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Abstract

Magnetic reconnection and Kelvin-Helmholtz (KH) instability are the two most im­
portant mechanisms for plasma transport across the Earth’s magnetospheric bound­
ary layer. Magnetic reconnection is considered as the dominant process for southward 
interplanetary magnetic field (IMF), and the KH instability is suggested to play an 
important role for northward IMF.

It is interesting to note that this plasma entry is associated with a dramatic en­
tropy increase, which indicates the existence of strong nonadiabatic heating during 
the entry process. Observations indicate a plasma entropy increase by two orders 
of magnitude during the transport from solar wind into the Earth’s magnetosphere. 
Therefore, it is important to examine whether magnetic reconnection can provide suf­
ficient nonadiabatic heating to explain the observed plasma properties and to identify 
plasma conditions that allow strong nonadiabatic heating. This thesis demonstrates 
that the entropy can indeed strongly increase during magnetic reconnection provided 
that the plasma beta, i.e., the ratio of thermal to magnetic energy density is small.

A realistic three-dimensional configuration of the Earth’s magnetopause for south­
ward IMF conditions includes large anti-parallels magnetic components with a fast 
perpendicular shear flow. Thus, it is expected that KH modes and magnetic recon­
nection operate simultaneously and interact with each other. This thesis provides a 
systematic study on this interaction between reconnection and KH modes by means 
of three-dimensional MHD and Hall MHD numerical simulations. It is demonstrated 
that both reconnection and nonlinear KH waves change the other modes onset condi­
tion by changing the width of the transition layer. It is shown that dynamics of the 
system can be strongly modified by a guide field or Hall physics.

In the presence of plasma flow, magnetic reconnection is also associated with the 
generation of field-aligned currents (FACs), which play a critical role in the coupling 
between the magnetosphere and ionosphere. This thesis also examines systematically 
the generation of FACs. It is demonstrated that such currents are generated either 
by a guide magnetic field, by shear flow, or by the inclusion of Hall physics already



two-dimensional magnetic reconnection.
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Chapter 1 
Introduction

1.1 Background on Magnetospheric Physics

At a distance of 1.5 x 10n m (1 AU) from the Earth, the sun, as the biggest power 
factory in our solar system, releases energy at 3.846 x 1026 W -s-1 , which corresponds
to 4.3 x 109kg • s-1 according to the mass energy equivalence [Kallenrode, 2004].
Theoretical models suggest a powerful fusion reactor at the core of the sun operating 
at a temperature of 1.5 x 107 K and generating energy through fusion of 5 x 109 kg-s_1 

of hydrogen to form helium [Kivelson and Russell, 1995]. Above the core are the 
radiative diffusion region, the convection region, and the atmosphere. The solar 
atmosphere consists of three layers: the photosphere, the chromosphere, and the 
corona [Kivelson and Russell, 1995]. Due to strong magnetic fields and the large 
pressure gradient between the corona and interstellar space, the ionized solar plasma 
and a remnant of the solar magnetic field are driven outward, which generates the 
solar wind. The first stationary expansion solar wind model was developed by Parker 
[1958]. It takes the solar wind about 4 days [Kivelson and Russell, 1995] to travel 
from the sun to the Earth. The typical solar wind density at 1 AU is several particles 
per centimeter cubed with a temperature of 1.2 x 105 K, and its highly supersonic 
speed is about 450 km-s-1 nearly along the radial direction [Kivelson and Russell, 
1995]. Without the Earth’s magnetospheric protection, high energy particles in the 
solar wind can easily penetrate into the Earth’s atmosphere.

The Earth’s magnetosphere is a large low density plasma cavity generated by the 
geomagnetic field and the solar wind plasma [Otto, 2010; Kallenrode, 2004; Kivelson 
and Russell, 1995]. The geomagnetic field is caused by internal dynamo mechanisms 
in the outer core of the Earth. Near the Earth’s surface, the magnetic field can 
be well described by a magnetic dipole moment, which is tilted at an angle of 11 

degrees with respect to the rotational axis and has a magnetic moment of about 
8 x 1015 T • m3. The actual solar wind velocity is superfast at 1 AU, meaning it is 
faster than the fast mode speed Vf =  y/cj +  V\, where cs is the ion acoustic speed and
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Va is the Alfven speed (see Section 1.2). This is the fastest wave velocity with which 
information can propagate in a large scale plasma. Therefore, a bow shock is formed 
in the front of the Earth’s magnetosphere [Burgess et al., 2012] similar to sonic shocks 
caused by supersonic jets, and the magnetosheath is the shocked solar wind plasma. 
The shocked solar wind compresses the dayside portion of the geomagnetic field and 
generates a tail which is many hundreds of Earth’s radii (RE =  6.4 x 106 m) long. 
Although, most of the shocked solar wind particles are deflected by the geomagnetic 
field at the magnetopause, which is the actual boundary between the solar wind and 
the magnetospheric plasma, the magnetopause is not a “plasma proof” shield. The 
real interaction between the solar wind and magnetosphere is much more complex and 
important. Just inside of the magnetopause are the cusp and mantle regions. The 
cusp is the region where dipolar field lines converge, and the mantle region represents a 
boundary to the magnetotail usually filled with solar wind plasma but with a stretched 
magnetospheric magnetic field. Further inside is the magnetotail, which is the long 
tail-like extension of the magnetosphere on the nightside of the magnetosphere. The 
inner magnetosphere is the region where the magnetic field is dominated by the 
dipole component, and relative magnetic field changes are small, typically inside of 8 

to 10i?E radial distance [Otto, 2010]. The transition region between the fully ionized 
magnetosphere and the neutral atmosphere is the ionosphere.

Figure 1.1 presents the magnetospheric boundary layers and currents. Early 
models of the magnetosphere consider the magnetopause as an almost impenetra­
ble boundary, which separates the magnetosphere entirely from the magnetosheath 
by a tangential discontinuity, since the plasma (electron and ion) transport across 
the magnetic field lines is very slow. In this model the entire geomagnetic field is 
closed inside the magnetosphere. However, early ionospheric and satellite observation 
demonstrated that the actual geomagnetic field is not confined to the magnetosphere 
but threads out into interplanetary space. In fact, the solar wind plasma has access 
to the Earth’s magnetosphere along the open magnetic field at its boundary. This 
boundary layer is often divided into the low-latitude boundary layer (LLBL), the en-



Figure 1.1: Magnetospheric boundary layers and currents [Otto, 2010].
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try layer near the polar cusps and the plasma mantle (PM) along the high-latitude 
magnetotail [Sibeck et al., 1999]. The formation of the LLBL, or the mechanism of 
the plasma transport from the solar wind into the Earth’s magnetosphere is a crit­
ical problem in the magnetosphere physics, and is still not fully resolved. Several 
processes have been proposed to account for this transport, i.e., magnetic reconnec­
tion (tearing mode), Kelvin-Helmholtz (KH) instability, finite Larmor radius effects, 
diffusion, impulsive penetration, and direct cusp entry [Sibeck et al., 1999]. Among 
them, magnetic reconnection and KH instability are considered as two of the most 
important processes. I will introduce these two processes in Section 1.3 and 1.4. Be­
fore that, a background on magnetohydrodynamics (MHD) helps to understand the 
underlying physics and plasma properties for these physics processes, which will be 
discussed in Section 1.2.

1.2 Basic Equations and Their Properties

1.2.1 M HD Equations and Normalization

A very rigorous way with the least assumptions to treat space plasma physics is 
through kinetic theory [Lifshitz and Pitaevskii, 1981]. However, the typical spatial 
and temporal scales of a space plasma are often much larger than kinetic scales. 
Therefore, small scale fluctuations are usually not taken into account, and a kinetic 
treatment of large scale plasma processes is not feasible for analysis and numeri­
cally not possible with current computer resources. Neglecting those small scale fluc­
tuations through spatial and temporal averages, yields the magnetohydrodynamic 
(MHD) equations, a fluid approach to describe the self-consistent plasma interaction 
with the electric and magnetic fields. The MHD equations are given by [Krall et al., 
1974]:
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dp
dt

+ v  • (pV) = 0,
dpV

dt
+ V  • ( p W )  — -  Vp +  j  x B,

dB
dt =  - V  x E,

meml
e2p

?k
dt

+  V - ( V j + j V ) m ,. ^  _— Vpe H j  x B  +  ry =  E -  V x B ,
ep ep

1 (d p  
7 — 1 \dt

+  V  • pV  J =  -p V  • V  +  p j2, 

Poj =  V x B,

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

where p is the plasma density, V  is the plasma velocity, p is the thermal pressure, j  
is the current density, B  is the magnetic field, E is the electric field, me =  9.1094 x 
10~31 kg is the electron mass, m* =  1.6726 x 10-27kg is the ion mass, e =  1.6022 x 
10-19C is the elementary charge, M  =  me +  rrii «  m „ p is the resistivity, 7  =  5/3 
is the ratio of specific heats, and po =  x 10“ 7H - m 1 is the vacuum permeability, 
e.g., [Huba et al, 2006].

For convenience, I normalize these equations to the typical values, i.e., B =  B0B, 
p =  pop. For all typical values see Table 1.1. The actual choice of the normalization 
values L0, B0, etc., depends on the physical system under consideration. I will later 
introduce such typical parameters for the Earth’s magnetospheric boundary for the 
particular applications in this thesis. The normalized equations are as follows, where 
I have omitted the “A ” for the normalized quantities for convenience.
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Table 1.1: Physical quantities and typical values

Physical quantity / Typical value /o
length scales L L0

mass density p norrti

magnetic field B B 0

velocity V VA =  Bq (p0p0y 1/2 (Alfven speed)
time t Ta =  Lq/Va (Alfven time)

pressure p P0 =  Bi/(2p0)
electronic current density j Jo =  Bq/ (PoLo)

electronic field E

0QII

resistivity rj Vo

§£ +  v . ( , v >  =  0 .
dpV
dt

+  V - ( p W )  =  - V ( ^ + j x B ,

m
dt

- - V  x E,

g
P

31
dt

+  V - ( V j + j V ) -  -V p e +  - j x B  +  f/j =  E +  V x B ,
P P

_ i _ ( | + v .pv )  =  - p v v + 2W'2, 

j  =  V  x B,

(1.7)

(1.8) 

(1.9)

(1.10)

(1.11)

(1.12)

where le =  AeI/g \ I =  A,L0 \ pe =  peP0_1, Ae =  c/u;e is the electron inertia scale, 
Aj =  c/uji is the ion inertia scale, c is the speed light, uje = \J(ne2) /  (e0me) is the 
electron frequency, and ujt =  yj(ne2) /  (e0m,) is the ion frequency. For a constant 
resistivity, the normalized 1 is the Lundquist number R  = % 1/j,0L0Va -

Equation (1.7) is the continuity equation, where the second term is the divergence 
of the mass density flux. Equation (1.8) is the momentum equation. On the left-hand
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side of the equation is the inertia term, the first term on the right-hand side is the 
pressure gradient, and the second term is the magnetic force. Equation (1.9) is the 
induction equation from the Maxwell equations and Equation (1.10) is general Ohm’s 
law. The second term on the right-hand side of Equation (1.10) is the convection term. 
The first term on the left-hand side of Equation (1.10) is the electron inertia term, 
which is important only when the typical length is comparable to the electron inertia 
scale {le ~  0(1) ) .  The second term is electron pressure term and the third term is 
the Hall term. Both become important when typical length scales are comparable to 
the ion inertia scale (I ~  0(1) ) .  However, the electron pressure can often be ignored 
in the magnetosphere where pe Pq. The last term is the resistive diffusion term. In 
most of space environments, the plasma is collisionsless. Therefore, the resistivity is 
negligible almost everywhere. Note, that a possible exception is the diffusion region of 
magnetic reconnection, as explained later. Equation (1.11) is the pressure or thermal 
energy equation. Equation (1.12) is Ampere’s law, where the displacement current 
is neglected because the maximum wave speeds for my application are much smaller 
than the speed of light.

1.2.2 MHD Equations and Conservation Laws

The continuity equation implies that total mass is conserved. By combining the 
continuity equation and the momentum equation, I obtain a conservative form of the 
momentum equation

9 {pV )
dt

p W  +  \ {p  +  B 2) I -  BB (1.13)

where I is the unit tensor. The divergence on the right hand side implies that the 
total momentum of a system with closed boundaries is conserved. Especially, for an 
equilibrium without curved magnetic field lines, this equation implies total pressure 
balance.

If I ignore all the terms on the right-hand side of general Ohm’s law, and combine 
it with the induction equation, I can eliminate the electric field and obtain an equation
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for the evolution of the magnetic field:

—  =  V x ( V x B ) .  (1.14)

This equation reveals a very important property of the plasma, which is so-called
“frozen-in” condition [Kallenrode, 2004]. The frozen-in condition implies that the
magnetic flux through a closed contour which moves with the plasma is constant. 
Equivalently this also implies that two fluid plasma parcels that axe connected by a 
magnetic field line (line along the magnetic field vectors) are always connected by a 
magnetic field line. This provides a way to identify a magnetic field line through the 
plasma elements. Note, that the inclusion of Hall physics leads to the separation of 
ion and electron velocity. With the relation

V e = V - - j ,  (1.15)
P

Ohm’s law including the Hall term becomes

E =  —V e x B, (1.16)

which demonstrates that the frozen-in condition now applies to the electrons only.
Using the frozen-in condition in the plasma, a magnetic flux tube can be associated 

with physical properties such as volume or mass. Therefore, to discuses the overall 
quantity in a flux tube is meaningful. For example, the volume of a closed magnetic 
flux tube (magnetosphere or magnetic mirror) is given by

- / ( / / ■
V =  d s)d l, (1.17)

where s is the flux tube cross section varying along the flux tube, dl is infinitesimal 
length along magnetic field. For a “sufficiently thin” flux tube the cross section of 
the tube varies as

s ^ B - 1. (1.18)

This leads a definition of the differential flux tube volume

Vift - / ! ■  <119)



9

This concept can also be used to evaluate the total number of particles on a differential 
flux tube through

~ J  | dl. (1.20)

Provided that the frozen-in condition applies and that the flux tube has well defined 
“end points” at which no mass is lost (Vy = 0), the continuity equation can be used 
to show that the mass of this flux tube is conserved. With a similar motivation, I can 
also define the flux tube entropy

H ft = /  V~ W d l' (L21)

Using the pressure equation it is possible to show that p1̂  satisfies a continuity 
equation such that the flux tube entropy is also a conserved flux tube property for 
the same provisions as for flux tube mass conservation. Those physical quantities
are very useful in the space physics. In the next section, I will show an important
example when the frozen-in condition is violated.

Finally, combing the continuity equation and thermal energy equation, I can derive 
an equation for pp~7 which is a measure of local plasma entropy

where d/dt =  d/dt +  V  -V . This equation shows that resistive Ohmic heating is the 
only (nonadiabatic) source for an increase of entropy S =  p/ (2p7) and S is conserved 
along a fluid path in the absence of resistive heating consistent with the properties 
of entropy. Note, that the factor 1/2 arises from my normalization. One can also 
combine all the equations (Equation (1.7) - (1.12)), to derive an energy conservation 
equation, which will be discussed in Chapter 3.

1.3 Magnetic Reconnection

Magnetic reconnection is a process in which plasma is transported across a separatrix 
surface [Otto, 2012]. Figure 1.2 shows a typical magnetic reconnection configuration. 
The magnetic field lines that cross in the center are called separatrices and the point

N;ft =  l n dV= J
nsdl
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where they cross is called an X-point or X-line (when the three-dimensional aspect is 
emphasized). At t =  tx, particles p\ and P2 are connected by the same magnetic field 
line li, while particles p3 and are connected by the same magnetic field line l2.. h 
and l2 are anti-parallel and approach each other. At t =  t2, reconnection takes place 
at the X point, where li and l2 are connected. All those four particles are convected 
to the position of the X-line which implies that the magnetic field line on which they 
are located is now the new separatrix. At £ = £3, those four particles are now in the 
outflow. Particle p\ and p̂  are connected by the same magnetic field line £3, while 
particle p2 and p3 are connected by the same magnetic field line £4..

The key point of this magnetic reconnection is the localized diffusion, violating 
of the frozen-in condition in a very small vicinity of the X-line which is called the 
diffusion region. There are three important properties of this process.

1. Magnetic reconnection changes the magnetic topology, which allows fast mix­
ing of plasma of different origin [Dungey, 1961; Otto, 1999]. This property is 
important for the solar wind plasma access to the Earth’s magnetosphere at 
the LLBL for southward interplanetary magnetic field (IMF) conditions. For 
northward IMF conditions, magnetic reconnection may occurs at the cusp re­
gions [Adamson et al, 2012], or it may be driven by the KH instability [Otto 
and Fairfield, 2000].

2. Magnetic reconnection converts a large amount the magnetic energy (stored 
energy) into the bulk kinetic energy (plasma acceleration) and thermal energy 
in a short time, which is important for the acceleration of plasma in the mag­
netosphere (bursty bulk flows, plasmaoids, magnetic flux transfer events), and 
which potentially explain solar coronal heating and heating of magnetospheric 
plasma. [Bim and Priest, 2007].

3. As an irreversible process, magnetic reconnection changes both the local and 
total entropy. One of the outstanding compelling problems of space physics is 
the strong nonadiabatic heating of the solar corona but also albeit on a smaller
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Figure 1.2: Sketch of the magnetic reconnection geometry and the associated plasma 
and magnetic flux transport.
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scale of magnetospheric plasma. In Chapter3, I will discuss more about this

Historical, the concept of magnetic reconnection was first introduced by Giovanelli 
[1946, 1947] to explain solar flares. Dungey [1961] applied this concept to introduce 
the concept of an open magnetosphere. The first stationary two-dimensional magnetic 
reconnection model was proposed by Sweet [1958] and Parker [1957]. In their model, 
the magnetic flux is convected into the diffusion region at an inflow region speed

where R — 1 is the Lundquist number, vA% is the inflow Alfven speed.
In two-dimensional steady-state models the electric field E  in the invariant direction 
is uniform in space. Thus, the Alfven Mach number

the “reconnection rate” ), normalized by the typical electric field vAiBi. In terms of 
this number, the Sweet-Parker reconnection rate is

However, in a space plasma environment the Lundquist numbers are always large. 
Therefore, this magnetic reconnection model is too slow to explain the real physical 
phenomena in the space environment. To resolve this problem, Petschek [1964] first 
pointed out that a much larger reconnection rate would be possible if the diffusion 
region were much shorter. Figure 1.3 illustrates the Petschek reconnection geometry. 
In his model, a tiny diffusion region is bound by two pairs of slow shocks, the outflow 
region plasma is strongly accelerated and heated by the slow shocks. The maximum 
reconnection rate in this model is about

property.

Vi ~  vAiR 1/2, (1.23)

Vi ViBi (1.24)
V Ai VAiBi VAiBi

provides a quantitative measure of the rate of the flux magnetic transport (also called

r =  MAi ~  R~1/2- (1.25)

7T (1.26)r ~ , 81n/T
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Figure 1.3: Illustration of the diffusion region and the attached slow shocks in 
Petschek’s reconnection model.

which is much faster than for the Sweet-Parker model. Another important prop­
erty of Petscheck reconnection is a fairly weak dependence on the macroscopic length 
scale L0. For Lundquist number ranging from 102 to 1020, the Petscheck reconnec­
tion rate various only between 0.09 and 0.01, which is in reasonable agreement with 
observations of macro plasma transport for most space plasma systems [Otto, 2012], 

The above stationary models are based on the MHD frame work. Thus, resistiv­
ity is the only source to break down the frozen-in condition. However, in a space 
environment, plasma is usually considered as a superconductor. Thus, to facilitate 
magnetic reconnection in MHD, one has to make an ad hoc assumption for the re­
sistivity or include more physics, i.e., an electron pressure tensor, electron inertia, or 
explicit kinetic processes and instabilities. The latter options not only require the 
inclusion of complex additional physics but also the resolution of kinetic length scales 
in large scale plasma models, which for most applications requires computer resources 
far beyond today’s capabilities.

Here I only consider the resistive term. Assuming a width of the current layer of 
S, the current density can be approximated by

Q
j  =  en (Vi -  ve) =  — -, (1.27)

Hod

where u, and ve is the ion and electron speed, respectively. Normalized by the typical
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value, Equation (1.27) can be rewritten as

V{ Vf> A i (1.28)
^  S'

which indicates that thin current layers require large drift speeds of the current car­
riers. As a reminder, A, is the ion inertia scale. However, large drift velocities are 
expected to generate micro-instabilities when this velocity significantly exceeds the ion 
thermal speed vtk- The turbulent interaction of the waves of the instability with the 
current carrying particles will slow the particle to conditions sub-critical for the insta­
bility [Otto, 2012]. The overall effect is equivalent to a resistivity. Assuming a critical
velocity for the onset of micro-instabilities of vc — acs, where cs =  y j (7p) /  (2p) is 
the ion acoustic speed, implies that a is of order unity when the ion inertia scale is 
comparable to the normalization length L0. In reality, a  is determined by the onset 
conditions for current driven turbulence in a strong current. Since the exact choice 
has minor influence on the macroscopic dynamics, it is used in my numerical model 
as a free parameter to adjust magnetic reconnection onset condition. For example, 
In the three-dimensional simulations, three resistivity models are applied, which are 
given by:

Model 1: 771 =rfry/j2 -  j%H (j  -  j c) + j b, (1.29)

Model 2: 772 = V o y / j - jcH  (j  ~  jc) + jb, (1-30)

Model 3: 773 =770 ( j2 -  j 2) H (j  -  j c) + j b, (1.31)

where H(x) represents a step function, j c =  pvc =  ay/^pp/2 the critical electric 
density, and j b the background resistivity. Therefore, the onset current layer width is 
given by

J =  AiVA/vc ~  A, {a/3) - 1, (1.32)

where /? is the plasma beta 2/iop/B2. At the magnetopause /? «  0.1 ~  1, but near 
the X-point the plasma can be higher, which indicates that the diffusion region 
is at least on the ion inertia scale. Thus it is potentially important to include Hall
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physics into a model of magnetic reconnection at the magnetopause. Although Hall 
physics does not violate the frozen-in condition, the frozen-in condition outside of 
the diffusion region applies to electrons, the inclusion of the Hall term achieves much 
higher reconnection rates than MHD [Otto, 2001; Ma and Bhattacharjee, 2001]. The 
Hall reconnection rate is comparable to the rate obtained by other plasma descriptions 
which include additional physics, i.e., electron pressure and kinetic models [Bim et al., 
2001],

Observational evidence of magnetopause reconnection was first presented by Rus­
sell and Elphic [1978]. By using ISEE satellite data, they found many events with 
a bipolar signature in the magnetic field component normal to the magnetopause 
boundary (Bn ). Another feature is an enhanced magnetic field strength at the center 
of the event [Russell and Elphic, 1978]. They called these structures as flux transfer 
events (FTEs) and assumed they represented magnetic flux ropes in which magnetic 
flux connecting magnetosheath and magnetosphere is caused by localized patchy re­
connection.

1.4 The Kelvin-Helmholtz Instability

The Kelvin-Helmholtz (KH) instability is one of the most important instabilities in 
geophysics. It occurs in the presence of a large shear flow across a thin boundary layer. 
It can be easily found in our physical environment, such as water ripples on a lake 
surface and waving flags generated by wind, or the vortices at the confluence of two 
rivers. It is also found that the KH instability can be observed in such space areas as 
the solar corona, the ionosphere, and astrophysical objects (M82) [Foullon et al., 2011; 
Birk et al, 1999]. The well known application of KH instabilities are the surface waves 
at the Earth’s magnetospheric boundary. Figure 1.4 illustrates KH vortices close to 
the equatorial plane at the duskside magnetopause for northward IMF conditions 
[Hasegawa et al., 2004]. The thickness of the magnetospheric boundary is around 
100 to 1000 km, which is comparable to the ion inertia scale. The magnetospheric 
boundary provides a good candidate for the occurrence of KH instability because of
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the high velocity on the solar wind side and a stagnant flow on the magnetospheric 
side of the boundary.

The KH instability is highly efficient to mix material and momentum from both 
sides of a shear flow boundary. Therefore, its macroscopic effect is equivalent to 
diffusion and viscosity. At the magnetospheric boundary, Axford [1964] suggested 
the KH instability as a possible mechanism for viscous coupling between the solar 
wind and the Earth’s magnetosphere.

Chandrasekhar [1961] studied the KH instability as one among several interchange 
instabilities. He assumed an incompressible homogeneous plasma on the two sides 
of a discontinuous tangential flow including a homogeneous tangential magnetic field 
and calculated the growth rate of the KH instability q:

q =  y ja iq2 [(V i -  V 2) • k]2 -  a t (V A1 • k )2 -  a2 (V A2 • k )2, (1.33)

where the indices refer to the two sides of the shear flow layer, a, =  Pi/(pi +  P2 ), 
k is the wave vector of the perturbation, and V ai =  B i / f̂pl is the Alfven velocity. 
Important properties implied by the dispersion relation in Equation (1.33) are:

1. In the absence of a magnetic field, the KH instability is always operating as long 
as there is a nonzero shear flow V i — V 2 7  ̂ 0. The growth rate is proportional to 
the k vector, indicating that the fastest growth is for the smallest wavelengths.

2. The magnetic field can entirely stabilize the mode if there is a sufficiently large 
magnetic field component along the k vector. In order words, the kinetic energy 
of the shear flow has to be large enough to overcome the magnetic tension force.

3. If the magnetic field is perpendicular to the k vector, it does not affect the 
KH instability growth rate. Therefore, this magnetic field can be treated as an 
additional pressure.

It is worth mentioning that the vortices generated by the KH instability are moving 
at the velocity V  =  orV ] +  o 2V 2. Thus it is convenient to perform a Galilean
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Figure 1.4: (a) Cartoon of the magnetosphere, showing the KH vortices at the dusk- 
side magnetopause, (b) Vortex structure resulting from a three-dimensional numerical 
simulation of the MHD KH instability under a magnetosphere-like geometry, with the 
plasma sheet sandwiched between the two lobes [Hasegawa et al., 2004].
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transformation and use a frame in which the KH vortex is stationary. Hereafter, 
most of the results are based on this frame.

Although the most important properties of the KH instability are illustrated 
above, the basic assumptions have some important limitations. It is expected that 
compressibility will stabilize the system. KH instability can not operate if the initial 
velocity on the two sides is larger than a critical value [Pu and Kivelson, 1983; Miura 
and Pritchett, 1982]. The assumption of incompressibility assumption assumes an 
infinite ion-acoustic speed. In order to generate the flow in and around the vortices, 
the system must pass the information on the obstacle downstream. However, a super­
sonic flow prevents this information transport such that the instability cannot operate 
anymore.

The assumption of an infinitely thin shear flow layer implies a width of the shear 
layer which is small compared to the wavelength. This is often violated because 
the fastest growth mode is always the smallest typical length scale in the system. 
Therefore, the fastest mode always has a wavelength which is comparable to 2ir times 
the width of the shear flow layer. Using two-dimensional MHD simulations, Miura 
and Pritchett [1982] have shown that the fastest growth rate requires ka m 0.5 ~  1, 
where a is the half width of shear flow, and KH instability will be switched off when 
ka >  2.

The KH instability as an efficient transport of energy and momentum across the 
plasma boundary have been demonstrated by a number of two-dimensional MHD sim­
ulations [Miura, 1982, 1984, 1987, 1992, 1996; Miura and Pritchett, 1982]. However, 
as an ideal instability, the KH instability does not violate the “frozen-in” condition. 
Nevertheless, more recent two- and three-dimensional simulations for northward IMF 
conditions have demonstrated the formation of very thin current layers in the non­
linear vortices of KH waves. In resistive MHD, these current layers force magnetic 
reconnection to operate which allows the plasma to cross the magnetospheric bound­
ary [Otto and Fairfield, 2000; Nykyri and Otto, 2001, 2004; Otto, 2008]. Figure 1.5 
illustrates two types of magnetic reconnection driven by KH waves. The first type
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occurs in the case where the magnetic field components along the k vector of KH 
instability are anti-parallel across the velocity shear layer (anti-parallel case). The 
second type occurs for flow shear strong enough to produce well developed large size 
KH vortices and strongly stretched field lines therein (strong KH instability case) 
[Nakamura et al., 2006, 2008]. It is often reported in numerical simulations that the 
fastest modes (also usually short wavelength modes) are the first to reach a saturation 
state. A merging of neighboring vortices to form a longer wavelength mode has often 
been observed in simulations [Nakamura and Fujimoto, 2008]. Another property is 
a periodic increase and decrease of density by the KH waves, which modulates the 
local ion acoustic speed. Once the ion acoustic speed is below the bulk velocity, a fast 
shock can be formed [Miura, 1984; Wu, 1986]. It is demonstrated that the net plasma 
transport due to reconnection inside KH vortices is unaltered in a Hall-MHD approxi­
mation and the Hall-MHD growth rates are about 20% larger than the corresponding 
MHD growth rates [Nykyri and Otto, 2004],

The KH instability at the magnetopause has been widely confirmed by means of 
the satellite observation [Fairfield et al, 2000; Hasegawa et al, 2004; Hwang et al., 
2011]. A good example is the event on March 24, 1995 [Fairfield et al., 2000]. “For 
several hours the Geotail spacecraft remained near the dusk-side magnetotail bound­
ary some 15 RB behind the Earth while the solar wind remained very quiet with a very 
steady l l n T  northward magnetic field. Geotail experienced multiple crossings of a 
boundary between a dense, cold, rapidly flowing magnetosheath plasma and interior 
region characterized by slower tailward velocities and lower but substantial densities 
and somewhat hotter ions. The crossings recurred with a roughly three minute pe­
riodicity, and all quantities were highly variable in the boundary region, especially 
the Bz component showed strong short-duration fluctuations in which Bz could even 
reach negative values. The observation also suggests direct entry of plasma through 
the boundary as the source of high densities in the plasma sheet” [Fairfield et al., 
2000]. Otto and Fairfield [2000] used two-dimensional MHD simulations to show that 
the fluctuations can be explained by the KH instability if the k vector of the in-
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(a) First type reconnection driven by KH mode. (Top) Density contours and flow vectors for ion 
and magnetic field lines. (Bottom) Sketch of the evolution of magnetic field lines. The cross shows 
the reconnection site.
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(b) Second type reconnection driven by KH mode. (Top) Density contours and flow vectors for ion 
and magnetic field lines. (Bottom) Sketches of the evolution of magnetic field lines. The blue crosses 
show the reconnection sites, and the blue arrows show the motions of the magnetic islands.

Figure 1.5: Two different types of magnetic reconnection driven by KH mode [Naka­

mura et al., 2008].
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stability has a component along the magnetic field direction. “The results suggest 
an average KH wavelength of about 5 i?E, with a vortex size of close to 2 RE for an 
average repetition time of 2.5 min. The growth time for these waves implies a source 
region of about 10 ~  16 RE upstream from the location o f the Geotail spacecraft. 
The simulations also indicate a considerable mass transport of magnetosheath mate­
rial into the magnetosphere by magnetic reconnection in the KH vortices” [Otto and 
Fairfield, 2000].

Recently, Hwang et al. [2011] presented the first in situ observation of nonlineaxly 
developed KH waves during southward IMF. “The analysis revealed a mixture of 
less-developed and more-developed KH waves that shows inconsistent variations in 
scale size and magnetic perturbations consistent with the expected evolution of KH 
structures. A coherence analysis implied that the observed KH waves under south­
ward IMF appear to be irregular and intermittent. These irregular and turbulent 
characteristics are more pronounced than previously reported KH waves events for 
preferentially northward IMF conditions” [Hwang et al., 2011].

1.5 Motivation and Outline of the Thesis

As mentioned before, both magnetic reconnection and Kelvin-Helmholtz instabilities 
at the Earth’s magnetopause have been studied by numerous authors in the past 
half-century. However, there are still some major important open questions in this 
area, among them the problems outlined below.

1.5.1 Entropy Changes Associated with Magnetic Reconnection

As mentioned before, entropy is a conserved quantity in the ideal MHD. However, 
many observations indicate that the plasma in the magnetosphere is strongly heated 
and has an entropy that is orders of magnitude higher than its solar wind origin. 
Only a small fraction of this nonadiabatic heating is explained by the Earth’s bow 
shock, such that the high entropy of magnetospheric plasma is still a fundamentally 
important and unresolved issue. Figure 1.6 summarizes observed values of the typical
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entropy S =  pp_1 in the solar wind and magnetosphere. In the magnetosphere, 
satellite observations show that ions in the Earth’s plasma sheet become cold and 
dense during prolonged periods of northward IMF, which has been attributed to 
the massive transport of the solar wind or magnetosheath ions into the plasma sheet 
[Fujimoto et al., 1997]. There are two components of plasma in this cold dense plasma 
sheet, a hot distribution, which is considered a remnant o f the original plasma sheet 
plasma, and a cold distribution, which is believed to be of magnetosheath origin 
[ Wang et al., 2007]. The typical flank magnetosheath ion density and temperature 
for fast solar wind conditions are about 5 cm-3 and 50 eV. For slow solar wind 
conditions, the ion density and temperature are about 8 cm-3 and 10 eV [Borovsky 
and Cayton, 2011]. Density and temperature for the cold plasma component are 
about 0.5 cm-3 and 500 eV [Wang et al., 2007], which yield an entropy increase of 
about 1 ~  2 orders of magnitude compared to the magnetosheath. To determine 
which process can provide sufficient nonadiabatic heating may also shed light on a 
better understanding of the plasma transport at the magnetopause. The problem is 
reminiscent to the problem of coronal heating, where, again, the entropy is orders of 
magnitude higher than in the solar photosphere and chromosphere.

A prime candidate for the observed nonadiabatic heating is magnetic reconnec­
tion, which requires the violation of the ideal MHD by local dissipation. This is 
particularly attractive because it is very clear that magnetic reconnection plays a 
major role for the plasma transport from the magnetosheath into the magnetosphere. 
Therefore, the idea to resolve the problems of nonadiabatic heating and of the plasma 
transport is very appealing. Furthermore, entropy is the quantity to describe irre­
versible processes, and has not been systemically examined in magnetic reconnection. 
Thus in Chapter 3 ,1 investigate systematically any entropy increase through different 
magnetic reconnection configurations in the framework of MHD and Hall MHD by 
using one- and two-dimensional numerical simulations.
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24

1.5.2 Field-Aligned Currents Formation in Magnetic Reconnection

Field-aligned currents (FACs) represent the current component along the magnetic 
field direction. Figure 1.7 is a schematic of combined FACs and ionospheric current 
systems. More than 100 years ago Kristian Birkeland hypothesized the existence of 
currents in the upper ionosphere, which are not all closed in the upper atmosphere 
but have currents connected to interplanetary space. Now it is well known that 
these currents not only exist but also play a critical role in the coupling between the 
magnetosphere and ionosphere. The coupling implies the existence of forces on the 
plasma and therefore requires the presence of currents to communicate such forces 
between the magnetosphere and the ionosphere. Thus, it is highly important to 
understand the plasma processes that generate FACs.

At the magnetopause, it is believed that FTEs represent magnetic flux ropes that 
connect the magnetosheath magnetic field and the geomagnetic field. Associated with 
these events are observations of transient acceleration and auroral emissions in the 
dayside polar ionosphere which are believed to be related to FTEs. If this is the case, 
FACs must have been generated during the reconnection process that formed the flux 
ropes. Therefore, FACs are key to understanding the ionospheric response to the 
interaction between the solar wind and the magnetosphere. In the Earth’s magne­
totail, the occurrence of substorms, which involves magnetic reconnection, increases 
the Birkeland currents (FACs), accelerates particles along field lines, and causes the 
aurora to brighten. Thus FACs are critical to the magnetosphere-ionosphere coupling 
(For more detail, see Chapter 4). These two examples clearly hint that magnetic re­
connection may generate the FAC; however, the mechanism is not fully understood. 
Several studies examine the formation of FACs associated with magnetic reconnection 
and KH waves. However, most of these studies invoke three-dimensional reconnec­
tion whereas guide magnetic field or velocity shear should be very efficient to generate 
FACs in two dimensions. In fact, several of the three-dimensional results can prob­
ably be attributed to two-dimensional mechanisms. This problem is also relevant to 
better understand the formation of FACs in the shear flow geometry necessary for
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Figure 1.7: A schematic of combined FACs and ionospheric current systems [Le et al., 
2010],
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the formation of KH waves. It has been demonstrated that the FACs generated by 
the velocity shear are critical for the coupling of KH and current sheet instabilities 
to the ionosphere [Lysak and Song, 1996]. In Chapter 4, I systemically examine FAC 
generation in two-dimensional magnetic reconnection.

1.5.3 Interaction Between Kelvin-Helmholtz Instability and Magnetic 
Reconnection

Magnetopause magnetic reconnection is considered the dominant process for south­
ward IMF conditions at the Earths magnetopause. However, a shear flow, perpen­
dicular to the reconnection plane, is always present due to the solar wind velocity. 
Therefore, it is expected that KH modes and magnetic reconnection operate simulta­
neously and interact with each other. It is important to note that magnetic reconnec­
tion and KH waves cannot simultaneously occur in two-dimensional configurations. 
Figure 1.8 illustrates the role of reconnection versus the role of KH instability for 
k || B and parallel to the velocity shear direction condition. Flow shear modifies 
magnetic reconnection by generating a configuration similar to a density asymmetry 
with a nonzero By in the outflow region when |V| < |V^j [La Belle-Hamer et al., 
1995]. When the shear flow value is larger than the inflow Alfven speed (|V| > |V*|), 
magnetic reconnection is switched off by KH modes [Chen et al., 1997]. In cases where 
the directions of magnetic shear and velocity shear are not aligned, the k vectors for 
the respective instabilities are not aligned. Therefore, a configuration where both 
instabilities are permitted to operate simultaneously is necessarily three-dimensional. 
Several two-dimensional simulation studies were carried out considering either con­
figurations where only reconnection can operate or where only the KH mode can 
operate. Thus to fully understand this interaction process, a fully three-dimensional 
MHD or Hall MHD simulations is required. The case of largely parallel magnetic field 
(for northward IMF conditions) has been investigated in three dimensions by Takagi 
et al. [2006] and Otto [2008]. However, southward IMF has only been considered in 
a global simulation study with limited resolution [Hwang et al., 2011]. This study
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also has not examined any details of the KH-reconnection interaction. There are also 
no studies to consider the effect of Hall physics in three-dimensions, although it is of 
potential importance because of the thin current layers that are caused by nonlinear 
KH waves. Therefore, Chapter 5 and 6 examine the three-dimensional interaction of 
KH waves and magnetic reconnection. A significant uncertainty is presented by the 
spectrum and type of the initial perturbations that cause the instabilities to grow. 
Generally, it is more likely that the evolution of KH waves is faster because the mode 
represents an ideal instability which implies always fast growth on the time scale of 
ideal MHD. In comparison, fast magnetic reconnection requires first a thin current 
layer and then develops on the time scale of the Petschek rate. However, the details 
are more complicated because large scale KH waves also have a slower evolution than 
short wavelength modes. To cover these possibilities, I consider first a situation with 
perturbations that favor KH growth over reconnection in Chapter 5 and then consider 
a scenario with perturbations that favor the evolution of magnetic reconnection as 
the primary process in Chapter 6 .

Since all these studies are based on numerical simulation, an introduction of the 
numerical method is provided in Chapter 2. In Chapter 7, I summarize the results 
and discuss remaining problems and future work.
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Figure 1.8: For k || B, magnetic reconnection operates only when |V| < |V/i|.
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Chapter 2 
Num erical M ethods

2.1 Numerical Integration o f  the M H D  and Hall M H D Equations
In this thesis, I use a leapfrog scheme to solve the full set o f normalized resistive Hall 
MHD equations [Otto, 1990]:

where all the notations have the same meaning as in Chapter 1.
The leapfrog scheme is given by introducing centered differences in both time and 

space. Figure 2.1 shows an example of the numerical integration of the continuity 
equation in one dimension using a finite differences leapfrog scheme. For instance the 
discretized continuity equation becomes with pVx =  F,

Equation (2.8) is consistent with the continuity equation with a truncation error of 
O (A t2, A x2). Note, that a Taylor expansion of the discretized terms implies that a

and the second order error to a third order derivative in p. Therefore, the achieved

(2.1)

V - p W  +  1 (p — B 2) I +  BB , (2.2)

(2.3)

dh
dt

h

- V  • (hV) +  1— -h'-'t'nj2 
7

(p/2)l h , (2.5)

(2.6)

(2.4)

j  =  V  x B,

(2.7)
2A t 2Ax

which as an algorithm becomes

(2.8)

first order error in A x  corresponds to a second order derivative of p, i.e., to diffusion



30

accuracy implies low diffusion (no second order derivative error) and that the lead­
ing error term corresponds to numerical dispersion. The property of low numerical 
diffusion is an important advantage for magnetic reconnection simulation, because 
resistive diffusion is critical to magnetic reconnection, but whose magnitude is often 
small O (0.01 ~  0.1). Thus a low numerical diffusion is required to avoid physical 
diffusion being masked by numerical diffusion. This also implies that the leading 
error term generates numerical dispersion and oscillations close to the grid scale. To 
overcome these, a small numerical viscosity has been applied on the grid scale in the 
simulation code.

Figure 2.1: Leapfrog scheme.

Equation (2.8) shows that the update of p" +1 is independent of the information 
at grid point x  =  xt at t =  tn. Thus, the update of all orange points does not require 
any information of the blue points at all. In fact, the scheme can be executed (and 
is executed) without any information from the blue points at all integration steps 
without losing any accuracy. It is only required to integrate every other grid point
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initially by a simple time step and to execute another simple time step integration 
at the very end of the numerical integration to bring all grid points to the same time 
level. However, the inclusion of the Hall term requires the information of B f , which 
can be obtained either by taking the average of the neighbor points at t =  tn or by 
using a Lax integration scheme (forward differences in time and centered differences 
in space). The second method is more stable than the first method in the three­
dimensional simulation. Therefore, this is applied in my code.

To avoid numerical instabilities, the time step A tn =  tn+\ — tn is limited by the 
Courant-Friedrichs-Lewy (CFL) condition [Courant et al., 1967]:

where V/1 is the group velocity for the system at the grid point x =  xn t =  tn. 
In other words, the CFL condition (2.9) requires the numerical scheme to resolve the 
transport of information along neighboring grid points. For the MHD equations, the 
fastest wave mode (the fast mode) is a non-dispersive wave, whose group velocity

a dispersive wave (V — du/dk ~  k ~  A x  J). Thus for same Ax, the computational 
effort increases significantly and scales with 0 (N 5).

2.2 Initial and Boundary Conditions

2.2.1 Two-dimensional Configurations

In all of the simulations, the initial equilibriums is always a modified one-dimensional 
Harries sheet. The initial equilibrium for the two-dimensional configurations is illus­
trated in Figure 2.2. I assume the x  direction normal to the current layer (boundary), 
y is direction along the boundary, and z is along the invariant direction. The sim­
ulation domain is a box with |x| <  Lx, and 0 <  y <  Ly. This choice is used in the 
two-dimensional studies presented in Chapter 3 and 4. The initial equilibrium is a

(2.9)

is Vf =  \Jc* +  V\, where cs is the ion acoustic speed and Va is the Alfven speed. 
Thus for a three-dimensional cube with N3 grid points, the computational effort is 
proportional to 0 (N 4). However, the whistler wave introduced by the Hall physics is
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one-dimensional current sheet, which is given by

Bx = 0, (2 .10)

By = tanh(x ) , (2 .11)

Bz =Bg, (2 .12)

vx=o, (2.13)

V y=  0, (2.14)

Vz =Vzi tanh ( x ) , (2.15)

P=POO +  1 -  By, (2.16)

P =Po +  &P tanh (x ) , (2.17)

where the parameters Bg, Vzl, and Sp are used to introduce a guide field, flow shear, 
and density asymmetry. In this study, magnetic reconnection is triggered by the 
localized resistivity model

77 =  7/0 exp (-t/to) /  [cosh (X) cosh (y )] +  %, (2.18)

where t?o =  0.05, t0 =  3, and r)b =  0.002 is a background resistivity to smooth the
numerical dispersion.

Free boundary conditions (dn — 0, where dn is the partial derivative in the direc­
tion normal to the boundary) are applied to the x  maximum and minimum boundary 
and y  maximum boundary. The y minimum boundary is determined by symmetry
properties of the (Hall) MHD equations [Otto et al., 2007].

2.2.2 Three-dimensional Configurations

The initial equilibrium for the three-dimensional configurations is illustrated in Fig­
ure 2.3. I assume x  normal to the current layer (boundary), z is chosen along the 
anti-parallel magnetic field components on the two sides of the current layer, and
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y

Figure 2.2: Harries sheet in two-dimensional configurations.

y completes the right-handed coordinate system. The simulation domain is a vol­
ume with |x| < Lx, |y| <  Ly, and \z\ <  Lz. The initial equilibrium is a modified 
one-dimensional Harries sheet. For example, in the three-dimensional simulations 
(Chapter 5 and 6), it is given by

II o (2.19)

By ByO, (2.20)

Bz =  ~ Bz0 tanh ( x ) , (2.21)

II o (2.22)

Vy =  — V̂ o tanh ( x ) , (2.23)

vz=o, (2.24)

P =Poo +  1 -  B 2Z, (2.25)

P —Po +  ^ptanh ( x ) , (2.26)
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where B~0 is the anti-parallel magnetic field component, is the inflow plasma ther­
mal pressure, p0 is the average plasma density, and Sp the plasma density difference 
between magnetosphere and magnetosheath. By represents the guide field and Vyo is 
the magnitude of the shear flow.

Figure 2.3: Harries sheet in three-dimensional configurations.

In order to select the KH mode as the primary process, the system is triggered by 
a KH type perturbation in Chapter 5, which is chosen as

where

Jv =  [V4» (x, y) x ez] fi (z ) ,

(x, y) =  — (Sv/n) cos (ky) tanh (kx) ,

(2.27)

(2.28)

Sv =  0.2, n is the number of the KH modes in the system, and k =  nixLy 1 is wave 
number. The function f\ is given by

tanh Z +  Zo tanh Zo (2.29)
d )  \ d

which is chosen to localize the perturbation in the region where z  <  \z q \. Note, that 
this perturbation is not a normal mode, i.e., a solution of the linearized equation, but 
the spectrum of the perturbation has a dominant contribution to the normal mode 
with the chosen wave number.
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In order to select magnetic reconnection as the primary process in Chapter 6 , the 
system is triggered by a magnetic perturbation which is chosen as

tively large magnetic perturbation is justified because large perturbations are common 
in the magnetosheath and a large perturbation accelerates the evolution of reconnec­
tion as the primary instability in this study.

The simulations use periodic boundary conditions along the y direction, which 
is the direction of the dominant k vector of the KH modes. Free boundary dx =  0 
conditions are applied in the x  direction. However, the simulation box is chosen 
sufficiently wide that these boundary effects can be ignored. An artificial friction term 
—v {z) [pV — p (0) V  (0)] is added on the right-hand side o f the momentum equation 
(2.2), where p (0), and V  (0) are the initial plasma density and velocity, respectively. 
The friction coefficient is localized near the 2 boundary and given by

uQ =  1, zv — 0.75L2, and dzv =  3. This form of the friction term introduces a magnetic 
line tying on either side of magnetopause close to the 2 boundaries to mimic the fact 
that the magnetosheath magnetic field lines are moving with the solar wind, and that 
magnetospheric magnetic field footprints stick to the Earth’s ionosphere (i.e., at large 
distances from the equatorial plane).

£B =  [VA  (x , z) x ey] / 2 (y) (2.30)

where
A (x, z) =  SB cosh 2 (a:) cosh 2 (z/2), (2.31)

SB =  0.5. The function / 2 is given by

h  (V) =  \ tanh 1 (2.32)

which is chosen to localize the perturbation in the region where y < |y0|- The rela-

v (z) =  ^  2 — tanh
2



36

2.3 Numerical Method for Reconnected Flux and Reconnection Rate

2.3.1 Two-dimensional Configurations

Considering two-dimensional magnetic reconnection as illustrated in Figure 2.4, the 
magnetic field B can be represented as

B =  V x  {Az%z) +  Bze z =  V A Z x e z 4- Bzez, (2.34)

where Az is 2 component of the vector potential. The X (aq (t) , yx (f)) and O 
(.xq (t) , y0 (t)) points are the positions where B x =  By =  0. The reconnected flux 
is the magnetic flux between these two points, i.e.,

fVl
$ =  Bxdy =  Az (x0,y0) - A z (x1,y l). (2.35)

J yo

The reconnection rate is defined as the rate with which the amount of magnetic flux 
changes:

d
T =  ~dt =  dt^Az X̂° ,y °̂  _  Az ' 2̂'36^

This reconnection rate can be determined directly by applying the induction equation, 
since the electric field along 2 direction is given by

dA
E^ — ^  =  yvB* -  y*Bv +  VJz. (2.37)

At the X and O point Bx =  By =  0, such that the reconnection rate is given by

r =  r} (x0, yo) j z (x0,y0) - T ]  (aq, yx) j z (x x, yx). (2.38)

Note, that Equation (2.36) and (2.38) provide two independent means to measure the
reconnection rate, which can be used as a simple test to examine the influence from
numerical diffusion.
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O point (xQ, y0)

2.3.2 Three-dimensional Configurations

Figure 2.5 presents a sketch of the three-dimensional reconnection process. To iden­
tify the reconnected (open) magnetic flux, field lines are traced from the top boundary 
(z =  Lz). The open or reconnected field lines from the top boundary on the magne­
tosheath side (x  > 0) extend toward the equatorial plane, and connect to the field 
lines on the magnetosphere side, which extend back to the top boundary because the 
field magnetospheric field has the opposite direction along z. Thus, all open field lines 
started from the top boundary on the magnetosheath side (x >  0) have endpoints 
also at the top boundary on the magnetosphere side (x <  0). By integrating all of 
the positive (or negative) open flux (along z) at the top boundary, one can obtain 
the total reconnected flux

® =  \Bz (x , y , Lz)\dxdy, (2.39)
J op en

where the integral is taken over the open flux at the top boundary plane. Note, that 
this method requires a sufficient density of field line integrations for good accuracy. 
The total reconnection rate is given by the time derivative of this magnetic flux.
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In order to compare this rate with the two-dimensional reconnection theory, the 
reconnection rate is normalized to the system size 2Lyi such that the normalized 
reconnection rate r or reconnection rate per unit distance is defined by

r =  2 i ; f  (2-40)

I also remark that the net rate of change of magnetic flux through a closed contour 
is the line integral of the tangential electric field along the closed contour. However, 
this method is not applicable here because this net change is zero for the x =  0 plane 
because the same amounts of reconnected magnetic flux are connected to the northern 
and southern hemisphere and therefore cancel. Another measure for the rate of the 
total flux reconnection is given by the maximum of the integrated parallel electric 
field in the system. While this is a rigorous measure, it is difficult to determine in a 
numerical system because this maximum is assumed for one (singular) magnetic field 
line. Even a very small deviation from this singular field line can yield a significant 
difference of the integrated electric field and therefore produce a large uncertainty of 
the actual reconnection rate.
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Chapter 3
Nonadiabatic Heating in Magnetic Reconnection

3.1 Introduction

Magnetic reconnection is a fundamentally important process in space physics, be­
cause it converts the stored magnetic energy into the kinetic energy, and it changes 
the magnetic topology such that plasma can be transported across magnetic bound­
aries [Dungey, 1961; Parker, 1957; Sweet, 1958]. It occurs in the presence of suffi­
ciently large anti-parallel magnetic field components. At the dayside magnetopause, 
magnetic reconnection is the prime mechanism for a transfer of magnetic flux and 
energy into the magnetosphere during periods of southward interplanetary magnetic 
field (IMF). During times of northward IMF, magnetic reconnection occurs at higher 
latitudes. The concept of magnetic reconnection is based on the breakdown of the so- 
called “frozen-in” condition. In Petschek’s reconnection model [Petschek, 1964] the 
frozen-in condition breaks in a tiny diffusion region, which is bound by in- and outflow 
regions. The in- and outflow regions are separated by two pairs of slow shocks (see 
Figure 3.1), where the plasma is mostly accelerated by the j x B force and magnetic 
energy is converted into bulk and thermal energy.

This energy conversion is one of the most important aspects of magnetic recon­
nection. This process can also be considered as a nonadiabatic process, which can be 
characterized by so-called “specific entropy” S =  p/p1, where p is the plasma thermal 
pressure, p is the plasma density, and 7 =  5/3 is the ratio of specific heats [Bim 
et al., 2006, 2009]. Hereafter, I simply refer to this quantity as entropy. Note, that a 
value of 7 =  5/3 corresponds to three degrees of freedom for the motion of charged 
particles. In the MHD description, entropy is an invariant in the absence of Ohmic 
or viscous heating and shocks. Nevertheless, in the context of magnetic reconnection, 
the breakdown of ideal MHD by local dissipation also implies a breakdown of the 
entropy conservation. A significant entropy increase in Petschek’s model is provided 
by the two pairs of slow shocks bounding the outflow regions. These represent the 
major entropy sources, as will be demonstrated in this study for different types of
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Figure 3.1: Illustration of the Petschek reconnection geometry. Top: Length scales 
assumed in Petschek’s model; Bottom: Illustration of the diffusion region and the 
attached slow shocks [Otto, 2012].
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reconnection geometries.
It is believed that magnetic reconnection is the dominant process for southward 

IMF conditions. For northward IMF conditions, reconnection driven by nonlinear 
Kelvin-Helmholtz (KH) modes at the low-latitude boundary layer (LLBL) and high- 
latitude reconnection become more important [Scholer and Treumann, 1997]. On the 
other side, satellite observations show that ions in the Earth’s plasma sheet become 
cold and dense during prolonged periods of northward IMF, which has been attributed 
to the massive transport of the solar wind or magnetosheath ions into the plasma 
sheet [Fujimoto et al., 1997]. There are two components of plasma in this cold dense 
plasma sheet, a hot distribution, which is considered a remnant of the original plasma 
sheet plasma, and a cold distribution, which is believed to be of magnetosheath origin 
[Wang et al., 2007]. The typical flank magnetosheath ion density and temperature 
for fast solar wind conditions are about 5 cm-3 and 50 eV. For slow solar wind 
conditions, the ion density and temperature are about 8 cm-3 and 10 eV [Borovsky 
and Cayton, 2011]. Density and temperature for the cold plasma component are about 
0.5 cm-3 and 500 eV [Wang et al., 2007], which yield an entropy increase of about 
1 ~  2 orders of magnitude compared to the magnetosheath. Therefore, the plasma 
entry process is accompanied with strong nonadiabatic heating. One may expect 
that this nonadiabatic heating is mainly caused by magnetic reconnection, because 
reconnection is believed to be the prime mechanism for this entry process. However, 
studies by Bim et al. [2006, 2009] demonstrated that entropy appears more or less 
unchanged after reconnection. This raises the important question, whether magnetic 
reconnection can provide any significant nonadiabatic heating? Directly related is the 
issue of any specific conditions, for which significant nonadiabatic heating may occur.

Here I present a systematic study of the entropy changes in magnetic reconnection 
based on analytical theory and numerical MHD simulation. The numerical methods 
are introduced in Section 3.2. In Section 3.3, I discuss entropy sources in different 
sub-regions in a Petschek type reconnection geometry. For applications to the actual 
magnetospheric boundary, the influence of a guide field, the asymmetry, and the shear
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flow axe discussed in Section 3.4. Section 3.5 presents a summary and discussion.

3.2 Numerical M odel
The MHD description is suitable for the magnetospheric boundary on scales larger 
than the ion inertia length. However, after reconnection onset, the thin diffusion 
region develops to typical length scales comparable to the ion and electron inertia 
scale. In this study, I solve the full set of the one- and two-dimensional normalized 
resistive MHD and Hall MHD equations as introduced in Chapter 2, except using the 
energy equation instead of the entropy equation. By combing Equation (2.1)-(2.4), 
one can derive the energy equation:

^  =  - V - {  w + X- { p  +  B 2) V - [ ( V  —u ) - B ] B  +  7 h x B —S 2u j , (3.1)

where w =  [pv2 +  B 2 +  p/ (7 — 1)] /2  is the total energy density of the plasma, and 
u =  / (jIp). One should keep in mind, in this normalization, the unit-less entropy is 
S =  pf (2p1). The difference between the energy equation and the entropy equation 
will be discussed in Section 3.3.1.1.

I present the results from four selected two-dimensional simulations to study the 
entropy enhancement for typical magnetic reconnection configurations using a sym­
metric reference case and including characteristic variations in terms of the magnetic 
field, plasma flow, and symmetry of the configuration. The simulation domain is a 
rectangular box with |x| < 20, and 0 < y <  80, and is resolved by using 323 x 353 
grid points with a non-uniform grid in the both directions. To sufficiently resolve the 
diffusion region, the best resolution is set to 0.025 and 0.1 in the x  and y direction 
in the diffusion region. Free boundary conditions (dn =  0, where dn is the partial 
derivative in the direction normal to the boundary) are applied to the x  maximum 
and minimum boundary and y maximum boundary. The y minimum boundary is 
determined by symmetry properties of the (Hall) MHD equations [Otto et al., 2007].
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The initial equilibrium is a one-dimensional modified Harries sheet given by

Bx =0, (3.2)

By = tanh(x ) , (3.3)

Bz = B g, (3.4)

14=0, (3.5)

1 4 = 0 , (3.6)

14 =Vzi tanh (x ) , (3.7)

V =Poo +  1 -  B j, (3.8)

p =po +  Sp tanh (x ) , (3.9)

where the parameters Bg, Vzi, and 6p are used to introduce a guide field, flow shear, 
and density asymmetry. The values of all parameters are listed in Table 3.1. To trigger 
Petschek type magnetic reconnection (except case B), I use a localized resistivity given 

by
r) =  Tj0 [1 — exp {—t/r)) cosh-1 (x) cosh-1 (y) 4- rjb, (3.10)

where r}0 =  0.05, r  =  5, and r)b =  0.002.
Case A is the reference case. At the real magnetopause, the magnetosheath density 

is about ten times larger than the magnetospheric density. Therefore, to investigate 
this asymmetry effect is of importance. In the simulation (case B ), I set p0c =  0.025, 
p0 =  1.5, and dp =  0.5, which yields to pMSP : Pmsh =  1 : 2 ,  where pMSP refers to the 
magnetosphere (x < 0) density, and pMSH is the magnetosheath (x >  0) density. I 
only localized the resistivity along the y direction, because the diffusion region may 
move along the x  direction:

y =  r)0 [1 -  exp (-t/ r)] cosh-1 (y) +  yb. (3.11)

At dayside magnetopause, a guide field or a large perpendicular shear flow is always 
present. These configurations are investigated in the cases C and D.
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Table 3.1: Values of the simulation parameters

Case Po Sp Bg vzi Poo
A 1 0 0 0 0.1

B 1.5 0.5 0 0 0.025
C 1 0 1 0 0.1

D 1 0 0 0.5 0.1

3.3 Symmetric Petschek Reconnection

Figure 3.2 shows the thermal pressure p (left panel) in Case A, at t =  150. In 
the inflow region, the pressure is about 0.1 (the reddish region in Figure 3.2), which 
yields an initial inflow region plasma beta /3 of 0.1. In the outflow region, the pressure 
increases to about unity (the greenish region in Figure 3.2). Black lines are magnetic 
field lines (contours for the 2 component of the vector potential). The strongly bend 
magnetic field lines in the transition region between inflow and outflow region indicate 
the existence of a large current density. Black arrows represent the flow velocity V . 
The inflow velocity only has a normal component (x direction) with a relatively small 
magnitude, and it carries flux into the outflow region. The fast jetting plasma in the 
outflow region reaches the inflow Alfven speed, which indicates that reconnection is 
well developed. There are three sub-regions can be identified in the outflow region. 
The diffusion region is located at the origin (x  =  y =  0), and it is barely visible 
in Figure 3.2, which is consistent with the assumption of a small diffusion region in 
Petschek’s model. The steady outflow region is bounded by a pair of slow shocks, at 
y < 50 in Figure 3.2. And the non-steady bulge region is at y >  50 in Figure 3.2.

3.3.1 The Dominant Entropy Source: Slow Shocks at the Steady Outflow 
Region

The transition between the inflow and the outflow region is almost one-dimensional, 
because the angle of the shocks with the y axis is small, and the transition represents
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Figure 3.2: The left panel shows the thermal pressure p at t =  150. Black lines are 
the magnetic field lines (contours for the z component o f the vector potential), and 
black arrows indicate the flow velocity V . The five panels on the right side show 
the profiles of the plasma density p, thermal pressure p, normalized entropy S/So, 
magnetic field Bv component, and current density j z component, which are taken 
from the blue line in the left panel. The red dashed lines are the results from the 
Rankine-Hugoniot (RH) relations. The black dashed line is the total pressure p +  B 2. 
The slow shock and density depletion layer are shaded in gray and labeled S and D, 
respectively.
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the matching of the two asymptotic plasma conditions of the inflow regions by MHD 
waves and discontinuities (the so-called “Riemann problem” [Lin and Lee, 1993]). I 
take a cut where it is indicated by the blue line in the left panel of Figure 3.2, and 
present the results on the right side of Figure 3.2. Due to the symmetry, I only show 
the x >  0 part of the cut. The five panels on the right side show the profiles of the 
plasma density p, thermal pressure p, normalized entropy S/So, the y component of 
the magnetic field By, and the z component of the current density j z, here Sq =  0.05 
is the inflow region entropy. The depletion of the density in the vicinity of the y axis, 
(shaded in gray and labeled as D in Figure 3.2) is a contact discontinuity and its cause 
will be discussed in the Section 3.3.2. The large current density is consistent with 
the switch off of the magnetic field, which indicates that these are the slow switch-off 
shock layers. These shock layers are shaded in gray and labeled S in Figure 3.2. The 
plasma density p, thermal pressure p, and entropy S strongly increase through the 
shock layers, while the total p +  B 2 (black dashed line in the pressure plot) remains 
constant across the shock layers.

The properties of the slow switch-off shock can be described by the so-called 
“Rankine-Hugoniot (RH) relations” , which are inferred from Equation (2.1) - (2.3), 
and (3.1) with homogeneous assumption for both upstream and downstream. Here I 
list the compression ratio, the ratio of down- and upstream pressure and the corre­
sponding ratio of the entropy for slow switch-off shocks:

—  =  1 +   - ,  (3.12)
Pu 70 +  7 - 1  V '

f ,  =  s  i 1 + i t )  • <313)

I = ( * )  ( * + V )  ’ ( 3 - l 4 )

where the index d and u indicate the down-steam and upstream, respectively, ft = 
pujB\ is the upstream plasma beta. Figure 3.3 presents the compression ratio pd/pu, 
the ratio of down- and upstream pressure Pd/Pu, and the corresponding ratio of the
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entropy Sd/Su as a function of 3 by using dash-dotted, dashed, and solid lines, re­
spectively. Note that all the ratios increase with decreasing plasma beta /?, and the 
maximum plasma compression is 2.5, which means that the plasma entropy can in­
crease significantly if the upstream plasma beta /3 is sufficiently small. For 3  < 10~2, 
the entropy ratio between out- and inflow regions Sd/Su is greater than 20.

To compare the theoretical results with the two-dimensional simulation results, I 
labeled the downstream results from the RH relations by red lines in Figure 3.2. It 
shows that right after slow shock (downstream region), all quantities are consistent 
with the theoretical results, although, density increases further deeper into the outflow 
region. This is possibly because that fluid elements deeper in the outflow region have 
entered much closer to the diffusion region at a location or time when the slow shock 
had not been fully developed. I carry out a one-dimensional simulation of the Riemann 
problem. This has the advantage of much higher resolution and short execution times. 
In this study, one-dimensional simulations are also used to compare the influence of 
different forms of the energy equation which closes the MHD equations.

3.3.1.1 Difference between energy equation and entropy equation

The slow shock transition can be simulated in a one-dimensional configuration by 
adding a small constant Bn component in the Harries sheet. Figure 3.4 presents the 
results from the one-dimensional simulation with the Hall parameter I =  0 (switch- 
off the Hall effect), and the upstream plasma beta 3  =  0.1. The three panels show 
the density p (top), the thermal pressure p (middle), and the entropy S (bottom). 
The dashed and dash-dotted lines are the simulation results by using the entropy 
equation and energy equation, respectively. As a reference, the theoretical results 
from the RH relations (Equation (3.12)-(3.14)) are labeled by the solid lines. For 
convenience, I transformed the system to the shock frame. Thus x >  0 is the upstream 
(inflow region) and x <  0 is the downstream (outflow region). Figure 3.4 shows that 
energy conservation yields correct jump relations, however, using the entropy equation 
generates an artificial density enhancement and an insufficient entropy increase.
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Slow switch-off shock ratio of density, pressure, and entropy

Plasma beta j3

Figure 3.3: The ratio of downstream and upstream density pd/pu (dot-dash line), 
pressure Pd/pu (dash line) and entropy Sd/Su (solid line) as a function of plasma beta 
(/?) for the slow switch-off shock.

Clearly energy and entropy conservations generate different shock properties in 
ideal MHD. The entropy increase through the shock is due to the energy conservation 
and does not require explicit Ohmic heating. However, the entropy equation main-
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Slow shock, when (3 =  0.1, r? =  0.002, and Ax- =  0.04
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Figure 3.4: MHD slow shocks with upstream plasma beta /? =  0.1, and A x  =  0.04. 
The three panels show the density p (top), the thermal pressure p (middle), and the 
entropy S (bottom). The dashed and dash-dotted lines are the simulation results by 
using the entropy equation and energy equation, respectively. As the reference, the 
theoretical results from the RH relations are indicated by the solid lines.
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tains the entropy conservation and the resulting “slow shock equivalent” discontinuity 
is violating energy conservation. For resistive MHD (77 ^  0 ), the entropy equation 
allows entropy to increase through Ohmic heating. This can be shown clearly by 
combining the entropy equation and the continuity equation, which yields to

where djdt =  dt 4- V  • V. Equation (3.15) indicates that a correct approximation 
to the slow shock solution is possible in the presence of sufficient Ohmic heating,

in a numerical simulation. One can estimate the width of this resistivity layer 8 by 
integrating both sides of Equation (3.15)

where AS =  Sd -  Su «  Sd =  PdPrf7/ 2 =  PdV2> P — Pd, j  ~  B/8 =  1/8, A t — 8/vn, 
and vn =  vAn «  Bn/ ̂ fp„ =  Bn, which yields

I have tested this hypothesis for the cases of 77 =  0.002 and 0.001, f3 =  0.1 
and Bn — 0.025. Figure 3.5 shows the compression ratio pd/pu (top) and entropy 
ratio Sd/Su (bottom) as a function of the grid separation Ax  in the one-dimensional 
slow shock simulation by using the entropy equation. The solid lines indicate the 
theoretical results from the RH relations. A result from the energy equation by using 
resistivity 77 =  0.002 is labeled by stars. The circle and square markers are the results 
by using resistivity 77 =  0.002 and 0.001, respectively. Figure 3.5 shows that the 
results from the entropy equation converge to the theoretical results for increasing 
resolution as indicated by my estimate for the required width of the current layer. 
However, a much higher resolution (32 times higher) has to be used for the simulation 
employing the entropy equation. Therefore, the use of the energy equation appears 
much more appropriate for simulations involving shocks.

(3.15)

which requires a very high resolution of the boundary between in- and outflow region

A S =  (7 - 1)— At, (3.16)

5 =  2(7 -  1)77/Bn (3.17)
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Compression ratio from entropy equation, when (3 =  0.1

Entropy ratio from entropy equation, when /? — 0.1

Figure 3.5: The compression ratio pd/Pu (top) and entropy ratio Sd/Su (bottom) as 
a function of the grid separation Ax  from the one-dimensional slow shock simulation 
by using the entropy equation. The solid lines indicate the theoretical results from 
the RH relations. A result for the energy equation by using resistivity rj =  0.002 is 
labeled by a star. The circle and square markers are the results by using resistivity 
77 =  0.002 and 0.001, respectively.
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3.3.1.2 Hall physics

Figure 3.6 presents the results from Hall MHD simulations by using energy equation 
with the resolution Ax  =  0.02. The top four panels show the plasma density p, 
thermal pressure p, entropy S, and current density j  from the case, in which the Hall 
parameter is I =  0.6 (ion inertia scale is 0.6 of the typical length) and the upstream 
plasma beta is 0.1. The dash-dotted lines are the theoretical results from the RH 
relations, and the downstream plasma conditions from Hall MHD are identical to the 
downstream MHD results. This is because that the presence of the Hall term does not 
change the RH relation. Thus, the jump conditions are as the same as for the MHD 
case. However, Hall physics leads to a much wider width of the transition layer for 
all quantities compared to MHD (see Figure 3.4) and the maximum current density 
is much smaller than in the equivalent MHD model (the current density is not listed 
in Figure 3.4), because the inclusion of the Hall term in the equations introduces a 
new typical length, the ion inertia scale into the physics. Since the large scale jump 
conditions are the same in MHD and Hall MHD, the solution requires a current in the 
2 direction to turn off the magnetic field By component. However, the Hall term leads 
to the separation of the ion and electron velocity, and the frozen-in condition only 
applies to the electrons which carry some of this current. Thus, Hall physics implies 
a deflection of the magnetic field into the 2 direction. Apparently this deflection is 
the source of a standing whistler wave downstream of the maximum current density. 
For a better representation of this standing whistler wave, I normalized the current 
density j y component to the total current density j ,  which is plotted in the fifth 
panel and the period of a wave (wavelength A) is indicated by the double-arrow. The 
bottom panel of Figure 3.6 shows the wavelength for the standing whistler wave A 
increase with the increasing Hall parameter I. Note, that the quadrupolar magnetic 
field typical for Hall reconnection [Ma and Bhattacharjee, 2001] corresponds exactly 
to the current and magnetic field perturbations of this one-dimensional Hall transition 
from the in-to the outflow region.
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Figure 3.6: The top five panels show the plasma density p, thermal pressure p, entropy 
S, current density j , and the y component of the current density normalized to 
the total current density j y/j in a Hall MHD slow shock-like simulation (the Hall 
parameter I =  0.6 ) with upstream plasma beta {3 =  0.1, and A x  =  0.02. The dash- 
dotted lines are the theoretical results from the RH relations. The bottom panel 
shows the wavelength (which is labeled in the fifth panel) as a function of the Hall 
parameter I.
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3.3.1.3 Estimate of the entropy increase in the magnetic reconnection

It is demonstrated that slow switch-off shocks generate strong nonadiabatic heating 

for low upstream (inflow) plasma beta 0  using analytical theory and simulation, and 

that Hall physics does not change this result. However, this conclusion is based on

magnetic reconnection and more general inflow conditions including asymmetries re­
quires a more general estimate.

In magnetic reconnection, pressure balance implies:

where i and o indicate the inflow and outflow region, respectively. Therefore, the 

entropy increase can be expressed as

where 0i is the inflow plasma beta. The physical interpretation is straightforward. 
The pressure balance determines the thermal pressure in the outflow region and the 

thermal pressure ratio between out- and inflow regions is large if the pressure is very 
small in the inflow region. Thus, large entropy increases are possible only for very 

small plasma beta in the inflow region.
In case A, the entropy increase is consistent with the RH relation (Equation (3.14) 

gives S0/St — 2.95). The estimate for entropy increase (3.20) gives a over estimate 
S0/Si < 11 ,  since it does not take the compression into account. In the steady outflow 

region, the thermal pressure is almost identical with the total pressure (see the right- 
second panel in Figure 3.2), which is consistent with my assumption. Furthermore, 

I hypothesize that for the same inflow plasma beta 0, this is the maximum possible

one-dimensional shock configurations. To extend this argument to two-dimensional

Pi +  =  p0 +  B 20, (3.18)

(3.19)

Since B/ >  0, and pi < po, due to compression, it follows that:

S0/Si < 1 + 1 /@i, (3.20)
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entropy increase, i.e., the presence of shear flow or magnetic guide field can not 
increase the entropy above this value.

3.3.2 Other Entropy Sources: the Diffusion Region and the Weak Fast 
Shock

The diffusion region is critical for the magnetic reconnection. In this region, the 
resistive term in Ohm’s law is dominant, and nonadiabatic heating is prominent. 
Since the pressure is determined by total pressure balance with the inflow region, the 
density must decrease to balance the increasing plasma temperature. The low density 
plasma is convected along stream lines. Due to the symmetry, the central streamline 
is the y axis, which is consistent with the result in Figure 3.2. However, the typical 
width of the diffusion region is on the order of an ion inertia scale for Hall physics 
and even smaller (electron inertia or gyro scale) in a kinetic model, which is negligible 
compared with macro scales of the whole system. Thus I argue that the nonadiabatic 
heating in the diffusion region occupies a very small volume in a real space plasma 
and only a tiny fraction of the total plasma transported into the outflow region is 
actually going through the diffusion region. Therefore, only a small fraction of the 
plasma transported into the magnetosphere would be exposed to this nonadiabatic 
heating source.

The plasma in the steady outflow region is accelerated to the inflow region Alfven 
speed by the slow switch-off shock. However, the plasma in the non-steady bulge 
region moves at a velocity significantly lower than Alfven speed. Due to the com­
pression and heating, the acoustic speed in the outflow region can be lower than the 
velocity of the outflow jet. Therefore, it is possible for the fast shock to exist in 
the transition from the steady outflow to the bulge [Zenitani and Miyoshi, 2011], (in 
Figure 3.2 y € (100,110)). To characterize these fast shock, I estimate the outflow 
region Mach number Ma =  V0/cS0, where V„ is outflow speed, which equates to the 
inflow Alfven speed VAi =  Bi/y/pl, and cso =  \J^pa/ (2pQ) is the outflow acoustic 
speed. The pressure in the outflow region can be represented by the magnetic field
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in the inflow region from pressure balance p0 =  Pi +  B/. By using the jump condition 
for density in a switch-off shock (3.12), I find

M0 =  yj2/ (7/3i + 7 - 1 )  <  Vs. (3.21)

This Mach number does not take into account the shock speed. Therefore, the actual 
Mach number is smaller. And a weak fast shock is not expected to be a significant 
source for the entropy increase. I note that in Zenitani and Miyoshi's [2011] high 
resolution simulation the maximum velocity of outflow jet in this fast shock region is 
higher than the inflow region Alfven speed. However, the entropy remains constant 
across this fast shock.

3.4 More General Configurations

Although I have mostly discussed Petschek reconnection, the conclusions drawn from 
the estimate for the entropy increase Equation (3.20) apply to more general and 
asymmetric configurations. In this section, I will discuss three different reconnection 
configurations which more closely reflect to the real magnetopause geometry.

3.4.1 Asymmetric Density

An asymmetric configuration, with different densities and an inflow plasma beta 0  of 
0.025, is examined in case B. The normalized entropy S/So at t =  100 is presented 
in the left panel of Figure 3.7, where S0 is the initial magnetosheath side entropy 
(x > 0), which is 27 ^  3.17 times lower than magnetospheric entropy, due to the 
different densities. However, on both sides of the outflow region, entropy increases 
about 4 times compared to its original value. The magnetic field lines (the black 
contours in the left panel of Figure 3.7) indicates that the slow shock on the magne­
tosheath side is replaced by an intermediate shock [ Yong and Lee, 1990]. For a better 
illustration of the outflow, the right side of Figure 3.7 shows profiles of the thermal 
pressure p, normalized entropy S/S0, magnetic field By component, current density 
j z component, and velocity Vy component, which are taken from the magenta line in
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the left panel. The current density is higher on the magnetosheath side than on the 
magnetospheric side, which is consistent with the larger rotation of magnetic field on 
the magnetosheath side. This is caused by the larger inertia of the higher density 
magnetosheath material which requires a larger j  x B force to change the momentum 
and accelerate the plasma into the outflow region[Z/a Belle-Hamer et al., 1995]. This 
also generates a non-zero outflow magnetic field Ba =  By /  0, which contributes to 
the total pressure in the outflow region. The outflow total pressure p +  B 2 (labeled by 
the dashed line in the right-uppermost panel of Figure 3.7) is larger than the thermal 
pressure p. The red dashed line in the entropy panel indicates the results from the 
RH relations, which implies that the entropy increase in the asymmetric case is less 
than the corresponding symmetric case.

The rigorous manner to determine By in the outflow region is to solve the Rie- 
mann problem [Lin and Lee, 1993, 1999]. However, a reasonable estimate of By in 
the outflow region can be obtained by assuming an approximately constant outflow 
velocity [La Belle-Hamer et al, 1995], which is consistent with the right-lowermost 
panel in Figure 3.7. From the momentum equation and ignoring the pressure gradient 
along the y direction, I have

P^  =  U B ,. (3.22)

By integrating both sides from the inflow region to outflow region

r>outflow
Vy

/• O U tllO W  • p

h -Z d t , (3.23)
./inflow PP

where dt =  dxjvx, and vx =  Vax =  Bx/y/p, which yields to

/.outflow • R  — R
Vy= I —yzdx =  1 F  ° . (3.24)

./inflow \[P \fP

Here I ignore compressibility. This assumption is not bad, since the maximum com­
pression is 2.5, and the expression inside of the integral is inverse to the square root
of the density. I apply this equation to both sides of the boundary, which yields to



Figure 3.7: The left panel shows the normalized entropy S/So at t =  100. Black lines 
are the magnetic field lines. The five panels on the right side show the profiles of the 
thermal pressure p, normalized entropy S/So, magnetic field By component, current 
density j z component, and velocity Vy component, which are taken from the magenta 
line in the left panel. The total pressure p 4- B 2 is presented by dashed line. The 
estimated value of B0 from Equation (3.25) is indicated by a red dashed line.
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Bi — Ba _  Ba -4- Bi 
\/pi \ff>2

B0 =  \ ^ B h (3.25)1 +  r

where p\ and p2 refers to the density on each side, and r =  \Jp\jpi- Equation (3.25) 
shows that the magnitude of Bq is always smaller than Bt, and Ba vanishes, if the 
density is symmetric (p\ =  p2)- Interchanging pi and p2 changes the sign of B0. These 
properties indicate the soundness of the result. In the simulation r =  \/2, and Ba 
is indicated by red dashed line in the right-third panel of Figure 3.7, which shows a 
good agreement with the simulation result. Combining Equation (3.25) and (3.19), I 
obtain

Si /3(l +  r f£  < 1 +  (3-26)

where Sz can be the entropy on either side. This relation (3.26) implies a reduction of 
the entropy increase in the presence of density asymmetry for the same inflow plasma 
beta.

3.4.2 Magnetic Shear

Magnetic reconnection without guide field is a singular situation in space plasma 
system. A guide field component is present almost everywhere at the dayside magne­
topause. In a two-dimensional configuration, the guide field component (B z compo­
nent in this study) does not change the reconnection dynamics significantly, because 
it can be considered as an additional pressure and is convected by the plasma. This 
Bz component often increases in the outflow region, which may cause the reduction 
of the entropy increase in the outflow region. Figure 3.8 shows the results from Case 
C, where the initial configuration is the same as in Case A, except for the addition 
of a uniform guide field Bz =  1. The left panel is the normalized entropy S/S0 at
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t =  150, where So is the inflow entropy. It shows that the outflow entropy is about
1.5 times higher than the inflow entropy, which is lower than in Case A. To better 
understand this transition region, a rigorous treatment is to solve the Riemann prob­
lem [Lin and Lee, 1993, 1999]. Lin and Lee [1993] demonstrated that, the switch-off 
shock is replaced by a rotational discontinuity and a slow shock for a symmetric guide 
field, which is also seen in my two-dimensional simulation. The five panels on the 
right side of Figure 3.8 show the profiles of the normalized entropy S/Sq, plasma 
beta p, two components of the tangential magnetic field B t\ and Bt2, and the total 
tangential magnetic field Bt =  \JB'* +  B f, which are taken from the magenta line in 
the left panel. Due to the symmetry, I only show the x >  0 part of the cut. For a 
better representation of the rotational discontinuity, I rotate the frame by an angle 
9 =  arctan (1/B S) /2  =  7t/8, thus

Bt\ = B Z cos 9 +  By sin 9 (3.27)

Bt2 =  — Bz sin 9 +  By cos 6, (3.28)

The rotational discontinuity layer is shaded in dark gray and labeled R, where Bt 1 
is almost constant and Bt2 changes from +0.5 to —0.5. Theoretically, the rotational 
discontinuity does not involve an entropy increase. However, the presence of the 
resistivity replaces the rotational discontinuity by an intermediate shock, thus leading 
to an increase in entropy and decrease in the total magnetic field, which is consistent
with the results in Figure 3.8. The slow shock layer is shaded in light gray and labeled
S, where the total tangential magnetic field strongly deceases. This remnant magnetic 
field, however, is still larger than the y component of the magnetic field By in the 
inflow region. The larger By field implies a smaller increase of the thermal pressure in 
the outflow region and for this reason a reduction in the entropy increase. Therefore, 
Case C demonstrates that the presence of a guide field reduces the entropy increase.
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Figure 3.8: The left panel shows the normalized entropy S/So at < =  150. Black lines 
are the magnetic field lines. The five panels on the right side show the profiles of the 
normalized entropy S/So> plasma beta 0, two components of the tangential magnetic 
field Bt\ and Bt2, and the total tangential magnetic field Bt, which are taken from 
the magenta line in the left panel.
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3.4.3 Magnetic Reconnection with Shear Flow

Large shear flow always exists close to the magnetopause, due to the solar wind 
velocity. This sheared flow general has components along the y and z directions 
and here I consider shear along the 2 (invariant in the two-dimensional configuration) 
direction. Flow shear along the y direction has an effect similar to density asymmetry 
in that it generates a configuration similar to density asymmetry with a nonzero By in 
the outflow region [La Belle-Hamer et al., 1995]. For flow shear along the z direction, 
the frozen-in condition implies a drag of reconnected magnetic field lines into opposite 
directions on the two sides of the outflow region, which generates a Bz component. 
This Bz component contributes an additional magnetic pressure to the total pressure 
in the steady outflow region. This mechanism is demonstrated in Case D, where 
the initial configuration is the same as in Case A, except for the perpendicular flow 
shear. In Case D, the total perpendicular velocity jump is equal to the Alfven speed. 
The left panel of Figure 3.9 shows the normalized entropy S/So at t =  110, where 
So is the inflow entropy. The figure shows that the outflow entropy is about twice 
the inflow entropy, which is lower than in Case A. Similar to the guide field case, 
the presence of the shear flow replaces the switch-off shock by an intermediate shock 
and a slow shock [Sun et al., 2005]. The five panels on the right side of Figure 3.9 
show the profiles of the normalized entropy S/So, plasma beta j3, two components 
of the tangential magnetic field Bt\ and Bt2, and the total tangential magnetic field 
Bt, which are taken from the magenta line in the left panel. Due to the symmetry, I 
only show the x >  0 part of the cut. For a better representation of the intermediate 
shock, I rotated the frame by an angle 9 =  7r/4. The entropy increases through the 
intermediate shock layer and the slow shock layer. Again the pressure by the non-zero 
tangential magnetic field in the outflow region reduces the thermal pressure and the 
entropy increase.
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Figure 3.9: The left panel shows the normalized entropy S/S0 at t — 110. Black lines 
are the magnetic field lines. The five panels on the right side show the profiles of the 
normalized entropy S/So, plasma beta 0, two components of the tangential magnetic 
field Bn and Bt2, and the total tangential magnetic field Bt, which are taken from 
the magenta line in the left panel.
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3.5 Summary and Discussion

The plasma entropy measure pp~7 is a useful physical quantity to identify adiabatic 
and nonadiabatic processes in a physical system, and satellite observations demon­
strate that the access of solar wind plasma to the Earth’s magnetosphere involves 
strong nonadiabatic heating. Magnetic reconnection is often suggested as the dom­
inant process for this transport of plasma into the magnetosphere. In this study, I 
focus mainly on Petschek type magnetic reconnection, and I demonstrate that en­
tropy can strongly increase only when the plasma /3 <C 1 by means of theoretical 
analysis and numerical simulation using one-dimensional and two-dimensional con­
figurations. Key arguments for this ft limitation are (1) that the compression rate is 
usually around unity {pd/pu — O  (1)), and (2) that the thermal pressure is limited by 
the total pressure in an approximately pressure balanced system. A large entropy in­
crease in such a total pressure balanced system requires a very small thermal pressure 
(compared to magnetic pressure) in the inflow region.

The prior discussion is mostly based on applications of steady state reconnection 
although reconnection is often considered to be a time dependent process (such as 
the formation of magnetic flux transfer events or plasmoids in the terrestrial magne­
tosphere). On sufficiently large spatial or temporal scales a steady state assumption 
is always violated such that I have to examine the conditions underlying the steady 
state assumption more carefully. The typical system time for dynamical changes in 
the reconnection geometry is rx =  d/V, where d is the width of the outflow region and 
V  is the speed of group velocity of typical wave i.e, Alfven speed for MHD physics, or 
whistler wave speed for Hall physics. In comparison, the typical time scale rr for the 
evolution of magnetic reconnection is characterized by the change of the reconnection 
rate r :

r — r {dr/ dt)~l . (3.29)

Therefore, as long as tx «C rr, a steady state assumption for magnetic reconnection 
is still applicable.

Hall physics can lead a fast reconnection rate. However, it does not change the
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downstream and upstream shock relation. The frozen-in condition only applies to the 
electrons, which carry the majority of the current in thin current sheets and discon­
tinuities. This current in the shocks that bound the outflow region leads to a strong 
deflection of the magnetic field. As a result, Hall physics introduces standing whistler 
waves at this boundary and changes the shock layer structure without changing the 
RH jump conditions that determine the change in entropy.

In two-dimensional magnetic reconnection, the entropy increase occurs mostly 
through the shock layers. The small reconnection diffusion region can heat plasma 
locally. However, it has no volume filling effect because of its microscopic (ion or 
electron inertia scale) size. A fast shock may exist in the transition region between 
steady outflow region and non-steady bulge region, when inflow plasma beta is low. 
However, the Mach number is too small (marginally above 1), such that the fast shock 
is not expected to be a major entropy source.

For more realistic configuration, density asymmetry leads to By ^  0 in the out­
flow region which reduces the entropy increase. The presence of a guide field and a 
perpendicular shear flow also reduce the entropy increase in the outflow region. This 
reduction of nonadiabatic heating is caused the replacement of the switch-off shock 
in the steady-outflow region by a rotational discontinuity (or intermediate shock) and 
a slow shock, which does not switch off the tangential component of the magnetic 
field for both configurations. Therefore, any asymmetry, guide field, or shear flow 
increases the magnetic field magnitude in the outflow region and reduces the thermal 
pressure increase from the in- to the outflow regions which results in a lower entropy 
increase than in the symmetric (Petschek) situation.

The presented results demonstrate that magnetic reconnection can indeed gener­
ate a strong nonadiabatic heating. However, the condition for this is a sufficiently 
small plasma 0  <C 1. Typical magnetosheath conditions imply a plasma beta of order
0.1 to 1. This is insufficient to explain the observed entropy of at least 1 ~  2 orders 
of magnitude between the magnetosheath and the magnetosphere. It is also noted 
that reconnection causes plasma compression where the original magnetosheath den­
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sities are already too high in comparison with plasma sheet. A subsequent adiabatic 
expansion would lower the temperature of the plasm far below values observed in 
the magnetosphere. Therefore it is concluded that additional physics is required to 
explain density and temperature of the plasma sheet. Such physics can include:

1. plasma conditions that are not typical magnetosheath. For instance, density 
and plasma beta are typically significantly lower in the plasma depletion layer 
just outside of the magnetopause.

2. plasma conditions that are modified by additional processes such of Kelvin- 
Helmholtz instability.

3. other processes that contribute to the plasma entry, such as diffusion or other 
microphysical processes.

There are two particularly important applications for low beta reconnection. In the 
magnetotail lobes (similar in other magnetospheres such as the giant planets) the 
plasma beta is extraordinarily low. Here reconnection of lobe magnetic field can 
be expected to increase the entropy very significantly by orders of magnitude. The 
second application is reconnection in the solar corona where again the plasma beta 
is very low, and magnetic reconnection can increase the plasma entropy by orders of 
magnitude.
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Chapter 4
Mechanisms of Field-Aligned Current Formation in Magnetic

Reconnection
4.1 Introduction

Magnetic reconnection changes the magnetic topology and releases the stored en­
ergy, which is believed to play an important role at the Earth’s magnetopause and 
magnetotail [Dungey, 1961; Bim and Priest, 2007]. At the magnetopause, mag­
netic flux transfer events (FTEs) [Russell and Elphic, 1978] often occur at the low 
latitude boundary layer (LLBL) for southward interplanetary magnetic field (IMF) 
conditions, which is considered as evidence of magnetopause magnetic reconnection. 
Field-aligned currents (FACs) are often observed associated with FTEs [Saunders 
et al., 1984; Marchaudon et al., 2004, 2009]. It has been demonstrated that FACs are 
carried by Alfven waves along FTE flux tubes and propagate away from the mag­
netopause into the ionosphere [Saunders et al., 1984]. Several authors [Lee, 1986; 
Southwood, 1987; Cowley and Lockwood, 1992] discussed electrodynamic models of 
FACs distributions associated with FTEs. In the magnetotail, magnetic reconnection 
is believed to play an important role in magnetic substorms. FACs are generated 
in the magnetotail and are highly enhanced after the onset of substorms [Ma et al., 
1995; Bim and Hesse, 1996]. Similarly earthward moving bubbles have been found 
to be associated with FAC systems [Bim et al., 2004].

It is believed that many of the FACs which are generated in the outer magne­
tosphere connect to the auroral ionosphere and contribute to the typical Region 1 
(poleward) and Region 2 (equatorward) system of FACs that connect ionosphere and 
outer magnetosphere. In regions with upward FACs, electrons may be accelerated to 
high energies, leading to auroral brightening on the dayside as well as nightside iono­
sphere [Ma and Lee, 1999]. Therefore, the mechanism of FAC formation is of large 
importance for the coupling of the magnetosphere and it’s processes to the ionosphere.

It has long been known that localized pressure or inertial gradient terms perpen­
dicular to the magnetic field imply a field-aligned gradient of FAC [ Vasyliunas, 1984].
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While sometimes addressed as source regions, for FAC such gradients do not pro­
vide causal explanation for theses currents. Ma et al. [1995], and Ma and Lee [1999] 
demonstrated that three-dimensional magnetic reconnection can in fact generate lo­
calized pressure gradients and inertia terms and therefore establish a system of FACs 
in the reconnection bulge region. Yamade et al. [2000] suggested that the Hall cur­
rent generated in the course of magnetotail reconnection may contribute significantly 
to the global FAC pattern. Later, Ma and Lee [2001] showed that the magnitude 
and distribution of FACs are significantly modified by the Hall term. These previous 
studies are mostly based on three-dimensional configurations. However, magnetic or 
velocity shear should be very efficient to generate FAC in two dimensions. In fact, 
several of the three-dimensional results can probably be attributed to two-dimensional 
mechanisms.

In the traditional two-dimensional magnetic reconnection models by Sweet-Park 
[Parker, 1957; Sweet, 1958] and by Petschek [1964], there are no FACs. However, 
at the dayside magnetopause, magnetic reconnection operates always with a guide 
field component, which generally is along the current direction. Therefore, in this 
configuration, it is natural to have FAC. However, whether this is a simple projection 
effect or if there is an additional generation of FAC during the process is unresolved. 
Associated with this question is the dependence of FAC varying on the magnitude of 
the guide field component.

Magnetic reconnection is suggested as the dominant process for plasma trans­
port from solar wind into the Earth’s magnetosphere for southward IMF conditions. 
However, a large velocity shear always exists close to the magnetopause, because 
the shocked solar wind streams around the magnetosphere. In general this sheared 
flow has components along the z directions (invariant in two-dimensional configura­
tion) direction. Different tangential velocities on two sides of a boundary are possible 
without a change of the boundary structure only for a tangential discontinuity. If a 
magnetic field connects the two sides of the boundary, the frozen-in condition implies 
a drag of the reconnected magnetic field line into opposite directions on both sides of
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the boundary, which generates a Bz component and thereby FAC. This particularly 
also applies to magnetic reconnection in the presence of shear flow across a plasma 
boundary. The relation between the magnitude of the shear flow and the generated 
FACs is highly important and is examined in this study.

For magnetic reconnection, the typical length scale of the diffusion region is on the 
ion or even on the electron inertia scale. Therefore, it is also important to examine 
the influence of Hall physics on FAC formation. The inclusion of the Hall term in the 
equations leads to the separation of the ion and electron velocity, and the frozen-in 
condition only applies to the electrons, which move anti-parallel to the current in a 
thin current sheet. Therefore, the effect of Hall physics is not unlike the effect of shear 
flow in ordinary MHD. In magnetic reconnection, Hall physics generates the typical 
bipolar structure of the magnetic field Bz component and Hall current system [Otto, 
2001; Ma and Bhattacharjee, 2001]. Ma and Lee [2001] examined the influence of Hall 
physics on FAC generation by using three-dimensional simulation. However, much of 
this FAC generation might be attributed to two-dimensional mechanisms. It is also 
a goal of this study to examine FAC generation by Hall physics in two dimensions.

The above questions are systematically examined in this study by using two- and 
one-dimensional MHD and Hall MHD simulation considering the influence of a guide 
magnetic field and of shear flow.

4.2 Numerical Model

In this study, I solve the full set of the one- and two-dimensional normalized resis­
tive MHD and Hall MHD equations as introduced in Chapter 2. The results from 
three selected simulation cases to study the FAC formation mechanism are present 
in Section 4.3. The simulation domain is a box with |x| < 30, and 0 <  y <  120, 
and is resolved by using 203 x 403 grid points with a non-uniform grid along the x 
and y directions, where the x  direction normal to the current layer (boundary), y is 
direction along the boundary, and z is along the invariant direction. To sufficiently 
resolve the diffusion region, the best resolution is set to 0.1 and 0.2 in the x  and y
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Table 4.1: Values of the simulation parameters

Case Bzo Ko I

A 0.5 0 0
B 0 0.5 0
C 0 0 1

direction in the diffusion region. The initial equilibrium is a one-dimensional modified 
Harries sheet given by

Bx —0, (4.1)

By = tanh (x ) , (4.2)

Bz = B Z 0 , (4.3)

II O (4.4)

II O (4.5)

Vc =Vzo tanh (x ) , (4.6)

P =Poo +  1 ~  B 2, (4.7)

P =  !> (4.8)

where — 0.25, and the values of other parameters are list in Table 4.1. Case A
is chosen to study the FAC formation for magnetic reconnection with a guide field.
Case B is included to investigate case in which shear flow is perpendicular to magnetic 
reconnection, and Case C is used to examine the influence of Hall physics on FAC 
formation.

In this study, magnetic reconnection is triggered by the localized resistivity model

r) =  % exp ( - f / f o )  /  [cosh (x ) cosh (y)] +  r?6, (4.9)

where 770 =  0.05, to =  3, and rjb =  0.002 is the background resistivity to smooth
the numerical dispersion. Free boundary conditions (dn =  0, where dn is the partial 
derivative in the direction normal to the boundary) are applied to the x  maximum
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and minimum boundary and y maximum boundary. The y minimum boundary is 
determined by symmetry properties of the (Hall) MHD equations [Otto et al., 2007].

The transition of the plasma properties (density, velocity, pressure, and magnetic 
field) from one inflow region through the outflow region to the other inflow region 
is mostly one-dimensional and is achieved in general through a series of MHD waves 
and discontinuities. To better resolve the physics in this transition layer, I carry 
out one-dimensional simulations of the Riemann problem, which has the advantage 
to choose much higher resolution for shorter execution times and better accuracy 
(uniform grid with Ax  =  0.02 in this study). This transition layer can be simulated 
in a one-dimensional configuration by adding a small constant Bn (=  0.025 in this 
study) component to the Harries sheet magnetic field [Lin and Lee, 1993, 1999]. In 
order to compare with the two-dimensional results, I use the same parameters as 
for the two-dimensional cases. The resistivity rj is 0.0002 for most cases, and for 
some Hall MHD cases large resistivity y =  0.002 is applied for the numerical stability 
reason.

4.3 Simulation Results

In a two dimensional configuration, the guide field component (Bz component in 
this study) does not change the dynamics of magnetic reconnection significantly, 
because it can be considered as an additional pressure and is convected by the plasma. 
Figure 4.1 illustrates results from case A (with a guide magnetic field of 0.5) and the 
corresponding one-dimensional simulation. The left panel shows FAC density j\\ at 
t =  150 for case A. Black lines are reconnected magnetic field lines (contours of the 
z component of vector potential A z). The middle five panels show the profiles of 
By, Bz, jy, j z, and j\\ in a cut at y — 59.81, indicated by the purple line in the 
left panel. The corresponding one-dimensional simulation results are presented in 
the right panels. Note, that the FAC density is present only on reconnected field 
lines and localized where the magnetic field is strongly bend, which indicates that the 
formation of the FAC is in part a projection effect in the presence of B z. However, the
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guide field alters the transition layer structure. The switch-off shock is replaced by an 
intermediate shock (a rotational discontinuity-like structure in resistive MHD) and a 
slow shock [Lin and Lee, 1993, 1999], which is illustrated by the five middle panels. 
From the inflow region (right), By turns to 0 while Bz increases to 1, which requires a 
current layer (jy and j z) to rotate the magnetic field and therefore generate the FAC. 
Behind this intermediate shock, the decreasing Bz in the slow shock corresponds to 
a decreasing j y and j\\. Close to the diffusion region (around y =  0) these structures 
have not fully developed such that, the intermediate shock and slow shock may overlap 
or interact with each other. To better represent this transition layer structure, I also 
conducted a one-dimensional simulation with the same upstream (inflow) parameter. 
The five panels on the right side show a similar structure and value compared to 
the middle five panels. Note, that in both cases, the intermediate shock layer is 
wider than the slow shock layer. This difference is not caused by the grid resolution, 
because the one-dimensional simulation is using a higher resolution uniform grid. A 
possible physical interpretation is that a wider current layer causes a lower entropy 
increase in the intermediate shock, which is better consistent with a constant entropy 
profile through the rotational discontinuity as would be the case in the ideal MHD. 
In contrast, a thin current layer is required to generate strong nonadiabatic Ohmic 
heating through the slow shock layer. Strictly, slow shocks cannot generate FACs due 
to the coplanarity condition. The respective FAC in the simulation is likely because 
the structure is not a pure slow shock or because of numerical artifacts. In conclusion, 
magnetic reconnection with a guide field component generates FAC along the open 
field lines by intermediate shocks, and slow shock layers are not a source for FAC.

Note, that the intermediate shock is not a static structure. Figure 4.2 shows the 
temporal evolution of the magnitude of FAC density jy in the intermediate shock for 
Bzo =  1 from the one-dimensional simulation. It illustrates that the intermediate 
shock is not well developed at the early times t < 200. After t < 200, j\\ decreases 
with time due to resistive diffusion. In order to quantify the FAC density j\\ as a 
function of the guide field magnitude Bz0, I compare the maximum value of jy in the



Figure 4.1: The left panel shows FAC density j\\ at t =  150 for case A. Black lines 
are open magnetic field lines (contours for vector potential). The middle five panels 
show the profiles of By, Bz, j y, j z, and j\\ in a cut at y =  59.81, which is indicated by 
a purple line in left panel. The corresponding one-dimensional simulation results are 
presented in the right five panels.
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intermediate shock after the intermediate shock is well developed.
The left panel of Figure 4.3 shows the maximum j y in the intermediate shock 

for different guide magnetic field Bzo varying from 0.1 to 1. It illustrates that j\\ is 
not large for a small guide field component, which agrees with the asymptotic state 
without a guide field for which j\\ =  0. However, for a large guide field, the total 
magnetic field rotation through the intermediate shock is small. Therefore, it is also 
not expected to have a large jy.

To evaluate the overall FAC generated by the guide field component, I integrate 
the FAC density jy along the x  axis. Since the initial configuration already has 
a FAC, the integral f  j\\dx also indicates whether the FAC is generated or simply 
redistributed. The middle panel of Figure 4.3 shows f  j\\dx varying with the time for 
different guide field magnitudes Bz$. The same color as in the left panel of Figure 4.3 
is used to identify different Bzo values. It shows that initially f  j\\dx is proportional 
to the guide field magnitude Bz0 and converges to values between 1.1 and 1.2. For a 
small guide field component, f  j\\dx strongly increases with time, which indicates that 
strong FAC has been generated in magnetic reconnection. For larger guide field values 
Bzo, the increasing f  j\\dx diminishes, which implies that for large guide fields FACs 
are mostly redistributed. Note, that the final value of f  j\\dx varies only between 1.1 
and 1.2, which is a small range compared to the variation of the initial values. This 
indicates that the overall evolving FAC is not very sensitive to the magnetic guide 
field value.

For a mapping into the ionosphere, it is the total FAC, instead of the maximum 
FAC density that is important. Due to the frozen-in condition, $  =  B s is a constant 
value along the magnetic field, where $  is the magnetic flux, and s is the cross 
sectional area of a magnetic field flux tube. Thus, j\\B_1 can be used to estimate 
FAC, because B~l is proportional to the cross sectional area (this assumes that all 
FAC closes in the ionosphere and stays on the same magnetic flux tube). The total 
FAC into the ionosphere is determined by the integral j\\B~l along x . This quantity 
should be conserved, if the current is mostly along the magnetic field direction. The
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Magnitude of jy in IS
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Figure 4.2: The magnitude of FAC density j\\ in the intermediate shock as a function 
of time.
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Figure 4.3: The maximum FAC density j\\ (left), J j\\dx (middle), and J (j\\/B) dx 

(right) for different guide field magnitude Bz0.

right panel of Figure 4.3 shows J j\\B~ldx, which confirms this assumption. The value 
of J j§B~ldx decreases with increasing Bz which seems inconsistent with the limit of 
Bz =  0 where f  j\\B~ldx =  0. This limit is indeed not analytic and the FAC changes 
discontinuous from —1 to +1 (in normalized units) for arbitrarily small negative or 
positive Bz. Note, that f  j\\dx is analytic because although the j\\ represents a step 
function, the integral current converges to 0 because the current is nonzero only in 
an arbitrarily small vicinity of x  =  0. It is noted that that the limit of B z to 0 is not 
realistic in MHD because an extreme concentration of the FAC will involve kinetic 
processes.

Figure 4.4 illustrates results for case B (with 0 guide field but finite shear velocity) 
using two and one-dimensional simulations. The left panel shows FAC density at 
t =  180 for case B. Black lines are reconnected magnetic field lines (contours of the z 
component of vector potential Az). The middle five panels show the profiles of By, Bz,
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Figure 4.4: This figure has the same format as Figure 4.1. The middle five panels 
show the profiles of By, Bz, j y, j z, and j\\ in a cut at y =  49.93, indicated by a purple 
line in left panel. The corresponding one-dimensional simulation results are presented 
in the right five panels.

j y, j z, and j\\ in a cut at y =  59.81, indicated by the purple line in the left panel. The 
corresponding one-dimensional simulation results are presented in the right panels. 
All FACs are again located on the open field lines. The middle five panels show that 
the magnetic field By component is switched off while the Bz component is switched 
on, which indicates again that this is an intermediate shock and the magnetic field 
rotates from y direction to the 2 direction. The strong negative excursion of j y 
represents a slow shock. The high resolution one-dimensional simulation shows that 
the slow shock represents a much thinner layer. In general, the structure of the 
magnetic reconnection layers is somewhat similar to the case A [Sun et al., 2005].
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Figure 4.5 has the same format as Figure 4.3, except that the different curves 
represent different shear flow values VzQ instead of guide field values. The left panel 
illustrates that the maximum jy as a function of Vzo has a peak value max (jy) «  1.8, 
for Vzo =  0.4. It is expected that the maximum of jiy decreases with decreasing Vz0, 
which is consistent with the asymptotic in which jy =  0 for Vz — 0. The middle panel 
of Figure 4.5 demonstrates that large FACs are quite efficiently generated even for 
moderate perpendicular shear flow. As expected, the value of f  j\\dx increases with 
increasing Vzo and appears to converge toward a value of about 1.5. Note, however, 
that this evolution toward the asymptotic values takes a rather long time. The right 
panel of Figure 4.5 illustrates that the value of f  (j\\/B) dx shows an even stronger 
tendency to converge to a fixed value of close to 1.6 for all cases with shear flow of 
0.2 and higher. Also the rise time is much shorter. Therefore, even moderate values 
of shear flow should generate significant ionospheric FACs. Comparing the results 
for a guide field with the inclusion of shear flow, it is noted that the maximum FAC 
density is about equal and occurs for Bzo =  0.2 and V zq =  0.4. However, in general it 
appears that shear flow generates a larger value of /  (j\\/B) dx which is relevant for 
the ionospheric magnitude of the FAC. Although both cases, guide field and shear 
flow, generate significant FAC, total current that can be potentially observed in the 
ionosphere is typically larger in the presence of shear flow.

To conclude this examination of FAC generation is worth to consider the effects 
of Hall physics. Here the generation of FAC occurs without a guide field or shear 
flow for the bulk plasma. The magnetic field is frozen to the electron fluid, such 
that the motion by the electron current is sufficient to deflect the magnetic field into 
the invariant direction. The first two panels of Figure 4.6 show magnetic field Bz 
component and the FAC density jy at t =  150 for case A. The bipolar structure of 
magnetic field Bz component extends all the way along the outflow region, instead 
of being localized in the vicinity of the reconnection region as observed by the GEM 
challenge [Otto, 2001]. The FAC density jy is located along the entire boundary of 
the outflow region, and has the similar bipolar structure as Bz. The high resolution
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Figure 4.5: The maximum FAC density j\\ (left), j  j\\dx (middle), and j  dx

(right) for different shear flow magnitude 14o-
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onc-dimensional simulation demonstrates that this bipolar structure is a part of a 
standing whistler wave. The physical explanation for this standing wave is as follows: 
The large scale jump conditions imposed by MHD is the same for Hall MHD, and this 
solution requires a strong current in the 2 direction to turn off the magnetic field By 
component. In MHD this is accomplished by slow switch-off shocks (in the symmetric 
case). However, in Hall MHD a large current density in the z direction combined with 
the frozen-in condition for electrons implies a deflection of the magnetic field into 
the 2 direction. This deflection apparently is the source of a standing whistler wave 
downstream of the maximum current density. The current density and FAC are much 
lower in Hall MHD than in MHD, because transition region depends on the wavelength 
of the whistle wave and becomes much wider. The one-dimensional results are similar 
to the two-dimensional results except for the multiple larger amplitude standing waves 
up- and downstream of the outflow boundary. These standing waves are not visible 
in the two-dimensional results due to a lack of resolution because the one-dimensional 
results use a resolution about 25 times better then in the two-dimensional simulation. 
It is not clear if this whistler wave can be observed by satellites, because the smaller 
amplitude waves can be concealed by the typical noise in space plasma and the waves 
could also be suppressed by ion gyro-viscous effects.

Figure 4.7 has the same structure as Figure 4.3, except for different Hall parameter 
/, and the left panel showing the maximum Jj|| |. The left panel illustrates that the 
maximum |jj| | as a function of Hall parameter I has a maximum at I =  0.2. This result 
is in contradiction to Ma and Lee's [2001] three-dimensional results in which FAC 
increases with increasing I (ion inertia scale). Naively it is expected the maximum 
jj|l| decreases with decreasing Hall parameter I, since there is no FAC for 1 =  0. 
However, a rigorous examination shows that this is not really correct. The figure 
shows that the maximum of | jy | decreases for I > 0.2 which is the correct behavior 
for the following reason. The Hall MHD equations have no intrinsic scale except for 
the ion inertia scale A j. For example, a value of I =  0.5 implies the choice L0 =  2A,. 
For a fixed ion inertia scale the cases with I =  1 and I =  0.5 only imply a different



Figure 4.6: (From left) The first two panels shows magnetic field Bz component 
and FAC density j\\ at t =  150 for case A. Black lines are open magnetic field lines 
(contours for vector potential). The five panels on the third column show the profiles 
of By, Bz, j y, j 2, and j\\ in a cut at y =  39.93, which is indicated by a purple line 
in left panel. The corresponding one-dimensional simulation results are presented in 
the right five panels.
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normalization for the length scale L0 for these cases. This can easily be removed by 
renormalizing the / =  0.5 case which increases the normalization of current density 
by a factor of two and therefore leads to a current of half its value in normalized 
units. This implies that the maximum current density should vary as for different 
values of / .  At first glance one might conclude that this is wrong because this leads 
to an infinite current density in the limit I —>■ 0. However, this arbitrarily large 
current is also concentrated in arbitrarily thin region. This is not possible in a real 
physical system where gyro viscous and other dissipative effects limit current density 
and width. It is also not possible in a numerical simulation with limitations on 
resolution and dissipation of structure below a resolution threshold. This explains 
the maximum of |j||| in Figure 4.7 because for I <  0.2 the resolution is insufficient or 
resistivity is too high to reflect the correct ion inertial dynamics. The reason for a 
decreasing maximum of | j\\ | with increasing Hall parameter I is the increasing width of 
the current layer. Note, that the maximum value of | j\\ | in the results presented here 
is much higher than in Ma and Lee's [2001] three-dimensional study indicating that 
my resolution and resistivity is better and specifically for values of I =  1 appropriate 
to address the ion inertia physics.

Note, that the increase of the integrals | f  j\\dx\ and |Jj\\B~ldx\ with the in­
creasing Hall parameter is opposite to the change of |j|||. These integrals contain 
the product of length scale and current density, and this product is independent of 
a renormalization (the factors for length and current density cancel). However, a 
renormalization should be applied to the time scale. In other words, the time 2000 
for I =  0.8 corresponds to the time 1000 for I =  0.4. This maps most of the curves ex­
cept for I < 0.1 on top of each other. Finally it is noted that the values of |/ j\\dx\ and 
|J j\\B~ldx\ increases with the time. This is likely caused by the expanding standing 
whistler wave structure at the outflow boundary which contribute additional FAC. In 
summary, two-dimensional magnetic reconnection, including Hall physics leads to a 
strong generation of FAC, as long as the typical length scale is approximately the ion 
inertia scale.
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Figure 4.7: The maximum FAC density |j||| (left), f  j\\dx (middle), and /  (j\\/B) dx 
(right) for different Hall parameter I.
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It is well known, that rotational discontinuities, intermediate shocks, and switch- 
off shocks satisfy the Walen relation

A V  =  AV^ =  A (B /v 'p ) (4.10)

for Alfven waves. Figure 4.8 shows the Alfven velocity change | AV^I, ion velocity 
change |AV|, and electron velocity change |AVe|, which illustrates that in Hall MHD 
both ions and electron also approximately satisfy the Walen relation. It is interesting 
that the small deviations between Alfven speed variation and plasma bulk and elec­
tron velocity appear systematic up-and downstream of the outflow boundary. Such 
a systematic deviation has not yet been identified in observations but it might be 
interesting to examine whether such a systematic deviation from the Alfven speed is 
present for the plasma bulk and electron velocity.

4.4 Summary and Discussion

Satellite observations provide evidence for the generation of FAC during magnetic re­
connection. To better understand the mechanisms of FAC formation in two-dimensional 
magnetic reconnection, three selected simulation cases have been carefully studied.

In a configuration with a guide field component, FACs are present already in 
the initial state, such that the FACs observed in magnetic reconnection are partly 
a projection effect. However, guide field reconnection replaces the switch-off shocks 
of Petschek reconnection with an intermediate shock and a slow shock in the recon­
nection transition layer. All of FACs are generated in the intermediate shock layers. 
The slow shock layers are much thinner than the intermediate shock layers and ide­
ally should satisfy the coplanarity condition such that the small associated FACs are 
either the result of a small deviation from the slow shock solution or a numerical arte­
fact. For a small guide field component, a larger amount of FAC can be generated by 
reconnection because of the larger magnetic field rotation. Vice versa a large guide 
field implies less rotation of the magnetic field such that the projection effect is more 
important. Note, that a large guide field component indicates a small value of the
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Figure 4.8: Hall MHD Walen test. Alfven velocity change |AV^|, ion velocity change 
|AV|, and electron velocity change |AVe|.



87

anti-parallel magnetic field components, such that magnetic reconnection is expected 
be slow on the Alfven time scale based on the total magnetic field. The total amount 
of FAC f  j\\/Bdx into the ionosphere is not sensitive to the initial (or asymptotic) 
guide field value.

A perpendicular shear flow generates a Bz component and therefore FAC due to 
the frozen-in condition. The reconnection layer for a perpendicular shear flow config­
uration is similar to the reconnection layer in the guide field case. Since there is no 
FAC in the initial configuration such currents are solely generated by the intermediate 
shock in the reconnection geometry. The total amount of FAC f  j\\/Bdx is largely 
independent of the initial shear flow for values equal or larger than 0.2. The current 
into the ionosphere is generally larger for shear flow than for guide field states.

The inclusion of Hall physics leads to the separation of ion and electron speed, 
and the frozen-in condition only applies to the electrons. The switch-off shock layer 
in the MHD is replaced by a standing whistler wave in the Hall MHD. The often- 
found Bz bipolar structure (also for FAC) is the primary part of this standing wave, 
and this bipolar structure extends all the way along the outflow region, instead of 
being localized in the vicinity of the reconnection region. Compared with previous 
three-dimensional simulation results, my results show a much higher maximum of j\\ 
likely because of higher resolution. The maximum of j\\ does not simply increase with 
increasing Hall parameter. This is because for a fixed ion inertia scale A», a larger Hall 
parameter I implies a smaller normalization scale L0, which increases the normalized 
current density J0 and therefore decreases the current density measured in normalized 
units. Opposite to the change of |j|||, the integrals j J  j\\dx\ and | J j\\B~1dx\ increase 
with the increasing Hall parameter. And both ions and electrons approximately 
satisfy the Walen relation.

I note that this study is based on a symmetric configuration, while the real magne­
topause is asymmetric, i.e., different densities, magnetic field magnitudes, and shear 
flow on the two sides of the boundary. However, qualitatively, my conclusions con­
cerning the evolution of intermediate shocks and more importantly on FAC generation
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by guide magnetic fields, velocity shear, and Hall physics are still applicable. This 
study also provides guidance and reference for more specific studies on the effects of 
asymmetry for the evolution of FAC.
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Chapter 5
Interaction Between Magnetic Reconnection and Kelvin-Helmholtz
Instability for Southward IMF Conditions: Kelvin-Helmholtz Type

Perturbation

5.1 Introduction

Magnetic reconnection and Kelvin-Helmholtz (KH) instability are often considered as 
the two most important mechanisms for solar wind plasma access to the Earth’s mag­
netosphere [Axford, 1964; Dungey, 1961]. Magnetic reconnection occurs in the pres­
ence of sufficiently large anti-parallel magnetic field components, e.g., in the case of 
southward interplanetary magnetic field (IMF) close to the equatorial magnetopause. 
Magnetic reconnection requires that the local width of the current layer is compara­
ble to the diffusion width, i.e., ion or even electron inertia or gyro scale. A localized 
diffusion, which is caused by the micro-instabilities or electron pressure anisotropy, 
breaks down the so-called “frozen-in” condition and therefore changes the topology of 
the magnetic field, which allows the plasma access across the Earth’s magnetospheric 
boundary. The efficiency of magnetic reconnection is measured by the rate of the 
magnetic flux transport (also called the “reconnection rate” ). Both theory and simu­
lation show that a fast (Petschek type) magnetic reconnection rate is about 0.1 [Bim 
et al., 2001], which is based on a two-dimensional reconnection geometry assuming a 
unit distance into the invariant direction.

In comparison, KH modes occur for a sufficiently large shear flow [Chandrasekhar, 
1961]. It has been demonstrated that plasma compressibility, a finite width of shear 
flow transition, and a parallel magnetic field component can stabilize the instability 
['Chandrasekhar, 1961; Miura and Pritchett, 1982]. Large velocity shear is typical for 
the Earth’s magnetopause where the fast solar wind moves along the magnetosphere 
[Miura, 1982; Miura and Pritchett, 1982; Miura, 1984, 1992, 1995a; Otto and Fairfield, 
2000; Fairfield et al, 2000; Hasegawa et al, 2004]. The total velocity difference be­
tween the solar wind plasma and the stagnant magnetospheric plasma varies from zero 
at the subsolar point to values close to the solar wind speed (about 100 ~  1000 km/s)
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near the tailward flank boundary, which determines the various KH stability and 
growth rate. Since the KH instability is an ideal instability, mass transport across 
the magnetospheric boundary is not expected. However, it is demonstrated that in 
the resistive MHD, the nonlinear KH modes drive magnetic reconnection even for 
northward IMF conditions [Otto and Fairfield, 2000; Fairfield et al., 2000; Nykyri 
and Otto, 2001, 2004; Nakamura et al., 2006, 2008].

When the IMF is northwaxd, magnetic reconnection cannot operate in the un­
perturbed magnetopause geometry because magnetic shear is small. Therefore, KH 
modes are the primary instability, and reconnection occurs only if the magnetic field 
has been strongly modified by the KH wave. For such conditions satellite observa­
tions provide strong evidence for the presence of nonlinear KH waves [Fairfield et al., 
2000; Hasegawa et al., 2004]. However, for southward IMF conditions, both mag­
netic reconnection and Kelvin-Helmholtz (KH) modes can operate simultaneously, 
and there are only very few studies to examine this situation. Recently Hwang et al. 
[2011] presented first in situ observations of nonlinearly developed KH waves during 
southward IMF, and they suggested that under southward IMF KH vortices become 
easily irregular and temporally intermittent [Hwang et al., 2011].

In a system which is unstable to both KH modes and tearing modes (linear stage 
of magnetic reconnection), the dominant dynamic process depends on the growth 
rates of these two modes and the respective initial perturbations [Chen, 1997]. In the 
nonlinear stage, the interaction of these processes is an open question that depends 
on the primary instability process. The results of this interaction are expected to 
depend strongly on the initial conditions or boundary conditions, namely conditions 
where (1) magnetic reconnection is the primary processes, or (2) KH modes represent 
the initial or primary process. Here I focus on the second condition.

Section 5.2 introduces the simulation method and boundary conditions used in this 
study. In Section 5.3, I first present the overall dynamics, then show the modulation 
of magnetic reconnection by the primary KH modes, and examine the influence of 
several critical parameters, i.e., the initial shear flow value, the guide magnetic field,
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Table 5.1: Simulation Normalization

Magnetic field B() 20 nT
Number density n0 10 cm-3
Length scale L0 640 km
Alfven velocity Va 138 km • s-1

Time Ta 4.6 s

the KH wave number, and the inclusion of Hall physics. Section 5.4 presents a 
summary and discussion.

5.2 Numerical Methods

In this study I solve the full set of the three-dimensional normalized resistive MHD 
and Hall MHD equations as introduced in Chapter 2. The values for the normalization 
of the simulation units are summarized in Table 5.1.

I present the results from a series of simulation cases to study the interaction 
between magnetic reconnection and KH modes. The simulation domain is a volume 
with |x| < Lx =  30, \y\ < Ly =  20, and \z\ <  Lz =  40, and is resolved by using 
103 x 203 x 103 grid points with a non-uniform grid along the x and z directions. For 
MHD cases, the Hall parameter is set to / =  0, and for the Hall MHD cases, the Hall 
parameter is chosen as I =  0.6, which implies a realistic ion inertia scale of 384 km at 
the magnetopause. To sufficiently resolve the diffusion region and Hall physics, the 
best resolution is set to 0.1 and 0.2 in the x and 2 direction in the diffusion region.
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The initial equilibrium is a one-dimensional modified Harries sheet given by

Bx =0, (5.1)

By = By 0, (5.2)

Bz ~  — Bzq tanh (x ), (5.3)

II o (5.4)

Vy =  — tanh (a;), (5.5)

vz =o, (5.6)

P =Poo +  1 - B 2, (5.7)

P =Po +  &p tanh (x) , (5.8)

where Bz0 =  ±1 for dawn and dusk case, respectively, =  0.25, po =  1, 8p =  0.1. 
By represents the guide field and Vy0 is the magnitude of shear flow. For convenience, 
I use the fast mode Mach number Mf =  Vyo/Vf to represent this speed, where Vf =  

+  7Poc/2)/po =  11 is the average fast mode speed. Since the growth and 
evolution of KH waves strongly depends on the initial shear flow magnitude V̂ o, 
which drives the instability, and on the magnitude Byo of the magnetic field along the 
wave vector, which can stabilize the mode, I choose these in the range M f € [0,0.9] 
and Byo € [0,0.4]. The reference case uses Bz0 =  1, ByQ =  0, and VyQ =  0.5. Figure
5.1 shows a sketch of the 3D system, where magnetic shear, shear flow, and the 
structure of the KH wave are indicated.

In order to select the KH mode as the primary process, the system is triggered by 
a KH type perturbation, which is chosen as

{ V = [ V $ ( i , y ) x e J / 1(2), (5.9)

where
^  (x , y) =  — (5v/n) cos (ky) tanh (kx), (5.10)

Sv =  0.2, n is the number of the KH modes in the system, and k =  mrL~l is wave



Figure 5.1: Sketch of the system geometry, where magnetic shear, shear flow, and the 
structure of the KH wave are indicated.

number. The function f\ is given by

with Zq =  15, and ci =  3 and is used to localize the perturbation in the region where 
z < |15|. Note, that this perturbation is not a normal mode, i.e., a solution of the 
linearized equation, but the spectrum of the perturbation has a dominant contribution 
to the normal mode with the chosen wave number.

It is natural to use periodic boundary conditions along the y direction. Free 
boundary dx =  0 conditions are applied in the x  direction. However, the simulation 
box is chosen sufficiently wide that boundary effects can be ignored. An artificial 
friction term —v (z) [pV — p(0) V  (0)] is added on the right-hand side of the momen­
tum equation, where p (0), and V  (0) are the initial plasma density and velocity,

(5.11)
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respectively. The friction coefficient is localized near the 2 boundary and given by

uq =  1, 2„ =  0.75L*, and dzv =  3. This form of a friction term introduces a magnetic 
line tying on either side of the magnetopause close to the z boundaries to mimic the 
fact that the magnetosheath magnetic field lines are moving with the solar wind,

distances from the equatorial plane).
The resistivity in the magnetosphere is almost zero. Therefore, the current density 

can assume in principle an arbitrarily high value. However, a large current density 
is equivalent to a large current carrier drift velocity V  d =  V* — V e, where V* is ion 
velocity, and V e is electron velocity. When the drift velocity V d is faster than some 
typical value, such as the ion-acoustic speed, micro-instabilities lead to turbulence 
limiting a further increase of the drift velocity V rf. This implies a loss of momentum 
of the current carriers which is equivalent to a resistivity. Thus, in the simulation, 
a resistivity is switched on only when the drift velocity |V̂ | is faster than a critical 
speed vc =  aca, where cs =  y j (7p) /  (2p) is the ion-acoustic speed, and a  is of order 
unity (a =  ^ 4/ 7 ) when the ion inertia scale is of the order of the normalization length 
L0. In reality a is determined by the onset conditions for current driven turbulence 
in a strong current. Since the exact choice has minor influence on the macroscopic 
dynamics, it is used in the model as a free parameter to adjust magnetic reconnection 
onset condition. In the simulation, three resistivity models are applied, which are 
given by:

where 770 =  0.05, H(x)  represents a step function, j c =  pvc =  y/2pp the critical electric 
density, and j b =  0.001 a background resistivity. However, the results indicate that

(5.12)

and that magnetospheric field footprints stick to the Earth’s ionosphere (i.e., at large

Model 1: r?a =r/0 \Jjj2 -  j*H  (j  -  j c) + jb, (5.13)

(5.14)

(5.15)

Model 2: rj2 =T)o \/j -  j cH  (j  -  j c) +  jb,

Model 3: r?3 =rj0 (j 2 -  j l )  H (j  -  j c) + j b,
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the overall dynamical properties are not sensitive to the specific resistivity model or 
the exact choice of the parameters in the model. Therefore, unless stated otherwise,
I always use Model 1.

5.3 Simulation Results 
5.3.1 Overall Dynamics

The KH mode growth rate and the reconnection rate are two of the most important 
physical quantities to characterize the dynamics of the system. Assuming an incom­
pressible plasma, a discontinuous change of the tangential velocity, and the presence 
of different densities and tangential magnetic fields across a plasma boundary, the 
linear theory [Chandrasekhar, 1961] shows that the KH mode growth rate q is:

q =  y ja xa2 [(vx -  v a) • k]2 -  a x (vAi ■ k )2 -  c*2 (vA2 • k )2, (5.16)

where the indices refer to the two sides of the shear flow layer, a* =  Pi/(pi +  P2), k is 
the wave vector of the perturbation, and VAi =  B i /y/pl is the Alfven velocity.

Figure 5.2 shows that the logarithm of the amplitude of the perturbation | max (5vx)— 
min (8vx) | increases linear with time for different resistivity models. In the linear stage 
(before 80 Alfven times), the growth rate q is 0.043, which is lower than the theoret­
ical value 0.078 from Equation (5.16). Two explanations for this lower growth rate 
are the finite width of shear layer and compressibility. A third important cause for 
stabilization is the localization of the wave in the 2 direction which leads to a loss of 
wave energy by radiation of Alfven waves. In the three-dimensional configuration, the 
plasma velocity caused by the wave (vx, vy) is confined to a vicinity of the equatorial 
plane and drags the magnetic field lines across the boundary. However, the building 
magnetic tension in three-dimensions tends to pull the magnetic field line back to 
its original position (unless this field line is “broken” by magnetic reconnection). An 
alternative but equivalent explanation is the generation of Alfven waves through the 
growing KH modes which travel in the positive and negative z directions and extract 
energy from the KH mode. The perturbation Sv is comparable to the initial shear
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flow magnitude Vy0 after t =  80, and fully nonlinear KH vortices have formed. Figure
5.2 also shows that the growth rate of KH modes for different resistivity models is al­
most identical, which demonstrates that the overall KH mode dynamics is insensitive 
to the specific resistivity model.

The strong anti-parallel magnetic field represents a configuration that is suscep­
tible to magnetic reconnection. The onset of large amplitude KH modes deform the 
current layer, which widens in the center of the vortex and thins in the spine of the 
KH wave (see Figure 5.1). As a result, the width of the current layer becomes compa­
rable to the diffusion length, which satisfies the condition for the onset of resistivity 
and causes magnetic reconnection.

To identify the reconnected (open) magnetic flux, field lines are traced from the 
top boundary (z =  Lz). The open or reconnected field lines from the top boundary 
on the magnetosheath side (x >  0) extend toward the equatorial plane, and connect 
to the field lines on the magnetosphere side, which extend back to the top boundary 
because the field magnetospheric field has the opposite direction along 2 . Thus, all 
open field lines started from the top boundary on the magnetosheath side (x  >  0) 
have endpoints also at the top boundary on the magnetosphere side (x  < 0). By 
integrating all of the positive (or negative) open flux (along z) at the top boundary, 
one can obtain the total reconnected flux

where the integral is taken over the open flux at the top boundary plane. In order to 
compare with two-dimensional reconnection theory, this reconnection rate is normal­
ized to the system size 2Ly, Therefore, the normalized reconnection rate r is defined

Figure 5.3 presents the reconnected magnetic flux $  and the normalized reconnection 
rate r for different resistivity models. It shows that magnetic reconnection strongly 
increases when the KH modes reach their nonlinear stage. The simulation assumes

o p en

(5.17)



97

G ro w th  o f  K H I  | m ax(<fa;x ) — m in (^ ^ a;) |
101

10°

10 '1

0 20 40 60 80 100 120 140 160 180 200
t

Figure 5.2: The growth of the KHI |max (Svx) — min (Svx) \ for the different resistivity 
models. The black solid line is the exponential curve fitting based on data from Model 
1, which shows a growth rate of q — 0.043.
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the highest rate is close to 0.1, which is similar to the Petschek reconnection rate, and 
is largely independent of the resistivity model. However, the normalized reconnection 
rate drops when a certain amount of magnetic flux has been reconnected, which 
indicates that the total amount of open flux is determined by the longest wavelength 
KH wave in the simulation box.

The frozen-in condition implies that the magnetic field is equipotential if the re­
sistivity is 0. Any local diffusion and specifically magnetic reconnection, which breaks 
the frozen-in condition, generates a parallel electric field component E\\. Therefore, 
the field-aligned electric potential difference

A <t> =  J  E^ds, (5.19)

where ds is an infinitesimal length along the magnetic field line, indicates whether the 
magnetic field line goes through a diffusion region (newly reconnected) or not [Hesse 
and Schindler, 1988]. The colored area in Figure 5.4 illustrates the region of open 
flux at the top boundary. Here the left panel of the figure presents the field-aligned 
electric potential difference A<p for open field lines for the reference case at t =  164. 
To improve contrast, the color-bar only covers A (f> <  0.088. However, the maximum 
value of A 4> is 0.63, which appears dark red in the panel.

To identify the magnetic reconnection site, I record the lowermost point along the 
open field line (deflection point), since open field lines are deflected somewhere in the 
simulation system. Field lines may be deflected several times before they finally turn 
back to the top boundary. For newly reconnected flux, which is still connected to the 
dominant diffusion regions and has a large field-aligned electric potential difference 
\A(f>\, the deflection point is the location of the lowermost reconnection site along this 
field line. The plot on the right side in Figure 5.4 presents the z coordinate of these 
deflection points.

Magnetic field lines near the open-close flux boundary x  «  |7.5| are expected to be 
newly reconnected, which is consistent with the largest field-aligned electric potential 
difference (dark red region and some folds in the color plots). The corresponding
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Figure 5.3: Reconnected magnetic flux <$, and normalized reconnection rate r for the 
different resistivity models.
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deflection points are close to the equatorial plane, which indicates that most of the 
magnetic flux is reconnected near the equatorial plane. Earlier reconnected magnetic 
field lines, whose foot-points at the top boundary are closer to the y  axis, are deflected 
at a higher 2 position, which indicates that the reconnected field lines are convected 
toward the top boundary.

The reddish region (A <f> «  0.08) inside the shear flow layer |x| < 1, where field 
lines are deflected near 2 =  30, indicates that there is another diffusion region at 
higher latitudes. However, the value of A  (j) is one order of magnitude lower than 
those near the equatorial plane. Therefore, this higher latitude reconnection only has 
secondary effects for the dynamics of the system.

To demonstrate that the location of the diffusion region is indeed near the equa­
torial plane, I also present the field-aligned electric potential difference A <j> (left) and 
the magnetic field Bz component (right) for the reference case at t =  164 in a cut at 
2 =  1 close to the equatorial plane in Figure 5.5. The large magnitude of the field- 
aligned electric potential difference \<p\ is highly consistent with the low \BZ\ region, 
which demonstrates that magnetic reconnection is strongly influenced by KH modes. 
The results also confirm that magnetic reconnection takes place mainly in the spine 
of the nonlinear KH wave. The patchy pattern of the field-aligned electric potential 
difference A<p inside of the KH vortex implies the onset of patchy reconnection associ­
ated with multiple current layers, which also contributes the normalized reconnection 
rate.

For a better representation of the diffusion region, I present the resistivity in pro­
jections on the xy and xz  planes at t =  164 for the reference case in Figure 5.6. The 
color index is on a log-scale, and the isosurface uses rj =  10~1,75 ~  0.018. The resis­
tivity is mostly enhanced close to the equatorial plane, consistent with my previous 
analysis. The pattern of the resistivity distribution also indicates that the diffusion 
region is strongly modified and deformed by KH waves. The small diffusion region 
near the (0,10,30) may correspond to the afore mentioned higher latitude reconnec­
tion. A possible scenario for this magnetic reconnection is the following. Earlier (old)
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Figure 5.4: Field-aligned electric potential difference Acp and the 2 component of
the deflection point min (2) for the reference case at t =  164 in a cut at 2 =  40 (top 
boundary).
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Figure 5.5: Field-aligned electric potential difference A<t> (left) and the magnetic field 
Bz component (right) for the reference case at t =  164 in a cut at z =  1 close to the 
equatorial plane.
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reconnected flux has moved away from the equatorial plane and the corresponding 
foot-points on the two sides of the boundary have moved a large distance with the 
shear flow in to opposite y directions creating a large By component along the field 
lines. Newly reconnected flux does not pass this large y shear such that the interac­
tion of older open flux and newly reconnected flux can generate significant current 
layers caused by the different By components. This may be further amplified locally 
through KH waves and cause the higher latitude reconnection. However, this mag­
netic reconnection only involves the open magnetic field lines, which does not change 
the normalized reconnection rate.

5.3.2 Influence of the Shear Flow Magnitude

The shear flow magnitude V̂ o is a critical value for KH modes. The linear theory 
for KH growth rate Equation (5.16) shows a KH mode growth rate q proportional to 
the shear flow magnitude Vyo for any arbitrary value, which, however, is not the case 
for a three-dimensional compressible finite width system. Figure 5.7 shows the KH 
instability growth rate q (top), reconnected magnetic flux $  (middle), and normalized 
reconnection rate r (bottom) for different shear flow magnitude Vyo, which ranges from 
0 to 0.9V/. It demonstrates that a low critical shear flow magnitude V)c € (0.2,0.3) Vf 
is required to overcome compressibility and magnetic field tension. The KH mode 
growth rate q increases linearly with the shear flow magnitude Vyo above this lower 
threshold, however, it becomes insensitive to the shear flow magnitude Vy0 when it 
reaches some saturation value qs (about 0.045). When the shear flow magnitude 
Vyo is close to the fast mode speed Vf, information cannot propagate anymore from 
the upstream obstacle (vortex) to the downstream (opposite side) such that the KH 
growth is switched off. Both the reconnected flux <f> and the reconnection rate r show 
a strong correlation with the KH mode growth rate q (or initial value of the shear flow 
Vyo). For Vyo <  Ve, reconnected flux <f> and reconnection rate r are negligible, which 
indicates that reconnection close to the sub-solar region is not likely caused by KH 
modes. For KH mode growth rates q lower than the saturation value qs, the vortex
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77, when t =  164

Figure 5.6: Distribution of resistivity rj in a three-dimensional view.
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size increases with larger shear flow magnitude, and therefore both reconnected flux 
$  and normalized reconnection rate r increase. When the KH mode growth rate q is 
close to the saturation value qa, the reconnected flux $  and normalized reconnection 
rate r also becomes insensitive to the shear flow magnitude Vy{). Note, that the initial 
configuration used an under critical width of the current sheet, meaning that no 
resistivity is switched on initially. Otherwise reconnection would have started from 
the beginning of the simulation.

5.3.3 Influence of the Guide Field Component

Magnetic reconnection without guide field is a singular situation in space plasma 
system. A guide field component is present almost everywhere at the dayside magne­
topause. In the considered configuration, this guide field component (magnetic field 
By component) is parallel to the direction of the shear flow. Thus, it can decrease the 
KH mode growth rate. Figure 5.8 shows the linear growth rate o f the KH instability 
q (top), reconnected magnetic flux <& (middle), and normalized reconnection rate r 
(bottom) for different initial guide components Byo varying from 0 to 0.4 with a shear 
flow magnitude M f =  0.5 (the cut-off value is By =  0.49 in this condition). The KH 
instability growth rate q decreases with increasing initial guide field value Byo con­
sistent with the linear theory. The total reconnected magnetic flux 4> and maximum 
normalized reconnection rate r also decrease with increasing guide field value By0, 
except for the By0 =  0 case. Here the maximum normalized reconnection rate is a 
little lower than in the Byo =  0.1 case although reconnection starts a bit earlier to 
increase. This indicates that a small guide field has minor influence and might even 
aid KH modes to twist the magnetic field lines more easily, with a slight increase in 
the normalized reconnection rate. However, a sufficient guide field component clearly 
stabilizes the KH waves, which means that the system spends more time to reach 
its nonlinear stage and saturation occurs at a smaller amplitude and size of the KH 
vortex. Therefore, both the total reconnected magnetic flux 4> and the normalized 
reconnection rate r decrease. Especially, when the initial guide field value Byo is close
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Figure 5.7: The KHI growth rate q (top), reconnected magnetic flux $  (middle), and 
normalized reconnection rate r (bottom) for different initial speed of shear flow VyQ,
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to the cut-off value (Byo =  0.4 case), magnetic reconnection may not even be switched 
on.

5.3.4 Influence of the KH Mode Wave Number

The linear theory indicates that KH mode growth rate q is proportional to the KH 
wavenumber k [Chandrasekhar. 1961]. However, for the finite width shear flow, the 
fastest growth occurs for ka ~  0.5 [Miura and Pritchett, 1982], where a is the width 
of the shear flow. For a multi-spectral system, the fastest growing modes dominate 
the dynamics at beginning, and at later times longer wavelengths, which involve 
more energy, becomes important. Thus in this study, I am not necessarily interested 
in the condition for fastest growth rate. Figure 5.9 shows the growth of the KHI 
|max(Svx) — min(<5ua;)| (top), reconnected magnetic flux $  (middle), and normalized 
reconnection rate r (bottom) for different KH wave-numbers (all other parameters 
are the same as for the reference case). In the linear stage, the KH growth rate q 
increases with increasing KH wavenumber k. Case n =  8 is slower than case n =  4, 
which is consistence with Miura and PritcheWs [1982] results. For all cases, the final 
KH wavelength is identical to the size (in y direction) of the simulation box. Notably, 
n =  4 and 2 case have more reconnected magnetic flux $  than n =  1 case at the 
early stage. However, after t =  120 and 160 the n =  1 mode starts to dominate the 
total amount of reconnected flux. This indicates that although shorter wavelengths 
can generate faster growth and a larger normalized reconnection rate r, the total 
reconnected flux $  is almost identical, because the total reconnected flux $  is limited 
by the longest wavelength KH wave in the simulation.

The coalescence of KH vortices has been often reported and is considered as a 
mechanism of the evolution from shorter wavelength KH modes to the longer wave­
length KH modes by different authors (see summary in [Miura, 1995b]). However, 
the growth of the longer wavelength KH modes and decay/diffusion of the shorter 
wavelength KH modes is another possible scenario for this evolution. To examine 
this evolution, I present the magnetic field Bz component at the equatorial plane for
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Figure 5.8: The KHI growth rate q (top), reconnected magnetic flux (middle), and 
normalized reconnection rate r (bottom) for different initial guide field component
B yQ .
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Figure 5.9: The growth of the KHI |max (Svx) — min (£nx)| (top), reconnected mag­
netic flux $  (middle), and normalized reconnection rate r (bottom) for different KH 
wave-numbers.
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Figure 5.10: The magnetic field Bx component at equatorial plane for t =  48, 78, 90, 
104, and 144 for n =  4 case.

t =  48, 78, 90,104, and 144 for n =  4 case. The four KH vortices observed at t =  48 
decay at t =  78. However, at t =  90, n =  4 mode are formed again, which is not possi­
ble in two-dimensions. In three dimensions magnetic reconnection can thin the shear 
flow layer in the diffusion region after t — 78, which satisfies the KH onset condition 
again. These vortices decay at the boundary of the longer wavelength n =  2 mode at 
t =  104, and the n — 2 modes dominate the system at t — 144. Thus the evolution 
of the KH modes from shorter wavelength modes to the longer wavelength modes is 
likely caused by the diffusion/dissipation of smaller wavelength modes in a nonlinear 
state and ordinary growth and later dominance of the larger wavelength modes occurs 
instead of coalescence. Note, that the presence and decay of KH vortices is consistent 
with the normalized reconnection rate r oscillation (yellow line in bottom panel of 
Figure 5.9), which illustrates the strong influence on magnetic reconnection by the 
KH waves.



I l l

5.3.5 Influence of Hall physics

The typical width of the magnetospheric boundary is about several ion inertia scales, 
and magnetic reconnection onset requires a width of the current layer comparable 
or even smaller than the ion inertia scales. In this section, three selected cases are 
chosen to investigate effects caused by Hall physics. For computational reasons, a 
smaller simulation box (Lv — 10) is used in these three cases. Hall term leads to the 
separation of the ion and electron velocity, and the frozen-in condition only applies 
to the electrons which carry most of the current in thin current sheets. Hall physics 
also generates a faster magnetic reconnection [Bim et al., 2001; Otto, 2001], and 
Huba [1994] demonstrates that the Hall term breaks down the dawn-dusk symmetry. 
Therefore, the first case with Hall parameter I =  0.6 represents the dawn side (B z0 =  
1.0), and the second case with the same parameter, except represents the dusk side 
(Bzo =  —1.0). For comparison, the third case is the MHD case (1 =  0). All other 
parameters are the same as for the reference case. Figure 5.11 shows that the KH 
growth rate q in Hall MHD case is faster than the MHD cases. This is likely because 
the plasma momentum is mostly carried by ions, which are no longer frozen-into the 
magnetic field lines. Thus, the stabilization by the parallel magnetic field component 
appears reduced for the ions. Hall physics leads to a faster normalized magnetic 
reconnection rate r at beginning. However, in the nonlinear stage MHD magnetic 
reconnection is slightly faster, which is consistent with the growth of KH modes. 
The overall evolution does not show a significant dawn-dusk asymmetry, although, 
magnetic reconnection on the dawn side (Bzo =  1.0) is slightly faster than on the 
dusk side (Bzo =  —1.0).

5.4 Summary and Discussion

For southward IMF conditions, the interaction between KH modes and magnetic 
reconnection is important to understand because it can potentially determine the 
plasma transport across the Earth’s magnetospheric boundary. Here I have examined 
this interaction systematically for conditions in which KH waves are the primary
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Figure 5.11: The growth of the KHI |max (Svx) — min (Svx)\ (top), reconnected mag­
netic flux $  (middle), and normalized reconnection rate r (bottom) for different Hall 
parameter and Bzq.



113

instability process in this interaction. My main results can be summarized as follows. 
The growth rate of three-dimensional KH waves is smaller than linear theory predicts 
because the simulations include compressibility, the finite width of shear flow layer, 
and a three-dimensional localization of the KH waves. A low critical threshold of the 
shear flow magnitude Vc is required to cause onset of the KH instability. Magnetic 
reconnection is driven and strongly modified by the nonlinear KH modes. A larger 
shear flow magnitude Vyo increases both the reconnected flux $  and the normalized 
reconnection rate r. However, when the KH growth rate q reaches a saturation value 
qc, the reconnected flux <3>, and the normalized reconnection rate r become insensitive 
to the specific shear flow magnitude Vyo. A sufficiently small guide field has only 
minor influence and may actually increase magnetic reconnection slightly. However, 
a sufficiently large guide field component clearly stabilizes the KH modes and therefore 
switches off magnetic reconnection. The relation between KH mode growth rate and 
KH wavenumber k is generally consistent with Miura and Pritchett's [1982] results. A 
shorter wavelength KH mode has a higher KH growth rate q and reconnection rate r. 
During the evolution shorter wavelength modes decay, and longer wavelength modes 
grow to become the dominant modes. The normalized reconnection rate r strongly 
depends on the presence of nonlinear KH waves. However, the total reconnected flux 
$  is determined and limited by the longest wavelength KH wave in the simulation. 
Hall physics increases both the KH growth rate q and normalized reconnection rate 
r, which is consistent with Nykyri and Otto's [2004] results. The difference between 
dawn and dusk is minor in the simulation, which is contrary to Huba's [1994] result. 
Note, that at the actual magnetopause, the density ratio between magnetosheath and 
magnetosphere is close to 10 (Sp =  0.82), which is the value used by Huba [1994]. 
However, he used an overly large Hall parameter I =  6 , which is not applicable to the 
Earth’s magnetopause and may exaggerate the asymmetry. Therefore, the problem of 
a significant dawn-dusk asymmetry caused by Hall physics requires a realistic density 
ratio and Hall parameter, which will be part of my future work.
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Chapter 6
Interaction Between Magnetic Reconnection and Kelvin-Helmholtz 

Instability for Southward IM F Conditions: Reconnection Type
Perturbation

6.1 Introduction

A critical problem of magnetospheric physics is the plasma transport from the solar 
wind into the Earth’s magnetosphere. Magnetic reconnection and viscous interaction 
are suggested as the two basic mechanisms for transport at the magnetospheric bound­
ary [Dungey, 1961; Axford, 1964]. Fast magnetic reconnection generally requires large 
anti-parallel magnetic field components, which is satisfied at the equatorial magne­
tospheric boundary for southward interplanetary magnetic field (IMF) conditions. A 
central property of magnetic reconnection is the breakdown of the so called “frozen-in” 
condition by localized dissipation in the diffusion region, which changes the topology 
of the magnetic field lines and allows solar wind plasma access to the magnetosphere. 
A first stationary magnetic reconnection model was proposed by Sweet [1958] and 
Parker [1957], and later was modified by Petschek [1964] to account for the antici­
pated fast time scales observed in space plasmas. Theoretical analysis and numerical 
simulation show that a typical fast reconnection rate is about 0.1 [Bim et al., 2001], 
For northward IMF conditions, magnetic reconnection is expected to occur close to 
the geomagnetic cusp regions [Adamson et al, 2012],

Close to the Earth’s magnetopause, a large shear flow always exists due to the 
shocked solar wind streaming past the Earth’s magnetosphere. The shear flow renders 
this boundary potentially unstable to the Kelvin-Helmholtz (KH) instability. Large 
scale nonlinear KH waves can generate a significant exchange of momentum across 
a physical boundary, thereby introducing a viscous interaction in the plasma partic­
ipating in this interaction. This process as well as an efficient transport of energy 
across the plasma boundary have been demonstrated by a number o f two-dimensional 
MHD simulations [Miura, 1982, 1984, 1987, 1992, 1996; Miura and Pritchett, 1982]. 
However, as an ideal instability, the KH instability does not violate the “frozen-in”
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condition, such that no plasma transport is associated with this momentum trans­
port in ideal MHD. Nevertheless, more recent two- and three-dimensional simulations 
for northward IMF conditions have demonstrated the formation of very thin current 
layers in the nonlinear vortices of KH waves. In resistive MHD these current layers 
force magnetic reconnection to operate which allows the plasma to cross the magne­
tospheric boundary [Nykyri and Otto, 2001; Otto and Fairfield, 2000]. Observational 
evidence for nonlinear KH waves during the northward IMF conditions has been re­
ported by different authors [Fairfield et al., 2000; Otto and Fairfield, 2000; Hasegawa 
et al., 2004]. Recently Hwang et al. [2011] presented some first in situ observations 
of nonlinearly developed KH waves during southward IMF. “The analysis reveals 
a mixture of less-developed and more-developed KH waves that shows inconsistent 
variations in scale size and the magnetic perturbations in the context of the expected 
evolution of KH structures” [Hwang et al., 2011]. “A coherence analysis indicates that 
the observed KH waves for southward IMF appear to be irregular and intermittent” 
[Hwang et al., 2011].

The configuration, a largely anti-parallel magnetic field with a perpendicular shear 
flow has been studied by various authors using two-dimensional numerical simulations 
of reconnection an KH waves [La Belle-Hamer et al., 1995; Chen, 1997]. However, the 
assumed two-dimensional configuration in La Belle-Hamer et al. [1995] excludes the 
KH modes because their k vector is in the invariant direction. This is different in three 
dimensions, where magnetic reconnection and KH waves can operate simultaneously. 
In a system which is unstable to both KH modes and tearing modes (linear stage 
of magnetic reconnection), the dominant dynamic process depends on the growth 
rates of these two modes and the respective initial perturbations [Chen, 1997]. In the 
nonlinear stage, the interaction of these processes is an open question that depends on 
the primary instability process. This question can be approached from two different 
angels, namely by assuming conditions where (1) magnetic reconnection is the primary 
processes, and (2) KH modes represent the initial or primary process. Here I focus 
on the first condition.



116

Table 6 .1: Simulation Normalization

Magnetic field B0 20 nT
Number density no 10 cm-3

Length scale L0 640 km
Alfven velocity Va 138 km • s-1

Time T\ 4.6s

6.2 Numerical Methods

This study uses the full set of the three-dimensional normalized resistive MHD and 
Hall MHD equations as introduced in Chapter 2. The values for the normalization of 
the simulation units are summarized in Table 6.1.

I present results from a series of selected simulation cases to study the interaction 
between magnetic reconnection and KH modes. The simulation domain is a volume 
with |m[ < Lx =  30, \y\ < Ly =  20, and \z\ <  Lz =  40, and is resolved by using 
103 x 203 x 103 grid points with a non-uniform grid along the x and 2 directions. To 
sufficiently resolve the diffusion region, the best resolution is set to 0.1 and 0.2 in the 
x and 2 direction in the vicinity of the current layer where reconnection is triggered. 
The initial equilibrium is a one-dimensional modified Harries sheet given by

II O (6 .1)

By ByO, (6 .2)

Bz =  ~ Bzo tanh ( x ) , (6.3)

vx =o, (6.4)

Vy — — V̂ 0 tanh (x ) , (6.5)

K = o , (6 .6)

P =Poo +  1 -  B2, (6.7)

P =A) +  ^ptanh (x ) , (6 .8)

where Bz0 =  1, px  =  0.25, po =  1, 5p =  0.1, By is the guide field, and Vyo is the



117

initial shear flow magnitude. For convenience, I use the fast mode Mach number 
Mf — Vyo/Vf to represent this speed, where Vf =  y/(B^0 + 7p00/ 2)//?o =  1-1 is 
the average fast mode speed. Since the growth and evolution of KH waves strongly 
depends on the initial shear flow magnitude Vyo, which drives the instability, and 
on the magnetic field magnitude Byo along the wave vector, which can stabilize the 
mode, I choose these in the range Mf G [0,1] and By0 G [0,0.5]. The reference case 
uses Byo =  0, and Mf =  0.5. Figure 6.1 shows a sketch of the three-dimensional 
system, where magnetic shear, shear flow, and the source region for reconnection are 
indicated.

Figure 6.1: Sketch of the system geometry, where magnetic shear, shear flow, and the 
source region for reconnection are indicated.

In order to select magnetic reconnection as the primary process, reconnection is 
initiated in a source region by a magnetic perturbation which is chosen as

<5B =  \VA{x,z) x etf] (y ) , (6.9)
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where
A (x, z) =  <5Bcosh 2 (a:) cosh 2 (z/2), (6 .10)

and 5B =  0.5. The function / 2 is given by

h  (V) =  ^ tanh 1 tanh y + yp 
d

(6.11)

with y0 =  10, and d =  2 and is chosen to localize the perturbation in the region 
where y < |10|. The relatively large magnetic perturbation is justified because large 
perturbations are common in the magnetosheath and a large perturbation accelerates 
the evolution of reconnection as the primary instability in this study.

The simulations use periodic boundary conditions along the y direction. Free 
boundary (dx =  0) conditions are applied in the x direction. However, the simula­
tion box is chosen sufficiently wide that boundary effects are negligible. An artificial 
friction term —v (z) [pV — p (0) V  (0)] is added on the right-hand side of the momen­
tum equation, where p(0), and V  (0) are the initial plasma density and velocity, 
respectively. The friction coefficient is localized near the z boundary and is given by

i/0 =  1, z„ =  0.75Lz, and dzu =  3. This form of a friction term introduces a magnetic 
line tying on either side magnetopause close to the z boundaries to mimic the fact 
that the magnetosheath magnetic field lines are moving with the solar wind, and that 
magnetospheric magnetic field footprints stick to the Earth’s ionosphere (i.e., at large 
distances from the equatorial plane).

The resistivity in the magnetosphere is almost zero. Therefore, the current density 
can assume in principle an arbitrarily high value. However, a large current density 
is equivalent to a large current carrier drift velocity =  V) — V e, where V* is ion 
velocity, and V e is electron velocity. When the drift velocity is faster than some 
typical value, such as the ion-acoustic speed, micro-instabilities lead to turbulence 
limiting a further increase of the drift velocity V d. This implies a loss of momentum 
of the current carriers which is equivalent to a resistivity. Thus, in my simulation,

v (z) =  — 2 — tanh
2

(6.12)
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a resistivity is switched on only when the drift velocity |V ĵ is faster than a critical 
speed vc =  acs, where cs =  y /(jp )  /  (2p) is the ion-acoustic speed, and a is of order 
unity (a =  yf&py) when the normalization length L0 is of the order of the ion inertia 
scale. In reality a  is determined by the onset conditions for current driven turbulence 
in a strong current. Since the exact choice has minor influence on the macroscopic 
dynamics, it is used in my model as a free parameter to adjust magnetic reconnection 
onset condition. In the simulation, three resistivity models are applied, which are 
given by:

Model 1: r)X =?7o yj f  -  j* H  (j  -  j c) +  jb, (6.13)

Model 2: r/2 =r?0 yjj  ~ j cH  (j  -  j c) +  jb, (6.14)

Model 3: r}3 =r?0 (j 2 -  j f j  H  (j -  j c) + j b, (6.15)

where % =  0.05, H{x) represents a step function, j c =  pvc =  y/2pp the critical current 
electric density, and j b =  0.001 a background resistivity. However, my results indicates 
that the overall dynamical properties are not sensitive to the specific resistivity model 
or the exact choice of the parameters in the model. Therefore, unless stated otherwise, 
I always use Model 1.

6.3 Simulation Results

6.3.1 Overall Dynamics

The reconnection rate is among the most important physical quantities to characterize 
the transport of magnetic flux at a magnetic boundary and it provides also insight 
into the plasma transport or plasma access from one side o f the boundary to the other. 
To identify the reconnected (open) magnetic flux, field lines are traced from the top 
boundary (z =  Lz). The open or reconnected field lines from the top boundary on 
the magnetosheath side (x > 0) extend toward the equatorial plane, and connect to 
the field lines on the magnetosphere side, which extend back to the top boundary 
because the field magnetospheric field has the opposite direction along z. Thus, all 
open field lines started from the top boundary on the magnetosheath side (x > 0)
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have endpoints also at the top boundary on the magnetosphere side (x  <  0). By 
integrating all of the positive (or negative) open flux (along z) at the top boundary, 
one can obtain the total reconnected flux

® =  \ [  \Bz {x ,y ,L z)\dxdy, (6.16)
J  op en

where the integral is taken over the open flux at the top boundary. In order to compare 
with two-dimensional reconnection theory, this reconnection rate is normalized to the 
system size 2Ly. Thus, the normalized reconnection rate r is defined by

1
2Ly dt

(6.17)

Figure 6.2 presents the reconnected magnetic flux $  and the normalized reconnection 
rate r for different resistivity models. All other parameters are the same as for the 
reference case. The results demonstrate that magnetic reconnection is switched on 
at t =  20. The reconnected flux 4> increases with time and the simulation assumes 
the highest normalized reconnection rate of about 0.06 at t = 100. This is similar to 
the Petschek reconnection rate, and it is largely independent of the resistivity modes. 
However, the normalized reconnection rate drops when a certain amount of magnetic 
flux $  (at about t — 200) has been reconnected, which indicates that the total mount 
of open flux is limited by the system.

Note, that the initial perturbation is not chosen to trigger the KH instability. 
However, the initial configuration is KH unstable, such that any fluctuation with 
a spectrum in y direction is expected to generate KH modes. Therefore, in the 
simulation both magnetic reconnection and KH modes operate simultaneously. The 
onset of magnetic reconnection changes the width of the shear flow, thus it changes the 
KHI onset condition. The nonlinear KH waves change in turn the width of the current 
layer, thereby changing conditions for magnetic reconnection. Figure 6.3 shows the 
magnetic field Bz component in the equatorial plane z =  0, for t =  20, 48, 90, 104, 
and 144 for the reference case. Initially, for this quasi-two-dimensional configuration, 
the source region for reconnection in the equatorial plane determines the location of
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Reconnected Magnetic Flux <E>

t

Normalized Reconnection Rate r

t

Figure 6.2: Reconnected magnetic flux <3>, and normalized reconnection rate r for the 
different resistivity models.
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the initial diffusion region. The onset of reconnection for the initial conditions leads 
to the evolution of a thin current layer (diffusion region and attached outflow region) 
in a limited vicinity of the equatorial plane at 2 =  0 and with a finite extent \y\ < 10 
in the y direction. This thinning of the current sheet with the thinnest current sheet 
located at 2 =  0 is also a thinning of the shear flow layer, which changes the KH onset 
condition. As a result, the fastest growing KH waves are modes with short wavelength 
which are unstable only in the thin current sheet region and they are fully developed 
at t =  48. Initially there are six KH waves in the vicinity of the reconnection diffusion 
region, which corresponds to a KH wavelength of / ~  2. These KH modes are the 
fastest growing waves, and their instability and growth are determined by the width 
of the thin shear flow layer [Miura and Pritchett, 1982]. Outside of the y range 
of the diffusion region \y\ > 10, somewhat longer wavelength KH waves are the 
fastest growing modes. Their wavelength and growth are determined mostly by the 
original width of the shear flow layer, which has not been much effected by magnetic 
reconnection yet. However, the longer wavelength KH modes deform the current layer 
outside of initial diffusion region, with localized concentrations (thinning of current 
layer and thereby triggering the onset condition for magnetic reconnection). Thus, 
magnetic reconnection also starts to operate outside of the y range in which it has 
been originally triggered. Note, that the term diffusion region here is actually used in 
an average sense because the initial diffusion region is rapidly split into many small 
diffusion region parcels through the modulation o f the current layer by the KH waves.

The evolution of KH waves from short to longer wavelength KH waves has also 
been observed by other numerical simulations (see summary in [Miura, 1995b]). This 
evolution is often considered as the coalescence instability. However, this is not likely 
the case in my simulation. Figure 6.3 illustrates that the longest wavelength KH mode 
already appears to be the dominant mode at t =  90, although shorter wavelength KH 
modes still exist. This indicates that the shorter wavelength KH modes are saturated 
and dissipated instead of undergoing coalescence. At t =  144, the longest wavelength 
mode is identical to the simulation box size in the y direction, which dissipates the
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,< = 20 < =  48 < =  90

Figure 6.3: Magnetic field Bz component on the equatorial plane z — 0, when t =  20, 
48, 90, 104, and 144 for the reference case. Black line is the contour line for Bz — 0.

current layer and thus suppresses magnetic reconnection.
Figure 6.4 shows magnetic field Bz component at x =  0, for t =  20, 48, 90, and 144 

for the reference case, which illustrates the KH mode expansion along the z direction. 
At t =  20, the largest (but still linear) amplitude KH waves are observed close to 
the edge of the source region for reconnection. Multiple nonlinear KH waves with 
different wavelength appear at t =  48, showing and evolution to longer wavelength 
KH waves with increasing time, which is consistent with the previous analysis. The 
figure also demonstrates that these KH waves are localized from —20 to 20 along the 
2 direction. Note, that the friction term is switched on at \z\ >  30, thus friction 
is not likely to account for the localization. My interpretation is that the width of 
shear flow widens in the reconnection outflow region, and thereby switching off the 
KH modes (or only permitting very large wavelengths).

To illustrate the influence of KH mode on magnetic reconnection, I present the 
field-aligned electric potential difference A 4> for t =  20, 48, 90, 104, and 144 for the
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Figure 6.4: Magnetic field Bz component for t — 20, 48, 90, and 144 for the reference 
case in a cut at x  =  0 .
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reference case in a cut at z =  1 close to the equatorial plane in Figure 6.5. The 
field-aligned electric potential difference is

where E\\ is the parallel electric field component, and ds is an infinitesimal length along 
the magnetic field line [Hesse and Schindler, 1988]. Figure 5 shows the field aligned 
electric potential difference A 0  for open field lines at 2 =  1, where a nonzero value 
indicates that the field line at this location is going through the diffusion region, i.e., 
is undergoing magnetic reconnection. The range of the color-bar is limited to better 
represent the structure of the diffusion region. However, I also label the maximum 
(minimum) value at the top (bottom) of the color-bar as a reference. At t =  20, 
magnetic reconnection operates in the initial diffusion region and attached outflow 
regions with a small field-aligned electric potential difference |A0| <  0.05. At t =  48, 
the diffusion region extends through the whole simulation box along the y direction, 
and its shape is strongly modified by the KH waves. At t =  90 and 104, the open flux 
region has the same shape of well-developed KH waves or vortices. The largest field- 
aligned electric potential difference |A0| appears along the spine of the KH waves 
instead of the vortex regions. Compared to t =  104, the largest field-aligned electric 
potential difference |Â>| at t — 144 is much higher, which may indicates a field line 
passing the diffusion region several times due to the periodic boundary condition or 
numerical inaccuracy.

6.3.2 Influence of the Shear Flow Magnitude on Reconnection and KH

The solar wind speed is a critical parameter for the evolution and of KH waves 
at the magnetospheric boundary. At 1 AU, the speed of the solar wind is usually

(6.18)

Waves

around several hundred km/s. Depending on the location, the total velocity difference 
between solar wind plasma and the stagnant magnetospheric plasma varies from 0 at 
subsolar point to values close to the solar wind speed near the tailward flank boundary.
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Figure 6.5: Field-aligned electric potential difference for t =  20, 48, 90, 104, and 144 
for the reference case in a cut at z =  1 close to the equatorial plane.
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Figure 6.6 shows the total reconnected magnetic flux and normalized reconnection 
rate r for different initial shear flow magnitude VyQ varying from 0 to Vf. All other 
parameters are the same as for the reference case. For small shear flow M f <  0.3, the 
reconnected magnetic flux $  monotonously increases with time at a fairly constant 
normalized reconnection rate of 0.02 to 0.03, which indicates that a small shear flow 
has a minor influence on magnetic reconnection. The growth of KH modes increases 
with increasing shear flow' magnitude. With the sufficiently large shear flow M f >  0.3, 
well-developed KH modes significantly increase the normalized reconnection rate r. 
However, the total amount of reconnected magnetic flux $  appears to be limited.

6.3.3 Influence of a Guide Field Component on Reconnection and KH  
Waves

At the dayside magnetopause, a guide field component is also present almost every­
where, which usually can be considered as an additional pressure in two-dimensional 
magnetic reconnection. However, this component is parallel to the k vector of the 
KH waves, which at larger values can stabilize the KH waves. Figure 6.7 shows the 
reconnected magnetic flux $ , and normalized reconnection rate r for different initial 
guide field values Byo varying from 0 to 0.5, where all other parameters are the same 
as for the reference case, and By() =  0.54 is the cut-off guide field for KH instability 
for the chosen shear flow with Mf =  0.5. The initial evolution of reconnected flux 
and normalized reconnection rate is similar for all cases. However, for By0 <  0.3, the 
normalized reconnection rate r assumes a maximum of 0.06 around t =  100 and the 
reconnected flux <f> at about t =  160. In comparison, for larger By0 > 0 .4 , magnetic 
reconnection assumes an intermediate maximum about t =  60 and starts to increase 
again around t =  140. A saturation is not apparent on the simulation time scale.

The frozen-in condition in combination with the shear flow in the y direction 
implies a drag of reconnected magnetic field line into opposite directions on the two 
sides of the outflow region, which generates a By component. This anti-symmetry of 
the By component is broken by the initial guide field component, which is basically
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Figure 6.6: Reconnected magnetic flux and reconnection rate r for different initial 
speed of shear flow M f € [0 , 1].
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Figure 6.7: Reconnected magnetic flux <t>, and reconnection rate r for different guide 
field e  [0,0.5].
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a two-dimensional effect and illustrated in Figure 6 .8 . The left panel shows the 
magnitude of the magnetic field By component in a cut at y = 0, at t — 140 for the 
Byo =  0.3 case. In this configuration (which applies to the dawn side flank of the 
magnetosphere), the shear flow generates a positive By component in the northern 
hemisphere, and a negative By component in the southern hemisphere. Therefore, the 
initial positive guide field component increases the magnitude of By in the northern 
hemisphere, and decreases the magnitude of By in the southern hemisphere. Thus, 
the KH modes onset conditions are modified by this asymmetric magnetic field By 
component. The right panels in Figure 6.8 shows the magnetic field Bz component in 
the cut at z — ±2.1. It demonstrates that a long wavelength KH wave develops in the 
southern hemisphere, while KH modes are switched off in the northern hemisphere.

An interesting question is how this southern-northern hemispheric asymmetry 
affects ionospheric signatures? Figure 6.9 shows the field-aligned electric potential 
difference A 0 in cuts at top and bottom boundary, at t =  140 for the By0 =  0.3 case. 
Although the total open flux is the same for both boundaries, the bottom boundary 
(the southern hemisphere) shows more vortex structures, which indicates that the 
guide field component in the IMF may lead to auroral spirals only in one hemisphere.

6.3.4 Influence o f  Hall Physics

The typical width of the magnetospheric boundary is about several ion inertia scales, 
and an onset condition for magnetic reconnection based on micro-turbulence requires 
a width of the current layer comparable or slightly smaller than the ion inertia scales. 
In this section, three selected cases are chosen to investigate effects caused by Hall 
physics. For computational reasons, a smaller simulation box (Ly =  10) is used in 
these three cases. The Hall term leads to the separation of the ion and electron 
velocity, and the frozen-in condition only applies to the electrons which carry most of 
the current in thin current sheets. Hall physics also generates faster two-dimensional 
magnetic reconnection [Bim et al., 2001; Otto, 2001], and Huba [1994] demonstrated 
that the Hall term breaks the dawn-dusk symmetry. Therefore the first case with a
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Figure 6 .8: Magnitude of magnetic field By component (left panel) at the y =  0
plane, magnetic field Bz component (right panels) at 2 =  ±2.1 plane, at t =  140 for 
Byo =  0.3 case.



Figure 6.9: The field-aligned electric potential difference A0 in a cut at top and 
bottom boundary, at t =  140 for Byo =  0.3 case.
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Hall parameter I =  0.6 represents the dawn side (M f =  0.5), and the second case with 
I =  0.6 and Mf =  —0.5 represents the dusk side. For comparison, the third case is the 
MHD case (I =  0, M f =  0.5). All other parameters are the same as for the reference 
case. Figure 6.10 illustrates that Hall physics leads to a much higher normalized 
reconnection rate. This faster reconnection is likely caused by two main reasons. 
First, the electron dynamics in the diffusion region (whistler wave generation) cause 
a finite and much shorter length of this region. This implies a higher reconnection rate 
because this rate is determined by the width to length aspect ratio. This property 
is consistent with prior two-dimensional simulation results [Bim et al., 2001; Otto, 
2001]. Second, in the thin current sheet of the diffusion region the current is mainly 
along the y direction, and is carried mostly by electrons. Due to the electron frozen- 
in condition, much of the magnetic structure of the diffusion region is carried by 
the electron along the y direction against the current, such that the diffusion region 
expands fast with the electron motion. The second reason is important only when 
the width of current layer is thin, because this corresponds to large current density 
and fast electron motion. Figure 6.10 also indicates that the overall evolution does 
not show a significant dawn-dusk asymmetry, which contradicts somewhat Huba’s 
[1994] result, although Huba [1994] did only study the evolution of KH waves without 
an analysis of the reconnection rate. However, in the present simulation additional 
differences to Huba’s [1994] set up include a smaller Hall parameter, and a smaller 
density asymmetry.

6.4 Summary and Discussion

A realistic magnetospheric boundary for southward IMF conditions typically has 
large anti-parallel magnetic field components combined with a sufficient perpendicu­
lar shear flow. It is demonstrated that the perpendicular shear flow causes magnetic 
reconnection and KH modes to operate simultaneously. In this study, I assume that 
magnetic reconnection is the primary process. The results demonstrate that magnetic 
reconnection reduces the width of the shear flow and therefore switches on I<H modes
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Figure 6.10: Reconnected magnetic flux and normalized reconnection rate r for 
Hall case.
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initially with short wavelengths and large growth rate. Subsequently longer wave­
lengths waves develop during the evolution depending on the local width of the shear 
layer that is being modified by the reconnection process. This evolution of a range of 
different scale KH waves is consistent with Hwang et al. ’s [2011] observational results. 
The evolution of KH waves from short to longer wavelength KH waves is caused by 
the lower growth rate and therefore slower evolution of longer wavelength modes. In 
this evolution shorter wavelength KH modes are saturated and dissipated instead of 
undergoing coalescence. These KH waves are localized along the z direction because 
reconnection causes a thin shear flow layer allowing short wavelength modes to grow. 
With increasing distance from the reconnection diffusion regions the width of shear 
flow widens in the outflow region, and thereby switching off KH growth (or only 
permitting large wavelengths).

The nonlinear KH waves deform the location and width of the current layer, 
which generates patchy reconnection and increases the normalized magnetic recon­
nection rate. The diffusion region extends through the whole simulation box along 
the y direction, and its shape is strongly modified by the KH waves. The fastest nor­
malized reconnection rate r is proportional to the KH modes growth rate. Therefore, 
a larger initial shear flow value Vyo increases the normalized reconnection rate. This 
appears at first glance contradictory to the fact that the reconnection rate increases 
strongly only when KH waves approach a nonlinear amplitude. However, a faster 
growth rate implies that a nonlinear state is reached earlier, thereby explaining the 
relation between growth and reconnection rate. In this study, I have not examined a 
configuration with an initial shear flow value M f larger than 1, which is KH stable for 
two-dimensional situations. However, KH modes may still operate at the boundary 
of the reconnection outflow region in three-dimensional configuration, which is an 
aspect of future work.

One of the most significant properties in the results is the limitation of the to­
tal amount of reconnected flux $  by the longest possible KH waves. This is likely 
explained by the nonlinear saturation of KH waves at later times in their evolution,
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which dissipates the current layer and thus turns off magnetic reconnection. For short 
wavelength modes this effect is reduced by the growth of longer waves during which 
current is again concentrated, however, once the longest possible wavelength waves 
undergo saturation, reconnection is strongly reduced. The longest unstable wave­
lengths are determined by the size of the unstable KH region along the 2 direction 
(i.e., some vicinity of the equatorial plane). Wavelengths larger than this size loose 
energy fast through Alfven waves carrying energy efficiently away from the unstable 
region, thereby stabilizing long wavelength modes.

A sufficiently large guide field component Byo also stabilizes the KH modes, and 
therefore magnetic reconnection operates at a slightly reduced and more constant 
normalized reconnection rate r. Interestingly, a relatively large guide field appears to 
remove the magnetic flux $  limitation for reconnection.A possible reason for this is 
the partial stabilization which does not permit a nonlinear growth of the KH waves 
such the thin current layer is not anymore dissipated.

The frozen-in condition in combination with the shear flow in the y direction 
implies a drag of a reconnected magnetic field line into opposite directions on the two 
sides of the outflow region, thereby generating a By component of opposite sign in the 
northern and southern outflow regions. This anti-symmetry of the flow generated By 
component is broken by the initial guide field component, which is basically a two­
dimensional effect. However, in three-dimensional configuration, this By component 
is parallel to the k vector of KH wave, which can stabilize the KH mode. Therefore, 
the asymmetric By component leads to different KH onset condition for southern- 
northern hemispheres, which may also change the auroral signatures of KH waves at 
the conjugate points.

In the presence of plasma flow, magnetic reconnection is also associated with the 
generation of field-aligned currents (FACs), which play a critical role in the coupling 
between the magnetosphere and ionosphere. Therefore, the coupling of KH modes 
and magnetic reconnection should also generate significant FAC. It is demonstrated 
that the FAC generated by a velocity shear is critical for the coupling of the KH waves
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Figure 6.11: The left two panels show the magnetic field By component and FAC 
density j\\ from two-dimensional magnetic reconnection with a perpendicular shear 
flow. The right three panels present the FAC density jy in a cut at 2 =  1 at t — 38, 
78, and 118 for the reference case.

and current sheet instabilities to the ionosphere [Lysak and Song, 1996]. The left two 
panels of Figure 6.11 present the magnetic field By component and FAC density j\\ in 
the xz plane from two-dimensional simulation (yo =  zv — 00). It illustrates that the 
generation of By is directly associated with the FAC generation (see Chapter 4). In 
the three-dimensional configuration, this FAC structure is strongly modified by the 
KH waves, which is illustrated by the right three panels showing the FAC density j\\ 
in a cut at 2 =  1 at t =  38, 78, and 118 for the reference case.

The inclusion of Hall physics leads to the separation of the ion and electron veloc­
ity, and the frozen-in condition only applies to the electrons. The three-dimensional 
simulation results demonstrate that Hall physics leads to a faster normalized recon­
nection rate, which is consistent with similar two-dimensional results. This faster
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reconnection rate has been attributed to the finite and much shorter length of the 
diffusion region caused by the electron dynamics in the diffusion region (whistler 
wave generation), which is a two-dimensional property. In addition there is a three­
dimensional effect because much of the magnetic structure of the diffusion region is 
carried by the electron along the y direction against the current, due to the electron 
frozen-in condition. This leads to a fast expansion of the localized diffusion region 
into the third dimension and thus increases the total reconnection rate.

In this study I did not consider finite ion Larmor radius (FLR) effects and electron 
pressure gradient terms, which is comparable to the ion inertia scale. However, par­
ticularly FLR effects require ion kinetics and therefore hybrid-simulations. Another 
aspect of outstanding future work is the comparison between simulation and obser­
vation results, i.e., what are the typical observational signatures of KH modulated 
magnetic reconnection and do they agree with signatures typically associated with 
patchy magnetic reconnection such as magnetic flux transfer events.
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Chapter 7 

Summary and Discussion

It is widely believed that magnetic reconnection and Kelvin-Helmholtz (KH) insta­

bilities play a crucial role for solar wind plasma access to the Earth’s magnetosphere. 
Magnetic reconnection can change the magnetic topology and convert large amounts 

of magnetic energy into bulk kinetic and thermal energy. A typical property of the 
magnetospheric boundary is the presence of fast flow of the shocked solar wind plasma 

almost everywhere at the boundary. In the past, most o f the plasma transport into 
the magnetosphere for southward IMF has been attributed entirely to magnetic re­

connection. Only in the past decade or so has it been realized that KH modes can play 
a similarly important role for northward IMF by twisting the magnetic field and gen­

erating thin current sheets, thereby forcing magnetic reconnection to operate where 
the unperturbed boundary would not allow magnetic reconnection. Very few studies 

have considered the role of KH waves for southward IMF, and similarly few studies 
have considered the properties of magnetic reconnection in the presence of this fast 
flow even if KH waves are not present. This thesis focuses on two major unresolved 

problems of magnetic reconnection and, in the final chapters on the important and 
poorly understood question of the nonlinear interaction o f KH waves and magnetic 
reconnection for large magnetic shear (southward IMF).

In recent years it has been realized that all of the magnetospheric plasma is 
strongly heated and rarefied compared to its origin, the shocked solar wind. Observa­

tions demonstrate that the plasma entropy is by 2 or 3 orders of magnitude higher in 

the magnetosphere than in the magnetosheath. This heating is not understood, and 
if reconnection is the dominant process for plasma entry, it is also a prime candidate 

for the strong nonadiabatic heating that must occur during the plasma entry. I have 

systematically examined this question for two-dimensional reconnection with MHD 

and Hall MHD studies in Chapter 3 and provide a summary and discussion of these 
result below in Section 7.1.

An important property of the magnetospheric boundary and the boundary pro­
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cesses are their ionospheric signatures. The generation of such signatures is only pos­
sible if the boundary processes generate a current that is aligned with the magnetic 

field and connected into the ionosphere. A few studies have examined the generation 
of field-aligned current (FAC) by three-dimensional magnetic reconnection. However, 

the actual mechanisms for this generation appear more complicated than necessary. 
At least three basic mechanisms axe proposed and examined in Chapter 4, operate 

already in two-dimensional reconnection, specifically the generation of FACs caused 
by the presence of a guide magnetic field, the presence of sheared plasma flow, and the 

inclusion of Hall physics into MHD. In fact, it is demonstrated that the basic physics 
responsible for the FAC generation is one-dimensional. A more concise discussion and 
summary is given in Section 7.2.

The actual interaction of reconnection and KH waves has been examined in Chap­

ters 5 and 6 . There the results on nonadiabatic heating and FAC generation provide 
important background information because the respective physics also operates in the 
reconnection-KH interaction in three dimensions. The results for this interaction are 
split into two chapters because the type of interaction depends on initial and bound­

ary conditions which could select either the KH instability or magnetic reconnection 
as the primary process. The summary and discussion of these results is presented in 
Section 7.3.

7.1 Entropy and Magnetic Reconnection

Motivated by the observed strong nonadiabatic heating o f magnetospheric plasma, it 

is demonstrated that such heating can be generated by magnetic reconnection only 
for the small inflow plasma beta conditions (/? 1) by using theoretical analysis

and numerical simulation. In two-dimensional reconnection, nonadiabatic heating 
is mostly generated by slow shocks, which connect to the tiny diffusion region in 

Petschek’s reconnection model. This diffusion region by itself is too small to affect 
plasma in a large volume of space. I also demonstrate that for the same inflow 

plasma beta values, simple Petschek reconnection can provide more nonadiabatic
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heating than other configurations, i.e., in which a guide magnetic field component, a 

perpendicular shear flow, or an asymmetry of plasma density is present. In an ideal 
situation, I have generally shown that the entropy increase ratio of outflow to inflow 

regions has an upper limit of

|  < 1  +  1  (7.1)

where my definition uses S =  V P 1 ■ At Earth’s magnetosphere, the plasma entropy 
increases over 100 times when plasma enters the magnetosphere, which requires that 
the magnetosheath plasma beta is below 0.01. However, the typical magnetosheath 
plasma beta is about 0.1 to 1, which indicates that magnetic reconnection is not likely 

to provide enough nonadiabatic heating without the consideration of other plasma 
physical effects. Here I propose several possibilities which may resolve this issue in 
future work.

1. The entropy increase at magnetopause requires nonadiabatic heating in a large 

volume during the entry process. Any process which increases the size of the 

diffusion region to a large scale, would be more efficient to increase the plasma 
entropy in a larger volume. In fact, a simply way to realize such process may be 
a fast perpendicular shear flow that exceeds the fast mode speed. The physical 

interpretation is as following. It is illustrated in Chapter 4 that the outflow 
plasma satisfies the Walen relation

A V  =  ± A V a, (7.2)

which implies that the super fast shear flow generates a large magnetic field 

(along the shear flow direction). This would surpass the magnetic field in the 

inflow region in a simplistic scaling such that the total pressure in the outflow
region becomes larger than the inflow region. As a result, the diffusion region

and the entire outflow region must expand to maintain the total pressure bal­
ance. However, this mechanism is applicable only when (1) the shear flow is not 

strongly modified by the KH mode, and (2) the width of diffusion region is on 

the ion inertia scale instead of the electron inertia scale. The first requirement



142

can be checked by using three-dimensional MHD simulation, and the second 
requirement needs comparison with the observational data.

2. The consideration of non-MHD micro-physics in the entry process is another 

possible way to increase nonadiabatic heating. It is demonstrated that the Hall 
physics does not change the Rankine-Hugoniot relations. Therefore, it is not 

likely to account for an additional entropy increase. In general, the omitted 
terms in the induction equation are on the ion or the electron inertia scale, 
which is too small to have any large volume effect. A possible candidate is 

the heat conduction term in the thermal pressure equation. Note, that Ohmic 
heating is the only nonadiabatic source in resistive MHD (the nonadiabatic 

heating in the shock can be equivalent to the Ohmic heating). However, the 

inclusion of heat conduction smoothes the temperature profile, which provides 
another possible irreversible process. Furthermore, heat conduction arises as 

the third moment of the integral o f the Boltzmann equation, which is largest 
term among those neglected in the derivation of the MHD equations.

3. It may be, and there is some observational evidence to support this, that the 
typical magnetosheath plasma beta does not reflect the correct value should 

be used for the magnetic reconnection at the magnetopause. Observations in­
dicate that the plasma beta close to the magnetospheric boundary is already 

reduced from its typical magnetosheath value in the so-called “plasma depletion 
region” . This region forms as a result of the different transport of magnetic flux 
and plasma around a three-dimensional obstacle. Another possible cause for a 

reduction of the plasma beta is the strong modification of all plasma proper­

ties associated with nonlinear KH waves. If this reduction in the plasma beta 

(and density) is sufficient and systematic, reconnection may in fact be able to 
explain the nonadiabatic heating. This can be resolved by a further study of 

the KH-reconnection interaction and by comparison with observations close to 
the magnetospheric boundary.
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The results on nonadiabatic heating apply very much to the three-dimensional inter­
action of KH waves and reconnection. However, my current results for this interaction 

do not demonstrate a significant nonadiabatic heating as discussed below.

7.2 FAC Generation Mechanism in Magnetic Reconnection

FACs are widely observed and they play an important role for magnetosphere-ionosphere 
coupling. Observational evidence also links magnetic reconnection signatures such as 
flux transfer events and bursty bulk flows to ionospheric signatures which requires 
the generation of FAC. However, the FAC generation mechanisms have only been 

examined by using three-dimensional configurations, while FAC can be efficiently 

generated in two- or even one-dimensional configurations. Therefore, this thesis pro­

vides a systematic study on generation of FAC by using one- and two-dimensional 
MHD and Hall MHD simulation. The main results are listed below.

Magnetic reconnection with a small guide field component leads to a strong gen­
eration of FAC, while a large guide field component leads largely to a redistribution 

of the initial FAC. The total amount of FAC associated with guide field reconnection 
is not sensitive to the magnetic guide field magnitude.

A perpendicular shear flow rotates the magnetic field in the outflow region, thereby 

generating FAC also in configurations where no FAC exists in the initial conditions. 
The reconnection layer for a perpendicular shear flow configuration is similar to the 
reconnection layer in the guide field case. Since there is no FAC in the initial state 
such currents are solely generated by the intermediate shock in the reconnection 

geometry. The total amount of FAC, f  j\\/Bdx, is very much independent of the 
initial shear flow for values equal to or larger than 0.2Va. The amount of current into 

the ionosphere is generally larger for shear flow than for guide field configurations.
Hall MHD replaces the switch off shock by a standing whistler wave. The often- 

found bipolar Bz structure (also present for FAC), which extends all the way along 

the outflow region, is the primary part of this standing wave. The maximum j\\ does 

not simply increase with the increasing Hall parameter, while the value of f  j\\dx
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increases with increasing Hall parameter. Based on a renormalization I demonstrated 
that the maximum of j\\ should be inversely proportional to / =  \i/L0. This implies 
a decrease of this maximum with increasing I, which is well satisfied in my results 

for Aj >  0.4Z/o. Similarly the apparent increase o f the integrals f  j\\dx and f  jB ~ ldx 
with increasing I is explained by a proper renormalization of the time scale. The 

increase of these integrals with time is caused by the contribution of the standing 
whistler waves and the expansion of the standing wave region in time. Both ions 

and electrons approximately satisfy the Walen relation, which demonstrates that the 
perturbation is close to Alfvenic.

I note that FAC can also be generated in other two-dimensional processes, e.g., 
KH mode, which is a topic of future work. A fundamental difficulty in understanding 

FAC generation is the lack of an evolutionary equation for FAC density. Associated 
with this question, one can ask whether we can derive a simple equation in the form 
of a continuity equation with source terms:

^  +  V  • (W in) =  FAC source, (7.3)

where W  is the speed of FAC, which is not necessary be the bulk velocity or Alfven 
velocity. In other words, is there any conservation law which is associated with the 

FAC.
I finally remark that the magnitude of the FAC generation is largest for Hall 

physics and for the inclusion of shear flow. In fact, both mechanisms are closely 
related because Hall physics introduces velocity shear for the electron fluid. The 

FAC obtained in the two-dimensional study surpasses the FAC generated by three­

dimensional effects of localized magnetic reconnection significantly [Ma and Lee, 2001] 
and should be the dominant contribution to FAC generation also in three dimensions.

7.3 Interaction Between K H  Instability and Magnetic Reconnection

A realistic three-dimensional configuration of Earth’s magnetopause for southward 

IMF conditions includes large anti-parallel magnetic components with a fast perpen­
dicular shear flow. In this thesis, I provide the first systematic study on the nonlinear
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interaction between magnetic reconnection and KH modes in such configurations by 
using three-dimensional MHD and Hall MHD simulations. This interaction can de­
pend on whether the KH instability or magnetic reconnection is the primary process. 

Therefore, the investigation of this interaction employs two different sets of initial 
conditions, one of which favors magnetic reconnection (Chapter 5) and the other KH 
waves (Chapter 6) as the primary process.

It is demonstrated that the nonlinear interaction plays a critical role for solar 
wind plasma access to the Earth’s magnetosphere. Both magnetic reconnection and 

KH modes mutually change the other mode’s onset conditions by changing the width 
of the transition layer, i.e., the current layer and the shear flow layer. Thus, the 

normalized magnetic reconnection rate is strongly increased by nonlinear KH waves, 

and the KH modes limit the total reconnected flux by dissipating the electric current 
when the largest wavelength mode becomes highly nonlinear. This is particularly 

remarkable because this interaction leads to fast reconnection with local rates that 
are at least equal to the Petschek rate of fast reconnection without invoking Hall 
physics.

A larger initial shear flow value increases the KH mode growth, thereby increasing 

the normalized magnetic reconnection rate. However, a large initial shear flow, which 
is close to the fast mode speed, will stabilize KH modes. A guide magnetic field 

along the shear flow direction can also partially stabilize KH modes by decreasing the 
KH growth rate and reducing the size of the KH vortex, and thereby decreasing the 

normalized magnetic reconnection rate. A sufficiently large guide field clearly switches 
off KH modes. Thus, magnetic reconnection operates at a constant lower reconnection 

rate, but the total reconnected magnetic flux is not limited. The presented results 

illustrate that the evolution of shorter to longer wavelength KH waves is caused by 
a diffusive decay of shorter wavelength modes and by the slower growth of longer 

wavelength modes which become dominant at later times. This is different from the 

frequently invoked mechanism of coalescence, which involves merging two smaller 
wavelength modes into one with twice the wavelength. I also demonstrated that the
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diffusion region and the distribution of FACs are strongly modified by KH waves. 
The inclusion of Hall physics leads to somewhat faster normalized reconnection rates.

The above conclusions are independent on whether KH modes or magnetic re­
connection is the primary process. In the real world the primary mode depends on 

the growth of these two processes and the respective initial perturbations. In this 
study, the condition in which KH modes are the primary process allows to examine 

a single KH mode interaction with magnetic reconnection. Due to the finite width 
of the shear flow layer, compressibility, and the three-dimensional localization, the 

KH growth rate in the simulation is slower than it is for a two-dimensional infinitely 
thin, and incompressible boundary. For magnetic reconnection as the primary pro­

cess condition, my results show varying wavelengths and growth of KH modes and are 
consistent with the observational results. It is also demonstrated that the presence of 

a guide magnetic field breaks the hemispheric symmetry, which is expected to have 
an influence on the ionosphere signatures.

This study did not consider finite ion Larmor radius effect nor electron pressure 

gradient term, which is comparable to the ion inertia scale. Finite ion Larmor radius 
effects require a kinetic treatment of the ion dynamics by using hybrid-simulations. 

Another aspect for outstanding future work is the comparison between simulation and 
observation results, i.e., what are the typical observational signatures of KH modu­

lated magnetic reconnection and do they agree with signatures typically associated 

with patchy magnetic reconnection, such as magnetic flux transfer events.
In the interaction between KH waves and reconnection I have not observed sig­

nificant nonadiabatic heating. This is expected because the simulations use a plasma 
beta of order unity. A systematic study of this heating is left for a future investiga­

tion because it would require a proper consideration of the asymmetry and plasma 
properties on the two sides of the boundary and is outside of the scope of this initial 

study of basic properties of the interaction of KH waves and magnetic reconnection.
Overall, my results provide new insight into important properties of the plasma 

transport from the solar wind into the magnetosphere. Specifically, important new
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results are obtained on the topics of nonadiabatic heating during the plasma entry, 
the generation of FAC by magnetic reconnection, and on the nonlinear interaction of 

KH waves and magnetic reconnection for large magnetic shear.
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