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Abstract

In Alaska, there exists a substantial knowledge gap of key climate drivers and 

filling these gaps is vital since life and the economy are inexorably linked with climate in 

the state. This thesis identifies and investigates three topics that advance the 

understanding of Alaska climate variability: the role of large-scale climate in Interior 

river ice breakup, the link between climate and arctic tundra vegetation, and climate 

divisions based on objective methods.

River ice breakup in the Yukon-Kuskoswim watershed is occurring earlier by 1.3 

days decade'1 1948-2008 and displays large year-to-year variability. April-May Interior 

Alaska air temperatures are the best predictor of river ice breakup and were linked to El 

Nifto Southern Oscillation (ENSO). During the warm phase of ENSO, fewer storms track 

into the Gulf of Alaska during Boreal Spring, resulting in reduced April-May cloudiness 

over Alaska, increased solar insolation at the land surface, warmer air temperatures and 

consequently earlier breakup.

Northern Alaska tundra vegetation productivity has increased 1982-2011, based 

on the Normalized Difference Vegetation Index (NDVI), a satellite measure of vegetation 

correlated with above ground biomass. Vegetation productivity was linked to the 

Beaufort High circulation as well as snowfall, in addition to land surface temperatures 

and coastal sea ice extent. NDVI has decreased from 1982-2011 over the coastal tundra 

along the Bering Sea and was correlated with delayed springtime warming due to 

enhanced coastal sea ice and a delayed snowmelt.



Cluster analysis was applied to 2-meter air temperature data 1977-2010 at 

meteorological stations to construct climate divisions for Alaska. Stations were grouped 

together objectively based on similar homogeneous seasonal and annual climate 

variability and were refined using local expert knowledge to ultimately identify 13 

divisions. Correlation analysis using gridded downscaled temperature and precipitation 

data validated the final division lines and documented that each division has similar a 

similar annual cycle in temperature and precipitation.

Overall, this work documented substantial links and identified mechanisms 

joining the large-scale climate to that of Alaska. A better understanding of the role of 

large-scale climate variability in river ice breakup or tundra greening holds promise for 

developing seasonal and longer-term forecasts.
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Chapter 1 Introduction

1.1 Motivation

From the economy to subsistence, nearly every aspect of life in Alaska is 

intimately tied to weather and climate (Lovecraft and Eicken 2011). Alaska’s high 

latitude location, vast geographic extent and complex terrain (see Figure 1.1) result in a 

region marked by an equally complex and varied climate. The climate of Alaska is 

experiencing change with trends in seasonal temperatures and precipitation observed 

throughout the year (ACIA 2005). Due to its generally Arctic location, climate change in 

Alaska is also enhanced due to the effects of polar amplification (e.g. Bekryaev et al. 

2010; Serreze and Barry 2011). There exist many critical knowledge gaps of the 

fundamental characteristics and processes that control the regional climate of Alaska. 

Because of the impact of climate on life in this region it is important to understand how 

climate variability and change function.

While Alaska is remote, there is significant international economic interest in 

Alaska due to mineral, oil, gas and maritime resources. The characteristics of the seasonal 

climate impacts all of these industries as these activities are often seasonal and weather 

dependent and frequently require lengthy travel to remote sites making the Alaska 

economy especially vulnerable to climate variability and change (ACIA 2005; AAG 

2010; Lovecraft and Eicken 2011). As a result, many sectors of industry are major 

stakeholders in weather and climate issues. Alaska Native peoples are also vulnerable to 

climate variability and change in many ways due to their dependence on the land and 

rivers for subsistence and transportation (ACIA 2005; Bell et al. 2010; Lovecraft and
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Eicken 2011). As a result, it is imperative to understand the mechanisms of climate 

change in Alaska to identify and plan for impacts on industry and society. Understanding 

the drivers of climate can also be applied to enhance seasonal climate forecasting for 

Alaska. Improvements in seasonal forecasting would benefit the transportation/oil/gas 

industry since for example, managers would better know when ice roads are available to 

reach remote oil/gas exploration sites.

Figure 1.1 Topography of Alaska. Terrain height is shaded and is in units of meters. 
Major cities and towns, physical features and main water bodies are labeled.



The purpose of this study is to help begin to fill some of these gaps in knowledge 

of the fundamental, physical mechanisms that drive and characterize the climate of 

Alaska, while drawing links to the biological and human components of the earth system. 

This thesis will assess three major topics in the context of climate variability and change 

in Alaska: river ice breakup date, coastal tundra vegetation change, and climate divisions. 

Each of these addresses a specific problem in a specific sector of Alaska regional climate 

while providing an assessment of the whole.

River ice breakup date has great implications for travel in regions of Alaska with 

few roads. Breakup helps show the linkages between the large-scale climate, 

teleconnections and the regional climate. These linkages can then be applied to enhance 

forecasts of spring breakup in the future. Evaluating coastal tundra vegetation change 

creates a picture of how climate processes at multiple scales, sea ice, and land surface 

changes are interacting to result in change in Alaska. Finally, climate divisions are of 

high practical value as they highlight the regions of homogeneous climate variability. 

These regions can aid climate stakeholders and decision makers in managing data, 

focusing regional research needs and numerous other economical and social applications.

1.2 Climate characteristics of Alaska

The climate of Alaska is characterized by a wide variety of climate types (Shulski 

and Wendler 2007). Alaska is bounded by oceans on three sides and has extensive 

mountain ranges (Figure 1.1). Climatological land and sea surface temperature and sea 

level pressure (SLP) for the winter (Dec-Feb) and summer (Jun-Aug) are shown in Figure
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1.2. The Aleutian Low is a prominent climatological feature in the atmospheric 

circulation during the winter and is centered south of the Aleutian Islands (Figure 1.2a). 

The Aleutian Low represents the average of many storms (low pressure systems or 

cyclones) tracking over the Aleutian Islands into the Gulf of Alaska or Bering Sea 

(Rodionov et al. 2007; Zhu et al. 2007). Many storms track into the Gulf of Alaska from 

the west and south and tend to linger and collect there as the coastal mountains to the 

north and east tend to block their progress further eastward resulting in a “graveyard” of 

North Pacific storms in this region (Mesquita et al. 2010). Average winter surface 

temperatures tend to be below 0'C throughout the region. The winter Arctic Ocean and 

Bering Sea are generally ice covered, but sea surface temperatures in the Gulf of Alaska 

are well above 0°C. These relatively warm sea surface temperatures, proximal ice cover, 

and the position of the Aleutian Low have a strong influence on the climates of each 

region of the state. During summer (Figure 1.2b) the ice edge is located in the Arctic 

Ocean and land temperatures are all above 0°C on average. The primary circulation 

feature in summer is the Beaufort High centered over the Arctic Ocean and the 

subtropical high to the south of Alaska.

The seasonal climate of each region of the state is linked to their terrain and 

proximity to the coasts (Shulski and Wendler 2007). The southeast and central coastal 

region along the Gulf of Alaska south of the Alaska Range includes the cities of Juneau, 

Anchorage and Dutch Harbor. The Gulf of Alaska and North Pacific generally do not 

have sea ice during the winter and as a result the neighboring coasts are exposed to 

relatively warm sea surface temperatures. Therefore, this region has a relatively moist,
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mild, maritime climate throughout the year and receives the highest precipitation amounts 

in the state but also has a small annual temperature range and low variability.

a) Dec-Feb b) Jun-Aug

0 *  4 « 8 10 12 S S T  ( ° C )  0 2 4 0 » 10 12

Figure 1.2 Long-term average (1982-2011) land surface (LST, upper color bar, °C) and 
sea surface temperature (SST, lower color bar, °C), sea ice extent (shaded white), and 
mean sea level pressure (2hPa contour interval) in winter (a) and summer (b). Land 
surface temperatures were derived from the Advanced Very High Resolution Radiometer 
data set (Comiso 2003). The SLP climatology was calculated from the National Centers 
for Environmental Prediction/National Center for Atmospheric Research Reanalysis 1 
(Kalnay et al. 1996). Sea ice and SST seasonal averages were calculated from the Hurrel 
SST climatology data set (Hurrell et al. 2008).

The Interior region north of the Alaska Range includes the city o f Fairbanks. The 

Alaska Range is a natural barrier between the maritime climates to the south and 

consequently the Interior has a continental climate type with much drier conditions than 

the southern coastal regions and experiences far greater extremes in temperature. The



warm dry conditions of summer make the Interior susceptible to wildfires in summer 

(Bieniek 2007).

The west coast along the Bering Sea that includes the towns of Bethel and Nome, 

has a seasonal climate that is complicated by the presence of seasonal sea ice in winter 

and generally ice-free conditions in summer. The seasonal nature of sea ice results in a 

relatively moderate maritime type climate in summer but a cold continental climate in 

winter. The west coast region is also susceptible to coastal erosion issues related to 

Bering Sea storms and sea ice (Rachold et al. 2005).

The northernmost area of the state is bounded to the south by the Brooks Range 

and to the north by the Arctic Ocean and includes the city of Barrow. This region 

experiences cold, Arctic conditions in winter and its summer is especially influenced by 

variations of sea ice cover. When the ice edge is far from shore the summer can have a 

more maritime climate, however summers with significant amounts of ice near shore also 

occur.

The climate of Alaska is particularly impacted by pronounced seasonal 

differences. Alaska experiences substantial changes in seasonal solar insolation during 

the year that ranges from none in winter to 24 hours in summer. The greatest extremes in 

daylight occur in the region north of the Arctic Circle. Each region also has seasonal 

snow cover that can last throughout the winter, but most are usually snow free in 

summer. These many factors all have different and complex impacts on the mechanisms 

that drive and characterize the climate of Alaska.
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Climate change has been noted throughout Alaska. Warming seasonal and annual 

temperatures have been observed throughout the region, with the greatest warming 

having occurred in winter and mixed trends in precipitation throughout the year (ACIA 

2005). The impacts of a warming Alaska climate are many and varied. Many landscape 

changes have been attributed to climate change and have been observed throughout 

Alaska and the Arctic. Changes have been noted such as permafrost thawing and coastal 

erosion and are known to impact the way of life for many people that reside in Alaska 

and the Arctic (Hinzman et al. 2005). But what links global climate to change and climate 

variability in Alaska? Major climate teleconnections are known to impact the climate in 

numerous ways throughout the year. The El Nino Southern Oscillation, the Pacific 

Decadal Oscillation (Mantua et al. 1997), and the Arctic Oscillation (Thompson and 

Wallace 1998) have been documented as the primary drivers of Alaka climate. The 

known impacts on Alaska of each of each of the major teleconnections will be discussed 

individually in the subsequent sections along with their associated patterns.

1.2.1 Ocean climate drivers

The El Nifio Southern Oscillation (ENSO) has been identified as a major driver of 

the climate of Alaska throughout the year (Niebauer 1988; Bamston and He 1996; 

Papineau 2001). The positive phase of ENSO, called El Nifio, is characterized by warmer 

than normal sea surface temperatures in the eastern equatorial Pacific and has been 

shown to result in warmer than average temperatures throughout the state, especially in 

winter (Niebauer 1988; Papineau 2001). Winter precipitation variability has also been 

linked with ENSO through the atmospheric circulation pattern named the Pacific North

7



America (PNA) pattern (L'Heureux et al. 2004). El Nifio conditions also tend to result in 

warm and dry summer conditions in the Interior, which can result in increased wildfire 

activity (Hess et al. 2001). ENSO has also been shown to have some predictive skill for 

seasonal temperature and precipitation in portions of Alaska (Bamston and He 1996). A 

major reason that Alaska is extensively impacted by ENSO is due to the relationship 

between ENSO and the Pacific North American (PNA) Pattern. The PNA originates as a 

Rossby Wave response to the anomalous wanning and cooling of the equatorial Pacific 

due to ENSO (Horel and Wallace 1981). These Rossby Waves propagate northward 

directly towards Alaska and seems to play a considerable role in how ENSO impacts the 

region.

Also associated with ENSO, and a major driver of the decadal climate of Alaska, 

is the Pacific Decadal Oscillation (PDO). The PDO is a leading mode of variability of 

Sea Surface Temperatures (SSTs) in the North Pacific (Mantua et al. 1997) and has been 

argued to be a midlatitude oceanic response to ENSO (Newman et al. 2003). A 

noteworthy increase in temperatures throughout Alaska in the late 1970s has been linked 

to a major shift in the phase of the PDO with warmer seasonal average temperatures 

occurring in conjunction with the warm phase of the PDO (Hartmann and Wendler 2005). 

Shifts in the strength and position of the Aleutian Low have been linked with the PDO 

due its influence on the North Pacific storm tracks (Rodionov et al. 2007). The PDO has 

also been shown to have a changing influence on surfaced based temperature inversions 

throughout Alaska with time (Bourne et al. 2010).
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1.2.2 Atmospheric climate drivers

The Arctic Oscillation (AO) is a leading mode of sea level pressure variability in 

the northern hemisphere, which impacts the large-scale circulation (Thompson and 

Wallace 1998). The AO impacts the atmospheric circulation about Alaska and it tends to 

amplify the change in average temperatures when ENSO and the AO are o f the same sign 

and moderate the effect of ENSO when of opposite sign (Bond and Harrison 2006). 

Decreased summer precipitation has also been linked with the negative phase of the AO 

(L'Heureux et al. 2004).

Other atmospheric circulation related teleconnections have been linked with 

seasonal temperature and precipitation in Alaska. The West Pacific Pattern/North Pacific 

Oscillation is another noteworthy mode of atmospheric variability in the North Pacific 

and is broadly defined as a difference in SLP between Alaska and Hawaii that influences 

storm tracks (Walker and Bliss 1932). During its positive phase, it has been shown to 

increase warm air advection into the region during the winter (Linkin and Nigam 2008).

1.3 Project overview and objectives

Much is generally known about the impacts of teleconnections on seasonal 

temperature and precipitation in Alaska. However, the basic physical mechanisms that 

explain how many of these teleconnections drive the climate of Alaska remain poorly 

understood. Elucidating these mechanisms is necessary in order to better understand 

climate variability and change in Alaska. This thesis will focus on the statistical analysis 

of numerous observation data sets to:

9



1. Understand the role of climate in the timing of river ice breakup

2. Determine mechanisms driving change in coastal tundra vegetation

3. Identify the distribution of regional climate variability

Each of these three assessments addresses a specific need in Alaska. Together 

they broadly help fill the gaps in knowledge of the controls of climate variability by 

either identifying basic mechanisms that relate the large-scale climate to the climate of 

Alaska, or improving the fundamental knowledge of the distribution of climate variability 

throughout the region.

1.3.1 River ice breakup

Due to the lack of roads, travel often depends on the rivers in Alaska. The 

occurrence of river ice breakup results in difficult or impossible travel. Additionally, 

severe river ice breakup conditions can result in flooding along the rivers, causing 

damage to villages. Because of its impacts, breakup date is monitored throughout Alaska 

by observers, and many locations have lengthy records often dating back to the early 20th 

century as at Nenana, AK (Figure 1.3). Visual inspection of Figure 1.3 highlights many 

different trends and low frequency variability in the record that possibly indicates a role 

of climate in breakup. Identifying the climate drivers of the timing of river ice breakup 

can be applied to improve forecasts o f breakup and to better understand the drivers of 

climate variability in springtime Alaska. In chapter 3 the mechanism that relates the 

large-scale climate and breakup date in Alaska is developed through statistical analysis of 

observational data. This project was completed through collaboration with forecasters
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from the Alaska-Pacific River Forecast Center (APRFC) with the goal of promptly 

improving the APRFC breakup forecasts. This climate analysis revealed a plausible 

mechanism by which the positive phase of ENSO leads to warmer spring temperatures in 

Alaska through a southward shift of the storm tracks and an associated reduction of cloud 

cover over Alaska.

Nenana River Ice Breakup Date
145 

140 

135

§ 130
c
1  125~3

120 

115 

110
1920 1940 1960 1980 2000

Year

Figure 1.3 River ice breakup date observations at Nenana, AK for 1917-2011 (available 
online: http://www.nenanaakiceclassic.com/). Many different trends and low frequency 
variability can be visually observed in this time series. Breakup makes travel impossible 
on rivers and can endanger life and property when it causes flooding. How is river ice 
breakup date in Alaska related to climate?

http://www.nenanaakiceclassic.com/


1.3.2 Coastal tundra vegetation

The satellite derived Normalized Difference Vegetation Index (NDVI) is an 

indicator of plant productivity and is correlated with aboveground biomass (Raynolds et 

al. 2011). Coastal tundra vegetation is changing throughout the Arctic as observed using 

NDVI. NDVI has generally been increasing throughout the Arctic, while summer sea ice 

has declined during the satellite record (Figure 1.4). The northern coastal tundra regions 

along the Beaufort and Chukchi Seas have experienced increased NDVI and southwest 

Alaska tundra along the Bering Sea has seen decreased NDVI. These changes have been 

linked with the decline in summer sea ice and warming summer temperatures (Bhatt et al. 

2010). Better understanding the relationship between climate and NDVI is valuable as it 

further demonstrates how the large-scale is linked to the summer climate of Alaska and 

changes the landscape. The climate-NDVI relationship also highlights the complex 

mechanism by which global climate change is acting on Alaska. This project was 

conducted through multidisciplinary collaboration with plant ecologists, remote sensing 

experts and climate scientists to understand the role of climate in Alaska tundra changes 

and variability.
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Figure 1.4. Time Integrated NDVI and May-Aug open water total magnitude change for 
1982-2011. NDVI trends were derived from the GIMMS3g NDVI data set (Pinzon et al. 
2012) and open water trends from the Special Sensor Microwave Imager sea ice data set 
(Comiso and Nishio 2008). The TI-NDVI trend (sum of the biweekly NDVI during the 
growing season) is unitless and the open water trend is in percent concentration. NDVI 
and summer open water are increasing throughout much of the Arctic, however NDVI is 
decreasing in some areas, notably southwest Alaska. How is the NDVI in Alaska coastal 
tundra regions related to climate?



1.33  Climate divisions

Understanding how climate variability is distributed throughout Alaska is critical 

for conducting seasonal forecasts and numerous climate research applications. The 

discussion in section 1.2 showed that various, broad climate regions have been identified 

in Alaska, however only limited analysis has been conducted to objectively delineate 

these regions. Climate divisions classify regions by homogeneous climate variability and 

can be used to help fill this need. Previously, Alaska climate regions and divisions have 

been loosely based on river drainage basins and/or terrain without extensive objective 

analysis of station data (Figure 1.5). In this project, described in chapter 4, climate 

divisions were developed for Alaska using cluster analysis of station data. This method 

objectively groups the stations into clusters with similar climatic variability. This type of 

statistical analysis has only recently become possible since it requires relatively long and 

complete station records. The final boundaries and interpretation was aided through 

collaboration with National Weather Service forecasters from offices throughout Alaska 

and other climate experts.
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Figure 1.5. Historical Alaska climate divisions. The original Fitton (1930) climate 
division boundaries are shown as red dashed lines, the boundaries currently used by the 
National Climate Data Center (Searby 1968) are shown as green dashed lines and those 
currently used by the Alaska Climate Research Center (Shulski and Wendler 2007) as 
solid blue lines. The locations of the current primary weather observation stations are 
shown as red dots. All of the historical divisions were based on drainage basins and/or 
terrain boundaries. There is great need to objectively identify climate divisions to 
advance research and seasonal climate forecasting applications.



1.4 Summary

The climate has a prominent role in the economy and daily life in Alaska. With 

the noteworthy emergence of observed climate change it is vital to understand the 

mechanisms by which the climate of Alaska functions. This can then be applied in 

numerous ways to benefit the stakeholders of weather and climate. Each of these projects 

addresses this in a different way. Climate divisions are necessary to understand the 

regional nature of climate variability, which is critical for evaluating and predicting 

seasonal climate. Identifying the key climate mechanisms that drive river ice breakup 

date can be applied to forecasting breakup date itself. Linking the timing of breakup to 

the large-scale climate enhances predictability because the slowly oceans are inherently 

more predictable than local processes. Improved river ice breakup forecasts are highly 

valuable for transportation. Finally, understanding the role of climate in coastal tundra 

vegetation and its associated changes highlights the role o f climate in the landscape of 

Alaska. Together each of these research outcomes helps to improve our understanding of 

the climate of Alaska.
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Chapter 2 Large-Scale Climate Controls of Interior Alaska River Ice 
Breakup1

Abstract

Frozen rivers in the Arctic serve as critical highways because of the lack of roads; 

therefore, it is important to understand the key mechanisms that control the timing of 

river ice breakup. The relationships between springtime Interior Alaska river ice breakup 

date and the large-scale climate are investigated for the Yukon, Tanana, Kuskokwim, and 

Chena Rivers for the 1949-2008 period. The most important climate factor that 

determines breakup is April-May surface air temperatures (SATs). Breakup tends to 

occur earlier when Alaska April-May SATs and river flow are above normal. Spring 

SATs are influenced by storms approaching the state from the Gulf of Alaska, which are 

part of large-scale climate anomalies that compare favorably with ENSO. During the 

warm phase of ENSO fewer storms travel into the Gulf o f Alaska during the spring, 

resulting in a decrease of cloud cover over Alaska, which increases surface solar 

insolation. This results in warmer-than-average springtime SATs and an earlier breakup 

date. The opposite holds true for the cold phase of ENSO. Increased wintertime 

precipitation over Alaska has a secondary impact on earlier breakup by increasing spring 

river discharge. Improved springtime Alaska temperature predictions would enhance the 

ability to forecast the timing of river ice breakup.

'Bieniek, P., U. Bhatt, L. Rundquist, S. Lindsey, X. Zhang, and R. Thoman, 2011: Large-scale climate 
controls of Interior Alaska river ice breakup. J. Climate, 240,286-297.



2.1 Introduction

Because Alaska lacks roads in rural areas, rivers serve as critical highways—on 

ice in winter and on water in summer—but are impassable during breakup. In winter, 

rivers are used as ice roads to reach remote sites for oil and gas exploration and mining 

operations, as well as to reach the next village. The timing of ice-free conditions, which is 

dictated largely by the onset of breakup, signals the end of transportation on the ice and 

the ice roads. The breakup of river ice can also lead to ice jams and flooding in spring 

(Beltaos 2008) and occurs when broken ice stops moving, piles up, and restricts the flow 

of a river.

The date of river ice breakup (hereafter breakup) depends on a combination of 

river discharge and melting river ice; hence, breakup is the result of a balance between 

multiple forces. Breakup is initiated when the downstream forces of frictional river drag 

on the ice plus the forces associated with the momentum of moving ice from upstream 

overcomes the strength of the decaying stationary ice to resist movement. On the Yukon 

River at Dawson City, Canada, breakup is controlled by runoff from snowmelt at higher 

elevations and river flow characteristics (Carmack and Alford 1985). The exact date of 

breakup is somewhat subjective and tends to be defined as the passage of a breakup front 

at a given location, but the actual definition varies from observer to observer. The 

breakup date is most difficult to define in years when sufficient ice decay occurs prior to 

a significant increase in river flow so that the ice begins to move along the length of the 

river without any significant ice run from upstream. Despite the seemingly vague 

definition of breakup, our results show that breakup is a robust measure in Alaska as
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multiple sites are highly correlated with one another.

The breakup date potentially integrates multiple climate parameters on both 

spatial and temporal scales into a single representative value. River parameters such as 

ice thickness have been used as proxies of the corresponding winter climate in the 

midlatitudes (Beltaos and Prowse 2002). Variability in ice conditions on Lake Baikal in 

Russia has been shown to be sensitive to multiple modes of climate variability across 

numerous seasons (Todd and Mackay 2003). Breakup trends on rivers and lakes 

throughout the Northern Hemisphere appear to be linked with observed climate 

variability (Magnuson et al. 2000). Anomalies in breakup on major rivers in Siberia and 

Canada have also been linked with the Pacific decadal oscillation (PDO; Pavelsky and 

Smith 2004), while ice jam activity has been linked with El Nifio on the Yukon River 

(Jasek 1999). Since breakup integrates climate conditions spanning multiple seasons, it 

can also provide general information about the climate of Alaska and how it may relate to 

the large-scale climate.

The climate of Alaska has been linked with the large-scale climate in the Pacific 

sector. The El Nifio-Southem Oscillation (ENSO) plays a major role in controlling 

temperature throughout Alaska and winter air temperatures tend to be warmer on average 

during warm (El Nifio) events (Papineau 2001). In addition, the positive phase of the 

North Pacific Oscillation/West Pacific Pattern (NPO/WP) is characterized by increased 

storminess near Alaska that increases warm air advection into Alaska during the winter 

(Linkin and Nigam 2008).
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While previous studies have primarily focused on the winter season, this work 

also explores climate and hydrological anomalies in spring. Through breakup we 

investigate the relationship between the large-scale (i.e., global or hemispheric scale) and 

local climate, toward the eventual goal of improving breakup forecasts. The novel aspects 

of our paper include the following: investigating the role of climate in Alaska breakup, 

identifying key climate-breakup physical linkages for Alaska, and proposing a plausible 

physical mechanism relating winter/spring local and large-scale climate processes for 

Alaska.

2.2 Data and methods

2.2.1 Meteorological data

Station data of monthly average temperature and accumulated liquid precipitation 

from 1948 to 2008 were provided by the Alaska Climate Research Center (available 

online at http://climate.gi.alaska.edu/) for the first-order stations located throughout 

Alaska (Fig. 2.1). The analysis was augmented with daily station observations, which 

include maximum and minimum daily temperature, sunrise to sunset average sky cover, 

and accumulated liquid precipitation for 1948-2008. The National Climatic Data Center 

provided the daily data (available online at http://www.ncdc.noaa.gov/oa/ncdc.html). The 

chosen stations have relatively long records of high-quality continuous observations since 

they are professionally operated and maintained by the National Weather Service and the 

Federal Aviation Administration. The stations are all located at relatively low elevations 

and represent various climate types ranging from Arctic for Barrow, Alaska, to
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continental in Interior Alaska, to coastal in western and southern Alaska (Shulski and 

Wendler 2007).

To investigate the relationship with the large-scale climate, standard gridded 

climate data were employed. Over the land, monthly average surface air temperature 

(SAT) from the University of East Anglia Climate Research Unit (CRU) TS3.0 dataset 

was used (available online at http://www.cru.uea.ac.uk/cru/data/). This data interpolates 

global station data to a 0.5° x 0.5° grid over land only for 1901-2006 (Mitchell and Jones 

2005). Over the oceans, monthly average sea surface temperature (SST) data from the 

National Oceanographic and Atmospheric Administration (NOAA) extended 

reconstructed SST data version 3 (see online at http://www.esrl.noaa.gov/psd/) were used. 

The SST data are provided on a 2° x 2° grid spanning 1854-2009 and incorporates 

satellite data after 1985 (Smith et al. 2008).

Data representing the atmospheric circulation were provided by the National 

Centers for Environmental Prediction-National Center for Atmospheric Research 

(NCEP-NCAR) reanalysis 1 (see online at http://www.esrl.noaa.gov/psd/). Variables 

investigated include monthly mean sea level pressure (SLP) and 500-hPa geopotential 

height (500-hPa height). The NCEP-NCAR reanalysis 1 assimilates observations using a 

weather forecast model and is provided on a 2.5° x 2.5° grid spanning 1948-2008 

(Kalnay et al. 1996).

The storm track data are based on the tracking algorithm of Zhang et al. (2004) 

and span 1948-2008. The tracking algorithm searches gridded 6-hourly SLP data to 

determine points of minimum pressure and then flags these as candidate cyclone (storm)
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centers. The candidate centers were then tracked through time and the individual storms 

were identified by a tracking criterion of minimum lifetime. Individual storms were 

identified and tracked in the Northern Hemisphere north of 30°N and were constructed 

from the NCEP-NCAR reanalysis.

Climate indices were used to complement the analysis. The Nifio-3 index was 

obtained from the Earth System Research Laboratory Physical Science Division (see 

online at http://www.esrl.noaa.gov/psd/) and spans 1871-2008. The Pacific-North 

American (PNA) index was obtained from the Climate Prediction Center (see online at 

http://www.cpc.noaa.gov/) and covers 1950-2008.

2.2.2 Hydrological data

Monthly average river discharge was provided by the U.S. Geological Survey 

(USGS), which maintains flow gauges on the rivers in Alaska (Fig. 2.1) where the 

breakup date is measured. Only a few flow gauges were collocated with the breakup 

observation locations, so proximal gauges on the same rivers were selected for the period 

1948-2008.

Breakup date data were provided by the Alaska Pacific River Forecast Center (see 

online at http://aprfc.arh.noaa.gov/data/breakup.php) for the three locations (Fig. 2.1) on 

the Yukon, Tanana, and Kuskokwim Rivers in interior and western Alaska. The three 

breakup sites were chosen because of their location along major rivers, location in 

Interior Alaska, and their superior data quality relative to the other sites (only a few 

missing years). Bethel was initially selected to compare with the interior locations but it
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was significantly correlated with the interior sites; hence, it was grouped with the interior 

stations. Winter river ice thickness measurements contained temporal inconsistencies and 

extensive periods of missing data so they could not be used.

The term breakup refers to the time when a breakup front (i.e., the interface 

between the stationary and moving ice) reaches the location of the observer, which can be 

somewhat subjective. Despite the subjectivity involved in breakup observations, the three 

locations (Fig. 2.2a) all tend to have the same sign anomalies each year, which is evident 

from visual inspection of Fig. 2.2a. They display significant correlations ranging from 

0.70 Dawson City and Bethel, to 0.80 between Bethel and Nenana, and 0.80 between 

Nenana and Dawson City. The average breakup (Fig. 2.2b) is employed in this study 

because of the covariability between measurement sites.

Breakup typically occurs in early May, beginning in upstream reaches and then 

moving downstream toward the coast. Bethel has the latest breakup date and Nenana the 

earliest (Table 2.1) with a standard deviation at each station of about 1 week. The 

extreme latest breakup date observed was 3 June 1964 at Bethel while the earliest was at 

Nenana on 24 April 1998. All three sites have a significant decreasing trend with breakup 

occurring 1.3 days earlier per decade.

2.2.3 Analysis methods

Standard statistical techniques for climate analysis were employed in this study to 

investigate the relationships between the various climate and hydro-climate parameters. 

Pearson correlation coefficients were calculated on linearly detrended (least squares
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method) time series since trends can be quite large in the Arctic. Linear regression 

coefficients were calculated using the least squares method. The correlation and 

regression analyses yielded similar results so only the regression analysis is presented. 

For ease of discussion, results were scaled by a factor of -1 as needed to reflect anomalies 

corresponding with early breakup. The statistical significance of correlations and 

regressions was assessed using a two-tailed t test at the 95% or greater level. Composite 

analysis was constructed by combining events larger than one standard deviation. As our 

datasets all have different record lengths, the analysis was conducted on the common 

period of 1948-2008.

Seasonal average analyses are presented in the paper for the sake of brevity. 

Winter in Alaska is a time of minimal solar radiation and snow cover, whereas in spring 

solar insolation leads to significant daytime heating. Snow however, remains on the 

ground until at least April for many areas of Alaska and controls the radiative properties 

of the surface because of its high albedo relative to bare ground. By grouping months 

with similar physical processes we defined winter as December-March (DJFM) and 

spring as April-May (AM).

2.3 Results

2.3.1 Local controls of breakup

Station temperature was regressed on breakup (Fig. 2.3a) and indicated that 

breakup tends to occur 1 day earlier (later) when average AM temperatures are 0.2*- 

0.3°C warmer (cooler) in interior/western and northern Alaska. In southern Alaska the
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relationship between station temperature and breakup is weaker but still statistically 

significant. Springtime (AM) discharge regressed on breakup (Fig. 2.3b) suggests that 

breakup tends to occur earlier when river discharge is higher. Conversely breakup tends 

to occur later when river discharge is lower. The notable exception is the Chena River, 

which is a relatively small river. River discharge was normalized for all stations 

(excluding the Chena River) and then averaged to construct an interior river discharge 

time series. Regressions of DJFM precipitation on the AM-average-normalized river 

discharge (Fig. 2.3c) indicate that increased DJFM precipitation in interior and northern 

Alaska is associated with above-average AM discharge. However, wintertime (DJFM) 

temperature and precipitation were weakly related with breakup, with only a few stations 

having significant regression coefficients (not shown). When AM station temperature 

was regressed on the normalized spring discharge (Fig. 2.3d) it was found that increased 

spring discharge is related to warmer spring temperatures throughout Alaska.

In summary, warmer AM temperatures melt the snowpack, increase river 

discharge, and degrade the river ice leading to earlier thermal and mechanical forcing that 

breaks up river ice cover. Conversely, cooler AM temperatures maintain the snowpack, 

reduce river discharge, and maintain the river ice leading to later breakup. While breakup 

is related to runoff from the melting snowpack, winter precipitation was only weakly 

related to breakup. In conclusion, this suggests that AM surface air temperatures are the 

most important climate variable that determines breakup.
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2.3.2 Large-scale controls of breakup

Winter (DJFM) and spring (AM) gridded climate data were regressed on breakup 

to investigate large-scale climate variability patterns particularly during the winter that 

could be exploited for breakup forecasting.

Regressions of wintertime (DJFM) surface temperatures (SAT over land and SST 

over oceans) on breakup (Fig. 2.4a) display significant negative values in the midlatitude 

Pacific and significant positive values along coastal North America and in the eastern 

equatorial Pacific. This DJFM regression pattern (Fig. 2.4a) in the Pacific compares 

favorably with the ENSO signal (Parker et al. 2007) and shows that during the positive 

phase of ENSO breakup is earlier than normal. The absence of significant regressions 

between breakup and DJFM SAT over Alaska is consistent with the analysis of local 

station data (section 2.3.1) where also no significant coefficients were found in winter. 

Breakup was only weakly correlated with the DJFM Niflo-3 index (not shown); however, 

composite analysis of DJFM SSTs (not shown) revealed that while the positive phase of 

ENSO tends to occur with early breakup, the negative phase is only weakly related to late 

breakup. This suggests a nonlinear relationship where the warm phase of ENSO has a 

larger impact than the cool phase in controlling breakup.

Winter (DJFM) SLP regressed on breakup (Fig. 2.4b) displays an area of 

significant negative coefficients in the eastern midlatitude Pacific, which suggests 

enhanced southerly flow into Alaska during earlier breakup. The regressions of 500-hPa 

height on breakup (Fig. 2.4c) display a pattern extending from the tropics with a high- 

low-high-low pattern that compares favorably with the positive phase of the PNA



pattern. As the PNA is considered to be an atmospheric response to ENSO forcing (Horei 

and Wallace 1981), it is reasonable to conclude that the PNA-like regression pattern 

(Figs. 2.4b,c) is the atmospheric response to the ENSO structure (Fig. 2.4a). In summary, 

local winter conditions in Alaska have a minimal direct impact on breakup, however, 

there may be an indirect relationship since the winter SST and circulation anomaly 

patterns persist into spring.

Regressions of springtime (AM) temperature on breakup (Fig. 2.4d) are similar to 

those during winter (see Fig. 2.4a). The notable difference between DJFM and AM is that 

in AM there are significant positive regressions over all of Alaska. As a result of the high 

degree of similarity of the SST patterns in the Pacific between Figs. 2.4a,d and the slow 

speed of ocean processes, Pacific spring and winter SST patterns are likely linked 

through seasonal anomaly development in the ocean. This is supported by the large 

pattern correlation (0.77) between the winter and spring regression patterns (Figs. 2.4a,d) 

over the ocean.

Regressions of spring SLP and 500-hPa height on breakup (Figs. 2.4e,f) display 

patterns that are similar to those during winter, except the magnitudes of spring 

regressions are generally larger and shifted westward. The correlation between the AM 

PNA index and breakup was -0.47 (95% level significance), consistent with an earlier 

breakup during the positive phase of the PNA. In summary, breakup is impacted by 

ENSO- and PNA-related climate anomalies in the Pacific that begin to develop in DJFM 

and persist into AM.
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2.3.3 Local to large-scale connection

Thus far, our results have shown that breakup is most closely linked with local 

AM temperature and with ENSO-related climate anomalies on the large scale. Regression 

and composite analysis of storm tracks, with breakup and climate variables, are used to 

investigate a physical mechanism linking the local and large-scale climate anomalies. 

Alaska is situated north of the major storm track in the Pacific (Klein 1957; Zhang et al. 

2004; Mesquita et al. 2010) and storms primarily impact the state through the Gulf of 

Alaska with a secondary track through the Bering Sea for storms of more western origin 

(Klein 1957; Rodionov et al. 2007; Mesquita et al. 2010). In this analysis we investigated 

the relationship between breakup, storms approaching Alaska, and the large-scale 

climate. Storms entering the Gulf of Alaska (GOA; 550-62°N, 137°-158°W, see box in 

Fig. 2.7a) and Bering Sea (Bering; 55°-70°N, 163°W-180°, see box in Fig. 2.6) were 

counted for DJFM and AM. The time series for the regional storm counts are shown in 

Fig. 2.5, with a 5-yr smoothing that highlights the decadal to multidecadal variability. 

The observed station data and gridded data were regressed on the GOA and Bering storm 

counts for DJFM and AM to evaluate their relationships.

During the winter (DJFM) only the Bering storm count had a significant 

relationship with accumulated precipitation in Interior Alaska at the seasonal scale (Fig. 

2.6). More storms approaching Alaska from the Bering in DJFM results in increased 

DJFM precipitation, while, less storms approaching Alaska from the Bering in DJFM 

results in reduced DJFM precipitation. This finding is consistent with the self-organized 

map analysis of Cassano and Cassano (2009), which found that low pressure in the
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Bering Sea results in increased precipitation over the Yukon basin. Storms that approach 

Alaska through the Bering allow more moisture penetration and precipitation in Interior 

Alaska, since the topographic barriers are significantly smaller than for storms that 

approach from the Gulf of Alaska. GOA storms deposit most of their precipitation on the 

windward side of the Alaska range (Mock et al. 1998). Since breakup has a weak 

relationship with DJFM precipitation and AM river discharge is primarily controlled by 

AM temperatures, the role of precipitation from DJFM Bering storms is concluded to be 

of minor importance.

Gulf of Alaska storms play a prominent role during the spring and station 

temperature regressed on AM GOA counts (Fig. 2.7a) indicated that fewer storms 

occurring in the Gulf of Alaska resulted in warmer surface air temperatures and earlier 

breakup. Conversely, more storms entering the Gulf of Alaska resulted in cooler surface 

air temperatures and later breakup. In contrast, during winter GOA storms warm Interior 

Alaska from adiabatic warming from downslope southerly flow over the Alaska range. 

Bering storms did not have a significant relationship with temperature in the spring. 

Spring SST/SAT, SLP, and 500-hPa height regressions on AM GOA storm counts (Figs. 

2.7b-d) display patterns that compare favorably with the corresponding panels shown in 

Figs. 2.4d-f for breakup. The frequency of storms occurring in the Gulf of Alaska during 

spring is linked to similar large-scale climate patterns as breakup, suggesting that GOA 

storms are a key control of breakup variability through their influence on temperature in 

Interior Alaska.

The results have shown that spring (AM) Gulf o f Alaska storm counts are
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correlated with breakup and spring station temperature and all of these variables are 

related to similar large-scale climate patterns. Next we investigated how Gulf of Alaska 

(GOA) storms in spring (AM) control the local conditions (i.e., AM temperature) that 

lead to breakup.

Composites of accumulated thawing degree-days (the sum of temperatures above 

0°C), accumulated sunrise to sunset cloud fraction, and accumulated precipitation were 

computed in relation to breakup date using the Fairbanks, Alaska, meteorological station 

data. Fairbanks was selected for this analysis as it had consistently high correlations with 

breakup and best illustrates the impact of GOA storms on the interior. Composite years 

for early breakup (1951, 1953, 1958, 1961, 1969, 1979, 1990, 1993, and 1998) and late 

breakup (1952, 1962, 1964, 1972, 1982, 1985, 1986, 1987, 1992, 2002, and 2006) were 

identified. The days in the composite were keyed to breakup and included 30 days before 

and 5 days after breakup, with breakup occurring on day 0. This was done to analyze the 

local weather conditions leading up to breakup and to facilitate a comparison with GOA 

storms.

Composites of maximum and minimum air temperatures for late and early 

breakup (Figs. 2.8a,b) indicate that temperatures tend to be warmer when breakup is 

earlier. Earlier breakup occurs when there is decreased cloud cover, reduced 

precipitation, and decreased numbers of storms occurring in the Gulf of Alaska (Figs. 

2.8c-e). During spring, when solar radiation heats the surface, decreased cloud cover and 

precipitation help to raise surface air temperatures by increasing net solar radiation at the 

surface and is consistent with an earlier breakup. Conversely, more GOA storms,
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increased cloudiness, and enhanced precipitation lead to a later breakup by reducing the 

amount of solar radiation reaching the surface.

A detailed analysis of the relationship between storms in the Gulf of Alaska and 

Pacific SSTs during DJFM and AM is beyond the scope of this study; however, 

published literature can provide insight on this topic. Using climate models and 

observations, Seager et al. (2010) found that there is a southward shift in the Pacific 

storm track during positive ENSO events. This is consistent with our findings that when 

storm counts decrease in the Gulf of Alaska there is an increased storm count into a box 

just to the south (not shown).

2.3.4 Low-frequency breakup signal

Visual inspection of the smoothed (5-yr running mean) breakup time series (Fig. 

2.2b) suggests the presence of decadal variability, which accounts for 29% of the 

variance. This hypothesis was confirmed and quantified using singular spectrum, 

wavelet, and harmonic analysis on the unsmoothed breakup time series (not shown). The 

wavelet analysis also suggested that the decadal signal changes in frequency in the late 

1980s. Closer examination of the low-frequency line in Fig. 2.2b indicated that there was 

a shift to earlier breakup between the mid-1980s to the mid-1990s. It has been noted that 

a shift in the leading mode of SST variability in the North Pacific in the early 1990s 

(Bond et al. 2003) from a PDO-like pattern to the North Pacific gyre oscillation (NPGO) 

pattern (Di Lorenzo et al. 2008) has occurred. The regression patterns of DJFM Pacific 

SSTs on breakup before and after 1989 are consistent with the empirical orthogonal
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fraction (EOF) analysis from Bond et al. (2003) and Di Lorenzo et al. (2008), which 

showed a shift from the first to the second mode in Pacific SST variability (not shown). 

In addition, Bourne et al. (2010) found that surface-based temperature inversion 

parameters in Alaska were more strongly correlated with the PDO before 1989 than 

afterward. While a shift to earlier breakup was observed from the 1980s to 1990s, the 

storm counts (see Fig. 2.5) do not display a corresponding shift. While a physical 

mechanism linking the changes in breakup to North Pacific SST variability is unknown, 

there is some indication that the change to lower-frequency variability in breakup since 

1989 reflects the concurrent shift noted in the North Pacific.

2.4 Conclusions

A summary of the key processes that relate breakup to the large-scale climate is 

shown schematically in Fig. 2.9. Breakup is primarily controlled by local spring surface 

air temperatures and river discharge. Additionally, river discharge is strongly influenced 

by surface air temperatures, with warmer temperatures leading to higher discharge due to 

runoff from the melting snowpack. Winter precipitation, despite providing the snowpack, 

influences breakup to a lesser extent since spring temperatures control the rate and timing 

of melt. Breakup is linked to ENSO-related climate anomalies that persist from winter 

into spring, suggesting that breakup may have some degree of predictability prior to the 

spring.

The overall climate-breakup mechanism (Fig. 2.9) can be summarized as follows: 

during El Nifio in spring (AM), fewer storms occur in the Gulf of Alaska reducing
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cloudiness, warming air temperatures, and leading to earlier interior river ice breakup. 

Although weaker than the influence of El Nifio, during La Nifia in spring (AM) more 

storms occur in the Gulf of Alaska increasing cloudiness, cooling temperatures, and 

resulting in later breakup.

The findings of this study expand on those of Papineau (2001), which linked 

winter temperatures in Alaska with ENSO. Our study indicated that ENSO-related 

climate anomalies influence Alaska springtime temperatures as well as the timing of 

breakup. Breakup was also found to contain a low-frequency climate signal when 

smoothed and a shift to earlier breakup after the 1980s was revealed that might reflect the 

shift in Pacific variability documented in 1989. This study shows that breakup in Alaska 

is sensitive to large-scale, low-frequency climate variability in the Pacific. The winter 

Pacific SST anomaly patterns, which persist into spring, may be potentially exploited to 

develop seasonal forecasts of springtime temperatures in Alaska. Consequently, seasonal 

predictions of spring temperatures in Alaska would help forecast river breakup date, 

breakup severity, and breakup-related flooding.
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Figure 2.1. Map of Alaska identifying locations of river breakup (gold stars), river 
discharge (blue triangles), and first-order climate station (red circles) data. River drainage 
basins are located in western and Interior Alaska.
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Figure 2.2. (a) Breakup date time series for Dawson City (Yukon River), Nenana (Tanana 
River), and Bethel (Kuskokwim River) are shown as a solid, gray dotted, and black 
dashed lines, respectively, (b) The gray line shows the 3-station average, while the 5-yr 
running mean of the station average is shown in black. The hori2»ntal solid and dashed 
lines show the mean and standard deviation of the average breakup, respectively. 
Averaging the stations was justified since they were significantly correlated (>0.70).
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Figure 2.3. Linear regression coefficients of (a) AM temperature, (b) AM river discharge 
on breakup date, (c) DJFM precipitation, and (d) AM temperature on AM normalized 
river discharge. Note that (a) and (b) have been scaled by -1. Regressions significant at 
the 95% or greater level are shown in bold. Breakup tends to occur earlier (later) when 
temperatures are warmer (cooler) and river discharge is higher (lower). Higher (lower) 
AM discharge occurs with increased (decreased) DJFM precipitation.
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Figure 2.4. Linear regression coefficients of DJFM (a) SST/SAT, (b) SLP, (c) 500-hPa 
height, and AM (d) SST/SAT, (e) SLP, (f) 500-hPa height on breakup. Note that (a)-(f) 
have been scaled by -1. Contour intervals (Cl) are shown under the titles. Positive 
(negative) regressions significant at the 95% or greater level are shaded red (blue). DJFM 
and AM SAT/SST pattern resemble ENSO-related climate anomalies in Pacific. The 
warm phase of ENSO is associated with an earlier breakup.
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Figure 2.5. Time series of DJFM and AM GOA and Bering Sea storm counts shown by 
gray lines. Smoothed (5 yr) time series are shown by black lines. The plot limits vary, but 
tbe scale is the same for all line plots.
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Figure 2.6. Linear regression coefficients of DJFM precipitation on DJFM Bering Sea 
storm count. Storms that entered the outlined box were included in the storm count. 
Regressions significant at the 95% or greater level are shown in bold. Increased 
(decreased) storms result in more (less) precipitation in Interior Alaska in winter.
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Figure 2.7. Linear regression coefficients of AM (a) station temperature, (b) SST/SAT, 
(c) SLP, and (d) 500-hPa height on the AM GOA storm count. Note that (a)-(d) have 
been scaled by -1. Contour intervals shown above plots. In (a), regressions significant at 
the 95% or greater level are shown in bold. Positive (negative) regressions that are 
significant at the 95% or greater level are shaded red (blue). Storms that entered the 
outlined box in (a) were included in the storm count. Increased (decreased) GOA storm 
counts are associated with the cool (warm) phase of ENSO. Increased (decreased) storm 
counts result in cooler (warmer) temperature in Alaska.
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Figure 2.8. Daily average composites for late, early, and average breakup of Fairbanks 
observed (a) accumulated thawing degree-day based on maximum temperature, (b) 
accumulated thawing degree-day based on minimum temperature, (c) accumulated cloud 
fraction, (d) accumulated precipitation, and (e) accumulated GOA daily storm count. The 
window starts 30 before and ends 5 days after breakup date, which is marked with a 
vertical line.
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Figure 2.9. Summary of the breakup-climate mechanism highlighted for early breakup. 
The primary mechanism is outlined within the boxes, with the secondary mechanism 
shown on the left. DJFM represents the December-March period while AM signifies 
April-May. Later breakup can be described by opposite sign anomalies.
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Table 2.1. Average, standard deviation, record minimum and maximum, and trend for 
breakup observed at Dawson City, Nenana, Bethel, and the average breakup.

Dawson Nenana Bethel Avg
Avg (day of year) 128 124 133 128
Std dev (days) 5 6 8 6
Record min (day of year) 119 110 121 118
Record max (day of year) 149 141 155 148
Trend (days per decade) -1.3 -1.3 -1.3 -1.3



Chapter 3 Alaska Coastal Tundra Vegetation Links to Climate1 

Abstract

Changes in the seasonal climate in arctic coastal regions of Alaska have been 

documented during the satellite record and are linked to tundra vegetation productivity. 

The Arctic Normalized Difference Vegetation Index (NDVI) data set (a measure of 

vegetation photosynthetic capacity) has been used to document coherent temporal 

relationships between near-coastal sea ice, summer tundra land surface temperatures, and 

vegetation productivity throughout the Arctic. In the tundra of northern Alaska, 

significant increases have been documented in seasonal maximum (max) NDVI along the 

Beaufort and Chukchi Sea coasts. In contrast, maxNDVI over coastal tundra areas in 

southwest Alaska along the Bering Sea has declined. Increasing land surface 

temperatures have been documented in the Chukchi, Beaufort and Bering Sea tundra 

regions during the summer, but temperatures have declined in midsummer. The purpose 

of this study is to identify the climate system components that are linked to Alaska 

coastal tundra NDVI changes on seasonal and sub-seasonal time scales.

Three coastal tundra domains were evaluated based on the Treshnikov divisions 

and they are named the East Bering, East Chukchi, and Beaufort, in reference to the 

adjacent seas. In the Beaufort and East Chukchi regions, the strength of the Beaufort 

High was correlated with NDVI, however the sign of the relationship changes from 

month to month in summer indicating a complex relationship. The maxNDVI is above

'Bieniek P., U. Bhatt, D. Walker, M. Raynolds, J. Comiso, H. Epstein, J. Pinzon, C. Tucker, R. Thoman, H. 
Trang, N. Mdlders, W. Ermold, J. Zhang, and M. Steele, 2012: Alaska coastal tundra vegetation links to 
climate. Earth Interact., in preparation for submission.
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average when the June Beaufort High (BH) is stronger, however, a weaker BH in July is 

also linked with increased TI-NDVI (time-integrated over the season). This suggests that 

a stronger BH, which suppresses cloudiness and increases solar insolation, may drive 

warming in June. Trends in wind speeds suggest that the changes in temperature are also 

linked with changes in the local sea breeze circulation, and stronger winds along the coast 

are correlated with warmer temperatures over land. The decline in the July BH may be, in 

part, enhanced due to a weakening of the sea breeze circulation that occurs from land 

surface cooling that reduces the land-sea contrast. The cooling over land may be the 

result of increased convection and increased cloud cover, which reduces solar insolation.

Increased NDVI has been documented in the early part of the season in the 

Beaufort and Chukchi regions and is consistent with earlier snowmelt. The decline of 

NDVI in the East Bering region is consistent with later snowmelt due to late season 

snowfall that delays the onset of the growing season. The delay in snowmelt may be 

linked to an increase in occurrences of the positive phase of the West Pacific Pattern. 

Winter snow water equivalent in the East Bering tundra region is positively correlated 

with maxNDVI, where reduced maxNDVI tends to occur with reduced winter snowfall.
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3.1 Introduction

Vegetation throughout Alaska and the Arctic is experiencing changes that have 

been to linked climate change and variability (Jia et al. 2003; Bhatt et al. 2010). Many 

climatic changes have been documented in Alaska and the Arctic summer during the 

satellite record and longer time scales, most notably increasing surface air temperatures 

and a decline in sea ice (ACIA 2005). These climatic changes are especially pronounced 

in the Arctic due to the role of polar amplification (Bekryaev et al. 2010; Serreze and 

Barry 2011). The satellite derived Normalized Difference Vegetation Index (NDVI) data 

set (Pinzon et al. 2012) has been extensively used as a measure of vegetation productivity 

and is correlated with the amount of aboveground biomass in the Arctic (Raynolds et al. 

2011). Changes in Alaska arctic coastal tundra seasonal maximum NDVI (Figure 3.1) 

have been documented over the satellite record; primarily greening (increasing NDVI) 

along the Beaufort and Chukchi Sea coasts (Jia et al. 2003) and browning (decreasing 

NDVI) in southwest Alaska along the Bering Sea coast (Verbyla 2008; Bhatt et al. 2010).

The greening trend in the northern portion of Alaska has been attributed to an 

increase in shrubs (Sturm et al. 2001; Tape et al. 2006) and this region is experiencing an 

increased growing season length (Jia et al. 2003). The browning trend in southwest 

Alaska in the inland boreal forest regions has been attributed to increased drought stress 

and insect infestation (Parent and Verbyla 2010). In Alaska, the climate has also been 

linked with outbreaks of spruce beetles (Sherriff et al. 2011) and also years with 

extensive area burned by wildfires (Hess et al. 2001; Duffy et al. 2005), which can reduce 

and/or alter the vegetation primarily in the boreal forest region (Goetz et al. 2005).
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Alaska is experiencing widespread changes in vegetation that have also been 

documented throughout the pan-Arctic. Increasing (greening) trends in NDVI have been 

observed throughout much of the pan-Arctic and Alaska coastal tundra (Figure 3.1a,b) 

during the satellite record (Jia et al. 2003; Goetz et al. 2005; Bhatt et al. 2010). It is 

suggested that temperature (Walker et al. 2003) and sea ice (Bhatt et al. 2010) are linked 

to the increase in coastal tundra NDVI in the pan-Arctic. In this study, we investigate the 

seasonality of trends and variability of NDVI and climate parameters to better understand 

how the climate is linked to the observed changes and variations of NDVI in the coastal 

tundra regions of Alaska.

The Arctic tundra biome is controlled by the cool summer air mass associated 

with the location of the sea ice (Yurtsev 1994; Epstein et al. 2004). Changes in sea ice 

distribution in summer have occurred in conjunction with changes in the nearby 

atmospheric temperatures (Bhatt et al. 2008; Lawrence et al. 2008). While precipitation 

amounts are small in the Arctic, tundra plants are primarily temperature limited, as the 

soils tend to be moist due to the permafrost layer limiting the runoff of water. The air is 

also moist due to the moisture available from the adjacent Arctic Ocean, especially when 

it is ice-ffee. With the decline in sea ice, summer temperatures are not as constrained by 

the cold, high albedo surface of ice and can more readily increase with solar insolation. 

The goal of this study is to understand the climate processes of trends and variability that 

impact vegetation productivity in Alaska.

This study builds on the previous studies of Alaska coastal tundra NDVI change 

by documenting the sub-seasonal trends. The Beaufort High and a sea breeze circulation
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are shown to possibly play a role in climate and NDVI change in the coastal tundra 

regions of northern Alaska. A hypothesis is also presented showing that increased 

vegetative productivity in northern Alaska may have a feedback on climate by impacting 

the atmospheric circulation. Links between NDVI and the timing of spring snowmelt 

were also identified. Most importantly, climate-NDVI linkages are shown to change from 

month-to-month over the season.

3.2 Data and methods

The Normalized Difference Vegetation Index is defined as NDVI = (NIR -  

VIS)/(NIR + VIS), where NIR is surface reflectance of near infrared radiation and VIS is 

the reflectance of visible radiation (Deering 1978; Tucker 1979). The NDVI represents 

the fraction of photosynthetically active radiation that is absorbed by the plant canopy 

and ranges from zero (no vegetation activity) to one and is unitless. The amount of 

radiation absorbed primarily depends on the physical properties of the vegetation 

including the species, the vertical and horizontal structure, phenological stage, and the 

physiological condition. The NDVI data set used in this study is the GIMMS3g NDVI 

data set, which is derived from the wavelength bands retrieved from the Advanced Very 

High Resolution Radiometer (AVHRR) sensors 1982-2011 (Pinzon et al. 2012). The 

maximum NDVI (maxNDVI) is the highest summer NDVI value, representing seasonal 

peak values. The unitless time-integrated NDVI (TI-NDVI) is the sum of biweekly values 

above zero from April to September. TI-NDVI incorporates the length of the growing 

season and phenological variations and better represents gross primary production than

54



maxNDVI (Tucker and Sellers 1986). In addition, TI-NDVI was found to be more 

strongly correlated than maxNDVI to climate parameters such as spring sea ice cover and 

tundra land surface temperatures (Bhatt et al. 2010).

Weekly sea ice concentration from Special Sensor Microwave Imager (SSM/I) 

data (Comiso and Nishio 2008) and AVHRR radiometric surface temperature from 1982 

to 2011 were used in this analysis. The area average sea ice concentration was calculated 

within a 100km buffer of the coast of each tundra region. The AVHRR surface 

temperature data have been enhanced through more effective cloud masking techniques 

and calibration through the utilization of in situ surface temperature data (Comiso 2003). 

Monthly AVHRR land surface temperatures were used to calculate the summer warmth 

index (SWI), which is the sum of May-Sep monthly average land surface temperatures 

greater than 0°C, while weekly and monthly temperature data were used to examine 

seasonality of changes and variability.

Weekly ocean heat content data was calculated from the Pan-Arctic Ice-Ocean 

Modeling and Assimilation System (PIOMAS) data set (Steele et al. 2011) for 1988-2011. 

The amount is a vertical integration from the surface to 100m depth or the bottom if 

shallower. The heat content was calculated by the density of the ocean times a fixed 

ocean heat capacity of 4218 J/kg/°C times the ocean temperature minus 2°C. The data 

was then area averaged within a 100km buffer of the coast of each tundra region.

Snow cover data were obtained from the Moderate Imaging Spectrometer 

(MODIS) Terra Satellite for 2000-2011 at the National Snow and Ice Data Center 

(NSIDC; available online at http://nsidc.org). The MODIS snow cover data are an 8-day
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composite and are provided on a 5km grid (Hall et al. 2006). SSM/I derived snow water 

equivalent (SWE) data were also obtained from NSIDC and are available at a monthly 

resolution on a 25km Equal-Area Scalable Earth (EASE)-grid for the period 1987-2007 

(Armstrong et al. 2007). To enhance the relatively short records of the satellite derived 

snow data, station snow data records were also analyzed at the few available stations 

located in the coastal tundra regions of Alaska (Figure 3.Id). Daily and monthly snow 

depth, temperature, and precipitation were obtained from the National Climatic Data 

Center for Bethel, Kotzebue, and Barrow for 1982-2011, Kuparuk for 1983-2011 and 

Umiat for 1982-2001. Additional station cloud cover data was obtained for Barrow, 

Kotzebue and Bethel from the Integrated Surface Data (ISD; available online at: 

http://www.ncdc.noaa.gov/oa/climate/isd/index.php) for 1982-2011.

The NDVI, MODIS snow and SWE data were subdivided in this analysis by their 

proximity to oceans. The regions used in this analysis follow those utilized in Bhatt et al. 

(2010), which were based on the ocean regions outlined by Treshnikov (1985) and 

floristic provinces modified by Walker et al. (2005). The tundra domains employed in 

this study will be referred to as East Bering, East Chukchi and Beaufort and represent the 

areas of coastal tundra regions as well as nearby ocean domains (Figure 3. Id).

Gridded reanalysis data were analyzed to investigate the links between tundra and 

the atmospheric circulation. Gridded monthly and 6-hourly mean sea level pressure 

(MSLP), surface air temperature (SAT) and 10m winds were obtained from the Climate 

Forecast System Reanalysis (CFSR; available online at: http://cfs.ncep.noaa.gov/cfsr/) for 

1982-2009 (Saha et al. 2006). The CFSR data are available at various spatial resolutions
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and the MSLP were obtained at 0.5 degree, and the SAT and 10m winds were obtained at 

T382 (~38km) resolution. Storm track information is based on the NCEP/NCAR 

Reanalysis MSLP 2.5 (Kalnay et al. 1996) degree data analyzed using a cyclone-tracking 

algorithm developed by Zhang et al. (2004) for 1982-2011. The storm track algorithm 

provides the location, and central pressure of each storm throughout its lifecycle.

3 J  Results 

33.1 Beaufort and East Chukchi

The Beaufort and East Chukchi coastal tundra regions are bounded to the south by 

the Brooks Range and to the north by the Arctic Ocean (Figure 3.Id). Both regions are 

located almost entirely within the Arctic climate division of Alaska (Bieniek et al. 2012) 

with the exception of the southern extent of the East Chukchi tundra region, which is 

located in the west coast climate division. These two regions exhibit broadly similar 

seasonal climate variability throughout the year so they are discussed in parallel in this 

section. Climatologically, these regions receive very little precipitation throughout the 

year and experience 24 hours of sunlight in summer and complete darkness in winter 

(Shulski and Wendler 2007).

Increasing or greening trends in both TI-NDVI and maxNDVI are evident 

throughout the Beaufort and Chukchi regions (Figure 3.1a,b). Time series over the foil 

tundra domains of both regions also display increased NDVI (Figure 3.2a,c) over the 

satellite record. The increase in NDVI has occurred in conjunction with decreased 

summer sea ice or increased open water and increased SWI (Figure 3.2b,d). However,
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mixed spatial trends in SWI are present, especially in the Beaufort region (Figure 3.1c). 

When weekly sea ice, temperature and NDVI trends were evaluated, intra-seasonal 

differences in the trends are evident. Sea ice in the Beaufort Sea (Figure 3.3a) has a trend 

towards more open water throughout the summer with the largest trends during the 

transition times indicating earlier breakup and later freeze up. Weekly land surface 

temperature trends (Figure 3.3b) display warming at the beginning and end of summer, 

but are cooling during midsummer. Similar trends of reduced Arctic warming and even 

cooling in summer have been noted in some recent studies (e.g. Manabe et al. 2011). 

NDVI trends are positive throughout the growing season (Figure 3.3c) and the largest 

trends have occurred in midsummer, concurrent with the cooling land surface 

temperatures. This appears inconsistent with positive correlations between TI-NDVI and 

surface temperature, however plants do not necessarily immediately respond to climate 

anomalies and changes and the vegetation may in fact slowly respond over many years. 

Cooling temperatures are also in contrast to the overall warming trends in SWI and a 

hypothesis explaining this set of relationships will be explored later in this section. In the 

Chukchi tundra region, sea ice is declining throughout the summer (Figure 3.4a), and the 

largest declines have occurred in early summer and fall. Weekly surface temperatures 

(Figure 3.4b) are warming during early and late summer, but are cooling in midsummer 

similar to the Beaufort region. NDVI is increasing more modestly throughout the summer 

season in the Chukchi (Figure 3.4c) than the Beaufort (Figure 3.3c) and May-June NDVI 

is declining.
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The declining trend in sea ice within 100km of the Beaufort and East Chukchi 

coastal regions has occurred in conjunction with an increase in total column ocean heat 

content over the period 1988-2011 (Figure 3.5a,b). Increased ocean heat content in this 

region has been recently documented and has been attributed several factors, including 

discharge from the Mackenzie River (Wood et al. 2012).

To understand the relationship between the timing of greenup and senescence and 

TI-NDVI and maxNDVI, the biweekly NDVI data set was interpolated to daily data 

using the phenology curve fitting procedure developed by Jonsson and Eklundh (2002). 

Unfortunately the biweekly data at the start and end of the growing season were nearly 

identical from year to year so it was not possible identify any discemable change in 

greenup or senescence timing. Therefore we must rely on the combination of the limited 

spatial extent of the station data in Alaska and limited temporal range of the satellite data 

to evaluate the trends of growing season length and snow parameters.

Snow depth and timing of melt impact vegetation. The timing of melt determines 

when plants may begin to photosynthesize and grow, while snow depth can influence the 

amount of soil moisture available for the plants in the Arctic summer. A trend towards 

earlier snowmelt was found when the first snow free date was evaluated within the 

Beaufort and Chukchi tundra regions (Figure 3.6). The long-term station records of snow 

depth indicate trends to earlier snowmelt across the region with the exception of Barrow. 

Barrow has been experiencing later snowmelt since 2005 with an increase in late season 

snowfall (not shown), which has changed the sign of the overall trend. MODIS also 

exhibits a trend to earlier snow melt in the Beaufort and Chukchi tundra regions during
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its relatively short record (2000-2011). This is consistent with the findings of Stone et al. 

(2002), who found earlier snow melt at stations and in satellite derived data across 

northern Alaska. Trends to earlier river ice breakup (which is related to snowmelt) have 

been observed throughout Interior Alaska and the onset o f breakup was found to be 

linked to spring temperatures and the large-scale climate (Bieniek et al. 2011), so the 

warmer spring temperatures documented in the Beaufort and East Chukchi regions may 

be driving earlier snow melt in these regions.

While not significantly correlated with NDVI, this region has also experienced 

increasing winter snow depth and snow water equivalent trends (Liston and Hiemstra 

2011; Muskett 2012), which is consistent with the notion of increased snowfall resulting 

from declining sea ice (Higgins and Cassano 2011; Liu et al. 2012a). While this appears 

contrary to the earlier snow melt date documented above, Bieniek et al. (2011) showed 

that, for Interior Alaska, the depth of snow was not as important as the spring 

temperatures for the onset of the melt season. Therefore, when spring snow depth 

increases, snowmelt may still occur earlier when spring temperatures are warmer than 

normal. The exact mechanism driving the changes in timing of snowmelt in northern 

Alaska is a worthy research topic that is beyond the scope of this study.

TI-NDVI for both regions is significantly, negatively correlated (time series were 

first linearly detrended) with station snowmelt at all stations in the region (Table 3.1), 

suggesting that when snowmelt is earlier, NDVI is greater since vegetation is able to 

begin photosynthesis earlier. This result is further supported by the high negative 

correlation between early season NDVI and snowmelt date. The early season trend of
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increased NDVI, particularly in the Beaufort region (Figure 3.3c), is also consistent with 

a more efficient growing season due to earlier snowmelt

Increasing NDVI has also been linked with increased summer warmth (Walker et 

al. 2003), therefore changes in the summer atmospheric circulation should play a role in 

the increasing summer temperatures observed in the Beaufort and East Chukchi regions. 

The Beaufort High is a major climatological feature over the Beaufort Sea in summer 

(Overland 2009; Serreze and Barrett 2011) and typically extends over northern Alaska in 

summer (see contours in Figure 3.7a). Climatologically, the Beaufort High is strongest in 

June (Figure 3.7b) and then weakens by August (Figure 3.7d). The spatial trends in 

MSLP show a strengthening Beaufort High for the summer season and in all months 

except July (Figure 3.7c). In June (Figure 3.7b) the MSLP is increasing throughout all of 

Alaska, while July and August (Figure 3.7c-d) have decreasing MSLP over land in 

Alaska. The Beaufort High trends were also captured when area average MSLP in a box 

bounding the Beaufort High region (Figure 3.8) was analyzed. In July (Figure 3.8b), the 

regional MSLP is decreasing or rather the high is weakening while it is strengthening in 

the other months of the summer (Figure 3.8a,c). These intra-seasonal differences in 

trends in the atmospheric circulation highlight the seasonal nature of climate variability 

and change in this region.

High pressure dining the summer is usually correlated with clear sky conditions, 

which can result in warm temperatures at the surface in Alaska especially outside of 

winter (Bieniek et al. 2011). Increased cloud cover consistent with a weakened Beaufort 

High in July could be a plausible explanation for the midsummer decline in temperatures
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observed in Figures 3.3b and 3.4b. Observed cloud cover at Barrow and Kotzebue 

(Figure 3.9a-b) show that both stations climatologically receive their greatest amount of 

seasonal cloud cover during the period April through October. At Barrow, the peak 

increase in cloudiness is occurring March and October, preceding and concurrent with the 

times of year when the sea ice concentration has declined the most in June and October 

respectively (compare Figures 3.3a and 3.4a with Figure 3.9a). Barrow monthly station 

cloudiness was negatively correlated with the concurrent monthly MSLP of the Beaufort 

High and the highest correlation occurs in July (Table 3.2). Therefore, the July Beaufort 

High is linked with cloudiness at Barrow. This linkage suggests that the increase in July 

cloudiness at Barrow could be related to the weakened Beaufort High. The increase in 

cloudiness could also be a result of increased open water and the subsequent increased 

moisture availability, which is consistent with observed reduction of temperatures in July. 

Recent work supports this notion, Liu et al. (2012b) documented that MODIS cloud 

cover has increased over the Arctic Ocean in areas where sea ice has declined.

The Beaufort High is also significantly correlated with TI-NDVI and maxNDVI 

in both the Beaufort and Chukchi tundra regions (Table 3.2). These correlations however 

switch sign between June and July. In June, a stronger Beaufort High is linked with 

higher maxNDVI. Stronger high pressure reduces cloudiness and is consistent with the 

negative correlations between cloudiness at Barrow and the Beaufort High. Reduced 

cloudiness results in increased solar insolation, warmer land surface temperatures, and 

increased plant growth as manifest by the increased maxNDVI. The July Beaufort High is 

negatively correlated with TI-NDVI in both regions and appears to be perplexing as
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higher pressure is generally thought to be linked with warmer temperatures and increased 

plant growth as found in June. However, the state of vegetation is integrated over the 

climate conditions over many years, therefore a rapid response in NDVI to changes in 

temperature may not be expected. Possible links between the Beaufort High, temperature, 

and NDVI will be discussed further later in this section.

The summer climate of the northern coastal regions of the Beaufort and East 

Chukchi regions is strongly influenced by the position of the Arctic frontal boundary, 

which marks the boundary between cold air mass of the Arctic Ocean and the relatively 

warmer air mass of Interior Alaska (Conover 1960). These regions consistently 

experience sea breezes in summer (Moritz 1977; Walsh 1977; Kozo 1979). Sea breezes 

are the result of the land-sea temperature contrast. The air over the land, warmed due to 

solar heating of the surface, rises and the relatively cooler air over the ocean moves in 

underneath resulting in wind blowing from the water towards the land. These sea breezes 

have a great influence on the spatial patterns of temperatures during the warm season in 

this region (Haugen and Brown 1980; Kozo 1982a) due to their control the position of the 

Arctic Frontal boundary. Temperatures farther inland near the Brooks Range tend to be 

more influenced by the amount of cloudiness than the sea breeze since as the sea breeze 

usually does not extend so far inland from the coast (Zhang et al. 1996). The strength of 

the sea breeze of the Beaufort region has also been shown to be related to the ambient 

synoptic flow and was found to occur even when the large-scale flow is counter to the 

direction of the sea breeze circulation (Kozo 1982b). Many o f these previous studies have 

suggested that changes in the position, strength or extent of the sea breeze in this region
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can greatly impact summer temperatures and, moreover, that the sea breeze is itself 

linked to the distribution of land-sea temperatures.

A trend to increasing winds has been documented near the coast over the Beaufort 

Sea in the summer months since 1979 (Stegall and Zhang 2012). Correlation analysis of 

the winds with respect to land surface temperatures and NDVI revealed a maximum in 

correlation with the areas of increasing wind speed trends (not shown). Stronger winds 

near the coast occur when the temperatures over land are increased. This is consistent 

with a strengthened sea breeze when the land surface is warmer. Changes in the position 

of the sea breeze, and Beaufort High appear to both be complimentary and interacting to 

result in change of the climate of the Beaufort and East Chukchi regions which allows for 

the overall increase in SWI and NDVI.

Curiously, decreasing temperatures were noted in Figures 3.3b and 3.4b in late 

June and July. Trend analysis based on a 15-year moving window since 1982 based on 

the weekly land surface temperature showed that a switch to declining midsummer 

temperatures has started to occur within the last part of the record (not shown). Analysis 

of the station temperature observations (not shown) display a similar declining trend in 

daily maximum temperatures, which are often linked to daytime solar heating, cloudiness, 

daytime convection, and the sea breeze circulation (which is at its maximum strength 

during the day). A declining trend was not found in minimum temperatures, which are 

not linked with the sea breeze circulation, solar insolation, and convection.

The decline in midsummer land surface and daily maximum temperatures also 

coincides with the declining July trends in the Beaufort High strength. Several possible
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hypotheses may explain this phenomenon. Since the sea breeze is strongly linked with the 

land-sea temperature contrast, strong positive temperature anomalies over land may be 

driving a deeper penetration of the sea breeze in July and would result in the cooling of 

land-surface temperatures. Changes in the temperature anomalies over the now 

increasingly ice free Beaufort Sea also likely play a role in position and strength of the 

sea breeze.

Another possible hypothesis may be partially due to the plants themselves. An 

increase in vegetation results in increased evapotranspiration, which enhances the amount 

of moisture available in the lower atmosphere, and when coupled with warmer surface 

temperatures, the atmospheric response could be an increase in convection. Increased 

convection would have the effect of cooling the land surface through increased 

precipitation and cloudiness blocking solar insulation. As surface temperatures are 

warming in June and cooling in July, this mechanism may initiate in June, but the 

maxNDVI does not occur until July so convection is delayed until July when more 

surface moisture is available for convection. Cooling of the land surface temperatures 

would have the effect of reducing the sea breeze circulation (the land-sea temperature 

contrast would be reduced), which forms part of the subsidence supporting the Beaufort 

High, resulting in the observed reduction in sea level pressure in this region. A general 

circulation model (GCM) experiment showed that when Arctic tundra vegetation related 

albedo is increased the response is increased convection and cloud cover, which reduces 

surface temperatures in the region (Pai Mazumder and MSlders 2009). Increased 

vegetation was also found to modify the atmospheric pressure fields through the albedo-
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convection-cloudiness mechanism that appears to support such a hypothesis. 

Modification of the sea breeze circulation can also result from changes in the spatial 

distribution of temperatures of the Arctic Ocean. The observed changes in sea ice and 

ocean heat content may also play an important role in the changes of the local circulation 

that is impacting the climate and so NDVI of the Beaufort and East Chukchi tundra 

regions.

3.3.2 East Bering

The East Bering tundra region is located entirely within Alaska’s west coast 

climate division (Bieniek et al. 2012). This region experiences more precipitation and 

also warmer temperatures in summer than the Beaufort and Chukchi regions (Shulski and 

Wendler 2007). This region is also located in close proximity to the Bering Sea storm 

tracks and Aleutian Low, but these are almost absent in summer (Rodionov et al. 2007; 

Mesquita et al. 2010).

The Bering Sea is generally free of sea ice in summer (Figure 3.10b), however sea 

ice is declining in May and October (Figure 3.1 la). In contrast to the Beaufort and East 

Chukchi regions is that the spring sea ice concentration is increasing (Figure 3.11a) and 

there is an overall decline in ocean heat content (Figure 3.5c). NDVI in the East Bering 

coastal tundra region is declining while summer temperatures are warming (Figure 3.10). 

Similar to the Beaufort and East Chukchi regions, temperatures are increasing in early 

and late summer, but are declining in midsummer (Figure 3.1 lb). The decline in NDVI is 

greatest in the beginning of the season (Figure 3.11c). These conflicting trends suggest
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that a different mechanism is driving the change in NDVI in the East Bering than in 

northern Alaska.

Local expert knowledge from Native Alaskan elders in the East Bering region has 

suggested that changes in the characteristics of snow cover, including reduced snow 

depth and snow water equivalent are occurring (e.g. Fienup-Riordan and Rearden 2012). 

Declines in snow depth and snow water equivalent may lead to decreased moisture 

available for the vegetation and may thus drive the declines in NDVI in the East Bering 

tundra region. Alaska Native elders have indicated that the timing of the berry harvest is 

occurring earlier within their memory and that the harvest is less plentiful when the 

winter snow depth is reduced (Fienup-Riordan and Rearden 2012). Overall there appears 

to be a link between vegetation and the winter snow regime in the East Bering region.

The snow cover melts on average in early May in the East Bering region. There is 

a trend towards later snowmelt at Bethel (1982-2011) and in the MODIS (2000-2011) 

snow cover data (Figure 3.6). Close inspection of the spatial MODIS snowmelt date 

trends shows that the recent declining trend was mixed over the region and snow is even 

melting earlier over the Seward Peninsula. Early season May-June average maxNDVI 

and TI-NDVI are both significantly correlated with melt date and total season maxNDVI 

is reduced when snowmelt occurs later (Table 3.1). Therefore, since snowmelt is a factor 

in determining the onset of the growing season, the longer snow duration acts to reduce 

TI-NDVI. The trend to later snowmelt is likely playing an important role in the NDVI 

browning in this region, especially the declining NDVI in the early season.
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The West Pacific (WP) Pattern is a mode of atmospheric variability in the Pacific 

that influences the strength of a trough or low pressure in the atmospheric circulation 

centered over the Bering Sea (Wallace and Gutzler 1981). Increased sea ice in the eastern 

Bering Sea region has been linked with the positive phase of the West Pacific (WP) 

Pattern (Matthewman and Magnusdottir 2011). The positive phase of the WP represents a 

strengthening of the low pressure over the Bering Sea region. Low pressure, while 

advecting moisture from the Pacific, also brings clouds that reduce temperatures and 

increase precipitation in the spring in Alaska (Bieniek et al. 2011). More frequent 

positive phases of the WP pattern since the 1980s (Linkin and Nigam 2008) may be 

driving the increases in spring sea ice and the trend to later snow melt in the East Bering 

region. Bieniek et al. 2011 had previously found a trend to earlier river ice breakup date 

on the Kuskokwim River at Bethel (which is located within the southern portion of the 

region) and locations throughout the state. Bieniek et al. (2011) showed that early 

breakup date is tied in part to both an earlier snowmelt and a reduction in the number of 

storms tracking into the Gulf of Alaska. The trend to delayed snowmelt due to late season 

snowfall in the East Bering region is consistent with increased cloud cover, precipitation 

and reduced temperatures brought about by low pressure over the Bering Sea enhanced 

by the WP. Therefore, while other regions of Alaska (i.e. Beaufort and East Chukchi) are 

experiencing earlier snowmelt, possibly due to a reduction in Gulf of Alaska storms (i.e. 

Bieniek et al. 2011), the spring climate of the East Bering region may also be influenced 

by the WP related increase in low pressure over the Bering Sea resulting in a delayed 

onset of the summer.
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End of winter snow water equivalent (SWE) based on the remotely sensed SSM/I 

sensor has declined over its period of record (1987-2007) in the central portion of the 

Bering region (Figure 3.12). This decline agrees with the Bethel station snow depth when 

calculated over the same period as the SSM/I SWE, however Bethel (Figure 3.12b) is 

experiencing a trend to slightly increased snow later in the season over a longer record. 

Care must be taken when examining trends due to the inherent large interannual-decadal- 

multidecadal variability in the Arctic (Polyakov et al. 2012). The increase in spring snow 

depth at Bethel is also consistent with the later snowmelt being observed. In northern 

Alaska, while only weakly correlated with NDVI, SWE is increasing.

Monthly area average SWE was separated into two regions for further analysis: 

the Seward Peninsula, were spring SWE has increased, and the East Bering lowlands 

including the Yukon Delta (excluding the mountains in the southern portion of the 

region). SWE peaks in February-March with an average amount in the range of 45-50mm 

on the Seward Peninsula (Figure 3.13b) and around 40mm in the East Bering lowlands 

(Figure 3.13a). Climatologically, SWE starts increasing from September until February- 

March and then the amount quickly decreases in April and May until the start of the 

growing season. SWE displays decreasing trends throughout much of the winter season 

with declines in all months except for February-March. The maxNDVI is significantly 

correlated (0.45) with January and February SWE in the East Bering lowlands. This 

suggests that less midwinter snow depth is linked to reduced maxNDVI in summer. The 

trend towards reduced maxNDVI is consistent with reduced snow depth in fall and winter 

in the Bering region. Reduced winter snow can result in less water available for plants;
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this coupled with the warm summer temperatures will stress the plants and hinder their 

productivity. The reduced late winter SWE appears to result from the reduction in snow 

in the autumn, as it appears to be propagating forward and plays a role in the reduced 

SWE later in the season. However, caution needs to be used when interpreting SWE as it 

is an integrative quantity of the preceding months and more robust winter precipitation 

data at higher temporal and spatial scales, when made available, may be needed in future 

to finalize any conclusions concerning the role of winter snow depth and NDVI.

While located geographically much further away from the Beaufort High than the 

Beaufort and Chukchi zones, the strength of the Jul-Aug Beaufort High is significantly 

correlated with the Bering TI-NDVI and Bethel June cloudiness (Table 3.2). An 

increased Beaufort High results in reduced TI-NDVI in this region and increased cloud 

cover. This highlights two possibilities: the large geographic area over which the 

Beaufort High exerts its influence in Alaska during summer, or that a completely separate 

process impacting both may be at work.

3.4 Conclusions

NDVI in the Beaufort and East Chukchi tundra regions in northern Alaska is 

increasing (greening) and in contrast declining (browning) in the East Bering tundra 

region in southwest Alaska. The intra-seasonal trends in the Beaufort region indicate an 

overall increase in NDVI while the East Chukchi was more varied with a slight decline 

earlier in the season. In the East Bering, NDVI is declining throughout the growing 

season with the greatest declines early in the season. The summaries of the climate
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drivers of NDVI in the three Alaska coastal tundra regions are shown in Figure 3.14. The 

early season trends in all three regions were significantly linked with the timing of 

snowmelt in the respective region. An earlier snowmelt as in the Beaufort and East 

Chukchi regions coincides with increased TI-NDVI. The trend towards a delayed melt in 

the East Bering region may largely explain the decline in TI-NDVI in that region. The 

delay in snowmelt may be coupled with an increasing occurrence of the positive phase of 

the West Pacific (WP) Pattern, which has been previously linked with increased sea ice 

concentration over the eastern Bering Sea. The TI-NDVI decline in the Bering region is 

also linked with reduced winter and spring SWE.

The increases in TI-NDVI and maxNDVI in northern Alaska were also linked 

with the changes in temperature. The Beaufort High was found to play an important role 

in NDVI because of its control of cloud cover and temperatures in the Beaufort and 

Chukchi regions. An increased Beaufort High in June is linked with increased 

temperatures and vegetation productivity. This relationship is plausible since the 

strengthened Beaufort High reduces cloudiness, especially inland from the coast, 

allowing for increased solar insolation and surface warming. There is also an indication 

that changes in the local sea breeze may be linked with the temperature trends in the 

Beaufort and East Chukchi regions as there is a trend to increased winds near the 

Beaufort Sea coast (Stegall and Zhang 2012). The Beaufort High is negatively correlated 

with TI-NDVI in July when there are declining trends in temperatures in late June and 

July in this region. Several possible explanations exist for this relationship and these 

trends, one being a feedback between the increased vegetation and the atmosphere.
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Increased vegetation has been found to increase convection and cloudiness resulting in 

land surface cooling in the Arctic based on a GCM study that imposed increased surface 

albedoes in the Arctic (Pai Mazumder and Molders 2009). This process can change the 

atmospheric pressure fields, which could be playing a role in this case. Such a 

relationship implies that a complex climate process relating winter snowmelt, and the 

summer atmospheric circulation are resulting in NDVI change in northern Alaska.

The results of this study demonstrate that the linkages between satellite observed 

NDVI and climate are complex and vary sub-seasonally. NDVI is unique in that it 

represents plants that respond to climate over the course o f many years adding to the 

complexity and even the possibility that the plants themselves may impact the course of 

changes in the climate system. Such a coupled feedback may be at work in the Arctic. 

Higher spatial and temporal resolution NDVI time series, as well as model studies, will 

be necessary to fully diagnose linkages between the landscape and the greater 

atmosphere-climate system.
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Figure 3.1. Magnitude change from 1982-2011 based on a linear trend of (a) time- 
integrated NDVI (TI-NDVI) and May-August open water (percent), (b) seasonal 
maximum NDVI (maxNDVI) and May-August open water (percent), (c) magnitude of 
change in sea ice break-up (as represented by 50% sea ice concentration) and summer 
warmth index, topographic features of Alaska and (d) the Treshnikov regions (black 
lines) along with weather observation stations used in this study. TI-NDVI and 
maxNDVI increased in the Beaufort and Chukchi regions and decreased in the Bering. 
SWI increased, except in area of the Beaufort and Bering regions. Sea ice declined in 
spring and summer. Area average trends have been found to be significant at the 95% or 
greater level in Alaska for maxNDVI. TI-NDVI, and open water (see Figures 3.2 and 
3.10).
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Year Year

Figure 3.2 Full tundra TI-NDVI and maxNDVI, summer warmth index and 100km open 
water for Beaufort (a,b) and East Chukchi (c,d) tundra regions. TI-NDVI, maxNDVI, 
SWI and open water are all increasing in both tundra regions. The magnitude change is 
based on a linear trend for each variable from 1982 to 2011 and is shown by the colored 
numbers, where trends significant at the 95% (90%) level greater are bold (italic). The 
units of the trends are unitless per 30 years for maxNDVI and TI-NDVI, °C month per 30 
years for SWI and percent cover per 30 years for open water.
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Figure 3.3. Beaufort tundra region long-term mean and weekly magnitude change from 
1982-2011 in (a) 100km sea ice concentration, (b) surface temperature and (c) bi-weekly 
NDVI. Trends are shown in gray. Sea ice is declining most in June and October, with 
lesser reductions throughout the summer. Surface temperature has mixed trends 
throughout the year with increasing temperatures in summer in May and August and 
declines in late June and July. NDVI is increasing throughout the summer with the 
greatest increases during the peak of the growing season.
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Figure 3.4 East Chukchi tundra region long-term mean and weekly magnitude change 
from 1982-2011 in (a) 100km sea ice concentration, (b) surface temperature and (c) bi
weekly NDVI. Trends are shown in gray. Sea ice is declining most in early June and late 
October, with small declines throughout the summer. Surface temperature has mixed 
trends throughout the year with increasing temperatures in summer in May and August- 
September and declines in late June and July. NDVI is increasing uniformly from late 
June until November, small or decreasing trends are occurring in May.
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Figure 3.5 Weekly total column ocean heat content climatology and trend magnitude 
(1988-2011) for the (a) Beaufort, (b) East Chukchi, and (c) East Bering 100km zones. 
Heat content is increasing in Beaufort and East Chukchi while it is declining in the East 
Bering. This consistent with the weekly trends in sea ice concentration in each zone.



Figure 3.6. Snowmelt date magnitude change in days (2000-2011) derived from the 
MODIS Terra 8-day snow cover data set (a) and station snowmelt date time series (b). 
MODIS snowmelt was defined as the 8-day period when snow cover remained less than 
5% for the summer. Station snowmelt date is defined as day when snow depth remained 
less than 2.54cm (1 inch) for the summer. The numbers in parentheses in (b) show the 
magnitude change (units of days) based on a linear trend for each station for the number 
of years observed since 1982, where trends significant at the 95% (90%) level greater are 
bold (italic). Snowmelt is generally occurring earlier across northern Alaska (except 
Barrow) and occurring generally later in the southwest. Long-term trends at the stations 
are in agreement with the short-term trends in MODIS.
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Figure 3.7. Mean sea level pressure climatology (contour) and magnitude change 
(shaded) over period 1982-2009 for (a) June-August, (b) June, (c) July, and (d) August. 
Units axe hPa. The Beaufort High has been strengthening throughout the summer in all 
months except in July. The climatological center of the Beaufort High is located in purple 
box in panel a during Jun-Aug.
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Figure 3.8. Beaufort High (BH) area average mean sea level pressure (MSLP) for (a) 
June, (b) July, (c) August, and (d) June-August. The box defining the BH is shown in 
figure 4.6a (160-135°E, 70-76°N). The BH is strengthening in June and August, and 
weakening in July. The numbers in parentheses show the magnitude change (units of 
hPa) based on a linear trend for each variable from 1982 to 2009, where trends significant 
at the 95% (90%) level greater are bold (italic).
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Figure 3.9. Weekly station long-term (1982-2011) average cloudiness percent (blue lines) 
and trend (gray bars) at (a) Barrow, (b) Kotzebue, and (c) Bethel. All three stations 
experience their maximum cloudiness in summer. Trends are fairly small in the summer 
compared with the transition times when the climatological cloudiness is either 
increasing or decreasing.
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Figure 3.10 Time series for East Bering full tundra (a) TI-NDVI and maxNDVI, (b) 
summer warmth index and open water. TI-NDVI and maxNDVI are declining, while 
SWI and open water are all increasing. The magnitude change based on a linear trend for 
each variable from 1982 to 2011 is shown by the colored numbers, where trends 
significant at the 95% (90%) level greater are bold (italic). The units o f the trends are 
unitless per 30 years for maxNDVI and TI-NDVI, °C month per 30 years for SWI and % 
per 30 years for open water.
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Figure 3.11 East Bering tundra region long-term mean and weekly magnitude change 
(1982-2011) in (a) 100km sea ice concentration, (b) surface temperature and (c) bi
weekly NDVI. Sea ice is absent in the summer in this region and is slightly decreasing in 
May and October. Sea ice is increasing periodically in the rest of the year. Temperatures 
are decreasing in June and July but are increasing in May and August. NDVI is 
decreasing throughout the summer with increases in the fall. The greatest declines are 
dining the initial growing season.
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Figure 3.12 March-April (a) SSM/I snow water equivalent (SWE) magnitude change 
(1987-2007) and (b) station snow depth. SWE is increasing in northern Alaska and 
decreasing in the southwest. The numbers in parentheses in (b) show the magnitude 
change (units of mm) based on a linear trend for each station for the number of years 
observed since 1982, where trends significant at the 95% (90%) level greater are bold 
(italic). All stations are increasing in average snow depth for 1982-2011. Bethel is 
decreasing in snow depth during the period of the SSM/I but is increasing in its full 
record.
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Figure 3.13. Monthly trends in SSM/I SWE (1987-2007) for the (a) lowlands/Yukon 
Delta and (b) Seward Peninsula sub-regions of the East Bering tundra region. The Seward 
Peninsula has greater SWE on average than the lowlands, however the spring trends are 
weaker in comparison and have opposite sign in April. SWE has declined in October- 
January in both sub-regions.
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Figure 3.14 Summary of the key climate drivers of TI-NDVI for (a) Beaufort, (b) East 
Chukchi and (c) East Bering coastal tundra regions. In all three regions earlier snowmelt 
results in increased TI-NDVI, especially in the early season. In the Beaufort and East 
Chuckhi a weaker Beaufort High (BH) is linked with reduced cloudiness and there is also 
a complex linkage with the sea breeze the circulation. The sea breeze circulation is also 
influenced by the land-sea temperature contrast, and so changes in the surface 
temperature can feedback on the strength of the BH. Reduced winter snow water 
equivalent (SWE) is linked with reduced maxNDVI in the East Bering.
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Table 3.1. Correlations between station snow melt date and Ml tundra time series of 
Beaufort, Chukchi and Bering TI-NDVI (TI) and May-June (MJ) NDVI. Correlations 
significant at the 95% or greater based on the student’s t test shown in bold.

Bethel Kotzebue Kuparuk Umiat Barrow
Beaufort TI 0.06 -0.04 -0.17 -0.49 -0.25
Chukchi TI -0.10 -0.19 -0.24 -0.56 -0.44
Bering TI -0.51 -0.25 -0.18 -0.53 -0.23
Beaufort MJ -0.10 -0.03 -0.49 -0.77 -0.44
Chukchi MJ -0.25 -038 -0.38 -0.66 -0.60
Bering MJ -0.48 -0.38 -0.06 -0.35 -0.23
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Table 3.2 Correlations between summer season and monthly Beaufort High MSLP index 
and time series of Treshnikov full tundra region TI-NDVI (TI) and maxNDVI (max) and 
monthly station cloud cover. Correlations significant at the 95% (90%) or greater based 
on the student’s t test shown in bold (italics). The strongest correlations are with the July 
Beaufort High and indicate that a weaker high results in higher NDVI in the Beaufort and 
Chukchi region. Bering TI-NDVI is reduced with a stronger Jun-Aug Beaufort High.

Jun-Aug June July August
Beaufort max 0.00 0.19 -0.47 0.28
Beaufort TI -0.21 0.10 -0.53 0.03
Chukchi max 0.19 0.46 -0.32 0.24
Chukchi TI -0.15 0.09 -0.42 0.04
Bering max 0.08 -0.15 0.19 0.10
Bering TI -0.38 -0.34 -0.18 -0.23
Bethel June Clouds 0.43 0.31 0.18 0.35
Bethel July Clouds -0.03 -0.04 -0.06 0.05
Bethel Aug Clouds -0.29 -0.18 -0.07 -0.31
Barrow June Clouds -0.34 -0.31 0.12 -0.48
Barrow July Clouds -0.31 -0.30 -0.43 0.10
Barrow Aug Clouds -0.17 -0.02 -0.03 -0.27
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Chapter 4 Climate Divisions For Alaska Based On Objective Methods1 

Abstract

Alaska encompasses several climate types, due to its vast size, high latitude 

location, proximity to oceans and complex topography. There is a great need to 

understand how climate varies regionally for climate research and forecasting 

applications. While climate type zones have been established for Alaska based on 

seasonal climatologies, there has been little attempt to construct climate divisions, which 

identify regions with consistently homogeneous climate variability. In this study, cluster 

analysis was applied to monthly average temperature data from 1977-2010 at a robust set 

of weather stations to develop climate divisions for the state. Mean-adjusted AVHRR 

surface temperature estimates were employed to fill in missing temperature data when 

possible. Thirteen climate divisions were identified based on the cluster analysis and 

subsequently refined using local expert knowledge. Division boundary lines were drawn 

encompassing the grouped stations following major surrounding topographic boundaries. 

Correlation analysis between station and gridded downscaled temperature and 

precipitation data supported the division placement and boundaries. The new divisions 

north of the Alaska Range were the North Slope, West Coast, and Central, Northeast and 

Northwest Interior. Divisions south of the Alaska Range were Cook Inlet, Bristol Bay, 

Aleutians, Northeast and Northwest Gulf, and North, Central, and South Panhandle. 

Correlations with various Pacific and Arctic climate teleconnection indices showed

bieniek, P., U. Bhatt, R. Thoman, H. Angeloff, J. Partain, J. Papineau, F. Fritsch, E. Holloway, J. Walsh, 
C. Daly, M. Shulski, G. Hufford, D. Hill, S. Calos, and R. Gens, 2012: Climate divisions for Alaska based 
on objective methods. J. Appl. Meteor. Climatol. 51 ,1276-1289.



numerous significant relationships between seasonal division average temperature and 

the Arctic Oscillation, Pacific-North American Pattern, North Pacific Index, and Pacific 

Decadal Oscillation.
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4.1 Introduction

The climate of a geographic location is strongly linked to its latitude, elevation, 

and proximity to oceans. There has long been a great need to understand how the climate 

varies by region for climate research and forecasting applications. Climate-classification 

techniques have often been employed to account for regional variability; the most well 

known being the Koeppen Scheme (Koeppen 1923) which broadly classifies regions by 

their mean temperature and precipitation. The Contiguous United States (CONUS) was 

first subdivided into broad climate regions in 1909 (Guttman and Quayle 1996). Initially 

these regions were based solely on river drainage basins but by as early as 1912 more 

robust measures dividing the regions using mean temperature were employed (Guttman 

and Quayle 1996). The National Climatic Data Center (NCDC) currently maintains the 

set of official climate divisions for the United States.

Due to Alaska’s large geographical extent, complex terrain, and proximity to 

oceans and sea ice its climate is highly regionalized. Zones o f homogeneous climate type 

were first outlined in the 1920s by general examination of the mean temperature of the 

few weather observation stations available at the time (Fitton 1930; red dashed line in 

Figure 4.1). While some of these initial boundaries intersected major terrain barriers, 

most notably the Brooks Range, Fitton (1930) noted the critical role o f terrain boundaries 

in defining regional climate zones in Alaska. Later, a new set of boundaries were 

developed essentially based on drainage basin regions (Searby 1968), and are currently 

considered as the official climate divisions for Alaska by NCDC (green dashed line in 

Figure 4.1; National Climatic Data Center 2002). The most recent update is by Shulski
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and Wendler (2007), who considered the NCDC climate divisions while updating the 

Alaska climate zones on the basis of annual mean temperature and precipitation (blue 

solid line in Figure 4.1). Overall, 10-11 general climate zones have been traditionally 

identified with disagreements in the exact locations of the boundaries, some of which 

bisect major terrain barriers. Studies have also identified zones of similar surface 

characteristics (i.e. ecoregions) in Alaska (Gallant 1995; Simpson et al. 2007). Previous 

Alaska climate regions were all based on seasonal climatologies or annual means in 

temperature and precipitation. In this study, we employ cluster analysis on observed 

station temperature as an objective method to independently develop climate divisions for 

Alaska based on climate variability, not long-term seasonal climatologies.

There is a pressing need to define official climate divisions for Alaska. The past 

climate zones defined for Alaska were based on short records of sparse station data and 

were meant to provide climate type zones, thus they do not necessarily coincide with 

regions of homogenous climate variability. While climate type zones give valuable 

information about the general characteristics of the average season, they are not as useful 

for seasonal climate forecasting and research applications as they do not give any 

information on year-to-year variability. There is now available a relatively long time 

length of station and remotely sensed data as well as robust objective methods to properly 

identify climate divisions for Alaska that fill this need.

Climate divisions have a wide variety of applications beyond simply identifying 

regions with similar climate types and variability. In the CONUS, studies have shown the 

influence of climate teleconnection indices in each division (Wolter et al. 1999; Budikova
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2005), which is highly valuable for seasonal climate forecasting. The CONUS climate 

divisions are currently used as the zones for the seasonal climate predictions made by the 

Climate Prediction Center (CPC). Climate divisions are also widely used for hydrological 

applications such as drought monitoring in the CONUS. As a result, climate divisions not 

only give useful information on the spatial extent of regional climate variability in 

Alaska; they can also be used in the evaluation of diverse climate related problems.

A wide range of large-scale climate teleconnections affects Alaska in all seasons. 

One of the strongest links is between winter temperatures and the El Nifio Southern 

Oscillation (ENSO) where the positive phase of ENSO results in above normal 

temperatures (Papineau 2001). ENSO has also been shown to influence spring 

temperatures and consequently Interior Alaska river ice breakup (Bieniek et al. 2011). 

North Pacific teleconnections such as the North Pacific Oscillation/West Pacific Pattern 

(Linkin and Nigam 2008), shifts in the Pacific Decadal Oscillation (PDO; Hartmann and 

Wendler 2005) and other climate indices (Bourne et al. 2010) have all been linked with 

the climate of Alaska in some way. Sea ice also plays an important role and has been 

linked with summer land temperatures and tundra vegetation along the Arctic and 

western Alaska coastlines (Bhatt et al. 2010). In all of these studies it is apparent that 

climate teleconnections impact different parts of Alaska in diverse ways. Therefore, 

regions with relatively homogeneous climate variability forced by a variety of different 

climate teleconnections must exist for Alaska.

Cluster analysis is a method that is commonly used to group data based on the 

degree of similarity in variability and was first applied to the atmospheric sciences by
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Wolter (1987). Cluster analysis has been employed to determine climate zones in the 

CONUS based on station data (Fovell and Fovell 1993) and has also been applied to 

diverse climates such as Turkey (Unal et al. 2003) ajid Saudi Arabia (Ahmed 1997). 

Cluster analysis has also been applied regionally in the United States to identify climate 

zones in the northern plains (Bunkers et al. 1996), the northeast (DeGaetano 1996) and 

the Carolinas (Rhee et al. 2008). Wolter and Allured (2007) developed climate divisions 

for the CONUS using an approach that is based on cluster analysis (e.g. Fovell and Fovell 

1993), but using a simplified method to process the jdata and correlation analysis for 

verification. In our study we will draw on elements from all of these studies to form an 

objective basis for climate divisions in Alaska. While our analysis relied heavily on 

objective methods, Alaska’s vast size and relatively sparse station network, local expert 

knowledge was necessary to refine the final division boundaries. Local expert knowledge 

has been demonstrated to benefit scientific understanding of weather systems in Samoa 

(Lefale 2010) as well as land-cover changes in South Africa (Chalmers and Fabricius 

2007).

The novel aspects of this study include: identifying regions of homogeneous 

climate variability to develop climate divisions in Alaska based on monthly station 

temperature, testing the division boundaries using gridded downscaled temperature and 

precipitation data, determining key seasonal climate teleconnection linkages with 

temperature in each climate divisions, and using AVHRR surface air temperature to fill 

gaps in station temperature data.
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4.2 Data and methods

4.2.1 Meteorological data

Meteorological data were obtained for stations throughout Alaska and 

neighboring Canada (Figure 4.1). Monthly average temperature and accumulated 

precipitation were obtained from the National Climatic Data Center (NCDC), the Global 

Summary of the Day (GSOD) database at NCDC, Environment Canada (EC), the Alaska 

Climate Research Center (ACRC), and the National Weather Service (NWS). The 

location and source for each station are given in Table 4.1 (locations are plotted in Figure 

4.1). The overall goal for the selection of stations for the analysis was to maximize the 

spatial coverage while minimizing the amount of missing data. Stations were also 

selected to achieve a relatively even distribution of stations throughout the state to reduce 

analysis bias. This required selecting a single station from groups of stations that were in 

close proximity to each other and was especially important in the Anchorage area and 

Southeast Alaska. Unfortunately, few stations located at high elevation locations had 

sufficient record length to be included in our analysis and the underrepresentation of high 

altitude locations is an ongoing concern in studies like this. The period of analysis was 

selected to be 1977-2010 since evaluation of the station data inventories revealed that the 

data coverage is quite sparse prior the mid 1970s. Canadian stations were included in the 

cluster analysis as a buffer to reduce the impact of the artificial boundary at the U.S.- 

Canadian boarder. The Canadian stations were not used beyond the cluster analysis nor 

assigned climate divisions.
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Satellite based monthly land surface temperature from the Advanced Very High 

Resolution Radiometer (AVHRR) is available for the period 1982-2010 on a 25km 

square grid. The surface temperature data, based on the infrared channel, were enhanced 

using an improved cloud masking dataset and were calibrated using in situ surface air 

temperature (Comiso 2003). While the AVHRR data have been calibrated using in situ 

data, they add an independent perspective to the analysis o f station data and provide a 

source to fill in station data gaps.

Gridded downscaled temperature and precipitation data for Alaska (Hill and Calos 

2011) were used to validate the climate division boundaries. These data were derived 

from 1961-2009 station data. The complete list of available stations was filtered based on 

a minimum record length criterion, yielding 322 and 261 stations for temperature and 

precipitation respectively. Monthly anomalies were created by comparing station data to 

a 1971-2000 climate normal, obtained from the Parameter-elevation Regressions on 

Independent Slopes Model (PRISM; Simpson et al. 2005). These scattered anomalies 

were then interpolated onto a 2km x 2km grid, using the splines with tension 

interpolation method. Finally, synthesis of the anomaly and normal grids produced the 

gridded monthly precipitation and temperature fields.

Values of various climate indices for the period 1977-2010 were used in this 

analysis to identify possible seasonal large-scale climate teleconnection linkages with 

temperature within each division. Indices of West Pacific Pattern (WP), East 

Pacific/North Pacific Pattern (EP/NP), and Pacific-North American Pattern (PNA) were 

obtained from the CPC (online at: http://www.cpc.ncep.noaa.gov/data/teledoc/pna.shtml).
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Also retrieved from CPC were the Arctic Oscillation (AO; online at: http://www.cpc. 

ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml), Southern Oscillation 

Index (SOI), and Nifio region 3.4 (NIN03.4) sea surface temperature (SST) anomalies 

(online at: http://www.cpc.ncep.noaa.gov/data/indices/). The North Pacific Index (NPI; 

online at: http://www.cgd.ucar.edu/cas/jhurrell/npindex.html) and the PDO (online at: 

http://jisao.washington.edu/pdo/) were also used in this analysis.

4.2.2 Analysis methods

Our analysis followed this basic workflow: (1) the data were normalized; (2) 

cluster analysis was performed to group the stations; (3) the appropriate number of 

clusters was determined; (4) clustering method results were compared to determine the 

optimal groupings; (5) the final divisions were validated with correlation analysis and 

refined by manual inspection of regional climate characteristics using the local expert 

knowledge of experienced weather forecasters. Unfortunately, station precipitation was 

found to be too sparse to be suitable for cluster analysis, therefore temperature alone was 

used. However, precipitation data were used along side temperature in the validation 

when possible.

Three clustering methods were selected to group the stations to identify regions 

with consistently homogeneous climate anomalies: Wards, average linkage, and &-means 

Methods (Wilks 2006). Using multiple methods allowed for the comparison results, as 

each method uses different clustering assumptions and thus has a unique bias. In this 

case, the results were similar among the three methods allowing us to focus on the Wards

http://www.cpc
http://www.cpc.ncep.noaa.gov/data/indices/
http://www.cgd.ucar.edu/cas/jhurrell/npindex.html
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method for simplicity. The Wards method looks for the minimum variance or error sum 

of squares (ESS) among potential groups of stations to find the appropriate cluster 

configuration at each iteration. The ESS, or minimum variance distance measure is given 

as:

*=1  /=1 *=1

Where x  is the cluster mean, G is the number of clusters, ng is the number of stations and 

K is the number of time steps (Wilks 2006). Essentially, the difference between each 

station and the cluster average to which it was joined is squared then summed. To 

determine the optimal number of clusters, the ESS was visually checked for sudden 

jumps associated with a decreasing number of clusters. In other words, as the number of 

clusters decreases, the stations become increasing dissimilar to the clusters to which they 

are being joined. The results from all three methods were then compared to determine 

possible uncertainties or problems with the groupings of the stations.

In the ESS, relatively large station-cluster average differences would be amplified 

because the difference is squared and relatively large monthly and seasonal means would 

quickly dominate over the smaller magnitudes of climate variability in the formation of 

clusters (Wilks 2006). Consequently, the data were processed prior to clustering since 

mean temperature and precipitation varies greatly by season and geographic location in 

Alaska. While complex methods have been engaged such as Principal Component 

Analysis in previous studies (e.g. Fovell and Fovell 1993), our study employed a simple 

method to normalize the data. Following Wolter and Allured (2007), a three-month
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moving mean was applied to the monthly station data. The resulting smoothed data were 

normalized by subtracting their corresponding three-month average and dividing by the 

standard deviation. Normalizing by the individual three-month period has the effect of 

equalizing the seasonal variance of the data. The smoothing also reduces the impact of 

isolated extreme monthly anomalies on the clustering results. Using a simplified method 

was preferred given the sparse number of stations available in Alaska.

Cluster analysis cannot operate with missing data, therefore gaps must either be 

filled in or the entire record removed. AVHRR monthly average land surface 

temperature is available for Alaska from 1982-2010. Correlation analysis comparing the 

station temperature with the AVHRR pixel nearest the station revealed correlation 

coefficients greater than 0.9 at all stations north of the Alaska Range (Table 4.1), with 

lower values south of the mountains. Missing values were filled using AVHRR for many 

station temperature time series and was guided by the correlation coefficients and visual 

comparison between the station and AVHRR data Where AVHRR was used it was first 

bias-corrected for the slight differences in monthly means. Unfortunately the AVHRR 

was not suitable for filling missing station values in coastal areas south of the Alaska 

Range, as the means were too dissimilar. This was likely due to interference from mixed 

ocean and land pixels, coupled with the complex topography and ground cover of the 

region. When AVHRR could not be used missing periods were filled with the long-term 

monthly mean for that station. The percent of missing data filled with AVHRR at each 

station is shown in Table 4.1.
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Correlation analysis was applied to the station temperature and precipitation data 

to validate the final divisional memberships. Division average temperature and 

precipitation values were calculated based on the stations within each division. Annual 

and seasonal cross-correlations were carried out between the individual stations and the 

division averages.

4.3 Results

43.1 Constructing the divisions

Inspection of the ESS (Figure 4.2) showed that the distance between clusters and 

their members began to increase relatively rapidly after 13 clusters. The result of the 

Wards method is shown in Figure 4.3 for the 13-cluster solution (11 clusters were in 

Alaska and 2 entirely in Canada). In this case, missing station data were filled using the 

mean-adjusted AVHRR land surface temperature when possible and others were filled 

using the long-term monthly mean. All three methods yielded quite consistent results 

when using a corresponding 13 or 14-cluster solution, but the Wards method is presented 

for simplicity. The clustering result served as a starting point for the analysis based on 

local expert knowledge that follows.

For comparison, cluster analysis was also carried out when the missing station 

temperature was exclusively filled with the long-term monthly means. The result (not 

shown) yielded a similar set of 13 clusters, as in Figure 4.3, with minor differences. 

Therefore, while there was some sensitivity in the clustering results to how the missing 

data were filled, the overall number of clusters and general locations of the divisions did
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not appear to strongly influence the final outcome. This was expected as only those 

stations with minimal missing data were used in our analysis. Furthermore, in spite of the 

problems encountered with the southern coastal data, the AVHRR captures the variability 

in areas north of the Alaska Range and was found to be useful in filling gaps in station 

temperature.

The station data and AVHRR were also clustered in different configurations as an 

additional test. Cluster analysis conducted on the full gridded AVHRR surface 

temperature (not shown) revealed boundaries that broadly resembled the Alaska 

ecodivisions (Gallant 1995) when using the Wards Method. It is not surprising that the 

AVHRR clusters resembled the ecodivisions, given that both are sensitive to surface 

characteristics (e.g. vegetation), many of which strongly influence or are influenced by 

the climate. However, possibly due to AVHRR data quality issues in the southern coastal 

regions, conflicting results among the different clustering methods indicated that the 

AVHRR could not be used solely to construct the divisions. In the data sparse areas of 

northern Alaska, proxy “station” values were estimated from the AVHRR data and added 

to the observed station dataset to test their usefulness. However, they did not appear to 

add useful information to the analysis, as they tended to cluster together.

The Climate Research Unit (CRU) TS 3.0 (Mitchell and Jones 2005) and the 

North American Regional Reanalysis (NARR; Mesinger et al. 2006) gridded temperature 

and precipitation datasets were also evaluated as potential candidates for determining the 

climate divisions (not shown). As the CRU data were interpolated using a simple method 

on a relatively sparse station network, the clusters unrealistically crossed major terrain
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boundaries such as the Brooks and Alaska Ranges. The NARR precipitation data 

appeared to cluster around an artificial north-south boundary centered along the longitude 

of Fairbanks. While the NARR precipitation was problematic, the NARR temperature 

clusters appeared to be much more physically realistic, but an optimal number of clusters 

based on the ESS could not be identified. While the cluster analyses of the NARR and 

CRU gridded datasets were unsuitable in themselves for determining the climate 

divisions, their 13-cluster solutions were broadly similar to the locations of the divisions 

based on the station data and appear to support our findings.

Based on the clustering result of the Alaska stations in Figure 4.3, preliminary 

climate division boundaries were drawn by visually identifying major terrain features that 

surrounded the groups of stations. Given the spatial distribution of the clusters of stations, 

major terrain features appeared to be natural barriers between regions. Local expert 

knowledge of experienced National Weather Service forecasters was then used to 

improve and refine the division boundaries (Figure 4.4). At this step it was decided that 

Juneau and Haines should be grouped independently from each other to form North and 

Central Panhandle divisions respectively because of their seasonal climate differences. 

Annette and Ketchikan remained grouped together in the South Panhandle division. In 

southwest Alaska, two divisions were created encompassing areas along and inland from 

Bristol Bay and the south-central coast including Kodiak (Northwest Gulf) also based on 

seasonal differences in climate. Having these two divisions divided was also consistent 

with the historical climate type regions in Figure 4.1, which were divided by the Aleutian 

Range, a formidable mountain barrier. The reasons for deviating from the cluster results



will be discussed further when the climate characteristics o f the individual divisions are 

presented in section 4.3.3.

4.3.2 Sensitivity analysis

Cross-correlation of station data with the division averages (not shown) yielded 

no case where a station was correlated higher with a different division for annual 

temperature and precipitation. Even when evaluated seasonally (not shown) very few 

stations had a higher correlation with another division average than their own. The few 

cases of stations correlating higher with another division tended to occur in the southern 

coastal areas. There were no cases were the correlation was consistently higher with 

another division throughout multiple seasons that might have warranted changing the 

station to another division.

To validate the division lines, the station division average temperature and 

precipitation were correlated with the 2km downscaled temperature and precipitation data 

for the entire state. The division membership of each point in the downscaled data was 

identified based on our lines. The time series for each grid point was then correlated with 

all 13 division averages for both temperature and precipitation. Each time a point had a 

higher correlation with another division other than its own the sum for that point was 

increased by 1. Ideally every point should have a count o f zero, implying that it was best 

correlated with its own division. For both temperature and precipitation there were only a 

few areas with higher correlation with other division average time series than their own 

(Figure 4.5). Most areas with elevated counts were located in the Northeast Interior
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division, which was based on a single station (Fort Yukon). The highest counts, and 

subsequently the highest uncertainty, occurred with precipitation (Figure 4.5b) with the 

highest counts along the boundary between the Southeast Interior and the Northeast Gulf 

divisions. With the exception of the Northeast Interior, every division was regularly 

correlated best with the division average temperature and precipitation from the stations 

assigned to that division. Overall, the positions of the division boundaries appear to be 

quite reasonable by this validation method.

4.3.3 Characteristics of the divisions

The long-term monthly average temperature and precipitation for each station and 

the average for all stations within each division are shown in Figure 4.6. The overall 

climate regimes of the individual stations within any division were generally consistent in 

seasonality and magnitude. The divisions with the highest precipitation amounts are 

along the southern coastal areas of Alaska, where the annual temperature ranges also tend 

to be the smallest in the state. The most extreme temperature ranges occur in the Interior 

where precipitation amounts are also the lowest in the state. Most divisions have the 

highest precipitation amounts in late summer or fall.

In section 4.3.1 the Bristol Bay stations were separated from Kodiak and Homer. 

Bristol Bay then became its own division (Figure 4.6k), Homer was added to the Cook 

Inlet division (Figure 4.6f), and Kodiak became part of the Northwest Gulf division 

(Figure 4.6m). When comparing the seasonal climates of the individual stations with their 

divisions (Figure 4.6k,f,m) it can be seen that the Bristol Bay stations tend to have
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different seasonalities in precipitation and temperature than Kodiak and Homer. This was 

a case where, while these stations tended to share the same year-to-year climate 

anomalies, differences in their seasonal climate regimes suggest they were best grouped 

separately. This distribution of the stations was also consistent with the historical climate 

type regions (see Figure 4.1). A similar situation occurred when Haines and Juneau were 

grouped together with Dease Lake in Canada by the cluster analysis. Haines (North 

Panhandle, Figure 4.6h) tends to get less precipitation than Juneau (Central Panhandle, 

Figure 4.6j) from late spring through summer. Haines is also rain shadowed by the 

coastal mountains and therefore tends to be less cloudy than Juneau. The geographical 

and seasonal characteristics of each climate division are described next.

The North Slope division is shown as cluster 3 in Figure 4.3 and includes the 

stations at Barrow, Umiat, Barter Island and Prudhoe Bay. This division is the 

northernmost in Alaska and encompasses the arctic tundra portion of Alaska north of the 

Brooks Range. The division is bounded by the Arctic Ocean on the north and west and 

the Brooks Range on the south. The Arctic Ocean is covered by sea ice in winter, but has 

variable sea ice in summer. The climate of the region (Figure 4.6a) is among the driest 

with a maximum precipitation of less than 5 cm in the wettest summer month and 

seasonal average temperatures ranging from below -25°C in winter to above 10°C in 

summer.

The Central Interior division is shown as cluster 5 in Figure 4.3 and includes the 

stations at Betties, Tanana, Galena and McGrath. The region is bounded by the Brooks 

Range to the north and the Alaska Range to the south. It is relatively far from ocean
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influences and has a continental climate (Figure 4.6b) with relatively low precipitation 

compared with the coastal regions.

The Northeast Interior division is shown as cluster 11 in Figure 4.3 and includes 

the station at Fort Yukon. Since this division is far from the ocean, it has a very 

continental climate with the largest seasonal mean temperature range in Alaska (Figure 

4.6c). This region is bounded to the north by the Brooks Range and to the south and west 

by the Yukon-Tanana Uplands. Precipitation here is amongst the lowest in the state.

The Southeast Interior division is shown as cluster 8 in Figure 4.3 and includes 

the stations at Fairbanks, McKinley Park, Big Delta, Eagle, Northway and Gulkana. This 

region is bounded to the north by the Yukon-Tanana Uplands and to the south by the 

Chugach Mountains, which block southerly maritime influence. The seasonal ranges in 

temperature (Figure 4.6d) are similar to those of the Central and Northeast Interior 

divisions and can be characterized as continental. This division has a summer maximum 

in precipitation.

The West Coast division is shown as cluster 4 in Figure 4.3 and includes the 

stations at Kotzebue, Nome and Bethel. This division is bounded to the west by the 

Bering and Chukchi Seas, to the east by the Kuskokwim Mountains, and to the north by 

the Brooks Range. The seasonal temperature range (Figure 4.6e) is more moderate than 

that of the Interior divisions. Precipitation is higher than Interior divisions but much 

lower than the southeast coastal regions of Alaska and this division has a summer 

maximum similar to the Interior.
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The Cook Inlet division is shown as cluster 1 and part of 10 in Figure 4.3 and 

includes the stations at Talkeetna, Anchorage, Kenai and Homer. This is a coastal 

division that straddles Cook Inlet and is bounded by the Alaska Range and the Chugach 

Mountains. The seasonal temperature range (Figure 4.6f) is maritime with similar 

precipitation seasonality (although less in amount) to that of the Interior and West Coast 

divisions.

The Northeast Gulf division is shown as cluster 7 and part o f 1 in Figure 4.3 and 

includes the stations at Valdez, Cordova, Yakutat, Elfin Cove, and Sitka. This division is 

situated along the northeast Gulf of Alaska with the Chugach Mountains to the north. It 

has a relatively small annual temperature range (Figure 4.6g) and receives amongst the 

highest seasonal average precipitation, with maximum values in fall.

The North Panhandle division is shown as cluster 9 in Figure 4.3 and contains the 

station at Haines. This division is in the interior of the Southeast Panhandle of Alaska and 

is bounded on all sides by mountains. The annual temperature range (Figure 4.6h) is also 

moderate like its neighboring division, Northeast Gulf. However it receives less 

precipitation in all seasons than the Northeast Gulf division. This region has its maximum 

precipitation in the fall.

The South Panhandle division is shown as cluster 2 in Figure 4.3 and contains the 

stations at Ketchikan and Annette. This division includes the southernmost coastal areas 

of Alaska and is bounded to the east by the Coast Mountains. Average monthly 

temperatures (Figure 4.6i) have small variability throughout the year and average 

precipitation is among the highest in the state with the maximum occurring in the fall.
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The Central Panhandle division is shown as cluster 9 in Figure 4.3 and includes 

the station at Juneau. This division is located in the Interior of the southeast with 

mountains to the east and west. Monthly average temperatures (Figure 4.6j) are quite 

moderate and this division receives less precipitation than the Northeast Gulf and South 

Panhandle on average.

The Bristol Bay division is shown as cluster 10 in Figure 4.3 and includes the 

stations at Iliamna and King Salmon. This division is located along the southwest coast of 

Alaska along Bristol Bay and extends north to the Kuskokwim Mountains and east and 

south to the Aleutian Range. Monthly average temperatures (Figure 4.6k) are relatively 

moderate. Precipitation values are much lower than in the Northwest Gulf division and 

are maximum during late summer.

The Aleutians division is shown as cluster 12 in Figure 4.3 and includes the 

stations at Cold Bay and St. Paul. This division included the entire Aleutian Island chain 

and St. Paul Island. This division is bounded by the Pacific Ocean to the south and Bering 

Sea to the north. Monthly average temperatures (Figure 4.61) have the smallest range of 

any of the divisions and have relatively low precipitation compared to the Northeast and 

Northwest Gulf divisions. Maximum precipitation occurs from late summer through fall.

The Northwest Gulf division is shown as the southern portion of cluster 10 in 

Figure 4.3 and includes the station at Kodiak. This division, located along the 

northwestern part of the Gulf of Alaska, includes Kodiak Island, coastal areas south of 

the Aleutian Range on the Alaska Peninsula and the southernmost portion of the Kenai 

Peninsula. Monthly average temperatures (Figure 4.6m) are moderate and precipitation
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amounts are lower than the Panhandle divisions with the maximum generally occurring in 

late fall and winter.

43.4 Teleconnections

An example of the usefulness of these climate divisions can be found when the 

division average temperatures were correlated with climate indices. A set of climate 

teleconnection indices from the Pacific/arctic region were correlated, after being linearly 

detrended, with each division average temperature to demonstrate the individual links 

with the large-scale climate in each season for 1977-2010. Table 4.2 shows the 

teleconnection indices that were significantly correlated at the 95% or greater level based 

on a t-test with the division average temperatures each season.

Many of the climate divisions were significantly correlated with the Arctic 

Oscillation (AO) throughout much of the year. The AO (Thompson and Wallace 1998) is 

a leading mode of northern hemisphere sea level pressure variability and effects the 

large-scale circulation. Table 4.2 shows that the AO is significantly negatively correlated 

with temperature, or the negative phase results in warm temperature anomalies, in 

multiple climate divisions in each season. Note that most o f Eurasia and the continental 

US are colder than normal during the negative phase of the AO (See graphical analysis 

online at: http://jisao.washington.edu/analyses0500/tempprecipao.ldeg.gif).

ENSO has been shown to be a key driver in the climate of Alaska (Papineau 

2001; Bieniek et al. 2011). Evaluation of tropical Pacific, or ENSO-related, climate 

indices showed a substantial and widespread relationship with significant correlations
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occurring in each division in at least one season of the year. The ENSO-specific indices 

evaluated were the SOI and the Nino 3.4 SST anomaly. The PNA and is a natural mode 

of atmospheric variability that extends into the Alaska region (Wallace and Gutzler 

1981). The PNA has been shown to be linked with ENSO (Horel and Wallace 1981) as 

well as purely midlatitude processes (Dole 1983). O f the ENSO related indices, the PNA 

had by far the most significant correlations. This seems to indicate that the PNA may be 

the primary pathway for the linkage between ENSO and the seasonal average temperature 

in most of the climate divisions. In all cases the PNA was positively correlated with 

temperature, which means that the positive phase o f the PNA (which corresponds to the 

positive phase of ENSO) tends to result in above average temperatures in those divisions 

where the correlations were significant. Interestingly, the only time that ENSO had an 

opposite sign relationship from the rest of the divisions was for the North Slope division 

in winter (Table 4.2), where there was a positive correlation with the SOI. Our findings 

are in general agreement with the aforementioned studies.

In the North Pacific, several teleconnection indices were correlated with the 

division average temperatures. The NPI, a measure of the strength of the Aleutian Low 

(Trenberth and Hurrell 1994), was negatively correlated with multiple divisions and was 

correlated in all seasons. A negative correlation indicates that when the Aleutian Low 

was stronger, temperatures were warmer in Alaska. This is intuitive, since a stronger 

Aleutian Low will tend to advect warm air and moisture from the Pacific into Alaska. 

Also positively correlated with the divisions were the EP/NP and WP circulation indices, 

which are primarily winter modes of variability in the tropospheric circulation over the
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north Pacific (Bamston and Livezey 1987). The EP/NP has widespread correlations 

throughout the year, but the WP was limited to the summer, which is perplexing because 

the WP is entirely a winter phenomena.

The PDO is a leading mode of variability of the north Pacific SSTs (Mantua et al. 

1997). In every case the PDO had positive and significant correlations, meaning that the 

positive phase resulted in wanner temperatures. In winter and fall (Table 4.2), the PDO 

was correlated with divisions in the Interior and southern coastal regions. In spring and 

summer, the PDO was related only to divisions along the south-central coast and the 

Aleutians. The PDO was never significantly correlated with the North Slope division. 

These correlation results are consistent with the findings of Papineau (2001), Hartmann 

and Wendler (2005), and Bourne et al. (2010).

The correlations of Pacific and Arctic climate teleconnections with the division 

averages temperatures revealed several relationships. One is that the NPI, AO, PNA and 

PDO all had a strong influence on the variability of temperatures in all seasons 

throughout Alaska. No divisions, however, had consistently the same relationships with 

the same set of teleconnection indices. The exact mechanisms for these correlations are 

beyond the scope of this paper and are a fruitful area for future investigation.

4.4 Conclusions

A combination of objective analysis and local expert knowledge identified 13 

regions of homogeneous climate variability, or climate divisions, for Alaska based on 

observed station temperature. The cluster analysis was limited to temperature because
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precipitation data were too sparse for the cluster analysis. However, the available station 

precipitation correlated well within each division in the validation. Analysis of alternate 

gridded datasets, while not useful in determining the divisions on their own, tended to 

support the final clustering of the stations. The AVHRR was also shown to be invaluable 

in filling gaps in the station data north of the Alaska Range. Due to the vast geographical 

extent of Alaska, coupled with a relatively sparse station network, drawing the division 

boundaries relied heavily on following the major terrain features surrounding the grouped 

stations. A broad cross-correlation analysis using both station temperature and 

precipitation also supported the groupings of the stations. While the lines of the division 

boundaries could not be drawn completely objectively, correlation analysis using the 

division averages and downscaled gridded temperature and precipitation supported the 

final placement of the division boundaries.

Evaluation of the climates of the divisions revealed that the stations in each 

division have similar annual cycles in temperature and precipitation. Our divisions were 

determined using cluster analysis and the similar climate cycles also served to support 

our division choices. An evaluation of a diverse set of teleconnection indices with the 

division average temperature showed possible links between multiple indexes throughout 

the arctic and Pacific regions. The most prevalent significantly correlated indices were 

the AO, PNA, NPI and PDO, which all had significant correlations in all seasons. There 

were also numerous instances of the EP/NP throughout the year and the WP in summer. 

The relative importance and interactions between the various indices in controlling
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temperature and in each division, which is highly relevant for seasonal climate prediction, 

is an area of potential future work.

There are a few major differences between the new climate divisions (Figure 4.4) 

and original historical climate zones (Figure 4.1). There were several new divisions 

identified through our analysis in both the Interior and the Panhandle of Alaska. Since 

our analysis was focused on identifying regions of homogenous variability and not 

climate type, differences between the climate divisions and the historical zones were 

expected. Novel to this analysis, the exact climate divisions boundaries were also 

evaluated. While there is still some uncertainty in the final boundaries, our analysis has 

confirmed that boundaries following terrain are quite reasonable.

The practical value of Alaska climate division is high across disciplines. An 

example of this can be seen when comparing Figure 4.4 with a map of Alaska native 

languages (Krauss et al. 2011). While there are differences between the exact locations of 

the lines, many of the language families have similarly located regions as the climate 

divisions, especially for the Yupik and Athabascan languages. The numerous potential 

relationships with other disciplines are also an area for future research related to climate 

divisions.
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Figure 4.1. Map of historical climate zones for Alaska. Fitton (1930) zones outlined by 
red dashed, National Climate Data Center (NCDC) climate divisions green dashed, and 
the Alaska Climate Research Center (ACRC) climate regions solid blue lines, 
respectively. The stations used in the cluster analysis are shown by red dots with their 
airport codes (station list in Table 4.1). The climate zones have undergone only minor 
revisions since their inception, and were drawn based on mean station temperature and 
precipitation and/or following major terrain features and river basins.
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Figure 4.2. Error Sum of Squares (ESS) difference from step to step for the Wards 
method cluster analysis of station temperature for 1977-2010. An arrow marks where the 
optimal number of clusters was selected for our data (13 clusters).
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Figure 4.3. The 13-cluster solution from the Ward’s method cluster analysis of station 
temperature. Dots are color-coded by their cluster membership. There are 11 clusters in 
Alaska with 2 entirely in Canada. The stations appear to group around major terrain 
features (terrain can be seen in Figure 4.4).
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Figure 4.4. Climate division boundaries are shown over Alaska topography with the 
division names. Black dots indicate the locations of the Alaska stations used in the cluster 
analysis. Local expert knowledge from experienced weather forecasters in Alaska was 
employed to draw the final lines.
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Figure 4.5. Each division average time series based on station data was correlated with 
every grid point of the Hill and Calos (2011) data set. This plot displays the number of 
times each grid point had a higher correlation with another division average time series 
than with its own division. This is shown for (a) temperature and (b) precipitation. Most 
areas have counts of zero and therefore correlate best with their own division average 
time series demonstrating that the climate division boundaries drawn aided by local 
expert knowledge were quite robust.
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Figure 4.6. Annual cycle of long-term monthly mean temperature (lines) and 
precipitation (columns). Black lines/columns show the division average and the grey lines 
show the individual station long-term means. Within each division there is little spread 
and the annual cycles are similar. The Northeast Interior has the largest annual 
temperature range while the Northeast Gulf and South Panhandle are the wettest divisions 
in Alaska.
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Table 4.1. List of stations with their airport code, data source, latitude/longitude, 
correlation with the nearest AVHRR pixel, percent missing temperature at the station 
1977-2010 and the percent of the missing replaced with mean adjusted AVHRR when 
applicable.

Code Name Source Lat°N Lon °W Correlation % Missing % AVHRR
PANC Anchorage NCDC 61.17 150.02 0.92 0.25
PANT Annette NCDC 55.03 131.57 0.92 0.00 NA
PABR Barrow NCDC 71.28 156.77 0.98 5.81 100.00
PABA Barter Island GSOD 70.13 143.58 0.97 18.18 100.00
PABE Bethel NCDC 60.78 161.82 0.97 0.51 100.00
PABT Betties NCDC 66.9 151.50 0.98 0.25 100.00
PABI Big Delta NCDC 63.98 145.72 0.98 0.00

CYDB Burwash NWS 61.37 139.05 0.95 11.62 100.00
PACD Cold Bay NCDC 55.22 162.72 0.82 0.00 NA
PACV Cordova NCDC 60.48 145.45 0.91 0.51
CYDA Dawson City EC 64.04 139.13 0.97 10.35 100.00
CYDL Dease Lake EC 58.43 130.01 0.93 8.84
PAEG Eagle NWS 64.79 142.20 0.97 0.00 NA
PAEL Elfin Cove NCDC 58.18 136.33 0.82 1.77
PAFA Fairbanks ACRC 64.8 147.87 0.98 0.00 NA
PFYU Fort Yukon GSOD 66.57 145.25 0.98 7.07 64.29
PAGA Galena NWS 64.73 156.93 0.98 12.12 81.25
PAGK Gulkana NCDC 62.15 145.45 0.97 0.00 NA
PAHN Haines NCDC 59.23 135.50 0.88 5.30
PAHO Homer NCDC 59.63 151.48 0.88 0.00
PAIL lliamna NCDC 59.75 154.90 0.95 4.04
PAJN Juneau NCDC 58.35 134.55 0.89 2.27
PAEN Kenai NCDC 60.57 151.23 0.94 0.00
PAKT Ketchikan NCDC 55.35 131.70 0.88 17.93
PAKN King Salmon NCDC 58.67 156.65 0.93 0.51
PADQ Kodiak NCDC 57.75 152.48 0.87 0.00 NA
PAOT Kotzebue NCDC 66.88 162.58 0.94 3.28
PAMC McGrath ACRC 62.95 155.60 0.97 0.00 NA
PAIN McKinley Park NWS 63.73 148.91 0.95 0.25 100.00

PAOM Nome NCDC 64.5 165.43 0.96 1.01
PAOR Northway NCDC 62.95 141.92 0.98 3.28 100.00
CYOC Old Crow EC 67.57 139.84 0.98 19.44 66.23
PASC Prudhoe Bay NWS 70.32 148.71 0.98 32.07 100.00
PASI Sitka NCDC 57.03 135.35 0.88 6.82
PASN St. Paul NCDC 57.15 170.22 0.81 0.00 NA
PATK Talkeetna NCDC 62.32 150.08 0.96 0.51 100.00
PATA Tanana NCDC 65.17 152.10 0.98 1.01 50.00
CYXT Terrace EC 54.47 128.58 0.89 0.25
PAUM Umiat NWS 69.37 152.14 0.98 31.57 98.40
PAVD Valdez NCDC 61.12 146.35 0.90 0.00 NA
CYXY Whitehorse EC 60.71 135.07 0.95 15.91 100.00
PAYA Yakutat NCDC 59.5 139.67 0.82 0.00 NA
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Table 4.2. Correlations significant at the 95% or greater level between climate indices 
and division average station temperature for each season.

Division Index DJF MAM JJA SON
North Slope PNA 0.39

EP/NP 0.53 0.51
WP 0.50
AO 0 .3 7
SOI 0.40

Central Interior PNA 0.53 0.38 0.45 0.44
EP/NP 0.39 0.46

WP 0.41
AO -0.54 0.34 0 .3 8
SOI 0.36
NPI -0.47 -0.60 0.54 0 .4 4
PDO 0.45 0.35

Northeast Interior PNA 0.38
EP/NP 0.44

WP 0.59
NIN03.4 0.41

NPI 0 .4 8
Southeast Interior PNA 0.70 0.54 0.35 0.53

EP/NP 0.44
WP 0.50
AO -0.45 0 .38 0 .3 9
SOI 0.34
NPI -0.59 0 .62 0.37 0 .59

PDO 0.52 0.43
Bering Sea Coast PNA 0.46

EP/NP 0.54 0.41 0.41
AO 0.49 0 .3 6

NIN03.4 0.40
NPI 0 .61 0.59
PDO 0.40

Cook Inlet PNA 0.64 0.62 0.57
EP/NP 0.37

AO -0.53 0 .4 6
NIN03.4 0.37

NPI -0.60 0 .7 5 0.38 0 .66
PDO 0.60 0.52 0.43 0.48

Northeast Gulf PNA 0.82 0.65 0.60
EP/NP 0.35 0.36

AO -0.42 0 .3 9
SOI -0.39

NIN03.4 0.44
NPI -0.73 0 .7 2 0 .6 4
PDO 0.60 0.54 0.41 0.40
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Table4.2. Continued...

Division Index DJF MAM JJA SON
North Panhandle PNA 0.74 0.39 0.47

EP/NP 0.41
SOI -0.43

NIN03.4 0.37
NPI -0.62 -0.52

PDO 0.46 0.45 0.38
South Panhandle PNA 0.77 0.62 0.43

EP/NP 0.49
WP 0.39
SOI -0.54 -0.40

NIN03.4 0.54 0.40 0.36
NPI -0.68 -0.67 -0.46

PDO 0.63 0.66 0.41 0.46
Central

Panhandle PNA 0.80 0.65 0.37
EP/NP 0.41

WP 0.45
SOI -0.34

NIN03.4 0.37
NPI -0.67 -0.60 -0.53
PDO 0.48 0.40

Bristol Bay PNA 0.39 0.47
EP/NP 0.52 0.44

AO -0.50 -0.37
NIN03.4 0.36

NPI -0.37 -0.75 -0.48
PDO 0.46 0.47 0.52 0.41

Aleutians EP/NP 0.51 0.49
AO -0.50
NPI -0.37

PDO 0.41 0.37
Northwest Gulf PNA 0.46 0.38 0.39

EP/NP 0.52 0.45
AO -0.65 -0.40

NIN03.4 0.35
NPI -0.51 -0.62 -0.59
PDO 0.67 0.44 0.38 0.52
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Chapter 5 Conclusions

5.1 Summary

The climate of Alaska is varied and is experiencing change in multiple parts of the 

biophysical system. Due to the economic, environmental and health impacts of climate on 

the people living in Alaska, it is imperative to understand the basic function of the 

regional climate. There exist many gaps in knowledge and this study aimed to address 

this problem by studying relevant components of the climate system.

River ice breakup poses a hazard to travel and can pose a threat to human life 

when it causes flooding. As a result, improving the prediction of breakup is of a great 

benefit to Alaska. River ice breakup date and the large-scale climate are linked. Analysis 

of gridded reanalysis and station data revealed that the El Nifio Southern Oscillation 

(ENSO) is a key driver of breakup date. The mechanism is as follows: when ENSO is in 

its positive phase (El Nifio), sea surface temperatures in the Equatorial Pacific are above 

normal, fewer storms track into the Gulf of Alaska, reducing cloudiness over Interior 

Alaska in March-April. The reduction of cloud cover results in increased solar insolation, 

earlier snow and ice melt and earlier breakup date. This mechanism primarily requires the 

prediction of April-May temperatures and the presence of a positive (negative) ENSO 

will generally predict an earlier (later) breakup date in Alaska. However correlations with 

ENSO, while significant, were not strong enough to predict breakup with great certainty 

each year with much lead-time.

Through an evaluation of the Normalized Difference Vegetation Index (NDVI) it 

was found that the increase in NDVI in the Beaufort and Chukchi Sea coastal tundra



zones was driven by changes in climate at multiple scales. Monthly temperatures in the 

Beaufort and East Chukchi regions are generally influenced by the strength of the 

Beaufort High at the large scale and changes in the sea breeze at smaller scales in 

summer. In the Bering coastal tundra region, NDVI is declining in contrast to northern 

Alaska. The decline in NDVI has been driven by a decrease in winter snow water 

equivalent (SWE) due to less moisture availability for the plants. In the Bering the snow 

is remaining on the ground later due to late season snowfall and reducing the length of 

the growing season and is in turn reducing NDVI in the early part of the growing season.

Climate divisions delineate regions of homogeneous climate variability and were 

identified for Alaska using cluster analysis of monthly station temperature. Climate 

divisions are needed to enhance seasonal forecasting and climate research. For example, 

climate divisions can be used as a basis to parse study areas or even a way to divide 

gridded reanalysis data for comparison with station data. They also greatly improve the 

basic understanding of how climate variability differs in the various regions of Alaska 

and objectively identifies these regions. This analysis revealed 13 individual climate 

divisions in Alaska. Average seasonal temperatures in each climate division were 

significantly correlated with multiple teleconnection indices including the Pacific 

Decadal Oscillation, Arctic Oscillation, and the Pacific North American Pattern.



5.2 Conclusions

These analyses have shown the many complexities of the climate of Alaska, while 

demonstrating that there are mechanisms that drive the Alaskan climate at many different 

scales. While many gaps in knowledge of Alaska climate processes still exist, these 

studies have each helped to bridge a few of these gaps. Climate divisions showed that the 

climate does not vary uniformly across the state, even at seasonal and annual scales. This 

better allows for the targeted evaluation of regional climate impacts within the vast 

geographic extent of Alaska. The climate division boundaries can now aid future climate 

researchers by helping them better understand how the climate variability of their 

geographic study area relates to that of another in Alaska.

Both the evaluation of river ice breakup date and tundra NDVI has shown that 

there are physical links between climate processes in Alaska and the earth climate system 

acting at many different scales. Understanding these mechanisms allows for improved 

seasonal forecasting of temperatures in spring and the timing of river ice breakup. Future 

climate related changes associated with tundra vegetation could also be better understood 

if the key processes of variability are identified. These studies have both demonstrated 

that processes at multiple scales could drive trends in Alaska. Breakup date was found to 

be linked with the large-scale climate, therefore changes in the global climate system will 

propagate down the pathway and result in changes in the timing of river ice breakup. 

NDVI change was found to have a more complex relationship with climate at multiple 

scales as changes in landscape have a feedback on the local and regional climate; 

therefore local and large-scale climate processes are driving changes in NDVI.
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The studies of breakup date and tundra NDVI change have both demonstrated that 

the differences in regional climate processes within Alaska. Based on the results of these 

studies it can be concluded that the climate of Alaska is extensively linked with the 

global climate system, but local climate processes can play a role depending on the 

season and location. These regional differences in processes demonstrate that Alaska 

local climate regions have, often seasonally, independent relationships with the climate 

system.

These conclusions provide possibilities to improve the view of Alaska climate for 

the broader community of climate stakeholders. The first deliverable is that there are 

teleconnections, such as ENSO, that can be applied as predictors for some applications. 

Understanding the physical mechanisms that relate these teleconnections with what is 

being predicted will help to evaluate uncertainty in any seasonal forecasting applications. 

Second is that the function of climate in Alaska varies by region and season, therefore 

how climate analysis is conducted regionally should be evaluated. Careful analysis based 

on the regional nature of climate will provide a clearer picture of what processes are 

important and at what scale. It is important to always be aware that the climate processes 

change from season to season in Alaska.



5 3  Future outlook

There is a great need to maintain the current network of Alaska weather 

observation stations into the future. This is critical to continue to improve our 

understanding of climate variability and change in Alaska. There is also a great need to 

expand the current station network into remote locations of the North Slope to develop a 

long-term data set of climate parameters such as temperature, precipitation and wind to 

enhance future studies of Alaska climate. Robust station networks are critical to many 

climate applications such as the evaluation of gridded reanalysis and satellite data, and 

the verification and validation of future climate projections. Even with the inclusion of 

satellite-derived data, none of the analysis presented in this study would have been 

possible without the few, long-term observational records that exist for Alaska. The loss 

of existing stations with long records would be a tragedy and would have a negative 

impact on climate science in Alaska.

Due to the sparse station network in Alaska and the Arctic, there is also a great 

need to enhance and extend the current suite of satellite-derived data sets. Such data sets 

need to have long, consistent records to be most valuable for climate analysis. These data 

will be needed long into the future to understand climate, especially in remote areas of 

Alaska.

Many critical gaps in knowledge remain concerning the mechanisms that drive 

the climate of Alaska. Future analysis should be conducted to understand the differing 

role of cyclones on temperature and precipitation in the different regions of Alaska. This 

includes understanding if the location where cyclones form and how they approach
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Alaska play a significant role in regional temperature and precipitation variability 

throughout the year.

It is important to continue to investigate the basic mechanisms that drive the 

climate of Alaska. This will be increasingly important as the Arctic climate continues to 

change. The people who live in Alaska and the Arctic face great challenges due to its 

extreme climate conditions. Change results in an increasingly uncertain future for them. 

Improving our understanding of how the climate functions helps to reduce some of this 

uncertainty and improves the human condition.

Finally, communication between the climate science and stakeholder/user/public 

communities needs to continue to be developed and enhanced. Doing so will maximize 

the practical nature of climate science to society. Communication between these groups 

will help climate scientists better understand the needs of the stakeholders, and at the 

same time, stakeholders will better understand climate science. This will also result in 

better decision making in response to current and future changes in weather and climate. 

This is especially important in Alaska where weather and climate directly impacts nearly 

every person and industry in some way. Climate scientists should therefore work to reach 

out to those stakeholders. Armed with an improved understanding of the climate 

data/information needs of society, scientists should then endeavor to meet theses needs.
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