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A bstract

This research demonstrates how habitat structures subtidal communities and supports 

individual species in Alaska nearshore marine ecosystems. This was accomplished 

through a case study o f southeast Alaska coastal regions, and an in-depth investigation of 

red king crab Paralithodes camtschaticus early life stage ecology and nursery habitat.

How subtidal communities reflect variation in the marine environment o f southeast 

Alaska is poorly understood. The purpose o f the first part of this body o f research was to 

identify and compare patterns o f community structure for macroalgae, invertebrate, and 

fish communities at shallow subtidal depths between inner coast and outer coast regions, 

and link patterns o f community structure to environmental variability in southeast Alaska. 

The major hydrographic gradient o f decreasing salinity and increasing temperature from 

the outer coast to the inner coast affected regional community structure, with greater 

species diversity at the outer coast. Species distribution for invertebrate communities 

was linked to variation in benthic habitat at local scales among sites within regions. This 

study improves understanding o f processes that structure marine communities to better 

predict how environmental change will affect Alaska marine ecosystems.

Many Alaska red king crab populations have collapsed and continue to experience 

little recovery, even for areas without a commercial fishery. Several aspects o f red king 

crab early life stage ecology were investigated because reasons for the lack of recovery 

may be related to the early life history of this species. Field experiments were conducted 

in southeast Alaska. Settlement timing was consistent between study years (2008-09) 

and with historical data for this region. Local oceanographic processes that influence 

larval transport may be responsible for spatial variation in larval supply. In laboratory 

and field experiments, early juvenile crabs (age 0 and 1) demonstrated refuge response 

behavior to a predator threat that changed with crab ontogeny. When predators were 

absent, juvenile crabs preferred highly structured biogenic habitats due to foraging 

opportunities, and associated with any structural habitat to improve survival when 

predators were present. This research shows how availability o f high quality nursery 

habitat affects red king crab early life stage success and potential for population recovery.
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Understanding habitat function in marine ecosystems is integral to an ecosystem- 

based approach to marine resource management and conservation. Habitat in its most 

basic form is the place or environment where an organism naturally lives. In this sense, 

habitat is a suite o f environmental characteristics where individuals exist within their 

physiological tolerances, with shelter for predator avoidance, and opportunity for 

successful foraging and reproduction (Rice, 2005). Essential Fish Habitat, by marine 

policy definition, is the combination of those waters and substrate necessary to marine 

species for spawning, breeding, feeding, or growth to maturity (U.S. Department of 

Commerce, 1996), which reflects the ecosystem integrated intention of current U.S. 

fishery management policy.

A variety o f habitat characteristics must be considered to understand the basic 

structure o f marine ecosystems and how these ecosystems support individual species. 

Habitat for marine species includes seafloor habitats that are composed o f physical 

substrates, such as bedrock and fine sediments, and biological structures provided by 

macroalgae, and structure-forming invertebrates, such as corals and bryozoans. Marine 

habitat also includes hydrographic features o f the water column such as temperature, 

salinity, and currents. Characteristics of marine habitat, including spatial and temporal 

aspects o f environmental variability, influence patterns o f community biogeography and 

individual species distribution.

This body o f research demonstrates habitat function in Alaska nearshore marine 

ecosystems with a two-part approach. The first approach investigates how habitat 

structures nearshore subtidal communities, with a case study in southeast Alaska. The 

second approach investigates how habitat supports a single species, red king crab 

Paralithodes camtschaticus, through an in-depth study of red king crab early life stage 

ecology and nursery habitat function.

General Introduction
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Chapter 1 o f this research takes place in southeast Alaska, a north temperate fjord 

system in the eastern Gulf o f Alaska. Fjord systems form transitions between terrestrial 

and ocean environments and are common along coastlines that were shaped by glacial ice 

during geologic history (Farmer & Freeland, 1983; Syvitski et al., 1987). The coastline 

of southeast Alaska is an intricate landscape with many islands, deep inlets, and 

interconnected channels. This complex coastal topography leads to environmental 

variability, most notably between the inner and outer coast regions. For example, the 

inside waters near the coastal mountain range, where freshwater runoff is concentrated, 

have estuarine characteristics, whereas the outer coast has greater stability o f salinity and 

temperature with direct influence by the Gulf o f Alaska (Pickard, 1967; Murphy & Orsi,

1999).

There is limited quantitative information for shallow subtidal marine communities in 

southeast Alaska. Furthermore, environmental variability between coastal regions in 

southeast Alaska has not been quantitatively linked with patterns o f species distribution. 

This study identifies and compares patterns o f nearshore subtidal community structure for 

macroalgae, invertebrate, and fish communities between inner coast and outer coast 

regions in southeast Alaska, and links patterns of community structure to habitat and 

environmental variability, at regional and local spatial scales.

The next three chapters form an in-depth investigation o f red king crab early life stage 

ecology and nursery habitat function. Red king crab are a commercially important 

species distributed throughout the North Pacific that supported the most valuable 

crustacean fishery in Alaska until a sharp decline occurred in the late 1960s followed by 

large-scale collapse in the early 1980s (Orensanz et a l, 1998; Zheng and Kruse, 2000).

At present, many red king crab populations throughout Alaska remain depressed, even in 

areas without a commercial fishery (Woodby et al., 2005; Hebert et al., 2008).

Recruitment success for marine fish and crustaceans depends upon early life stage 

survival (Wahle and Steneck, 1991; Eggleston and Armstrong, 1995). If we can gain 

understanding o f factors that support red king crab early life stages, then we may better 

understand conditions that contribute to population fluctuation and recovery for this
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species. Variability in the marine environment, such as water temperature, affects 

planktonic larval development for red king crab, and availability o f structurally complex 

benthic habitat is important during settlement and for early juvenile stages (Powell and 

Nickerson, 1965; Shirley and Shirley, 1989; Stevens and Kittaka, 1998; Loher and 

Armstrong, 2000), similar to American lobster Homarus americanus (Wahle and 

Steneck, 1991). Ecological field studies of American lobster demonstrated that a habitat- 

related population bottleneck can occur during the early juvenile stage and affect fishery 

recruitment (Wahle and Steneck, 1991; Wahle, 2003). It is possible that similar habitat- 

survival relationships are functioning in Alaska red king crab populations.

Red king crab larval dynamics are poorly understood and have not been studied in 

southeast Alaska beyond one location during the late 1990s. For Chapter 2 o f this 

research, red king crab larval supply, settlement timing, and settlement habitat 

availability were investigated during 2008 and 2009 at six locations in northern southeast 

Alaska. Mechanisms o f red king crab habitat associations during the first year post

settlement are an important aspect o f red king crab nursery habitat function. Chapter 3 

includes laboratory experiments that examine the role of structural habitat complexity 

and foraging opportunities to drive habitat associations with two sizes o f age 0 red king 

crab. Chapter 4 includes integrated laboratory and field experiments that investigate the 

effects o f habitat structure on survival and refuge response behavior o f early juvenile red 

king crab (age 0 and 1 yr) to determine whether or not habitat choice is influenced by 

perceived predator threat, whether survival is greatest within habitats o f complex 

structure, and how refuge response behavior may vary between habitats with and without 

structure and with crab size or age. Crab survival was evaluated in the laboratory with 

age 1 Pacific cod Gadus macrocephalus as a fish predator and with a variety of potential 

predators at nearshore nursery locations in the field.
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C hapter 1

Comparisons of marine biogeography in a north temperate fjord: subtidal community 

structure and environmental variability in southeast Alaska1

A bstract

Aim This study defines and compares patterns of nearshore, subtidal community 

structure and environmental gradients between coastal regions of southeast Alaska to 

explore the processes that structure marine communities in fjord systems. Our research 

goals were: 1) identify and compare patterns o f community structure for macroalgae, 

invertebrate, and fish communities between inner coast and outer coast regions, and 2) 

link patterns o f community structure to environmental variability at regional and local 

spatial scales.

Location Northern southeast Alaska, U.S., including the inside waters o f Lynn Canal 

near Juneau (ca. 58° 23’ N, 1340 38’ W) and Sitka Sound on the outer coast near Sitka (ca. 

58°23' N, 134°38’ W).

M ethods Species assemblage and benthic habitat data were collected by SCUBA surveys 

at 6 m and 12 m depths (9 sites-region'1) during summer 2007. Hydrographic data 

(salinity and temperature) were collected using a conductivity-temperature-depth (CTD) 

meter. Species diversity was compared between regions and depths. Multivariate 

analysis was applied to reduce the number o f environmental variables to major gradients, 

to resolve community structure, and to relate community structure to environmental 

gradients of hydrography and benthic habitat at regional and local scales.

1 Pirtle, J.L., Ibarra, S.N., and Eckert, G.L. Comparisons of marine biogeography in a 
north temperate fjord: subtidal community structure and environmental variability in 
southeast Alaska. Prepared for submission in Journal o f Biogeography.



7

Results The major hydrographic gradient in northern southeast Alaska of decreasing 

salinity and increasing temperature from the outer coast to the inner coast was associated 

with regional community structure, with greater species diversity at the outer coast (p < 

0.0001) at 6 m depth (p < 0.0001) with range restriction and overlap for kelps, 

macroinvertebrates, and small epibenthic invertebrates. Local-scale species distribution 

for invertebrate communities was linked to variation in benthic habitat, including algae 

(PCI, 44.4% of algae variation) and substrate (PC2, 23.9% of substrate variation) for 

small epibenthic invertebrates, and crust and coralline algae on hard substrates (PC2, 

23.3% of algae variation) for macroinvertebrates.

M ain conclusions We demonstrate that the inner coast and outer coast regions of 

northern southeast Alaska represent biogeographic areas for shallow subtidal 

communities, based on relationships with variation in the marine environment between 

regions. We further demonstrate the influence o f benthic habitat in structuring species 

distribution at the local scale among sites within regions.
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1.1 Introduction

Studies that link patterns of marine community structure with environmental gradients 

develop testable hypotheses about mechanisms that drive ecological processes. This 

approach is essential for newly studied and data poor regions that lack baselines to 

identify and evaluate ecosystem shifts with environmental change and disturbance. In 

this study, we resolve variation o f regional community structure and environmental 

gradients for southeast Alaska, a north temperate fjord system with limited quantitative 

information for shallow subtidal marine communities (< 20 m depth).

Fjords are the youngest o f all estuaries, found in high-latitude mountainous regions 

worldwide (above 42° N and S latitude and above 56° N in the Scottish Isles) that 

presently or in the past have supported fluctuating ice fields with valley glaciers (Syvitski 

et al., 1987). Fjord estuary systems form transitions between terrestrial and ocean 

environments, where salinity and circulation are due to complex interactions between 

freshwater input from glaciers and rivers, winds and tides, and local geomorphology, 

including entrance sills (Flansen & Rattray, 1966; Farmer & Freeland, 1983; Gibbs et a l,

2000). Common hydrographic features of fjords include a low salinity surface layer that 

decreases towards the entrance, saltwater intrusion at depth near the entrance, circulation 

fronts from colliding water masses, and strong along-shore currents that shape the local 

oceanographic environment (Farmer & Freeland, 1983; Syvitski et al., 1987).

Spatial patterns o f marine communities in fjords reflect the influence o f many 

environmental variables, including salinity, temperature, dissolved oxygen, seafloor 

habitat, sedimentation, and exposure to winds and wave action (e.g., Farrow et al., 1983; 

Buhl-Mortensen & Floisaeter, 1993; Smith & Witman, 1999; Zacharias & Roff, 2001; 

Fetzer et al., 2002; Josefson & Hansen, 2004). Such patterns have been observed in the 

fjord environments of Canada (Levings et al., 1983; Leys et al., 2004), the North Sea 

(Middelboe et al., 1998; Middelboe & Sand-Jensen, 2004), Norwegian coast (Gulliksen, 

1980; Jensen et al., 1985), New Zealand (Kregting & Gibbs, 2006; Miller et al., 2006), 

Patagonia (Haussermann & Forsterra, 2007), the sub-Antarctic islands (Barnes et al.,
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2006), and the Arctic (Wlodarska-Kowalczuk et al., 2005). These variables exhibit 

gradients that affect species interactions, including predation (Witman & Grange, 1998), 

competition (Menge & Sutherland, 1987), and habitat facilitation (Bertness & Callaway,

1994) to further influence patterns o f community structure.

Southeast Alaska is a northern temperate region where glacial ice and erosion has 

created an intricate fjord landscape with many islands, deep inlets, and interconnected 

channels (Figure 1.1). Storms associated with the Aleutian Low collide with the high 

coastal mountain range providing ample precipitation throughout the year (Wilson & 

Overland, 1987). This precipitation is stored as snow in the winter creating an ideal 

environment for ice formation resulting in extensive ice fields and glaciers (Powell & 

Molnia, 1989; Meigs & Sauber, 2000). Glacial fluctuations that shaped this region 

throughout geologic history include the advance and retreat o f the Wisconsin-Laurentide 

Ice Sheet that extended seaward to the continental shelf during the last glacial maximum 

(ca. 10,000-12,000 BP), and the most recent glacial advance during the Little Ice Age (ca. 

1400 AD) (Goldth wait, 1963; Calkin e ta l ,  2001). Glacier Bay (Figure l .l)w a s  ice- 

covered just over 200 years ago when first surveyed in 1794 by George Vancouver 

(Goldthwait, 1963).

The complex coastal topography o f southeast Alaska leads to environmental 

variability, most notably between the inner coast and outer coast regions. We refer to the 

interior islands and waters adjacent to the coast range as the inner coast region. The inner 

coast includes Lynn Canal, the deepest fjord in North America, with depths exceeding 

900 m, and a fault trace that extends the length o f Chatham Strait (Martin & Williams, 

1924; Brew et al., 1991) (Figure 1.1). The outer coast region includes the outermost 

islands and waters directly connected to the Gulf o f Alaska, including Sitka Sound 

(Figure 1.1). In southeast Alaska the gradient o f freshwater discharge is from the interior 

coastal mountain range to the outer coast (Weingartner et al., 2009). Freshwater runoff is 

seasonally most pronounced during the spring and autumn causing water column 

stratification that is strongest near freshwater discharge sites (Pickard, 1967; Royer,

1982; Weingartner et al., 2009). The inside coastal waters, where this runoff is
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concentrated, have estuarine characteristics, whereas the outer coast has greater stability 

o f salinity and temperature, directly influenced by the Gulf of Alaska (Pickard, 1967; 

Murphy & Orsi, 1999).

How marine community structure reflects variation in the marine environment of 

southeast Alaska is poorly understood. Previous observational studies identify 

differences in species assemblage structure for nearshore fishes (Quast, 1968; Murphy et 

al., 2000), rocky intertidal fauna (O'Clair & O ’Clair, 1998), and algae (Lindstrom, 2006; 

Lindstrom, 2009) between the outer coast and the inside coast, with further separation 

between the northern and southern inside coast at the Kuiu-Kuprenof-Mitkoff Island 

complex in central southeast Alaska (Figure 1.1) and Ketchikan to the south. However, 

these observations are not quantitatively linked to environmental variability between 

coastal regions. We use a community-level multivariate approach and a variety of 

diversity measures to define and compare patterns of marine community structure and 

environmental gradients between coastal regions of northern southeast Alaska to explore 

the processes that structure marine communities in this fjord system. Two goals o f this 

research are to 1) identify and compare patterns o f nearshore subtidal community 

structure between the inside coast and outer coast regions, and 2) link patterns of 

community structure to environmental variables, including temperature, salinity, and 

benthic habitat.

1.2 M aterials and M ethods

1.2.1 Study Location

This study was conducted in northern southeast Alaska near Juneau (ca. 58° 23’ N, 134 0 

38’ W, North American Datum of 1983) located on the inside coast, and Sitka (ca. 57° 02’ 

N, 135°21’ W) on the outer coast (Figure 1.1). Our locations were selected to represent 

maximum variation between coastal regions with terrestrial and ocean influence. Study 

sites were selected to maximize the variety o f habitat features sampled and included
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protected embayments and exposed rock reefs. A total of nine study sites were 

established at the inner coast near Juneau and nine at the outer coast near Sitka (Table 1.1 

and Figure 1.1).

1.2.2 D ata Collection

SCUBA surveys were conducted at study sites along two transects (25 m x 1 m) parallel 

to shore at 6 m and 12 m depth, during the summer months o f June-August 2007. These 

depths were chosen to capture the area o f the shallow subtidal zone just deeper than the 

transition with the low intertidal zone in Alaska and shallower than depths where subtidal 

macroalgae are limited. These depths were also easily accessible to divers. Benthic 

habitat was characterized by the physical seafloor substrates as well as the percent cover 

and species o f benthic algae. Substrate composition was characterized along transects as 

areas o f uniform substrate type, using a two-code system with the following categories: 

rock with vertical relief (R); flat bedrock (F); boulder (B) (> 25.5 cm); cobble (C) (6.5

25.5 cm); pebble (P) (2-6.5 cm); gravel (G) (2-4 mm); sand (S) (grains distinguishable); 

and mud (M) (Stein et al., 1992; Greene et al., 1999). The first code represented 50-80% 

of the substrate composition, and the second code represented 20-50% (e.g., RS is at least 

50% rock and at least 20% sand, and RR is > 80% rock). Total percent cover o f algae was 

estimated within each area of uniform substrate type by the following groups: greens, 

reds, coralline, crusts, understory browns and kelps, and canopy kelps.

Community composition was quantified for macroalgae, fishes, macroinvertebrates, 

and small epibenthic invertebrates. Individuals were identified to species or the lowest 

taxonomic level possible in the field and verified with photographs or voucher specimens 

as necessary. All individual kelps, fishes, and macroinvertebrates were counted along 

transects. Quadrats (0.30 x 0.30 m) were placed at 10 random points along transects to 

count small epibenthic invertebrates. Both invertebrate communities included epibenthic 

taxa that were sessile and mobile. Macroinvertebrates could be counted along transects 

and were generally > 5 cm in size. Small epibenthic invertebrates were too small to be
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counted at the scale o f the transect and were generally < 5 cm in size. We do not assert a 

functional difference between invertebrate groups at the size threshold of our counting 

methods. Rather, these groups were analyzed separately because species associations 

with benthic habitat features are influenced by body size (e.g., Caddy, 1986) and 

functional relationships may exist within the size thresholds distinguished by our 

methods. Counts o f individual taxa along each transect were used in community 

analysis.

Conductivity and temperature were sampled once at each site in July 2007. We 

sampled the vertical dimension of the water column from the surface to 25 m depth on an 

outgoing tide using a Seabird SBE 25 CTD with an automated 2 s sampling interval.

CTD data were processed into bins o f 0.5 m depth, and conductivity was converted to 

salinity.

1.2.3 Data Analysis

We determined species richness, species diversity, and evenness as components of 

community structure for species with positive taxonomic classification. Taxa that could 

not be identified to species were not included, such as genera and undefined taxonomic 

groups (Appendix 1.0). Species richness (s) was calculated as the total count of species 

found along dive surveys for sites and regions. The Shannon-Weiner Diversity index

( / / '=  - Z  Pi ■ In was calculated as a measure o f species alpha diversity (Gray, 2000),
/=i

. . Ylusing the proportional abundance (p t = -^ ) o f species at sites and regions, where {nt ) is

the number o f individuals of a species and (N ) is the total number o f individuals o f all 

species. Community evenness (E H = H ' I H miX) was calculated from species diversity 

estimates as the relative abundance of species within a community, where /7max = ln.s 

(Pielou, 1969). The relative abundance and diversity of species was represented by
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plotting a species relative abundance against its rank in abundance (Hill, 1973). Rank- 

abundance curves presented differences in community structure between regions, and the 

slope of the curve is related to community evenness (E H ) ,  with a steeper slope reflecting 

lower evenness o f individual species distribution within that community. Species 

diversity ( / / ')  was compared between locations and depths using the Shannon t-test (a  = 

0.05) (Hutcheson, 1970). The Bonferroni correction (a'  = a  / k) for multiple tests was 

applied to adjust the experiment-wide error rate for a total o f six tests (k) for each 

community {a'  = 0.008).

Temperature and salinity measurements were compared between regions and depths 

using point measurements at the depth of dive surveys at 6 m and 12 m depth from CTD 

casts at each study site. Temperature was compared using a two-factor General Linear 

Model (GLM) (a =  0.05). Salinity was compared using Welch’s ANOVA because the 

assumption of equality o f variances could not be met by Bartlett’s or Levene’s test (p < 

0.05). Temperature and salinity measurements at the surface (0.5 m depth) were 

compared between regions using a single-factor GLM. Univariate analysis was 

conducted using SAS 9.2 (SAS Institute, Inc.).

Many potentially correlated benthic habitat variables were reduced to the most 

influential gradients using Principal Component Analysis (PCA). Variables were log- 

transformed (log10 (x +1)) to reduce the influence o f outliers and standardized (mean = 0, 

standard deviation = 1) to compare variables o f different scale. PCA was applied 

separately to percent cover estimates o f substrate (rock, boulder, cobble, pebble, gravel, 

sand, and mud) and algae (red, brown, canopy, crusts, and coralline).

Spatial variation in community structure was resolved using multivariate analysis, 

which is more accurate to characterize community structure than diversity measures 

alone (Gray, 2000). Detrended Correspondence Analysis (DCA) is an unconstrained 

ordination technique that provides simultaneous ordination o f sites and species along 

multivariate dimensions to identify major gradients in ecological data (Hill & Gauch, 

1980). DCA was run separately for kelps (n = 14), fishes (n = 12), macroinvertebrates (n
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= 26), and small epibenthic invertebrates (n = 58), using log-transformed counts of 

species and taxonomic groups from 34 surveys. Preliminary analysis o f the diversity 

metrics with species and taxonomic groups indicated that the results did not change when 

conducting the analysis with species only. For this reason, taxonomic groups were 

included in DCA that were not included in the species diversity analysis, as many of 

these groups were specific to one region or to one habitat type and were helpful to resolve 

community structure by ordination. Species or taxa with greater than one observation 

were included in DCA because rare species are problematic with ordination (Appendix

1.0). Due to the occurrence of many rare small epibenthic invertebrates from quadrat 

counts, only species or taxa with at least 0.1% of the total abundance o f all taxa for this 

community were used in the analysis. DCA works well with unimodal species response 

curves along environmental gradients. Environmental data can be related to DCA 

ordination as vectors that describe significantly correlated environmental gradients with 

species groups (Oksanen et al., 2006). Environmental vectors were fitted to DCA 

ordinations by permutation analysis (1000 permutations, a=  0.05) using six 

environmental variables. The environmental variables were point measurements of 

temperature and salinity at 6 m and 12 m depth from CTD casts at the depth o f dive 

surveys, and multivariate scores from the first and second principal components for 

substrate and algae that described gradients of benthic habitat. DCA scores for sites and 

species were summarized in ordination plots with vectors o f significant environmental 

gradients. Multivariate analyses were conducted using R (R Development Core Team). 

DCA and vector permutation tests were run using the R package Vegan (Oksanen et al., 

2006).
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1.3 Results

1.3.1 Biodiversity and Community Structure

We identified 135 species, consisting of 13 kelps, 15 fishes, 26 macroinvertebrates, and 

75 small epibenthic invertebrates (Appendix 1.0). In addition, 44 taxonomic groups were 

identified, including 1 kelp, 10 fishes, 11 macroinvertebrates, and 22 small epibenthic 

invertebrates (Appendix 1.0). The diversity indices demonstrated that these communities 

had different species richness (5 ), species diversity (H % and community evenness (Eh) 

between coastal regions and depths (Table 1.2). Outer coast communities in general had 

higher species diversity (H') than inner coast communities (p < 0.0001) at 6 m depth (p < 

0.0001), except for fish where species diversity was not significantly different (Table

1.3). Macroinvertebrate diversity was greater at 12 m depth at the inner coast (df= 3, t = 

14.98, p  = 0.004). Community evenness was lower for all groups at the inner coast than 

the outer coast region due to relative differences in species dominance within each 

community in these regions (Figure 1.2). Dominance by one or more species resulted in 

decreased evenness within regions or depths, reflected by a steep drop in slope o f the 

species rank abundance curve with kelps (Table 1.2). Rank abundance curves were 

relatively similar between regions for the other communities despite significant 

differences in species diversity for most communities between regions (Figure 1.2 and 

Table 1.3).

The inner coast macroalgae community included a total of seven kelps (H1 = 1.03, EH 

= 0.53), with seven observed at 6 m depth and three at 12 m depth (Table 1.2 and 

Appendix 1.0). The outer coast macroalgae community was composed o f 12 kelps (H' = 

1.75, Eh = 0.70), with nine observed at 6 m and six at 12 m depth (Table 1.2 and 

Appendix 1.0). The outer coast kelp community had higher species diversity ( d f = 1064, 

t=  15.11,/? < 0.0001) than the inner coast, driven by greater diversity of kelps at the 

outer coast at 6 m depth (df= 958, t = 10.70,/? < 0.0001) and dominance by three species 

at the inner coast that decreased relative evenness for this region (Table 1.3 and Figure
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1.2 a). The three dominant inner coast kelps were Saccharina subsimplex (n = 631, /?, = 

54.5%), Agarum clathratum (n = 385, p, = 33.3%), and Laminaria yezoensis (n = 119,/?, 

= 10.3%). Kelps belonging to Desmarestia spp. were D. aculeata and D. viridis that 

could not be positively identified in the field and included a total o f 106 individuals and 

8.4% o f individual kelps observed in this region. Kelps found exclusively at the inner 

coast, included Alaria fistulosa and Desmarestia spp. Saccharina subsimplex (n = 306, /?, 

= 46.8%) was the most abundant outer coast kelp, though the proportional abundance of 

kelps in this community was more evenly distributed than the inner coast community, 

consistent with greater observed diversity and evenness (Figure 1.2 a). Flalf (50%) o f the 

kelps observed at the outer coast were from species only found in that region, including 

giant kelp Macrocystis integrifolia and Pleurophycus gardneri.

The inner coast fish community included 14 fishes (H' = 1.72, EH= 0.65), with nine 

observed at 6 m depth and six at 12 m depth (Table 1.2 and Appendix 1.0). The outer 

coast fish community included 12 fishes (H'= 1.86, Eh = 0.75), with nine observed at 6 

m depth and seven at 12 m depth (Table 1.2 and Appendix 1.0). The inner coast fish 

community was dominated by rock sole Lepidopsetta bilineata (n = 38, /?, = 52.1%), 

occurring at the deeper survey depth (12 m) at four o f nine sites (Figure 1.2 b). Several 

sculpins (Cottidae) were observed at the inner coast, and certain species like Northern 

ronquil Ronquilus jordani and Arctic shanny Stichaeuspunctatus were relatively 

common. Quillback rockfish Sebastes maliger was the only rockfish Sebastes spp. 

observed from inner coast surveys. Rockfishes found at outer coast shallow subtidal 

depths included quillback, copper Sebastes caurinus, and black rockfish S. melanops, in 

addition to schools o f undefined juveniles (n = 78, 58.2% o f observations) and many 

more were observed in the distance off-transect and were not counted. Several fish 

species were observed exclusively in one region, and many were observed only once 

(Figure 1.2 b, Appendix 1.0). This included nine fishes found only at the inner coast, 

64.3% of observed fish species at that region, and seven species at the outer coast 

(58.3%). It should be noted that several fish species occur within respective regions at 

shallow subtidal depths, but were not observed on our dive surveys, including dark dusky
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rockfish S. ciliatus at the inner coast, and wolf eel Anarrhichthys ocellatus at the outer 

coast.

The inner coast macroinvertebrate community was composed o f 18 taxa (H ' = 1.16, 

Eh = 0.40), including 14 at 6 m depth and 11 at 12 m depth (Table 1.2 and Appendix 1.0). 

Outer coast macroinvertebrates included 17 taxa (H'= 1.71, Eh -  0.61), with 11 observed 

at 6 m depth and 13 at 12 m depth (Table 1.2 and Appendix 1.0). Higher species 

diversity was observed at the outer coast (df=  608, t = 7.33, p  < 0.0001) at 6 m depth (d f  

= 145, t = 14.58, p  < 0.0001) (Table 1.3). However, within regions, macroinvertebrate 

diversity was higher at 12 m depth (df=  3, t = 14.98, p  < 0.004) at the inner coast (Table

1.3). Dominance by green urchins Strongylocentrotus droebachiensis at the inner coast 

region at 6 m depth contributed to lower species diversity and lower evenness, as this 

species was an order of magnitude greater in abundance (n = 877, p, = 70.4%) than the 

second and third most abundant species, the red cucumber Cucumaria miniata (n = 133, 

p, = 10.6%) and the seastar Evasterias troschelii (n = 93, p, = 7.4%) (Figure 1.2 c). The 

outer coast community was dominated by the sand anemone Pachycerianthus fimbriatus 

{n = 175, pi = 50.7%), a Cerianthid that formed dense aggregations at protected sites in 

silty-sand habitats, followed by sunflower star Pycnopodia helianthoides (n = 44, p, = 

12.8%), and giant cucumber Parastichopus californicus (n = 31, /?, = 9%) (Figure 1.2 c). 

Chlamys spp. scallops, including C. rubida and C. hastata, were abundant at the outer 

coast (n = 49, 11.4% of observed macroinvertebrates) and could not be distinguished in 

the field due encrusting sponges and bryozoan. Macroinvertebrates found exclusively at 

the outer coast included 47.1% of observed species, compared to 50% of species at the 

inner coast. Several species o f crab were observed at the inner coast, including 

Dungeness crab Cancer magister, lyre crab Elyas lyratus, graceful decorator crab 

Oregonia gracdis, helmet crab Telmessus cheiragonus, two large hermits of the genus 

Elassochirus, E. gilli and E. tenuimanus, and small undefined hermit crabs, but few were 

observed at the outer coast, including helmet crab and small undefined hermit crabs 

(Appendix 1.0). Red urchins Strongylocentrotus franciscanus were exclusive to the outer 

coast and green urchins were only observed at inner coast sites (Appendix 1.0).
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The inner coast community o f small epibenthic invertebrates included 45 taxa (H' = 

2.46, Eh — 0.65), with 30 at 6 m depth and 29 at 12 m depth (Table 1.2 and Appendix

1.0). Outer coast small epibenthic invertebrates included 57 taxa ( // ' = 2.85, EH = 0.70), 

with 42 at 6 m depth and 31 at 12 m depth (Table 1.2 and Appendix 1.0). Species 

diversity for this community was higher at the outer coast region (df=  2773, t = 8.71 ,P <  

0.0001) at 6 m depth (df= 1364, t = 2.94, p  < 0.0001) (Table 1.3). Three species 

comprised more than half (56.3%) o f total abundance of the inner coast community, 

including the snail Margarites pupillis, the red trumpet calcareous tube-worm Serpula 

columbiana, and a nudibranch Onchidoris muricata that was numerous at one site (Figure

1.2 d). Four species accounted for more than half (51.5%) of the abundance o f small 

epibenthic invertebrates at the outer coast, including the green phoronid Phoronopsis 

harmeri that was abundant at deeper depths at two sites, S. columbiana, M. pupillis, and 

the orange cup-coral Balanophyllia elegans (Appendix 1.0). It should be noted that the 

small difference in community evenness between regions may not be that meaningful 

because there was relatively little difference in the shape o f the rank abundance curves 

between regions for this community (Figure 1.2 d). A variety o f undetermined small 

hermit crabs comprised 13.9% of all individuals observed in this community at the outer 

coast. A total o f 18 species (40%) were exclusively observed at inner coast sites, and 30 

species were only found at the outer coast accounting for 52.6% of species richness for 

this community at this region (Appendix 1.0).

1.3.2 Environm ental G radients and Community Structure

Temperature and salinity varied between regions and survey depths, measured during the 

summer month of July. Temperature was greater at the inner coast (df=  1 ,F  = 9.19, p  = 

0.004) and at the shallow 6 m survey depth (df=  1 ,F  = 6.45,p  = 0.02) (Figure 1.3 a). 

Inner coast temperature at 6 m depth was (mean ± SE) 10.2 °C (± 0.4) and 9.0 °C (± 0.2) 

at the deeper 12 m survey depth. Temperature at the outer coast was 8.7 °C (± 0.4) at 6 m 

depth and 7.9 °C (± 0.5) at 12 m depth. Temperature near the surface (0.5 m depth) was



19

not significantly different between inner coast (12.5 °C ± 0.4) and outer coast (12.3 °C ± 

0.3) regions, although temperature decreased more rapidly with depth at the outer coast 

(Figure 1.3 a). In contrast, salinity was greater at the outer coast with less variability than 

the estuarine waters of the inner coast (df=  1 ,F =  76.79, p  < 0.0001) (Figure 1.3 b).

Inner coast salinity at 6 m depth was (mean ± SE) 26.9 (± 0.5) and 29.2 (± 0.2) at 12 m 

depth. Outer coast salinity at 6 m depth was 31.4 (± 0.1) and 31.5 (± < 0.1) at 12 m 

depth. Salinity near the surface (0.5 m depth) was significantly greater at the outer coast 

(24.7 ± 2.1) (df=  1, F = 19.33,/? < 0.001) and the salinity profile was much steeper with 

the halocline to 1.5 m depth (Figure 1.3 b). Surface stratification was present at inner 

coast sites where salinity near the surface (0.5 m depth) was 13.6 (± 1.5). Brackish 

waters (salinity o f 9-17) were present from 1-6 meters depth among inner coast sites and 

the halocline extended to 9 m depth (Figure 1.3 b).

Benthic habitat variability was described by physical seafloor substrate and algae 

composition. The first and second principal components for substrate percent cover 

accounted for 29.7% and 23.9% of the total variability in substrate composition among 

benthic habitats at study sites. The first major gradient for substrate was between benthic 

habitats with mud and gravel and those composed of sand and other hard substrates 

(Table 1.4, PCI). The second gradient further separated benthic habitats composed o f 

sand and pebble substrates from those with hard substrates dominated by rock, boulder, 

and cobble (Table 1.4, PC2). The first and second principal components for algae 

percent cover described 44.4% and 23.3% o f the total variability in algae composition 

among benthic habitats. The first major gradient distinguished benthic habitats with little 

algal cover from those with extensive algal cover (Table 1.4, PCI). The second gradient 

was between benthic habitats with substrates predominantly covered with crustose and 

coralline algae (i.e., exposed hard substrates) to benthic habitats with other algae types, 

such as understory reds, browns and canopy kelps (Table 1.4, PC2). Major gradients o f 

benthic habitat composition and hydrographic gradients o f salinity and temperature were 

associated with changes in community structure (Table 1.5).
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Ordination o f the first and second dimensions from Detrended Correspondence 

Analysis (DCA1 and DCA2) for kelp community structure described 100% and 58.4% of 

the respective variation in kelp community structure along these dimensions. Ordination 

by DCA1 and DCA2 resulted in most sites and kelps clustering around the origin, so we 

did not use this ordination to further examine kelp community structure. However, one 

interesting source of variation in kelp community structure was demonstrated with DCA1 

and DCA2 at two sites with associated kelps that were not observed elsewhere in this 

study. Sites and kelps driving this pattern included one inner coast site, a current swept 

boulder field dominated by bull kelp Nereocystis luetkeana (site 14), and one outer coast 

site, an exposed rocky pinnacle with bull kelp, P. gardneri, Alaria marginata, and 

Desmarestia ligulata (site 1) (Figure 1.1 and Appendix 1.0).

Major variation in kelp community structure, described by DCA3 and DCA4, 

accounted for 55.9% and 34.5% of the respective variability along those dimensions. 

Hydrographic gradients o f salinity (r2 = 0.43. p  = 0.001) and temperature (r2 = 0.35, p  = 

0.02) were significantly correlated with kelp community structure, and substrate and 

algae cover were not (Table 1.5). Regional variation for this community was most 

clearly separated along DCA3, reflecting salinity and temperature gradients (Figure 1.4). 

Inner coast sites and kelps occurring at those locations such as Desmarestia spp. and A. 

clathratum were described by negative values o f DCA3, higher temperature, and lower 

salinity (Figure 1.4). Outer coast sites and kelps such as giant kelp and Costaria costata 

were described by positive values o f DCA3, lower temperature, and higher salinity 

(Figure 1.4). Depth was not a major source o f variation in kelp community structure at 

our survey sites. However, local variability with inner coast kelps was present, displayed 

along DCA4, though the source of this local variation was not determined (Figure 1.4).

We did not have sufficient sample size to resolve fish community structure by 

multivariate analysis. Many fish species identified from dive surveys were observed only 

once (Appendix 1.0), and many rare species are known to be problematic with ordination 

techniques so many fishes were excluded from the analysis. Although fish community 

structure was not resolved by DCA, salinity was a significant hydrographic gradient as a
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result o f permutation analysis o f species scores with environmental variables (r2 = 0.46, p  

<0.01) (Table 1.5).

Macroinvertebrate community structure was described by DCA1 and DCA2 that 

accounted for 67.6% and 55.3% of the respective variability along these dimensions. 

Significantly correlated environmental gradients were salinity (r2 = 0.63, p  <0.001) and 

algae cover (PC2) (r2 = 0.25, p  = 0.04), but not substrate (Table 1.5). Regional-scale 

variation in macroinvertebrate communities between regions was represented along 

DCA2 and the salinity gradient, with higher salinity at the outer coast (Figure 1.5). 

Local-scale variation for macroinvertebrates among sites within regions was separated 

along DCA1 and the benthic habitat gradient o f algae composition (PC2) (Figure 1.5). 

Local-scale community structure between 6 m and 12 m depths at the inner coast only is 

also reflected by DCA1 (Figure 1.5). Maximum values of the algae cover gradient 

represented benthic habitats with coralline and crustose algae cover on hard substrates 

such as rock reef, boulders, and cobbles. In the opposing direction, this gradient 

represented benthic habitats with little to no algae cover with mud and sand substrates. 

Representative outer coast macroinvertebrates included red urchins, the seastars 

Orthasterias koehleri, Henricia spp., and Mediaster spp., and a variety of brittle stars and 

tunicates (Figure 1.5 and Appendix 1.0). The inner coast macroinvertebrate community 

included several crabs, such as Dungeness crab, lyre crab, helmet crab, and a variety of 

hermit crabs (Figure 1.5 and Appendix 1.0).

Community structure for small, epibenthic invertebrates was described by DCA1 and 

DCA2 that accounted for 43.2% and 37.1% of the respective variation along these 

dimensions. Environmental variability appeared to greatly influence regional and local- 

scale patterns for this community. These gradients in decreasing order o f correlation 

strength were algae cover (PCI) (r2 = 0.57,/? <0.001), salinity (r2 = 0.53, p  <0.001), 

substrate composition (PC2) (r2 = 0.39, p  < 0.01), and temperature (r2 = 0.31,/? < 0.01) 

(Table 1.5 and Figure 1.6). Regional-scale variation in small epibenthic invertebrate 

communities was best described by DCA2, and gradients of salinity and temperature, 

with higher salinity and lower temperatures at the outer coast (Figure 1.6). Local-scale



variability with small epibenthic invertebrates was represented along DCA1 where 

differences among 6 m and 12 m depths were reflected for some sites at the inner coast 

where temperature overall was greater at 6 m than 12 m depth for this region (Figure 1.6). 

Local-scale patterns for this community were represented by benthic habitat gradients of 

algae (PCI) and substrate composition (PC2) (Figure 1.6). The algae cover gradient 

represented a continuum of benthic habitats with little algae cover at maximum values to 

extensive algae cover (Figure 1.6). The gradient of substrate composition represented 

benthic habitats with sand and pebble substrates at maximum values, found mainly at the 

outer coast, to benthic habitats with hard substrates such as rock reef, boulders, and 

cobbles (Figure 1.6). Small epibenthic invertebrates representative of outer coast sites 

with pebble and sand substrates and less algae cover were sand anemone, green phoronid, 

and gray brittle star Ophiura lutkeni (Figure 1.6 and Appendix 1.0). Outer coast sites 

with rock reef, boulder, and cobble substrates and extensive algae cover were inhabited 

by species such as red soft coral Gersemia rubiformis, orange cup coral, blood stars 

Henricia leviuscula, and top snails Calliostoma spp. (Figure 1.6 and Appendix 1.0). In 

comparison, inner coast sites with hard substrates and extensive algae cover were 

inhabited by false jingles Pododesmus macrochisma, a variety o f lined chitons Tonicella 

spp., dogwinkles Nucella lamellosa, and checkered hairy snails Trichotropsis cancellata 

(Figure 1.6 and Appendix 1.0).

1.4 Discussion

1.4.1 Processes S tructuring Biodiversity

Our study defines patterns o f marine biogeography in northern southeast Alaska and links 

those quantitatively to environmental variability at regional and local spatial scales. 

Salinity and temperature describe patterns of shallow subtidal community structure 

between the inner coast and outer coast regions. Local-scale patterns o f species 

assemblages at our study sites are structured by benthic habitat variability that includes
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physical seafloor substrate and algae composition.

The high-latitude fjord regions have common hydrographic features that similarly 

structure biodiversity in these systems. Our study demonstrated greater salinity and 

lower temperature at the outer coast of northern southeast Alaska with less variability in 

salinity at shallow subtidal depths than the inner coast region. These hydrographic 

features described regional community structure with greater species richness, diversity, 

and community evenness at the outer coast. Our results for salinity and temperature were 

consistent with observations at the inner and outer coast of southeast Alaska in 1997-98 

(Murphy & Orsi, 1999) and in 1964-66 (Pickard, 1967), suggesting that the major 

gradient o f freshwater discharge from the coast to the open ocean is persistent in this 

fjord system. The physical oceanographic processes that influence intertidal species 

assemblage structure along the fjord coast o f British Columbia, Canada are quite similar 

to southeast Alaska. The major hydrographic gradient was decreasing salinity and 

increasing temperature with less variability from the outer to inner coast of British 

Columbia, linked to greater species diversity o f intertidal algae and fauna on the outer 

coast. Gradients o f salinity and temperature, in addition to dissolved oxygen at deeper 

depths, influence regional patterns o f algae and benthic invertebrates in the estuaries of 

the North Sea (Middelboe et al., 1998; Josefson & Hansen, 2004; Middelboe & Sand- 

Jensen, 2004; Josefson, 2009), and along the fjord coasts o f Norway (Gulliksen, 1980; 

Jensen et al., 1985) and New Zealand (Wing et al., 2003; Kregting & Gibbs, 2006).

Surface water stratification likely structures shallow subtidal communities between 

regions and may explain a large part o f the variation between regional species groups 

related to salinity and temperature. A characteristic feature of many fjords is a low 

salinity surface layer that forms due to heavy precipitation and melting snow and ice. 

Surface stratification was present at inner coast sites during our summer surveys, where 

the depth o f the halocline was approximately 9 m and the extent of the low salinity layer 

of brackish water (salinity o f 9-17) was from 1-6 m depth and visible to divers as a 

discontinuity o f water densities. Water column stratification near the surface was not
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present at outer coast sites where surface salinity (0.5 m depth) was much greater than 

inner coast sites and the halocline was to approximately 1.5 m depth.

Our results demonstrated greater species richness and diversity at the outer coast at 

the 6 m survey depth that was within the range of the halocline and the low salinity 

surface layer present at the inner coast. Certain species that occurred at the outer coast at 

6 m depth may have been excluded from the inner coast due to the low surface salinities, 

including red soft coral, orange cup coral, sand anemone, and green phoronid. Similarly, 

the upper depth limit o f the black coral Antipathes fiordensis in New Zealand fjords was 

determined by the lower depth of low salinities in the upper water column (Kregting & 

Gibbs, 2006). The low salinity layer is the primary process structuring steep, rock wall 

communities in New Zealand fjords where this feature is semi-permanent, fluctuating 

with extreme rainfall events (e.g., 0.5 m-day'1), and typically ranging from 3-5 m depth 

with salinities from 0-14 (Witman & Grange, 1998; Gibbs et al., 2000). Distinct subtidal 

community zonation is present in the New Zealand fjord region to 18 m depth (Smith & 

Witman, 1999). The low salinity surface layer at the inner coast of southeast Alaska had 

similarities to New Zealand fjords, though the low salinity layer was a brackish halocline 

during our summer study, rather than a fresh to brackish water lens, and we did not 

identify such distinct vertical zonation patterns with subtidal communities.

Regional distribution patterns o f Echinoderms, including seastars and urchins, likely 

reflected salinity thresholds that may have facilitated competitive dominance for certain 

species within coastal regions in southeast Alaska. Low salinity is not tolerable to many 

Echinoderms (e.g., Stickle & Ahokas, 1974; Watts & Lawrence, 1990). In our study, E. 

troschelii was the dominant seastar at the inner coast, potentially due to greater tolerance 

for lower salinity than seastars that were only observed at the outer coast. In contrast, E. 

troschelii was infrequently observed at the outer coast where other seastars may have 

been competitively dominant. For example, Pisaster ochraceus has been characterized as 

the dominant seastar in rocky intertidal habitats at the outer coast o f northern southeast 

Alaska (O'Clair & O'Clair, 1998). We demonstrate that P. ochraceus was not present at 

the inner coast where E. troschelii was the dominant seastar. Pisaster ochraceus has
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reduced predation at lower salinities and temperatures (Sanford, 1999; Held & Harley, 

2009) as a keystone species along the northwest Pacific coastline (Paine, 1966).

Similarly, the upper depth limit o f seastar predation was restricted by low surface salinity 

in New Zealand fjords (Witman & Grange, 1998).

Major gradients o f benthic habitat were strongly related to species distribution 

patterns for macroinvertebrates and small epibenthic invertebrates that occupied a variety 

o f benthic habitats in our study. These patterns were most clearly resolved at local spatial 

scales among sites within regions. Distribution patterns for small epibenthic 

invertebrates reflected variation in substrate composition among some outer coast sites 

where sand and pebbles were common, in contrast to certain inner coast sites where these 

substrates were replaced by mud composed of glacial silt and organic matter often mixed 

with other fine-grain substrates. The presence or absence o f algae cover was a major 

source o f variation linked to invertebrate distribution, and specifically crusts and coralline 

algae for macro invertebrates. We found that algae cover was a more distinguishing 

benthic habitat attribute for invertebrates than physical seafloor substrate alone, and 

implicit in the significance o f algae cover was the presence or absence of hard substrates 

to which algae and certain invertebrates were attached.

Separating the invertebrate groups in our analysis based on the potential for 

invertebrates o f small and large sizes to occupy different habitat features, based on the 

size threshold of our sampling methods, resulted in habitat use patterns reflecting 

different sources o f habitat variation. Functional differences in habitat use based on 

invertebrate body size were not determined by our study, but may be present for certain 

taxa that occupy microhabitat features where body size may influence benthic habitat use. 

The importance o f benthic habitat in structuring marine fauna has been demonstrated for 

the contiguous fjords o f British Columbia, Canada, where the presence of algae cover, 

seagrasses, and substrate type influence species distribution at intertidal and shallow 

subtidal habitats (Levings et al., 1983).

Algae cover provided biogenic structure that was additional to the seafloor substrate 

to form highly structured benthic habitat for associated fauna at certain study sites. Giant
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kelp and sub-canopy kelps at the outer coast created biogenic habitat for black rockfish, 

and grazing prosobranch gastropods like Tegula puligo and Lacuna vincta, while bull 

kelp created similar sub-canopy and canopy structure at current-swept locations at the 

inner coast. Understory algae in both regions, including Saccharina spp., L. yezoensis, 

and A. clathratum formed dense structure for associated fauna, including urchins, the 

snail M. pupillis, and fishes such as gunnels, ronquils, and pricklebacks. Other studies in 

southeast Alaska (Murphy et al., 2000; Johnson et al., 2003; Calvert-Siddon et al., 2008) 

and in southcentral Alaska (Dean et al., 2000; Hamilton & Konar, 2007) demonstrated 

demersal fishes, greenlings, and juveniles o f Pacific cod Gadus macrocephalus and 

rockfishes were associated with understory and canopy kelps that persisted seasonally or 

perennially in these locations.

The most common habitat-forming kelp encountered in our study was S. subsimplex 

that demonstrated variation in blade morphology between regions where it was common 

in rocky habitats and protected bays at shallow transect depths (6 m). Individuals at the 

inner coast had round and elongated blade morphology and formed dense, upright cover 

as part o f the understory macroalgae assemblage. Individuals at the outer coast had 

elongated blades that were much greater in length (> 3 m), and draped over the substrate 

to deeper transect depths (> 12 m) often obscuring the underlying seafloor substrates. S. 

latissima also demonstrated this form where it co-occurred with S. subsimplex at the outer 

coast. The competitive dominance by S. subsimplex at certain southeast Alaska sites may 

result from morphology and life cycle strategy (Duggins, 1980). Kelp morphology can 

be driven by environmental variation such as water motion, light attenuation, and nutrient 

availability (Gerard & Mann, 1979; Dayton, 1985; Eckman et a l, 1989; Dayton et al., 

1999). It is possible that outer coast environmental conditions resulted in the elongated 

blade morphology observed at these sites. Outer coast conditions may also explain the 

considerable presence o f canopy-forming giant kelp, as Macrocystis spp. are adapted for 

exploitative resource competition (Dayton, 1985). Morphological variation o f habitat- 

forming kelps will affect structural habitat availability and the distribution of macroalgae
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associated fauna. The ecological consequences of macroalgae habitats to marine 

communities in this north temperate fjord region remain largely unexplored.

1.4.2 Regional Biogeography

We demonstrated biogeographic distinction between the outer and inner coast regions of 

northern southeast Alaska for shallow subtidal macroalgae, invertebrate, and fish 

communities. We observed that several taxa within each community occurred in both 

regions, but most taxa were either more abundant in one region or observed in one region 

only. This was demonstrated for kelps, where most taxa observed at the inner coast also 

occurred at the outer coast, but half of the kelp species that were observed at the outer 

coast only occurred in that region, such as giant kelp. Southeast Alaska has a more 

diverse macroalgae community than any other Alaska region (Lindstrom, 2006; 

Lindstrom, 2009).

In contrast to macroalgae, there is little comparative biogeographic information for 

invertebrate communities inhabiting shallow subtidal habitats fringing the deeper fjord 

basins o f southeast Alaska. We demonstrated that macroinvertebrates and small 

epibenthic invertebrates had overlap in species distribution between coastal regions, but 

several species were distinct to one region, such as the snail T. puligo that associates with 

giant kelp canopy structure. Shallow subtidal invertebrates are understudied in this 

region, and consequently the ecology of many species is poorly understood.

Because we encountered few fish, SCUBA surveys may not be the best approach to 

properly represent the fish community at shallow subtidal depths in our study area. For 

the fish community, more than half o f the taxa observed by our study in one region were 

not found in the other region, including most of the rockfishes Sebastes spp., and many 

species were observed only once at the inner coast. We found that fish assemblages in 

the northern inner coast region were similar to those of the inside waters o f Prince 

William Sound in southcentral Alaska (Dean et al., 2000) and southern southeast Alaska 

(Murphy et a l,  2000), with the exception o f juvenile cod (Gadidae) that were present at
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the inner coast of southeast Alaska but not observed along transects during the summer 

months of our study.

Rockfishes are an assemblage o f commercial and recreational importance in southeast 

Alaska fisheries. Schools o f black rockfish were unique to certain outer coast sites in our 

study, commonly associated with giant kelp at semi-exposed sites, and bull kelp canopy 

and P. gardneri sub-canopy at highly exposed sites. Quillback rockfish occurred at both 

locations in rocky habitats with overhangs, boulders, and dense macroalgal understory 

and dark dusky rockfish were observed, though not on survey transects and were 

consequently not counted. In a previous study, quillback and dark dusky rockfishes were 

the most widely distributed among species assemblages at depths < 90 m in southeast 

Alaska (Johnson et a l,  2003).

We observed schools o f many hundreds of juvenile rockfishes at the more sheltered 

outer coast sites, associated with dense understory macroalgal cover provided by 

elongated blades o f Saccharina spp. We did not observe large schools o f juvenile 

rockfishes at our inner coast sites, but individuals were observed at shallow depths 

associated with rock overhangs and boulders. Shallow, nearshore rocky sites with 

macroalgae cover and eelgrass beds are known juvenile rockfish habitat in southeast 

Alaska (Murphy et a l,  2000; Johnson et al., 2003), as well as sites with similar habitats 

in southcentral Alaska (Dean et al., 2000), and along the U.S. West Coast (Love et al., 

1991). We were not able to identify to species the juvenile rockfishes observed in this 

study as it is quite difficult to do so in the field (e.g., Love et al., 2002), but individuals 

likely included those o f adults observed at study sites, in addition to deeper species that 

recruit to shallow, nearshore habitats (Carlson & Haight, 1976; Carlson & Straty, 1981; 

Carr, 1989; Love et al., 1991).

Biogeographic patterns demonstrated by our study for certain species between the 

inner and outer coast regions were consistent with previous studies that identified spatial 

separation between regions based on the distribution o f macroalgae (Lindstrom, 2006; 

Lindstrom, 2009), rocky intertidal invertebrates (O'Clair & O ’Clair, 1998), and nearshore 

fishes (Quast 1968, Murphy et al., 2000). In addition to describing species assemblage
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structure for several communities, our study related species distribution to sources of 

variation in the marine environment that these previous studies did not.

1.4.3 W eathering the Future

Southeast Alaska is an understudied region with respect to marine ecological processes. 

Our research provides a baseline for shallow subtidal community structure linked to 

environmental variation in the southeast Alaska fjord system.

Improved understanding of relationships between marine communities and fjord 

environments is necessary to understand the consequences of environmental change to 

fjord ecosystems. Marine ecosystems shifts are expected for coastal regions of the Gulf 

o f Alaska as a consequence o f ocean warming and increased freshwater input to the 

North Pacific marine environment (Royer, 1989; Royer et al., 2001; Weingartner et al., 

2005; Royer & Grosch, 2006). Long-term studies that track community shifts over time 

have linked changes in marine communities at stations on the U.S. West Coast (e.g., 

Barry et al., 1995) and arctic fjords (e.g., Beuchel et al., 2006; Renaud et al., 2007; Berge 

et al., 2009) to elevated sea surface temperature and ocean freshening. We encourage 

future efforts to establish permanent stations along the fjord coast o f southeast Alaska, 

especially at biogeographic transition zones, to track community shifts over time with 

environmental change in the North Pacific. Future study of the ecological mechanisms 

behind the patterns observed by this study will improve understanding of marine 

ecological processes in this region, including studies of the ecological effects o f regional 

environmental variability on species interactions, and community response to 

environmental change.
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Table 1.1. Northern southeast Alaska study sites at outer coast and inner coast regions 
with site number and geographic location (North American Datum of 1983).

Outer Coast Site Site Num. Latitude N Longitude W

Calming Island 1 56° 57'45" 135° 24' 56"

Camp Cougan Cove 2 57° O' 33" 135° 14' 54"

No Thorofare Bay 3 57° 1' 11" 135° 14' 45"

Echolms Islands 4 57° O' 30" 135° 21' 9"

Middle Island 5 57° 6 ' 58" 135° 27' 51"

Lisianski Point 6 57° 9' 3" 135° 23'20"

Alan Point 7 57° 14' 9" 135°23'51"

Kita Island 8 56° 56' 0" 135° 25'56"

Vitskari Rocks 9 57° O' 5" 135° 32'40"

Inner Coast Site Site Num. Latitude N Longitude W

Colt Island 1 0 58° 16'31" 134° 4 4 ' 15"

Shamen Island 11 58° 18'21" 134° 41- 14-

Portland Island 1 2 58° 19'44" 134° 43' 54"

Point Louisa 13 58°22'15" 134° 43'27"

Symonds Point 14 58° 20' 43" 134° 50'31"

Aaron Island 15 58° 25' 50" 134° 49' 12"

Shrine Point 16 58° 28' 20" 134° 47' 19"

Adlershiem 17 58° 35' 22" 134° 54' 24"

Sunshine Cove 18 58° 36’ 25" 134° 55' 45"
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Table 1.2. Species richness (s), species diversity (H’), and evenness (E h)  of kelp, fish, 
macroinvertebrate, and small epibenthic invertebrate communities at inner coast and 
outer coast regions and 6 m and 12 m depths.

Community
Inner Coast Outer Coast

s H’ Eh s FT Eh

Kelp 1 1.03 0.53 12 1.75 0.70

Fish 14 1.72 0.65 12 1.86 0.75

Macroinvertebrate 18 1.16 0.40 17 1.71 0.61

Epibenthos 45 2.46 0.65 57 2.85 0.70

6 m depth 12 m depth
Community s H’ Eh s FT Eh

Kelp 13 1.57 0.61 6 1.12 0.62

Fish 14 2.17 0.82 12 1.44 0.58

Macroinvertebrate 20 1.13 0.38 19 1.90 0.65

Epibenthos 56 2.80 0.69 46 2.95 0.77

Inner Coast 6 m depth 12 m depth
Community s H’ Eh s H’ Eh

Kelp 7 1.07 0.55 3 0.84 0.77

Fish 9 1.76 0.80 6 0.78 0.43

Macroinvertebrate 14 0.85 0.32 11 2.01 0.84

Epibenthos 30 2.29 0.67 29 2.31 0.69

Outer Coast 6 m depth 12 m depth
Community s H’ Eh s H’ Eh

Kelp 9 1.59 0.72 6 1.36 0.76

Fish 9 1.57 0.71 7 1.78 0.91

Macroinvertebrate 11 1.99 0.83 13 1.27 0.49

Epibenthos 43 2.51 0.67 31 2.49 0.72
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Table 1.3. Shannon t-test results comparing species diversity (H’) o f kelp, fish, 
macroinvertebrate (Macroinv), and small epibenthic invertebrate (Epiinv) communities 
sampled at inner coast (IC) and outer coast (OC) regions at 6 m and 12 m depths with H’ 
compared (a, b) andp-value two-tailed distribution (Bonferroni correction a'=  0.008, k 
tests = 6), df, and /-statistic. Significant results are in bold text with a subscript (a, or b) 
for the significant community comparison.

Community
Comparison Kelp Fish Macroinv Epiinv

IC(a), OC(b) < 0 .0001b 0.47 < 0 .0001b < 0 .0001b
1064, 15.11 128, 0.73 608, 7.33 2773, 8.71

6, 12 0.01 0.07 0.01 0.03
2, 8.65 2, 3.63 3, 9.98 6, 2.90

IC.6, O C .6 < 0.000 lb 0.37 < 0 .0001b < 0 .0001b
958, 10.70 65, 0.89 145, 14.58 1364,2.94

IC.12, OC.12 0.02 0.11 0.02 0.08
2, 7.47 1, 5.54 3, 6.93 5,2.30

IC.6, I C .12 0.13 0.05 0 .004b 0.78
1,4.76 2, 4.48 3, 14.98 4, 0.30

OC.6, OC.12 0.08 0.35 0.02 0.04
3. 3.28 2. 1.20 3. 6.73 5. 0.26
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Table 1.4. Results of the principal component analysis of benthic habitat conditions at 
study sites, based on percent area o f substrate and algae composition along dive transects. 
Component loadings are eigenvectors, variance explained by the components are 
eigenvalues.

Component Loadings PCI PC2
Substrate Composition

Rock -0.28 -0.43

Boulder -0.34 -0.40

Cobble -0.28 -0.16

Pebble -0.13 0.65

Gravel 0.50 -0.03

Sand -0.35 0.46

Mud 0.58 -0.08

Variance explained by components 2.07 1.67

Percentage of total variance explained 29.6% 23.9%
Algae Composition

Red -0.39 -0.47

Brown -0.27 -0.61

Canopy -0.37 -0.30

Crustose -0.55 0.44

Coralline -0.59 0.36

Variance explained by components 2.21 1.16

Percentage o f total variance explained 44.4% 23.3%



43

Table 1.5. Results o f permutation analysis o f environmental gradients with ordination by 
Detrended Correspondence Analysis (DCA) o f kelp, fish, macro invertebrate (Macroinv), 
and small epibenthic invertebrate (Epiinv) communities (1000 permutations, a  = 0.05). 
Environmental gradients were multivariate scores from PCI and PC2 from the substrate 
and algae PCA (Table 1.4), and temperature and salinity measurements from survey 
depths (6 m and 12 m) at inner coast and outer coast sites. Environmental gradients 
significantly correlated with community ordination are indicated in bold text by the 
squared correlation coefficient (r~) andp  < 0.05. Dimensions one and two from DCA 
were used for all communities except kelp, where ordination was by dimensions three 
and four.

Environmental Kelp Fish Macroinv Epiinv
Gradient r2 P r2 P r2 P r2 P

Substrate PCI 0.07 0.47 0.15 0.22 0.18 0.14 0.06 0.36

Substrate PC2 0.03 0.75 0.24 0.11 0.10 0.36 0.39 <0.01

Algae PCI 0.15 0.20 0.29 0.05 0.07 0.48 0.57 <0.001

Algae PC2 0.08 0.45 0.04 0.70 0.25 0.04 0.02 0.74

Temperature 0.35 0.02 0.27 0.08 0.25 0.06 0.31 <0.01

Salinity 0.43 0.001 0.46 <0.01 0.63 <0.001 0.53 <0.001
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Figure 1.1. Northern southeast Alaska study location (a) and sites at the inner coast (b) 
and the outer coast (c) regions.
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Figure 1.2. Species rank-abundance curves for subtidal communities at inner coast (IC) (closed circles) and outer coast (OC) 
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richness (5), species diversity (H’), and evenness (EH) for combined 6 m and 12 m depths.
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Mean Temperature (°C) Mean Salinity

Figure 1.3. Mean temperature (°C) (a) and salinity (b) profiles of inner coast and outer 
coast regions measured in July 2007 from the surface (0.5 m) to 25 m depth at study sites 
(9 sites-region'1) with standard error bars. Dive survey depths at 6 m and 12 m are 
indicated.
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codes are listed in Appendix 1.0.
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that described 67.6% and 55.3% of the respective variability along those dimensions, 
including (a) sites at the outer coast (open) and inner coast (solid) at 6 m (circles) and 12 
m depths (triangles), (b) species, and (c) significant environmental gradients o f salinity 
(r2 = 0.63, p  <0.001) and Algae PC2 (Alg2) (r2 = 0.25, p  = 0.04). Species codes are listed 
in Appendix 1.0.
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Species codes are listed in Appendix 1.0.
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Appendix 1.0. Counts (n) and proportional abundance {pi) o f taxa from survey transects 
(25 m x 1 m) at inner coast and outer coast study sites organized by community. 
Ordination codes are provided for taxa that were included in multivariate analysis (taxa 
with > 1 observation and small epibenthic invertebrates at least 0.1% of community 
proportional abundance). Species included in diversity analysis are indicated by 
subscript +. Kelps and fish are listed by taxonomic Family and invertebrates are listed by 
taxonomic Class. Encrusting taxa are listed that were present but not individually 
quantified.

Taxa Inner Coast Outer Coast DCA Code
n n El

Kelps

Alariaceae

Alaria marginata+ - - 75 0.11 A.marg

Alaria fistulosa+ 10 0.01 - - A.fist

Pleurophycus gardneri+ - - 28 0.04 P.gard

Costariaceae

Agarum clathratum+ 385 0.31 38 0.06 A.clat

Costaria costata+ - - 5 0.01 C.cost

Laminariaceae

Cymathaere triplicata+ 3 <0.01 1 <0.01 C.trip

Laminaria yezoensis+ 119 0.09 10 0.02 L.yez

Laminaria setchellii+ - - 35 0.05 L.setch

Macrocystis integrifolia+ - - 17 0.03 M. int

Nereocystis luetkeana+ 6 <0.01 2 <0.01 Ndeut

Saccharina latissima+ 4 <0.01 91 0.14 S.lat

Saccharina subsimplex+ 631 0.50 306 0.47 S. sub

Desmarestiaceae

Desmarestia ligulata+ - - 46 0.07 DJig

Desmarestia spp. 106 0.08 - - D.spp
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Appendix 1.0. Continued.

Taxa Inner Coast 
n p.

Outer Coast DCA Code
n

Fishes

Anahichididae 

Anarrhichthys ocellatus+ 

Bathymasteridae 

Bathymaster caeruleofasciatus+ 

Ronquilus jordani+

Cottidae 

Blepsias cirrhosus+ 

Hemilepidotus hemilepidotus+

Myoxocephalus polyacanthocephalus+ 4

Scorpaenichthys marmoratus+ 

Undefined sculpin a 

Undefined sculpin 

Hexagrammidae 

Hexagrammos decagrammus+ 

Ophiodon elongates+ 

Oxylebius pictus+

Pholidae 

Pholis laeta+

Apodichthys flavidus+ 

Pleuronectidae 

Lepidopsetta bilineata+ 

Platichthys stellatus+ 

Pleuronichthys coenosus+ 

Undefined juvenile flatfish

9

1

38

1

0.01

0.08

0.01
0.01
0.05

0.01
0.01

0.01

0.01

0.11

0.01

0.48

0.01

0.05

1 0.01

1 0.01

NoRnq

GrScl

1 0.01 UnScl

10 0.07 KGlng

1 0.01
2 0.01 PGlng

2 0.01 CrGun

1 0.01 PnGun

1 0.01 RSol

JvFlat
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Appendix 1.0. Continued.

Taxa Inner Coast 
n Pi

Outer Coast 
n Pi

DCA Code

Fishes (continued) 

Scorpaenidae

Sebastes caurinus+ - - 1 0.01

Sebastes maliger+ 1 0.01 4 0.03 QulRf

Sebastes melanops+ - - 21 0.16 BkRf

Undefined juvenile rockfish - - 78 0.58 JvRf

Stichaeidae

Lumpenus sagitta+ 1 0.01 - -

Stichaeus punctatus+ 7 0.09 - - ArShn

Zoarcidae

Rhinogobiops nicholsin - - 10 0.07 BIGby

M acroinvertebrates

Anthozoa

Ptilosarcus gurneyi+ 19 0.01 2 <0.01 SeaPen

Cribrinopsis fernaldu 4 <0.01 - - Cfern

Metridium spp. 58 0.04 16 0.04 Metrid

Pachycerianthus fimbriatus+ - - 175 0.41 Pfimb

Urticina spp. 4 <0.01 2 <0.01 Urtic

Undefined anemone a 53 0.04 - - PAnm

Malacostraca

Cancer magister+ 3 <0.01 - - Dungi

Hyas lyratus+ 6 <0.01 - - LyrCrb

Oregonia gracilis+ 1 <0.01 - -

Telmessus cheiragonus+ 3 <0.01 1 <0.01 HelCrb

Elassochirus gilli+ 1 <0.01 - -
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Appendix 1.0. Continued.

Taxa Inner Coast 
n Pi

Outer Coast 
n Pi

DCA Code

Macroinvertebrates (continued) 

Malacostraca (continued)

Elassochirus tenuimanus+ 1 <0.01 - -

Undefined hermit crab 3 <0.01 - - Hermit

Undefined shrimp 1 <0.01 - -

Bivalvia

Chlamys spp. 13 0.01 49 0.11 Scllp

Gastropoda

Doris odhneri+ - - 1 <0.01

Flabellina triophina+ - - 1 <0.01

Triopha catalinae+ - - 1 <0.01

Undefined nudibranch - - 1 <0.01

Asteroidea

Crossaster papposus+ 4 <0.01 1 <0.01 Cross

Dermasterias imbricata+ 1 <0.01 13 0.03 Derma

Evasterias troschelii+ 93 0.07 - - Evast

Henricia spp. 3 <0.01 9 0.02 Henri

Mediaster aequalis+ - - 29 0.07 Media

Orthasterias koehlerU - - 12 0.03 Orthas

Pisaster brevispinus r 18 0.01 2 <0.01 Pisas

Pycnopodia helianthoides+ 56 0.04 44 0.10 Pycno

Solaster dawsonU 3 <0.01 - - Solas

Echinoidea

Strongylocentrotus droebachiensis+ 887 0.64 - - UrchGr

Strongylocentrotus franciscanus+ - - 23 0.05 UrchRd
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Appendix 1.0. Continued.

Taxa Inner Coast Outer Coast DCA Code
_H lh_ _n El

Macroinvertebrates (continued) 

Holothuroidea 

Cucumaria miniata+ 

Parastichopus californicus+ 

Psolus chitonoides+ 

Ophiuroidea 

Undefined brittle star 

Ascidiacea 

Halocynthia aurantium+

Small Epibenthic Invertebrates

Porifera 

Undefined sponge 

Anthozoa 

Ptilosarcus gurneyh 

Balanophyllia elegans+ 

Gersemia rubiformis+ 

Anthopleura artemisia+ 

Halcampa decemtentaculata+ 

Metridium senile+ 

Pachycerianthus fimbriatus+ 

Stomphia coccinea+

Urticina lofotensis+

Undefined anemone a 

Undefined anemone

133 0.10 6 0.01 RdCuc

24 0.02 31 0.07 GiCuc

-  -  1 < 0.01

- - 8 0.02 Brittle

1 <0.01 2 <0.01 Tunic

2 < 0.01

3 <0.01

1 < 0.01

3 <0.01

4 <0.01

13 0.01

5 <0.01

1 < 0.01

130 0.07

24 0.01

3 <0.01

97 0.05

42 0.02

1 < 0.01

12 0.01

B

I

A

C

F

D

H

G
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Appendix 1.0. Continued.

Taxa Inner Coast Outer Coast DCA Code 
n  Pi________n  Pi____________________

Epibenthic Invertebrates (continued) 

Polychaeta

Eudistylia spp. 104 0.06 1 <0.01 L

Serpula columbiana+ 268 0.14 196 0.10 J

Myxicola infundibulum+ 4 <0.01 18 0.01 K

Undefined spaghetti worm 1 <0.01 - -

Phoronida

Phoronopsis harmeri+ - - 227 0.12 M

Maxillopoda

Balanus crenatus+ 43 0.02 2 <0.01 V

Malacostraca

Cryptolithodes sitchensis+ - - 1 <0.01

Scyra acutifrons+ 1 <0.01 - -

Elassochirus tenuimanus+ 2 <0.01 - -

Undefined hermit crab 54 0.03 273 0.14 y
Pagurus hemphillU 1 <0.01 - -

Pandalus danae+ 7 <0.01 18 0.01 w

Hippo lyte clarki+ 1 <0.01 1 <0.01

Undefined shrimp 2 <0.01 7 <0.01 X

Polyplacophora

Cryptochiton stelleri+ 2 <0.01 1 <0.01

Mopalia muscosa+ 3 <0.01 5 <0.01 U

Tonicella insignis+ 78 0.04 13 0.01 s

Tonicella lineata+ 74 0.04 18 0.01 R

Tonicella undocaerulea+ 2 <0.01 6 <0.01 T
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Taxa Inner Coast Outer Coast DCA Code
__________________________________ n p,______ n Pi_______________
Epibenthic Invertebrates (continued)

Polyplacophora (continued)

Appendix 1.0. Continued.

Mopalia spp. - - 1 <0.01

Leipdozona spp. 2 <0.01 5 <0.01 V

Undefined chiton 9 <0.01 13 0.01 W

Jivalvia

Chlamys spp. 4 <0.01 10 0.01 Y

Mytilus trossulus+ 4 <0.01 - - X

Pododesmus macrochisma+ 6 <0.01 - - Z

Undefined clam 4 <0.01 15 0.01 a

lastropoda

Acmaea mitra+ 2 <0.01 4 <0.01 b

Undefined limpet 215 0.12 76 0.04 c

Acteocina culcitella+ - - 1 <0.01

Balcis micans+ 1 <0.01 84 0.04 1

Bittium attenuatum+ - - 1 <0.01

Ceratostoma foliatum+ 2 <0.01 4 <0.01 e

Epitonium indianorum+ - - 5 <0.01 j

Lacuna vincta+ 4 <0.01 4 <0.01 h

Margarites pupillis+ 333 0.18 149 0.08 f

Nassarius mendicus+ - - 2 <0.01

Nucella lamellosa+ 30 0.02 - - d

Olivella baetica+ - - 6 <0.01 k

Tegula puligo+ - - 46 0.02 g

Trichotropsis cancellata+ 90 0.05 76 0.04 i

Amphissa spp. 4 <0.01 32 0.02 n
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Appendix 1.0. Continued.

Taxa Inner Coast 
n Pi

Outer Coast 
n p,

DCA Code

Epibenthic Invertebrates (continued) 

Gastropoda (continued)

Calliostoma spp. - - 66 0.03 m

Euspira spp. 1 <0.01 1 <0.01

Onepota spp. 13 0.01 1 <0.01 0

Undefined snail 7 <0.01 14 0.01 P
Acanthodoris hudsoni+ - - 1 <0.01

Dendronotus frondosus+ - - 1 <0.01

Flabellina trilineata - - 1 <0.01

Hermissenda crassicornis+ 1 <0.01 59 0.03 r

Janolus fuscus+ 1 <0.01 - -

Onchidoris muricata+ 195 0.11 8 <0.01 q
Rostanga pulchra+ - - 1 <0.01

Undefined nudibranch 3 <0.01 8 <0.01 s

Undefined aeolid - - 15 0.01 t

Rhynchonellata

Hemithyris psittacea+ 77 0.04 - - Q
Laques californicus+ 8 <0.01 2 <0.01 o

Terebratalia transversal 53 0.03 6 <0.01 N

Terebratulina unguicula+ 5 <0.01 6 <0.01 P

Asteroidea 

Crossaster papposus+ 

Evasterias troscheliU 

Henricia leviuscula+ 

Leptasterias hexactis+ 

Orthasterias koehlerh

39

1

1

0.02

< 0.01
< 0.01

10

< 0.01

0.01

z

bb

1
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Appendix 1.0. Continued.

Taxa Inner Coast
n

Outer Coast DCA Code 
n  P i__________________________

Epibenthic Invertebrates (continued) 

Asteroidea (continued)

Mediaster aequalis+ - - 4 <0.01 aa

Pycnopodia hehanthoides+ 1 <0.01 2 <0.01

Echinoidea

Strongylocentrotus droebachiensis+ 53 0.03 40 0.02 ff

Holothuroidea

Cucumaria miniata+ 3 <0.01 - -

Psolus squamatus+ 1 <0.01 - -

Ophiuroidea

Amphipholis squamata+ - - 1 <0.01

Ophiura lutkenU - - 5 <0.01 cc

Ophiopholis aculeata+ 1 <0.01 - -

Undefined brittle star 4 <0.01 42 0.02 ee

Ascidiacea

Ascidia paratropa+ - - 2 <0.01

Boltenia villosa+ - - 4 <0.01 hh

Corella inflata+ - - 1 <0.01

Corella willmeriana+ - - 13 0.01 gg

Metandrocarpa taylorn - - 4 <0.01 jj

Encrusting Taxa (presence/absence) 

Porifera

Cliona californiana - - + +

Undefined sponge + + + +
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Appendix 1.0. Continued.

Taxa Inner Coast 
n p,

Outer Coast 
n Pi

DCA Code

Encrusting Taxa (presence/absence) (continued)

Ascidiacea

Didemnum carnulentum - - + +

Undefined ascidian + + + +

Polychaeta

Dodecaceria concharum - - + +

Dodecaceria fewkesi - - + +

Spiochaetopterus costarum - - + +
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Chapter 2

Red king crab (Paralithodes camtschaticus) larval supply, settlement timing,

and benthic habitat structure1

Abstract

Early life history information is needed to benefit management of depleted red 

king crab populations in Alaska. Red king crab (.Paralithodes camtschaticus) larval 

supply and settlement timing were quantified at six sites (Indian Cove, Barlow Cove, St. 

James Bay, Portland Island, Horse Island, and the Couverden Islands) in southeast Alaska 

during summer 2008 and at two sites (Indian Cove and the Couverden Islands) in 2009. 

Supply varied spatially among sites and depths in 2008 and 2009. Local oceanographic 

processes that influence larval transport from hatching to settlement locations are poorly 

understood and may be responsible for spatial variation in larval supply. Settlement 

timing for red king crab was consistent between 2008 and 2009 and with historical data 

from the 1980s and 1990s. Benthic habitat was characterized in 2008 and sites with 

similar structural complexity grouped together. Sites with both high larval supply and 

complex habitat have potential to serve as red king crab nurseries. Further study of 

processes that influence larval transport to nursery locations will advance understanding 

red king crab population dynamics in Alaska.

Pirtle, J.L., and Eckert, G.L. Red king crab (Paralithodes camtschaticus) larval 
supply, settlement timing, and benthic habitat structure. Prepared for submission in 
Canadian Journal of Fisheries and Aquatic Sciences.
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2.1 Introduction

Red king crab (Paralithodes camtschaticus) is a large, commercially harvested 

anomuran crab (Lithodidae) that once supported the most economically valuable 

crustacean fishery in Alaska. The U.S. commercial fishery began in the Western Gulf of 

Alaska in the 1930s and was established by the 1950s (Kimker et al. 1993; Spalinger and 

Jackson 1994). Red king crab populations peaked and then sharply declined in the late 

1960s followed by large-scale collapse o f the major harvest areas by the early 1980s 

(Orensanz et al. 1998; Zheng and Kruse 2000). At present, many red king crab 

populations throughout Alaska remain depressed, even in areas without a commercial 

fishery.

A combination o f factors likely contributed to the decline of red king crab statewide. 

Anthropogenic factors include recruitment overfishing of spawning stock biomass in the 

directed pot fishery (Orensanz et al. 1998) and possibly bycatch in trawl fisheries, 

particularly o f females (Dew and McConnaughey 2005). Natural factors were also 

important. North Pacific ocean-atmospheric conditions of warmer ocean temperatures 

and a strengthened Aleutian Low pressure system are negatively correlated with red king 

crab year-class strength (Tyler and Kruse 1996; Zheng and Kruse 2000), though the 

reason for this correlation is not clear. Understanding processes affecting red king crab 

early life stages may reveal bottlenecks that could explain long-term population decline 

and lack o f recovery.

Most commercially harvested crustaceans have complex life cycles with dispersive 

larval stages and benthic juveniles and adults. Pre-settlement processes that influence the 

distribution and abundance o f commercially important crab planktonic larval stages 

include adult distribution (Lipcius et al. 1997), large-scale atmospheric forcing (Shanks 

and Roegner 2007), local advective processes (Hudon and Fradette 1993; Eggleston and 

Armstrong 1995), water-quality attributes (Shirley and Shirley 1989), and food 

availability (Paul and Paul 1980). Each of these processes individually and 

synchronously affects larval dispersal and spatial and temporal patterns o f settlement.

For several commercially harvested crustaceans, the abundance of the planktonic
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settlement stage is strongly tied to the abundance of early post-settlement stages. This is 

true o f American lobster (Homarus americanus) (Incze et al. 1997; Incze et al. 2000), 

spiny lobster (Paulirus argus) (Lipcius et al. 1997), and Dungeness crab (Cancer 

magistef) (Eggleston and Armstrong 1995). Post-settlement processes that influence 

early benthic stages include habitat availability, food availability, and predation. Benthic 

habitat provides refuge from predation for shelter-seeking early post-settlement stages 

(Crowder and Cooper 1982; Caddy 1986), with demonstrated effects of habitat on 

survival and growth (Herrnkind and Butler 1986; Eggleston et al. 1990; Lipcius et al. 

1998; Hovel and Fonseca 2005; Mai and Hovel 2007; Stoner 2009). A limited 

availability o f habitat post-settlement can lead to a demographic bottleneck, as 

documented for American lobster (Wahle and Steneck 1991) and spiny lobster (Butler et 

al. 2001).

Compared to the multi-year time series of early life stage population dynamics known 

for some commercially harvested crustaceans, we are just beginning to understand red 

king crab early life stage ecology, particularly the role o f larval supply to settlement 

locations and post-settlement habitat. Red king crab have five larval stages, including 

four zoeae and one non-feeding settlement stage, called glaucothoe (Marukawa 1933). In 

southeast Alaska, red king crab larvae hatch in late spring and larvae are found in the 

plankton over a period ranging from 55-115 days (March to July) (Shirley and Shirley 

1988; 1989; 1990). Glaucothoe settle to nearshore habitats in the Gulf of Alaska during 

June-July and molt to become first stage juvenile crabs (instars) (Freese and Babcock 

1989; Donaldson et al. 1992; Blau and Byersdorfer 1994; Loher and Armstrong 2000). 

Settlement is greatest in high-complexity habitats that accommodate the body size of 

early post-settlement stages (to 1 year, 2-12 mm carapace length (CL), Donaldson et al., 

1992), including fragmented rock, cobble, and crushed shells, macroalgae and structural 

invertebrates (Powell and Nickerson 1965; Sundberg and Clausen 1977; McMurray et al. 

1984; Rodin 1985; Dew 1991; Loher and Armstrong 2000), while larvae actively avoid 

settling in low complexity habitats o f mud and sand (Stevens and Kittaka 1998; Loher 

and Armstrong 2000). We consider red king crab nursery locations to be habitats where
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young crabs can forage, grow, and avoid excessive predation from settlement through the 

early post-settlement phase. Red king crab are solitary and cryptic in post-settlement 

habitat (Karinen 1985) until around age 2 when they join juvenile pods o f many 

individuals (Powell and Nickerson 1965; Dew 1990; Zhou and Shirley 1998). Crabs are 

reproductively mature around age 7 and enter the Alaska fishery at ages 8 and 9 

(McCaughran and Powell 1977).

We examined spatial and temporal patterns o f red king crab larval supply, settlement 

to benthic habitat, and benthic habitat composition in southeast Alaska to increase 

understanding o f early life stage population dynamics for this depleted fishery resource 

species. We included an Auke Bay site sampled by Loher and Armstrong (2000), to 

identify potential shifts in red king crab larval dynamics at that site since their 

investigation. More broadly, we extended spatial coverage to sites beyond Auke Bay 

with the following three objectives: 1) identify spatial and temporal variability in larval 

supply and settlement; 2) explore relationships between larval supply and settlement to 

benthic habitats; and 3) characterize benthic habitat at nearshore locations and examine 

spatial variability o f those habitats among sites and depths.

2.2 M aterials and M ethods

2.2.1 Study Location and Site Selection

We sampled six sites, selected as potential red king crab nurseries, in northern 

southeast Alaska near Juneau (ca. 58° 18' N, 134°25' W, North American Datum of 1983) 

(Fig. 2.1). Our Indian Cove (58°22.3' N, 134°41.6' W) site located inside Auke Bay was 

studied by Loher and Armstrong (2000). Sampled sites outside Auke Bay included 

Barlow Cove (58° 19.9' N, 134°53.5' W), Saint (St.) James Bay (58°22.0’ N, 135°6.4' W), 

Portland Island (58°19.8' N, 134°43.9' W), Horse Island (58°15.6' N, 134°47.0' W), and 

the Couverden Islands (58°9.1' N, 135°2.8' W). Our study sites were encompassed by 

Alaska Department o f Fish and Game (ADF&G) red king crab harvest areas (Fig. 2.1). 

We had previously observed small juvenile crabs (12-23 mm CL, ages 1-3) in complex
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nearshore habitats at the Indian Cove site and several locations in our study area. All six 

sites were sampled in 2008. Sampling was repeated in 2009 at Indian Cove and the 

Couverden Islands to examine interannual variation at a subset of sites.

2.2.2 Larval Supply and Settlement Timing

Two collection methods were used to capture settling red king crab larvae. 1) Larval 

collectors were used to quantify the relative supply of settling larvae at sites and 

settlement timing during 2008 and 2009. 2) Settlement pails were used to examine 

relationships between larval settlement and benthic habitat at a subset o f sites in 2008, 

including Indian Cove, Barlow Cove, and St. James Bay. Larval collectors were based 

on previous designs specifically developed to effectively collect and retain settling red 

king crab larvae (Donaldson et al. 1992; Blau and Byersdorfer 1994; Loher and 

Armstrong 2000). Our larval collectors (18 cm diameter and 60 cm length) were 

constructed o f diamond polyethylene stretch mesh (1.5 cm aperture), stuffed with 

multifilament commercial salmon gill net as a complex settlement matrix, with a small 

doughnut float placed inside near the top o f the collector to facilitate upright floating 

orientation. Collectors were clipped to a weighted groundline in series with 3 m spacing 

between collectors and 5 m o f line on each end attached to anchors with a float line.

Nine collectors per site were used at Indian Cove, Barlow Cove, and St. James Bay, and 

six collectors per site were used at the Couverden Islands, Horse Island, and Portland 

Island. The resulting groundlines were 34 m long with nine collectors and 25 m long 

with six collectors. Settlement pails were plastic containers (33 x 18 x 12 cm) filled with 

substrate and slightly recessed in the seafloor (sensu Loher and Armstrong 2000). 

Settlement pails presented larvae with natural substrates from those study sites in a 

contained space to assess relative settlement across sites. Because pails required large 

sampling and processing effort, they were only deployed at Indian Cove, Barlow Cove, 

and St. James Bay in 2008.

Collectors and pails were deployed by boat and SCUBA divers in April and May 

(Table 2.1) before the settlement pulse to allow for natural fouling, which should make
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them more attractive as settlement substrate. A total o f 72 collectors and 54 pails were 

deployed in 2008 and 42 collectors were deployed in 2009. Collectors and pails were 

retrieved by divers during three sampling periods in 2008 at the anticipated beginning, 

peak, and end of the settlement pulse from early June to August. In 2008, Indian Cove, 

Barlow Cove, and St. James Bay were visited during all three sampling periods as high 

sampling intensity sites, and the Couverden Islands, Horse Island, and Portland Island 

were sampled during the last two periods as low sampling intensity sites. Collectors were 

deployed in May and retrieved in June and July in 2009.

On retrieval, individual collectors were placed in plastic bags at depth, and pails were 

sealed with lids to prevent loss o f contents. Collectors were returned to the lab and 

washed with ambient running seawater to remove settlement stage larvae and juvenile 

crabs from the mesh. Individual red king crab larvae and crabs were counted, a subset 

were measured to carapace length (mm) using microscopy, and all were maintained in 

laboratory aquariums with flow-through seawater for subsequent laboratory and field 

experiments. O f the 54 settlement pails deployed in 2008, 46 were recovered and eight 

were lost or damaged. Recovered pails were frozen and the contents sorted in summer 

2009 for larvae and juveniles and substrate composition. Substrates available to settling 

larvae, defined as the top 3 cm o f substrate in the pails, were identified and counted once 

based on the presence o f that substrate. These included fine substrates, such as sand and 

mud, and unconsolidated hard substrates, such as cobbles (6.5-25.5 cm), pebbles (2-6.5 

cm), and gravel (2-4 mm) (Stein et al. 1992; Greene et al. 1999), in addition to crushed 

shells, bivalve shells, macroalgae, and structural invertebrates. An index o f habitat 

structural complexity for settlement pails was determined as the sum of the scores for the 

following substrate types: structural invertebrate (score = 0.5); macroalgae (0.5); bivalve 

shell (0.5); cobble (0.5); pebble/gravel/crushed shell (0.25), and sand/mud (0). The 

presence of pebble, gravel, and crushed shell were counted together, because 

combinations o f these substrates, with fine sediments, represent a common low structure 

seafloor habitat in the Juneau area. The maximum score for a pail containing all substrate 

types was 2.25.
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2.2.3 Larval Supply and Settlement Analysis

Counts o f individual larvae and post-settlement stage crabs were standardized to 

crabs-collector'1 -day"1 for all analyses. Hypotheses were tested for red king crab larval 

supply and settlement, including null hypotheses of 1) no difference of larval supply 

among sites, years, and depths; and 2) no temporal structure o f settlement timing across 

sampling periods. The General Linear Model (GLM) was applied (a  = 0.05) for 

significance tests using SAS 9.2 (SAS Institute, Inc.). A one-factor GLM with Tukey’s 

(HSD) post-comparisons test was used to test for differences in larval supply at all sites 

and years sampled at 6 m depth. A two-factor GLM was applied where multiple depths 

were sampled, at Indian Cove, Barlow Cove, and St. James Bay in 2008 and Indian Cove 

in 2009, to test for differences in larval supply among sites and depths (6 and 9 m). A 

mixed-effects linear model, with fixed factor stage (larvae and instars) and the repeated 

measure sampling period (Table 2.1), was applied to test for differences in temporal 

structure o f settlement timing, pooled across all sites and depths sampled in 2008.

2.2.4 Benthic H abitat

Divers conducted video transects along settlement groundlines to characterize benthic 

habitat availability at study sites. A diver swam from the anchor near the first larval 

collector to the opposite anchor, maintaining an approximate distance of 1 m from the 

seafloor and an approximate transect width of 0.5 m with the groundline at the edge o f 

the field o f view. Videos were recorded with a Fuji 6.3 megapixel digital video camera 

in an underwater housing. One transect was completed along each groundline at 6 and 9 

m depths (0.5 m x 34 m) at Indian Cove, Barlow Cove, and St. James Bay, and at 6 m 

depth (0.5 m x 25 m) at the Couverden Islands, Horse Island, and Portland Island for a 

total of nine transects.

The major habitat categories encountered were substrate, macroalgae, and 

macroinvertebrates. The substrate category was classified into the following eight 

subcategories: a) silty mud; b) silty sand; c) small unconsolidated (gravel and pebble (> 5 

mm and < 7 cm); d) large unconsolidated (cobble and small boulders (> 7 cm and < 30
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cm) (after, Stein et al. 1992; Greene et al. 1999); and e) bivalve shells; f) crushed shells; 

g) diatom mat; and h) terrestrial organic debris. Fine sediment groundtruthing from 

settlement pails and diver observations was helpful to distinguish between silty sand and 

mud, in addition to crushed shells that were intermixed with fine sediments. The 

category macroalgae was classified into the following most common five subcategories: 

a) understory kelp {Saccharina spp. and Laminaria spp.); b) shotgun kelp (Agarum 

clathratum); c) acid kelp {Desmarestia spp.); d) drift algae (unattached or entrained on 

groundlines); and e) algae other (e.g., unidentifiable red algae). Macroinvertebrates 

included the following seven subcategories: a) parchment tubeworm {Eudistylia spp.); b) 

plumose anemone {Metridium farcimen); c) orange cucumber {Cucumaria miniata); d) 

giant cucumber {Parastichopus californicus); e) mottled seastar {Evasterias troschelii); f) 

sunflower star {Pycnopodia helianthoides); and g) dungeness crab (C. magister). 

Tubeworms, anemones, and orange cucumbers were structure-forming 

macroinvertebrates that increased benthic habitat complexity.

2.2.5 Benthic Habitat Analysis

Videos were processed to create a sequence o f non-overlapping frames for the total 

length o f each transect. Habitats were relatively homogenous along groundlines, so a 

stratified sample o f every fourth frame was selected for image analysis to avoid spatial 

correlation (Thompson 2002). We used the program Coral Point Count with Excel 

extensions (CPCe) (Kohler and Gill 2006) to quantify percent cover o f habitat attributes 

using a stratified random overlay of 25 points per frame. The number of random points 

was selected using Pearson product-moment correlation (Zar 1999). The habitats 

underlying points on an individual frame were classified into habitat subcategories.

Multivariate analysis was conducted to compare benthic habitat composition among 

sampling locations at study sites, using PRIMER 6.0 (PRIMER-E Ltd, Plymouth, UK). 

Percent cover estimates (e) were log-transformed as proportions (s' -  0.5 x log10(l + e)) 

(Aitchison 1986) prior to analysis to reduce the influence of high percent cover values. 

Similarities in habitat composition among sampling locations (n = 9) were tested using
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the Bray-Curtis group-average method with log-percent cover estimates o f habitat 

subcategories. Non-metric multi-dimensional scaling (nMDS) ordination was 

constructed from the similarity matrix for two and three-dimensional solutions, using 30 

iterations, and hierarchical clustering was performed with similarity profile (SIMPROF) 

permutation tests (1000 permutations). The null hypothesis of no difference in 

multivariate structure o f habitat attributes among groups was tested (a  = 0.05), with 

site.depth as the lowest level of group structure (Clarke and Warwick 2001).

2.2.6 Adult Abundance and Distribution

Red king crab stock assessment survey data, provided by the Alaska Department of 

Fish and Game (ADF&G), have been analyzed to examine the abundance and spatial 

distribution o f red king crab in southeast Alaska relative to our study area. The ADF&G 

red king crab pot survey is conducted to obtain a relative measure o f abundance o f red 

king crab in locations where red king crab are harvested by personal use and commercial 

fisheries, evaluate the overall health and condition of the resource, and determine 

guideline harvest levels (Clark et al. 2003). The survey is conducted annually in June- 

July in eight areas defined as a single bay or a collection of nearby bays and adjacent 

shorelines o f straits and sounds (Clark et al. 2003). These areas are divided into strata 

where random pot locations are sampled each year (mean pots-area'1 ± SE, 48 ± 2; mean 

pots year'1 ± SE, 386 ± 30). Pots are generally set at depths greater than 37 m and less 

than 183 m and are recovered after 16-24 hours. Data are recorded for sex, carapace 

length (mm), shell condition, reproductive status, and the presence o f parasites (Clark et 

al. 2003).

We examined the distribution and abundance o f adult and older juvenile red king crab 

relative to our southeast Alaska study sites in survey years 2008-09. Years were pooled 

for this analysis to generate the overall trend in red king crab abundance for the years 

sampled by our study. Abundance o f juvenile males (fishery pre-recruits, < 129 mm CL) 

and mature females were mapped separately to examine nursery habitat potential and 

female reproductive potential near our study sites. We included large female crab that



69

were > 114 mm CL, a size threshold o f female maturity (error probability 0.01%), and 

small female crab (< 114 mm CL) judged mature by the presence of eggs and egg 

development stage. An abundance index was estimated using the nearest five pots 

sampled in 2008-09. The nearest five pots to each site were identified by the linear 

distance from the pot to the site using ArcGIS 9 (Esri Institute). The estimated index of 

abundance was calculated as mean crabs-pot'1 with standard error as measure of 

variability. The Couverden Islands site was not included because the nearest station in 

2008-09 was 24 km to the northwest in Excursion Inlet. Abundance was also estimated 

near Indian Cove from 1997-98 when Loher and Armstrong (2000) conducted their study 

o f larval supply and settlement. The mean distance required to account for the nearest 

five pots to our study sites, for both mature female and juvenile male crabs, was 2 km ± 

0.8 km SE. The smallest distance to the nearest pot for both females and males was 0.2 

km near the head of Barlow Cove. The greatest distance was 8.8 km to a pot containing 

juvenile male crab near our Horse Island site, whereas the distance to the nearest pot with 

mature females near this site was 6.5 km.

Biomass estimates o f mature (> 129 mm CL) and legal (> 145 mm CL) male crab 

were also provided by ADF&G for southeast Alaska from 1979-2009, and from 1993

2009 for the following survey areas: Juneau (inclusive harvest area 11 A); Lynn Canal 

(15C and 12B); and Excursion Inlet (14C) (Fig. 2.1). Biomass estimates were calculated 

by ADF&G from stock assessment survey catch estimates and biological data, 

commercial and personal use fishery catch, and estimates for natural mortality and 

growth (Clark et al. 2003). Southeast Alaska commercial catch history data from 1970

2009 were obtained from ADF&G.

2.3 Results

2.3.1 Larval Supply and Settlement

A total o f 24 red king crab glaucothoe and 154 instars were captured in floating larval 

collectors at our southeast Alaska study sites in 2008 (Table 2.1). A subset of these
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larvae (n = 7) and instars (n = 46) were measured to carapace length (CL). The mean size 

of the larvae was 2.6 mm CL ± 0.2 SE (min = 2.0 mm, max = 3.1 mm) and the instars 

were 2.2 mm CL ± 0.1 (min = 1.7 mm, max = 3.3 mm). A total o f 15 larvae and 64 

instars were captured in floating collectors at Indian Cove and the Couverden Islands in 

2009. The larvae and instars o f other crab species, including lithodids other than red king 

crab, were also captured in 2008 and 2009. In 2008 these included five helmet crab 

(Telmessus cheiragonus) megalopae and 193 instars, six instars of unknown decorator 

crabs, and two instars o f other lithodids, including one Hapalogaster cavicauda and one 

undetermined lithodid. In 2009, six helmet crab larvae and 102 instars were captured 

along with one unknown decorator crab instar, and six other lithodid instars, including 

three H. cavicauda, two Cryptolithodes typica, and one undetermined lithodid. The other 

lithodid instars, with the exception of C. typica, were morphologically similar in 

appearance to first or second stage red king crab instars, but with distinguishing 

variations in color, spination, and limb length.

Larval supply at 6 m depth varied spatially (df effect/total = 7/70, F = 7.61 ,P <  

0.0001) (Fig. 2.2). The Couverden Islands in 2008 (mean crabs-collector'l-day'1 ± SE, 

0.07 ± 0.01) and 2009 (0.06 ± 0.01) had the greatest supply o f settling larvae at 6 m 

depth, significantly more than at Florse Island (0.02 ± < 0.01), Indian Cove 2009 (< 0.01 

± < 0.01), and Barlow Cove (0). Indian Cove 2008 (0.05 ± 0.01) had significantly greater 

larval supply than Barlow Cove, but not Horse Island. Further, differences were not 

detected among St. James Bay (0.03 ± 0.01), Portland Island (0.02 ± 0.01), and other 

sites.

Patterns o f larval supply at 6 m versus 9 m were not consistent across sites in 2008 

(Table 2.1 and Fig. 2.3). A significant interaction between site and depth (df effect/total 

= 3/70, F = 3.50, p = 0.02) occurred because more larvae and benthic stage crabs were 

captured at 9 m than at 6 m depth at St. James Bay, Barlow Cove, and Indian Cove 2009, 

but larval supply was similar between depths at Indian Cove 2008 (Fig. 2.3). The 

difference in larval supply at 6 m and 9 m depths was greatest at St. James Bay, where 

mean captures at 9 m depth were 0.10 crabs-collector'1-day'1 ± 0.06 SE, compared to 0.03
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± 0.04 at 6 m depth. St. James Bay at 9 m depth had greater supply of settling larvae than 

all sites and depths sampled in 2008. Individually, site (df = 3/70, F = 10.66, p < 0.0001) 

and depth (df = 1/70, F = 9.84, p < 0.01) were significant sources o f variation in larval 

supply.

A consistent temporal pattern o f larval settlement was evident across sites in 2008 

(Fig. 2.4). A significant interaction occurred between settlement stage and sampling 

period (df effect/total = 2/60, F = 15.54, p < 0.0001), due to more larvae captured during 

period 08-1 (June 10-20) than period 08-2 (June 27-July 2) or 08-3 (July 25-August 8), 

and more benthic stage instars captured during periods 08-2 and 08-3 than period 08-1 

(Table 2.1 and Fig. 2.4). Settlement stage alone was a significant source o f variation in 

temporal settlement patterns (df = 1/40, F = 8.29, p < 0.01), but sampling period was not 

significant (df = 2/60, F = 0.91, p = 0.41). The last date of capture o f larvae in 2008 was 

June 14 at St. James Bay, even though sampling continued until June 20, and the first 

date o f capture o f juveniles was June 27, the first day of our second 2008 sample period. 

This temporal pattern was evident across all sites (Fig. 2.4). Settlement timing in 2009 

was largely consistent across sites. In contrast to 2008, two larvae were captured on July 

14, 2009 at Indian Cove at 9 m depth, extending the 2009 settlement window into July 

(Table 2.1 and Fig. 2.4).

Few settling red king crab larvae and benthic stage crabs were captured in settlement 

pails at Indian Cove, Barlow Cove, and St. James Bay (Table 2.1). Five pails returned 

larvae or instars, and four o f those five pails were from Indian Cove. Larvae and instars 

were found at 6 and 9 m depth at Indian Cove during period 08-1, and larvae were found 

at 6 m depth during period 08-2. One pail from St. James Bay returned larvae and instars 

during period 08-1. Larvae or instars were not found in benthic pails during period 08-3. 

Barlow Cove, the site with the lowest larval supply from floating collectors, returned no 

settling red king crab from benthic pails.

Settlement pail substrates available to settling larvae varied among sites, reflecting 

seafloor substrate composition at those sites. Substrates in pails at Barlow Cove were 

overall less structurally complex (mean HCI ± SE, 0.67 ± 0.06) than St. James Bay (1.16
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± 0.16) and Indian Cove (1.38 ± 0.16). Most pails at Barlow Cove contained only small 

parchment tubeworms and some contained small pieces of macroalgae that added 

structural complexity to otherwise low-complexity sand. The pails from Indian Cove 

with red king crab settlers contained combinations of structurally complex substrates 

(1.75 ± 0.20), including parchment tubeworms, macroalgae, bivalve shells, and cobbles. 

The one pail from St. James Bay with four settlers contained one large cobble with 

attached macroalgae and small encrusting tubeworms (HCI = 1.75). The presence o f 

infrequent parchment tubeworms and macroalgae in pails at St. James Bay added 

structural complexity to otherwise low complexity silty mud substrate. Substrates 

available to settling larvae also varied among pails within sites. Pails without settlers at 

Indian Cove (1.25 ± 0.19) and St. James Bay (1.19 ± 0.15) contained substrates that were 

generally less structurally complex than pails with settlers.

Helmet crab larvae and instars were also found in settlement pails. These included 

one pail from St. James Bay with a low complexity substrate (HCI = 0.25), and three 

pails from Barlow Cove containing parchment tubeworms and small pieces o f 

macroalgae (mean HCI ± SE) 0.83 ± 0.29. Pails from Indian Cove did not capture 

settlers of other crab species.

2.3.2 Benthic Habitat

Benthic habitats varied among sites (Table 2.2 and Fig. 2.5). Indian Cove, the 

Couverden Islands, and Portland Island had a variety o f unconsolidated hard substrates 

(small boulders, cobbles, pebbles, and gravel). These were on or embedded in fine 

sediments, such as silty sand, with a dense variety of macroalgae cover and structural 

invertebrates including parchment tubeworms, red cucumbers, and plumose anemones.

In contrast, Horse Island habitats contained more silty mud than unconsolidated hard 

substrates, less variety o f macroalgae, and no structural invertebrates. Habitats at Barlow 

Cove and St. James Bay were mainly composed of fine substrates with crushed shells and 

drift algae entrained on the groundlines. Parchment tubeworms occurred in small, patchy
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clumps at Barlow Cove creating small islands o f biogenic habitat. However, sessile 

habitat-forming invertebrates were not identified from video at St. James Bay.

Similarities and differences in habitat composition among sites were illustrated by 

nMDS ordination with distinct groupings and a low stress value (three-dimensional stress 

= 0.01, two-dimensional stress = 0.03) (Clarke and Warwick 2001) (Fig. 2.6). 

Hierarchical cluster analysis with S1MPROF tests of Bray-Curtis similarities 

demonstrated statistically significant groups (p < 0.0001). Ordination contours were 

drawn to encompass sites and depths that were at least 70%, 60%, and 40% similar in 

habitat composition. Indian Cove habitats were 79% similar between 6 and 9 m depths, 

indicating little within site variation. Habitats at the Couverden Islands and Portland 

Island were 86% similar at 6 m depth. Indian Cove, the Couverden Islands, and Portland 

Island habitats were 66% similar (Fig. 2.5 and 2.6). These sites were 48% similar to 

Horse Island habitats, which had more silty mud like habitats at St. James Bay. Habitats 

at Barlow Cove and St. James Bay were 43% similar in composition, largely due to high 

proportions o f fine sediments, and had little within-site variation among depths. Barlow 

Cove habitats were 68% similar at 6 and 9 m depths with high proportions o f silty sand 

and drift algae. Habitats at St. James Bay were 63% similar at 6 and 9 m depths but 

contrasted with Barlow Cove by having silty mud with benthic diatom cover rather than 

silty sand.

2.3.3 Adult Abundance and Distribution

Red king crab were distributed throughout the ADF&G stock assessment survey area 

in northern southeast Alaska during June-July in 2008-09 (Fig. 2.7). Mature female crab 

(84-169 mm CL) were most abundant near the head of bays, including Barlow Cove and 

Excursion Inlet, and inside Auke Bay and at locations near N. Douglas Island and S. 

Stephens Passage (Fig. 2.8). Both mature females and juvenile male crab (fishery pre

recruits, <129 mm CL) were concentrated near the head of bays and absent from the 

entrance to these bays and from pots sampled in the central channels o f Stephens Passage
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and Lynn Canal (Fig. 2.9). Juvenile males were not as widely distributed as mature 

female crab in 2008-09.

Among our study sites, mature female crab were most abundant near Barlow Cove at 

the head of the bay (mean crabspo f1 ± SE, 35.6 ± 9.9) and the next highest local 

abundance was near Indian Cove (9.0 ± 3.5) (Fig. 2.10). Juvenile males were most 

abundant near Indian Cove (8.2 ± 2.3) and the next highest local abundance was at the 

head of Barlow Cove (5.0 ± 1.1). Mature female and juvenile male crab had relatively 

low abundance near our site in St. James Bay (1.6 ± 0.2, 1.6 ± 0.4), and near Horse Island 

(3.6 ± 1.1, 4.0 ± 2.3), and Portland Island (6.8 ± 4.6, 1.4 ± 0.4). Abundance of mature 

female crabs and juvenile males at Indian Cove in 1997-98 during the study by Loher and 

Armstrong (2000) (39.8 ± 22.0, 29.0 ± 12.9) was relatively greater than 2008-09 

estimates at this site, though relatively similar to Barlow Cove in 2008-09.

Commercial catch o f southeast Alaska red king crab has declined overall since the 

early 1970s, with slight increase in the 1980s followed by continued decline with fishery 

closures in 1986-1992 (Fig. 2.11). The fishery was re-opened in 1993-1997, closed 1998, 

open in 1999, 2001-2003, and 2005, and has been closed since 2006. Biomass o f mature 

and legal male crabs steadily declined from 1979 through the 1980s with historic low 

estimates o f < 300 mt o f mature male crab in the late 1980s. Rebuilding began by 1990 

and reached a peak o f 753 mt o f mature male crab in 1995. The population has generally 

declined since 1995 and was < 300 mt in 2009, approaching the historic lows of the late 

1980s.

The Juneau survey area, encompassing our Indian Cove, Barlow Cove, Portland 

Island, and Horse Island study sites, has relatively high local biomass of mature male 

crabs, though biomass has steadily declined since 2000 (Fig. 2.12 a). Our St. James Bay 

study site is located in the Lynn Canal survey area where mature male biomass has 

recently increased (Fig. 2.12 b). Mature male biomass has declined since 2002 and is 

relatively low in the Excursion Inlet survey area that is located northwest o f our 

Couverden Islands study site near Icy Strait (Fig. 2.12 c).
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2.4.1 Current Status of Red King Crab Larval Biology

Red king crab larval biology is less well-known than that o f other commercially 

harvested crustaceans, including Dungeness crab, and American and spiny lobsters. 

Knowledge gaps include adult female distribution, hatch timing, larval behavior, 

transport mechanisms, settlement locations, and population connectivity.

Adult female red king crab make a seasonal migration to shallow depths, where egg- 

bearing females release developed larvae prior to molting and mating. This reproductive 

movement pattern was documented in the Gulf of Alaska by Powell and Nickerson 

(1965) and later by Stone et al. (1992, 1993) who investigated distribution, aggregative 

behavior, and movement in Auke Bay in the southeast Alaska study area. Stone et al. 

(1992, 1993) found that female depth distribution and aggregative behavior changed 

seasonally. Females were highly aggregated at shallow depths (< 25 m depth) in groups 

o f more than 300 individuals during late November-March when hatching, molting, and 

mating occurred. These activities were followed by female migration as loose 

aggregations to intermediate depths (> 25 and < 40 m) in April and to deeper depths (>

40 m) in late May where females remained through summer to mid-fall in less aggregated 

groups that occupied non-random locations. Hatch timing for females may be bimodal, 

as smaller, first time spawning females occupied shallow waters earlier than larger multi

year spawning females (Stone et al. 1992). Two hatching periods were also documented 

in Auke Bay in southeast Alaska in 1986 and 1988, but not 1987, based on larval timing 

and density in the plankton (Shirley and Shirley 1989). The movement patterns o f egg- 

bearing females have implications for understanding larval release timing and location 

and the subsequent transport o f larvae.

The two to four month larval period o f red king crab (Shirley and Shirley 1988; 1989; 

1990) provides great potential for long-distance dispersal (Shanks et al. 2003) away from 

hatching locations. This pattern has been observed with planktonic larval stages o f other 

commercially important crustaceans, including Dungeness crab (Eggleston and

2.4 Discussion
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Armstrong 1995; Shanks and Roegner 2007), snow crab (Chionocetes opilio) (Orensanz 

et al. 2004; Parada et al. in press), and lobsters (Incze and Wahle 1991; Cobb and Wahle 

1994). Larval transport distance in the southeastern Bering Sea was estimated to be 28

264 km, assuming passive movement (Hsu and Armstrong 1988). These estimates were 

from models for red king crab from 1973-1985 that incorporated larval size, sinking rate, 

and larval duration based on water temperature. Red king crab larval release timing and 

duration are linked to water temperature (Shirley and Shirley 1989), with known 

variation in timing and duration for Dungeness crab between southeast Alaska (Fisher 

2006) and the Pacific coast of Canada and the U.S. (Lough 1976; Jamieson and Phillips 

1988). Red king crab larval transport distance from known hatching locations has not 

been measured in the field.

Larval red king crab will encounter a variety of oceanographic processes that affect 

transport and settlement. The fjord coast of southeast Alaska is complex, with many 

islands, deep inlets and channels, and submerged topographic features remnant o f glacial 

ice cover. Oceanographic processes that may influence larval transport along complex 

fjord coastlines include wind-driven advection, tidal currents, and currents driven by 

water density gradients from freshwater runoff (Asplin et al. 1999; Gibbs et al. 2000; Hill 

et al. 2009; Weingartner et al. 2009). Dungeness crab larval transport has been studied in 

British Columbia, Canada, and in Glacier Bay, southeast Alaska, demonstrating that zoea 

use vertical migration and transport by tides and winds in these areas with complex 

coastlines (Jamieson and Phillips 1988; Fisher 2005; Herter and Eckert 2008). In Glacier 

Bay, Dungeness crab zoea are transported out of the bay and return as megalopae by 

selective tidal stream transport where larvae migrate into inward-flowing currents and 

avoid outward-flowing currents, resulting in little or no net exchange o f larvae from the 

bay (Fisher 2005). In contrast, Cancer oregonensis, a congener of Dungeness crab, uses 

vertical migration in selective tidal streams as a retention mechanism near coastal 

locations in British Columbia and Glacier Bay (Jamieson and Phillips 1988; Fisher 2005).

The transport processes o f red king crab are not well known. Red king crab zoeae 

have a strong phototactic response to light that diminishes ontogenetically and is not
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present for glaucothoe (Epelbaum et al. 2007). Glaucothoe are highly thigmotactic, 

responding by touch upon contact with complex settlement substrates (Stevens and 

Kittaka 1998), also a behavior o f European green crab (Carcinus maenas) megalopae 

(Paula et al. 2006). Red king crab larval behavior may interact with transport processes 

and coastal topography to influence transport and settlement location. Phototactic 

behavior suggests that red king crab zoea may have near surface position in the water 

column, with potential for transport by near surface currents and winds (Asplin et al.

1999), and the behavior o f glaucothoe suggests near bottom retention at settlement 

locations.

Although we do not have a good understanding of the distribution o f red king crab 

larval stages in the field, zoea have been captured in the top 30 m of the water column in 

southeast Alaska (Shirley and Shirley 1989) and glaucothoe have been captured in 

complex substrates inshore (Donaldson et al. 1992; Loher and Armstrong 2000; this 

study). Larval sampling to 200 m depth in the Sea of Japan near Russia found red king 

crab zoea I and II distributed from the coast to the 100-m isobath offshore and zoea III 

and IV were inshore o f the 50-m isobath (Sherbakova et al. 2008). This demonstrates the 

potential for offshore transport o f red king crab early larval stages and inshore transport 

or retention at late stages in open coast locations. In contrast, models o f red king crab 

larval transport along the fjord coast of Norway predicted that larvae released along the 

coast were transported in the direction o f the Norwegian coastal current and tended to 

settle on the west side of fjords at points and capes, and that larvae released inside fjords 

tended to be retained in those locations (Pedersen et al. 2006).

Recent genetic analysis o f several nuclear loci from adult red king crab from the 

inside waters o f southeast Alaska demonstrated heterogeneity among populations in 

semi-enclosed bays separated by distances less than 100 km (S. Vulstek and D. Tallmon, 

University o f Alaska Southeast (UAS), personal communication). Differentiation among 

southeast Alaska populations was greater than populations in the Bering Sea and Gulf of 

Alaska (S. Vulstek and D. Tallmon, UAS, personal communication). Because red king 

crab larvae have long-distance dispersal potential, we would expect that populations
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would be relatively homogenous genetically, compared to marine species with low 

dispersal potential (Kelly and Palumbi 2010). The observed higher level of genetic 

differentiation among southeast Alaska populations suggests the presence o f an 

oceanographic mechanism to enable local larval retention. Larval retention is occurring 

within southeast Alaska red king crab populations, but the scale of larval retention is 

presently not known.

2.4.2 Spatial Variation in Larval Supply

Spatial variation of red king crab larval supply was likely due to several processes 

that may influence larval transport and retention in southeast Alaska, including 

hydrographic features that typically occur along complex coastlines in fjord-estuary 

systems (Asplin et al. 1999; Gibbs et al. 2000). High larval supply at Indian Cove, St. 

James Bay, and the Couverden Islands, suggests that larvae were transported to those 

areas and retained. Sites located inside bays or near headlands, like the Couverden 

Islands, have the potential to retain larvae transported to those sites, as predicted along 

the fjord coast o f Norway (Pedersen et al. 2006) and observed in our study. In contrast, 

low larval supply, at sites including Horse Island, Portland Island, and Barlow Cove, 

suggests that larvae were not transported to or retained at those locations, although 

Barlow Cove is a deep, narrow bay. Hydrographic models of particle movement at the 

intersection o f Glacier Bay and Icy Strait demonstrated high potential for dispersal 

barriers formed by interacting tidal streams and fronts in this area (Hill et al. 2009). 

Although the larval duration of red king crab suggests potential for long-distance 

dispersal, hydrographic features interacting with the coastal topography (Pickard 1967; 

Weingartner et al. 2009) may limit dispersal distance in this region, as demonstrated by 

genetic differentiation among some bays (S. Vulstek and D. Tallmon, UAS, personal 

communication).

Barlow Cove had the lowest supply of larvae in our study area and the highest local 

population o f mature female crab. Our study site in Barlow Cove was located near the 

head o f this deep, narrow bay where juvenile and adult red king crab occur in high
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abundance in deeper habitats, observed from submersible dives (Zhou and Shirley 1998) 

and stock assessment surveys (Clark 2008). Our result for Barlow Cove was unexpected, 

because models o f larval dispersal along complex coastlines predicted retention for red 

king crab larvae originating in bays and fjords (Pedersen et al. 2006) like Barlow Cove. 

Similarly, population heterogeneity for urchins (Mladenov et al. 1997) and seastars 

(Perrin et al. 2004) demonstrated larval retention on the local-scale of New Zealand 

fjords (Wing et al. 2003), despite long-distance dispersal and population homogeneity for 

these species along the coast. Because so few larvae were captured at our sampling sites 

in Barlow Cove, it is likely that larvae were transported to other locations within the bay, 

or were not retained at the scale o f this bay. High female abundance in Barlow Cove may 

not contribute to larval supply at this site, but may be an important source o f larvae for 

other sites in this region of southeast Alaska.

2.4.3 Temporal Variation and Settlement Timing

Our study revisited sites in Auke Bay (Indian Cove) more than ten years after Loher 

and Armstrong (2000) investigated red king crab larval dynamics and settlement habitat. 

Our 2008-09 results for Indian Cove larval supply were consistent with this earlier study, 

as the ranges o f larvae and crabs captured in floating larval collectors in our study and by 

Loher and Armstrong (2000) were similar. We captured between 0-9 

individuals-collector'1 at 6 and 9 m depth at Indian Cove during June-July 2008-09, and 

Loher and Armstrong (2000) captured between 0-8 individuals-collector1 at 12 m depth 

during June-July 1997. Consistent larval supply to the area of Indian Cove suggests that 

processes influencing larval transport and retention with respect to this location have 

remained consistent over time.

Settlement timing was also consistent among study sites in 2008 and between years in 

2008-09, with settlement completed by mid-June in 2008 and mid-July in 2009.

Historical patterns o f settlement timing in Auke Bay were largely consistent with our 

results. Settlement extended into mid-July in 1997 (Loher and Armstrong 2000) and was 

completed by late-June in 1988 and 1989 (Freese and Babcock 1989).
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Glaucothoe were present in the plankton earlier, by mid-May, during warmer years 

(1987-1989) and were not present until late-May and mid-June during the coldest years 

(1985 and 1986) from previous studies in Auke Bay during the 1980s (Shirley and 

Shirley 1989; 1990). In all years (1985-1989), glaucothoe were last observed in plankton 

samples in mid-to late-June (Shirley and Shirley 1989; 1990). Sea surface temperature 

measured in Auke Bay from March-July in 1985-1989 and 2008-2009, demonstrated 

cooler than average temperatures in 2008 and warmer than average temperatures in 2009. 

Variability in settlement timing among the years o f our study and these historic studies 

was about one month, and may reflect differences in hatch timing and larval duration 

from year to year due to differences in annual mean water temperature during the months 

that larvae are present in the water column (Shirley and Shirley 1989).

2.4.4 Benthic Habitat and Settlement Potential

In our field study, we identified two sites with both high larval supply and complex 

benthic habitats, Indian Cove and the Couverden Islands. These two sites were grouped 

by benthic habitat analysis based on similar attributes that form high structural 

complexity. Habitats at these sites were composed of a variety o f unconsolidated hard 

substrates, shells, macroalgae, and structural invertebrates. Benthic habitat availability 

likely influences red king crab early life stage success because structurally complex 

habitats provide crevice space and vertical structure that function as food (Pirtle and 

Stoner 2010) and refuge (Stevens and Swiney 2005; Stoner 2009; Pirtle 2010). Indeed, 

red king crab glaucothoe settle on highly structured habitats and do not settle on sand 

habitat without structure (Stevens and Kittaka 1998). Because o f high larval supply at 

Indian Cove and the Couverden Islands and the presence of complex benthic habitats that 

can support settling larvae and early benthic stages, we suggest that these locations could 

serve as red king crab nurseries.

Our study in 2008 used benthic settlement pails to quantify settlement abundance at 

Indian Cove, St. James Bay, and Barlow Cove. Our results suggested that habitat should 

not have been limiting to settling larvae at Indian Cove, where we observed half o f our
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total observed settlement in pails that contained structurally complex substrates 

representative o f the complex benthic habitat at this site. We also found early benthic 

stage crabs (ages 0 and 1) in the low intertidal zone in the vicinity o f Indian Cove on the 

lowest tides from early spring through summer at densities up to 3 crabsm '2, 

demonstrating that larvae not only settle to benthic habitats at this site, but that this site 

functions as a nursery location. Loher and Armstrong (2000) used a variety of methods 

to examine settlement habitat and post-larval stage habitat use in the vicinity o f Indian 

Cove in 1997-98, including dive transects, suction dredge sampling, and benthic 

settlement pails. They found newly settled larvae and post-settlement stage crabs in 

complex benthic habitats, and none in the silty mud habitat of a neighboring cove, 

demonstrating that the spatial distribution o f settlement in this area was related to 

complex habitat availability (Loher and Armstrong 2000). Because the Couverden 

Islands and Indian Cove have similarities in benthic habitat composition and high larval 

supply, we expect a similar relationship between larval settlement and benthic habitat at 

the Couverden Islands.

We found high larval supply and half o f our total observed settlement in St. James 

Bay, a relatively protected embayment with silty mud habitat and patchy occurrence o f 

complex benthic habitat in the form of drift algae and parchment tubeworms. St. James 

Bay has the potential to be a nursery location, where patchy habitats could be 

functionally similar to continuous habitats at other locations for settlement and early post

settlement stages. Settlement observed in St. James Bay was in one pail that contained 

complex habitat, although more than half o f the pails at this site contained some 

structural features in addition to silty mud. Benthic habitat analysis grouped St. James 

Bay with Barlow Cove based on similarities in low complexity habitat composition at 

these sites. Substrates in pails at Barlow Cove were overall less structurally complex 

than St. James Bay, because pails at Barlow Cove were dominated by sand with less 

variety of other substrates mixed with this low-complexity habitat. Barlow Cove also has 

patchy distribution o f small parchment worm tubes, but this habitat feature was more 

frequently encountered than at St. James Bay, visible on habitat transect videos and
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present in all settlement pails at this site (10-100 individuals-pail'1) with the occasional 

piece o f macroalgae. Red king crab larval supply may have been limiting at Barlow 

Cove, because we observed low larval supply in floating collectors and did not observe 

settlement in the pails, although helmet crab megalopae settled in three pails that 

contained worm tubes and macroalgae. Worm tubes form complex biogenic habitat that 

early juvenile red king crab find highly attractive (Pirtle and Stoner 2010), and early 

juvenile tanner crab (Chionocetes bairdi) have been observed associating with worm 

tubes in habitats around Kodiak Island, Alaska (C. Ryer, Alaska Fisheries Science 

Center, personal communication). In laboratory experiments with fish predators, patchy 

habitat islands were nearly as effective as continuous, complex habitat in providing 

structural refuge for age 0 (3-5 mm CL) red king crab (Stoner 2009).

2.4.5 Adult Distribution and Abundance

The distribution o f adult and older juvenile red king crab at the time o f the ADF&G 

stock assessment survey, during June-July, demonstrated the spatial structure o f crabs 

sampled by the survey in our southeast Alaska study area. Mature females and juvenile 

male crab were more limited in spatial distribution than mature male crab, the main 

component o f crabs sampled by the survey in this area (Fig. 2.7, 2.8, 2.9). Adult females 

and juvenile male crab were concentrated near the head of bays and absent from the 

entrance to these bays and open channels. The distribution of mature females 

encountered by the survey suggests that they occupied deeper, summer locations at the 

head of bays, as proposed by Stone et al. (1992; 1993), including Barlow Cove and Auke 

Bay. From the work of Stone et al. (1992, 1993) on the seasonal movement o f crabs in 

Auke Bay, we expect that females in the areas o f high density during the survey would 

migrate inshore at those locations during the late-winter and early-spring when hatching 

occurs. Whether or not larval hatching at locations of high female density leads to 

retention at these sites, or transport to other locations instead, remains to be determined.

The biomass o f mature male red king crab in southeast Alaska declined from 533 mt 

1997, at the time o f Loher and Armstrong’s (2000) field work in Auke Bay, to 334 mt at
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the time o f our study in 2008 (Figure 2.11). In the Juneau survey area that included Auke 

Bay, mature male biomass was 230 mt in 1997, increased to 292 mt by 2001, and 

declined to 107 mt by 2008. Considerable fluctuation in biomass of mature male red king 

crab in southeast Alaska between the late 1990s and our present study does not seem to 

have affected larval supply to Auke Bay. Whether or not larval supply has diminished 

with depleted adult populations in the southeast Alaska region as a whole is not clear.

2.4.6 Directions for Further Study

Our research provides new information about red king crab early life stage ecology 

with practical potential to understand mechanisms behind depleted red king crab 

populations in Alaska. We have learned that the supply o f larvae varies spatially among 

locations and depths, and that settlement timing is generally consistent from year to year 

in our southeast Alaska study area. Benthic habitat availability for settling larvae and 

early benthic stages varies spatially among locations in this area and may affect the 

potential o f certain sites to serve as nurseries. To improve understanding o f red king crab 

early life history and population dynamics we identify several areas o f further study.

The relationship between local adult populations and larval supply should be further 

investigated. For example, the truncation o f adult female red king crab distribution in the 

eastern Bering Sea and subsequent shrinking o f optimal hatching habitat may have 

shifted the transport o f larvae from traditional nursery locations, to the detriment o f local 

population strength (Loher and Armstrong 2005; Kruse et al. in press), and a similar trend 

is likely occurring with Bering Sea snow crab (Orensanz et al. 2004; Parada et al. in 

press). Snow crab spatial population dynamics were recently investigated for the Bering 

Sea, Alaska, using a coupled biophysical modeling approach that included the spatial 

distribution o f juveniles and adults, results o f an individual based model for snow crab 

early life history, and a hydrodynamic model o f circulation and bottom temperature 

(Parada et al. in press). Given that the range of spawning female snow crab has 

contracted to the north with increased near bottom temperature (Orensanz et al. 2004), 

this model demonstrated the major role o f climate in regulating snow crab spatial ecology
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in the Bering Sea. To accomplish this level of population modeling for red king crab in 

southeast Alaska, we require time-series for larval supply from spawning locations to 

settlement, greater knowledge of the spatial extent of nursery locations, and basic 

understanding o f the physical oceanographic processes in the region.

Further study is needed on physical oceanographic processes in southeast Alaska and 

on red king crab larval behavior to better understand larval transport and population 

connectivity for red king crab. We have at present a rudimentary understanding of the 

physical oceanography o f southeast Alaska (Weingartner et al. 2009). Patterns of larval 

supply in southeast Alaska suggest that transport and retention in this region may be 

similar to other fjord coast locations, including Norway (Pedersen et al. 2006) and New 

Zealand (Wing et al. 2003), and much different than open coastal locations such as the 

southeastern Bering Sea (Hsu and Armstrong 1988, Loher and Armstrong 2005).

Furthermore, red king crab larval dynamics cannot be generalized from well-studied 

species like Dungeness crab. Behavioral differences between Dungeness crab (Fisher 

2005; Herter and Eckert 2008) and red king crab larvae in southeast Alaska could 

indicate that populations o f these co-occurring species respond differently to 

environmental drivers o f marine population regulation. Process-driven studies o f red 

king crab larval dynamics are fundamental to better understand this critical life stage, 

including connections between larval transport and nursery locations.

To better understand nursery habitat function for red king crab, field studies are 

needed that examine growth and survival o f early post-settlement stages in a variety of 

habitats, including spatially explicit knowledge o f nursery habitat suitability. Nursery 

habitat is a complex function of conditions that optimize growth and survival o f early life 

stages. Recent studies have investigated habitat preferences for red king crab during 

settlement (Stevens and Kittaka 1998), and habitat preference o f early juvenile stages 

(Stevens 2003; Pirtle and Stoner 2010), their foraging behavior (Pirtle and Stoner 2010), 

and habitat-specific survival and refuge response behavior with predators in the 

laboratory (Stevens and Swiney 2005; Stoner 2009) and the field (Pirtle 2010). Further 

study o f mechanisms behind habitat associations relative to early benthic stage survival in
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various habitat types and locations, including the suitability o f contiguous versus patchy 

habitat and the importance o f predator-prey interactions, will improve understanding o f 

nursery habitat function for red king crab.
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Table 2.1. Larval and juvenile abundance in collectors by site and sampling period, with the number o f soak days, collectors 
recovered (C.n), pails recovered (P.n), and the total number of larvae (Lve) and juvenile instar crabs (Ins) collected at 6 m and 
9 m depth.

_________ Collectors__________  Pails____________
Site Sample Deploy Retrieve Soak Cm Lve Ins Lve Ins P.n Lve Ins Lve Ins 
______ Period Date Date Days__________6m Total_____9m Total____________ 6m_Total_____9m Total
2008 High Intensity Sites

IC 08-1 Apr-26 Jun-12 47 6 6

08-2 Apr-26 Jun-27 62 6 1

08-3 Apr-26 Jul-25 90 6 0

BC 08-1 May-22 Jun-20 29 6 0

08-2 May-22 Jul-01 40 6 0

08-3 May-22 Jul-31 70 6 0

SJ 08-1 May-11 Jun-14 34 6 0

08-2 May-11 Jul-02 52 6 0

08-3 May-11 Aug-08 89 6 0

2008 Low Intensity Sites

c v 08-2 May-11 Jul-02 52 3 0

08-3 May-11 Aug-08 89 3 0

HI 08-2 May-16 Jun-30 45 3 0

08-3 May-16 Aug-01 77 3 0

0 3 0 6 0 1 2 0

4 6 10 6 3 0 0 0

19 0 13 4 0 0 0 0

0 0 0 6 0 0 0 0

0 0 3 6 0 0 0 0

0 0 0 6 0 0 0 0

0 8 0 6 0 0 1 4

5 0 23 2 0 0 0 0

14 0 20 3 0 0 0 0

13 - - - - . - -

13

3

- - - - - - -

3
VDas



Table 2.1. Continued.

Site Sample
Period

: Deploy 
Date

Retrieve
Date

Soak
Davs

Collectors Pails
Cm Lve Ins 

6m Total
Lve Ins 
9m Total

Pm Lve Ins 
6m Total

Lve Ins 
9m Total

PI 08-2 Apr-26 Jun-30 65 3 0 6 - - - - - - -

08-3 Apr-26 Aug-01 97 3 0 5 - - - - - - -

2009 Sites

IC 09-1 May-11 Jun-13 33 9 1 0 3 0 - - - - -

09-2 May-11 Jul-14 64 9 0 0 2 11 - - - - -

CV 09-1 May-03 Jun-11 39 9 9 8 - - - - - - -

09-2 Mav-03 Jul-12 70 9 0 45 _ _ _ - - _

*Site: Indian Cove (IC), Barlow Cove (BC), St. James Bay (SJ), Couverden Islands (CV), Horse Island (HI), Portland Island 

(PI).

VO-j



Table 2.2. Percent cover o f habitat categories (bold text) and subcategories (plain text) 

classified from video frame analysis o f habitat transects in 2008. Site abbreviations as in 

Table 2.1.

98

Habitat
Categories
Subcategories IC.6 IC.9 BC.6

Study Site.Depth (ml 

BC.9 SJ.6 SJ.9 CV.6 HI.6 PI.6
Substrate 53.7 77.7 27.7 76.1 33.8 53.6 31.1 49.6 22.1

Silty Mud 0.2 0 0.8 0 23.7 27.7 0 31.1 0

Silty Sand 29.1 55.6 26.9 75.5 1.8 0 3.7 0 6.4

Small Unconsolidated 4.7 2.4 0 0 0 0.4 2.0 5.4 1.2

Large Unconsolidated 2.1 1.2 0 0 0 0 19.6 0 10.4

Bivalve Shells 6.2 2.9 0 0.3 0.9 1.5 3.2 6.8 3.2

Crushed Shells 11.3 15.0 0 0.3 7.4 0 2.7 6.3 0.8

Diatom Mat 0 0 0 0 0 24.0 0 0 0

Terrestrial Debris 0.2 0.6 0 0 0 0 0 0 0

Macroalgae 42.8 20.6 72.3 23.1 66.2 44.6 65.2 50.5 75.1

Understory Kelp 16.4 8.2 0 5.1 0 0 21.8 47.8 43.4

Shotgun Kelp 19.1 7.4 0 0 0 0 41.4 0 30.5

Acid Kelp 2.3 1.8 0 0 0 0 0.7 2.7 1.2

Drift Algae 0.2 1.8 72.3 18.0 66.2 44.6 0 0 0

Algae Other 4.9 1.5 0 0 0 0 1.2 0 0

Macroinvertebrates 3.5 1.8 0 0.9 0 1.9 3.7 0 2.8

Parchment Tubeworm 0.2 1.8 0 0.9 0 0 0 0 0

Plumose Anemone 0 0 0 0 0 0 0.7 0 0.8

Orange Cucumber 0 0 0 0 0 0 0 0 0.4

Giant Cucumber 0 0 0 0 0 0 0.5 0 0

Mottled Seastar 0 0 0 0 0 0.4 0 0 0

Sunflower Star 3.3 0 0 0 0 1.1 2.5 0 1.6

Dungeness Crab 0 0 0 0 0 0.4 0 0 0
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IC and CV were sampled in 2009. Letters above standard error bars indicate groups with 
similar means (Tukey’s HSD, p < 0.05). Vertical line separates years 2008 and 2009; site 
abbreviations as in Table 2.1.
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as in Table 2.1.
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Figure 2.5. Benthic habitat composition at settlement sites and depths from dive video 
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and macroalgae. Site abbreviations as in Table 2.1.
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Figure 2.6. Multidimensional scaling (nMDS) ordination o f settlement sites and depths 
based on Bray-Curtis similarities calculated from percent cover o f benthic habitat types 
(two-dimensional stress = 0.03) (Table 2.2, Fig. 2.6). Contours indicate habitat similarity 
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abbreviations as in Table 2.1.
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Figure 2.10. Mean abundance estimates (crabs-pof') o f mature female (84-169 mm CL) 
and juvenile male (< 129 mm CL) red king crab with standard error bars, including the 
nearest five stock assessment survey pots from our larval collection sites Indian Cove in 
1997-98 and 2008-09, and Barlow Cove, St. James Bay, Horse Island, and Portland 
Island in 2008-09. Estimates for the Couverden Islands are not included because the 
nearest station pot in 2008-09 was 24 km away. Vertical line separates years 1997-98 
and 2008-09. Data provided by ADF&G.
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Figure 2.11. Historical trends o f red king crab in metric tons (mt) for southeast Alaska, 
including catch from the 1970 season through 2009 (open triangles) and biomass (mt) of 
legal (open circles) and mature (closed circles) male red king crab from southeast Alaska 
survey areas from 1979 through 2008. The fishery was closed in 1986-1992, 1998, 2000, 
2004, and 2006-2009 (closed triangles). Data provided by ADF&G.
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Figure 2.12. Biomass estimates (mt) of legal (open circles) and mature (closed circles) 
male red king crab from 1993-2009 in northern southeast Alaska stock assessment survey 
areas, including (a) Juneau, which includes our Indian Cove, Horse Island, and Portland 
Island study sites, (b) Lynn Canal, which includes our St. James Bay site, and (c) 
Excursion Inlet. The y-axis scale for Juneau is different from Lynn Canal and Excursion 
Inlet. Data provided by ADF&G.
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C hapter 3

Red king crab (Paralithodes camtschaticus) early post-settlement habitat choice:

structure, food, and ontogeny1

A bstract

Little is known about nursery habitat function for red king crab (Paralithodes 

camtschaticus), a commercially important species that associates with complex benthic 

habitats from settlement through the first two years of life. During settlement, red king 

crab actively seek complex benthic habitats, with high availability of vertical structure 

and crevice space. Habitat choice for early juvenile red king crab may be driven by 

habitat complexity, or a function o f several potential mechanisms, including foraging 

requirements and shifting ontogeny. We established habitat preference and foraging 

behavior for two size classes of age 0 red king crab (small 2-4 mm, and large 7.5-9 mm 

carapace length) with laboratory experiments using habitat treatments composed of 

individual complex substrates that were living, biogenic substrates, including structural 

invertebrates, bryozoans and hydroids, and macroalgae in branched and blade forms. 

Non-living structural mimics of the biogenic substrates were presented to crabs as clean 

and fouled mimic treatments. We quantified the proportion o f crab associations and 

foraging activity with single habitat treatments within a 24-h period. Substrates that were 

statistically attractive to small crabs were paired to test small crab foraging behavior. A 

variety o f substrates were statistically attractive to red king crab. Small crabs associated 

with complex biogenic habitats and fouled mimics (group mean ± SE, 64% ± 4%) more 

often than clean mimics (29% ± 4%), and preferred to forage on the structural 

invertebrates (foraging frequency 81%) when presented with paired biogenic and fouled 

mimic substrates. Large crabs associated with habitats composed of structural 

invertebrates (group mean ± SE, 78% ± 2%) statistically more often than macroalgae and

1 Pirtle, J. L., Stoner, A. W., 2010. Red king crab (Paralithodes camtschaticus) early 
post-settlement habitat choice: structure, food, and ontogeny. In: Journal o f Experimental 
Marine Biology and Ecology, 393, 130-137.
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fouled and clean mimics (32% ± 5%). Strong attraction to structural invertebrates by 

early juvenile red king crab is likely driven by foraging opportunities. Our experiments 

demonstrate that biological habitat features may be functionally more important to early 

juvenile red king crab than complex physical structure alone. Habitats formed by 

structural invertebrates, in particular, may enhance growth and survival of early post

settlement stage red king crab in excess o f other highly structured habitats, including 

macroalgae and complex physical substrates.
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3.1 Introduction

Red king crab (Paralithodes camtschaticus) was historically the most 

economically important crustacean fishery in Alaska from the late 1960s until its collapse 

in the early 1980s (Orensanz et al., 1998; Zheng and Kruse, 2000). Overharvest and 

unfavorable environmental conditions contributed to low fishery recruitment, and stocks 

have not recovered to pre-collapse levels (Orensanz et al., 1998; Woodby et al., 2005). 

Successful recruitment for marine fish and crustaceans depends upon early life stage 

survival (Jones et al., 1982; Wahle and Steneck, 1991; Eggleston and Armstrong, 1995; 

Loher and Armstrong, 2000). In the case o f red king crab, we know little about factors 

contributing to early life stage success, including which habitats serve as functional 

nurseries and why. If we can gain an understanding of the processes that affect red king 

crab early life stages, such as nursery habitat function, then we may better understand 

conditions that contribute to population fluctuation and recovery.

Survival from settlement through early post-settlement stages for many 

crustaceans is strongly affected by habitat choice. During settlement, several species 

including Dungeness crab (Cancer magister) (Eggleston and Armstrong, 1995), blue crab 

(iCallinectes sapidus) (Pardieck et al., 1999), American lobster (Homarus americanus) 

(Wahle and Steneck, 1991) and red king crab (Loher and Armstrong, 2000) actively seek 

complex benthic habitats. Complex habitats have high availability o f vertical structure 

and crevice space, proportional to the body size of the occupant (Caddy, 1986; Eggleston 

et al., 1990) and provide shelter for cryptic, early post-settlement stages. For American 

lobster, survival o f the early post-settlement stage is higher than for older juveniles that 

outgrow complex habitats and encounter greater risk to mortality (Wahle, 2003). It is 

likely that similar habitat-survival relationships function for red king crab populations 

(Stoner, 2009).

Red king crab in the early post-settlement stage (to 1 year, 2-12 mm carapace 

length (CL)), (Donaldson et al., 1992) are cryptic and remain separate from older 

juveniles and adults in nearshore habitats (Karinen, 1985) (Fig. 3.1). These early juvenile 

red king crab are most abundant in complex habitats, including physical substrates such
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as fractured rock rubble, cobbles, pebbles, and broken shells, and avoid low complexity 

mud and sand (Sundberg and Clausen, 1977; Loher and Armstrong, 2000). Early 

juvenile red king crab also associate with complex, biogenic habitats such as macroalgae 

and structural invertebrates, including hydroids, bryozoans, sponges, anemones, and 

polychaete tube worms, which often cover hard substrates (Powell and Nickerson, 1965; 

Sundberg and Clausen, 1977; McMurray et al., 1984; Rodin, 1985; Dew, 1991).

Complex biogenic habitat created by structural invertebrates and macroalgae may provide 

important food sources for red king crab during early post-settlement stages. Complex 

habitats, in general, provide shelter and refuge from predators until individuals outgrow 

available crevice space (Crowder and Cooper, 1982). Around age 2 (approximate size 25 

mm CL), red king crab emerge from complex habitats to form mobile aggregations of 

many individuals (Powell and Nickerson, 1965; Dew, 1990; Zhou and Shirley, 1998), 

potentially due to food or space limitations. Whether or not certain habitats are preferred 

by early juvenile red king crab over others, and why, and whether or not ontogenetic 

shifts drive patterns o f habitat preference are critical and unknown aspects o f nursery 

habitat function for red king crab.

The goal o f this chapter is to understand mechanisms of red king crab habitat 

associations during the first year post-settlement. In particular, does structural 

complexity o f the habitat, the presence o f foraging opportunities, or both, drive habitat 

associations? We establish post-settlement habitat preference and foraging behavior for 

two size classes o f age 0 red king crab (2-4 mm and 7.5-9 mm CL) with manipulative 

laboratory experiments using a variety o f complex habitats, including biogenic and non

living habitats. Our hypotheses are as follows: 1) red king crab associate with complex 

biogenic habitats more often than non-living, physical habitats of similar structure; 2) red 

king crab forage on biogenic habitat more often than biologically fouled physical habitats 

o f similar structure; and 3) habitat choice differs between the two size classes o f post

settlement red king crab.
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3.2.1 Animals

Age 0 red king crab in the present study were hatched from wild female red king 

crab collected from the Bering Sea, Alaska, and cultured by the cooperative Alaska King 

Crab Research, Rehabilitation, and Biology Program (AKCRRAB) (Alaska Sea Grant, 

2008). Ovigerous female crabs were transported to the Alutiiq Pride Shellfish Hatchery 

in Seward, Alaska, and maintained in the ambient seawater facility until larval release in 

early spring 2008. Larvae were raised in 1,200-L tanks on a diet o f enriched Artemia 

nauplii daily until settlement in late May 2008 (Daly et al., 2009). Young crabs were 

shipped to the Alaska Fisheries Science Center’s Behavioral Fisheries Ecology 

Laboratory, in Newport, Oregon, and to the University of Alaska Fairbanks, School of 

Fisheries and Ocean Sciences in Juneau, Alaska, in June 2008. Juvenile crabs were 

maintained at each facility in flow through natural seawater (mean ± SE, 8.3 ± 0.1 °C) in 

mass rearing tanks with a complex substrate o f artificial seaweed composed of 

polypropylene cord or plastic fiber. Crabs were fed to excess on a daily diet o f raw, 

blended shrimp, Otohime™ pellets, and calcium supplement in a gelatin matrix. Crabs 

were reared through several molts for use in experiments.

3.2.2 Treatm ents

Habitat preference and foraging behavior were tested for two size classes o f age 0 

red king crab, including small crabs o f 2-4 mm carapace length (CL) and large crabs 7.5

9.0 mm CL, with approximate ages o f 3-4 months and 6-7 months post-settlement in the 

lab, respectively. We tested whether red king crab prefer complex biogenic and complex 

physical substrates as shelter, as food, or both. Experimental, living biogenic habitats 

were composed o f bryozoan (Microporinia borealis) (B), hydroid (Obelia spp.) (H), and 

macroalgae o f two morphologies, including branched red (Neorhodomela larix) (N), and 

brown blade (Agarum clathratum) (A) forms. All four substrates naturally occur in 

habitats used by red king crab in Alaska (Orlov, 1964; Powell and Nickerson, 1965; 

Vinogradov, 1968; Sundberg and Clausen, 1977), and were collected in southeast

3.2. Methods
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Alaskan waters, with the exception of N. larix that was collected in Newport, Oregon. In 

a prior laboratory study, Neorhodomela larix and Obelia spp. were among preferred 

settlement substrates for red king crab (Stevens, 2003). Live substrata were collected 

from docks, the low intertidal zone, and by divers using SCUBA. Live substrate 

treatments were rinsed in seawater and cleaned by hand to remove epifauna and 

epiphytes prior to experimental trials. Fresh substrate was used in each trial.

Structural mimics o f the biogenic habitats were constructed from various 

synthetic and natural fiber materials to represent complex physical structure without food 

(i.e., bryozoan mimic (BM), hydroid mimic (HM), branched macroalgae mimic (NM), 

and blade macroalgae mimic (AM)). Fouled mimics were structural mimics that were 

biologically fouled in seawater to represent complex physical structure with at least a 

trace o f food or chemical attractant (i.e., BMF, FIMF, NMF, and AMF). Fouling was 

accomplished by suspending clean mimics in ambient, unfiltered seawater in the lab or 

from a dock for a period o f at least 3 wk to generate a thin biological film on all surfaces. 

Fresh, fouled mimics were used in each experimental trial. Clean, white sand (either 

quartz (#30 0.5 mm) or coral sand) was used as the base substrate in all experiments. At 

the end o f each trial, sand was rinsed with fresh seawater to remove all debris and then 

reused.

In summary, biogenic treatments were bryozoan (B), hydroid (H), branched 

macroalgae (N), and blade macroalgae (A). Structural mimics of the biogenic habitats 

were BM, FIM, NM, and AM. Biologically fouled mimics were BMF, HMF, NMF, and 

AMF.

3.2.3 Habitat experiments

Experiments were conducted in 8 cm deep rounded square (21 cm L, 21 cm W) or 

round (25 cm D) containers o f clear plastic lined with 2 cm of sand and a substrate 

treatment (Fig. 3.2 a). Containers were filled with seawater and maintained in a 

circulating water bath (mean ± SE 8.7 ± 0.1 °C) with opaque covers to limit overhead 

light (Fig. 3.2 b), or in a cold room with a light cycle o f 12 h light: 12 h dark at 8 °C.
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3.2.3.1 H abitat choice

The frequency o f association o f small and large age 0 crabs were tested separately 

with individual complex biogenic (B, H, N, A), clean mimic (BM, HM, NM, AM) and 

fouled mimic (BMF, HMF, NMF, AMF) substrates. Trials were conducted in Newport 

(N, NM, NMF) and Juneau (B, H, A, BM, HM, AM, BMF, HMF) with small crabs in 

September-October 2008. The AMF treatment was not used in Juneau due to low 

availability o f small crabs when the trial would have been conducted. Crabs were treated 

similarly at both locations.

Trials with small crabs (2-4 mm CL) were replicated a total of six times for each 

substrate treatment. A total o f ten small crabs were gathered haphazardly from mass 

rearing tanks (n > 300 individuals) and placed in an experimental container at the 

beginning of a daily light cycle, together with three pieces of a single substrate treatment 

that were approximately equal in size, and mutually occupying approximately one third 

of the available open space without contact (Fig. 3.2 a). After a period of 3 h, counts of 

all positive and negative crab associations with the substrate were recorded within each 

container. Positive associations were defined as a crab being on or under the substrate, 

and negative associations were crabs located at the edge of the container or on open sand. 

Association counts were repeated at 6 and 24 h from the start of the experiment to obtain 

a general association pattern within a 24-h period. Crabs were returned to the mass 

rearing tanks at the completion o f a trial, following haphazard sampling o f the population 

for the next replicate trial.

Single substrate, habitat choice trials were conducted with large crabs in Newport 

from December 2008 to January 2009 when crabs were 7.5-9 mm CL. Crabs of this size 

range were estimated to represent late stage age 0 crabs (mean 9.33 mm CL) (Donaldson 

et al., 1992). Trials with large crabs used similar methods as with small crabs, with six 

replicate trials conducted in a cold room with a light cycle of 12 h light: 12 h dark at 8 

°C; however, a total o f six large crabs, rather than ten large crabs, were placed in the 

larger containers (25 cm D) to maintain comparable densities. Preliminary experiments
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with large and small crabs showed that all crabs could be positively associated with the 

amounts of substrate used in the experiments.

3.2.3.2 Foraging behavior

The second experiment quantified foraging activity o f small and large crabs 

associating with experimental substrates. Foraging was defined as repeated chelae 

movement from the substrate to the mouth parts o f an individual crab. Foraging was 

recorded as positive for an individual crab when at least three chelae to substrate to 

mouth movements were observed during association counts.

Small crab foraging trials were conducted in Juneau during October 2008, 

following the habitat choice experiment. Foraging was quantified for small crabs with 

paired treatments o f a subset of substrates that were statistically attractive during the 

single substrate, habitat choice experiment. Substrate treatments included paired 

combinations o f B, H, A, BMF, and HMF. Treatments o fN  and NMF were not included 

because they were not available in Juneau, and AMF was not used with small crabs 

during the habitat choice experiment. The paired foraging experiment followed similar 

methods as the habitat choice experiment, using a total of ten small crabs for each o f six 

replicate containers for each treatment. Except that the substrates were applied as 

orthogonally paired treatments arranged uniformly within experimental containers using 

three interspersed pieces of each substrate of approximately the same total area, evenly 

spaced without contact. Foraging activity was recorded for individual paired substrates 

within each container at 3, 6, and 24 h to obtain a general pattern within a 24-h period.

Foraging was quantified for large crabs during the single substrate, habitat choice 

experiment in Newport from December 2008 to January 2009, using complex biogenic 

(B, H, A, N), clean mimic (BM, HM, AM, NM) and fouled mimic (BMF, HMF, AMF, 

NMF) substrates.

3.2.3.3 Grain size

Grain-size experiments were conducted with different complex rock substrates 

and sand to explore the potential influence of interstitial crevice space provided by non

living habitats. These experiments were conducted in Newport during November 2008.
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The association of small and large age 0 crabs was quantified and compared among 

substrates with varied grain size including small cobble (15-50 mm), pebble (7-15 mm), 

granule (2-4 mm), and sand (0.5 mm). The experiment followed the same general 

methods as the habitat choice experiments, except that the containers were sectioned into 

four quadrants and each quadrant was lined with a different grain size treatment. Thus, 

each o f the four substrate treatments was presented in an individual container as a choice. 

Counts o f positive associations among substrate treatments were recorded at 3, 6, and 24 

h to obtain a general pattern o f habitat associations in a 24-h period.

3.2.4 Analysis

Analysis o f variance (ANOVA) (ot = 0.05) was applied to the habitat choice 

experiments, the foraging experiment with large crabs, and the grain-size experiments to 

determine the effect o f substrate type on crab habitat choice. The ANOVAs were based 

on the proportion (p = 1/n) o f positive crab associations with individual substrate 

treatments. Preliminary analysis by repeated measures ANOVA did not detect 

consistent, biologically meaningful patterns of habitat shifts with time. Consequently, 

data were pooled across time periods (3, 6, and 24 h) for a more robust evaluation of 

habitat choice within 24 h, using one-way ANOVAs. Data were the arcsine square root 

transformed mean of the proportion of positive associations (p) for each time period.

Data were tested for equality o f variances by Bartlett’s and Levine’s tests (a  = 0.05) and 

ANOVAs were conducted when test results were not significant ip > 0.05). Significant 

differences (p < 0.05) from one-way ANOVAs were compared among treatment means 

using Tukey’s Honest Significant Difference (HSD) test.

Foraging experiments for small crabs were analyzed using a Chi-square test of 

equal proportions (a  = 0.05). There was no evidence o f consistent foraging shifts with 

time. Consequently, data were pooled across time periods (3, 6, and 24 h) for a more 

robust evaluation o f habitat choice in a 24 h period. Data were the mean of the sum of 

positive associations within each time period. The null hypothesis was an equal 

proportion (p = 1/n) o f crab foraging activity among (n) substrate choices (i.e., n = 5, p = 

1/5, H0 = 20%).
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3.3.1 Habitat choice

Small crabs did not equally prefer substrate treatments in the habitat choice 

experiment (p < 0.001) (Table 3.1, Fig. 3.3). The proportion o f small crabs associating 

with biogenic substrates and fouled mimics was significantly greater than the proportion 

associated with clean mimics (Table 3.2). Bryozoan (B) had the greatest proportion of 

small crab associations (mean ± SE, 0.74 ± 0.05), followed by hydroid (H) (0.71 ± 0.02), 

branched algae (N) (0.64 ± 0.05), blade algae (A) (0.62 ± 0.04) and fouled mimics of 

hydroid (HMF) (0.62 ± 0.01), branched algae (NMF) (0.59 ± 0.04), and bryozoan (BMF) 

(0.58 ± 0.03) (Table 3.2, group a).

Large crabs did not equally associate with substrate treatments in the habitat 

choice experiment (p <0.001) (Table 3.1, Fig. 3.4). However, large crab associations did 

not follow the same pattern demonstrated with small crabs (Table 3.2). The proportion of 

large crabs associating with bryozoan (B) (mean ± SE, 0.83 ±0.01) and hydroid (H)

(0.73 ± 0.03) was significantly greater than the proportion associated with all other 

substrates (Table 3.2, group c). However, dissimilar to small crabs, large crabs did not 

choose all biogenic and fouled mimic substrates more often than clean mimics (Table 

3.2). Proportional associations o f large crabs with branched algae (N) (0.57 ± 0.06), 

blade algae (A) (0.31 ± 0.03), and fouled mimics o f bryozoan (BMF) (0.40 ± 0.07) and 

blade algae (AMF) (0.35 ± 0.06), were not significantly different from clean mimics of 

bryozoan (BM) (0.59 ± 0.08) and blade algae (AM) (0.35 ± 0.05) (Table 3.2, group d). 

Although, these substrates (N, A, BMF, AMF, BM, AM) (Table 3.2, group d) were 

chosen significantly more often by large crabs (group mean ± SE 0.43 ± 0.06) than fouled 

and clean mimics o f hydroid (HMF, HM) (0.16 ± 0.02, 0.21 ± 0.06) and branched algae 

(NMF, NM) (0.15 ± 0.03, 0.11 ± 0.04) (Table 3.2, group e).

3.3.2 Foraging behavior

Large crabs did not forage among substrate treatments equally in the habitat 

choice experiment {p <0.001) (Table 3.3, Fig. 3.5). Large crabs foraged on bryozoan (B)

3.3 Results
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(mean ± SE, 0.42 ± 0.06) and hydroid (H) (0.36 ± 0.02) (Table 3.3, group a) significantly 

more often than blade algae (A) (0.09 ± 0.03) and fouled mimics of bryozoan (BMF) 

(0.04 ± 0.02), hydroid (HMF) (0.02 ± 0.01), and blade algae (AMF) (0.01 ± 0.01) (Table 

3.3, group b).

Small crabs did not forage equally among paired substrates (B, H, A, BMF, HMF) 

(%2 = 65.39, p  < 0.001) (Table 3.4, Fig. 3.5). Small crabs foraged on bryozoan (B)

(70.0% o f crabs exposed to bryozoans) and hydroid (H) (47.8%) more frequently, than 

blade algae (A) (10.6%) and fouled mimics o f bryozoan (BMF) (10.0%) and hydroid 

(HMF) (7.8%) (Table 3.4). The design to test small crab foraging behavior was different 

than the design for large crabs. However, the results of both experiments demonstrate 

that small and large crabs both foraged more often on habitats composed of structural 

invertebrates, than habitats o f macroalgae and fouled structural mimics (Fig. 3.5).

3.3.3 Grain size

Small and large crabs did not equally associate with treatments o f different grain 

sizes {p < 0.001) (Table 3.5, Fig. 3.6). Substrates in order of decreasing grain-size were 

cobble, granule, pebble, and sand. Small crabs chose cobble (mean ± SE, 0.35 ± 0.04) 

and granule (0.34 ± 0.03) (Table 3.6, group a) significantly more often than pebble (0.21 

± 0.04) and sand (0.11 ± 0.02) (Table 6, group b). Large crabs chose cobble (mean ± SE, 

0.42 ± 0.03) and pebble (0.32 ± 0.03) (Table 3.6, group c) significantly more often than 

granule (0.16 ± 0.02) and sand (0.10 ± 0.02) (Table 3.6, group d).

3.4 Discussion

The experiments reported in this study show that early post-settlement stages of 

red king crab have strong habitat preferences. An important feature o f natural habitats 

selected by early juvenile red king crab is structural complexity. Structural complexity, 

however, does not fully explain red king crab habitat choice. Biogenic habitats provide 

crabs with complex structure in addition to foraging opportunities that physical structure 

alone does not. Living, biogenic habitats formed by structural invertebrates in particular
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should represent high quality nursery habitat for red king crab, promoting early life stage 

success and overall population strength.

3.4.1 Habitat structural complexity

Early post-settlement stage red king crab preferred substrates with high 

availability o f crevice space and structure proportional to their body size, when given a 

choice between complex substrates in laboratory experiments. This response establishes 

that red king crab continue active selection for complex substrates through early post

settlement stages, as previously demonstrated for settling red king crab larvae (Stevens 

and Kittaka, 1998; Loher and Armstrong, 2000; Stevens, 2003).

Active selection for complex substrates by red king crab early juveniles 

underscores the importance of habitat complexity from settlement through early post

settlement stages for red king crab and other crabs and lobsters with similar early life 

history habitat ecology. Early post-settlement stage red king crab have been observed to 

be most abundant in complex, unconsolidated hard substrates such as cobble, rock rubble, 

and shell hash (Karinen, 1985; Freese and Babcock, 1989; Loher and Armstrong, 2000), 

and among structural invertebrates and macroalgae, living, biogenic structures that grow 

on hard substrates (Powell and Nickerson, 1965; Sundberg and Clausen, 1977;

McMurray et al., 1984; Rodin, 1985; Dew, 1991). Similarly, American lobsters depend 

on cobble habitats during early post-settlement stages (Wahle and Steneck, 1991; Wahle 

and Steneck, 1992), and other crab species are known to shelter in bivalve shells, algae 

and eelgrasses (Fernandez et al. 1993; Eggleston and Armstrong, 1995; McMillan et al., 

1995). Blue king crab (Paralithodes platypus), a sister species to red king crab, appear to 

mimic fragmented bivalve shells as early juveniles in nearshore nurseries where shell 

hash is a common feature (Armstrong et al., 1985; Tapella et al., 2009). Complex 

habitats provide shelter and refuge from predators for early life stages (Crowder and 

Cooper, 1982). Loss or fragmentation o f complex habitats, for example, has lead to 

increased mortality, reduced foraging abilities, and affected early life stage success for 

many marine species (Caddy, 2008). Loss o f complex habitats important to juvenile red 

king crab, and other crustaceans, is likely to be detrimental to early life stage success.



123

3.4.2 Biogenic habitat value

Our results are the first to separate the role o f living, complex biogenic habitats 

from complex physical structure in red king crab early post-settlement habitat choice. A 

strong preference by red king crab for living, biogenic substrates, most notably when 

foraging, supports the hypothesis that early juvenile red king crab are more attracted to 

complex biogenic habitats than other complex structures. Red king crab of two size 

classes associated with living, biogenic habitats and fouled structural mimics of biogenic 

habitats more often than physical structure during trials with a single substrate choice, 

demonstrating that the biological qualities o f the substrates were more important than 

physical structure to red king crab. In particular, strong preference for structural 

invertebrates by small and large red king crab, implies that habitats formed by structural 

invertebrates have valuable qualities for crab that exceed the attractive qualities o f other 

highly structured biogenic substrates, including macroalgae, and fouled physical 

structures. Complex biogenic habitats, especially structural invertebrates, should 

represent high quality nursery habitat for structure-seeking early juvenile red king crab.

Although early juvenile red king crab preferred structural invertebrates over other 

complex biogenic substrates, the mechanisms o f these associations are not fully 

understood. For example, in nearshore nursery habitats, red king crab may actively form 

associations with structural invertebrates because invertebrates are a preferred habitat 

choice, as demonstrated by this study. Indeed, early post-settlement stage red king crab 

have been found exclusively in habitats with invertebrate cover, including hydroids, 

bryozoans, polychaetes, and mussels (McMurray et al., 1984; Stevens and Macintosh, 

1991). However, red king crab may simply respond to strong shelter-seeking tendencies 

and form opportunistic associations with the first highly complex substrate encountered, 

gaining advantages like foraging opportunities when structural invertebrates are present.

Opportunistic habitat associations are one possible explanation for why early 

juvenile red king crab have been observed in habitats that were not most preferred in 

laboratory experiments. Macroalgae, for example, provide highly complex biogenic 

habitat during spring and summer months when algae biomass is greatest, often
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dominating shallow, hard substrate communities (Calvin and Ellis, 1981; Kain, 1989). 

While macroalgae were not the most preferred biogenic substrates in our experiments, 

red king crab were attracted to macroalgae, and have been observed in association with 

macroalgae in nearshore habitats (Orlov, 1964; Vinogradov, 1968; Loher and Armstrong, 

2000). Red king crab early juveniles have also been found in complex habitats with low 

or absent biogenic cover including rock rubble, cobble, gravel and shell hash (Karinen, 

1985; Freese and Babcock, 1989; Loher and Armstrong, 2000).

It is further possible that red king crab and other crustaceans with strong early life 

stage structure-seeking tendencies are more likely to associate with less preferred 

habitats, like physical substrates, when more attractive biogenic habitats are sparse or 

unavailable. Nearshore locations with complex benthic habitats where juvenile red king 

crab have been observed are not likely composed of one substrate type, but a combination 

o f several substrates, including structural invertebrates, macroalgae, and physical 

substrates with variable cover by each, ranging from abundant to rare. It is unclear 

whether or not red king crab early life stage success is affected by the relative availability 

o f complex biogenic habitat at nursery locations, compared to the availability o f other 

complex habitat types. The role o f habitat availability should be tested with field 

experiments at nursery locations.

3.4.3 Habitat shifts with crab size or age

The experiments reported in this study suggest that habitat selectivity by red king 

crab continues after settlement and shifts with crab size or age. Small crabs (2-4 mm CL) 

clearly associated with biogenic habitats and fouled mimics over all others, and large 

crabs (7.5-9 mm CL) preferred structural invertebrates, and a mix of other complex 

structures. Behavioral habitat shifts for red king crab may be similar to those well known 

among lobsters. Spiny lobster (Panulirus argns) demonstrate habitat shifts in distinct 

stages with growth, where pueruli settle in macroalgae and shift to crevices, eventually 

venturing into open spaces when they are large enough to avoid predation (Childress & 

Hermkind, 1994).
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It is not yet clear whether variation in habitat use among early juvenile stages of 

red king crab is due to shifting foraging demands, shelter requirements, anti-predation 

behavior, or a complex function of several potential mechanisms. American lobster may 

change habitat use due to their shifting response to predators with growth, increased 

energetic demands due to growth, or by both mechanisms (Wahle, 1992). Similarly, red 

king crab may outgrow shelter-providing settlement habitats in stages and require more 

substantial food sources for sustained growth. In our experiments, both small and large 

red king crab preferred to forage on structural invertebrates. However, small crabs 

foraged on fouled mimics more than twice as often as large crabs, suggesting that larger 

crabs require more substantial food sources. This result implies that food requirements 

likely shift with size or age and possibly influence habitat associations during early post

settlement stages for red king crab, and other crustaceans with similar early juvenile 

habitat requirements, including blue king crab and the poorly understood golden king 

crab (Lithodes aequispinus), known to associate with structural invertebrates as early 

juveniles in deep habitats (Krieger and Wing, 2002). Much remains to be examined 

regarding the influence o f ontogeny in red king crab early life history habitat ecology.

3.4.4 Foraging behavior

We quantified foraging through behavioral experiments that demonstrated strong 

attraction o f early post-settlement stage red king crab to structural invertebrates. Crabs 

also foraged on macroalgae and biologically fouled non-living structural mimics, but 

bryozoans and hydroids were the preferred foraging substrates of both small and large 

crabs. Structural invertebrates likely provide food for early juvenile red king crab 

through direct consumption. Unidentifiable soft tissues found in early juvenile red king 

crab gut contents (Pearson et al., 1984) may actually be the soft tissues of habitat-forming 

invertebrates. Crabs in our experiments did not destroy invertebrate structures (i.e., 

hydroid casing and bryozoan skeleton) while foraging, but they appeared to remove bits 

o f soft tissue with their claws. Feeding in this way is likely to lead to fragments o f 

unidentifiable soft tissues in the gut that may be difficult to identify by gut analysis alone. 

For this reason, we recommend that gut content analysis be paired with foraging
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observations if applied in future studies with king crabs. It is also possible that early 

juvenile red king crab consume epifauna and epiphytes on invertebrates or macroalgae 

without actually consuming the biogenic habitat. Associated organisms may include 

those reported in the gut contents o f young crabs, including small crustaceans, 

gastropods, benthic diatoms, and foraminifera (Feder et al., 1980; Pearson et al., 1984). 

Our biogenic habitat treatments were rinsed and cleaned prior to experiments, so the 

opportunity to graze on associated items may have been reduced from natural habitats. 

Fouled mimics were not cleaned, however, and presented non-living structure with a thin 

layer of biological film that may have contained small, consumable items such as benthic 

diatoms. Foraging behavior o f early post-settlement stages o f red king crab further 

implies that food availability, and not just physical structure, is important. Structural 

invertebrates, in particular, that provide foraging opportunities and complex habitat, may 

enhance juvenile red king crab growth and survival over habitats formed by macroalgae 

or complex physical structure alone. Studies are needed to compare growth rates and 

survival of red king crab post-settlement stages in habitats with a variety o f naturally 

occurring potential prey items, including structural invertebrates.

3.4.5 Role of predation in habitat choice

Foraging opportunities likely attract early juvenile red king crab to structural 

invertebrates over other highly structured habitats. However, attraction o f red king crab 

to complex habitats in general is probably an adaptation to high predation pressure during 

early benthic life. It is well established that complex habitats provide refuge for shelter- 

seeking early life stages (Crowder and Cooper, 1982). It follows that if  complex habitats 

with shelter-providing structure and crevice space are unavailable, then red king crab 

would be more vulnerable to predators.

Red king crab may become less naive and more adept at predator avoidance with 

growth, even among the earliest juvenile stages. Laboratory studies have observed this 

type o f behavior. Newly settled red king crab larvae did not seek shelter in the presence 

o f larger conspecific predators in the laboratory, whereas crabs with at least one molt 

post-settlement sheltered in complex habitats, where survival was greater than in habitats
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without shelter (Stevens and Swiney, 2005). Predator-associated sheltering has been 

observed using video for red king crab juveniles (5 mm CL) exposed to Pacific halibut 

(.Hippoglossus stenolepis) as a predator, where complex substrates significantly reduced 

both encounter rates and capture success o f red king crab prey (Stoner, 2009). It is 

thought that American lobster undergo a population bottleneck post-settlement, due to 

high mortality from predation in areas o f limited shelter-providing habitat throughout 

their range (Wahle and Steneck, 1991). Habitat availability and predation may limit red 

king crab populations during the first year post-settlement. Our laboratory experiments 

tested habitat associations and foraging behavior for early juvenile red king crab without 

the influence o f predators. When young crabs are mortally threatened, their refuge 

response may be stronger than the need to forage, and crabs likely seek shelter with any 

available structure whether or not biogenic habitats are present.

The strong affinity o f early juvenile red king crab for highly complex habitats 

appears to be an important adaptation. Early post-settlement stages o f red king crab 

likely gain shelter and refuge from predators within complex habitats, and foraging and 

growth opportunities when biogenic substrates are present. We suggest that optimal 

nursery habitats for red king crab are those that accommodate a range of body sizes while 

providing adequate foraging opportunities from biogenic habitats, in particular structural 

invertebrates, and where the tradeoff between foraging and predation risk is reduced. As 

the relative role o f predation in habitat choice is unclear, we recommend habitat 

associations be examined in the presence o f predators for early post-settlement stage red 

king crab. Our present understanding o f early life stage success for red king crab and 

other species with similar post-settlement habitat ecology will be improved as 

mechanisms of nursery habitat function continue to be uncovered.
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Table 3.1. Results o f one-way analysis o f variance (ANOVAs) to test the effect of 
substrate type on habitat choice o f small (2-4 mm CL) and large (7.5-9 mm CL) age 0 red 
king crab. The null hypothesis o f no difference in proportion o f associations is rejected 
ip <0.001).

Stage Source d f SS MS F P
Small Substrate 10 2.52 0.25 24.38 <0.001

Error 55 0.57 0.01

Total 65 3.09

Large Substrate 11 4.65 0.42 22.49 <0.001

Error 60 1.13 0.02

Total 71 5.78
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Table 3.2. Mean proportion (± SE) of positive associations o f small (2-4 mm CL) and 
large (7.5-9 mm CL) age 0 red king crab with substrate treatments, including live 
substrates (bryozoan, hydroid, branched algae, and blade algae), fouled structural mimics, 
and clean mimics. Trials with fouled blade algae mimics were not conducted with small 
crabs.

Type Substrate Small Large
Live B 0.74 (0.05) a 0.83 (0.01) c

H 0.71 (0.02) a 0.73 (0.03) c

N 0.64 (0.05) a 0.57 (0.06) d

A 0.62 (0.04) a 0.31 (0.03) d

fouled BMF 0.58 (0.03) a 0.40 (0.07) d

HMF 0.62 (0.01) a 0.16 (0.02) e

NMF 0.59 (0.04) a 0.15 (0.03) e

AMF nd 0.35 (0.06) d

Mimic BM 0.31 (0.05) b 0.59 (0.08) d

HM 0.27 (0.05) b 0.21 (0.06) e

NM 0.18 (0.03) b 0.11 (0.04) e

AM 0.39 10.031 b 0.35 10.051 d

Tukey’s HSD was calculated with arcsine square root 

transformed proportions. Letters indicate groups with 

similar means, nd, no data.
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Table 3.3. Results o f one-way analysis o f variance (ANOVA) to test the effect of 
substrate type on foraging activity o f large (7.5-9 mm CL) age 0 red king crab. Mean 
proportion (± SE) of crab foraging counts with substrate treatments, including live 
substrates (bryozoan, hydroid, and blade algae) and fouled structural mimics. Foraging 
by large crabs on clean structural mimics was not observed. The null hypothesis of no 
difference in proportion o f foraging activity is rejected (p <0.001).

Source d f  SS MS F p
Substrate 5 2.53 0.51 30.79 <0.001

Error 30 0.49 0.02

Total 35 3.02

Group Substrate Mean (± SE)
Live B 0.42 (0.06) a

H 0.36 (0.02) a

A 0.09 (0.03) b

Fouled BMF 0.04 (0.02) b

HMF 0.02 (0.01) b

AMF 0.01 (0.01) b

Tukey’s HSD was calculated with arcsine square 

root transformed proportions. Letters indicate 

groups with similar means.



137

Table 3.4. Chi-square analysis o f equal proportions for small (2-4 mm) age 0 red king 
crab foraging among paired substrates, including bryozoan (B), hydroid (H), blade algae 
(A), and fouled hydroid and bryozoan mimics (HMF, BMF). The null hypothesis of 
equal proportions (20.0%) is rejected (p < 0.001).

Substrate Frequency Frequency % Association %
B* 42.00 47.91 70.00

H* 28.76 32.70 47.78

A 6.33 7.22 10.56

FHM 6.00 6.84 10.00

FBM 4.67 5.32 7.78

y 2 = 65.39 v <0.001 df= 4 n=  88

* Significant
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Table 3.5. Results of one-way analysis of variance (ANOVAs) to test the effect of 
substrate grain-size on habitat choice o f small (2-4 mm CL) and large (7.5-9 mm CL) age 
0 red king crab. The null hypothesis of no difference in proportion of associations is 
rejected (p <0.001).

Stage Source d f SS MS F P
Small Substrate 3 0.37 0.12 16.03 <0.001

Error 20 0.16 0.01

Total 23 0.53

Large Substrate 3 0.57 0.19 31.37 <0.001

Error 20 0.12 0.01

Total 23 0.69
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Table 3.6. Mean proportion (± SE) of crab associations with substrate treatments of 
varied grain-size (cobble>pebble>granule>sand).

Substrate Small Laree
Cobble 0.35 (0.04) a 0.42 (0.03) c

Pebble 0.21 (0.04) b 0.32 (0.03) c

Granule 0.34 (0.03) a 0.16 (0.02) d

Sand 0.11 (0.02) b 0.10 10.02) d

Tukey’s HSD was calculated with arcsine square 

root transformed proportions. Letters indicate 

groups with similar means.
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Figure 3.1. Red king crab (age 0, 2 mm CL) on monofilament gill net mesh in the lab.



Figure 3.2. (a) Containers with treatments of blade algae (A) and blade algae 
(AM); (b) experimental set-up with replicate containers.
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9 0  -i

Bryozoan Hydroid Algae Branched Algae Blade
Substrate

Figure 3.3. Percentage o f small, age 0 red king crab (2-4 mm CL) that associated with 
single substrate treatments, including live substrates (bryozoan, hydroid, branched algae, 
and blade algae), fouled structural mimics, and clean mimics (e.g., given the opportunity, 
74% of small crabs associated with bryozoans).
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9 0  -i

Bryozoan Hydroid Algae Branched Algae Blade
Substrate

Figure 3.4. Percentage o f large, age 0 red king crab (7.5-9 mm CL) that associated with 
single substrate treatments, including live substrates (bryozoan, hydroid, branched algae, 
and blade algae), fouled structural mimics, and clean mimics (e.g., given the opportunity, 
83% of large crabs associated with bryozoans).
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B H A BMF HMF AMF
Substrate

Figure 3.5. Percentage o f small (2-4 mm CL) and large (7.5-9 mm CL) age 0 red king 
crab that foraged on experimental substrates, including bryozoans (B), hydroids (H), 
blade algae (A), and fouled mimics o f bryozoans (BMF), hydroids (HMF), and blade 
algae (AMF) (e.g., given the opportunity, 70% of small crabs foraged on bryozoans).
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Cobble Pebble Granule Sand
Substrate

Figure 3.6. Percentage o f small (2-4 mm CL) and large (7.5-9 mm CL) age 0 red king 
crab that associated with substrate treatments o f varied grain-size 
(cobble>pebble>granule>sand) (e.g., given the opportunity, 35% of small crabs 
associated with cobble).
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Chapter 4

Habitat structure influences survival and predator-prey interactions o f early juvenile red

king crab {Paralithodes camtschaticusj 1

Abstract

Highly structured nursery habitats promote survival for juvenile stages o f many 

species by providing refuge from predators and foraging opportunities. Through 

integrated laboratory and field experiments, we demonstrate that nursery habitat structure 

affects survival and predator-prey interactions of red king crab {Paralithodes 

camtschaticus). Crabs (age 0) preferred complex biogenic habitats formed by structural 

invertebrates and macroalgae over structural mimics and sand in the absence o f predators 

in laboratory experiments, yet they associated with any available structural habitat when 

fish predators were present. Habitat structural complexity may have greater influence on 

survival o f early juvenile stage red king crab than predator behavior. Survival was higher 

in the presence of complex habitat for age 0 crabs with Pacific cod {Gadus 

macrocephalus) predators in the laboratory and for age 0 and age 1 crabs with fish and 

invertebrate predators in the field because predator foraging efficiency was decreased by 

increased habitat complexity. Crab activity and refuge response behavior varied with 

crab stage and habitat. Age 0 crabs were cryptic and avoided predators by associating 

with habitat structure or remaining motionless in the absence o f structure, and were less 

likely to respond to an attack. In contrast, age 1 crabs were likely to flee or fight an 

attacking predator and were less likely to remain motionless in the absence o f structural 

refuge. Complex habitats, cryptic behavior, and direct defense improve juvenile red king 

crab survival against certain predators, including demersal fishes. Understanding 

conditions that contribute to early life stage success will advance understanding of 

population fluctuation for this depressed fishery resource species.

1 Pirtle J. L., Eckert G. L., and A. W. Stoner. Habitat structure influences survival and 
predator-prey interactions of early juvenile red king crab {Paralithodes camtschaticus). 
Prepared for submission to Marine Ecology Progress Series.
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Habitat structural complexity has a profound effect on the ecology of associated 

organisms (Crowder and Cooper 1982, Stoner and Lewis 1985, Holbrook and Schmidt 

1988, Wahle and Steneck 1991, Carr 1994, Hovel and Fonseca 2005). Structurally 

complex habitats have high surface area relative to their size and high availability o f 

crevice space to provide shelter for smaller organisms (Caddy 1986, Eggleston et al. 

1990). Complex habitats in aquatic environments may include aggregated boulders, rock 

wall crevices, and biogenic habitats formed by seagrasses, macroalgae, and invertebrates 

such as hydroids, corals, and sponges. These habitats are threatened by human activities 

including pollution (Fabricius 2005), coastal development (Short and Wyllie-Echeverria 

1996), destructive fishing practices (Watling and Norse 1998), or a cascade of 

disturbances (Butler et al. 1995). Loss o f habitat affects the ecology of associated 

organisms, including survival, reproductive potential and early life stage success.

Because predation is a highly influential mechanism affecting survival o f early life 

stages, nursery habitats with structurally complex features are critical for many aquatic 

organisms, such as marine gastropods (Ray and Stoner 1995), dragonfly larvae (Pierce 

1988), crayfish (Stein and Magnuson 1976), lobsters (Herrnkind and Butler 1986), 

salmonids (Magnhagen 1988), sunfish (Werner et al. 1983), and salamanders (Holomuzki 

1986). For example, survival o f juvenile spiny lobster (Panulirus argus) and blue crab 

(Callinectes sapidus) is substantially increased by small amounts o f seagrass and algal 

structure (Lipcius et al. 1998, Hovel and Fonseca 2005). Predator foraging efficiency is 

often decreased in complex habitats, which increases early life stage survival (Crowder 

and Cooper 1982, Lima and Dill 1990, Wahle and Steneck 1992, Laurel and Brown 

2006), as demonstrated for young bluegill sunfish (Lepomis macrochirus) that shelter in 

vegetated freshwater habitats where foraging efficiency o f largemouth bass is greatly 

reduced (Werner et al. 1983, Gotceitas and Colgan 1987). Complex habitat associations 

are important for American lobsters (Homarus americanus) from settlement until 

individuals outgrow the most vulnerable early juvenile stages (Wahle and Steneck 1992).

4.1 Introduction
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Predator-prey interactions have substantial effects beyond removal of individuals for 

early life stages, including trade-offs between foraging and predation risk (reviewed by 

Werner 1992). Highly structured nursery habitats support growth of early life stages by 

providing foraging opportunities (Mittelbach 1984, Marx and Herrnkind 1985). When 

predators are absent, prey habitat choice should maximize foraging (Werner et al. 1983). 

Under perceived predator threat, prey should respond with behaviors that maximize 

immediate survival (Stein and Magnuson 1976), including retreat to refuge structure, 

reduced activity, reduced foraging, and direct defense (Stein and Magnuson 1976,

Gilliam and Fraser 1987, Gotceitas and Colgan 1987, Laurel and Brown 2006). This 

trade-off results in reduced growth rates (Werner et al. 1983, Werner 1991, Werner 1992, 

Tupper and Boutilier 1995), with population-level consequences like reduced 

reproductive potential. Furthermore, prey response behaviors often change with 

ontogeny, as foraging-risk implications are altered and individuals outgrow refuge habitat 

(Stein and Magnuson 1976, Werner and Hall 1988, Wahle and Steneck 1991, Sandt and 

Stoner 1993, Spanier et al. 1998). Investigating predator-prey interactions, including 

refuge response behavior and survival relative to habitat complexity, will improve 

understanding o f nursery habitat function for structure-seeking early life stages.

Red king crab (Paralithodes camtschaticus) is a large, commercially important 

anomuran crab (Lithodidae) distributed throughout the North Pacific. Red king crab have 

a complex life cycle with dispersive larval stages (2-4 month planktonic period) and 

benthic juveniles and adults (Marukawa 1933, Shirley and Shirley 1989). In Alaska 

during June-July, larval red king crab settle to nearshore nursery habitats where crabs in 

the early juvenile stage (0-2 years; 2-25 mm carapace length (CL)) (Donaldson et al.

1992, Loher and Armstrong 2000) are solitary and cryptic, and live in a habitat different 

from older juveniles and adults (Karinen 1985). This life stage is most abundant in 

complex habitats including fractured rock, cobbles, and bivalve shells (Sundberg and 

Clausen 1977, Loher and Armstrong 2000) and complex biogenic habitats formed by 

macroalgae and structural invertebrates, including hydroids and bryozoans (Sundberg and 

Clausen 1977, McMurray et al. 1984, Rodin 1985). Associating with complex habitats
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should reduce predation of the early juvenile stage, including predation by conspecifics 

because red king crab are highly cannibalistic (Stevens and Swiney 2005). Habitat 

choice is also driven by foraging opportunities, in particular when biogenic habitats are 

present (Pirtle and Stoner 2010). Around age 2 (approximate size 25 mm CL), juvenile 

crabs emerge from complex habitats to form “pods,” mobile aggregations of hundreds to 

thousands of individuals (Powell and Nickerson 1965, Dew 1990). Crabs are 

reproductively mature around age 7 and males reach legal catch size for the Alaska 

fishery at ages 8 and 9 (McCaughran and Powell 1977).

Red king crab supported the most valuable crustacean fishery in Alaska until a sharp 

decline occurred in the late 1960s followed by large-scale collapse in the early 1980s 

(Orensanz et al. 1998, Zheng and Kruse 2000). At present, many red king crab 

populations throughout Alaska remain depressed, even in areas without a commercial 

fishery (Woodby et al. 2005, Hebert et al. 2008). Hypotheses for recovery failure 

attribute low spawning stock biomass to overharvest in the directed pot fishery, female 

bycatch in trawl fisheries, North Pacific ocean-atmospheric conditions, loss o f settlement 

habitat, and predation by groundfish such as cod and flatfishes (Armstrong et al. 1993, 

Tyler and Kruse 1996, Orensanz et al. 1998, Zheng and Kruse 2000, Dew and 

McConnaughey 2005, Zheng and Kruse 2006, Bechtol and Kruse 2009, Kruse et al. 

2009).

Increased groundfish abundance in the North Pacific coincided with the collapse of 

red king crab (Bakkala 1993, Bailey 2000, Bechtol 2009), implicating groundfish as 

potential predators o f vulnerable juvenile stages with population-level consequences 

(Tyler and Kruse 1996, Zheng and Kruse 2006, Kruse et al. 2009). Population modeling 

has demonstrated a strong negative association between Pacific cod (Gadus 

macrocephalus) biomass and red king crab recruitment (Zheng and Kruse 2006, Bechtol

2009). However, lack o f recovery for red king crab has not been directly linked to 

groundfish predation. Recruitment success for marine fish and crustaceans depends upon 

early life stage survival (Jones et al. 1982, Wahle and Steneck 1991, Eggleston and 

Armstrong 1995, Loher and Armstrong 2000). If we can gain understanding o f factors
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that support red king crab early life stage success, then we may better understand 

conditions that contribute to population fluctuation for this depressed fishery resource 

species.

Habitat-mediated survival o f early juvenile red king crab was examined in the 

laboratory with Pacific halibut (Hippoglossus stenolepis) as a fish predator by Stoner 

(2009). This study demonstrated that halibut (age 1) were efficient predators o f early 

juvenile crabs (age 0; < 5 mm CL) and quickly consumed all crabs in sand habitat 

without structure. Crab survival was substantially increased by the addition o f complex 

habitat structure in the presence o f this predator because crabs had a structure-seeking 

refuge response and halibut did not attack crabs associated with structural habitat (Stoner

2009). Whether or not complex habitat structure mediates crab survival with other 

predators that may have different foraging strategies is not presently known. Also 

unknown is how crab refuge response behavior may change with ontogeny, and how 

early juvenile stage crabs respond to predators in field nursery locations.

In this study, we examined the effects o f habitat structure on survival and refuge 

response behavior o f early juvenile red king crab (age 0 and 1 yr) with laboratory and 

field experiments. We tested habitat choice in the laboratory without predators, in 

habitats with and without structure, and survival in those habitats with Pacific cod as a 

fish predator with age 0 crabs. We then assessed crab survival in nearshore nursery 

habitats with and without structure and identified predators and crab refuge response 

behavior with age 0 and age 1 crabs. We investigated the following three hypotheses: 1) 

habitat choice is influenced by perceived predator threat; 2) survival is greatest within 

habitats o f complex structure; and 3) refuge response behavior is different between 

habitats with and without structure and with crab size or age.



151

4.2.1 Habitat Choice Experiment Predators Absent

We tested habitat preference o f age 0 red king crab in the absence o f predators to 

determine whether crabs associate with complex biogenic habitats more often than 

habitats o f complex physical structure and sand. Biogenic habitat treatments were 

hydroids (Obelia spp.) and a composite of hydroids and branched macroalgae 

(Neorhodomela larix). Structural mimics o f these two biogenic habitats were used to 

compare the response o f the crabs to nonliving complex physical structure. Sand (0.5 

mm diameter grain quartz) was used as the treatment without structure and as the base 

substrate in all other treatments. We used hatchery-reared red king crab from wild- 

captured female crab from Bristol Bay, Alaska, that were supplied by the Alaska King 

Crab Research Rehabilitation and Biology Program. All of the laboratory trials were 

conducted in the seawater facilities o f the Alaska Fisheries Science Center (AFSC) in 

Newport, Oregon.

A total o f 20 age 0 crabs (8-10 mm CL) were introduced to tanks (1.1m  diameter x 

0.35 m depth). Substrate in each tank was composed o f 1 cm of sand and 22 pieces of 

one habitat treatment placed on top o f the sand and interspersed throughout the tank (Fig. 

4.1). The habitat treatments were hydroids, complex biogenic habitat of hydroids and 

macroalgae, hydroid mimics, complex biogenic mimics, and sand. The total count of 

positive associations of crabs with the habitat (i.e., on or under) was recorded at 3 h.

Each habitat treatment was replicated three times for a total of 15 trials. The arcsine-

transformed (arcsin ■s[p~) proportion o f crab associations with each habitat treatment was

compared with single-factor ANOVA (a  = 0.05) and Tukey’s HSD post-comparison 

tests. All analyses were performed using SAS (version 9.2).

4.2.2 Laboratory Predation Experiment

We tested survival o f crabs in the presence of fish predators when crabs were 

presented with the same habitats from the habitat choice experiment. Fish predators were

4.2 Materials and Methods
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age 1 Pacific cod (175-220 mm fork length (FL)) that were collected as age 0 fish from 

the waters off Kodiak Island, Alaska, and grown to this size in the seawater facilities of 

the AFSC in Newport, Oregon.

Predation trials were conducted in three circular, flat bottomed tanks (1.4 m diameter 

x 0.75 m depth) supplied with continuous flows of filtered seawater at 7 °C (± 0.5 °C). 

The tanks were located in a light-controlled room with a daily light cycle of 12 h light: 12 

h dark, with a manual rheostat. The tanks were lined with 1 cm of sand. Pairs of cod 

were used in the experiment because fish predators are known to perform more 

consistently with social facilitation (Stoner and Ottmar 2004, Ryer et al. 2004). Pairs of 

cod were transferred to the tanks two weeks prior to the first trials so that they could 

acclimate to their new surroundings in the tanks. At the end of week two, the pairs were 

presented with 10 age 0 red king crab (5-7.5 mm CL) as prey on sand habitat in one 

preliminary trial for 24 h to ensure that the fish were motivated to forage on red king crab 

as prey in the experimental system. Before the beginning of the next preliminary trial, 

fish pairs were fed to satiation on krill (Euphausiapacified) and then deprived o f food for 

48 h. Preliminary trials for 3 h followed. Fish were determined ready for experimental 

trials after two 3-h preliminaries were completed when the fish had consumed at least 

half o f the crabs on sand habitat during the trial. Fish pairs were fed to satiation on 

frozen krill following the last preliminary and then deprived of food prior to the first 

experimental trial for 48 h to ensure that they were active and uniformly motivated to 

forage during the experiment.

Experimental trials were conducted using similar methods to Stoner (2009) with some 

modification. Six fish pairs received each o f the five habitat treatments (28 pieces per 

treatment) once. A total o f 20 age 0 crabs were introduced to each tank with a habitat 

treatment and fish pair in the dark and allowed to establish in microhabitats for 30 min 

when the lights were slowly raised. Fish pairs were then allowed to consume crabs for 3 

h. The tanks were monitored with overhead video cameras to record cod behavior during 

the trials. Surviving crabs and their habitat association were counted at the end o f a trial. 

Habitat structure was examined by hand to detect crabs that had attached themselves out
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of sight. Following an experimental trial, fish pairs were fed to satiation on krill and then 

deprived of food for 48 h before the start o f the next trial. Tanks were cleaned and 

subsequent habitat treatments were arranged in the tanks 15-20 h prior to the start of the 

next trial. The sequence o f habitat treatments was randomized among three fish pairs in 

three tanks. When a pair had completed all habitat treatments once, the pair was removed 

and replaced by a new pair that began the process with the preliminary trials. The 

number o f crabs consumed by cod was compared among habitat treatments using a 

randomized block ANOVA (a  = 0.05) where habitat treatment (n = 5) was a fixed factor 

and fish pair (n = 6) was a random blocking factor. Tukey’s post-comparison tests were 

applied to test for differences among habitat treatments.

Video recordings o f the predation trials were reviewed for metrics o f fish behavior 

that included fish attacks, browsing, and general activity, similar to the criteria o f Stoner 

(2009). We defined an attack as a fish biting a piece o f substrate containing a prey target 

or striking at a target on open sand. When cod would search through the habitat 

structure, we referred to this behavior as browsing, defined as committed investigating o f 

a single target. Because a successful attack (i.e., kill) could not always be positively 

identified from video, we scored all attacks and browsing events for the entire 3 h 

duration for a selection o f 15 trials that included three randomly selected trials from each 

habitat treatment. Fish attack to consumption rate (consumed-attack'1) was calculated for 

a trial as the proportion of known crabs consumed, based on the count of crabs at the 

beginning minus the count at the end of each trial, divided by the total attacks observed 

from video. Fish activity index was scored by breaking the selected trials into 15 minute 

segments and reviewing the first 5 min of each segment for the count of instances when 

an individual fish would cross from one quadrant o f the circular tank to another. Fish 

attack to consumption rate, total attacks, total browsing events, and activity index were 

tested for the effect of habitat type on cod foraging behavior with single-factor ANOVA.
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4.2.3 Field Predation Experiment

Field tethering studies are useful to improve understanding of relative predation rates 

in benthic communities and are complementary when combined with laboratory studies 

(Aronson and Heck 1995). We tested the effect o f habitat structure on survival o f early 

juvenile red king crab in the field in nearshore nursery habitats near Juneau, Alaska, 

during September-November 2009. Preliminary SCUBA surveys at our field site,

Yankee Cove (58° 35.4' N, 134° 54.4’ W, North American Datum of 1983), in July- 

August 2008 and August-October 2009 identified diverse macrofauna communities 

including juvenile red king crab and potential fish and invertebrate predators such as 

Pacific cod. In our experimental trials, we used two stages o f early juvenile red king crab 

to test the effect o f crab size and age on predation rates, crab behavior, and predator-prey 

interactions. Wild age 0 red king crab had been captured from the Juneau area during 

June-July 2009 using larval settlement collectors (Blau and Byersdorfer 1994, Pirtle

2010) and reared in the laboratory through at least two molt cycles until crabs were 4-8 

mm CL. Wild age 1 red king crab were captured the previous year using the same 

collectors in 2008 (Pirtle 2010) and reared for over a year until the time of the 

experiment, when crabs were 16-28 mm CL.

We tethered individual crabs by gluing a length of monofilament line (0.45 kg 

breaking strength) to the carapace o f a crab using cyanoacrylate glue (e.g., Heck and 

Thoman 1981) and then attaching the monofilament to an eyebolt anchored in a concrete 

slab (30.5 cm diameter x 5 cm). The monofilament line length was equal to the radius o f 

the slab and allowed the crab to move freely on the slab. Tethered crabs were monitored 

in the lab for 24 h prior to experimental use to ensure that crabs were active and not likely 

to molt during the field experiment. We tested potential artifacts due to tethering in the 

laboratory prior to field experiments using age 0 crabs, including the ability o f age 1 cod 

and halibut predators to consume tethered crabs and the ability of tethered crabs to avoid 

entanglement in experimental habitats. Fish predators quickly consumed tethered and un

tethered crabs in laboratory tanks on sand and did not show negative effects due to 

consuming tethered prey, such as disinterest, choking, or entanglement. The crab
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entanglement test demonstrated that tethered age 0 crabs moved freely through dense 

hydroid structure, occupying a variety o f locations during 24-h trials.

Field predation habitat treatments included hydroids with crushed shells and gravel 

(structure), crushed shells and gravel (without structure), and a procedural control 

composed of crushed shells and gravel covered by mesh to control for predation during 

the experiment while still subjecting crabs to handling methods. Divers using SCUBA 

deployed three experimental stations where the three habitat treatments were located, 

spaced 5-7 m apart at ca. 8-12 m depth and arranged adjacent to a rocky reef with 

boulders and understory macroalgae (Fig. 4.1). We used high resolution digital time- 

lapse video (704 x 480 resolution at 7 images-sec'1) with a ring o f 15 LED lights (Well- 

Vu Nature Vision Inc., Manual Wind Color System) to record crab behavior and 

predator-prey interactions. Video cameras were supported by underwater cables that ran 

to shore and connected to a 12 V battery bank and digital video recorder. Cameras were 

mounted on sand anchors 60 cm above each station for a full view of the test habitat and 

tethered crab. Lights were adjusted to the minimum illumination required to view the 

apparatus clearly during hours of darkness (Fig. 4.1). Divers established the habitat 

treatments and crabs at the underwater camera stations during daylight hours, between 

10:00 am and 1:30 pm Alaska Standard Time. The three habitat treatments were 

replicated five times for both age 0 and age 1 crabs, which was the sample size that could 

be accomplished before the weather in late-fall became too inclement to continue the 

experiment. The location of each treatment was chosen randomly among the three 

stations for the 30 trials, with age 0 and age 1 crabs alternating every other day. Divers 

noted crab survival in the field after 24 h and exchanged the habitat treatments and 

surviving crabs for new habitat treatments and crabs. The arcsine-transformed proportion 

o f surviving crabs was compared among habitat type and stage using a two-factor general 

linear model (GLM) (a  = 0.05) and Tukey’s multiple comparison tests.

Field videos were reviewed to assess crab behavior and predator-prey interactions. 

The time from crab deployment to mortal attack was totaled (00h:00min) for each crab 

mortality and the predator was identified from video. Any animals that attacked the crab
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unsuccessfully, approached and interacted with the crab or habitat treatment, or passed 

through the camera field of view were also identified. Crab behavior was quantified as 

the proportion o f time spent engaged in the following activities during the experiment, 

from the time o f deployment until mortal attack or recovery: 1) motionless; 2) sorting 

through the substrate with chelae (sorting); 3) moving laterally through the habitat 

(moving); and 4) climbing the habitat structure (climbing). Crab response behavior was 

quantified separately for predator attacks and direct interactions by potential predators 

(i.e., approach). The proportion o f each of the following response behaviors was 

quantified from the total count of attack and approach events during a predation trial: 1) 

fleeing from a predator (flee); 2) fighting a predator by attacking with chelae (fight); 3) 

stopping activity upon interacting with a predator (stop); and 4) no observed response 

(none). For the activity analysis, the arcsine-transformed proportion of the total time a 

crab was engaged in a trial was compared among activity type, habitat type and crab 

stage with multifactorial ANOVA (a  = 0.05). For the response analysis, the arcsine- 

transformed proportion o f the response events for each trial was compared among 

response type, habitat type, and crab stage with multi factorial GLM (a  = 0.05) due to 

unbalanced sample size. Tukey’s multiple comparison tests were applied to test for 

differences among levels of significant factors.

The sunflower star (Pycnopodia helianthoides) was a predator o f early juvenile red 

king crab in the field predation experiment. Seastar predation may or may not have been 

an artifact of tethering. To test whether or not age 1 crabs could escape sunflower star 

predation in the absence o f tethering, we placed two untethered age 1 crabs in a 

laboratory tank with two seastars monitored by overhead video for 24 h and replicated 

this experiment three times with different crabs each trial.
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4.3.1 Habitat Choice Predators Absent

Early juvenile red king crab preferred biogenic habitats o f hydroids and macroalgae 

significantly more than structural mimics, and crab preferred all structural habitats more 

than sand when fish predators were absent {df effect/total = 4/29, F =  84.58, p  < 0.0001, 

Fig. 4.3). Crabs in the experiment associated with structure over open sand spaces in the 

biogenic habitat treatments, including (mean ± SE) 93% ± 3% of the time with hydroids 

and 83% ± 3% with hydroids and macroalgae. Crabs associated less often with structural 

mimics of these habitats, including 45% ± 7% of the time with hydroid mimics and 34% 

± 6% with hydroid and macroalgae mimics. Structural habitat may facilitate survival of 

vulnerable, newly molted crabs, as demonstrated in this experiment by a crab that safely 

molted and was found at the top of a hydroid with its exuvium, presumably successfully 

avoiding cannibalism by conspecifics. Conversely, conspecifics consumed another crab 

that molted on sand habitat within the first hour o f the experiment.

4.3.2 Laboratory Predation

Survival o f age 0 red king crab, when exposed to age 1 cod as fish predators, was 

greatest in structural habitats. Cod consumed significantly more crabs on open sand 

habitat (mean ± SE, 10.5 ± 1.3 out o f 20) than all habitats with complex structure (5.8 ± 

0.5 crabs out o f 20) {df effect/total = 4/29, F =  13.82,p <  0.0001, Table 4.1 and Fig. 4.4). 

A significant effect o f fish pair resulted from two trials, where one pair consumed fewer 

crabs than others in hydroids and one pair consumed fewer crabs than others in complex 

biogenic habitat {df= 5/29, F =  11.28 ,p <  0.0001). Habitat alone was significant when 

fish pairs were not included as a factor in the analysis {df= 4/29, F  = 4.52, p  < 0.01). 

These two trials were excluded from video analysis for fish predator behavior. Upon 

recovery at the end o f a trial, all surviving crabs were found associated with structural

4.3 Results
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habitat or habitat mimics. These survivors were recovered under the habitat structure or 

clinging to the structure with flattened bodies and limbs drawn inwards, a behavior quite 

different from an aggressive or defensive posture when crabs extend their spiny walking 

legs with raised chelae. Cannibalism by crabs was not observed during the fish predation 

experiment. Crabs surviving predation in sand habitats were often recovered near the 

walls of the tank.

Cod as fish predators would often make several attacks on juvenile red king crab prey 

before successful consumption and consumed significantly more crabs per attack on sand 

habitat (mean ± SE, 0.66 ±0.1) than all structural habitat treatments (0.30 ± < 0.1) {df 

effect/total = 4/14, F  = 3.94 ,p  = 0.04, Fig. 4.5), observed from video o f the laboratory 

predation experiment. Total attacks (22.9 ± 2.2) {df= 4/14, F=  1.31, p  = 0.30) and 

browsing events (43.8 ± 6.6) (df=  3/11, F =  0.99, p  = 0.45) were not significantly 

different among habitat treatments (Fig. 4.6). Cod pairs made from 8-35 attacks and 17

91 browses in structural habitats (Fig. 4.6). The first attack occurred within the first 5 

min after raising the lights for a variety o f habitat types in 10 out o f 15 trials reviewed. 

Attacks in four out o f 15 trials occurred within the first 30 min, and the first attack in one 

trial with hydroid and algae mimics did not occur until 78 minutes. Cod activity was not 

significantly different among habitat treatments (df=  4/14, F=  1.71, p  = 0.22, Fig. 4.7). 

Cod were motivated to locate and capture red king crab prey and spent most o f the trial 

duration actively browsing through the habitat structure or investigating crab targets on 

sand.

4.3.3 Field Predation

All crabs were recovered from the mesh-covered procedural control. Survival of 

tethered early juvenile red king crab exposed to predators in the field was greater in the 

presence o f structural habitat than in the absence of structural habitat {df effect/total = 

2/29, F  = 26.80, p  < 0.0001, Fig. 4.8). Survival between the structural treatment and the 

procedural control was not significantly different (Tukey’s HSD). Survival was not
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significantly different between crab stages (df=  1/29, F  = 3.60, p  = 0.07). However, all 

age 0 crabs (n = 5) survived the structural habitat treatment and 20% (one crab) survived 

the habitat without structure. A total of 60% of age 1 crabs (three of five crabs) survived 

the structural habitat treatment, and none survived the habitat without structure.

Predators that consumed three age 0 crabs were small sculpin (Cottidae) (Genus 

Artedius, Clinocottus, or Oligocottus), Alaska ronquil (Bathymaster caeruleofasciatus), 

and sunflower star (Table 4.2). The ronquil and sunflower star attacked during evening 

hours. The predator that consumed the fourth crab could not be determined because the 

video was corrupt; however, a fish predator is likely because the crab carapace and eyes 

remained attached to the tether, as observed in some o f the laboratory tethering artifact 

trials with fish. Time from crab deployment to consumption varied among crabs in the 

no structure treatment from 2 min to 10 h 49 min (Table 4.2). The attack leading to 

consumption by the small sculpin (approximate length 8 cm) occurred within 2 min of 

deployment. The small sculpin remained tethered following difficulty breaking the 

monofilament and was consumed by a larger buffalo sculpin (Enophrys bison) 

(approximate length 30 cm) after 2 h 36 min (Table 4.2). Only one age 0 crab survived in 

the no structure treatment; it had burrowed under the crushed shell and gravel where it 

intermittently remained for 19 h 2 min of the 24 h trial.

All predation observed on age 1 crab was by the sunflower star with four out o f six 

mortal seastar attacks occurring during the evening or early morning hours of darkness 

(Table 4.2). Seastars consumed four crabs in the habitat without structure and two crabs 

in the habitat with structure. The predator o f the other crab consumed in habitat without 

structure may have also been a seastar, but was not identified because the video was 

corrupt. Predation by seastars in the field is likely an artifact o f tethering. All age 1 

crabs killed by seastars attempted to flee or turned to face the approaching seastar to fight 

but were restrained by the tether. In laboratory tethering artifact trials that followed the 

field predation experiment, crabs fled from approaching seastars, easily escaped physical 

contact, and none o f the crabs were consumed.
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A variety o f taxa passed through the camera field o f view, approached the 

experimental apparatus to interact with the habitat treatment or the crab, and attacked 

crabs in the field predation experiment. Crabs were attacked unsuccessfully on 33 

occasions by a variety o f taxa, including sunflower stars, a variety of small sculpins, 

northern ronquil (Ronquilus jordani), whitespotted greenling (Hexagrammos stelleri), 

and Pacific lyre crab (Hyas lyratus) (Table 4.2). Taxa that directly interacted with the 

crabs on 58 additional occasions included sunflower stars, small sculpins, northern 

ronquil, whitespotted greenling, Arctic shanny (Sticheus punctatm), crescent gunnel 

(Pholis leata), Pacific lyre crab, and several hermit crabs and shrimps (Table 4.2). 

Juvenile cod, similar in size to those used in the laboratory fish predator experiment, were 

frequently observed near the experimental apparatus every evening, feeding on pelagic 

zooplankton. These zooplankton were attracted to the camera lights during hours o f 

darkness generally from 4:00 pm to 8:00 am, with peak cod activity from midnight until 

2:00 am. These cod overall were not interested in the tethered crabs and interacted with 

crabs on only seven occasions and browsed the habitat structure on 91 total occasions 

during the evening (mean browses each trial ± SE, 11.3 ± 4.4) out o f hundreds of 

sightings near the camera lights. Cod attraction to the camera lights and relative 

disinterest in the tethered red king crab may have been an experimental artifact, due to 

the presence of light attracting pelagic zooplankton as another food source for cod. A 

variety o f other taxa were recorded on video in the camera field o f view (Table 4.2). 

Steller sea lions (Eumetopias jubatus), harbor seals (Phoca vitulina), and a cormorant 

{Phalacrocoraxpelagicus) were recorded on video and may have been investigating the 

cameras or hunting animals attracted to the experimental apparatus.

Crab behavior in field predation trials varied by activity type, habitat type, and stage, 

demonstrated by significant interaction among these three factors (d f  effect/total = 3/31,

F  = 4.88, p  = 0.01, Table 4.3). Age 0 crabs were most often climbing (mean percent time 

± SE, 66% ± 15%) in habitats with structure and were observed foraging on hydroids 

(Fig. 4.9). However, in habitats without structure, age 0 crabs were most often 

motionless (85% ± < 0.1%) with bursts o f movement for short duration (Fig. 4.10). Age
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1 crabs spent most o f the time moving (69% ± 13%) in habitats without structure, and 

were most often motionless (62% ± 29%) in structural habitat, resting under the hydroids.

Crabs demonstrated a variety o f response behaviors when attacked or approached by 

a potential predator. Crab response to a predator attack among 45 events varied by 

response type and stage, as a significant interaction between these factors {df effect/total 

= 3/55, F =  5.76, p  < 0.01, Table 4.4). The presence of structure was not a significant 

factor in crab response to an attack (df=  1/55, F  < 0.01,/? = 0.91, Table 4.4). Age 0 

crabs most often had no observed response when attacked in habitats with structure 

(mean percent response ± SE, 50% ± 50%) or habitats without structure (SE, 56% ±

26%). Age 0 crabs would also stop activity and remain motionless in structural habitats 

(50% ± 50%) and in habitats without structure (19% ± 19%) (Fig. 4.11). Age 0 crabs 

only occasionally attempted to flee or fight when attacked. However, when age 1 crabs 

were attacked, this stage most often responded by fighting a predator directly in habitats 

with structure (55% ± 6%) and without structure (33% ± 33%) or by attempting to flee in 

structural habitats (36% ± 6%) and in habitats without structure (40% ± 21%).

Crabs of both stages most often did not respond when approached by a predator (df=  

3/43, F=  40.04,/? < 0.0001, Table 4.5 and Fig. 4.11). The presence o f structure {d f— 

1/43, F  = 0.04, p  = 0.85) and stage {df= 1/43, F  = 0.04, p  = 0.85) were not significant 

factors in crab response to an approach (Table 4.5). Crabs also engaged in other response 

behaviors. Age 0 crabs would stop their current activity and remain motionless in 

response to an approach in either habitat (13% ± 13%) and would flee from a predator in 

habitats with structure (8% ± 8%) and without structure (13% ± 13%), but did not 

respond by fighting (Fig. 4.11). Age 1 crabs would flee from an interaction in habitats 

with structure (16% ± 10%), in habitats without structure (11% ± 11%), and would fight 

in habitats without structure (3 % ± 3%), but were not observed to stop their current 

activity like age 0 crabs.
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4.4.1 Habitat structural complexity and crab survival

The presence o f highly structured complex habitat increased red king crab survival 

when they were exposed to a variety o f predators in laboratory and field experiments, 

which demonstrates that habitat complexity is an integral part of early juvenile red king 

crab survival. Habitats with complex vertical structure and crevice space provided young 

red king crab adequate cover to facilitate crypsis as a survival strategy. Cryptic behavior 

likely increases crab survival in complex habitat because predator detection is reduced by 

the habitat structure (Lima and Dill 1990), compared to exposed habitats where small 

crabs are quite vulnerable. Active selection o f complex habitat was demonstrated here 

and in previous laboratory studies (Stevens and Swiney 2005, Stoner 2009, Pirtle and 

Stoner 2010), and is a behavior that should contribute to greater survival and foraging 

opportunities for early juvenile red king crab.

Habitat structural complexity increased crab survival by modifying interactions 

between fish predators and red king crab as prey. In laboratory experiments, the foraging 

efficiency of age 1 Pacific cod was reduced by habitat structural complexity as evidenced 

by repeated attacks on age 0 red king crab with reduced capture success in complex 

habitats. This result was similar to age 1 Pacific halibut where prey encounter rate and 

capture success diminished when foraging on age 0 red king crab associated with 

complex habitats (Stoner 2009). Complex habitat structure has a similar effect on 

predator-prey interactions in other aquatic systems. For example, the foraging efficiency 

o f smallmouth bass (Micropterus dolomieui) was greatly reduced when juvenile crayfish 

associated with macrophyte habitats (Stein and Magnuson 1976), and for bluegill sunfish 

(Lepomis macrochirus) consuming various prey items in habitats of high macrophyte 

densities (Crowder and Cooper 1982).

Cod and halibut have different foraging strategies as predators of early juvenile red 

king crab. Cod in our laboratory experiment would actively search the tank for crabs in

4.4 Discussion
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open spaces and browse through structural habitat to locate and attack crabs. In contrast, 

halibut did not search for crabs associated with structure and would ambush crabs in open 

spaces and at the edge o f structure (Stoner 2009). Activity levels were also different 

between these two predators. Cod in our experiment did not alter activity levels between 

habitats with and without complex structure. However, halibut were less active with the 

addition o f complex structure. Because crab survival was high in structural habitats in 

the presence o f both fish predators with different foraging behaviors, habitat structural 

complexity may have greater influence on red king crab survival than predator behavior.

4.4.2 Crab habitat choice and predation threat

Our experiments demonstrated that red king crab early juvenile habitat choice was 

influenced by predator threat perceived by the crabs. Crabs were strongly attracted to 

structurally complex biogenic habitats formed by hydroids and macroalgae when fish 

predators were absent. This result was not surprising since young red king crab prefer 

biogenic habitats due to foraging opportunities provided by those habitats, over habitats 

of complex physical structure alone (Pirtle and Stoner 2010). Prey habitat choice in the 

absence o f predators should maximize foraging (Werner et al. 1983). When threatened, 

however, prey should respond with behaviors that maximize immediate survival (Stein 

and Magnuson 1976). Red king crab responded to age 1 cod as predators by associating 

with any available structure in our laboratory experiment, even if the habitat was not 

preferred. A similar response was demonstrated for age 0 red king crab with halibut 

(Stoner 2009) and larger juvenile conspecifics as predators (Stevens and Swiney 2005, 

Stoner et al. in press). Refuge-seeking behavior in response to predation pressure 

influences the distribution of structure-seeking early life stages of a variety o f aquatic 

animals, including American lobster (Wahle and Steneck 1992), spiny lobster (Herrnkind 

and Butler 1986), and Atlantic cod (Gadus morhua) (Tupper and Boutilier 1995). This 

behavioral response has implications for the distribution of early juvenile red king crab 

among available habitats at nursery locations.
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Refuge-seeking behaviors that promote early life stage survival have been associated 

with tradeoffs between predation risk and energetic return or growth. The tendency of 

early juvenile red king crab in laboratory and field experiments to shelter with the closest 

structural habitat and alter or reduce activity levels may lead to depressed energy intake 

when associating with suboptimal food sources under high predation pressure or for long 

duration. Several studies have established that aquatic prey will reduce foraging and 

other activity levels in the presence o f predators at the expense of energetic return, 

including juvenile crayfish (Stein and Magnuson 1976), anuran tadpoles (Werner 1991), 

salmonids (Dill and Fraser 1984, Magnhagen 1988), and sunfish (Werner et al. 1983). 

Small sunfish, for example, have lower growth rates under high predation pressure when 

confined to suboptimal foraging habitats by largemouth bass (Micropterus salmoides) 

(Werner et al. 1983, Gotceitas and Colgan 1987, Wemer and Hall 1988). Red king crab 

may have a similar response if predators confine early juvenile stages to refuge habitats 

where prey items may be optimal for newly settled crabs but less optimal for growth to 

larger juvenile stages. Delayed growth may affect time to maturity with population-level 

consequences such as reduced reproductive potential.

4.4.3 Crab activity and refuge response with ontogeny

Crab activity was dependent on crab size or age and habitat complexity. Our field 

experiments demonstrated that age 0 crabs were consistently cryptic, associating with 

hydroid structure at any opportunity, and remaining motionless in exposed habitat. By 

comparison, age 1 crabs were very active in exposed habitat and less active in the hydroid 

structure, until provoked. Lima and Dill (1990) proposed that prey activity should 

depend on the perceived security o f an animal against its background when predators are 

nearby. Our results suggest that the age 1 crabs were more conspicuous than the smaller, 

cryptic age 0 crabs, and as a result, have different behaviors.

Crab response behavior to a perceived predator threat was also dependent on crab size 

or age, but not habitat complexity. Tethered age 1 crabs in the field experiment
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demonstrated a defensive response when attacked, and would most often fight a predator 

or attempt to flee. In contrast, tethered age 0 crabs would halt their activity or did not 

respond at all when attacked, continuing to climb when associated with habitat structure. 

The response o f age 0 crabs is characteristic of cryptic behavior, seeming almost 

oblivious to the danger o f predation. This response was similar to surviving age 0 crabs 

in the laboratory experiment that were most often recovered clinging to the habitat 

structure.

An unsuccessful flight response by red king crab to an attack during the field 

predation experiment was likely an artifact of tethering. We expect that crabs would 

successfully flee when threatened if the flight response was attempted with time to 

escape, as evidenced by the ability o f untethered age 1 crabs to avoid seastar predators in 

the lab. In the field, age 1 crabs survived attacks by seastars in structural habitat by 

maneuvering through the structure and nipping an attacking seastar with raised chelae 

until the seastar retreated, while others were able to escape until the next attack. Direct 

defense behavior that was most often observed with age 1 crabs only functioned to delay 

mortality o f tethered individuals in the field.

Behavioral differences in activity and refuge response suggest that size drives 

ontogenetic shifts for juvenile red king crab. We identified two potential drivers of 

ontogenetic shifts, including breakdown o f crypsis as a refuge strategy and energetic 

demands for growth. Red king crab associate less frequently with highly structured 

habitats as crabs reach larger sizes (Pirtle and Stoner 2010). Our age 1 crabs were 16-28 

mm CL, within range of the approximate size when crypsis may end and social behavior 

begins, around 25 mm CL or age 2 (Powell and Nickerson 1965, Dew 1990). If the 

adaptive significance o f aggregation for red king crab is increased vigilance or safety in 

numbers (reviewed by Lima and Dill 1990), the social podding behavior observed with 

older juveniles may be necessary when crypsis becomes less dependable as crabs 

outgrow refuge habitats. It is further possible that cryptic behaviors are no longer needed 

when red king crab outgrow their most vulnerable sizes, similar to lobsters (Wahle and 

Steneck 1992) and crayfish (Stein and Magnuson 1976). However, aggregation may also
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benefit efficient foraging by larger juveniles that likely require different food sources due 

to energetic demands for growth. In the case o f foraging, aggregation would increase 

encounter rates with resources (reviewed by Werner 1992). Associating with structurally 

complex biogenic habitats as refuge confers an additional survival advantage to small red 

king crab due to foraging opportunities provided by those habitats (Pirtle and Stoner

2010). We suggest this advantage may be lost on larger individuals as early as age 1, 

when certain habitats no longer provide appropriate refuge or foraging opportunities.

4.4.4 Predators of early juvenile red king crab

Our laboratory and field experiments suggest that Pacific cod may not be major 

predators of early juvenile red king crab. When given the opportunity to forage on 

unsheltered crabs in sand habitat in the laboratory experiment, cod consumed on average 

only half o f the available crabs. Cod may be deterred from consuming red king crab due 

to the spiny body armor covering their carapace and limbs. This additional defense may 

have contributed to the tentative predation behavior by cod observed during the 

laboratory experiment. For example, a cod predator would bite a crab and quickly drop 

it, or the same predator would attack a crab and reject it repeatedly before consuming the 

crab or moving on. Although juvenile and smaller adult cod inhabit shallow inshore 

locations (Dean et al. 2000, Laurel et al. 2007) in habitats where they co-occur with 

juvenile red king crab (Loher and Armstrong 2000, Pirtle 2010), including our field 

experiment site, we observed no cod predation on tethered crabs during the field 

experiment. It is interesting that cod (approximate length 200 mm) observed during the 

field experiment were not interested in consuming red king crab, and instead foraged on 

pelagic zooplankton attracted to the camera lights.

Potential fish predators o f early juvenile stage red king crab may include sculpins, 

certain flatfishes, and other demersal fishes. Sculpins and Alaskan ronquil consumed age 

0 crabs in our field experiment, apparently not deterred by spiny body armor. These 

fishes inhabit inshore locations where they co-occur with early juvenile red king crab
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(Dean et al. 2000, Loher and Armstrong 2000, Pirtle 2010). Previous laboratory studies 

demonstrated that halibut were efficient predators of red king crab early juvenile stages 

(Stoner 2009). Halibut were not observed at our field predation site, but halibut nursery 

grounds (Norcross and Mueter 1999, Stoner and Titgen 2003) have potential spatial 

overlap with red king crab nursery locations (Pirtle 2010).

It is interesting to examine groundfish diet analysis from fishery resource surveys 

when considering predators o f early juvenile red king crab. Red king crab were not a 

major diet component for any species examined by the surveys. Softshell adult red king 

crab were found sporadically in the stomach contents o f Pacific cod (Jewett 1978, 

Livingston 1989, Livingston et al. 1993, Livingston and deReynier 1996, Lang et al. 

2005) and Pacific halibut (Gray 1964, Livingston and deReynier 1996, Lang et al. 2005), 

but not juvenile stage crabs. However, yellowfin sole (Pleuronectes asper) (Haflinger 

and McRoy 1983, Livingston et al. 1993) and walleye pollock (Theragra chalcogramma) 

(Livingston et al. 1993, Livingston and deReynier 1996, Lang et al. 2005) consumed 

settlement stage larvae and early juvenile stage crabs. Non-harvested sculpins (Cottidae) 

also consumed early juvenile crabs (Jewett and Powell 1979).

We do not fully understand the impact of predation on red king crab early juvenile 

stages and the recovery of depressed red king crab stocks. Further study is needed to 

improve understanding of the role o f predation and complex habitat availability in red 

king crab early life stage success. Further studies may include diet analysis o f potential 

predators that correspond with periods when these predators and early juvenile stage red 

king crab co-occur in nursery locations. Although we did not observe cannibalism on 

early juvenile stage crabs by larger red king crab, the extent that cannibalism occurs 

should be investigated with integrated laboratory and field studies.
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Table 4.1. Results o f ANOVA with randomized block design for the cod laboratory 
predation experiment. Habitat is a fixed effect and fish pair is the random blocking 
factor.

Source d f SS MS F P

Habitat 4 115.13 28.78 13.82 <0.0001

Block 5 117.50 23.50 11.28 <0.0001

Error 20 41.67 2.08

Total 29 274.30



178

Table 4.2. Taxa present at the field experiment site that were considered potential 
predators of small red king crab. Behavioral interactions are listed that include taxa that 
appeared in the camera field o f view (Appear), interacted with the tethered crabs (a) or 
habitat (b) (Approach), attacked a crab (Attack), or successfully consumed a tethered crab 
(Consume). Crab stage (age 0 or age 1) is indicated for attacks and consumption with 
time from crab deployment in the habitat treatment until successful consumption 
(00h:00min).

Behavioral Interactions

Taxa Appear Approach Attack Consume
Common and Scientific Names (a, b) (stage) (stage, time)

Pacific cod

Gadus macrocephalus

X X (a, b) - -

Walleye pollock 

Theragra chalcogramma

" " “ "

Kelp greenling 

Hexagrammos decagrammus

X " “ *

Whitespotted greenling 

Hexagrammos stelleri

X X (a, b) X (0, 1) “

Copper rockfish 

Sebastes caurinus

“ - - "

Dark dusky rockfish 

Sebastes ciliatus

X - - -

Quillback rockfish 

Sebastes maliger

- - - -

Buffalo sculpin

Enophrys bison

X - - X (0, 02:36)

Great sculpin

Myoxocephalus polyacanthocephal us

“ - "

Crested sculpin 

Blepsias bilobus

X X (b) - -
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Table 4.2. Continued.

Behavioral Interactions

Taxa Appear Approach Attack Consume
Common and Scientific Names (a, b) (stage) (stage, time)

Silverspotted sculpin

Blepsias cirrhosus

- - - -

Red Irish lord

Hemilepidotus hemilepidotus

- - - -

Undefined sculpins X

Artedius, Clinocottus, or Oligocottus spp.

X (a ,b ) X (0, 1) X (0, 00:02)

Sturgeon poacher 

Agonus acipenserinus

- * - -

Arctic shanny 

Sticheus punctatns

X X (a, b) " ”

Northern ronquils 

Ronquilus jordani

X X (a ,b ) X (0, 1) “

Alaskan ronquil 

Bathymaster caeruleofasciatus

X X (a, b) X (0) X (0 , 07:21)

Starry flounder 

Platichthys stellatus

X X (b) - “

English sole 

Pleuronectes vitulus

- - - “

Yellowfin sole 

Limada aspera

- - - -

Crescent gunnel 

Pholis leata

X X(b) - -

Undefined Moonsnails 

Euspira spp.

X X (b) - -
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Table 4.2. Continued.

Behavioral Interactions

Taxa Appear Approach Attack Consume
Common and Scientific Names (a, b) (stage) (stage, time)

Giant Pacific octopus 

Enteroctopus dofleini

- - “ -

Red king crab 

Paralithodes camtschaticus

“ “ “ -

Dungeness crab 

Cancer magister

X X (b) “ -

Helmet crab 

Telmessus cheiragonus

“ “ " “

Pacific lyre crab 

Hyas lyratus

X x  (a, b) “ “

Undefined Hermit Crabs 

Pagurus and Elassochirus spp.

X X (b) “ “

Undefined Shrimps 

Pandalidae

X X (b) - “

Sunflower star 

Pycnopodia helianthoides

X X (a, b) X (0, 1) X (0 , 10:49) 

(1 ,*)
Steller sealion 

Eumetopias jubatus

X - - -

Harbor seal 

Phoca vitulina

X - -

Pelagic cormorant 

Phalacrocorax velasicus

X - - -

*Time until P. helianthoides strike on age 1 crabs (14:08; 01:03; 12:12; 20:31; 00:16; 

18:31)
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Table 4.3. Results o f multifactorial ANOVA for the total time a crab was engaged in the 
experiment with crab activity type, habitat (structure, no structure), and crab stage (age 0, 
age 1).

Source d f SS MS F P

Activity (A) 3 2.22 0.74 16.95 <0.0001

Habitat (H) 1 <0.01 <0.01 0.06 0.81

Stage (S) 1 <0.01 <0.01 0.00 0.94

A-H 3 1.53 0.51 11.68 <0.0001

A-S 3 0.66 0.22 5.06 <0.01

H-S 1 <0.01 <0.01 0.08 0.79

A-H'S 3 0.63 0.21 4.88 0.01

Error 16 0.70 0.04

Total 31 5.76
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Table 4.4 . Results o f multifactorial GLM for crab response to a predator attack with 
response type, habitat (structure, no structure), and crab stage (age 0, age 1) using the 
adjusted sum of squares and mean squared error.

Source d f SS MS F P

Response (R) 3 0.52 0.17 0.68 0.57

Habitat (H) 1 <0.01 <0.01 <0.01 0.91

Stage (S) 1 <0.01 <0.01 0.01 0.91

R-H 3 0.27 0.09 0.35 0.79

R-S 3 4.41 1.47 5.76 <0.01

H-S 1 <0.01 <0.01 0.01 0.91

R-H-S 3 0.36 0.12 0.48 0.70

Error 40 10.20 0.26

Total 55 15.78
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Table 4.5. Results o f multi factorial GLM for crab response to an interactive predator 
approach with response type, habitat (structure, no structure), and crab stage (age 0, age 
1) using the adjusted sum of squares and mean squared error.

Source d f SS MS F P

Response(R) 3 8.90 2.97 40.04 <0.0001

Habitat (H) 1 <0.01 <0.01 0.04 0.85

Stage (S) 1 <0.01 <0.01 0.04 0.85

R-H 3 0.01 <0.01 0.04 0.99

R-S 3 0.22 0.07 0.99 0.41

H-S 1 <0.01 <0.01 0.04 0.85

R-H-S 3 0.02 0.01 0.10 0.96

Error 28 2.07 0.07

Total 43 12.51
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Figure 4.1. Laboratory predation trial with a pair of age 1 Pacific cod and the complex 
biogenic habitat treatment of branched macroalgae and hydroids on sand.
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Figure 4.2. Field experiment setup, illustrating the camera cable path from the shore- 
based power station, through the intertidal zone, to three subtidal camera stations, spaced 
5-7 m apart at ca. 8-12 m depth and located at the base of a rock reef with boulders and 
macroalgae. Cameras are mounted on sand anchors above concrete slabs with the 
location of the following habitat treatments presented at random each trial: a) no 
structure, mesh-covered procedural control; b) no structure habitat with crushed shells 
and gravel; and c) structural habitat with hydroids.
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Figure 4.3. Mean (± SE) percentage of age 0 red king crab that associated with habitat 
treatments when no fish predator was present in laboratory trials, including sand (S), 
complex biogenic mimics (CM), hydroid mimics (HM), and live complex biogenic 
habitat o f algae and hydroids (CB), and hydroids (H). Crabs associated with living 
complex habitat more often than structural mimics and with structural habitat more than 
sand habitat alone (p <0.0001, single-factor ANOVA). Letters indicate successive groups 
with similar means (Tukey’s HSD).
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Figure 4.4. Mean (± SE) age 0 red king crab {n = 20) consumed by cod in laboratory 
predation trials. Cod consumed significantly more crabs on sand habitat than all structural 
habitat treatments (p < 0.0001, ANOVA with randomized block design). Letters indicate 
successive groups with similar means (Tukey’s HSD); habitat abbreviations as in Fig.
4.3.
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Figure 4.5. Mean (± SE) proportion o f age 0 red king crab consumed for each attack by 
cod in laboratory predation trials. Cod consumed significantly more crabs with each 
attack on sand habitat than all structural habitat treatments (p = 0.04, single-factor 
ANOVA). Letters indicate successive groups with similar means (Tukey’s HSD); habitat 
abbreviations as in Fig. 4.3.
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Figure 4.6. Mean (± SE) count o f attacks and browsing events by cod in laboratory 
predation trials with age 0 red king crab. Cod attacks and browsing events were not 
significantly different among habitat treatments (single-factor ANOVA). Habitat 
abbreviations as in Fig. 4.3.
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Figure 4.7. Mean (± SE) cod activity index in laboratory predation trials with age 0 red 
king crab. Cod activity was not significantly different among habitat treatments (one- 
factor ANOVA). Habitat abbreviations as in Fig. 4.3.
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Figure 4.8. Percent survival o f tethered red king crab stages (age 0 and age 1) in the field 
predation study. Habitat treatments included no structure, structure, and a control. Crab 
survival was significantly greater in structure and the control than in no structure (p < 
0.0001, two-factor GLM). Survival in structure was not significantly different from the 
control and survival was not significantly different between crab stages. Numbers above 
bars indicate the number o f crabs surviving in that habitat; letters indicate successive 
groups with similar means (Tukey’s HSD).
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Figure 4.9. Tethered age 0 red king crab (7 mm carapace length) that survived the field 
predation experiment in structural habitat with dense hydroid cover exposed to a variety 
of predators.
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Figure 4.10. Mean (± SE) crab activity patterns for age 0 and age 1 crabs in the field 
predation study by habitat type (structure, no structure), expressed as percent time spent 
in each activity over the duration of a trial (maximum 24 h), including moving, 
motionless, climbing, and sorting through the gravel and shell substrate. Crab activity 
varied by activity type, habitat, and stage, as a significant interaction among these factors 
(p < 0.01, multifactorial ANOVA).
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Figure 4.11. Mean (± SE) crab response behavior to a predator attack or an approach 
with a direct interaction for age 0 and age 1 crabs in the field predation study by habitat 
type (structure, no structure), expressed as percent of each response type observed, 
including fighting, fleeing, stopping activity, and no response. Crab response to an attack 
varied by response type and stage, as a significant interaction between these factors (p < 
0.01, multifactorial GLM). Crabs most often did not respond when approached by a 
predator (p < 0.0001, multifactorial GLM, Tukey HSD). The presence of structure was 
not a significant factor in crab response to either an attack or an approach, and crab stage 
was not a significant factor in response to an approach.
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The first chapter o f this research examined relationships between marine habitat and 

the composition and spatial distribution of shallow subtidal communities in southeast 

Alaska (Chapter 1). This study identified patterns of subtidal community structure at 

regional and local spatial scales for macroalgae, fishes, and benthic invertebrates, and 

quantitatively linked those patterns to environmental variability and benthic habitat. 

Regional community structure was associated with a major hydrographic gradient o f 

decreasing salinity and increasing temperature from the outer coast to the inner coast. 

Species distribution at local spatial scales among sites within regions was related to 

benthic habitat composition.

Southeast Alaska was an interesting location for this type of study due to the complex 

nature of the coastline that creates spatial separation and environmental variability 

between the inner coast and outer coast regions. Patterns o f marine community structure 

had not been previously studied in southeast Alaska in a way that relates observations of 

species distribution to the marine environment. This basic understanding can now be 

used to develop testable hypotheses about ecological processes in this fjord-estuary 

system and ecological mechanisms o f habitat associations for individual species.

Red king crab was an ideal subject to investigate the role of habitat to support early 

life stages o f a fishery resource species in Alaska nearshore marine ecosystems. Marine 

habitat is important to red king crab early life stages for several reasons. For example, 

annual variability in spring water temperature affects red king crab larval development in 

the plankton and settlement timing, and availability o f complex benthic habitat structure 

is important during settlement and for early benthic stages. Population strength for red 

king crab may be most limited by early life stage success. The next three chapters o f this 

dissertation focused on red king crab early life stage ecology and nursery habitat 

function.

Red king crab larval supply, settlement timing, and benthic habitat were studied at six 

sites in the Juneau area o f southeast Alaska during 2008 and 2009 (Chapter 2). Red king

General Conclusions
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crab larval supply varied spatially among sites in 2008 and 2009. Sites with high larval 

supply in the Juneau area were Indian Cove in Auke Bay, the Couverden Islands, and St. 

James Bay. Sites with low larval supply were Barlow Cove, Portland Island, and Horse 

Island. Local oceanographic processes that influence red king crab larval transport from 

hatching to settlement locations, including water circulation, are poorly understood and 

may be responsible for spatial variation in larval supply. Settlement timing for red king 

crab was consistent between 2008 and 2009 and with historical data from the 1980s and 

1990s with variation on the order o f one month. Benthic habitat availability for settling 

larvae and early juvenile stages varies spatially among locations in this area. Sites with 

both high larval supply and complex habitat have potential to serve as red king crab 

nurseries.

The mechanisms of red king crab habitat associations during the first-year post

settlement were examined with laboratory experiments to determine if habitat choice in 

the absence o f predators is driven by structural habitat complexity, or the presence of 

other habitat attributes that are attractive to young crabs (Chapter 3). These experiments 

demonstrated that habitat choice for red king crab is strongly influenced by foraging 

opportunities, in particular when biogenic habitats are present. Biogenic habitats formed 

by structural invertebrates in particular were more attractive to early juvenile red king 

crab than complex physical structure alone. Biogenic habitats may enhance growth and 

survival o f early post-settlement stage red king crab in excess o f other highly structured 

habitats.

The final chapter o f this research investigated the role of complex habitat structure in 

survival and predator-prey interactions o f early juvenile red king crab with experiments 

in the laboratory and field experiments at a nursery location (Chapter 4). Early juvenile 

red king crab had a structure-seeking refuge response when predators were present. 

Although crabs preferred complex biogenic habitats over complex physical structure 

when predators were absent, crabs associated with any available structural habitat when a 

fish predator was present. Habitat structural complexity may have greater influence on 

survival o f early juvenile stage red king crab than predator behavior. Survival o f early
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juvenile crab (age 0 and 1 yr) was higher in the presence o f complex habitat with Pacific 

cod predators in the laboratory and with predators in the field. Complex habitats 

increased crab survival with predators because predator foraging efficiency was 

decreased by increased structural habitat complexity. Crab refuge response behavior was 

different between age 0 and age 1 crabs, suggesting that size drives ontogenetic shifts in 

habitat use for juvenile red king crab. Complex habitats, cryptic behavior, and direct 

defense improved juvenile red king crab survival against certain predators, including 

sculpins and other demersal fishes.

Early life stage survival for many commercially important crustaceans is strongly 

influenced by availability o f high quality nursery habitat. This body of work 

demonstrates that complex benthic habitats are clearly important for red king crab during 

settlement and for early post-settlement stages because they provide settlement substrate, 

foraging opportunities, and structural refuge from predators. This body o f research forms 

a significant contribution to knowledge of how nursery habitats support red king crab and 

improves understanding of nursery habitat function for fishery resource species in Alaska 

nearshore marine ecosystems. Further studies of this nature will advance understanding 

of the importance o f habitat for marine species.


