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Abstract

Chum salmon (Oncorhynchus keta) are important for subsistence and commercial 

harvest in Alaska. Variability of returns to western Alaskan drainages that caused 

economic hardship for stakeholders has led to speculation about reasons, which may 

include both anthropogenic and environmental causes in the marine environment.

Mixed stock analysis (MSA) compares genetic information from an individual 

caught at sea to a reference baseline o f genotypes to assign it to its population of origin. 

Application of genetic baselines requires several complex steps that can introduce bias. 

The bias may reduce the accuracy of MSA and result in overly-optimistic evaluations of 

baselines. Moreover, some applications that minimize bias cannot use informative 

haploid mitochondrial variation. Costs of baseline development are species-specific and 

difficult to predict. Finally, because populations o f western Alaskan chum salmon 

demonstrate weak genetic divergence, samples from mixtures cannot be accurately 

assigned to a population of origin.

The chapters of this thesis address three challenges. The first chapter describes 

technical aspects of genetic marker development. The second chapter describes a 

method to evaluate the precision and accuracy of a genetic baseline that accepts any type 

of data and reduces bias that may have been introduced during baseline development. 

This chapter also includes a method that places a cost on baseline development by 

predicting the number o f markers needed to achieve a given accuracy. The final chapter 

explores the reasons for the weak genetic structure o f western Alaskan chum salmon 

populations. The results o f those analyses and both geological and archaeological data



suggest that recent environmental and geological processes may be involved. The 

methods and analyses in this thesis can be applied to any species and may be particularly 

useful for other western Alaskan species.
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General Introduction

In this doctoral dissertation I address several challenges that have emerged from efforts to 

explain recent declines of chum salmon (Oncorhynchus keta) that resulted in disaster 

declarations in western Alaskan by the Governor of Alaska (Zimmerman 2006). Chum 

salmon have the broadest distribution of any species o f Pacific salmon (Augerot 2005). 

They are an important component of subsistence use by rural Alaskans and represent a 

substantial commercial fishery for some of those same communities (Wolfe & Spaeder

2009). Recent increased demands for wild Alaskan salmon products, which include the 

roe from chum salmon, have led to increased profits to the commercial sector outside o f 

rural communities as well (Knapp 2007). Much like in financial markets, decreases in 

returns cause duress among the participants and commonly initiate calls to understand the 

basis for the losses; and if the variables that are responsible for both increases and 

decreases in abundances can be identified, it may allow stakeholders to buffer against 

hardship when returns are low and maximize the returns when they are high.

Studies that use commercial catch as an indicator o f salmon biomass indicate that 

abundances o f chum salmon have varied by more than 3-fold in the North Pacific Ocean 

on a decadal scale (Beamish & Bouillon 1993; Eggers 2009). Commercial catches from 

the Yukon River varied from 28 800 to well over 1 000 000 in less than two decades 

(Kruse 1998). Salmon returns are typically predicted from historical spawner and 

recruitment data (Ricker 1954), which can provide valuable information but lacks - 

information from the ocean phase of anadromous salmon. Much of a salmon’s success 

(return to spawn) or failure (ocean mortality) is tied to the productivity o f the marine



environment. Mortality can also result when commercial fisheries catch one species 

when they are targeting another (by catch). Recently, the by catch of chum salmon by the 

Bering Sea groundfish fishery (Gisclair 2009) and sockeye salmon (O. nerka) fisheries 

(Seeb et al. 2004) has caused concern because chum salmon abundances for some 

western Alaskan drainages have decreased at the same time that bycatch in those fisheries 

has increased.

Mixed-stock analysis (MSA) is a tool that is gaining wide use for conservation 

and management of species worldwide. It uses morphological (phenotypic) or genetic 

(genotypic) data from individuals (usually) comprised of a mixture of populations, either 

to assign individuals from that mixture to a population of origin or to estimate the 

composition of the mixture from source populations. The method relies on a baseline of 

genotypes, phenotypes, or both that represents the geographic range of the target species 

and provides a reference to compare with the samples from the mixtures (unknowns).

This method is ideal for addressing many conservation and management questions 

because samples can be taken non-lethally and individuals can oftentimes be assigned to 

a population or region of origin with high accuracy. For Pacific salmon, if the 

assignment with MSA is accurate, then the abundances of specific stocks of salmon 

returns can be correlated with environmental and anthropogenic variables in the ocean 

phase of their life-history.

Mixed-stock analysis has typically been performed with data from genetic 

markers called microsatellites (e.g. Beacham et al. 2009), which likely result from strand 

slippage during DNA replication (Hancock 1999). Recently, much effort has been



devoted to the use o f genetic markers called single nucleotide polymorphisms (SNPs) 

because these markers resolve one of the major challenges to management that is based 

on genetic data: sharing information among users. The scoring of microsatellite data is 

often lab-specific, which is inconsequential if comparisons among data sets are within 

that laboratory; but if  comparisons are made between laboratories, then standardizations 

are necessary. This becomes a problem as the number of users and the sizes of the 

databases increase. The current chum salmon baseline includes tens o f thousands of 

samples taken from populations that span the entire Pacific Rim from Korea to Oregon. 

The data from SNP markers is typically binary and, therefore, simple to share among 

laboratories but necessitates many SNPs to equal the power o f a single microsatellite. 

SNPs have the advantages of being distributed throughout the genome and are plentiful, 

which has led most labs to begin to establish SNP baselines for MSA.

The development o f a program to perform MSA requires three main steps: (1) 

discovery of genetic markers, (2) use o f those markers to genotype individuals from 

samples that will be used for the reference baseline, and (3) evaluation of the baseline to 

determine its accuracy and precision for MSA. The first two chapters o f this PhD thesis 

address these three criteria of baseline development. Chapter l i s a  review article that I 

was invited to write by the editors of Molecular Ecology Resources in 2010. A 

manuscript that I wrote for my Master’s thesis stimulated their interest in the technical 

aspects o f genetic marker development. The majority of the work for chapter 1 was an 

extensive search of the literature for the current state o f genetic marker development that 

also drew on my background in technology development when I worked in the
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biotechnology industry and also technology that I developed in A.J. Gharrett’s laboratory 

during my Master’s degree. The third co-author, K. Saitoh, collaborated on some of the 

technology assessment within the document.

The second chapter of this thesis is focused on baseline evaluation, but addresses 

SNP discovery and genotyping in a broader context because two publications by Eric 

Anderson from the Southwest Fisheries Science Center in Santa Cruz, CA, and 

colleagues described several sources o f bias that can be introduced into the baseline 

development process (Anderson 2010; Anderson et al. 2008) and can severely affect 

MSA efforts. The main impetus behind chapter 2 stemmed from the fact that computer 

programs that are currently available to evaluate genetic baselines either give overly - 

optimistic assessments, or they do not accept haploid mitochondrial data.

I converted RFLP data that was obtained previously by D. Churikov in A. J. 

Gharrett’s lab to SNP assays, which demonstrated that mitochondrial DNA variation in 

chum salmon is informative and should be used for MSA applications (Garvin et al.

2010). In addition, my advisor A.J. Gharrett, our co-author J. P. Bielawski o f Dalhousie 

University in Nova Scotia and I found that the mitochondrial genomes of Pacific salmon 

may have experienced positive Darwinian selection during their evolution (Garvin et al.

2011). If the mitochondrial genomes experienced positive selection intra-specifically, 

then some variants may show divergence at the population level where other neutral 

markers do not. This could be invaluable for stocks that need to be separated for 

management or conservation but look similar with neutral markers.



As stated earlier, there is currently no software package available to evaluate a 

genetic baseline that contains haploid data. Therefore, I worked closely with J. Pella and 

M. Masuda from the National Marine Fisheries Auke Bay Laboratories to develop a new 

method to perform these analyses. Much of the statistical framework was developed 

from previously published articles from J. Pella and M. Masuda. I developed code in the 

R environment to integrate their methods with my baseline development project; and the 

final product resulted from several meetings between myself, A. J. Gharrett, J. Pella, and 

M. Masuda to troubleshoot the process as it evolved. The manuscript in this thesis is the 

result of edits that I obtained from co-authors and three reviewers from the Canadian 

Journal of Fisheries and Aquatic Sciences, who rejected the original manuscript but 

encouraged resubmission after suggested changes. S. A. Fuller, R. R. Riley, V. Brykov, 

and R. Wilmot contributed data for the genetic baseline used in the manuscript and 

provided editorial comments and suggestions.

The final chapter o f this thesis addresses an interesting issue that has been 

challenging to Alaskan MSA efforts for chum salmon. Populations in western Alaska, 

specifically from southern Norton Sound, the Lower Yukon River, the Kuskokwim River, 

and northern Bristol Bay are very similar genetically. As a result, any individuals from a 

geographic area that is the combined size of Idaho, Oregon, and Washington are 

oftentimes merged into a single reporting group; stocks are assigned to “coastal western 

Alaska” rather than to specific drainages. This causes difficulties because chum salmon 

are used differently over this large geographic area. In some places they are used 

primarily to feed dogs, which are important for bear protection and access to fishing
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grounds, whereas in other locations the salmon are used for subsistence and commercial 

harvest. Because of this weak genetic structure, it is not possible in marine samples of 

mixtures to identify specific stocks from this large geographic area. Although several 

theories have been proposed for the weak genetic structure o f the chum salmon 

populations here, none have been explored in detail.

The variation in DNA has been used for decades to explore the demography and 

structure of populations. As molecular genetics continues to merge with molecular 

biology, interest has focused on identifying the functional changes that result from 

mutations that provide the molecular markers used for population genetics analyses.

Some molecular markers that are discovered may alter the physiology of individuals that 

have them, and those changes may provide for adaptation to specific environments. My 

original idea for the third chapter was to identify genetic markers that may have 

experienced positive selection with outlier tests; the Kuskokwim River offered a suitable 

model system because it encompasses multiple habitats within a single drainage and 

samples were available for numerous populations.

This idea rapidly evolved as genetic data from additional markers and populations 

became available from several outside sources. In addition to outlier tests, I was able test 

several interesting hypotheses that centered on the paleo-geography of western Alaska to 

explain the weak structure of chum salmon populations. The initial results of that 

exploration quickly led me to archaeological and oceanographic studies that also 

provided interesting additional evidence to explain the low genetic divergence in coastal 

southwestern chum salmon populations. The additional data resulted in the inclusion of



several co-authors. The bulk of the work was developed from ideas discussed between 

myself and A.J. Gharrett, and some additions developed from discussions with W. 

Templin at the Alaska Department o f Fish and Game. The chapter presented in this 

thesis is the result of edits from all co-authors and will be submitted for publication in a 

peer-reviewed journal after my doctoral defense. The results of the third chapter raise 

some interesting conclusions that may be applied to other species that inhabit western 

Alaska.



Application of Single Nucleotide Polymorphisms to Non-model species:

A Technical Review1

Chapter 1

1 Michael R. Garvin, Kenji Saitoh, and Anthony J. Gharrett. Molecular Ecology 
Resources 10(6): 91-108 2010
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Abstract

Single nucleotide polymorphisms (SNPs) have gained wide use in humans and model 

species and are becoming the marker o f choice for applications in other species. 

Technology that was developed for work in model species may provide useful tools for 

SNP discovery and genotyping in non-model organisms. However, SNP discovery can be 

expensive, labor intensive, and introduce ascertainment bias. In addition, the most 

efficient approaches to SNP discovery will depend on the research questions that the 

markers are to resolve as well as the focal species. We discuss advantages and 

disadvantages of several past and recent technologies for SNP discovery and genotyping 

and summarize a variety o f SNP discovery and genotyping studies in ecology in 

evolution.
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Introduction

Identification of DNA sequence variation with single nucleotide polymorphisms (SNPs) 

has become a routine application in fields as diverse as human forensics (Weir 2003), 

crop improvement (Till et al. 2007), marker assisted breeding (Schaeffer 2006), 

aquaculture (Liu & Cordes 2004), conservation (Seddon et al. 2005), and resource 

management (Smith et al. 2005a), in addition to the wide use of these markers in humans 

for diagnostic applications (McCarthy et al. 2008). Single nucleotide polymorphisms are 

becoming useful markers in ecological and evolutionary studies as well. In a study of 

white spruce (Picea glauca), several SNPs were identified in genes that appeared to be 

under positive selection, one of which controlled flowering time and reproductive success 

in another species (Namroud et al. 2008). Similarly, adaptive genetic divergence between 

seasonal runs of chinook salmon (Oncorhynchus tshawytscha) correlated to a SNP in the 

clock locus, which is involved in regulating the circadian rhythm (O'Malley et al. 2007). 

In another application, 54 693 SNPs from domestic cattle were used to resolve the 

phylogeny of 61 Pecoran species, which had proved difficult to determine with other 

markers (Decker et al. 2009). Willing et al. (2010) used over 1000 SNPs in wild guppies 

(Poecilia reticulata) to demonstrate previously unknown shared ancestry, gene flow, and 

admixture among populations. They also determined that two loci, which had previously 

mapped to a QTL that contributed to ornamental traits, were under directional selection. 

Clearly SNPs present an exciting development for ecological and evolutionary studies of 

non-model organisms.



Genetic markers that were applied in past studies fall into two general categories: 

markers that identify anonymous genetic variation and markers that identify genetic 

variation in specific segments of the genome. Markers in the first category include those 

that are derived from amplified fragment length polymorphisms (AFLPs) (Vos et al.

1995), random amplification of polymorphic DNA (RAPDs) (Williams et al. 1990), and 

restriction fragment length polymorphisms (RFLPs) o f genomic DNA, which detects 

variation as anonymous restriction sites. Markers of the second type include allozymes, 

which indirectly measure variation o f DNA in coding regions of proteins, restriction site 

analysis to identify variation at specific loci in the mitochondrial and chloroplast 

genomes or specific nuclear genes (Avise 1994), and microsatellites, which carry 

variation in numbers o f repeats at specific non-coding sequences and have well described 

mutation mechanisms (Schlotterer & Tautz 1992). Single nucleotide polymorphisms fall 

into the second category, but are broadly distributed and can represent variation in all of 

the different genomic regions (coding, non-coding, microsatellite, mitochondrial, and 

chloroplast DNA). Discussions of the advantages and disadvantages of the various 

markers have been presented elsewhere (e.g. Sunnucks 2000, Moran 2002, Vignal et al. 

2002).

Specific types of molecular markers are appropriate for some, but not all, studies 

for a variety of reasons that include: their locations in the genome or their roles in gene 

expression; their mode of mutation or lack of co-dominant expression; or their 

practicality or economy of application. Single nucleotide polymorphisms can be applied 

to a wide variety o f studies because they are distributed throughout the genome, are
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simple to score, can be inexpensive to genotype, and represent co-dominant markers with 

a simple, well-defined mutation model. For the purpose of this review, we examined 

three general types of applications.

The first type of application (which will be referred to as ‘population genetics' 

studies) typically seeks information about the demography and structure o f populations 

and requires a random sample o f variable loci that represent the entire genome. 

Applications may include measurement of variation to describe population structure and 

to estimate effective population size (Ne) (Tenesa et al. 2007), gene flow (Keller et al. 

2008) or dispersal (Bensch et al. 2002), population growth or declines (Emerson et al. 

2001; Hyten et al. 2006), and inbreeding (Zenger et al. 2007). For these applications, loci 

are generally expected to conform to neutral expectations and ‘outlier’ loci that violate 

neutrality are often removed to improve neutral parameter estimates (Luikart et al. 2003).

The second type of application will be referred to as ‘classification’ studies 

because they include efforts that attempt to delineate individuals or groups of individuals 

from each other, such as studies of cryptic species (Garvin et al. 2011), molecular 

systematics (Edwards 2009), mixed stock analysis (Smith et al. 2005a; Negrini et al.

2008; Ogden 2008), parentage analysis (Heaton et al. 2002), or identification of 

mutations that are involved in local adaptation (Namroud et al. 2008). Unlike population 

genetics applications, classification studies do not require that loci behave as selectively 

neutral. In fact, loci that experience different selective regimes in different populations 

may allow greater ability to distinguish individuals from those populations (e.g., Bensch 

et al. 2002, Smith et al. 2005a).
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The third application will be referred to as ‘mapping’ studies because they 

typically include analyses that attempt to identify chromosomal segments or SNPs that 

correlate with a phenotypic trait or genetic marker. These studies include identification of 

quantitative trait loci (QTL) of known phenotypic traits in pedigrees for various studies 

that include conservation efforts (Boulding et al. 2008) or marker-assisted selection to 

improve agricultural and aquacultural production (Collard et al. 2005). Mapping studies 

are similar to classification studies because they seek to identify markers that show 

divergence among groups (usually phenotypes or QTL), but unlike classification studies, 

mapping studies seek to identify markers to create a physical genome map or compare 

markers to a physical genome map.

Given the distribution and abundance of SNPs in most genomes, only a limited 

subset is practical to genotype. The type of application to which the research question 

belongs determines which subsets of SNPs are appropriate, and the subset of SNPs that 

are identified depends in part on the methods used to discover them. Consequently, each 

study will most likely differ in (1) how the SNPs should be discovered, (2) what 

platform(s) are efficient for genotyping, and (3) whether linked SNPs (haplotypes) would 

be useful. This review discusses these three topics, and provides a summary of selected 

studies that discovered SNPs in non-model species for ecological and evolutionary work.

Single nucleotide polymorphism discovery

The primary goal of SNP discovery is to identify markers that provide genetic 

variation for resolution of the kinds of questions posed above. A variety of methods have
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been used to discover SNPs, but the approach chosen to address a particular question will 

depend primarily on the economic and technical resources available to the investigator 

and the amount and type o f sequence information that exists for the focal species. 

However, the strategy that is applied to the discovery process may differ among the three 

types of applications because the SNPs that are considered ‘informative’ may differ in 

each instance.

A poorly conceived SNP discovery scheme may identify SNPs that produce bias 

in estimates of the parameters for which they were developed (ascertainment bias) (Fisher 

1934; Kuhner et al. 2000; Nielsen 2004; Clark et al. 2005; Rosenblum & Novembre 

2007; Anderson 2010) or may result in the inclusion of uninformative markers in some 

analyses (Figure 1.1). Failure to minimize ascertainment bias or introduction of 

uninformative markers during the discovery process can confound neutral parameter 

estimates (Wilding et al. 2001; Luikart et al. 2003) and result in wasted time, effort, and 

resources. Wise choice of a discovery process is one of the most important decisions in 

initiating a SNP-based study. Also, statistical methods that can account for ascertainment 

strategies are available, but they do not take into account population structure of non

human organisms, which can be highly structured (Wakeley et al. 2001; Polanski & 

Kimmel 2003; Nielsen & Signorovitch 2003; Marth et al. 2004; Rosenblum & Novembre 

2007). Consequently, efficient SNP discovery schemes must be designed for each 

specific application. For example, the discovery process for population genetics 

applications should survey many loci in both coding and non-coding DNA (with the 

caveat that outlier loci should be evaluated as discussed previously), and it should include



many individuals that represent the breadth o f the geographic distribution. Exclusion of 

genomic regions or omission of individuals based on their geographic location may 

introduce bias. Alternatively, if  SNPs are used for classification applications, the 

discovery panel should also include many individuals that represent the geographic range 

of the study, but should not be assembled randomly. Rather, the discovery panel should 

be assembled so that informative markers can be distinguished from uninformative 

markers before proceeding to the development of specific marker assays. Markers that 

are informative for mixed stock analysis and species identification should maximize 

divergence among groups or targeted geographic regions (Garvin & Gharrett 2007), 

whereas markers that are informative for parentage analysis should maximize 

heterozygosity and variability within populations (Chakraborty et al. 1999; Krawczak 

1999; Morin et al. 2004). Because mapping studies involve both linkage mapping and 

linkage disequilibrium mapping, their ascertainment panel should be organized by 

phenotype or QTL if known. In addition to consideration of the introduction of 

ascertainment bias, the SNP discovery method should also be chosen based on cost, 

throughput, effort, and available resources.

Sanger Sequencing

Sanger sequencing has been the workhorse for de novo sequencing of genomes 

and identification o f molecular markers. Slab-gel systems such as the LI-COR (Lincoln, 

NE) DNA analysis system routinely provide data for approximately 900 base pairs, 

whereas capillary systems such as the Genetic Analyzer from Applied Biosystems (Foster



City, CA) provide slightly shorter reads (with standard capillaries and reagents) but have 

higher throughput and much of the process can be automated. These technologies have 

been used successfully to provide SNPs for many non-model organisms, (e.g. Elfstrom et 

al. 2005; Smith et al. 2005b; Morin et al. 2007; Rosenblum et al. 2007; Ferber et al. 2008; 

Paduan & Ribolla 2008). However, with mass sequencing of multiple loci, it is not 

practical to include a sufficiently large number o f individuals for an efficient discovery 

panel (Figure 1.1). Although costs have declined recently, sequencing many individuals 

during the discovery process is still expensive and time consuming, which limits the use 

of Sanger sequencing as the primary source of SNP discovery in all three types of 

applications.

A second difficulty is that sequencing from genomic DNA generally requires 

primers that are specific to the target sequence. In some instances, primers have been 

designed from closely related species, (e.g. Primmer et al. 2002; Smith et al. 2005c) or 

from highly conserved candidate genes for which a priori assumptions based on 

information that exists in the reference species are made about the nature o f the 

variability at that locus, (e.g. Aitken et al. 2004; Canino et al. 2005). Another source of 

sequence data in a species for which little sequence information exists is information 

from AFLP bands (Roden et al. 2009). In this approach, the AFLP sequence itself was 

used to isolate random genomic DNA fragments, which were sequenced to identify 

potential SNPs. For many non-model organisms, little sequence information exists, 

although that is changing as sequencing costs decline; but typically, more expressed 

sequence tags (ESTs), which are sequences of cDNA from processed mRNA, are known



than are available for the unedited genomic DNA sequence. The use o f ESTs for SNP 

discovery can often be useful, but may confound parameter estimates in studies that 

require variation at neutral, randomly distributed loci (population genetics and mapping 

work) because such surveys only include variation in coding regions, which may be 

subject to different selection regimes (e.g. convergent selection) than non-coding regions 

and may not represent the entire unprocessed gene. Scanning coding sequences may 

provide useful markers for studies that attempt to identity loci that are under selection, 

but several studies have demonstrated that non-coding regions of DNA may also provide 

important sequences for selection and evolution, which would not be included in an EST- 

based discovery process (King & Wilson 1975; Stone & Wray 2001; Begun et al. 2007; 

Chouard 2010). Also, if the ultimate goal is to convert sequence information to a 

genotyping assay, an EST-based discovery scheme can result in low conversion rate 

because of intervening introns.

A third problem with mass (Sanger) sequencing for SNP discovery is that 

insertions and deletions (INDELs) in sequences from heterozygous individuals often 

make interpretation of sequences downstream from the INDEL difficult and eliminate 

potentially informative SNPs. Recent work suggests that the density o f SNPs in genomes 

increases nearer INDELs (Dacheng et al. 2008), and loss of these regions in the discovery 

process can limit the kinds of SNPs that are chosen. For moderate to low frequency 

alleles, an individual that is sequenced to identify the SNP will quite likely be a 

heterozygote. Strategies that pool individuals to increase the sample sizes o f the 

discovery panel also increase the chance of sequencing through an INDEL, which



reduces the usefulness of mass sequencing. Although traditional Sanger sequencing may 

not be used extensively for SNP discovery purposes in the long term, it will continue to 

be a valuable tool for de novo sequencing of genomes, for validating polymorphisms, and 

for gathering long-read sequence information.

Next Generation Sequencing

Next-generation sequencing technologies have been touted as a breakthrough for 

many reasons (Margulies et al. 2005; Khaitovich et al. 2006; Hauser & Seeb 2008; Rokas 

& Abbot 2009). For reviews on the various technologies see Hudson (2008) and 

Shendure & Ji (2009). Each run on any o f the currently available next-generation 

platforms can produce mega- or giga-bases of sequence information in a few days. No a 

priori assumptions need to be made about which regions o f the genome to sequence, but 

specific genomic regions can be targeted if  that is desired. This flexibility provides a 

platform that theoretically would be useful for discovering SNPs for all applications. In 

addition, the cost per base may be several orders o f magnitude less expensive than 

standard Sanger sequencing methods (Hudson 2008). However, several potential 

problems should be considered before applying this technology to SNP discovery.

The first challenge is the ability to handle and analyze large amounts o f data. Data 

files from many next-generation sequencing platforms can be in the terabyte range. Long 

term data storage can be unwieldy and costly, although this technology sector is 

advancing rapidly, which will likely resolve this issue in the near future. The main effort 

of most projects will shift from data acquisition to bioinformatics, which presents many
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challenges with next-generation sequence data (for a review see Pop & Salzberg 2008). 

The introduction o f ascertainment bias or identification of uninformative SNPs, which is 

a concern with Sanger sequencing, can present an even greater challenge with next- 

generation sequencing. The mega- or giga-bases o f sequence information from a single 

run are typically obtained from a single individual or at most several individuals. 

Variation discovered in a few individuals cannot be assumed to be representative of the 

variation across the range of a species. Variation should be derived from DNA sequences 

of many individuals from wide geographic or temporal ranges involved in most studies. 

Because the current cost per run on these platforms is thousands of dollars, increasing the 

number of individuals in the discovery panel is not yet practical; however, as this 

technology continues to mature, many of these problems may be resolved.

In theory, tens, hundreds, or even thousands of individuals can be included in the 

discovery panel for a single run on some next-generation sequencing instruments (Meyer 

et al. 2007; Meyer et al. 2008; Erlich et al. 2009; Patterson & Gabriel 2009; Prabhu & 

Pe'er 2009); however, less sequence information is obtained from each individual and the 

tradeoff creates other difficulties (Holt & Jones 2008). With this strategy, the same 

portion of the genome (genome equivalency) must be sampled from each individual in 

order to get repeat coverage (a large number o f overlapping contiguous DNA sequences 

or contigs), which is possible with organisms that have small, simple genomes such as 

Caenorhabditis elegans and Arabidopsis thalina because a large portion of the genome 

can be sequenced in a single run. Single nucleotide polymorphism discovery in 

organisms that have larger, more complex genomes is more difficult because less of the



genome can be sequenced in a single run, and repetitive sequences and duplicated loci 

can interfere with sequence alignment. Equivalency is more easily achieved if  a relatively 

small portion of the genome is sampled from which repetitive sequences and duplicated 

loci have been eliminated. One approach is to sequence only a handful o f targets (Rigola 

et al. 2009) or ‘capture’ a subset prior to sequencing (Albert et al. 2007; Okou et al. 2007; 

Porreca et al. 2007), but this approach requires that the target sequences are known a 

priori. Other methods digest the DNA with restriction endonucleases and generate a 

‘reduced representation’ sample (van Tassell et al. 2008), similar to the approach for 

AFLP analyses (Zabeau & Vos 1995) and other applications (Meissner et al. 2005; Roden 

et al. 2009). A recent improvement of the method fractionates the endonuclease-treated 

sample by size on a polyacrylamide gel that allows the removal of repetitive DNA 

sequences and provides the ability to select target fragments by gel excision (van Tassell 

et al. 2008). Restriction site recognition sequences also provide known anchor sequences, 

which make sequence alignment more efficient and accurate (Ng et al. 2006).

Another strategy for reducing genome complexity is to sequence the 

transcriptome of a pool of individuals (Barbazuk et al. 2007; Toth et al. 2007; Vera et al. 

2007; Collins et al. 2008; Novaes et al. 2008; Renaut et al. 2010). Although this approach 

might seem to be a reasonable strategy to produce genome equivalency, it succeeds only 

if the same tissue is used from each individual and if  the ‘expression states’ of individuals 

are identical. Expression of mRNA can, however, vary substantially, even among 

individuals in subtly different environments (Novak et al. 2002). Unequal genome 

contributions among individuals can confound accurate SNP detection because it can



reduce the number of contigs that are used to identify a probable SNP. However, library 

normalization can remove rare mRNAs from a sample (Patanjali et al. 1988). This 

strategy can be useful for some applications; however, it suffers the same problems that 

were discussed for Sanger sequencing of ESTs because it skews the discovery process 

toward the coding regions of the genome, although small portions of 5’ and 3’ 

untranslated regions can be included.

Accuracy reported for sequence information produced by next-generation 

sequencing is high. For example, a recent estimate o f less than a 0.5% error rate was 

reported (Huse et al. 2007). However, these numbers can be misleading because most 

next-generation sequencing studies that have demonstrated low error rates and high 

numbers of valid SNPs used either a reference sequence for alignment, which was 

already available for the organism (termed resequencing), or highly conserved EST 

sequences (e.g. Barbazuk et al. 2007; Collins et al. 2008; Craig et al. 2008; Novaes et al. 

2008; Sarin et al. 2008). Absence of an accurate reference sequence or highly conserved 

sequences from closely related species makes alignment of the short contigs from these 

platforms difficult. However, recent work that used paired end reads and newer alignment 

algorithms has resulted in accurate sequence assembly without a reference sequence (Li 

et al. 2010). Some platforms, such as the “two-base” encoding system used in the SOLiD 

platform, provide greater accuracy, but short read lengths and downstream data analysis 

introduce other difficulties (Holt & Jones 2008).

Sanger sequencing technology has provided the majority of the de novo reference 

sequences available for next-generation sequencing alignments. Next-generation



sequence technology and bioinformatics will need to improve in order to provide 

reference sequences with accuracy comparable to those generated with Sanger 

sequencing. A recent study that applied next-generation sequencing to SNP discovery in 

humans reported false positive error rates between 11% and 70% and false negative error 

rates between 10% and 90% (Craig et al. 2008). False positive errors can result from 

sequencing errors, alignment errors, or paralogous sequence variants (variants from 

duplicated regions of the genome). False negative errors can result from too few 

overlapping contigs that include a SNP or in regions that are difficult to align or 

sequence. Distinguishing true SNPs from false SNPs can be improved if  a candidate SNP 

is present in multiple overlapping sequence alignments, which can derive from a single 

individual or multiple individuals. Accuracy o f SNP identification can also increase if  the 

SNP site is correlated among individuals from a known pedigree or is identified in 

numerous individuals from the same population (Xue et al. 2009); however, the strategy 

that is used to assemble a SNP discovery panel may not provide population structure or 

pedigree information. Choosing only those SNPs that are identified in numerous 

individuals from the same population may bias the SNP discovery process because it 

favors the most variable sites and eliminates rare SNPs. Exclusion of rare polymorphisms 

can be problematic. For instance, inference o f gene trees from a collection of loci from 

which rare variants were omitted would remove many of the tree tips (Brumfield et al. 

2003); and in humans, it has been shown that rare variants are responsible for important 

phenotypes (Cohen et al. 2004; McClellan et al. 2007). Clearly, next-generation 

sequencing is a powerful and useful technology, but caution should be exercised in its
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application to SNP discovery in non-model organisms because it is a rapidly changing 

field. For example, single molecule real-time instruments such as Pacific Biosciences’ 

PacBioS promise read lengths o f 10 kilobases, which is a considerable increase from the 

current 35 to 500 basepair (bp) reads (Metzker 2009). It is likely that less expensive and 

more accurate systems will be available in the near future that will resolve most o f the 

difficulties with the current technology (Eid et al. 2009; Li & Wang 2009; Rusk 2009).

Restriction-site associated DNA (RAD) markers

Restriction-site associated DNA (RAD) markers, like RFLP- and AFLP-based methods, 

identify SNPs that alter a restriction site (Miller et al. 2007). Genome coverage is 

increased because many restriction fragments can be analyzed simultaneously with 

microarray technology. Genomic DNA is digested with a specific endonuclease, the 

cleaved recognition sites are biotin labeled, and the DNA is sheared to a few hundred 

basepairs by sonication. Next, the biotin-labeled fragments are separated from unlabeled 

fragments with streptavidin beads, recovered from the beads by restriction digestion, and 

fluorescently labeled. The resultant fragments represent only the unmutated restriction 

sites, which correspond to SNP or single feature polymorphism, and can be identified 

with a microarray, which is either already available or constructed from clones o f RAD 

fragments.

Restriction-site associated DNA markers have been used both to discover and to 

map thousands of SNPs in fungi (Neurospora crassa) (Lewis et al. 2007), zebrafish 

(Danio rerio) (Miller et al. 2007), and threespine stickleback (Gasterosteus aculeatus)
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(Miller et al. 2007). They have also been applied in conjunction with next-generation 

sequencing, to reduce genome complexity prior to sequencing (Baird et al. 2008). Most 

o f the applications have involved mapping studies in model organisms for which it offers 

several advantages such as subtractive hybridization to remove similar sequences 

between samples and increase the resolution between samples. The use of specific 

restriction endonucleases (i.e. common vs. rare recognition sites) allows the user to 

determine the marker density or vary the coverage o f the genome. In principle, this 

method could also be used for classification studies because arrays would be enriched for 

divergent (informative) markers. However, discovery ascertainment bias may still be an 

issue because the platform is currently designed to develop arrays from DNA of pairs (or 

two pools) of individuals and genotyping for discovery would require an array for each 

individual. Theoretically, the RAD method could be used for SNP discovery in any 

organism; however, all of the studies to date have been in model organisms for which 

significant genomic resources are available. In addition, generation of libraries and 

printing arrays can be labor intensive or beyond the capabilities of many laboratories that 

study non-model organisms.

TILLING

Targeting Induced Lesions IN Genomes (TILLING) is a method that was 

developed for reverse genetics and used to identify mutations associated with a desired 

(often mutant) phenotype of a species (Oleykowski et al. 1998; Yang et al. 2000; Colbert 

et al. 2001; Henikoff et al. 2004; Till et al. 2004). Eco-TILLING (Sokurenko et al. 2001;
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Comai et al. 2003; Gilchrist et al. 2006; Till et al. 2006; Till et al. 2007) and Deco- 

TILLING (Garvin & Gharrett 2007) are modifications of TILLING and have been used 

to discover and survey rare mutations in humans (Till et al. 2006), and natural mutations 

in wild populations of various organisms (Comai et al. 2003; Gilchrist et al. 2006; Till et 

al. 2007). Application of TILLING-based methods to SNP discovery has several 

advantages. First, ascertainment bias is reduced and more informative markers may be 

discovered because many individuals can be pooled in discovery panels (Garvin & 

Gharrett 2007); and the panels can represent a broad geographic range or appropriate 

cross-section of the target species. Second, pooling many individuals creates flexibility, 

which allows assembly of a discovery panel to identify SNPs at random, for population 

genetics and mapping applications; or assembling one that reflect the groups that need to 

be separated so that informative SNPs can be identified early in the process 

(classification and mapping applications). Third, costs are reduced substantially when 

samples are pooled as compared to sequencing the same numbers of individuals. Finally, 

pooling individuals for Sanger sequencing can introduce unreadable sequences from 

INDELS or be difficult to interpret from rare variants in multiple individuals. The 

problems introduced by pooling in other methods are not experienced with TILLING 

because homozygous individuals can often be identified during the discovery process, 

and provide readable sequencing data; pooling more individuals increases chances of 

identifying a heteroduplex. Lastly, the cleavage information from the individuals used in 

the TILLING reactions can be used to validate the SNP genotyping assays.

TILLING-based methods do have several drawbacks. First, PCR primers must be
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designed for each target, which requires sequence information. However, a recent study 

identified SNP sites by heteroduplex cleavage of restriction digested, tailed, and PCR 

amplified fragments (Xu et al. 2009). Heteroduplexes were digested to nick the SNP site, 

and the 3’ end was elongated with biotin-dUTP. The biotinylated DNA fragments were 

separated on streptavidin beads, cloned and sequenced to determine the SNP. 

Unfortunately, this approach fails to address ascertainment bias concerns. A second 

drawback of TILLING is that the majority o f studies used slab gel systems, which can be 

labor intensive and are not amenable to automation, although capillary instruments can 

and are being used for TILLING. Third, some nucleotide pair heteroduplex mismatches 

are recognized by the endonucleases better than others; consequently, some types of SNP 

can be missed (Oleykowski et al. 1998). And lastly, DEco-TILLING reduces costs 

associated with marker discovery but reduces the sensitivity and accuracy of the 

TILLING method.

Use o f  previously published data

Data from previous studies and published information can be valuable sources for 

SNP discovery. In silico data mining of GenBank sequences is probably the most 

common approach (Picoult-Newberg et al. 1999; Kota et al. 2003; Labate & Baldo 2004). 

Data mining can be cost-effective but it is, of course, only applicable to organisms for 

which substantial sequence information is available. In addition, the criteria that were 

used to assemble the individual sequences and the number o f individuals used for 

generating the sequence are rarely known, and most GenBank sequences for non-model



organisms are EST sequences. Any of these factors can introduce ascertainment bias or 

identify uninformative markers.

Historically, allozymes provided useful genetic markers and, in some instances, 

the underlying mutation can be discovered and used as a SNP (Brunelli et al. 2008), 

although the conversion may not be straightforward in non-model and polyploid species. 

Other types of genetic markers may also be used as a source for discovery. Data from 

AFLP work has been used to identify markers in brown trout (Nicod & Largiader 2003). 

Restriction site analyses, which have been conducted in mitochondrial and chloroplast 

DNA of numerous species (Avise 2000; Avise 2004) indirectly identify SNPs in 

restriction sites and provide information about their genetic and geographic structure.

This information can be used to identify informative SNPs (Vysotskaia et al. 2001). For 

example, we used a mitochondrial haplotype tree that was constructed from restriction 

sites in chum salmon to identify several variable restriction sites that were responsible for 

major, distinct clusters in the tree (Garvin et al. 2010a). With the mitochondrial tree, we 

identified specific individuals that possessed both forms of variants for informative 

restriction sites and sequenced them to identify and develop useful SNP assays.

Single nucleotide polymorphism genotyping assays

A multitude of SNP genotyping assays are available; for detailed reviews see 

Syvanen 2001, Tsuchihashi et al. 2002, Vignal et al. 2002, Sobrino et al. 2005, Giancola 

et al. 2006, Kim & Misra 2007, Bagge & Lubberstedt 2008, Gupta et al. 2008, and 

Ragoussis 2009. The focus of this review is the application o f SNPs to evolutionary and
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ecological studies; consequently, we focus on assays that are routinely used for these 

types of studies.

Criteria fo r  choosing SNP genotyping assays

Assays for markers such as allozymes, microsatellites, AFLPs, and RAPDs can be 

easily transported and validated between species. In contrast, nearly every SNP assay, 

regardless of the platform, must be designed and validated empirically for each species. 

The choice of assay does not generally depend on the type of study that is being 

undertaken but is more closely related to the size of the project, which includes both the 

number of SNPs and the number o f individuals that are to be genotyped (Giancola et al. 

2006; Bagge & Lubberstedt 2008). The choice o f assay should also consider whether the 

project might expand to include additional SNPs or more individuals. Finally, the choice 

of technology usually requires a cost analysis.

We consider a small- or medium-sized project as one that genotypes tens to about 

one hundred SNPs on a few hundred to a few thousand individuals. Projects of this size 

can be accomplished with single tube/single SNP PCR assays such as the Taqman™ 

assay (Holland et al. 1991; Higuchi et al. 1993; Lee et al. 1993), the Invader™ assay 

(Olivier 2005), the Tm-shift assay (Wang et al. 2005), Molecular Beacons™(Giesendorf 

et al. 1998), Amplifluor® (Nazarenko et al. 1997), and simple primer extension assays 

that require relatively little expertise. Primers and probes can be designed in house, but 

most fluorescent probes, primers, and enzymes for the SNP detection reactions must be 

ordered from a commercial source, which can increase costs. Costs can be offset by



reducing PCR volumes (5 ul is used routinely) and by using equipment that may already 

be in the laboratory, such as a real-time quantitative PCR (QPCR) instrument, capillary 

sequencer, or plate reader. For instance, the Taqman™ assay has gained wide application 

for gene expression analyses, which interrogates the fluorescence signal after each cycle 

of a PCR, and requires a thermocycler with the ability to detect fluorescence (Lee et al. 

1993). However, the assay for allelic discrimination (Higuchi et al. 1993) can also be 

done by detecting fluorescent levels at the end of the PCR. In particular, the Taqman™ 

assay for allele discrimination can be conducted by using a standard thermocycler to 

carry out the amplification and a plate reader to quantify the fluorescence, which can be 

less expensive to purchase and maintain than a QPCR instrument, and can be used for 

other analyses. Some added benefits from the use o f plate readers is that many of them 

can detect a wider variety of fluorescent dyes than some of the standard QPCR 

instruments, and like the QPCR instruments, many of them come with genotyping 

software.

In our lab, we use a modified version of the Tm-shift assay (Wang et al. 2005) 

(Figure 1.2). We added locked nucleic acids (LNAs) to the 3’ end of the allele specific 

primers, which has improved other PCR-based assays (Latorra et al. 2003; Mouritzen et 

al. 2003; Takatsu et al. 2004; You et al. 2006) and increased the specificity o f our assays 

(Figure 1.2). The modified Tm-shift assay requires an instrument such as a Light Scanner 

from Idaho Technologies (Salt Lake City, UT) or a real-time QPCR instrument to 

perform a melting curve analysis but can include multiple 3 84-well thermocyclers to 

increase throughput. In a small lab, the cost for the Tm-shift assay is about an order o f



magnitude lower than the Taqman™ assay because the only major reagent investments 

are a generic Taq DNA polymerase, SYBR™ green dye, dNTPs, and LNA-modified 

primers, all o f which can be purchased from a wide variety o f vendors at competitive 

prices. (The LNA primers add about $US60 to the cost of a set of primers). Also, the 

genotyping is based on a profile of data points (a curve) rather than a point estimate 

(single point fluorescent reads), the latter o f which can be misleading when samples that 

contain varying levels of DNA are analyzed on the same PCR plate.

Large projects may involve genotyping hundreds or even thousands of SNPs on a 

few individuals, genotyping a large number o f individuals with a few SNPs, or 

genotyping many SNPs on many individuals. Most o f the technology development for 

SNP genotyping has been driven by research on humans, which has focused on surveying 

very large numbers o f SNPs in a few individuals. Consequently, many methods can 

efficiently and accurately genotype tens of thousands or even millions of SNPs 

simultaneously (multiplexing). Multiplexing can be achieved in single tube PCR-based 

assays by using different combinations of dyes on the probes or primers that are specific 

to each SNP, but most instruments are limited in the number o f dyes that can be detected. 

Also, increasing the number of separate amplifications in a single PCR can result in an 

increased likelihood of primer-primer and primer-probe interactions that produce false 

signals or failed PCRs, although new microfluidics technology may eventually resolve 

this (Blow 2009). In addition, multiple target amplification can exhaust PCR reagents 

such as the dNTPs. Finally, SNPs from different genomes (e.g. nuclear versus 

mitochondrial) may be incompatible because of differences in copy number.



Several very accurate and robust methods can be used to perform multiplex 

genotyping. The iPLEX (Sequenome, San Diego, CA), SNPstream (Beckman Fullerton, 

CA), and SNaPshot (Applied Biosystems, Foster City, CA) assays can multiplex from 2 

to about 50 SNP assays per reaction and typically use a 96 or 384 well format. Higher 

density SNP assays are usually performed on arrays or beads. Solid support arrays 

(microarrays) usually have physically attached oligonucleotides that include the target 

SNP site internally. Genomic DNA from an individual is queried on each array. The SNP 

is usually identified with a scanner that detects fluorescence at the location o f a 

successful reaction (e.g. annealing or primer extension) on the array. Standard 

microarrays can include tens of thousands or even millions o f SNP assays. However, they 

need to be manufactured for each experiment, usually cannot be reused, and tend to have 

high failure rates (Syvanen 2001; Tsuchihashi & Dracopoli 2002). Off-the-shelf arrays 

are available for model species and humans; but custom arrays must be designed for non

model species, which can make these methods expensive. Bead-based assays such as 

Illumina’s GoldenGate assay offer a more flexible assay environment (Shen et al. 2005). 

Each type of bead carries an assay for a SNP. The different SNP assays are identified by 

a tag on the bead, which can be a DNA sequence (Shen et al. 2005) or an etched barcode 

(Lin et al. 2009). Other bead-based assays identify the specific assay with the 

fluorescence property of the beads themselves (Xu et al. 2003). They can be queried with 

flow-cytometers, or they can be attached to solid support universal microarrays after the 

assay reaction and read with an array reader. The bead format reduces the failure rate 

observed with standard microarrays, in part because the assays are performed in solution
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prior to attachment to the solid support. Bead-based assays also easily allow the 

incorporation of additional SNP assays, whereas the standard microarray platforms do 

not. The throughput for most of the highly parallel genotyping methods are standard 96- 

or 384-well format (one individual, but multiple SNPs per well).

Systems that can genotype thousands of SNPs in thousands of individuals rapidly 

and inexpensively are not yet available; but for projects that have large numbers of 

individuals, increased throughput can be achieved by increasing the number of 

thermocyclers in the lab, by converting assays to a higher plate density (from 96 to 384 or 

1536 wells per PCR plate), or by using liquid handling systems such as are used in the 

drug discovery and other fields. For example, the Janus™ (Perkin Elmer, Waltham MA) 

and the Biomek™ (Beckman Coulter, Fullerton, CA) can pipet sub-microliter volumes 

accurately into hundreds or thousands of PCR plates per day. Alternatively, assays can be 

transferred to a completely different genotyping platform. For instance, Taqman™, 

Molecular Beacon™, and Scorpion* assays can be run on Fluidigm (South San Francisco, 

CA) instruments that use automation and microfluidics to perform 96 single assays on 96 

individual samples in a single microfluidic plate. The reduction in assay volumes 

substantially decreases reagent costs, although there are costs for consumables, which are 

required for the instruments.

Expanding from assays o f small or medium numbers o f SNPs to large numbers of 

SNPs usually requires a substantial investment. The equipment costs alone range from 

tens o f thousands to hundreds of thousands of dollars. Instruments require servicing and 

maintenance. Consumable reagents for the assays are often sold exclusively by the
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instrument manufacturer and can be expensive. Finally, assay design and optimization are 

of paramount importance for multiplexing because different SNP assays must perform 

equally well under the same reaction conditions, and cross reactivity with other target 

sequences as well as non-target genomic DNA sequences must be minimized. The design 

of multiplex assays is usually performed by the commercial manufacturer for a fee or as 

part of the reagent costs; but multiplex assays that are developed for non-model species 

are usually not guaranteed because reference genomes are unavailable for a thorough 

bioinformatic analysis, which is conducted during assay development. Alternatively, the 

number of private institutions that provide genotyping services is increasing rapidly; and 

outsourcing the genotyping phase of a project to a contractor or a core lab may be more 

cost effective because investments in instruments, consumables, maintenance, and 

personnel are reduced or eliminated.

Linked single nucleotide polymorphisms: The power of haplotypes

Linkage disequilibrium is “the non-random assortment of alleles in a population 

at two or more loci into gametes” (Hedrick 2005). Linkage can exist if  SNPs are 

positioned closely on a chromosome, and this can provide useful information (see below), 

but the SNPs cannot be treated as independent alleles because they violate Mendel’s Law 

of independent assortment. Linked SNPs often occur in an inherited haploid section of 

DNA (a haplotype). For most population genetics applications, the haplotype must be 

determined either empirically or probabilistically. Coalescence theory, which provides 

accurate estimates in population genetics applications of demography of populations, is



based on haplotypic data (Fu & Li 1999; Emerson et al. 2001; Leblois & Slatkin 2007). 

For classification applications, haplotypes can be the basis for species identification 

(Hajibabael et al. 2007), and haplotypes may be more useful than singly inherited SNPs 

for associating loci with disease (Davidson 2000; Drysdale et al. 2000; Floehe et al.

2000), as well as for parentage analysis (Jones et al. 2009) and standard population 

genetics studies (Morin et al. 2009). Mapping applications depend on linked haplotypes 

to increase the resolution of linkage maps and to more accurately identify QTL. 

Obviously, for many applications, haplotype sequence data can provide important 

information.

Gathering haplotype information from linked SNPs may not be straightforward 

because exchanges between homologous chromosomes during meiosis can result in 

shuffling of haplotypes from the previous generation. If linkage is complete, conserved 

haplotypic sequences (haplotype blocks) will result (Wall & Pritchard 2003; Guryev et al. 

2006). Because these blocks of DNA sequence are inherited, some studies can be done 

more quickly and inexpensively by monitoring only a few SNPs that represent the 

haplotype block (tagSNPs), instead of the entire collection o f SNPs (Carlson et al. 2004). 

Although these blocks are conserved, some recombination may occasionally occur within 

them and create different linkage phases (Schaschl et al. 2006), which must be resolved 

in order to perform proper analyses for some kinds o f studies. Statistical programs such 

as PHASE and FastPHASE (Stephens et al. 2001; Stephens & Donnelly 2003; Scheet & 

Stephens 2006), can estimate the haplotypic frequency in a population with maximum 

likelihood (ML) algorithms under the assumption of Hardy-Weinberg equilibrium



(HWE). This is useful for some population genetics estimates and for developing baseline 

populations for classification applications that are used for stock admixture analysis, as 

long as the unit of interest is a population that conforms to HWE. In contrast, statistical 

software packages such as SPAM (Debevec et al. 2000) BAYES (Pella & Masuda 2001), 

and ONCOR (Anderson et al. 2008) determine the probability that each individual (multi

locus genotype or haplotype) from a mixed stock sample (a mixture of populations) 

originated from the various baseline populations. Population mixtures are usually not in 

Hardy-Weinberg nor linkage equilibrium (the Wahlund Effect), and the linkage phase 

cannot be determined by ML estimation. Software programs such as Phase and other 

probabilistic methods, which randomly assign linkage phase to individuals, do not 

determine haplotypes of specific individuals in a mixture. Consequently, for stock 

identification applications, linkage phase must be determined empirically for each 

multiple heterozygote in a sample mixture.

Most haplotype information is generated from sequences or restriction digests, 

which are accurate for haploid mitochondrial DNA. Methods that sequence diploid 

genomic DNA are unable to directly determine complete haplotypes because both alleles 

at a locus are sequenced simultaneously. Next-generation sequencing platforms do 

sequence single molecules, and therefore generate haploid data, but the shorter fragment 

lengths generated by these methods (30 to 400 base pairs) can obscure linkage 

relationships. However, improvements in the technology continue to provide longer read 

lengths for some platforms such as Roche’s 454, which can generate fragment lengths of 

around 500 basepairs, and so-called Third Generation Sequencing claims lOkb fragments
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are routine (Metzker 2009). One way to resolve the haplotype phase is to clone individual 

DNA molecules, but this is not practical for large studies. Standard genotyping methods 

suffer from the same problem and, therefore, create what is known as unphased diploid 

data (sequence data in which the phase of the double heterozygotes was undetermined) 

(Wall & Pritchard 2003). We extensively modified a gel-based assay (Eitan & Kashi 

2002) to resolve the linkage phase of double heterozygous individuals with a high- 

throughput SYBR-green-based assay that also incorporates LNAs at the 3’ end of the 

primers (Garvin & Gharrett 2010b, and (Figure 1.3). This assay allows us to resolve the 

linkage phase of some loci for more accurate stock admixture analysis. Other assays such 

as Single Strand Conformation Polymorphism, or SSCP can also score complete 

haplotypes (Sunnucks et al. 2000).

An analysis of SNP discovery in non-model species

Single nucleotide polymorphisms have been discovered and reported in a variety 

o f non-model organisms, which included all three types of studies that we described 

(Table 1.1). Although our list is not meant to be an exhaustive survey, it is 

representative. The majority of SNP discovery efforts in this survey used Sanger 

sequencing, which is not surprising given that it has been available longer than other 

methods, and it is accessible to most labs. Most of the studies attempted to address 

ascertainment bias by including representative samples in the discovery panel, and some 

were able to use large sample sizes, but most included only a handful o f samples. The 

number of potential SNPs discovered and reported ranged from 2 to 1,700, which



demonstrates that large numbers of SNPs can be discovered with Sanger sequencing, 

although costs associated with the larger studies were not available.

Six reports used next-generation sequencing for SNP discovery in non-model 

organisms. Two of the studies had reference genomes available for sequence alignment, 

and four did not. Ascertainment bias was not addressed in these studies; either a single 

individual was used, or multiple individuals were pooled to increase genetic variability. 

Although the number of next-generation sequencing studies is small, it is clear that 

thousands or millions of potential SNPs can be discovered with this method. 

Unfortunately, the proportion of SNPs that were validated from potential SNPs detected 

(Table 1.1) reveals that a major challenge for data generated from next-generation SNP 

discovery efforts is to select the SNPs that can be validated before conversion to a 

genotyping assay. The study by Renaut et al. (2010) demonstrates the promise and 

pitfalls of next-generation sequencing for SNP discovery. The authors estimated the d„/ds 

ratio, the transition/transversion ratio, and genes that were under positive selection in two 

species of whitefish. Parameter estimates were derived from 6042 “potential” SNPs from 

the sequencing survey, but attempts were made to validate only 31 of the 6042 

“potential” SNPs, 6 of which were not validated. Such parameter estimates should be 

viewed with caution, and the authors suggest that many of the SNPs are likely paralogous 

sequence variants. All SNP discovery methods for next-generation sequencing used the 

quality of the raw data as part of the criteria for SNP conversion; however, unlike the 

next-generation sequencing studies reported here, studies that used other methods for 

discovery were able to take into account whether SNPs were linked and how informative
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they were in addition to data quality when deciding which SNPs to develop, which can be 

a critical issue given the cost and time needed to develop genotyping assays.

In silico data mining and TILLING were the other two methods that were heavily 

represented in the data set. It should be noted that RAD technology was not included in 

Table 1.1 because all o f the studies to date involved model organisms, which is not the 

focus of this review. In silico data mining was used to discover large numbers o f SNPs 

inexpensively; however, the drawback to this method is the inability to deal with 

ascertainment bias because the discovery process was rarely known. Methods that applied 

TILLING-based technologies were used in various species to discover varying numbers 

of SNPs. Most of the studies involved crop species, and identified SNPs in specific genes 

that were responsible for advantageous phenotypes. Finally, most o f the studies reported 

the discovery of the SNPs themselves, but provided little or no information as to whether 

or not they were informative for the type of study for which they developed. From this 

survey, it is difficult to draw conclusions as to which methods are better at discovering 

informative markers, but it is anticipated that many follow-up studies with these markers 

will soon appear in the literature.

Summary/Conclusion

The application of SNPs to genetic studies will continue to expand because SNPs 

are abundant, co-dominant markers that are broadly distributed in genomes, simple to 

score, and amenable to high-throughput screening. The main drawbacks to applying 

SNPs are that the development o f numerous, informative markers can be labor intensive,
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can incorporate ascertainment bias, and methods to genotype them can be expensive. The 

importance of the SNP discovery strategy cannot be overemphasized. We have also 

shown that in the same application, linked SNPs may have advantages over single, 

independently inherited SNPs; but linkage phases must be resolved, often empirically.

As projects incorporate larger numbers of SNPs and individuals, new 

technologies will be developed. The large investment by private corporations in the 

human diagnostic and drug discovery fields has resulted in the introduction of many 

powerful and useful technologies for SNP discovery and genotyping. However, caution 

should be exercised when applying technology that was developed for the study of 

humans to non-model organisms because certain assumptions may not apply (e.g. a fully 

annotated sequence for humans is available, humans are diploid organisms, many 

technologies were developed for classification applications and not population genetics 

applications, etc.).

Finally, new technology may be costly; and, given the rapid pace of development, 

technologies often become obsolete in a short time. Nevertheless, as more genetic 

information is accumulated for non-model organisms, and as development o f technology 

evolves toward efficient and inexpensive alternatives, SNPs will more easily and 

economically become incorporated into laboratories.
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Figure 1.1. The importance of the SNP discovery scheme. A poorly designed SNP 
discovery scheme (represented by the dashed-line ellipse) can identify SNPs that are not 
representative (the unfilled circle), produce bias in parameter estimates (ascertainment 
bias), or include markers in an analysis that cannot distinguish between the two 
populations (wasted resources). A poorly designed discovery scheme may also fail to 
identify representative or informative markers (the gray circles), which would be more 
efficient for distinguishing between the two populations. For typical Sanger and next- 
generation sequencing studies, few individuals are selected for the discovery process. 
Methods such as Eco-TILLING and Deco-TILLING reduce ascertainment bias of 
parameter estimates and identify informative markers by including more individuals and 
populations in the discovery panel (solid-line ellipse).



42

bestTgy
0

O —P—o~1 bu

R e g u la r  P r im e rs

Homozvgote 1 
“ * * Heterozygote 

Homozygote 2

Degrees celdns

P rim e rs  c o n ta in in g  L ocked Nucleic A cids

Homozygote 1 
•  ■ • Hetcrozygote 

Homozygote 2

Degrees ccicius

Figure 1.2. The improved Tm-shift assay. The assay uses locked nucleic acids (LNAs) 
placed at the 3’ ends that complement the SNP site. LNAs lock the ribose group of the 
nucleic acid in the chair form (upper left drawing), which increases its affinity for its 
complementary nucleotide (You et al. 2006). The top graph shows the assay with 
unmodified primers. The bottom graph shows the assay on the same samples that 
incorporates LNAs into the SNP specific-3’ position of the primers.
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Figure 1.3. Linkage phase resolution. We developed a rapid assay that resolves linkage 
phases in linked SNPs, which is an improvement of an older method (Eitan & Kashi 
2002). Primer pairs were designed so that the 3’ end of the forward and the reverse 
primers terminated at the first and second SNP sites in the haplotype, respectively. An 
LNA modified nucleotide was placed at the 3’ end of the primer. Here, we refer to the 
two alleles at SNP site 1 as A/a and the alleles at SNP site 2 as B/b; there are two forward 
(A, a) and two reverse (B,b) primers. A detectable PCR product can only be generated if  
nucleotides at both SNP sites complement the primers. In order to develop each assay, we 
used four primer pairs (A-B, a-B, A-b, and a-b). Only one combination of primers can 
amplify a specific haplotype. In practice, the results o f two reactions will determine the 
phase of double heterozygotes, one that uses the primer pair that amplifies one of the 
repulsion phase (A-b or a-B) and one that amplifies one of the coupling phase (a-b or A
B) haplotypes.



Table 1.1. Summary of SNP discovery efforts in non-model organisms.

Species S tudy  Type
SN P D iscovery 

M ethod

A scertain 
m ent bias 
addressed

?

M ax it 
ind iv iduals in 
ascertainm ent 

panel

#  potential 
SNPs*

A rctic  ch a r {S a lvc /inus a fp inus) U ndefined S anger S equencing Yes 5 2

A tlan tic  cod  ( G adus m orhua) C lassification S anger Sequencing No 5 ' 724

A tlan tic  salm on (S a lm o  sa la r) U ndefined S anger Sequencing Yes 15 19

B row n trou t (Sa lm o  im tta ) U ndefined S anger Sequencing Yes 5 15

Brow n trou t (Salm o tn ifia ) Population  G enetics
Sanger

Scqucncing/A FL P
No 16 24

C him panzee (P a n  troglodyes verus) U ndefined S anger Sequencing Yes 19 26

C hinook salm on (O ncorhynchns tshaw ytscha) C lassification S anger Sequencing Yes 34? 40

C hinook salm on (O ncorhynchns tshaw ytscha) C lassification S anger Sequencing Yes 10 114

C hinook salm on ( O ncorhynchns tshaw ytscha)  
C hum  salm on (O ncorhynchns keta)

C lassification

C lassification

S anger Sequencing 

S anger Sequencing

Yes

Yes

32

32

54

13

C hum  sa lm on  (O ncorhynchns keta) C lassification S anger Sequencing Yes 5Q 107

C hum  sa lm on  (O ncorhynchns k e ta ) C lassification S anger S equencing Yes 10 155

C hum  sa lm on  ( O ncorhynchns keta) C lassification T ILLIN G Yes 5 'x  96 19

C oho salm on (O ncorhynchns k isu tch) C lassification S anger S equencing Yes 37 46

C ollared  F lycatcher (F iccd u la  a lb ico ilis) Population G enetics S anger S equencing N o 8 61

C ora l (A cropora  m iU epora) Population  G enetics N G S - 4 5 4 " N o U nknow n 48,046

Eastern fence lizard (S c c lo p o m s n ndu ia tus) Population G enetics S anger S equencing Yes 91 158

E clgrass (Zostera  m arina )

G ian t Panda (A ilnropoda m etanoleura) 

G rapevine (P itis vin ifera)

Population G enetics

Population G enetics 
P opulation 

G cnctics/M apping/C lassi 
f ication

In  s ilico  data  

m in ing/Sanger 

Sequencing 
NG S -  lllum ina

S anger S equencing

Yes

No

Yes

16

1

10

152

2,700,000

1625



# #
V alidated characterized 

S N P s1 SN Ps

2 2

318/594* 318

19 19

15 15

12 12

19/26* 14

4 0  10

41 41

13 12

13 13

107 36

55 55

15 6

21 19

6 i  61

14/20* 14

158 19

47/152* 37

0 0
80/96* 80

H ow  w ere . .  , . .
, M ethod used to

validated  SN Ps . . .  . CKm
. ,n validate SN P

characterized?

Nucleotide
diversity

Population

assignm ent,

Nucleotide

diversity
Nucleotide

diversity

Resequcncing

G enotvping  a ssay  
success 

M AF, FIS, 
U PG M A ,
A M  OVA 
MAF, not 

paralogous 
M A F 

MAF, H 0 and FsT 

M AF, H 0 and Fsr 

and  unlinked 
M AF, not 

paralogous

M A F

M AF, H 0 and  Fsr 

and  unlinked 
Nucleotide 

diversity , H0 

R esequcncing 
MAF, N ucleotide 

diversity , Hc

M AF, H 0  and F ^  

and  unlinked

S anger Sequencing

M assA RRA Y

Scqucnom c

S anger S equencing  

S anger S equencing  

S anger S equencing  

SN aPshot

Taqm an™

Taqm an™

Taqm an™

Taqm an™

Taqm an™

Taqm an™

T „-sh ift & 

Taqm an™

Taqm an™

S anger S equencing 

R esequcncing 

S anger S equencing

SN aPshot

N /A

Ryynancn &  Prim m er 2006 

M oen e t a l.  2008 

Ryynancn &  Prim m er 2006 

Ryynancn &  Prim m er 2006 

N icod  e l a l  2003 

A iken  e ta l .  2004

S m ith e ta l .  2005

S m ith e t al. 2005

C am pbell e t a l. 2008 

S m ith e ta l.  2005

E lfstrom  e t a l ,  2QQ7

S m ith e t al. 2005

G arvin  &  G harrett 2007

Sm ith e t a l. 2005

Prim m er e t a l.  2002 

M cycr e t al. 2009  

R osenblum  e t a l .  2007

Fcrbcr e t a l. 2008 

Li e ta l. 2 0 to

SN Pplcx Lijavctzky  e t a l. 2007

4̂



Table 1.1 continued.

Species S tudy  Type
SN P D iscovery' 

M ethod

A scertain 
m en! bias 
addressed

7

G ray lin g  ( Thym allus ihym allus)

G reen  algae (C hlam ydom onas reinhardtii)

U ndefined

M apping

Sanger Sequencing

In  s ilico  d a ta  m ining, 
R FL P m apping

Yes

N o

G reen  sea  tu rtle  ( C h clon ia  m ydas) P opulation G enetics
Sanger

Scqucncing/A FL P
Yes

H alf-sm oothed  tongue so le  (C ynog lossus sem ilaev is) 

Lake w hitcfish  (C oregonus  spp.)

M elon (C ttcum is m elo  L.)

M apping

C lassification

C lassification

T ILLIN G

N G S - 4 5 4 "  

T ILLIN G

N o

N o

Yes

M osquito  (A ed cs  acgyp ti)

M ung bean (V igna  ra d ia ta )

Pacific O yste r ( C rassosirea  g ig a s )

C lassification

C lassification /Population

G enetics

M apping

S anger Sequencing

TILLIN G  

In  s ilico  d a ta  m ining

Yes

Yes

No

Paddy w eed (M o nochoria  vaginalis) C lassification T ILLIN G Yes

Pied F lycatcher (E icc thda  hypolenca) Population G enetics S anger S equencing No

Rainbow  trou t ( O ncorhynchns m ykiss) M apping/C lassification N G S - 454 No

Rice (O ryza  sa tiva  L.)

Rose G um  {E ucalyp tus g rand is)  

Sockcyc s a lm on  (O ncorhynchns nerka )

C lassification

C lassification

C lassification

TILLIN G

N G S - 454 

Sanger S equencing

Yes

No

Yes

Sperm  W hale  (P h yse te r  m acrosephalus) Population G enetics S anger Sequencing Yes

Sugarcane (S a cch a rn tm  o /fic inan im ) U ndefined In  s ilico  da ta  m ining No

Trin idadian  g ub b y  (P oecilia  r e ticu la ta ) M apping S anger S equencing Yes

Turkey  (M eleagris  ga llopavo)

W cathcrvanc scallop  ( Patinopecten  caurinus)  

W estern b lack  co ttonw ood (P opulus trichocarpa)

U ndefined

Population
G enetics/C lassification

Population G enetics

N G S - lllu m in a"  

S anger S equencing  

TILLIN G

N o

No

Yes

W hite  spruce (Picea  g la u ca ) U ndefined In  s ilico  da ta  m ining Yes

W indflow er (A n em o n e  coronarta) Population G enetics Sanger S equencing No

M A F  =  M inor A lle le  Frequency, H O  -  O bserved  H eterozygosity , F S T  ® W right’s FST, UPG M A  =  U nw eighted Pair G roup  M ethod
‘SN Ps also  includes IN D ELS
*A subse t o f  SN Ps w as c hosen  from  potential SN Ps

V a lid a te d  SN P m eans it w as validated w ith  a  m ethod o th e r than the d iscover)' m ethod 
* Ind iv iduals w ere pooled
"R efe ren ce  sequence o r conserved  reference sequence availab le  fo r  alignm ent



M ax H
ind iv iduals in # potential 
ascerta inm ent SNPs* 

panel

# U
Validated characterized

SN Ps5 SNPs

14

204

14

186/204*

14

186

H ow  were 

validated SNPs
characterized?

N ucleotide

diversity

Resequcncing

M ethod used  to  
validate  SN P

S anger S equencing  

S anger S equencing

Reference

R yynancn &  P rim m er 2006 

V ysotskaia <?f a l.  2001

40 68 37 29
M AF, Nucleotide 

po lym orphism , H 0
A m plifluor R oden el a l. 2009

10' 41 23/41* 9 Resequcncing S anger S equencing X u el a l.  2009

2 4 '

112

15

6042

6

87

25/31*

6

8

6042

6

8

dn/ds, tv/ts ratio 
N onsynonym ous 

m utation 

M AF, H o, and 
unlinked

SN Pplex 

S anger Sequencing

SN aPshot

R cnaut e l al. 2010 

N ieto  e l al. 2007

Paduan  &  R ibolla 2009

24 157 157 157
%  polym orphic 

sites
Sanger Sequencing B arkelv  e ia i .  2008

U nknow n 51 51 20
Polym orphic/M A

F
S anger S equencing Bai el al. 2009

4

8

2

52

2

52

2

52

N onsynonym ous 
m utation 

N ucleotide 

diversity , H „

S anger S equencing  

S anger S equencing

W ang e l a l. 2007 

P rim m erc f  a l .  2002

9 6 ' 13,140-24,627 183/384* 183 M AF, Ho G olden  G ate A ssay S anchez e l a l.  2009

57

2 1 '

6

30,108

6

279/337*

6

279

G enotvpe/Phcnoty  
pc association 

dN /dS ratio

S anger S equencing  

R esequcncing

K adam  e l a l. 2006 

N ovacs e l a l .  2008

10 114 39 39
M AF, not 

paralogous
Taqm an™ Sm ith e l a). 2005

6

Unknown

5

39

1588

1700

39

58/180*

400

18

48

235

M A F and 
unlinked 

Polym orphic, 
dosage o f  

po lyplo id  species 
Rcscqucncing/Scq 
ucncc a lignm ent 

to  o ther 
populations

Lum incx

P yroscqucncing

S anger S equencing

M orin e l a l.  2007 

C ordeiro  e t a l .  2006

D rc y c re /o / .  2007

6* 7,952 355 384 M A F G olden  G ate  A ssay K erstens e t a l. 2009

95 27 12 12 M AF, H 0 Taqm an™ Elfstrom  e ia l.  2005

41 63 63
R esequcncing, 

H0 , UPG M A
S anger Sequencing G ilch rist e l a l. 2006

12 12.264 245/325* 245 Resequcncing Sanger Sequencing Povy et a l. 2006

1 155 30 9
MAF, H 0 , G enetic  

D istance
M A L D I-T O F MS Sham ay  e t a l  2006

w ith A rithm etic  m ean, A M OVA =  A nalysis o f  M olecular Variance
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Abstract

Samples taken from nature for study are often mixtures from multiple populations, which 

frequently require mixed stock analysis (MSA) to estimate their composition. 

Development of genetic baselines for MSA requires evaluations to predict their 

performance. Previous evaluation methods to evaluate baselines used simulated mixtures 

and were overly-optimistic of baseline power. More objective methods are available, but 

they do not accommodate potentially informative haploid data, and are based solely on 

maximum likelihood methods. We evaluated a combined single nucleotide 

polymporphism (SNP) and microsatellite baseline for chum salmon (Oncorhynchus keta) 

with a method called ‘leave ten percent out cross validation’ (LTO), which avoids 

optimism, uses observed genotypes, accepts haploid and diploid data, and applies either 

Bayesian or maximum likelihood-based methods. From simulated SNP data, we used 

logistic regression to estimate the number of SNP loci necessary to achieve a specified 

rate of correct assignment and provide a guide to develop genetic baselines.
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Introduction

Mixed-stock analysis (MSA) uses multi-locus genotype data to estimate the composition 

of a mixture or to assign individuals to a stock of origin (Manel et al. 2005, Pella and 

Milner 1987). These types o f analyses have been used for the study, management, and 

conservation of many species including turtles (Bowen et al. 2007), cattle (Negrini et al. 

2008), elephants (Wasser et al. 2004), and salmon (Griffiths et al. 2010). The application 

of MSA generally requires a reference genetic baseline that includes samples from all the 

distinct stocks that may contribute to the mixture. For MSA, the term “stock” typically 

refers to a group of individuals defined for conservation or resource management 

purposes and is not necessarily a breeding population.

Applications that require samples from large numbers of stocks may be 

prohibitively costly, but a tendency for genetic similarity among neighboring stocks can 

compensate for incomplete baselines. In this case, regional representatives are chosen, 

and individuals in the mixture from non-baseline stocks will likely be correctly assigned 

to their geographic regions of origin (e.g. Beacham et al. 2009). The individuals sampled 

from each baseline stock are genotyped at numerous genetic loci, as is each individual in 

a sample from a mixture. Analyses are then conducted either to estimate the 

proportionate contribution of each baseline stock to the mixture or to assign each 

individual in the mixture sample to a baseline stock of origin.

The accuracy and precision of the genetic baselines are typically evaluated after 

their assembly and reevaluated when (1) new loci are added to the baseline; (2) new 

stocks are added to the baseline; or (3) only a subset of the baseline is used for MSA,



which for some applications may be desirable to conserve time and resources. Accuracy 

and precision of the genetic baselines refer to the expected performance of a statistical 

method trained with samples from the baseline either to estimate the stock composition of 

a mixture or to classify individuals from the mixture to their source stocks. During 

standard application of MSA, the individuals from the mixtures are obtained 

independently after baseline sampling. Therefore, the objective of baseline evaluation is 

to predict the performance of composition estimation and individual assignment of future 

mixtures from only the current baseline samples.

A widely used method to evaluate a genetic baseline is to repeatedly simulate 

from the baseline information samples of multi-locus genotypes to create hypothetical 

mixtures o f a specified stock composition, and then to estimate the compositions of those 

mixtures from either the actual baseline samples or simulated baseline samples with the 

conditional maximum likelihood method. The simulations and estimation are 

accomplished with software programs such as SPAM (Debevec et al. 2000) or GMA 

(Kalinowski 2003). Recently, the methods used to create and estimate the composition of 

simulated mixtures with these programs were shown to overstate the accuracy and 

precision of baselines (Anderson et al. 2008). The optimism arises because sampling 

errors in the baseline result in apparent greater genetic divergence among stocks than 

actually exists (error-enhanced divergence).

The use of ‘100% mixtures’ in which the entire mixture is composed of 

individuals from a single reporting group is commonly applied to baseline evaluation 

(e.g. Beacham et al. 2009; Seeb et al. 2011). However, the bias in estimates o f stock
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proportions is maximized for 100% mixtures because the repeat estimates concentrate 

inside and at the boundaries of the feasible space (i.e. you cannot have more than 100% 

nor less than 0% contribution), and their variances are also reduced for the same reason. 

With at least modest success in estimating the unknown stock proportions, i.e. the prior 

source probabilities of individuals in the mixture, the individuals in a 100% mixture are 

more easily identified to source than for a mixture nearer to equal proportions because the 

correct and unknown 100% prior is fully informative of individual sources (only one 

stock is possible) while the equal-proportions prior is uninformative (all stocks are 

equally probable). Ultimately, successful stock composition estimation requires 

identification of the sources of individuals in the mixture; and in this regard, equal- 

proportions mixtures are more challenging than 100% mixtures.

Several recent studies used ‘proof tests’ to evaluate the performance of genetic 

baselines (Habicht et al. 2010, Seeb et al. 2011, Templin et al. 2011), in which a few 

hundred individuals are removed from the baseline as a test mixture to be evaluated with 

the now reduced baseline. This use of baseline holdouts to create mixtures completely 

avoids the optimism caused by the simulation o f mixture genotypes from baselines as 

discussed by Anderson et al. (2008), but it requires that baseline samples sizes are 

sufficiently large to accommodate the removal of a few hundred samples for the 

mixtures. The proof tests may result in understating baseline power because the reduced 

baseline sample sizes may be less effective at distinguishing sources. Although proof 

tests have been used only with 100% mixtures, the method could easily be adapted to



accommodate more challenging mixtures that have nearer equal stock proportions as we 

describe later.

The School o f Fisheries and Ocean Sciences at the University o f Alaska Fairbanks 

(UAFSFOS), the Alaska Department of Fish and Game (ADF&G) and the National 

Marine Fisheries Service Auke Bay Laboratory (NMFSABL) are co-developing a genetic 

baseline for chum salmon (Oncorhynchus keta), whose incidental bycatch in the Bering 

Sea pollock fishery is of concern for fisheries management in Alaska (Gisclair 2009).

The baseline consists of markers that are coded in both nuclear and mitochondrial DNA. 

Among nuclear markers, microsatellite loci commonly have large numbers o f alleles, 

which provide more opportunities for genetic drift to reveal differences among 

populations than bi-allelic single nucleotide polymorphisms (SNPs). On the other hand, 

mitochondrial markers can be useful for MSA because they can show stronger levels o f 

divergence among populations than nuclear markers. This is because mitochondrial 

DNA represents a smaller effective population size than nuclear DNA because it is 

haploid, undergoes no recombination, and is maternally inherited (Billington 2003). 

Indeed, strong divergence has been demonstrated in chum salmon (Garvin et al. 2010;

<pST > 0.3; Moriya et al. 2006). In addition, some species (including salmon) demonstrate 

positive directional selection in the mitochondrial genome (Brandt et al. 2012; Foote et 

al. 2010; Garvin et al. 2011; Grossman et al. 2004; Scott et al. 2010), which could further 

increase divergence among populations.

The use of SNPs in both nuclear and mitochondrial DNA is relatively new to 

MSA; but it is becoming more common because laboratory genotyping methods are
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simple and their data are easily shared among users, although the number o f SNPs 

required to address mixture problems usually far exceeds the number o f multi-allelic 

microsatellite loci that would provide the same level of discrimination. The development 

of baselines from SNP data involves four steps: (1) SNP discovery, (2) SNP 

development, (3) SNP selection, and (4) SNP baseline evaluation. Most baseline 

development projects use Sanger or next-generation sequencing to discover tens or even 

thousands of SNPs from which a subset is developed into a laboratory assay and used to 

genotype baseline samples. In an attempt to reduce the number of SNPs to be used for 

MSA, a subset o f the most promising are high-graded and then evaluated for precision 

and accuracy, usually with simulations of mixture samples from the baseline itself.

Anderson (2010) cautioned that a systematic upward bias in predicted accuracy 

can be introduced into baseline evaluation when SNPs are high-graded if  the same 

samples are used to choose loci and to evaluate the new baseline. This bias is distinct 

from error-enhanced divergence described earlier by Anderson et al. (2008) and results 

from the fact that divergence estimates from a sample are larger or smaller than the true 

value, which can be corrected by a regression to the mean. SNP loci that are chosen 

based on high divergence estimates will likely not perform as well with different baseline 

and mixture samples, and loci that were excluded may have performed better than 

expected. High-grading bias is also different than so-called ‘ascertainment bias’, which 

occurrs when too few individuals are used in the ascertainment panel for SNP discovery 

(although this is best described as sampling error, we will use the term most often 

reported in the literature).



Anderson (2010) discussed two double cross-validation methods to avoid high- 

grading bias in the context of MSA. In ‘Simple Training and Holdout’ (STH) the baseline 

samples from each stock are randomly divided into a training set and a holdout set. The 

training sets are used to identify the most informative loci and to constitute a baseline for 

MSA. The genotype data in the holdout sets are used only to create mixtures that are 

evaluated by MSA with the baseline o f training sets. Because the STH method may 

substantially limit the data available for estimation of the frequencies o f the genotypes 

from the mixture in the separate baseline stocks as required in MSA, Anderson (2010) 

suggests a modification called the ‘Training Holdout Leave-one-ouf (THL) method. In 

this method, the training sets are used to select the SNPs, the test mixtures are created 

from the holdout sets, and then the test mixtures are analyzed by MSA with the combined 

training and holdout sets for the baseline. However, when the test mixtures are analyzed 

in THL, a leave-one-out (LOO) rule prevents repeat use of genotypes from the holdout 

set in both the mixture and the baseline, which accounts for the error-enhanced 

divergence inherent in baselines.

The program ONCOR (Anderson et al. 2008) has a simulation feature useful for 

SNP baseline evaluation, i.e., step 4 of the development of SNP-based baselines. 

Importantly, the modified maximum likelihood estimation algorithm in ONCOR avoids 

the over-optimism of SPAM and GMA because it uses the LOO rule. However, ONCOR 

does not allow the user to perform THL in which mixture samples are simulated from 

only the holdout sets of the baseline and then evaluated with the full baseline. Instead, 

ONCOR simulates mixtures from the full baseline provided and then evaluates them



without a distinction between training and holdout sets. ONCOR is also restricted to the 

conditional maximum likelihood method, which provides frequentist confidence intervals 

for mixture proportions through bootstrap resampling, whereas Bayesian methods could 

provide more easily understood probability interval statements for all unknowns. Lastly, 

but importantly, no computer program that simulates mixture genotypes is publicly 

available to objectively evaluate the accuracy and precision of a baseline that includes 

haploid data. Analyses that use phenotypic data (e.g. Nolte and Sheets 2005) would also 

benefit from a method that accommodates haploid data because those data are evaluated 

in the same manner as haploid data within the framework o f MSA.

We constructed an alternative system to develop and evaluate SNP baselines that 

reduces ascertainment bias introduced during the discovery step, reduces the costs 

associated with the development step as well as bias introduced during the selection step 

(Garvin and Gharrett 2007), and either reduces or eliminates optimistic bias in baseline 

evaluation from error-enhanced divergence and high-grading. Our Eco-TILLING 

method essentially combines the discovery and selection steps (1 and 3) o f the baseline 

development into a single step. Our ascertainment panel consisted of 480 individuals 

that represented 12 populations across a geographic range, which was used to survey each 

target DNA sequence. Ascertainment bias was reduced because 40 individuals per stock 

were surveyed for genetic variants compared to a handful with standard sequencing 

methods. Costs were reduced because only informative SNPs were subsequently 

developed into laboratory assays.



In this study, we use a portion of the chum salmon baseline that is being 

developed to assess a method we call ‘leave-ten-percent-out cross validation’ (LTO) as 

an alternative to genotype simulations used in the program ONCOR to evaluate the 

precision and accuracy of genetic baselines for MSA. LTO is derived from the K-fold 

cross validation method of classification statistics (Hastie et al. 2001). K-fold cross 

validation, introduced by Geisser (1975), is in widespread use among analysts concerned 

with classification applications such as gene expression microarray experiments (Slonim 

2002), landscape ecology (Boyce et al. 2002), and clinical medicine (Hess et al. 2006); 

and it has been recommended for use in MSA applications for fisheries (Waples 2010). 

Our LTO method reduces or avoids optimism of baseline performance to estimate 

mixture proportions and make individual assignments, accommodates haploid and diploid 

data, and restricts the mixture genotypes to those observed for individuals in actual 

samples from separate baseline stocks rather than simulating them assuming Hardy- 

Weinberg and Linkage Equilibrium (HWLE). In addition, because our LTO method uses 

full multi-locus genotypes rather than simulated ones, the analysis can be accomplished 

by either Bayesian or maximum likelihood (ML) estimation methods, which we use here 

for a direct comparison of the two.

Our baseline development method may have introduced some bias into our 

current chum salmon baseline evaluation because we used a subset o f the same samples 

both to discover and high-grade SNP loci. Here we explore correction for bias with a 

Bayesian estimation method that shrinks observed allele frequencies in baseline stocks 

toward a better-anchored central value called the prior mean. The correction either
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reduces or eliminates possible bias introduced with small sample sizes and stocks with 

low divergence discussed by Anderson et al. (2008), as well as any high-grading bias that 

we may have introduced with our baseline development method.

Lastly, we address the problem of predicting the number of SNP loci required to 

achieve specified baseline performance. Many baseline development projects are 

concerned with conversion from microsatellite-based baselines to SNP-based baselines. 

Attempts to quantify the number of SNPs that provide equivalent discrimination to 

microsatellite loci are generally based on either equivalent numbers of alleles 

(Kalinowski 2002) or comparisons o f SNPs and microsatellites surveyed on the same 

individuals (Narum et al. 2008, Santure et al. 2010). Methods that compare individuals 

genotyped with both micro satellites and a sufficient number o f informative SNPs will 

likely provide the more accurate comparison. We describe how to use the information 

from a baseline to generate increasing numbers of simulated SNP loci. The additional 

simulated loci are then evaluated with LTO, and the resulting data are analyzed by 

logistic regression to extrapolate the number o f SNPs necessary to provide a given degree 

of accuracy. The simulated SNP loci are generated to realistically reproduce the increase 

in power from development of additional informative SNP loci by the same discovery 

methods used to develop the actual SNP loci, which in this case were the methods of 

Garvin and Gharrett (2007). This method can be adapted to any species for any number 

of loci and stocks.
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Generation o f  test baselines and stock mixtures

Samples from 74 chum salmon stocks that range across the Pacific Rim were 

grouped into 25 continuous reporting groups (Figure 2.1, Table 2.1) based on geography 

and management areas delineated by ADF&G, NMFSABL, and the Department of 

Fisheries and Oceans, Canada (DFO). The stocks were further consolidated into 14 

reporting groups determined by combining groups among which there were higher 

frequencies of misassignments. Each individual in the baseline was genotyped with 23 

SNPs, representing 12 loci, and nine microsatellite loci (Table 2.2). The SNP loci were 

developed to maximize divergence among stocks; we used a single population to 

represent a geographic reporting group for both SNP discovery and to high-grade loci 

with Eco-TILLING (Garvin and Gharrett 2007). Importantly, the representative 

population for the reporting group was not always the same for all SNPs discovered, and 

less than half of the sample was used for the discovery and high-grading step.

For our SNP discovery efforts, we amplified targeted DNA sequences with pools 

of DNA from a regional representative stock and chose potentially informative loci 

according to estimated allele frequencies. Those loci were then evaluated with our LTO 

method with all o f the baseline samples, which included the first portions of the sample 

used to choose the loci (the training set), the second portion o f the sample (the holdout 

set), and complete samples from other populations within the geographic region that the 

discovery sample represented (additional holdout samples).

Materials and Methods



The mitochondrial SNPs were validated from previous RFLP work (Garvin et al. 

2010) and other SNPs were reported in a method in which the phase of linked SNPs was 

determined empirically (Garvin and Gharrett 2010). This work is not meant as a report of 

the chum salmon baseline; rather, our interest here is to use this partial baseline to 

develop a method to evaluate genetic baselines. The full baseline will be published 

elsewhere.

We developed R code (www.R-project.org) to divide each baseline stock sample 

sequentially into ten equal parts (e.g. the first 10% were taken for Mixture 1, the second 

10% for Mixture 2, etc.). We believe that the order of individuals in the sample was 

approximately random, although random order was not imperative. The individuals that 

composed one part from each stock were combined into a test mixture that included a 

total o f 450 individuals, and the genetic information from the remaining nine parts was 

used as the baseline data in the mixture analyses performed with the programs BAYES 

(Pella and Masuda 2001) and SPAM (Debevec et al. 2000). Both the BAYES and 

SPAM analyses were repeated ten times; each time, a different one of the ten parts was 

used for the test mixture and the remaining nine parts served as the baseline. The LTO 

method guarantees that each individual is used in a test mixture once and in a test 

baseline nine times (except for ‘remainder’ individuals - below). The stock compositions 

of all test mixtures were identical.

Ideally all o f the baseline sample sizes should be equal for this analysis so that 

each of the stocks would contribute equally to the mixture, which makes estimation more 

challenging than for 100% mixtures. In our baseline, the sample sizes o f many stocks
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differed and many were not evenly divisible by ten (Table 2.1). Therefore, the 

composition of the mixture was nearly proportional to baseline sample sizes. In addition, 

when we divided our baseline stock samples into ten equal parts, some individuals 

remained. Those individuals were added to each of the ten test baselines and not 

included in any of the test mixtures; every test baseline included these ‘remainder’ 

individuals. The sample sizes for the stocks in the ten test baselines that were used to 

resolve the ten test mixtures are approximately 90% as large as the original baseline 

sample sizes; and because we expect performance to improve with baseline sample size 

(Beacham et al. 2011), our evaluation may be conservative and slightly pessimistic when 

compared to analyses that use the complete baseline. The term ‘test dataset’ will be used 

to denote one of the ten ‘test mixtures’ and the associated ‘test baseline’.

Measurements o f  diversity

Many of the loci that we evaluated in this work are potentially informative for 

MSA because they demonstrate large divergence estimates among baseline populations. 

Several measurements of genetic diversity are often reported in the literature. We used 

GDA (Lewis and Zaykin 2001) to calculate Fsr (Weir and Cockerham 1984) locus by 

locus and overall, expected heterozygosity (He), and <pST, the haploid equivalent o f Fsr 

(Excoffier et al. 1992) for the mitochondrial haplotype. Locus by locus and overall Dest , 

or Jost’s D (Jost 2008) were calculated with the ‘adegenet’ package (Jombart 2008) in 

the R environment.



Bias may have been introduced into our baseline evaluation from several sources. 

Some of our baseline sample sizes are small (Table 2.1) and many populations 

demonstrate weak genetic structure, which can inflate divergence estimates, i.e. error- 

enhanced divergence (Anderson et al. 2008). Bias could have been introduced from our 

baseline development method because the training samples from regional representatives 

that were used to discover the SNPs were also used together with the holdout samples to 

evaluate them, i.e. high-grading bias. Bayesian methods for MSA revise the observed 

allele frequencies from the baseline genotypes by shrinking them toward a baseline 

central value among stocks (Pella and Masuda 2001), which reduces both types o f bias. 

To demonstrate the shrinkage effects, we compared apparent diversity before and after 

the revision of the allele frequencies. Before revision, we calculated Gst values for each 

locus with the methods of Nei and Chesser (1983) with the observed allele frequencies 

from the entire baseline; and then for each o f the 10 baselines that were created during 

LTO. After revision, we performed the same calculations with the baseline posterior 

means of allele frequencies, computed as a weighted average of the original frequencies 

and the prior grand mean (Eq. 4 in Pella and Masuda 2001).

Baseline summary statistics

The results from BAYES and SPAM MSA for the ten test datasets provided a 

sample o f 10 stock composition estimates for the mixtures o f 74 baseline stocks. For 

BAYES, the posterior average for stock proportions from a mixture was the point 

estimate, and for SPAM, the conditional maximum likelihood estimate was chosen as the



point estimate. Regional compositions were obtained as sums over the point estimates for 

the individual stocks of the regional groups. Statistics computed from the experiment 

included the 10 point estimates of regional proportions and their means, variances, etc., 

as well as the observed bias and mean square errors from the true and known regional 

proportions.

An overall measure of bias and precision in combination is the mean squared 

error (MSE) o f estimates o f stock proportions, which is the average of squared errors 

from the true proportions under repeated sampling. The MSE also equals the sum of the 

squared bias plus the variance of a stock proportion estimator. An estimator with low 

MSE is desirable because this indicates low bias and low variance. An estimator with 

high MSE is undesirable and may have high bias, high variance, or both. Cochran (1963) 

noted that the effect of bias on accuracy is negligible if the absolute value of the bias is 

less than one-tenth of the standard deviation o f the estimate; and that even with an 

absolute value of bias of up to one-fifth of the standard deviation, confidence statements 

would be only modestly affected.

The mean squared error for geographic region g (MSEg ) was calculated as the 

average of squared regional errors among the ten test datasets and is related to the 

variance of estimated proportions ( s  ) and observed bias ( bg ) by the equation,

where p g f is the estimated proportion for region g from the ith test dataset, p g is the true 

and known proportion, p  is the average estimated proportion for region g  among the ten
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test datasets, bg = p g -  p g is the observed bias in the estimated proportion for region g, 

and sg is the sample variance of the estimated proportions for region g  among the ten test

datasets. Any of these statistics can be summed over regions for a summary value o f the 

entire experiment.

Interpretation of summary statistics for the ten stock composition estimates from 

the test datasets requires caution. The ten stock composition estimates are statistically 

dependent because the ten test baselines used to analyze the ten test mixture samples 

overlap. Any pair o f test baselines have in common approximately 89% o f their 

individuals (eight out of nine parts of the original baseline samples are shared and the 

tenth part is assigned to the test mixture sample). Furthermore, each part of an original 

baseline sample plays two roles, once in a test mixture and nine times in a test baseline, 

which also induces statistical dependence among the ten stock composition estimates. 

Therefore, although the precision for any of the ten stock composition estimates (vectors 

of 74 stock proportions) from the test datasets can be computed from bootstrap 

resampling by SPAM and the posterior probability distribution from BAYES, precision 

of their overall average is unknown. Moreover, precision o f the estimate o f the 

proportion of the individuals in the mixture from any stock that are correctly identified to 

their source for any dataset could be similarly evaluated by SPAM and BAYES.

However, precision of the overall average for proportion correctly identified across the 

10 datasets is also unknown because of the statistical dependence.
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BAYES LTO

The low information Dirichlet prior probability distribution for stock proportions 

(its weight during estimation counts as a single individual added to the mixture of 450 

individuals) was set to equal proportions among the entire 74 stocks, even though the 

stocks were not equally represented in the mixtures or baselines. Three independent 

MCMC chains were run for each test mixture with different starting values for stock 

proportions. Each chain was started with 95% of the mixture contributed by one of the 

three major geographic regions: Asia, Western Alaska, or NE Pacific. The remaining 5% 

was split equally between the other two regions. Within the regions, all stocks 

contributed equally to these starting values.

The three MCMC chains were run with the BAYES program to obtain 400 000 

samples o f the unknowns (stock proportions and baseline genetic parameters) from their 

posterior distribution, and every 40th sample was saved (i.e. the thinning interval was set 

to 40). The first half o f each chain was discarded as bum-in to remove dependence on 

starting values. The second halves of the three chains were combined to provide a total 

sample of 15 000 stock composition estimates from their posterior distribution. Gelman 

and Rubin (G & R) statistics were computed for each o f the 25 reporting groups to 

determine if  pooled samples from the three chains had converged to the posterior 

distribution for the regional composition (Gelman and Rubin 1992). In all analyses, the 

G & R statistics were less than 1.2, which is consistent with convergence of the chains.

For evaluation of the combined microsatellite and SNP baseline, we used the 

program BAYES to estimate the proportion contributed to the mixture by each of the 74

91



stocks. The regional composition was obtained as sums over the individual stocks o f the 

regions. The BAYES program outputs posterior probabilities that an individual in the 

mixture came from the baseline stocks (the probabilities sum to 1). An individual can be 

assigned to one of the baseline stocks based on the highest source probability, or the 

proportion of times that the individual was assigned to each stock in the baseline can be 

reported. We used the latter output for this analysis.

SPAMLTO

We used the program SPAM (under the Rannala-Mountain model of baseline 

allele frequency distributions) to resolve the same ten test mixture samples based on their 

corresponding test baseline samples (Debevec et al. 2000). The 74 stocks were grouped 

into the same 25 and 14 reporting groups as were used for the BAYES analysis (Table 

2.1).

SPAM simulation

Performance of the simulation mode in SPAM was also examined with this 

baseline. Although past practice has been to create 100% mixtures of simulated multi

locus genotypes, we wanted to compare mixtures of near-to-equal proportions of 

simulated multi-locus genotypes with corresponding mixtures of naturally-occurring 

multi-locus genotypes.
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Because SPAM uses the same EM algorithm to analyze the mixtures, the only 

difference between SPAM simulations and SPAM LTO is the creation of the mixtures. If 

reduced bias and variance are erroneously introduced during the simulation of the multi

locus genotypes in the mixtures, then we should see different results between SPAM 

LTO and SPAM simulation. Therefore, the same 10 test baselines were used in SPAM’s 

‘simulation’ mode with the same 25 reporting groups as was done for the BAYES LTO 

and SPAM LTO analyses (Table 2.1). Mixture proportions for the simulations were set 

equal to the same stock proportions created when the baselines and mixtures were created 

with the LTO method. A sample size o f 450 individuals was used to match our LTO 

method and the number o f resamplings was set to 1000.

Simulated SNP loci: how many SNPs would equal the discriminatory power o f  the 

combined SNP and microsatellite baseline

To generate “new” simulated SNP loci, we used the same previously-described

survey data on 74 chum salmon stocks that had 23 SNPs assayed per individual, which

represented 12 loci (11 nuclear and one mitochondrial) to determine the discriminatory
# \

power of our baseline. We created new simulated loci for the individuals of the baseline 

samples by randomly drawing, with replacement, additional loci from the 11 empirically 

genotyped nuclear SNP loci for which data were available. We did not include the 

mitochondrial data for the creation of the simulated loci because the genetic material in 

the mitochondrion of an individual behaves as a single locus so generation of more than 

one “simulated” mitochondrial locus would not be biologically meaningful.



The method of drawing the SNP genotypes at these simulated loci guarantees that 

the loci are independent o f the original loci and each other. A locus was randomly drawn 

from the 11 nuclear SNP loci and corresponding single-locus genotypes were generated 

for each original baseline individual by drawing a pair of alleles without replacement 

between the two draws (rather than sampling single-locus genotypes or full multi-locus 

genotypes) from the sample of its SNP baseline stock. Multi-locus SNP genotypes for 

individuals were generated by parallel independent sampling for additional simulated loci 

followed by concatenation of the outcomes. This strategy preserves the genetic 

information from our original, informative loci but adds the multi-locus variability that 

would be expected at more unlinked loci. The simulated SNP loci were appended to the 

original 11 SNP loci and the mitochondrial locus to create seven extended SNP sets with 

20, 30, 40, 50, 60, 70 and 80 SNP loci. For example, eight new SNP loci were created 

and added to the 11 original SNP loci and the mitochondrial locus to create 20 locus 

genotypes. For the 30 SNP locus genotypes, 18 new SNP loci were created rather than 

simply adding 10 new SNP loci to the 20 SNP loci o f the first round. After the simulated 

SNP genotypes for the original baseline individuals were generated for these extended 

SNP sets, the baseline samples were divided into ten equal test datasets and analyzed 

with BAYES LTO.

For this analysis, we calculated the proportion of the 450 individuals in the 

mixture that were correctly assigned to a reporting group of origin by the maximum a 

posteriori (MAP) rule (Pella and Masuda 2005). The MAP rule assigns an entire 

individual to the stock for which its posterior source probability is highest. The simple



MAP rule has the lowest misclassification rate if  costs of misclassification are equal for 

stocks, and provides a good benchmark for improvement. The assignment o f individuals 

to single stocks as whole units by the MAP rule contrasts with their fractional assignment 

to several stocks by the Expectation-Maximization (EM) algorithm (Dempster et al.

1977) used in conditional maximum likelihood estimation by the programs SPAM,

GMA, and ONCOR. The proportion of individuals correctly assigned to reporting group 

was calculated for each test mixture and the corresponding average o f the ten test 

mixtures from the LTO was then calculated. For instances in which identical posterior 

source probabilities were calculated for an individual belonging to either of two reporting 

groups, we randomly assigned the individual to one of the groups. The number of 

identical probabilities that occurred was inconsequential and ranged from zero to five for 

a single test mixture. These accounted for only 0.3% of the total assignments for the ten 

test mixtures, and was not related to the number of loci (data not shown).

To determine the number o f SNP loci needed to obtain a high degree of correct 

assignment, we used logistic regression to estimate the correct proportional assignment to 

reporting group ( 6 ) for a given number of SNPs (X) based on the empirical performance 

of the extended SNP sets for 20 to 80 SNPs. The log odds regression model relating 6 

and A" is:
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where 9 I is the probability of correct assignment o f a random individual to its reporting 

group, X t is the number of SNP loci (X\ = 20, X2 = 30,.., X-j = 80), /30 is the intercept
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parameter where 90 = —--------- , which is the probability of correct assignment when Xo =
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0 (i.e., no SNP loci are used), and /3, is the slope, which equals the increase in log odds,

( Q \
i.e., L n  , for a unit increase in the number of SNPs (Hosmer and Lemeshow 2000).

\1 - 6 )

Equivalently, the effect of a unit level increase in the number of SNPs is a multiplicative

increase in the odds of correct assignment by a factor of e^1 . We fit the model to the 

counts of correctly and incorrectly assigned individuals as related to the number o f SNPs 

by the maximum likelihood method. The fit was performed in each of the ten cross 

validation datasets with the ‘glm’ function in the R environment with the family set to 

‘binomial’, which provided estimates o f /30 and /3,. Finally, the estimates from those 

parameters were used to calculate the number o f SNPs necessary to achieve 90% correct 

assignment (X90%) and 95% correct assignment (X95%) for each of the ten datasets.
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Results

Evaluation o f  combined microsatellite and SNP baseline

We estimated the stock composition and standard errors for each of the ten test 

datasets with the programs BAYES and SPAM. Ideally, the highest resolution with the 

largest number of reporting groups is desired, but this goal must be balanced with 

acceptable accuracy and precision of the group estimates, which can decline if divergence 

is weak among some groups. Stock composition estimates for multiple reporting groups 

from several different statistical analyses can be confusing to portray graphically. The



focus of this study is to compare MSA methods as well as to evaluate a genetic baseline. 

Therefore in order to present the results clearly, we display them in two formats.

The first display presents the mean stock composition for each analysis method 

(BAYES LTO, SPAM LTO, and SPAM Simulations) and compares them to the true 

value, which we know because we created the mixtures (Figure 2.2a). This provides 

comparisons among methods. Our second displays show baseline performances for each 

of the methods separately (Figures 2.2b, 2.2c, and 2.2d) with the mean stock group 

composition estimates paired with their true values and a reference line provided for 

perfect accuracy as in Anderson (2008). This provides a simple visual standard to 

evaluate the bias (i.e. the diagonal lines represents “ 100%” accuracy). Mean stock 

composition estimates are provided for both 25- (Figure 2.2) and 14-reporting group 

analyses (Figure 2.3).

The stocks that composed the 14 reporting groups were identified from 

misassignments among those that were poorly resolved when 25 regions were used. The 

poorly resolved stocks were combined into larger regions. The coarser aggregations may 

reduce misassignments to true regions but may not correspond with biological or 

management goals and may cause some optimism in predicted performance. Some of the 

25 reporting groups show highly accurate levels of assignment (the filled circles are 

directly on the dotted line) whereas others do not (e.g. Lower Kuskokwim, which 

deviates from the perfect accuracy line; Figures 2.2b, 2.2c, 2.2d). The misassignments 

would likely be reduced by increasing the sample sizes for some stocks (Table 2.1), by
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including more informative loci that show divergence among those stocks, or both 

(Beacham et al. 2011).

Evaluation o f  the bias and accuracy o f  estimates with BAYES and SPAM

Accuracy can be evaluated by estimating bias, either as the persistent or 

systematic error in estimates of stock proportions under potential repeat baseline and 

mixture sampling or by the corresponding misclassification rates of mixture individuals 

from particular baseline stocks. Misclassification rates are clearer in detecting 

shortcomings of the assessment of the mixture composition. Any MSA method includes 

assigning, fractionally or whole, individuals to their sources. Compensating errors in 

assignments can be obscured when the stock proportions are computed, but are exposed 

with misclassification rates. Precision can be measured by the variability in estimates of 

stock proportions among potential repeat baseline and mixture samples. Bias and 

precision can be evaluated for the assignment to a particular stock, group of stocks, or the 

entire baseline.

We quantified the overall accuracy of each of the three methods (BAYES LTO, 

SPAM LTO, and SPAM Simulation) by calculating the absolute difference between the 

mean of the ten test estimates o f a regional proportion and the true value for each of the 

25 reporting groups (Figure 2.4). A few regions had comparatively high estimates o f bias 

in both the BAYES LTO and SPAM LTO analyses, but the SPAM LTO method had 

nearly 2-fold greater overall sum of absolute bias terms across the 25 reporting groups
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( )  than BAYES LTO. In addition, the bias in the Lower Kuskokwim reporting

group was much higher with SPAM LTO than BAYES LTO. We also included the size 

of each baseline sample because a positive association between bias and sample size was 

present in some reporting groups (e.g. Lower Yukon, Lower Kuskokwim, and Behm 

Canal), which was not anticipated and may be coincidental. As expected the simulated 

mixtures that were evaluated with SPAM consistently demonstrated low bias across 

regions when compared to the SPAM LTO method.

We evaluated the apparent precision of the three methods by calculating the 

standard deviation of the ten estimates for each of the 25 reporting groups (Figure 2.5). 

(Recall that the ten estimates for any method are not independent, which is why we say 

apparent precision). Many of the reporting groups that had high estimated bias also had 

high standard deviation with both the BAYES and SPAM LTO methods. However, 

BAYES LTO had higher standard deviation than SPAM LTO for the Lower Kuskokwim 

and Behm Canal reporting groups. The SPAM Simulation had very low standard 

deviation across all groups.

Finally, we combined the bias and variance estimates into the mean squared error 

(we report the square root o f this value to provide equivalent measures across accuracy 

and precision estimates) (Figure 2.6). The BAYES and SPAM LTO methods were 

similar and variable among groupings; whereas the overly-optimistic SPAM Simulation 

showed a consistently low mean error over groupings. For an overall comparison, we 

summed the mean error over all regions for both 25 and 14 reporting groups (Table 2.3). 

The sum was lower with SPAM LTO for the 25 regional groups and lower with BAYES
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LTO for the 14 regional groups. The SPAM Simulation showed the smallest sum for 

both 25 and 14 regional groups. Finally, the sum was smaller for all three methods when 

the 25 groups are reduced to 14.

Evaluation o f  potential bias in baseline

Bias could have been introduced into our evaluation because our baseline sample 

sizes were reduced by up to 10% when we removed individuals to create mixtures. The 

smaller baseline samples add uncertainty to the MSA, which would be compensated by 

opposing error-enhanced divergence. Bias could also have been introduced during our 

baseline development because we used some o f the same samples to choose SNPs and to 

evaluate them (high-grading bias), although in most cases the overlap was minimal and 

our large sample sizes for the ascertainment panels likely offset some bias. Still, in order 

to determine if divergence estimates were artificially inflated, we compared locus-by- 

locus G s t  values for the original baseline with corresponding mean G s t  values computed 

for the ten BAYES LTO baselines (Figure 2 .7 ). For some loci the G s t  values were 

indeed inflated, which suggests that bias was introduced from the smaller sample sizes 

that resulted from reduction of the baseline by 10% to create the mixtures. We compared 

the locus-by-locus G st values for the original baseline and the ten BAYES LTO baselines 

with allele frequencies that were shrunk toward their prior means from Eq. 4 in Pella and 

Masuda (2 0 0 1 ) (Figure 2 .7 ). For all diploid loci, the G st values that were calculated with 

the shrunken allele frequencies were smaller than the values calculated with the observed 

allele frequencies. By inference, the reduction in apparent divergence due to the
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shrinkage computations in the Bayesian method corrects to some degree for the 

aforementioned bias.

How many SNP loci are needed to exceed or equal the combined SNP and microsatellite 

baseline?

We calculated the mean proportion of individuals correctly assigned by the MAP 

rule to the 25 reporting groups from the ten test data sets. This was done for 20, 30, 40, 

50, 60, 70, and 80 extended SNP locus genotypes (‘Empirical Data’, Figure 2.8) and for 

the original combined microsatellite and SNP baseline (horizontal dashed line, Figure 

2.8). A reference line is provided for a hypothetical 90% correct assignment rule for all 

individuals in the baseline (horizontal solid line). Between 50 and 60 informative SNP 

loci appear necessary to equal the combined SNP and microsatellite baseline. The mean 

of the proportion of correctly assigned individuals may be even higher with coarser scale 

o f geographic regions.

The empirical relationship between the proportion correctly assigned and the 

number of SNP loci, however, did not appear to be asymptotic in the range we reported 

but predicted further improvement if even more SNP loci were used for MSA. Therefore, 

we fit an asymptotic curve with logistic regression to the empirical data for each of the 

ten extended datasets with 20, 30, 40, 50, 60, 70, and 80 SNP loci. The mean value for 

the slope and intercept parameters from these ten fitted models was used to estimate the 

relationship between the number of SNPs and the proportion of correctly assigned 

individuals (Figure 2.8). Because a correct assignment accuracy of 90% or greater is
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routinely sought for MSA, we calculated the number o f SNP loci needed to achieve 90% 

accuracy to region from the fitted curve of each extended dataset, which averaged 125 

SNPs with a standard error of +/- 5.4. According to our model, 95% assignment accuracy 

could be achieved with 158 SNPs with a standard error of +/- 11.4 SNPs with this set of 

markers and baseline. However, this number is the mean percent correct assignment over 

all reporting groups. Specific reporting groups may require more or fewer SNPs 

depending on the divergence among those stocks.

Discussion

Mixed stock analysis is an important tool for the conservation and management of 

numerous species: it uses information from DNA variation simply, can be applied to any 

organism, and provides a means with which to identify the origin of individuals sampled 

from mixtures with non-lethal sampling. Technological advances will likely continue to 

provide a growing wealth o f genetic data as well as the ability to generate millions of 

genotypes rapidly and inexpensively (Ragoussis 2009, Larson-Cook et al. 2011). As a 

result, MSA will likely be increasingly used to manage and monitor an ever-wider array 

of species and stocks. Furthermore, the new capacity for economical, large-scale 

laboratory determinations o f individual genotypes will enable an increase of both 

baseline and mixture samples, which should improve the accuracy and precision of MSA 

and provide more data to biologists. The numbers o f individuals in baselines and 

mixtures are more likely to be limited by the cost to sample them, especially from source 

stocks but also from catches, rather than laboratory costs of genotyping.
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The LTO method reduces or eliminates the optimism in assessments o f baselines 

for MSA that are obtained with the simulation methods of GMA and SPAM. ONCOR is 

the primary alternative for more objective assessments of baselines, but it uses only 

diploid data. The LTO method can incorporate diploid data as well as haploid and 

phenotypic data, both of which can be informative. When the baseline samples are 

composed of the multi-locus genotypes of individuals from the source stocks, the LTO 

method provides several additional advantages to the alternative methods and computer 

programs for baseline assessment.

First, the LTO method uses the actual multi-locus genotypes from the available 

baseline samples to create both the test mixtures and their associated test baselines. 

Alternative methods commonly simulate test mixture individuals from allele frequencies 

in the actual baseline samples. The simulators usually include the Hardy-Weinberg and 

linkage equilibrium (HWLE) assumptions for the separate stocks, which could cause 

some distrust in the assessments when these conditions are suspect. Although the 

Bayesian and maximum likelihood estimation methods that we used in LTO include the 

HWLE assumptions, their validity is not necessary to evaluate the performance of 

baselines if  the same baseline samples and estimation methods will be used in the future 

analyses. Furthermore, the use of full multi-locus genotypes makes double cross

validation with either STH or THL reasonably easy to perform if the available baseline 

samples are divided into training and holdout sets. Sorting the training and holdout sets 

among the ten baseline and mixture datasets is simple and practical when done with a 

computer. The training samples used to explore for SNPs can easily be kept from
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mixtures so that the mixtures can be composed of only holdout individuals. The training 

and holdout sets can be combined in the test baselines so that the test baselines and 

mixtures never share individuals. Although we did not completely follow this recipe, we 

encourage its use in LTO for baseline evaluation in order to remove any potential for 

overly-optimistic assessments.

Second, each individual of the actual baseline occurs at most in one test mixture 

(except for the remainder individuals). Therefore, the assignments o f baseline individuals 

are known, which can provide useful information that is unavailable with simulation 

methods. For example, an individual may be misassigned due to missing data from 

multiple loci, which would be easily identified by locating that individual in the database. 

Also, the destination of misassigned individuals may identify useful reporting groups that 

may not have been evident from simple geographic or management analyses or could 

reveal migration among stocks.

Third, and last, the LTO method can use Bayesian methods as well as maximum 

likelihood methods for the evaluation of mixture composition and assignment of 

individuals to their source. The Bayesian computations recognize the uncertainty in the 

allele frequencies at the loci and their potential to inflate the divergence among stocks. 

The conditional maximum likelihood method treats the allele frequencies as known and 

equal to the observed values in the baseline and thereby treats the divergence among 

stocks as known. Unlike maximum likelihood methods that use bootstrap confidence 

intervals to describe uncertainty in the mixture composition, Bayesian methods can easily 

provide posterior probability intervals for all the unknowns underlying the MSA.
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Bayesian probability statements about unknowns are simple and easily understood, 

whereas frequentist confidence intervals are complex and can easily be misinterpreted. In 

addition, the methods in the program BAYES use allele frequency estimates for the 

baseline stocks that are shrunk toward the overall mean, which reduces bias that may 

result from small sample sizes, error-enhanced divergence among stocks, and bias from 

high-grading SNP loci. Further, this bias also may be reduced when stocks are 

aggregated into regional groups, which was discussed previously (Anderson et al. 2008). 

The Bayesian method developed by Pella and Masuda (2001) also uses information from 

the mixture genotypes to update the baseline during the analysis, whereas standard 

conditional maximum likelihood methods do not. The reason we could use Bayesian 

methods with their high computational cost is that only one or two repeat partitions o f the 

baseline samples were necessary. Although we anticipate that a few repeat partitions will 

satisfy most user’s needs for baseline evaluations, future experiences will be telling. If 

many repeat partitions were deemed necessary, the LTO evaluation would have to be 

limited to maximum likelihood estimation methods for the present.

In addition to genetic data, spatial, temporal, morphometric, and phenotypic data 

for individuals can be used to increase the ability to distinguish among stock sources 

(Barbee and Swearer 2007, Gomez-Diaz and Gonzales-Solis 2007, Nolte and Sheets 

2005, Reich et al. 2008). The standard mathematical mixture model for MSA with 

genetic data used in BAYES, SPAM, and ONCOR does not include components for 

geographic information corresponding to the individuals in the mixture. For example, if 

chum salmon stocks differ in their geographical and temporal distributions in the Bering



Sea, the addition of the appropriate components to the mixture model like Reich and 

Bondell (2011) would better use this potentially powerful information. Enhancement in 

genetic data collection and mathematical methods for MSA has become critical as more 

users exploit limited natural resources and as conservation concerns arise with global 

climate change, ocean acidification, and risk o f extirpation for many species (Bamosky et 

al. 2011).

The main limitations of LTO are that the number o f replicate mixture samples of a 

specified stock composition is ten rather than much greater numbers available with 

simulations with SPAM, GMA, or ONCOR; and currently the method is less automated 

and requires more effort on the researchers’ part, primarily to format the data, at task that 

should eventually be eliminated with additional computer code. The limited number of 

replicates allows sampling variation in performance statistics that could be reduced or 

eliminated by a larger number of replicates but also makes the amount of computation 

tractable. Theoretically, the number of replicates could be made unlimited by randomly 

partitioning the baseline samples into ten equal parts again and again, followed by the 

LTO computations. However, the amount o f computation required, especially for 

BAYES, makes this approach impractical for now, even though it may seem worthwhile. 

In addition, the balance in our LTO method would be lost; instead of each individual 

occurring once in a test mixture sample and nine times in test baselines, its frequencies in 

test mixtures and baselines would be random.

To reduce the human effort we chose to evaluate the baseline with mixtures that 

included all baseline stocks rather than 100% mixtures, and considered a single mixture
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sample size of 450 individuals rather than mixtures with ranges of possible sample sizes 

to achieve research goals. Satisfactory performance with the mixture composition that we 

examined implies satisfactory performance would occur with 100% mixtures. The sample 

size of the mixture is sufficiently large to ensure that the stock composition of any future 

sample of such size would be near that o f the actual mixture regardless o f its unknown 

value (Thompson 1992, Pella and Geiger 2009), and most o f the remaining uncertainty in 

estimates of the composition of the stock mixture would be due to the limited 

discriminatory power of the genetic information.

An evaluation o f the accuracy and precision of BAYES and SPAM revealed that 

the BAYES method had lower estimated bias but higher standard deviation than SPAM 

at geographical regions for which stocks are difficult to assign such as those from coastal 

western Alaska. Chum salmon from this geographic region are difficult to assign 

correctly but are of special interest for management and conservation because they are 

important for subsistence and commercial fisheries by rural Alaskan communities (Wolfe 

and Spaeder 2009). The inability to accurately assign individuals to this area may reflect 

their recent colonization of the area after the Last Glacial Maximum (Seeb and Crane 

1999, Wilmot et al. 1994, chapter 3 of this thesis), high levels of gene flow (Olsen et al. 

2010), or both. As was mentioned previously, if bias is less than one-fifth o f the 

variance, confidence levels should be only modestly affected, which was the case for nine 

of the 25 reporting groups with BAYES LTO, but only three of the reporting groups with 

SPAM LTO. However, for either method, the amount of bias was at most l%-2% and of 

limited practical concern for most applications, although for stocks o f regions for which
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source identification is especially challenging, such as the coastal western Alaskan 

stocks, this may not apply.

The development o f genetic baselines can be costly in both time arid resources if 

it is open-ended; that is, the number of markers needed to provide accurate composition 

estimates of mixtures or assignments o f individuals is unknown prior to baseline 

development. Open-ended collection of genetic baselines has been the standard practice, 

and the number o f SNPs needed has depended on the target species o f interest, the 

amount o f divergence among stocks, and the stocks that were included in the analysis 

(Smith et al. 2005, Elfstrom et al. 2006, Campbell and Narum 2008, Griffiths et al 2010, 

Campbell et al. 2012). We provide a method to estimate the number o f genetic markers 

that will be needed for MSA given an initial small set o f informative markers. We 

showed that, for chum salmon, about 60 informative SNPs would be equivalent to the 

nine microsatellite and 12 informative SNP loci in the baseline. Furthermore, a logistic 

regression analysis predicted that a baseline with about 125 informative SNPs would be 

needed to assign stocks with more than 90% accuracy to a group. Our method allows 

managers and scientists to place a direct cost on the accuracy of this chum salmon genetic 

baseline, and provides an estimate for SNP development in similar species.
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Figure 2.1. Area of study. Geographical sampling locations (dots) of the 74 stocks used for this study and the 25 regions 
(numbers) used for MSA. For group nine, two stocks that were geographically distant were genetically similar and were 
clustered as a single group.
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Figure 2.2a. Mean stock composition estimates for 25 reporting groups. Values were estimated by both BAYES and SPAM, 
and their standard errors (projecting whiskers above the bars) were calculated from the ten test datasets created from the 
combined microsatellite and SNP baseline. Filled bars indicate estimated reporting group proportions; and the unfilled bar for 
each region shows the true proportion of the mixtures created. The black bar is the average estimate of the ten test datasets 
computed with BAYES; the gray bar is the average estimate of the ten test datasets computed with SPAM; and the hatched bar 
is the average estimate computed from ten test datasets of SPAM Simulations. The gray continuous line is associated with the 
secondary y-axis and gives the sample size for each group.
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Figure 2.3b. BAYES LTO for 14 reporting groups. The mean stock composition estimates of mixtures for 14 reporting groups 
versus the true composition of the mixture with BAYES LTO. The black diagonal line represents the relationship between a 
perfectly accurate estimate and the true value. Each filled circle represents the average proportion for one of the 14 reporting 
groups and the standard error of the estimated proportions is indicated by the whiskers for each circle. Names of groups whose 
averages included high bias for at least one of the ten mixture samples are indicated with arrows.
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Stocks used in the study and their sources3. The 14- and 25- regional groupings and the baseline sample sizes are provided.

Table 2.1

tock # Stock Name Date Lat Long 25 Group # Group Name 14 Group# Sample Size Source
1 Tsugarishi 1991 39.20 141.80 1 Honshu 1 40 KITU
2 Katagishi 1991 39.60 142.00 40 KITU
3 Reidovaya 2006 45.38 147.98 2 Kurils 2 30 LGG
4 Sopochnoe Lake 2004 45.32 148.41 48 LGG
5 Naiba 1995/1996 47.45 142.76 3 S. Sakhalin 3 47 RAS
6 Okhotsk 2003 46.87 143.17 23 RAS
7 Taranai 2003 46.63 142.43 25 LGG
8 Udararnitsa 1994 46.80 143.30 48 RAS
9 Tym 1995/2003 51.26 142.71 4 N. Sakhalin 71 RAS/ABL
10 Heilong 1994 48.38 134.38 5 Amur 4 44 X.Luan
11 Amur Early 2003 52.93 141.17 45 RAS
12 Amur Late 2003 52.93 141.17 27 RAS
13 Anuyi 2002 49.32 136.47 6 Primore 46 RAS
14 Barabashevka 1994/1995 43.11 131.64 50 RAS
15 Narva 1995/2005 42.99 131.49 67 RAS
16 Ryazakanovka 1994/1995 43.16 132.11 63 RAS
17 Suifen 1994 43.34 131.82 20 RAS
18 Ola 1999 59.60 151.27 7 Magadan 43 RAS
19 Taui 1999 59.39 149.14 37 RAS
20 Hailula 2003 58.20 162.03 8 Kamchatka 5 47 RAS
21 Ossoro 1996 59.18 163.15 48 TNRO
22 Hairsova 1990/1993 57.09 156.52 96 RAS
23 Kol 2003 53.81 155.94 47 RAS
24 Utka 2002 53.15 156.08 35 RAS
25 Oclan 1993 62.77 164.33 9 Anadyr 6 73 RAS
26 Anadyr 1991 64.90 176.22 111 RAS
27 Kanchalon 1991 65.12 176.53 79 ABL
33 Salcha 1994 64.47 -146.98 10 Middle Yukon 7 96 ADF&G
34 Toklat 1994 64.45 -150.31 96 ADF&G
28 FishBranch 1992 66.45 -138.58 11 Upper Yukon 8 96 ADF&G
29 Kluane 1992 61.88 -139.72 96 USFWS
30 Sheenjek 1988/1989 66.74 -144.57 96 ADF&G
31 Teslin 1992 61.57 -134.90 96 USFWS
32 Kobuk 2000 66.92 -160.81 12 Lower Yukon 7 96 ADF&G
35 Agiapuk 65.17 -165.68 96 DFO
36 Pilgrim 2004 65.16 -165.22 96 KWRK
37 Snake 2004 64.50 -165.41 96 KWRK



Table 2.1 continued
itock # Stock Name Date Lat Long 25 Group # Group Name 14 G roup# Sample Size Source

38 Pikmitalik 2004 63.27 -162.60 7 96 KWRK
39 Atchulingak 1989 61.96 -162.83 96 USFWS
40 Anvik 1989 62.68 -160.20 75 USFWS
41 Kaltag 1992 64.33 -158.72 48 USFWS
42 Nulato 2003 64.71 -158.14 48 USFWS
43 Kanektok 1989 59.75 -161.93 13 Lower Kuskokwim 75 ADF&G
44 Kasigluk 1990 60.85 -161.23 73 ADF&G
45 Kwethluk 1989 60.81 -161.45 77 ADF&G
46 Goodnews 1989 59.13 -161.48 96 ADF&G
47 Nushagak 1988 58.80 -158.63 75 ADF&G
48 Bigcreek 1988/2000 58.29 -157.53 14 S. Bristol Bay 96 ADF&G
49 Gertrude 1987/1999 58.17 -156.21 96 ADF&G
50 Meshik 1989 56.81 -158.66 75 ADF&G
51 Frosty 2000 55.07 -162.81 15 Frosty 9 96 ADF&G
52 Kizyuak 1989 57.82 -152.80 16 Kodiak 10 48 ADF&G
53 LittleSu 1990 61.25 -150.29 17 Cook Inlet 11 39 ABL
54 Olsen 1992/1997 60.76 -146.17 18 Prince William Sour 12 96 ABL
55 Alsek 2000 59.13 -138.62 19 Yakutat 13 96 ABL
56 EAlsek 2006 59.11 -138.52 48 UAFSFOS
57 Green's Creek 1995 58.10 -134.76 20 Northern SE Alaska 96 ABL
58 Herman Creek 1987/1990/2008 59.42 -136.10 96 ABL
59 Taku 2000 58.43 -133.98 45 ABL
60 Blossom 1986 55.40 -130.61 21 Behm Canal 48 ABL
61 Marten 1986 55.16 -130.53 48 ABL
62 Portage Creek 1986/1988 55.77 -131.04 96 ABL
63 Wilson 1986 55.40 -130.61 40 ABL
64 Herman River 1986 55.99 -131.27 40 ABL
65 Karta 1986 55.56 -132.57 22 Prince of Wales Island 48 ABL
66 Old Tom Creek 1986/1988 55.40 -132.40 96 ABL
67 Bag Harbor 1989 52.35 -131.36 23 QCI 48 ABL
68 Tasu 1989 52.87 -132.08 48 ABL
69 Klownick 1989 52.38 -126.75 24 N. British Columbia 48 ABL
70 Neekas 1989 52.47 -128.17 48 ABL
71 Grant 1998 48.27 -122.02 25 Puget Sound 14 96 WDFG
72 Kennedy 1996 47.10 -123.09 96 WDFG
73 Johns 2003 47.24 -123.04 96 WDFG
74 Quilcene 1997 47.80 -122.86 40 ABL

3 ADF&G -  Alaska Department of Fish & Game, D FO - Department of Fisheries Oceans, Canada, KWRK -  Kawerek, LGG -  Laboratory of Genetic 
Identification, Institute of General Genetics, NMFSABL -  National Marine Fisheries Service Auke Bay Labs, TNRO -  Kamchatka TINRO, UAF -  
University of Alaska Fairbanks, USFWS -  U.S. Fish and Wildlife Service, WDF&W -  Washington Department of Fish and Wildlife.
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Measures o f genetic diversity. Values are given for the 12 SNP and nine microsatellite 
loci analyzed for all individuals in the 74 chum salmon stocks in this work. Fsr is Weir 
and Cockerham’s 0  (Weir and Cockerham 1984), D est is Jost’s D  (Jost 2008), and H e is 
the expected heterozygosity.

Table 2.2

Locus # SNPs Type E ST Dest He
VT 1 SNP 0.086 0.101 0.491
IN 2 SNP 0.053 0.015 0.228
SP 1 SNP 0.076 0.074 0.484
RH 1 SNP 0.081 0.012 0.129
VR 3 SNP 0.156 0.308 0.730
IS 2 SNP 0.081 0.120 0.622
ER 1 SNP 0.388 0.225 0.435
PL 1 SNP 0.096 0.034 0.276
RF 1 SNP 0.218 0.071 0.303
CL 1 SNP 0.034 0.020 0.408
PER 1 SNP 0.040 0.004 0.082
MT 8 SNP 0.345 N/A N/A
One104 N/A mSat 0.027 0.346 0.951
One102 N/A mSat 0.011 0.127 0.922
Otsg68 N/A mSat 0.019 0.298 0.956
Ssa419 N/A mSat 0.028 0.157 0.872
Onel 14 N/A mSat 0.017 0.178 0.933
OmylOll N/A mSat 0.026 0.272 0.937
O nel01 N/A mSat 0.060 0.384 0.908
OkilOO N/A mSat 0.044 0.313 0.905
OtslOS N/A mSat 0,022 0.378 0.965
mSats Only 0.028 0.273 0.928
SNPs only 0.157 0.089 0.399
Overall 0.073 0.172 0.627



Sum of mean errorl/2 for three methods; BAYES LTO, SPAM LTO and SPAM simulation.

Table 2.3

Regions BAYES LTO SPAM LTO SPAM Sim

25 0.314 0.279 0.085

14 0.157 0.174 0.044

K>-4
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Abstract

Variability of western Alaskan chum salmon runs and some recent declines have 

prompted efforts to understand the causes, which for many populations, requires 

knowledge of the origins o f samples caught at sea. However, regional assignments based 

on genotypic data are difficult because the genetic structure among populations from 

much of western Alaska is weak. The weak structure has been attributed to high levels of 

present-day gene flow among populations that may be thousands of kilometers apart. We 

used genotypes from microsatellite and single nucleotide polymorphism loci to 

investigate alternative explanations for the current genetic structure o f chum salmon 

populations from western Alaska. We also estimated current levels of gene flow among 

Kuskokwim River populations. Our results suggest that the weak genetic structure is best 

explained by physical connections that occurred after the Holocene Maximum among the 

Yukon, Kuskokwim, and Nushagak drainages, which allowed gene flow to occur among 

now distant populations.
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Introduction

Historical abundances of Pacific salmon that spawn in coastal western Alaskan drainages 

have been highly variable (Linderman & Bergstrom 2009; Wolfe & Spaeder 2009). 

Abrupt, widespread declines have stimulated efforts to understand the factors underlying 

the reductions, even though some populations have recently rebounded. Potential causes 

for variable abundances include climate perturbations in both marine and fresh water 

ecosystems and incidental bycatch by the Bering Sea groundfish and western Alaskan 

salmon fisheries (Beamish & Bouillon 1993; Kruse 1998; Seeb et al. 2004; Gisclair 

2009). Because several o f the potential causes for declines include processes in the 

marine environment, it is essential that the origin of fish that are sampled at sea be 

ascertained.

The primary approach used to assign individuals to their population of origin is 

mixed stock analysis (MSA) (Fournier et al. 1984), which provides a probabilistic 

assessment of the origin of the samples by comparing their genotypes to a reference 

baseline of genotypes. Chum salmon (Oncorhynchus keta), in general, have lower levels 

of divergence compared to other Pacific salmon species such as Chinook (O. 

tshawytscha), sockeye (O. nerka), coho (O. kisutch), and steelhead (O. mykiss) ( Quinn 

2005; Olsen et al. 2010; Seeb et al. 2011; Templin et al. 2011). The summer-run chum 

salmon populations from the large geographic area that includes Kotzebue Sound, Norton 

Sound, the Lower Yukon River, the Kuskokwim River, and Bristol Bay (Figure 3.1a) 

show much lower divergence than populations from the remainder of the chum salmon 

range (Beacham et al. 2009a; Seeb et al. 2011), possibly because of their abundance and



recent colonization of western Alaska after the Last Glacial Maximum (LGM) (Wilmot et 

al. 1994). A subset o f these populations that we will call ‘coastal southwestern Alaskan’ 

demonstrate genetic divergence that is 5-10 times lower than the rest o f western Alaska 

and has created difficulties for analyses that rely on MSA (Beacham et al. 2009b; Seeb et 

al. 2011). These drainages span a geographic area o f approximately 350 000 km2, which 

includes southern Norton Sound, the Lower Yukon River, the Kuskokwim River, and 

northern Bristol Bay (roughly the size o f Washington, Oregon, and Idaho combined) and 

each area has very different conservation and management goals (Wolfe & Spaeder

2009).

The weak genetic structure of these broadly-distributed populations could result 

from several causes. Balancing selection (convergent evolution) could produce the 

genetic similarity among populations, but is unlikely because the size o f the geographic 

region is large and includes several different ecosystems (Olsen et al. 2010); so one 

would not expect allele frequencies to be maintained among populations that are located 

in different environmental regimes. Moreover, one would expect only a few loci to be 

affected, but large numbers o f nuclear markers indicate that the structure o f these 

populations is weak (Seeb et al. 2004; Beacham et al. 2009b; Seeb et al. 2011). It is 

possible that present-day gene flow among coastal southwestern Alaskan populations has 

maintained the reduced genetic divergence ( Utter et al. 2009; Olsen et al. 2010), 

although some of the populations that have the smallest divergence are thousands of 

kilometers apart. Divergent populations of Pacific salmon generally demonstrate an 

isolation-by-distance (IBD) pattern “as the fish swims” rather than “as the crow flies”.



These dispersal patterns are consistent with the concept that populations that are in close 

proximity show less divergence than more distant ones because proximal populations 

exchange more migrants. Therefore, weak genetic structure would be observed among 

geographically distant populations only if  substantial gene flow occurred serially between 

neighboring populations for many generations or if long distance dispersals were 

common.

One untested hypothesis is that presently observed patterns o f genetic divergence 

reflect physical connections among coastal southwestern Alaskan river systems that 

allowed gene flow to erode genetic divergence, but those connections no longer exist. 

Some of these physical connections could have resulted in populations that are currently 

thousands of kilometers apart to being within tens o f kilometers of each other and would 

have provided short corridors for gene flow. Geological data indicate that connections 

occurred between the Lower Yukon and Kuskokwim rivers at least twice (Creager & 

McManus 1967; Shepard & Wanless 1971). The first was near the village of Kalskag at 

the existing Yukon-Kuskokwim portage (Dougan 2010); and the second was through 

what is now the Johnson River, which empties into the Lower Kuskokwim River 

downstream from Bethel (Figure 3.1a, 3.1b). The dates of these connections are 

unknown, but when the Yukon and Kuskokwim Rivers were connected they emptied 

through the Kuskokwim River embayment and gene flow would have been likely among 

populations on the lower stretches o f these two rivers.

Historical connections between the Nushagak and the Kuskokwim rivers are also 

likely. From bathymetry data and known rates of sea level increases (Fairbanks 1989), it

141



has been deduced that approximately 11 500 years ago, the lower reaches of these 

drainages joined near what is now Port Moller and then emptied into the Bering Sea at 

the present location of the Bering Canyon on the shelf break (Hopkins 1967) (Figure 

3.1a). In addition, the Mulchatna River (a tributary of the Nushagak River) may have 

established connections to the Stony River (a tributary of the Middle Kuskokwim River) 

near Telequana Lake (Figure 3.1c), but the timing of this event has not been established 

(Maddren 1910). In this study, we used data for western Alaskan chum salmon 

populations that were genotyped with 58 SNPs (Garvin & Gharrett 2007, 2010; Garvin et 

al. 2010; Seeb et al. 2011), and 12 microsatellites (Kondzela et al. In Preparation) to ask 

if present-day or historical connections among populations o f coastal southwestern 

Alaskan chum salmon better explain their present day weak genetic divergence.
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Populations and genotype data

We used data from populations o f western Alaskan chum salmon that were genotyped at 

single nucleotide polymorphism (SNPs) (Garvin & Gharrett 2007, 2010; Garvin et al.

2010) and microsatellite loci (Kondzela et al. In Preparation) (Table 3.1, Table 3.2).

Thirty-five populations from western Alaska were available for analyses, but 

complete suites of data were not available for all populations. Therefore, we compiled 

one data set that consisted of 25 populations genotyped at 12 microsatellite and 58 SNP 

loci [25P70L], which represented the largest geographic range for chum salmon in 

western Alaska. We also compiled a second data set that focused on the coastal 

southwestern geographic region and was comprised of 21 populations genotyped at 50 

SNP loci [21P50L]. Populations were divided into eight regional groups designated as: A 

-  Kotzebue Sound, B -  Norton Sound, C- Lower Yukon River, D -  Middle Yukon River, 

E -  Lower Kuskokwim River, F -  Middle Kuskokwim River, G -  Upper Kuskokwim 

River, and H -  Bristol Bay (Figure 3.1a, Table 3.1).

Hierarchical G-test

Genetic divergence within and among regional groups of chum salmon populations was 

tested with log likelihood ratios (G-tests) that were calculated in Excel™ (McDonald

2009). The advantage of the G-test is that tests can be summed across loci and different 

regional groups to identify significance at hierarchical levels. It has been demonstrated

Materials and Methods



with simulations that the G-test can have high type I error but high power (Ryman et al. 

2006), which is largely because the G-statistic does not approximate a chi-square 

distribution for low numbers of expected alleles. Therefore, for the multi-allelic 

microsatellite loci, some alleles were combined. We determined the expected number of 

alleles at each locus for the smallest sample. If that was less than four, the alleles were 

binned with the next largest sized one. A G-statistic was calculated for each locus and 

significance was determined by summing over all loci for each regional group. Regional 

groups were determined based on the geographical locations from which the samples 

were taken and based on the present-day courses of the river systems (Figure 3.1). An 

approximate F-test can be constructed that can compare the extent o f divergence among 

and within populations (Hawkins et al. 2002):

Gqmong
p    dfam ong

dfam ongdfwithin ~  G w ith in

am on g

where df=  the degrees of freedom.

Measures o f  divergence

We used the program GDA (Lewis & Zaykin 2001) to estimate locus-by-locus 

values and values over all loci for allele numbers, expected and observed 

heterozygosities, 0 for nuclear loci (analagous to Fsf, Weir & Cockerham 1984) and d>5T 

for the mitochondrial variants (Excoffier et al. 1992). Locus-by-locus and overall Jost’s 

Dest was calculated with the function ‘D Jo sf , which is available in the ‘adegenet’ 

package (Jombart 2008) in the R environment. For comparative purposes, we also
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calculated 0 for each locus with data from only the coastal southwestern populations

( ^ c s w ) -

Principal components analysis (PCA)

A PCA was performed on the allele frequency data from the [25P70L] data; all allele 

frequencies were arcsine-square root transformed prior to the analysis in SYSTAT (Sokal 

& Rohlf 1994). Microsatellite alleles were binned as described for the G-test. The 

loadings for the first three components were used to plot the PCA.

Trees

A neighbor-joining tree was constructed observed allele frequency data with 

Cavalli-Sforza and Edwards (1967) chord distances. A consensus tree was produced 

from 1000 neighbor joining trees generated by bootstrapping loci and combining them 

with the CONSENSUS package in the program PHYLIP (Felsensein 2004). The trees 

were drawn with the software Dendroscope (Huson et al. 2007).

Outlier analysis

We used the program Arlequin 3.5 (Excoffier & Lischer 2010) to identify genetic 

markers that showed larger than expected F s t  values as compared to a null distribution 

based on expected heterozygosity. Previous studies that simulated loci under selection



among populations showed that Arlequin 3.5 can have high type I and type II errors 

(Narum & Hess 2011); however, the two alternative methods that identify outlier loci 

(FDIST2 and BAYESCAN (Beaumont & Nichols 1996; Foil & Gaggiotti 2008)) do not 

take into account the hierarchical structure o f populations, which clearly exists for the 

populations in this study. For this analysis, we included data from 70 loci and all samples 

from coastal southwestern Alaska because they showed the weakest genetic structure 

with both the neighbor joining trees and the PC A.

Data from the Salmon and Tatlawiksuk rivers were excluded because information 

was unavailable for all 70 loci, and fall-run Upper Kuskokwim fish (Gilk et al. 2009) 

were excluded because gene flow is unlikely between those populations and summer-run 

fish because they have different spawning times. Fish from the Middle Yukon 

populations also spawn later than summer-run fish so they were excluded as well. 

However, the samples from the Takotna River from the Upper Kuskokwim drainage were 

included in the analysis because they clustered with the samples from the Middle 

Kuskokwim River and they are summer-run fish. We tested for outliers with data from 

(1) only SNPs, (2) only microsatellites, and (3) both marker types combined.

Isolation by distance

Because the isolation-by-distance (IBD) analysis assumes that drift rather than 

diversifying selection is responsible for divergence among populations, we eliminated 

loci that might potentially be under positive directional selection by removing outlier loci
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from the dataset prior to the IBD analysis. Pairwise Fsr values were then calculated 

among populations with the software program GDA.

We used the program GENEPOP (Rousset 2008) to test for IBD among and 

within summer-run chum populations from the Yukon, Kuskokwim, and Nushagak 

drainages as they exist today and again assuming historical connections among those 

systems. Only one population from the Nushagak drainage was available for analysis 

with the [25P70L] data set, but samples from more populations were available for the 

[21P50L] data set (Table 3.1). Therefore, we tested for IBD between the Yukon and 

Kuskokwim drainages with the [25P70L] data and between the Kuskokwim and 

Nushagak with the [21P50L] data. In order to determine if the exclusion of 20 loci 

affected the IBD results for the test between the Kuskokwim and the Nushagak rivers, we 

tested for IBD between the Yukon and Kuskokwim drainages with the [21P50L] data to 

see if  the results were similar to the analysis with the [25P70L] data.

GENEPOP estimates the relationship between the genetic and water distances (d)

from:

( A H + S d

1 .
where a is the intercept and the slope, b = 4p , is inversely proportional to the effective

linear density of individuals (De) and the mean-squared parent-offspring distance (o'2). 

Significance was determined with a Spearman rank correlation coefficient. We analyzed
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the same data with the Mantel test available with the ‘ade’ package in the R environment 

to determine the correlation coefficient because GENEPOP does not provide one.

The present-day great circle geographic distances were obtained by drawing the 

shortest distance between the sample location of each population through freshwater or 

marine environments with Google Earth™. The latitude and longitude coordinates 

identify the weir locations or sonar stations where the samples were taken, which are not 

necessarily the locations of the spawning populations. Therefore, we used the latitude 

and longitude coordinate for the centroid of each drainage provided by the sub-watershed 

delineation tool in the Riverscape Analysis Project (Whited et al. 2012).

The possible historical connection between the Yukon and Kuskokwim rivers 

and between the Kuskokwim and Nushagak rivers were drawn by following published 

reconstructed connections (Maddren 1910; Shepard & Wanless 1971). These historical 

connections were then drawn in Google Earth ™ and the shortest geographic distances 

among populations through freshwater or marine environments were recalculated 

assuming that the present-day populations were located in the past where they are today.

Dispersal distance

The IBD analysis provides an estimate for the slope (b) of the regression of the

genetic distances on the geographic distances. Rearrangement of the terms in the

^  1/2
equation give the relationship a ~  (4hDe) . The approximate 95% confidence 

interval of the geographic distance of parent-offspring pairs is 4a for a normal
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distribution, which provides an estimate o f the dispersal distances o f individuals within 

populations (e.g. Gharrett et al. 2012)

We calculated density with empirical data from the Kuskokwim River and the 

slope determined in GENEPOP with the [25P70L] data set. We used estimates for the 

total run size of the Kuskokwim River from previous work (Bue et al. 2007) for the 

annual census size (Nc). Although this is likely an underestimate of the census size, it 

provides an upwardly biased estimate of dispersal distance and is therefore a conservative 

over-estimate of the potential gene flow among populations. This estimate also includes 

fall-run fish, but those run sizes are small relative to the summer-run populations and the 

estimate o f Bue et al. (2007) is conservative. The density (D -  — —— ) was estimated
' D is ta n c e

by dividing the harmonic mean of the annual census size estimates from Bue et al. (2007) 

by the total linear distance of the Kuskokwim River, which was calculated by summing 

the linear distances between the centroids all o f the major drainages for summer-run 

chum salmon (Table 3.1).

The effective density (De) was determined from a sensitivity analysis o f plausible 

Nratios o f —- .  In order to determine this ratio, we needed to account for two factors: (1) 
N c V '

chum salmon have overlapping generations and an average age of return of four years in 

the northern hemisphere (Groot & Margolis 1991), which means that the yearly census 

size of a population is only a portion of the existing population. Therefore, we multiplied 

the census data by four to account for potential future breeders that remained at sea. (2) 

The effective population size (Ne) can be considered the efficiency of passing genes from
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one generation to the next. For salmon, the determination o f Ne can be challenging 

because of fluctuating population sizes and overlapping generations (Falconer & Mackay 

1996; Waples 2002). Although these methods make some large assumptions, our 

purpose was to estimate the order of magnitude of the dispersal distance (i.e. is it tens,

hundreds, or thousands o f kilometers?). Therefore, we used a range of — ratios fromNc

0.0125 to 0.75, which brackets previous estimates o f Ne for populations o f chum salmon 

in Norton Sound (0.063 to 0.619; Burkhart & Dunmall 2005; Olsen et al. 2005) and 

reported the mean dispersal distances for the range o f ^  ratios.

Results

Measures o f  divergence

The log-likelihood ratio tests were all highly significant (p > 0.001) except for the 

populations from the Middle Kuskokwim River (Table 3.3). However, the total 

divergence among populations within regions was less than the total divergence among 

regions (p < 10'4), which suggests further reduction of genetic divergence within regions 

than one would expect given the total genetic variation in the geographic region. We also 

tested for panmixia with data from the [21P50L] data set. The G-tests within and among 

these three systems differed (Table 3.4), which suggests these populations do not 

represent panmixia. Finally, the 0CSW values over all loci for coastal southwestern 

populations were an order of magnitude lower compared to all of the populations in 

western Alaska (Table 3.2).
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Principal components analysis

The PCA for the [25P70L] data set (Figure 3.2) indicated little divergence among 

southern Norton Sound, Lower Yukon, summer-run Kuskokwim. and Northern Bristol 

Bay populations. No additional resolution was provided by the third or fourth 

components. The Kotzebue Sound samples (A1-A3) are divergent from all other samples 

as are the Middle Yukon samples (D l, D2). The samples from southern Bristol Bay (HI, 

H2), the late-run Upper Kuskokwim populations (G2, G3), and northern Norton Sound 

populations (Bl, B2) were also divergent, but the samples from the Nushagak River (H3) 

in northern Bristol Bay, the Takotna River (G l) in the upper reaches o f the Kuskokwim 

system, and the Unalakleet River (B3) in southern Norton Sound clustered with the 

Lower Yukon (C4, C6), Lower Kuskokwim (E1-E3), and Middle Kuskokwim samples 

(FI, F3-F7).

Neighbor-joining trees

The consensus neighbor-joining tree supported the PCA (Figure 3.3a). The 

Kotzebue Sound, Norton Sound, Middle Yukon, and Upper Kuskokwim populations 

have large bootstrap estimates for the nodes connecting them; but the tree reveals weak 

genetic structure among coastal southwestern populations. The neighbor-joining tree 

drawn with the observed allele frequencies corroborates the weak genetic structure o f the 

coastal southwestern populations seen with the consensus tree.



The outlier analysis identified four loci that differed significantly (p < 0.05) from 

the null distribution and indicated that those regions o f the DNA or closely linked regions 

may have experienced divergent selection among individuals from the 14 chum salmon 

populations in the analysis (Figure 3.4). The same four SNPs were identified as outliers 

when only the SNP data were used and when the combined SNP and microsatellite data 

were used. None of the microsatellites appeared to be outliers. All four of the SNPs 

were discovered in previous work that used Eco-TILLING to identify informative genetic 

markers for MSA during the discovery process (Garvin & Gharrett 2007). Although the 

outlier test in Arlequin 3.5 can exhibit type I error (Narum & Hess 2011), we removed 

the data for these four loci prior to the IBD analysis to assume that the markers we used 

were selectively neutral.

Isolation by distance

The tests for IBD differed when the different models were used. The test for IBD 

with data from 66 loci (the 25P70L data minus the four outliers) and pairwise geographic 

distances as they exist today among the populations from the Lower Yukon and 

Kuskokwim rivers was not significant. However, the test for IBD was significant when 

the geographic distances were calculated by assuming an historic connection between 

those rivers (Figure 3.5). In addition, the slope of the line was approximately 5-fold 

higher than for the IBD analysis with the present-day geographical distances. The tests 

for IBD with data from the [21P50L] data were similar when compared to the values
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when 70 loci were used (data not shown). This suggests that 50 loci provide sufficient 

information for the IBD analyses and data for those 50 loci were used for tests that 

included more populations.

The test for IBD between the Kuskokwim and Nushagak drainages was not 

significant if  present-day connections were assumed among populations but the test was 

significant when the connection between the Stony and Mulchatna rivers was assumed 

(Figure 3.6). We also tested for IBD within the Yukon and Kuskokwim rivers to 

determine if  the slopes of the lines were similar, which might suggest parallel historical 

demographic processes. The test for IBD for the seven populations within the Yukon 

was not significant (p < 0.461, slope = -4.39 x 10~4), but the test for IBD within the 

Kuskokwim was significant (p < 0.04, slope = 3.15 x 10'6). The IBD analysis within the 

Kuskokwim was similar when the 25P70L data were used (slope = 3.03 x 10'6; p  < 0.02). 

There were insufficient samples from the Nushagak River for either data set to test for 

IBD within that drainage.

Dispersal distance on the Kuskokwim River

The data from all available putatively neutral markers (66 loci) for the ten 

summer-run chum salmon populations from the Kuskokwim River were used for an IBD 

analysis. We used the slope from the [25P70L] data and the mean density o f chum 

salmon to estimate the straying distance for ^  ratios that ranged from 0.0125 to 0.75

(Table 3.5). The straying distances spanned from 28.7 to 222.3 km.
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Discussion

In this work we tested the hypothesis that recent historical connections between 

major drainages in western Alaska allowed gene flow among now-distant populations 

and resulted in the present-day reduced genetic divergence among coastal southwestern 

chum salmon populations that inhabit a substantial geographic area. The IBD analysis 

and the dispersal distances that we calculated among summer run chum salmon 

populations on the Kuskokwim River (between 28.7 and 222.3 km) support the 

hypothesis. Although the dispersal estimates exceeded those observed for pink salmon 

(O. gorbuscha) between adjacent streams (Gharrett et al. 2001) (maximum likelihood 

estimates from several years of data), they do not support long distance migration among 

populations for the cause o f present-day weak genetic structure among these populations.

Chum salmon populations between Japan and Kamchatka and between the Gulf 

of Alaska and the Pacific Northwest have genetic diversity estimates that are several-fold 

higher than for populations in the geographic area between Kotzebue Sound and Bristol 

Bay in western Alaska (Seeb & Crane 1999; Beacham et al. 2009b; Seeb et al. 2011).

The exception is fall-run fish that spawn in the upper reaches of both the Yukon and 

Kuskokwim rivers, which are highly divergent from the summer-run populations but are 

not the focus of this study and do not confound MSA applications. This reduced genetic 

divergence among summer-run populations in western Alaska is likely a result o f the 

geological history o f the freshwater and marine habitat since the LGM.



The additional weak divergence o f coastal southwestern populations nested within 

western Alaska could be explained by two processes that occurred recently (geologically 

speaking): (1) population reduction (extirpation) and (2) recolonization into a dynamic 

ecosystem in which major river systems were repeatedly altered. Historical evidence 

indicates at least two significant population reductions and several instances of major 

modifications to river drainages that occurred during the period from the 

Pleistocene/Holocene transition to the present.

Archaeological evidence from Broken Mammoth in central Alaska near the 

Tanana River revealed that one or more species o f salmonid was present in central Alaska 

approximately 14 000 years ago (Hoffecker & Elias 2003), and certainly freshwater 

species survived the LGM (McPhail & Lindsey 1986). But paleo-climate data suggest 

that the environmental conditions would not have been as favorable as they are presently 

for populations o f anadromous salmon. Rivers that were present at the LGM would have 

drained at the present-day Bering Sea shelf, and as a result, the estuarine habitat that is 

necessary for the early life-history stages of chum salmon may have been reduced. In 

addition, the climate likely caused the Bering Sea to be ice-covered for 9 months o f the 

year, and food abundances based on diatom microfossil assemblages from sediment cores 

suggest that the Bering Sea during the LGM was much less productive than it is today 

(Sancetta 1983; Mann & Hamilton 1995). For these reasons, chum salmon populations 

that existed in the warm period prior to the LGM were likely reduced or in some 

instances extirpated. Any chum salmon populations that may have survived the LGM 

would ecologically resemble those that exist in similar environmental conditions today



(e.g. those in the Beaufort and northern Chukchi seas); the populations would have been 

small and many of them ephemeral.

However, sea levels rose rapidly enough to cause shorelines to retreat up to 100 

meters per year (Fairbanks 1989; Manely 2002) and would have created potential 

estuaries on the relatively flat newly formed coastline. By about 10 000 years ago, the 

connection between the Bering and Chukchi seas had been re-established and the 

planktonic productivity in the Bering Sea began to increase (Sancetta 1983; Mann & 

Hamilton 1995). Beringian chum salmon spawning habitat flooded by rising seas after 

the LGM would have forced populations to colonize new locations or become extirpated.

It is likely that the coastal southwestern chum salmon are either the descendants 

of a paleo-Beringian invasion from the rising seas, expansions from small populations 

that survived the LGM, or both. By approximately 5000 years ago, the Bering Sea had 

reached its current level, and the present shorelines had been established (Manely 2002). 

Subsequent to this (Nelson & Creager 1977) and perhaps as recently as 1200 years ago 

(Dupre 1988; Shaw 1998), the Yukon River mouth moved north to flow into Norton 

Sound. Populations in the lower reaches of the Yukon and Kuskokwim rivers would 

have formed a large meta-population that was repeatedly connected, disconnected, and 

reconnected as the Yukon River meandered across the broad flat plain of Beringia and the 

present-day Yukon-Kuskokwim Delta. Many populations would have winked in and out 

and some may have merged in this fluctuating habitat, which was a result of variable 

discharges from glaciers that melted with the warming climate. Even today about one- 

third of the present-day flow of the Yukon River is due to glacier melt (Brabets et al.
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2000); any substantial retreat of glaciers would have caused changes in the flows of the 

Yukon River and its drainages.

There were several periods during the Holocene in which temperatures rapidly 

returned to those of the LGM and were followed by rapid warming that may have caused 

increased flows to establish connections among river drainages (Alley 2000). The first 

began after the Younger Dryas between 9000 and 5000 years ago when the northern 

hemisphere experienced the maximum temperatures of the Holocene. The discharge rates 

of drainages in western Alaska were likely highly variable as they were in the Atlantic 

Ocean (Fairbanks 1989), and is still the case in many Alaskan drainages presently. These 

increased flows could have established connections among the headwaters o f the 

Nushagak and the Stony River as well.

The weak genetic structure that is present today may indicate that these large 

meta-populations have not yet reached migration-drift equilibrium. If chum salmon have 

been present in these drainages since the Holocene Maximum, which is roughly 1200 

generations, there should have been time to establish equilibrium (Waples et al. 2008). 

However, this state is reached at a rate that is proportional to the effective population size

In 2and inversely proportional to the migration rate in a population ( tll2 ~ --------- -— ; Crow
2 m + ------

2 N e

and Aoki 1984). Low gene flow or large effective population size would retard progress 

toward an equilibrium.

Many of the coastal southwestern chum salmon populations are very large, and 

physical connections between the Yukon/Kuskokwim and the Kuskokwim/Nushagak
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rivers would have resulted in large numbers o f migrants between nearby populations. It 

is important to note here that we detected an IBD pattern within the Kuskokwim River 

drainage but not within the Yukon River drainage (too few populations were available to 

test for IBD within the Nushagak River). This is consistent with the idea that as the 

mouth of the Yukon River shifted to the north, it may have disrupted population structure 

in that habitat and erased IBD patterns that had been previously established. Migrants 

that formed populations in these areas may have originated from the Kuskokwim River or 

upstream on the lower Yukon River.

Subsequent to the Holocene Maximum, two neoglacial periods were followed by 

rapid warming events that may have also altered discharge rates from western Alaskan 

drainages and established migration corridors. Data from sediment samples taken from 

Ongoke Lake in southwestern Alaska indicate that approximately 1600 years ago this part 

of the world experienced the coldest, driest climate in the past 2000 years (Chipman et al. 

2008) (Figure 3.1a), known as the First Millenial Cold (FMC) period. Other work has 

established that glaciers advanced during this same period, which was followed by a 

warmer climate and glacial retreat (Wiles et al. 2008; Barclay et al. 2009). Approximately 

300 years ago the Little Ice Age (Mann 2002), which was colder but wetter than the 

preceding cold period, caused glaciers to advance far enough to displace native Tlingit 

people from their village in what is now Glacier Bay National Park (Appleton et al.

2010). The cooler climate caused the Kaskawulsh Glacier at the southern end of Kluane 

Lake in the Yukon Territory to advance (Figure 3.1a) and block the outlet o f the lake 

(Clague et al. 2006). The rise of the lake level caused the outlet to form at the lake’s



southern end and empty into the White River, which now contributes 10% to the flow of 

the Yukon River (Brabets et al. 2000). Finally, glaciers in the Ahklun mountains in 

southwestern Alaska that formed during the Little Ice Age were reduced by 50% in 

volume during the subsequent warm period (Levy et al. 2004). Any or perhaps all of 

these events may have disrupted IBD patterns that had formed in coastal southwestern 

populations after they had expanded from the LGM.

Alternatively a more recent environmental perturbation may have caused the 

extirpation or severe population reduction of chum salmon in western Alaska that was 

followed by population expansion and colonization. During the FMC period, the 

abundance of sockeye salmon from Kodiak Island declined substantially (Finney et al. 

2002), and archaeological data indicate that native communities near Cape Nome in 

Norton Sound (so-called Norton Phase) ceased the use of salmon as a food resource for 

nearly 300 years even though they had done so for the 1500 years prior to that period.

This coincided with a migration of Norton-Phase people south into the Alaska Peninsula 

near the Ugashik and Naknek drainages (Dumond 1998). Approximately 1200 years 

ago, simultaneously cultural and technological changes occurred in native communities 

located near the Ugashik River, the Naknek River, the Pacific coast o f Shelikof Strait, 

Cook Inlet, and Kodiak Island, and the use o f salmon for subsistence food became 

common (Bockstoce 1973, 1979; Yesner 1998). This was considered to be highly 

significant (p < 0.0005) in the context of 9000 years o f human occupation in Alaska 

(Mills 1994).
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The cold and dry climate may have created unsuitable habitat in the 

topographically flat areas o f coastal southwestern Alaska and salmon populations may 

have declined substantially between 1600 and 1200 years ago. Interestingly, populations 

of lake trout (Salvelinus namaycush) have survived several glacial periods throughout 

Alaska, but have never colonized the same flat areas inhabited by coastal southwestern 

chum salmon populations, presumably because of reduced flows and shallow water 

habitat (McPhail & Lindsey 1986).

Flows in major rivers during the FMC would have been reduced by the lack of 

precipitation and the reduction of glacial melt. The decrease in flows, combined with a 

reduction in water temperatures may have eliminated the viable habitat that is necessary 

for chum salmon. The development o f salmon eggs in freshwater habitat is tightly 

coupled to water temperature so that fry emerge when food resources are available for 

growth (Beacham & Murray 1990), and chum salmon depend on oxygenated water from 

either turbulent areas of the river or upwelling from groundwater (Groot & Margolis 

1991). As environmental conditions improved, recolonization could have occurred from 

distant sources and likely would have begun in the middle and upper reaches o f the 

drainages where habitat would have improved first because it is the least flat (flows 

would have provided hospitable habitat). Over time, those upper river populations 

provided colonists for the lower reaches, which produced the IBD signal we observed 

among the Kuskokwim River populations, but that signal was erased on the Yukon River 

because the Yukon Delta habitat is the least favorable and was only very recently 

reinhabited.



This more recent possible extirpation event does not preclude the possibility o f 

expansion through connections among western Alaskan drainages. In addition, it could 

also explain the genetic similarity of the populations from the Lower Yukon, the 

Kuskokwim, and the Nushagak rivers to southern Norton Sound drainages because the 

latter geographic area could have been recolonized at the same time as the former. Future 

geological or hydrological work focused on the timing of the most recent connection 

between the Yukon and Kuskokwim, and Kuskokwim and Nushagak rivers may provide 

support for one of these hypotheses as could analysis similar to that of Finney et al.

(2000) in western Alaskan salmon habitat.

A more recent timing for one of these hypotheses is suggested by the fact that the 

southwestern coastal Alaskan chum salmon populations have divergence estimates that 

are an order of magnitude lower than for chum salmon in western Alaska overall 

(9csw = 0.001 versus 0 =  0.016). In addition, observed divergence estimates among 

Chinook salmon that were introduced into New Zealand rivers at the end of the 19th 

century (Kinnison et al. 2002) and pink salmon that colonized new habitat as glaciers 

receded in Glacier Bay National Park about 125 years ago (Kondzela 2010) are also an 

order of magnitude higher than the coastal southwestern chum salmon populations here. 

Chinook salmon would be expected to show greater divergence and the anthropogenic 

introduction produced a colonization mechanism that was likely very different that 

western Alaskan chum salmon, but pink salmon typically demonstrate IBD patters similar 

to those of chum salmon (Quinn 2005) and would have followed a natural progression of 

colonization. Regardless, the difficulties associated with applied genetic work to chum



salmon populations from coastal western Alaska may be a result of recent events, and 

therefore large numbers o f neutral markers may be inadequate.
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Figure 3. la. Area of study. Populations o f chum salmon that were sampled are identified 
with alpha-numeric codes (Table 3.1). The codes in yellow represent the coastal 
southwestern populations that show the weakest genetic structure and are difficult for 
MSA. Current river systems are indicated with blue lines and black broken lines indicate 
known and likely historical river systems. Other place names mentioned in the text are 
provided.
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Figure 3.1b. Historical Yukon-Kuskokwim connections. A reproduction from Shepard 
and Wanless (1971) that shows the connections between the Lower Yukon and 
Kuskokwim rivers at two locations as well as the current Yukon-Kuskokwim Portage. 
The villages o f Bethel, Kalskag, Atchuelinguk, and Aniak provide reference points.
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Figure 3.1c. Historical Kuskokwim-Nushagak connections. A topographical map that 
shows the likely connection between the upper Nushagak (Mulchatna) River and the 
Middle Kuskokwim (Stony) River. Current river systems are indicated with blue lines 
and black broken lines indicate likely historical river systems.



167

9 PC2

A1

jV; Notion  Sooml

PC1

-8

Figure 3.2. PCA of western Alaskan chum salmon populations. Populations are 
indicated with an alpha-numeric symbol, which corresponds to geographic regions listed 
in 3.1. A graph of first and second components show distinct clusters for Kotzebue 
Sound, Middle Yukon River, northern Norton Sound, southern Bristol Bay, and late-run 
Upper Kuskokwim River populations.
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Figure 3.3a. The neighbor-joining tree drawn with genetic chord distances. The edge lengths reflect genetic distances from 
observed data allele frequencies and alpha-numeric codes correspond to Table 3.1 and Figure 3.1.
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Figure 3.3b. Consensus neighbor-joining tree. Bootstrap estimates are given for the proportion of trees out of 1000 that gave 
that edge after sampling loci with replacement. The edge lengths reflect consensus numbers and alpha-numeric codes 
correspond to Table 3.1 and Figure 3.1.
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Figure 3.4. Outlier analysis. Data from 50 nuclear SNPs and 12 microsatellites used in 
this study were analyzed. The gray symbols denote the simulated null distribution based 
on a hierarchical population structure. The black symbols are the values for the empirical 
data. Outlier loci are indicated with empty circles and the name and associated 
probabilities (p) are shown next to each circle.
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Figure 3.5a. IBD between the Yukon and Kuskokwim rivers with present geographical 
distances. The analysis was performed among the summer-run chum salmon populations 
from the Lower Yukon and the Kuskokwim rivers. The slope of the line is given along 
with the probabilities for the Mantel test in GENEPOP.
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Figure 3.5b. IBD between the Yukon and Kuskokwim rivers with past geographical 
distances. The analysis was performed among the summer-run chum salmon populations 
from the Lower Yukon and the Kuskokwim rivers. The slope of the line is given along 
with probabilities for the Mantel test in GENEPOP.
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Figure 3.6b. IBD between the Kuskokwim and Nushagak rivers with present 
geographical distances. The analysis was performed among the summer-run chum 
salmon populations from the Lower Yukon and the Kuskokwim rivers. The slope of the 
line is given along with the probabilities for the Mantel test in GENEPOP.



Table 3.1. Geographical and run timing information of the samples. The Lat and Lon values are the latitude and longitude of 
the location where the samples were taken. The cLat and cLon values are the latitude and longitude of the centroid of each 
drainage. Fifty of the 58 SNPs were available for a detailed analysis of the coastal southwestern populations. The final two 
columns indicate whether a population was included in the 25P70L or the 21P50L data set.
Sample Location Code Regional Group Year N Lat Lon cLat cLon Source Run Timing 25P70L 2IPS0L
Kelly Lake A l Kotzebue Sound 1991 96 67.92 -162.35 67.27 -162.48 ADF&G Summ er Yes No
Noatak A2 Kotzebue Sound 1991 96 67.98 -162.51 67.49 -161.99 ADF&G Sum m er Yes No
Kobuk A3 Kotzebue Sound 2000 96 66.92 -160.81 67.06 -156.51 USFW S Sum m er Yes No
Pilgrim B1 Norton Sound 2004 96 65.16 -165.22 64.92 -165.10 KWRK Sum m er Yes No
Snake B2 N orton Sound 2004 96 64,50 -165.41 64,52 -165,41 KWRK Summ er Yes No
U nalakleet B3 Norton Sound 2005 96 63.87 -160.79 63.97 -159.94 KWRK Sum m er Yes No
Black River Cl Lower Yukon River 2006 95 62.35 -165.35 62,09 -164.81 ADF&G Sum m er No Yes
Andreafsky C2 Lower Yukon River 1993 93 62.12 -162.81 63.20 -162.58 USFW S Sum m er No Yes
Achuelinguk C3 Lower Yukon River 1989 93 61.96 -162.83 62.01 -162,73 USFWS Sum m er No Yes
Anvik C4 Lower Yukon River 1989 75 62.68 -160.20 63.12 -160.59 USFW S Sum m er Yes Yes
Innoko C5 Lower Yukon River 1993 86 62.25 -159.56 62.68 -159.56 ADF&G Sum m er No Yes
Nulato C6 Lower Yukon River 2003 48 64.71 -158.14 64.65 -158.79 USFWS Sum m er Yes Yes
Gisasa C7 Lower Yukon River 1994 95 65.25 -157.71 64.81 -159.02 ADF&G Sum m er No Yes
Toklat D1 M iddle Yukon River 1994 96 64.45 -150.31 63.82 -150.05 USFW S Fall Yes Yes
Salcha D2 M iddle Yukon River 1994 96 64.47 -146.98 64.83 -144.71 USFWS Summ er Yes No
Goodnews El Lower Kuskokwim Bay 1989 96 59.10 -161.56 59.32 -160,68 USFW S Summ er Yes Yes
Kanektok E2 Lower Kuskokwim Bay 1989 75 59.75 -161,93 59.84 -160.35 USFW S Summ er Yes No
Kwethluk E3 Lower Kuskokwim River 1989 77 60.81 -161.45 60.20 -159.90 USFW S Sum m er Yes Yes
Aniak FI M iddle Kuskokwim River 1992 95 61.57 -159.49 60,80 -159.51 ADF&G Sum m er Yes Yes
Salmon F2 M iddle Kuskokwim River 2007 96 61.06 -159.20 60.75 -159.69 USFWS Summ er No No
Holokuk F3 M iddle Kuskokwim River 2007 63 61.54 -158.59 61.30 -158.31 USFW S Sum m er Yes Yes
Oskawalik F4 M iddle Kuskokwim River 1994 58 61.75 -158.18 61.56 -157.79 ADF&G Summ er Yes Yes
George F5 M iddle Kuskokwim River 2007 96 61.90 -157.71 62.17 -157.26 USFWS Sum m er Yes Yes
Kogrukluk F6 M iddle Kuskokwim River 2007 96 60.85 -157.85 60.55 -158.29 USFWS Summ er Yes Yes
Stony F7 M iddle Kuskokwim River 1994 151 61.77 -156.59 61.16 -154.10 ADF&G Sum m er Yes Yes
Tatlawiksuk F8 M iddle Kuskokwim River 2007 96 61.92 -156.24 62.16 -155.53 USFWS Sum m er No No
Takotna G i Upper Kuskokwim River 2007 96 62.96 -155.60 62.66 -156.64 USFW S Sum m er Yes Yes
Big River G2 Upper Kuskokwim River 2008 96 62.61 -155.01 62.69 -154.38 ADF&G Fall Yes No
South Fork G3 Upper Kuskokwim River 2008 96 63.09 -154.64 62.06 -153.48 ADF&G Fall Yes No
M eshik HI Bristol Bay 1989 75 56.81 -158.66 56.60 -158.42 USFW S Sum m er Yes No
Big Creek H2 Bristol Bay 1988/2000 96 58.29 -157.53 58.18 -155.76 USFWS Summ er Yes No
Nushugak H3 Bristol Bay 1988 75 58.80 -158.63 60.11 -156.99 USFWS Summ er Yes Yes
Stuyahok H4 Bristol Bay 1992/1993 87 60.19 -156.29 60.18 -156.15 ADF&G Sum m er No Yes
Mulchatna H5 Bristol Bay 1994 95 59.95 -156.41 60.61 -154.42 ADF&G Summ er No Yes
Togiak H6 Bristol Bay 1993 95 59.08 -160,34 59.19 -160.38 ADF&G Summ er No Yes
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Table 3.2. Summary statistics of the loci. ‘A’ refers to the number o f alleles, ‘He’ and 
‘H0’ are the expected and observed heterozygosity, ‘0 ’is Weir and Cockerham’s (1984) 
F st, Qcswis the F sr  value when only data from the coastal southwestern populations are 
used. The 0 value for the mitochondrial locus is (pST. Grey boxes indicate values for 
outlier loci. Some SNP loci are composed of multiple linked SNPs.

Locus Locus Type A H, H„ e Pest Source
OkilOO mSAT 23 0.902 0.871 0.012 0.001 0.095 UAF/ABL
Omml070 mSAT 40 0.961 0.955 0.004 0.000 0.099 UAF/ABL
OmylOll mSAT 30 0.924 0.922 0.009 0.002 0.092 UAF/ABL
OnelOl mSAT 34 0.896 0.893 0.014 0.001 0.107 UAF/ABL
One 102 mSAT 21 0.910 0.886 0.004 0.000 0.041 UAF/ABL
One 104 mSAT 30 0.929 0.919 0.018 0.000 0.182 UAF/ABL
O nelllstd mSAT 93 0.924 0.912 0.016 0.000 0.161 UAF/ABL
Onel 14 mSAT 47 0.922 0.913 0.008 0.002 0.078 UAF/ABL
Otsl03 mSAT 43 0.947 0.934 0.008 0.000 0.125 UAF/ABL
Ots3std mSAT 20 0.767 0.740 0.031 0.003 0.085 UAF/ABL
Otsg68 mSAT 40 0.944 0.925 0.010 0.002 0.138 UAF/ABL
Ssa4l9 mSAT 21 0.862 0.855 0.012 0.000 0.066 UAF/ABL
AHR178 SNP 2 0.491 0.496 0.011 -0.002 0.011 ADF&G
ARF SNP 2 0.308 0.289 0.022 0.009 0.010 ADF&G
CCT3220 SNP 2 0.355 0.354 0.009 0.001 0.005 ADF&G
CKS389 SNP 2 0.377 0.363 0.012 0.000 0.006 ADF&G
CL SNP 2 0.402 0.405 0.005 0.002 0.003 UAF/ABL
COPA SNP 2 0.057 0.058 0.014 0.005 0.001 ADF&G
ctgO05 SNP 2 0.263 0.266 0.014 0.000 0.004 ADF&G
CTS1627 SNP 2 0.484 0.490 0.003 -0.003 0.003 ADF&G
DM20 SNP 2 0.492 0.508 0.010 -0.002 0.008 ADF&G
EIF4EB SNP 2 0.082 0.082 0.019 0.006 0.002 ADF&G
ER SNP 2 0.174 0.166 O o hJ | 0:016 | 0.005 UAF/ABL
FARSLA242 SNP 2 0.061 0.062 0.030 0.000 0.002 ADF&G
GAPDH SNP 2 0.488 0.475 0.022 0.000 0.019 ADF&G
GHII SNP 2 0.406 0.378 0.021 -0.001 0.013 ADF&G
GnRH527 SNP 2 0.358 0.361 0.012 -0.001 0.006 ADF&G
GPH105 SNP 2 0.461 0.425 0.031 -0.002 0.024 ADF&G
hnRNPL239 SNP 2 0.108 0.104 0.017 -0.003 0.002 ADF&G
HP182 SNP 2 0.365 0.350 0.010 -0.002 0.005 ADF&G
HSP90BA299 SNP 2 0.007 0.007 0.000 -0.002 0.000 ADF&G
1GF11 SNP 2 0.049 0.050 0.018 0.001 0.001 ADF&G
IL8r272 SNP 2 0.183 0.179 0.013 0.000 0.003 ADF&G
IN SNP 3 0.317 0.300 0.017 0.004 0.008 UAF/ABL

INI
1N2

IS SNP 4 0.564 0.555 0.017 0.006 0.020 UAF/ABL
1SOII
1SOP

KPNA287 SNP 2 0.092 0.089 0.021 0.003 0.002 ADF&G
MAPK1135 SNP 2 0.242 0.245 0.012 0.002 0.004 ADF&G
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Table 3.2 Continued

Locus Locus Type A H„ e 0 csw D e s t Source
MARKS SNP 2 0.426 0.417 0.008 o.oio- 0.006 AD F& G
MOESIN SNP 2 0.125 0.124 0.018 0.008 0.003 AD F& G
PER SNP 2 0.080 0.078 ■  ®JM > ■ 1  © J M  ■ 0.003 UAF/ABL
PL SNP 2 0.138 0.138 ■  ■ 1 I  I 0.005 UAF/ABL
RACP SNP 2 0.399 0.401 0.012 -0.003 0.007 ADF&G
RAS1 SNP 2 0.422 0.403 0.027 -0.004 0.021 AD F& G
RF SNP 2 0.450 0.437 0.036 0.004 0.028 AD F& G
RH SNP 2 0.058 0.057 0.004 0.003 0 . 0 0 0 UAF/ABL
SP SNP 2 0.499 0.517 0.003 -0.003 0.003 UAF/ABL
TCP 178 SNP 2 0.127 0.122 0.020 0.005 0.003 AD F& G
TF278 SNP 2 0.3511 0.337 0.054 -0.002 0.027 AD F& G
TSFLA.1 SNP 2 0.259 0.237 0.012 0.004 0.005 AD F& G
ul519 SNP 2 0.265 0.257 0.020 0.002 0.007 AD F& G
U200 SNP 2 0.486 0.474 0.014 0 . 0 0 0 0.013 ADF&G
U202 SNP 2 0.124 0.122 0.042 0 . 0 0 0 0.005 AD F& G
U212 SNP 2 0.059 0.055 0.028 0 . 0 1 0 0.002 AD F& G
U216 SNP 2 0.245 0.239 0.006 -0.002 0.002 AD F& G
U217 SNP 2 0.488 0.501 0.017 0.002 0.015 A D F& G
U302195 SNP 2 0.412 0.424 0.040 0.012 0.026 A D F& G  •

U502241 SNP 2 0.212 0.216 0.014 -0.002 0.003 A D F& G
U503272 SNP 2 0.144 0.142 0.003 0 . 0 0 1 0 . 0 0 0 A D F& G
U504 SNP 2 0.498 0.499 0.003 - 0 . 0 0 1 0.004 A D F& G
U505112 SNP 2 0.438 0.441 0.007 0 . 0 0 1 0.005 A D F& G
U506110 SNP 2 0.205 0.195 0.028 0 . 0 0 1 0.007 A DF&G
U507286 SNP 2 0.497 0.503 0.006 -0.002 0.006 A D F& G
U509219 SNP 2 0.500 0.510 0.003 - 0 . 0 0 1 0.004 A D F& G
U 5 10204 SNP 2 0.304 0.301 0.019 0.006 0.009 ADF&G
U511271 SNP 2 0.156 0.145 0.007 0.002 0 . 0 0 1 ADF&G
U514150 SNP 2 0.251 0.240 0.018 0 . 0 0 1 0.005 A D F& G
VR SNP 4 0.708 0.683 i e f o M I  ©J U  ■ 0.050 UAF/ABL

VR1
VR2
VR3

V T SNP 2 0.472 0.461 0.014 -0.004 0 . 0 1 1 UAF/ABL
ZAN132 SNP 2 0.449 0.451 0.010 -0.003 0.008 ADF&G
M T SNP 10 0.250 N /A 0.033 0.020 N /A UAF/ABL

MT5 SNP UAF/ABL
MT12 SNP UAF/ABL
MT18 SNP UAF/ABL
MT21 SNP UAF/ABL
MT27 SNP UAF/ABL
CR30 SNP Sato et al 2004

CR231 SNP Sato et al 2004
CR386 SNP Sato et al 2004

Overall mSAT 36.8 0.907 0.894 0.012 0.001 0.090
Overall SNP 2.2 0.305 0.320 0.016 0.001 0.003
Overall SNP &  mSat 8.2 0.408 0.481 0.015 0.001 0.009



Table 3.3. Log-likelihood ratio (G) tests for the [25P70L data set].

Regional Group G df p-value
Kotzebue 1358.5 358 < 10'6
Norton Sound 657.6 358 < 10'6
Lower Kuskokwim 239.9 179 1.3 x 10'3
Middle Yukon 437.2 179 < lO'6
Upper Kuskokwim 1349.0 358 < 10'6
Middle Kuskokwim 391.8 358 1.1 x 10'1
Lower Kuskokwim 1030.5 895 1.1 x 1 0 3
Bristol Bay 969.6 358 < lO’6
Total within 6434.1 3043 < 10'6
Total among 6694.3 1253 < 10‘6
Total 13128.4 4296 0.00E+00

G among
p  _  dfam ong

d f a m o n g d f  within ^ w ith in

dfam on g
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Table 3.4. Log-likelihood ratio (G) tests for the [21P50L data set].

Regional Group G df p  -value
Yukon 414.35 300 1.3 x 10'5
Kuskokwim 660.89 450 < 10'5
Bristol Bay 527.27 150 A o

Overall 1602.51 900 A o



Table 3.5. Dispersal distances of chum salmon. Values were estimated with the slope of the IBD analysis from the 
Kuskokwim River.

Ne/Nc Ratio 0.0125 0.025 0.050 0.100 0.250 0.500 0.75
NE 57000 115000 230000 460000 1150000 2300000 3450000
De (fish/km) 29.2 58.4 116.9 233.7 584.3 1168.6 1752.9
Dispersal (km) 222.3 157.2 111.2 78.6 49.7 35.2 28.7
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General Conclusions

Most of this thesis involves some of the latest technology to address questions 

regarding the conservation and management o f chum salmon. The molecular genetic and 

statistical computer algorithms that I developed and/or used here will almost certainly be 

obsolete before I’ve settled into my next job. But I think that the questions that I 

answered and the problems that I addressed will provide firm footholds to explore 

hypotheses that were generated here.

Molecular genetics has been a rapidly evolving field that is now maturing. 

Adopting technology developed for human genetic studies to solve problems in other 

species has oftentimes been analogous to putting a square peg in a round hole because 

human-based studies were largely focused on one or a few individuals, but that is 

changing. The focus is now to study genomes of many individuals, which is ideal for 

population genetics, conservation, and management studies o f populations. The first two 

chapters of this work are primarily a statement that we need to understand the limitations 

of the tools that we use or develop. The topic may seem mundane, but the conclusions 

that we draw are only as good as the data we produce.

The last chapter may on the surface appear to address very different questions, but 

in actuality, draws on what was just stated above: what are the limitations of the tools we 

develop? This chapter sought to understand the basis for the weak genetic structure o f 

populations in western Alaska. Although many published works and anecdotal accounts 

have highlighted this fact, none have explored it in detail. My co-authors and I have 

provided a reasonable explanation for the divergence, but I believe that a more complete



answer will develop if  the next studies follow what we have done, and bring together 

other broad disciplines. A combination of geological, archaeological, oceanographic, and 

molecular genetic methods will likely provide a clearer picture and results from the fields 

individually will probably help to explain the combined distribution o f many other 

species in this broad geographic area. Such knowledge will be of paramount importance 

as management and conservation efforts focus on monitoring species’ response to a 

rapidly changing climate that we can no longer control.
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