — _:E’En( )Z qu |:U_Z_h(c_°‘)(¢1 _ U"_flii) +CaZ(Coz é:_!l_ (3.65)
M f. o

where (o = 1y/k,Vira, Z({) is the Fried-Conte plasma dispersion function defined

as

1 o g-t?
2(0) = =i [mt_cdt
and Z'({) = dZ/d{ = —2{1 + (Z({)]. By using the quasi-neutrality condition, i.e.,

V24, = 0, a linear relation can be found between for ¢; and Ay,

b = |GT)Z(G) = (Ue/Te)Z'(Ce) | Ary
(UT:)2'(C) + (1/Te) 2'(Ce)

(3.66)

c

Since for the tearing mode instability (o = ivy/k.Viae is much smaller than

unity, the plasma dispersion function and its derivative can be expanded as Z((,) ~

im'/? and Z'({a) = —2(1+im!/2(,). With above expansions and substituting (3.66)
into (3.65), it is obtained

dd;‘h (k2 + Vo(z) + Z Via(z, k2, 7)]A; = 0 (3.67)
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where
Vo(z) = —(2/L?)sech?(z /L)

Via(2, ks yv) = {(‘)’i’f”zsechz(r/L)(wia/cz)[l +2(pa)L)?)Ca }2: i :a

and d, = \/paL is the estimated half-width of the singular layer near the region
with k - B ~ 0, where the resonant wave particle interaction takes place. For the
special case considered above, the singular layer is located at £ ~ 0. Notice that in
deriving (3.67) a major assumption has been made. It is assumed that all particles
of species o located within the singular layer with |z| < d, are totally unmagne-
tized, meandering around the singular layer, interacting with tearing waves, and
contributing to V;,; whereas other particles of species & located outside the singu-
lar layer are strongly magnetized, do not participate in the resonant wave-particle
interaction and hence do not contribute to V1,. Since Vy;/V;, x \'/1—":1%—,/—1',;l <1,
resonant electrons play a dominant role in the wave-particle interaction in the re-
gion with |z| < d.. Notice that (3.67) can also be obtained if ¢; is neglected in
(3.65). In (3.67), Vy represents the adiabatic perturbation of the current density
due to the slow pairing of the elementary current filaments, whereas V; represents
the perturbed current density caused by the resonant wave-particle interaction.
Equation (3.67) is a Schrodinger equation with a complicated potential V (z),
where V(z) = k2 + Vo(z) + 3. Via(z,kz,7). The typical form of the effective
potential V(z) for the Schrodinger equation (3.67) and the typical shape of the
eigenfunction of the perturbed vector potential A; of the collisionless tearing mode
instability are shown in Figure 3.2. Figure 3.2a shows that the effective potential
has a sharp peak caused by the resonant electrons near the singular layer (z ~ 0)

and Figure 3.2b shows that the perturbed vector potential has a discontinuous

derivative at z = 0.
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Figure 3.2 For the collisionless tearing mode instability, (a) the effective

potential of the Schrodinger equation (3.67) and (b) the typical shape of the
eigenfunction of the perturbed vector potential.
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In general, (3.67) must be solved numerically. For example, with the assump-
tion that the eigenfunction decreases exponentially away from the singular layer,
ie., d; « exp(—k.|z|) when z > 0, (3.67) can be solved with a shooting method to
obtain the eigenfunction (A4;) and the growth rate (v) for a specified wave number
(k.). Plotted in Figure 3.3 is the typical curve of the normalized collisionless tear-
ing mode growth rate v/, as a function of normalized wave number k, L by using
the shooting method. The growth rate has a maximum value when k,L ~ 0.3.
However, if the form of potential well can be simplified, (3.67) may also be solved
analytically.

Since the contribution to Y V;, mainly comes from the resonant electrons in
the region with |z| < d., it is appropriate to assume that 3 V,, = V;, = constant
in the internal region (|z| < d.) and }_ Viq = 0 in the external region (|z| > d.).
Notice that in the region with d. < |z| < d;, although electrons are magnetized, ions
are still unmagnetized and can resonate with tearing perturbations, contributing
to 3 Vin. However, in the above, V};, the contribution of ions in the region with
d. < |z| < d; is neglected. It has been shown that the above assumption is justified
as long as plasma considered is isotropical {Chen and Palmadesso, 1984]. Because

in the internal region d? A, /dz? > kf/il and Vi, > Vg, (3.67) can be simplified as

d?A, -
5 Vied; =0 (3.68)

and the solution for (3.68) is found to be

Ainy(z) = Ayine(0)cosh(v/ Vi) (3.69)

On the other hand, in the external region, (3.67) is simplified as

d?A 2 .
d:c; — (k% ~ ﬁsechz(—)]Al =0 (3.70)
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Figure 3.3 The normalized collisionless tearing mode growth rate as a
function of normalized wave number.
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and the solution of (3.70) is given by

- - tanh(|z|/L
Aicee®) = Aread(O)t + 2BV g ) (3.11)
By matching the logarithmic derivative of the internal solution (A4;;n) and
the external solution (A;.z:) at the boundary of the singular layer (z = d.), the
dispersion relation for the collisionless tearing mode is obtained as

sech?(d, /L) _
k2L? + k,Ltanh(d./L)

V/Vietanh(1/Vied.) = k,| 1] (3.72)

From the dispersion relation (3.72), after some straightforward algebraic manipu-

lation, the well-known form of the growth rate of the collisionless tearing mode is

obtained

5 = w-l/zne(%)mu + %)(1 —k2L?) (3.73)

where d./L <« kL < 1 is assumed. It is clear from (3.73) that the collision-
less tearing mode instability occurs only when k,L < 1, which is similar to the
collisional tearing mode instability. However, in the collisionless plasma resonant
wave-particle interaction instead of resistivity provides the dissipation mechanism
for the instability to grow.

Equation (3.73) is obtained for special magnetic configuration, i.e., Harris’ cur-
rent sheet model, in which the magnitudes of the oppositely directed magnetic field
on both sides of the current sheet are equal. When the current sheet is asymmetric,

the growth rate of the collisionless tearing mode can be written as

k.V; .
- —-1/2 %z the .
y=m Td. A (3.74)
where ko, = \/4me2n(z9)/m.c? is the inverse collisionless skin depth, zo is the

position of the singular layer of the asymmetric current sheet, and A’ is the jump
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in the logarithmic derivative of the perturbed magnetic field. For k,L <« 1, similar
to the collisional tearing mode, A' can be approximated by (3.25).

When the current sheet is asymmetric, the half-width of the singular layer
(de) can be estimated as follows. Around the singular layer z, the electron orbits
separate into two classes: orbits which do not cross the singular layer ¢ = z, and
are roughly gyrotropic and orbits which meander about the singular layer z = z,
[Sonnerup, 1971]. The boundary that separates the two classes of orbits can be
assumed at £ = zo £ d.. Near the singular layer z = z,, the magnetic field can
be expanded as B(z) >~ B'(zo)(z — o). For an electron with thermal speed V.,
its gyroradius can be written as p.(z) ~ Vipe(mec/e)/B'(zo)(z — z¢). By setting

pe(zo = d.) = d., the half-width of the singular layer can be estimated as

de = \/Viremec/eB'(z,) (3.75)

As a special case, for the magnetic field described by the Harris current sheet
model (3.54), the half-width of the singular layer is found to be d. = v/p.L, which
is exactly the same as used previously in (3.67).

In the previous two sections, the growth rates for both the collisional and
the collisionless tearing mode instabilities are. derived. In the next section, the
dependence of tearing mode instabilities on the plasma § value, the ratio of plasma

pressure to magnetic pressure, will be examined.

3.3 The §-Dependence of Tearing Mode Instabilities

Magnetic reconnection has been a prevailing hypothesis for the interaction between

the solar wind and the magnetosphere at the dayside magnetopause, transferring
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the mass, momentum, and energy from the solar wind into the earth’s magneto-
sphere. Tearing mode instabilities at the dayside magnetopause play an important
role in the development of large-scale dayside magnetic reconnection. Recent satel-
lite observations of high-speed plasma flows at the dayside magnetopause, which
are interpreted in terms of magnetic reconnection, indicate that the magnetic re-
connection process may occur preferentially when the ratio of plasma pressure to
magnetic pressure in the magnetosheath has a small value (8, < 2) [Paschmann et
al., 1986].

Paschmann et al. [1986] determined for each magnetopause crossing the max-
imum observed velocity change AV p,erveqd and the corresponding velocity change

AV heory, predicted from the tangential momentum balance. Then, a dimensionless

velocity change is defined as

AV* = Avobacrvcd : Avthcory
1Avthcory‘2

A perfect agreement between the observation and the theory would yield AV* =1,
whereas AV* = 0 would result if AV p,eryes Was either of zero magnitude or
oriented at right angle to AV heory. It is found that for cases with §, < 2, the
normalized flow velocity change is large, AV* = 0.74 on average, while for the
cases with §, > 2, the normalized flow velocity change is small, AV* = 0.18 on
average. Therefore, the result of Paschmann et al. [1986] seems to suggest that
the reconnection process at the dayside magnetopause takes place preferentially
when the magnetosheath plasma (3, value (3,) is smaller than 2. Figure 3.4 shows

the original Figure 20 of Paschmann et al. [1986}, in which the dimensionless flow

velocity change is plotted as a function of 3,.
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Flgure 3.4 The ratio of observed to theoretically predicted flow velocity
change at the magnetopause as a function of 3,, the ratio of plasma pres-
sure to magnetic pressure in magnetosheath [Paschmann et al., 1986).
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A possible explanation for the result of Paschmann et al. {1986] is that the
development of the tearing mode instability triggering the onset of magnetic recon-
nection at the davside magnetopause may have a dependence on the 3 value, the
ratio of plasma pressure to magnetic pressure. The possible relationship between
the tearing mode instability and the ratio of plasma pressure to magnetic pressure
was discussed by Sonnerup [1974] and Quest and Coroniti {1981a]. In Sonnerup
(1974], a condition of F; < 1 was found for the symmetric reconnection in the mag-
netotail, where 3, is the ratio of perpendicular ion pressure to magnetic pressure in
the inflow regions. In Quest and Coroniti [1981a, a lower electron density, hence
a lower plasma g, in the current sheet was found to favor the onset of the tearing
mode instability at the dayside magnetopause.

However, at the dayside magnetopause, the magnetic field configuration is usu-
ally asymmetric. Thus, the result of Sonnerup [1974] may not be applicable to the
dayside magnetopause. Furthermore, the dayside magnetopause structure is essen-
tially determined by the pressure balance between the local plasma and magnetic
pressures, and the electron density in the current sheet is not allowed to vary ar-
bitrarily once the density profile is determined by the pressure balance. Thus, the
result of Quest and Coroniti [1981a] remains inconclusive. Therefore, whether or
not the onset of the tearing mode instability, and hence the magnetic reconnection
process, at the dayside magnetopause has a strong plasma (3-dependence needs
further investigation. In the following, the possible 5-dependence of the tearing
mode instability will be examined based on both the resistive MHD theory and the
collisionless kinetic theory.

The growth rate of the resistive tearing mode is derived in section 3.1. For the

resistive tearing mode developed in a current sheet with k- Bo(zo) = 0, the general
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dimensional form of the resistive tearing growth rate, adopted from (3.34), can be

rewnitten as

a/s
y = <:F((13//44))> (po(pmo))1/5(LF'(CCO))2/5(kL)z/st;s/stf/s(LA')”s (3.76)

where F(z) = k - Bo(z)/(kB) and A' is the jump in the logarithmic derivative of
the perturbed magnetic field B,,. Near z,, F is given, approximately, by F(z) ~

F'(z¢)(z — z¢). For kL < 1, A’ can be written as

A = %(F'(zo))z(F;—w + ;12;) (3.77)

Notice that in (3.76) the Alfvén transit time is defined as t4 = L/v4 = L./4xp/B.
To examine the 3-dependence of the resistive tearing mode, two cases will be con-
sidered, one involving a symmetric current sheet model and the other involving an
asymmetric current sheet model. For simplicity, the plasma temperature is assumed
to be a constant in the following discussion and the equilibrium magnetic field has

the B, component only.

For the symmetric neutral sheet model, the magnetic field can be written as
Bo(z) = Bo,tanh(%)e, (3.78)

From k - Bo(z¢) = 0, it is found z, = 0. From the pressure balance condition, it is

obtained

Bi(z) _ Bj,

po(z)T + o - (14 8) (3.79)

where (oo = 8mpo(00)T /B2, is the ratio of plasma pressure to magnetic pressure
outside the current sheet. By defining B = By, and 5 = §2/87rT, it 1s obtained

that at the current sheet z =z =0

p(zo) = P(1 + Boo) (3.80)
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For the magnetic field profile (3.78), the function F(z) = tanh(z/L). Near zo =
0, F(z) ~ z/L and at 2o = 0, F'(z9) = 1/L. The jump in the logarithmic
derivative of the perturbed magnetic field is found to be A" = 2(1 ~ k?L?)/kL2.
After substituting A’ and (3.80) into (3.76), the growth rate of the resistive tearing

mode in the symmetric current sheet is found to be

Y(Boo) = (1 + Boo)~1/57(0) (3.81)

where

t—s/st—z/s
(kL)2/s 74 74

4/5
2I'(1/4) (1 — k2L2)/5
7(0) = (71'1"(3/4))

is the resistive tearing growth rate when 3., = 0 outside the current sheet.

In Figure 3.5a, the normalized resistive tearing growth rate v* = v(8o)/7(0)
is plotted as a function of 8, the ratio of plasma pressure to magnetic pressure
outside the symmetric neutral sheet. It is shown in Figure 3.5 that the tearing
growth rate only has a moderate dependence on the plasma 3 when the current
sheet is symmetric and that the growth rate is reduced by about 40% when the

plasma (3 outside the current sheet increases from 0 to 10.

For the asymmetric neutral sheet, the magnetic field can be written as

Bm B, Bm+B,

Bo(z) =~ ; tanh(%)e, (3.82)

where B,, = Bg(—o0) and B, = —~Bg(oo) are, respectively, the magnitudes of
magnetic field on the two sides of the neutral sheet. From the pressure balance

condition, it is found

2 2 2
po(e)T + BEL = By gy By g (3.89)

where 8, = 8mpo(—00)T /B2, and B8, = 8mpe(co)T/B? are, respectively, the ratio

of plasma pressure to magnetic pressure at the two sides of the current sheet. From
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Figure 3.5 The normalized resistive tearing growth rate as a function the

ratio of plasma pressure to magnetic pressure outside neutral sheet, (a) the
symmetric case and (b) the asymmetric case.
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k-Bo(zo) = 0, it is found that z, is determined by tanh(z¢/L) = (Bm — B,)/(Bm +
B,). By defining B =B,andp = EZ/SWT, the plasma density at ¢ = z¢ can be
written as

po(z0) = B(1 + Brm) (3.84)

and the function F is found to be

F(z) = —— (32‘/3"‘) ! +(B2’/Bm)tanh(%) (3.85)

Near z4, F can be approximated as

—2/L —2/L

F(:c): m(:ﬂ—to)z 1+\/(1+ﬂ')/(1+ﬁm)(2}-—20) (386)

After some straightforward algebraic manipulation, the jump in the logarithmic

derivative of the perturbed magnetic field for kL < 1 is found to be

Ao A 1148/ +6n)
kL2 1+ /(1 +8.)/(1 + Bm))?

(3.87)

After substituting (3.84) - (3.87) into (3.76), the growth rate of the resistive tearing

mode in the asymmetric neutral sheet for kL < 1 is found to be

(0,0) 2 214 (P
7(ﬂm9ﬂa) - 7 1/5 ( T ) < (388)
R O A
where
2I'(1/4) e -3/5,-2/5
7(0,0) = (m) (KL)=2/5¢ %t

is the resistive tearing growth rate when 8,, = 8, = 0 outside the current sheet.
Plotted in Figure 3.5b is the normalized resistive tearing growth rate yv* =

Y(Bm,B,)/7(0,0) as a function of B,, the ratio of plasma pressure to magnetic

pressure on one side of the asymmetric neutral sheet, for 8,, = 0.1 and 1.0, the ratio
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of plasma pressure to magnetic pressure on the other side of the asymmetric neutral
sheet. It can be seen in Figure 3.5b that when the neutral sheet is asymmetric, the
resistive tearing growth rate has a weaker J-dependece than that obtained in the
symmetric neutral sheet case. For a small 3,, value, 8,, < 1, the tearing growth
rate is reduced by about 20% or less when 3, increases from 0 to 10.

It is clear from the above analysis that the resistive tearing growth rate has
only a weak to moderate dependence on the ratio of plasma pressure to magnetic
pressure outside the current sheet. Thus, according to the resistive MHD theory, the
reconnection process triggered by the development of the tearing mode instability
should not be severely affected by the variations of plasma 3. However, the above
conclusion may not be true when the plasma becomes collisionless. Therefore,
in the following, the G-dependence of the tearing mode instability will be further
examined in the collisionless plasma environment.

As derived in section 3.2, the growth rate of collisionless tearing mode in a
neutral sheet located at ¢ = z¢ is given by (3.74), i.e.,

— 7r—1/2 kVine A

K kge de

where ko = /4me?n(z¢)/mec?, de = 1/2Vinemec/e|B'(zo)], and for k., L < 1
A' = [(B'(z0))?/k](1/B% + 1/B%). For simplicity, it is assumed that particle
temperatures are constant. In the following discussion, both the symmetric and
asymmetric neutral sheet models will be considered.

For a symmetric neutral sheet located at ¢ = 0, the magnetic field profile can
be written as Bo(z) = Bog.tanh(z/L)e,. From the pressure balance condition, the
particle number density profile is found to be n(z) = n¢[Be + sech?(z/L)}, where
no = BZ,/8m(T; + T.) is the particle number density at the neutral sheet z = 0

when Boo = 0 and B = 8mn(oo)(T; + T.)/BE, is the ratio of plasma pressure to
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magnetic pressure outside the neutral sheet. For the symmetric neutral sheet, it is
easy to verify that n(0) = no(l + ), A = 2(1 — k2L?)/k.L?, and d. = /p.L,
where p = Vixe /Sl and ., = €By,/m.c. By substituting the above quantities into

(3.74), it is obtained

Y(Boo) = ¥(0)(1 + Bos) ™" (3.89)

where v(0) = (4/7)2Vipe(1 — ksz)/(Ezepi/ZLs/z) is the collisionless tearing
growth rate when . = 0 and koe = \/m.

The normalized collisionless tearing growth rate, v = ¥(8.)/7(0), in the
symmetric neutral sheet is plotted in Figure 3.6a as a function of B, the ratio of
plasma pressure to magnetic pressure outside the neutral sheet. Figure 3.6a shows
that the collisionless tearing growth rate has a strong dependence on the plasma 3
when the current sheet is symmetric and that the growth rate can be reduced by
90% when the 3 value changes from 0 to 10.

For an asymmetric neutral sheet, the magnetic field profile can be written as
Bo = 0.5{(Bm — B,) — (Bm + B,)tanh(z/L)]e,. The asymmetric neutral sheet has
a singular layer at z,, which is determined by tanh(zo/L) = (B — B,)/(Bm + B,).

From the pressure balance condition,

Bi(z B? 2
n(z)(Ty + T.) + —os—s-r—) = 8—;(1 +B,) = —Bé-?(l + Bm)

the particle number density profile can be obtained. At z = z,, the particle number
density is given by n(zo) = nom(l + Bm), where ngm = B2 /87(T; + T.). For the

magnetic configuration described above, A’ is given by (3.87) for k,L < 1 and

d, = \/pemL[l + (1 + B:)Y2/(1 + Bm)1/2]/2, where pem = Vihe/Qem and Qem =
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Figure 3.6 Normalized collisionless tearing growth rate as a function of the

ratio of plasma pressure to magnetic pressure outside a neutral sheet, (a)
the symmetric case and (b) the asymmetric case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89



90

eB,,/m.c. After substituting the above quantities into (3.74), the growth rate of

collisionless tearing mode in the asymmetric neutral sheet is obtained
148, 5/2
v(0,0) {1+ (135=) 2
A(Br B) = 220 ( - (3.90)
1+

L+ Bm 2
where v(0,0) = (4/7)!/? V}he/(zzcmpi,/:Ls/z) is the tearing growth rate when G, =
B, = 0 and kgerm = \/47re2n0m/mec2.

1+8,
14+8m

Plotted in Figure 3.6b is the normalized collisionless tearing growth rate y* =
Y(Bm,B,)/7(0,0) as a function of 8,, the ratio of plasma pressure to magnetic
pressure on one side of the asymmetric neutral sheet, for 8,, = 0.1 and 1.0, the ratio
of plasma pressure to magnetic pressure on the other side of the asymmetric neutral
sheet. It can be seen in Figure 3.6b that when the neutral sheet is asymmetric,
the §-dependence of collisionless tearing instability is much weaker than when the
neutral sheet is symmetric. For a small 3,, value, 3,, < 1, the tearing growth rate
is reduced by about 10% or less when (3, increases from 0 to 10.

The significant differences of the F-dependence of the collisionless tearing in-
stability between the symmetric and asymmetric neutral sheet can be easily un-
derstood. The collisionless tearing growth rate (v) is inversely proportional to the
particle number density (n(zo)) in the singular layer region. Therefore, the smaller
the particle number density is, the harder the system must the driven to maintain
the self-consistent current. In the symmetric neutral sheet case, an increase of the
ratio of plasma pressure to magnetic pressure from 0 to G outside the neutral sheet
effectively changes the particle number density profile (n(z)) and leads to an in-

crease of the particle number density n(zo) by (1 + 8o ) times, thereby significantly

reducing the tearing growth rate.
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However, in the asymmetric neutral sheet case, if the ratio of the plasma
pressure to magnetic pressure (3,,) on one side of the neutral sheet is more or
less fixed, the particle number density profile (n(z)) remains unchanged. Thus, an
increase of the plasma beta value (J,) on the other side of the neutral sheet only
changes the magnetic field ratio (B, /B,) and shifts the location of the singular
layer (z9). The change of the particle number density n(zo) caused by the shifting
of zq is generally much less than that produced by changing the particle number
density profile n(z) in the symmetric neutral sheet case. Therefore, the tearing
growth rate is only slightly affected by the change of 3,.

The above examines the 3-dependence of both the resistive tearing mode and
the collisionless tearing mode. It is found that the resistive tearing mode has a
moderate dependence on the ratio of plasma pressure to magnetic pressure outside
the current sheet when the current sheet is symmetric and a weak dependence
when the current sheet is asymmetric; and that the collisionless tearing mode has
a strong (3-dependence when the neutral sheet is symmetric and a much weaker
[-dependence when the neutral sheet is asymmetric.

At the dayside magnetopause, the magnetosheath field (B,) is usually smaller
than the magnetospheric field (By). The magnetosheath plasma has a higher
density (n,) and lower temperature (7,), while the magnetospheric plasma has
a lower density (n.,,) and higher temperature. The typical value of the ratio of
plasma pressure to magnetic pressure in the magnetosphere (§,,) is about 0.1 ~ 0.3,
whereas the value of plasma beta in the magnetosheath (G,) can be as large as 10
[e.g., Paschmann et al., 1986]. Thus, the dayside magneiopause current sheet is
basically an asymmetric current sheet. Then, according to the results of the above
survey of 3-dependence, the development of the tearing mode instability, and hence

the magnetic reconnection process at the dayside magnetopause, should not exhibit

N
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a strong dependence on the ratio of plasma pressure to magnetic pressure in the
magnetosheath (3,) during the period when the interplanetary magnetic field (IMF)
has a southward B,-component, unless the magnetosheath field is enhanced to the
same level as the magnetospheric field and the current sheet becomes symmetric.

At the dayside magnetopause, the magnetosheath field usually has a B,- and
a By-component, while the magnetospheric field has mainly a B,-component only.
Thus, during the southward IMF B, period, the magnetic field at the dayside
magnetopause is not strictly antiparallel and the magnetopause current sheet is
not strictly a neutral sheet. A magnetic shear exists at the magnetopause due to
the presence of the By -component in the magnetosheath field. The presence of
magnetic shear affects the tearing mode instability and the magnetic reconnection
process at the dayside magnetopause. Whether the presence of magnetic shear
can cause the tearing mode instability to exhibit a strong -dependence deserves
further investigation in the future. In the following, a hypothesis is presented for
the possible 3-dependence of the tearing mode caused by the presence of magnetic
shear. For simplicity, the plasma temperature is assumed to be a constant in this
discussion and the magnetic field configuration is asymmetric.

For the resistive tearing mode, if the profile of magnetic field B,-component
is more or less uniform near the current sheet, then the profile of plasma density
is mainly determined by the variation of the B,-component. In this case, due to
the presence of magnetic field component B, the location of the singular layer,
determined by k - Bo(zo) = 0, will be shifted; the derivative of function F(z),
which represents the change of the angle between the wave number vector k and the
magnetic field Bo(z) at the singular layer, will be altered; and the jump condition
of the logarithmic derivative of B;; (A'), which represents the energy change, will

also be changed. However, the growth rate of the resistive tearing mode and its
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(3-dependence is still given by (3.76), similar to what was obtained previously in the
neutral sheet case. On the other hand, if the profile of By varies significantly across
the current sheet, the plasma density profile determined by the pressure balance
condition would differ significantly from that in the neutral sheet case. In this
case, the magnitude and the 3-dependence of the resistive tearing mode growth
rate might be quite different from that discussed previously in the neutral sheet
case. Especially if the location of the singular layer (z) is shifted toward a higher
density region, the growth rate can be significantly reduced.

In the collisionless plasma, the development of the collisionless tearing mode
in the sheared magnetic field configuration is quite different from that in the neu-
tral sheet configuration [e.g., Laval et al., 1966; Drake and Lee, 1977; Galeev and
Zelenyi, 1977, 1978; Quest and Coroniti, 1981a, 1981b; Galeev et al., 1986; Gladd,
1990]. Without the guiding magnetic field By, resonant electrons near the neutral
sheet (|z| < d.) meander around the neutral sheet and can be accelerated freely
by the induction electric field during the development of the tearing mode. When
a large magnetic field shear is present, electrons near the singular layer (z = =z,),
determined by k - Bo(zo) ~ 0, become magnetized by the strong guiding magnetic
field and a parallel electric field (E)) may exist, where By is the equilibrium mag-
netic field and the parallel direction is the direction of the strong guiding magnetic
field at ¢ = xo. Only those electrons whose thermal speed (V;;.) approximately
equals the parallel phase speed of the tearing perturbation (y/k) can resonate
with the parallel electric field E, so the width of the singular layer is found to be
6e = l,7/kVine, where [, = By(zo)/|dB.(x0)/dz| is the local magnetic shear length.
Notice that in the neutral sheet geometry, the width of the singular layer depends

on neither the tearing growth rate () nor the perturbation wave number (k).
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The growth rate of the collisionless tearing mode in the sheared magnetic field
le.g., Drake and Lee, 1977; Quest and Coroniti, 1981a,b] can be written as

kV;
-1/2_Zthe A
R.(z0)l, (3:91)

y=m

Comparing (3.91) with (3.74), it is found that the ratio of the collisionless tearing
growth rate in the sheared magnetic field to the growth rate in the neutral sheet
configuration is ~ d./l,, if all other plasma parameters are held fixed. Thus the
collisionless tearing growth rate tends to be reduced when the guiding field is so
strong that d./l, < 1. Since kZ,(zo) o« n(zo), it can be seen from (3.91) that
besides the influence of [, and A’, the collisionless tearing growth rate in the sheared
magnetic field is also affected by the value of n(z¢), which is determined by the
pressure balance condition after the magnetic field profile and the plasma 8 values
are specified. Similar to the resistive tearing case, a shift of the location of the
singular layer (z4) toward a higher density region tends to reduce the collisionless
tearing growth rate. Thus, it is possible that both the resistive tearing mode and
the collisionless tearing mode instabilities may exhibit strong (3-dependence when
the current sheet has a sheared magnetic field.

In this chapter, both the resistive and collisionless tearing mode instabilities
were reviewed and a survey of the §-dependence of the tearing mode instabilities
was carried out for both symmetric and asymmetric neutral sheet configurations.
It was found that the resistive tearing mode exhibits a moderate dependence on 3
when the neutral sheet is symmetric and a weak (3-dependence when the neutral
sheet is asymmetric. It was also found that the collisionless tearing mode exhibits
a strong (-dependence for the symmetric neutral sheet configuration and a weak

(B-dependence for the asymmetric neutral sheet configuration. The above results
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seem to contradict the observation at the dayside magnetopause, where the mag-
netic field configuration is usually asymmetric, that the reconnection process, which
is closely related to the tearing mode instabilities, takes place preferentially when
the magnetosheath 3, value is small [Paschmann et al., 1986). The apparent incon-
sistency between the above theoretical results and the observations may be caused
by the ommission of the magnetic shear in the theoretical model. We have spec-
ulated on the possible 3-dependence of the tearing mode instabilities in a sheared

magnetic field. However, a more rigorous theoretical study is needed to confirm

these speculations.
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Chapter 4 A Particle Simulation Model for Driven Magnetic

Reconnection

The sophisticated nature of the problems encountered in fusion and space plasma
physics has motivated considerable interest in computer simulation. With the rapid
development of advanced computing facilities, computer simulation has become one
of the most active research areas in fusion and space plasma studies [see recent re-
view by Tajima, 1989 and references therein]. In this chapter, a brief introduction
to the particle simulation methods used in fusion and space plasma physics is pre-
sented; a particle simulation model for the driven magnetic reconnection in the
collisionless plasma is formulated; the initial conditions used in the present study
are described; and the boundary conditions necessary for modeling the driven col-
lisionless magnetic reconnection process are discussed. In the present model, the
zero-order guiding magnetic field is assumed to be zero ( By, = 0), which simplifies
the boundary conditions necessary for the driven collisionless magnetic reconnec-
tion process. Since the inclusion of a nonzero guiding magnetic field significantly
complicates the problem, the boundary conditions necessary for the driven colli-

sionless magnetic reconnection process with Bg, # 0 will not be pursued in the

present study.

4.1 An Introduction to Particle Simulation in Plasma Physics

In the simulation studies of fusion and space plasma processes, fluid models, kinetic

models, and hybrid fluid-particle models have been developed. In the fluid simula-
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tion, which is also called the magnetohydrodynamic (MHD) simulation, the MHD
equations of a plasma are numerically solved with appropriate assumptions of the
transport coefficients [e.g., Alder et al., 1970, 1976; Potter, 1973; Bauer et al., 1978;
Gruber and Rappaz, 1985; Matsumoto and Sato, 1985; Denstrovskii and Kostom-
arov, 1986; Tajima, 1989]. To include more detailed models of plasma involving
particle interactions through electromagnetic fields, kinetic simulation methods are
developed. In the kinetic simulation, either the plasma kinetic equations, such as
Vlasov or Fokker-Planck equations, are numerically solved, or the motions of a col-
lection of charged particles that interact with each other and with the externally
applied electromagnetic field are computed [e.g., Alder et al., 1970, 1976; Hock-
ney and Eastwood, 1981; Dawson, 1983; Matsumoto and Sato, 1985; Birdsall and
Langdon, 1985; Killeen et al., 1986, Greengard and Rokhlin, 1987; Tajima, 1989].
The kinetic simulation method involving calculations of charged particle motions is
also categorized as particle simulation. However, the distinction between fluid and
kinetic simulations has become vague since the hybrid simulation methods were in-
troduced, in which fluid and particle treatments are applied to different components
of a given plasma.

In space and astrophysical plasma physics, multi-dimensional MHD simula-
tion codes have been successfully developed for modeling large scale phenomena,
such as solar flares and prominence eruption, solar wind-magnetosphere interaction,
magnetosphere-ionosphere coupling, and magnetospheric substorms. On the other
hand, kinetic simulation has been particularly successful in dealing with plasma
processes where particle distributions deviate significantly from a local Maxwellian
distribution and where wave-particle resonance, particle trapping, or stochastic

heating take place. Particle simulation and hybrid fluid-particle simulation have
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also successfully modeled physical processes in collisionless plasmas in which non-
MHD effects are important, such as collisionless magnetic reconnection and colli-
sionless shocks.

Particle simulation originated from the pioneering works of Buneman [1959]
and Dawson [1962] in the late 50s and early 60s. It has been shown that a rela-
tively small system of a few thousand particles can indeed accurately simulate the
collective behavior of real plasmas, if appropriate methods are used. Since then,
the development of new algorithms and availability of advanced supercomputers
have allowed particle simulation to progress from simple, one-dimensional, electro-
static problems to more complex and realistic situations, such as multi-dimensional
electrostatic problems, magnetostatic problems, relativistic problems, and nonra-
diative problems, as well as electromagnetic problems. Three principal types of
particle simulation models have been developed, which include the particle-particle
(PP) model, the particle-mesh (PM) model, and the particle-particle-particle-mesh
(PPPM or P*M) model.

The PP model, in which the forces between particles are calculated directly,
can be used to simulate small systems with long-range forces or large systems
with short-range forces, i.e., the forces of interaction are nonzero for only a few
interparticle distances. However, due to the inefficient direct force computation, the
PP model is time-consuming. Recently, a variation of the PP model, the gridless
(meshless) particle model [Greengard and Rokhlin, 1987], has been proposed to
speed up the force calculation in the PP model. In the gridless particle model, the
forces (potentials) between particles are computed based on multipole expansions.

To speed up the force calculation in large systems with smoothly varying long-
range forces, the PM model was developed. In the PM model, field quantities, such

as electromagnetic fields, are defined on the mesh points; particle contributions
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to the sources of field equations, such as charge density and current density, are
assigned to the nearby mesh points; the differential operators, such as the Laplacian
VU2, are replaced by the finite-difference approximations on the mesh points; field
equations are solved on the mesh points; and forces at particle positions are obtained
by interpolating on the array of mesh-defined values. In the PM model, only those
field variations having a wavelength longer than the spacing of the mesh can be
represented by mesh values. The PM model is much faster, but generally less
accurate, than the PP model. To maintain low levels of fluctuations, the number
of particles in each mesh cell must be large enough, e.g., 5 ~ 10 particles per mesh
cell. The PM model has been widely used in fusion and space plasma particle
simulations [Hockney and Eastwood, 1981; Dawson, 1983; Birdsall and Langdon,
1985; Tajima, 1989].

The P®*M model is a combination of the PP model and the PM model. In
the P®M model, the interparticle forces are split into two parts: the rapid varying
short-range forces and the slowly varying long-range forces. The short-range forces
are computed based on the PP model, while the long-range forces are calculated
based on the PM model. The resulting P*M model has the advantages of both the
PP model and the PM model; it can represent close encounters as accurately as the
PP model and calculate long-range forces as rapidly as the PM model. A detailed
discussion of the P*M model can be found in Hockney and Eastwood [1981}.

According to the algorithms used in advancing particles, the time integration
schemes used in the particle simulation can be either explicit or implicit. The
explicit schemes, in which the calculation of particle positions uses the fields at the
preceding time, have been widely used since the beginning of the particle simulation
era. The implicit schemes, in which the computation of particle positions requires

knowledge of the fields at the same time, have emerged since the early 80s. With
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the explicit schemes, particle simulation involving the electrostatic field requires a
very large number of time steps. Otherwise, the explicit schemes become unstable
when wp. At > 1.62, where w,. is the electron plasma frequency and At is the
simulation time step. With the implicit schemes, a larger time step (wpeAt > 1)
can be used in the simulation. However, since the fields at time ¢, depend on
the unknown particle positions {x"}, the field and particle equations represent
a very large system of coupled nonlinear equations. Therefore, to maintain the
stability in implicit schemes, an accurate approximate solution for the coupled
nonlinear equations is required. More discussion of the implicit schemes and other
algorithms, such as electron subcycling and orbit averaging can be found in Birdsall
and Langdon [1985] and references therein.
Basic electromagnetic particle simulation codes can be divided into two classes.
One of them is full electromagnetic code. In a full electromagnetic code, the whole
set of Maxwell equations is used and the electric and magnetic field vectors are ad-
vanced by a straightforward leapfrog scheme [Dawson, 1983; Birdsall and Langdon,
1985]. Notice that the inclusion of the transverse component of the displacement
current in the full electromagnetic codes results in the hyperbolic electromagnetic
field equations. The full electromagnetic codes have been used to study the plasma
processes involving rapid field variations where electromagnetic radiation is impor-
tant. However, as pointed out in Swift {1988, the full electromagnetic codes have
two major disadvantages: (1) the numerical stability requires that the ratio of grid
spacing to time stepping exceed the speed of light and (2) the electromagnetic field
may reflect from simulation boundaries back into the simulation domain, interfering

with the simulated plasma processes inside, if special precautions are not taken.
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Many problems encountered in the fusion and space plasma environments are
nonrelativistic and nonradiative in character. In the early epoch of the particle sim-
ulation of fusion and space plasma processes, nonradiative models were developed
to study collisionless shock waves [Auer et al., 1961], ion-cyclotron waves [Hasegawa
and Birdsall, 1964], nonlinear evolution of mirror instabilities and tearing modes
|Dickman et al., 1969, and nonlinear microturbulence waves [Haber et al., 1973].
However, most of the models developed in the 60s and early 70s were either one-
dimensional and electrostatic, or so complicated and specialized that they could
not easily be applied to other problems in more dimensions. The first completely
generalized multi-dimensional, radiation-free particle simnulation algorithm was for-
mulated by Nielson and Lewis [1976]. The nonradiative simulation model is also
called the Darwin model because the Darwin approximation {Darwin, 1920], in
which the transverse component of the displacement current is omitted from the
Maxwell equations, has been used in the formulation. The Darwin model represents
the second type of electromagnetic particle simulation codes.

With the Coulomb gauge (V - A = 0), the Maxwell equations can be written

as
Vip=—4mp (4.1)
2p _LOA 4wy 1,00
V2A 250 -, J+ CV( Bt) (4.2)

where A, ¢, p, and J are the vector potential, the electrostatic potential, the charge

density, and the current density, respectively. Under the Darwin approximation,

(4.2) becomes
4r 1,0
VA = -—7-] + ;V(‘a—f) (4.3)

In appearance, the modified Maxwell equations under the Darwin approximation,

in which the radiative term (1/¢?)8%A/8¢? is neglected, are nothing other than
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an expansion of the exact Maxwell equations for the small (v/c). However, the
profound impact of the Darwin approximation is that the approximate Maxwell
equations, when coupled by the particle equations through the source terms, are
elliptic in character rather than hyperbolic. Thus, the modified Maxwell equations
represent instantaneous action-at-a-distance without any retardation. As a matter
of fact, the Darwin approximation preserves accuracy in the interaction Lagrangian
up to the order of (v/c)? [Nielson and Lewis, 1976].

Since tearing mode instability and magnetic reconnection evolve on time scales
of ion gyroperiods, an electromagnetic wave in such processes would propagate
across the entire system on the same time scale. In these cases, the transverse
displacement current is likely to be small in comparison to the conducting current,
and the effect of the transverse displacement current is negligible. Thus, the Darwin
model is proper for the simulation of tearing instability and magnetic reconnection.
Therefore, the particle simulation model used for the present investigation of the
driven magnetic reconnection process in the collisionless plasma was formulated
using the Darwin approximation and the particle-in-cell (PIC) method. Notice
that the electric field in the Darwin model must be advanced with other methods
because the calculation of electric field directly from the displacement current term

in Ampere’s law could lead to significant inaccuracy [Swift, 1988].

4.2 A Darwin Model Using Hamiltonian Formulation

It has been shown by Nielson and Lewis [1976] that a particle simulation model
using the Darwin approximation may be satisfactorily expressed using either Hamil-
tonian or Lagrangian formulation. In the Hamiltonian formulation, the force due to

the transverse electric field is obtained implicitly through the equations of motion
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for the particles, whereas in the Lagrangian formulation, the transverse electric field
is found explicitly by using the divergence of the current transfer tensor as a source
function. The calculation of electric field in the Lagrangian formulation is com-
plicated [Nielson and Lewis, 1976] and the time derivative of the vector potential
(0A/0Ot) and the transverse electric field (E;) show significant differences [Swift,
1988]. The advantage of the Hamiltonian formulation is that it is not necessary to
calculate E;, which is the same as A /Jt. More comparison between the Hamilto-
nian and the Lagrangian formulations can be found in Swift [1988]. In the following,
a particle simulation model with the Darwin approximation is formulated for the
driven collisionless magnetic reconnection process in the Hamiltonian formulation.

According to the standard procedure [e.g., Goldstein, 1980], the Hamiltonian

function of a system with charged particles can be written as

1 .
H=3 5—(p;~ 2A) +4;¢ (4.4)
7

2m]-

where m;, pj, and gq; are, respectively, the mass, the canonical momentum, and
the charge of the 7-th particle. Then, the Hamiltonian equations of motion for the

j-th particle are given by

dp;,  OH g q;
dt _6xj = mjc(VA) (pPj — c A)- q; Vo (4.5)
dx]‘ _ 6H _ 1 ) q;

where VA = e.0A/0z + e;0A /0y + e,0A/0z is a tensor and the potentials A

and ¢ are always evaluated at the positions of the particles.

In terms of particle variables, the charge density (p) and the current density

(J) can be written as

P=7_dama (4.7)
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q2
C na>A (4.8)
MaC

o4 «

oY ana <vas= Y Eny <po> (T
x

where a denotes particle species, ¢, and n, are, respectively, the charge and the
spatial number density of species a, and < v, > and < p, > are the average
velocity and canonical momentum for species a as functions of position and time.

After inserting the source terms p and J into (4.1) and (4.3), the field equations

become
Vi = —471'ann& (4.9)
and
4an q 4m q2 1_,0¢
2 dx falad i1 il v uihid
VA = —— ) e <Pa >+ (;mana A+-V(5) (4.10)

By taking the divergence of (4.10), another field equation is obtained as

v? %?):MZQ:%V- (na < Pa >> —%(gi—ivna) A (4.11)
where the Coulomb gauge V - A = 0 has been used. Notice that because of the
instantaneous nature of the forces under the Darwin approximation, a direct com-
putation of the time derivative of the electrostatic potential (0¢/8t) by time differ-
encing usually leads to numerical instability. Therefore, A and 3¢/8t have to be
solved simultaneously with (4.10) and (4.11) by iteration, even though the electro-
static potential (¢) can be obtained by solving the Poisson equation (4.9) directly.
Also, a supplementary operation is needed to ensure that the obtained vector po-
tential (A) satisfies the Coulomb gauge at each iteration [Nielson and Lewis, 1976].

Tne time differencing scheme for the equations of particle motion (4.5) and
(4.6) can proceed in a variety of ways. Nielson and Lewis [1976] proposed a sec-

ond order, leap-frog time differencing algorithm for the Darwin models based on
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a predictor-corrector method in which the momenta of particles {p;} are saved

at half time-steps and the positions of particles {x;} are saved at full time-steps.

Thus. the equations of particle motion can be written as

n+1/2 n—1/2 n+1/2 n—-1/2
P; P q; n i +Pp; %G an
= TVA™Y). — =A") - q;Vo™ .
= VAT (5 LA - Vg (412)
n+1 n
X' x7 1 .
j i _ n+1/2 95 a nt1/2
—_— = —(p. — =A .
At mj(p’ ) (4.13)

where the superscript denotes time-steps.
To obtain A™ at the full time-step, the particle momentum p?—l/z is first

projected ahead by a half time-step to p} by using the same rate of change that

was used in obtaining p;_l/z. The equation for computing p} is given by
~n n-1/2 n—-1/2 n-3/2
P; — P; g a1y (Pi  TPj 9 o n- -1
= VA . —21A —q: Vo™
However, it is easy to verify that
- n—-1/2 ~n n—1/2
P; —P; g Z1y. P71 P; 95 s ne1 -1
= VA" (————— A" —q; Vo™ t .

where O(At) represents terms of the order of At, which is smaller than the other
terms on the right hand side of (4.14) and hence can be neglected. Therefore, the
projected p} can be approximately calculated from (4.14). Then, the potentials
A™ and ¢" are solved based on the sources computed from {x7} and {p}}. After
that, the momenta of particles are advanced by a full-time step according to (4.12).
The vector potential at the half-time step, which is needed for particle position

advancing, is obtained from extrapolation

An+1/2 — gAn_%An—l (415)
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Finally, the positions of particles are moved by a full-time step according to (4.13).
The above algorithm is very stable for the Hamiltonian formulation, although an
analogous procedure in the Lagrangian formulation may be violently unstable [Niel-
son and Lewis, 1976].

A similar second-order, leap-frog time differencing scheme was later proposed
by Swift [1986] in his simulation study of the collisionless tearing mode. In Swift’s
scheme, the basic algorithm is the same as that of Nielson and Lewis [1976], except
that the momenta of particles are a half time-step ahead of the positions of particles
and the particle positions, instead of the particle momenta, are first projected ahead
by a half time-step from {x7} to {)'c?H/z} by using the same rate of change used
to obtain {x7}. The equation for projecting particle positions is given by

- 1/2
x".‘+/_ n

T R 5117(";—1/2 - Zar
It is also easy to verify that
i;‘+1/2 - x7 _ L( nt1/2 _ ﬁAn—l/z) +0(AY) (4.16)
At/2 m; 7 c '

where O(At) represents terms of the order of At, which is smaller than the other
terms on the right hand side of (4.16) and hence can be neglected. Thus, the pro-
jection of particle positions can be approximately computed from (4.16). Then, the
vector potential A"*!/2 is solved based on the sources calculated from {i?H/z} and
{I);."H/2 }, and the vector potential at the full time-step is obtained by extrapolation

from

A = %A"H/z — éA”‘l/z (4.17)

. ‘e +1 . +1/2
After the particle positions are moved from {x7} to {x}"'} with {p} / } and
A™t1/2 the electrostatic potential ¢™*' is computed. Finally, the particle momenta

are advanced from {p;-H'l/Z} to {p?+3/2} based on A™*! and ¢™*?.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

Two simulation codes have been developed and tested, one based on Nielson
and Lewis’s algorithm and the other based on Swift’s scheme. It is found that
for the same plasma parameters, the results obtained from these two codes do not
show any significant differences, except that the first code consumes more CPU
time than the second one, because (4.14) is much more complicated than (4.16).
A more detailed investigation shows that Ty, /T, ~ 1 : 2, where Ty, is the CPU
time needed for completing the particle position projection for all particles at once
and Ty, is the corresponding CPU time for particle momentum projection. Since
both algorithms are stable in the Hamiltonian formulation and Swift’s algorithm is
more efficient than that of Nielson and Lewis, Swift’s algorithm is adopted in the

present simulation model for the driven collisionless magnetic reconnection.

4.3 A 21-D Particle Simulation Model for Magnetic Reconnection

The basic equations for the present simulation model are (4.9)—(4.13) and (4.16) —
(4.17). Notice that the simulation model described by the basic equations is general
and multi-dimensional. However, in the following only the two-dimensional (2-D)
case, with —L; <z < L, and —L, € z < L,, is considered, and the variations of
all physical quantities in the y-direction are assumed to be zero, e.g., /8y = 0.
Since the model is two-dimensional (2-D) in the configuration snace (z,z) and
three-dimensional (3-D) in the momentum space (pz,py,p.), it is also referred to
as a two-and-one-half-dimensional (21-D) model. The above basic equations are in
dimensional form, i.e., each physical quantity is expressed in its dimensional unit.
To transform them into a dimensionless form that can be used conveniently in the

simulation, a normalization procedure is needed. The normalization of physical
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quantities in an MHD fluid simulation model is straightforward. But the normal-
ization of physical quantities in the particle simulation model is not so trivial and
is somewhat confusing.

The first step is to determine the charge and mass of the macro particles used
in the simulation. If g4, m4, and n, are, respectively, the charge, mass, and number
density for species a in dimensional units, the macro charge (Q,) and macro mass

(Mg) of species a in the simulation are given respectively by

NN,
Qa = QQﬁa( N )AzAz (418)
and
N.N,
Ma = maﬁa( N )A::Az (419)

where N and A, respectively are the number of grid (mesh) cells and grid spacing
in the z-direction, N, and A, respectively are the number of grid cells and grid
spacing in the z-direction, and N, is the number of macro particles used in the
simulation for species a. In the simulation, the macro charge is needed for calcu-
lating the charge density and the current density, and the macro mass is needed for
computing the kinetic energy of particles.

Then, a normalization unit must be specified for the normalization of each
physical quantity used in the simulation. In the present model, t, = Q7! =
(eBo/mec)™!, 2o = pe, vo = To/to = Vthe, Boy, Ao = Bozo = Bop., o = 2T./e,
Ey = ¢o/z0 = 2T./epe, and py = mevy = m.vyp, are chosen as the normaliza-
tion units for the time, space, speed, magnetic field, vector potential, electrostatic
potential, electric field, and particle momentum, respectively. In above, Q., p.,
Vehe = Nepe, and T, = m,v?,_/2, are respectively the gyrofrequency, the Larmor

radius, the thermal speed, and the thermal energy of an electron. After dividing
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each physical quantity with its corresponding normalization unit, the dimension-
less physical quantities are obtained. These dimensionless quantities are t* =t /¢,
x' = x/Tg, V' = V/jvo, P° = P/po, A" = A/4y, B* = B/B,, ¢* = ¢/,
x' = X/Xxo0,and E* = E/E,, where x = 0¢/0t and xo = ¢o/to has been used.

Inserting the dimensionless variables specified above into the basic equations

(4.9)-(4.13), the dimensionless equations used in the simulation are found to be

V¢ = —a.p (4.20)
VA = —amd + 22Uy (4.21)
e
Vix =aV-J (4.22)
dp,' 1
=—(VA)-(pi—A)-V :
i =5 (VA)-(p )~ Vé (4.23)
dx; 1 .
5 = 7(p, A)=v; (4.24)
dp.
7 = (VA)-(pe + A)+ V¢ (4.25)
e petA)=v (4.26)
at  Pe T ‘

where

Qe = (47rﬁe62/me)(Pz/vghe')(NzNz/NC)
Am = (47";7":82/mE)(pZ/CZ)(NzNz/Ne)

and vy = m;/m,. respectively are the electrostatic coupling constraint, the magnetic
coupling constraint, and the mass ratio of ion to electron used in the simulation.
In (4.20)-(4.26), the * sign, denoting the dimensionless variables, has been dropped
from all of the normalized quantities for the sake of convenience. Notice that
Swift’s time-integration algorithm, which has been described earlier, is used for the

equations of particle motion (4.23)-(4.26) in the present simulation.
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In the simulation, the charge density p and the current density J in the field

equations respectively are computed from

p = (ni—ne)

J= [(nu)i - (nu).]

where

n= ZS[X - xk(t)]

k

(nu)i = ¥ %[pk — A(x)IS[x - xa(8)]
k

(nu). = Z[Pk + A(xg)]S[x — xi(t)]
x

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

and S[x — x,(t)] is the weighting factor based on the first-order PIC bilinear in-

terpolation method as discussed in Birdsall and Langdon {1985]. Notice that the

fields are evaluated at the positions of particles in the equation of motion, which is

given by

A(x) = /S[x — xx(t)] A(z)d*z.

After some straightforward algebraic manipulations, (4.21) and (4.22) can be

rewritten as

am

1
(V2 —amn)A = "am(;ni -IL) + —Vx

VX = @[V - (I; - II.) — V - (nA))]
where

Il = Zka[x — xx(t)]
k

and

1
n=—-n;+n,
Y
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Here an assumption has been made that
ST AGG)S[x — xk(t)] = AX) D S[x - xi(t)]
k k
As mentioned earlier, due to the coupling between A and x, equations (4.32)
and (4.33) must be solved through iterations, and at each iteration a supplementary

operation is necessary to ensure that solution A satisfies V. A = 0. The iteration

scheme used in the present simulation can be written as

Vi = @ [V - (II; - II.) — V - (nAY)] (4.34)

am

- 1
(V2 - cx.,nﬁ)Al+1 = —am(7 - n)Al — am(;ni - II) + A\ (4.35)

e

vigitl — v. A (4.36)
AH—l — Al+1 . V‘I,H-l (437)

where [ is the iteration level, A is the intermediate value of the vector potential,

and
_ 1
n= E(Umaz: + T’min)

in which mq: and 7,,;, respectively are the maximum and minimum values of
n(z, z) in the ¢ — z plane.

The total number of iterations can be either fixed in advance or determined
by the convergence of the process. For example, for a given convergence parameter
e, the iteration stops when |A'*! — A!|/]A!| < € is reached. It is found in the
simulation that for € = 0.001, the total number of iterations is usually less than
five and that for ¢ = 0.0001, the total number of iterations generally is smaller

than ten. In the present simulation, the convergence parameter is chosen to be
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either € = 0.005 or € = 0.0001. The partial differential equation solver FISHPAK,
developed by NCAR, is used to solve the field equations.

In the Hamiltonian formulation, the electric field and the magnetic field can

be obtained for the purpose of diagnostics from

A
E=-V¢-— %—t (4.38)

and

B=VxA (4.39)

where the electric field includes both the electrostatic and induction fields. It is
easy to verify that in the present simulation model the total magnetic energy (E},),
the total electric energy (Ey), the total kinetic energy of ions (E;), and the total

kinetic energy of electrons (E) respectively are given by

Enm 1
E}, = = — B?. .
M EOc an, -~ 1,7 (4 40)
* EE 1 2
Bt =5 = o EJ:EJ (4.41)
E.
E; = — = vf 4.42
Eo. ‘sz: k ( )
and
E
E; = = = vf 4.43
EOc ; k ( )

where Eye = M.v/2 is the kinetic energy of a single macro electron, B; ; and E; ;
respectively are the magnetic field and electric field at the grid point {i,5}, v is

the speed of the k-th macro ion, and v.x is the speed of the k-th macro electron.
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Thus. the normalized total energy in the simulation system (E;,, = Eiot/Eq.) can

be written as

. 1 1
Ely = vl + 7 vak + Z(—Biz,j +—E!}) (4.44)
k k ¥ Fm Qe

In this section, a 2%—dimensional particle simulation model using the Darwin
approximation was developed in the Hamiltonian formulation for the study of the
driven collisionless magnetic reconnection process. The normalization of the sim-
ulation model was discussed. In the following sections, the initial and boundary
conditions used in simulating the driven collisionless magnetic reconnection process

are presented. The initialization of the simulation will also be discussed.

4.4 Initial Conditions

The initial magnetic field configuration in the present simulation is assumed to be
a one-dimensional current sheet located at £ = zo and surrounded by background
plasma. The magnetic field has only an antiparallel B, component and the current
is in the y-direction. The current sheet can be either symmetric or asymmetric.

The general form of the initial magnetic field can be written as

B,m — B., B B —
B,(z,z) = zm2 L zm;_ "tanh(w :co) (4.45)
where B,,, = B,(—o0,z) and B,, = —B,(0,z) respectively are the magnetic

fields outside the current sheet; z, is the current sheet location, determined by

tanh(zo/L) = —(Bym — B.s)/(Bzm + B.,); and L is the the current sheet thickness.

The corresponding initial vector potential is found to be

Az(z,z)=0 (4.46)
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)] (4.47)
A (z,2) =0 (4.48)
Under the assumption that the initial zero order electric field is zero, initial elec-

trostatic potential is found to be zero

#(z,2) =0 (4.49)

The initial time derivative of the electrostatic potential is also assumed to be zero

x(z,z) =0 (4.50)

The particle temperature profile, in general, can be written as

Tam as Tam - Tal _
To(z,2) = ; Tos _ 5 tanh(z L-‘Bo)

(4.51)

where Tom = To(—00,2) and Ty, = To(o0o0, 2z) respectively are the particle temper-
atures outside the current sheet for species a. Due to the elimination of the zero
order electric field, ions and electrons must have the same particle number density
profile, i.e., ni(z,z) = n.(x,z) = n(z,z). In the initial equilibrium configuration,
the pressure gradient is balanced by the J x B force. Thus, the particle number

density can be obtained from the pressure balance condition

B! T,z Bzm Bga
n(z, z)[Ti(z,2) + Te(z,2)] + ";ﬂ- ) = B (14 8m) = B (1+8,) (4.52)
where 8, and 3, are the ratios of plasma pressure to magnetic pressure at £ = —oo

and z = 400, respectively.
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The initial particle velocity distribution is assumed to be a drift Maxwellian
distribution, with ions drifting in the y-direction and electrons drifting in the op-
posite direction. The local total drift speed of particles is determined from

4B,
Ui —Ue = — 422 (4.53)

where U; and U, respectively are the drift speeds for ions and electrons. The drift

speed of ions is related to the drift speed of electrons by

U; U.
= === 4.54
i Te ( )
where T; = 1m;v?,; is the ion thermal energy and T. = 3m.v?, is the electron

thermal energy. Notice that as a special case, when the current sheet is symmetric
(B:m = B.,), the temperature profile is a constant (Tam = T4,), and the ratio of
plasma pressure to magnetic pressure outside the current sheet is zero (G, = 8, =
0), the well-known Harris {1962] current model is obtained.

In the simulation, ions are loaded on the top of electrons so that the initial

electrostatic field is eliminated. The dnift speed for ions is calculated from

|V x B|

U; = a1l + To/T)) (4.55)

Then, the electron drift speed is obtained from (4.54). After the velocities are
assigned to the particles, the self-consistent vector potential is computed and par-
ticle momenta are initialized for jons and electrons according to (4.24) and (4.26)
respectively.

Before the driven boundary conditions are imposed for study of the driven
collisionless magnetic reconnection process, the simulation model developed above
is checked for energy conservation. A test run is carried out to simulate the col-

lisionless tearing mode instability, in which the Harris {1962] current sheet model
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is used as the initial magnetic field and plasma configurations. In the test run,
a periodic boundary condition is imposed in the z-direction while a Dirichlet or
Neumann boundary condition is used in the z-direction. The test is run from ¢t = 0
to ¢t = 600027!. During the test run, it is observed that the total energy is con-
served within 0.1%. Therefore, it is believed that numerical heating or cooling is

insignificant in the present simulation model.

4.5 Boundary Conditions Necessary for Driven Reconnection

One of the applications of particle simulation in fusion and space plasma research
is the study of the collisionless tearing mode instabilities and magnetic field line
reconnection processes observed in fusion devices, in the earth’s magnetosphere, and
in other space and astrophysical plasma environments [e.g., Dickman et al., 1969;
Katanuma and Kamimura, 1980; Terasawa, 1981; Brunel et al., 1982; Leboeuf et
al., 1982; Ambrosiano et al., 1983, 1986; Swift, 1982, 1983, 1986; Price and Swift,
1986; Ding et al., 1986; Hoshino, 1987; Swift and Allen, 1987; Lee and Ding, 1987;
Hewett et al., 1988; Francis et al., 1989; Allen and Swift, 1989; Pritchett et al.,
1989; Ding and Lee, 1990|. However, in most of the previous simulations, either
a one-component plasma model or periodic boundary conditions for particles and
fields was used. In some 2-D simulations, the periodic condition is imposed in one
direction, while a fixed value boundary or a fixed gradient boundary is applied in
the other direction.

The one-component plasma model is the simplest particle simulation model,
in which only the ion dynamics is included, while the electron dynamics and elec-
trostatic interaction are neglected. The periodic conditions, on the other hand,

represent the simplest and most convenient method for handling the particles and
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fields at the boundaries of simulation domain, where the simulated plasma process
takes place. In the present simulation. the simulation domain is a rectangular box
in the £ — z plane, with —L, <z < L, and —L, < z < L,. With the penodic
boundary conditions, particles leaving the simulation domain through one of its
boundaries are reintroduced into the simulation domain at the opposite boundary
and field equations are solved by taking advantage of the fast Fourier transform
(FFT) method. However, it has been found that the periodic boundary conditions
imposed on the simulation domain significantly affect the nonlinear development
of the tearing instabilities and hence the nonlinear evolution of magnetic recon-
nection processes due to the presence of nonphysical forces in the periodic system
[e.g., Price and Swift, 1986]. Therefore, to investigate the nonlinear development
of the collisionless tearing mode instabilities and magnetic reconnection processes
in a more realistic manner, periodic boundary conditions become inadequate.

It has also been observed that with the periodic conditions imposed at the
simulation boundary, the simulation of tearing mode instabilities and magnetic
reconnection usually ends in a more or less steady and saturated state. But in
reality, a magnetic reconnection process, such as FTEs at the dayside magnetopause
[Russell and Elphic, 1978, 1979}, is intrinsically a sporadic and intermittent process
driven by the solar wind when the interplanetary magnetic field has a southward
B, component. To simulate the driven magnetic field reconnection process, in
which both incoming and outgoing plasma flows are present, the periodic boundary
conditions become improper.

To introduce the incoming plasma flow, a driven boundary condition is needed,
through which the incoming plasma and magnetic field are pumped into the sim-
ulation domain. To allow the outgoing plasma flow, on the other hand, a non-

periodic open boundary condition is required, across which the outgoing plasma
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can escape freely from the simulation domain. In the simulation, the driven and
nonperiodic open boundary conditions are necessary for advancing particles and for
solving fields. The first particle simulation of the magnetic reconnection process
with driven and nonperiodic open boundaries was reported by Ding et al. [1986].
In their one-component particle simulation, magnetic reconnection is observed to
take place intermittently, leading to the repeated formation and convection of mag-
netic islands and the generation of superthermal particles. Later on, the driven
and nonperiodic open boundary conditions are generalized and applied to the two-
component full particle simulation [e.g., Ding and Lee, 1990]. In the following,
the particle boundary conditions are presented before the boundary conditions for
fields are discussed.

The concept and application of a particle buffer zone are closely related to the
new particle boundary conditions. The particle buffer zone is a special region set
up adjacent to the simulation domain. Its purpose is to prevent the boundary from
interrupting particle orbits and generating spurious boundary currents [Naitou et
al., 1979]. Another benefit of using a particle buffer zone in the present study to
handle particles which cross the boundaries of the simulation domain is to facilitate
the incoming and outgoing plasma flows at the simulation boundaries.

In the present simulation, the particle buffer zone is technically divided into
two parts: an inner buffer zone and an outer buffer zone. The inner buffer zone,
located outside the simulation domain but inside the outer buffer zone, has a typical
width of 6A, where A is the grid size. The outer buffer zone, located outside
the inner buffer zone, has a typical width of 2A. Initially, both particle buffer
zones and the simulation domain are loaded with particles according to initial
particle distributions and field potentials. Thus, plasma quantities experience a

continuous variation across the simulation boundary. Particles in the simulation
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are technically divided into three parts: the simulation particles that are located
inside the simulation domain, the buffer zone particles that are located in the inner
buffer zone, and the reservoir particles that are located in the outer buffer zone.
During the simulation, only the simulation particles contribute to the sources for
computing field potentials (A and ¢). The buffer zone and reservoir particles,
whose motion is calculated based on the extrapolated fields, provide a reservoir of
particles.

A simulation particle becomes a buffer zone particle when it moves from
the simulation domain across the simulation boundary into the inner buffer zone;
whereas a buffer zone particle becomes a simulation particle when it moves from
the inner buffer zone across the simulation boundary into the simulation domain.
A buffer zone particle in the inner buffer zone keeps its identity until it moves into
the outer buffer zone, becoming a reservoir particle. A reservoir particle becomes
a buffer particle when it moves into the inner buffer zone, whereas a reservoir par-
ticle is eliminated from the simulation when it moves out of the outer buffer zone.
At the end of each time step, the reservoir particles in the outer buffer zone are
replaced with new thermal particles. A schematic diagram of simulation domain
and particle buffer zones is shown in Figure 4.1. The blank area in the center
represents the simulation domain while the shaded area adjacent to the simulation
domain represents the particle buffer zones. The inner buffer zone and the outer
buffer zone are separated by the dashed line. Small arrows in Figure 4.1 indicate
the imposed incoming plasma flow as well as the outgoing plasma flow generated
during the simulated magnetic reconnection process.

The imposed incoming plasma flow is formed by new particles injected into
the upper and lower parts of the inner buffer zone at every time step. The average

density flux of the incoming plasma flow is NV, where Ny and V, = FV;e, are,
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Figure 4.1 A schematic diagram of simulation domain (blank area) and par-
ticle buffer zones (shaded area). Dashed line separates the inner buffer zone
from the outer buffer zone. Arrows indicate the imposed incoming plasma

flow as well as the outgoing plasma flow generated during the simulated
magnetic reconnection process.
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respectively, the average particle number density and average velocity of the incom-
ing plasma at £ = +£L,. Due to the E x B drift motion, these buffer zone particles
are convected into the simulation domain, becoming simulation particles. On the
other hand, the outgoing plasma flow is formed during the magnetic reconnection
process. Along with the outgoing plasma flow, simulation particles convect out of
the left and right boundaries of the simulation domain and move into the left and
right parts of the inner buffer zone, becoming buffer zone particles. Thus, with
the new driven and nonperiodic open particle boundary conditions, it is possible to
maintain an imposed incoming plasma flow at the top and bottom boundaries of the
simulation domain, while allowing outgoing plasma flow to escape freely from the
simulation domain through the left and right boundaries. Notice that the present
particle boundary is different from the traditional periodic boundary, in which par-
ticles leaving the left (right) boundary of the simulation domain are reintroduced
into the simulation domain at the right (left) boundary.

The driven boundary condition at z = +L., and the nonperiodic open bound-
ary condition at z = +L, for particles were discussed above. The driven and non-
periodic open boundary conditions for potential fields are presented below. Com-
pared to the boundary conditions for the electrostatic potential (¢) and its time
derivative (x), the boundary conditions for the vector potential (A) are relatively
simple. To maintain the constant influx (NyV;) of the incoming plasma at the
driven boundary (¢ = +L.), a constant electric field E; is imposed. The electric
field is determined from E; = —V, xBg/c so that the average incoming plasma flow
velocity V is consistent with the E; x By drift velocity at the boundary, where By
is the initial magnetic field at the boundary. Since B, has only the z-component
and V, has only the z-component, E; is found to only have the y-component,

i.e., Ey = Eiyey,. Through the driven boundary condition described above, the
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incoming plasma and magnetic field are pumped continuously into the simulation
domain. At the nonperiodic open outflow boundary (z = +L,), on the other hand,
the Neumann boundary condition is used, in which the normal derivative of A is
set to zero. However, as an additional constraint, the vector potential is required
to satisfy the Coulomb gauge V - A = 0 at the boundary. Therefore, boundary

conditions for the vector potential A at the driven boundary ¢ = +L, are given by

A,
2 =0 (4.56)
Ay(£L,,2,t) = Ay(£L,,2,0) — ViBy,(£Ls, 2,0)t (4.57)
Ay(£L,,2,t) = A,(£L,, z,0) (4.58)

At the nonperiodic open outflow boundary z = +L,, the boundary conditions for

the vector potential A are given by

A (z,+L,,t) = A.(z,+L,,0) (4.59)
04,
5 = 0 (4.60)
04,
5= =0 (4.61)

Notice that the boundary condition (4.60) for A, at the nonperiodic open
outflow boundary z = 4+ L, precludes the existence of magnetic field component B,
at the boundary. However, the existence of a normal magnetic field component, B,
in the present coordinate system, at the outflow boundary may be important for
the magnetic reconnection process [e.g., Petschek, 1964]. To allow the presence of

B. at the outflow boundary, an alternate boundary condition may be used for 4,

at z =+L,, ie.,

324, ,
S =0 (4.60")
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In the present simulation, either (4.60) or (4.60’) is used as the boundary condition
for A, at the nonperiodic open outflow boundary. An example of magnetic field
lines, represented by the contours of A,, observed in the simulation is shown in Fig-
ure 4.2. In Figure 4.2a, boundary condition (4.60) is used at the outflow boundary
while in Figure 4.2b, boundary condition (4.60’) is applied. It can be seen clearly
that with the boundary condition (4.60’) magnetic field lines may have a significant
B; component at the outflow boundary 2 = +L,.

Compared to the boundary conditions for the vector potential A, the boundary
conditions for the electrostatic potential ¢, as well as its time derivative x, are
very complicated and tricky. At the driven boundary z = +L,, magnetic field
lines are straight lines paralle] to the boundary of the simulation domain. It is
reasonable to assume that the magnetic field lines are equal potential lines at the
boundary z = £ L., since low frequency perturbations such as the tearing mode will
not support a parallel electric field. Thus, the electrostatic potential and its time

derivative are assumed to be constant along the driven boundary, i.e., at ¢ = + L.,
&(xLz,2,t) = ¢(£Leyz,0) =0 (4.62)

x(£L.,2,t) = x(£L:,2,0) =0 (4.63)

At the nonperiodic open outflow boundary z = +L,, where magnetic field lines are
either oblique or perpendicular to the simulation domain boundary depending on
the boundary conditions of A, a constant potential is no longer a good assumption.
As an attempt to solve for ¢ and x, the Neumann boundary condition is used,
in which the normal derivatives of ¢ and x are assumed to be zero at the outflow
boundary z = +L,. However, it is observed that with the boundary conditions for ¢

and x described above, a large electrostatic potential is generated in the simulation.
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MAGNETIC FIELD LINES

Figure 4.2 Magnetic field lines, represented by the contours of Ay, ob-
served in the simulation with different boundary conditions at the nonpe-
riodic open outflow boundary, (a) 0A4,/0z = 0 at z = +L, and (b)
0%°A, /82 =0atz = £L,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



125
Such large electrostatic potential is found to be caused by the Neumann boundary
conditions applied to ¢ at the outflow boundary z = +L,.
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