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Abstract

GPS data from southern Alaska and the northern Canadian Cordillera have helped 

redefine the region’s tectonic landscape. Instead of a comparatively simple interaction 

between the Pacific and North American plates, with relative motion accommodated on a 

single boundary fault, the margin is made up of a number of small blocks and 

deformation zones with relative motion distributed across a variety of structures. Much 

of this complexity can be attributed to the Yakutat block, an allochthonous terrane that 

has been colliding with southern Alaska since the Miocene.

This thesis presents GPS data from across the region and uses it to constrain a 

tectonic model for the Yakutat block collision and its effects on southern Alaska and 

eastern Canada. The Yakutat block itself moves NNW at a rate of 50 mm/yr. Along its 

eastern edge, the Yakutat block is fragmenting into small crustal slivers. Part of the 

strain from the collision is transferred east of the Fairweather -  Queen Charlotte fault 

system, causing the region inboard of the Fairweather fault to undergo a distinct 

clockwise rotation into the northern Canadian Cordillera. About 5% of the relative 

motion is transferred even further east, causing small northeasterly motions well into the 

northern Cordillera.

Further north, the GPS data and model results indicate that the current 

deformation front between the Yakutat block and southern Alaska runs along the western 

side of the Malaspina Glacier. The majority of the -37 mm/yr o f relative convergence is 

accommodated along a narrow band of thrust faults concentrated in the southeastern part 

of the St. Elias orogen. Near the Bering Glacier, the tectonic regime abruptly changes as



crustal thrust faults give way to subduction of the Yakutat block beneath the western St. 

Elias orogen and Prince William Sound. This change aligns with the Gulf of Alaska 

shear zone, implying that the Pacific plate is fragmenting in response to the Yakutat 

collision. The Bering Glacier region is undergoing internal deformation and may 

represent the final stage of accretion of the Yakutat block sedimentary layers. Further 

west, modeled block motions suggest the crust is laterally escaping along the Aleutian 

forearc.
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Chapter 1 

Introduction

1.1 General

In 1890, the fledging National Geographic Society sponsored its first expedition. 

Under the direction of geologist Israel C. Russell, a group of ten men set out to explore 

the region around Mount St. Elias, Alaska (Figure 1.1) and make a preliminary study of 

its geology and glaciers. The trek was long and arduous, filled with crevasses to cross, 

mosquitos to endure, and bears to avoid, but the landscape the explorers found stretched 

their imaginations and descriptive abilities. After spending days crossing the Malaspina 

Glacier, Russell gained his first full view of St. Elias. “What a glorious sight! The great 

mountain seemed higher and grander and more regularly proportioned than any peak I 

had ever beheld before.. .Could I give the reader a tithe of the impressions that such a 

view suggests, they would declare that painters had never shown them mountains, but 

only hills. So majestic was St. Elias, with the halo of the sunset above his brow, that 

other magnificent peaks now seen for the first time or more fully revealed then ever 

before, although worthy the respect and homage of the most experienced mountain 

climber, scarcely received a second glance” [Russell, 1891]. As superlative as the 

massive ice-shrouded pyramid of St. Elias proved to be, Russell was equally astounded 

by something on a much smaller scale: fossil mollusk shells and leaves from living 

species. These fossils, found at an elevation of 5,000 feet at Pinnacle Pass east of St.



Elias, and the relative positions of the surrounding rock formations implied that the uplift 

of the St. Elias Mountains was rapid and recent in geologic time. “If these conclusions 

are sustained by future investigation, they will carry with them certain deductions which 

are among the most remarkable in geological history [Russell, 1891],

Concrete proof of recent and ongoing uplift came as soon as September 1899, 

when living mollusks of the same type found by Russell were thrust meters above their 

usual sea level along the shores of Yakutat Bay during a series of large earthquakes that 

shook a large swath of southern Alaska [Tarr and Martin, 1912], The first major event, 

on September 3, caused uplift near the settlement of Yakataga (Figure 1.1) and was 

widely felt in southern Alaska. An event in the vicinity of Yakutat Bay on the morning 

of September 10 was followed by the largest event around noon on that day. These back- 

to-back earthquakes were felt throughout southern Alaska and the Yukon territory, were 

recorded at observing stations around the world, shattered glaciers in southeast Alaska, 

generated landslides and waves that erased prospecting camps in the upper reaches of 

Yakutat Bay, and caused a maximum of 14 meters of shoreline uplift [Tarr and Martin, 

1912],

Half a century or more before the general acceptance of plate tectonic theory and 

the idea of mobile terranes, Russell, Tarr, and Martin could not have imagined that the 

underlying reason for the earthquakes and stunning topography was the collision of the 

Yakutat block with southern Alaska. The Yakutat block, a small terrane that travelled 

north along the western margin of North America, has been colliding with, accreting to, 

and partially subducting beneath Alaska since at least the Miocene. Although large-scale
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effects of the collision, such as the St. Elias Mountains, have long been recognized, many 

details remain unresolved. Major questions persist, including:

• What is the velocity of the Yakutat block?

• What are the boundaries of the Yakutat block?

• What is the current deformation front between the Yakutat block and southern 

Alaska?

• How is the relative plate motion partitioned between various structures? Where 

are the active structures?

• Where does the transition between a collisional tectonic regime and subduction 

occur?

• What are the far-field effects of the Yakutat collision?

In this thesis, I will use GPS data to examine the Yakutat collision and develop 

regional tectonic block models that can help provide answers to the questions outlined 

above.

Beginning in Chapter 2 ,1 will focus on southeast Alaska and the southern and 

eastern boundaries of the Yakutat block (Figure 1.1). A transform boundary along the 

Fairweather-Queen Charlotte fault system dominates the region, but there is significant 

off-boundary deformation. Far-field effects and the interaction between the Pacific plate 

and the Yakutat block receive particular attention. The tectonic interpretation is 

complicated by a strong glacial isostatic adjustment signal resulting from ice mass loss 

following the end of the Little Ice Age [.Larsen et al., 2005] and corrections for this effect 

are discussed.

3



Chapter 3 focuses on the St. Elias orogen of southeast and southcentral Alaska 

(Figure 1.1). The majority of my fieldwork time over the course of five summers was 

spent collecting data for this chapter. The fieldwork was conducted as part of the ST. 

Elias Erosion/Tectonics Project (STEEP), a multi-disciplinary study designed to gain a 

more thorough understanding of the Yakutat collisional zone. This region contains the 

present-day deformation front between the Yakutat block and southern Alaska. The GPS 

data reveal two major deformation regimes, one associated with a collisional tectonic 

environment and one with subduction, as well as several sharp strain gradients indicating 

major fault boundaries.

1.2 References

Larsen, C. F., R. J. Motyka, J. T. Freymueller, K. A. Echelmeyer, and E. R. Ivins (2005), 

Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age 

glacial retreat, Earth Planet. Sci. Lett., 237, 548-560.

Russell, I. C. (1891), An Expedition to Mount St. Elias, Alaska, Nat. Geographic, 3, 53 -  

204.

Tarr, R. S., and L. Martin (1912), The earthquakes of Yakutat Bay, Alaska in September 

1899, U.S. Geol. Surv. Prof. Pap., 69,135 pp.
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Figure 1.1. Location map for thesis study. YB is Yakutat Bay while MG is the 
Malaspina Glacier.
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Chapter 2 

Tectonic Block Motion and Glacial Isostatic Adjustment in Southeast Alaska and 

Adjacent Canada Constrained by GPS Measurements1

2.1 Abstract

We use data from campaign and continuous GPS sites in southeast Alaska and the 

neighboring region of Canada to constrain a regional tectonic block model that estimates 

block angular velocities and derives a self-consistent set of fault slip rates from the block 

motions. Present-day tectonics in southeast Alaska is strongly influenced by the collision 

of the Yakutat block. Our model predicts a velocity of 50.3 ± 0.8 mm/a towards N22.9 ± 

0.6° W for that block. Our results suggest that the eastern edge of the Yakutat block is 

deforming. Along this edge, the Fairweather fault accommodates a large portion of the 

Pacific-North America relative plate motion through 42.9 ± 0.9 mm/a of dextral slip. 

Further south along the Queen Charlotte fault, our model predicts an average of 43.9 ±

0.6 mm/a of dextral slip and a southward increasing amount of transpression. Strain from 

the Yakutat collision is transferred far to the east of the strike-slip system. This strain 

transfer causes the region north of Glacier Bay to undergo a clockwise rotation. South of 

Glacier Bay and inboard of the Queen Charlotte fault, a smaller but clearly defined 

clockwise rotation is observed. The heterogeneous block motion north and south of

1 Published as Elliott, J. L., C. F. Larsen, J. T. Freymueller, and R. J. Motyka (2010), 
Tectonic Block Motion and Glacial Isostatic Adjustment in Southeast Alaska and 
Adjacent Canada Constrained by GPS Measurements, J. Geophys. Res., 775(B9),
B09407, 10.1029/2009JB007139.



Glacier Bay may indicate the area is undergoing internal deformation and could explain 

regional patterns of diffuse seismicity. The Northern Cordillera of Canada displays a 

small northeasterly motion. Our block model suggests that the entire southeastern Alaska 

-  northwestern Canada margin is mobile.

2.2 Introduction

Southeast Alaska and the adjacent portion of northwest Canada form an important 

segment of the Pacific-North America plate boundary, marking the beginning of the 

transition from a transform margin to subduction along the Aleutian megathrust (Figure 

2.1). The tectonics of this region is greatly complicated by the Yakutat block’s collision 

with and accretion to southern Alaska. In the southern part of this area the plate 

boundary is fairly simple, with the dextral Fairweather -  Queen Charlotte fault system 

accommodating the majority of the relative motion (Mazzotti et al., 2003). From 

Chatham Strait northward, however, the distribution of relative motion is unclear. The 

partitioning of motion between onshore and offshore faults is a major question. Several 

studies suggested that the effects of the Yakutat collision are far-reaching [e.g. Leonard 

et al., 2007; Leonard et al., 2008; Mazzotti et al., 2008] , but the available GPS data did 

not allow the detailed resolution of deformation inboard of the coast.

In this paper, we present a new, larger GPS dataset and use that data to develop a 

tectonic block model for southeastern Alaska and the neighboring part of Canada. We 

also present an updated version of the southeast Alaska glacial isostatic adjustment model 

of Larsen et al. [2005] and apply the horizontal model predictions to our data. A block 

model divides a region with complex, varied deformation patterns into a set of rigid
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blocks whose motion can then be calculated. Using a block model allows us to create a 

kinematically consistent model that accounts for both long-term tectonic block motion 

and the transient effects of interseismic strain accumulation on the block-bounding faults 

[e.g. Meade and Hager, 1999; McCaffrey, 2002; Meade and Hager, 2005]. This 

approach avoids inconsistencies that can arise when fault slip rates or block velocities are 

estimated individually.

The improved GPS dataset and the block model technique provide a broader 

perspective on the problem of how the relative motion between the Pacific plate and 

North America is distributed in this region. Using poles and rotation rates from the block 

model, we calculate relative rates of motion between the blocks and evaluate what these 

mean in terms of seismic hazard and strain transfer into adjoining tectonic regions. 

Particular attention is paid to the question of how relative motion is partitioned between 

onshore and offshore faults and what this might imply about fragmentation of both the 

Yakutat block and the Pacific plate. Examining the deformation patterns inboard of the 

strike-slip system also allows us to assess how much of the present-day eastern Alaska -  

western Canada margin is mobile.

2.3 Tectonic Setting

The Yakutat block is a wedge-shaped allochthonous terrane that originated during 

the mid-Cenozoic as part of what is now the Pacific Northwest [Bruns, 1983] or British 

Columbia and southeastern Alaska [Plajker et al., 1994a] and traveled north along the 

Fairweather -  Queen Charlotte transform system. It arrived and began colliding with 

southern Alaska by the late Miocene, roughly 6 - 1 0  Ma [Lagoe et al., 1993; Ferris et al.,



2003]. The present-day motion of the Yakutat block has been a matter of debate. Some 

studies have concluded that the Yakutat block moves mainly with the Pacific plate with 

little or no relative motion between the two [e.g. Plafker et al., 1994a; Bruns, 1983] while 

others have suggested that significant Pacific plate -  Yakutat block relative motion exists 

[e.g. Fletcher and Freymueller, 1999; Perez and Jacob, 1980].

The dextral Fairweather-Queen Charlotte fault system is a major tectonic feature 

of southeast Alaska and accommodates most of the Pacific -  North America relative plate 

motion. The Fairweather fault is usually taken to be the eastern boundary of the Yakutat 

block [Plafker et al., 1978; Lahr and Plafker, 1980]. The fault extends from the vicinity 

of Yakutat Bay to Chatham Strait, where it is postulated to connect with the Queen 

Charlotte fault [.Plajker et al., 1994a], Several Mw>7 earthquakes have occurred along 

the fault during the past century (Figure 2.2). In 1958, a Mw7.9 earthquake occurred just 

north of Cross Sound [Doser and Lomas, 2000], The earthquake resulted in well- 

documented dextral slip of up to 3.5m and the onshore surface rupture extended over 200 

km to at least the northern end of Yakutat Bay [Plafker et al., 1978]. In 1972, the Mw7.6 

Sitka earthquake ruptured 180 km offshore the Alexander archipelago [Doser and Lomas, 

2000; Schell and Ruff, 1989], A Mw7 earthquake in 1927 occurred in the region between 

the ruptures of the two larger earthquakes [Doser and Lomas, 2000]. Geologic and 

geodetic slip rate estimates for the Fairweather fault range from 4 1 - 5 8  mm/a [Plafker et 

al., 1978; Lisowski et al., 1987; Fletcher and Freymueller, 2003]. A segment of the 

Queen Charlotte fault located south of our study area generated a Mw8.1 right-lateral
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strike-slip earthquake in 1949. In 2004, a Mw6.8 event occurred near the northern end of 

the fault.

Perhaps the most enigmatic tectonic feature in southeast Alaska, the Transition 

fault forms the southern boundary of the Yakutat block. Based on undisturbed sediments 

seen in seismic reflection data, Bruns [1983] concluded that the Transition fault has been 

inactive since the Pliocene and is a fossil fracture zone. In 1973, a series of earthquakes 

occurred outboard of Cross Sound near the southeastern edge of the Transition fault 

(Figure 2.2). The Ms6.7 mainshock and the two largest aftershocks had focal 

mechanisms consistent with thrust/reverse faulting on a fault dipping to the northeast 

[Doser and Lomas, 2000]. Perez and Jacob [1980] estimated that the Transition fault 

accommodates about 10 mm/a of N30°E directed convergence between the Pacific plate 

and Yakutat block based on seismic slip vectors. The block model of Lahr and Plafker 

[1980] included 4 mm/a of Pacific plate -  Yakutat block relative motion across a 

dextral/oblique Transition fault. A GPS study by Fletcher and Freymueller [1999] found 

that -20 mm/a of Yakutat -  Pacific relative convergence must be accommodated on an 

offshore fault, with the Transition fault suggested as the obvious candidate. Deriving a 

Yakutat block rotation pole from a small network of GPS velocities and fault azimuth 

data, Pavlis et al. [2004] estimated nearly pure thrust motion along the Transition fault at 

rates increasing from about 10 mm/a at the southeast end to more than 30 mm/a at the 

northwestern end. Gulick et al. [2007] reported on seismic reflection and bathymetric 

data that implies the eastern end of the Transition fault has developed into a strike-slip 

fault. A tectonic model in that study suggested that the entire fault accommodates 10
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mm/a or less relative plate motion. Wide-angle seismic data and seismic reflection 

profiles collected across the Transition fault offshore Yakutat Bay in 2008 indicate that 

the major, developed structure is nearly vertical and thus likely to be a strike-slip fault if 

it is active [Gail Christeson, personal communication, 2009].

Southeast Alaska and the adjacent region of Canada exhibit several distinct 

seismicity trends inboard of the Fairweather-Queen Charlotte system. A band of small 

earthquakes follows the trace of the Duke River fault [Horner, 1983; Mazzotti et al., 

2008] (Figure 2.2), suggesting that it may be involved in the distribution of the relative 

plate motions. The eastern Denali fault shows low levels of seismicity between the Duke 

River fault and Chatham strait. No seismic activity is seen along the Chatham Strait fault 

[Horner, 1983; Mazzotti et a l, 2008] (Figure 2.2).

A trend of seismicity is also found across the Glacier Bay region between the 

Fairweather and eastern Denali faults. Horner [1983] suggested that the seismicity and 

high uplift rates observed in Glacier Bay indicated the presence of convergence across 

the Fairweather fault. Using a model constrained by raised shoreline dating, tide gauge 

data, and GPS measurements, Larsen et al. [2005] concluded that the high uplift rates 

seen in Glacier Bay are due to glacial isostatic adjustment, not tectonics. Seismicity in 

this region has consisted of mostly smaller events, with only one possible M>6 

earthquake recorded east of the Fairweather fault. Doser and Lomas [2000] interpret that 

event, a M6.0 earthquake in 1952, as a right-lateral strike-slip event that may have 

occurred on the Border Ranges fault east of the Fairweather fault. Several smaller,
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M>4.5 earthquakes have also occurred in this area in the recent past and the available 

focal mechanisms show a mixture of strike-slip and thrust events (Figure 2.2).

Further to the north, a series of very large earthquakes occurred between Icy Bay 

and Yakutat Bay in September 1899. A Ms7.9 event on September 4 preceded a Ms7.4 

foreshock and a Ms8.0 mainshock on September 10 [Doser, 2006], The September 10 

mainshock generated the largest known onshore coseismic vertical displacement, 14 m of 

uplift near the head of Yakutat Bay [Tarr and Martin, 1912], The analysis of Doser

[2006] suggests that the September 10 foreshock occurred offshore southeast Alaska and 

possibly involved the Transition fault while the mainshock occurred near Yakutat Bay 

and may have ruptured onshore thrust faults (Figure 2.2). Doser [2006] located the 

September 4 event within the Pamplona thrust zone to the west of Icy Bay.

2.4 Data Analysis

2.4.1 Dataset

We use GPS data collected at 102 sites in southeast Alaska, Yukon Territory, and 

British Columbia (Appendix 2.B). Four of the sites are continuously running GPS sites; 

the other 98 are campaign sites. The continuous GPS sites have operated for 6 -  10 

years. The campaign sites each have between 2 and 11 visits and the time span between 

first and last visits ranges from 4 to 15 years (Appendix 2.D). Much of the campaign 

data is an extension of the dataset presented by Larsen et al. [2005], Many of the 

velocities reported in that study now have been enhanced by at least one additional 

occupation. We also use data from several Canadian Base Network sites and augment 

data we collected at some campaign sites with data collected at those sites by Geomatics
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Canada and the Pacific Geoscience Centre, Geological Survey of Canada [Leonardet al., 

2007; Henton et al., 2006].

2.4,2 Data Processing and Velocity Estimation

We used the GIPSY/OASIS GOA4 software developed by the Jet Propulsion 

Laboratory (JPL) [Zumbrege et al., 1997] to analyze the GPS data presented here. Data 

from each day were analyzed separately to create daily loosely constrained frame-free 

solutions. For data collected prior to 1995, we combined the Alaska data with data from 

global International GPS Service (IGS) sites and estimated orbits. For data collected 

from 1995 onwards, we used JPL’s fiducial-free orbits. We transformed the daily 

solutions into the International Terrestrial Reference Frame 2000 (ITRF2000, realization 

IGSbOO). We used ITRF2000 rather than the more recent ITRF2005 because of our need 

to express our solutions in a North America-fixed frame. We consider the estimate of 

Sella et al. [2007] to be the most reliable determination of the motion of North America 

as it is based on substantially more data than any other estimate and considers the effects 

of glacial isostatic adjustment. The estimate of Sella et al. [2007] is based on ITRF2000 

(IGSbOO) and should not be used with ITRF2005 due to differences between the frames. 

The daily solutions were combined in a linear least-squares inversion to estimate 

velocities at each GPS site.

In our uncertainty estimates, we included uncertainties in the definition of the 

North America-fixed frame and in the geocenter stability of ITRF in addition to the 

formal errors in site velocities. The ITRF2000 and ITRF2005 frames differ by a ~ 1.8 

mm/a geocenter translation along the spin axis (Z axis). At the latitudes considered in
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this study, the geocenter difference results in a velocity difference of ~ 1 mm/a in the 

north component and ~ 1 mm/a in the vertical component. Argus [2007] and Kogan and 

Steblov [2008] both attempted to estimate a geocenter correction to ITRF. The result of 

Argus [2007] lies between ITRF2000 and ITRF2005 while Kogan and Steblov [2007]’s 

result is closer to ITRF2000. Since we do not know if either frame is correct, we 

augmented the velocity uncertainties by 1.8 mm/a in the Z component, which reduces the 

weight given to the north and vertical velocity components accordingly. The impact of 

any small bias in the velocities on the model results in this paper is very small. The use 

of ITRF2000 in both our velocity estimates and our choice of reference plate pole 

minimizes the bias. Further details about the processing, velocity estimation, and the 

augmentation of uncertainties due to possible systematic errors can be found in the work 

of Freymueller et al. [2008],

2.4,3 Coseismic and Postseismic Effects

The data time span for many sites (Appendix 2.D) crosses the date of the 2002 

Denali fault earthquake and we applied a correction for the coseismic displacements 

[Hreinsdottir et al., 2006] to each station as part of the velocity estimation. The 

magnitude of the correction ranges from 2 mm to 14 mm across our network, with the 

larger displacements located in Canada east of the Shakwak strand of the Denali fault 

(Figure 2.1). Postseismic deformation from the Denali earthquake is very small for most 

of the area considered in this study. A robust postseismic deformation model for our 

study area is not available as published models [Pollitz, 2005; Freed et al., 2006; Johnson 

et al., 2009] significantly over predict the postseismic effect in the far field. We were
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able to calculate the difference between the pre-earthquake and post-earthquake velocities 

at a number of sites in the Northern Cordillera, near the Duke River fault, and in the city 

of Yakutat (Figure 2.1). These sites, as the sites closest to the 2002 rupture, would be 

expected to display the largest postseismic effects. Only the two most northerly sites, 

Y565 and DEST (Appendix 2.B), displayed differences greater than their 2-o uncertainty 

estimates. For these two sites, we used only the pre-earthquake data to determine their 

velocities. The other sites had differences at or below the 1-a level. The differences 

between the pre-earthquake velocities and velocities calculated using both pre- and post­

earthquake data were even smaller. For this reason, we used all available data to 

calculate velocities at the remaining 100 sites in our dataset.

We did not correct for the postseismic effects of the 1964 M9.2 Prince William 

Sound earthquake. Our study area is over 250 km east of the end of that rupture. The 

model of Suito and Freymueller [2009] predicts that southeast Alaska sites showing the 

largest effect, Y565 and the site at Yakutat, have postseismic motion of 0.1 mm/a and 0.2 

mm/a, respectively.

We also do not correct for the possible postseismic effects of the 1958 earthquake 

on the Fairweather fault or the 1899 earthquake sequence. While formal postseismic 

models do not exist for either the 1899 or 1958 earthquakes, we can estimate the degree 

to which any postseismic effect from those events would have decayed by the present 

time. If we assume a shear modulus of 70 GPa (based on PREM [Dziewonski and 

Anderson, 1981]) and an asthenosphere viscosity of 3.7el8 Pa s [Larsen et al., 2005], we 

obtain a Maxwell relaxation time of ~ 2 years for southeast Alaska. Even if these ~M8
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events had considerable initial postseismic effects, they would have decayed into 

negligible amounts by the present day. Corroborating this, Fletcher and Freymueller 

[2003] used both EDM data collected in the 1980’s and GPS data collected in the 1990’s 

in the region of the 1958 rupture and found the two datasets to be compatible. If 

substantial postseismic effects from the 1958 event were present, the decade time lapse 

between the datasets should have resulted in apparent differences.

2.4.4 Glacial Isostatic Adjustment Model 

Southeast Alaska has experienced considerable ice volume loss since the end of the 

Little Ice Age (LIA) in the late 1700’s [Motyka, 2003; Larsen et al., 2004], The glacial 

isostatic adjustment (GIA) due to this ice loss results in the fastest ongoing isostatic uplift 

measured anywhere [.Larsen et al., 2005]. Two uplift centers have been identified with 

peak uplift rates of 30 mm/a in Glacier Bay and 32 mm/a in the Yakutat icefield. We 

find that the GIA models discussed below indicate horizontal deformation associated 

with this ice loss reaches maximum values in excess of 7 mm/a and overprints the 

regional tectonic deformation pattern. Tectonic interpretation of the regional deformation 

field relies on first accounting for the GIA horizontal signal. Here we follow the 

approach of Larsen et al. [2005], but use an updated dataset and an improved model 

calculation.

To model the Earth's viscoelastic response to ice load changes in southeast Alaska, 

we tested a suite of Earth models in which we varied the effective elastic lithospheric 

thickness and the viscosity profile of the upper mantle while minimizing misfit between 

the observations and the predicted uplift. The models presented here use a non-rotating,
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incompressible, self-gravitating, Maxwell viscoelastic spherically symmetric Earth model 

and are computed using the TABOO program [Spada et al., 2003; Spada, 2003; Spada et 

al., 2004]. Numerically, this model uses axial-symmetric disks to describe surface loads 

and both the current models and previously presented models [Larsen et al., 2005] use 

the same surface load geometry and load history.

In our earth model, we explicitly include a thin, low viscosity asthenosphere 

overlaying the upper mantle. The density and elastic properties of the Earth model 

follow the seismic model PREM [Dziewonski and Anderson, 1981]. We expanded the 

spherical harmonics used throughout the numerical modeling to degree and order 2048 in 

order to resolve small ice load changes and their effects. This is a factor of two greater 

resolution on the numerical earth modeling compared to the previously presented models 

[Larsen et al., 2005]. The higher resolution accommodates the denser distribution and 

greater accuracy of the GPS data and is fully consistent with the 20 x 20 km resolution of 

the ice model.

The earth model parameters and the ranges over which we varied them are as 

follows: lithospheric elastic thickness, 30-120 km, asthenosphere thickness and viscosity, 

80-150 km and 1 x 1018-5 x 1019 Pa s, and upper mantle viscosity, 1 x 1020-5 x 102° Pa s. 

Misfit with the observations was found to rapidly increase at the upper and lower limits 

of all of these parameter ranges. Our GIA model assessments were performed through 

comparisons of model predictions to vertical GPS velocities, raised shoreline records of 

RSL (relative sea level), and the tide gauge rates of RSL as described in Larsen et al. 

[2005]. We did not attempt to analyze the horizontal motions resultant from our rebound
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models here as has been done in Fennoscandia [Milne et ah, 2001], because the dominant 

horizontal signal observed in southern Alaska is of tectonic origin.

These earth models were subjected to two ice load models simultaneously -  one 

that approximates southern Alaskan and adjoining Canadian glacial history (“Regional”) 

and another that describes the asynchronous behavior of the Glacier Bay icefield 

(“Glacier Bay”). Both of these load histories were held fixed in magnitude and timing for 

all of the rebound model results presented here. Only the last ~2 ka of load histories were 

considered in our Regional and Glacier Bay load models. Earlier load changes have 

relatively minimal effects on present day velocities [Larsen et al., 2005], Load histories 

for both the Regional and Glacier Bay ice models are shown in Figure 2.5 of Larsen et al. 

[2005] and account for both loading and unloading phases of the past 2000 years. The 

present response is dominated by the unloading phase over approximately the past 100­

200 years.

The regional ice load model used here is unchanged from previous studies [Larsen 

et al., 2005], It estimates the change in ice volume through the advance and retreat of the 

LIA [Porter, 1989; Wiles et al., 1999]. The measured rates of volume change [Arendt et 

al., 2002] were extrapolated to estimate the LIA peak volume in 1900. Earlier volume 

changes are based on the relative strength of the advance and retreat cycles [Wiles et al., 

1999], We used Neoglacial terminal moraine positions to estimate differential ice 

volume of these earlier advance and retreat cycles [Larsen et al., 2004], a method that can 

be problematic in polar systems but is realistic in rapidly adjusting temperate ice systems 

[Harrison et al., 2003]. The spatial distribution of ice thickness change throughout the
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load history was allotted according to elevation \Arendt et al., 2002]. The distribution of 

these thickness changes was gridded at a 20-km x 20-km resolution and assigned a 

history. This regional ice load model is based on dendrochronologic and geomorphologic 

histories of the LIA in southern Alaska [Porter, 1989; Wiles et al., 1999],

We accounted for the large-scale retreat of the Glacier Bay icefield in a separate 

load model, also unchanged from Larsen et al. [2005], We modeled an ice volume loss 

of 3030 km3 from the collapse of the icefield, which occurred rapidly (< 250 years 

beginning ca. 1780 AD) through the process of a tidewater calving retreat. This localized 

ice wastage represents the largest post-LIA deglaciation known to us. Greater than the 

volume lost from all Alaskan and neighboring Canadian glaciers between 1955 and 2002 

[Arendt et al., 2002], it covered a much smaller area with ice thickness changes of up to

1.5 km [Clague et al., 1993], The volume of ice lost in Glacier Bay alone since the end 

of the LIA is equivalent to a global rise in seal level (SLE) of 8 mm.

The best-fit earth model parameters found here are slightly different from those of 

Larsen et al. [2005]: a 50 km (vs. 60 km in the previous model) thick lithosphere 

overlying a 110 km thick asthenosphere of viscosity 3.7 x 1018 Pa s (vs. 2.5-4.Ox 1018 Pa 

s) over an upper mantle with a viscosity of 4 x 1020 Pa s. The best-fit model now results 

in a reduced %2 value of 1.29 while the previous model had a reduced %2 value of 1.52. 

These minor differences result from a combination of the expanded degree and order of 

the spherical harmonics and the increased spatial density and accuracy of the GPS dataset 

used, but do not represent a significant change from our earlier results. Specifically, the 

best-fit earth model parameters of Larsen et al. [2005] lie within the 95% confidence
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region of the present estimate. Figure 2.3 shows the full 3-D deformation field of the 

modeled GIA motion at selected sites in southeast Alaska and Appendix 2.C lists the 

model predictions for each site. Figures 2.A-2 and 2.A-3 shows a comparison between 

the modeled horizontal GIA motion and our horizontal GPS velocities.

These GIA predictions are subject to the assumptions inherent in the earth models 

we have invoked as well as to the degree to which the data can constrain the models. We 

have assumed an incompressible earth model. Amadottir et al. [2009] showed that an 

incompressible earth model can underestimate the horizontal velocities associated with 

GIA by factor of 1.5 when compared to compressible earth models while vertical 

velocities appear to be largely insensitive to the choice. Because o f this contrast in 

sensitivity, our results could underestimate the GIA horizontal effects while still 

providing a good fit to the observed vertical velocities.

In order to test the widest range of reasonable predictions of horizontal GIA effects 

in the tectonic models that follow, we considered two additional models beyond the best- 

fit model. These two models (elastic lithospheric thickness with asthenosphere viscosity: 

50 km with 7 x 1018 Pa s, 85 km with 1.5 x 1018 Pa s) lie on opposite edges of the 95% 

confidence range and represent the greatest allowable variation in model parameters (see 

Figure 6, Larsen et al. [2005], for description of the misfit distribution). The resulting 

predictions of the horizontal GIA effects at the sites in our GPS network vary by a factor 

of two or more in magnitude at some sites and also display considerable variations in 

azimuth compared to the best-fit model (Figure 2.A-4). Although we do not explicitly 

test the effects of our assumption of incompressibility in the earth models, the range of
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horizontal GIA effects produced by our three test models reasonably accommodates the 

range of predictions that could be associated with various assumptions of 

compressibility/incompressibility. In the development of our tectonic block model, we 

favor the best-fit GIA model but also use the two end member models to gauge their 

effects on our conclusions.

2.4.5 GIA-adjusted Velocity Field

Figure 2.4 shows the GPS velocities with the predicted horizontal GIA motion 

removed. Velocities near the Fairweather fault show nearly uniformly northwest-directed 

motion while velocities closer to the coast display slightly more northerly motion. The 

largest magnitude velocities, ~ 50 mm/a, border Yakutat Bay, with little difference seen 

between the magnitudes at sites on the north and south sides of the mouth of the bay. 

Inboard of the coast, sites between the Fairweather -  Queen Charlotte system and Denali 

fault -  Coast Shear zone have comparatively slower velocities and this portion of the 

velocity field displays a distinct clockwise rotation. East of the eastern Denali fault, 

velocities have a nearly uniform northeasterly trend and decrease in magnitude from 

north to south. East of 130°W longitude, velocities at sites in the Canadian Base Network 

have very small magnitudes.

2.5. Block Model

2.5.1 Modeling Approach

To develop our block model for southeast Alaska and northwest Canada, we 

adapted the method of Meade and Hager [2005], We present a summary of the method 

below; further details can be found in their study.
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Assuming linear elasticity, we can express the interseismic velocity v, observed 

at a GPS site as a combination of block motion and elastic effects:

v, = vB (xslle) -  VSD (xslte ,xgeom) (1)

The GPS site coordinates correspond to xslte, the fault geometry to xgeom, and the block

velocity to vB. The term vSD represents the slip deficit accumulating on a locked fault.

When dealing with block velocities, it is convenient to work in terms of rotations

in an earth-centered Cartesian (XYZ) coordinate system. The angular velocities of the

blocks are then represented by Q = [Qx, Gy, Qz]- Rewriting the equation for block

velocity in terms of fl yields

vB(*„*) = Q x xslte = Rs (x sue)Q (2)

where R B(xw/f) is a linear cross product operator that is a function of the site coordinates.

The slip deficit term can be written as

ksD = G(Xi((£, ,Xgeom )s (3)

where G is the matrix of Green’s functions that relate slip, s , on each fault plane to the

displacement at each GPS site assuming an elastic half-space and a Poisson’s ratio of

0.25 [Okada, 1985].

The slip vector is written as

s = R Fp(xgeom)Rx^ E(xgeom)T&.vdl£ ( ^ ) Q -  (4)

R vdlff (xgeom) takes the angular velocities for two neighboring blocks and calculates their

relative velocity at the midpoint of each plane of the fault that divides them.

Rx^E&geom) transforms the relative velocities from the XYZ coordinate system to the
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ENU system. Finally, R fP (x„eom) projects the relative velocities into fault parallel and

fault perpendicular components. Each fault plane is only allowed two components of 

slip, either strike-slip and fault normal (contraction or extension) if the fault is vertical or 

strike-slip and dip-slip if not.

The fault slip rates directly depend on the block angular velocities and the block 

geometries. Since the slip rates cannot vary independently of each other, the block model 

ensures that the estimated slip rates are internally consistent (see Figure 2, Meade et al. 

[2002]).

By substituting (4) into (3) and combining the successive transformations into a 

single matrix R®, (1) can be rewritten as

v, =(Rb - R sd)Q. (5)

To include a priori block angular velocities and slip rates in the model, a system 

of equations can be written as follows:

'  ■

v /

s —
* apr

Qapr

P  P  P
^ F P ^ X  - * E J * v d iJ0p Q (6)

where I is the identity matrix.

Equation (6) can be written as

d = RQ (7)

where d  contains the east and north components of the GPS velocities, the a priori slip 

estimates, and the a priori block angular velocities.



This equation allows us to solve for the block angular velocities Q through a weighted 

linear least-squares inversion.

Qa/=(RTWR)"1RTWrf 

where W TW = 2 '1 and 2 is the data covariance matrix. Besides containing the variance 

of the observed east and north GPS velocities and the correlations between the east and 

north components of the GPS data, 2 contains uncertainty estimates for a priori slip rates 

and block angular velocities. In our implementation, predictions from an a priori model 

calculated using our a priori block angular velocities (see Section 2.4.3 below) are 

subtracted from the data. The estimated angular velocities obtained from the inversion 

are corrections to that a priori model.

Slip rate and linear block velocity uncertainty estimates are calculated by 

propagating the estimated uncertainty for Qgs( through (4) and (2), respectively.

2.5.2 Block and Fault Geometries

Our block model for southeast Alaska and the neighboring region of Canada 

includes ten blocks and plates and eleven bounding faults or fault zones (Figure 2.5). 

Block boundaries are either recognized faults (through geologic studies or documented 

seismic activity) or previously postulated faults or fault zones. Locations generally 

follow mapped traces on geologic maps, seismicity trends, or topography. Due to the 

region’s ruggedness and ice cover, the map traces often represent inferred faults or 

uncertain locations.

Most o f our model faults are well known and based on the map of Plafker et al. 

[1994b], but several of our faults and block designations came from other sources and
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merit further discussion. Richter and Matson [1971] and Lahr and Plajker [ 1980] 

postulated that a connection between the southern end of the Totschunda fault and the 

Fairweather fault existed. There are a number of NNW-ESE oriented linear valleys in the 

region that could indicate the presence of a fault. Exposed geological features along the 

East Nunatak and Art Lewis glaciers east of the Fairweather fault in the Yakutat icefield 

are compatible with right-lateral slip [G. Plafker, personal communication, 2006]. Using 

geologic slip rates as inputs into a finite element model for southern Alaska, Kalbas et al. 

[2008] concluded that the presence of a connection between the Totschunda and 

Fairweather faults provided the best explanation of the data. Our modeled Totschunda- 

Fairweather connector fault branches off the Fairweather fault near the Art Lewis glacier 

and follows linear, ice-filled valleys northwestward before making a simple connection to 

the Totschunda fault (Figure 2.5).

The Chatham Strait fault (Figure 2.1) would seem like a plausible location for a 

block boundary as it appears to connect to the Eastern Denali fault [e.g. Lahr and Plajker, 

1980], but there is little to no seismicity along that fault (Figure 2.2). The GPS velocity 

field (Figure 2.4) shows no indication of an active fault along the Strait; the velocities 

instead imply that GPS sites on either side of the Strait belong on the same crustal block. 

We propose the Coast Shear zone as an alternative block boundary (Figure 2.1; Figure 

2.5), following Lanphere [1978] who suggested that the Eastern Denali fault might 

continue onto the Coast Shear zone instead of the Chatham Strait fault. The Coast Shear 

zone serves as the general boundary between the western metamorphic belt and the Coast 

Mountains batholith to the east [Brew and Ford, 1998; McClelland et al., 2000;
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McClelland et ah, 1992; Klepeis et al., 1998], Along much of its length, the Coast Shear 

zone coincides with a tonalite sill belt [Brew and Ford, 1981; Brew, 1994; Brew and 

Ford, 1998]. Both contraction and dextral transpression appear to have occurred along 

the Coast Shear zone during early Tertiary time and it may have played a role in strain 

partitioning during oblique subduction of the Kula plate beneath North America 

[.Rusmore et al., 2001; Klepeis et al., 1998]. McClelland et al. [2000] suggested that the 

Coast Shear zone originated as a strike-slip structure and may have played a role in the 

evolution of the Denali fault system.

We have subdivided two previously recognized blocks (Yakutat and Fairweather) 

in order to provide the best fit between the GPS data and our block model. First, we 

modified the Fairweather block of Fletcher [2002], The Duke River fault replaces the 

northern Eastern Denali fault (Shakwak strand) and the Totschunda and Totschunda- 

Fairweather connector faults as the northern boundary. A northwest-southeast trending 

band of seismicity roughly follows the trace of the Duke River fault [Leonard et al.,

2007; Horner, 1983] (Figure 2.2). In contrast, the Shakwak strand shows only sparse 

present-day seismicity. Paleoseismological evidence obtained from resuspended lake 

sediments suggests that the Duke River fault and southern Eastern Denali fault (Dalton 

strand) have been seismically active during the past 300-500 years [Doig, 1998]. This 

change minimized the misfit between our model and several of the GPS sites in the 

vicinity of the Duke River fault.

Second, we added two small blocks, the Nunatak block and the Foothills block, 

along the eastern edge of the Yakutat block. Our initial motivation for including onshore
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faults along the edge of the Yakutat block was to reduce the unreasonably high rate of 

convergence (~ 20 mm/a) across the Transition fault predicted by an early version of our 

block model. As mentioned earlier, recent offshore seismic data suggests that the 

Transition fault does not have significant thrust fault characteristics. In order to evaluate 

the compatibility of onshore faults with the GPS data and determine if both offshore and 

onshore faults were required by the data, we tested a number of alternate fault 

geometries. For each trial geometry, we performed the inversion, calculated misfit, and 

ran F-ratio tests to determine the statistical significance of the results. The offshore fault 

involved was the Transition fault while the onshore faults were the Boundary fault and 

the Foothills fault. The Boundary fault is a well-known mapped fault while the Foothills 

fault used here is a modified version of the Yakutat fault of Plajker and Thatcher [2008]. 

We tried four combinations of onshore faults (Figure 2.6, Table 2.1) without an offshore 

fault as well as several combinations of onshore and offshore faults. Our results show 

that if no offshore fault is present, including both onshore faults provides the best fit to 

the data. This model, however, fits more poorly than one with the Transition fault and 

without either onshore fault. The best-fit model has the Transition fault plus both 

onshore faults, the presence of which greatly reduced the misfit at sites along the northern 

Fairweather fault. The addition of each fault to our block model met or exceeded the F- 

test criteria for significance at the 95% level (Table 2.1). The implications of these faults 

and blocks are discussed further below.

Finally, our model includes a boundary across Glacier Bay. In the northern 

Glacier Bay region, structures undergo an abrupt change from north-south strikes to east-
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west trends [Brew et al., 1978; MacKevett et al., 1971], This change is particularly 

obvious at Tidal Inlet, a nearly perfectly east-west trending fjord. MacKevett et al.

[1971] reported an east-west fault zone here. Brew et al. [1978] also noted the presence 

of a zone of east-west trending faults in the northern section of Glacier Bay and remarked 

on the unusual orientation. The change in structural strike occurs along the southern edge 

of observed band of seismicity discussed earlier and separates a more seismically active 

region in the north from a seismically quiet region to the south. In addition, GPS 

velocities in the north are generally faster than those in the southern region (Figure 2.4). 

We included a boundary, designated the Glacier Bay Partition (GBP), running between 

the Fairweather and Denali faults through Tidal Inlet, dividing the Fairweather block to 

the north from the Baranof block to the south. Compared to the best-fit model discussed 

in the previous paragraph, the GBP model reduced the overall misfit by ~ 10% and 

exceeded the F-test criteria for significance at the 99% level (Table 2.1). The GBP is 

discussed further below.

For our modeling purposes, we assumed that the region north of the central 

segment of the Denali fault is part of the North American plate. We adopted the 

Southern Alaska block (SOAK) of Fletcher [2002] and assume that block occupies the 

area south of the Denali-Totschunda system and north of the Chugach and St. Elias 

Ranges (Figure 2.1). We defined the region immediately east of the Eastern Denali fault 

and Coast Shear zone to be the Northern Cordillera block, following Mazzotti and 

Hyndman [2002],



Fault locking depths, dips, and widths in the down-dip directions are all fixed; 

they are not estimated as part of the inversion. We used an iterative process to adjust 

fault segment endpoints, fault locking depths, and fault width and dip to find the fault 

geometry that provided the best fit to the GPS data. For each fault, we began with 

published estimates of the fault geometry, most of which were derived from seismic or 

geodetic data. If no published estimate or other information was available, we began 

with a vertical fault with a locking depth of 10 km. If a fault segment had no nearby GPS 

data to constrain the iterative process, we assigned the fault parameters compatible with 

neighboring faults. There were two exceptions to this process. The first was the 

Transition fault. While the northern and central regions were designated as vertical to 

agree with the offshore seismic reflection data, the southern segment was defined as a 

steeply dipping thrust fault to agree with the 1973 Cross Sound Earthquakes. The second 

exception concerns the Boundary and Foothills faults. Plafker and Thatcher [2008] used 

vertical shoreline displacement measurements to constrain a coseismic model for the 

1899 earthquakes. In that model, the Boundary fault dips 10° to the NE while the 

Yakutat fault dips 30° to the NE. Our model Boundary fault dips 85° to the NE and our 

Foothills fault is vertical. Our model geometries were chosen to minimize both the misfit 

to the GPS data and the amount of contraction across the Transition fault. These 

geometries are discussed further below. Table 2.2 lists fault geometry parameters for the 

faults used in this model.
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2.5.3 A Priori Block Motion Estimates

Our modeling approach allows the inclusion of a priori block motion estimates. 

We chose to use a priori block angular velocities for three of the blocks in our model: 

Pacific, North America, and SOAK. Our dataset does not include any GPS sites on these 

three blocks, so their inclusion is only important for the calculation of deformation along 

their boundaries. North America is our reference block -  all of our GPS velocities and 

block angular velocities (estimated and a priori) are relative to it. We used the definition 

of North America presented by Sella et al. [2007]. The GPS data used by Sella et al.

[2007] to develop this model were aligned with ITRF2000 (IGSbOO realization), so this 

estimate of North American plate motion will not have reference frame compatibility 

problems with our GPS velocities. As our a priori Pacific plate motion estimate, we used 

the GPS-derived angular velocity estimate of Plattner et al. [2007], who also used the 

IGSbOO realization of ITRF2000. We used the pole and rotation rate determined by 

Fletcher [2002] for the motion of SOAK relative to North America. In that model, 

SOAK rotates counterclockwise about a pole in Prince William Sound. The small circle 

geometry of the central Denali fault constrains the location of the pole.

Along with the angular velocities, we included uncertainties for the motion of the 

Pacific plate, North America, and SOAK as a priori information. To ensure numerical 

stability during the inversion and limit the maximum rate of vertical axis rotation for 

small blocks, we also applied loose a priori uncertainties to the estimated angular 

velocities in our block model. These uncertainties were large, with a  equal to 0.1 

radians/Ma.
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2.5.4 A Priori Slip Rate Estimates

With three exceptions, we did not constrain the sense of slip on any of the faults; 

the slip is solely controlled by the inversion. The first exception is the Eastern Denali 

fault between the Totschunda and Duke River faults (Shakwak strand), to which we 

assigned dextral slip of 5 ± 5 mm/a based on recent geologic studies [Seitz et al., 2008]. 

There are no GPS sites along this part of the fault, so the geologic slip rate estimate is the 

only data for this segment. For a similar reason, we constrained the Totschunda fault to 

have 6 ± 6 mm/a of dextral slip following the geologic estimate of Seitz et al. [2008], 

Finally, we constrained the Dalton strand of the Eastern Denali fault to have 0 ± 3 mm/a 

of fault normal motion. We did not constrain the fault parallel motion on this fault. The 

initial unconstrained iteration of the block model predicted > 5 mm/a of contraction 

across this portion of the fault. Previous geodetic and geologic studies [e.g. Fletcher and 

Freymueller, 2003; Plafker et al., 1994a] have concluded that the fault is primarily a 

dextral fault, so we considered this rate to be unreasonably high.

2.6 Results and Interpretation

2.6.1 Pole and Rotation Rate Estimates

We inverted 246 data (east and north components of GPS velocities at 102 sites, 

X, Y, and Z components of a priori angular velocities for 10 blocks, and 12 slip 

constraints) to estimate 21 model parameters (X, Y, and Z components of angular 

velocity for 7 blocks). We then transformed the estimated angular velocities from the 

XYZ coordinate system to the geographic coordinate system (longitude, latitude, and 

rotation rate) in order to present the block rotations in the more familiar Euler pole form.
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Table 2.3 and Figure 2.7 display the Euler poles, rotation rates, angular velocities, block 

velocity vectors, and associated uncertainties for our preferred block model. Angular 

velocities for small blocks or blocks without widespread site distributions have a large 

uncertainty in one component, typically the local vertical direction at the block in 

question. The nonlinear transformation between Cartesian and geographic coordinates 

means that the uncertainty regions for the Euler poles are distorted from ellipses into the 

shape of a great circle path when one axis of the Cartesian error ellipsoid is large. In 

addition, at the high latitudes considered in this study, a simple conversion of ellipse 

parameters can display a rotational bias in the error ellipse due to the different scales (in 

distance units) of the latitude and longitude axes. For these reasons, we show a Monte 

Carlo sampling of the uncertainty regions instead of the usual 95% confidence ellipses 

with the poles in Figure 2.7. We took 2500 random samples of a distribution with zero 

mean and covariance equal to the angular velocity covariance, added each sample to our 

estimated angular velocities, computed the corresponding Euler pole, and plotted the pole 

as a point on the map. The density of the points on the map corresponds to the 

probability distribution of the pole location. For blocks with large uncertainty regions for 

the poles, the predicted linear block velocities for points on the blocks will still have 

small uncertainties. This results from the strong correlation between the pole location 

and the angular speed.

We find the Yakutat block pole near the center of Hudson Bay in Canada, far 

from the block itself and consistent with the minimal rotation seen in the data along the 

northern coastal region of southeast Alaska. At the city of Yakutat, our model predicts a
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block velocity of 50.3 ± 0.8 mm/a at an azimuth of N22.9 ± 0.6° W (Figure 2.8). For 

comparison, the model of Plattner et al. [2007] predicts a Pacific plate velocity of 50.9 

mm/a at an azimuth of N14.6W at this location. Our estimate of the Yakutat block 

velocity is much closer to the velocity o f the Pacific plate than the Yakutat estimate 

presented by Fletcher and Freymueller [1999], although a distinct difference in azimuth 

between the two tectonic blocks remains. At least part of the difference between the two 

geodetically derived estimates may be due to the fact that we removed the effects of GIA 

while the previous study did not. At YKTT, the Yakutat block GPS site used by Fletcher 

and Freymueller [1999], the predicted GIA motion is 3 mm/a, directed WSW. Removing 

this GIA estimate from the GPS data results in a more northerly directed velocity than 

that derived from the unadjusted data (Figure 2.A-2).

The Foothills block pole is the farthest away from southeast Alaska. Its location 

in the Atlantic Ocean results in block velocities that show little or no observable rotation 

along the block. This agrees well with the observed sub-parallel velocities on or near the 

Foothills block (Figure 2.4) and the linearity of the Fairweather fault in this region.

Block velocity predictions display a similar magnitude but a more westerly azimuth than 

those for the Yakutat block.

Unlike the poles discussed above, the pole for the Nunatak block is located to the 

west of our study area, south of the Alaska Peninsula. Predicted block velocities have 

smaller magnitudes but almost identical azimuths to those on the Foothills block. The 

Eastern Denali block pole is located north of the Denali fault. Counter-clockwise rotation
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about the pole results in N-NE directed block velocities that decrease in magnitude 

toward the north.

The Northern Cordillera pole is located to the east of the Queen Charlotte Islands. 

While the azimuth of the block velocity predictions is uniformly NE in our study area, the 

magnitudes steadily decrease towards the south until the zero point is reached at the pole. 

The Fairweather and Baranof block poles are both found on the Northern Cordillera 

block, with the Baranof pole located east and north of the Fairweather pole. Velocities 

along the Fairweather block show variation in both magnitude and azimuth, with 

magnitudes decreasing from north to south and azimuths displaying a clockwise rotation. 

The Baranof block displays block velocities that are much smaller and more uniform in 

magnitude than those on the Fairweather block. The azimuths, however, show a distinct 

clockwise rotation.

2.6.2 Relative Block Motions

Relative block motions resulting from our preferred model are shown in Figure 

2.9. The majority of the relative motion between the Pacific plate and North America 

occurs along the Fairweather -  Queen Charlotte system. Along the Fairweather fault, the 

motion is nearly pure translation while the Queen Charlotte fault displays varying degrees 

of transpression. Inboard of the Fairweather -  Queen Charlotte system, the magnitude of 

the relative block motion remains fairly constant along the Eastern Denali and Coast 

Shear zone faults. The sense of motion, however, progresses from contraction and 

translation along the Eastern Denali fault to translation and dilatation along the Coast
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Shear zone. The Duke River fault displays contraction between the Totschunda and 

Eastern Denali faults.

Relative motion between the Pacific plate and the Yakutat block results in 7.9 ± 

0.9 mm/a of oblique convergence across the Transition fault. Summed together, the 

Boundary and Foothills faults accommodate ~ 6 mm/a of relative convergence as well as 

~ 4 mm/a of relative translation between the coast and the Fairweather fault.

Lahr and Plafker [1980] suggested that relative block motion in this region may 

have recently begun shifting westward from the Duke River -  Eastern Denali -  Chatham 

Strait fault system to the Totschunda -  Fairweather connector fault. Roughly double the 

amount of predicted relative block motion occurs on the Totschunda-Fairweather 

connector and Duke River faults than on the Eastern Denali and Coast Shear zone, so our 

results appear to support this idea.

Overall, the relative block motion map provides a picture of the current influence 

of the Yakutat block on the tectonics of southeast Alaska. In the northern part of the 

region, the complex combination of contraction, dilatation, and translation delineate the 

active collisional zone. Farther south, the relative motions indicate that the area has 

transformed from a collisional zone to a more translational boundary zone with some 

active deformation continuing inboard of the Queen Charlotte fault.

2.6.3 Goodness of Fit

Our block model provides a reasonable explanation for the observed GPS velocity 

field in southeast Alaska and the adjacent region of Canada, as shown by the residual 

vector plot in Figure 2.10. The reduced y2 (y2 per degree of freedom) for our preferred
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model is 1.01, indicating that we have accounted for most of the effects of major 

structures and blocks in the region. 76% of the site-specific residual velocities are 

smaller than their 1 -o uncertainty estimates. The mean residual velocity magnitude is 1.1 

mm/a while the mean data uncertainty magnitude is 1.7 mm/a. The residual velocities do 

not show a clear trend in any region.

2.7 Discussion

2.7.1 Slip Rate Estimates and Seismic Hazard

The only two faults without slip constraints in our model that have previous 

geologic and geodetic slip estimates are the Fairweather fault and the Dalton strand of the 

Eastern Denali fault. Plafker et al. [1978] reported an average dextral slip rate of 48 -  58 

mm/a over the past 1,000 years for the Fairweather fault based on geologic studies, but 

the dates used were imprecise. The lower end of that estimate is more likely since 

Pacific-North America relative plate motion is only about 50 mm/a in this area. Using 

EDM networks across the fault, Lisowski et al. [1987] estimated a slip rate of 41 -  51 

mm/a. The large range in this estimate results from a strong trade-off between slip rate 

and locking depth. Fletcher and Freymueller [2003] combined the GPS and EDM data 

to generate an estimate of about 46 mm/a.

Our preferred block model gives an average slip rate of 42.9 ± 0.9 mm/a along the 

Fairweather fault. The slip rate estimate varies along strike, from 36.6 ± 0.8 mm/a along 

the northern end of the fault to 41.5 ± 0.8 mm/a along the central segment of the fault to 

45.8 ± 1.2 mm/a near Cross Sound. At the average slip rate, it would take 80 years to 

recover the 3.5 m of slip that occurred during the 1958 Fairweather fault event. Within
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model uncertainties, the average slip rate given by our block model agrees with the 

geodetic estimate of Fletcher and Freymueller [2003].

In their kinematic model, Lahr and Plafker [1980] proposed a dextral slip rate of 

2 mm/a along the Eastern Denali fault. Based on a combined profile of geodetic data 

across the Fairweather and Eastern Denali faults, Fletcher and Freymueller [2003] 

estimated that the Eastern Denali currently had a dextral slip rate of 3.8 mm/a. In these 

two studies, the region between the Fairweather and Eastern Denali faults moved 

northwestward roughly parallel to the Fairweather fault.

Our block model predicts an average of 1.5 ± 0.5 mm/a of dextral slip and 1.5 ± 

0.6 mm/a of contraction along the Dalton strand of the Eastern Denali fault. This slip 

estimate is lower and much more transpressional than the previous geodetic estimate.

The difference results from our rotating Fairweather block, which gives nearly fault 

normal motion in the vicinity of the Eastern Denali fault, and our substitution of the 

rotating Northern Cordillera block for fixed North America.

On the Boundary fault, our block model predicts an average of 3.6 ± 1.4 mm/a 

right-lateral strike-slip with an average 2.2 ± 1.5 mm/a of convergence across the 

northern end of the fault and 1.9 ± 1.2 mm/a of extension across the southern end of the 

fault. The change from convergence to extension occurs because of changes in the 

orientation of the model fault planes from north to south. Along the Foothills fault, our 

model predicts an average of 0.5 ± 1.6 mm/a of left-lateral strike-slip and 4.7 ± 0.9 mm/a 

of convergence. Slip estimates from our model are not directly comparable to the model 

of Plafker and Thatcher [2008] due to differences in fault geometry (see Section 2.4.2).
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Regardless of fault geometry differences, we can conclude that our GPS-constrained 

block model allows low to moderate amounts of strain accumulation in the area suspected 

of generating the 1899 earthquake sequence.

Since it is offshore, direct measurements of the slip rate on the Queen Charlotte 

fault do not exist. In our block model, slip on the Queen Charlotte fault is defined by the 

relative motion between the Pacific plate and the Fairweather block. Our model predicts 

an average of 43.9 ± 0.6 mm/a fault parallel motion (right-lateral sense) and southward 

increasing convergence of 0.7 ± 0.4 mm/a (northern end of fault) to 15 ± 0.6 mm/a (north 

of the Queen Charlotte Islands). The increasing convergence is a result of the changing 

relative azimuth between the plate motion vectors and the model fault. At a rate of 43.9 

mm/a, it would take about 130 years to recover the average slip of 5.8 m from the 1949 

Mw8.1 Queen Charlotte Island event reported by Nishenko and Jacob [1990].

There is no consensus on slip rates and seismic hazard along the Transition fault 

among previously published estimates. Fletcher and Freymueller [2003] suggested that a 

freely slipping Transition fault could accommodate the -20 mm/a of Fairweather fault 

normal motion implied by the GPS velocity at the city of Yakutat. In their model, the 

sense of slip on the Transition fault would be almost pure reverse motion. A suite of 

models presented by Pavlis et al. [2004] predicted 10 to 30 mm/a of dextral/oblique to 

pure convergent motion across the Transition fault. The kinematic model of Lahr and 

Plafker [1980] included 4 mm/a of dextral oblique motion across the Transition fault. 

Based on estimates of rupture length, focal depth, and moment of the 1973 mainshock, 

Doser and Lomas [2000] calculated a convergent slip rate of ~ 3 mm/a over the last
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century for the segment of the Transiton fault offshore of Cross Sound. Our block model 

produces an average of 5.4 ± 1.1 mm/a of left-lateral strike-slip and 5.8 ± 0.9 mm/a of 

convergence across the Transition fault. Our fault normal estimate is quite close to those 

of both Lahr and Plajker [1980] and Doser and Lomas [2000], but it is substantially 

lower than the estimates of the previous model utilizing geodetic data. This difference is 

due to our inclusion of the Boundary and Foothills faults, which accommodate some of 

the relative convergence. The type of fault normal motion predicted by our model varies 

along the length of the Transition fault. We defined the northern and central sections of 

the fault as a vertical fault, so the fault normal estimate is represented by contraction.

The southernmost section, around Cross Sound, was defined as a NE-dipping thrust fault, 

so the fault normal motion is translated into reverse slip.

2.7.2 Extent of Coherent Yakutat Block

Some studies have suggested that structures within the Yakutat block such as the 

Dangerous River zone are currently active (e.g. Gipp [2003]) and thus create a block 

boundary running across the lower part of Yakutat Bay. Our results do not support this 

hypothesis. The GPS velocity field (Figure 2.4) shows nearly identical velocities at sites 

on the Yakutat block, suggesting that no active structure exists between them. All of the 

GPS data from sites on the Yakutat block can be explained by a combination of strain 

accumulation on nearby faults to the east and a block rotation described by a single pole 

and rotation rate. Based on these results, we conclude that the Yakutat block behaves as 

a coherent block from Cross Sound to at least the eastern side of the Malaspina Glacier.
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The eastern Yakutat block boundary in our model is the Foothills fault and is 

further west than the most oft-cited boundary, the Fairweather fault. GPS velocities 

between the coast and the Fairweather fault become progressively smaller and more 

westerly towards the east. This suggests that as the Yakutat block has jammed into the 

comer between the Pacific plate, southern Alaska, and western Canada, its eastern edge 

has undergone deformation and is now actively fragmenting. Such fragmentation would 

explain why the large earthquakes of the 1899 sequence occurred off of the major 

translational plate boundary formed by the Fairweather-Queen Charlotte system.

2.7.3 Significance of Nunatak and Foothills Blocks

The Nunatak and Foothills blocks are the two smallest blocks in our model and 

their size raises questions about whether they can tmly be called rigid blocks, whether 

our interpretation could be based on transient strain, and whether these blocks are 

actually required by our block model.

The unlikelihood of detectable transient strain from the postseismic effects of the 

1964, 1958, or 1899 earthquakes has been discussed in an earlier section. There remains 

the possibility that an under- or over-estimation of our predicted horizontal GIA effect 

could introduce a bias into the data, leading to spurious tectonic conclusions. To assess 

this possibility, we ran the alternate geometry model tests (see Section 2.4.2, Table 2.1, 

and 2.6) using datasets that had had predictions from the two end-member GIA model 

predictions applied instead of those of our best-fit model (see Section 2.3.4). Horizontal 

predictions from the two end-member GIA models differ substantially in both azimuth 

and direction from our best-fit GIA model (Figure 2.A-4), so the results from these tests
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should reveal any inherent bias. The results displayed no significant effects; the 

statistical conclusions were the same as those drawn from the best-fit GIA model.

The inclusion of the Foothills and Nunatak blocks improved the fit between the 

block model and the data in the northern Fairweather fault region to degrees that met or 

exceeded the F-test criteria for significance at the 95% level (Table 2.1). Although this 

misfit reduction is important, it is the secondary reason for the inclusion of the blocks in 

our model. The main impetus is that without the two blocks, our model predicts ~ 20 

mm/yr of contraction across the Transition fault. This amount of convergence would 

essentially place a subduction zone offshore southeast Alaska. As discussed earlier, 

offshore seismic data recently collected in the Gulf of Alaska [Christeson, personal 

communication, 2009] show no evidence for such a structure. Instead, the data suggest 

that the central section of the Transition fault is a near vertical structure.

There remains the question of whether the Nunatak and Foothills blocks actually 

deserve the designation of “block”. In the process of developing our block model, we 

found that the amount of convergence accommodated between the coastal region and the 

Fairweather fault was more important than the precise locations and geometries of the 

faults. To fit the GPS data, the northern half of the Boundary fault did require specific 

fault plane dips and locking depths. Along the southern half, the GPS data only required 

the presence of a creeping boundary (represented by a fault with a 0 km locking depth -  

Table 2.2). The Foothills fault was assigned a vertical geometry to minimize misfit and 

contraction across Transition fault, but a moderately NE-dipping geometry did not 

radically increase the misfit. Angular velocities for the Nunatak and Foothills blocks
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have large uncertainties (Table 2.3, Figure 2.7) and are the most sensitive of all the 

blocks to changes in fault geometries.

Given the complex nature of the Yakutat collisional comer, it is unlikely that the 

convergence is neatly or simply partitioned between the two faults presented here.

Instead, the deformation could be distributed across the region on a number of structures 

whose exact geometries and slip rates are likely impossible to fully determine. Based on 

the evidence laid out in the previous paragraph, we propose that the Nunatak and 

Foothills blocks represent a deformation zone along the eastern edge of the Yakutat block 

rather than tmly rigid blocks. Such a deformation zone would be realistic given the 

complicated tectonic environment of southeast Alaska and would accommodate the strain 

responsible for events like the 1899 earthquake sequence that occur off the main plate 

boundaries.

2.7.4 The Transition Fault Paradox

In our block model, the Transition fault accommodates oblique transpressive 

motion between the Pacific plate and the Yakutat block. The Transition fault is the 

obvious candidate for the Pacific-Yakutat boundary, but the amount and sense of present- 

day motion on the fault is controversial (see Section 2.2).

Our block model predicts an average of 5.4 ± 1.1 mm/a of left-lateral strike-slip 

and 5.8 i  0.9 mm/a of contraction along the Transition fault. This amount of predicted 

convergence is far less than that suggested by Fletcher and Freymueller [1999], but more 

than might be expected in a dominantly strike-slip boundary. Pavlis et al. [2004] 

proposed that the rate of sedimentation in the Gulf of Alaska could mask evidence of
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convergence. Extremely high sedimentation rates of 10-30 mm/a have been reported for 

the region [e.g Jaeger et al., 1998; Sheaf et al., 2003; Hallet et al., 1996; Koppes and 

Hallet, 2002], implying that a substantial layer of sediment could accumulate over a 

relatively short time period. If our fairly modest amount of estimated convergence has 

been occurring over a comparably short time period, visible structures may not have 

developed yet. This could make our predicted motion along the Transition fault 

compatible with the available offshore seismic record.

Another possibility is that the Pacific-Yakutat relative motion is divided between 

strike-slip on the Transition fault and motion on another fault. Between 1987 and 1992, a 

sequence of Mw7+ earthquakes defined a north-south trending plane beginning near the 

junction of the Transition fault with the Pamplona zone and extending south into the 

Pacific plate [Lahr et al., 1988; Pegler and Das, 1996]. The fault plane coincided with a 

preexisting weakness in the Pacific plate, magnetic anomaly 13. The two largest events 

of the sequence had right-lateral strike-slip mechanisms. Seismic reflection lines in the 

Gulf of Alaska [Reece et al., 2009] suggest the presence of an active zone of faulting 

coincident with the north-south trending plane (Figure 2.1). The lack of offshore GPS 

sites or other constraints prevents us from including a Gulf of Alaska fault in our block 

model inversion. We can, however, estimate the slip rates on the a Gulf of Alaska fault 

and the Transition fault required to completely accommodate the Pacific-Yakutat relative 

motion through a simple linear combination solution. Assuming pure strike-slip motion 

on both faults and our predicted relative motion of 7.4 ± 1 mm/a east and 2.8 ± 1 mm/a 

north, we obtain estimates of 8.3 ±1.0 mm/a of left-lateral slip on the Transition fault and
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6.5 ± 1.1 mm/a of right-lateral slip on the Gulf of Alaska fault. The combination of left- 

lateral slip on the Transition fault and right-lateral slip on the Gulf o f Alaska fault would 

require internal deformation of the block located between the two faults. A simple 

rotation of the block is not adequate.

The currently available data do not allow us to unequivocally confirm or disallow 

the sedimentation hypothesis, slip rates on a Gulf of Alaska fault and the Transition fault, 

or the amount of internal deformation between the two faults. But taken together, the 

sedimentation hypothesis and the Gulf of Alaska/Transition fault combination form 

reasonable end-member solutions to the problem of reconciling our predicted Pacific- 

Yakutat relative motion and the offshore seismic data.

2.7.5 Glacier Bay Structures

Our block model includes a boundary running through Tidal Inlet in Glacier Bay, 

dividing the Fairweather and Baranof blocks. We chose the location of this boundary, 

which we termed the Glacier Bay Partition (GBP), based on seismicity patterns and 

geologic observations of structural trends. The inclusion of the GBP improved the 

overall reduced %2 by ~ 10% and exceeded the F-test criteria for significance at the 99% 

level (Table 2.1).

Given that Glacier Bay is the current focus of considerable GIA effects due to ice 

loss since the LIA, there is a possibility that the signal we interpret as tectonic 

deformation could be an artifact introduced by our use of our best-fit GIA model. To test 

the dependence of our Glacier Bay conclusion on the GIA model predictions, we ran 

versions of our block inversion with and without the GBP using data that had the
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predictions of the two end-member GIA models (see Section 2.3.4) applied instead of the 

best-fit model. For the case of the 50 km, 7 x 1018 Pa s GIA model, the version with the 

GBP had a reduced %2 value over 10% smaller than the version without and exceeded the 

F-test criteria for significance at the 99% level. In the case of the 85 km, 1.5 x 1018 Pa s 

GIA model, the version with the GBP had a reduced x2 value about 5% smaller than the 

version without and met the F-test criteria for significance at the 98% level. The relative 

independence of our GBP results from the choice of GIA models is not an unexpected 

result; while vertical GIA effects reach some of their maximum values in the Glacier Bay 

area, horizontal GIA effects are quite small there (Figure 2.A-3, Figure 2.3).

There remains the question of whether the GBP represents an actual discrete 

structure or if it instead serves as a proxy for distributed deformation. Our block model 

predicts 1.5 ± 0.4 mm/a of dextral slip and negligible fault-normal motion on the GBP. 

The Fairweather and Baranof block angular velocities predict very similar motions on 

their block boundary, but quite different motions away from the boundary. The available 

earthquake focal mechanisms do not show evidence of right-lateral strike-slip motion but 

instead indicate mixed strike-slip/thrust events. We found that the exact orientation of 

the Glacier Bay Partition was not crucial to the model results. Faults oriented 10°, 20°, 

and 30° from our model fault (Figure 2.5) did not cause significant changes in the misfit.

Based on these findings, we propose that the GBP represents internal deformation 

of the region comprising our Fairweather and Baranof blocks. The deformation north of 

Glacier Bay (Fairweather block) is strongly influenced by its proximity to the active 

collisional front between the Yakutat block and southern Alaska. Strain transferred from
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the collision is forcing the Fairweather block to move to the northeast. The magnitude of 

the block velocities and their degree of easterly rotation decreases towards the south as 

distance from the collisional front in the St. Elias mountains increases (Figure 2.1; Figure 

2.8). South of the GBP, block velocity magnitudes along the Baranof block are much 

smaller and more uniform than those observed to the north, but a distinct clockwise 

rotation is still evident. The rotation may be a result of the Baranof block being pulled 

along with the Fairweather block as the latter is pushed northeastward. The difference in 

deformation north and south of the GBP provides an explanation for the dearth of 

seismicity along the Chatham Strait fault and in the rest of the Baranof block (Figure 2.2) 

as well as the southward decreasing magnitudes in the GPS data and block motion 

predictions along the Northern Cordillera block.

2.7.6 Southern Boundary of the Baranof Block

Our block model does not define a unique southern boundary for the Baranof 

block. Our dataset is very sparse south of 58°N and includes no sites south of 55°N, so 

the model does not have adequate constraints in this region to exactly determine the 

boundary. We can, however, indirectly constrain the limits of the Baranof block.

Mazzotti et al. [2003] noted that the GPS velocities at sites in the Queen Charlotte 

Islands (Figure 2.1) had a significant margin-normal component. They found that the 

GPS data, in particular the margin-normal component, could not be explained by elastic 

deformation from the Queen Charlotte fault, even if a landward-dipping thrust was 

assumed to be part of the offshore plate boundary. This led them to suggest that the GPS 

data required active faulting between the Queen Charlotte Islands and stable North
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America. We repeated their experiment, with the Baranof block in place of North 

America, to test whether the Queen Charlotte Islands lie on the Baranof block or whether 

the Baranof block motion modifies their conclusion. Our results were similar to those of 

Mazzotti et al. [2003] -  the GPS velocities in the Queen Charlotte Islands could not be 

fully explained by a landward-dipping thrust fault accommodating the margin-normal 

component of the Pacific-Baranof block relative motion. This suggests that the Queen 

Charlotte Islands move independently of both North America and the Baranof block.

Thus the Queen Charlotte Islands represent a different tectonic regime than the region to 

the north, likely due to the high degree of transpression along the offshore plate 

boundary. This conclusion agrees with the results of Leonard et al. [2008] and Mazzotti 

et al. [2008], who proposed that a coastal block including the Queen Charlotte Islands 

moves northerly at a rate of ~ 5 mm/a. In comparison, our model predicts ~ 4 mm/a of 

WSW-directed motion for the Baranof block in the Queen Charlotte Island region.

In the course of the above test, we found that one of the GPS sites in our southeast 

Alaska dataset likely belongs in the Queen Charlotte tectonic regime. After removing the 

elastic signal predicted by the fault model discussed above, the residual at this site (AIS1 

on Annette Island, Figure 2.1) closely resembled the residuals seen at sites in the Queen 

Charlotte Islands. Based on this, we excluded AIS1 from our modeling and conclude that 

the Baranof block ends north of Annette Island (see dashed line in Figure 2.5).

2.7.7 The Northern Cordillera Block and Strain Transfer 

As Figures 4 and S4 show, the GPS velocities at sites on the Northern Cordillera 

block are small, especially towards the south. This raises the question of whether the
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Northern Cordillera block actually has distinct motion or is just part of the North 

American plate. The definition of the Northern Cordillera block is primarily based on 

GPS data, following Mazzotti and Hyndman [2002] who noted that a continuous GPS 

station at Whitehorse in the northern Canadian Cordillera showed about 5 mm/a of 

northeastward motion relative to North America. They suggested that the northeastward 

motion of the northern Cordillera block was due to strain transfer from the Yakutat block 

collision. Using a larger set of GPS sites, Leonard et a l [2008] documented a pattern of 

northeastward motion east of the Eastern Denali fault. Magnitudes of the velocities 

decreased from north to south. Our velocity field shows a similar pattern (Figure 2.4).

As mentioned earlier, we see a decrease in velocity magnitude from ~ 6 mm/a north of 

the Duke River fault to less than 1 mm/a in the southeast of Chatham Strait. Previous 

studies [e.g. Mazzotti and Hyndman, 2002; Leonard et al., 2008; Mazzotti et al., 2008] 

have discussed the seismicity in the Richardson and Mackenzie Mountains to the north 

and northeast of our study area, which strongly suggests that the Northern Cordillera is 

moving northeasterly relative to stable North America.

We tested a block model with North America substituted for the Northern 

Cordillera to determine the importance of the latter block. Defining the region east of the 

Eastern Denali and Coast Shear zone faults to be North America increased overall misfit 

between the GPS data and our block model by about 15%, with the largest residuals 

concentrated near or east of the Eastern Denali fault. Several sites, including WHIT, a 

well-established continuous GPS station, had residuals approaching the 2-o  level. When 

compared to the North America version, the Northern Cordillera block model had an F
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Figure 2.A-5. GPS velocities with GIA model predictions applied for southeast Alaska. 
Note the different scales for the velocities. Error ellipses are omitted for clarity.
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Table 2.B-1. GPS velocities for sites used in this study

Site3 E Longb N  Latc V Ed V  N e V Upf E Sigs N  Sigh Up Sig!

Appendix 2.B Supplemental Tables

DEAS -130.02887 58.43700 0.063 0.128 0.217 0.063 0.122 0.176

BLKP -132.54409 56.59398 -0.412 0.189 0.544 0.113 0.147 0.289

LEV2 -133.09239 56.46566 -0.144 0.229 0.610 0.052 0.126 0.157

LEVI -133.09278 56.46568 -0.215 0.154 0.844 0.042 0.124 0.151

ATLI -133.71447 59.58948 0.205 0.347 0.881 0.059 0.121 0.175

TKHR -134.01300 58.06755 -0.167 0.186 1.195 0.098 0.133 0.245

ANNX -134.10051 58.31598 -0.146 0.086 1.608 0.092 0.129 0.201

5J22 -134.88981 58.57523 0.468 0.324 1.382 0.324 0.206 0.558

TDOG -134.89978 58.38464 0.039 0.249 1.759 0.113 0.143 0.265

BRGT -134.91064 58.59618 0.030 0.191 2.044 0.075 0.127 0.200

RAVE -135.07598 58.40371 0.079 0.280 1.331 0.114 0.142 0.262

CLMB -135.08428 58.24695 0.023 0.222 1.273 0.113 0.141 0.256

LSTR -135.13001 58.50954 -0.029 0.127 2.061 0.078 0.128 0.200

STCK -135.16032 58.64906 0.063 0.208 2.241 0.076 0.129 0.205

JA08 -135.17670 58.94741 0.173 0.364 2.264 0.147 0.144 0.316

CKOT -135.22184 59.09118 0.204 0.395 1.858 0.161 0.144 0.316

WHIT -135.22211 60.75051 0.132 0.195 0.229 0.043 0.117 0.157

ELD -135.22232 58.97197 0.074 0.481 4.717 0.080 0.128 0.206

TENA -135.22810 57.77115 -0.233 0.285 -0.562 0.077 0.130 0.201

WHBO -135.23300 58.73260 0.247 0.182 2.216 0.103 0.131 0.234

CHKT -135.27699 59.08026 0.193 0.394 1.977 0.112 0.140 0.262



T187 -135.32518 59.45599 0.358 0.490 0.804 0.220 0.219 0.270

FS32 -135.34696 59.14868 0.220 0.389 2.430 0.097 0.135 0.225

UDIG -135.35868 58.28970 0.012 0.078 1.797 0.075 0.126 0.184

CAYO -135.36499 58.92266 0.050 0.353 2.370 0.110 0.140 0.269

7SUN -135.39746 59.04190 0.210 0.370 2.124 0.122 0.141 0.284

2437 -135.44464 58.41744 -0.183 0.081 2.020 0.075 0.127 0.192

2441 -135.46373 58.12489 -0.077 0.267 -1.751 0.121 0.144 0.282

2447 -135.48838 58.49645 0.076 0.010 2.591 0.106 0.136 0.232

HNSD -135.53420 59.24810 0.219 0.551 2.367 0.069 0.125 0.188

BIS1 -135.53930 56.85449 -0.400 0.868 0.229 0.040 0.125 0.151

EA22 -135.64497 58.23192 0.082 0.108 1.869 0.079 0.130 0.212

2484 -135.65570 57.95744 -0.140 0.311 1.046 0.072 0.129 0.204

GUS2 -135.69748 58.41766 0.022 0.178 1.998 0.041 0.122 0.154

DMP2 -135.90720 58.24616 -0.135 0.212 2.088 0.066 0.128 0.195

BR39 -136.01446 58.73050 -0.027 0.235 2.617 0.055 0.124 0.170

DUKY -136.02338 59.42399 0.362 0.494 2.939 0.106 0.150 0.289

GOOS -136.03593 58.21122 -0.127 0.083 2.601 0.155 0.155 0.336

DAM -136.04090 58.31914 -0.205 0.326 2.001 0.070 0.133 0.223

LAST -136.14190 58.97887 0.047 0.423 3.306 0.077 0.126 0.191

ELSE -136.15285 58.59350 -0.018 0.248 2.460 0.067 0.126 0.185

TLGT -136.17599 58.74986 0.040 0.286 2.943 0.059 0.125 0.174

BAGO -136.17964 59.05799 0.053 0.466 3.187 0.071 0.126 0.194

AID1 -136.25969 58.31778 -0.268 0.314 2.002 0.077 0.129 0.189

2629 -136.32661 58.26441 -0.244 0.282 2.098 0.076 0.127 0.196
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MINE -136.33823 58.00782 -0.424 0.525 1.540 0.064 0.127 0.187

508F -136.36256 59.45039 0.040 0.639 1.863 0.191 0.170 0.414

DELT -136.37786 58.36018 -0.198 0.361 2.100 0.052 0.124 0.165

ADZE -136.38090 58.21219 -0.388 0.488 1.601 0.053 0.124 0.166

EX -136.40509 58.26977 -0.334 0.463 1.660 0.105 0.140 0.283

BLUE -136.42662 57.85222 -0.825 1.289 0.908 0.062 0.127 0.178

DACE -136.43604 58.09134 -0.539 0.733 1.501 0.078 0.127 0.186

KNBG -136.45710 58.61253 -0.124 0.405 2.273 0.058 0.125 0.176

BEUT -136.46533 59.58148 0.184 0.747 3.085 0.067 0.125 0.190

DEPT -136.48581 58.29991 -0.333 0.448 1.894 0.118 0.139 0.260

CINC -136.49240 58.79782 -0.015 0.482 2.880 0.056 0.125 0.178

KAOS -136.49980 58.42660 -0.222 0.502 2.168 0.141 0.142 0.288

TRTH -136.63489 59.81952 0.248 0.699 1.870 0.059 0.123 0.178

CAPE -136.64098 58.19767 -0.714 0.725 1.487 0.107 0.141 0.254

MART -136.66526 58.89277 -0.006 0.551 3.111 0.081 0.128 0.210

NORM -136.68720 58.27362 -0.816 0.606 1.531 0.088 0.135 0.245

PEEP -136.73621 58.28622 -0.804 0.671 1.839 0.102 0.138 0.255

R205 -136.78826 58.90540 -0.112 0.696 2.740 0.068 0.127 0.186

OVAL -136.79157 58.29275 -0.661 1.015 1.574 0.190 0.191 0.405

489F -136.81893 59.97270 0.179 0.785 2.446 0.106 0.133 0.250

SARA -136.93206 58.91843 -0.086 0.745 2.491 0.063 0.125 0.229

MARG -137.02025 59.01742 -0.016 0.831 2.491 0.079 0.131 0.229

DEZA -137.05421 60.37623 0.317 0.481 2.875 0.066 0.123 0.179

X7 -137.06285 60.85918 0.242 0.291 0.511 0.064 0.122 0.184
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ANIT -137.10027 58.86044 -0.374 0.995 3.458 0.116 0.138

ICE4 -137.48888 58.66888 -1.339 2.266 1.914 0.078 0.127

GILB -137.51744 58.66329 -1.533 2.439 1.962 0.132 0.147

MIDB -137.53464 58.57206 -1.727 2.928 1.296 0.229 0.189

LITU -137.55579 58.65831 -1.652 2.600 2.177 0.071 0.127

CENO -137.57322 58.63984 -1.790 2.858 1.771 0.054 0.125

2915 -137.62046 58.61563 -1.800 3.150 1.983 0.066 0.129

FROK -137.63186 58.63993 -1.811 3.034 1.694 0.066 0.126

STRT -137.67765 58.62526 -1.945 3.291 1.439 0.064 0.125

TATS -137.73793 59.63044 0.184 1.113 2.931 0.063 0.125

WARR -138.00837 58.92419 -1.898 3.246 1.650 0.097 0.135

MOTD -138.04046 60.95774 0.158 0.537 1.099 0.200 0.200

NSLM -138.49645 60.99267 0.229 0.573 1.152 0.056 0.121

NOVA -138.55735 59.57353 -1.147 2.057 3.348 0.107 0.145

CANN -138.63443 59.15519 -2.168 3.790 1.985 0.078 0.131

COMB -138.63931 59.66985 -1.150 1.882 2.936 0.076 0.129

DEST -138.72188 61.21692 -0.023 0.341 0.193 0.126 0.145

YAKU -138.73328 59.49633 -1.786 3.042 3.280 0.060 0.125

FLAT -138.86261 59.66928 -1.819 2.840 3.012 0.068 0.126

HIDD -138.94546 59.70547 -1.938 3.068 2.911 0.063 0.125

MOSR -138.99127 59.56797 -2.098 3.503 2.583 0.110 0.142

NQ4 -139.03155 59.82728 -1.648 2.800 2.434 0.084 0.130

NQ1 -139.13489 59.87933 -1.929 2.853 2.502 0.093 0.134

SITU -139.40190 59.66639 -2.131 3.880 2.941 0.101 0.138

0.252

0.190

0.300

0.460

0.190

0.177

0.202

0.181

0.178

0.185

0.234

0.190

0.181

0.253

0.213

0.199

0.300

0.177

0.186

0.181

0.251

0.213

0.222

0.246
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Y565 -139.44490 61.59267 0.079 0.295 0.611 0.087 0.126 0.200

YKTT -139.64880 59.51074 -2.252 4.267 1.341 0.043 0.122 0.158

MLSP -140.19775 59.72405 -2.019 4.417 1.228 0.076 0.130 0.220

SMTH -127.18687 54.82375 -0.024 0.060 0.412 0.055 0.126 0.163

PRG6 -122.34039 53.91031 -0.017 -0.096 0.468 0.057 0.126 0.163

BLCL -126.58925 52.38826 -0.093 0.148 0.684 0.059 0.132 0.165

FTSJ -120.72985 56.24673 0.031 -0.079 0.437 0.057 0.119 0.163

FNEL -122.57770 58.84187 0.034 -0.081 0.334 0.062 0.116 0.172

a"Site" = 4-letter name code for each GPS site. 
b"E_Long" = degrees, longitude o f  site west o f  Greenwich. 
c"N_Lat" = degrees, latitude o f  site, north o f equator.
d"V_E" = cm/yr, east component o f  GPS data, not adjusted for effects o f  GIA, relative to North 
America.
C"V_N" = cm/yr, north component o f  GPS data, not adjusted for effects o f  GIA, relative to North 
America.
f"V_Up" = cm/yr, vertical component o f  GPS data, not adjusted for effects o f  GIA, relative to 
North America.
8"E_Sig” = cm/yr, 1-sigma uncertainty estimate for east component. 
h"N_Sig" = cm/yr, 1 -sigma uncertainty estimate for north component.
‘"Up_Sig" = cm/yr, 1-sigma uncertainty estimate for vertical component.
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Table 2.B-2. Glacial isostatic adjustment model predictions for sites used in this study

Sitea E Longb N Latc E GIAd N GIAe Up GIAf
DEAS -130.02887 58.43700 -0.153 0.048 -0.301

BLKP -132.54409 56.59398 -0.120 0.041 0.113

LEV2 -133.09239 56.46566 -0.131 0.059 -0.046

LEVI -133.09278 56.46568 -0.131 0.059 -0.458

ATLI -133.71447 59.58948 0.091 0.175 0.546

TKHR -134.01300 58.06755 0.005 -0.084 0.928

ANNX -134.10051 58.31598 0.061 -0.079 1.242

5J22 -134.88981 58.57523 0.091 -0.105 1.922

TDOG -134.89978 58.38464 0.056 -0.153 1.661

BRGT -134.91064 58.59618 0.094 -0.100 1.957

RAVE -135.07598 58.40371 0.054 -0.166 1.758

CLMB -135.08428 58.24695 0.027 -0.187 1.510

LSTR -135.13001 58.50954 0.071 -0.147 1.937

STCK -135.16032 58.64906 0.094 -0.103 2.131

JA08 -135.17670 58.94741 0.135 0.038 2.380

CKOT -135.22184 59.09118 0.143 0.116 2.406

WHIT -135.22211 60.75051 -0.112 0.104 -0.243

ELD -135.22232 58.97197 0.135 0.050 2.422

TENA -135.22810 57.77115 -0.040 -0.162 0.765

WHBO -135.23300 58.73260 0.104 -0.074 2.264
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CHKT -135.27699

T187 -135.32518

FS32 -135.34696

UDIG -135.35868

CAYO -135.36499

7 SUN -135.39746

2437 -135.44464

2441 -135.46373

2447 -135.48838

HNSD -135.53420

BIS1 -135.53930

EA22 -135.64497

2484 -135.65570

GUS2 -135.69748

DMP2 -135.90720

BR39 -136.01446

DUKY -136.02338

GOOS -136.03593

DAM -136.04090

LAST -136.14190

ELSE -136.15285

TLGT -136.17599

59.08026 0.139

59.45599 0.123

59.14868 0.137

58.28970 0.024

58.92266 0.121

59.04190 0.129

58.41744 0.041

58.12489 -0.004

58.49645 0.051

59.24810 0.121

56.85449 -0.065

58.23192 0.001

57.95744 -0.032

58.41766 0.023

58.24616 -0.019

58.73050 0.028

59.42399 0.061

58.21122 -0.036

58.31914 -0.025

58.97887 0.030

58.59350 -0.010

58.74986 0.003

0.109 2.452

0.288 2.071

0.147 2.468

-0.207 1.678

0.015 2.508

0.084 2.561

-0.196 1.934

-0.219 1.411

-0.182 2.086

0.203 2.521

0.039 -0.198

-0.232 1.665

-0.215 1.141

-0.216 2.040

-0.249 1.769

-0.130 2.739

0.304 2.614

-0.257 1.725

-0.254 1.961

0.017 3.227

-0.199 2.573

-0.129 2.859
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BAGO -136.17964

AID1 -136.25969

2629 -136.32661

MINE -136.33823

508F -136.36256

DELT -136.37786

ADZE -136.38090

EX -136.40509

BLUE -136.42662

DACE -136.43604

KNBG -136.45710

BEUT -136.46533

DEPT -136.48581

CINC -136.49240

KAOS -136.49980

TRTH -136.63489

CAPE -136.64098

MART -136.66526

NORM -136.68720

PEEP -136.73621

R205 -136.78826

OVAL -136.79157

59.05799 0.029

58.31778 -0.054

58.26441 0.068

58.00782 -0.082

59.45039 0.017

58.36018 -0.070

58.21219 -0.079

58.26977 -0.080

57.85222 -0.093

58.09134 -0.092

58.61253 -0.066

59.58148 0.009

58.29991 -0.091

58.79782 -0.058

58.42660 -0.087

59.81952 0.001

58.19767 -0.119

58.89277 -0.089

58.27362 -0.127

58.28622 -0.135

58.90540 -0.117

58.29275 -0.146

0.072 3.273

-0.265 2.015

-0.270 1.902

-0.248 1.314

0.317 2.773

-0.266 2.151

-0.271 1.785

-0.273 1.927

-0.216 0.991

-0.262 1.502

-0.207 2.773

0.367 2.544

-0.274 2.016

-0.118 3.073

-0.261 2.392

0.415 2.048

-0.275 1.756

-0.066 3.245

-0.278 1.949

-0.278 1.976

-0.065 3.274

-0.278 1.985
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489F -136.81893

SARA -136.93206

MARG -137.02025

DEZA -137.05421

X7 -137.06285

ANIT -137.10027

ICE4 -137.48888

GILB -137.51744

MIDB -137.53464

LITU -137.55579

CENO -137.57322

2915 -137.62046

FROK -137.63186

STRT -137.67765

TATS -137.73793

WARR -138.00837

MOTD -138.04046

NSLM -138.49645

NOVA -138.55735

CANN -138.63443

COMB -138.63931

DEST -138.72188

59.97270 -0.004

58.91843 -0.148

59.01742 -0.153

60.37623 -0.022

60.85918 -0.079

58.86044 -0.192

58.66888 -0.286

58.66329 -0.291

58.57206 -0.293

58.65831 -0.297

58.63984 -0.300

58.61563 -0.307

58.63993 -0.309

58.62526 -0.316

59.63044 -0.086

58.92419 -0.340

60.95774 -0.051

60.99267 -0.039

59.57353 -0.204

59.15519 -0.354

59.66985 -0.178

61.21692 -0.048

0.420 1.752

-0.065 3.291

-0.006 3.348

0.361 0.871

0.181 -0.769

-0.111 3.201

-0.212 2.646

-0.214 2.610

-0.236 2.381

-0.216 2.567

-0.221 2.510

-0.227 2.414

-0.221 2.462

-0.224 2.390

0.274 2.928

-0.152 2.764

0.191 -0.013

0.196 0.039

0.088 3.450

-0.143 2.591

0.134 3.420

0.096 -0.276
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YAKU -138.73328 59.49633 -0.257 0.004 3.431

FLAT -138.86261 59.66928 -0.205 0.089 3.383

HIDD -138.94546 59.70547 -0.199 0.097 3.266

MOSR -138.99127 59.56797 -0.256 -0.002 3.140

NQ4 -139.03155 59.82728 -0.160 0.161 3.011

NQ1 -139.13489 59.87933 -0.148 0.175 2.884

SITU -139.40190 59.66639 -0.241 -0.019 2.743

Y565 -139.44490 61.59267 -0.035 -0.057 -0.552

YKTT -139.64880 59.51074 -0.291 -0.145 2.335

MLSP -140.19775 59.72405 -0.225 -0.114 2.530

SMTH -127.18687 54.82375 -0.057 0.051 0.056

PRG6 -122.34039 53.91031 -0.037 0.029 0.022

BLCL -126.58925 52.38826 -0.032 0.040 0.026

FTSJ -120.72985 56.24673 -0.045 0.022 0.023

FNEL -122.57770 58.84187 -0.058 0.011 0.048

a"Site" = 4-letter name code for each GPS site. 
b"E_Long" = degrees, longitude of site west of Greenwich. 
c"N_Lat" = degrees, latitude of site, north of equator. 
d"E_GIA" = cm/yr, east component of GIA model prediction. 
e"N_GIA" = cm/yr, north component of GIA model prediction. 
f"Up_GIA" = cm/yr, vertical component of GIA model prediction.



92

Table 2.B-3. Occupation histories for GPS sites 

S i t e a N u m b F i r s t  o b s c  L a s t  o b s d  T i m e  S p a n e G P S  O b s e r v a t i o n s  P e r  Y e a r f

Y K T T 5 8 1 9 9 2 . 4 7 2 0 0 7 . 7 5 1 5 . 2 8 9 , 2 , 0 , 5 , 5 , 0 , 0 , 8 , 0 , 8 , 4 , 3 , 3 , 0 , 3 , 8 , 0

C A N N 1 2 1 9 9 9 . 4 7 2 0 0 5 . 5 8 6 . 1 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 5 , 0 , 0 , 0 , 5 , 0 , 0 , 0

W A R R 1 0 2 0 0 1 . 6 5 2 0 0 5 . 5 8 3 . 9 2 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 6 , 0 , 0 , 0

S T R T 1 5 1 9 9 9 . 5 6 2 0 0 7 . 6 4 8 . 0 8 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 3 , 0 , 4 , 0 , 0 , 0 , 4 , 0

F R O K 1 6 1 9 9 9 . 5 7 2 0 0 7 . 6 4 8 . 0 8 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 5 , 0 , 4 , 0 , 0 , 0 , 5 , 0

2 9 1 5 1 2 1 9 9 9 . 5 6 2 0 0 7 . 6 4 8 . 0 8 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 3 , 0 , 3 , 0 , 0 , 0 , 3 , 0

C E N O 2 2 1 9 9 9 . 5 6 2 0 0 7 . 6 4 8 . 0 8 0 , 0 , 0 , 0 , 0 , 0 , 0 , 6 , 0 , 6 , 0 , 5 , 0 , 0 , 0 , 5 , 0

L I T U 1 6 1 9 9 9 . 5 7 2 0 0 7 . 6 4 8 . 0 8 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 4 , 0 , 5 , 0 , 0 , 0 , 5 , 0

M I D B 6 1 9 9 9 . 5 6 2 0 0 1 . 6 6 2 . 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0

G I L B 1 2 1 9 9 9 . 5 6 2 0 0 3 . 3 8 3 . 8 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 5 , 0 , 3 , 0 , 4 , 0 , 0 , 0 , 0 , 0

I C E 4 1 5 1 9 9 9 . 5 6 2 0 0 7 . 6 4 8 . 0 8 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 3 , 0 , 5 , 0 , 0 , 0 , 4 , 0

M A R G 1 5 2 0 0 0 . 4 3 2 0 0 7 . 5 7 7 . 1 3 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 6 , 4 , 0 , 0 , 3 , 0

S A R A 2 3 1 9 9 8 . 7 7 2 0 0 7 . 5 7 8 . 8 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 5 , 3 , 0 , 6 , 5 , 0 , 0 , 3 , 0

O V A L 8 1 9 9 8 . 5 8 2 0 0 3 . 4 4 . 8 3 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 7 , 0 , 0 , 0 , 0 , 0

R 2 0 5 2 4 2 0 0 0 . 4 3 2 0 0 7 . 5 7 7 . 1 4 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 6 , 5 , 0 , 4 , 7 , 0

P E E P 1 0 1 9 9 8 . 5 7 2 0 0 3 . 3 9 4 . 8 2 0 , 0 , 0 , 0 , 0 , 0 , 6 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0

N O R M 1 8 1 9 9 8 . 5 7 2 0 0 3 . 4 4 . 8 3 0 , 0 , 0 , 0 , 0 , 0 , 4 , 6 , 0 , 0 , 1 , 7 , 0 , 0 , 0 , 0 , 0

M A R T 2 8 1 9 9 8 . 7 7 2 0 0 7 . 5 7 8 . 8 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 3 , 3 , 5 , 7 , 4 , 0 , 0 , 4 , 0

C A P E 6 1 9 9 8 . 5 8 2 0 0 3 . 3 9 4 . 8 1 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0

C I N C 2 9 1 9 9 8 . 7 7 2 0 0 7 . 5 7 8 . 8 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 3 , 3 , 6 , 7 , 5 , 0 , 0 , 4 , 0

D E P T 1 0 1 9 9 8 . 5 9 2 0 0 3 . 4 4 . 8 1 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 3 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0

K N B G 2 4 1 9 9 8 . 7 7 2 0 0 7 . 5 7 8 . 8 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 4 , 0 , 8 , 5 , 0 , 0 , 4 , 0

D A C E 1 9 1 9 9 8 . 5 5 2 0 0 7 . 5 1 8 . 9 7 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 3 , 3 , 3 , 3 , 0 , 0 , 0 , 5 , 0

B L U E 1 8 1 9 9 8 . 5 4 2 0 0 7 . 5 1 8 . 9 7 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 2 , 4 , 4 , 3 , 0 , 0 , 0 , 3 , 0



E X 7 1 9 9 8 . 5 9 2 0 0 3 . 4 4 . 8 1 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0

A D Z E 1 9 1 9 9 8 . 5 9 2 0 0 7 . 5 1 8 . 9 2 0 , 0 , 0 , 0 , 0 , 0 , 3 , 2 , 6 , 0 , 0 , 4 , 0 , 0 , 0 , 4 , 0

D E L T 4 5 1 9 9 9 . 5 8 2 0 0 7 . 5 9 8 . 0 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 7 , 3 , 0 , 1 2 , 5 , 0 , 3 , 0 , 5 , 0

5 0 8 F 1 0 1 9 9 9 . 4 2 0 0 2 . 3 6 2 . 9 6 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 2 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 0

M I N E 2 4 1 9 9 8 . 5 4 2 0 0 7 . 5 1 8 . 9 8 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 3 , 4 , 4 , 4 , 0 , 0 , 0 , 5 , 0

2 6 2 9 3 2 1 9 9 9 . 5 6 2 0 0 7 . 5 8 8 . 0 2 0 , 0 , 0 , 0 , 0 , 0 , 0 , 9 , 7 , 0 , 7 , 6 , 0 , 0 , 0 , 3 , 0

A I D 1 1 2 1 9 9 9 . 5 8 2 0 0 7 . 5 8 8 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 5 , 0 , 0 , 3 , 0 , 0 , 0 , 3 , 0

B A G O 2 1 1 9 9 8 . 7 1 2 0 0 7 . 5 8 8 . 8 7 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 4 , 0 , 7 , 5 , 0 , 0 , 4 , 0

T L G T 2 2 1 9 9 8 . 7 2 0 0 7 . 5 8 8 . 8 7 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 4 , 3 , 0 , 3 , 5 , 0 , 0 , 5 , 0

E L S E 1 8 1 9 9 8 . 7 1 2 0 0 7 . 5 8 8 . 8 7 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 3 , 0 , 5 , 5 , 0 , 0 , 3 , 0

L A S T 2 1 1 9 9 8 . 7 1 2 0 0 7 . 5 8 8 . 8 7 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 5 , 0 , 5 , 5 , 0 , 0 , 5 , 0

D A M 9 1 9 9 8 . 6 1 2 0 0 7 . 5 8 8 . 9 8 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0

G O O S 1 1 1 9 9 9 . 4 8 2 0 0 3 . 4 1 3 . 9 3 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 4 , 0 , 0 , 5 , 0 , 0 , 0 , 0 , 0

B R 3 9 2 3 1 9 9 8 . 7 2 0 0 7 . 5 8 8 . 8 7 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 4 , 0 , 8 , 4 , 0 , 0 , 3 , 0

D M P 2 1 0 1 9 9 9 . 4 8 2 0 0 7 . 5 8 8 . 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0

2 4 8 4 9 1 9 9 9 . 4 7 2 0 0 7 . 5 9 8 . 1 2 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 3 , 0

E A 2 2 1 1 1 9 9 9 . 4 8 2 0 0 7 . 5 9 8 . 1 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 6 , 0 , 0 , 0 , 3 , 0

B I S 1 2 6 5 9 2 0 0 0 . 2 2 2 0 0 7 . 9 9 7 . 7 7 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 8 1 , 3 6 2 , 2 9 1 , 2 7 4 ,  

3 6 5 , 3 6 1 , 3 6 4 , 3 6 1 , 0

H N S D 2 5 2 0 0 2 . 3 5 2 0 0 7 . 4 7 5 . 1 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 6 , 5 , 3 , 2 , 4 , 5 , 0

2 4 4 7 1 2 1 9 9 9 . 4 7 2 0 0 7 . 5 9 8 . 1 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 2 , 0 , 0 , 4 , 0 , 0 , 0 , 4 , 0

2 4 4 1 7 1 9 9 9 . 4 7 2 0 0 3 . 4 3 3 . 9 6 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0

2 4 3 7 1 2 1 9 9 9 . 4 7 2 0 0 7 . 5 9 8 . 1 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 3 , 0 , 0 , 4 , 0 , 0 , 0 , 3 , 0

7  S U N 7 1 9 9 9 . 5 9 2 0 0 3 . 5 9 4 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0

C A Y O 7 1 9 9 9 . 5 9 2 0 0 3 . 5 9 4 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0

U D I G 1 3 1 9 9 9 . 6 2 2 0 0 7 . 5 9 7 . 9 6 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 4 , 0 , 0 , 3 , 0 , 0 , 0 , 3 , 0



F S 3 2 1 6 2 0 0 2 . 8 4 2 0 0 7 . 4 7 4 . 6 3 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 5 , 0 , 0 , 2 , 3 , 6 , 0

T 1 8 7 5 1 9 9 3 . 3 5 1 9 9 9 . 4 1 6 . 0 6 0 , 2 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

C H K T 7 1 9 9 9 . 5 9 2 0 0 3 . 5 9 3 . 9 9 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0

W H B O 6 1 9 9 9 . 6 1 2 0 0 5 . 5 9 5 . 9 9 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0

T E N A 1 4 2 0 0 0 . 6 2 2 0 0 7 . 8 7 . 1 8 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 6 , 0 , 5 , 0

E L D 1 9 1 9 9 7 . 6 2 2 0 0 6 . 4 5 8 . 8 2 0 , 0 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 0 , 8 , 0 , 0 , 4 , 2 , 0 , 0

C K O T 7 1 9 9 9 . 5 9 2 0 0 3 . 5 9 3 . 9 9 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0

J A 0 8 8 1 9 9 9 . 6 1 2 0 0 3 . 5 9 3 . 9 9 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 0 , 0

S T C K 7 1 9 9 9 . 6 1 2 0 0 5 . 5 9 5 . 9 9 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0

L S T R 9 1 9 9 9 . 6 2 2 0 0 5 . 5 9 5 . 9 7 0 , 0 , 0 , 0 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0

C L M B 7 1 9 9 9 . 6 2 2 0 0 3 . 4 3 3 . 8 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0

R A V E 8 1 9 9 9 . 6 2 2 0 0 3 . 4 3 3 . 8 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 5 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0

B R G T 1 3 1 9 9 9 . 5 2 2 0 0 7 . 4 1 7 . 8 9 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 3 , 0 , 4 , 0 , 0 , 0 , 3 , 0

T D O G 7 1 9 9 9 . 6 3 2 0 0 3 . 4 3 3 . 7 9 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0

5 J 2 2 6 1 9 9 9 . 5 9 2 0 0 1 . 6 6 2 . 0 7 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0

A N N X 1 4 1 9 9 9 . 4 5 2 0 0 5 . 6 5 6 . 2 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 6 , 0 , 0 , 0 , 0 , 0 , 8 , 0 , 0 , 0

T K H R 1 0 1 9 9 9 . 4 5 2 0 0 7 . 6 6 8 . 2 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 4 , 0

L E V I 2 0 9 6 2 0 0 1 . 4 7 2 0 0 7 . 6 4 6 . 1 7 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 1 , 3 3 6 , 3 4 1 ,  

3 6 5 , 3 6 3 , 3 5 9 , 2 3 1 , 0

L E V 2 3 1 5 2 0 0 1 . 4 7 2 0 0 7 . 5 8 6 . 1 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 8 , 9 3 , 1 6 , 0 , 4 ,  

4 0 , 1 3 4 , 0

B L K P 1 6 1 9 9 3 . 3 6 2 0 0 1 . 4 2 8 . 0 6 0 , 4 , 0 , 0 , 0 , 0 , 5 , 3 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0

B E U T 2 7 2 0 0 0 . 4 1 2 0 0 7 . 4 6 7 . 0 6 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 3 , 5 , 6 , 5 , 3 , 3 , 0

T R T H 2 6 2 0 0 0 . 4 1 2 0 0 7 . 4 7 7 . 0 6 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 5 , 5 , 3 , 2 , 5 , 4 , 0

4 8 9 F 2 0 1 9 9 9 . 3 9 2 0 0 5 . 7 4 6 . 3 5 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 0 , 4 , 5 , 3 , 4 , 0 , 0 , 0

T A T S 1 5 1 9 9 9 . 4 7 2 0 0 7 . 7 2 8 . 2 5 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 5 , 0 , 5 , 0 , 0 , 0 , 3 , 0



A N I T 1 1 2 0 0 3 . 6 1 2 0 0 7 . 5 7 3 . 9 6 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 5 , 0 , 0 , 3 , 0

D E S T 2 9 1 9 9 9 . 3 8 2 0 0 7 . 7 1 8 . 3 3 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 2 , 2 , 1 6 , 0 , 4 , 0 , 0 , 3 , 0

X 7 2 8 1 9 9 2 . 4 3 2 0 0 6 . 7 2 1 4 . 2 9 4 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 1 , 2 , 8 , 0 , 3 , 2 , 5 , 0 , 0

N S L M 4 0 2 0 0 0 . 4 2 0 0 7 . 7 1 7 . 3 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 2 , 1 6 , 0 , 8 , 4 , 4 , 4 , 0

W H I T 4 3 1 6 1 9 9 3 . 4 5 2 0 0 8 . 1 9 1 4 . 7 3 0 , 9 , 6 3 , 0 , 1 9 7 , 3 6 5 , 3 6 0 , 3 6 1 , 3 5 8 ,

3 5 8 , 3 5 3 , 3 6 4 , 3 6 5 , 3 6 5 , 3 6 4 , 3 6 5 , 6 9

Y 5 6 5 3 2 1 9 9 2 . 4 3 2 0 0 7 . 7 2 1 5 . 2 9 7 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 2 , 0 , 3 , 2 , 0 , 8 , 0

S L R V 7 1 9 9 9 . 3 9 2 0 0 2 . 3 5 2 . 9 6 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 2 , 0 , 3 , 0 , 0 , 0 , 0 , 0 , 0

D E Z A 4 2 2 0 0 2 . 3 4 2 0 0 7 . 7 1 5 . 3 7 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 5 , 7 , 7 , 9 , 1 0 , 0

A T L I 2 2 1 9 9 9 . 5 2 0 0 6 . 5 2 7 . 0 2 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 2 , 5 , 0 , 2 , 4 , 5 , 0 , 0

D E A S 1 7 1 9 9 9 . 5 2 0 0 6 . 5 3 7 . 0 3 0 , 0 , 0 , 0 , 0 , 0 , 0 , 6 , 0 , 0 , 5 , 0 , 0 , 0 , 6 , 0 , 0

S I T U 1 4 2 0 0 2 . 6 2 2 0 0 6 . 6 2 3 . 9 9 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 3 , 3 , 0 , 5 , 0 , 0

K A O S 9 2 0 0 3 . 4 1 2 0 0 7 . 5 9 4 . 1 8 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 2 , 0 , 5 , 0

M O T D 2 8 2 0 0 2 . 3 4 2 0 0 7 . 7 1 5 . 3 7 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 6 , 0 , 7 , 7 , 4 , 4 , 0

D U K Y 1 7 2 0 0 2 . 3 6 2 0 0 7 . 4 7 5 . 1 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 6 , 3 , 2 , 0 , 5 , 0

G U S 2 3 7 3 1 1 9 9 7 . 0 6 2 0 0 8 . 1 9 1 1 . 1 3 0 , 0 , 0 , 0 , 0 , 3 4 0 , 2 7 4 , 2 9 5 , 3 3 6 , 3 6 2 ,

2 7 3 , 3 3 4 , 3 6 5 , 3 6 2 , 3 5 9 , 3 6 2 , 6 9

M L S P 7 2 0 0 1 . 4 3 2 0 0 7 . 7 5 6 . 3 2 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0 , 3 , 0

N O V A 5 1 9 9 2 . 4 8 2 0 0 3 . 5 9 1 1 . 1 1 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0

C O M B 8 1 9 9 2 . 4 8 2 0 0 3 . 5 9 1 1 . 1 1 2 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0

H I D D 1 2 1 9 9 2 . 4 7 2 0 0 3 . 5 9 1 1 . 1 2 5 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 4 , 0 , 0 , 0 , 0 , 0

F L A T 6 1 9 9 2 . 4 7 2 0 0 3 . 5 9 1 1 . 1 2 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0

N Q 1 3 1 9 9 2 . 4 8 2 0 0 3 . 5 9 1 1 . 1 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0

N Q 4 4 1 9 9 2 . 4 8 2 0 0 3 . 5 9 1 1 . 1 1 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0

Y A K U 8 1 9 9 2 . 4 7 2 0 0 3 . 5 9 1 1 . 1 2 5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 , 0 , 0 , 0

M O S R 4 1 9 9 2 . 4 8 2 0 0 3 . 5 9 1 1 . 1 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0
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B L C L 2 4 1 9 9 9 . 4 6 2 0 0 6 . 5 2 7 . 0 6 0 , 0 , 0 , 0 , 0 , 0 , 0 , 7 , 0 , 0 , 9 , 0 , 0 , 0 , 8 , 0 , 0

P R G 6 2 7 1 9 9 9 . 4 7 2 0 0 6 . 5 3 7 . 0 6 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 9 , 0 , 0 , 0 , 8 , 0 , 0

F T S J 2 4 1 9 9 9 . 4 8 2 0 0 6 . 5 4 7 . 0 5 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 1 , 0 , 0 , 6 , 0 , 0 , 0 , 7 , 0 , 0

S M T H 1 8 1 9 9 9 . 4 9 2 0 0 6 . 5 2 7 . 0 3 0 , 0 , 0 , 0 , 0 , 0 , 0 , 9 , 0 , 0 , 4 , 0 , 0 , 0 , 5 , 0 , 0

F N E L 2 0 1 9 9 9 . 5 2 0 0 6 . 5 4 7 . 0 4 0 , 0 , 0 , 0 , 0 , 0 , 0 , 7 , 0 , 0 , 6 , 0 , 0 , 0 , 7 , 0 , 0

“ " S i t e "  =  4 - l e t t e r  n a m e  c o d e  f o r  e a c h  G P S  s i t e .

b " N u m "  =  t o t a l  n u m b e r  o f  o b s e r v a t i o n s  a t  e a c h  s i t e .

c " F i r s t _ o b s "  =  D a t e  o f  f i r s t  o b s e r v a t i o n s ,  i n  d e c i m a l  y e a r .

d " L a s t _ o b s "  =  D a t a  o f  l a s t  o b s e r v a t i o n s ,  i n  d e c i m a l  y e a r .

c " T i m e  s p a n "  =  t i m e  s p a n  b e t w e e n  f i r s t  a n d  l a s t  o b s e r v a t i o n s ,  i n  y e a r s .

f " G P S _ O b s e r v a t i o n s _ P e r _ Y e a r "  =  n u m b e r  o f  o b s e r v a t i o n s  a t  a  s i t e  e a c h  y e a r .  Y e a r  o r d e r  i s  

1 9 9 2 , 1 9 9 3 , 1 9 9 4 , 1 9 9 5 , 1 9 9 6 , 1 9 9 7 , 1 9 9 8 , 1 9 9 9 , 2 0 0 0 , 2 0 0 1 , 2 0 0 2 , 2 0 0 3 , 2 0 0 4 , 2 0 0 5 , 2 0 0 6 , 2 0 0 7 , 2 0 0 8 .
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Chapter 3 

Active Tectonics of the St. Elias Orogen, Alaska, Observed with GPS 

Measurements2

3.1 Abstract

We use data from campaign and continuous sites in southeast and south central 

Alaska to constrain a regional tectonic block model for the St. Elias orogen. Active 

tectonic deformation in the orogen is dominated by the effects of the collision of the 

Yakutat block with southern Alaska. Our results indicate that - 3 7  mm/yr of 

convergence is accommodated along a relatively narrow belt of N- to NW-dipping thrust 

faults in the eastern half of the orogen. Near the Bering Glacier, the collisional thrust 

fault regime transitions into a broad, northwest dipping decollement as the Yakutat block 

begins to subduct beneath the counterclockwise-rotating Elias block. The location of this 

transition aligns with the Gulf of Alaska shear zone, implying that the Pacific plate is 

fragmenting in response to the Yakutat collision. Our model indicates that the Bering 

Glacier region is undergoing internal deformation and could correspond to the final stage 

of offscraping and accretion of sediments from the Yakutat block prior to subduction. 

Predicted block motions at the western edge of the orogen suggest that the crust is 

laterally escaping along the Aleutian forearc.

2 Elliott, J., J. T. Freymueller, C. F. Larsen, and S. P. S. Gulick, Active Tectonics of the 
St. Elias Orogen, Alaska, Observed with GPS Measurements, prepared for submission to 
the Journal of Geophysical Research -  Solid Earth.



3.2 Introduction

The St. Elias orogen lies within the transitional zone between a dominantly 

transform plate margin in southeast Alaska and subduction along the Aleutian 

megathrust. This transition is greatly complicated by the collision of the Yakutat block 

with southern Alaska. The convoluted tectonics of the region has given rise to some of 

the most spectacular topography on earth. Over half of North America’s 25 highest 

peaks are in the orogen. The fourth highest peak, 5489-meter high Mount St. Elias, sits 

just 25 km from the ljords of Icy Bay.

Until recently, little was known about the details of the region’s tectonics.

Several studies [e.g. Lahr and Plqfker, 1980; Perez and Jacob, 1980; Savage and 

Lisowski, 1988; Estabrook et al., 1992] suggested models for the basic regional tectonic 

framework or focused on segments of the orogen, but available data were sparse and 

major questions remained about the distribution of relative motion and location of active 

structures, the present-day deformation front between the Yakutat block and southern 

Alaska, and how far the effects of the collision extended.

In this paper, we present a new GPS data set and use these data to develop a 

tectonic block model for the St. Elias orogen. Block modeling divides areas with 

complex and varied deformation patterns into a group of blocks whose motion can be 

calculated. This method allows us to generate a self-consistent kinematic model that 

accounts for both long term tectonic block motion and the transient effects of interseismic 

strain accumulation on the block-bounding faults [e.g. McCaffrey, 2002; Meade and
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Hager, 2005], The block modeling approach avoids inconsistencies that can arise when 

slip rates or block velocities are estimated individually.

The new GPS data set and the block modeling technique permit us to examine the 

active tectonics of the St. Elias orogen as a whole, integrated system. Using angular 

velocities estimated by the block model, we calculate relative rates of motion between the 

blocks and evaluate what these mean in terms of strain distribution within the orogen and 

seismic hazard. We pay particular attention to the transition between the collisional 

tectonic regime and subduction as well as to strain transfer at the western and eastern 

edges of the orogen.

3.3 Tectonic Setting

The driving force behind the superlative relief of the St. Elias orogen is the 

collision between the Yakutat block and southern Alaska. The Yakutat block is a wedge 

shaped allochthonous terrane (Figure 3.1) that originated during the mid-Cenozoic as part 

of the present-day Pacific Northwest [Bruns, 1983] or British Columbia and southeastern 

Alaska [Plafker et al., 1994] and migrated north along the Fairweather -  Queen Charlotte 

transform system. It arrived by and has been colliding with southern Alaska since at least 

the late Miocene, roughly 6 - 1 0  Mya [Lagoe et al., 1993; Ferris et al., 2003]. The 

Chugach -  St. Elias fault is the suture between the Yakutat block and southern Alaska 

[Pavlis et al., 2004] and has been assumed to be the active block boundary [Plafker et al., 

1978; Perez and Jacob, 1980; Plafker et al., 1994], Recent thermochronology work 

suggests that the Chugach -  St. Elias fault has been inactive for ~ 1 My and that the 

active block boundary has shifted to the south and east over time [Berger et al., 2008].
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The Yakutat block has a velocity of 50.3 ± 0.8 mm/yr towards N22.9 ± 0.6°W, implying 

that ~ 4 cm/yr of convergence between the Yakutat block and southern Alaska occurs 

across the St. Elias orogen [.Elliott et al., 2010],

Consisting o f a broad region of folds and thrust faults, the Pamplona fault zone 

lies offshore the St. Elias orogen. A number of studies have suggested that the Pamplona 

fault zone and its onshore continuation mark the present-day deformation front between 

the Yakutat block and southern Alaska [Perez and Jacob, 1980; Homer, 1983; Estabrook 

et al., 1992; Worthington et al., 2008], Based on offshore seismic reflection data, 

Worthington et al. [2010] concluded that the active structures in the Pamplona fault zone 

have migrated southeast since the Pliocene and that only a small percentage of the 

Yakutat -  Southern Alaska relative motion is accommodated offshore.

Onshore, a W-E to SW-NE trending fold-and-thrust belt is actively deforming the 

region between the coast and the Chugach -  St. Elias fault [Bruhn et al., 2004; Wallace, 

2008]. The width of the fold-and-thrust belt narrows towards the east, where it becomes 

obscured beneath the ice cover of the Malaspina Glacier but presumably connects with 

the Fairweather fault and the Yakutat foreland faults [Bruhn et al., 2004; Chapman et al., 

in prep.]. Bruhn et al. [2004] suggested that the fold-and-thrust belt ends at the Bering 

Glacier, where a postulated north-south trending structure marks the beginning of a 

complex zone of superimposed folding in the western orogen.

Seismicity within the St. Elias orogen is concentrated in three main areas: the Icy 

Bay/St. Elias region, the Bering Glacier region, and the Copper River region (Figure 3.2). 

Within the Icy Bay cluster there are several smaller trends of seismicity. One runs across
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Icy Bay, another is centered over the Chaix Hills and Mount St. Elias area, and two small 

concentrations lie over the center and eastern edge of the Malaspina Glacier. Seismicity 

between the major clusters and directly offshore the St. Elias orogen is relatively sparse. 

Several M6+ earthquakes have occurred in the St. Elias region during the past century.

In September 1899, a series of M8 earthquakes caused significant uplift, landslides, and 

glacier changes in the area between Prince William Sound and southeast Alaska. Tarr 

and Martin [1912] reported that the first event, on September 4, resulted in uplift of the 

coast near Yakataga. A relocation by Doser [2006] places the earthquake in the 

Pamplona zone. The Pamplona zone was also the locus of an M6.7 earthquake in 1970. 

This event was preceded and followed by several M5 -  6 earthquakes with predominately 

N -  NW dipping thrust mechanisms [Doser et al., 1997]. At the end of February, 1979, a 

Mw7.4 earthquake occurred northwest of Mount St. Elias. The event, usually assumed to 

have ruptured the Pacific -  North America plate interface [Stephens et al., 1980; 

Estabrook et al., 1992], had a depth of ~ 15 km [N. Ruppert, personal communication,

2011], The complex pattern of aftershocks from the event propagated southeast and 

apparently migrated up to shallower depths along the Malaspina fault before spreading 

across the Malaspina Glacier [Estabrook et al., 1992], Between 1987 and 1992, a 

sequence of M7+ earthquakes defined a north-south trending plane in the Gulf of Alaska 

that coincided with a pre-existing weakness in the Pacific plate, magnetic anomaly 13 

[Lahr et al., 1988; Pegler and Das, 1996], The M9.2 1964 Prince William Sound rupture 

plane extended into the western St. Elias orogen. Shennan et al. [2009] found evidence 

of coseismic uplift from that event as far east as the southern end of the Bering Glacier



and suggested that past megathrust events may have ruptured even further east to Icy 

Bay.

3.4 GPS Data and Analysis

3.4.1 Data Set

We use GPS data collected at 65 sites in southeast and southcentral Alaska (Table 3.1). 

One site, in the town of Cordova, is a continuously running GPS site. The other 64 are 

campaign sites. The majority of the sites were newly established in 2005 and 2006 as 

part of the ST. Elias Erosion/Tectonics Project (STEEP). In order to have a consistent 

timeseries for this data set, we only use data collected during the 2005 -  2009 time 

period, even for the small number of sites that have a longer timeseries. The only 

exceptions to this rule were two sites (BREM and TOYU) that did not have an adequate 

amount of data from the 2005 -  2009 time period. Each campaign site had at least two 

and as many as five annual visits. Table 3.2 details the occupation histories of sites used 

in this study.

3.4.2 Data Processing and Velocity Estimation

We used the GIPSY/OASIS GOA4 software developed by the Jet Propulsion Laboratory 

(JPL) [Zumberge et al., 1997] to analyze the GPS data presented here. Data from each 

day were analyzed separately to create daily loosely constrained frame-free solutions.

We used JPL’s fiducial-free orbits and transformed these daily solutions into the 

International Terrestrial Reference Frame 2000 (ITRF2000, realization IGFbOO). The 

daily solutions were combined in a linear least squares inversion to estimate velocities at 

each GPS site.
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We used ITRF2000 rather than more recent versions of ITRF because of our need 

to express our solutions in a North America-fixed frame. We consider the estimate of 

Sella et al. [2007] to be the most reliable determination of the motion of North America 

as it is based on substantially more data than any other estimate and considers the effects 

of glacial isostatic adjustment. The estimate of Sella et al. [2007] is based on ITRF2000 

(IGSbOO) and should not be used with later versions of ITRF due to differences between 

the frames.

In our uncertainty estimates, we included uncertainties in the definition of the 

North America fixed frame and in the geocenter stability of ITRF in addition to the 

formal errors in site velocities. The ITRF2000 and ITRF2005 frames differ by a ~ 1.8 

mm/yr geocenter translation along the spin axis (Z axis). At the latitudes considered in 

this study, the geocenter difference results in a velocity difference of ~ 1 mm/yr in the 

north component and ~ 1 mm/yr in the vertical component. Argus [2007] and Kogan and 

Steblov [2008] both attempted to estimate a geocenter correction to ITRF. The result of 

Argus [2007] lies between ITRF2000 and ITRF2005 while the result o f Kogan and 

Steblov [2008] is closer to ITRF2000. Since we do not know if either frame is correct, 

we augmented the velocity uncertainties by 1.8 mm/yr in the Z component, which 

reduces the weight given to the north and vertical velocity components accordingly. The 

impact of any small bias in the velocities on the model results in this paper is very small. 

The use of ITRF2000 in both our velocity estimates and our choice of reference plate 

pole minimizes the bias. Further details about the processing, velocity estimation, and
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the augmentation of uncertainties due to possible systematic errors can be found in the 

work of Freymueller et al. [2008].

3.4.3 Postseismic Effects

The location of the St. Elias orogen results in a considerable postseismic effect 

from the 2002 M7.9 Denali fault earthquake at our sites. A robust postseismic 

deformation model for our study area is not available as published models [Pollitz, 2005; 

Freed et al., 2006; Johnson et al., 2009] significantly over-predict the postseismic effect 

in the far field. In order to make a first-order correction for the postseismic effect, we 

develop an empirical estimate based on an interpolation of the differences between pre- 

and post-earthquake velocities in the region. We selected a group of sites that had 

reliable velocities before the earthquake and during the time period of our data set (Figure 

3.3), subtracted the post-earthquake velocity from the pre-earthquake velocity, and 

performed a linear interpolation of the results to produce an estimate of the postseismic 

effect at each of our sites. Since our data set includes velocities spanning different time 

periods (2005 -  2008, 2005 -  2009, 2006 -  2008, 2006 -  2009), we calculated estimates 

using post-earthquake velocities covering each of those periods. The estimate spanning 

the appropriate time interval was then subtracted from each of the velocities. Magnitudes 

of our estimated postseismic effects range from 11 mm/yr at the northern edge of our 

study area to 7 mm/yr near the terminus of the Bering Glacier to 5 mm/yr at Icy Bay. 

Figure 3.3 shows our postseismic estimates at the sites used in this study. To account for 

uncertainties in the interpolation we added 10% of the magnitude of the postseismic 

estimate to our formal error estimate for each site.
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We also correct for the postseismic effects of the 1964 M9.2 Prince William 

Sound earthquake using the model of Suito and Freymueller [2009], The eastern end of 

the 1964 rupture overlaps with the western half of our study area. Model postseismic 

estimates range from 9 mm/yr in the northwest comer of our study area to ~ 2 mm/yr 

north of the Bering Glacier to ~ 1 mm/yr at Icy Bay.

We do not correct for the possible postseismic effects of the 1958 M7.9 

Fairweather fault earthquake, the 1899 earthquake sequence, or the Mw7.4 1979 St. Elias 

earthquake. Elliott et al. [2010] demonstrated that due to a short Maxwell relaxation time 

of ~ 2 years for southeast Alaska, any postseismic effects from the former two 

earthquakes, even of considerable initial magnitude, would have decayed into negligible 

amounts by the present day. Although more recent and within our region of study, the 

Ms7.1 St. Elias earthquake is an order of magnitude smaller than the other earthquakes. 

Given the Maxwell relaxation time, present day postseismic effects should be 

insignificant. Corroborating this, Savage andLisowski [1986] found that strain rates 

derived from Geodolite measurements taken in 1979, 1980, 1982, and 1984 within the 

Yakataga region were consistent with a constant rate of strain accumulation over the 

1979 -  1984 time period. If significant postseismic deformation resulted from the 1979 

event, the measured strain rate would be expected to show variations during the five 

years following the earthquake.
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3.4.4 Glacial Isostatic Adjustment

The Gulf of Alaska coast has experienced substantial ice volume loss since the 

end of the Little Ice Age (LIA) in the late 1700s [Motyka, 2003; Larsen et al., 2004], The 

glacial isostatic adjustment (GIA) resulting from this ice loss causes one of the fastest 

ongoing isostatic uplift measured, second only to uplift observed in the southern 

Patagonian icefields [.Larsen et al., 2005; Dietrich et al., 2010], In southeast Alaska, 

centers of peak uplift in Glacier Bay and the Yakutat ice field show rates of more than 30 

mm/yr [Larsen et al., 2005]. GIA models predict that horizontal deformation associated 

with the ice loss in southeast Alaska produces rates exceeding 7 mm/yr [Elliott et al., 

2010], Tectonic interpretation of the regional tectonic field relies on first accounting for 

the horizontal signal from the GIA. In the St. Elias orogen, the GIA signal results from a 

combination o f ice load changes within Glacier Bay since the end of the LIA and past and 

ongoing load changes across southern Alaskan and adjoining Canadian ice cover. We 

apply an adjustment for the GIA signal using the model presented in Elliott et al. [2010], 

which is an updated version of the model of Larsen et al. [2005].

3.4.5 Velocity Field

Figure 3.4 shows the GPS velocities in the St. Elias orogen with the predicted 

horizontal GIA motion and postseismic corrections removed. The velocity field displays 

several distinctive trends. Across Icy Bay (Figure 3.5), the velocities rotate 

counterclockwise and decrease in magnitude by nearly 10 mm/yr over a distance of only 

10 km. Moving north from Icy Bay, decreasing velocity magnitudes imply a strong strain 

gradient in the eastern half of the orogen. Around the vicinity of the Bering Glacier,
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Figure 2.1 Tectonic setting of southeast Alaska Green dot marks the city of Yakutat 
Abbreviations are CM, Chugach Mountains, BG, Bering Glacier, PZ, Pamplona fault 
zone, IB, Icy Bay, MG, Malaspina Glacier, STE, St. Elias Mountains, YB, Yakutat Bay, 
YI, Yakutat icefield, DRF, Duke River fault, TOTF, Totschunda fault, and SOAK, 
Southern Alaska block. Faults are based on Plafker et al [1994b], Brew and Ford 
[1998], and Pegler and Das [1996].
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Figure 2.2. Seismicity in southeastern Alaska and the adjacent region of Canada.
Seismic events with M > 3 are shoen by dots and are taken from the AEIC catalog. 
Available focal mechanisms are shown for M > 4.5 events. M > 6 events and their 
aftershocks are labeled with the year in which they occurred. Focal mechanisms are from 
Doser and Lomas [2000] and the AEIC database [N. Ruppert, personal communication, 
2008]. Stars indicate the epicenters of the 10 September 1899 events as relocated by 
Doser [2006]. Dashed ellipses indicate uncertainty limits for the relocations. The cluster 
of earthquakes located east of -134° is not of tectonic origin; they are either glacial or 
groundwater related events \ Wolf et al., 1997].
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Figure 2.3. Glacial isostatic adjustment model predictions for southeast Alaska. Vectors 
show the horizontal motion while the contours show the vertical motion. Contour label 
units are mm/yr. Figure 2.A-1 shows a larger version of this figure.
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Figure 2.4. GPS velocities with GIA model predictions applied for southeast Alaska and 
the adjacent portion of the Canadian Cordillera. Figure 2.A-5 shows all of the GPS 
velocities used in our model.
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Figure 2.5. Blocks and bounding faults used in our southeast Alaska inversion model. 
Bold type indicates a block and regular type indicates a bounding fault. Abbreviations 
are: P, Pacific Plate; Y, Yakutat block; FT, Foothills block; N, Nunatak block; F, 
Fairweather block; B, Baranof block; ED, Eastern Denali block; NC, Northern Cordillera 
block; TF, Transition fault; FTF, Foothills fault; BF, Boundary fault; FF, Fairweather 
fault; QCF, Queen Charlotte fault; CSZ, Coastal Shear zone; GBP, Glacier Bay Partition; 
EDF, Eastern Denali fault; DRF, Duke River fault; CF, Totschunda -  Totschunda 
Connector fault; and TOTF, Totschunda fault.



Figure 2.6. Alternate model geometries without an offshore fault. Black dots show 
locations of GPS sites, (a). Model without any faults west of the Fairweather fault, (b). 
Model including the Boundary fault and resulting Nunatak block, (c). Model including 
the Foothills fault and the resulting Foothills block, (d). Model including the Boundary 
fault and the Nunatak block as well as the Foothills fault and the Foothills block.
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Figure 2.7. Euler poles and uncertainty clouds for our preferred block model. 
Uncertainty clouds represent the 95% confidence regions for the pole locations. 
Abbreviations are: ED, Eastern Denali block; N, Nunatak block; F, Fairweather block; B, 
Baranof block; NC, Northern Cordillera block; Y, Yakutat block; FT, Foothills block. 
Table 2.3 lists the locations, rotation rates, angular velocities, and angular velocity 
covariances for the poles. All poles are relative to the North America definition of Sella 
etal. [2007],



71

Figure 2.8. Block velocity predictions for selected points in southeast Alaska and 
adjacent Canada. Note the different vector scales used. All block velocity predictions are 
relative to the North America definition of Sella et al. [2007], SOAK predictions are 
derived from Fletcher [2002], Pacific plate velocity is derived from Plattner et. al.
[2007], Abbreviations are: P, Pacific plate; Y, Yakutat block; N, Nunatak block; FT, 
Foothills block; B, Baranof block; F, Fairweather block; NC, Northern Cordillera block; 
ED, Eastern Denali block; SOAK, Southern Alaska block; QCF, Queen Charlotte fault; 
FF, Fairweather fault; TF, Transition fault; EDF, Eastern Denali fault.
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Figure 2.9. Relative block motion predictions for southeast Alaska. Dark gray arrows 
indicate sense of relative motion while the circled numbers give the magnitude of the 
motion in mm/a rounded to the nearest whole number. For faults with offset numbers, 
long black arrows connect the circled number to the appropriate fault.
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Figure 2.10. Velocity residuals between data and block model predictions. Residuals are 
only shown for sites whose data uncertainties are less than 1.5 times the average 
uncertainty. 76% of the sites have residuals smaller than their 1 -o uncertainty estimates.
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Table 2.1. F-test results for alternative model fault geometries

Model Geometry %r WRSS p a DoFb Fc F calculated relative to

1 N o  T r a n s i t i o n  f a u l t ,  

n o  F o o t h i l l s  o r  B o u n d a r y  f a u l t s

3  6 6 5 2  1 1 1 8 1 8 8 N / A N / A

2  N o  T r a n s i t i o n  f a u l t ,

n o  F o o t h i l l s  f a u l t ,  w i t h  B o u n d a r y  f a u l t

3  2 6 5 6 3  5 8 2 1 1 8 5 9  5 8 M o d e l  1

3  N o  T r a n s i t i o n  f a u l t ,

w i t h  F o o t h i l l s  f a u l t ,  n o  B o u n d a r y  f a u l t

2  0 1 3 6 1  4 1 2 1 1 8 5 4 9  0 7 M o d e l  1

4  N o  T r a n s i t i o n  f a u l t ,

w i t h  F o o t h i l l s  a n d  B o u n d a r y  f a u l t s

1 8 3 2 1  2 4 2 4 1 8 2 7  5 M o d e l  3

5  W i t h  T r a n s i t i o n  f a u l t ,

n o  F o o t h i l l s  o r  B o u n d a r y  f a u l t s

1 5 4 2 8 1  2 2 1 1 8 5 8 0  4 6 M o d e l  1

6  W i t h  T r a n s i t i o n  f a u l t ,

n o  F o o t h i l l s  f a u l t ,  w i t h  B o u n d a r y  f a u l t

1 4 8 2 6 7  5 8 2 4 1 8 2 3  0 5 M o d e l  5

7  W i t h  T r a n s i t i o n  f a u l t ,  

w i t h  F o o t h i l l s  f a u l t ,  n o  B o u n d a r y  f a u l t

1 1 6 2 1 6  7 5 2 4 1 8 2 1 7  8 4 M o d e l  5

8  W i t h  T r a n s i t i o n  f a u l t ,  F o o t h i l l s ,  

a n d  B o u n d a r y  f a u l t s

1 0 9 2 0 1  3 2 7 1 7 9 4  5 2 M o d e l  7

9  W i t h  T r a n s i t i o n ,  F o o t h i l l s ,  

B o u n d a r y  a n d  G B  f a u l t s

1 0 1 1 8 4  6 3 0 1 7 6 5  2 7 M o d e l  8

a Number o f model Parameters 
b Degrees of Freedom
0 F value of 2.13 indicates a 90% significance level, F value of 2.66 indicates a 95% 
significance level, F value of 3.9 indicates a 99% significance level
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Table 2.2. Fault geometry parameters for block model3

Fault Segment Fault Width (km) Locking Depth (km) Dip O

T o t s c h u n d a 1 0 1 0 9 0

D u k e  R i v e r 1 0 1 0 9 0

E a s t e r n  D e n a l i  ( S h a k w a k ) 1 0 1 0 9 0

E a s t e r n  D e n a l i  ( D a l t o n ) 1 0 1 0 9 0

M a l a s p i n a  F a i r w e a t h e r  ( 6 0  3 ° - 6 0 ° ) 5 5 9 0

U p p e r  F a i r w e a t h e r  ( 6 0 ° - 6 0  5 ° ) 8 7  6 7 9 ,  t o  N E

C e n t r a l  F a i r w e a t h e r  ( 5 9  5 ° - 5 7  6 5 ° ) 1 0 1 0 9 0

Q u e e n  C h a r l o t t e 1 0 1 0 9 0

T r a n s i t i o n  ( n o r t h e r n  a n d  c e n t r a l ) 8 8 9 0

T r a n s i t i o n  ( C r o s s  S o u n d  a r e a ) 2 8  5 2 6  8 7 0 ,  t o  N E

C o a s t  S h e a r  z o n e 1 0 1 0 9 0

B o u n d a r y  ( 6 0  l ° - 5 9  9 ° ) 8 8 9 0

B o u n d a r y  ( 5 9  9 ° - 5 9  7 ° ) 8 7  9 6 8 5 ,  t o  N E

B o u n d a r y  ( 5 9  7 ° - 5 9  5 ° ) 8 8 9 0

B o u n d a r y  ( 5 9  5 ° - 5 9 ) 0 0 9 0

F o o t h i l l s  ( 6 0  1 - 5 8  8 6 ° ) 8 8 9 0

F o o t h i l l s  ( 5 8  8 6 ° - 5 8  5 ° ) 1 2 1 2 9 0

F o o t h i l l s  ( 5 8  5 ° - 5 7  6 5 ° ) 4 4  9 8 8 5 ,  t o  N E

G l a c i e r  B a y 8 8 9 0

“Parameter values are averages for the fault segment. Fault width is measured in the 
downdip direction.
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Table 2.3. Poles, rotation rates, and angular velocities

Block Lat. Long. Rate Omega (X, Y, Z) Omega Covariance (xx, xy, xz, yy, yz, zz)

CN) CE) (•/Ma) (1 0 3 rad/Ma) (106 rad/Ma2)

Yakutat 59 47 -87 82 -1 04 ± 0  32 -0 35 ,9  25,-15 69 5 70, 5 05, -12 73 ,4  49, -11 30, 28 47

Fairweather 57 11 -129 89 -0 44 ± 0 18 2 70, 3 23, -6 52 1 44, 1 34, -3 32, 1 26, -3 10,7 63

Baranof 58 8 -127 67 -0 32 ± 0 09 1 77, 2 29, -4 79 0 35, 0 35, -0 79, 0 34, -0 77, 1 75

N Cordillera 52 99 -129 58 -0 14 ± 0  03 0 95, 1 15,-1 98 0 03, 0 03, -0 07, 0 04, -0 08, 0 17

Nunatak 55 94 -148 9 3 74 ± 1 72 -31 31,-18 89, 54 09 134 02, 117 31, -301 97, 102 71, -264 35, 680 44

Foothills 34 79 -35 08 -0 48 ± 0  13 -5 67, 3 98, -4 82 5 00, 4 36, -10 87, 3 84, -9 54, 23 79

E Denali 65 15 -148 22 -0 30 ± 0 55 -1 85,-1 14,4 69 12 99, 10 87, -30 42, 9 19, -25 59, 71 51
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Appendix 2.A Supplemental Figures

Figure 2.A-1. Glacial isostatic adjustment model predictions for southeast Alaska. 
Vectors show the horizontal motion while the contours show the vertical motion. 
Contour label units are mm/yr.
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Figure 2.A-2. Comparison between data and glacial isostatic adjustment model 
predictions. Dashed outline shows area highlighted in Figure 2.A-3.
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Figure 2 A-3 Comparison between data and glacial isostatic adjustment model 
predictions m the Glacier Bay area
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Figure 2.A-4. Comparison of GIA model predictions for preferred and end-member 
acceptable model parameters. Model marked with an asterisk is our best-fit model.



value of 9.6, which exceeds the F-test criteria for significance at the 99% level. These 

results strongly suggest that the Northern Cordillera has a motion distinct from that of 

stable North America.

Small velocities such as the ones seen in the Northern Cordillera might be caused 

by transient strain instead of long-term tectonic block motion. A possible source of 

transient signal could be a under- or over-estimation of the horizontal GIA effects in 

southeast Alaska. To test this possibility, we ran the test discussed in the previous 

paragraph using data that had had the two end-member GIA models applied instead of 

our best-fit model. In both cases, the block model version including the Northern 

Cordillera block had an overall misfit more than 10% smaller than the North America 

version and exceeded the F-test criteria for significance at the 99% level. Another likely 

candidate for non-tectonic transient motion would be GIA from the loss of the Laurentide 

Ice Sheet. The ICE4G model \Peltier, 2002] estimates that the horizontal motion from 

GIA effects in the Northern Cordillera would be small (< 2 mm/a) and oriented W-SW. 

Removing this signal would intensify the N-NE trend seen in the GPS velocities, not 

diminish it. Strain accumulation on an unrecognized locked fault is also not a probable 

explanation. There are simply no candidate faults that could produce N-NE-directed 

deformation over such a large area.

The eastern and southern boundaries of the Northern Cordillera block are not 

clearly delineated and our dataset does not extend far enough to directly examine the 

possible alternatives. Leonard et al. [2008] found that GPS velocities at sites located east 

of the Mackenzie and Canadian Rocky Mountains displayed near-zero horizontal motion,
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suggesting that they represent stable North America. To the south, McCaffrey et al. 

[2007] presented a block model for the western Cordillera that included several blocks in 

southwestern British Columbia. We compared predicted block velocities from our 

Northern Cordillera block to the predicted velocities of the British Columbia blocks to 

see if they were compatible. The Northern Cordillera block predictions were larger and 

oriented in the opposite direction than the British Columbia block predictions. Based on 

this, we conclude that the Northern Cordillera block terminates north of this region.

An unresolved problem is how strain is transferred from the main plate boundary 

zone into the Northern Cordillera. Based on high heat flow measurements, Mazzotti and 

Hyndman [2002] devised a model for the Cordillera that involves a strong upper crust 

over a hot, weak, lower crust. This weak lower crust could serve as a detachment and 

allow the upper crust to move over the uppermost mantle. In this model, a small amount 

of Yakutat-North America relative motion is transferred into the Cordilleran upper crust, 

which then moves as a semi-rigid block over the weak lower crust and eventually thrusts 

over the stable craton. Such a model would allow the translation of the upper cmst 

without much internal deformation.

In our block model, a portion of the Yakutat-North America relative motion is 

transmitted directly from the main plate boundary zone into the Fairweather and Baranof 

blocks, which then undergo clearly defined rotations. East of the Fairweather and 

Baranof blocks, our Northern Cordillera results are completely compatible with the 

model of Mazzotti and Hyndman [2002], However, from our modeling we cannot rule 

out the alternative possibility that the Northern Cordillera is a rigid block and that the
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convergence at its eastern boundary involves slip on faults that cut through the 

lithosphere.

2.8 Conclusions

We have used an extensive GPS dataset to develop a block model for southeastern 

Alaska and the adjoining region of Canada. The block model provides an integrated 

kinematic view of the regional tectonics and provides new constraints on seismic hazard 

evaluation.

Southeast Alaska is strongly affected by the collision of the Yakutat block with 

southern Alaska and our block model provides a snapshot of the present tectonic 

response. According to our model, the Yakutat block is moving at a velocity of 50.3 ±

0.8 mm/a towards N22.9 ± 0.6° W, a velocity that is similar in magnitude but more 

westerly than the velocity of the Pacific plate. The relative block motion between the 

Yakutat block and the Southern Alaska block indicates that ~ 45 mm/a of convergence 

must be accommodated across the St. Elias orogen to the north of our study area. The 

eastern edge of the Yakutat block is deforming, represented in the model by two small 

northwesterly moving blocks located west of the Fairweather fault. Part of the strain from 

the collision is transferred east of the Fairweather -  Queen Charlotte system and causes 

the area north of Glacier Bay to rotate clockwise into the Northern Cordillera. The region 

south of Glacier Bay undergoes a much slower clockwise rotation and may be at least 

partially pulled along by the northern block motion. Strain is also transferred further east 

into the Northern Cordillera block, which displays small northeasterly motions. Our 

results suggest that the entire southeastern Alaska margin is mobile.
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The vast majority of the relative block motion (and thus most of the seismic 

hazard) is concentrated along the Fairweather-Queen Charlotte fault system. Our block 

model predicts average dextral slip of 42.9 ± 0.9 mm/a along the Fairweather fault and 

transpressive relative motion along the Queen Charlotte fault equivalent to 43.8 ± 0.6 

mm/a. In our model, a combination of dextral and reverse slip on the Boundary and 

Foothills faults accommodates about half of the observed convergence between the 

Pacific plate and the Fairweather fault. A deformation zone encompassing these two 

faults could provide an explanation for the 1899 Yakutat Bay earthquakes. The 

remaining relative motion is taken up on an offshore fault, here taken to be the Transition 

fault. GPS velocities along the coastal regions cannot be explained without the presence 

of the offshore fault.
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velocities begin to rotate clockwise and increase in magnitude before becoming smaller 

again near Prince William Sound. Finally, velocities at sites along the northern and 

western edges of the Bering Glacier display a clear counterclockwise rotation (more 

prominent in the north) relative to surrounding sites.

3.5 Block Model

3.5.1 Modeling Approach

To develop our block model for the St. Elias orogen, we adapted the method of 

Meade and Hager [2005] as described in Elliott et al. [2010]. We present a brief 

summary of the concept below; further details can be found in those studies.

Assuming linear elasticity, the interseismic velocity v, observed at a GPS site as a 

combination of block motion and elastic effects:

The GPS site coordinates correspond to x site, the fault geometry to x , and the linear

block velocity to vB. The term vSD represents the slip deficit accumulating on a locked 

fault and can be written as

G is the matrix o f Green’s functions that relate slip, s, on each fault plane to the 

displacement at each GPS site assuming an elastic half-space and a Poisson’s ratio of 

0.25 [Okada, 1985],

Both the block velocity term and the slip deficit term can be written in terms of 

the block angular velocity, Q. Combining the block motions and slip deficit

v/ =vB(xsite) - v SD{xsite,xgeom) ( 1)

(2)



contributions into a single term R and substituting our data vector (observed GPS 

velocities and a priori block angular velocities) d for the interseismic velocity term 

yields

d = RQ. (3)

This equation allows us to solve for the block angular velocities Q through a weighted 

linear least-squares inversion. .

Qes(= (RtWR)-1Rt W J (4)

where WTW = S '1 and 2 is the data covariance matrix.

In this method, the fault slip rates depend directly on the block angular velocities 

and the block geometries. Since the slip rates cannot vary independently of each other, 

the block model guarantees that the estimated slip rates are internally consistent.

3.5.2 Blocks and Fault Geometries

Our block model includes four fault systems or fault zones: the Malaspina -  

Pamplona system, the Yakataga -  Chaix Hills system, the Foreland fault zone, and the 

decollement between the Yakutat block and the upper plate. These faults form the 

boundaries between four blocks (Figure 3.6). The mountainous landscape and extreme 

ice cover of the St. Elias region results in many inferred faults with imprecise locations 

on maps. The fault locations used in our model are derived from geologic maps, 

seismicity trends, or topographic features as discussed below.

The Pamplona -  Malaspina fault system has been postulated to be the present day 

deformation front between the Yakutat block and southern Alaska [Lahr and Plafker,

1980; Worthington et al., 2008]. Seismic reflection profiles imaged three faults within
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the active, eastern portion of the offshore Pamplona fault zone [ Worthington et al., 2010], 

Doser et al. [1997] relocated a series of moderate (M5-6.7) earthquakes that occurred in 

the Pamplona zone in 1970 and Doser [2006] suggested that the September 4, 1899 M8 

event may have occurred there. The Pamplona zone presumably links to the Malaspina 

fault somewhere in the vicinity of Icy Bay, where a prominent cluster of seismicity is 

present (Figure 3.2). Most of the trace of the Malaspina fault is obscured by ice, but the 

fault was penetrated during exploratory drilling in the hills northeast of Icy Bay [Plafker, 

1987], Aftershock distribution implies that the Malaspina fault may have been involved 

in the 1979 St. Elias earthquake rupture [Estabrook et al., 1992] and the southern Alaska 

margin may have ruptured east to the fault during past megathrust events [Shennan et al., 

2009],

Our model Yakataga -  Chaix Hills system is a composite of the Dome Pass fault 

[Plafker and Miller, 1957], the Chaix Hills fault, and the Miller Creek fault. Much of 

region is covered by ice, but the Chaix Hills fault is exposed on both sides of the Tyndall 

Glacier fjord in northern Icy Bay [Chapman et al., in prep.]. Thermochronology results 

[Spotila and Berger, 2010] suggest that the Chaix Hills fault is currently active in the 

region north of the Malaspina Glacier.

The Foreland fault zone is included as a blind thrust in our model. Seismicity 

clusters (Figure 3.2) and aftershock migration following the 1979 St. Elias earthquake 

[Estabrook et al., 1992] indicate that active deformation continues south of the Malaspina 

fault. In addition, the GPS velocities along the eastern coast of Icy Bay (Figure 3.5) 

indicate that convergence is occurring between those stations and the coherent Yakutat



block along the eastern edge of the Malaspina Glacier. The Foreland fault zone is 

discussed further below.

We take the Yakutat decollement to be the interface between sedimentary layers 

and the Yakutat basement crust as interpreted from offshore seismic reflection profiles 

[ Worthington et al., 2010], In the eastern half of our study region, the decollement likely 

ruptured during the 1979 St. Elias earthquake [Estabrook et al., 1992]. Our placement of 

the beginning of the main megathrust along the eastern edge of the Bering Glacier 

coincides with the easternmost limit of observed coseismic uplift from the 1964 Prince 

William Sound earthquake [Shennan et al., 2009] and provides the best fit to the GPS 

data.

Previous studies [Lahr and Plafker, 1980; Fletcher, 2002] proposed that most of 

Alaska south of the Denali fault was part of a counterclockwise rotating block. The 

Southern Alaska block (SOAK) [Fletcher, 2002], which had a rotation rate constrained 

by GPS data, and the Wrangell block [Lahr and Plafker, 1980] gave motion predictions 

of 5 -  6 mm/yr within the St. Elias orogen. We found that our data required faster block 

motions and propose that the Elias block occupies the region north and west of the central 

thrust belt (Figure 3.6). A boundary between the Elias block and the slower moving 

SOAK must exist north of our study area based on slip rates along the Denali fault 

[Fletcher, 2002; Freymueller et al., 2008], but it is beyond the scope of the present work 

to determine the location of that boundary.

We include the Bering Deformation Zone (BDZ) in the region surrounding the 

western edge of the Bering Glacier. The term deformation zone is used instead of block
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due to the fact that the best fit between the model and data was achieved by allowing all 

boundaries of the area to fully creep. Our motivation for including the BDZ was to 

improve the fit between the GPS data and the block model in this region. An earlier 

version of our model, without any structures or additional blocks in the Bering Glacier 

region (Figure 3.7a), resulted in a coherent pattern of southwest-directed residuals at sites 

located along the northern and western edges of the glacier. Bruhn et al. [2004] proposed 

a thrust fault boundary beneath the Bering Glacier, separating the eastern orogen from a 

belt of second-phase folds west of the glacier. Including this boundary (Figure 3.7b) in 

our initial model improved the misfit between the model and the GPS data by less than 

5%. Adding the BDZ reduced the misfit by 30%. The evidence for and implications of 

the BDZ are discussed further below.

Fault locking depths, dips, widths in the downdip direction, and degree of 

coupling on the fault planes are all fixed; they are not estimated as part of the inversion. 

We used an iterative process to adjust fault segment endpoints, fault locking depths, fault 

width and dip, and percent coupling to find the geometry that minimized the misfit to the 

GPS data. When the information was available, we began with estimates of the fault 

geometry based on seismic data and geologic measurements. Geologic estimates of dip 

may disagree with our final fault geometry since faults are often steeper at the surface 

than at depth. Our model fault planes have a constant dip along their width, representing 

the average dip. The GPS data constrain how deep the model fault plane lies beneath the 

sites and where the downdip end of the locked fault is located. Unless there are GPS sites
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near the updip end of the fault, our model geometry will not be sensitive to near surface 

steepening of the fault. Table 3.4 lists the parameters for our model faults.

3.5.3 A Priori Block Motion Estimate

Our block modeling approach allows the inclusion of a priori block motion 

estimates. We used an a priori block angular velocity for one block in our model, the 

Yakutat block. The data set used in this study does not include any GPS sites on the 

Yakutat block, so its inclusion is solely important for the calculation of deformation 

along its boundaries, including the decollement. The Yakutat block velocity was taken 

from Elliott et al. [2010].

We also included uncertainties for the Yakutat block angular velocities as a priori 

information. To guarantee numerical stability during the inversion and limit the 

maximum rate of vertical axis rotation for small blocks, we applied loose a priori 

uncertainties to the estimated angular velocities in our block model. These were large, 

with o  equal to 0.1 radians/My.

3.6 Results and Interpretation

3.6.1 Pole and Rotation Rate Estimates

We inverted 133 data (east and north components of GPS velocities at 65 sites 

and X, Y, and Z components of a priori angular velocities for one block) to estimate 12 

model parameters (X, Y, and Z components of angular velocity for four blocks). We 

transformed the estimated angular velocities from the XYZ coordinate system to the 

geographic coordinate system (latitude, longitude, and rotation rate) in order to present 

the block rotations in the familiar Euler pole format. Figure 3.8 and Table 3.5 show the
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Euler poles, rotation rates, angular velocities, and associated uncertainties for the blocks 

in our preferred model. Predicted linear block velocities are displayed in Figure 3.9.

As discussed in Elliott et al. [2010], the angular velocities of small blocks with 

uneven site distributions have a large uncertainty in one component, usually the local 

vertical. In cases where the axis of the Cartesian error ellipsoid is large, the uncertainty 

regions for the Euler poles are distorted from ellipses into the shape of a great circle due 

to the nonlinear transformation between geographic and Cartesian coordinates.

Distortion of the uncertainty ellipsoid is exacerbated at high latitudes such as those in this 

study. For these reasons, we display a Monte Carlo sampling of the uncertainty region 

rather than the standard 95% confidence ellipses with the poles in Figure 3.8. We took 

2500 random samples of a zero-mean distribution with a covariance equal to the angular 

velocity covariance, added each sample to our estimated angular velocities, computed the 

corresponding Euler pole, and plotted the pole as a point on the map. The density of the 

points on the map corresponds to the probability distribution of the pole location. For 

blocks with large uncertainty regions for the poles, the predicted linear block velocities 

for points on the blocks will still have small uncertainties. This follows from the strong 

correlation between the pole location and the angular speed.

The pole for the Malaspina block is located in the southern Mackenzie Mountains, 

making it farthest pole from southern Alaska. This distance is consistent with the parallel 

velocities observed on the block. We find the pole for the Icy Bay block in the western 

Yukon Territory. A location closer to the block allows more variation in velocities along
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the block, as is seen in the increase in block velocity magnitudes from southwest to 

northeast along the Icy Bay block.

Even closer to its block, the Elias block pole is located east o f Kodiak Island. The 

proximity o f the pole results in predicted block motions that vary considerably along the 

span of the block. In the east, the block velocities are largest and are nearly parallel to 

the velocities along the Icy Bay block. Moving towards Prince William Sound, the 

estimated Elias block velocities become smaller and display a counterclockwise rotation.

The pole for the Bering Deformation Zone lies in the Gulf of Alaska south of the 

Bering Glacier. This location results in linear block velocity estimates that clearly 

undergo a counterclockwise rotation as well as a north to south decrease in magnitude.

3.6.2 Relative Block Motions

Relative block motions resulting from our preferred model are shown in Figure 

3.10. In the eastern orogen, relative motion is accommodated within a relatively narrow 

band of thrust faults. At the outboard edge of this band, the Foreland fault zone displays 

nearly pure convergance. The Malaspina -  Pamplona system shows sinstral -  oblique 

motion. Located furthest inboard from the deformation front, the Yakataga -  Chaix Hills 

fault system accommodates the largest amount of the surface relative block motion. The 

sense of motion becomes slightly more oblique from west to east and the rate of relative 

motion decreases as the fault moves onshore and further inland into the orogen.

North and west of the band of thrust faults, relative block motion is 

accommodated on the subduction interface between the Yakutat block and the Elias 

block. The sense of motion remains a constant NW -  SE throughout, but the orientation
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of fault planes result in more oblique motion in the eastern orogen than in the west. The 

magnitude of the relative motion increases from east to west, with the highest values 

predicted for the interface beneath Prince William Sound.

3.6.3 Goodness of Fit

Our block model gives a reasonable explanation for the observed GPS velocity 

field in the St. Elias orogen of southeast and south central Alaska as shown by the 

residual vector plot in Figure 3.11. The reduced j 2 ( j 2 per degree of freedom) is 1.6.

90% of the residuals fall within the 95% confidence bounds for the data. The mean 

residual velocity magnitude is 1.5 mm/yr while the mean data uncertainty is 1.8 mm/yr. 

The residual velocities do not show a coherent trend in any region.

3.7 Discussion

3.7.1 Slip Rates and Seismic Hazard

None of the faults in our model have published geodetic or geologic slip rate 

estimates. Previous models of the St. Elias orogen [e.g. Sauber et al., 1997; Savage and 

Lisowski, 1988] have usually assumed that the main source of the regional deformation is 

strain accumulation along a subduction interface that is slipping at a rate equal to the 

Pacific plate -  North America relative velocity. This rate of motion was 50 -  60 mm/yr 

depending on the plate motion model used (e.g. Minster and Jordon, 1978; Chase, 1978; 

DeMets et al., 1994].

Our block model predicts variable rates of slip along the Malaspina fault, with 

obliquity decreasing from south to north. Offshore, an average of 6.9 ±1.5 mm/yr of 

left-lateral strike-slip and 6.3 ±3.9 mm/yr of reverse slip occurs. Within Icy Bay, the
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fault appears to be fully creeping. Northeast of Icy Bay, the segment of the fault crossing 

the Samovar Hills has 5.2 ±1.4 mm/yr of left-lateral slip and 10.5 ± 3 mm/yr of reverse 

slip. Farther east, our model shows an average of 5.4 ± 1.8 mm/yr left-lateral motion 

with 13.8 ± 6.9 mm/yr of reverse slip, but the fault planes are 40% coupled, resulting in 

effective slip rates of 2.6 mm/yr and 5.5 mm/yr.

In the region between the coast and Icy Bay, our model gives an average of 8.4 ±

8.2 mm/yr right-lateral strike-slip motion and 22.0 ±1.4  mm/yr of reverse slip along the 

Yakataga -  Chaix Hills fault. Between Icy Bay and the eastern border of our study area, 

the model puts 8.3 ± 8.7 mm/yr of right-lateral slip and 14.3 ±1.8 mm/yr of reverse slip 

on the fault. The Yakataga -  Chaix Hills fault system, represented in our block model by 

a single fault strand, is likely comprised of multiple parallel faults. For this reason, our 

slip rates should be viewed as a total estimate for the Yakataga -  Chaix Hills region.

Even as a total estimate, our slip rates suggest a much higher rate of convergence across 

the central fold-and-thrust belt than the average ~ 6 mm/yr over the past ~ 6 Myr found 

by Wallace [2008]. These two estimates are not necessarily incompatible. Several 

studies have presented evidence that the St. Elias orogen has undergone a tectonic 

reorganization, including a migration of the active deformation to the onshore region, 

since the late Pliocene [Berger et al., 2008; Worthington et al., 2010; Chapman et al., in 

prep.]. Such a shift in deformation would cause present-day rates of convergence across 

the fold-and-thrust belt to be different than those observed over the longer term geologic 

record.
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We suggest that the interface that ruptured during the 1979 St. Elias earthquake is 

the Yakutat -  Elias block decollement, not the Pacific -  North America decollement. On 

this interface, our model estimates 23.5 ± 1 mm/yr of right-lateral slip and 31.4 ± 1 

mm/yr of reverse slip with 30% coupling on the plane, giving effective slip deficit rates 

of 7 mm/yr dextral motion and 9.4 mm/yr thrust motion. This oblique slip is compatible 

with the results of Estabrook et al. [1992] that suggested a pure thrust mechanism for the 

first subevent of the earthquake and a second subevent with a significant right-lateral 

strike-slip component.

Using paleoseismic evidence, Shennan et al. [2009] concluded that the great 

earthquakes along the Aleutian megathrust ruptured as far east as the Bering Glacier 

during the past three events in 1964, ~ 900 BP, and ~ 1500 BP. Chapman et al. [in prep.] 

inverted coseismic uplift data to estimate ~ 17 m of dip-slip during the 1964 event on the 

segment of the decollement underlying the southern end of the Bering Glacier. Our 

model predicts 90% coupling on that fault segment and an effective slip rate of 14.3 ± 0.5 

mm/yr left-lateral strike-slip motion and 44.4 ± 0.8 mm/yr of reverse slip. At this rate of 

reverse motion, the fault would recover 17 m of motion in < 400 years, well within the 

reoccurrence interval of great megathrust events.

3.7.2 Onshore versus Offshore Deformation

According to our model results, - 3 7  mm/yr of convergence is accommodated 

between the Yakutat block and the region north of the Yakataga -  Chaix Hills fault 

system. This convergence rate estimate is compatible with the 80 km of shortening over 

the Pleistocene suggested by the reconstructions of Pavlis et al. [2004], Both of these
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estimates are over six times higher than the estimated convergence across the offshore 

continuation of the fold and thrust belt, the Pamplona zone. Using kinematic 

reconstruction and depth converted seismic reflection images, Worthington et al. [2010] 

found that the Pamplona zone has accommodated 6 - 8  km of shortening over the 

Pleistocene, equivalent to an average of 3 -  5 mm/yr of convergence. Worthington et al. 

[2010] suggested that the discrepancy could be explained by convergence being 

accommodated on the Yakutat decollement at depth or by the majority of present day 

convergence being accommodated by onshore structures. This latter idea has been 

proposed by Chapman et al. [2008], who postulated that the active deformation in the 

orogen migrated toward the onshore fold and thrust belt in response to increased levels of 

glacial erosion since the late Pliocene.

We propose layer parallel shortening as an alternative mechanism that could 

account for some of the difference between the onshore and offshore convergence 

estimates. Not recorded in the discrete deformation, layer parallel shortening is the result 

of porosity loss and dewatering of the sediments upon approach to the deformation front 

as well as during the accretionary process. Gulick et al. [1998] showed an example from 

the southern Cascadia subduction zone where the seismic velocity of the accreting 

sediments increases in advance of the frontal thrust and interpreted this change to be the 

result of dewatering. In the case of the Yakutat block collision, Worthington et al. 

[submitted] show a distinct increase in the sediment velocities in the seismic reflection 

data around 45 km in front of the first fold and thrust feature of the Pamplona zone. The 

average velocities of the entire sediment section at a number of positions within 110 km
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of the deformation front are shown in Table 3.6. Sediments within 45 km of the 

deformation front have significantly faster seismic velocities than those further from the 

front with the major seismic velocity change occurring between 60 and 45 km.

Using the empirically derived global relationship between normally consolidated 

siliciclastic sediment velocity and porosity from Erickson and Jarrard [1998], we 

calculated average sediment porosity for each position relative to the deformation front 

(Table 3.6). These values depend on shale content; we chose a shale fraction of 0.6 and 

assume that porosity loss as opposed to cementation is the dominant process causing the 

velocity increase [Erickson and Jarrard, 1998]. This is a reasonable assumption for 

glacially derived siliciclastics. Between 110 and 60 km from the deformation front, the 

average velocities and porosities are largely equivalent despite the increasing sediment 

thickness. These values are distinctly different from the velocities and equivalent 

porosities within the 45 km closest to the deformation front. Porosities in the region 

located 45 -  60 km from the deformation front, where the greatest change in velocities 

and therefore porosities occurs, decrease from an average of 30% to an average of 17%. 

We suggest that this 13% porosity loss over a short distance is due to layer parallel 

shortening. A 13% porosity loss over 17 km amounts to 2.2 km of shortening. Based on 

our estimated convergence rate of 37 mm/yr, it would take 460,000 yr for 17 km of 

convergence, or 2.2 km of shortening, to occur. Assuming these values are valid over the

1.8 My since the late Pliocene/early Pleistocene, 8.5 km of shortening not recorded by 

discrete deformation has occurred through layer parallel shortening. This is equivalent to 

an average convergence rate of ~ 5 mm/yr. Combined with the estimate of the
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convergence rate across discrete structures given by Worthington et al. [2010], the region 

offshore of the St. Elias orogen may accommodate up to 27% of the predicted 

convergence. While this value indicates that the majority of the convergence is likely 

accommodated within onshore structures or perhaps along the Yakutat decollement, it 

emphasizes the importance of accounting for possible sources of deformation outside of 

discrete folds and faults.

3.7.3 The Malaspina Foreland Fault Zone

Our block model predicts that ~ 14 mm/yr of convergence is accommodated along 

the Foreland fault zone crossing the Malaspina Glacier. The southward-migrating 

aftershock pattern following the 1979 St. Elias earthquake [Estabrook et al., 1992] and 

current seismicity patterns (Figure 3.2) imply that active deformation continues south of 

the Malaspina fault. Our model results indicate that the Foreland fault zone is fully 

creeping. Based on this, we suggest that the boundary represents a deformation zone 

rather than a discrete fault. The western end of the fault zone approximately corresponds 

to the zone of increased seismic velocities discussed in the previous section. This may 

suggest that the Foreland fault zone is the onshore continuation of the distributed 

deformation in advance of the main deformation front.

3.7.4 Bering Glacier Region Deformation

We include the Bering Deformation Zone as a block in our model. The BDZ is 

surrounded by what appears to be rigid Elias block and has fully creeping fault 

boundaries. Its location and lack of sharply defined boundaries raise questions about its 

tectonic significance and whether our interpretation could be biased by transient strain.
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The improbability of detectable transient strain from the postseismic effects of the 

1899, 1958, and 1979 has been discussed in a previous section as has our correction for 

the effects of the 1964 earthquake. Since this region contains the largest surging glacier 

in North America, there is the possibility that the anomalous residuals we observe around 

the Bering Glacier are due to the elastic response to load changes associated with a 

glacial surge instead of tectonics. A previous surge between 1993 -  1995 resulted in 

significant surface deformation in the area surrounding the glacier [Sauber et al., 2000]. 

The Bering Glacier began to surge during the second half of 2008, although visual 

observations of the glacier suggest that this surge is much smaller than the 1993 -  1995 

event. In our data set, the GPS sites showing the residuals have different occupation 

histories: some were visited for the last time in 2008 and some received the last visit in 

2009. If the surge was significantly impacting the GPS velocities, the sites with 2009 

occupations should have velocities markedly different than the sites with 2008 final 

visits. This is not the case. Additionally, surge effects should impact sites on both sides 

of the Bering Glacier as demonstrated by Sauber et al. [2000]. In our data set, only sites 

west of the proposed Bering Glacier structure have the southwestward -  directed 

residuals. Based on these observations, we do not believe the anomalous GPS velocities 

and model residuals around the western side of the Bering Glacier are solely due to surge 

effects.

Bruhn et al. [2004] proposed that a north-south trending fault beneath the Bering 

Glacier served as a major structural boundary within the St. Elias orogen. East of this 

fault, the fold-and-thrust belt accommodates convergence on multiple faults that likely
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sole into the Yakutat decollement. To the west of the fault, superimposed folding and 

faulting deform the old Yakutat suture (the Chugach -  St. Elias fault) and the fold-and- 

thrust belt. Bruhn et al. [2004] reported that the second-phase folds, when mapped in 

detail, formed elliptical interference patterns that reflected the complexities of 

sedimentary bedding planes after they had undergone two phases of folding. They 

suggested that these second phase folds formed as sediments were stripped off the 

Yakutat block basement and crumpled into the sharp bend in the plate margin formed by 

the intersection of the megathrust with the old suture along the Chugach -  St. Elias fault. 

Chapman et al. [in prep.] suggested that the structurally complex, repeatedly deformed 

rocks west of the proposed Bering Glacier structure represent the final stage of accretion 

of the Yakutat block as the sedimentary layers are offscraped and subduction of Yakutat 

basement begins.

Based on the geological findings of complex, multistage deformation in the region 

west of the Bering Glacier, it seems entirely plausible that a deformation zone rather than 

a coherent block surrounds the postulated Bering Glacier structure. The marked change 

in the GPS velocity field along the northern and western edges of the Bering Glacier 

likely reflect a combination of elastic effects from multiple faults, including the Bering 

Glacier structure, as well as distributed deformation from the folding and refolding of the 

sediment cover.

We found that a single block, the Elias block, could describe the upper plate 

motion both east and west of the Bering Deformation Zone. A more reasonable 

kinematic scenario would have the Bering Deformation Zone link to a boundary or
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boundaries that would divide the upper plate into multiple blocks. Although the GPS 

data do not show clear evidence of multiple blocks, a boundary or deformation zone with 

a very low rate of motion could exist within the Elias block. Reasonable locations for 

such a boundary include a continuation from the Bering Deformation Zone north through 

the observed division between the collisional and subduction regimes or a connection 

between the Bering Deformation Zone and the break in seismicity seen north of Prince 

William Sound (Figure 3.2). If one of these boundaries does exist, the Bering 

Deformation Zone could represent the first stage of the breakup of the Elias block.

3.7.5 Collision and Accretion versus Subduction

The location of the transition between the collisional tectonic regime and 

subduction along the Aleutian megathrust has long been a major question in southern 

Alaskan tectonics. Our fault model (Figure 3.6) shows a clear division between these 

two regions. In the east, a series of thrust faults sole out into the Yakutat decollement. 

Only a small width of the decollement, located north of the thrust faults, is locked and 

accumulating elastic strain. This system of crustal thrust faults is needed to explain the 

high strain gradient observed in the GPS velocity field in the eastern half of the orogen. 

From the Bering Glacier west, crustal faults are not required to explain the GPS data. 

Instead, wide locked segments of the Yakutat decollement mark the beginning of the 

Aleutian megathrust and result in the relatively uniform GPS velocities seen in the 

western orogen. Based on our observations, the supposed transition between the tectonic 

regimes is actually a very abrupt change.
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The division between the collisional/thrust fault regime and subduction aligns 

with the Gulf of Alaska shear zone (Figure 3.12). This suggests that the different styles 

of deformation caused by the Yakutat collision onshore extend offshore as well. The 

Gulf of Alaska shear zone is defined by a series of M7+ earthquakes between 1987 and 

1992 that occurred along a north-south trend that coincides with a pre-existing weakness 

in the Pacific plate, magnetic anomaly 13 [Lahr et al., 1988; Pegler and Das, 1996], 

Previous studies have suggested that the shear zone is evidence of fragmentation of the 

Pacific plate in response to the Yakutat collision with southern Alaska [Lahr et al., 1988; 

Reece et al., 2009; Elliott et al., 2010]. Assuming the various components are coupled, 

the transition between collision and subduction across the St. Elias orogen could cause 

differential stress in the Pacific plate, resulting in an Eastern Pacific block east of the 

shear zone and normal Pacific plate to the west.

3.7.6 Plate Coupling Variations and the 1964 Rupture

In our model, the broad, NW-dipping subduction interface between the Elias 

block and the Yakutat block begins in the vicinity of the Bering Glacier and extends 

inland beneath the western St. Elias orogen. Our results imply that the locked portion of 

the megathrust underlies a much greater portion of southern Alaska than any other study 

has suggested.

We find significant variation in the preferred degree of coupling on the fault 

planes across the region (Figure 3.6). The regions north and west of the Bering Glacier 

display strong coupling. Southwest of the glacier, the degree of coupling is moderate as
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is the coupling in the Cordova region. Further north, around Valdez, the coupling again 

becomes strong.

Suito and Freymueller [2009] presented an interseismic slip estimate that included 

possible effects from postseismic motion and slow slip events for a subduction interface 

that extended to the Bering Glacier region. Their model suggests strong coupling near 

the southern end of the Bering Glacier and more moderate levels of coupling offshore and 

in the Cordova region, a result in good agreement with our block model. As their model 

did not extend far inland from the coast, comparison to the remainder of our model 

subduction interface is not possible.

Many models of the coseismic slip distribution [e.g. Ichinose et al., 2007; Zweck 

et al., 2002] for the 1964 megathrust event do not extend the rupture planes as far east as 

the Bering Glacier. Holdahl and Sauber [1994] included rupture planes near the southern 

end of the glacier and geologic coseismic uplift estimates from the area in their inversion 

for the slip distribution. They found high slip around the Bering Glacier surrounded by 

more moderate amounts of slip offshore and around Cordova. The coseismic slip model 

of Suito and Freymueller [2009] is based in part on the model geometry and data set of 

Holdahl and Sauber [1994] but suggests low-to-moderate slip around the southern Bering 

Glacier and higher slip around Cordova. These models support our conclusion that the 

Yakutat subduction interface extends to the Bering Glacier.

Our results imply that seismic hazard evaluations for the megathrust need to 

account for the likelihood that the locked subduction interface extends as far east as the 

Bering Glacier and that the interface appears to be strongly coupled in that region.
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3.7.7. Lateral Escape in the Western St. Elias Orogen

In Figure 3.9, the predicted velocities along the Elias block show a clear 

counterclockwise rotation. This implies lateral escape may be occurring along the 

forearc of the Aleutian megathrust, beginning in the western St. Elias orogen.

Haeussler et al. [2000] reported on evidence of recent (Pliocene and Quaternary) 

dextral transpression on structures, including the Castle Mountain fault, within the Cook 

Inlet basin. These findings went counter to the left-lateral oblique shear expected from 

the relative motion between the Pacific and North American plates. They suggested that 

the dextral transpression was driven by the Yakutat collision and resulted in the lateral 

escape of part o f the accretionary complex to the southwest. Our block model shows how 

the NNW-directed “push” from the colliding Yakutat block can be transformed into 

lateral escape.

3.8 Conclusions

We have presented a new GPS data set for the St. Elias orogen and used that data 

to develop a block model for southeast and south central Alaska. The block model 

provides an integrated kinematic view of the regional tectonics and provides new 

constraints on seismic hazard evaluation.

The strongest tectonic influence in the region is the collision of the Yakutat block 

with southern Alaska, which results in -37 mm/yr of convergence across the St. Elias 

orogen. In the eastern orogen, this convergence is accommodated across a fairly narrow 

band of sub-parallel N- and NW-dipping thrust faults. These structures produce high 

strain gradients across Icy Bay and the Mount St. Elias area. Outboard of the main
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deformation front, the Malaspina fault, a small amount of the convergence appears to be 

accommodated through distributed deformation beneath the Malaspina Glacier and 

offshore by layer parallel shortening of the sediments.

In the vicinity of the Bering Glacier, the thrust belt transitions into a subduction 

interface between the Yakutat block and the counterclockwise-rotating Elias block. This 

transition aligns with the Gulf of Alaska shear zone, supporting the idea that the Pacific 

plate is fragmenting in response to the Yakutat collision. The locked decollement 

extends under the entire western orogen and shows a high degree of coupling under the 

Chugach Mountains and Bering Glacier. There is more moderate coupling offshore and 

around Cordova. The area surrounding the western and northern edges of the Bering 

Glacier undergoing distributed deformation, represented by a narrow, southwesterly 

moving block. At the far western end of the orogen, block velocity predictions suggest 

crustal extrusion westward along the Aleutian forearc. Our results imply that the whole 

of southeast and south central Alaska is a mobile margin.
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Figure 3.1. Tectonic setting for the St. Elias Orogen. YB is Yakutat Bay, MG is the 
Malaspina Glacier, MF is the Malaspina Fault, SH is the Samovar Hills, CH is the Chaix 
Hills, IB is Icy Bay, CYT is Yakataga, BG is the Bering Glacier, CRD is the Copper 
River Delta, and CDV is Cordova. Yakutat block velocity is from Elliott et al. [2010] 
and the Pacific plate velocity is from Plattner et al. [2009],
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Figure 3.2. Seismicity in the St. Elias region. Green dots are M > 2 events that occurred 
between 1980 and mid-2005 (when a new seismic network was installed across the 
orogen). Blue dots are M > 2 events that occurred between mid-2005 and late 2010. 
Events taken from AEIC catalog. Yellow star (and associated error ellipse) marks the 
M8 1899 event as relocated by Doser [2006], Focal mechanisms for M > 6 events are 
shown and are taken from Estabrook et al. [1992] (1979), Doser et al. [1997] (1958 and 
1970), and Pegler and Das [1996] (Gulf of Alaska sequence).
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Figure 3.3. Denali fault earthquake postseismic estimate for the St. Elias orogen. Red 
section of Denali fault shows area ruptured during the 2002 earthquake. Blue triangles 
show locations of sites used in the postseismic estimate. Red arrows show the predicted 
Denali postseismic estimates for the sites used in this study.
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Figure 3 4. GPS velocities with GIA model predictions and postseismic estimates 
applied for the St. Elias orogen.



141

6 0 ° 3 0 ' N - - 6 0 " 3 0 ’N

*

6 0 ° 0 0 ' N -

Mt. Saint Elias
A

6 0 ° 0 0 ' N

1 4 1 ' 3 0 ' W 1 4 1 ° 0 0 'W 1 4 0 ° 3 0 'W

Figure 3.5. GPS velocities in the Icy Bay region.
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Figure 3.6. Block and fault geometries used in the model. MF is the Malaspina fault, 
MB is the Malaspina block, UFF is the upper Fairweather fault. Green dots mark the 
locations of the GPS sites used in this study. Gray rectangles represent the extent of the 
locked planes of the Yakutat -  Elias block subduction interface while black numbers 
indicate the percent coupling on each plane. Gaps between the northern planes are a 
result of a curve in the fault geometry and do not affect the model results. Updip ends of 
the subduction interface are marked by the teeth along the southern edges of the gray 
rectangles. White letters identify model planes listed in Table 3.4. Crustal faults end at 
the beginning of the subduction interface. Heavy dashed line marks the limits of the 
Bering Deformation Zone. Light dashed lines represent inferred fault connections and 
continuations that are not constrained by our model. Cross sections are schematic and 
not to scale.
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Figure 3.7. Alternate fault geometries. MB is the Malaspina block and MF is the 
Malaspina fault. Green dots mark the locations of the GPS sites used in this study, (a). 
Geometry without additional faults or blocks in the Bering Glacier region, (b) Geometry 
including a thrust fault along the western half of the Bering Glacier. BGF is the Bering 
Glacier fault.
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Figure 3.8. Poles and uncertainty estimates. BDZ is the Bering Deformation Zone.
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Figure 3.9. Model block velocity predictions for the St. Elias orogen. Note the different 
scales for the gray and white vectors.
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Figure 3.10. Relative block motions in the St. Elias orogen. Numbers in circles are the 
predicted relative block motions in mm/yr. Arrows show the sense of the relative motion. 
Coupling estimates have not been applied (see Table 3.4).
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Figure 3.11. Velocity residuals between the data and block model predictions. Data 
uncertainty ellipses have been omitted for clarity.
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Figure 3.12 Division between tectonic regimes in the St. Elias orogen.



Table 3.1 GPS velocities used in this study, in cm/yra

Site Name Longitude (°E) Latitude (°N) V E a s t V  North C*East ^ K o rth

3443 -141.35985 59.92709 -1.917 3.657 0.139 0.154

3444 -141.36876 60.02655 -1.866 2.557 0.164 0.154

AFGR -144.57991 61.07662 -1.492 3.295 0.109 0.140

AMBE -141.47729 60.00602 -2.302 3.066 0.117 0.144

BAGL -142.67618 60.59644 -1.334 2.268 0.084 0.132

BERG -143.70058 60.39395 -2.307 3.198 0.083 0.132

BLF2 -145.67819 60.65179 -1.283 2.796 0.171 0.157

BREM -144.60559 60.96817 -1.774 3.346 0.221 0.192

BRKN -141.66120 60.86270 -0.825 1.629 0.128 0.146

CDST -143.36150 61.24570 -0.659 2.071 0.124 0.147

CHOS -143.97163 60.23424 -2.201 3.150 0.086 0.134

CODO -145.47545 60.49372 -1.258 2.892 0.087 0.136

DISA -141.66980 61.06860 -0.870 1.613 0.160 0.161

DIVD -143.25350 60.65560 -2.140 2.439 0.120 0.142

DON -143.37678 60.05785 -2.049 3.822 0.112 0.143

ELIS -141.05650 60.55850 -0.819 2.123 0.124 0.145

EYAC -145.74986 60.54870 -1.077 2.769 0.039 0.123

FARO -143.41450 61.12091 -1.089 2.410 0.090 0.134

FAUS -144.06609 60.95389 -1.329 3.342 0.082 0.132

GLRY -144.35220 60.73644 -2.213 3.823 0.087 0.134
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GRIS -146.29200 60.63960 -1.201 2.745 0.169 0.162

GULL -146.70371 60.72296 -1.557 2.555 0.099 0.140

HAM2 -144.38277 60.04339 -1.253 2.159 0.088 0.135

HANN -143.14517 60.26061 -1.503 2.905 0.238 0.200

HAWK -141.86650 61.26800 -0.871 1.618 0.183 0.174

ICBD -141.74557 60.55415 -1.392 2.141 0.084 0.131

ICE9 -142.83869 60.45030 -1.968 2.080 0.089 0.134

ISLE -142.34093 60.60122 -0.492 2.005 0.082 0.131

JILL -145.16981 61.00129 -1.724 3.424 0.096 0.138

KHIT -143.24904 60.44227 -2.197 2.204 0.127 0.149

KIAG -142.36060 60.92310 -0.980 1.333 0.160 0.169

KICH -141.36950 60.02690 -1.942 2.871 0.105 0.143

KUSH -144.17627 60.40928 -2.297 3.990 0.096 0.137

LARI -143.32448 60.86197 -1.336 2.346 0.071 0.128

LEPR -141.96690 60.29490 -2.002 2.669 0.114 0.144

LIBF -144.53594 61.62019 -0.930 2.218 0.100 0.137

LOGN -141.00430 60.82380 -0.394 1.883 0.132 0.153

MARO -142.70719 60.24734 -1.885 3.058 0.138 0.153

MCAR -142.92043 61.43200 -0.271 0.587 0.448 0.339

MIST -146.67706 60.94338 -1.659 2.424 0.191 0.176

MNFS -141.36310 60.59790 -1.117 1.768 0.140 0.152

NATI -146.07641 60.74500 -1.221 2.756 0.115 0.144
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NOYL -143.30056 60.11815 -2.252 3.809 0.164 0.162

PENU -142.46470 61.18880 -0.671 1.545 0.115 0.143

PERF -144.01820 61.23540 -1.287 2.761 0.170 0.168

PONR -142.78222 60.19904 -1.810 3.114 0.103 0.138

RAG -144.67728 60.38643 -1.279 3.350 0.079 0.133

RALF -141.13870 60.22050 -1.618 2.374 0.132 0.152

RIOU -141.43699 59.88863 -1.816 3.948 0.117 0.145

RKAV -141.34624 60.29913 -1.308 2.400 0.085 0.133

RUB2 -146.35800 60.44780 -1.620 2.462 0.121 0.149

RUDE -145.38220 60.75375 -1.814 3.370 0.081 0.133

SILA -140.24600 60.18860 -1.903 3.170 0.134 0.152

STEG -142.08900 60.49000 -0.901 1.935 0.109 0.141

STEL -141.03554 60.37637 -1.008 2.345 0.151 0.171

TANR -142.78460 60.99210 -1.378 1.878 0.138 0.153

TIME -142.70506 60.77445 -0.956 2.140 0.090 0.133

TO YU -141.45004 60.08603 -1.819 2.566 0.086 0.133

TRM2 -145.92160 60.52600 -1.164 2.548 0.207 0.178

TSIN -145.52823 61.20357 -1.183 2.955 0.096 0.138

WHTU -142.06695 60.04784 -2.064 3.359 0.151 0.159

WOLV -143.90750 60.65910 -1.823 3.415 0.127 0.147

YAHT -141.75167 60.35807 -1.170 2.250 0.094 0.136

YAKR -142.48645 60.08146 -2.017 3.550 0.105 0.138
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YESS -141.77850 60.75340 -0.682 1.909 0.150 0.154

a Velocities are calculated relative to the North America motion estimate o f Sella et al. [2007],
Velocities do not have postseismic corrections or GIA adjustments applied.
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Table 3.2 Occupation histories for GPS sites in the St. Elias orogen

Site # of First Last Time GPS Observations Per Year
_______  Obs. Obs. Obs. Span < ’05 ’05 ’06 ’07 ’08 ‘09
3443 11 2005.53 2008.55 3.02 0 5 0 2 4 0

3444 23 2006.55 2008.58 2.03 0 0 5 4 14 0

AFGR 20 2005.51 2008.69 3.18 0 3 6 5 6 0

AMBE 9 2005.52 2008.56 3.04 0 4 0 2 3 0

BAGL 21 2005.53 2008.64 3.11 0 7 0 0 14 0

BERG 59 2005.54 2008.73 3.19 0 4 4 2 49 0

BLF2 8 2005.39 2009.57 4.18 0 2 0 3 0 3

BREM 20 2004.53 2008.67 4.15 8, ‘04 0 6 5 1 0

BRKN 16 2006.51 2008.62 2.11 0 0 6 0 10 0

CDST 18 2006.51 2008.55 2.98 0 0 5 0 13 0

CHOS 9 2005.51 2009.67 4.16 0 5 0 0 0 4

CODO 15 2005.42 2009.57 4.17 0 2 4 4 2 3

DISA 10 2006.53 2008.56 2.03 0 0 6 0 4 0

DIVD 35 2006.52 2008.64 2.12 0 0 6 • 0 29 0

DON 16 2005.52 2008.55 3.03 0 3 3 4 6 0

ELIS 19 2006.51 2008.53 2.03 0 0 8 0 11 0

EYAC 1258 2005.4 2009.7 4.30 0 173 306 246 276 257

FARO 21 2005.54 2008.68 3.15 0 7 5 4 5 0

FAUS 24 2005.51 2008.73 3.22 0 7 0 0 17 0

GLRY 10 2005.51 2009.68 4.18 0 7 0 0 0 3
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GRIS 9 2005.39 2009.57 4.18 0 3 0 3 0 3

GULL 10 2005.39 2009.57 4.18 0 3 0 4 0 3

HAM2 8 2005.51 2009.67 4.16 0 4 0 0 0 4

HANN 6 2005.51 2007.55 2.04 0 2 0 4 0 0

HAWK 11 2006.53 2008.56 2.02 0 0 8 0 3 0

ICBD 57 2005.56 2008.7 3.13 0 5 0 0 52 0

ICE9 10 2005.52 2009.68 4.16 0 4 0 0 0 6

ISLE 28 2005.53 2008.63 3.10 0 4 6 3 15 0

JILL 9 2005.51 2008.68 3.18 0 4 0 0 5 0

KHIT 4 2005.55 2009.68 4.13 0 2 0 0 0 2

KIAG 11 2006.53 2008.56 2.02 0 0 8 0 3 0

KICH 19 2005.58 2008.55 2.98 0 5 5 4 5 0

KUSH 8 2005.52 2009.57 4.18 0 4 0 0 0 4

LARI 51 2005.54 2008.67 3.13 0 7 6 7 31 0

LEPR 19 2006.53 2008.58 2.05 0 0 12 0 7 0

LIBF 17 2005.46 2009.52 4.06 0 6 3 3 2 3

LOGN 13 2006.53 2008.55 2.02 0 0 6 0 7 0

MARO 8 2005.53 2008.59 3.06 0 2 0 0 6 0

MCAR 9 2005.81 2009.52 3.71 0 4 0 0 2 3

MIST 19 2005.39 2007.58 2.19 0 3 0 16 0 0

MNFS 15 2006.51 2008.53 2.03 0 0 4 0 11 0

NATI 9 2005.39 2009.57 4.18 0 3 0 3 0 3
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NOYL 8 2005.52 2008.51 2.99 0 3 0 0 5 0

PENU 17 2006.53 2008.54 2.01 0 0 9 0 8 0

PERF 9 2006.51 2008.68 2.17 0 0 6 0 3 0

PONR 44 2005.53 2008.73 3.19 0 4 0 0 40 0

RAG 23 2005.51 2008.62 3.11 0 6 2 2 13 0

RALF 15 2005.58 2008.57 2.99 0 3 6 2 4 0

RIOU 11 2005.53 2008.51 2.98 0 5 0 4 2 0

RKAV 19 2005.56 2008.54 2.98 0 6 0 0 13 0

RUB2 7 2005.39 2009.57 4.18 0 2 0 3 0 2

RUDE 8 2005.51 2009.67 4.17 0 4 0 0 0 4

SILA 19 2006.55 2008.58 2.03 0 0 5 6 8 0

STEG 21 2006.51 2008.54 2.03 0 0 10 0 11 0

STEL 14 2006.51 2008.52 2.01 0 0 7 0 7 0

TANR 16 2006.51 2008.64 2.13 0 0 5 0 11 0

TIME 26 2005.53 2008.55 3.02 0 7 4 5 10 0

TO YU 13 1993.47 2008.58 15.1 5, ‘93 0 0 0 8 0

TRM2 6 2005.39 2009.57 4.17 0 2 0 3 0 1

TSIN 18 2005.46 2009.65 4.19 0 6 4 2 3 3

WHTU 11 2005.53 2008.59 3.06 0 2 0 3 6 0

WOLV 9 2006.52 2009.68 3.16 0 0 6 0 0 3

YAHT 13 2005.56 2008.57 3.01 0 6 0 0 7 0

YAKR 25 2005.52 2008.53 3.01 0 2 9 2 12 0
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YESS 12 2006.53 2008.56 2.02 0 0 5 0 7 0
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Table 3.3 Denali postseismic estimates, in cm/yr 

Site Longitude (°E) Latitude (°N) VEast VNorth
3443 -141.35985 59.92709 -0.19 0.56

3444 -141.36876 60.02655 -0.26 0.43

AFGR -144.57991 61.07662 -0.23 0.91

AMBE -141.47729 60.00602 -0.22 0.61

BAGL -142.67618 60.59644 -0.28 0.74

BERG -143.70058 60.39395 -0.24 0.76

BLF2 -145.67819 60.65179 -0.22 0.75

BREM -144.60559 60.96817 -0.27 0.79

BRKN -141.66120 60.86270 -0.31 0.62

CDST -143.36150 61.24570 -0.47 0.91

CHOS -143.97163 60.23424 -0.25 0.68

CODO -145.47545 60.49372 -0.24 0.85

DISA -141.66980 61.06860 -0.33 0.66

DIVD -143.25350 60.65560 -0.32 0.72

DON -143.37678 60.05785 -0.22 0.67

ELIS -141.05650 60.55850 -0.25 0.51

EYAC -145.74986 60.54870 -0.24 0.76

FARO -143.41450 61.12091 -0.39 0.94

FAUS -144.06609 60.95389 -0.28 0.90

GLRY -144.35220 60.73644 -0.24 0.77
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GRIS -146.29200 60.63960 -0.25 0.68

GULL -146.70371 60.72296 -0.29 0.64

HAM2 -144.38277 60.04339 -0.25 0.65

HANN -143.14517 60.26061 -0.24 0.76

HAWK -141.86650 -61.26800 -0.37 0.73

ICBD -141.74557 60.55415 -0.26 0.66

ICE9 -142.83869 60.45030 -0.26 0.68

ISLE -142.34093 60.60122 -0.28 0.72

JILL -145.16981 61.00129 -0.11 0.83

KHIT -143.24904 60.44227 -0.26 0.69

KIAG -142.36060 60.92310 -0.35 0.72

KICH -141.36950 60.02690 -0.21 0.59

KUSH -144.17627 60.40928 -0.25 0.72

LARI -143.32448 60.86197 -0.32 0.85

LEPR -141.96690 60.29490 -0.27 0.53

LIBF -144.53594 61.62019 -0.39 1.07

LOGN -141.00430 60.82380 -0.26 0.55

MARO -142.70719 60.24734 -0.24 0.68

MCAR -142.92043 61.43200 -0.61 1.13

MIST -146.67706 60.94338 -0.22 0.61

MNFS -141.36310 60.59790 -0.27 0.55

NATI -146.07641 60.74500 -0.22 0.69



NOYL -143.30056 60.11815 -0.22 0.68

PENU -142.46470 61.18880 -0.41 0.81

PERF -144.01820 61.23540 -0.44 0.90

PONR -142.78222 60.19904 -0.23 0.67

RAG -144.67728 60.38643 -0.20 0.81

RALF -141.13870 60.22050 -0.21 0.57

RIOU -141.43699 59.88863 -0.19 0.56

RKAV -141.34624 60.29913 -0.22 0.60

RUB2 -146.35800 60.44780 -0.28 0.69

RUDE -145.38220 60.75375 -0.19 0.75

SILA -140.24600 60.18860 -0.19 0.41

STEG -142.08900 60.49000 -0.29 0.59

STEL -141.03554 60.37637 -0.24 0.48

TANR -142.78460 60.99210 -0.38 0.78

TAZL -145.43289 62.07986 -0.65 1.12

TIME -142.70506 60.77445 -0.31 0.78

TOYU -141.45004 60.08603282 -0.12 0.33

TRM2 -145.92160 60.52600 -0.25 0.74

TSIN -145.52823 61.20357 0.15 0.69

WHTU -142.06695 60.04784 -0.22 0.61

WOLV -143.90750 60.65910 -0.26 0.76

YAHT -141.75167 60.35807 -0.24 0.64
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YAKR -142.48645 60.08146 -0.22 0.64

YESS -141.77850 60.75340 -0.30 0.61



Table 3.4 Model fault geometry parameters

Fault Segment____________________ Dip (°) Width (km)a Depth (km)b % Coupling
Foreland Fault Zone 5 0 0.5 0

Malaspina (Offshore) 20 45 0 100

Malaspina (Icy Bay) 20 10 0 0

Malaspina (Samovar Hills) 15 10 0 100

Malaspina
(Samovar Hills to Fairweather fault)

15 10 0 30

Yakataga (Offshore) 15 20 0 100

Yakataga
(Coast to W. Icy Bay)

10 25 0 100

Yakataga
(W. Icy Bay to Samovar Hills)

30 12 0 100

Yakataga
(Samovar Hills to Fairweather fault)

30 0 0 0

Yakutat Decollement A 5 54 11.5 50

Yakutat Decollement B 5 78 16.5 70

Yakutat Decollement C 5 78 16.5 40

Yakutat Decollement D 5 85 23.5 100

Yakutat Decollement E 5 110 16.5 100

Yakutat Decollement F 5 54 11.5 60

Yakutat Decollement G 5 200 11.5 100

Yakutat Decollment H 5 132 12.5 80

Yakutat Decollement I 5 150 14.5 90
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Yakutat Decollement J 5 20 15 100

Yakutat Decollement K 5 18 15 0

Yakutat Decollement L 5 18 15 30

Yakutat Decollement M 5 20 15 30

a Fault width is in down-dip direction 
b Depth is to top of fault plane
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Table 3.5. Block poles, rotation rates, angular velocities, and uncertainties

Block Latitude Longitude Rate Omega (X,Y,Z) Omega Covariance (xx,xy,xz,yy,yz,zz)
__________  (°N) f E )  (deg/My) (10A3 rad/My) (10A6 rad/MyA2)____________________
Malaspina 62 1 -126 92 -2 71 ± 3  54 13 31, 17 71,-41 84 606 26, 482 80, -1327 60, 384 55, -1057 30,2907 50

Icy Bay 61 59 -135 91 -4 94 ±  1 09 29 45,28 53,-75 82 55 54, 43 88, -122 43, 34 70, -96 77, 269 94

BDZ 58 71 -144 21 3 83 ± 1 03 -28 17,-20 31,57 13 51 46,37 94,-111 52,28 00,-82 25 241 75

Elias 57 87 -148 36 1 40 ± 0 22 -11 08,-6 83,20 73 2 32, 1 74, -5 18, 1 31,-3 90, 11 60
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Table 3.6. Sediment characteristics relative to distance from deformation front.

Distance (km) Thickness (km) Velocity (km/s) Porosity (%)
4.232 7.375 3.241 18.74

9.247 7.913 3.366 16.71

14.262 8.462 3.448 15.48

19.276 8.359 3.45 15.45

24.291 8.076 3.346 17.03

29.306 8.246 3.443 15.55

34.321 8.126 3.404 16.14

39.335 7.952 3.358 16.84

44.35 7.659 3.264 18.35

49.365 7.252 3.109 21.09

54.379 6.301 2.724 27.72

59.394 5.596 2.539 29.05

64.409 5.283 2.478 29.36

69.424 4.983 2.379 29.81

74.438 4.625 2.314 30.07

79.453 4.525 2.309 30.09

84.468 4.275 2.246 30.33

89.482 4.09 2.201 30.49

94.497 4.257 2.263 30.26

99.512 4.461 2.411 29.67

104.526 4.261 2.374 29.83

109.541 4.251 2.409 29.68
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Chapter 4 

The Influence of the Yakutat Block on Southern Alaska

4.1 General

The combined GPS velocity field for the St. Elias orogen and southeast Alaska 

(Figure 4.1) and the block model predictions for those regions (Figure 4.2) offer a 

snapshot of the present-day tectonics and a window into each stage of the Yakutat block’s 

interaction with southern Alaska. These results provide answers to the questions set out 

in the introduction about the Yakutat block and its effect on the tectonics of southern 

Alaska.

What is the velocity of the Yakutat block? The Yakutat block itself moves at a 

rate of 50 mm/yr towards N23W. This velocity has a magnitude that is almost identical 

to that of the Pacific plate, but the Yakutat block moves at an azimuth -1 0 °  more 

westerly than that plate. While small, this difference results in relative motion between 

the Yakutat block and the Pacific plate that may be accommodated along the Gulf of 

Alaska shear zone and the Transition fault.

What are the boundaries of the Yakutat block? The Transition fault forms the 

southern boundary of the Yakutat block while the Malaspina -  Pamplona system serves 

as the fully developed western and northern boundaries. Along the block’s eastern edge, 

the deformation zone represented by the Nunatak and Foothills blocks separates the 

Yakutat block from the Fairweather fault.



What is the current deformation front between the Yakutat block and southern 

Alaska? The present-day deformation front occurs in two stages: a fully developed 

thrust fault along the Malaspina -  Pamplona system and an incipient front along the 

Foreland fault zone and its offshore continuation.

How is the relative plate motion partitioned between various structures? Where 

are the active structures? The majority of the relative plate motion in the region is 

accommodated along major boundary faults such as the Fairweather -  Queen Charlotte 

system or within narrow bands of faults such as the Malaspina -  Pamplona system and 

the Yakataga -  Chaix Hills system. The remaining relative plate motion is distributed 

between a number of structures including the Transition fault, the Foothills thrust fault, 

the Boundary fault, and the Eastern Denali fault. Crustal faulting in the St. Elias orogen 

is concentrated in the southern part of the region.

Where does the transition from collision to subduction occur? Instead of a 

transition, there is an abrupt shift between the two tectonic regimes near the Bering 

Glacier. There, crustal thrust faults and a high strain gradient give way to a broad 

subduction interface and a relatively uniform GPS velocity field.

What are the far-field effects of the Yakutat collision? These effects include 

clockwise rotation of the Fairweather and Baranof blocks, northeasterly motion in the 

Northern Cordillera, counterclockwise rotation of the Elias block, possible lateral escape 

of material at the western end of the orogen, and fragmentation of the Pacific plate along 

the Gulf of Alaska shear zone.
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While Chapman et al. [in prep.] suggested that the geologic data offered an along- 

strike record of accretion in the St. Elias orogen, the GPS results also give a view into the 

residual effects of the collision south of the current deformation front and in the far field. 

At the southern end of southeast Alaska, the relatively simple deformation observed is a 

result of motion between the coastal region and the Pacific plate. The Yakutat block has 

fully migrated past this area and no longer has a strong direct influence on the crustal 

movements. Closer to the deformation front, the tectonic signal is dominated by the 

transform fault system, but the Yakutat block is fragmenting along its eastern edge and 

proximity to the deformation front is causing the area inboard of the transform system to 

rotate clockwise into the Northern Cordillera. Just outboard of the active deformation 

front, distributed deformation is occurring, marking the beginning of the main collisional 

zone and indicating possible locations of developing structures. From the active 

deformation front along the Pamplona -  Malaspina system to the central part of the 

orogen, collisional tectonics dominates the GPS signal as a series of en echelon faults 

accommodates oblique convergence. A portion of the strain is transferred north of the 

fault system and results in a counterclockwise rotation towards Prince William Sound.

To the west, beginning near the Bering Glacier, the collisional regime transitions into a 

locked Yakutat decollement that extends a significant distance towards the northwest.

The deformation observed around the Bering Glacier could represent the last phase of 

accretion as sedimentary cover on the Yakutat block is stripped and complexly deformed 

prior to subduction of Yakutat basement.
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These results show many advances in understanding when compared to previous 

studies and tectonic models for the region. Fletcher and Freymueller [1999] presented a 

model that included a Yakutat block that moved 44 mm/yr towards N37°W, a result quite 

different from the usual assumption that the Yakutat block moved with the Pacific plate. 

They suggested that the Transition fault accommodated the ~ 20 mm/yr of Yakutat block 

-  Pacific plate relative motion. Their Yakutat block velocity was equal to the GPS 

velocity at a site in the city of Yakutat and they did not account for the effects of glacial 

isostatic adjustment. Using data from a small network of GPS and EDM sites near the 

Fairweather fault and three GPS sites in the Northern Cordillera, Fletcher and 

Freymueller [2003] estimated slip rates for the Fairweather and Eastern Denali faults. 

Their model assumed that the region east of the Eastern Denali fault was stable North 

America and that the Fairweather block moved parallel to the faults. They had no data 

from sites on the Fairweather block.

In contrast, the results in this study are based on data from an extensive network 

of GPS sites covering southeast Alaska and the adjacent region of Canada and the effects 

of glacial isostatic adjustment were taken into account. The block modeling technique 

allowed the simultaneous estimation of block velocities and slip rates. Our estimated 

Yakutat block velocity is faster and more northerly, leading to a smaller, but still 

significant, amount of relative motion between that block and the Pacific plate. That 

relative motion is partitioned between several onshore and offshore structures instead of 

being solely accommodated along the Transition fault. This work revealed the details of 

the tectonic motion away from the main boundaries. Clockwise rotation of the area
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inboard of the Fairweather fault is clearly seen, as is the northeasterly motion of the 

Northern Cordillera, indicating that stable North America must lie further east. This, in 

turn, implies that the whole southern Alaska margin is mobile.

Fletcher [2002] suggested that the area south of the Denali fault was the 

counterclockwise rotating Southern Alaska block. The pole of rotation for this block was 

adopted from Stout and Chase [1980] and the rotation rate was determined from GPS- 

derived slip rates on the Denali fault (which forms a small circle about the pole). The 

region north of the Denali fault was assumed to be stable North America and no 

postseismic effects from the M9.2 1964 earthquake were considered. In our model, both 

the pole and rotation rate of the Elias block are estimated using data from the St. Elias 

network that has been corrected for postseismic and glacial isostatic adjustment effects. 

The resulting pole is further south than that of Stout and Chase [1980] and the rotation 

rate is several times faster than that determined by Fletcher [2002]. This could mean that 

a boundary exists between the Elias block and the Southern Alaska block to the north of 

our study area. Alternatively, the Elias block and Southern Alaska block could be a 

single block whose pole and rotation rate need to be re-estimated using the block 

modeling technique, the expanded data set, and postseismic corrections. It is beyond the 

scope of the present study to determine which possibility is correct.

The geodetic studies of Sauber et al. [1997] and Savage andLisowski [1986] used 

data from small networks of GPS and EDM sites in the St. Elias orogen to constrain a 

regional tectonic model. Sauber et al. [1997] explained the deformation field using a 

combination of subduction offshore the orogen and right-lateral shear in the northern part
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of the orogen. They assumed subduction occurred at a rate and azimuth equal to the 

Pacific plate -  North America relative motion and that the upper plate was North 

America. Savage and Lisowski [1986] also assumed the subduction interface was 

between the Pacific plate and North America, with the Yakutat block treated as part of 

North America. In the northern part of the orogen, they also suggested that right-lateral 

shear might be present.

The much more extensive data network used in our study clearly shows that 

subduction alone cannot explain the observed strain gradient in the eastern St. Elias 

orogen. Crustal faults with oblique slip are required. In addition, the subduction 

interface in our model is between the Yakutat block and the Elias block. The need for 

right-lateral shear is obviated by our use of the Yakutat block as the downgoing plate and 

the rotation of the Elias block.

In addition to refinements to previous models, this study has presented a number 

of new results. The rotation inboard of the Fairweather -  Queen Charlotte system is 

clearly defined, which directly links strain from the Yakutat collision to the observed 

deformation in the Northern Cordillera. The extent of the “rigid” Yakutat block and the 

location of the present-day deformation front between the Yakutat block and southern 

Alaska have been determined. Concentrated areas of shortening have been identified 

within the eastern St. Elias orogen and fault slip deficit rates for structures 

accommodating this shortening have been estimated. The division between the 

complicated collisional tectonic regime and relatively simple subduction has been 

delineated and linked to possible fragmentation of the Pacific plate. Having the
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subduction interface begin near the Bering Glacier puts this feature further east than 

usually assumed and the interface extends much farther inland beneath the western St. 

Elias orogen than other studies have suggested. The Bering Glacier region has been 

recognized as a possible deformation zone between the two tectonic regimes. This 

deformation zone may represent the final stage of accretion of the sedimentary layers of 

the Yakutat block or could indicate that the Elias block is beginning to fragment.

While this work has answered many questions about the tectonics of southern 

Alaska and the role of the Yakutat block, a number of puzzles remain to be solved. The 

Yakutat block is apparently subducting beneath Prince William Sound, but where does 

the transition between Yakutat subduction and Pacific plate subduction occur along the 

Aleutian megathrust? Are the Elias block and the Southern Alaska block part of the same 

block, or is there a boundary between them? The sparseness of the GPS network leads to 

a lack of constraints on the tectonic motions in the northeastern part of our study area.

How is the strain from the Yakutat block transferred into this region around the Eastern 

Denali fault? What kind of motion might there be along the postulated Totshunda -  

Fairweather Connector fault? How do this study’s conclusions about the division 

between collisional and subduction regimes and the extent of the subduction interface tie 

into the Wrangell volcanic field? Future studies can build on the results presented here to 

find solutions to these problems.
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Figure 4.1. Combined velocity field for southeast Alaska and the St. Elias orogen.
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Figure 4.2. Block velocity predictions along the southern Alaska margin.


