
A METHODOLOGY FOR INTELLIGENT HONEYPOT DEPLOYMENT

AND ACTIVE ENGAGEMENT OF ATTACKERS

RECOMMENDED:

APPROVED:

By

Christopher R. Hecker

Advisory Committee Co-Chair

is:
'^AdviserrCommittee Co-Chair ^

Chaif, Department o f Computer Science

A METHODOLOGY FOR INTELLIGENT HONEYPOT DEPLOYMENT

AND ACTIVE ENGAGEMENT OF ATTACKERS

A

DISSERTATION

Presented to the Faculty

of the University o f Alaska Fairbanks

in Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

By

Christopher R. Hecker, M.S.

Fairbanks, Alaska

August 2012

UMI Number: 3534194

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI 3534194
Published by ProQuest LLC 2012. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

The internet has brought about tremendous changes in the way we see the world,

allowing us to communicate at the speed of light, and dramatically changing the face of

business forever. Organizations are able to share their business strategies and sensitive or

proprietary information across the globe in order to create a sense of cohesiveness. This

ability to share information across the vastness of the internet also allows attackers to

exploit these different avenues to steal intellectual property or gather information vital to

the national security of an entire nation. As technology advances to include more devices

accessing an organization’s network and as more business is handled via the internet,

attackers’ opportunities increase daily. Honeypots were created in response to this cyber

warfare. Honeypots provide a technique to gather information about attackers performing

reconnaissance on a network or device without the voluminous logs obtained by the

majority of intrusion detection systems. This research effort provides a methodology to

dynamically generate context-appropriate honeynets. Administrators are able to modify

the system to conform to the target environment and gather the information passively or

through increasing degrees of active scanning. The information obtained during the

process of scanning the environment aids the administrator in creating a network

topology and understanding the flux of devices in the network. This research continues

the effort to defend an organization’s networks against the onslaught o f attackers.

IV

Signature Page.. i

Title Page..ii

Abstract..iii

Table of Contents... iv

List of Figures... ix

List of Tables..x

List of Appendices.. xi

Acknowledgments...xii

Chapter 1: Problem Statement... 1

1.1 Overview.. 1

1.2 Detailed Problem Description...2

1.2.1 Opposition to deploying honeypots on an organization’s network 4

1.2.2 Self-adapting Honeynet.. 5

1.2.3 Gathering more "valuable" intelligence...8

1.3 Problem Statement... 9

Chapter 2: Foundational Work and Current Approaches... 11

2.1 Literature overview...11

Table of Contents

Page

2.1.1 History and Theoretical work o f Intrusion Detection Systems (IDSs) 11

2.1.2 Applications o f Intrusion Detection Systems (IDS) and Tools............................ 14

2.1.3 Honeypots.. 15

2.1.4 Low Interaction Honeypots..17

2.1.5 High Interaction Honeypots.. 21

2.1.6 Hybrid Honeypots / Honeyfarms..26

2.1.7 Dynamic Honeypots..37

Chapter 3: System Development..43

3.1 Project Overview ... 43

3.2 Management Programs... 45

3.2.1 Objectives and Requirements.. 45

3.2.2 Design and Implementation...45

honeypot_scanner..45

active scanner ... 48

3.3 Network Scanning (Passive and Active)... 49

3.3.1 Objectives and Requirements.. 49

3.3.2 Design and Implementation.. 49

3.3.2.1 Passive Scanning Modules...51

p O fm ysq l...51

tcpdum pm ysql.. 52

3.3.2.2 Active Scanning M odules..53

nm apm ysql..53

V

xprobe2_mysql... 55

3.4 Low Interaction Honeypot Configuration... 55

3.4.1 Objectives and Requirements.. 55

3.4.2 Design and Implementation.. 56

3.5 High Interaction Honeypot Configuration.. 58

3.5.1 Objectives and Requirements.. 58

3.5.2 Design and Implementation...60

Chapter 4: Database System Design... 61

4.1 Database System Overview..61

4.2 Network Scanning - Operation.. 61

4.2.1 Objectives and Requirements.. 61

4.2.2 Design and Implementation.. 62

config..62

threads..64

honeypot updates ..65

scanqueue .. 66

4.3 Network Scanning (Passive and Active) - D ata.. 67

4.3.1 Objectives and Requirements.. 67

4.3.2 Design and Implementation...67

4.4 Low Interaction Honeypots... 68

4.4.1 Objectives and Requirements.. 68

4.4.2 Design and Implementation...69

vi

dhcp..69

honey d s c r ip ts ..70

l ih h ih j in k ... 70

4.5 High Interaction Honeypots..71

4.5.1 Objectives and Requirements...71

4.5.2 Design and Implementation...72

vm waretem plate ... 72

Chapter 5: Testing.. 73

5.1 Testing Overview......................... 73

5.1.1 Passive Scanning .. 76

5.1.2 Passive and Active Scanning..78

Noise Level - Low... 78

Noise Level - Medium.. 79

Noise Level - Medium-High..80

Nmap: -sS (TCP SYN scan).. 80

Nmap: -sT (TCP connect scan).. 81

Noise Level - H igh.. 82

5.2 Analysis..84

Chapter 6: Summary..86

6.1 Conclusions... 86

6.2 Future W ork.. 89

vii

References

Appendices

List of Figures

Figure 1, Cyber incidents reported to the Computer Emergency Response Team 2

Figure 2, Computer and network attacks [Howard & Longstaff, 1998]................................3

Figure 3, Network Diagram [Hudak, 2008]...7

Figure 4, Honeywall Diagram [Balas & Viecco, 2005]...23

Figure 5, An Architecture for Intrusion Detection using Autonomous Agents..................27

Figure 6, Hybrid honeypot architecture [Bailey et al., 2004]... 29

Figure 7, Collapsar honeyfarm architecture [Jiang et al., 2006]...30

Figure 8, Collapsar reverse honeyfarm architecture [Jiang et al., 2006].............................31

Figure 9, Potemkin virtual honeyfarm architecture [Vrable et al., 2005]............................32

Figure 10, NoAH honeyfarm architecture [NoAH, 2008]...34

Figure 11, Dynamic honeypot server [Kuwatly et al., 2004].. 38

Figure 12, Dynamic passive scanning honeypot implementation..40

Figure 13, Dynamic, active scanning honeypot sever [Hecker et al., 2006]...................... 41

Figure 14, Project module overview [Hecker & Hay, 2010].. 44

Figure 15, honeypot_scanner process...47

Figure 16, Scanning modules decision process.. 50

Figure 17, Honeyd configuration file [Hecker et al., 2006]...57

Figure 18, XML file..59

Figure 19, Testing - Network topology...73

Figure 20, Testing - config table settings... 75

Figure 21, Testing - Scanned network..76

Figure 22, Testing - Passive scanning...77

Figure 23, Testing - Active scanning (Low noise level)... 78

Figure 24, Testing - Active scanning (Medium noise level)..80

Figure 25, Testing - Active scanning (Medium-High-sS noise level)................................. 81

Figure 26, Testing - Active scanning (Medium-High-sT noise level)................................. 82

Figure 27, Testing - Active scanning (High noise level).. 83

Page

X

Table 1, Types of honeypots [Danford, 2006]...17

Table 2, Active scanning noise levels.. 49

Table 3, Module commands and flags..105

Table 4, Operational Tables - config..178

Table 5, Operational Tables - threads..179

Table 6, Operational Tables - honeypot updates... 179

Table 7, Operational Tables - scan queue.. 179

Table 8, Network Scanning Tables - pOf... 180

Table 9, Network Scanning Tables - tcpdump icmp...180

Table 10, Network Scanning Tables - nmap services.. 180

Table 11, Network Scanning Tables - tcpdumpjports.. 181

Table 12, Network Scanning Tables - nmap machines.. 181

Table 13, Network Scanning Tables - nmap_ports..182

Table 14, Network Scanning Tables - xprobe2_machines.. 182

Table 15, Network Scanning Tables - xprobe2_ports... 182

Table 16, LIH Configuration Tables -d h c p ... 183

Table 17, LIH Configuration Tables - honeyd scripts... 183

Table 18, LIH Configuration Tables - lih_hih_link..183

Table 19, HIH Configuration Tables - vmware template...184

List of Tables

Page

List of Appendices

Page

Appendix A: Acronyms..103

Appendix B: Glossary...104

Appendix C: Module Commands and Flags..105

Appendix D: Source C ode... 106

Appendix E: Database Statements and Schema.. 173

Appendix F: Publications... 185

xii

Acknowledgments

This research effort would not have been possible without the support,

encouragement and guidance of many people. I would like to extend my appreciation to

the following people for their support during this endeavor.

I want to give God the honor and praise for blessing me with the opportunity to

pursue this degree, granting me the wisdom along the way and placing people in my life

to help me accomplish this task.

I want to thank my co-chairs Dr. Brian Hay and Dr. Kara Nance for having

patience during this long process and providing the guidance that has helped me achieve

this goal. I would like to thank the remainder o f my committee, Dr. Jon Genetti, Dr.

Joseph Hawkins and Dr. Orion Lawlor, for providing feedback during my presentations

and offering insight on my project.

Last but not least, I want to thank my wife and my boys. They have been more

than understanding during this entire process. Their love and support have propelled me

through the long nights o f writing. I want to thanks my entire family for their

encouragement and urging to complete my degree.

Without my family, friends and advisers this would not have been possible, so

thank you!

1

Chapter 1: Problem Statement

1.1 Overview

The connectivity provided by the internet has dramatically affected the

world in which we live. With almost all business transactions, academic research, and

personal communication utilizing and relying on this avenue, the need to defend

ourselves against attackers has become essential. The observable rise in computer

incidents since 1999, as seen in Figure 1, from automated and targeted attacks from

across the globe has produced a multibillion dollar industry to identify and mitigate

unauthorized intrusion attempts. Reducing the high number of false positives in these

intrusion detection system (IDS) logs has led to the development o f a decoy technology

whose only purpose is to be attacked and compromised to aid the system administrator in

determining the method of both the penetration and execution for future attacks.

Introduced in the 1990s as honeypots, these systems have allowed researchers and

corporations to capture tools and identify vulnerabilities in their systems.

Since honeypots are decoy systems and they offer no production value to the

environment, they provide the ability to monitor the network without the painstaking

analysis that inherently comes with monitoring a production device. Forensically

analyzing a production device means delving into the voluminous logs and programs

necessary to conduct business. On a non-production device, attacks are able to be

distinguished from the network noise and the source of the attack quickly pinpointed. It is

this effectiveness and efficiency that have facilitated the evolution of honeypot systems.

2

CYBER INCIDENTS 1988-2003

140,000 - 'y "
4 (VIA [5 '- l 'i ':■■ . . - ■ . : M120,000
100,000 -

80,000 -
60,000 -
40.000 -
20.000 -

0 \

^ t- v \ f > % j . t % f: »
JW&.’ Vsnfrv*-' *- N# a t *, *) ii,
*feVt f w ^ * j* w *

" ; ! ' i <u . ; | ^ . , . •* , ./*
w « f ; * x ' ■ •»■ > h* m

■ t̂WŴwwBBR

#$$1? V » \ H , * i '-rs®

Year

Figure 1, Cyber incidents reported to the Computer Emergency Response Team
(CERT) by third parties within the U.S. [Turk, 200S]

1.2 Detailed Problem Description

Due to the variability of cyber-attacks and the capability to conceal the

compromise in a device, new tools need to be developed and old tools need to be

expanded to assist in the war that faces every network attached to the internet. In 1998,

John Howard and Thomas Longstaff wrote a report for the Sandia National Laboratories

which presented a matrix o f possible computer and network attacks [Howard &

Longstaff, 1998], This matrix is still relevant today since the taxonomy of incidents has

not changed only the methods used by the attacker. As shown in Figure 2, it is apparent

that the combination of possible attacks based on the tools, vulnerabilities, actions,

targets, and unauthorized results are exorbitant.

3

.........-...-----...- ----- ---- ---------- ... - incident....-.. -.... -
i
i ..-.......... ... --.... attack(s) ■....—...............-..................... 5
i
Ii

..r event ■Ai
Attacker* Tool Vulnerability Action T «rget U nauthorized

Reiulr

Hackers
PhvBical
Attack

Design Probe Account
Increased

Access

Spies ■*
Information

Exchange * Implementation * Scan - t Process
Disclosure of
Information

Terrorists
User

Command Configuration Hood Data
Corruption o f
Information

Corporate
Raiders

Script or
Program Authenticate Component

Denial of
Service

Professional
Criminals

Autonomous
Agent Bypass Computer

Theft of
Resources

Vandals Toolkit Spoof Network

Voveurs
Distributed

Tool
Read Internenroik

Data Tap Copy

Steal

Modifr

Delete

Objective*

Challenge.
Statue, Thnll

Political
Gain

Financial
Gam

Damage

Figure 2, Computer and network attacks (Howard & Longstaff, 1998]

As these attacks occur, identification of the methods and tools used by the

attacker to compromise the system becomes a fundamental technique to understanding

current and future events. Most current ID systems rely on signatures of known malicious

software or tools to identify and mitigate threats. But with malware polymorphism, code

packing, and simple semantic changes even the modem IDS can be beaten. These

abilities to conceal both tools or malware, make it necessary to have the piece of

suspected code ran on a live system to confirm it can be used for nefarious means and to

determine its effects on the system.

4

In the past, attackers would target large government systems to collect sensitive

information. But the news is full of articles where small businesses and individuals are

being attacked at an increased rate [Acohido, 2011; Freedom, 2011; Larose, 2012;

Srivastava, 2012] and attacks on corporations are often being orchestrated utilizing social

engineering [Clayton, 2012; Freri, 2011]. The security model for protecting a network is

changing from guarding the perimeter with firewalls and IDSs to watching for indicators

that the network has been compromised from within, via the social engineering route.

Thus it is extremely important to have the infrastructure in place to monitor the internal

network for signs o f compromise. There are three specific issues which need to be

addressed to change the mindset in this modem cyber warfare to allow honeypots to be

used to their fullest potential.

1.2.1 Opposition to deploying honeypots on an organization’s network

"Therefore, just as water retains no constant shape, so in warfare there are no constant
conditions...He who can modify his tactics in relation to his opponent, and thereby succeed in
winning, may be called a heaven-born captain." - Sun Tzu, The Art of War [Tzu, 1910]

Honeypots are used in research arenas, antivirus companies, internet service

provider (ISP) sector and federal government agencies due to their ability to collect

statistics about types o f attacks, location of attackers, and tools used to perpetrate an

attack. Yet some security professionals are leery about using such technology in an

organization’s production network environment. Some of the arguments that these

security professionals express about deploying honeypots are: exposing the company to

unnecessary risk by luring attackers to the network, generating operational overhead that

most organizations cannot handle by producing the same information that IDSs do, and

just knowing an organization is under attack isn’t useful [Higgins, 2006]. These

arguments are addressed in subsequent sections of this paper.

Organizations continue to underestimate the uses and benefits o f honeypots, due

to their lack of knowledge of them. Organizations must be willing to employ new

technologies to discover the attempts to steal information or compromise their systems,

because attackers are definitely not afraid of exhausting their every resource to gain

access to the organization’s network.

1.2.2 Self-adapting Honeynet

“Hence that general... is skillful in defense whose opponent does not know what to attack.”
- Sun Tzu, The Art of War [Tzu, 1910]

“All warfare is based on deception.” - Sun Tzu, The Art of War [Tzu, 1910]

Many design ideas and advancements have led to the creation o f honeyfarms

which are deployed in elaborate architectures. Some honeyfarms have the ability to route

attackers from low interaction honeypots (LIH) or redirectors to high interaction

honeypots (HIH). Other architectures rapidly deploy high interaction honeypots based on

the number of attackers. These honeyfarms rebut the argument that honeypots are “like

putting a stick into the ground and hoping a guy running at you runs into it instead”

[Higgins, 2006], They offer the ability to deploy large number of honeypots which

increase the ability to snare an attacker. Yet none of these architectures enable the user to

model the individual honeypots after an organization’s infrastructure.

5

With the continual updates and patches o f our operating systems, installation of

new applications and devices, new smart devices being released every month,

telecommuters coming and going, and administrators better securing the work

environment; production networks are a place o f constant change. Yet HIHs are still

deployed after manually creating a template which takes considerable time to keep the

honeynet consistent with the production network. Advancement has been made in the

area of low interaction honeypots; one form of network scanning is utilized to assist in

the generation of configuration files which allows the low interaction honeypots to adjust

to the changing environment. But even these systems do not have an automated method

to re-scan the network then deploy a new honeynet in response to the changes.

Kansas State University researchers were recently awarded a five year grant from

the Air Force Office of Scientific Research to study the “Understanding and quantifying

the impact of moving target defenses on computer networks” [Tammen, 2012]. The

researchers will construct a working model o f a network system which chaotically

changes its configuration to impede an attacker’s attempts to learn about the

environment. While this idea will make it more difficult for the attackers to map out a

organization’s network topology, the attacker will still be able to perform reconnaissance

on the nearby devices and attempt to detect their vulnerabilities. Upon discovering a

vulnerability, it is a matter of relocating the device and executing the code even if the

network topology has “changed.”

As the computer networks become more diverse, with the proliferation o f smart

phones, tablets, and a wide assortment of computers and operating systems; it is

6

necessary for the network administrators to have a honeynet system which self-adapts to

the changing environment. Low and high interaction honeypot must be configured “on

the fly” so the honeynet becomes indistinguishable from the production devices.

Additionally, the honeypots must be sporadically distributed about the network in ample

numbers to increase the probability of sensing a breach. An example self-adapting

honeynet architecture is shown in Figure 3.

Internet

7

Figure 3, Network Diagram [Hudak, 2008]

8

1.2.3 Gathering more “valuable” intelligence

“If you know the enemy and know yourself, you need not fear the result of a hundred battles.
If you know yourself but not the enemy, for every victory gained you will also suffer a defeat.
If you know neither the enemy nor yourself, you will succumb in every battle.”

- Sun Tzu, The Art of War [Tzu, 1910]

With the limited time that administrators have to identify, decontaminate, and

reimage a compromised device it is imperative that effective and efficient tools be at their

disposal. Honeypots are such a tool by providing value to model threats and techniques

used by attackers [Dacier, Pouget & Debar, 2004], and for finding compromised hosts

and learning how to repair them [Jackson, Levine, Grizzard & Owen, 2004],

Unfortunately, high interaction honeypots currently require considerable time for their

initial setup. Virtual machines (VM) have reduced the time to re-deploy a honeypot after

infection, but constructing the template and updating the VMs to accurately represent the

production devices is still time consuming. To further complicate the issue,

administrators might not have the current network topologies from which to build their

high interaction honeypots. As users install new applications, installation of network

devices, telecommuters return from travel, and smart phones are brought into the

workspace; the administrator has the difficult task o f keeping the network topology up-to-

date.

Low interaction honeypots are much easier to configure and self-adapt to a

production environment. However, there are limitations to the amount of data able to be

collected through a low interaction honeypot. Simple low interaction honeypots respond

during the TCP three-way handshake to imitate a real device. Some low interaction

honeypots respond a bit more by imitating the actual service that the attacker is trying to

engage. In order to enhance the interaction, thus gather more information about the

attack, scripts need to be implemented or brought to a higher level [Pouget & Holz,

2005]. During Pouget and Holz’s research, it was determined 40 times more packets were

exchanged with high interaction honeypots’ real services than with the low interaction

honeypots’ scripts.

Proper location, time and bait will allow a honeypot to gather information on

more advanced attackers [Spitzner, 2004]. Since organizations need to gather valuable

information about the attackers that are plaguing their networks and the vulnerabilities

they are exploiting, the honeynet has to be configured to resemble their production

networks. Attackers are using more targeted attacks on specific organizations to gather

information that the attackers find worthwhile. Deploying replica honeypots amongst the

real production devices will cause the attackers to search for the information that they

desire. Administrators will be alerted to the reconnaissance and the information the

attackers want by examining the type o f honeypot that was explored.

1.3 Problem Statement

Although the techniques and tools involved in honeypot deployment have

continued to evolve for the past 15 years, there are still important research issues which

need to be addressed. This research effort addresses some of the identified limitations in

current honeypot technology. For honeypots to be useful in a corporate environment the

honeynet must represent the production devices on the network. This forces the network

9

administrators to constantly reconfigure their honeypot systems, which takes considerable

time and effort. The amount of time required to reconfigure the honeynet is dependent on

the dynamic nature of the environment. In addition to creating devices that match the

environment in which they reside, honeynets must be adaptive in the ways that the

honeypots are concealed amongst the production devices. If the honeynet is deployed

using an algorithmic approach, then the attacker is able to avoid the honeypots upon

deducing the pattern. Deploying the wrong honeypots and/or neglecting to take the

necessary steps to avoid detection will ensure that no actionable intelligence will be

gathered.

This research investigates the effectiveness of scanning a production network in

order to dynamically create honeypots to represent the production network, with the

benefits of a combined low and high interaction honeynet.

10

11

Chapter 2: Foundational Work and Current Approaches

2.1 Literature overview

While intrusion detection is a very broad field, 1 will include aspects of this topic

as it relates specifically to honeypots and similar technologies. This literature review is a

summary and analysis of articles, journal publications, conference papers, and books that

relate to the field of honeypot systems.

2.1.1 History and Theoretical work of Intrusion Detection Systems (IDSs)

Since the sixties, people have been connecting computers together to share

information. Most of the institutions using this network of computers were research,

academic or government. Then in 1979, USENET allowed users to hold discussions and

publish information through newsgroups [Hauben, 2002], USENET along with email,

telnet, and FTP gave more access and ability for users to share or search for information.

During the seventies and eighties many system administrators, researchers and academics

were concerned about computer security and the threat o f people using the internet to

compromise computer systems. In the early eighties, James Anderson wrote a paper

regarding the ability to use audit trails and surveillance to ensure the security of clients’

computers [Anderson, 1980]. This was the beginning concept to intrusion detection. In

the mid-eighties, Dorothy Denning and Paul Neumann did work on the first real-time IDS

named the Intrusion Detection Expert System (IDES) [Denning & Neumann, 1985;

Denning, 1987], which used rule-based architecture to detect known malicious attacks.

This IDES design was implemented using anomalous behavior detection to identify

possible network intruders or internal people abusing their network access [Lunt &

Jagannathan, 1988]. IDES reported on several behaviors (time and location of login,

connect time duration, CPU and I/O activity, and protection violations) that were

compared with the baseline individual user profile to discover whether the behavior was

anomalous. These workstation audit records of user behavior were recorded into an

Oracle database. Lunt planned to further investigate ways, in future iterations, to increase

the detection abilities which discriminate between normal and anomalous activity.

Although accounts were published in the late eighties and early nineties of attacks

and compromises, many administrators were not persuaded to fully lock down their

computers by implementing security policies. As browsers from Mosaic and Microsoft

became commonplace, the internet exploded with information due to the ease and

accessibility o f sharing and retrieving that information. New vulnerabilities introduced by

the internet and the browsers allowed new attack vectors to be exploited with greater

efficiency. In addition, there was always the threat o f attacks from knowledgeable users

from a previous era. As operating systems and other programs continue to grow in

complexity, often reaching millions of lines of code, the security vulnerabilities are

continually being exploited by attackers through review of the source code or the use of

tools. Since the time o f the mid-nineties the proliferation of tools and programs to attack

computers has continued to grow, which increased the number o f individuals and

decreased the knowledge level needed to attack computers systems.

12

System administrators have the daunting task of securing their networks and

information technology (IT) infrastructure but still allowing the users access to

information. This has especially been a problem at academic institutions, where the

atmosphere has been one of openness and any restrictions are thought o f as negative by

the user community. The tradeoff of having high availability of data while ensuring the

confidentiality/integrity of the data is the conundrum faced by every organization. Even

programs originally installed by default on many computers to allow information sharing

or allow users to see whether an individual was using their computer such as sendmail

and fingerd would be used as future attack points [Kehoe, 1992], So the administrators

not only had to keep information flowing but they also had to be aware of vulnerabilities

in a time that update servers and security bulletins were not available or prevalent. The

government has been funding research regarding the transfer o f information via a

network since the mid-1960s [Leiner et al., 1997; Leiner et al., 2009], It was not until the

1970s and 1980s that the government outlined ways to improve intrusion detection

techniques [Anderson, 1972a; Anderson, 1972b], but it was not until the beginning to

mid-nineties that network based technologies became widely available [Bruneau, 2003;

Kemmerer & Vigna, 2003], This early technology was not sufficient to detect all attacks,

as with the technology still in use today, though it did provide the system administrators

some foresight of how to better secure their networks.

System administrators have been watching and logging information from

attackers for over 50 years, ever since the first computers were connected over phone

lines in 1965 [Leiner et al., 2009]. Stories of Cliff Stoll, watching attackers from

13

Germany browse through government and university computers while recording their

every move, demonstrated that even “secure” systems were vulnerable to attack [Stoll,

1990]. Bill Cheswick also documented attackers trying to break into AT&T’s computers

by using the “chroot” jail in UNIX to study their tactics [Cheswick, 1990], As the internet

progressed in the nineties and access to computers increased, the amount of network

traffic increased exponentially. The sheer volume of the information prevented

administrators from manually watching individual networks and shifting through log files

for anomalies. Software and hardware based tools, like Snort [Snort, 2012], Wheel Group

NetRanger, and internet Security Systems (ISS) RealSecure were created to reduce the

amount of unwanted traffic into private networks and were used to report the most

serious, novel, or significant offences to the administrators.

2.1.2 Applications of Intrusion Detection Systems (IDS) and Tools

Many tools have been developed to help administrators find signs of intrusion and

report the incidents. There are two main categories of intrusion detection systems:

anomaly detection and misuse detection. These systems can be implemented for a single

host or from the perspective of a network segment (or even an entire network). The

anomaly based device uses a baseline to characterize events happening on a computer or

network. The characteristics used in the baseline could be packet types, login attempts,

tasks performed by a user, or the flow o f network traffic between two computer systems.

If any of the observed events deviate from the “norm,” then they are reported as

suspicious and potentially dropped. This produces a high rate o f false positives but aids in

the detection of new attacks. Misuse based IDSs have a predefined set of rules or

14

signatures that must be obeyed by the arriving packets. Any variance will prompt a

response from the device. Contingent on the quality o f the signatures, the misuse IDS has

the advantage of a low false positive and increased efficiency. Despite the number of

IDSs in place throughout our networks, the detection rate o f new attacks is still relatively

low. Distinguishing between real attacks and a rogue computer or program is quite

difficult in today’s network environment. With millions o f packets on a large network,

searching through the information to find new attacks and determine if a computer has

been compromised is complex.

A comprehensive survey and classification of IDSs can be found in Joseph Sherif

and Tommy Dearmond’s paper Intrusion Detection: Systems and Models [Sherif &

Dearmond, 2002].

2.1.3 Honeypots

In 1997, the deception toolkit was released which emulated through PERL scripts

many UNIX security vulnerabilities [Talabis, 2006]. This toolkit allowed administrators

to record the attackers through a deception scenario. From this concept many programs

have been written in various implementations to watch the moves and tactics of attackers.

This notion of using deceptive computer systems to attract attackers has become known

as honeypots. Even though many people have used similar techniques, the wide scale

implementation did not happen until the nineties. Honeypots are defined as computers

with no production value except to be compromised and record the attacker’s behavior

and tools. Since there are no legitimate services or work being performed on a deployed

honeypot, this creates a virtual mousetrap that can be observed, with all interaction with

15

the honeypot having a strong likelihood of being malicious. Previous to this time, the cost

to usefulness ratio did not allow for “extra” computers to be used for ID research or

capture devices other than by academic institutions and government agencies; but as the

price o f computers dropped dramatically in the late nineties and early 2000s, this opened

the door for more research in this area. Virtual machines and emulating tools allow

security conscious users to use and improve on this technology without the need for extra

computer equipment.

Honeypots can either be active or passive, based on the way that they detect

attackers on a network. Client-based honeypots actively seek attackers by visiting

suspicious web servers or executing malicious malware [John, Yu, Xie, Krishnamurthy &

Abadi, 2011]. Server-based honeypots passively wait for attackers to initiate attack. This

paper will delve into the server-based subset o f honeypots exclusively. Since many

honeypots are put onto a network with running services that might allow the attackers to

gain control of the computer or new application that might contain security holes, there is

always the concern of the honeypots being compromised and initiating more attacks. The

growing field of honeypots has since been sub-divided into two domains: low and high

interaction. Though some experts [Barfar & Mohammadi, 2007; Mokube & Adams,

2007; Spitzner, 2002; Wicherski, 2006] differentiate between three types o f honeypots,

this paper will combine low and medium interaction honeypots. The amount of

information able to be obtained from the honeypot, the risks and costs associated with

deploying and operating the resources are the criteria which separate the low and high

interaction honeypots.

16

17

Table 1, Types of honeypots [Danford, 2006]
Low Interaction
Medium Interaction**

- Transport layer virtualization
- Application layer virtualization

High Interaction - Real, vulnerable systems

**Combined with low interaction honeypots throughout the paper

2.1.4 Low Interaction Honeypots

The most prevalent honeypot category is low interaction systems. A low

interaction honeypot (LIH) uses a program to emulate services, open ports, or

applications. When an attacker scans a computer for open ports the LIH allows a limited

interaction between the attacker and the emulated service for which the port is associated.

The amount of interaction is dictated by the scripts behind the emulated service. Due to

the limited interaction, the administrator is able to record the traffic that is visiting the

system without worrying about the trouble o f a compromise.

LIHs come in all shapes and sizes, the information gathered about the attack and

attacker can also be quite varying. There are many focuses with regards to LIH such as

web services (PHP.HoP [Oudot, Ropert & Riden, 2012], Google Hack Honeypot [GHH,

2012], Glastopf [Glastopf Project, 2012]), malware collection (Nepenthes [Nepenthes,

2012], Dionaea [Dionaea, 2012], Amun [Amun, 2012]), tarpitting (LaBrea [Liston,

2012]), single-host services (Deception Toolkit [Cohen, 2012], Back Officer Friendly

[NFR, 2012]) and multi-host services (Honeyd [Provos, 2004], Tiny Honeypot [Bakos,

2012], Specter [Specter, 2012], KFSensor [KFSensor, 2012], Honeytrap [Honeytrap,

2012]).

A specific LIH which is relevant to this research effort is Honeyd, which is an

open-source framework which allows network services to be simulated from thousands of

internet protocol (IP) addresses. Honeyd is able to respond to thousands of requests for

unused IP addresses on a network; this sets a large net to gather as much information on

potential attacks. Honeyd is full o f features and options which have been discussed in

many books and in some it has at least a chapter devoted unto itself [Grimes, 2004;

Provos & Holz, 2007; Spitzner, 2002]. Honeyd allows for scripts to be associated with a

particular service to allow for more interaction with the attacker. Tools have been written

which automate the process for script generation for Honeyd [Leita, Mermoud & Dacier,

2005],

One of the biggest challenges faced by the administrators of most security

technologies, including honeypots, is that the configuration process can be quite

challenging and time consuming [Spitzner, 2003]. Although these systems are available

to a wide audience, they require constant modification and configuration to be a true

representation of the current network environment, or to emulate the services or

vulnerabilities of interest to the system administrator. Even if the administrator is putting

forth the effort trying to mask the presence o f a honeypot within the network, the

honeypots still require monitoring and maintenance to ensure the host has not been

compromised and that the latest patches to both the host and honeypots system have been

applied to decrease the likelihood of detection. Research has also been conducted to

discern between LIH and true services [Defibaugh-Chavez, Veeraghattam, Kannappa,

Mukkamala & Sung, 2006; Mukkamala, Yendrapalli, Basnet, Shankarapani & Sung,

18

19

2007], Their findings explain the ability of attackers to detect these low interaction

honeypots unless they have been significantly modified from their known default

configurations. Some of these detection methods are even distributed as commercial

products, such as the Send-Safe Honeypot Hunter which detects a particular type of

honeypot aimed at identifying SPAM sources by determining whether the open proxy on

the honeypot can send email back to the spammer [Send-Safe Honeypot Hunter, 2006].

In other cases, past versions o f Honeyd could be identified by sending a SYN/RST packet

which was answered, incorrectly, by a SYN-ACK [Corey, 2004], or by sending

fragmented SYN packets which normally would be dropped by the destination host, but

which actually elicited a response from the Honeyd system [Oberheide & Karir, 2006].

To counter these anti-honeypot techniques, work has been done to camouflage Honeyd

and defeat the Neyman-Pearson (NP) decision theory timing attacks by modifying

Honeyd and the underlying operating system to allow for a higher-fidelity emulation of

events [Fu et al., 2006]. Additional work has been done to create a deceptive system,

honeyanole, which uses blacklists to avoid detection [Shiue & Kao, 2008], The

honeyanole uses a collection phase, redirection phase, and deception phase to collect

information on a potential attack then performs blacklisting. If a potential attack occurs

from a blacklisted IP address then the attacker will be redirected to a deception sever with

TTL masquerading to hide the redirection.

Ease of installation and maintainability has made LIHs very popular and used in a

wide variety of projects. The Brazilian Honeynet Project setup LIHs in various locations

around Brazil and centralized the data for early warning and incident response [Hoepers,

Steding-Jessen, Cordeiro & Chaves, 2005]. The Leurre.com project used LIHs in a large

distributed platform that spanned 11 countries, to watch attack frequencies, tools, and

origins [Dacier, Pouget & Pham, 2012; Pouget, Dacier & Pham, March 2005].

While low interaction systems are prevalent due to their ability to emulate so

many different systems and the relatively low risk o f the underlying host system being

compromised via the honeypot, the disadvantage of such systems is that they can

generally not gather a great depth of information. For example, if a Honeyd system is

configured to have an FTP and a telnet port open, these are the only ports the honeypot

will gather information about. In addition, the “services” listening on the honeypot are

typically just emulations o f real services, and as such only allow limited interaction

opportunities for an attacker. Through the use of scripts, some low interaction honeypots

are able to gather more detailed information about a specific attack, but this is always

limited by the extent to which the script is written to emulate realistic interaction with the

attacker. Since these systems rely so heavily on the associated scripts for interaction

beyond the most superficial levels, the system administrator is forced continually to

change the scripts to match their current network configuration and associated services,

or risk having their honeypots look significantly different than their production hosts,

which not only limits the value o f any information obtained, but also provides an easy

mechanism to differentiate between honeypot and production systems.

Because low interaction honeypots do not fully emulate an entire operating

system and associated services, the use o f such honeypots generally does not allow the

recovery of the complete methods by which the attacker would interact with a real target

20

to compromise it, cover their tracks, and either gather data from the compromised host, or

use it as a launching point for further attacks.

2.1.5 High Interaction Honeypots

High interaction honeypots (HIH) are an actual full system with appropriate

services and functionally with which the attacker can interact. The HIH provides a much

more detailed look at the attacker’s tools and interaction with the target host before,

during, and after a system compromise operating system; although it remains likely that

non-automated attackers will realize at some point that they are interacting with a

honeypot system. However, the ability for the attacker to interact with the system at a

much greater depth can allow observers to retrieve attack tools and find the security

vulnerabilities in the operating system before a large scale attack is mounted. This ability

of the HIH to gather large amounts of interesting information has compelled users to

deploy HIH in extensive networks and use HIH in teaching environments [Azadegan &

McKenna, 2005; Hoepers et al., 2005; Levine, LaBella, Owen, Contis & Culver, 2003;

Levine, Grizzard & Owen, 2004].

Tools have been developed to aid in the logging and data capture of HIH. One

common approach is to modify the honeypot host to include a service, such as SEBEK

[Honeynet Project, 2003] can covertly monitor activity on the honeypot system. Versions

of Sebek are currently available for Windows, Linux, and BSD Operating Systems, and

involve a hidden client component which is installed on the honeypot system, and a

remote server component. The client attempts to unobtrusively record a wide range of

activities on the honeypot system (by capturing all system call read data from within the

operating system and monitoring encrypted network activity directly from the network

card), which it then reports over the network the Sebek server, where the data can be

reviewed and archived. Qebek is a QEMU [QEMU, 2012] emulator-based capture tool

which monitors beneath the virtual machine [Song, Hay & Zhuge, 2010], Qebek uses

several modules and systems (breakpoint, interception, introspection, and output) to

monitor the guest operating system. These tools aid in the monitoring of the HIH systems

by recording varying information about the attacker’s methods and tactics. After the HIH

has been compromised additional prototype tools have been tested to assist the user in

digital evidence collection [Carbone & de Geus, 2004],

Due to the nature o f the HIH, the attacker is likely to have full access to the

operating system and services which allows more information to be gathered about an

attack yet also makes the HIH a liability. Attackers are able to leverage the HIH as an

attack platform to initiate more attacks after they have successfully compromised the

computer. But tools have been created to limit the harm done by an attacker after a

system has been compromised. The Honeywall, Figure 4, monitors the inbound and

outbound traffic from a honeypot, which should be minimal since the honeypot has no

production value [Chamales, 2004], The Honeywall can alert the administrator to an

attack, block outbound traffic from a compromised system, scrub the attacking packets to

reduce their effectiveness, and monitor the honeypots through a Sebek sever module.

22

23

Honeywall L
Outbound Control

 H Z
Network Collector

IDS

Sebek Collector

Sebek Data Network Data

Figure 4, Honeywall Diagram [Balas & Viecco, 2005]

The hardware constraint o f having one high interaction honeypot per computer

limits their scalability. Virtualization has helped overcome the hardware limitations by

being able to run multiple HIHs on one physical host, with associated cost reductions and

scalability benefits. Beyond the savings in hardware costs, installation time can be

considerably reduced for virtual machines versus physical systems because a template

can be made of a virtual machine from which clones can be deployed. Additionally, when

a compromise occurs the clone can be disabled for forensic analysis while a new clone is

deployed from the previously uninfected state or snapshot. Even when virtualization is

used, a high interaction honeypot requires an administrator to install a complete operating

system and all the services necessary to gather the desired information. With each change

in the network configuration, operating system, and in services used on a workstation or

server, the administrator is required to make changes to the honeypot so it continues to be

representative of the environment in which it is to be deployed. Procedures and scripts

have been developed by the Brazilian Honeynet Project to help streamline and create a

uniform process in creating a HI honeynet [Chaves, Franco & Montes, 2005]. A freely

distributable, bootable design was implemented to swiftly create an entire honeynet,

including a Honeywall, utilizing QEMU technology on a single Honey-DVD [Domseif,

Freiling, Gedicke & Holz, 2006]. Alen Capalik devised an architecture which rapidly

deployed HIH using virtualization for intrusion detection [Capalik, 2007], The VMs run

on top of a Kernel-based Virtual Machine (KVM) for Linux which monitors the honeynet

through a “sentinel” module which perform low-level introspective memory analysis. In

another study, several virtual machine monitors (VMM) were implemented, tested and

evaluated on their ability to detect attacks [Asrigo, Litty & Lie, 2006]. These

architectures show that VMs can be used to detect attacks on a small number of physical

systems. Using some of the current tools, a third generation Honeywall architecture was

designed for data capture [Balas & Viecco, 2005]. Two paths were suggested for the data

that was captured from an intrusion to better help the administrator and the analyst. The

fast path provided a high level comprehension of the data but resulted in some

degradation of detail and is stored in a relational model. The slow path allows the

analysts to look at all the nitty, gritty details and is stored in the canonical form. Argus

[Argus, 2012] and Snort are used to monitor network flow, pOf [Zalewski, 2012] is used

24

to passively determine the OS of the intruder, Sebek is used to monitor socket activity;

and then all this information is stored in a Hflow [Viecco, 2007] database. Pcap files are

stored to restore all the captured data since they are in canonical form. Then an improved

Walleye [Balas & Viecco, 2005] interface is used to display the high level data in a flow

form. There are other systems which use VMs to rapidly deploy honeypots, and these will

be discussed in the Hybrid section o f this paper.

Despite all the advances in HIH technology, there are still many challenges that

must be overcome. There have been papers written about how to detect Sebek utilizing

various methods [Corey, 2003; Corey, 2004; Domseif, Holz & Klein, 2004], For an

attacker to detect a honeypot is valuable information. Most attacks are conducted by

exploiting a system then leveraging that system’s place in the environment to

compromise their next victim. If an attacker knows they are in a honeypot then they can

use disinformation to thwart efforts to forensically analyze the compromise or use the

information already collected by the honeypot for their own nefarious needs [Krawetz,

2004], Since honeypots are also used for malware analysis, the detection of a honeypot

could trigger the malware to sleep or act in a different manner than in a non-honeypot

system which makes quick analysis more difficult. Detection techniques have also been

researched in the area of VMs [Defibaugh-Chavez et al., 2006; Holz & Raynal, 2005;

Mukkamala et al., 2007], Since researchers are utilizing the benefits of VMs in honeypot

deployment, attackers are scanning for a virtual environment through their malware and

during their network penetration to deduce if they are being watched.

25

HIHs have been adapted to every field of network and computer security to

provide security researchers with large amounts of information. Despite some of the

challenges and legal questions, HIHs continue to be deployed in a large number of

academic and production environments. One key issue addressed in the next section is

how to scale and control these HIHs in a large network without wasting resources when

aggregating the data so analysis can begin.

2.1.6 Hybrid Honeypots / Honeyfarms

Combining both low and high interaction systems into one cohesive unit has been

achieved through the development of honeyfarms or bait and switch (B&S) systems. For

B&S systems, the low interaction honeypots can be placed into any geographical

locations and act as redirectors to the high interaction honeypots which are centrally

located. The high interaction honeypots are physically centralized to facilitate

maintenance and hardware consolidation. The routing or redirecting is done with

programs like HoneyMole [Portuguese Honeynet Project, 2008]. HoneyMole provides

relatively transparent communication in the form of an Ethernet bridge from a low

interaction honeypot to a high interaction honeypot, which allows more information to be

gathered about the attack. If an attacker probes one of the emulated low interaction

honeypots it can cause a trigger sending the attacker to the high interaction honeypot via

the secure communication channel. This process of combining both the low and high

interaction honeypots allows the potential for thousands of low interaction honeypots to

be deployed on a single host but also have a limited number of high interaction honeypots

to gather detailed information. The identified open issues with this method include

26

27

creating enough high interaction honeypots that appear similar to the low interaction

devices, and keeping the latency resulting from tunneling traffic to the remote high

interaction honeypots to a minimum.

In 1998, an IDS architecture was designed and prototyped in which agents were

looking for network or host anomalies in a distributed network [Balasubramaniyan,

Garcia-Femandez, Isacoff, Spafford & Zamboni, 1998], The architecture, Figure 5,

suggested is a tiered hierarchical structure and has three main components. The outlying

stations are the “agents” which report to the middle tier “transceivers.” The transceivers

might have multiple agents to supervise and assimilate their findings. The “monitors”

oversee multiple transceivers and are the ultimate decision makers based on the

information received from one or more agents.

Figure 5, An Architecture for Intrusion Detection using Autonomous Agents
[Balasubramaniyan et al., 1998]

Necessary characteristics o f each component and the different methods that could be used

to facilitate the implementation were discussed. Four of these characteristics that

traditional honeypots do not currently possess include the following:

1. It must allow dynamic-reconfiguration this is the ability to reconfigure the

honeypot or honeynet without having to restart it.

2. It must be able to adapt to changes in system and user behavior over time.

3. It must be able to scale to monitor a large number o f hosts.

4. It must run continually with minimal human supervision.

A honeypot architecture, Figure 6, to detect internet threats and use different levels of

interaction to gain information about these threats was recommended in a technical report

from the University of Michigan [Bailey, Cooke, Watson, Jahanian & Provos, 2004].

Low interaction, high interaction and a filtering mechanism to monitor for new threats

was proposed in the new design. The LIH would allow multiple contact points by which

to monitor the internet for the threats and be the redirectors to allow new or older threats

to pass to the HIH. The HIH would be the host which is infected by the threat then

isolated and observed to gain information about the migration throughout the network

and further infection of new hosts. The filtering mechanism allows most o f the

uninteresting traffic to be filtered as not to use cycles from the HIH which could be used

to obtain information about the new threats. If a threat is encountered the LIH establishes

contact with the attacker. After a brief handshake the filter either ends the connection or

passes the conversation to a HIH to re-establish contact and gain further intelligence on

the attack. Other papers have been published which present different ideas on the topic of

28

29

using LIHs to filter the attacks then using a redirecting mechanism to route the interesting

traffic to HIHs [Hudak, 2008; Kyaw, 2008],

Figure 6, Hybrid honeypot architecture [Bailey et al., 2004]

The Collapsar honeyfarm, Figure 7, at Purdue University [Jiang & Xu, 2004;

Jiang, Xu & Wang, 2006] was developed to engage attackers from a multitude of

redirectors. The redirectors are servers that filter and direct traffic from a specific IP to

the high interaction honeypot (HIH). A gateway is placed between the HIH and the

redirectors to control the data flow and mitigate risk due to compromised devices. The

HIH were configured using both VMware [VMware, 2012] and UML [Dike, 2006] to

High Interaction
Honeypots

30

increase the number of honeypots per device. Several experiments were conducted to test

the benefits and tradeoffs between the two VM programs.

Figure 7, Collapsar honeyfarm architecture [Jiang et al., 2006]

There are several modules used in Collapsar to mitigate risk and facilitate the analysis of

the attack. This system provides a centralized location to control the HIH and to

investigate the attacks. Since real devices running UML are used for the redirectors, it is

necessary to constantly update the host device as well as the VMs to prevent a

compromise of the redirector. Due to the design, attackers near the redirector will notice

the delay when comparing a real host on the same network. The second version of the

Collapsar implementation, Figure 8, also integrated a reverse honeyfarm design which

Production Network - A ' V

Management Station Correlation Engine

31

allowed the redirectors to become client honeypots to increase the amount of information

gathered from the system.

Management Station Correlation Engine

Figure 8, Collapsar reverse honeyfarm architecture [Jiang et al., 2006]

The Potemkin honeyfarm at UCSD [Vrable, Ma, Chen & Moore, 2005] optimized

the amount o f available honeypots on the server. This was accomplished by utilizing

virtualization to effectively use their resources yet still benefiting from a high interaction

honeypot system. The setup, Figure 9, utilized two main pieces o f hardware: the gateway

and virtual honeypot server which consisted of a cluster o f 10 devices to implement a

honeyfarm with a positive test.

32

Figure 9, Potemkin virtual honeyfarm architecture [Vrable et al., 2005]

To direct traffic to the honeypots, GRE tunnels and configuring the gateway as a “last

hop” router allows multiple IP addresses to converge at the honeyfarm. The external IP

address is used in configuring the virtual honeypot with the same address for further

engagement o f the attacker. Xen [Xen, 2012] was used to construct the virtual honeypot

system which allowed fast cloning of the honeypots and IP configuration to take place in

just over a half of a second. Small VMs and low memory constraints were used to get

hundreds of VMs to run on one server with the possibly o f deploying over a thousand.

The outbound traffic is also configurable to protect other systems from further attack.

Analysis on the number o f VMs necessary to deal with all the traffic including scanning

traffic would have been in the tens of thousands range. A scan filter was necessary if a

low inactivity timeout period was used to deal with the traffic load.

NoAH, a European Network of Affined Honeypots, was a project funded by the

European Community which lasted 42 months, April 2005 through September 2008

[NoAH, 2008]. The NoAH architecture, Figure 10, combined both LIH and HIH into an

infrastructure which contained cyber-attacks and tested methods for attack detection and

signature generation. The “NoAH core” is a distributable set of honeyfarms, both LIH

and HIH, which can collaborate. The LIH is used as a filter to prevent uninteresting

traffic from continuing any farther into the core. The LIH handles all communication

with potential attackers then redirects “interesting” traffic to the HIH, which ensures the

HIH are in a containment environment. Honeyd is used as the LIH which allows scripts

to be written to interact with the attacker or act as proxies to specific services running on

the HIH. The HIH are run as virtual machines on top of Argos, the containment

environment. Argo uses QEMU to emulate the guest operating system and perform taint

analysis on the code being attacked by the attacker [Portokalidis, Slowinska & Bos,

2006], Argos generates a signature for the attacker’s code which can be used to supply an

IDS. Due to the emulation process and an inability to use QEMU’s acceleration mode,

Argos runs programs 15 times slower than native execution.

33

34

Figure 10, NoAH honeyfarm architecture [NoAH, 2008]

Xargos was developed to supplement Argos by using Xen to run the applications and

dynamically switched to Argos to execute the code that interacts with the tainted data.

Xargos sped up the process but still needs work to support Windows and new versions of

Linux. Traffic is introduced into the “NoAH core” by several methods. Attackers could

interact with the LIH directly, organizations could funnel or tunnel traffic from unused IP

addresses to the LIH, or individuals could install “honey@home” (h@h) [Antonatos,

Anagnostakis & Markatos, 2007] which would redirect traffic to the core. Funneling

involves a LIH, like Honeyd, to assume the unused IP addresses and redirecting all traffic

directly to the core’s LIH. Tunneling is the organization acting as a relay agent for all the

traffic so the traffic appears to be coming from the organizations’ network. The h@h

software needs no configuration and is supported by Windows and Linux operating

systems. The h@h clients are installed on a small business or personal network and use a

SSL connection to redirect all traffic to the core. After the data has been processed, alerts

are correlated and categorized with each sensor feeding three additional software

components for analyzing the data statically, sensor monitoring, and geolocation.

Honeybrid was designed and constructed by Robin Berthier [Berthier, 2009]. This

architecture is composed of three components; Honeybrid Gateway, a set of low-

interaction honeypots and a set o f high-interaction honeypots. The main component is the

Honeybrid Gateway which is composed of two sub systems; decision engine and the

redirection engine. The network traffic is routed to the LIH through the decision engine

to establish a connection and allow the gateway to detect interesting traffic. If the traffic

is determined to be worthy of further analysis (source IP address, destination port or

payload) then the traffic is passed to the redirection engine which transparently passes the

traffic from the LIH to the HIH for a more detailed analysis. Honeybrid uses an original

way to redirect interesting traffic based upon a decision engine that is capable o f handling

large amounts of traffic.

HoneyLab was a design and proposal to deploying a distributed honeynet with the

ability to monitor the honeypots [Chin, Markatos, Antonatos & Ioannidis, 2009],

Researchers and security experts would be allowed to deploy Honeypot sensors using the

HoneyLab Central resources. IP address location or range would be requested then the

35

honeypot infrastructure would be allocated for the user to deploy their own honeypot

services, instrumentation code and detection algorithms on the XenoServers.

To help detect and prevent network intrusions from both the internal and external

environments, a Network Intrusion Collaboration System (NICS) design was put into

operation [Prasad, Abraham, Abhinav, Gurlahosur & Srinivasa, 2011]. The NICS would

be composed of subsystems called “System of Security Systems (SoSS)” which

incorporated Network Intrusion Detection Systems (NIDS), Network Intrusion

Prevention Systems (NIPS), and honeypots. This distributed design utilized Snort as the

NIDS to detect known attacks based on signatures, IPTABLES provided by the

GNU/Linux Debian Squeeze distribution as the NIPS firewall mechanism the prevented

unauthorized activities and Honeyd as the honeypot system that helped with threat

detection and assessment. Each of these intrusion systems would report information to a

customized statistical classifier written using a shell programming language to extract

information from the network data. This project demonstrated the ability to have a large

system which composes smaller subsystems which centralize the data in one classifier

system.

Additional work has been done to conceal honeypots in a distributed system using

a Cooperative Deploy Honeynet (CDH) scheme [Wang & Chen, 2011]. The CDH uses a

cooperative learning algorithm based on the multi-agent system [W. Wang, C. Wang &

Shi-fu, 2006] to deploy the honeyfarm system (HFS). Wang and Chen created a method

that quantifies the disguise capability o f distributed honeynet system. The model used

weighted factors to disregard poor honeypots and preserve good honeypots based on their

36

number of attacks. The model was then improved by proposing two algorithms,

cooperative learning and evolution, to dynamically deploy the honeypots in a distributed

honeynet environment.

There is much concern about the ability to detect bait and switch systems or

honeyfarms [Corey, 2003]. Due to redirection, a network delay will be introduced into

the process which can be noticeable to attackers that are close to their targets. Since a

high interaction device must respond to redirected traffic, this implies that many

honeypots must be available at all times or a mechanism must exist to create or clone

them quickly. The ability to create a honeypot quickly is a necessity so as not to increase

the network delay time and not arouse the attacker’s suspicions. In addition, any

inconsistency between the low interaction frontend systems and the high interaction

system that an attacker is redirected to may provide an indication that the victim device is

a honeypot system.

2.1.7 Dynamic Honeypots

The notion of dynamic honeypots was first conceived by Lance Spitzner

[Spitzner, 2003]. He had a list o f wishes that would make the “perfect honeypot.”

1. A plug-and-play solution that learns the environment

2. Able to deploy the proper number and configuration of honeypots in such

a way to blend into the network

3. One that adapts to changes in the network by adding and removing

honeypots based on the environment

37

38

He presented the idea of actively scanning or passively listening to a network to

determine the types of computers and services that should be implemented in the

honeypots. The information gained from learning the network would be used to create a

honeynet that represents the actual network or a smaller subset. Current problems with

maintaining a honeynet were addressed and proposed that with the advent of a dynamic

honeypot system that some of the problems would be alleviated.

A dynamic honeynet design, Figure 11, was proposed in 2004 that put more

detail to the concept of Spitzner [Kuwatly, Sraj, Masri & Artail, 2004],

Figure 11, Dynamic honeypot server [Kuwatly et al., 2004]

39

The dynamic honeypot server (DHS) collects information about the environment

by utilizing passive and active scanning based on the network architecture. Once the DHS

has gained knowledge about the environment, a HIH configuration is suggested along

with a suitable configuration for Honeyd. The LIH receives the traffic then passes it

along to the HIH for a higher level of interaction. Each HIH is running a Sebek client

which logs and routes the information to the DHS where the Sebek sever centralizes the

logs from each system. The DHS is capable of alerting the administrator via short

message service (SMS) texts. The LIH and HIH system information and log files are

stored in a database which is accessible to the administrator through a web interface.

An experimental dynamic honeypot design and implementation, Figure 12, was

presented in a technical report by the University of Louisville [Hieb & Graham, 2004],

The implementation followed Spitzner’s design by exclusively using passive listening

programs, tcpdump [Tcpdump, 2012] and pOf, to gather information about the network

environment. IP addresses and open ports captured by tcpdump, along with operating

systems fingerprinted by pOf are stored in the dynamic honeypot database. The dynamic

honeypot configuration engine creates the Honeyd configuration file based on the

database information. Honeyd is then deployed to mimic the systems already seen in the

network. This system does not adjust instantly to a new system being introduced onto the

network, but waits for a predetermined time to update the database and re-start Honeyd

with the new configuration file. During testing o f the system, the author also noticed the

difficulty of identifying all of the open ports on the devices.

40

Layer 2 bridge

Figure 12, Dynamic passive scanning honeypot implementation
[Hieb & Graham, 2004]

Communication through the layer 2 bridge was essential to recognize the open ports.

External probing o f all the ports with an active scanner was conducted; this allowed the

passive scanner to gather the required information to better simulate the monitored

network. Snort was used to capture the Honeyd traffic then generate alerts.

Active scanning was implemented in an alternate design shown in Figure 13,

which dynamically adjusts to the environment on which system has gathered information

[Hecker, Nance & Hay, 2006]. Nmap [Yarochkin, 2012] is utilized to scan a network to

gain network and computer configurations. During initiation of the scan, four options

could be selected which would determine the honeypot IP address configuration.

Figure 13, Dynamic, active scanning honeypot sever [Hecker et al., 2006]

The available flags were the following:

• -iS, same IP as scanned devices

• -iD, uses the same last octet of the IP with a different proceeding 24 bits

• -iR, selected a predetermined range will be used for the honeypot IP addresses

• -il, interwove the honeypots IP addresses with the scanned production computers

The MySQL [MySQL, 2012] database is queried during creation of the Honeyd

configuration file to combine the scan results with any port emulation scripts matching

the scanned device’s ports to enhance the resulting honeypots. Honeyd is started using

the configuration file which creates the honeypots with the desired IP address, open ports

and OS configurations. As with the previous dynamic honeypot system, the deployment

process is self-initiated through the cron daemon or manually for the honeynet to remain

current with the network. ARP packets were transmitted to find an open IP to interweave

the honeypots with the production devices. Requesting an IP from the DHCP server

instead would ensure that an IP conflict did not occur. A graphical user interface (GUI)

was also constructed to help the user through the process instead o f relying solely on the

command line.

Honeypots have been developed and advancing for the past 15 years with many

different approaches. The preceding design ideas and architectures were considered in

formulating this research project. Implementing a system which expands and incorporates

the two dynamic honeypots designs was necessary to accurately build honeypots which

resemble the network environment. Integrating passive and active scanning while storing

the information in a database were key features to map the topology and record the flux

of the network. Utilizing the benefits of low and high interaction honeypots is vital to

collect attack statistics and detect new attacks. This research effort attempts to create a

comprehensive system utilizing innovative network scanning tools to build configuration

files for prevalent honeypot technology.

42

43

Chapter 3: System Development

3.1 Project Overview

Demonstrated by the literature search, there is a lack of a self-contained, dynamic

honeynet system which is capable of deploying both low and high interaction honeypots.

This honeynet system provides the user with the ability to scan a network passively or

actively, stores the data from the scans to create a network depiction, and creates a

Honeyd configuration file for deployment of low interaction honeypots and an extensible

markup language (XML) file for the deployment o f high interaction honeypots.

This system was designed around a core set o f tools that aid in mapping a network

environment. A module was built around each tool to process the resulting data gathered

during operation of that tool and record the information into a database. Building in a

modular fashion allows independent operation of each of the scanning modules.

Commands, with a variety of flags, allow the user to initiate operation o f each module.

To reduce the burden on the user to constantly supervise the individual processes, two

management programs were created to oversee the modules and control the creation of

the honeypot configuration files. Figure 14 shows the different modules, their roles and

functions, and the interactions between the modules.

44

honeypot_scanner loop

- Monitor pOf, tcpdump & active_scanner status
- Monitor percent change o f captured network configuration
- Create honeypot files upon meeting percent change threshold

/ \
pOf_mysql «*-

honeypot_
scanner

pOf_mysql loop

■ Monitor network traffic
■ Gather information about network machines
• Determine machine OS
• Store information in database

tcpdump,
mysql

tcpdumpmysql loop

- Monitor network traffic
- Gather information about network machines
- Store information in database
-Store seen IP addresses in queue for active scanner

activescanner loop

• Determine noise level set by user
■ Initiate Nmap or Xprobe2 to scan IP

addresses from queue

/ nmap_ \
\ mysql /

- Gather information by scanning network machines
- Determine machine OS
- Determine open UDP and TCP ports
- Store information in database

nm apm ysql

- Gather information by scanning network machines
- Determine machine OS
- Determine open UDP and TCP ports
- Store information in database

Figure 14, Project module overview [Hecker & Hay, 2010]

45

3.2 Management Programs

3.2.1 Objectives and Requirements

The intention o f creating a management system is to alleviate the responsibility of

the user to monitor the scanning process and modules, and create honeypot configuration

files when the sensed network has met an identified threshold designating a “significant

change.” Being able to continually monitor the individual processes and redeploy if

necessary was an essential feature o f the management system.

3.2.2 Design and Implementation

honeypotscanner

Honeypot scanner is the primary management program which oversees both

passive scanning modules and the secondary active scanning management program,

active scanner. Honeypot scanner gathers the initial configuration information stored in

the database and disseminates it to all the respective modules upon their deployment. As

Figure 14 illustrates, the passive scanning modules and active scanner are deployed as

threads. The threads are monitored through the process identification (PID) to verify

operation. The continual monitoring allows the re-deployment of any o f these modules

should they die unexpectedly. Honeypot scanner also observes the results gathered from

all the scanning modules and builds honeypot configuration files upon reaching a setpoint

determined by the user. The initial setpoint is based on the number of devices required to

be identified before deploying the honeypot configuration files for the first time.

Subsequently, the setpoint is based on the percent change of devices or services

identified. So, if the initial set point required five devices to be identified and a percent

change o f 30%, then re-deployment of the configuration files would take place after two

additional devices or services were identified or removed from the network.

Honeypot scanner is able to identify the removal of devices and active ports on an

individual computer by updating the timestamp, associated with the device/ports, as the

scanning modules gather information. If the timestamp is older than the predetermined

number of seconds set by the user then the device or computer port is not added into the

new iteration of honeypot configuration files. Figure 15 illustrates the decisions made by

the honeypot scanner.

This system is structured to create a Honeyd LIH configuration file with the same

qualities as the XML HIH file. This expands the abilities o f this system to create

honeyfarms which allow for LIH redirectors to forward attackers to the similar HIHs.

Programs have been discussed in Chapter 2 which tunnel traffic from LIHs to HIHs, and

rapidly deploy VMs as HIHs. Database tables have already been created in this system to

link a LIH with a HIH to facilitate the forwarding of an attacker. As previously stated,

LIHs are easier to deploy and maintain in large quantities and can easily be distributed

throughout an organization for alerting and redirection to a HIH if necessary.

46

47

Figure 15, honeypot scanner process

During the creation o f the Honeyd configuration file, saved commands to execute

existing port emulation scripts upon honeypot deployment are supplied. Honeyd scripts

provide additional functionality to the LIHs. The XML file contains the information to

configure and deploy a HIH virtual machine with similar features as the Honeyd LIH.

Honeypot scanner also handles the collecting IP addresses through DHCP. As the

Honeyd configuration file is being created honeypot scanner requests IP addresses from

the DHCP server. This allows the LIHs to be interwoven into the production network

without manually assigning IP addresses or worrying about duplicate IP addresses on the

network. Honeypot scanner continually monitors when the IP address’ lease expires and

renews it for the LIH. If a production device is removed from the network, the LIH will

not be redeployed and the DHCP IP address will be released.

To create a record of the network environment, the Honeyd configuration files

and the XML files are backed up to a folder as new files are generated.

activescanner

Active scanner was developed to specially monitor the active scanning modules.

Actively scanning a device can induce significant noise into the network. Active scanner

controls the noise by determining which scanning module is deployed, and the type of

scan initiated by the sub-program. The determination of the module and type of scan is

based on the noise level set by the user. Five noise levels are available to the user:

passive, low, medium, med-high, and high. Though the passive scanning modules are

capturing data throughout every noise level, the user can choose to have the program

silently collect data by choosing the “passive” noise level. Error! Reference source not

found, depicts the active scanning noise levels available to the user, the sub-programs

used to scan the network and the commands used to initiate the scan.

As the passive scanners capture header information from the network traffic, the

MAC and IP addresses are stripped from the data and input into a database table. The

IP/MAC address combinations to be actively scanned are retrieved from the database by

active scanner and sent to the respective active scanning module

48

49

Table 2, Active scanning noise levels
Noise level Sub

programs
Active scanning commands

low xprobe2 xprobe2 -r -m 2 -o {file} -X {ip}
medium xprobe2 xprobe2 -r -m 2 -o {file} -X -T 1-1024,3306 -U 1-1024 {ip}
medium-high nmap nmap -sT -sU -T3 -sV -0 -oX {file} -host-timeout 180 {ip}
high xprobe2

+ nmap
xprobe2 -r -m 2 -o {file} -X -T 1-1024,3306 -U 1-1024 {ip}
nmap -sT -sU -T3 -sV -O -oX {file} —host-timeout 180 {ip}

3.3 Network Scanning (Passive and Active)

3.3.1 Objectives and Requirements

The objective was to create as complementary set of completely independent

modules that could be used separately or cooperatively. Each module would be initiated

through the command line and accepts flags to perform a set of operations. Each module

would store the information in unique MySQL database table(s).

3.3.2 Design and Implementation

Four modules were created to perform the active and passive scanning for the

program. POf jn y sq l and tcpdump jn y sq l passively gather information about devices from

the network traffic. Nmap jn y sq l and xprobe2jnysql actively scan the identified devices

on the network. As previously explained, the passive scanning modules are constantly

gathering data about the devices on the network. Active scanner takes the identified

devices and initiates the respective active scanning module. Figure 16 demonstrates the

decision process of each of the scanning modules and their associated database tables.

50

Figure 16, Scanning modules decision process

To reduce redundant data, all the scanning modules (tcpdumpjnysql, pOf jnysq l,

nmap jn y sq l and xprobe2jnysql) query the database before inserting gathered data about

a device or port to determine if it has been previously observed. If the data is not present,

then it is stored into the database but if data is present, then the timestamp on the previous

observation is updated.

3.3.2.1 Passive Scanning Modules

Two passive scanning modules are used to gather information about the devices

on the network. Since they gather different data about the devices, it was necessary to use

two separate sub-programs to obtain the operating system information and which ports

are communicating.

pOf jn ysq l

POf is passive scanning tool which uses sophisticated fingerprinting mechanisms

to identify the operating system of a device by examining its TCP/IP packets [Zalewski,

2012]. POf is also able to measure system uptime, distance in hops, and whether ports are

firewalled. The command used to initiate pOf is:

pOf -i {interface} -p -I

POf will begin listening on the interface specified after placing the interface into

promiscuous mode. POf jn y sq l parses the gathered information then stores it into the pOf

database table.

Many users can exchange the same IP address over a relatively short period of

time on a highly dynamic network plus operating systems may be upgraded; pOf queries

51

the database for the IP, MAC, and OS o f an identified device to determine whether it has

been previously stored in the database. If any of the parameters have changed or if the

device is unknown, then the device information is stored in the table; otherwise the

timestamp is updated.

tcpdumpmysql

Tcpdump is a packet analyzer which is used to grab packet headers to identify

devices on the network and computer ports that are responding to requests [Tcpdump,

2012], The following command is used to initiate tcpdump to begin gathering

information:

tcpdump -nne -i {interface} src net {ip}

Tcpdump collects the link-level header information and does not convert the IP

addresses or ports to names. Only packets with the source IP on a particular subnet are

captured. This captures information about devices on the network for which a honeynet

would like to be created. This subnet can range from a class A (1.0.0.0) to a specific

device (1.2.3.4).

Tcpdump jn y sq l further filters the network traffic to ensure the resulting

honeypots closely resemble the actual production device. Tcpdump mysql gathers the

header information from the following packets: ICMP echo reply, UDP reply, TCP SYN-

ACK, and TCP RST-ACK. These packets are likely to be coming from responding

ports/services. The IP and MAC addresses from the ICMP packets are stored in the

tcpdumpJcmp database table. The source IP, MAC and port number contained in the

TCP and UDP packets are stored in the tcpdump jjo r ts database table.

52

Tcpdump does not provide any details about the services that are communicating

on a particular port and protocol in the packet. Nmap.org provides a file, nmap-services,

which contains a list o f ports and protocols along with the corresponding services. The

file can be downloaded from http://nmap.org/svn/nmap-services. After removing the

unknown services, the information was entered into the nmap services database table via

the nmap servicesjnysql script. Once a packet has been observed, the port number is

queried in the nmap services database table and the service information is placed with

the packet information in the tcpdump_ports table. Though several services may be using

the same port or services may be using non-standard ports, this additional information

tries to speculate which service might be using a particular port to provide better

information to the user.

3.3.2.2 Active Scanning Modules

As with passive scanning, two modules are used for the active scanning portion.

Each module’s sub-program utilizes different network protocols to determine the

operating system of the identified device. Based on initial testing which is discussed

further in Chapter 5, each sub-program is able to correctly identify a different operating

system with better proficiency. The speed and efficiency to correctly identify devices and

network traffic generated to gather information were the factors that required the use of

different active scanning modules.

nmapmysql

53

http://nmap.org/svn/nmap-services

Nmap is a network discovery tool which allows administrators to identify open

ports and the OS which is running on a device [Yarochkin, 2012], Nmap is highly

configurable and allows the user to choose from a wide variety of scans. The command

used to initiate nmap is as follows:

nmap -sS -sU -T3 -sV -O -oX {file} -host-tim eout 180 {ip}

Nmap executes a TCP connect scan and UDP scan on the IP address with the following

options: timing template is set to 3 to scan moderately, probes the open ports to determine

service and version information, OS detection is enabled, output the results to file

specified in a XML format and terminates the scan if it is not able to gather information

on a host after 180 seconds.

After nmap scans the device, nm apjnysql parses the XML file and stores the data

into two database tables. Information about the scanned device is stored in the

nmapmachines table while information regarding open ports is stored in the nmap_ports

table. If nmap was not able to determine information regarding a certain area o f the

device being scanned then “unknown” is stored in the respective field of the database

table.

Regulating the duration between scans is accomplished by active scanner passing

a flag with a time in seconds. N m apjnysql will query the database concerning that device

with the IP and MAC addresses supplied in other flags before running a scan to

determine if the device has formerly been scanned. If the query finds a match and returns

the requested information, the time since the last scan is compared to the duration

between scans to determine if a re-scan should be initiated.

54

xprobe2_mysql

Xprobe2 is active OS fingerprinting tool which applies different methods then

nmap to gather information about a device [Ofir, Yarochkin & Kydyraliev, 2003],

Xprobe2 utilizes ICMP and UDP packets to determine the state o f a device and the

operating system. Xprobe2 also has the ability to scan a device for open TCP and UDP

ports. As discussed earlier, two separate commands are used to initiate xprobe2

depending on the noise level. The first command is as follows:

xprobe2 -r -m 2 -o {file} -X {ip}

Xprobe2 probes the device with the IP address specified and generates primary and

secondary OS deductions based on signature matching. The OS and route to target is

recorded in a XML file. The second command used is the following:

xprobe2 -r -m 2 -o {file} -X -T 1-1024,3306 -U 1-1024 {ip}

This command is similar to the first but probes the TCP and UDP ports which are

indicated. Xprobe2 jn y sq l also regulates the duration between scanning by comparing the

time designated with the - t flag that is passed from active scanner and the time since the

last timestamp. X probeljnysq l gathers the information about the device and ports

scanned then stores the data in the xprobe2 machines and xprobe2 j jo r ts database tables.

3.4 Low Interaction Honeypot Configuration

3.4.1 Objectives and Requirements

Honeyd was chosen to be the low interaction honeypot program due to its

prevalence, support and additional scripts to supplement the interaction with an attacker.

55

Figure 17 is an example of a Honeyd configuration file generated by honeypot_scanner.

The objective was to combine the results from the scanning modules to create a Honeyd

configuration file that is the most accurate representation o f the production network.

3.4.2 Design and Implementation

Once the initial deployment or re-deployment threshold is reached,

honeypot_scanner will create a configuration file with the data gathered by the scanning

modules. Each device or open port that has been identified or updated, since the time

between scan intervals, is added to the configuration file. Since several o f the modules

collect the same information, a ranking was instituted to determine the OS of the low

interaction honeypot. Active scanning tools were ranked highest due to their ability to

gather more information in a quicker timeframe. Nmap is the most current and readily

updated tool so it was given the highest precedence. The ranking order for determining

which OS is placed in the configuration file is nmap xprobe2 pOf. The

configuration file is updated with all of the known data sets for each device that was

identified and collected by the scanning modules.

56

57

Honeyd Configuration File ######
Sun Apr 16 20:04:09 2006

####*###################################

create Windowsl
set Windowsl personality "Microsoft Windows 2003
Server or XF SP2”
set Windowsl default tcp action reset
set Windowsl default udp action reset
set Windowsl default icmp action open
add Windowsl tcp port 21 open
add Windowsl tcp port 23 "peri /telnet/falcetelnet.pl
add Windowsl tcp port 25 open
add Windowsl tcp port 80 open
add Windowsl tcp port 110 open
add Windowsl tcp port 143 open
add Windowsl tcp port 143 open
add Windowsl udp port 123 open
add Windowsl udp port 135 open
add Windowsl udp port 137 open
add Windowsl udp port 138 open
add Windowsl udp port 139 open
add Windowsl udp port 445 open
add Windowsl udp port 500 open
add Windowsl udp port 1900 open
add Windowsl udp port 4500 open
add Windowsl udp port 31337 open
set Windowsl ethernet "Intel Corporate”
bind 192.168.192.103 Windowsl

ft#################*####################

Figure 17, Honeyd configuration file [Hecker et al., 2006]

The IP address for each low interaction honeypot is decided by a setting chosen

by the user in the config database table. There are four different settings available to the

user, and each setting has a different purpose depending on the honeynet application of

the user:

• -iS, the same IP addresses as the scanned computers

• -iD, the same host value, but a different subnet

• -iR, assigned in a subnet selected by the user

• -il, interwoven utilizing DHCP betwixt the existing IP addresses of the scanned

host

As the configuration file is being created, the l ih j i ih j in k table is being populated

simultaneously. This table allows the low interaction honeypot and high interaction

honeypot pairs to be associated. This facilitates future modules for the purpose of

redirecting interesting traffic from the low interaction honeypots to the high interaction

honeypots.

3.5 High Interaction Honeypot Configuration

3.5.1 Objectives and Requirements

The XML file is generated by honeypot jscanner to allow the user to generate a

high interaction honeypot with any type o f virtual machine application or to use as a

formula to create a standalone high interaction honeypot. Though the devices included in

the XML file are similar to the ones found in the Honeyd configuration file, they do not

have to be used in conjunction with one another. Figure 18 is an example of a XML file

generated by honeypot scanner.

58

59

<?xml version="1.0"?>
<honeypot>

<target name="Linuxl" ip="192,168.192.150" mac=''00:04:00:6D:OD:47" lih_hih_id="l">
<os_guess>

<primary> "Linux Kernel 2.4.0" </priinary>
</os_guess>
<system_information'>

<icmp_reply state="dosed"/>
<firewall state=" no/un known"/'-
<lookup_link state="unknovvn"/>
<last_reboot seconds="unknovvn”/>
<real_time_target_seconds seconds="0.00332"/>
<uptime_seconds time="unknown"/>
<distance_hops hops="unknown’7>

</system_information'>
<port_scan>

<port number="21" protoco l"tcp" service="ftp" version="unknown" extra_info="unknown‘7 s>
<port number="79" protocol="tcp" service="finger" version="unknown" extra_info="un known "/>
<port number="80" protocol="tcp" service="www“ version="unknown" extraJnfo="unknown"/>
<port number="515" protocol="tcp" service^"printer" version="unknown" extra_info="unknown"A
<port number="631" protocol="tcp" service="ipp" version="unknown" extra_info="unknown"/>

</port_scan>
</target>
<target name=”Windovvs2" ip="192.168.192.171” mac="00:0C:29:20:E3:5E" lih_hihjd="2">

<os_guess>
<primary> "Microsoft Windows XP SP2” </primary>

K/oi^guess>
<system_information>

<icmp_reply state="closed"/>
<firewall state="no/unknown'7>
<lookup_link state="unknown"/>
<last_reboot seconds="unknown'7>
<real_time_target_seconds seconds="0 00624"/>
<uptime_seconds time="unknown'7>
<distance_hops hops=''unknown'7>

</system_information>
<port_scan>

<port number="80" protocol="tcp" service="wwvv" version="unknown" extraJnfo=''unknown'7>
<port number="135" protocol="tcp" service="loc-srv" version=''unknovvn’ extra_info="unknown'7>
<port number="445" protocol="tcp" service="microsoft-ds” version="unknown'' extra_info="unknown"/>
<port number="3306" protocol="tcp” service="mysql" version="unknown" extra_info="unknown’7>

</port_scan>
</target>

</honeypot--

Figure 18, XML file

60

3.5.2 Design and Implementation

The XML file is not created with any libraries; the output file is generated using

specific print commands. The XML file is created with the idea that it will be used to

configure a real system from a blank VM template. An administrator would be able to

create a plain VM template utilizing the OS that is used for a specific set of production

devices. As HIHs are needed, based on those templates, a module would be able to clone

the VM and configure the high interaction honeypot based on the XML configuration

file. This type of rapid deployment of VM systems is already being utilized in a higher

education environment. The Remote Access Virtual Environment (RAVE) project

through the ASSERT Lab at the University of Alaska, Fairbanks, rapidly deploys and

configures VMs from an XML based file [B. Hay, personal communication, May 30,

2012],

61

Chapter 4: Database System Design

4.1 Database System Overview

A single database design has been implemented to store the information necessary

for the system’s operation and data gathered during scanning. The database design has

been broken into four components; 1) Network Scanning - Operation, 2) Network

Scanning (Passive and Active) - Data, 3) Low Interaction Honeypots, and 4) High

Interaction Honeypot. Multiple tables may be associated with each of these components

in the database implementation. The database schema and the statements responsible for

creating and inserting information data into the tables are located in Appendix E. In the

following chapter, each component and table will be discussed along with the table fields

to explain their relevance to the system.

4.2 Network Scanning - Operation

4.2.1 Objectives and Requirements

The purpose of the tables connected with the operation of the system is to provide

the user a convenient place to store the desired traits and functionality and monitor the

various modules without additional input from the user. While gathering the user input

could have been accomplished through a complex command line statement or a

configuration file, database tables provide the user a view of the required information and

the necessary format. The database also allows the user to change the functionality of the

system on-the-fly by updating the operational tables.

4.2.2 Design and Implementation

There are three tables specifically dedicated with the operational duties of the

system: config, threads and honeypot updates.

config

The config table contains all the necessary information for the startup and

operations of the system and its modules. Some of the database entries are for files which

Honeyd uses to emulate different OSs, determine how to react to ICMP fingerprinting,

and create dynamic templates. Though Honeyd is not currently deployed from this

system, the database entries are in place to add in a small section of code to make it

possible.

• eth_interface

- Ethernet interface that the active and passive will utilize to gather

information

• mac_addr

- MAC address of the Ethernet interface which will allow the scanning

modules to filter out any communication with the system

• dhcpserver

- Allows the honeypot scanner to request, renew or release IP addresses

for the low interaction honeypots

• pO fos

- File location for ps.of for deploying Honeyd

• nm apexe

62

63

- Application for activescanner to pass to nm apjnysql

• nmap_prints

- File location for nmap.prints for deploying Honeyd

• nm apassoc

- File location for nmap.assoc for deploying Honeyd

• nm apxm l

- Output location for nmap XML file

• xprobe2_conf

- File location for xprobe2.conf for deploying Honeyd

• xprobe2_xml

- Output location for xprobe2 XML file

• honeypot_xml

- Output location for honeypot XML configuration file

• honeydconfig

- Output location for Honeyd configuration file

• honeyd_ip_binding

- Enables the user to choose which IP addresses are used in the Honeyd

configuration file, discussed in section 3.4.2 Design and

Implementation

• honeyd_ip_range

- IP range that the user determines to use for the low interaction

honeypot, used in conjunction with iD and iR of the

honeyd ipb ind ing .

o iD, the low interaction honeypot will retain the same last octet as

the system scanned but will use the first three octets of the

honeyd ip range IP address,

o iR, will begin configuring the low interaction honeypots with the

beginning IP address in the range and will terminate if the range

has been filled

64

• scan_ip_range

- IP subnet from which the system will be gathering information to

create configuration files

• initial_deployment

- Number o f identified devices to generate initial configuration files

• percentchange

- Change in percent value that needs to occur before subsequent

generation of the configuration files

• noise

- Amount o f noise that user deems acceptable to introduce to the

network with the passive and active scanning modules, discussed in

section 3.2.2 Design and Implementation activejscanner

• activescanseconds

- Number of seconds between active scanning sessions which aids in

regulating the noise introduced to the network

- Timeframe in which devices need to be identified or updated to be

included in the configuration files which keeps the honeypots relevant

to the current network

• datecreated

- Date that the table was created

threads

The threads table aids in monitoring the passive scanning modules and the

secondary active scanning management program is. Threads acts as a lookup table for the

process identification (PID) for pOf jn ysq l, tcpdump jn y sq l and active scanner. Each of

the modules updates the threads table upon being deployed. Honeypot scanner can track

65

the modules to ensure they are still running, and take necessary actions if a program has

terminated.

• th read id

- Unique ID for this thread

• th rnam e

- Name of the module (tcpdump scan, pOfscan, active scan)

• thr_pid

- Process identification for the thread, which is polled by

honeypot scanner to ensure the module has not terminated

• lasttstam p

- Last timestamp of the thread's creation

honeypot_ updates

The Honeypotjupdates table contains a continuous record o f all the deployments

of honeypot configuration files. This allows the user to gauge the dynamic nature of the

network environment and identify patterns which can be linked to certain periods of time

or situations. Hours o f network traffic from individual computers can be tracked and

incorporated into an anomaly based IDS, cycles in a school year can be recorded, rogue

devices on an organization’s network can be traced, and intrusions can be observed by

identifying new and unusual open ports on a device.

• updateid

- Unique ID for this honeypot update

• num jnachines

- Number of total devices identified since predetermined number of

seconds (activescanseconds)

• num services

66

- Number of total services gathered since predetermined number of

seconds (active_scan_seconds)

• dateupdated

- Time and date of the last update

scanqueue

The scan queue table acts as a queue between the passive scanning modules and

active scanner. Scan queue provides a place for the passive scanning program to insert

identified computers and allows the active scanner to remove the information to initiate

the correct active scanning module. The queue was designed to decrease the need for

constant communication and interrupts between the two programs. The queue allows the

modules to insert and remove the information as needed.

• scan jd

- Unique ID for this device information

• ip a d d r

- IP address of the identified device

• m acaddr

- MAC address o f the identified device

• datecreated

- Time and date of the devices identification

• lastts tam p tim e

- Last timestamp for seeing the identified device (UNIX time)

67

4.3 Network Scanning (Passive and Active) - Data

4.3.1 Objectives and Requirements

During operation scan results are queried, inserted and updated to eliminate

duplicate data which ensures relevant information is utilized in the generation of the

honeypot configuration files. Data collected from each module is stored in a separate

table(s). Separate tables allow the user to review the information gathered by each of the

modules and is specially tailored to each type of information.

4.3.2 Design and Implementation

There are seven tables used to store the gathered information from the scanning

modules: pOf, tcpdump icmp, tcpdump_ports, nmap machines, nmap_ports,

xprobe2 machines and xprobe2_ports. An additional table {nmap services) is included in

this section because it is used as a lookup table for tcpdump mysql. The data collected by

the sub-program within each module is well documented; likewise a thorough database

schema for each table is also presented in Appendix E. The table layout of the data

pertaining to each scanning module will be discussed along with any supplemental

information. Though some of the sub-programs within a module might have the ability to

collect more information, only the data necessary to build complete Honeyd and high

interaction honeypot configuration files were accumulated.

POf stores the information gathered by the pOf_mysql program. As pOf identifies a

device, it deduces the OS and collects valuable information about the system’s distance in

hops, firewall status, system uptime and type of network connection.

Tcpdump mysql stores its data into two different tables, tcpdump icmp and

tcpdumpjjorts. The types of data collected from the ICMP vs. UDP/TCP packets

required that separate tables be used. The IP and MAC addresses from the ICMP reply

packets are stored into the tcpdump Jcm p table. The tcpdumpjports stores the IP and

MAC addresses, port number, and records whether the packet was a UDP reply, TCP

SYN-ACK, or RST-ACK. The additional lookup table (nmap services) is used to

supplement the information gathered by tcpdump mysql. As tcpdump mysql intercepts

the specified UDP/TCP packets, nmap services is queried to collect the service and extra

information about the port number and protocol supplied.

Though Nmap jn y sq l and xprobe2jnysql gather slightly different information

about the scanned devices, their data is broken apart in a similar fashion. Information that

is specific to the device is stored in the nmap machines and xprobe2 machines tables.

The device’s observed port information is stored in the nmap jjo r ts and xprobe2jjorts

tables. Since one device can have multiple ports open (or services running), each device

in the nmap machines and xprobe2 machines tables has an identification number

associated. The device’s observed ports are linked to the device through the identification

number. This schema helps reduce duplicate information.

4.4 Low Interaction Honeypots

4.4.1 Objectives and Requirements

While honeypot scanner is creating the Honeyd configuration files, information

is being stored into two tables and another table in being queried. These tables keep track

68

69

for information which enable the low interaction honeypot to be used to their fullest

potential.

4.4.2 Design and Implementation

dhcp

As the configuration file for the low interaction honeypots are created, the

Honeypot_scanner requests for IP addresses from the DHCP server. All the necessary

information is stored in the dhcp database table to keep the low interaction honeypots

operational without conflicts in the network.

• d h cp id

- Unique ID for DHCP interaction

• ip a d d r

- Client IP address from DHCP server

• m acaddr

- Client MAC address

• lease_time_seconds

- Time in seconds to renew DHCP lease

• renew altstam ptim e

- Timestamp of the next DHCP renewal (UNIX time)

• datecreated

- Time and date of the DHCP request

• lasttstam p

- Timestamp of the last DHCP renewal

• last_tstamp_time

- Timestamp of the last DHCP renewal (UNIX time)

70

honeydscripts

Honeyd scripts contains a record of all the scripts which enhance Honeyd’s

interaction with an attacker. Honeypot scanner will query honeyd scripts while creating

the configuration file and insert a script that matches an open port on the scanned device.

• scrip tid

- Unique ID for the script

• prim aryos

- OS for which the script is designed to emulate

• protocol

- Network protocol of the service

• po rtnum

- Port number for the service being emulated

• scrip tlang

- Language to interpret the script

• pa thandfilenam e

- Location and name o f the script

lih_hih_link

The l ih j i ih j in k database table is used to associate a LIH with a HIH. This table

is populated with the LIH information as the Honeyd configuration file is being

generated. The HIH portion is not currently populated but allows for future modules to

insert the necessary information to facilitate honeyfarm type architecture.

• l inkid

- Unique ID for the LIH and HIH link

• lih_os_platform

- OS platform for the LIH

71

• l i h i p a d d r

- IP address for the LIH

• l i h m a c a d d r

- MAC address for the LIH

• hih_os_platform

- OS platform for the HIH

• hih_ip_addr

- IP address for the HIH

• h i h m a c a d d r

- MAC address for the HIH

• hihlocation

- Location o f the HIH template file; the statement starts with the

[datastore] that is used for the VMware Server

• hihstate

- State of the HIH VM (ON, OFF, SUSPENED)

• date_created

- Time and date for creating LIH and HIH link

• lasttstam p

- Last timestamp for deploying LIH

4.5 High Interaction Honeypots

4.5.1 Objectives and Requirements

Though the high interaction honeypot table is not currently used in this system,

the tables allow for an expanded design which incorporates and deploys both low and

high interaction honeypots.

72

4.5.2 Design and Implementation

vmwaretemplate

Vmware-template was created to store information about VM templates. These

templates will be used in future modules to deploy high interaction honeypots with the

criteria specified in the XML configuration files. As the low interaction honeypots

interaction with an attacker, the vmware-template table will be queried to find a suitable

match to the OS platform of low interaction honeypot. As the new high interaction

honeypot VM is dynamically deployed, the association is made in the lih hih link table.

• h i h i d

- Unique ID for the high interaction honeypot template

• os_platform

- OS platform for the high interaction honeypot

• location

- Location o f the high interaction honeypot template file; the statement

starts with the [datastore] that is used for the VMware Server

• datecreated

- Time and date for creating the high interaction honeypot template

73

Chapter 5: Testing

5.1 Testing Overview

Tests were conducted with the five different noise levels and two types of

scanning with the nmap sub-program. The network was arranged similarly for each test to

assess the ability o f the sub-programs to identify the devices and measure the time needed

to deploy the initial and subsequent honeypot configuration files. Different distributions

and variations o f Linux and Windows operating systems were used to evaluate the ability

to identify the distinct variations and determine which sub-program worked best for each

of the various operating systems. Figure 19 shows the topology of the network.

C Host Vmware ESXi 4.1

OS: Windows XP 0 S: Windows 7 SP1
IP: 192.168.1.80

OS: Ubuntu
OS: CentOS 6.0
IP: 192.168.1.40

Virtual Switch
SP1
IP: 192.168.1.50

8.04.4
IP: 192.168.1.10 Port spanning

w/ promiscuous mode
SP2
IP: 192.168.1.60

10.04.4
IP: 192.168.1.20

SP3
IP: 192.168.1.70

12.04
IP: 192.168.1.30

SP3w / BOF
IP: 192.168.1.79

10.04.4 w/Apache
IP: 192.168.1.100

SP3 w/ IIS
IP: 192.168.1.110 honeypot_scanner

V .
Figure 19, Testing - Network topology

The operating systems were installed as virtual machines (VMs) on a VMware

ESXi 4.1 server. The VMs were connected via a virtual switch that was set to enable

promiscuous mode so the honeypot scanner could observe the network traffic. Traffic

was generated by browsing with internet Explorer or Firefox from each of the different

devices to one of the two webservers: Windows XP VM running the internet Information

Services (IIS) application or Ubuntu 10.04.4 running the Apache Webserver application.

In each test, the honeypot scanner program would be started on an Ubuntu 10.04.4 VM

then the “production” VMs would browse to one o f the webservers. In between each test

the honeypot scanner program would be stopped, the web browsers would be closed on

each “production” VM, the data from the previous test was collected from the database,

the database tables would be cleared of all information pertaining to the previous run, and

the noise level in the config table on the database would be changed to reflect the next

test.

The config table, shown in Figure 20 and discussed in previous chapters, allows

the user to setup the system prior to scanning an organization’s network. The ethO

Ethernet interface was set to observe the traffic for the testing phase. As the honeypot

configuration files were being generated, the “iD” Honeyd IP binding would deploy the

honeypots with the same IP address as the scanned computers. This was done for testing

purposes to quickly determine the devices identified by the system. The initial honeypot

deployment threshold was set to require five devices to be identified and a 30% change in

the devices or ports observed for each subsequent deployment. The active scan or rescan

74

75

seconds were set to 86400, which would require the system to operate 24 hours before

rescanning a device.

ethernet interface ethO
MAC Address aa:00:Q4:00:0a:04
DHCP Server 192.168.1.1
pOf OS file /usr/local/share/honeyd/pf.os
Nmap executeable PATH /usr/local/share/nmap
Nmap Prints PATH /usr/local/share/honeyd/nmap.prints
Nmap Associates PATH /usr/local/share/honeyd/nmap.assoc
Nmap Output PATH /home/<user>/Output_files/nmap_output xml
Xprobe2 Configuration PATH /usr/local/share/honeyd/xprobe2.conf
Xprobe2 Output PATH /home/<user>/Output_files/xprobe2_output.xml
Honeypot XML PATH /home/<user>/Output_files/honeypot.xml
Honeyd Config PATH /home/<user>/Output_files/honeyd.conf
Honeyd IP Binding iD
Honeyd IP Range 192.168.1
Scan IP Range 192 168.1
Honeypot Initial Deployment 5
Percent change - redeployment 30
Noise Level passive
Active Scan (sec) - rescan 86400
Date Created 06/16/12 10:05 AM

Figure 20, Testing - config table settings

Before the tests were initiated, “netstat -an ” or “netstat -a l” was executed using

the command line on each VM to determine which ports were listening. “Uname - r ” was

executed on each Linux VM to ascertain the kernel version. To determine the IP and

MAC address for each computer, the “ipconfig/all” or “ifconfig” commands were

utilized. The configuration for each VM is found in Figure 21. Back Officer Friendly

(BOF) was installed on a Windows XP service pack (SP) 3 VM. BOF was enabled to

respond to TCP traffic on port 21 (FTP), port 25 (SMTP), port 80 (HTTP), port 110

(POP3), and port 143 (IMAP). BOF was installed on one of the computers to assess the

ability of the scanners.

76

OS iP address MAC address TCP ports UDP ports

Ubuntu - honeypot scanner,
2.6.32-41-generic ~ 192.168.1.200 AA:OQ:O4:0O:OA:O4

Linux

Ubuntu 8.04.2,
2.6.24-41-generic

192.168.1.10 00:50:56:B1:00:17 5353, 58021

Ubuntu 10.04.4,
2.6.32-41-generic

192.168.1.20 O0:50:56:B1:OG:15 5353,43256

Ubuntu 12.04,
3.2.0-24-generic-pae

192.168.1.30 00:50:5681:00:11 5353, 42728

CentOS 6,
2.6.32-220.17. l.e!6.i&86

192.168.1.40 O0:5O:56:B1OO:1C 22, 111, 5672, 42800
111, 605, 631, 686,
5353, 37927, 41743

Ubuntu 10.04.4-Apache,
2.6.32-41-generic

192.168.1.100 00:50:56:B100:13 22,80 5353, 55189

WMKtOWS

XP SP1 192.168.1.50 00:50:56:B1:00:OB
135, 139,445, 1025,
5000

123. 137, 138, 445, 500,
1026, 1027, 1900

XP SP2 192.168.1.60 00:50:56:B1:00:0D 135,139, 445
123,137,138, 445. 500,
1900, 4500

XP SP3 192.168.1.70 00:50:56:B1:00:0E 135,139,445
123, 137, 138, 445,500.
1900, 4500

XP SP3
w/ Back Officer Friendly

192.158.1.79 00:50:56:B1:00:03
21, 23, 25, 80.110,
135, 139, 143, 445

123,137,138, 445, 500,
1900,4500

W indows 7 SP1 192.168.1.80 00:5056:B1:(X):18
135,139, 445, 5357,
49152-6

123,137,138, 1900,
3702, 5355, 61582

Windows XP SP3 - IIS 192.168.1.110 00:50:56:61:00:16
25. 80,135,139,443,
445,1025

123,137,138, 445, 500.
190D, 3456, 4500

Figure 21, Testing - Scanned network

5.1.1 Passive Scanning

During the passive scanning test, additional traffic was not generated from the

honeypot scanner. Due to the passive method of acquiring information, this test was

allowed to run for the longest period of time, 41 hours and 42 minutes. As seen in Figure

22, the initial honeypot configuration file was deployed in 2 minutes and 47 seconds.

Five computers were identified but none o f the open ports were identified by that point in

time. The subsequent configuration file deployment would take an additional 24 minutes

when another computer and the first port were observed. Then demonstrating the

dynamic nature of the system, another configuration file was deployed after the 24 hour

rescan threshold was reached. Devices which were not identified by pOf in the past 24

hours were removed from the third honeypot configuration file. Tcpdump was able to

observe the HTTP ports on the webservers and a majority of the NetBIOS ports on the

Windows computers. POf correctly identify 5 o f the 6 computers as having Windows

operating systems but could only recognize one o f the Linux computers.

Passive

77

IP address MAC address State OS TCP ports UDP ports

lim n
192.168.1.10 00:50:56:81:00:17 Linux 2.6
192.168.1.20 00:50:56:B1:00:1S

192.168.1.30 00.50:56:81:00:11
UNKNOWN
[S10:64:l:60:M146Q.S/r.N.W3'

192.168.1.40 00:50:56:81:00:10
192.168.1.100 00:50:56:81:00:13 80

Window!
192.168.1.50 00:50:56:B1:Q0:QB 139 137,138
192.168.1.60 00:50:56:B1:QC:OD Windows 2000 SP4, XP SP1+ 137,138
192.168.1.70 00:50:56:B1:00:OE Windows 2000 SP4, XP SP1+ 137,138
192.168.1.79 00:50:56:B1:00:03 Windows 2000 SP4, XP SP1* 137,138
192.168.1.80 00:50:56:81:00:18 Windows XP/200D 137

192.168.1.110 00:50:56:81:00:16 Windows 2000 SP4, XPSP1* 80 137,138

Timestamp Numeric Time
Time to deploy
honeypot files

Deployed
Machines Services

START 2012-6-1611:46:55 41076.49091
HP 1 2012-6-1611:49:42 41076.49285 0:02:47 5 0
HP 2 2012-6-16 12:14:21 41076.50997 0:27:26 6 1
HP 3 2012-6-1711:48:19 41077.49189 24:01:24 3 1
STOP 2012-6-18 5:29:30 41078.22882

TOTAL (hh:mm:ss) 41:42:35

Figure 22, Testing - Passive scanning

5.1.2 Passive and Active Scanning

Noise Level - Low

The low noise level is the first test in which active scanning was utilized in

determining the devices on the network. Xprobe2 was used to actively scan the IP

addresses that were stored in the scanjqueue database table by the tcpdump jn y sq l

module. Since active scanning requires less time to discover the devices on the network,

the test was allowed to run for 21 hours and 44 minutes and the results are shown in

Figure 23.

Low

78

IP address MAC address State OS TCP ports UDP ports

nux
192.168.1.10 00:50:56:81:00:17 U Linux Kernel 2.4.30
192.158.1.20 00:50:56:31:00:15 u Linux Kernel 2.4.30
192.158.1.30 0Q:50:56:B1:00:11 u Linux Kernel 2.4.30
192.158.1.40 00:50:56:81:00:1C u Linux Kernel 2.6.6

192.168.1.100 00:SQ:56:B1:00:13 u Linux Kernel 2.4.30 80

Windows
192.158.1.50 00:50:56: Bl:O0:OB u Microsoft Windows XP 139 137,138
192.168.1.60 08:50:56:31:00:00 D W i ndows 2000 SP4. XPSP1+ 137.138
192.168.1.70 00:50:56:B1:00:OE D Windows 2000SP4, XPSP1* 137,138
192.168.1.79 00:50:56:B1:00:03 D 137,138
192.168.1.80 00:50:56:61:00:18 D Windows XP/200D 137

192.168.1.110 00:50:56:B1:00:16 D SC 137.138

Time to deploy Deployed
Timestamp Numeric Time honeypot files Machines Services

START 2012-6-18 6:11:5 41078.2577
HP 1 2012-6-1806:12:09 41078.25844 0:01:04 5 5
HP 2 2012-6-18 06:12:39 41078.25878 0:01:34 7 5
HP 3 2012-6-1806:14:40 41078.26019 0:03:35 10 5
STOP 2012-6-19 3:55:16 41079.16338

TOTAL (hh:mm:ss) 21:44:11

Figure 23, Testing - Active scanning (Low noise level)

The time required to deploy three different honeypot configuration files was just three

minutes and 35 seconds. Ten devices and five services were observed during that

timeframe. Xprobe2 utilizes ICMP packets to determine the operating system of a device.

This allowed the system to record that several computers replied to ICMP request

packets. Xprobe2 was able to recognize one of the Windows computers and all o f the

Linux computers though the Linux kernel version was incorrect. POf recognized several

of the other Windows operating systems. Again, tcpdump was able to record the same

UDP and TCP traffic as in the passive test plus the ICMP traffic. Though additional ports

were observed, they did not meet the 30% threshold to deploy a fourth set of

configuration files.

Noise Level - Medium

Xprobe2 with port scanning was used during the medium noise level test. The

port scanning feature allowed the system to identify a few new open ports but hindered

pOf from recognizing any of the Windows operating systems. The test was allowed to run

for 9 hours and 18 minutes but only required 3 minutes and 50 seconds to deploy its one

and only set of confirmation files. Figure 24 displays the devices and ports identified

during the test. Due to the web browser caching the web pages and not sending a GET

request to the Webserver, the device with IP address 192.168.1.20 was not identified. By

identifying this additional device, an additional deployment of configuration files may

have been completed.

79

80

Medium

IP address MAC address State OS TCP ports UDP ports
ICMP

Linux
192.168.1.10
192.168.1.20
192.168.1.30
192.168.1.40

192.168.1.100

O0:SO:56:Bl:OC:17
00:50:56:81:03:15
00:50:56:B1:0Q:11
00:50:56:B1:00:1C
00:50:56:81:00:13

U Linux Kernel 2.4.30

Linux Kernel 2.4.30
Linux Kernel 2.4.22
Linux Kernel 2.4.30

22
22 ,80

62402

Windows
192.168.1.50 00:50:56:B1:0Q:OB U MicrosottWindowiXP 139, 445 137,138
192.168.1.60 03:5O:56:B1:OO:OD D 137,138
192.168.1.70 00:50:56:81:00:05 D 137,138
192.168.1.79 00:50:56:B1:00:03 D 137,138
192.168.1.80 00:50:56:B1:00:18 D 137
192.168.1.110 1X1:50:56:81:00:16 D 80 137,138

Timestamp Numeric Time
Time to deploy
honeypot files

Deployed
Machines Services

START 2012-6-19 5:2:26 41079.21002
HP 1 2012-6-19 5:6:16 41079.21269 0:03:50 7 8
STOP 2012-6-19 14:21:23 41079.59818

TOTAL (hh:mm:ss) 9:18:57

Figure 24, Testing - Active scanning (Medium noise level)

Noise Level - Medium-High

Nmap: -sS (TCPSYN scan)

Two medium-high noise level tests were run to examine which nmap scan was

more effective on this network environment. The -sS flag was set during the execution of

the nmap sub-program which initiates a TCP SYN scan on each device. As seen in Figure

25, all of the devices were identified with a state of being UP but none of the Linux

operating systems were recognized. POf and nmap were only able to recognize one

Windows operating system each. Nmap was able to observe a few more open ports than

previous tests, especially on the Windows SP1 computer. Two deployments of

configurations files were completed though they did take longer to complete due to the

extensive scanning that nmap performs.

81

Medium-High-sS

IP address MAC address State OS TCP ports UDP ports
ICMP
reply

Linux

192.168.1.10 00:50:S6:B1:00:17 U
192.168.1.20 OO:50:56:B1:OO:15 U
192.168.1.30 00:5C:56:B1:00:11 U
192.168.1.40 OQ:5G:56:B1:0O:1C U 22

192.168.1.100 00:50:56:B1:QC:13 U 22

Windows
123,137,135,

192.16S.1.S0 Q0:50:56:B1:Q0:CB U SP0/5P1/SP2 or Windows XP SPO/SP1 1025, 5000
445. 500.1026.

1027,1900
192.168.1.60 00:50:56:B1:00:00 U 137.138
192.168.1.70 00:S0:56:B1:00:0E u Windows 2000 SP4. XP SP1* 137,138

192.168.1.79 00:50:56:B1:00:03 u 21 ,23 .25 .80 .
143

137,138

192.168.1.80 00:50:56:B1:00:18 u 137
192.168.1.110 00:50:56:B1:<»:16 u 80 137,138

Time to deploy Deployed
Timestamp Numeric Time honeypot files Machines Services

START 2012-6-1914:51:23 41079.61902
HP 1 2012-6-1915:8:13 41079.63071 0:16:50 5 7
HP 2 2012-6-1915:9:43 41079.63175 0:18:20 6 21
STOP 2012-6-20 4:27:31 41080.18578

TOTAL (hh:mm:ss) 13:36:08

Figure 25, Testing - Active scanning (Medium-High-sS noise level)

Nmap: -sT (TCP connect scan)

A TCP connect scan was utilized by nmap for this test. Similar results were

observed even though a different type o f nmap scan was used, though it appears that a

few more ports were identified with the SYN scan. POf was not able to recognize any of

the operating systems during this test which might have been affected by the TCP

connect scans. The deployment of configuration files was again a little slower than with

the xprobe2 scanning as seen in Figure 26. A third set of configuration files were

deployed during this test due to the number of devices and the open ports that were

initially identified. Configuration files with 10 devices and 20 open ports were produced

during the final deployment.

Medium-High-sT

ICMP
IP address MAC address State OS TCP ports UDP ports ,___ reply

lim n
192.168.1.:
192.168.1.;
192.168.1.:
192.168.1.'

192.168.1.1

Windows

192.168.1.!

192.168.1.1
192.168.1.'
192.168.1.:
192.16S .li

192.168.1.1

START
HP 1
HP 2
HP 3
STOP

Figure 26, Testing - Active scanning (Medium-High-sT noise level)

Noise Level - High

The high noise level utilizes both nmap and xprobe2 to actively scan the network.

The combination of the two scanners produced a more complete picture of the network

OQ:5C:56:B1:03:17 U
00:50:56:81:05:15 U
00:50:56:81:00:11 U
00:50:56:B1:00:1C u
00:50:56:81:00:13 u so

00:50:56:Bl:00OB U
Microsoft Windows 2000

SPO/SP1/SP2 or Windows XP 5P0/SP1
135.139,445,

1025,5000

123,137,138,
445, 500,1026.

1027,1900
00:50:56:81:00:00 U 137,138
00:50:56:B1:00:OE u 137,138
00:50:56:B1:00«3 u 2 1 ,2 3 ,8 0 ,1 4 3 137,138
00:50:56:B100:18 u 137
00:50:56:81:00:16 u 80 137,138

Time to deploy Deployed
Timestamp_________ NumericTime honeypot files Machines Services
2012-6-20 4:59:22 41080.20789
2012-6-20 5:15:48 41080.21931 0:16:26 5 1
2012-6-205:17:18 41080.22035 0:17:56 6 15
2012-6-205:30:54 41080.22979 0:31:32 10 20
2012-6-20 13:22:16 41080.55713

TOTAL (hh:mm:ss) 8:22:54

when compared with any other previous test. Xprobe2 was able to identify all the Linux

operating systems, but pOf was able to ascertain a better match for one o f the Linux

systems. Nmap identified one of the Windows operating systems and was able to

determine a majority of the open ports on the devices. As seen in Figure 27, the time to

initially deploy the configurations files was again affected be the speed at which nmap

scans each computer.

83

Hifh

IP address M A C x H rts State OS TCP ports UDP ports
ICMP
reply

Linux
192.168.1.10 00:50:56:B1:00 17 U Linux Kernel 2.4.30
192.168.1.20 00:5C:56:B1:00 IS U L in u x 2 .6

192.168.1.30 00:50:S6:B1:<X3 11 U Linux Kernel 2.4.30
192.168.1.40 00:50:56:B1:00 1C u Linux K erne l 2 .4 .22 ~>2

192.168.1.100 00:50:S6:B1:00 13 u Linux Kernel 2.4.30 22,80

62402

Windows

192.168.1.5C

192.168.1.60
192.168.1.70
192.168 1.79
192.168.1.80
192.168.1.11C

00:50:56:B1:00:QB

00:50:S6:B1:00:OD
00:50:56:B1:00:OE
O0:5C:56:Bl:OQ.O3
00:50:56:61:00:18
00:50:56:B1:00:16

Microsoft Windows XP
IBS, 139,445,

102 S, 5000

2 1 ,23 ,80 ,143

80

123,137,138,
445, 500,1026,

1027,1900
137.138
137.138
137.138

137
137.138

Time to deploy Deployed
Timestamp Numeric Time honeypot files Machines Services

START 2012-6-2013:43:1 41080.57154
HP 1 2012-6-2014:3:26 41080.58572 0:20:25 5 4
HP 2 2012-6-2014:8:58 41080.58956 0:25:57 7 18
HP 3 2012-5-2014:20:2 41080.59725 0:37:01 10 23
STOP 2012-6-213:20:21 41081.13913

TOTAL (hh:mm:ss) 13:37:20

Figure 27, Testing - Active scanning (High noise level)

5.2 Analysis

The results demonstrate that both passive and active scanning can be used

simultaneously to gather an accurate picture of the network environment. Extensive

information can be gathered to create a honeynet which is representative of the

production environment. POf was able to recognize the Windows operating systems

although the ability was degraded when active scanning was included. Xprobe2 had great

success at identifying the Linux operating systems. Nmap and tcpdump were able to

observe a majority of the ports which were open and communicating. The combination of

all the scanners allowed for a more complete picture to be obtained.

More tests may be completed to determine the optimal percent change needed to

re-deploy a new honeynet while taking into consideration that stability is required to

gather information about intruders. A larger network would require a smaller percent

change to deploy additional honeypots as new machines are added to the network.

Additional tweaking to the system could be made by adjusting the weight given to

devices being identified compared to open ports being found. This would deploy more

honeypots as devices are recognized but wait additional time when open ports are

recorded.

Being able to deploy this research effort on a real production network with all the

user generated traffic would aid in determining which noise level is necessary to map a

network. With more traffic potentially generated from each device the aggressiveness of

the active scanners could be scaled back to limit the traffic introduced by the system.

Nmap has so many features and types of scans available that testing could be done to

84

determine the best configuration that works with the other system modules. As updates to

the scanning programs are released, a fine-tuning period may be required to maximize the

system if fine granularity in the honeynet is needed. Due to the nature o f the system,

organizations are hesitant to allow the installation of a device by a researcher which

captures packets on their corporate network. However, when the system is deployed by

the organization then tests can be conducted to determine the optimal noise level for their

environment.

85

86

Chapter 6: Summary

6.1 Conclusions

Honeypot technology is continuing to expand and be updated as different areas of

technology are explored for vulnerabilities by attackers. Honeypot research has expanded

to client honeypots to gather malware from malicious websites [Seifert, Komisarczuk &

Welch, 2009], monitoring for attackers in supervisory control and data acquisition

(SCADA) systems which control our country’s critical infrastructure [Krutz, 2006], anti

phishing frameworks to combat the exponential growth of phishing campaigns [Li &

Schmitz, 2009], and collecting malware for analysis and reverse engineering [Dionaea,

2012],

Common misconceptions and not recognizing that a problem exists has delayed

the spread of such a powerful technology in the corporate environment. Richard Bejtlich,

chief security officer at Mandiant, a computer-security company, said that in cases

handled by his firm where intrusions were traced back to Chinese hackers, 94% o f the

targeted companies didn't realize they had been breached until someone else told them.

The median number o f days between the start o f an intrusion and its detection was 416,

or more than a year [Barrett, 2012]. Organizations are not realizing that a problem exists

until a breach has occurred and by the time they discover the compromise the

organization’s data has already been exfiltrated.

Honeypots can be deployed in a wide variety of shapes and sizes depending on

the information that the individual is trying to collect. It would not be prudent for an

organization to deploy an unpatched system onto their network due to the legal liabilities

and the unnecessary risk. But deploying honeypots that are relevant to the company

would do no more harm than deploying a new production system. The benefit to an

organization to collect valuable intelligence about how an attacker can compromise a

system similar to their production environment is indispensable. Organizations can also

shield themselves from more unnecessary risk by only deploying honeypots inside their

network environments.

With the increasing volume of data that passes through an organization’s network,

it is becoming more burdensome to adequately monitor an organization’s IDS logs and

alerts. It also requires skilled individuals to create IDS signatures that maintain the

balance between not alerting and alerting too much. And unfortunately, administrators

are being asked to do more with fewer people, less time and resources. So normally it

would be ridiculous to pile on more responsibly and duties to an already overworked

administrator. But if the short-term burden o f learning a new system results in securing

the network with an increased efficiency and effectiveness, then sometimes it is a

necessary evil. Yet, because the honeypot is a resource with no production value, "it's a

great alarm system — there are no false positives with honeypots. If a packet touches it,

something is suspect" said Ralph Logan, principal with the Logan Group [Higgins, 2006].

While a honeypot might generate the same information that an IDS generates, it narrows

down the data requiring analysis by eliminating all the additional noise that is collected.

To help decrease the steep learning curve associated with using honeypot technology on

the job, it is suggested that such skills should be taught in collaboration with other

87

information security material at the higher education level [Ahmad, Ali & Mustafa,

2011].

Knowing that someone is attempting to break into an organization’s network isn’t

necessarily alarming but being alerted that someone is in the network might be valuable

information. By properly placing a honeypot in vital areas of an organization’s network,

the alerts generated indicate that a potential intrusion has occurred. Many organizations

are so consumed with watching their outer defenses that they are not watching for lateral

movement inside their network by insiders or attackers that have already infiltrated their

defenses. FBI executive assistant director Shawn Henry added that companies need to do

more than just react to intrusions. "In many cases, the skills o f the adversaries are so

substantial that they just leap right over the fence, and you don't ever hear an alarm go

off," he said. Companies "need to be hunting inside the perimeter o f their network," he

added [Barrett, 2012], By deploying and monitoring a honeynet inside the organization’s

network, sustained access and reconnaissance by an attacker could be mitigated and

studied.

This project creates a methodology for an organization to gather tremendous

information about its network either passively or with the assistance of active scanners.

Capturing data about the devices that are utilizing the network infrastructure can alert the

administrators to rogue devices, unpatched or vulnerable systems, devices which are

attempting to probe sensitive systems, and create a continuous network topology of the

scanned network. By evaluating the benefits, organizations would realize that honeypots

88

would fulfill the compliance requirements in their risk and security framework that they

already have in place [Nunes & Correia, 2010].

6.2 Future Work

There are a few areas o f this system which could be expanded or explored to

increase the ability to actively engage attackers and gather “valuable” intelligence. As the

scanning sub-programs are updated, they need to be incorporated to increase the

proficiency to gather data about the devices on the network. Deploying the low and high

interaction honeypots from the honeypot scanner module would decrease the need for

user intervention. To establish the capabilities of this system at all noise levels, tests must

be conducted in a live network which will allow fine tuning o f the active scanning

modules and demonstrate the ability to handle large volumes of network traffic.

Many honeypot technologies have become available over the past 15 years and

even more security tools have been created since the 1970s. Many of these tools have not

been kept up to date so their effectiveness is diminished as computer and network

technology continues to race forward. Yet there are a handful of tools that are continuing

to be updated and expanded as technology changes. Several o f the sub-programs used by

this system have been updated within the past six months. Nmap v6, pOf v3 and tcpdump

v4.2.1 have recently become available which will offer an improved method of gathering

information about the network devices. The enhancements made to these modules will

allow more information to be gathered about devices with increased efficiency. More

89

information will be gathered about the devices which will allow a more complete

topology to be obtained by the administrator.

Deploying the LIH high interaction honeypots with Honeyd through the

management program, honeypot scanner, requires very little customization. The more

difficult task is deploying the high interaction honeypots with speed and efficiency. Work

is currently being done to deploy the high interaction honeypot utilizing the VMware

Virtual Infrastructure extension (VIX) API. The primary OS is read from the XML

configuration file then compared against the vmwaretemplate database table to see if a

match is available. The information pertaining to the match is stored in the lih hih j i n k

table which associates the low and high interaction honeypot. The high interaction

honeypot is deployed and a script is run on the VM to gather the IP and MAC addresses

which is then stored in the l ih j i ih j in k table. Work needs to be done to start services and

open ports on the VM so they reflect the production devices accurately. Integrating a

program such as HoneyMole, which bridges the low interaction honeypot to the high

interaction honeypot, would allow for more actionable intelligence to be collected as the

attacker probes the low interaction honeypot beyond its capabilities and is then redirected

to the high interaction honeypot. As discussed in the hybrid honeypots / honeyfarms

section in Chapter 2, systems are currently being deployed which redirect low interaction

honeypot attacks to a high interaction honeypot. Yet these systems do not dynamically

adjust to a production environment and the high interaction honeypots are deployed on a

completely separate system from the low interaction honeypots. A fully integrated system

would give the administrator the ability to deploy the honeypots in any network

90

environment with minimal network configuration, e.g. giving the honeypot scanning

system access to a spanning port to gather information passively.

To determine the capabilities of the system to process large amounts of traffic,

tests need to be done on varying size networks in different configurations. Creating

closed loop networks utilizing VMware ESXi servers has allowed limited testing due to

the complications of setting up dynamic networks and reproducing human activity.

Testing the system on a live network would assess the responsiveness of the passive

scanning modules and the ability to accurately map an organization’s infrastructure. Fine

tuning the active scanning modules to gather the greatest information without becoming

detrimental to the bandwidth of the network could also be tested in a full scale

environment.

This work represents an important step forward in honeynet technologies, but

much work remains to be done to mitigate the threats facing our digital assets.

91

92

References

Acohido, B. (2011, July 4). New cyberattacks target small businesses. USA TODAY,
Retrieved from http://www.usatoday.com/tech/news/2011-07-04-small-business-
cyber-attackss_n.htm

Ahmad, A., Ali, M., & Mustafa, J. (2011, October). Benefits of Honeypots in Education
Sector. International Journal o f Computer Science and Network 24 Security, 11
(10).

Amun: Python Honeypot [computer software]. (2012). Available from
http://amunhoney. sourceforge. net

Anderson, J. (1972a). Computer Security Technology Planning study, Volume I. ESD-
TR-73-51. Hanscom Field, Bedford MA: ESD/AFSC.

Anderson, J. (1972b). Computer Security Technology Planning Study, Volume II. ESD-
TR-73-51. Hanscom Field, Bedford MA: ESD/AFSC.

Anderson, J. (1980). Computer Security Threat Monitoring and Surveillance. Technical
Report, James P. Anderson Corporation, Fort Washington, Pennsylvania.

Antonatos, S., Anagnostakis, K. & Markatos, E. (2007). Honey@home: A New
Approach to Large-Scale Threat Monitor. Proceedings o f the 5 th AC M Workshop
on Recurring Malcode (W ORM 2007, Alexandria, VA.

Argus [computer software]. (2012). Available from http://www.qosient.com/argus

Asrigo, K., Litty, L., & Lie, D. (2006). Using VMM-based sensors to monitor honeypots.
Proceedings o f the 2nd international conference on Virtual execution
environments (VEE). ACM, New York, NY, 13-23.

Azadegan, S. and McKenna, V. (2005). Use of Honeynets in Computer Security
Education. Proceedings o f the Fourth Annual ACIS International Conference on
Computer and Information Science (ICIS). IEEE Computer Society, Washington,
DC, 320-325. ’

Bailey, M., Cooke, E., Watson, D., Jahanian, F. & Provos, N. (2004). A hybrid honeypot
architecture for scalable network monitoring. CSE-TR-499-04. Retrieved from
http://www.eecs.umich.edu/techreports/cse/2004/CSE-TR-499-04.pdf

http://www.usatoday.com/tech/news/2Gl
http://amunhoney
http://www.qosient.com/argus
http://www.eecs.umich.edu/techreports/cse/2004/CSE-TR-499-04.pdf

93

Bakos, G. Tiny Honeypot [computer software], (2012). Available from
http://web.archive.Org/web/20090606073121/http://www.alpinista.org/files/thp

Balas, E. and Viecco, C. (2005). Towards a Third Generation Data Capture Architecture
for Honeypots. Proceedings from the Sixth Annual IEEE. Systems, Man and
Cybernetics (SMC) Information Assurance Workshop, 21-28.

Balasubramaniyan, J., Garcia-Femandez, J., Isacoff, D., Spafford, E. & Zamboni, D.
(1998). An Architecture for Intrusion Detection using Autonomous Agents. 14th
Annual Computer Security Applications Conference, 13-24.

Barfar, A., and Mohammadi, S. (2007, June). Honeypots: Intrusion deception.
Information Systems Security Association Journal, 28-31.

Barrett, D. (2012, March 28). U.S. Outgunned in Hacker War. The Wall Street Journal,
Retrieved from
http://online.wsj .com/article/SB 1000142405270230417710457730777332618003
2.html

Berthier, R. (2009). Advanced Honeypot Architecture for Network Threats
Quantification. (Doctoral Dissertation). Retrieved from University of Maryland at
College Park, College Park, MD. (AAI3359256).

Bruneau, G. (2003, October 13). The History and Evolution of Intrusion Detection.
Retrieved from http://www.sans.org/reading_room/whitepapers/detection/344.php

Capalik, A. (2007). Driving Intrusion Intelligence into the Real-Time Realm. NeurallQ,
Inc.

Carbone, M. & de Geus, P. (2004, June). A Mechanism for Automatic Digital Evidence
Collection on High-Interaction Honeypots. Proceedings from the 5th IEEE
Information Assurance Workshop.

Chamales, G. (2004, March). The Honeywall CD-ROM. IEEE Security and Privacy 2, 2,
77-79.

Chaves, C., Franco, L. & Montes, A. (2005, June). Honeynet Maintenance Procedures
and Tools. Proceedings o f the 2005 IEEE Workshop on Information Assurance.
United States Military Academy, West Point, NY.

Cheswick, W. (1990, January 20). An Evening with Berferd. Proceedings ofUSENlX.

http://web.archive.Org/web/20090606073121/http://www.alpinista.org/files/thp
http://online.wsj.com/article/SB
http://www.sans.org/reading_room/whitepapers/detection/344.php

94

Chin, W., Markatos, E., Antonatos, S. & Ioannidis, S. (2009, October). HoneyLab:
Large-Scale Honeypot Deployment and Resource Sharing. Third Internationa!
Conference on Network and System Security (NSS'), 381-388.

Clayton, M. (2012, May 5). Alert: Major cyber attack aimed at natural gas pipeline
companies. The Christian Science Monitor. Retrieved from
http://www.csmonitor.eom/USA/2012/0505/Alert-Major-cyber-attack-aimed-at-
natural-gas-pipeline-companies

Cohen, F. Deception Toolkit [computer software]. (2012). Available from
http://www.all.net/dtk/index.html

Corey, J. (2003, September). Local Honeypot Identification. Retrieved from
http://www.ouah.org/ p62-0x07.txt

Corey, J. (2004, January). Advanced HoneyPot Identification. Retrieved from
http://www.ouah.org/p63-0x09.txt

Dacier, M., Pouget, F. & Debar, H. (2004). Honeypots: A Practical Means to Validate
Malicious Fault Assumptions. Proceedings o f the 10th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC), 383-388.

Dacier, M., Pouget, F. & Pham V. (2012). LEURRE.COM Honeypot Project. Retrieved
from http://www.leurrecom.org

Danford, R. (2006). 2nd Generation Honeyclients. SANS internet Storm Center.
Retrieved from
http://handlers.dshield.org/rdanford/pub/Honeyclients_Danford_SANSfire06.pdf

Defibaugh-Chavez, P., Veeraghattam, R., Kannappa, M., Mukkamala, S. & Sung, A.
(2006, June). Network Based Detection of Virtual Environments and Low
Interaction Honeypots. Information Assurance Workshop, 2006 IEEE , 283-289.

Denning, D., & Neumann, P. (1985). Requirements and Model for IDES — a Real-Time
Intrusion Detection System. Technical Report, Computer Science Lab, SRI
International.

Denning, D. (1987). An Intrusion Detection Model. IEEE Transactions on Software
Engineering, 13 (2), 222-232.

Dike, J. (2006). User Mode Linux(R) (Bruce Perens Open Source). Prentice Hall PTR,
Upper Saddle River, NJ.

Dionaea [computer software], (2012). Available from http://dionaea.camivore.it

http://www.csmonitor.eom/USA/2012/0505/Alert-Major-cyber-attack-aimed-at-
http://www.all.net/dtk/index.html
http://www.ouah.org/
http://www.ouah.org/p63-0x09.txt
http://www.leurrecom.org
http://handlers.dshield.org/rdanford/pub/Honeyclients_Danford_SANSfire06.pdf
http://dionaea.camivore.it

95

Domseif, M., Holz, T. & Klein, C. (2004, June). NoSEBrEaK - Attacking Honeynets.
Proceedings o f the 5th Annual IEEE Information Assurance Workshop. United
States Military Academy, West Point, NY.

Domseif, M., Freiling, F., Gedicke, N. & Holz, T. (2006, June). Design and
Implementation of the Honey-DVD. Proceedings o f the 7th Annual IEEE
Information Assurance Workshop. United States Military Academy, West Point,
NY.

Fink, G., O'Donoghue, K., Chappell, B., & Turner, T. (2002, April). A Metrics-Based
Approach to Intrusion Detection System Evaluation for Distributed Real-Time
Systems. Proceedings o f the 16th international Parallel and Distributed
Processing Symposium. IEEE Computer Society, Washington, DC, 17.

Freedom, P. (2011, October 25). Cyber Attacks on Small Businesses Increase.
Facebook.com. Retrieved from
http://www.facebook.com/note.php?note_id=301960729834086

Freri, M. (2011, September 28). Spear-phishing aiming at the big fish in corporate,
Trustsphere says. ITWire. Retrieved from http://www.itwire.com/business-it-
news/security/50056-spear-phishing-aiming-at-the-big-fish-in-corporate-
trustsphere-says

Fu, X., Yu, W., Cheng, D., Tan, X., Streff, K. & Graham, S. (2006, September/October).
On Recognizing Virtual Honeypots and Countermeasures. 2nd IEEE
International Symposium on Dependable, Autonomic and Secure Computing, 211
218.

GHH: “Google Hack” Honeypot [computer software]. (2012). Available from
http://ghh.sourceforge.net

Glastopf Project [computer software]. (2012). Available from http://glastopf.org

Grimes, Roger. (2004). Honeypots fo r Windows. APress.

Grizzard, J., Simpson, C., Krasser, S., Owen, H. & Riley, G. (2005, June). Flow Based
Observations from NETI@home and Honeynet Data. Proceedings from the Sixth
Annual IEEE. Systems, Man and Cybernetics (SMC) Information Assurance
Workshop, 244-251.

Hauben, R. (2002). Commodifying Usenet and the Usenet Archive or Continuing the
Online Cooperative Usenet Culture? Science Studies, 15 (1), 61-68.

http://www.facebook.com/note.php?note_id=301960729834086
http://www.itwire.com/business-it-
http://ghh.sourceforge.net
http://glastopf.org

96

Hecker, C., Nance, K. & Hay, B. (2006, June). Dynamic Honeypot Construction.
Proceedings o f the 10th Colloquium fo r Information Systems Security Education.
University of Maryland, University College, Adelphi, MD.

Hecker, C., Hay, B. (2010, January). Securing E-Govemment Assets through Automating
Deployment of Honeynets for IDS Support. 43rd Hawaii International
Conference on System Sciences (H1CSS), 1-10.

Hieb, J. & Graham, J. (2004, December). Anomaly-Based Intrusion Detection for
Network Monitoring Using a Dynamic Honeypot. Technical Report TR-ISRL-04-
03. Intelligent Systems Research Laboratory.

Higgins, K. (2006, August 23). Enterprises Still Not Sweet on Honeypots. Darkreading,
Retrieved from http://www.darkreading.com/security/application-
security/208804004/enterprises-still-not-sweet-on-honeypots.html

Hoepers, C., Steding-Jessen, K., Cordeiro, L. & Chaves, M. (2005, June). A National
Early Warning Capability Based on a Network of Distributed Honeypots.
Proceedings o f the 17 th Annual FIRST Conference on Computer Security Incident
Handling, Singapore.

Holz, T. & Raynal, F. (2005). Detecting honeypots and other suspicious environments.
Proceedings o f the 6th IEEE Information Assurance Workshop. United States
Military Academy, West Point, NY.

Honeynet Project, The. (2003, November 17). Know Your Tools: Sebek - A kernel based
data capture tool. Honeypot Project Retrieved from
http://old.honeynet.org/papers/sebek.pdf

Honeytrap [computer software]. (2012). Available from http://honeytrap.camivore.it

Howard, J. & Longstaff, T. (1998). A Common Language for Computer Security
Incidents. Sandia Report: SAND98-8667. Sandia National Laboratories.

Hudak, S. (2008). Automatic Honeypot Generation and Network Deception,” 2008.
Retrieved from CiteSeerX - Scientific Literature Digital Library and Search.

Jackson, T., Levine, J., Grizzard, J. & Owen, H. (2004, March). An Investigation o f a
Compromised Host on a Honeynet Being Used to Increase the Security of a Large
Enterprise Network. Proceedings o f the 5th IEEE Information Assurance
Workshop, 9-14.

Jiang, X. & Xu, D. (2004). Collapsar: A vm-based architecture for network attack
detention center. Proceedings o f the USENIX Security Symposium, 15-28.

http://www.darkreading.com/security/application-
http://old.honeynet.org/papers/sebek.pdf
http://honeytrap.camivore.it

97

Jiang, X., Xu, D. & Wang, Y. (2006, September). Collapsar: a VM-based honeyfarm and
reverse honeyfarm architecture for network attack capture and detention. Journal
o f Parallel Distributed Computing, 66 (9), 1165-1180.

John, J., Yu, F., Xie, Y., Krishnamurthy, A. & Abadi, M. (2011). Heat-seeking
honeypots: design and experience. Proceedings o f the 20th International World
Wide Web Conference (WWW).

Kehoe, B. (1992, January). Zen and the Art o f the internet: A Beginner's Guide to the
internet. Retrieved from http://www.cs.indiana.edu/docproject/zen/zen-
1.0_toc.html

KFSensor: Advanced Windows Honeypot System [computer software], (2012). Available
from http://www.keyfocus.net/kfsensor

Kemmerer, R. and Vigna, G. (2002). Intrusion Detection: A brief History and Overview.
Computer, 35, 27-30.

Krawetz, N. (2004). Anti-Honeypot Technology. IEEE Security and Privacy, 2(1), 76
79.

Krutz, R. (2006). Securing SCADA Systems. Wiley Publishing, Inc.

Kuwatly, I., Sraj, M., Masri, Z. & Artail, H. (2004, July). A Dynamic Honeypot Design
for Intrusion Detection. The IEEE/ACS International Conference on Pervasive
Services (ICPS), 95- 104.

Kyaw, K. (2008). Hybrid Honeypot System for Network Security. World Academy o f
Science, Engineering and Technology, 48.

Larose, C. (2012, May 3). Symantec: Malicious Cyber Attacks Increased by 81 Percent in
2011 and Data Breaches Up, Mintz Levin - Privacy & Security. Retrieved from
http://www.jdsupra.com/post/documentViewer.aspx?fid=58c95d85-b966-4664-
a4al-15ed5f0dl580

Leiner, B., Cerf, V., Clark, D., Kahn, R., Kleinrock, L., Lynch, D., Postel, J., Roberts, L.
& Wolff, S. (1997, February). The past and future history of the internet.
Communications o f the ACM, 40 (2), 102-108.

Leiner, B., Cerf, V., Clark, D., Kahn, R., Kleinrock, L., Lynch, D., Postel, J., Roberts, L.
& Wolff, S. (2009, October). A brief history of the internet. SIGCOMM Computer
Communication Review, 39 (5), 22-31.

http://www.cs.indiana.edu/docproject/zen/zen-
http://www.keyfocus.net/kfsensor
http://www.jdsupra.com/post/documentViewer.aspx?fid=58c95d85-b966-4664-

98

Leita, C., Mermoud, K. & Dacier, M. (2005). ScriptGen: an automated script generation
tool for honeyd. Proceedings o f the 21st Annual Computer Security Applications
Conference (ACSAC). IEEE Computer Society, Washington, DC, 203-214.

Levine, J., LaBella, R., Owen, H., Contis, D. & Culver, B. (2003, June). The use of
Honeynets to Detect Exploited Systems Across Large Enterprise Networks.
Proceedings o f the IEEE Workshop on Information Assurance. United States
Military Academy, West Point, NY, 92 - 99.

Levine, J., Grizzard, J. & Owen, H. (2004b, November/December). Using Honeynets to
protect large enterprise networks. IEEE Security’ & Privacy, 2 (6), 73-75.

Li, S. & Schmitz, R. (2009, October). A Novel Anti-Phishing Framework Based on
Honeypots. APWG eCrime Researchers Summit, Tacoma, WA.

Liston, T. LaBrea: "Sticky" Honeypot and IDS [computer software]. (2012). Available
from http://labrea.sourceforge.net

Lunt, T. & Jagannathan, R. (1988). A Prototype Real-Time Intrusion-Detection Expert
System. IEEE Symposium on Security and Privacy, 59.

Mokube, I. & Adams, M. (2007). Honeypots: concepts, approaches, and challenges.
Proceedings o f the 45 th annual southeast regional conference (ACM-SE 45).
ACM, New York, NY, 321-326.

Mukkamala, S., Yendrapalli, K., Basnet, R., Shankarapani, M.K. & Sung, A. (2007,
June). Detection of Virtual Environments and Low Interaction Honeypots.
Information Assurance and Security’ Workshop (IA W). IEEE SMC, 92-98.

MySQL [computer software]. (2012). Available from http://www.mysql.com

Nepenthes [computer software]. (2012). Available from http://nepenthes.camivore.it

NFR Security Inc. BackOfficer Friendly [computer software]. (2012). Available from
http://web.archive.Org/web/20020405044644/http://www.nfr.com/products/bof

NoAH (A European Network of Affined Honeypots), Project funded by the European
Community, Retrieved from http://www.jp6-noah.org

Nunes, S. & Correia, M. (2010). From Risk Awareness to Security Controls: Benefits of
Honeypots to Companies. Proceedings o f the 2nd OWASP Ibero-American Web
Applications Security Conference (IB WAS).

http://labrea.sourceforge.net
http://www.mysql.com
http://nepenthes.camivore.it
http://web.archive.Org/web/20020405044644/http://www.nff.com/products/bof
http://www.fp6-noah.org

99

Oberheide, J. & Karir, M. (2006, January). Honeyd Detection via Packet Fragmentation.
Merit Technical Report.

Ofir, A., Yarochkin, F. & Kydyraliev, M. (2003, July). The Present and Future of
Xprobe2: The Next Generation of Active Operating System Fingerprinting.
Retrieved from
http://www.syssecurity.com/archive/papers/Present_and_Future_Xprobe2-
vl.O.pdf

Oudot, L., Ropert, F. & Riden, J. PHP.Hop - PHP Honeypot Project [computer software].
(2012). Available from
http://web.archive.Org/web/20080509124834/http://www.rstack.org/phphop/

Portokalidis, G., Slowinska, A. & Bos, H. (2006, April). Argos: an Emulator for
Fingerprinting Zero-Day Attacks. Proceedings o f ACM SIGOPS, Eurosys.

Portuguese Honeynet Project. HoneyMole [computer software]. (2012). Available from
http://www.honeynet.org.pt/index.php/HoneyMole

Pouget, F., Dacier, M. & Pham, V. (2005, March). Leurre.com: on the advantages of
deploying a large scale distributed honeypot platform. ECCE'05, E-Crime and
Computer Conference, Monaco.

Pouget, F. & Holz, T. (2005, July). A Pointillist Approach for Comparing Honeypots.
Proceedings o f the Detection o f Intrusions and Malware, and Vulnerability
Assessment, Second International Conference (DIMVA), Vienna, Austria, Lecture
Notes in Computer Science, 3548, 51-68.

Prasad, B., Abraham, A., Abhinav, A., Gurlahosur, S. & Srinivasa, Y. (2011, March).
Design And Efficient Deployment O f Honeypot And Dynamic Rule Based Live
Network Intrusion Collaborative System. International Journal o f Network
Security & Its Applications (IJNSA), 3 (2).

Provos, N. (2004). A virtual honeypot framework. Proceedings o f the 13th conference on
USENIXSecurity Symposium (SSYM), 13. USENIX Association, Berkeley, CA.

Provos, N. & Holz, T. (2007). Virtual Honeypots: From Botnet Tracking to Intrusion
Detection (First Edition). Addison-Wesley Professional.

QEMU [computer software]. (2012). Available from http://wiki.qemu.org

Seifert, C., Komisarczuk, P. & Welch, I. (2009, June). True Positive Cost Curve: A Cost-
Based Evaluation Method for High-Interaction Client Honeypots. Third

http://www.syssecurity.com/archive/papers/Present_and_Future_Xprobe2-
http://web.archive.Org/web/20080509124834/http://www.rstack.org/phphop/
http://www.honeynet.org.pt/index.php/HoneyMole
http://wiki.qemu.org

100

International Conference on Emerging Security Information, Systems and
Technologies (SECURWARE), 63-69.

Send-Safe Honeypot Hunter [computer software]. (2012). Available from
http://www.sendsafe.com/honeypot-hunter.html

Sherif, J. & Dearmond, T. (2002). Intrusion Detection: Systems and Models. Eleventh
IEEE International Workshops on Enabling Technologies: Infrastructure fo r
Collaborative Enterprises (WETICE), 115.

Shiue, L. & Kao, S. (2008, May). Countermeasure for detection of honeypot deployment.
International Conference on Computer and Communication Engineering
(ICCCE), 595-599.

Snort [computer software]. (2012). Available from http://www.snort.org

Song, C., Hay, B., & Zhuge, J. (2010, October). Know Your Tools: Q ebek- Conceal the
Monitoring. Honeypot Project. Retrieved from http://honeynet.org/files/KYT-
Q ebek-finalvl .docx

Specter: Intrusion Detection System [computer software]. (2012). Available from
http ://www. specter, com

Spitzner, L. (2000, June). Learning the Tools and the Tactics o f the Enemy with
Honeynets. Proceedings o f the 12th Annual Computer Security Incident Handling
Conference, Chicago, Illinois.

Spitzner, L. (2002). Honeypots: Tracking Hackers. Addison-Wesley, Boston.

Spitzner, L. (2003, September). Dynamic Honeypots. Retrieved from
http://www.symantec.com/connect/articles/dynamic-honeypots

Spitzner, L. (2004, January). Problems and Challenges with Honeypots. Retrieved from
http://www.symantec.com/connect/articles/problems-and-challenges-honeypots

Srivastava, K. (2012, May 16). How Cyber-Hacks Are Hurting Small Businesses.
Mobiledia. Retrieved from http://www.mobiledia.com/news/142976.html

Stoll, C. (1990). The Cuckoo’s Egg: Tracking a Spy through the Maze of Computer
Espionage. Pocket Books, New York.

Talabis, R. (2006). Honeypots 101: A Brief History of Honeypots. A Student IT Security>
Awareness Initiative by Philippine Honeynet Project. Retrieved from
http://www.philippinehoneynet.org/docs/Honeypot 101 _history.pdf

http://www.sendsafe.com/honeypot-hunter.html
http://www.snort.org
http://honeynet.org/files/KYT-
http://www.symantec.com/connect/articles/dynamic-honeypots
http://www.symantec.com/connect/articles/problems-and-challenges-honeypots
http://www.mobiledia.com/news/142976.html
http://www.philippinehoneynet.org/docs/Honeypot

101

Tammen, G. (2012, May 10). Now you see me, now you don't: Cybersecurity experts
begin investigation on self-adapting computer network that defends itself against
hackers. Kansas State University, News and Editorial Services. Retrieved from
http://www.k-state.edu/media/newsreleases/mayl2/movingtarget51012.html

Tcpdump [computer software]. (2012). Available from http://www.tcpdump.org

Turk, R. (2005, October). Cyber Incidents Involving Control Systems. Contract, Idaho
National Engineering and Environmental Laboratory. Retrieved from
http://www.inl.gov/technicalpublications/Documents/3480144.pdf

Tzu, Sun. (1910). The Art of War, translated by Lionel Giles in 1910.

Viecco, C. (2007, June). Improving Honeynet Data Analysis. Information Assurance and
Security Workshop (IAW). IEEE SMC, 99-106.

Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A., Voelker, G. &
Savage, S. (2005, October). Scalability, fidelity, and containment in the potemkin
virtual honeyfarm. SIGOPS Operating System Review, 39 (5), 148-162.

VMware [computer software]. (2012). Available from http://www.vmware.com

Wang, H. & Chen, Q. (2011, August). Modeling and Deploying o f Dynamic Honeynet.
International Journal o f Advancements in Computing Technology, 3 (7).

Wang, W., Wang, C. & Shi-fu, C. (2006). Dynamic hierarchical distributed intrusion
detection system based on multiagent system. Proceedings o f the 2006
IEEE/WIQACM international conference on web intelligence and intelligent
agent technology, 89-93.

Wicherski, G. (2006, April). Medium Interaction Honeypots. Retrieved from
http://www.pixel-house.net/midinthp.pdf

Xen [computer software]. (2012). Available from http://www.xen.org

Yarochkin, F. Nmap - Network Mapper [computer software], (2012). Available from
http://nmap.org

Zalewski, M. Passive OS Fingerprinting Tool [computer software]. (2012). Available
from http://lcamtuf.coredump.cx/pOO

http://www.k-state.edu/media/newsreleases/mayl2/movingtarget51012.html
http://www.tcpdump.org
http://www.inl.gov/technicalpublications/Documents/3480144.pdf
http://www.vmware.com
http://www.pixel-house.net/midinthp.pdf
http://www.xen.org
http://nmap.org
http://lcamtuf.coredump.cx/pOO

Appendices

103

Appendix A: Acronyms

LIH(s) Low Interaction Honeypot(s) or Honeynet(s)

HIH(s) High Interaction Honeypot(s) or Honeynet(s)

ID(S) Intrusion Detection (System)

VM(s) Virtual Machine(s)
TTL Time to live

Appendix B: Glossary

Dynamic - Marked by continuous usually productive activity or change [1]; not necessarily with
respect to time but adapting to the environment.

Honeypot - A security resource, whose value is in being probed, attacked or compromised. [2]

Noise (level) - Network activity generated by the research effort or any other device.

104

[1] "dynamic." Merriam-Webster's Medical Dictionary. Merriam-Webster, Inc. 22 Apr. 2007.
<Dictionary.com http://dictionary.reference.com/browse/dynamic>.

[2] Spitzner, Lance. "Honeypots: Definitions and Value of Honeypots." 23 Apr. 2007.
<http:// www.spitzner.net/honeypots. html>.

http://dictionary.reference.com/browse/dynamic
http://%20www.spitzner.net/honeypots.%20html

105

Appendix C: Module Commands and Flags

Table 3, Module commands and flags
M odule Command and N ags

Modules ’ ' / ; V v- '/J // /v Commands and N ags

honeypot_scanner peri honeypot_scanner.pl

tcpdump_mysql peri tcpdump_mysql.pl -ip {ip} -i {interface}

-ip # IP address(es) from which to gather information #

-i # Ethernet interface utilized to capture packets #

p0f_mysql peri pOf_mysql.pl -i {interface}

-i # Ethernet interface utilized to capture packets #

nmap_mysql perlnmap_mysql.pl -mip {ip} -mac {mac} -t {time} -o {file} -nmap {exe} -ip {ip}

-mip # IP address passed from active scanner (scan_queue) #

-mac # MAC address passed from active scanner (scanqueue) #

-t # Time between active re-scans o f known devices (seconds) #

-o # Nmap output XML path #

-nmap # Nmap.exe path #

-ip # IP address that Nmap will be scanning #

xprobe2_mysql peri xprobe2_mysql.pl -mip {ip} -mac {mac} -t {time} -o {file} -p {level} -ip {ip}

-mip # IP address passed from active scanner (scan queue) #

-mac # MAC address passed from active scanner (scan queue) #

-t # Time between active re-scans o f known devices (seconds) #

-o # Nmap output XML path #

-p # Increased scanning flag (1 = enabled) #

-ip # IP address that Nmap will be scanning #

**active_scanner - Not able to be run independently because it needs the passive scanners to identify
devices on the network and populate scan queue

106

Appendix D: Source Code

107

Honeypot_scanner.pl

#!/usr/bin/perl
#honeypot_scanner.pl by Chris Hecker, 2007

use strict;
use threads;
use DBI;
use File::Copy;
use 10:: Socket: :INET;
use Net::DHCP::Packet;
use Net::DHCP::Constants;

Config table variables
my $eth_interfaee, my $my_mac, my Sdhcp server, my SpOfos, my $nmap_exe, my
Snmapassoc, my $nmap_prints, my Snm apxm l, my$xprobe2_xml,
my $xprobe2_conf, my $honeypot_xml, my Shoneyd config, my $honeyd_ip_binding,
my $honeyd_ip_range, my Sscan ip range, my Sinitialdeployment,
my $percent_change, my Snoise, my $active_scan_seconds,

Thread variables
my $tcp_pid, my $pOf_pid, my $act_pid, my $tcp_run, my SpOfrun, my Sactrun,
my Stcp name = "tcpdump_scan", my $p0f_name = "pOf scan", my Sact name =
"activescan",

Global variables
my $pc_threshold_high, my $pc_threshold_low, my $honeypot_deploy = "N",
my Scount = 0, my $honeyd_count, my Shoneyd max, my $honeyd_ip_temp;

system "killall pOf'; # Kill all instances of pOf running before our
program starts
system "killall tcpdump"; # Kill all instances of tcpdump running before our
program starts
system "/etc/init.d/dhcdbd stop"; # Stop DHCP client from running
system "killall dhclient"; # Kill all instances of dhclient running before our
program starts

Calls connect_to_db() function to connect to honeypot scanner MySQL database
my $dbh= connect_to_db();

Calls db_query_config() function to retrieve all the config database variables

108

db_query_config($dbh);

Inserts information returned from DHCP server into the database
Prepare the insert statement just once, the actual values will replace the ? later
my $insert_dhcp_register = $dbh->prepare("INSERT INTO dhcp (dhcp id , ip ad d r,
m acaddr, lease_time_seconds, renew altstam ptim e, datecreated, lasttstam p,
last tstamp time) VALUES(?, ?, ?, ?, ?, ?, ?, ?);");
my $insert_updates = $dbh->prepare("INSERT INTO honeypot updates
(num_machines, num_services, date updated) VALUES (?, ?, ?);");
my S in se rtlih in fo = $dbh->prepare("INSERT INTO lih hih link (lih_os_platform,
l ih ip a d d r , lih m a c ad d r , hih_os_platform, h ih ip a d d r , h ih m a c a d d r , hihlocation,
hih_state, date_created, last_tstamp) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?);");

Creates tcpdump mysql thread and detaches it
my $tcp_thr = threads->new(\&tcpdump_scan);
$tcp_thr->detach; # Now we officially don't care any more

Creates pOf mysql thread and detaches it
my SpOf thr = threads->new(\&pOf_scan);
$pOf_thr->detach; # Now we officially don't care any more

Checks the noise level for the config table and creates active_scan thread if necessary
then detaches it
my Sactthr;
if($noise eq 'low' || Snoise eq 'medium' || Snoise eq 'medium-high' || Snoise eq 'high')
{ S actth r = threads->new(\&active_scan);

$act_thr->detach; # Now we officially don't care any more
}elsif (Snoise eq "passive"))
}else {print "Please choose a correct noise level for this scanner in the config table!\n";
exit;}

Sleep for 2 seconds to ensure threads are created before next step
sleep 2;

Obtains the process id for each of the created threads to watch for early termination
$tcp_pid = db_query_threads($tcp_name, Sdbh);
open (PSIN, "ps -p $tcp_pid -o comm= |");
$tcp_run=<PSIN>;
Sp0f_pid = db_query_threads($pOf_name, Sdbh);
open (PSIN, "ps -p Sp0f_pid -o comm= |");
$pOf_run=<PSIN>;
$act_pid = db_query_threads($act_name, Sdbh);
open (PSIN, "ps -p Sact pid -o comm= |");
$act_run=<PSIN>;

109

eval {
Install signal handlers
$SIG{INT} = sub { die "Caught interrupt" };

while (1){
Sleeps for 10 seconds
sleep 10;

Increment count, mentioned below
$count++;

Retrieve all the config database variables again to make sure use has
changed information

dbqueryconfig(Sdbh);

Checks to see if any honeyd IP addresses need to be renewed (only
necessary if -il honeyd ip binding used)

db_query_renew_dhcp($dbh);

thread if not

not

Looks to see if tcpdump jm ysql is still running and spins off a new

open (PSIN, "ps -p $tcp_pid -o comm= |");
my $tcp_still_run = <PSIN>;
if ($tcp_still_run ne S tcprun) {

my Stcp thr = threads->new(\&tcpdump_scan);
$tcp_thr->detach; # Now we officially don't care any more
sleep 2;
$tcp_pid = db_query_threads($tcp_name, $dbh);
open (PSIN, "ps -p $tcp_pid -o comm= |");
$tcp_run = <PSIN>;

}

Looks to see if pOfmysql is still running and spins off a new thread if

open (PSIN, "ps -p $p0f_pid -o comm= |");
my $pOf_still_run = <PSIN>;
if (S pO fstillrun ne $p0f_run){

my $p0f_thr = threads->new(\&pOf_scan);
$pOf_thr->detach; # Now we officially don't care any more
sleep 2;
$p0f_pid = db_query_threads($pOf_name, $dbh);
open (PSIN, "ps -p $p0f_pid -o comm= [");
$p0f_run = <PSIN>;

110

Looks to see if active scan is still running and spins off a new thread if
not

open (PSIN, "ps -p $act_pid -o comm= |");
my $act_still_ran = <PSIN>;
if (S a c ts tillru n ne Sactrun) {

if (Snoise eq 'low' || $noise eq 'medium' || $noise eq 'medium-high'
|| Snoise eq 'high')

{ $act_thr = threads->new(\&active_scan);
$act_thr->detach; # Now we officially don't care any more
sleep 2;
$act_pid = db_query_threads($act_name, Sdbh);
open (PSIN, "ps -p $act_pid -o comm= |");
$act_run = <PSIN>;

}
}
Since we don't need to check every 10 secondsfor honeypot

redeployment, I created this counter to extend time to 30 seconds
if (Scount >= 3){

Check to see if threshold has been reached to create honeyd
config

db_query_honeypot_deployment($dbh);
Scount = 0;

}
}

};

Close down and clean up if ctl-c or interrupt occurred
if ($@) {

Disconnect from Database
$dbh->disconnect();
print "Honeypot Scanner disconnected from Database.\n";

Print exit message
print "\nExiting with: $@\n";

system "killall pOf';
system "killall tcpdump";
system "killall nmap";
system "killall xprobe2";
system "kill $p0f_pid";
system "kill $tcp__pid";
system "kill $act_pid";

}

I l l

sleep 1;
exit;

Connect to the database
sub connect_to_db
{ # Database Information

my $db="honeypot_scanner";
my $userid="root";
my Spasswd-'rootpass";
my $connectionInfo="dbi:mysql:$db";

Make Connection to Database
my Sdbh = DBI->connect($connectionInfo,$userid,$passwd, {

RaiseError => 1,
AutoCommit => 0
}) || die "Database connection not made: $DBI::errstr";

retum(Sdbh);
}

Retrieve information then check integrity o f information from config table in database
sub d b q u ery co n fig
{ my Sdbh = shift;

Prepare and Execute DB Query
my Squery = "select * from config;";
my $select_stmt = $dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(Vmy Sein, \my $mc, Vmy Sdhcp, \my SpOf, \my Sne,

\my $np, \my $na, \my $nx, \my $xc, \my $xx,
\my Shx, \my She, \my Shib, \my Shir, \my Ssir, \my Sid, Vmy Spc, \my $n, Vmy

Sas, Vmy Sdc);
while ($select_stmt->fetch()) {

Sethinterface = Sein;
Sm ym ac = Smc;
Sdhcpserver = Sdhcp;
SpOfos = SpOf;
Snm apexe = Sne;
$nmap_prints = Snp;
Snm apassoc = Sna;
Snm apxm l = Snx;
Sxprobe2_conf = Sxc;
Sxprobe2_xml = Sxx;
Shoneypotxml = Shx;

}

112

$honeyd_config = $hc;
Shoneyd ip binding - $hib;
$honeyd_ip_range = Shir;
S scan ip ran g e = Ssir;
Sinitialdeployment = Sid;
Spercentchange = Spc;
Snoise = $n;
$active_scan_seconds = Sas;

}
$select_stmt->finish;

Make sure there are no spaces or ; in file path names for security
if($nmap_exe =~ /[Aa-zA-Z0-9_V.\-]/) {print "nm apexe in the config table

contains a bad character!\n"; exit;}
elsif($pOf_os =~ /[Aa-zA-Z0-9_V.\-]/) (print "pOf os database in the config table

contains a bad character!\n"; exit;}
elsif($nmap_prints =~ /[Aa-zA-Z0-9_V.\-]/) (print "nmap_prints in the config table

contains a bad character!\n"; exit;}
elsif($nmap_assoc =~ /[Aa-zA-Z0-9_V.\-]/) (print "nmap_assoc in the config table

contains a bad character!\n"; exit;}
elsif($xprobe2_conf =~ /[Aa-zA-Z0-9_V.\-]/) (print "xprobe2_conf in the config

table contains a bad character!\n"; exit;}
elsif($xprobe2_xml =~ /[Aa-zA-Z0-9_V.\-]/) (print "xprobe2_xml in the config

table database contains a bad character!\n"; exit;}
elsif($honeyd_config =~ /[Aa-zA-Z0-9_V.\-]/) (print "honeyd_config in the config

table contains a bad character!\n"; exit;}

Check to see if the correct honeyd_ip_binding was input into the config table
if($honeyd_ip_binding =~ m/A(iS|iD|iR|iI)$/i)(} else (print "Please choose a

correct honeyd ip binding for this scanner in the config table!\n"; exit;}

Check to see if the MAC address entered into the config table is in the correct
format

my $my_mac_temp = $my_mac;
my $mac_rgx = ,A\w(2}\:\w(2}\:\w{2}\:\w(2}\:\w(2}\:\w{2}$';
my $my_mac = mac_chkmac($my_mac_temp,$mac_rgx);
if (Smy mac eq "") (print "A correct MAC address must be entered in the config

table!\n"; exit(l);}

Check to see if the dhcp server IP entered into the config table is in the correct
format

my $dhcp_server_temp = $dhcp_server;
my $ip_rgx = ,A\d (1,3} \.\d {1,3} \.\d (1,3} \.\d {1,3} $';
my $dhcp_server = ipv4_chkip($dhcp_server_temp,$ip_rgx);

113

if (Sdhcp server == "") {print "Single & correct IP address must be entered for the
DHCP server in the config table!\n"; exit(l);}

Check to see if the correct honeyd ip range was input into the config table
honeyd_ip_manipulation();

}

Query the threads tables for PID information
sub dbquery th reads
{ my Sthrnam e = shift;

my Sdbh = shift;
my $thr_pid;

Prepare and Execute DB Query
my Squery = "select thread id, thr_pid from threads where thr_name =

'Sthrname';";
my Sselect stmt = $dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(Vmy St id, Vmy $t_pid);
while ($select_stmt->fetch()) {

$thr_pid = Stjpid;
}
$select_stmt->finish;

return $thr_pid;
}

Insert information about new honeypot deployment
sub d b in sertupdates
{ my Snummachines = shift;

my Snum services = shift;
my Sdbh = shift;

Finalize the insert statement
$insert_updates->bind_param(1, Snum machines); # refers to the first ? in the

query
$insert_updates->bind_param(2, $num_services); # refers to the second ? in the

query
my Sdateupdated = date_time();
$insert_updates->bind_param(3, Sdate updated); # refers to the third ? in the

query

$ insert_updates->execute();
}

excute the SQL statement

114

Check to see if threshold has been reached to create honeyd config
sub dbqueryhoneypotdeploym ent
{ my $dbh= shift;

my Scurrentcount = 0;
my $num_machines = 0;
my Snum services = 0;
my Sscantim e = time() - Sactive scan seconds;

Prepare and Execute DB Query
my Squery = "(select ip_addr, mac_addr, primary_os from pOf where

la stts tam p tim e > '$scan_time' AND ip addr NOT IN (select ip_addr from
nm apm achines where prim aryos != 'unknown' AND lastts tam p tim e > 'Sscantim e')
AND ip_addr NOT IN (select ip_addr from xprobe2_machines where primary os !=
'unknown' AND last tstamp time > 'Sscan time')) union (select ip addr, m acaddr,
primary os from xprobe2_machines where primary_os != 'unknown' AND
last tstamp time > 'Sscan time' AND ip addr NOT IN (select ip addr from
nmap_machines where primary_os != 'unknown' AND last_tstamp_time > 'Sscan time'))
union (select ip_addr, mac addr, primary_os from nmap machines where primary os !=
'unknown' AND last_tstamp_time > 'Sscan time') order by ip addr;";

my $select_stmt = $dbh->prepare($query);
Snumm achines = $select_stmt->execute();
$select_stmt->bind_columns(\my Sip, Vmy Smac, Vmy Sos);
LOOP THROUGH RESULTS
while($select_stmt->fetch()) {

Prepare and Execute DB Query
my Squery2 = "(select ip_addr, mac_addr, port_num, protocol from

tcpdump_ports where syn ack = 'Y' AND ip_addr = 'Sip' AND mac addr = 'Smac' AND
last tstamp time > 'Sscan time') union (select nm apm achines.ipaddr,
nm apm achines.m acaddr, nmap_ports.port_num, nmap_ports.protocol from
nmap machines, nmapjports where nm apm achines.m achineid =
nmap_ports.machine_id AND nmap machines.ip addr = 'Sip' AND
nmap machines.mac addr = 'Smac' AND last tstamp time > 'Sscan time') union (select
xprobe2_machines.ip_addr, xprobe2_machines.mac_addr, xprobe2_ports.port_num,
xprobe2 jports.protocol from xprobe2_machines, xprobe2_ports where
xprobe2_machines.machine_id = xprobe2_ports.machine_id AND
xprobe2_machines.ip_addr = 'Sip' AND xprobe2_machines.mac_addr = 'Smac' AND
last tstamp time > 'Sscan time') order by ip addr, port num, protocol;";

my $select_stmt2 = $dbh->prepare($query2);
Snum services = $select_stmt2->execute() + Snumservices;
$select_stmt2->fmish;

}

115

$select_stmt->finish;

Scurrentcount = $num machines + Snumservices;

if (Shoneypotdeploy eq "N")
{

Check to see if threshold has been reached to create honeyd config
(initial deployment)

if (Snummachines >= Sinitialdeployment)
{

db_insert_updates($num_machines, Snum services, Sdbh);
honeyd_ip_manipulation();
output_honeyd_config_xml($dbh);
$honeypot_deploy = "Y";
my Stemp = ($current_count * ($percent_change / 100));
S pcthresho ld low = $current_count - Stemp;
$pc_threshold_high = Scurrentcount + Stemp;

}
} else {

Check to see if threshold has been reached to re-create honeyd config
(re-deployment)

if ($current_count >= Spc threshold high || Scurrent count <=
$pc_threshold_low)

{
db_insert_updates($num_machines, $num_services, Sdbh);
honeyd_ip_manipulation();
output_honeyd_config_xml(Sdbh);
my Stemp = (Scurrent count * ($percent_change /100));
Spc threshold low = Scurrent count - Stemp;
$pc_threshold_high = Scurrentcount + Stemp;

}
}

}

Check for a valid MAC address,
sub mac_chkmac($$)
{ my (Smac) = $ [0] =~ m/($_[l])/;

return undef unless Smac;

Check that bytes are in range
for (split A:/, Smac) {

return undef if $_ !~ m/(0|l|2|3|4|5|6|7|8|9|a|b|c|d|e|f)/i;
}

116

return Smac;

Check for a valid IPv4 address,
sub ipv4_chkip($$)
{ my (Sip) = $_[0] =~ m/($_[l])/;

return undef unless Sip;

Check that bytes are in range
for (split A.|-/, S ip) {

return undef if $_ < 0 or $_ > 255;
}
return Sip;

}

Subroutine to manipulate IPV4 address to the correct format for scan_ip_range
sub scan ip manipulation
{ my Sip_rgx2 - 'A\d{l,3}\.\d{l,3}$';

my Sip_rgx3 = ,A\d [1,3} \-\d {1,3} \-Nd {1,3} S';
my Sip_rgx4 = ’A\d {1,3} \.\d {1,3} \.\d {1,3} \.\d {1,3} S’;
my $ip_range_rgx = ,A\d{l,3}\.\d{l,3}\.\d{l,3}\.\d{l,3}-\d{l,3}$';
my Spattem = ,A\d {1,3} \.\d {1,3} \.\d {1,3} V;
my Spattem2 = '\d {1,3} $';
my Spattem3 = ,A\d {1,3} \.\d {1,3} \.\d {1,3} \Ad {1,3}-';
my Spattem4 = *-\d {1,3} S’;

my Sip = ipv4_chkip($scan_ip_range,$ip_rgx2);
if (Sip e q ""){

my Sip = ipv4_chkip($scan_ip_range,$ip_rgx3);
if (Sip eq ""){

my Sip = ipv4_chkip($scan_ip_range,$ip_rgx4);
if (Sip eq ""){

my Sip = ipv4_chkip($scan_ip_range,$ip_range_rgx);
if (Sip e q ""){

print "The scan ip address format in the config table
is not correct.\n"; exit;

} else {
my $ip_tcp = S scan ip ran g e ;
$ip_tcp =~ s/$pattem4//s;
S ip tcp =~ s/$pattem2//s; chop Sip tcp;
return Sip tcp;

}
} else { return my Sip tcp = Sscan ip range;}

117

} else { return my $ip_tcp = $scan_ip_range;}
} else { return my S ip tcp = S scan iprange;}

Subroutine to manipulate IPV4 address to the correct format for h o n ey d ip ran g e
sub honeydipm anipulation
{ my S iprgx = ,A\d {1,3} \.\d {1,3} \.\d {1,3} \.\d {1,3} $';

my $ip_range_rgx = rA\d{ 1,3 }V\d{ 1,3 }\.\d {1,3 }\.\d{ 1,3 }-\d{ 1,3} $';
my Spattem = IA\d{l,3}\.\d{l,3}\.\d{l,3}\.';
my $pattem2 = '\d {1,3} $';
my $pattem3 = 'A\d {1,3} \.\d {1,3} \.\d {1,3} \.\d {1,3}
my $pattem4 = '-\d {1,3}$';

$honeyd_ip_temp = Shoneydiprange;

if (S honeydipbinding eq "iD")
{

my Shoneydip = ipv4_chkip($honeyd_ip_temp,$ip_rgx);
if (Shoneydip == "") {print "Single IP address must be entered with the -

iD command.Vn"; exit(l);}
}
elsif ($honeyd_ip_binding eq "iR")
{

my Shoneyd ip = ipv4_chkip($honeyd_ip_temp,$ip_range_rgx);
if (Shoneyd ip == "") {print "IP range must be entered with the -iR

command.\n"; exit(l);}
$honeyd_count = S honeydip tem p;
Shoneydcount =~ s/$pattem//s;
$honeyd_count =~ s/$pattem4//s;
Shoneydm ax = S honeydip tem p;
$honeyd_max =~ s/$pattem3//s;
$honeyd_ip_temp =~ s/$pattem4//s;

}
x

Start tcpdump_mysql.pl
sub tcpdump scan
{ my S ip tcp = scan_ip_manipulation();

system "peri tcpdump_mysql.pl -ip Sip tcp -i Seth interface";
}

Start pOf_mysql.pl
sub pOfscan
{ system "peri pOf_mysql.pl -i $eth_interface";

}

118

Start active_scan.pl
sub activescan
{ system "peri active_scanner.pl -n Snoise -nexe Snmap exe -nxml Snmap xml -

xxml Sxprobe2_xml -t Sactivescanseconds";
}

Write honeyd config & XML file
sub ou tpu thoneydconfigxm l
{ my Sdbh= shift;

my Snum = 0, my Sfamily, my Spattem6 = ,A\w+',
my Sscan time = time() - Sactive scan seconds;

if (Shoneydipbinding eq "il") {db_query_release_dhcp($dbh);}

Looks for past_honeyd_files directory specified in the config table or creates the
directory

my Spast honeyd config = Shoneyd config;
$past_honeyd_config =~ s/(honeyd.conf)$//s;
if (-d

"".$past_honeyd_config.7past_honeyd_files"){}else{mkdir($past_honeyd_config.7past
honeyd files") || die "Unable to create past_honeyd directory <$!>\n";}

$past_honeyd_config =~ s/$/past_honeyd_filesV/s;

Looks for past xml files directory specified in the config table or creates the
directory

my S pastxm lconfig = Shoneypotxml;
$past_xml_config =~ s/(honeypot.xml)$//s;
if (-d

"".$past_xml_config."/past_xml_files"){}else{mkdir($past_xml_config."/past_xml_files
") || die "Unable to create past xml directory <$!>\n";}

Spastxm l config =~ s/$/past_xml_filesV/s;

print "Starting to write the XML and honeyd config files.\n";

Open file to be overwritten using the single greater than character
open(HONEYDFILE, ">$honeyd_config");
print HONEYDFILE "\##### Honeyd Configuration File ######\n";
print HONEYDFILE "\##### " ,localtime()." #####\n\n\n";
print HONEYDFILE

"\##";

Open file to be overwritten using the single greater than character

}

119

open(XMLFILE, ">$honeypot_xml");
print XMLFILE "<?xml veision=\"1.0\"?>\n";
print XMLFILE "<honeypot>\n";

Prepare and Execute DB Query
my Squery = "(select ip_addr, mac addr, primary os from pOf where

last tstamp time > '$scan_time' AND ip_addr NOT IN (select ip_addr from
nmap_machines where primary_os != 'unknown' AND last tstamp time > 'Sscan time')
AND ip addr NOT IN (select ip addr from xprobe2_machines where primary os !=
'unknown' AND last tstamp time > 'Sscan time')) union (select ip addr, mac addr,
primary os from xprobe2_machines where primary os != 'unknown' AND
last tstamp time > 'Sscan time' AND ip addr NOT IN (select ip_addr from
nmap machines where primary os != 'unknown' AND last tstamp time > 'Sscan time'))
union (select ip addr, mac addr, primary_os from nmap machines where primary os !=
'unknown' AND last_tstamp_time > 'Sscan time') order by ip_addr;";

my $select_stmt = $dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(\my Sip, \my Smac, \my Sos);
LOOP THROUGH RESULTS
while($select_stmt->fetch()) {

my @family_arguments = split (As+/, Sos);
if (@family_arguments[0] eq "Microsoft") {Sfamily =

@family_arguments[1];
}else{$family = @family_arguments[0];}
print HONEYDFILE "\n\ncreate ",Sfamily,++$num."\n";
print HONEYDFILE "set ".$family."$num personality \"".$os."\"\n";

db_insert_lih_hih_link($insert_lih_info, Sos, Sip, Smac, Sdbh);
Prepare and Execute DB Query
my Squery2 = "Select link id, l ih ip a d d r from lih hih link where

l ih ip a d d r = 'Sip' AND lih mac addr = 'Smac' AND lih_os_platform = 'Sos' AND
h ih ip a d d r = 'unknown';";

my $select_stmt2 = Sdbh->prepare($query2);
$select_stmt2->execute();
Sselect_stmt2->bind_columns(\my Stid, \my Stip);
my Slih hih id = 0;
while ($select_stmt2->fetch()) {

$lih_hih_id = Stid;
}
$select_stmt2->finish;

print XMLFILE " <target name=\"".Sfamily."$num\" ip=\"$ip\"
mac=\"$mac\" lih_hih_id=\"$lih_hih_id\">\n";

print XMLFILE " <os_guess>\n";

120

print XMLFILE " <primary> \"$os\" </primary>\n";
print XM LFILE" </os_guess>\n";
print XM LFILE" <system_information>\n";

Prepare and Execute DB Query
my $query2 = "Select ip ad d r, m acaddr, Count(*) AS Num Rst Ack

from tcpdumpjports where rst_ack = 'Y' AND ip_addr = '$ip' AND mac addr = 'Smac'
AND lastts tam p tim e > '$scan_time' group by ip_addr, mac addr;";

my Sselect_stmt2 = $dbh->prepare($query2);
$select_stmt2->execute();
my S tcpreset = 0;
$select_stmt2->bind_columns(\my Stip, \my Stmac, \my Srsta);
while ($select_stmt2->fetch()) {

$tcp_reset = Srsta;
}
Sselect_stmt2->fmish;
if($tcp_reset > 25) {

print HONEYDFILE "set ",$family."$num default tcp action
reset\n";

} else {
print HONEYDFILE "set ".$family."$num default tcp action

closed\n";
}

Prepare and Execute DB Query
my Squery2 = "Select ip ad d r, m acaddr, Count(*) AS Num UDP Reply

from tcpdump_ports where udp_reply = 'Y' AND ip addr = 'Sip' AND mac addr = 'Smac'
AND last tstamp time > 'Sscantim e' group by ip_addr, mac_addr;";

my Sselect_stmt2 = Sdbh->prepare($query2);
$select_stmt2->execute();
my Sudpreply = 0;
Sselect_stmt2->bind_columns(\my Stip, \my Stmac, \my Sudpr);
while (Sselect_stmt2->fetch()) {

Sudpreply = Sudpr;
}
$ select_stmt2 ->finish;
if($udp_reply > 25) {

print HONEYDFILE "set ",$family."$num default udp action
reset\n";

} else {
print HONEYDFILE "set ",$family."$num default udp action

closed\n";
}

121

Prepare and Execute DB Query
my $query2 = "Select ip addr, mac addr, icmp reply from tcpdump icmp

where ip_addr = '$ip' AND mac addr = '$mac' AND last_tstamp_time > 'Sscan time'
limit 1;";

my $select_stmt2 = $dbh->prepare($query2);
Sselect_stmt2->execute();
my $icmp_reply = 0;
$select_stmt2->bind_columns(\my Stip, Vmy Stmac, Vmy Sicmp);
while ($select_stmt2->fetch()) {

Sicm preply = Sicmp;
}
Sselect_stmt2->finish;
if($icmp_reply eq 'Y'){

print HONEYDFILE "set ".$family."$num default icmp action
openVn";

print XMLFILE " <icmp_reply state=V"openV"/>Vn";
}else{

print HONEYDFILE "set ".Sfamily."Snum default icmp action
closedVn";

print XMLFILE " <icmp_reply state=\"closedV"/>Vn";
}

Prepare and Execute DB Query
my Squery2 = "Select ip addr, mac addr, firewall, lookup link from pOf

where ip_addr = 'Sip' AND mac_addr = 'Smac' AND last tstamp time > 'Sscan time'
limit 1;";

my $select_stmt2 = $dbh->prepare($query2);
my Snum row s = Sselect_stmt2->execute();
Sselect_stmt2->bind_columns(Vmy Stip, Vmy Stmac, Vmy Sfire, Vmy Slook);
while (Sselect_stmt2->fetch()) {

print XMLFILE " <firewall state=\"".$fire."\"/>\n";
print XMLFILE " <lookup_link state=V"".$look."V"/>Vn";

}
Sselect_stmt2->fmish;
if (Snum rows ==0) {

print XMLFILE " <firewall state=\"no/unknown\"/>\n";
print XMLFILE " <lookup_link state=V"unknownV"/>Vn";

}

Prepare and Execute DB Query
my Squery2 = "Select ip_addr, mac addr, re a lt im e ta rg e ts e c from

xprobe2_machines where ip addr = 'Sip' AND mac addr = 'Smac' AND last_tstamp_time
> 'Sscan time' limit 1;";

my Sselect_stmt2 = $dbh->prepare($query2);

122

my Snum row s = Sselect_stmt2->execute();
Sselect_stmt2->bind_columns(\my Stip, \my Stmac, \my Srtts);
while (Sselect_stmt2->fetch()) {

print XM LFILE" <real_time_target_seconds
seconds=\"Srtts. "\"/>\n";

}
Sselect_stmt2->finish;
if ($num_rows = 0) {

print XM LFILE" <real_time_target_seconds
seconds=\"unknown\7>\n";

}

Prepare and Execute DB Query
my Squery2 - "Select ip addr, mac addr, uptime seconds from pOf where

uptime_seconds != 'unknown' AND ip addr = 'Sip' AND mac addr = 'Smac' AND
la sttstam p tim e > 'Sscantim e' limit 1;";

my Sselect_stmt2 = Sdbh->prepare($query2);
my Stemp = $select_stmt2->execute();
if (Stemp == 1) {

$select_stmt2->bind_columns(\my Stip, \my Stmac, \my Supt);
while ($select_stmt2->fetch()) {

print HONEYDFILE "set ".$family."$num uptime
".$upt."\n";

print XM LFILE" <uptime_seconds
time=\"".$upt."\"/>\n";

}
}else {

print XMLFILE " <uptime_seconds time-\"unknown\"/>\n";
}
Sselect_stmt2->finish;

Prepare and Execute DB Query
my Squery2 = "(select ip addr, mac addr, distance J io p s from pOf where

distance_hops != 'unknown' AND ip_addr = 'Sip' AND mac_addr = 'Smac' AND
last tstamp time > '$scan_time') union (select ip addr, mac addr, distancehops from
nmapmachines where distance hops != 'unknown' AND ip addr = 'Sip' AND mac addr
= 'Smac' AND last tstamp time > 'Sscan time') limit 1;";

my Sselect_stmt2 = Sdbh->prepare($query2);
my Stemp = $seleet_stmt2->execute();
if (Stemp -= 1){

$select_stmt2->bind_columns(\my Stip, \my Stmac, \my Sdho);
while (Sselect_stmt2->fetch()) {

print XM LFILE" <distance_hops
hops=\"".$dho."\"/>\n";

123

}else {
print XMLFILE " <distance_hops hops=\"unknown\"/>\n";

}
$ select_stmt2 ->fmi sh;

print XM LFILE" </system_information>\n";
print XMLFILE " <port_scan>\n";

Prepare and Execute DB Query
my $query2 = "(select ip_addr, mac addr, portnum , protocol, service

from tcpdump_ports where syn_ack = 'Y' AND ip addr = '$ip' AND mac_addr = '$mac'
AND last_tstamp_time > '$scan_time' AND port num NOT IN (select
nmap_ports.port_num from nmap machines, nmap_ports where
nm apm achines.m achineid = nmap_ports.machine_id AND nmap machines.ip addr =
'$ip' AND nmap machines.mac addr = '$mac' AND nm apm achines.lasttstam ptim e >
'$scan_time') AND port_num NOT IN (select xprobe2_ports.port_num from
xprobe2_machines, xprobe2_ports where xprobe2_machines.machine_id =
xprobe2_ports.machine id AND xprobe2_machines.ip_addr = 'Sip' AND
xprobe2_machines.mac_addr = 'Smac' AND xprobe2_machines.last_tstamp_time >
'Sscan time')) union (select xprobe2_machines.ip_addr, xprobe2_machines.mac_addr,
xprobe2_ports.port_num, xprobe2_ports.protocol, xprobe2_ports.service from
xprobe2_machines, xprobe2_ports where xprobe2_machines.machine_id =
xprobe2_ports.machine_id AND xprobe2_machines.ip_addr = 'Sip' AND
xprobe2_machines.mac_addr = 'Smac' AND xprobe2_machines.last_tstamp_time >
'Sscan time' AND port num NOT IN (select nmapjports.port num from
nmap machines, nmapjports where nmap machines.machine id =
nmap_ports.machine_id AND nmap machines.ip addr = 'Sip' AND
nmap_machines.mac_addr = 'Smac' AND nmap_machines.last_tstamp_time >
'Sscan time')) union (select nmap_machines.ip_addr, nmap machines.mac addr,
nmapjports.port num, nmap_ports.protocol, nmap_ports.service from nmap machines,
nmap_ports where nmap machines.machine id = nmap_ports.machine_id AND
nmap machines.ip addr = 'Sip' AND nmap machines.mac addr = 'Smac' AND
nmap machines.last tstamp time > 'Sscan time') order by ip_addr, port num, protocol,
service;";

my Sselect_stmt2 = Sdbh->prepare($query2);
my Stemp = Sselect_stmt2->execute();
if (Stemp >= 1){

Sselect_stmt2->bind_columns(\my Sip, \my Smac, \my Spn, \my
$p, \my Sser);

LOOP THROUGH RESULTS
while($select_stmt2->fetch()) {

Prepare and Execute DB Query

}

124

my $query3 = "select scrip tjang, path_and_filename from
honeydscripts where primary os LIKE '$family%' AND portnum = '$pn' AND
protocol = '$p';";

my Sselect_stmt3 = $dbh->prepare($query3);
Sselect_stmt3->execute();
Assign fields to variables
$select_stmt3->bind_columns(\my Sscriptlang, \my

Spathandfilenam e);
while ($select_stmt3->fetch()) {
if ($script_lang == $pattem6) {

print HONEYDFILE "add ".$family."$num ",$p."
port ".$pn." \"$script_lang $path_and_filename\"\n";

$script_lang = 1;
}
}
if (Sscriptlang == 0) {
print HONEYDFILE "add ".$family."$num ",$p." port

".$pn." open\n";
}
$select_stmt3->finish;

Prepare and Execute DB Query
my $query3 = "Select ip addr, mac addr from

nmap machines, nmap_ports where nm apm achines.m achineid =
nmap_ports.machine_id AND nmap machines.ip addr = '$ip' AND
nmap machines.mac addr = '$mac' AND nmap_ports.port_num = '$pn' AND
nmap_ports.protocol = '$p' AND nm apm achines.lasttstam ptim e > 'Sscantime';";

my $select_stmt3 = $dbh->prepare($query3);
my $num_rows = $select_stmt3->execute();
Sselect_stmt3->bind_columns(\my Stip, \my Stmac);
while (Sselect_stmt3->fetch()) {

print XMLFILE " <port number=\"".$pn."\"
protocol=\"".$p."\" service=\"".Sser."\"/>\n";

}
$select_stmt3 ->fini sh;

}
}
Sselect_stmt2->finish;

my Spattem = ,A\d {1,3 }\.\d {1,3} \.\d {1,3} \.';
my Spattem2 = '\d {1,3} S';

if (Shoneyd ip binding eq "iS") {

125

print HONEYDFILE "bind Sip ".$family."$num";

elsif (Shoneydipbinding eq "iD") {
Sip =~ s/$pattem//s;
S honeyd ip tem p =~ s/$pattem2/$ip/s;
print HONEYDFILE "bind $honeyd_ip_temp ".$family."$num";

}
elsif (Shoneyd ip binding eq "iR") {

if (Shoneydcount >= 0 && Shoneydcount < Shoneydm ax) {
S honeyd ip tem p =~ s/$pattem2/$honeyd_count/s;

}
if (Shoneyd count >= $honeyd_max) {

$honeyd_ip_temp =~ s/$pattem2/$honeyd_count/s;
print HONEYDFILE "bind Shoneyd ip temp

".$family."$num";
print HONEYDFILE

"\n\n##
\n";

close(HONEYDFILE);
print "The honeyd config file is complete !\n";

print XM LFILE" </port_scan>\n";
print XM LFILE" </target>\n";
print XMLFILE "</honeypot>\n";
close(XMLFILE);
print "The xml honeypot file is complete !\n";

#This copies the current honeyd.conf file and places the
copy in a p asth o n ey d files folder

#located in the same folder as the config file. The copy is
named honeyd_<currenttime>.conf.

my Scurrentconfig - Spasthoneydconfig;
$current_config =~ s/$/honeyd/s;
$current_config = join ('_', $current_config, time());
$current_config =~ s/$A.conf/s;
copy("$honeyd_config","$current_config") or die

"Copying honeyd.conf failed: $!";

#This copies the current honeypot.xml file and places the
copy in a past xml files folder

#located in the same folder as the xml file. The copy is
named honeypot_<currenttime>.xml.

my Scurrent config = $past_xml_config;
Scurrentconfig =~ s/$/honeypot/s;

}

126

$current_config = join Scurrentconfig, time());
$current_config =~ s/$A.xml/s;
copy("$honeypot_xml","$current_config") or die "Copying

honeypot.xml failed: $!";

#Retum from output_honeyd_config since IP range is full
return;

}
$honeyd_count++;
print HONEYDFILE "bind $honeyd_ip_temp ".$family."$num";

}
elsif (Shoneydipbinding eq "il") {

my $first_ip, my Ssecondm ac;

(Sfirstip , Ssecond mac) = register_dhcp($mac, Sdbh);

print HONEYDFILE "set ".$family."$num ethemet
\"$second_mac\"\n";

print HONEYDFILE "bind Sfirst ip ".Sfamily."$num";
}
print XMLFILE " </port_scan>\n";
print XM LFILE" </target>\n";

}
$select_stmt->fmish;

print HONEYDFILE
"\n\n ##
\n";

close(HONEYDFILE);
print "The honeyd config file is complete !\n";

print XMLFILE "</honeypot>\n";
close(XMLFILE);
print "The xml honeypot file is complete!\n";

#This copies the current honeyd. conf file and places the copy in a
past_honeyd_files folder

#located in the same folder as the config file. The copy is named
honeyd_<currenttime>.conf.

my Scurrent config = Spasthoneydconfig;
Scurrentconfig =~ s/$/honeyd/s;
Scurrent config = join $current_config, time());
$current_config =~ s/$A.conf/s;

127

copy("$honeyd_config","$current_config") or die "Copying honeyd.conf failed:

#This copies the current honeypot.xml file and places the copy in a p a s tx m lfile s
folder

#located in the same folder as the xml file. The copy is named
honeypot_<currenttime>.xml.

my Scurrent config = $past_xml_config;
$current_config =~ s/$/honeypot/s;
Scurrent config = join $current_config, time());
Scurrentconfig =~ s/$A.xml/s;
copy("$honeypot_xml","$current_config") or die "Copying honeypot.xml failed:

$!";
}

sub db_query_dhcp_register
{ my Sm actarget = shift;

my Sdbh = shift;

my $mac_pattem = 'A\w{2}\:\w{2}\:\w{2}\:\w{2}\:\w{2}\:';
my Smac_pattem2 = ’\w{2}$';
my $new_mac = $mac_target, my $last_mac, my $mac_check = 0, my

$ran_num2 = int(rand(0xFFF));

while (Sm accheck 0)
{

$last_mac = $new_mac;
$last_mac =~ s/$mac_pattem//s;
my Sran_num2 = int(rand(0xFFF));
if (hex($ran_num2) % 2) {

if ($last_mac eq '00') {
Slastm ac = 'f f ;

}else {
Slastm ac = hex(Slastm ac) -1 ;
$last_mac = sprintf("%x", Slast mac);
if (hex(Slast mac) < 16){ Slast mac = ’O'.Slastmac;}

}
} else {

if (Slast mac eq 'ff){
Slastm ac = '00';

}else {
Slast mac - hex(Slast mac) + 1;
Slast mac = sprintf("%x", Slast mac);
if (hex(Slast mac) < 16){ Slast mac = ’O'.Slast mac;}

128

}
Snewjmac = $mac_target;
Snew m ac =~ s/$mac_pattera2/$last_mac/s;

Prepare and Execute DB Query
my $query - "select d h cp id , mac addr from dhcp where mac addr =

'Snew m ac' limit 1;";
my $select_stmt = $dbh->prepare($query);
$select_stmt->execute();
my $new_mac_temp = 0;
$select_stmt->bind_columns(\my $did, \my Smac);
while ($select_stmt->fetch()) {

S n ew m actem p = Smac;
}
$select_stmt->fmish;
if ($new_mac_temp eq 0) {$mac_check =1;}

}
return Snew mac;

I

Register IP address through DHCP
sub registerdhcp
{ my Sm actarget = shift;

my Sdbh = shift;

my $ran_num = int(rand(OxFFFFFFFF));

Prepare and Execute DB Query
my Squery = "select dhcp id, ip addr from dhcp ORDER BY dhcp id DESC

limit 1;";
my Sselect stmt = $dbh->prepare($query);
$select_stmt->execute();
my S dhcpid = 0;
$select_stmt->bind_columns(\my Sdid, \my Sip);
while ($select_stmt->fetch()) {

S dhcpjd = Sdid + 1;
}
$select_stmt->finish;

my Smac addr dhcp = db_query_dhcp_register($mac_target, Sdbh);
my Smac addr short = Smac addr dhcp;
Remove : from MAC address
for (split A:/, Smac addr short) {

}

129

S m acaddrsho rt =~ s/[\:]//;

Change MAC address o f ethemet interface to new MAC for honeypots
system 'ifconfig Sethinterface hw ether Smac addr dhcp';

#print "Opening socket\n";
my Shandle = IO::Socket::INET->new(Proto => 'udp',

timeout => "5",
Broadcast => 0,
PeerAddr => Sdhcpserver,
PeerPort => '67',
LocalPort => '68')

or die "Socket creation error: $@\n"; # yes, it uses $@ here

create DHCP Packet DISCOVER
my Sdiscover = Net::DHCP::Packet->new(

Chaddr => Smac addr short,
Xid => Sran num, # random xid
DHO_DHCP_MESSAGE_TYPE() => DHCPD1SC0VER());

Send DISCOVER packet
#print "\nSending DISCOVER to ".$dhcp_server.":67\n";
#print Sdiscover->toString();
$handle->send($discover->serialize())

or die "Error sending broadcast inform:$!\n";

my Snewmsg, my Spacket;
eval {

local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm 10;

Receive response
#print "\nWaiting for response from server\n";
$handle->recv($newmsg, 4096) or die("recv:$!");

alarm 0;
};
if ($@) {

print "The DHCP discover process could not finish.\n";
print "Please check DHCP settings in config table and restart program.\n";
system "killall pOf';
system "killall tcpdump";
system "killall nmap";

}

130

system "killall xprobe2";
system "kill $p0f_pid";
system "kill $tcp_pid";
system "kill $act_pid";
sleep 1;
exit;
timed out

}else {
Spacket = Net::DHCP::Packet->new($newmsg);
#print "Got response\n";
#print $packet->toString();
didn't

}

Create DHCP Packet REQUEST
my Srequest = Net:: DHCP ::Packet->new(

Chaddr => Smac addr short,
Xid => $ran_num, # random xid
DHO_DHCP_MESSAGE_TYPE() => DHCPREQUEST(),

DHO_DHCP_SERVER_IDENTIFIER()=> Sdhcp server,
DHO DHCP_REQUESTED_ADDRESS() => $packet->yiaddr());

Send REQUEST packet
#print "\nSending REQUEST to ".$dhcp_server.":67\n";
#print $request->toString();
$handle->send($request->serialize())

or die "Error sending:$!\n";

eval {
local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm 10;

Receive response
#print "\nWaiting for response from server\n";
$handle->recv($newmsg, 4096) or die("recv:$!");

alarm 0;
};
if ($@) {

print "The DHCP discover process could not finish.\n";
print "Please check DHCP settings in config table and restart program.\n";
system "killall pOf';
system "killall tcpdump";
system "killall nmap";

131

system "killall xprobe2";
system "kill $pOf_pid";
system "kill $tcp_pid";
system "kill $act_pid";
sleep 1;
exit;
timed out

}else {
Spacket = Net::DHCP::Packet->new($newmsg);
#print "Got response\n";
#print $packet->toString();
didn't

}

my $ip_addr_dhcp = $packet->yiaddr();
my Sleasetim e = Spacket-

>getOptionValue(DHO_DHCP_R£NEWAL_TIME());

Close IO::Socket::INET connection
close Shandle;

Change MAC address of ethemet interface to original MAC address
system 'ifconfig $eth_interface hw ether $my_mac';

db_insert_dhcp_register($insert_dhcp_register, S ip ad d rd h cp , S m acaddrdhcp ,
Slease time, $dhcp_id, Sdbh);

my @n;
$n[0] = $ip_addr_dhcp;
$n[l] — S m acaddrdhcp ;
return @n;

}

Insert information from registering IP address through DHCP
sub db_insert_dhcp_register
{ my S insertdhcpregister = shift;

my Sip addr dhcp = shift;
my $mac_addr_dhcp = shift;
my Slease time = shift;
my $dhcp_id = shift;
my Sdbh = shift;

my Stime = time();
my $renewal_time = Stime + Sleasetim e;

132

finalize the insert statement
$insert_dhcp_register->bind_param(1, $dhcp_id); # refers to the first ? in the

query
$insert_dhcp_register->bind_param(2, S ip ad d rd h cp); # refers to the second ?

in the query
$insert_dhcp_register->bind_param(3, uc($mac_addr_dhcp)); # refers to the third

? in the query
$insert_dhcp_register->bind_param(4, Sleasetim e);

in the query
$insert_dhcp_register->bind_param(5, $renewal_time);

in the query
my Sdatecreated = date_time();
$insert_dhcp_register->bind_param(6, Sdate created);

in the query
$insert_dhcp_register->bind_param(7, $date_created);

? in the query
my Stime = time();
$insert_dhcp_register->bind_param(8, Stime);

in the query

$insert_dhcp_register->execute(); # excute the SQL statement

Find IP address to renew through DHCP
sub db query renew dhcp
{ my Sdbh = shift;

my Stime = time();

Prepare and Execute DB Query
my Squery = "select ip addr, mac addr, leasetim eseconds,

renewal tstamp time from dhcp where renewal_tstamp_time < Stime limit 1;";
my Sselectstm t = $dbh->prepare($query);
$ select_stmt->execute();
$select_stmt->bind_columns(\my Sdip, \my Sdmac, \my Sits, \my Srett);
while ($select_stmt->fetch()) {

if ((Sits + Srett) > Stime) {renew_dhcp($dip, Sdmac, Sdbh);}
}
$select_stmt->finish;

}

Renew IP address through DHCP
sub renew dhcp
{ my S ip ad d rd h cp = shift;

refers to the fourth ?

refers to the fifth ?

refers to the sixth ?

refers to the seventh

refers to the eighth ?

133

my Smac addr dhcp = shift;
my Sdbh = shift;

my Srannum = int(rand(OxFFFFFFFF));

my S m acaddrsho rt = S m acaddrdhcp ;
Remove : from MAC address
for (split A:/, $mac_addr_short) {

S m acaddrsho rt =~ s/[\:]//;
}

Change MAC address o f ethemet interface to new MAC for honeypots
system 'ifconfig Seth interface hw ether S m acad d rd h cp ';

#print "Opening socket\n";
my Shandle = IO::Socket::INET->new(Proto => ’udp’,

Broadcast => 0,
PeerAddr => Sdhcpserver,
PeerPort => '67',
LocalPort => ’68’)

or die "Socket creation error: $@\n"; # yes, it uses $@ here

Create DHCP Packet RENEW
my Srenew = Net::DHCP::Packet->new(

Ciaddr => S ip ad d rd h cp ,
Chaddr => $mac_addr_short,
Xid => Sran num, # random xid
DHO_DHCP_MESSAGE_TYPE() => DHCPREQUEST(),

DHO_DHCP_SERVER_IDENTIFIER()=> $dhcp_server,
DHO_DHCP_REQUESTED_ADDRESS() => $ip_addr_dhcp);

Send RENEW packet
#print "\nSending RENEW to ",$dhcp_server.":67\n";
#print Srenew->toString();
$handle->send($renew->serialize())

or die "Error sending: $!\n";

my Snewmsg, my Spacket;
eval {

local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
alarm 10;

Receive response
#print "\nWaiting for response from serverVn";

134

$handle->recv($newmsg, 4096) or die("recv:$!");

alarm 0;
};
if ($@) {

print "The DHCP discover process could not fmish.\n";
print "Please check DHCP settings in config table and restart program.\n";
system "killall pOf
system "killall tcpdump";
system "killall nmap";
system "killall xprobe2";
system "kill $p0f_pid";
system "kill $tcp_pid";
system "kill $act_pid";
sleep 1;
exit;
timed out

}else {
Spacket = Net::DHCP::Packet->new($newmsg);
#print "Got response\n";
#print $packet->toString();
didn't

}

my S ipaddr = $packet->yiaddr();
my Slease time = Spacket-

>getOptionValue(DHO_DHCP_RENEWAL_TIME());

Close IO::Socket::INET connection
close Shandle;

Change MAC address of ethemet interface to original MAC address
system 'ifconfig Seth interface hw ether Sm ym ac ';

db_update_dhcp_renew($ip_addr_dhcp, Smac addr dhcp, Slease time, Sdbh);
}

Update information from renewing IP address through DHCP
sub d b u p d a ted h cp ren ew
{ my Sip addr dhcp = shift;

my Smac addr dhcp = shift;
my Slease time = shift;
my Sdbh = shift;

135

my Slasttstam p = datetim eQ ;
my Stime = time();
my Srenewaltime = Stime + $lease_time;

my Squery = "update dhcp set lease tim eseconds = 'Slease time',
renewal tstamp time = '$renewal_time', last_tstamp = 'Slasttstam p', last tstamp time =
'Stime' where ip addr = 'Sip addr dhcp' AND mac addr = '$mac_addr_dhcp';";

my $update_stmt = $dbh->prepare($query);
$update_stmt->execute();

it

Find IP address to release through DHCP
sub d b q u e ry re leased h cp
{ my Sdbh = shift;

my Snum rows;

do
{

Prepare and Execute DB Query
my Squery = "select * from dhcp;";
my Sselectstm t = $dbh->prepare($query);
$num_rows = $select_stmt->execute();
$select_stmt->fmish;

Prepare and Execute DB Query
my Squery = "select ip addr, mac addr from dhcp limit 1;";
my Sselect stmt = $dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(\my Sdip, \my Sdmac);
while ($select_stmt->fetch()) {

release_dhcp($dip, Sdmac, Sdbh);
}
$select_stmt->fmish;

}while($num_rows > 0);
}

Release IP address through DHCP
sub releasedhcp
{ my Sip_addr_dhcp = shift;

my Smac addr dhcp = shift;
my Sdbh = shift;

my Sran num = int(rand(OxFFFFFFFF));

136

my Smac addr short = Smac addr dhcp;
Remove : from MAC address
for (split A:/, $mac_addr_short) {

$mac_addr_short =~ s/[\:]//;
}

Change MAC address of ethemet interface to new MAC for honeypots
system 'ifconfig Sethinterface hw ether Smac addr dhcp';

#print "Opening socket\n";
my Shandle = 10:: Socket ::INET->new(Proto => 'udp',

Broadcast => 0,
PeerAddr => Sdhcpserver,
PeerPort => '67',
LocalPort => '68')

or die "Socket creation error: $@\n"; # yes, it uses $@ here

Create DHCP Packet RELEASE
my Srelease = Net::DHCP::Packet->new(

Ciaddr => Sip addr dhcp,
Chaddr => Smac addr short,
Xid — $ran num, H random xid
Flags => 0x8000, # ask for broadcast answer

DHO_DHCP_MESSAGE_TYPE() => DHCPRELEASEQ,
DHO_DHCP_SERVER_IDENTIFIER()=> Sdhcp server);

Send RELEASE packet
#print "\nSending RELEASE to ".$dhcp_server.":67\n";
#print $release->toString();
$handle->send($release->serialize())

or die "Error sending:$!\n";

Close IO::Socket::INET connection
close Shandle;

Change MAC address of ethemet interface to original MAC address
system 'ifconfig Seth interface hw ether Smy mac';

db_delete_dhcp_release($ip_addr_dhcp, Smac addr dhcp, Sdbh);

Delete information from releasing IP address through DHCP
sub d b d e le ted h cp re lease
{ my $ip_addr_dhcp = shift;

137

my $mac_addr_dhcp = shift;
my Sdbh = shift;

my Squery = "delete from dhcp where ip addr = 'Sip addr dhcp' AND mac addr
= 'Sm acaddrdhcp ';";

my Sdeletestm t = $dbh->prepare($query);
$delete_stmt->execute();

}

Insert information for the LIHoneypot
sub db_insert_lih_hih_link
{ my S in se rtlih in fo = shift;

my $os_lih shift;
my $ip_addr_lih = shift;
my S m acad d rlih = shift;
my Sdbh = shift;

my Sosh ih = "unknown";
my S ip a d d rh ih = "unknown";
my $mac_addr_hih = "unknown";
my Slocationhih = "unknown";
my Sstatehih = "unknown";

finalize the insert statement
$insert_lih_info->bind_param(1, $os_lih); # refers to the first ? in the query
$insert_lih_info->bind_param(2, Sip addr lih); # refers to the second ? in the

query
$insert_lih_info->bind_param(3, uc(Smac addr lih)); # refers to the third ? in the

query

$insert_lih_info->bind_param(4, Sos hih); # refers to the fourth ? in the
query

$insert_lih_info->bind_param(5, Sip addr hih); # refers to the fifth ? in the
query

$insert_lih_info->bind_param(6, Smac addr hih); # refers to the sixth ? in the
query

$insert_lih_info->bindjparam(7, Slocation hih); # refers to the seventh ? in
the query

$insert_lih_info->bind_param(8, Sstate hih); # refers to the eighth ? in the
query

my $date_created = date_time();
$insert_lih_info->bind_param(9, Sdate created); # refers to the ninth ? in the

query

138

$insert_lih_info->bind_param(10, Sdate created); # refers to the tenth ? in the
query

$insert_lih_info->execute(); # excute the SQL statement
}

sub date time
{ my @months = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

my @weekDays = qw(Sun Mon Tue Wed Thu Fri Sat Sun);
(my Ssecond, my Sminute, my Shour, my SdayOfMonth, my Smonth, my

SyearOffset, my SdayOfWeek, my SdayOfYear, my SdaylightSavings) = localtime();
my Syear = 1900 + SyearOffset;
my Sfixedm onth = 1 + Smonth;
#my StheTime = "SweekDays[$dayOfWeek] $months[$month] SdayOfMonth

$hour:$minute:$second Syear";
my StheTime = "Syear-Sfixed month-SdayOfMonth Shour:Sminute:Ssecond";

}

139

POf_mysql.pl

#! /usr/bin/perl
#pOf_mysql.pl by Chris Hecker, 2007

#This version currently works with pOf v2.0.8

use strict;
use Getopt::Long;
use vars qw(%G);
use DBI;

#Global Variables
my $my_ip, my $machine_id, my $mac_addr, my $ firewall, my Slookuplink,
my $distance_hops, my $uptime_hours, my $uptime_seconds, my $primary_os;

GetOptions('i=s' =>\$G{i}); # Ethernet interface utilized to capture packets
#

if($G{i} e q ") {print "Please use the following option \"-i ethemet interface\"\n"; exit(0);}

Find ip address of ethemet interface
$my_ip = Vsbin/ifconfig $G{i} |grep inet |cut -d " -f 12|cut -d V -f 2 '; chomp $my_ip;
chomp $my_ip;

Connect to Database
my $dbh= connect_to_db();

prepare the insert statement just once, the actual values will replace the ? later
my $insert_pOf = $dbh->prepare("INSERT INTO pOf (ip addr, mac addr, primary os,
firewall, lookup link, uptime seconds, distance hops, date created, last tstamp,
last tstamp time) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?);");

db_threads($dbh);

open(P0FIN, "pOf -i $G{i} -p -11") || die "pOf could not be opened";
while (<P0FIN>) {

my Smachine id = 0;
my $input_p0f = <P0FIN>;
my ©arguments = split (As+/, $input_p0f);

my $ip_addr = @arguments[0];

140

my Spattem = '\:\d {1,5} S';
S ipadd r =~ s/$pattem//s;
my $mac_pattem = '(([0-9a-fA-F][0-9a-fA-F]:){5}([0-9a-fA-F][0-9a-fA-F]))';
my @arping = 'arping -f $ip_addr>&l';
my Sline = @arping[l];
Sline =~ /$mac_pattem/; chop Sline; my Sm acaddr = $1;

if($input_pOf =~m/(firewall!)/i){$firewall = ’yes1;} else {Sfirewall =
’no/unknown’;}

if($input_pOf =~ m/link: (.*)\)/i){$lookup_link = $1;} else {$lookup_link =
’unknown’;}

if($input_pOf =~ m/up: (.*)hrs/i && Sfirewall eq ’no/unknown’)
{

Suptimejhours = $1; chop Suptimehours;
$uptime_seconds = Suptime hours * 3600;
$input_p0f =~ mA- (.*) \(up:/i;
Sprim aryos = $ 1;

}elsif (Sinput_pOf =~ m/up: (.*)hrs/i)
{

$uptime_hours = $1; chop $uptime_hours;
$uptime_seconds = Suptime hours * 3600;
$input_p0f =~ m/V (.*) \(firewall/i;
$primary_os = $ 1;

}else{
$uptime_seconds = ’unknown’;
$input_p0f =~ m/V (.*) \-\>/i;
Sprim aryos = $1;

}
if($input_p0f =~ m/distance (.*)\,/i){$distance_hops = $1;} else {$distance_hops

= ’unknown’;}

$machine_id = db_query_p0f($ip_addr, Smac addr, Sprimary os, Sdbh);

if (Sip addr eq Smy ip) {
}else{

if (Sm achineid ==0){
db_insert_p0f($insert_p0f, Sip addr, Smac addr, Sprimary os,
Sfirewall, $lookup_link, $uptime_seconds, $distance_hops, Sdbh);

}else{
my Slast tstamp = date_time();
my Stime = time();
my Squery = "update pOf set last tstamp = ’Slast tstamp’,

la s tts tam p tim e = ’Stime’ where m achineid = ’Sm achineid’;";
my Supdatestm t = $dbh->prepare($query);

141

$update_stmt->execute();
}

}
}

Disconnect from Database
$dbh->disconnect();
print "POf disconnected from Database.\n";

exit;

connect to the database
sub connect to db
{ # Database Information

my $db="honeypot_seanner";
my $userid="root";
my Spasswd-'rootpass";
my $connectionInfo="dbi :mysql: $db";

Make Connection to Database
my Sdbh = DBl->connect($connectionlnfo,$userid,Spasswd, {

RaiseError => 1,
AutoCommit => 0
}) || die "Database connection not made: $DBI::errstr";

retum(Sdbh);

sub db_threads
{ my Sdbh = shift;

my Sthrnam e = "pOfscan";
my $thr_pid = $$;
my Slast tstamp = date_time();

my Squery = "update threads set thr_pid = '$thr_pid', last tstamp = '$last_tstamp'
where thr_name = 'Sthr name';";

my Supdatestm t = $dbh->prepare($query);
$update_stmt->execute();

sub db_query_pOf
{ my $ip_addr = shift;

my Sm acaddr = shift;
my Sprimary os = shift;

142

my Sdbh = shift;

Prepare and Execute DB Query
my Squery = "select machine id, last tstamp from pOf where ip_addr = 'S ipaddr'

AND mac addr = 'Sm acaddr' AND primary os = 'Sprim aryos';";
my Sselect stmt = $dbh->prepare(Squery);
$select_stmt->execute();
$select_stmt->bind_columns(\my S m id , \my Sits);
while ($select_stmt->fetch()) {
Sm achineid = S m id ;
}
$select_stmt->fmish;

return Smachine id;
}

sub db_insert_pOf
{ my $insert_pOf= shift;

my Sip addr = shift;
my Smac addr = shift;
my Sprimary os = shift;
my Sfirewall = shift;
my Slookuplink = shift;
my Suptimeseconds = shift;
my $distance_hops = shift;
my Sdbh = shift;

finalize the insert statement
$insert_pOf->bind_param(1, Sip addr); # refers to the first ? in the query
$insert_pOf->bind_param(2, $mac_addr); # refers to the second ? in the query
$insert_pOf->bind_param(3, Sprimary os); # refers to the third ? in the query
$insert_pOf->bind__param(4, Sfirewall); # refers to the fourth ? in the

query
$insert_pOf->bind_param(5, $lookup_link); # refers to the fifth ? in the

query
$insert_pOf->bind_param(6, Suptime seconds); # refers to the sixth ? in the

query
$insert_pOf->bind_param(7, Sdistance hops); # refers to the seventh ? in

the query
my $date_created = date_time();
Sinsert_pOf->bind_param(8, Sdate created); # refers to the eighth ? in the

query
$insert_pOf->bind_param(9, Sdate created); # refers to the ninth ? in the

query

143

my Stime = time();
Sinsert_pOf->bind_param(10, Stime); # refers to the tenth ? in the

query

SinsertjpOf->execute(); # excute the SQL statement
}

sub date time
{ my @months = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

my @weekDays = qw(Sun Mon Tue Wed Thu Fri Sat Sun);
(my Ssecond, my Sminute, my Shour, my SdayOfMonth, my Smonth, my

SyearOffset, my SdayOfWeek, my SdayOfYear, my SdaylightSavings) = localtimeQ;
my Syear = 1900 + SyearOffset;
my Sfixedm onth = 1 + Smonth;
#my StheTime = "SweekDays[$dayOfWeek] $months[$month] SdayOfMonth

$hour:$minute:$second Syear";
my StheTime = "Syear-Sfixed month-SdayOfMonth $hour:$minute:$second";

}

144

Tcpdump_mysql.pl

#!/usr/bin/perl
#tcpdump_mysql.pl by Chris Hecker, 2007-2011

use strict;
use Getopt::Long;
use vars qw(%G);
use DBI;

#Global Variables
my $machine_id, my Sport, my Sreply, my Sselect stmt, my Snoise, my $nmap_exe, my
Sxprobe2_xml,
my Sprotocol, my Sport num, my Ssyn ack, my Srst ack, my $udp_reply;

GetOptions('ip=s' =>\$G{ip}, # IP address(es) from which to gather
infomration #

'i=s' =>\$G{i}); # Ethemet interface utilized to capture packets
#

if($G{ip} eq " || $G{i} eq ") {print "Please use the following option \"-ip
XXX.XXX.XXX.XXX (see Y'man tcpdump\" for more information) -i ethemet
interface\"\n"; exit(O);}

Find ip address of ethemet interface
my Smy_ip = Vsbin/ifconfig $G{i} |grep inet |cut - d ' ' -f 12|cut -d -f 2 '; chomp
Sm yip; chomp Sm yip ;

Connect to Database
my $dbh= connect_to_db();

prepare the insert statement just once, the actual values will replace the ? later
my Sinsert_tcpdump_ports= $dbh->prepare("INSERT INTO tcpdump_ports (ip addr,
mac addr, port num, protocol, service, extra info, syn ack, rst ack, udp reply,
datecreated, last_tstamp, last tstamp time) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);");
my Sinsert_tcpdump_icmp= $dbh->prepare("INSERT INTO tcpdum picm p (ip addr,
mac addr, icmp reply, date_created, last tstamp, last tstamp time) VALUES (?, ?, ?, ?,
?, ?);");
my $insert_queue= $dbh->prepare("INSERT INTO scan queue (ip addr, mac addr,
date created, last_tstamp_time) VALUES (?, ?, ?, ?);");

dbthreads(Sdbh);

145

select ((select (my $input_tcp), $|=1) [0]);
select ((select (my Stcpfile), $|=1) [0]);

open (Stcpfile, ">/home/user/Documents/phasel_hs/tcpdump_".time().M" || die "The
TCPDUMP file could not be opened");
print Stcpfile "\##### tcpdump File ######\n";
print Stcpfile "\##### " .localtime()." #####\n\n\n";
print Stcpfile
"\##\n"

open(TCPIN, "tcpdump -nne -i $G{i} src net $G{ip} and not src S m y ip |") || die
"TCPDUMP could not be opened";
while (<TCPIN>) {

Sm achineid = 0;
Sinputtcp = <TCPIN>;
my ©arguments = split (/\s+/, Sinput tcp);
if (@arguments[5] eq "IPv4"){

my $mac_addr = @arguments[lj;
my @array = split (A./, @arguments[9]);
my Sip addr = join ('.', @array[0], @array[l], @array[2], @array[3]);
if ($ip_addr ne Smy ip) {

db_active_scan_queue($insert_queue, $ip_addr, Smac addr,
Sdbh);

if($input_tcp =~ mAs+(ICMP)\s+(echo)\s+(reply,)\s+/){
my $icmp_reply = "Y";
db_insert_tcpdump_icmp($insert_tcpdump_icmp,

Sip addr, Smac addr, $icmp_reply, Sdbh, Stcpfile, Sinput tcp);
}else{

if($input_tcp =~ mAs+(UDP)\s+/) {
Sprotocol = 'udp';
$port_num = @array[4];
Ssynack = "N"; Srst ack = "N";$udp_reply = "Y";
db_query_services(Sinsert_tcpdump_ports,

Sip addr, Smac addr, $port_num, Sprotocol, Ssyn ack, Srst ack, Sudp reply, Sdbh,
Stcpfile, Sinput tcp);

}elsif($input_tcp =~ mA[(S|R)\.\]/){
if($input_tcp =~ mAs+(ack)\s+/) {

Sprotocol = 'tcp';
Sport_num - @array[4];
if($input_tcp =~ mA[R\.\]/){

146

Ssynack = "N"; S rstack = "Y";
$udp_reply = "N";

}else{
Ssyn ack = "Y"; Srst ack = "N";

$udp_reply - "N";
}
db_query_services($insert_tcpdump_ports,

$ip_addr, $mac_addr, $port_num, Sprotocol, $syn_ack, $rst_ack, Sudp reply, Sdbh,
Stcpfile, Sinput tcp);

}
}

}
}

}

print Stcpfile
"\n\n##
\n";
close(Stcpfile);

Disconnect from Database
$dbh->disconnect();
print "TCPdump disconnected from Database.\n";

exit;

connect to the database
sub connect to db
{ # Database Information

my $db-'honeypot_scanner";
my Suserid-'root";
my $passwd="rootpass";
my Sconnecti on lnfo-'db i: mysq 1: Sdb";

Make Connection to Database
my Sdbh = DBI->connect($connectionInfo,$userid,Spasswd, {

RaiseError => 1,
AutoCommit => 0
}) || die "Database connection not made: $DBI::errstr";

retum(Sdbh);
}

sub db threads

147

{ my Sdbh = shift;

my Sthr name = "tcpdumpscan";
my $thr_pid = $$;
my Slast tstamp = date_time();

my Squery = "update threads set thr_pid - '$thr_pid', lasttstam p = 'Slast tstamp'
where th rnam e = 'Sthrnam e';";

my Supdatestm t = $dbh->prepare(Squery);
$update_stmt->execute();

}

sub d b in serttcp d u m p icm p
{ my $di_insert_tcpdump_icmp = shift;

my $di_ip_addr = shift;
my S d im ac a d d r = shift;
my S d iicm p rep ly = shift;
my Sdidbh = shift;
my Sditcpfile = shift;
my S d iin p u ttcp = shift;

Prepare and Execute DB Query to see if information has already been added
my Squery = "select date created, icmp_reply from tcpdump_icmp where ip addr

= 'S d iip a d d r ' AND mac addr = '$di_mac_addr' AND icm preply = 'Sdi icmp reply';";
$select_stmt = $di_dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(\my Sdc, \my $r);
while ($select_stmt->fetch()) {
Sreply = $r;
}
$select_stmt->finish;
if (Sreply eq $di_icmp_reply)
{

my Slast tstamp = date_time();
my Stime = time();
my Squery = "update tcpdump icmp set last tstamp = 'Slast tstamp',

last tstamp time = 'Stime' where ip_addr = 'Sdi ip addr' AND mac addr =
'Sdi mac addr' AND icmp reply = 'Sdi icmp reply';";

my $update_stmt = $di_dbh->prepare($query);
$update_stmt->execute();

}else{

print Sdi input tcp;
print Sdi tcpfile "Sdi input tcp";

148

finalize the insert statement
$di_insert_tcpdump_icmp->bind_param(1, S d iip a d d r) ; # refers to the

first ? in the query
$di_insert_tcpdump_icmp->bind_param(2, uc($di_mac_addr)); # refers to

the second ? in the query
$di_insert_tcpdump_icmp->bind_param(3, $di_icmp_reply); # refers to

the third ? in the query
my Sdate created = date_time();
$di_insert_tcpdump_icmp->bind_param(4, Sdate created); # refers to the

fourth ? in the query
$di_insert_tcpdump_icmp->bind_param(5, Sdate created); # refers to the

fifth ? in the query
my Stime = time();
Sdi_insert_tcpdump_icmp->bind_param(6, Stime); # refers to the

sixth ? in the query

$di_insert_tcpdump_icmp->execute(); # excute the SQL statement
}

}

sub db query services
{ my $di_insert_tcpdump_ports = shift;

my S d iip a d d r = shift;
my S d im a c a d d r = shift;
my $di_port_num = shift;
my $di_protocol = shift;
my S d is y n a c k = shift;
my $di_rst_ack = shift;
my S d iu d p rep ly = shift;
my $di_dbh = shift;
my $di_tcpfile = shift;
my Sdi input tcp = shift;

my $service=";
my $extra_info=";

Prepare and Execute DB Query
my Squery = "select service, extra info from nmap_services where port num =

'$di_port_num' AND protocol = 'Sdijrotocol';";
$select_stmt - $di_dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(\my $s, \my Sei);
while ($select_stmt->fetch()) {

149

Sservice = $s;
$extra_info = $ei;
}
$select_stmt->finish;

if (Sservice n e "){
if (Sextrainfo eq "){$extra_info = 'unknown';}
Prepare and Execute DB Query to see if information has already been

added
my Squery = "select date_created, port_num from tcpdump_ports where

ip addr = 'Sdi ip addr' AND mac addr = 'Sdi mac addr' AND p o rtn u m =
'$di_port_num' AND syn_ack = '$di_syn_ack' AND rst_ack = 'Sdi rst ack' AND
udprep ly = '$di_udp_reply';";

$select_stmt = $di_dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(\my Sdc, \my $p);
while ($select_stmt->fetch()) {
Sport - $p;
}
$select_stmt->fmish;
if (Sport == $di_port_num)
{

my Slast tstamp = date_time();
my Stime = time();
my Squery = "update tcpdump_ports set last tstamp =

'Slast tstamp', last_tstamp_time = 'Stime' where ip addr = 'Sdi ip addr' AND mac addr
= 'Sdi mac addr' AND port_num = '$di_port_num' AND syn ack = 'Sdi syn ack' AND
rst_ack = '$di_rst_ack' AND udp_reply = '$di_udp_reply';";

my Supdatestm t = $di_dbh->prepare($query);
$update_stmt->execute();

}else{

print Sdi input tcp;
print "The ip addr: Sdi ip addr, protocol: $di_protocol, port num: $di_port_num,
service: $service\n";
print $di_tcpfile $di_input_tcp;
print $di_tcpfile "The ip addr: Sdi ip addr, protocol: Sdijprotocol, port_num:
$di_port_num, service: $service\n";

finalize the insert statement
$di_insert_tcpdump_ports->bind_param(1, Sdi ip addr); # refers

to the first ? in the query
$di_insert_tcpdump_ports->bind_param(2, uc(Sdi mac addr)); #

refers to the second ? in the query

150

$di_insert_tcpdump_ports->bind_param(3, $di_port_num); #
refers to the third ? in the query

$di_insert_tcpdump__ports->bind_param(4, $di_protocol); # refers
to the fourth ? in the query

$di_insert_tcpdump_ports->bind_param(5, Sservice); #
refers to the fifth ? in the query

$di_insert_tcpdump__ports->bind_param(6, Sextra info); #
refers to the sixth ? in the query

$di_insert_tcpdump_ports->bind_param(7, $di_syn_ack); #
refers to the seventh ? in the query

$di_insert_tcpdump_ports->bind_param(8, Sdi rst ack); #
refers to the eighth ? in the query

$di_insert_tcpdump_ports->bind_param(9, Sdi udp reply); #
refers to the ninth ? in the query

my $date_created = date_time();
$di_insert_tcpdump_ports->bind_param(10, Sdate created); #

refers to the tenth ? in the query
Sdi insert tcpdump_ports->bind_param(11, Sdate created); #

refers to the eleventh ? in the query
my Stime = time();
$di_insert_tcpdump_ports->bind_param(12, Stime);

refers to the twelfth ? in the query

$di_insert_tcpdump_ports->execute(); # excute the SQL
statement

}
}

}

sub d b a c tiv e sca n q u e u e
{ my $da_insert_queue = shift;

my $da_ip_addr = shift;
my S d a m a ca d d r = shift;
my $da_dbh = shift;

my Sscanid;

Prepare and Execute DB Query
my Squery = "select scan_id, ip addr from scan_queue where ip addr =

'$da_ip_addr' AND mac addr = 'Sda mac addr';";
$select_stmt = $da_dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(\my $s id, \my Sip);
while ($select_stmt->fetch()) {

151

S scanid = $s_id;
}
$select_stmt->fmish;

if (Sscan_id !=") {return;}
else{

finalize the insert statement
$da_insert_queue->bind_param(1, Sda ip addr); # refers to the first ?

in the query
$da_insert_queue->bind_param(2, S d am acad d r); # refers to the

second ? in the query
my Sdate created = date_time();
$da_insert_queue->bind_param(3, $date_created); # refers to the

third ? in the query
my Stime = time();
$da_insert_queue->bind_param(4, Stime); # refers to the

fourth ? in the query

$da_insert_queue->execute(); # excute the SQL statement
}

}

sub date time
{ my @months = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

my @weekDays = qw(Sun Mon Tue Wed Thu Fri Sat Sun);
(my Ssecond, my Sminute, my Shour, my SdayOfMonth, my Smonth, my

SyearOffset, my SdayOfWeek, my SdayOfYear, my SdaylightSavings) = localtime();
my Syear = 1900 + SyearOffset;
my Sfixedm onth = 1 + Smonth;
#my StheTime = "SweekDays[$dayOfWeek] Smonths[Smonth] SdayOfMonth

$hour:$minute:$second Syear";
my StheTime = "Syear-$fixed_month-$dayOfMonth $hour:$minute:$second";

}

152

Active_scanner.pl

#!/usr/bin/perl
#active_scanner.pl by Chris Hecker, 2008

use strict;
use Getopt::Long;
use vars qw(%G);
use DBI;

#Global Variables
my Sip addr, my Smac addr, my $select_stmt, my Snoise, my Shs time, my Snm apexe,
my Snm apxm l, my Sxprobe2_xml, my $scan_id;

#n, nexe, xxml and t are coming from honeypot_scanner.pl
GetOptions('n=s' =>\$G{n}, # Noise Level selector

#
'nexe=s' => \$G{nexe},# Nmap.exepath

#
'nxml=s' => \$G{nxml}, # Nmap output XML path

#
'xxml=s' => \$G{xxml}, # Xprobe2 output XML path

#
't=s' =>\$G{t}); # Time between active re-scans of known machines

(seconds) #

if($G{n} eq 'low' || $G{n} eq 'medium' || $G{n} eq 'medium-high' || $G{n} eq 'high')
{

Snoise = $G{n};
}else {print "A noise level must be selected, please use the following options \"-n (low ||
medium || medium-high || high)\"\n"; exit;}

if($G{nexe} eq " || $G{nxml} e q " || $G{xxml} e q ")
{ print "Please use the following options \"-nexe /nmap.exe path -nxml /nmap
output.xml path -xxml /xprobe2 output.xml path for active scanning programs\"\n";

exitQ;
}else {Snmap exe = $G{nexe}; $nmap_xml = $G{nxml}; Sxprobe2_xml = $G{xxml};}

if($G{t} eq ")
{ print "Please use the following option \"-t (time in seconds between re-scanning
machines)\"\n";

exitQ;

153

}else {$hs_time = $G{t};}

print "ActiveScanner - active scanning utility\n";

Connect to Database
my $dbh= connect_to_db();

dbthreads(Sdbh);

while (1){

db_active_scan_queue($dbh);

if (Sip addr !=")
{

if (Snoise eq 'low') {
xprobe2_scanl ($ip_addr, $mac_addr);

}
elsif (Snoise eq 'medium')!

xprobe2_scan2($ip_addr, $mac_addr);
}
elsif (Snoise eq 'medium-high') {

nmap_scan($ip_addr, Smac addr);
}
elsif (Snoise eq 'high') {

nmap_scan($ip_addr, $mac_addr);
xprobe2_scan2($ip_addr, $mac_addr);

}
}

}

Disconnect from Database
$dbh->disconnect();
print "Active_scan disconnected from Database.\n";

exit;

connect to the database
sub connect to db
{ # Database Information

my $db="honeypot_scanner";
my $userid="root";
my $passwd="rootpass";
my $connection!nfo="dbi :mysql: Sdb";

154

Make Connection to Database
my Sdbh = DBI->connect($connectionInfo,$userid,Spasswd, {

RaiseError=> 1,
AutoCommit => 0
}) || die "Database connection not made: $DBI::errstr";

retum(Sdbh);

sub db_threads
{ my Sdbh = shift;

my Sthr name = "active scan";
my $thr_pid = $$;
my Slast tstamp = date_time();

my Squery = "update threads set thrjpid = '$thr_pid', last_tstamp = 'Slast tstamp'
where th rnam e = 'Sthrnam e';";

my Supdatestm t = $dbh->prepare($query);
$update_stmt->execute();

}

sub d b a c tiv e sc a n q u e u e
{ my Sdbh = shift;

Prepare and Execute DB Query
my Squery = "select scan id, ip addr, mac addr from scan queue limit 1;";
Sselectstm t = $dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(\my Ss id, \my Sip, \my Smac);
while ($select_stmt->fetch()) {

S scan id = S s id ;
S ipadd r = Sip;
$mac_addr = Smac;

}
$select_stmt->fmish;

my Squery = "delete from scan_queue where scan_id = '$scan_id';";
my Sdelete stmt = $dbh->prepare($query);
$delete_stmt->execute();

}

sub xprobe2_scanl
{ my Sip addr = shift;

155

my $mac_addr = shift;
system "peri xprobe2_mysql.pl -mip Sip addr -mac Smac addr -t S hstim e -o

$xprobe2_xml -ip Sip addr";
}

sub xprobe2_scan2
{ my $ip_addr = shift;

my Smac addr = shift;
system "peri xprobe2_mysql.pl -mip $ip_addr -mac Smac addr -t Shs time -o

$xprobe2_xml -p 1 -ip Sip addr";
}

sub nm apscan
{ my $ip_addr = shift;

my Smac addr = shift;
system "peri nmap_mysql.pl -mip Sip addr -mac Smac addr -t Shs time -o

Snmap xml -nmap Snmap exe -ip Sip addr";
}

sub date_time
{ my @months = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

my @weekDays = qw(Sun Mon Tue Wed Thu Fri Sat Sun);
(my Ssecond, my Sminute, my Shour, my SdayOfMonth, my Smonth, my

SyearOffset, my SdayOfWeek, my SdayOfYear, my SdaylightSavings) = localtime();
my Syear = 1900 + SyearOffset;
my $fixed_month = 1 + Smonth;
#my StheTime = "SweekDays[$dayOfWeek] Smonths[Smonth] SdayOfMonth

$hour:$minute:$second Syear";
my StheTime = "Syear-Sfixed month-SdayOfMonth $hour:$minute:$second";

}

156

Nmap_mysql.pl

#! /usr/bin/perl
#nmap_mysql.pl by Chris Hecker, 2007
#modified scan.pl written by Anthony G. Persaud

#This version currently works with nmap v5.51

use strict;
use Getopt::Long;
use vars qw(%G);
use DB1;
use XML::Twig;

#Global Variables
my Sselectstm t, my $state, my $machine_id=0, my $as_ip_addr, my $as_mac_addr, my
Shstim e;

#t, mip and mac are coming from active_scanner.pl but are not necessary
GetOptions('nmap=s' => \$G{nmap}, # Nmap.exe path

#
'o=s' =>\$G{o}, # Nmap output XML path

#
'ip=s' => \$G {ip}, # IP address that Nmap will be

scanning #
't—s’ =>\$G{t}, # Time between active re-scans of

known machines (seconds) #
'mip=s' => \$G{mip}, # IP address passed from active

scanner (scan queue) #
'm ac=s'-> \$G{mac}); # MAC address passed from

active scanner (scan queue) #

if($G{nmap} eq " || $G{o} eq " || SG{ip} eq ")
{print "Please use the following options \"-nmap /nmap.exe path -o /nmap.xml

(path) -ip XXX.XXX.XXX.XXXYV'; exit(0);}

if($G{mip} e q " || $G{mac} e q " || $G{t} eq "){$as_ip_addr = "unknown";}
else {$as_ip_addr = $G{mip}; $as_mac_addr = $G{mac}; Shs time = $G{t};}

my $dbh= connect_to_db(); # Connect to
Database

157

if ($as_ip_addr ne 'unknown') {db_query_machines($as_ip_addr, $as_mac_addr,
Shstim e, Sdbh);}

print "\nNmap_mysql.pl - (Nmap active scanner)\n",('-'x80),"\n\n";
print "UsingNmap exe (".$G{nmap}.") for TCP/UDP scans on ".$G{ip}." then inserts
data into mysql database.\n\n";

prepare the insert statement just once, the actual values will replace the ? later
my $insert_machines= $dbh->prepare("INSERT INTO nmap machines (ip_addr, state,
mac addr, mac vendor, prim aryos, distance hops, date created, last tstamp,
last_tstamp_time) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?);");
my $insert_machines_down= $dbh->prepare("INSERT INTO nmap machines (ip addr,
state, mac_addr, date_created, last_tstamp, last tstamp time) VALUES (?, ?, ?, ?, ?,
?);");
my $insert_ports= $dbh->prepare("INSERT INTO nmap_ports (machine_id, port num,
protocol, service, product) VALUES (?, ?, ?, ?, ?);");

system "nmap -sT -sU -T4 -sV -O -oX $G{o} --host-timeout 180 $G{ip}";
print "\n";

my Stwig 0= new XML::Twig(twig_handlers => { nmaprun =>
\&insert_row_machinesl});
$twig_0->parsefile($G{o});
$twig_0->purge; # delete the
twig so far

my $twig_l= new XML::Twig(tw ighandlers => { host => \&insert_row_machines2});
$twig_ 1 ->parsefile($G {o});
$twig_l->purge; # delete the
twig so far

my $twig_2= new XML::Twig(twig handlers => { port => \&insert_row_ports});
$twig_2->parsefile($G{o});
$twig_2->purge; # delete the
twig so far

$dbh->disconnect(); # Disconnect
from Database
exit;

connect to the database
sub connect_to_db
{ # Database Information

my $db="honeypot_scanner";

158

my $userid="root";
my Spasswd-'rootpass";
my $connectionInfo="dbi :mysql: $db";

Make Connection to Database
my Sdbh = DBI->connect($connectionInfo,$userid,$passwd, {

RaiseError => 1,
AutoCommit => 0
}) || die "Database connection not made: $DBI::errstr";

retum(Sdbh);

sub insert_row_machinesl
{ my ($twig_0, $ename)=

if ($ename->descendants('host') == 0)
{

my $ip_addr= $ename->first_child('address')->att('addr');
$state= $ename->first_child('status')->att('state');
my $mac_addr= $ename->first_child('address')->next_sibling('address')-

>att('addr');
if ($mac_addr = 0) {

my $mac_pattem = '(([0-9a-fA-F][0-9a-fA-F];){5}([0-9a-fA-F][0-
9a-fA-F]))';

my @arping = 'arping -f $ip_addr>&l';
my Sline = @arping[l];
Sline =~ /$mac_pattem/; chop Sline;
Sm acaddr = $ 1;

}
my Sdate created = date_time();
my Stime = time();

if($state eq ’up’) {
finalize the insert statement
$insert_machines_down->bind__param(l,$ip_addr); #

refers to the first ? in the query
$insert_machines_down->bind_param(2, Sstate); #

refers to the second ? in the query
$insert_machines_down->bind_param(3, Smac addr); #

refers to the third ? in the query
$insert_machines_down->bind_param(4, $date_created); #

refers to the fourth ? in the query
$insert_machines_down->bind_param(5, Sdate created); #

refers to the fifth ? in the query

159

$insert_machines_down->bind_param(6, Stime); #
refers to the sixth ? in the query

$insert_machines_down->execute(); # excute the SQL
statement

$twig_0->purge; # will not delete the
parent

$dbh->disconnect();
Disconnect from Database

exit;
}

}
}

sub insert_row_machines2
{ my ($twig_l, $ename)=

my $ip_addr= $ename->first_child('status')->next_sibling('address')->att('addr');
$state= $ename->first_child('status')->att('state');
my $mac_addr= $ename->first_child('address')->next_sibling('address')-

>att('addr');
if (Smac addr == 0){

my $mac_pattem = '(([0-9a-fA-F][0-9a-fA-F]:){5}([0-9a-fA-F][0-9a-fA-
F]))';

my @arping = 'arping -f $ip_addr>& r;
my Sline = @arping[l];
Sline =~ /$mac_pattem/; chop Sline;
Sm acaddr = $1;

}
my Sdate created = date_time();
my Stime = time();
my Smac vendor, my Sdistance, my Sprimary os;

if($state eq 'up') {
if ($ename->descendants('address') — 0){$primary_os = 'unknown';}
else {Smac vendor = $ename->first_child('address')-

>next_sibling('address')->att('vendor');}
if ($ename->descendants('osmatch') == 0){$primary_os = 'unknown';}
else {Sprimary os = $ename->first_child('os')->first_child('osmatch')-

>att('name');}
if ($ename->descendants('distance') = 0){ Sdistance = 'unknown';}
else {Sdistance = $ename->first_child('distance')->att('value');}

Sm achineid = 0;

160

finalize the insert statement
$insert_machines->bind_param(1, Sip addr); # refers to the

first ? in the query
$insert_machines->bind_param(2, Sstate); # refers to the second

? in the query
$insert_machines->bind_param(3, Smac addr);

third ? in the query
$insert_machines->bind_param(4, $mac_vendor);

fourth ? in the query
$insert_machines->bind_param(5, $primary_os);

fifth ? in the query
$insert_machines->bind_param(6, Sdistance);

refers to the sixth ? in the query
$insert_machines->bind_param(7, Sdate created);

seventh ? in the query
$insert_machines->bind_param(8, Sdate created);

eigth ? in the query
$insert_machines->bind_param(9, Stime);

ninth ? in the query

$insert_machines->execute(); # excute the SQL
statement

Prepare and Execute DB Query
my Squery = "select machine id, state from nmap machines where

ip addr = 'Sip addr' AND mac_addr = '$mac_addr' AND last tstamp time = 'Stime';";
Sselectstm t = $dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(\my Sm id, \my Sst);
while ($select_stmt->fetch()) {

$machine_id = S m id ;
}
$select_stmt->finish;

} else {

finalize the insert statement
$insert_machines_down->bind_param(1, Sip addr); # refers to the

first ? in the query
$insert_machines_down->bind_param(2, Sstate); # refers to the

second ? in the query
$insert_machines_down->bindjparam(3, Smac addr); # refers to the

third ? in the query

refers to the

refers to the

refers to the

#

refers to the

refers to the

refers to the

161

$insert_machines_down->bind_param(4, Sdate created); # refers to the
fourth ? in the query

$insert_machines_down~>bindjparam(5, Sdate created); # refers to the
fifth ? in the query

Sinsert machines_down->bind_param(6, Stime); # refers to the
sixth ? in the query

$insert_machines_down->execute(); # excute the SQL statement

$twig_l ->purge; # will not delete the parent
$dbh->disconnect();

Disconnect from Database
exit;

}
}

sub insert_row_ports
{ my($twig_2, $ename)= @_;

my $protocol= $ename->att('protocor);
my $port_num= $ename->att('portid');
my $service= $ename->first_child('service')->att('name');
my Sproduct^ $ename->first_child('service')->att('product');
if (Sproduct eq "){$product = 'unknown';}

Prepare and Execute DB Query
my Squery = "select port num from nmap_ports where machine_id =

'$machine_id' AND port_num = 'Sportnum ' AND protocol = 'Sprotocol';";
Sselectstm t = $dbh->prepare($query);
$select_stmt->execute();
my $p_n = $select_stmt->fetch();
if ($p_n == 0){

finalize the insert statement
Sinsert_ports->bind_param(1, Smachine id); #

refers to the first ? in the query
$insert_ports->bind_param(2, Sport num); # refers to the

second ? in the query
$insert_ports->bind_param(3, Sprotocol); # refers to the

third ? in the query
$insert_ports->bind_param(4, Sservice); # refers to the

fourth ? in the query
$insert_ports->bind_param(5, Sproduct); # refers to the

fifth ? in the query

162

$insert_ports->execute(); # excute the SQL statement

my $last_t stamp = date_time();
my Stime = time();
my Squery = "update nmap machines set last_tstamp = 'Slast tstamp',

last_tstamp_time = 'Stime' where m achineid = 'Smachineid';";
my Supdatestm t = $dbh->prepare($query);
$update_stmt->execute();

}
$select_stmt->fmish;

}

sub db query machines
{ my $as_ip_addr = shift;

my $as_mac_addr = shift;
my S hstim e = shift;
my Sdbh = shift;
my S lasttstam ptim e;
my Scurrenttim e = time();

Prepare and Execute DB Query
my Squery = "select machine id, la stts tam p tim e from nmap machines where

ip addr = 'S a s ip a d d r ' AND mac addr = 'Sas mac addr' order by last tstamp time desc
limit 1;";

Sselectstm t = $dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(\my S m id , \my Sts);
while ($select_stmt->fetch()) {

Sm achineid = S m id ;
$last_tstamp_time = Sts;

}
$select_stmt->finish;

my Sdifference = Scurrent time - Slast tstamp time;

if (Smachine id == 0){return;}
else {

if (Sdifference < Shs time){exit;}
} “

sub date time
{ my @months = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

my @weekDays = qw(Sun Mon Tue Wed Thu Fri Sat Sun);

163

(my Ssecond, my Sminute, my Shour, my SdayOfMonth, my Smonth, my
SyearOffset, my SdayOfWeek, my SdayOfYear, my SdaylightSavings) = localtime();

my Syear = 1900 + SyearOffset;
my $fixed_month = 1 + Smonth;
#my StheTime = "SweekDays[$dayOfWeek] $months[$month] SdayOfMonth

$hour:$minute:$second Syear";
my StheTime = "Syear-Sfixed month-SdayOfMonth Shour:Sminute:$second";

}

164

Xprobe2_mysql.pl

#! /usr/bin/perl
#xprobe2_mysql.pl by Chris Hecker, 2007

#This version currently works with Xprobe2 v.0.3

use strict;
use Getopt::Long;
use vars qw(%G);
use DBI;
use XML::Twig;

#Global Variables
my Sselect stmt, my $machine_id=0, my Sstate, my $as_ip_addr, my S a sm ac a d d r, my
Shstim e;

#p, t, mip and mac are coming from active_scanner.pl but are not necessary
GetOptions('ip=s' =>\$G{ip}, # IP address that Xprobe2 will be scanning

. #
'o=s' =>\$G{o}, # Xprobe2 output XML path

#
Increased scanning flag (1 = enabled)

Time between active re-scans of known

IP address passed from active scanner

MAC address passed from active

if($G{ip} e q " || $G{o} eq "){print "Please use the following options \"-o /xprobe2.xml
(path) -ip XXX.XXX.XXX.XXXYV; exit(0);}

if($G{mip) eq " || SGjmac} eq " || $G{t} eq "){Sas_ip_addr = "unknown";}
else {$as_ip_addr = $G{mip}; $as_mac_addr = $G{mac}; Shs time = $G{t};}

my $dbh= connect_to_db();
Connect to Database

if (Sas ip addr ne 'unknown') {db_query_machines($as_ip_addr, Sas mac addr,
Shs time, Sdbh);}

’p=s' => \$G{p}, #
#

't=s'

%CToAII

machines (seconds) #
'mip=s' => \$G{mip}, #

(scan_queue) #
'mac=s' => \$G{mac});

scanner (scan queue) #

165

if($G{p} = 1){
system "xprobe2 -r -m 2 -o $G{o} -X -T 1-1024,3306 -U 1-1024 $G{ip}";
with port scannning

}else{
system "xprobe2 -r -m 2 -o $G{o} -X $G{ip}";
without port scannning

}

print "\nXprobe2_mysql.pl - (Xprobe2 active scanner)\n",('-'x80),"\n\n";
print "Using Xprobe2 exe for actively scanning ".$G{ip}." then inserts data into mysql
database.\n\n";

prepare the insert statement just once, the actual values will replace the ? later
my $insert_machines= $dbh->prepare("INSERT INTO xprobe2_machines (ip_addr,
state, mac addr, real_time_target_sec, primary_os, secondary os, datecreated,
last_tstamp, last_tstamp_time) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?);");
my Sinsertjnaehines down^ $dbh->prepare("INSERT INTO xprobe2_machines
(ip addr, state, mac addr, date created, last_tstamp, last_tstamp_time) VALUES (?, ?, ?,
?, ?, ?);”);
my $insert_ports= $dbh->prepare("INSERT INTO xprobe2__ports (machine id,
port num, protocol, service, port_state) VALUES (?, ?, ?, ?, ?);");

my $twig_l= new XML::Twig(tw ighandlers => { Xprobe2 =>
\&insert_row_machines});
$twig_ 1 ->parsefile($G {o});
$twig_l->purge;

delete the twig so far

if($G{p} = 1){
my $twig_2= new XML::Twig(twig handlers => { port =>

\&insert_row_ports});
$twig_2->parsefile($G{o});
$twig_2->purge;

delete the twig so far
}

$dbh->disconnect();
Disconnect from Database

exit;

connect to the database
sub connect_to_db
{ # Database Information

166

my $db="honeypot_scanner";
my Suserid-'root";
my Spasswd-'rootpass";
my Sconnectionlnfo-'dbi :mysql: $db";

Make Connection to Database
my Sdbh = DBl->connect($connectionInfo,$userid,Spasswd, {

RaiseError => 1,
AutoCommit => 0
}) || die "Database connection not made: $DBI::errstr";

retum(Sdbh);
}

sub insert row machines
{ my($twig_l, $ename)=

my $ip_addr= $ename->first_child('target')->att('ip');

$state= $ename->first_child('target')->first_child('reachability')-
>first_child('state')->att('state');

my $mac_pattem = ’(([0-9a-fA-F][0-9a-fA-F]:){5}([0-9a-fA-F][0-9a-fA-F]))';
my @arping = 'arping -f $ip_addr>& r;
my Sline = @arping[l];
Sline =~ /$mac_pattem/; chop Sline;
my $mac_addr = $ 1;
my Sdate created = date_time();
my Stime = time();
my Srtt, my Sprimary os, my Ssecondary os;
if (Sstate eq "up")
{

$rtt= $ename->first_child('target')->first_child('reachability')-
>first_child('state')->next_sibling('rtt')->att('rear);

chop Srtt; $rtt= substr($rtt, 1);
$primary_os= $ename->first_child('target')->first_child('reachability')-

>next_sibling('os_guess')->first_child('primary')->text;
chop Sprimary os; chop Sprimary os; $primary_os= substr($primary_os, 2);

if ($primary_os eq "){$primary_os = 'unknown';}
$secondary_os= $ename->first_child('target')->first_child('reachability')

->next_sibling('os_guess')->first_child('primary')-
>next_sibling('secondary')->text;

chop Ssecondary os; chop Ssecondary os; $secondary_os=
substr($secondary_os, 2);

if ($secondary_os eq "){$secondary_os = 'unknown';}

$machine_id = 0;

167

finalize the insert statement
$insert_machines->bind_param(1, Sip addr); # refers to the

first ? in the query
$insert_machines->bind_param(2, Sstate); # refers to the

second ? in the query'
$insert_machines->bind_param(3, Smac addr); # refers to the

third ? in the query
$insert_machines->bind_param(4, Srtt); # refers to the

fourth ? in the query
$insert_machines->bind_param(5, Sprimary os); # refers to the

fifth ? in the query
$insert_machines->bind_param(6, $secondary_os); #

refers to the sixth ? in the query
$insert_machines->bind_param(7, Sdate created); # refers to the

seventh ? in the query
$insert_machines->bind_param(8, Sdate created); # refers to the

eighth ? in the query
$insert_machines->bind_param(9, Stime); # refers to the

ninth ? in the query

$insert_machines->execute(); # excute the SQL statement

$twig_l ->purge; # will not delete the parent

Prepare and Execute DB Query
my Squery = "select machine id, state from xprobe2_machines where

ip addr = 'Sip addr' AND mac addr = 'Sm acaddr' AND last tstamp time = 'Stime';";
Sselectstm t = $dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(\my Srn id, \my $s);
while ($select_stmt->fetch()) {

Sm achineid = S m id ;
} _

$select_stmt->finish;

} else {

finalize the insert statement
$insert_machines_down->bind_param(1, Sip addr); # refers to the

first ? in the query
Sinsert_machines_down->bind_param(2, Sstate); # refers to the

second ? in the query'

168

$insert_machines_down->bindjparam(3, $mac_addr); # refers to the
third ? in the query

$insert_machines_down->bind_param(4, Sdate created); # refers to the
fourth ? in the query

$insert_machines_down->bindjparam(5, $date_created); # refers to the
fifth ? in the query

$insert_machines_down->bind_param(6, Stime); # refers to the
sixth ? in the query

Sinsert_machines_down->execute(); # excute the SQL statement

$twig_l->purge; # will not delete the parent
$dbh->disconnect();

Disconnect from Database
exit;

}

sub insert_row_ports
{ my($twig_2, $ename)=

my $port_num= $ename->att('number');
my $protocol= $ename->att('proto');

my $service= $ename->att('service');
my $port_state= $ename->att('state');

if (Sportstate eq 'open')
{

Prepare and Execute DB Query
my Squery = "select port_num, port_state from xprobe2 jjo r ts where

machine_id = 'Smachine id' AND port num = '$port_num' AND protocol = 'Sprotocol';";
Sselectstm t = $dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(\my $p_n, \my Sp st);
$select_stmt->fetch();
if ($p_n == 0){

finalize the insert statement
$insert_ports->bind_param(1, $machine_id); # refers to the

first ? in the query

? in the query

in the query

in the query

$insert_ports->bind_param(2, Sport num); # refers to the second

$insert_ports->bind_param(3, Sprotocol); # refers to the third ?

$insert_ports->bind_param(4, Sservice); # refers to the fourth ?

169

$insert_ports->bind_param(5, $port_state); # refers to the fifth ?
in the query

$insert_ports->execute(); # excute the SQL statement

$twig_2->purge; # will not delete the parent

my Slast tstamp = date_time();
my Stime = time();
my Squery = "update xprobe2_machines set last tstamp =

'$last_tstamp', la s tts tam p tim e = 'Stime' where machine id = 'Smachine id';";
my Supdatestm t = $dbh->prepare($query);
$update_stmt->execute();

}
$select_stmt->finish;

}
}

sub db query machines
{ my $as_ip_addr = shift;

my Sas mac addr = shift;
my $hs_time = shift;
my Sdbh = shift;
my Slast tstamp time;
my $current_time = time();

Prepare and Execute DB Query
my Squery = "select machine id, last tstamp time from xprobe2_machines where

ip addr = 'Sas ip addr' AND mac addr = '$as_mac_addr' order by last_tstamp_time desc
limit 1;";

$select_stmt = $dbh->prepare($query);
$select_stmt->execute();
$select_stmt->bind_columns(\my Sm id, \my Sts);
while ($select_stmt->fetch()) {

Sm achineid = S m id ;
S lastts tam ptim e = Sts;

}
$select_stmt->finish;

my Sdifference = Scurrent time - Slast tstamp time;

if (Smachine id == 0){return;}
else {

if (Sdifference < $hs_time){exit;}

170

}
}

sub date time
{ my @months = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

my @weekDays = qw(Sun Mon Tue Wed Thu Fri Sat Sun);
(my Ssecond, my Sminute, my $hour, my SdayOfMonth, my $month, my

SyearOffset, my SdayOfWeek, my SdayOfY ear, my SdaylightSavings) = localtime();
my $year = 1900 + SyearOffset;
my Sfixedm onth = 1 + Smonth;
#my StheTime = "$weekDays[$dayOfWeek] $months[$month] SdayOfMonth

$hour;$minute:$second Syear";
my StheTime = "Syear-$fixed_month-$dayOfMonth Shour: Sminute: Ssecond";

}

171

Nmap-services_mysql.pl

#!/usr/bin/perl
#nmap-services_mysql.pl by Chris Hecker, 2007

use strict;
use DBI;

Connect to Database
my $dbh= connect_to_db();

prepare the insert statement just once, the actual values will replace the ? later
my $insert_nmap_services= $dbh->prepare("INSERT INTO nmap_services (port num,
protocol, service, extra info) VALUES (?, ?, ?, ?);");

#open the employeesfile
open (my $file,"nmap-services.txt") || die "Can't find file\n";

#assigns lines to array
my @lines = <$file>;

#go through each line in file
foreach my $line (@lines) {

#remove the carriage return
chomp Sline;

#split the line between whitespace and get the different elements
my @info = split (As+/, Sline, 4);

my Sservice = @info[0];
my Sport num = @info[l];
my @temp = split (A//, $port_num);
Sportnum = @temp[0];
my Sprotocol = @temp[l];
my Sextrainfo = @info[3];

insert_row($port_num, Sprotocol, Sservice, Sextra info);
}
close (Sfile);

172

Disconnect from Database
$dbh->disconnect();

exit;

connect to the database
sub connect to db
{ # Database Information

my $db="honeypot_scanner";
my Suserid-'root";
my $passwd="rootpass";
my Sconnectionlnfo-'dbi :mysql: $db";

Make Connection to Database
my Sdbh = DBI->connect($connectionInfo,$userid,Spasswd, {

RaiseError => 1,
AutoCommit => 0
}) || die "Database connection not made: $DBI::errstr";

retum(Sdbh);
}

sub insert row
{

my Sportnum = shift;
my Sprotocol = shift;
my Sservice = shift;
my $extra_info = shift;

finalize the insert statement
$insert_nmap_services->bind_param(1, Sport num); # refers to the first ? in the

query
$insert_nmap_services->bind_param(2, Sprotocol); # refers to the second ? in

the query
$msert_nmap_services->bind_param(3, Sservice); # refers to the third ? in the

query
$insert_nmap_services->bind_param(4, $extra_info); # refers to the fourth ?

in the query

$insert_nmap_services->execute(); # excute the SQL statement
}

173

Appendix E: Database Statements and Schema

174

Database Statements

Database

II Create Database

CREATE DATABASE honeypot scanner;

// Database control Statement

USE honeypot scanner;

Operational Tables

H Create Table: config

CREATE TABLE config (eth jn terface blob NOT NULL, mac_addr varchar(17) NOT NULL, dhcp_server
blob NOT NULL, pOf_os blob NOT NULL, nmap_exe blob NOT NULL, nmap_prints blob NOT NULL,
nm apassoc blob NOT NULL, xprobe2_conf blob NOT NULL, xprobe2_xml blob NOT NULL,
honeypot xml blob NOT NULL, honeyd config blob NOT NULL, honeyd_ip_binding varchar(2) NOT
NULL, h o n e y d ip ra n g e blob, s c a n ip ra n g e blob NOT NULL, initial_deployment int NOT NULL,
percent_change int NOT NULL, noise blob NOT NULL, ac tiv escan seco n d s int NOT NULL,
date created blob NOT NULL);

// Insert Information: config

INSERT into config (eth_interface, mac addr, dhcpserver, pO fos, nmap exe, nmap_prints, nmap assoc,
xprobe2_conf, xprobe2_xml, honeypot_xml, honeyd_config, honeyd ip binding, h o n e y d ip ra n g e ,
s c a n ip ra n g e , initial deployment, percent_change, noise, active scan seconds, date created) values
("ethO", "00:11:22:33:44:55", "1.2.3.4", "/usr/share/honeyd/pf.os", "/root/Downloads/Honeypot/nmap-
4.60/nmap", "/usr/share/honeyd/nmap.prints", "/usr/share/honeyd/nmap.assoc",
"/usr/share/honeyd/xprobe2.conf', "/root/Output_files/xprobe2_output.xml",
"/root/Output files/honeypot.xml", "/root/Output_files/honeyd.conf', "il", NULL, "1.2.3.4-5", 5, 30, "low",
86400, "2008-4-16 16:04:05");

// Create Table: threads

CREATE TABLE threads (thread id int NOT NULL auto increment primary key, thr name varchar(20)
NOT NULL, thr__pid int NOT NULL, last tstamp blob NOT NULL);

// Insert Information: threads

INSERT into threads (thr name, thr_pid, last tstamp) values ("tcpdump scan", "0", "2008-1-9 16:04:05");

175

INSERT into threads (th rnam e, thr_pid, last_tstamp) values ("pOf scan", "0", "2008-1-9 16:04:05");
INSERT into threads (thr_name, thr_pid, last_tstamp) values ("activescan", "0", "2008-1-9 16:04:05");

// Create Table: honeypotupdates

CREATE TABLE honeypot updates (update id int NOT NULL auto increment primary key,
num_machines int NOT NULL, num services int NOT NULL, date updated blob NOT NULL);

// Create Table: scan queue

CREATE TABLE scan_queue (scan id int NOT NULL auto increment primary key, ip_addr varchar(15)
NOT NULL, mac addr varchar(17), date created blob NOT NULL, last tstamp time int NOT NULL);

Network Scanning Tables

II Create Table: pOf

CREATE TABLE pOf (machine_id int NOT NULL auto_increment primary key, ip addr varchar(15) NOT
NULL, mac addr varchar(17), primary_os blob, firewall varchar(64) NOT NULL, lookup_link
VARCHAR(128) NOT NULL, uptim eseconds blob NOT NULL, distance_hops blob NOT NULL,
date created blob NOT NULL, last tstamp blob NOT NULL, last tstamp time int NOT NULL);

// Create Table: tcpdump_ports

CREATE TABLE tcpdump_ports (tep id int NOT NULL auto increment primary key, ip addr
varchar(15) NOT NULL, mac addr varchar(17), port num int NOT NULL, protocol varchar(15) NOT
NULL, service blob NOT NULL, extra info blob, syn ack varchar(l), rst ack varchar(l), udp_reply
varchar(l), date created blob NOT NULL, last tstamp blob NOT NULL, lastts tam p time int NOT
NULL)

// Create Table: tcpdum picm p

CREATE TABLE tcpdump icmp (tep id int NOT NULL auto increment primary key, ip addr
varchar(15) NOT NULL, mac addr varchar(17), icmp_reply varchar(l), date created blob NOT NULL,
last tstamp blob NOT NULL, last tstamp time int NOT NULL);

// Create Table: nm apservices

CREATE TABLE nmap services (s id int NOT NULL auto increment primary key, port num int NOT
NULL, protocol varchar(15) NOT NULL, service blob NOT NULL, extra info blob);

// Create Table: nmap machines

CREATE TABLE nmap machines (machine id int NOT NULL auto increment primary key, ip addr
varchar(15) NOT NULL, state varchar(5) NOT NULL, mac addr varchar(17), mac vendor blob,
primary os blob NOT NULL, uptime seconds blob NOT NULL, last reboot blob NOT NULL,

176

distance_hops blob NOT NULL, date created blob NOT NULL, last tstamp blob NOT NULL,
last_tstamp_time int NOT NULL);

// Create Table: nmap_ports

CREATE TABLE nmap_ports (machine_id int NOT NULL, port_num int NOT NULL, protocol
varchar(15) NOT NULL, service blob NOT NULL, version blob, product blob, extra info blob);

// Create Table: xprobe2_machines

CREATE TABLE xprobe2_machines (m achineid int NOT NULL auto increment primary key, ip addr
varchar(15) NOT NULL, state varchar(5) NOT NULL, mac addr varchar(17), real time target sec blob
NOT NULL, primary_os blob NOT NULL, secondary_os blob NOT NULL, date created blob NOT
NULL, last_tstamp blob NOT NULL, last_tstamp_time int NOT NULL);

// Create Table: xprobe2_ports

CREATE TABLE xprobe2_ports (machine id int NOT NULL, port num int NOT NULL, protocol
varchar(15) NOT NULL, service blob NOT NULL, port state blob NOT NULL);

Low Interaction Honeypot Configuration Tables

// Create Table: dhcp

CREATE TABLE dhcp (d h c p jd int NOT NULL, ip_addr varchar(15) NOT NULL, mac_addr varchar(17)
NOT NULL, lease_time_seconds blob NOT NULL, renewal_tstamp_time blob NOT NULL, date_created
blob NOT NULL, last tstamp blob NOT NULL, last_tstamp_time int NOT NULL);

// Create Table: honeyd_scripts

CREATE TABLE honeydscripts (script id int NOT NULL auto increment primary key, primary os
varchar(20) NOT NULL, protocol varchar(5) NOT NULL, port num int NOT NULL, scrip tjang
varchar(20) NOT NULL, path_and_filename blob NOT NULL);

// Insert Information: honeyd scripts

INSERT into honeyd scripts (primary os, protocol, port_num, script lang, path and filename) values
("windows 2000", "tcp", 23, "peri", "/home/Honeyd Scripts/telnet-emul/telnet/faketelnet.pl");

//Create Table: l i h h i h l i n k

CREATE TABLE lih hih link (link_id int NOT NULL auto_increment primary key, lih_os_platform blob
NOT NULL, lih ip addr varchar(15) NOT NULL, lih_mac_addr varchar(17) NOT NULL,
hih_os_platform blob NOT NULL, hih ip addr varchar(15) NOT NULL, hih mac addr varchar(17) NOT
NULL, h ih jocation blob NOT NULL, hih_state blob NOT NULL, date_created blob NOT NULL,
last_tstamp blob NOT NULL);

High Interaction Honeypot Configuration Tables

177

//Create Table: vm w aretem plate

CREATE TABLE vmware template (h ih id int NOT NULL auto increment primary key, os platform text
NOT NULL, location blob NOT NULL, date_created blob NOT NULL, FULLTEXT (os_platform));

//Insert Information: vmware_template

//Location starts with the datastore that is used for the VMware Server; in this case a data store called
[standard]

//Linux Example

INSERT into vmware template (os_platform, location, date created) values ("Linux Kernel 2.6.24-19-
generic", "[standard] Ubuntu8/Ubuntu8.vmx", "2008-11-07 16:04:05");

//Windows Example

INSERT into vmware template (osjplatform, location, date_created) values ("Microsoft Windows XP
SP3", "[standard] Windows_XP/Windows_XP.vmx", "2008-11-09 17:04:05");

178

Database Schema

Operational Tables

Table 4, Operational Tables - config

Field ra m e s ■ ' < . < . - ^ ̂ ; E xam ple D ata '
ethinterface The name of the network interface that will be

used to gather the information
ethO

mac addr MAC address o f eth interface 00:01:02:03:04:05
dhcpserver IP address o f the network DHCP server 1.2.3.4
pO fos Location of the POf fingerprinting file /honeyd/pf.os
nm apexe Location of the Nmap executable /nmap-4.60/nmap
nmap_prints Location of the Nmap fingerprinting file /honeyd/nmap.prints
nmap_assoc Location of the Nmap-Xprobe2 association file /honeyd/nmap. assoc
xprobe2_conf Location of the Xprobe2 fingerprinting file /honeyd/xprobe2.conf
xprobe2_xml Location for the output o f Xprobe2 /Output_files/xprobe2.xml
honeypotxm l Location for the resulting honey.conf file /Outputfiles/honeypot.xml
honeydconfig Location for the resulting honeypot.xml file /Outputfiles/honeyd.conf
honeyd_ip_binding Indicates the resulting IP address scheme of the

honeyd.conf file
iS, iD, iR, or il

h o n ey d ip ran g e Used if the honeyd_ip_binding is iD or iR and
indicates alternate IP subnet or range

1.2.3.0 or 1.2.3.4-7

sc a n ip ra n g e IP address subnet that the user wishes to scan 1.0.0.0, 1.2.0.0, 1.2.3.0, or
1.2.3.4

initial_deployment Threshold for the initial deployment o f the
configuration files

5

percentchange Threshold in percent change for the re-deployment
o f the configuration files

30

noise Indicates the amount o f noise introduced by the
network scanner

passive, low, medium,
medium-high or high

active_scan_seconds Time delay before re-scanning an identified
machine (seconds)

86400

datecreated Date created the config table
(format; yyyy/mm/dd hh:mm:ss)

2008/04/16 16:04:05

179

Table 5, Operational Tables - threads

Field nam es W k fflO e m ip lfo n
th read id Unique ID for this thread i

th rn am e Name of the thread tcpdum pscan
thr_pid Process ID (PID) for the thread 5517
lasttstam p Last timestamp o f the thread's creation (format:

yyyy/mm/dd hh:mm:ss)
2008/04/16 16:04:05

Table 6, Operational Tables - honeypot updates

ffeM eaSM S Field D escription E ia rap le D ata
update_id Unique ID for the update 1

num machines Number of total machines identified 5

num services Number of total services gathered 5517
dateupdated Time and Date o f the last update

(format: yyyy/mm/dd hh:mm:ss)
2008/04/16 16:04:05

Table 7, Operational Tables - scan queue
, , , . , x /' < ,

FMdttMBeS ' ' 1 F teldD escrip tion - V ; , ' < E u u o $ te l!a t»
scan id Unique ID for this device information 1
ip addr IP address o f the identified machine 1.2.3.4
mac_addr MAC address o f the identified machine 00:01:02:03:04:05
datecreated Time and date o f the machines identification

(format: yyyy/mm/dd hh:mm:ss)
2008/04/16 16:04:05

las tts tam p tim e Last timestamp for seeing the identified machine
UNIX time (seconds since 1-1-1970)

1208361845

180

Network Scanning Tables

Table 8, Network Scanning Tables - pOf
Table: pOf

F ie ldnam es . F ie ld lte sc rip tio n ■ Exam ple D a ta /
m achineid Unique ID for this identified machine 1
ip a d d r IP address o f the identified machine 1.2.3.4
m acad d r MAC address o f the identified machine 00:01:02:03:04:05
prim aryos Operating system guess o f the identified machine Linux Kernel 2.4.0

firewall Firewall on the identified machine Yes or unknown
lookupjink Type o f network hookup ethemet
uptim eseconds Number o f seconds that the identified machine has

been running
12345

distancehops Number o f hops to the identified machine 0
datecreated Time and date of the machines identification

(format: yyyy/mm/dd hh:mm:ss)
2008/04/16 16:04:05

lasttstam p Last timestamp for seeing the identified machine
(format: yyyy/mm/dd hh:mm:ss)

2008/04/16 16:04:05

last_tstamp_time Last timestamp for seeing the identified machine
UNIX time (seconds since 1-1-1970)

1208361845

Table 9, Network Scanning Tables - tcpdump icmp
' .• v ./V - ;

SMDOeMXifMfoB " ' ' V ' I tx a tn p le D ata ,
te p id Unique ID for the identified packet 1
ip a d d r Destination IP address 1.2.3.4
m acad d r Destination MAC address 00:01:02:03:04:05
icm prep ly Was the packet an icmp-reply packet? Y
datecreated Time and date of the first ICMP reply packet

(format: yyyy/mm/dd hh:mm:ss)
2008/04/16 16:04:05

lasttstam p Last timestamp for seeing an ICMP reply packet
(format: yyyy/mm/dd hh:mm:ss)

2008/04/16 16:04:05

last_tstamp_time Last timestamp for seeing an ICMP reply packet
UNIX time (seconds since 1-1-1970)

1208361845

Table 10, Network Scanning Tables - nmap services
T n M etm n a ir services

Field nam es H eM iieser^a tfen
s i d Unique ID for the service 1
p o rtn u m Port number for the service 80
protocol Network protocol o f the service TCP
service Service o f the port number and the protocol HTTP
ex tra in fo Extra information for the service World Wide Web HTTP

181

Table 11, Network Scanning Tables - tcpdump ports
Tabte: teptaiapjjorts

Fieldnames m M I H s e tS p t im Example Data
te p id . Unique ID for the identified packet 1
ip a d d r Destination IP address 1.2.3.4
m acaddr Destination MAC address 00:01:02:03:04:05
portnum Destination port number 80
protocol Network protocol TCP
service Service o f the port number and the protocol HTTP
extrainfo Extra information for the service World Wide Web HTTP
sy n ack Was the packet a syn-ack packet? Y o rN
rs ta c k Was the packet a rst-ack packet? Y o rN
udprep ly Was the packet a udp-reply packet? Y o rN
datecreated Time and date o f the first packet for a particular

port (format: yyyy/mm/dd hh:mm:ss)
2008/04/16 16:04:05

lasttstam p Last timestamp for a particular port
(format: yyyy/mm/dd hh:mm:ss)

2008/04/16 16:04:05

la s tts tam p tim e Last timestamp for a particular port
UNIX time (seconds since 1-1-1970)

1208361845

Table 12, Network Scanning Tables - nmap machines
■ ” ... //.. , ■ / T ' T«M e:iu&«r atacbines.a/: . x ‘y. x i * r..
m achineid Unique ID for this identified machine 1
ip a d d r IP address o f the identified machine 1.2.3.4
state State o f the identified machine up
m acad d r MAC address o f the identified machine 00:01:02:03:04:05
mac vendor Vendor for the identified MAC address Intel
primary os Operating system guess o f the identified machine Linux Kernel 2.4.0

uptim eseconds Number o f seconds that the identified machine has
been running

12345

distancehops Number o f hops to the identified machine 0
datecreated Time and date of the machines identification

(format: yyyy/mm/dd hh:mm:ss)
2008/04/16 16:04:05

lasttstam p Last timestamp for seeing the identified machine
(format: yyyy/mm/dd hh:mm:ss)

2008/04/16 16:04:05

la s tts tam p tim e Last timestamp for seeing the identified machine
UNIX time (seconds since 1-1-1970)

1208361845

182

Table 13, Network Scanning Tables - nmap ports
T a b le rm n a p p o r ts

F ieldnam es 'f i n U i ^ O a t e . '
m achineid Unique ID for this identified machine 1
portnum Port number for the service 80
protocol Network protocol o f the service TCP
service Service o f the port number and the protocol HTTP
product Product running the service Apache Web Server

Table 14, Network Scanning Tables - xprobe2 machines,, , r* » ' - Hftie: spriM l atacbines -

fieldnames Field Description Example Data
m achineid Unique ID for this identified machine 1
ip a d d r IP address o f the identified machine 1.2.3.4
state State o f the identified machine up
m acad d r MAC address o f the identified machine 00:01:02:03:04:05
real_time_target_sec Time in seconds to identified machine 0.05
p rim aryos First operating system guess o f the identified

machine
Linux Kernel 2.4.0

secondaryos Second operating system guess o f the identified
machine

Linux Kernel 2.6.0

datecreated Time and date of the machines identification
(format: yyyy/mm/dd hh:mm:ss)

2008/04/16 16:04:05

lasttstam p Last timestamp for seeing the identified machine
(format: yyyy/mm/dd hh:mm:ss)

2008/04/16 16:04:05

la s tts tam p tim e Last timestamp for seeing the identified machine
UNIX time (seconds since 1-1-1970)

1208361845

Table IS, Network Scanning Tables - xprobe2 ports
■

CUcUHmmbm '' FleM Oescr^rtian ̂ ' ' Esanuileliat* v
m achineid Unique ID for this identified machine 1
p o rtn u m Port number for the service 80
protocol Network protocol o f the service TCP
service Service o f the port number and the protocol HTTP
p ortsta te Version of the product running the service open

183

Low Interaction Honeypot Configuration Tables

Table 16, LIH Configuration Tables - dhcp
T»ble:dk» ,

Fieldnames Example Oata
d h cp id Unique ID for DHCP interaction 1
ip a d d r Client IP address from DHCP server 1.2.3.4
m acaddr Client MAC address 00:01:02:03:04:05
lease tim eseconds Time in seconds to renew DHCP lease 86400
renew altstam ptim e Timestamp o f the next renewal

UNIX time (seconds since 1-1-1970)
1208361845

date_created Time and date o f the DHCP request (format:
yyyy/mm/dd hh:mm:ss)

2008/04/16 16:04:05

last_tstamp Timestamp o f the last renewal
(format: yyyy/mm/dd hh:mm:ss)

2008/04/16 16:04:05

las tts tam p tim e Timestamp o f the last renewal
UNIX time (seconds since 1-1-1970)

1208361845

Table 17, LIH Configuration Tables - honeyd scripts
. ' -V ' Table:honeyd scripts •

n M a a a m . T ikam iile lkaia '
sc rip tid Unique ID for the script 1

primary os OS for which the script is designed to emulate Linux
protocol Network protocol of the service TCP
p ortn u m Port number for the service 80

script lang Language to interpret the script Perl
path and filename Location of the script /telnet-emul/faketelnet.pl

Table 18, LIH Configuration Tables - lib hih link
Table: &h hih link

Fidd names FiekiSeaciiption ExampleData
l i nk i d Unique ID for the LIH and HIH link 1
lih os platform OS platform for the LIH Microsoft Windows XP SP2
l i h i p a d d r IP address for LIH 1.2.3.4
l i h m a c a d d r MAC address for LIH 00:11:22:33:44:55
hih os platform OS platform for the HIH Microsoft Windows XP SP3
h i h i p a d d r IP address for HIH 1.2.3.5
h i h m a c a d d r MAC address for HIH 00:11:22:33:44:66
hihlocation Location o f HIH template; starts with the

datastore that is used for the VMware Server
[standard] Windows XP.vmx

hih state State o f the HIH VM ON
date created Time and date for creating LIH and HIH link

(format: yyyy/mm/dd hh:mm:ss)
2008/04/16 16:04:05

lasttstam p Last timestamp for deploying LIH
(format: yyyy/mm/dd hh:mm:ss)

2008/04/16 16:04:05

184

High Interaction Honeypot Configuration Tables

Table 19, HIH Configuration Tables - vmware template
Table:-vmware temgplate

Fieldnames : * Example Data
h i h i d Unique ID for the HIH template 1

os platform OS platform for the HIH Linux Kernel 2.6.24-19-generic
location Location starts with the datastore that is

used for the VMware Server
[standard] Ubuntu8/Ubuntu8.vmx

datecreated Time and date o f template creation
(format: yyyy/mm/dd hh:mm:ss)

2008/04/16 16:04:05

185

Appendix F: Publications

Hecker, C., Nance, K. & Hay, B. Dynamic Honeypot Construction. Proceedings o f the
10th Colloquium fo r Information Systems Security Education. University of
Maryland, University College, Adelphi, MD. June 5-8, 2006.

Hecker, C. & Hay, B. Securing E-Govemment Assets through Automating Deployment
o f Honeynets for IDS Support. 43rd Hawaii International Conference on System
Sciences (HICSS), pp. 1-10, 5-8 Jan. 2010 (Best Paper Award)

Hecker, C. Automated Honeynet Deployment for Dynamic Network Environments. 46th
Hawaii International Conference on System Sciences (HICSS), Jan 2013.
(Submitted)

