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Abstract

Although the Bering Sea shelf plays a critical role in mediating the global climate 

and supports one of the world’s largest fisheries, fundamental questions remain about the 

role of advection on its salt, fresh water, heat and nutrient budgets.

I quantify seasonal and inter-annual variability in the temperature, salinity and 

circulation fields. Shipboard survey temperature and salinity data from summer’s end 

reveal that advection affects the inter-annual variability of fresh water and heat content: 

heat content anomalies are set by along-shelf summer Ekman transport anomalies 

whereas fresh water content anomalies are determined by wind direction anomalies 

averaged over the previous fall, winter and early spring. The latter is consistent with an 

inverse relationship between coastal and mid-shelf salinity anomalies and late summer -  

winter cross-shelf motion of satellite-tracked drifters. These advection anomalies result 

from the position and strength of the Aleutian Low pressure system.

Mooring data applied to the vertically integrated equations of motion show that 

the momentum balance is primarily geostrophic within at least one external deformation 

radius of the coast. Local accelerations, wind stress and bottom friction account for <

20% (up to 40%) of the along- (cross-) isobath momentum balance, depending on 

location and season. Wind-forced surface Ekman divergence is primarily responsible for 

flow variations. The shelf changes abruptly from strong coastal convergence conditions 

to strong coastal divergence conditions for winds directed to the south and for winds 

directed to the west, respectively, and substantial portions of the shelf s currents 

reorganize between these two modes of wind forcing.

Based on the above observations and supporting numerical model integrations, I 

propose a simple framework for considering the shelf-wide circulation response to 

variations in wind forcing. Under southeasterly winds, northward transport increases and 

onshore cross-isobath transport is relatively large. Under northwesterly winds, onshore 

transport decreases or reverses and nutrient-rich waters flow toward the central shelf from 

the north and northwest, replacing dilute coastal waters that are carried south and west. 

These results have implications for the advection o f heat, salt, fresh water, nutrients, 

plankton, eggs and larvae across the entire shelf.
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Chapter 1: Introduction

1.1 Background

The Bering Sea shelf (Figure 1.1) exerts strong influence on the earth’s climate 

system due to its regulation of fresh water transport between the North Pacific and the 

Arctic Ocean [Aagaard and Carmack, 1989; Shaffer and Bendtsen, 1994; De Boer and 

N of 2004]. It also supports one of the most productive fisheries in the world [Van 

Voorhees andLowther, 2011]. Fundamental questions remain, however, about controls 

on the along- and cross-isobath exchanges of heat, salt, fresh water, and nutrients 

[Aagaard et al., 2006] and how variations in these properties impact the climate and the 

regional ecosystem.

The Bering Sea shelf s geological characteristics and spatially and temporally 

varying physical processes define its marine environment. Along-shelf (1200 km) and 

cross-shelf (500 km) dimensions are vast and can exceed synoptic atmospheric length 

scales. With low relief and small mean cross-shelf bottom slopes (~ 4x l0 '4), the shelf is 

bounded by land on all sides except along the southwest-facing continental slope and 

Bering Strait, the shelf s connection to the Chukchi Sea. Four large submarine canyons 

cut into the continental slope [Normak and Carlson, 2003]. As a strongly seasonal sub

arctic transition zone between the North Pacific and the arctic, the shelf s annual cycle of 

heating, cooling and sea ice extent follow the surface heat fluxes, determined primarily 

by the solar angle. Winter and spring pack ice extent is controlled by winds and storm 

tracks [Pease, 1980; Overland and Pease, 1982]. Rivers supply a strongly seasonal input 

of fresh water (~ 320 km3 yr'1) to the coastal zone [Aagaard et al., 2006]. Strong wind 

events are common through fall, winter and spring months due to storms associated with 

the Aleutian Low pressure system [Overland et al., 1999; Rodionov et al., 2007]. Tidal 

currents over most of the shelf are strong and help maintain a well-mixed region close to 

shore and a weakly stratified near-bottom layer farther offshore [Pearson et al., 1981; 

Coachman, 1986; Kowalik, 1999]. A large shelf outflow (~ 0.8 Sv; 1 Sv = 106 m3 s ') 

through Bering Strait links the North Pacific to the Arctic [Coachman and Aagaard,
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1966; Aagaard et al., 1985; Roach et al., 1995; Woodgate et al., 2005] due to a steric 

height difference of ~ 0.5 m [Stigebrandt, 1984] caused by global-scale processes.

The narrow (80 km), shallow (50 m) Bering Strait flow impacts both regional and 

global scale processes [Paquette and Bourke, 1981; Aagaard and Carmack, 1989; 

Broecker and Denton, 1990; Goosse et al., 1997; De Boer and Nof, 2004; Grebmeier et 

al., 2006; Spall, 2007; Woodgate et al., 2010]. Bering shelf waters cross the Chukchi Sea 

and ultimately feed the arctic halocline, which acts as an insulating layer between the 

surface pack ice and the relatively warm Atlantic-origin water below [Aagaard et al., 

1981]. Heat advected north through Bering Strait impacts the regional ice dynamics 

[Paquette and Bourke, 1981; Spall, 2007; Woodgate et al., 2010] and may play a role in 

the Arctic ice extent and the albedo-ocean heat feedback loop. Fresh water advected north 

through Bering Strait represents a first order contribution to the Arctic’s fresh water 

budget [Aagaard and Carmack, 1989], which in turn likely helps regulate the global 

thermohaline circulation by modifying rates of deepwater formation in the North Atlantic 

[Shaffer and Bendtsen, 1994; Wadley and Bigg, 2006].

The Bering Sea’s productive ecosystem supplies approximately one-half of our 

nation’s ocean-caught seafood and supports commercial fisheries that include pollock, 

herring, halibut, snow crab, king crab, and salmon [Van Voorhees and Lowther, 2011]. 

The biological production also supports large seabird and marine mammal populations. 

Subsistence fisheries and marine mammal harvests supply dozens of coastal indigenous 

communities with traditional foods. Challenges to the fisheries management include 

identification of sustainable harvest levels within this dynamic ecosystem, where inter

species competition, fishing effects, climate, and other factors play a role [North Pacific 

Fishery Management Council (NPFMC), 2011].

The Bering Sea is also the site of significant and increasing industrial activities. 

Dutch Harbor is an important port in the great circle route for transits between Pacific 

Rim nations. Tankers carrying natural gas southward from the Arctic are recent additions 

to the seascape and will continue to grow in number [Orr, 2011]. With projections of 

decreased summer ice extent in the Arctic [e.g., Zhang and Walsh, 2006], it is likely that
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other trans-Arctic cargo vessel traffic will also increase. Local industrial activities, aside 

from fishing, include subsea mining, cruise ship tourism, and barge traffic to western 

Alaska villages, towns and terrestrial mines. In the last decade, the federal government 

has opened and then subsequently closed a large portion of the southeastern Bering Sea to 

oil and gas exploration. Future exploration nevertheless remains an option. The frequency 

of stormy weather conditions together with the number of vessels associated with all of 

these activities and the locations of critical habitat for several endangered species (e.g., 

the spectacled eider, northern sea otter, North Pacific right whale) places the Bering Sea 

at particular risk for at-sea accidents, such as the 2004 M/V Selendang Ayu oil and 

soybean spill [Brewer, 2006].

Better management of the fisheries and ecosystem, planning for and assisting 

incident response operations (e.g., search and rescue; oil spill cleanup), assessing the 

potential impacts of future development, and understanding of global climate systems 

that are linked to regional Bering Sea processes requires a more complete mechanistic 

understanding of the Bering Sea shelf.

1.2 Approach

This thesis provides a description of spatial and temporal variability of the 

eastern Bering Sea shelf circulation, temperature and salinity fields and identifies 

processes that control their variations. I seek new insight into the nature and structure of 

these variations and their subsequent impacts upon the shelf environment.

I employ in situ and remotely sensed observational data as well as results from 

atmospheric and oceanographic numerical models. The data include shipboard profile 

and bottle data, moored time series, satellite data, land-based weather station data, 

satellite-tracked oceanographic drifter data, and measurements of river discharge and ice 

thickness. Numerical model output includes atmospheric reanalysis hind-casts, three

dimensional ocean-ice circulation hind-casts and an idealized barotropic process model.

In Chapter 2 ,1 examine recently collected and historical CTD data in order to 

quantify the magnitude of seasonal and inter-annual variations in integrated fresh water 

content (FWC) and heat content (HC) budgets. The analysis reveals that alteration of the
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shelf advective field results in inter-annual variability of thermal and haline fields, and 

that these are controlled by the location and strength of the Aleutian Low.

Chapter 3 undertakes a comparison of Northeast Pacific (NEP) model hind- 

casts over 1970-2005 to spatially and temporally co-located observational data. I 

compiled a new, publically available, high-resolution (~ 1 km) bathymetric digital 

elevation model (DEM) for the greater Alaska region to support these modeling efforts. I 

analyze the model results, identifying major modes of temperature, salinity and sea ice 

variations. Correlation analysis reveals these modes are significantly correlated to 

common indices of North Pacific climate variability. These results provide a better 

appreciation of the shelf response to climate variability in the study region where oceanic 

observations are limited. I show that the primary modes of variability co-vary with 

numerous ecosystem indicator time series.

Chapter 4 focuses on current meter mooring observations from the central shelf 

with supporting results from the Bering Ecosystem Study Ice-Ocean Modeling and 

Assimilation System (BESTMAS) numerical circulation model. The analysis identifies 

two distinct modes of shelf circulation that stem from the influence of Ekman transport 

during upwelling and downwelling wind conditions. I present these results in the context 

of the momentum balance, solving the vertically integrated and linearized equations o f 

motion, and with respect to seasonal variations in the wind, ice, and stratification fields.

In Chapter 5 ,1 develop a new but simple and encompassing framework for 

considering the Bering shelf circulation field as an integrated whole, using current meter 

moorings, hindcast winds, NEP model results and idealized barotropic model results.

This framework conforms to well-known and newly described (in Chapters 2-4) 

characteristics of the Bering shelf temperature, salinity, and circulation fields. Ultimately 

this framework may prove useful for considering many functional links within the Bering 

Sea ecosystem, including aspects of shelf nutrient renewal and advection of passively 

drifting plankton, eggs and larvae. Chapter 5 ties together many findings of Chapters 2-4 

and opens doors to many potentially fertile lines of future research.
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Chapter 6 summarizes the dissertation, examines some broader implications of 

this work, and outlines an approach for applying the results to advancing our 

understanding of the Bering Sea. Throughout all chapters, insights into the physical 

mechanisms that control variations in the Bering Sea’s physical environment inform 

discussion about possible implications for nutrient, phytoplankton, zooplankton and 

upper trophic level dynamics.
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1.4 Figures

Figure 1.1: Map of the Bering Sea region with place names. Typical along-shelf (1200 
km) and cross-shelf (500 km) scale dimensions are noted. Bathymetric depths are shaded; 
the new bathymetric DEM shown here was developed in support of the NEP modeling 
efforts.
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Chapter 2: Thermal and haline variability over the central Bering Sea shelf: 

Seasonal and inter-annual perspectives1

2.1 Abstract

We examine multi-year conductivity-temperature-depth (CTD) data to better understand 

temperature and salinity variability over the central Bering Sea shelf. Particular 

consideration is given to observations made annually from 2002 to 2007 between August 

and October, although other seasons and years are also considered. Vertical and 

horizontal correlation maps show that near-surface and near-bottom salinity anomalies 

tend to fluctuate in phase across the central shelf, but that temperature anomalies are 

vertically coherent only in the weakly or unstratified inner shelf waters. We formulate 

heat content (HC) and fresh water content (FWC) budgets based on the CTD 

observations, direct estimates of external fluxes (surface heat fluxes, ice melt, 

precipitation (P), evaporation (E) and river discharge), and indirect estimates of advective 

contributions. Ice melt, P-E, river discharge, and along-isobath advection are sufficient to 

account for the mean spring-to-fall increase in FWC, while summer surface heat fluxes 

are primarily responsible for the mean seasonal increase in HC, although inter-annual 

variability in the HC at the end of summer appears related to variability in the along- 

isobath advection during the summer months. On the other hand, FWC anomalies at the 

end of summer are significantly correlated with the mean wind direction and cross

isobath Ekman transport averaged over the previous winter. Consistent with the latter 

finding, salinities exhibit a weak but significant inverse correlation between the coastal 

and mid-shelf waters. The cross-shelf transport likely has significant effect on nutrient 

fluxes and other processes important to the functioning of the shelf ecosystem. Both the 

summer and winter advection fields appear to result from the seasonal mean position and

'Danielson, S., L. Eisner, T. Weingartner and K. Aagaard, 2011. Thermal and haline 
variability over the central Bering Sea shelf: Seasonal and inter-annual perspectives, 
Cont. Shelf Res., doi:10.1016/j.csr.2010.12.010.
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strength of the Aleutian Low. We find that inter-annual thermal and haline variability 

over the central Bering Sea shelf are largely uncoupled.

2.2 Introduction

The enormous biological production of the Bering Sea shelf (Figure 2.1) is 

evident in its primary productivity [Sambrotto et al., 1986; Walsh et al., 1989; Springer 

et al., 1996], commercial fisheries [Failor-Rounds, 2005; Bowers et al., 2008], and large 

marine mammal populations [Lowry et al., 1982]. While there are apparent connections 

between variations in climate and biological production [Grebmeier et al., 2006; Zheng 

and Kruse, 2006; Aydin and Mueter, 2007], the physical mechanisms underlying these 

linkages are poorly understood.

We examine the seasonal (April to September) and the inter-annual (for late 

summer/early fall) variability of the temperature (T) and salinity (S) fields, employing 

both recently collected and historical data. The data allow a spatially broad and 

integrative analysis that permits us to quantify sources and sinks for fresh water content 

(FWC) and heat content (HC) and to identify advective effects that impact coastal and 

mid-shelf water mass exchanges. We will show that the processes resulting in thermal 

and haline inter-annual variability are largely uncoupled from one another both 

seasonally and mechanistically. Although we emphasize physical processes, the results 

likely bear on shelf nutrient distributions and biological productivity. For example, 

exchanges that introduce low-salinity (< 31) and nitrate-poor (Figure 2.2) inshore waters 

onto the central shelf may inhibit primary production.

The Bering Sea shelf is vast: its cross-shelf extent is 800 km between the mouth 

of Norton Sound and the continental slope, and the shelfbreak extends 1200 km 

northwestward from Unimak Pass to Cape Navarin. The slope is incised by several 

canyons (Navarin, Pervenets, Pribilof, Bering and Zhemchug), all likely play an 

important role in shelf/basin exchange [Schumacher and Reed, 1992; Stabeno and Van 

Meurs, 1999; Mizobata and Saitoh, 2004]. Our focus here is on the shallower waters on 

the mid- and inner shelf.
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Previous studies [Kinder and Schumacher, 1981a; Coachman, 1986] discuss the 

outer (100-200 m), middle (50 m-100 m) and coastal (0-50 m) biophysical domains o f the 

southeastern Bering Sea shelf. The northern limit o f these domains is not well described, 

but Coachman [1986] notes that the inner front, which marks the boundary between the 

coastal and middle domains, separates from the 50 m isobath north o f Nunivak Island. 

Due to the distribution of available conductivity-temperature-depth (CTD) data (Figure 

2.3), we focus on the region that overlaps both the middle and coastal domains, and 

which extends from western Bristol Bay to south o f St. Lawrence Island. In particular, we 

consider the part of the central Bering Sea shelf lying 1) west of 162 °W; 2) east of 174 

°W; 3) north of 57 °N; 4) south of 62.5 °N; and 5) between the 20 m and 70 m isobaths 

(delineated in Figure 2.3). This region forms our integration domain and represents the 

maximum area common to CTD surveys conducted annually from 2002 to 2007 by the 

Bering-Aleutian Sustainable Salmon International Survey (BASIS) program. It
c "J

encompasses ~ 2.07 x 10 km with a mean water depth of 45 m and a volume of ~ 9.3 x 

103 km3. For comparison, the entire shelf has an area of 1.8 x 106km2, a mean depth of 43 

m, and a volume of 7.7 x 104 km3 between the 100 m isobath and the coast.

In assessing causes of anomalies in HC and FWC we examine integrated surface 

heat fluxes, ice extent and melting, river discharge, precipitation (P) and evaporation (E), 

sea level pressure, winds, and ocean currents. Although mean currents are typically small 

(1-5 cm s ' 1 [Schumacher and Kinder, 1983; Danielson et al., 2006]), we show that wind- 

forced advection of both heat and fresh water are nevertheless important and are 

associated with variations in the seasonal position and strength of the Aleutian Low. The 

Aleutian Low influences the cloud cover [Reed, 1978], wind mixing [Overland et al, 

2002], and heat fluxes, as well as the wind stresses that advect water [Bond et a l, 1994] 

and ice [Overland and Pease, 1982].

On this shelf, both temperature and salinity affect the location and strength of 

fronts and o f the pycnocline [Kinder and Schumacher, 1981b], across which nutrient 

fluxes influence summer primary production [Bond and Overland, 2005; Sambrotto et 

al, 2008]. The annual evolution of the temperature and salinity fields is as follows. North



12

of ~ 60 °N, the water column is reset to the freezing point (~ -1 .8 °C) by the end of each 

winter (annual HC minimum), coincident with the annual shelf salinity maximum (annual 

FWC minimum) [Schumacher et al., 1983]. Winter ice extent is variable, since it depends 

upon both local ice formation and southward advection by winds [Muench and Ahlnas, 

1976; McNutt, 1981], but ice occasionally extends as far as the Alaska Peninsula 

[Niebauer and Schell, 1993]. Throughout winter, ice melts continually along its 

southernmost boundary [Pease, 1981]. Rapid ablation from the seasonal increase in solar 

radiation occurs in May, while the southerly winds [Niebauer et al., 1999] advect 

thinning ice northward [Overland and Pease, 1982]. Melting and warming then initiate 

the water column stability required for the spring phytoplankton bloom [Alexander and 

Niebauer, 1981; Stabeno etal., 2001]. Solar heating through spring and summer further 

strengthens the thermal stratification [Reed and Stabeno, 2002]. Hence, mid-shelf waters 

evolve toward a strongly stratified two-layer system, maintained primarily by wind 

mixing and solar heating in the surface layer and tidal mixing of cold winter water in the 

lower layer [Coachman, 1986; Overland et a l, 1999].

Here we present CTD data from 2002-2007, collected over the shelf between mid- 

August and early October of each year as part of the U.S. BASIS program (Figure 2.3 

and Table 2.1). Observations include physical and chemical data, as well as 

phytoplankton, zooplankton and fisheries sampling. The primary goal of BASIS is to 

understand the effects of climate change and climate variability on the pelagic ecosystem 

of the eastern Bering Sea. The fisheries and oceanographic data are employed to reduce 

uncertainty in forecasting groundfish and western Alaska salmon populations. The survey 

grid achieves unprecedented CTD coverage. Although the sampling is not synoptic (40

60 days per year are required), we will show that the surveys span the period when both 

the FWC and HC of the shelf waters are at their annual maxima, and that inter-annual 

variability in FWC and HC is not obscured by seasonal or synoptic variability. We also 

employ both recently collected (2007-2009) CTD data from the Bering Sea Ecosystem 

Study (BEST) and historical CTD data (1929-2009) from the National Ocean Data Center
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(NODC) World Ocean Database 2009 (WOD-09) [Boyer et al., 2009] to evaluate 

seasonal changes in FWC and HC.

Section 2.3 contains detailed descriptions o f the data and their processing. In 

Section 2.4 we present the mean and variability of the late summer/early fall T and S 

fields and investigate spatial correlations in T and S anomalies. Upon integrating across 

the central shelf region, we relate the seasonal and inter-annual anomalies in FWC and 

HC to direct flux estimates and to indirect measures of oceanic advection (Section 2.5). 

Section 2.6 summarizes the key results and discusses implications o f the analyses.

2.3 Datasets and Methods

2.3.1 CTD data

The BASIS CTD data were collected with a variety o f Sea-Bird Electronics (SBE) 

CTDs over the years: SBE-19 and SBE-19+ (2002), SBE-25 (2003, 2004 & 2005), SBE- 

917 (2005-2007) and SBE-911 (2005-2007). Instruments were calibrated prior to each 

season, and 2004-2006 salinity measurements were compared to discrete bottle samples. 

The CTD profiles were processed using the SBE data processing subroutines [SBE,

2009], and final data were binned to 1-m depths and inspected for spikes and/or spurious 

density inversions. Temperature and salinity measurement spikes exceeding ~ 0.01 were 

removed by linearly interpolating through adjacent depths levels. Based on post

calibrations, comparison with secondary probes, and discrete salinity samples, we 

consider the accuracy of the temperatures to be better than 0.01 °C and salinities better 

than 0.02. Because there are year-to-year differences in station spacing and sampling 

grids, we linearly interpolated the temperature and salinity data to regular 2- and 3

dimensional grids to ensure consistency in subsequent calculations. The CTD data from 

the BEST cruises of 2007, 2008, and 2009 (HLY0701, HLY0802, HLY0803, HLY0901, 

KN19510, and PS0909) were collected with SBE-911 instruments and processed and 

evaluated following procedures similar to those applied to the BASIS CTD data.

Historical CTD and bottle data from the NODC WOD-09 [Boyer et al., 2009] 

were screened for position errors (samples appearing on land and deep samples from a
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site known to be shallow) and anomalous temperatures and salinities. Questionable 

values and outliers, defined in part by the binning method described below, were 

discarded. A relatively small number of profiles in the WOD-09 were collected from 

1930-1960; most were collected from 1960-present.

Combining the various data, we formed 0-100 m monthly and seasonal vertical 

profiles across a regular geographic grid with spacing of one degree of latitude and two 

degrees of longitude. The BASIS sampling occurred between August and October (late 

summer to early fall); it coincided with the annual FWC and HC maxima. February-April 

(late winter to mid-spring) represents the annual FWC and HC minima and May-July 

(late spring to mid-summer) encompasses the transition from late spring to late summer. 

Linear interpolation between depths at stations with discrete bottle samples created full 

water column profiles. In order to avoid biasing the gridded results toward years with 

more CTD casts, data were first reduced into a single representative profile for each grid 

cell, year and month. The monthly profiles were then averaged into a single mean 

monthly profile representing each grid cell.

Twenty of the grid cells are more than 50% contained within our integration 

domain (Figure 2.3), and for these 20 cells data were collected in 16-48 discrete years in 

May-July and 18-33 years in August-October. We place a moderate to high level of 

confidence in results derived from these data. During February-April one cell was 

sampled in only two years, while the remaining 19 cells were sampled in 4-23 years. We 

ascribe low to moderate confidence in these results because o f the few number of samples 

in some cells. For November-January the data distribution was too sparse to be useful, so 

we neglect this period.

2.3.2 Mooring data

Temperature and salinity data from NOAA mooring M2 (56.9 °N, 164.1 °W) 

[Stabeno, unpubl. data] and collected between 1995 and 2006 near 10 m and 60 m are 

used to assess seasonal HC and FWC changes, and to estimate the probable end-of-winter 

water column HC. Data were inspected for spikes and consistency with other nearby
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measurements on the mooring line. Suspect data were discarded, and the resultant dataset 

was averaged into monthly mean values.

2.3.3 Nutrient data

Nitrate plus nitrite concentrations were determined from discrete water samples 

collected using Niskin bottles attached to the CTD. Whole water samples were stored 

frozen at -20 °C and analyzed within eight months at the University of Washington 

Marine Chemistry Laboratory using colorimetric protocols [UNESCO, 1994],

2.3.4 Ice cover data

Ice cover data are obtained from the National Snow and Ice Data Center (NSIDC) 

passive microwave satellite Level 3 archives [Cosimo, 2008], available on a 25 km grid. 

Data from 1988 to the present are daily, while data from 1979 to 1987 were collected 

every other day. We estimate the number of ice-free days by employing a concentration- 

extent time series computed over the region south of 66 °N (Bering Strait) and east of 

170 °E (Cape Navarin). Ice decay and growth occur relatively rapidly and extensively, 

and so we employ a fixed ice concentration-extent threshold (5 x 104 km2) to determine 

the onset of the open water and ice-covered seasons. For comparison, the area o f Norton 

Sound encompasses approximately 5 x 104 km2. Experiments indicate that our results are 

relatively insensitive to the threshold value.

2.3.5 Stream/low data

Daily discharge data were obtained from the U.S. Geological Survey streamflow 

database (http://waterdata.usgs.gov/nwis) for the Yukon and Kuskokwim rivers at Pilot 

Station and near Crooked Creek, respectively. Data gaps were filled with the mean daily 

climatological value.

2.3.6 Drifter data

Satellite-tracked oceanographic drifter data are employed to examine nearshore 

and mid-shelf surface advection in the summer and fall. Fifteen drifters were deployed in 

2002 and 32 were deployed in each of 2008 and 2009. Seventy of these were CODE

http://waterdata.usgs.gov/nwis
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surface drifters drogued at 1 m depth [Davis, 1985] and the remaining nine drifters (2002 

deployment only) had holey sock drogues centered at 10 m depth. The drifters acquire 

GPS position fixes (measured on a beached drifter to be accurate to ~ 20 m) every 30 or 

60 minutes. After inspection for faulty position or time fixes, the data are converted into 

velocities and gridded onto 1/2 degree latitude by 1 degree longitude cells. To avoid tidal 

aliasing, only cells that contain at least 5 drifter-days (120 hours) are used.

2.3.7 St. Paul meteorological data

Daily precipitation data collected at St. Paul Island and obtained from the 

National Climate Data Center are scaled by the central shelf area to estimate precipitation 

fluxes within our integration domain. Long-term precipitation records from coastal 

meteorological stations at Nunivak Island, Cape Newenham, St. Lawrence Island, and 

Nome show that their mean monthly values are within +60% and -120% for the April to 

September integration period and +/- 70% for October to May with respect to that 

measured at St. Paul Island. The average differences between St. Paul and the other 

stations for these two time periods, given as a percentage of the St. Paul measurements, 

are 2% and 23%, respectively.

2.3.8 Sea surface temperature data

The Smith et al. [2008] extended reconstructed sea surface temperature (ERSST) 

dataset, version ERSST.v3, is employed to assess the late winter distribution of surface 

temperatures. The ERSST data, gridded monthly onto a 2 degree global grid, are 

constructed from a temporal-spatial interpolation scheme applied to the International 

Comprehensive Ocean-Atmosphere Data Set (ICOADS) sea surface temperature data. To 

gain a relative measure o f the accuracy of this product in our region, we compare the 

ERSST data to the near-surface (~ 10 m depth) temperature record from the NOAA M2 

mooring. We find the ERSST has an offset o f +0.54 °C, which may be explained by the 

difference in depth levels. Monthly anomaly standard deviations are 0.76 °C and 1.2 °C 

for the ERSST and M2 data, respectively. The ERSST monthly anomalies account for
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35% of the variability observed at M2: r = 0.59 and p=0 (Pearson’s r correlation 

coefficient).

2.3.9 Atmospheric model fields

Winds, surface pressures, and surface heat fluxes are taken from the 

NCEP/NCAR Reanalysis Project 1 (NCEPR [Kalnay et al., 1996]). We use this product 

rather than Reanalysis 2 output fields because the model performance summaries 

described below were developed for the NCEPR results, and the model run extends 

further back in time. The NCEPR consists of six-hourly hind casts of major atmospheric 

variables on a ~ 2.5 ° global grid from 1948 to the present. Monthly output fields are 

employed for retrospective analyses and six-hourly fields for comparison to the BASIS 

records.

The net surface heat flux is the sum of the net shortwave, net longwave, latent and 

sensible heat fluxes. The NCEPR model surface heat flux performance varies around the 

globe [e.g., Weller et al., 1998; Rouault et a l, 2003], but typical evaluations indicate net 

shortwave root-mean-square (RMS) errors of 30-70 W m '2 and biases of up to 40 W m ' 2 

[Scott and Alexander, 1999; Taylor, 2000], Sensible and latent heat fluxes have RMS 

errors and mean biases of 6  and 20 W m'2, respectively, when compared to ship-based 

measurements [Smith et al., 2001]. While a constant bias will not affect the results o f our 

anomaly analysis, it will impact our estimates of the seasonal heat flux. For the southeast 

Bering Sea, Ladd and Bond [2002] find that the NCEPR overestimates the shortwave 

radiation flux by 50-70 W m' in summer, and they ascribe the discrepancy to the model’s 

inability to simulate low clouds and fog. Reed and Stabeno [2002] computed the surface 

heat fluxes at the NOAA mooring site M2 for three months in the summer o f 1996. In 

comparing their results to the NCEPR monthly mean heat fluxes, we find that for May, 

June and July 1996 the NCEPR had mean biases o f +36, -33, +3 and +5 W m 2 for the 

shortwave, longwave, latent and sensible heat fluxes, respectively. The biases in the 

shortwave and longwave terms nearly balance, resulting in a total bias o f +11 W m'2, or ~ 

4% of the net surface heat flux in summer. We take this value to be representative o f the
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net surface heat flux error for the NCEPR over the Bering Sea in summer, and we 

therefore reduce the NCEPR net surface heat flux computations by this same amount.

Although Smith et al. [2001] find a NCEPR underestimate o f near-surface wind 

speeds o f ~ 2-3 m s '1, Ladd and Bond [2002] find good agreement between the winds 

recorded at the NOAA surface mooring M2 and the NCEPR wind vectors, and so no 

speed correction was applied to the model winds.

2.3.10 HC and FWC computations

The oceanic HC and FWC computations are described by equations (1) and (2): 

HC  = j j j  Cp (x, y , z)p (x, y , z)T  (x, y , z)dxdydz (1)

FWC = J J J  ^ ~ S ^ ,y ,Z ^dxdydz, (2)

where Cp is the heat capacity, p  is the density, and S' =31.5 is the mean salinity for the 

BASIS data within our integration domain. Anomalies in seasonal and inter-annual HC 

and FWC are presented as differences between the observed values and the annual or 

multi-year means respectively. By employing differences (which rely on integration over 

a standardized volume), the reference values for both T and S become arbitrary: the HC 

(FWC) anomalies reflect the actual amount of heat (FW) required to transform the 

volume considered from the mean state to that observed.

2.4 Temperature and salinity in late summer/early fa ll

This section provides a detailed examination of the late summer/early fall 

(August-October) shelf conditions as depicted by the BASIS data. We first examine the 

mean conditions (Section 2.4.1) and then variability about the mean (Section 2.4.2).

2.4.1 Late summer/early fa ll mean T & S fields

We compute the mean T and S distributions for 2002-2007 above and below the 

mixed layer depth (MLD), with the MLD defined as the depth where ot is 0.10 kg m '3 

greater than the value at 5 m depth.
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The panels in Figure 2.4 show T and S fields that differ substantially with respect 

to the along-isobath direction. Below the MLD, horizontal temperature gradients are 

generally cross-isobath, and the “cold pool” tongue (winter-formed waters with 

temperatures < 2  °C [Takenouti and Ohtani, 1974]) extends southeastward, centered on 

the 70 m isobath. Above the MLD, temperature gradients south of 60 °N are primarily 

along-isobath, whereas north of 60 °N these gradients are chiefly cross-isobath. For 

waters < 30 m deep, the warm tongue that extends northwestward toward Nunivak Island 

suggests the presence of a front and associated jet, for which we present additional 

evidence below.

In contrast to the temperature field, salinity gradients are generally oriented in the 

cross-isobath direction both above and below the MLD. Therefore, in the along-isobath 

direction, advection will play a different role in setting the heat and fresh water budgets at 

the end of summer. For example, for waters south o f 60 °N and above the MLD, where 

the along-shelf temperature gradient is ~ 1 °C per 100 km, along-isobath advection will 

not affect the salt budget, but will impact the heat budget.

As previously observed by Takenouti and Ohtani [1974] and Coachman [1986], 

we find that isohalines cross the isobaths west and north of Nunivak Island, first directed 

NW offshore of the 30 m isobath and then turning NE toward Norton Sound. The latter 

turning reflects the influence of the eastward flow south of St. Lawrence Island that 

carries relatively dense water from the Gulf o f Anadyr [Schumacher et al., 1983; 

Danielson et a l, 2006]. This saline water, along with the fresher coastal waters adjacent 

to the Alaskan mainland, flows northward through Shpanberg Strait, where the largest 

horizontal density gradients are found. The westward bulge o f low salinity water centered 

along 61 °N may consist in part o f water from the Yukon and Kuskokwim, but also of 

other low-salinity coastal waters advected from farther south.

The relative position of the 31 isohaline above and below the MLD reflects the 

combined effects o f stratification, advection, and mixing as mid-shelf and coastal waters 

flow northward. Offshore o f Cape Newenham, the near-bottom 31 isohaline is directed 

approximately WNW. Above the MLD, it is directed NW, and the distance between the
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surface and bottom 31 isohalines exceeds 100 km. Near 60 °N, the locations o f this 

isohaline at the surface and at the bottom converge, indicating that the water column is 

nearly homogeneous in salinity (also see Figure 2.5). North o f 60 °N, the isohalines 

diverge again as the fresh surface waters presumably spread offshore.

Strong thermal stratification (NT2 > 1 x 10'3) develops in summer in waters 

seaward of the inner front, and the stratification is a maximum along the 70 m isobath, 

coincident with the “cold pool” tongue extending from the NW (Figure 2.5). Inshore of 

the inner front, the water column is only weakly stratified thermally. In contrast, strong 

salt stratification occurs near the Yukon River plume, south o f St. Lawrence Island, and 

in western Bristol Bay. Within the extensive region between about 58 °N and 61 °N, 

however, the salinity contribution to stratification is minimal (Ns < 0.5 x 10 '), 

suggesting that low-salinity coastal waters do not penetrate far offshore at the end of 

summer.

Evaluating volumetric T-S contributions over the 0-20 m depth range (46% of the 

central shelf volume), we find that temperatures range between 5-14 °C and salinities 

between 28-32.5. Major volumetric T-S modes are centered at (~ 6 °C, 31) and (~ 8 °C,

31), and a smaller third peak is at (12 °C, 31.5). These modal peaks primarily represent 

low-nitrate waters, since concentrations of [NO3 +NO2] are 0 -  1 pM for salinities <31 

(Figure 2.2). For the 0-20, 21-40 and 41-70 m depth levels, the mean observed [NO3 

+NO2] concentrations are 0.5, 3.8 and 7.0 pM respectively. The 41 - 70 m depth range 

(18% of the central shelf volume) consists o f one dominant T-S volumetric mode (4 °C,

32) and one secondary mode (0 °C, 31.5). The deep salinities vary narrowly (31-33) and 

temperatures are mainly between -2 and 6 °C. Mid-depth waters (36% of the central shelf 

volume) occupy nearly the entire range of temperatures encompassed by the surface and 

bottom layers (-2 to 12 °C) but cover only a portion of the salinity range (30 to 32.5). At 

the end o f summer, waters colder than 2 °C are geographically isolated from waters with 

salinity < ~ 30 since the former are offshore and deep while the latter are nearshore and 

shallow.
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2.4.2 Inter-annual variability o f  the late summer/early fa ll T & S  fields

The late summer/early fall 2002-2007 annual anomalies above and below the 

MLD, referenced to the 2002-2007 means (Figure 2.4), are mapped in Figure 2.6. Strong 

positive and negative temperature or salinity anomalies can occur in the same year, and 

they can encompass areas of 2x104 km2 or more. Hence, classifying a particular year as 

“warm” or “fresh” can be misleading, since one portion of the shelf may be anomalously 

warm while another is anomalously cold. The anomaly maps further show that: 1) salinity 

anomalies are sometimes out of phase between the inner and middle shelf; 2 ) inter-annual 

variability in the thermal and haline contributions to stratification is relatively large and 

spatially variable; 3) boundaries between positive and negative anomalies generally 

coincide with bio-physical domain boundaries such as the inner front, although this was 

not the case in 2005 (e.g., for temperatures below the MLD); 4) waters north o f Nunivak 

Island were fresh in 2002; 5) 2004 was a warm year both above and below the MLD; 6 ) 

extensive regions of both cold and warm anomalies occurred in 2005; and 7) 2006 and 

2007 were cold and fresh below the MLD except on the inner shelf and north of Nunivak 

Island in 2007.

Figures 2.7 and 2.8 are correlation maps of the anomalies. (For Pearson’s 

correlation coefficient r with N independent samples, the appropriate number of degrees 

freedom is N-2. With N=6  years of data, statistical significance at the 95% confidence 

level occurs for |r| > 0.81 [.Mendenhall and Sincich, 1988]). Figure 2.7A shows the 

correlation at each grid point between the temperature anomalies above and below the 

MLD for 2002-2007. Significant vertical temperature correlations are restricted to well- 

mixed waters within and inshore of the inner front. Elsewhere the correlations are 

generally weak, implying little communication between the upper and lower waters after 

stratification sets up. In contrast, salinity is significantly correlated and in phase above 

and below the MLD over most of the region (Figure 2.7B), suggesting that whatever 

process sets the shelf salinity anomalies operates during the time of year when the water 

column is well mixed.
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Figure 2.8 depicts horizontal structure in the temperature and salinity anomalies 

both above and below the MLD, mapping the correlation between the anomaly at each of 

four reference points (near Cape Newenham, near NOAA mooring M2, south of St. 

Lawrence Island, and offshore of the Yukon River) with the anomaly at all other grid 

points in the domain. The reference points are chosen to represent nearshore, offshore, 

southern and northern regions o f the domain. The nearshore reference points are located 

close to the Yukon and Kuskokwim river discharge points. We observe that 1) the 

correlation scales are much broader than the station spacing, hence the BASIS sampling 

sufficiently resolves inter-annual anomalies; 2) the de-correlation length scale for 

temperature anomalies generally exceeds that of the salinity anomalies in the southern 

portion of the domain, suggesting that different processes control the spatial variability of 

temperature and salinity; 3) the temperature de-correlation length scale in the southern 

portion of the domain (200-500 km) is greater than in the north (100-200 km); 4) 

correlated temperature anomalies span coastal and mid-shelf regions in both the south 

and the north; and 5) salinity is generally anti-correlated between the nearshore and mid

shelf regions, although the statistically significant extent of the anti-correlations is 

limited.

2.5 Fresh water and heat content variability and fluxes

In this section we investigate seasonal (Section 2.5.1 and Figures 2.9 and 2.10) 

and inter-annual (Sections 2.5.2-2.5.3 and Tables 2.2 and 2.3) variability in FWC and HC 

parameters. Subsequent scaling arguments, dynamical considerations, and flux estimates 

will allow us to examine possible advective contributions to the heat and salt budgets.

2.5.1 Seasonal variability

We place the late summer/early fall period described above within a seasonal 

context by compiling quarterly depth-averaged means of the 0-100 m temperature and 

salinity fields across the eastern Bering Sea using the historical, the BEST and the BASIS 

CTD data (Figure 2.9).
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Late winter/early spring (February-April) is characterized by near-freezing 

temperatures north of 60 °N and a high-salinity pool north of 62 °N. The salty waters 

surrounding St. Lawrence Island reflect winter ice formation and the eastward advection 

of Anadyr waters [Schumacher et al., 1983; Drucker et al., 2003; Danielson et al., 2006]. 

While the saline water found between Nunivak and St. Lawrence islands might be an 

artifact o f the small sample size, it more likely results from locally produced brine 

because Danielson et al. [2006] did not observe southerly fluxes of dense water from the 

St. Lawrence Island region and the sample size on the southern end of this feature is not 

small.

A pool of relatively fresh water extends northward between St. Matthew Island 

and Nunivak Island. This water may be coastal water remnant from the previous fall (see 

later discussion) and/or melt waters from the ice pack edge. Low salinity observations (S 

< 31) in Norton Sound at the end of winter are difficult to evaluate: they are comprised of 

only one year sampled in each of two grid cells. While these measurements may not be 

representative, we note that previous drifter deployments suggest that the residence time 

of near-surface waters within Norton Sound may be many months (T. Weingartner, 

unpubl. data; see also http://www.ims.uaf.edu/drifters/), and so these observations may in 

fact reflect over-wintered Yukon discharge.

By late spring and mid-summer (May-July), waters begin warming in shallow 

coastal waters along the Alaskan Peninsula and in Norton Sound. Relatively fresh (< 31) 

coastal water envelops the entire coast north o f eastern Bristol Bay as river discharge 

increases. Though not resolved in the 3-month mean, in July a salty tongue protrudes 

onto the shelf near Zhemchug Canyon, likely a mid-summer source of high-nitrate waters 

to the outer and middle shelf. The appearance of this intrusion coincides with the 

seasonal relaxation of the Aleutian low and the associated cyclonic wind stress across the 

Bering Sea basin [Brower et al., 1988], and the intrusion may reflect the interaction of the 

canyon with the adjustment of the shelfbreak front to changing winds [Gawarkiewicz and 

Chapman, 1992; Chapman and Lentz, 1994; Chapman and Lentz, 1997].

http://www.ims.uaf.edu/drifters/
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By late summer/early fall (August-October) the central shelf s annual HC and 

FWC are both maximum (although we do not have data from November to January).

We next use the 0-100 m gridded CTD data to compute quarterly and monthly 

FWC and HC anomalies on the central shelf, and we show in Figure 2.10 the magnitude 

of their seasonal changes between April and September, along with the dominant flux 

terms. A measure of sensitivity to the choice of base climatology is gained by comparing 

changes in HC and FWC from using the 2005 version of the WOD {Boyer et ah, 2006], 

instead of WOD-09 and excluding the BEST data. We find that the integrated HC 

estimates change by less than 15%, but the integrated FWC estimates change by up to 

50%, showing that we likely still do not have a robust estimate of FWC for the late winter 

and early spring time period.

Employing monthly and seasonal averaging periods, the net spring-to-fall ranges 

in FWC and HC anomalies are 140-190 km3 and 2.3-2.6 x 1020 J, respectively. Lacking 

sufficient CTD data to make spatially explicit annual estimates of the Bering shelf 

seasonal FWC and HC variability, we turn to the long-term moored dataset at NOAA site 

M2 (57 °N, 167 °W) for comparison (P. Stabeno, unpublished data). The 1995-2006 

April to September mean freshening and heating measured at 10 and 60 m depths is 

typically -0.12 and 5.3 °C, respectively (with ranges of -0.03 to -0.2 and 2.3 to 8.3 °C).

A -0.1 salinity change represents freshening by ~ 30 km3 fresh water when integrated 

across the central shelf volume, and a warming of 5.3 °C represents a HC increase of 2.0 

x 10 J. Given the large temperature anomaly de-correlation scale, the M2 temperature 

record likely represents the seasonal HC increase on the shelf reasonably well. The 

salinity anomaly de-correlation scales are smaller, and so the M2 salinity record may not 

reflect the seasonal salinity decrease over the broader region.

We now compare the various flux terms to the observed seasonal FWC changes 

(Figure 2.10). Following Aagaard et al. [2006], we use precipitation data collected at St. 

Paul Island and apply it uniformly to the entire region. We estimate evaporation from the 

NCEPR latent heat flux. For 1 April to 1 September, P-E for the central shelf is 23 km3 

on average.
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Passive microwave satellite sea ice measurements provide surface area estimates 

of ice cover, but not of thickness. From 250 direct ice thickness measurements made 

between March and May in 2008 and 2009, the mean thickness was 0.4 m, and the mean 

ice salinity 6.4 (R. Gradinger, B. Bluhm and K. Iken, pers. comm.). Melting an ice pack 

with an area of 1.0 x 105 km2 (representing the northern half o f our domain), thickness of 

0.4 m, and ice density of 900 kg m'3 releases 36 km3 of fresh water, which would reduce 

the salinity of the entire domain by 0.2 if  distributed vertically over the entire water 

column, or by 0.85 if mixed over only the upper 10 m. Neglecting advection and applying 

the observed mean March/April ice extents (Table 2.1), the probable FW contribution 

from ice melt is 20-40 km3.

A mean along-shelf flow of 2 cm s"1 [Schumacher and Kinder, 1983] traverses 

250 km in 145 days. Ice melt and shelf water over the southeast shelf therefore likely 

remains within the integration domain through summer, while that on the northern shelf 

is advected away by the end of summer [Danielson et al„ 2006]. The mean spring-late 

winter salinity difference between the waters north and south of 60 °N is 0.24 (Figure 

2.9), so along-isobath (northward) advection would tend to replace the higher salinity 

northern waters with fresher waters from the south, accounting for a freshening of -  20 

km3. This freshening tendency diminishes through summer as the northerly waters are 

flushed and eventually become fresher than the southerly waters due to offshore 

spreading of river discharge.

The Yukon (202 km y r ' ) and Kuskokwim (38 km yr' ) nvers are the largest 

sources of fresh water to the inner shelf. Coastal discharge increases rapidly from winter
T 1 ^ 1minima (Yukon, 900-1500 m s' ; Kuskokwim, 170-450 m s ' ) to maxima in May or 

June (Yukon, 13000-33000 m3 s '1; Kuskokwim, 2000-11000 m3 s '1). The cumulative 1 

April to 1 September discharge for both rivers averages 152 km3. Most o f this fresh water 

probably departs the shelf through Bering Strait [Coachman et al„ 1975; Aagaard et ah, 

2006]. Due to the paucity of data inshore of the 20 m isobath, the circulation and 

hydrography of the broad inner shelf have not been described, however. Visible and 

infrared satellite imagery of sediment plumes and thermal structure suggest that frontal
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systems develop inshore o f the 30 m isobath in summer. These fronts probably impede 

cross-shelf spreading of low-salinity coastal waters. This hypothesis is supported both by 

recent CTD data and drifter trajectories. For example, a July 2009 CTD transect along 62 

°N between the 55 m and 7 m isobaths shows a strong temperature and salinity front 

inshore of the 20 m isobath (Figure 2.11). Furthermore, in the summers o f 2008 and 

2009, drifters deployed in northern Kuskokwim Bay (Figure 2.12) typically remained 

inshore of the 20 m isobath, slowly progressing northward past Nunivak Island. Below, 

we will also show that winds in summer are weak and not conducive to spreading fresh 

water offshore. In fall, however, drifters moved westward across the shelf. The 2008 and 

2009 deployment results are consistent with the drifter trajectories shown by Danielson et 

al. [2006], which were deployed in September 2002, just north of Nunivak Island. Hence, 

while river discharge represents a substantial summer fresh water influx to the inner 

shelf, most of it is probably retained nearshore and outside of our integration domain. 

Nevertheless, with on average 23 km3 fresh water available from P-E, 29 km3 from ice 

melt and 20  km3 from along-shelf flow, less than one-half of the mean river discharge 

(152 km3) needs to enter the integration domain to account for the observed April- 

September FWC increase of ~ 140 km3 (Figure 2.10).

The onset of the heating season (Figure 2.13) occurs near the spring equinox, 

when the daily mean net surface heat flux switches from negative (oceanic heat loss) to 

positive (oceanic heat gain). We therefore compute the cumulative heat gain between 1 

April (year day 91) and 1 September (year day 244) using the NCEPR heat fluxes 

interpolated over our domain and, for comparison, repeat the calculation beginning on 1 

May (year day 121). The seasonally integrated surface heat flux is 350 (300) EJ using the 

1 April (1 May) start, so that regardless of the start date, the surface heat flux is sufficient 

to account for the observed heat gain of ~ 300 EJ (Figure 2.10).

Similar to flushing the northern domain of saline water during summer, along- 

isobath advection would also flush the cold winter water, but could account for a mean 

seasonal HC increase of only ~ 35 EJ. We conclude that in the mean, seasonal advective 

heat fluxes are relatively small (~ 10% of the total flux) and of the same order as the heat
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budget uncertainty. This is consistent with the results of Reed and Stabeno [2002] who 

concluded that advective and diffusive processes amount to ~ 5% of the summer heat 

increase near mooring M2. More precise balancing of the seasonal mean heat budget will 

require substantially better knowledge of both the surface heat fluxes and o f advection.

2.5.2 FWC inter-annual variability

For 2002-2007, the late summer range in FWC is — 130 km3 (Table 2.2), which is 

similar to the mean FWC seasonal change noted in Section 2.5.1. There are no significant 

correlations among anomalies o f end-of-summer FWC and sea ice melt, P-E, or 

discharge, neither individually nor when the fluxes are summed.

Because the end-of-summer FWC standard deviation (48.3 km ) is not balanced 

by the variability of the runoff (18.4 km3), P-E (2.5 km3), and ice melt (7.7 km3) terms, 

other processes must also contribute. We compared a number of environmental time 

series at various time lags, including winds integrated over various time periods and 

regions, ice extent and retreat, river discharge, and salinities measured in the Gulf of 

Alaska at oceanographic station GAK1 (59.85 °N, 149.47 °W). Station GAK 1 is 

representative of the properties of the Gulf of Alaska coastal current that enters the 

Bering Sea shelf through Unimak Pass [Stabeno et al. 1995, Weingartner et al. 2005; 

Aagaard et al., 2006]). Among these, only the cross-shelf Ekman transport (Table 2.2), 

derived from the preceding year’s October-May along-shore wind stress, is significantly 

correlated (r = -0.93; p = 0.0072) with FWC anomalies. Using NCEPR winds, the 

Ekman transports were estimated across the two line segments connecting the points 

(62.5 °N, 167.5 °W), (60 °N, 167.5 °W), and (58.5 °N, 162 °W), following the convention 

that offshore (onshore) transport is negative (positive). The cross-shelf Ekman transports 

would be particularly effective in changing the FWC, since they are directed along the 

shelf salinity gradient. Moreover the offshore flux begins in fall, when the salinity 

gradient is at its annual maximum. Presumably the fall winds also erode the frontal 

structure as river discharge diminishes, thus weakening the inner front and enhancing the 

cross-shelf transport. This mechanism, which varies year-to-year, is also consistent with 

the drifter trajectories shown in Figure 2.12.
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An average cross-shore salinity difference o f 1 is sufficient to supply the central 

shelf with ~ 60 km3 of fresh water by offshore Ekman transport when integrated over the 

2006 winter, although we do not know the actual cross-shelf salinity gradient through the 

winter months. In contrast, the on-shore component of Ekman transport in 2005 would 

have removed 70 km3 of fresh water from the integration domain. Both of these fluxes 

are therefore of the proper magnitude and sign to nearly balance the FWC anomaly 

observed the following end-of-summer. Considering the shelf from a simplified two

dimensional perspective, upwelling of more saline subsurface waters would presumably 

replace the near surface low-salinity waters. In this case, the cross-shelf salt gradient 

would need to be only one-half of the value employed above in order to account for the 

observed FWC anomaly. It is not clear, however, what the role of upwelling onto the 

central shelf would be in a more realistic three-dimensional representation.

The Ekman transport computations, made across a two-segment transect, are 

sensitive to the changing orientation of the isobaths north and south of 60 °N, so that 

merely using the winter mean north-south wind component does not yield a high 

correlation with the FWC anomaly. Inspection of Figure 2.14 (second row) reveals that 

inter-annual differences in wind direction are just as pronounced as changes in 

magnitude. Indeed, there is a strong correlation (r = -0.87) between the FWC anomaly 

and the wind direction anomaly at 60 °N, 170 °W. The seasonal mean wind field in turn 

results from the large-scale atmospheric pressure distribution. Thus, years with the 

greatest positive FWC anomalies (and the largest westward Ekman transport over the 

shelf) coincide with low pressure over the northern Gulf of Alaska (Figure 2.14). Note 

that other studies have also highlighted the importance of the zonal position of the 

Aleutian Low to a variety of problem sets, including those o f Pease et a l, [1982], 

Rodionov et al. [2005], Rodionov et al. [2007], Janout et al. [2010], Pickart et al. [2009] 

and Wang et al. [2009].

2.5.3 HC inter-annual variability

Integrating from I April to 1 September, we find a significant correlation between 

the net surface heat flux anomaly and the oceanic HC anomaly (Table 2.3). The summer
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surface heat flux anomaly standard deviation (11 EJ), however, represents only about 

30% of the end-of-summer HC anomaly standard deviation (36.5 EJ). The end-of-winter 

HC standard deviation (16 EJ) accounts for ~ 40%, but it is not significantly correlated. 

Expressed in terms of percent variance accounted for, the summer heat flux anomaly and 

winter’s end HC anomaly represent only 9% and 20% of the summer’s end HC variance. 

The end-of-winter HC is estimated as follows. Convection and winter wind mixing 

produce a nearly homogeneous end-of-winter water column [Stabeno et al., 2001;

Stabeno et al., 2002]. Over the mean March and April shelf area occupied by sea ice 

with concentrations >30%, we assume a near-freezing mean water column temperature of 

-1.5 °C and over the region with sea ice concentrations < 30%, we assume a mean water 

column temperature of +2 °C. The former value is likely good to within -0.3/+1.5 °C, 

the latter to +/- 2 °C, based on ERSST data, NOAA mooring M2 records (P. Stabeno, 

unpubl. data), and CTD profiles [Reed, 1995]. The end-of-winter HC computed using 

these extremes does not vary by more than 25%.

Can advective heat fluxes account for the unexplained portion of the heat 

balance? We address this by using the heat balance equation

£» = Z r  -  Sj  + jlf&'fcfcrfv +
end-of-summer end-of-winter heat required a 1 tn 1h o a to rm to n t h o o to n n to n t /\pr. I  11) SC p i. 1heat content heat content to melt ice surface heatfiux

(3)

We can estimate all terms except the along-shelf velocity (v). For example, we estimate 

Hwe as described above. Cross-shelf transport is neglected, which is consistent with the 

summer drifter data (Figure 2.12). We then find that the along-shelf velocity fluctuations 

required to balance the heat budget anomalies are +/-2  cm s '1.

We can also estimate the surface Ekman transport. For 1 April to 1 September, 

the along-isobath Ekman transport anomalies computed across latitude 60 °N are 

significantly correlated with the end-of-summer HC anomalies (Table 2.3), although the 

cross-isobath Ekman transport is not. While compensating return flows in the bottom
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Ekman layer could support differential heat advection in subsurface waters, the along- 

isobath thermal gradients below the MLD are much smaller than those above the MLD 

(Figure 2.4) and are thus ignored. Assuming an Ekman depth equal to a typical mid-shelf 

summer mixed layer depth (~ 20 m), the mean along-shelf Ekman velocity is 0.1 cm s '1, 

and the 2002-2007 range is between -1 and +1 cm s '1, about half that estimated from the 

heat budget and o f the right magnitude to satisfy equation (3).

The atmospheric conditions responsible for the correlation between the along- 

shelf velocity and HC anomaly are evident in the sea level pressure maps and associated 

Ekman transport vectors presented in Figure 2.15. In 2004, the warmest year 

encountered during the BASIS surveys, a deep Aleutian Low developed over the western 

Bering Sea while high pressure characterized the Alaskan mainland, resulting in strong 

northward Ekman transport over the shelf. The coldest two years, 2006 and 2007, had 

mean westward/south westward transport over the shelf, resulting from a split Aleutian 

Low pattern manifested by closed sea level pressure contours in both the northern Gulf of 

Alaska and the western Bering Sea.

In summary, both the heat budget and Ekman transport estimates of the along- 

isobath summer heat flux show similar magnitudes and year-to-year trends (not shown), 

strongly suggesting that variability in the along-shelf flow accounts for much of the inter

annual variability observed in the end-of-summer integrated HC.

2.6 Discussion and concluding remarks

Central shelf waters respond with nearly equal magnitude to the mean seasonal 

cycle of thermohaline forcing and to inter-annual differences in the regional wind 

forcing. Our estimates of the HC and FWC budgets indicate that while we can reasonably 

account for the April to September increases in HC and FWC, improved data sets with an 

emphasis on advective estimates are required to tighten these budgets. Nevertheless, the 

observations in hand are sufficient to show that inter-annual HC and FWC anomalies 

generally do not co-vary because HC anomalies result in large part from variability in 

along-isobath advection during spring and summer months, whereas FWC anomalies
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depend substantially on cross-isobath advection during fall and winter. In both cases, the 

Ekman transport is determined by the seasonal mean zonal position of the Aleutian Low.

Results from the correlation maps, Ekman transport computations, and drifter 

releases are all consistent with the hypothesis that winter cross-isobath exchange is an 

important control of salinity variability on this shelf. Inspection of estimated monthly 

mean surface Ekman transports (Figure 2.16) shows that particularly in October and 

November, shelf surface flows are driven westward across the isobaths. The wind-driven 

cross-shelf flux occurs to a greater or lesser degree each winter (Figure 2.14 and Table 

2.2), resulting in a near-shore/mid-shelf inverse correlation (Figure 2.8) of salinities. In 

years that the Aleutian Low is displaced eastward, Ekman transport helps flush the 

nearshore region to the middle shelf. In years that the Aleutian Low is displaced 

westward, the fresh coastal waters tend to be trapped to the coast and/or are advected 

northward.

Cross-isobath exchange has implications for macronutrient [Whitledge and 

Luchin, 1999] and micronutrient [Aguilar-Islas et al., 2007] transport and biological 

utilization, as well as for the transport of passively drifting eggs and larvae [ Wespestad et 

al., 2000; Lanksbury et a l, 2007]. In addition to carrying coastal waters to the mid-shelf 

region, iron-rich shelf water [.Aguilar-Islas et a l, 2007] may be carried still farther 

seaward to the productive continental slope [Springer et a l, 1996] and deep basin, while 

compensating flows transport mid- and outer shelf waters landward, helping resupply 

nitrate to these shallower waters. Whether westward advection to the basin acts as a 

significant sink for Yukon and Kuskokwim discharge is at this point unclear, but highly 

relevant to determining the formation and modification of water masses on the Bering 

shelf and their subsequent northward advection [Coachman et al, 1975]. The issue is 

particularly important because the Bering Strait throughflow accounts for a large 

percentage of the Arctic Ocean fresh water input [Aagaard and Carmack, 1989; Dickson 

et a l, 2007] and so ultimately impacts both Arctic Ocean stratification and conditions in 

the North Atlantic [Aagaard et a l, 1981; Goosse et al, 1997; Peterson et a l, 2002; 

Woodgate and Aagaard, 2005],
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The time series of Figures 2.14 and 2.15 place the 2002-2007 mean October-May 

and April-August wind anomalies within a 60 yr historical context. The October-May 

normalized wind direction anomaly at 60 °N, 170 °W (correlation to FWC anomaly: r = - 

0.87, p = 0.023, Pearson’s r correlation coefficient) is a surrogate for the winter cross

isobath Ekman transport. The mean October to May wind direction is toward 225 °T. 

This parameter is normally distributed with a standard deviation of 20 °, and so a two- 

standard deviation anomaly is equivalent to a rotation of 40 ° away from the mean winter 

wind direction; the NCEPR directional range is 133 °. The 2002-2007 time period 

includes no outstanding positive anomalies, but 2006 and 2007 stand out as the lowest (

2.5) and third lowest (-1.5) anomalies since 1948. Strikingly, 2006-2008 is the first 

three-year period since the mid-1970s regime shift [Hare and Mantua, 2000] to exhibit 

three negative anomalies in a row. The April-August net zonal wind run (mean wind 

speed multiplied by time) anomaly at 60 °N, 170 °W (correlation to HC anomaly: r = - 

0.87, p = 0.024, Pearson’s r correlation coefficient) is a measure of the along-isobath 

summer Ekman transport; negative values reflect easterly winds that promote northward 

Ekman transport. Figure 2.15 shows that 2004 and 2006 are notably anomalous, ranking 

as the second lowest (-1.9) and third highest (+2.1) anomaly years over the record, 

respectively. Taken together, Figures 2.14 and 2.15 show that the Bering shelf system 

has many possible states. Indeed, the two 60-year time series are uncoupled from each 

other (r = 0.21, p= 0.10, Pearson’s r correlation coefficient).

In this effort we have identified mechanisms that likely modulate or control the 

thermal and haline properties of the central Bering Sea shelf. For example, wind-driven 

transport changes appear to determine the inter-annual variability of both FWC and HC. 

While these ideas are promising, our analysis is based on a limited data set. Future 

studies will need to assess whether or not our hypotheses and conclusions are robust, as 

well as to rigorously quantify the various fluxes that we can only crudely estimate (e.g., 

Whitney and Gamine, [2005]; Fewings et al., [2008]). Although we have suggested 

chemical and biological components that may be sensitive to the proposed processes and 

circulation schemes, a proper assessment o f the impacts on nutrients, primary
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productivity, and larval transport, for example, will likely prove to be significantly 

challenging undertakings, as will certainly be the extent to which these physical 

processes influence the broader ecosystem.
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2.9 Tables

Table 2.1: Summary of BASIS CTD surveys and spring environmental conditions.
The number of CTDs reported reflects only those taken over the eastern Bering Sea shelf. 
The date of maximum ice extent and mean retreat date are computed for the greater 
eastern Bering Sea shelf area, while the ice extent column is given for the central region 
only. A 5-day moving average window was applied to the net surface heat flux time 
series to estimate the heating season onset date.

Year # o f CTD 
Stations

CTD
Survey

Start
Date

CTD
Survey

End
Date

Date of 
Maximum 
Ice Extent

Date of 
Ice 

Retreat

March-April 
Mean Ice 

Extent (km2)

Heating 
Season 

Onset (170 
°W, 60 °N)

2002 154 20 Aug 7 Oct 20 Feb 18 May 52000 4 Apr

2003 129 21 Aug 8 Oct 26 Mar 6 May 51000 9 Apr

2004 143 14 Aug 30 Sep 2 Apr 11 May 65000 6 Apr

2005 128 14 Aug 6 Oct 9 Apr 21 May 62000 21 Apr

2006 137 17 Aug 20 Sep 4 Feb 31 May 88000 29 Apr

2007 166 15 Aug 8 Oct 24 Mar 24 May 101000 20 Apr
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Table 2.2: Fresh water content estimates. Annual anomalies of the 2002-2007 
summer’s end FWC, mean FWC of sea ice (March-April mean), FWC of the May- 
August P-E, FWC of the March-August Yukon and Kuskokwim discharge, and the 
preceding October-May cross-isobath Ekman transport. The bottom three rows show 
standard deviation (a), correlation coefficients (r) and p-values (p) for the anomalies.
The correlation and p-values summarize cross-correlation computations between column 
2 and columns 3-5. Correlations significant at the 95% level are highlighted in boldface 
type.

Year Summer’s 
End FWC

Ice
FWC P-E River

Discharge

Cross-shore
Ekman

Transport

km3 km3 km3 km3 xlO3 m3 s '1

2002 -51 -7.4 -1.6 -11 36
2003 -13 -7.1 2.9 -9 2

2004 2 -1.5 -2.2 -4 5

2005 -45 -2.5 -1.8 38 103
2006 77 6.7 -1.1 6 -99

2007 31 11.8 3.7 -5 -46

a 48.3 7.7 2.5 18

r .78 0.24 0.16 -0.93

P 0.065 0.650 0.760 0.007
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Table 2.3: Heat content estimates. Annual anomalies of the 2002-2007 summer’s end 
oceanic HC, winter’s end oceanic HC, April-August net surface heat flux and April- 
August along-isobath Ekman Transport. The bottom three rows show standard deviation 
(a), correlation coefficients (r) and p-values (p) for the anomalies. The correlation and p- 
values summarize cross-correlation computations between column 2 and columns 3-5.

1 fiCorrelations significant at the 95% level are highlighted in boldface type. 1 EJ = 10 J.

Year Summer’s End HC Winter's End HC April-August Surface 
Heat Flux

April-August 
Along-isobath Ekman 

Transport

EJ EJ EJ xlO3 m3 s '1
2002 12.0 23 9 6
2003 28.0 14 6 7
2004 45.0 1 13 35
2005 3.0 -9 -7 -9
2006 -42.0 -22 -15 -32
2007 -47.0 -7 -6 -8

o 36.5 16.4 11.0
r 0.64 0.86 0.85

P 0.175 0.027 0.031
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2.10 Figures

Figure 2.1: Map of the Bering Sea with place and feature names. Abbreviations 
denote: YR = Yukon River; KR = Kuskokwim River; SS = Shpanberg Strait; SLI = St. 
Lawrence Island; SMI = St. Matthew Island; PI = Pribilof Islands; NI = Nunivak Island. 
M2 denotes the site of NOAA Mooring 2 on the 70 m isobath. The CTD transect of July 
2009 is denoted by a dotted line along 62 °N. The Arctic Ocean lies to the north of 
Bering Strait and the greater Pacific Ocean lies south of the Aleutian Islands. Depth 
contours are plotted at the following depth levels: 20 m, 50 m, 70 m, 100 m, 150 m, 200 
m, 500 m, 1000 m, 2000 m, 3000 m, 4000 m, 5000 m and 6000 m.



45

Salinity

Figure 2.2: Relation of total nitrate to salinity for 779 water samples collected across 
the Bering Shelf between 2002 and 2006. Red (blue) points denote stations where the 
total water depth is less than or equal to (greater than) 30 m. Data collected by the U.S. 
Bering Aleutian Sustainable Salmon International Survey (BASIS) program.



Figure 2.3: BASIS program  CTD station coverage over the eastern Bering Sea shelf, 
2002-2007. The region that bounds heat and fresh water integrations is denoted in each 
panel by a contour line. Dots show locations of good temperature and salinity data; plus 
signs show locations of good temperature data only. Nominal station spacing of Vi 0 
latitude (56 km) is achieved in 2004-2007 across most of the focus domain; west of 
Nunivak Island in 2002 and 2003 the station spacing is 1 ° o f latitude, or about 111 km. 
All samples are taken between August and mid-October.
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Figure 2.4: Mean late summer-early fall 2002-2007 distributions of temperature 
(left) and salinity (right) above (top) and below (bottom) the mixed layer depth. The
region that bounds heat and fresh water integrations is denoted in each panel by a thick 
contour line. Depth contours are plotted at the following levels: 20 m, 30 m, 40 m, 50 m, 
60 m, 70 m, 100 m and 200 m.
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Figure 2.5: 2002-2007 mean maximum water column Brunt-Vaisala frequency. The
Brunt-Vaisala frequency is computed by holding the salinity constant at the water column 
mean (left); by holding the temperature constant (center); and by allowing both 
temperature and salinity to vary (right). Note the nonlinear color scale.
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Figure 2.6: Temperature and salinity anomalies above ( t)  and below (!) the mixed 
layer depth (MLD = depth where a t = Ot @ 5 m + 0.1 kg m'3). Anomalies are 
computed in temperature and salinity units with respect to the multi-year means shown in 
Figure 2.4. Blue (red) colors indicate that the temperature/salinity anomalies are 
warmer/saltier (cooler/fresher) than the mean fields. The region that bounds heat and 
fresh water integrations is denoted in each panel by a thick contour line.
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Figure 2.7: Late summer-early fall temperature (A) and salinity (B) vertical 
correlation maps, showing the temporal correlation between values above the MLD 
with values below the MLD at zero lag. Red indicates positive correlation; blue 
indicates negative. Yellow contours denote significance at the 95% confidence level (r = 
+/- 0.81). The region that bounds heat and fresh water integrations is denoted in each 
panel by a black contour line.
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Figure 2.8: Late summer-early fall tem perature and salinity horizontal correlation 
maps. Color scheme and map bounds are as given in Figure 2.7. Correlations are 
computed at between the point marked by an “X” on each panel and all other grid points 
for each column from left to right as marked: Temperatures above the MLD; 
Temperatures below the MLD; Salinity above the MLD; and Salinity below the MLD. 
Yellow contours denote significance at the 95% confidence level (r = +/- 0.81).
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Figure 2.9: Climatology of the 0-100 m mean temperature (top row) and salinity 
(bottom row) in the eastern Bering Sea during the time periods indicated. The upper 
number in each grid cell indicates the total number of casts for the cell; the lower number 
denotes the number o f years represented by these casts. Note the existence of some cells 
with no or few data points.
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Figure 2.10: April to September estimated fresh water (FW) and heat fluxes and 
changes in standing stocks for the central Bering Sea shelf. Question marks denote 
unknown fluxes. 1 EJ = 1018 J.
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Figure 2.11: CTD transect occupied on 15-16 July 2009 between 61.70 °N, 166.31 °W 
and 61.97 °N, 171.98 °W. Dots along top of graphs denote location of CTD stations.
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Figure 2.12: Mean seasonal flow patterns derived from near-surface oceanographic 
drifters for June-August (left) and September-January (right). Black vectors denote 
grid cells with at least 30 drifter-days worth of data; gray vectors represent at least five 
drifter-days of data.
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Figure 2.13: Annual mean cycle of mean daily surface heat fluxes for the central 
shelf region over the years 2002-2007. Vertical grey lines denote 1 April and 1 
September. The heating season begins on the date near April 1 when the net surface heat 
flux crosses from oceanic heat loss to oceanic heat gain. The BASIS cruises span days 
226 to 281, depicted by the gray shading.



Figure 2.14 Mean October to May 2002-2007 maps of sea level pressure (first row), maps of Ekman transport 
vectors (second row), maps of the cross-shore component of the Ekman transport for sub-domains north and south of 
60°N (third row) and time series of the mean October to May 1948-2008 wind direction anomaly computed at 60°N, 
170°W (bottom row). Sea level pressure is contoured at even integer millibar levels. High pressure exists in the 
lower right comer of all panels; closed contours bound low pressure minima. Scale vectors on land denote 5.3x102 kg 
s '1 m '1 and 5.0xl04 m V 1 for the second and third rows respectively.
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Figure 2.15: Mean April to August 2002-2007 maps of sea level pressure (first row), maps of Ekman transport 
vectors (second row), maps of the Ekman Transport N-S component across 60°N (third row) and time series of the 
mean April to August 1948-2009 E-W wind run anomaly computed at 60°N, 170°W (bottom row). Sea level pressure 
is contoured at all integer millibar levels. High pressure exists in the lower right comer of all panels; closed contours 
bound low pressure minima. Scale vectors on land denote 5.3xl02kg rrf1 s '1 and 2.0xl04 m V  for the second and third 
rows respectively.
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Figure 2.16: Mean monthly Ekman Transport computed from the NCEPR 6-hourly 
wind fields between 2002 and 2007. Scale vector for all panels is shown at the 
bottom.
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C hapter 3: On ocean and sea ice modes of variability in the Bering Sea1

3.1 Abstract

Results from a 35-year hindcast of Northeast Pacific Ocean conditions are 

confronted with observational data collected over the Bering Sea shelf within the 

integration time period. Rotary power spectra of the hindcast currents near NOAA 

mooring site M2 site fall within the 95% confidence bounds for the observational spectra 

except for a high-bias in the counter-clockwise rotating component at 10 m depth in the 

high frequencies (periods < 24 hr). The model exhibits the most skill in reproducing 

anomalies of the integrated annual sea ice concentration and monthly subsurface (60 m 

depth) temperature fields, accounting for 85% and 50% of their observed variability, 

respectively. Analysis of the integrated ice concentration time series reveals evolution in 

the mean duration of ice-free waters (40 year trend of +6.8 days/decade) and changes in 

this parameter’s variance with time. Correlation and EOF analyses reveal the primary 

temporal-spatial patterns o f variability in the temperature and salinity fields over the 

Bering Sea and northern Gulf of Alaska for near-surface (0-20 m) and subsurface (40-100 

m) depth layers. Correlation analysis between the EOF principal components and various 

climate index and observed time series show that the Pacific Decadal Oscillation (PDO), 

the North Pacific Gyre Oscillation (NPGO) and the Bering Sea annually integrated ice 

area (IIA) anomalies are important indices of thermohaline variability; the spatial 

structure of these modes gives insight to their potential impacts upon the ecosystem. We 

identify a number of ecologically and economically important species whose temporal 

variability is significantly correlated with the identified spatial patterns.

1Danielson, S., E. Curchitser, K. Hedstrom, T. Weingartner, and P. Stabeno (2011), On 
ocean and sea ice modes of variability in the Bering Sea, J. Geophys. Res., 116, C l2034, 
doi: 10.1029/2011JC007389.
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3.2 Introduction

The physical oceanography of the eastern Bering Sea is influenced by tides, 

winds, buoyancy, topography, shelf-slope exchanges through canyons, flows through 

narrow passes and the yearly formation, drift, and melting of sea ice [Schumacher et al.,

2003]. The shelf supports a productive ecosystem, which delivers substantial benefit for 

both subsistence and commercial harvests, resulting in about half of the total U.S. 

fisheries landings [NPFMC, 2005]. There are also increasing levels o f commercial vessel 

activity [Orr, 2011]. To better manage these interests, a fuller understanding of the 

Bering Sea’s physical environment is required [.AC1A, 2005]. Our study provides a step 

toward this goal by the implementation, evaluation, and analysis of a 3 5-year numerical 

hindcast of the thermohaline, circulation and ice fields with sufficient resolution to 

address some pertinent questions in the Bering Sea.

The Bering Sea spans 20 degrees in longitude and 15 degrees in latitude (Figure 

3.1). As a subarctic sea, seasonal variations in forcing are large and reflected in the 

circulation field, mixing and stratification, and sea ice distribution. Ecosystem structures 

are intrinsically tied to the physical features in the Bering Sea. For example, 

hydrographic features segregate predators from their prey (e.g. adult pollock from young 

of the year [Wepestad et al., 2000]); the strength o f stratification impacts the success of 

euphausiids [Coyle et a l, 2008] and consequently, the over-wintering success o f juvenile 

pollock [Heintz and Vollenweider, 2010; Andrews et al., 2011]; convergent fronts 

aggregate prey for feeding seabirds [Harrison et al., 1990]. The location, timing, and 

thickness of sea ice cover impacts the trophic system: Pacific walrus use the ice for 

resting and pupping [Fay, 1982], spectacled eiders use the St. Lawrence polynya as a 

winter feeding ground [Peterson et a l, 1999; Lovvom et al, 2003], late summer foraging 

by thick-billed murres near the Pribilof Islands is observed to be related to the previous 

winter’s ice extent [Kokubun et al., 2010]. Hunt et al, [2002] propose that the timing of 

ice melt exerts a strong control on the timing of phytoplankton blooms and the fate 

(benthic/pelagic) of ice-edge production and zooplankton recruitment.
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Large inter-annual variability and multi-decadal trends or regime shifts have been 

observed in many atmospheric and oceanographic parameters over the Bering Sea shelf 

[Overland et al., 1999; Stephens et al., 2001; Stabeno et al., 2002a; Bograd et al., 2005; 

Woodgate et al., 2005; Rodionov et al., 2007; Danielson et al., 2011]. Many of these 

changes coincide with changes in the biota [Benson and Trites, 2002; Hunt et al., 2002; 

Mueter and Litzow, 2008], including population changes in both managed and 

unmanaged species. Examples of such fluctuations include the onset o f previously 

unobserved coccolithophorid blooms in the Bering Sea [Stockwell et al., 2001], increases 

and subsequent decreases in the biomass of medusae [Brodeur et al., 2002; 2008], 

variability in zooplankton biomass [Sugimoto and Tagdokoro, 1997; Napp et al., 2002], 

northward shifts of many groundfish species [Mueter and Litzow, 2008] and declines in 

bird and marine mammal populations [Byrd et al., 1997, Trites et al., 1999]. Many o f the 

underlying causes of these population fluctuations are not known.

The principal currents in the eastern Bering Sea basin are the Aleutian North 

Slope Current (ANSC [Stabeno and Reed, 1994; Stabeno et al., 1999], which flows 

eastward along the north side o f the Aleutian Islands and the Bering Slope Current (BSC 

[Schumacher and Reed, 1992]), which is fed by the ANSC and flows northward along the 

continental slope. Exchange between shelf and slope waters provides nutrients to 

maintain high production on the shelf [Coachman, 1986]. The controlling mechanisms 

are not well known although they are likely mediated by flow-topography interactions, 

slope current instabilities, and tides [Schumacher and Reed, 1992; Stabeno and Van 

Meurs, 1999; Mizobata et al., 2006]. Net flows over the eastern Bering Sea shelf are 

northward due to a mean 0.8 Sv transport through Bering Strait [Roach et al., 1995]. 

Wind-driven flows over the central shelf appear to laterally redistribute fresh water and 

heat on a seasonal basis [Danielson et al., 2011]. On the inner Bering Sea shelf, the 

Alaska Coastal Current enters the Bering Sea through Unimak Pass from the Gulf of 

Alaska (GOA). Shelf tides account for 50-95% of the total kinetic energy south of St. 

Lawrence Island [Coachman, 1986; Danielson andKowalik, 2005]. The tides diffuse the
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ACC frontal system, which is fed in part by terrestrial runoff that occurs between Bristol 

Bay and Norton Sound [Coachman et al., 1975; Kachel et al., 2002].

Vertical mixing due to tides, winds, and freezing compete with the stratifying 

tendencies of solar heating, river discharge, and ice melt. The resulting balance forms 

three distinct biophysical domains on the southeastern shelf [Coachman, 1982; 

Coachman, 1986; Schumacher and Stabeno, 1998], which are nominally delineated by 

bathymetric strata. The coastal domain (0-50 m bottom depth) is well mixed or weakly 

stratified whereas the middle domain (50-100 m) consists of a strongly stratified two- 

layer system from spring through early fall. The outer domain (100 m to the shelfbreak) 

is more oceanic in character and includes surface and bottom mixed layers separated by a 

stratified layer.

By the beginning of winter, ice forms over the northern shelf [Pease, 1980; 

Schumacher et al., 1982] and is advected as far south as the Alaska Peninsula in extreme 

years. The leading edge normally encounters melting throughout winter and ice retreat 

begins in the southeast Bering as early as February. However, ice can remain over the 

northern shelf well into June. These processes result in the annual formation of a “cold 

pool” (water < 2 °C) that forms over the northern shelf every year and over the southern 

shelf in years of extensive ice cover [Takenouti and Ohtani, 1974]. Fresh water from 

melting ice plays an important role in the spring setup of the stratified summer conditions 

on the northern shelf and much less so on the southern shelf [Stabeno et al., 2010]. The 

cold pool breaks down in the fall for a short period of time as wind mixing and surface 

heat losses drive water column homogenization.

Our main objective is identifying dominant modes of inter-annual variability in 

the thermohaline and ice fields over the Bering Sea shelf based on the results of a 3 5-year 

(1970-2005) integration of a 3-dimensional coupled ocean-ice model. Before doing so, 

we quantitatively assess the skill o f the model in order to show its value as a tool to study 

some aspects of this shelf and to identify some of the model’s limitations and capabilities. 

We compare model results to moored current/temperature/salinity records, satellite- 

derived sea ice concentrations, shipboard conductivity-temperature-depth (CTD)
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observations, and tidal current/elevation harmonics. Temperature, salinity, and ice 

climatologies are removed in order to assess the model’s ability to hindcast observed 

anomalies with respect to the mean daily, monthly, or annual conditions.

Previous numerical simulations of Bering Sea physical processes examine 

transport in straits and passes [Overland and Roach, 1987; Spaulding et al., 1987; 

Overland et. al, 1994; Hu and Wang, 2010]), sea ice dynamics [Kantha and Mellor,

1989; Pease and Overland 1989; Pritchard et al., 1990; Zhang andHibler, 1991;

Clement et al., 2004], tides [Kowalik, 1999; Kowalik and Stabeno, 1999; Danielson and 

Kowalik, 2005; Foreman et al., 2006], storm surges [.Johnson and Kowalik, 1986], and 

shelf circulation [Brasseur, 1991; Nihoul et al., 1993; Hermann et al., 2002]. Three

dimensional coupled ice-ocean models have been applied to the entire Bering Sea with 

the primary focus being on mass transports and sea ice dynamics [Clement et al., 2005; 

Clement Kinney et al., 2009; Wang et al., 2009; Hu and Wang, 2010; Zhang et a l,  2010].

Our model falls into this latter category and we refer to it as the Northeast Pacific 

model-5 (called NEP5 hereafter because the current implementation represents the fifth 

major code and grid iteration). It was initially developed as a component o f the Northeast 

Pacific Global Ocean Ecosystem Dynamics (GLOBEC) program [Curchitser et al., 2005] 

and its results (from previous versions) were used directly or as boundary conditions for a 

variety of Bering Sea and Gulf o f Alaska studies [Lanksbury et al., 2007; Dobbins et al., 

2009; Fiechter et a l, 2009; Hermann et al., 2009a; Hermann et al., 2009b; Hinckley et 

al., 2009]. Curchitser et al., [2010] ran the NEP5 model in a study supporting evaluation 

of potential impacts associated with possible offshore hydrocarbon development on the 

southeast Bering shelf. NEP5 results provide boundary conditions for multi-component 

ecosystem models that are part o f the North Pacific Research Board’s (NPRB) Bering 

Sea Integrated Ecosystem Research Program (BSIERP) [BEST-BSIERP Program 

Summary, 2010].

The manuscript is organized as follows. The model formulation is described in 

Section 3.3 and the observational datasets are described in Section 3.4. Model-data 

comparisons are presented in Section 3.5. The comparisons show that, in aggregate, the
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model integrations provide useful proxy time series that extend in situ ice, salinity, 

temperature and velocity observations over the integration period and domain. In section 

3.6, we use trend, correlation and empirical orthogonal function (EOF) analyses to 

identify patterns of variability and their relation to fluctuations in ecosystem and climate 

records.

3.3 Numerical model description

We implemented a coupled ocean/sea ice model based on the Regional Ocean 

Modeling System (ROMS), building upon Curchitser et al. [2005]. ROMS is a ffee- 

surface, hydrostatic primitive equation ocean circulation model (subversion accessed via 

Git at https://www.myroms.org/ on March 10, 2010). It is a finite volume (Arakawa C- 

grid) model with several advanced features including sustained performance on multi

processor computing platforms using Message Passing Interface (MPI) communication 

protocol; high-order, weakly dissipative algorithms for tracer advection; a unified 

treatment of surface and bottom boundary layers (e.g., K-Profile Parameterization [Large 

et al., 1994]), and atmosphere-ocean flux computations based on the ocean model 

prognostic variables using bulk-formulae [Large and Yeager, 2008). The vertical 

discretization is based on a terrain-following coordinate system with the ability to 

increase the resolution near the surface and bottom boundary layers.

The foundation of the sea ice module is described by Reed and Debemard [2004] 

and was implemented in ROMS by Budget I [2005]. The algorithms consist of the elastic- 

viscous-plastic (EVP) rheology [Hunke and Dukowicz, 1997; Hunke 2001] and 

thermodynamics by Mellor and Kantha [1989]. It is fully explicit, implemented on the 

ROMS Arakawa C-grid, and therefore fully parallel using MPI. The model also includes 

frazil ice growth in the ocean being passed to the ice [Steele et al., 1989]. It currently 

follows a single ice category, which exhibits accurate results in a marginal ice zone such 

as the Bering Sea.

One-way nesting was implemented using a hybrid of nudging and radiation 

approaches [Marchesiello et al., 2001], The global-to-regional downscaling via open 

boundary conditions has several desirable features for the implementation of regional

https://www.myroms.org/
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models: for multi-decadal integrations, climate signals project onto the high-resolution 

inner domains through boundary forcing; tidal forcing is naturally implemented on the 

domain’s open boundaries but for extensive integrations a tidal potential correction is 

applied to ensure proper tidal phasing. The approach allows affordably generating 

ensembles o f high-resolution, multi-decadal simulations with realistic boundary forcing 

and provides the ability to test the robustness of solutions and understand model errors.

The NEP5 model domain (Figure 3.2) extends from approximately 20 °N to 71 

°N and extends 2250 km offshore from the North American coast at a nominal horizontal 

resolution o f 10 km and with 60 vertical levels stretched towards the surface boundary. 

The grid (a rectangle in a Lambert Conical projection) is rotated relative to lines o f 

constant longitude so as to minimize computations over land.

We generated our own bathymetric grid by compiling an extensive collection of 

bottom soundings from sources that include the National Ocean Service hydrographic 

trackline database, soundings from NOAA’s Electronic Navigational Charts (ENCs), 

other U.S. trackline/multibeam data archives and scientific research cruises. We also 

incorporated ENC soundings from the Canadian Hydrographic Service. In Russian 

waters, point soundings from nearly 150 historical Russian military nautical charts were 

digitized and geo-referenced. The resulting compilation o f sounding data was gridded to 

a regular 30 arc-second (~ 1 km) mesh with the Generic Mapping Tools [ Wessel and 

Smith, 1991] suite of algorithms and the final gridded DEM is publicly available for 

download (www.ims.uaf.edu/- seth/bathy/). The Alaska region grid spans 130 °E to 120 

°W and 45 °N to 75 °N. The final grid was smoothed, subsampled, and merged with the 

General Bathymetric Chart of the Oceans [GEBCO, 2003] grid at 45 °N in order to 

complete the coverage across the southern portion of the domain. Maximum grid 

stiffness ratios rxO = 0.42 [Haidvogel and Beckmann, 1999] and rxl = 24 [Haney, 1991] 

imply that while the model likely has some difficulty in regions of steep topography such 

as near the Aleutian Islands, our focus area of the greater shelf should not be adversely 

impacted by baroclinic pressure gradient errors.

http://www.ims.uaf.edu/-
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We integrated the model from January 1969 to November 2005. Spin-up 

adjustments are evident in the 1969 thermohaline fields and so our analyses are based 

only on the 1970-2005 results. The surface forcing for the NEP model is derived from 

the Common Ocean-ice Reference Experiments (CORE [Large and Yeager, 2008]), 

which consists o f 6-hourly winds, air temperatures, sea level pressure and specific 

humidity, daily short-wave and downwelling long-wave radiation, and monthly 

precipitation. The air-sea fluxes are computed using bulk formulae [Large and Yeager, 

2008]. The oceanic surface boundary layer is computed using the k-profile 

parameterization [Large et al., 1994]. To ensure stability in regions with near-resonant 

tides (e.g., Bristol Bay and Cook Inlet), bottom stress is parameterized with a spatially 

variable linear coefficient of friction based on total water column depth, varying from 3 x 

10'4 m s'1 for depths deeper than 1000 m to 6 x 10'3 m s '1 at 10 m depth. Surface 

salinities are restored to the monthly Polar Science Center Hydrographic Climatology 

(PHC), version 3.0, of Steele et al. [2001]. River discharge is implemented as a spatially 

dependent, time invariant surface fresh water flux, which is designed to preserve regional 

fresh water budgets. Boundary and initial conditions for this domain were derived from 

the Simple Ocean Data Assimilation (SODA) ocean reanalysis [Carton and Giese, 2008]. 

The geographical northern boundary has a sink term that enforces a constant 0.8 Sv 

northward transport through the Bering Strait.

3.4 Methods and data

3.4.1 Model output and evaluation metrics

Model output files containing results from the entire computational grid are stored 

as daily and monthly averages; nearly 200 individual grid points (most located near 

historical mooring deployment sites) are also stored at hourly intervals at all depth levels. 

Numerous shorter integrations were performed in order to spot-check and tune model 

performance before the full 3 5-year integration was executed. All results presented in 

this manuscript are from NEP5 integration #42 except for the cotidal chart (Figure 3.3),
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which was generated by integration #45 and which output hourly records for the entire 

grid over a time period of six months.

With the exception of the tidal harmonic parameters, which do not require 

coincident analysis, model results extracted for comparison conform to the same time 

window and latitude, longitude and depth o f the observations. We avoid temporally 

discrete and singular model/data comparisons where possible, focusing instead on the 

bulk statistics of measurement ensembles. The exception to this is that in comparisons 

with CTD data, the model’s daily mean T/S profile for the specific day sampled is 

employed at the grid point closest to the sampling location.

We quantitatively compare the model with the observations following Willmott et 

al. [1985] and Taylor [2001] using the mean, standard deviation, cross-correlation, and 

root-mean-square difference (RMSD) as comparative metrics. Taylor diagrams [Taylor, 

2001] facilitate incorporating all of these parameters into one graphic, which we use for 

the comparisons between the model and discrete CTD observations. Following Taylor 

[2001], the approach uses the pattern root mean square difference

RMSD' = yJ(T*~ + <To -  <Ju <J0r  , where a  is the standard deviation, r the cross correlation

and subscripts M  and O refer to the model and observations, respectively. The prime 

indicates that values are normalized so that the observational data represent unity 

variance, unity autocorrelation and zero RMSD’, allowing multiple comparisons to be 

shown on a single graphic. Rotary power spectra and least squares harmonic fits for tidal 

parameters are used in other comparisons.

3.4.2 Time series data fo r  model evaluation

We employ tidal amplitude and current harmonic parameters and net speed and 

direction statistics from various sources (Table 3.1) and locations (Figures 3.3A, 3.3B 

and 3.3C). Tidal parameters for measurements made by the National Data Buoy Center 

North Pacific Deep-ocean Assessment and Reporting of Tsunamis DART moorings 

(www.ndbc.noaa.gov) were computed using the MATLAB based T TIDE algorithms of 

Pawlowicz et al. [2002]. For the net speed and direction statistics (based on 177

http://www.ndbc.noaa.gov
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observational records), the shortest averaging period is 1.6 months, the longest is 24 

months, the mean length is 7.6 months, and the median record length is 5.1 months. 

Schumacher and Kinder [1983] provide the greatest number o f net speed and direction 

records, but the deployment intervals are not explicitly tabulated, so we estimated each 

record’s start and stop date from their graphical Table 3.1. We believe that the accuracy 

in selecting the record endpoints is good to within one-half month. This uncertainty is 

associated with larger differences between the model and observed fields and degrades 

the accuracy of comparisons for the shorter records. Thus, we neglect Schumacher and 

Kinder [1983] records that are less than six months.

Temperature, salinity and current velocity time series records from the NOAA 

EcoFOCI program’s mooring M2 (56.88 °N, 164.06 °W, 72 m water depth) between 

1995-2005 are re-analyzed to compare the observed thermohaline annual cycle, monthly 

anomalies and current spectra with corresponding analyses from the model results.

3.4.3 CTD and bottle data

CTD and discrete bottle data are from the National Ocean Data Center (NODC) 

World Ocean Database 2009 (WOD-09, [Boyer et a l, 2009]), the US Bering-Aleutian 

Salmon International Survey (BASIS) program, the Bering Ecosystem Study (BEST) and 

miscellaneous cruises from the UAF Institute of Marine Science’s (IMS) database, which 

includes cruise data from the 1970s to the present. We limit analysis to one near-surface 

depth level (10 m depth) and one depth level below the summer pycnocline (70 m depth). 

Multiple observations recorded within the same model grid cell and sampled on the same 

year-month-day were averaged, resulting in 5,939 unique observations at 70 m depth and 

11,500 at 10 m depth. Data were grouped into regions that coarsely represent six major 

biophysical domains over the eastern shelf (Figure 3.3D and Table 3.2). Regions 1, 3 and 

5 represent the inner, middle and outer shelf domains south o f 60 °N; Regions 2, 4 and 6 

cover the inner, middle and outer domains north o f 60 °N.
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3.4.4 Sea ice data

Sea ice concentration measurements (from the Nimbus-7 Scanning Multichannel 

Microwave Radiometer (SMMR) and Defense Meteorological Satellite Program (DMSP) 

Special Sensor Microwave/Imager (SSM/I) satellites) are from the National Snow and Ice 

Data Center [Cavalieri et a l, 1996, updated 2008]. These data are projected onto a 25

km grid and are available on a bi-daily (1979-1987) and daily (1987-2010) basis. Bi

daily data are linearly interpolated to create a daily time series for the period of 

observation. For spatial comparisons of the data with model results, ice concentrations 

from the model output were linearly re-gridded to match the dataset resolution.

3.4.5 Ecosystem indicator time series

The first three temporal components o f each EOF are correlated with various 

climate and biological time series to assess how resolved modes co-vary with potential 

driving mechanisms and to examine possible ecosystem responses (Table 3.3). Cross

correlation significance (at the 95% level) is determined following Pyper and Peterman 

[1998]. Their method helps account for autocorrelation within each time series and 

results in a better determination of the effective degrees of freedom and an adjusted 

critical value for the cross-correlation. By doing so it reduces the frequency of Type I 

error. Records that exhibit significant linear trends are de-trended prior to computing the 

cross-correlation.

3.5 Model-data comparisons

3.5.1 Tides and currents

The NEP5 model-derived M2 co-tidal map is shown in Figure 3.4. Amphidrome 

locations correspond closely with those o f Kowalik [1999], Foreman et al. [2000], and 

Foreman et al. [2006]. Phase lines depict a westward travelling M2 wave across the 

GOA and a northeastward propagating wave over the Bering Sea shelf. Amplitudes over 

the deep GOA waters are similar to those of Kowalik [1999] and the observations; 

however, in the western north Pacific and Bering Sea the NEP5 amplitudes are about 10 

cm higher. As shown below, this difference extends onto the Bering Sea shelf, where
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both the tide wave and the error magnitude are amplified. Tidal elevations are largest in 

the semi-enclosed basins o f Cook Inlet and Bristol Bay, each of which are ~ 200 - 300 

km long and 30 - 50 m deep. Here, the wavelength of a freely propagating tide wave

closely matches the resonance scale 4 = 200-250 km, where g  is gravitational

acceleration, H  is the average water column depth and T  is the tidal period [Gill, 1982; 

Oey et al. 2007]. In the northeast GOA, amplification may be due to matching of the 

shelf width, Ls, to the tidal, to, and inertial,/, frequencies, and the shelf bottom slope, a

L s =  m  2

(e.g., (w [Clarke and Battisti, 1981]). In the northern GOA, Ls is ~ 100-200

km, and while the bathymetry is irregular, a  is primarily between 10'3 and 10'4 and the 

lower portion of this range satisfies the resonance criterion.

Figures 3.5A and 3.5C compare the M2 tidal elevations and phases from harmonic 

analyses of the model results and observations at the sites shown in Figure 3.3B. The 

median amplitude error expressed as a fraction of the observed amplitude is 30% when 

all locations are considered; this error is 80% when only the Bering shelf stations are 

included. Comparisons to Kowalik [1999] suggest that this overestimate is likely due to 

insufficient damping of the M2 wave as it crosses the Aleutian Island chain. Errors in 

model bathymetry (smoothness; cross-sectional area of passes) and/or parameterization 

of bottom friction are likely causes for the excess flux of energy to the Bering Sea basin. 

The points clustered nearly on the 1:1 phase line at ~ 300 0 consist primarily of the deep- 

ocean stations south of the Aleutian Islands, indicating that the model accurately 

reproduces the phase of the tide wave in the northern North Pacific. However, north of 

the Aleutians and over the Bering shelf, the model tidal wave phase is retarded relative to 

the observations. For the Bering shelf, the modeled M2 tide lags the observations on 

average by about 60 0 (two hours).

Figures 3.5B and 3.5C compare harmonic analyses of current observations and 

the model’s depth-averaged currents located at the closest grid cell to the observations. 

The semi-major axes of the current ellipses are evenly distributed about the 1:1 line
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although the relative scatter is greater than for the elevations. As with the tidal 

elevations, the Bering shelf shows larger errors than the GOA shelf. Because the tidal 

current timing is strongly dependent upon the elevation phase, the modeled tidal current 

phase also lags the observations, but on average by ~ 30 degrees. This difference may be 

partially explained by the proximity o f historical current meters to the bottom, which 

were often deployed within the M2 bottom boundary layer (BBL). Hence the 

observations may both underestimate the water column average M2 semi-major axis 

magnitude (Figure 3.6A) and slightly advance the phase (Figure 3.6D).

To examine the vertical structure of the tidal currents, Figure 3.6 compares 

modeled and observed ellipse parameters from mooring site F8, located just south of St. 

Lawrence Island. The observations are from a moored ADCP, which misses the water 

column’s uppermost 5 m and bottommost 7 m. In addition, the water column depth at 

site F8 is 50 m, whereas the depth at the closest model grid point is 46 m, so we expect a 

4 m offset between the two profiles. To focus attention on the vertical structure rather 

than differences in magnitude, phase or bottom depth, the ellipse parameters in Figure 3.6 

are scaled as follows. Water column depths (Zr) are scaled between 0 (sea surface) and 1 

(seafloor). At Zr = 0.10, amplitudes are scaled to unity and the phase and inclination 

parameters are offset to 0 °. The M2 BBL is thicker than the Ki BBL, because the M2 

(Ki) frequencies are on opposite sides of the inertial frequency resulting in different 

dynamics between the sub-inertial and super-inertial waves [Defant, 1960; Prandle,

1982]. Both the observed and modeled M2 ellipses rotate clockwise (CW) in the upper 

portion of the water column and counter-clockwise (CCW) near the seafloor. For the Ki 

tide, the CW component dominates everywhere. The observed M2 profile has a slight 

mid-depth maximum due to tidal enhancement near the pycnocline during the summer 

when the water column is strongly stratified [Danielson and Kowalik, 2005]. The NEP5 

model does not reproduce this feature, suggesting that the model may not contain 

sufficient late-summer stratification near this site. The model and observed 95% 

confidence ranges overlap throughout the observed depth range for all of the Ki ellipse 

parameters. The confidence limits also overlap for the M2 parameters except at mid-depth
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for the currents and in the lower third of the water column for the orientation and phase 

angles.

Rotary spectra [Mooers, 1973] derived from the 10 m and 50 m depth levels at 

mooring site M2 are shown in Figure 3.7. The spectra were calculated from non

overlapping windows and then smoothed with a five point moving average to highlight 

the tidal frequencies.

In the short-period (10 - 30 hr) portion of the spectrum, the 95% confidence limits 

of the model and observed spectra overlap for both depths except for the 

counterclockwise (CCW) component at 10 m depth. The moored spectrum flow is 

strongly polarized in the CW component for these periods, implying that motions are 

nearly circular. In contrast, the magnitudes o f the model CW and CCW components are 

similar to one another, indicating that the model’s high frequency motions are overly 

elliptical and that in this band the model contains too much kinetic energy. The model’s 

high-frequency bias is not present at 50 m depth. In both the observed and model spectra 

the inertial peak is well defined at 10 m depth but is barely discernible at 50 m depth.

The long period (> 30 hr) observed and model spectral envelopes have similar 

variations and the confidence limits overlap across this frequency range. While the 10 m 

observed and model spectra are nearly indistinguishable from one another, the modeled 

50-m spectrum is consistently larger than the observed; it is larger by about one-half the 

observed confidence limit range. Both the observed and modeled spectra have many 

corresponding peaks and troughs and, importantly, similar background noise levels. We 

conclude that the spectral character of the subtidal model currents at this particular 

location is in general agreement with the observed spectra.

Our final comparison between model-derived and observed currents is based on 

mean current vector magnitude and direction records from the sources in Table 3.1. 

Corresponding model results were generated from de-tided and then daily averaged 

currents at the model grid cell closest to the deployment location. The model currents 

were aligned in time and depth with the observations. Table 3.4 shows the relation 

between the hindcast and observed mean velocity records, grouped into zonal clusters.
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The mean flow over the Bering shelf is generally weak (<10 cm s '1) and oriented 

along isobaths toward the north. Flow reversals are common [Schumacher and Kinder,

1983] so that many of the mean observed (and modeled) low frequency vector 

components are not statistically different than zero. Such large variability renders 

statistical comparisons of mean velocity estimates difficult and results in the large ratios 

of mean speed to a) the error magnitude and b) the model/observed speed difference 

(Table 3.4). Strong (~ 25 cm s '1) northward currents in Bering Strait are the exception: 

here the mean RMSD is only 14% of the mean speed and typical errors are within 30%. 

For observations reported with 95% confidence limits on the current speed, the model 

mean speed falls within these limits for approximately 40% o f the records. Away from 

the Aleutian Islands and Bering Strait (rows 2 and 3 of Table 3.4), mean speeds are small 

(2.5-5.2 cm s '1) and the average model speeds are typically within 3 cm s '1 o f those 

observed. With a few exceptions, mean differences in speed (represented as a percentage 

of the observed speed) are similar to the error estimates o f the mean observed speed. 

Differences in current direction range between 10 ° and 79 °. The largest discrepancy is 

in the southernmost latitude band, along the Aleutian Islands, where narrow passes, 

complex bathymetry, and strong tidal currents occur. The two northern most comparison 

ensembles show closest agreement in both the magnitude and direction.

In summary, we find that the model somewhat overestimates the tidal elevation 

amplitude and current magnitude over the Bering shelf although geographic distribution 

of these parameters and the vertical structure of the currents are reasonably reproduced. 

The spectral character of the model currents generally follows that o f the observations, 

although the modeled tidal and subtidal currents generally have greater kinetic energy. 

Given the large synoptic variability with respect to the mean, it is difficult to make 

meaningful comparisons to the available suite of published mean velocity vector 

statistics. Bulk comparisons indicate that the model performance varies in space and we 

have at least bounded the range of probable errors in the modeled mean flow. Fronts and 

stratification also affect the shelf response to external forcing, so modeled currents also 

depend upon the model’s ability to reproduce the shelf thermohaline structure.
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3.5.2 Temperature and salinity

We next compare the temperature and salinity fields, considering first the long

term mooring records from mooring site M2 (Figure 3.1) and then shipboard 

hydrography.

Figure 3.8 shows the observed annual cycle of temperature and salinity at M2 

depicted by the monthly means and their monthly anomalies computed between 1995 and 

2005. Observed and modeled temperatures at 10 m and 60 m depth vary in-phase and 

have identical annual amplitudes. The only significant (at the 95% confidence limits) 

differences between temperatures at 10 m depth occur in April, October and November. 

The higher temperatures in the two fall months are due to a delayed onset o f fall cooling 

and, as shown below, this leads to a corresponding delay in model sea ice growth. The 

60 m model temperatures are ~ 1 -2 °C warmer than observed from April through 

November. Observed 60 m temperatures do not increase from October to November; 

however, in the model fall temperatures continue to rise through November. Both near

surface (10 m) and deep (60 m) model salinities are consistently ~ 0.5 less than observed 

(with non-overlapping error bars), but observed and modeled 10-m salinities vary in

phase and have the same annual amplitudes (January to September decrease of ~ 0.3-0.4). 

In contrast, the deep model salinities show a February to June increase o f ~ 0.1 while 

over the same period the observed salinities decrease by the same amount. The error bars 

show that neither of these seasonal trends is statistically significant.

Monthly anomaly comparisons in Figure 3.8 address the model’s ability to 

reproduce seasonal and inter-annual variability in the thermohaline fields. At the 10 m 

(60 m) depth level, the model reproduces 37% (49%) of the observed temperature 

variability. Salinity anomalies are less accurately hindcast: the model captures 13% 

(17%) of the observed variability at the 10 m (60 m) depths. These results are consistent 

with our expectations: thermodynamic balances are more straightforward to accurately 

compute; fresh water variability on the shelf is tied to complex freezing and thawing 

processes, surface fluxes, coastal river discharges and cross-shelf exchanges. River
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discharge in particular is not accurately implemented in NEP5 because the prescribed 

fluxes do not include seasonal or inter-annual variability.

To examine temperature and salinity variability more broadly across the shelf, we 

assembled historical CTD and discrete bottle measurements for six Bering shelf sub

regions (Table 3.2 and Figure 3.3D). We selected the 10 m (near surface) and 70 m 

(subsurface) depth levels for comparison and computed statistics based on each calendar 

month separately in order to investigate inter-annual rather than seasonal variability 

(Figure 3.9).

As with the moored records, the temperature comparisons are more favorable than 

those for salinity. More than one-half of the 10 m temperature comparisons in Figure 3.9 

lie within 0.7 < r > 0.95, RMSD’ < 1 and 0.5 < a  < 1.5. Temperature comparisons at 70 

m depth mostly fall within 0.5 < r < 0.9, RMSD’ < 1, and 0.6 < a  < 1. For both depths, 

many of the salinity comparisons lie within RMSD’ < 1 and 0.3 < r < 0.7. The model 

exhibits some differences in performance amongst regions: at 10 m depth, for example, 

Region 5 (outer shelf, south of 60 °N) temperatures agree best with the observations in 

most months, while in Region 1 (inner shelf, south of 60 °N) temperatures have the 

largest RMSD’. Salinities in all other regions occupy a similar range of correlations as 

those in Region 3 (mid-shelf, south of 60 °N); however, the standard deviations in 

Region 3 are closest to unity. These analyses are consistent with the comparisons made 

with the moored temperature and salinity records: the model has some ability to hindcast 

both temperature and salinity fields at surface and subsurface depths and has more skill 

with the thermal field than with salinity. The model exhibits slightly better performance 

in some regions than in others.

Our analyses of hydrographic data focused on the model’s ability to reproduce 

inter-annual variability; however, spatial variability within each region impacts our 

results. We can estimate the magnitude of this by comparing results from Region 3 to 

results from mooring site M2 (containing temporal variability only). Within Region 3 we 

find temperature correlations (Pearson’s r correlation coefficient) mostly between ~ 0.7 

and 0.9 at 10 m depth (Figure 3.9) versus r = 0.61 computed from the moored mooring
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data (Figure 3.8). These comparisons suggest that spatial autocorrelations improve the 10 

m temporal correlation by about 0.1 - 0.3; at the 70 m depth level the correlation 

improves by about 0.1. Region 3 salinity correlations are only slightly smaller (Ar <0.1) 

than those at M2 suggesting that any spatial autocorrelations have minor influence on the 

salinity results in Figure 3.9. The correlations will also reflect the extent that spatial 

variability across each region represents an appreciable fraction of inter-annual 

variability. This is most apt to be the case in the near-shore regions during late summer 

and early fall when horizontal gradients are largest.

Using the 2004 BASIS program CTD survey, we compare the in situ near-bottom 

temperature and salinity fields with those hindcast by the model (Figure 3.10) after 

linearly interpolating and truncating the model output to match the BASIS grid, and 

subtracting the mean value from each field. This latter transformation highlights spatial 

gradients rather than the offsets found with the moored record comparisons above. We 

find that the spatial structure of the hindcast temperature field matches the observed 

pattern with the exception of the cold tongue immediately south of St. Lawrence Island. 

This tongue extends to the eastern reaches of the island in the observations but not in the 

model, suggesting that eastward flow observed on the south side of St. Lawrence Island 

[Schumacher et al., 1982; Danielson et al., 2006] is not fully reproduced in the model. 

While the model shows higher salinity waters in the mid-shelf region, it does not capture 

the pronounced near-shore freshening that extends from Kuskokwim Bay to Norton 

Sound. This discrepancy may be a consequence of the time-invariant coastal discharge 

used in the model. Bering Sea river discharges exhibit strong seasonal variability 

because of the annual freeze-thaw cycle. Incorporating this variability in future models 

should lead to more realistic shelf salinity fields. The shelf salinity is also modulated by 

ice melting and formation processes, which we consider next.

3.5.3 Sea ice

In this section, we compare model ice concentrations to measurements made by 

passive microwave satellites. We form daily averages of ice extent weighted by percent 

concentration for the period January 1979 to November 2005 by integrating over the
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region east of 170 °E and south of 66 °N, which represents most of the Bering Sea area 

subject to seasonal ice cover.

The mean annual cycle of ice cover (Figure 3.11 A) indicates that the model 

closely reproduces the observed annual amplitude. Although the modeled spring ice 

retreat onset coincides with the observed, the model retreat rate is considerably slower. 

This discrepancy may be because the model currently lacks the ability to alter the ice 

albedo (and melt rates) due to wet ice conditions, melt ponds, and ice algae or debris 

within the ice [Curry et al., 1995]. In addition, passive satellite measurements have 

difficulty in distinguishing between open water and wet or subsurface ice [Comiso et al., 

1997], so the satellite observations likely underestimate the spring ice extent. Consistent 

with the delayed onset of fall water column cooling noted in Section 3.5.2, fall ice 

development in the model lags the observations by ~ 3 weeks, although growth rates 

thereafter are comparable to observed. Comparison of the daily ice extent anomalies 

(Figures 3.1 IB and 3.11C) suggests that the model captures much of the integrated 

synoptic variability, accounting for 75% of the observed daily variance (r -  0.87, p < 

0.001, Pearson’s r correlation coefficient). The model reproduces 85% of the observed 

inter-annual variance (r = 0.92, p < 0.001) and there is no discernible trend in either the 

observed or modeled annual ice extent anomaly time series (Figure 3.1 IE).

Spatial distributions of mean monthly sea ice concentration over the eastern 

Bering Sea are plotted with blue contours in all panels o f Figure 3.12. The first row of 

panels shows that model-observed differences in concentration are < 10% over most of 

the analyzed domain. Exceptions are in the Gulf o f Anadyr and Chirikov Basin for 

December and March where the model underestimates ice concentrations by up to 30%. 

The delayed onset in freeze-up noted above is primarily due to the underestimated 

concentrations here, suggesting that the model may generate too much polynya and/or 

lead area in early and late winter. Overestimates o f ice extent in May and June are 

mostly confined to the central northern shelf. Standard deviations o f ice concentration 

(second row of Figure 3.12) are generally within 10% of each other with the exception of 

higher model variance south of Nunivak Island in May and across the northern shelf in
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June; both a consequence of delayed melt. Absolute (RMSD) error between the model 

and observations (third row of Figure 3.12) is typically in the range of 10-20% through 

the winter; however, in May and June extensive regions with concentration errors of 20

40% persist. The correlation maps (fourth row of Figure 3.12) show that for most 

months, the region of significantly correlated (at the 95% level) variability greatly 

exceeds the area bounded by the 10% concentration contour. This verifies that when the 

ice edge is located far south (or north) of its mean position, the model captures this 

signal. Correlations weaken in the Gulf o f Anadyr and Chirikov Basin, perhaps because 

of this region’s proximity to the northern model boundary, where advection influences 

are strong and the northern boundary condition artificially specifies a constant northward 

transport.

3.6 Discussion

3.6.1 Model strengths and weaknesses

Our comparisons focused on the NEP5 model’s skill at hindcasting observed 

variability of the thermohaline, sea ice and circulation fields o f the eastern Bering Sea 

shelf. On monthly to annual time scales, we find that the model’s primary strengths 

include its ability to reproduce 85% of the inter-annual variability in the integrated sea ice 

extent (Figure 3.11) and to account for up to nearly 50% of the variance in monthly 

temperature anomalies (Figure 3.8). On tidal and synoptic time scales, the model 

reproduces with significant skill the horizontal (not shown) and vertical structure of tidal 

currents (Figure 3.6) and the frequency distribution of current kinetic energy (Figure 3.7), 

although the model has somewhat greater kinetic energy overall (Figures 3.5 and 3.7).

The model less accurately hindcasts the sea ice extent during the melt season and 

the monthly salinity anomalies (Figures 3.11 and 3.8). However, errors in the salinity 

field are not particularly surprising given the prescribed coastal discharges and the large 

fresh water sources for the Bering shelf including the Yukon River and the integrated 

GOA discharge [Royer, 1982], a significant portion of which enters the Bering shelf 

[Stabeno, et al., 2002a; Weingartner et al., 2005; Aagaard et al., 2006]. The GOA
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discharge is particularly difficult to capture with a 10-km resolution given the complex 

land orography and coastline o f this shelf. Improvements to the model are presently 

underway with respect to a more realistic coastal discharge and for the northern boundary 

condition. These changes, along with the wave-mixing parameterization of Hu and Wang 

[2010] may improve the modeled stratification for the shelf.

Notwithstanding these shortcomings, in its present form the model does allow us 

to examine aspects of the inter-annual variability in sea ice, temperature and salinity over 

the Bering Sea shelf.

3.6.2 Trends in the annual duration o f  ice-free waters

Danielson et al. [2011] quantified an increasing trend in the duration of the 1979

2009 open water season, defined as the last spring day (first fall day) that the eastern 

Bering Sea concentration-weighted integrated ice area falls below (rises above) 50,000
•y

km (the IIA index in Table 3.3). The model results allow us to extend this analyses to 

1970 (Figure 3.13), nearly a decade longer than the modem satellite record. The model 

hindcast results suggest that there was a step change in open water duration that 

coincided with the mid-seventies “regime shift” [Minobe, 1999; Mantua et al., 1997; 

Stephens et al., 2001]. This result is consistent with reports that the early- to mid-1970s 

were a period of heavy Bering Sea and western Arctic ice cover [Gibson and Schullinger, 

1998; Niebauer, 1998]. Over the 1979-2004 period of overlap between the model and 

observations we find a marginally significant increasing trend in the length of the open 

water season in the observed (7.4 days/decade, r = 0.40, p = 0.041, Pearson’s r correlation 

coefficient) but not the hindcast (7.1 days/decade, r = 0.33, p = 0.095, Pearson’s r 

correlation coefficient) time series. The model’s mean open water season is 8.5 days 

shorter than that observed, a result of the model’s apparent inability to melt ice fast 

enough in the late spring and early summer (Figure 3.11).

We also observe a change in the variance of open-water season duration between 

the first half (1979-1991) and the second half (1992-2004) o f the record. The 

observations indicate increase in variance from 32 days2 to 306 days2 between the two 

periods and the model variance increases from 151 days2 to 418 days2. Given the large
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inter-annual variability in the duration of the ice-free waters since 1992, it appears that 

Bering shelf is presently within a state characterized by higher year-to-year variability. 

This increased variance may imply increased ecosystem variability by altering spring 

production dynamics that propagate through seasons and across trophic levels [e.g., Hunt 

et al., 2002].

The hindcast open water season duration for 1970-1978 (corrected for the 8.5 day 

offset) combined with the 1979-2009 observational record results in a time series with a 

highly significant 1970-2009 increasing trend of 6.8 days/decade (r = 0.52, p < 0.001, 

Pearson’s r correlation coefficient). This trend will not persist because the ice growth 

season can be truncated only so far given winter ocean-atmosphere heat loss at this 

latitude. The model also indicates thinning ice by winter’s end from 1970 to 2005; the 

trend is not significant.

3.6.3 Temperature and salinity variability

Near-surface shipboard CTD data collected by the BASIS program depict an 

apparent anti-correlation in the cross-shelf salinity field, while the cross-shelf 

temperature field exhibits an in-phase relation [.Danielson et al., 2011]. Selecting the grid 

point closest to M2 as our reference, we perform a similar analysis using monthly fields 

and find distinct patterns in each of the model-generated parameters (Figure 3.14). The 

in-phase temperature relation reflects the long (>1000 km) length scales associated with 

atmospheric forcing (e.g., the Aleutian Low). Danielson et al. [2011] attribute the cross

shelf salinity pattern to the redistribution of fresh coastal waters by the winter (October to 

May) wind field; the signal was significantly correlated with the previous winter’s cross

shelf Ekman transport and the winter wind direction anomaly (WDA index in Table 3.3) 

computed at 60 °N, 170 °W. The salinity correlation pattern depicted in Figure 3.14 is 

similar to that found by Danielson et al. [2011]; however, the boundary between the two 

opposing phases is farther offshore in the model results. Thus, the model pattern less 

clearly signifies a coastal and middle shelf water mass exchange phenomena but may 

instead reflect ice dynamics: in years of extensive ice more brine is released in the north 

and more melt occurs in the south.
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Based on the monthly average model fields, we compute EOFs for annually 

averaged temperature (T) and salinity (S) anomaly fields using every 4th model grid point 

over the Bering Sea and northern GOA. We consider the first three EOF modes from 

upper (U; 0 -  20 m) and lower (L; 4 0 -1 0 0  m) depth layers. To remove the annual cycle 

and to minimize spatial biases, the records at each grid point were normalized into a 

standard monthly anomaly time series having unity variance and zero mean. Seasonal 

EOFs were similarly calculated and yielded results nearly identical to those described 

below. Following North et al. [1982], all modes discussed are fully resolved. Principal 

components are correlated to the time series listed in Table 3.3.

Within the upper layer EOFs (Figure 3.15), the first temperature mode (mode 

T1U) accounts for 47% of the total variance, and modes T2U and T3U account for 14% 

and 6%, respectively. The T1U mode is in phase over the region considered and is 

significantly and positively correlated (r = 0.59, Pearson’s r correlation coefficient) with 

the PDO (Table 3.5), suggesting the influence of large-scale atmosphere-ocean heat 

fluxes and the associated sea level pressure fields. This notion is consistent with the 

negative correlation (r = -0.67, Pearson’s r correlation coefficient) between T1U and the 

IIA index, which depends on the regional winds [Overland and Pease, 1982], T1U is 

also correlated (but less strongly) to the North Pacific (NP) (r=-0.36, Pearson’s r 

correlation coefficient) and the (WDA) (r= 0.44, Pearson’s r correlation coefficient) 

indices, which are influenced by the position and strength of the Aleutian Low [Trenberth 

andHurrell, 1994; Danielson et al., 2011],

EOF T2U depicts an out-of-phase relationship between the northern 

GOA/southeastem Bering Sea and the western Bering basin/southwestem GOA. The 

pattern is positively correlated with the near-bottom (200-250 m) temperature at GAK1, 

the NPGO, the PNA and the GOA discharge record. The NPGO, the second mode of sea 

surface height variability in the North Pacific Ocean, is related to the sea surface 

elevation gradient between the North Pacific subarctic and subtropical gyres [Di Lorenzo 

et al., 2008]. Positive anomalies in the NPGO imply enhanced transport within the North 

Pacific Current and the GOA gyre [Di Lorenzo et al., 2008]. This gyre advects relatively
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warm waters into the GOA and so the NPGO index is positively correlated with 

temperature anomalies at station GAK1. The southeastern Bering Sea shelf is in phase 

with the GOA shelf and basin for mode T2U, presumably reflecting the advective or 

atmospheric connections between these two regions.

EOF T3U exhibits positive phase over the northern Bering basin and GOA shelf 

and negative phase over the northern Bering shelf/southern Bering basin. Although it is 

unclear what establishes the spatial structure o f this mode, it is correlated with two winter 

processes that are functions of the location and strength of the Aleutian Low: the winter 

(October-May) wind direction anomaly (WDA) and the ice extent index. The WDA 

index is also correlated with the summer’s end central shelf salinity anomaly and may 

reflect inter-annual variability in the winter surface circulation [Danielson et al., 2011]. 

EOF T3U suggests that the southern Bering shelf and GOA shelf may be linked by 

advective processes that are confined to the outer Bering shelf and shelfbreak, unlike the 

signal of T2U for which the positive phase extends across all of Bristol Bay.

Modes TIL and T2L (the 40-100 m layer) resemble the spatial and temporal 

structure o f their corresponding upper layer modes and are correlated with the PDO (TIL, 

r = 0.69, Pearson’s r correlation coefficient) and NPGO (T2L, r=-0.63, Pearson’s r 

correlation coefficient), respectively. While TIL and T2L are more strongly correlated 

with these indices than T1U and T2U, they have a weaker correlation with ice extent (r = 

-0.56).

Although the model has shortcomings in capturing the observed salinities, model 

salinity fields are internally consistent since these conform to the model dynamics.

Hence, the modeled salinity variations, such as those presented in Figure 3.14 and 

discussed below, reflect physical processes that may bear on ecologically important 

processes.

The first three upper layer salinity EOFs (Figure 3.15) represent a much smaller 

fraction of the total salinity variance than the corresponding temperature modes. For the

0-20 m layer, EOF S1U (13%) shows that the northeastern Bering shelf salinities are 

strongly out-of-phase with southwestern shelf salinities. This mode is correlated with the
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IIA (r = -0.79, Pearson’s r correlation coefficient) and the WDA (r = 0.52, Pearson’s r 

correlation coefficient) indices. The correlations suggest that the mode structure reflects 

salinization due to ice formation processes in the northeast combined with ice melt in the 

southwest [Pease, 1980] and/or the winter cross-shelf transport of fresh coastal waters 

per Danielson et al. [2011]. Mode S2U (10%) is a weak out-of-phase relation between 

the middle shelf of the Bering Sea and the GOA shelf and in fact the pattern, when 

restricted to both shelves alone resembles the correlation structure in Figure 3.14. S2U is 

correlated to near-bottom temperatures at GAK1 (r = 0.70, Pearson’s r correlation 

coefficient), GOA runoff (r = 0.59, Pearson’s r correlation coefficient) and the PNA 

(r=0.37, Pearson’s r correlation coefficient). Higher GOA runoff is related to an eastward 

shift of the Aleutian Low (increase in the along-shore sea level pressure gradient) 

because it increases the precipitation rates over southeast Alaska [Weingartner et al., 

2005] and likely leads to less cooling of deep GOA coastal temperatures due to enhanced 

stratification [Janout et al., 2010]. This same atmospheric pattern forces enhanced ice 

growth (and salinization) over the northern Bering Sea shelf [Overland and Pease, 1982], 

so the model results appear to conform to our notion of regional thermohaline dynamics. 

EOF S3U is in phase along the GOA shelf and shelfbreak and along the Aleutian Islands 

and over the outer Bering shelf; the out of phase centers are in Bristol Bay and the 

western GOA basin. It is negatively correlated with the PDO (r= -0.65, Pearson’s r 

correlation coefficient) and positively correlated with the NP index (r = 0.57, Pearson’s r 

correlation coefficient). The continuity of the EOF patterns S2U and S3U from the GOA 

shelf across the Aleutians hints at an advective connection between the two regions, a 

connection that can be driven by the dependence of Unimak pass transport upon wind- 

forced sea level fluctuations [Schumacher et al., 1982] and the distance of the Alaskan 

Stream axis from the passes [Favorite, 1974; Stabeno et al., 2005].

In the deeper layer, EOF S1L (25%) accounts for the largest percentage o f salinity 

variability in any mode and is negatively correlated with the PDO (r = -0.55, Pearson’s r 

correlation coefficient). The GOA shelf and Bering basin are in phase with each other for 

S1L and out of phase with the outer Bering shelf and GOA basin. Hence, salinities tend
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to increase (decrease) over the central GOA and outer Bering shelf, and decrease 

(increase) over the Bering Sea basin. This is consistent with the wind anomalies 

associated with the PDO [Mantua et al., 1997]. In the positive phase of the PDO, 

cyclonic wind stress curl strengthens over the central GOA basin (carrying excess 

precipitation to the south-central coastal GOA) and weakens over the Bering basin. In 

addition, southerly wind anomalies develop over the eastern Bering shelf and slope, 

possibly resulting in stronger upwelling along the shelfbreak. Mode S2L is primarily a 

GOA shelf/basin mode with the GOA shelf signal perhaps extending for a few degrees of 

latitude along the Bering Sea shelfbreak. EOF S3L is correlated with the NPGO (r = - 

0.57, Pearson’s r correlation coefficient) and is out of phase between the central GOA 

and the western Bering basin. The pattern implies that when the NPGO is in its positive 

phase, salinity anomalies increase within the GOA gyre, presumably due to enhanced 

upwelling in the gyre center. The S3L pattern is similar to the structure of EOFs T2U 

and T2L, which are also both correlated to the NPGO.

Note that the various EOFs do not necessarily correspond to recognized Large 

Marine Ecosystem boundaries [Sherman, 1991; Francis and Hare, 1994] or the Bering 

Sea shelf’s biophysical domains [Coachman, 1986]. For example, T2U closely links the 

eastern Bering Sea with the GOA shelf, S2L depicts an apparent connection between the 

GOA shelf and the eastern Bering continental slope, and S3L shows that the central GOA 

basin and the outer Bering shelf fluctuate in concert.

3.6.4 Biological covariates

With these patterns of physical variability in hand we now ask if  there are simple 

statistically significant relationships (Table 3.6) between these modes and indices that 

measure variability within the Bering Sea ecosystem (Table 3.3). Although pinpointing 

mechanistic links between EOF and biological covariates is outside the focus of this 

paper, we briefly describe a few relations.

Significant correlations (at the 95% level) are found with species that span many 

trophic levels. Spring bloom, chlorophyll, primary productivity and condition indices for 

pollock, yellowfin sole and pacific cod are short timeseries (N = 7 or 8 years) but all are
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significantly correlated to one or more principal components. Longer (N = 23 -  35 years) 

fish and shellfish time series that correlate to the principal components include walleye 

pollock (T1U), pacific herring (T3U), rock sole (T3U, S1U, S2U, S2L), capelin (S1U), 

yellowfin sole (S3U, S1L), snow crab (T2U, TIL) and a number of multi-species 

composite indices (T2U, S3U, T2L, T3L, S2L). For those time series with at least 15 

effective degrees of freedom, the EOFs account for up to 36% of the observed variability.

Snow crabs are a commercially important epibenthic species whose distribution 

has fluctuated with temperature changes [Zheng et a l, 2001], although repopulation of 

southern Bering Sea regions following warm periods can be difficult [Orensanz et a l,

2004]. Mode TIL (strongest correlation to the PDO) captures 35% of the variance (N = 

25) within the snow crab spawner-recruitment index. Fluctuation of mode T3U 

(apparently related to the winter position of the Aleutian Low and the sea ice extent) is 

positively correlated with the Togiak pacific herring stocks (r = 0.62, N = 27, Pearson’s r 

correlation coefficient) and negatively correlated with rock sole (r = -0.52, N = 30, 

Pearson’s r correlation coefficient). The strongly negative pattern of T3U over the Bering 

Shelf resembles the mean winter’s end ice extent and so these correlations may reflect 

population dynamics tied to the annual preconditioning set by the winter ice extent or the 

wind and current regime that helps define the ice system. Should a changing climate tend 

to favor one phase of mode T3U over the other, the relation indicates that either the 

Togiak herring or the rock sole stock would benefit and the other would suffer.

The above relations show that the NEP5 model output can be a useful tool for 

targeted retrospective studies o f biological responses to environmental change. The 

NEP5 model is also being integrated forward in time based on International Panel on 

Climate Change (IPCC) future climate scenarios. Examining stability of the modes and 

possible trends in their principal components within the forecast simulations together 

with the hindcast biological correlations may provide researchers the ability to diagnose 

potential ecosystem impacts of climate change, to the extent that the correlated 

relationships reflect stationary processes. Identifying mechanistic links between the bio

physical covariates should remain a topic o f high priority in future Bering Sea research.
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3.7 Concluding remarks

Our analyses show that a number of lower and upper tropic level population 

indices are related to the physical variability predicted by the NEP5 results. The model 

results allow us to complement the limited set of physical observations and examine 

spatial and temporal patterns of variability. In aggregate, this approach has provided 

additional insights on ecosystem variations, or at least suggested future directions for 

examining this variability.

The application of a 35-year ocean-ice hindcast to the Bering Sea shelf region 

provides some insights to the variability o f the sea ice and thermohaline conditions on the 

Bering Sea shelf. Model strengths include the ability to reproduce 85% of the annually 

integrated ice variability and up to 50% of the monthly temperature variability; 

weaknesses include the low skill in reproducing monthly salinity anomalies and 

somewhat overly energetic circulation fields. Although the model provides some useful 

proxy time series in regions that lack observational data, it does not capture all of the in 

situ variability and improving the hindcast skill remains a high priority for the future.

Model improvements that are currently being implemented will provide additional 

utility and should strengthen several o f the comparisons made above. These 

modifications include: the incorporation of a coastal discharge field that contains both 

monthly and inter-annual variability [Dai et al., 2009], the relaxation of the northern 

boundary condition so that the Bering Strait fluxes can more realistically respond to the 

instantaneous wind field and a spatially varying light attenuation coefficient. Our initial 

investigations suggest that accounting for water opacity improves the bottom temperature 

high bias seen in NEP5. Presumably these improvements will lead to a better mechanistic 

understanding of this shelf ecosystem, its variability, and perhaps its future trajectory. In 

the meantime, this work provides a baseline set o f model evaluations that will help guide 

future improvements, applications and analyses.
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3.10 Tables

Table 3.1: Sources of historical tidal parameters, moored time series data, and net 
speed and direction statistics used in model evaluations. Locations o f these data are 
shown in Figure 3.3A, Figure 3.3B and Figure 3.3C.

Source Param eters o r Dataset
Muench and Schumacher, 1980 Tidal harmonics
Pearson et al., 1981 Tidal harmonics
Schumacher et al., 1982 Net speed/direction
Schumacher and Kinder, 1983 Net speed/direction
Schumacher et al., 1983 Net speed/direction
Mofjeld, 1984 Tidal harmonics
Mofjeld et al., 1984 Tidal harmonics
Mofjeld, 1986 Tidal harmonics
Greisman, 1985 Tidal harmonics
Isaji and Spaulding, 1987 Tidal harmonics
Muench et al., 1988 Net speed/direction
Schumacher and Reed, 1992 Tidal harmonics and net speed/direction
Roach etal., 1995 Net speed/direction
Kowalik and Stabeno, 1999 Tidal harmonics
Stabeno et a l, 2002a Net speed/direction
Danielson and Kowalik, 2005 Tidal harmonics
Stabeno et a l, 2005 Net speed/direction
Danielson et a l, 2006 Net speed/direction
Z. Kowalik (unpubl. Data, 2008) Tidal harmonics
www.tidesandcurrents.noaa.gov Tidal harmonics
http://www.nbdc.noaa.sov/ Sea surface elevation time series
NOAA/PMEL EcoFOCI program 
http://www.ecofoci.noaa.BOv/efoci data.shtml

Moored temperature, salinity and current records at site M2

UAF Institute of Marine Science database 
www.ims.uaf.edu Moored current records at site F8

http://www.tidesandcurrents.noaa.Bov
http://www.nbdc.noaa.sov/
http://www.ecofoci.noaa.ROv/efoci
http://www.ims.uaf.edu
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Table 3.2: Number of CTD and bottle stations for each region shown in Figure 3.3D.
The region numbers correspond to those shown in Figure 3.3D and Figure 3.9. Symbols 
0  = latitude, <t> = longitude.

Region Region
Num ber

Number of 
observations 
a t 10 m depth

N um ber o f 
observations 

a t 70 m depth

0  < 60 °N, depth < 50 m, 0  > 176 °E 1 1742 -

0 >  6 0 °N,depth < 5 0  m,<t>> 176 °E 2 3084 -

0  < 60 °N, 50 m < depth < 100 m, > 176 °E 3 4012 3480

0  > 60 °N, 50 m < depth < 100 m, O > 176 °E 4 777 497

0  < 60 °N, 100 m < depth < 200 m, <t> > 176 °E 5 1668 1699

0  > 60 °N, 100 m < depth < 200 m, <I> > 176 °E 6 253 263
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Table 3.3: Time series employed for correlation analyses and their sources.

Index Acronym Parameters) Source

Pacific Decadal 
Oscillation PDO

First mode o f North 
Pacific sea surface 

temperature variability
http://jisao.washington.edu/pdo

North Pacific 
Gyre 

Oscillation
NPGO

Second mode of North 
Pacific sea surface 

elevation variability
http://www.o3d.org/npgo/data/NPGO.txt

Arctic
Oscillation AO

First mode o f  northern 
hemisphere 1000 mb 
pressure variations

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ 
dailyaoindex/monthly.ao.index.bSO.current.ascii

Pacific-North
American PNA

Second mode o f  northern 
hemisphere 500 mb height 

variations

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/
norm.pna.monthly.b5001.current.ascii

North Pacific 
Index NP

Sea level pressure 
integrated over 

30 °N -  65 °N and 160 °E 
-  140 °W

http://www.cgd.ucar.edu/cas/jhurrell/indices.data.html

Integrated Ice 
Area HA

Eastern Bering Sea 
concentration-weighted 

integrated ice area

Compiled by Danielson et al. (2011), data from: 
http://nsidc.org/data/seaice/pm.html

Wind direction 
anomaly WDA October-May wind 

direction at 60 °N, 170 “W

Compiled by Danielson et al. (2011), data from: 
http://www.esrl.noaa.gov/psd/data/gridded/ 

data.ncep.reanalysis.html

GAK1CTD GAK1T
GAK1S

Observed temperature and 
salinity anomalies over 0

20 m and 200-250 m 
depth strata

http://www.ims.uaf.edu/gak 1 /

Fresh water 
discharge FWD GOA coastal runoff http://www.ims.uaf.edu/gak 1 /

Bering Sea 
ecosystem 

indicator time 
series

Phytoplankton, fish, 
shellfish and seabird 

indices including 
measures o f biomass, 
recruitment, survival, 
condition, location, 

productivity, abundance, 
and phenology

Compiled by F. Mueter; http://bsierp.nprb.org/

http://jisao.washington.edu/pdo
http://www.o3d.org/npgo/data/NPGO.txt
http://www.cpc.ncep.noaa.gov/products/precip/CWIink/
http://www.cpc.ncep.noaa.gov/products/precip/CWIink/pna/
http://www.cgd.ucar.edu/cas/jhurrell/indices.data.html
http://nsidc.org/data/seaice/pm.html
http://www.esrl.noaa.gov/psd/data/gridded/
http://www.ims.uaf.edu/gak
http://www.ims.uaf.edu/gak
http://bsierp.nprb.org/
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Table 3.4: Statistics of current meter vectors compared to co-located (in space and 
time) model-derived vectors. From left to right, columns denote: latitude band o f 
observations, N = number of current meter records within the latitude band and, in 
parentheses, the number o f records with 95% confidence limits on the mean speed; L = 
mean record length in months; Onme:0 = magnitude of error represented as a fraction of 
the observed mean speed, |0-M|:0 = magnitude o f observed-model speed difference 
represented as a fraction of the observed mean speed, |0| = mean observed speed, |0-M| 
magnitude of observed-model speed difference, A0 = magnitude of mean vector direction 
difference. Values in columns 4 and 5 reflect quantities that are only available for the 
subset o f stations with error estimates.

Region N L (months)
0 n .„ :0

<%)

O
 

W 
0 |0 | 

(cm s'1)
|0 -M | 

(cm s'1)
A8
(° )

mean median mean median mean mean median mean median
64.5 < Latitude 18(1) 5.7 14 14 29 30 24.6 7.4 5.7 10 10
61 < Latitude < 

64.5N 47(14) 5.0 55 39 54 52 5.2 2.8 1.7 55 30
55 < Latitude < 61N 10(10) 7.4 50 45 76 30 2.5 1.1 0.9 77 46

Latitude < 55 N 29(4) 18.8 80 76 79 81 16.1 10.8 8.7 75 79
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Table 3.5: Results of cross-correlations between the principal components and 
various environmental time series. Relations that are significant at the 95% level are 
boldfaced. Column headings with three-character alphanumeric abbreviations distinguish 
temperature (T) and salinity (S) principal components 1-3 over upper (U, 0-20 m) and 
lower (L, 40-100 m) depth layers.

Index T1U T2U T3U S1U S2U S3U TIL T2L T3L SIL S2L S3L

PDO 0.59 0.21 0.10 0.22 0.30 -0.65 0.69 0.17 0.27 -0.55 0.27 0.40

NPGO -0.36 0.47 -0.09 -0.18 0.51 0.39 -0.04 -0.63 -0.16 0.22 0.40 -0.57

AO -0.31 -0.10 0.02 0.10 -0.13 0.27 -0.47 -0.19 0.04 0.07 -0.19 -0.28

PNA 0.15 0.54 0.05 0.02 0.37 -0.31 0.47 -0.14 0.21 -0.30 0.22 0.22

NP -0.36 -0.25 -0.06 0.02 -0.24 0.57 -0.49 -0.05 -0.24 0.31 -0.23 -0.34

1IA -0.67 -0.16 0.59 -0.79 -0.23 0.20 -0.56 -0.06 0.10 0.23 -0.20 -0.29

WDA 0.44 0.08 -0.38 0.52 0.13 0.06 0.44 0.11 -0.22 -0.03 0.20 0.09

GAK1 0-20 m T 0.25 0.23 -0.26 0.27 0.12 -0.33 0.36 0.01 0.16 -0.43 0.04 0.16

GAK1 0-20 m S -0.22 -0.03 0.13 -0.16 0.12 0.27 -0.16 0.02 -0.04 0.23 0.02 -0.17

GAK1 200-250 m T 0.40 0.62 -0.07 0.24 0.70 -0.33 0.63 -0.36 0.28 -0.46 0.52 0.04

GAK1 200-250 m S 0.08 -0.12 -0.06 0.20 -0.03 0.23 -0.12 -0.29 -0.01 0.10 -0.19 -0.29

FWD -0.07 0.56 0.22 -0.12 0.59 -0.12 0.24 -0.43 0.15 -0.07 0.43 -0.14
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Table 3.6: Temporal correlations between ecosystem indicator time series and the 
principal components (PC). All relations are significant at the 95% level. Columns 
include: r = correlation coefficient, rc = critical value, N = number of years; EDOF = 
effective degrees of freedom. Three-character alphanumeric principal component 
abbreviations distinguish temperature (T) and salinity (S) EOF modes 1-3 over upper (U, 
0-20 m) and lower (L, 40-100 m) depth layers.

PC Index r Ir.l N EDOF
Average annual condition index (summer) for walleve nollock 0.87 0.75 7 5
Average annual condition index (summer) for Pacific cod 0.86 0.82 8 4
Total net primary production (May-November) over southeastern Bering Sea shelf -0.85 0.75 7 5

T2U Residuals from a spawner-recniitment relationship for snow crab 0.44 0.42 25 20
Temperature adjusted depth distribution of 39 species in bottom trawl survey -0.47 0.46 23 17
Total mature biomass o f Togiak stock o f Pacific herring based on stock assessment 0.62 0.58 27 10
Female spawning stock biomass o f rock sole based on stock assessment results -0.52 0.48 30 15
Index o f capelin abundance from summer bottom trawl survey -0.60 0.44 23 18
Female spawning stock biomass of rock sole based on stock assessment 0.46 0.44 30 18
Estimated abundance index for common murres at St. Paul Island -0.41 0.38 29 25
Productivity index for red-legged kittiwakes at St. Paul Island -0.43 0.40 25 23
Productivity index for red-legged kittiwakes at St George Island -0.39 0.37 29 27
Phenology o f  red-legged kittiwakes at St.Paul Island 0.41 0.40 24 22
Estimated onset o f spring bloom over inner shelf -0.87 0.75 7 5
Recruitment o f age-4 rock sole by year class 0.54 0.48 33 15

S2U Counts o f common murres at index sites on St.George Island -0.63 0.58 12 10
Phenology o f  red-legged kittiwakes at St.Paul Island -0.48 0.41 24 21
Phenologv o f  common murres at St.George Island -0.42 0.40 27 23
Estimated onset of spring bloom near mooring M2 0.78 0.77 7 5
Female spawning stock biomass o f yellowfin sole based on stock assessment results -0.35 0.35 35 30
Average annual condition index (summer) for yellowfin sole -0.83 0.77 8 5
Temperature adjusted death distribution of 39 species in bottom trawl survey -0.45 0.44 23 18
Estimated spring stratification date on middle shelf near mooring M2 -0.39 0.37 35 27
Estimated onset of spring bloom over inner shelf -0.81 0.75 7 5
Recruitment o f juvenile snow crab by approximate year class (25-50 mm, ~ age 5) 0.56 0.47 29 16

TIL Residuals from a spawner-recruitment relationship for snow crab 0.59 0.53 25 12
Average annual condition index (summer) for Pacific cod 0.72 0.71 8 6
Walleye pollock size-at-age anomalies during summer for the first age adequately sampled 0.82 0.79 7 4
Phenology o f  black-legged kittiwakes at St.George Island 0.40 0.37 28 26
Phenologv o f  common murres at St.George Island -0.48 0.44 27 19
Combined groundfish stock standardized index of recruitment across 11 stocks -0.55 0.41 35 21

T2L Temperature adjusted depth distribution of 39 species from bottom trawl survey 0.49 0.46 23 17
Counts o f common murres at index sites on St.George Island 0.62 0.59 12 9
Average downward shift in depth distribution o f  39 species in bottom trawl survey 0.46 0.41 23 21

T3L Productivity index for black-legged kittiwakes at St. Paul Island -0.51 0.42 25 20
Productivity index for common murres at St.Paul Island -0.61 0.59 18 9
Total yellowfin sole biomass based on 2007 stock assessment (age 2+) -0.64 0.62 35 9
Female spawning stock biomass of yellowfin sole based on stock assessment results -0.65 0.62 35 8
Productivity index for black-legged kittiwakes at St. Paul Island 0.55 0.43 25 19

S1L Productivity index for common murres at St.George Island 0.53 0.46 20 17
First principal component o f seabird productivity time series 0.48 0.43 25 19
CS St. Paul Island thick billed murre -0.65 0.49 20 15
Phenologv o f  common murres at St.Paul Island 0.57 0.49 28 15
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Table 3.6, Continued
PC Index r ir.l N EDOF

Estimated onset of spring bloom over inner shelf -0.95 0.91 7 3
Recruitment o f age 1 walleye pollock by year class -0.38 0.36 35 28
Recruitment o f age-4 rock sole by year class 0.45 0.39 33 24
Gadid recruitment anomaly: average of normalized pollock & cod recruitment series -0.43 0.40 27 23
First principal component o f fish recruitment series -0.45 0.43 26 19

S2L Residuals from a spawner-recruitment relationship for walleye pollock -0.47 0.40 35 23
Average annual condition index (summer) for yellowfin sole 0.87 0.79 8 4
Average downward shift in depth distribution o f 39 species in bottom trawl survey -0.47 0.41 23 21
Phenology o f red-legged kittiwakes at St.Paul Island -0.46 0.41 24 21
Phenology o f thick-billed murres at St.Paul Island -0.60 0.46 28 17
PhenoloEV o f black-legged kittiwakes at St.George Island 0.50 0.40 28 23

S3L Estimated onset of soring bloom over southeast Bering shelf based on SeaWifs -0.95 0.92 7 2
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3.11 Figures

70° N -
E a s t

S ib e r ia n

S e a

Beaufort 
S c  a

■ 70' N

C h u k c h i

S e a

65° N -
Siberia Alaska

•65° N

60° N '

55° N -
B ering  Sea  *

Yukon
River

J

•60° N

■55° N

G u lf  o f  A la ska

180° 175° W  170° W  165° W  160° W

D
e
P
t
h

m

I

I

Io20

50
100I 200
500

1000
7000

155° W

kmBeaufort Gyre 
Atlantic Water
Siberian Coastal Current Q  500
Alaska Coastal Water 
Bering Shelf Water
Aleutian North Slope - Bering Slope -  Anadyr Waters 
Alaskan Stream
September Ice Edge Maximum Extent 
March Ice Edge Maximum and Minimum Extents

Figure 3.1 Schematic of the eastern Bering Sea and adjacent regions with major 
(idealized) summertime current and water mass features, typical spring and fall ice 
extent bounds, and place names. Mooring site and island abbreviations include: F8 = 
mooring F8; M2 = mooring M2; SLI = St. Lawrence Island; NI = Nunivak Island; PI = 
Pribilof Islands; SMI = St. Matthew Island.



Figure 3.2: NEP5 model domain extent and bathymetric depths plotted on a 
Mercator projection map.
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Figure 3.3: Locations of data employed in model evaluations. A) Moored current 
meter sites with tidal ellipse parameters; B) moored and coastal sea level elevation 
stations with tidal amplitude parameters; C) moored current meter sites with mean speed 
and direction statistics. D) Regions 1-6 bound CTD and discrete bottle samples listed in 
Table 3.2. Contours are drawn at 50 m, 100 m, 200 m and 2000 m depths.
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Figure 3.4: NEP5 model-derived M2 co-tidal chart for the Bering Sea and Gulf of 
Alaska. Amplitudes are contoured with color shading; Greenwich phase contours are 
labeled in degrees.
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Figure 3.5: Comparison of model-derived M2 tidal elevation and current analyses at 
the locations of the moored and coastal tide stations plotted in Figure 3.3. Panels 
show tidal elevation (A), elevation phase (C), tidal current ellipse semi-major axis 
magnitude (B) and current ellipse phase (D). Solid lines depict the 1:1 ratio. Symbols 
denote stations located in different regions: squares are from the Bering shelf, triangles 
from the deep North Pacific and Gulf o f Alaska, plusses from the GOA shelf and circles 
from the deep Bering basin and Aleutian Islands.
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Figure 3.6: Vertical structure of the M2 (left) and Ki (right) tidal ellipse parameters.
Depths (Zr) and tidal parameters (UrM= semi-major axis; Unn = semi-minor axis; 0r= 
inclination; (|)r = Greenwich phase) are scaled as described in the text. Shading and lines 
bound the 95% confidence limits on the observed and model ellipse parameters 
respectively.
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Figure 3.7: Power spectra density (PSD) at 10 m (upper four panels) and 50 m 
(lower four panels) depths at mooring site M2 from observations (shading) and 
model (lines). Shading and lines delimit the 95% confidence limits. Short (10-30 hr) 
and long (>30hr) period portions o f each spectrum are shown separately. The clockwise 
(CW) and counterclockwise (CCW) rotating components are shown on the left and right, 
respectively.
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Figure 3.8: Mooring site M2 1995-2005 annual cycle of temperature and salinity 
monthly means and anomalies from 10 m (upper row) and 60 m (lower row) depths.
Model (mooring) data are plotted with plus (circle) symbols and solid (dashed) lines 
indicate the 95% confidence interval upon each monthly mean. Notation indicates the 
number of months (N), correlation coefficients (r) and p-values for N-2 degrees of 
freedom. Straight lines depict the least squares best fit.
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Figure 3.9: Tem perature and salinity Taylor diagram s for the 10 m and 70 m depth 
levels. Symbols correspond to the regions listed Figure 3.3 and listed in Table 3.1. 
Regions 1-6 are associated with the plus, circle, square, diamond, triangle and cross 
symbols respectively. Each point represents month-specific summary statistics for the 
cases where p < 0.05 and the parameters fall within the ranges of the diagrams (a few 
points with large RMSD fall off the figures). The point marked CTD represents the 
observational reference with RMSD’ = 0, r = 1, and 0 = 1 .
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Figure 3.10: Near-bottom contours of T’ and S’ from CTD data (upper panels) and 
model hind-casts (lower panels). T’ = T-Tmean and S’=S-Smean- BASIS CTD data were 
collected between 14 August and 30 September 2004; model results are the two-month 
average of the 2004 August and September fields. BASIS samples were collected at the 
locations marked with black dots.
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Figure 3.11: Bering Sea integrated ice extent and anomalies from the model and 
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daily anomalies (D) and annual anomalies (E). Observations are plotted in grey, model 
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Figure 3.12: Comparison of modeled and observed ice concentrations. The observed 
mean monthly ice concentration is given with blue contours in all rows for the months 
indicated. Color shading depicts the mean model -  observed ice concentration difference 
(top row); standard deviation of the model -  observed difference (second row); model -  
observed RMSD (third row) and the model:observed cross-correlation (bottom row). 
Shading increments occur at integer multiples of 10% for the first three rows and at 
integer multiples of 0.1 for the cross-correlations. Yellow contours bound regions where 
the correlation is significant at the 95% level.
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Figure 3.13: Time series of the annual num ber of ice-free days. Straight lines depict 
the least squares best fit linear trend to each series for the period of overlap (1979-2004). 
Observational results are represented with plus symbols and the dotted trend line. Model 
results are represented with circles and the solid trend line. The range of the observed 
open water season is shaded separately for the 1979-1991 and 1992-2004 time periods.
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Figure 3.14: Correlation maps of 1970-2005 NEP5 hindcast monthly average 0-20 m 
tem perature (left) and salinity (right) time series. The reference point is located near 
mooring M2, denoted with a black dot.



4 .0  4 .0  *3.0  -2.0  >1.0  4 .5  0.5  1.0  2.0  3.0  4.0 0.0

Seal* Factor (x 100)

Figure 3.15: EOFs of the NEP5 hindcast near surface (0-20 m) and subsurface (40
100 m) temperature (upper two rows) and salinity (lower two rows) fields.
Percentages describe the fraction o f the total variance explained by each pattern. The 
right-most panels show the principal component amplitudes associated with the first 
(blue), second (green) and third (red) EOFs. EOF magnitudes are shown by the 
(nonlinear) colorbar and are scaled by a factor of 102.
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Chapter 4: Circulation on the central Bering Sea shelf1

4.1 Abstract

We examine the July 2008 to July 2010 circulation over the central Bering Sea 

shelf, using measurements at eight instrumented moorings, hindcast winds and numerical 

model results. At sub-tidal time scales, the vertically integrated equations o f motion 

show that the cross-shelf balance is primarily geostrophic. The along-shelf balance is 

also mainly geostrophic, but local accelerations, wind stress and bottom friction account 

for 10-40% of the momentum balance, depending on season and water depth. Water 

column average vector mean speeds are < 5 cm s'1 in all months. Mean/peak speeds in 

summer (3-6 cm s'Vl0-30 cm s'1) are smaller than in winter and fall (6-12 cm s ‘/40-70 

cm s'1). Low frequency flows (< 'A cpd) are horizontally coherent over distances > 200 

km. Vertical coherence varies seasonally and degrades with the onset of summer 

stratification. Wind-forced Ekman dynamics appear primarily responsible for flow 

variations. The system as a whole changes abruptly from strong northward flow (with 

coastal convergence) to strong southward flow (with coastal divergence) for northerly 

and easterly or southeasterly winds, respectively. Over these two years with extensive 

ice cover, northwesterly winds dominated (64% of the time), although southeasterly 

winds resulted in more energetic currents. These results suggest that a substantial portion 

of the entire shelf undergoes a major reorganization of currents and associated material 

fluxes as it changes between the two circulation modes. Under southeasterly winds, 

northward transport increases. Under northwesterly winds, nutrient-rich waters flow 

toward the central shelf from the north and northwest, replacing dilute coastal waters that 

are carried south and west.

Danielson, S., T. Weingartner, K. Aagaard, J. Zhang, and R. Woodgate, 2012. 
Circulation on the central Bering Sea shelf, Draft manuscript prepared for submission to 
J. Geophys. Res.
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4.2 Introduction

The shallow and broad central Bering Sea shelf is the region south of St.

Lawrence Island and north of Nunivak Island (Figure 4.1). It experiences cooling, ice 

production, and brine production in winter [Drucker et al., 2003], solar heating in 

summer, strong winds in fall, winter and early spring [Brower, et al., 1988; Bond et al., 

1994], large river discharges in summer [Brabets et al., 2000], and strong tidal currents 

[Pearson et al., 1981; MoJjeld, 1984; Kowalik, 1999; Danielson and Kowalik, 2005]. 

Thermohaline characteristics exhibit large inter-annual variability [Takenouti and Ohtani, 

1974; Coachman et al., 1975; Danielson et al., 2011], but the causes of these variations 

are not fully described.

North of St. Lawrence Island, the shelf flow is dominated by a net northward 

transport through Bering Strait of ~ 0.8 Sv (1 Sv = 106 m3 s '1) [Roach et al., 1995; 

Woodgate et al., 2005a], ascribed to a sea surface height difference of ~ 0.5 m between 

the North Pacific and Arctic oceans [Stigebrandt, 1984; Overland and Roach, 1987; 

Aagaard et. al, 2006; Woodgate et al., 2005b], and in opposition to the mean wind. 

Westward intensification associated with the topographic beta effect forces Bering Sea 

slope waters on-shelf through the Gulf of Anadyr [Kinder et al., 1986]. Measurements 

[Muench et al, 1988; Coachman, 1993] and models [Overland and Roach, 1987; 

Spaulding et al., 1987; Clement et al., 2005] suggest that 70-80% of the Bering Strait 

flow first passes through Anadyr Strait, with the rest flowing through Shpanberg Strait. 

Mooring- and satellite-based estimates of the instantaneous transport through Bering 

Strait range between about -3 Sv to +4 Sv [Coachman and Aagaard, 1988; Roach et al., 

1995; Cherniawsky et al., 2005; Woodgate et a l, 2005a]. Numerical model results and 

observations [Overland and Roach, 1987; Muench et al, 1988] indicate that flows in 

Shpanberg Strait can reverse to southward while the flow in Anadyr Strait is northward. 

Mean northerly winter winds (blowing toward the south) retard the northward flow in 

Bering Strait [Overland and Roach, 1987], and October-March northward transports are 

typically one-half to two-thirds those of April-August [Roach et al, 1995; Woodgate et 

al., 2005a].
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Over the inner (0-50 m depths) and middle (50-100 m depths) southeastern Bering 

shelf, tidal currents are large (the two largest tidal constituents, M2 and Ki, sum to 25-55 

cm s'1) [.Pearson et al., 1981; Kowalik, 1999; Stabeno et al., 2010], and mean subtidal 

flows are small (1-5 cm s '1) [Schumacher and Kinder, 1983; Stabeno et al., 2010], The 

middle shelf contains cold waters below the summer pycnocline [Coachman, 1986]. The 

southern extent of this “cold pool” is primarily determined by the previous winter’s ice 

extent. Currents over the outer shelf (between the shelfbreak and 100 m isobath) are 1-10 

cm s'1, with the flow more or less steadily northwestward along the isobaths [Kinder and 

Schumacher, 1981; Schumacher and Kinder, 1983; Schumacher and Reed, 1992; Stabeno 

et al., 2001; Stabeno et al, 2002a]. Along the continental slope, the Bering Slope Current 

is a relatively swift (5-20 cm s"1) and deep cyclonic boundary current with a transport of 

~ 6 Sv [Favorite, 1974; Royer and Emery, 1984; Overland et al., 1994; Roden, 1995; 

Johnson et al., 2004; Stabeno et al., 2009]. Inflow from the Gulf o f Alaska through 

Unimak Pass [Schumacher et al., 1982; Stabeno et al., 2002b] delivers low-salinity 

waters from the Gulf of Alaska, representing a first-order contribution to the shelf fresh 

water budget [Weingartner et al., 2005; Aagaard et al., 2006].

Inter-annual temperature variations over the southeastern shelf in spring are 

related to the previous winter’s sea ice extent and timing of retreat [Stabeno et al., 2001; 

Stabeno et al., 2002b]. Ice extent, in turn, is related to the combination of southward 

advection of ice caused by winds from the north and low air temperatures [Overland and 

Pease, 1982; Niebauer et al., 1999]. At the end of summer, water column heat content 

over the central and southeastern shelf reflects a combination of the heating season’s 

incoming solar radiation anomaly and along-shelf transport anomalies, whereas the salt 

content appears to be set by the previous winter’s cross-shelf transport anomaly 

[Danielson et al., 2011].

The central shelf is understudied compared to the southeastern shelf and Bering 

Strait. The Yukon River (sixth-largest in North America), discharges adjacent to the 

central shelf, nearly 90% of its annual discharge (~ 200 km3) occurring between May and 

October [Brabets et al., 2000]. The mean eastward flow south of St. Lawrence Island
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turns northward in Shpanberg Strait, where it encounters the Yukon plume. This 

eastward flow can reverse under strong northerly and easterly winds [Schumacher et al., 

1983; Danielson et al., 2006]. There are relatively few measurements southward to St. 

Matthew and Nunivak islands, but the available data suggest small mean flows, high 

variance, and a net northward drift [Kinder and Schumacher, 1981; Aagaard et al., 1985; 

Muench et al., 1988; Danielson et al., 2006]. Numerical models and the few available 

observations also suggest the possibility of prolonged westward and southward flows 

[Overland and Roach, 1987; Muench et al., 1988].

Winter ice formation and southward drift depend on favorable winds [Muench 

andAhlnas, 1976; Pease, 1980; McNutt, 1981] and lead to southward transport of 

comparatively fresh waters [Zhang et al., 2010] produced by melting along the southern 

edge of the ice pack [Pease, 1981]. Brine generated by ice formation in polynyas results 

in density gradients capable of driving a baroclinic pressure gradient large enough to be 

important to the momentum balance [Schumacher et a l, 1983].

Density gradients along the Alaskan coast during summer imply a northward 

buoyancy-driven coastal jet [Danielson et al., 2011]. The front, which presumably traps 

river discharge close to the coast through the summer months, likely breaks down in fall 

with the onset of strong wind forcing. Danielson et al. [2006] observed that near-surface 

(1 m and 10 m drogue depths) satellite-tracked drifters exhibited westward motion in the 

fall and suggested that this motion occurs annually.

Our primary goal here is to gain a better mechanistic understanding o f the central 

shelf flow and its relation to the varying wind and thermohaline fields. Our results bear 

on numerous eco- and climate system issues, including aspects of salmon migratory 

behavior [Mundy and Evenson, 2011], advection o f passively drifting larvae [Wespestad 

et al., 2000; Wilderbuer et al., 2002; Orensanz et al., 2004], nutrient replenishment and 

net production over the Bering shelf [Sambrotto et al., 1986; Whitledge et a l, 1986; 

Mathis et a l, 2010], and heat, nutrient, and fresh water fluxes northward into the Arctic 

Ocean [Aagaard and Carmack, 1989; Woodgate et al., 2010].
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We begin with a descriptive overview of the oceanic and atmospheric conditions 

during the course o f our field program, and a kinematic summary of the flow field. We 

then investigate the circulation dynamics by examining the vertically integrated equations 

of motion, along with geostrophic velocity computations. Finally, we use model-based 

sea surface height (SSH) hindcasts and analyses o f the vertical and horizontal structure of 

the flow field to investigate the effects o f variable wind forcing, with particular emphasis 

on the wind direction.

The results described here are part o f the National Science Foundation’s Bering 

Ecosystem STudy (NSF-BEST) program, the North Pacific Research Board’s Bering Sea 

Integrated Ecosystem Research Program (NPRB-BSIERP) [BEST-BSIERP Program 

Summary, 2010] and the National Oceanic and Atmospheric Administration’s Bering- 

Aleutian Salmon International Survey (NOAA-BASIS) program. Collectively, these 

programs supported an intensive set of collaborative field surveys, modeling efforts and 

analyses between 2007-2011. Our primary data set here is from eight moorings on the 

central Bering shelf, deployed during July 2008-July 2010 as part o f the NSF-BEST 

program.

Data sets, data calibration and quality control, and numerical model fields are 

described in Section 4.3. Section 4.4 presents results in three major subsections: an 

overview of the current meter, temperature, salinity and wind records (4.4.1-4.4.3); the 

vertically integrated momentum balance and an evaluation o f baroclinic contributions 

(4.4.4); and an analysis o f co-variability o f the current, wind and sea surface height 

(SSH) fields (4.4.5). A discussion of the results and a summary are given in Sections 4.5 

and 4.6, respectively.

4,3 Data and methods

4.3.1 Mooring configurations

From July 2008 to July 2010, eight subsurface moorings were deployed on the 55 

m, 40 m and 25 m isobaths (Figure 4.1 and Table 4.1) for one year at a time. Moorings 

located on the 40 m and 55 m isobaths were each equipped with an upward-looking
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Teledyne RDI acoustic Doppler current profiler (ADCP) mounted just above the acoustic 

release. A Seabird (SBE) temperature/conductivity (T/C) data logger was co-located with 

the acoustic release; a second SBE T/C data logger was located near 20 m depth. Some 

of the T/C loggers also recorded pressure (P). Moorings on the 55 m isobath each had a 

T/C/P data logger at 10 m, connected to the rest of the mooring via a weak link, and an 

inductive modem transmitted the data to a remote data logger mounted near the 20 m T/C 

recorder. This configuration was employed to measure close to the surface while 

providing some protection to the data and the mooring in the event that ice keels or 

extreme waves destroyed or removed the uppermost float. The configuration worked 

well. Although we lost four out of six 10 m instruments, we obtained data through the 

breakdown of fall stratification in both years. Also mounted on the 55 m moorings was a 

string of thermistors spaced 2-4 m apart between the 20 m and near-bottom T/C 

recorders.

Moorings on the 25 m isobath employed Oceanscience Group SeaSpider tripod 

frames. Each was equipped with a gimbaled upward-looking ADCP and T/C/P recorder 

with pumped intake about 1 m above the seafloor. On the 2009 recovery attempt, one 25 

m tripod deployed just south of Nunivak Island was located acoustically, but never 

recovered. Based on visual inspection by divers we believe that the entire tripod was 

buried by sediment. As a consequence we did not re-deploy at this site in the second 

field year. The 2008-2009 N25 tripod popup buoy canister was also fouled by bottom 

sediment and unrecoverable from the surface, but we were able to recover it with the aid 

of divers in the summer of 2010.

4.3.2 Moored velocity data

With the exception of C55 (whose batteries died prematurely in late May 2009 

and late February 2010), nearly two complete years of current measurements were 

recorded at all mooring sites. Velocity data were recorded with 307 KHz Teledyne RDI 

ADCPs using 30-minute ensembles and 1 m bins at 175 pings per ensemble. This 

protocol yields an expected standard deviation of 1.02 cm/s for each ensemble. Data 

were screened with the following thresholds: correlation limit of 64 counts, error
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amplitude limit of 80 mm/s, and minimum of 40 percent-good pings within any 

ensemble. Both 3-beam and 4-beam solutions that achieved these criteria were retained. 

Velocity vector directions were corrected for magnetic declination based on the 

declination computed halfway through each deployment at each mooring site (corrections 

ranged from 8.9° to 11.3°).

Velocity data were de-tided using the MATLAB T Tide [Pawlowicz et al., 2002] 

harmonic analysis algorithm following Foreman [1978]. Low-pass filtering to isolate 

sub-tidal (> 35 hr) and long period (> 100 hr) currents was implemented with a 6th order 

bi-directional Butterworth filter. Subtracting both the harmonic tide prediction and the 

35-hour low-pass signal from the original time series allows us to isolate non-tidal high 

frequency fluctuations (e.g., inertial motions).

Error estimates for the velocity components are based on estimates o f the integral 

time scale, following Allen and Kundu [1978], Schumacher and Kinder [1983], and 

Emory and Thompson [2001]. Such computations are noisy in practice but analyses o f 

the 35 hr low-pass filtered velocity records at all mooring sites suggest a decorrelation 

time scale less than 48 hours (87% of the estimates gave a time scale shorter than this).

As a conservative estimate, therefore, we use 48 hours to define the effective degrees of 

freedom.

4.3.3 Moored pressure, temperature and salinity data

Each mooring hosted an assortment o f T, T/C and T/C/P data loggers (Table 4.1). 

Seabird SBE-16 and SBE-37 instruments were calibrated at the manufacturer’s facility 

prior to deployment and after recovery. (Exceptions were the 2009-2010 N55 20 m depth 

instrument, which failed beyond repair, and some of the 10 m SBE-37 instruments, which 

were lost during the course of the winter.) The magnitude o f the drift o f the SBE 

temperature probes was less than 0.001 °C over the course o f the deployment. Drift o f the 

conductivity cells resulted in salinity changes from -0.003 to -0.064 (measured at 3.0 

S/m) with the exception of the 20 m instrument on C40, which drifted by -0.154. 

Inspection of the salinity time series suggests that the calibrations did not capture some 

drift. For example, by late spring of the first year, the near-bottom data logger on two of
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the moorings showed water less dense than at 20 m. This likely resulted from silting of 

the near-bottom conductivity cell over the course o f the winter, sediment that was not 

retained in the cell prior to the factory post-season calibration. All salinity data (moored 

and CTD) are based on the Practical Salinity Scale 1978 [UNESCO, 1981].

Onset HOBO Water Temp Pro v2 temperature loggers were mounted on the 55 m 

moorings in order to increase vertical resolution (Table 4.1) o f temperature 

measurements. The HOBO loggers are accurate to within 0.2 °C, with a resolution of 

0.02 °C. Mean temperature differences in February between the upper (20 m and 10 m 

SBE-37s) and lower (-45 m) Seabird instruments on the 55 m moorings is less than 0.01 

°C. Therefore, the water column is nearly thermally homogeneous in February and we 

are able to compute offsets for each HOBO logger based on the average of the 

temperatures measured by the Seabird temperature probes. HOBO logger offset 

corrections range between -0.11 °C and +0.06 °C. We have no means to assess HOBO 

thermistor temperature-dependent bias or drift over the course of the deployment.

4.3.4 Shipboard temperature and salinity data

The BEST, BSIERP and BASIS programs sponsored 21 oceanographic cruises 

that sampled in the study region between March and mid-October over the five year 

interval 2006-2010. Data from 14 of these cruises falls within two seasonal intervals 

relevant to our analysis: March to early June and August to October. Moored 

observations made between 1995-2011 (an interval with near-continual in situ monitoring 

by moored sensors at NOAA station M2 in the southeast Bering Sea) show that the 2007

2010 cruises took place following relatively cold winters, while the 2005-2006 winter 

was close to average [Stabeno et al., 2012]. Profiles collected by SBE-911 CTD 

instruments on these cruises are used to provide an overview of the seasonal changes in 

salinity stratification and to estimate geopotential height anomalies and geostrophic 

velocities associated with the in situ density structure. Processing techniques varied 

slightly amongst responsible institutions, but in each case we employ the final 1 db bin- 

averaged dataset. We estimate that temperatures are generally accurate to within 0.01 °C 

and salinity to within 0.02.
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4.3.5 Gridded sea surface temperatures and ice concentrations

To supplement the moored temperature time series, we employ the Reynolds 

Optimum Interpolation Sea Surface Temperature (OISST) product, version OI.v2 

[Reynolds and Smith, 1994; Reynolds et al., 2002], which is generated daily on a V*° grid 

and incorporates in situ (ship, buoy and drifter) observations along with satellite 

observations and simulated SST estimates in regions with sea ice [Reynolds et al., 2002]. 

Satellite-based estimates o f sea ice concentration are also included in the OI.v2 dataset. 

Comparing the OI.v2 surface temperatures to temperatures measured at 10 m depth on 

our six 55 m moorings, we find the OI.v2 data are biased by 0.54-0.94 °C, but 

significantly (r > 0.95, p < 0.01, Pearson’s r correlation coefficient) cross-correlated with 

temperatures at 10 m.

By combining the daily OISST temperatures with our in situ moored 

measurements, we achieve a full water column depiction of thermal stratification at the 

55 m isobath moorings. Given the loss o f some 10-m instruments and the problems 

associated with satellite detection of SSTs near the ice edge, we do not resolve the upper 

water column thermal stratification well in May and June, however. Stratification due to 

salinity is not well resolved by our mooring measurements, but examination of CTD casts 

shows that the thermocline usually coincides with the halocline except in late spring and 

early summer, when there is salinity stratification from ice melt.

4.3.6 Reanalysis winds

Winds are from the National Center for Environmental Prediction (NCEP) North 

American Regional Reanalysis (NARR) model hindcasts [Mesinger et al., 2006]. The 

1979-present NARR model output includes surface pressure, wind, temperature and 

ocean-atmosphere heat fluxes every three hours on a 32 km grid, and thus provides 

higher resolution than the 2.5°, six-hourly output o f the global NCEP Reanalysis [Kalnay 

et al., 1996] used in many studies o f the Bering shelf [e.g., Ladd and Bond, 2002; Mull, 

2008; Stabeno et al., 2010; Danielson et al., 2011]. We chose the NARR product because 

we are interested in resolving spatial differences in the wind field across the mooring
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array, and because other regional studies have found that the NARR provides good 

representations over the North Pacific and western Arctic [Pickart et al., 2009].

4.3.7 Model-generated sea surface heights

Since we are unable to uniformly reference the moored pressure data to a 

common SSH, we use a model to estimate the daily mean SSH field. That field is then in 

turn used to investigate the regional ocean response to variable wind forcing. Zhang et 

al. [2010] describe the Bering Ecosystem STudy ice-ocean Modeling and Assimilation 

System (BESTMAS) model, and we here update the integration through our mooring 

deployment period. The BESTMAS model was constructed to investigate the sea ice- 

ocean system of the Bering shelf. It is based on the coupled parallel ocean and sea ice 

model (POIM) of Zhang and Rothrock [2003], which consists of the Parallel Ocean 

Program (POP) ocean model [Smith et al., 1992] and the thickness and enthalpy 

distribution sea ice model [Hibler, 1980; Zhang and Rothrock, 2001]. The model 

domain covers the northern hemisphere north of 39 °N with 30 vertical levels and a 

horizontal grid spacing that varies from ~50 km in the North Atlantic to less than 4 km in 

the northern Bering Sea. The BESTMAS model employs the ETOP05 bathymetric 

digital elevation model, and errors in ETOP05 may contribute to errors in the calculated 

SSH field, since, for example, just a 5 m offset represents a 20% water depth error at our 

shallow mooring sites.

4.4 Results

4.4.1 Shelf conditions, July 2008 to July 2010

We begin with a description of temperature, salinity, current, and wind records for 

the central shelf over the course o f the July 2008-July 2010 mooring deployments. 

Examination of monthly mean conditions reveals three intervals for which seasonal 

averages are appropriate: January to March (strong winds, extensive ice cover, ice 

formation and brine expulsion, increasing salinity, little or no thermal stratification, and 

low river discharge); May to September (light or moderate winds, receding or absent ice 

cover, increasing or high levels of stratification, river discharge, fresh water content, and
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heat content); and October to December (very strong winds, decreasing or low levels of 

stratification, river discharge, heat content and salinity). May is a transitional month and 

for some analyses could also have been grouped with January-April.

4.4.2 Temperature and salinity

Temperatures across the array closely follow the annual solar cycle, with surface 

heat fluxes largely controlling the annual cycle of water temperature changes [Reed and 

Stabeno, 2002; Danielson et al., 2011]. Ocean temperatures are re-set each winter to the 

freezing point (~ -1.8 °C) and achieve their maximum values, e.g., ~ 10 °C near 20 m 

depth, in late summer or early fall. Along the 55 m isobath, late-summer water 

temperatures show a strongly stratified two-layer system (Figure 4.2) [compare 

Schumacher and Stabeno, 1998], with a thermocline consistently near 20 m depth 

through August and September 2008, but a progressively deepening one from June into 

October 2009. In the fall o f both 2008 and 2009, strong wind mixing and surface heat 

loss homogenized the water column, first at S55 and C55 (in October) and then at N55 

(in November). Following fall homogenization, cooling continues, such that by the end 

of December (N55) and January (C55 and S55) the entire water column is at the freezing 

point. An ice cover is often observed before temperatures at 10 m depth attain -1.5 °C, 

indicating that at these locations the presence of ice is due to advection from the north 

[Pease, 1980]. Temperatures largely remain at the freezing point through April. In four 

o f the six deployments along the 55 m isobath, temperatures at 20 m rose above -1 °C 

prior to ice retreat, suggesting that ocean heat plays a role in the spring decay of the ice 

pack, either by advection or by absorbing solar radiation [Jackson, et a l, 2010].

In contrast to temperature, the salinity time series depict greater spatial 

heterogeneity and considerable variability on weekly to monthly timescales (Figure 4.3). 

Sites N25 and C25 are closest to the coast and least saline over most of the year, with 

annual salinity minima occurring in fall. The seasonal decline of salinity from late 

summer to a late fall/early winter annual minimum generally progresses from the 

shallowest (25 m) to the deepest (55 m) mooring sites. This is consistent with a 

westward movement of low-salinity coastal waters mixing with ambient shelf waters
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offshore [.Danielson et a l, 2011]. Curiously, waters at mooring C55 remain fresher than 

waters at either N55 or S55 over extended intervals, e.g. July 2008-April 2009 and 

January 2010-April 2010, suggesting that the low-salinity signal at C55 is not due to 

along-isobath advection from the south or the north. Sites N40 and N55, closest to the St. 

Lawrence Island polynya, were the most saline ( S Ma x >  32.5) during winter 2009, while 

in winter 2010 the most saline waters were at N40 and N25 (S m a x  > 33). For parts of 

each winter (but especially in 2010) the salinity increased proceeding inshore from C55, 

C40 and C25. This pattern suggests that as the fresher inshore waters were advected 

away from the coast, they were replaced by higher-salinity waters and/or the shallow 

coastal waters experienced a greater degree of salinization due to freezing, an effect 

enhanced over shallow depths and in coastal polynyas.

In both winters, higher salinities occurred at N55, N40, N25 and C25 than at C55, 

C40, S55 or S40. At these temperatures salinity differences control the horizontal density 

gradients and the salinity distribution at winter’s end implies a mid-shelf salinity 

minimum. Such a feature would promote an anti-cyclonic geostrophic velocity field with 

southward flow along its eastern boundary.

4.4.3 Currents and winds

Figures 4.4 and 4.5 show vertically averaged, sub-tidal (35-hr low-pass filtered) 

time series of the velocity components projected onto their along- and cross-principal 

axes of variation at each mooring site (this rotation maximizes the velocity variance in 

the along-axis direction). Positive (nominally northward) peaks in flow speeds have 

greater magnitude than negative (southward) excursions. Few of the time series exhibit 

seasonal mean velocity components that are statistically different than zero (Table 4.2) 

although all sites experience significant net mean flow over many weekly to monthly 

averaging intervals, such as the mean southward flow extending from March to May at 

C40 and S40 in 2010, and the mean northward flow at all mooring locations in February 

2009. For October-April, typical and maximum 35 hr low-pass filtered current speeds are 

6-12 cm s'1 and 50-70 cm s*' across the mooring array, respectively. Over the May- 

September period, these ranges are 3-6 cm s'1 and 50-70 cm s '1 (Table 4.2).
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The velocity time series show that synoptic-scale variability in the flow field is 

strongly seasonally modulated, with fewer peaks exceeding 25 cm s '1 occurring between 

May and September than in the rest of the year. This is also demonstrated by the fraction 

of the total kinetic energy accounted for by tides, viz., 61-93% between October and 

April and 80-97% between May and September (Table 4.2).

Seasonal changes in the flow field are captured with mean monthly principal axis 

ellipse decompositions (Figure 4.6). At most mooring sites, the fall, winter and early 

spring ellipses are larger, more elongated and more nearly parallel to the local isobaths 

than the ellipses of late spring through late summer. At N55, the ellipse amplitudes are 

much less variable over the course of the year, but the ellipse orientation is more variable.

Analysis of the vertical structure of the sub-tidal horizontal currents reveals that 

for the 55 m moorings, the mean 5-40 m current shear increases from 0.15 s '1 during 

May-December to 0.21 s*1 during January-April, with these means significantly different 

at the 95% confidence level (assuming a velocity decorrelation time of 48 hours, as noted 

in Section 4.3.2). In contrast, at the 25 m moorings the 5 -  20 m shear was largest in fall 

(0.44 s '1), smallest from May-September (0.29 s '1) and intermediate in January-April 

(0.37 s '1), with all these means significantly different from one another.

Winds, strongest in fall months (Figure 4.7), reflect the evolution, location and 

strength of storms associated with the Aleutian Low [Wilson and Overland, 1986; Pickart 

et al., 2009]. The raw (unfiltered) 3-hourly wind record from the NARR grid point 

closest to site C55 contains 20 wind speed peaks with magnitude >15 m s '1. O f these, 17 

occurred in October, November or December 2008 and 2009; the remaining three were in 

July and August 2009. Winds are not strongly polarized, and only 57% of the variance is 

directed along the principal axis. Rotary coherence calculations at all grid points across 

the shelf with respect to the grid point closest to 60 °N, 170 °W reveals that coherence- 

squared values o f 0.8 occur within a radius o f ~ 200 km for long (> 32 hr) periods, but 

only within ~ 100 km for shorter periods (Figure 4.8). Thus, over short time scales the 

wind field is not uniform across the mooring array, which extends over 3 degrees of 

latitude and 4 degrees of longitude.
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Figure 4.9 summarizes averages of the current meter and wind records for the 

periods January-April, May-September and October-December. Winds are in the mean 

northerly during each period, and are strongest in fall and weakest in summer. Along the 

55 m isobath, vertically averaged currents are northward, but southward along the 25 m 

isobath. Mooring C40 vectors are remarkably different from those at the 55 m moorings, 

but are consistent with the flow field depicted by the N40, N25 and C25 moorings. In fall 

and winter, the near surface (5 and 10 m) mean currents often exceed 2 cm s'1 and are 

generally oriented 45° to 90° to the right of the wind.

In summary, synoptic variations in the flow field are large with respect to 

seasonal and annual means, but temperature and salinity fields are dominated by 

variability on monthly to annual time scales. Seasonal averages of the wind and current 

fields show that near-surface (< 10 m) waters flow predominantly westward. Inner shelf 

currents averaged over the entire water column are directed to the south or to the west 

during the fall, winter and early spring. Consistent with this, low salinity is observed at 

the near-shore (shallow) sites in the fall and early winter, and only later in winter at the 

offshore moorings, at which time the moorings closest to St. Lawrence Island and the 

Alaskan mainland show water more saline than at the sites offshore and to the south.

The flow field is neither horizontally uniform, nor do the measurements suggest 

that flow at depth compensates for surface Ekman drift. Consideration both of along- 

shelf variations in the flow field and of the dynamics of surface and bottom boundary 

layers are therefore necessary to construct an adequate picture of the circulation field.

4.4.4 The momentum balance

We next examine the vertically integrated equations o f motion in order to identify 

the relative importance of the various sources and sinks of momentum. Following Brink 

[1998], we vertically integrate the horizontal momentum balance (1), prescribing the 

along-shelf direction with (y, V), positive along the northward-directed principal axis of 

variation (Figure 4.4), and the cross-shelf direction oriented 90° to the right with (x, U).
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From left to right in (1), the five terms represent local and Coriolis accelerations, 

horizontal pressure gradients, and surface and bottom stresses. The parameters include 

the Coriolis frequency (/) and water depth (h) appropriate for each site and the water 

density (pw =1025.3 kg m'3). The surface and bottom stress terms are computed using
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where the neutral drag coefficient Cd is computed following Large and Pond [1981] and 

is doubled [McPhee, 1980] for intervals when the mooring site is covered with ice 

(concentration >= 30%). The linear bottom friction coefficient r is set to 5x1 O'4 after 

Lentz and Winant [1986]; air density (pa) is 1.22 kg m" ; and the wind velocity vector W 

= Wu+iWv uses 3-hourly NARR wind velocities from the grid cell closest to each 

mooring site. The momentum balance is computed with the raw (unfiltered) time series 

o f velocity and wind speeds. Each term is subsequently low-pass filtered (35 hr cutoff) in 

order to focus only on the coherent portion of the flow field (as justified below). 

Nonlinear advective terms are neglected, because the Rossby number R0 = U/JL «  1 for 

characteristic subtidal speed and length scales of 10 cm s '1 and 100 km, respectively. The 

horizontal pressure gradient can not be directly estimated from our data and is therefore 

determined as the residual in the momentum balance. The approach used here depends 

on the surface and bottom drag coefficients. Sensitivity analysis shows that a factor of 

two change in the surface and/or bottom stress drag coefficients alters the magnitude of 

any season’s mean pressure gradient term by typically 5-10% for sites along the 40 m and
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55 m isobaths and by 10-30% for sites along the 25 m isobath. Maximum changes for 

these two depth groupings are 20% and 40%, respectively. Smaller sensitivities are 

associated with the cross-shelf momentum balances than with the along-shelf balances.

An example of all terms in (1) evaluated at one site (C25), which is representative 

of the other sites, is shown in Figure 4.10. The balance is primarily geostrophic in both 

the along-shelf and cross-shelf directions, because only the pressure gradient residual is 

large enough to balance the Coriolis term. Short intervals during which the other terms 

are important, or even dominant, include energetic wind events and transitions between 

positive and negative along-shelf flow, when our assumption of linearity is unlikely to 

hold. To quantify the relative importance of the terms in (1), we compute the seasonal 

mean root-mean-square (RMS) magnitude of each term and scale these as a fraction o f 

the combined total at each site (Figure 4.11). For along-shelf currents, the Coriolis term is 

nearly balanced by the cross-shelf pressure gradient during all seasons, although surface 

stress can account for up to 20% of the balance. Stronger winds in fall generate surface 

stresses slightly larger than those of winter, despite enhanced frictional coupling by 

winter ice. Bottom stress and local accelerations together represent < 10% o f the cross

shelf momentum budget, but up to 30% of the along-shelf balance. The contribution 

from bottom stress terms is proportionally larger (as expected) at the shallow sites, due to 

the dependence on the total depth. The pressure gradient and Coriolis terms also 

dominate the along-shelf momentum balance, however the local acceleration, wind stress 

and bottom friction terms can account for 15-40%, depending on the site and the season. 

The momentum balance averaged across all mooring sites varies little among seasons 

despite seasonal changes to the RMS value of the individual terms (Table 4.3). This 

suggests the importance o f the wind in setting up the SSH gradients, regardless of season.

In addition to the water column’s barotropic response to SSH gradients, horizontal 

variations in the thermohaline fields may play a role in forcing the shelf circulation field. 

We use late winter/spring and late summer/early fall CTD survey data collected between 

2006 and 2010 to examine the mean seasonal changes of the dynamic topography, noting 

that the shallow water depths preclude referencing the computations to a realistic level of
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no motion. We measure in situ shear with the current meters, but direct comparison to 

the baroclinic shear is difficult due to overlap between the surface Ekman layer, the 

bottom Ekman layer and the geostrophic shear.

Between spring and the end of summer, near-shore (shallow) waters warm 

proportionally more than do mid-shelf waters, and they also freshen due to the seasonal 

increase in runoff. In addition, the cold, saline sub-pycnocline waters on the middle shelf 

(including the cold pool) are dense and will therefore tend to stagnate on flat continental 

shelves [Hill, 1996]. By late summer, the juxtaposition of low-density nearshore waters 

with the denser cold-pool waters over the mid-shelf will promote a northward baroclinic 

flow along the eastern side of the cold pool. This hydrographic structure is evident in 

previous cross-shelf transects as well [Coachman, 1986; Kachel et al., 2002; Danielson et 

al., 2011]. We therefore average the late summer-early fall BASIS hydrography from 

2006-2009 to generate the 0-30 db dynamic topography and associated geostrophic 

vectors shown in the right-hand panel of Figure 4.12. South of, but near, St. Lawrence 

Island, the relatively salty and cold waters advected eastward from the Gulf of Anadyr 

are denser than waters farther south. The resulting pressure gradient corresponds to a 

geostrophic eastward flow toward Shpanberg Strait, where the current veers northward 

upon encountering the fresher and warmer waters near the Alaska coast.

In March, April and May, mid- and inner shelf waters are nearly isothermal so 

that the late winter dynamic topography is determined primarily by salinity. Upon 

combining CTD profiles from the March to mid-June cruises of 2006-2010, we find a 

geopotential height minimum south of St. Lawrence Island and along the Alaskan 

mainland coast and a maximum farther offshore (left-hand panel of Figure 4.12). This 

reverses the late summer cross-shelf baroclinic pressure gradient so that by the end of 

winter inner and mid-shelf waters have a southward geostrophic tendency. Similar plots 

from individual year CTD data are generally consistent with this 5-year climatology. We 

note that a late winter salinity minimum over the middle southeastern shelf was also 

observed in an April 1979 cross-isobath transect [Coachman, 1986].
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The baroclinic currents computed from these five years of shipboard data indicate 

that the surface (relative to 30 db) geostrophic vectors are of the same magnitude as the 

observed vertically averaged seasonal mean flow (Figure 4.9), so that the baroclinic field 

appears dynamically important. Whereas the northward baroclinic velocity vectors in 

summer oppose the mean southward (but weak) winds, the southward baroclinic vectors 

in winter are aligned with the prevailing winds. The late winter-spring and late summer- 

fall means in Figure 4.12 probably represent the strongest baroclinic pressure gradients, 

because they include the cumulative effects of cooling and salinization through winter 

and warming and freshening through summer. Very likely the baroclinic velocity field is 

therefore smaller in mid-winter and mid-summer.

The total pressure gradient is the sum of the barotropic pressure gradient ( V 

b̂arotropic) due to wind-forced convergences and divergences and the baroclinic pressure 

gradient ( V Pbarociinic)- We earlier computed V P = Px+iPy as the momentum balance 

residual. Here, we scale the baroclinic contribution against the other terms in equation 

(1). From Figure 4.12 and from inspection of the gridded velocity field for each 

individual cruises, we find that the typical (maximum) 0-30 db geostrophic velocity is 

about 1 (3) cm s '1 and V Pbarociinic is about 1 (3) x 10'6 m s’2. In late winter and late 

summer, V Pbarociinic is therefore generally larger than the local accelerations, wind stress, 

and bottom friction, but 60-90% smaller than the Coriolis term. Comparing these results 

with the pressure gradient residual in equation (1) implies that V Pbarotropic is 2-8 times 

greater than V Pbarociinic- We note also that the SSH field changes rapidly in response to 

synoptic winds, while the temperature and salinity fields evolve more slowly. Hence, the 

cross-shelf baroclinic pressure gradient can alternately oppose and reinforce the changing 

barotropic pressure gradient.

In summary, the momentum balance at all sites is predominantly geostrophic and 

is a response to sea surface height gradients. Changes in the cross-shelf thermohaline 

structure, current and wind velocities, and sea ice seasonally modify the cross-shelf 

momentum balance. In the next section, we examine the vertical and horizontal structure 

of the current field and its relation to the wind field, and we show that Ekman dynamics
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lead to a flow field that is highly sensitive to the wind direction and resultant sea surface 

topography.

4.4.5 Co-variability o f  the current, wind and SSHfields

We next examine the temporal and spatial structure o f the flow field and their 

relation to winds. Following this, we use the BESTMAS model to relate wind and current 

variations to the structure of the SSH field.

Prior evaluations o f the wind-current relationship found weak to moderate 

correlations [Schumacher et al., 1982; Muench et al., 1988; Danielson et al., 2006] over 

the central shelf, although these estimates were primarily based on time-domain 

correlations. Here we first examine the rotary coherence structure (frequency domain 

relations) between near-surface currents and winds across specific portions o f the 

frequency spectrum. All coherence computations are based on non-overlapped windows 

truncated with a Hanning tapering function. The velocity records used for the coherence 

computations were de-tided using harmonic analysis applied to month-long segments.

While energetic flows are roughly coincident across the array (Figures 4 and 5), 

close examination of differences in the phasing and magnitude of currents suggest a flow 

field that evolves with considerable spatial structure over short time scales and whose 

relative magnitude and phasing vary among the various energetic flow events. Figure 

4.13 shows that at high frequencies (periods < 30 hrs), winds and 5 m depth currents are 

incoherent across the array. At low frequencies (periods > 100 hr) winds and currents are 

significantly coherent on average, but with the coherence-squared (y2) ~ 0.4. Inspection 

o f the phase shows that the wind leads the 5 m current by 45-90° for all periods greater 

than ~30 hr. The wind-current coherence peak in Figure 4.13 near 40 hrs is associated 

with a corresponding maximum in wind energy. Analysis o f vertically averaged currents 

and the wind shows the same frequency dependence as for the 5 m currents, although y2 

in the low-frequency band is smaller (~ 0.3).

Based on Figure 4.13, we divide the velocity time series into three frequency 

bands and use vertically averaged currents to compute y2 between each mooring pair,
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shown in Figure 4.14 as a function of separation distance. The high frequency band (13

22 hr) was formed by band-pass filtering the velocity records after subjecting them to 

harmonic de-tiding of month-long segments. This band contains the inertial (13.8 hr at 60 

°N) and near-inertial periods. The mid-frequency band spans periods o f 32 - 102 hr and 

the low-frequency band 128-512 hr.

The high-frequency portion of the spectrum has low coherence (y2 < 0.4) (with a 

slight linear dependency on separation), and most correlations are not significant at the 

95% level. The mid-frequency band shows that 0.4 < y2 < 0.65 at sites within 100 km of 

each other and these are all significant. Moreover, most sites within 200 km of each 

other are also coherent, but only weakly so. The low frequency band is coherent for 

nearly all mooring combinations; values range from 0.6 < y2 < 0.8 at 50-100 km 

separation to y2 < 0.5 at separations > 250 km. With an average separation distance o f -  

85 km between adjacent moorings, the mooring array therefore resolves a large portion of 

the flow field at synoptic to fortnightly time periods.

We next examine the vertical structure of current co-variability in the mid

frequency portion of the spectrum. At the shallow (25 m) sites the currents are coherent 

over the entire water column, although there is some seasonal variation (Figure 4.15). 

Over the 40 and 55 m isobaths, the currents are vertically coherent between 5 m and 30 m 

depth (y2 > 0.6) during fall, winter and early spring, coincident with weak stratification 

and strong winds (see Figures 4.2 and 4.9). Coherence decreases (y2 < 0.6) between mid

spring and late summer below 20 m depth, consistent with Figure 4.2 and other 

observations that find the upper mixed layer is typically between 15 and 30 m depth [e.g., 

Ladd and Stabeno, 2012]. Slight differences in coherence between the fall and winter are 

statistically insignificant, but suggestive o f the influence of ice cover.

We now turn to the SSH field. Pressure measurements made at seven of the eight 

mooring sites were de-tided with a 35-hr low-pass filter, and converted to equivalent SSH 

fluctuations (Figure 4.16). Variations from the record-length means greater than 0.5 m 

occur most often in fall, winter, and spring. The largest SSH excursions are at the 25 m 

sites, where storm surges o f -  1 m are seen in December 2009. Record-length cross
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correlations between the BESTMAS model and observed SSH fields show that the model 

captures from 31% (at N55) to 61% (at N40) o f the observed variability (Figure 4.16). 

With the exception of site N40, correlations between the observed and modeled SSH 

fields are stronger between October and May than during June-September (Table 4.4).

The Rossby deformation radius Rbt = (gH)' 2f ‘ varies from 120 km for water 25 m deep 

to 160 km for 40 m depths and 180 km for 55 m. For comparison, N25 (N40, N55) is ~ 

70 km (170 km, 300 km) due west of the Alaskan mainland. The BESTMAS model and 

the above scaling indicates that mooring N55 was in a region with relatively small 

horizontal SSH gradients, so the lower levels of correlation here are not surprising.

The time of maximum correlation (r) between the wind and observed pressure 

fluctuations varies slightly with water depth, so that at the 25 m and 40 m sites the SSH 

tends to lag the winds by 0-8 hr, with 0.2 < r2 < 0.5, while at the deeper sites r2 < 0.3 and 

the maximum correlation occurs with a lag of up to 20 hrs.

Table 4.3 and Figure 4.11 shows that the overall momentum balance is not 

strongly seasonally variable. Therefore, based on the direction of the mean regional wind 

vector (formed by equally weighting the NARR wind time series from all eight mooring 

sites), we made record-length averages of the mean wind vector, the BESTMAS SSH 

field, and the moored current measurements (Figure 4.17). Because the model output is 

daily, and because of the lagged wind-SSH relation, we made 24-hour averages of the 

wind vector preceding each current measurement to determine the wind direction bins 

used in assembling the panels of Figure 4.17.

Changes in wind velocity impact currents through SSH gradients (Figure 4.17). 

The near-surface (5 m and 10 m depths, red and yellow vectors) flow field is typically 

aligned to the right of the wind field, consistent with surface Ekman dynamics. Deeper in 

the water column, the current vectors generally rotate in a counter-clockwise direction, 

indicating the influence of the bottom Ekman layer. Two panels (wind toward 225 °T 

and 270 °T) show primarily clockwise rotation with depth, however. In this case the 

winds are directed off-shelf and the 5 m currents are directed nearly 90° to the right o f the 

wind. We also note that currents at depth are more closely aligned along the model-
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derived SSH contours than are those near the surface. In aggregate, these observations 

are consistent with the flow field being in near-geostrophic balance and responding 

strongly to the interaction of the wind-driven Ekman flow with the convoluted Bering 

Sea coastline.

The structure of the SSH field and its associated currents is highly sensitive to the 

wind direction. Northerly and northwesterly winds generate the strongest coastal 

divergence (depressed SSHs over Chirikov Basin, Norton Sound and the central shelf), 

but the cross-isobath SSH gradient weakens considerably where the local coastline 

changes from a predominantly north-south orientation (between Norton Sound and 

Nunivak Island) to a more west-east orientation (in Kuskokwim Bay and Bristol Bay). 

The shelf response switches rather abruptly from divergent (northerly winds) to 

convergent (easterly winds) conditions.

We note that the shelfbreak and outer shelf isobath orientations are well 

represented by a line extending from the northwest to the southeast and because the shelf 

flow field adjusts to northerly and easterly winds as described, we segregate all records 

into two modes based on the wind direction. The coastal convergent (i.e., downwelling) 

mode is associated with southeasterly winds and results in along-isobath currents directed 

toward Bering Strait. The coastal divergent (i.e., upwelling) mode is associated with 

northwesterly winds and results in currents directed away from Bering Strait. Divergent 

conditions occurred 64% of the time over the course of our field program; convergent 

conditions occurred the remaining 36% of the time. Southeasterly wind, though less 

frequent during our period of observations, leads to stronger currents than northwesterly 

wind. The net effect of these competing circulation modes yields the highly variable but 

small mean currents that characterize the flow field of the eastern Bering shelf.

4.5 Discussion

We have shown that currents over the central shelf are coherent over scales of 

-200 km for most sub-inertial and sub-tidal frequencies and are moderately (but 

significantly) coherent with the local winds. Vertical coherence of the flow field is 

reduced during late spring and summer, coincident with reduced mean wind speeds and
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increased ocean stratification. Variations in SSH and the underlying current field are 

sensitive to the direction o f wind forcing through the upwelling and downwelling 

responses of the Ekman transport, and the transition from upwelling to downwelling 

conditions occurs for winds directed approximately to the southwest.

Our analysis suggests that the entire central Bering shelf circulation responds 

strongly to coastal convergence and divergence. Convergence is associated with 

enhanced northward flow resulting from coastal sea surface setup caused by on-shore 

Ekman transport driven by southeasterly winds. Coastal divergence results from off

shore Ekman transport driven by northwesterly winds. In general, southeasterly winds 

result in stronger flows, but northwesterly winds occur more often. Note that our 

observations were made during two relatively cold years [Stabeno, et al., 2012], We 

expect that warmer years will likely show a greater proportion of downwelling. The 

more energetic convergent response may be due to the propagation direction o f storms 

across the shelf. Cyclones typically approach the shelf from the southwest and so first 

impart northward momentum with their leading edge of southeasterly winds; the trailing 

edge (northwesterly winds) must first decelerate the northward flow before reversing the 

current direction. Not all high wind events, however, are associated with propagating 

low-pressure systems.

Our synthesis of shelf behavior in fall and winter is consistent with the findings of 

Danielson et al. [2011], who used CTD survey data from the BASIS program to show 

that the freshwater content over the shelf is correlated with the October-May wind 

direction anomaly. Southward winds promote offshore spreading of low-salinity coastal 

waters, whereas westward winds promote northward along-shelf transport and 

presumably prevent offshore spreading of fresh water.

We have also shown that the baroclinic pressure field reverses direction, from 

promoting southward flow in late winter to promoting northward flow in late summer. 

Because effects o f heating and freezing are enhanced in shallow waters, warm summers 

increase the magnitude of the cross-shelf density difference and thus enhance northward 

transport, and cold winters with increased ice production and brine rejection also
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increased the magnitude of the (now reversed) cross-shelf density difference and enhance 

southward transport. Conversely, milder summers or winters lead to smaller cross-slope 

density differences, and thus weaker flow, and the greater preponderance of southeasterly 

winds will inhibit the offshore transport of dilute coastal waters. Thus, the baroclinic 

pressure gradients respond to the atmosphere’s influence on both freezing and advective 

processes. (As a cautionary note, some atmospheric circulation patterns can result in 

warm Gulf of Alaska air being recirculated southward over the Bering Sea [Rodionov et 

al., 2007], so that winds from the north are not always associated with enhanced ice 

production and brine rejection.) Although the baroclinic velocity is large enough to 

influence seasonal transports, it is not as important as the effect of the wind-driven 

convergences and divergences in setting up the shelf pressure field.

Transport through Bering Strait increases in summer due to larger horizontal 

density gradients and a reduction in southward winds [Roach et al., 1995; Woodgate et 

al., 2005a; 2005b]. Surprisingly, the mean summer flow we observe over the shelf is not 

uniformly northward over the inner shelf, despite a cross-isobath baroclinic pressure 

gradient that promotes northward flow in summer. This suggests that much of the 

increased summer flow through Bering Strait comes from the Gulf of Anadyr, either 

directly through Anadyr Strait or from the eastward transport on the southern side of St. 

Lawrence Island, and/or from Alaskan Coastal Current waters inshore of our mooring 

array. Intriguingly, the BESTMAS model SSH field averaged over May-September, 

shows that a large majority of the SSH contours in the Gulf o f Anadyr pass through 

Anadyr Strait, with only a small fraction directed eastward south of St. Lawrence Island 

before turning north in Shpanberg Strait. During October-April all the SSH contours pass 

directly through Anadyr Strait. Taken together, these findings suggest that waters from 

the central Bering shelf contributed relatively little to the Bering Strait through-flow over 

the course o f our field years, with the possible exception of summer waters immediately 

adjacent to the Alaskan coat, inshore o f our moorings.

Based on our observations reported here, together with those of Schumacher et al. 

[1983] and Danielson et al., [2006], we propose that waters originating in the Gulf of
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Anadyr are a source of nutrient-rich waters to the central Bering shelf, particularly in 

winter. Indeed, the BESTMAS model SSH contours are consistent with our observations 

suggesting an advective pathway that extends eastward from the Gulf o f Anadyr, passing 

south of St. Lawrence Island, and is then south- or southeastward toward Nunivak Island. 

This linkage occurs under northwesterly winds and is consonant with the mean October- 

April and May-September SSH fields (not shown). The model results o f Clement et al. 

[2005] also show a southward flow tendency across the central shelf region in 1979, a 

year that their model indicated reduced northward transport through Bering Strait. 

Similarly, based on a two-month reversal o f currents in Shpanberg Strait, Muench et al. 

[1988] schematically suggested a pathway for Chirikov Basin water (primarily o f Anadyr 

origin) moving eastward north of St. Lawrence Island, and then southward through 

Shpanberg Strait. These various lines of evidence have important implications for 

biological production, since they suggest that the rich nutrient load in the Gulf o f Anadyr 

can be brought onto the central shelf region at least as far south as Nunivak Island under 

sustained southeastward flow (e.g., a month-long mean speed of 10 cm s '1). Indeed, this 

nutrient pathway may at least in part explain the recent observation of elevated net 

community production over the central shelf [Mathis et al., 2010].

We further suggest that inter-annual variations in biological production over the 

central shelf may be linked to the long-term variability of the wind-driven southeastward 

circulation mode that we have described. We expect that winters with more 

northwesterly winds will increase the central shelf nutrient reservoir leading into spring 

and summer, while the fresh and nutrient-depleted coastal waters that normally reside 

over the central shelf will be carried south of Nunivak Island and farther offshore. 

Conversely, winters with more southeasterly winds will flush central shelf waters 

northward, some fraction possibly through Bering Strait, and increase on-shelf nutrient 

fluxes over the southern Bering shelf. Inter-annual variation in the preponderance and 

strength of northwesterly and southeasterly winds will therefore result in a variable 

supply of nutrients to large portions of the shelf, and possibly northward through Bering



147

Strait. These ideas can be tested with the data sets recently collected as part of the BEST- 

BSIERP program, along with analysis of new and existing numerical model integrations.

The central shelf circulation alternates between the two described modes, 

resulting in a flow that is small in the mean but highly variable both spatially and 

temporally. Within this variable regime, we estimate residence time for the central shelf 

as follows. The distance from each mooring to its closest neighbor is 61-142 km, with a 

mean of 85 km. To cover these distances in one month would require a flow of 2.3-5.5 

cm s '1. Given that flows are largely coherent at low frequencies and within 200 km of 

each other (Figure 4.14), we assume a uniform flow field and integrate the raw velocity 

record at each mooring with respect to time. By progressively shifting the integration 

start by one observation time step (30 minutes) through the velocity record, we compute 

the minimum time it would take a particle at 5 m depth to move 50 and 100 km from its 

initial position. We find that the probability distribution function is log-normal, with 

modal peaks centered near 6 and 12 days for the minimum time required to displace a 

particle in the upper water column 50 and 100 km, respectively. The durations lengthen 

to 14 and 34 days for currents at 30 m depth. For comparison, mean monthly vertically 

averaged velocities suggest typical monthly displacements o f 30-90 km and maximum 

displacements of -230 km. Taken together, these estimates suggest a mean residence 

time of many months, but two or three successive months of anomalous flow could 

largely flush the central shelf.

It is unclear what changes over the central shelf mean for the northward transport 

through Bering Strait. Although winds over the central shelf are not coherent with those 

over Chirikov Basin, Bering Strait and the southern Chukchi Sea (Figure 4.8), the model 

results show that northwesterly and southeasterly winds over the mooring array are 

associated with SSH anomalies that extend to Chirikov Basin and Norton Sound (Figure 

4.17).

Our results also suggest that some fraction of the Yukon River discharge may be 

advected westward across the central shelf under the southeastward circulation mode, 

first being brought southward past Nunivak Island and then westward with the offshore



148

flow. Direct evidence is sparse, but tantalizing. Most notably, three of fifteen satellite- 

tracked drifters deployed near Nunivak Island in September 2002 headed west past Cape 

Navarin under the influence of generally northerly winds (Danielson et al. [2006]; also 

see http://www.ims.uaf.edu/drifters/). More generally, the central Bering shelf may 

constitute a branch point between subarctic and arctic domains, with freshwater, heat, 

larvae, or contaminants on the inner shelf being transported either westward toward the 

deep basin or northward toward the Arctic, depending on the wind-driven circulation.

The circulation of the central shelf may also play a role in the life history o f upper 

trophic level organisms. For example, using data that extend back to 1961, Mundy and 

Evenson [2011] found that sea surface temperatures, air temperatures, and ice cover are 

predictors of the upriver migration timing of adult Yukon River Chinook salmon. All 

three environmental variables are linked to the heat budget and the circulation modes we 

have described, and so our results likely also bear on migration phenology.

Finally, retrospective analysis shows that the mean wind direction over the Bering 

shelf has changed in concert with recent climate and ecosystem regime shifts. One major 

change occurred during the mid 1970s North Pacific regime shift, coincident with a 

transition from more upwelling-favorable conditions to more downwelling-favorable 

[Danielson et al., 2011]. Forecasts from global climate models suggest that climate 

warming may slightly deepen the Aleutian low and move it ~ 100 km northward within a 

few decades [Salathe, 2006]. Over the eastern Bering shelf, monthly mean sea level 

pressure (SLP) contours show little variability over 100 km scales, and so we would not 

expect a large change in wind direction over most o f a year. September and October may 

be somewhat more sensitive to changes in the Aleutian low position, however, because 

the mean monthly isobars are oriented from NE to SW over the central shelf [Pickart et 

al., 2009] and from NW to SE over the outer southeastern shelf. For these months, a 

northward shift of the low would subject more of the eastern shelf to upwelling winds 

and increase the eastward flux of nutrients from the Gulf of Anadyr. Additional insights 

on this issue might be achieved from climate projection models by focusing on seasonally 

dependent changes in the position of the Aleutian low.

http://www.ims.uaf.edu/drifters/
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4.6 Conclusions

We have analyzed the data from an array o f eight current meter moorings 

distributed over the central Bering Sea shelf between the 25 and 55-m isobaths, between

58.6 °N and 62 °N. We find that the along-shore currents are primarily geostrophic and 

vary in response to the wind-forced sea level gradients associated with surface Ekman 

convergences and divergences. Cross-shore currents are also predominantly geostrophic, 

although surface stresses, bottom stresses, and local accelerations account up for up to 

40% of the momentum balance, depending on season and location. Shelf waters near the 

mooring array alternately flow northward (under southeasterly winds) and southward 

(under northwesterly winds) in response to the winds and the sea level gradients they 

force, resulting in typical sub-tidal speeds o f 3-12 cm s '1, peak speeds o f 65 cm s '1, and 

vector means < 5 cm s'1.

Steric height gradients vary seasonally and promote northward flow in late 

summer and southward flow in late winter. However, the baroclinic pressure field is o f 

secondary importance in the momentum balance compared to the wind-forced barotropic 

pressure field, and baroclinic forcing is likely muted following warmer winters and 

cooler summers.

The two circulation modes associated with coastal convergence and divergence 

probably play a significant role in the freshwater, heat, and nutrient budgets o f the central 

shelf. In particular, we suggest that waters from the Gulf of Anadyr (advected either 

eastward along the south side o f St. Lawrence Island or southward from the Chirikov 

Basin) can provide inorganic nitrogen to the central shelf at least as far south as Nunivak 

Island. Wind direction controls the ocean circulation modes, and the transition between 

southward and northward currents occurs between winds directed southward and 

westward. One or two months of strongly anomalous flow conditions may be sufficient to 

replace large portions of the central shelf with nitrate-rich waters from the northwest.

We observed northwesterly winds nearly twice as often as southeasterly winds, 

but this is probably not representative of all years. Extended re-orientation of the mean 

wind direction would likely result in systematic changes to the circulation and a shelf-
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wide reorganization o f many physical, chemical and biological fluxes that impact 

regional heat and freshwater content, nutrient stocks, and primary production.
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4.9 Tables

Table 4.1: Mooring deployment details. Columns denote the name, date, location and 
instrument depths (m). Mooring names beginning with N, C or S, signify the northern, 
central and southern array lines, respectively. The numbers 55,40 or 25 denote the 
nominal water column depth at each deployment site. ADCP records for N40 in 2010 
and C55 and S55 in both years ended early due to premature battery failure (see Figure 4 
for actual duration of ADCP data coverage). **Mooring N25 was not recovered in 2009 
due to a fouled recovery line canister;, but divers recovered it in 2010.

Mooring Deployment Dates Latitude
O

Longitude
O

Bottom
depth
(m)

ADCP
depth
(m)

SBE 16 
depth
(m)

SBE37
depth
(m)

HOBO
depth
(m)

N55 7/12/2008 - 7/15/2009 61.9620 -171.9700 54.4 49.4 19.4 52.2,
9.6

23.4, 25.9,28.4, 30.9,33.4, 35.9, 
38.4, 40.9, 43.4,45.9, 48.4

C55 7/12/2008-7/11/2009 60.1730 -170.0900 55 47 22 52, 10
23.6, 25.6,26.8,28.4, 30,31.6, 
33.2, 34,8, 36.4, 38, 39.6,41.2, 

42 .8,44.446

S55 7/15/2008 - 7/9/2009 58.5900 -168.3900 55 47 22 52, 10
14, 17, 25.3, 26.8,28.4, 30, 31.6, 
33.2, 36.4, 38, 29.6, 41.2,42.8, 

44.4. 46
N40 7/13/2008 - 7/14/2009 61.8050 -169.2800 41.7 36.7 20 37.7

C40 7/10/2008 - 7/11/2009 60.3390 -169.0200 40.5 35.5 20 36.5

S40 7/7/2008 - 7/10/2009 59.1370 -167.9800 41.5 36.5 20 37.5

N25 7/13/2008 - 7/25/2010 
** 61.7000 -167.4500 25.6 24.8 24.6

C25 7/10/2008-7/11/2009 60.6830 -167.3400 26 25.2 25

N55 7/15/2009-7/28/2010 61.9690 -171.9800 54.2 49.2 17.1 50.0,
10.9 22, 24, 26,28, 30, 32, 34,48

C55 7/11/2009-7/27/2010 60.1730 -170.0900 56 47 20.7 51,9.8
23.6.25.2, 26.8,28.4, 30,31.6,
33.2, 34.8, 36.4, 38, 39.6,41.2,

42.8.44.4, 46

S55 7/9/2009 - 7/23/2010 58.5900 -168.3900 55.6 47 20.2 51, 10.2
14, 17, 23.6,25.2,26.8, 28.4, 30, 
31.6, 33.2, 34 .8,36.4,38,39.6, 

41.2,42.8,46
N40 7/14/2009 - 7/26/2010 61.8080 -169.2800 42 37 20 38

C40 7/12/2009 - 7/26/2010 60.3380 -169.0200 40.6 35.6 20 36.6

S40 7/10/2009 - 7/23/2010 59.1340 -167.9800 41.5 36.5 20 37.5

N25 7/16/2009 - 7/25/2010 61.6910 -167.4200 24 23.2 23

C25 7/11/2009 - 7/24/2010 60.6830 -167.3400 26 25.2 25
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Table 4.2: Seasonal current meter statistics at all mooring sites for the water column 
vertical average (VA) and depths 5 ,1 0 ,20 ,30  and 40 m below the surface. N is the
number of half-hour samples obtained over the course of the deployments. Net speed and 
direction computed for 35-hour LPF data. Percent tidal kinetic energy is determined from 
yearly harmonic tidal analyses at frequencies resolved with signal-to-noise greater than or 
equal to 10. The high-frequency band contains frequencies remaining after passing 
through a 35-hr high-pass filter, less the resolved harmonic analysis tidal portion. Mid
frequencies are band-pass filtered over the 35-100 hr range; low frequencies are low-pass 
filtered at 100 hrs. Net speeds greater than zero at the 95% confidence level are given in 
bold type, based on a decorrelation time scale of 48 hours.

Mooring Season N
Percent o f Kinetic Energy Peak Mean

Tidal Inertial Mid Low (cm s ') (°T) Speed 
(cm s ')

Speed 
(cm s '1)

Depth VA VA VA VA VA 5 10 20 30 40 VA 5 10 20 30 40 VA VA
N55 Jan-Apr 11520 68 3 9 20 0.42 1.73 0.78 0.25 0.50 0.21 209 227 233 156 173 207 38.1 7.8
C55 Jan-Apr 8587 80 3 5 12 0.74 2.69 2.11 1.21 0.64 0.67 329 282 303 344 56 128 40.1 7.8
S55 Jan-Apr 11520 91 2 2 5 1.54 3.24 2.76 1.63 0.97 0.21 303 274 293 311 320 318 25.7 6.0
N40 Jan-Apr 11520 63 4 11 23 1.16 0.63 0.80 1.54 1.47 80 160 80 72 90 48.6 9.1
C40 Jan-Apr 11520 80 2 5 12 1.94 2.56 2.03 1.87 1.85 169 186 174 167 166 41.5 9.8
S40 Jan-Apr 11520 88 2 3 7 0.47 1.14 0.56 0.59 0.96 139 220 208 113 102 38.3 7.6
N25 Jan-Apr 11520 63 3 11 22 1.38 2.34 1.44 0.93 188 198 190 167 48.6 10.6
C25 Jan-Apr 11520 91 2 3 4 1.11 1.75 1.09 0.65 192 201 194 175 32.3 6.9
N55 May-Sep 15459 84 2 4 10 0.51 0.89 1.05 0.81 0.45 0.46 81 70 89 79 80 302 23.7 5.5
C55 May-Sep 9332 94 3 1 3 1.39 2.06 1.72 1.74 1.19 0.35 339 313 321 349 3 308 19.5 3.4
S55 May-Sep 12467 95 2 1 3 2.96 3.97 3.76 2.87 2.77 1.42 328 306 318 327 337 325 13.0 4.2
N40 May-Sep 14582 84 5 3 8 0.94 0.56 0.56 1.10 1.02 29 345 26 35 39 23.9 5.0
C40 May-Sep 15426 94 2 1 3 0.36 0.91 0.69 0.38 0.48 308 275 305 316 182 22.8 4.7
S40 May-Sep 15483 95 2 1 2 0.82 0.98 0.75 0.78 0.74 140 165 152 137 139 17.3 3.9
N25 May-Sep 19000 88 3 4 5 0.65 0.24 0.63 0.79 104 159 91 97 33.4 5.2
C25 May-Sep 15329 97 1 1 1 0.31 0.93 0.42 0.23 220 214 235 289 17.4 3.5
N55 Oct-Dec 8832 66 4 9 21 1.48 2.23 2.06 1.68 1.03 1.10 307 294 302 312 318 296 36.5 8.8
C55 Oct-Dec 8832 73 2 8 17 3.46 4.58 4.50 3.98 2.88 2.27 336 322 325 336 348 346 65.3 9.4
S55 Oct-Dec 8832 84 2 4 11 4.09 4.69 4.88 4.42 3.79 2.96 327 310 318 328 334 336 45.8 8.2
N40 Oct-Dec 8832 61 5 11 24 0.75 0.50 0.25 1.02 1.38 108 215 113 94 111 50.4 10.0
C40 Oct-Dec 8832 73 3 8 16 3.01 4.36 3.90 2.75 1.74 273 269 272 278 269 61.5 11.8
S40 Oct-Dec 8832 84 2 5 9 1.87 1.92 2.18 2.06 1.71 347 315 329 352 11 46.3 8.8
N25 Oct-Dec 8832 63 4 14 20 1.11 1.47 0.88 1.70 183 235 191 152 59.1 11.6
C25 Oct-Dec 8832 88 2 4 5 2.08 3.76 2.42 0.32 218 219 221 209 41.9 8.3
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Table 4.3: Relative contribution of individual momentum balance terms to the 35- 
hour filtered vertically integrated equations of motion, averaged across all mooring 
sites and separated by season. The column labeled RMS total depicts the sum of all 
five terms in the momentum balance multiplied by 105; the other columns show the 
fraction of the RMS explained by each of the five components of Equation (1). Despite 
large seasonal changes in the total kinetic energy, the relative contributions o f the 
individual terms remain approximately the same.

Averaging
Interval

RMS total 
(xIO5 m2 s'2)

Local
Acceleration Coriolis

Horizontal
Pressure
Gradient

Surface
Stress

Bottom
Stress

Cross-shelf
Balance

Jan-Apr 2.5 4% 46% 43% 6% 2%
May-Sep 1.3 4% 44% 41% 8% 3%
Oct-Dec 3.1 4% 45% 40% 9% 2%

Along-
shelf

Balance

Jan-Apr 1.5 9% 37% 35% 11% 8%
May-Sep 1.0 8% 36% 34% 15% 6%
Oct-Dec 2.0 9% 37% 32% 15% 7%



Table 4.4: Comparison of the cross-correlation (r) between observed SSH 
fluctuations and the BESTMAS model SSH hindcasts for two time intervals.
values are significant at the 95% level (p < 0.05).

N55 C55 S55 N40 S40 N25 C25
October-May 0.60 0.67 0.65 0.77 0.66 0.86 0.81

lune-September 0.32 0.58 0.64 0.80 0.48 0.71 0.64
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4.10 Figures
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Figure 4.1: The eastern Bering Sea with place names and mooring sites (squares).
SLI = St. Lawrence Island, NI = Nunivak Island, PI = Pribilof Islands. River names YR 
= Yukon River and KR = Kuskokwim River are placed near the river mouths. 
Bathymetric contours are for 25 m, 40 m, 55 m, 70 m, 100 m, 200 m, 500 m, 1000 m, 
2000 m, 3000 m, 4000 m, and 5000 m.
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Figure 4.2: Contoured time series of tem perature at moorings N55 (top), C55 
(center), and S55 (bottom) from July 2008 to July 2010. The contours show the 
annual cycle, the depth of stratification, and the timing o f stratification setup and 
breakdown along the 55 m isobath. Thin horizontal black lines denote the depth of 
temperature measurements; note that the ~ 10 m depth instruments on N55 and C55 were 
lost partway through each deployment. Hash marks at the top denote the presence of ice 
with concentrations > 30%. Ice concentrations and surface temperatures are from the 
daily gridded OISST dataset at the grid point closest to each mooring. Thick vertical 
black lines depict monthly mean observed salinity profiles taken by shipboard CTD casts 
within 50 km of each mooring site. The CTD salinity profiles are plotted so that their 
bottom-most measurement is located on the 15th day of month within which they were 
taken; horizontal spacing of one month is equivalent to AS = 1.
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2008 2009 2010

Figure 4.3: Daily mean salinity (Sp) time series. The annual salinity minimum in fall 
progresses from nearshore sites (C25 and N25) to the other sites in deeper waters. All 
instruments were located between 17 and 25 m depth. The distance between each 31 line 
is AS = 2 on the vertical axis; vertical tick marks are spaced every AS = 1. Every other 
record is plotted with thick (thin) lines for clarity.
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Figure 4.4: Time series of 35 h r low-pass filtered, water column average along- 
principal axis component of currents at each mooring site. Note the strongly seasonal 
change in variance. The axis orientation is computed from each low-pass filtered two- 
year timeseries composite and is noted next to each mooring site label. The distance 
between each zero line is 80 cm s 1 on the vertical axis.
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Figure 4.5: Time series of 35 h r low-pass filtered, water column average cross
principal axis component of the flow field at each mooring site. The axis orientation is 
computed from each low-pass filtered two-year timeseries composite and is noted next to 
each mooring site label. The distance between each zero line is equivalent to 80 cm s '1 on 
the vertical axis.
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Figure 4.6: Mean monthly decomposition of the flow field into ellipses denoting the 
along- and cross-principal axis of variation for currents a t 20 m depth. Most sites 
exhibit an annual modulation in magnitude and show relatively little variation of 
direction amongst months; N55 is a notable exception. Each set of axes begins with 
January on the left and ends with December on the right. Due to battery failures both 
years at C55, axes are missing in June for this mooring. Triangles denote the associated 
mooring location for each set of axes.
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2008 2009 2010

Figure 4.7: North-south (0 °T) and east-west (90 °T) wind components at the NARR 
grid point closest to mooring C55. For consistency with Figures 4 and 5, the time 
series have been 35 hr low-pass filtered.
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Figure 4.8 Coherence-squared of the NARR wind field with respect to NARR winds 
at a reference site located at 60 °N, 170 °W for short (< 32 hr, left) and long (>32 hr, 
right) periods from July 2008 to July 2010. Short period fluctuations have much 
smaller decorrelation length scales than those of longer period. The reference site is 
marked by x and the mooring sites by dots. The contours are plotted at intervals o f 0.1, 
beginning with y2 = 0.9 for the innermost closed contour around the reference point. The 
thick black contour denotes y2 = 0.31, the level of statistically significant coherence at the 
95% confidence level.
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Jan-Apr May-Sep Oct-Dec

Figure 4.9: Seasonal averages of water column average currents (upper panels) and 
winds (lower panels) in the study region. Vectors marked with * are significantly 
different from zero. The ice-covered January to April period is on the left, the stratified 
May to September period in the middle, and the strong mean wind October to December 
period is on the right. Wind vectors from every 4th NARR grid cell are displayed.
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Figure 4.10: Time series of each term  of the harmonically de-tided, vertically 
integrated equations of motion (eq. 1) at site C25. Zero lines are spaced every 5x10s m 
s'2 along the vertical axis and tick marks are every lx l0 s m s’2.
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Figure 4.11: Pie charts depicting the relative contribution of the momentum balance 
terms to each site’s total based on 35-hr low-pass filtered RMS magnitudes. The
upper three rows depict the cross-shelf momentum balance and the lower three rows the 
along-shelf momentum balance (Equation 1). The left three columns show January- 
April, the center May-September, and the right October-December. Colors represent the 
Coriolis (light blue), local acceleration (dark blue), bottom stress (red), surface stress 
(orange) and horizontal pressure gradient (green) terms, respectively. Numbers denote 
the magnitude of the horizontal pressure gradient term multiplied bylO5 m2 s'2. Reduced 
magnitudes at all sites are evident in May-September but the relative importance o f each 
term changes only slightly. The cross-shelf momentum balance shows little dependence 
on bottom friction or local accelerations.
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Figure 4.12: Geopotential height anomaly (color shading) and geostrophic current 
vectors computed over 0-30 db for 2006-2010 late winter and early spring (left) and 
late summer and early fail (right). Over much o f the central shelf, the vectors depict a 
northward velocity tendency at the end o f summer and a southward tendency at the end 
of winter: the cross-shelf baroclinic pressure gradient reverses sign between these 
periods. Small red dots depict the location of CTD casts.
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Figure 4.13: Coherence-squared (y2) between NARR winds at each mooring site 
with currents measured at 5 m depth. Sixteen comparisons (thin light traces) are 
shown, one for each yearlong deployment at each of the eight mooring sites. The thick 
dark line is the average of all sixteen. The dashed line shows the average significance 
level.
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Figure 4.14: Rotary coherence-squared (y2) of vertically averaged currents from all 
mooring pair combinations. Symbols denote the depth combination for each 
comparison (see legend). Symbols plotted with thick lines are significantly coherent at 
the 95% confidence level.
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Figure 4.15: Rotary coherence-squared (y2) between currents at 5 m and those at 10 
m, 20 m, 30 m and 40 m depths for the 55 m (left), 40 m (center) and 25 m (right) 
moorings for the mid-frequency band (32-102 hr) as a function of calendar month.
The 95% significance level for coherence is shown by the dotted line.
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Figure 4.16: SSH time series. Moored pressure records are 35-hr low-pass filtered, 
demeaned, and converted to equivalent elevation changes (black lines); BESTMAS 
modeled SSH (gray lines) are daily values at each mooring site. The record-length cross
correlations squared are denoted along with each time series. All correlations are 
statistically significant at the 95% level except for the short record at mooring S40. On 
the vertical axis, the distance between the zero line for each time series is equivalent to 1 
m SHH change, with tick marks every 0.25 m.
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Figure 4.17: Composite oceanic response to various wind directions. Each panel is 
for a different set of wind directions (top center -22.5°T to + 22.5°T, etc). The mean wind 
vector is the black vector emanating from 59 °N, 172 °W. Current vectors are color- 
coded based on depth: 5 m = red, 10 m = yellow, 20 m = green, 30 m = blue, 40 m = 
black. The BESTMAS SSH field is contoured at 2 cm increments between 1 cm (blue) 
and 41 cm (red) elevations and is clipped at levels beyond this, so that the entire dynamic 
range is not fully represented. The mean wind direction is over the 24-hr period prior to 
the ocean current observation. L denotes the total time represented by each panel’s 
average. A scale vector for both the wind and current is provided in the center panel.
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Chapter 5: Wind-induced changes to the eastern Bering Sea shelf circulation field1

5.1 Abstract

We present a simple framework for considering the variability o f the eastern 

Bering Sea shelf circulation as a response to changes in wind direction. Both observations 

and numerical integrations show that much of the shelf flow reverses between 

northwesterly and southeasterly winds. While southeasterly winds are less frequent, they 

are associated with large on-shelf transport across most o f the shelfbreak, and in October- 

April they are also accompanied by a reversal of the normally eastward flow near Cape 

Navarin. In contrast, northwesterly winds promote off-shelf transport across most of the 

shelfbreak, along with increased eastward transport near Cape Navarin. The westward- 

intensified flow in the Gulf of Anadyr adjusts to changes both in the flux across the long 

(~1000 km) shelfbreak and in the Bering Strait throughflow. These results also hold 

under the more stratified summer conditions (May-September), but weaker summer 

winds drive smaller flows across the shelfbreak, and the majority o f the on-shelf 

transport is directly into the Gulf o f Anadyr.

5.2 Introduction

Exchanges between the eastern Bering Sea shelf and the adjacent deep basin affect shelf 

salt and nutrient balances [Aagaard et a l, 2006]. These exchanges are reflected in the 

water properties carried northward through Bering Strait [Coachman et al., 1975] and are 

essential to shelf biological production. The role o f variable basin-shelf exchanges in 

ecosystem dynamics is not well understood, but several time-varying processes have been 

thought important, including shelfbreak eddies [Stabeno and Van Meurs, 1999], tidally 

mediated diffusion [Coachman and Walsh, 1981], and wind-driven exchange

'Danielson, S., K. Hedstrom, K. Aagaard, T. Weingartner, and E. Curchitser, 2012. 
Wind-induced reorganization of the Bering shelf circulation, Geophys. Res. Lett., 
doi: 10.1029/2012GL051231
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[Huthnance, 1995; Mull, 2008]. Using observations and numerical modeling, we present 

a new perspective on the Bering shelf circulation under varying wind conditions. We 

particularly emphasize the veiy different regional effects of northwesterly (winds 

blowing from the northwest) and southeasterly along-isobath winds.

5.3 Bering shelf circulation:

The numerical model and rotating tank experiments o f Kinder et al., [1986], 

hereafter referred to as KCW, showed that westward intensification due to the 

topographic beta effect exerts strong control over the regional flow field. We extend these 

results by first adding along-isobath winds to the KCW barotropic model and then 

introducing more realistic bathymetry, atmospheric forcing and thermohaline fields into a 

three-dimensional model o f the shelf circulation.

We begin by noting that the KCW results are consistent with measurements of 

elevated salinity, nutrients and primary production levels in Chirikov Basin and Anadyr 

and Bering straits [Coachman et al., 1975; Sambrotto et al., 1984; Walsh et al., 1989]. 

Current meter moorings deployed in Anadyr and Shpanberg straits also support KCW, 

indicating that -80%  of the Bering Strait throughflow has passed through Anadyr Strait 

[Schumacher et al., 1983; Aagaard et al., 1985; Muench et al., 1988]. While other 

observational evidence for a westward-intensified flow in the Gulf of Anadyr is sparse, 

other model results also depict this feature [e.g., Overland and Roach, 1987; Clement et 

al., 2005],

In addition to the topographic beta effect described by KCW, subtidal flows over 

the shelf are influenced by the mean northward transport through Bering Strait 

[Coachman et al., 1975; Woodgate et al., 2005; Aagaard et al., 2006], by density 

gradients [Schumacher and Kinder, 1983; Schumacher et al., 1983; Coachman, 1986; 

Gawarkiewicz, et al., 1994], by flow through island passes [Schumacher et al. 1982; 

Stabeno et al., 2002], by tidal rectification [Kowalik and Stabeno, 1999], and by winds 

that strengthen in fall, winter and early spring [Overland and Roach, 1987; Muench et al., 

1988]. These winds drive sea surface height gradient variations and thus exert strong 

control on fluctuations in the Bering Strait through-flow [Aagaard et al., 1985].
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Current measurements made during July 2008 - July 2010, show that the shelf 

circulation between Nunivak and St. Lawrence islands undergoes major reorganization 

between periods of northwesterly and southeasterly wind (Figure 1). These reorganized 

flows are in geostrophic balance, driven by Ekman transport and coastal divergence. 

Hindcast winds over the mooring array from the North American Regional Reanalysis 

(NARR) model [Mesinger, et a l, 2006] delineate the two modes. Presumably, the change 

in circulation is not limited to the shelf between Nunivak and St. Lawrence islands, and 

to explore this issue we turn to two numerical models.

5.4 Transport over an idealized Bering Sea shelf

We first examine the response o f the flow field to along-isobath winds using an 

idealized barotropic model implemented within the Regional Ocean Model System 

(ROMS) framework, version 3.4. The model shelf is a 400 km (y) by 1000 km (jc) 

rectangle within a 540 km by 1000 km domain with bottom depth (h) variations in the 

cross-shelf (y-axis) direction only (Figure 2). Our model is nearly identical to that of 

KCW, except that we use a hyperbolic tangent bathymetric profile rather than the KCW 

piecewise linear gradient; tests show no material difference between the two approaches. 

The model minimum water depth is 40 m and the shelfbreak is neary =114 km, where h 

= 220 m ;h  = 3056 m along y = 0.

Following KCW, the vertically integrated, linear equations o f motion describe a 

balance of the Coriolis force (f=  1.27 x 10'4 s '1) with the horizontal pressure gradient due 

to SSH (£) variations and linear bottom friction (with coefficient r  = 10‘3). We also 

include an along-shelf wind stress (tx), so that the full equations of motion are -Jv--gCx + 

Tx -  ruK1 and fu=-gCy~ rvh'1. Since KCW found that the flow over the shelf is not 

sensitive to the off-shelf boundary condition, we employ an open boundary along y  = 0.

A transport sink of 1 Sv (1 Sv = 106 m3 s'1) imposed along an 80 km segment of the 

northern boundary represents the Bering Strait through-flow.

Figure 2a shows our reproduction o f KCW’s Figure 1 lb. The northward flow 

through Bering Strait results in an asymmetric circulation with streamlines compressed
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toward x = 0. A negative SSH anomaly (not shown) extends along the coast from the 

western shelfbreak to Bering Strait. The shelf south and east o f Bering Strait is notably 

devoid o f structure. Fluctuations seen along the continental slope are trapped shelf waves, 

which are a remnant of spin-up; a numerical instability at the western edge of the slope 

represents an unresolved boundary layer. Neither o f these impacts the shelf circulation 

features of primary interest here. Reversal of the Bering Strait transport to -1 Sv, with no 

wind forcing, also results in a westward-intensified flow for which the spatial structure is 

similar to that in Figure 2a, but has a positive SSH anomaly along x  = 0.

Figure 2b depicts the response to a spatially invariant southeasterly kinematic 

wind stress of 1 x 10^ m2 s'2 and the 1 Sv northward Bering Strait transport. This stress 

corresponds to a 7.5 m s'1 wind and forces an onshore Ekman transport o f ~0.8 Sv over 

1000 km. In contrast to the no-wind scenario, streamlines spread out along the shelfbreak 

and a positive SSH anomaly develops along y  = 540 km east of Bering Strait. Along- 

isobath flow for y  > 440 km and x  > 200 km is in the same direction as the wind. If the 

Bering Strait transport is increased to 2 Sv, the spatial pattern depicted in Figure 2b is 

unchanged for x > 200 km, since the result is the sum of panels 2a and 2b.

Northwesterly winds (Figure 2c) force currents off-shelf for x  > 200 km. The on- 

shelf transport, restricted to x  < 200 km and with a maximum near y  ==114 km, increases 

to ~ 1.7 Sv to compensate. The off-shelf Ekman transport forms an asymmetric 

recirculation cell that connects shelf and slope waters. For y > 440 km and x > 200 km, 

currents are primarily oriented along-isobath and downwind, consistent with observations 

(Figure 1). A Bering Strait flow reversal to -1 Sv accompanied by northwesterly winds 

results in a streamline pattern similar to the southeasterly pattern (Figure 2b), but with 

flow in the opposite direction.

Thus, under both along-isobath wind conditions and both directions o f Bering 

Strait transport, the westward-intensified flow in the Gulf of Anadyr controls the cross

shelf transport not directly forced by Ekman dynamics. These model results suggest that 

westward intensification exerts strong influence during a) weak winds (e.g., summer), b) 

northwesterly winds, and c) southeasterly winds when the Bering Strait northward
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transport does not balance the on-shelf Ekman transport. Essentially, the westward- 

intensified flow adjusts to maintain continuity across the shelfbreak.

While Figure 2 shows flow reorganizations that are consistent with Figure 1, it is 

a priori not clear that the barotropic model results will hold under the influence of 

stratification or will persist long enough to appreciably alter the shelf environment under 

variable synoptic wind forcing. We therefore turn to a 3-dimensional numerical model.

5.5 Transport over a more realistic Bering Sea shelf

We use the sixth, and most recent, version of the Northeast Pacific (NEP6) model 

[Curchitser et al., 2005], with a horizontal resolution of -10  km and 50 vertical levels. 

This version includes realistic surface stresses and fluxes [Large and Yeager, 2008], 

surface and bottom boundary layers implemented with a k-profile parameterization 

[Large et al., 1994], boundary conditions from the 1958-2008 Simple Ocean Data 

Assimilation (SODA) ocean reanalysis [Carton and Giese, 2008], tides [Egbert and 

Erofeeva, 2002], and sea ice growth and decay [Budgell, 2005]. The model domain 

extends 2000 km offshore from the North American west coast between 20°N and 

68.5°N; the northern boundary lies -300 km north o f Bering Strait. Danielson et al.,

[2011] undertook an extensive suite o f model-data comparisons for NEP5, and found 

overlapping confidence limits on the observed and modeled velocity rotary spectra at 

nearly all periods between 10 hours and one year at 57°N, 164°W. Improvements since 

NEP5 include seasonally and inter-annually varying coastal discharge [Dai et al., 2009], 

spatially variable water opacity to improve the incoming solar radiation vertical heat 

distribution, and a boundary condition that allows adjustment both to local wind forcing 

and to exchanges forced by SODA (the constant 0.8 Sv northward transport used along 

the NEP5 northern boundary is removed). The NEP6 results analyzed here are monthly 

averages of a 1987-2007 hindcast.

Because the barotropic model suggests that the sign and magnitude of transport 

through Bering Strait affects flow in the Gulf of Anadyr, we first compare observed 

monthly mean velocity data from mooring MA3 deployed in Bering Strait near 66.32 °N, 

168.97 °W between 1990 and 2004 [Woodgate et al., 2005] with the vertically integrated
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monthly mean model hind-cast velocity for the same site. For each month we find no 

statistical difference (at the 95% confidence level) between the observed and modeled 

monthly means. Furthermore, cross-correlation of observed and modeled monthly 

anomalies (relative to the long-term monthly mean) shows that the model accounts for 

about half the observed variability (r=0.70, p<0.001).

We now ask how the currents across the entire shelf respond to the wind 

conditions used to delineate the two circulation modes shown in Figure 1, noting that in 

addition to the direct impact o f Ekman transport, the shelf-wide response will also reflect 

bathymetric steering, Ekman pumping, and shelfbreak front and bottom boundary layer 

dynamics.

Based on NARR winds at 60°N/170°W, we selected December 1999 and 

December 2000 as representative of strong northwesterly and southeasterly winds, 

respectively. For December 2000, the model displays a SSH maximum (not shown) along 

the western Alaskan coast that forces inner shelf waters northward (Figure 3b). A second 

SSH maximum in the Gulf of Anadyr forces westward flow past Cape Navarin.

Inspection of the mean sea level pressure pattern (SLP, not shown) for this month reveals 

a low pressure cell centered over 54°N, 180°, with curved isobars that closely parallel 

large portions o f the Siberian and Alaskan coasts. This SLP field clearly implies along

shore winds for most of the coast between Bristol Bay and Cape Navarin.

Under northwesterly winds (December 1999), flow over much of the northern and 

inner shelf reverses (Figure 3c) because of a SSH minimum that extends along the 

Alaskan coast from Bering Strait to Nunivak Island. The response is weaker than for the 

southeasterly wind case, in agreement with the observations o f Figure 1. The SLP pattern 

for this month shows high pressure over Siberia and low pressure over the Gulf of 

Alaska.

The transport through Shpanberg Strait is -0.50 Sv for December 1999 and +0.64 

Sv in December 2000, while the Anadyr strait transport is +0.60 Sv and -0.02 Sv for 

these two months. The two flow patterns therefore result in differing Bering shelf exports 

northward through Bering Strait. The two patterns also contrast with mean conditions, for
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which the NEP6 model shows -85%  of the Bering Strait transport passing through 

Anadyr Strait (Figure 3a), consistent with earlier estimates [e.g., Muench et al., 1988].

We are particularly interested in the effect o f these two modes of circulation on 

cross-isobath exchange, and so we form a transect between the Siberian coast and the 

Alaska panhandle along the 100 m isobath (Figure 1), cutting across shallow isobaths 

near the coasts. For all months over 1987-2007 we compute the transport normal to this 

transect from vertically averaged velocities. Based on the fraction of each month that 

NARR winds at 60°N, 170°W are directed to the SE or NW, we do separate compilations 

for two seasonal intervals, viz., October-April and May-September (Figure 4).

Under northwesterly winds during October-April, +0.2 Sv of the flow across the 

transect (hereafter referred to as on-shelf flow, noting that cross-transect flow near the 

coasts is along isobaths) occurs within 200 km of Cape Navarin, while +0.3 Sv occurs 

over the remaining 1300 km (Figure 4a). In contrast, southeasterly winds reverse the flow 

(-0.3 Sv) within 200 km o f Cape Navarin and +1.3 Sv is distributed along the remainder 

of the transect.

Under the weaker winds and greater stratification of May-September, the 

responses o f the shelf circulation near Cape Navarin to northwesterly and southeasterly 

winds are similar (Figure 4b), although transport across the vast remainder of the transect 

under southeasterly winds is still larger than for northwesterly winds. The surface Ekman 

layer shoals from about 40-60 m in winter months to 20-40 m in summer, and neglecting 

currents within 200 km of Cape Navarin, the mean cross-transect surface velocity is 

between -3 cm s '1 (with winter northwesterlies) and +2 cm s '1 (with summer 

southeasterlies). Below the surface Ekman layer, the mean flow is weakly on-shelf (< 1 

cm/s) for both wind directions although larger under southeasterly wind forcing.

Residual tides around the Pribilof Islands [Kowalik and Stabeno, 1999] generate 

enhanced exchanges across the shelfbreak (Figure 4) at a distance o f -1100 km from the 

Russian coast. Figure 4 also suggests that changes in isobath orientation elsewhere may 

correspond with localized regions of flow across the shelfbreak.
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On the whole, the barotropic model and the NEP6 model provide qualitatively 

similar results. The NEP6 shows little evidence for net off-shelf transport during 

northwesterly winds, but this may be an artifact o f the month-long averaging, since most 

months experience both wind directions, and the southeasterly response may well 

dominate. For example, the model suggests that month-long intervals dominated by 

southeasterly winds experience 3-4 times greater on-shelf transport across the shelfbreak 

away from Cape Navarin than do months with northwesterly winds. Over the NARR 

integration period (1979-present), southeasterly winds occurred 42% of the time between 

October and March (~ 3 mo/yr), and so we expect on-shelf flow into the Gulf of Anadyr 

-9  mo/yr. Alternatively, the absence in the model results of a clear net offshore transport 

during northwesterly events may reflect other processes, such as rectification of tidal 

currents over the continental slope.

5.6 Discussion and conclusions

These results provide a new perspective on the Bering shelf circulation, and 

especially on cross-shelf fluxes, with their variability being strongly dependent on wind 

direction. Under weak winds, northward flow through Bering Strait is associated with 

topographically induced westward intensification in the Gulf of Anadyr, and on-shelf 

transport is confined to within -200 km of Cape Navarin. In contrast, strong 

southeasterly winds promote on-shelf Ekman transport across most o f the shelfbreak. If 

this on-shelf transport exceeds the transport through Bering Strait, then the flow in the 

Gulf o f Anadyr reverses. Strong northwesterly winds promote off-shelf Ekman transport 

across most of the shelfbreak, and so the on-shelf flow within 200 km of Cape Navarin 

increases to compensate.

The mass balance of the Bering shelf depends on the transports through Bering 

Strait, across the shelfbreak within 200 km of Cape Navarin, and across the remainder of 

the shelfbreak that lies outside the narrow region of westward intensification. Imbalances 

result in sea level changes over the shelf. Locally, surface Ekman transport and 

subsurface compensating flows are not in balance. Rather, westward intensification 

generates a laterally asymmetric shelf circulation field that also meets the continuity
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requirements for the regional shelf circulation. Coastal and shelf-break upwelling and 

downwelling processes are not two-dimensional, but instead appear to be strongly 

mediated by the three-dimensional aspects of the flow field.

Our findings are relevant to a variety o f ecosystem processes, including nutrient 

exchange, shelf production, and advection of planktonic organisms [Whitledge et al.,

1986; Springer et al., 1996; Orensanz et al., 2004]. Cold northerly winter winds promote 

ice growth and southward ice motion [Pease, 1980], and summers with cold waters on 

the southeastern shelf follow winters with extensive ice, whereas warmer summers follow 

winters with stronger northward flow during December-February [Stabeno et al. 2012]. 

Smart et al. [2012] showed that larval pollock are aggregated close to the outer shelf in 

cold winters, whereas in warmer winters these larvae are displaced toward the middle 

shelf. Stabeno et al., [2001] found that cold years with increased sea ice coincide with 

reduced on-shelf fluxes of salty, nutrient-rich waters. All these findings are consonant 

with and explainable by the wind-driven shelf circulation variability proposed here.

Our results contribute to a more complete appreciation of the Bering shelf 

circulation as an integral entity, the variability of which has wide consequences for the 

shelf ecosystem. Many of mu- ideas require further testing and exploration, including a 

refined delineation between northwesterly and southeasterly winds, analysis of the 

vertical structure of shelfbreak exchanges under varying stratification, determining the 

dynamics that control the cross-slope flow field, and relating the wind modes to the 

commonly used characterizations of the Bering shelf as variously warm, cold, with 

reduced ice, or with extensive ice. We expect also that with a new mechanistic 

understanding of the wind’s influence, significant progress can be made on assessing the 

relative importance of wind, eddies, canyons, and tidal stirring on shelf-basin exchange.
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5.9 Figures
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Figure 5.1: The Bering shelf. Vectors show mean vertically averaged currents during 
southeasterly (red) and northwesterly (blue) winds from July 2008 - July 2010. SLI = St. 
Lawrence I.; NI = Nunivak I.; PI = Pribilof I.; UI = Unimak I.; AS = Anadyr Str.; SS = 
Shpanberg Str., UP = Unimak Pass. Isobaths are drawn at 200,100, 70, 50 and 20 m. 
Model grid cells along the 100 m isobath used for Figure 4 are shown with small black 
crosses. Inset shows histograms of the direction (5° bins) to which the wind blows, 
compiled for the NARR grid point (X) at 60 °N, 170 °W for 1979-2010, over October- 
April and May-September.
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Transport (Sv)

Figure S.2: Barotropic model results for a) no wind, b) southeasterly wind and c) 
northwesterly wind. Panel d) shows bottom depths. Kinematic wind stress for the two 
right-hand panels is 10-4 m2 s-2, indicated by the arrows. All three cases impose a 
northward 1 Sv Bering Strait transport. The shelfbreak is near y = 114 km, denoted by the 
dotted line. Contours depict the cross-shelf transport integrated away from the western 
(left-hand) boundary and thus represent transport streamlines.



194

m***m'Wli***'*'"* WW'173,*»1«»,W 171 1«»
1987-2007 Average December 2000 December 1999

1 2 3 4 5 10 20 50
Speed (cm s )

Figure 5.3: Vertically averaged current vectors from the three-dimensional model 
for a) the 1987-2007 mean, b) December 2000 (southeasterly winds) and c)
December 1999 (northwesterly winds). The 200 m isobath is denoted with a thick black 
line. Each vector represents the average from the closest 36 grid cells (a 6x6 square).
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Figure 5.4: On-shelf transport at the grid points shown in Figure 1 for a) October- 
April and b) May-September. Positive (negative) transport is directed on (off) shelf. 
Red (blue) vertical bars depict 95% confidence limits on the northwesterly 
(southeasterly), based on 21 years of monthly averages. Insets give net transport, that 
within 200 km of Cape Navarin, arid that between 200 km from Cape Navarin and the 
Alaska Peninsula (1500 km).
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6.1 Summary o f  results

In this dissertation, I identify spatial structure and temporal variations within the 

temperature, salinity and circulation fields of the eastern Bering Sea shelf. The Pacific- 

Arctic sea surface height gradient, tides, winds and horizontal density gradients all exert 

direct force upon the circulation field but variations in the wind direction and speed 

dominate current variability at synoptic to monthly time scales. While precipitation, 

evaporation, ice melt, river discharge, and air-sea heat exchanges (solar radiation, 

longwave radiation, sensible heat fluxes, latent heat fluxes) combine to drive the mean 

annual cycles o f heat and fresh water content, my analyses show that the circulation field 

exerts strong control upon their inter-annual variations.

These findings stand in contrast to the common view that advection exerts little 

impact on the eastern Bering Sea shelf physical environment and ecosystem. A Google 

Internet search (29 January 2012) for the two terms “Bering Sea” and “sluggish flow” 

returns 155 results and a Google Scholar search returns 19 results. The reputation for 

sluggish flow on the Bering shelf [e.g., Muench et al., 1988; Niebauer et al., 1999; 

Stabeno et al., 2001; Cooper et al., 2002; Rodionov et al., 2005] stems naturally from the 

small (< 5 cm s'1) vector mean magnitudes obtained when current meter records are 

subjected to long averaging intervals [Schumacher and Kinder, 1983] and the dynamic 

considerations o f cold domes on continental shelves [Hill, 1996]. Instantaneous speeds 

are large, typically ~ 30-60 cm s*1 and due primarily to tidal currents [Kowalik, 1999], 

Sub-tidal speeds vary seasonally with mean (maximum) speeds of up to 12 cm s '1 (65 cm 

s '1). Therefore, I find that a better characterization of the shelf flows in the mean is one 

of high variance and small mean flows over long (> 12 month) integration periods. 

Characterizing the Bering Sea cold pool as sluggish may be accurate but this feeds the 

misconception that advection is not important to this shelf.

Sub-tidal flows variations are controlled primarily by synoptic atmospheric 

conditions. Under assumptions of a spatially uniform flow field, near-surface particle

Chapter 6: Conclusions
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displacements exceeding 150 km in one month likely occur regularly (Figure 6.1). 

Chapters 2 ,4  and 5 show that the strongly polarized flow field with small net speeds is a 

result of variable wind speeds and directions, which are nearly equally divided between 

upwelling- and downwelling-favorable conditions. Due to water column homogenization 

during the fall, even near-surface currents can advect nutrients across the shelf during 

more than one-half the year.

I find that the central shelf is primarily controlled by geostrophy in both the 

along-shelf and the cross-shelf momentum balances. Bottom friction, wind stress and 

local accelerations contribute up to 40% of the balance, however. Fluctuations on time 

scales of 4-20 days of the vertically averaged current field are horizontally coherent over 

distances exceeding 200 km. This contrasts with high-frequency fluctuations (< 32 hours) 

that are incoherent at distances of 100-200 km. Vertical coherence in the current field 

decreases during May-September when stratification increases and wind speeds decrease.

Year-to-year variability in the thermal and haline fields of the Bering shelf 

(integrated over a volume of 9.3 x 103 km3) is driven by the oceanic response to 

atmospheric conditions. Heat budgets depend upon surface heat fluxes and along- 

isobath advection while fresh water budgets depend upon ice melt, precipitation, 

evaporation, river discharge and both along- and cross-isobath advection. Along-isobath 

Ekman transport variations over the heating season account for inter-annual heat content 

anomalies at the end of summer. Fresh water content anomalies at this time of year are 

primarily set by advection anomalies over the course of the previous winter. Both of 

these relations are tied to seasonal changes in the direction and strength of the wind field, 

a consequence of the position and strength of the Aleutian Low. Because the critical 

period of time for setting each of these anomalies occurs at a different portion of the year, 

their inter-annual variations are largely uncoupled.

Changes in winter atmospheric forcing have a two-fold impact upon the 

circulation field and both alter the horizontal pressure gradient. Ekman transport leads 

directly to changes in the barotropic pressure gradient such that enhanced southward 

winds generate coastal divergence and southward advection. Southward winds also
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typically promote additional salt production during winter months through enhanced ice 

and brine production. This, in turn, results in higher salinity conditions in the coastal and 

northern portions o f the central shelf. Because the entire central shelf is isothermal at the 

end of winter, baroclinic pressure gradients are driven only by changes in salinity and the 

elevated salinities to the north and east promote an anticyclonic flow field, which 

enhances flow toward the south over the inner and middle shelf. The barotropic pressure 

gradient dominates the dynamic balance but the baroclinic velocity field (referenced to 30 

db) can support surface currents that are of the same order as the mean vertically 

averaged currents.

The baroclinic pressure gradient at the end of summer promotes northward flows 

due to warm and fresh coastal waters. The summer cross-shelf density gradients may also 

be sensitive to wind conditions because downwelling-favorable winds would tend to trap 

the Alaska Coastal Current (ACC) front close to shore and inhibit cross-shelf mixing, 

whereas upwelling-favorable winds could help disperse coastal waters in summer.

Northeast Pacific (NEP) numerical model result analysis (Chapters 3 and 5) 

shows that hind-cast integrations reproduce many observed aspects of shelf conditions 

but not all fields are hindcast with equal skill. Model strengths include simulation of the 

monthly thermal and annual ice extent anomalies over the Bering shelf (50% and 85% of 

the variance accounted for, respectively), so I find that the model provides useful proxy 

datasets over the 1970-2005 integration period.

I use the model to extend the record of satellite-based ice extent anomalies from 

1979 back to 1970. In addition to changes in ice extent variance over time, the model 

and observations show a significant increasing trend (6.8 days/decade, r = 0.52, p <

0.001, Pearson’s r correlation coefficient) in the duration of ice-free waters over 1970

2009.

In Chapter 3, analysis of the NEP near surface (0-20 m) temperature Empirical 

Orthogonal Function (EOF) principal components with various environmental indices 

shows that 67% variability is accounted for by the first three modes. Mode 1 (47% o f the 

variance) is correlated (significant at the 95% confidence level, Pearson’s r) with the
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Pacific Decadal Oscillation, the North Pacific Index, the Bering Sea annually integrated 

ice extent anomaly, and the wind direction anomaly at 60 °N, 170 °W. Mode 2 (14% of 

the variance) is correlated with the North Pacific Gyre Oscillation, the Pacific-North 

American Index, near-bottom temperatures at oceanographic station GAK1 and the Gulf 

of Alaska fresh water discharge anomaly. Mode 3 (6%) of the variance is correlated with 

the ice extent anomaly and the wind direction anomaly at 60 °N, 170 °W. The wind 

direction anomaly is significantly correlated with modes 1 and 3 and this parameter 

describes variability of the advective field as a whole. Therefore, the wind direction 

anomaly may represent a critical mechanistic link between the advective and thermal 

fields. Chapters 2 ,4  and 5 provide support and additional evidence for these links and 

suggestions of their importance to the ecosystem.

6.2 Future recommendations

The analyses presented here yield new insight to the Bering Sea shelf s physical 

environment but much remains unknown. I list below ten topics that, when addressed, 

will lead to further improved understanding of the Bering Sea’s physical, chemical, and 

biological systems. These items follow from above identified gaps in knowledge and the 

new results presented in this thesis; some represent continued analyses of the datasets and 

model results currently in-hand; some require new observational studies.

1. Identify inter-annual variations of the nutrient field that are controlled in part 

by their responses to the upwelling and downwelling advection fields to better 

understand ecosystem-wide consequences of Bering Shelf circulation. 

Historical and recently collected nutrient data should provide sufficient 

records for initial analyses.

2. Describe and quantify the Bering Sea shelf sea ice budgets to better 

understand fresh water input and cold pool formation effects on Bering shelf 

circulation. This can be accomplished through analysis o f the acoustic 

Doppler current profiler (ADCP) bottom-track data during periods o f ice 

cover in conjunction with the moored ocean velocity, temperature and salinity
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data, oxygen-18 isotope bottle data, numerical model hind-casts and in situ ice 

thickness measurements made on the spring BEST-BSIERP field surveys.

3. Investigate the relative roles of advection and diffusion over the eastern shelf 

to better understand the locations and rates o f water mass mixing and shelf 

residence times. Employ the oxygen-18 isotope dataset collected as part o f the 

BEST field program along with the satellite-tracked drifter, moored current, 

temperature, and salinity records.

4. Synthesize historical current meter data with respect to upwelling- and 

downwelling-favorable wind conditions, using the reanalysis wind products to 

provide a consistent basis for splitting the modes. This will provide a 

historical perspective o f timing and variability of the two wind conditions and 

their effects on circulation.

5. Further improve the bathymetric digital elevation model for the Bering Sea by 

continuing to update it with newly collected bathymetric soundings to further 

improve the numerical models skill in reproducing observed ocean conditions.

6. Examine the vertical and horizontal structure of cross-isobath exchange along 

the Bering slope and over the shelf to better understand shelf nutrient 

replenishment and the shelf salt balance. This analysis needs to be considered 

in the context o f stratification, wind conditions, proximity to canyons, 

shelfbreak front dynamics, slope flows, and the passage of slope eddies. 

Numerical model analysis will provide a starting point and can help guide 

field efforts but an observational program is required (although political 

constraints preclude access to Gulf of Anadyr in situ measurements).

Increased model resolution is required to better resolve some processes such 

as internal wave dynamics at the shelfbreak.

7. Refine and continue the analysis of wind conditions that generate upwelling 

and downwelling responses over the shelf under varying levels of 

stratification in order to better understand the potential for each mode of 

circulation to impact the shelf conditions.
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8. Continue the idealized Bering Sea shelf numerical experiments begun in 

Chapter 5 through modifications to the rectangular domain with no along- 

isobath variations. The next iteration (already underway) will include a 

barotropic model having realistic bathymetry and so will show the influence 

of local topography on the wind-driven response.

9. Determine the importance of nonlinear motions to cross-isobath exchange in 

regions where coastal (island or mainland) promontories may generate flow 

instabilities. This analysis will improve our understanding of water mass 

mixing and exchange processes here. High-resolution surface-mapping high- 

frequency radars along with current meter mooring deployments could 

address this issue.

10. Examine climate forecasts for an indication that shifts in the Aleutian Low 

under climate warming [Salathe, 2006] or variations in the sunspot cycle 

[Christoforou andHameed, 1997] could seasonally influence the relative wind 

direction over the shelf. These analyses could lead to better predictions o f 

future conditions over the Bering Sea shelf.

In many respects, my analyses conform with those of Coachman [1986], who 

viewed “the eastern Bering Sea shelf as one large physical system” because I have shown 

that advective continuity between adjoining portions of the shelf are important to the 

inter-annual variability of the thermal and haline fields. Coachman [1986] and others 

devoted considerable focus to the diffusive character of this shelf (caused primarily by 

tidal stirring) and he classified different regions as primarily diffusive, advective or 

advective-diffusive (Table 10 and Figure 63 of Coachman [1986]). These classifications 

largely hold today, but the results presented here provide a more complete basis from 

which to consider the heat, salt, fresh water and nutrient budgets. For example, we can 

now better consider the formation processes of Bering Shelf Water and its dependence on 

contributions from the southern shelf, the Gulf of Anadyr and coastal Alaskan sources. 

Advances in our understanding of both the tidal and sub-tidal circulation fields over the
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last quarter century dictate that a re-evaluation of Coachman’s [1986] seminal analysis is 

now warranted. Such a synthesis will better clarify the balance of advective and diffusive 

processes for the Bering Sea shelf as a whole and for its many local regions, each with 

uniquely defining physical, chemical, biological and geological characteristics.
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6.4 Figures

5 m depth: All moorings 
Net monthly subtidal displacement

2008 2009 2010
Figure 6.1: Theoretical particle displacements a t 5 m depth based on the assumption 
of spatially uniform flow field. Each dot denotes the monthly mean displacement from 
one mooring site. Shading denotes months with typically lower winds and higher levels 
of stratification (May-September).




