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Abstract

A three-dimensional, three-fluid simulation (ions, electrons, and neutrals) 

was explicitly parallelized, facilitating the study of small-scale 

magnetospheric-ionospheric (M-l) coupling processes. The model has ionization 

and recombination, self-consistently (semi-empirically) determined collision 

frequencies, and a height resolved ionosphere. Inclusion of ion inertial terms in the 

momentum equation enables the propagation of Alfven waves. Investigation at 

small scales required large system domains, and thus fast parallel computers. The 

model was explicitly parallelized—enabling investigations of M-I coupling processes 

on very small temporal and spatial scales.

The generation, reflection, and propagation of Alfven waves is of importance 

to the understanding of M-I coupling processes—it is, in fact, the primary means of 

communication of physical processes in the coupled system. Alfvenic reflections 

were modeled for two different boundary conditions, and it was shown that the 

deformation of the current layer was Alfvenic in character.

Visualizations of the data obtained appear to be consistent with the visual 

characteristics of actual discrete aurora in nature. The model reproduces 

qualitatively, and semi-quantitatively, in a self-consistent manner, some the 

behaviors of the formation and time-evolution of discrete arcs. These include the



narrowness of arcs; electric fields extending parallel outward from the arcs; and fast 

(plasma) flows in the region of discrete arcs.

Large-scale models—due to inevitable limitations of computational 

resources—need to make large-scale averages of computed properties. In regions of 

active small-scale structure, significant under-representation of the Joule heating 

occurs. It has been shown that the under-representation of the Joule heating in the 

region of active aurora can be as large as a factor of 8. This work includes a 

computer-based study of a quantitative approximation of this underrepresentation 

of the Joule heating by global, large-scale models and experimental observations.
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Chapter 1 Introduction 

Introduction and Motivation

The sun is the source of virtually all energy on our planet. From the sun 

streams a flow of very fast plasma, with a frozen-in magnetic field. This solar wind 

interacts with the magnetosphere of the Earth, providing a source of energy, and 

determining the dynamics of the coupled magnetosphere-ionosphere system.

The coupling of the magnetosphere and the ionosphere is an important 

component of magnetospheric dynamics. The dynamics are determined by 

physical processes which occur at the magnetospheric boundaries. The outer 

boundary is the magnetopause. The magnetopause is defined as the region where 

the magnetospheric effects overcome those of the shocked solar wind plasma. The 

inner boundary of the magnetosphere is the ionosphere. For a sketch of the 

magnetosphere-ionosphere system, see Figure 1.1.

1

Figure 1.1 Magnetosphere-ionosphere System [Crooker, Greenwald, 
Hesse, Hudson, Hughes, Lyons, Maynard, Ryssel, and Siscoe 1999].



The sun emits a highly conducting plasma at very fast speeds (~500 

km/s)—the solar wind. This plasma consists mainly of electrons and protons, with 

approximately 5% Helium ions. Because of the plasma’s high conductivity, the 

magnetic field of the plasma is frozen in. Please note that—while the solar wind 

plasma has an extremely high conductivity—it is not a superconductor. 

Superconductors expel magnetic flux, while the magnetic field is "frozen in," in the 

solar wind plasma. At the distance from the sun equal of the Earth's orbit, typical 

values of the electron particle density are ~5 cm ”3; typical values of the particle 

temperature are 1 0 5 K; and a typical value of the interplanetary magnetic field is 

5 nT. Values can vary greatly during storm times.

The solar wind plasma strikes the Earth's magnetic field. It cannot easily 

penetrate, and is slowed—and most of the solar wind passes around this obstacle. 

As the solar wind strikes with supersonic speed, a bow shock is generated. As the 

solar wind is slowed, some of its potential energy is converted into heat. The area 

earthward of the bow shock is called the magnetosheath. It is denser, hotter, and 

its magnetic field is stronger than the solar wind. The boundary of the 

magnetosheath is defined by the position (s) of the bow shock and the 

magnetopause; it represents the boundary of where the plasma conditions of the 

solar wind are overcome by those of the magnetosphere.

The magnetosphere is the cavity created by the presence of the Earth's 

magnetic field in the solar wind. The magnetosphere is highly distorted by the



kinetic energy imparted from the solar wind—compressed on the dayside, and 

stretched into a long magnetotail on the nightside.

Most of the plasma in the magnetotail is found in the plasma sheet—a sheet 

roughly in the plane of the magnetic equator. The remainder is contained in the 

magnetotail lobes—a region of much more rarified plasma.

Ultraviolet light continually strikes the dayside of the Earth, ionizing atoms. 

At high enough altitudes, collisions become so rare that an abundance of ions 

accumulates. This region is called the ionosphere. Typical values of the electron 

density are ~ 1 0 5 cm ‘3; typical values of the electron temperature are ~ 1 0 3 K; a 

typical value for the magnetic field is 10 4 nT. The ionosphere starts at around 100 

km above the Earth’s surface, and extends up to around 450 km.

At mid- and low- latitudes, the ionosphere gives rise to a co-rotating (with 

the Earth) torus of cooler, but denser, plasma called the plasmasphere. At the 

equator, the plasmasphere extends outward to a distance of about 4 RE. Its outer 

boundary is the plasmapause.

A diagram of the interaction of the coupled magnetosphere-ionosphere 

system is shown in Figure 1.2. The system consists of the ionosphere, where 

collisions of charged particles with neutrals cannot be neglected, and the 

magnetosphere, where collisions are so infrequent that one can treat it as

3



collisionless. The system is strongly coupled, as the magnetic field connects them. 

There is a flow of both energy and momentum between the two systems.

4

Figure 1.2 Magnetosphere-ionosphere Coupled System (after Fig. 5.16. in Baumjohann 
and Treumann, 1997)

Being coupled, a change in one part of the system will change other parts of 

the system. A change in the magnetospheric convection will change the electric 

field mapped to the ionosphere. Ionospheric current flow will then change, due to 

the altered electric field, through Ohm's law. Current continuity requires the 

field-aligned currents to close, and this will alter the magnetospheric current 

distribution—which is due to the drift of charged particles.

Changes cannot be made in one system without affecting the other. Plasma 

motion in the magnetosphere generates Alfv6n waves. Alfv6n waves are a class of 

hydromagnetic waves. They are transverse electromagnetic waves, which 

propagate along the direction of the magnetic guide field (Parks 1991). Alfv6n



waves impinging on the ionosphere can travel progressively downwards into 

regions of higher neutral densities. Continually increasing friction (as the wave 

travels deeper into the ionosphere) with the neutrals makes it progressively more 

difficult for the charged particles to move—eventually causing the Alfven wave to 

be partially reflected, and partially absorbed. On reaching the magnetosphere, this 

Alfv6n wave will produce plasma motion, spawning another Alfven wave. Alfven 

waves are thus the primary means of communication between the coupled 

magnetospheric and ionospheric systems.

Gradients in the convection generate field-aligned currents, which 

propagate into the ionosphere. (Uniform displacement of magnetic field lines in a 

uniform system produces no current. A gradient is required, because uniform 

motion would just represent a shift of the plasma, and thus no net current.) These 

currents must close perpendicularly to the magnetic field, as they cannot pass 

below the lower regions of the ionosphere. The lower ionosphere provides the 

lower boundary, at which these currents must close. How these currents close is 

determined by properties of the ionosphere. Communication in the 

magnetosphere is mainly carried out via Alfv6n waves, and these waves carry the 

field-aligned current. Therefore, to successfully model these field-aligned currents, 

one must include the equations which can resolve Alfven wave propagation.

Magnetosphere-ionosphere (M-I) coupling has been studied for several 

decades. The spatial and temporal resolution considered in the M-I system varies 

greatly—ranging from rapidly moving auroral arcs (as small as 100 m), to global



convection (several thousand km). Various models have been developed to study 

M-I coupling at various scales (e.g. Wolf, Harel, Spiro, Voight, Reiff, and Chen 1982; 

Harel, Wolf, Reiff, Spiro, Burke, Rich, and Smiddy 1981; Kan 1998; Roble and Rees 

1977; Fuller-Rowell and Rees 1980; Sojka 1989; Schunk 1988; Roble, Ridley, and 

Dickinson 1987; Maurits and Watkins 1996)

The plasma properties in the different regions of the M-I system vary 

greatly. Many methods have been used to model the regions of differing plasma 

dynamics. In the majority of the magnetosphere, the plasma is collisionless. In 

such regions the frozen-in condition (i.e. £ + v x f l=  0) applies, and the ideal 

magnetohydrodynamic (MHD) equations are used. In the ionosphere, collisions 

(electron-neutral, ion-neutral, and Coulomb) generate a finite conductivity—and 

the ionosphere is a treated as a partially conducting boundary to the 

magnetosphere. Several large-scale steady state M-I coupling models have been 

developed (e.g. Axford 1969; Vasyliunas 1970a; Vasyliunas 1972). These models 

deal with the global convection pattern, resolved on a temporal scale of several 

minutes.

There have also been models developed to simulate large-scale 

magnetospheric dynamics (e.g. the Rice convection model for the inner 

magnetosphere, see Wolf, Harel, Spiro, Voigt, Reiff, and Chen 1982; Harel, Wolf, 

Reiff, Spiro, Burke Rich, and Smiddy 1981). In these simulations, the ionosphere is

6



usually treated as a height-integrated, partially conducting boundary, and thus 

does not fully resolve the ionospheric dynamics.

The basic principles behind the ionospheric plasma dynamics are relatively 

well understood (Schunk 1988). Below about 150 km altitude, the plasma in the 

ionosphere is characterized by high collision frequencies (electron-neutral, 

ion-neutral, and Coulomb). Above 150 km altitude, for both ions and electrons, 

collision frequencies are much smaller than the gyro-frequencies; thus, the E x B  

drift of either electrons or ions does not make a contribution to the current. 

However, below about 120 km (lower E-region), the ion-neutral collision 

frequency (105s"1) can be much higher than the ion gyrofrequency (about 300 s~l 

in a 0.5 gauss geomagnetic field), which means that the mean free path of the ions 

is significantly shorter than their gyroradius. Thus the ions in the lower E-region 

are no longer drifting in the E x B  direction. The electrons still move with the 

E x B  drift. Their gyrofrequency (9 x  lO5 ”̂1 assuming a 0.5 gauss geomagnetic 

field) is still much higher than their collision frequency ( 1 0 V ) .  The difference 

between the ion and electron drift motion gives rise to ionospheric currents 

perpendicular to the magnetic field. The component of the ion motion in the 

direction of the electric field gives rise to the Pedersen current. This current closes 

the field-aligned current. The electron's E x B  drift motion is the main source of 

the Hall current in the ionosphere. As the altitude increases from 120 to 150 km, 

the ions begin drifting in the E x B  direction.

7



Using the definitions of the Pedersen and Hall conductivities, the current in 

the ionosphere can be expressed as (c.f. Chapter 2):

j  = cr0£j| + o pEL + o Hb x E (Equation 1.1)

Where o 0, o p, and o H are the parallel, Pedersen, and Hall conductivities 

respectively; b  is the unit vector of the magnetic field; £j and E± are the

parallel and perpendicular components of the electric field with respect to the 

magnetic field. The ionospheric conductivities are determined from the 

ion-neutral and electron-neutral collision frequencies.

There have been various models developed to simulate large-scale 

convection in the ionosphere (e.g. Roble and Rees 1977; Fuller-Rowell and Rees 

1980; Sojka 1989; Schunk 1988; Roble, Ridley, and Dickinson 1987; Maurits and 

Watkins 1996). For all these models, the velocity distribution is prescribed at the 

top of the simulation domain.

These can be useful to study large-scale ionospheric convection. However, 

they are unable to resolve either small spatial structures, or changes evolving on 

fast temporal scales. This is because, in order to run a global simulation, sacrifices 

in spatial and temporal scales must be made—as computer resources are limited.

All these models (necessarily) use a relatively long time step. Thus, the 

inertia term in the momentum equation (c.f. Equation 2.2) ends up being 

neglected. This eliminates the ability to model important plasma waves (Alfven,

8



slow, and fast waves). The models are therefore unable to model the field-aligned 

current formation and subsequent evolution characteristic of small-scale auroral 

structures.

Auroral arcs can exhibit very small-scale structure (a width of as small as 

100 m, e.g. Maggs and Davis 1968; Borovsky 1993). Arcs can also move rather 

quickly (several km per second)—faster than the usual velocity of the ambient 

plasma. Thus arcs display both small spatial and fast temporal scales.

To properly depict M-I coupling, a model must be able to resolve the 

relevant spatial and temporal scales. Such a model, for two dimensions, was 

developed (Zhu, Otto, Lummerzheim, Rees, and Lanchester 2001).

A new three-dimensional model is described in Chapter 2. Explicit 

parallelization greatly enhanced the size of the system domain—which allowed for 

modeling on very small spatial scales. With this model, we have been able to 

reproduce self-consistent features of discrete arc formation and evolution: i.e. very 

thin structures, reminiscent of actual auroral arcs; velocity shear parallel to the 

thin precipitation regions; and electric fields forming perpendicularly to the arc 

structures. Results also show that the ionosphere has significant feedback into 

magnetospheric evolution.

There are many unresolved issues of M-I coupling. The model developed in 

this thesis enabled the studying of some of these issues on fine numerical and 

spatial scales. A fully height-resolved, realistic ionosphere was modeled—which

9



enabled the study of Alfven wave reflection. Discrete electron precipitation 

regions were modeled, and their time-evolution was observed. These regions, 

both qualitatively and semi-quantitatively, resemble discrete aurora.

Large-scale experimental observations and global models have limited spatial 

and temporal resolution, and yield parameters that are averaged both in space and 

in time. These large-scale experimental observations can fail to resolve accurate 

values for many important physical processes. A computer model designed to look 

at small-scale temporal and spatial scales was employed to make quantitative 

measurement of the Joule heating occurring over various scale averages.

Because of the (unavoidable) underestimation of the Joule heating in global 

models, they fail to match up with observations. Even with present-day 

computational resources, the largest supercomputers have limited ability to 

resolve small scales over a global simulation domain. Attempting to mitigate this 

mismatch was a partial motivation for this work.

A study was made of the under-measurement of Joule heating in the region 

of small-scale structure—showing as much as a factor of 8 under-valuing of the 

actual heating.

Outline of the Thesis

A three-dimensional, three-fluid (ion, electron, neutral) model is described 

in Chapter 2. An existing model (originally developed by Birk and Otto 1996) was 

explicitly parallelized. This enabled the quantitative, self-consistent simulation of

10



the dynamics and structures of the ionosphere on fast temporal scales, and on 

small spatial scales. The model was designed to study the aurora, specifically 

discrete arcs.

The model includes a full set of dynamic equations for the neutrals, ions, 

and electrons. The height profile of the density and temperature of the neutrals is 

set phenomenologically—with two settings, depending on the level of solar 

activity. It computes the ion-neutral, electron-neutral, and Coulomb collision 

frequencies. The inclusion of the inertia terms in the momentum equation enables 

the modeling of Alfv6n waves. This is essential to the successful modeling of the 

M-I system on small spatial and temporal scales.

This model has been employed to study M-I coupling processes, with 

emphasis on fast dynamics and small-scale structure. Several relevant and 

interesting results were obtained—pointing to the conclusion that ionospheric 

processes significantly alter magnetospheric dynamics.

Chapter 3 describes studies made of evolving M-I processes at small 

spatial and temporal scales. A self-consistent mechanism for the formation and 

evolution of discrete arcs was developed. An in-depth look was taken at reflection 

of Alfven waves from the lower ionospheric boundary, and the development of 

consistent ionospheric conductivities.

Using the model, it was shown that the current sheet that forms as part of 

the mechanism of discrete arc formation has AlfV6nic boundaries, and that the

11



propagation of Alfv6n waves, on these boundaries, causes the spreading of the 

field-aligned current.

In Chapter 4, considerations of the Joule heating associated with 

small-scale structures were explored, using the model. Large-scale observation 

and global models have limited spatial and temporal resolution, and yield 

parameters that are averaged in space and time. These large-scale observations 

fail to resolve true values for many important physical processes—resulting in an 

underestimation. (The same model was used to study Alfven waves, with the 

added utility of calculating Joule heating on differing scale sizes.) This model was 

designed to look at small-scale temporal and spatial scales, and was employed to 

make quantitative measurement of the Joule heating occurring over various scale 

averages. This resulted in a quantitative approximation on the underestimation of 

the value of the Joule heating for large-scale models. A strong (approximately 

factor as high as eight) change was found from the smallest to largest scale 

averaging.

A summary of the simulation results is made in Chapter 5. Some 

suggestions for future work are also presented.

12
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Chapter 2: Methodology

M-I coupling is complex. Models are often employed to understand the 

underlying processes. This chapter describes the equations developed for this 

work, and how they are solved.

The interaction of a highly collisionless plasma with a strongly collision 

dominated plasma requires an extension of the usual fluid plasma equations, to 

include the transport which dominates ionospheric dynamics. A code originally 

written by Birk and Otto (1996) was explicitly parallelized, enabling a study of the 

fine-scale structure of M-I (magnetosphere-ionsophere) coupling on very fine 

temporal and spatial scales. It is believed that this model successfully reproduces 

all the physics (e.g. Alfven wave propagation and reflection, inertia, friction) 

relevant to the problems addressed.

The model includes ionospheric transport as source terms (mass, 

momentum, energy) in the set of fluid plasma equations. The model is three-fluid 

(electrons, ions, neutrals). The set of equations used in the model is shown below. 

For the complete set of equations, see (Birk and Otto, 1996).

dp _  ..—  = -V • pv
dt (Equation 2.1 Ion Continuity Equation)

^ - = -V -(p v v )- ^Vp + pg+(V x B)x B

/ a \ (Equation 2.2 Ion-Inertia Equation)+ p v (i-p p )-  pv„(t-/3p)- pv,.„(v„- v) 1 M
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dB  -  ——  = + V x ( v x B ) -  V x ( r j V x B )
dt (Equation 2.3)

-v -V p -)p V *v  + ( t -  Pp)Tn
at

-K y -i) 2 r ty x B ? ie c - - ^ - ( T - T n\ 
m, + m

m v ,o  
— ■~~ + unj

i e  \ im, +
( v - v „ ) 2

(Equation 2.4)

(Note that in the model, electron temperature terms were not used. Also, the 

electron temperature equation was not employed. For the study of Joule heating 

and Alfv6n waves, one does not need the Hall conductivites; however, one does 

need the Pederson conductivities.)

Here p  and p n are the total plasma and neutral mass density; m, and 

mn are the ion and neutral particle mass; Te, 7̂ , and Tn are the electron, ion, 

and neutral temperatures; p, pe, and pn are the total plasma pressure, electron 

pressure, and neutral pressure; n is the plasma number density; v, v^and vn

are the plasma, electron, and neutral velocities; B is the magnetic induction 

vector; g is gravitational acceleration; t is the ionization rate; vin is the 

ion-neutral, vei is the Coulomb, and veff is the effective collision frequency 

between electrons and neutrals; r) is the resistivity; y and yn are the ratios of 

specific heats for the plasma and neutrals; ec is the average energy that goes into



electron heating for each ionization process (a typical value is 2eV); \  is the 

electron heat conduction coefficient; and K = 1 l(y -1 ) . For energy conservation, it 

is required that yn = y = 5/3. The resistivity in the simulation is given by:

V ~ Vei+ Ven+ Win (Equation 2.5)

with r)ei = Xve?A, r)en = XvenTA, and r)in = kv inxA. Where ve„ ven,and vin are 

the electron-ion, electron-neutral, and ion-neutral collision frequencies, the 

parameterization of vd , ven, and v,„ is given in (Schunk, 1983), xA- l 0lvA is the
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The model assumes:

is a normalization coefficient.

n= ne = nt (Equation 2.6) 

p  = n(me + m,) (Equation 2.7)

P ~  P e  +  Pi  (Equation 2.8) 

pv = p eve + p ivi Equation 2.9)

The model assumes quasineutrality. This prevents the development of 

oscillations on the order of the plasma frequency. The physical argument for this is 

that the Debye length is very small. This is fortunate, as the inclusion of 

oscillations in the model on the order of plasma frequency not assuming 

quasineutrality would cause the model to be computationally untenable on the 

considered spatial and temporal scales, even with modern computing resources.



Thus, the model does not reproduce Langmuir waves. There is a set of similar 

equations for the neutrals. The inclusion of the ion-inertia terms (the terms to the 

left of the equals sign—and the first term to the right of it, in Equation 2.2) enables 

the model to produce AlfvSn waves.

The model conserves mass, momentum, and energy. The transport 

coefficients are chosen semi-empirically as functions of mass and temperature. 

Please note that there is no self-consistent treatment of kinetic processes 

(collisions, ionization, and recombination)—however, the model does have 

ionization and recombination. There is momentum transfer between neutrals and 

plasma. The model includes collisional thermalization, and dissipative terms.

Quantities are normalized to the horizontal length scale l0 = 1.0 km; the 

vertical length scale to L0 = 100 km; the plasma and neutral number density n 

and nQ to nQ = 50,000 cm 3; the mass me, m,., and mn to the mass of a carbon 

atom rriQ = m0+; the mass density p  and pn to p0 = n0m0; the magnetic field B 

to B0 = 0.S G; the vertical velocity v., vez, and vn. to the Alfven velocity

-- _i /vA= B0(p 0p0) 2 (1,220 km s ); the horizontal velocity v, and vv to —
' kovA

(2.44 km s ~‘); the pressure p, p e, and pn to P0 = S 02/(2p0); Te and Tn to 

T0 = P0/(n0k) {km  the Boltzmann constant); and the time t to the characteristic

L
AlfvSn time rA = — , typically 0.1 seconds.
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Model Boundary Conditions

One must assume boundary conditions to solve the model equations. 

However, the system has no physical boundaries. This section describes the 

boundary conditions employed, and the motivation for said choice of boundary 

conditions.

The model employs Cartesian coordinates. The x and y directions are 

chosen perpendicularly and parallel to the current layer, respectively. The z 

direction is chosen in the vertical direction. The grid in the x-direction is 

irregularly spaced—in order to increase resolution near the current sheet. The 

grid in the z-direction is also irregularly spaced—to increase resolution towards 

the bottom of the simulation domain (the ionosphere). Present values allow a 

maximum resolution of 0.1 km in the x-direction, a maximum resolution of 0.4 km 

is possible in the y-direction, and a maximum of resolution of 250 km is possible in 

the z-direction.

At the positive and negative x boundaries, boundary conditions for 

densities, pressures, and temperatures are computed by extrapolation 

(continuous boundary conditions). That is, the values at the mathematical 

boundary were extrapolated from those at the physical boundary.

The magnetic field B, the current j ,  and the plasma velocity v are 

determined from Ohm's law (see below). After the boundary conditions for



density p  and pressure p  are obtained, the collision frequencies are 

computed. The electric field is extrapolated from the physical boundary at the x 

boundaries, and the Pedersen and Hall conductivities are used to compute the 

current density from j  = o  -E on the boundary. The normal component of the 

magnetic field B is determined from the relation V • B -  0.

Periodic boundary conditions were employed in the y-direction—that is, 

the values at the lower y boundary were mapped to the upper y-boundary. This 

allowed waves to freely propagate through the system.

At the lower z boundary, two different boundary conditions were chosen. 

The first was identical to the x boundary conditions (above), and allowed the 

magnetic field lines to map out of the lower boundary of the system. The second 

set magnetic perturbations in the x and y directions to zero (d5x -  6By = 0). This 

enabled the ionospheric currents to close, at the bottom of the system domain.

At the top boundary (z ~ few /?£), the value at the mathematical boundary 

is computed by extrapolation of the values at the physical boundary, for most 

quantities. This maintains the initial perturbation for the Alfven waves, and it is 

intended to allow the transmission of the waves that are reflected in the lower 

ionosphere.

The values for the magnetic field and the plasma velocity at the top of the 

simulation are imposed (upper z boundary). This spawns a downward-traveling
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Alfven wave, and permits the reflected Alfven (from the ionosphere) to pass 

through the top of the simulation domain.

Model Initial Conditions

Initial conditions are needed to solve the model equations. This presents a 

challenge—as M-I coupled systems do not have "initial conditions." This section 

describes the initial conditions chosen, and the motivation for said choice.

The collision frequencies ven, v,„, and vei are computed as initial 

conditions.

The magnetic field (at the top of the simulation domain—the 

magnetosphere) is given by:

The velocity at the top of the simulation domain (the magnetosphere) is 

given by:

b r -  0

(Equation 2.10)

1 b .o 1 tanh(2jc) 1 [l + tan h (j:-jc^  + 20)
—. V n -  7 \ ~ ' (Equation 2.11)

Vc -  J VzoP
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See Figure 2.1.

These boundary conditions were chosen to produce a clean, "pure Alfven 

wave." (Other conditions chosen would produce a "noise" of different plasma 

waves.) This superposition of differing types of plasma waves (traveling at 

different speeds) was not only more numerically untenable, but would have made 

this numerical study less precise and more difficult.

In the computation of the y-components of the magnetic field (Equation 

2.11), the first hyperbolic tangent produces a shear across the simulation. The 

ratio of the hyperbolic tangent to the square of the hyperbolic cosine (second 

term) strengthens the magnetic shear across the simulation domain. The third 

term, a hyperbolic tangent, heightens the magnetic shear towards the center of the 

y-range.

Figure 2.1 Imposed Shear (Vectors) at the Top of the Simulation Domain—for Either the Magnetic 
Field or the Velocity (Differing only by Constants). Such a Choice of Conditions Facilitated the 
Spawning of a "Clean Alfv6n Wave.”
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Please note that the mass density is conserved, at 1 = n0m0. Thus, as the 

molecular weight decreases with altitude, the numerical density (normalized to 

50,000 cm ~3) increases accordingly.

Note that it is the gradient that causes the generation of the field-aligned 

current. A uniform deformation of the magnetic field everywhere in the simulation 

would result in just a shift of conditions, and no net current.

Derivation of Ohm's Law

Ohm's law provides the equation of motion for electrons and when 

combined with the induction equation it determines the evolution of the magnetic 

field (Equation 2.3). It is thus of vital importance in the understanding of 

ionospheric dynamics. The derivation of the version of Ohm's law used in the 

model follows.

The starting point for this derivation is the general momentum equation for 

the electron and the various ion species. However, the form used in the simulation 

(Equation 2.3) is different from the one commonly used:

(Equation 2.12)
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Where is is the ionization frequency; /ft is the recombination frequency; 

vsk is the (elastic/symmetric) collision frequency for momentum exchange; and

Ps is the first moment of the inelastic collision operator.

The electron and ion momentum equations are thus given by: (Note 

that charge neutrality is assumed: ne = n, *  n.)

^  = -V -(«veve) -  — V • Ue -  — n(E+ ve x B)+ ngdt me me
~vein<ye -  v,.)- vMn(ve -  v„)- n(nve -  ivn)
dnv. 1 e  — —  -

— - -  -V-(nv,vf)------ V- n ,  n(E+ v, x B)+ ngdt mi mi
~vien(Vi ~ v >  v,,n(v, -  v j -  n(^v, -  ivn) (Equation 2.13)

To bring this into a more suitable form to replace electron and ion velocity, 

current, and electric field, one rearranges the momentum equations for the 

electrons and neutrals:

(ve -  v j - -----— ((v<- v > f l + £ + v „ x f i ) + — f f
™ eV en

(V i-vn) --------— ((vi - v n)x B  + E+vnx B )+ — Ti
m'v<" v‘nn (Equation 2.14)

where

V .(n^ v j - — V -n e + ng dt me
- v ri»(ve -  v ,)- n([xeve -  vevn)
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f  m _ _  v■ (nvivi)- — V• II; + ng 
dt mi

- v e,n(v,. -  v , ) -  n(A<ev( -  v,v„)

Separating into the parallel and perpendicular (of B) components, the 

parallel components are given by:

(K~Vn\  — Ey + —  f 4
" m eVen ' '

( v / - v „ ) | -------- —  fi + —  7;.. (Equation 2.15)
1 11 v,„n 11

The perpendicular components are given by:

(ve -  vn)±
m,.

Ven (E± + v„ x B ) -  f r - - bx (E + v nxB)2 2CO + Vce e/i
2 2

1 -  cote I f  -  -71, + , '••••;— 6x712 2 fl ' 2 2wt,+ v CTn Wce + V^/l

(V ,- Vn)A------
m,

V” (£ ± + v„ x B )- - ^ - r b  x (E+ vn x B)2 2 v -L «
®c/+V/„

2 2

v,. 1 co 1 r -
r., + — i!— - b x T ,2 2 /I ' 2 2cud +vinn co„+v,„ n

(Equation 2.16)

Then, using E = E+vnx B, one obtains Ohm's Law: (Note that the

reference frame is the rest frame of the neutrals.)

j  = o  E± + a hb xE+  oJE^ -  * en eTel +
" < » c e + V en co2 + V 2a  in

eT„

<0„
2 2CO + VCf «7!

eb x T (a,.

03a+yin
■ebxT.

(Equation 2.17 Ohm's Law)

where
en

° '  = T
VePce , VinQ3q

\(oce + ven wci+vin/



These are the Pedersen, Hall, and parallel conductivities.

Relevant Scale Sizes and Model Limitations

Model results are valid over a certain range of spatial and time scales. This 

section describes the spatial and temporal scales employed in the model. Model 

limitations are also discussed.

The relevant physical length scales are the ion inertial scale (~50 km at 100

2
km above the Earth's surface), and the electron inertia length (= —

I m, <u„.
-4.67

i / pi

km). (The electron inertia is neglected.) Note that the ion skin depth is given by

( 4 m :Z2e2^  1 1
%  = 2 = 1.32xl(fZn'~2n }— ,

sec

where p
/ \  

m,

\ m P f

was chosen at — (carbon); m was chosen at 1 0 5 cm3. The ion 
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inertia scale can easily be resolved by the parallel model. It could only have been 

marginally resolved by the serial code. The electron inertial length (skin depth) 

can marginally be resolved by the parallel model (Inclusion by four or more grid 

points at 1 km/grid point resolution—comfortably resolved by later runs with the 

parallel model). However, since temporal changes associated with electron inertia 

are even faster than the subsecond scales considered here, electron inertia is



neglected in the model (Equation 2.3). This enabled the study of micro-scale 

physics in the ionosphere and lower magnetosphere on very small spatial and 

temporal scales.

Including the ion inertia, and not assuming a steady-state condition, 

enables the model to reproduce small-scale ionospheric processes, e.g. the 

formation of a field-aligned current layer. This is essential to the description of the 

formation and evolution of discrete aurora. The model can also reproduce Alfv6n 

wave propagation—and the height-dependent collision frequencies can reproduce 

realistic ionospheric conductances (and thus Alfv6nic reflections).

The three-fluid (electrons, ions, neutrals) approach enables the simulation 

of ionospheric (i.e. Hall/Pederson) currents—and thus current closure, via 

Pedersen currents, in the lower ionosphere. The model can also simulate realistic 

small-scale heating processes. The treatment of all ions as singly-charged ions, of 

height-dependent mass, however, cannot reproduce those quantities—which 

would require a multi-fluid approach.

Please note that the "base IDL routines" were originally developed by 

Antonius Otto. Dr. Otto also wrote the IDL code that checked for Alfvenic 

perturbations (Chapter 3). Dr. Otto also wrote the IDL routines which show the 

3-D current sheet deformations (Figure 3.9 and Figure 3.23).

An extant, serial, 3-dimensional code was explicitly parallelilized—for any 

arbritrary, 1-dimensional domain scheme. The nature of this code is laid out in
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express detail in this chapter and the first four appendices. No additional 

physics was added to the model (save for a new Joule heating routine)—however, 

the vastly increased system sizes, made possible by the parallelization, allowed for 

the addressing of new problems.

The explicit parallelization of a very complex (coupled partial differential 

equations) extant code, for a generalized parallelization scheme, and a generalized 

(but still orthogonal) grid—as well as the development of a routine to 

automatically calculate the Joule heating, for a generalized set of scale sizes, are 

entirely new contributions. Both represent significant achievements in both code 

design and implementation.

In this work, every effort has been made in the model to capture the 

relevant physics behind the questions in hand. The model supplies a consistent, 

complete description of the problems addressed in the thesis. The model 

shows—qualitatively— (and semi-quantitatively) some of the features of discrete 

auroral arcs, including narrow arc formation, fast plasma flows in the region of 

discrete arcs, and the formation and maintenance of a parallel (to the magnetic 

"guide field") electric field. The model also investigated the Joule heating over 

multiple length scales, in the region of discrete aurora.
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Chapter 3 Alfvenic Model Physics and Implementation Details 

Introduction and Motivation

The formation and time evolution of discrete auroral arcs has been one of the 

most enduring problems of auroral physics. Unresolved issues are the narrowness 

of arcs, current sheet structures above the arcs, electric fields extending parallel 

outwards from the arcs, fast (plasma) flows in the region of discrete arcs, and the 

formation and maintenance of parallel electric fields—deep into the ionosphere.

In this chapter, we discuss a potential mechanism for the formation and 

time-evolution of discrete auroral arcs. It is shown that this model 

qualitatively—and semi-quantitatively—reproduces, in a self-consistent manner, 

many of the properties of discrete aurora.

The review of accelerator and generator mechanisms that follows indicates 

several issues insufficiently addressed or integrated in the research literature.

These include the thinness of arcs (around 100 m in thickness, although arcs of less 

than 70 m are extant); fast plasma flows, at speeds up to 90 km/s, at a height of 110 

km above the Earth's surface (Vogt, 1999); and the formulation and maintenance of 

parallel electric fields deep into the ionosphere. Discrete aurora have streams of 

electrons of approximately 10 keV energies, in a very narrow spectrum (Mcllwanin, 

1960). These streams of electrons are accelerated by parallel electric fields, which 

penetrate deep into the ionosphere (Lysak, 1990).



Theories on the formation of auroral arcs abound in the literature. For this 

chapter, they have been separated into auroral arc generator mechanisms, and 

electron-acceleration mechanisms.

Accelerator Mechanisms

The following is a breakdown of theories for the mechanisms believed 

responsible for the acceleration of electrons into the region of formation for auroral 

arcs. Electrons are accelerated along magnetic field lines, which pass into the 

auroral region.

a) Static magnetosphere-ionosphere coupling (Lyons 1980; Lyons 1981; Kan 

and Lee 1980; Chiu and Cornwall 1980; Lee and Kan 1981; Chiu, Newman, and 

Cornwall 1981; Goertz 1985; Weimer, Goertz, Gurnett, Maynard, and Burch 1985)

In the theory of static magnetosphere-ionosphere coupling, a perpendicular 

electric field in the magnetosphere causes the production of a current loop that 

closes in the ionosphere. For the formation of an auroral arc, a parallel potential 

must develop along field lines (to have currents flowing down and back through the 

magnetosphere), while a potential must develop perpendicularly to the field, in 

order to get currents to flow in the ionsophere.

b) Particle anisotropies in the dipole magnetic field (Alfven and Falthammar 

1963; Persson 1963; Persson 1966; Lennartsson 1976; Lennartsson 1977;

Ponyavin, Pudovkin, and Sazhin 1977)
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If one assumes that ions and electrons have a different pitch angle 

distribution in the magnetosphere, then they will be reflected (mirrored) at 

different locations in the ionsophere. This will produce an ambipolar separation in 

the charge, and a resultant electric field. Note that the ions (mirroring after the 

electrons) must have sufficient energy to cross this electric field.

c) Thermoelectric contact potential (Hultqvist 1971)

When two regions of plasma at different temperatures come into contact 

with each other, an electric field forms between them, because of the loss of 

electrons from the warmer plasma to the cooler plasma. This has been proposed as 

a theory for the formation of auroral electric fields.

d) Strong plasma double layers (Albert and Lindstrom 1970; Carlqvist and 

Bostrom 1970; Block 1972; Block 1978; Gurnett 1972; Hubbard and Joyce 1979)

Sometimes, regions of strong electric fields form in a collisionless plasma, in 

regions where current is flowing. It has been put forward that these regions—called 

"double layers"—may provide the driving force for the acceleration of auroral 

electrons.

e) Electrostatic shocks (Swift 1975; Swift 1976; Swift 1979a; Hudson and 

Mozer 1978; Hudson and Potter 1981)

Very similar to the theory of double layers as means of accelerating auroral 

electrons, the electrostatic shocks treatment differs only in the solution of the
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Poisson-Vlasov equations. They are solved with the restriction that the spatial 

gradient of the layers is small, in relation to the gyroradii.

f) Ion-acoustic double layers (Lotko and Kennel 1983; Hudson, Lotko, Roth, 

and Witt 1983; Hudson, Crystal, Lotko, and Barnes 1987; Bujarbarua and Goswami 

1985; Lotko 1986; Prakash and Lysak 1992)

In the theory of ion-acoustic double layers, there are localized regions of 

drops in potential. It is believed that electrons gain energy by passing downward 

through successive regions of these drops.

g) Kinetic (oblique) Alfven waves (Hasegawa and Chen 1976; Goertz and 

Boswell 1979; Leontyev and Lyatskiy 1980; Lysak and Carlson 1981; Dungey 1982; 

Lysak and Dum 1983)

From the wave polarization:

i t + ' J A .
q  c at r ^  ■

Ex JfcxLl + ^ J
dx  (Equation 3.1 Wave Polarization

Equation)

One can see in the limit of perpendicular wavelengths becoming much larger 

than the electron inertial length, the parallel electric field vanishes. As the limit of 

the perpendicular wavelength approaches zero, the wave becomes electrostatic.
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Therefore, as the waves travel further into the ionosphere (waves less able to 

oscillate, due to friction with the neutrals), these conditions require fine structure 

(Swift 2007).

h) Electromagnetic ion-cyclotron waves (Temerin, McFadden, Boehm, 

Carlson, and Lotko 1986; Temerin and Cravens 1990)

The theory of electromagnetic ion-cyclotron waves is similar to the that of 

the oblique Alfv6n wave model (above). Mainly, that a parallel electric field forms 

for a parallel k vector greater than zero. However, in the oblique Alfven model 

electrons are accelerated impulsively; where in the electromagnetic ion-cyclotron 

waves accelerate model electrons are accelerated more slowly, in a manner similar 

to that of a linear accelerator.

i) Anomalous resistivity (Palmadesso, Coffey, Osakow, and Papadopoulos 

1974; Ionson, Ong, and Fontheim 1976; Mozer 1976; Papadopoulos 1977; Galeev 

1983; Stasiewicz 1984)

In the theory of anomalous resistivity, the momentum of drifting electrons is 

transferred to ions in a plasma. This produces a resistive electric field. It is believed 

that electrons are accelerated by such a [magnetic] field-aligned electric field. 

Coulomb collisions provide too weak a mechanism for arc formation. However, 

scattering by plasma waves may provide enough momentum transfer for this 

mechanism to function.
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j) Lower-hybrid-wave Landau resonances (Bingham, Bryant, and Hall 1984; 

Bingham, Bryant, and 1988; Bryant, Hall, and Bingham 1991; Bryant, Cook, Wang, de 

Angelis, and Perry 1991)

As a potential accelerator mechanism for auroral arc formation, it is 

proposed that electrons are accelerated by Landau resonances with a range of 

lower-hybrid waves. For this to occur, the lower-hybrid waves would have to have 

field aligned phase velocities that exceed the electron-thermal speed. Such a 

spectrum of waves would Landau resonate with electrons traveling at suprathermal 

velocities.

k) Electron precipitation induced by auroral kilometric radiation (Calvert 

1982; Calvert 1987)

In the theory of auroral kilometric radiation, it is proposed that sufficiently 

energetic electrons in the magnetosphere are deflected into the ionosphere by 

pitch-angle scattering. The mechanism is believed to be standing electromagnetic 

waves in density cavities; these waves are often referred to as auroral kilometric 

radiation.

1) Lower-hybrid-wave broadened DC electrostatic structure (Smith 1986a; 

Smith 1986b; Smith 1987)
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In the lower-hybrid-wave broadened DC electrostatic structure model, it is 

put forth that cross-(magnetic) field currents induced by lower-hybrid-wave 

turbulence broaden the current channel within a potential structure.

Generator Mechanisms

In this section, generator mechanisms (mechanisms that are proposed to 

generate an electric field along magnetic field lines which pass into the auroral 

region) are discussed.

m) Shear in the low-latitude boundary layer (Eastman, Hones, Barne, and 

Asbridge 1976; Sonnerup 1980; Bythrow, Heelis, Hanson, Power, and Hoffman 

1981; Heikkila 1984; Lundin and Evans 1985; Lotko, Sonnerup, and Lysak 1987)

If plasma is flowing across a magnetic field, the associated inertial of the flow 

can function as a (MHD) generator. This can produce electrical currents, where the 

flow is sheared across field lines. It has been proposed that the Earth's low-latitude 

boundary layer maps to the polar regions, and these flows are driving auroral 

currents.

n) Shear in the plasma sheet (Rostoker and Bostrom 1976; Hasegawa and 

Sato 1979; Birn and Hesse 1991; Birn, Hesse, and Schindler 1992)

Similarly, it has been proposed that flows in the plasma sheet can function as 

an (MHD) generator, due to their inertia. It is theorized that this can drive 

field-aligned currents from the region of the current sheet.
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o) Magnetic-field-line reconnection (Akasofu, Chapman, and Kendall 1967; 

Sato and Iijima 1979; Atkinson, Creutzberg, and Gattinger 1989; Atkinson 1992)

Reconnection in the magnetotail may drive auroral currents. This may be a 

mapping to X-type reconnection field lines, or to the compression from the outflows 

from the reconnection region.

p) Poynting-flux absorption on a resonance layer in the outer edge of the 

plasma sheet (Goertz 1983; Goertz 1984; Goertz 1990; Harrold, Goertz, Smith, and 

Hansen 1990)

It has been proposed that magnetosonic waves can be produced by the solar 

wind transferring its kinetic energy to the magnetosphere. Then, Alfven waves are 

produced across density gradients on the surface of the plasma-sheet. This is 

believed to be a resonant process, driven by the conversion of magnetosonic wave 

energy, by a resonant conversion of magnetosonic wave energy. Then, Alfven waves 

transfer their energy to kinetic energy of particles, driven by electric fields along the 

[magnetic] field lines.

q) Ionospheric-conductivity feedback instability (Ogawa and Sato 1971; Sato 

and Holzer 1973; Sato 1978; Lysak 1986; Lysak 1991; Watanabe and Sato 1988)

It has been theorized that a patch of enhanced conductivity may form 

between a downward (towards the Earth's surface) and upward traveling
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ionospheric currents. It is believed that the conductivity will increase with current 

flow, developing over time into an auroral arc.

r) Earthward ion streams in the plasma-sheet boundary layer (Kan 1975;

Kan and Akasofu 1976; Lui, Hones, Yasuhara, Akasofu, and Bame 1977; Lyons and 

Evans 1984; Lyons 1991)

High-energy ions follow in narrow structures along field lines, originating 

from the plasma-sheet boundary layers. It has been put forward that perhaps these 

ions are transferring their energy to elections thought an electrostatic potential 

structure, resulting in the formation of auroral arcs.

s) Earthward electron streams in the plasma-sheet boundary layer (Onsager, 

Thomsen, Elphic, and Gosling 1991)

Similarly, it has been theorized that electron beams of high energy (~10 

keV), streaming from the outer edges of the plasma-sheet, can result in the 

formation of auroral arcs. This is believed to occur from either conversion of the 

electron stream to kinetic energy by means of an electrostatic potential structure, or 

by direct precipitation.

t) Pressure gradients in the plasma sheet (Vasyliunas 1970b; Kern 1967; 

Block 1984; Galperin and Volosevich 1989; Galperin, Volosevich, and Zelenyi 1992)

A current along the [magnetic] field line will result from a gradient in the 

particle pressure perpendicular to a gradient in the magnetic induction (with the
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further requirement that both gradients are perpendicular to the guide field). It has 

been put forward that by this mechanism, gradients in the magnetosphere may 

produce auroral arcs.

u) Electrostatic fluid turbulence in the plasma sheet (Swift 1977; Swift 

1979b; Swift 1981a; Swift 1981b; Lotko and Schultz 1988; Song and Lysak 1988)

It is believed that electrostatic £ x  5-drift spawned turbulence behaves in a 

similar fashion to two-dimensional Navier-Stokes turbulence in the magnetosphere. 

When energy is transferred into the magnetosphere, at differing plasma spatial 

scales, this will result in growing of eddies of a specific size. Swift argued that arcs 

formed by these mechanisms would be isotropic, and not aligned in an east-west 

configuration.

v) Earthward plasma flow into a high-conductivity zone (Rothwell, Silevitch, 

Block, and Falthammar 1991)

In this model, the auroral arc produces a region of high conductivity, into 

which plasma streams. The auroral arc uses as its source of energy the kinetic 

energy of plasma flowing from the plasma-sheet.
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Discussion of Models

None of the models above provide a complete, consistent description for the 

formation and evolution of discrete auroral arcs. They fail to account for the 

thinness of aurora arcs by at least an order of magnitude (Borovsky 1993). A new 

theory is needed.

Alfven waves are the primary means of communicating information from the 

ionosphere to the magnetosphere (and vice versa). In the following sections, a 

model is developed which shows that the edges of the current sheet (part of the 

formation mechanism of discrete arcs expounded) is formed by magnetic shear, and 

deformed by Alfv6nic perturbations on its surface. The model 

shows—qualitatively— (and semi-quantitatively) some of the features of discrete 

auroral arcs, including narrow arc formation, fast plasma flows in the region of 

discrete arcs, and the formation and maintenance of a parallel (to the magnetic 

“guide field") electric field.

Simple Alfv6n Wave

In order to investigate our premise that Alfv6n waves play in the generation 

and time evolution of discrete arcs, we first consider the idealized case of an 

"infinite (Alfv6nic) wave train," reflecting from the ionosphere. Such a derivation 

will be used extensively in making quantitative measurements of Alfv6n waves from 

the ionosphere.
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As a first approximation in the modeling of an Alfvdnic reflection, the 

behavior of an infinite wave train normally incident on the ionsophere is 

considered. The scheme is outlined in Figure 3.1. Infinite wave trains of velocity and 

magnetic perturbations travel down from the top of the figure. Then, in three 

"snapshots" of time, their behavior is shown. Note that the velocity and magnetic 

perturbations reflect in different directions. This is permissible for an Alfven wave; 

perturbations in the magnetic field may be positive or negative.

Derivation of the Reflection Coefficient

Derived below is the reflection coefficient for an infinite Alfven wave train, 

normally incident upon the ionosphere. This relation will make quantitative 

measurements of AlfvSnic reflections in the general case. (For a complete derivation, 

see Scholer, 1970.)

Assuming an incoming "infinite wave train" (of constant magnitude), one has:

For the incoming wave:
6Bv = Bj

dv -  vV I
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v, => —L v* 
Br

SBMy v
Where are the magnetic and velocity perturbations in y, respectively,

and the i and o subscripts denote the incoming and outgoing wave. The velocity with 

the A subscript denotes the Alfven speed. See Fig. 3.1.



For the outgoing wave:
<5BV = B0

- V0 

B0
vo = “ „ VA

Bx
minus sign is a due to the change in wave propagation direction.)
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6 v

SB

Figure 3.1 Alfven Reflection (After Fig. 3 in 
Zhu, Otto, Lummerzheim, Rees and 
Lanchester 2001)
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The Pederson current (which closes currents in the ionosphere), is defined
as:

j  -  oJE

Integrated:

l  = 2 pE

h  = f  l dz

V0

— — 1 d
With direction(s) determined from V x B = fx0j  ( j. - ------- <5flv). Please note that

' fiQ dx

for a perfectly conducting ionosphere, <5v = v in + voul = 0.

7; -  J j j x -  —  f - d x -  —  0S ,.|121 -a B ,| (l>)
J  n0j  dx nQ ' 1 1

—  (Bi + B0)
Vo

= * P(E-j + Ez0)

= y>,(v, + v0)

Note: E - v x B  

Substituting for v, , v0 gives:

A + A) = VovÂ P(Ei ~ B0) ^EqUation 3,2) 

Note: v0 » - ^ v A

or

_  W ^ - l  s

w A * 1 '



Where [i0vA is the "Alfvenic impedance."

Diagnostic

From Equation 3.2 and using E = v x fi:

Av/v^ _ 1
AB/B0 H<£rvA

Which can be rearranged as:

Av 1 
AB HoLpB0

Or:

P l*0B0 Av
Av

Thus, the Pedersen Conductivity is uniquely defined by the ratio of AB . Note 

that while this condition holds even for Alfvdn waves propagating through the 

system, it is violated (does not hold) for regions where field-aligned currents exist. 

Figures 3.3a and 3.3b show a snapshot of this ratio of the velocity in the z-direction, 

over the magnetic field in the z-direction (color code). This ratio is shown to be 

constant, in all regions save those which contain the field-aligned current.

Reconnection Region

At the start of the simulation run, an initial perturbation in the form of a 

region of transient resistivity is turned on in a small, localized area. This causes a
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region of patchy reconnection to form (c.f. Fig. 3.3). This "reconnection region" has 

the form of:

Multiplied by the "time factor" of:

4 rjex

Where rj is the resistivity (0.05) and t is the time.

The resulting parallel electric field from this reconnection results in currents 

that turn on a current-dependent resistivity. The reconnection region is maintained 

by these existing currents. In fact, the region grows in size over time. The magnetic 

shear provides the source of free energy—in addition to the shear flow, applied at 

the top of the system. Magnetic shear is generated through shear flow in the 

simulation. An initial field-aligned current layer is assumed and shear flow imposed 

at the top boundary is used to generate additional Poynting flux, which intensifies 

the current layer (and magnetic shear) in the absence of dissipation.

Possible physical explanations for this initial localized electric field 

component parallel to the magnetic field are

a) double layers (Block 1975; Swift 1975; Lee and Kan 1981)

b) electrostatic shocks (Kan 1975)

- i



c) particle inertia (Seyler 1990)

Consider the condition of a superconductor. If either a maximum current 

value is exceeded, or there is too rapid a change in the current value, the 

superconductivity is lost. The magnetosphere is a superconducting plasma; the 

presence of this initial localized electric field component corresponds to too fast a 

flow resulting in a loss of this superconductivity. The system has become “choked."

In this model, progressive reconnecting of field lines at increasing distance 

from the initial current layer causes the spreading of the auroral arcs. The detailed 

mechanism of this process is examined in detail later in this chapter.
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time = 7 del v over del b (raw)

-8 -4  0  4  8
X

Figure 3.2a Velocity Perturbations Over Magnetic Field 
Perturbations (Boundary Conditions A) for a Cut in the 
z-Plane at 230 km

time = 7 del v over del b (raw)

-8 -4 0 4 8
x

Figure 3.2b Velocity Perturbations Over Magnetic Field 
Perturbations (Boundary Conditions B) for a Cut in the z-Piane at 
230 km
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Figure 3.3 Reconnection Region (after Fig. 2a in Otto and Birk 1993)



Alfv£n Wave Reflection

Of primary importance is how currents close in the ionosphere. Further 

downward in the ionosphere, collisions with the neutrals increase. Eventually, 

collisions become so frequent, that ions—with their much larger gyroradius—can 

no longer complete their gyrations without (statistically) having a collision. As ions

can no longer freely E x B  drift, they will start traveling along the electric field. This 

is the so-called Pedersen current.

Field-aligned currents are carried (mainly) by electrons. The Pedersen 

current is carried (mainly) by ions. Current is closed in the ionsophere by the 

Pedersen current.

For an Alfven wave traveling downward into the ionosphere, eventually 

collisions with the neutrals will cause both (all) conductivities to fall too low 

(resistivities to rise too high) for the ions to freely move, and the wave will be 

reflected. Next, we discuss some practical issues in developing a computational 

simulation.

Boundary Conditions A

Modification of the original boundary condition was required for the model, 

because the original way of handling the magnetic field at the lower boundary 

resulted in an unrealistically low ionospheric conductivity, which caused too rapid
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flows to develop in the ionosphere—with resultant numerical instability. In this 

case, the components of the magnetic field were assumed symmetric.

Boundary Conditions B

As mentioned above, a new way of treating the lower boundary of the 

simulation was required. At the mathematical [lower] boundary, the magnetic 

perturbations in x and y were set to zero (8BX = SBy = 0).

Unfortunately, this change resulted in large fluxes into and out of grid 

points—and areas of low density. These large fluxes resulted in some of the areas of 

low density becoming areas of negative density—with resultant numerical 

instability.

This required the implementation of a new smoothing algorithm. The new 

algorithm only performs "local smoothing.” as opposed to the previous smoothing 

routine, which performed smoothing on the entire simulation domain. This enabled 

calling the smoothing algorithm more often—without "washing out" the relevant 

physics.

To obtain realistic ionospheric conductivities, the collision frequencies (of 

the ions with the neutrals) had to be increased. Note that this meant that the time 

step had to be decreased—in order to resolve the new shorter collision times.
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Fig 3.4 shows the progressive Alfv6n wave propagation from the upper 

boundary, and subsequent reflection from the lower boundary (for Boundary 

Conditions A). This figure shows a snapshot of velocity vectors and velocity in the 

z-direction (color code). One can see some "stirring" of the plasma at the bottom of 

the simulation domain, and a resulting (smaller) Alfven wave being generated and 

moving upwards. This is a result of the system responding to a non-equilibrium 

situation—in the only way it can, by offsetting these conditions by the promotion of 

an electric field via plasma motion.

In Fig. 3.5, the Alfven relation is shown. This figure shows a snapshot of the 

ratio of the velocity perturbations to the magnetic perturbations (color code). For a 

wave to be an Alfv6n wave, the ratio of its velocity perturbations to its magnetic 

perturbations must be either plus or minus 1. (This is the Whalen relation.) The 

figure shows that the wave is question is clearly Alfv6nic in character.

Fig 3.6 shows the progressive Alfv6n wave propagation from the upper 

boundary, and reflection from the lower boundary—Boundary Conditions B. This 

figure shows a snaphot of the velocity vectors and velocity in the z-direction (color 

code).

One very notable difference of the evolution of the system from previous 

boundary conditions is the formation of an upward-traveling Alfv6n wave. The



magnetic shear (an initial condition) creates the current sheet—which places the 

system in a non-equilibrium condition. The only way that this system can sustain

this situation is by producing an electric field via plasma motion {E  = vxB ).
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t im e * 52 Velocity V z /V x  t im e * 67 Velocity V z /V x  tim e * 82 Velocity  V z /V x

Figure 3.4 Progression of an Alfr6n Wave (Boundary 
Conditions A) at 7.5, 22.5,37.5,52.5,67.5, and 82.5 Alfv6n 
Times. Cuts Are Taken at 12 km in the y-Plane (Mid-Point)
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Alfven Relation time = 30

Figure 3.5 The Alfv6n Relation. The Alfv6n Relation is Shown for 30 Alfv6n Times, in the x-z Plane, at y = 
6 km. This Shows That at a Value o f+1, the Wave in Question is Definitely an Alfv6n Wave.
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Figure 3.6 Progression of an Alfven Wave (Boundary Conditions B) 
at 7 .5 ,22.5,37.5,52.5,67.5, and 82.5 Alfv6n Times. Cuts Are Taken 
at 12 km in the y-Plane (Mid-Point)



Introduction to the Simulation 

Inventory of Runs

After the examination of a simple Alfven wave formation and reflection we 

will now investigate the results of changing system paramenters. Shown below is an 

inventory of the runs, used during the study. The parameters varied were the 

boundary conditions, the symmetry of the shear at the top of the simulation, the 

velocity of the shear prescribed at the top of the simulation, the collisions (of ions 

with the neutrals), and the plasma density.

For a detailed description of the motivation for altering the lower boundary 

conditions, c.f. Chapter 2. The symmetry of the shear at the top of the simulation 

domain was varied in order to investigate changes in "parity" of various properties 

in the simulation. (By an addition, or subtraction, of a constant value, the shear 

applied at the top of the simulation domain could be made to be either symmetric, 

or anti-symmetric (c.f. Fig 2.1).) The velocity of the shear applied at the top of the 

simulation box was altered in order to investigate the effects of differing the 

amounts of Poynting flux into the system (nominal value, in system units, was 0.5). 

Varying the collisions (of ions with the neutrals) and the (plasma) density was 

performed in order to investigate the changes this made in the height-integrated 

Pedersen conductivity (c.f. Chapter 2).
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Table 3.1 Inventory of Runs

Sigma=l Reference run—collisions, symmetry, 
shear all "nominal"

Old b.c. Ideally conducting ionosphere, 
remaining parameters nominal

Sigma= 1 symmetry Nominal collisions, symmetric velocity 
and magnetic shear

Sigma =1 velocity Nominal collisions, nominal symmetric 
(asymmetric shear), heightened velocity 
shear (2x nominal)

Sigma=1.2
*

1.2x collisions, "older run"

Sigma=1.5
*

1.5x collisions, "older run"

Sigma=2
*

2x collisions, "older run"

Sigma=5 5x collisions
Sigma=5 symmetry 5x collisions, symmetric velocity shear
Sigma=5 velocity 5x collisions, enhanced velocity shear
Sigma=7.5
*

7.5x collisions, "older run"

Sigma=10 lOx collisions, note that the time step 
had to be altered

density Enhanced [plasma] density towards the 
bottom of the simulation—all other 
parameters nominal

* denotes "old data"

Shown below is a table of the conductances, computed for the various 

runs in the study. Recall that:

H0B0 Av

Note that these were measure at time step of 15 Alfven times.
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Table 3.2 Computed Conductances

Time
step

Delta v B
nought

Delta
B

Delta v/ 
Delta B

R Sigma
Pedersen

Sigma=l 15 0.20435 4 0.78 0.26199 0.58479 0.95422
Sigma=l
symmetry

15 0.20440 4 0.78 0.26206 0.58470 0.95397

Sigma=l
velocity

15 0.20435 4 0.78 0.26199 0.58479 0.95421

Sigma=l.
2
*

15 0.18152 4 0.71 0.25567 0.59277 0.97781

Sigma=l.
5
*

15 0.15375 4 0.73 0.21062 0.65204 1.18696

Sigma=2
*

15 0.12416 4 0.75 0.16555 0.71592 1.51009

Sigma=5 15 0.06414 4 0.92 0.06972 0.86964 3.58572
Sigma=5
symmetry

15 0.06414 4 0.92 0.06971 0.86965 3.58586

Sigma=5
velocity

15 0.06414 4 0.92 0.06972 0.86963 3.58538

Sigma=7.
5
*

15 0.04931 4 0.94 0.05245 0.90031 4.76568

Sigma=10 15 0.03942 4 0.94 0.04194 0.91948 5.96018
Density 15 0.16233 4 0.96 0.16909 0.71072 1.47843
* denotes 
"old data"

Basic Properties

An imposed magnetic shear causes the formation of a current layer:

-  1 ^   ̂/ « — V x B
Bo



Fig. 3.7 shows an idealized depiction of this sheer. This sheer results in the 

formation of the current sheet. Fig. 3.8 shows this magnetic shear, as viewed from 

above. As the magnetic shear has a "net curl," this produces a current—the current 

sheet. The opposing magnetic shear serves as an "energy source" for the developing 

instability.

Fig. 3.9 shows the 3-D structures of deformation of the current sheet, for 

Boundary Conditions A—for 7.5,15, 22.5,30,37.4, and 45 Alfven times, 

respectively. The figure shows the equipotential surface of the current sheet, chosen 

phenomenologically. One can see in the first frame, the disturbance produced by the 

Initial Perturbation, and the Alfv6n waves flowing away from it. Note that there is 

deformation of the current sheet without reconnection. The deformation of the 

current sheet, and enhanced reconnection (electric fields) in the vicinity are very 

similar to observations of actual discrete aurora. The remaining frames show the 

(ideal) reflection of the AlfvSn wave from the top of the simulation domain.
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Figure 3.8 Magnetic Shear—Viewed From Above



Figure 3.9 3-D Structures of Deformation of the Current Sheet, for Boundary Conditions A, for 7.5, 
15 ,22.5 ,30,37.5 , and 45 Alfv6n Times, Respectively. One Can See in the First Frame, the 
Disturbance Produced by the Initial Perturbation, and the Alfv£n Waves Flowing Away From I t  The 
Remaining Frames Show the (Ideal) Reflection of the Alfv6n Wave From the Top of the Simulation 
Domain.
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Fig. 3.10 shows the idealized appearance of the reconnection region—both 

the magnetic field line configuration, and the velocity outflow. The magnetic field is 

in a classic "X-line" configuration, and there are strong velocity outflows to the sides. 

These are the hallmarks of magnetic reconnection (Otto, 1998).

The appearance of the reconnection region can be seen in Fig. 3.11. This 

shows a snapshot of parallel electric field lines parallel electric field magnitude 

(color code) on the left, and parallel current field lines, and parallel current 

magnitude (color code). It is highly localized, and at a height of 5,980 km. Shown in 

Fig. 3.12 is the appearance of the reconnection region, integrated [through the 

entire simulation domain] in x. This figure shows a snapshot of (integrated) parallel 

electric field lines and (integrated) parallel electric field magnitude (color code) on 

the left, and (integrated) parallel current field lines and (integrated) parallel current 

magnitude (color code) on the left. Please note that the reconnection region has 

spread into two regions. The reconnection region moves downward, as the 

simulation progresses.

Fig. 3.13 shows the magnetic field in the region of reconnection region. This 

figure shows a snapshot of magnetic field vectors, and the magnitude of the 

magnetic field in the z-direction (color code). One can see an X-line developing. An



X-line is the (idealized) juncture of two magnetic field lines, undergoing 

reconnection. Fig. 3.14 shows the velocity perturbations in the region of the 

reconnection region. This figure shows a snapshot of velocity field vectors, and the 

magnitude of the velocity in the z-direction (color code). Notice the strong flows, 

above and below the reconnection region—consistent with magnetic reconnection.

Fig. 3.15 and Fig. 16 show the velocity perturbation and electric 

perturbations, respectively, in a z-plane—towards the bottom of the simulation 

domain, for the reference run, in the ionosphere. Figure 3.15 shows a snapshot of 

the velocity field vectors, and the magnitude of the velocity in the z-direction (color 

code). Figure 3.16 shows the electric field vectors, and the magnitude of the electric 

field in the z-direction (color code). These plots also show two very aurora-like 

features: The electric field spreading directly outward from a narrow [mostly 

electron] precipitation region—and a corresponding velocity shear (carried by the 

Alfv6n waves) parallel to these thin precipitation regions. These behaviors closely 

resemble the electric and velocity fields near actual auroral arcs (Haerendel, 

Buchert, La Hoz, Raaf, and Rieger 1993).



Magnetic Field Lines

Figure 3.10 Idealized Appearance of the Reconnection Region (z-plane)
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Figure 3.11 The Appearance of the Reconnection Region 
(Reference Run). Cuts Are Taken in the z-PIane at 5,980 km.

time = so e  parallel J parallel ,im«  *  90

Figure 3.12 The Integrated Appearance of the Reconnection 
Region (Reference Run)—Integrated Through the x-Plane. Note 
That the Initial Reconnection Region Has Spread Into Two Regions.



Figure 3.13 The Magnetic Field in the Vicinity of the Reconnection 
Region (Sigma 5 Case). Cuts Taken in the z-PIane at 5,980 km.

Figure 3.14 The Velocity in the Vicinity of the Reconnection 
Region (Sigma 5 Case). Cuts Taken in the z-Plane at 5,980 km.



iime = 82 Velocity Vx/Vy
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Figure 3.15 Velocity Perturbation for the Reference Run. Cut in the z-Plane at 
280 km (Near the Bottom of the Simulation Domain). Note the Anti-Parallel 
Velocity Shear—on Either Side of the Precipitation Region.

lime = 82 Electric Field Ex/Ey

-8 -4 0  4 8
Figure 3.16 Electric Field PerturhatiSns for the Reference Run. Cut 
in the z-PIane at 280 km (Near the Bottom of the Simulation 
Domain). Note the Electric Field Components—Pointing Away 
From the Precipitation Regions.



Alfv£n Wave Diagnostic 

£ j l  region source for Alfven wave generation

Here the cause for the perturbation of the field-aligned current layer is 

examined. Since the perturbation has to propagate along the magnetic field, the 

hypothesis that the reconnection region might be a source of Alfvdn wave 

generation is tested. (The reconnection region is a source of Alfven waves. This is 

most evident from the first frames of both Figures 3.9 and 3.23. However, the 

following discussion maps them, formally, from the reconnection region—to the 

bottom of the ionosphere, and back.) Consider a region just to the right of the 

reconnection region (c.f. Fig 3.2). As the field lines are reconnected, Alfvdn waves 

travel outwards from the reconnection region, and move further and further down 

the field line. This (idealized) scenario is portrayed in Fig. 3.17. A snapshot in time 

of four field lines is shown. The deformation of the field lines is shown to travel 

downwards, reflect from the bottom of the simulation domain, and start traveling 

back upwards.

Consider the progress of the AlfvSn wave with distance moved from the 

reconnection region (c.f. Fig. 3.18). (The darker colors indicate an Alfven wave that 

has reflected from the bottom of the simulation domain, and is heading upwards.) If 

one were to travel along the second bar across the plot, one would see no signature 

for line a. One would see AlfvSnic signatures for lines b,c,d, and e; however, one
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would not see Alfv6n signatures for lines f and g, as there is a superposition of the 

downward and upward traveling AlfvSn waves. As there is a change in sign for the 

velocity (change in direction), the ratio of the superposition of the magnetic and 

velocity perturbations is no longer + or -  1 (the Wal6n relation). This forms the 

basis for the Alfv6n wave diagnostic. The location where one is subtracting out the 

AlfvSnic signatures—the location of the "probe"—is signified by an "X."

If one were to subtract out the velocity and magnetic perturbations of the 

downward traveling wave for lines f and g, one would again see an AlfWmic 

signature. This forms a simplified picture of the Alfven wave diagnostic, used to 

search (e.g. the edges of the current sheet) for Alfv6nic signatures.

The location of the probe is chosen somewhat arbitrarily. Care must be taken 

in interpreting results (e.g. potentially there could be extremely slow oscillations of 

the current sheet that may register as Alfvenic, regardless of its speed).

Fig. 3.19 shows a cut of the Alfven diagnostic (z-plane) of the reconnection 

region. This figure shows a snapshot of the velocity field lines and magnitude of the 

velocity in the z-direction (color code) on the left, and lines of constant Alfvenic 

speed perturbations and the magnitude of Alfvenic speed perturbations on the right 

(color code). One can clearly see that the edges of the current sheet have
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perturbations that are Alfvenic (by the color code) in character. Note that as one 

descends to the bottom of the ionosphere, this region gets thinner and thinner—due 

to the narrowing of the current sheet.

Figs. 3.20 and 3.21 show plots of the Alfven diagnostic for regions of 

decreasing altitude. These figures show snapshots of the velocity field lines and 

magnitude of the velocity in the z-direction (color code) on the left, and lines of 

constant Alfvenic speed perturbations and the magnitude of Alfvenic speed 

perturbations on the right (color code). It can be clearly seen, that the perturbations 

on the edges of the current sheet are Alfvenic, and all the way down to the bottom of 

the simulation (i.e. bottom of the ionosphere). It is these Alfv§nic perturbations, that 

carry with them both velocity and magnetic perturbations—which are responsible 

for both the anti-parallel velocity shear, and the electric field, pointing outwards 

from the (electron) precipitation region(s) (c.f. Fig 3.15 and Fig 3.16). This is 

shown in Figure 3.22. On the near side of the current sheet, the velocity 

perturbation is shown (at one point), along with the electric field perturbation (at 

one point)—similarly on the far side of the current sheet. Because the Alfvenic 

perturbations have been reflected, the direction of the velocity and electric field 

perturbations changes. The Alfvenic perturbations—along the entire edge of the 

current sheet—produce the opposing velocity shear on either side of the (electron) 

precipitation region, and the electric field projection outwards (from the
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precipitation region). Both of these are important features, displayed by discrete 

[auroral] arcs (Haerendel, Buchert, La Hoz, Raaf, and Rieger 1993).
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Figure 3.17 Progress of the Deformation of the Magnetic Field 
Lines (Caused by Alfvgn Waves) as the Lines Move Further Out 
From the Reconnection Region

Figure 3.18 Alfv6n Plot Showing the Progress of 
the Alfv6n Wave—Which Increases With Distance 
From the Reconnection Region
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Figure 3.19 Alfvenic Structures. The Above Are Cuts in the z-Plane (Parallel to the Earth's Surface) at 
5,980 km. The y-Direction (Perpendicular to the Current Sheet) Is in km’s—As Is the x-Direction 
(Parallel to the Current Sheet), z is in 100's of km's. This Figure Shows Clear Alvf&nic Signatures, on the 
Boundary of the Current Sheet (Reference Run).
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Figure 3.20 Alfven Structures for Decreasing Altitude—z-Plane Cuts at 2,360,1,680, 
480, and 200 km. Respectively (Reference Case). Note That the Range of the Last Plot 
Had to Be "Expanded"—as the Structures Became Quite Thin.



73

eme « 90 Velocity Perturbations Alfven Speed Perturbations time & 90

4  .4 0 4  a  *s -4 0 4 e

Figure 3.21 Alfven Structures for Decreasing Altitude—z-Plane Cuts at 
2 ,360,1,680,480, and 200 km. Respectively (Sigma 5 Case, Boundary 
Conditions B). Note That the Range of the Last Two Plots Had to Be 
Expanded—as the Structures Became Quite Thin.



Discussion of Various Cases 

Influence of Initial Conditions

Below is a discussion of the initial conditions of the runs used in this study. 

Their effects on the system, particularly the increase in Pedersen conductivity, are 

discussed. This provides a test of the version of Ohm's law (Equation 2.18).

The "sigma=l" run is the reference run. The collisions, symmetry, and shear 

are all "nominal." That is, the collisions are ~ vin; the symmetric is anti-symmetric; 

and the shear is 0.5 (in system units).

The "old b.c." case employs the old boundary conditions (i.e. Boundary 

Conditions A). It has an ideally conducting ionosphere; thus the reflection coefficient 

is not defined. All other parameters are nominal.

The "sigma=l symmetry" run has all parameters nominal, but the shear 

velocity was made symmetric. (In the nominal case, the shear was asymmetric.) 

Aside from a translation of the system, this appeared to have no quantitative or 

qualitative effect on the system.

In the "sigma=l velocity" run the velocity of the shear at the top of the 

simulation was increased. This had the effect of inputting more energy into the 

system.
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In the "sigma=1.2" run, the collisions towards the bottom of the simulation 

domain (the ionosphere) are increased by 1.2. This increased the Pedersen 

conductivity as expected.

In the "sigma=1.5" run, the collisions towards the bottom of the simulation 

domain (the ionosphere) are increased by 1.5. This increased the Pedersen 

conductivity as expected.

In the "sigma=2" run, the collisions towards the bottom of the simulation 

domain (the ionosphere) are doubled. This increased the Pedersen conductivity as 

expected.

In the "sigma=5" run, the collisions towards the bottom of the simulation 

domain (the ionosphere) are increased by a factor of 5. This increased the Pedersen 

conductivity as expected.

In Fig. 3.23 the 3-D structures of the deformation of the current sheet are 

shown. An equipotential of the current sheet, is shown for 7.5,15, 22.5,30, 37.5, and 

45 Alfv6n times. With this realistic Pedersen conductivity, these current sheets 

display aurora-like features.

In the "sigma=5 symmetry" run, the collision frequencies were increased by a 

factor of 5, and the shear was made symmetric. (In the nominal case, the shear was 

asymmetric.) Aside from a translation of the system, this appeared to have no
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quantitative or qualitative effect on the system; the Pedersen conductivity was not 

appreciably different from the "sigma 5" case.

In the "sigma=5 velocity" run the velocity of the shear at the top of the 

simulation was increased, and the collision frequency towards the bottom of the 

simulation domain (the ionosphere) was increased by a factor of 5. This had the 

effect of inputting more energy into the system, and the Pedersen conductivity was 

increased as expected.

In the "sigma=7.5" run, the collisions towards the bottom of the simulation 

domain (the ionosphere) are increased by a factor of 7.5. This increased the 

Pedersen conductivity as expected.

In the "density" run, the plasma density was increased towards the bottom of 

the simulation domain (the ionosphere). Although this did increase the Pedersen 

conductivity, it did not increase it to the extent expected. This points to the 

possibility that our version of Ohm's Law (Equation 2.18) is not completely correct, 

or, at least, sufficiently inclusive to describe the system.

Boundaries

For the Boundary Conditions B case, the magnetic shear at the bottom of the 

simulation (the ionosphere) was eroded away (dissipation of magnetic energy, into 

Joule heating), by the plasma being set in motion—spawning an upward-traveling 

Alfv6n wave. If this erosion was a stronger effect than the velocity shear imposed at
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the top of the system, the reconnection region could no longer be maintained, and 

the characteristics of the discrete aurora were lost.

Fig. 3.24 shows the condition of a sufficient driver (the reference case). This 

figure shows a snapshot of the magnetic field vectors, and the magnitude of the 

magnetic field in the z-direction (color code). Fig. 3.25 shows the condition of an 

insufficient driver [to maintain the reconnection region]. This figure shows a 

snapshot of the magnetic field vectors, and the magnitude of the magnetic field in 

the z-direction (color code). The first figure illustrates conditions where enough 

energy (in the form of Poynting flux) was inputted into the system to maintain 

reconnection; the second figure illustrates conditions where enough of the magnetic 

energy was dissipated (in the form of Joule heating) that magnetic reconnection 

could no longer be maintained, and the characteristics of discrete aurora were lost. 

Visually, this corresponds to the presence, or lack, of the "kink" ([magnetic] 

reconnection region) in the [magnetic] field lines.

This is the sigma 10 case, where the collisions were increased by a factor of 

10. Please note that the time step had to be altered, to [numerically] resolve the 

higher collision frequency (lower collision time).
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E = =  electric field 
perturbation

VA = =  direction of 
propagation

Figure 3.22 3-D Perturbations. This Figure Shows the Velocity Perturbations, Electric Field Perturbation, 
and the Direction of Travel of the Alfrgnic Perturbations (At Two Points Only—One on the Near Side, and 
One on the Far Side of the Current Sheet).



Figure 3.23 3-D Structures of Deformation of the Current Sheet, for the Boundary 
Conditions B, the Sigma 5 Case, for 7 .5 ,15 ,22 .5 ,30 ,37 .5 , and 45 Alfv6n Times, 
Respectively. One Can See in the First Frame, the Disturbance Produced by the 
Initial Perturbation, and the Alfv£n Waves Flowing Away From I t  The Remaining 
Frames Show the Reflection of the Alfv6n Wave From the Bottom of the Simulation 
Domain. With a Realistic Pedersen Conductivity, These Current Sheets Display 
Aurora-Like Features.
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Figure 3.24 Sufficient Driver to Maintain Shear—Reference Case. Cut in the 
y-Plane (Perpendicular to the Current Sheet)—at y=12 km (Mid-Point)

time «  90 M agn, F ield B z/Bx M agn. Field By time •  90

8 4 0 -4 -8
X

Figure 3.25 Insufficient Driver (Erosion of Magnetic Shear)—Sigma 10 Case, 
Boundary Conditions B. Cut in the y-Piane (Perpendicular to the Current 
Sheet)—at y=12 km (Mid-Point)



Conductance

In Fig. 3.26, a progression of descending plots of velocity perturbations, in 

the z-plane, is shown. The plots are snapshots of velocity field vectors and 

magnitude of velocity in the z-direction (color code) on the left, and velocity field 

lines and magnitude of the velocity in the z-direction (color code) on the right.

These are for the reference case. The plots display a remarkable amount of 

fine-scale structure—in the form of rapid changes of velocity (both magnitude and 

direction) over small spatial scales.

However, in Fig. 3.27, the sigma 10 case (Boundary Conditions B), less 

fine-scale structure is shown, as more of the Alfv6n wave is reflected, due to the 

higher conductance. This is a remarkable result. The plots are snapshots of velocity 

field vectors and magnitude of velocity in the z-direction (color code) on the left, 

and velocity field lines and magnitude of the velocity in the z-direction (color code) 

on the right.

Upon examination of the various cases, it appears that a higher 

conductance is more conducive to a switching off of the magnetic reconnection, and 

the loss of discrete aurora-like features. However, it is not obvious why this should 

be the case.
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Figure 3.26 Velocity Perturbations—Cuts in the z-Plane, at 1 ,000 ,730 ,480 , and 
230 km (Reference Run). These Plots Show Remarkable Fine-Scale Structure

ooNJ



Figure 3.27 Velocity Perturbations—Cuts in the z-Plane, at 1,000,730, 
480, and 230 km (Sigma 10 Case, Boundary Conditions B). Note That 
These Plots Show Less Fine-Scale Structure—Due to More of the Alfvln 
Waves Being Reflected Higher in the Simulation Domain.
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Realistic Ionospheric Conductivities

Recall that:

X ,
'  F A  Av

Therefore,

l p (physical units) -  MjrxlCT7— Vo-fiG)^ (system units)

(See the normalization, Chapter 2.)

l p ranges from ~0.95 to 5.96 (c.f. Table 3.2). Therefore, the 

height-integrated Pedersen conductivity ranges from approximately 4.18 x lO"6 to 

2.62 xlO"5 Siemens.

In Fig. 3.28, a plot of realistic ionospheric conductivities (nighttime) is 

shown. It shows height in kilometers, vs. conductivities in Siemens. As this is a log 

plot—the maximum, in a "rough cut,” is approximately equivalent to the (height) 

integrated property. Therefore, the model has been shown to reproduce realistic 

height-integrated Pedersen conductivities.
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Mar 21 R=35.0 12.0LT

1 0 "8 1 0 " 6 10~4 10~2 1 1 0 2 
CONDUCTIVITY (S/m)
: Parallel  : Pedersen  : Hall

Figure 3.28 Realistic Ionospheric Conductivities (From
http://wdc.kugi.kyoto-u.ac.jp/ionocond/exp/icexp.html "On the Ionospheric Conductivity," 
Kitashirakawa and Sakyo, July, 2011).

http://wdc.kugi.kyoto
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Discussion

The reflection of an Alfv6n wave from the ionosphere was successfully 

modeled. This was performed for both Boundary Conditions A and Boundary 

Conditions B.

It has been shown that the initial resistivity perturbation is a source of Alfv6n 

wave generation. This is most clearly evident in the first frames of both Figure 3.9 

and Figure 3.23. Alfv6n waves have been shown to "map" from the reconnection 

region, to the bottom of the ionosphere, and back. It is these Alfven waves, traveling 

downward from the reconnection region, that carry with them a magnetic 

perturbation, resulting in a current, and a parallel electric field, in the presence of a 

localized resistivity. It has been shown that Alfv6n waves, spawned by this 

reconnection region, are responsible for the deformation of the current sheet.

The edges of this current sheet have been shown to have waves of Alfv6nic 

character. These Alfvenic structures, that carry with them both velocity and 

magnetic perturbations are responsible for both the anti-parallel velocity shear, and 

the electric field, pointing outwards from the (electron) precipitation region(s) (c.f. 

Fig 3 .15 and Fig 3.16). In addition, upon visual inspection, the appearance of the 

(electron) precipitation region is very similar to that of actual discrete aurora. At 

their reflection at the bottom of the simulation domain (the ionosphere), these 

regions become quite thin (due to the narrowing of the current sheet)—again, a 

very (discrete arc) aurora-like feature.
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The parameters of the system were varied, to produce differing 

conductivities. The behavior of these conductivities was as expected—except for the 

behavior of the "Density" run. The failure of an increase in plasma density to 

increase the Pedersen conductivity as expected, points to the possibility that the 

assumptions of the model are not entirely correct, or, at least, not entirely complete.

It was shown that it was more likely that an increased conductance 

was more likely to shut off the magnetic reconnection—with a resultant loss of 

discrete aurora-like characteristics. However, the mechanism for this is uncertain.

Realistic ionospheric conductivities were reproduced. They ranged from 

approximately 4.18XKT6 to 2.62xl0~5 Siemens [c.f.Fig. 3.28).

There are many outstanding issues involved with the formation and time 

evolution of discrete auroral arcs, including: the narrowness of arcs current sheet 

structures above arcs; electric fields extending parallel outwards from the arcs; fast 

(plasma) flows in the region of discrete arcs; and the formation and maintenance of 

parallel (to the magnetic "guide field") electric fields—deep into the ionosphere.

The model has reproduced, qualitatively and semi-quantitatively, the 

features of discrete auroral arcs, and their time evolution. The lower regions of the 

simulation domain reproduced the attributes of discrete auroral arcs: a thin [mostly 

electron] precipitation region, electric fields extending out perpendicularly to said



region—and velocity shear parallel to it. This has been achieved in a fully 

self-consistent manner.

Major theoretical underpinnings of this work have been previously 

postulated (notably Otto and Birk 1993 and Zhu, Otto, Lummerzheim, Rees and 

Lanchester 2001). However, performing the simulations in three dimensions, as 

well as determining which input parameters (e.g. shear rate—that is, a measure of 

energy inputted into the system; conductance, Pedersen conductivity) lead to a 

"switching on” or a "switching off’ of those properties which lead to aurora arc 

formation ([magnetic] reconnection), and the mapping of the Alfv6nic perturbation 

from the magnetic reconnection regions is entirely new.
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Chapter 4  Joule Heating 

Introduction and Motivation

A major portion of the solar wind energy that crosses the magnetopause, 

ends up being being deposited in the ionosphere, in the form of Joule heating. This 

heating is mainly caused by the dissipation of the Pedersen currents, and the 

majority is deposited in the auroral zone (Kosch and Nielsen 1995). As the 

consequences of this Joule heating are appreciable, and global in the M-I coupled 

system, accurate knowledge of the amount of heating occurring is essential.

Large-scale experimental observations and global models have limited 

spatial and temporal resolution, and yield parameters that are averaged in space 

and time. These large-scale experimental observations can fail to resolve accurate 

values for many important physical processes. Specifically, such large-scale or global 

approaches may result in an underestimation of the Joule heating (Rodger, Wells, 

Moffett, and Bailey 2001). A computer model designed to look at small-scale 

temporal and spatial scales was employed to make quantitative measurement of the 

Joule heating occurring over various scale averages.

Because of the (unavoidable) underestimation of the Joule heating in global 

models, they fail to match up with observations. Even with present-day 

computational resources, the largest supercomputers do not have sufficient 

memory or processing power to resolve small scales over a global simulation
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domain. Attempting to remove this mismatch was an important motivation for this 

study.

Knowledge of the geo-space environment is obtained from large-scale and 

global observations, and from global models of the geo-space environment. It is 

known that many important physical processes in the geo-space environment 

happen on smaller spatial and temporal scales than can be resolved by large-scale 

observations. This is particularly true of the discrete aurora, which shows structure 

with a typical length scale ranging from 100 m to over 1,000 km (Trondsen and 

Cogger 1998; Trondsen and Cogger 2001), and motions with time scales of a 

fraction of a second. The time-varying nature of the electric field can lead to an 

underestimation of the Joule heating.

For example, for ISR (incoherent scatter radar), the range resolution 

(dependent upon the distance from radar) is on the order of 100's of meters (e.g.

300 m). In this example, for a beam width of ~l/2 degree at 100 km, the fundament 

of the horizontal resolution is 873 meters.

Another uncertainty is given by the signal to noise ratio. One needs a 

sufficient number of electrons in order to obtain resolution. For a strong signal (high 

electron density), and the above conditions, this would be on the order of 1 minute 

(Bristow, pers. comm.). This is an example of a temporal average.
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Because of the nonlinear nature of many processes in M-I coupling, observed 

and modeled averaged quantities do not always yield consistent results. An example 

of such a mismatch is the heating and temperature balance in the high latitude 

thermosphere-ionosphere system. A significant heat source in the aurora results 

from the ion-neutral collisions in strong ionospheric currents. The large-scale 

structure of these currents provides extended regions of Joule heating in and around 

the auroral oval. Models of this large-scale heating source, however, do not account 

for the observed temperature increase in the auroral zone (Emery, Lathuiller, 

Richards, Roble, Buonsanto, Knipp, Wilkenson, Sipler, and Niciejewski 1999). 

Structured auroras cause strong gradients in the plasma density and consequently 

in conductivity. At the same time, the ionospheric electric fields in aurora also show 

structure on the same spatial and temporal scale as the visible aurora (Lanchester, 

Rees, Lummerzheim, Otto, Sedgemore-Shulthess, Zhu, and McCrea 2001). Thus, 

there are strong and highly localized currents which lead to a similarly localized and 

uneven distribution of heating. Large-scale modeling of the thermosphere using 

only averaged electric fields, conductivities, and currents misses these heating 

sources. The mismatch between modeled temperatures and observations can be 

large, requiring an increase of the Joule heating source by a factor of 2 (Emery, 

Lathuiller, Richards, Roble, Buonsanto, Knipp, Wilkenson, Sipler, and Niciejewski 

1999).



The following is a derivation of a means of quantitatively measuring the loss 

of Joule heating by larger-scale averaging. It is used extensively in the model. Please 

note that this is a two-dimensional derivation—the Joule heating is calculated in 

plane parallel to the Earth's surface, near the bottom of the ionosphere.
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The average Joule heating is given by:

®  = 7 F0v^ 2r
J  F0V (Equation 4.1)

where Q *  the Joule heating, and FOV *  the field of view. (By field of 

view, it is meant the range over which an experimental observation or measurement 

of a model is made.) 

where:

^  “  f  F o v d  r  ( E q u a t i o n  4  2 )

(Note that d 2r = dxdy. Also please note that Q can also be integrated over 

time—in which case, one divides by the time integral to obtain the time-averaged 

Joule heating.)

The unaveraged Joule heating is given by:

Q - E ' j
= E o E

= (Equation 4.3)
Note that the volume integrated Pederson conductivity is expressed as

The spatially-averaged Joule heating is thus given by:
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Since the velocity is never uniformly in one direction, averaging over larger 

scale sizes will always result in an under-estimation of the Joule heating.

As an aside, worth mentioning is that the complete (unaveraged) Joule 

heating is given by:

where un ■ the neutral wind.

Qualitatively, one can view this process this way. As the neutral wind in the 

model is zero, and £  = vxB\

Thus, the Joule heating is proportional to the velocity squared. If the velocity 

changes rapidly either spatially, or over time, taking either a larger spatial average, 

or a larger temporal average, will result in a loss of Joule heating. Similarly, in a 

region of either high temporal or spatial fine structure, an increase in resolution 

(correspondingly temporal or spatial) will result in a much higher value for the 

Joule heating.

q = o p{E x u nxB )2 (Equation4.5)

q<xopB2(v2) 

q -  (cons tan ts)v2 (Equations 4.6)



The method of computation of the Joule heating is shown (qualitatively) in 

Figure 1. The boundaries for the scale averaging and the boundaries for the 

processors are shown. As this computation is fully automated for arbitrary grids, 

and an arbitrary (1-D) parallelization scheme, this represents a significant level of 

code design and implementation.

In the model, the neutral dynamics are turned off. This roughly halved the 

number of computations—the physical rationale for this is that for the length of 

time the simulation runs, the time scales of the neutral dynamics are too long to be 

appreciable.
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Figure 4.1 Joule Heating Diagram. This Figure Shows an Idealized Picture of How the Joule 
Heating is Computed Over Various Processor and Grid Boundaries.



So, while the above derivation is valid within the model, it should be noted 

that ignoring the neutral wind may result in an overestimation of the Joule heating 

by as much as 40%, or an underestimation by as much as 400%  (Thayer 1998).

Please note that one cannot measure (e [ } directly, but can only make 

measurements of (E±).

Attempts at remedying the problem of the underestimation of the Joule 

heating in models include: artificially increasing the heating in aurora by a constant 

factor (Emery, Lathuiller, Richards, Roble, Buonsanto, Knipp, Wilkenson, Sipler, and 

Niciejewski 1999), using nested grids to locally increase the spatial and temporal 

resolution (Fuller-Rowell 1985), or accounting for not only the average but also the 

temporal variability of the electric field in the calculation of heating sources 

(Codrescu, Fuller-Rowell, Foster, Holt, and Cariglia 2000).

The model employed in this study used high temporal and spatial resolution 

measurements of small-scale physical processes using an

ionosphere-magnetosphere auroral model. A computational study was made of the 

Joule heating, and the effects of averaging over various length scales was observed. 

High spatial and temporal resolution was employed to address heating on scales 

upward of 100 m and time scales of 10"2 sec. Eventually it is proposed to determine 

which observable parameters can be employed as a parameterization and derive
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methods and parameterizations that correct the consequences of missing 

small-scale structure in the global models.

The developed model is suitable to study small-scale auroral processes. It 

includes energetic particle transport, and the dynamics and energetics of the neutral 

gas and plasma. The model is 3-D, and has 3-fluids (ions, electrons, neutrals). The 

interaction of a highly collisionless plasma with a strongly collision dominated 

plasma required an extension of the usual fluid plasma equations, to include the 

transport which dominates ionospheric dynamics. Ionospheric transport is included 

as a set of source terms in the set of fluid plasma equations.

Boundary Conditions

Two distinct boundary conditions were used in this study. The first 

case—Boundary Conditions A—computed B (the magnetic field) at the lower 

simulation boundary, with the assumption that the magnetic field is symmetric. The 

densities, pressures and temperatures were computed by continuous boundary 

conditions.

In the second case—Boundary Conditions B—magnetic perturbations in x  

and y  were set to zero ( Bx = = 0), and B. was computed from V ■ B = 0. This

was the most expedient way of closing the currents through the Pedersen currents; 

in the Boundary Conditions A case, the currents were able to flow though the 

bottom of the simulation domain. Setting the above magnetic perturbations to zero
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greatly increased the Pedersen conductivities in the simulation—allowing 

ionospheric currents to close in a more realistic manner. This comprised the 

Boundary Conditions B case.

Results

Table 4.1 Inventory of Runs

Boundary Conditions A Applied Shear Rate (System Units)
0.25
0.50
0.75

Boundary Conditions B
0.25
0.50
0.75
1.00

Boundary Conditions A

The amplitude of the shear flow applied at the top of the simulation domain 

(c.f. Chapter 3, Figure 3.2) was varied—to see the effect on the Joule heating. This 

magnitude (imposed at the top of the simulation domain, a measure of the energy 

input into the system) was used as an input—the shear flow was set in system units 

at 0.25,0.50 (nominal), 0.75, and 1.0.

The total Joule heating was computed for grid resolutions of numerical 

resolution, 1 square km, 4 square km’s, 16 square km's, 64 square km's, and 256 

square km's. (The numerical grid resolution was on the order of 0.1 km in x, 0.4 km 

in y.) It should also be noted that the Joule heating was computed in a plane,



corresponding to approximately 120 km's from the Earth's surface. The choice of 

numerical resolution had a marked effect on the total observed Joule 

heating—indicating a remarkable amount of fine scale structure (in the form of 

variation of velocity perturbations over small spatial scales) being present.

As a reference run, a study was made of the Joule heating for various scale 

sizes, without an initial perturbation (c.f. Chapter 3) and an imposed shear rate of 

0.50. Interestingly, this example shows a higher peak of Joule heating, when the 

Alfven wave spawned at the top of the simulation domain (c.f. Chapter 3) reaches 

the bottom of the simulation domain, than for the case with an initial perturbation 

(Figure 4 .2—Absence of Resistivity Region).
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Calculated Joule Heating for Various Grid Resolutions
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Figure 4.2 Joule Heating—Absence of Resistivity Region
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The first figure (Figure 4.2, Joule heating no initial perturbation) shows 

the initial plasma motion (This is caused by dissipation in the field-aligned

current—the plasma is responding with E= v x B  motion, the only way that the 

plasma can respond—to the non-equilibrium configuration of the current sheet, an 

imposed initial condition.), followed by a peak (indicating the arrival of the Alfv6n 

wave), and finally a region of increased flow—due to the energy imparted by the 

reflecting Alfv6n wave. The second set of figures (Figs. 4.3a, 4.3b, and 4.3c) show a 

very smooth velocity distribution—on both sides of the current sheet. These figures 

show snapshots of the velocity field vectors and the magnitude of the velocity in the 

z-direction (color code). The absence of an initial perturbation has resulted in an 

undisturbed evolution of the simulation—there has been a very tidy reflection of the 

Alfven wave, spawned at the top of the simulation domain, with no turbulence or 

spreading/deformation of the current sheet.

A study was then made of altering the shear rate at the top of the simulation 

domain. Shear rates (in system units) of 0.25,0.50, and 0.75 were used. The shear 

rate of 1.0 (for the Boundary Condiations A case) proved too unstable for sufficient 

time-evolution of the simulation.

In Figs. 4.4,4.5, and 4.6 (figure references: Joule heating shear rate of 0.25, 

Joule heating shear rate of 0.5, and Joule heating shear rate of 0.75, respectively), it 

can be seen that the total amount of heating maps linearly with the imposed shear



rate. This is a reasonable result; the rate of shear establishes the amount of energy 

that is input into the system (in the form of Poynting flux). Figures 4.4,4.5, and 4.6 

show the velocity field vectors and the magnitude of the velocity in the z-direction 

on the left.

In addition, as the shear rate increases, the velocity distribution becomes 

increasingly turbulent. This can be seen in Figs. 4.4,4.5, and 4.6 (velocity 

distributions for a shear rate of 0.25, velocity distribution for a shear rate of 0.5, and 

velocity distribution for a shear rate of 0.75, respectively).

The cause for this turbulence, and the—rather remarkable—amount of fine 

structure, is the deformation—striation—of the field-aligned current sheet (See 

Chapter 3, particularly Fig. 3.23.). From an inspection of right-hand Figs. 4.4,4.5, and 

4.6, it would appear that one would need to go (at least) to a scale size at the 

numerical resolution (~ 0.1 km in x, ~0.4 km in y), to resolve the spatial variation in 

the Joule heating, and to at least an Alfv6n time (~1.1 seconds) to resolve the 

temporal variations [of the Joule heating]. (Prior to the turbulence after the arrival 

of the peak in Joule heating, a scale size of 1 square kilometer would appear to be 

adequate.) This corresponds to a truly remarkable degree of fine structure both 

spatially, and temporally, in the velocity perturbations.
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Figure 4.4 Velocity Perturbations and Joule Heating for a 
Shear Rate of 0.25 (Boundary Conditions A)
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Figure 4.5 Velocity Perturbations and Joule Heating for a 
Shear Rate of 0.50 (Boundary Conditions A)
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Boundary Conditions B

For the Boundary Conditions B case, one observes similar behavior for the 

Joule heating for various scales, for varying shear rate applied at the top of the 

simulation (Fig. 4.7, Fig. 4.8, Fig. 4.9, and Fig. 4.10). These plots are for nominal 

ionospheric conductivity. However, the magnitudes of the Joule heating are much 

higher. This is due to the fact that the currents (Pedersen) are closing more 

realistically in the ionosphere, and thus more energy is being deposited in the 

ionosphere—rather than flowing freely through the bottom of the simulation, as 

was the case with Boundary Conditions A.

There is a curious lack of the turbulence after the peak, that is evident in the 

Boundary Conditions A case(s). This may be due to the fact that these plots were 

generated at too low an altitude for this case (~120 km above the Earth's surface).
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Discussion

For both the Boundary Conditions A, Fig. 4.11, and the Boundary Conditions 

B, Fig. 4.12, cases, the maximum amount of Joule heating (the peak) varied linearly 

with the applied shear rate. This is a fully reasonable result, as the shear rate 

provides a direct measure of the energy input into the system (in the form of 

Poynting flux).

As the neutral dynamics are turned off in the code, and the neutrals are 

initialized to be at rest—the neutral wind contribution to the Joule heating is zero. It 

should be noted again that ignoring the neutral wind may result in an 

overestimation of the Joule heating by as much as 40%, or an underestimation by as 

much as 400%  (Thayer 1998).

The Boundary Conditions A cases displayed a—truly remarkable—degree of 

fine structure, both spatially and temporally. It would appear that one would need 

to go to (at least) a scale size at the numerical resolution (~0.1 km in x, ~0.4 km in 

y), and a temporal resolution of around 1 Alfven time (~1.1 seconds), to adequately 

resolve the correct value of the Joule heating. The Boundary Conditions B case(s) 

showed less turbulence/fine structure—possibly due to these plots being generated 

at too low a height (~120 km).
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Collision Multiple
Figure 4.13 Peak vs. Collision Multiple (Conductivity) for 
New Boundary Conditions for Reference Shear (0.5). This 
Is For a Height of Approximately 120 km.

As shown in Fig 4.13, an increase in the Pedersen conductivity, results in a 

lowering of the (magnitude of the) peak of Joule heating. This corresponds to a 

larger proportion of currents closing higher in the simulation box, thus less energy 

being deposited near the lower boundary.

In this chapter, we investigated the Joule heating for various scale sizes in the 

region of fine scale structure, that is, in the region of discrete aurora. A means of 

making quantitative measurements of the Joule heating was expounded and 

developed. The behavior of the system for two different lower boundary conditions 

was investigated. Boundary Conditions A allowed for magnetic perturbations to 

flow out of the bottom of the simulation domain; Boundary Conditions B closed off 

the lower ionosphere (The velocity perturbations at the lower boundary are set to 

zero.)—and enabled the system to close more realistically through the Pedersen



currents. This caused more energy to be deposited in the lower ionosphere—as 

evidenced by larger values of the Joule heating.

The arrival of the Alfv6n wave from the top of the simulation was clearly 

visible, as a peak in the Joule heating. This mapped linearly with the shear rate. This 

was reasonable—as the shear rate was a measure of how much energy was input 

into the system.

In Emery, Lathuiller, Richards, Roble, Buonsanto, Knipp, Wilkenson, Sipler, 

and Niciejewski (1999), it is stated that the under-representation of the Joule 

heating is as high as a factor of 2. Rodger, Wells, Moffett, and Bailey (2001) stated 

that the underestimation of the Joule heating is ~20%, with an upper value of 65%. 

Our simulation of small spatial and temporal scales showed that the large-scale 

averaged estimate of the Joule heating may be off by as much as a factor of 8, in the 

presence of small structures. Qualitatively, this large increase in the Joule heating is 

due to vary rapid spatial and temporal changes in the velocity profile, at an altitude 

of ~120 km. The model enabled a study of this on smaller spatial and temporal 

scales than previously possible.

This model quantifies the amount of Joule heating generated in small-scale 

auroral structures. According to the model results, an (approximately as high as a 

factor of eight) change was found from the smallest to largest scale averaging.

1 1 0
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Chapter 5 Conclusions

The reflection of an Alfven wave from the ionosphere was successfully 

modeled. This was performed for both Boundary Conditions A and Boundary 

Conditions B.

The initial resistivity perturbation has been shown to be a source of Alfven 

wave generation. This is particularly evident in the first two frames of both Figures 

3.9 and 3.23. AlfvSn waves have been shown to "map" from the perturbation region, 

all the way down to the bottom of the ionosphere, and back. These Alfven waves, 

traveling downward from the reconnection region, carry with them a magnetic 

perturbation, resulting in a current, and a parallel electric field, in the presence of a 

localized resistivity. These waves are responsible for the deformation of the current 

sheet.

The edges of this current sheet have been shown to have waves of Alfvenic 

character. It is these Alfvenic structures, that carry with them both velocity and 

magnetic perturbations, which are responsible for both the anti-parallel velocity 

shear and the electric field, pointing outwards from the (electron) precipitation 

region (s). In addition, upon visual inspection, the appearance of the (electron) 

precipitation region, is very similar to that of actual discrete aurora. At their 

reflection at the bottom of the simulation domain (the ionosphere), these regions



become quite thin (due to the narrowing of the current sheet)—again, a very 

(discrete arc) aurora-like feature.

The parameters of the system were varied, to produce differing 

conductivities. The behavior of these conductivities was as expected—except for the 

behavior of the "Density" run. The failure of an increase in plasma density to 

increase the Pedersen conductivity as expected, points to the possibly that the 

assumptions of the model are not entirely correct, or, at least, not entirely complete.

It was shown that it was more likely that an increased conductance would 

shut off the magnetic reconnection—with a resultant loss of discrete aurora-like 

characteristics. However, the mechanism for this is uncertain.

Realistic ionospheric conductivities were reproduced. They ranged from 

approximately 4.18x10'*’ to 2 .62x l0 '5 Siemens (c.f. Fig. 3.27).

In chapter 4, the Joule heating for various scale sizes was investigated in the 

region of fine scale structure. That is, in the region of discrete aurora. A means of 

making quantitative measurements of the Joule heating was expounded and 

developed. The behavior of the system for two different lower boundary conditions 

was investigated. The original boundary conditions allowed for magnetic 

perturbations to flow out of the bottom of the simulation domain; the new boundary 

condition closed off the lower ionosphere, and enabled the system to close more 

realistically through the Pedersen currents. This caused more energy to be

1 1 2



113

deposited in the lower ionosphere—as evidenced by larger values of the Joule 

heating.

For both the Boundary Conditions A case, and the Boundary Conditions B 

case, the maximum amount of Joule heating (the peak) varied linearly with the 

applied shear rate. This is a fully reasonable result, as the shear rate provides a 

direct measure of the energy input into the system.

As the neutral dynamics are turned off in the code, and the neutrals are 

initialized to be at rest, the neutral wind contribution to the Joule heating is zero. It 

should be noted that ignoring the neutral wind may result in an overestimation of 

the Joule heating by as much as 40%, or an underestimation by as much as 400% 

(Thayer 1998).

The Boundary Conditions A cases displayed a—truly remarkable—degree of 

fine structure, both spatially and temporally. It would appear that one would need 

to go to (at least) numerical grid resolution (~0.1 km in x, ~0.4 km in y), and a 

temporal resolution of around 1 Alfven time (~1.1 seconds), to successfully resolve 

the correct value for the Joule heating. The Boundary Conditions B case(s) showed 

less turbulence/fine structure—possibly due to these plots being generated at too 

low a height (~120 km).



It was shown that an increase in the Pedersen conductivity results in a 

lowereing of the (magnitude of the) peak of Joule heating. This corresponds to a 

larger proportion of currents closing higher in the simulation box, thus less energy 

being deposited near the lower boundary.

The Joule heating was investigated for various scale sizes in the region of fine 

scale structure, that is, in the region of discrete aurora. A means of making 

quantitative measurements of the Joule heating was expounded and developed. The 

behavior of the system for two different lower boundary conditions was 

investigated. Boundary Conditions A allowed for magnetic perturbations to flow out 

of the bottom of the simulation domain; Boundary Conditions B closed off the lower 

ionosphere (The velocity perturbations at the lower boundary are set to zero.), and 

enabled the system to close more realistically through the Pedersen currents. This 

caused more energy to be deposited in the lower ionosphere—as evidenced by 

larger values of the Joule heating.

The arrival of the Alfv§n wave from the top of the simulation was clearly 

visible, as a peak in the Joule heating. This mapped linearly with the shear rate. This 

was reasonable—as the shear rate was a measure of how much energy was input 

into the system.

In Emery, (1999), it is stated that the under-representation of the Joule 

heating is as high as a factor of 2. Rodger, Wells, Moffett, and Bailey (2001) stated

114



that the underestimation of the Joule heating is ~20%, with an upper value of 65%. 

Our simulation of small spatial and temporal scale showed that the large-scale 

averaged estimate of the Joule heating may be off by as much as a factor of 8, in the 

presence of small structures. This model provides quantitatively accurate 

measurements of the amount of Joule heating generated in small-scale auroral 

structures. A strong (approximately factor as high as eight) change was found from 

the smallest to largest scale averaging.

There are many outstanding issues involved with the formation and time 

evolution of discrete auroral arcs, namely: the narrowness of arcs; current sheet 

structures above arcs; electric fields extending parallel outwards from the arcs; fast 

(plasma) flows in the region of discrete arcs; and the formation and maintenance of 

parallel (to the magnetic "guide field") electric fields—deep into the ionosphere.

The model has reproduced, qualitatively and semi-quantitatively, the 

features of discrete auroral arcs, and their time evolution. The lower regions of the 

simulation domain reproduced the attributes of discrete auroral arcs: a thin [mostly 

electron] precipitation region, electric fields extending out perpendicularly to said 

region—and velocity shear parallel to it. This has been achieved in a fully self- 

consistent manner.

Major theoretical underpinnings of this work have been previously 

postulated (notably Otto and Birk 1993 and Zhu, Otto, Lummerzheim, Rees and
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Lanchester 2001). Performing the simulations in three dimensions, as well as 

determining which input parameters (e.g. shear rate—that is, a measure of the 

amount of energy inputted into the system; conductance, Pedersen conductivity) 

lead to a "switching on" or a "switching off' of those properties which lead to auroral 

arc formation ([magnetic] reconnection) is the major contribution of the present 

work.

In addition, the explicit parallelization of a very complex (coupled partial 

differential equations) extant code, for a generalized parallelization scheme, and a 

generalized grid—as well as the development of a routine to automatically calculate 

the Joule heating, for a generalized set of scale sizes, are key contributions. Both 

represent significant achievements in both code design and implementation.

There remain some open issues in the study. For one, a better understanding 

of the mechanism by which an increased ionospheric conductivity is more likely to 

shut off the magnetic reconnection in the system, thus causing a loss of the 

properties of discrete aurora. Also, it is not clear why for the Boundary Conditions B 

case, there is less turbulence in the Joule heating, than for the Boundary Conditions 

A case. This may be a consequence of choosing too low an altitude for making 

measurements. Both topics present possibilities for further study.
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Appendix A 

Fitting scheme

Integration Methods

The numerical techniques employed by the code were Dufort-Frankel 

(Leapfrog) and Lax-Wendroff integration methods. For the main integration, the 

Leapfrog method was employed. For example, in a 1-D case:

rp f h -1   r jn n ~ l r p  t\ nr>fl \

j  ~  J  -  \ H '  (Equation A.1)

Consider a simple equation of the form:

? L - _  dl _
dt dx

. . .  which would yield a value for the constant C:

Ax

Note that superscripts denote the time index: n + 1 *  centered in present 

time + At, n s  present time, etc. The subscripts denote the spatial index: j + 1 s  

centered in space + Ax, n a centered in space, etc.
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Figure A.l 1-0 Leap Method, Time vs. Space

Figure A.l displays the one-dimensional Dufort-Frankel integration scheme. 

Note that the code leaps through the two grid (red,blue), for each integration step. 

This is why the scheme is called Leapfrog.

The 3-D method employed in the model, while far more complicated, is of the 

same character. The fitting scheme also moves through the 3-D grid in a staggered 

manner, as in the above figure. Shown below is an example of the scheme for the 3-D 

convection equation:

-  — [<i- v / i  -  -  /L i .,)
Ay*



where:

AiJk = 2Mr\
(Ax,.)2+ (Ay,.)2 + (Az*)2;k > (Equation A.3)

The Leapfrog scheme is a second-order method, but leaves gaps (in the grid) 

for any given time step. Thus, the first-order-accurate Lax-Wendroff integration 

method is employed for the initial and final time steps and whenever a data output 

is desired. As an example, the 1-D case of the Lax-Wendroff integration method is 

given by:

Note that superscripts denote the time index: n + 1 ■ centered in present 

time + At, n *  present time, etc. The subscripts denote the spatial index: j + 1 ■ 

centered in space + Ax, n *  centered in space, etc. (See Fig A.2.)



time Xj_i xj xj+i
 ►space

Figure A.2 1-D Lax-Wendroff Method—Time vs. Space

Figure A.2 displays the Lax-Wendroff integration scheme in 1-D. The 

Lax-Wendroff method fills in the gaps in the grid left by the Leapfrog method. To 

update to the next time step, it uses three points: One a time step back and centered 

in space, and two a time step back and offset from center by ±Ax.

A note about discretization: If one is fortunate, a closed form solution to a 

partial differential equation exists. If one is even more fortunate, it can be 

determined. More frequently, however, a numerical solution must be applied.

The PDE (partial differential equation) is discretized into a system of 

algebraic equations. For consistency, when the transform that yielded the system of



algebraic equations from the original partial differential equations is done in 

reverse, one must again obtain the original set of PDE's. When applying the 

numerical solution, one must of course have numerical stability of the integration 

method. And finally, in the limit of AxAt - *  0, one must obtain (or at least approach) 

the exact solution. All the above conditions must be met for this to be a legitimate 

approach.

The Courant Conditions and Stability Considerations

The Courant condition states that the time step dt (zeit) must be small 

enough that information traveling at the fastest speed, must not outrun the smallest

(dx
spatial grid (e.g.) dx. If the information speed exceeds this velocity, —  , numerical

\dt

instability will result, and the code will crash.

Parallelization

In order to investigate small-scale spatial and fast temporal scales with a 

three-dimensional, magnetosphere-ionosphere coupling code, computational 

resources far beyond what a personal computer or workstation could provide were 

required. Runs had to be made on the fastest (parallel, distributed memory) 

machines.
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Please note that the equations of the model are explicit hyperbolic—resulting 

in a finite speed transport of information (i.e.waves). This enables one to use the 

finite element treatment (Under certain circumstances, certain terms may 

dominate, becoming elliptic. This can be problematic for parallel 

simulations-imaginary characteristics, infinite information propagation speed. This 

is not considered to be a major problem in this simulation, though.)

Parallelization is the distribution of work (total simulation volume)—by the 

programmer—among multiple processors. The user explicitly determines which 

parts of the simulation domain are distributed "where" among the processors 

(domain decomposition).

Figure A.3 Parallelization Scheme. Assemblage of 
4 Processors Shown.
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Figure A.4 One-Dimensional Domain Decomposition

Consider the speed-up that can be obtained:

S = Speed of Individual Processor

F ■ Efficiency of Parallelized Code. (This is a measure of the "Load 

Balance"—how evenly the work has been distributed among the processors. In the 

ideal case, this would be equal to 1. In any real-life situation, F < 1.)

Np *  Number of Processors

P a Proportion of Problem which Can Be Parallelized 

rc a Inter-Processor Communication Time



Total Execution Time of Problem of Size N:

Scalar:

N
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S

Parallel:

N  „  ™ NTp -  --- (1 - P)+ -------- + T r
S FSN„ c

Speed-Up:

J L + I c £ ]
Tp { FNP N J

Thus, for a code with a small portion which needs remain serial, one can 

reasonably expect for an explicitly parallelized code an approximately linear 

speed-up with increasing numbers of processors.

In an explicit parallelization, the user programs the work to be separated up 

among different processors; the determination of which processor receives which 

portion of the work is determined by the programmer. An example of a 2-D domain 

decomposition for this process is shown in Fig A.3.

Note that each processor has only its own portion of the work and has only 

local memory. Communication between the processors passes through the data 

connections after an integration cycle has been completed. (See Figure A.4.)
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The above figure shows the 1-D domain decomposition used in the 

simulation. However, other potential domain decompositions could be employed. 

When choosing a domain decomposition scheme, it is desirable to maximize volume, 

and minimize surface area—as one wants to maximize the amount of work a 

processor is performing on its local domain, and minimize the amount of 

inter-processor communication it is required to do. However, serious consideration 

of the amount of coding required must be made. Consider, as an example, a 

4-by-4-by-4 cube (general units). The work is to be distributed among 64 

processors. It is assumed that: 1) the workload is evenly distributed throughout the 

volume of the simulation, and 2) the grid is not sliced too finely. (There are enough 

grid points per cell.) For the 1-D scheme, each processor would have a volume of 1; 

each interior processor would have a surface area of 32; the ratio of surface area to 

volume is 16; and the coding would only be moderately difficult. For the 2-D 

scheme, each processor would have a volume of 1 ; each interior processor would 

have a surface area of 4; the ratio of surface area to volume is 4; and the coding 

would be extremely difficult. For the 3-D scheme, each processor would have a 

volume of 1 ; each interior processor would have a surface area of 6; the ratio of 

surface area to volume would be 6; and the coding would be almost surrealistically 

difficult. For this model, a 1-D domain decomposition was chosen. (This proved to 

be adequate for our purposes.)
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For the explicit parallelization, there was a choice of languages that could be 

employed, namely, HPC (High performance FORTRAN), MPI (Message passing 

interface), and Co-Array FORTRAN. HPC is pretty much obsolete—and was thus 

never seriously considered. Co-Array [FORTRAN], while the easiest choice for 

coding, was not chosen, as it is (at present) only available on Cray platforms, and 

thus would be an extremely poor choice for "portability.” It was proposed that MPI 

be the parallel language used as it represented the closest thing to a standard in 

parallel computing, and thus would optimize portability. MPI is a distributed 

memory architecture.

Parallel Distribution of the Grid

For the work distributed by the master to the slaves, each processor needed 

to know its portion of the grid (See Appendix C).

Boundary Update

After each processor has finished its portion of the work, the overlapping 

boundaries for each processor are updated; this keeps the processors "on common 

ground" as far as computations are concerned. For the first version of this swapping, 

it was believed that explicitly handing each piece of data, one at a time, would be the 

most efficient. However, it was later determined [Personal conversation, Kate 

Hedstrom, of the Arctic Region Supercomputing Center], that this was extremely 

inefficient as each swap required that three steps be performed: The data had to be
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prepared to be sent, it had to be sent, and the data had to be received by another 

processor. For the second incarnation of this swap routine, the entire data set was 

buffered, and then sent (See Appendix D). This greatly improved efficiency. The 

mathematical bounds (that is, the boundaries needed for adjacent points by the 

integration routines, but not part of the simulation domain) on the first and last 

processor (boundaries not shared with another processor) must then be updated.

Since the 1-D domain decomposition scheme was the one chosen, two 

overlapping two-dimensional "planes" had to be swapped:

Figure A.5 Boundary Update Scheme



Figure A.5 shows how two-dimensional planes are updated during a 

boundary swap.

Worth noting, is that—since all the equations used in the model were 

explicitly hyperbolic (Meaning they had only local physics with no changes 

occurring instantaneously at high speed across the entire simulation domain)—the 

model lent itself quite well to explicit parallelization. Also worth noting, is that the 

discretization of the PDE (mentioned above—"Integration Methods") for hyperbolic 

equations, leads to characteristic equations which only require "next-neighbor" 

information, thus lending nicely to parallelization.

Performance Testing

Extensive validation and performance testing of the explicit parallelization 

model was performed. The parallelized version of the code performed superbly well 

(see below), and the parallelization was extremely efficient (see below). The results 

of the code were also validated.

S in g le  P ro c e s s o r  C o ro p u to t io n  T im e vs. N u m b e r o f P ro c e s s o rs
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Figure A.6  Single Processor Computation Times for Constant 
Domain Size (7), and Varying Number of Processors



Figure A.6 shows an undesirable—but acceptable—increase in 

computation time with an increasing number of processors. In an ideal case, this 

line would have zero slope, showing no increase in overhead of inter-processor 

communication with an increase in the number of processors.
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Single Processor Speed vs Single Processor Domain

Single P ro c e sso r Domain Size

Figure A.7 Single Processor Computation Times for Fixed 
Number of Processors (3), and Varying Domain Size

Figure A.7 shows and increase in single processor speed (MFLOPS), for an 

increase in single processor domain size. This reflects the fact that the processor is 

progressively spending more time on its own portion of the work, and less time on 

inter-processor communication.

Figure A.8 Total Time for Fixed “Large'' Domain 
Size, and Varying Number of Processors



Figure A.8 shows a decrease in total computation time (seconds). This is 

due to the fact that as more processors are added, each one has less total work to 

perform. Note the flattening of the slope of the curve with increasing number of 

processors: This reflects the fact that there is an intrinsically serial portion of the 

code, and, theoretically, if the number of processors were to approach infinity, the 

total computation time would approach the serial computation time.

VAMPIR

There exists an exceptional profiling/debugging tool for MPI codes 

named VAMPIR. (Note "MPI" in the name.) VAMPIR shows, among other things, 

what each processor is doing in a timeline.
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Default

Stack3db.bpv (0.0 S - 13.024 S -  13.024 s) P r fn M b y V m t,/*®  ' V '  

Figure A.9VAMP1R Timeline Plot, Number of Processors vs. Time (seconds)



Figure A.9 shows for each processor when it is active (green) and idle (red). 

Red means either that a processor is waiting on an MPI call, or for another processor 

to finish with information it requires. Except for the red bar showing the initial 

start-up (the master processor determining the work to distribute to the slaves), 

this plot is almost all green. This demonstrates that this is a well-parallelized code.
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Figure A.10 VAMPIR Summary Chart



The above Figure shows that the vast majority of processor time is spent 

on computation—again displaying excellent parallelization. It is worth noting that 

this code also vectorized more efficiently than 94% of the codes run on ARSC (Arctic 

Region Supercomputing Center) machines, when audited in 2002. This is comparing 

with codes written by professional programmers.

Earlier runs were done on "Yukon," a Cray T3-E, compiled in the Cray 

Compiler Environment. Later runs were run on "Iceberg," an IBM cluster, complied 

with the IBM MPI XLF Fortran Compiler.
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Appendix B — Calculation of the Amount of Joule Heating for 

Various Scale Sizes

Shown below are the (truncated) code segments for the calculation of the amount of 

Joule heating for various scale sizes. The language used is FORTRAN.

subroutine diagl

£ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

c bestimmung von masse und energien des plasmas -And the joule 

c heating stuff:)

£  *  *  $  *  *  *  *  *  *  3|e *  *  4 c  4 c  *  4 c  *  *  *  £  *  *  %  *  *  *  *  *  *  *  *  *  *  %  *  *  ♦  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  #  *  *  *  *  *  *  *  *  *  *  *  ★  *  *  *

implicit none 

include 'mpif.h'

Inclusion of MPI library. This must be done in each subroutine which uses any MPI 

variable. (It is a good idea to include it unconditionally.)

include 'elin'

Inclusion of library with common variables to "clone" the operation of "global 

variables."
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Routine to calculate the amount of Joule heating occurring, for various scale sizes- 

for any generalized parallelization.

* the joule heating stuff

♦

* Set height:

* determined from "epar"--z~2 or 3 (km)

iz = 15

* addition of calculation of Joule heating at numerical resolution

* 11/4/04 Thursday

fine = 0.

do 990 i = 2,nx-l 

do 990 j = 2,ny-2 

iv = i+(j-l)*nx

del(iv) = 0.25/(difx(iv)*dify(iv)) 

fine = fine

* + ((sx(iv,iz)**2 + sy(iv,iz)**2 + sz(iv,iz)**2)

* /(rho(iv,iz)**2))*del(iv)

990 continue

call MPI_BARRIER(MPI_COMM_WORLD,ierr)
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call MPI_GATHER(fine,l,MPI_REAL,sum, 1,MPI_REAL, 

* 0,MPI_COMM_WORLD,ierr) 

if (procid .eq. 0) then 

joulefine = 0. 

do 995 i = l,numpe 

joulefine = joulefine + sum(i)

995 continue 

end if

* write numerical resolution to file

if (procid .eq. 0) then 

write(69,2002) zeit,97,97,joulefine 

end if

* Find the location of the physical boundaries.

stepx = ((-xmin)+xmax)/float(jouleitx) 

do 1000 i=l,jitx-l 

xbound(i) = xmin + float(i-l)*stepx 

1000 continue 

xbound(jitx) = xmax 

stepy = ((-ymin)+ymax)/float(jouleity) 

do 1010 i = l,jity -l 

ybound(i) = ymin + float(i-l)*stepy 

1010 continue 

yboundQ'ity) = ymax
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* Find the "span" of all but boundary grid points

do 1020 i = 2,nx-l 

delxleft(i) = (x(i)-x(i-l))/2. 

delxright(i) = (x(i+l)-x(i))/2.

* just interesting—xminus is never used___

xminus(i) = (x(i)+x(i-l))/2. 

xplus(i) = (x(i+l)+x(i))/2. 

delxspan(i) = delxright(i) + delxleft(i)

1020 continue

* Note: This only works as the grid is orthogonal (irregular—but

* still orthogonal)

do 1030 i = 2,ny-l 

j = 2+(i-l)*nx

delydown(i) = (y(j)-y(j-nx))/2. 

delyup(i) = ( y ( j + n x ) - y ( j ) ) / 2 .  

ylower(i) = (y(j)+y(j-nx))/2. 

yupper(i) = ( y ( j + n x ) + y ( j ) ) / 2 .  

delyspan(i) = delyup(i) + delydown(i)

1030 continue

* so boundlocas (boundary locations) not undefined___

do 1040 i = 1, jitx 

boundlocax(i) = -1 

1040 continue
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do 1050 i = 1, jity 

boundlocay(i) = -1 

1050 continue

* (this also serves as an "error condition")

* Determine number of [physical] boundaries on each processor (if any)

* This loop is b*****-all inefficient:(

boundsx = 0 

do 1060 i = l,jouleitx 

do 1060 j = 2,nx-l 

if ((xbound(i) .gt. (x(j)-delxleft(j))) .and.

* (xbound(i) .le. (x(j)+delxright(j)))) then 

boundsx = boundsx + 1

* record boundary "location" (grid point)

boundlocax(boundsx) = j

* record "location" of xbound value

boundnumx(boundsx) = i 

end if 

1060 continue

* Determine the number of boundaries in y identically for all

* processors. This loop is also b*****-all inefficient. :(

boundsy = 0 

do 1070 i = l,jouleity 

do 1070 j = 2,ny-l 

k = 2+((j-l)*nx)
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if ((ybound(i) -gt. (y(k)-delydown(j)))

* .and. (ybound(i) .ie. (y(k)+delyup(j))))

* then

boundsy = boundsy + 1

* record boundary "location" (grid point)

boundlocay(boundsy) = j

* record "location" of ybound value

boundnumy(boundsy) = i 

end if

1070 continue

* initialize "local" vxbin,bybin,vzbin, and areabin

* Note: This used to run from 1 to "bounds"—but it caused a floating

* point exception, if "bounds" was equal to zero___

do 1080 i = l,jitx 

do 1080 j = l ji ty  

vxbin(i,j) = 0. 

vybin(i,j) = 0. 

vzbin(i,j) = 0. 

areabin(i,j) = 0.

1080 continue

* This is now done above—11/4/04 Thursday

* Interim calculation of l/(4*difx*dify)—to avoid future division

* note that this must be done in a separate loop—otherwise



* del(iv+l] not defined in next loop computation

* do 1090 i = l,ny

* do 1090 j = l,nx

* iv = j + (i-l)*nx

* del(iv) = 0.25/(difx(iv)*dify(iv))

* 1090 continue

* ATTENTION!! WARNING!! This next bit is for DEBUGGING ONLY!!!!

* DO NOT use for any other purpose WHATSOEVER!!!!

* do 1069 j = l,ny

* do 1069 i = l,nx

* iv = i + Q'-l)*nx

* sx(iv,iz) = 4.

* sy(iv,iz) = 4.

* sz(iv,iz) = 4.

* rho(iv,iz) = 1.

* 1069 continue

* calculation of "local" vxbin,bybin,vzbin, and areabin

* This is the "meat and potatoes" of the code. This is where all the

* values for the x-velocity, the y-velocity, the z-velocity, and the

* area of the region in question are computed and put into "bins." The

* way this works is as follows:

*

* For each y-value:



* -determine if there is a y-boundary for that grid point; if yes,

* -add the lower part of that value to the "bin."

* -check to see if there is a multiple boundary for the grid

* point; if yes,

* -add that value to the next bin, then check for an

* addition multiple boundary; if yes,

* -go to "deal with multiple boundary"

* -repeat check

* -when all boundaries have been dealt with on that grid point,

* add the final bit to that bin

* -if it has been determined that there is are no boundaries

* on a grid point, add the entire amount to this "unencumbered

* cell"

* Also, for each y-value, perform for EACH x-value

* -add to total value for each grid point to the "bin"

* -then check for a boundary on that grid point; if yes,

* -subtract the amount necessary to the present bin, then move

* to the "next 'bin'"

* -check for multiple boundaries; if yes, deal with as above—

* making successive checks for subsequent multiple boundaries

* on a grid point

* -finally, after all boundaries have been accounted for,

* "close the cell"

* Please note that the x-values are dealt with slightly differently

* than the y-values. (First adding the total value to "y"-and then
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* subtracting if necessary--wasn't practical

boundvaly = 1 

do 1100 j = 2,ny-l 

boundvalx = 1

if (boundlocay(boundvaly) .eq. j) then

* deal with the first "y boundary"

do 1110 i = 2,nx-l 

iv = i + (j-l)*nx

tempvelx = (sx(iv,iz)/rho(iv,iz))*del(iv) 

tempvely = (sy(iv,iz)/rho(iv,iz))*del(iv) 

tempvelz = (sz(iv,iz)/rho(iv,iz))*del(iv) 

temparea = del(iv)

yvalue = (ybound(boundnumy(boundvaly))

* -ylower(j))/delyspan(j)

vxbin(boundvalx,boundvaly) = vxbin(boundvaIx,boundvaly)

* + yvalue

* * tempvelx

vybinfboundvalx, boundvaly) = vybin(boundvalx,boundvaly)

* + yvalue

* * tempvely

vzbin(boundvalx,boundvaly) = vzbin(boundvalx,boundvaly)

* + yvalue

* * tempvelz

areabin(boundvalx,boundvaly) =

* areabinfboundvalx, boundvaly)



+ yvalue

* temparea

if (boundlocax(boundvalx) .eq. i) then 

xvalue = (xplus(i)

- xbound(boundnumx(boundvalx)))

/ delxspan(i) 

vxbin(boundvalx,boundvaly) =

vxbin (boundvalx,boundvaly)

- xvalue

* yvalue

* tempvelx 

vybin(boundvalx,boundvaly) =

vybin(boundvalx,boundvaly)

- xvalue

* yvalue

* tempvely 

vzbin(boundvalx,boundvaly) =

vzbin (bound valx,boundvaly)

- xvalue

* yvalue

* tempvelz 

areabin(boundvalx,boundvaly) =

areabin(boundvalx,boundvaly)

- xvalue

* yvalue
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★
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*

*

*

*

*

*

*

*

*

*

*

*

*

*

#

*

* * temparea 

boundvalx = boundvalx + 1 

if (boundlocax(boundvalx-l) .eq. 

boundlocax(boundvalx)) then

xvalue = (xbound(boundnumx(boundvalx)) 

- xbound(boundnumx(boundvalx-l)))

/ delxspan(i) 

vxbinfboundvalx, boundvaly) =

vxbin(boundvalx,boundvaly)

+ xvalue

* yvalue

* tempvelx 

vybin(boundvalx,boundvaly) =

vybin(boundvalx,boundvaly)

+ xvalue

* yvalue

* tempvely 

vzbin(boundvalx,boundvaly) =

vzbin(boundvalx,boundvaly)

+ xvalue

* yvalue

* tempvelz 

areabin(boundvalx,boundvaly) =

+ xvalue

areabin(boundvalx,boundvaly)



* yvalue

* temparea 

boundvalx = boundvalx + 1

if (boundlocax(boundvalx-l) .eq. 

boundlocax(boundvalx)) goto 1120 

end if

xvalue = (xplus(i)

- xbound(boundnumx(boundvalx-l))) 

/ delxspan(i) 

vxbin(boundvalx.boundvaly) =

vxbin(boundvalx,boundvaly)

+ xvalue

* yvalue

* tempvelx 

vybin(boundvalx,boundvaly) =

vybin(boundvalx,boundvaly)

+ xvalue

* yvalue

* tempvely 

vzbin(boundvalx,boundvaly) =

vzbin(boundvalx,boundvaly)

+ xvalue

* yvalue

* tempvelz 

areabin(boundvalx,boundvaly) =
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* areabin(boundvalx,boundvaly)

* + xvalue

* * yvalue

* * temparea 

end if

1110 continue

boundvaly = boundvaly + 1

* check for "double boundary"

if (boundlocay(boundvaly-l) .eq. boundlocay(boundvaly))

* then

* deal with "double boundary"

1150 do 1130 i = 2,nx-l

iv = i + (j-l)*nx

tempvelx = (sx(iv,iz)/rho(iv,iz))*del(iv) 

tempvely = (sy(iv,iz)/rho(iv,iz))*del(iv) 

tempvelz = (sz(iv,iz)/rho(iv,iz))*del(iv) 

temparea = del(iv)

yvalue = (ybound(boundnumy(boundvaly))

* - ybound(boundnumy(boundvaly-l)))

* / delyspanQ)

vxbin(boundvalx,boundvaly) =

* vxbin(boundvalx,boundvaly)

* + yvalue

* * tempvelx 

vybinfboundvalx, boundvaly) =



vybin(boundvalx,boundvaly)

+ yvalue

* tempvely 

vzbin(boundvalx,boundvaly) =

vzbin(boundvalx,boundvaly)

+ yvalue

* tempvelz 

areabin(boundvalx,boundvaly) =

areabin (boundvalx,boundvaly) 

+ yvalue

* temparea

if (boundlocax(boundvalx) .eq. i) then 

xvalue = (xplus(i)

- xbound(boundnumx(boundvalx))) 

/ delxspan(i) 

vxbin (boundvalx, boundvaly) =

vxbin(boundvalx,boundvaly)

- xvalue

* yvalue

* tempvelx

vybin (boundvalx, boundvaly) =

vybi n (bound valx,bound valy)

- xvalue

* yvalue

* tempvely
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*

1140

*

*

*

*

He

He

*

He

He

*

vzbin(boundvalx, boundvaly) =

vzbin(boundvalx,boundvaly)

- xvalue

* yvalue

* tempvelz 

areabin(boundvalx, boundvaly) =

areabin(boundvalx,boundvaly)

- xvalue

* yvalue

* temparea 

boundvalx = boundvalx + 1

if (boundlocax(boundvalx-l) .eq. 

boundlocax(boundvalx)) then

xvalue = (xbound(boundnumx(boundvalx)) 

- xbound(boundnumx(boundvalx-l)))

/ delxspan(i) 

vxbin(boundvalx.boundvaly) =

vxbin(boundvalx,boundvaly)

+ xvalue

* yvalue

* tempvelx 

vybin(boundvalx, boundvaly) =

vybin(boundvalx,boundvaly)

+ xvalue

* yvalue



* tempvely 

vzbinfboundvalx, boundvaly) =

vzbinfboundvalx,boundvaly)

+ xvalue

* yvalue

* tempvelz 

areabin(boundvalx,boundvaly) =

areabin(boundvalx,boundvaly)

+ xvalue

* yvalue

* temparea 

boundvalx = boundvalx + 1

if (boundlocax(boundvalx-l) .eq. 

boundlocax(boundvalx)) goto 1140 

end if

xvalue = (xplus(i)

-xbound(boundnumx(boundvalx-l))) 

/ delxspan(i) 

vxbin (boundvalx,boundvaly) =

vxbin(boundvalx, boundvaly)

+ xvalue

* yvalue

* tempvelx 

vybin(boundvalx, boundvaly) =

vybin(boundvalx,boundvaly)



* + xvalue

* * yvalue

* * tempvely 

vzbinfboundvalx, boundvaly) =

* vzbin(boundvalx,boundvaly)

* + xvalue

* * yvalue

* * tempvelz

areabin (boundvalx,boundvaly) =

* areabin(boundvalx,boundvaly)

* + xvalue

* * yvalue

* * temparea 

end if

1130 continue

* check if additional "double boundary" if yes, go to "deal with 'double

* boundary'":)

boundvaly = boundvaly + 1 

if (boundlocay(boundvaly-l) .eq.

* boundlocay(boundvaly)) goto 1150 

end if

* close cell (deal with "end portion of'y cell'")

do 1160 i = 2,nx-l 

iv = i + (j-l)*nx

tempvelx = (sx(iv,iz)/rho(iv,iz))*del(iv)



tempvely = (sy(iv,iz)/rho(iv,iz))*del(iv) 

tempvelz = (sz(iv,iz)/rho(iv,iz))*del(iv) 

temparea = del(iv) 

yvalue = (yupper(j)

-ybound(boundnumy(boundvaly-l))) 

/ delyspanQ) 

vxbin(boundvalx, boundvaly)

= vxbin (boundvalx, boundvaly)

+ yvalue

* tempvelx 

vybin(boundvalx,boundvaly)

= vybin (boundvalx, boundvaly)

+ yvalue

* tempvely 

vzbin (boundvalx,bound valy)

= vzbin(boundvalx,boundvaly)

+ yvalue

* tempvelz 

areabinfboundvalx,boundvaly) =

areabin(boundvalx,boundvaly) 

+ yvalue

* temparea

if (boundlocax(boundvalx) .eq. i) then 

xvalue = (xplus(i)

- xbound(boundnumx(boundvalx)))
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/ delxspan(i) 

vxbin(boundvalx, boundvaly) =

vxbin (boundvalx, boundvaly)

- xvalue

* yvalue

* tempvelx 

vybin(boundvalx,boundvaly) =

vybin(boundvalx, boundvaly)

- xvalue

* yvalue

* tempvely 

vzbin(boundvalx, boundvaly) =

vzbin(boundvalx,boundvaly)

- xvalue

* yvalue

* tempvelz 

areabin(boundvalx,boundvaly) =

areabin (boundvalx,boundvaly)

- xvalue

* yvalue

* temparea 

boundvalx = boundvalx + l

if (boundlocax(boundvalx-l) .eq. 

boundlocax(boundvalx)) then

xvalue = (xbound(boundnumx(boundvalx))



-xbound(boundnumx(boundvalx-l))) 

/ delxspan(i) 

vxbin(boundvalx,boundvaly) =

vxbin (boundvalx,boundvaly)

+ xvalue

* yvalue

* tempvelx 

vybin(boundvalx,boundvaly) =

vybin(boundvalx,boundvaly)

+ xvalue

* yvalue

* tempvely

vzbin (boundvalx,boundvaly) =

vzbin(boundvalx, boundvaly)

+ xvalue

* yvalue

* tempvelz 

areabin(boundvalx,boundvaly) =

areabin(boundvalx,boundvaly)

+ xvalue

* yvalue

* temparea 

boundvalx = boundvalx + 1

if (boundlocax(boundvalx-l) .eq. 

boundlocax(boundvalx)) goto 1170
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end if

xvalue = (xplus(i)

- xbound(boundnumx(boundvalx-l))) 

/ delxspan(i) 

vxbin (boundvalx,boundvaly) =

vxbinfboundvalx,boundvaly)

+ xvalue

* yvalue

* tempvelx 

vybin(boundvalx,boundvaly) =

vybin(boundvalx,boundvaly)

+ xvalue

* yvalue

* tempvely 

vzbinfboundvalx,boundvaly) =

vzbin(boundvalx,boundvaly)

+ xvalue

* yvalue

* tempvelz 

areabinfboundvalx,boundvaly) =

areabinfboundvalx, boundvaly)

+ xvalue

* yvalue

* temparea

end if



1160 continue 

else

* unencumbered "y cell" 

do 1180 i = 2,nx-l 

iv = i + (j-l)*nx

tempvelx = (sx(iv,iz)/rho(iv,iz))*del(iv) 

tempvely = (sy(iv,iz)/rho(iv,iz))*del(iv) 

tempvelz = (sz(iv,iz)/rho(iv,iz))*del(iv) 

temparea = del(iv)

vxbin(boundvalx,boundvaly) = vxbin(boundvalx,boundvaly)

* + tempvelx

vybin(boundvalx,boundvaly) = vybin(boundvalx,boundvaly)

* + tempvely

vzbin (boundvalx,boundvaly) = vzbin (boundvalx, boundvaly)

* + tempvelz 

areabin(boundvalx,boundvaly) =

* areabin(boundvalx,boundvaly)

* + temparea

if (boundlocax(boundvalx) .eq. i) then 

xvalue = (xplus(i)

* - xbound(boundnumx(boundvalx)))

* / delxspan(i)

vxbin(boundvalx,boundvaly) =

* vxbin(boundvalx,boundvaly)

* - xvalue
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*

* tempvelx 

vybin(boundvalx,boundvaly) =

vybin(boundvalx,boundvaly)

- xvalue

* tempvely 

vzbin (boundvalx, boundvaly) =

vzbin(boundvalx,boundvaly)

- xvalue

* tempvelz 

areabin (boundvalx,boundvaly) =

areabin(boundvalx,boundvaly)

- xvalue

* temparea 

boundvalx = boundvalx + 1

if (boundlocax(boundvalx-l) .eq. 

boundlocax(boundvalx)) then

xvalue = (xbound(boundnumx(boundvalx)) 

- xbound(boundnumx(boundvalx-l)))

/ delxspan(i) 

vxbin(boundvalx,boundvaly) =

vxbin(boundvalx,boundvaly)

+ xvalue 

* tempvelx 

vybin(boundvalx, boundvaly) =

vybin(boundvalx,boundvaly)



+ xvalue

* tempvely 

vzbin(boundvalx,boundvaly) =

vzbin(boundvalx,boundvaly)

+ xvalue

* tempvelz 

areabin(boundvalx,boundvaly) =

areabin(boundvalx,boundvaly) 

+ xvalue

* temparea 

boundvalx = boundvalx + 1

if (boundlocax(boundvalx-l) .eq. 

boundlocax(boundvalx)) goto 1190 

end if

xvalue = (xplus(i)

-xbound(boundnumx(boundvalx-l))) 

/ delxspan(i) 

vxbin (boundvalx,boundvaly) =

vxbin(boundvalx,boundvaly)

+ xvalue

* tempvelx 

vybinfboundvalx,boundvaly) =

vybinfboundvalx,boundvaly)

+ xvalue

* tempvely



vzbinfboundvalx,boundvaly) =

* vzbinfboundvalx,boundvaly)

* + xvalue

* * tempvelz 

areabin(boundvalx,boundvaly) =

* areabin(boundvalx,boundvaly)

* + xvalue

* * temparea 

end if

1180 continue 

end if 

1100 continue

* bringing it all together:

* note: this may not be the most efficient method (gathering (potentially)

* undefined array elements) —but, MPI.Allgatherv, I believe, would cost

* me information that 1 need

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

call MPI_GATHER(boundsx,l,MPI_INTEGER,rootboundsx,l,

* MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

* find maximum bounds

if (procid .eq. 0) then 

maximumx = rootboundsx(l) 

do 1200 i = 2,numpe 

if (rootboundsx(i) .gt. maximumx) maximumx



* = rootboundsx(i)

1200 continue

end if

call MPIJBCAST(maximumx,l,MPI_REAL,0,MPI_COMM_WORLD,ierr)

* attention -- possibility to make this more efficient (MPI_GATHER

* of 2-D arrays— )

* If you're still reading this, I owe you a beer.

* 0 0

do 1210 i = l,maximumx+l 

do 1210 j = l ji ty  

call MPI_GATHER(vxbin(i,j),l,MPI_REAL,vxtemp,l,

* MPI_REAL,0,MPl_COMM_WORLD,ierr) 

call MPI_GATHER(vybin(i,j),l,MPI_REAL,vytemp,l,

* MPI_REAL,0,MPI_COMM_WORLD,ierr) 

call MPI_GATHER(vzbin(i,j),l,MPI_REAL,vztemp,l,

* MPI_REAL,0,MPl_COMM_WORLD,ierr)

call MPI_GATHER(areabin(i,j),l,MPI_REAL,areatemp,l,

* MPI_REAL,0,MPI_COMM_WORLD,ierr) 

if (procid .eq. 0) then

do 1220 k= l,numpe 

vxroot(i,j,k) = vxtemp(k) 

vyroot(i,j,k) = vytemp(k) 

vzroot(i,j,k) = vztemp(k)



arearoot(i,j,k) = areatemp(k)

end if 

1210 continue

if (procid .eq. 0) then 

do 1230 i = l ji tx  

do 1230 j = l ji ty  

velx(i,j) = 0. 

vely(i,j) = 0. 

velz(ij) = 0. 

area(i,j) = 0.

1230 continue 

endif

* A note to Antonius: I never "predefined" vxroot, etc. However, if the

* code ever hits any of the "undefined values," something is _WRONG_.

* Therefore, I left it as it is—sort of an automatic "error checking."

if (procid .eq. 0) then 

do 1240 m = l ji ty  

i = 1 

k = 1

1260 loopvar = rootboundsx(k) 

tempx = rootboundsx(k)

1220  continue



do 12501 = ljoopvar + 1 

if (tempx .gt. 0) then 

velx(i,m) = velx(i,m) + vxroot(l,m,k) 

vely(i,m) = vely(i,m) + vyroot(l,m,k) 

velz(i,m) = velz(i,m) + vzroot(l,m,k) 

area(i,m) = area(i,m) + arearoot(l,m,k) 

i = i + 1

tempx = tempx -1  

else

velx(i,m) = velx(i,m) + vxroot(l,m,k) 

vely(i,m) = vely(i,m) + vyroot(l,m,k) 

velz(i,m) = velz(i,m) + vzroot(l,m,k) 

area(i,m) = area(i,m) + arearoot(l,m,k) 

end if 

1250 continue 

k = k + 1

if (k .le. numpe) goto 1260 

1240 continue 

end if

* *FINALLY! have average velocities

if (procid .eq. 0) then 

jouleave = 0.

* The following assumes that no one would ever want to "chop" the

* total domain more than 10 times. If you don't like this--go



* ahead and crank it up to 100™or a million; it won't make any

* difference___

do 1270 k =1,10

* termination condition of diagl--_limited_ error checking—

* Not very "elegant," b u t. . .  if one does "return" then processor 0

* avoids the MPI.BARRIER at the end of this routine, and carries on its

* merry way to other diagnostics—ultimately gridlocking the code :P

* attention change

* if (((k-l)*xiter .gt. jitx) .or. ((k-l)*yiter .gt.

* * jity)) g°t0 2069

* if ((xiter**(k-l) .gt. jitx) .or.

* * (yiter**(k-l) .gt. jity)) goto 2069

* attention change

* if (k .gt. 1) then

* if ((mod(jitx,(k-l)*xiter) .ne. 0) .or. (mod(jity,

* * (k-l)*yiter) .ne. 0)) then

* if ((mod(jitx,xiter**(k-l)) .ne. 0) .or. (mod(jity,

* * yiter**(k-l)) .ne. 0)) then

* write(69,2003)

* debug attention ATTENTION change

* if (k .le. 2) then 

checkx = xiter**(k-l) 

cheeky = yiter**(k-l) 

if ((checkx .gt. jitx) .or.

* (cheeky .gt. jity)) goto 2069
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if ((mod(jitx,checkx) .ne. 0) .or.

* (mod(jity,cheeky) .ne. 0)) then 

write(69,2003) 

goto 2069 

end if

* else

* checkx = checkx**2

* cheeky = cheeky**2

* if ((checkx .gt. jitx) .or.

* * (cheeky .gt. jity)) goto 2069

* if ((mod(jitx,checkx) .ne. 0) .or.

* * (mod(jity,cheeky) .ne. 0)) then

* write(69,2003)

* goto 2069

* end if

* endif

* Not very "elegant," bu t. . .  if one does "return" then processor 0

* avoids the MPI_BARRIER at the end of this routine, and carries on its

* merry way to other diagnostics—ultimately gridlocking the code :P

* goto 2069

* end if

* end if

do 1280 j=l,jity 

do 1280 i = l,jitx 

velxsum(i,j) = 0.



velysum(i,j) = 0. 

velzsum(ij) = 0. 

areasum(i,j) = 0.

1280 continue

* debug ATTENTION attention -- change

* if (k .gt. 1) then

* xwidth = jitx/((k-l)*xiter)

* ywidth = jity/((k-l)*yiter)

* else

* xwidth = 1

* ywidth = 1

* endif

* xwidth = jitx/(jitx/(xiter**(k-l)))

* ywidth = jity/(jity/(yiter**(k-l)))

* if (k .le. 2) then

xwidth = jitx/(jitx/(xiter**(k-l))) 

ywidth = jity/(jity/(yiter**(k-l)))

* else

* xwidth = xwidth**2

* ywidth = ywidth**2

* endif

* REUSE of boundvalx, boundvaly!

boundvaly = 1 

do 1290 j = l,jity 

boundvalx = 1
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do 1300 i = l ji tx  

velxsum [boundvalx,boundvaly) =

* velxsum [boundvalx, boundvaly)

* + velx[i,j)

velysum [boundvalx,boundvaly) =

* velysum(boundvalx, boundvaly)

* + vely(i,j)

velzsum (boundvalx,boundvaly) =

* velzsum(boundvalx,boundvaly)

* + velz(i,j) 

areasumfboundvalx, boundvaly) =

* areasumfboundvalx,boundvaly)

* + area(i,j)

if (mod(i,xwidth) .eq. 0) boundvalx

* = boundvalx + 1

1300 continue

if (mod(j,ywidth) .eq. 0) boundvaly

* = boundvaly + 1

1290 continue

* debug ATTENTION attention

xloop = jitx/checkx 

yloop = jity/checky

* Let's try___

* xloop = jitx/(xiter**(k-l))
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* yloop = jity/(yiter**(k-l))

* if (k .gt. 1) then

* xloop = jitx/((k-l)*xiter)

* yloop = jity/((k-l)*yiter)

* else

* xloop = jitx

* yloop = jity

* endif 

jouleave = 0.

do 1310 j = 1,yloop 

do 1310 i = 1, xloop 

jouleave = jouleave + (velxsum (i,j)** 2

* + velysum(i,j)**2

* + velzsum(i,j)**2)

* / areasum(i,j)

1310 continue

* write to file

* debug attention change

* if (k .gt. 1) then

* write(69,2002) zeit,jitx/((k-l)*xiter),jity

* * / ((k-l)*yiter),jouleave

* else

* write(69,2002) zeit,jitx,jity,jouleave

* end if
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write(69,2002) zeit,jitx/checkx,jity/checky,jouleave 

1270 continue 

end if

* debug -- test

*2069 beer = 'MILLER TIME!'

2069 i = 1

2002 form at(lx,E15.4,lx,I7,lx,I7,lx,E15.4)

2003 format(lx,7H*ERROR*)

"Barrier call" seen by all processors—to make sure that they are all "in sync" before 

returning control to the main program. This call is almost certainly superfluous.

* More for my peace of mind than anything else:

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

return

end
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Appendix C — Calculation and Distribution of Grid by "Master" to 

"Slaves"

Shown below are the (truncated) code segments for the calculation of the "big grid,” 

and the distribution of the necessary portions of the total grid to each processor— 

its "local grid." The language used is FORTRAN.

subroutine grid

c grid berechnet die gitterparameter, welche der integration 

c zugrunde liegen.

c ( x senkrecht zur stromschicht - nkoordinate

c y ostrichtung - -m koordinate

c z nordrichtung - 1 koordinate)

include 'mpif.h'

Inclusion of MPI library. This must be done in each subroutine which uses any MPI 

variable. (It is a good idea to include it unconditionally.)

include 'elin'
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Inclusion of library with common variables—to "clone" the operation of "global 

variables."

Determination of "big parameters"—the grid of the entire domain:

c symmetric fuer zentrierte nichtaequidistantes gitter:

c................................................

if (zentr(l)) then 

do 260 ix = 1, ixO

bigx(ix) = ( bigx(ix)-bigx(bignx+l-ix) )/2.0 

bdifx(ix) = ( bdifx(ix)+bdifx(bignx+l-ix) )/2.0 

bddifpx(ix) = (bddifpx(ix)+bddifmx(bignx+l-ix) )/2.0 

bddifmx(ix) = (bddifmx(ix)+bddifpx(bignx+l-ix) )/2.0 

bddifx(ix) = ( bddifx(ix)+bddifx(bignx+l-ix) )/2.0 

bmeanpx(ix) = ( bmeanpx(ix)+bmeanmx(bignx+l-ix) )/2.0 

bmeanmx(ix) = ( bmeanmx(ix)+bmeanpx(bignx+l-ix) )/2.0 

260 continue

bigx(ixO) = 0.0

bddifpx(ixO) = ( bddifpx(ixO)+bddifmx(ixO) )/2.0 

bddifmx(ixO) = ( bddifpx(ixO)+bddifmx(ixO) )/2.0 

bddifx(ixO) = ( bddifpx(ixO)+bddifmx(ixO) )/2.0 

bmeanpx(ixO) = ( bmeanpx(ixO)+bmeanmx(ixO) )/2.0 

bmeanmx(ixO) = ( bmeanpx(ixO)+bmeanmx(ixO) )/2.0 

do 270 ix = ixO+1, bignx 

bigx(ix) = -bigx(bignx+l-ix) 

bdifx(ix) = bdifx(bignx+l-ix)
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bddifpx(ix) = bddifmx(bignx+l-ix) 

bddifmx(ix) = bddifpx(bignx+l-ix) 

bddifx(ix) = bddifx(bignx+l-ix) 

bmeanpx(ix) = bmeanmx(bignx+l-ix) 

bmeanmx(ix) = bmeanpx(bignx+l-ix)

270 continue

end if

do 300 ix = 1, bignx 

x(ix) = xanf + x(ix)

300 continue

c

c belegung der randwerte der gitterparameter:

c........................................

bigx(l) = 2.*xmin - bigx(3)

bigx(bignx) = 2.*xmax -bigx(bignx-2)

bigx(2) = xmin

bigx(bignx-l) =xmax

bdifx(l) = bdifx(3)

bdifx(bignx) = bdifx(bignx-2)

bddifmx(2) = ( bddifpx(2) + bddifmx(2)) / 2.0

bddifmx(bignx-l)= ( bddifpx(bignx-l) + bddifmx(bignx-l)) / 2.0

bddifpx(2) = bddifmx(2)

bddifpx(bignx-l)= bddifmx(bignx-l)

bddifmx(l) = bddifpx(3)



181

bddifpx(l) = bddifmx(3) 

bddifmx(bignx) = bddifpx(bignx-2) 

bddifpx(bignx) = bddifmx(bignx-2) 

bmeanmx(l) = bmeanpx(3) 

bmeanpx(l) = bmeanmx(3) 

bmeanmx(bignx) = bmeanpx(bignx-2) 

bmeanpx(bignx) = bmeanmx(bignx-2)

Distribution of the "local grid" to each "slave." Please note that this employs both the 

variable "numpe" (number of processors) and "procid" (the unique numerical id of 

each processor in the simulation).

c

c attention

do 320 i=0,numpe-l 

if (procid .eq. i) then 

do 325 ix=l,nx 

x(ix) = bigx(ix+(nx-2)*i) 

difx(ix) = bdifx(ix+(nx-2)*i) 

ddifx(ix) = bddifx(ix+(nx-2)*i) 

ddifpx(ix) = bddifpx(ix+(nx-2)*i) 

ddifmx(ix) = bddifmx(ix+(nx-2)*i) 

meanpx(ix) = bmeanpx(ix+(nx-2)*i) 

meanmx(ix) = bmeanmx(ix+(nx-2)*i)
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325 continue 

endif 

320 continue

Note:

“Numpe" ■ Number of processors 

"Procid" ■ Unique numerical ID tag for each processor 

So, the above loop runs in parallel on all the processors. As each ID tag is reached in

the loop, it then distributes the correct local grid to each processor.
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Appendix D — Swap Routine to Update Boundary Grid Points

Shown below is a (truncated) boundary update routine. This is tied with the 

shortest of such routines. It is in the language of FORTRAN.

subroutine randr

£  $  $  $  ♦  ♦  ♦  $  $  %  9fc  9fc  $  J fc  H/t *  } f c  j ( e  J ( t  9fc  $  ♦  ♦  ♦  $  ♦  ♦  ♦  ♦ ♦  ♦  $  } ( C  } ( C  $  $  $  $  $  +  *  } ( C  } ( C  $  $  $  $  *  +  $  $  *  } f c  $  s f c  $  $  $  $  $  s fc  $  s fc  ) f c  $  $

c berechnung der randwerte fuer rho,rhon analog randwe

implicit none 

include 'mpif.h'

Inclusion of MPI library. This must be done in each subroutine which uses any MPI 

variable. (It is a good idea to include it unconditionally.)

include ’elin'

Inclusion of library with common variables—to "clone" the operation of "global 

variables."

Local "swap arrays" that allow for a large increase in efficiency of the boundary 

updates:



* The following arrays are "local," and burn a fair amount of memory;

* however, they allow one to send messages as _one_ _array_--and thus

* allow for SPEED. 0

real pumpuplrho(ny,nz), pumpdnlrho(ny,nz), pumpuprrho(ny,nz),

* pumpdnrrho(ny,nz), pumpuplrhon(ny,nz), pumpdnlrhon(ny,nz),

* pumpuprrhon[ny,nz), pumpdnrrhon(ny,nz)

Boundary update:

* Update the periodic boundary y-z planes:

* Make certain boundaries are in sync:

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

* Swap periodic y-z plane(s):

* Update "evens" and boundary for processor zero:

if [procid .ne. num procs-1) then

* "Pump up" "evens"— get ready to swap:

do 10 countz = l,nz  

do 20  cntnv = l,ny

pumpuplrho(cntnv, countz) =

* rho[nx*cntnv-l,countz)
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if (withn) pumpuplrhonfcntnv,countz) =

* rhon(nx*cntnv-l, countz)

20 continue

10 continue 

end if

* Swap "evens":

* WARNING!! -This method "yaks" for over 100 processors, 'n stuff.

if (procid .ne. numprocs-1) then 

call MPI_SEND(pumpuplrho,ny*nz,MPI_REAL,

* procid+l,procid+100,MPI_COMM_WORLD,ierr)

if (withn) call MPI_SEND(pumpuplrhon,ny*nz,MPI_REAL,

* procid+l,procid+200,MPI_C0MM_WORLD,ierr)

end if

if (procid .ne. 0) then 

call MPI_RECV(pumpdnlrho,ny*nz,MPI_REAL,

* procid-l,procid+99,MPI_COMM_WORLD,status,ierr)

if (withn) call MPI_RECV(pumpdnlrhon,ny*nz,MPI_REAL,

* procid-l,procid+199, MPI_COMM_WORLD, status, ierr)

end if

* "Pump down" "evens":
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if (procid .ne. 0) then 

do 30 countz = l,nz 

do 40 cntnv = l,ny

rho(nx*(cntnv-l)+l,countz) =

* pumpdnlrho(cntnv,countz)

if (withn) rhon(nx*(cntnv-l)+l,countz) =

* pumpdnlrhon(cntnv,countz)

40 continue

30 continue 

end if

Since the first and last processors only share one boundary with a neighbor, the 

very first and last boundary must be updated as a "mathematical boundary."

* Update physical boundary for processor zero:

if (procid .eq. 0) then

c......................................................

c x = xmin

c (liniensymmetrie entlang z-achse)

c......................................................

if ( p e rio (l)) then

do 110 iz = 2, nzl 

do 110 iv = nx+1, nvl,nx



rho(iv.iz) = rho(iv+nx3,iz) 

rhon(iv,iz) = rhon(iv+nx3,iz)

110 continue

else if ( lsy m (l,l)) then

do 120 iz = 2, nzl 

do 120 iv = nx+1, nvl,nx

rho(iv,iz) = rho(nvl-iv+4,iz) 

rhon(iv.iz) = rhon(nvl-iv+4,iz)

120 continue

else

do 140 iz = 2, nzl 

do 140 iv = nx+1, nvl,nx

rho(iv,iz) = crhol(l,l)*rho(iv+2,iz) + crho2(l,l)*rho(iv+4,iz) 

rhon(iv,iz) = crhol(l,l)*rhon(iv+2,iz)+crho2(l,l)*rhon(iv+4,iz) 

140 continue

end if 

endif

* Make certain boundaries are in sync:

call MPI_BARRIER(MPI_COMM_WORLD,ierr)
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* Update "odds" and boundary for final processor:

if (procid .ne. 0) then

* "Pump up" "odds"—get ready to swap:

do 50 countz = l,nz 

do 60 cntnv = l,ny

pumpuprrho(cntnv,countz) =

* rho(2+(cntnv-l)*nx, countz)

if (withn) pumpuprrhonfcntnv,countz) =

* rhon(2+(cntnv-l)*nx,countz)

60 continue

50 continue 

end if

* Swap "odds":

* WARNING!! -This method "yaks" for over 100 processors, 'n stuff.

if (procid .ne. 0) then 

call MPI_SEND(pumpuprrho,ny*nz,MPI_REAL,

* procid-l,procid+99,MPI_COMM_WORLD,ierr)

if (withn) call MPI_SEND(pumpuprrhon,ny*nz,MPI_REAL,

* procid-l,procid+199,MPI_COMM_WORLD,ierr)

end if



if (procid .ne. numprocs-1) then 

call M PI_RECV(pumpdnrrho,ny*nz,M PI.REAL,

* procid+l,procid+100,MPI_COMM_WORLD,status,ierr)

if (withn) call MPI_RECV(pumpdnrrhon,ny*nz,MPI_REAL,

* procid+l,procid+200,MPI_COMM_WORLD, status, ierr)

end if

"Pump down" "odds":

if (procid .ne. numprocs-1) then 

do 70 countz = l,nz 

do 80 cntnv = l,ny

rho(cntnv*nx,countz) =

* pumpdnrrho(cntnv, countz)

if (withn) rhon(cntnv*nx,countz)

* pumpdnrrhon (cntnv,countz)

80 continue

70 continue 

end if

Update physical boundary for final processor:

if (procid .eq. numprocs-1) then



c x = xmax

c (liniensymmetrie entlang z-achse)

c......................................................

if ( p erio (l)) then

do 210 iz = 2, nzl 

do 210 iv = 2*nx, nvl,nx 

rho(iv,iz) = rho(iv-nx+3,iz) 

rhon(iv,iz) = rhon(iv-nx+3,iz)

210 continue

e lse if(lsy m (2 ,l)) then

do 220 iz = 2, nzl 

do 220 iv = 2*nx, nvl,nx

rho(iv,iz) = rho(nv-iv+nx2,iz) 

rhon(iv,iz) = rhon(nv-iv+nx2,iz)

220 continue

else

do 240 iz = 2, nzl 

do 240 iv = 2*nx, nvl,nx

rho(iv,iz) = crhol(2,l)*rho(iv-2,iz) + crho2(2,l)*rho(iv-4,iz) 

rhon(iv,iz) = crhol(2,l)*rhon(iv-2,iz) + crho2(2,l)*rhon(iv-4,iz)
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end if 

endif

"Barrier call" seen by all processors—to make sure that they are all "in sync" before 

returning control to the main program. This call is almost certainly superfluous.

240 continue

* Let's be safe:

call MPI_BARRIER(MPI_COMM_WORLD,ierr)




