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Abstract

Neuronal nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop super 

family of ligand gated ion channels. Dysregulation of nAChRs can lead to pathologies such as 

Alzheimer’s disease, Parkinson’s disease, Autism and nicotine addiction. Possible new 

therapeutic avenues are positive allosteric modulators (PAMs).

The natural product desformylflustrabromine (dFBr), a tryptophan metabolite of the 

marine bryozoan Flustra foliacea, was found to be PAM of a4|32 nAChR. Evaluation of our 

synthetic water soluble dFBr salt by two-electrode voltage clamp of Xenopus laevis oocytes 

expressing human nAChR confirmed that synthetic dFBr displayed similar properties as the 

natural product. Low concentrations of the synthetic dFBr enhanced ACh’s efficacy on a4p2 

receptors. At higher dFBr concentrations, dFBr inhibited ACh potentiated responses. On a7 

receptors, dFBr inhibited ACh induced currents.

Further pharmacological characterization of dFBr revealed that dFBr was able to 

enhance partial agonist potencies and efficacies. Evaluation of dFBr on antagonists showed no 

effect on antagonist inhibition. The mechanisms of biphasic modulation (potentiation and 

inhibition) of dFBr on a4p2 nAChR were also investigated. Enhanced efficacy of ACh induced 

currents by dFBr appeared to be accomplished by dFBr stabilization of the open receptor 

conformation by destabilization of the desensitized state. The inhibition of ACh potentiated 

currents by dFBr appeared to involve open-channel block.

To better understand dFBr mechanisms, its putative binding site was examined. Alanine 

mutations were made in non-orthosteric clefts on the P2+ and a4- faces. Results revealed 

residues located on these faces are involved in ACh induced conformational change of the 

receptor. In addition our data supports our hypothesis that allosteric modulation by dFBr interacts 

with residues located on the P2+ and a4- faces.

The new novel actions of (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES) 

as a a4p2 stoichiometric PAM was discovered and characterized. We showed that HEPES, a 

common buffering agent, potentiated the high ACh sensitivity a4p2 receptor while only inhibiting 

the low ACh sensitivity a4p2 receptor. Mutagenesis results suggested that residue P2D217 is a 

critical residue in the HEPES binding site.

Results from these studies will aid in the development of therapeutic ligands that will 

assist in the treatment of diseases where nAChRs are dysregulated.
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1

CHAPTER 1: Introduction

The role of nAChRs in pathological conditions is widespread and monumental. Neuronal 

Nicotinic Acetylcholine Receptors (nAChR) are being found not only in the Central Nervous 

System (CNS) but also in the Peripheral Nervous System (PNS), suggesting that nAChRs are 

important for many physiological processes throughout the body. Therapeutic ligands that 

selectively target nAChRs may be a good treatment strategy for diseases such as Alzheimer’s 

disease, Autism, nicotine addiction and cancer (see Chapter 2 for background of nAChR). 

Chapter 2 is intended to provide an extensive background of nAChR to aid in the understanding 

of the later research based chapters of this thesis and is intended to be submitted as a review 

arcticle in the near future.

The development of allosteric modulators is a potential and valuable treatment strategy in 

pathologies where nAChRs are dysregulated. Positive allosteric modulators (PAMs) affect the 

agonist evoked responses on nAChR. Because of PAMs’ low intrinsic activity, these ligands only 

affect the receptors in presence of agonists such as the endogenous neurotransmitter. This 

allows the spatial and temporal relationship of cholinergic transmission to remain unaltered.

To understand PAMs actions, several studies investigating different components of how 

an allosteric modulator works must be conducted. Characterization of PAMs action in 

combination with orthosteric ligands, including full and partial agonists and antagonists, will lead 

to a better understanding of how PAMs function on nAChR. Studies investigating the timing of 

PAM application can also provide clues to how a PAM is able to alter the stability of various 

receptor states (closed vs. open vs. desensitized). Elucidation of PAM mechanism will facilitate in 

the development of drugs that are selective of nAChR subtypes and stoichiometries that have 

specifically tailored actions.

Identifying ligand binding sites broadens the understanding of nAChR structure and 

function as well as ligand-receptor interactions. Elucidation of ligand-receptor interactions leads to 

the development of selective ligands that are able to shape the receptor response to better treat a 

given pathology. Knowledge gained from characterizing ligand binding sites and understanding 

how a ligand shapes a receptor response will provide refinements to our current receptor models. 

Each step in the process provides a greater understanding of nAChR’s structure and function, 

and facilitates the development of novel allosteric ligands. Allosteric modulators are potentially 

valuable as diagnostic and therapeutic treatment tools for CNS disorders.

In this thesis, we address how the PAMs, desformylflustrabromine (dFBr) and 4-(2- 

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) work on various nAChR subtypes and
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stoichiometries in presence of orthosteric ligands to better understand the mechanism of PAMs. 

These studies are then followed by the initial characterization of the binding site. The findings 

from this research will aid in the development and understanding of PAMs as therapeutic and 

diagnostic ligands.

1.1. Gaps in Current Knowledge.

nAChRs have become a heavily investigated subject in the last decade. There are many 

gaps in the current knowledge that need to be investigated including the development of new 

therapeutic ligands for both the diagnosis and treatment of pathologies. Potential therapeutic 

ligands which are selective for subtypes and stoichiometries of these receptors will aid in our 

understanding of how dysregulation of nAChR are associated with ailments. Furthermore 

selective ligands could also aid in the treatment of diseases where the densities of subtypes or 

stoichiometries of nAChR differ from normal brains. Characterization of the parent lead 

compound location and structure of the binding sites on nAChR would aid in the development of 

therapeutic ligands.

One possible therapeutic treatment avenue is the use of Positive Allosteric Modulators 

(PAMs). It is currently known that PAMs alter the apparent affinity and efficacy of agonist evoked 

responses and that PAMs are unable to activate the channels alone. PAMs appear to bind at 

allosteric binding sites throughout nAChRs (see Chapter 2). A more in-depth understanding of 

how PAMs interact with nAChR is needed so that this type of ligand can be used clinically. It is 

unknown if PAMs work by increasing the receptor popen and/or alter the firing rate of the receptor. 

It also seems likely that different PAMs will perform differently on nAChR subtypes and 

stoichiometries. Studies investigating how PAMs interact with different pharmacological agents, 

mechanism of action and elucidation of their binding sites will aid in the understanding of how 

PAMs are able to alter agonist affinity and efficacy.

1.2. Gaps Addressed in Current Project.

This thesis focuses on the development of dFBr and HEPES as potential new therapeutic 

ligands (see Chapters 3-5). The compound dFBr is explored more thoroughly than HEPES. 

Exploration of the pharmacology of dFBr, mechanism of action and binding site location on a4(32 

nAChR is emphasized in this thesis (see Chapter 3 and 4). Chapter 3 is a manuscript that has 

been published (J Pharmacol Exp Ther. 2010 Sep 1;334(3):917-26.) and Chapter 4 has been 

submitted to Journal of Molecular Pharmacology. Results from these studies will aid in the 

understanding of how this parent lead compound interacts with a4p2 nAChR. Information gained 

from these studies will aid in the development of dFBr analogues that are more selective and will 

have increased ACh affinity and efficacy with the lack of ability to inhibit ACh induced currents.
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More importantly, these studies provide supportive evidence for developing dFBr-like molecules 

for therapeutic treatment strategies.

Initial HEPES pharmacology and functional binding site studies are also discussed (see 

Chapter 5). Chapter 5 is a manuscript has been submitted to the Journal of Pharmacology and 

Experimental Therapeutics. Here we present the findings that HEPES is a high-sensitivity (HS) 

a4p2 nAChR ligand. On HS receptors, HEPES is a PAM that is able to enhance the ACh efficacy. 

On low-sensitivity receptors (LS), HEPES is a poor inhibitor of ACh evoked currents. The putative 

binding site of HEPES on HS receptors was found. Findings from these studies will further the 

understanding of a4p2 selective PAMs pharmacology and binding sites.

1.3. General Hypothesis.

Members of LGICs include 5-HT3R, nAChR, GABAAandcR and glycine receptors. On 

GABAaR the allosteric modulators benzodiazepines and barbiturates have been prescribed to 

alleviate the symptoms of depression, epilepsy and anxiolytics. Despite nAChRs wide distribution 

throughout the human body, there are no allosteric modulators used therapeutically to selectively 

target nAChR subtypes. Based on preliminary molecular modeling and sequence comparisons 

between members of LGICs we hypothesize that there are allosteric modulators for a4p2 

nAChRs and they bind in a similar region as benzodiazepines on GABAaRs.

1.3.1. Specific Hypotheses.

1.3.1.1. Desformylflustrabromine is an Allosteric Modulator of the ct4[}2 nAChR.

This hypothesis is based on previous studies by Kim et al. (2007) and Sala et al. (2005), 

that dFBr selective potentiates a4p2 nAChR and inhibits a7 receptors (Sala et al., 2005; Kim et 

al., 2007). In order to prove this hypothesis, three criteria must be met: 1) How does dFBr alter 

a4p2 function in presence of pharmacological agents like full agonist, partial agonist and 

antagonist? 2) What is the mechanism of dFBr potentiation and inhibition? 3) Where does dFBr 

bind?

Results showed that dFBr was able to potentiate full and partial agonist induced a4(32 

nAChR responses (Weltzin and Schulte, 2010a). The inhibition of ACh induced currents by 

antagonists on a4p2 nAChR was unaffected by dFBr. The mechanism of dFBr inhibition was 

shown to be voltage dependent, suggesting that dFBr inhibition of ACh-evoked currents was 

caused by open-channel block. The potentiation of dFBr appears to involve maintenance of the 

receptor open state either by destabilization of the desensitized state or stabilization of the open 

state. The potentiation mechanism of dFBr requires further investigation using more refined
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techniques such as single-channel studies. Question 3 is addressed in specific hypothesis 

number two.

1.3.1.2. Desformylflustrabromine Binds at the /32+/a4- Interface on a4f}2 nAChR.

Chapter 4 of the thesis investigates the putative dFBr binding site on a4(32 receptors. The 

putative binding location of dFBr was hypothesized to be at the p2+/a4- cleft. This region was 

chosen following sequence comparisons between other LGIC binding sites and molecular 

modeling studies. The putative dFBr binding site was explored by making single point alanine 

mutations and evaluating the effects of the mutations on ACh and dFBr induced responses. 

Mutagenesis results suggest that dFBr primarily binds to the (32+ face. Additional results suggest 

that non-orthosteric subunit faces are involved in a4p2 responses to ACh. Results from this study 

begin to elucidate the dFBr binding site on the P2+ face and advances our understanding of a4p2 

nAChR function in response to ACh.

1.3.1.3. HEPES is a positive allosteric modulator ofa4fi2 nAChR.

This hypothesis is based on the observation that the crystal structure of the Acetylcholine 

Binding Protein (AChBP) contains HEPES molecules in a similar region of the protein that binds 

ACh (Brejc et al., 2001). This led us to question the reactiveness of HEPES with nAChR.

The characterization of HEPES actions on a4p2 and a7 nAChR is studied in Chapter 5 of 

the thesis (Weltzin and Schulte, 2010b). Findings from this study demonstrate that HEPES is a 

stoichiometric selective PAM that potentiates and inhibits ACh induced currents on HS receptors. 

A point mutation on the C-loop of the P2+ face eliminated the HEPES potentiation. On LS 

receptors, HEPES inhibits ACh evoked currents. Interestingly on a7 nAChR HEPES appears to 

have no effect on ACh currents. Furthermore this study investigated the use of other buffer 

systems and the how HEPES may have altered the interpretation of other modulators.
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CHAPTER 2: Neuronal Nicotinic Receptors: Structure, Function and Therapeutic 

Opportunities. 

2.1. Introduction.

Ligand gated ion channels (LGIC) are essential components of the central and peripheral 

nervous system (Taly et al., 2009). Family members of the Cys-loop super family are nicotinic 

acetylcholine (nAChR), GABAaR, 5HT3R and glycine receptors (Gotti and Clementi, 2004). LGICs 

play a critical role in synaptic transmission at the junctions between nerve cells (synapses) and 

between nerve and muscle cells by regulating the passage of ions into the cell (Gotti et al., 

2006b). The regulation of synaptic transmission is important in learning, memory, gene 

transcription and muscle contraction. Dysregulation of nAChRs can lead to neurological disorders 

including Alzheimer’s disease (Court et al., 2001; Nordberg, 2001), Schizophrenia (Adams and

Stevens, 2007), Parkinson’s disease (Aubert et al., 1992), Autism (Martin-Ruiz et al., 2004;

Lippiello, 2006) and nicotine addiction (Picciotto et al., 2001). Using allosteric modulators to target 

ion channels is a promising therapeutic treatment for many neurological disorders.

2.2. A General Description of the Physiological Role of nAChRs.

nAChRs are located in the peripheral and autonomic nervous system (PNS and ANS) at the 

skeletal neuromuscular junction and in the Central Nervous System (CNS) at the neuronal 

synapses, mediating the rapid and brief effects of acetylcholine (ACh) across a wide range of 

acetylcholine (ACh) concentrations (ranging from nM to mM) (Dani and Bertrand, 2007). Neuronal 

synapses are junction points where both pre- and post- synaptic cells meet. The gap between the 

two neurons, otherwise known as the synaptic cleft, is about 100 nM wide. In addition to ACh, 

nAChRs respond to a range of endogenous and exogenous pharmacological agents including 

nicotine and organophosphates. Activation of nAChR produces an enhanced release of other 

neurotransmitters including dopamine, serotonin, glutamate and GABA (y-aminobutyric acid).

The process of synaptic transmission begins with the generation of a wave of 

electrochemical excitation known as an action potential at the axon hillock. The generated action 

potential propagates down the axon of the pre-synaptic neuron until it reaches the synapse. The 

action potential depolarizes the membrane and causes calcium (Ca2+) permeable ion channels to 

open. Calcium ions flow into the pre-synaptic cell producing a rapid increase in calcium 

concentration. The high concentration of calcium triggers activation of calcium-sensitive proteins 

attached to synaptic vesicles that contain neurotransmitters such as ACh. The vesicles fuse with 

the cell membrane by interacting with membrane proteins such as t- and v-SNARES and release
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their neurotransmitters into the synaptic cleft. The neurotransmitters diffuse into the synaptic cleft 

where the molecules can either bind to receptors on the membrane of the post-synaptic cleft, be 

degraded or diffuse away from the cleft. The binding of neurotransmitters to receptors such as 

nAChR on the post-synaptic cell initiates the activation of the receptors allowing ions such as 

Ca2+, Na+ and K+ to flow down their ion concentration gradient into the post-synaptic cell. If the 

translocation of ions results in a membrane potential change of about 15 mV, the action potential 

will be propagated.

The resulting magnitude and sign of the induced action potential depends on the charge and 

influx of the translocated ions. Since the conduction of a single input is passive, it takes multiple 

inputs occurring simultaneously to generate an action potential. A synaptic potential can be 

inhibitory or excitatory depending on the charge of the translocated ions, the receptor type, the 

concentration of permeant ions inside and outside of the cell and the cells action potential 

threshold (Purves, 2004). Inhibitory post-synaptic potentials (IPSP) are caused by the 

conductance of anions and low concentrations of cations. IPSPs reduce the chances of 

generating an action potential by hyperpolarizing the post-synaptic membrane (Purves, 2004). 

The excitatory post synaptic potential (EPSP) are caused by the conductance of cations as in the 

case of nAChR and low concentrations of anions. EPSPs increase the possibility of generating an 

action potential by depolarizing the post-synaptic cell (Purves, 2004).

After a couple of milliseconds, the neurotransmitter will disassociate from the receptor (Dani 

and Bertrand, 2007). The remaining neurotransmitter will either be metabolically degraded or be 

reabsorbed by the pre-synaptic cell for future use.

2.3. The Ligand Gated Ion Channel Superfamily.

2.3.1 Classification of LGICs.

Ligand gated ion channels (LGIC) are divided into three subclasses; Cys-loop, ionotropic 

glutamate and ATP-gated receptors, based on their structure, genetic origin and function. The 

receptors are integral membrane proteins and have three distinct extracellular, transmembrane 

and intracellular domains (Figure 2.1). Cys-loop receptors are pentamers. The ionotropic 

glutamate receptors bind the neurotransmitter glutamate and are usually tetramers. Members 

include AMPA, Kainate and NMDA receptors. ATP-gated receptors respond to the nucleotide 

ATP. The only known ATP-gate receptor is the trimer PX2 receptor.

The Cys-loop superfamily contains a characteristic 15 amino acid loop containing two 

cysteine (Cys) residues forming a disulfide bond. The Cys-loop is located at the bottom of the
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extracellular domain (Figure 2.1). Members of the Cys-loop super family include GABAa and c, 

5HTa-3, glycine and muscle and neuronal types of nicotinic acetylcholine receptors (nAChR).

The Cys-loop superfamily is further divided into anion and cation conducting channels. In 

general, receptors which pass anions are inhibitory, while cation selective channels are 

excitatory. The acetylcholine receptors and the 5HT3R are non-seiective cation (K+, Ca2+ and 

Na2+) conducting channels. The A and C subtypes of GABA and glycine receptors are non- 

selective anion conducting (Cl ) receptors. Unlike types A and C, the B type of the GABAR is a G- 

protein receptor.
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a7nAChR c Y 3 D V R W F P F 0 V Q H c
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Figure 2.1. A diagram of a receptor belonging to the Cys-loop super family of LGIC 
emphasizing the location and amino acid composition of the cys-ioop.

A representative side view of the receptor showing two of the five subunits is displayed above. 
The pore lumen, the neurotransmitter binding site (NT), the transmembrane topology and the 
conserved disulfide bridge (boldfaced C) are shown. All Cys-loop superfamily receptors share a 
similar amino acid composition of the Cys-loop (shown below). Amino acid sequences are from 
(Limapichat et al., 2010). (Top figure modified and used with permission from (Sunesen et al.,
2006).)
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2.4. Structure of the Cys-loop LGIC Family.

The Cys-loop LGICs have similar general structural features typified by the nicotinic 

acetylcholine receptor (nAChR) subfamily. Members of the Cys-loop super family have an 

extracellular or ligand binding domain, a transmembrane domain and a variable cytosolic loop 

(Figure 2.2).

Figure 2.2 Ribbon structure of the Torpedo nAChR showing the extracellular, 
transmembrane and cytosolic domains.
(Image reprinted with permission from (Gay and Yakel, 2007).)

All members of the nAChR family respond to the exogenous agonist nicotine and the 

endogenous agonist acetylcholine, hence the name “nicotinic acetylcholine receptors.” Similarly, 

GABAa and c. 5-HT3 (serotonin, 5-hydroxytryptamine) and glycine receptors respond to their 

respective endogenous neurotransmitter y-amino butyric acid, serotonin (5-hydroxytryptamine) 

and glycine. Figure 2.3 displays the ancestral branch points where new receptors were formed.
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Figure 2.3 The ancestral branch points of the modern day Cys-loop super family of 
LGIC.

(Image reprinted with permission from (Davies et al., 2003)).

The Cys-loop receptors are pentameric receptors composed of different subunits. Muscle 

nAChR are heteromeric receptors composed of four different subunits, a1, (31, 5, y and £, and 

are arranged in a 2a:ip:15:1y or e ratio (Barry and Lynch, 2005) (Table 2.1). The y subunit is 

only expressed in the embryonic form of the receptor while the e subunit is expressed in the adult 

receptor (Barry and Lynch, 2005). The neuronal nAChRs are composed of a broad range of 

combinations of a and p subunits (Gotti and Clementi, 2004). There are nine different a subunits 

(a2-10) and three p (P2-4) subunits found in the CNS, collectively known as “neuronal” type 

subunits (Gotti and Clementi, 2004) (Table 2.1). Both homomeric and heteromeric receptors 

assemble to produce functional receptors. The multiple combinations of a and p subunits produce 

a large number of possible neuronal nAChRs, each with unique properties.

nAChRs are integral allosteric membrane proteins with a molecular mass of -290 kDa 

and encoded by 17 genes (Taly et al., 2009). Of these, nine a and three p subunits are expressed 

in the brain. The various subunit combinations result in different pharmacological and kinetic 

properties and physiological locations.

Serotonin type 3 receptors (5HT3R) consist of five different subunits ranging from A to E 

(Gaddum and Picarelli, 1957) (Table 2.1). 5HT3RA form homomeric receptors while types A and B
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can combine and form hetero pentameric receptors. Types C, D and E have been described, but 

have yet to be characterized. GABAa receptors are composed of combinations of 16 different 

subunits (a1-6, p1-3, y1-3, 5, e, t t  and 0) (Olsen and Sieghart, 2008) (Table 2.1). Zinc activated 

ion channels (ZAC) have just recently been described and are known to consist of one subunit 

(Davies et al., 2003). Glycine receptors consist of a1-4 and a single p subunit (Betz et al., 1999) 

(Table 2.1).

Table 2.1 Currently known members of the Cys-loop super family of LGICs.

Receptor Ligand Permeable Ions Number of 
subunits known

Muscle nAChR ACh Cations 5

Neuronal nAChR ACh Cations > 16

5-HT3R 5-HT Cations >2

ZAC Zinc Cations 1

GABA R
A GABA Anions > 16

Glycine R Glycine Anions >5

2.5. Predominant nAChR Subtypes.

The predominant forms of nAChR found in the Central Nervous System (CNS) are the 

homomeric a7 and heteromeric a4p2 subtypes. The a7 receptors contain five identical subunits 

arranged around a central cation conducting pore (Figure 2.4)(Taly et al., 2009). The a4p2 

receptors contain different combinations of a4 and P2 subunits, depending on the putative 

stoichiometry (Figure 2.4). The a7 receptors are known to desensitize rapidly and have a higher 

Ca2+:Na+ permeability ratio compared to NMDA and other nAChR receptors (Albuquerque et al.,

2009). The a4p2 subtype exhibits slower desensitization kinetics and lower cation permeability 

compared to a7 nAChR (Figure 2.4).



12

a l  (<x4}3(02)2 (a4)2(p2)3

Figure 2.4 a7 and a4p2 nAChR subunit arrangements and ACh-induced response 
profiles.

Left) Homomeric a7 ACh induced response profile and illustration of subunit arrangement. 
Middle) Heteromeric low ACh sensitive a4p2 nAChR ACh induced response profile and 
illustration of putative subunit arrangement. Right) Heteromeric high ACh sensitive a4p2 nAChR 
ACh induced response profile and illustration of putative subunit arrangement. The plus and 
minus signs designate the principal and complementary faces of each subunit.

Previous studies investigating a4p2 nAChR injected in a 1:1 a:p ration saw two- 

component dose response curves in response to varying concentrations of ACh, suggesting that 

two different populations of receptors existed in the preparation (Zwart and Vijverberg, 1998; 

Buisson and Bertrand, 2001; Moroni et al., 2006a; Zwart et al., 2006b). The estimated EC50 

values were 0.3 - 2.8 pM for the high ACh sensitivity component and 66 - 142 pM for the low 

sensitivity component (Moroni et al., 2006a). Two putative stoichiometries of a4p2 receptors have 

been observed in vitro, but have yet to be observed in vivo. The expression of a4p2 

stoichiometries in Xenopus laevis oocytes can be influenced by injecting 5 - 1 0  times higher 

concentrations of one subunit over the other (Zwart and Vijverberg, 1998; Moroni and Bermudez, 

2006; Moroni et al., 2006a; Tapia et al., 2007). Previous studies have further suggested that the 

high-sensitivity receptor preparation predominantly forms receptors with two a4 and three p2 

subunits in the pentameric arrangement apapp ((a4)2(P2)3) (Nelson et al., 2003; Zhou et al., 

2003; Briggs et al., 2006b; Moroni et al., 2006b; Zwart et al., 2006a; Tapia et al., 2007) (Figure 

2.4). The high ACh-sensitive receptors in the presumed stoichiometry have two a+/p- clefts, two 

P+/a- clefts and one P+/P- cleft. Several studies have suggested that receptors formed in the low- 

sensitivity receptor preparation are composed of three a4 and two p2 subunits in the arrangement 

apapa ((a4)3(P2)2) (Nelson et al., 2003; Zhou et al., 2003; Briggs et al., 2006b; Moroni et al.,
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2006b; Zwart et al., 2006a; Tapia et al., 2007) (Figure 2.4). The low ACh-sensitive receptor is 

thought to contain two a+/(3- clefts, two p+/a- clefts and one a+/a- cleft. It is likely that other 

arrangements are also expressing in both the high and low sensitivity receptor preparations.

The a4p2 stoichiometries differ in their calcium permeability, functional pharmacology 

and pharmacological chaperones (Nelson et al., 2003; Tapia et al., 2007). The Ca2+ permeability 

has been demonstrated to be different between the two stoichiometries. Reversal potential 

experiments showed that the low sensitivity receptor permeates Ca2+ though the channel by 26.9 

± 1.3 mV. The high sensitivity receptor permeates Ca2+ though the channel at a much slower rate 

of 7.3 ± 2.2 mV (Tapia,et al., 2007). The higher Ca2+ permeability of the low sensitivity receptor is 

a result of a glutamate residue in the TM2 region of a4 subunits. The p2 subunits have a lysine 

residue at this position that reduces Ca2+ permeability (Tapia et al., 2007).

The high and low-sensitivity receptors differ in their response behavior to different 

pharmacological agents (Moroni et al., 2006a). Nicotine, epibatidine, TC-2559, A-85380 and 3-Br- 

cytisine produced concentration-dependent inward currents on oocytes expressing high and low- 

sensitivity receptors. Cytisine, 5-l-cytisine, 5-Br-cytisine and 5-CI-cytisine acted as partiai agonists 

and only evoked responses in oocytes expressing the low-sensitivity receptor. Nicotine, 

epibatidine and 3-Br-cytisine behaved as partial agonists on high-sensitivity receptors. TC-2559 

and A-85380 were significantly more efficacious than ACh on high-sensitivity receptors. On low- 

sensitivity receptors epibatidine and A-85380 were significantly more efficacious than ACh 

(Moroni et al., 2006a). In addition, the low-sensitivity receptor stoichiometry appeared to be more 

sensitive to channel blocking drugs such as mecamylamine, chlorisondamine and d-tubocurarine 

(Briggs et al., 2006a), suggesting that the structure of the channel pore may differ from that of the 

(a4)2(P2)3 stoichiometry.

The expression of nAChR can be mediated by pharmacological ligands. The expression of 

high-sensitivity a4(32 receptors has been shown to increase after incubating transfected cells with 

nicotine (Buisson and Bertrand, 2001) and the amplified expression occurred independently from 

protein synthesis (Peng et al., 1994; Wang et al., 1998). Augmented expression resulted from 

increased receptor assembly (Wang et al., 1998) in combination with a reduced turnover rate of 

existing surface nAChRs (Peng et al., 1994). Functional studies have additionally revealed that 

the low-sensitivity receptor expression is mediated by post-translational modification of the a4 

subunit by chaperone protein 14-3-3 and protein kinase A (Exley et al., 2006). 3-24h exposure to 

nicotine caused up-regulation of the high a4(32 sensitive receptors promoting the assembly of 

nAChR subunits from large pools of unassembled subunits (Kuryatov et al., 2005). The newly 

formed receptors had a 5-fold lifetime increase on the cell surface membrane. Membrane-
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permeable ligands such as nicotine and choline (Kuryatov et al., 2005; Gahring et al., 2010) and 

less permeable quaternary amine cholinergic lingads (Kuryatov et al., 2005) can act as 

pharmacological chaperones within the endoplasmatic reticulum aiding the assembly of nAChRs.

2.6. Receptor Structure Described by Biochemical and X-ray Crystallography Studies.

Cys-loop LGICs are found throughout the PNS and CNS (Taly et al., 2009). The Cys-loop 

superfamily of LGICs are composed of five membrane bound subunits arranged around an axis 

perpendicular to the cell membrane and form a pore that conducts ions from the outside to the 

inside of the cell (Figure 2.5). Each subunit contains a large amino terminal extracellular domain, 

a four segment transmembrane domain (TM1-TM4) and a variable cytoplasmic domain (Figures

2.2 and 2.5). Depending on the subunit composition, different types of receptors are formed. 

Homopentameric receptors contain the same subunits while heteropentameric receptors have 

different subunits (Figures 2.4 and 2.5). Different combinations of subunits result in the 

expression of receptor subtypes and stoichiometries with varying ligand selectivity and 

conductances (Figure 2.5) (Albuquerque et al., 2009).
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Figure 2.5 Example of the Cys-loop receptor structure.
A) This diagram shows the general structure of a Cys-loop structure. Note similarity to nAChR. 
The receptor is embedded in the cell membrane and in this example passes cations. B) The 
structure of each subunit. TM1-TM4 are the helices that comprises the transmembrane region. C) 
A general structure of a homopentameric receptor. The + designates the principal face and the -  
designates the complementary phase. D) A general structure of a heteropentameric receptor. The 
a402 heteropentameric receptors can form two different stoichiometries based on the number of 
a4 and 02 subunits expressed (left versus right).

2.6.1 Extracellular Binding Domain.

To date, crystallography studies of nAChR and the Acetylcholine Binding Protein 

(AChBP) have been used to describe the structure of the amino terminal. A 4.6A crystal structure 

of the Torpedo nAChR uncovered that the ion tunnel is framed by seven twisted 0-sheet strands 

(Miyazawa et al., 1999). The recent 1.94A resolution structure of the extracellular domain of the 

a1 nAChR revealed a ten-stranded 0-sandwich and an N-terminal a-helix (Dellisanti et al., 2007) 

(Figure 2.6). The sheet constructed from the strands 01, 02, 03, 05, 06 and 08 is referred to as 

the inner sheet, while 0-strands 04, 07, 09 and 010 are referred to as the outer sheet (Dellisanti 

et al., 2007) (Figure 2.6). Additional structural insights come from the 2.7A crystallization of the 

Lymnaea stagnalis molluscan AChBP (Brejc et al., 2001) (see section 2.6.5).
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Figure 2.6 The 1.94A crystal structure of the extracellular region of the mouse a1 
nAChR.

The crystal structure of mouse a1 nAChR subunit (cyan) bound to a-bungarotoxin. The 
carbohydrate chain is shown as a magenta stick structure. Left) Front view of the inner and outer 
sheets of the extracellular region. Right) The top view of the structure. (Image reprinted with 
permission from (Dellisanti et al., 2007)).

ACh is the endogenous ligand for nicotinic receptors. The location where the endogenous 

neurotransmitter binds is termed the “orthosteric site.” In nAChR, the orthosteric site has been 

shown to bind both agonist and antagonist and is located in the extracellular region between the 

principal face of the a and the complementary face of the a or (3 subunits (Figure 2.7)(Taly et al.,

2009). The “principal” faces (denoted as the + face) comprise loops A ((3-strands P4-(35), B (p- 

strands P7-p8) and C (P-strands P9-P10) (Corringer et al., 1995; Unwin, 2005; Dellisanti et al.,

2007) (Figure 2.7). The complementary face (designated the -  face) contains the P-strands D, E 

and F (Figure 2.7) (Corringer et al., 1995).

Depending on the subunit composition of a nAChR, there are either two 

(heteropentameric) or five (homopentameric) ACh-binding sites within the extracellular domain. 

The ACh binding site is termed the “aromatic box” (Corringer et al., 2000; Brejc et al., 2001) 

(Figure 2.7B) and is primarily formed by five aromatic residues, Y93, W149, Y190 and Y198 

located on the principal face, and W55, located on the complementary face (Figure 2.7B) 

(Corringer et al., 2000; Brejc et al., 2001).

Nicotinic agonists contain a cationic nitrogen and a hydrogen bond acceptor that interact 

with nAChRs (Glennon and Dukat, 2000; Glennon et al., 2004) (Figure 2.7C). In a4p2 nAChR, 

there is evidence of a strong cation-TT interaction between W149 and the ligands ACh and 

nicotine (Puskar et al., 2011). Nicotine also strongly interacts by hydrogen bonding with the
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backbone carbonyl contributed by W149 (Puskar et al., 2011). The a7 nAChR has been shown to 

have a similar binding pattern to those of a4p2 nAChR and it has been suggested that the a7 

nAChR cation-TT interaction is important for ligand recognition (Puskar et al., 2011). In a4p2 

receptors, this interaction is on W149 (Puskar et al., 2011). In a7 nAChR this cation-TT interaction 

occurs with Y93 and the agonist (Puskar et al., 2011). Epibatidine, a nicotine analogue, forms a 

cation-TT interaction with T198 (Puskar et al., 2011). A hydrogen bond involving the backbone NH 

of (32L119 of a4p2 nAChR has been shown to form with the ligands nicotine, ACh, epibatidine 

and carbamylcholine (Blum et al., 2010).

Carbamylcholine Choline

Figure 2.7 Loop labeling and residues involved in the orthosteric binding site in the 
extracellular domain of nAChR.

A) The designation of the loops and P-sheets on the principal (+) and complementary (-) faces. B) 
The orthosteric aromatic box. (Figure B reprinted with permission from (Lester et al., 2004)). C) 
Structures of important nicotinic ligands. Hydrogen bond acceptor groups are colored red and 
cationic nitrogens are colored blue.
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2.6.2 Transmembrane Domain.

2.6.2.1 Transmembrane Domain Structure.

The transmembrane (TM) domain spans the 3 nm or so of the cell lipid bilayer 

membrane. There are four alpha helical transmembrane segments (TM1-TM4) in each subunit for 

a total of 20 transmembrane helices in the holoprotein (Figure 2.8). The TM2 helices line the 

channel pore and contain residues that form the ion channel gate. Crevices filled with water and 

cholesterol are formed between TM1, TM2 and TM3 of each subunit (Figure 2.8) (Wick et al., 

1998; Bera et al., 2002; Bera and Akabas, 2005; Brannigan et al., 2008). The extracellular 

domain is linked to the TM1 domain (see Figure 2.5). There is a short intracellular loop which 

connects TM1 to TM2 (see Figure 2.5). TM2 and TM3 are connected via a short extracellular loop 

termed the TM2-TM3 linker (see Figure 2.5). A long intracellular loop connecting TM3 to TM4 

may interact with cytoskeletal protein within the cell (Barry and Lynch, 2005) (see Figure 2.5).

Figure 2.8 Transmembrane helices in nAChR.
The 20 transmembrane helices in a nAChR modeled after of N. Unwin (2005) 4A template: TM1 
is purple; TM2 is green; TM3 is blue and TM4 is cyan. Cholesterol was clocked into the proposed 
binding sites (sites A (yellow), sites B (orange), sites C (red)). (Image reprinted with permission 
from (Brannigan et al., 2008).)

The ion channel is blocked by a gate constructed of leucines and valines on the TM2 

helices (Figure 2.9). There are two rings, 9’ leucines and 13’ valines, that face into the channel 

and form a 6A in diameter hydrophobic girdle that prevents ion flow (White and Cohen, 1992; 

Banks et al., 2000; Miyazawa et al., 2003; Arevalo et al., 2005; Unwin, 2005). A numbering 

system has been developed to compare TMs of the different subunits to each other (Miller, 1989). 

The conserved positively charged residues at the cytoplasmic end of TM2 are defined as 0’ with
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the numbers increasing toward the extracellular end which is designated as 20’ (Miller and Smart,

2010). Hydrated Na+ and K+ ions (approximately 8A in diameter) cannot pass due to their size. 

Smaller dehydrated ions also cannot pass due to insufficient polarity through the hydrophobic 

girdle (Miller and Smart, 2010). It is believed that the gate opens as a result of the TM2’s tilting 

motion (Unwin, 1995).

The TM2 helix is an important structure that links the binding and gating events of the 

Cys-loop receptors. The TM2 extends two a-helix twists above the extracellular membrane in 

GABAaR (Bera et al., 2002). The position of the TM2 does not parallel the cell membrane. 

Rather, the upper section of the helix tilts away from the helix’s posterior part making it so that the 

top part of the channel (nearest to the extracellular domain) is wider than the bottom of the 

channel creating a ‘kink’ in the middle of each TM2 (Unwin, 1995).

Figure 2.9 The ion channel pore of nAChR.

The pore facing side chains of the TM2 helix. Grey dots are residues that form the gate. The 
molecular surface of the pore domain cross sectional view with the front subunit removed. Red 
and blue colors correspond to areas with high negative (red) and positive (blue) charge. The 
yellow areas are hydrophobic regions containing the gate. Valines and leucines are identified 
(aV255 and aL251). The little light blue sphere located midway down the channel is the 
approximate size of a hydrated sodium ion. (Image reprinted with permission from (Miyazawa et 
al., 2003).
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2.6.2.2 Transmembrane Domain and Receptor Gating.

There are several hypotheses regarding the conformational change within nAChR that 

link the ligand binding and gating events. Using electron microscopic structural studies of 

Torpedo nAChR, Unwin and colleagues proposed a receptor mechanism that links the binding 

and gating events (Unwin et al., 2002). They predicted that the binding of the agonist caused a 

clockwise rotation of each a region (likely the inner (3-sheet) of the extracellular domain 

perpendicular to the cell membrane and through the Cys loop (Unwin et al., 2002) (Figure 2.10A). 

However, due to the tilt of the angle’s rotation on each subunit’s extracellular domain, the 

quaternary structure of the extracellular domain rotates anticlockwise (Bocquet et al., 2009). The 

rotation of each extracellular domain may create contact points between the (31-(32 loop and the 

TM2-TM3 linker (Unwin et al., 2002), a hypothesis that is supported by glycine mutations in the 

linker region (Lynch et al., 1997; Lewis et al., 1998; Shan et al., 2003) and mutagenesis studies 

demonstrating that the TM2-TM3 linker experiences backbone structural changes during gating 

(England et al., 1999; Bera et al., 2002) (Figure 2.10A and C). The movement of the TM2-TM3 

linker (Figure 2.10B) torques the TM2 area, retracting TM2 from the pore and pushes it toward 

TM1, TM3 and TM4 causing the channel to open (Miyazawa et al., 2003). The channel is 

stabilized by contacts between neighboring TM1, TM2 and TM3 helices (Miyazawa et al., 2003). 

A water and/or cholesterol filled cavity separating TM2 from TM1 and TM3 additionally assists 

this movement (Figure 2.8) (Wick et al., 1998; Bera et al., 2002; Bera and Akabas, 2005; 

Brannigan et al., 2008). The TM1-TM2 and TM2-TM3 connecting loops contain conserved 

glycines that allow for increased flexibility of the TM2 movement (Miyazawa et al., 2003).
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Figure 2.10 Illustrations of the contacts and movements that may occur between the 
extracellular and transmembrane domains of nAChR.

A) A model of nAChR structure and gating modeled after Neigel Unwin’s investigations. The 
binding of the agonist induces clockwise rotation of the large shaded region which then torques 
the TM2 region causing the channel to open. The gate is represented by hatched lines in the 
transmembrane domain. B) The transmembrane structure of nAChR illustrates the postulated 
movement of the TM2 helix. Residue 19’ has been shown to rotate into a more hydrophobic 
environment (Dahan et al., 2004). C) Top, Ribbon structure of one nAChR subunit. All the (3- 
sheets are labeled. The red labels indicate the (3-strands that might rotate with agonist binding. 
Bottom, A close up view of the transmembrane domain, postulated contact points and structural 
movements associated with agonist binding. The L251 is thought to lie at the TM2 gate. 
(Permission to reuse image granted by (Lester et al., 2004).
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The timing of TM2 movement has been investigated by Auerbach and co-workers 

(Purohit et al., 2007). They predicted that the two a-subunit TM2s moved before the non-a 

subunits. The sideways TM2-TM2 interactions that stabilize the gate are possibly disrupted by the 

outward movement of the two a-subunit TM2s. This movement would cause the leucine gate to 

destabilize and move out of the way, allowing the passage of ions (Miller and Smart, 2010).

Recent studies demonstrated that as the channel opens a tagged fluorescent group 

attached near the top of the TM2 helix moves into a more hydrophobic environment (Dahan et al.,

2004). This data is consistent with the clockwise rotation of the TM2 region. The rotation would 

move the chain at position 19’ into contact with several hydrophobic side chains (Miyazawa et al.,

2003). Previous data showing that the water-filled TM2-TM3 pocket changes shape during Cys- 

loop activation (Wick et al., 1998) is consistent with Unwin and colleagues’ theory of 

conformational change (Unwin et al., 2002).

It has been proposed that the Cys loop may be the structural region that contacts the 

TM2-TM3 linker during conformational changes (England et al., 1997; Kash et al., 2003; Leite et 

al., 2003). Unwin has postulated that the p1-p2 loop contacts the TM2-TM3 linker (Unwin et al.,

2002). In the AChBP, these regions are nearby which may explain the differing ideas. It is also 

possible that that both of these regions are involved in gating. Kash et al., (2003) suggested that 

the Cys loop and the TM2-TM3 linker are involved in both the opening and closing events of the 

receptor.

Another theory proposed by Auerbach and co-workers suggests that a gradual series of 

transitions occurs in response to agonist binding (Grosman et al., 2000; Cymes et al., 2002) 

(Figure 2.11). Linear free-energy analysis of single point mutations investigated by single-channel 

recordings may indicate the position of the transition state for the gating event. A cp=0 indicates 

the mutated receptor is in a ‘closed-like state, while a q>=1 indicates the receptor is more ‘open

like’ (Grosman et al., 2000; Cymes et al., 2002). There is a gradient of cp values from the agonist 

binding site to the transmembrane domain. These results suggest that conformation changes 

occur in a wave rather than a unified single movement (Akk et al., 1996; Grosman et al., 2000; 

Auerbach, 2005; Zhou et al., 2005; Purohit et al., 2007) (Figure 2.11).



Figure 2.11 Auerbach and co-workers (2004) model of a conformational wave 
associated with agonist binding.
Structure is of nAChR a and 5 subunits. The gradient <p value is shown on the left. During gating, 
red colored residues in loop 5 have cp=0.93 and are the first residues to move. Loop 2/loop 7 in 
yellow (cp=0.80) are the next to move, followed by residue aS269 (green (p=0.69) in the TM2-TM3 
linker region. The upper part of the 5TM2 are the next to move (blue, cp=0.32) followed by the 
lower half of the 5TM2 (magenta, cp=0.0). The extracellular domain is the AChBP (Brejc et al., 
2001) and the transmembrane domain is from the Torpedo nAChR (Miyazawa et al., 2003). The 
cp values were estimated independently from Chakrapani et al., 2004. (The image is from 
(Chakrapani et al., 2004) and has been reused with permission).

2.6.3 Intracellular Domain.

The structure of the intracellular domain consists of a cytoplasmic loop that has not been 

extensively studied. Unwin’s 4.6A structure of the nAChR intracellular region predicted that there 

are transverse tunnels formed by a-helices in the channel wall (Miyazawa et al., 1999). However, 

Unwin’s 4A Torpedo nAChR structure did not reveal the cytoplasmic loop and was presumed to 

be disordered (Unwin, 2005).

Amino acid sequence comparison within the LGIC family of the intracellular region has 

revealed that this area is highly variable in amino acid residues and length. This loop of the
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protein varies in length from 70 residues (in glutamate-gated Cl- channels) to 271 residues (a4 

nAChR) (Keramidas et al., 2004). The diversity of the cytoplasmic loop sequence may suggest 

that this region is important for subunit specific behavior and possible interactions with cellular 

components.

The residues in the TM1 (Wang et al., 2002) and at TM4’s extracellular and intracellular 

ends of a1 nAChR (Roccamo and Barrantes, 2007) have been shown to control the assembly 

and targeting of the receptors to the cell surface. Mutation and delegation of residues near the 

intracellular end of TM4 in the cytoplasmic loop have been shown to reduce the assembly of the 

receptor subunits and cause both enhancement and reduction of ACh induced currents of 

nAChRs (Yu and Hall, 1994b; Valor et al., 2002; Kuo et al., 2005; Castelan et al., 2007). The 

diversity of the cytoplasmic loop sequence may suggest that this region is important for subunit 

specific behavior and the possible interactions with cellular components. It has been 

demonstrated that the cytoplasmic loop interacts with cytoplasmic transport machinery during 

nAChR trafficking to the synapse (Williams et al., 1998; Temburni et al., 2000; Keller et al., 2001; 

Ren et al., 2005; Xu et al., 2006). The mutation of residues in the TM1 (Wang et al., 2002) and at 

TM4’s extracellular and intracellular ends of a1 nAChR (Roccamo and Barrantes, 2007) have 

been shown to reduce the assembly and targeting of the receptors to the cell surface. The 

cytoplasmic loop interacts with the actin cytoskeleton resulting in cell surface expression 

(Bencherif and Lukas, 1993; Yu and Hall, 1994a; Shoop et al., 2000) and the resultant 

phosphorylation (Pacheco et al., 2003; Wiesner and Fuhrer, 2006) may reduce the time the 

receptor is desensitized (Huganir et al., 1986; Fenster et al., 1999), enhance or reduce receptor 

expression (Wang et al., 2004; Cho et al., 2005) and reduces cytoskeletal interactions (Colledge 

and Froehner, 1997). In a7 nAChR, palmitoylation has been shown to aid in the formation of 

functional receptors (Drisdel et al., 2004; Huang and El-Husseini, 2005).

2.6.3.1 Ion Channel Selectivity.

The Cys-loop super family receptors contain ion selectivity filters that screen hydrated 

ions via a partial dehydration mechanism (Corringer et al., 1999b). Charged rings exist at the 

cytoplasmic and extracellular ends of the channels and are important for regulating channel 

conductances (Figure 2.12A) (Miller and Smart, 2010). In nAChR and 5HT3R, the rings are 

negatively charged permitting the passage of cations (Keramidas et al., 2004) while GABAAand c 

and glycine rectors have positively charged rings that allow anions to pass (Keramidas et al.,

2004).

Voltage-gated ion channels have aided our understanding of the movement of ions 

though receptor pores. In voltage-gated channels, ions transverse down the ion channel by
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dehydration of their water molecules by protein residues that mimic the interactions of water. The 

ions are then coordinated by the partial charges of the carbonyl groups found on the protein’s 

backbone and “ping-pong” down the pore (Doyle et al., 1998; Zhou et al., 2001; Dutzler et al.,

2003). Cys-loop receptors appear to have additional ion translocation mechanisms. For example, 

in muscle AChR cations are selected by the anionic residues located on either side of the TM2 

(Imoto et al., 1988) and the transverse tunnels in the cytoplasmic domain (Kelley et al., 2003) 

(Figure 2.12). The hydrophobic a-helices reside in the TM2 form a narrow region of the AChR 

channel, providing little stabilization and thereby minimally slowing the passage of hydrated ions 

(Miyazawa et al., 2003). Studies have shown that in the course of translocation, individual ions 

are transiently stabilized by electrostatic attraction to rings of negatively charged residue along 

the extracellular part of the pore (Imoto et al., 1988; Wang et al., 2008a) (Figure 2.12). The 

cytoplasmic border rings (positions -2 to 2) of TM2 select monovalent cations over anions (Galzi 

et al., 1992; Corringer et al., 1999a; Gunthorpe and Lummis, 2001; Keramidas et al., 2004; 

Sunesen et al., 2006; Wotring and Weiss, 2008). By using molecular dynamics simulations to 

investigate the transport of ions through the muscle nAChR, Wang et al., (2008) suggested that 

ion selectivity is achieved by electrostatic interactions while the translocation is reliant on channel 

hydration (Wang et al., 2008a) (Figure 2.12B). This study demonstrated that selective cation 

translocation may occur in two stages. First, cations are selected through a series of oppositely 

charged residues in the protein vestibule leading down to a narrow hydrophobic constriction 

(presumably the gate). Second, hydration of the narrow region and protein movement enables the 

cation to pass though the pore (Wang et al., 2008a).
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Figure 2.12 ion translocation in nAChR.
A) A homology model of the human adult muscle nAChR. The rings of change are shown. The 
rings and labels in grey describe charged residues that affect conductances and selectivity as 
described in Imoto et al.’s, (1988) functional assay (Imoto et al., 1988). The rings and labels in 
black are identified residues associated with prolonged cation dwell times in molecular dynamic 
studies conducted by Wang et al. (2008) (Wang et al., 2008a). (Image reprinted from (Sine et al.,
2010) and used with permission.) B) Molecular dynamic successive snapshots depict the 
translocation of a single cation though the nAChR channel. The water molecules inside the 
channel are shown in surface representation. The permeating ion is shown in yellow. Water 
molecules outside the channel are shown in line representation and other cations are shown as 
small yellow spheres (Image reprinted from (Wang et al., 2008a) and used with permission).

2.6.4 Comparison of Different Electron Diffraction and X-ray Crystailization of nAChR
Structures.

Structures obtained by electron diffraction and X-ray crystallization techniques have 

contributed substantial information about the architecture and function of LGICs (Unwin, 1995; 

Miyazawa et al., 1999; Unwin, 2005; Dellisanti et al., 2007). Unwin’s 4A resolution of the Torpedo 

AChR is currently the best structure to date and assists in the homology modeling of other 

nAChRs (Unwin, 2005). This structure reveals that the N-terminal extracellular domain of each 

subunit has ten (3-strands and one a-helix at the top of the channel pore, furthest from the cell 

membrane. The subunits are thought to contact each other in the extracellular domain primarily 

through polar contacts (Wells, 2008) while the transmembrane appears to make contacts mainly
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through hydrophobic contacts (Wells, 2008). The Cys-loop and the P1-p2 loop of the N-terminal 

extracellular domain of a subunit interact with the short TM2-TM3 loop of the TM domain (Unwin,

2005). This interaction may be linked to channel gating as described in the above sections.

The mouse a1 nAChR subunit bound to a-bungarotoxin was recently crystalized with a 

resolution of 1.94 A (Dellisanti et al., 2007). In the extracellular region, the Cys loop and the 

previously unknown N-linked glycosylation moiety appeared to interact with the bound a- 

bungarotoxin (see Figure 2.6). Functional studies demonstrated that the carbohydrate chain is 

involved in a-bungarotoxin binding and channel gating (Dellisanti et al., 2007).

2.6.5 X-Ray Crystallography and Molecular Modeling of AChBP.

In 2001, the 2.7A resolution X-ray crystal structure of the acetylcholine binding protein 

(AChBP) from the fresh water snail Lymnaea stagnalis was determined by Brejc et al.., (2001) 

(Figure 2.13). To date, three different AChBP proteins have been isolated from freshwater 

mollusks Lymnaea stagnalis (Brejc et al., 2001), Aplysia californica (Hansen et al., 2004), Bulinus 

truncates (Celie et al., 2005). In the snail, AChBP is secreted into the synaptic cleft and is thought 

to regulate neurotransmission by quenching ACh (Smit et al., 2001). These pentameric water 

soluble proteins lack the transmembrane and cytosolic domains; therefore AChBP may only be a 

model of the binding and not the gating mechanism.
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Figure 2.13 AChBP structure overview.
A) A stereo image of one subunit from the AChBP viewed from outside the pentameric ring. The 
N-terminus is colored blue while the C-terminus is colored red. The disulfide bridge found on the 
C-loop is colored in green ball-and-stick representation. The p-sheets are numbered. B) The 
topology of a AChBP subunit is shown. The Immunoglobulin-like folds have been labeled in 
alphabetical letters. The p-strands have been labeled p1 -10 and the loops have been labeled L1- 
10. The disulfide bridge is labeled as S-S. (Image reprinted with permission from (Brejc et al., 
2001).)

AChBP appears to be a good structural model of nAChR extracellular domain. The 

AChBP backbone is similar to nAChR with a comparative sequence of 20-40% homology (Wells,

2008). However, despite the low sequence homology, many other aspects of the tertiary and 

quaternary structures are similar. For example, nearly all of the conserved residues found in the 

nAChR family are also found in the AChBP (Brejc et al., 2001) and the AChBP binds similar 

agonist and antagonist such as ACh, nicotine, d-tubocurarine and a-bungarotoxin (Smit et al., 

2001).

The Brejc et al., crystal structure of Lymnaea AChBP showed that the amino terminal of 

each subunit consists of an a-helix, two short 3i0 helices and a core of ten p-strands forming a p- 

sandwich (Brejc et al., 2001) (Figure 2.13). The AChBP p-strands are considerably twisted with 

the p-sheets rotated against each other causing two separate hydrophobic cores to be formed 

(Brejc et al., 2001). Presumably, AChBP’s hydrophobic cores are the same structures described 

as the inner and outer P-sheets in nAChR. The 210 amino acid sequence of each AChBP subunit 

is the same and is most similar to the a7 nAChR (Brejc et al., 2001). The Cys-loop contains 14 

residues instead of the usual 15 (Brejc et al., 2001).
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2.6.5.1 AChBP Crystal Structure Bound to Orthosteric Ligands.

In Brejc et al.’s Lymnaea AChBP structure, the ligand binding sites are occupied by 

HEPES, a common buffering agent used in electrophysiological experiments (Brejc et al., 2001) 

(Figure 2.14A). The Lymnaea AChBP crystal structure bound to the nicotinic agonists nicotine 

and carbamylcholine provides insights into the orthosteric binding site (Celie et al., 2004; Karlin,

2004). Usually negatively charged, the orthosteric site facilitates the interactions with the 

positively charged tertiary nitrogen of nicotine and the quaternary nitrogen of carbamylcholine 

(Dougherty and Stauffer, 1990; Dougherty, 1996; Zhong et al., 1998). The negative charges 

within the orthosteric site are formed by the tt  electrons from the aromatic residues W143, Y192, 

Y1185 and W53 and the backbone carbonyl of W143 (Dougherty and Stauffer, 1990; Dougherty, 

1996; Zhong et al., 1998).

The C-loop in AChBP crystal structures suggests that this loop undergoes structural 

movements depending on the ligand bound in the orthosteric site (Figure 2.14B). The HEPES-, 

nicotine- and carbamylcholine- bound structure shows that the C-loop is positioned over the 

ligand (Brejc et al., 2001; Celie et al., 2004; Karlin, 2004). The Lymnaea AChBP with a- 

cobratoxin, an antagonist of nAChR, indicates a movement of the C-loop away from the binding 

site (Bourne et al., 2005). Comparison of AChBP structures free of ligand, agonists ((+)- 

epibatidine and lobeline) and antagonists (a-conotoxin Iml and methyllycaconitine) bound 

structures reveal that agonist binding induced C-loop closure (Hansen et al., 2004; Hansen et al.,

2005) (Figure 2.14).
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Figure 2.14 AChBP with agonist and antagonist bound.
A) AChBP side view. The ligand binding site (ball and stick representation) is shown between the 
yellow and blue subunits. (Image reprinted from (Brejc et al., 2001) and used with permission.) B) 
Conformational change mechanism and ligand selectivity. Top: The top view of the Iml-bound (C- 
loop red) and epibatidine bound Aplesia AChBP penatmers (C-loop blue). Structure shows how 
distant conformations for the agonists and antagonists bind. Bottom: The overlay of the C-loop in 
the apo (grey), Iml (red), methylcaconitine (green) and epibatidine (blue). The bound epibatidine 
ligand is shown in light grey. The arrow depicts the motion of the opening and closing of the C- 
loop upon antagonist and agonist binding. (Image reprinted from (Hansen et al., 2005) and used 
with permission.)

2.6.5.2 AChBP Crystal Structure Bound to Allosteric Ligands.

The crystal structure of Aplysia AChBP bound to galanthamine and cocaine, positive 

allosteric modulators of nAChRs, demonstrate that these ligands bind deeply into the subunit 

interfaces without contacting the C-loop tip (Hansen and Taylor, 2007). AChBP, from the Bulinus 

truncates, was crystalized using the common biochemistry buffer agent N-cyclohexyl-3- 

aminopropanesulfonic acid (CAPS) (Celie et al., 2005). CAPS molecules were found in four of the 

five ligand binding sites (Celie et al., 2005). These crystal structures may provide insight on the 

different conformational changes that occur in response to binding of different ligands.

2.7. Orthosteric and Allosteric Binding Sites.

The agonist binding site on LGIC is located between two receptor subunits (Figure 2.7). 

The binding site for the endogenous agonist is commonly referred to as the “orthosteric" binding 

site while the binding sites for allosteric modulators are commonly referred to as “allosteric” 

binding sites. The allosteric site includes loops A, B and C on the primary face and p-strands D, E 

and F on the complementary face (Figure 2.7). Both sites include highly conserved aromatic
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residues. In general, the orthosteric site is negatively charged allowing favorable interactions 

between the positive charges of tertiary and quaternary nitrogens on nicotinic ligands (Dougherty 

and Stauffer, 1990; Dougherty, 1996; Zhong et al., 1998) (Figure 2.7). The negative charges 

within the orthosteric site are formed by the tt  electrons from the aromatic residues W143, Y192, 

Y1185 and W53 and W143’s carbonyl backbone (Dougherty and Stauffer, 1990; Dougherty, 

1996; Zhong et al., 1998).

A selective review of well-characterized binding sites and significant therapeutic ligands 

including the serotonin, GABAa and Nicotinic receptors follows. Elucidation and characterization 

of ligand binding sites will lead to a greater understanding of the protein and the development of 

novel therapies.

2.7.1 Characterized Binding Sites on the Serotonin Type 3 Receptor (5-HT3R).

5-HT3R are involved in various physiological functions including cognitive processing, 

sensory transmission, regulation of autonomic function, integration of vomiting, reflex, pain 

processing and control of anxiety (Barnes and Sharp, 1999; Hu and Lovinger, 2008) . 5-HT3 

receptors have two different subunits, 5-HT3A and 5-HT3B. 5-HT3A forms a homomers while 5-HT3B 

only forms a|B heteromers. In the nervous system, 5-HT3R mediates fast excitatory synaptic 

transmission and modulates neurotransmitter release (Hu et al., 2003).

2.7.1.1 The 5HT3R Orthosteric Binding Site.

In 5HT3R, the primary side chain interactions for the orthosteric binding site appear to 

come from loops A, B and C on the principal face (Figure 2.15). On the complementary face, 

amino acids on the D and E p-strands appear to play a role in ligand binding (Figure 2.15). The F 

P-strand has yet to be thoroughly investigated. The chemical structures of the discussed 

serotonin (5-HT) ligands are shown in Figure 2.16.
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Figure 2.15 The orthosteric binding site of 5-HT3AR-
Residues that have been demonstrated biochemically to participate in the binding and/or gating of 
5-HT3 agonist and/or antagonist. Extracellular region modeled after Lymnaea stagnalis AChBP 
(PDB ID 2ZJV). The position of the labeled residues is the approximate location.

In the A-loop, E129 or F130 faces into the binding pocket (Price et al., 2008) (Figure

2.15). Results reveal that a hydrogen bond forms between E129 and the hydroxyl group of 5-HT 

(Price et al., 2008). Other residues in the A-loop such as N128 and F130 may also play a role in 

receptor gating, but they do not participate in ligand binding (Price et al., 2008) (Figure 2.15).

W183 in loop B (W143 in AChBP) is entangled in ligand-receptor interactions and 

appears to be the core of the binding site (Spier and Lummis, 2000; Beene et al., 2002) (Figure

2.15). It has been postulated that W183 forms cation-TT interactions with the amino group of 5-HT 

(B eene et al., 2002) or arom atic interactions with 5-HT (Suryanarayanan et al., 2005).

In the C-loop, residues E225, F226, D229, Y234 and E236 have been shown to be 

important residues in the orthosteric binding site (Figure 2.15). D229 and Y234 in the C-loop 

appear to be important binding residues (Beene et al., 2002; Suryanarayanan et al., 2005). This 

region of the receptor has little sequence homology with AChBP, making it difficult to align the
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protein’s sequences. Y234 appears to align best with AChBP Y192 (Celie et al., 2004). Y234 

appears to play a role in 5-HT binding and/or gating, and is probably the most important residue 

in the binding pocket (Beene et al., 2004). Unnatural amino acid mutagenesis studies suggest 

that 5-HT orients itself so that the primary amine is located between W183 and Y234 (Beene et 

al., 2004). It has also been suggested that an inter-subunit contact forms between Y234 and 

Y143 in loop E (Maksay et al., 2003). D229 in the C-loop is another important residue aligning 

with C187 or Y185 (Celie et al., 2004). Alanine mutations of D229 in 5-HT3R decreased 5-HT and 

granisetron, but not m-chlorophenylguanide (mCPBG) affinity (Suryanarayanan et al., 2005). 

These data suggest that interactions are formed between D229 and the ligands 5-HT and 

gransietron. Residues E225, F226 and E236 in the C-loop also appear to be involved in the 

orthosteric binding site. Mutagenesis studies of E225 have shown that E225 is involved in both 5- 

HT binding and gating of the receptor (Schreiter et al., 2003). F226 (similar in position to Y185 in 

AChBP) appears to be essential to 5-HT binding and receptor gating (Suryanarayanan et al.,

2005). E236 (D194 AChBP equivalent) in 5-HT docking studies have shown that a salt bridge is 

formed between E236 and the 5-HT amino group (Schulte, 2006).

In the A-loop, E129 and F130 are involved in iigand binding (Figure 2.15). These 

residues have been shown to interact with the 5-HT ammonium group by ionic or hydrogen bond 

interactions (Boess et al., 1997; Steward et al., 2000). Residue F130 appears to be important for 

agonist selectivity and when mutated to the a1 nAChR equivalent N, the F130N mutant 5-HT3R 

become responsive to ACh (Steward et al., 2000).

On the complementary face, the binding site consists of the D, E and F (3-strands (Figure

2.15). W90 and R92 reside on the D-p-strand and are involved in maintaining the proper binding 

site structure (Yan and White, 2002). A more recent study suggests that graniestron’s orientation 

is such that the tropane ring interacts with W90 while R92 interacts with the indazole ring (Yan 

and White, 2005). Antagonist may directly interact with R92 (Yan and White, 2005).

In the E-P-strand, residues Y141, Y143, and Y153 are involved in the orthosteric site on 

5-HT3Rs (Figure 2.15). The ligands 5-HT and mCPBG interact with residue Y143, (+)- 

tubocurarine (dTC) with Y141 and lerisetron with Y143 and Y153 (Venkataraman et al., 2002a; 

Venkataraman et al., 2002b; Beene et al., 2004; Price and Lummis, 2004). The effects on 5-HT3R 

antagonist binding affinity suggest that the E-loop region directly affects ligand binding 

(Venkataraman et al., 2002a; Venkataraman et al., 2002b). Residues L112 and M114 may also 

make hydrophobic interactions with nicotine (Celie et al., 2004) and dTC (Gao et al., 2005), 

respectively. Mutations of Y141, Y143 and Y153 have been demonstrated to significantly alter the 

binding of 5-HT3R ligands (Beene et al., 2004). Residues Y142, G148, E149, V150, Q151, N152,
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Y153 and K154 have been implemented to be important for granisetron binding (Venkataraman 

et al., 2002a) (Figure 2.15). Y143 and Y153 have been revealed to play a role in receptor function 

while Y153 is involved in ligand binding (Beene et al., 2004).

The structure of the F-p-strand has yet to be thoroughly investigated. Thompson et al., 

(2005) exhibited that residues W195 and S206 in mouse 5-HT3Rs are critical for ligand binding, 

and may be involved in conformational changes within or close to the binding pocket (Thompson 

et al., 2005; Thompson et al., 2006) (Figure 2.15).

2.7.1.2 The 5-Hydroxyindole Binding Site.

The 5-HT binding site has been previously shown to bind a wide variety of ligands 

ranging from antagonists to agonists and may possibly include allosteric modulators (Kooyman et 

al., 1994; Yan et al., 1999). The positive allosteric modulator 5-hydroxyindole (5-HI) is a serotonin 

analogue (Figure 2.16) that displays biphasic behavior consisting of both competitive inhibition 

and allosteric potentiation actions on the homomeric 5-HT3A receptor. This suggests that there 

are at least two distinct binding sites, one located at the orthosteric site and the other at a 

separate binding pocket (Kooyman et al., 1994). The mutation L293A on 5-HT3A converted 5-HI 

to a partial agonist which was blocked by antagonist binding (Hu and Peoples, 2008). These 

results suggest that either 5-HI binds at the orthosteric site and/or that residue L293 is part of the 

5-HI binding site. Studies have also shown that upon washout of 5-HI, rebound currents occur 

(Hu and Peoples, 2008). Rebound currents have been previously linked to open-channel block 

(Liu et al., 2008b), suggesting that 5-HI may also bind within the channel.

NH.

Serotonin M-chl orophenylguanide 
(mCPBG)

Granisetron
(S-HT)

(+)-tubocurarine
(dTC)

5-hydroxyindole
(SHI)lerisetron

Figure 2.16 Chemical structures of serotonin ligands.
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2.7.2 Characterized Binding Sites on Gamma Amino Butyric Acid (GABA) Receptors.

GABAa receptors mediate synaptic inhibition in the CNS. One of the best characterized 

LGIC binding sites is the benzodiazepine site on GABAaRs. The benzodiazepine binding site was 

reviewed by Sigel in 2002 so only a summary of the important findings discovered in the last nine 

years are discussed here (Sigel, 2002). In addition, the newly characterized neurosteroid and 

general anesthetic binding sites are summarized below.

2.7.2.1 The Benzodiazepine Binding Site.

Classical benzodiazepines (BZ) are positive allosteric modulators of the GABAa receptor. 

BZ act primarily by increasing the affinity of the agonist GABA without affecting the maximal 

induced current amplitude (Sigel, 2002). It has recently been found that GABA evoked currents 

on GABAaRs containing the a4 or a6 subunit can be potentiated by the BZs diazepam and 

flunitrazepam (You et al., 2010). The a and p subunits are sufficient to mediate GABA activated 

Cl' currents while the y subunit is needed for functional modulation by BZ as demonstrated with 

y2 knockout mice (Gunther et al., 1995). Research has demonstrated that the BZ binding site is 

located at the a and y interface (Sigel and Buhr 1997). Non-BZD hypnotics used for treating 

insomnia also bind at the BZ binding cleft (Hanson et al., 2008). Only the key structural 

components of the BZ binding site structure are reviewed here (Figure 2.17). Reviews by Sigel 

and Buhr (1997) and Sigel (2002) are available for a more comprehensive coverage (Sigel and 

Buhr, 1997; Sigel 2002).
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y-Amsnobutync acid Flunitrazepam Diazepam Eszopicione Zolpidem
(GABA)

Figure 2.17 Summary of the residues found benzodiazepine binding site on GABAaR 
and the chemicai structure of the benzodiazepines.
A) A-loop shows residues that have been demonstrated biochemically to participate in the binding 
of benzodiazepines in GABAaR. Extracellular region modeled after Lymnaea stagnalis AChBP 
(PDB ID 2ZJV). The position of the labeled residues is the approximate location. B) B-loop shows 
the chemical structures of the benzodiazepine ligands discussed in the text.

The a1 subunit is the main subunit that is photoaffinity labeled by the BZ flunitrazepam 

(Figure 2.17B for chemical structure). Specifically, H101 in loop A appears to be critical for 

flunitrazepam modulation (Duncalfe et al., 1996) and forms a covalent attachment at the C-7 

position of diazepam as shown by radioactive ligand binding and two-electrode voltage clamp 

methods (Berezhnoy et al., 2004). The pendant phenyl group of flunitrazepam also interacts with 

aH101 (McKernan et al., 1998). When a1Y159 in loop B was mutated to serine an impairment of 

diazepam modulation occurred (Amin et al., 1997). aY159 and aY161 in loop B, aT206 and Y209 

in loop C have significant effects on BZ function whereas S205 and Y210 loop C are important for 

BZ selectivity (Sigel and Buhr, 1997; Wagner and Czajkowski, 2001). Mutating the a1Y209 (C 

loop) residues nearly abolished flunitrazepam current stimulation (Buhr et al., 1997b). Other
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studies show that when a1Y209 is mutated to a serine diazepam’s EC50 is increased by >7-fold 

(Amin et al., 1997). Mutations of a1G200 and a1T206 in loop C alter affinities for BZ suggesting a 

role in the binding pocket (Schaerer et al., 1998) (Figure 2.17).

The region of y2D75, y2l76 and y2l77 in the D-p-sheet has been shown to drastically 

reduce allosteric modulation by flurazepam (Teissere and Czajkowski, 2001) (Figure 2.17). 

Residue y1F77 (D-P-sheet) is important for BZ direct interactions and selectivity (Buhr et al., 

1997a). Displacement studies using the point mutation y2F77Y caused a 250-fold reduction in 

diazepam affinity suggesting that the tyrosine hydroxyl group interferes with diazepam binding 

(Sigel et al., 1998). Using Substituted Cysteine Accessibility Method (SCAM), it has been shown 

that the region around y2A79 (D-p-sheet) in the BZ binding pocket becomes more accessible to 

MTSEA-biotin modification during GABA binding (Teissere and Czajkowski, 2001). These results 

suggest that at least a portion of the BZ binding pocket undergoes conformational change in 

response to GABA binding and channel gating (Teissere and Czajkowski, 2001). Amino acid 

residues y2A79 (D-P-sheet) and y2M130 (E-P-sheet) appear to be required for high affinity 

binding of various BZ, but does not alter BZ efficacy (Wingrove et al., 1997). Amino acid y1T142 

(E-p-sheet) affects BZ efficacy suggesting a role in conformational change, facilitated possibly by 

a hydrogen bond with aY160 (loop B) (Mihic et al., 1994). yM57 and yY58 (F-P-strand) are 

essential determinants for conferring high affinity BZ binding (Kucken et al., 2000) (Figure 2.17).

Alterations in zolpidem, eszopiclone (non-BZD hypnotics used for insomnia) and BZ- 

antagonist binding were studied using cysteine mutants in the BZ binding site (Hanson et al., 

2008). Mutations in the y2 loop D and a1 loop A and B altered the affinity of all tested ligands 

demonstrating that these loops provide a structural framework for the BZ binding cleft. y2 loop E 

and a1 loop C mutants had various effects on ligand affinity suggesting that these loops are 

important for ligand selectivity. Molecular modeling of the binding site showed that docking of 

eszopiclone and zolpidem yielded a model stabilized by several hydrogen bonds. Alternatively, 

zolpidem docking showed the ligand binding via three equally populated orientations with few 

polar interactions. These results suggest that unlike eszopiclone, zolpidem binds in response to 

shape recognition of the BZ binding pocket rather than specific amino acid interactions, and may 

explain why zolpidem is a1 and y2 subunit selective (Hanson et al., 2008).

2.7.2.2 The Neurosteroid Binding Site.

The most potent endogenous modulators of GABAa receptors are neurosteroids, 

specifically allopregnanolone and tetrahydrodeoxycorticosterone, which are synthesized in 

neurons and glia cells from cholesterol (Hosie et al., 2007) (Figure 2.18B for chemical structures). 

At low nanomolar concentrations neurosteroids potentiate GABA responses (Stell et al., 2003)
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and at sub to micromolar concentrations can directly activate the receptor (Majewska et al. 

1986). The putative GABAa neurosteroid binding sites have been recently reviewed (Hosie et al.

2007) and a brief summary follows (Figure 2.18).

HO

Allopregnanolone Tetrahydrodeoxycorticosterone 

CN

(3a,5a,17 )-3-Hydroxyandrostane- 
17-carbonitrile

OhttlWMVXMWWl 7-Nitrobenz-2-oxa-1,3-diazole

Figure 2.18 The neurosteroid binding sites in GABAaR.
A) Top: A homology model for a1 and (32 subunits of the GAE3AaR. The TM2 domain is colored 
cream. The residues Q241, N407 and Y410 are shown in a space-filled layout. These residues 
have been shown to be important for the steroid potentiation site in the a1 subunit (green). 
a1T236 and (32Y284 (blue) are located within the activating site. The 
tetrahydrodeoxycorticosterone molecules are shown docked into each site and viewed from 
within the plane of the membrane. Bottom: Same model of the binding sites, but viewed from a 
bird’s eye perspective of only the transmembrane region. A primary sequence comparison of 
GABAa GABAcp1 and glycine a1 receptors for the major residues involved in steroid binding are 
compared in the tables. Red residues are involved in the activation site and blue residues are 
found in the potentiation site. (This image was modified and reprinted from (Hosie et al., 2007) 
with permission.) B) The chemical structures of the discussed steroids.
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Based on studies using excised patches and the steroids 7-Nitrobenz-2-oxa-1,3-diazole 

and (3a,5a,17(3)-3-Hydroxyandrostane-17-carbonitrile, it appeared that steroids must accumulate 

in the cell membrane for modulation to occur (Akk et al., 2005) (Figure 2.18B). This strongly 

suggests a role of the transmembrane region in neurosteroid modulation (Akk et al., 2005). 

Specifically, mutation of (32G219 located at the N-terminal of TM1 either reduced or enhanced the 

potentiation of GABA currents by various neurosteroids (Chang et al., 2003). Authors reasoned 

that G219 was more likely to be involved in the general mechanism of receptor modulation rather 

than contributing specifically to the binding site because mutations of (32G219 failed to prevent 

direct gating by pentobarbital propofol, etomidate and alphaxalone. Amino acid residue p1l307 

located in TM2 was found to enhance and reduce anesthetic action in addition to altering the 

receptor’s pharmacology suggesting that this residue may be involved in influencing allosteric 

modulation of the receptor function (Belelli et al., 1999; Morris and Amin, 2004) (Figure 2.18A).

Using Drosophila GABAa receptor, the first two transmembrane domains of the a1 

subunit were found to be important regions for potentiation and direct receptor activation by 

various neurosteroids (Hosie et al., 2006a). Mutation of T236 was found to be critical for steroid 

activation. An I mutation of T236 markedly reduced receptor activation by 

tetrahydrodeoxycorticosterone and allopregnanolone, without affecting their potentiation 

responses to GABA (Hosie et al., 2006b). The Q241W mutation removed the potentiation of 

GABA currents and reduced the apparent neurosteroid agonist efficacy without altering the 

agonist EC50 (Hosie et al., 2006b). The transmembrane region aQ241-aN407/aY410 has also 

been proposed to be involved in a neurosteroid potentiation site (Hosie et al., 2007). A 

neurosteroid activating site has been located in the region around aT236-(3Y284 and there is at 

least one site for inhibitory sulphated steroids which likely involves the transmembrane 1 and 2 

domains (Hosie et al., 2007). These results propose that there may be two to four neurosteroid 

binding sites on GABAa receptors (Hosie et al., 2006b; Hosie et al., 2007) (Figure 2.18).

Homology modeling indicated that the polar residues T236 and Q241 are located in two 

discrete hydrophobic cavities that could each contain a steroid molecule implying the possibility 

for two binding sites (Hosie et al., 2006b) (Figure 2.18A). T236 is thought to be located on the 

outer surface of the receptor at the interface between the a and (3 subunits, but within the 

membrane. Q241 is thought to be located at the base of an aqueous pocket formed by the 

transmembranes 1-4 of the a subunit (Hosie et al., 2006b), which has also been proposed to 

interact with anesthetics (Mihic et al., 1997). Molecular modeling estimations of the steroid’s 

molecular dimensions and mutagenesis suggest that N407 and Y410 in the TM4 of the a1 

subunit are involved in ligand binding (Hosie et al., 2006b) (Figure 2.18A). It is considered
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unlikely that the 5 subunit contributes to the potentiation binding site although it may affect the 

efficacy of potentiation (Hosie et al., 2009).

2.7.2.3 The Anesthetic Binding Site.

General anesthetics, such as etomidate and propofol, have been shown to act by 

modulating LGIC such as GABAa receptors possibly by the same putative binding pocket as 

neurosteroids (see Figure 2.18 above). The a1 subunit appears to contribute L232 (TM1), S270 

(TM2), A291 (TM3) as well as Y411, T414 and Y415 (TM4) (Mihic et al., 1997; Krasowski and 

Harrison, 1999; Mascia et al., 2000; Jenkins et al., 2001; Jenkins et al., 2002). In the 02 and 03 

subunits, N265 (TM2) has been shown to be important for etomidate modulation but it is unclear if 

N265 is located within the binding pocket (Belelli et al., 1997; Moody et al., 1997; Moody et al.,

1998) (Figure 2.19 for chemical structure). Using a radioactive etomidate analogue, a1M236 in 

the TM1 and 03M286 in TM3 were photolabeled suggesting the binding site is at the 0 and a 

transmembrane interface (Li et al., 2006).

Figure 2.19 The chemical structures of the discussed anesthetic compounds.

The propofol cavity appears to be located closer to the membrane-extracellular interface 

between TM1 and TM4 (Figure 2.19 for chemical structure). Mutation of M286 to a tryptophan in 

the 02 subunit abolished propofol potentiated GABA responses, but did not affect the direct 

activation of GABAaR in absence of GABA (Krasowski et al., 2001). A hydrogen bond was 

predicted to form between Q224 and the propofol hydroxyl hydrogen atom. A tt - tt  stacking 

interaction may occur between the Y448 phenyl ring and propofol. Other possible important sites 

of interaction include L223, T225 and Y226 in TM1, L285, F289 and F293 in TM3 and Y444 and 

W445 in TM4 (Campagna-Slater and Weaver 2007).

Recently, (Campagna-Slater and Weaver, 2007) used molecular modeling to further 

investigate this binding region in GABAa receptors using the ligands etomidate and propofol. 

Models identified two cavities in the 02 subunit. The etomidate binding sites appeared to be in the 

transmembrane domain between the TM1 and TM4 and between the TM3 and TM4. There 

appeared to be tt - tt  stacking interactions formed between the imidazole ring of W237 (TM1) and

Etomidate Propofol
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the phenyl group of etomidate. Other residues that may be important in etomidate binding include 

I230, L231, T233, I234 and S236 in TM1, M261 in TM2 and F293, L296, L287 and A300 in TM3 

(Campagna-Slater and Weaver, 2007).

2.7.3 Characterized Binding Sites on Nicotinic Acetylcholine Receptors.

nAChR are excitatory receptors found in the CNS. Several allosteric binding sites have 

been characterized on the nAChR. The allosteric compounds physostigmine, divalent calcium, 

NS-1738 and PNU-120586 galanthamine, 17(B-estradiol and zinc are included in the following 

discussion.

2.7.3.1 The Physostigmine Binding Site.

Physostigmine is a cholinesterase inhibitor that stimulates both nicotinic and 

muscarinic receptors (Figure 2.20 for chemical structure). Only a single attempt to characterize 

the physostigmine binding site has been published. Using outside-out patches from cultured 

hippocampal neurons it was shown that a7 nAChR residue aL125 appears to be essential to the 

physostigmine binding site (Pereira et al., 1993).

c h 3

Figure 2.20 Chemical structure of physostigmine.

2.7.3.2 The Divalent Calcium Biding Site.

Divalent calcium (Ca2+) is capable of modulating neuronal nAChRs by enhancing agonist 

affinity, efficacy and cooperativity (Hill coefficients) (Galzi et al., 1996). It has been suggested that 

the ACh and Ca2+ binding sites may be close together but occupy distinct locations (Galzi et al., 

1996). Early work using a7/5-HT3 receptor chimeras revealed that Ca2+ potentiated the chimera, 

but not the 5-HT3 receptor. This observation indicated the allosteric effect of calcium ions was 

mediated by a binding site located on the N-terminus of a7 nAChR (Maricq et al., 1991). Later, 

use of the a7/5-HT3 chimera combined with site directed mutagenesis uncovered ligand binding 

residues in the putative binding site (Galzi et al., 1996; Eddins et al., 2002). Mutations a7E18Q 

and a7E44Q abolished calcium enhanced agonist affinity, but maintained Ca2+ potentiation and 

cooperativity (Figure 2.21). Mutations in the region of a7 (161-172) (F-(3-strand) had a variety of 

effects on Ca2+ modulation. Potentiation was enhanced by D163N and S169E (F-p-strand)
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mutations while E161R, S165E and Y167F reduced or abolished (E172Q) the effects of calcium 

(Galzi et al., 1996; Eddins et al., 2002) (Figure 2.21). Molecular modeling of the a7 extracellular 

domain onto the crystal structure of the AChBP showed that E172 lines the “bottom” of the outer 

vestibule near the interface of the extracellular domain and the transmembrane domains (Figure 

2.21). This model suggested that E172 is accessible to cations in the water filled vestibule 

(Eddins et al., 2002). The mutation E195Q was recently shown to be in the Ca2+ binding site and 

also reduces quercetin mediated enhancement of a7 ACh induced currents (Lee et al., 2010a). 

These results suggest that quercetin may also be binding in the same binding pocket as Ca2+.

Figure 2.21 The putative Ca2+ binding site on a7 nAChR.

This diagram illustrates the location of the Ca2+ binding site on a7 nAChR. Residues labeled have 
been shown to alter Ca2+ potentiation. Residues are located on the F-p-strand on the 
complementary face of the a7 subunit.

2.7.3.3 The NS-1738 and PNU-120596 Binding Sites.

The a7 nAChR positive allosteric modulators (PAMs) 1-(5-chloro-2-hydroxyphenyl)-3-(2- 

chloro-5-trifluoromethylphenyl)urea (NS-1738) and 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methyl- 

isoxazol-3-yl)urea (PNU-120596) have recently been shown to selectively potentiate, alter affinity 

and Hill coefficients of ACh-induced currents (Figure 2.22 for chemical structures). NS-1738 is
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thought to be a type I modulator while PNU-120596 alters desensitization kinetics making it a 

type II modulator (Bertrand and Gopalakrishnan, 2007). Type 1 modulators are molecules that 

affect the induced peak current (Bertrand and Gopalakrishnan, 2007). A type II modulator is a 

ligand that alters both the peak current and the time course of the agonist evoked repose 

(Bertrand and Gopalakrishnan, 2007). These two PAMs are structurally similar but have different 

functional effects on a7 nAChR suggesting that these modulators may act at allosteric binding 

sites (Bertrand et al., 2008). By using chimeras of a7 and 5-HT3 receptor domains, the binding 

regions of these two modulators were narrowed down. Results suggested that the extracellular N- 

terminal domain of a7 plays a critical role in NS-1738 modulation while PNU-120596 probably 

interacts with one or more of the transmembrane domains of the receptor (Bertrand et al., 2008).

Figure 2.22 Chemical structures of NS-1738, PNU-120596 and LY-2087101.

Further studies investigating the role of the transmembrane domains in allosteric 

modulation concluded that the TM1-3 are the principal determinates of potentiation by the 

allosteric modulator PNU-120596. Specifically residues Ser222 (TM1), Ala225 (TM1), Met253 

(TM2) and Phe455 and Cys459 (TM4) influenced potentiation by PNU-120596 (Young et al.,

2008). Homology models of a7 and the crystal structure of the Torpedo nAChR showed that 

these amino acid residues are located centrally within the transmembrane helices and point 

towards the intra-subunit cavity located between the four helical domains. In contrast, residues 

that induce no effect on potentiation are positioned away from the central cavity. Blind docking 

studies suggest a role for these residues in binding of PNU-120596 and LY-2087101 (a type I 

modulator) (Young et al., 2008).

2.7.3.4 The Galanthamine Binding Site.

1-{5-chioro-2-hydroxyphsnyl)-3- 1-{5-chtoro-2,4-dimethoxyphenyl)-3-
{2-cbloro-5-tnfluoromethylpheny!)urea (5-methyl-isoxazol-3-yl)urea 

(NS-1738) (PNU-120596)(PNU-120596)

[2-[(4-Fluorop(ienyl)am(no)-4-methyi 
-5-thiazoiyl]-3-th!enylmethanone 

(LY-2087101 )

Galantamine, an approved drug for the treatment of Alzheimer’s disease, is a dual action 

drug that inhibits acetylcholinesterase and is a allosteric modulator of 03(34, a4(32 and a6(34 

nAChR as demonstrated by whole-cell patch clamp studies using human embryonic kidney-293
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cells (Figure 2.23 for chemical structure) (Samochocki et al., 2003). In an attempt to visualize the 

extracellular regions of heteromeric nAChRs bound to galanthamine and cocaine, the vicinal 

cysteines in the C-loop on AChBP were mutated to be more similar to the non a subunit 

interfaces of nAChR and other Cys-loop receptors (Hansen and Taylor, 2007). The 2.9 A 

resolution crystal structures of Aplysia AChBP exposed galanthamine bound to four of the five 

subunits. In the binding sites that contained galanthamine the C-loop was against the ligand, but 

the vicinal cysteines were positioned away from the ligand. Galanthamine was found to be bound 

in two conformations in equal proportions. Galanthamine’s amine nitrogen was positioned 

between W147 and either Y93 or Y55. The oxygen atom of galanthamine was positioned towards 

the C-loop in both conformations. In the cocaine bound 1.8 A structure of Aplysia AChBP, 

cocaine occupied two of the five possible binding sites. The vicinal cysteines in one subunit 

contacted the benzene ring of cocaine (Hansen and Taylor, 2007).

Figure 2.23 Galanthamine and cocaine chemical structures.

Using X-ray structures of cocaine and galanthamine bound to mutated AChBP revealed 

interactions deep within the non-a subunit interface and maintained little contact with the C-loop 

tip (Hansen and Taylor, 2007). Mutations were only made in the vicinal cysteines of the C-loop 

and results should be interpreted with caution. The data can only illustrate the events that 

occurred when the vicinal cysteines were not present. To further our understanding of the 

interactions occurring within the non-a subunits, this region in the AChBP could be mutated to 

residues found in nAChR and other Cys-loop receptors. Contrary to Hansen and Taylor’s 

conclusions (2007), immune epitope mapping studies and photoaffinity labeling suggested that 

the galanthamine binding site is close to but distinct from the ACh binding site on the a nAChR 

subunit (Schrattenholz et al., 1993; Maelicke et al., 2000).

Galanthamine Cocaine
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2.7.3.5 The 17(i-Estradiol Binding Site.

The steroid 170-estradiol selectively potentiates human a402 neuronal nAChR while not 

potentiating rat a402 nAChR (Figure 2.24 for chemical structure). The sequence AGMI at the end 

of the C-terminus of the human a4 nAChR appears to form the binding site of 170-estradiol 

(Maelicke et al., 2000; Curtis et al., 2002). It appears that the steroid rings and/or the ethynyl 

group bind to the a4 C-terminus and the two steroid hydroxyl groups are free to interact with other 

amino acids elsewhere in the protein (Paradiso et al., 2001).

Figure 2.24 The chemical structure of 17p-estradiol.

2.7.3.6 The Zinc Binding Site.

Zinc modulates heteromeric nAChR and potentiates 0202, a204, a304, a402 and a404, 

but not a3p2. It was proposed that both the a and 0 subunits contribute to the zinc binding site 

(Hsiao et al., 2001). Using site directed mutagenesis, amino acid residues E59 and H162 on the 

rat a4 subunit were identified as potential mediators of zinc potentiation (Hsiao et al., 2006). 

Cysteine mutations at a4E59 (D-0-strand) and a4H162 (F-p-strand) caused a reduction of zinc 

potentiation upon treatment with methanethiosulfonate reagents /V-biotinoylaminoethyl 

methanethlosulfonate (MTSEA-biotin) and [2-{trimethylammonium)ethyl] methanethiosulfonate. 

The mutation a4H162C compared to E59C was more effective at hindering the MTSEA-biotin 

reaction in presence of zinc, suggesting that H162 may participate in the binding site for zinc 

(Hsiao et al., 2006). Less robust effects were seen at the a4E59C mutant, suggesting that a4E59 

may be near the zinc binding site. It was hypothesized that the zinc binding site occurred at the 

non-ACh binding site, the 04-a4 cleft and near the a4 resides H162 and E59 (Hsiao et al., 2006).

The zinc binding site was further elucidated by attempting to express two different a402 

stoichiometries using a high and low ACh sensitive receptor preparation. It was presumed that 

the high-sensitivity receptor preparation formed receptors with the stoichiometry (a4)2(02)3. The 

low-sensitivity receptor preparation was assumed to form receptors with the stoichiometry 

(a4)3(02)2. It was noticed that zinc inhibited the “(a4)2(02)2” stoichiometry and depending on the
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concentration, potentiated or inhibited “(a4)3(P2)2” stoichiometry (Moroni et al., 2008) (Figure 

2.25). These results suggest that the zinc potentiation binding site is located at the a4(-)/a4(+) 

cleft. Alanine mutations of a4H195 on the a4(-) face and a4E224 on the a4(+) face reduced the 

zinc potentiation effects of zinc and a4H195A shifted the zinc IC50 to the right. Authors reasoned 

that these residues are located in the zinc potentiation site. a4H195 (a4 (-) face) interacted with 

both the inhibitory and potentiation zinc binding sites (Moroni et al., 2008). a4H195A deceased 

the zinc IC50 in the high-sensitivity preparation. p2D218A (loop C) decreased the zinc IC50 

receptors expressed using the high-sensitivity preparation. P2D218A receptors expressed in the 

high-sensitivity preparation had enhanced zinc potentiation compared to wild-type receptors. 

Authors reasoned that the p2(+)/a4(-) interface found in both receptor stoichiometries to be the 

location of the putative zinc inhibitory binding site (Moroni et al., 2008) (Figure 2.25). The 

conclusions regarding P2D218 are somewhat surprising. Moroni et al., (2008) reasoned that an 

increase in zinc potentiation indicted that this residue was located in the inhibition binding site. It 

seems more plausible that some other mechanism or ligand may be causing the increase in zinc 

potentiation (see Chapter 5 for further explanation).
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Figure 2.25 The putative zinc potentiation and inhibition sites on a4f32 nAChR.
A) These figures illustrate the zinc potentiation and inhibition sites. The far left diagram is the 
presumed stoichiometric arrangement of receptors formed in the high-sensitivity receptor 
preparation. Middle and right images are the putative potentiation binding site of zinc. B) The zinc 
inhibition site is illustrated below. The far left diagram is the presumed stoichiometric arrangement 
of receptors formed in the low-sensitivity receptor preparation Middle and right images are the 
putative inhibition binding site of zinc. (Images are modified and used with permission from 
(Moroni et al., 2008).)

2.7.3.7 Channel Blockers.

A significant category of nicotinic drugs, channel blocking ligands may have therapeutic 

value in applications ranging from local anesthesia to smoking cessation Channel blockers 

function by sterically blocking the channel pore thereby preventing ion flux and altering the 

allosteric transitions of the nAChR (Taly et al., 2009). Channel blockers have been shown, by 

affinity labeling experiments, to bind to key residues 2, 6 , 9, 13 and 20 within in TM2 (Figure 2.26) 

(Giraudat et al., 1986; Blanton et al., 1998; Corringer et al., 2000). This is the face of TM2 that 

lines the inside of the channel pore. Various channel blocker binding sites have been shown to 

be located throughout the transmembrane channel. Binding sites have been mapped within the
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gate in the closed conformation of the receptor and at the entrance of the ion selectivity filter, 

which consists of rings of hydrophilic residues at the cytoplasmic border.

Figure 2.26 Location of channel blocking ligand binding sites in the TM2.
A diagram showing only the TM2 helix of two nAChR subunits. Channel blocker binding sites 
have been located within the gate in the closed conformation of the receptor and at the entrance 
of the ion selectivity filter. Residues at positions 2, 6 , 9, 13 and 20 in the TM2 have been shown 
by affinity labeling to affect to bind channel blocking residues. (Image used with permission and 
significantly modified from (Miller, 2002).)

2.8. Receptor Mechanism.

2.8.1 Allostery.

Allostery is the property of proteins to adopt conformations or shapes induced by the 

adherence of two or more ligands. The binding events at one location can influence the coupling 

episodes on a different part of a protein through structural changes in the protein that may or may 

not alter the rate of binding of the second ligand to the protein. An increased binding rate of the 

second ligand is considered positive cooperativity. Conversely, negative cooperativity occurs 

when the rate of the second ligand is decreased. The quantification of cooperativity can be 

estimated using the Hill coefficient, which corresponds to a hypothetical number of ligands that 

would have to be bound to the protein in an all-or-none fashion for the protein to exhibit perfect 

cooperativity.

Allostery classically describes the events surrounding the binding of one ligand to a 

protein and provoking a large conformational change that alters the affinity of another site for its 

ligand. Recently Tsai et al., (2008) have shown dramatic backbone deformations are not an
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essential characteristic of an allosteric effect (Tsai et al., 2008). It seems possible that allostery 

may arise from either large conformational changes or fluctuations in protein temporal dynamics. 

The conformational change of a protein is likely to be unique to the number and type of ligand(s) 

binding to the protein and the proteins structural composition.

The process of ion channel activation is a highly complicated mechanism that is only 

beginning to be understood. It is currently hypothesized that ligand binding a LGIC produces a 

conformational change in the protein and different types of ligands (agonists, partial agonists, 

antagonists, allosteric modulators, etc.) can induce different protein conformations. Ligand 

binding leads to an anticlockwise conformational wave (quaternary twist) that propagates through 

the protein causing the channel gate to open transiently and then close. The stabilization of each 

new conformation likely alters the structure of the orthosteric binding site and may modify the 

structure of allosteric subunit clefts as well.

LGICs can exist in at least three distinct conformations with different stabilization 

energies and are referred to as closed, open or desensitized. The closed state is the resting state 

of the receptor and is non-conducting whereas the open state actively conducts ions. The 

desensitized state is non-conducting and is distinct from the resting state. When exposed to low 

concentrations of ligand, it is most likely the receptor will enter an open (active) conformation or, 

although less likely, a desensitized state than remain in the closed state. Receptors have a high 

probability of existing in the desensitized state on continuous exposure to ligand. In the absence 

of ligand, the closed state predominates.

The conformational change of a protein may be driven by entropic effects which can be 

better understood through kinetic models. The process of a ligand binding to a protein may result 

in a decrease in the entropy of the system due to the translational and rotational degrees of 

freedom of the protein and the ligand no longer being independent. To better understand the 

biophysical characteristic of nicotinic receptors, kinetic models of receptor gating have and are 

currently being developed. Auerbach and Akk (1998) developed a kinetic model of the mouse 

muscle nAChR gating though single channel studies (Auerbach and Akk, 1998) (Figure 2.27). 

The receptor in the closed conformation (R) can bind two ACh molecules in two steps. The affinity 

for each site is relatively low but each site has a high forward rate constant 4x1 O'8 M'1s'1. A 125 

pM concentration of ACh half saturates the two equivalent ACh binding sites. Binding of ACh 

produces a massive increase in the probability of the channel opening (O*). In a diliganded 

mouse AChR, the gate will open approximately 50 times faster than the receptor closes. 

Comparatively, spontaneous channel opening events without a ligand can occur but the gate 

opens only about twice as fast as it closes (Auerbach and Akk, 1998). The calculated equilibrium
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constant for spontaneous openings is approximately 3.0 x 10"6 The mean open time of a mouse 

muscle nAChR bound with two ACh molecules is 670 pS. The channel then closes with the two 

ACh molecules bound to the A2D state. At this point, the receptor can either lose one ACh 

molecule or it can reopen with a probability of 0.5. If ACh is constantly present, the receptor can 

also move from the open (A20*) to a desensitized (D) state. As the ACh comes off the channel, 

the receptor goes through a one ACh bound desensitized state and then to the closed state 

(Auerbach and Akk, 1998) (Figure 2.27).
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Figure 2.27 Auerbach and Akk (1998) kinetic model of mouse muscle nAChR.

The small alphabetical letters are the forward and reverse rate constants for the different receptor 
states. The k_ values are the agonist dissociation rate constants and the k+ values are the agonist 
association rate constants. K2ACh and KACh are the equilibrium dissociation constants (Kd) for 
double and single liganded states. Numerical values were taken from (Auerbach and Akk, 1998).

Equilibrium constants determined experimental can be used to calculate the free energy 

differences between the receptor conformations using the relationship AG0 = -RTIn(K) (Auerbach 

and Akk, 1998). The equilibrium constants shown in Figure 2.27 were used to calculate the free 

energy diagram shown in Figure 2.28 (Auerbach and Akk, 1998). The A2D state is -27.3 kT more 

stable than the resting state (C). During the nAChR recovery the receptor passes through the 

desensitized (D) state. The no liganded D state is the only state that is less stable than the resting 

state of the receptor (Auerbach and Akk, 1998).
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Figure 2.28 Free energy diagram of mouse muscle nAChR for activation, 
desensitization and recovery.

Top) The cyclic reaction of the receptor transition between the closed (C), open (O) and 
desensitized (D) states. For simplicity, the two agonist binding steps were condensed. The AG 
sign pertains to the clockwise direction. Bottom) A graphical representation of the calculated free 
energies of the different receptor states. The unliganded closed receptor is the ground state. 
Activation of receptors was accomplished by application of 1 M ACh. The A2D state is the most 
stable conformation. The D state is the only state that is less stable than the C state. (Image 
reprinted from (Auerbach and Akk, 1998) and used with permission).

2.8.2 Conformational Change Models.

The signal transduction mechanism of the nAChR has been proposed to involve a global 

transition of the molecule, referred to as allosteric transition (Koshland, 1963; Changeux, 1964). 

Receptors are thought to transition between conformations by either the concerted or sequential 

models.

The concerted or the Mondo-Wyman-Changeux (MWC) model was developed during an 

investigation of hemoglobin. The liganded and non-liganded forms of hemoglobin differ by 15° 

rotation of one pair of a and p subunits relative to the other two in the a202 tetramer (Baldwin, 

1980). The concerted model suggest that all subunits change conformation simultaneously 

resulting in only two conformational states, tense and relaxed (Monod et al., 1965). In this model 

the two conformations exist even in absence of ligand with the equilibrium constant L between the
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two states. The ligand’s apparent affinity for the protein is controlled by its ability to shift between 

the relaxed and tense states.

The MWC model accounts for signal transduction mediated by the nAChR between 

active, open-ligand bound conformations, resting and closed conformations and cooperative 

ligand binding (Taly et al., 2005). This model predicts that agonists, allosteric modulators and 

antagonists induced distinct conformations and accounts for spontaneous opening of the channel 

in absence of ligand.

The sequential or Koshland-Nemethy-Filmer (KNF) model proposes that each subunit 

can be in a different conformation depending on the number of agonists bound. The KNF model 

assumes that a protein is sufficiently flexible to allow the binding of one ligand to alter the protein 

conformation in a way that affects the affinity of the second site for the ligand. This model allows 

for intermediate states between closed and open to exist.

The two models differ in terms of protein conformations and the affinity of the ligands for 

each binding site. Both models suggest that binding of a ligand changes the protein conformation. 

In the sequential model, conformation change due to ligand binding leads to an effect on other 

binding sites and the ligand affinity for that site. In the concerted model the conformational 

change only alters the equilibrium between the protein’s state (tense versus relaxed for 

hemoglobin or open versus closed for receptors). The models also differ in that the concerted 

model suggests that the two conformations are present (relaxed and tense) even in absence of 

iigand. The sequential model suggests that conformational change only occurs upon ligand 

binding. In general, the concerted model is the more restrictive of the two models particularly 

because it does not predict negative cooperativity. In the sequential model a ligand can only pull 

the conformational equilibrium towards the high affinity conformation.

Whether nAChRs function more like the concerted or sequential model is currently being 

debated. Crystallography studies have shown that the different subunits can exist in different 

conformations from each another with and without ligand being present in muscle nAChR (Unwin, 

1995; Unwin, 2005; Hansen and Taylor, 2007) arguing in favor for the sequential model. Several 

AChBP crystallography studies have shown that different conformations are induced depending 

on the type of ligand bound to the protein (Unwin, 1995). It has also been observed that a change 

in one subunit conformation can affect other subunits causing a conformational wave within the 

protein (Auerbach, 2005), supporting the concerted model. nAChR have been shown to exist in 

open and closed states in absence of ligand (Jackson, 1984; Jackson, 1986), suggesting that the 

concerted model may explain nAChR function. However, nAChRs also experience different 

conformations besides open and closed such as the desensitized and the putative “flip” state
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(Lape et al., 2009), arguing that nAChRs function more like the sequential model. The flip 

conformation is an intermediate conformation between the resting and open states (Lape et al.,

2008) where the affinity and efficacy of a ligand for a receptor is determined by its ability to 

stabilize the conformation. This mechanism is different from the previous models which 

suggested that ligand affinity and efficacy depends on the ligand’s ability to stabilize the open 

conformation.

It is likely that due to the complex nature of nAChR function that neither the sequential or 

concerted model fully explains nAChR conformational changes. A more expansive model that 

allows for conformational changes, variation in subunit conformations, different receptor states, 

etc. would be more appropriate.

2.9. Neurophysiological Role of Nicotinic Receptors.

In the CNS, acetylcholine activated nAChRs regulate processes such as transmitter 

release, cell excitability and neuronal integration (Gotti et al., 2006b). These processes are critical 

for network operations and influence physiological functions such as arousal, sleep, fatigue, 

anxiety, pain processing, food intake and several cognitive functions (Hogg et al., 2003; Gotti and 

Clementi, 2004; Hogg and Bertrand, 2004).

It has been proposed that the majority of the cortical and hippocampal cholinergic release 

sites are non-synaptic and contribute to diffuse volume transmission (Umbriaco et al., 1994; 

Descarries et al., 1997) as has been observed for other modulatory neurotransmitters such as 

monoamines (Vizi, 2000). Other studies have suggested that nAChRs are principally located at 

presynaptic sites where they modulate neurotransmitter release or on cell bodies and dendrites 

where they mediate postsynaptic effects (Hogg et al., 2003; Dajas-Bailador and Wonnacott, 2004; 

Gotti and Clementi, 2004).

Spillover of ACh from the synapse or from non-synaptic release sites into the 

extracellular space is likely to be an important contributor to cholinergic volume transmission 

(Dani and Bertrand, 2007). The spread of ACh from the release site is determined by diffusion 

and the hydrolysis of ACh by the widely distributed CNS enzyme acetycholinesterase (AChE) 

(Kawaja et al., 1990). ACh is synthesized from choline and acetyl-CoA by the enzyme 

acetyltransferase and is broken down by AChE into choline and acetate. The density and location 

of AChE does not always match the location of ACh release sites (Kawaja et al., 1990). 

Cholinergic volume transmission allows ACh to diffuse and act at lower concentrations at some 

distance from the release site. The amplitude, shape and time course of the ACh single depends 

on the local distribution and density of AChE relative to the ACh release sites (Dani and Bertrand, 

2007).
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The hydrolysis of ACh creates choline, which is a nAChR partiai agonist (Castro and 

Albuquerque, 1995; Papke et al., 1996). It is estimated that choline has an EC50 -1 .6  mM and an 

IC50 -370 pM on a l  nAChRs (Alkondon and Albuquerque, 2006). The extracellular choline 

concentrations have been estimated to be around 3-5 pM and reaches concentrations of 20 pM 

or more under pathological conditions (Alkondon and Albuquerque, 2006). At a cholinergic 

synapse, vesicular release produces a millimolar ACh concentration for only a few milliseconds 

before diffusion and AChE removal of the neurotransmitter (Dani and Bertrand, 2007). An area 

that experiences a high frequency of ACh release and plentiful AChE would likely produce 

relatively high choline concentrations. Therefore ACh provides a diffuse, volume signal that 

continues as a choline signal (Dani and Bertrand, 2007).

Different nAChR subtypes are located throughout the CNS and respond differently to 

ACh and choline. a7 nAChRs have a lower ACh affinity (~ 100 pM) compared to a4p2 receptors 

which have two ACh affinities (ACh affinity -  1.6 pM and 62 pM) (Buisson and Bertrand, 2001). 

The two different ACh affinities in a4|32 nAChR may be caused by the putative high- and low- 

ACh sensitivity a4p2 stoichiometries. After neurotransmitter release at the synapse, high- 

sensitivity a4p2 nAChR will open and desensitize with slower response kinetics than the rapidly 

desensitizing a l  nAChRs. Successive synaptic activity and volume transmission of ACh may 

provide a prolonged exposure of low agonist concentrations. This process produces a slow form 

of desensitization (Dani and Bertrand, 2007). Because a4p2 have a high affinity for ACh, these 

receptors have a slower desensitization rate for agonist below 0.1 pM. In comparison, a l 

receptors are not effectively desensitized by agonist at concentrations below 1 pM (Dani et al., 

2000; Quick and Lester, 2002; Wooltorton et al., 2003). nAChRs which are exposed to a slow 

rising by sustained agonist concentrations may contribute to the modulation of the neuron activity 

when the cell is close to its resting potential (Dani and Bertrand, 2007).

Activation of presynaptic nAChRs can cause the release of many different types of 

neurotransmitters (McGehee et al., 1995; McGehee and Role, 1995; Gray et al., 1996; Role and 

Berg, 1996; Albuquerque et al., 1997; Alkondon et al., 1997; Lena and Changeux, 1997; 

Wonnacott, 1997; Guo et al., 1998; Radcliffe and Dani, 1998; Jones et al., 1999; Luetje, 2004; 

Sher et al., 2004). Nicotinic agonists applied exogenously enhance, while nicotinic antagonist 

generally reduce the release of ACh, dopamine (DA), norepinephrine, serotonin, glutamate and 

GABA (McGehee et al., 1995; McGehee and Role, 1995; Gray et al., 1996; Role and Berg, 1996; 

Albuquerque et al., 1997; Alkondon et al., 1997; Lena and Changeux, 1997; Wonnacott, 1997; 

Guo et al., 1998; Radcliffe and Dani, 1998; Jones et al., 1999; Luetje, 2004; Sher et al., 2004). 

The activity of presynaptic nAChRs directly and indirectly begins the intracellular calcium signal 

that enhances neurotransmitter release (McGehee et al., 1995; Gray et al., 1996; Role and Berg
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1996; Wonnacott 1997). nAChRs mediate small direct calcium influx (Vernino et al., 1992; 

Seguela et al., 1993; Vernino et al., 1994; Castro and Albuquerque, 1995) that can cause the 

release of calcium from intracellular stores (Sharma and Vijayaraghavan, 2003). nAChR activity 

can also produce depolarization that can cause activation of voltage-gated calcium channels in 

the presynaptic terminal (Tredway et al., 1999). Presynaptic nAChR activity overall elevates intra

terminal calcium and causes increased neurotransmitter release.

Glutamate release is enhanced by nicotinic stimulation lasting from seconds to a few 

minutes (Radcliffe and Dani, 1998) and contributes to the ability of a neuronal synapse to change 

its connection strength in response to the usage of the synapse in synaptic pathways also known 

as synaptic plasticity (Wonnacott, 1997; Aramakis et al., 2000; Mansvelder and McGehee, 2000; 

Ji et al., 2001; Ge and Dani, 2005). The glutamate enhancement can last for several minutes or 

more and utilizes intra-terminal calcium elevation as a second messenger to indirectly modify 

glutamatergic synaptic transmission (Dani and Bertrand, 2007). The localized calcium signals, 

mediated by nAChRs, initiates enzymatic activity (i.e. protein kinases and phosphatases) that 

modify the glutamatergic synapse (Fisher and Dani, 2000; Hu et al., 2002). Presynaptic nAChR 

activity arriving just before electrical stimulation of glutamatergic afferents boosts the release of 

glutamate and enhance the induction of long-term synaptic potentiation (Dani and Bertrand, 

2007).

nAChRs are found on preterminal, axonal, dendritic and somatic locations (Lena et al., 

1993; Zarei et al., 1999). Preterminal nAChRs positioned before the presynaptic terminal bouton 

indirectly affect neurotransmitter release by activating voltage-gated ion channels and by possibly 

initiating action potentials (Lena et al., 1993; Alkondon et al., 1997; Albuquerque et al., 2000). 

Axonal, dendritic and somal nAChRs may modulate neurotransmitter release and affect local 

excitability in other ways. Activation of non-synaptic nAChRs alters the membrane impedance 

and changes the space constant of the cellular membrane (Dani and Bertrand, 2007) influencing 

the spread and efficiency of synaptic inputs to activate action potential outputs in the target 

neuron (Dani and Bertrand, 2007). Neuronal excitation can also be altered by directly exciting or 

slowing an action potential at junction, axonal or dendritic nAChRs (Dani and Bertrand, 2007). 

The widespread distribution in non-synaptic locations may also enable nAChRs to influence 

moment-to-moment membrane resting potentials thereby influencing the ease of reaching the 

threshold to generate an action potential (Dani and Bertrand, 2007).

nAChRs also appear to participate in other non-cholinergic neuronal systems. There has 

been mounting evidence that crosstalk occurs between GABA, dopamine and nAChRs. For 

example, by using hippocampal slices and electrophysiological recordings noradrenaline release
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has been shown to be indirectly modulated by a7 nAChR located in glutamate afferents and y- 

amino butyric acid (GABA)-containing interneurons. These results provide strong evidence that 

there is cross-talk amongst neurotransmitters in modulating noradrenalin release (Barik and 

Wonnacott, 2006). Cross-talk between neurotransmitter systems is likely to affect the properties 

of therapeutic ligands.

To summarize, synaptic and volume release of ACh activates and desensitizes nAChRs 

at synaptic and non-synaptic locations. nAChRs located at non-synaptic locations influences the 

excitability of a neuron (Dani and Bertrand, 2007). Continuous cholinergic activity causes 

depolarization of neurons and pushes the membrane potential to move towards the threshold for 

firing an action potential. nAChR activity contributes to calcium signals that regulates intracellular 

enzyme systems which shapes the response of the cell. Signaling by nAChRs causes subtype- 

dependent desensitization which influences the overall signal. The breakdown of ACh by AChE to 

produce choline assists in the shaping of the time and spatial dependence of nAChR signaling.

2.10. Nicotinic Receptor Pharmacology.

Each nAChR subtype has different ligand selectivity, affinity and efficacy. Selectivity 

delineates the specificity of a compound for different types of receptors. Affinity describes how 

tightly the ligand interacts with the receptor while the potency is measured by the EC50 or the 

effective drug concentration which elicits half of the maximum induced response. Efficacy is the 

ligand’s ability to produce the maximum effect. For example, ACh induced responses produce 

100% efficacy on nAChR. Partial agonists induce maximum responses with < 100% efficacy 

while PAMs may produce responses with > 100% efficacy.

There are different types of ligands such as full agonist, partial agonist, antagonist and 

allosteric modulators. Full agonists are ligands that bind to the orthosteric site and activate the 

receptor, displaying full efficacy of the receptor. Partial agonists bind at the orthosteric site, but 

are only able to cause partial efficacy of the receptor. Antagonists are ligands that do not induce a 

biological response, but reduce agonist mediated responses. Allosteric modulators are ligands 

which bind to non-orthosteric sites, resulting in conformational changes that may alter the 

protein’s function. Positive and negative allosteric modulators (PAMs and NAMs) cause 

enhancement and inhibitory effects, respectively (Arias et al., 2006; Bertrand and 

Gopalakrishnan, 2007; Faghih et al., 2008). Modulators can alter a ligand’s affinity and/or 

efficacy. Enhancement of the agonist efficacy is known as potentiation.

Allosteric modulators typically have low intrinsic activity. A ligand which binds at an 

allosteric cleft and activates the channel without assistance would be classified as an allosteric 

non-competitive agonist or allosteric partial agonist. Allosteric modulators must be co-applied with
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an agonist in order for the modulators to have an effect. PAMs selectively potentiate physiological 

activity, shifting the conformation equilibrium towards the receptor open state. There are two 

types of PAMs, type 1 and type 2. Type 1 modulators are molecules that affect the induced peak 

current (Bertrand and Gopalakrishnan, 2007) while a type 2 modulator is a ligand that alters both 

the peak current and the time course of the agonist evoked repose (Bertrand and 

Gopalakrishnan, 2007). NAMs inhibit the agonist activity by shifting the conformation equilibrium 

towards the receptor closed state. The low intrinsic activity of allosteric modulators allows for the 

spatial and temporal synaptic patterning to remain unaltered. The data within this thesis is 

focused on a4(32 nAChR. The following discussion is a brief description of a4(32 nAChR 

pharmacology.

2.10.1 Selective a4(32 Full and Partial Agonists.

2.10.1.1 Acetylcholine.

Acetylcholine (ACh) is a neurotransmitter in the PNS and CNS and acts as a full agonist 

on all nAChR subtypes (Figure 2.29). The ACh affinity on a4(32 nAChR is approximately 21 pM 

(pEC50= 4.7 ± 0.1) (Weltzin and Schulte, 2010) while its efficacy is 100%.
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Figure 2.29 Chemical structure of acetylcholine.

2.10.1.2 Nicotine.

Nicotine, an alkaloid found in the botanical nightshade family (Solanaceae), is an nAChR 

targeted toxin that serves to defend the plant from predation (Albuquerque et al., 2009) (Figure 

2.30). Until recently, nicotine was used as an insecticide. Nicotinic analogues such as 

imidacloprid have been found to be even more effective than nicotine as an insecticide. In 

addition to its toxic properties, nicotine is a highly addictive substance most commonly associated 

with tobacco products. Over the years, the concentration of nicotine has increased ~ 1.6% 

mg/cigarette/year from 1998-2005 to a current concentration of approximately 1 mg of 

nicotine/cigarette (Connolly et al., 2007). The American Heart Association has determined
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nicotine addiction to be one of the most difficult addictions to break (American Heart Association, 

2011).

Figure 2.30 Chemical structure of nicotine.

A partial agonist on a402 nAChRs, nicotine’s affinity on a4(32 nAChR is approximately

2.1 pM (pEC50 = 5.7 ± 0.3) and its efficacy is approximately -38% compared to ACh’s efficacy 

(100%) (Weltzin and Schulte, 2010).

2.10.1.3 Epibatidine.

Epibatidine is an alkaloid found on the skin of the Ecuadorian tree frog Epipedobates 

tricolor (Daly et al., 2000; Dukat and Glennon, 2003) (Figure 2.31). It is a potent analgesic that 

has high affinity (-60 pM) to a402 nAChR, but will also bind to other heterometic nAChR 

subtypes with lower affinity (0.025 - 0.46 nM) (Xiao et al., 2004). Derivatives of Epibatidine are 

being explored for their therapeutic potential to treat diseases such as Alzheimer’s disease 

(Dwoskin and Crooks, 2001).

Figure 2.31 Chemical structure of epibatidine.

2.10.1.4 Cytisine.

Cytisine is a pyridine-iike alkaloid that has similar pharmacological properties to nicotine 

(Figure 2.32). Plants belonging to the leguminoae family synthesize cytisine as a protective 

mechanism against predation (Marion and Cockburn, 1948). Cytisine is a a402 nAChR partial 

agonist that has low efficacy (Coe et al., 2005). In eastern and central Europe, this compound is 

used as a smoking cessation treatment (Tutka and Zatonski, 2006).
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Figure 2.32 Chemical structure of cytisine.

2.10.1.5 Varenicline.

A derivative of cystisine, varenicline is an orally active compound used for smoking 

cessation that has also been shown to reduce alcohol consumption in humans (McKee et al.,

2009) (Figure 2.33). Varenicline is a a4(32 partial agonist (K, value 0.06) (Coe et al., 2005; 

Rollema et al., 2007a).

Mecamylamine is a non-competitive, non-specific nAChR antagonist displaying 

antidepressant-like effects in mice (Rabenstein et al., 2006) (Figure 2.34). Knockout mice lacking 

the 02 or a7 subunits, this antidepressant effect was not observed (Ostroumov et al., 2008). 

Mecamylamine has also been shown to block physiological, behavioural and reinforcing 

properties of nicotine (Martin et al., 1989).

Figure 2.33 Chemical structures of varenicline.

2.10.2 Selective a4(32 Antagonists.

2.10.2.1 Mecamylamine.

Figure 2.34 Chemical structure of mecamylamine.
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2.10.2.2 Methylcaconitine.

An alkaloid derived from the larkspur flower, methylcaconitine or MLA is a potent and specific 

competitive antagonist that inhibits a7, a6 and a3 containing nAChRs (Alkondon et al., 1992; 

Pfister et al., 1999; Mogg et al., 2002) (Figure 2.35). MLA binds at the agonist binding site 

blocking access to the agonist binding site and inhibiting receptor activation. MLA is a selective 

and potent antagonist for a7 nAChR (Ki = 1.4 nM) (Ward et al., 1990).

OCH,

o

Figure 2.35 Chemical structure for methylcaconitine.

2.10.2.3 Conotoxins.

Derived from cone snails (genus Conus), conotoxins are a family of peptides and proteins 

used by the organism to paralyze other animals. These compounds work by disrupting multiple 

components of neurotransmission including voltage-gated Na+ and K+ channels and nAChRs 

(Dutertre and Lewis, 2006). a-Conotoxins are selective antagonists for different nAChR subtypes 

(Azam and McIntosh, 2009). The a-conotoxins share a common structural fold composed of a 

short helix stabilized by a disulfide bond. These ligands bind specifically to nAChR subtypes 

making them potentially useful therapeutic compounds.

2.10.3 Selective a402 Modulators.

Allosteric modulators are ligands that bind at a different binding site than the endogenous 

agonist. Positive and negative allosteric modulators can exert activator or inhibitory effects 

respectively. Allosteric modulators have little or no stimulatory effects themselves, but enhance 

the activity of orthosteric acting agonists. The key advantage to using allosteric modulators is that 

alteration in receptor function only occurs on agonist binding. This allows for the spatial and 

temporal relationships in neurotransmission to remain unaltered, possibly presenting a new
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avenue for therapeutic treatment of CNS disorders. Positive allosteric modulators (PAMs) have 

therapeutic potential in the possible restoration or improvement of nicotinic transmission 

compensating for altered expression of <34(32 nAChR. PAMs can increase a4p2 receptor 

responses and therefore may offset decreased receptor expression. A brief review of important 

nAChR PAMs follows.

2.10.3.1 Galanthamine.

Galanthamine is a drug that is used clinically to treat Alzheimer’s disease symptoms 

(Scott and Goa, 2000) (Figure 2.36). It is an AChE inhibitor with a ICso value ~ 2.8 - 3.2 pM for the 

frontal cortex and hippocampus (Thomsen et al., 1991). By inhibiting AChE, galanthamine 

prolongs the time period in which ACh can interact on cholinergic systems. Galanthamine is not a 

selective PAM that potentiates a3(34, a6(34 and a7 nicotinic receptors. Galanthamine alters the 

apparent ACh affinity without changing the ACh apparent efficacy on a4p2 nAChR (Samochocki 

et al., 2003). In the presence of 0.5 pM galanthamine, the ACh EC50 value decreased from 20 ±

1.7 to 10 ± 1.8 pM. The shift in the dose-response curve indicated that galanthamine may either 

act by increasing the binding affinity of ACh to a4[32 nAChRs and/or facilitate the conversion of 

the ACh-bound receptor to the open conformation (Samochocki et al., 2003).

Figure 2.36 Chemical structure of galanthamine.

2.10.3.2 Physostigmine.

Physostigmine is not a selective PAM that potentiates a7 nAChR and other heteromeric 

subtypes (Figure 2.37). Physostigmine binds to a low affinity ACh binding site on a4p2 receptors 

in presence of low concentrations of ACh (Smulders et al., 2005). Binding experiments have 

shown the potentiating physostigmine acts as a competitive ligand on a4p2 nAChR, suggesting 

that ACh and physostigmine share a common binding site (Smulders et al., 2005).



Figure 2.37 Chemical structure of physostigmine.

2.10.3.3 17-^-Estradiol.

17-p-Estradiol potentates human a4(32 nAChR, but inhibits rat a4p2 receptors (Paradiso 

et al., 2000) (Figure 2.38). The difference in action between human and rat may be the result of 

having two 17-p-Estradiol binding sites on human a4p2 nAChR and one on rat a4p2 receptors. 

On human a4p2 receptor, the 17-p-Estradiol potentiation binding site is located on the a4 subunit 

C-terminal end at the amino acid sequence WLAGMI. Single channel studies showed that 17-p- 

Estradiol works by increasing the opening probability of a4p2 nAChR (Curtis et al., 2002). The 

binding site for 17-p-Estradiol’s potentiation is not the same as its inhibition site. Mutation of the 

key W to an I or S removed the potentiation affect, but had no effect on progesterone inhibition 

(Paradiso et al., 2001). The inhibition site for 17-P-Estradiol may be located at the steroid binding 

site located within the transmembrane domain (discussed in section 2.7.2.2).

Figure 2.38 Chemical structure for 17-P-Estradiol.

2.10.3.4 Zinc.

Zinc (Zn2+) modulates a number of LGIC receptors including GABAaR, glycine and 

nAChRs (Krishek et al., 1998; Harvey et al., 1999). Zn2+ has been shown to inhibit a7 and a3p2 

nAChR subtypes and produces biphasic dose response curves on a2p2, a2p4, a3p4, a4p2 and 

a4p4 (Hsiao et al., 2001). Zn2+ has also been shown to potentiate the a4p4 receptors (Hsiao et 

al., 2008). Low micro molar concentrations of Zn2+ potentiated ACh induced currents on a2p2, 

a2p4, a3p4, a4p2 and a4p4 receptors. At milli-molar Zn2+ concentrations, Zn2+ inhibited ACh 

induced responses on a2p2, a2p4, a3p4, a4p2 and a4p4 receptors. Zn2+ potentiation is
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apparently selective for the putative low ACh sensitivity a4p2 stoichiometry (Moroni et al., 2008), 

while Zn2+ inhibition is non-selective, inhibiting both high and low-sensitivity stoichiometries. ACh 

responses on the low-sensitivity a4p2 receptors were potentiated 260% by Zn2+. The inhibition of 

Zn2+ on high-sensitivity a4(B2 receptors was voltage dependent while it was independent on low- 

sensitivity receptors. Site-directed mutagenesis studies suggested that the p2+/a4- interface 

contains the Zn2+ inhibition site. The putative potentiation site was presumed to be located at the 

a+/a- binding cleft (Moroni et al., 2008).

2.10.3.5 Desformylflustrabromine.

Desformylflustrabromine (dFBr), a new compound extracted from North Sea bryozoan 

Flustra foliacea, has been shown to inhibit the growth of bacteria such as Paenibacillus pabulf, 

Roseobacter sp., Sulfitobacter sp., 01-14-4 (Psychroserpens-like bacterium) and Halomonas 

marina (Peters et al., 2003). In the Flustra foliacea, dFBr is a tryptophan metabolite (Lysek et al.,

2002) (Figure 2.39). Other tryptophan derived metabolites of this organism were shown to have 

muscle relaxant properties (Sjoblom et al., 1983). Radioligand binding of dFBr on a7 and a4p2 

indicates an affinity of > 50 pM on a7 nAChR and an affinity of 3.4 ± 0.5 on a4p2 (Peters et al., 

2004). Functional testing of dFBr on a4p4, a3p2, a3p4, a4p2 and a7 nAChR on Xenopus oocytes 

showed that with ACh, dFBr selectively potentates a4p2 nAChR (Sala et al., 2005). While dFBr 

did not potentiate the other tested subtypes, the compound did inhibit a7 nAChR. The induced 

response of dFBr on a4p2 receptors was sigmoidal in nature. Low nM (up to 30 pM) dFBr caused 

potentiation of ACh induced responses that were reversible and concentration dependent. 

Chapters 3 and 4 discuss our investigation and findings regarding the mechanisms of dFBr 

potentiation and inhibition. The selective nature of dFBr makes it an ideal molecule to probe novel 

binding sites on nAChRs and develop new potential therapeutic ligands. We have begun to 

characterize the dFBr binding site (see chapter 4) and have also begun to characterize analogues 

of dFBr. Results from these studies will be useful in developing a4p2 nAChR subtype selective 

ligands that may be useful in treating pathologies.

Figure 2.39 Chemical structure of desformylflustrabromine.
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2.11. Assembly and Trafficking of Nicotinic Receptors.

nAChR subunits fold and assemble into pentameric receptors in the endopiasmic 

reticulum (ER) (Figure 2.40). A requirement for the proper folding and assembly of nAChR 

appears to be required before the receptors leave the ER (Smith et al., 1987; Gu et al., 1991; 

Kreienkamp et al., 1995; Keller et al., 2001). From there, the assembled proteins are transported 

to the Golgi apparatus and then to the plasma membrane (Figure 2.40). The maturation process 

has been estimated to take 2h (Merlie and Lindstrom, 1983) but the mechanism of nAChR 

maturation is poorly understood. Key proteins known to be involved in the process of nAChR 

maturation (Figure 2.40) are briefly summarized below.



Figure 2.40 Components of nAChR trafficking highlighted in the text.

2.11.1 Assembly.

Several chaperones have been identified that are associated with and/or influence 

maturation of nAChRs. The most widely studied proteins include Ric-3 (Jeanclos et al., 2001; 

Halevi et al., 2002; Cheng et al., 2005), 14-3-3 (Jeanclos et al., 2001), BiP (Connolly et al., 1996) 

and Lynx-1 (Miwa et al., 2006) (Figure 2.40). These chaperones associate with immature nAChR 

subunits and enhance protein folding, assembly and surface expression. Ligands have also been 

shown to alter nAChR expression (Figure 2.40).

The protein Resistant to Inhibitors of Cholinesterase (RIC-3) has been identified as the 

first protein discovered that is specifically required for AChR maturation in Caenorhabditis 

elegans and has been hypothesized to function in the folding, assembly and/or transportation of 

nAChRs from the ER to the Golgi apparatus (Halevi et al., 2002; Treinin 2008) (Figure 2.40). RIC- 

3 has two transmembrane domains as well as extensive coiled-coil domains (Halevi et al., 2002)
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and is expressed in both muscles and neurons within cell bodies. The RIC-3 protein appears to 

be localized in the ER where unassembled receptors accumulate and AChRs are assembled and 

miss-folded (Smith et al., 1987; Halevi et al., 2002). RIC-3 has additionally been shown to be an 

effective facilitator of aJ nAChR expression (Halevi et al., 2002; Treinin, 2008). However, 

contradictory results have been shown for RIC-3 in a4|32 nAChR maturation (Halevi et al., 2003; 

Lansdell et al., 2005).

The 14-3-3 protein has also been shown to assist in nAChR trafficking. An adapter 

protein located at nicotinic synapses, the 14-3-3 protein binds at the cytoplasmic domain of the 

a4 nAChR subunit (Lin et al., 2002). The 14-3-3 protein allows or promotes the forward trafficking 

of multimeric membrane proteins, an action resulting from the 14-3-3 protein’s masking or 

overriding the COPI recognition signals ensuring the protein’s retention in the ER (Mrowiec and 

Schwappach, 2006) (Figure 2.40). COPI, or coat protein, is a protein complex that transports 

proteins back from the Golgi and preserves the proteins in the ER (Figure 2.40). In addition, the 

COPI protein allows the trafficking of unassembled subunits from the ER to the Golgi (St. John,

2009). Phosphorylation of the a4 nAChR subunit at the PKA consensus promotes the binding of 

14-3-3 proteins and aids in the stabilization of a4 subunits in the ER (Bermudez and Moroni, 

2006). This stabilization promotes the assembly of complete a4(32 nAChRs which then releases 

the multimeric proteins from the ER and permits trafficking to the plasma membrane. While it is 

unknown if the 14-3-3 protein interacts with a7 nAChR, its involvement in the clustering of a3- 

containing nAChRs has recently been determined (Rosenberg et al., 2008).

The immunological heavy chain-binding protein (BiP) is another chaperone protein that 

contributes to protein degradation (Plemper et al., 1997) and assists in the translocation of newly 

synthesized proteins across the ER membrane (Corsi and Schekman, 1997; McClellan et al.,

1998) (Plemper et al., 1997; Brodsky et al., 1999) (Figure 2.40). BiP functions by ATP driven 

cycles of “binding to” and “release o f  substrate proteins requiring ATP hydrolysis by BiP ATPase. 

The binding and release cycles promote protein folding by preventing aggregation (Gething,

1999).

The protein Lynx-1 may also play a role in the assembly and trafficking of LGICs (Figure 

2.40). Lynx-1 is a GPI-anchored protein that co-localizes with nAChR and modulates nAChR 

affinity and desensitization (Miwa et al., 2006). Some associated proteins, such as HSP90 and 

P2X7i may also exert the opposite effect by activating as negative regulators of receptor 

expression (Adinolfi et al., 2003).

Endogenous and exogenous ligands have also been shown to prompt changes in nAChR 

protein expression through up-regulation (Figure 2.40). For example chronic exposure to nicotine
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causes up-regulation of nAChR by promoting the oligomerisation and maturation of high- 

sensitivity receptors (Kuryatov et al., 2005; Sallette et al., 2005). SLURP (secreted mammalian 

Ly-6/urokinase plasminogen activator receptor-related protein) -1 and -2 can modulate nAChR in 

non-neuronal tissues (keratinocytes, epithelial cells and immune cells) (Chimienti et al., 2003; 

Arredondo et al., 2006b; Moriwaki et al., 2007). SLURP-1 is a potent allosteric potentiator of 

human a7 nAChR (Chimienti et al., 2003). On a3 containing nAChR, SLURP-2 acts as a 

competitive antagonist (Arredondo et al., 2006b). The actions of SLURPs are thought to be 

important in modulating the autocrine cholinergic regulation of cell proliferation.

2.11.2 Trafficking and Cell surface Localization.

Synthesis, maturation and targeting have been comprehensively studied for muscle 

receptors yet the specifics of AChR ontogeny remain unknown. Muscle type nAChR subunits are 

translated by ER membrane-associated ribosomal complexes and co-transnationally inserted into 

the ER membrane by the translocon (Johnson and van Waes, 1999; Alder and Johnson, 2004) 

(Figure 2.40). The nascent subunit subsequently undergoes cleavage of its signal sequence, 

oxidation of its disulfide bonds (Mishina et al., 1985; Blount and Merlie, 1990) and N-glycosylation 

of specific residues (Merlie et al., 1982; Smith et al., 1987; Blount and Merlie, 1988). Chaperones 

like the binding protein BiP (Blount and Merlie, 1991; Paulson et al., 1991; Forsayeth et al., 1992) 

and calnexin (Gelman et al., 1995; Keller et al., 1998) promote the proper folding and maturation 

of AChR subunits (Figure 2.40). Miss folded and unassembled nAChR subunits are targeted for 

degradation by the ER-associated proteasomal degradation machinery (Wanamaker et al., 2003) 

and are then exported from the ER to the Golgi in vesicles coated in protein complex II (COPII) 

(Keller et al., 2001; Wang et al., 2002) (Figure 2.40). The trafficking from the ER to Golgi occurs 

presumably after the masking of specific ER retention signals and recognition of ER export motifs 

in properly folded and oligomerized AChR subunits.

Several trafficking motifs have been identified (Nishimura and Balch, 1997; Barlowe, 

2003; Robinson, 2004) but little is known about the location or composition of these motifs in 

nAChR subunits. Alignment of the cytoplasmic domain of nAChR subunits reveals a large degree 

of conservation of hydrophobic residues (Ren et al., 2005). Mutagenesis studies have shown that 

these highly conserved hydrophobic residues are critical structural determinants for ER export of 

fully assembled nAChRs (Ren et al., 2005). Specifically mutations of leucine resides (L351A, 

L357A and L358A) in the a4 subunit attenuated nAChR cell surface expression, whereas 

mutations L342A, L343A, L349A and L350A in the (32 subunit were sufficient to nearly abolish 

nAChR cell surface expression. These results suggest that the a4 AChR subunit has a
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cooperative or regulatory role and the 02 subunit has a role in functional interactions with the ER 

export machinery (Ren et al., 2005).

Clustering of nAChR at muscle endplates has shown nAChRs to be less susceptible to 

disassembly during maturation and increases the life time of the receptors in the membrane from 

hours to several days (Fambrough, 1979). Agrain activates the transmembrane receptor tyrosine 

kinase (MuSK) which can cause the clustering of nAChR by rapsyn, (Araud et al., 2010) a 43 kDa 

protein, that binds to nAChR and may tether receptors to the cytoskeleton (Antolik et al., 2007) 

(Figure 2.40). Studies have further suggested that rapsyn binds to the cytoplasmic loops of 

nAChR subunits (Lee et al., 2009).

The cytoplasmic loop on nAChRs is also an important regulator of cell surface 

expression. Co-localization of a l  nAChR with “lipid rafts” may be a determinate of nAChR surface 

expression (Figure 2.40). In PC12 cells, lipid rafts are essential for the co-localization of a 

receptors and adenylyl cyclase within the plasma membrane and for other regulation activities 

involving Ca2+ influx through a nAChR (Oshikawa et al., 2003).

2.11.3 Post Translational Modifications.

Post translational modifications are reversible modifications that can alter LGIC function, 

assembly, stability, etc. Phosphorylation, palmiityoylation, sumoylation and ubiquitination are 

examples of post translational modifications that occur on nAChRs, although very little is known 

about palmiiyoylation and sumoylation of nAChRs.

Phosphorylation is a rapidly reversible modification that acts as a switch to influence 

LGIC function (ex. desensitization rate), subunit assembly, receptor aggregation, stability and 

synaptic strength (Araud et al., 2010). Attaching or removing phosphate groups on the receptors 

transpires by kinases or phosphatases (Figure 2.40). Phosphorylation at serine/threonine or 

tyrosine occurs at the intracellular loop. Tyrosine phosphorylation of the a7 nAChR by src-kinase 

on the receptor’s cytoplasmic loop reduced ACh-evoked currents (Charpantier et al., 2005).

2.12. Distribution of nAChRs in the Central Nervous System.

nAChR are widely distributed in both the nervous system and non-neuronal tissues.. 

nAChRs are critically important during early pre- and post-natal circuit formation and age-related 

cell degeneration and are found along cholinergic pathways (Woolf, 1991; Gotti et al., 2006b). 

Cholinergic neurons in the basal forebrain generally located in an axis running from the cranial 

nerve nuclei of the brain stem to the medullary tegmentum and ponomesencephalic tegmentum 

continuing rostrally though the diencephalon to the telencephalon (Woolf, 1991) (Figure 2.41). In 

the brain there are three cholinergic systems that reach from the brain steam to nearly every
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neural area. The first major cholinergic system is found in the pedunculopontine tegmentum (ppt) 

and laterodorsal pontine tegmentaum (Idt) providing a widespread innervation to the hindbrain, 

thalamus, hypothalamus, basal forebrain and midbrain dopaminergic areas and descending to 

the caudal pons and brain stem (Dani and Bertrand, 2007) (Figure 2.41). The second major 

system arises from various basal forebrain nuclei (the nucleus basalis group; nucleus basalis, 

substantia innominata and horizontal diagonal band: bas, si, hdb) that project throughout the 

neocortex, parts of limbic cortex and the amygdala (Dani and Bertrand, 2007) (Figure 2.41). 

These projections provide an extensive and sparse innervation throughout the brain. The third 

cholinergic system is composed of the medial septal group (medial septal nucleus and vertical 

diagonal band: ms and vdb) that project cholinergic axons to the hippocampus and 

parahippocampal gyrus (Dani and Bertrand, 2007) (Figure 2.41). In addition, this system makes 

up approximately 2 % of the striatal neurons and innervates the striatum and olfactory tubercle 

(Zhou et al., 2002).

nAChRs are principally located at presynaptic or pre-terminal sites where they modulate 

neurotransmitter release or on ceil bodies and dendrites where they mediate postsynaptic effects 

(Hogg et al., 2003; Dajas-Bailador and Wonnacott, 2004; Gotti and Clementi, 2004). Other 

studies suggest that nAChR are not found in abundance at the synapse and are more involved in 

diffuse volume transmission (Umbriaco et al., 1994; Descarries et al., 1997). It is not uncommon 

for structural studies to underestimate synaptic contacts due to the difficultly of observing every 

contact from every angle. It is becoming increasingly evident that alteration of nAChR 

neurotransmission can lead to pathologies during development, adulthood and aging.
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Figure 2.41 The three major cholinergic pathways found in the brain.

The cholinergic systems are located as described: (1) Cholinergic neurons in the 
pedunculopontine tegmentum (ppt) and laterodorsal pontine tegmentaum (Idt) project into the 
hindbrain, thalamus, hypothalamus, basal forebrain and midbrain dopaminergic areas and 
descend to the caudal pons and brain. (2) Neurons located in the basal forebrain nuclei (the 
nucleus basalis group; nucleus basalis, substantia innominata and horizontal diagonal band: bas, 
si, hdb) extend throughout the neocortex, parts of the limbic cortex and the amygdala. (3) 
Cholinergic cells located in the medial septal group (medial septal nucleus and vertical diagonal 
band: ms and vdb) extend cholinergic axons to the hippocampus, parahippocampal gyrus, 
striatum and olfactory tubercle. The brain illustration is modeled after a rat brain. (Image was 
used with permission from (Woolf 1991) and was modified.)
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In situ hybridization results of a4, P2 and a7 indicate subunit mRNA is widely distributed 

throughout the brain with receptor location and varies among different vertebrate species (Gotti et 

al., 2006b). a-bungarotoxin sensitive receptor subtypes (a7-10) are highly expressed in the 

cortex, hippocampus and subcortical limbic regions and are expressed at low levels in the 

thalamic regions and basal ganglia (Gotti et al., 2006b) (Figure 2.42).

The a-bungarotoxin sensitive a9 and a10 subtypes have not been found in the brain. 

Their co-expression as a9 homomers and a9a10 heteromomers appears to be limited to the 

cochlea and a few ganglia (Gotti et al., 2006a).
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Figure 2.42 Locations of nAChR in the rat brain.

(Image reprinted from (Gotti et al., 2006b) and used with permission.)
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2.12.1 a4p2 Expression.

The a4|32 subtype appears to found in subregions such as the cortex, striatum, superior 

colliculus, lateral geniculate nucleus and cerebellum (Picciotto and Zoli, 2002; Gotti and Clementi, 

2004; Gotti et al., 2005; Turner and Kellar, 2005) (Figure 2.42). In mice, radioligand binding using 

L-[3H]nicotine has shown high levels of binding in the interpeduncular nucleus, medial habenula, 

thalamic nuclei, ventral lateral and dorsal lateral geniculate nuclei and optic tract nucleus. 

Moderate binding was found in many areas of the brain including the parietal cortex, cingulated 

cortex, subiculum, substantia nigra, superior colliculus, medial geniculate nucleus, optic nerve 

dorsal raphe, laterodorsal tegmental nucleus and retrospenial cortex. Low levels of binding have 

been found in the medial septum, nucleus accumbens, caudate putamen, hippocampus and 

olfactory tubercle. Virtually no binding was found in the cerebellum (Marks et al., 1992).

The L-[3H] nicotine labeling correlates well with a4 mRNA expression in the CNS (Wada 

et al., 1989; Marks et al., 1992). Discrepancies might be due to the protein being localized to 

axons and synaptic terminals while mRNA resides in the soma. (32 nAChR subunit MAb270 

immunolabeling displays a similar expression pattern to the L-[3H]nicotine labeling (Clarke et al., 

1985; Swanson et al., 1987). MAb270 immunolabeling indicates discrete expression at all levels 

of the rat brain and spinal cord with strong labeling in the interpeduncular nucleus, medial 

habenula, thalamus and superior colliculus.

Both a4 and 32 subunit mRNA are detected in the CNS and PNS as early as E11 in rats. 

The expression of a4 is down-regulated in the PNS to undetectable levels by E15 whereas 32 

mRNA expression levels are maintained until adulthood (Zoli et al., 1995).

It has been found that GABAergic and dopaminergic neurons express similar nAChR 

mRNA (Klink et al., 2001). Both a4 and 32 mRNAs are expressed in nearly all dopaminergic and 

GABAergic neurons in the vental tegmental area, whereas a2 are not expressed (Klink et al.,

2001). Specifically, the a7 nAChR subunit mRNA is found in 40% of the dopaminergic and 

GABAergic neurons while 34 is sparsely found in the GABAergic (25%) and dopaminergic (12%) 

neurons. The a5, a6 and 33 mRNA expression levels are lower in GABAergic (< 25%) than 

dopaminergic (> 70%) neurons.

The vental tegmental area and substantia nigra pars compacta contain moderate to high 

levels of a432 nAChR mRNA (Wada et al., 1989). Antibody labeling of a4 and 32 subunits in the 

soma and dendrites of the substantia nigra pars compacta shows co-localization in > 90% of 

dopaminergic neurons (Arroyo-Jim nez et al., 1999; Jones et al., 2001). Immunoelectron 

microscopic studies have shown that a4 subunits are located in the perikarya and dendritic
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shafts, but not in the spines and are scarcely found in postsynaptic membranes of dopaminergic 

neurons (Arroyo-Jimenez et al., 1999). The 32 subunit shows a similar localization pattern in 

dopaminergic neurons found in the substantia nigra pars compacta and in presynaptic 

membranes of dopaminergic axonal terminals in the dorsal striatum (Jones et al., 2001).

2.12.2 Other Heterpentameric nAChR.

Studies have shown that the same neuronal population can express multiple nAChR 

subtypes. The nAChR subunits a2, a3, a6, 32 and P4 can either form heteropentameric complex 

subtypes. For example, a4a6p2* are found in the striatum and visual pathways, a3a432 or 

a3a4p4 in the cerebellum (Turner and Kellar, 2005) and a2a4p2* in the retina (Moretti et al., 

2004; Marritt et al., 2005). Reasons for this heterogeneity are only partially understood. Specific 

characteristic of the subtypes, like high versus low Ca2+ permeability or slow versus fast 

desensitization rates, might make co-expression of the various subtypes relevant. Alternatively, 

the various subtypes may be critical for preferential targeting to different cell compartments (Gotti 

et al., 2006b).

2.13. Pathological Conditions Associated with nAChRs.

Implicated in many pathological conditions, nAChR subtypes and densities change 

depending on the disease. Neurological conditions with strong nAChR components include 

Alzheimer’s disease (AD), Parkinson’s disease, Autism, Schizophrenia, alcohol addiction and 

nicotine addiction. Not surprisingly there are many clinically used drugs targeting nAChR. These 

drugs are usually administered for months and typically produce long-term changes in receptor 

properties and/or numbers (Taly et al., 2009). Chronic exposure to nicotine, for example, can 

cause a two fold up-regulation in the total number of high-affinity receptors (Sallette et al., 2005).

nAChR are involved in the pathogenesis or symptomatology of several diseases of the 

CNS. These diseases are subdivided into two groups: those in which a nAChR subunit gene is 

mutated and the receptor subtype function is altered (as is the case for autosomal dominate 

frontal lobe epilepsy); and those involving modification in nAChR expression densities (such as 

schizophrenia, Tourette’s syndrome, attention deficit hyperactivity disorder, autism, depression 

and anxiety) and neurodegenerative Alzheimer’s and Parkinson’s disease (Hogg et al., 2003; 

Gotti and Clementi, 2004; Hogg and Bertrand, 2004).

Mutations in the channel region of the a4 or 32 subunits have been found in some 

families suffering from autosomal dominate frontal lobe epilepsy. The expression of these 

mutated receptors causes a gain (a4) or loss (32) of function, but in both cases results in 

functional receptors with a higher ACh sensitivity (Gotti et al., 2006b).
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2.13.1 Alzheimer’s Disease.

Alzheimer’s disease is characterized by progressive cognitive decline and neuronal 

death. The cholinergic synapses in the basal, forebrain, cerebral cortex and hippocampus were 

especially reduced (Kasa et al., 1997) as were muscarinic and nicotinic AChR expression (Court 

et al., 2001). Differences in receptor subtypes have also been observed. In the cerebral cortex, it 

has been reported that there was a massive reduction in predominantly the a4|B2 subtype while 

the a7 nAChR appears to be spared (Bourin et al., 2003) and in the hippocampus, the expression 

of a7 nAChR was reduced (Whitehouse and Kalaria, 1995; Nordberg et al., 1997; Burghaus et 

al., 2000; Guan et al., 2000; Nordberg, 2000).

It has been suggested that the a7 nAChR subtype may play a large role in memory. In 

the hippocampus, a critical region for memory formation, there is a high level of a7 nAChR 

expression. Gene knockout and antisense RNA studies have indicated a role for a7 nAChR in 

learning, memory, attention (Wehner et al., 2004; Keller et al., 2005; Curzon et al., 2006) and 

working-episodic memory (Fernandes et al., 2006; Young et al., 2007). In addition, 

pharmacological studies have shown that a7 nAChR selective agonists or PAMs improve 

cognitive deficits associated with AD.

The selective a7 partial agonist, AR-R17779, has been shown to improve scopolamine- 

elicited deficits in social recognition. AR-R17779 also enhanced the long-term learning and 

attenuated working-memory deficits in rats (Taly et al., 2009). Two a7 partial agonists, GTS-21 

(also a a4p2 antagonist) and MEM-3454 (also a 5HT-3R antagonist) showed precognitive action 

(Rezvani et al., 2009). In preclinical studies, MEM-3454 enhanced episodic, spatial and working 

memory. The precognitive effect of MEM-3454 on episodic memory was completely blocked by 

the a7 specific antagonist methyllycaconitine. In a phase I clinical trial, GTS-21 improved episodic 

secondary memory tests including word recall and picture and word recognition (Kitagawa et al.,

2003). High concentrations of GTS-21 have been shown to reduced cell survival, suggesting a 

risk of over-stimulation (Meyer et al., 1998).

The toxic peptide Ap1-42 involved in AD has recently been shown to bind to a7 nAChR 

(Wang et al., 2000). Controversial reports suggest that Ap1-42 may act either as an agonist or as 

an antagonist on a7 receptors (Dineley et al., 2001; Pettit et al., 2001; Spencer et al., 2006). 

Other papers have suggested that Ap1-42 does not bind to a7 nAChRs (Lamb et al., 2005; Small 

et al., 2007).

Currently, partial agonists are receiving more attention as drug development targets than 

full agonists because of their similar properties and reduced ability to activate the receptors,
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possibly leading to a reduced risk of cytotoxicity by Ca2+ entry. Allosteric modulators are also 

being heavily investigated as potential therapeutics due to their ability to alter the amplitude of the 

receptor response while maintaining the spatial and temporal organization of signal transmission.

Since a7 nAChR play a role in cognitive function (Curzon et al., 1996; Hahn et al., 2003), 

this subtype has also been a target for drug development. ABT-418, a selective a4(B2 full agonist 

has been shown to have cognitive-enhancing activity in preclinical and Phase II studies (Potter et 

al., 1999; Arneric et al., 2007). Ispronicline a full agonist on a4(32 nAChR has been tested in 

clinical trials but failed to demonstrate cognitive improvements.

2.13.2 Autism Spectrum Disorder.

The observation that individuals who suffer from autism spectrum disorder are typically 

non-smokers suggests that nicotinic receptor expression or function may be altered in autistics 

(Glennon, 2005). A more recent study has demonstrated that prenatal exposure to nicotine may 

be linked to infantile autism (Lippiello, 2006). The expression of nAChR appears to be altered in 

autistics in several brain regions. In the cortical regions, epibatidine binding was shown to be 

reduced by nearly 30% with little change in a-bungarotoxin binding (Perry et al., 2001). These 

results indicated that the a4(B2 nAChR expression was decreased while expression of a7 nAChRs 

remained unchanged (Martin-Ruiz et al., 2004).

A possible genetic link also exists. Behavior and linkage analysis studies disclosed that 

there is an autism susceptibility gene on chromosome 1, which contains the (32 nAChR gene 

(Ferretti and Gianandrea, 1954; Anand and Lindstrom, 1992) as well as chromosomes 6 and 19 

(Buxbaum et al., 2004). 02 knockout mice provide further evidence for a genetic link through 

typical autistic behavioral displays, such as a decreased ability for conflict resolution and social 

interaction (Granon et al., 2003). Larger decreases (> 50%) in epibatidine binding are also 

observed in the thalamus and striatum while a7 receptors are unaffected (Court et al., 2000; 

Perry et al., 2001; Martin-Ruiz et al., 2004; Ray et al., 2005). Increases in a7 expression have 

been shown to occur in cerebellar granule cells (Martin-Ruiz et al., 2004). Chromosome 15 is 

near another locus thought to be a genetic marker for autism and contains the a7 nAChR gene 

(Chini et al., 1994; Lamb et al., 2000).

Due to the putative role of nAChR in autism, nicotinic ligands may be useful in treating 

autistic spectrum disorders (Lichtner et al., 1988; Dani and Bertrand, 2006; Lippiello, 2006; 

Nicolson et al., 2006) and several nicotinic ligands, such as Galantamine (Razadyne®), are in 

clinical trials for the treatment of behaviors such as aggression, uncontrollable behavior and 

inattention (Nicolson et al., 2006). A cholinesterase inhibitor and a non-specific potentiator,
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Galantamine enhances nicotinic responses at nicotinic subtypes. Galantamine additionally 

inhibits nAChRs at concentrations only slightly higher than its peak potentiating concentrations, 

thus narrowing its therapeutic range. Mecamylamine (Targacept®) is also currently being 

examined as an autism therapy (Lippiello, 2006). Mecamylamine is a a304 nAChR antagonist 

and has had positive effects in treating Tourette Syndrome and Attention Deficit Disorder (Shytle 

et al., 2000; Silver et al., 2000).

The current nicotinic treatment ligands are not the ideal treatment strategies for Autism. 

Non-selective ligands act on all nAChR populations, not just the dysregulated nAChRs. Selective 

allosteric modulators may be better suited for treating aspects of Autism such as aggression and 

antisocial behavior. A selective PAM would cause an increase in activity in down-regulated 

receptors and would only act on the receptors when the endogenous ligand was present 

maintaining the spatial and temporal relationship within the nicotinic system.

2.13.3 Nicotine Addiction.

nAChR levels in human smokers are higher than nonsmokers as verified by functional 

magnetic resonance imaging and post mortem measurements (Breese et al., 1997; Perry et al., 

1999; Staley et al., 2006; Mamede et al., 2007). The a402 nAChR and other subtypes are 

selectively up-regulated (Nguyen et al., 2003) and active rather than desensitized (Nguyen et al., 

2004; Nashmi et al., 2007). The extent of up-regulation appears to be regional and cell sensitive 

(Nashmi et al., 2007). Up-regulation of highly-sensitive nAChR is partially the biological basis for 

tolerance, locomotor sensitization and cognitive sensitization associated with chronic nicotine 

administrations (Buisson and Bertrand, 2002; Gentry and Lukas, 2002; Nashmi et al., 2007; 

Tapper etal., 2007).

Nicotine’s major addictive effects are thought to be mediated through the dopaminergic 

mesocorticolimbic pathways (Nashmi and Lester, 2006). Dopaminergic neurons originate in the 

vental tegmental area and project to the nucleus accumbens and prefrontal cortex. In the vental 

tegmental area, the dopaminergic neurons, GABAergic neurons and glutamateric axonal 

terminals all contain nicotinic receptors (Mansvelder and McGehee, 2000; Mansvelder et al.,

2002). Chronic nicotine exposure selectively up-regulates receptor number in the midbrain. Up- 

regulation occurs in the GABAergic neurons in the vental tegmental area but not in the somata or 

the dopaminergic neurons. Dopaminergic neurons are the postsynaptic targets and are inhibited 

by the GABAergic neurons. As a result, chronic nicotine increases both the basal firing rates and 

the excitatory effects of nicotine in GABAergic neurons. On dopaminergic neurons chronic 

nicotine decreases baseline firing rates and attenuates the excitatory effects of nicotine (Nashmi 

et al., 2007; Lester et al., 2009). It is thought that the balance of excitatory and inhibitory inputs
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onto the vental tegmental area dopaminergic neurons affects domain dopamine release in the 

nucleus accumbens and is likely critical for the reinforcing effects of nicotine (Nashmi and Lester,

2006).

Compared to wild-type, (32-knockout mice no longer self-administer nicotine (Picciotto et 

al., 1998), demonstrating a role for the (32 subunit in nicotine addiction. Self-administration of 

nicotine is also reduced in rats given dihydro-p-erythroidine (DHpE) (a selective a4p2 antagonist) 

(Watkins et al., 1999). It has been hypothesized that partial agonist may substitute the desired 

effects of nicotine while also antagonizing nicotine reinforcing properties (Hogg and Bertrand, 

2007; Rollema et al., 2007b).

The metabolism of nicotine occurs at a much slower rate than ACh. Nicotine is 

metabolized only by liver enzymes and has a half-life of about ~120min1 (Matta et al., 2007). In 

contrast, ACh is hydrolyzed by acetylcholinesterase with a turnover rate of about ~104 s'1 

(Gyermek, 1996). Simulations of synaptic transmission conclude that ACh remains near receptors 

for < 1ms (Wathey et al., 1979; Bartol et al., 1991). Due to nicotine’s long half-life, it desensitizes 

receptors and permeates cells. Unlike ACh which has slight membrane permeability (> 3h), 

nicotine’s high permeability allows it to act at the cell surface membrane as well as at the 

endoplasmic reticulum and Golgi. This process could be a mechanism of up-regulation of nAChR 

associated with nicotine addiction (Lester et al., 2009). The up-regulation of a4p2 receptors 

appears to be more geared towards the high-sensitivity stoichiometry ((a4)2(p2)3) at the expense 

of the low-sensitivity channel ((a4)3(P2)2) (Lester et al., 2009).

Treatment options for smoking cessation include nicotine and bupropion (a non

competitive antagonists on a4p2 nAChR) (Fiore et al., 2004). These ligands have limited efficacy 

so the development of more effective therapeutic options is needed. The most recently approved 

drug for smoking cessation is Varenicline, a a4(32 partial agonist and a full agonist on a7 nAChR 

(Rollema et al., 2007b). The US Food and Drug Administration and the European Medicines 

Agency have recently warned of serious side effects including changes in mood and social 

ideation. It is possible that long-term chronic exposure can lead to modified levels of nAChR 

densities (Besson et al., 2007).

The National Institute of Health is funding a major effort to find a better solution for 

nicotine addiction. PAMs are one treatment strategy being explored. The use of PAMs entails a 

smaller dosage of nicotine needed to satisfy cravings allowing the nicotine addicted individual to 

gradually reduce their dependence until they no longer need the drug. The major drawback to this 

approach is that the treatment strategy still targets the reward pathways, which may cause the 

therapeutic ligand to become an abused drug. Another problem with using PAMs as a possible
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nicotine addiction treatment is the ability of some PAMs to reactivate desensitized receptors. 

Large populations of desensitized receptors are present in the brains of nicotine addicted 

individuals and the addition of a PAM could cause activation of these desensitized receptors 

leading to a huge population of activated receptors. The dosage of the therapeutic ligand would 

aid in the prevention of too many receptors being activated.

2.13.4 Cancer and Angiogenesis.

Genomic studies have shown that chromosome regions 15q24-25 (Hung et al., 2008; Liu 

et al., 2008a), 15q15.33 (McKay et al., 2008) and 6p21.33 (Wang et al., 2008b) appear to have 

common sequence variants that may convey a higher risk for developing lung cancer. The 15q24- 

25 region encompasses the nAChR subunits a3, a5 and (34 genes, all of which play a role in 

nicotine addiction (Spitz et al., 2008; Weiss et al., 2008).

Airway epithelial cells produce and degrade ACh (Proskocil et al., 2004). Human 

bronchial epithelium (HBE) express a3, a5, a7, (32 and (34 nAChR subunits (Zia et al., 1997; 

Maus et al., 1998). The a5 and a9 nAChR have been shown to also express in lung and breast 

cancers (Lee et al., 2010b). An increase in a9 nAChR expression has been seen in other cancer 

cells (Lee et al., 2010b).

Nicotine and the tobacco specific nitrosamine 4-(methylnitosamino)-1-(-3-pyridine)-1- 

butanone (NKK) are agonists for nAChR. In an epithelial cell culture model addition of nicotine 

derivatives (NKK and A/-nitrosonornicotine) caused a temporary (1-2.5 hr) up-regulation of the a l  

nAChR subunit (Plummer et al., 2005). An increase in proliferation was observed also then 

reduced by nicotine antagonist (aBTX) (Arredondo et al., 2006a). Nicotine incubation of bronchial 

epithelial cells caused a production of granulocyte-macrophage colony stimulating factor and 

stimulated inflammatory cells (Klapproth et al., 1998). In nonmalignant human bronchial epithelial 

cells, apoptotic effects by damaging agents (such as etoposide, UV irradiation or hydrogen 

peroxide) were attenuated by nicotine and NKK (West et al., 2003). Thus, in epithelial cells, 

nicotine and NKK have a stimulatory effect on growth, inflammation and cell survival.

In breast cancer, exposure to nicotine caused an increase in a9 nAChR expression (Shih 

et al., 2010; Chen et al., 2011). Nicotine itself is not a carcinogen but it does promote the growth 

of cancer cells and proliferation of endothelial cells. Lee et al., (2010b) indicated that increased 

expression of a9 nAChR enhances proliferation and colony formation (Lee et al., 2010b).

In small cell lung cancer (SCLC) and non-SCLC (NSCLC) a3, a5, a l  and |34 nAChR 

subunits are expressed (Chini et al., 1992; Tarroni et al., 1992; West et al., 2003). Both NSCLC 

and SCLC cell lines synthesize and release ACh (Song et al., 2003). In squamous cell carcinoma
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(SqCC), the choline acetyltransferase is strongly up-regulated whereas cholinesterase is down- 

regulated (Martinez-Moreno et al., 2006; Song et al., 2008). This reaction results in an increase in 

ACh concentration in SqCC compared to normal lung, providing an increased level of 

endogenous ACh stimuli to nAChR.

In lung cancer, nicotine induces proliferation of tumor cells by binding to the a7 nAChR, 

leading to the activation of Src and Rb-Raf-1/pERK/p90RSK pathway (Dasgupta et al., 2006b; 

Carlisle et al., 2007). Stimulation of nAChR by nicotine results in Ca2+ influx within seconds. 

Nicotine additionally induces an increase in fibronectin production (Zheng et al., 2007). 

Extracellular fibronectin binds to a5(31 integrin which subsequently leads to increased proliferation 

through ERK, PI3-K and mTOR pathways.

In SCLC and NSCLC cell lines, nicotine diminishes apoptosis (Maneckjee and Minna, 

1994; Dasgupta et al., 2006a). The anti-apoptotic effects of nicotine appear to be mediated by the 

a3 nAChR and required the AKT pathway, leading to an increased recruitment of E2F1 and 

concomitant dissociation of retinoblastoma tumor suppressor protein. The binding of E2F1 to the 

promoter of survivin and XIAP genes resulted in the up-regulation of apoptopic inhibitors 

demonstrating nicotine has a prolonged effect on tumor cell survival by preventing apoptosis.

Individuals diagnosed with smoking-related lung cancer and who continue to smoke have 

a negative correlation with lung cancer survival (Videtic et al., 2003; Sardari Nia et al., 2005). The 

lack of survival may be a result of nicotine’s positive effects on tumor growth and survival.

Studies have shown that nAChR play a major role in breast and lung cancers. The a7 

nAChR are implicated in lung cancer while the a9 nAChR play a major role in breast cancers. 

nAChR antagonists may decrease the survival of tumor cells and provide a novel avenue for 

cancer therapy.

The proliferation of tumors involves the formation of new blood vessels, also known as 

angiogenesis, through the growth factors, intergrins, angioproteins, adhesion and gap junction 

proteins, transcription factors and other components (Risau, 1997). There are three main steps in 

angiogenesis. First, vascular endothelial cells (ECs) activation is mediated by hypoxia and/or 

cytokine release. Second, the basement membrane (BM) is degraded by the matrix 

metalloproteinases (MMPs). Third, vascular endothelial growth factor (VEGF)- and intergrin- 

dependent EC migration, proliferation and differentiation. In pathological conditions, endothelial 

angiogenesis can contribute to neoplastic and non-neoplastic transformations including cancer, 

atherosclerosis, rheumatoid arthritis and diabetic retinopathy (Folkman, 2006). The initial prompt 

for pathological angiogenesis may be EC proliferation/dysfunction by VEGF up-regulation and 

though the release of stored ACh (Parnavelas et al., 1985).
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AChRs are involved in angiogenesis, predominantly subtypes a7 and a3(34 nAChR and 

the subunits a3, a5, P2 and P4 (West et al., 2003). Bronchial epithelial cells (Carlisle et al., 2004), 

endothelial cells of blood vessels (Wang et al., 2001), skin keratinocytes (Chernyavsky et al.,

2004), lymphocytes, microglial and astrocytes contain neuronal nAChRs containing a3, a5, a l, 

p2 and P4 subunits (Conti-Fine et al., 2000; Heeschen et al., 2002).

Angiogeneisis and increased vascular permeability are important factors in wound 

healing, a tightly controlled process involving re-epithelialization, macrophage accumulation, 

fibroblast infiltration, matrix formation and re-vascularization. Whether nicotine promotes or 

delays wound healing is a topic of debate (Jacobi et al., 2002; Galiano et al., 2004; Morimoto et 

al., 2008). In one study non-diabetic mice experienced improved wound heaiing with the use of 

topical 100 pM nicotine (Morimoto et al., 2008) whereas in another study, non-diabetic mouse 

wounds treated with a lower dosage of nicotine (1-10 nM) displayed no improvement in wound 

health when compared to phosphate buffered saline (PBS) treated wounds (Jacobi et al., 2002). 

These results suggest that improvements in wound healing by nicotine may be concentration 

dependent.

Initial tumor formation requires oxygen and nutrients. Further tumor growth requires 

communication with the vascular ECs and new blood vessels. Tumor malignancy is dependent on 

an “angiogenic switch”, a combination of an imbalance of pro- and anti-angiogenic factors 

influenced by hypoxia, low pH, hypoglycemia and inflammatory cytokines (Carmeliet and Jain, 

2000; Pandya et al., 2006). A large variety of angiogenic factors are secreted by tumor cells 

which can overwhelm endogenous angiogenic inhibitors. The ECs migrate towards these 

angiogenic stimuli, proliferate and form new vessels. In hypoxic microenvironments, tumor ECs 

proliferate 2-2000 times faster than normal ECs (Griffioen and Molema, 2000).

Nicotine can induce tumor cell proliferation and angiogenesis through nAChRs expressed 

in cancer cells (Chini et al., 1992; Egleton et al., 2008). The a l  nAChR is the primary receptor 

subtype that mediates nicotine-mediated tumor cell proliferation. a3p4 containing nAChRs may 

also play a role in this process (West et al., 2003). Nicotine enhances cell proliferation of cancer 

cells in small and non-small cell lung carcinomas, pancreatic, colon and bladder cancer cells 

(Shin et al., 2004; Ye et al., 2004; Wong et al., 2007; Chen et al., 2008).

Nicotine has also been shown to increase the levels of different growth factors such as 

VEGF, brain derived neurotropic factor (BDNF), epidermal growth factor (EGF), hepatocyte 

growth factor (HGF), PDGF and transforming growth factor-a (TFG-a) and p (TGF-P) and their 

respective receptors (Conti-Fine et al., 2000). Alterations in these growth factors influence both 

the tumor and normal ECs.
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One cancer treatment avenue is the use of angiogenesis inhibitors. Heeschen and co

workers demonstrated a decrease in a mouse lung tumor model with the non-specific nAChR 

antagonist mecamylamine (Heeschen et al., 2002). This decrease in tumor growth included a 

lower capillary density and a decreased systemic VEGF levels. Mecamylamine is currently in 

phase II clinical trials. The development of novel inhibiting ligands such as antagonists or NAMs 

may aid in the inhibition or prevention of tumor growth.



82

2.14. References.

Adams CE and Stevens KE (2007) Evidence for a role of nicotinic acetylcholine receptors in 
schizophrenia. Front Biosci 12:4755-4772.

Adinolfi E, Kim M, Young MT, Di Virgilio F and Surprenant A (2003) Tyrosine phosphorylation of 
HSP90 within the P2X7 receptor complex negatively regulates P2X7 receptors. J Biol Chem 
278:37344-37351.

Akk G, Shu HJ, Wang C, Steinbach JH, Zorumski CF, Covey DF and Mennerick S (2005) 
Neurosteroid access to the GABAA receptor. J Neurosci 25:11605-11613.

Akk G, Sine S and Auerbach A (1996) Binding sites contribute unequally to the gating of mouse 
nicotinic alpha D200N acetylcholine receptors. J Physiol 496 ( Pt 1):185-196.

Albuquerque EX, Pereira EF, Alkondon M and Rogers SW (2009) Mammalian nicotinic 
acetylcholine receptors: from structure to function. Physiol Rev 89:73-120.

Albuquerque EX, Pereira EF, Alkondon M, Schrattenholz A and Maelicke A (1997) Nicotinic 
acetylcholine receptors on hippocampal neurons: distribution on the neuronal surface and 
modulation of receptor activity. J Recept Signal Transduct Res 17:243-266.

Albuquerque EX, Pereira EF, Mike A, Eisenberg HM, Maelicke A and Aikondon M (2000) 
Neuronal nicotinic receptors in synaptic functions in humans and rats: physiological and clinical 
relevance. Behav Brain Res 113:131-141.

Alder NN and Johnson AE (2004) Cotranslational membrane protein biogenesis at the 
endoplasmic reticulum. J Biol Chem 279:22787-22790.

Alkondon M and Albuquerque EX (2006) Subtype-specific inhibition of nicotinic acetylcholine 
receptors by choline: a regulatory pathway. J Pharmacol Exp Ther 318:268-275.

Alkondon M, Pereira EF, Barbosa CT and Albuquerque EX (1997) Neuronal nicotinic 
acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons 
of rat hippocampal slices. J Pharmacol Exp Ther 283:1396-1411.

Alkondon M, Pereira EF, Wonnacott S and Albuquerque EX (1992) Blockade of nicotinic currents 
in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. 
Mol Pharmacol 41:802-808.

American Heart Association I (2011) Nicotine Addiction, in, American Heart Association, Inc.

Amin J, Brooks-Kayal A and Weiss DS (1997) Two tyrosine residues on the aipha subunit are 
crucial for benzodiazepine binding and allosteric modulation of gamma-aminobutyric acidA 
receptors. Mol Pharmacol 51:833-841.

Anand R and Lindstrom J (1992) Chromosomal localization of seven neuronal nicotinic 
acetylcholine receptor subunit genes in humans. Genomics 13:962-967.

Antolik C, Catino DH, O'Neill AM, Resneck WG, Ursitti JA and Bloch RJ (2007) The actin binding 
domain of ACF7 binds directly to the tetratricopeptide repeat domains of rapsyn. Neuroscience 
145:56-65.

Aramakis VB, Hsieh CY, Leslie FM and Metherate R (2000) A critical period for nicotine-induced 
disruption of synaptic development in rat auditory cortex. J Neurosci 20:6106-6116.

Araud T, Wonnacott S and Bertrand D (2010) Associated proteins: The universal toolbox 
controlling ligand gated ion channel function. Biochem Pharmacol 80:160-169.



83

Arevalo E, Chiara DC, Forman SA, Cohen JB and Miller KW (2005) Gating-enhanced 
accessibility of hydrophobic sites within the transmembrane region of the nicotinic acetylcholine 
receptor's (delta}-subunit. A time-resolved photolabeling study. J Biol Chem 280:13631-13640.

Arias HR, Bhumireddy P, Spitzmaul G, Trudell JR and Bouzat C (2006) Molecular mechanisms 
and binding site location for the noncompetitive antagonist crystal violet on nicotinic acetylcholine 
receptors. Biochemistry 45:2014-2026.

Arneric SP, Holladay M and Williams M (2007) Neuronal nicotinic receptors: a perspective on two 
decades of drug discovery research. Biochem Pharmacol 74:1092-1101.

Arredondo J, Chernyavsky Al and Grando SA (2006a) The nicotinic receptor antagonists abolish 
pathobiologic effects of tobacco-derived nitrosamines on BEP2D cells. J Cancer Res Clin Oncol 
132:653-663.

Arredondo J, Chernyavsky Al, Jolkovsky DL, Webber RJ and Grando SA (2006b) SLURP-2: A 
novel cholinergic signaling peptide in human mucocutaneous epithelium. J Cell Physiol 208:238
245.

Arroyo-Jimenez MM, Bourgeois JP, Marubio LM, Le Sourd AM, Ottersen OP, Rinvik E, Fairen A 
and Changeux JP (1999) Ultrastructural localization of the alpha4-subunit of the neuronal 
acetylcholine nicotinic receptor in the rat substantia nigra. J Neurosci 19:6475-6487.

Aubert I, Araujo DM, Cecyre D, Robitaille Y, Gauthier S and Quirion R (1992) Comparative 
alterations of nicotinic and muscarinic binding sites in Alzheimer's and Parkinson's diseases. J 
Neurochem 58:529-541.

Auerbach A (2005) Gating of acetylcholine receptor channels: brownian motion across a broad 
transition state. Proc Natl Acad Sci U S A 102:1408-1412.

Auerbach A and Akk G (1998) Desensitization of mouse nicotinic acetylcholine receptor 
channels. A two-gate mechanism. J Gen Physioi 112:181-197.

Azam L and McIntosh JM (2009) Alpha-conotoxins as pharmacological probes of nicotinic 
acetylcholine receptors. Acta Pharmacol Sin 30:771-783.

Baldwin JM (1980) The structure of human carbonmonoxy haemoglobin at 2.7 A resolution. J Mol 
Biol 136:103-128.

Banks Ml, White JA and Pearce RA (2000) Interactions between distinct GABA(A) circuits in 
hippocampus. Neuron 25:449-457.

Barik J and Wonnacott S (2006) Indirect modulation by alpha7 nicotinic acetylcholine receptors of 
noradrenaline release in rat hippocampal slices: interaction with glutamate and GABA systems 
and effect of nicotine withdrawal. Mol Pharmacol 69:618-628.

Barlowe C (2003) Signals for COPII-dependent export from the ER: what's the ticket out? Trends 
Cell Biol 13:295-300.

Barnes NM and Sharp T (1999) A review of central 5-HT receptors and their function. 
Neuropharmacology 38:1083-1152.

Barry PH and Lynch JW (2005) Ligand-gated channels. IEEE Trans Nanobioscience 4:70-80.

Bartol TM, Jr., Land BR, Salpeter EE and Salpeter MM (1991) Monte Carlo simulation of 
miniature endplate current generation in the vertebrate neuromuscular junction. Biophys J 
59:1290-1307.

Beene DL, Brandt GS, Zhong W, Zacharias NM, Lester HA and Dougherty DA (2002) Cation-pi 
interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: 
the anomalous binding properties of nicotine. Biochemistry 41:10262-10269.



84

Beene DL, Price KL, Lester HA, Dougherty DA and Lummis SC (2004) Tyrosine residues that 
control binding and gating in the 5-hydroxytryptamine3 receptor revealed by unnatural amino acid 
mutagenesis. J Neurosci 24:9097-9104.

Belelli D, Lambert JJ, Peters JA, Wafford K and Whiting PJ (1997) The interaction of the general 
anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single 
amino acid. Proc Natl Acad Sci U S A 94:11031-11036.

Belelli D, Pau D, Cabras G, Peters JA and Lambert JJ (1999) A single amino acid confers 
barbiturate sensitivity upon the GABA rho 1 receptor. Br J Pharmacol 127:601-604.

Bencherif M and Lukas RJ (1993) Cytochalasin modulation of nicotinic cholinergic receptor 
expression and muscarinic receptor function in human TE671/RD cells: a possible functional role 
of the cytoskeleton. J Neurochem 61:852-864.

Bera AK and Akabas MH (2005) Spontaneous thermal motion of the GABA(A) receptor M2 
channel-lining segments. J Biol Chem 280:35506-35512.

Bera AK, Chatav M and Akabas MH (2002) GABA(A) receptor M2-M3 loop secondary structure 
and changes in accessibility during channel gating. J Biol Chem 277:43002-43010.

Berezhnoy D, Nyfeler Y, Gonthier A, Schwob H, Goeldner M and Sigel E (2004) On the 
benzodiazepine binding pocket in GABAA receptors. J Biol Chem 279:3160-3168.

Bermudez I and Moroni M (2006) Phosphorylation and function of alpha4beta2 receptor. J Mol 
Neurosci 30:97-98.

Bertrand D, Bertrand S, Cassar S, Gubbins E, Li J and Gopalakrishnan M (2008) Positive 
allosteric modulation of the alpha7 nicotinic acetylcholine receptor: ligand interactions with distinct 
binding sites and evidence for a prominent role of the M2-M3 segment. Mol Pharmacol 74:1407
1416.

Bertrand D and Gopalakrishnan M (2007) Allosteric modulation of nicotinic acetylcholine 
receptors. Biochem Pharmacol 74:1155-1163.

Besson M, Granon S, Mameli-Engvall M, Cloez-Tayarani I, Maubourguet N, Cormier A, Cazala P, 
David V, Changeux JP and Faure P (2007) Long-term effects of chronic nicotine exposure on 
brain nicotinic receptors. Proc Natl Acad Sci U S A 104:8155-8160.

Betz H, Kuhse J, Schmieden V, Laube B, Kirsch J and Harvey RJ (1999) Structure and functions 
of inhibitory and excitatory glycine receptors. Ann N Y Acad Sci 868:667-676.

Blanton MP, McCardy EA, Huggins A and Parikh D (1998) Probing the structure of the nicotinic 
acetylcholine receptor with the hydrophobic photoreactive probes [125IJTID-BE and 
[125IJTIDPC/16. Biochemistry 37:14545-14555.

Blount P and Merlie JP (1988) Native folding of an acetylcholine receptor alpha subunit 
expressed in the absence of other receptor subunits. J Biol Chem 263:1072-1080.

Blount P and Merlie JP (1990) Mutational analysis of muscle nicotinic acetylcholine receptor 
subunit assembly. J Cell Biol 111:2613-2622.

Blount P and Merlie JP (1991) BIP associates with newly synthesized subunits of the mouse 
muscle nicotinic receptor. J Cell Biol 113:1125-1132.

Blum AP, Lester HA and Dougherty DA (2010) Nicotinic pharmacophore: the pyridine N of 
nicotine and carbonyl of acetylcholine hydrogen bond across a subunit interface to a backbone 
NH. Proc Natl Acad Sci U S A 107:13206-13211.



85

Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, Delarue M and Corringer PJ (2009) 
X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. 
Nature 457:111-114.

Boess FG, Steward LJ, Steele JA, Liu D, Reid J, Glencorse TA and Martin IL (1997) Analysis of 
the ligand binding site of the 5-HT3 receptor using site directed mutagenesis: importance of 
glutamate 106. Neuropharmacology 36:637-647.

Bourin M, Ripoll N and Dailly E (2003) Nicotinic receptors and Alzheimer's disease. Curr Med 
Res Opin 19:169-177.

Bourne Y, Talley TT, Hansen SB, Taylor P and Marchot P (2005) Crystal structure of a Cbtx- 
AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic 
receptors. EMBO J 24:1512-1522.

Brannigan G, Henin J, Law R, Eckenhoff R and Klein ML (2008) Embedded cholesterol in the 
nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 105:14418-14423.

Breese CR, Marks MJ, Logel J, Adams CE, Sullivan B, Collins AC and Leonard S (1997) Effect of 
smoking history on [3H]nicotine binding in human postmortem brain. J Pharmacol Exp Ther 
282:7-13.

Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB and Sixma TK 
(2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic 
receptors. Nature 411:269-276.

Briggs CA, Gubbins EJ, Marks MJ, Putman CB, Thimmapaya R, Meyer MD and Surowy CS 
(2006a) Untranslated region-dependent exclusive expression of high-sensitivity subforms of 
alpha4beta2 and alpha3beta2 nicotinic acetylcholine receptors. Mol Pharmacol 70:227-240.

Briggs CA, Gubbins EJ, Marks MJ, Putman CB, Thimmapaya R, Meyer MD and Surowy CS 
(2006b) Untranslated Region Dependent Dependent Exclusive Expression of High-Sensitivity 
Subforms of {alpha}4{beta}2 and {alpha}3{beta}2 Nicotinic Acetylcholine Receptors. Mol 
Pharmacol.

Brodsky JL, Werner ED, Dubas ME, Goeckeler JL, Kruse KB and McCracken AA (1999) The 
requirement for molecular chaperones during endoplasmic reticulum-associated protein 
degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 
274:3453-3460.

Buhr A, Baur R and Sigel E (1997a) Subtle changes in residue 77 of the gamma subunit of 
alpha1beta2gamma2 GABAA receptors drastically alter the affinity for ligands of the 
benzodiazepine binding site. J Biol Chem 272:11799-11804.

Buhr A, Schaerer MT, Baur R and Sigel E (1997b) Residues at positions 206 and 209 of the 
alphal subunit of gamma-aminobutyric AcidA receptors influence affinities for benzodiazepine 
binding site ligands. Mol Pharmacol 52:676-682.

Buisson B and Bertrand D (2001) Chronic exposure to nicotine upregulates the human 
(alpha)4((beta)2 nicotinic acetylcholine receptor function. J Neurosci 21:1819-1829.

Buisson B and Bertrand D (2002) Nicotine addiction: the possible role of functional upregulation. 
Trends Pharmacol Sci 23:130-136.

Burghaus L, Schutz U, Krempel U, de Vos RA, Jansen Steur EN, Wevers A, Lindstrom J and 
Schroder H (2000) Quantitative assessment of nicotinic acetylcholine receptor proteins in the 
cerebral cortex of Alzheimer patients. Brain Res Mol Brain Res 76:385-388.

Buxbaum JD, Silverman J, Keddache M, Smith CJ, Hollander E, Ramoz N and Reichert JG
(2004) Linkage analysis for autism in a subset families with obsessive-compulsive behaviors:



86

evidence for an autism susceptibility gene on chromosome 1 and further support for susceptibility 
genes on chromosome 6 and 19. Mol Psychiatry 9:144-150.

Campagna-Slater V and Weaver DF (2007) Anaesthetic binding sites for etomidate and propofol 
on a GABAA receptor model. Neurosci Lett 418:28-33.

Carlisle DL, Hopkins TM, Gaither-Davis A, Silhanek MJ, Luketich JD, Christie NA and Siegfried 
JM (2004) Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in 
both human bronchial epithelial cells and airway fibroblasts. Respir Res 5:27.

Carlisle DL, Liu X, Hopkins TM, Swick MC, Dhir R and Siegfried JM (2007) Nicotine activates cell- 
signaling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non
small cell lung cancer cells. Pulm Pharmacol Ther 20:629-641.

Carmeliet P and Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249-257.

Castelan F, Mulet J, Aldea M, Sala S, Sala F and Criado M (2007) Cytoplasmic regions adjacent 
to the M3 and M4 transmembrane segments influence expression and function of alpha7 nicotinic 
acetylcholine receptors. A study with single amino acid mutants. J Neurochem 100:406-415.

Castro NG and Albuquerque EX (1995) alpha-Bungarotoxin-sensitive hippocampal nicotinic 
receptor channel has a high calcium permeability. Biophys J 68:516-524.

Celie PH, Klaassen RV, van Rossum-Fikkert SE, van Elk R, van Nierop P, Smit AB and Sixma 
TK (2005) Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the 
conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors. J Biol 
Chem 280:26457-26466.

Celie PH, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB and Sixma TK (2004) Nicotine 
and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal 
structures. Neuron 41:907-914.

Chakrapani S, Bailey TD and Auerbach A (2004) Gating dynamics of the acetylcholine receptor 
extracellular domain. J Gen Physiol 123:341-356.

Chang CS, Olcese R and Olsen RW (2003) A single M1 residue in the beta2 subunit alters 
channel gating of GABAA receptor in anesthetic modulation and direct activation. J Biol Chem 
278:42821-42828.

Changeux JP (1964) Allosteric Interactions Interpreted in Terms of Quaternary Structure. 
Brookhaven Symp Biol 17:232-249.

Charpantier E, Wiesner A, Huh KH, Ogier R, Hoda JC, Allaman G, Raggenbass M, Feuerbach D, 
Bertrand D and Fuhrer C (2005) Alpha7 neuronal nicotinic acetylcholine receptors are negatively 
regulated by tyrosine phosphorylation and Src-family kinases. J Neurosci 25:9836-9849.

Chen CS, Lee CH, Hsieh CD, Ho CT, Pan MH, Huang CS, Tu SH, Wang YJ, Chen LC, Chang 
YJ, Wei PL, Yang YY, Wu CH and Ho YS (2011) Nicotine-induced human breast cancer cell 
proliferation attenuated by garcinol through down-regulation of the nicotinic receptor and cyclin 
D3 proteins. Breast Cancer Res Treat 125:73-87.

Chen RJ, Ho YS, Guo HR and Wang YJ (2008) Rapid activation of Stat3 and ERK1/2 by nicotine 
modulates cell proliferation in human bladder cancer cells. Toxicol Sci 104:283-293.

Cheng A, McDonald NA and Connolly CN (2005) Cell surface expression of 5-hydroxytryptamine 
type 3 receptors is promoted by RIC-3. J Biol Chem 280:22502-22507.

Chernyavsky Al, Arredondo J, Marubio LM and Grando SA (2004) Differential regulation of 
keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes. J Cell Sci 
117:5665-5679.



87

Chimienti F, Hogg RC, Plantard L, Lehmann C, Brakch N, Fischer J, Huber M, Bertrand D and 
Hohl D (2003) Identification of SLURP-1 as an epidermal neuromodulator explains the clinical 
phenotype of Mai de Meleda. Hum Mol Genet 12:3017-3024.

Chini B, Clementi F, Hukovic N and Sher E (1992) Neuronal-type alpha-bungarotoxin receptors 
and the alpha 5-nicotinic receptor subunit gene are expressed in neuronal and nonneuronal 
human cell lines. Proc Natl Acad Sci U S A 89:1572-1576.

Chini B, Raimond E, Elgoyhen AB, Moralli D, Balzaretti M and Heinemann S (1994) Molecular 
cloning and chromosomal localization of the human alpha 7-nicotinic receptor subunit gene 
(CHRNA7). Genomics 19:379-381.

Cho CH, Song W, Leitzell K, Teo E, Meleth AD, Quick MW and Lester RA (2005) Rapid 
upregulation of alpha7 nicotinic acetylcholine receptors by tyrosine dephosphorylation. J Neurosci 
25:3712-3723.

Clarke PB, Schwartz RD, Paul SM, Pert CB and Pert A (1985) Nicotinic binding in rat brain: 
autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125l]-alpha-bungarotoxin. J 
Neurosci 5:1307-1315.

Coe JW, Brooks PR, Vetelino MG, Wirtz MC, Arnold EP, Huang J, Sands SB, Davis Tl, Lebel LA, 
Fox CB, Shrikhande A, Heym JH, Schaeffer E, Rollema H, Lu Y, Mansbach RS, Chambers LK, 
Rovetti CC, Schulz DW, Tingley FD, 3rd and O'Neill BT (2005) Varenicline: an alpha4beta2 
nicotinic receptor partial agonist for smoking cessation. J Med Chem 48:3474-3477.

Colledge M and Froehner SC (1997) Tyrosine phosphorylation of nicotinic acetylcholine receptor 
mediates Grb2 binding. J Neurosci 17:5038-5045.

Connolly CN, Krishek BJ, McDonald BJ, Smart TG and Moss SJ (1996) Assembly and cell 
surface expression of heteromeric and homomeric gamma-aminobutyric acid type A receptors. J 
Biol Chem 271:89-96.

Connolly GN, Alpert HR, Wayne GF and Koh H (2007) Trends in nicotine yield in smoke and its 
relationship with design characteristics among popular US cigarette brands, 1997-2005. Tob 
Control 16:e5.

Conti-Fine BM, Navaneetham D, Lei S and Maus AD (2000) Neuronal nicotinic receptors in non
neuronal cells: new mediators of tobacco toxicity? Eur J Pharmacol 393:279-294.

Corringer PJ, Bertrand S, Galzi JL, Devillers-Thiery A, Changeux JP and Bertrand D (1999a) 
Molecular basis of the charge selectivity of nicotinic acetylcholine receptor and related ligand- 
gated ion channels. Novartis Found Symp 225:215-224; discussion 224-230.

Corringer PJ, Bertrand S, Galzi JL, Devillers-Thiery A, Changeux JP and Bertrand D (1999b) 
Mutational analysis of the charge selectivity filter of the alpha7 nicotinic acetylcholine receptor. 
Neuron 22:831-843.

Corringer PJ, Galzi JL, Eisele JL, Bertrand S, Changeux JP and Bertrand D (1995) Identification 
of a new component of the agonist binding site of the nicotinic alpha 7 homooligomeric receptor. J 
Biol Chem 270:11749-11752.

Corringer PJ, Le Novere N and Changeux JP (2000) Nicotinic receptors at the amino acid level. 
Annu Rev Pharmacol Toxicol 40:431-458.

Corsi AK and Schekman R (1997) The lumenal domain of Sec63p stimulates the ATPase activity 
of BiP and mediates BiP recruitment to the translocon in Saccharomyces cerevisiae. J Cell Biol 
137:1483-1493.

Court J, Martin-Ruiz C, Piggott M, Spurden D, Griffiths M and Perry E (2001) Nicotinic receptor 
abnormalities in Alzheimer's disease. Biol Psychiatry 49:175-184.



88

Court JA, Martin-Ruiz C, Graham A and Perry E (2000) Nicotinic receptors in human brain: 
topography and pathology. J Chem Neuroanat 20:281-298.

Curtis L, Buisson B, Bertrand S and Bertrand D (2002) Potentiation of human alpha4beta2 
neuronal nicotinic acetylcholine receptor by estradiol. Mol Pharmacol 61:127-135.

Curzon P, Anderson DJ, Nikkei AL, Fox GB, Gopalakrishnan M, Decker MW and Bitner RS
(2006) Antisense knockdown of the rat alpha7 nicotinic acetylcholine receptor produces spatial 
memory impairment. Neurosci Lett 410:15-19.

Curzon P, Brioni JD and Decker MW (1996) Effect of intraventricular injections of dihydro-beta- 
erythroidine (DH beta E) on spatial memory in the rat. Brain Res 714:185-191.

Cymes GD, Grosman C and Auerbach A (2002) Structure of the transition state of gating in the 
acetylcholine receptor channel pore: a phi-value analysis. Biochemistry 41:5548-5555.

Dahan DS, Dibas Ml, Petersson EJ, Auyeung VC, Chanda B, Bezanilla F, Dougherty DA and 
Lester HA (2004) A fluorophore attached to nicotinic acetylcholine receptor beta M2 detects 
productive binding of agonist to the alpha delta site. Proc Natl Acad Sci U S A 101:10195-10200.

Dajas-Bailador F and Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of 
neuronal signalling. Trends Pharmacol Sci 25:317-324.

Daly JW, Garraffo HM, Spande TF, Decker MW, Sullivan JP and Williams M (2000) Alkaloids 
from frog skin: the discovery of epibatidine and the potential for developing novel non-opioid 
analgesics. Nat Prod Rep 17:131-135.

Dani JA and Bertrand D (2006) Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic 
Mechanisms of the Central Nervous System. Annu Rev Pharmacol Toxicol.

Dani JA and Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic 
mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699-729.

Dani JA, Radcliffe KA and Pidoplichko VI (2000) Variations in desensitization of nicotinic 
acetylcholine receptors from hippocampus and midbrain dopamine areas. Eur J Pharmacol 
393:31-38.

Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E and Chellappan S (2006a) Nicotine inhibits 
apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl 
Acad Sci U S A 103:6332-6337.

Dasgupta P, Rastogi S, Pillai S, Ordonez-Ercan D, Morris M, Haura E and Chellappan S (2006b) 
Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 
pathways. J Clin Invest 116:2208-2217.

Davies PA, Wang W, Hales TG and Kirkness EF (2003) A novel class of ligand-gated ion channel 
is activated by Zn2+. J Biol Chem 278:712-717.

Dellisanti CD, Yao Y, Stroud JC, Wang ZZ and Chen L (2007) Crystal structure of the 
extracellular domain of nAChR alphal bound to alpha-bungarotoxin at 1.94 A resolution. Nat 
Neurosci 10:953-962.

Descarries L, Gisiger V and Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. 
Prog Neurobiol 53:603-625.

Dineley KT, Westerman M, Bui D, Bell K, Ashe KH and Sweatt JD (2001) Beta-amyloid activates 
the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine 
receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. J Neurosci 21:4125
4133.



89

Dougherty DA (1996) Cation-pi interactions in chemistry and biology: a new view of benzene, 
Phe, Tyr, and Trp. Science 271:163-168.

Dougherty DA and Stauffer DA (1990) Acetylcholine binding by a synthetic receptor: implications 
for biological recognition. Science 250:1558-1560.

Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT and 
MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction 
and selectivity. Science 280:69-77.

Drisdel RC, Manzana E and Green WN (2004) The role of palmitoylation in functional expression 
of nicotinic alpha7 receptors. J Neurosci 24:10502-10510.

Dukat M and Glennon RA (2003) Epibatidine: impact on nicotinic receptor research. Cell Mol 
Neurobiol 23:365-378.

Duncalfe LL, Carpenter MR, Smillie LB, Martin IL and Dunn SM (1996) The major site of 
photoaffinity labeling of the gamma-aminobutyric acid type A receptor by [3H]flunitrazepam is 
histidine 102 of the alpha subunit. J Biol Chem 271:9209-9214.

Dutertre S and Lewis RJ (2006) Toxin insights into nicotinic acetylcholine receptors. Biochem 
Pharmacol.

Dutzler R, Campbell EB and MacKinnon R (2003) Gating the selectivity filter in CIC chloride 
channels. Science 300:108-112.

Dwoskin LP and Crooks PA (2001) Competitive neuronal nicotinic receptor antagonists: a new 
direction for drug discovery. J Pharmacol Exp Ther 298:395-402.

Eddins D, Sproul AD, Lyford LK, McLaughlin JT and Rosenberg RL (2002) Glutamate 172, 
essential for modulation of L247T alpha7 ACh receptors by Ca2+, lines the extracellular 
vestibule. Am J Physiol Cell Physiol 283:C1454-1460.

Egleton RD, Brown KC and Dasgupta P (2008) Nicotinic acetylcholine receptors in cancer: 
multiple roles in proliferation and inhibition of apoptosis. Trends Pharmacol Sci 29:151-158.

England PM, Lester HA, Davidson N and Dougherty DA (1997) Site-specific, photochemical 
proteolysis applied to ion channels in vivo. Proc Natl Acad Sci U S A 94:11025-11030.

England PM, Zhang Y, Dougherty DA and Lester HA (1999) Backbone mutations in 
transmembrane domains of a ligand-gated ion channel: implications for the mechanism of gating. 
Cell 96:89-98.

Faghih R, Gopalakrishnan M and Briggs CA (2008) Allosteric modulators of the alpha7 nicotinic 
acetylcholine receptor. J Med Chem 51:701-712.

Fambrough DM (1979) Control of acetylcholine receptors in skeletal muscle. Physiol Rev 59:165
227.

Fenster CP, Beckman ML, Parker JC, Sheffield EB, Whitworth TL, Quick MW and Lester RA 
(1999) Regulation of alpha4beta2 nicotinic receptor desensitization by calcium and protein kinase
C. Mol Pharmacol 55:432-443.

Fernandes C, Hoyle E, Dempster E, Schalkwyk LC and Collier DA (2006) Performance deficit of 
alpha7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild 
impairment of working/episodic-like memory. Genes Brain Behav 5:433-440.

Ferretti R and Gianandrea G (1954) [Edematigenic effect of isoniazid on the tuberculous lung; 
anatomo-pathological study.]. Ann 1st Carlo Forlanini 14:288-292.



90

Fiore MC, McCarthy DE, Jackson TC, Zehner ME, Jorenby DE, Mielke M, Smith SS, Guiliani TA 
and Baker TB (2004) Integrating smoking cessation treatment into primary care: an effectiveness 
study. Prev Med 38:412-420.

Fisher JL and Dani JA (2000) Nicotinic receptors on hippocampal cultures can increase synaptic 
glutamate currents while decreasing the NMDA-receptor component. Neuropharmacology 
39:2756-2769.

Folkman J (2006) Angiogenesis. Annu Rev Med 57:1-18.

Forsayeth JR, Gu Y and Hall ZW (1992) BiP forms stable complexes with unassembled subunits 
of the acetylcholine receptor in transfected COS cells and in C2 muscle cells. J Cell Biol 117:841
847.

Gaddum JH and Picarelli ZP (1957) Two kinds of tryptamine receptor. Br J Pharmacol Chemother 
12:323-328.

Gahring LC, Vasquez-Opazo GA, Rogers SW. (2010) Choline promotes nicotinic receptor alpha4 
+ beta2 up-regulation. J Biol Chem. 285:19793-801.

Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG 
and Gurtner GC (2004) Topical vascular endothelial growth factor accelerates diabetic wound 
healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived 
cells. Am J Pathol 164:1935-1947.

Galzi JL, Bertrand S, Corringer PJ, Changeux JP and Bertrand D (1996) Identification of calcium 
binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. EMBO J 
15:5824-5832.

Galzi JL, Devillers-Thiery A, Hussy N, Bertrand S, Changeux JP and Bertrand D (1992) Mutations 
in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to 
anionic. Nature 359:500-505.

Gao F, Bren N, Burghardt TP, Hansen S, Henchman RH, Taylor P, McCammon JA and Sine SM 
(2005) Agonist-mediated conformational changes in acetylcholine-binding protein revealed by 
simulation and intrinsic tryptophan fluorescence. J Biol Chem 280:8443-8451.

Gay EA and Yakel JL (2007) Gating of nicotinic ACh receptors; new insights into structural 
transitions triggered by agonist binding that induce channel opening. J Physiol 584:727-733.

Ge S and Dani JA (2005) Nicotinic acetylcholine receptors at glutamate synapses facilitate long
term depression or potentiation. J Neurosci 25:6084-6091.

Gelman MS, Chang W, Thomas DY, Bergeron JJ and Prives JM (1995) Role of the endoplasmic 
reticulum chaperone calnexin in subunit folding and assembly of nicotinic acetylcholine receptors. 
J Biol Chem 270:15085-15092.

Gentry CL and Lukas RJ (2002) Regulation of nicotinic acetylcholine receptor numbers and 
function by chronic nicotine exposure. CurrDrug Targets CNS Neurol Disord 1:359-385.

Gething MJ (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10:465
472.

Giraudat J, Dennis M, Heidmann T, Chang JY and Changeux JP (1986) Structure of the high- 
affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the 
delta subunit is labeled by [3H]chlorpromazine. Proc Natl Acad Sci U S A  83:2719-2723.

Glennon RA (2005) Pharmacophore identification for s1 receptor binding. Mini-Rev. Med. Chem. 
5:927-940.



91

Glennon RA and Dukat M (2000) Central nicotinic receptor ligands and pharmacophores. Pharm 
Acta Helv 74:103-114.

Glennon RA, Dukat M and Liao L (2004) Musings on alpha4beta2 nicotinic acetylcholine (nACh) 
receptor pharmacophore models. Curr Top Med Chem 4:631-644.

Gotti C and Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog 
Neurobiol 74:363-396.

Gotti C, Moretti M, Clementi F, Riganti L, McIntosh JM, Collins AC, Marks MJ and Whiteaker P
(2005) Expression of nigrostriatal alpha 6-containing nicotinic acetylcholine receptors is 
selectively reduced, but not eliminated, by beta 3 subunit gene deletion. Mol Pharmacol 67:2007
2015.

Gotti C, Riganti L, Vailati S and Clementi F (2006a) Brain neuronal nicotinic receptors as new 
targets for drug discovery. Curr Pharm Des 12:407-428.

Gotti C, Zoli M and Clementi F (2006b) Brain nicotinic acetylcholine receptors: native subtypes 
and their relevance. Trends Pharmacol Sci 27:482-491.

Granon S, Faure P and Changeux JP (2003) Executive and social behaviors under nicotinic 
receptor regulation. Proc Natl Acad Sci U S A  100:9596-9601.

Gray R, Rajan AS, Radcliffe KA, Yakehiro M and Dani JA (1996) Hippocampal synaptic 
transmission enhanced by low concentrations of nicotine. Nature 383:713-716.

Griffioen AW and Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the 
treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52:237
268.

Grosman C, Zhou M and Auerbach A (2000) Mapping the conformational wave of acetylcholine 
receptor channel gating. Nature 403:773-776.

Gu Y, Forsayeth JR, Verrall S, Yu XM and Hall ZW (1991) Assembly of the mammalian muscle 
acetylcholine receptor in transfected COS cells. J Cell Biol 114:799-807.

Guan ZZ, Zhang X, Ravid R and Nordberg A (2000) Decreased protein levels of nicotinic receptor 
subunits in the hippocampus and temporal cortex of patients with Alzheimer's disease. J 
Neurochem 74:237-243.

Gunther U, Benson J, Benke D, Fritschy JM, Reyes G, Knoflach F, Crestani F, Aguzzi A, Arigoni 
M, Lang Y and et al. (1995) Benzodiazepine-insensitive mice generated by targeted disruption of 
the gamma 2 subunit gene of gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S 
A 92:7749-7753.

Gunthorpe MJ and Lummis SC (2001) Conversion of the ion selectivity of the 5-HT(3a) receptor 
from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily. 
J Biol Chem 276:10977-10983.

Guo JZ, Tredway TL and Chiappinelli VA (1998) Glutamate and GABA release are enhanced by 
different subtypes of presynaptic nicotinic receptors in the lateral geniculate nucleus. J Neurosci 
18:1963-1969.

Gyermek L (1996) New local anesthetic agents. Anesthesiology 85:226-227.

Hahn B, Shoaib M and Stolerman IP (2003) Involvement of the prefrontal cortex but not the 
dorsal hippocampus in the attention-enhancing effects of nicotine in rats. Psychopharmacology 
(Bed) 168:271-279.



92

Halevi S, McKay J, Palfreyman M, Yassin L, Eshel M, Jorgensen E and Treinin M (2002) The C. 
elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors. EMBO J 
21 :1012- 1020 .

Halevi S, Yassin L, Eshel M, Sala F, Sala S, Criado M and Treinin M (2003) Conservation within 
the RIC-3 gene family. Effectors of mammalian nicotinic acetylcholine receptor expression. J Biol 
Chem 278:34411 -34417.

Hansen SB, Sulzenbacher G, Huxford T, Marchot P, Taylor P and Bourne Y (2005) Structures of 
Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding 
interfaces and conformations. EMBO J 24:3635-3646.

Hansen SB, Talley TT, Radic Z and Taylor P (2004) Structural and ligand recognition 
characteristics of an acetylcholine-binding protein from Aplysia californica. J Biol Chem 
279:24197-24202.

Hansen SB and Taylor P (2007) Galanthamine and non-competitive inhibitor binding to ACh- 
binding protein: evidence for a binding site on non-alpha-subunit interfaces of heteromeric 
neuronal nicotinic receptors. J Mol Biol 369:895-901.

Hanson SM, Morlock EV, Satyshur KA and Czajkowski C (2008) Structural requirements for 
eszopiclone and zolpidem binding to the gamma-aminobutyric acid type-A (GABAA) receptor are 
different. J Med Chem 51:7243-7252.

Harvey RJ, Thomas P, James CH, Wilderspin A and Smart TG (1999) Identification of an 
inhibitory Zn2+ binding site on the human glycine receptor alphal subunit. J Physiol 520 Pt 1:53
64.

Heeschen C, Weis M, Aicher A, Dimmeler S and Cooke JP (2002) A novel angiogenic pathway 
mediated by non-neuronal nicotinic acetylcholine receptors. J Clin Invest 110:527-536.

Hogg RC and Bertrand D (2004) Nicotinic acetylcholine receptors as drug targets. Curr Drug 
Targets CNS Neurol Disord 3:123-130.

Hogg RC and Bertrand D (2007) Partial agonists as therapeutic agents at neuronal nicotinic 
acetylcholine receptors. Biochem Pharmacol 73:459-468.

Hogg RC, Raggenbass M and Bertrand D (2003) Nicotinic acetylcholine receptors: from structure 
to brain function. Rev Physiol Biochem Pharmacol 147:1-46.

Hosie AM, Buckingham SD, Hamon A and Sattelle DB (2006a) Replacement of asparagine with 
arginine at the extracellular end of the second transmembrane (M2) region of insect GABA 
receptors increases sensitivity to penicillin G. Invert Neurosci 6:75-79.

Hosie AM, Clarke L, da Silva H and Smart TG (2009) Conserved site for neurosteroid modulation 
of GABA A receptors. Neuropharmacology 56:149-154.

Hosie AM, Wilkins ME, da Silva HM and Smart TG (2006b) Endogenous neurosteroids regulate 
GABAA receptors through two discrete transmembrane sites. Nature 444:486-489.

Hosie AM, Wilkins ME and Smart TG (2007) Neurosteroid binding sites on GABA(A) receptors. 
Pharmacol Ther 116:7-19.

Hsiao B, Dweck D and Luetje CW (2001) Subunit-dependent modulation of neuronal nicotinic 
receptors by zinc. J Neurosci 21:1848-1856.

Hsiao B, Mihalak KB, Magleby KL and Luetje CW (2008) Zinc potentiates neuronal nicotinic 
receptors by increasing burst duration. J Neurophysiol 99:999-1007.



93

Hsiao B, Mihalak KB, Repicky SE, Everhart D, Mederos AH, Malhotra A and Luetje CW (2006) 
Determinants of zinc potentiation on the alpha4 subunit of neuronal nicotinic receptors. Mol 
Pharmacol 69:27-36.

Hu M, Liu QS, Chang KT and Berg DK (2002) Nicotinic regulation of CREB activation in 
hippocampal neurons by glutamatergic and nonglutamatergic pathways. Mol Cell Neurosci 
21:616-625.

Hu XQ and Lovinger DM (2008) The L293 residue in transmembrane domain 2 of the 5-HT3A 
receptor is a molecular determinant of allosteric modulation by 5-hydroxyindole. 
Neuropharmacology 54:1153-1165.

Hu XQ and Peoples RW (2008) Arginine 246 of the pretransmembrane domain 1 region alters 
2,2,2-trichloroethanol action in the 5-hydroxytryptamine3A receptor. J Pharmacol Exp Ther 
324:1011-1018.

Hu XQ, Zhang L, Stewart RR and Weight FF (2003) Arginine 222 in the pre-transmembrane 
domain 1 of 5-HT3A receptors links agonist binding to channel gating. J Biol Chem 278:46583
46589.

Huang K and El-Husseini A (2005) Modulation of neuronal protein trafficking and function by 
paimitoylation. CurrOpin Neurobiol 15:527-535.

Huganir RL, Delcour AH, Greengard P and Hess GP (1986) Phosphorylation of the nicotinic 
acetylcholine receptor regulates its rate of desensitization. Nature 321:774-776.

Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, Mukeria A, Szeszenia- 
Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, 
Chen C, Goodman G, Field JK, Liloglou T, Xinarianos G, Cassidy A, McLaughlin J, Liu G, Narod 
S, Krokan HE, Skorpen F, Elvestad MB, Hveem K, Vatten L, Linseisen J, Clavel-Chapelon F, 
Vineis P, Bueno-de-Mesquita HB, Lund E, Martinez C, Bingham S, Rasmuson T, Hainaut P, 
Riboli E, Ahrens W, Benhamou S, Lagiou P, Trichopoulos D, Holcatova I, Merletti F, Kjaerheim K, 
Agudo A, Macfarlane G, Talamini R, Simonato L, Lowry R, Conway Dl, Znaor A, Healy C, 
Zelenika D, Boland A, Delepine M, Foglio M, Lechner D, Matsuda F, Blanche H, Gut I, Heath S, 
Lathrop M and Brennan P (2008) A susceptibility locus for lung cancer maps to nicotinic 
acetylcholine receptor subunit genes on 15q25. Nature 452:633-637.

Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Mori Y, Fukuda K and 
Numa S (1988) Rings of negatively charged amino acids determine the acetylcholine receptor 
channel conductance. Nature 335:645-648.

Jackson MB (1984) Spontaneous openings of the acetylcholine receptor channel. Proc Natl Acad 
Sci US A 81:3901-3904.

Jackson MB (1986) Kinetics of unliganded acetylcholine receptor channel gating. Biophys J 
49:663-672.

Jacobi J, Jang JJ, Sundram U, Dayoub H, Fajardo LF and Cooke JP (2002) Nicotine accelerates 
angiogenesis and wound healing in genetically diabetic mice. Am J Pathol 161:97-104.

Jeanclos EM, Lin L, Treuil MW, Rao J, DeCoster MA and Anand R (2001) The chaperone protein 
14-3-3eta interacts with the nicotinic acetylcholine receptor alpha 4 subunit. Evidence for a 
dynamic role in subunit stabilization. J Biol Chem 276:28281-28290.

Jenkins A, Andreasen A, Trudell JR and Harrison NL (2002) Tryptophan scanning mutagenesis in 
TM4 of the GABA(A) receptor alphal subunit: implications for modulation by inhaled anesthetics 
and ion channel structure. Neuropharmacology 43:669-678.



94

Jenkins A, Greenblatt EP, Faulkner HJ, Bertaccini E, Light A, Lin A, Andreasen A, Viner A, 
Trudell JR and Harrison NL (2001) Evidence for a common binding cavity for three general 
anesthetics within the GABAA receptor. J Neurosci 21 :RC136.

Ji D, Lape R and Dani JA (2001) Timing and location of nicotinic activity enhances or depresses 
hippocampal synaptic plasticity. Neuron 31:131-141.

Johnson AE and van Waes MA (1999) The translocon: a dynamic gateway at the ER membrane. 
Annu Rev Cell Dev Biol 15:799-842.

Jones IW, Bolam JP and Wonnacott S (2001) Presynaptic localisation of the nicotinic 
acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. 
J Comp Neurol 439:235-247.

Jones S, Sudweeks S and Yakel JL (1999) Nicotinic receptors in the brain: correlating physiology 
with function. Trends Neurosci 22:555-561.

Karlin A (2004) A touching picture of nicotinic binding. Neuron 41:841-842.

Kasa P, Rakonczay Z and Gulya K (1997) The cholinergic system in Alzheimer's disease. Prog 
Neurobiol 52:511-535.

Kash TL, Jenkins A, Kelley JC, Trudell JR and Harrison NL (2003) Coupling of agonist binding to 
channel gating in the GABA(A) receptor. Nature 421:272-275.

Kawaja MD, Flumerfelt BA and Hrycyshyn AW (1990) A comparison of the subnuclear and 
ultrastructural distribution of acetylcholinesterase and choline acetyltransferase in the rat 
interpeduncular nucleus. Brain Res Bull 24:517-523.

Keller JJ, Keller AB, Bowers BJ and Wehner JM (2005) Performance of alpha7 nicotinic receptor 
null mutants is impaired in appetitive learning measured in a signaled nose poke task. Behav 
Brain Res 162:143-152.

Keller SH, Lindstrom J, Ellisman M and Taylor P (2001) Adjacent basic amino acid residues 
recognized by the COP I complex and ubiquitination govern endoplasmic reticulum to cell surface 
trafficking of the nicotinic acetylcholine receptor alpha-Subunit. J Biol Chem 276:18384-18391.

Keller SH, Lindstrom J and Taylor P (1998) Inhibition of glucose trimming with castanospermine 
reduces calnexin association and promotes proteasome degradation of the alpha-subunit of the 
nicotinic acetylcholine receptor. J Biol Chem 273:17064-17072.

Kelley SP, Dunlop JI, Kirkness EF, Lambert JJ and Peters JA (2003) A cytoplasmic region 
determines single-channel conductance in 5-HT3 receptors. Nature 424:321-324.

Keramidas A, Moorhouse AJ, Schofield PR and Barry PH (2004) Ligand-gated ion channels: 
mechanisms underlying ion selectivity. Prog Biophys Mol Biol 86:161-204.

Kitagawa H, Takenouchi T, Azuma R, Wesnes KA, Kramer WG, Clody DE and Burnett AL (2003) 
Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in 
healthy, male volunteers. Neuropsychopharmacology 28:542-551.

Klapproth H, Racke K and Wessler I (1998) Acetylcholine and nicotine stimulate the release of 
granulocyte-macrophage colony stimulating factor from cultured human bronchial epithelial cells. 
Naunyn Schmiedebergs Arch Pharmacol 357:472-475.

Klink R, de Kerchove d'Exaerde A, Zoli M and Changeux JP (2001) Molecular and physiological 
diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 
21:1452-1463.



95

Kooyman AR, van Hooft JA, Vanderheijden PM and Vijverberg HP (1994) Competitive and non
competitive effects of 5-hydroxyindole on 5-HT3 receptors in N1E-115 neuroblastoma cells. Br J 
Pharmacol 112:541-546.

Koshland DE, Jr. (1963) Correlation of Structure and Function in Enzyme Action. Science 
142:1533-1541.

Krasowski MD and Harrison NL (1999) General anaesthetic actions on ligand-gated ion channels. 
Cell Mol Life Sci 55:1278-1303.

Krasowski MD, Nishikawa K, Nikolaeva N, Lin A and Harrison NL (2001) Methionine 286 in 
transmembrane domain 3 of the GABAA receptor beta subunit controls a binding cavity for 
propofol and other alkylphenol general anesthetics. Neuropharmacology 41:952-964.

Kreienkamp HJ, Maeda RK, Sine SM and Taylor P (1995) Intersubunit contacts governing 
assembly of the mammalian nicotinic acetyicholine receptor. Neuron 14:635-644.

Krishek BJ, Moss SJ and Smart TG (1998) Interaction of H+ and Zn2+ on recombinant and native 
rat neuronal GABAA receptors. J Physiol 507 ( Pt 3):639-652.

Kucken AM, Wagner DA, Ward PR, Teissere JA, Boileau AJ and Czajkowski C (2000) 
Identification of benzodiazepine binding site residues in the gamma2 subunit of the gamma- 
aminobutyric acid(A) receptor. Mol Pharmacol 57:932-939.

Kuo YP, Xu L, Eaton JB, Zhao L, Wu J and Lukas RJ (2005) Roles for nicotinic acetylcholine 
receptor subunit large cytoplasmic loop sequences in receptor expression and function. J 
Pharmacol Exp Ther 314:455-466.

Kuryatov A, Luo J, Cooper J and Lindstrom J (2005) Nicotine acts as a pharmacological 
chaperone to up-regulate human alpha4beta2 acetylcholine receptors. Mol Pharmacol 68:1839
1851.

Lamb JA, Moore J, Bailey A and Monaco AP (2000) Autism: recent molecular genetic advances. 
Hum Mol Genet 9:861 -868.

Lamb PW, Melton MA and Yakel JL (2005) Inhibition of neuronai nicotinic acetylcholine receptor 
channels expressed in Xenopus oocytes by beta-amyloid 1-42 peptide. J Mol Neurosci 27:13-21.

Lansdell SJ, Gee VJ, Harkness PC, Doward Al, Baker ER, Gibb AJ and Millar NS (2005) RIC-3 
enhances functional expression of multiple nicotinic acetylcholine receptor subtypes in 
mammalian cells. Mol Pharmacol 68:1431-1438.

Lape R, Colquhoun D and Sivilotti LG (2008) On the nature of partial agonism in the nicotinic 
receptor superfamily. Nature 454:722-727.

Lape R, Krashia P, Colquhoun D and Sivilotti LG (2009) Agonist and blocking actions of choline 
and tetramethylammonium on human muscle acetylcholine receptors. J Physiol 587:5045-5072.

Lee BH, Choi SH, Shin TJ, Pyo MK, Hwang SH, Kim BR, Lee SM, Lee JH, Kim HC, Park HY, 
Rhim H and Nah SY (2010a) Quercetin enhances human alpha7 nicotinic acetylcholine receptor- 
mediated ion current through interactions with Ca(2+) binding sites. Mol Cells 30:245-253.

Lee CH, Huang CS, Chen CS, Tu SH, Wang YJ, Chang YJ, Tam KW, Wei PL, Cheng TC, Chu 
JS, Chen LC, Wu CH and Ho YS (2010b) Overexpression and activation of the alpha9-nicotinic 
receptor during tumorigenesis in human breast epithelial cells. J Natl Cancer Inst 102:1322-1335.

Lee Y, Rudell J and Ferns M (2009) Rapsyn interacts with the muscle acetylcholine receptor via 
alpha-helical domains in the alpha, beta, and epsilon subunit intracellular loops. Neuroscience 
163:222-232.



96

Leite JF, Blanton MP, Shahgholi M, Dougherty DA and Lester HA (2003) Conformation- 
dependent hydrophobic photolabeling of the nicotinic receptor: electrophysiology-coordinated 
photochemistry and mass spectrometry. Proc Natl Acad Sci U SA  100:13054-13059.

Lena C and Changeux JP (1997) Role of Ca2+ ions in nicotinic facilitation of GABA release in 
mouse thalamus. J Neurosci 17:576-585.

Lena C, Changeux JP and Mulle C (1993) Evidence for "preterminal" nicotinic receptors on 
GABAergic axons in the rat interpeduncular nucleus. J Neurosci 13:2680-2688.

Lester HA, Dibas Ml, Dahan DS, Leite JF and Dougherty DA (2004) Cys-loop receptors: new 
twists and turns. Trends Neurosci 27:329-336.

Lester HA, Xiao C, Srinivasan R, Son CD, Miwa J, Pantoja R, Banghart MR, Dougherty DA, 
Goate AM and Wang JC (2009) Nicotine is a selective pharmacological chaperone of 
acetylcholine receptor number and stoichiometry. Implications for drug discovery. Aaps J 11:167
177.

Lewis TM, Sivilotti LG, Colquhoun D, Gardiner RM, Schoepfer R and Rees M (1998) Properties of 
human giycine receptors containing the hyperekplexia mutation alpha1(K276E), expressed in 
Xenopus oocytes. J Physiol 507 ( Pt 1):25-40.

Li GD, Chiara DC, Sawyer GW, Husain SS, Olsen RW and Cohen JB (2006) Identification of a 
GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate 
analog. J Neurosci 26:11599-11605.

Lichtner RB, Gallick GE and Nicolson GL (1988) Pyrimido-pyrimidine modulation of EGF growth- 
promoting activity and p21 ras expression in rat mammary adenocarcinoma cells. J Cell Physiol 
137:285-292.

Limapichat W, Lester HA and Dougherty DA (2010) Chemical scale studies of the Phe-Pro 
conserved motif in the cys loop of Cys loop receptors. J Biol Chem 285:8976-8984.

Lin L, Jeanclos EM, Treuil M, Braunewell KH, Gundelfinger ED and Anand R (2002) The calcium 
sensor protein visinin-like protein-1 modulates the surface expression and agonist sensitivity of 
the alpha 4beta 2 nicotinic acetylcholine receptor. J Biol Chem 277:41872-41878.

Lippiello PM (2006) Nicotinic cholinergic antagonists: a novel approach for the treatment of 
autism. Med Hypotheses 66:985-990.

Liu P, Vikis HG, Wang D, Lu Y, Wang Y, Schwartz AG, Pinney SM, Yang P, de Andrade M, 
Petersen GM, Wiest JS, Fain PR, Gazdar A, Gaba C, Rothschild H, Mandal D, Coons T, Lee J, 
Kupert E, Seminara D, Minna J, Bailey-Wilson JE, Wu X, Spitz MR, Eisen T, Houlston RS, Amos 
Cl, Anderson MW and You M (2008a) Familial aggregation of common sequence variants on
15q24-25.1 in lung cancer. J Natl Cancer Inst 100:1326-1330.

Liu Q, Yu KW, Chang YC, Lukas RJ and Wu J (2008b) Agonist-induced hump current production 
in heterologously-expressed human alpha4beta2-nicotinic acetylcholine receptors. Acta
Pharmacol Sin 29:305-319.

Luetje CW (2004) Getting past the asterisk: the subunit composition of presynaptic nicotinic 
receptors that modulate striatal dopamine release. Mol Pharmacol 65:1333-1335.

Lynch JW, Rajendra S, Pierce KD, Handford CA, Barry PH and Schofield PR (1997) Identification 
of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine 
receptor chloride channel. EMBO J 16:110-120.

Lysek N, Rachor E and Lindel T (2002) Isolation and structure elucidation of
deformylflustrabromine from the North Sea bryozoan Flustra foliacea. Z Naturforsch C 57:1056
1061.



97

Maelicke A, Schrattenholz A, Samochocki M, Radina M and Albuquerque EX (2000) Allosterically 
potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer's disease. Behav 
Brain Res 113:199-206.

Majewska MD, Harrison NL, Schwartz RD, Barker JL and Paul SM (1986) Steroid hormone 
metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004-1007.

Maksay G, Bikadi Z and Simonyi M (2003) Binding interactions of antagonists with 5- 
hydroxytryptamine3A receptor models. J Recept Signal Transduct Res 23:255-270.

Mamede M, Ishizu K, Ueda M, Mukai T, lida Y, Kawashima H, Fukuyama H, Togashi K and Saji 
H (2007) Temporal change in human nicotinic acetylcholine receptor after smoking cessation: 5IA 
SPECT study. J Nucl Med 48:1829-1835.

Maneckjee R and Minna JD (1994) Opioids induce while nicotine suppresses apoptosis in human 
lung cancer cells. Cell Growth Differ 5:1033-1040.

Mansvelder HD, Keath JR and McGehee DS (2002) Synaptic mechanisms underlie nicotine- 
induced excitability of brain reward areas. Neuron 33:905-919.

Mansvelder HD and McGehee DS (2000) Long-term potentiation of excitatory inputs to brain 
reward areas by nicotine. Neuron 27:349-357.

Maricq AV, Peterson AS, Brake AJ, Myers RM and Julius D (1991) Primary structure and 
functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254:432-437.

Marion L and Cockburn WF (1948) The papilionaceous alkaloids; Baptisia minor, Lehm. J Am 
Chem Soc 70:3472-3474.

Marks MJ, Pauly JR, Gross SD, Deneris ES, Hermans-Borgmeyer I, Heinemann SF and Collins 
AC (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J 
Neurosci 12:2765-2784.

Marritt AM, Cox BC, Yasuda RP, McIntosh JM, Xiao Y, Wolfe BB and Kellar KJ (2005) Nicotinic 
cholinergic receptors in the rat retina: simple and mixed heteromeric subtypes. Mol Pharmacol 
68:1656-1668.

Martin-Ruiz CM, Lee M, Perry RH, Baumann M, Court JA and Perry EK (2004) Molecular 
analysis of nicotinic receptor expression in autism. Brain Res Mol Brain Res 123:81-90.

Martin BR, Onaivi ES and Martin TJ (1989) What is the nature of mecamylamine's antagonism of 
the central effects of nicotine? Biochem Pharmacol 38:3391-3397.

Martinez-Moreno P, Nieto-Ceron S, Torres-Lanzas J, Ruiz-Espejo F, Tovar-Zapata I, Martinez- 
Hernandez P, Rodriguez-Lopez JN, Vidal CJ and Cabezas-Herrera J (2006) Cholinesterase 
activity of human lung tumours varies according to their histological classification. Carcinogenesis 
27:429-436.

Mascia MP, Trudell JR and Harris RA (2000) Specific binding sites for alcohols and anesthetics 
on ligand-gated ion channels. Proc Natl Acad Sci U S A  97:9305-9310.

Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins 
AC, Damaj Ml, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas 
RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, 
Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM and Zirger JM
(2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacology (Bed) 
190:269-319.



98

Maus AD, Pereira EF, Karachunski PI, Horton RM, Navaneetham D, Macklin K, Cortes WS, 
Albuquerque EX and Conti-Fine BM (1998) Human and rodent bronchial epithelial cells express 
functional nicotinic acetylcholine receptors. Mol Pharmacol 54:779-788.

McClellan AJ, Endres JB, Vogel JP, Palazzi D, Rose MD and Brodsky JL (1998) Specific 
molecular chaperone interactions and an ATP-dependent conformational change are required 
during posttranslational protein translocation into the yeast ER. Mol Biol Cell 9:3533-3545.

McGehee DS, Heath MJ, Gelber S, Devay P and Role LW (1995) Nicotine enhancement of fast 
excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692-1696.

McGehee DS and Role LW (1995) Physiological diversity of nicotinic acetylcholine receptors 
expressed by vertebrate neurons. Annu Rev Physiol 57:521-546.

McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G, Zaridze D, Mukeria A, 
Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, 
Janout V, McLaughlin J, Shepherd F, Montpetit A, Narod S, Krokan HE, Skorpen F, Elvestad MB, 
Vatten L, Njolstad I, Axelsson T, Chen C, Goodman G, Barnett M, Loomis MM, Lubinski J, 
Matyjasik J, Lener M, Oszutowska D, Field J, Liloglou T, Xinarianos G, Cassidy A, Vineis P, 
Clavel-Chapelon F, Palli D, Tumino R, Krogh V, Panico S, Gonzalez CA, Ramon Quiros J, 
Martinez C, Navarro C, Ardanaz E, Larranaga N, Kham KT, Key T, Bueno-de-Mesquita HB, 
Peeters PH, Trichopoulou A, Linseisen J, Boeing H, Hallmans G, Overvad K, Tjonneland A, 
Kumle M, Riboli E, Zelenika D, Boland A, Delepine M, Foglio M, Lechner D, Matsuda F, Blanche 
H, Gut I, Heath S, Lathrop M and Brennan P (2008) Lung cancer susceptibility locus at 5p15.33. 
Nat Genet 40:1404-1406.

McKee SA, Harrison EL, O'Malley SS, Krishnan-Sarin S, Shi J, Tetrault JM, Picciotto 
MR, Petrakis IL, Estevez N, Balchunas E (2009) Varenicline reduces alcohol self-administration 
in heavy-drinking smokers. Biol Psychiatry 66:185-90.

McKernan RM, Farrar S, Collins I, Emms F, Asuni A, Quirk K and Broughton H (1998) 
Photoaffinity labeling of the benzodiazepine binding site of alpha1beta3gamma2 gamma- 
aminobutyric acidA receptors with flunitrazepam identifies a subset of ligands that interact directly 
with His102 of the alpha subunit and predicts orientation of these within the benzodiazepine 
pharmacophore. Mol Pharmacol 54:33-43.

Merlie JP and Lindstrom J (1983) Assembly in vivo of mouse muscle acetylcholine receptor: 
identification of an alpha subunit species that may be an assembly intermediate. Cell 34:747-757.

Merlie JP, Sebbane R, Tzartos S and Lindstrom J (1982) Inhibition of glycosylation with 
tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle 
cells. J Biol Chem 257:2694-2701.

Meyer EM, Tay ET, Zoltewicz JA, Meyers C, King MA, Papke RL and De Fiebre CM (1998) 
Neuroprotective and memory-related actions of novel alpha-7 nicotinic agents with different mixed 
agonist/antagonist properties. J Pharmacol Exp Ther 284:1026-1032.

Mihic SJ, Whiting PJ, Klein RL, Wafford KA and Harris RA (1994) A single amino acid of the 
human gamma-aminobutyric acid type A receptor gamma 2 subunit determines benzodiazepine 
efficacy. J Biol Chem 269:32768-32773.

Mihic SJ, Ye Q, Wick MJ, Koltchine W , Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, 
Hanson KK, Greenblatt EP, Harris RA and Harrison NL (1997) Sites of alcohol and volatile 
anaesthetic action on GABA(A) and glycine receptors. Nature 389:385-389.

Miller C (1989) Genetic manipulation of ion channels: a new approach to structure and 
mechanism. Neuron 2:1195-1205.

Miller KW (2002) The nature of sites of general anaesthetic action. BrJ Anaesth 89:17-31.



99

Miller PS and Smart TG (2010) Binding, activation and modulation of Cys-loop receptors. Trends 
Pharmacol Sci 31:161 -174.

Mishina M, Tobimatsu T, Imoto K, Tanaka K, Fujita Y, Fukuda K, Kurasaki M, Takahashi H, 
Morimoto Y, Hirose T and et al. (1985) Location of functional regions of acetylcholine receptor 
alpha-subunit by site-directed mutagenesis. Nature 313:364-369.

Miwa JM, Stevens TR, King SL, Caldarone BJ, Ibanez-Tallon I, Xiao C, Fitzsimonds RM, Pavlides 
C, Lester HA, Picciotto MR and Heintz N (2006) The prototoxin lynxl acts on nicotinic 
acetylcholine receptors to balance neuronal activity and survival in vivo. Neuron 51:587-600.

Miyazawa A, Fujiyoshi Y, Stowell M and Unwin N (1999) Nicotinic acetylcholine receptor at 4.6 A 
resolution: transverse tunnels in the channel wall. J Mol Biol 288:765-786.

Miyazawa A, Fujiyoshi Y and Unwin N (2003) Structure and gating mechanism of the 
acetylcholine receptor pore. Nature 423:949-955.

Mogg AJ, Whiteaker P, McIntosh JM, Marks M, Collins AC and Wonnacott S (2002) 
Methyllycaconitine is a potent antagonist of alpha-conotoxin-MII-sensitive presynaptic nicotinic 
acetylcholine receptors in rat striatum. J Pharmacol Exp Ther 302:197-204.

Monod J, Wyman J and Changeux JP (1965) On the Nature of Allosteric Transitions: A Plausible 
Model. J Mol Biol 12:88-118.

Moody EJ, Knauer C, Granja R, Strakhova M and Skolnick P (1997) Distinct loci mediate the 
direct and indirect actions of the anesthetic etomidate at GABA(A) receptors. J Neurochem 
69:1310-1313.

Moody EJ, Knauer CS, Granja R, Strakhovaua M and Skolnick P (1998) Distinct structural 
requirements for the direct and indirect actions of the anaesthetic etomidate at GABA(A) 
receptors. Toxicol Lett 100-101:209-215.

Moretti M, Vailati S, Zoli M, Lippi G, Riganti L, Longhi R, Viegi A, Clementi F and Gotti C (2004) 
Nicotinic acetylcholine receptor subtypes expression during rat retina development and their 
regulation by visual experience. Mol Pharmacol 66:85-96.

Morimoto N, Takemoto S, Kawazoe T and Suzuki S (2008) Nicotine at a low concentration 
promotes wound healing. J Surg Res 145:199-204.

Moriwaki Y, Yoshikawa K, Fukuda H, Fujii YX, Misawa H and Kawashima K (2007) Immune 
system expression of SLURP-1 and SLURP-2, two endogenous nicotinic acetylcholine receptor 
ligands. Life Sci 80:2365-2368.

Moroni M and Bermudez I (2006) Stoichiometry and Pharmacology of Two Human alpha4beta2 
Nicotinic Receptor Types. J Mol Neurosci 30:95-96.

Moroni M, Vijayan R, Carbone A, Zwart R, Biggin PC and Bermudez I (2008) Non-agonist-binding 
subunit interfaces confer distinct functional signatures to the alternate stoichiometries of the 
alpha4beta2 nicotinic receptor: an alpha4-alpha4 interface is required for Zn2+ potentiation. J 
Neurosci 28:6884-6894.

Moroni M, Zwart R, Sher E, Cassels BK and Bermudez I (2006a) alpha4beta2 nicotinic receptors 
with high and low acetylcholine sensitivity: pharmacology, stoichiometry, and sensitivity to long
term exposure to nicotine. Mol Pharmacol 70:755-768.

Moroni M, Zwart R, Sher E, Cassels BK and Bermudez I (2006b) {alpha}4{beta}2 nicotinic 
receptors with high and low acetylcholine sensitivity: pharmacology, stoichiometry and sensitivity 
to chronic exposure to nicotine. Mol Pharmacol.



100

Morris KD and Amin J (2004) Insight into the mechanism of action of neuroactive steroids. Mol 
Pharmacol 66:56-69.

Mrowiec T and Schwappach B (2006) 14-3-3 proteins in membrane protein transport. Biol Chem 
387:1227-1236.

Nashmi R and Lester HA (2006) CNS localization of neuronal nicotinic receptors. J Mol Neurosci 
30:181-184.

Nashmi R, Xiao C, Deshpande P, McKinney S, Grady SR, Whiteaker P, Huang Q, McClure- 
Begley T, Lindstrom JM, Labarca C, Collins AC, Marks MJ and Lester HA (2007) Chronic nicotine 
cell specifically upregulates functional alpha 4* nicotinic receptors: basis for both tolerance in 
midbrain and enhanced long-term potentiation in perforant path. J Neurosci 27:8202-8218.

Nelson ME, Kuryatov A, Choi CH, Zhou Y and Lindstrom J (2003) Alternate stoichiometries of 
alpha4beta2 nicotinic acetylcholine receptors. Mol Pharmacol 63:332-341.

Nguyen HN, Rasmussen BA and Perry DC (2003) Subtype-selective up-regulation by chronic 
nicotine of high-affinity nicotinic receptors in rat brain demonstrated by receptor autoradiography. 
J Pharmacol Exp Ther 307:1090-1097.

Nguyen HN, Rasmussen BA and Perry DC (2004) Binding and functional activity of nicotinic 
cholinergic receptors in selected rat brain regions are increased following long-term but not short
term nicotine treatment. J Neurochem 90:40-49.

Nicolson R, Craven-Thuss B and Smith J (2006) A prospective, open-label trial of galantamine in 
autistic disorder. J Child Adolesc Psychopharmacol 16:621-629.

Nishimura N and Balch WE (1997) A di-acidic signal required for selective export from the 
endoplasmic reticulum. Science 277:556-558.

Nordberg A (2000) Neuroprotection in Alzheimer's disease - new strategies for treatment. 
Neurotox Res 2:157-165.

Nordberg A (2001) Nicotinic receptor abnormalities of Alzheimer's disease: therapeutic 
implications. Biol Psychiatry 49:200-210.

Nordberg A, Lundqvist H, Hartvig P, Andersson J, Johansson M, Hellstrom-Lindahi E and 
Langstrom B (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer's disease: effect 
of tacrine treatment. Dement Geriatr Cogn Disord 8:78-84.

Olsen RW and Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of 
gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, 
pharmacology, and function. Update. Pharmacol Rev 60:243-260.

Oshikawa J, Toya Y, Fujita T, Egawa M, Kawabe J, Umemura S and Ishikawa Y (2003) Nicotinic 
acetylcholine receptor alpha 7 regulates cAMP signal within lipid rafts. Am J Physiol Cell Physiol 
285:0567-574.

Ostroumov K, Shaikhutdinova A and Skorinkin A (2008) Modeling study of mecamylamine block 
of muscle type acetylcholine receptors. EurBiophys J 37:393-402.

Pacheco MA, Pastoor TE and Wecker L (2003) Phosphorylation of the alpha4 subunit of human 
alpha4beta2 nicotinic receptors: role of cAMP-dependent protein kinase (PKA) and protein kinase 
C (PKC). Brain Res Mol Brain Res 114:65-72.

Pandya NM, Dhalla NS and Santani DD (2006) Angiogenesis--a new target for future therapy. 
Vascul Pharmacol 44:265-274.



101

Papke RL, Bencherif M and Lippiello P (1996) An evaluation of neuronal nicotinic acetylcholine 
receptor activation by quaternary nitrogen compounds indicates that choline is selective for the 
alpha 7 subtype. Neurosci Lett 213:201-204.

Paradiso K, Sabey K, Evers AS, Zorumski CF, Covey DF and Steinbach JH (2000) Steroid 
inhibition of rat neuronal nicotinic alpha4beta2 receptors expressed in HEK 293 cells. Mol 
Pharmacol 58:341-351.

Paradiso K, Zhang J and Steinbach JH (2001) The C terminus of the human nicotinic 
alpha4beta2 receptor forms a binding site required for potentiation by an estrogenic steroid. J 
Neurosci 21:6561 -6568.

Parnavelas JG, Kelly W and Burnstock G (1985) Ultrastructural localization of choline 
acetyltransferase in vascular endothelial cells in rat brain. Nature 316:724-725.

Paulson HL, Ross AF, Green WN and Claudio T (1991) Analysis of early events in acetylcholine 
receptor assembly. J Cell Biol 113:1371-1384.

Peng X, Gerzanich V, Anand R, Whiting PJ and Lindstrom J (1994) Nicotine-induced increase in 
neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol 
Pharmacol 46:523-530.

Pereira EF, Alkondon M, Tano T, Castro NG, Froes-Ferrao MM, Rozental R, Aronstam RS, 
Schrattenholz A, Maelicke A and Albuquerque EX (1993) A novel agonist binding site on nicotinic 
acetylcholine receptors. J Recept Res 13:413-436.

Perry DC, Davila-Garcia Ml, Stockmeier CA and Kellar KJ (1999) Increased nicotinic receptors in 
brains from smokers: membrane binding and autoradiography studies. J Pharmacol Exp Ther 
289:1545-1552.

Perry EK, Lee ML, Martin-Ruiz CM, Court JA, Volsen SG, Merrit J, Folly E, iversen PE, Bauman 
ML, Perry RH and Wenk GL (2001) Cholinergic activity in autism: abnormalities in the cerebral 
cortex and basal forebrain. Am J Psychiatry 158:1058-1066.

Peters L, Konig GM, Wright AD, Pukall R, Stackebrandt E, Eberl L and Riedel K (2003) 
Secondary metabolites of Flustra foliacea and their influence on bacteria. Appl Environ Microbiol 
69:3469-3475.

Peters L, Wright AD, Kehraus S, Gundisch D, Tilotta MC and Konig GM (2004) Prenylated indole 
alkaloids from Flustra foliacea with subtype specific binding on NAChRs. Planta Med 70:883-886.

Pettit DL, Shao Z and Yakel JL (2001) beta-Amyloid(1-42) peptide directly modulates nicotinic 
receptors in the rat hippocampal slice. J Neurosci 21 :RC120.

Pfister JA, Gardner DR, Panter KE, Manners GD, Ralphs MH, Stegelmeier BL and Schoch TK 
(1999) Larkspur (Delphinium spp.) poisoning in livestock. J Nat Toxins 8:81-94.

Picciotto MR, Caldarone BJ, Brunzell DH, Zachariou V, Stevens TR and King SL (2001) Neuronal 
nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes 
and possible clinical implications. Pharmacol Ther 92:89-108.

Picciotto MR and Zoli M (2002) Nicotinic receptors in aging and dementia. J Neurobiol 53:641
655.

Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K and Changeux JP 
(1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing 
properties of nicotine. Nature 391:173-177.

Plemper RK, Bohmler S, Bordallo J, Sommer T and Wolf DH (1997) Mutant analysis links the 
translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891-895.



102

Plummer HK, Dhar M and Schuller HM (2005) Expression of the alpha7 nicotinic acetylcholine 
receptor in human lung cells. RespirRes 6:29.

Potter A, Corwin J, Lang J, Piasecki M, Lenox R and Newhouse PA (1999) Acute effects of the 
selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer's disease. 
Psychopharmacology (Berl) 142:334-342.

Price KL, Bower KS, Thompson AJ, Lester HA, Dougherty DA and Lummis SC (2008) A 
hydrogen bond in loop A is critical for the binding and function of the 5-HT3 receptor. 
Biochemistry 47:6370-6377.

Price KL and Lummis SC (2004) The role of tyrosine residues in the extracellular domain of the 5- 
hydroxytryptamine3 receptor. J Biol Chem 279:23294-23301.

Proskocil BJ, Sekhon HS, Jia Y, Savchenko V, Blakely RD, Lindstrom J and Spindel ER (2004) 
Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial 
epithelial cells. Endocrinology 145:2498-2506.

Purohit P, Mitra A and Auerbach A (2007) A stepwise mechanism for acetylcholine receptor 
channel gating. Nature 446:930-933.

Purves DA, G.J.; Fitzpatrick, D.; Hall, W.C.; LaMantia, A.S.; MsNamara, J.O.; Williams, S.M.
(2004) Neurosciene, Third Edition. Sinauer Associates, Inc., Sunderland, Massachusetts.

Puskar NL, Xiu X, Lester HA and Dougherty DA (2011) Two neuronal nicotinic Acetylcholine 
receptors - alpha4beta4 and alpha7 - show differential agonist binding modes. J Biol Chem.

Quick MW and Lester RA (2002) Desensitization of neuronal nicotinic receptors. J Neurobiol 
53:457-478.

Rabenstein RL, Caldarone BJ and Picciotto MR (2006) The nicotinic antagonist mecamylamine 
has antidepressant-like effects in wild-type but not beta2- or alpha7-nicotinic acetylcholine 
receptor subunit knockout mice. Psychopharmacology (Berl) 189:395-401.

Radcliffe KA and Dani JA (1998) Nicotinic stimulation produces multiple forms of increased 
glutamatergic synaptic transmission. J Neurosci 18:7075-7083.

Ray MA, Graham AJ, Lee M, Perry RH, Court JA and Perry EK (2005) Neuronal nicotinic 
acetylcholine receptor subunits in autism: an immunohistochemical investigation in the thalamus. 
Neurobiol Dis 19:366-377.

Ren XQ, Cheng SB, Treuil MW, Mukherjee J, Rao J, Braunewell KH, Lindstrom JM and Anand R
(2005) Structural determinants of alpha4beta2 nicotinic acetylcholine receptor trafficking. J 
Neurosci 25:6676-6686.

Rezvani AH, Kholdebarin E, Brucato FH, Callahan PM, Lowe DA and Levin ED (2009) Effect of 
R3487/MEM3454, a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist on 
sustained attention in rats. Prog Neuropsychopharmacol Biol Psychiatry 33:269-275.

Risau W (1997) Mechanisms of angiogenesis. Nature 386:671-674.

Robinson MS (2004) Adaptable adaptors for coated vesicles. Trends Cell Biol 14:167-174.

Roccamo AM and Barrantes FJ (2007) Charged amino acid motifs flanking each extreme of the 
alphaM4 transmembrane domain are involved in assembly and cell-surface targeting of the 
muscle nicotinic acetylcholine receptor. J Neurosci Res 85:285-293.

Role LW and Berg DK (1996) Nicotinic receptors in the development and modulation of CNS 
synapses. Neuron 16:1077-1085.



103

Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA, Lu Y, Mansbach RS, Mather 
RJ, Rovetti CC, Sands SB, Schaeffer E, Schulz DW, Tingley FD, 3rd and Williams KE (2007a) 
Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist 
varenicline, an effective smoking cessation aid. Neuropharmacology 52:985-994.

Rollema H, Coe JW, Chambers LK, Hurst RS, Stahl SM and Williams KE (2007b) Rationale, 
pharmacology and clinical efficacy of partial agonists of alpha(4)beta(2) nACh receptors for 
smoking cessation. Trends Pharmacol Sci. 28:316-25.

Rosenberg MM, Yang F, Giovanni M, Mohn JL, Temburni MK and Jacob MH (2008) 
Adenomatous polyposis coli plays a key role, in vivo, in coordinating assembly of the neuronal 
nicotinic postsynaptic complex. Mol Cell Neurosci 38:138-152.

Sala F, Mulet J, Reddy KP, Bernal JA, Wikman P, Valor LM, Peters L, Konig GM, Criado M and 
Sala S (2005) Potentiation of human alpha4beta2 neuronal nicotinic receptors by a Flustra 
foliacea metabolite. Neurosci Lett 373:144-149.

Sallette J, Pons S, Devillers-Thiery A, Soudant M, Prado de Carvalho L, Changeux JP and 
Corringer PJ (2005) Nicotine upregulates its own receptors through enhanced intracellular 
maturation. Neuron 46:595-607.

Samochocki M, Hoffle A, Fehrenbacher A, Jostock R, Ludwig J, Christner C, Radina M, Zerlin M, 
Ullmer C, Pereira EF, Lubbert H, Albuquerque EX and Maelicke A (2003) Galantamine is an 
allosterically potentiating ligand of neuronal nicotinic but not of muscarinic acetylcholine 
receptors. J Pharmacol Exp Ther 305:1024-1036.

Sardari Nia P, Weyler J, Colpaert C, Vermeulen P, Van Marck E and Van Schil P (2005) 
Prognostic value of smoking status in operated non-small cell lung cancer. Lung Cancer 47:351
359.

Schaerer MT, Buhr A, Baur R and Sigel E (1998) Amino acid residue 200 on the alphal subunit 
of GABA(A) receptors affects the interaction with selected benzodiazepine binding site ligands. 
Eur J Pharmacol 354:283-287.

Schrattenholz A, Godovac-Zimmermann J, Schafer HJ, Albuquerque EX and Maelicke A (1993) 
Photoaffinity labeling of Torpedo acetylcholine receptor by physostigmine. Eur J Biochem 
216:671-677.

Schreiter C, Hovius R, Costioli M, Pick H, Kellenberger S, Schild L and Vogel H (2003) 
Characterization of the ligand-binding site of the serotonin 5-HT3 receptor: the role of glutamate 
residues 97, 224, AND 235. J Biol Chem 278:22709-22716.

Schulte MK, Hill, R.A., Bikadi, Z., Maksay G., Parihar, H.S., Joshi, P. and Suryanarayanan, A.
(2006) The Structural Basis of Ligand Interactions in the 5-HT3R, in Biological and Biophysical 
Aspects of Ligand-Gated Ion Channel Receptor Superfamilies (Arias H ed) pp 127-154, Research 
Signpost.

Scott LJ and Goa KL (2000) Galantamine: a review of its use in Alzheimer's disease. Drugs 
60:1095-1122.

Seguela P, Wadiche J, Dineiey-Miller K, Dani JA and Patrick JW (1993) Molecular cloning, 
functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly 
permeable to calcium. J Neurosci 13:596-604.

Shan Q, Nevin ST, Haddrill JL and Lynch JW (2003) Asymmetric contribution of alpha and beta 
subunits to the activation of alphabeta heteromeric glycine receptors. J Neurochem 86:498-507.

Sharma G and Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release 
of glutamate and postsynaptic firing. Neuron 38:929-939.



104

Sher E, Chen Y, Sharpies TJ, Broad LM, Benedetti G, Zwart R, McPhie Gl, Pearson KH, 
Baldwinson T and De Filippi G (2004) Physiological roles of neuronal nicotinic receptor subtypes: 
new insights on the nicotinic modulation of neurotransmitter release, synaptic transmission and 
plasticity. Curr Top Med Chem 4:283-297.

Shih YL, Liu HC, Chen CS, Hsu CH, Pan MH, Chang HW, Chang CH, Chen FC, Ho CT, Yang YY 
and Ho YS (2010) Combination treatment with luteolin and quercetin enhances antiproliferative 
effects in nicotine-treated MDA-MB-231 cells by down-regulating nicotinic acetylcholine receptors. 
J Agric Food Chem 58:235-241.

Shin VY, Wu WK, Ye YN, So WH, Koo MW, Liu ES, Luo JC and Cho CH (2004) Nicotine 
promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated 
kinase and cyclooxygenase-2. Carcinogenesis 25:2487-2495.

Shoop RD, Yamada N and Berg DK (2000) Cytoskeletal links of neuronal acetylcholine receptors 
containing alpha 7 subunits. J Neurosci 20:4021 -4029.

Shytle RD, Silver AA and Sanberg PR (2000) Comorbid bipolar disorder in Tourette's syndrome 
responds to the nicotinic receptor antagonist mecamylamine (Inversine). Biol Psychiatry 48:1028
1031.

Sigel E (2002) Mapping of the benzodiazepine recognition site on GABA(A) receptors. Curr Top 
Med Chem 2:833-839.

Sigel E and Buhr A (1997) The benzodiazepine binding site of GABAA receptors. Trends 
Pharmacol Sci 18:425-429.

Sigel E, Schaerer MT, Buhr A and Baur R (1998) The benzodiazepine binding pocket of 
recombinant alpha1beta2gamma2 gamma-aminobutyric acidA receptors: relative orientation of 
ligands and amino acid side chains. Mol Pharmacol 54:1097-1105.

Silver AA, Shytle RD and Sanberg PR (2000) Mecamylamine in Tourette's syndrome: a two-year 
retrospective case study. J Child Adolesc Psychopharmacol 10:59-68.

Sine SM, Wang HL, Hansen S and Taylor P (2010) On the origin of ion selectivity in the Cys-loop 
receptor family. J Mol Neurosci 40:70-76.

Sjoblom T, Bohlin L and Christophersen C (1983) Studies of Swedish marine organisms. II. 
Muscle-relaxant alkaloids from the marine bryozoan Flustra foliacea. Acta Pharm Suec 20:415
418.

Small DH, Maksel D, Kerr ML, Ng J, Hou X, Chu C, Mehrani H, Unabia S, Azari MF, Loiacono R, 
Aguilar Ml and Chebib M (2007) The beta-amyloid protein of Alzheimer's disease binds to 
membrane lipids but does not bind to the alpha7 nicotinic acetylcholine receptor. J Neurochem 
101:1527-1538.

Smit AB, Syed Nl, Schaap D, van Minnen J, Klumperman J, Kits KS, Lodder H, van der Schors 
RC, van Elk R, Sorgedrager B, Brejc K, Sixma TK and Geraerts WP (2001) A glia-derived 
acetylcholine-binding protein that modulates synaptic transmission. Nature 411:261-268.

Smith MM, Lindstrom J and Merlie JP (1987) Formation of the alpha-bungarotoxin binding site 
and assembly of the nicotinic acetylcholine receptor subunits occur in the endoplasmic reticulum. 
J Biol Chem 262:4367-4376.

Smulders CJ, Zwart R, Bermudez I, van Kleef RG, Groot-Kormelink PJ and Vijverberg HP (2005) 
Cholinergic drugs potentiate human nicotinic alpha4beta2 acetylcholine receptors by a 
competitive mechanism. Eur J Pharmacol 509:97-108.



105

Song P, Sekhon HS, Fu XW, Maier M, Jia Y, Duan J, Proskosil BJ, Gravett C, Lindstrom J, Mark 
GP, Saha S and Spindel ER (2008) Activated cholinergic signaling provides a target in squamous 
cell lung carcinoma. Cancer Res 68:4693-4700.

Song P, Sekhon HS, Jia Y, Keller JA, Blusztajn JK, Mark GP and Spindel ER (2003) 
Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung 
carcinoma. Cancer Res 63:214-221.

Spencer JP, Weil A, Hill K, Hussain I, Richardson JC, Cusdin FS, Chen YH and Randall AD
(2006) Transgenic mice over-expressing human beta-amyloid have functional nicotinic alpha 7 
receptors. Neuroscience 137:795-805.

Spier AD and Lummis SC (2000) The role of tryptophan residues in the 5-Hydroxytryptamine(3) 
receptor ligand binding domain. J Biol Chem 275:5620-5625.

Spitz MR, Amos Cl, Dong Q, Lin J and Wu X (2008) The CHRNA5-A3 region on chromosome 
15q24-25.1 is a risk factor both for nicotine dependence and for lung cancer. J Natl Cancer Inst 
100:1552-1556.

St John PA (2009) Cellular trafficking of nicotinic acetylcholine receptors. Acta Pharmacol Sin 
30:656-662.

Staley JK, Krishnan-Sarin S, Cosgrove KP, Krantzler E, Frohlich E, Perry E, Dubin JA, Estok K, 
Brenner E, Baldwin RM, Tamagnan GD, Seibyl JP, Jatlow P, Picciotto MR, London ED, O'Malley 
S and van Dyck CH (2006) Human tobacco smokers in early abstinence have higher levels of 
beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 26:8707-8714.

Stell BM, Brickley SG, Tang CY, Farrant M and Mody I (2003) Neuroactive steroids reduce 
neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing 
GABAA receptors. Proc Natl Acad Sci U S A  100:14439-14444.

Steward LJ, Boess FG, Steele JA, Liu D, Wong N and Martin IL (2000) Importance of 
phenylalanine 107 in agonist recognition by the 5-hydroxytryptamine(3A) receptor. Mol 
Pharmacol 57:1249-1255.

Sunesen M, de Carvalho LP, Dufresne V, Grailhe R, Savatier-Duclert N, Gibor G, Peretz A, Attali 
B, Changeux JP and Paas Y (2006) Mechanism of Cl- selection by a glutamate-gated chloride 
(GluCI) receptor revealed through mutations in the selectivity filter. J Biol Chem 281:14875
14881.

Suryanarayanan A, Joshi PR, Bikadi Z, Mani M, Kulkarni TR, Gaines C and Schulte MK (2005) 
The loop C region of the murine 5-HT3A receptor contributes to the differential actions of 5- 
hydroxytryptamine and m-chlorophenylbiguanide. Biochemistry 44:9140-9149.

Swanson LW, Simmons DM, Whiting PJ and Lindstrom J (1987) Immunohistochemical 
localization of neuronal nicotinic receptors in the rodent central nervous system. J Neurosci 
7:3334-3342.

Taly A, Corringer PJ, Guedin D, Lestage P and Changeux JP (2009) Nicotinic receptors: 
allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 8:733
750.

Taly A, Delarue M, Grutter T, Nilges M, Le Novere N, Corringer PJ and Changeux JP (2005) 
Normal mode analysis suggests a quaternary twist model for the nicotinic receptor gating 
mechanism. Biophys J 88:3954-3965.

Tapia L, Kuryatov A and Lindstrom J (2007) Ca2+ permeability of the (alpha4)3(beta2)2 
stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. Mol 
Pharmacol 7^:769-776.



106

Tapper AR, McKinney SL, Marks MJ and Lester HA (2007) Nicotine responses in hypersensitive 
and knockout alpha 4 mice account for tolerance to both hypothermia and locomotor suppression 
in wild-type mice. Physiol Genomics 31:422-428.

Tarroni P, Rubboli F, Chini B, Zwart R, Oortgiesen M, Sher E and Clementi F (1992) Neuronal- 
type nicotinic receptors in human neuroblastoma and small-cell lung carcinoma cell lines. FEBS 
Lett 312:66-70.

Teissere JA and Czajkowski C (2001) A (beta)-strand in the (gamma)2 subunit lines the 
benzodiazepine binding site of the GABA A receptor: structural rearrangements detected during 
channel gating. J Neurosci 21:4977-4986.

Temburni MK, Blitzblau RC and Jacob MH (2000) Receptor targeting and heterogeneity at 
interneuronal nicotinic cholinergic synapses in vivo. J Physiol 525 Pt 1:21 -29.

Thompson AJ, Padgett CL and Lummis SC (2006) Mutagenesis and molecular modeling reveal 
the importance of the 5-HT3 receptor F-loop. J Biol Chem 281:16576-16582.

Thompson AJ, Price KL, Reeves DC, Chan SL, Chau PL and Lummis SC (2005) Locating an 
antagonist in the 5-HT3 receptor binding site using modeling and radioligand binding. J Biol 
Chem 280:20476-20482.

Thomsen T, Kaden B, Fischer JP, Bickel U, Barz H, Gusztony G, Cervos-Navarro J and Kewitz H 
(1991) Inhibition of acetylcholinesterase activity in human brain tissue and erythrocytes by 
galanthamine, physostigmine and tacrine. EurJ Clin Chem Clin Biochem 29:487-492.

Tredway TL, Guo JZ and Chiappinelli VA (1999) N-type voltage-dependent calcium channels 
mediate the nicotinic enhancement of GABA release in chick brain. J Neurophysiol 81:447-454.

Treinin M (2008) RIC-3 and nicotinic acetylcholine receptors: biogenesis, properties, and 
diversity. Biotechnol J 3:1539-1547.

Tsai CJ, del Sol A and Nussinov R (2008) Allostery: absence of a change in shape does not imply 
that allostery is not at play. J Mol Biol 378:1-11.

Turner JR and Kellar KJ (2005) Nicotinic cholinergic receptors in the rat cerebellum: multiple 
heteromeric subtypes. J Neurosci 25:9258-9265.

Tutka P and Zatonski W (2006) Cytisine for the treatment of nicotine addiction: from a molecule to 
therapeutic efficacy. Pharmacol Rep 58:777-798.

Umbriaco D, Watkins KC, Descarries L, Cozzari C and Hartman BK (1994) Ultrastructural and 
morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron 
microscopic study in serial sections. J Comp Neurol 348:351-373.

Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37-43.

Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol 
Biol 346:967-989.

Unwin N, Miyazawa A, Li J and Fujiyoshi Y (2002) Activation of the nicotinic acetylcholine 
receptor involves a switch in conformation of the alpha subunits. J Mol Biol 319:1165-1176.

Valor LM, Mulet J, Sala F, Sala S, Ballesta JJ and Criado M (2002) Role of the large cytoplasmic 
loop of the alpha 7 neuronal nicotinic acetylcholine receptor subunit in receptor expression and 
function. Biochemistry 41:7931 -7938.

Venkataraman P, Joshi P, Venkatachalan SP, Muthalagi M, Parihar HS, Kirschbaum KS and 
Schulte MK (2002a) Functional group interactions of a 5-HT3R antagonist. BMC Biochem 3:16.



107

Venkataraman P, Venkatachalan SP, Joshi PR, Muthalagi M and Schulte MK (2002b) 
Identification of critical residues in loop E in the 5-HT3ASR binding site. BMC Biochem 3:15.

Vernino S, Amador M, Luetje CW, Patrick J and Dani JA (1992) Calcium modulation and high 
calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8:127-134.

Vernino S, Rogers M, Radcliffe KA and Dani JA (1994) Quantitative measurement of calcium flux 
through muscle and neuronal nicotinic acetylcholine receptors. J Neurosci 14:5514-5524.

Videtic GM, Stitt LW, Dar AR, Kocha Wl, Tomiak AT, Truong PT, Vincent MD and Yu EW (2003) 
Continued cigarette smoking by patients receiving concurrent chemoradiotherapy for limited- 
stage small-cell lung cancer is associated with decreased survival. J Clin Oncol 21:1544-1549.

Vizi ES (2000) Role of high-affinity receptors and membrane transporters in nonsynaptic 
communication and drug action in the central nervous system. Pharmacol Rev 52:63-89.

Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J and Swanson LW (1989) 
Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in 
the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 
284:314-335.

Wagner DA and Czajkowski C (2001) Structure and dynamics of the GABA binding pocket: A 
narrowing cleft that constricts during activation. J Neurosci 21:67-74.

Wanamaker CP, Christianson JC and Green WN (2003) Regulation of nicotinic acetylcholine 
receptor assembly. Ann N Y Acad Sci 998:66-80.

Wang F, Nelson ME, Kuryatov A, Olale F, Cooper J, Keyser K and Lindstrom J (1998) Chronic 
nicotine treatment up-regulates human alpha3 beta2 but not alpha3 beta4 acetylcholine receptors 
stably transfected in human embryonic kidney cells. J Biol Chem 273:28721-28732.

Wang HL, Cheng X, Taylor P, McCammon JA and Sine SM (2008a) Control of cation permeation 
through the nicotinic receptor channel. PLoS Comput Biol 4:e41.

Wang HY, Lee DH, Davis CB and Shank RP (2000) Amyloid peptide Abeta(1-42) binds 
selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 
75:1155-1161.

Wang JM, Zhang L, Yao Y, Viroonchatapan N, Rothe E and Wang ZZ (2002) A transmembrane 
motif governs the surface trafficking of nicotinic acetylcholine receptors. Nat Neurosci 5:963-970.

Wang K, Hackett JT, Cox ME, Van Hoek M, Lindstrom JM and Parsons SJ (2004) Regulation of 
the neuronal nicotinic acetylcholine receptor by SRC family tyrosine kinases. J Biol Chem 
279:8779-8786.

Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A, Qureshi M, Dong Q, Gu X, 
Chen WV, Spitz MR, Eisen T, Amos Cl and Houlston RS (2008b) Common 5p15.33 and 6p21.33 
variants influence lung cancer risk. Nat Genet 40:1407-1409.

Wang Y, Pereira EF, Maus AD, Ostlie NS, Navaneetham D, Lei S, Albuquerque EX and Conti- 
Fine BM (2001) Human bronchial epithelial and endothelial cells express alpha7 nicotinic 
acetylcholine receptors. Mol Pharmacol 60:1201-1209.

Ward JM, Cockcroft VB, Lunt GG, Smillie FS and Wonnacott S (1990) Methyllycaconitine: a 
selective probe for neuronal alpha-bungarotoxin binding sites. FEBS Lett 270:45-48.

Wathey JC, Nass MM and Lester HA (1979) Numerical reconstruction of the quantal event at 
nicotinic synapses. Biophys J 27:145-164.

Watkins SS, Epping-Jordan MP, Koob GF and Markou A (1999) Blockade of nicotine self
administration with nicotinic antagonists in rats. Pharmacol Biochem Behav 62:743-751.



108

Wehner JM, Keller JJ, Keller AB, Picciotto MR, Paylor R, Booker TK, Beaudet A, Heinemann SF 
and Balogh SA (2004) Role of neuronal nicotinic receptors in the effects of nicotine and ethanol 
on contextual fear conditioning. Neuroscience 129:11-24.

Weiss RB, Baker TB, Cannon DS, von Niederhausern A, Dunn DM, Matsunami N, Singh NA, 
Baird L, Coon H, McMahon WM, Piper ME, Fiore MC, Scholand MB, Connett JE, Kanner RE, 
Gahring LC, Rogers SW, Hoidal JR and Leppert MF (2008) A candidate gene approach identifies 
the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet 
4:e1000125.

Wells GB (2008) Structural answers and persistent questions about how nicotinic receptors work. 
Front Biosci 13:5479-5510.

Weltzin MM and Schulte MK (2010) Pharmacological characterization of the allosteric modulator 
desformylflustrabromine and its interaction with alpha4beta2 neuronal nicotinic acetylcholine 
receptor orthosteric ligands. J Pharmacol Exp Ther 334:917-926.

West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S and Dennis 
PA (2003) Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of 
normal human airway epithelial cells. J Clin Invest 111:81-90.

White BH and Cohen JB (1992) Agonist-induced changes in the structure of the acetylcholine 
receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive 
antagonist. J Biol Chem 267:15770-15783.

Whitehouse PJ and Kalaria RN (1995) Nicotinic receptors and neurodegenerative dementing 
diseases: basic research and clinical implications. Alzheimer Dis Assoc Disord 9 Suppl 2:3-5.

Wick MJ, Mihic SJ, Ueno S, Mascia MP, Trudell JR, Brozowski SJ, Ye Q, Harrison NL and Harris 
RA (1998) Mutations of gamma-aminobutyric acid and glycine receptors change alcohol cutoff: 
evidence for an alcohol receptor? Proc Natl Acad Sci U S A  95:6504-6509.

Wiesner A and Fuhrer C (2006) Regulation of nicotinic acetylcholine receptors by tyrosine 
kinases in the peripheral and central nervous system: same players, different roles. Cell Mol Life 
Sci 63:2818-2828.

Williams BM, Temburni MK, Levey MS, Bertrand S, Bertrand D and Jacob MH (1998) The long 
internal loop of the alpha 3 subunit targets nAChRs to subdomains within individual synapses on 
neurons in vivo. Nat Neurosci 1:557-562.

Wingrove PB, Thompson SA, Wafford KA and Whiting PJ (1997) Key amino acids in the gamma 
subunit of the gamma-aminobutyric acidA receptor that determine ligand binding and modulation 
at the benzodiazepine site. Mol Pharmacol 52:874-881.

Wong HP, Yu L, Lam EK, Tai EK, Wu WK and Cho CH (2007) Nicotine promotes cell proliferation 
via alpha7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated 
pathway in human colon adenocarcinoma HT-29 cells. Toxicol Appl Pharmacol 221:261-267.

Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92-98.

Woolf NJ (1991) Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 
37:475-524.

Wooltorton JR, Pidoplichko VI, Broide RS and Dani JA (2003) Differential desensitization and 
distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. J Neurosci 
23:3176-3185.

Wotring VE and Weiss DS (2008) Charge scan reveals an extended region at the intracellular 
end of the GABA receptor pore that can influence ion selectivity. J Gen Physiol 131:87-97.



109

Xiao Y, Baydyuk M, Wang HP, Davis HE and Kellar KJ (2004) Pharmacology of the agonist 
binding sites of rat neuronal nicotinic receptor subtypes expressed in HEK 293 cells. Bioorg Med 
Chem Lett 14:1845-1848.

Xu J, Zhu Y and Heinemann SF (2006) Identification of sequence motifs that target neuronal 
nicotinic receptors to dendrites and axons. J Neurosci 26:9780-9793.

Yan D, Schulte MK, Bloom KE and White MM (1999) Structural features of the ligand-binding 
domain of the serotonin 5HT3 receptor. J Biol Chem 274:5537-5541.

Yan D and White MM (2002) Interaction of d-tubocurarine analogs with mutant 5-HT(3) receptors. 
Neuropharmacology 43:367-373.

Yan D and White MM (2005) Spatial orientation of the antagonist granisetron in the ligand-binding 
site of the 5-HT3 receptor. Mol Pharmacol 68:365-371.

Ye YN, Liu ES, Shin VY, Wu WK, Luo JC and Cho CH (2004) Nicotine promoted colon cancer 
growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway. 
J Pharmacol Exp Ther 308:66-72.

You H, Kozuska JL, Paulsen IM and Dunn SM (2010) Benzodiazepine modulation of the rat 
GABAA receptor alpha4beta3gamma2L subtype expressed in Xenopus oocytes. 
Neuropharmacology 59:527-533.

Young GT, Zwart R, Walker AS, Sher E and Millar NS (2008) Potentiation of alpha7 nicotinic 
acetylcholine receptors via an allosteric transmembrane site. Proc Natl Acad Sci U S A  
105:14686-14691.

Young JW, Crawford N, Kelly JS, Kerr LE, Marston HM, Spratt C, Finlayson K and Sharkey J
(2007) Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice. 
Eur Neuropsychopharmacol 17:145-155.

Yu XM and Hall ZW (1994a) The role of the cytoplasmic domains of individual subunits of the 
acetylcholine receptor in 43 kDa protein-induced clustering in COS cells. J Neurosci 14:785-795.

Yu XM and Hall ZW (1994b) A sequence in the main cytoplasmic loop of the alpha subunit is 
required for assembly of mouse muscle nicotinic acetylcholine receptor. Neuron 13:247-255.

Zarei MM, Radcliffe KA, Chen D, Patrick JW and Dani JA (1999) Distributions of nicotinic 
acetylcholine receptor alpha7 and beta2 subunits on cultured hippocampal neurons. 
Neuroscience 88:755-764.

Zheng Y, Ritzenthaler JD, Roman J and Han S (2007) Nicotine Stimulates Human Lung Cancer 
Cell Growth by Inducing Fibronectin Expression. Am J Respir Cell Mol Biol.

Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA and Dougherty DA (1998) From ab initio 
quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. 
Proc Natl Acad Sci U S A  95:12088-12093.

Zhou FM, Wilson CJ and Dani JA (2002) Cholinergic interneuron characteristics and nicotinic 
properties in the striatum. J Neurobiol 53:590-605.

Zhou Y, Morais-Cabral JH, Kaufman A and MacKinnon R (2001) Chemistry of ion coordination 
and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414:43-48.

Zhou Y, Nelson ME, Kuryatov A, Choi C, Cooper J and Lindstrom J (2003) Human alpha4beta2 
acetylcholine receptors formed from linked subunits. J Neurosci 23:9004-9015.

Zhou Y, Pearson JE and Auerbach A (2005) Phi-value analysis of a linear, sequential reaction 
mechanism: theory and application to ion channel gating. Biophys J 89:3680-3685.



110

Zia S, Ndoye A, Nguyen VT and Grando SA (1997) Nicotine enhances expression of the alpha 3, 
alpha 4, alpha 5, and alpha 7 nicotinic receptors modulating calcium metabolism and regulating 
adhesion and motility of respiratory epithelial cells. Res Commun Mol Pathol Pharmacol 97:243
262.

Zoli M, Le Novere N, Hill JA, Jr. and Changeux JP (1995) Developmental regulation of nicotinic 
ACh receptor subunit mRNAs in the rat central and peripheral nervous systems. J Neurosci 
15:1912-1939.

Zwart R, Broad LM, Xi Q, Lee M, Moroni M, Bermudez I and Sher E (2006a) 5-I A-85380 and TC- 
2559 differentially activate heterologously expressed alpha4beta2 nicotinic receptors. Eur J 
Pharmacol.

Zwart R, Broad LM, Xi Q, Lee M, Moroni M, Bermudez I and Sher E (2006b) 5-I A-85380 and TC- 
2559 differentially activate heterologously expressed alpha4beta2 nicotinic receptors. Eur J 
Pharmacol 539:10-17.

Zwart R and Vijverberg HP (1998) Four pharmacologically distinct subtypes of alpha4beta2 
nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Mol Pharmacol 54:1124
1131.



111

CHAPTER 3: Pharmacological Characterization of the Allosteric Modulator 
Desformylflustrabromine and its Interaction with a4|32 nAChR Orthosteric Ligands1

3.1 Abstract.

Neuronal nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of 

ligand-gated ion channels. nAChRs are involved in modulating nicotinic based signal 

transmission in the CNS and are implicated in a range of CNS disorders. Desformylflustrabromine 

(dFBr) is a positive allosteric modulator which potentiates a4p2 nAChRs. Sala et al. report that 

dFBr is selective for the a4|32 receptor relative to other common nAChR subtypes (Sala et al.,

2005). Co-application of dFBr with acetylcholine produces a bell-shaped dose response curve 

with a peak potentiation of over 265% (Kim et al., 2007) at dFBr concentrations <10 pM and 

inhibition of responses at concentrations >10 pM. The potentiation and inhibition components of 

dFBr modulated responses were examined using two-electrode voltage clamp and human a4p2 

nAChRs expressed in Xenopus laevis oocytes. Currents to both partial and full agonists were 

potentiated by dFBr. Responses to low efficacy agonists were potentiated significantly more than 

responses to high efficacy agonists. Antagonist plC50 values were unaffected by co-application of 

dFBr. In addition to its potentiating effects, dFBr was also able to induce current spikes when 

applied to desensitized receptors suggestive of a shift in equilibrium from the desensitized to 

open conformation. In contrast to potentiation, inhibition of ACh responses by dFBr is dependent 

on membrane potential and is likely the result of open-channel block by dFBr and acetylcholine. 

Our data indicate distinct mechanisms for the potentiation and inhibition components of dFBr 

action. dFBr could prove useful for therapeutic enhancement of responses at a4p2 containing 

synapses.

1 Weltzin, M. M. and Schulte, M. K. 2010. Pharmacological Characterization of the Allosteric 

Modulator Desformylflustrabromine and its Interaction with a4(32 nAChR Orthosteric Ligands. J 

Pharmacol Exp Ther. Sep 1;334(3):917-26.
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3.2 Introduction.

The CNS expression of neuronal nicotinic acetylcholine receptor (nAChR) subtypes are 

altered in many neurological disorders including Alzheimer’s disease (Court et al., 2001; 

Nordberg, 2001), Autism (Martin-Ruiz et al., 2004; Lippiello, 2006), Parkinson’s disease (Aubert 

et al., 1992) and Schizophrenia (Woodruff-Pak and Gould, 2002; Friedman, 2004; Adams and 

Stevens, 2007). In Alzheimer’s disease, multiple subtypes of nAChRs decline producing a 

decrease in cholinergic tone (Court et al., 2001; Nordberg, 2001). Post-mortem studies of 

Autistics have shown both decreases and increases in nAChR subtypes (Court et al., 2001; 

Nordberg, 2001; Martin-Ruiz et al., 2004; Lippiello, 2006). Increases in receptor populations 

should be amenable to remediation with antagonists but treatment of disorders involving 

decreases in receptor number are more difficult. Treatment strategies aimed at increasing activity 

of cholinergic systems have focused on acetylcholinesterase inhibitors and partial agonists 

(Corey-Bloom, 2003; Nicolson et al., 2006). While agonists are potentially useful therapeutically, 

the rapid desensitization of nAChRs produced by chronic exposure to agonists limits their 

usefulness.

Positive allosteric modulators (PAM) represent an alternative treatment strategy. Since 

PAMs typically enhance agonist responses without activating receptors, synaptic currents remain 

linked to endogenous neurotransmitter release. In disorders where differential changes in nAChR 

densities occur, non-selective compounds may improve some symptoms while exacerbating 

others. The development of subtype selective PAMs is an important step in developing 

therapeutic treatments for neurological disorders involving alterations in nicotinic tone.

Desformylflustrabromine (dFBr) is a novel PAM that potentiates ACh induced whole cell 

responses of the a4p2 nAChR subtype by greater than 265% (3 pM dFBr co-applied with100 pM 

ACh). Previous studies have shown no apparent potentiation of other subtypes including a7 and 

a3p4 (Sala et al., 2005; Kim et al., 2007). On a4p2 receptors, co-application of increasing 

concentrations of dFBr with a fixed concentration of Ach produces a bell-shaped dose response 

curve containing both stimulatory (<10 pM dFBr) and inhibitory components (>10 pM dFBr) (Kim 

et al., 2007). On a7 receptors, only the inhibitory component is present. Previous studies using 

dFBr extracted from Flustra foliacea suggested potentiation may be a result of altered channel 

gating kinetics (Sala et al., 2005). At inhibitory concentrations of dFBr “rebound” or “hump 

currents” have been observed suggesting dFBr inhibition may be attributable to open-channel 

block (Kim et al., 2007).

The current study aims to better understand the mechanisms of dFBr potentiation and 

inhibition. We investigated both the inhibitory and potentiating actions of dFBr using a series of
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full agonists, partial agonists and antagonists. Our data suggest that inhibition and potentiation 

are mediated by distinct mechanisms at different binding sites. Inhibition appears to be the result 

of channel block by both dFBr and the stimulating agonist. dFBr was determined to potentiate low 

efficacy agonists greater than high efficacy agonists and was capable of recovering receptors 

from desensitization. This supports the hypothesis that dFBr inhibition is caused by open- 

channel block while potentiation is due to a change in the equilibrium between open and 

desensitized conformations.

3.3 Methods.

3.3.1 Receptors and RNA.

The cDNA for human a4 and |32 nAChR subunits was generously provided by Dr. Jon 

Lindstrom (University of Pennsylvania). This cDNA was inserted into a pcDNA3.1/Zeo (Invitrogen, 

Carlsbad, CA) mammalian expression vector to produce mRNA for receptor expression in 

Xenopus laevis oocytes. Xenopus laevis frogs and frog food were purchased from Xenopus 

Express (Homosassa, FL). Ovarian lobes were surgically removed from Finquel anesthetized 

Xenopus laevis frogs and washed twice in Ca+2-free Barth’s buffer (82.5 mM NaCI; 2.5 mM KCI; 1 

mM MgCI2; 5 mM HEPES, pH 7.4) then gently shaken with 1.5 mg/mL collagenase (Sigma type 

II, Sigma-Aldrich, MO) for 20min at 20-25°C. Stage V and VI oocytes were selected for 

microinjection (University of Alaska Institutional Animal Care and Use Committee: 08-71). 

No more than four surgeries were conducted on each frog. A recovery period greater than six 

weeks was allowed between repeat surgeries on the same animal. Synthetic cRNA transcripts for 

human a4p2 were prepared using the T7 mMESSAGE mMACHINE™ High Yield Capped RNA 

Transcription Kit (Ambion, Austin, TX). Oocytes were injected with a total of 50 nL cRNA at a 

concentration of 300 ng/pL and incubated at 19°C for 24-72h prior to their use in voltage clamp 

experiments. At least two different batches of oocytes were used per experiment. dFBr-HCI was 

synthesized by Dr. Richard Glennon (Virginia Commonwealth University) (Kim et al., 2007) and 

dissolved in ND-96 buffer prior to use.

3.3.2 Two-Electrode Voltage Clamp.

Recordings were performed using an automated two-electrode voltage-clamp system 

incorporating an OC-725C oocyte clamp amplifier (Warner Instruments, Hamden, CT) coupled to 

a computerized data acquisition (Datapac 2000, RUN technologies, Mission Viejo, CA) and 

autoinjection system (Gilson, Middleton, Wl). Recording and current electrodes with resistance 1

4 MQ were filled with 3 M KCI. Details of the chambers and methodology employed for
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electrophysiological recordings have been described earlier (Joshi et al., 2004). Oocytes were 

held in a vertical flow chamber of 200 pL volume, clamped at a holding potential of -60 mV and 

perfused with ND-96 recording buffer (96 mM NaCI; 2 mM KCI; 1.8 mM CaCI2; 1 mM MgCI2; 5 

mM HEPES; pH 7.4) at a rate of 20 mL/min. For voltage step experiments, the holding potential 

was varied from -100 mV to +20 mV. Test compounds (Sigma-Aldrich, Natick, MO and Tocris, 

Ellisville, MO) were dissolved in ND-96 buffer and injected into the chamber at a rate of 20 

mL/min using a Gilson auto-sampler injection system.

3.3.3 Electrophysiology Dose/Response Experiments.

Dose/response curves for the full agonist (Acetylcholine Cl, (ACh) [Sigma-Aldrich]) and 

the partial agonists ((-)-nicotine [Riedel-de-Haen, Germany], choline-CI [Sigma-Aldrich] and 

cytisine [Sigma-Aldrich]) were evaluated at concentrations ranging from 0.01 pM-300 pM for ACh, 

nicotine and cytisine and 0.1 pM-30 mM for choline. The effects of dFBr on agonist efficacies 

were determined by co-exposure of varied concentrations of agonist with 1 pM dFBr.

The competitive antagonists (Dihydro-p-erythroidine-HBr [Tocris], DMAB- 

anabaseine-2HCI [Tocris] and tropisetrone-HCI [Tocris]) were evaluated for their ability to inhibit 

responses to 1 mM ACh at antagonist concentrations ranging from 0.001 pM-100 pM. The effect 

of dFBr on antagonist inhibition was determined by co-exposing receptors to antagonist, 1 mM 

ACh and 1 pM dFBr.

In order to permit comparison of responses from different oocytes, Individual responses 

to drug application were normalized to control responses elicited using 1 mM ACh. Data were 

collected from at least four replicate experiments using oocytes obtained from at least two 

different frogs.

3.3.4 Exposure of dFBr Prior to Agonist Activation and During Agonist Induced 

Desensitization.

To study the effects of dFBr prior to agonist activation (pre-exposure) on a4(32 nAChR, 1 

pM dFBr was bath applied at a rate of 4 mL/min 30s prior to application of agonist. Following pre

exposure to dFBr, 1 mM ACh, was applied at a 20 mL/min perfusion rate for 3s. The slope of the 

rising phase of the response was determined from current data during the linear portion of the 

response prior to the peak current. Slopes for pre- and co-exposure experiments were compared 

using these data and p values were calculated based on the null hypothesis using an unpaired t- 

test.
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dFBr was also applied during the desensitization refractory phase of the agonist 

response. In these "post-exposure" experiments, saturating concentrations of agonists (1 mM 

ACh, 10 mM ACh or 100 pM cytisine) were bath applied at a rate of 4 mL/min prior to exposure to 

dFBr. One pM dFBr was applied at a rate of 20 mL/min in repeated 3s pulses once the agonist 

response entered the refractory desensitized phase of the response. Responses were 

normalized to currents obtained by using the appropriate ACh concentration in the absence of 

dFBr. The slope of the rising phase of the response was determined from current data during the 

linear portion of the response prior to the peak current. The agonist and dFBr induced currents 

were compared using p values calculated based on the null hypothesis using an unpaired t-test.

The effects of long-term exposure to 1 pM dFBr on activated receptors were also 

investigated. One mM ACh or 100 pM cytisine were bath applied at a rate of 4 mL/min. Eight mL 

of 1 pM dFBr with and without agonist was perfused at a rate of 10 mL/min for 48s to 

desensitized receptors. As a control, 1 mM ACh was bath applied while 1 mM ACh was perfused 

for 48s at the onset of the maximum induced response. Alterations in the response currents were 

examined.

3.3.5 Voltage Step Experiments.

The voltage dependence of both dFBr potentiation and inhibition was determined by 

using a4|32 expressing Xenopus laevis oocytes and two-electrode voltage clamp. The membrane 

potential was incrementally increased in 10 mV steps ranging from -100 mV to +20 mV. Cytisine 

was chosen as the stimulating ligand for these experiments since it has been previously shown to 

not induce channel block of nAChRs at 100 pM (Liu et al., 2008). dFBr at either 10 pM 

(potentiating concentration) or 30 pM (inhibitory concentration) was co-applied with a fixed 

concentration of 100 pM cytisine (saturating concentration) at each voltage step. Responses 

were normalized to the response obtained at a membrane potential of -60 mV and 1 mM 

acetylcholine applied alone. The membrane potential (Vm) was plotted against the normalized 

current. The slope of the Vm vs I plot was determined using linear regression.

3.3.6 Data Analysis.

Concentration/response curves were fit using non-linear curve fitting and GraphPad 

Prism Software (San Diego, CA) with standard built-in algorithms. Values for the log EC50 and nH 

were determined by fitting the concentration response data to a single site binding model:

j  _ b + (7max -  b)
1 + 10 (LoSEC50-io«[i])*n// '  ’



116

Where I is the current elicited on application of agonist, b is the baseline current in the absence of 

ligand, L is the ligand concentration and nH is the Hill slope. The EC50 value is the concentration 

of agonist producing currents equal to one half the maximal current (lmax)- The pEC50 values 

reported in the data tables reflect the negative log of the EC50. EC50 values were also calculated 

from the logEC50 and are included in the tables for convenience. Imax values for different partial 

and full agonists were compared to evaluate relative apparent efficacies and apparent efficacy 

changes as a result of dFBr co-application. In order to permit comparison of full and partial 

agonist data from different oocytes, responses for all test compounds were normalized to the 

currents obtained with 1 mM ACh in the absence of dFBr.

For inhibition experiments, plC50 (-log IC50) and IC50 values were determined by fitting 

concentration/response data to a single site competition model:

j  = fr +  Qfmax ~ b )  (2]
1 +  IQ (~ l ° 8 W - l °SI C 5o )  '  ’

Where I is the current at a specific inhibitor/agonist concentrations, b is the baseline current in the 

absence of agonist and L is the ligand concentration. The IC50 value is the concentration of 

antagonist that reduces the current to one half that obtained by the identical concentration of 

agonist alone. The pICso values reported in the data tables reflect the negative log of the IC50. 

pICso values were typically determined at agonist concentrations equal to the EC50 for the agonist 

used. In order to compare data from different oocytes, currents were normalized to those 

obtained from application of 1 mM ACh alone. For experiments involving co-perfusions of both an 

antagonist and agonist with dFBr responses were normalized to those obtained by co-perfusion 

of 1 pM dFBr with 1 mM ACh.

Comparisons of pEC50 or plC50 values were conducted using an unpaired t-test and p 

values calculated based on the null hypothesis.
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3.4.1 dFBr Inhibition Involves Open-Channel Block.

Understanding the nature of dFBr inhibition is essential to correctly interpreting overall 

response kinetics. Clues to the mechanism of dFBr inhibition come from previous studies of dFBr 

that show the presence of hump currents during washout of dFBr and agonist (Kim et al., 2007). 

Hump currents, also known as rebound currents, are inward currents which occur during the 

desensitized phase of the response on washout of the ligand. Hump currents have been 

previously linked to open-channel block (Liu et al., 2008) and are thought to be induced when an 

agonist binds with high affinity to the orthosteric site and with lower affinity in the channel. During 

washout of the ligand, the ligand bound to the channel dissociates more rapidly thus removing the 

channel block and producing transient increases in the observed response. The observation of 

hump currents suggests dFBr inhibition may involve channel block. To explore this possibility, we 

evaluated the inhibition of cytisine induced currents at a series of different membrane potentials. 

Cytisine was chosen for these experiments since it’s a known partial agonist that does not appear 

to act as a channel blocker (Liu et al., 2008) (Figure 3.1). While other more efficacious agonists 

could have been used for these experiments, the ability of these agonists to channel block would 

have complicated analysis of the results making it difficult to determine if any observed channel 

block is due to the stimulating agonist or dFBr. Increased membrane potential will typically reduce 

channel block thus increasing conductance at higher potentials as indicated by increased slopes 

in plots of voltage vs current (V/l). Figure 3.1 shows a V/l plot obtained by co-application of dFBr 

with 100 pM cytisine at both potentiating and inhibiting dFBr concentrations. At concentrations of 

dFBr that are potentiating rather than inhibiting (10 pM) co-exposure of 100 pM cytisine 

(saturating concentration of cytisine) produces a V/l plot that is linear over the entire range of 

membrane potentials tested. This verifies the lack of channel block by cytisine. In contrast, co

application of a higher, inhibitory concentration of dFBr (30 pM) with 100 pM cytisine produces a 

V/l plot that is non-linear over the range of membrane potentials tested.

3.4 Results.
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Figure 3.1 Voltage dependence of potentiation and inhibition by dFBr.

Membrane potential was increased in 10 mV steps from -100 mV to +20 mV using two-electrode 
voltage clamp on a4|32 nAChR expressing oocytes. Responses were obtained as discussed in 
the methods section and were normalized to those elicited by application of 1 mM ACh at -60 mV 
from the same oocyte. At least two batches of oocytes from different frogs were harvested for the 
experiments. Each data point represents at least n>4 replicates with error bars shown as ± SEM. 
For the control group (100 pM cytisine) the relationship between the induced response and the 
applied membrane potential is linear over the entire range of membrane potentials. Potentiating 
concentrations of dFBr (10 pM) co-applied with 100 pM cytisine show a similar linear relationship. 
Co-application of 30 pM dFBr (inhibitory concentration) with 100 pM cytisine shows a nonlinear 
relationship between membrane potential and the induced response.

3.4.2 dFBr Potentiates Low Efficacious Agonists More Than Full Agonists.

Partial agonists are useful tools in studying mechanisms of allosteric modulators. Changes in 

response profiles, lmax and pEC50 values for partial agonists that result from the addition of a 

modulator, such as dFBr, can provide clues to the mechanism underlying the actions of the 

modulator. We investigated dFBr’s influence on the full agonist ACh and the partial agonists 

nicotine, choline and cytisine. ACh and choline were examined to explore possible physiological 

effects of dFBr within the synapse. While choline has not previously been considered a partial 

agonist at a4(32 receptors, the observed effects of dFBr on agonist efficacies led us to consider 

whether choline might be revealed as an agonist for a4(32 receptors in the presence of dFBr. 

Nicotine, a common substance of abuse, was selected because of its pathological significance in 

drug addiction. Cytisine was chosen because it is a a4|32 partial agonist that does not induce 

channel block (Liu et al., 2008). In addition, the smoking cessation drug varenicline is a derivative 

of cytisine allowing us to explore dFBr’s potential influence on this therapeutic treatment (Coe et 

al., 2005). dFBr’s alterations of response profiles, pECso (-log ECe®), lmax and Hill coefficients (nH) 

for full and partial agonists are shown in Figure 3.2, Figure 3.3 and Table 3.1 respectively.
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Figure 3.2 shows responses of a4p2 receptors to different concentrations of agonist 

applied alone (left series of traces) or with increasing concentrations of dFBr at a fixed (EC75) 

concentration of agonist or partial agonist (right series of traces). Agonist control responses show 

increases in the rise time and peak responses with increasing agonist concentrations (Figure 

3.2). The desentization profiles remain unaltered, although this is difficult to determine from 

responses obtained using the weak partial agonists choline and cytisine. Co-application of 

increasing concentrations of dFBr altered the profile of responses induced by agonists and partial 

agonists (Figure 3.2). As dFBr concentration is increased responses to ACh, nicotine, choline and 

cytisine show marked increases in the rise time of the response and peak currents. 

Desensitization rates are initially unchanged at low dFBr concentrations but increase as the 

concentration of dFBr is increased. This increase in the desensitization rate does not appear to 

occur with cytisine. Changes in responses resulting from application of dFBr were identical 

whether dFBr was co-applied or applied before addition of ACh (results not shown).
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Figure 3.2 dFBr modulated responses to nAChR agonists and partial agonists.
Responses were obtained from Xenopus oocytes under voltage clamp conditions (Vm = -60 
mV). Responses to agonists alone are shown in the left column. The right column show traces 
obtained at increasing concentrations of dFBr co-applied with fixed concentrations of either A. 
acetylcholine, B. nicotine, C. choline or D. cytisine. The legend for each panel shows the 
concentration of agonist applied alone (left) or the concentration of dFBr and co-applied (right). 
The solid bar above the response traces indicates the time the oocyte was exposed to the 
agonist and/or dFBr. All traces for each set of responses (left, right, A, B, C or D) were recorded 
from a single oocyte expressing a4p2 receptors (mRNA injected at a ratio of 1a:ip). Similar data 
obtained at varied agonist concentrations were pooled and the data plotted to produce the dose 
response curves shown in Figure 3.3 and the data shown in Table 3.1.
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The apparent pEC50, efficacy and Hill coefficients (nH) for each agonist were determined 

from concentration response data and are showed in Figure 3.3 and Table 3.1. The pECso values 

for the tested agonist were not altered by co-application of 1 pM dFBr. Choline invoked 

extremely small currents making determination of pEC50 values in the absence of dFBr difficult; 

thus making it impossible to determine if the pEC50 changed as a result of dFBr application.

Lax values increased significantly in all cases and appeared to increase more 

substantially for weak partial agonists compared to the stronger partial agonist nicotine and the 

full agonist ACh (Table 3.1, Figure 3.3). A 2.70 fold increase in the Lax was observed for ACh in 

the presence of 1 pM dFBr (p<0.0001) while an increase of over 9.0 fold was observed for the 

weak partial agonists choline and cytisine (p<0.0001). Increases in Lax for ACh are consistent 

with previously reported data for ACh (Sala et al., 2005; Kim et al., 2007). Lax values obtained for 

nicotine indicate a non-significant increase of 7.6 fold in the presence of 1 pM dFBr (p=0.0069) 

compared to nicotine aione. The maximum potentiated responses to weak partial agonists failed 

to reach similar amplitudes to potentiated responses of the full agonist ACh (Table 3.1). Hill 

slopes were not significantly altered for any of the four agonists tested.
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Figure 3.3 Dose response curves for agonists and partial agonists in the 
presence and absence of 1 pM dFBr.

dFBr and the appropriate concentration of agonist or partial agonist were co-applied to Xenopus 
oocytes expressing a4(32 receptors (mRNA injected at a ratio of 1a:1(3). The peak current was 
measured and responses normalized to currents elicited by 1mM ACh applied alone to the same 
oocyte. Each data point represents the combined data from at least four different experiments 
from a minimum of two different oocytes harvested from different frogs. Error bars indicate ± 
SEM. pEC50, Lax and Hill slope (nH) were calculated using non-linear curve fitting algorithms and 
are shown in Table 3.1.
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Table 3.1. dFBr induced effects on response kinetics for agonists and partial 
agonists.

The data were obtained using non-linear curve fitting algorithms from the dose response curves 
shown in Figure 3.3. Since individual responses were normalized to the response elicited by 
1mM ACh alone, the lmax value shown represents the maximum current elicited relative to that 
obtained with 1mM ACh in the absence of dFBr. Values in brackets indicate the fractional 
change in the value resulting from co-application of 1 pM dFBr. The statistical significance of 
observed differences in pEC50, lmax and nH as a result of 1 pM dFBr co-application were evaluated 
using a paired student t-test. p-values are given in parentheses under the fold change. Values 
were considered statistically different at p < 0 .00 01.

pE C 50 ±  S EM  
E C jo [pM ]) lmax ±  S EM nn ±  SEM

Ligand 0 gM dFBr
1 gM dFBr 

[Fold 
Change]

0 gM dFBr 1 gM dFBr 
[Fold Change] 0 gM dFBr

1 gM dFBr 
[Fold 

Change]

ACh 4.7 ±0.1 
(2 1 )

4.8 ±0.3 
(15) 
[1 .0]

(p = 0.58)

1.3 ± 0.10
3.3 ±0.6 

[2.7]
(p< 0 .0001)

1.4 ±0.5
0.6 ± 0.2 

[0.43]
(p = 0 .2 1 )

Nicotine
5.7 ± 0.3 

(2 .1 )

4.9 ±0.5 
(14) 
[0.9]

(p = 0.15)

0.38 ± .05
2.9 ± 1.0 

[7.6]
(p = 0.0069)

1.1 ± 0.8
0.5 ± 0.4 

[0.45]
(p = 0.55)

Choline N.D.*
3.7 ±0.1 

(220)
(p = N.D.)

0.015 ± 
0.003

0.14 ±0.008 
[9.3]

(p< 0.0001)
N.D* 1.7 ±0.5 

(p = N.D.)

Cytisine
5.3 ± 0.5 

(4.6)

5.4 ± 0.3
(4.0)
[1 .0]

(p = 0.91)

0.053 ± 
0.01

0.53 ± 0.06 
[9.9]

(p< 0.0001) 0.94 ± 0.98
1.0 ± 0.6 

[1 .1]
(p = 0.95)

*Value could not be accurately determined due to low efficacy of choline.

3.4.3 dFBr Does Not Appear to Alter Inhibition by Antagonists.

Since antagonists are typically thought to bind to the closed state of the receptor and do 

not stabilize the open conformation, they can be used to determine if application of dFBr 

produces a conformational change in the orthosteric binding site of the antagonist bound 

conformation. It is also possible that known antagonists might only weakly stabilize the open state 

and act as very poor partial agonists (similar to choline). These compounds might reveal 

themselves as agonists in the presence of modulators such as dFBr. We evaluated the effects of 

dFBr on three different nAChR antagonists Dihydro-(3-erythroidine (DHpE), DMAB-anabaseine 

and Tropisetron. Compounds with diverse actions, selectivity and structures were chosen. DMAB-
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anabaseine is a partial agonist on a7 nAChRs but a competitive antagonist on other nAChRs 

including the a4p2 subtype (Stevens et al., 1998). DHpE is a neuronal nAChR a4 selective 

competitive antagonist (Harvey et al., 1996), and tropisetron is a 5-HT3 and a4p2 nAChR 

receptor competitive antagonist (Middlemiss and Tricklebank, 1992).

Antagonists were evaluated for their ability to inhibit responses to 1 mM ACh on a4p2 

nAChR expressing oocytes in the presence and absence of 1 pM dFBr (Figure 3.4). pICso (-log 

IC50) values were determined from these data and compared (inset, Figure 3.4), No significant 

change in pICso was observed for DHPE or tropisetron (Figure 3.4, table insert). In the presence 

of dFBr, the DMAB-anabaseine plC50 was increased significantly (p<0.0001). The dose-response 

curve of co-application of dFBr and DMAB appears biphasic, however; fitting the data to a two 

site model did not produce any improvement compared to the single site model (single site, 

^=0.77; two site, r*= 0.77). It is possible that a biphasic curve could be produced as a result of 

expression of both high and low affinity a4p2 stoichiometries. It has been shown that DHpE has 

different inhibitory effects on the two different receptor stoichiometries (Moroni et al., 2006). 

DMAB-anabaseine may have similar effects, but to our knowledge this ligand has not been tested 

on high and low affinity a4p2 nAChRs.

To determine if dFBr could stimulate an agonist-like response with antagonists, 1 pM 

dFBr was co-applied in the absence of ACh at antagonist concentrations up to 100 pM. No 

currents were observed under these conditions.
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5 7 ± 0 1

(21)

5.9 ± 0 2  
(12)

[p = 0 15)

DMAB-anabaseine
5.2 ± 0.2 

(6.2)

7 0 ± 0 8  
(11) 

tp< 0.0001 j

Tropisetron 5.4 ±0.1 
(3 6)

52  ±0.1 
(6 5)

[p = 0 19J

Figure 3.4 Co-application of dFBr with nAChR antagonists.

Xenopus oocytes expressing a4|32 receptors (mRNA injected at a ratio of 1 a:1 (3) were exposed to 
1 mM ACh and responses inhibited by co-application of increasing concentrations of A. DHpE,
B. DMAB-anabaseine or C. troposetron. Since individual peak amplitudes were normalized to 
those elicited by 1 mM ACh applied alone on the same oocyte, lmax values express peak currents 
relative to those obtained with 1mM ACh. plC50 values (inset table) were determined using non
linear curve fitting as described in the methods. Data points represent at least 4 replicate values 
obtained from a minimum of two oocytes harvested from different frogs. Error bars indicate ± 
SEM.
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3.4.4 dFBr Can Reactivate Desensitized Receptors.

To examine the effect of dFBr on desensitized receptors, dFBr was applied to a4(32 

receptors desensitized with saturating concentrations of ACh (Figure 3.5). In the absence of 

dFBr, repeated application of 10 mM ACh during the desensitization period of the response elicits 

no additional current (Figure 3.5A Top). This is consistent with the presence of a large number of 

desensitized receptors in the preparation that are resistant to reactivation by ACh. Application of 

3s pulses of dFBr applied during the desensitized phase produced large inward currents (Figure 

3.5A Bottom). Repeated 3s applications of dFBr produced a series of responses with 

progressively decreasing peak currents (Figure 3.5B and C). When responses were elicited using 

1 mM ACh (Figure 3.5B), rather than 10 mM ACh, activation with 1 pM dFBr produced hump 

currents immediately following the 3s dFBr pulse. The activation slope for the first dFBr pulse 

obtained during the desensitization period was -190 ± 9 nA/s for 1 mM ACh induced responses 

and -1020 ± 130 nA/s for 10 mM ACh induced responses. Activation slopes for responses in 

which dFBr and ACh were co-applied to non-desensitized receptors as shown in Figure 3.2 were 

also determined: 1mM ACh + 1 pM dFBr, -13 ± 2 nA/s and 10 mM ACh + 1 pM dFBr, -66 ± 6 

nA/s. Thus, the activation slope of the response to a dFBr pulse applied during desensitization is 

15 times faster than co-application of ACh and dFBr to non-desensitized receptors. This is a 

significant change in the activation slope (p<0.001). When 100 pM cytisine was used as the 

stimulating agonist and dFBr was applied during the desensitizing phase, a similar effect was 

observed (Figure 3.5C). Repeated 3s applications of 1 pM dFBr along with continuous 

application of 100 pM cytisine produced repeated responses that decline only slightly in 

amplitude with each repetition. The activation slope for the first dFBr pulse applied during the 

desensitization phase of responses to 100 pM cytisine was -66 ±26 nA/s compared to -0.66 

±0.18 nA/s for co-application of 1 pM dFBr and 100 pM cytisine to non-desensitized receptors. 

This is a significant increase (p<0.01) in the activation slope of approximately 100 fold.
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A. 10mM ACh B. 1 mM ACh

Continuous 10 mM ACh + repeated 10 mM ACh

Continuous 10 mM ACh + repeated 1 pM dFBr

C. 100 pM Cytisine
Continuous 100 pM cytisine ♦ repeated 1 pM dFBr

Figure 3.5 dFBr reactivates desentized receptors.
Acetylcholine or cytisine were bath applied to Xenopus oocytes expressing a4p2 receptors at a 
rate of 3 ml/min for 30s. During the desensitized portion of the response, 3s pulses of either 
acetylcholine (A) or dFBr (B and C) were repeatedly applied at a perfusion rate of 20 ml/min in 
the continued presence of agonist. Solid bars above the traces show the application of ACh or 
cytisine (continuous bar) and the repeated pulsed application of 1 pM dFBr (short lines on B and 
C plots). A Top. Control trace showing repeated pulses of 10 mM acetylcholine applied during 
the desensitization period of a response to bath applied 10 mM ACh. Minimal current was 
observed under these conditions. A Bottom. Application of 3s pulses of 1 pM dFBr during the 
desensitization period produces large currents that decline back to baseline with repeated pulses 
of dFBr. B. Application of 3s pulses of 1 pM dFBr during the desensitization period of responses 
to 1 mM ACh produces similar effects to A Bottom except pulses are broadened and show 
possible hump currents. C. Application of 3s pulses of 1 pM dFBr during the desensitization 
period of responses to 100 pM cytisine. Large currents were observed similar to those shown in 
A Bottom but with a slower rate of decline. Each experiment (A-C) was repeated at least four 
times on different oocytes harvested from at least two different frogs. The slope of the rising 
phase of the first peak generated by application of dFBr during the desensitizing period in each 
case was determined (activation slope): A Bottom. -1020 ±130 nA/s, B. -190 ± 9 nA/s and C. - 
66 ± 26 nA/s.
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3.4.5 dFBr Induced Currents Elicited on Desensitized Receptors Decline with
Continuous Exposure to dFBr.

The data shown in Figure 3.5 demonstrate the effect of a quick pulse of dFBr applied 

during the desensitization phase of the response. It was unclear from these experiments whether 

dFBr elicited responses on desensitized receptors would show typical desensitizing kinetics 

during longer exposures to dFBr. To determine if receptors desensitize in the continued 

presence of dFBr, we conducted experiments in which desensitized nAChR preparations were 

exposed to dFBr for longer time periods. Figure 3.6 shows the effects of application of 1 pM dFBr 

for 48s to receptors pre-exposed to ACh. Co-exposure of oocytes to 1 mM ACh and 1 pM dFBr 

for 48s produces a typical dFBr potentiated response (Figure 3.6A). As in Figure 3.5A, bath 

application of a control pulse of 1 mM ACh for 48s after the response peak produces no 

additional current (Figure 3.6B). Application of 1 pM dFBr for 48s immediately after the ACh 

response peak and in the continued presence of 1 mM ACh (Figure 3.6C) produces a response 

similar in shape and amplitude to that resulting from co-exposure to ACh and dFBr (Figure 3.6A). 

A similar experiment in which 1 pM dFBr was applied concurrent with termination of the ACh 

perfusion produced a different response (Figure 3.6D). When 1 mM ACh was replaced rapidly by 

1 pM dFBr after the response peak, a more rapidly desensitizing and sharper response peak was 

observed. When 1 pM dFBr was again replaced with 1 mM ACh a similar sharp peak was 

observed although with an apparently slower rate of desensitization. In all cases, where 1 pM 

dFBr was applied, either in conjunction with 1 mM ACh or after the 1 mM ACh peak (Figures 3.6 

A, C and D) removal of dFBr returned the response to its appropriate non-potentiated level. 

Thus, application of 1 pM dFBr produces peak responses that appear superimposed on the 1 mM 

ACh response.
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Figure 3.6 The amplitude of dFBr Induced currents on desensitized receptors 
decline during long exposures to dFBr.

Responses in each panel were elicited by bath application of 1 mM ACh on Xenopus oocytes 
expressing a4p2 receptors. The top solid line above each trace indicates the time period during 
which the oocyte was exposed to ACh. The bottom line above the trace indicates the period of 
application of either ACh (A) or dFBr (B, C, or D). A. Co-application of 1 mM ACh and 1 pM 
dFBr for 48s at a flow rate of 8 ml/min (No pre-exposure to ACh). B. Control trace resulting from 
exposure to 1 mM ACh at a rate of 4 ml/min with 1 mM ACh applied during the desensitization 
period for 48 s at 8 ml/min. C. Application of 1 pM dFBr at the peak of a response elicited by 
exposure to 1 mM ACh. ACh was present before, during and after application of dFBr. D. 
Application of 1 pM dFBr at the peak of a response elicited by exposure to 1 mM ACh. Unlike the 
experiment shown in C, perfusion of 1 mM ACh was discontinued during the application of 1 mM 
dFBr then restored at the end of the 48s dFBr exposure. The responses shown were obtained 
from different oocytes. Due to different levels of receptor expression, no comparison of peak 
amplitudes was possible under these conditions.
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Previous studies demonstrate that the potentiating effects of dFBr and its apparent 

selectivity (based on previous studies) for the a402 subtype of nAChRs make it an ideal 

candidate for the development of novel positive allosteric modulators (PAMs) for a4(32 nAChRs 

(Sala et al., 2005; Kim et al., 2007). The work described here addresses three elements of dFBr 

modulation on a4p2 nAChR important to its ultimate development as a therapeutic agent: a. The 

nature of its bell-shaped response profile; b. Its effect on the action of a4p2 nicotinic full agonists, 

partial agonists and antagonists; and c. Its effects on receptor kinetics.

3.5.1 The Bell-Shaped Dose/Response of dFBr.

We have previously demonstrated the ability of synthetic dFBr to potentiate ACh induced 

responses at concentrations less than 10 pM and inhibit responses at concentrations greater than 

10 pM dFBr (Kim et al., 2007). The observation of rebound currents on washout of dFBr/agonist 

led us to hypothesize that dFBr produced inhibition of ACh responses though a mechanism 

involving open-channel block (Kim et al., 2007; Liu et al., 2008). The non-linear V/l relationship of 

dFBr inhibition observed in voltage step experiments strongly supports our hypothesis that dFBr 

inhibition results from open-channel block.

ACh has been previously demonstrated to inhibit its own responses by blocking the ion 

channel at high concentrations. To determine if dFBr could also block the channel, we conducted 

experiments with the non-channel blocking partial agonist cytisine as the stimulating agonist (Liu 

et al., 2008). The non-linear V/l relationship at dFBr concentrations > 10 pM suggests that dFBr 

itself is capable of channel block. The linear V/l relationship a dFBr concentrations < 10 pM 

supports our hypothesis that potentiation and inhibition are mediated by different mechanisms. 

This suggests that future analogs of dFBr could be developed that do not inhibit a402nAChRs 

and are better able to potentiate agonist responses with less effect on the apparent 

desensitization kinetics.

3.5.2 The Effect of dFBr on the Action of Nicotinic Agonists and Partial Agonists.

We examined the ability of dFBr to enhance the action of other compounds involved in 

nAChR signaling including choline, nicotine and cytisine. Both nicotine and verenecline (a 

derivative of cytisine) are being explored and/or utilized as therapeutic agents. dFBr did not alter 

the pECso of ACh, choline, nicotine and cytisine. Imax values for all three partial agonists were 

increased with a much more substantial enhancement obtained for the low efficacy partial 

agonists choline (9.3X) and cytisine (9.9X) then for the higher efficacy agonist nicotine (7.6X).

3.5 Discussion.
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dFBr co-applied with choline produced a response of approximately 12% of the non-potentiated 

ACh response. While it is difficult to extrapolate the effects on synaptic function from receptors 

expressed in Xenopus oocytes, it is likely that increased activation by choline would alter the time 

course for synaptic currents. The nicotine response during dFBr co-application was equivalent to 

a non-potentiated response to ACh. This raises the possibility of future therapies combining a 

lower nicotine dose with a dFBr class compound.

dFBr co-application did not alter the pECso values for ACh, nicotine or cytisine. These 

observations, along with the enhanced affinity for the antagonist DMAB-anabaseine lead us to 

conclude that dFBr may alter relative stabilities of receptor conformations involved in channel 

gating (channel opening and desensitization).

3.5.3 The Effect of dFBr on Inhibition of Responses by Nicotinic Antagonists.

We evaluated the ability of three structurally different competitive antagonists (DH(3E, 

DMAB-anabaseine and tropisetron) to inhibit responses to ACh in the presence and absence of 

dFBr. No significant changes in inhibition kinetics were observed for the DHpE and tropisetron. 

DMAB-anabaseine, a a7 partial agonist, produced a 1.4 fold increase in its pICso value with the 

application of 1 pM dFBr. The effect of dFBr on antagonist plC50 values appears to be minimal.

Conformational changes induced by allosteric modulators could alter the orthosteric 

binding site causing an antagonist (or poor agonist) to become a functional agonist. The 

benzodiazepine (BZD) flurazepam induces conformational rearrangements in the GABA binding 

site on GABAaR, demonstrating shared allosteric interactions between the GABA and BZD 

binding sites (Kloda and Czajkowski, 2007). To determine if a similar action might occur with 

nicotinic antagonists, we examined the effects of dFBr co-application with antagonists in the 

absence of stimulating ACh. We did not observe any currents for any antagonist tested; including 

the a7 partial agonist DMAB-anabaseine. The lack of any change in antagonist action suggests 

that dFBr does not produce its effects through alteration of the unbound, closed receptor 

conformation. This further supports our hypothesis that dFBr potentiation is the result of 

alterations in gating rather than ligand binding.

3.5.4 Recovery of Desensitized Receptors by dFBr.

Several possible mechanisms could produce the observed changes in partial agonist 

apparent efficacies. Agonist efficacy has been correlated to varying degrees of C-loop closure 

over the ligand seated within the orthosteric binding pocket in ionotropic glutamate (iGLuR),
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glycine receptors and AChBP (Armstrong and Gouaux, 2000; Hogner et al., 2002; Armstrong et 

al., 2003; Furukawa and Gouaux, 2003; Jin et al., 2003; Celie et al., 2004; Han et al., 2004; 

Hansen et al., 2005). Further studies suggest that efficacy of agonists at both iGLu and glycine 

receptors are determined by the ability of the agonist to stabilize the active receptor conformation 

(Furukawa and Gouaux, 2003; Han et al., 2004; Inanobe et al., 2005; Robert et al., 2005; Mayer,

2006). In a model for glycine and nAChRs, agonist efficacy differences are suggested to originate 

in the agonist affinity for a hypothesized flipped state relative to the closed state (Lape et al., 

2008). Stabilization of the open conformation could also shift the equilibrium from the 

desensitized to the open state. One implication of the latter mechanism would be the possibility 

that application of dFBr to a desensitized receptor population would elicit currents by reactivating 

desensitized receptors. This ability has previously been reported for type II PAMs including PNU- 

120596 and TQS (Hurst et al., 2005; Bertrand and Gopalakrishnan, 2007; Gronlien et al., 2007) 

but not for dFBr.

To determine if dFBr could reactivate desensitized receptors, dFBr was applied during 

the desensitization period of a 1 mM ACh elicited response. Large currents were observed in 

response to dFBr application that were similar in magnitude to those obtained for a control 

exposure of ACh to non-desensitized receptors. These responses decline rapidly on removal of 

dFBr. With longer exposures, responses desensitized in the continuous presence of dFBr and 

ACh; returning to the pre-dFBr level on removal of the modulator. The decline in the dFBr elicited 

response over time could be the result of open channel block by both ACh and dFBr as described 

earlier but could also reflect the existence of a desensitized-open conformation that relaxes to a 

new desensitized state in the continued presence of dFBr as has been proposed for ivermectin 

(Krause et al., 1998; Gronlien et al., 2007). The observed decline in the response is similar to that 

observed when dFBr is co-applied with ACh to non-desensitized receptors but the time to peak is 

significantly shortened. This would be consistent with either independent binding of ACh and 

dFBr or a requirement for ACh to bind first.

When dFBr is applied to desensitized receptors with the simultaneous removal of ACh, a 

large peak is elicited that quickly returns to the pre-dFBr amplitude. A second switch from 

perfusion with dFBr back to ACh produces an ACh elicited peak in the absence of dFBr that also 

desensitizes rapidly back to the baseline response amplitude. These data suggest that ACh and 

dFBr bind independently with no requirement for ACh to bind before dFBr or vice versa. The 

rapid rise of the response peaks in Figure 3.6D appears to be the result of either ACh bound first 

followed by dFBr (first peak) or dFBr bound followed by ACh activation (second peak). The rapid 

decline of the first peak (Figure 3.6D) is likely the result of ACh dissociation from the receptor 

during dFBr application and the decline of the second peak represents dissociation of dFBr from
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the receptor. Thus the rate of decline in Figure 3.6D may be reflective of the dissociation rates 

for either ACh (left trace) or dFBr (right peak).

It has been postulated that the ability to re-open desensitized receptors could be a 

common feature of type II modulators (Galzi et al., 1992; Briggs et al., 1999). Thus, dFBr could be 

classified as a a4(32 type II PAM. Some concern has been expressed regarding alterations in 

desensitization rates by type II PAMs since such changes might adversely affect cell viability due 

to increased Ca2+ permeability. This remains a concern with dFBr, particularly due to its ability to 

reopen desensitized receptors. The balance between potentiation and channel block may be an 

important consideration therapeutically since channel block could reduce the problem of Ca2+' 

entry through the channel. The combined channel block and potentiation with dFBr produces 

sharper, more rapidly desensitizing responses rather than prolonged openings as have been 

observed in type II PAMs. The enhancement of partial agonist activities presents the possibility 

for combination therapies between dFBr like compounds and therapeutic partial agonists.
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CHAPTER 4: Non-orthosteric Subunit Faces are Involved in alpha4beta2 nAChR 

Responses to Acetylcholine and Desformylflustrabromine in High- and Low-sensitivity 

Receptor Preparations.

4.1 Abstract.

Alterations in expression patterns of a4(32 nicotinic acetylcholine receptors (nAChR) 

have been demonstrated to alter nicotinic neurotransmission and have been implicated in 

neurological disorders including Autism, nicotine addiction, Alzheimer’s and Parkinson’s 

disease. Positive allosteric modulators (PAMs) represent promising new leads for the 

development of therapeutic agents for the treatment of these disorders. This study investigates 

the involvement of non-orthosteric subunit interfaces of a4p2 receptors in the potentiation of 

acetylcholine (ACh) induced responses by the PAM desformylflustrabromine (dFBr). Amino 

acids on the non-orthosteric P2+ and a4- subunit faces were mutated to alanine and receptors 

expressed in Xenopus laevis oocytes. Acetylcholine induced responses in the presence and 

absence of dFBr were recorded with two-electrode voltage clamp techniques. Three 

fundamentally different results were observed. Several mutations altered the ACh dose- 

response curves, supporting a role for these amino acids in mediating agonist induced 

conformational changes in a4p2 nAChRs. A second group of mutations selectivity altered the 

ability of dFBr to potentiate ACh induced responses but had minimal effect on responses to 

ACh alone (low-sensitivity preparation: P2W176A, P2T177A, P2D179A, p2D217Aand a4W88A; 

high-sensitivity preparation P2T177A, P2D116A and P2Y120A). The remaining mutations had 

no effect on either dFBr or ACh effects. Our data supports our hypothesis that allosteric 

modulation by dFBr involves its interaction within the p2+/a4- cleft and suggests that its effects 

may involve alterations in subunit interactions involving P2+ and a4-. In addition to supporting 

a putative binding site for dFBr, these data also demonstrate the importance of this region in 

normal receptor kinetics.
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Nicotinic acetylcholine (nAChR), GABAa, 5HT3 and glycine receptors are members of the 

Cys-loop super family of ligand gated ion channels (LGIC). nAChRs are integral membrane 

proteins involved in cholinergic transmission in the central and peripheral nervous systems (Taly 

et al., 2009). Dysregulation of nAChRs has been postulated to be involved in neurological 

disorders including Alzheimer’s disease (Court et al., 2001; Nordberg, 2001), Schizophrenia 

(Adams and Stevens, 2007), Parkinson’s disease (Aubert et al., 1992), Autism (Martin-Ruiz et al., 

2004; Lippiello, 2006) and nicotine addiction (Picciotto et al., 2001).

The predominant nAChRs subtypes found in brain are the homomeric a7 and the 

heteromeric a4(32 receptors (Mudo et al., 2007). Recent studies have suggested that a4p2 

nAChRs can form high- (HS) and low- (LS) ACh sensitivity receptors (Nelson et al., 2003; Zhou et 

al., 2003; Briggs et al., 2006; Moroni et al., 2006; Zwart et al., 2006; Tapia et al., 2007). Altering 

the a:p subunit injection ratio in Xenopus oocytes has been demonstrated to alter the relative 

ratios of a HS to LS a4p2 receptors expressed, presumably a result of different a4p2 

stoichiometries. Studies have provided suggestive evidence that similar HS and LS a4p2 nAChR 

stoichiometries are expressed in the mammalian brain (Marks et al., 2000; Butt et al., 2002; Gotti 

et al., 2008) and can be altered by chronic exposure to nicotine (Moretti et al., 2010). The precise 

arrangement of the a4 and P2 subunits within the different a4p2 receptors is unknown.

Ligands, such as Positive Allosteric Modulators (PAMs) that selectively target nAChRs 

are potentially important therapeutic agents that could prove useful for the treatment of 

pathologies involving alterations in nAChR expression. PAMs are ligands which bind at allosteric 

sites and alter responses to agonists such as the endogenous agonist ACh although they have 

no agonist properties of their own and have different effects on agonist responses. PAMs have 

been identified that modify peak currents of the agonist induced responses (Type I profile) or alter 

both the peak current and time course of the agonist evoked response (Type II profile) (Bertrand 

and Gopalakrishnan, 2007). The development of PAMs that are selective for specific receptor 

subtypes and stoichiometries would be potentially beneficial for the treatment of pathological 

conditions where only one receptor subtype or stoichiometry is deregulated and would provide 

useful pharmacological probes for identification of specific subtypes in CNS function. The design 

and development of different classes of PAMs will be facilitated by identification and modeling of 

the respective allosteric binding sites.

Desformylflustrabromine (dFBr) is a recently discovered PAM that potentiates ACh 

evoked currents on a402 nAChRs and inhibits ACh induced currents on other common nAChR 

subtypes (Sala et al., 2005; Kim et al., 2007; Weltzin and Schulte, 2010b). The synthetic form of

4.2 Introduction.
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this natural compound has been shown to increase maximal currents induced by ACh on a4(B2 

nAChRs by 265% without altering the EC50 for ACh. Similar effects are observed when dFBr is 

co-applied with partial agonists although increases in efficacy are greater for partial agonists 

compared to ACh (Kim et al., 2007; Weltzin and Schulte, 2010). In addition, dFBr has been 

shown to induce currents when applied to desensitized receptors continuously exposed to ACh. 

While the mechanism of dFBr potentiation is unknown it has been proposed that dFBr potentiates 

a4(32 nAChRs and “rescues” receptors from desensitization by altering the equilibrium between 

open and desensitized receptor conformations (Sala et al., 2005; Weltzin and Schulte, 2010b) . 

Inhibition of agonist induced responses by high concentrations of dFBr (> 10 pM) appears to 

involve open channel block by dFBr (Weltzin and Schulte, 2010).

The current study investigates the mechanistic role of the p2+ and a4- subunit faces in the 

potentiation of ACh induced responses by dFBr. Using site-directed mutagenesis, amino acids 

within the p2+/ a4- subunit interface were mutated to alanine and mutant receptors were 

expressed in Xenopus laevis oocytes. The effects of each mutation were evaluated using two- 

electrode voltage clamp techniques on both HS and LS a4p2 receptors. HS and LS receptors 

were expressed by altering the injection ratios of a4 and p2 as described previously by Nelson et 

al. (2003). The putative binding site for dFBr at the P2+/ a4- subunit interface relative to the 

orthosteric binding site on a4p2 receptor is similar to the position of the benzodiazepine binding 

site on GABAa receptors relative to the GABA orthosteric binding site. We thus used homology 

between the P2+/ a4- subunit interface and the GABAa benzodiazepine as a guide for 

mutagenesis. Eight P2+ amino acids and two a- face amino acids were selected and are shown 

in Figure 4.1. The data suggest that non-orthosteric subunit faces are involved in receptor 

conformational changes in response to ACh in the absence of allosteric modulation and data 

obtained in the presence of dFBr support the conclusion that the dFBr binding site is located on 

the P2+ face. Binding of dFBr to the allosteric binding site appears to utilize amino acid 

interactions in this region equivalent to binding loops A, B and C previously described for the 

orthosteric binding site (Sigel 2002; Lester et al., 2004).
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Figure 4.1. DNA sequence alignments for AChBP and nAChR subtypes.
Alanine mutations are made on amino acids on the loops A ((B2D116, 02Y12O and 02Y127), B 
(02W176, 02T177 and 02D179) and C (02D217 and 02D218) located on the 02+ face (black 
boxes) and on the 0-sheets D (a4W88) and E (a4K140) of the a4- face (grey boxes).



141

4.3 Materials and Methods. 

4.3.1 Receptors and mRNA.

The cDNA sequences for human a4 (NCBI Reference Sequence: NM 000744.5), p2 

(NCBI Reference Sequence: NM_000748.2) and a7 (NCBI Reference Sequence: NM_000746.3) 

nAChR subunits were used to synthesize a full length cDNA for each subunit. cDNA synthesis 

was conducted by GeneArt Inc. (Burlingame, CA). The 02 cDNA was inserted into the 

pcDNA3.1/Zeo(+) mammalian expression vector with restriction enzymes Not I and Xho I and the 

a4 cDNA was inserted into the pcDNA3.1/hygromyocin mammalian expression vector with 

restriction enzymes Hind III and BamHI (vectors procured from Invitrogen, Carlsbad, CA; 

restriction enzymes purchased from New England Biolabs). The cDNAfora7 nAChR subunit was 

inserted into the pBudCE4.1 expression vector (Invitrogen) with restriction enzymes Sai I and 

Xba. All constructs were fully sequenced and confirmed to be identical to the published 

sequences for each subunit. Synthetic DNA was used to transform AG1 super-competent cells 

(Stratagene) for production of cDNA. Synthetic cRNA transcripts for wild-type and mutant 

subunits were prepared using the T7 mMESSAGE mMACHINE™ High Yield Capped RNA 

Transcription Kit (Ambion, Austin, TX).

Mutatant cDNA was created using commercial mutagenesis services (DNA 2.0, Menlo 

Park, CA). All mutations were confirmed by DNA sequencing. The resulting DNA was inserted 

into the pcDNA3.1/Hygromyocine vector (Invitrogen, Carlsbad, CA) and used to transform NEB 

10-beta E. coli (DNA 2.0) cells.

4.3.2 Experimental Chemicals and Test Compounds.

Acetylcholine (ACh), other salts and buffering agents were obtained from Sigma-Aldrich, 

Inc (MO). Desformylflustrabromine-HCI (dFBr) was synthesized by Dr. Richard Glennon (Virginia 

Commonwealth University) according to a previously published procedure (Kim et al., 2007).

4.3.3 Xenopus laevis Oocytes and Receptor Expression.

Xenopus laevis frogs and frog food were purchased from Nacso (Fort Atkinson, Wl). 

Ovarian lobes were surgically removed from Finquel anesthetized Xenopus laevis frogs and 

washed twice in Ca2+-free Barth’s buffer (82.5 mM NaCI; 2.5 mM KCI; 1 mM MgCI2; 5 mM 

HEPES, pH 7.4) then gently shaken with 1.5 mg/mL collagenase (Sigma type II, Sigma-Aldrich 

Inc., MO) for 20min at 20-25°C. Stage V and VI oocytes were selected for microinjection. No 

more than four surgeries were conducted on each frog. A recovery period greater than six weeks 

was allowed in between surgeries (Xenopus protocols conform to those approved by the
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University of Alaska Fairbanks Institutional Animal Care and Use Committee; approval number 

08-71).

For expression of a4p2 nAChRs, oocytes were injected with 50 nL cRNA. Injected 

oocytes were incubated at 19°C for 24-72h prior to their use in voltage clamp experiments. For 

the high-sensitivity receptor preparations (HS), oocytes were injected with 50 nL of a mixture 

containing 250 ng/pL of a4 cRNA and 50 ng/pL of [32 cRNA (5:1 ratio of a4 to P2). For the low- 

sensitivity receptor preparation (LS) oocytes were injected with 50 nL of a mixture of 50 ng/pL a4 

cRNA and 250 ng/pL p2 cRNA (1:5 ratio of a4 to P2). The EC50 values obtained for ACh induced 

currents on the HS and LS receptor preparations obtained from these injection ratios were 

verified by electrophysiology assays as described below and found to compare well with 

published values for the high ACh-sensitive and low ACh-sensitive receptors (Zwart and 

Vijverberg, 1998; Moroni et al., 2006). EC50 values and response profiles indicated the expression 

of predominantly the HS or LS subtypes although it is likely that both are present in each 

experiment.

4.3.4 Two-Electrode Voltage Clamp.

Current recordings were performed using an automated two-electrode voltage-clamp 

system incorporating an OC-725C oocyte clamp amplifier (Warner Instruments, Hamden, CT) 

coupled to a computerized data acquisition (Datapac 2000, RUN technologies, Mission Viejo, CA) 

and autoinjection system (Gilson, Middleton, Wl). Recording and current electrodes with 

resistance 1-4 MQ were filled with 3 M KCI. Details of the chambers and methodology employed 

for electrophysiological recordings have been described earlier (Joshi et al., 2004). Oocytes were 

held in a vertical flow chamber of 200 pL volume, clamped at a holding potential of -60 mV and 

perfused with various ND-96 recording buffers. A phosphate ND-96 recording buffers was used 

in these experiments due to the findings that HEPES modulates the HS receptors (Weltzin, 

2010). The phosphate ND-96 recording solution is similar to HEPES in all regards except with the 

omission of HEPES and the addition of phosphate (96 mM NaCI, 2 mM KCI,1.8 mM CaCI2, 1 mM 

MgCI2, 2 mM phosphate). Test compounds were dissolved in buffer and injected into the 

chamber at 20 mL/min using a Gilson auto-sampler injection system (Joshi et al., 2004).

4.3.5 Electrophysiology Dose-Response Experiments.

Dose-response curves for the endogenous nAChR agonist Acetylcholine-CI, (ACh) 

(Sigma-Aldrich) were determined for both wild-type and mutant receptors expressed in HS and 

LS receptor preparations at ACh concentrations ranging from 0.1 pM - 3 mM. Broader 

concentration ranges were used when necessary to fully define the ACh dose/response curves.
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For wild-type and mutant receptors expressed in the LS preparation, dose-response curves for 

dFBr were determined by co-application of 100 pM ACh (EC75) with varying concentrations of 

dFBr (0.001 -  100 pM). For wild-type and mutant receptors expressed in the HS preparation, 

dFBr dose-response curves were determined by co-application of 10 pM ACh (EC75) with varying 

concentrations of dFBr (0.001 -  100 pM).

In order to compare responses from different oocytes, individual responses to drug 

application were normalized to control responses elicited using 10 pM ACh for receptors 

expressed by the HS receptor technique for both wild-type and mutated receptors. For wild-type 

and mutant receptors in the LS preparation responses were normalized to those obtained using 

100 pM ACh. Data were collected from at least four replicate experiments using oocytes obtained 

from at least two different frogs.

4.3.6 Data Analysis and Statistics.

Dose-response curves were fit using non-linear curve fitting and GraphPad Prism 

Software (San Diego, CA) with standard built-in algorithms. pEC50 (-log EC50) and EC50 values 

were determined by fitting concentration/response data to a single site binding model:

j  =  fr +  C fm ax-fr)
1  +  1  Q(LogEC,(i-Log[L\)*nH  ( 1)

Where I is the current elicited on application of agonist, b is the baseline current in the absence of 

ligand, L is the ligand concentration and nH is the Hill slope. The EC50 value is the concentration 

of agonist producing currents equal to one half the maximal current (Lax)-

Mutant (32D179A and a4W88A receptors which displayed dFBr potentiation with no 

inhibition at higher dFBr concentrations were also fit to equation 1 rather than equation 2 (bell 

shaped dose/response). For consistency with the bell-shaped dose response curves used for 

other dFBr experiments, the Hill slope (nH) was constrained to 1 in these experiments.

PAMs often produce bell shaped dose-response curves with both potentiating and 

inhibiting phases. dFBr displayed this typical dose-response profile on wild-type and some mutant 

receptors. The pEC50 (-log EC50) and plC50 (-log IC50) values were determined in these cases by 

simultaneously fitting both the potentiation and inhibition phases using equation 2 and GraphPad 

Prism Software (San Diego, CA). Similar equations have been used previously to examine bell

shaped PAM data (Harvey et al., 1999; Hsiao et al., 2001; Hsiao et al., 2006; Kim et al., 2007; 

Weltzin and Schulte, 2010a). Mutant receptors that did not display a bell shaped response to 

dFBr were fit with other algorithms (see equation 1 and equation 3).
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t   j  _|_ (  (.PtotGQ'Ul—Im.axcalc) \ , (  (P la teau2 I-maxcalc) \ /^\
-  m a xca lc  \1+10(ao5'?C50-Z.oSA-).n«1)y  \ 1+lQ((Loax-Log[C50)*nH2) )  '  >

I is the current elicited on application of agonist, lmaxcaic is the calculated maximum induced 

current of both the potentiation and inhibition curves. Plateau 1 is the initial current prior to 

addition of the modulator and Plateau 2 is the plateau after the inhibition of the agonist response 

at high concentrations of the modulator. The EC50 value is the concentration of modulator 

producing currents equal to one half the calculated maximum current ( lm a x c a i c )  during co

application with agonist. The IC50 is the concentration of modulator required to inhibit the 

response to 1/2 l m a X c a ic  • The responses elicited from different oocytes and different 

concentrations of potentiator are typically normalized to the response to a control concentration of 

ACh to account for differences in expression between preparations. In potentiation experiments 

the current elicited by a specific concentration of the potentiating ligand + ACh ( l re s p o n s e )  is divided 

by the current elicited by an identical concentration of ACh in the absence of the potentiating 

ligand. Thus, in the absence of a potentiator the response amplitude is equal to 1.0. Potentiation 

is typically referred to in the text as a percentage of the unpotentiated response. This percentage 

is calculated as the peak of the bell shaped dose-response curve X 100. Since the unpotentiated 

response is defined as 1 .0, a 180% potentiation would, for example, represent an observed 

potentiation of 1.8 X the observed unpotentiated peak response. This peak response is typically 

less than the l m a X c a ic  due to simultaneous inhibition by the ligand that produces the bell shaped 

dose-response curve.

Simultaneous fitting of two Hill equations can prove difficult if the EC50 and IC50 values 

are close together due to the inability to collect data near the value of lmaxcaic- In these cases, 

insufficient data is present to fully define the curve and some constants must be approximated for 

the fit to converge and the appropriate EC50 and IC50 values determined. In order to overcome 

these limitations, Hill slopes for potentiation and inhibition were typically fixed at +1 and -1 

respectively. The lmaxcaic was constrained to < 6 . The constraints for the mutant P2Y127A 

expressed using the LS receptor preparation are as follows: Plateau 1 = 1 ,  lmaxcaic < 21 (due to 

dFBr having a greater lmaxcaic on P2Y127A), Plateau 2= 2.75 (the lmaX value of the highest dFBr 

concentration tested), nHi=-4 and nH2=-2 (nH values which allowed for the best curve fit of the 

data). The lmaxcaic of mutants a4W88A expressed using the LS receptor preparation were 

constrained to < 25 rather than < 6 due to dFBr having a greater lmaXcaic on a4W88A compared to 

the other examined mutations.

Some mutants displayed no potentiation on exposure to dFBr although inhibition was still 

observed. These inhibition curves were fit using non-linear curve fitting and GraphPad Prism
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Software (San Diego, CA) with standard built-in algorithms (equation 3). plC50 (-log EC50) values 

were determined by fitting concentration/response data to a log (inhibitor) verses response 

binding model:

, n, . n , (  (P lateaul-Plateaut) \  ...
I  =  Plateau2 + { il+ lo aogx-Lo9,c5o),nH))  (3)

Where I is the current elicited on application of agonist and modulator, Plateau 1 is the current 

elicited by the agonist prior to addition of the inhibitor. Plateau 2 is the current at saturating 

concentrations of inhibitor. The IC50 is the concentration of modulator that inhibits the current by 

1/2 lmax In order to permit comparison of data from different oocytes, responses for all test 

compounds were normalized to the currents obtained with 10 pM ACh for receptors expressed by 

the HS receptor preparation and 100 pM ACh for receptors expressed via the LS receptor 

preparations. The nH was constrained to -1 to allow for better comparison to results obtained for 

wild-type receptors.

The degree of change resulting from individual mutations was calculated as a ratio of the 

mutant value by the wild-type value. For values where a decrease was seen with the mutation, 

one was divided by the calculated fold change.

Statistical comparisons of pECso or pICso values used an unpaired t-test with p values 

calculated based on the null hypothesis.
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A series of amino acids were mutated to alanine to investigate the role the (32+ and 04- 

faces of the a4|32 nAChR in mediating the effects of ACh and dFBr. Residues to be mutated were 

selected based on homology with other LGIC subunits and were at equivalent positions to those 

previously identified in the binding pocket for benzodiazepines on GABAa receptors (GABAa 

a1H101, a1Y159, a1S205, a1T206, y1M130 and yF77) (Wieland et al., 1992; Amin et al., 1997; 

Buhr et al., 1997a; Buhr et al., 1997b; Buhr and Sigel, 1997; Wagner and Czajkowski, 2001). 

Figure 4.2 displays the alignments between nAChRs and GABAaR subunits involved in the 

putative dFBr binding site and the benzodiazepine binding site. Residues mutated on the (32+ 

face include W176 (GABAa aaY159), T177 and D179 on the B-loop; D217 and D218 (GABAa 

a1S205 and a1T206) on the C-loop; and D116, Y120 (GABA^alHIOI) and Y127 on the A-loop. 

Residues mutated on the a4- face include K140 (E-(3 strand) (GABAa y1M130) and W88 (D-(3 

strand) (GABAa y1 F77). Each mutant receptor was characterized using two-electrode voltage 

clamp recording. Dose-response curves were obtained for ACh stimulation in the absence of 

dFBr and for co-application of dFBr and ACh using oocytes expressing both low- (LS) and high- 

(HS) ACh sensitivity receptor populations.

4.4 Results.
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B-Loop

nAChRo4 F G S W T Y D K A I

nACHRp2 F R S @ 0  Y 0 R T E

GABAaRo1 f G s Y A Y T R A E

GABAARy1 F S s Y G Y P R E E

C-Loop

nAChRo4 K Y K C - C E E I Y P D

nAChRp2 - 0 0 S T Y V D

GABAaRo1 S - - - - jT G E Y V V

GABAARy1

A-Loop

nAChRa4 P D I V L Y N N A D G D F A

nAChRp2 P 0 I V L 0 N N A D G M 0  E

GABAARa1 P D T F F F N G K K S V A H

GABAARy1 P D T F F R N S K K A D A H

E-p-sheet D -P -sh se t
tiA C b R a4  L T 0 A  H I  nA C bR ct4 T  N V 0  V K Q
n A C h R p 2  Y S  N A V V n A C h R p 2  T  N V W  L T Q
GABAAR a1  M P N K L  L GABAAR a1 I D V F F R Q
GABAARy1 N R M L R I GABAARy1 1 D I (F ,  F  A Q

Figure 4.2. DNA sequences for the binding- loops and -(3-sheets for the nAChR 
subunits a4 and (32 and GABAaR subunits a1 and y.

The residues in the a4 and (32 subunits that were mutated in the current study are emphasized ' 
back boxes. Key amino acids that are involved in the binding of benzodiazepines in the GABAa 
residues are accentuated in grey boxes.

.= 
cd
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4.4.1. High- and Low- Sensitivity Wild-type a4^2 Receptor Preparations.

4.4.1.1. ACh Dose-Response on High- and Low- ACh Sensitivity a4[S2 Receptors.

ACh concentration-response curves were obtained for wild-type receptors using the LS 

(injection ratio 5:1 a:P) and HS (injection ratio 1:5 ccp) receptor preparations and by applying 

varying concentrations of ACh (0.1 -  3000 pM). The dose-response curves were sigmoidal in 

shape (Figure 4.3A). Receptors expressed using the LS receptor preparation had a significantly 

different ACh pEC50 value 4.5 ± 0.1 (EC50 = 34 pM) compared to receptors expressed using the 

HS receptor preparation (ACh pEC50 value of 5.2 ± 0.1 (EC50 = 5.8 pM)) (p < 0.0001) (Table 4.1 

and 4.2). The Hill slope (nH) for receptors expressed using the LS receptor preparation (nH = 1.4 ± 

0.3) were not significantly different from receptors expressed using the HS preparation (nH = 1.9 ± 

0.3) (p = 0.2893).
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b 0 3 pM dFBr + 10 pM ACh 
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d 30 pM dFBr + 10 pM ACh 
e 100 pM dFBr + 10 pM ACh

Figure 4.3. ACh and dFBr dose-response curves for wild-type (WT) receptors expressed 
using the high-sensitivity (HS) and low-sensitivity (LS) receptor preparations.

Xenopus oocytes are prepared using the high and low-sensitivity receptor preparations (HS 
mRNA injected at a ratio of 1a:5|B; LS mRNA injection at a ratio of 5a:1(3). Expressing oocytes 
were exposed to increasing concentrations of ACh and dFBr. A) ACh dose-response curves for 
wild-type receptors. Individual peak amplitudes were normalized to the lmax on the same oocyte. 
B) Dose-response curves for co-application of varying concentrations of dFBr and the ACh EC75 
for wild-type receptors. C) Co-application of dFBr and ACh response traces for wild-type 
receptors expressed via the LS receptor preparation. D) Co-application of dFBr and ACh 
response profiles for wild-type receptors expressed by the HS receptor preparation. Response 
traces were recorded from a single oocyte. The solid bar above the response trace indicates the 
time the oocyte was exposed to co-application of varying concentrations of dFBr and the ACh 
EC75. The ACh and dFBr dose-response values were determined using non-linear curve fitting as 
described in the methods and are reported in Table 4.1 and 4.2. Data points represent at least 4 
replicate values obtained from a minimum of two oocytes harvested from different frogs. Error 
bars indicate ± SEM.
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Table 4.1 Summary of the calculated results determined from ACh and dFBr potentiation 
of ACh dose-response results from wild-type (WT) and mutant a4(32 receptors 
expressed using the low-sensitivity (LS) receptor preparation.

ACh Dose Response dFBr Potentiation of ACh Induced 
Responses

Mutation Mutation
Location

pECso± 
SEM 

(ECso, pM)
nH

pEC50± 
SEM 

(EC50, pM)

plC50± 
SEM (IC50 

pM)
L a x  ± SEM

LS WT WT 4.5 ±0.1 
(34) 1.4 ±0.3 6.1 ±0.4 

(0.79)
5.3 ± 0.4 

(5.0) 3.4 ± 0.4

LS |B2W176A p2, B-Loop 5.3 ±0.3 
(5.1) 0.4 ±0.1*** 6.6 ± 0.6 

(0.25)
5.1 ±0.6 

(7.9) 2.1 ±0.3

LS P2T177A P2, B-Loop 3.6 ±0.7 
(226) 0.5 ±0.2 6.7 ±0.5 

(0.20)
4.7 ±0.5 

(20) 2.0 ± 0 .2**

LS P2D179A P2, B-Loop 4.1 ±0.3 
(76) 1.2  ± 0.1

5.5 ±0.2 
(3.1) N.D. 3.7 ± 0.4

LS P2D217A P2, C-Loop 4.6 ± 0.2 
(25) 1.3 ±0.2 6.6 ±0.5 

(0.25)
5.4 ± 0.6 

(4.0) 2.2 ± 0.2

LS P2D218A P2, C-Loop 4.4 ±0.1 
(41) 0.8 ± 0.2

6.0 ±0.3 
(1 .0)

4.8 ±0.4 
(16) 2.7± 0.4

LS P2D116A p2, A-Loop 4.2 ±0.1 
(59) 1.1 ± 0.1

6.1 ±0.3 
(0.79)

5.3 ±0.4 
(5.0) 3.0 ± 0.3

LS P2Y120A P2, A-Loop 4.0 ±0.1** 
(1 1 1 ) 1.3 ±0.2 8.5 ± 1.4 

(0.0032) N.D. 1.6  ± 0 .2**

LS P2Y127A P2, A-Loop 3.3 ± 1.1** 
(559) 0.4 ± 0.2** 5.9 ±0.6 

(1.3)
5.0 ±0.6 

(10 ) 20 ± 3**

LS O4K140A a4, E-Loop 7.0 ± 0.1*** 
(0.099) 0.8 ± 0 .1* N.D. 4.1 ±1.1 

(79) N.D.

LS a4W88A a4, D-Loop 4.9 ± 0.2 
(14) 0.7 ± 0.3 5.5 ±0.2 

(3.2) N.D. 21.0 ±4***

Data represent mean ± SEM. Data points represent at least 4 replicate values obtained from a 
minimum of two oocytes harvested from different frogs. pEC50 is the -log of the EC50 value; plC50 
is the -log of the IC50 value; lmax observed is the maximum induced current observed nH. ** and *** 
Indicate values significantly different from wild-type receptors with p<0.01 and p<0.0001, 
respectively.
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Table 4.2 Summary of the calculated results determined from ACh and dFBr 
potentiation of ACh dose-response results from wiid-type (WT) and mutant 
a4|32 receptors expressed using the high-sensitivity (HS) receptor 
preparation.

ACh Dose Response dFBr Potentiation of ACh Induced 
Responses

Mutation Mutation
Location

pECso± SEM 
(EC50i pM) nH

pEC50± 
SEM 

(ECso, pM)

plC50 ± 
SEM (iC50 

PM)
L a x  ± SEM

HS WT WT 5.2 ±0.1 
(5.8) 1.9 ±0.3 5.7 ±0.1 

(2.0)
3.5 ± 1.9 

(316) 3.6 ±0.3

HS P2W176A P2, B-Loop 6.0 ± 0.1*** 
(0.91) 0.8 ±0.1 N.D. 7.9 ±0.3 

(0.013) N.D.

HS P2T177A P2, B-Loop 5.7 ±0.2 
(1.9) 0.9 ±0.3 5.9 ±0.9 

(1.3)
5.4 ± 1.0 

(4.0) 2.4 ± 0.3**

HS P2D179A P2, B-Loop 6.0 ± 0.1*** 
(0.98) 0.7 ±0.1** 5.8 ±0.6 

(25)
3.7 ±3.0 

(200) 1.8 ± 0.2***

HS P2D217A p2, C-Loop 5.8 ± 0.1*** 
(1.5) 1.1 ±0.3 5.2 ± 0.4 

(6.3)
4.4 ±1.0 

(40) 3.2 ±0.1

HS P2D218A p2, C-Loop 5.5 ±0.1 
(2.9) 1.2 ±0.2 5.5 ±0.3 

(3.2)
3.7 ± 1.3 

(200) 3.4 ± 0.3

HS P2D116A P2, A-Loop 5.2 ±0.1 
(6.2) 0.9 ±0.2 5.8 ±0.3 

(1.6)
4.8 ±0.4 

(17) 2.6 ± 0.2**

HS P2Y120A p2, A-Loop 5.7 ±0.2 
(2.2) 0.4 ± 0.1*** 6.4 ± 0.7 

(0.40)
4.7 ± 1.7 

(20) 1.3 ±0.1***

HS P2Y127A P2, A-Loop 6.4 ±0.1*** 
(0.40) 0.5 ±0.1** 5.7 ±0.3 

(2.0)
4.1 ±0.8 

(70) 2.4 ±0.1**

HS O4K140A a4, E-Loop 7.2 ±0.1*** 
(0.058) 2.5 ±0.8 N.D. 5.9 ±0.3 

(1.3) N.D.

HS Q4W88A a4, D-Loop 6.2 ± 0.2** 
(0.57) 1.1 ±0.5 5.7 ±0.3 

(2.0)
4.3 ±0.6 

(50) 3.9 ±0.3

Data represent mean ± SEM. Data points represent at least 4 replicate values obtained from a 
minimum of two oocytes harvested from different frogs. pEC50 is the -log of the EC50 value; plC50 
is the -log of the IC50 value; lmax observed is the maximum induced current observed nH. ** and *** 
Indicate values significantly different from wild-type receptors with p<0.01 and p<0.0001, 
respectively.
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4.4.1.2. Effects of dFBr on Wild-Type Low- and High- ACh Sensitivity Receptors.

dFBr is a positive allosteric modulator (PAM) of a4|32 nAChRs (Kim et al., 2007; Weltzin 

and Schulte, 2010b). One of the goals of this study was to locate the putative dFBr binding site. 

Here we examined the effects of dFBr on the LS and HS receptor preparations using both wild- 

type and mutant receptors. dFBr did not induce activation of wild-type or mutant channels 

expressed in either the HS and LS receptor preparations without co-application of ACh.

Wild-type and mutant dose-response curves for dFBr potentiation were determined by 

co-application of dFBr at concentrations ranging from 0.001 -  100 pM dFBr and a fixed ACh 

concentration equal to the EC75for ACh (10 pM for HS and 100 pM for LS receptor preparations) 

to Xenopus laevis oocytes injected using the LS or HS injection ratios and evaluated via two- 

electrode voltage clamp. ACh (100 pM) induced responses of wild-type receptors prepared using 

the LS receptor preparation were potentiated by co-applications of 0.001 - 3 pM concentrations of 

dFBr (Figure 4.3B, Table 4.1). The pEC50 determined for dFBr on the LS receptors is 6.1 ± 0.3 

(EC50= 0.79 pM). Responses were maximally potentiated 280% by application of approximately 3 

pM dFBr co-applied with 100 pM ACh. dFBr concentrations in excess of 10 pM produced 

inhibition of dFBr potentiated ACh induced responses (Figure 4.3B, Table 4.1). The pICso value 

for dFBr inhibition was 5.3 ± 0.4 (IC50 = 5.0 pM).

In the HS preparation, co-application of varying concentrations of dFBr with 10 pM ACh 

produced a similar bell shaped dose-response curve to the LS preparation but appeared 

displaced slightly to the right (Figure 4.3B). The pEC50 value determined for the potentiation 

phase of the dose response curve was 5.7 ± 0.1 (EC5o = 2.0 pM) (Table 4.2). Co-application of 10 

pM dFBr and 10 pM ACh enhanced ACh induced currents maximally by approximately 360%. 

Concentrations of dFBr less than 30 pM potentiate ACh induced currents while those greater than 

10 pM dFBr inhibit the dFBr potentiated response (Figure 4.3B). The pICso value was estimated 

to be approximately 3.5 ±1.9 (IC5o= 316 pM) (Table 4.2).

Comparisons of the HS and LS preparations show minimal statistically significant 

differences in the dFBr dose-response results. No significant differences were observed when we 

compare pEC50, Lax observed and plC50 values for dFBr between the HS and LS receptor 
preparations (Table 4.1 and 4.2). Although visual inspection of Figure 4.3B suggested that the LS 

preparation dFBr dose-response curve was shifted to the left compared dFBr dose-response 

curve collected using the HS receptor preparation.

Typical responses to dFBr potentiation of ACh induced responses are shown in the lower 

panel in Figure 4.3. While the HS preparation appeared to produce smaller responses in this 

figure the difference is likely due to different in receptor expression levels between the two
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experiments and differences in cation conductances between the two receptor populations (Tapia 

et al., 2007). The overall effects of dFBr appeared to be similar in both cases with amplification of 

the overall response at lower concentrations followed by a sharpening of the response peak with 

an increase in the desensitizing phase at concentrations that produce the maximum potentiation 

(~ 3 pM -  10 pM) then a decrease in the sharpened peak amplitude at high dFBr concentrations. 

The presence of tail currents or hump currents in some traces (see trace e for both HS and LS 

preparations) suggested the presence of open channel block as previously determined for the 

mixed HS and LS preparations using a 1:1 a4:p2 mRNA injection ratio.

4.4.2. 02 B-Loop Mutations.

The B-loop region of the orthosteric binding site of nAChRs and other LGICs is thought to 

form a major component of the ligand binding pocket and are present on the plus face of one 

receptor subunit. In particular, a conserved W aromatic residue (P2W176, a4W149) in this region 

(see Figure 4.1) has been shown to interact with ligands in the orthosteric site (for review see 

(Lester et al., 2004)). a1Y159 is the equivalent residue in the GABAaRs allosteric benzodiazepine 

binding site that has been shown to reduce benzodiazepine modulation when mutated (Amin et 

al., 1997). The P2T177 and p2D179 are only conserved in nAChR subunits which form 

heteromeric receptors. These two residues were chosen for their potential to interact with 

functional groups on the dFBr molecule and to aid in our understanding of ligand selectivity. To 

evaluate the potential involvement of these amino acids in normal receptor function and/or the 

action of dFBr, these residues were individually mutated to alanine. The effects of these 

mutations are summarized in Table 4.1 for the LS preparation and Table 4.2 for the HS 

preparation.

4.4.2.1. Effects of/32 B-loop Mutations on ACh Induced Responses.

Figure 4.4A shows concentration-response data obtained at increasing concentrations of 

ACh concentrations (0.1 -  3000 pM) for B-loop mutant receptors using the 5:1 a4:p2 mRNA 

injection ratio (LS preparation). The pEC50 values determined for the B-loop mutations were not 

significantly different from wild-type receptors (P2T177A p = 0.0624; P2W176A p = 0.0203; 

P2D179A p=0.0144) (Figure 4.4A, Table 4.1). Thus alanine mutations of P2W176, P2T177 and 

P2D179 did not significantly alter the pEC50 for ACh stimulation of the LS a4p2 nAChR 

preparation.
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Figure 4.4. ACh and dFBr dose-response curves for P2+ face B-loop mutants and 
wild-type (WT) receptors expressed using the low- (LS) and high- (HS) sensitivity 
receptor preparation.

Xenopus oocytes were prepared using the HS and LS receptor preparations (HS mRNA injected 
at a ratio of 1a:5|3; LS mRNA injection at a ratio of 5a:ip). Expressing oocytes were exposed to 
increasing concentrations of ACh and dFBr. A and B) ACh dose-response curves for wild-type 
and p2+ face B-loop mutant receptors expressed using the LS and HS receptor preparations. 
Individual peak amplitudes were normalized to the lmax on the same oocyte. C and D) Dose- 
response curves for co-application of varying concentrations of dFBr and the EC75 ACh for wild- 
type and p2+ face B-loop mutant receptors expressed using the LS and HS receptor 
preparations. The ACh and dFBr dose-response values were determined using non-linear curve 
fitting as described in the methods and are reported in Table 4.1 and 4.2. Data points represent at 
least 4 replicate values obtained from a minimum of two oocytes harvested from different frogs. 
Error bars indicate ± SEM.

Analysis of nH values on the wild-type and mutants expressed using the LS preparation 

revealed no significant differences compared to wild-type, except in the cases of the (32W176A 

receptor (p = 0.0001) (Figure 4.4A, Table 4.1). Mutation of (32W176 to alanine produceed a
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significant decrease in nH to 0.4 (compared to 1.4 for wild-type receptors). This indicates a 

potential decrease in cooperativity between the ACh binding sites in this preparation or some 

other currently unknown effect on receptor kinetics.

The effects of B-loop mutations on ACh stimulation of HS receptors were slightly different 

from those described above for the LS preparation (Figure 4.4B and Table 4.2). p2T177A had no 

significant effect on its ACh pEC50 value. P2W176A and P2D179A receptors in the HS 

preparation produced pEC50 values that were significantly decreased compared to wild-type (p < 

0.0001). Increases in pEC50 ranged from 1.1-1.2 fold compared to wild-type receptors 

(corresponding to approximate EC50 decrease of 3.1 to 5.7 fold). The nH was significantly 

decreased only for the P2D179A mutant (0.7 for the mutant receptor, p = 0.0097) (Table 4.2). 

These results suggest that residues P2W176 and P2D179 may be involved in ACh conformational 

change of the protein.

4.4.2.2. Effects of f32 B-loop Mutations on dFBr Potentiation.

In contrast to the slight effects observed for B-loop mutations on ACh dose response 

curves, the alteration in dFBr potentiation were more profound. Co-application of dFBr at 

concentrations ranging from 0.001 -  100 pM in the presence of 100 pM ACh (Figure 4.4C, Table

4.1) produced curves with differences in dFBr efficacy (lmax) as well as potency (pEC50) on the LS 

preparation. dFBr produced similar effects to wild-type on the P2W176A and P2T177A mutant 

receptors compared to wild-type receptors with only a slight decrease in pEC50 (decreased EC50 

values of 3.2 and 4.0 fold respectively) and a significant decrease in P2T177A observed lmax (p = 

0.0050) (Table 4.1). p2D179A receptors expressed in the LS preparation did not produce bell

shaped dose-response curves. The concentration-response data for dFBr appeard shifted to the 

right, although this decrease in the pEC50 was not statistically significant (Figure 4.4C, Table 4.1). 

Slight or perhaps no inhibitory component was observed, possibly reflecting a rightward shift in 

the inhibitory component of the curve that prevents the observation of inhibition in the 

concentration range of dFBr utilized in these experiments. The magnitude of the observed lmax for 

peak dFBr potentiation is similar to wild-type receptors (Figure 4.4C, Table 4.1).

P2W176A receptors expressed in the LS receptor preparation appeared to reduce the 

level of potentiation achieved by dFBr co-application while in the HS preparation, potentiation was 

completely eliminated (Figure 4.4D, Table 4.2). Partial inhibition of the ACh response (40-50%) 

was also observed and the plC50 of dFBr appeared to be enhanced compared to wild-type 

receptors but the values were not significantly different (p = 0.0419). As with the LS preparation, 

the P2T177A mutation produced a bell-shaped dose-response curve for dFBr but with a 

significantly reduced level of potentiation (p = 0.0062).
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The effects of the P2D179A mutation expressed in the HS preparation differed 

substantially from the LS preparation. While the LS preparation of the 02D179A mutation 

produceed an apparent rightward shift in the dose-response curve and a decrease in the 

observed potentiation, in the HS preparation this mutation produced little effect on the pEC50 and 

pIC 50 but produced a 2 fold decrease in potentiation (p <0.0001) (Figure 4.4D, Table 4.2).

These results suggest that P2T177 may be involved in the putative dFBr binding site. The 

alanine mutation of P2T177 did not alter the ACh concentration-response curve for either receptor 

preparation. Residues P2W176 and P2D179 could be involved in the dFBr binding site but due to 

the alanine mutations affecting the ACh dose-response curves, unquestionable conclusions 

cannot be made.

4.4.2.3. Response Profiles Obtained With Co-application of dFBr and ACh on B-loop Mutant 

Receptors.

The LS preparation response profiles appeared to be similar for the B-loop mutant 

receptors, P2W176A and p2T177A, compared to wild-type receptors. That is at increasing low 

concentrations of dFBr the overall response appeared augmented. At the peak dFBr potentiating 

concentrations the response peak appeared sharper and an increase in desensitization lagging 

phase was observed. Application of dFBr inhibitory concentrations, the response peak remained 

sharp and the desensitization lagging phase quickly returned to the baseline current. The 

P2D179A also followed this trend in response profiles with the exception that at low dFBr 

concentrations, the responses returned slower to the baseline current when compared to wild- 

type receptors (Figure 4.5A).

The response profiles of mutant receptors expressed using the HS preparation appeared 

to be similar to wild-type receptors in the LS and HS preparations (see appendix A). Differences 

were seen in the (32W176A receptor where only decreases in peak responses were observed 

(see appendix A). The 02T177A mutation appeared to have a prolonged return to the baseline 

compared to wild-type receptors (Figure 4.5B, traces a-c).
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A LS (32D179A

a 100 mM ACh
b 0 01 pM dFBr +100 pM ACh 
c 1 )jM dFBr + 100 pM ACh 
d 3 pM dFBr +100 pM ACh 
e 30 pM dFBr +100 pM ACh 
f, 100 pM dFBr *100 pM ACh

B HS P2T177A

a 10 pM ACh
b 0.3 pM dFBr + 10 pM ACb
0. 1 pM dFBr + 10 pM ACh
d 10 pM dFBr* 10 pM ACh
e 100 pM dFBr + 10 pM ACh

Figure 4.5. Response profiles that appeared different from wild-type receptors for 
co-application of varying concentrations of dFBr and ACh for (J2+ face B-loop 
mutant receptors expressed using the low- (LS) and high- (HS) sensitivity 
receptor preparations.

Xenopus oocytes were prepared using the high- and low-sensitivity receptor preparations (HS 
mRNA injected at a ratio of 1a:5|3; LS mRNA injected at a ratio of 5a:ip). Expressing oocytes are 
exposed to increasing concentrations of ACh and dFBr. A) Co-application of dFBr and 100 pM 
ACh response traces for P2D179A receptors expressed via the LS receptor preparation. B) Co
application of dFBr and 10 pM ACh response traces for P2T177A receptors expressed via the HS 
receptor preparation. Response traces were recorded from a single oocyte. The solid bar above 
the response trace indicates the time the oocyte was exposed to co-application of varying 
concentrations of dFBr and ACh.
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Alanine mutations were made at D217 and D218 in the C-loop of the 02 subunit. These 

amino acids are located on the + face of the receptor and thus in the putative binding domain for 

dFBr. In the GABAa receptor, a1S204 and a1T206 are equivalent to D217 and D218 of the 02 

nAChR subunit. These residues are thought to be within the GABAaR allosteric binding site for 

benzodiazepines (Amin et al., 1997; Wagner and Czajkowski, 2001). In addition to the similar 

location of these residues to the benzodiazepine binding site, 02D217 and 02D218 were 

hypothesized to be potentially important to the allosteric mechanism of dFBr due to their 

presence in the C-loop region. Since C-loop residues have been shown to be important for 

mediating agonist responses at the orthosteric site, we postulated that a similar effect of inducing 

C-loop closure might be required for dFBr action at the allosteric site (Sala et al., 2005; Weltzin 

and Schulte, 2010b).

4.4.3.1. Effects of @2 C-loop Mutation on ACh Induced Responses.

Figure 4.6A and B show concentration-response curves obtained for wild-type and 

mutant receptors using the LS and HS receptor preparations respectively. ACh was applied alone 

at varying concentrations (0.1 -  3000 pM) for the experiments shown in both A and B. Minimal 

effects were observed in the LS receptor preparation (Figure 4.6A, Table 4.1). The pEC50 and nH 

values obtained using 02D217A and 02D218A were similar to wild-type receptors (Table 4.1).

4.4.3. 02 C-loop Mutations.
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Figure 4.6. ACh and dFBr dose-response curves for (32+ face C-loop mutant and 
wild-type (WT) receptors expressed using the low- (LS) and high- (HS) sensitivity 
receptor preparations.

Xenopus oocytes were prepared using the HS and LS receptor preparations (HS mRNA injected 
at a ratio of 1a:5|3; LS mRNA injected at a ratio of 5a: 1(3). Expressing oocytes were exposed to 
increasing concentrations of ACh and dFBr. A and B) ACh dose-response curves for wild-type 
and p2+ face C-loop mutant receptors expressed using the LS and HS receptor preparations. 
Individual peak amplitudes were normalized to the lmax on the same oocyte. C and D) Dose- 
response curves for co-application of varying concentrations of dFBr and 100 pM ACh for wild- 
type and (32+ face C-loop mutant receptors expressed using the LS and HS receptor 
preparations. The ACh and dFBr dose-response values were determined using non-linear curve 
fitting as described in the methods and are reported in Table 4.1 and 3.2. Data points represent at 
least 4 replicate values obtained from a minimum of two oocytes harvested from different frogs. 
Error bars indicate ± SEM.
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(32D218A receptors expressed in the HS receptor preparation also produced no change 

in pEC50 or nH values for ACh stimulation (Figure 4.6B, Table 4.2). A slight, but statistically 

significant shift in pEC50 (1.1 fold) was observed for the (32D217A mutant (p < 0.0001) with no 

concurrent decrease in nH (Figure 4.6B, Table 4.2).

4.4.3.2. Effects of [32 C-loop Mutations on dFBr Potentiation.

Mutation of (32D217 to alanine had no significant effect on pEC50, plC50 or lmax values for 

dFBr potentiation and inhibition in either the LS or HS receptor preparations (LS: Figure 4.6C, 

Table 4.1; HS: Figure 4.6D, Table 4.2). In the LS preparation, the P2D217A dFBr dose- 

response curve appeared to have a reduced lmax and be shifted to the left but differences were 

not significantly different from wild-type receptors.

The P2D218A mutation produced no effect on the dFBr dose-response curve in either the 

LS or HS receptor preparations compared to wild-type receptors (Figure 4.6C and D). No 

significant alterations to pEC50, plC50 or lmax values were observed (Table 4.1 and 4.2).

The lack of any substantial effect of the p2D217A and P2D218A mutations of dFBr 

effects was surprising due to its presence in a key region of the C-loop and its equivalent position 

in the GABAa benzodiazepine binding pocket (Amin et al., 1997; Wagner and Czajkowski, 2001). 

These data do not strongly support a role of the C-loop in dFBr interaction although other 

residues within the C-loop may be involved.

4.4.3.3. ACh Response Profiles of [32 C-loop Mutations.

P2D217A and P2D218A response profiles appeared similar to wild-type receptors 

expressed using both the LS and HS receptor preparations (for traces see appendix A).

4.4.4. p2 A-loop Mutations.

P2 subunit amino acids at position D116, Y120 and Y127A in the A-loop region were 

mutated to alanine and evaluated for their effects on stimulation by ACh and/or the potentiating 

effects of dFBr (Figure 4.7). P2Y120 was chosen since it is equivalent to aH101 located in the 

GABAa benzodiazepine binding site (Wieland et al., 1992). The Aspartate at position 116 was 

chosen since it is highly conserved in both GABA and nAChRs (Figure 4.1 and 4.2). Similarly, at 

an aromatic amino acid is conserved at position 127 in both GABA and nAChRs (Figure 4.1 and

4.2).

4.4.4.1. Effects of [32 A-loop Mutation on ACh Induced Responses.

Figure 4.7A and B show concentration-response data obtained for wild-type and mutant 

receptors using the LS and HS receptor preparations respectively. Minimal effects were observed
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on the ACh dose-response in the LS preparation (Figure 4.7A, Table 4.1). The pEC50 value 

obtained using P2D116A on LS or HS receptors were not significantly different then for wild-type. 

For the P2Y120A and P2Y127A LS mutants, a significant change in pECso (p=0.0021 and p= 

00026 respectively) of 1.1 and 1.4 fold wass observed. (Figure 4.7A, Table 4.1). A similar, 

significant shift 1.2 fold was observed for P2Y127A on the HS preparation (p < 0.0001) while no 

significant change was observed for P2Y120A. No significant change in nH was observed for 

P2D116A or P2Y120A in the LS preparation, although the nH of 0.4 ± 0.2 for the P2Y127A mutant 

was significantly different then 1.4 ± 0.3 for wild-type receptors (Table 4.1). In the HS preparation, 

nH decreased to 0.4 ± 0.1 for P2Y120A and 0.5 ± 0.1 for P2Y127A, significant decreased from the 

1.9 ±0.3 observed in wild-type receptors (Table 4.2).



Figure 4.7. ACh and dFBr dose-response curves for p2+ face A-loop mutant and wild- 
type (WT) receptors expressed using the iow- (LS) and high- (HS) sensitivity receptor 
preparations.

Xenopus oocytes were prepared using the high and LS receptor preparations (HS mRNA injected 
at a ratio of 1a:5P; LS mRNA injected at a ratio of 5a: 1P). Expressing oocytes were exposed to 
increasing concentrations of ACh and dFBr. A) ACh dose-response curves for wild-type and P2+ 
face A-loop mutant receptors expressed using the LS receptor preparation. Individual peak 
amplitudes were normalized to the lmax on the same oocyte. B) ACh dose-response curves for 
wild-type and P2+ face A-loop mutant receptors expressed using the HS receptor preparation. 
Individual peak amplitudes were normalized to the imax on the same oocyte. C) Dose-response 
curves for co-application of varying concentrations of dFBr and 100 pM ACh for wild-type and 
(32+ face A-loop mutant receptors expressed using the LS receptor preparation. Insert: A graph 
with the same y-axis as in figure D for easy comparison. D) Dose-response curves for co
application of varying concentrations of dFBr and 10 pM ACh for wild-type and |32+ face A-loop 
mutant receptors expressed using the HS receptor preparation. The ACh dose-response values 
were determined using non-linear curve fitting as described in the methods and are reported in 
Table 1 and 2. The dFBr dose-response values were determined using non-linear curve fitting as 
described in the methods and are reported in Table 4.1 and 4.2. Data points represent at least 4 
replicate values obtained from a minimum of two oocytes harvested from different frogs. Error 
bars indicate ± SEM.
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4.4.4.2. Effects of (32 A-loop Mutations on dFBr Potentiation,

The (B2D116A mutation expressed in the LS receptor preparation produced no change in 

pEC50, plC50 or lmax values for dFBr potentiation and inhibition compared to wild-type receptors, 

although a slight non-significant decrease in the HS lmax was observed (Figure 4.7C, Table 4.1). 

Similar to the LS preparation, co-application of dFBr and 10 pM ACh on (32D116A in a HS 

preparation had no significant effect on dFBr’s pEC50 or plC50 values although the observed lmax 

was significantly reduced (p = 0.0087) from 3.6 ± 0.3 to 2.6 + 0.2 (Figure 4.7D, Table 4.2).

The (B2Y120A mutation expressed in the LS preparation only mildly enhanced ACh 

induced currents (lmax = 1.6 ± 0.2) and no inhibition by dFBr was observed (Figure 4.7C). Co

exposure to 0.1-1 pM dFBr and 100 pM ACh induced the maximum amount of potentiation. The 

pEC50 for dFBr potentiation of (32Y120A in the LS preparation was not significantly different from 

wild-type receptors although the observed lmax was significantly reduced (p = 0.0020) compared 

to 3.4 ± 0.4 obtained on wild-type receptors in this preparation (Table 4.1). In the HS receptor 

preparation, a bell-shaped dose-response curve showing both potentiation and inhibition was 

observed on mutant (B2Y120A (Figure 4.7D). Responses were minimally potentiated by dFBr with 

the maximum potentiation (lmax = 1.3 ± 0.1) observed at co-application of 3 pM dFBr and 10 pM 

ACh. dFBr concentrations in excess of 3 pM weakly inhibits ACh potentiated currents (Figure 

4.7D). No significant shifts were seen in dFBr pEC50 and plC50 values were observed in the HS 

preparation compared to those obtained on wild-type receptors, although the observed lmax was 

significantly reduced (p < 0.0001) compared to wild-type receptors (3.6 ± 0.3) (Table 4.2).

(32Y127A receptors expressed in the LS receptor preparation also produced a bell

shaped dose-response curve; however, both the shape and magnitude of the curve was 

dramatically altered for this receptor (Figure 4.7C). (32Y127A mutant receptors were significantly 

and maximally potentiated by an enormous 2000% by 10 pM dFBr co-applied with 100 pM ACh 

( l m a x  = 20.0 ± 3, p = 0.0018) (Table 4.1). Similar to wild-type, receptors were inhibited at dFBr 

concentrations > 3 pM (Figure 4.7C). Visual inspection of Figure 4.7C showed an apparently 

large increase in the slope of the dFBr potentiation phase compared to wild-type receptors. The 

rapid change in dFBr potentiated ACh currents made accurate determination of pECso and plC50 

values difficult, although the dFBr pECso and plC50 values seemed comparable to wild-type 

receptors (Table 4.1). In the HS preparation, the (32Y127A mutant produced a bell-shaped dFBr 

dose-response curve that was similar to wild-type receptors with no significant changes in pEC50 

or pICso values (Figure 4.7D, Table 4.2). Maximum potentiation of 240% was observed with co

application of 10 pM dFBr and 10 mM ACh (lmax=2.4 ± 0.1), a significant reduction in lmax (p = 

0.0087) compared to 3.6 ± 0.3 for wild-type receptors in the HS preparation (Table 4.2).
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These findings suggest that the A-loop is important for dFBr interactions with a4p2 

nAChR expressed in either the LS or HS preparations. (32D116A is the only residue not to affect 

the ACh dose-response curve, unlike P2Y120A and P2Y127A receptors in the LS and HS 

preparations. All of the examined A-loop mutations alter the dFBr concentration-response curve 

in the LS preparation, while only mutations p2Y120A and P2Y127A affect the dFBr dose- 

response curve in the HS preparation.

4.4.4.3. Response Profiles Obtained with Co-application of dFBr and ACh on A-loop Mutant 

Receptors.

The response traces for the A-loop mutations in both the LS and HS preparation 

appeared to be similar to wild-type receptors (see appendix A for traces).

4.4.5. a4 D- and E- p-Sheet Mutations.

The minus face of the putative allosteric binding domain for dFBr was hypothesized to be 

composed of the a4 D- and E- p-sheets based on homology to the orthosteric nAChR binding site 

and the benzodiazepine binding site of GABAa receptors. Two amino acids, in equivalent 

locations to the GABAa benzodiazepine binding site residues yM130 (E-loop) and yF77 (D-loop) 

were chosen for alanine mutation on the a4 subunit (Buhr et al., 1997a; Buhr and Sigel, 1997). 

These correspond to the a4 subunit amino acids K140 and W88 respectively.

4.4.5.1. Effects of a4 D- and E- fi-Sheet Mutations on ACh Induced Responses.

Figure 4.8A and B shows ACh dose-response data obtained for wild-type and mutant 

receptors expressed using the LS and HS receptor preparations. For a4W88A receptors in the 

LS preparation, pEC50 and nH values are similar to wild-type receptors (Table 4.1). In contrast, for 

the HS preparation the curve is shifted significantly to the left and the pEC50 is increased 

significantly from 5.2 ± 0.2 (wild-type) to 6.2 ± 0.2 (P2W88A) (1.4 fold shift) (p = 0.0012) (Table

4.2). Similar to LS mutant receptors, no effect in nH is observed on the HS preparation.

For the a4K140A mutation, the dose-response curve shifts to the left in both the LS and 

HS preparations (Figure 4.8B). For the LS preparation the pEC50 is increased significantly from

4.5 ±0.1 (wild-type) to 7.0 ±0.1 (a4K140A) (p<0.0001) compared to LS wild-type receptors 

(Table 4.1). a4K140A expressed via the HS preparation, the pEC50 is also significantly increased 

from 5.2 ± 0.1 (wild-type) to 7.2 ± 0.1 (a4K140A) compared to HS wild-type receptors (p < 0.001) 

(Table 4.2). The nH values are similar to wild-type receptors in both the LS and HS preparations 

(Table 4.1 and 4.2).
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4.4.5.2. Effects of a4 D- and E- /3-Sheet Mutations on dFBr Potentiation.

Mutation of a4K140 to an alanine produces receptors insensitive to potentiation by dFBr 

in both the LS and HS preparations. In the preparations, inhibition was observed at high dFBr 

concentrations (Figure 4.8C and D). The plC50 value for dFBr inhibition was not significantly 

different from LS wild-type receptors.



166

B

Log [ACh] (M)

C

Log [dFBr] (M)
O LS U4K140A 
a LS a4W88A

Log [ACh] (M)

D

Log [dFBr] (M)

Figure 4.8. ACh and dFBr dose-response curves for a4- face mutant and wild-type (WT) 
receptors expressed using the low- (LS) and high- (HS) sensitive receptor preparations.

Xenopus oocytes were prepared using the high and low-sensitivity receptor preparations (HS 
mRNA injected at a ratio of 1a:5p; LS mRNA injected at a ratio of 5a: 1P). Expressing oocytes 
were exposed to increasing concentrations of ACh and dFBr. A and B) ACh dose-response 
curves for wild-type and a4- face mutant receptors expressed using the LS and HS receptor 
preparations. Individual peak amplitudes were normalized to the lmax on the same oocyte. C and 
D) Dose-response curves for co-application of varying concentrations of dFBr and the EC75 ACh 
for wild-type and a4- face mutant receptors expressed using the LS and HS receptor 
preparations. Insert: A graph with the same y-axis as in figure D for easy comparison. The ACh 
and dFBr dose-response values were determined using non-linear curve fitting as described in 
the methods and are reported in Table 4.1 and 4.2. Data points represent at least 4 replicate 
values obtained from a minimum of two oocytes harvested from different frogs. Error bars indicate 
± SEM.
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Mutation of a4W88 to an alanine amplified lmax in the presence of dFBr from 3.4 ± 0.4 

(wild-type) to 21 ±4  (a4W88A) (p < 0.0001) in the LS receptor preparation, although the pECsofor 

dFBr potentiation was not significantly different from wild-type receptors (Figure 4.8C, Table 4.1). 

Maximum dFBr potentiation of 2100% was observed at dFBr concentration > 30 pM, similar to the 

|B2Y127A A-loop mutation in the LS preparation. In the LS preparation, no inhibition was 

observed for a4W88A in the concentration range of dFBr tested. In the HS preparation the 

a4W88A mutant had little effect on dFBr dose-responses curves when compared to those 

obtained using wild-type receptors (Figure 4.8D). No significant shifts in pEC50, plC50 or lmax observed 

values were seen (Table 4.2).

ACh concentration-response results for the mutant a4K140A was different from wild-type 

receptors in both the LS and HS preparations, while the a4W88A results were only affected in the 

HS preparation. These findings suggested that these residues may be involved in ACh induced 

conformational change and may depend on the a4p2 receptor preparation. It is difficult to 

determine if these residues are also involved in dFBr interactions with the receptor. Because 

a4W88A in the LS preparation did not affect ACh results but did eliminate the bell-shaped dose- 

response of dFBr, we suggest that this residue is possibly located in the dFBr binding site.

4.4.5.3. Response Profiles Obtained With Co-application of dFBr and ACh on a4 Mutant

Receptors.

The dFBr concentration-response traces for a4K140A in both the LS and HS receptor 

preparation appeared similar to wild-type receptors with the exception to increases in the peak 

response (see appendix A for traces). The a4W88A expressed in the HS preparation response 

profiles appeared similar to wild-type receptors (see appendix A for traces). In the LS preparation, 

a4W88A traces appeared to look more like a7 nAChR traces (Figure 4.9). At low, increasing dFBr 

concentrations co-applied with 100 pM ACh the response peak sharpens and there was a 

decrease in the desensitization. At dFBr potentiating concentrations, the peak response was 

sharper and the desensitization lagging phase was decreased but the current does not return to 

the baseline. At inhibiting concentrations, the peak response continued to sharpen and the 

lagging phase decreased sharply and returned to the baseline current (Figure 4.9).
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LS aW88A

Figure 4.9. Response profiles for co-appiication of varying concentrations of dFBr 
and ACh for a4- face mutant W88A expressed using the low- (LS) sensitive 
receptor preparation.

Xenopus oocytes were prepared using the low-sensitivity receptor preparations (LS mRNA 
injected at a ratio of 5a: 1P). Expressing oocytes were exposed to increasing concentrations of 
dFBr and co-application of 100 pM ACh. Response traces were recorded from a single oocyte. 
The solid bar above the response trace indicates the time the oocyte was exposed to co
application of varying concentrations of dFBr and ACh.

4.5 Discussion.

The primary goal of this study is to test the hypothesis that the plus face of the (32 subunit 

and the minus face of the a4 subunit form the binding domain for dFBr and/or mediate its 

potentiating effects. To test this hypothesis, we conducted a site directed mutagenesis study of 

amino acids located in this domain. Residues previously shown to be conserved or important to 

ligand binding in LGIC receptors were chosen for mutation. Amino acids in loops A, B and C on 

the P2 subunit (+face) and D and E on the a4 subunit (- face) were mutated to alanine. All of the 

mutants tested appeared to express well in Xenopus oocytes although some seem to produce 

smaller macroscopic currents, possibly due to lower expression levels. Receptors were 

expressed in both LS and HS preparations and ACh EC50 values were either unaltered or only 

slightly affected in most cases suggesting the receptor stoichiometry is likely unchanged as a 

result of the mutation.

P2T177A, P2D179A, P2D217A, p2D218A, p2D116Aand a4W88A receptors expressed in 

the LS preparation produces minimal effects on ACh responses compared to wild-type receptors. 

P2T177A, P2D218A, P2D116A and P2Y120 mutant receptors expressed in the HS receptor 

preparation also produced only minimal effects on ACh dose-response curves. Small changes in 

ACh pECso’s due to mutations were likely to occur within in any region of the protein, it is the
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degree of change that is important. In the LS preparations P2T177A, p2D179A, P2Y120A, 

P2Y127A, a4K140A and a4W88A receptors produced large effects on potentiation by dFBr 

including decreases and increases in efficacy of potentiation and shifts in both EC50 and IC50 

values In the HS preparation, P2W176A, p2T177A, P2D179A, p2D116A, p2Y120A, P2Y127A, 

a4K140A and a4W88A receptors produced large changes in the dFBr concentration-response 

data. These data suggest involvement of these amino acids in either the binding of dFBr or in 

mediating dFBr’s potentiating effects. The elimination of dFBr potentiation in mutants such as 

a4K140A or P2Y120A suggests that these amino acids may be directly involved.

We postulate that the dFBr binding site is located on the + face of the P2 subunit and 

involves p2T177 in a4p2 receptors expressed in either the LS or HS receptor preparation. In the 

LS preparation, P2W176A, P2T177A, P2D179A and a4W88A significantly altered the potentiating 

effects of dFBr but only minimally altered the ACh dose-response curves. In the HS receptor 

preparation P2T177A, P2D116A and P2Y120A receptors showed significant effects on dFBr 

potentiation despite the minimal effects on ACh stimulation.

4.5.1 Stoichiometries of Receptors in LS and HS 04(32 nAChR Preparations.

Injection of different concentrations of a4:p2 mRNA or DNA has been shown to cause the 

expression of two different receptor populations (Nelson et al., 2003; Zhou et al., 2003; Briggs et 

al., 2006; Moroni et al., 2006; Zwart et al., 2006; Tapia et al., 2007). Previous studies have 

suggested that the HS receptor preparation predominantly forms receptors with two a4 and three 

P2 subunits in the pentameric arrangement apapp ((a4)2(P2)3) (Nelson et al., 2003; Zhou et al., 

2003; Briggs et al., 2006; Moroni et al., 2006; Zwart et al., 2006; Tapia et al., 2007). This 

stoichiometry would produces receptors in the HS preparation containing two a+/p- clefts, two 

P+/a- clefts and one p+/p- cleft (see Figure 1.4 in introduction). Several lines of evidence suggest 

that receptors formed in the LS receptor preparation are predominantly composed of three a4 

and two P2 subunits in the arrangement apapa ((a4)3(P2)2) (Nelson et al., 2003; Zhou et al., 

2003; Briggs et al., 2006; Moroni et al., 2006; Zwart et al., 2006; Tapia et al., 2007). If this 

stoichiometry is correct, the receptors in the LS preparation would contain two a+/p- clefts, two 

P+/a- clefts and one a+/a- cleft. It is likely that other arrangements are subunits are also 

expressing in both the HS and LS preparation although possibly to a lesser extent.

The presumed HS and LS stoichiometries have not yet been conclusively demonstrated. 

Studies have shown that receptors expressed using the LS receptor preparation have an ACh 

EC50 of -60-90 pM and HS receptor preparations have an ACh EC50 of -1.8-4 pM (Zwart and 

Vijverberg, 1998; Moroni et al., 2008). These values are similar to what we observed for the HS 

and LS preparations, indicating that our receptor expression systems likely form comparable
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receptors to those used in previous studies (Nelson et al., 2003; Zhou et al., 2003; Briggs et al., 

2006; Moroni et al., 2006; Zwart et al., 2006; Tapia et al., 2007).

In general, mutant receptors expressed using the HS receptor preparation produced 

greater changes in ACh dose-response data than mutant receptors expressed using the LS 

preparation. One explanation for this phenomenon may lie in the possible different stoichiometric 

arrangements of subunits in the two different preparations. As described above, the HS 

preparation may contain receptors containing two a4 and three 02 subunits. Thus receptors 

would contain three rather than two mutant subunits and these mutations would be present at 

three of the five subunit interfaces (one 02+/02- subunit interface and two 02+/a4- subunit 

interfaces). In the LS preparation 02 mutations would only be present at two of the interfaces.

Differences in mutant and wild-type ACh dose-response data, particularly in the HS 

receptors might be explained by alteration in receptor gating. Previous studies using muscle 

AChRs have demonstrated that single point mutations can reduce receptor open state stabilities 

(Akk, 2002; Purohit and Auerbach, 2010). Purohit and Auerbach (2010) show that mutation of 

aY93 and aW149 in mouse muscle AChR increased spontaneous and monoligand open events, 

indicating a change in receptor gating. Mutation of 6W57 has also been shown to alter channel 

gating by single channel analysis (Akk, 2002). The homologous residues to Torpedo aY93, 

aW149 and 5W57 are 02Y12O, 02W176 and a4W88 respectively. Effects similar to those 

observed in Torpedo receptors may be responsible for the effects we observed on mutant a402 

nAChRs.

Unwin has previously hypothesized that the localized twisting of the Torpedo a5 subunit in 

response to ACh application must also affect the neighboring subunits (Unwin, 1995). Current 

crystallography structures of the acetylcholine binding protein have shown various structural 

arrangements of the C-loop in binding clefts without ligand (Brejc et al., 2001; Celie et al., 2005). 

A study by Teissere and Czajkowski (2001) provides further support that non-orthosteric clefts 

are structurally altered by agonist binding to their receptors. Teissere and Czajkowski (2001) 

have shown that mutating yY72C, yD75C and yF78C located within the benzodiazepine binding 

site in GABAa receptors caused a shift in the GABA EC50 values less than four fold. SCAM 

studies have additionally shown that a cysteine substituted for yA79 in the GABA receptor is more 

accessibility to MTSEA-biotin modification during GABA binding and channel gating (Teissere 

and Czajkowski, 2001). Authors suggest that their data confirms that structural rearrangements 

occur within the benzodiazepine binding site in response to GABA binding in its orthosteric site. 

These results are similar to our current findings that mutations in interfaces not involved in 

binding ACh can alter ACh stimulation of the receptor. If dFBr acts similar to the benzodiazepine
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drug class, then dFBr may be exerting a similar modifying effect on the normal processes of 

receptor gating mediated through the non-orthosteric interfaces. Alternatively, a possibility that we 

cannot rule out is that the mutations made in on allosteric subunit faces could cause structural re

arrangements in the orthosteric binding site.

In summary, data obtained in our mutagenesis studies suggest a role of non-orthosteric 

subunit interfaces in ACh receptor gating and desensitization. This is the first data supporting a 

role of this region of the nAChR in mediating responses to ACh.

4.5.2 The (32+ and a4- Subunits Contain the dFBr Allosteric Binding Site.

Wild-type receptors expressed in the LS and HS receptor preparations responded 

similarly to dFBr. In the LS receptor preparation, P2W176A, P2T177A, P2D179A (B-loop) and 

a4W88A (D-P-sheet) significantly affected the ability of dFBr to potentiate ACh responses but had 

only minimally modified the ACh dose-response relationships. In the HS receptor preparation 

P2T177A (B-loop), P2D116A (A-loop) and P2Y120A (A-loop) significantly altered the dFBr 

potentiation but with only minimally effects on the ACh dose-response. All of these mutations are 

at positions where homologous amino acids in the GABAaR benzodiazepine binding site have 

been shown to participate in the interaction of benzodiazepines (Duncalfe et al., 1996; Amin et 

al., 1997; Buhr et al., 1997a; Buhr et al., 1997b; Wingrove et al., 1997; Wagner and Czajkowski, 

2001). These data are consistent with an effect of dFBr on the nAChR similar to the action of 

benzodiazepines on the GABAa receptor.

4.5.3 Summary.

Our data supports a role for the non-orthosteric cleft in ACh activation of the a4p2 

receptor. In particular, the p2+/a- cleft appears to play a role in normal receptor function in 

response to ACh. This region of the receptor, particularly the (32 subunit, also appears to be 

involved in mediating the effects of dFBr as a PAM. We hypothesize that dFBr may exert its 

effects by altering the normal conformational changes in the receptor that involve the non- 

orthosteric clefts. Amino acids expressed in the LS preparation include P2W176A, p2T177A, 

P2D179A and a4W88A, while in the HS preparation residues P2T177A, P2D116A, P2D116A and 

P2Y120A appear to be involved in dFBr actions. Results from this study enhance our 

understanding of non-orthosteric clefts of a4p2 nAChRs response mechanisms to the orthosteric 

ligand ACh. In addition, residues involved in dFBr actions have been resolved, paving the way for 

the design of therapeutic ligands acting at this novel site.
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CHAPTER 5: Allosteric Modulation of High- and Low- Sensitivity alpha4beta2 Nicotinic 

Acetylcholine Receptors by HEPES.

5.1 Abstract.

A number of new positive allosteric modulators (PAMs) have been reported that 

enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor 

(nAChR) subtypes to orthosteric ligands. PAMs represent promising new leads for the 

development of therapeutic agents for disorders involving alterations in nicotinic 

neurotransmission such as Autism, Alzheimer’s and Parkinson’s disease. During our recent 

studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1- 

piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in phosphate 

buffered recording solutions using two-electrode voltage clamp techniques and alpha4beta2 

and alpha7 nAChR subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced 

responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to 

HEPES. Responses were inhibited at higher concentrations (bell-shaped dose-response 

curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10 

mM), the potentiating effects of HEPES are matched by its inhibitory effects thus producing no 

net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of 

the alpha4beta2 receptors through action at the beta+/beta- interface and is dependent on 

residue beta2D218. On low-sensitivity alpha4beta2 receptors, HEPES produced only inhibition 

of ACh induced responses. HEPES was not observed to potentiate or inhibit acetylcholine 

induced responses on alpha7 nAChRs.

Our data may alter the interpretation of previous PAM studies due to the common use 

of HEPES as a buffering agent in electrophysiological recording buffer. We performed 

experiments using previously published alpha4beta2 potentiating agents to document these 

effects.
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Nicotinic acetylcholine receptors (nAChR), GABAa, 5HT3a and glycine receptors are 

members of the Cys-loop super family of ligand gated ion channels. Alterations in expression of 

nAChRs have been implicated in neurological disorders including Alzheimer’s disease (Court et 

al., 2001; Nordberg, 2001), Parkinson’s disease (Aubert et al., 1992), Autism (Martin-Ruiz et al., 

2004; Lippiello, 2006), Schizophrenia (Adams and Stevens, 2007) and nicotine addiction 

(Picciotto et al., 2001). In addition, mutations in the a4 (CHRNA4) and p2 (CHRNB2) subunit 

genes cause autosomal nocturnal frontal lobe epilepsy (Weiland et al., 2000).

Studies have provided suggestive evidence that both the high- (HS) and low- (LS) ACh 

sensitivity a4p2 nAChR stoichiometries are expressed in the mammalian brain (Marks et al., 

2000; Butt et al., 2002; Gotti et al., 2008) and can be altered by chronic exposure to nicotine 

(Moretti et al., 2010). In the brain, most <34(32 nAChRs act presynaptically or preterminally to 

modulate neurotransmitter release (Wonnacott, 1997).The composition of the human a4p2 

stoichiometries has not been elucidated in neurons.

In heterologous expression systems, both HS and LS receptors have been observed and 

these are attributed to a predominance of either the (a4)2(P2)3* or (a4)3(p2)2* stoichiometries 

even though it is acknowledged that other stoichiometries may also be present. The expression of 

different a4p2 stoichiometries in Xenopus laevis oocytes can be influenced by injecting higher 

concentrations of mRNA for one subunit over the other (Zwart and Vijverberg, 1998; Moroni and 

Bermudez, 2006; Moroni et al., 2006a; Tapia et al., 2007). These stoichiometries differ in their 

functional pharmacology, desensitization kinetics, unitary conductance and calcium permeability. 

The presumed HS stoichiometry has a high acetylcholine (ACh) sensitive (Nelson et al., 2003). 

The LS stoichiometry possess a lower ACh sensitive and reduced sensitivity to up-regulation by 

agonists, desensitizes more rapidly and has a higher Ca2+ permeability than the HS receptors 

(Nelson et al., 2003; Tapia et al., 2007).

This study investigates allosteric modulation of HS and LS a4p2 nAChRs and a7 

nAChRs by 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). HEPES is a popular 

buffering agent originally developed 1966 by Normon Good and colleagues as one of a series of 

related buffers with pKa values around physiological pH (Good et al., 1966). Collectively known 

as “Good’s buffers”, these compounds were thought to be physiologically inert. Over the years 

there has been accumulating evidence that HEPES is a fairly reactive molecule which interacts 

with in vitro experimentation. HEPES has been shown to stimulate the production of ATP, 

decrease the uptake of P-glycoprotein, effect cell membrane and block both chloride ion channels

5.2 Introduction.
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and mammalian 5-hydroxytryptamine transporters (Li et al., 2002). These findings suggest that 

HEPES may not be a benign molecule.

Our results indicate a specific interaction of HEPES with the HS a4|32 nAChR. HEPES 

dose-response curves on HS receptors activated by acetylcholine (ACh) are triphasic with a 

potentiation phase followed by two distinct inhibitory phases. LS a4(32 receptors are not 

potentiated but show a single inhibitory phase at high HEPES concentrations equivalent to the 

second inhibitory phase observed on high-sensitivity receptors. Mutagenesis of the p2D218 to an 

alanine in the C-loop region of the + face of the (32 subunit abolishes the potentiation phase and 

the first inhibitory phase on HS receptors but leaves the third, low-sensitivity inhibitory phase 

intact. This mutation does not alter inhibition by HEPES on the LS subtype. The apparent 

selectivity for the HS receptor combined with mutagenesis data indicates the involvement of the 

P2+ face and suggests that at the p+/p- cleft contains the HEPES allosteric potentiation binding 

site.

The ability of HEPES to modulate a4p2 nAChRs may alter the interpretation of previous 

studies of a4p2 modulators due to the wide use of HEPES in electrophysiological recording 

buffers. We have included a re-analysis of two such modulators (desformylflustrabromine (dFBr) 

and Zn2+) in this study to demonstrate how the presence of HEPES in the recording buffer may 

hinder interpretation of experimental data.

5.3 Materials and Methods.

5.3.1 Receptors and mRNA.

The cDNA sequences for human a4 (NCBI Reference Sequence: NM_000744.5), p2 

(NCBI Reference Sequence: NM_000748.2) and a7 (NCBI Reference Sequence: NM_000746.3) 

nAChR subunits were used to synthesize a full length cDNA for each subunit. cDNA synthesis 

was conducted by GeneArt Inc. (Burlingame, CA). The p2 cDNA was inserted into the 

pcDNA3.1/Zeo(+) mammalian expression vector with restriction enzymes Not I and Xho I and the 

a4 cDNA was inserted into the pcDNA3.1/hygromyocin mammalian expression vector with 

restriction enzymes Hind III and BamHI (vectors procured from Invitrogen, Carlsbad, CA; 

restriction enzymes purchased from New England Biolabs). The constructs were transformed into 

AG1 super-competent cells (Stratagene) for production of cDNA. The cDNA for a7 nAChR 

subunit was inserted with restriction enzymes Sal I and Xba into the pBudCE4.1 expression 

vector (Invitrogen). Synthetic cRNA transcripts for a4, (32 and a7 subunits were prepared using 

the T7 mMESSAGE mMACHINE™ High Yield Capped RNA Transcription Kit (Ambion, Austin,
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TX). All constructs were fully sequenced and confirmed to be identical to the published 

sequences for each subunit.

The (32D218A mutation was created using the QuickChange® mutagenesis kit as 

described previously (Agilent Technologies, Inc. Santa Clara, CA) (Venkataraman et al., 2002; 

Moroni et al., 2008). The resulting DNA was used to transform AG1 super-competent cells and 

individual colonies were screened to identify those producing mutant [32 cDNA. To facilitate 

screening of mutant receptors, a silent Sac II restriction site was engineered into the mutant 

cDNA. The mutation was confirmed by commercial DNA sequencing (Sequetech, Mountain 

View, CA).

5.3.2 Test Compounds.

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), Acetylcholine (ACh), Tris 

(hydroxymethyl)-aminomethane hydrochloride, Tris (hydroxymethly) aminomethane, potassium 

dihydrogen phosphate, potassium phosphate dibasic, ZnCI and other salts and buffering agents 

were obtained from Sigma-Aldrich, Inc (MO). Desformylflustrabromine-HCI (dFBr) was 

synthesized by Dr. Richard Glennon (Virginia Commonwealth University) according to a 

previously published procedure (Kim et al., 2007).

5.3.3 Xenopus laevis Oocytes and Receptor Expression.

Xenopus laevis frogs and frog food were purchased from Nacso (Fort Atkinson, Wl). 

Ovarian lobes were surgically removed from Finquel anesthetized Xenopus laevis frogs and 

washed twice in Ca2+-free Barth’s buffer (82.5 mM NaCI; 2.5 mM KCI; 1 mM MgCI2; 5 mM 

HEPES, pH 7.4) then gently shaken with 1.5 mg/mL collagenase (Sigma type II, Sigma-Aldrich 

Inc., MO) for 20min at 20-25°C. Stage V and VI oocytes were selected for microinjection. No 

more than four surgeries were conducted on each frog. A recovery period greater than six weeks 

was allowed in between surgeries (Xenopus protocols conform to those approved by the 

University of AK Fairbanks Intuitional Animal Care and Use Committee; approval number 08-71).

For expression of high- (HS) and low- (LS) sensitivity subtypes, oocytes were injected 

with 50 nL cRNA. Injected oocytes were incubated at 19°C for 24-72h prior to their use in voltage 

clamp experiments. For expression of primarily HS receptors 50 nL of a mixture containing 250 

ng/pL of a4 cRNA and 50 ng/pL of (32 cRNA was injected (5:1 ratio of (a4 to P2). Expression of 

LS receptors was achieved by injecting 50 nL of a mixture of 50 ng/pL a4 cRNA and 250 ng/pL 

P2 cRNA (1:5 ratio of a4 to P2). Expression of a7 nACh was achieved by injecting 50 nL of 250 

ng/pL of a7 cRNA. The EC50 values obtained for ACh induced currents on the HS and LS 

subtypes obtained from these injection ratios were verified by electrophysiology assays as
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described below and found to compare well with published values for the (a4)2(P2)3 (HS) and 

(a4)3(p2)2 (LS) receptors (Zwart and Vijverberg, 1998; Moroni et al., 2006a). EC50 values and 

response profiles indicated the expression of predominantly the HS or LS receptor subtypes 

although it is likely that both are present in each experiment (see results section).

5.3.4 Two-Electrode Voltage Clamp.

Recordings were performed using an automated two-electrode voltage-clamp system 

incorporating an OC-725C oocyte clamp amplifier (Warner Instruments, Hamden, CT) coupled to 

a computerized data acquisition (Datapac 2000, RUN technologies, Mission Viejo, CA) and 

autoinjection system (Gilson, Middleton, Wl). Recording and current electrodes with resistance 1

4 MQ were filled with 3 M KCI. Details of the chambers and methodology employed for 

electrophysiological recordings have been described earlier (Joshi et al., 2004). Oocytes were 

held in a vertical flow chamber of 200 pL volume, clamped at a holding potential of -60 mV and 

perfused with various ND-96 recording buffers. Three different ND-96 recording buffers were 

used in these experiments: HEPES-ND96 (96 mM NaCI, 2 mM KCI,1.8 mM CaCI2, 1 mM MgCI2, 

5 mM HEPES); Tris ND-96 (96 mM NaCI, 2 mM KCI,1.8 mM CaCI2, 1 mM MgCI2, 5 mM Tris- 

HCL); phosphate ND-96 (96 mM NaCI, 2 mM KCI, 1.8 mM CaCI2, 1 mM MgCI2, 2 mM 

phosphate). The pH for all three buffers was 7.4. Osmolarity differences between the three 

recording buffers were minimal based on calculated osmolarities (HEPES buffer: 214.4 mOsm, 

Phosphate Buffer: 212.4 mOsm, Tris buffer: 219.4 mOsm). While it is clear that osmolarity 

differences can affect ion channel function, all running buffers, wash solutions and test solutions 

containing agonists or modulators (including HEPES) were made from common stock solutions to 

minimize any effects on osmolality. In addition, oocytes were equilibrated in the appropriate buffer 

for at least seven minutes prior to exposure to agonists. To assure that observed effects were not 

a result of slight pH changes on addition of test compounds, the pH of every buffer and test 

solution was verified using a calibrated pH meter. Addition of HEPES to phosphate and Tris 

buffers did not alter the pH for HEPES concentrations less than 100 mM thus pH changes were 

not observed for most solutions. In the case of solutions containing 100 mM and 300 mM HEPES 

or Tris, pH decreased slightly to 7.3. The pH of these solutions were corrected to pH 7.4 using 

NaOH (typically >200 ml_/100 mL of test solution of 1M NaOH). Oocytes were perfused with the 

different recording buffers at a rate of 20 mL/ min. Test compounds were dissolved in buffer and 

injected into the chamber at 20 mL/min using a Gilson auto-sampler injection system (Joshi et al., 

2004).
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5.3.5 Electrophysiology Dose-Response Experiments.

Dose-response curves for the endogenous nAChR agonist AcetylcholineCI, (ACh) 

(Sigma-Aldrich) were determined for both HS and LS receptors at concentrations ranging from 

0.1 pM- 3 mM in all three buffer systems. The ACh dose-response curves on a l  nAChR were 

conducted at concentration ranges from 0.1 pM - 1 mM in HEPES buffer and 0.001 pM - 1 mM 

ACh in the phosphate buffer. Dose-response curves for HEPES and Tris-HCI were determined by 

co-application with either 10 pM ACh (EC75) for HS receptors, 100 pM ACh (EC75) for LS 

receptors with HEPES or Tris-HCI at concentrations ranging from 0.01 pM -  300 mM. The a l  

nAChR dose-responses curves for HEPES were determined by co-application with 1 mM ACh for 

nAChR at HEPES concentrations ranging from 0.01 pM -  300 mM. HEPES and Tris dose- 

response curves were performed with phosphate ND-96 as the recording buffer. The effects of 

dFBr on Tris inhibition was determined by co-exposure of varying concentrations of ligand co

applied with 1 pM dFBr.

Verification of HEPES as an allosteric modular was achieved by conducting ACh 

does/response curves co-applied with 100 pM HEPES. Zn2+ was confirmed as a modulator by 

co-applying a range of Zn2+ concentrations (0.001 pM -  1 mM) with either 10 pM ACh (high- 

sensitivity receptors) or 100 pM (low-sensitivity receptors). Changes in dFBr efficacy was 

evaluated by dose-response curves of increasing dFBr concentrations ranging from 0.001 pM -  

100 pM dFBr co-applied with 10 pM ACh for high receptors or 100 pM ACh for low-sensitivity 

receptors. To verify that the phosphate ND-96 buffer did not alter receptor lmax, a series of buffers 

with different phosphate concentrations (0.5 mM, 1 mM and 2 mM phosphate) were tested at the 

ACh lmax concentrations (300 pM ACh for high-sensitivity receptors and 1 mM ACh for low- 

sensitivity).

In order to compare responses from different oocytes, individual responses to drug 

application were normalized to control responses elicited using 10 pM ACh for HS receptors or 

100 pM ACh for low-sensitivity receptors. Data were collected from at least four replicate 

experiments using oocytes obtained from at least two different frogs.

5.3.6 Data Analysis and Statistics.

Dose-response curves were fit using non-linear curve fitting and GraphPad Prism 

Software (San Diego, CA) with standard built-in algorithms. pEC50 (-log EC50) and EC50 values 

were determined by fitting concentration/response data to a single site binding model:

r b + (T -  b)
T  „  ^  m a x  /  ^  ^

\ -f \ 0 ( L°gEC50 - IL ] ) * ”#
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Where I is the current elicited on application of agonist, b is the baseline current in the absence of 

ligand, L is the ligand concentration and nH is the Hill slope. The EC50 value is the concentration 

of agonist producing currents equal to one half the maximal current (lmax)- lmax values for ACh 

were evaluated to compare the changes in apparent efficacy as a result of co-application by 

HEPES, Tris, dFBr or Zn2+.

Dose-response curves were fit using a non-linear curve fitting algorithm and GraphPad 

Prism Software (San Diego, CA). PAMs often produce bell-shaped dose-response curves with 

both potentiating and inhibiting phases. HEPES, dFBr and Zn2+ displayed this typical dose- 

response profile. pEC50 (-log EC50) and plC50 (-log IC50) values were determined in these cases 

by simultaneously fitting both the potentiation and inhibition phases using equation 2. Similar 

equations have been used previously to examine bell-shaped PAM data (Harvey et al., 1999; 

Hsiao et al., 2001; Hsiao et al., 2006; Kim et al., 2007; Weltzin and Schulte, 2010).

j    j  . (  (P la tea u l-Im oxca ic )  \  , / (P la teg u 2 - I maxcaic)  \
-  m a x c a lc  V1+ 10(a o sE C 50-Loa x).n//1) /  \ 1+ 10(aogX-LogIC50>nH2) )  '  '

I is the current elicited on application of agonist, lmaxcaic is the calculated maximum induced

current of both the potentiation and inhibition curves. Plateau 1 is the initial current prior to 

addition of the modulator and Plateau 2 is the plateau after the inhibition of the agonist response 

at high concentrations of the modulator. The EC50 value is the concentration of modulator 

producing currents equal to one half the calculated maximum current ( lm a x c a i c )  during co

application with agonist. The IC50 is the concentration of modulator required to inhibit the 

response to 1/2 Laxcaic ■

Equation 2 describes the sum of two Hill equations and is considered an appropriate 

model for two interacting binding sites (Kim et al., 2007; Weltzin and Schulte, 2010; Pandya and 

Yakel, 2011). This is in contrast to use of the product of Hill Equations described by Kasai et al. 

which is more appropriate for two independent binding sites (Kasai, 1998). Since the 

simultaneous action of ACh and the potentiator alter the protein conformation (channel opening) 

to expose a site for binding of the inhibitor (open channel block), the two processes are not 

independent and a summation model seems more appropriate.

Simultaneous fitting of two Hill equations can prove difficult if the EC5o and IC50 values

are close together due to the inability to collect data near the value of lm a x c a ic -  In these cases,

insufficient data is present to fully define the curve and some constants must be approximated for 

the fit to converge and the appropriate EC50 and IC50 values determined. In order to overcome 

these limitations, Hill slopes for potentiation and inhibition were typically fixed at +1 and -1 

respectively unless otherwise indicated.
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Despite our hypothesis of interdependence of the potentiating and inhibiting binding site, 

it is possible that a distinct mechanism of inhibition is present and the two binding sites may, in 

fact, be independent. Separate potentiating and inhibiting sites not allosterically linked as 

postulated by Moroni et al. (2008) for Zn2+ would be best fit by a multiplicative model. We thus 

compared curve fits using the summation model to the multiplicative model. Comparison of the 

two models showed that the fits were significantly (p = 0.0192; F=5.679). The summation model 

better fit the data and hence we used this model, consistent with our hypothesis of dependent 

sites, to calculate the data provided in the results section (see Results section for statistical 

analysis of these curve fits).

Inhibition curves were fit using non-linear curve fitting and GraphPad Prism Software 

(San Diego, CA) with standard built-in algorithms. plC50 (-log EC50) values were determined by 

fitting concentration/response data to a log(inhibitor) verses response binding model:

I - Plateau2 +  (3)V f l + l O ' - & a —L o g 1 L 5 0 ) \  /

Where I is the current elicited on application of agonist and modulator, Plateau 1 is the current 

elicited by the agonist prior to addition of the inhibitor. Plateau 2 is the current at saturating 

concentrations of inhibitor. The IC50 is the concentration of modulator that inhibits the current by 

1/2 lmax In order to permit comparison of data from different oocytes, responses for all test 

compounds were normalized to the currents obtained with 10 pM ACh for HS receptors and 100 

pM ACh for LS receptors.

Statistical comparisons of pECso or pICso values used an unpaired t-test with p values 

calculated based on the null hypothesis. One way ANOVA was used to compare lmax values in 

different ND-96 recording buffers for both high and low-sensitivity receptors.
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5.4.1 HEPES is an Allosteric Modulator of the High-sensitivity a4(32 nAChR.

To explore the effects of HEPES on HS and LS preparations of a4p2 receptors, 

increasing concentrations of HEPES (0.01 pM- 300 mM) were co-applied with ACh at a 

concentration equal to the ACh EC75 (10 pM for HS receptors or 100 pM for LS receptors) in a 

phosphate buffered ND-96 recording solution (pH 7.4) on oocytes expressing predominantly HS 

or LS a4(32 stoichiometries. Test solutions were monitored for any changes in pH. No changes in 

pH were observed at HEPES concentrations <100 mM. For concentrations S: 100 mM a slight 

decrease to pH 7.3 was observed and the solution adjusted to pH 7.2 using NaOH as described 

in the methods. With co-application of < 300 pM HEPES (potentiating concentrations) and 10 pM 

ACh on HS receptors, the response profile showed a slight sharpening of the response peak, 

larger overall responses and a faster return to the baseline (Figure 5.1 A -  responses b-d). 

Application of > 300 pM HEPES and 10 pM ACh further sharpened the response peak but also 

decreased the overall amplitude of the response (Figure 5.1A -  responses b-d). In addition a 

possible tail current is evident at HEPES concentrations >100 pM (Figure 5.1A, trace f), 

suggesting a possible open-channel block by HEPES. On LS receptors, increasing 

concentrations of HEPES co-applied with 100 pM ACh inhibited responses with a decrease in the 

overall amplitude of the response and a decrease in sharpness of the peak (Figure 5.1 B -  

responses b-e). No significant potentiation was evident when HEPES was co-applied with ACh on 

LS receptors.

5.4 Results.



Figure 5.1 HEPES dose-response curves on high- and iow- sensitivity receptors.
HEPES and the appropriate concentration of ACh were co-applied to Xenopus oocytes 
expressing HS (mRNA injected at a ratio of 1a:5|3) or LS receptors (mRNA injected at a ratio of 
5a: 1(3). Responses were obtained from Xenopus oocytes under voltage clamp conditions (Vm = - 
60 mV). The peak currents were measured and responses normalized to currents elicited by ACh 
applied alone to the same oocyte. Each data point represents the combined data from at least 
four different experiments from a minimum of two different oocytes harvested from different frogs. 
Error bars indicate ± SEM. pEC50, pICso, lmax and Hill slope (nH) were calculated using non-linear 
curve fitting algorithms. Response traces were recorded from a single oocyte expressing HS and 
LS receptors. The solid bar above the response trace indicates the time the oocyte was exposed 
to HEPES and ACh (3s). The response trace scale bars is 1 pA on the y-axis and 3s on the x- 
axis. A) Top: Co-application of HEPES and 10 pM ACh concentration response curves on HS 
and HSB2D218A receptors. Bottom: Response traces for co-application of varying concentrations 
of HEPES and 10 pM ACh on HS (left) and HSB2D218A (right) receptors. B) Top: Co-application 
of HEPES and 100 pM ACh concentration response curves on LS and LSB2D218A receptors. 
Bottom: Response profiles for co-application of HEPES and 100 pM ACh concentration response 
curves on LS (left) and LSB2D218A (right) receptors. C) Left: Co-application of 100 pM HEPES 
and 10 pM ACh on HS receptors. Right: Response traces for co-application of 100 pM HEPES 
and 10 pM ACh on HS receptors.
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Bell-shaped dose-response curves were obtained when peak amplitudes from response 

traces were plotted against HEPES concentration (0.01 pM- 300 mM HEPES co-applied with 10 

pM ACh on high-sensitivity receptors) (Figure 5.1A). Concentrations of HEPES < 300 pM 

potentiated ACh induced currents by 180% (the calculated lmax was 2.7 ± 3.1). The pEC50 value 

for HEPES potentiation was 5.2 ± 0.9 (EC50 = 7.1 pM). HEPES concentrations > 300 pM 

produced a biphasic inhibition of the ACh induced responses. The first inhibitory phase appeared 

to inhibit only the HEPES potentiated portion of the response and plateaued at 1.0 (the 

normalized, unpotentiated response amplitude using 10 pM ACh). A second phase inhibited the 

response amplitude below 1.0. The pICso value for the first inhibitory phase was 3.4 ± 0.4 (IC50 = 

430 pM) (Figure 5.1A) while the pICso of the second inhibitory phase was estimated to be 0.4 ± 

0.8 (IC50 ~ 420 mM). The second inhibitory component of HEPES inhibition on HS receptors was 

fit using equation 3 and the curve is indicated by a black, dashed line in Figure 5.1 A to distinguish 

it from the separate bell-shaped curve used to fit dose-response data for HEPES concentrations 

less than 3 mM. On LS receptors, HEPES produced only a single phase inhibitory response with 

a plC50 = 1.0 ± 0.2 (IC50 = 90 mM) (Figure 5.1 B). This is similar to data from previous studies 

which determined the HEPES dissociation rate to be 100 mM on the AChBP, a structural 

homolog of nAChRs (Brejc et al., 2001). Coincidentally, minimal net effects of HEPES are seen at 

concentrations between 5 - 1 0  mM (typical concentration in HEPES recording buffers). This may 

be one reason why the functional effects of HEPES potentiation have gone unobserved for so 

many years. Comparison of data from oocytes expressing predominantly LS and HS receptors 

suggest that HEPES selectively potentiates the HS population compared to the LS stoichiometry. 

The application of HEPES alone to a4|B2 nAChR expressing oocytes produced no induced 

current (data not shown).

HEPES positive modulation was further investigated by applying the maximum 

potentiating concentration of HEPES (100 pM) over a range of ACh concentrations (0.1 pM -  1 

mM) to the HS preparation. The response profiles displayed overall larger responses and sharper 

response peaks compared to those obtained by exposure to ACh alone (Figure 5.1C). Results 

show no significant change in pEC50 values for stimulation by ACh in the presence of 100 pM 

HEPES (p = 0.1687). In the absence of HEPES, the pEC50 for ACh stimulation was 5.4 ± 0.1 

(EC50 = 3.7 pM). In the presence of 100 pM HEPES the pEC50 was 5.1 ± 0.3 (EC50 = 8.6 pM). 

Application of 100 pM HEPES produced a 285% potentiation of the ACh induced lmax currents 

(Figure 5.1 C). The Hill slope for ACh stimulation appeared to decrease with application of 100 pM 

HEPES (from 0.97± 0.11 to 0.49 ± 0.25), but differences were not significant (p=0.1773).

Based on the observation that HEPES selectively potentiates receptors in the HS 

preparation (presumably due to high expression levels of the HS stoichiometry), it appears that
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allosteric modulation by HEPES may be HS specific. Comparison of the HS and LS a4p2 

nAChRs reveals that the high-sensitivity subtype ((a4)2(P2)3) may contain a p+/p- interface which 

is not present in the low-sensitivity subtype ((a4)3(p2)2). In contrast, the LS receptors contains an 

a+/a- interface which may not be present in the HS receptor. Both receptor stoichiometries 

contain p+/a- interfaces. Since potentiation by HEPES was only seen in oocytes expressing HS 

receptors, we hypothesized that the P+/p- interface likely contains the binding site involved in 

HEPES potentiation. As determined from bell-shaped dose-response curves, the EC50 for HEPES 

potentiation at this site is approximately 7.1 pM (see section above results). By comparing the 

sequence of AChBP and the P2 subunit, we hypothesized that HEPES potentiation of ACh 

responses could involve unique residues found in an allosteric binding cleft in a region 

comparable to the orthosteric binding site for ACh. Two cysteine residues located in the C-loop 

of the orthosteric site (C187 and C188, AChBP numbering) of the AChBP and a nAChR subunits 

are involved in ligand binding. We hypothesized that the C-loop on the principal face of the p2 

subunit might form an allosteric binding domain for HEPES. In particular, one of the two vicinal 

aspartates found in the C-loop (D218) on the principal face of the P2 subunit (P2+) may contribute 

to HEPES- interactions (P2 numbering; D188 in the AChBP sequence. Amino acids are 

numbered from the initial methionine of the unprocessed subunit. To find the amino acid position 

in the mature form subtract 30 resides from the number for a4 and 25 residues for P2 (Moroni et 

al., 2008). The D218 residue described here is in the identical position to that hypothesized by 

Moroni to form part of the Zn2+ inhibitory binding site (Moroni et al., 2008).

To examine the possibility that the p+ face may be involved in HEPES binding, a alanine 

mutation of P2D218 was constructed and injected into oocytes with a 1:5 or 5:1 ratio of a4: 

P2D218A mRNA (Figure 5.1 A and B, right panels). For the HS preparation, P2D218A responses 

obtained by application of ACh alone showed similar response kinetics compared to wild-type 

receptors but the induced current in mutated receptors was much smaller than wild-type 

receptors. This observation may suggest that some alteration in receptor function, conductance 

and/or expression may be occurring with p2D218A receptors (Figure 5.1A, bottom. Right and left 

set of responses, trace a). Dose-response curves for ACh stimulation of oocytes expressing HS 

(32D218A receptors produced an EC50 value of 2.1 pM (Figure 5.2C and Table 5.1). This was 

similar to that obtained for wild-type (3.7 pM) receptors with the identical injection ratio (1:5). The 

Hill slopes were also similar for HS wild-type receptors (1.0 ± 0.2) and HS (32D218A receptors 

(0.9 ± 0.3). These results indicate that the 1:5 injection ratio p2D218A receptors are likely 

assembling similar to the HS wild-type receptors and are predominantly HS receptors with a 

presumed stoichiometry of (a4)2(p2D218A)3.
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For oocytes injected with a 5:1 ratio of a4:(B2D218A, ACh alone response amplitudes 

appeared to decrease with a loss of the sharp response peak and altered desentization (Figure 

5.1B, bottom, right and left set of response traces, trace a). Results of the (B2D218A LS dose- 

response curves for ACh stimulation produced an EC50 value of 58 pM, similar to those obtained 

for wild-type receptors with the 5:1 injection ratio (32 pM) (Figure 5.2D and Table 5.1). The Hill 

slopes were also similar for the LS wild-type (1.2 ± 0.2) and [32D218A receptors (0.8 ± 0.2) 

(Figure 5.2 and Table 5.1). These results suggests that the 5:1 injection ratio [32D218A receptors 

assembled similar to wild-type receptors with the presumed (a4)3(p2D218A)2 LS stoichiometry. 

Modified response kinetics suggests the P2D218A mutation alters receptor function, conductance 

and/or expression.

We evaluated the effects of HEPES on HS and LS P2D218A nAChRs preparations. 

Oocytes injected with either a 1:5 or 5:1 ratio of a4: P2D218A mRNA were exposed to increasing 

concentrations of HEPES (0.001 pM-300 mM) and ACh (10 pM the 1:5 ratio or 100 pM for the 5:1 

ratio) in phosphate buffered ND-96 recording solution. In contrast to wild-type receptors, the 

P2D218A mutant abolished HEPES potentiation in the HS preparation (Figure 5.1A, dose- 

response curve). Inhibition by HEPES at high concentrations (> 3 mM) was evident in both HS 

and LS preparations of (32D218A receptors and was similar to that observed for wild-type 

receptors. For HS p2D218A receptors, HEPES inhibited ACh responses with a calculated plC50 

= 0.23 ± 0.7 (IC50 = 590 mM). For LS P2D218A receptors the plC50 for inhibition of ACh 

responses was 0.78 ± 0.23 (IC50 = 170 mM). These data are not statistically different from the 

inhibition observed on wild-type receptors at high concentrations of HEPES (p = 0.9144 for HS 

and p = 0.4304 for LS receptors).

The differences in response profiles on both the HS and LS P2D218A receptors 

compared to wild-type receptors suggest that the P2D218 residue may play a role in receptor 

function. However, the eradication of HEPES potentiation by this mutation suggests that the 

binding site for HEPES potentiation involves D218 on the p2+ face.

5.4.2 Minimal Changes Were Observed in ACh Dose-Response Curves When HEPES and
Phosphate ND-96 Recording Buffers.

To ensure that the effects seen with HEPES buffer were not attributable to the presence 

of phosphate in the phosphate buffered ND-96, ACh dose-response curves were compared on 

high and low-sensitivity receptors in both HEPES and phosphate containing buffers (Figure 5.2). 

Responses to ACh on the high-sensitivity oocyte preparation appeared similar in both phosphate 

and HEPES buffer. Different amplitudes can be observed in the responses shown in Figure 5.2 (A
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and C) but these can be attributed to different expression levels in the different oocytes tested. 

For LS preparations, slight variations in response characteristics were observed mostly with 

respect to the sharpness of the peak response at higher ACh concentrations (Figure 5.2, B and 

D).



Figure 5.2 ACh dose-response curves in HEPES and phosphate ND-96 recording 
buffer.

Xenopus oocytes expressing high-sensitivity a4|B2 nAChR (HS) (mRNA injected at a ratio of 
1a:5(3) or low-sensitivity receptors (LS) (mRNA injected at a ratio of 5a: 1 (B) were exposed to 
increasing concentrations of ACh in HEPES (A and B) or Phosphate (C and D) recording buffer. 
Individual peak amplitudes were normalized to the lmax on the same oocyte. Response traces 
were recorded from a single oocyte expressing HS and LS receptors. The solid bar above the 
response trace indicates the time the oocyte was exposed to varying concentrations of ACh. 
pEC50 and nH values (see table 5.1) were determined using non-linear curve fitting as described 
in the methods. Data points represent at least 4 replicate values obtained from a minimum of two 
oocytes harvested from different frogs. Error bars indicate ± SEM.
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Table 5.1. Summary of the calculated results determined from ACh dose-response 
curves in HEPES and phosphate ND-96 recording buffer.

Receptor Buffer
pECso ± SEM 

(EC50 pM)
nH ± SEM

HS HEPES
5.7 ±0.1 

(2 .2 )
0.9 ±0.2

HSP2D218A HEPES
5.5 ±0.1 

(3.5)
1.1 ±0.3

LS HEPES
4.3 ±0.1 

(54)
1.2  ± 0.1

LSp2D218A HEPES
3.83 ± 0.04 

(150)
1.0  ± 0.1

HS Phosphate
5.4 ± 0.1 

(3.7)
1.0 ± 0.2

HSp2D218A Phosphate
5.7 ±0.2 

(2 .1 )
0.9 ±0.3

LS Phosphate
4.5 ± 0.1 

(32)
1.2  ± 0.2

LSP2D218A Phosphate
4.2 ± 0.2 

(58)
0.8 ± 0.2

ACh dose-response curves determined from peak currents showed no effect of buffer 

composition on ACh pECso (p = 0.2365) and Hill slope (p = 0.7478) for HS receptors (Figure 5.2A 

and C, and Table 5.1). A slight, but significant change in pEC50 for ACh stimulation was observed 

for LS receptors (p = 0.0277) although there was no significant change in Hill slopes (p = 0.9162) 

(Figure 5.2B and D, and Table 5.1). Mutation of 32D218 to alanine had no effect on ACh pEC50 

values for HS receptors in either phosphate or HEPES buffers (Figure 5.2 A and C, and Table

5.1) (p = 0.3891). For LS receptors, the pECso values for ACh stimulation were significantly 

different in both phosphate and HEPES buffer (p = 0.0246) (Figure 5.2 B and D, and Table 5.1). 

The Hill slopes for ACh stimulation of the 32D218A HS and LS receptors in either the HEPES or 

phosphate buffers were not significantly different (HS receptors p = 0.6733; LS receptors p = 

0.3760) (Figure 5.2 and Table 5.1).
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As seen in Figure 5.2, the phosphate buffered ND-96 had minimal or no effect on ACh 

EC50 values for either receptor preparation. To further evaluate possible effects of the phosphate 

buffer, lmax values obtained at saturating concentrations of ACh in different concentrations of 

phosphate buffer were determined. Varying concentrations of phosphate buffer ranging from 0.5 

mM to 2 mM were used to prepare phosphate ND-96 recording solutions. The pH for each 

recording buffer was 7.4. The lmax currents induced by ACh for each stoichiometry (300 pM and 1 

mM for HS and LS receptors respectively) were measured for each phosphate buffer. Each 

phosphate concentration course was run on the same oocyte. Alterations in the ACh induced 

current in different buffers containing different concentrations of phosphate would indicate 

interactions of phosphate with the receptors and/or ligands. We saw no change in the ACh 

induced lmax current for any concentration of phosphate buffer between the HS (ANOVA p = 

0.6751) and LS (ANOVA p = 0.8921) a4(32 receptors (results not shown). No induced responses 

were seen with application of different phosphate solutions when applied alone (without agonist). 

These data show no apparent effect of the phosphate buffer on a4p2 receptors making it a good 

choice for evaluation of a4p2 receptor function.

5.4.3 Tris Buffer

As a result of our discovery that HEPES modulates a4(32 nAChR function, we also 

considered whether or not the commonly used Tris buffer had any effect on a4p2 receptors. Like 

HEPES, Tris is a polar molecule that is a member of the family of Good’s buffers and is used as a 

physiological buffering agent. We examined the effect of Tris on ACh induced responses on HS 

and LS subtypes of the a4p2 nAChR. Increasing concentrations of Tris (0.01 pM - 300 mM) were 

co-applied with either 10 pM or 100 pM ACh to HS and LS oocytes preparations using a 

phosphate ND-96 recording buffer. We found that Tris inhibits both HS (pICso = 2.0 ± 0.1; IC50 = 

10 mM]) and LS a4p2 nAChRs (plC50 = 2.2 ± 0.1; IC50 = 6.8 mM) (Figure 5.3). The plC50 values 

were not significantly different from each other (p = 0.2590).

To examine possible effects of Tris buffer on a high efficacious PAM, we used the a4p2 

selective compound desformylflustrabromine (dFBr) (Sala et al., 2005; Kim et al., 2007). dFBr 

was co-applied with ACh and Tris in phosphate buffered ND-96 recording solution. Potentiation of 

Tris and ACh induced responses by 1 pM dFBr did not significantly change the Tris pICso of high- 

sensitivity receptors (plC50 = 2.2 ± 0.1; IC50 = 6.8 mM) (p = 0.3422) (Figure 5.3A). For LS 

receptors, pICso values with and without 1 pM dFBr (plC50 = 1.3 ± 0.2; IC50 = 47 mM) were 

significantly different from each other (Figure 5.3B). dFBr produced potentiation of -360% when 

co-applied with 10 pM ACh and Tris (Tris concentrations < 300 pM) on HS receptors (Figure 

5.3A). On the HS receptors, co-application of 1 pM dFBr, Tris (Tris concentrations < 1000 pM)
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and ACh produced responses potentiated by 280% compared to Tris and ACh alone (Figure 

5.3B). dFBr potentiation was reduced by -50% at Tris concentrations > 1 mM on HS receptors 

and > 30 mM on LS nAChRs. Application of Tris alone did not induce currents. Given that Tris 

did inhibit ACh induced currents on HS receptors at concentrations greater than 1 mM and 

inhibited dFBr potentiation by -50% at Tris concentrations >1 mM, we found Tris to be an 

inadequate buffer agent.
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Figure 5.3 Tris concentration response curves for co-application of ACh and 1 pM 
dFBr on high- (HS) and low- (LS) sensitivity a4p2 receptors.

Xenopus oocytes expressing HS (mRNA injected at a ratio of 1a:5P) or LS (mRNA injected at a 
ratio of 5a:1p) receptors were exposed to increasing concentrations of Tris and ACh (at 
concentrations equal to the EC75). Responses were potentiated with 1 pM of the high efficacious 
allosteric modulator desformylflustrabromine (dFBr). Individual peak amplitudes were normalized 
to those elicited by the identical concentration of ACh alone on the same oocyte. pEC50, plC50 
and nH values were determined using non-linear curve fitting as described in the methods. Data 
points represent at least 4 replicate values obtained from a minimum of two oocytes harvested 
from different frogs. Error bars indicate ± SEM.

5.4.4 The a7 nAChR is Unaffected by HEPES.

The a7 nAChR is one of the most common nAChRs found in the central nervous system. 

The expression of a7 nAChRs are altered in many neurological disorders including Alzheimer’s 

disease and Schizophrenia (Levin and Rezvani, 2007). The effects we observed on a4p2 

stoichiometries led us to investigate possible interactions of HEPES’s with the a7 nAChR 

subtype. ACh dose-response curves were determined from peak currents obtained from oocytes 

expressing a l  receptors in either HEPES or phosphate ND-96 recording buffers (Figure 5.4A). 

For ACh stimulation, pECso values were identical in both HEPES and phosphate buffers (HEPES:
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pEC5o = 3.8 ± 0.1; EC50 = 146 pM. Phosphate buffer: pEC50 = 3.8 ± 0.1; EC50 = 177 pM) (p = 

0.5893). The Hill slopes were 1.1 ± 0.2 and 0.79 ± 0.13 for the HEPES and phosphate recording 

buffers respectively (p = 0.2061).
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Figure 5.4 a7 ACh dose-response curves obtained using HEPES or phosphate ND- 
96 recording buffers.

Xenopus oocytes expressing a7 receptors were exposed to increasing concentrations of ACh in 
HEPES or phosphate recording buffer (A). Individual peak amplitudes were normalized to the lmax 
on the same oocyte. pEC^ and nH values were determined using non-linear curve fitting as 
described in the methods. B) Increasing concentrations of HEPES co-applied with 1 mM ACh on 
a7 receptors. Responses were normalized to 1 mM ACh in both the HEPES and phosphate 
buffer. Data points represent at least 4 replicate values obtained from a minimum of two oocytes 
harvested from different frogs. Error bars indicate ± SEM.

To investigate the effects of HEPES on the a7 nAChR, we co-applied varying 

concentrations of HEPES (0.01 pM- 300 mM) with 1 mM ACh (ACh EC75) to oocytes expressing 

a7 receptors. Unlike a4(32 stoichiometries, HEPES showed no effect on a7 receptors. Figure 

5.4B shows no potentiation or inhibition of responses induced by 1 mM ACh for HEPES 

concentrations up to 300 mM. This is further evidence of the selectivity of HEPES potentiation to 

HS ci4p2 receptors.

5.4.5 HEPES Effects Other PAM Interactions with a4|32 nAChR.

In light of our study showing that HEPES modulates a4|32 nAChR, we hypothesized that 

HEPES may have altered the results of previous studies using other modulators. We investigated 

the possible differences in observed effects of the previously tested a4(32 PAMs 

desformylflustrabromine and Zn2+using both HEPES and phosphate ND-96 recording buffers.
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5.4.5.1 Desformylflustrabromine Modulation of High- and Low-sensitivity a4/32 Receptors in 

HEPES ND-96 Recording Buffer.

Desformylflustrabromine (dFBr) is novel PAM that potentiates ACh induced currents of 

a4p2 nAChR by 265% at concentrations < 10 pM and inhibits at concentrations > 10 pM (Sala et 

al., 2005; Kim et al., 2007; Weltzin and Schulte, 2010a). This compound appears to potentiate 

a4(B2 nAChRs by shifting the equilibrium between open and desensitized conformations (Weltzin 

and Schulte, 2010a). Inhibition caused by application of high concentrations of dFBr has been 

shown to be the result of open channel block (Weltzin and Schulte, 2010a). These experiments 

were conducted using a 5 mM HEPES- ND-96 recording buffer. Given the current findings it is 

possible that the results found with dFBr have been altered by the presences of HEPES.

Differences in dFBr potentiation of ACh induced responses on HS and LS a4p2 nAChR 

in a HEPES and phosphate buffered ND-96 recording solution were investigated. A range of dFBr 

concentrations (0.001 pM - 100 pM) were co-applied with either 10 pM or 100 pM ACh on 

oocytes expressing HS and LS a4p2 nAChRs respectively. Both receptor types were potentiated 

by dFBr. Results showed that in HEPES ND-96 recording buffer, the pEC50 values for dFBr on 

the two receptor types were not significantly different (p = 0.4040) (Figure 5.5 A and Table 5.2).
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Figure 5.5 dFBr concentration responses curves for high- (HS) and low- (LS) 
sensitivity a4p2 nAChR obtained using HEPES or phosphate ND-96 buffers.

Responses were obtained from Xenopus oocytes under voltage clamp conditions (Vm = -60 mV). 
Xenopus oocytes expressed either HS (mRNA injected at a ratio of 1a:5p) or LS (mRNA injected 
at a ratio of 5a:ip) receptors. A) Dose-response curves obtained from co-application of dFBr and 
ACh (concentration equal to the ACh EC75) on HS and LS a4|32 nAChR in HEPES buffer. B) 
Dose-response curves obtained from co-application of dFBr and ACh (concentration equal to the 
ACh EC75) on HS and LS a4(32 nAChR in phosphate recording buffer. Individual peak amplitudes 
were normalized to the response obtained using an identical concentration of ACh alone (equal to 
the ACh EC75). pEC50, plC50 and nH values (see Table 5.2) were determined using non-linear 
curve fitting as described in the methods. Data points represent at least 4 replicate values 
obtained from a minimum of two oocytes harvested from different frogs. Error bars indicate ±

Log [dFBr] (M) in HEPES Buffer Log [dFBr] (M) in Phosphate Buffer

SEM.
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Table 5.2. Summary of calculated results from dFBr concentration responses curves 
for high- (HS) and iow- (LS) sensitivity a4(32 nAChR obtained using HEPES 
or phosphate ND-96 buffers.

Receptor Buffer
pEC50 

(EC50 pM)
lmax

pICso 

(IC50 pM)

HS HEPES
5.6 ±0.5 

(2.5)
370%

4.3 ±0.8 

(50)

LS HEPES
6.2 ± 0.4 

(0.63)
260%

4.0 ±1.3 

(100)

HS Phosphate
5.5 ±0.3 

(3.2)
360%

4.1 ±0.1 

(79)

LS Phosphate
5.9 ±1.1 

(1.3)
370%

5.2 ± 0.6 

(6.3)

The amount of potentiation produced by dFBr on the ACh induced currents using a 

HEPES ND-96 recording buffer was greater on the HS receptors compared to the LS 

stoichiometry. The LS receptors were potentiated 260% while the HS receptors were potentiated 

by 370%. This finding suggest that either; 1) dFBr has a higher efficacy on the HS receptor; 2) 

The potentiating effects of HEPES and dFBr produce an additive effect on the HS stoichiometry; 

or 3) competition between HEPES and dFBr is causing a reduction in the apparent efficacy on the 

LS stoichiometry.

dFBr Modulation of High- and Low-sensitivity a4/32 Receptors in Phosphate ND-96 Recording 

Buffer.

To evaluate possible differences of dFBr-receptor interactions without the conflicting 

actions of HEPES, dFBr dose-response curves were performed in a phosphate buffered ND-96 

recording solution. Varying concentrations of dFBr (0.001 pM - 100 pM) were co-applied with 

either 10 pM or 100 pM ACh on oocytes expressing HS or LS receptors. Results showed that the 

amount of dFBr potentiation of ACh induced responses using phosphate buffer was similar for HS 

(360%) and LS (370%) receptors (Figure 5.5B and Table 5.2). The pEC50 values for dFBr 

potentiation were also not significantly different between HS and LS receptors tested in 

phosphate buffered ND-96 (Figure 5.5B and Table 5.2) (p = 0.6362). The pECso values for dFBr
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potentiation of HS (p = 0.7459) and LS (p = 0.8377) nAChRs were also not significantly different 

from those determined in HEPES ND-96 recording buffer although the degree of potentiation of 

HS receptors by dFBr was decreased in HEPES relative to phosphate buffer (Figure 5.5 and 

Table 5.2).

No significant difference in plC50 values were observed for inhibition of ACh induced 

currents by application of high (>10 pM) dFBr concentrations using either HEPES or phosphate 

buffer on HS or LS receptors (HS, p = 0.7683); LS, p = 0.4040) (Figure 5.5 A and B and Table

5.2). In addition no change was observed in dFBr plC50 values for HS or LS receptors in HEPES 

buffer (p = 0.8485). An increase in the pICso value on the LS receptors was seen compared to the 

HS receptor in phosphate buffered ND-96 (p = 0.0435) (Figure 5.5B and Table 5.2).

5.4.5.2 Zn2+ Modulation of Low and High-sensitivity a4(i2 Receptors in HEPES ND-96 Recording 

Buffer.

Zn2+ has been reported to be a selective LS receptor PAM and an allosteric inhibitor of 

HS receptors (Hsiao et al., 2001; Hsiao et al., 2006; Moroni et al., 2008). Based on data showing 

decreased inhibition of HS(32D218A receptors by Zn2+and enhanced potentiation of LS(32D218A 

receptors, Moroni et al., (2008) have suggested that Zn2+ inhibits a4p2 receptors by binding to an 

allosteric inhibitory site at the p+/a- interface. Thus P2D218 is apparently involved with binding of 

Zn2+. Mutation of a a4H195, located on the -  face of the a subunit, abolished potentiation of the 

LS receptor by Zn2+. In combination with the apparent selective potentiation of the LS receptor, 

this suggested that the potentiation site was located at the a+/a- interface on the LS 

stoichiometry. These experiments and others have used a 10 mM HEPES ND-96 recording 

solution to study the modulation of nAChRs by Zn2+ (Hsiao et al., 2001; Hsiao et al., 2006; Moroni 

et al., 2008). As for dfBr above, we re-evaluated Zn2+ modulation in non HEPES containing 

buffers to determine if HEPES might have altered the results of these studies.

In a HEPES ND-96 recording buffer, dose-response curves resulting from co-application 

of Zn2+ (0.001 pM-1 mM) and 10 pM ACh on HS nAChRs produced inhibition of ACh induced 

currents (Figure 5.6A and Table 5.3). Mutation of p2D218Aof this receptor produced a significant

1.3 fold decrease in the plC50 value for Zn2+ inhibition (Figure 5.6A and Table 5.3) (p = 0.0362). 

These results are consistent with previous results of Moroni et al. (2008) and appear to suggest 

that residue P2D218A is involved in Zn2+ inhibition on the HS a4p2 receptor.



199

B

2.5

£  2.0’0Ul
1 1-5'

I  1.0
-?  0.5

0.0

Log [Zn ] (M) in HEPES Buffer

•  HS
> HSp2D218A

S-B-

i r......r ~  '■■■■■r— nr""
-10 -S -8 -7 -6 *5

T "
*3

Log [Zn ] (M) in Phosphate Buffer

2,5-

a
ill

5 15- <

1  1.0-

0.5-

0.0-

•  LS
LSP2D218A

D
2.5-

R 2.0-om
o 1.5- <

1  1.0-a
_2 0,5-

-2

*10 -9
" ~ T ~
-8 -7

1  S 1 F -
-6 -5 -4 -3

“ 1
-2

Log J2&T | (M) in HEPES Buffer

□ LS
LSP2D218A

0 .0  i -  i 1-------- 1-------- 1--------11............ i— —• i ......... t
-10 -9 -8 -7 -6 -5 -4 -3 -2

Log [Zri2+1 (M) in Phosphate Buffer

Figure 5.6 Zn2+ concentration responses curve obtained by co-appiication of Zn2+ and ACh 
on high- (HS) and low- (LS) sensitivity a4|32 nAChR using HEPES or phosphate ND-96 
buffer.

Responses were obtained from Xenopus oocytes under voltage clamp conditions (Vm = - 60 mV) 
using Xenopus oocytes expressed either HS (mRNA injected at a ratio of 1a:5p) or LS (mRNA 
injected at a ratio of 5a: 1(3) receptors. A) Dose-response curves resulting from co-application of
Zn2+ and ACh (EC75 concentration) on HS and HS(32D218A receptors in HEPES buffer. B) Dose-
response curves resulting from co-application of Zn2+ and ACh (EC75 concentration) on LS and 
LSp2D218A receptors in HEPES buffer. C) Dose-response curves resulting from co-application 
of Zn2+ and ACh (EC75 concentration) on HS and HS(32D218A receptors in phosphate recording 
buffer. D) Dose-response curves resulting from co-application of Z n + and ACh (EC75 
concentration) on LS and LSp2D218A receptors in phosphate recording buffer. Individual peak 
amplitudes were normalized to those obtained using a concentration of ACh equal to the ACh 
EC75 on the same oocyte. pECso, pICso and nH values (see Table 5.3) were determined using 
non-linear curve fitting as described in the methods. Data points represent at least 4 replicate 
values obtained from a minimum of two oocytes harvested from different frogs. Error bars indicate 
± SEM.
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Table 5.3. Summary of calculated results from Zn2+ concentration responses curve 
obtained by co-application of Zn2+ and ACh on high- (HS) and low- (LS) 
sensitivity a4p2 nAChR using HEPES or phosphate ND-96 buffer.

Receptor Buffer
pECso± SEM 

(EC50 pM)
lmax

pICso ± SEM 

(IC50 UM)

HS HEPES - -
4.9 ±0.3 

(13)

HS32D218A HEPES - -
3.6 ±0.5 

(250)

LS HEPES
4.0 ±0.7 

(100)
170% 2.9 ±2.7 

(1260)

LSp2D218A HEPES
4.2 ± 0.4 

(63)
190% 3.2 ±0.6 

(630)

HS Phosphate
7.1 ±0.9 

(0.079)
110%

4.7 ±1.1 

(20)

HSP2D218A Phosphate
3.6 ±0.5 

(250)
- -

LS Phosphate 3.8 ±0.8 
(160) 140%

3.2 ±1.7 

(630)

LSp2D218A Phosphate - 0%
2.6 ± 0.6 

(2500)

Co-application of Zn2+ (0.001 pM -  1 mM) and 100 pM ACh in HEPES ND-96 recording 

solution on the HS receptor produced a bell-shaped dose-response curve (Figure 5.6B). Zn2+ 

potentiated ACh induced responses at concentrations < 300 pM. Zn2+ concentrations >300 pM 

inhibited ACh induced currents. On oocytes expressing LS(32D218A receptors, dose-response 

curves resulting from co-application of Zn2+ (0.001 pM - 1 mM) and 100 pM ACh in the HEPES 

ND-96 recording buffer showed no significant differences in the pEC50 ( p= 0.8896) or plC50 (p =

0.9054) when compared to wild-type LS receptors (Figure 5.6B and Table 5.3). The lmax appears 

to increase from 170% to 190% with the mutant, consistent with previous results (Moroni et al., 

2008). The increase in Zn2+ potentiation observed with the P2D218A is not likely explained by 

shifts in the ACh dose-response curve.
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5.4.5.3 Zn2+ Modulation of High- and Low-sensitivity a4/32 Receptors in Phosphate ND-96

Recording Buffer.

In phosphate ND-96 buffer, co-application of Zn+ and 10 pM ACh on the HS a4p2 

receptors produced a slight bell-shaped dose-response curve (Figure 5.6C and Table 5.3). 

Mutation of (32D218 to alanine resulted in an apparent rightward shift of the dose-response curve 

and enhancement of the observed potentiated lmax when responses were obtained in phosphate 

ND-96 buffer. The clear enhancement of potentiation was not observed in HEPES buffer. The 

inhibition observed in HEPES buffer for the P2D218A mutation could result from either inhibition 

by HEPES or saturation of a shared Zn2+/HEPES binding site by the high concentrations of 

HEPES present in the buffer. In phosphate buffer, this inhibition is not present thus potentiation is 

observed. It is unclear why potentiation is enhanced by the P2D218A mutation compared to wild- 

type when recorded in phosphate buffer but this could be the result of a differential rightward shift 

in the EC50 and IC50for Zn2+ potentiation and inhibition.

The concurrent application of Zn2+ (0.001 pM - 1 mM) and 100 pM ACh on oocytes 

expressing LS receptors produced bell-shaped dose-response curves in both the HEPES and 

phosphate ND-96 recording buffer. The pEC50 (p = 0.8394) and plC50 (p = 0.9204) values were 

not significantly different between the two buffers (Figure 5.6B and D and Table 5.3). Zn2+ 

potentiation was reduced in the phosphate buffer (140%) compared to the HEPES buffer (190%) 

(Figure 5.6D). In contrast, mutation of P2D218A produced dramatically different effects 

dependent on buffer composition. Mutation of p2D218 to alanine produced slight enhancement 

of potentiation when responses were recorded in HEPES buffer but abolished Zn2+ potentiation 

when using phosphate buffer. This is not easily explained by independent actions of HEPES or 

Zn2+ since simple additive effects would not likely produce these results. The data from both wild- 

type and mutant receptors recorded in both buffers suggest a possible synergistic activity of 

HEPES and Zn2+ that compensates for the effects of the P2D218A mutation. Loss of Zn2+ 

potentiation by the P2D218A mutation in phosphate buffer suggests a role for this residue in Zn2+ 

mediated potentiation of ACh induced currents on LS receptors. plC50 values found using HEPES 

or phosphate buffered ND-96 were not significantly different (p = 0.7593) (Figure 5.6 and Table

5.3). Moroni et al., (2008) previously suggested that the a+/a- interface contains the Zn2+ 

potentiation site. These results appear confounded by the presence of HEPES in the recording 

buffer. Our results suggest a role of the p+ face in Zn2+ mediated potentiation.



202

5.5.1 HEPES Modulation of <*4p2 nAChR.

This study investigates the effects of HEPES on HS and LS a4p2 and a7 nAChRs. Our 

results demonstrate HEPES selectively potentiates the HS stoichiometry compared to the LS 

a4p2 and a7 nAChRs. The HS receptor is thought to have a (a4)2(P2)3 stoichiometry with a 

unique p+/p- binding cleft. The putative LS receptor is thought to have a (a4)3(P2)2 stoichiometry 

and does not have a p+/p- cleft although both HS and LS receptors contain a p+/a- binding cleft. 

Mutagenesis data showed that mutation of the P2D218 residue in the p+C-loop region abolished 

HEPES potentiation. These findings ascertain the HEPES potentiation site is located at the p+/p- 

cleft of the HS a4p2 receptor site and involves the p2D218 residue.

The first inhibitory phase of HEPES inhibition of the HS stoichiometry plateaus at a 

normalized response of one, suggesting HEPES can only inhibit the potentiated response at 

these concentrations (100 pM - 3 mM). The IC50s of the first (LS receptors) and second (HS 

receptors) HEPES inhibitory phases are similar and are unaffected by the P2D218A mutation. 

This could mean the inhibitory phases utilize similar mechanisms.

It is unclear from our data what the mechanism or binding site(s) are for HEPES 

inhibition. The two phase inhibition on the HS receptor suggests multiple mechanisms. Such 

mechanisms could include an allosteric inhibitory site, competition at the orthosteric site or open- 

channel block. Conceivably at least one inhibitory mechanism is competition at the orthosteric site 

since in the crystal structure of AChBP, HEPES was found to bind at the same location as other 

orthosteric ligands. In addition the IC50 values for HEPES inhibition are similar to that observed for 

HEPES binding to the AChBP. A second possibility is that HEPES is acting as an open-channel 

blocker at high concentrations. Hump currents, also known as rebound or tail currents, are inward 

currents which occur during the desensitized phase of the response on washout of the ligand and 

have been previously linked to open-channel block (Liu et al., 2008). At the concentrations tested, 

a possible tail current was seen at 300 pM HEPES. This could suggest that at high HEPES 

concentrations, open-channel block could be the inhibition mechanism of HEPES (Figure 5.1A 

and B).

5.5.2 HEPES Effects on <x7 nAChRs.

We also investigated the effects of HEPES on a7 nAChRs to determine if similar 

modulatory effects of HEPES were present. A small insignificant decrease was found in the Hill 

slope of the ACh dose-response experiments in the Phosphate buffer compared to HEPES 

buffer. The a7 ACh pEC50 values found using the HEPES and Phosphate buffer systems were not

5.5 Discussion.
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different from one another. In addition a7 receptors were not affected by application of HEPES. 

Due to seeing no effects of buffer composition on a7 nAChR we suggest that either HEPES or 

Phosphate buffer systems are adequate for investigating a7 nAChR.

5.5.3 HEPES as a Therapeutic Lead Drug.

Several ligands have different affinities and efficacies for the a4p2 stoichiometries 

including cytisine, ACh, nicotine and epibatidine (Moroni et al., 2006). To our knowledge, the S- 

enantiomer of mecamylamine (Taragacept® TC-5213) is the only ligand to show selective 

activation of the HS channels and inhibition of the LS channels (Taly et al., 2009). In the current 

study we show that HEPES is a selective PAM of HS receptors when compared to the LS 

stoichiometry and a7 nAChRs. Stoichiometric selective drugs based on HEPES could provide 

significant benefits for elucidation of mechanisms involving changes in expression or location of 

specific stoichiometries of a4p2 receptors. Such ligands could also prove useful in the diagnosis 

and treatment of CNS disorders. Our laboratory is currently engaged in structure function studies 

designed to develop novel analogs of HEPES for these purposes.

5.5.4 Mounting Evidence That Good’s Buffers interact with Physiological Systems.

Over the years, Good’s buffers have been shown to alter physiological systems. HEPES 

has been shown to stimulate the production of ATP and decrease the uptake of P-glycoprotein in 

Caco-2 and MDCK-MDR1 cells (Luo et al., 2010). The hyperpolarization-activated transient 

currents of human and rat 5-hydroxytryptamine transporters (SERT) expressed in Xenopus 

oocytes were blocked by HEPES with alterations in SERT kinetics (Li et al., 2002). The SERT 

currents decreased 10-50% by HEPES at concentrations greater than 1 mM. Additionally, 

HEPES has been shown to affect cell membrane (Poole et al., 1982) and block chloride ion 

channels (Yamamoto and Suzuki, 1987).

Tris buffer and similar compounds have been revealed to alter physiological responses. 

Studies suggest that Tris inhibits the function of enzymes such as aminopeptidase and alpha- 

amylase (Desmarais et al., 2002; Ghalanbor et al., 2008). In addition, Tris, TES and related buffer 

compounds have been shown to react with nerve agents to form new products (Gab et al., 2010).

To add to this growing list of the physiological and biochemical effects of Good’s buffer’s, 

the current study demonstrates alteration of nAChR function by HEPES and Tris. HEPES 

potentiates and inhibits ACh induced responses on a4p2 nAChRs in a stoichiometric dependent 

manner. We’ve also demonstrated that Tris inhibits ACh currents on both HS and LS a4p2 

receptor stoichiometries at concentrations > 3 mM. Application of 10 mM Tris inhibited dFBr 

potentiated ACh induced currents by > 50%.
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5.5.5 HEPES Competition with Other PAMs.

Positive allosteric modulators (PAMs) have recently become alluring targets in the search 

for potential therapeutic agents. PAMs generally function to increase the sensitive and/or efficacy 

of endogenous ligands such as ACh. Since many electrophysiological studies use a HEPES 

recording buffer, the discovery that HEPES is an allosteric modulator of a4(52 nAChR presents a 

concern regarding data interpretation. HEPES potentiation or inhibition may alter the responses 

of the compound in question. These concerns are especially pertinent with the study and 

development of other modulators.

We investigated the effects of buffer composition on the sensitive and efficacy of the 

PAMs dFBr and Zn2+. The affinities and efficacies of these PAMs were altered by Tris and 

HEPES buffers. A previous study comparing Tris and HEPES buffers showed that the GABAa 

PAM, thymol, displayed biphasic behavior in a HEPES buffer while only inhibition was seen when 

using a Tris buffer (Garcia et al., 2008). Similarly in our laboratory, dFBr appears to be more 

efficacious for the HS versus LS a4(32 receptors when using a HEPES buffer. But in the absence 

of HEPES no difference is evident. Despite the apparent difference in the dFBr and HEPES 

binding sites (dFBr to the p+/a-cleft and HEPES to the p+/p- cleft), the independent modulatory 

effects of dFBr and HEPES both alter the apparent efficacy, potency and inhibition of dFBr on the 

LS receptors. The complications arising from HEPES interaction with a4p2 receptors is further 

illustrated by our re-analysis of the effects of Zn2+ on HS and LS receptors. In their original study, 

Moroni et al. (2008) concluded that Zn2+ inhibited a4p2 receptors at the p+/a- binding interface 

while potentiating at the a+la- interface. This conclusion was based on the observation that Zn2+ 

was selective for the LS stoichiometry with a unique a+/a- cleft along with mutagenesis studies 

implicating p2D218 in inhibition and aH195 in potentiation. It is likely that HEPES inhibition of the 

HS receptor obscured the observation of Zn2+ potentiation. Since the HS receptor lacks the a+/a- 

binding cleft, it must be concluded that the a+la- cleft is not necessary for potentiation. With data 

obtained in the absence of HEPES, it seems more likely that the potentiation site is at the p+/a- 

cleft and the inhibitory site is at the P+/p- cleft. This also explains our observation that Zn2+ 

potentiation increases with the P2D218 mutation in phosphate buffer since p2 would be expected 

to alter both potentiation and inhibition.

5.5.6 Summary.

Our data have shown HEPES to be a potentially valuable lead molecule for a new class 

of stoichiometric selective ligands of a4(32 receptors. Continued work in this direction will likely 

elucidate features of both ligand and receptor responsible for this selectivity. In addition we have 

shown that HEPES buffer can interfere in physiological systems involving nAChRs and would
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recommend against using this buffer for the study of nAChRs. While phosphate buffer appears to 

be suitable in some cases, our discovery of changes induced in phosphate buffer on a7 receptors 

suggests caution in replacing HEPES with phosphate in all situations. While it might be tempting 

to switch to another Good’s buffer in place of HEPES, our data with Tris suggests that this may 

also be potentially troublesome. Many Good’s buffers share common structural features with 

HEPES and may exert effects on nAChRs. A though characterization of these buffers is currently 

being performed to identify suitable replacements.
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6.1 General Overview

Ligand gated ion channels (LGIC) are distributed throughout the peripheral and central 

nervous system (Taly et al., 2009) where they play a critical role in synaptic transmission at the 

junctions between nerve cells (synapses) and between nerve and muscle cells by regulating the 

passage of ions into the cell (Gotti et al., 2006). LGIC receptors are thus of critical importance to 

learning and memory, gene transcription and muscle contraction. The nicotinic acetylcholine 

receptor (nAChR) that is discussed in this thesis is one member of this Cys-loop super family of 

LGICs. Previous studies have demonstrated that dysregulation of nAChRs may underlie multiple 

neurological disorders including Alzheimer’s disease (Court et al., 2001; Nordberg, 2001), 

Schizophrenia (Adams and Stevens, 2007), Parkinson’s disease (Aubert et al., 1992), Autism 

(Martin-Ruiz et al., 2004; Lippiello, 2006) and nicotine addiction (Picciotto et al., 2001).

The development of novel ligands targeted at LGICs is thought to have high therapeutic 

potential for the treatment of neurological disorders. In particular, nAChR selective ligands could 

be useful in treating pathological conditions where nicotinic tone is altered. This thesis has 

focused on our research developing of a novel class of nicotinic receptor ligands typically 

described as positive allosteric modulators (PAMs). These ligands bind at an allosteric binding 

domain on nAChRs and enhance the endogenous neurotransmitter acetylcholine (ACh). This is in 

contrast to ligands that bind to the orthosteric site and either activate the receptor (competitive full 

and partial agonists) or block the binding of ACh (competitive antagonists). Many competitive 

ligands have been developed for nAChRs (for review see (Romanelli et al., 2007)), however 

positive allosteric modulators have been more elusive. Nonetheless, PAMs are likely to have 

many advantages over competitive ligands. Since PAMs typically alter responses elicited by the 

endogenous transmitter but are incapable of activating receptors directly they would enable 

retention of synaptic control via release of endogenous neurotransmitter. Additionally, some 

PAMs also preserve the overall response kinetics of the receptors while amplifying the peak 

responses. This is in contrast to competitive ligands which tend to block or desensitize receptors 

and reduce acetylcholine mediated synaptic currents. By PAMs exerting their effects only on ACh 

release and maintaining a normal, yet amplified signal (reviewed in (Bertrand and 

Gopalakrishnan, 2007)), the result of PAM action is likely to be similar to what might be obtained 

by increasing receptor numbers at the synapse, the basis of learning and memory. The success 

of a related class of PAMs for the GABAaR, the benzodiazepines, illustrates the potential value of 

this approach. Benzodiazepines are commonly used clinically for the treatment of seizure 

disorders. Discovery of nAChR PAMs could produce similar benefits in the treatment of other

CHAPTER 6: Discussion and Conclusions.
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neurological disorders such as Alzheimer’s disease where decline in nAChR numbers are 

evident.

Despite nAChRs wide distribution throughout the human body and the potential medical 

application, there are currently no allosteric modulators therapeutically used that selectively target 

nAChR subtypes. Based on preliminary molecular modeling and sequence comparisons between 

members of LGICs, we formed the general hypothesis that there are selective allosteric 

modulators for a4p2 nAChRs and they bind in a similar region as benzodiazepines on GABAaRs.

This thesis describes the discovery and development of two unique PAMs selective for 

the a4p2 nAChR subtype. The lead compounds desformylflustrabromine (dFBr) and 4-(2- 

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were evaluated for their ability to 

potentiate a7 and both high- and low- ACh sensitivity a4p2 receptors. dFBr was previously 

shown to act as a selective a4p2 PAM with no potentiating action on the a7 subtype (Sala et al., 

2005; Kim et al., 2007). HEPES was previously thought to have no effect on nAChRs and is a 

common buffer in physiological preparations (Good et al., 1966) although it is observed bound to 

the orthosteric site in the crystal structure of the AChBP (Brejc et al., 2001).

Chapter 3 of this thesis presented data obtained in the first pharmacological 

characterization of synthetic dFBr, its effects on nAChR responses to partial and full agonists and 

its influence on receptor kinetics determined using two-electrode voltage clamp and human 

receptors expressed in Xenopus oocytes. Our studies show different degrees of potentiation for 

partial and full agonists and shed light on the mechanisms that may underlie the potentiating 

effect of dFBr. Chapter 4 describes a continuation of these studies aimed at identifying potential 

involvement of the plus face of the P2 subunit and the minus face of the a4 subunit in mediating 

the effects of dFBr.

In Chapter 5, we turned our attention to our second lead molecule, HEPES. We 

evaluated HEPES as a PAM for high and low ACh sensitivity a4p2 receptors. Our data show a 

selectivity of HEPES for the high-ACh sensitivity a4p2 receptor compared to the low-ACh 

sensitivity subtype. Since HEPES is commonly used as an electrophysiological buffer we also 

investigated other Good’s buffers as well as phosphate for effects on a4p2 and a l  receptor 

function. Our data suggest that phosphate recording buffers should be preferred over HEPES 

type buffers due to our observed potentiating and/or inhibitory action of these compounds on 

nAChRs. This is particularly true in the study of nAChR PAMs where HEPES type buffers may 

confound interpretation of electrophysiological data.
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6.1.1 Pharmacological Characterization of Synthetic dFBr.

The characterization of dFBr pharmacology described in chapter 3 was aimed at 

determining if the effects of dFBr were dependent on the type of stimulating agonist (partial or full) 

and on the order and timing of dFBr application. Effects of dFBr were examined using two- 

electrode voltage clamp and human a4p2 nAChRs expressed in Xenopus laevis oocytes. Our 

data indicate that responses to both partial and full agonists can be potentiated by dFBr. 

Responses to low-efficacy agonists were potentiated significantly more than responses to high- 

efficacy agonists (9.9 ± 0.05% versus 2.7 ± 0.01 fold change). The agonists ACh, choline and 

nicotine EC50 values were enhanced and reduced respectively with the co-application of dFBr. In 

contrast, antagonist plC50 values were unaffected by co-application of dFBr. The order of addition 

of dFBr did not appear to affect potentiation and pre-exposure to dFBr, and did not alter the rise 

time of the responses when compared to co-exposure with ACh. We also applied dFBr at 

different points during the ACh response curve. Our data indicate that dFBr could be applied at 

any point during the ACh-induced response and still elicit an amplified response. Addition of dFBr 

during the desensitizing phase of the response produced spikes equivalent in height to dFBr 

when co-applied with ACh, but required more rapid rise times to peak. This peak declined rapidly 

when compared to the original desensitized response amplitude on continuous application of 

dFBr. Thus, dFBr appears to “rescue” receptors from desensitization. While precise mechanisms 

await future single channel analysis, this data may indicate that dFBr shifts receptor equilibrium 

from a desensitized to an open conformation or, alternatively, permit receptors to enter an 

alternate open conformation.

We also investigated the inhibitory component of the biphasic dFBr potentiation/inhibition 

kinetics. In contrast to potentiation, inhibition of ACh-induced responses by dFBr was dependent 

on membrane potential suggesting it may involve open-channel block by dFBr and ACh. Our data 

indicates distinct mechanisms for the potentiation and inhibitory components of dFBr action. 

Since both potentiation and inhibition appear to be mediated by distinct mechanisms, it seems 

reasonable that alteration of the chemical structure of dFBr may lead to analogs capable of larger 

potentiation with little or no inhibitory action, or analogs with EC50 and IC50 values sufficiently 

different to permit tailoring of the potentiation effect by controlling dFBr concentration.

The results from the study have aided the field in understanding how a4p2 nAChR are 

modulated biphasically by dFBr. The ability of dFBr to modulate full and partial agonists 

especially with regards to ACh, nicotine and choline may be a useful quality in developing 

therapeutic treatment strategies for diseases such as Alzheimer’s disease, nicotine addiction and 

Autism. The enhancement of choline efficacy by dFBr further suggests that dFBr may be able to
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prolong a cholinergic response via choline. In this study we have begun to reveal the mechanism 

of dFBr potentiation and its ability to reactivate desensitized receptors. The ability of dFBr to 

reactivate desensitized receptors may be an appealing property especially with regards to 

smoking cessation, an addiction that up-regulates and desensitizes nAChR. The findings that 

dFBr inhibition involves open-channel block demonstrates that a single ligand can have several 

unique functions on a receptor. In addition, because the inhibition mechanism may be separate 

from the potentiation component, this suggests that the inhibitory actions of dFBr could be 

removed in future dFBr analogues. Although due to dFBr’s apparent ability to potentiate choline- 

evoked currents and thus alter the time course of cholinergic transmission, inhibition by dFBr may 

be an advantage to maintaining the temporal relationship.

6.1.2 Putative Binding Domain for Desformylflustrabromine.

In chapter 3, we investigated the involvement of non-orthosteric subunit interfaces of 

a4p2 receptors in the potentiation of ACh induced responses by dFBr. Amino acids on the non- 

orthosteric P2+ and a4- subunit faces were mutated to alanine and the receptors were 

expressed in Xenopus laevis oocytes. Residues were chosen for mutation based on sequence 

homology with amino acids identified as important for binding of benzodiazepine in the GABAa 

receptor. Selection of mutations and receptor locations were designed to test our hypothesis 

that dFBr binds at the subunit interfaces not utilized by binding ACh or competitive nAChR 

ligands (the non-orthosteric subunit interfaces). Acetylcholine and dFBr induced responses 

were recorded using two-electrode voltage clamp techniques. The effects of mutations can be 

classified into fundamentally three distinct categories:

1. Mutations that alter the dose response relationship for ACh in the absence of dFBr.

a. Low-sensitivity preparation: P2W176A, P2Y120A, p2Y127Aand a4K140A.

b. High-sensitivity preparation: P2W176A, P2D179A, P2D217A, P2Y120A, P2Y127A, 

O4K140A, o4W88A.

2. Mutations that alter the ability of dFBr to potentiate ACh induced responses with minimal 

effect on responses to ACh alone.

a. Low-sensitivity preparation: P2T177A, P2D179A and a4W88A.

b. High-sensitivity preparation: P2T177A, P2D116A and P2Y120A.

3. Mutations that had no effect on either ACh alone or ACh co-applied with dFBr.

a. Low-sensitivity preparation: P2D217A, P2D218A, P2D116A.
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b. High-sensitivity preparation: (B2D218A.

Mutations altering the ACh response in the absence of dFBr indicate a potential 

involvement of the mutated subunit faces (02+ or a4-) in mediation of the native ACh response. 

Since these subunit faces do not form part of the orthosteric site, our data suggest that 

conformational changes in these regions of the receptor may be involved in normal function of 

the receptor, a finding that has never before been demonstrated.

The novel discovery that allosteric clefts play a role in the ACh induced receptor 

conformational changes leading to activation and desensitization has not been previously 

demonstrated. One possibility for the basis of these effects might be that the C-loop within 

allosteric clefts moves as part of the conformational changes that occur on channel opening 

and/or desensitization. We hypothesize that this movement of the C-loop, possibly by closure 

similar to what occurs in the orthosteric cleft, might be involved in the conformational change 

leading to stabilization of a desensitized conformation. Mutations altering responses to ACh 

might also alter dFBr potentiation; however, since this effect would be obscured by the 

concurrent effects on ACh responses it is not possible to make any conclusions regarding dFBr 

interaction with these amino acids.

The second category of mutations that alter the effects of dFBr with little or no change 

in ACh dose response curves suggests that this set of mutations is involved in the interaction of 

dFBr with the receptor or with its effect on receptor function. The 02+ and a4- faces both 

appear to play a role in mediating dFBr’s effects. Our original hypothesis, that dFBr may bind at 

the non-orthosteric 02+ binding face, is supported by these data. The importance of this region 

in normal receptor function as illustrated by our data suggest that dFBr may alter receptor 

mechanism by either facilitating or inhibiting the normal function of the receptor at the 02+/a4- 

subunit interface. As described above, we hypothesize that movement of the C-loop in this 

region of the receptor may be involved in stabilization of the desensitized conformation of the 

receptor. If dFBr binding prevents C-loop closure, the desensitized conformation would likely be 

destabilized leading to a shift in equilibrium to the open conformation. Such an effect might 

explain the ability of dFBr to rescue desensitized receptors. Removal of dFBr might be 

expected to restore this equilibrium thus decreasing rapidly the number of receptors back to the 

unpotentiated levels we observe in experiments where dFBr is applied during the desensitizing 

phase of the response. Further studies to determine if dFBr actually binds to this region or 

simply alters the normal conformational changes that occur will require additional studies, 

perhaps using cysteine scanning mutagenesis and the substituted cysteine accessibility 

method (SCAM).
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6.1.3 Allosteric Modulation of High- and Low- ACh Sensitivity alpha4beta2 Nicotinic
Acetylchoiine Receptors by HEPES.

In Chapter 5, we present our discovery that 4-(2-hydroxyethyl)-1- 

piperazineethanesulfonic acid (HEPES) is a PAM selective for high ACh sensitive a4p2 

nAChRs. These experiments were prompted by our observation that mutation of P2D218A 

increased the potentiating effects of dFBr and our observation that HEPES was present in the 

orthosteric cleft of the homologous AChBP. We postulated that the enhancement of dFBr action 

might be the result of a blocking of the allosteric site by HEPES. If P2D218 interacted with 

HEPES but not dFBr, then mutation of P2D218 to an alanine might decrease affinity for 

HEPES, enabling dFBr to bind, producing an apparent enhanced effect by dFBr. The effects of 

HEPES were evaluated in phosphate buffered recording solutions using two-electrode voltage 

clamp techniques and a4p2 and a7 nAChR subtypes expressed in Xenopus laevis oocytes. 

Varying concentrations of HEPES co-applied with 10 pM ACh produced a bell-shaped dose- 

response curve on <34(32 nAChR expressed using the high-ACh sensitivity receptor preparation 

similar to the kinetics observed for dFBr. Co-exposure of 100 pM HEPES and 10 pM ACh 

produced responses potentiated 190% compared to ACh alone. When concentrations in 

excess of 100 pM were used, responses to ACh were inhibited by HEPES. Coincidentally, at 

concentrations of HEPES typically used in oocyte recording (5-10 mM), the potentiating effects 

of HEPES are matched by its inhibitory effects thus producing no apparent effect. This may 

explain why this effect had not previously been observed despite the common use of HEPES in 

recording media. Mutagenesis of (32D218 to alanine blocked the potentiating effects of HEPES 

suggesting it acts by binding to the plus face of the p2 subunit. In contrast to the high-ACh 

sensitivity a4p2 receptor preparation, receptors expressed using the low-ACh sensitivity 

preparations were not potentiated by HEPES. The remarkable selectivity of HEPES for a single 

receptor stoichiometry makes it of interest as a lead compound for highly selective PAMs but 

also an excellent research tool for the study of allosteric modulation in nAChRs. Understanding 

the selectivity of HEPES compared to dFBr may reveal new classes of PAMs with varied 

selectivity for different nAChR subtypes. The apparent competition between HEPES and dFBr 

strengthens the argument that dFBr is actually binding to subunit interfaces containing the plus 

face of the P2 subunit (our postulated dFBr binding site).

More recent data not presented in this thesis has continued our evaluation of Good’s 

buffers with similar in chemical structure. We have evaluated EPPS (3-[4-(2-Hydroxyethyl)-1- 

piperazinyljpropanesulfonic acid), PIPES (piperazine-N,N’-bis(2-ethanesulfonic acid), POPSO, 

MES (2-(N-morpholino)ethanesulfonic acid), MOPS (3-(N-morpholino)propanesulfonic acid),
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CHES (N-Cyclohexyl-2-aminoethanesulfonic acid), CAPS (N-cyclohexyl-3- 

aminopropanesulfonic acid) and CAPSO (N-cyclohexyl-2-hydroxyl-3-aminopropanesulfonic 

acid) on high- and low- ACh sensitivity preparations. The co-application of varying 

concentrations of the test compounds EPPS, POPSO, MOPS and CHES with 10 pM ACh on 

high-sensitivity receptors produced currents that were biphasically potentiated. Application of 

POPSO on low-sensitivity receptors produced a bell-shaped dose-response curve where 100 

pM ACh induced currents were both potentiated and inhibited. MES and CAPS inhibited ACh 

induced currents of receptors expressed in the high-sensitivity receptor preparation. Ligands 

MOPS, CAPS and CAPSO inhibited ACh induced currents on low-sensitivity receptors. EPPS, 

MES and CHES had no effect on ACh stimulated responses on low-sensitivity receptors while 

CAPSO had no influence on high-sensitivity receptors. PIPES was the only tested compound to 

have no effect on ACh induced currents on either receptor preparation. Tris inhibits both high 

(pICso = 2.0 ± 0.1; IC50 = 10 mM]) and low-sensitivity a4p2 nAChRs (plC5o = 2.2 ± 0.1; IC50 = 

6.8 mM). In contrast, no effect was observed for phosphate buffers.

While these experiments are incomplete and do not yet enable us to determine 

accurate structure function relationships, they do lay the groundwork for future studies to 

develop improved HEPES type PAMs. In addition, these new data suggest that HEPES type 

buffers are unsuitable for electrophysiological studies of nAChRs.

The effects of HEPES and Good’s buffers on nAChR function likely alters the 

interpretation of previous PAM studies due to the common use of HEPES as a buffering agent 

in electrophysiological recording buffers. From our experiments, it is clear that phosphate buffer 

represents the safest choice for performing electrophysiological studies of nAChRs. It is 

possible that similar effects of HEPES will be documented in the future for other LGIC receptor 

subtypes.

6.2 Future Directions.

The investigation of dFBr has so far focused on characterizing dFBr functionally and 

pharmacologically at the macroscopic level. The goal is to develop dFBr or an analogue of dFBr 

into a therapeutic ligand. For the therapeutic development of dFBr or a similar ligand to occur, 

further understanding how dFBr modulates the receptor at the microscopic and whole body 

system needs to be determined.

6.2.1 Single Channel Studies.

To investigate dFBr at the microscopic level, single channel and patch clamp techniques 

will be necessary. These techniques would elucidate the mechanisms of action of dFBr
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potentiation and inhibition by evaluating its effects on conformational stability on single receptor 

proteins. Single channel analysis is currently the most direct method available to obtain detailed 

information regarding the kinetic behavior of ion channels. Application of potentiating 

concentrations of dFBr and ACh could produce increases in the mean open times of the channel 

or, alternatively, alter the bursting frequency of the receptor compared to ACh only. These results 

would provide further evidence that the mechanism of dFBr potentiation involves stabilization of 

the open conformation of the receptor. Single channel studies would also be helpful in elucidating 

the mechanism of inhibition by dFBr. These experiments would need to be conducted at holding 

potentials where open-channel block by dFBr and ACh does not occur. Application of inhibiting 

concentrations of dFBr and ACh under these conditions might result in reduced open time 

probabilities or altered bursting rates. Combing these studies with site directed mutagenesis 

would likely provide novel insights into dFBr mechanisms at the single channel level and would 

also be extremely valuable at determining the role of the p2+/a4- interface in normal receptor 

function.

6.2.2 More Mutations and Scanning Cysteine Accessibility Method (SCAM).

Further work is needed to fully characterize the dFBr binding site. The work covered in 

this thesis provided the initial groundwork. Additional mutations that might provide insight into 

dFBr binding include: a4W82F, a4N86A, a4W88F, a4K90A, a4K90R, a4V135A, a4T136A, 

a4T136S, a4H137A, a4H137R, a4L138A, a4L138V, a4T139A, a4T139S, a4K140R, a4T152A, 

a4T152l, a4P153A, a4P153D, a4P154A, p2M126A, p2Y127A, p2T139S, p2S175A, p2S175T, 

P2W176F, P2T177A, p2T177S, p2T178A, P2Y178F, P2D179A, P2D179Q, p2N215A, p2N215E, 

P2D218Q, P2S219A, p2S219T, p2T220A, p2T220S, p2Y221A and p2Y221F. In addition, 

mutations that produced little or no effect on dFBr or ACh effects should be mutated to cysteine to 

determine if these would be suitable sites for SCAM. SCAM utilizes the ability to modify cysteine 

residues not involved in disulfide bonds with exogenous thiol reagents during the course of an 

experiment. Amino acids are substituting with cysteine then modified by the formation of thiol 

esters in the presence and absence of ligand. Changes in the rate of modification in the presence 

of the ligand help determine if the presence of the ligand alters the accessibility of the target 

amino acid. Decreased accessibility in the presence of dFBr would further support the hypothesis 

that the substituted amino acid is located within the ligand binding site. Ideally, cysteine mutations 

should be made on all key binding loops within the putative binding domain to confirm the location 

of the dFBr and HEPES binding domains. SCAM can also be used to identify portions of the 

receptor that move during the receptor cycle thus helping to identify the role of these regions in 

normal receptor functions. This approach could enable testing of the hypothesis that the C-loop of
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the (32+ face closes during receptor activation/desensitization and whether or not dFBr alters this 

closure.

6.2.3 The Development of the dFBr Binding Site on AChBP.

One of the goals of Dr. Marvin Schutle’s laboratory is to develop high throughput drug 

screening techniques. A potential candidate for a high throughput screening platform is the 

Acetylcholine Binding Protein (AChBP). Kinetic and affinity data for ligands interacting with the 

AChBP can be evaluated using Scintillation Proximity Assay (SPA) and Surface Plasmon 

Resonance (SPR). AChBP has similar pharmacology sensitivity to nAChR. The construction of 

AChBP proteins that are more similar to LGICs via mutagenesis may facilitate the drug screening 

process and lead to a better understanding of ligand binding sites.

One direction that the dFBr project can take is to develop an AChBP homologue that 

binds dFBr similarly to a4|32 nAChR. This would involve mutating AChBP residues to the 

equivalent of dFBr binding site residues. dFBr analogues could then be screened on the dFBr 

sensitive AChBP rapidly using techniques such as the SPR. This would greatly enhance the rate 

at which we are able to evaluate dFBr analogues and develop an understanding of this drug 

class. In addition, a dFBr sensitive AChBP homolog will be useful in studying the specific amino 

acid interactions that occur for the binding of dFBr to a4p2 nAChR. Crystal structures of the dFBr 

sensitive AChBP unbound and bound with dFBr could be resolved and be used to further 

understand the binding orientation and protein structural rearrangements induced by dFBr. The 

development of this protein will help verify binding site models of the a4p2 receptor and provide a 

platform for high throughput screening of the new dFBr class of modulatory agents.

6.2.4 Receptor Selectivity.

dFBr selectivity has been thoroughly investigated by us on a4p2 and a7 nAChR and by 

others on a3p2 receptors (Pandya and Yakel, 2011). The selectivity appears localized to 

receptors that contain the p2 subunit. However, many more subtypes of nAChR exists including 

the a3p2, a4p2, a3p4 subtypes. While Sala et al., (2005) evaluated several subtypes and 

suggested that dFBr was selective for a4p2 receptors, we observed differences in both potency 

and efficacy of synthetic dFBr compared to their results using dFBr purified from natural sources. 

This suggests that dFBr selectivity may be broader than was initially observed. Thus the true 

selectivity of dFBr is unknown. The effect of dFBr on other nAChR subtypes need to be 

evaluated. In addition, it would be interesting to determine if dFBr also interacts with other LGIC 

receptors. Our laboratory has performed preliminary studies indicating dFBr does not potentiate
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serotonin responses on 5-HT3AR but the LGIC family is large and many other possibilities exist. 

The development of radiolabeled dFBr might facilitate these studies by enabling large receptor 

binding studies to be performed using high throughput approaches. The development of 

radiolabeled dFBr is currently underway in our collaborators’ laboratory.

6.2.5 dFBr Analogues.

The lead compound in these studies, dFBr, is a natural product and is unlikely to be 

suitable in its current form as a therapeutic agent. A number of potential problems are likely to be 

encountered when administering dFBr for the treatment of neurological disorders. These include 

poor pharmacokinetics, transit across the blood brain barrier (BBB), therapeutic efficacy and 

selectivity. To overcome these difficulties, a number of steps are typically involved in optimizing 

the structure of the ligand. These include:

1. Optimization of the pharmacophore structure (increased potency and selectivity).

2. Evaluation of biological distribution and optimization for target tissue (increased BBB transit 

and partitioning into brain).

3. Improved chemical stability in vivo (optimized pharmacokinetics).

4. Decreased toxicity (evaluation of non-LGIC effects -  selectivity).

5. Evaluation and enhancement of therapeutic efficacy.

The first step in this process involves evaluation in receptor expression systems as 

described in this thesis. Steps 2-5 involve the use of animal models and eventually human 

subjects. Each step involves numerous structurally varied analogs. This is likely to be a long 

process that will take place in several laboratories before commercially available compounds 

become available. We are currently in Stage 1 although interest by other laboratories and the 

recent release of synthetic dFBr by Tocris is likely to facilitate future animal studies. The release 

of synthetic dFBr is largely the result of our efforts and is based on the data presented in this 

thesis. We are also in the process of developing and characterizing dFBr analogues to optimize 

the dFBr pharmacophore. Our collaborators have synthesized 26 different analogues which we 

have analyzed. Results have shown that 12 of the 26 analogues potentiate a4(32 nAChRs 250

290%. These 12 compounds selectively potentiated a4p2 and not a7 nAChR. An optimized 

ligand would be expected to have high selectivity for a4p2 receptors, higher potency, increased 

efficacy and lack of inhibitory effects. Improved characterization of the dFBr binding site is 

expected to enhance our ability to optimize the pharmacophore by enabling receptor homology 

modeling of the binding site and docking of potential ligands. This will lead to "rational drug
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design” for dFBr ligands. As we progress further toward ligands with better BBB transit, in vivo 

stability and therapeutic efficacy this fundamental data on dFBr’s requirements for selective 

interaction will guide further modification of the structure without loss of a4p2 selectivity.

6.2.6 Further Studies of HEPES Potentiation.

One unexpected finding that arose from the work in this thesis is the discovery that 

HEPES selectively modulates high ACh sensitive a4p2 receptors compared to low ACh sensitive 

a4|32 receptors and a7 nAChRs. This is one of the only ligands available that can selectivity 

modulate high ACh sensitive a4p2 receptors. To our knowledge, S-enantiomer of mecamylamine 

(TC-5213), is the only other ligand shown to show in vivo selective activation of the high- 

sensitivity channels and inhibition of the low sensitivity a4p2 nAChRs (Taly et al., 2009). The 

development of stoichiometric selective ligands would be useful in determining the distribution of 

these receptor populations throughout the central and peripheral nervous system in normal and 

diseased tissues. In addition such selective ligands could be highly valuable therapeutic ligands 

to treat disorders where dysregulation of one receptor stoichiometry occurs.

To develop HEPES or HEPES analogues as useful ligands, several steps are necessary. 

Like the path that dFBr has and will continue to travel, HEPES must also go through this process. 

This includes the development and evaluation of HEPES analogues on a4p2 and other nAChR 

subtypes, understanding of HEPES mechanisms, characterization of its binding site and testing in 

animal models and ultimately human subjects. One obstacle in the development of HEPES 

analogs is the low hydrophobicity of the parent compound, a problem not likely with dFBr analogs 

with a calculated LogP value of -4.87. This problem could make penetration of the BBB more 

difficult to engineer into HEPES compared to dFBr.

6.3 Summary.

The work described in this thesis has contributed significantly to advancement of our 

understanding of nAChR function in general and specifically to the development of an entirely 

new class of nAChR ligand. The long term impact is likely to be significant as this drug class is 

developed. In addition, the discovery of the effects of HEPES on nAChRs is likely to help prevent 

misleading experimental results due to the complicating factors of using HEPES in recording 

buffers. HEPES may additionally prove to be a valuable lead in the development of a new, even 

more selective ligand for characterization of a4p2 receptors in brain. This body of work also aided 

in the mechanistic understanding of how non-orthosteric clefts may be involved in the receptor 

mechanism.
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Therapeutic applications of the discoveries made in this thesis are also likely to be broad. 

Development of a novel a4(32 modulator has important application in the treatment of some of the 

most serious diseases facing us today. Alzheimer’s disease (Prevention, 2010a) and Autism 

(Prevention, 2010b) are rapidly increasing in our population and smoking continues to underlie 

some of the most debilitating diseases including cardiovascular disease, stroke and cancer 

(Prevention, 2010c). The development of new drugs to treat these diseases is crucial and 

compounds like dFBr and HEPES target the specific receptor identified as important in these 

disorders, the a4(32 receptors. We have begun the complicated endeavor of revealing the 

mechanism behind dFBr’s potentiation and inhibition actions on a4(32 receptors and we have 

located and characterized the a4p2 dFBr and HEPES binding sites. This will greatly facilitate the 

development of novel dFBr and HEPES analogues ultimately leading to a completely novel 

therapeutic agent.
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Appendix A.1 Response profiles for co-application of varying concentrations of dFBr 
and ACh for £2+ face B-ioop mutant receptors expressed using the low (LS) and high (HS) 
sensitive receptor preparations.

Xenopus oocytes were prepared using the high and low sensitive receptor preparations (HS 
mRNA injected at a ratio of 1a:5p; LS mRNA injection at a ratio of 5a:1p). Expressing oocytes 
were exposed to increasing concentrations of ACh and dFBr. A) Co-application of dFBr and 100 
pM ACh response traces for P2W176A receptors expressed via the low sensitive receptor 
preparation. B) Co-application of dFBr and 10 pM ACh response traces for P2W176A receptors 
expressed via the high sensitive receptor preparation. C) Co-application of dFBr and 100 pM ACh 
response traces for P2T177A receptors expressed via the low sensitive receptor preparation. D) 
Co-application of dFBr and 10 pM ACh response traces for P2D179A receptors expressed via the 
high sensitive receptor preparation. Response traces were recorded from a single oocyte. The 
solid bar above the response trace indicates the time the oocyte was exposed to co-application of 
varying concentrations of dFBr and ACh. For figures A, B and F, the response traces are offset 
for clarity.



Appendix A.2 Response profiles for co-application of varying concentrations of dFBr 
and ACh for P2+ face C-loop mutant receptors expressed using the low (LS) and high (HS) 
sensitive receptor preparations.
Xenopus oocytes were prepared using the high and low sensitive receptor preparations (HS 
mRNA injected at a ratio of 1a:5p; LS mRNA injection at a ratio of 5a:ip). Expressing oocytes 
were exposed to increasing concentrations of ACh and dFBr. A) Co-application of dFBr and 100 
pM ACh response traces for P2D217A receptors expressed via the low sensitive receptor 
preparation. B) Co-application of dFBr and 10 pM ACh response traces for P2D217A receptors 
expressed via the high sensitive receptor preparation. C) Co-application of dFBr and 100 pM ACh 
response traces for P2D218A receptors expressed via the low sensitive receptor preparation. D) 
Co-application of dFBr and 10 pM ACh response traces for (32D218A receptors expressed via the 
high sensitive receptor preparation. Response traces were recorded from a single oocyte. The 
solid bar above the response trace indicates the time the oocyte was exposed to co-application of 
varying concentrations of dFBr and ACh. For figure B, the response traces are offset for clarity.
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LS02D217A

d 1 pM dFBr + 100 pM ACh 
e 10 pM dFBr + 100 pM ACh 
f 100 pM dFBr + 100 pM ACh

B HS P2D217A

a 10 pM ACh
b.0 3 pM dFBr +10 pM ACh
c.3 pM dFBr + 10 pM ACh
d.10 pM dFBr + 10 p M  ACh 
8 30 pM dFBr+ 10pM ACh
f 100 pM dFBr ♦ 10 pM ACh

LS 02D218A D HS 02D218A

a lOOpM ACh
b 0.01 m dFBr *  100 pM ACh 
c 0.3 pM dFBr + 100 pM ACh 
d 1 pM dFBr +100 |JM ACh
e. 3 pM dFBr + 100 pM ACh
f. 10 pM dFBr + 100 pM ACh

a 10 pM ACh 
b 3 pM dFBr + 10 pM ACh 
c .10pM dFBr +10 pM ACh 
d 30 pM dFBr + 10 pM ACh 
e. 100 pM dFBr + 10 pM ACh



Appendix A.3 Response profiles for co-application of varying concentrations of dFBr 
and ACh for 02+ face A-ioop mutant receptors expressed using the low (LS) and high 
(HS) sensitive receptor preparations.

Xenopus oocytes were prepared using the high and low sensitive receptor preparations (HS 
mRNA injected at a ratio of 1a:5p; LS mRNA injection at a ratio of 5a: 1 p). Expressing oocytes 
were exposed to increasing concentrations of ACh and dFBr. A) Co-application of dFBr and 100 
pM ACh response traces for (32D116A receptors expressed via the low sensitive receptor 
preparation. B) Co-application of dFBr and 10 pM ACh response traces for 02D116A receptors 
expressed via the high sensitive receptor preparation. C) Co-application of dFBr and 100 pM ACh 
response traces for (32Y120A receptors expressed via the low sensitive receptor preparation. D) 
Co-application of dFBr and 10 pM ACh response traces for P2Y120A receptors expressed via the 
high sensitive receptor preparation. E) Co-application of dFBr and 100 pM ACh response traces 
for P2Y127A receptors expressed via the low sensitive receptor preparation. F) Co-application of 
dFBr and 10 pM ACh response traces for (32Y127A receptors expressed via the high sensitive 
receptor preparation. Response traces were recorded from a single oocyte. The solid bar above 
the response trace indicates the time the oocyte was exposed to co-application of varying 
concentrations of dFBr and ACh. For figures B, D and F, the response traces are offset for clarity.
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Appendix A.4 Response profiles for co-application of varying concentrations of dFBr 
and ACh for a4- face mutant receptors expressed using the low (LS) and high (HS) 
sensitive receptor preparations.

Xenopus oocytes were prepared using the high and low sensitive receptor preparations (HS 
mRNA injected at a ratio of 1a:50; LS mRNA injection at a ratio of 5a:10). Expressing oocytes 
were exposed to increasing concentrations of ACh and dFBr. A) Co-application of dFBr and 100 
pM ACh response traces for a4K140A receptors expressed via the low sensitive receptor 
preparation. B) Co-application of dFBr and 10 pM ACh response traces for a4K140A receptors 
expressed via the high sensitive receptor preparation. C) Co-application of dFBr and 10 pM ACh 
response traces for a4W88A receptors expressed via the high sensitive receptor preparation. 
Response traces were recorded from a single oocyte. The solid bar above the response trace 
indicates the time the oocyte was exposed to co-application of varying concentrations of dFBr 
and ACh. For figures A, B and C, the response traces are offset for clarity.
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LS a4K140A B HS a4K140A

3s

a 100 pM ACh 
b 0 1  pM dFBr + 100 pM ACh 
e 1 pM dFB r + 100 pM ACh 
d 10 pM dFBr + 100 pM ACh 
e 100 pM dFB r + 100 pM ACh

3s

a 10 pM ACh
b 0 1 pM dFBr * 10 pM ACh 
c 1 pM dFBr + 10 pM ACh 
d 10 pM dFBr + 10 pM ACh 
e 100 pM dFBr + 10 pM ACh

HSa4W88A

L_
3s

a 10 pM ACh
b 0 3 pM dFBr *  10 pM ACh 
c 3 pM dFBr *  10 pM ACh 
d 10 pM dFBr + 10 mm ACh 
e 30 pM dFBr + 10 pM ACh 
f  100 pM dFBr + 10 pM ACh
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