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Abstract

Airborne fine volcanic ash was collected during the eruptions of 

Augustine Volcano in 2006, Pavlof Volcano in 2007, and Redoubt Volcano in 

2009 using Davis Rotating Unit for Measurement (DRUM) cascade impactors to 

observe atmospheric processes acting on ash as an atmospheric particle. During 

the Redoubt eruption, samples were also collected by Beta Attenuation Mass 

(BAM-1020) and Environmental Beta Attenuation Mass (EBAM) monitors. 

BAM-1020s and EBAMs provided real-time mass concentration data; DRUM 

samplers provided samples for post-eruptive analysis. DRUM samples were 

retrospectively analyzed for time-resolved mass concentration and chemistry. 

EBAM and BAM-1020s reported near real-time, time-resolved mass 

concentrations. Scanning Electron Microscopy with Energy Dispersive 

Spectroscopy was conducted to determine particle size, shape, and composition. 

Image processing methods were developed to determine particle size distributions 

and shape factors.

Ash occurred as single grains, ash aggregates, and hybrid aggregates. Ash 

aggregates occurred in plumes from pyroclastic flows and were found in a 

discrete aerodynamic size range (2.5-1.15 pm). Hybrid ash was common in all 

samples and likely formed when downward mixing ash mingled with upward 

mixing sea salt and non-sea salt sulfate. The mass concentration of sulfate did not 

vary systematically with ash which indicated that the source of sulfate was not



iv

necessarily volcanic. Ash size distributions were log-normal. Size distribution 

plots of ash collected from the same plume at different transport distances showed 

that longer atmospheric residence times allowed for more aggregation to occur 

which led to larger but fewer particles in the plume the longer it was transported. 

Ash transport and dispersion models forecasted ash fall over a broad area, but ash 

fall was only observed in areas unaffected by topographic barriers. PMi0 

(particulates < 1 0  pm in aerodynamic diameter or 0 A) ash was detected closer to 

the volcano when no PM2.5 (particulates <2.5 pm 0 A) ash was observed. Further 

downwind, PM2.5 ash was collected which indicated that the settling rates of PM10 

and PM2.5 influenced their removal rates. Diurnal variations in ash mass 

concentrations were controlled by air masses rising due to solar heating which 

transported ash from the sampling site, or descending due to radiative cooling 

which brought ash to the sampling site. Respirable (PM2.5) ash was collected 

when there were no satellite ash detections which underscored the importance of 

ash transport and dispersion models for forecasting the presence of ash when mass 

concentrations are below satellite detection limits.



Table of Contents

Signature Page...............................................................................................................i

Title Page...................................................................................................................... ii

Abstract........................................................................................................................ iii

Table of Contents..........................................................................................................v

List of Figures..............................................................................................................xi

List of Tables.......................................................................................................... xxix

Dedication Page....................................................................................................... xxx

Chapter 1 Introduction.................................................................................................1

1.1 The Atmospheric Fate and Transport of Volcanic A sh................................ 3

1.1.1 Atmospheric Influences on Particle Growth........................................ 4

1.1.2 Particle Settling and Stokes’ Law......................................................... 6

1.1.3 Ash Particle Composition.................................................................... 10

1.1.4 Changes to Aerosol Shape, Size, and Density................................... 11

1.1.5 The Influence of Volcanic Plume Regions on Aggregation............. 12

1.1.6 The Influence of Tropospheric Transport on Aggregation............... 14

1.1.7 The Influence of PBL Transport on Aggregation.............................. 15

1.2 Collection Methods and Analytical Techniques..........................................16

1.2.1 Davis Rotating Unit for Measurement (DRUM) Samplers.............. 16

1.2.2 Beta Attenuation Mass (BAM-1020) Monitors and Environmental 

Beta Attenuation Monitors (EBAM)..................................................... 17

V

Page



1.2.3 Scanning Electron Microscopy (SEM) and Energy Dispersive 

Spectroscopy (EDS).................................................................................17

1.2.4 Digital Image Processing Techniques................................................. 18

1.3 The 2006 Eruption of Augustine Volcano................................................... 18

1.4 The 2007 Eruption of Pavlof Volcano......................................................... 21

1.5 The 2009 Eruption of Redoubt Volcano...................................................... 21

1.6 References...................................................................................................... 25

1.7 Figures.............................................................................................................30

1.8 Tables..............................................................................................................35

Chapter 2 Particle Morphologies and Formation Processes for Fine Ash Aerosol

Collected During the 2006 Eruption of Augustine Volcano, Alaska............... 36

Abstract................................................................................................................. 36

2.1 Introduction.................................................................................................... 38

2.2 Geologic Setting and Eruptive History........................................................ 41

2.3 Augustine 2006 Eruption.............................................................................. 41

2.4 Sampling and Analytical Techniques.......................................................... 43

2.4.1 Davis Rotating Unit for Measurement (DRUM) Sampler................ 43

2.4.2 SEM and EDS Analysis Techniques...................................................44

2.4.3 Image Analysis Techniques.................................................................47

2.5 Results.............................................................................................................48

2.5.1 Volcanic Ash Aerosol Types.............................................................48

vi

Page



Page

2.5.1.1 Single Grain Ash.........................................................................49

2.5.1.2 Ash Aggregates........................................................................... 49

2.5.1.3 Hybrid Aggregates......................................................................49

2.5.2 Volcanic Ash Particle Size Distributions......................................... 51

2.5.2.1 Initial Eruption Phase..................................................................51

2.5.2.2 Pyroclastic Flow Particles.......................................................... 52

2.6 Discussion.......................................................................................................52

2.6.1 Potential Aggregation Processes......................................................... 53

2.6.2 Implications of Ash Aggregation Processes for Transport Models 

and Satellite Detection Methods.............................................................55

2.7 Acknowledgements........................................................................................56

2.8 References.......................................................................................................58

2.9 Figures.............................................................................................................64

2.10 Tables............................................................................................................81

Chapter 3 Daily Variation in PM2.5 Volcanic Ash Concentration Reaching Sand

Point, AK from the 2007 Eruption of Pavl of Volcano..................................... 82

Abstract................................................................................................................. 82

3.1 Introduction.................................................................................................... 84

3.2 Satellite Ash Detection Methods..................................................................85

3.3 Tephra Studies............................................................................................... 86

3.4 Eruptive Chronology and Geologic Setting.................................................88

vii



Page

3.5 Aerosol Collection.........................................................................................89

3.6 SEM and EDS Spectroscopy........................................................................91

3.7 HYSPLIT Air Mass Tracking M ethod........................................................ 93

3.8 Results.............................................................................................................93

3.8.1 Identification and Description of Ash.................................................93

3.8.2 Sulfur and Sea Salt Maritime Aerosols...............................................95

3.8.3 Meteorological Influences...................................................................98

3.9 Conclusions.................................................................................................... 99

3.10 Acknowledgements....................................................................................100

3.11 References...................................................................................................101

3.12 Figures.........................................................................................................106

3.13 Tables..........................................................................................................118

Chapter 4 Characterization of Airborne Volcanic Ash Aerosols Collected During

the 2009 Redoubt Volcano Eruption.................................................................121

Abstract............................................................................................................... 121

4.1 Introduction...................................................................................................124

4.1.1 Geologic Setting and Eruptive History.............................................124

4.1.2 Redoubt Volcano 2009 Eruption...................................................... 125

4.1.3 Sampling Sites....................................................................................126

4.2 Sample Collection Techniques................................................................... 128

viii



IX

4.2.1 Environmental Beta Attenuation Monitors (EBAMs) and Beta 

Attenuation Mass Monitors (BAM-1020s)..........................................128

4.2.2 Davis Rotating Unit for Measurement (DRUM) Sampler.............. 129

4.2.3 Tephra Sampling.................................................................................131

4.3 SEM Sample Analysis.................................................................................131

4.3.1 DRUM Sample Analysis.................................................................... 131

4.3.2 EBAM and BAM-1020 Sample Analysis.........................................132

4.4 SEM and EDS Analysis Techniques...........................................................134

4.5 Discussion.....................................................................................................135

4.6 Conclusion....................................................................................................137

4.7 Acknowledgments........................................................................................ 138

4.8 References.....................................................................................................140

4.9 Figures........................................................................................................... 146

Chapter 5 Conclusion.............................................................................................. 168

5.1 Ash Aggregation Processes......................................................................... 168

5.2 Fine Ash Volume and Settling Rate Underestimation.............................. 169

5.3 Satellite Detection Method Limitations..................................................... 171

5.4 References.....................................................................................................173

Appendix A Augustine DRUM SEM Images..................................................... DVD

Appendix B Augustine EDS Particle Measurements and Shape Descriptors...DVD 

Appendix C Augustine DRUM EDS Spectra Graphs and Tables.....................DVD

Page



Page

Appendix D Augustine DRUM EDS Element Maps..........................................DVD

Appendix E Pavl of DRUM SEM Images and EDS Element Maps.................. DVD

Appendix F Pavlof EDS Particle Measurements and Shape Descriptors DVD

Appendix G Pavlof DRUM EDS Spectra Graphs and Tables...........................DVD

Appendix H Pavlof DRUM EDS Element Maps................................................DVD

X



XI

List of Figures

Page

Chapter 1 Figures

Figure 1.1. Study map showing the locations of Augustine, Pavlof, and

Redoubt volcanoes with selected populated places in Alaska......................30

Figure 1.2. Schematic diagram of volcanic plume interacting with

atmospheric features. Figure is from McGee et al. (1997)........................31

Figure 1.3. Representative regional vertical distribution of tropospheric

aerosol mass concentration. Most of the aerosol content in the troposphere 

is within the first few kilometers of the atmosphere. Figure is from

Jaenicke (1993).............................................................................................. 32

Figure 1.4. An irregular particle and its equivalent spheres. Figure is from

Reist, 1993 ..................................................................................................... 33

Figure 1.5. Schematic steps involved in the transfer of S02 from the gas 

phase to the aqueous phase of an atmospheric water droplet and its 

oxidation in the liquid phase. S02(g) = gas phase S02, S02(i) = S02 at

water-gas interface. The sequence of steps is as follows: 1) Transport of 

gas to the surface of the droplet, 2) Transfer of gas across the gas-water 

interface, 3) Formation of aqueous phase equilibria of the dissolved 

species, 4) Transport of the dissolved species from the surface to the bulk 

aqueous phase of the droplet, 5) Reaction in the droplet. Figure and 

caption after Finlayson-Pitts and Pitts (1986)..............................................34



X ll

Page

Chapter 2 Figures

Figure 2.1. Location map of Augustine Volcano and the sampling location 

near Homer, Alaska. Augustine is located in Cook Inlet 275 km west-

southwest of Anchorage and 110 km west of Homer................................. 64

Figure 2.2. Silicon mass concentration relative to time. The initial eruptive 

phase from 13 to 22 January (blue box) is dominated by larger aerosols 

(35.0-1.15 pm 0 A). Smaller size fractions have essentially no silicon 

present. The eruptive style for the period starting on 28 January through 5 

February (orange box) was dominated by pyroclastic flows. While 

significant ash mass concentrations were present in the larger size 

fractions, significant ash mass concentrations were also present in smaller

size fractions (1.15-0.26 pm 0 A) ..................................................................65

Figure 2.3. Silicon Silicon mass concentration relative to time (1.15-0.09 pm 

0 A). The initial eruptive phase indicated by the blue box had very little 

ash present due to the explosive ash-forming processes that occurred 

during this phase. Over the pyroclastic flow-dominated phase (orange 

box) clast-to-clast milling produced fine ash 1.15-0.26 pm 0 A................ 66



X l l l

Page

Figure 2.4. An An 8-stage DRUM cascade impactor. Arrows indicate the 

flow direction. The inlet pictured is a standard 10 pm 0 A configuration. 

The inlet, Stage 1 (inlet to 5.0 pm 0 A) and Stage 8 (0.26-0.09 pm 0 A) are 

indicated by arrows. The inlet shown here imparts a 10 pm 0 A initial size 

cut. The yellow arrow indicates the flow direction through the sampler. 

Image courtesy of T. Cahill and the Delta Group, University of California,

Davis...............................................................................................................67

Figure 2.5. The 8-stage DRUM impactor installed at the University of Alaska 

Homer, AK Field Station. The sampler was inverted from its normal 

deployment configuration and was fitted with a special inlet (white pipe)

for collecting 35.0 pm 0 A and smaller aerosol............................................68

Figure 2.6. An example drum with collected aerosol. This drum (not from this

study) has been used to collect aerosol over an extended period. The dark 

lines are likely heavy industrial pollutants and carbon soot. The lines on 

the drum surface result from the internal slotted orifice directing aerosols 

to impact on the drum surface over a discrete time interval.......................69



xiv

Page

Figure 2.7. SEM DRUM sample image mosaic. The large particles are hybrid 

aggregates or ash comingled with non-sea salt sulfates and sea salts; 

smaller particles are individual ash grains and sea salt particles. Each 

individual image represents 3 hours of sampling time based on a drum 

rotation rate of 4 mm/day. The entire mosaic represents about 8.5 hours of

sampling time taking image overlaps into account..................................... 70

Figure 2.8. EDS element map image pre-processing steps. The corresponding 

secondary electron image (A) is analyzed by EDS for Si element 

composition (B). The resulting element map is inverted to more clearly

show EDS X-ray detects............................................................................... 71

Figure 2.9. Particles digitally segmented by the ‘watershed’ method. Some 

particles were segmented while others retained their original dimensions.

Figures are from Ferreria and Rasband (2011)............................................72

Figure 2.10. Post thresholding image selection. After the inverted element 

map is thresholded by the three methods indicated in the text and 

segmented, manual review of the threshold results is conducted. The 

original inverted element map is visually compared to the threshold results 

and the result most closely matching the inverted image (A) is retained.

The other two images (B & C) are discarded..............................................73



Figure 2.11. Single ash SEM images. These images (A and B) show the 

general features of individual glassy ash grains. These images were 

obtained from DRUM samples collected on 30 January 2006. The images 

from Stage 5 and 7 (C and D) are included to show the lack of ash present.

The particles present in these stages are non-sea salt sulfate aerosol 74

Figure 2.12. Particle size distribution for single grain ash. Single grain ash 

particle size distributions for ash collected on 14 (A and B) and 17 January 

2006 (C and D) shown here are log-normal. The plume sampled on 14 

January was sampled again on 17 January due to favorable weather 

conditions. Comparison of early plume and late plume distributions show 

enrichment in larger particles possibly due to either particle aggregation or 

the plume settling low enough to be sampled at a higher mass

concentration near the ground level............................................................. 75

Figure 2.13. Ash aggregate images. Ash aggregates were only observed in the 

2.5-1.15 pm 0 A Stage 3 aerosols collected from plumes from pyroclastic 

flows. These images are of samples collected during 30 January 2006 and 

show ash aggregates present with individual ash grains.............................76

Page



xvi

Page

Figure 2.14. Hybrid ash aggregate images. Hybrid ash aggregates were found 

in all stages. Ash imaged in A was collected in Stage 1 on 14 January 

2006, B was collected in Stage 3 on 31 January 2006, C was collected in 

Stage 5 on 3 February 2006, and D was collected by Stage 7 on 30 January 

2006. In the larger sizes (35.0-1.15 pm 0 A) the dominant aerosol was sea 

salt that had mingled with ash. Smaller size fractions were mostly non-sea

salt sulfate that had combined with volcanic ash........................................ 77

Figure 2.15. Non-ash aerosols collected by DRUM sampler. The

aerosols, shown in A and B were collected on 26 January 2006 in Stage 1 

and 5 respectively, are mostly sea salt with minor amounts of non-sea salt 

sulfate. Aerosols shown in C and D were collected in Stage 5 on 16 

January and 23 January 2006 respectively. Aerosols shown in E were 

collected in Stage 7 on 26 January 2006. Images C, D, and E show non­

sea salt sulfates. It is interpreted that the dendritic forms shown in C were 

the result of a wet sulfate droplet drying on the sample surface after being

sampled...........................................................................................................78

Figure 2.16. HYSPLIT back trajectory showing the path of the plume sampled 

first on 14 January and again on 17 January 2006. Note how the altitude 

of the plume descends over the transport path. This is due to modeled 

air parcel isentropic movement, not by HYSPLIT modeling ash settling 

rates................................................................................................................. 79



Page

Figure 2.17. Pyroclastic flow elutriation plume particle size distributions. Ash 

was present in Stages 1-7. The particle size distributions shown here are 

from Stages 1, 3, 5 and 7. The total distribution in log-normal as are those 

from Stages 1-5. Stage 7 shows a bimodal distribution possibly due to the 

smallest particle sizes (<0.01 pm2) being the result of image noise. The 

second mode centered at 0.02 pm2 may represent the very fine end of the

particle size distribution for the elutriation plume...................................... 80

Chapter 3 Figures

Figure 3.1. Location map of Pavlof Volcano and the sampling location in 

Sand Point, Alaska. Pavlof is located on the Lower Alaska Peninsula 

between the Pacific Ocean and the Bering Sea 90 km west of Sand 

Point.............................................................................................................. 106

xvii



xviii

Page

Figure 3.2. Three stage DRUM sampler, sample drum, and installation at 

Sand Point, Alaska. The dark lines on the sample drum (A) pictured here 

(not from this study) are likely heavy industrial pollutants and carbon soot. 

Three sample drums fit in the chambers in the DRUM sampler (B). For 

installation at Sand Point (C), the sampler was wrapped in a plastic bag 

and attached to the red cooler which contained the vacuum pump. The 

plastic bag gave a measure of weather resistance to the sampler. Holes in 

the cooler allowed air circulation necessary for keeping the pump cool.

The entire sampler assembly was attached with bungee cords to a 

wooden pallet weighted with rocks to give the sampler set-up some 

stability. The sampler was connected to local AC power and operated 

unattended for 6 weeks. The entire sampler assembly was transported in

the red cooler.................................................................................................107

Figure 3.3. SEM DRUM sample image mosaic. The large particles are sea 

salts; smaller particles are volcanic ash. Each individual image represents

1.4 hours of sampling time based on a rotation rate of 4 mm/day. The 

entire mosaic represents 4 hours of sampling time taking the image

overlaps into account...................................................................................108

Figure 3.4. Si, Al, Ca, Fe, Mg, K, and Ti concentrations versus time

(2.5-1.15pm 0 A) showing diurnal variation.............................................. 109



XIX

Page

Figure 3.5. HYSPLIT back trajectories for 29-31 August 2007 over Sand

Point, Alaska................................................................................................ 110

Figure 3.6. Silicon concentration versus time showing diurnal variation 111

Figure 3.7 A and B. SEM Images and EDS maps from Stage 1 (2.5-1.15 pm 

0 A). A, collected at 17:00 AKDT on 27 August 2007, shows abundant 

volcanic ash along with large sea salt particles. B, collected at 23:00 

AKDT on 27 August 2007, shows infrequent ash particles along with 

abundant sea salt particles. Both images have minor sulfate aerosols.... 112 

Figure 3.7 C and D. SEM images and EDS maps from Stage 2 (1.15-0.34 pm 

0a ). C was collected at 18:00 AKDT on 30 August 2007 and shows 

sparse volcanic ash along with abundant sulfate. D was collected at 02:00 

AKDT on 31 August 2007 and shows abundant volcanic ash and sulfate.

Both images show little sea salt..................................................................113

Figure 3.7 E and F. SEM images and EDS maps from Stage 3 (0.34-0.1 pm 

0a ). E was collected at 18:00 AKDT on 30 August 2007 and shows 

sparse volcanic ash along with occasional sulfate. F was collected at 

05:00 AKDT on 31 August 2007 and shows abundant volcanic ash and 

sulfate. Both images show no sea salt. The dark patch in the upper left- 

hand corner of the Cl map in F is the result of contamination on the 

sample mount................................................................................................114



Page

Figure 3.8. Wind direction and speed data from Cold Bay, AK from 26 

August -  8 September 2007. Source: Weather Underground 

www.wunderground.com accessed on 13 May 2011, based on unofficial 

National Weather Service station Sand Point PASD weather data. The 

nearest official data are available from the Cold Bay PACD station which

show similar conditions over these intervals.............................................115

Figure 3.9. AVHRR BTD split-window images showing ash clouds at Pavlof 

Volcano. The left image was taken on 28 August 2007 at 11:48PM AKDT 

(29 August 07:48 UTC) and the right image was taken almost ten hours 

later on 29 August at 09:20 AKDT (17:20 UTC). Areas that may contain 

ash are colored blue through light green. The earlier image shows the ash 

plume during an explosive phase of the eruption. The later image show 

the remnants of that earlier plume as detached ash clouds. Other blue areas 

scattered along the peninsula are algorithm artifacts not related to ash. 

Image and caption credit: Rick Wessels. Image courtesy of

AVO/USGS...................................................................................................116

Figure 3.10. Photo of steam and ash erupting from Pavlof volcano on 29 

August 2007, from 13:10-13:15, AKDT. This image was taken from the 

northwest. The plume is weak and bent over. Steam is evident near the 

summit, but only diffuse ash is visible downwind of the volcano. Image 

credit: Guy Tytgat. Image courtesy of AVO/USGS................................ 117

XX

http://www.wunderground.com


XXI

Page

Chapter 4 Figures

Figure 4.1. Location map of Redoubt Volcano, Alaska and sampling locations

used in this study. Redoubt is located on Cook Inlet 170 km southwest of

Anchorage.....................................................................................................146

Figure 4.2. Exterior view of an EBAM equipped with a meteorological

station. The unit consists of a louvered inlet (top) which is attached to the 

sampler cabinet. Attached to the sampler cabinet by two horizontal arms 

are weather station components. A communications unit is also attached 

to the main sampler cabinet. Photo credit: Drew Grimes, U.S. Fish and

Wildlife Service........................................................................................... 147

Figure 4.3. Interior view of the EBAM filter tape, P-source and detector. The 

assembly shown in the upper center of the cabinet contains the base of the 

inlet tube shown in Figure 4.2 and a 14C source which emits a constant 

source of P-particles. The P-particles are attenuated as they collide with 

particles collected on the filter tape. Two dark sample spots are visible on 

the take-up roll of the filter tape spool. Aerosols are the filter tape which 

is located between the base of the inlet and the P-particle detector 

assembly. Photo Credit: MetOne Inc.........................................................148



XXII

Page

Figure 4.4 A and B. EBAM filter sample spots from the MOA Garden site 

PM2.5 configured EBAM with Redoubt ash present. These spots are about 

1 cm in diameter and represent a one hour interval. 4A shows a close-up 

of individual filter spots. The dark spot was collected over the 11:00 

(AKDT) hour during a high mass loading episode while the lighter and 

virtually blank spots were collected during low mass loading episodes. B 

shows an entire 24 hour sample period. Note the arrows bracketing the 24 

hour period. At each 24 hour interval, the EBAM advances 2 spaces to 

indicate the date change...............................................................................149

Figure 4.5. Three-stage DRUM sampler (A), sample drum (B), and chamber 

inlet (C). The sampler (A) connects to a vacuum pump and inlet/cyclone 

unit which imparts the initial size cut. The 3 circular chambers contain 

rotating drums that provide the sampling impaction surface. The first 

chamber (opened) collects the largest size fraction (2.5-1.15 pm 0 A). 

Subsequent stages collect smaller aerosol (1.15-0.34 and 0.34-0.1 pm 0 A). 

The outer case is 30 x 20 x 10 cm. The sample drum (B) has a Mylar™ 

strip affixed to the outer surface. The dark lines on the outer drum surface 

are combustion aerosol particles that have collected on the Mylar™ 

strip............................................................................................................... 150



XX111

Page

Figure 4.6. SEM DRETM sample image mosaic. The large particles are salts, 

smaller particles are volcanic ash. Each individual image represents about

3.5 hours of sampling time based on a rotation rate of 4 mm/day. The 

entire mosaic represents about 9 hours of sampling time after taking the

image overlaps into account........................................................................ 151

Figure 4.7. SEM secondary electron (SE) image and EDS element maps of 

EBAM filter tape. Si, Ca, and A1 element maps are shown. The entire 

filter media is silica rich, while the thicker fibers also contain significant

amounts of Ca and A1..................................................................................152

Figure 4.8. Secondary electron image of PMi0 EBAM filter tape and aerosol 

sample collected on 28 March 2009 at 05:00 AKDT at the MOA Air 

Quality Monitoring Program Garden site and corresponding EDS spectra 

from circled particles. Note the prominent silicon, aluminum, and calcium 

peaks in each spectrum regardless of particle composition. Particles 

indicated by 1 and 3 are likely salt aerosols due to the high chlorine 

counts, but the spectra are still dominated by background silicon counts. 

Particles indicated by 2 and 3 are possibly volcanic ash particles. Silicon 

is detected in all particles since the background (filter media) is made of 

silicon, aluminum, and calcium-rich glass fibers.......................................153



Page

Figure 4.9. Secondary electron image of PMi0 EBAM filter tape and aerosol 

sample collected on 28 March 2009 at 18:00 AKDT at the MOA Air 

Quality Monitoring Program Garden site. Image A is the filter tape before 

analysis. Image B is the same area imaged after the collection of a 6 

minute EDS spectra scan of approximately 25,000 counts per second, with 

the largest beam spot size setting and maximum accelerating current.

Note the extensive fusing of aerosols and filter media. Some minor 

shifting of filter fibers is also present. Scan time, spot size, and 

accelerating current were set to collect sufficient x-ray counts to produce

element maps with enough resolution for reliable image processing....154

Figure 4.10. Secondary electron image of PM2.5 EBAM filter tape and aerosol 

sample collected on 28 March 2009 at 05:00 AKDT at the MOA Air 

Quality Monitoring Program Garden site. Few particles are present in the 

sample due to the low PM2.5 mass concentration (3 pg/m3). Those 

particles that are present are found on the surface of thick fiber mats (A) or

imbedded in the media (B, C, and D ) .........................................................155

Figure 4.11 A. Hourly EBAM PMio levels in Soldotna, Alaska from 22 

through 26 March 2009. Mass concentration spikes on 23 March are due 

to Redoubt ash at the sampling site. Mass concentrations after March 23 

are from non-volcanic aerosols................................................................... 156

xxiv



Page

Figure 4.11 B. Hourly BAM-1020 PMi0 and PM2.5 levels in Anchorage,

Alaska from 22 through 26 March 2009. Mass concentration spikes on 23 

March are due to Redoubt ash at the sampling site. Non-volcanic aerosol 

was responsible for the elevated aerosol mass concentrations after 23

March 2009...................................................................................................157

Figure 4.11 C. Hourly BAM-1020 PM 10 and PM2.5 levels in Wasilla, Alaska 

from 22 through 26 March 2009. No distinct increase in mass 

concentration coincides with HYSPLIT model predictions for 23 March. 

Non-volcanic aerosol was responsible for the elevated aerosol mass

concentrations after 23 March 2009 ...........................................................158

Figure 4.11 D. Hourly BAM-1020 PM 10 and PM2.5 levels in Palmer, Alaska 

from 22 through 26 March 2009. No mass concentration spikes were 

observed on 23 March despite HYSPLIT predicted arrival of air masses 

from Redoubt. Non-volcanic aerosol was responsible for the elevated

aerosol mass concentrations after 23 March 2009.....................................159

Figure 4.12. Relative hourly PM 10 levels in Soldotna, Anchorage, Wasilla, and 

Palmer, Alaska from 23 to 26 March 2009. Mass concentration spikes 

(indicated by the box) on 23 March are due to Redoubt ash at the sampling 

site in Soldotna and Wasilla. No mass concentration spikes were observed 

in Palmer and Wasilla on 23 March. Aerosol mass concentrations after 

March 23 are from non-volcanic aerosol................................................... 160

XXV



Page

Figure 4.13. HYSPLIT backward trajectories for Soldotna, Anchorage,

Wasilla/Palmer, and DNP&P HQ for the 23 March 2009 Redoubt eruption

events. Trajectory altitudes are in meters above ground level.................161

Figure 4.14. Time series of Si aerosol concentration collected by the DRUM 

sampler located at DNP&P HQ from 20 March-11 April 2009. The mass 

concentrations in boxes 1-3 are likely due to volcanic ash from Redoubt. 

This is confirmed by HYSPLIT trajectories presented in Figure 4.16. 

Silicon mass concentrations indicated in boxes 4-6 are from non-volcanic 

sources such as glacial dust and windblown river sediments. Note the 

relatively low silicon mass concentrations in the smallest (0.34-0.09 pm

0a ) size fraction relative to the other stages.............................................. 162

Figure 4.15 A. SEM secondary electron image and EDS element maps of 

aerosol collected at DNP&P HQ by DRUM sampler in the 2.5-1.15 pm 

0a  stage at 09:00 AKDT 23 March 2009. Sampling direction is from 

right to left. Volcanic glass shards are visible in the SE image and are 

visible in the EDS Si map. Some large sulfate particles are also present 

and evident in the S map. Minor chlorine salts are present, but most of the 

field of view is below the detection limit for Cl. No aggregation of 

particles is observed.....................................................................................163

xxvi



xxvii

Page

Figure 4.15 B. SEM secondary electron image and EDS element maps of 

aerosol collected at DNP&P HQ by DRUM sampler in the 1.15-0.34 pm 

0a  stage at 08:00 AKDT 23 March 2009. Sampling direction is from 

right to left. Some volcanic ash particles are visible in the SE image and 

the EDS Si map, but are very small and do not distinctly show shard 

shapes. Many large sulfate particles are also present and evident in the S 

map. No Cl is evident. The concentration of Si particles increases from 

right to left indicating a change in aerosol mass load. The sulfate mass 

load does not seem to change systematically with Si indicating that S and 

Si mass concentrations in this sampling interval are independent 164

Figure 4.15 C. SEM secondary electron image and EDS element maps of 

aerosol collected atNinilchik, Alaska by DRUM sampler in the 2.5-1.15 

pm 0 A stage at 17:00 AKDT 26 March 2009. Sampling direction is from 

right to left. Some Si is present and associated with S particles. Circular, 

ellipsoid, and rod-shaped Cl sea salt particles are abundant in the field of 

view. The S+Si particles are separate from the Cl particles indicating that 

Si and S aerosols combined to form hybrid aerosol while the sea salt 

particles did not. It is possible that the sulfate particles were liquid and 

sea salt particles were crystalline when aggregation occurred which could 

influence the aggregation process...............................................................165



xxviii

Page

Figure 4.15 D. SEM secondary electron image and EDS element maps of 

aerosol collected atNinilchik, Alaska by DRUM sampler in the 1.15-0.35 

pm stage at 09:00 AKDT 27 March 2009. Sampling direction is from 

right to left. Large sulfate particles exhibiting distinct crystal shapes are 

evident in this image. There is no Cl aerosol present. Si aerosol is 

ubiquitous throughout the field of view. Sulfate may have been a dry 

aerosol when it was sampled due to the crystal shapes present in the image 

and that Si seems to be evenly distributed in the sample and not 

partitioned in sulfate particles. Sulfate particle sizes seem to decrease and

particles become less crystalline as sampling progresses.........................166

Figure 4.16. HYSPLIT backward trajectories for Denali National Park and 

Preserve (DNP&P) for 28-30 March 1 April and 7 April 2009.

Trajectories from the 28-30 March show air masses transporting from 

Redoubt to DNP&P. Trajectories from 1 and 7 April 2009 show air 

masses transporting from the northeast and north, respectively.............. 167



XXIX

List of Tables

Page

Chapter 1 Tables

Table 1.1 Magma Compositions and Constituents............................................35

Chapter 2 Tables

Table 2.1. Shape Descriptors.............................................................................. 81

Chapter 3 Tables

Table 3.1. Satellite Sensors Used for Brightness Temperature Difference Ash

Detection.......................................................................................................118

Table 3.2. Composition of Sea Salt Particles in Clean Atmospheres 119

Table 3.3. Atmospheric Sulfur Aerosols...........................................................120



XXX

Dedication

Accomplishments are made with the support of others.

Without the constant encouragement and perspective of my wife, Wendy, I would 

not have been able to complete this dissertation. It is to her that I dedicate this 

work.

And to my children, Cecilia and Colin, from whom I have gained a renewed 

appreciation of the world at large that I further dedicate this volume.

And to my parents who developed and nurtured my initial sense of interest in the 

natural world, I owe my heartfelt gratitude.

And those teachers, professors, colleagues, and friends who have shared with me 

their enthusiasm and interest, I owe my sincere thanks.

And lastly, to those who have reviewed and edited this work I owe my sincere 

thanks. Their thoughtful comments and suggestions made this work possible.



“I wish,” spoke the King, “to have you make something fall from my 
skies that no other kingdom has ever had before. What can you do? What 
will you make?”

For a moment they stood thinking, blinking their creaky eyes. Then 
they spoke a word.. .one word.. .“Oobleck.”

“Oobleck... ?” asked the King. “What will it look like?”

“Won 7 look like rain. Won 7 look like snow.
Won 7 look like fog, that’s all we know.
We just can 7 tell you any more.
W e’ve never made oobleck before. ”

Excerpt and illustration from Oobleck, by Dr. Seuss.
1949. Random House Publishers, New York, NY.



1

Chapter 1 Introduction

Volcanoes are constantly erupting around the world. Every year, an average 

of 20-30 explosive eruptions are observed worldwide (Siebert and Simkin, 2002-). 

Ash from these eruptions can impact human health (Horwell and Baxter, 2006), 

aviation (Casadevall, 1994), climate (Dartevelle et al., 2002), ecosystems (Langman 

et al., 2010), and visibility (Blong, 1984). Large eruptions, greater than Volcanic 

Explosivity Index (VEI) 3, occur about three times per year (Siebert and Simkin, 

2002-; Newhall and Self, 1982). Ash from these eruptions can be injected high into 

the atmosphere, undergo long range transport, and cause effects far from the eruption 

source (Mather et al., 2003). Some notable examples of such eruptions include the 

Eyjafjallajokull eruption in 2010 which closed commercial airspace over Europe 

(Gudmundsson et al., 2010), the eruption of Mt. Pinatubo in 1992 which affected 

global temperatures (Dartevelle et al., 2002), and the 1985 eruption of Mt. St. Helens 

which produced measurable ash in several Western U.S. states (Sama-Wojcicki et al., 

1981). While these large eruptions capture headlines and the collective conscious, 

smaller eruptions are far more numerous and can produce ash clouds which can 

undergo long range transport (Mather et al., 2003; Schneider et al., 1995) and cause 

impacts on a local and regional scale (Blong, 1984).

Few studies, however, have examined ash particles while they are suspended 

in the atmosphere (Mather et al., 2003; Rose et al., 2000). Those studies that have 

sampled volcanic ash undergoing atmospheric transport were conducted over short
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intervals, at single locations, or examined the chemistry of soluble aerosols but did 

not address the chemistry or morphology of volcanic ash (e.g. Hunton et al., 2005). 

Modeling studies have been conducted to understand how fine volcanic ash aerosol 

behaves as it is transported, but these studies are often purely mathematical or use 

data from tephra studies that focus on larger particles with short (<hours) atmospheric 

lifetimes that fall out near the volcano (Mastin et al., 2009). These studies tend to 

omit respirable particulate matter that is small enough to be transported 

hemispherically. While proximal fallout may have implications near the volcano such 

as structural loading from ash fall and impact hazards from ballistics, these effects are 

relatively localized in time and geographic area (Blong, 1984). Long-range transport 

of fine volcanic ash particulates may have impacts on respiratory and ecosystem 

health, aircraft and aerodrome operations, climate, visibility, and other impacts at 

distances far from the erupting volcano (Mather et al., 2003; Rose et al., 2000).

Observations and analysis of airborne volcanic ash collected during three 

volcanic eruptions in Alaska (Figure 1.1) are presented in this dissertation including 

the eruptions of Augustine Volcano (2006), Pavlof Volcano (2007), and Redoubt 

Volcano (2009). These studies attempt to address issues associated with the long- 

range transport of volcanic ash, specifically how ash concentration and particle size 

vary with transport distance, what physical and chemical processes transform ash as it 

is transported, and how ash aggregates during transport. The Augustine study also 

provides aerosol size distribution and concentration data for future use in volcanic ash 

distribution models and for validation and calibration of satellite remote sensing ash
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detection and retrieval methods. These data are contained in the DVD that 

accompanies this dissertation.

1.1 The Atmospheric Fate and Transport of Volcanic Ash

Beyond its source, formation processes, and emplacement in the atmosphere, 

airborne volcanic ash is no different than other atmospheric aerosols in regard to fate 

and transport (Sparks et al., 1997). Atmospheric transport of volcanic ash is 

influenced by qualities of the particle itself, the strength of the eruption, and the 

atmosphere into which it is erupted. The altitude to which ash is erupted dictates the 

type of atmospheric environment the ash initially encounters, the residence time the 

ash particle has in the atmosphere, and the evolution of the particle as it is 

transported. The type of atmosphere into which ash is erupted depends largely on the 

geographic location of the erupting volcano and the time of year of the eruption.

Pyroclasts are formed as volcanic rocks are explosively erupted and can range 

in diameter from several meters to sub-micron (Fisher and Schminke, 1984). Larger 

pyroclasts fall out of the plume near the vent in a matter of seconds to minutes while 

smaller pyroclasts can have atmospheric lifetimes of hours to weeks and can be 

transported globally before removal. Pyroclast formation during volcanic eruptions 

has been described in depth by various authors (e.g. Sparks et al., 1997; Cashman and 

Mangan, 1994; Fisher and Schminke, 1984). The process, in condensed form, is as 

follows: pyroclasts are formed when magmatic gases (FLO, SO2, CO2, etc.) rapidly 

form bubbles which grow at a rate that exceeds the yield strength of the magmatic
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fluid, causing the bubbles to burst and shatter. The release of gas from these bubbles 

drives the resulting particles from the volcanic vent. The volume of gas released 

during an eruption and the release rate play a significant role in the rate of pyroclast 

production, particle sizes produced, and the eruptive plume height (Sparks et al., 

1997; Newhall and Self, 1982; Walker, 1973). The fracturing process can impart an 

electrostatic charge to the resulting pyroclasts which may play an important role in 

particle aggregation. James et al. (2002) simulate a process which creates a 

significant electrostatic charge by fracto-emission during pyroclast formation.

1.1.1 Atmospheric Influences on Particle Growth

The altitude of plume emplacement, latitude of the volcano, and the time of 

year when an eruption occurs all have a significant role in ash aggregation processes 

and rates. Figure 1.2 from McGee et al., (1997) shows a host of atmospheric 

constituents interacting with a volcanic plume and results of those interactions. Since 

ash can be transported globally, it can encounter a variety of atmospheric conditions 

before it is ultimately removed. Explosive eruptions can produce a range of plume 

types depending on the overall energy of the eruption and other factors such as 

volatile content, the composition of the erupted magma, vent size, etc. (Sparks et al., 

1997; Newhall and Self, 1982; Walker, 1973). In general, volcanic eruptions can 

produce large, energetic plumes that can reach the stratosphere and upper 

troposphere, weak, bent-over plumes which do not go much higher than the elevation 

of the vent, or pyroclastic flows which propagate down the sides of volcanoes (Sparks
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et al., 1997). High plumes can encounter the upper troposphere-lower stratosphere, 

while low plumes are erupted into the lower troposphere (Sparks et al., 1997). The 

upper troposphere-lower stratosphere is a non-turbulent, cold, generally dry region 

with low levels of aerosol and reactive chemical species while the lower troposphere 

is relatively turbulent and moist, and contains a host of aerosol (Figure 1.3) and 

reactive gases (Seinfeld and Pandis, 2006; Jaenicke 1993). The geographic location 

of the erupting volcano also has an influence on the type of atmospheric environment 

acting on ash. For example, warm, maritime tropical air masses present different 

chemical and physical influences than would dry, continental polar air masses 

(Seinfeld and Pandis, 2006; Finlayson-Pitts and Pitts, 1986). The time of year of an 

eruption can also have significant influence on the atmosphere into which the plume 

is emplaced. A summertime atmosphere contains more reactive species and higher 

aerosol levels than a wintertime atmosphere. Furthermore, during high latitude 

winter, ultraviolet solar flux, an important source of energy for some atmospheric 

reactions, can be very low or absent which can limit or prevent some important 

photochemical processes such as the conversion of SO2 to sulfate (Seinfeld and 

Pandis, 2006; Finlayson-Pitts and Pitts, 1986).

In the most basic sense, large, dense aerosols are removed from the 

atmosphere more rapidly than small, less dense ones (Reist, 1993). Volcanic ash 

particles are defined to be 2 mm in diameter and smaller (Fisher and Schminke, 

1984). Along with ash, other particle sizes are produced ranging from blocks and 

bombs (>64 mm) to lapilli (<64 mm - >2 mm). Generally lapilli and larger particles
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fall out of a plume near the vent and do not undergo long range transport (Sparks et 

al., 1997). Because large pyroclastic particles (>10 pm 0 A) are quickly removed 

from a volcanic plume by ballistic trajectories, they are not considered further in this 

discussion because their atmospheric residence time is too short for much 

atmospheric interaction (Shipley and Sarna-Wojcicki, 1982). However, smaller 

particles (< 10  pm 0 A) can remain suspended in the atmosphere for hours to days, 

undergo significant atmospheric reactions, and experience long range transport (Reist, 

1993).

1.1.2 Particle Settling and Stokes’ Law

If no forces other than fluid dynamics acted upon volcanic ash, residence time 

would be purely a function of Stokes’ Law (Reist, 1993; Fuchs, 1964) which states 

that particles settling in a viscous medium are influenced by particle size and density 

along with the viscosity of the medium in which they are suspended. A further 

stipulation is that the particles are settling in a non turbulent fashion when the particle 

Reynolds number is less than 1 (Hinds, 1999). In its most basic form, Stokes’ Law is 

as follows:

Fd = 3 nr\Vd

where FD is the force of drag on a spherical particle, rj is the viscosity of the medium, 

V is the velocity of the particle, and d  is the density of the particle. According to this 

version of Stokes’ Law, the initial height from which the particle is released into the 

atmosphere, particle density, and the viscosity of air would be the only factors
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dictating settling rates and thus atmospheric residence time. Stokes’ Law in this form 

assumes that all particles are spherical and do not change shape, size, or density and 

the medium is not flowing nor changing its viscosity. But the atmosphere is a 

turbulent flow regime, and aerosols are not inert objects (Seinfeld and Pandis, 2006; 

Finlayson-Pitts and Pitts, 1986). If settling rate solely dictated the removal of 

volcanic ash from the atmosphere, micrometer-sized ash erupted to 10-20  km would 

remain suspended for hundreds of years and fill the atmosphere (Cahill et al., 2010). 

Instead, physical and chemical processes act upon aerosols and alter the aerosol in 

several ways. To adequately model the settling rate for a particle in the atmosphere, 

each of the terms in Stokes’ Law would have to be recast as dynamic values that can 

change as the particle is transported. Because there are many processes acting on 

aerosols, it is necessary to discuss physical and chemical processes separately to more 

clearly examine their individual influences on settling rates and aerosol removal.

Very fine volcanic ash, defined by Rose and Durant (2009) to be less than 10 

pm in diameter, enters the atmosphere as a solid, angular, elongate, platy, or non- 

spherical isometric particle (Heiken and Wohletz, 1985). The influence of non- 

spherical particle shape on particle settling rates is addressed by Reist (1993), Wilson 

and Huang (1979), and Fuchs (1964). For non-spherical particles, it is necessary to 

represent the required diameter term in Stokes’ Law with a shape factor to properly 

account for the effects of non-sphericity on particle motion. When particles are 

elongate, a dynamic shape factor reduced to a statistical average is needed to 

completely describe particle motion because particles change their orientation due to
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diameter sphere referred to as the Stokes’ equivalent sphere (Figure 1.4) which is a 

theoretical sphere that has the equivalent settling velocity and mass as the original 

non-spherical particle (Reist, 1993). Wilson and Huang (1979) presented an 

exhaustive empirical study on the settling rates of volcanic particles with a variety of 

shapes and densities. While the particle sizes they investigated were larger than the 

particles sampled in the studies presented in this dissertation, their data show that as 

long as the Reynolds number, the measure of the ratio of inertial forces to viscous 

forces, remains < 1 , the settling rate for an ash particle closely resembles the settling 

rate for a cylinder with a diameter equal to the arithmetic mean of the three principle 

axes of the ash particle (Wilson and Huang, 1979). Since a volcanic cloud contains a 

range of ash particle sizes and shapes, it is necessary to determine the particle size 

range and shapes contained in the cloud to properly model the range of settling 

velocities of particles in the cloud.

Particle density is another important term in Stokes’ Law. Volcanoes produce 

a range of rock compositions with different densities ranging from 0.7-2 g/cm3 for 

pumice, 2.35-2.45 g/cm3 for glass shards, 2.7-3.2 g/cm3 for dense rock and 2.6-5.2 

g/cm3 for crystals (Shipley and Sama-Wojcicki, 1982; Wilson and Huang, 1979). 

Higher density particles of an equivalent diameter will settle at rates faster than those 

that are less dense according to Stokes’ Law. To more easily incorporate particle 

density, size, and shape into one basic term, the use of the aerodynamic diameter 

equivalent sphere is used to calculate particle motion (Reist, 1993). An aerodynamic
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diameter equivalent sphere is a virtual sphere that has a density of 1 g/cm3 and a 

diameter scaled to give the spherical particle the same settling velocity as the actual 

particle. Depending on the particle shape and density, the actual particle could be 

larger or smaller than its aerodynamic diameter. Aerodynamic diameter is used to 

simplify particle motion calculations and plays a major descriptive role in aerosol 

research (Reist, 1993).

The above discussion is primarily focused on the motion of single volcanic 

particles, but volcanic plumes and clouds composed of many individual particles 

move as one entity at least during the initial period of their existence (Sparks et al., 

1997; Fuchs, 1964). Clouds are regions where the composition, density, and 

temperature are different than that of the surrounding atmosphere. A rising volcanic 

plume is a region of expansion due to eruptive decompression and ingestion of air 

(Sparks et al., 1997). According to Fuchs (1964), plume rise is generally due to 

differences in temperature and humidity between the interior of the plume and that of 

the surrounding atmosphere. Plumes rise because the temperature of the plume 

exceeds the temperature of the surrounding atmosphere, resulting in buoyant rise. 

The density of the particles contained in the plume have a secondary role in 

controlling plume rise, except when cloud density overwhelms thermal buoyancy and 

the rising column collapses, which produces pyroclastic flows. The density of the 

plume plays a significant role in the rate of mixing with the surrounding atmosphere. 

As the plume mixes with the surrounding atmosphere and volcanic gases are 

dispersed, the plume becomes more dilute and the environment in which the ash is
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suspended becomes more similar to the ambient atmosphere than a volcanic plume 

(Sparks et al., 1997).

1.1.3 Ash Particle Composition

As stated earlier, airborne volcanic ash is subject to the same processes as any 

other atmospheric aerosol. To understand what atmospheric processes act on 

volcanic ash, it is necessary to fully describe ash in terms of its physical and chemical 

characteristics. As a further definition, volcanic ash is one type of mineral aerosol 

like desert dust, loess, and windblown river or glacial sediment. Ash is comprised of 

primarily volcanic glass which is chiefly silica with some aluminum, calcium, iron, 

and sodium. Minerals can also form ash (Heiken and Wohletz, 1985; Shipley and 

Sama-Wojcicki, 1982). Common volcanic minerals include plagioclase feldspar, 

pyroxene, amphibole, olivine, mica, apatite, quartz, magnetite, and ilmenite. Most 

explosive ash-producing eruptions occur at volcanoes that are erupting basaltic to 

rhyolitic magmas. Table 1.1 shows the relative compositions of magmas and their 

names. In general, silicic magmas erupt more explosively than do silica poor 

magmas. Historically there have been more explosive dacitic and rhyolitic eruptions 

than basaltic ones (Siebert and Simkin, 2002-). Information about the magma 

composition of the erupting volcano may provide useful input parameters for volcanic 

ash transport and dispersal models (Mastin et al., 2009; Webley and Mastin, 2009).
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1.1.4 Changes to Aerosol Shape, Size, and Density

Up to this point of this discussion, ash aerosols have been assumed to remain 

a constant size and shape. Particles described in this work and by others (e.g. 

Taddeucci et al., 2011; Rose and Durant, 2011; Durant and Rose, 2009; James et al., 

2002; Vietch and Woods, 2001; Sorem, 1982) show that airborne ash can undergo 

aggregation processes due to the presence of a liquid phase or electrostatic 

aggregation in the absence of a liquid phase. Fuchs (1964) explains that particle 

aggregation is extremely efficient when particles are extremely fine. These 

aggregations explain how volcanic ash is incorporated into larger aerosols and is 

removed from the atmosphere at rates considerably faster than the settling rate of 

individual ash particles. For example, small aerosols commonly serve as cloud 

condensation nuclei and grow into larger particles by the addition of water. Also, 

aerosols commonly have an electrostatic charge which can attract other aerosols and 

cause them to stick together and form wet or dry aggregates (James et al., 2002; 

Fuchs, 1964). Aerosols provide volumes in which or surfaces on which chemical 

reactions can occur. For example, sulfur dioxide reacting with liquid water droplets 

(Figure 1.5) forms sulfuric acid droplets or sulfur dioxide and water can react on the 

surface of an ash particle to form a sulfate coating on the ash (Finlayson-Pitts and 

Pitts, 1986). As these reactions occur, individual primary aerosols form larger 

secondary hybrid particles. The resultant secondary particles have settling properties 

different than their constituents. In general, as particles aggregate and grow, they 

attain faster settling rates and are removed from the atmosphere. In some cases
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however, large fluffy particles can have slower settling rates than their constituents 

due to an overall large aspect ratio and low density. A prime example of this is large 

carbon chain soot aerosols (Reist, 1993; Fuchs 1964) and large fluffy aggregate ash 

particles first described by Sorem (1982) in the Mt. St. Helens 18 May 1980 eruptive 

plume.

Particle growth is not the only fate of aerosols. Ash aggregate break-up 

during descent was observed by Taddeucci et al. (2011) in the Eyjafjallajokull 2010 

eruption plume. A droplet may be transported to a drier atmosphere than the one in 

which it formed. This could cause the particle to dry and become smaller. The 

process of hydration and subsequent drying can produce particles that are different 

sizes at the same relative humidity. This discrepancy, or hysteresis, adds another 

element to the complex nature of aerosol behavior as it evolves and ages during its 

atmospheric lifetime (Fuchs 1964).

1.1.5 The Influence of Volcanic Plume Regions on Aggregation

Sparks et al. (1997) describe in depth and detail the dynamics of volcanic 

plume behavior. Their description is referenced here as it pertains to ash particle 

dynamics within the plume. As ash is erupted, it is initially a hot particle, but it 

rapidly cools due to decompression and, to a greater extent, radiative cooling as it is 

ejected. The initial jet phase of the eruption is extremely energetic and is the result of 

violent degassing at the vent. In this region, ash is predominantly under the influence
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of volcanic processes, but this changes once it enters the convective region of the 

column.

In the convective region, the pyroclast has cooled from magmatic 

temperatures. Expansion of plume gases due to decompression and mixing with the 

atmospheric causes the plume to rise until the temperature of the plume equals that of 

the surrounding atmosphere (Sparks et al., 1997; Fuchs, 1964). The particle motion is 

turbulent and the particles collide with other particles in the plume. Collisions in this 

region may lead to the production of smaller pyroclasts from abrasion. Clast-to-clast 

milling may also form electrostatic charges on particles (Dartevelle et al., 2002). In 

this region, electrostatic charge may cause particles to form aggregates with other 

volcanic particles (James et al., 2002).

The convective region of the plume is where the plume begins to ingest and 

mix with the surrounding atmosphere (Sparks et al., 1997). The atmosphere into 

which a plume erupts is a dynamic system containing any number of aerosol types 

(sea salt, non-sea salt sulfate, reactive hydrocarbons, water vapor, black carbon, soil, 

desert dust, etc.) and reactive gases (Seinfeld and Pandis 2006; Finlayson-Pitts and 

Pitts, 1986). Once ash is erupted it is, by the very fact of its atmospheric presence, an 

atmospheric particle whose atmospheric lifetime will be governed by atmospheric 

physics and chemistry (Reist, 1993; Fuchs, 1964). Likewise, the gases in the plume 

will undergo dilution and reaction with atmospheric gases and aerosol by the same 

atmospheric pathways. The length of time the particle exists in the atmosphere, its 

individual chemistry, particle shape, size, and electrostatic charge will all influence
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what processes the pyroclast experiences before it is eventually removed from the 

atmosphere.

1.1.6 The Influence of Tropospheric Transport on Aggregation

The troposphere is the region into which most volcanoes emit their plumes 

(Sparks et al., 1997). Depending on latitude, the troposphere can range in thickness 

from 20 km at the equator to 8 km at the poles. The troposphere is divided into three 

main regions based on general characteristics of each region (Seinfeld and Pandis, 

2006; Sparks et al., 1997; Finlayson-Pitts and Pitts, 1986). The lower troposphere, 

also referred to the Planetary Boundary Layer (PBL), is the region closest to the 

Earth’s surface. It contains a broad mix of reactive gases and aerosols, and is moist, 

turbulent, and generally warmer than the other levels of the troposphere. Above the 

PBL, the main part of the troposphere, called the free troposphere, is a region of 

relatively low aerosol and reactive gas content. It is generally drier and colder than 

the PBL. The upper troposphere-lower stratosphere is the third zone of the 

troposphere. It is a transition zone from the troposphere to the stratosphere. During 

the summertime, this transition zone may exist as a distinct boundary which can 

impede the rise of air masses from the troposphere into the stratosphere, at other 

times, this region is undefined by temperature differences and flow from one level to 

another is relatively unrestricted.

In the free troposphere and at the upper troposphere/lower stratosphere 

boundary, the relatively dry, cold, aerosol-free conditions do not allow for extensive 

aggregation to occur outside that which is caused by conditions in the volcanic plume
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(Sparks et al., 1997). Plumes entering the free troposphere contain ash, volcanic 

gases and atmospheric constituents ingested by the plume in the PBL. Any 

aggregation in the free troposphere is limited by the contents of the plume which is 

also expanding and becoming colder and more dilute. This plume expansion limits 

the ability of aggregates to form and reactions to occur because aggregation due to 

collision and electrostatic attraction is heavily influenced by particle proximity 

(Fuchs, 1964). Dry conditions in the free troposphere may cause wet particles formed 

in the PBL to effloresce or lose water and crystallize. Particle charge relaxation and 

wind shear, especially at the margins of a plume and in dilute plumes, may cause ash 

aggregates to lose cohesion and break apart (Taddeucci et al., 2011; James et al.„ 

2002; Fuchs, 1964). The volcanic water vapor in the plume and atmospheric water 

vapor ingested by the plume may condense on ash particles to form water droplets or 

glaciate to form ice particles (Durant and Rose, 2009).

1.1.7 The Influence of PBL Transport on Aggregation

All volcanic ash erupted into the atmosphere encounters the PBL before it 

settles out of the plume. Any particle in the PBL is subject to a range of processes 

that can strongly influence aggregation. Moist, aerosol-laden air containing reactive 

gases can be ingested by a convecting plume and add reactive components to the 

plume. These components may influence the particle aggregation occurring in the 

plume as it rises into the free troposphere. Ash settling from a dispersed plume or a 

downward mixing plume, either by advection or isentropic flow, may encounter
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upward mixing PBL air masses. Maritime aerosols containing sea salt and non-sea 

salt sulfate in a moist atmosphere can readily combine with ash aerosols via collision 

or electrostatic attraction (Rose and Durant, 2009). Continental air masses can also 

contain reactive gases and aerosols such as OH', SO2, sulfate, desert dust, and carbon 

soot which can interact with volcanic ash and form complex secondary aerosols.

1.2 Collection Methods and Analytical Techniques

During the eruption of Augustine Volcano in 2006 and the eruption of Pavlof 

in 2007, Davis Rotating Unit for Measurement (DRUM) cascade impactors were used 

to collect airborne volcanic ash. During the eruption of Redoubt Volcano in 2009, 

DRUM samplers and Beta Attenuation Mass monitors (BAM-1020) and 

Environmental Beta Attenuation Monitors (EBAM) collected airborne ash.

1.2.1 Davis Rotating Unit for Measurement (DRUM) Samplers

DRUM samplers collect time-resolved aerosol samples in discrete size 

increments over a timed interval (Raabe et al., 1988; Cahill and Wakabayashi, 1993). 

In these studies, the samplers provided a temporal resolution of 3 hours over a 6 week 

period. For the Augustine eruption an 8 stage DRUM cascade impactor was used. 

The size increments were 35-5, 5-2.5, 2.5-1.15, 1.15-0.75, 0.75-0.56, 0.56-0.34, 0.34­

0.26 and 0.26-0.09 pm (in aerodynamic diameter or 0 A). For the Pavlof and Redoubt 

eruptions, 3-stage DRUM samplers were used. The size increments for the 3-stage 

DRUMs were 2.5-1.15, 1.15-0.34, and 0.34-0.9 pm 0 A. The collected samples were
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analyzed for mass concentration and chemistry as a function of time. The aerosol 

mass concentration is determined by P-particle attenuation and reported as mass 

concentration at a given time (Reist, 1993). Quantitative elemental concentrations for 

selected elements between Na and Pb are determined using synchrotron X-ray 

fluorescence (S-XRF) and reported as elemental concentration at a given time (Cahill, 

2003; Cahill etal., 1999).

1.2.2 Beta Attenuation Mass (BAM-1020) Monitors and Environmental Beta 

Attenuation Monitors (EBAM)

The BAM-1020 and EBAM instruments operate by filtering particulate matter 

through a glass fiber filter tape and measuring P-particle attenuation over a set time 

increment, typically 1 hour, based on established sampling protocol (Alaska 

Department of Environmental Conservation 2009a; 2009b; Municipality of 

Anchorage, 2009; MetOne, 2009). The devices report the beta particle attenuation as 

mass concentration per unit of time in real-time by telemetered communications. 

These data are routinely used by public officials as a measure of air quality for 

regulatory purposes and to advise populations about potential air quality hazards.

E2.3 Scanning Electron Microscopy (SEM) and Energy Dispersive 

Spectroscopy (EDS)

Scanning Electron Microscopy (SEM) was also conducted to determine 

particle morphologies, particle counts, and size distributions at different times during
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eruptions. Energy Dispersive Spectroscopy (EDS) was conducted along with the 

SEM analysis to determine individual particle composition. These analyses were 

conducted at the University of Alaska Fairbanks Advanced Instrumentation 

Laboratory.

1.2.4 Digital Image Processing Techniques

Grain size distributions and shape descriptors for ash particles from the 

Augustine eruption were determined from EDS element maps by digital image 

processing methods. While the measurements and shape descriptors presented here 

are similar to those presented by Riley et al. (2003), the image collection method and 

image processing software used for this study are commonly available at relatively 

low cost. SEM instruments equipped with EDS spectrometers are commonly 

available at most scientific research institutions. The image processing software 

package used, Image J (Ferreira and Rasband, 2011), is an open-source public- 

domain program available without cost from the National Institutes of Health.

1.3 The 2006 Eruption of Augustine Volcano

The 2006 eruption of Augustine Volcano provided the first opportunity where 

a DRUM sampler was deployed specifically to collect ash from an erupting volcano 

(Cahill et al., 2010). The sampler was located at the University of Alaska Research 

Station in Homer, AK, and ran continuously from 11 January, when the volcano 

began erupting, to 11 February, 2009 when it returned to repose. Cahill et al. (2010)
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reported on the results of this sampling and showed that the DRUM sampler was a 

viable method for collecting time and size resolved airborne volcanic ash undergoing 

atmospheric transport and that the mass concentration and elemental concentration 

data obtained could be used for volcanic ash transport model inputs.

The Augustine eruption work presented in Chapter 2 expands upon those 

results by presenting new results from SEM and EDS studies conducted on the 

DRUM samples collected by Cahill et al. (2010). The SEM analysis revealed a 

variety of volcanic particle types in the samples ranging from individual glassy 

volcanic ash shard grains to complex aggregates of ash mingled with background 

sulfate and sea salt aerosols. The particle counts, size distributions, and shape 

descriptors of ash shards and aggregates determined by image analysis techniques are 

useful as possible volcanic ash transport and distribution model inputs (Mastin et al., 

2009; Riley et al., 2003). Aggregate ash particulates observed in SEM images show 

two distinct morphologies: ash aggregates and hybrid aggregates. Ash aggregates 

were only sampled from elutriation plumes from pyroclastic flows and consist 

exclusively of ash particles. Hybrid aggregates were commonly sampled from the 

Augustine and Redoubt eruption plumes and consist of ash particles mingled with 

either sea salts or non-sea salt sulfates. Several formation pathways for ash 

aggregates have been suggested including the attraction of dry, electrostatically- 

charged ash (James et al., 2002), wet aggregation (Vietch and Woods, 2001), and ice 

hydrometeor aggregation (Durant and Rose, 2009). Upward-mixing of sea salt and
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non-sea salt sulfate maritime aerosols combining with downward mixing of volcanic 

ash (Rose et al., 2000) may explain the formation of hybrid aggregates.

Particle size distributions determined by low-cost image processing methods 

show that ash produced by the initial central vent eruption of Augustine produced ash 

35.0-1.15 pm 0 A, and likely larger. The distribution of particle sizes over this size 

range was log normal; most particles are small, but most of the mass is contained in 

fewer large particles. Particle distributions for ash collected from pyroclastic flow 

plumes show that ash was present over the same size range as ash from the central 

vent eruption pulses but in much smaller size fractions (0.75-0.56, and 0.34-0.26 pm 

0 a). This observation is consistent with those of Dartevelle et al. (2002) for the 

production of fine ash observed in the Mt. Pinatubo 1991 eruption cloud. Ash was 

also sampled from a single plume at different travel times. During 14 January, a 

plume from Augustine was sampled at Homer about an hour after the eruption pulse 

began. On 17 January, some 3 days later, the same plume was again sampled in 

Homer because the plume had been caught up in a cyclone which brought the ash 

plume back to the sampling site. Particle size distributions show that the particles 

present in the plume on 17 January were more numerous than on 14 January. This 

may have occurred because the main mass of the ash cloud was erupted higher in the 

atmosphere than the sampling site elevation on January 14, hence the air masses that 

were sampled were relatively ash poor. During the next 3 days, the ash would have 

had time to settle from higher altitudes by downward mixing, increased settling rate
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due to aggregation and/or isentropic transport which may account for higher ash mass 

loads on 17 January.

1.4 The 2007 Eruption of Pavlof Volcano

Pavlof Volcano (Chapter 3) presented another opportunity to use DRUM 

samplers to collect airborne volcanic ash. Compared to the Augustine 2006 eruption, 

the Pavlov eruption was less energetic (VEI 2 vs. VEI 3 for Augustine) (Siebert and 

Simkin, 2002-) and had no pyroclastic flows. Even so, analysis of the aerosols 

showed some interesting processes, specifically: 1) diurnal variations in ash 

concentration at the sampling site, 2) the presence of ash downwind of the volcano 

during the waning phase of the eruption, 3) the presence of observable ash in the 

absence of satellite ash detections, and 4) no hybridization of volcanic ash with the 

background maritime aerosols. The Pavlof eruption underscores the importance of 

ash forecasting models when ash mass concentrations and particle sizes are below the 

detection limit of satellite detection methods but could pose a hazard downwind of 

the volcano. It should be mentioned, however, that the determination of possible 

hazards associated with specific mass concentrations of respirable ash was outside the 

scope of this work. These results also demonstrate that local weather conditions can 

influence ash concentrations downwind of an erupting volcano in a manner 

independent of the actual ash production rate at the volcanic vent.
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1.5 The 2009 Eruption of Redoubt Volcano

Redoubt Volcano (Chapter 4) provided yet another opportunity to sample 

airborne volcanic ash. Unlike Augustine and Pavlof, airborne ash sampling from 

Redoubt occurred at several sites. The Denali National Park Headquarters and 

Ninilchik School were outfitted with 3-stage DRUM impactors. In addition to the 

DRUM samplers, Beta Attenuation Mass monitors (BAM-1020) were operating in 

Anchorage, Wasilla, and Palmer, Alaska while an Environmental Beta Attenuation 

Monitor (EBAM) was set up by the U.S. Fish and Wildlife Service (FWS) in 

Soldotna, Alaska in anticipation of the eruption. The BAM-1020s were part of the 

instruments used for an ongoing air quality monitoring program conducted by the 

Municipality of Anchorage (MOA) and the Alaska Department of Environmental 

Conservation (Alaska Department of Environmental Conservation, 2009a; 2009b; 

Municipality of Anchorage, 2009). The EBAM in Soldotna, usually used by the FWS 

for monitoring particulate matter levels from wildfire smoke, was also fortuitously 

employed for monitoring particulate matter levels during the Redoubt eruption since 

it was otherwise idle. The samplers located in Anchorage, Wasilla and Palmer 

collected PMio and PM2.5 (Alaska Department of Environmental Conservation, 

2009a; 2009b; Municipality of Anchorage, 2009); the EBAM in Soldotna collected 

PMio. PMio refers to particulate matter <10 pm 0 A while PM2.5 refers to particulate 

matter <2.5 pm 0 A.

S-XRF elemental concentration analysis and P-attenuation analysis from 

DRUM samples show distinct mass loading events corresponding with eruption
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events. Elemental concentrations of these mass loading events are consistent with 

volcanic ash transport from the volcano. Accompanying these data, HYSPLIT 

backward trajectories (Draxler and Rolph, 2011; Rolph, 2011) confirmed that air 

masses sampled during these times were transported from Redoubt volcano.

Analysis of DRUM, BAM-1020 and EBAM mass concentration data show a 

systematic removal of particles with increasing distance from the volcano and 

atmospheric transport time as the plume became more dilute and traveled across the 

Alaska Range. SEM analysis shows that ash occurred as either single grain glass 

shards or as hybrid aggregates similar to those observed from the Augustine 2006 

eruption samples. Hybrid aggregate ash consists of ash associated with either sea 

salts or sulfate. Hybrid aggregates were present at all sampling locations, but are 

most common in the Ninilchik samples because the sampling location was on the 

southeastern shore of Cook Inlet.

The BAM-1020s operated by the MOA and the EBAM operated by the FWS 

recorded an increase of PMio consistent with HYSPLIT model predictions. No 

corresponding PM25 increase was observed, however. This may have been because 

the eruptive ash particle distribution was low in PM25 or because of the slower 

settling rate of these particles relative to the sampling locations and longer transport 

distances.

The Redoubt eruption study demonstrates that a suite of sampling techniques 

is needed to address both the real-time reporting requirements during an eruption and 

the need for scientific investigation of ash particles. DRUM samplers are found to be
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suitable for sampling respirable volcanic ash for detailed post-eruption analysis, but 

they are not designed to report real-time information about aerosol mass 

concentrations. BAM-1020s and EBAMs are ideal for reporting real-time respirable 

ash mass concentrations, but they are not suitable for post eruptive analysis because 

the filter media contaminated the spectra of the sample and the sample and filter 

media fused from the heat produced by the electron beam in the SEM. Furthermore, 

neither instrument collects particles larger than total suspended particulate, or 

particles larger than 100 pm 0 A.

Since no single technique or instrument successfully samples all the 

components of an eruptive plume, the use of a combination of instruments and 

collection techniques is needed to satisfy aerosol research and warning requirements. 

A sampling suite could be configured to allow for real-time telemetered reporting of 

aerosol mass concentrations using EBAMs or BAM-1020s, DRUM samplers for post- 

eruptive mass and chemical evaluation of PMi0 and PM2.5, TSP high volume samplers 

for the overall aerosol volume, standard tephra collection methods for measuring fall 

volumes and particle sizes, and passive collection methods such as settling plates to 

collect and preserve delicate ash aggregates that would otherwise be degraded or 

destroyed by energetic collection techniques.
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1.7 Figures
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Figure 1.3. Representative regional vertical distribution of tropospheric aerosol mass 

concentration. Most of the aerosol content in the troposphere is within the first few 

kilometers of the atmosphere. Figure is from Jaenicke (1993).
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Figure 1.5. Schematic steps involved in the transfer of SO2 from the gas phase to the 

aqueous phase of an atmospheric water droplet and its oxidation in the liquid phase. 

S 0 2(g) = gas phase S 0 2 , S 0 2 (i) =  S 0 2 at water-gas interface. The sequence of steps is 

as follows: 1) Transport of gas to the surface of the droplet, 2) Transfer of gas across 

the gas-water interface, 3) Formation of aqueous phase equilibria of the dissolved 

species, 4) Transport of the dissolved species from the surface to the bulk aqueous 

phase of the droplet, 5) Reaction in the droplet. Figure and caption after Finlayson- 

Pitts and Pitts (1986).
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1.8 Tables

Table 1.1 Magma Compositions and Constituents.

Type Silica Content Mineral phases+ Explosivity*
Basalt Low 01, Px, 

11, Mt
Low

Basaltic
Andesite

Low to Medium 01, Px, Mt, 
11, Mt

Low to Medium

Dacite Medium to High Px, Mt, 11, Plag, 
Amp, Ap

Medium to High

Rhyolite High Px, Biot, Mt, 11, Plag, 
Qz, Amp, Ap

High

*The degree of explosivity is a function of several factors. The values listed here are 

general characteristics. For a more detailed discussion of explosivity and magma 

types, see Pyle (2000) and Newhall and Self (1982). General petrologic 

mineralogical assemblages are from Deer et al. (1996). +01 = olivine, Px = pyroxene, 

Mt = magnetite, II = ilmenite, Plag = plagioclase feldspar, Amp = amphibole, Ap = 

apatite =Qz = quartz.
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Chapter 2 Particle Morphologies and Formation Processes for Fine Ash Aerosol

Collected During the 2006 Eruption of Augustine Volcano, Alaska1

Abstract

Fine airborne volcanic ash (35-0.09 pm in aerodynamic diameter or 0 A) from 

the 2006 eruption of Augustine volcano located in south-central Alaska was collected 

with a DRUM cascade impactor and analyzed by scanning electron microscopy 

(SEM) and energy dispersive spectroscopy (EDS) for chemistry and morphology. 

The sampler continuously collected aerosol in 8 size ranges (35.0-5.0, 5.0-2.5, 2.5­

1.15, 1.15-0.75, 0.75-0.56, 0.56-0.34, 0.34-0.26, 0.26-0.09 pm 0 A) from 11 January 

to 11 February, 2006, during the explosive and continuous emission phase of the 

eruption. The 35-5.0, 2.5-1.15, 0.75-0.56 and 0.34-0.26 pm 0 A stages were imaged 

and analyzed in their entirety by SEM and EDS. A low-cost digital image processing 

method was used to measure particle dimensions and determine shape factors for the 

ash. These analyses show that ash particles in the eruptive plumes existed as single 

ash particles and ash aggregates. Individual ash particles were angular silicate glass 

shards with traces (« 1 % ) of crystals and were not combined with sea salt and non­

sea salt sulfate. Aggregate particles occurred as two types: 1) ash aggregates and 2)

1 Rinkleff, P.G., Cahill, C.F., in prep. Particle morphologies and formation processes for fine ash 

Aerosol collected during the 2006 eruption of Augustine Volcano, Alaska. Prepared for submission to 

the Journal of Volcanology and Geothermal Research.
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hybrid aggregates. Ash aggregates were only found on the 2.5-1.15 pm 0 A stage 

along with individual ash grains and were not observed with sea salts or non-sea salt 

sulfates. Ash aggregates were only present in elutriation clouds formed by 

pyroclastic flows. Hybrid aggregates occurred as ash particles mixed with sea salt 

and/or non-sea salt sulfate. Three formation processes for these ash aerosol types are 

proposed: 1) Individual ash aerosol occurs when the ash has not aggregated or has 

become disaggregated during transport or sampling. 2) Ash aggregates form by the 

attraction of electrostatically charged ash particles, when ash was swept up by water 

droplets, by ice particles which dried during transport, or after sampling. 3) Hybrid 

ash aggregates form when ash is swept up by droplets containing sea salt and/or non­

sea salt sulfate that are mixed upward from the marine boundary layer into downward 

mixing ash.

Particle size distributions determined by digital image processing confirmed 

the presence of fine ash in the 35-1.15 pm 0 A stages and the absence of ash in smaller 

fractions. Ash clouds produced by pyroclastic flows contained ash in all but the 0.26­

0.09 pm 0 A stage. Ash particle size distributions were log normal; most of the 

particles were small, but the bulk of the mass was contained in few large particles. 

Favorable weather transported ash in a single plume from Augustine to the sampling 

site on 14 January and later on 17 January. Particle distributions and mass 

concentrations show that more and larger particles were collected on 17 January, 

possibly due to longer atmospheric residence time which allowed particles to 

aggregate and settle out of the plume.
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2.1 Introduction

Airborne volcanic ash is a well known hazard to human health (Horwell and 

Baxter, 2006; Baxter, 2000) and aviation-based activities (Casadevall, 1994; 

Przedpelski and Casadevall, 1994). It also can impact ecosystem health (e.g. 

Langman et al., 2010; Oskarsson, 1980), have climatological effects (e.g. Grainger 

and Highwood, 2003), and affect visibility (Blong, 1984). Volcanic ash satellite 

detection and observation methods combined with atmospheric volcanic ash transport 

and dispersion (VATD) models provide information on the location and height of ash 

clouds, provide forecasts of where ash clouds will be transported, and estimate down­

wind mass concentrations of ash (Mastin et al., 2009). These forecasts are critical 

elements of the information needed by incident response personnel to institute an 

effective protective posture for communities in the path of volcanic clouds (Neal et 

al., 2010). To facilitate accurate forecasting, VATD models require information 

about the size, composition, and concentration of ash in plumes (Mastin et al., 2009). 

However, direct measurements of airborne ash particle size, composition, 

concentration, and morphology are rare. Mather et al. (2003) and Rose et al. (2000) 

review the limited number of tropospheric volcanic ash measurements reported in the 

literature. Most airborne ash studies referenced are of limited duration (hours to 

days) and contain limited compositional information. For example, Hunton et al. 

(2005) describe a NASA DC-8 sampling aircraft encounter with the Hekla 2000 

eruption ash cloud. The aerosol they collected over the 10 minute encounter with the 

plume was divided into 2/3 soluble and 1/3 non-soluble fractions; the soluble fraction
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was analyzed in-depth while the non-soluble aerosols or volcanic ash were not. The 

Mt. St. Helens, Redoubt, and Masaya volcano studies presented in Leifer et al. 

(1981), Hobbs et al. (1982; 1991), and Mather et al. (2003) provide four of the best 

records of volcanic aerosols but none provide the information needed for model 

validation or detection method calibration.

Model inputs from ash particle characteristics have usually come from data 

derived from standard tephra collection studies on fall deposits (Mastin et al., 2009). 

While these methods are invaluable for understanding the sedimented components 

and the volume of the plume that was deposited, they do not include the part of the 

plume that undergoes long range transport and does not make a detectable layer due 

to very fine particle sizes and low mass concentration. Because of these limitations, 

tephra studies do not measure ash in the distal part of plumes, plume edges, and ash 

from eruptions with small ash volumes (Rose et al., 2000). These dilute plumes still 

transport fine ash particles that can affect machinery and human health (Horwell and 

Baxter, 2006; Casadevall, 1994; Przedpelski and Casadevall, 1994). Furthermore, the 

evidence of processes affecting the size, composition (especially that of aggregates), 

and shape of ash and other aerosols can be lost once aerosols sediment from the 

plume. For example, soluble salts can be dissolved during rain events (Delmelle et 

al., 1997) and aggregated particles may break apart due to sedimentation processes 

such as wind abrasion or depositional loading (Taddeucci et al., 2011; James et al., 

2003; Shoji et al., 1993). The actual processes of sampling and analyzing ash from 

tephra deposits can alter or destroy aggregate textures which may lead to particle size
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distributions and settling rates. An aggregate of fine ash particles will settle at a rate 

much faster than the settling rates of its constituent particles. But when that 

aggregate is broken into its individual components, it may seem that smaller particles 

were removed from the plume much closer to the volcano than those individual grains 

would have settled according to Stokes’ Law (Rose et al., 2000).

Riley et al. (2003) described digital image processing methods for 

determining the ash particle shape factors from scanning electron microscope (SEM) 

backscatter images needed as inputs for VATD models. Their methods and results 

show how to determine useful information for input into VATD models. However, 

the methods they developed are not appropriate for airborne volcanic ash samples 

because they required access to specialized equipment and software and they were 

developed for use on ash samples from tephra deposits, not airborne particulate 

matter. This paper presents alternate low-cost method for determining comparable 

shape factors using Energy Dispersive Spectroscopy (EDS) element maps and SEM 

secondary electron (SE) images of airborne ash sampled at discrete times from 

volcanic plumes and demonstrate its effectiveness on volcanic plumes from the 2006 

eruption of Augustine volcano, Alaska.

The eruption of Augustine volcano in South-Central Alaska (Figure 2.1) 

provided an excellent opportunity to explore novel methods of airborne volcanic ash 

collection (Cahill et al., 2010) and explore methods for SEM and EDS aerosol 

analysis. A DRLiM cascade impactor was installed at Homer, AK as the volcano 

began erupting ash. Favorable winds transported ash erupted during multiple pulses
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and during differing phases of activity to the sampling location. Ash erupted on 14 

January 2006 was fortuitously sampled just after the eruption and again on 17 January 

due to entrainment of ash in a low pressure system which brought the ash cloud over 

the sampling location twice. Analysis of ash from this episode taken at two different 

times and transport distances gives some insight into aerosol removal rates and 

processes affecting the ash mass concentration in the plume as it is transported.

2.2 Geologic Setting and Eruptive History

Augustine Volcano (CAVW 1103-01) is a small dome complex, 1252 meters 

high, which forms Augustine Island in the southwestern portion of Cook Inlet (Figure 

2.1). The volcano is located 275 km SW of Anchorage, 110 km west of Homer, 175 

km southwest of Soldotna and Kenai, and 185 km north of Kodiak. Before the 2006 

eruption, the volcano had seven confirmed historic eruptions (1812, 1883, 1935, 

1963-1964, 1971, 1976 and 1986) between Volcanic Explosivity Index 1 and 4 

(Siebert and Simkin, 2002-; Newhall and Self, 1982). Previous eruptive activity has 

included central vent eruptions, gas and ash plumes, dome building, pyroclastic 

flows, lava flows, and tsunamis caused by sector collapse.

2.3 Augustine 2006 Eruption

Augustine erupted with 13 explosive eruptions over 20 days starting on 11 

January 2006 after 20 years of repose (Power et al., 2006). These eruptions were 

preceded by 8 months of increasing seismicity, deformation, gas emissions, and small
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phreatic explosions of steam and rock (Buurman and West, 2010). A principal hazard 

associated with Augustine eruptions is airborne volcanic ash that can disrupt regional 

air traffic and affect communities near the volcano as well as thousands of kilometers 

downwind. During this eruption, air traffic at the Anchorage International Airport 

and intercontinental flights traversing North Pacific airspace were adversely affected 

by ash plumes from Augustine. Ash plumes were closely tracked by the Federal 

Aviation Administration and the National Weather Service and several flights were 

either cancelled or rerouted due to airborne ash lofted into air traffic corridors across 

the eastern North Pacific and over Alaska (Neal et al., 2010). The eruption produced 

measurable ash fall in communities along Cook Inlet (Wallace et al., 2010). Starting 

on 29 January and lasting through 5 February 2006 the eruptive style became more 

effusive which produced summit lava domes, pyroclastic flows, and two short blocky 

lava flows (Vallance et al., 2010).

Aerosol mass from P-gauge and elemental composition from synchrotron x- 

ray fluorescence (S-XRF) analysis, previously presented in Cahill et al. (2010) show 

two distinctly different particle size distributions collected from plumes from the two 

different eruptive styles: 1) explosive, central vent and 2) pyroclastic flow elutriation 

clouds. The initial eruptive phase (11 to 23 January 2006) was dominated by coarser 

ash (35-1.15 pm 0 A) associated with the phreatic and phreatomagmatic pulverization 

of the existing 1996 dome. Virtually no fine ash below 1.15 0 A was observed over 

this interval (Figure 2.2). The second phase of the eruption (29 January through 5 

February 2006) produced fine ash aerosol (1.15-0.09 pm 0 A) along with coarser ash
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(35-1.15 pm 0 A) (Figure 2.3). The concentration of coarser ash was 2-5 times less 

during the second eruptive phase than in the initial phase. Fine ash was formed by 

clast-to-clast milling in the pyroclastic flows (Dartevelle et al., 2002) that occurred 

during the open-vent phase of the eruption and was transported in elutriation clouds.

2.4 Sampling and Analytical Techniques

2.4.1 Davis Rotating Unit for Measurement (DRUM) Sampler

Davis Rotating Unit for Measurement (DRUM) samplers, described by Raabe 

et al. (1988) and Cahill and Wakabayashi (1993), are stand-alone cascade impactors 

designed to collect time-resolved, size-segregated aerosol (Figure 2.4) over a six- 

week interval. A vacuum pump draws air into the sampler and aerosol is collected 

from the air stream by impaction, a type of momentum separation (Reist, 1993). The 

sampler has several chambers fitted with slotted inlets that accelerate the air and 

aerosols to specific velocities. These velocities dictate the size fraction collected on a 

particular stage due to inertial separation influenced by particle aerodynamic 

diameter. Progressively smaller particles are collected deeper in the instrument. For 

this study, an 8-stage DRUM was installed on 13 February 2006 at the University of 

Alaska Field Station at Homer Alaska (Figure 2.5). The size cuts for the sampler 

were 35.0-5.0, 5.0-2.5, 2.5-1.15, 1.15-0.75, 0.75-0.56, 0.56-0.34, 0.34-0.26, 0.26-0.09 

pm 0 A. Each size cut range is also referred to by its stage number; Stage 1 being the 

largest size and Stage 8, the smallest. Typically, DRUM samplers are fitted with a
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standard 10 pm 0 A particle inlet, but for this study a non-standard 35 pm 0 A particle 

inlet was used to collect larger particle sizes.

The impaction substrate is a Mylar™ strip attached to metal cylinder, called a 

drum (Figure 2.6). The Mylar™ is coated with a thin film of ultra-pure Apiezon L™ 

vacuum grease to reduce particle bounce (Lawson, 1980). The drum rotates past the 

slotted inlet at a constant rate of 4 mm per day. As the drum rotates, blank sampling 

surface is exposed at the inlet to collect aerosol.

When the sampling interval is completed, the sampler is opened, the drums 

are removed in clean conditions and placed in sealed containers for shipping. In a 

clean laboratory, the Mylar™ strips are removed from the drum, affixed to a labeled 

plastic frame with pressure sensitive tape, and the start and end positions are noted. 

Mass is determined on prepared DRUM samples using P-gauge analysis, a P-particle 

attenuation technique (Reist, 1993). Elemental composition (28 selected elements 

between Na and Pb) is determined by S-XRF (Cahill et al., 1999; Cahill, 2003) at the 

Lawrence Berkeley National Laboratory Advanced Light Source Beam Line 10.3.1 

(Cahill et al., 2000).

2.4.2 SEM and EDS Analysis Techniques

Selected stages from the entire 8 stage sample suite (Stages 1, 3, 5, and 7) 

were analyzed at the Advanced Instrumentation Laboratory (AIL) at the University of 

Alaska Fairbanks (http://www.uaf.edu/ail/) using an ISI-SR-50 scanning electron 

microscope (SEM) equipped with a Kevex 7000 energy dispersive X-ray

http://www.uaf.edu/ail/


45

spectrometer (EDS). To prepare the samples for SEM and EDS analysis, each sample 

was cut into ~2 cm long pieces, affixed to a rigid polystyrene backing, and sputter 

coated with gold and palladium. The samples were attached to a standard aluminum 

SEM mount and placed in the SEM chamber. In the chamber, the sample was 

oriented 25° from horizontal at a working distance of 10 mm.

The SEM and EDS analysis techniques detailed here form the basis for 

collecting raw images used for automated digital image processing methods for 

determining volcanic ash particle size distributions and shape descriptors for airborne 

ash collected during the 2006 eruption of Augustine Volcano. Both secondary SE 

images (Appendix A) and EDS spectra (Appendix C) were collected on the DRUM 

samples. For stages 1, 3, and 5, images were made at 200 times resolution; stage 7 

was imaged at 400 times resolution due to the smaller particle sizes present. The 

accelerating voltage was set to 20 kV and the beam was set to the smallest spot size 

allowed by the instrument for high resolution imaging. During EDS spectra 

collection and element mapping, the beam spot size was increased to the maximum 

size available on the instrument to increase x-ray counts to 20,000-30,000 counts per 

second. Higher counts were found to severely blister and distort the Mylar™, so care 

was taken to limit sample exposure to 200,000 counts per sample image frame area to 

avoid damage. EDS element maps (Appendix D) were also prepared with the beam 

spot size and counts the same as for the EDS spectra. Point dwell times for EDS 

element map images were set to 6000 qsec at a 256 kb image resolution. Longer 

point dwell times caused severe sample blistering and produced poor quality images.
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Images and bulk field-of-view spectra were made parallel to the sampling 

direction from the start of the sampling interval with about 5-10% area overlap 

between each adjacent image to allow for the construction of image mosaics and to 

maintain location (and sampling time) within the sample (Figure 2.7). An EDS 

spectrum of the entire field of view was collected for each frame. When a significant 

increase in silicon counts was noted, an element map was prepared because the 

presence of silicon was considered to be an indicator of the presence of volcanic ash. 

Regardless of silicon count levels, an element map was prepared at regular intervals 

to show elemental distribution across the field of view during non-volcanic 

(background) aerosol sampling.

DRUM samples were found to provide excellent images and spectra of 

particles by Rinkleff et al. (in review), since all the particles are on a smooth surface 

and the sampling substrate (Mylar™ and Apezion L™) does not contaminate the 

sample spectra. While the SE images were useful for qualitatively determining 

particle shapes, EDS element maps were useful for digitally determining particle 

measurements. Image mosaics of SE images were prepared so that sample distance 

could be measured (Figure 2.7) and thus, sampling time could be determined. The 

DRUMs in this study rotated at 4 mm of sampling distance per day so exact particle 

sampling times could be obtained. The SE images show attractive pictures of the 

collected aerosols with good resolution for visually determining particle qualities, but 

they pose several problems for automated image analysis techniques. For example, 

object edges and rough surfaces are brighter than smooth continuous surfaces in SE
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images. Secondary illumination and beam shadowing can also affect SE images. 

These phenomena can cause automated image processing methods to produce 

incorrectly estimated particle sizes and shape descriptors (Reed, 2005; Russ, 1990).

2.4.3 Image Analysis Techniques

Silicon EDS maps were used to determine ash shape properties since volcanic 

ash is chiefly composed of volcanic glass which contains silicon (Heiken and 

Wohletz, 1985; Fisher and Schminke, 1984). Particle properties including size 

distribution and shape descriptors such as aspect ratio, roundedness, solidity, 

perimeter, Feret length and width, Feret angle, circular radius, spherical particle 

volume, and particle mass (Table 2.1 and Appendix B) were determined by the digital 

image processing methods described below. These properties are comparable to 

those described by Riley et al. (2003).

Image J (Ferreria and Rasband, 2011) was used for image processing. This 

software is an open-source, public-domain, Java-based image processing program 

developed at the National Institutes of Health (available for download at 

http://rsb.info.nih.gov/ij/). Each element map was inverted (Figure 2.8) to help 

visually accentuate the element detections, then resized by an four-fold increase to 

increase the image pixel density to produce smoother particle edges and match the 

accompanying SE image pixel resolution. Next, each EDS element map was 

subjected to three thresholding methods included in the Image J package: 1) the 

default Iso-means of Ridler and Calvard (1978), which is an iterative process that

http://rsb.info.nih.gov/ij/
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averages pixel values above and below a threshold, 2) Moments (Tsai, 1985), which 

attempts to preserve the image moments in the threshold result, and 3) Triangle (Zack 

et al., 1977), which geometrically determines threshold based on histogram shape. 

These thresholding methods were chosen because they produced good results for 

sample images with a range of particle sizes and concentrations. After thresholding, 

the resultant particles were segmented into smaller particles based on overall particle 

shape (Figure 2.9). After segmenting, the particles were measured and a table 

containing the results was produced. After automated processing, each set of images 

was manually evaluated to determine which thresholding technique produced the 

result closest to the original element map (Figure 2.10). This decision was made for 

each element map based on heuristic visual comparison. Those results were retained 

and the others were discarded.

2.5 Results

2.5.1 Volcanic Ash Aerosol Types

SEM imagery of the Augustine DRUM samples showed three distinct particle 

types that contained volcanic ash: single grains, non-cored aggregates, and cored 

aggregates. Background aerosols which consisted of soil particles, sea salts, non-sea 

salt sulfates, and soot particles from combustion were also collected. Some of these 

particles were from long-range transport while others came from local sources (Cahill 

etal., 2010).
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2.5.1.1 Single Grain Ash

Single grain ash was observed as individual glass or crystal grains. These 

particles dominated the aerosol mass over an interval or could coexist with 

background aerosols (Figure 2.11). These particles were angular, equant, silica-rich, 

vitric shards. Particle size populations were log normal (Figure 2.12). Rare crystal 

phases were observed and were much smaller than the glass shards possibly due to 

their relatively low magmatic volume or faster settling velocities due to their size 

and/or higher density relative to volcanic glass shards.

2.5.1.2 Ash Aggregates

These aerosols, shown in Figure 2.13, were only observed in Stage 3 (2.5-1.15 

pm 0 A) from 28 through 31 January and were found either as individual instances 

within a population of single grain aerosols or in populations dominated by ash 

aggregate aerosol. They were not present with hybrid aerosols. Non-cored aerosol 

aggregates consisted almost entirely of glass ash shards with traces of crystal 

particles. The individual ash grains that comprised the ash aggregates were identical 

to individual ash grains described above. These particles appeared to be similar to 

aggregates formed by laboratory simulations by James et al. (2002).

2.5.1.3 Hybrid Aggregates

This class of volcanic ash aerosols includes ash mingled with sea salt and/or 

non-sea salt sulfate. Hybrid aggregates, shown in Figure 2.14, appeared to have been
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disrupted and spread out over larger areas then non-cored aerosols. This may have 

been due to wet particle droplets impacting the sampling surface and spreading out, 

then drying due to pressure drops in the DRUM sampler. The resulting sea salt or 

non-sea salt solid was left behind after the water evaporated. The salt and sulfate 

could be massive, botryoidal, or cubic particles (Figure 2.15). Non-sea salt sulfate 

particles occurred as massive, botryoidal, dendritic, or hexagonal forms. Ash 

associated with the salt or sulfate was often concentrated away from the salt or sulfate 

particle core within a halo or ring of sulfate or sea salt, but may also have been 

completely surrounded by sea salt or sulfate. These relationships may be the result of 

drying processes after sampling occurred. As the solution evaporated, the area of the 

droplet retracted toward its center and left behind a dry salt or sulfate particle. The 

shape and size of ash particles in hybrid aggregates was identical to individual ash 

particle morphology. Rare crystal phases (« 1 % ) were present, similar to the 

frequencies seen in single grain ash and ash aggregates.

Sea salts were mostly sodium chloride but could occur as calcium chloride, 

potassium chloride, and other common sea salt types (Lewis and Schwartz, 2004). 

Non-sea salt sulfate is also a common maritime aerosol (Finlayson-Pitts and Pitts, 

1986), but it is possible that some of the sulfate was from the volcano (Rose et al., 

2000). Systematic changes in non-sea salt sulfate levels were not observed during 

eruptive periods from background sulfate levels which may indicate the non-sea salt 

sulfate is not volcanic. However, identification of sulfate sources would require 

stable isotope analysis which is beyond the scope of this project.
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2.5.2 Volcanic Ash Particle Size Distributions

Particle size distributions determined by image processing methods show log­

normal distributions. Most of the particles are small and contain little mass while the 

fewer larger particles contain most of the mass in the sample. Size distributions for 

the initial central vent eruptive style sampled on 14 January and again on 17 January 

2006 are described below along with the distributions of ash collected from plumes 

produced by pyroclastic flows on 30 January 2006.

2.5.2.1 Initial Eruption Phase

Ash was observed in the largest DRUM sampler size fractions (35.0-1.15 pm 

0 a). Below these size cuts, no ash was observed by EDS spectroscopy or by S-XRF. 

Particle size distributions (Figure 2.12) of ash collected on 14 January are log normal 

and likely represent the tail end and lower bounds of the overall ash particle 

distribution produced by explosive fragmentation in the plume. HYSPLIT 

trajectories (Figure 2.16) (Draxler and Rolph, 2011; Rolph, 2011) showed that the 

plume sampled on 14 January was entrained in a cyclone which brought the ash 

plume back to the sampling site on 17 January. Particle distributions (Figure 2.12 A 

and B) and S-XRF elemental concentrations (Figure 2.2) are higher than those from 

14 January. The distributions remained log-normal.

2.5.2.2 Pyroclastic Flow Particles
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Ash sampled from pyroclastic flow elutriation plumes was present in 

measurable amounts in all but the smallest size fraction (0.26-0.09 pm 0 A) (Figure 

2.17). SEM and EDS analysis also showed the presence of ash from 35.0-0.26 pm 

0A- Particle size distributions (Figure 2.17) were log-normal, but the size distribution 

for the 0.34-0.26 pm 0 A stage (Figure 2.17 D) showed a distinct decrease and 

possible dual mode. This is interpreted to be the result of image artifacts which 

produced noise that was measured as the smallest particles. The mode centered on 

0.2 pm2 may represent the tail end of particle sizes that were present in the elutriation 

cloud.

2.6 Discussion

Volcanic ash undergoes physical and chemical changes as soon as it is erupted 

into the atmosphere (Mather et al., 2003). As it is transported, larger particles 

preferentially fall out near the vent while finer grains settle slower and travel farther 

before sedimenting (Fisher, 1964). As the particles travel, they evolve from simple 

pyroclasts into complex particles that are part volcanic and part atmospheric. Their 

forms depend on their transport time, the contents of the eruptive cloud, and 

composition of the atmosphere where they transport (e.g. Rose et al., 2000). Several 

processes may occur during transport which may affect aggregation processes 

(Mather et al., 2003). For example, an ash particle may collide with, adhere to, or 

abrade other particles in the plume (Dartevelle et al., 2002; James et al., 2002; Sorem 

1982). Ash also may be scavenged by water droplets or provide a surface where



53

chemical reactions can take place (Delmelle et al., 2007; Simpson et al., 2000). 

Lastly, ash can provide a nucleation site for water condensation (Folch et al., 2010). 

When ash combines with other particles during transport, it ceases to be an 

exclusively volcanic particle and its aerodynamic properties and thus settling rate 

change (Rose et al., 2000).

2.6.1 Potential Aggregation Processes

The three ash types collected by the DRUM sampler from the 2006 Augustine 

plume (individual grains, ash aggregates, and hybrid aggregates) indicate different 

post-eruptive aerosol formation processes. Individual grains could exist when the 

particle has had a relatively short time for transport or the particle number density is 

sufficiently low to inhibit a high rate of particle-particle collisions or electrostatic 

attraction (James et al., 2002; Fuchs, 1964). Another scenario may involve a 

relatively dry plume or atmosphere preventing droplet nucleation or scavenging. 

Several formation processes for ash aggregates have been discussed by various 

authors. Ice hydrometeor aggregation analogous to the formation of hailstones has 

been proposed by Durant and Rose (2009) and Durant et al. (2009; 2008). Wet 

aggregation of ash by water droplets has been modeled by Folch et al. (2010) and 

Vietch and Woods (2001). The ice particles and or water droplets containing ash in 

either of these instances evaporate before the particle sediments (Rose et al., 2000). 

James et al. (2002) produced dry aggregates in controlled laboratory conditions from 

fracto-emission particle charging and subsequent aggregation of oppositely charged
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particles. Particles could also build electric charge as they collide and grind together 

in the pyroclastic flow (Dartevelle et al., 2002). This milling process has been cited 

as a means for generating both fine ash and particle charge. Any one of these 

processes, or a combination could explain the presence of ash aggregates. The 

formation of ash aggregates sampled from Augustine plumes produced by pyroclastic 

flows is interpreted to be the result of ash milling and electrostatic charging.

Hybrid aggregates likely form when ash is scavenged by water droplets by 

collision and/or electrostatic attraction (Rose and Durant, 2009). The presence of 

mud rain has been commonly observed during large eruptions (Textor et al., 2006), 

but the aerosols collected from Augustine (35-0.01 pm 0 A) were not so large as to 

constitute a raindrop (>0.5 mm in diameter) (Marshall and Palmer, 1948). Maritime 

water droplets commonly contain salts from sea spray (Lewis and Schwartz, 2004). 

As these droplets mix upward from the moist marine boundary layer into the 

atmosphere, ash particles mixing downward from a dispersing ash cloud could be 

scavenged by them (Durant and Rose, 2009; Durant et al., 2009). Subsequent droplet 

evaporation could form a dry particle before sampling, or pressure drops in the 

sampler could cause wet droplets to dry and leave behind a salt/ash deposit on the 

sampling surface. A droplet that dried while suspended may appear as a salt crystal 

with ash coating its surface while a droplet that impacted and dried could show a halo 

of ash and a core of salt. The latter seems to more completely describe the observed 

cored aggregates sampled from the Augustine plumes. This indicates that these 

particles were wet when they were sampled.
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2.6.2 Implications of Ash Aggregation Processes for Transport Models and 

Satellite Detection Methods 

There are two major implications of observing how volcanic aerosol changes 

from single grains to complex aggregates while being transported in a dispersing 

plume: 1) Model results derived from aggregation related fallout rates determined 

from tephra studies may underestimate fine-grained ash transport distances and 2) 

satellite detection methods dependent on 10-12 pm wavelengths may be more 

sensitive to particles larger than those which undergo long range transport (Prata, 

1989). Aggregation has been cited often in the literature as the main process for ash 

removal from the plume at rates faster than those for the constituent ash grains (Pinto 

et al., 1989). Analysis of ash from Augustine volcano shows that ash aggregation 

occurs by several processes, at different efficiencies, and at different rates within a 

plume. Not all ash particles form aggregates; some fine ash remains suspended while 

other ash forms aggregates and falls to the ground. Models which assume that all ash 

falls out of the plume as aggregates will underestimate the concentration of fine ash 

that does not aggregate and undergoes long range transport.

Satellite detection of volcanic ash relies heavily on the Brightness 

Temperature Difference (BTD) method of Prata (1989). The BTD is dependent on 

particles being near the Thermal Infrared (TIR) wavelengths (-10-12 pm) used by the 

method. This sampling shows that a portion of a plume consists of particles much 

smaller than the sensitivity of TIR wavelengths (Rose et al., 2000). These particles (<
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1 pm in diameter) are smaller than the wavelengths used in the BTD so they do not 

react strongly with the 10-12 pm radiation. Therefore when the plume is diffuse 

enough, it does not produce an ash signal in the split window, meaning that diffuse 

fine volcanic ash is below the detection limit of current techniques in standard use for 

volcanic ash detection.

Since diffuse fine ash is essentially invisible to satellite detection, it is crucial 

to employ models to forecast and track fine ash. Cahill et al. (2010) showed that 

PUFF (Searcy et al., 1989) and HYSPLIT (Draxler and Rolph, 2011; Rolph, 2011) 

models were a good first-order approximation for ash transport and dispersal, but 

inputs to more complex models such as WRF-Chem may require a more complete 

understanding of plume aerosol processes to properly model the fall-out rates and 

long-range transport of volcanic ash (Mastin et al., 2009).
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2.9. Figures
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Figure 2.1. Location map of Augustine Volcano and the sampling location near 

Homer, Alaska. Augustine is located in Cook Inlet 275 km west-southwest of 

Anchorage and 110 km west of Homer.
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Figure 2.2. Silicon mass concentration relative to time. The initial eruptive phase 

from 13 to 22 January (blue box) is dominated by larger aerosols (35.0-1.15 pm 0 A). 

Smaller size fractions have essentially no silicon present. The eruptive style for the 

period starting on 28 January through 5 February (orange box) was dominated by 

pyroclastic flows. While significant ash mass concentrations were present in the 

larger size fractions, significant ash mass concentrations were also present in smaller 

size fractions (1.15-0.26 pm 0 A).
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Figure 2.3. Silicon mass concentration relative to time (1.15-0.09 pm 0 A). The 

initial eruptive phase indicated by the blue box had very little ash present due to the 

explosive ash-forming processes that occurred during this phase. Over the 

pyroclastic flow-dominated phase (orange box) clast-to-clast milling produced fine 

ash 1.15-0.26 pm 0 A.
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Figure 2.4. An 8-stage D RU M  cascade impactor. Arrows indicate the flow  direction. 

The inlet pictured is a standard 10  pm 0 A configuration. The inlet, Stage 1 (inlet to 

5.0 pm 0 A) and Stage 8 (0.26-0.09 pm 0 A) are indicated by arrows. The inlet shown 

here imparts a 10  pm 0 A initial size cut. The yellow  arrow indicates the flow 

direction through the sampler. Image courtesy o f T. Cahill and the Delta Group, 

University o f California, Davis.
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Figure 2.5. The 8-stage D RU M  impactor installed at the University o f Alaska 

Homer, A K  Field Station. The sampler was inverted from its normal deployment 

configuration and was fitted with a special inlet (white pipe) for collecting 35.0 pm 

0A and smaller aerosol.
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Figure 2.6. An example drum with collected aerosol. This drum (not from this study) 

has been used to collect aerosol over an extended period. The dark lines are likely 

heavy industrial pollutants and carbon soot. The lines on the drum surface result 

from the internal slotted orifice directing aerosols to impact on the drum surface over 

a discrete time interval.
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Figure 2.7. SEM DRUM sample image mosaic. The large particles are hybrid 

aggregates or ash comingled with non-sea salt sulfates and sea salts; smaller particles 

are individual ash grains and sea salt particles. Each individual image represents 3 

hours o f sampling time based on a drum rotation rate o f 4 mm/day. The entire mosaic 

represents about 8.5 hours o f sampling time taking image overlaps into account.
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Figure 2.8. ED S element map image pre-processing steps. The corresponding 

secondary electron image (A) is analyzed by ED S for Si element composition (B). 

The resulting element map is inverted to more clearly show ED S X-ray detects.
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Figure 2.9. Particles digitally segmented by the ‘watershed’ method. Some particles 

were segmented while others retained their original dimensions. Figures are from 

Ferreria and Rasband (2011).
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Figure 2.10. Post thresholding image selection. After the inverted element map is 

thresholded by the three methods indicated in the text and segmented, manual review 

of the threshold results is conducted. The original inverted element map is visually 

compared to the threshold results and the result most closely matching the inverted 

image (A) is retained. The other two images (B & C) are discarded.
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Figure 2.11. Single ash SEM images. These images (A and B) show the general 

features of individual glassy ash grains. These images were obtained from DRUM 

samples collected on 30 January 2006. The images from Stage 5 and 7 (C and D) are 

included to show the lack of ash present. The particles present in these stages are 

non-sea salt sulfate aerosol
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Figure 2.12. Particle size distribution for single grain ash. Single grain ash particle 

size distributions for ash collected on 14 (A and B) and 17 January 2006 (C and D) 

shown here are log-normal. The plume sampled on 14 January was sampled again on 

17 January due to favorable weather conditions. Comparison of early plume and late 

plume distributions show enrichment in larger particles possibly due to either particle 

aggregation or the plume settling low enough to be sampled at a higher mass 

concentration near the ground level.
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Figure 2.13. Ash aggregate images. Ash aggregates were only observed in the 2.5­

1.15 pm 0 A Stage 3 aerosols collected from plumes from pyroclastic flows. These 

images are of samples collected during 30 January 2006 and show ash aggregates 

present with individual ash grains.



Figure 2.14. Flybrid ash aggregate images. Hybrid ash aggregates were found in all 

stages. Ash imaged in A was collected in Stage 1 on 14 January 2006, B was 

collected in Stage 3 on 31 January 2006, C was collected in Stage 5 on 3 February 

2006, and D was collected by Stage 7 on 30 January 2006. In the larger sizes (35.0­

1.15 gm 0 A) the dominant aerosol was sea salt that had mingled with ash. Smaller 

size fractions were mostly non-sea salt sulfate that had combined with volcanic ash.
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Figure 2.15 .  Non-ash aerosols collected by DRUM sampler. The aerosols, shown in 

A and B were collected on 26 January 2006 in Stage 1 and 5 respectively, are mostly 

sea salt with minor amounts of non-sea salt sulfate. Aerosols shown in C and D were 

collected in Stage 5 on 16 January and 23 January 2006 respectively. Aerosols 

shown in E were collected in Stage 7 on 26 January 2006. Images C, D, and E show 

non-sea salt sulfates. It is interpreted that the dendritic forms shown in C were the 

result of a wet sulfate droplet drying on the sample surface after being sampled.
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NOAA HYSPLIT MODEL 
Backward trajectories ending at 13 UTC 17 Jan 06

FNL Meteorological Data

Figure 2.16. HYSPLIT back trajectory showing the path of the plume sampled first 

on 14 January and again on 17 January 2006. Note how the altitude of the plume 

descends over the transport path. This is due to modeled air parcel isentropic 

movement, not by HYSPLIT modeling ash settling rates.
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Figure 2.17. Pyroclastic flow elutriation plume particle size distributions. Ash was 

present in Stages 1-7. The particle size distributions shown here are from Stages 1, 3, 

5 and 7. The total distribution in log-normal as are those from Stages 1-5. Stage 7 

shows a bimodal distribution possibly due to the smallest particle sizes (<0.01 pm2) 

being the result of image noise. The second mode centered at 0.02 pm2 may represent 

the very fine end of the particle size distribution for the elutriation plume.
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2.10. Tables

Table 2.1. Shape Descriptors

Shape and Size Parameters Definition

Area Sum of the pixels of a particle.

Perimeter Length of the outside boundary of a particle.

Convex Area

m >

Convex area is the area encompassed by a 
perimeter that touches only convex parts of the 
particle boundary much the same way a tightly 
wrapped rubber band would define the area of a 
complex object.

Maximum Feret ,
The longest distance between any two points 
described by parallel tangents along the particle 
perimeter. Also called caliper distance.

Minimum Feret / ' " “Xv
The shortest distance along the particle perimeter 
described by two points with parallel tangents.

Feret Angle
The angle (0) between the Maximum Feret and the 
Minimum Feret..

Major Axis The primary axis of a best fitting ellipse.

Minor Axis The secondary axis of a best fitting ellipse.

Aspect Ratio
The ratio of the particle major axis and minor axis. 
Particles with an aspect ratio of 1 are circular; 
greater values indicate increasing elongation.

Roundedness Inverse of the Aspect Ratio. Calculated by: 
4 x ([Area])l(n x [Major ax/s]2)

Solidity [Area]/[Convex Area]

Circularity

The degree of elongation of the particle. 
Calculated by: 4t t  x  ([Area])/([Perimeterf).
1 indicates a perfect circle; as the value approa­
ches zero, the particle becomes more elongate.

Table after Riley et al. (2003). Definitions from Ferreira and Rasband (2011).
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Chapter 3 Daily Variations in PM2.s Volcanic Ash Concentration Reaching Sand 

Point, AK From the 2007 Eruption of Pavlof Volcano1 

Abstract

Pavlof Volcano, located on the Alaska Peninsula southwest of Anchorage, 

Alaska, erupted from 14 August to 13 September, 2007 and sent ash plumes into the 

North Pacific Ocean which disrupted regional air traffic and produced ash fall in 

nearby communities. The early phase eruption activity occurred as low altitude ash 

plumes and lahars. The waning phase was dominated by low altitude and low 

concentration ash emissions. A DRUM cascade impactor was installed at the village 

of Sand Point, AK during the waning phase of the eruption to sample airborne fine 

ash (2.5 - 0.1 pm in aerodynamic diameter or 0 A) erupted by the volcano. Aerosol 

samples were analyzed for mass by P-gauge and elemental composition by 

synchrotron x-ray fluorescence. Scanning electron microscopy (SEM) was used to 

image individual ash particles and background aerosols. Energy-dispersive x-ray 

spectroscopy was used during SEM analysis to qualitatively determine the chemistry 

of individual aerosol particles. Aerosol samples collected during the waning phase of 

the eruption from 27 August through 2 September 2007 show strong diurnal cycles in

1 Rinkleff, PG., in prep. Daily Variations in PM2 5 Volcanic ash concentration reaching Sand Point, AK 

from the 2007 eruption of Pavlof Volcano. Prepared for submission to the Journal of Volcanology and 

Geothermal Research.
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the concentration of ash reaching sampling locations; ash concentrations were highest 

in the morning and lowest in the early afternoon. Backward tracking trajectories 

determined by the HYSPLIT atmospheric transport model confirmed the transport of 

ash from Pavlof Volcano to Sand Point during this interval and showed that stable 

meteorological conditions allowed for the downward mixing of volcanic aerosols to 

the sampling site. Although no visible ash fallout was observed during aerosol 

sampling, these results demonstrate that volcanic ash was present in respirable (< 2.5 

pm 0 A or PM2.5) size fractions downwind of the volcano even during periods of low 

ash emissions.
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3.1 Introduction

Every year some 20-30 volcanoes erupt worldwide (Siebert and Simkin, 2002-). 

While the large eruptions capture headlines and public attention, smaller eruptions are 

far more common and can have significant impacts on a local and regional scale 

(Neal et al., 1997; Kenedi et al., 2000). Current models used for forecasting volcanic 

ash dispersion and satellite ash detection and tracking methods are essential tools for 

emergency management personnel in affected communities downwind of erupting 

volcanoes. Volcanic ash satellite detection methods and atmospheric volcanic ash 

transport and dispersion (VATD) model validation require quantitative measurements 

of individual ash particles and the atmosphere into which they are erupted (Webley et 

al., 2010; Mastin et al., 2009; Webley and Mastin, 2009). This information may help 

refine satellite detection methods and VATD models by providing in-situ data for 

satellite threshold determinations and comparisons with model predictions to evaluate 

the effectiveness of the model. These refinements will help scientists evaluate 

satellite images and improve model predictions to give decision makers improved ash 

forecasts on which to base their hazard warnings to mitigate the effects of volcanic 

ash emissions on aircraft, property, and human health (Neal et al., 2010; Mastin et al.,

2009). Improved volcanic ash and gas model input parameters would also improve 

the understanding of the influence volcanic ash has on the natural environment and 

climate (Langman et al., 2010). Unfortunately, few direct measurements of airborne 

volcanic ash size, composition, concentration, morphology, and particle-atmosphere 

interactions exist. Mather et al. (2003) and Rose et al. (2000) review the limited
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number of tropospheric volcanic ash measurements reported in the literature. Most 

airborne ash studies referenced are of limited duration (hours to days) and contain 

limited compositional information. The Mt. St. Helens, Redoubt, and Masaya 

volcano studies presented in Leifer et al. (1981), Hobbs et al. (1991; 1982), and 

Mather et al. (2003) provide four of the best records of volcanic aerosols but none 

provide the needed information for model validation or detection method validation.

3.2 Satellite Ash Detection Methods

Infrared bands in the 10-12 pm spectral region have been successfully used to 

detect volcanic ash (Schneider et al., 1995; Wen and Rose, 1994). Prata (1989a; 

1989b) developed a radiative transfer model to simulate spectral differences in 

temperature for a volcanic ash cloud viewed from space. This difference is due to the 

much stronger scattering nature of silicate minerals compared to water and ice 

particles in meteorological clouds (Yu et al., 2002). This is the basis for the 

Brightness Temperature Difference (BTD) algorithm of Prata (1989a), used to detect 

ash by satellite observations. This is the chief method used by volcano observatories 

to detect ash clouds (e.g., Dean et al., 2004; Schneider et al., 1995). Several satellite 

sensors, listed in Table 1, provide suitable data for ash detection by the BTD method. 

Volcanic clouds have negative BTD (e.g., AVHRR band 4 minus band 5) (Prata, 

1989a; Schneider et al., 1995; Wen and Rose, 1994), while meteorological clouds 

generally have positive BTD (Yamanouchi et al., 1987). The BTD does not detect 

opaque clouds because it uses thermal transmittance and commonly produces false
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positives and negatives (Prata et al., 2001; Rose et al., 2001; Simpson et al., 2000 as 

examples) due to a variety of atmospheric conditions such as air inversions and 

variable background landcover. A temperature inversion causes a false positive BTD 

signal since the majority of radiation in the 11.9 pm wavelength (AVHRR and GOES 

Band 5, MODIS Band 32, and MTSAT IR Band 2) emanates from a higher altitude at 

a higher temperature due to differential absorption (Simpson et al., 2000). Variable 

land cover may also cause a loss of ash signal when a dispersing cloud moves over 

open water. When the upwelling radiation from land is cooler than that over open 

water, the ash signal can diminish due to differential absorption causing radiation in 

the -10.7 pm wavelength (AVHRR and GOES Band 4, MODIS Band 31, and 

MTSAT IR Band 1) to emanate at warmer temperatures than the 11.9 pm wavelength. 

Water and ice can also mask the presence of ash since water and ice have a positive 

AT which increases with increasing water content (Simpson et al., 2000; Prata, 

1989b). Furthermore, detection limits of the BTD technique and BTD values for 

specific atmospheric ash mass concentrations have not been established due to the 

lack of in-situ measurements of ash in volcanic clouds (Rose et al., 2000).

3.3 Tephra Studies

Traditional tephra studies are conducted on fall deposits (Sparks et al., 1997; 

Fisher and Schminke, 1984). While these methods are invaluable for understanding 

what portion and volume of the plume was deposited, they do not sample the part of 

the plume that undergoes long range transport and does not deposit a detectable ash
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layer due to very fine particle sizes and low concentrations. Furthermore, the 

evidence of processes affecting the size, composition, and shape of ash and other 

aerosol aggregates can be lost once aerosols sediment from the plume. Soluble salts 

can be altered or leached from sedimented ash (Delmelle et al., 2007). Weakly 

aggregated particles may break apart or collapse upon landing (James et al., 2003) or 

disintegrate due to aeolian processes, precipitation events, depositional loading, 

bioturbation, and pedogenesis (Ping, 2000; Shoji et al., 1993; Jenny, 1941). Indeed, 

only two types of aggregated ash particles are found in deposits: accretionary lapilli 

and cored lapilli (Schumacher and Schminke, 1991; Fisher and Schminke, 1984) 

which range from several mm to several cm in diameter. Tephra studies may miss 

small eruptions and plumes with low ash concentrations as well as the very distal 

edges of plumes where significant fallout has removed larger pyroclasts and 

aggregated particles. These dilute plumes, although not found in the geologic record, 

still transport fine ash particles which can affect machinery and human health 

(Horwell and Baxter, 2006; Baxter, 2000; Kenedi et al., 2000; Neal et al., 1997).

The 2006 eruption of Augustine Volcano was the first occasion where a 

DRUM cascade impactor was used to collect fine airborne volcanic ash (Cahill et al.,

2010). This technique showed the effectiveness of DRUM impactors for collecting 

time, size, and compositionally-resolved aerosols downwind and at a safe distance 

from erupting volcanoes. The August, 2007 eruption of Pavlof Volcano, Alaska, 

offered an opportunity to use a DRUM sampler to collect a long-term, size and time-
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resolved, volcanic aerosol composition and concentration time series for use in 

validating satellite detection methods and VATD models.

3.4 Eruptive Chronology and Geologic Setting

Pavlof Volcano ended an 11 year period of repose on 14 August 2007 with 

Strombolian activity (Volcanic Explosive Index 2-3) which lasted 31 days until 13 

September 2007 (Waythomas et al., 2008; Siebert and Simkin, 2002-; Newhall and 

Self, 1982). The eruption was preceded by a minor increase in seismicity the 

previous day and was characterized by nearly continuous lava fountaining, 

explosions, and lahars. Incandescence on the edifice and light ash fall was reported 

by residents of the nearby village of Sand Point, Alaska some 100 km to the east 

(Figure 3.1). Explosions produced low-altitude (5-6 km ASL) diffuse ash plumes that 

were too low to have affected local or regional air travel but did bring ash to 

communities downwind of the volcano. While this eruption did not produce ash 

plumes that entered commercial airspace, commercial air traffic in the North Pacific 

was disrupted due to volcanic ash advisories, advisory NOTAMs (NOtice To 

AirMen) and SIGMETs (SIGnificant METerological hazard) issued by the Federal 

Aviation Administration and the National Weather Service that caused flights to be 

diverted around the area near the volcano (T. Neal and J. Adleman, written 

communication, 2007)

The volcano (CAVW # 1102-03) is located at 55.42 N 161.88 W (Siebert and 

Simkin, 2002-) and described by Waythomas et al. (2008) as a symmetrical snow and
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ice-covered stratovolcano, 2519 m high, located near the Izembek National Wildlife 

Refuge, 60 km northeast of the village of Cold Bay, 50 km northeast of the village of 

King Cove, 90 km west of the village of Sand Point, and 75 km southwest of the 

village of Nelson Lagoon (Figure 3.1). It is considered one of the most active 

volcanoes in North America and has erupted some 70 times since 1762. Typical 

eruptions of Pavlof have produced moderate Strombolian eruptions (VEI 2 to 3) with 

lava fountaining, spatter-fed lava flows, lahars and minor ash production. Explosive 

activity has occurred during several historic eruptions including those in 1906, 1950, 

1973, 1975, 1980, 1981, 1983, 1986, 1990, and 1996 and has produced ash plumes 

that reached altitudes of up to 15 km and ash fall deposits up to 1 cm thick in nearby 

communities. The volcano has been seismically monitored since 1973. Current 

seismic monitoring is currently supplemented by satellite monitoring techniques, 

local observations, and periodic field studies (Waythomas et al., 2008; Siebert and 

Simkin, 2002-).

3.5 Aerosol Collection

A 3-stage Davis Rotating-drum Unit for Measurement (DRUM) cascade 

impactor sampler (Figure 3.2 A) was placed at the Aleutians East Borough office in 

Sand Point, Alaska (55.34 N 160.48 W) on 27 August 2007 at 13:15 AKDT and 

operated until 14:00 AKDT on 3 October 2007 to collect aerosol in air masses in 

transit from the volcano and surrounding area (Figure 3.2 C).
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The DRUM impactor is a stand-alone sampler designed to collect time- 

resolved, size-segregated aerosol. Cahill et al. (2010) showed that DRUM impactors 

are effective instruments for collecting volcanic aerosol during eruptions both at 

proximal and distal locations. The operating principles of DRUM cascade impactors 

are described in Raabe et al. (1988) and Cahill and Wakabayashi (1993). Aerosol is 

collected by particle impaction on an Apiezion-L™ coated Mylar™ strip affixed to a 

rotating cylinder called a drum (Figure 3.2 A). The Apiezon-L™ coating aids in 

particle adhesion and reduces particle bounce (Lawson, 1980). The drum rotates past 

a slotted orifice at a controlled speed which allows for sample collection to be time- 

resolved. Impaction size ranges are dictated by particle mass and air flow velocity 

that are controlled by the slot orifice size and air flow rate (Reist, 1993). Larger 

particles are inertially removed at lower velocities while smaller particles remain 

suspended in the air stream. At the higher air stream velocities produced by narrower 

slotted inlets, smaller particles impact.

The sampler is typically fitted with a shrouded inlet and cyclone to impart an 

initial size cut. For the Pavlof eruption sampling, the sampler was fitted with an inlet 

which imparted an initial size cut of 10 pm (in aerodynamic diameter 0 A) and a 

cyclone which made another size cut of 2.5 pm 0 A before aerosol entered the 

sampler. The sampling size cuts were set at 2.5-1.15, 1.15-0.34, and 0.34-0.1 pm 0 A. 

Smaller aerosols were not collected and were allowed to vent from the sampler. The 

sampling interval was 6 weeks which gave the drums a rotation rate 4 mm/day and a 

time resolution of 3 hours.
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When the sampling interval was completed, the sampler was opened and the 

sampling media were removed in a clean laboratory. The Mylar™ strips were 

removed from the sampling drum, affixed to a labeled plastic frame with pressure 

sensitive tape, and start and end positions were noted. Mass was determined on 

prepared DRUM samples by P-gauge, a particle attenuation technique (Reist, 1993), 

and elemental composition (28 selected elements between Na and Pb) was 

determined by Synchrotron X-Ray Fluorescence (S-XRF) (Cahill, 2003; Cahill et al., 

1999) at the Lawrence Berkeley National Laboratory Advanced Light Source Beam 

Line 10.3.1 (Cahill et al., 2000).

3.6 SEM and EDS Spectroscopy

Samples were analyzed at the Advanced Instrumentation Laboratory at the 

University of Alaska, Fairbanks (http://www.uaf.edu/ail/) with an ISI-SR-50 scanning 

electron microscope (SEM) equipped with a Kevex 7000 energy dispersive X-ray 

spectrometer (EDS). Each sample was cut into ~2 cm long pieces, affixed to a rigid 

polystyrene backing, and sputter coated with gold and palladium. The samples were 

attached to a standard aluminum SEM mount and placed in the SEM chamber. In the 

chamber, the sample was oriented 25° from horizontal at a working distance of 10 

mm.

The accelerating voltage was set to 20 kV and the beam was set to the 

smallest spot size allowed by the instrument for high resolution imaging. During 

EDS spectra collection and element mapping, the beam spot size was increased to the

http://www.uaf.edu/ail/
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maximum size available on the instrument to increase x-ray counts to 20,000-30,000 

counts per second. Higher counts were found to severely blister and distort the 

Mylar™, so care was taken to limit sample exposure to 200,000 counts per sample 

image frame area to avoid damage. EDS element maps were also prepared with the 

beam spot size and counts the same as for the EDS spectra. Point dwell times for 

EDS element map images were set to 6000 psec at a 256 kb image resolution. Longer 

point dwell times caused severe sample blistering and produced poor images.

Images and bulk field-of-view spectra were made parallel to the sampling 

direction from the start of the sampling interval with about 5-10% area overlap 

between each adjacent image to allow for the construction of image mosaics and to 

maintain location (and sampling time) within the sample (Figure 3.3 and Appendix 

E). An EDS spectrum of the entire field of view was collected for each frame 

(Appendix G). When a significant increase in silicon counts was noted, an element 

map (Appendix H) was prepared because the presence of silicon was considered to be 

an indicator of the presence of volcanic ash. Regardless of silicon count levels, an 

element map was prepared at regular intervals to show elemental distribution across 

the field of view during non-volcanic (background) aerosol sampling.

DRUM samples were found to provide excellent SEM images and EDS 

spectra of particles since all the particles reside on a smooth surface and the sampling 

substrate (Mylar™ and Apezion L™) does not contaminate the sample spectra.
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3.7 HYSPLIT Air Mass Tracking Method

The HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory 

Model) (Rolph, 2011; Draxler and Rolph, 2011) atmospheric transport model was 

used to track air parcels and determine aerosol sources impacting the site during the 

sampled interval. HYSPLIT plots parcel trajectories either forward or backwards in 

time. Since the location of the volcano and time of the eruption was known, it was 

possible to cross-check each model run against the sample data to determine if 

aerosol at the sampler was from an eruption or another source.

3.8 Results

3.8.1 Identification and Description of Ash

Interpretation of elemental concentrations acquired by S-XRF for the Sand 

Point DRUM samples from 27 August through 3 October 2007 showed that the 

sampled aerosol mass was dominated by volcanic ash from Pavlof Volcano from the 

start of sampling until 2 September 2007. Aerosols collected during the first seven 

days of sampling are dominated by high concentrations of crustal elements Si, Al, Ca, 

Fe, Mg, K, and Ti, consistent with the general composition of calc-alkaline volcanic 

ash (Figure 3.4) (Heiken and Wohletz, 1985). These aerosols are interpreted to be 

volcanic ash based on HYSPLIT back trajectories that show air masses being 

transported from Pavlof Volcano to Sand Point from 27 August to 2 September 

(Figure 3.5). No long-range transport sources for crustal element aerosols such as the 

Gobi Desert (Cahill, 2003) were indicated by HYSPLIT trajectories during this time
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period. The source for aerosols collected after 2 September was predominantly 

maritime. The silicon data (Figure 3.6) showed that a strong diurnal cycle brought 

ash to the sampling site from 27 August to 2 September. Ash aerosol mass 

concentrations are highest in the morning (-07:15 AKDT) and lowest in the early 

afternoon (-15:15 AKDT). This is consistent with air undergoing radiative cooling at 

night and sinking in the atmosphere, bringing the plume to ground level. As the day 

progressed, air parcels in the plume warmed and became more buoyant, so ash was 

mostly transported at altitudes higher than the sampling site. The remainder of the 

sampling period was dominated by sea salt and non-sea salt sulfate aerosols and 

showed no systematic variability.

SEM analysis and accompanying EDS spectroscopy, shown in Figure 3.7 A- 

F, support this interpretation. Angular, equant, Si-rich particles were observed in all 

3 stages especially in the morning samples taken during this period. The relative 

abundance of Si-rich particles varied in a manner consistent with the timing shown in 

the P-gauge mass and S-XRF elemental data over the same sampling period. Si-rich 

particles were interpreted to be volcanic ash due to their chemical composition and 

particle shape (Heiken and Wohletz, 1985), as well as their collection time. 

Furthermore, HYSPLIT runs showed that air masses traveled from the volcano to the 

sampling site during the period from the start of sampling until 2 September 2007.

The major proportion of ash particles are glass shards. Phenocrysts are 

extremely rare and comprise less than 1% of the overall sample. Phenocrysts are 

generally too small to identify in secondary electron SEM images, but may be



95

identified by strong concentrations of specific elements in a small area of the element 

map. Although it is difficult to tell exactly what phases are present, some elements 

may indicate but not definitively identify the presence of common igneous rock- 

forming minerals. Fe and Ti together may indicate ilmenite or magnetite, Ca, Fe, and 

Mg together may indicate pyroxene or amphibole, Al together with Ca or Na may 

indicate feldspars, and P may indicate apatite (Deer et al., 1992).

3.8.2 Sulfur and Sea Salt in Maritime Aerosols

Na and Cl rich particles were present in the 2.5-1.15 pm 0 A stage along with a 

few S-rich particles. In the 1.15-0.34 and 0.34-0.1 pm 0 A stages abundant S-rich 

particles were present with few Cl and Na-rich particles. The Na and Cl-rich particles 

were commonly cubic but also appeared as amorphous particles. S-rich particles did 

not exhibit a characteristic shape. The Na and Cl rich particles were interpreted to be 

sea salt, and the S-rich particles were interpreted to be non-sea salt sulfate; both 

common families of maritime aerosols. Elemental concentrations after 2 September 

to the end of the sampling period (3 October 2007) were dominated by Cl, S, and Ca 

due to a shift in regional wind patterns from generally northwesterly (from the 

direction of Pavlof) to southeasterly winds from the Gulf of Alaska and Pacific 

Ocean. Tables 2 and 3 show that these elements are common constituents in sea salts 

and non-sea salt sulfates.

Sea salt is composed of mainly NaCl with minor amounts of K, Mg, Br, Ca, 

and sulfate with traces of other elements (Table 2). Sea salt aerosols are produced by
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wave action and break-up of the upper-most layer of the ocean surface. According to 

Finlayson-Pitts and Pitts (1986), sulfur compounds are emitted into the atmosphere 

from sources such as sea spray, volcanic eruptions, and biogenic processes. Volcanic 

sulfur is emitted as SO2 with smaller amounts of H2S (Symonds et al., 1994). Sea 

spray contains sulfate, also called non-sea salt sulfate, from biogenic sources of 

reduced sulfur compounds which oxidize in the atmosphere (Table 3).

SO2 oxidizes to sulfate in the atmosphere by two main reactions, either 

homogeneous reactions taking place in the gas phase or heterogeneous processes 

taking place in cloud, fog, or aerosol droplets (Seinfeld and Pandis, 2006; Finlayson- 

Pitts and Pitts, 1986). SO2 is a highly water soluble gas and will strongly partition 

into the solution phase. The oxidation rate of SO2 to sulfate is influenced by solar flux 

and has a diurnal, latitudinal, and seasonal dependence (Stockwell and Calvert, 1983).

Conversion of SO2 to sulfate by heterogeneous aqueous conversion may have 

provided a means to convert whatever S02 may have been erupted, but it is unclear 

from the SEM images and element maps if sulfate is actually associated with ash. 

Since the eruption was in its waning phases, the erupting magma may have been 

degassed and too low in water, SO2, and other magmatic volatiles (Symonds et al., 

1994; Francis, 1993) to have provided sufficient interparticle friction to produce 

significant electrostatic charges on ash particles to encourage particle attraction 

(James et al., 2003; Sparks et al., 1997). In any event, background sea salt and non­

sea salt sulfate aerosols did not appear to form particle aggregates with the volcanic 

ash.
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Volcanic and maritime aerosols were sampled in air masses at the sampling 

site from 27 August -  2 September 2007 as individual ash aerosols. It is possible that 

the sea salt and non-sea salt sulfate aerosols were initially liquid droplets, but since 

they are not mingled with volcanic ash it is proposed that the ash did not have enough 

atmospheric residence time or electrostatic charge, or was too diffuse to form hybrid 

aerosol before sampling. Another possibility is that wet aerosol droplets containing 

sulfate and/or sea salts could have dried before encountering airborne volcanic ash. 

Sparks et al. (1997) concluded that volcanic ash needs sufficient electrostatic charge, 

humidity, or meteoric water for aggregates formation.

Some EDS element maps showed a possible weak signal for sulfur associated 

with some of the volcanic ash particles. It is possible the ash was coated with sulfate 

formed from the conversion of S02 to sulfate (Seinfeld and Pandis, 2006; Finlayson- 

Pitts and Pitts, 1986) from the eruption or other sources. Another possibility may be 

that the sulfur detections were the result of misinterpretation of x-ray production near 

other x-ray peaks, specifically the Au Mai peak (2,122.9 eV) near the S Kai 

(2,307.84 eV), Ka2 (2,306.64 eV), and KPi (2,464.04 eV) lines (Thompson et al., 

2009). The full width-half maximum spread of the Au Mai energy may contribute 

counts to the S Kai, Ka2, and KPi lines where S is not present in the sample (Reed, 

1995). Interference from Au Mai x-rays was assumed to be the cause of the weak 

sulfur signal. This assumption was based on the relatively strong sulfur signal 

associated with sulfate aerosol relative to background sulfur detections present when 

spectra were taken on blank gold and palladium coated Mylar™.
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3.8.3 Meteorological Influences

Weather data shown in Figure 3.8, obtained from unofficial National Weather 

Service data from the Sand Point (PASD) station accessed from Weather 

Underground (weatherunderground.com), showed that the weather conditions during 

the eruption sampling were unusually calm. These unusually calm conditions may 

have influenced the ash mass concentrations and the particle types sampled from air 

masses at Sand Point. Generally, weather conditions in this region are dominated by 

frequent storms with high winds and heavy precipitation (National Climate Data 

Center, www.ncdc.noaa.gov, accessed on 15/02/2011). From the start of the 

sampling period on 27 August, wind speeds rarely exceed 20 km/h until 2 September 

and were usually below 16 km/h over this period. Wind direction was generally 

northerly. Winds increased to 32-48 km/h with gusts after 2 September 2007. Wind 

direction after 2 September was variable, but typically from the south to southeast. 

Precipitation (not shown in Figure 3.8) was low during the entire sampling interval, 

either > 0.06 inches, trace, or none with the exception of 1 October when 1.31 inches 

was recorded over a 24 hour period. Temperatures recorded from 27 August to 2 

September show a diurnal variation of 6 to 10° C. Temperatures were highest in the 

mid-afternoon (-15:00 AKDT) and lowest in the mid morning (-7:00 AM AKDT). 

After 2 September, temperatures hovered near the average high temperature for the 

region and exhibited no significant daily variation.

Plumes detected by the BTD algorithm (28 -  31 August) exhibited a generally 

weak ash signal and were observed to be propagating to the south-southeast from the

http://www.ncdc.noaa.gov
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volcano (Figure 3.9). Photographs of the eruption taken during this period show that 

the plume was low, diffuse, and bent over and likely contained a low ash 

concentration (Figure 3.10). These observations agree with expectations based on the 

eruptive rate, weather observations described above, and HYSPLIT model runs. The 

low wind speeds over 27 August to 2 September may have minimized dilution of the 

plume with the surrounding atmosphere. The low relative humidity over the same 

interval may have allowed for wet droplets to dry before encountering ash or for 

droplets containing ash to dry while suspended. The daily temperature variations 

observed from 27 August to 2 September coincide with diurnal variations in ash mass 

concentration variations in air masses sampled at Sand Point.

3.9 Conclusions

Ash was observed in DRUM samples collected during the first week of 

sampling (27 August - 2 September 2007), even though no substantial ash fall was 

recorded at Sand Point. Local residents reported having itchy eyes, raspy throats, and 

minor breathing difficulties during the eruption. These conditions are common 

symptoms of exposure to respirable airborne volcanic ash (Baxter, 2000) and show 

that ash mass concentrations were high enough to cause minor health effects in 

populations downwind of Pavlof Volcano.

Ash concentrations at Sand Point during the waning phase of the eruption 

were driven largely by the relative buoyancy of advected air masses influenced by 

diurnal heating and cooling. Ash concentrations were high in the morning and low in
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the afternoon. Particles larger than PM25, if present in appreciable concentrations, 

would have settled out of the plume and made some visible accumulation, but none 

was noted at Sand Point, indicating the volcano was producing mostly fine ash 

aerosol. This is consistent with the lack of split-window satellite ash detections 

which would indicate the presence of larger ash particles during the sampling 

interval. Also, S02 levels were likely low because the eruption had expended its 

volatiles (Symonds et al., 1994; Francis, 1993), so limited S02 to sulfate conversion 

was expected due to limited S02 presence. The relatively short transport distance and 

time would not have allowed for substantial conversion of volcanic S02 to sulfate.
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3.12 Figures

Figure 3.1. Location map of Pavlof Volcano and the sampling location in Sand Point, 

Alaska. Pavlof is located on the Lower Alaska Peninsula between the Pacific Ocean 

and the Bering Sea 90 km west of Sand Point.
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Figure 3.2. Three stage DRUM sampler, sample drum, and installation at Sand Point, 

Alaska. The dark lines on the sample drum (A) pictured here (not from this study) 

are likely heavy industrial pollutants and carbon soot. Three sample drums fit in the 

chambers in the DRUM sampler (B). For installation at Sand Point (C), the sampler 

was wrapped in a plastic bag and attached to the red cooler which contained the 

vacuum pump. The plastic bag gave a measure of weather resistance to the sampler. 

Holes in the cooler allowed air circulation necessary for keeping the pump cool. The 

entire sampler assembly was attached with bungee cords to a wooden pallet weighted 

with rocks to give the sampler set-up some stability. The sampler was connected to 

local AC power and operated unattended for 6 weeks. The entire sampler assembly 

was transported in the red cooler.
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Figure 3.3. SEM DRUM sample image mosaic. The large particles are sea salts; 

smaller particles are volcanic ash. Each individual image represents 1.4 hours of 

sampling time based on a rotation rate of 4 mm/day. The entire mosaic represents 4 

hours of sampling time taking the image overlaps into account.
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Figure 3.7 A and B. SEM Images and EDS maps from Stage 1 (2.5-1.15 pm 0 A). A, 

collected at 17:00 AKDT on 27 August 2007, shows abundant volcanic ash along 

with large sea salt particles. B, collected at 23:00 AKDT on 27 August 2007, shows 

infrequent ash particles along with abundant sea salt particles. Both images have 

minor sulfate aerosols.
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Figure 3.7 C and D. SEM images and EDS maps from Stage 2 (1.15-0.34 pm 0 A). C 

was collected at 18:00 AKDT on 30 August 2007 and shows sparse volcanic ash along 

with abundant sulfate. D was collected at 02:00 AKDT on 31 August 2007 and shows 

abundant volcanic ash and sulfate. Both images show little sea salt.
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Figure 3.9. AVHRR BTD split-window images showing ash clouds at Pavlof 

Volcano. The left image was taken on 28 August 2007 at 11:48PM AKDT (29 

August 07:48 UTC) and the right image was taken almost ten hours later on 29 

August at 09:20 AKDT (17:20 UTC). Areas that may contain ash are colored blue 

through light green. The earlier image shows the ash plume during an explosive phase 

of the eruption. The later image show the remnants of that earlier plume as detached 

ash clouds. Other blue areas scattered along the peninsula are algorithm artifacts not 

related to ash. Image and caption credit: Rick Wessels. Image courtesy of 

AVO/USGS.
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Figure 3.10. Photo of steam and ash erupting from Pavlof volcano on 29 August 

2007, from 13:10-13:15, AKDT. This image was taken from the northwest. The 

plume is weak and bent over. Steam is evident near the summit, but only diffuse ash 

is visible downwind of the volcano. Image credit: Guy Tytgat. Image courtesy of 

AVO/USGS.
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3.13. Tables

Table 3.1. Satellite Sensors Used for Brightness Temperature Difference Ash 

Detection.

Satellite Bands Used for BTD Algorithm

AVHRR1

GOES1

MODIS

Advanced Very High Resolution 
Radiometer

Geostationary Operational 
Environmental Satellite

Moderate Resolution Imaging 
Spectroradiometer

MTSAT Multi-Functional Transport Satellite

Band 4 
(10.30- 11.30 pm)

Band 4 
(10.7 pm)

Band 31 
(10.78-11.28 pm)

IR Band 1 
(10.8 pm)

Band 5 
(11.50- 12.50 pm)

Band 5 
(12.0 pm)

Band 32 
(11.77-12.27 pm)

IR Band 2 
(12.0 pm)

1) US, NO AA 2) US NASA 3) Japan JAXA
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Table 3.2. Composition of Sea Salt Particles in Clean Atmospheres

Species Percent by Weight

Al 4.6 x 104- 5.5 x 10:
Ba 1.4 x 104
Br 1.9 x 101
C (non-carbonate) 3.5 x 103 - 8.7 x 10:
Ca 1.16
Cl 5.504 x 101
Cu -

Fe 5.Ox 105- 5.Ox 10'
I 1.4 x 104
K 1 . 1
Mg 3.69
Mn 2.5 x 106 - 2.5 x 10
Na 3.061 x 102
n h 4+ 1.4 x 106- 1.4 x 10
n o 3- 3.0 x 106 - 2.0 x 10:
Pb 1.2 x 105- 1.4 x 10
Si 1.4 x 104- 9.4 x 10:
S042' 7.86
V 9.0 x 107
Zn 1.4 x 105 - 4.0 x 10

Based on the assumption that the composition is the same as 

that of seawater. Source: Lewis and Schwartz (2004).
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Table 3.3. Atmospheric Sulfur Aerosols.

Name Formula Usual Atmospheric State
Sulfur Dioxide so2 • h 2o Aqueous
Bisulfate ion HSO3' Aqueous
Sulfite ion S032' Aqueous
Sulfuric acid h 2s o 4 Gas/aqueous, aerosol
Bisulfate ion HSO4' Aqueous/aerosol
Sulfate ion S042' Aerosol
Methane sulfonic acid CH3SO3H Gas/aqueous

(MSA)
Hydroxymethane sulfonic h o c h 2s o 3h Aqueous

acid (HMSA)

Source: Seinfeld and Pandis (2006).
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Chapter 4 Characterization of Airborne Volcanic Ash Aerosols Collected 

During the 2009 Redoubt Volcano Eruption2 

Abstract

Airborne fine volcanic ash erupted by Redoubt Volcano during March and 

April, 2009 was continuously sampled at several locations downwind of the volcano 

using Beta Attenuation Mass monitors (BAM-1020), Environmental Beta Attenuation 

Monitors (EBAMs), and Davis Rotating Unit for Measurement (DRUM) aerosol 

samplers to examine atmospheric processes influencing ash transport. The BAM- 

1020s collected particulate matter < 1 0  pm in aerodynamic diameter (0 A) and smaller 

(PMio) or particulate matter <2.5 pm 0 A (PM 2.5)• The EBAMs collected PMio and 

DRUM samplers collected PM2.5 aerosols. The real-time hourly mass concentration 

data reported by the EBAMs and BAM-1020s is presented here along with ex-post 

facto elemental composition data from the DRUM sampler. The analysis of DRUM, 

EBAM, and BAM-1020 samples by scanning electron microscope (SEM) and energy 

dispersive spectroscopy (EDS) is also presented here. During the initial eruption of 

Redoubt on 23 March 2009, PMio ash was present in air masses in Anchorage and 

Soldotna, but no PM2.5 ash was observed over the same interval. As the plume was

1 Rinkleff, P.G., Cahill, C.F., Stichick, M., in review. Characterization of airborne volcanic ash 

aerosols collected during the 2009 Redoubt Volcano eruption. Submitted to Journal of Volcanology 

and Geothermal Research.
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transported to the northeast, PM2.5 ash was collected at Denali National Park and 

Preserve. Larger particles (PMio) were falling out at faster rates closer to the volcano 

while finer particles (PM2.5) were falling out at farther transport distances. The 

EBAM and BAM-1020 are ideal for reporting real-time mass concentrations, while 

the DRUM sampler is good at providing samples suitable for detailed mass 

concentrations, chemistry, and particle morphology measurements after the sampling 

period has concluded. A combination of collocated EBAMs or BAM-1020s and 

DRUM samplers accompanied by other sampling methods such as standard tephra 

collection is recommended for future volcanic aerosol studies and eruption response 

activities to provide real-time mass concentration data, detailed post-eruptive ash 

chemistry, and particle morphology analysis for volcanic ash transport and dispersion 

model inputs.
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4.1 Introduction

Airborne volcanic ash is a well known hazard to aircraft (Casadevall, 1994) 

and human health (Horwell and Baxter, 2006; Baxter, 2000). Knowledge about how 

volcanic ash is transported for volcanic ash transport and dispersion (VATD) models 

is important for protecting aircraft and human health (Mastin et al., 2009). Recent 

studies focus on the information needed to assess physical processes affecting the 

transport of ash and potential hazards from airborne ash have been conducted by 

Riley et al. (2003), Durant and Rose (2009), and Gislason et al. (2011). These studies 

propose methods for measuring the shape and size distribution of volcanic ash by 

digital image processing techniques. The methods used in these studies relied on 

large sample volumes collected from fall deposits which were analyzed with 

specialized equipment and costly proprietary image processing software to produce 

measurements of a large number of particles. These studies and other work using 

more common microscopy techniques (e.g. Heiken and Wohletz, 1985; Fisher and 

Schminke, 1984) show that volcanic ash particle shapes are typically complex 

elongate shards. VATD models assume that all particles are spherical due to the 

complexity of modeling the settling velocities of non-spherical particles (Rose and 

Durant, 2009; Brown and Lawler, 2003). The settling velocities of spherical particles 

are relatively easy to calculate using Stokes’ Law, but as particle shape becomes more 

complex, calculating the settling velocity becomes an arduous task (Reist, 1993, 

Fuchs, 1964). Laboratory analogues and computer models have shown that particle 

shape has a significant influence on the settling velocity and particle aggregation rates
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(Folch et al., 2010; James et al., 2002; Carey and Sigurdsson, 1982). Future VATD 

models will require data describing the shape and size distribution of volcanic ash in 

the atmosphere to refine model algorithms (Mastin et al., 2009; Webley and Mastin, 

2009). Along with findings about volcanic ash fate and transport, this study details 

two methods for sampling airborne ash for microbeam analysis.

The collection methods used for this study include direct sampling of airborne 

ash by Environmental Beta Attenuation Monitors (EBAMs) (MetOne, 2009), Beta 

Attenuation Mass Monitors (BAM-1020) (Alaska Department of Environmental 

Conservation, 2009a), and Davis Rotating Unit for Measurement (DRUM) inertial 

cascade impactors (Cahill and Wakabayashi, 1993; Raabe et al., 1988). Ash samples 

were imaged by scanning electron microscope (SEM) and energy dispersive 

spectroscopy (EDS) (Reed, 2005; Russ, 1990). The comparison of these two 

collection methods and particle analysis techniques as applied to the 2009 eruption of 

Redoubt Volcano are discussed here.

4.1.1 Geologic Setting and Eruptive History

Redoubt Volcano (CAVW 1103-03) is a 3801 m high stratovolcano located 

on the western shore of Alaska’s Cook Inlet at 60.48°N 152.74°W, 170 km southwest 

of Anchorage (Figure 4.1) (Siebert and Simkin, 2002-). It is the most active 

Holocene volcano on Cook Inlet and has produced Volcanic Explosivity Index 3 level 

activity including ash plumes, mud flows, pyroclastic flows, and lava domes (Siebert 

and Simkin, 2002-; Newhall and Self, 1982). During the 1989 eruption, significant
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damage occurred at the Drift River oil terminal near Redoubt due to lahar inundation. 

During the same eruptive period, a KLM 747 passenger jet entered an ash cloud, 

experienced total engine failure and suffered extensive damage, but safely landed 

after the crew was able to restart some engines and direct the aircraft to Anchorage 

International Airport (Casadevall, 1994). Prior to the 1989 eruption, Redoubt erupted 

during 1967, 1966, and 1902 (Siebert and Simkin, 2002-). Possible eruptions 

occurred in 1933 and 1819. The volcano is currently monitored with a permanent 

geodetic and seismic network and by satellite observation techniques (Power et al., in 

review; Webley et al., in review).

4.1.2 Redoubt Volcano 2009 Eruption

Redoubt began erupting after a period of increased seismicity that ended 20 

years of repose. The eruption began on 23 March 2009, produced ash plumes, lava 

flows, lahars, and pyroclastic flows, and built several lava domes (Bull and Buurman, 

in review; Siebert and Simkin, 2002-). Ash from this eruption entered commercial 

airspace and disrupted air traffic in the North Pacific Ocean, prompted the closure of 

Anchorage International Airport, and caused the cancellation or diversion of several 

flights originating in Asia, Europe, the North-American west coast, and flights 

originating in Alaska (L. Demer, Airport opens, residents clean up ash. Anchorage 

Daily News, 29 March 2009). Ash fell on communities on the Kenai Peninsula, the 

City of Anchorage, communities along Alaska’s Parks Highway, and as far north as 

Fairbanks (G. Bryson, Redoubt quiets after sending ash north. Anchorage Daily
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News, 23 March 2009). The eruption also prompted Chevron to suspend production 

at several oil and gas wells operating in Cook Inlet and halt operations at the Drift 

River oil terminal near Redoubt Volcano due to safety concerns related to the 

eruption (R. Mauer, Drift River terminal may resume shipping; platforms start up. 

Anchorage Daily News, 13 July 2009).

4.1.3 Sampling Sites

This eruption presented an excellent opportunity to collect volcanic ash at 

several locations with a variety of methods including BAM-1020s, EBAMs, DRUM 

cascade impactors, and traditional tephra sampling. The Municipality of Anchorage 

(MOA) and the Alaska Department of Environmental Conservation operate several 

BAM-1020s in Anchorage, Palmer and Wasilla, Alaska, as part of an ongoing 

Environmental Protection Agency mandated particulate monitoring program 

(Municipality of Anchorage, 2009; Alaska Department of Environmental 

Conservation, 2009a). In addition, an EBAM operated by the U.S. Fish and Wildlife 

Service was operating in Soldotna, Alaska, in anticipation of an eruption. A year­

long DEC study was underway at the time of the eruption to monitor regional air 

quality in the vicinity of Denali National Park and Preserve (Cahill et al., 2009). This 

study used DRUM samplers located at the Denali National Park and Preserve 

Headquarters (DNP&P HQ) and other locations near the park and preserve for aerosol 

collection. In addition to these samplers, another DRUM sampler was installed at 

Ninilchik on the Kenai Peninsula in anticipation of the eruption. The location of
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these samplers is shown in Figure 4.1. Tephra samples were also collected at various 

times and locations during and after eruption pulses. Results from the tephra work 

are presented elsewhere in this volume3 by Wallace et al. (in review) and Mastin et al. 

(in review).

The location of the ash samplers provided an opportunity to observe changes 

in particle size distributions and fallout processes at several locations downwind of 

the erupting volcano. Previous studies on plume dynamics rely on modeling (e.g. 

Mastin et al., 2009; Peterson and Dean, 2007; Vietch and Woods, 2001; Sparks et al., 

1997), post-eruption tephra collection (e.g. Gislason et al., 2011; Delmelle et al., 

2007; Riley et al., 2003; McGimsey et al., 2002; Carey and Sigurdsson, 1982) or 

time-limited, single-location aerosol collection (e.g. Hunton et al., 2005; Galindo et 

al., 1998; Hobbs et al., 1991; Woods and Chuan, 1983; Chuan et al., 1981; Stith et al., 

1977). In this study, we analyzed ash collected by DRUM samplers located at the 

DNP&P HQ and Ninilchik, Alaska, for particle shape and chemistry. Samples 

collected by EBAMs and BAM-1020s were determined to be unsuitable for EDS 

analysis and were not used for particle shape and size distribution analysis. However, 

the range of collection techniques employed to collect ash from Redoubt Volcano 

provides a broad perspective on the strengths and weaknesses inherent in each 

technique which may help to develop a comprehensive methodology for collecting

2 This chapter has been submitted for publication to the Journal o f Volcanology and Geothermal
Research Special Volume on the Redoubt 2009 Eruption.



1 2 8

volcanic ash for real-time aerosol hazard monitoring and post eruptive ash aerosol 

analysis.

4.2 Sample Collection Techniques

4.2.1 Environmental Beta Attenuation Monitors (EBAMs) and Beta Attenuation 

Mass Monitors (BAM-1020s)

Environmental Beta Attenuation Monitors (EBAMs) (MetOne, 2009) (Figure 

4.2) and Beta Attenuation Mass Monitors (BAM-1020s) (Alaska Department of 

Environmental Conservation, 2009a; 2009b), manufactured by Met One Instruments, 

Inc. (www.metone.com) are continuous particulate monitors commonly used in the 

United States for monitoring fine particulate matter. Particulate matter < 10  pm (in 

aerodynamic diameter or 0 A) is referred to as PMio while PM25 refers to particulate 

matter < 2.5 pm 0 A. The BAM-1020 is a U.S. Federal Equivalent Method for 

monitoring particulate matter. The EBAM is a portable particulate monitor that 

makes measurements which are traceable to U.S. Environmental Protection Agency 

requirements for automated PMio and PM25 measurements. EBAMs and BAM-1020s 

operate unattended for up to 60 days and can report real-time aerosol mass 

concentration data by a variety of communication links. Air is drawn into these 

samplers by a vacuum pump and aerosols are collected on a continuous glass fiber 

filter strip (Figures 4.3 and 4.4 A-C). Size-selective concentration measurements are 

made using standard sampling inlets including total suspended particulate (TSP), 

PMio, PM2 5, or PMi inlets. TSP refers to the total suspended particulate load <100

http://www.metone.com
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pm 0 A. Flow-dependent cut points in the size selective inlets are maintained using an 

integral flow meter, a pressure sensor, and an ambient temperature sensor. The PMi0 

inlet removes particles larger than 10 pm and is not affected by wind speed and wind 

direction. For PM2.5 or PMi, secondary size selection is made using a downstream 

inlet. The collected aerosol mass is measured by the attenuation of a 14C P-particle 

source. The BAM-1020s located in Anchorage, Palmer, and Wasilla were configured 

to collect PMio and PM2.5. The Soldotna EBAM was configured to collect PMi0.

4.2.2 Davis Rotating Unit for Measurement (DRUM) Sampler 

Davis Rotating Unit for Measurement or DRUM samplers, described by 

Raabe et al. (1988) and Cahill and Wakabayashi (1993), are stand-alone samplers 

designed to collect time-resolved, size-segregated aerosol (Figure 4.5 A) over a six- 

week interval. Air is drawn into the sampler by a vacuum pump and aerosol is 

collected from the air stream by impaction, a type of momentum separation (Reist, 

1993). Impaction causes dense aerosol suspended in an accelerated air stream 

directed normal to the sampling surface to stick to the surface when the air stream is 

diverted, while lighter particles remain suspended in the air stream. The sampler has 

several chambers fitted with slotted inlets that accelerate the air and aerosols to 

specific velocities. These velocities dictate the size fraction collected on a particular 

stage due to inertial separation influenced by particle aerodynamic diameter. 

Progressively smaller particles are collected deeper in the instrument. For this study, 

3-stage DRUMs were used. The size cuts for the samplers were 2.5-1.15, 1.15-0.34,
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and 0.34-0.1 pm 0 A. The sampler may be fitted with a final filter to collect any 

remaining aerosols that did not impact, but this has not been done in volcanic 

sampling campaigns due to possible sampler clogging during times of high aerosol 

concentrations. The sampler may be fitted with a variety of inlets to achieve an initial 

size cut. Typically, the sampler is fitted with a PMi0 initial inlet attached to a PM2.5 

cyclone. Other configurations are possible, but for this study, DRUM samplers were 

configured to collect PM2.5.

The impaction substrate is a Mylar™ strip attached to metal cylinder, called a 

drum (Figure 4.5 B). The Mylar™ is coated with a thin film of ultra-pure Apiezon 

L™ vacuum grease to reduce particle bounce (Lawson, 1980). When the sampler is 

activated, the drum rotates past the slotted inlet at a rate of 4 mm per day. As the 

drum rotates, fresh sampling surface is exposed under the inlet to collect aerosol.

When the sampling interval is completed, the sampler is opened, the drums 

are removed in clean conditions and placed in sealed containers for shipping. In a 

clean laboratory, the Mylar™ strips are removed from the drum, affixed to a labeled 

plastic frame with pressure sensitive tape, and the start and end positions are noted. 

Mass is determined on prepared DRUM samples using P-gauge analysis, a particle 

attenuation technique (Reist, 1993). Elemental composition (28 selected elements 

between Na and Pb) is determined by Synchrotron X-Ray Fluorescence (S-XRF) 

(Cahill, 2003; Cahill et al., 1999) at the Lawrence Berkeley National Laboratory 

Advanced Light Source Beam Line 10.3.1 (Cahill et al., 2000).
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4.2.3 Tephra Sampling

Tephra samples were also collected during this eruption (Wallace et al., in 

review; Mastin et al., in review). Fresh tephra samples may be collected by a variety 

of methods including collecting ash from a measured area and over a specific time, 

collecting a sample of snow, melting it and retaining the solid fraction, or collecting 

ash on a plastic sheet, metal pan, or other surface (e.g. Gislason et al., 2011; Delmelle 

et al., 2007; Riley et al., 2003; McGimsey et al., 2002; Carey and Sigurdsson, 1982). 

Depending on the specific study, tephra collection methods can be quite ordered 

including specific measurements of area and discrete collection time interval or may 

merely involve collecting a grab sample of tephra from an unmeasured area. In all 

cases, tephra sampling occurs after pyroclastic materials have sedimented from the 

plume or dispersing ash cloud.

4.3. SEM Sample Analysis

4.3.1 DRUM Sample Analysis

Samples were analyzed at the Advanced Instrumentation Laboratory (AIL) at 

the University of Alaska Fairbanks (http://www.uaf.edu/ail/) with a ISI-SR-50 

scanning electron microscope (SEM) equipped with a Kevex 7000 energy dispersive 

X-ray spectrometer (EDS). Each sample was cut into ~2 cm long pieces which were 

affixed to a rigid polystyrene backing, and sputter-coated with gold and palladium. 

The samples were attached to a standard aluminum SEM stub grounded with metal 

tape, and placed in the SEM chamber. In the chamber, the sample was oriented 25°

http://www.uaf.edu/ail/
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from horizontal at a working distance of 10 mm. The accelerating voltage was set to 

20 kV and the beam was set to its smallest spot size for imaging. During EDS spectra 

collection and element mapping, the beam spot size was increased to its maximum 

size to increase x-ray counts.

Images and bulk field-of-view spectra were made parallel to the sampling 

direction from the start of the sampling interval with about 5-10% area overlap from 

image to image to allow for the construction of image mosaics and to maintain 

location (and sampling time) within the sample (Figure 4.6). The EDS spectrum of 

the entire field of view was collected for each frame to indicate the overall 

composition of the particles in the field of view. Depending on the spectra, an 

element map of the frame was prepared. In general, when volcanic aerosols, 

indicated by high Si counts were observed, an element map was prepared. But 

periodically an element map was prepared to show elemental distribution across the 

entire sampling interval to describe the background, non-volcanic aerosols.

4.3.2 EBAM and BAM-1020 Sample Analysis

Glass fiber filter tapes were retrieved from the EBAM in Soldotna which was 

collecting PMio and BAM-1020s in Anchorage which were collecting PMio and 

PM2 .5 . Sample spots on the tapes were indicated by dark quartered spots spaced at 

regular intervals (Figures 4.3 and 4.4 A and B). Since no automatic marking was 

made on the filter tape by the EBAM, the tapes were manually marked at intervals 

during the monitoring period to give some time indexing to the filter tape. Filter
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tapes are several meters long (enough for 60 days of continuous monitoring), so 

indexing was needed to determine either the sampling time of a specific spot or the 

spot location when mass loads were low or when light-colored aerosols were 

sampled. Also, when a sampling or instrument error is detected, such as instrument 

saturation or communication dropout, the filter tape automatically advances to a clean 

spot to continue monitoring, so a 24-hour period could contain more than 24 sample 

spots. After the tape was manually indexed for time, a small portion (1/4) of the 1 cm 

diameter sample spot was cut from the filter tape and fixed to a 3 x 2 cm polystyrene 

sheet with double-sided tape. The sample quarter was labeled and another sample 

quarter was attached adjacent to it until the plastic sheet was filled (about 12-14 

sample points total). The sample mounts were then sputter coated and placed in the 

SEM chamber in an identical manner to the DRUM samples described above. The 

configuration (beam current, working distance, etc.) of the SEM was intentionally 

made identical to that of the DRUM samples to allow for a more direct comparison of 

results.

Four to five areas per sample were imaged and spot spectra of individual 

particles were collected with the EDS. Area spectra of the type made on the DRUM 

samples were not collected on EBAM samples because the glass fiber filter media 

produced a strong background of silicon, calcium, and aluminum (Figure 4.7). For 

this reason, only single point and small area spectra were collected for particles 

apparent on the filter surface. Even with small areas and point spectra collection, the 

filter media contaminated the spectra (Figure 4.8) and the heat produced by the
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electron beam interacting with the sample fused the particles on the filter media and 

partially fused the filter media itself (Figure 4.9). The PMi0 aerosols were generally 

found on the filter surface, but the PM2.5 aerosols were embedded deep in the filter 

media making the imaging difficult (Figure 4.10). For these reasons, samples on 

glass fiber filter tape were deemed unsuitable for SEM imaging and EDS analysis.

4.4 SEM and EDS Analysis Techniques

Both secondary electron (SE) images and element maps were collected on the 

DRUM samples. DRUM samples were found to provide excellent images and 

spectra of particles since all the particles are on a smooth surface and the sampling 

substrate (Mylar™ and Apezion L™ film) did not contaminate the sample spectra. 

Secondary electron images were useful for qualitatively determining particle shapes. 

Image mosaics of SE images were prepared so that sample distance could be 

measured (Figure 4.6), and thus, sampling time could be determined. The DRUMs in 

this study rotated at 4 mm of sampling distance per day so exact particle sampling 

times could be obtained. Although SE images provide attractive images of particles 

in DRUM samples, these images pose several problems for automated image analysis 

such as beam shadowing, secondary illumination, and edge effects (Reed, 2005; Russ, 

1990). The SEM and EDS analysis techniques detailed here form the basis for 

collecting raw images for automated digital image processing to determine volcanic 

ash particle size distributions and shape descriptors for airborne ash collected during 

the 2006 eruption of Augustine Volcano, as detailed in Chapter 2.
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4.5 Discussion

The EBAM and BAM-1020 real-time data from Soldotna and Anchorage, 

reported during the initial eruption pulses on 23 March 2009 show a distinct increase 

of PMio but have no accompanying increase in PM2.5 (Figure 4.11 A-B). No 

significant increases in PMio or PM 2.5 were observed in the real-time data from either 

Palmer or Wasilla over the same period (Figure 4.11 C-D, and Figure 4.12). During 

this eruption, the HYSPLIT (Draxler and Rolph, 2003; Rolph, 2003) VATD model 

was used to provide forward and backward trajectories for ash cloud transport. This 

model has been shown by Cahill et al. (2010) to provide a good first order 

representation of fine volcanic particle transport. HYSPLIT trajectories indicate that 

air masses traveled from the vicinity of Redoubt during the eruptive period on 23 

March and passed over Soldotna, Anchorage, Palmer, and Wasilla (Figure 4.13); 

however, the forcing of air masses over topographic features could have raised the 

ash to higher altitudes than the sampling locations in Wasilla and Palmer. Also, the 

work done at Pavlof Volcano (described in Chapter 3) has shown that daily mass 

concentration variations in volcanic ash transport can occur due to diurnal variations 

in heating and radiative cooling of air masses. The combination of these effects could 

explain why ash was observed in Soldotna and Anchorage but not in Wasilla and 

Palmer.

Analysis of S-XRF (Figure 4.14) and SEM/EDS data (Figure 4.15 A and B) 

show that volcanic ash was present in the PM2.5 size fraction at DNP&P HQ during 

the initial eruption and subsequent eruptive pulses from Redoubt (Figure 4.16). Mass
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concentration events evident in the DRUM data after 31 March 2009 were caused by 

aerosol from the north and northeast of the sampling location. Ash was detected in 

the largest DRUM stages (2.5-1.15 and 1.15-0.34 pm). The third stage had only trace 

amounts of ash present. It was difficult to separate the silicon found in the 0.34-0.1 

pm size fraction EDS images during the time of eruption from that of background 

aerosols. Particles in the 1.15-0.34 and 0.34-0.1 pm size fraction SE images (Figure 

4.15 B) do not readily show characteristic volcanic shapes, such as shards and bubble 

wall morphology, because they are too small to clearly image.

Eruptive style has a significant influence on the particle size range produced. 

Central vent eruptions produce coarser ash while pyroclastic flows produce 

significant fine ash due to in-flow clast-to-clast milling (Dartevelle et al., 2002). The 

difference in particle size distribution relative to eruptive style was clearly seen in 

DRUM sampling conducted during the Augustine 2006 eruption (Cahill et al., 2010). 

Since the initial eruptive style of Redoubt was characterized as explosive central vent- 

type eruptions, the ash produced was coarser than ash produced by pyroclastic flows. 

This may explain the absence of ash in the smallest DRUM size fraction. The ash 

sampled at the DNP&P HQ may represent the fine, tail end of the particle distribution 

that was present in the plume -12 hours after the initial eruption event.

Chlorine-rich particles were observed in DRUM samples from Ninilchik and 

more rarely at DNP&P HQ (Figure 4.15 C-D) as cubes, spheres, and rods in the 2.5­

1.15 and 1.15-0.34 pm 0 A stages and was present at intervals in the overall aerosol 

mass during eruptive and non-eruptive periods. EDS analysis confirmed that sea salt
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particles are composed of Cl, Na, Ca, Mg, and K, all common sea salt constituents 

(Lewis and Schwartz, 2004). Samples from Ninilchik contained much higher 

amounts of sea salt than those from DNP&P HQ, likely due to Ninilchik being 

adjacent to Cook Inlet. Sea salts sampled in DNP&P HQ were likely transported to 

the sampling site in air masses originating in a maritime environment.

Sulfate aerosol was present in DRUM samples from both locations. Sulfate 

was observed in all three stages, but was most common in the 1.15-0.34 pm 0 A stage. 

Sulfate composition was confirmed by EDS spectroscopy. Sulfate found on samples 

from Ninilchik often exhibited crystal habit but also occurred as massive forms. 

Sulfate contained in DNP&P HQ commonly exhibited massive forms with rare 

crystalline shapes. The sulfate sampled at Ninilchik is interpreted to be chiefly 

composed of non-sea salt sulfate from maritime sources with minor amounts of high- 

temperature source sulfate, while the sulfate sampled at DNP&P HQ to be primarily 

from local high-temperature combustion sources with minor contributions of non-sea 

salt sulfate. The strong presence of sulfate during non-eruptive periods indicates that 

the sulfate does not have a significant volcanic source.

4.6 Conclusion

Several sampling and reporting methods are necessary for providing real-time 

mass-concentration data during an eruption and post eruption detailed analysis. The 

BAM-1020 and EBAM monitors provide real-time mass concentration data while 

DRUM samplers provide suitable samples for post-eruption aerosol analysis. Co­
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location of these and other instruments at several locations, especially near population 

centers, combined with standard tephra sampling is necessary to satisfy real-time 

mass concentration reporting requirements and post-eruptive analysis needs. SEM 

and EDS provide good-quality images and spectra of particles in DRUM samples 

which are suitable for digital image processing methods. EBAM and BAM-1020 

filter samples are not suitable for high quality post sampling analysis due to sample 

degradation during EDS analysis and unacceptable contamination from the filter 

media.

The analysis of airborne volcanic ash sampled during the 2009 Redoubt 

eruption demonstrates how particle size, local conditions, and topography may 

influence mass concentrations of volcanic ash at locations downwind of an erupting 

volcano. Sulfate aerosol sampled during non-volcanic and volcanic episodes did not 

significantly vary in concentration or morphology relative to the presence or absence 

of volcanic ash which indicated the sulfate may not have had a significant volcanic 

contribution. The abundance and morphology of background sulfate aerosol may 

help determine the source of sulfate in some volcanic clouds.
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Figure 4.1. Location map of Redoubt Volcano, Alaska and sampling locations used 

in this study. Redoubt is located on Cook Inlet 170 km southwest of Anchorage.
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Figure 4.2. Exterior view of an EBAM equipped with a meteorological station. The 

unit consists of a louvered inlet (top) which is attached to the sampler cabinet. 

Attached to the sampler cabinet by two horizontal arms are weather station 

components. A communications unit is also attached to the main sampler cabinet. 

Photo credit: Drew Grimes, U.S. Fish and Wildlife Service.
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Figure 4.3. Interior view of the EBAM filter tape, P-source and detector. The 

assembly shown in the upper center of the cabinet contains the base of the inlet tube 

shown in Figure 4.2 and a 14C source which emits a constant source of P-particles. The 

P-particles are attenuated as they collide with particles collected on the filter tape. Two 

dark sample spots are visible on the take-up roll of the filter tape spool. Aerosols are 

the filter tape which is located between the base of the inlet and the P-particle detector 

assembly. Photo Credit: MetOne Inc.
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Figure 4.4 A and B. EBAM filter sample spots from the MOA Garden site PM2.5 

configured EBAM with Redoubt ash present. These spots are about 1 cm in diameter 

and represent a one hour interval. 4A shows a close-up of individual filter spots. The 

dark spot was collected over the 11:00 (AKDT) hour during a high mass loading 

episode while the lighter and virtually blank spots were collected during low mass 

loading episodes. B shows an entire 24 hour sample period. Note the arrows 

bracketing the 24 hour period. At each 24 hour interval, the EBAM advances 2 

spaces to indicate the date change.
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Figure 4.5. Three-stage DRUM sampler (A), sample drum (B), and chamber inlet 

(C). The sampler (A) connects to a vacuum pump and inlet/cyclone unit which 

imparts the initial size cut. The 3 circular chambers contain rotating drums that 

provide the sampling impaction surface. The first chamber (opened) collects the 

largest size fraction (2.5-1.15 pm 0 A). Subsequent stages collect smaller aerosol 

(1.15-0.34 and 0.34-0.1 pm 0 A). The outer case is 30 x 20 x 10 cm. The sample 

drum (B) has a Mylar™ strip affixed to the outer surface. The dark lines on the outer 

drum surface are combustion aerosol particles that have collected on the Mylar™ 

strip.
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Figure 4.6. SEM DRUM sample image mosaic. The large particles are salts, smaller 

particles are volcanic ash. Each individual image represents about 3.5 hours of 

sampling time based on a rotation rate of 4 mm/day. The entire mosaic represents 

about 9 hours of sampling time after taking the image overlaps into account.
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Figure 4.7. SEM secondary electron (SE) image and EDS element maps of EBAM 

filter tape. Si, Ca, and Al element maps are shown. The entire filter media is silica 

rich, while the thicker fibers also contain significant amounts of Ca and Al.
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Figure 4.8. Secondary electron image of PMi0 EBAM fdter tape and aerosol sample 

collected on 28 March 2009 at 05:00 AKDT at the MOA Air Quality Monitoring 

Program Garden site and corresponding EDS spectra from circled particles. Note the 

prominent silicon, aluminum, and calcium peaks in each spectrum regardless of 

particle composition. Particles indicated by 1 and 3 are likely salt aerosols due to the 

high chlorine counts, but the spectra are still dominated by background silicon counts. 

Particles indicated by 2 and 3 are possibly volcanic ash particles. Silicon is detected 

in all particles since the background (fdter media) is made of silicon, aluminum, and 

calcium-rich glass fibers.
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Figure 4.9. Secondary electron image of PMio EBAM filter tape and aerosol sample 

collected on 28 March 2009 at 18:00 AKDT at the MOA Air Quality Monitoring 

Program Garden site. Image A is the filter tape before analysis. Image B is the same 

area imaged after the collection of a 6 minute EDS spectra scan of approximately 

25,000 counts per second, with the largest beam spot size setting and maximum 

accelerating current. Note the extensive fusing of aerosols and filter media. Some 

minor shifting of filter fibers is also present. Scan time, spot size, and accelerating 

current were set to collect sufficient x-ray counts to produce element maps with 

enough resolution for reliable image processing.



155

0 ;  j ......

c

0
D

0
A

B O
I . 1

5 0 0 X  5 0  \m

Figure 4.10. Secondary electron image of PM2.5 EBAM filter tape and aerosol 

sample collected on 28 March 2009 at 05:00 AKDT at the MOA Air Quality 

Monitoring Program Garden site. Few particles are present in the sample due to the 

low PM2.5 mass concentration (3 pg/m3). Those particles that are present are found 

on the surface of thick fiber mats (A) or imbedded in the media (B, C, and D).
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Date

Figure 4.11 A. Hourly EBAM PMio levels in Soldotna, Alaska from 22 through 26 

March 2009. Mass concentration spikes on 23 March are due to Redoubt ash at the 

sampling site. Mass concentrations after March 23 are from non-volcanic aerosols.
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Figure 4.11 B. Hourly BAM-1020 PMio and PM2.5 levels in Anchorage, Alaska from 

22 through 26 March 2009. Mass concentration spikes on 23 March are due to 

Redoubt ash at the sampling site. Non-volcanic aerosol was responsible for the 

elevated aerosol mass concentrations after 23 March 2009.
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Figure 4.11 C. Hourly BAM-1020 PMio and PM2.5 levels in Wasilla, Alaska from 22 

through 26 March 2009. No distinct increase in mass concentration coincides with 

HYSPLIT model predictions for 23 March. Non-volcanic aerosol was responsible for 

the elevated aerosol mass concentrations after 23 March 2009.
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Figure 4.11 D. Hourly BAM-1020 PMio and PM2.5 levels in Palmer, Alaska from 22 

through 26 March 2009. No mass concentration spikes were observed on 23 March 

despite HYSPLIT predicted arrival of air masses from Redoubt. Non-volcanic 

aerosol was responsible for the elevated aerosol mass concentrations after 23 March 

2009.
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Figure 4.12. Relative hourly PMio levels in Soldotna, Anchorage, Wasilla, and 

Palmer, Alaska from 23 to 26 March 2009. Mass concentration spikes (indicated by 

the box) on 23 March are due to Redoubt ash at the sampling site in Soldotna and 

Wasilla. No mass concentration spikes were observed in Palmer and Wasilla on 23 

March. Aerosol mass concentrations after March 23 are from non-volcanic aerosol.
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Figure 4.13. HYSPLIT backward trajectories for Soldotna, Anchorage, 

Wasilla/Palmer, and DNP&P HQ for the 23 March 2009 Redoubt eruption events. 

Trajectory altitudes are in meters above ground level.
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Date

Figure 4.14. Time series of Si aerosol concentration collected by the DRUM sampler 

located at DNP&P HQ from 20 March-11 April 2009. The mass concentrations in 

boxes 1-3 are likely due to volcanic ash from Redoubt. This is confirmed by 

HYSPLIT trajectories presented in Figure 4.16. Silicon mass concentrations 

indicated in boxes 4-6 are from non-volcanic sources such as glacial dust and 

windblown river sediments. Note the relatively low silicon mass concentrations in 

the smallest (0.34-0.09 pm 0 A) size fraction relative to the other stages.
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Figure 4.15 A. SEM secondary electron image and EDS element maps of aerosol 

collected at DNP&P HQ by DRUM sampler in the 2.5-1.15 pm 0 A stage at 09:00 

AKDT 23 March 2009. Sampling direction is from right to left. Volcanic glass 

shards are visible in the SE image and are visible in the EDS Si map. Some large 

sulfate particles are also present and evident in the S map. Minor chlorine salts are 

present, but most of the field of view is below the detection limit for Cl. No 

aggregation of particles is observed.
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Figure 4.15 B. SEM secondary electron image and EDS element maps of aerosol 

collected at DNP&P E1Q by DRUM sampler in the 1.15-0.34 pm 0 A stage at 08:00 

AKDT 23 March 2009. Sampling direction is from right to left. Some volcanic ash 

particles are visible in the SE image and the EDS Si map, but are very small and do 

not distinctly show shard shapes. Many large sulfate particles are also present and 

evident in the S map. No Cl is evident. The concentration of Si particles increases 

from right to left indicating a change in aerosol mass load. The sulfate mass load 

does not seem to change systematically with Si indicating that S and Si mass 

concentrations in this sampling interval are independent.
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Figure 4.15 C. SEM secondary electron image and EDS element maps of aerosol 

collected at Ninilchik, Alaska by DRUM sampler in the 2.5-1.15 pm 0 A stage at 

17:00 AKDT 26 March 2009. Sampling direction is from right to left. Some Si is 

present and associated with S particles. Circular, ellipsoid, and rod-shaped Cl sea salt 

particles are abundant in the field of view. The S+Si particles are separate from the 

Cl particles indicating that Si and S aerosols combined to form hybrid aerosol while 

the sea salt particles did not. It is possible that the sulfate particles were liquid and 

sea salt particles were crystalline when aggregation occurred which could influence 

the aggregation process.
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Figure 4.15 D. SEM secondary electron image and EDS element maps of aerosol

collected at Ninilchik, Alaska by DRUM sampler in the 1.15-0.35 pm stage at 09:00 

AKDT 27 March 2009. Sampling direction is from right to left. Large sulfate 

particles exhibiting distinct crystal shapes are evident in this image. There is no Cl 

aerosol present. Si aerosol is ubiquitous throughout the field of view. Sulfate may 

have been a dry aerosol when it was sampled due to the crystal shapes present in the 

image and that Si seems to be evenly distributed in the sample and not partitioned in 

sulfate particles. Sulfate particle sizes seem to decrease and particles become less 

crystalline as sampling progresses.
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Figure 4.16. HYSPLIT backward trajectories for Denali National Park and Preserve 

(DNP&P) for 28-30 March 1 April and 7 April 2009. Trajectories from the 28-30 

March show air masses transporting from Redoubt to DNP&P. Trajectories from 1 

and 7 April 2009 show air masses transporting from the northeast and north, 

respectively.
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Chapter 5 Conclusions

Three main conclusions are derived from the studies presented in this 

dissertation: 1) particle aggregation is influenced by eruptive style and atmospheric 

conditions, 2) fine ash volumes and settling rates used in volcanic ash tracking and 

dispersion models may be misleading, and 3) current satellite ash detection methods 

do not detect respirable ash mass concentrations in dispersed clouds.

5.1 Ash Aggregation Processes

Volcanic ash forms aggregates in ways that are influenced by eruption type 

and weather conditions (Sparks et al., 1997). Three types of particles containing ash 

were observed: single ash grains, ash aggregates, and hybrid aggregates. Single ash 

grains could be either in their original state of formation, having not undergone any 

post-eruptive aggregation, or could have been shed from an aggregate that had been 

subsequently degraded or destroyed.

Ash aggregates could form by a number of means, but they were only sampled 

over a specific size range in plumes from pyroclastic flows, which indicates the 

possibility of unique conditions for formation. Though no definitive means of 

formation at this specific size range is known, it is possible that the individual ash 

grains which formed these aggregates were formed in the pyroclastic flow by clast-to- 

clast milling and were not part of the ash initially produced by explosive processes 

(Dartevelle et al., 2002). Another possibility is that these particles most efficiently
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retain their charge relative to particles of smaller or larger sizes (James et al., 2002; 

Fuchs, 1964). Speculation about how these particles form could lead to any number 

of possibilities; however, more investigation into the root processes of aggregate 

formation is needed to determine why these particles were sampled over such a 

narrow aerodynamic size range.

Hybrid aggregates likely form when downward mixing ash combines with 

maritime aerosol containing sea salt or non-sea sulfate mixing upwards from the 

marine boundary layer (Rose and Durant, 2009). The sulfate found in hybrid 

aggregates is thought to have a maritime source for three reasons: 1) sea salt is 

present in larger size fraction hybrid aerosols sampled at the same time as the sulfate- 

bearing hybrid aerosols, 2) no systematic change is observed in sulfate aerosol load 

relative to sea salt and volcanic ash mass concentrations relative to the timing of an 

eruption and 3) S02 to sulfate conversion rates during high-latitude, low solar flux 

wintertime conditions are too slow to produce substantial amounts of volcanic-source 

sulfate relative to the transport times needed for ash to reach the samplers used in 

these studies (Finlayson-Pitts and Pitts, 1986). Alternately, volcanic S02 may 

separate from a volcanic plume at altitude and be transported separately from the ash 

plume component (Mather et al., 2003; Rose et al., 2000).

5.2 Fine Ash Volume and Settling Rate Underestimation

Volcanic ash transport and dispersal models dependent on tephra collection 

data for model inputs may underestimate the volume of fine ash particulates because
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large aggregates settle several orders of magnitude more quickly than fine ash. 

Therefore, tephra samples closer to the volcano do not contain fine ash because it 

may not have settled out of the dispersing cloud at the sampling location.

Model volume and settling time underestimation is due to five possible issues: 

1) underestimating ash plume volume and particle size distribution when fine ash is 

not found during post-eruptive tephra sampling, 2) overlooking aggregation 

processes, 3) overestimating settling velocity when micron and smaller sized ash is 

not assumed to be produced by an eruption, 4) local weather influencing mass 

concentrations more than eruption rates when those rates are relatively low, and 5) 

meteorologic and topographic controls influencing the transport of ash-laden air 

parcels.

Particle aggregates are formed from ash particles and background aerosols 

smaller than the overall aggregate size. The larger aggregate is removed from the 

eruption cloud at a rate faster than the rate of removal for the individual particles. 

After removal, the aggregate structure is destroyed by impact, rain washing, 

compaction, loading, pedogenesis, and bioturbation (James et al., 2003; Shoji et al., 

1993; Sorem, 1982). In general, only accretionary and cored lapilli remain intact in 

ash deposits (Schumacher and Schminke, 1991). Other atmospherically-formed ash 

aggregates are too weakly bound to survive after they are removed from the 

atmosphere (Rose and Durant, 2011; Taddeucci et al., 2011; James et al., 2003; 

Sorem, 1982). Sampling and analytical techniques used for tephra studies further 

disaggregate atmospherically aggregated ash by sieving and particle resuspension
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methods (Riley et al., 2003; Heiken and Wohletz, 1985). Also, not all ash 

participates in aggregation processes at the same time; some of the ash remains as 

individual particles and undergoes long range transport. Indeed, some eruptions may 

produce ash that does not aggregate before sedimenting from the plume. In addition, 

these models do not address possible aggregate disintegration in the cloud due to 

particle collision, electrostatic charge relaxation, particle drying, or turbulence. 

Diurnal heating and radiative cooling of air masses can bring airborne ash to ground 

level or send it higher in the atmosphere at different times of the day which may 

influence ash and other aerosol mass concentrations in air masses being sampled 

(Seinfeld and Pandis, 2006). Other local effects such as an interposing topographic 

high region may divert air masses and cause mass concentrations to be different than 

model predictions that do not account for topography. For volcanic ash distribution 

models to more closely forecast ash fall and ash cloud evolution these factors would 

have to be quantified and incorporated.

5.3 Satellite Detection Method Limitations

The Brightness Temperature Difference (BTD) satellite volcanic ash detection 

method can miss the long-range transported ash mass due to low ash mass 

concentrations or the overall particle diameter being smaller than the thermal infrared 

wavelengths used for its detection algorithm: -2.5 pm for particles, versus AVHRR 

band 4 (10.3-11.3 pm) and band 5 (11.5-12.5 pm) (Prata, 1989).
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Particles with diameters > than 10.3 pm are easily detected in translucent 

volcanic clouds. But, since the diameter of a substantial number of volcanic particles 

in the plume are well below these wavelengths, a dilute plume consisting of fine ash 

cannot be reliably detected by the BTD method (Simpson et al., 2000). As the plume 

is transported and larger particles are removed, the plume becomes dilute and 

dominated by fine ash less than 10.3 pm in diameter. The volcanic ash then falls 

below the detection limit of the BTD method even though ash is present. Therefore 

lower concentration plumes, or plumes consisting of fine ash particles, cannot be 

reliably tracked by current ash detection and monitoring satellite detection 

techniques. Alternate detection and tracking means are needed to monitor these 

plumes.

In addition to alternate detection and tracking means, a suite of forecasting, 

detection, measurement, and sampling methods, some with real-time reporting 

capabilities, are needed to fully address the range of incident management and 

scientific research needs during a volcanic eruption. While some methods and 

techniques are already incorporated into standard volcano observatory operations 

during an eruption response, a suite of formalized, scalable forecasting, detection, and 

tracking instruments and techniques needs to be developed and implemented during 

future eruptions.
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