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Abstract

The diffusion of charged particles by turbulent electrostatic
oscillations in the magnetosphere is investigated as 2 possible
mechanism for energizing and fransporting ring current protons. A
simple model of the magnetosphere is used to carry out the investi-
gation. In the model the geomagnetic field is taken to be an
azimuthally symmetric axial field, the ionosphere is taken to be
perfectly conducting, and the ring current and plasmasphere piasmas
are assumed fo have Maxwellian distributions of velocities. The
diffusion process is assumed to preserve the magnetic moment or first
adiabatic invariant of the particles. The behavior of low frequency
(<< ion gyrofrequancy), long wave length (>> ion gyroradius)
electrostatic cscillations is studied. The electrostatic oscillations
are freated as ratural modes of the magnetospheric cavity driven by
fluctuations in the electric potential on the magnetopause, the
magnetosgheric boundary. |1 is concluded that diffusion of ring

current protons by this process is not important in the magnetosphere.

iii
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Chapter |

The purpose of this paper is to investigate the diffusion of
protons in turbulent drift waves as a possible mechanism for
energizing and transporting ring current particles. Since the
ring current seems to play a basic role in the magnetospheric
substorm as both a particle and energy reservoir, an understanding
of the mechanism which supplies ring current particles and energy
is basic to an understanding of the magnetospheric storm. A discussion
of the magnetospheric storm and the concept of a substorm is given by
S.-1. Akasofu (1968). Much of the following general material on
magnetospheric storms is drawn from this reference.

The magnetospheric storm is apparently the product of the inter-
action of the solar wind with the magnetosphere. The magnetospheric
storm can be divided into two parts, an initial phase and & number of
relatively short magnetospheric substorms. The ring current plays a
central role in the magnetospheric storm in that the phase or progress
of a storm can be related to the behavior of the particles in the ring
current. Originally, the ring current was concieved as a current
system surrounding the earth outside the ionosphere which accounted
for the main phase decrease of the magnetospheric storm. The ring
current was considered a mathematically convenient representation of
the main phase decrease mechanism and not necessarily a physical
reality. However, a physical entity called the storm time radiation
belt which behaves very much like the ring current has been detected

by satellite measurements. The storm time radiation belt consists

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



primarily of 1-50 Kev protons. The term "ring current" is now
generally used interchangeably with the term “storm time radiation
belt" to refer to this group of magnetospheric protons. The
distribution and total intensity of ring current particles in the
magnetosphere is greatly effected by the numbsr and duration of
previous magnetospheric substorms.

The concept of the magnetospheric substorm encompasses a number
of epparently interrelated phenomena which occur sporadically and
last for 1-3 hours. The auroral substorm, polar magnetic substorm,
micropulsation substorm, ionospheric substorm, x-ray substorm,
proton aurora substorm and the VLF emission substorm are all considered
to be part of a larger whole, the magnetospheric substorm. During
a magnetospheric substorm the total number of protons with energies
between 1-50 Kev increases inside the trapping region. The increase
in the total number of particles is not uniform in local time.

Indeed, the effect of the magnetospheric substorm seems to be to
increase both the asymmetry and the total number of ring current
particles.

During the course of a magnetospheric storm, the total number of
protons in the ring current builds up fairly rapidly via the mechanism
of the magnetospheric substorm and then decays slowly back to pre-sub-
storm levels. For a moderate storm the build up of ring current particles
lasts about 10 hours. The decay takes about 5-15 days depending upon
the size of the storm. The decay in the total number of ring current
particles may be interrupted by the occurrence of additional substorms.
The formation of the storm time radiation belt involves the transport

and/or energization of large numbers of protons in the magnetosphere

on the time scale of the magnetospheric substorm.
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Many transport and energization mechanisms that might be functioning
in the magnetosphere have been investigated. Some of the mechanisms
- proposed and sftudied are: magnetohydrodynzmic convection of particles
due to a viscous interaction between the solar wind and the magneto-
sphere (Axford and Hines 1961); convection of particles due fo a static
electric field across the maanetosphere (Kelloga., 1959;: Taylor and
Hones, 1965); rotational and gradient drifts (Swift, 1971); magneto-
spheric tail instability (Axford 1967, Dungey 1968, Piddington 1968);
diffusion of particles due to stochastic changes in the geomagnetic
field (Parker 1960, Nakada and Mead 1965). None of the mechanisms
proposed to date have been successful in explaining the formation
of the storm time radiation belt. However, some of the mechanisms
ctudied undoubtedly cperate to come dogroe during a magnetospheric
substorm. ost likely, the magnetospheric subsform invokes a
complex combination of transport mechanisms.

The transport of particles in the magnetosphere due to diffusion in
random electric and magnetic fields has been extensively investigated.
Many investigators (Parker 1960, Davis and Chang 1962, Dungey 1965,
Nakada and Mead 1965, Falthammar 1965, 1968; Conrath 1967, Schultz
and Eviatar 1969) have studied diffusion driven by pressure changes
in the solar wind which subsequently cause changes in the position of
the magnetopause. Radial diffusion of particles occurs through viclation
of the third (flux) adiabatic invariant. The differences in the treat-

. ment of the problem are usually the method for obtaining the diffusion
equation and the conditions imposed upon the magnetospheric plasma. A
discussion of the work of Nakada and Mead (1965) and Schulz and Eviatar

(1969) illustrates the different approaches to the problem.
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Nakada and Mead use the Mead (1964) model of the geomagnetic
field. The effect on the main field of the position of the magneto-

. pause is taken into account in this model of the field. The diffusion
mechanism is assumed to work in the following manner. A compression
of the magnetosphere (i.e. an inward motion of the magnetopause) is
assumed to take place on a time scale short in comparison with the time
it takes an equatorially trapped (J=0) particle to drift around the
earth. Depending upon the particle's position in local time when the
compression occurs, particles which were drifting on the same shell
of constant B will follow the line of force to a different value
of B and drift on different shells of constant B - thus violating
the third adiabatic invariant. if the decay of the field fo its
original confiauration is slow in comparison with the time it fakes a
particle to drift around the earth, the third invariant will be conserved
and the particle will remain on ifs new shell of constant B. The total
effect is to spread out particles on neighboring shells of constant
B. That is, the particles undergo radial diffusion.

Such sudden compressions in the field with slow recovery do
indeed occur. They are called sudden impulses or sudden commencements.
Nakada and Mead calculated a dispersion coefficient by using an
ensemble of these impulses compiled from actual observations.

Nakada and Mead use a Fokker-Plank equation to describe the
evolution of the distribution of particles trapped in the magneto-
sphere. Particle energy losses due to Coulomb scattering and charge
exchange collisions with neutrals are taken into account in the
solution of the equation. The coefficient of dynamical friction is

assumed to be proportional to the dispersion coefficient. The value used
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for the dispersion coefficient was .03l (LIO/Lg) (earth radii)zlday.
Lo is the distance from the center of the earth to the magnetopause
along the earth sun line. The eguation was solved using measured .
values of particle fluxes > 100 Kev for an initial distribution.
Although some qualitative agreement with measured equilibrium particle
fluxes was obtained for high energy particles (>50 Kev), a larger dis-
persion coefficient than the one calculated is needed to obtain quanti-
tative agreement between the theory and observation.

I+ was implicit in the discussion of the diffusion mechanism
above that the compression of the magnetopause was so sudden that
all particles on a field line moved with it, regardless of their
p value (u is the magnetic moment). This, of course, is not strictly
true and a diffusion equation and diffusion coefficient for which
this assumption is not made has been derived by Schulz and Eviatar
(1969). They do, however, assume J=0 and E-B=0. The evolution of the
distribution function is given by a diffusion equation rather than the
Fokker-Plank equation. The diffusion equation is derived using the
Mead (1964) model of the field, but the unperturbed drift orbits of the
particle around the earth are assumed to be non-circular. The diffusion
coefficient depends upon the power spectrum of the fluctuations in
the stand-off distance of the maagnetopause (Lo). If an inverse
power law is assumed for the power spectrum the expression for the
diffusion coefficient is similar fo Nakada and iead's for L<<L .

A different mechanism for diffusion of particles in the magneto-
sphere has been investigated by Birmingham (1969). He suggests
that diffusion is not driven by the induced electric field caused

by fluctuations in the geomagnetic field but by variations in the
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electric potentiai fields (VxE=0) governed by the dynamics of low energy
(<8Kev) trapped particles. The potential nas wave lengths on the order of

the dimensions of the magnetosphere. That is, Birmingham assumes the low
energy component of trapped particle fluxes preduces an electric potential

V such that E = - = - —g x B where v is the hydromagnetic flow velocity of the
low energy plasma. Birmingham uses the cut-off energy of & Kev because
particles below this energy are dominated by electric field drifts of

"typical" fields found in the magnetosphere while particles above & Kev

are dominated by gradient and curvature drifts.

Birmingham uses a diffusion equation developed by Birmingham,
Northrop and Falthammar (1967). The equation is valid for particles with
arbitrary values of p and J. Again diffusion occurs as a result of
violation of the flux invariant. A simple model is used to derive an
explicit expression for the diffusion coefficients. A dipole magnetic
field is assumed and a potential of the form V = A(t) r sln¢/sln2e is
used to describe the electric potential in spherical coordinates. The
flow pattern of the low energy component of the plasma Is similar o the
convective flow patterns envisaged by Levy et al. (1964) and, fo some
extent, other convective flow models (e.g. Axford and Hines 1961). It
is shown that the diffusion coefficient is proportional fo L6 and the
value of the power spectrum of the time dependent coefficient A(t)
evaluated at the azimuthal drift frequency. |If the autocorrelation
function of A(t) (i.e. the inverse Fourier transform of the power
spectrum) is assumed to have the form C exp (—fz/rg) where T is

the correlation time, then the diffusion coefficient is proportional
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to Lﬁtcexp(-wé 15/4). For particles with azimuthal drift frequencies

wp much less than ;l-'T is proportional fo L61C and thus independant
of u and J. N
’ Birmingham solves a one dimensional diffusion equation with no
loss terms using’?he approximation to the diffusion coefficient
with m§r§<< I. Thus the results are applicable to particles with
drift periods 27 (= 4.4x|04 (L x Lenergy in Kev])'l minutes) much
larger than Th: correlation time. Birmingham uses a value of one
hour for the correlation time. Choosing a value of (2x|0_4 v/m)2 for the
coefficient C in the correlation function, Birmingham shows that an
initial delta function distribution in number density at 8 Re (earth
radii) will yield a significant number of particles at 5 Re in about
I8 hours (see Birmingham 1969, figure 1). A similar analysis
using the diffusion coefficient given by Nakada and Mead takes over
100 days to produce the same results. Thus a substantial increase
in the diffusion rates can be obfained by using the variations in
the convective electric field associated with the flow of the low
energy component of the magnefospheric plasma. The diffusion rates
appear, however, to be still too slow to transport particles several
earth radii on the time scale of the magnetospheric substorm. [f
diffusion processes are to be important during a substorm an increase
in the diffusion rate is necessary.

Most of the studles of diffusion processes in the magnetosphere
have concentrated on very low frequency variations in the magnetic
field. The frequencies are low enough that the second adiabatic
invariant of the particles (J) can be assumed to be conserved.

This study will concentrate on electrostatic oscillations whose
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frequencies are near the bounce frequency of a typical ring current
proton but much less than its gyrofrequency. The interaction of a
proton with electrostatic oscillations in this frequency range will
violate the second (longitudinal) and third adiabatic invariants of
the particle. The first invariant, u, is assumed to be conserved.
Such electrostatic oscillations which can exist in plasmas with
number and/or temperature gradients, such as the magnetospheric
plasma, are generally called driff waves. Drift waves character-

istically have wave lengths parallel o the magnetic field, Ei

much larger than their wave lengths perpendicular to T;. This is an
Ideal property in the respect that the requirement of conserving the
first adiabatic invariant demands that the parallel electric field

be small but for strong diffusion the electric field perpendicular

to the magnetic field must be large so that the E:@fdrlff of the
particles is large. The equation for the electric potential associated
with the drift waves will be developed under the assumption that the
wave length perpendicular to Bis larger than an ion gyroradius and the
wave frequency is less than the ion gyrofrequency but greater than

EwD (& is the azimuthal wave number in that Z%L is the wave |ength of
the oscillation in the azimuthal direction and uy fs the azimuthal fon
drift frequency since %§ is_fhe time it takes an ifon to drift around
the earth.) The energy source for the diffusion is assumed to be near
steady (in time) fluctuations in the electric potential at the magnet-
ospheric boundary, the magnetopause. Thus the solutions of primary
interest will be undamped or only slightly damped oscillations which
have significaent electric fields throughout a large part of the mag-

netosphere.
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Chapter 2

A Mcdel Magnetosphere

The interaction of the solar wind with the earth's magnetic field
Creates a magnetic cavity., The confinement of the earth's field by
the solar plasma was investigeted theoretically as early as 193] by
Chapman and Ferraro. With the advent of the space age and satellite
borne magnetometers the confinement of the earth's field in space
was demonstrated.

Infensive investigation of the particles and fields surrounding
the earth has revealed most of the salient features of the magneto-
spheric cavity. However, there is still disagreement over whether
the cavity is open (geomagnetic field Ilnes connected to interplanetary
field lines) or closed (no connection). Further, some regions of the
magnetosphere have yet fo be investigated. Several general features
of the magnetosphere have been firmly established, however.

The magnefosphere is generally divided up into various regions
such as the magnetotail, the Trapping region, the plasmasphere,
eftc. Regions in the magnetosghere are identified by changes in the
character of the magnetic field or by various characteristics of the
local particle population or energy spectrum. Surrounding the
magnetosphere is a region called the magnetosheath. The magnetosheath

Is essentially a transition between the region dominated by the

geomagnetic field and the ordered flow of the solar wind. The
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magnetosteath is characterized by the.furbulent nature of the magnetic
field whose flucTuations can be as large as 100% of the average field
(Smith and Davis, 1970). The bow shock n;arks the outer boundary of
the magnetosheath on the sunward side of the magnetosphere. The bow
shock is an essentially permanent, collisionless, standing shock
wave whose thinness (much less than an ion cyclotron radius (Heppner
et al., 1967)) suggests that it is an electrostatically generated
phenomenon. The inner boundary of the magnetosheath, the magnetopause,
separates the disordered field of the magnetosheath from the ordered
field of the earth. On the day side of the magnetosphere the
magnetopause is easily identified by a change in field magnitude
and direction over a distance of a few hundred kilometers., The
magnetopause is more difficult to identify in the tail region of
the maegnetfosphere.

The gecmagnetic field close to the earth is almost dipolar but
deviates considerably from a dipole field near the magnetopause
and in the magnefotail. On the day side the field is compressed and
lines of constant B in the equatorial plane are displaced outward
(away from the earth) from those of a dipole field. In the antisolar
direction the field is inflated and lines of constant B are displaced
inward from those of a dipole field. Near the magnetospheric
equatorial plane the field changes direction abruptly forn;ing a
region cal led the neutral sheet. The neutral sheet extends across
most of the magnetospheric tail in the megnetospheric equatorial

plane. The Inner edge of the neutral sheet begins at about 10-15 Re
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in the antisolar direction. The high latitude field lines all extend
in the antisolar direction and constitute most of the magnetic field
in the tail.

Particle populations in and near the magnetosphere are identified
by the shape of their energy spectra and their number densities.
Usual ly, the infernal energy of a plasma can be used to define a
temperature -(32ﬁ= internal energy). The acfual particle distribution
function can then be approximeted by a Maxwellian distribution of
velocities corresponding fo this ftemperature. The actual measured
plasma velocity distribution can then be compared to the associated
Mexwellian distribution. For example, the magnetosheath electron
velocity distribution is broader and has fewer low energy particles
than its associated Maxwellian distribution. The magnetosheath proton
distribution similarly lacks low energy particles and also has a
small peak in the number of particles located at about 2-3 times the
average particle energy. The average proton energy is a few hundred eV
and the average electron energy -2 hundred eV (Montgomery et al., 1970).
The transition from the solar wind plasma fo the magnetosheath plasma
which occurs at or near the bow shock is also discussed by Montgomery
et al.

Frank (1970) has identified two characteristic proton energy
spectra in the magnetotail. One spectrumis quite similar to that
of magnetosheath protons which suggests that magnetosheath particles
have access to the tail. The other group of particles identified

by Frank has a much broader characteristic spectrum with an average
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energy near 5 Kev. Both of these groups of ions are generally taken
to be members of the plasma sheet. The plasma sheet is a particle
population centered about the neutral sheet. In the tail region it
is about 4-5 Re thick, measured perpendicular to the neutral sheet.
It extends near the earth into the dawn and dusk sectors where it is
6-12 Re thick. The inner edge of the plasma sheet is usually
identified by the behavior of the electrons. The electron velocity
distribution is roughly Maxwellian but has a high energy tail. The
average electron energy is near | Kev but can range up or down by an
order of magnifude (Vette, 1970}. The best indicator of the inner
edge seems to be a decrease in the total energy density or a decrease
in the number density of all particles with energies greater than
700 eV. The determination of the inner edge depends upon the energy
of the electrons observed (Schield and Frank, 1970). The inner edge
of the plasma sheet has not been observed to penetrate the plasmasphere
even during disturbed times. However, the character of the electron
energy density and the position of the inner edge is apparently quite
different during guiet and disturbed times. Vasylinnas (1968) puts
the inner edge of the plasma sheet during quiet fimes at [l + | Re.
Schield and Frank place the inner edge 1-5 Re from the plasmapause.
The difference in The two results may be due to a latitudinal dependence
(Schield and Frank, 1970).

The plasmasphere is a cold dense plasma (compared to the ring
current) that corotates with the earth. The outer boundary of the plasma~

sphere, the plasmapause, is most easily identified by an abrupt change in the
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number density of plasmasphere ions. The change in the number density
is typically over an order of magnifude. Several examples of plasmapause
crossings and representative number density profiles are given by Taylor
et al. (1968) and Chappell et al. (1970). The density of cold ions
(I05-104°K) Jjust outside the plasmapause is typically l—IO/crn3 and
inside the density rises abruptly to lOO-—IOOO/cm3 and continues to
increase at a slower rate with decreasing L value. The studies
by Taylor and Chappell both indiceted that the plasmapause
tended to move inwards with increasing magnetic activity. Recently,
Russell and Thorne (1970) have reported that the plasmapause actually
coincides very closely with the location of the maximum density of
the storm time radiation belt.

The development of sensitive differential energy analysers by
L.A. Frank has enabled him to study very low energy protons in the
energy range 200 eV to 50 Kev (Frank 1967, 1970). Protons in this
energy range were subsequently found to be an important particle
population in the magnetosphere. The storm time radiation belt, primarily
comprised of particles in the 1-50 Kev range, is largcely responsible
for the main phase decrease during magnetic storms (Frank, 1967) and
thus can be closely identified with the ring current. The ring current
protons in the [-50 Kev range are recognized by their characteristic
energy spectrum and radial number density profile. The ditferential
energy spectrum hardens slightly as L decreases. The spectrum at 6 or
7 Re is almost flat from 3 to 30.Kev. The average energy is tfypically

between 5-20 Kev. The number density ot these low energy profons
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depends upon the megnetic activity and the local time. Satellite

and ground based magnefometer measurements (Cummings et al.1968) indicate
thet during a megnetospheric.substorm there may be 2 decrease of

ring current particles in the midnight to dawn sector (2400-G00

local ~ime) while in the early evening fo midnight sector (1600-2400
local rime) an increase of ring current particles has been directly
measured by satellite (Frank and Owens, 1970). Furthermore, Frank

(1970) has measured the number density at different lccél times

during various phases of a magnetic storm and found there exists an
asymmetry in The number density during all phases of a storm. The
asymmetry appears fo be largest during the early development of the

main phase, Frark 2nd Owens (1970) have investigated *he proton
distribution in the midnight sector and found the persistent presence

of a "quiet time ring current" with peak proton energy densities

near L=6.5. Several typical flux crofiles i.e. the L dependence of

the flux are given by Frank (1967b) for various energy ranges. These
profiles all have the same qualitative behavior as functions of L. Since
the shape of the differential energy spectrum changes only slightly with
L and is nearly flat, the number density as a function of L will be
proportional to the flux profile for energy ranges near the average energy.
Thus the flux profile for the energy range 16-25 Kev should have the same
L dependence as the number density. Peak number densities in the

storm time belt vary with the magnefic activity. Frenk (1967)

reports a measurement of the peek number density of 8 + 2 l;rofons/cm3

at magnetic latitude 27° for the main phase of a moderate storm. A -
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slightly larger value is excected for the equatorial number density.
The electron energy density is.only about 25% of the proton energy
density in the storm time rediation belt.

The upper regions of the earth's atmosphere are partially ionized
by solar radiation and energstic particle bombardment forming a
conducting layer known as the ionosphere. The conductivity of the
ionosphere must be expressed as a tensor. The components of the
conductivity tensor are functions of electron density, ‘collision frequency,
gyrofrequency, latitude and local time. Rather than use a complex model
of the fonosphere, it will be represented in the model magnetosphere
as a perfect conductor.

ldeally a modei of the mwagnelosphere should refleci all of the
significant features of the actual magnetosphere but still be simple
enough to work with. lodels of the geomagnetic field in popular
use are formed by 2 dipole, image dipole and tail current and account
for the gross features of the magnetospheric field, the magnetopause
and the magnetotail. However, such effects as field inflation due
to particle populetions are not taken into account.

To facilitate the study of diffusion in the magnetosphere it is
best to chose the simplest model possible which adequately describes
the physical situation. Thus Nakada and Mead as well as Schulz and
Eviatar chose a model which accounts for the magnetopause since they
are considering diffusion driven by induced electric fields produced
by changes in the magnetopause position. Birmingham, however,
chooses a dipole field model since he is considering diffusion

driven by an internally generated electric potential. The
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determining facfor inchoosing a model suitable for treating cavity
modes is.the ease with which boundary conditions can be specified.
This factor eliminates the consideration of numerical models and
discourages the use of complex geometries.

The model that will be used for calculating the functional depen-
dence of the cavity modes is roughly equivalent to & tin can filled
with a lossy dielectric. The model is best described in terms of the
usual cylindrical coordinates (r, 6, z). An azimuthally symmetric
axial magnetic field is assumed. The field is faken fo be in the z
direction and thus its magnitude is a function of r only. The
magnetopause is represented by the cylindrical surface, r = 10 Re(eaf"”‘ radii).
The ionosphere is represented by perfectly conducting endplates
at z =+ A Re' The plasmasphere is an inner core of cold, Maxwellian,
electron-proton plasma with Ti (the ion temperature) = Te (the
electron temperature) = IO4 °K. The storm time belt is represented

by a hot, Maxwellian, electron-proton plasma with Ti = IO8 °K.

The plasmapause is assumed to be lccated at r = 5.9 Re

and is represented by a sharp decrease in the number density

of the cold plasma. The hot ring current plasma number density
has a maximum value at § Re' The behavior of the ring current
number density on r between the location of the peak number
density (6 Re) and the magnetopause (10 Re) is given by either an
exponential model (klexp -(r-éﬁe)zlaz) or a power |aw model
(kI/(rz)p). The use of these models is discussed in Chapter 5.
A schematic representation of the behavior of the ring current

and plasmasphere number densities is given in Figure 2.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

Figure 2.1 A diagram of the mode! used to represent

the magnetosphere. The model is azimuthally symmetric.

The field lines are straight and directed perpendicular

to the ionospheres. The ionospheres are represented by
perfectly conducting disks at either end of the cylinder.
The outer cylindrical surface represents the magnetopause
and the inner cylindrical surfaces indicate the location

of the plasmepause. The cavity is 24 long and 20 Re in
diameter. The schematic dependence of the number densities
of the ring current and plasmasphere plasmas on radial

distance are given in semi-log plots.
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The cylindrical geometry of the model meskes it very easy to apply
boundary conditions. Since the magnitude of the megnetic field
depends upon r only, the gradient drift is in the azimuthal direction
only. Since the field lines are straight, there is no curvature
drift nor mirror force on the particles. The mirroring motion of
particles in the magnetosphere is simulated by considering the
ionosphere as perfectly elastic. That is, particles are reflected at
z =+ Awith no loss of energy. The question of whether or not this
model adequately represents the essential features of any diffusion
processes that might be driven by drift modes in the magnetosphere is

best taken up after this simple model has been investigated.
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Chapter 3
The Diffusion Equation

Diffusion in the magnetosphere is assumed to result from the plasma's
interaction with wave turbulence present in the plasma. The turbulence
in the plasma is assumed fo be weak enough that it can be freated as a
perturbation effect on the particle's behavior in the absence of turbulence.
Changes in the phase space density of particles due to perturbations in
the particle's orbits can be expressed by means of a diffusion eauation
in a manner similar to that used by Birmingham, Northrop and F&lthammar
(1967). The actual wave turbulence in the magnetosphere is represented
by a statistical model in which the phases of the various Fourier com-
ponents of the perturbation wave fields are assumed to vary randomly with
time. The phase space orbit of a test particle is expressed in ferms of
the amplitudes and phases of the perturbing wave fields and the diffusion
coefficients used in the diffusion equation can then be expressed in ferms
of the random phase variables. A final expression for the diffusion
coefficients is obtained by ensemble averaging.

The diffusion equation will be developed restricting the discussion
to the magnetic field of the model magnetosphere and electrostatic oscil-
lations. The development of the equation which is based on Birmingham,
Northrop and F&lthammar (1967) is outlined here and the details are given
in Appendix A-li. First the magnetic field, B(r) Tz' is expressed in the
usual Euler coordinates q and 8: B(r) = Va x V8. The restriction that
the magnetic moment of the particle, u, be conserved is used to obtain

the HamiItonian (see appendix A-1)

21
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22
H= /2m+LE+=¢+-u5+p(35+e£’“’-'v's) meEy

8 287
‘s is the measure of distance along a field line from a fixed reference

plane. The field line is given by the intersection of surfaces of
constant « and 8. Ps is the momentum conjugate to s. The continuity

equation in the phase space (a,B,s,ps,u) for the density of guiding centers Q

29, a0 + Zdo) + 2o+ ~—-<p o) =
at 3P,

can be written as a Liouville equation

S

20,
at
since o, 8 and s, pS are canonical variables (see appendix A-1).
ifQ, %%, &, etc. are considered as random variables, they can be
conveniently written in the form x = <x> + éx. The brackets < >
indicate the ensemble average and 6 the fluctuating part of the
variables. |f the perturbations in the particie's phase space orbits
during a time interval which is less than or equal to the correlation
time of the random process are assumed small compared fo the scale
size of the average phase space density <Q>, it can be shown (see

appendix A-11) that <Q> satisfies a diffusion equation:

3 <Q> . 3 3 <Q>
ot Lo 4523— O T
i= X i=1j=1 i i J

where the notation xi=°; x2=e; x3=s; x4=pS is used to denote the

phase space coordinates. The diffusion coefficients Dx ., are
i7J
given by the expression
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1
= () % '
Dxixj <é dt ﬁxi(a,B,s.ps,f) GXJ(MI’WZ'WZ'W4'+ )>

The unperturbed or zero order orbits of the particle in phase space )
as a function of the paremeter t'-t = 1 which measures time "backwards"
along the orbit are denoted by Wi The Wi must satisfy certain
conditions:

al tt =+ w, =

and hl = <&>; WZ = <@>; W, = <§>

The notation W indicates differentiation with respect to the time

argument. Since the fluctuations 8% can be expressed in terms of

the Hamiltonian (for example, 8& = - % [g% - :—5<H>] ), the diffusion

coefficients can be cxgressed in terms of the Mamiltonian. Before
proceeding with the calculation of the diffusion coefficients, a
statistical model of the turbulence must be developed.

Suppose we are considering the interaction of a group of particles
with a coherent electrostatic plane wave of wave length A = 2n/k and
frequency w. Suppose also that the particles have a velocity
distribution g(v) and glw/k) # 0. Then some of the particles will
undergo substantial Ex3 drifts since they see the wave as an almost
constant electric field. After a time T, the number of particles
that undergo a substantial drift is roughly g(u/k) A/T. So the
number of particles that see the wave as constant becomes arbitrarily
small after a sufficiently long time. As a result essentially no
particles, on the average, are transported by the wave. Turbulence

effectively puts an upper limit Tc on T, so that even for long times -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a group of roughly g(-'i%) ?.—- particles interacts with the wave and is
transported by it. This :ffec‘f can be reproduced by using a statistical
model to represent the turbulence. A common practice is to assume that
the phase of the wave is changing randomly. An example of a
representation of turbulence with a random wave phase statistical
model is given in a discussion of plasma heating by stochastic electric
fields by Puri (1966). Puri assumes that the wave phase can change
by an arbitrary amount at intervals of time which are randomly
distributed. The statistical model employed here will be similar in
that the wave phase will be considered a random variable but the phase
will be assumed fo change only a small amount in a smali time.

It will be shown later that the electric potential associated with
the electrostatic fluctuations in the model magnetosphere can be
written as

o(r,0,z,1) = | Alg,m,n,r) exp i(wt+gB-kz+y(L,m,n) ) 3-1
L,m,n

k = %% is the parallel wave number, w = w(&,m,n) is the wave frequency
and y(2,m,n) is the phase of the wave. |t is convenient to introduce

the shorthand notafion

] (L and g{L) for §  f(%,mn) and g(2,m,n)
L L,m,n

The phase Y(L) is considered a random variable. The random process can be
completely described by giving explicit expressions for The-hierarchy of

probability distributions

Wn(\pl(I),wl(Z),wl(E)""l‘l; ¢2(|),w2(2),¢2(3)~-~f2;

RO RRCIRREEE N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24



25

(see Wang and Uhlenbeck, 1945 as a general reference). Again it is

-convenient to infroduce a short hand notation and me will be used to denote
wm(l),wm(Z),’wm(_’:)"'drm(m)
It will be assumed, as is usual, that the entire process is

stationary and Markoff. So the heirarchy of probability densities

can be expressed in terms of the second order protability density

WZ(R‘J/I,T]; R\uz,fz). Also, it is assumed that the second order

probability density for the whole process can be written as a product

of the second order probability densities for individual wave

components:

WolRY T |5 Riputy) = Ty, (), Fpyl, ) 3-2

Wz(wl(L),fx;wz(L),Tz)de(L) d\bz(L) is the probability that the phase of
the Lﬂ‘ component has a value between wl(L) and w'(L)Mw‘(L) at the time
1‘| and a value between wZ(L) and wz(LHdwz(L) at time ?2. Physically
the assumption 3-2 means the particles see the phase of each component
independently of any other. Let w[""z""}"" denote the phase angles

of any particular component af TI,TZ,T «++ respectively. Then it

3
follows from assumption 3-2 and the assumption that the entire
process is Markoff that the process for an individual wave component is

also Markoff, since

Walh) o5 g tos ¥gpts) = £w3(R¢I,+I;R¢2,+2;Rw3,+3)

={wz(Rwl.?l;sz,fz)Pz(sz,fz | Rog,ts)
= Wttt Pl Ty | sty

vwhere [ denotes inlegration over the phase variables of all

components except V'I'%'“’} and Pz(l) is the second order conditional
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probability density. P(\L‘I,Tlloz,‘rz)dwz is the probability that the
phase has a value between xyz and w2+dw2 at time 'rz given that the
phase had the value wl at time ?l. A similar relation holds for all
wn(\pl,fluown,fn) and thus the entire heirarchy of probability
densities for an individual wave component can be expressed in terms of
wz(w],fl;wz,fz) and so the process is Markoff. The entire process can
be described once the second order conditional probability density
Py, i, 1y) is given.  Since Wy, 30,,1,) is Harkoff, Polby st sty
must satisfy the Smoluchowski equation as well as the condition

Polyy st syfy) > 8Lyy-y)) as ot 3-3

If it is assumed that in a time inferval of length 8t the phase
can change by only 0 or * 4 then ihe Smoluchowski equation becomes

a familiar partial differential equation (Wang and Uhlenbeck, 1945)

2
) .o d |
37 Pt gty = 0S5 Pytu Lt | gty

3T "2 d\PZ
_ - e LA
where + = fZ—TI and ¥ = wz \bl and D is given by Lim =7
20
820

The solution to the above equation which satisfies condition 3-3 is

Y
= —— exp -
(an'HI/Z 4Dt

Potoputy | ug,ty) 3-4

Equation 3-4 is sometimes called the random walk distribution

because the solution to the random walk problem in which a step of

fixed size is taken at fixed intervals of time goes over info 3-4 in

the continuous case. Using the random walk as an analogy, the

phase is considered to change by Ay every step and each step occurs

(a0)2,
> .

every |/ seconds and D = So x will be called the dephasing

frequency and is an indicator of the strength of the turbulence.
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W,

wl and wl+dw| at time ?[. If the phase is evenly distributed between

f|)d¢| is the probability that the phase ¢ has a value between

0 and 27
W ot = 1/2m

and Nz(\pl,fl;wz,fz) = wl(wI,TI)Pz(wl,‘rl | Yyuty)

| -y
= < exp 3-5
(2> 2ay/et 20892t

In the expression 3-5 the phase at fz can have any value between
-= and ., Usually the phase angle of a wave is restricted befween

0 and 2n. An expression for WZ which is appropriate for this

restriction is @
2
| § —(y+20m)
Wyt 50.,1,) = ———— exp —————s— 3-6
M T Y= Zetap)?

n==

Vihen ensemble averaging the expression 3-5 is more convenient to use
and gives the same results as 3-6 as long as the integration over

02 is carried out before the integration over by Using 3-5 and 3-2
the second order probability density for the entire process can be
written

2. 2
oY exete L=y, (L)Z/2887 (e (L)

W Ryt 3Rt = 209,

2T T L IR EAY(WE:

3-7
The diffusion coefficient Dnu for the mode! magnetosphere can
now be calculated using 3-7 as the probability density for the ensemble.
The details of the calculation are given in appendix A-l11. For
particles whose bounce periods are somewhat larger than the inverse
of the dephasing frequency the diffusion coefficient Duu can be

written for a steady state solution as (see equation A-111-18)
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2
= 2\n, 2
O = 7, I efles,mn,e 2 6tL,m,n,v,,s) 3-8
,m,n

= coefficients C(&,m,n,c) are the Fourier coefficients of the

electric potential defined by

o(a,8,s,7) = § C(L,m,n,u) expi(wt+li-ks+y)
L,m,n

The G(g,m,n,v,,s)'s are complicated functions of the initial conditions
of the particle. The position of a particle on a field line is an
important factor in the diffusion coefficient because the particle will
see an abrupt change in the phase of the wave when it reflects from

the end plates in the model. Also, since the dephasing

frequency is assumed to be higher than the bounce frequency, the
particle will have "seen" the wave at all phase angles in a few bounce
periods. Thus the first one or two bounces of the particle will make
the largest contribution to the diffusion coefficient. G(2,m,n,v,,s)
is given by

'

' -kt

6(L,myn,vy,8) = —X (L’m';) I- Zkv"§ =2
k' ,mn)+0”(2,m,n) kTl

-<'T “+“—'K'2
2m(cos(m_+o) -e cos(w+T+w_f°) T

. -«<T_.
[s:n(u_To) -e 5|n(w#T+w_+o)]}
where T = 20/|vy| is the particle's bounce period, fo = M |val-s/vy
is the time to the first reflection of the particle from the ionosphere,
and
' _ 2
x'(2,mn) = k(2,m,n)Ap"(g,m,n)/2
u+(l,m,n) = w(g,m,n) + 1<m0(a)> + Kvy

w_(2,m,n) = wlg,m,n) + £<ND(5)> - kvy,
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The dephasing freguency x and the phase change 4y have been written
so that they can be different for ea‘ch wave component. Equation 3—8'
is given under the assumption that x'(2,m,n) > T‘l for all &,m,n.

The diffusion coefficients can be expressed in fterms of the
amplitude of the fluctuations of the potential on the magnetopause
once the electric potential in the model magnetosphere is calculated.
The calculation of the electric potential will be the subject of

the next few chapters.
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CHAPTER 4

DRIFT MODES IN THE MODEL MAGNETOSPHERE

The theoretical Investigation of eiectrostatic oscillations in
plasmaswith number end temperature gradients has been developed to
the point where general magnetic configurations can be treated (Krall
and Rosenbluth, 1965; Rutherford and Frieman, 1968). The simple magnetic
field contfiguration used in the model magnetosphere allows a differential
equation for the electric potential to be developed without resorting to
the procedures used in the consideration of general field configurations.
A differential equation for the potential associated with electrostatic
oscillations in a cylindrical plasma column with an axial, azimuthally
symmetric constant magnetic field has been developed by Swift (1967).
The method used by Swift fo devé\cp the equation can be easily modified
under certain restrictions o allow for the magnitude of the field to
be a function of radius. The development of the differential equation
for the electric potential and the assumptions under which it is derived
are given in Appendix 8-1.

A differential equation for the electric potential, ¢, is derived
by solving the collisionless Vlasov equation and Poisson's equation.
The term containing the electric field in the Vlasov equation is treated
as a perturbation. The perturbation electric field is assumed to be
electrostatic in nature and thus arises from a potential determined
b'y Poisson's equation. The electrostatic. acceleration % |‘V‘¢| is

considered to be small compared to the Lorentz acceleration % ]‘v‘xﬁ‘l .

30
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The electric potential is assumed to vary on a scale size larger than the
ion gyroradius so that the expansion of equation B-i-6 is valid. The
inflation of the magnetic field caused by the diamagnetic current arising
from the gradients in the plasma is ignored. The wave frequency is
assumed to be between the ion gyrofrequency and lmD (2 is the azimuthal
wave number and wy is the azimuthal drift frequency of the ions). The
electric potential is expressed as

o(r,8,z,t) = Z fdu AR ,m,r,w) expiluwt+26-kz) 4-1
4,m
Since the ionosphere of the model magnetosphere is represented by a
m

perfectly conducting disk at z = +A, k can be written as 2% (where
m is an infeger).

Before giving the differential equation which determines ¢, a
discussion of the notation uséd is helpful in understanding the
equation. The subscr!pf. i will be used to denote the particle species
(i=| for ions and i=2 for electrons). The subscript j will be used
to denote whether the variable refers to the ring current plasma
or the plasmasphere plasma (j=| denotes the plasmasphere and j=2
denotes the ring current). The zero order or unperturbed number
density will be denoted by nQJ and its derivative with respect to r2

is denoted by ncl>j' A graph of the unperturbed number densities for
the plasmasphere and the ring current as a function of radius is
given in figure 2./, The velocity space distribution of both the
‘ plasmasphere and ring current plasrmas is assumed to be Maxwellian.
The plasmas are allowed to have different temperatures parallel and

perpendicular to the magnetic field. The parallel temperature of
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the plasma is denoted by Tulj and the perpendicular temperature is
given by T.v.ij~ The parallel thermal velocities of the particles will
be given by VU. The charge, the sign of the charge, the mass and the

gyrofrequency of the particles are given by e, €is My and ni, respec-

tively. <p§> denotes the ion gyroradius and <(>JD>.j denotes the azimuthal
KpTog
drift frequency of the particles (<mD IJ € ————-J-—r where k
ZrB

denotes Boltzmann's constant). The ratio of the parallel phase
velocity of the wave to the parallel thermal ion velocity is an

important parameter and is denoted by zeta (z, ). Z(;ij) is

=2
ij kV”
the plasma dispersion function analytically continued from the lower
half of the complex w plane.
The differential equation for the electric potential with
Tu;_i
for Tuij # Tyij is given by equation B-1-12.

= T.Lij = TU. is given by equation 4-2. The equation appropriate

.2
4 Alg,m,rw) = [_2_ + %’-}] AC,m,r,0) = UGHAL,m, )
r

dr

Ia

|
— =T
[

al

T

2 2 ZEe.nC". Rewp>; .
NCr) = k° + 4re” | ] { 0 @)+ TJ-ZW;U) )
i ij

m.Q.KV. .
]
"o fewg?y
——— (¢, . !
+ kaij o+ ;iJZ(;iJ) + kv” ;UZ (;‘J) )] 4-2

2%<0>
o) = 1 - 4ne’ Z —L[ @+ gl ATU
W

R ij
n 20<wy>
ol 4O 1§ 1
+ kaij o+ LiJ.Z(;ij) vi_| ;iJ.Z (cij)) )
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Equation 4-2 can be put in the form of a familiar differential equation,
the Schrodinger equation, by the transformation r — e*. The singularity
in equation 4-2 at r = 0 is removed to -» by the transformation and

4~2 becomes

& 2, - _
{5 -+ Tom | Rgmu,x) =0 4-3
dx’
X
where T = M&2 2% 14 9 10 Tix) is small for all x, the W.K.B.
0 dx

or short wave length approximation may be used to solve 4-3. The
solutions fo equation 4-3 obtained by using the W.K.B. method and a
brief discussion of their behavior when [9.2 + U(x)] changes phase or
goes through zero is given in appendix B~Il. The solutions to 4-2
obtained by using the short wave length approximation have the form
AQ2,m,r,u) = Ao(z,m,u) ?J;aexp f q dr 4-4

where q2 = =U(r). Eguaticn 4-4 actually gives two solutions to 4-2
since the phase of g has two values.

The behavior of the soluticns to equation 4-2 is determined by
the behavior of U(r). The variations in U(r) for a given £ and m
are determined mainly by the changes in S and n;. Except for the

inner edge of the ring current and at the plasmapause n_ and né change

°
significantly only over distances on the order of | Re' In the derivation
of equation 4-2 it was assumed that the wave length of the solution

was several times larger than the ion gyroradius. In the magnetosphere
near the magnetopause the ion gyroradius can be as large as .02 Re‘

Since in the short wave length approximation ¢ is assumed to vary

more rapidly than U(r) the solutions to equation 4-2 can be expected

to have wave lengths in the range of about .05 to .5 Re‘
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A study of the behavior of U(r) is facilitated by writing U(r) =

A+iB where A and B are real functions of r. The function q(r) =

172

-utr)) can‘be written as q = C+iD (where C and D are also real

functions of r) and

s /T3 12 38
Ceip AAE om0 3B s
7z /2(/h%8% - 72

Fractional powers of positive real quantities are taken to be positive.
The sign notation means that if the plus sign is chosen for C, then
the minus sign must be used for D and vice versa. From the form of
the solutions given by equation 4-4, it is apparent that C determines
the radial wave kngth of the solutions and D determines the "skin
depth'" or radial damping factor.

From equation 4-2, it can be seen that for small values of & and

2 1

for typical values of k (so that le is on the order of 107 - 1G")

2
the magnitude of U is roughly

Twiz
Tu22 <p§,

in the frequency range 0 < w < 10 kV In order to satisfy the

12*
requirement that the scale size of ¢ be larger than an ion gyroradius,
% (so that equation 4-2 is a valid description of the behavior of
the potential) &, m and w must be varied so that the magnitude of U
is small enough that C and D, as given by equation 4-5, satisfy the

v requirements C<p,> < | and D<p> < I. This implies that an £, m and

w must be chosen such that U(r) = 0 at, say ror SO that hopeful ly

c("i) and D<pi> will be less than | for a wide range of r about o
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Thus it is desirable to know which values of 2, m and v give U a value
of zero at a given r and how the magnitude of U changes as r is varied.
Also from equation 4-2 it can be seen that, for k2 small enough that
it is negligible in the expression for N(r), the functions N(r) and
D(r) have the same values at £, m, w and n%, nm, nw (where n is some

infeger small enough that nzk2 is still negligible compared to the

other terms of N(r)). So, if at some r = o U has a zero for & = 20,
= = 11 i

m mm:,Z and w w0y hen it also has a zerﬁ(ra_flnzo, nmo, nmo as long

as —T is negligible in comparison with ~—— D(r )

?T is not always possible to chose an 1 m and w such that for
the Im(w)=0, U(r) = 0 at a given r since £, m and w are |imited by the
assumptions made in deriving equation 4-2. The limitations on 2 arise
from the requirement that the perpendicular wave length be larger

than the ion gyroradius and %<w > < w. The perpendicular wave number

D
is ky = ésu the restriction k]_<oi> < | puts an upper limit on the
magnitude of 2. For small values of k (i.e. large values of A and

small values of m) the requirement wz >> 12<mD>2 can be more restrictive
on 2 than the requirement E? 7 < |. For a given k and a fixed
parallel ion temperature ¢ is limited by the requirement that

u2 << ﬂ? (this is a necessary restriction on the wave frequency if

the magnetic moment is to be conserved). Since g = kV this requirement
becomes ;2 << (QikV)z. So the largest value of ¢ for which U is
investigated depends upon the magnitude of k. A lower limit is put

on k by the value chosen for 2A which is the distance between the

ionospheres in the model magnetosphere. 2A should be a characteristic
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field line length for the magnetosphere and thus is a difficult parameter
to choose.

Solutions to equation 4-2 which satisfy the assumptions made in
deriving it are sought by looking for zeros of U at fixed values of
r. The restrictions on the parameters &, m and w |imit the region of
parameter space which must be investigated in attempting to find a zero
of U. The methods used to find the zeros of U and the behavior of

U as a function of r, 2, m, w are discussed in the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5
The Solutions

The diffusion of protons in the magnetosphere by electrostatic
waves requires that the electric potential given by the solutions
to equation 4-2 yield substantial electric fields throughout most
of the ring current region. Using the W.K.B. solutions to equation
4-2 this requires that D (the imaginary part of q(r)) be small (on
the order of |/several earth radii). From equation 4-5 it can be
seen that the requirement that D be small can be met by making both
A, the Re(-U(r)), and B, the Im(-U(r)), small; or B small and A
negative. The differential equation 4-2 is an adequate descripfion
of the electric potential only if the potential has perpendicular
wave lengths, in both the azimuthal and radia! directions, several
times larger than the ion gyroradius. Thus both A and B must be
small enough to satisfy this requirement. As discussed at the end
of Chapter 4, the most |ikely regions of the complex frequency

plane in which the potential is adequately described by equation

4-2 is near the zeros of U(r). For these reasons, it is necessary
to find values of the parameters w, k = %%, and & for which U(r)
is zero.

Since U(r) is such a complicated function of r, w, 2, and m
(see equation 4-2) a computer program was used to find the zeros
of U. A zero of U is sought in the complex zeta (g = %V ) plane at
fixed values of r, £, and m by varying the value of w. The program
is designed to test the values of U at points of a grid set up to

cover a certain range of the complex zeta plane. Since the magnitude

37
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of U can vary considerably in the zeta plane, the method used to -find
a zero of U was to look for a simultanecus sign change in both the

real and imag?hary parts of U from one grid point to the next. Vhen

a simultaneous sign change is detected for some region of the zeta
plane, the grid is scaled down to the size of an original grid

square and the area of the zeta plane where the sign change was
detected is searched using this smaller grid. The process can be
repeated until the zero of U is located to within any desired accuracy.
Once a zero of U is found for a particular value of the wave frequency
the behavior of U as a function of r is obtained by using another
program. The details of the computer programs, employing an exponential
number density model for the ring current and the expression for U(r)
given by equation B-1-12, are -given in appendix C.

The solutions to equation 4-2 depend upon the real and imaginary
parts ‘of the wave frequency. The diffusion process in the magnetosphere
is hypothesized o be a steady state (in time) process. The potential
fluctuations at The magnetopause are assumed to be the energy scurce

for the process and will be denoted by ¢_.(6,z,t). Thus the initial

B
conditions of the problem wiil not be important and the solutions to
4-2 which are of inferest will be those with purely real frequency.

Equation 4-2 has two solutions which can be categorized as growing
and decaying. The decaying solution has been chosen as the proper

* solution for two reasons. First, since the plasmasphere is a cold
dense plasma it can be expected to act like a good conductor and the

electric field should decay as the plasmapause is crossed. Second
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the decaying solution also yields a decrease in the wave energy flux
as r decreases, which is consistent with the energy source for the
process being at the magnetopause. The boundary condition imposed
upon the solution is

fb(r=rm, 6, z, t) = OB(a,z,‘r)
where " denotes the position of the magnetopause. Writing

0y = T fdw B(2,m,w) expi(wt+2'6-m'rz/2h)
2',mt

this requires, using the expression for ¢(r,8,z,1) from equation 4-i,
that A(rm,z,m,m) = B(4,m,w). Using the W.K.B. solutions given by
equation 4-4, this requirement becomes

| = .
Ao(z,m,m) W = B(2,m,w)

where the integral in the solutions has been written

r
[ qtrrdr = [ ™ q(rrdr
r r

So
r /q(r ) r
ACL,mu,r) = B2,muw) —T" exp i [ ™ q(r)dr
r/q(r) r

where B(%,m,w) is the Fourier coefficient of the boundary fluctuations.
The first attempt to find cavity modes that exist in the model

magnetosphere was made using the expcnential model of the ring current

T 8ok,

122" The

number density as shown in Figure 5.9 and T, .3x10

22 ©
field line length (2A) and the behavior of the magnetic field magnitude
as a function of r are discussed below. In deriving the equations that
govern particle motion in the magnetosphere, the effect of the particle currents

on the static permanent magnetic field were ignored. Actually, of course,
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the number gradients and temperature gradients in the plasma create
diamagnetic currents which tend to inflate the geomagnetic field. - The
effect of field inflation and boundary currents on the geomagnetic
field is to change the dependence of the magnetic field magnitude
from I/r‘3 for a dipole field to something more |ike |/r‘2 in the ring
current region of the magnetosphere (see figure 5.1). In the following
calcutations the magnetic field magnitude was chosen to vary as (/rz.
The field at the magnetopause was taken to be 100 gamm;s (1073 gauss).
The field line length of a dipole field line is about 3.5 times
the equatorial crossing distance. So at the location of the maximum
number density of ring current particles (6 Re) a dipole field line
has a length of about 21 Re and at the magnetopause (10 Re) the field
line has a length of about 35 Re. Sir]ce the geomagnetic field
deviates from a dipole field, the maximum field line length is
probably somewhat larger than 35 Re and will arbitrarily be chosen
to be 50 Re' Thus the minimum value of k = % is [0-‘0 cm-‘ for m=I.
For the magnetic field used in the calculations the largest ion
gyroradius occurs at the magnetopause and is .34 x 107 cm, So, in
order for the azimuthal wave length (‘ZZ—FJ to be sufficiently larger
than the ion gyroradius at the magnetopause, % must be less than |03.
Since the perpendicular temperature of the plasma is faken to be
independent of r, the azimuthal drift frequency of the particles

(wD =€ gu '(r_B' % ) is -independenf of r for a magnetic field with

LN

a I/r2 dependence. The azimuthal drift frequency for ring current
2k, T
‘\} ) is

protons with velocities equal to the thermal velocity (
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Figure 5.1 The magnitude of the magnetic field of the
mode| magnetosphere is taken to vary as I/r2 rather than
I/r3 (as for a dipole field magnitude). This figure
illustrates that in the ring current region of the magneto-
sphere the magnetic field does behave more like l/r2 than
I/rs. The measured field was obtained from a satellite

pass almost along the earth-sun line (affer Freeman, 1964).
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4.28 x !0'5 Hz. The smallest ion gyrofrequency occurs at the
magnetopause and is 9.6 Hz.

The results of the calculations for an exponential number density
indicate that no solutions exist to equation 4-2 vhich have substantial
electric fields throughout the ring current region of the magnetosphere.
For example with m =5 (k = ,5 x 10-9) the function U(r) does not have
any zeros for 6 Re <r< |0 Re’ 2 < IO3 and w real (£<wD> <w < ﬂi).
The values of U(r) and q(r) shown for 2 = -l and ¢ = |.6 in figure 5.2
are typical of the behavior of these functions in the ring current
region of fthe magnetosphere. If it is assumed that equation 4-2
correctly describes the electric potential in the magnetosphere, then
this means the ring current plasma acts as a very good conductor for
waves of this frequency and wave length. However, the assumptions
made in deriving the equation are not satisfied in this case. Thus
it can only be concluded that no solutions with perpendicular wave
lengths larger than the ion gyroradius exist for these parameter
values.

A zero of U can be found for real values of the frequency with
m = |. The zeros of U occur near the magnetopause and an example is
shown in figure 5.3. The differential equation 4-2 adequately
describes the benavior of the potential (i.e. C<pi> < | and D(°i> <1
only over a small range of r values (8.5 - 10 Re)' The solutions
obtained, therefore, adequately describe the potential only over a
local region. However, since the solutions (as shown in figure 5.6a)

are confined to the region where equation 4-2 adequately describes the
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Figure 5.2 This figure illustrates the typical behavior
of the functions U(r) and q(r) (defined in chapter 4) for
the exponential number density model and values of m greater
than I. The values of the parameters used to obtain the
functions shown were & = =|, ¢ = w/kv, = 1.6, and m = 5.

The angular wave length is given by 2nr/% and m gives the
number of antinodes of the electric potential along the
field line. Note that the functions C and D are foo large
to satisfy the criteria given for the validity of equation
4,2 (C.<Di> < | and D<pK> < ). In the model magnetosphere
the plasmapause is assumed to be at 5.9 Re' the peak ring
current density at 6 Re and the magnetopause at 10 Re'

Thus this figure illustrates the behavior of the functions
across the region of fthe magnetosphere dominated by the ring

current plasma.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2x10™¢, T T T T T
q(r)=C+iD
1x10°€ \
\ \*
QE) B f'\ _C\ T ——]
£ e ——
% 0
S
Q = 4
~1XI0¢ L ) I ! I
2x10™"% T T T T T T
Ulr)=A+i8
Ix10™% \
- ’4\ 4
\\
0
I——
o
§ - / — | i
Q
IS
Q xio ~
S |V
< - 4
-2x/0™"* . | e I |
50 60 70 80 90 10.
rinFy —

Figure 5.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Figure 5.3 This figure illustrates the behavior of the
functions U(r) and a(r) for parameter values for which a
turning point of U was found near the magnetopause, The
exponential number density model of the ring current was
used. The parameter values used were 2 = =100, m = |, and
t = 1.52, The W.K.B. solution for this case is shown in
figure 5.6a. The unit on the ordinate scale is changed fo
a larger value at 9 Re so that the behavior of the function
at smaller r values can be easily illustrated. In the plot

of U it is changed from .5 x 107" 1o | x 10712

7

and for the

plot of q it is changed from 107/ to 107°,
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potential they can be considered to be valid. The solutions of this
type will not produce any significant diffusion of particles because
these solutions produce substantial electric fields only over a
localized area of the magnetosphere and are negligible throughout
most of the ring current region.

The values of the parameters which result in a zero of U using
the exponential number density model can be used to determine a
number density model for which the solutions to 4-2 will produce
diffusion throughout most of the ring current region. The zero of
U(r) for the case shown in figure 5.3 occurs because the real part
of N(r) due to the electrons (i.e. the IE%: o+ ;eZ(;e) ) term)

plus L—z is balanced by the real part of N(r) due to the
r

22n! Lew >
)

v et )

term of the ions. The imaginary part of N(r) due to the Ny and né
ion term and the S electron term is compensated for by the né
electron term. The solutions obtained using the exponential number
density model are confined to a sm?ll region of the magnetosphere

n

because the ratio between UN and —:— changes considerably as r changes.
nt

It is shown below that if S is chosen to be proportional to —% then

gg:i is essential ly independent of changes in n, and the- values of

gi:; change by less than an order of magnitude across the ring current.
'

The requirement that ng = constant * —g can be satisfied by a power

law number density model (n0 = kl/(rz)p). If no(r) is chosen to be

a power law and kz is assumed to be negligible in the expression for
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N(r) and | is negligible in comparison with the other terms of D(r)
. then it can be seen from equation 4-2 that

NP L

r) <p%>

[CI +iC,J]

g

With the magnetic field varying as I/rz, CI and C, are independent of

2
r. Since ! WL , N(r) varies as I/r4. So A, the real part of
w2 ) D(r)
P> r
2y
U, has the form: A~ =tz and B, the imaginary part of U, has the
ol r r
form: B v —i— - In the ring current from 6 R, to 10 R, the real and
r
N(r)

imaginary parts of change by a factor of only (I0/6]4 = 8. The

D(r)
two constants in the power |law expression for s (k, and p) are deter-

mined by specifying a value of ny and né at some r = rp. Denoting the
e ' N .
specified values of o and ng as no(rp) and no(rp) respectively, the
exponent p in the power law can be determined from p = -(né(rp)/nc(rp))rg.
The solutions to equation 4-2 which will give a substantial

potential across the ring current are those with small D (g = C + iD).

2 c!
Since A v L+ —L it can change considerably in the ring current
r

2
-
29 S
region (when =7 ) whereas B v = changes by less than an order
r r r

of magnitude. The solutions with small D throughout the ring current
will be those with small B and somewhat larger negative A. For, in

that case, C varies as /A and D as B//2A (see equation 4-5) and so D
is small throughout the ring current region. 1, on the other hand,

A is positive, C varies as B/2/A and D as ¥2A. In this case D will be
NCr )
large a short distance from the magnetopause since Re( D_(‘rm_) ) is on
m

2
the order of L—z . For example, if the values of the parameters
- K
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(2, Nos nc'>, w, m) near the zero of U shown in figure 5.3 are used
along with a power law number density distribution, the function U(r)
behaves as shown in figure 5.4 and leads fo solutions that are substantial
across the entire ring current. The values of the parameters n, and
né near the turning point in the exponential number density model
require that p equal 20 for the power law number density. This value
of the exponent not only leads to extremely high number densities in
the ring current but, if the ionosphere is not perfectly conducting,
the power law number density distribution with such a large value of
p would be unstable to the interchange (flute) instability (Chang et
al., 1965; Swift, 1967). With the magnetic field chosen for the model
(B~ LZ ) the meximum allowable value of p for stability in the
magne;chydromagneﬂc limit with 2 zero conductivity ionosphere is
2.0 Giuea n v 4 .

A’ smal ter \I:alue of p can be used if nc"(rp) is reduced or no(rp)
is increased. From the behavior of Z(z) shown in figure 5.5 it can

L<w >
be seen that Z(z + ke Jwill remain nearly constant if g is

decreased as £ is increased. Then n(') can be decreased and £ increased

by the same amount and if ¢ is decreased sufficiently the values of

Re(g) and Im(%) used in the example above will remain unchanged since
2n' N
—-2 and the other terms in = remain the same. It should be noted
moKv D
_that if & is increased the approximation used in deriving B-I-I1

MD Ewo
(2 + ) = 2 + W—Z'(;) ) is not adequate and the average over

the perpendicular velocities indicated in equation B-1-9 must be

performed numerically. it is easy to see from figure 5.5 that for
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Figure 5.4 This is a plot of U(r) and a(r) for a power
law number density and parameter values such that B is- smal |
and A is small and negative. The units of the ordinate
scale are different for A and B and for C and D so that both
functions can be plotted together. The ordinate unit for

'7 and for & 1+ is 10714, The ordinate unit for

and for D it is 10710,

8 is 107

cis 1077
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values of & large enough, ¢ must be made so small to keep the imaginary
Lw,

part of <Z(;+—Jb> (< > is used to indicate the average over
KV " vy vy

perpendicular velocities) constant that at some value of % the real

part of <Z(;+:)D)>Vl decreases. Also &E-increases as & is increased.
Thus, for some value of 2, A will beco;e positive and solutions for
larger values of & decay substantially in a few tenths of an earth
radius. So there is a maximum value of & (and thus a minimum value
of p) for which solutions of the type discussed can be obtained. The
maximum value of & which produces a function U(r) as shown in figure
5.4 is 280 (with z = 1.65) and thus p = 7.0. This value of p is
still much too large for the ring current to be stable against the
interchange instability.

Slowly decaying radial solutions A(%,m,w,r) can not be found to
equation 4.2 for a power law number density distribution with p < 7.0
because A is positive when the imaginary part of U is small and the
imaginary part of U is large when A is negative. |[f a temperature
anisotropy (T, # T,) is assumed to exist in the ring current, another
term is introduced intfo the expression for % (see equation B-1-12).
For large 2 the ion temperafure anisotropy ferm is comparable to the
other terms in % while the electron anisotropy term is negligible
since it is much smaller. Introducing a temperature anisofropy in
the fons with Ty; < Tyj will add a term with a negative real part to
N (assuming & is negative) but it also infroduces a fairly large
2egafive contribution to the imaginary part of gu This would then

give only rapidly decaying radial solutions unless % were decreased
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Figure 5.5 This figure iilustrates the behavior of the real
and imaginary parts of the plasma dispersion function Z and its
derivitive Z' as functions of a real argument. Zeta (g) is the
ratio of the parallel phase velocity of the wave to the ion

parallel velocity.
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and n(') increased, which leads to larger rather than smaller values of
p. If Ty; > T, the contribution from the ion anisotropy term makes
A an even larger positive number. Increasing the parallel electron
temperature, on the other hand, allows A to be negative when B is
small if né is decreased and Ny is increased (i.e. p is made smaller).

Using a distribution with p = 2 (so that it is just stable to
the flute instability) and a number density of .2/cm3 at the magneto-
pause, solutions of the form shown in figure 5.6b and c can be
obtained when the parallel electron temperature is increased by a
factor of 4. The dependence of the functions

AlL,m,w,r)
rqu(rm) B8(%,m,w)

on the azimuthal wave number and the wave frequency w at r = 8 Re is
shown in figure 5.7. The behavior of the radial solutions shown in
figure 5.7 indicates that energycan be transferred into 8 Re over the

2 iz 1o~ 4.5 x 1072 Hz by various drift

frequency range ~ .5 x 10
modes. However, the radial wave lengthof most of the higher 2 modes

is so short that C<oi> > | (although thewave length is still several
gyroradii) and equation 4.2 is a questionable description of the
potential in these cases. The behavior of the radial and azimuthal
wave lengths of the various medes at 8 Re is shown in figure 5.8,
Solutions for smaller values of & and thus longer azimuthal wave lengths

can be obtained for the p = 2 distribution used above by increasing the

parallel electron femperature even further.
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Figure 5.6 Radial wave functions for fthe electric potential:-
a. A plot of the W.K.B. solution for the radial part of the
electric potential for a case where U has a turning point near
the magnetopause and the exponential number density model is
used for the ring current. U(r) and q(r) for this case are
shown in figure 5.3,

b. A plot of the absolute value of the radial wave function

for various values of the parameter zeta (z = w/kv,) and 2 = -260,
m = | for the case in which the power law number density is

used and the electron temperature is increased by a factor of
four. The behavior of U(r) and q(r) for ¢ = 1.875 in this

case and ¢ = 2,0 in the case illustrated below is very much

like that shown in figure 5.4,

c. A plot of the radial wave function as in 5,6b but for

% = =250,
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Figure 5.7 The ratio of the absolute value of the radial
wave function for the electric potential at 8 Re to its value
at the magnetopause (10 Re) is plotted as a function of wave
frequency for various values of & and m. The radial wave
functions plotted are for the case in which a power law
number density was used for the ring current and the parallel
electron temperature was increased by a factor of four over
measured values. This case was specifically considered so
that slowly decaying radial wave functions could be obtained.
The potential at the magnetopause for a given £ and m is
assumed to be constant for all values of w. Thus the figure
illustrates the response of the cavity to an impulse (in
time) driving function. m is the number of antinodes of the
potential along the field line and % gives the value of the
azimuthal or angular wave length (2wr/%). The function plotted

here is denoted by M(sRe,l,’ﬂ,N) in chapter 6.
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Figure 5.8 The behavior of the radial and azimuthal wave
lengths of the electric potential for the solutions shown in
figure 5.7 as functions of £ and m for r = 8 Re' Solutions
wlth wave lengths below the line C(°i> = 1 fail to satisfy
the criteria given in chapter 4 for the validity of the
differential equation used to obtain the electric potential
(C<pi> < 1). The relation of the wave lengths to the ion
gyroradius at 8 Re is indicated by the line 4<pi> which

indicates the value of four times the ion gyroradius.
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In summary, the exponential number density model doces not have any
solutions to equation 4~2 which will lead to diffusion of ring current
protons, The in?roducfion of a power law number density distribution
for the ring current allows solutions to equation 4-2 which will
diffuse ring current protons but the minimum value of the power law
exponent is so large that the distribution would be unstable to the
interchange instability. Slowly decaying radial solutions can be
found for a stable power law distribution if it is assumed that the
parallel electron temperature is much greater than has been measured.
Also the power law distributions that are stable to the interchange
instability have peak number densities somewhat lower than that
assumed in Chapter 2. The exponential number density model and two
power taw distributions are compared in figure 5.9. The model used
to obtain the solutions shown in figures 5.7 and 5.8 has a peak

number density of l.5/cm3.
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Figure 5.9 A comparison of the models used fo represent the
ring current number density. The exponential number density
illustrated has a peak value of 7.5/<:m3 at 6 Re and a value of
O.l/cm3 at the magnetopause (10 Re). The power law number
density model used fo obtain the solutions illustrated in
figures 5.6b and ¢, 5.7, and 5.8 was chosen so that the ring
current would be stable against the interchange instability

and is given by the I/r4 curve. It has a peak value of I.5/cm3
at 6 R, and a value of O.2/<:m3 at the magnetopause. As
indicated, a power law of roughly |/rg must be used to obtain
the same peak values and magnetopause values of the number

density that were used in the exponential model.
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CHAPTER 6

Results and Conclusions

The results of fhe calculations described in Chapter 5 indicate
that electrostatic oscillations withwave lengths perpendicular to the
magnetic field of several ion gyroradii or more and frequencies well
below the ion gyrofrequency are not very effective in transporting
energy into the magnefosphere. For the exponential number density
model of the ring current, energy from the magnetopause could only
be transported in a few tenths of an earth radius. To obtain radial
wave functions that transport wave energy across most of the ring
current region, it was necessary to carefully choose the functional
behavior of the plasma number density. In the model used, for example,
the use of a power law number density gives slowly decaying radial
wave functions. The power law dependence does not arise from any
of the physical properties inherent to the magnetosohere but works
because of certain properties of the model. The assumptions that
the temperature is constant across the magnetosphere, the magnetic
field varies as I/r‘2 and the field line length is constant are
necessary in order that a power law number density yield solutions
as shown in figure 5.7, These assumptions are not necessarily accurate
representations of the magretosphere. Furthermore, in order to obfain
a number density distribution for the ring current which is stable
to the interchange instability it was necessary fo use a‘parallel
electron temperature four times greater than has been directly measured
by satellite. These considerations indicate the model of the magneto-

sphere used fo obtain radial wave functions which yield substantial

66
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electric fields across most of the ring current is not an accurate
representation of the magnetosphere.

For a diffusion mechanism to be important in the substorm process,
it must have a diffusion coefficient about equal to the Bohm diffusion
coefficient. Bohm diffusion is a diffusion process in which particles

are moved on the average of one ion gyroradius in one gyroperiod. So

N B I N . V1,2
the Bohm diffusion coefficient is approximately (T“') % or (5 Re)z/day

for 5 Kev particles. It is interesting to note that even if the
parameters of the model magnetosphere are specifically chosen to
obtain slowly decaying radial wave functions, the diffusion driven by
the propagating modes is very ineffective in transporting ring current
protons. To illustrate this the value of the radial diffusion coefficient
at 8 Re will be estimated and the diffusion will be approximated by
considering a one dimensional diffusion equation for the radial
diffusion,

One procedure for cbtaining a one dimensional diffusion equation
from equation A-11-7 would be to average equation A-11-7 over V,
Vu, 8, z weighting the averages with the initial distribution function.
Then it turns out that the averaged diffusion coefficient Daa is much
larger than the other averaged diffusion coefficients. Since the average
of Duu over the initial distribution function is not easy to do and
only an approximation fo the radial diffusion is being considered a
rough estimate of the radial diffusion coefficient will suffice. From
‘the basic definition of a diffusion coefficient and from equation

A=111-1, D__ can be directly related to Drr

aa
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(Aa) 2 2 (Ar) 2.2,
O = > 2T / = e,

Since the radial wave functions of Chapter 5 are given as functions

of r the diffusion coefficient Drr will be calculated.

c2 | 2,2
Drr = Z |A(i,m,n,r)| 27 6(2,m,n,vy,,s) 6-1
r'8° 2&,m,n
Using the expression for G(&,m,n,v,,s) given in equation A-l1[-18
- !
and assuming that x' = 10 2 so that e ¥ T is fairly small (~.05),
o )= &
2M, N, Vy,S) =
’ "2+u_2

For the solutions shown in figure 5.7, w is between .5 x 10_2 Hz and

4.5 x IO-2 Hz and so w-kv, can range befween 3 x 10—2 Hz and -1 x 10

Hz. Since 2<uy> is positive for protons and ranges between 1.5 x 10

Hz and 3.5 x ID_z Hz, w- = w + %<w,> = kv,, has a minimum value of

D
about 2.5 x 10_2 Hz. So a representative value of G for most values
of 2 is about 15 Hz™'.

Precise information on the behavior of the electric potential
at the magnefopause in the frequency ranges shown in figure 5.7
(.5 x IO-2 Hz to0 4.5 x IO_ZHz)is not available from satellite
measurements and so a value for the coefficients in equation 6-1
will have to be taken arbitrarily. It is assumed that the potential
fluctuations on the magnetopause correspond to an infinite (in time)

fwet

cisodal (e ) wave frain oscillating at some frequency oy in the

-2

range .5 to 4.5 x 10 “ Hz. The oscillation is assumed to be such

that for each value of % and m shown in figure 5.7 the amplitude of
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the electric field produced by the potential fluctuation is .| mv/m

(H; statvolts/cm). This is a potential equivalent to about 15

kilovolts across the model magnetosphere and the electric field gives
an BxB drift rate of | km/sec at the magnetopause. Thus it is assumed
for each & and m

. -8 .
!'r- [ dw B(L,m,w) olot o Ig et statvolts/em

so that
r 1078 -1
B(L,m,w) = & = §lw - uo) statvolts (cm-Hz)

Then the coefficients A(L,m,n,r) = fdwA(L,m,w,r) are

A(L,m,n,r) = )'dm B(2,m,w) mﬁrq— exp i f qdr| = 6-2
r

1078

69

[dw BC2,m,0) M(r,u,2,m) = —5— % M(r,u ,2,m statvolts/cn

3

The behavicr of the function M(BRe,w,l,m) is shown in figure 5.7.

M(BRe,w,Z,m) s a very sharply peaked function of w for most &

so that if uy is in the range of .5 to 2><i()’Z Hz the integral in

equation 6-2 will be zero except for one value of £ and m. If uy

is about 2.5x10‘2 Hz the largest number of 2 values will contribute

to the diffusion coefficient since values of % between -245 and -260

have non-zero infegrals. So in the case where 0, is between .5 and

2><l0_2 Hz
Orr

3,2

2 -8\
O A R— ('_0_) (7512 = 1.5 x 10'0 en?/sec =
(.5x107% 1 s

(.06 Re)z / day
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For uy = 2.5 x 1072 Hz

2 -8y 2 -260
c
D, = o 2 10 T NG,z %y
(1.5x10 3 1=-745 °
1.2 x IOII cmz/sec = (.2 Re)2 / day

Both of these values of Drr are well below the Bohm diffusion coefficient.
If the function M(BRe,m,l,m) were not such a sharply peaked function
of w for most 2 values, the diffusion coefficient could be larger.

The solution to the diffusion equation with a constant diffusion

coefficient and a delta function initial distribution is
| rZ
¥ P @ T
rr rr

So with the largest value of Drr (.2 Re)zlday) an initial "spike"
of particles at 8 Re in the magnetosphere would spread out in a
Gaussian shaped distribution with a distance between the e-folding
points of about .8 Re in one day. That is, less than half of the
particles initially at 8 Re are moved inwards an average distance
of about .4 Re in a day. Diffusion of this sort is much too slow
to be of any significance during the rapid build up of ring current
particles during a substorm. Thus even in the unrealistic model
used to obtain solutions which fransport energy into the magnetosphere
from the magnetopause the resulting diffusion process has a small
diffusion coefficient.

Since long wave length electrostatic oscillations do not produce
diffusion in the magnetosphere the question might arise as fo whether

the short wave lenqth oscillations are important in producing dlffusion.‘
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Although the diffusion coefficient given in equation 3-8 does not
indicate it, the diffusion coefficient should be very small for most
particles when the wave length of the oscillation is less than the

ion gyroradius. The reason for this is that when the wave length of
the electrostatic osciliation is on the order of the ion gyroradius
or smaller, the great majority of the ions "see" the wave electric
field as rapidly fluctuating simply because their gyration motion
carries them over onewave length of the wave every gyroperiod. For
the ExB drift to move a particle a large distance the particie must
"see" the wave as nearly constant. Only a very small number of
particles with a narrow range of phase velocities would see the short
wave lengthoscillations as nearly constant and so most of the particles
would not be diffused by the wave. Equation 3-8 for the diffusion
coefficient Daa does not show this effect because it has been derived
under the assumption that the wave lengthof the wave is much longer
than the ion gyroradius. So the longwave length oscillations
investigated are the ones which would produce significant diffusion
for most of the particles in the plasma.

Although it seems reasonable to assume that long wave length,
low frequency electrostatic oscillations would be very effective in
transporting and energi_zing ring current protons it has been found
that this is not the case because energy can not be transported into
the hot ring current plasma by these waves. Even adjusting the

parameters of the mode! so that energy at the magnetopause is
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transported into the magnetosphere it has been found that the waves
transport very little of the energy available at the magnetopause into
the magnetosphere and thus are not effective in rapidly diffusing
particles. Any diffusion process of the nature proposed which

operates in the magnetosphere should also operate in the simple model
used to represent the magnetosphere. Since diffusion is not effective
even in the simple model it is concluded from this study that diffusion
of particles by fturbulent electrostatic oscillations in the magneto-
spheric cavity driven by potential fluctuations on the magnetopause is
not an energization and transportation mechanism for ring current

particles.
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APPENDIX  A-1

In this appendix the Hemilfonian appropriate to describe the
motion of a charged particle in the electric and magnetic fields of
the magnetosphere will be derived. The electric and magnetic fields
are assumed to vary slowly enough that the first adiabatic invarient
of the particle is conserved. The development of the Hamiltonian
is patterned after the general approach of Gardner (1959). The
Lagrangian in c.g.s. units for a particle of charge e and mass m
in an electromagnetic field with electric potential % and vector

potential A can be written in Cartesian coordinates (pI s Pys ps) as

_ | 2 _ e », 2
L= Zmv e%+EA v

- D
V=

is the particle's velocity. Thus a component of the canonical

momentum is written

= e
=g +2 A
or
.. I’
Fegs = LG R?
The Hemiltonian for the particle is
K=t pB-Lleg G-2 717 4o}
Ty PiP; 2m P-c
73
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It is assumed that the spatial variations in the electric and
magnetic fields are small over distances on the order of the parfiqle's
gyroradius and the temporal variations in the fields are small during
a gyroperiod. These requirements may be more explicitly written

>
Pl e ¥ o= ¥ en
€

€ is a dimensionless parameter which scales the variations in the
fields. For example, € can be taken fo be the larges‘r-of the ratios
between the gyroradius and the field scale size and the gyroperiod to
the wave period.

The problem is easiest to handle in the usual magnetic coordinates

(e, B,s). a, 8 determine the magnetic field and vector potential

- >

Vu X _V‘B =B H 7\\ = aVB
and s is fthe measure of distance along a field line. In the simple magnetic
field configuration used in the model magnetosphere any point in the space
(p|,92,93) is uniquely related at any time to a single point in the space
(a,B,s) and vice versa. Thus o,B,s can be used as spatial coordinates
and are written in terms of E;and 1 as

o= g—‘(s?, et) ; g = %‘(Q:F, et) ; s = 2-'- (573‘, et)

The motion of the particle can be separated into a guiding center
motion and a gyration by a judicious choice of a generating function
for a canonical fransformation from the phase space (';, 'f) into a

new phase space (a', F). The generating function to use is

+/

.

/s o-
o =/8 2
F (p.p) '/c P

olo]
EYEY

. 5'
3 Pit T F2 T PyPs
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The transformation equation q; = :—';- gives
i

YZas=eprteay S8 =carteps 5 sT=eqy Al

The transformation equation 5; = %E! and the equations
R= of8 = -l-zu‘ [ Poms /2 Eeq
give
-~ > -
V=p-2 R =g s +p3'?Va‘+q3—t-‘vs‘ A-1-2

/—: €. Finally the new Hamiltonian, H, is obtained from

the last of the fransformation equations A=K+ :—: or
N A-1-3
P €p p .
m- L %+ pur - qip ]+ 2 3, L 28 P30 g
H=eo+om [pzvs + pgla” - q578 ]+ T FtT e 7 T 5F

where ¢ (%‘, %‘, %’, et) =’; (ePret) is the electric potential
expressed in magnetic coordinates. «”,B”,s” are given in terms of
Efand ;fhrough the relationships given in equation A-l=1. |t is
apparent from the equations A-1-2 that pj, p3 and q3 are

essential ly velocity components and thus can be considered to be of
zero order in ¢, or of order | =€3. While from A-1-| it is
apparent that epy, eqy, €qp are essentially spatial coordinates with

a small perturbation In the first ftwo given by eq3, ep3. Thus

A-1-3 can be expanded in powers of e by using the approximations:
e - . .
G“o s e /;80 = €915 SJ = €q2

It will become apparent that u;, B;, 5; are the guiding center
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coordinates of the particle while q3, p3 represent the gyration

motion. With the definition

p . q s‘ =3 = -
> s > a- [ ) B ExB
=—27q - 2 - 2 . B -
Vi :V"‘o l,:VSDivm[VE B]p2 c ”
A-1-4
(where B is evaluated at the guiding center uc‘, Bt; so‘) and using
» 0,
. o B s’
E= ¥ -1 oTs with the expansion $(cpyet) = 0(=2, 2,79
at e’e’e
+ eq3 —g%, + ep3 % * H can be expanded in the form
o o
" =—l—H_I + Ho + :HI + e When H is expanded in this form
a” 3B
Ho, = et + & 2 _2
-1 € 3
and
- m 2 _m ¢ 2 |
Hy= 7 vy 7;;(E><B) togme
2mp,  3s] ==
2 _o c(ExB) =
[Pz Al G o -7s8)
B
Writing v, in the form
782 Va?
o o ©
(ExB] T] o
-y
Tl
B j
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. > .

Va
0,
=~ — Lag*h(epy,eq1,€az,pp,et)] + T°[p3+g(sp1,:q1,:q2 ,p2,e1)]

=

H_, + H0 is constant on an ellipse in the

|
q3, p3 plane (i.e. when qy, G2, Py, P2 are held constant). The

Indtcates that ;—

ellipses on which l— H_I + Ho is constant have the equations

- o -

(T82)2 (q3#h)? -2 Taz+ VB @5#h) (psta) + (W) ? (ps+ 2= constant

. . -~
Another canonical transformation from the phase space (q, p) to
the phase space (Tf', B"') which is almost the identity transformation
can be made so that fhe new Hamiltonian is constant on concentric
circles in the g3, p3 plane. The new Hamiltonian, H, will depend
2 2 Fa_—_—

only on the quantity q3 + pj and the transformation from (q , p )
to (a“ ,3‘) is equivalent to averaging over the angle ¢ in velocity
space (v, T ,5). Under the transformation the new coordinates
qi{, 97, P{, Pz will be the same as the old coordinates qy, 92, P1, P2s
to order €. Also, the new Hamiltonian will have the same coefficients

H H_ as the old Hamiltonian, to order ¢. In constructing the

=17 "o
generating function for the fransformafion it is assumed that
\—ﬂx‘o- VB‘; 0. This is not a necessary assumption and is made
simply because the calculations are less cumbersome. The generating
function used is

198

. D 2 - 2 <] .
F* (g, p*) = qypi+a2p;+ I_.l (qg + h) p3 - gas
2%
o
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The transformation equations

. _ 3F” _ O _ o, 8F°
‘H‘ap; 3P T o3 5 HEE4 =

are used to obtain expressions of the new coordinates in terms of

the old. For example

@

{

h 3
- q3 <8 =

i =a- pi L 29
a1 = %= P 5p5; BT SR I vrord €43 Fept

o)

However, since h is a function of epi, 2-231. is of order | as is
gepi . Thus eqi = eq; + 0(e?). From similar arguments

€q3 = eqx +0(e?) 3  epf = epy + 0(e2) ; ps= pp+ OCe)

Finally g3 and p3 can be expressed in terms of q3 and p3 as

a3 ;o pi=
so that
Do g3 L 22, a2 22, . 2u8
vi= |Va.°] ]VE°| = (p32+ q32) = B (q3°+p32) = -
. . 3F” aF
Since h and g are functions of et, 3 =EB'E'F is of order e and

H=é—H_|+H°, to order €. Thus, to order ¢,
4 . _ e _ M _ s 3 s, _ _3H_ _ 7 3H
aF 93 ° ¢3 = 5 0 ™33 5 P37 Tagy '“fla m
and
4 v,2 s 82 4 pz s £ o . 3H
@ “F) = ez e +p3pi) = 2m(af Py 5; - P3ad )
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ve
So p= %m 5 is conserved to order e (i.e. ",: 0, to order g).

. The expression for the perpendicular velocity is given in A-l1-4 and

is the usual expression for the particle's velocity of gyration.

al . s;
let @ =— and g = — and s = —— , then to
€ € >3
order ¢ the Hamiltonian is (uith P = p2)
H e 38 pé 3s ., c(ExB) > mc? (E x B)
Ted oo s Bt p (524 e Ts) 5
and since
=3H .
= — or = - . A-I-
P1 30 ) o -5

Similarly expressions for §, bs, $ can be obtained from Hamilton's

equations, and

b= -S M L c -1
e e ® ' P 3Txn A-1-6
Y _
Ps® 3% ’ S_WS
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APPENDIX A-11

In this appendix a diffusion equation for the average guiding
center density of particles in phase space will be developed under
the assumption that the first adiabatic invarient of the particles is
conserved. The method used is a slicht generalization of the develop-
ment of a diffusion equation governing the guiding center density by
Birmingham, Northrop and Falthammar (1967) under the assumption that
the first two adiabatic invarients of the particles are conserved.
The starting point for the development is the continuity equation for
the guiding center density Q (a.B,s,pS,u,‘r) in the phase space
given by u,a,s,ps,u

Bl 6o+ g2 o s 52 o+ a—pa: (0) + 52 (1) = 0
In Appendix A-] it is shown that fo the order w is conserved (i.e.

u=0) a Hamiltonian function H can be found such that:

P R R S IR |
® e @ 8T e % Ps 3 0 ° E N
The above equations imply
3 yoc B%H_ _ 3 . 3Hy__ 3
% % % C Tw 5w FY
and similarly
T
-a-s-(s)——ap—(ps)
s
80
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So the continuity equation becomes a Liouville equation

30 , 43,520 Q 0 .
a_+“ﬁ+eaa +5 psap 0

The phase space density and phase space velocities are treated
as randomly fluctuating variables and it is convenient to write them
as x = < x > + 8x. The symbol< x >denotes an ensemble average over
the ensemble of fluctuations and & denotes the variation of the
variable from its average value.

With the notation:

4 = P

the Liouviile equation can be written

3 <Q> 3 80 - . 3 <Q> 860-0
3 ¥ ] + igl (<><i> + éxi) axi +% (<>< >+ 5>< )
A-11-]
The ensemble average of this equation and the observation
<6x> =0 gives
3 <Q> . 3 <Q> _ _ coa .
3 i Rt i igl<éxi 5, 00 A-tl-z

Subtracting equation |1-2 from equation 11-1 gives a differential

equation for &Q, namely

3 60 : 380 _ o 380 - a8\ _ 4. 3 <O
00 E I S 155G 5%

If the fluctuating parts of the variables 6x are considered small

compared fo <X> so that the first term on the right hand side of
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equation 11-3 is small in comparison to the second term, equation

- 11-3 can be written
d 8Q _ 3 <«Q> .
T = o A-11-4

The symbol afw“ the left hand side denotes a convective derivitive

taken along the phase space orbit with the velocity vector

4 -
U=z <>
P e T

So, assuming the fluctuations are turned on at t=0,

+
80 = - dt (D 8k () == <QGWt7)s)
° i Bxi

where the notation (;,1") means that the quantity is evaluated at
t°and along a specific phase space orbit where 3 =U. The components
of the proper phase space orbit are solutions fo the family of
equations % = <;<i> with the proper initial condition that at t° = t
the component of the orbit have the value X; ). The components of

the proper orbif are denoted by wi(f‘), where:
wi(f‘)= xi(f) + yi(T‘) - yi('l’)

Using this solution for §Q in equation |1-2 gives

9<Q>, . . 3 <Q> _ - 3 o e (s _a<o(i71">
7 +I<xp> -ﬁi A G Jo’ dt Esxi(~,+)3 ’

Bxi X

Since A-11-5
3 (@) . -3_(B) s .
ry = % and Xp = x> + 5xi
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Equating the fluctuating parts gives

264, -3 &b
da B
similarly
. . 4 .
3 8p__ =2 8 3 &%, _
%, 5= 32 or iil—sxl i=0

L t .
gt éxi(f)axj(‘r‘)df>= z\/a“"‘ b 8 (t)et>>
N o

. 8 < a
+§<§xig /5 85 (4 at i 5x et
So equation 11-5 becomes
7 +
d _ 3 o (s 8 = .. N .
7F Q> = ‘Z § -Q—Xi\é sxi(f) éxJ(d,f )_ax_i <Qw,t7y> dt2=>  A-11-6

The quantity x = <x> + §x can be viewed as developing on two
separate time scales. The ensemble average quantity <x> will change
as the result of many small cumulative changes in §x. The quantity
6x changes on the same time scale as the fluctuations. Thus <x> will
change much more slowly than §x or the fluctuations. The time integral
in A-11-6 is effectively limited fo times on the order of the correlation
time of the Hucfuaﬂons,rc, because é’fdf’sxi(?)cxjﬁ") is effectively
.a cross correlation function and correlation functions are small for
times larger than the correlation time. Since <Q> varies on a

much larger scale, both temporally and spatially, than &Q or &%
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the integral in A-11-6 will be dominated by the behavior of Gii 5>'<j.

°  So the quantity 3—2-_ <Q($,f)> inside the integral sign in A-11-6 can
be replaced hy'& <Q(q,&,s,ps,u,ﬂ> and equation A-![-6 can then be
written !

3<O> a<Q>_ ? 3
5 w0 Tk o Dxx, o @

+IX I
o i iyJ axi i §

i
where
t .
DXIXJ=<<§ 8%; (0,8,5,P g1, 1) 6xj(w| ,wz,ws,w‘t,u,‘r‘)df’> A-11-7

and

WoE) = x () + Tt X A-11-8
i 1 ol

where ;<°| denotes the value of ;<i in the absence of fluctuations.
The Gki can be expressed in terms of the Hamiltonian given in

Appendix A-1 as:

G=h-<h> =S (AH 3y ©0 3 g
da = o -<a> = (BB 3% ) ; 88 T (H=<H>)

b4

b =22 (H- ; =2 (- -1
8Py (Hesh>) 5 68 = olH-ct>) A-11-9
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APPENDIX A-1{11

In this appendix the diffusion coefficient Dau will be calculated
in detail to illustrate the technique used in calculating all of the
qoefficients. The expression given for the diffusion coefficients in
A-11-7 requires expressions for the zero order orbit components w;
given in equation A-11-8 in terms of the magnetic coordinates a,3,s.
The calculation of Dml will be restricted to the geometry of the model
magnetosphere. In the model magnetosphere the magnetic field is taken
to be static and so the magnetic coordinates a,8,s do not depend ex-
plicitly on time. Thus :—:— = 3 = 3 = 0. The Euler potentials « and
8 are such that Vo x U8 = E(r)_,;. Since the magnetic field is only a
function of r and points in the z direction a judicious choice of B is,
B = 0. Then o can be chosen as a function of r only and is obtained

from the differential equation

8 a=rBn A-111-1
dr
The solution fo A-111-1 can also be used to obtain r as a function of
a. The other magnetic coordinate s is taken to be identically z (szz).
Since B is a function of r only the gradient drift will have only an
azimuthal component and

& =0 B =S L B o

&, 0; 8 ST ar mD(a)

Thus the first two components of the zero order orbit are

')= g "= 1. -111=
vll(f) a; w2(1‘) B+wD(Y t) A=111=-2

85
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In the model magnetosphere the particles are assumed to be elas-
©  tically reflected from the jonospheres at s = t A. The velocity of a
particle will ‘change abruptly from i to Vi whenever it reaches

the ionosphere. Since s is taken to be identically z, the momentum

conjugate to s is given by

3s
= +m 2
Pg =MVt Mmooz +me

Thus W, which represents the zero order behavior of Py is given by

'
mv.I 0<t <1‘0
4y = - n - \
w4(1')- =D L n l)T+1‘o<f <fTI'+1'0
(-I,)N n (N=DT + +0 <t <t A-111-3

where T is the velocity of the particle at t' = 0. The time it

takes a particle to reach the ionosphere from its position, sc, at

A 5o
t' =0 is given by t_= - —— . At time t_the particle reflects
o Vil vy °

from the ionosphere and its parallel velccity changes sign. After a
time T the particle again reflects from the iorosphere and the sign of
its parallel velocity is again changed. The time T is called the
bounce period and depends upon the parallel velocity of a particle and
the distance befween ionospheres: T = i—A— . The bouncing motion of
the particle is represenfted by equation A-I11-3 from t'= 0 up to t'=t.
" The integer N is the largest positive integer such that ?-(N-I)T—’r°>0,
and thus gives the correct sign for the parallel velocity at t' = t.

The zero order motion of the particle along the field can be
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found from A-111-3 and is given by

1 1
s°+vllf o<t <1'°
n
wy (1) = sy (=D v”f' (n-T + o 1< T + 1
,
s +CDN Y E DT H ctret
n [} o
A-111-4
where 5o is the position of the particle along the field line at t'=0
- _ A _yn -
and Sy T -(n=-1)T + 1'0 +m) (-1 Vi Vs always has a value be
tween +) and -A since the particle is confined between the ionospheres.
The variations in the particle velocities, 6%, due to the fluctu-
ations can be expressed in terms of the Hamiltonian by using equation
A-11-9. To use the equations A-11-9 <H) ,and Thus(@),@B) and<Ei>,
are needed. In calculating the ensemble average quantities it is con-
venient to use the shorthand notation introduced in chapter 3. That
is, the triple (z,m,n) is replaced by L and lzm nis replaced by I
»My
Furthermore the notation Hfdx(L)f(L) will be used to denote
L
J’dx(l)){dx(zlde(})-'-u.‘(z,m,n). Also the statement L' = L will
mean ' = 2 and m' =mand n' = n.
From the definition of ‘.‘JZ(R\yl,f‘;sz,*rz) given in equation 3-7

and from equation 3-1

2 -
) .
oy=1 T apeL LWL (LT, 139" (L), 1
<> Lou (Zv)372f ‘“LZ[ ayt (LW, VL,
A J

ACL,P) exp G (L) +20-kz + ' (L)) A-111-5
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(L) is the phase of the L component of the potential at time t, y'(L)
is the phase at t' and ; = t'-t. Terms in the integrand of equation

A-111-5 for which L' # L are of the form

2 "o
| f j . 0?2 -
- dy dy' exp - (¢'-9)°/,. 2 = I.
@34 J, a

The parameter a(L) is defined by aZ(L) = K(L,m,n)Axbz(y,,m,n)f. a(l) is
allowed to depend upon L so that it can be taken to be different for

each component of the wave. Equation A-111~5 can be written

-ty () -pLn?

o - (S EM(SPg

2

- 2 v

<p-r ALr) exp 10 (L4 +Le—kzz dw(Lj ate  RLT VI
L (2m a(l)

2
2 S -
The integration over y'(L) gives e (L)/ze L) andj d"be'w = 0.
o

Thus the ensemble average over the potential is zero :<&= 0. This
is consistent with the assumption that there is no zero order electric
field.

To ca!cula’re<€_2L>‘ first note that Ei is of the form
Re()\lehzsl ). Re(f\2 eMZ). The notation "Re" means "the real part of";
"Im" will be used to mean "the imaginary part of"; and A¥ will denote
the complex conjugate of A. From the definition of the complex conju-

gate it follows that

. .
. ) o w ; ik

Re(Ale“’l)Re(Aze"SZ) = Ja ey e 'él)-'z-(Aze"‘2 + Ayte 825

. . . . *

; = Liajngel Bri82), o % X1 Bitda) Ly Xy o106 B2),

i *

: ,\4A * Wb1-8; ) A-111-6

1Az e )
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Since the electric field is given by E = -T,F can be written in

the form
- i (€ LT + EB(L,a)TB A-111-7

+ ES(L,u)Ts) exp iw(L)T + gB-ks + (L))

2 [m
<E3~_>= E"_/; de")Jw dy' (L™ A-111-8

Re{z £, (L,edexp P(O(L)Y + g8-ks + w'(U)}
L

and so

Re( z Ea(L',u)exp i(m(L'); +2"8=k"'s + P L) DU (P(L™), 159" (L"), 17)
L

+ a similar term for EE'
According to the equation A-{11-6, the integrand in A-111-7

must have terms of the form

| f ('-w) 0 for + sign
R di | dyt exp 1" (L)xp! (L'))exp - ——p> =
@2, f

2a for - sign

e

where GLL' = 5“,5mm,5nn,. Thus

a
) 2l avnf
FE Lo+ [gg (Ll pe A-111-9

&> !

where y(L) = Im@(L)). The imaginary part of the wave frequency,
v(L), gives the damping or growth rate of the L component of the
wave. To calculate D oo only the quantity §& is needed an-d

&6 = ‘Eﬁ (H -<H> ). Since B depends only on a and p is an inde-

pendant variable, @ (uB) = 0. From equation A-I11-9 it can be seen

2 33 2
that <E, > is & function of a only and thus 9_42_,_>= 0. So
9B
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Icu

& =

o0

2
c
=
B

o)

m 2 3 A-111-10
[? BEL'EE{I

Writing the expansion of the potential ¢ in a,8,s space as
8= £ C(L,a) exp i@(L)T + RB-ks + $(LD= > C(L,ade B gives
L L

3_ 0= Iik G, exp iB(L) Ani-n
3B
where @(L) = w(L)t + 28 - ks + (L)

2
Using equations A-111-6 and 7 fo write E, gives

- PE P DE DE (L) &% H) i 4 .
38

. A-ll-12

* * -l -1 H

£ (L) ELe Bl E LE (Wem Mg ne e whel®-M
[} o [+3 o a o

+ similar terms for ES

where 6 (1) = (L) +w(L'DF + (24218 - (k+k')s + y(L) +y(L")
g_(t) = @ L) S w Lt + (@-£')8 = (k=k")s + w(L) - y(L")

Using the expznsions for wi(‘r') from equations A-111-2,3 and 4
together with the observation that L implies that any function
of N is simply a function of «a, 5&(w|,w2,w3,v14,1") = 6&(;:’,1")
can be written frcm equations A-111-10, |1 and 12 as

3
SaGw,t) = sa(th) = &;[x s {i(z+y_’)E (Lw)E (L',a)ei®+@ ")
geB“ | L L' ¢ ¢

S * * S8 S DE (L,0)E (e B )
- DE (L, a)E (Lade™ 2 1= e (LB (L,

* 'd* 1
=t DL, (L are! e ’}+ a sinilar term for EB] A-l11-13
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-c I i2C(L,a)exp T(w(LIF' + 2B +hug (F'-F)-kwy(T1) + y' (L))
L

where
Be(t?) = (wll) + olL')H" + (2+2") [BmD (*r'-?)} =CktkDwg (H+0 " (LIl
B_(t=(u* (L)=u(L )T 4(a-21) Brog (P1=1) = (k=kDwg (+1) +' (L)-v' (L")

In calculating Dau it is convenient to use the following theorem
(Komolgoroff) to inferchange the ensemble average and time integration.
Theorem: For a bounded ensemble Y(t) all of whose members, y(1), are
Riemann integrable

<S* Iyl gt > = f(f [yttt
provideod that <[y(1")]> isORiemann integrabie.
Certainly the variations in the phase space velocities, &%, are

bounded and Riemann integrable and Dau is then given by

N
Dyu” SO o, 8,5,V 1, 18R Wy g, 110 gt
T
- S eatnisactn gt A-111-14
o

The two terms needed for 8i(t) are given by equations A-IlI-11 and 12;
8a(t') is given by equation A-l11-13. The expression (6&(1)6&(1—')>
has integrals of the form: ,

3 B
1) From multiplying the
38

terms

1 J‘dw(l)ﬁw'(l) exp{—i([w(L)w(L')]t [;)'(L")W(L"')]}
1

Wy lu(D, 459" (0,11 = 0
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' -
where  Wo(u(I),t; »"(I),t") = ! exp - Ly (Do)

(2m)3/2 a(D) 2a (D)

and a2(I) = k(i,j,k) (AYCi,J, kD20 =) 5 H(D=4(i,],k)
In the following infegrals the index I will be left out for the sake
of brevity but exoressions such as W,(y,+;¥', +') should be under-

stood to stand for W.(y(I),+; w'(I),+'). Other intergrals from the

—— tferms are

1 de jdw' exp{i(Ew(L)—'L(L')]i[w'(L“H\‘;'(L"')]) Va (Yt v',t') = 0

dewfd\b' exp{i([w(L)ﬂu(L’)] + [q,'(L")-o'(L"‘)]-)}Wz(w,f;v,b','r')= 0

and

n_J'dw ﬁw' exp F(Dp(LI= w(LHT = Lo (LM=p (L") P Wo Gyt 50,11 =
Seerbuend e

2) From the cross terms between g—“ E2 and g—s ©

njdwjdwi exp {i[i;‘:(L) £ (LY # w'(L"))]} Wolyyts9',4') = 0

for any of the eight possible combinations of signs, and

nfdw[dw' exp{ Ifx(pL) = 9L = w'(L")]}wz{w,’r;w',f') =0

3) From the term involving ;—5 3

-a2(L)| 0 for + sign
ﬂfdwj'dv»’ exp {?D‘(L):w'(L'ﬂ} My (et tme 2

GLL,for - sign

Denoting the quantity s(+)-w3(+') by s(T) with T=g-4!,

the quantity €5a(f) 6a(+")) can be written
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Goatrsacrny = £ ze—aﬁ 2216(L,0) |2 {expl-i (w(L)T+us (@) T-ks i) )]
4
+exp [T + ()t - ks ] p ¥ (WTgm2v (LY
2yt -
=S 622 02]eiL, | o™ cosy ' (LyT-ks(r))
L
where w'(L) =w (L) + .lmD(a).
The integration over time in equation A-111-14 is.best divided

up into time intervals when the particle is between the ionospheres.

Equation A-I11-14 can then be written
to —a2
2 -2y(L)t =
Dou™ 5 E e <Y 22|c(L,al? dre “e'" cos[(m‘-kv”)'r]
. o
-a2 -a2
N onT+t % . t _;_
+ L J dte ef cosly' T-k(s +(-)N  1)+ksT+ 4t e &'t
n=l n=1)T+to n "
NT+
0
coslio " (Lt-ktgy + (=D "y )eks] A-111-15

The integrals in equation A-llI-15 are all of the form

*2 xg I e

g Ffcostortel = ——qe " [d cos(bryre)+b sinlbtyre)]
d2+b

t

671 °[d cos(bty+c)+b sintbt, +r:):|}
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In equation A-111-15
2

1d = +YT = (-K(L; AY2(L) + y(LDT= =& "(L)=y(L))T
' b=u') = Dy,
c = =ks_=ks = K((n=1TT +f + 4~ )-D ks
" o " Tyl "
The terms in A-I11-15 can be combined after the time integration is

performed since the summation conTains terms Iike:

=G -y n= 1T+ )
e 0 :c' ¥ cosfi! -0 kv DUn=DTHE )
&'-12 4" = (=1)Tkv; )2

i . _A A-111-16
+ D kv (e )+ I"lll) + ks]

~coslly "~ (=" ky

n-| A
- - - +.
ll)((n I)T+T°)+( 8] kv”((n 2)T~‘1’° |V||[)+ ks]
where the first term is from the lower |imit of the time integration
of the nM term of the summation and the second term is from the
upper |imit of the (n-l)?h term.Equation A-I1l-16 can be written

—(k - - j
& =14 O) 1 ((ne 1 T t0)+ (1) T tks]

4= =ydakv
[(K"Y)2+(N"kvx | 200" -v)2 + (wtkv )2]

. v
where g = TLI- is the sign of the paraliel velocity. Similarly the
I

terms in the summation in equation A-111-15 which contain sine terms
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after the ftime integration is performed combine as:

2
(-l)"ka I(w _(kvlI)L(K,_Y)z)e-(g'-y)((n-l)'r.+ to)

sinfu'(L)((n=1)T +to0)
[tkr-y)2 + (m'-kv”)zjﬂ(z'-y)? + (u'+ka)2]

+(=12" ok +ks]
Using the notation

4" = k" (L-y(L) ; k((-1)" oh+s)= ke, s nTE to= f

e . =
w_ = a'-kvy, " + vy,
equation A-111-15 can be written
D = i z =2y(L)t d'
w 2 | e Y 22|c(L,a) | R
drz+w_:
-2ka| N-1 n —é'fn
——[2d'w ¢ (-D"e " cos(u't —krn)+(m+m_—d'2)
(424 2)(d" 24y, 2) n=0 "
N-1 -d't -d't s, ,
toD"e Msintut ke )] - S(dlcosl k)
n=o0 d' 2+ (u'+(-1) kv“)z
+ G0 ) sin u'*r-krN))}] CA-11-17
Equation A-I1i-17 holds for any value of ' and y. A convenient

. approximation to A-111-17 can be made when y=0 (steady state case)
and exp-x' T<<l. These requirements on y and k' mean that the wave

components are undamped and the wave turbulence is such that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96
particles see a phase change of approximately Ay in a time somewhat
less than the bounce period. Under these restrictions A-111-17 can be

written

2
b =<5 e2fc,0 2 6Ly, ,s)
w 1]

o
Kt 2k vie

where 't I

S(L,v”,s) - 2<'w[ cos(w T )
K124 2 l -°
- [KIZmE][KVZ+w+2:|

-« !

T -«
-e cos(m+T¥-d_fo)] + (u+w_—'<'2)[sin(w_*c)—e x'T

5i'n(m+T+m_1‘o)]

Equation A-111-18 shows that, for 1‘0 large (i.e. almost equal to a

bounce period), D

is largest for -2~ = |. This means, of course,
o kv“

that particles with parallel velocities such that f =V see the

wave as almost constant for nearly a bounce period. |If fo is small

the particle is quickly reflected from the ionosphere and particles

W
kvII

with parallel velocities such that =-| see the wave most favorably.
The Initial conditions of the particle are very important in equation
A-111-18 because of the value of k', «' is taken fo be so large in
deriving A-111-18 that the particle motion is complefely randomized

in a very few bounce periods. |f«x' is faken to be small so that

e—K'T is nearly unity then from equation A-1i1=17 it is clear that most
terms in D will have the denominator [K'ZME]'[K'ZW_%]. Thus the initial
relationship of the particle to the wave is relatively unimportant and
DM doesn’t peak sharply about any particular value of Fv—“‘l—i- . Finally
in the case in which y is on the order of the bounce frequency of a
particle (2r/1), Dua is quite small in a few bounce periods due to

the factor exp-yt which appears in every term of A-111-17.
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Appendix B-1
In this appendix electrostatic oscillations in a cylindrical
geometry (r,68,z) with a magnetic field given by 8= B(r).l'Z will be
investigated. The ftreatment will be restricted to the freguency

range L<mD>I <w < QI. The ion gyrofrequency is denoted by QI,

<wp> is_the azimuthal drift frequency of an ion with a velocity

= 1' :L and 2 is the azimuthal wave number. kb is used to denote
Bol'tzmarlm's constant. Both the ion gyroradius and the azimuthal drift
frequency can be functions of r and the frequency restriction must
be specified for a given range of r. The magnetic field is a function
of r but is assumed to vary slowly over distances on the order of an
ion gyroradius. The development of the differential equation for the
electric potential will closely parallel the work of Swift (1967) who
did similar calculations in a cylindrical geometry but with B = constant.
The problem is solved by using a perfurbation technique to find the
single particle distribution function from the collisionless Vlasov
equation with the electric potential being given by Poisson's equation.
The electrostatic acceleration is assumed to be of higher order (i.e.

. smaller) than the Lorentz acceleration. The zero order or unperfurbed
distribution functicn can be chosen fo be an arbitrary function of the

2 2

. 2
three constants of the zero order motion Vye VTV + A

Pg = —z—; = mrvg + ECE r Al(r). The momentum conjugate to 8, Pg» is

, and

constant since the Lagrangian, L, of the particle does not depend
upon 8 (i.e. 8 is cyclic). In the model magnetosphere a 7#wo component

Maxwel lian plasma with perpendicular and parallel temperatures given

97
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by T, and T, is assumed so the zero order distribution function is

written as
- m m \i/2 ™o mvg mv2
fo-(Tkﬁ__)(m‘T—) g(r‘A(r)+—Ee—)exp-(W+ﬁ—T—)
L b " bt b n
B-1-1

Since the zero order number density of the plasma is obtained by
integrating B-I-1 over velocity space g is related fo nye This
relationship will be specified later. The first order-distribution

function can be expressed as

== IT o - & att B-1-2
to v

The integral in equation B-1-2 is evaluated along the zero order
orbits of the particle in phase space. The lower limit of integration,
To’ is Taken as -= for growing oscillations (im w < 0). The analytic
continuation of fl(‘i‘) into the upper half of the complex w plane
gives the solutions for damped oscillations.

As discussed in appendix A-l the motion of the particles to
first order can be represented as a guiding center drift and a gyration
motion about the guiding center. Since the magnitude of the magnetic
field is a function of r only, the gradient drift will be in the
azimuthal direction. So at fime t the particle is located at the

cartesian coordinates

- = &y -
x(1) = T cos - —Q’-'- sing

YO = Fsin + St coss B-1-3

z(1) = AR z(0)
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where T = t-1'; § = ~upT *+ 8, ;5 = 4 + eQtr. The guiding center
coordinates are given by r, § and z. The gyroradius is defined by

p = ;:—‘l N eo and 4 are initial phases and e denotes the particle sign.
In the following, uniess specified otherwise, Yy and Q are assumed to
be evaluated at the guiding center. The position of the particle at

time t', r(t') is obtained from equations B-1-3

- 2
- Vv, _ .V
ey 2 e ? 2 2+ g2 s e e —"'r-sin(e-é)\‘—;
Q
Considering % << | and using the expansion (|+x)2 = [42x
= [ T 1% 223
rt =T (Il + e =sin(8-d) + 5 = cos"(5-4) ) B-1-4
r 2 FZ

The velocity vr(T') is obtained from B-1-4 by differentiation

w,
=7 D P i
' = 1y = - - = (1+e2 -
Vi V) = v cos(B-) [U - & = (1 e sin(8-4) )]
The azimuthal velocity, vé, can be obtained from vé = -v)‘(sina' + v;,ccse'
' '
and sing' = -Z—,; cos®' = : by struggling through some algebra
w, ~
-0 e e 25 B-1-5
te . 4) - ¢ & -
Vg = F v, sin(6-¢) - ¢ z vy cos”(8-4)
The electric potential will be written as

#(r,8,z,1) = fdo ] AlL,m,r',0) exp ilut - kz' + 28")
L,m

and the individual components of the potential are expanded in terms

of £ for use in equation B-i-1.
r

AlL,m,r',0) = A(2,m,T,w) + [r'-F] %A(z,m.iw) +

2
7 =i S anFw B-1-6
dF
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Using equation B-1-4 and the notation & = -s_ﬁ gives (retaining the 62

F
terms only) the following expression for the component A(L,m,r',w)

AR,m,r! ) = AlL,m,Fu) + [6sin(8-8) + 1/2 62 cos2(T-g)]

; i B} 2
FL AR + 172 72 62 sindE-d) o At,mFw
dr dr

20!
To expand o!e the relation

Q8 L XLy i ($-8)

= X = o iz 6%+ ise (1-85in(3-6))

-ssin(E-$) (1-3/2 6]
is used along with the approximation (1-x)" = | - nx + n(n-l)x2 |:><2<<I:|

to obtain

120" 128 o~ _ - o~ -~
™8 = &1 [ + isscos (B-8) + 86%o0s (B-)[~isin(E-§)—5cos (5-5) 1]

The integrand in equation B-1-2 can now be written as

ikv_m
> 3fo i(wtt-kz") | V2 m_d Amc g’] ise'
Jo- - fe - — O AlL,m,r',u)e
a o ka,, kb'lm" e g o
B-1-7
Loat iav! .
where —a—?rrA(z,m,r’,u)e'le = [v"_ aéTA(L,m,r',w) + = L A(Al,m,r“,u)]eu“'B

and g' is the derivitive of g with respect to its argument. The first
order number density is obtained by integrating the first order distribution
given by equation B-1-2 over velocity space. Since the average of

ize!

AlL,m,r',ule & over the phase @ in velocity space gives -

2n i 108
! A,m,rt,we 8 ag = 2ne P ace,m, FLu) +
2
| 2-1d -d -
T - - = DA, W) )
7P [rdrrdr FZJ .
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and

2m 21

d ise! o1
T 1[ A(L,m,r',u)e df

6 = Zwiﬂ.mD }; A(l,m,r',m)elz dd
the first order perturbation in the number density can be written

n = 2i&2 ]*d‘r‘ Cav, [ vydv of WK1
mo L z Yy Vadvy

! -0

kmy . mlw '
z D dmeglt ool
Ky Tn kT, c g o

-

2 -
) Als,m,r,w) B-1-8

EINE
N

In evaluating the first order perturbation of the number density
the time integration is done first, the integration over the parallel
velocities second and the integration over the perpendicular velocities
tast. Using the expressions z' = vZ(T'-THz and 8 = mD(n“-‘rHe the
time integration yields terms of the form

-1 expi(m—kvz+ie)
(m+lmD-K\lZ)
assuming that the im w < 0. The integration over the paraliel

velocities then gives

MVE

== F v,dv, e Tl feme v *p LU Z(Wlwo)

MLT T o e e S TSR kv
8-1-9

" whley m+LmD 02 ~

+ KT ““‘W" Zlgg) g} [I+T LF J AC2,m,r,w)

. ld =-d 12
where the ‘ifferential operator LF is defined by LF foor—-

- rdr dr r

© X'
ViV and z(g) = V‘FI —dlx—:— is the plasma dispersion

wthermal
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function defined for Imw < 0.

Before carrying out the integraticn over the perpendicular
velocities the dependence of g and Z on the perpendicular velocity
is investigated., The vector potential in the argument of g satisfies

the relation

MO L8

Ld ¢
r dr rdr dr

rA(r) = B(r) = 2 —5 (rA(r)) B-1-10

The assumptions that A(r) varies slowly over distances on the order
dA N
of p and —(F# 0 give
ACF) = AGF) + ep sin(B-8) &= A
dr

and

eV - - - -
FAF) = F A + F 2 sinB-HLAGHT & AE]
dr

or using equation B-I-10 r'A(r') = FA(F) + ?cvl _"'e£ sin(6-4). Using
. ' [ '_“ - L whi . N
the expansion r A vy sin(6-8) T which is obtained by

multiplying equation B-1-4 by B-1-5, the aggumenf of g can be
mc

i ety + TS iy 1= FAGD) - A
written as r'A(r') + = "'V rA(r) e So that

v 12"’0
Qe

1 4ty 1y = g (FA(R)) -
g(r'Alr )+§r Vg ) = g(rA(r))
- - 2v,2 2 P
QPRGN = 2 L giaP) = g (FAGY
Q dF
is independent of the perpendicular velocities to the first order
inp and g(rA(™)) = no(F). Also the derivitive of g with respect

to Its argument can be expressed as
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-2
' — d_ g=——_dr_ d—?z— =-—?—% a(FA(R) =
drA(r) dra(r) dr B(r) dr
2 d -
n (r)
8 a2
EwD
The plasma dispersion function, Z, is expanded in powers of ™
under the assumption that (imD)Z ol
whlo, 2w,
9y = 7¢%y + 2 21l
g = 2P g '3

For the imaginary part of w equal fo zero both the real and imaginary
part of Z' are about the same magnitude as the real and imaginary
parts of Z. Also over much of the range of % the dispersion function
does not vary rapidly. Thus the approximation made should be a good
representation of Z(uﬂmD) for (i:—D—) << |. For values of Lwy near

w the approximation may still be fairly good if Z varies slowly in
the range of % being investigated. The first order number density

wHLw, wHEw,
D 2] W

Z( =) which is expanded as g

involve: term
volves a kv 3% KV

w
Z(W) +

w Mo e M e
L (SRR JEC R
kv kv z (kv) * kv Z(kv)'
Using fhe above expansions for g and Z the integration over the
perpendicular velocities can now be easily performed by noting that
2k T

© 2
m 2ptl _-mvy/2k T _p! b P
anbT 'C) Vi e T dvy = o ( o )

The first order number density can then be written
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L<w > n_f<w >
. - Ef[ 2% ( W D VoW ' o D w
" L{ e L s
L<w >
3] " ) m Ty m W w
+ ' (=) B [ (7 (=)
o H G R bh-gd ko Mol R
L<wg> 2 ( 2%en!
D |i) = <> o W
n z (kv))j AlL,m,r,w) + ol o (Z(W)
28<w > 28<w. > 28<w >
D W ") 0 ©
+ 1 oA ()
kv z (kv)) * kv "D(Z(kv) * kv z (kv))
28<w >
.om Tu m w w D
UL, L I + 2 (z(Y
g - KT ”o(' v 2w
. W -
z'(Wn) }LF A(l,m,r,m}] B-1-11
where n'! = < n_ .
o =2 o
dr

Using equation B-I-11 and the fact that the electron gyroradius
is much smaller than the ion gyroradius, Pcisson's equation for a single

component of the electric potential written in the form

(L. - kz) A(L,m,T,0) = -4re [nl(ions) - nl(elecfronslj
r
can be expressed as (replacing F by r)
2
| d d 3 N(r)
raE T oaF Al,m,r,w) = (:Z’ 57 ) Al%,m,r,w)

Using the notation infroduced in chapter 2 where the subscript i
denotes the particle species and the subscript j refers to the plasma

+ype, N(r) and D(r) are
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L<w >,
2 2 i

N(P) = KE + dre zz[m 7 ka (Z(cij) + ‘;wiuz'“u’)
i iJ ij

L<w> T
b U( D ij ) ! ij
+n_. 2z, .) + yAl (; 2) [l-2 3
oj kv..
J v‘J ij lj iJ ka"ij T.Lij
n . 2<w >r s
+—T—°J—<| 2" (z(;..) + —kMZ'(;A,J) }
b iy ij ij Vij [N]
B-1-12
2
<> ( 2en .t 28«
=1 - 4mel | —i oj “0 )
DCr) = | - dne” | — {W (2(5”,) + 26 )
J [ ] Vij
28<w % 22<w >,
Dh( Dij \
4+ Mz )+ —2070 (¢ ] [|_.L]
[A] kviJ. ij kvij ij°) kb nij llJ
no 21<mD>..
tET I+, (Z(;i.) R z'(;..>)
oTuij J Vij R
The zero order distribution function has been written as
-mvz2 -mv‘,.2
fo= 1 n_.(n) (——m V2 f _m__ eZKbT"i-i e Holaig
o .b. o) 2rk T ( T
i,J b i b i
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APPENDIX B-11

The object of this appendix is to review the method for obtaining
solutions to the differential equation 4-3. The method employed is the
fami|iar W.K.B. approximation but the procedure merits review because
the function g2 = -(22 + U(x)) in equation 4-3 (which is usually a real
function of x since it corresponds to the potential energy in the
Schrodinger equation) Is complex. Assuming the solutions to the equation
have the form k exp i S(x) equation 4-3 can be regarded as an equation

for S(x).

Ps™x) - [S'(x)J2 + q?(x) = 0 B-11-1
The assumpfion that S(x) is an almost linear function of x so that §"(x)
is negligible gives a first approximation to S(x): So(x> =fq(x)dx.
The function g(x) = [-(22 + U(x))]l/2 has two possible phases. In the
following discussion a particular value of the phase of q is assumed to
have been chosen and used consistently throughout. Using this first
approximation to express S" In terms of q(x) gives another equation for
S{x)

igh(x) - [S"(x)]? = -q2(x)

which has the solution $ (x) =\5 /Z(x) + 1 q'(x) dx. The function g2(x)
is assumed fo be slowly varying so that |q'(x)| << |q2(x)| and the radi-
cal in the expression for S| can be expanded to give
Sl(x) =§[q + %%l] dx =j1qu +—;— In q. Thus the solutions to equation

4-3 can be written as

v, £ exp ijq(x)dx B-11-2
+ va
The plus and minus sign are used to denote the two Independant solutions

to equation 4-3 that arise from the two possible cholices of the phase

of a. 106
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These solutions are singular at the values of x for which q2(x) = 0

(these values of x will be called the turning points of q2 in analogy

to the usual terminology). The singularities in the solutions are arti-
fically created by the approximation used since the differential equation
is regular at the values of x for which g2(x) = 0. Thus the actual so-
lutions to the equation near the turning points may be found by using

a different approximation. Suppose that q2(x) = 0 at x = X5+ Since
q2(x) is assumed to be slowly varying it is approximately linear in the
vicinity of a turning point and q2(x) = n(x-x,). The slope of q2(x)
evaluated at x ~ is given by n =y+ 1§ = %; [qz(x)]lx=x° .

So near the turning points the solutions to equation 4-3 are governed

2
by the equation %;w + n(x-xo)u: = 0 which has the solutions

2 3/
Axo 3y 505 /nlx-x ) 2 and Axg 313

tions which are valid in the vicinity of the turning points can be re-

(% /n(x-xc)y%. These solu-

lated to those given by B-11-2 which are valid elsewhere. Noting that
3/2

x
q(x)dx reduces to 2 vVn (x-x_) as x > x_ since q2 + nlx-x_),
3' o o o

%o
the solutions valid near the turning points can be written in a con-
veniently expandable form:
Tq (K (£) B-11-3

JI/S(f) + k2 J-I/}

X
yher‘e f =f q(x)dx, The asymtotic expansions of the solutions given
X,

in B-11-3 depend upon the phase of f in the vicinity of the turning
point (and thus on the phase of q(x)). The asymtotic expansion for the

Bessel function Jv(z) for various ranges of the phase °z' of z is

1) > It/ i—z cos [z - (- —2—(%!/2)]

(=1/2)n < ¢, <(W+1/2)n g-11-4
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where n is an integer. The apparent difference in the phase term of
the cosine in equation B-l1-4 for the upper limit of the phase range
for n=m and the lower limit of the phase range for n=m+l is taken care
of by the dominance of the term expl(-D™'i(z = (-" I (v+1/2)] 1n
the cosine at values of ¢Z = (n+1/2)n. The appropriate soiutions in
the regions x >> X, can be related to those in the region x << X, by
using the asymtotic expansion of the approximate solution valid near
the turning point X Since the asymtotic expansions of the solutions
depends upon the phase of q at the turning point the phase of g must
be chosen and held fixed.

To illustrate the method used to connect the solutions through
a turning point it is best to consider a specific example. For the
example the phase of Vn (and thus q) for x > %o is chosen to lie be-
tween - % and %, Then, under the convention that the phase of a frac-
tional power of a positive quantity is zero, the phase of f is between

T T
-iand—z-for><>><0 and
X
. 2 32
£ = h} q(x)dx = £ /n (x X
%o
for x < o x , 2 "
-2 - =2 - =
f = \J 5 /n (x xo) dx = % /n (x xo)

X
o

2 3/2
3 /n (x,=x)

° .
NIV
H

For the example the phase of f for x < %o is chosen to be between m .

and 2r. Since the slope of g2 in the vicinity of the turning point
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has been written as n = y + 1 & (where y and § are real), the real

and Imaginary parts of vn are glvén by

| 1/2 £ 6
Re(Vm)= + (v + AEED S5 Imth) = e
-z 2y + fyZeeh) 2

The sign convention is simply that the Re(vn) > O means that the plus
sign Is used to find the Im(Vn) and Re(vn) < O means that the minus sign
is used to find Im(v/n). So choosing Re(v/n) >0 is sufficient to guarantee
the phase of vn (and thus f) is between ‘% and % The sign of 6§, the
Imaginary part of n, further restricts the phase of vn. For & >0

the phase of /n is between 0 and m/2 and for & < O the phase of Vn

between -7/2 and 0. The asymtotic solutions for x > x, are obtained

0
from B11-4 with n = 0 and v = « L
Y= / Ek cos(f- —) + k2 cos(f- —)] x> x

since & has been chosen less than zero the asymtotic expansion for x
< x, is obtained from B-11-4 with n=l and v = + |/3

1

iz L
=/2 6 o +e
Tq Ce k,cos(f + '2)

oxls

| cos(f + ——)] x<< X

The phase of f in the regions away from the turning points will depend
upon the behavior of q2 in these regions. The possible changes in the
phase of q when the rea! or imaginary parts of q2 change sign (but not
simultaneously) is discussed later. The solution for x << X, can be
written

1 5n i

12 4 o 12y onif

1
3
2 ) e ) B-11=-5

n\r

5= ket e
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Appropriate choices of the constants k, and k, can be made to satisfy

|
certain restrictions that may be placed on the solutions. For example
©if it is desired that no exponentially growing terms be included in the
solution for the region x < X, then the eif term In equation B-11-5
must be excluded. This can be accomplished simply by setting kI = k2'
Then the solution for x > X, which is related to this particular solution
has the form

Y= //W_—CZT_ k cos m/6 cos(f-n/4)

This procedure can be used to establish other connections through the

turning points for particular requirements on the solutions. The tech- '

niques used in the example can be applied to any given situation to
find the proper asymtotic expansions of the solution valid near the
turning point.

It is also of Interest to investigate the case where Re(g?) or
Im(q2) equals zero but |q2] Is not equal to zero. In this case the
solutions obtained by the standard W.K.B. method are not singular and
thus can be taken to be valid solutions to equation 4-3. The phase of
q can change at these points and it is important to determine just how
it changes. With the definition q2 = (22 + U(x)) = =(A' + iB') the
real and imaginary parts of q for A'#0 and B'#0 can be written
Re(q)=17|2— arZs2 - ant2; ine=t _—ZL_W B-11-6

/2(/A124812-41)
If B'=0 the real and imaginary parts of q are

Re(q)=0; Im(q)=t/A' [f A' >0: Relq)=:/|A']; Im(@)=0 if A0 g-11-7
and 1f A' = 0 they are

Re(q) = #/|3']; Im(q) = #/|B'| if B'> 0; Relq) = +/|B']
z z
Im(q) = #/[B'| ifB' <0 B-11-8
2
So, once a particular pair of signs in B-11-6 are chosen and the phase

of q thus specified, the sign of the imeginary part of q can change

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110



111

only If B' goes through zero and A' < 0. The real part of q2 going
through zero does not affect the signs of the parts of q nor does the
imaginary part of g2 going through zero if A' > 0. Thus the solutions
to equation 4-3 change from a growing to a decaying solution, or vice
versa, only if 3' changes sign when A' < O.

The solutions discussed in this appendix as functions of x are

easily viewed as functions of r by using the relationship x = In r
2

and the definition q2(r) = - (2= + ”D'Er) ) to obtain
2 r)

x r

- 02 - Ton 2y = [ (- BNEL 2,
f q(x)dx f (=2 U(x)) " “dx ( = D(r)) dr
- X

X
(] o rO

-
9 (g2 - [ (r2q2
j q(r)dr and nlgs (g (x)|x=x°] rgr (r%q (r))|r=r°]
-

o
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APPENDIX C

In this appendix the compufér programs that were used to investigate
the behavior of the function U(r;l,m,w) given in equation 4-2 are given
in detail. The first program given below ‘is.used to calculate the
values of U for various values of the dimensionless complex parameter zeta
for fixed values of r,%,m. As discussed in Chapter 4 the zeros of U are
the points of interest. The zeros of U occur at the points where the
numerator of U is zero. The program searches for zeros of U in the
complex zeta plane. The grid has a starting point specified in the
program by (ZEROWR, ZEROWI). The real and imaginary parts of zeta can
be incremented from this point in any of the four possible directions
by specifying the parameters QR and Ql. |f the real part of zeta is to
be increased from the starting point value, QR is specified as +I.

If it is to be decreased QR is given as a =1. 0Ol controls the increment
of the imaginary part in a similar fashion. The total number of grid
"squares" or meshes is IENDZ. The size of a grid mesh is specified by
the parameter STEP. The increment of the real part of zeta in one grid
mesh is .| °(STEP) and the increment of the imaginary pert is .l*(STEP)*
(RATI0). In the program the grid is fraversed by incrementing the real
part of zeta until the end of the grid is reached and then increessing
the imaginary part by cne step and again running through the grid row
by incrementing the real part of zeta, etc. At each grid point the

sign of the imaginary part of the numerator of U is tested for a sign change. :
If a sign change is found the real part of the numerator of U is tested
for a sign change between the two grid points at which the imaginary

112
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part of the numerator of U had 2 sign change. If a sign change in both
the real and imaginary parts of the numerator of U is detected a smaller
grid with as many squares as the original grid but the size of one grid
square is set up in this vicinity of the complex zeta plane and U is
tested for zeros in the same 'manner as before but using this smaller
grid. This procedure is repeated (JUMP-1) times. The values of the
numerator of U at each grid point are prinfed for reference.

The second program given below is used o calculate the behavior
of U as a function of r. The values of £,m, and ware held fixed. The
program also searches for turning points of U (i.e. where both the real
and imaginar\; parts of U are equal to zero) and gives the location of
any furning points that are found. The variable names used in both
programs and the procedures used are explained by comment cards in the

programs .
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PR ANONAANANAAOANONNOAANAANOANNANAMNANNONNANNANANOANNAA

MAINPROGRAM 1
sreseERERERETE

IN THIS PROGRAM THE NUMEPATOR OF U 1S TESTED FOR ZEROS AY LOOKING

FOR SIMULTANEDUS SIGN CHANGES IN THE REAL AND [MAGINARY PARTS OF

THE NUMERATOR OF U.

THE SIGN CHANGES IN THE PARTS OF U(ZETA) ARF ASSUMED TO NCCUR ON A SCALE
SIZE GREATEP THAN 2%STEP IN THE COMPLEX ZETA PLANE. A GRID HAVING

A MESH SIZE DETERMINED RY STEP 1S USED TO LOOK FOR SIGN CHANGES IN U.

IF A SUSPECTED ZERD OF U IS FOUND, A SYALLER MESH IS SET UP A30UT THIS
POINT, AND SILMULTANEIUS SIGN CHANGES APE AGAIN SOUGHT. THE NUMARRF OF
TIMES THIS SMALLLER MESH IS SET UP IS = (JUMP-1). THERE IS ASSUMMED TO
BEyAT MNST, ONE ZFPN OF U IN EACH GRID SQUARE.

THIS PRNGRAM CHECKS THE IMAGINARY PART OF U FIRST FOR A SIGN CHANGE

THE MFANINGS OF THE VARTABLE NAMES ARE GIVEN WHEN THEY ARE READ [N.
THE ORDER OF THE DATA CARDS IS
TEWP 190 FORMAT(4E10.3)
TEMP IS THE PARALLEL TEMPERATURE OF THE PLASMA
ISGN 191 FORMAT (213)
ISGN IS THE SIGN 0OF THE PARTICLE'S ELECTRONIC CHARGE - -
PMASS 192 FORMAT (2€10.4)
PMASS IS THE PARTICLE'S MASS
TPERP 12 FORMAT {4E10.3)
TPERP IS THE PERPENDICULAR TEMPERATURE OF THE PLASMA
CHARG POWER,BFLO, SPD 7 FORMAT (E10.3,F6.2,2€10.3)
CHARG IS THE ELECTRONIC CHAGE IN E.S.U. BFLD IS THE VALUE OF THE
MAGNETIC FIELD AT THE WAGNETUPAUSE ANy THE FLIELD IS ASSUMED TU VARY
AS [ 1/R)**POWER. SPD IS THE SPEED OF LIGHT IN C.G.S. UNITS
KAYKAPPA 6 FORMAT (2€10.4)
KAY IS BOLTZMANN'S CONSTANT
KAPPA IS THE PARALLEL WAVE NUMBER
N14N2,REP 30 FORMAT (?F6.1,F8.3
N1 IS THE VALUE OF THE PLASMASPHERF NUMARFR DENSITY AT THE MAGNETOPAUSE
N2 IS THE VALUE OF THE PEAK RING CURRENT NUMBER DENSITY.
IRADL 8 FORMAT (513)
IRADI GIVES THE VALUE OF R AT WHICH U IS TO BE TESTED FOR 2EROS
THE FOLLOWING ARE INITIAL VALUES OF PARAMETERS USED TO CONTROL
THE PROGRAM AND THETR FUNCTIONS ARE EXPLAINED WHEN THEY FIRST DCCUR
IN THE PROGRAM.

MONEL 8 FORMAT (S13)
MTWO A FORMAT (513) B N
MTHREE 8 FORMAT (513)
MFOUR 8 FIRMAT (513)
ZEROWR 18 FORMAT(5G10.4)
7TROAL 18 FORNATIS0L0.4)

ICNT 8 FORMAT(513)

JONT B FORMAT(513)

TJEND 60 FORMAT(I3)

TJEND GIVES THE NUMBER OF THF VALUES OF R AT WHICH U WILL 3F INVESTIGATED
FOR EACH VALUE OF TJEND NEW VALUES OF THE FOLLOWING GROUP OF PARAMETERS
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ARF READ IN AND THUS THERE MUST BE [JEND GROUPS OF THESE CARDS. -
STEP 4 JUMP 10 FORMATIFS.1412)
TEND, TENDL 8 FORMAT (513)
DR'OI 45 FORMAT (2F3,0)
61 FORMAT (I5)
L IS THE AZIMUTHAL WAVE NUMBER. 2%PI#R/L IS THE AZIMUTHAL WAVE LENGTH
RATIO 6 FORMAT (2F10.4)
ARRAYS ARF GIVEN WITH THE RADIAL INDEX FIRST ( IF ONE IS NEFDED),THE
PARTICLF INDEX SECONDy, AND THF PLASMA TYPE INDEX LAST.
IMPLICIT COMPLEX (CyZ)y REAL (K)
EXTERNAL DISP,ZET
REAL N1,N2,
REAL CHARG
REAL ZEROWRIS), ZEROWI(S)
COMPLEX YOU,0DISP
DIMENSINON  TCNT(S), JONTUS)
DIMENSINN G(100,2),6P(100,2)+TE4P(2,2),TSGN(2),PMASS(2),RAD(200)
DIMENSTON GYRO(100,2), GYRAD(10042),COMEGAL100)
DIMENSION NONE(5), MTWO(S5) e
DIMENSTON  MTHRFE(S), MFOUR(S)
DIMENSION IRADL(5)
DIMENSTON VPERP(2,2)
COMMON /CGML/VEL(242)4ZETAL2,2)
COMMON /COM2/ G+GPyPMASS, GYROsGYRAD,TEMP,RAD,KAY,KAPPA,ISGN,sL
COMMON /COM3/ TNDBIG -
COMMON /COMS5/ OMEGADI 10042421y TPERP(2,2)
OATA COMEGA/100%(0.0,0.0)/
THE PARALLEL TEMPERAT OF THE PLASMA IS GIVEN BY TEMP(J,I).
J=1 DENJTES IONS J=2 4 ELECTRONS
1=1 DENOTES PLASMASPHERE PARTICLES I=2 4 RING CURRENT PARTICLES
TEMP IS A 2 X 2 ARRAY [N FORMAT 4E10.3 CONTAINING THE PARALLEL TEMPERATURE
READ(1,190) TEMP
190 FORMAT(4E10.3
ISGN 1S AN ARRAY OF SIZE 2 IN FORMAT 213 CONTAINING THE PARTICLE SIGNS
READ{1,191) ISGN
191 FORMAT(213)
PMASS 1S A SIZE 2 ARRAY IN FORMAT 2E10.4 CONTAINING THE PARTICLE MASSES
READ{1,192) PMASS
192 FORMAT(2E10.4)
THE PERPENNICULAR TEMPERATURE OF THE PLASMA IS GIVEN BY TPERP
TPERP IS A 2X2 ARRAY IN FORMAT 4E10.3 CONTAINING THE PERPENDICULAR TEMPERATURE
READ(1,12) TPERP
12 FORMAT(4E10.3)
WRITE(3,12) TPERP
9 FORMAT (4E8.1,212,2E10.4/4E10.2)
CHARG AND SPD ARF THE FLECTRONIC CHARGE AND THE SPEED OF LIGHT IN CGS
UNITS. BFID IS THE VALUE OF THF MAGNETIC FIELD AT THE MAGNETOPAUSE IN GAUSS
B IS ASSUMED TO VARY AS (1/R)$*POWER
READ (1,7) CHARGPOWER,RFLD+SPD
T FORMAT {£10439F002s201043)
TOORIG IS USFD TO MODULATE THE VALUE OF THE ARGUMENT OF THE SINE AND COSINE
IN THE SUBROUTINE DISP TO KEEP THEM FROM BECOMING TOO LARGE
T0O81G = .B23549E+06
KON = SPD/CHARG
KAY, KAPPA ARE THE PARALLEL WAVELENGTH AND BOLTZMANN®S CONSTANT IN FORMAT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

C  2E10.4
- READ (1,6) KAY,KAPPA
: 6 FORMAT {7E10.4
N1 IS THE PLASMASPHFRE NUBER DENSITY AT [TS OUTER BOUNDRY N2 IS
THE PEAK RING CURRENT NUMSER DENSITY. THE PEAK IS ASSUMED TO OCCUR
AT 6 RE TN THIS KODFL. REP IS THE RADIAL DISTANCE TN THE BEGINNING
NF THE PLAS“A PAUSE GIVEN IN RE, IN THIS MODEL A VALUE OF 5.9 RE IS
USED SINCE RUSSFL AND THNRNE WAVE FOUND THAT THE PLASMAPAUSE CLOSELY
COINCIDES WITH THE PEAK RING CURRENT NUM3ER DENSITY
READ(1,30) N1,N2,REP
30 FORMAT (2F6.1,F8.2)
WRITE (3,170
17 FORMAT ('1',*  THE FOLLOWING IS & PRINT OUT OF DATA CARDS 5-7 AND
1 1-3, THE ARRAY VEL (I.J), AND DATA CARDS 8-17, IN THAT ORDER'///)
WRITE (3,7) CHARG,POWER,BFLD,SPD
WRITE (3,6) KAY,KAPPA
WRITE(3430) N1,N2,RFP
C THE THERMAL VELOCITIES ARE CALCULATED
- D0 15 I=1,2
00 15 J =
VEL GIVES THE PARALLEL VELOCITIES AND VPERP THE PERPENDICULAR VELOCITIES
WITH THE FIRST INDEX GIVING THE PARTICLE SPIECE AND THE SECOND GIVING
THE PLASMA GENRE
VEL (Jy1) = SORYT { 2*KAPPASTEMP(J,1)/PMASS(I))
VPERP{Jy )= SQRT{2¢KAPPASTPERP(J, 1) /PHASS(J))
15 CONTINUE
€ THE GYRORADIUS FOR THE [ONS AND YHE GYROFREQUENCIES ARE CALCULATED
c B IS ASSUMED TD VARY AS {1/R)**POHER
RO = AFLD({6435E9)#¢POHER)
00 5 14 = 1,100
(6.350F7) #14
R&4POMER
BF = BO/RD
- D0 5 15=1,2
GYRDUT4,15)= CHARG#RF/(PMASS(I5)&SPD)
GYRAD(14515)= VPERP(1,15)/6YRO(14s1)
00 5 16=1,2 .
C OMFGAD IS A 100 X 2 X 2 ARRAY WHICH GIVES THE AZIMUTHAL DRIFT FREQUECIES
C 0OF THE PARTICLES
- 5 DMEGAD(14y16415)=(=o5) % ISGN(161%(VPERPI16,15)%%2) *PMASS (16} %(1/BF)
14KON® [ POHER/ (R¥821)
WRITE(3,9) TEMP,TSGN,PMASS, VEL
C FROM THIS POINT TO STATFMENT NUMBER 150
C  THE MODEL NUNBER DENSITY, G , AND ITS DERIVITIVE WITH RESPFCT TO
C  Rk#2 , GP , ARE GENERATED
- PEAK=6%(6.350€8)
6.35E8) #42
A2=(16./AL0G(10.$N2) ) SRE2
— A=SORT(A2)
R2=(1./AL0G( 10.))#RE2
8=SORT(A2)
- RE® = REP¥(6.35E8)
D=(.5/ALOG(10.N1) )#RE2

Acenon

coo

e s
i

REP?=REPSREP
- 00 150 13=1,100 . -
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s - RAD(131=16.350F7)*13

- EX==(RADI(I3)-PEAK)

EX2=EX*EX

1F (EX) 50450,51

GU13,2)=N2#EXP{-EX2/A2)

GP(13,2)=2#EX*G(13,2)/(A2%RAD(I3))

GO 7O 53

51 GLI13,2)=N2¢FXP(-EX2/82)
GP{13,2)=2%EX*G(13,2)/(B22RADI[3))

53 IF(RAD{TI)=REP) 54454455

54 GUI3,1)=N1#RFP?/(RAD([3)*%2)
GP{I3,1 =1¥G(13,1)/(RAD(13)%%2)
GO 1O 150

55 IF(RADII3)-PEAK) 58,58,59

59 G(I3,1)=0.0

5

>

E GUI3,1)=N13EXP{-EXX2/D}
GP{I3,1) = 2%EXX*G(13,1)/(D*RAD(I3))
150 CONTINUE

C ZERONS OF U ARE SOUGHT AT FIXED VALUES OF R. [IRADL IS AN ARRAY IN WHICH
. € THE VALUES OF R ARE GIVEN IN TENTHS OF EARTH RADII. E.G. 5.5 RE
C GIVEN AS 55. IJEND 4UST EQUAL THE DIMENSION OF IRADL (.LE. 5)
C THIS ALLOWS U TOD BE INVESTIGATED AT SEVFRAL VALUES OF R.
READ(1,8) "IRADL
B FORMAT(513) .
C M1 AND M2 DETERMINE AT WHICH POINT IN THE GRIN GF MESH SIZE STEP
C THE SEARCH FOR 2EROS IS TN BEGIN. M2%STEP#.1= REAL PART OF Z2ETA
- C M1eSTEP#,1= [MAGINARY PART OF ZETA. THE VALUES OF ML AND M2 ARE STORED IN
4 THE ARRAYS MONE AND MTWO.
READ (1,8) MONE
READ (1,8) MTWO
WRITE (3,8) MONE
WRITE {3,8) MTWO
C MTHREE AND MFOUR ARE USED TO INSURE THAT ANY ZERD FOUND IN THE FIRST GRID
C ELEMENT WILL BE RECORDEN. THEY SHOULD INITIALLY HAVE THE VALUES OF
C MONE AND MTWO.
READ[1,8) MTHREE
WRITE (3,8) MTHREE
READ (1,8) MFOUR
WRITE (3,8} MFOUR
€ ZERDWR AND ZEROWI ARE THE REAL PART AND IMAGINARY PART, RESPECTIVFLY,
€ OF THE ORIGIN QR STARTING POINT OF THE GRID IN THE COMPLEX ZETA PLANE.
- g READ (1,18) ZEROWR
WRITE (3,18) Z2EROWR
READ(1418) ZEROWI
WRITE(3,18) ZEROWI
18 FORMAT (5G10.4)
C ICNT IS A SIZE 5 ARRAY WHICH CONTAINS THE INITIAL VALUES OF ICOUNT FOR
€ EACH RUN THAT IS TN BE MADE AT A DIFFERENT VALUE OF R.
C ICOUNT COUNTS THE NUMBER NF TIMES THAT THE GRID HAS BEEN REDUCED IN SIZE
C FOR A GIVFN TEST OF THE SIGNS OF U
C IF ICOUNT=0 THEN ZEROW SHOULD EQUAL (ZEROWR,ZEROWI)
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READ(1,8) ICNT
Lan WRITE (3,8) ICNT
c T c JCNT IS THE INITIAL VALUE OF JCOUNT, THE COUNTER OF THE NUMRER OF
c ZEROS OF U FOUND ON A GIVEN RUN
READ (14R) JCNT
WRITE (3,8) JCNT
IJEND GIVES THE NUMRER OF DIFFERENT VALUES OF R FOR WHICH U IS TO
€ BE INVESTIGATED. THE MAXIMU' VALUE THAT IT CAN HAVE IS 5.
READ (1,60) IJEND
60 FORMAT (13)
D0 210 IJ= 1,1JEND
IRAD=TRADLLIJ)

C STEP IS THE SIZE OF THE REAL SIDE OF A GRIN ELEMENT. THAT IS, THE AMOUNT
€ THE REAL PART OF ZETA IS INCRFASED IN EACH GRID ELEMENT.
C STEP MUST BE EVENLY DIVISIBLE INTO IEND.
€ JUMP GIVES THE NU¥SER OF TIMES THE GRID IS REDUCED AND THUS THE ACCURACY
C TO WHICH A ZERD OF U IS FOUND CAN BE EXPRESSED IN TERMS OF JUMP.
C A ZERO OF U LIES SIMEWHERE WITHIN AN AREA OF THF COMOLEX ZETA PLANE
C OF STEP/UIEND®#(JUMP-1)}) BY STEP#RATIO/{(IEND=11%*(JUMP=1))
READ(1+10) STEP,JUMP
- 10 FORMAT(FS.1s12)
B READ (1,8) IFND,TENDL
- € QR GIVES THE SIGN OF THE REAL PART OF ZETA, QI THE SIGN OF THE
H C IMAGINARY PART. F.G. QR=-1. MEANS THE REAL PART OF ZETA IS NEGATIVE
& € NOTE THAT A QR AND A QI IS READ FOR EACH VALUE OF R.
H READ (1445) QR,QT
N 45 FORMAT ( 2F3.0)
4 L IS THE AZIMUTHAL WAVE NUMBER
READ(L461) L
61 FORMAT{IS)
WRITE 13414) L
14 FORMAT('1'," THE VALUE OF L FOR THIS RUN IS *,15///)
WRITE(3,11)
11 FORMAT(* THE DATA SET PERTINATE TO THIS RUN IS GIVEN IN THE ORDE
1R STEP, JUYP TEND, TENDL RATIO QR,QI*RATIO. *///)
WRITE(3,10) STEP,JUMP
- WRITE (3,8) IEND,IENDL
4 RATIO IS THE RATID NF YNE ITMAGINARY EXTENT OF A GRID ELEMENT TO |‘HE
C  REAL EXTENT OF THE ELEMEN
€ IENDSSTEP IS THE LARGFST REAL VALUF OF ZETA AND (TEND1-1)#STEP&RATIO
c 1S THE LARGEST IMAGINARY VALUE OF ZETA AT WHICH U IS TESTED FOR ZEROS

READ{1,6) RATID
- WRITF(3,6) RATIO . - R
. .QIR=qI
Qr= QI#2ATIO
WRITE (3,6) OR,QT
FL=(L/RAD( nuonnz
WRITE (3,16)
16 FORMAT (#17)
C  THE PARAMETERS FOR A GIVEN VALUE OF R ARE INITIALIZED.
TCOUNT=ICNT(TJ)
JCOUNT =JCNTLTS)
ZEROW= CMPLX ( ZEROWR(IJ),ZEROWI(IJ))
M MONE( 1)
MTWO( 1J) e .
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MTHRFE(IJ) T
M4= MFOUR(1J)
c SCALER AND SCALEI ARE SCALE FACTORS THAT REDUCF THE WHOLE GRID TO THE SIZE
c OF A SINGLE GRID ELEMENT SO THAT U CAN BE TESTFN FOR ZEROS ON A FINER
c SCALE. SCALER RENUCES THE REAL VALUES, SCALE! THE IMAGINARY VALUES
102 SCALER= STEP/(1E€MD##ICOUNT)
SCALEL = STEP/((IFNDL-1)¢*I1COUNT)

€ A GRID IS SET UP IN THE COMPLEX ZETA PLANE.
105 DO 202 11= M1,1ENDL
=11-1
ZAP = ZEROW+ T¢(0.yo1)*QI*SCALET + (M2-1)*QR=(.1,0.)*SCALER
1T=2AP
C THE VALUE NF THE NUMERATAR OF U AT GRID POINT (I,M2-1) IS OBTAINED
C YOU IS A SUBRNUTINE WHICH CALCULATES THE VALUFS OF THE NUMERATOR OF U.
C DISP IS A SUBROUTINE WHICH CALCULATES THE PLASMA DISPERSION FUNCTION.
C ZET IS A SURRQUTINE WHICH CALCULATES THE VALUE OF ZETA FOR EACH PARTICLE
ZTEST=YNUIZET4DISP,ZTy IRAD)
WRITE(3,400) ZTEST , ZT
400 FORMAT(* THE NUMERATOR OF U HAS THE VALUE *9612.5," *4G12.5,
. FOR ZETA= 1,2G10.4)
TEST= ATMAGIZTEST)
TF (ICOUNT .EQ. 0)
€ THIS JUST INSURES THAT YHE REAL PART OF 2ETA IS NOT OUTSIDE THE RANGE OF THE
. C GRI
IF (M2-IEND .GT. 0) GO TO 204
DO 200 2, 1Ef
= ZETA2 1.1,0.)%0R*J=SCALER + ( «1)*QI#I*SCALE] + ZEROW
2T=ZETA21
ITEST=YOU{ZET4DISP+ZT,IRAD)
C THE VALUE OF THE NUMERATOR OF U AT EACH GRID POINT IS DRINYED DUT
- € FOR REFFRENCE.
WRITE(3,400) ZTEST , 2T
BETA = AIMAG(ZTEST)
IF (TEST .EQ. 0 ) GO TO 101
€ THE VALUE OF THE IMAGINARY PART OF THE NUMERATOR OF U AT GRID POINT (J,I)
C IS COMPARED YO ITS VALUE AT THE GRID POINT (J+l,1)
IF (BETA/TEST .GT. 0) GO TO 200
101 IF { ICOUNT .EQ.O0 ) M4=
C IF THERE IS A SIGN CHANGE IN THE IMAGINARY PART OF THE NUMERATOR OF U
C THE REAL PART OF THE NUMERATOR OF U IS TESTED FOR A SIGN CHANGF IN THE
€ SAMF GRID SQUARE AT ELEVEN DIFFERENT PDINTS ALONG THE GRID ELEMENT.
DO 201 12 = 1,11
Z2ETY ZETA21 - OR#(12-1)%(.01,0.)1#SCALER - QI* (0.s.05)*SCALET
2€T2 ZET1 + 91#(0.y.1)#SCALET
ALPH L+REAL{YOU(ZET,DISP,ZETL,IRAD))
R ALPH L4REAL(YOULZET,DISP,ZET2, IRAD))- - - T
IF({ALPHL.EN.O) GO TN 300
C IF A SIGN CHANGE IS FOUND A FINER GRID IS SET UP IN THIS AREA OF THE COMPLEX
€ ZFTA PLAN

1F (ALPN?IALPHI.LE.OI GO TN 300
201 CONTINUE
THIS IS THE END OF THE DO LOOP WHICH INCREMENTS THE REAL PART OF ZETA
200 TEST = RETA
IF ( ICOUNT .NE.O) GO TO 202
204 M2=1

o
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4 THIS IS THE END OF THE DO LOOP IN WHICH THE IMAGINARY PART OF
- c ZETA IS INCREMENTED.
o 202 CONTINUE
c THIS TESTS WHETHER THE ENTIRE GRID HAS BEEN SEARCHED.
211 IF (M3-1END1) 212,213,213
212 ICOUNT = O
c THE FOLLNWING STEPS ALLOW THE ORIGINAL GRID TO BE REENTERED AT THE
c NEXT GRID POINT AFTER THE ONE AT WHICH IT WAS LEFT.

M1=M3

M2= M4s)

ZERDW = CMPLX(ZEROWR{1J)4ZEROWI(TJ))
SCALER = STEP

SCALFI = STEP

1
300 lCDUNY: TCOUNT+1

lEROH = IETA21- QI%{0.,.05) # SCALEI - QR*{.1,0.)*SCALER
- WRITE (3,301) ALPHL,ALPH2,ZET1,ZFT2

301 FORMATI//y* THE REAL PARTS OF U NENOTING A SIGN EHANGE HERE '
1612.6,*  AND 1G12.64/4" AT 2ETA= *,G10. 10.44* AND
2 *4G61l0.4y0 4 *4610.47/)
TFLICOUNT=-JUMP) 102,230,230

160 WRITE (3,1) QR,QIR

- 1 FORMAT{® NO ZEROS FOR THE IMAGINARY PART OF U WERE FOUND FOR

1QR= AND QI= ", T62,F4.1,T77,F4.1)
G0 1O 210

230 JCOUNT=JCOUNT+L

C THE PROGRAM IS TERMINATED IF MORE THAN 100 ZERDS OF U HAVE BEEN FOUND
IF (JCOUNT.GT.100) GO TO 151
- ICOUNT=0 R R :
M1aM3
M2= M4el
ZEROW = CMPLX(ZEROWRITJ) JZEROWI(1J))
C COMEGA SIMPLY STORES THF VALUES OF ZETA AT WHICH A ZERO OF U HAS BEEN FOUND

COMEGA(JCOUNT) = ZET1 + OI% (0.,.05)% SCALEI
o WRITE (3,29) COMEGA(JCOUNT) - - e
29 FORMAT (* A ROOT OF U IS AT O4FGA EQUAL TO '/2G12.4)
SCALER = STEP
SCALEI = STEP - e -
GO TO 203
203 IF{M1-IENDI) 105,105,210
151 WRITE(3,33) QR,QIR,L,ZEROW -
33 FORMAT(1H1, * THERE ARE MNRE THAN 100 RODTS OF U IN QUADRANT ’
1 FOR L= « THE VALUE OF ZETA WAS *,T49,F3.04752,F3.0,T62413,
2791,2612.61
G0 TO 210
213 IF (JCOUNT) 210,160,210
c THIS IS THE FND OF THE DO LOCP FOR A GIVEN VALUE OF R. THAT IS -
€ A NEW VALUE OF R IS READ IN
210 CONTINUE
152 stop - -
END

[, e E T e —n
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- c
4 SUBPROGRAM DISP
c
4 THIS SUBRQUTINE IS A GFOPHYSICAL INSTITUTE LIBRARY SUSROUTINE
C THIS SUBROUTINE GIVES THE PLASMA DISPERSION FUNCTION FNR VARIDUS VALUES
C OF ZETA. THE FUNCTION IS SIMILAR TO THE ONE TABULATED BY FRIED AND CONTE
C BUT THE FUKCTION IS ANALYTICALLY CONTINUED FROM THE LOWER HALF OF THE
C ZETA PLANF.
C A POWER SERIES EXPANSION 1S USED TN CALCULATE THE DISPFRSION FUNCTION
c FOP VALUES OF ZETA LESS THAN OR EQUAL TO 3. AN ASYMTOTIC EXPANSION IS USED
€ FOR VALUFS OF ZETA LARGER THAN 3, THE FUNCTION IS CALCULATED TO AN ACCURACY
€ OF .1
COMPLEX FUNCTION DISP(Z0)
COMMON/COM3/ TOOBIG
- COMPLEX 20
REAL X{2)4A(2)4R12)4C(2),0
EALIZ0)
X2= AIMAG(20) -
4 X{13)=X1
: X{2)=x2
Y=X1#X1
U=x2#x2
H YU=X1%X2
i N A{1)=2.%(Y=U) -
R Al2)=4.%YU B
= RX=Y+U
EX==Y+U
AR=2,%YU

AR=AMOD{ AR, TDOBIG)
- - 3 IF(EX-100.) 30,30,31 - - e e
31 PXP=1.E30
G0 TO 32
30 PXP=1.TT72454%EXP{EX)
32 l PXP*SINIAR)
PXP*COS(AR)
IF (RX=94) 13,413,164 - B -
14 IF(X12)) 16417418
16 SIGMA=0.
GO TO 19
17 SIGMA=1.
GO 70 19
- 18 SIGMA=2,- - - - - R N
19 Cll)=l.
C(2)=0.
R ZL=Z1¥SIGMA - - - - oo s R e -
212=12%S1GMA
CALL CDIV {CyAsB,KE)
- TFIKE=1)748,7 e
8 WRITE(3,20)
CALL EXIT
Cl1)=RLLI*5,¢1,
Cl2)=8(2]1%5,
A(1)=(RI1I*CIL)-RB(2)8C(2))*3.+1,
- AC2)=(B(2)5CI1)+C(2)#B{ 1) )3, - - -

~
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CLLI=RILI*AC1)-B(2)*A(2)+1.
5 CIL2)=8(2)1=A(1)+A(2)*8(1)
CALL CDIV(CyXyA,KE)
1F (KE=1)115,8,15
15 Z1=-A(1)+21
22==Al2)+22
G0 T0 6
13 At1)=-2.%x(1)
BL2)=-2,%X(2)
D=3.
21=21+8(1)
12=22+812)
(BL1)*A(1)-R(2)%A(2))/D
2 (BI1)%A(2)48(2)2AL1))/D
21=Z1+Cl1)
22=72+C(2)
1F L{CELI3CULI+CI2)%CI2) )-1.E=-6)6,46,5
N=D+2.

*

w

1)
: BL21=Cct2)
H GO TO &
N FOPMAT(* DIVIDE AY 7ERD RESULTING IN PROGRAM TERMINATION®)
DISP=CMPLXIZ1,22)
RETURN

*o

C THIS LITTLE SURROUTINE IS USED TO DIVIDE TWO COMPLEX NUMBERS. THIS
- C  SUAPROGRAM WAS WRITTEN BEFORE THIS FEATURE WAS AVAILABLE IN THE
€ FORTRAN COMPILER.
SURROUTINE CDIV{AsB,C,KE)
REAL A4R,CyR
- e DIMENSION A(2)43(2),C(2)
R=D(11%62+8(2) 862

TFIR)I14142
1 KE=1

GO TO 3
2 KE=2

- CLL)=(ALL)*R(1)+A12)4R(2))/R R - R
Cl2)=(A(2)#R(11-A(1)#B(2))}/R

THIS SURROUTINE CALCULATES THE RATIO OF THE PHASF VELOCITY OF THE WAVE
PARALLEL TO THE MAGNETIC FIELD T0 THE PARALLEL THFRMAL VELNCITIES OF THE
C PARTICLES { PARALLEL VELOCITIES= SORT( 2#¢KAPPA*® TEMP (I,J)/PMASS))

. SURRDUTINE ZET(X)

COMMON /COM1/V{2,21,ARRAY(2,2)

COMPLEX Xy ARRAY

DO 10 I=1,2

3 RETURN
- END - -
c
c eRpREROEREDOK
- . - - -
c
c SUBPROGRAM 267
c
4
c
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T RETURN T i s s e e B -
END

c

c BREERERIRERERS

[ .

c

c SUBPROGRAM You

c

€ THIS SURROUTINE CALCULATES THE VALUES OF THE NUMERATOR OF THE FUNCTION
€ U FOR A FIXED VALUF OF R AND A VARIABLE VALUE OF ZETA. THE FORMULA

C USFD IS GIVEN IN FQUATTON B-1-12

COMPLFX FUNCTION YOU(ZET,DISPyX,IRAD)
IMPLICIT COMPLEX (CoZ)y REAL (K)
COMPLEX DISP,X
COMMON /€027 G(10042),GPL100,2)/COML/VELI2,2)42ETAL2,2)/COM2/
LPMASS{2),GYRN(100,21+GYRAD(10042) 4 TEMP{242) 4RAD{200) 4KAY KAPPA,y
2ISGNI2),L
COMMON /COMS/ OMEGADI 10042421y TPERP{2,2)
KONST=4.0%3.14159%( 4. 8026~10)%*2
CNUMU= KAY*%2
CALL ZET(X)
00 11 I=1,2
00 11 J=1,2
Z0=ZETALJ, 1)
. CN1= DISP(Z0)
- CN?=-2#(1+20%CN1)
- CN3= KAY*VEL(J, 1)
CN4= LSOMEGAD(IRADyJy I)/CN3
CNUM1= KONST#® 25L#ISGN(J)#GP({IRAD,1)%(CN1+CN4=CN2)/(PMASS{J) *GYROL
1TRAD,J)%CN3)
ONSTHGIIRAD, 1) % (14Z0*CNI+CNACZOCN2) / {KAPPASTENP (4, 1))
¥ ONST*G(IRADy 1) *CN4* [CN14CN4SCN2) #(L-TEMP(J, 1) /TPERPII, 1D/
1KAPPASTEMP(J, 1))
CNUMU=CNUMU#CNUML+CNUM2+CNUM3
YOU = CNUMU
RETURN
END -
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MAINPROGRAM 2

THIS PROGRAM CALCULATES THE COMPLEX FUNCTION U AS A FUNCTION OF R FOR

A GIVEN VALUE OF ZETA ( THE RATIO OF THE WAVE PARALLEL PHASE VELOCITIY
TO THE PARALLEL ION VELOCITY).

THE  SUBPROGRAMS CALLED BY THIS MAINPROGRAM ARE DISP, CDIV, ZET AND YOUL
MOST OF THE VARIABLE NAMES USED IN THIS PRUGRAM ARE THE SAME AS IN
MAINPROGRAM 1

THE PKOGRAM SEARCHES FOR TURNING POINTS OF U ( IE WHEN BOTH THE REAL
PART AND THE IMAGINARY PART OF U ARE EQUAL TO ZERO) AND GIVES THE VALUES
OF R AT WHICH THEY CCCUR.

THE PROGRAM CALCULATES THE VALUES OF U{R) AT INTERVALS OF ( ONE EARTH
RADIUS)#SKALE . THE PROGRAM TESTS FOR ZEROS OF U BY LOOKING FOR
SIMULTANEQUS SIGN CHANGES IN BOTH THE REAL AND IMAGINARY PART OF U
BETWEEN ThO ADJACENT VALUES OF R.  IF A SIMULTANEUUS SIGN CHANGE IS
FOUND U IS CALCULATED AT NUMBRE OF EVENLY SPACED VALUES OF R BETWEEN
THE TWO VALUES OF R FOR WHICH THE SIGN CHANGE WAS OETECTED. IF

ANOTHER SIMULTANEOUS SIGN CHANGE IS DETECTED THE PROCESS IS

REPEATED LIMIT TIMES.

ULR) CAN BE CALCULATED FOR SEVERAL VALUES OF ZETA. THE NUMBER OF VALUES OF
ZETA TO BE READ IN ARE SPECIFIED BY JEND.

AOARAAPPNNRNRAANANAONNNNAND

IMPLICIT COMPLEX(CZ),REALIK)
COMPLEX YOUL,DISP
REAL CHARGsN1,N2
COMMON /COML/ VEL(1242),2ETA(242)
N DIMENSION GYRD(10042),GYRADI100,2)
DINERSIGH VPERP(242)
COMMON /COM2/ G11004214GP(10042)4PMASS(2) sGYRO+GYRAD, TEMP(2
192),RAD(200) yKAY,KAPPASISGN(2) 4L
COMMON /COM3/ TOO0BIG
COMMON /COM4/ CFREQL242)4 COISP (2,2)
COMMON /CUMS/ UMEGAD(10Q+2+2)y TPERP(2+2)
THE PARALLEL TEMPERATURE OF THE PLASMA IS GIVEN BY TEMP(J,I).
J=1 DENOTES IONS J=2 , ELECTRONS
I=1 DENOTES PLASMASPHERE PARTICLES 1=2 4 RING CURRENT PARTICLES
TEMP IS A 2 X 2 ARRAY IN FORMAT 4E10.3 CONTAINING THE PARALLEL TEMPERATURE
READ(1,190) TEMP
190 FORMAT(4EL0.3)
c ISGN IS AN ARRAY OF SIZE 2 IN FORMAT 2I3 CONTAINING THE PARTICLE SIGNS
READ(1,191) ISGN
191 FORMAT(213)
4 PMASS IS A SIZE 2 ARRAY IN FORMAT 2E10.4 CONTAINING THE PARTICLE MASSES
READ(1,192) PMASS
192 FORMAT(2E10.4)
c THE PERPENDICULAR TEMPERATURL OF THE PLASHA IS GIVEN BY TPERP
C TPERP IS A 2Xx2 ARRAY IN FORMAT 4E10.3 CONTAINING THE PERPENDICULAR TEMPERATURE
REAUT1,412) TPERP
12 FORMAT(4E10.3)
WRITE{3,12) TPERP
9 FORMAT (4EB.1,21242€E10.4/4E10.2)

cnnn
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C CHARG AND SPD ARE THE ELECTRONIC CHARGE AND THE SPEED OF LIGHT IN CGS
c UNITS. BFLD IS THE VALUE OF THE MAGNETIC FIELD AT THE MAGNETDPAUSE IN GAUSS
4 8 IS ASSUMED TO VARY AS (1/R)**POWER

READ (147) CHARG+POWERyBFLD,SPD

7 FORMAT (E10.3,F6.2,2E10.3)

€ TOOBIG IS USED TO MODULATE THE VALUE OF THE ARGUMENT OF THE SINE AND COSINE
€ IN THE SUBROUTINE DISP TO KEEP THEM FROM BECOMING TOO LARGE

TOOBIG = .B23549E+06

KON = SPD/CHARG
c KAY IS BOLTZMANN'S CONSTANT
c KAPPA IS THE PARALLEL WAVE NUMBER
€ L IS THE AZIMUTHAL WAVE NUMBER

READ(1+6) KAY,KAPPA,L

6 FORMAT (2E10.4/15)

€ N1 IS THE PLASMASPHERE NUMBER DENSITY AT ITS OUTER BOUNDRY N2 IS
C THE PEAK RING CURRENT NUMBER DENSITY. THE PEAK IS ASSUMED TO OCCUR
c AT 6 RE IN THIS MODEL. REP IS THE RADIAL DISTANCE TO THE BEGINNING
€ OF THE PLASMA PAUSE GIVEN IN RE. IN THIS MODEL A VALUE OF 5.9 RE IS
€ USED SINCE RUSSEL AND THORNE HAVE FOUND THAT THE PLASMAPAUSE CLOSELY
C COINCIDES WITH THE PEAK RING CURRENT NUMBER DENSITY

READ{1,30) N1,N2,REP
30 FORMAT (2F6.1,F8.2)
WRITE(3,7) CHARGyPOWER,BFLD,SPD
WRITE(3,6) KAY,KAPPA,L
WRITE(3,30) N1sN2,REP
€ THE THERMAL VELOCITIES ARE CALCULATED
D0 15 i=1,2
00 15 J = 1,2
C VEL GIVES THE PARALLEL VELOCITIES AND VPERP THE PERPENDICULAR VELOCITIES
C WITH THE FIRST INDEX GIVING THE PARTICLE SPIECE AND THE SECOND GIVING
€ THE PLASMA GENRE
VEL (Jol) = SORT ( 2¢KAPPA®TEMP (Jy1)/PMASS(J))
VPERP(J,1)= SQRT(2¢KAPRA®TPERP(J,1)/PMASS(J))
15 CONTINUE
C THE GYRORADIUS FOR THE IONS AND THE GYROFREQUENCIES ARE CALCULATED
c B IS ASSUMED TO VARY AS (1/R)#¥POWER
BO = BFLD*((6.35E9)%*POWER)
DO 5 14 = 1,100
16.350E7) %14
R R#%POHWER
BF = BO/RO
00 5 15=1,2
GYRO( 14,15
GYRAD(14,415
00 5 16=1,2
OMEGAD IS A 100 X 2 X 2 ARRAY WHICH GIVES THE AZIMUTHAL DRIFT FREQUECIES
OF THE PARTICLES
5 OMEGAD(I14416415)=(-.5)*ISGN(16)*(VPERP(16415)%%2)¢PHASS(16)%(1/BF)
1#KON*(POWER/ (R##2)
WRITE(399) TEMP, ISGN,PMASS, VEL
FROM THIS PUINT TO STATEMENT NUMBER 150
THE MODEL NUMBER DENSITY, G o AND ITS DERIVITIVE WITH RESPECT TO
R#%2 , GP , ARE GENERATED
AN EXPONENTIAL MODEL IS USED FOR THE NUMBER DENSITY
PEAK=6%{6.350E81)

CHARG#BF/(PMASS(15)*SPD)
VPERP{1s15)/GYRO(T441)

e

coan
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RE2=1{6.35E8)%¢2

A2=1164/AL0G(10.*N2))*RE2

A=SQRT(A2)

B2= ll-IALDGIIO.ll.REZ

B=SQRTI(8.

REP = REPtlb. 5E8)

D=(.5/ALOGI10.#N1) ) #RE2
P2=REP*REP

00 150 131,100

RAD(13)=(64350E7)#13

EX=={RAD(13)-PEAK)

EX2=EX*EX

IF (EX) 50450451

50 Gl13,2)=N2*EXP(-EX2/A2)
GPU1342)=2%EX*G(13,2)/1A2%RADII3))
GO TO 53

51 GU13,2)=N2*EXP(-EX2/B2)

GPU13,2)=2#EX*G(13,2)/(B2*RAD(I3))
53 IF(RAD{13)-REP) 54,5455
54 G{13,11=N1*REP2/(RAD(13)%+2)
GPUI341)= =1#G(13,11/(RAD(13)*+2)
GO TO 150
55 IF(RADI13)-PEAK) 58,58,59
59 G(13,1)=0.0
GP{I3,1)= 0.0
GO TO 150
EXX==(RAD(I3)-REP)
EXX23EXX$EXX
GUI3,1)=N1*EXPL-EXX2/D)
GP{I3,1) = 2%EXX*GU13,1)/(D*RADLI3N)
150 CUNTINUE
READ [1,1060) SKALEs NUMBRELIMIT,JEND
1060 FORMAT (F6.2413,12,12)
WRITE (3410600 SKALE,NUMBREsLIMIT, JEND
DO 1051 NN=1,JEND
READ (1,1061) COMEGA
WRITE (3,1061 ) COMEGA
1061 FORMAT ( 2612.6)
4 THOLD, ITAB AND NILCNT ARE SIMPLY COUNTERS USED TO KEEP TRACK
4 OF THE LOOP THAT SEARCHES FOR ZEROS OF U.
IHOLD=1
ITAB=0
KNIL=0.
NILCNT=0
DO 1080 =1,2
D0 1080 J=1,2
CALL ZET{COMEGA)
CFREQ(J,1 ETALJ, 1)
COISPLJyI)=DISP{CFREQ{Js 1))
1080 CONTINUE
1001 CYOUL=YOUL(XNIL)
STPSIZ=(6.35E8) *SKALE
Ll= [HOLD
KNIL=0.
MEND=IFIX({10/SKALE)

5

@
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1TAB=0
GO TO 1002
1013 L1=1
1002 DO 1021 N=L1,MEND
ARE=KNIL +STPSIZ®N
CYOU2=YOUL(ARE)
AREL = ARE/6.35E8
WRITE ( 3,20) CYOU2,AREL
20 FORMAT (' U HAS THE VALUE AT R= ¢
117204G12.69T3646G12.64757+4610.5¢T69,'R. E-')
UIl= AIMAG(CYOUL)
UI2=ATMAG(CYOU2)
IF (UI2) 1003,1009,1003
1009 TF(REALICYQU2)) 1005,1030,1005
1030 [HOLD=IHULD+1
GO TO 1033
1003 SINl= UIl/Ul2
THE IMAGINARY PART OF U IS TESTED FOR A SIGN CHANGE
1F (SIN1) 1005,1010,1020
1010 IF (REAL(CYOUL)) 1005,41031,1005
1031 IHOLO=IHOLD+1
GO TO 1032
1005 UR1=REAL(CYOUL)
UR2= REALICYOU2)
IF (UR2) 1007,1020,1007
4 THE REAL PART OF U IS TESTED FOR A SIGN CHANGE IF ONE HAS BEEN FOUND
€ FOR THE IMAGINARY PART OF U.
1007 SIN2=URL/UR2
IF (SIN2) 1011,1020,1020
c THE NEXT FEW STEPS SET UP THE PROGRAM SO THAT U CAN BE TESTED
c FOR A 2ERO BETWEEN THE R VALUES WHERE A SIMULTANEOUS SIGN CHANGE HAS
c BEEN FOUND
1011 ITAB =ITAB+L
KNIL = ARE-STPSIZ
STPSIZ=: SVPSll/NUHBRE
MEND = NUM
IF(ITAB —LIH” ) 1013,1013,1030
1020 IF (ITAB .GT. 0) GO TO 1022
Cyoul=CYou2
THOLD =N#1
GO TO 1021
1022 cyoul=CYou2
1021 CONTINVE
IF ( ITAB .GT. 0 ) IHOLD = [HOLD +1
GO 70 1050
1033 WRITE (3,1040) ARE
1040 FORMAT (' U HAS A TURNING POINT AT R= ',E10.5)
NILCNT=NILCNT+1
GO 7O 1050
1032 WRITE (3,1040) KNIL
NILCNT=NILCNT +1
1050 IF ( IHOLD- 10/SKALE) 1052,1052,1051
1052 KNIL = (IHOLD-1)#(6.35€8)% SKALE
GO TO 1001
1051 CONTINVE
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sToP
END

P T TR
SUBPROGRAM  YOUL

THE SUBROUTINE YOUL CALCULATES THE VALUES OF THE FUNCTION UIR) FOR A
VARIABLE VALUE OF R AND A FIXED VALUE OF Z2ETA.

LLLGLGLELY Y

COMPLEX FUNCTION YOUL(R)
IMPLICIT COMPLEX (CyZ)sREALIK)
COMMON /COML/ VEL(242)42ETA(2,2)
DIMENSION GYRO(10042)+GYRAD(100,2)
COMMON /COM2/ G(100+2),GP(10092)yPMASSI2) 4GYROsGYRADSTEMP(2
1421 ,RAD(200) 4KAY KAPPA,ISGN(2),L
COMMUN /COM4/ CFREQL2,214 COISP (2,2)
COMMON /COMS5/ OMEGAD(10042,2), TPERP(2,2)
DIMENSION X(2),Y(2
- KONST = k.D‘S.l’vlS?‘Ug-ﬁOZE 10) *¥2

IFIR.LT. 6435E7) GO Ti

CNUMU= (L/R)%%2 + KAV“Z

CDENU=1.

IRAD = IFIX({R/6.35E7)

FRAC = AMOD (R,6.35E71/6.35E7

00 10 I= 1,

A LINEAR INTERPOLATION IS USED TO FIND THE VALUES OF G AND GP

WHEN R IS NOT AN INTEGRAL MULTIPLE OF ONE TENTH OF AN EARTH RADIUS.

THIS INTERPOLATICN KUST 8E USEC SINCE G AND GP ARE ARRAYS IN WHICH THE

VALUES OF THE NUMBER DENSITY AND ITS DERIVITIVE ARE STORED FOR 100

VALUES OF R EVENLY SPACED BETWEEN .1 AND 10 EARTH RADII THAT IS,

EVERY TENTH OF AN EARTH RADIUS

X{1)= GLIRAD,T1}-{GUIRAD, I)=-G(IRAD#L,1))*FRAC
Y(l)= GP (IRADsI)=(GP{IRAD,1)=GP(IRAD+141))*FRAC
D0 11 J=1,2

20=CFREQLJ,1)

CN1=CDISPLJ, 1)

2%(1420*CN1)

KAY*VEL (Jy [)

L*OMEGADI IRAD,J, [)/CN3
CNUML=KONST®2#L*ISGN{JI*Y (1) #(CN1+CN4*CN2) /{PMASS(J) #GYRO(IRAD,J)
1*CN3)

- CNUM2=KONST*X(1)#(L+Z0*CNL+CN4#ZOSCN2) / (KAPPARTEMP(J,1))
CNUM3=KONST#X{1)*CNG*(CNL +CN4*CN2) L L=-TEMPIJ, 1)/ TPERPIJ 1)) /IKAPPA
1#TEMP(J, 1))

11 CNUMU=CNUMU+CNUML+CNUM2+CNUM3
Z0=CFREQ(1,I)
CD1= COISP(Ll.I)
CD2= =2%(1+20%CD1)

Aacannn

CD4= L*OMEGAD(IRAD,1,[)/CD3
COENL=KONST*2#L2Y(1)*(CD1+2¢CD4*CD2) /IPMASS(1)*GYRO(IRADy1)*CD3)
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CDEN2=KONST*X{ 1) *(1+20*(CD1+2%CD4#CD2) ) /(KAPPASTEMP(1,41))
. CDEN3=| KnNSl"Z'X(Il'ch'(CDltZ‘CDh‘C\)Zl‘(l-!EMP(l'HITPERPII.IIlI
1(KAPPASTEMP(141))
10 COENU=CDENU-{.25)%(GYRAD(TRAD,I)%#2)*(CNENI +CDEN2+CDEN3)
YOUl= CNUMU/COENU
GO TO &
[ THIS VALUE IS ASSIGNED TO YOU IF R IS LESS THAN ONE TENTH OF AN
c EARTH RADIUS. THIS IS DONE SINCE THE VALUE OF YOU AT ZERO IS INFINITY
AND THE FUNCTION CAN NUT BE INTERPULATED IN THIS REGION.
S YOUL= {-1.,0.)
6 RETURN
END
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