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A b st r a c t

This dissertation addresses the need for valid measures of dietary intake for use in studies 

of chronic disease risk in the Yup’ik population of Southwest Alaska. The Yup’ik people 

have experienced dietary changes over the past century, as consumption of traditional 

foods has been increasingly supplemented or replaced by market-purchased foods. 

Determining whether this dietary change is associated with increases in chronic disease 

risk is important for making nutritional recommendations for disease prevention. 

However, monitoring dietary change is challenging, in part due to the limitations o f self­

reported methods of dietary assessment. Dietary biomarkers are promising alternatives to 

self-reported methods, because they can provide unbiased, reliable estimates o f intake. In 

this dissertation, I present evidence towards the validation of stable isotope dietary 

biomarkers. Stable isotope ratios vary among foods that are important in Yup’ik diets, 

and are incorporated into tissues, including several commonly collected biological 

sample types. They are simple, inexpensive and reliable measures that would be 

powerful tools for dietary assessment if  they could be validated as biomarkers o f certain 

foods. This work was conducted with two Yup’ik study populations that participated in 

studies conducted by the Center for Alaska Native Health Research. I begin by showing 

that the nitrogen isotope ratio is a marker of the marine component o f traditional food 

intake, and the carbon isotope ratio is a marker of market food intake. I then calibrate a 

model of sugar intake based on both the carbon and nitrogen isotope ratios. I focus 

specifically on sugars because intake o f sugary foods and beverages has been linked to 

obesity-related disease risk in other US populations. Finally, I use this dual isotope 

model to assess associations of sugar intake with chronic disease risk factors. I find that 

sugar intake is associated with blood pressure, blood lipids, leptin and adiponectin, 

suggesting a potential adverse effect o f sugar intake on Yup’ik health. The findings o f 

this dissertation provide substantial evidence to support carbon and nitrogen isotope 

ratios as markers of Yup’ik dietary intake, and demonstrate their potential to be 

informative in studies of associations between dietary intake and the health o f Yup’ik
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I n t r o d u c t io n

This dissertation addresses the need for valid and reliable measures of dietary intake for 

studies of chronic disease risk in Yup’ik people. The Yup’ik people, who are an Alaska 

Native group that predominantly live in the Yukon-Kuskokwim region o f Southwest 

Alaska, have experienced a diet pattern shift over the past several decades. Diets that 

were once dominated by traditional foods ( 1 ) now contain large proportions o f energy 

derived from market-purchased foods (approximately 40-85% (2,3)). This shift from a 

traditional to market-based diet is termed the nutrition transition (4), and has been 

documented in other circumpolar (5-7) and Native American (8 ) populations.

Importantly, the nutrition transition has been associated with profound changes in culture 

and health (8-11). In particular, rates o f obesity-related chronic diseases have increased 

in populations that exchange reliance on traditional food intake for a “western” dietary 

pattern (8 , 9).

Although there have been no longitudinal studies which explicitly address the 

impact of nutritional change on the health of Yup’ik people, it may be that these effects 

are already being seen. For example, type 2 diabetes was rare in Alaska Native people 50 

years ago (12, 13); however, despite prevalence being low relative to other Native 

populations who have experienced the nutrition transition (14, 15), prevalence in the 

Yukon-Kuskokwim region increased 38% between 1990 and 2004 (from 16/1000 in 1990 

to 22/1000 in 2004 (16)). Similarly, rates of colorectal, breast and stomach cancers are 

between 1.5 and 3-fold higher today than they were in the 1970’s (17). In contrast, while 

mortality from heart disease more than doubled between 1979 and 1988, rates have 

remained relatively constant since this time (16). Evidently research is needed to 

determine whether the nutrition transition has played a role in changing chronic disease 

risk in the Yukon-Kuskokwim Delta, and, if so, what that role might be.

The fact that dietary change has occurred in the Yup’ik population may be 

obvious; however, these changes are actually quite difficult to quantify and monitor.

This difficulty arises in part due to the lack o f baseline and time-series data, and in part
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due to the limitations of existing methods of dietary assessment. The most commonly 

used tools to assess dietary intake rely on self-report. However, self-report instruments 

that are appropriate for use in larger studies, such as the food frequency questionnaire, 

suffer large amounts o f error and bias that may obscure associations o f intake with 

disease risk (18, 19). Conversely, more reliable methods, such as the repeated 24 hour 

recall, can be prohibitively expensive, labor intensive and burdensome on both the 

participant and the researcher (20, 21). Clearly, improved measures of dietary intake are 

needed to more validly study associations between diet and disease risk. Biochemical 

measurements of intake, “biomarkers”, are promising alternatives to self-reported 

methods of dietary assessment, because they can provide unbiased, reliable estimates of 

dietary intake (22-24). This dissertation investigates the potential of naturally occurring 

variations in stable isotope ratios to indicate dietary intake in the Yup’ik population.

Stable isotope ratios have been widely used in ecological and archaeological 

studies (25-28). Most commonly employed are the carbon and nitrogen isotope ratios 

(8 13C and 8 15N, respectively). The nitrogen isotope ratio increases with trophic level (29, 

30), so 8 15N values are elevated in animal proteins (meat, dairy, eggs) relative to plant 

foods. Values of 8 15N are particularly high in large fish and marine mammals, as these 

animals are high in the marine food chain and the marine environment is slightly 15N 

enriched relative to the terrestrial environment. In contrast, the carbon isotope ratio has 

been primarily been used to indicate plant consumption. Values of S13C are particularly 

elevated in plants that use the C4 (Hatch-slack) photosynthetic pathway, relative to the 

more common C3 (Calvin) photosynthetic pathway (31). C4 plants are typically those 

which grown in more tropical climates and many grass species, and their most common 

representatives in the US diet are com and sugar cane. However, foods deriving from the 

marine environment also have elevated 8 13C values because oceanic bicarbonate, the 

source of carbon to marine foodwebs, is enriched in I3C relative to atmospheric CO2 (32, 

33).
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The carbon and nitrogen isotope ratios o f a variety o f human foods were 

published in the 1980’s for the United States (34) and Japan (35), and these studies paved 

the way for contemporary applications o f isotopes to diet. Early studies o f dietary effects 

on human stable isotopes investigated vegetarianism (36, 37) and global travel (38, 39), 

but sample sizes were small and the studies were not designed to be validations in an 

epidemiological context. Subsequent studies investigated the use of isotope ratios to 

indicate intake of animal protein (40) and fish (41); these studies were more akin to 

epidemiological validations, being population-level comparisons of isotope ratios with 

self-reported estimates of intake. More recently, stable isotope ratios have piqued the 

interest of nutritional epidemiologists because of the potential for the carbon isotope ratio 

to indicate sweetener intake (42, 43), a food group whose role in chronic disease risk has 

been highly contentious (44).

Because com- and sugar cane-based sweeteners are 13C enriched, recent studies 

have proposed the carbon isotope ratio of serum (43) or whole blood (42) as a candidate 

biomarker of sweetener intake; however, the validity o f this marker in those populations 

is low because of confounding by consumption of other 13C enriched foods, such as other 

com products, commercial meats and fish (45). Alternatively, the 8 13C value of 

postprandial plasma glucose has demonstrated associations with C4 sweeteners in a 

controlled setting (45), but this marker is also limited because it provides only a very 

short-term reflection of intake. Markers o f com- and cane-sugar based sweetener intake 

are of particular interest because sugar intake, in particular high fructose com symp, has 

been linked to several intermediate risk factors for chronic disease, including excess 

energy intake, body mass index (BMI), dyslipidemia, insulin resistance and 

proinflammatory cytokines (46-54).

Carbon and nitrogen isotope ratios have particular potential to be informative 

about dietary intake in the Yup’ik population because several traditional and market food 

groups are isotopically distinct. My hypotheses for this dissertation are threefold. First, 

because the Yup’ik traditional diet is heavily reliant on fish and marine mammals, I



hypothesize that tissue 8 15N values will indicate intake of a traditional diet. Second,,

because C4 plants do not naturally grow in Alaska and are only available in the Yup’ik

diet from market-purchased foods, I hypothesize that the carbon isotope ratio will be a

valid marker of C^based market food intake. I also hypothesize that tissue 8 13C values
1 ̂will be associated with other C enriched foods, such as fish and marine mammal intake, 

as well as intake of corn-fed commercial meats. Finally, if  it is possible to remove the 

influence of these confounders on tissue 8 I3C values, perhaps using tissue 8 15N, I 

hypothesize that it might be possible to develop a valid and specific marker o f com- and 

cane sugar-based sweetener intake for use in studies of Yup’ik health. Together, these 

isotopic markers will be useful for determining whether increasing prevalence of obesity- 

related chronic diseases in the Yukon-Kuskokwim Delta are related to changes in intake 

of both traditional and market foods.

This dissertation focuses on the development and application of carbon and 

nitrogen isotope markers o f dietary intake in the Yup’ik population. The ultimate aim of 

this research is to validate biomarkers of Yup’ik foods that can be used in population- 

based studies of how dietary change affects chronic disease risk. I begin this research by 

demonstrating the ability o f red blood cell (RBC) 8 13C and 8 15N values to indicate 

traditional and market food intake in a sample of 230 Yup’ik participants that completed 

both a 3-day food record and a 24-hour recall (Chapter 1). I then use these isotope ratios 

to examine patterns of traditional and market food intake by age, sex, community 

location, and cultural identification, in a larger sample of 1003 Yup’ik participants.

Chapter 2 focuses specifically on the nitrogen isotope ratio o f hair as an indicator 

of traditional marine food intake. Here, I compare hair 8 I5N values to measures of the 

marine polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), which are long-chain omega-3 fatty acids known to reduce 

risk for cardiovascular and other chronic diseases (55,56). These measures included RBC 

8 15N, an isotope biomarker that has been previously validated for the Yup’ik population
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(57), as well as an established biomarker of EPA and DHA intake, % RBC membrane 

fatty acids (58). Isotope ratios of hair are particularly attractive candidates for assessing 

dietary intake because sampling is non-invasive and does not require a nurse or 

phlebotomist, unlike collection of blood samples. This chapter continues by examining 

associations between RBC and hair nitrogen and carbon isotope ratios; this information 

will facilitate comparisons with existing and future studies that utilize one or the other of 

these sample types.

Chapter 3 focuses on developing a model of sweetener intake based on both 8 13C 

and 8 I5N values. While die carbon isotope ratio is naturally elevated in com and cane 

sugar-based sweeteners, this isotope ratio alone cannot indicate intake of sweeteners 

because of confounding by other 13C enriched foods, such as commercial meats and 

traditional marine foods. Because the nitrogen isotope ratio is elevated Yup’ik people 

who eat a lot of traditional marine foods, I hypothesized that 8 15N adjustment would 

improve the carbon isotope biomarker by removing the influence of fish and marine 

mammals on tissue SI3C. However, 8 15N is very strongly correlated with traditional 

marine intake in this Yup’ik study population; therefore, I did not know whether we 

would find an association with commercial meat intake, and whether we would be able to 

account for the effects of this confounder on tissue 8 13C. In this study, I find that a dual 

isotope model using both S13C and 8 15N explains over 5 times the variation in sweetener 

intake than does a model using 8 13C only, but that we are unable to account for the 

association of 8 13C and commercial meat intake using 8 15N.

Finally, Chapter 4 uses this calibrated dual isotope model of total sugar intake to 

examine associations with obesity and other chronic disease risk factors in a cross­

sectional sample o f 1076 Yup’ik people. I find that while sugar intake is not associated 

with either body mass index or waist circumference in this population, it is positively 

associated with blood pressure, triglycerides, insulin, and leptin, an adipokine that plays a 

key role in appetite and metabolism. Sugar intake was inversely associated with total and 

HDL cholesterol, as well as adiponectin, an adipokine that promotes insulin sensitivity.
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This chapter is important in two ways: first, it demonstrates the ability o f our isotopic 

markers to be informative in studies of disease risk in the Yup’ik population, and second, 

it discovers associations of sugar intake with chronic disease risk factors that were 

previously unknown for this population. I hope that these findings will provide the basis 

for longitudinal studies of the association of sugar intake with risk factors for obesity- 

related chronic diseases.

Determining the effect o f dietary change on the health of the Yup’ik population 

requires valid, objective measurements of intake. The first three chapters of this 

dissertation present substantial evidence to support the use o f the carbon and nitrogen 

isotope ratios as valid, objective markers of traditional and market food intake. The final 

chapter demonstrates the utility of these markers in a study of the association between 

sugar intake and chronic disease risk factors. In summary, this dissertation provides 

substantial evidence to support the use of stable isotope markers in epidemiologic studies 

of the association between dietary change and health in the Yup’ik population.
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C h a p t e r  1. S t a b l e  n it r o g e n  a n d  c a r b o n  is o t o p e  r a t io s  in d ic a t e  t r a d it io n a l

AND MARKET FOOD INTAKE IN AN INDIGENOUS CIRCUMPOLAR POPULATION1

1.1. A b s t r a c t

The transition of a society from subsistence to market-based diets (termed the 

nutrition transition) has been associated with profound changes in culture and health. We 

are developing biomarkers to track the nutrition transition in the Yup’ik population of 

Southwest Alaska, based on naturally occurring variations in the relative abundances of 

carbon and nitrogen stable isotopes (8 15N and 8 13C values). Here, we provide three 

pieces of evidence toward the validation of these biomarkers. First, we analyzed the 8 15N
|  1  1 r

and 8  C values of a comprehensive sample of Yup’ik foods. We found that 8  N values 

were elevated in fish and marine mammals and that S13C values were elevated in market 

foods containing com or sugar cane carbon. Second, we evaluated the associations 

between red blood cell (RBC) 8 15N and 8 I3C values and self-reported measures of 

traditional and market food intake (n -  230). RBC d 15N values were correlated with 

intake of fish and marine mammals (r = 0.52, P  <0.0001). RBC 8 13C values were 

correlated with intake of market foods made from com and sugar cane (r = 0.46, P  

<0.0001) and total market food intake (r = 0.46, P  <0.0001). Finally, we assessed 

whether stable isotope ratios captured population-level patterns of traditional and market 

intake (n = 1003). Isotopic biomarkers of traditional and market intake were associated 

with age, community location, sex, and cultural identity. Self-report methods showed 

variations by age and cultural identity only. Thus, stable isotopes show potential as 

biomarkers for monitoring dietary change in indigenous circumpolar populations.

14

1 Nash, S.H., Bersamin, A., Kxistal, A.R., Hopkins, S.E., Church, R.S., Pasker, R.L., Luick, B.R., Mohatt, 
G.V., Boyer, B.B., and O’Brien, D.M. 2012. Stable nitrogen and carbon isotope ratios indicate traditional 
and market food intake in an indigenous circumpolar population. The Journal o f Nutrition 142: 84-90
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1.2. In t r o d u c t io n

The transition of a society from traditional to market-based diets (termed the 

nutrition transition) has been associated with profound changes in culture and health ( 1 ­

4). Many indigenous circumpolar populations are undergoing this transition (5-7), which 

is associated with increased rates of chronic disease (6 , 8 ). Dietary change can be 

difficult to monitor, due in part to the lack of baseline data and in part to the limitations 

of existing methods for dietary assessment. Self-report methods that are feasible to 

collect from large populations (e.g. food frequency questionnaire) are subject to large 

error and bias (9, 10), whereas more reliable methods (e.g. repeated 24-hour recall) can 

be prohibitively expensive (11, 12). Dietary biomarkers provide a promising alternative 

to self-report methods, because they are unbiased, more reliable, and can be measured 

from archived samples (13-16). We are developing biomarkers of traditional and market 

intake for the Yup’ik population of Southwest Alaska, based on the relative abundances 

of naturally occurring carbon and nitrogen stable isotopes (17, 18). Isotopic markers 

have been widely used as markers of diet in ecological and anthropological studies (19­

22). Furthermore, they are inexpensive to measure, precise, and can be measured in 

multiple tissue types, including serum, RBC and hair (16-18, 23, 24).

Stable isotope biomarkers are informative in the Yup’ik population because many 

commonly consumed traditional and market foods are isotopically distinct (25-29). The 

nitrogen stable isotope ratio (™15N) indicates consumption of marine mammals and fish 

(25, 28), which are a large component of the traditional Yup’ik diet (30-32). This 

biomarker has been recently validated for Yup’ik people based on comparisons with the 

marine fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (17,

18). Thus, we propose that 515N will indicate consumption of traditional marine foods in 

this population. The carbon isotope ratio (8 I:>C) is elevated in plants using the C4 (Hatch- 

Slack) photosynthetic pathway, relative to those using the more common C3 (Calvin) 

photosynthetic pathway (33). The most common representatives of these plants in the US 

agricultural system are com and sugar cane, which are widely present in the market diet
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as sweeteners (29), as ingredients in processed foods, and indirectly via domestic animals 

raised on com (34, 35). The carbon isotope ratio has shown moderate associations with 

reported C4-based sweetener and sweetened beverage intake in the US population (23, 24,
i  - j .

36). Here, we propose that 8  C will provide an independent biomarker of market food 

intake for the Yup’ik population.

The overall objective of this study is to evaluate isotopic biomarkers o f market 

and traditional food intake in a Yup’ik study population. Developing reliable and 

accurate markers o f dietary change for this population could help to predict increases in 

disease incidence and develop appropriate dietary interventions. The specific aims of this 

study are threefold. First, we determine expected relationships between dietary intake 

and RBC isotope ratios by completing a comprehensive analysis of 8 I5N and 8 13C values 

in traditional and market foods important to the Yup’ik population. Second, we evaluate 

the association between RBC 8 15N and reported fish and marine mammal intake, and 

RBC 8  C and reported market food intake, based on four days of diet records from 230 

Yup’ik people. Finally, we evaluate whether variations in dietary intake by age, 

community location and cultural identity that have been previously reported for this 

population based on self report are also seen using isotopic biomarkers (30, 37-39). The 

extensive nature of previous dietary assessment in this population provides an ideal 

framework with which to evaluate the efficacy of these proposed biomarkers.

1.3 M e t h o d o l o g y

1.3.1. Participant recruitment and procedures

Data are from the Center for Alaska Native Health Research (CANHR) study, a cross 

sectional, community based participatory research study of genetic, nutritional and 

psychosocial risk factors affecting obesity and related disease in Yup’ik people (40,41). 

The CANHR study was approved by the University o f Alaska Fairbanks Institutional
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Review Board, the National and Area Indian Health Service Institutional Review Boards, 

and the Yukon-Kuskokwim Health Corporation Human Studies Committee.

Between 2003-2005, 1003 participants aged 14-94 were recruited from 10 

communities in Southwest Alaska as described in detail elsewhere (41). We categorize 

these communities as either coastal (<5 miles from the coast) or inland. At entry into the 

study, participants completed extensive interviewer-administered demographic 

questionnaires. A subset of 315 participants from the first seven communities visited 

completed a single interviewer-administered 24 h dietary recall as well as a 3 d food 

record. A subset of 767 participants from all 10 communities completed a wellness 

questionnaire. We use the responses to two questions about cultural identification, which 

asked how much an individual felt they followed a Yup’ik or Kass’aq (non-native) way 

of life. Responses to these questions were coded numerically (1= follows the lifestyle a 

lot, 2 = some, 3= not at all) and were not mutually exclusive (e.g., a person could respond 

“follows the lifestyle a lot” for both ways of life).

1.3.2. Biological sample collection

Blood was collected into Ethylenediaminetetraacetic acid (EDTA) tubes and 

processed in rural communities using a portable centrifuge. Serum, lymphocytes and 

RBC were aliquotted and stored at -20°C in a portable freezer. Within six days, samples 

were shipped to the University of Alaska Fairbanks and stored at -80°C. Aliquots of 

RBC were removed for stable isotope analysis, as described below. RBC were chosen 

for analyses because they reflect dietary intake over a period of 1 -3 months (42-44), and 

thus provide a more stable estimate o f dietary intake than serum (45). RBC aliquots were 

autoclaved for 20 minutes at 121°C to destroy blood-borne pathogens, apportioned into 

tin capsules (3.5 x 3.75 mm), and oven dried at 60°C to a final weight o f 0.2 - 0.4 mg. 

Neither autoclaving or the use of EDTA treated tubes affects RBC carbon or nitrogen 

isotope ratios (28).
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1.3.3. Food sample collection

We sampled a broad range of traditional and market foods that were known to 

contribute to this study population’s diet (n = 254). Foods were defined based on their 

NDS-R (Nutrition Data System for Research software version 4.06; University of 

Minnesota, Minneapolis, MN) food codes. Traditional foods were harvested from the 

local environment, and samples were donated by residents from three Yup’ik 

communities. Market foods were purchased from community grocery stores, or grocery 

stores in Fairbanks, Alaska. We sampled three or more representatives o f foods 

contributing > 5% of energy (based on dietary self-report data), and one or more 

representatives from foods contributing 1-5% o f energy. We sampled more rarely 

consumed traditional food items (contributing <1% energy) when donated. Marine 

mammal samples were collected under permit number 932-1905-OOIMA-009526, issued 

by the National Marine Fisheries Service and the U.S. Fish and Wildlife Service, under 

the authority of the Marine Mammal Protection Act and Endangered Species Act. A list 

of foods sampled and their sampling frequencies is given in Supplemental Table 1.S1.

Food samples were grouped into traditional or market-based food groups. 

Traditional foods were divided into four groups: Marine (marine mammals, fish, and seal 

oil), terrestrial animals (birds and mammals), terrestrial plants (berries and wild plants) 

and waterfowl (ducks, geese, and swans). We define waterfowl separately because these 

species forage in both marine and terrestrial habitats. Furthermore, we note that the 

“marine” category contains both marine and freshwater fish species. While freshwater 

and marine fish are expected to differ slightly in 8  N  and 8  C values, their values are 

likely to be more similar to each other than to other classes o f foods. Market foods were 

divided into five groups: market grains and vegetables (foods from C3 plants, including 

pasta, wheat, rice, nuts, fruits and vegetables), com and cane sugar (C^based foods, 

including beverages sweetened with high fructose com syrup, cane sugar, candy, com), 

meat (Chicken, Turkey, Beef, Eggs), dairy (Milk, Cheese), or mixed (containing 

ingredients from more than one group). For isotope analysis, food samples were oven



dried at 60°C for at least 48 h, ground to a fine powder, and weighed into tin capsules to a 

final weight of 0.2 -0.4 mg.

1.3.4. Stable isotope analysis

Samples were analyzed at the Alaska Stable Isotope Facility by continuous-flow 

isotope ratio mass spectrometry, using a Costech ECS4010 Elemental Analyzer (Costech 

Scientific Inc.) interfaced to a Finnigan Delta Plus XP isotope ratio mass spectrometer via 

the Conflo III interface (Thermo-Finnigan Inc.). The conventional means of expressing 

natural abundance isotope ratios is as delta values in permil (%o) relative to international 

standards, defined as dX (Rsampie Rstandard)̂ (Rstandard) * 1000/oo (46). Here, R is the ratio 

of heavy to light isotope (1:5N/14N or 13C/12C) and the standards are atmospheric N for 

nitrogen and PeeDee Belemnite for carbon. Because the foods and RBC samples from 

this study have a lower 13C/12C than the standard, values of d 13C are negative. We 

concurrently prepared and ran multiple peptone working standards (515N = 7.0, 8 ,3C = - 

15.8%o, n = 128) to assess analytical accuracy and precision, measured as the standard 

deviation of these analyses. Accuracy was within 0.1 %o, and precision was within 0.2%o, 

for both isotopes.

1.3.5. Assessment o f  dietary intake

Dietary intake was estimated using an interviewer-administered 24 h dietary recall 

and a 3 d food record. Data from these instruments were combined to achieve a stable 

estimate of dietary intake. The 24HR was collected from each participant by certified 

interviewers using a computer-assisted recall (Nutrition Data System for Research 

(NDS-R) version 4.06). Participants were asked to recall all food and beverages 

consumed over the 24 h period covering the day prior to interview using a multiple pass

19
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approach to minimize recall bias. Although most participants were bilingual, a native 

Yup’ik speaker trained in the use o f NDS-R was available for non-English speakers.

When completing the 3 d food record, participants were instructed to maintain 

their usual eating habits. A research team member reviewed all records for completeness, 

which were then entered into the NDS-R software package by certified coders. A second 

researcher reviewed all entries for accuracy. Records were considered unreliable and 

excluded from analysis if daily energy intake was greater than 5000 kcal or less than 500 

kcal (38 participants had one day excluded, 4 had two days excluded). Individuals who 

had >2 days considered unreliable (n = 2) or whose 3-day food record or 24-hour recall 

was incomplete (n= 83) were excluded from self-report analyses; 230 individuals 

remained. .

1.3.6. Dietary analysis

The contributions o f traditional and market foods to an individual’s diet were 

assessed as follows: all food items were assigned to traditional and market food groups 

(as defined above and given in Supplemental Table 1.S1) based on their food codes from 

the NDS-R Food and Nutrient Database 33 (July 2003). A few Alaska Native foods were 

missing from the database; these were substituted for similar food items where 

appropriate or the foods were added to the database. We then summed total energy 

consumed for three categories of foods: traditional marine, market, and C^based market 

foods, and used these totals for analyses. Foods assigned to traditional and market food 

groups were mutually exclusive.

As market foods included food groups that were partially C4 - based (Mixed 

foods, Meat, and Dairy) as well as entirely C^based (Com and cane sugar), we defined 

C4-based market food intake by weighting energy derived from market-based food 

groups based on their fractional C4 carbon content, and summing this weighted energy



(kcal). This fractional content (fot) was calculated using the mean 8 13C of food groups 

and an isotopic mixing model, as follows:

group mean 8 ,3Cc3)/(5,3Cc4 - 5 13Cc3) [1-1]

where fc4 is the fraction of the food that is C4-based, 8 13Cc4 is the mean carbon

isotope ratio o f C4-based plant foods (com and cane sugar, Table 1.1), and 5 13Cc3 is the 

carbon isotope ratio of C3-based plant foods (grains and vegetables; 47). We note that 

this is a highly simplified mixing model that does not take into account differences in 

macronutrient composition among foods (48), and uses a mean 8 I3C for food classes 

rather than adjusting foods individually. However, the purpose of the calculation is to get 

a broad estimate of how much of the market diet is derived from C4 sources rather than to 

present a highly precise measure.

IS1.3.7. Correcting RBC S C values fo r  the influence offish and marine mammal intake

Our aim was to use S13C as an index of C4-based market food intake however 

both C 4 and marine foods have elevated 8 13C values relative to C3-based market foods

(27, 29). Therefore, we used 8 1:>N values to adjust for the influence of marine foods on 

RBC 8 ,3C as follows:

8 13Ca -  8 13C  -  [ ( 8 15N  -  8 15N  no marine)  x  A 8 13C / A 8 15N marjne foods] [1.2]



where 8 I3Ca = Adjusted 513C value

8 i3C and 515N are measured RBC isotope ratios

5 15Nno marine = mean 6 15N value for all members of the population reporting no 

traditional marine food intake (n = 42). This was measured to be 7 . 8  %o

A S 13C / A 8 15N marine foods = the increase in 5 13C  for each unit increase in 8 15N  across 

all fish and marine mammal samples. This was measured to be 0.91 (see 

Results).

We tested the accuracy of this approach by assessing the agreement between prediction

of C4-based market foods based on 8 13C a values and a multiple linear regression model

including 8 13C and S15N as independent variables (49). Agreement between the two

methods was good (mean difference: 0.0 ± 1.7% of total energy). Although both of these

methods account for the influence of marine food intake on 8 13C values, we have chosen 
11to adjust RBC 8  C values in this study in order to generate a single, independent variable 

that can be used in multiple analyses.

1.3.8. Statistical analyses

All statistical analyses were performed using JMP version 8 (SAS Institute, Cary, 

NC). We evaluated differences in the sex and age distributions between the complete 

sample of participants and those who completed dietary interviews or cultural identity 

questions using a chi-square test. We used analysis o f variance (ANOVA) to compare 

the isotope ratios of food samples in each market and traditional food group and 

compared means using Tukey-Kramer’s honest significant difference. We assessed the 

associations between isotope ratios and dietary intake data, as well as between dietary 

intake variables, using linear regression.
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We evaluated the effects o f demographic variables on intake variables (isotope 

and self-report), using analysis o f covariance (ANCOVA) models where relationships 

were linear and met assumptions for parametric statistical tests. Demographic variables 

(age, sex, community location) were the independent variables in these models. ANOVA 

was used to assess the effects of cultural identity on dietary intake. Cultural identity 

variables were the independent variables in these models. The effects o f demographic 

and cultural identity variables on intake were assessed separately, as cultural identity 

questions were only completed by a subset of the population.

In all analyses that compare dietary self-report data to isotope, demographic, or 

cultural identity information, intake was expressed as the percentage of total energy 

represented by each food group. Where dietary self-report information is compared to 

other dietary self-report information, intake is expressed as total energy reported (kcal). 

Normality was confirmed using normal probability plots; dietary intake data were log 

transformed for analyses and results back transformed for ease of interpretation (50). 

Outliers were identified by using Mahalobnis distance >3 and excluded from analyses (n 

= 3 for 8 15N/ marine food intake, n = 6  for 8 13Ca/C4 intake, n = 3 for 8 15N /total 

traditional food intake and n = 13 for 513CA/total market intake). All means are given ± 

standard deviation. A significance level of 0.05 is used throughout analyses.

1.4 . R e s u l t s

1.4.1. Stable isotope ratios o f food

Nitrogen isotope ratios varied significantly among traditional and market food 

groups (8 15N: P  < 0.001, Table 1.1, Supplemental Table 1.S1). Traditional marine foods 

had substantially higher 8 I5N values than any other food group (Table 1.1). Marine fish 

species had higher 8 1:>N values than freshwater fish species (P = 0.0013, marine 8 1:>N =

14.3 ± 3.4%o, freshwater 8 1:5N = 11.5 ± 2.7%o); however, their values overlapped and 

were both significantly higher than all other food groups. Thus, we continued to group
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these species together as “marine foods” for further analyses. Excluding marine foods, 

animal-based food groups had higher mean 8 15N values than plant-based food groups (P 

< 0.0037). We found a strong positive relationship between 8 13C and 8 15N values of 

traditional foods (Figure 1.1 A, P = 1.86, r = 0.82, P < 0.0001) and marine foods only (P = 

0.91, r = 0.71, P<  0.0001), but not market foods (Figure 1.1B, P = 0.14, r = 0.38, P = 

0.08).

Carbon isotope ratios differed significantly between food groups (8 13C: P  < 0.001, 

Table 1.1, Figure 1.1), with a clear distinction between C3 and C4-based foods. Com and
13 ■cane sugar (C4) had elevated 8  C values (Table 1.1) relative to grains and vegetables (C3, 

Table 1.1). The mean isotopic difference between these groups was almost 13%o and was

consistent with reported 8 13C values for C3 and C4 plants generally (51). Market meats,
11dairy and mixed foods had 8  C values intermediate between C3 and C4-based market 

foods, reflecting com-based feeds or ingredients. Marine fish species had significantly 

higher 8 13C values compared to freshwater species (P < 0.0001, marine 8 13C = -20.4 ± 

1.8%o, freshwater 8 13C = -24.3 ± 3.3).

1.4.2. Sample population

Females were slightly over-represented relative to males in the whole study 

population (54%), the subset of participants with dietary self-report data (59 %), and the 

subset of participants reporting cultural identification (56%, Table 1.2, all P  < 0.01). The 

age distribution of participants with dietary self-report data differed significantly from the 

complete study sample (P < 0.01), with reduced participation by those who were > 60 y. 

The age distribution of participants reporting cultural identification did not differ from 

the complete study sample.



1.4.3. Associations between stable isotope ratios and reported dietary intakes

Nitrogen isotope ratios were significantly correlated with intake o f traditional 

marine foods based on dietary self-report (Table 1.3). Reported intake of total traditional 

and traditional marine foods was highly correlated (Table 1.3). Marine foods accounted 

for 77% energy from traditional sources.

Adjusted carbon isotope ratios were positively correlated with C4-market food 

intake (Table 1.3), as well as total market food intake. Intake of C^based market foods 

was positively associated with total market food intake (Table 1.3). C4 sources accounted 

for 40% of total energy from market foods.

1.4.4. Population level patterns o f  traditional marine food  intake

Mean RBC 8 I5N values reflected a high and variable intake of marine foods 

(Table 2). Marine foods were reported by 82% of people with dietary self-report data 

(n = 188), and mean intake was 210 ± 245 kcal.

We found strong associations between RBC 8 15N values and sex, community 

location and age (Table 1.2). Values o f RBC 8 15N increased with age (P = 0.052, Cl =

0.048 -  0.056, P  < 0.0001), and were higher in coastal communities (P < 0.0001) and 

females (P < 0.0001). There was a community location by age interaction (P < 0.0001), 

as differences in 8 15N values between coastal and inland locations increased with age. In 

the self-report data, we found an increase in intake of marine foods with age (p = 1.003, 

Cl = 1.002 -  1.004, P  < 0.0001), but not community location (P -  0.11) or sex (P =0.09).

Intake of marine foods was positively associated with following a Yup’ik way of 

life, as indicated by nitrogen isotope ratios (P <0.0001) and self-report data (P = 0.016). 

Following a Kass’aq way of life was inversely associated with nitrogen isotope ratios (P 

= 0.0004) and self-reported intake of marine foods (P = 0.45, Table 1.2).
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1.4.5. Population level patterns o f  C4 - based market fo o d  intake

Adjusted RBC carbon isotope ratios reflected a mixed diet of C3 and C4 foods 

(Table 1.2). All participants for whom we have dietary self-report information reported 

consuming market foods (n = 230), and mean intake o f C4-based market foods was 543 ± 

301 kcal.

We found strong associations between sex, age and community location and RBC 

5 13Ca values (Table 1.2). Values of RBC 5 13Ca decreased with age (p = -0.057, Cl = 

-0.062 -  -0.053, P  < 0.0001), and were higher in upriver communities (P  < 0.0001) and 

males (P < 0.0011). There was a community location by age interaction (P  < 0.0223). In 

the self-report data, we did not find any differences in market food intake by sex or 

community location, although there was a significant decrease in intake of market foods 

with age (p = 0.98, P<  0.0001, Table 1.2).

RBC 8 13Ca values were positively associated with following a Kass’aq way of 

life (P < 0.0001, Table 1.2), and inversely associated with following a Yup’ik way of life 

(P<  0 .0001). Self-reported intake of C4-based market foods was inversely associated 

with a Yup’ik way of life (P = 0.0006, Table 1.2), but was not associated with a Kass’aq 

way of life (P -  0.26).

1.5 . D is c u s s io n

Carbon and nitrogen stable isotope biomarkers capture patterns o f traditional 

marine and market food intake in a Yup’ik study population. Foods commonly 

consumed by the Yup’ik population exhibited highly distinct patterns o f carbon and 

nitrogen isotope ratios, with elevated 8 15N and S13C values found in key traditional and 

market foods, respectively. Self-reported intake of these food groups was associated with 

RBC 8 15N and 8 13C a values. These isotope ratios detected demographic and cultural 

variations in both traditional and market food intake known to exist within this 

population (30), as well as some that were undetected by self-reported measures. Stable



isotope markers have the potential to be useful in assessing the health impacts o f dietary 

change in indigenous circumpolar populations, as they impose low participant burden, 

and can be measured with precise, high throughput and inexpensive methods.

Traditional marine foods had significantly elevated 8 l5N values relative to all 

other food groups, causing a l%o increase in RBC 5l3N for each 5% increase in energy 

intake from marine foods. RBC 8 15N measurements showed that marine food 

consumption increased with age, reflecting trends in total traditional food intake 

described for this study population (30), and other circumpolar populations (38, 52, 53). 

RBC 8 15N values also captured differences in traditional marine food intake between 

coastal and inland communities, an effect seen primarily in elders, and a slight increase of 

marine food intake in women relative to men. Self-reported intake of traditional marine 

(this study) or total traditional foods (30) does not vary with community location or sex 

in this population. Thus, stable isotope biomarkers were able to identify patterns of 

traditional food intake that were not evident in dietary self-report data.

Com and cane sugar-based market foods exhibited uniquely high 8 13C values 

relative to all other foods. Animal-based market foods (beef, pork, poultry, eggs and 

dairy) also had elevated 8 13C values, reflecting com in the diet of commercially raised 

animals (34, 35). We refer collectively to these foods as “C^based market foods”. RBC
1 "35 CA values were associated with intake of C4-based market foods, as well as total 

market food intake, with each 8 % increase in energy from market foods causing a 1 %o
13increase in 5 Ca- The carbon isotope ratio has been moderately associated with 

sweetener intake in other US populations (23, 24, 36), however the development of this 

marker is complicated by its concurrent association with animal protein intake (20, 54).

In our study, the fact that multiple market foods are influenced by com likely strengthens
1 3the association between 8  C and market food intake.

While market foods are known to be a significant source of energy to all age 

groups in this study population (39), both self-report and isotope data showed that
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consumption of market foods decreased with age. Adjusted 5 13C values also showed that 

coastal communities consumed slightly less market foods than those inland, and men 

consumed slightly more market foods than women. Both RBC 5 13C a and self-reported 

measures of market food intake were positively associated with a non-native (Kass’aq) 

way of life. As expected, these patterns are the reverse of those found for traditional food 

intake. However, the use of 8 13C a as an independent biomarker for market food intake 

based on sugar cane and com provides an alternative way to assess the nutrition transition 

that, unlike 8 15N, does not require traditional food intake to be marine. Such a biomarker 

could be particularly useful for assessing dietary change in Alaska Native populations 

relying more heavily on traditional foods such as moose and caribou (55, 56), which are 

not distinct from market foods in 8 15N.

The primary limitation of this study was that we compared stable isotope ratios to 

self-reported estimates of traditional and market food intake, which are subject to error 

and biases associated with age, sex and other individual characteristics. These errors may 

have obscured the true relationships between isotopic markers and diet in our study 

population. For example, relationships between 8 15N and EPA were very strong for this 

population (r > 0.8; 17, 18), when compared with the relationship between 8 15N and 

reported marine food intake presented here (r = 0.52). However, this study had several 

unique strengths. The Yup’ik population of Southwest Alaska is culturally and 

linguistically among the most intact of Alaska Native peoples and traditional food use is 

still common (41); therefore, this is an ideal population in which to test markers o f both 

traditional and market foods. Furthermore, the extensive nature of dietary research in this 

population provided an ideal opportunity to identify relevant foods for isotopic sampling 

and to test stable isotope biomarkers within the context of known dietary patterns.

In summary, we have demonstrated that stable nitrogen and carbon isotope ratios 

in RBC indicate use of traditional and market foods in a Yup’ik study population in 

Southwest Alaska. Isotopic biomarkers have great potential due to their affordability, 

their reliability, and their ability to be measured noninvasively and with low burden (17,
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18). Furthermore, because these markers can be measured in stored specimens they have 

the potential to provide baseline data for studies of dietary change over time (16). The 

development of reliable biomarkers o f traditional and market-based food intake will help 

in evaluation of the overall health impacts of dietary change in circumpolar populations
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Table 1.1. Nitrogen and carbon isotope ratios of market and traditional foods'.

Food Group 6 |:>N (%o) (%o)

Subsistence foods

Marine 14.2 ± 3.2a -21.1 ± 3 .4 b>c

Waterfowl 7.3 ± 2.1b -23 .8±3.6c’d

Terrestrial Animals 3.7 ± 4.1b,c -24.5 ± 4.2c,d

Terrestrial Plants -0.3 ± 2.2° -27.4 ± 1.8d

Market foods

Com and Cane Sugar 4.0 ± 0.6b,c -12.4 ± 1.3a

Meat 3.7 ± 1.4b,c -17.2 ± 1.2b

Mixed 1.9 ± 2.3° -21.2 ± 2.2b,c

Dairy 4.5 ± 0.5b’c -21.4 ± 1.3b,c,d

Grains and Vegetables 2.1 ± 1.9° -26.6 ± 2.0d

'Values are mean ± standard deviation, n = 254. Means in a column without a common 
letter differ, P  < 0.05. Means were calculated using the mean isotope ratio for each food 
within the group, given in Supplemental Table 1.

2Carbon isotope ratios are negative, as all samples have less 13C than the standard against 
which they are measured

Includes both marine and freshwater fish species



Table 1.2. Effect of sex, age and community location on 5I5N, 8 i3C a values and self-reported intake of traditional 
marine and C^based market foods in a community based sample of Yup’ik people participating in the Center for 
Alaska Native Health Research study1.

Isotope measures Self-report measures

n
S15N,

%00

813Ca2,

%00
n

Traditional 
marine foods,

% total energy

C4-based market 
foods,

% total energy

Whole DODulation

Total 1003 9.0 ± 1.5 -20.8 ± 1.6 230 13 ±  14 33 ± 14

Sex

Male 460 8.8 ± 1.5 -20.7 ± 1.6 95 12 ± 14 33 ± 15

Female 543 9.1 ± 1.5 -21.0 ±  1.6 135 14 ± 14 33 ±  13

Age,y

1 4 - < 2 0 200 7.8 ± 0 .7 -19.6 ± 0 .8 59 6 ±  9 43 ± 13

21 - < 4 0 374 8.6 ± 1.1 -20.4 ±  1.2 81 13 ± 1 2 35 ± 13

41 -  < 60 303 9.5 ±  1.4 -21.4 ± 1.4 78 18 ±  15 25 ±  11

>60 126 10.7 ±  1.7 -22.8 ± 1 .4 12 21 ± 2 0 21 ± 1 0

UJ
00



Location, %

Coastal 402 9.6 ±1.8 -21.2 ±

Upriver 601 8.6 ±1.1 -20.6 ±

Cultural identification subset

Table 1.2 continued

Total 767 9.0 ±1.5 -20.8 ±

Yup'ik

High 349 9.3 ± 1.6 -21.2 ±

Medium 399 8.7 ± 1.4 -20.5 ±

Low 19 7.8 ± 0.9 -19.6 ±

ss'aq

High 129 8.3 ± 1.2 -20.0 ±

Medium 575 9.0 ± 1.5 -20.9 ±

Low 63 9.7 ± 1.8 -21.5 ±

1.7 88 15 ± 16 34 ±14

1.4 142 12 ± 12 32 ± 14

1.5 216 13 ± 14 33 ±14

1.6 92 16 ± 17 29 ± 13

1.4 118 11 ± 11 35 ±13

1.3 6 2 ± 4 48 ±21

1.3 44 8 ± 9 36 ±13

1.5 159 14 ± 15 33 ± 14

1.7 13 18 ± 14 30 ± 15

Values are mean ± standard deviation
0 11 Carbon isotope ratios are negative, as all samples have less C than the standard against which they are measured



Table 1.3. Relationships between stable isotope biomarkers and self-reported measures of traditional marine and C4- 
based market food intake (n = 230).

P2 Cl Intercept r P

8 i5N ‘ vs Total marine (%) 0.06 0.05-0 .07 -0.4 0.52 <0.0001

Total marine (kcal) vs Total traditional (kcal)2 0.05 0.04 -  0.06 56.7 0.93 <0.0001

5I3CA vs C4 (%) ' 0.05 0.0.4 -  0.06 1.3 0.46 <0.0001

8 I3C a v s Total market (%) 0.05 0.04-0.07 1.9 0.46 <0.0001

C4 (kcal) vs Total market (kcal) 1.55 1.39-1.71 594.6 0.78 <0.0001

y
Indicates that the dependent variables have been transformed; estimates of P are back-transformed for ease of 

interpretation, and are interpreted as proportional increase in the dependent variable for each l%o increase in the 
isotopic independent variable
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Figure 1.1. Carbon and nitrogen isotope ratios of a representative sample o f A) 
traditional and B) market food items reportedly consumed by this Yup’ik study 
population. Only foods with ri> 2 are represented in this figure. Foods are assigned to 
groups, which are abbreviated in the legend as follows: MA, Marine; WF, Waterfowl; 
TA, Terrestrial animals; MI, Mixed; TP, Terrestrial plants; GV, Grains and vegetables; 
D, Dairy; ME, Non-traditional meats; CC, com and cane sugar-based.
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A p p e n d ix

Supplemental Table 1.S1. Stable carbon and nitrogen isotope ratios o f Yup’ik 
traditional and market foods, by isotopic food group1.

Food Name Food Group n 815N 513C

Traditional foods 

Akutaq2 Mixed 3 2.0 ± 1.8 -24.2 ± 4.8

Blackfish3 Marine 1 8.5 -27.8

Dolly varden3 Marine 3 16.1 ±0.4 -19.4 ±0 .2

Flounder Marine 2 14.5 ± 1.0 -20.3 ± 1.3

Halibut Marine 4 17.0 ± 1.3 -17.2 ±0.3

Herring Marine 12 14.5 ±2.1 -20.0 ± 1.0

Herring eggs Marine 5 16.0 ±2.3 -20.0 ± 0.8

King salmon Marine 8 13.2 ±0.6 -22.2 ± 1.4

Burbot3 Marine 2 16.9 ±0.1 -21.6 ± 1.3

Needle fish3 Marine 1 10.2 -25.9

Pike3 Marine 8 10.6 ±2.1 -25.3 ± 2.9

Salmon4 Marine 15 11.3 ± 1.0 -21.3 ± 1.1

Seal Marine 9 15.7 ±2.6 -20.0 ± 2.2

Seal oil5 Marine 3 - -24.5 ± 0.6

Seaweed Marine 1 11.5 -16.0
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Supplemental Table 1.S1 continued

Smelt Marine 4 17.1 ±0.4 -19.7 ±0 .8

Stink fish6 Marine 1 13.1 -23.2

Tomcod Marine 4 18.2 ± 1.0 -18.7 ±0 .6

Trout3 Marine 1 16.5 -18.7

Whitefish3 Marine 2 8.7 ± 1.4 -23.9 ±3 .4

Bear Terrestrial Animals 1 10.8 -21.6

Caribou4 Terrestrial Animals 11 3.2 ± 1.0 -23.4 ± 1.3

Moose4 Terrestrial Animals 6 2.6 ± 1.7 -25.9 ±0.9

Moose fat Terrestrial Animals 1 -1.7 -31.9

Muskox Terrestrial Animals 2 2.5 ± 0.4 -24.5 ± 0.3

Ptarmigan Terrestrial Animals 2 4.6 ± 3.8 -19.8 ±5.3

Beach greens Terrestrial Plants 4 2.6 ±3.5 -27.5 ± 0.7

Blackberries Terrestrial Plants 3 -1.5 ±2.4 -24.8 ± 1.2

Buttercup Terrestrial Plants 4 1.8 ± 1.0 -26.2 ± 0.9

Crowberry5 Terrestrial Plants 1 - -26.2

Mouse food7 Terrestrial Plants 2 -1.6 ± 1.2 -27.2 ± 0.4

Pond plant Terrestrial Plants 1 -0.6 -31.0

Salmonberries Terrestrial Plants 5 1.1 ± 1.0 -25.3 ± 0.9

Sourdock Terrestrial Plants 1 2.8 -28.9
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Supplemental Table 1.S1 continued

Stinkweed Terrestrial Plants 1 -2.7 -29.3

Tundra tea Terrestrial Plants 3 -3.6 ±2.5 -27.1 ± 1.0

Unknown fruits Terrestrial Plants 1 -0.8 -28.1

Crane Waterfowl 1 6.8 -22.9

Duck Waterfowl 1 11.1 -20.5

Goose Waterfowl 8 7.0 ±4.2 -25.8 ±2.5

Goose gizzard Waterfowl 2 4.7 ±3.1 -24.2 ± 1.7

Swan Waterfowl 3 7.1 ±0.4 -19.9 ±0 .2

Waterfowl (unknown) Waterfowl 1 7.3 -29.5

Market foods

Com chips Com and Cane Sugar 3 3.4 ± 1.4 -14.6 ± 1.2

Diet Soda5 Com and Cane Sugar 1 - -11.4

Ketchup Com and Cane Sugar 3 4.0 -14.3 ± 1.0

Pancake syrup5 Com and Cane Sugar 1 - -11.2

Preserves5 Com and Cane Sugar 1 - -12.8

Soda4’5 Com and Cane Sugar 9 • ’ -  - -11.1 ±0.5

Sugar Com and Cane Sugar 3 4.6 -11.8 ± 0.1
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Supplemental Table 1.S1 continued

Sugar-based candy5 Com and Cane Sugar 1 - -12.1

Tang4,5 Com and Cane Sugar 4 - -12.0 ± 0 .4

Cheese Dairy 1 4.9 -22.3

Milk Dairy 6 4.1 ±0.3 -20.5 ± 1.2

Bread Grains and Vegetables 2 1.5 ± 1.9 -24.3 ± 0.4

Cakes and cookies Grains and Vegetables 2 2.9 ± 1.4 -26.0 ± 1.7

Cereals Grains and Vegetables 3 1.4 ±2.6 -25.3 ±0.5

Condiments8 Grains and Vegetables 3 2.9 ±2.7 -27.5 ± 2.5

Honey Grains and Vegetables 1 5.0 -25.8

Margarine Grains and Vegetables 1 1.6 -30.8

Fruits Grains and Vegetables 4 3.5 ± 0.6 -23.8 ± 2.9

Vegetables Grains and Vegetables 4 0.4 ± 2.5 -25.1 ±0 .9

Nuts Grains and Vegetables 1 -0.5 -27.7

Oils ' Grains and Vegetables 3 -2.6 -28.8 ± 1.4

Pasta4 Grains and Vegetables 3 1.8 ±0.2 -24.6 ± 0.5

Pilot cracker4 Grains and Vegetables 3 3.4 ±0.3 -27.3 ± 0.6

Potato chips Grains and Vegetables 3 3.7 ± 1.7 -26.9 ± 1.3

Rice4 Grains and Vegetables 6 2.9 ±2.1 -26.8 ± 0.4
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Supplemental Table 1.S1 continued

Vegetable shortening4,5 Grains and Vegetables 3 - -30.1 ±0.1

Beef4 Meats 4 5.2 ± 1.2 -17.0 ±4 .4

Chicken4 Meats 2 1.9 ±0.9 -17.2 ±0 .8

Eggs Meats 1 5.0 -18.5

Pork Meats 3 3.2 ± 1.2 -15.3 ±0.5

Turkey4 Meats 2 3.0 ±0.3 -17.9 ±0 .7

Candy Mixed 2 -1.8 ±8.0 -21.6 ±2 .6

Canned fruits Mixed 1 3.9 -22.8

Creamer5 Mixed 3 - -19.7 ±2 .0

Ice cream Mixed 1 4.6 -20.9

Kool aid Mixed 1 3.4 -24.7

Mixed dish Mixed 2 2.0 ±0.4 -21.7 ±2.8

Sweetened/com cereals Mixed 3 0.6 ±3 .0 -17.3 ±2.5

Values are mean ± standard deviation

2 “Akutaq” is a traditional food, which is now commonly made with a mixture o f market 
and traditional ingredients (vegetable shortening, sugar, and traditional or market fruits), 
and has therefore been classed as a “mixed” food item. It was traditionally made with 
seal oil or blubber.

3These fish species are known to live and feed completely, or partly in freshwater 
habitats.

4Isotope ratios for 42 of these food samples have been previously reported (28).

5 Samples did not contain nitrogen, or contained too little nitrogen for accurate 
measurement.



6“Stink fish” is fermented fish.

7 “Mouse food” are rodent caches of edible seeds and roots that are harvested from the 
tundra.

8 “Condiments” includes items such as mayonnaise, mustard and soy sauce that do not 
contain large amounts of com or cane sugar



C h a p t e r  2 . R e l a t io n  b e t w e e n  s t a b l e  is o t o p e  r a t io s  in  h u m a n  r e d  b l o o d

CELLS AND HAIR: IMPLICATIONS FOR USING HAIR ISOTOPIC VALUES AS A BIOMARKER 

OF EICOSAPENTAENOIC ACID AND DOCOSAHEXAENOIC ACID1

2.1 . A b s t r a c t

Background: The nitrogen isotope ratio (expressed as 815N) of red blood cells (RBC) is 

highly correlated with RBC long chain omega-3 (n-3) fatty acids eicosapentaenoic acid 

(EPA) and docosahexaenoic acid (DHA) in Yup’ik people. Because 8,5N can also be 

measured in hair samples, it could provide a non-invasive, retrospective biomarker for 

EPA and DHA intake.

Objective: We investigated the agreement between 515N in hair and RBC, and then 

evaluated the relationships between hair SI5N and RBC EPA and DHA. We also 

evaluated the agreement in carbon isotope ratios (5 C) between hair and RBC, as 5 C 

has also been proposed as a dietary biomarker in certain populations.

Design: We assessed relationships between hair and RBC 815N and 813C in a community- 

based sample of 144 Yup’ik participants, and examined the correlations between 815N 

and RBC EPA and DHA in a subset of these participants {n =44).

Results: We demonstrated a 1:1 relationship with good agreement between hair and RBC 

815N (r = 0.91) and 813C (r = 0.87). Hair isotope ratios were elevated over RBC by 1.5%o 

for 8 15N and 2.3%o for 8 13C. There were strong correlations between hair 8 15N  and RBC  

EPA and DHA (r = 0.83 and 0.84).
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Conclusions: These results support the use of hair 815N values as a biomarker of EPA 

and DHA intake. Because hair collection is non-invasive and the samples require no 

special processing, studies o f EPA and DHA intake in large populations could use 

biomarkers rather than self-report to assess these fatty acids.

2.2 . In t r o d u c t io n

Naturally occurring variations in stable isotope ratios are gaining attention for 

their potential to serve as unbiased biomarkers o f diet (1-4). Recently, the nitrogen 

isotope ratio (expressed as 815N) of red blood cells (RBC) was shown to be highly 

correlated with RBC omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), and validated as a biomarker o f EPA and DHA intake in a 

Yup’ik study population (4). Values o f 8 15N act as a biomarker for these omega-3 fatty 

acids in this population because both are elevated in marine subsistence foods (3), and 

these foods are an important component of the traditional diet (5). Because measurement 

of RBC 815N is inexpensive and highly accurate, it is ideal for large-scale 

epidemiological studies of EPA/DHA intake and disease in Alaska Native people. 

However, sampling blood is invasive and processing and storing samples is expensive. 

Here we investigate whether 815N in hair is equally valid as a biomarker o f RBC 

EPA/DHA, thus allowing measurement to be entirely non-invasive. Isotopic markers in 

hair have an additional advantage over blood: as hair is grown continuously, hair 

provides a continuous record of the biomarker back through time, facilitating analysis o f 

dietary seasonality or annual change.

i c

Stable isotope ratios of nitrogen (8 N) and carbon (8 C) have also been used as 

markers of animal protein intake (1, 6, 7) and traditional food intake in Greenland 

Eskimos (3), Amazonian Indians (8) and Gidra-speaking Papuans (9). In these studies, 

isotope ratios were measured in either hair or fingernails, and the isotopic relationship 

between these tissues is well understood (7, 10). Yet several recent studies report stable
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isotope ratios in blood only (4, 11, 12), and the relationship between isotope ratios in 

human blood and hair has not been characterized. Thus, an understanding of how these 

markers are related will facilitate comparison of isotopic markers among these and future 

studies, especially where investigations take advantage of blood collected from clinical or 

epidemiological studies (11). However, we note that 513C is not related either to animal 

protein intake or intake of marine foods in our population (4).

Here we examine the relationship and agreement between stable isotope ratios 

(815N and 8I3C) in hair and RBC from 144 participants in the Center for Alaska Native 

Health Research I (CANHR I) study (13). We also investigate the relationships between 

hair 815N and RBC EPA and DHA in a subset o f 44 participants. RBC EPA and DHA 

vary with EPA and DHA intake, and are validated biomarkers for these important omega- 

3 fatty acids (14-16). The CANHR I study population is ideal for testing the relationship 

between hair SI5N and because participants have widely varying levels o f EPA and DHA 

intake, depending on the degree to which individuals adhere to a traditional, marine- 

based diet (5, 17).

2 .3 . S u b je c t s  a n d  m e t h o d s

2.3.1. The CANHR population

Data are from the CANHR I study, a cross sectional, community-based 

participatory research study of biological, genetic, nutritional, and psychosocial risk 

factors for obesity and related disease in Yup’ik people. Between 2003 to 2005, 1003 

men and women, ages 14 and older, were recruited from 10 communities in Southwest 

Alaska, as described in detail elsewhere (13, 18). At entry into the study, participants 

completed an extensive interviewer-administered questionnaire covering demographic 

characteristics, economic status, ethnicity, and medical history. Diet interviews, body 

measurements, blood pressure and biological samples were also collected. The



CANHR I study was approved by the University of Alaska Institutional Review Board, 

the National and Area Indian Health Service Institutional Review Board, and the Yukon- 

Kuskokwim Health Corporation Human Studies Committee.

2.3.2. Study sample

Our study sample was drawn from the last three communities to participate in the 

CANHR I study, because these were the only CANHR I participants from whom both 

hair and blood samples were available. O f 210 participants from these three 

communities, 144 were included in this study based on having hair >3 cm in length.

Blood samples were available for all 144 of these participants. Analyses of RBC fatty 

acids were conducted for study participants from the first of these three communities, n = 

44. Comparisons between hair 615N and RBC EPA and DHA were based on that sample.

2.3.3. Specimen collection

Blood samples were collected into 10 ml K3 Ethylenediaminetetraacetic acid 

(EDTA)-treated Vacutainer® Whole Blood tubes (15% solution, 0.117 ml, 17.55 mg), 

and centrifuged for 15 minutes at 1000 rpm. The RBC portion was frozen at -12°C, 

transported to the University of Alaska Fairbanks, and placed in an ultra-low freezer at - 

80°C. Aliquots were removed for both stable isotope and fatty acid analysis (below).

Three hairs were collected by either pulling or cutting three hairs from the back of 

the head, and most participants elected to pull their own hair samples. Samples were 

taped with the follicle end labeled and stored in plastic bags. The follicle was removed 

with a razor blade and the 2 cm of hair closest to the scalp was selected for analysis. The 

length of the hair sample was chosen to correspond with average age of RBC in the 

blood, and therefore the dietary inputs recorded by the RBC. Hair grows at a rate of 

approximately 1 cm per month (19-21) and thus our samples were expected to be
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reflective of the last two months of intake. RBC have a lifespan of approximately 90 - 

120 days (22-24) and a mean age of -50  days (23). Therefore, the hair sample bracketed 

the time when the majority of RBC were synthesized.

2.3.4. Stable isotope analyses

Aliquots of RBC (250 pi) were autoclaved for 20 minutes at I21°C to destroy blood- 

bome pathogens. Samples were then apportioned into 3.5 x 3.75 mm tin capsules and 

dried to a final mass of 0.2 - 0.4 mg. Hair samples were cleaned with triplicate 30 minute 

rinses in 2:1 methanol chloroform. Hairs were chopped into small pieces, placed into 11 

x 8 mm tin capsules and oven dried at 50°C for 24 hours. The resulting sample masses 

ranged from 0.1 to 0.6 mg. Capsules were crushed into balls and loaded into an 

autosampler for isotope analysis.

Blood and hair samples were analyzed for carbon and nitrogen isotope ratios at 

the Alaska Stable Isotope Facility, using continuous-flow isotope ratio mass 

spectrometry. A Costech ECS4010 Elemental Analyzer (Costech Scientific Inc., 

Valencia, CA) combusted samples to CO2 and N2 gas, which were carried in a constant 

flow of helium to a Finnigan Delta Plus XP isotope ratio mass spectrometer via the 

Conflo III interface (Thermo-Finnigan Inc., Bremen, Germany). Data are presented in 

the accepted delta notation as 8X = ( R sampie -  R standard)/(R standard) • 1000%o, where R  is the 

ratio of heavy to light isotope (for both nitrogen and carbon) and the internationally 

recognized standards are atmospheric nitrogen and Pee Dee Belemnite (PDB) for carbon
1C  |

(25). We concurrently weighed and ran multiple peptone standards (8 N  = 7.0%o, 8 C = 

-15.8%o) to assess analytical accuracy and precision; these gave values o f 8 15N  = 7.1 ±  

0.3%o (SD) and 8 13C = -15.7 ± 0.2%o (SD). The purity of the samples was assessed 

through the molar C: N  ratios, which were 3.0 ±  0.1 for hair and 3.3 ± 0 .1  for blood. The
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C: N ratios for hair were consistent with pure keratin values from other published studies 

(7, 10, 26). The C: N ratios for RBC have not been previously published; however, the 

small deviations o f these values reflected a lack of contamination.

2.3.5. RBC fatty acid measurements

The RBC fatty acids were analyzed at the Fred Hutchinson Cancer Research 

Center in Seattle, WA, as described in detail elsewhere (4). Fatty acids were extracted 

from RBCs using modified methods o f Rose and Oklander (27). The lipid extract was 

transesterified and processed according to Lepage and Roy (28). Fatty acid methyl esters 

(FAMEs) were recovered in hexane, dried under nitrogen (40 °C) and re-dissolved in 100 

ml hexane for gas chromatography.

FAMEs were injected in a split mode (1:50) and were separated using an SP-2560 

capillary column (100 m x 0.25 mm x 0.2 mm) (Supelco, Bellefonte, PA) on a Hewlett- 

Packard, Model 5890B gas chromatograph (GC-FID) (now Agilent, Santa Clara, CA). 

This method allowed the resolution of 46 different membrane fatty acids. The accuracy 

of the chromatographic system was monitored using commercial standards (GLC-87, 

NIH-D, and NIH-F, NU-CHEK, Elysian, MN). The precision of the RBC fatty acids was 

monitored with repeat analysis of an in-house RBC quality control pool that was included 

in each batch of 23 study samples. The coefficient o f  variation for EPA (20:5n-3) was 

2.7% and for DHA (22:6n-3) was 2.0%. Fatty acid composition is reported as a weight 

percent of the total RBC fatty acids.

2.3.6. Statistical analyses

All statistical analyses were performed using JMP version 8 (SAS Institute, Cary, 

NC). Differences between sex and age strata were assessed using analysis of variance 

models (ANOVA) using the Tukey Kramer HSD test for individual comparisons.
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Relationships between isotope signatures in hair and blood, and between isotope 

signatures and fatty acid biomarkers were assessed using correlation analysis (presented 

as Pearson’s r). Agreement between hair and blood isotope ratios was evaluated as the 

mean and standard deviation of their differences, following Bland and Altman (29). 

Where parametric assumptions were met, we tested the effect o f age and sex on the 

relationship between 815N and fatty acids using a factorial linear model, and described the 

slope of the isotopic relationships between blood and hair with linear regression. 

Normality of residuals was confirmed using the Shapiro-Wilks test, and outliers were 

identified using Mahalobnis Distance > 3. A significance level of 0.05 was used 

throughout analyses.

2.4 . R e s u l t s

Table 2.1 presents the demographic characteristics o f our study population, 

including age, sex and body mass index (BMI) distribution. Because we only collected 

hair samples when hair was > 3 cm in length, women are over-represented in our study 

sample {n = 144) when compared to all CANHR 1 participants from the communities 

presented here (76% vs. 53%, X2 = 30.3, P < 0.0001, Table 2.1). We also present age, 

sex and BMI distributions for samples from the single community for which we also 

measured RBC fatty acids (“fatty acid sub-sample”, n = 44, Table 2.1). The sex, age and 

BMI distributions did not differ between the full isotope dataset and the fatty acid sub­

sample (P > 0.05 in all cases).

1 C  i - i

Table 2.2 gives descriptive statistics for the 8 N and 8 C values of RBC and 

hair, and EPA and DHA in RBC. Mean 815N and 813C values did not differ between 

males and females for either RBC or hair in the full isotope data set. For the fatty acid
1 3subsample females were slightly but significantly higher in RBC 8 C values than males 

(0.4%o; P  = 0 .0 0 6 ). The mean EPA and DHA values did not differ by sex (EPA, P -  

0.77; DHA, P  = 0 .1 7  in the fatty acid subsample).



2.4.1. Relationship between hair and blood isotope values

RBC isotope ratios were very strongly correlated with hair isotope ratios for the 

2 cm of hair closest to the scalp (r = 0.93 for 5,SN and r = 0.81 for 813C, Table 2.3,

Figure 2.1). Hair values were consistently elevated over RBC; however, agreement 

between the measures was very good once this bias was accounted for (mean difference = 

1.5 ± 0.6%o for 515N and 2.3 ± 0.4%o for 513C). Linear regression of isotope values in hair 

against blood gave slopes that were not statistically different from 1.0 (slopes =1.01 for 

8I5N and 0.96 for 5I3C); however, residuals were non-normal due to the influence of 

several outliers (2 outliers from the relationship between blood and hair 8l5N, and 6
I 3outliers from the relationship between blood and hair 8 C). Removal of these outliers 

normalized the residuals and altered slopes to 1.05 for Sl:,N and 1.00 for S13C. Neither 

age nor sex had any effect on the relationship between isotope ratios in hair and blood, 

nor were any interactions significant.

2.4.2. Relationship between isotope values andfatty acids

Both hair and RBC 81:>N values correlated strongly with percentage of EPA and 

DHA in RBC (all r > 0.8 and P < 0.0001; Table 2.3). For both fatty acids, the correlation 

with RBC 81:>N was stronger than with hair 8 15N; however, the 95% confidence intervals 

indicate that this difference was only significant for EPA (Table 2.3). The relationship 

between RBC 8l3N and EPA was linear (slope = 1.03, P < 0.0001; Figure 2.2a), and did 

not differ when controlled for sex and age. The relationship between hair 815N with EPA 

was also linear (slope = 0.87, P  < 0.0001, Figure 2.2b), and was significantly stronger in 

older participants (slope = 0.42 for those <40 years, 0.96 for those >40 years, P3ge = 0.04, 

Bage*hair8i5N= 0.001). No other interactions were significant. As previously observed (4), 

the relationship between RBC DHA and hair and RBC 815N was non-linear (Figures 

2.2c, 2.2d).

55



56

2 .5 . D is c u s s io n

Hair and RBC isotope ratios were tightly correlated in our study population (r =

0.93 for 815N and 0.81 for 813C, n = 144), and showed good agreement. Hair 815N was 

strongly correlated with RBC polyunsaturated fatty acids EPA and DHA in a subset of 

these participants (r = 0.83 and 0.84 respectively, n = 44). The relationships o f fatty 

acids with RBC 815N were stronger than with hair 815N, although the difference was only 

significant for EPA. Because RBC 815N, EPA and DHA are established biomarkers for 

EPA and DHA intakes (4, 30-33) this demonstrates the validity of hair 815N to also serve 

as an intake biomarker for EPA and DHA in this population.

The finding that hair 815N is significantly correlated with RBC EPA and DHA is 

an important development for investigators interested in the impact of EPA and DHA 

intake on health outcomes, especially in Alaska Native people. Hair can be collected 

easily and non-invasively, which makes it an ideal tissue to sample for the large-scale 

epidemiological studies needed to investigate the health consequences o f dietary change 

in this population. An additional advantage of hair is that it grows continuously and does 

not remodel after growth; therefore, it provides a dietary record over the length of the 

participant’s hair (approximately 1 month / cm of hair). High resolution sampling along 

the length of hair provides the opportunity to assess seasonal variation in EPA and DHA 

intake, something that has not been addressed in this population and which is likely to 

show important variation. Omega-3 fatty acids and EPA/DHA in particular, have been 

long suspected to protect against diabetes and other chronic disease in northern 

indigenous populations (30-33). However, until recently there have been no longitudinal 

studies to clearly link diet to disease incidence in Alaska Native people. This biomarker 

will greatly enhance our ability to detect these associations.

Stable isotope analysis of hair has been a widespread tool for detecting dietary 

patterns in anthropological and archaeological studies (26, 34, 35) and has been 

increasingly applied to modem populations (1, 3, 6-8, 10, 36, 37). However, specimens
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collected for medical or epidemiological studies are likely to include blood but not hair 

(4, 11). This study is the first to measure isotope ratios in both blood and hair and 

describe the relationship between 8!5N and 513C values in the two tissues. For both 

isotopes, the relationship between hair and blood was 1:1, with hair enriched relative to 

blood by 1.5 ± 0.6 %o for 8,5N and 2.3 ± 0.4%o for 5 I3C. Animal studies have also 

demonstrated isotopic enrichment of hair over blood (38-40); but the magnitude of these 

enrichments can vary taxonomically. Having this relationship determined for a human 

population provides a basis for comparison between human studies based on one or the 

other tissue. However, further work is necessary to evaluate how universal these 

relationships are among other human populations.

Although correlations between blood and hair stable isotope ratios were strong 

and followed the expected 1:1 relationship, we found outliers in both the relationships 

between blood and hair 815N and S13C (particularly for carbon, for which approximately 

4% of observations were classified as outliers). It is possible that these outliers represent 

analytical errors, although we consider this unlikely given the accuracy and precision of 

the isotope analyses. Alternatively, the comparatively poor isotopic match between hair 

and blood for a small number of samples may result from the fact that approximately 10­

15% of head hairs are in the telogen phase and not growing (41), and we only sampled 2­

3 hairs in our analysis. The diet reflected by non-growing hairs would not be 

synchronized with that of the blood if  a participant’s diet varied over time, as might be 

expected for participants relying on seasonal subsistence foods. We recommend that 

future studies homogenize at least ten head hairs to minimize potential error caused by 

non-growing hairs.

There are several limitations to this study. The study sample was not 

representative of the underlying population because hair length >3cm was required. The 

sample size for comparisons with fatty acids was small; however, there was still 

sufficient power to detect a modest difference in correlation between hair and blood 8 1:>N 

and EPA. Finally, the range of DHA and EPA intakes in Yup’ik people is far broader
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than most populations, and thus findings may differ in populations with a more restricted 

intake of marine foods.

In summary, we found that hair 815N correlated strongly with the omega-3 fatty 

acids EPA and DHA measured in RBC. We propose that hair d 15N can be used a non- 

invasive, inexpensive, high throughput biomarker to estimate EPA and DHA intake. Non- 

invasive sampling methods decrease participant burden and facilitate inclusion of 

biomarker data in a broad range of health studies. We also demonstrated very tight 

correlation and good agreement between hair and RBC 815N and 813C. These findings 

will enable meaningful comparisons to be made between studies sampling these different 

tissues. There have been recent calls for the development o f biomarker-based methods of 

diet investigation (42-44). This study helps advance the application of stable isotope 

measurements to dietary assessment.
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Table 2.1. Age, sex and BMI distribution of all participants recruited by CANHR in the 
three study communities (n = 210), the set of participants with hair isotopic 
measurements (n = 144) and the sub-sample of participants with fatty acid data (n = 44).

All CANHR 
participants

(n -  210)7

Hair isotope 
dataset

(n = 144)

Fatty acid 
sub-sample

(n = 44)

Age (y) 37.3 ± 17.7^ 39.4 ± 18.0 37.3 + 17.2

14- 24 yr (%) 17 29 36

25- 39 yr (%) 43 26 21

40-54 yr (%) 29 27 27

55+ yr (%) 11 18 16

Sex

Male (%) 47 24 32

Female (%) 53 76 68

Body Mass Index (kg/m )

<18.5 (%) 1 1 -

20-25 (%) 38 35 43

25-30 (%) 33 34 25

> 30(%) 28 30 32

1 From the 3 communities sampled for this study

2 Mean ± SD (all such values)

3 The distribution of BMI, age and sex is not significantly different between the two study 
subsamples using the Chi-squared test (in all cases P  > 0.05), although both include 
significantly more women than the recruited study population (P < 0.0001).
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Table 2.2. Means and distributions o f biomarker variables for the hair isotope dataset of 
participants {n = 144) and the fatty acid sub-sample (n = 44).

Hair Blood

Hair isotope dataset n = 144

5I5N (%o) Mean±SD 10.8 ± 1 .9 9.3 ± 1.7

Range 8.5 7.0

813C (%o) Mean ±SD -17.5 ±0.7 -19.8 ± 0 .6

Range 3.5 3.2

Fatty acid sub-sample n = 44

815N (%o ) Mean ±SD 10.4 ±1.8 9.1 ± 1.7

Range 7.2 6.4

513C (%o ) Mean ±SD -17.7 ±0.6 -19.9 ± 0 .6

Range 2.7 2.6

EPA (%) Mean ±SD - 2.7 ± 2.0

Range - 6.3

DHA (%) Mean ±SD - 6.1 ± 1.6

Range _ 5.8
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Table 2.3. Pearson product-moment correlations between isotope values in blood and 
hair (n = 144), and between fatty acids and 815N values in hair and RBC (n = 44)’.

Pearson’s

r

Lower 

95% Cl

Upper 

95% Cl

Hair isotope dataset (n = 144)

RBC 515N vs. hair 815N 0.93 0.91 0.95

RBC 513C v s . hair 513C 0.81 0.75 0.86

Fatty acid sub-sample (n = 44)

RBC 815N vs. hair 815N 0.91 0.85 0.95

EPA vs. hair 815N 0.83 0.71 0.91

EPA vs. RBC 8l5N 0.92 0.87 0.96

DHA vs. hair 815N 0.84 0.73 0.91

DHA vs. RBC 815N 0.90 0.82 0.94

1 P < 0.0001 for all coefficients
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Figure 2.1. The relationships between isotope ratios in RBC and hair, for (A) 515N and 
(B) 8i3C, n = 144. Open symbols denote samples identified as outliers by Mahalobnis 
Distance > 3.0; these were removed for linear regression and calculation of slope. 
Nitrogen and carbon isotope ratios are presented in delta notation as 8X = ( R sampie -  

R standard )/(R standard ) ' 1 0 0 0 % o ,  where R is the ratio of heavy to light isotope and standards 
are Air N for nitrogen and PDB for carbon. Carbon isotope ratios are negative, as they 
contained less ,3C than the standard.
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Figure 2.2. RBC and hair §I5N were significantly correlated with RBC fatty acids EPA 
and DHA, n = 44, all P  < 0.0001. Correlation coefficients are given in Table 2.3.
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C h a p t e r  3 . C a r b o n  a n d  n it r o g e n  is o t o p e  r a t io s  p r e d ic t  in t a k e  o f

SWEETENERS IN A YUP’IK STUDY POPULATION1

3 .1 . A b s t r a c t

The carbon isotope ratio (813C) is elevated in com- and cane sugar-based foods, 

and has recently shown associations with sweetener intake in multiple US populations. 

However, a high carbon isotope ratio is not specific to com- and sugar cane-based 

sweeteners, as other foods, including meats and fish, also have elevated 5l3C. This study 

examines whether the inclusion of a second marker, the nitrogen isotope ratio (5I5N), can 

control for confounding dietary effects on S13C and improve the validity o f isotopic 

markers of sweetener intake. The study participants are from the Yup’ik population of 

Southwest Alaska and consume large and variable amounts o f fish and marine mammals, 

known to have elevated carbon and nitrogen isotope ratios. Sixty eight participants 

completed four, weekly 24-h recalls followed by a blood draw. Red blood cell (RBC) 

8l3C and 815N were used to predict sweetener intake, including total sugars, added sugars 

and sugar-sweetened beverages. A model including both 8I3C and 815N explained more 

than three times as much of the variation in sweetener intake than did a model using 813C 

only. Because the carbon and nitrogen isotope ratios are determined simultaneously in a 

single, high-throughput analysis, this dual isotope marker provides a simple method to 

improve the validity of stable isotope markers o f sweetener intake with no additional 

cost. We anticipate that this multi-isotope approach will have utility in any population 

where a stable isotope biomarker is elevated in several food groups, and there are 

appropriate “covariate” isotopes to control for intake of foods not of research interest.

1 Nash, S.H., Kristal, A.R., Bersamin, A., Boyer, B.B., O’Brien, D.M. 2013 Carbon and nitrogen stable 
isotope ratios predict intake of sweeteners in a Yup ’ ik study population. The Journal o f  Nutrition 143:161­
65.
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3 .2 . In t r o d u c t io n

There is growing consensus that alternatives to self-reported food intake based on 

objective biomarkers are needed to more validly study associations of diet and chronic 

disease risk (1-3). Although most dietary biomarkers are based on concentrations of 

micronutrients in blood or other tissues (4), we and others have shown that naturally 

occurring variations in stable isotope ratios can also be used as objective measures o f diet 

(5-9). We are developing stable isotope biomarkers to study associations of diet with 

chronic disease risk in the Yup’ik population of Southwest Alaska. Our previous work 

with this population has focused on the nitrogen isotope ratio (8I5N) as an indicator of 

traditional marine food intake (8, 10); however, we have also shown associations between 

the carbon isotope ratio (8I3C) and intake of non-traditional (market) foods (7). Here, we 

consider whether isotope ratios can be used to indicate intake of sweeteners in this 

population.

Previous studies in other US populations have shown positive associations of the 

carbon isotope ratio with reported sweetener intake (6, 9), based on the elevated 813C 

values of com- and cane sugar-based sweeteners (11). However, the carbon isotope 

marker is not specific to sweetener intake because 8IjC values are also elevated in other 

foods. For example, commercial meat products have elevated 813C values because 

livestock in the US agricultural system are commonly raised on com-based feed (12, 13). 

Furthermore, foods deriving from the marine environment have elevated 8 I3C values 

because oceanic bicarbonate, the source of carbon to marine foodwebs, is enriched in 13C 

relative to atmospheric CO2 (14, 15). In the Yup’ik population, fish and marine 

mammals are an important contributor to the traditional diet (16), and one of the primary 

contributors o f elevated 13C (7). Intake of traditional marine foods can be measured 

using the nitrogen isotope ratio (S15N) (8), because fish and marine mammals also have 

elevated SbN values (7). Therefore, we hypothesize that the validity o f the carbon 

isotope biomarker of sweetener intake will be increased by using a multivariable model 

that controls for marine food intake using S,5N. Here, we test this hypothesis in a
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community-based sample o f 68 Yup’ik people that completed four, weekly 24-h recalls 

followed by a blood draw. Carbon and nitrogen isotope ratios are determined 

simultaneously from a single sample; therefore, this method could provide a simple and 

inexpensive improvement to isotopic biomarkers of sweetener intake.

3 .3 . M a t e r ia l s  a n d  m e t h o d s

3.3.1. Participant recruitment and procedures

Data are from the Center for Alaska Native Health Research Negem Nallunailkutaa 

(“Foods’ Marker”) study. This study was approved by the University o f Alaska 

Fairbanks Institutional Review Board, and the Yukon-Kuskokwim Health Corporation 

Human Studies Committee.

Between 2008-2009, a community-based sample of 68 participants aged 14-79 

were recruited from two coastal communities in Southwest Alaska. At entry into the 

study, participants completed a demographic questionnaire and the first o f four 24 h 

recall dietary interviews (24HR). Three more dietary interviews were conducted over the 

next 4 wk. Biological samples were collected at least 2 wk after the completion o f the 

final dietary interview, so that the average age of RBC would match the period during 

which dietary interviews were conducted (17-19).

3.3.2. Assessment o f  dietary intake

24HR were collected from each participant by certified interviewers using 

algorithm-driven, computer assisted software [Nutrition Data System for Research 

(NDSR) software 2008; University o f Minnesota, Minneapolis, MN]. The majority o f 

interviews were completed in person (93%, n = 261); some participants completed either 

one (n -  15) or two (n = 2) interviews over the telephone. Participants were asked to 

recall all food and beverages consumed the day prior to interview using a multiple pass
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approach. For accuracy, all participants were given portion estimation tools (measuring 

cups, rulers, and food models or portion estimation guides [Fred Hutchinson Cancer 

Research Center, Seattle, WA]). Although most participants were bilingual, a native 

Yup’ik speaker conducted interviews for participants who did not speak English. Dietary 

interviews were, on average, 9 ± 5 d apart, with a minimum o f two days between recalls. 

Most participants (93%) had three weekday recalls and one weekend recall. No recalls 

were excluded due to unreasonable intake (20).

The NDSR food and nutrient database (21) was used to calculate food and 

nutrient intake. In this study, sweetener intake is measured in three ways: as total sugars, 

added sugars, and sugar sweetened beverages. Total sugar intake (g/d) is defined as the 

total sum of all mono- and di-saccharides consumed, and includes primarily fructose, 

glucose and sucrose. Added sugars (g/d) were calculated as the sum of sugars and syrups 

added to foods during food preparation or commercial food processing. Sugar sweetened 

beverage intake was calculated as the sum of servings o f sweetened soft drinks and 

sweetened fruit drinks (servings per d, 8 fl oz (237 ml) per serving).

We also give data on intake of other food items that have elevated 8 13C values, 

including commercial meats (% energy), fish and marine mammals (% energy), and com 

products (g/d). Commercial meats were those purchased from local grocery stores, and 

were distinct from intake of traditional meats and fish and marine mammals. We use 

these terms to refer specifically to traditional foods harvested from the local environment. 

Consumption of market purchased fish (i.e., tuna) was minimal: among the nine 

participants reporting market fish, consumption was on average 36 ± 35 kcal/ d. Com 

products included whole com, and other foods made from whole com, including popcorn, 

com chips, and com tortillas.
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3.3.3. Stable isotope analysis

RBC from fasted blood samples were pipetted into tin capsules, autoclaved and 

prepared for isotopic analysis as previously described (7). Neither autoclaving nor the 

use of Ethylenediaminetetraacetic acid (EDTA) tubes affects RBC carbon or nitrogen 

isotope ratios (22). Samples were analyzed at the Alaska Stable Isotope Facility by 

continuous-flow isotope ratio mass spectrometry, using a Costech ECS4010 Elemental 

Analyzer (Costech Scientific Inc., Valencia, CA) interfaced to a Finnigan Delta Plus XP 

isotope ratio mass spectrometer via the Conflo III interface (Thermo-Finnigan Inc., 

Bremen, Germany). The conventional means of expressing natural abundance isotope 

ratios is as delta values in permil (%o) relative to international standards as 8X = (Rsampie -  

Rstandard)/(Rstandard) • 1000%o (23). Here, R is the ratio o f heavy to light isotope ( ,5N /14N or 

13C/12C). The standards are Vienna PeeDee Belemnite (V-PDB) for carbon and 

atmospheric nitrogen for nitrogen. To assess analytical precision, an internal working 

standard was analyzed for every ten samples; precision was measured as the standard 

deviation of these analyses (0.2%o). Because biological samples from this study have a 

lower 13C/12C than V-PDB, 813C values are negative. 813C values are hereafter 

abbreviated as 8I3C, and 815N values are abbreviated 815N.

3.3.4. Statistical analyses

The following dietary intake variables were log transformed for analyses: total sugars 

(g/d), added sugars (g/d), sugar sweetened beverages (servings/d+1), and com products 

(g/d+1). Because of known relations between age and dietary patterns (7, 24) we tested 

whether sex, body mass index (BMI) and dietary intakes of sweeteners, fish and marine 

mammals, commercial meats and com products differed by age, using chi-squared and 

one-way analysis of variance. We examined whether foods with elevated isotope ratios 

were independently associated with RBC 513C and 8I5N using multiple regression models 

where the isotope ratios were the dependent variables. We report both standardized and
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unstandardized beta coefficients for these models. To test whether a model using both 

813C and 8I:>N was a better predictor of sweetener intake than a model using 8 I3C only, 

we used linear regression models. Because the dietary dependent variables were log- 

transformed for analyses, the beta-coefficients o f these models were back transformed for 

ease of interpretation; these are interpreted as percentage change in the dietary variable 

for every \%o change in isotope ratio. Means are presented ± standard deviation (SD), 

and statistical significance was set at two-sided a  = 0.05. Statistical tests were performed 

using JMP version 8 (SAS Institute, Cary, NC).

3 .4 . R e s u l t s

T a b le  3.1 gives distributions of sex, and means of BMI, isotope ratios, and 

dietary intake measures by age. The study sample ranged in age from 14 to 79 y (mean = 

40 y ± 18) and was evenly divided between men and women. BMI and diet differed 

substantially by age. Mean BMI and intake of fish and marine mammals, protein and fat 

increased with age. Intake of total sugar, added sugars, sugar sweetened beverages, 

commercial meats and carbohydrates decreased with age. There was no association of 

age with intake of com products. There was a positive association of 8l3N with age, but 

no association with S13C. There was no association between RBC 813C and 815N (r =

0.12, P = 0.35).

T a b le  3 .2  gives associations of 8 13C and 815N with foods that are known to have 

elevated isotope ratios. RBC 8 C was independently associated with total sugar, fish 

and marine mammals, and commercial meat intake. RBC 813C was not associated with 

intake of com products, which was low in this population. There were similar results 

when total sugar was replaced with either added sugars or SSB in the model. RBC 8l3N 

was strongly associated with intake of fish and marine mammals, but not commercial 

meats.
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Table 3.3 compares two models to predict total sugar, added sugar and SSB 

intake. The first model is based on 813C alone, as has been proposed elsewhere (6, 9).

The second model is based upon 813C and 815N, to account for the contribution of 

elevated 8I3C from fish and marine mammal intake. For all models predicting sweetener 

intake based on 8 I3C, the amount o f variance explained and the beta-coefficient for 813C 

were increased markedly with the addition of 815N as a covariate. The effect of adding 

815N was most striking for the model to predict total sugar intake, in which the amount of 

variance explained by the model (R2) increased from 6% to 48%, and the beta-coefficient 

increased from 28% to 39% change in total sugar intake (g/d) per 1 %o change in the 

carbon isotope ratio. Figure 3.1 shows the relationship between reported total sugar 

intake and the predicted values from a regression model using both 813C and 815N.

3.5. D is c u s s io n

This study evaluated a new approach for using isotope ratios to assess intake of

com- and cane sugar-based sweeteners in a Yup’ik study population. It expanded upon a

previously proposed method based on 813C alone (5, 6, 9, 11), which is subject to

confounding due to the elevated 813C of foods other than sweeteners. By using 815N as a

covariate to control for fish and marine mammal intake, the variability in sweetener

intake explained by this marker increased substantially, to a maximum of 48% for total

sugars. This improvement likely has two causes in this Yup’ik study population: first, by
11factoring out the significant effect of high fish and marine mammal intakes on 8 C, and 

second, because of a strong, age-related diet pattern in this population, in which intakes 

of fish and marine mammals and sweeteners are inversely correlated. However, because 

815N was not associated with commercial meat intake in this study population, this
1 Tadjustment is unable to account for the effect o f commercial meat intake on 8 C. These 

results support the use of a dual isotope model using both 8 13C and 815N as a valid 

measure of sweetener intake in the Yup’ik population, and suggest a candidate marker of
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sweetener intake based on both 513C and 81:5N for further evaluation in the general US 

population.

The dual isotope model of sweetener intake presented in this study is an example 

of a more generalizable approach to using isotopic signatures as dietary biomarkers. 

Where a stable isotope biomarker is elevated in several food groups, it may be possible to 

use one or more different “covariate” isotopes to control for intake of foods not of 

research interest. These multiple isotope models can then be used to generate a 

predictive equation for estimating dietary intake. However, these equations will require 

calibration in each target population, because both the isotopic ecology of the diet and the 

underlying dietary patterns driving tissue isotope ratios will differ by population. For 

example, in the Yup’ik population 5 15N is associated with intake of fish and marine 

mammals but not commercial meats, because fish and marine mammals have higher 8I5N 

than commercial meats and their intakes are inversely associated. In populations that 

consume relatively little fish, 815N is positively associated with meat intake (25, 26), 

because meats have elevated 815N relative to other commercial foods (27, 28). Thus, in 

the general US population we anticipate that 8i5N  will improve 813C-based biomarkers of 

sweetener intake by controlling for the significant effect of commercial meat intake on 

tissue 5I3C (9). Testing this hypothesis to validate the dual isotope biomarker of 

sweetener intake will be the next step in the development o f stable isotope biomarkers in 

the general US population.

Existing predictive biomarkers of sweetener intake, 24-h urinary sugars, provide 

valid and reliable measures of absolute sweetener intake (29); however, the isotopic 

biomarkers presented in this study have several practical advantages over these measures. 

Stable isotope ratios can be inexpensively measured in many biological samples, 

including RBC (7, 8), serum (9, 30), hair (10, 31), nails (31, 32), and urine (33). These 

tissues incorporate dietary information over the period of time when they were 

synthesized; therefore stable isotope ratios can be informative about intake over the past 

several weeks or months, depending on the tissue analyzed. In contrast, because 24-hr
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to estimate usual intake, which carries substantial participant burden (4). Validation 

studies that compare the performance of our proposed biomarker with these predictive 

markers in a controlled setting are warranted to determine the relative validity of these 

measures.

The primary limitation of this study is that we evaluated the performance of our 

proposed biomarkers against self-reported intakes, which are known to be subject to 

substantial error. Although little is known about factors that may bias dietary self-report 

in the Yup’ik population, the primary factors identified in other populations are sex and 

obesity (34, 35). Neither sex nor BMI were associated with 813C in this study; therefore 

these biases could not explain our results. One limitation of the 5I3C biomarker more 

generally is that it is not associated with intake of sweeteners that are not 13C enriched, 

such as beet sugar, honey and intrinsic sugars found in fruit and dairy products (11). In 

the Yup’ik population, intake of these sugars is low (24); therefore, we demonstrate 

similar associations of 513C with total and added sugars. In the general US population, 

intake of sugars which are not 13C enriched is higher; for this reason, we anticipate that 

associations of 8 C values with total sugar intake will be attenuated, as has been shown 

for serum 8I3C (9). Furthermore, in Europe, where sweeteners are based primarily on 

beet sugar, isotopic markers will not indicate sweetener use.

In summary, this study evaluated a model for estimating sweetener intake based 

on RBC 5i3C and 515N in a Yup’ik study population. This approach requires evaluation 

in other US populations, but we expect its validity to be similar or improved in 

populations with lower fish intake. In addition, controlled feeding studies are needed to 

further validate this biomarker and calibrate how changes in sweetener intake modify 

isotopic ratios. This combined isotopic biomarker will increase our ability to discern the 

role played by sweetener intake in the development o f chronic disease, and to monitor the 

effectiveness of interventions designed to reduce their consumption.
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Table 3.1. Associations of sex, body mass index and measures of dietary intake with age ’’2.

Total < 2 0

Age,^

20 <40 40 < 60 >60

P  for 

trend

n 6 8 1 1 2 2 27 8

Sex, % Female 50 45 54 52 38 0.95

Body mass index, kg/m2 27.1 ±6.4 23.0 ±2.5 25.4 ±5.6 29.2 ± 6.2 31.4 ±9.4 0.0045

8 I3C, % oo -19.8 ±0.6 -19.9 ±0.7 -19.7 ±0.7 -19.8 ±0.5 -20.0 ±0.5 0.52

8 I5N , % o 9.3 ± 1.8 7.5 ± 0.6 8.4 ± 1.1 9.8 ± 1.4 12.3 ±0.8 <0 . 0 0 0 1

Macronutrient intake

Carbohydrate, % energy 44 ± 14 54 ± 6 53 ± 10 40 ± 10 2 2  ± 6 <0 . 0 0 0 1

Protein, % energy 18 ± 6 14 ± 3 15 ± 4 2 1  ± 6 25 ±5 <0 . 0 0 0 1

Fat, % energy 38 ± 9 33 ± 5 33 ± 7 40 ± 7 52 ± 6 <0 . 0 0 0 1

Sweetener intake

Total sugar, g/d 89 136 1 2 0 76 36 <0 . 0 0 0 1

(76, 103) (109,171) (100, 145) (61,95) (2 2 , 58)
Added sugar, g/d 74 115 104 60 30 <0 . 0 0 0 1

(62, 8 8 ) (87, 151) (86,125) (46, 80) (18,51)
SSB, servings/d 1.4 2.3 2 . 2 1 . 0 0.3 <0 . 0 0 0 1

( 1 .1 , 1 .8 ) (1.4, 3.4) (1.6,2.9) (0.7,1.4) (0 .0 , 0 .6 )



Table 3.1 continued

Other foods with elevated13C

Com products, g/d 1 1 28 1 2 9 4 0.50
(8 , 16) (17,45) (7, 21) (5, 16) (2 , 1 0 )

Commercial meats, % energy 1 1  ± 8 13 ± 5 11 ± 7 1 2  ± 8 3 ±3 0.0126

Fish and marine mammals, % 18± 18 5 ± 9 1 0  ± 1 2 2 1  ± 16 46 ±13 <0 . 0 0 0 1

energy__________________.______________________________________________________
Data are presented as mean ± SD, or as geometric means (95% Cl) for log transformed variables

2SSB: Sugar sweetened beverages



Table 3.2. Independent effects of foods which have elevated isotope ratios on RBC SI3C and 8 I5N 1,2,3.

Stable isotope ratio Dietary Variable (3s p (95% Cl) R

8 13C, %oo Total sugar, g/d 0.36** 0.35 (0.09,0.61) 0.26

Fish and marine mammals, % energy 0.46** 1.54(0.52,2.57)

Commercial meats, % energy 0.49** 3.94(1.80, 6.09)

Com products, g/d 0.07 0.03 (-0.08, 0.15)

8 I5N, %o Fish and marine mammals, % energy q 7 2 *** 7.24 (5.13, 9.35) 0.50

Commercial meats, % energy 0 . 0 2 0.49 (-4.55, 5.54)
I I C  M

In these models, 6  N and 8  C were the dependent variables and dietary intake measures the independent variables 

2 Significance of association given as *** PO.OOOl; ** P <0.01; * P <0.05 

Both standardized (ps) and unstandardized (P) beta-coefficients are presented



Table 3.3. Multiple regression analyses comparing prediction of dietary sweetener intake from individual and combined 
isotopic measures',2,3.

Model Isotope ratios, 

%0

Total sugars, g/d 

P 95% Cl R2

Added sugars, g/d 

P 95% Cl R2

SSB, servings/d 

p 95% Cl R2

( 1 ) 5 13C 0.25* 0.00, 0.50 0.06 0.20 -0.08, 0.48 0.03 0.21* 0.00, 0.42 0.05

(2) 8I3C 0.33** 0.14, 0.51 0.48 0.28* 0.04, 0.67 0.33 0.26** 0.08, 0.44 0.31

815N -0 23*** -0.29, -0.16 -0.21*** -0.29, -0.14 -0.15*** ■■0.21, -0.09

'in  these models, 8 I5N and SI3C were the independent variables and measures of sweetener intake the dependent variables 

Slopes have been back transformed for ease of interpretation, and are interpreted as percentage change in sweetener intake for 

every 1 %o change in isotope ratio

Significance of association given as *** PO.OOOl; ** P <0.01; * P <0.05



8 8

Figure 3.1. Associations between reported total sugar intake and predicted total sugar 
intake. Total sugar intake was predicted using the formula ln(Predicted total sugars) = 
13.1 + 0.33(613C) -0.23(5l5N)- This formula was generated based on a model o f reported 
sugar intake using S13C and 8 15N as predictors (Table 3.3).
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C h a p t e r  4 . R e l a t io n s h ip  b e t w e e n  s u g a r  in t a k e  a n d  c h r o n ic  d is e a s e  r is k

FACTORS IN AN ALASKA NATIVE STUDY POPULATION1

4.1 . A b s t r a c t

Background: Sugar and sugar sweetened beverage intake may be causally associated 

with chronic disease risk, either directly or by contributing to obesity. However, 

evidence from observational studies is mixed, which is at least in part due to the error and 

bias inherent in self-reported measures of sugar intake. Objective biomarkers may clarify 

the relationship between sugar intake and chronic disease risk.

Objective: This study tested associations of biomarker-based estimates o f sugar intake 

with body mass index (BMI), waist circumference (WC), and a broad array of other 

physiological and biochemical measures o f chronic disease risk in an Alaska Native 

(Yup’ik) study population. Because obesity is associated with many chronic disease risk 

factors, we investigated whether associations with sugar intake were independent of BMI.

Design: Sugar intake was estimated using a previously calibrated model based on red 

blood cell carbon and nitrogen stable isotope ratios. We used linear regression models to 

test associations of sugar intake with BM, WC, and other chronic disease risk factors in a 

cross-sectional, community-based sample of 1076 Yup’ik participants.

Results: Sugar intake was not associated with BMI or WC. Sugar intake was positively 

associated with blood pressure, triglycerides, insulin, homeostasis model o f insulin 

resistance (HOMA-IR) and leptin and inversely associated with total, HDL cholesterol 

and LDL cholesterol and adiponectin.

1 Nash S.H., Kristal A.R., Bersamin A, Choy K, Hopkins S.E., Stanhope K.L, Havel P.J., Boyer B.B., 
O’Brien D.M. “Relationship between biomarker-based estimates o f sugar intake and chronic disease risk 
factors in an Alaska Native study population”. For submission to: The American Journal o f  Clinical 
Nutrition.
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Conclusions: Sugar intake was independently associated with many risk factors which 

are associated with adverse health effects in this sample of Yup’ik participants. 

Longitudinal studies are required to better understand associations of sugar intake with 

chronic disease incidence.

4 .2 . I n t r o d u c t io n

There has been considerable controversy over whether sugar intake is causally associated 

with chronic disease risk (1), either directly or by contributing to obesity. Intake of a 

high sugar diet is associated with elevated plasma triglycerides (2-4), and consumption of 

high sugar snacks has been experimentally linked with elevated glucose and insulin levels 

(5). Furthermore, many studies have found that sugars consumed in beverage form 

(sugar-sweetened beverages; SSB) are associated with increased body mass index (BMI) 

or body weight, type 2  diabetes and coronary heart disease risk (6 -8 ), as well as chronic 

disease risk factors including dyslipidemia (4, 7, 9, 10), elevated blood pressure (11, 12), 

insulin resistance (13, 14) and markers o f inflammation (8 , 15). However, other studies 

have shown weak or no associations between either sugar or SSB intake and chronic 

disease risk factors (16-18). All observational studies of the association between sugar or 

SSB intake and chronic disease risk factors have relied on self-reported measures of food 

intake, which are subject to substantial error and bias (19,20). Therefore, associations 

are likely attenuated, which may, in part, explain the inconsistency of these findings.

A biomarker of sugar or SSB intake would strengthen inferences from 

observational studies and help to resolve the role of sugar intake in the development of 

chronic disease. Measures of 24hr urinary sugars have recently been validated as 

biomarkers of total and added sugars intake (21-23). However, these measurements 

require multiple urine collections to reliably estimate intake; therefore, they may be 

impractical to collect for large study samples. Alternatively, the carbon stable isotope 

ratio (8 i3C) has been proposed as a low-burden, economical and easy to measure
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indicator of usual sugar intake in several US populations (24-26). We have recently 

validated an improved isotopic model of sugar intake in an Alaska Native (Yup’ik) study 

population (26), which incorporates both the carbon and nitrogen (8 I:,N) isotope ratios. A 

model based on both 513C and 515N is improved because 515N accounts for confounding 

dietary effects on 8 13C; this dual isotope model explained 48% of the variability in 

reported total sugar intake.

The overall objective of this study was to use this dual isotope model to 

investigate associations of sugar intake with chronic disease risk. In this study, we were 

interested in sugar intake from both food and beverages; therefore we examined 

associations of chronic disease risk factors with total sugar intake. Our study sample was 

a community-based, cross-sectional sample of 1076 Yup’ik people. We were interested 

in whether sugar intake was linked to chronic disease risk factors in this study population 

because their intake o f high sugar foods has increased substantially over the last several 

decades (27) and the impact of this increase on Yupik people’s health is unknown. Our 

aims were two-fold. First, we investigated associations of estimated total sugar intake 

with two measures of obesity: BMI and waist circumference (WC). Our hypothesis was 

that sugar intake would be positively associated with both BMI and WC. Second, we 

investigated whether estimated total sugar intake was associated with biomarkers of 

chronic disease risk, independently of BMI. Based on previous studies, we hypothesized 

that sugar intake would be positively associated with blood pressure, fasting triglycerides, 

total cholesterol, C-reactive protein (CRP), fasting glucose and insulin resistance. 

Determining whether sugar intake is associated with BMI and chronic disease risk factors 

may influence recommendations for its consumption by Yup’ik people, and will provide 

additional evidence towards our understanding of the role of sugar intake in the etiology 

of obesity and related chronic diseases.
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4 .3 . M e t h o d s

4.3.1. Participant recruitment and procedures

Data are from the Center for Alaska Native Health Research (CANHR) study, a 

cross-sectional, community-based participatory research study of the nutritional, genetic 

and psychosocial factors affecting obesity and related disease risk in the Yup’ik 

population. This study was approved by the University of Alaska Fairbanks Institutional 

Review Board, the National and Area Indian Health Service Institutional Review Boards, 

and the Yukon-Kuskokwim Health Corporation Human Studies Committee.

Between 2003 and 2012, a community-based sample o f 1510 participants aged 

14-94 was recruited from ten communities in rural Southwest Alaska, as described 

elsewhere (28). At entry into the study, participants completed questionnaires to provide 

information on demographics, medical history and smoking status (current: yes/no). 

Biological samples and anthropometric measurements were also collected.

4.3.2. Study sample

For comparison of isotope-based estimates of total sugar intake with measures of obesity 

and chronic disease risk factors, we excluded 341 participants aged < 19 y, 87 

participants with missing stable isotope measurements, and 6  participants with missing 

BMI measurements. This left a study sample o f n=  1076. However, because data were 

missing for individual risk factors, the sample size for each analysis varied from 783 -  

1039, with the exception of interleukin 6  (IL-6 ) and insulin-like growth factor 1 (IGF- 

1 ), which were available only on a subset o f the first seven communities enrolled in the 

study (n = 360 and 363, respectively). From within these communities, samples were 

balanced across age and sex, as described in detail elsewhere (29, 30).
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4.3.3. Anthropometric and biochemical measurements

Anthropometric measurements, including height, weight and blood pressure were 

measured by trained staff using protocols from the NHANES III Anthropometric 

Procedures Manual (31), as described by Boyer et al. (32). Blood samples were collected 

from participants after a minimum 8 -hour fast, and biomarkers of chronic disease risk, 

including triglycerides (TG), total cholesterol, HDL cholesterol (HDL),LDL cholesterol 

(LDL), adiponectin, blood glucose, Hemoglobin A le  (HbAlc), insulin, leptin, ghrelin, 

CRP, IGF-I and IL- 6  were assayed as previously described (29, 32). Insulin resistance 

was assessed using the homeostastis model of insulin resistance (HOMA-IR) index: 

[fasting insulin (mU/ml) x fasting glucose (mg/dl)]/405 (33).

4.3.4. Stable isotope analysis

RBC were pipetted into tin capsules, autoclaved and prepared for isotopic analysis as 

previously described (34). Neither autoclaving nor the use o f EDTA tubes affects RBC 

carbon or nitrogen isotope ratios (35). Samples were analyzed at the Alaska Stable 

Isotope Facility by continuous-flow isotope ratio mass spectrometry, using a 

Costech ECS4010 Elemental Analyzer (Costech Scientific Inc., Valencia, CA) interfaced 

to a Finnigan Delta Plus XP isotope ratio mass spectrometer via the Conflo III interface 

(Thermo-Finnigan Inc., Bremen, Germany). The conventional means of expressing 

natural abundance isotope ratios is as delta values in permil (%o) relative to international 

standards as 8 X (Rsampie B-standard)̂ (B-standard) ’ 1000/ito (36). Here, R is the ratio of 

heavy to light isotope ( 15N/14N or 13C/12C). The standards are Vienna PeeDee Belemnite 

for carbon and atmospheric nitrogen for nitrogen. To assess analytical precision, an 

internal standard was analyzed for every ten samples; precision was measured as the 

coefficient of variation of these analyses (3.3% for 8 15N and 0.6% for 8 13C). Because 

biological samples from this study have a lower 13C/I2C than V-PDB, 8 I3C values are 

negative. 8 13C values are hereafter abbreviated as 8 I3C, and 8 15N values are abbreviated 

8 ,5N.



94

4.3.5. Estimating sugar intake using stable isotope ratios

Total sugar intake was estimated using a dual isotope model, which was calibrated in a 

sample of 6 8  Yup’ik participants based on self-reported total sugar intake from 4 weekly 

24 hr recalls (26):

In (total sugarestimated) = 13.07 + 0.33 (8 13C) -  0.23 (8 I5N) [4.1]

This predictive equation explained 48% of the variation in self-reported total sugar intake 

in the calibration dataset. Although the calibration population was drawn from two of the 

10 Yup’ik communities participating in the present study, it is possible that the 

calibration equation might differ slightly for the larger population studied here. 

Furthermore, because our isotopic model of total sugar intake was calibrated against self­

reported data, it may have incorporated reporting bias. For these reasons, we tested 

whether our isotopic model of sugar intake was associated with a second, unbiased 

marker of total sugar intake recently validated for Yup’ik people: the carbon isotope ratio 

of RBC alanine (5 C a l a ; 37). We tested this association by measuring 8  C a l a  in a 

random sample of 50 research participants from the present study. Our estimates of total 

sugar intake calibrated from self report were significantly correlated with 8 13C a l a  

(Pearson’s r: 0.46), which gives us further confidence that our estimate o f sugar intake is 

objective and valid for use in this study population. Hereafter, total sugar intake 

estimated using this dual isotope model is referred to as simply “sugar intake”.

4.3.6. Statistical analyses

We examined the associations of sugar intake with the following measures: systolic blood 

pressure (SBP) diastolic blood pressure (DBP), triglycerides, total cholesterol, LDL,

HDL, ghrelin, leptin, adiponectin, HbAlc, glucose, insulin, HOMA-IR, IGF-I, IL- 6  and 

CRP. Triglycerides, leptin, insulin, HOMA-IR, IL- 6  and CRP were log transformed for 

analysis. Outlying values of chronic disease risk biomarkers (>4 SD above the mean)
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were excluded because they were judged to be physiologically unreasonable. We 

excluded the following values: SBP (n = 2), triglycerides (n = 7), total cholesterol (n=  1), 

glucose (n = 4), HbAlc (n = 3), leptin (w = 1), insulin (n = 5), HOMA-IR (n = 5), 

adiponectin (n = 1), total cholesterol (n = 1), CRP (n = 14), IL- 6  (n = 5). For IL-6 , values 

below the limit of detection (LOD; n — 3) were replaced by the LOD divided by the 

square root of 2 (38). Finally, participants taking blood pressure (n = 142), cholesterol- 

lowering (n = 43) or diabetes (n=  12) medications were excluded for analyses of 

associations with blood pressure, blood lipids and blood glucose/insulin, respectively.

We assessed whether sugar intake differed by demographic and health 

characteristics using one-way analysis of variance models. To determine whether sugar 

intake and chronic disease risk factors were associated with BMI or WC, we used age- 

and sex-adjusted multiple regression models. To determine whether sugar intake was 

associated with biomarkers of chronic disease risk we used BMI-adjusted multiple linear 

regression models. In addition to BMI adjustment, models were also adjusted for age 

(continuous), sex, and current smoking status (yes or no). Both linear and quadratic 

associations were assessed. We used a conservative criterion (P < 0.01) for reporting 

quadratic associations due to the likelihood that multiple contrasts would lead to chance 

associations. We give the unadjusted P  value assessed using a significance level o f 0.05, 

and also indicate which tests remained statistically significant after adjustment using the 

Bonferroni-Holm method to account for multiple testing (39). All statistical analyses 

were performed using JMP version 8  (SAS Institute, Cary, NC) or STATA I/C version 12 

(StataCorp. 2011, College Station, TX).

4 .4 . R e s u l t s

T a b le  4.1 gives associations of demographic and health related characteristics 

with sugar intake. The total study population ranged in age from 19 to 94 y (mean = 42 y 

± 15); 55% were women and 6 8 % were overweight or obese. Mean sugar intake was 93



g/d, and ranged from 24 to 217 g/d. Sugar intake was 7% higher in men, 22% higher in 

current smokers and 95% higher in participants aged 19 - 40 y compared with those aged 

>60 y.

After control for age and sex, neither BMI nor WC was associated with sugar 

intake (Table 4.2). Table 4.2 also gives associations of sugar intake with BMI and WC 

stratified by age and sex. The only significant association between sugar intake and 

either measure of obesity was an inverse association with BMI in participants over the 

age of 60 y.

Table 4.3 gives the linear associations o f total sugar intake with chronic disease 

risk factors. Independent o f BMI, sugar intake was positively associated with SBP, DBP, 

triglycerides, leptin, insulin and HOMA-IR and inversely associated with HDL, LDL, 

total cholesterol, and adiponectin. The largest increases in chronic disease risk factors 

were seen with leptin, adiponectin, insulin and HOMA-IR, which increased by 13.8%, 

13.0%, 7.4% and 6.7% between quartiles 1 and 4 of sugar intake, respectively. Values of 

LDL, HDL, and total cholesterol were 11.3%, 9.6% and 7.6% lower in quartile 4 than 

quartile 1 of sugar intake, respectively There was an inverse quadratic association of 

sugar intake with triglycerides only; this was reflected in a 22% increase in fasting TG 

between quartiles 1,2, and 3 of sugar intake, with no additional increase between quartiles 

3 and 4. There were no associations o f sugar intake with ghrelin, glucose, HbAlc, IGF-I, 

CRP or IL-6 . After Bonferoni-Holm correction, the associations with DBP, TG, total 

cholesterol, HDL, LDL and leptin remained statistically significant.

4 .5 . D is c u s s io n

There were strong associations of isotopic estimates o f sugar intake with chronic disease 

risk factors in a cross-sectional sample o f Yup’ik people. Contrary to our original 

hypothesis, there were no associations o f sugar intake with BMI or WC. However, sugar 

intake was associated with increased blood pressure, TG, leptin, insulin and HOMA-IR
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and decreased HDL, LDL, total cholesterol and adiponectin. These results suggest that 

although sugar intake is not directly associated with obesity in this Yup’ik study 

population, it may be associated with higher risk of developing hypertension, 

dyslipidemia, glucose intolerance and insulin or leptin resistance.

The finding that sugar intake was not associated with measures o f obesity (BMI 

or WC) is consistent with some observational studies (16, 40, 41); however, many other 

studies have demonstrated significant and positive effects of either sugar or SSB intake 

on BMI, body weight or risk of obesity (7, 42-44). Although we were unable to assess 

the association between sugar and total energy intake in this study sample, traditional 

food intake as measured using 6 15N (34) was positively associated with both BMI (P 

(95%CI) = 0.40 (0.13,0.67), P  = 0.0041) and WC (p (95%CI) = 1.81 (1.23,2.39), P <

0.0001). The higher fat content of the traditional diet (45) coupled with the negative 

relationship between intake of sugar and traditional foods (37) may obscure any potential 

positive relationship between sugar intake and BMI or WC.

Sugar intake was positively associated with insulin and HOMA-IR, but not with 

glucose or HbAlc. The results of other observational studies that examine associations 

of sugar or SSB intake with indicators of glucose tolerance or insulin resistance have 

been inconsistent (7, 13, 45-48). Our results suggest that high sugar intake is associated 

with increased insulin production in this Yup’ik study population, but likely because of 

this increased production, glucose homeostasis is maintained. This information is of 

particular relevance to the health of Yup’ik people, because while diabetes prevalence is 

low (2010: 27/1000), it increased 38% between 1990 and 2004 (49,50). Longitudinal 

studies will better address whether this increase in insulin will lead to the development of 

hyperglycemia over time.

Sugar intake was positively associated with both SBP and DBP, independent of 

both BMI and current smoking status in this Yup’ik study population, a finding that is 

consistent with several other observational studies (11, 12, 45, 47, 51). Several proposed 

mechanisms for this relationship have been postulated, including changes to the uric acid 

pathway induced by fructose consumption (52) or increased sodium retention (53).
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Although our findings are not informative regarding the mechanism by which this 

association may occur, they are suggestive that decreased sugar intake may be beneficial 

for the blood pressure o f Yup’ik people.

Also in agreement with findings from several prospective studies (46, 47, 54) was 

the strong association o f sugar intake with decreased HDL and increased triglycerides. 

This association may be due to high intake of fructose (either directly, or as high fructose 

com syrup or sucrose) (9, 55), which is known to increase triglyceride levels through 

increased hepatic de novo lipogenesis (3, 56) and decreased rate of peripheral triglyceride 

clearance (3,57). Alternatively, high sugar intake may contribute to higher intake of 

carbohydrates, which is also associated with increased triglyceride levels (58, 59).

Finally, it is also possible that the inverse association between sugar intake and traditional 

food intake contributed to the strength of these relationships (37). Traditional foods are 

high in the marine polyunsaturated fatty acids eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), which show strong and positive associations with HDL, 

LDL and total cholesterol, and strong and negative associations with TG in this study 

population (29).

We found that sugar intake was not associated with C-reactive protein in this 

Yup’ik study population, which contrasts with the positive associations reported by the 

few studies which examined sugar or SSB intake and inflammation (8 , 10, 15). Again, 

this finding may be related to the overall high intakes of EPA and DHA in the Yup’ik 

population (60). EPA and DHA promote an anti-inflammatory state (61), and are 

inversely associated with CRP in this study population (29). Furthermore, Makhoul et al. 

(62) also showed that EPA and DHA intake attenuated associations between obesity and 

CRP in a subset o f this study population. Therefore, the lack of association may be due 

to the unique dietary patterns of this study population and may not be relevant to other 

US populations.

Finally, our finding that high sugar intake was associated with higher levels o f 

circulating leptin and lower levels of adiponectin are also in contrast to those from other 

observational studies, which have demonstrated an inverse (8 ) or no (10, 63) association



of sugar intake with leptin and no association with adiponectin (8,63). This pattern may 

lead to increased risk of cardiovascular disease, renal disease (64-66), and type 2 diabetes 

(67). These results remained statistically significant when adjusted for either BMI or 

WC, measures of adiposity that are known to affect these adipokines. These results may 

be unique to this population, and require further exploration using a larger, prospective 

study.

The primary strength of this study was that it used biomarker-based estimates of 

sugar intake to examine associations with chronic disease risk in a large sample o f Yup’ik 

people. These estimates were likely more reliable than those from self-report, and were 

available on a much large number of study participants than would have been available 

had we assessed diet using self-report. This study is also one o f very few which examine 

the association of non-traditional food intake and chronic disease risk in the Yup’ik 

population (6 8 , 69). The primary limitation of this study was that it was based on a 

cross-sectional study sample. Therefore, we cannot exclude the possibility of reverse 

causality, or residual confounding from intake of other dietary components, physical 

activity, or other lifestyle factors. Finally, we note that some o f the associations 

presented here, particularly those with blood lipids, are the inverse of those found with 

biomarkers of EPA and DHA intake in a subset of this study population (29). Thus, these 

relationships could partially reflect the negative association between intakes o f sugar and 

traditional foods, which are high in EPA and DHA. However, many of the risk factors 

shown here to be associated with sugar intake were not associated with EPA and DHA, 

including HOMA-IR, insulin, SBP, DBP and adiponectin. Furthermore, the associations 

between sugar intake and blood lipids were consistent with our a priori hypotheses based 

on findings from other study populations. Therefore, we are confident that our findings 

were valid and reflect real associations of sugar intake with chronic disease risk factors.

This study was the first examination of the effects of sugar intake on Yup’ik 

health, and used an objective biomarker of sugar intake that was developed specifically 

for use with Yup’ik people. We found that sugar intake was not associated with BMI or 

WC in this Yup’ik study population, but that it was positively associated with blood
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pressure, TG, insulin, insulin resistance, and leptin, and inversely associated with HDL, 

LDL, total cholesterol and adiponectin. These findings suggest that although sugar intake 

is not associated with obesity in the Yup’ik population, high intakes of sugar have 

adverse effects on chronic disease risk factors often related to obesity. Longitudinal 

studies are warranted to confirm the findings o f this study and better understand 

associations o f sugar intake with disease risk in the Yup’ik population.
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Table 4.1. Associations of demographic and health related characteristics with sugar intake.

n(%) Sugar intake1 

g/d
P

Total study population 1076(100) 95.3 ±37.0
Sex 0.0017

Male 499 (46) 99.1 ±37.9
Female 577 (54) 92.0 ±35.9

Age <0 . 0 0 0 1

19 - <40 y 549 (51) 112.5 ±32.4
40 - <60 y 375 (35) 85.3 ± 32.8
> 60 y 152(14) 57.9 ±23.0

Smokers <0 . 0 0 0 1

Current 333 (31) 108.9 ±36.0
Non smoker 722 (67) 8 8 . 6  ±35.5

Body Mass Index 0.0004
<25 kg/m2 384 (36) 100.9 ±35.3
2 5 -< 3 0  kg/m2 354 (33) 94.0 ± 37.4
>30 kg/m2 338(31) 90.3 ± 37.6

'Mean ± SD



Table 4.2. Associations of sugar intake with BMI and waist circumference, stratified by age class and sex1,2.

BMI, Waist circumference,
kg/m2 cm

n
Mean ± SE

BMI > 30, % P3
(95% Cl)

P
Mean ± SE P

(95% CL)
P

Total 1076 28.1 ± 0 . 2 31 -0.09 0.50 92.0 ± 0.4 0.07 0.85

Age
19 - <40 y 549 27.7 ± 0.3 28

(-0.37, 0.18) 

-0.30 0 . 1 2 89.5 ± 0.6

(-0.63, 0.77) 

-0.67 0.16

40 - <60 y 375 28.3 ±0.3 34
(-0.67, 0.07) 

0.19 0.37 93.2 ±0.7
(-1.60, 0.26) 

0.44 0.43

> 60 y 152 29.0 ±0.5 38
(-0.23, 0.60) 

-1.38 0 . 0 1 1 98.0 ± 1.3
(-0.64, 1.51) 

-2.42 0 . 1 0

Sex
(-2.44, -0.32) (-5.34, 0.49)

Male 499 26.5 ± 0.2 19 - 0 . 0 0 0.96 91.5 ±0.6 0.24 0.67

Female

1 A ________'  . •  •

577 29.5 ± 0.3 42
(-0.30, 0.31) 

-0 . 2 0  

(-0.65, 0.27)
0.39 92.5 ±0.6

(-0.71, 1.10) 
0.23 

(-1.14, 1.00)
0.90

adjusted, respectively.
2Sugar intake was estimated using the formula: lnftotal sugar) = 13.07 + 0.33 (5I3C) -  0.23 (8 ,5N) (26) 
Slopes are interpreted as change in obesity measure (BMI or WC) for each 25g increase in total sugar intake

\



Table 4.3. Linear associations of sugar intake with chronic disease risk factors, and means of those risk factors stratified by 
quartile of sugar intake (n = 360-1039)1’2.

Total sugar intake3

(range’ g/d) p4 P5Quartile 1 Quartile 2 Quartile 3 Quartile 4 (95% Cl)ft (23 - <6 6 ) (6 6 - <93) (93-<121) (121 - <217)
SBP, 880 116.6 ± 1 . 0 118.1 ± 0 . 8 117.8 ±0.9 120.2 ±0.9 0.80 0.0161
mm Hg (0.15,1.46)
DBP, 882 6 8 . 6  ± 0 . 8 70.8 ± 0.6 71.2 ±0.6 72.1 ±0.7 0.90 0.0003
mm Hg (0.41,1.40)
Triglycerides, 912 65.5 74.9 80.1 81.9 18.7 < 0.0001
mg/dL6 (61.9, 69.3) (71.2, 78.8) (76.0, 84.4) (77.3, 86.0) (9.35,29.0)

Quadratic -1.29
(-2.21,-0.37)

0 .0066

Cholesterol, 922 228.8 ±3.1 232.9 ±2.7 217.8 ±2.8 211.5 ± 3.1 -5.12 < 0.0001
mg/dL (-7.23, -3.01)
HDL, 920 65.0 ± 1.2 64.3 ± 1.0 60.0 ± 1 . 1 58.8 ±1.2 -1.64 < 0.0001
mg/dL (-2.45, -0.84)
LDL, 922 150.5 ±2.7 151.1 ±2.4 140.1 ±2.5 133.6 ±2.7 -4.66 < 0.0001
mg/dL (-6.50, -2.82)
Leptin, 811 6.5 6.7 6.9 7.4 5.12 0 .0 0 0 7
ng/mL6 (6.0, 7.0) (6.2, 7.2) (6.3, 7.4) (6 .8 , 8 .1) (1.70, 7.00)
Adiponectin, 960 10.4 ±0.4 9.6 ±0.3 9.3 ±0.3 9.2 ± 0.4 -0.34 0.0103
pg/mL . (-0.60, -0.08)
Ghrelin, 809 404.4 ± 11.5 417.9 ± 10.9 408.5 ± 11.7 412.8 ±12.8 -0.63 0 . 8 8

pg/mL (-9.05, 7.80)
HbAlc, 961 5.5 ± 0.2 5.5 ±0.2 5.4 ±0.2 5.4 ±0.2 -0 . 0 1 0.13
% (-0.03, 0.00)



T a b le  4 .3  co n tin u ed
Glucose, 1039 94.3 ± 0.7 93.1 ±0.7 92.7 ±0.6 93.5 ±0.7 -0.04 0 . 8 8

mg/dL (-0.51,0.44)

Insulin, 788 1 1 . 8 11.7 12.5 1 2 . 6 2.93 0.0203
fiU/dL6 ( 1 1 .0 , 1 2 .6 ) (11.0, 12.5) (11.7,13.2) (11.7,13.5) (0.45, 5.47)
HOMA-IR6 783 2.7 2 . 6 2.9 (2.7, 2.9 (2.7, 3.11 0 . 0 2 1 0

(2.5, 2.9) (2.5, 2.8) 3.1) 3.1) (0.47, 5.89)
IGF-I, 387 267.6 ±9.8 248.1 ±9.3 256.5 ± 9.0 260.7 ± 9.5 0.56 0.87
ng/mL (-0.61,7.23)
CRP, 783 0.08 0 . 1 1 0 . 1 0 0.13 6.79 0.055
mg/dL6 (0.07, 0.10) (0.09, 0.13) (0.08, 0 .1 2 ) (0.10,0.16) (-0.15,14.2)
IL-6 , 380 0.09 0.09 0.08 0.06 -8.19 0 . 1 2

........ (0.07, 0.13) (0.07, 0.13) (0.06, 0 .1 1 ) (0.05,0.09) (-17.5,2.12)
1 Sample size varies because of outliers and missing data. SBP, systolic blood pressure; DBP, diastolic blood pressure; 
HOMA-IR, homeostasis model of insulin resistance; IGF-I, Insulin-like growth factor I; CRP, C-reactive protein; IL-6 , 
interleukin-6 . Multiple linear regression models were adjusted for age (continuous), sex, BMI (continuous), and smoking 
status (yes or no).
2 Means of chronic disease risk biomarkers are least squares means (±SE), adjusted for age (continuous), sex, BMI 
(continuous), and smoking status (yes or 110). Geometric means (95% Cl) are given for log-transformed variables.
3Total sugar intake was estimated using the formula: ln(TS) = 13.07 + 0.33 (5I3C) -  0.23 (8 I5N) (26)
4Slopes are interpreted as change in chronic disease risk factor for each 25g increase in total sugar intake
Associations which remained statistically significant after Bonferroni-Holm correction are highlighted in bold
6Log-transformed values were used for regression analyses; slopes have been back transformed for ease of interpretation and
are interpreted as percentage change in the chronic disease risk factor for each 25g increase in total sugar intake
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C o n c l u s io n

In recent decades, the Yup’ik people have experienced a shift in dietary intake patterns 

known as the nutrition transition; however, the extent to which this dietary change has 

affected Yup’ik health is unknown. Demonstrating causal associations between dietary 

intake and disease risk requires valid estimates of intake that are easily measured in large 

numbers of study participants. Unfortunately, self-reported measures o f intake that are 

suitable for use in large, population-based studies (e.g., food frequency questionnaire) 

suffer error and biases that may obscure associations of intake with disease risk ( 1 , 2 ). 

Conversely, more reliable methods (e.g., repeated 24 h recall) can be prohibitively 

expensive, labor intensive and burdensome on both the study participant and the 

researcher (3,4). Objectively measured biomarkers of dietary intake provide a promising 

alternative to self-reported methods of dietary assessment because they can provide 

unbiased, reliable estimates of intake (5-7). Validated biomarkers o f commonly 

consumed Yup’ik foods would likely be invaluable in studies o f the association between 

dietary change and disease risk in the Yukon-Kuskokwim Delta.

The stable isotope ratios of nitrogen (515N) and carbon (513C) were candidate 

biomarkers of Yup’ik dietary intake because several commonly consumed traditional and 

market foods are distinct in their carbon and nitrogen isotope ratios (8 ). The nitrogen 

isotope ratio is high in fish and marine mammals (9), foods which comprise a large 

proportion of the Yup’ik traditional diet (10). The carbon isotope ratio is uniquely 

elevated in market-purchased com and sugar cane-based foods (C4; 11), such as 

sweeteners, com-products and com fed meats. These foods comprise a large proportion 

of the Yup’ik market diet. Therefore, the carbon and nitrogen isotope ratios could 

potentially provide estimates of both Yup’ik traditional and market food intake that 

would be informative in studies of how the nutrition transition had affected, or is 

affecting, the health of Yup’ik people.

This dissertation presented evidence that moves these isotope ratios from 

“candidate” to “validated” markers o f Yup’ik dietary intake. The first chapter addressed



the validation of the 8 1:>N and 8 I;,C markers in three ways. First, a comprehensive 

analysis of the 8 l5N and 8 13C values of a suite of traditional and market foods important 

to Yup’ik people allowed me to determine expected relationships between tissue isotope 

ratios and dietary intake specific to Yup’ik people. Second, an evaluation of associations 

between isotope ratios and self-reported dietary intake measures demonstrated strong 

associations of red blood cell (RBC) 8 15N with traditional food intake, and of RBC 8 13C 

with C4 and total market food intake. Third, the ability of these markers to indicate 

dietary patterns by age, sex, community location and cultural identification demonstrated 

the potential of stable isotope ratios to provide useful and novel information about dietary 

intake in this Yup’ik study population.

The second chapter of this dissertation focused more specifically on the potential 

for isotope ratios of hair to indicate dietary intake. Hair samples can be collected easily 

and non-invasively, which makes them ideal for estimating dietary intake in situations 

where drawing a blood sample is undesirable, for example in young children. They also 

have an additional advantage: because hair grows continuously and does not remodel 

after growth, hair isotopic markers could provide a dietary record over the length of the 

participant’s hair (~1 month/cm of hair). In this chapter, I showed that the S,5N and 8 ,3C 

values of RBC and hair were highly correlated, and provided a metric to compare 

isotopic measurements in hair and RBC in Yup’ik people. I also showed that hair S15N 

values were equally as associated with % RBC membrane eicosapentaenoic acid (EPA) 

and docosahexaenoic acid (DHA) as the previously validated RBC 8 15N marker (12). 

These results demonstrated the potential for hair isotope ratios to indicate dietary intake 

with similar validity to RBC measurements, and will also enable the comparison of 

results from studies that utilize these different sample types.

In the third and fourth chapters of this dissertation, I switched my focus to the 

validation and application of stable isotope biomarkers of sweetener intake. Markers o f 

sweetener intake are of particular interest because sugar intake, in particular high fructose 

com syrup, has been linked to several intermediate risk factors for chronic disease,
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including excess energy intake, body mass index (BMI), dyslipidemia, insulin resistance 

and markers of inflammation (13-21). The carbon isotope ratio has been proposed as a 

marker of com- and cane sugar-based sweetener in several US populations (2 2 , 23); 

however, the validity of this marker is low because o f confounding by consumption of 

other 13C enriched foods. Here, I showed that the primary confounders of the association 

between 8 13C and sweetener intake in the Yup’ik population were traditional marine 

foods and commercial meats (Chapter 3). Because 8 15N values are a marker for the 

marine component of the Yup’ik traditional diet, a model based on both the carbon and 

nitrogen isotope ratios provided a more valid marker o f sweetener intake than one based
i f

on 8  C values alone. Unfortunately, because 8  N was not associated with commercial 

meat intake in this Yup’ik study population, 8 15N adjustment could not account for the
1 3effect of this confounder on RBC 8  C. Nevertheless, the dual isotope marker explained 

48% of the variation in reported total sugar intake in this Yup’ik study population, a 

surprisingly high amount considering the potential inaccuracy of dietary self-report.

I used this dual isotope model o f total sugar intake in the final chapter of this 

dissertation to examine associations with BMI and other chronic disease risk factors in 

participants from the CANHR I study. I found that while sugar intake was not associated 

with BMI in this Yup’ik study population, it was associated with blood pressure, blood 

lipids, and the adipokines leptin and adiponectin. This chapter is important in two ways: 

first, it demonstrates the ability of isotopic markers to be informative in studies of disease 

risk in Yup’ik people, and second, it discovers potentially adverse associations o f sugar 

intake on health that were previously unknown for this population. Because this study 

was conducted in a cross-sectional study sample, it is not possible to infer causality from 

these results. However, my hope is that this study will provide the basis for longitudinal 

studies of sugar intake and chronic disease risk in Yup’ik people.

The focus of this dissertation was the validation and application of these novel 

biomarkers; however, this research frequently touched upon another theme that warrants
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further discussion: that of dietary patterns. Nutritional epidemiologists have traditionally 

examined associations of chronic disease risk with a single nutrient or food (24-26); 

however, the assessment of dietary patterns has begun to gain popularity in recent 

decades (24, 27,28). The strengths and weaknesses o f these two approaches are 

contrasting. Nutrient analysis allows for the identification of key nutrients, such as 

polyunsaturated fatty acids (26, 29, 30), fiber (31, 32), and saturated and trans fats (33­

35) that are associated with chronic disease risk, but this method cannot account for 

complex interactions or associations among nutrients. In contrast, dietary pattern 

analysis allows the study of how foods or nutrients consumed in combination affect 

disease risk, but cannot provide details on specific nutrients, or inform about the 

biological relationships between dietary components and disease risk. Isotope ratios are 

direct biomarkers o f specific foods, and thus can be used as indirect measures of either 

nutrients or diet patterns, depending on how closely linked they are to those foods. This 

dissertation validates stable isotope ratios as biomarkers of both dietary pattern (Chapter 

1) and specific nutrients (Chapters 2 and 3). For example, fish intake, measured via 8 I:>N, 

is tightly correlated with both traditional food intake (diet pattern) and the fatty acids 

EPA/DHA (nutrients). Thus, 8 1:>N is a biomarker for both a diet pattern and a specific 

nutrient.

Any type of dietary analysis in the Yup’ik population must take diet pattern into 

account, because all foods fit into the category of traditional or market, and the inverse 

association between traditional and market food intake is very strong. Any measure of 

traditional food intake will be inversely correlated with market food intake, even when 

the association is entirely indirect. Disentangling the direct from the indirect associations 

between markers and diet has been a major and central challenge to this work. For 

example, in chapter 3 ,1 discussed why dietary pattern may, in part, explain the 

substantially better performance of the dual isotope model (513C and 8 15N) to predict
IT 1 ^ ■sweeteners, compared to 5 C alone: it could be because N adjustment factors out the 

significant effect of high fish and marine mammal intakes on 8 13C, or because of the 

strong, age-related diet pattern. In chapter 4 ,1 discussed the possibility that intake of
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traditional marine foods may have affected associations of sugar intake with several 

chronic disease risk factors; traditional foods show a strong negative association with 

sugar intake, and have the potential to positively affect chronic disease risk factors 

including blood lipids, C-reactive protein and insulin resistance (36-38). Although I 

discuss this diet pattern effect within the context o f this Yup’ik study population, the 

challenge of how dietary patterns affect associations with dietary biomarkers is more 

broadly applicable. A consideration of dietary patterns is particularly important for 

biomarkers such as stable isotope ratios, because their associations are with foods rather 

than specific nutrients.

The ultimate aim of the research presented in this dissertation was to develop markers 

which could be used in studies of how diet affects chronic disease risk in Yup’ik people. 

Currently, the nitrogen isotope marker of traditional marine intake is being used in 

several such studies being conducted by investigators with the Center for Alaska Native 

Health Research (CANHR). For example, O’Brien and colleagues (unpublished) have 

used 8 15N values to show that traditional food intake may have beneficial effects on 

fasting lipids and adiponectin levels. A recent study by Lemas et al. (39) showed that 

associations between carnitine palmitoyltransferase 1 A gene variants and fasting lipids 

were modified by n-3 PUFA intake, the latter of which was estimated using 8 15N. Values 

of 8 15N are also being used in pharmacogenetic studies to evaluate the effect o f EPA and 

DHA intake on clotting time and evaluate whether dosage of the blood thinner warfarin 

should be adjusted or personalized for Yup’ik people. Finally, the Fish to School project, 

led by Dr Bersamin, is hoping to use the 8 1SN values of hair to monitor the efficacy o f an 

intervention to increase Alaskan fish consumption in schools across the state.

In contrast, neither the carbon isotope marker o f market intake, nor the dual 

isotope marker of sweetener intake, is currently being used by other CANHR 

investigators. However, I anticipate that these markers will be of great interest in the 

near future. For example, CANHR investigators are working with a dentist from the 

University of Washington on a proposal in which this marker will be used to study



associations of sugar intake with dental caries. Dental caries are a particular problem in 

Yup’ik children and adolescents (40, 41); this marker will provide a valuable tool to 

monitor interventions for sugar reduction towards the improvement o f Yup’ik oral health. 

Furthermore, I think it will be o f great importance to continue the work that I started in 

the final chapter of this dissertation. CANHR is developing a longitudinal cohort of 

participants for whom we have both isotopic and health data, which will provide the 

opportunity to determine whether the associations I observed in a cross-sectional study 

sample are causal, to monitor whether dietary change is currently occurring in the Yup’ik 

population, and to determine what the impact o f this change is on disease risk.

In addition to the potential of these markers to be informative in studies o f Yup’ik 

health, my research also represents a substantial contribution towards the development 

and application of stable isotope markers for use in nutritional epidemiology more 

generally. The use of naturally-occurring variations in stable isotope ratios to indicate 

dietary intake is a relatively new concept in this field, and this body of work represents a 

substantial proportion of those studies that develop stable isotope markers using an 

epidemiologic framework. In particular, I think that the dual isotope marker presented in 

chapter 3 will be of great interest to the many researchers who are interested in the effect 

of sweetener intake on health (42). Sugar intake is notoriously difficult to measure using 

self-report, as it is commonly underreported, especially by women and overweight 

individuals (43, 44). Therefore, a biomarker o f sweetener intake such as that presented 

here will be very useful in strengthening inferences from observational studies and 

helping to resolve the role o f sweetener intake in the development of chronic disease.

In summary, this dissertation provided substantial evidence for the validity of the 

carbon and nitrogen stable isotope ratios to indicate the diets o f Yup’ik people. It also 

illustrated the utility of one of these markers in a study of the associations between 

isotopic estimates of sweetener intake and chronic disease risk factors in a cross-sectional 

sample of Yup’ik people. These markers will be useful in current and future studies o f
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disease risk in the Yup’ik population, and this work also provides a basis for further 

validations in other US populations.
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