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Abstract

The origin of chondrules (sub-millimeter inclusions found in stony meteorites) remains 

today an open question despite over century of examination. The age of these proto-solar 

relics shows a well defined cutoff of around 4.5 billion years ago. This places them as the 

oldest solids in the solar system. Chemical examination indicates that they experienced 

heating events on the order of 5000 K/hr for periods of around 30 minutes, followed by 

extending periods of cooling. Additional examination indicates the presence of large mag­

netic fields during their formation. Most attempts to explain chondrule formation in the 

proto-solar nebula neglect the existence of a plasma environment, with even less mention 

of dust being a charge carrier (dusty plasma). Simulations of magnetic reconnection in a 

dusty plasma are forwarded as a mechanism for chondrule formation in the proto-solar 

nebula. Here large dust-neutral relative velocities are found in the reconnection region. 

These flows are associated with the dynamics of reconnection. The high Knudsen number 

of the dust particles allows for a direct calculation of frictional heating due to collisions 

with neutrals (allowing for the neglect of boundary layer formation around the particle). 

Test particle simulations produce heating equivalent to that recorded in the chondrule min­

eral record. It is shown that magnetic reconnection in a dusty plasma is of fundamental 

importance to the formation of the most primitive solids in the solar system.
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Chapter 1 

Introduction

The story of how chondrites (a special group of meteorites) came to be is recorded in the 

rocks themselves (Sears, 2004). Each chondrite contains information regarding age (Fire­

man et alv 1970), thermal processing (H. C. Connolly and Love, 1998), and the environment 

in which they formed (Taylor et al., 1983). To date many theories attempt to reconcile these 

facts into a description of how the rocks came to posses their properties (Boss, 1996). There 

does not exist a single theory which clearly explains all the properties of chondrites. It is 

clear that they formed in the environment of the protosolar nebula (Taylor et al., 1983). 

This environment opens up the possibility of plasma processes being responsible for prop­

erties we measure today in chondrites. Promising work has already been conducted into 

the possibility of current sheets and disk instabilities resulting in an explanation of chon­

drite formation where the presence of a plasma state is necessary (Levy and Araki, 1989; 

Cameron, 1995; Joung et al., 2004). These works have to date neglected the charged dust 

that must have been present in the protosolar nebula (Mendis and Rosenberg, 1994). I seek 

to conduct the first simulations of magnetic reconnection in a dusty plasma. These simu­

lations will allow the assessment of effects of magnetic reconnection on the dust, in terms 

of dust particle heating. Emphasis will be placed on magnetic reconnection as a heating 

mechanism for dust particles in the protosolar nebula.

1.1 Motivation

The conditions under which chondrites formed has been extrapolated from their chem­

ical composition, age, magnetic history, and mineral structure (Sears, 2004). The heating 

and cooling rates of chondrites can be inferred from the presence of specific minerals and 

volatile elements (Sears and Dodd, 1988; Hewins and Radomsky, 1990). Varied chemical 

composition allows classification of chondrites among minerals of similar thermal param­

eters (Sears, 2004). Radioactive dating shows a defined cutoff in age, around the time of 

planetary formation (Fireman et al., 1970; Sears, 2004). This places their formation occur­

ring before that of the planets. Magnetic histories indicates that chondrites formed in fields 

larger than those of Earth (Butler, 1972; Levy and Sonnet, 1978; Suguira et al., 1979). The 

mineral structure (Figure 1.1) of chondrites shows many important features. The presence



2

Main components
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Metal
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Radial 
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Barred

( ^ )  Glass

Figure 1.1. Cartoon showing the variety of components in a typical primitive (low- 
petrographic type) ordinary chondrite. The components are chondrules, metal, sulfide, 
matrix, and refractory inclusions. The dimensions of this hypothetical section would be 
about 1cm x 2cm. (Sears, 2004)

of ringed chondrules (smaller precursor grains found in chondrites) reveals that they went 

through multiple heating and cooling events (Rubin, 1984; Wasson, 1993). These features 

present us with information about the environment in which chondrites formed and the 

processes by which they came to be.

Chondrites are categorized by their composition, chondrule size, and metal content 

(Sears, 2004). A multitude of classification systems have been developed to this end (Mer­

rill, 1920; Wood, 1962; von Tschermak, 1964; Kieffer, 1975; Dodd, 1981; Gooding and Keil, 

1981; King, 1983; Scott and Taylor, 1983; Jones and Scott, 1989; Sears et al., 1992). A sample 

from Sears (Sears, 2004) shows the current classifications of chondrites (Table 1.1). The 

presence of volatile elements, such as S and Na, place constraints on the temperature 

regimes to which chondrites were exposed (Hewins and Radomsky, 1990; Wasson, 1993). 

The presence of such volatiles indicates that chondrites experience average temperatures
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below 650 [K] (Desch and H. C. Connolly, 2002). This fact excludes chondrule formation 

close to the protostar or far from the accretion disk (Boss, 1996). Information regarding the 

heating of chondrules can be inferred from composition. Presence of porphyritic olivine 

and barred olivine structures indicates heating to temperatures 80-400 [K] above the liq- 

uidus temperature (Hewins and Radomsky, 1990; Hewins et al., 1996). This places peak 

temperatures to be around 1770-2120 [K] (Desch and H. C. Connolly, 2002). Chondrules 

require rapid cooling rates ( 5000[K/hr]) above liquidus temperatures, and slower rates 

(5—3000 [K/hr]) between liquidus and solidus (Desch and H. C. Connolly, 2002). This is 

an important constraint regarding possible cooling mechanisms (radiative heat transfer to 

deep space would provide too quick a cooling to be considered). Chondrite composition 

reveals much regarding the environment in which they formed.

The presence of a remnant magnetization is characteristic of the electromagnetic en­

vironment in which chondrites formed (Levy and Sonnet, 1978). Paleomagnetic evidence 

indicates that two heating processes occurred (Suguira et al., 1979). The first was a high 

temperature melt in which chondrules were formed. The second was a lower temperature 

accretion process by which the chondrite was formed. The average magnetic induction of 

the Allende meteorite shows magnetic fields ranging from 10- 7-10-4 [T] (Butler, 1972). 

This provides a picture of the magnetic environment in which they formed.

Radionuclide dating by Ar-Ar (Turner, 1981), Rb-Sr (Minster and Allegre, 1979), and 

U-Pb (Unruh and Tatsumoto, 1980) indicates that chondrites formed during planetary for­

mation (at times earlier than 4.5 billions years ago). Chondrites are composed of primarily 

of chondrules, thus the chondrules must have formed earlier than the chondrite cutoff age 

(Taylor et al., 1983). Chondrules are considered to be the first solids in the solar system and 

the intermediary between submicron dust and meter sized objects (Joung et al., 2004). The 

St. Severin meteorite yielded an age of around 4.552 [Ga] (1 [Ga] = lxlO9 [years]). Dating of 

the Allende meteorite shows chondrule ages around 4.44 [Ga] (Fireman et al., 1970). This 

is in agreement with the estimated age of the Earth (Sears, 2004). Additional work seems 

to indicate that chondrules formed before the Earth had finished the majority of planetary 

accretion (Allegre et al., 1995). From this data it is reasonable to conclude that the chon­

drules were processed in the protosolar nebula (Taylor et al., 1983). Radionuclide dating 

provides solid evidence that chondrules and chondrites were formed before the planets



Table 1.1. The chondrite classes, particle sizes, metal abundances, and certain compositional properties. Small classes 
like the primitive achondrites and many anomalous chondrites are not considered here (Sears, 2004).

EH EL H L LL R CK CV CO CH CR

Physical properties

Chondrule diam. 0.2- 0.6 0.8 0.3 0.7 0.9 0.4 0.7 1 0.2-0.3 ~ 0.1 0.8

Metal grain size - - 0.2 0.18 0.14 - - - - 6 -

Chondrule abund. 20-40 20-40 65-75 65-75 65-75 > 40 15 35-45 35-40 ~70 52

Metal abund. 22 18 16 6 2 0.1 0.01 0-7 0-5 20 6.3

Matrix abund. 5 5 10-15 10-15 10-15 35 75 40-50 30-40 5 44

Composition properties

Carbon 0.42 0.32 0.11 0.12 0.22 - 0.1 0.43 0.38 - 1.97

Water 1.9 1.6 0.22 0.46 0.71 - 1.6 0.25 3.3 - 7.11

Fem/Fet 0.76 0.83 0.58 0.29 0.11 ~0 ~0 0-0.3 0- 0.2 0.95 0.22

Fe/Si 0.95 0.62 0.81 0.57 0.52 - 0.83 0.76 0.77 2.2 0.81

Mg/Si 0.77 0.83 0.96 0.93 0.94 - 1.13 1.07 1.05 1.02 1.06

Ca/Si 0.035 0.038 0.05 0.046 0.049 - 0.068 0.084 0.067 0.017 0.06

8170 3 2.7 2.9 3.5 3.9 5.27 -5 —4.0 —5.1 — 1.3 — 0.7

8lsO 5.6 5.3 4.1 4.6 4.9 4.74 -1 ~o ~ -l.l ~0 ~2
Units: chondrule diameter and metal grain size, mm; chondrule and matrix abundance, vol. %; metal, carbon, and

water abundance, wt %; Fem/Fet, Fe/Si, Mg/Si, and Ca/Si, atom ratio; 8170  and 5180 , per mil.

4̂
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had finished forming.

The structure of the chondrites display a variety of features (Sears, 2004). The general 

structure of a chondrite is often termed "matrix" as it contains a multitude of chondrules, 

metals, sulfides, and refractory inclusions (Sears, 2004). Sears provides a cartoon to illus­

trate the multitude of characteristics seen in a typical chondrite.(Figure 1.1) The Allende 

meteorite presents a cross-section through a chondrite. (Figure 1.2) The multiply rimmed 

structures provide an important record of the heating events. These structures can only be 

formed if a chondrule was to experience similar thermal processing events multiple times 

(Rubin, 1984). A single thermal event could not produce these rimmed structures, nor ac­

count for the array of mineral compositions found in chondrites. These features record the 

life of a chondrite.

Chondrules provide us with a mineral record of our solar system. Their chemical com­

position (and the composition of the chondrite in which they are found) places constraints 

on the temperatures they experience (650 [K] ambient; 1770-2120 [K] peak) (Hewins and 

Radomsky, 1990). This gives us insight into the processes responsible for their existence 

(Boss, 1996). Radioactive dating of chondrites indicates they had formed before the planets 

had finished forming (some 4.5 billion years ago) (Taylor et al., 1983). They have recorded 

the protosolar nebula in their structure. Remnant magnetization found in chondrites is an 

indicator of a magnetically active nebula (Levy and Sonnet, 1978). The presence of var­

ied compositions and rimmed structures in chondrites is evidence of this activity (Rubin, 

1984). These rocks provide us with a detailed history of their evolution and what pro­

cesses were at play in the protosolar nebula. Simulations of the dusty plasma processes in 

the protosolar nebula are needed in order to asses their role in chondrule formation.
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Figure 1.2. Photograph of a cross-section of the allende meteorite. This meteorite was 
found in Allende, Mexico. Image courtesy of D. Ball, ASU.



7

1.2 Previous Theories of Chondrule Formation

Many theories have been forwarded in the 20th century to explain the properties of chon­

drites (Wasson, 1993; Boss, 1996; Sears, 2004). These theories can be grouped by their re­

quirement of a plasma treatment. Of those not requiring plasma dynamics include me­

teor ablation (Brownlee et al., 1983), hot inner nebula (Cameron and Fegley, 1982; Morfill, 

1983; Boss, 1988), FU Orionis outbursts (Hartman and Kenyon, 1985) and accretion shocks 

(Wood, 1984). Those requiring a plasma treatment include bipolar outflows (Skinner, 1990; 

Liffman, 1992), nebular lightening (Horanyi et al., 1995; Eisenhour, 1994; Eisenhour and 

Buseck, 1995), magnetic flares (Cameron, 1995), and nebular plasma shocks (Hood and 

Horanyi, 1991, 1993; Desch and H. C. Connolly, 2002; Joung et al., 2004). Additional at­

tempts have been made to explain the thermal properties of chondrites via a collision 

mechanism (Urey, 1956; Kieffer, 1975). These theories often fail to explain the magnetic 

properties of the chondrites (Boss, 1996). Additionally, it is unlikely that any large bodies 

existed in the protosolar nebula (Boss, 1996). Reviews of the theories have been conducted 

by Levy and Sonett (Levy and Sonnet, 1978); and Boss (Boss, 1996). I shall outline a few of 

the many theories and discuss their applicability and limitations.

It has been theorized that a meteor in the protosolar nebula could break appart and 

through aerodynamic heating form chondrules (Brownlee et al., 1983). The basic idea in­

volves a large object moving through the nebula with smaller particles breaking off. These 

smaller particles would then aerodynamically heat as they came into equilibrium with the 

surrounding neutral gas. This is in analogy to asteroids breaking up in a planets atmo­

sphere. The main difficulty arises with the high velocity the parent body must have with 

respect to the nebula. Liffman found the velocity to be around 25 [km/s] (Liffman, 1992). 

This would only be possible if the parent object had a highly eccentric orbit (Boss, 1996). 

Meteor ablation as a source for chondrules has been all but ruled out as a possible mecha­

nism.

The nebula itself may have been hot enough to explain heating of the chondrules (Boss, 

1988; Cassen, 1994; Boss, 1998). The protosolar nebula must contain the precursor to a star 

at its core. The outer regions of the disk are cold due to radiative heat transfer and very 

little compression of the original nebular material. It has been shown through modeling 

that a hot inner nebula region does not alone account for the peak temperatures required



for chondrule formation (Boss, 1988). Turbulence in the nebula has been shown to cause 

heating in small inner regions ( 1500[K]) (Morfill, 1983). So it may be possible for dust par­

ticles to enter and leave these regions allowing for proper heating and cooling rates. More 

damning is the presence of volatiles which require ambient temperatures below 650 [K] 

(Wasson, 1993). A globally hot nebular region would prevent these inclusions (Cameron 

and Fegley, 1982). While the inner region of the nebula was clearly hot, it's unlikely that 

chondrite and chondrule formation occurred there as temperatures were too hot, thus rul­

ing it out as a chondrule formation mechanism.

FU Orionis outburst have been detected in many young stars. These outbusts are seen 

as decade to century long elevations in luminosity of a star (Hartman and Kenyon, 1985). 

Objects are classified as FU Orionis objects if such increases in luminosity occur. It has been 

shown that mass accretion from the protostellar disk onto the protostar is responsible for 

these elevations in luminosity (Hartman and Kenyon, 1985; Herbig, 1977; Larson, 1983; 

Bell and Lin, 1994). Accretion rates onto the central star are on the order of that required 

to heat the inner nebula. Difficulties arise when considering the timescales. The timescales 

for these events pose a significant restriction (Boss, 1996). Also, spectral evidence indicates 

these objects have disk surface temperatures up to 10,000 [K] which would not fit the max­

imum temperature constraint imposed by the chondrites (Bell and Lin, 1995). Hartmann 

argued that these outbursts result in strong bipolar outflows (Hartman and Kenyon, 1985). 

These outflows have been suggested as a means of chondrule formation.

Young stars often posses bipolar flows (Lada, 1985). These flows manifest themselves 

as narrow jets or outflowing lobes directed perpendicular to the accretionary disk (Figure 

1.3). It is possible that in these jets stellar matter will be ejected. Skinner argues that this 

matter may return to the disk as chondrules (Skinner, 1990). This is one of the few physical 

mechanisms we can directly observe occurring in the protostellar environment (Moriarty- 

Schieven et al., 1987; Pety et al., 2006). However, the process requires all matter found in 

the midplane to enter a jet (multiple times even) and return to the midplane. This is an 

unlikely situation (Safier, 1993). While the temperatures of the jets are high enough to melt 

chondrites and chondrules, the requirement of cooling is unlikely to be fullfilled (Safier, 

1993; Boss, 1996). Bipolar flows prove too violent a mechanism to be responsible for the 

formation of chondrules and chondrites.



Figure 1.3. This image shows Herbig-Haro 30 (HH 30) and its dynamic Jet. HH30 is con­
sidered a prototype of a young star surrounded by a thin, dark disk and powerful gaseous 
jets. The disk extends 40 billion miles (430 Au) from left to right in the image, dividing 
the nebula in two. The central star is hidden from direct view by a dense disk. These 
images were captured by the Hubble Space Telescope's Wide Field Planetary Camera 2 
(WFPC2).(NASA and Watson, 1995)
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As matter is accreted onto a central object, an accretion shock will form (Calvet and 

Gullbring, 1998). This shock will heat the neutral gas (and ionize it leading to a plasma 

state) (Alfven, 1954). The dust particles in the gas will be slowed by aerodynamic drag 

leading to heating of dust. Wood shows that in-falling matter had large kinetic energies (20 

times that needed to melt a chondrule) (Wood, 1984). However, the overall theory requires 

dust gas fragmentation. This fragmentation would need to be strong enough to produce a 

1000 fold increase dust/gas ratios (above cosmic abundances). Additionally, the multiply 

rimmed structures seen in chondrites indicate that chondrules experience multiple heating 

processes. Finally, his model only indicated that the shocks could maintain a 1500 K tem­

perature in the presence of radiative cooling to deep space, not explain the rapid heating 

and slower cooling. Accretion shock would be a single upset event (Boss, 1996).

It is worthwhile to note at this point that none of these processes requires a plasma 

(let alone a dusty plasma) description of the nebula to explain chondrite/chondrule for­

mation. Additionally, none of the theories discussed thus far yield a self-consistent ex­

planation of chondrule and chondrite formation. The models are qualitative studies and 

quantitative estimates. Each mechanism shows improper temperature regimes with the 

additional complication of requiring all chondrules to form near (or pass by) the protostar. 

It is argued here that production of chondrules should occur in the accretion disk between 

0.1 and 50 [Au], being the domain of the current planets. This would seem a good addi­

tional constraint on any theory. Theories that result in heating in the disk region are then 

required.

Charge separation in the nebula can result in nebular lightening (Whipple, 1966; Morfill 

et al., 1993). It is well known that micron sized dust particles (and larger) can act as charge 

reservoirs in space (even at room temperature densities we can inductively charge a sphere 

and it will maintain charge for a few minutes) (Morfill et al., 1993). Love et al. find that 

discharges in the nebula would be unlike terrestrial discharges and were an unlikely source 

of heating (Love et al., 1994). Research into terrestrial lightening is changing our view of 

the mechanisms for breakdown (Roussel-Dupre et al., 2008). At present, it's unlikely that 

this mechanism played a large role in chondrite formation.

Magnetic reconnection events at the nebular bow shock have been suggested as a possi­

ble heating mechanism. Cameron (Cameron, 1995) proposes this picture where chondrites
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are thermally processed by reconnection occurring at the nebular bow shock. This results 

in fast heating of the chondrules. Unfortunately, the chondrules must be transported to 

the bow shock where the reconnection is thought to occur. It is unlikely that the magnetic 

fields were strong enough there to provide the necessary remnant magnetization found in 

chondrules (Boss, 1996). Levy and Araki (Levy and Araki, 1989), suggest that reconnective 

flares in the nebular corona would provide the necessary heating. Sonett (Sonnet, 1979) 

also forwarded a similar idea. Neither treat the problem from the perspective of a dusty 

plasma or address the large radiative cooling (to deep space) present in the nebular corona.

Nebular shocks have received more recent attention (Hood and Horanyi, 1991, 1993; 

Desch and H. C. Connolly, 2002). Here it is possible that localized shocks in the nebula 

would be able to produce the array of chondrule properties. Desch and Connolly (Desch 

and H. C. Connolly, 2002) present a shock model that accurately predicts heating and cool­

ing rates of chondrules in the solar nebula. However, it's difficult to find a source for these 

shocks.

Each of these mechanisms has been forwarded as a possible theory to explain what is 

observed in chondrites. Each however, lacks the necessity of processing the bulk of matter 

in the nebula. Recent developments in plasma theory have resulted in plasma processes 

being forwarded as a means to heat chondrites through instabilities (formation of current 

sheets) (Joung et al., 2004; Birk and Wiechen, 2001, 2002). Much work has already been 

done to explain the turbulence of nebular disks through the magnetorotational instabil­

ity (MRI, Balbus-Hawley) (Balbus and Hawley, 1991; Hawley and Balbus, 1991). This has 

opened up the idea that current sheets may have formed in the midplane of the nebula 

and that reconnection could be occurring there. This would provide an formation envi­

ronment where the strong effects of radiative cooling could be suppressed. Simulation 

work to include the dust component in the plasma dynamics of the nebula has only be­

gun to be developed (Schroer et al., 1998; Birk and Wiechen, 2001; Birk et al., 2001; Birk 

and Wiechen, 2002; Wiechen et al., 2002; Birk et al., 2003; Lazerson and Wiechen, 2008). 

Simulation of these processes requires a dusty plasma approach.
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1.3 Dusty Plasmas

Dusty plasmas are of great importance in Astrophysical and Laboratory plasma environ­

ments (Chen, 1995; Shukla et al., 1997; Verheest, 2001; Shukla and Mamun, 2002). They are 

plasmas in which massive, multiply charged particles are included as a plasma component 

(Shukla and Mamun, 2002). Dust is clearly present in many astrophysical environments 

(Zodical light, accretion disks, molecular clouds, etc) (de Angelis, 1992; Verheest, 2001; 

Shukla and Mamun, 2002). Dust charging processes are of great importance with respect to 

dusty plasma processes. It is the way in which the dust charges that determines the charge 

to mass ratio and in essence the departure from a normal plasma (Shukla and Mamun, 

2002). A distinction must be made between a dust particle in a plasma and a dusty plasma. 

Particularly we seek to determine if the dust particles behave collectively. It is through the 

collective interactions that the charged dust particles behave as a dusty plasma (rather than 

as isolated particles in a plasma). We find that many low frequency properties may express 

themselves in a dusty plasma. This includes waves, interactions and nonlinear structures. 

The framework of dusty plasmas provides us a means to understand the dynamics of dust 

particles in the protosolar nebula.

Dust particles charge by collection of plasma particles, secondary electron emission, 

photoemission, and other less relevant processes (Shukla and Mamun, 2002). For an iso­

lated dust grain these processes compete until an equilibrium charge is obtained. The 

physics of the entire process is similar to that of a Langmuir probe (Chen, 1965). For non­

isolated dust grains (Debye length larger than the intergrain spacing) we have the analytic 

result (Barnes et al., 1992)

where P = and kdg = kgTj/4jm,e2. This equation gives us the dust grain surface

potential <(v, which in turn gives us the equilibrium charge number for the dust. This 

result has been confirmed by experiments done in a Q-Machine (Barkan et al., 1994). In the

the more mobile species. It can then be said that dust grains will charge negatively in the 

absence of photoionization.

(1.1)

absence of photoionization, the dust particles act as giant electron acceptors. This is due 

to the lower mass of the electrons when compared to that of the ions. The electrons are
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We may only treat charged particles as a plasma if they obey certain constraints; dusty 

plasmas must also meet these constraints. The first constraint is Debye shielding. In or­

der to treat a collection of charged dust particles as a plasma we must have a significant 

number of particles within the shielding distance of the plasma (Debye length). The Debye 

length in a dusty plasma, derives from the same considerations as that in a ion-electron 

plasma. The departure comes from the modification to Poisson's equation that 3 charged 

species provide. Thus we find that (Shukla and Mamun, 2002)

mann's constant, species temperature, species number density, and species charge number 

respectively. For negatively charged dust, the ion temperature and number density play 

the largest role in Debye shielding. Next we wish to verify that our quasineutral system is 

stable to perturbations. This is achieved if the plasma frequency is the largest frequency, 

or at least larger than our neutral collision frequency. Again, our modified Poisson's equa­

tion results in our new definition of plasma frequency (cop) for a dusty plasma (Shukla and 

Mamun, 2002)

d-3)
s m S s

These quantities being defined we now have the tools to determine if a given dust-plasma 

system can be considered a 'dusty plasma.'

The large mass of the dust particles implies that the frequency regime of the dust borne 

waves will be lower than that of the ions and electrons. A large amount of analytic work 

has gone into understanding both nonlinear and linear waves that result from the inclu­

sion of charged dust (Verheest, 2001). This work is further complicated by the dust charge 

itself. For most work the dust is treated as having an equilibrium charge, but truly the 

charge number of the dust is due to equilibrium currents. When dust charging effects 

are taken into account the situation can become much more complicated. The interested 

reader is invited to examine the books "Introduction to Dusty Plasma Physics" by Shukla 

and Mamun, and "Waves in Dusty Plasmas" by Verheest.

The dynamics of dust are governed by their massive nature and large charge number.

Xp = (1.2)

where XDk = -JkgTk/nkQl is the Debye length for species k. Here kg, Tfc, Wjt, and are Boltz
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The charging processes determine the electromagnetic nature of the dust. Additionally, the 

charge number of the dust can dictate the relevant number densities of the singly charged 

species. Negatively charged dust particles are an indicator of a depleted electron field. 

Positively charged dust is an indicator of photoionization and the possibility of a depleted 

ion field. It is important to note that in order to speak of a dust-plasma system in the 

framework of plasma physics one must verify that the dust particles behave collectively. 

It is also required that the fundamental oscillations of the plasma (plasma frequency) are 

not damped by collisions. If these criterion are met, we may then begin to examine the low 

frequency dynamics that the dust particle play a role in. A discussion of these requirements 

in the protosolar nebula are deferred to Section 1.5. In this work, focus will be placed 

on the massive dust and its dynamics. The massive and multiply charged nature of a 

dusty plasma provides a new framework by which to understand processes in the space 

environment.
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1.4 Magnetic Reconnection

Magnetic Reconnection is a process by which regions of oppositely directed magnetic field 

are reconfigured so as to break the magnetic isolation of regions, accelerate particles, and 

heat the plasma. Various initial states of the magnetic field exist, from which magnetic re­

connection may emerge (Biskamp, 2000). This work focuses on a Harris-like current sheet 

(Harris, 1962). Linear theories involving magnetic reconnection attempt to understand the 

process in a general sense. The two canonical models are the Sweet-Parker (Parker, 1957; 

Sweet, 1958a,b; Parker, 1963) and Petscheck model (Petschek, 1964). Much work has been 

conducted on numerical simulation to understand the nonlinear evolution of magnetic 

reconnection (Birn and Hesse, 2001; Otto, 2001; Birn et al., 2005). Still few of these simu­

lations examine magnetic reconnection in a dusty plasma (Jovanovic et al., 2005; Lazerson 

and Wiechen, 2008). It is through a dusty plasma treatment that a greater understanding 

of the role of magnetic reconnection in the protosolar disk will be gained.

The Harris sheet (Harris, 1962) presents a magnetic configuration in which magnetic re­

connection may occur. The configuration is achieved through a collisionless kinetic treat­

ment of a plasma (collisional effects are discussed in 2.3.1). The derivation involves as­

sumption of a one dimensional system (y being the direction perpendicular to the current 

sheet and z being in the direction of the current) which then solves Vlasov's equation

vk - ^  + —  ( e  + - 3 x b Y ^  = 0 (1.4)or mk \ c J  dvk

with a shifted Maxwellian distribution
3/2

r f mk \
M w y )  *exp

a ?  +  (ci2 -  vk) + a ?

^ Tk--------
(1.5)

where = v\ -  ^ v yAy — ^ A y + 0C2 = vy + ^ A y, and 0C3 = vz. This results in a magnetic

field that follows a hyperbolic tangent profile similar to B = Botanhy/8x. This analysis 

predicts a vanishing number density for the plasma as y —> 00. A constant density is added 

to the profile predicted by Harris yielding

pi(y) = p * + c 0sh2“y/8) '  d -6)

where po/t, y, and 8 are the asymptotic species mass density, coordinate across the current 

sheet, and scaling factor of the current sheet. The same can be done with the pressure to
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The Harris Sheet
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Figure 1.4. A schematic representation of a Harris-like current sheet. The yellow cones 
depict the direction of the current in the sheet while the profiles of the magnetic field and 
density are plotted on the side panel. The pressure profile is shown as a semitransparent 
slice (blue indicates low pressure regions while red indicates high pressures).

yield a constant total pressure ip total = Pgas +Pmag) across the current sheet. Figure 1.4 shows 

a schematic representation of how this profile looks in three dimensions. There exists a 

symmetry in Bx along a cut in y. Magnetic reconnection seeks to break that symmetry 

through the formation of By across the current sheet.

The earliest theory of reconnection, known as the Sweet-Parker model (Parker, 1957; 

Sweet, 1958a,b; Parker, 1963), calculates a rate at which magnetic energy is extracted through 

reconnection (known as the reconnection rate). This is achieved by assuming there exist 

two mirrored regions. The first is an inflow region where plasma advects the oppositely di­

rected magnetic fields towards each other (in a pinching motion). The second is an outflow
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region where the reconnected fields are advected away from the region where reconnec­

tion is occurring. The inflow region is assumed to support flows equivalent to the diffusive 

velocity of the system (Vinflow = r|/Z). Here I is the scale thickness of the reconnection region 

and r| is the global diffusivity of the plasma. The flow is then assumed incompressible so

that Lvmflow = lvoutflow, where L is the scale length of the reconnection region. These equa­

tions are coupled with the solenoidal constraint on the magnetic field (V • B = 0) give the 

outflow velocity
_ _ Bin/low _  n  ^
®outflow ~  p — ^Alfven—inflow• IT-' /

The inflow Mach number provides the reconnection rate

= „ V"fCW - (1-8)
v Alfven-inflow

In practice, this provides a reconnection rate much to low of explain the observed rates in 

many plasmas (Kulsrud, 2001).

Petschek (Petschek, 1964) forwarded a mechanism whereby the anisotropic nature of 

slow-mode shocks could generate four standing switch-off shocks which would accelerate 

and heat the plasma. These shocks provide a magnetic field component perpendicular to 

the current sheet, thus modifying the inflow magnetic field (as compared to the asymptotic 

magnetic field far from the reconnection region). This field can be written

Binflow = B0 ^1 — log ■ (1-9)

Here Bo,Mo,Lo, and L are the asymptotic magnetic field, asymptotic Mach number, asymp­

totic length scale, and reconnection region length scale. Here it is important to note that the 

lengthscale over which reconnection takes place (L) is now a smaller subset of the region 

over which plasma is being advected toward the current sheet (Lo). A maximum recon­

nection rate (Mq) can be estimated through the assumption that the mechanism fails when 

the inflow magnetic field becomes too small (Bin̂ 0H) = jBo), giving

Mg= . \  . (1.10)
81ogRm0

Where Rmo is the asymptotic magnetic Reynolds number. This results in a much larger 

reconnection rate as compared to the Sweet-Parker theory (Priest and Forbes, 2000).
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Much work has gone into simulations of magnetic reconnection in plasmas. Many 

simulations have been conducted in attempts to understand magnetic reconnection in the 

space environment. This includes simulations of the dayside magnetopause (Otto, 1991), 

magnetotail (Scholer and Otto, 1991), and solar atmosphere (Forbes and Priest, 1984). 

Large campaigns have been conducted to better understand reconnection from a theo­

retical standpoint. The GEM reconnection challenge (Birn and Hesse, 2001) and Newton 

("Taylor") challenge (Birn et al., 2005) to name a few. Despite the large body of work that 

has been assembled, much debate still exists regarding the particulars of reconnection. The 

Sweet-Parker and Petschek models are both idealizations with limited applicability to the 

nonlinear development of magnetic reconnection. This work will examine both these ide­

alized models and more dynamic models of reconnection through a self-consistent nonlin­

ear treatment. The simulations conducted here will be the first self-consistent simulations 

of three-dimensional magentic reconnection in a dusty plasma.

Magnetic reconnection works to convert magnetic energy into thermal and kinetic en­

ergy. This is accomplished through flows toward a current sheet which are then accelerated 

out of the region where magnetic field energy conversion is occurring. Such features could 

very well have heated the precursor material in the protosolar nebula. Magnetic recon­

nection may also be looked on as a process which can destroy current sheets formed by 

other instabilities. Many instabilities exist in the protosolar nebula which can create cur­

rent sheets (Rayleigh-Taylor, Kelvin-Helmholtz Balbus-Hawley, etc). Despite the decades 

of work on magnetic reconnection, a complete understanding of the process does not ex­

ist. A self-consistent dusty plasma treatment of non-ideal magnetic reconnection in the 

protosolar nebula is clearly warranted.
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1.5 The Protosolar Nebula

In order to quantize the effects of a dusty plasma model of the protosolar nebula I must 

parametrize my model nebula. To this end it will be fruitful to examine the general model 

of solar system formation. I will consider the events from molecular cloud collapse to pro- 

toplanetary formation. This will allow a discussion of possible parameter regimes in the 

protoplanetary nebula. The meteoric record will be referenced. This will be done under the 

assumption that any anomalous events in the history of the nebula do not have longterm 

effects on nebular evolution. It will then be useful to examine the implications of a dusty 

plasma model of the protosolar nebula. This will provide a useful parametrization from 

which simulations of dusty plasma processes may be evaluated.

The generally accepted description of how the solar system evolved begins with the 

collapse of a nebular cloud. A cloud of sufficient mass will undergo gravitational collapse, 

known as the Jean's mass limit (Carroll and Ostlie, 1996). It has been further shown that as 

a cloud collapses it will not converge to a point as Jean's predicted, but will form regions of 

enhanced density and pressure (Hunter, 1962). As the cloud collapses it will begin to heat, 

build up density, and build up pressure in its central region. It was argued that this will 

result in ionization of gasses (Alfven, 1954). Any initial angular momentum of the cloud 

will result in collapse of the cloud into a disk-like structure. At the center of this disk will 

be a protostar. Matter continues to accrete onto the center star till a point at which the star 

begins nuclear fusion. At this point the star sends out a solar wind and clears away the 

gas and smaller particles from the nebula. Only the planets and large objects (asteroids, 

comets, etc.) will be left around the star. This process is depicted in Figure 1.5. I concern 

myself the period before planetary formation and during star formation.

The neutral component of the nebula is thought to be mostly composed of monatomic 

hydrogen (~ 70%), Helium (~ 29%), and trace gases (Carroll and Ostlie, 1996). We can as­

sume that in the chondrule forming regions the temperature of the neutral gas is below 

500 [K] (Hewins and Radomsky, 1990). This is evident by the presence of refractory in­

clusions and volatiles in the chondrite. We are fairly free to assume the dust size within 

the limits of the smallest chondrules (submicron dust is assumed). Our dust charge num­

ber is a function of the available charges and the maximum stress that the dust particle 

can sustain before being ripped appart (Shukla and Mamun, 2002). An equilibrium charge
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number is assumed for the dust. We may safely assume a dust mass of md = 1.69x10 l6[kg].

This assumes that the dust particles are mostly composed of carbon (Sears, 2004). It is also 

relatively easy to assume that the electron field is heavily depleated. This is a consequence 

of the high charge number of the dust and the high neutral density (Shukla and Mamun, 

2002). These charges are mostly due to ionization of the neutrals (Hydrogen/Helium). This 

parameterization of the protosolar nebula (Table 1.2) allows a discussion of the plasma 

properties of such a nebula.

At this point it is worthwhile to discuss the relevant collision frequencies for the proto­

solar nebula (values can be found in Table 1.2). The charged-neutral collision frequencies 

were derived from vkn = n„a^cs where n„ is the neutral density, oJJ is the scattering cross­

section for the neutral species, and the speed of sound in the gas species is defined as 

cs = ^/kgT^/nik. The ion-electron, ion-dust, and dust-electron collision frequencies are cal­

culated from (Benkadda et al., 1996)

71 nee.4 1.11)

Vid Wch [3z(1 + t  + z)x(1 + P) ° 8 a
2P

1.12)

and

1.13)

where

1.14)

1.15)

1.16)

p  _ ndZd
ne

1.17)

1.18)
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Here vch, Xd, cop!, T„ Te, nd, Zd, rii, mi, ne, a and Vjt are the charging frequency, Debye length, 

ion plasma frequency, ion temperature, electron temperature, dust number density, dust 

charge number, ion number density, electron number density, dust particle radius, and ion 

thermal velocity respectively. The parameters P, z, and x are dimensionless parameters.

Examining the dust parameters we see that there are approximately 50,000 dust parti­

cles in a Debye sphere. Additionally, we see that even the electron Debye length is much 

smaller than any scale of interest in the protosolar nebula (1 x W5[km]). One must be care­

ful with the collision frequencies. The dust plasma frequency is on the order of the dust- 

neutral collision frequency. At first glance the large ion-neutral collision frequency (as com­

pared to the ion plasma frequency) seems to pose a problem. This is overcome through an 

inertialess treatment of the ions and self-consistent treatment of the neutrals. The two flu­

ids (ion and neutral) couple through the collision frequency. The inertialess treatment of 

the ions and electrons (found in the DENISIS code) is reasonable, as the ion and electron 

inertial length scales (skin depth) are much smaller than the dust inertial length scale. Ad­

ditionally, the electron current (and velocity) may be neglected entirely. This is attributed 

to the depleted electron field. An explicit calculation is shown in Appendix A. In analogy 

to MHD, here the ions are the inertialess charge carriers and the dust is the inertial charge 

carrier.



Table 1.2. Plasma parameters for the dusty protosolar nebula. The neutral collisional cross-section, neutral thermal 
velocity, magnetic field, and dust particle radius are assumed to be (respectively): o„ = 5xl0-15 cm2, B = 10-4 T, and 
rd = 10-6 m. (Note all temperatures correspond to 500 K)

Dust Ions Electrons Neutrals Units

Number Density nk 0.1 1001 1 lxlO10 m °

Charge Number z k 10,000 1 1

Mass mk lxlO-16 1.67xl0~27 9.11xl0-31 1.67xl0-27 kg
Temperature ksTk 6.90xl0“21 6.90xl0-21 6.90xl0-21 6.90xl0~21 J

Mass Density Pk lxlO-17 1.67xl0-24 9.11xl0-31 1.67xl0-17 kg/m3

Pressure Vk 6.90xl0-22 6.90xl0~18 6.90xl0-21 6.90xl0-11 Pa

Plasma Frequency ®pk 0.0170 41.7 56.4 rad/s

Cyclotron Frequency ®ck 0.00160 9590 17.6xl06 rad/s

Neutral Collision Frequency Vkn 0.00415 1020 43,500 Hz

Debye Length k 49 49 1540 m

Skin Depth c / ®pk lllx lO 9 45.2xl06 33.4xl06 m

Magnetization *-/ 1.18xl012 196,000 107 m

Plasma Parameter A 49300 493xl06 15.3xl09 Particles

Plasma Beta Pfc 1.74xl0-19 1.74xl0~15 1.73xl0-18

Effective Diffusivity 5.28xl016 L> • m

Magnetic Reynolds Number Rm 2.71

Dust-Electron Collision Frequency Vde 7.59xl0-17 Hz

Ion-Dust Collision Frequency Vid 1.20x l0~8 Hz

Electron-Ion Collision Frequency Vei 3.78xlO-30 Hz
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1.6 Hypothesis

Hannes Alfven originally proposed that the formation of the solar system was the result 

of an interplay between gravity, gas dynamics, and dusty plasma interactions (Alfven, 

1954). Following this line of reasoning it makes sense to model the protoplanetary nebula 

with a dusty plasma code. In doing so one can quantify the dusty plasma processes that 

impacted the evolution of chondrules during their formation. It has already been shown 

that dusty plasma dynamo processes can form magnetic fields of the order recorded in 

the meteorite record. (Wiechen et al., 2002). Shear flow simulations have shown that dusty 

plasmas can form turbulent structures (Birk and Wiechen, 2002). Additionally, work has 

been conducted indicating a unique type of shear flow instability capable of forming cur­

rent sheets(Hawley and Stone, 1998). Each work indicates the formation of current sheets. 

These current sheets are capable of producing the thermal history recorded in chondrites 

(Joung et al., 2004). What is unknown is the role magnetic reconnection has in these current 

sheets on the dust particles.

It is the initial goal of this work to conduct the first self-consistent simulations of mag­

netic reconnection in a dusty plasma. The second goal is to evaluate magnetic reconnection 

in a dusty plasma as a chondrule formation mechanism. This will be achieved by con­

ducting simulations of magnetic reconnection in a Harris-like magnetic field configuration 

with a dusty plasma code. These simulations will probe current sheet configurations, dust 

dynamics during reconnection, and heating of dust particles due to reconnection. Heating 

will be evaluated through a testparticle subcode which will track the thermal history of the 

dust particles. Attention will be be paid to aerodynamic heating of dust particles due to 

collisions with neutral particles and radiative cooling. I seek to answer the following ques­

tions: Under what conditions will magnetic reconnection take place in a dusty plasma? 

What are the relevant timescales on which magnetic reconnection takes place in a dusty 

plasma? And does reconnection result in heating of the dust particles? These will be first 

non-linear self-consistent simulations of magnetic reconnection in a dusty plasma, and the 

first self-consistent dusty plasma treatment of the chondrule formation problem.
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Chapter 2 

Methods

The DENISIS (Dust Electron Neutral Ion Self-consistent Integration Scheme) 4-fluid dusty 

magnetoplasma code allows the investigation of magnetic reconnection in the protosolar 

nebular environment. The code is based upon a 4-fluid model of a dusty plasma where 

dust dynamics dominate and neutral interactions are present, allowing one to explore the 

dynamics of magnetic reconnection across a dusty current sheet. The effects of magnetic 

reconnection on the dust particles may then be explored through the inclusion of test par­

ticles and a model of their thermal evolution.

2.1 The DENISIS Code

The DENISIS code (Schroer et al., 1998) is a three dimensional dusty magnetoplasma code. 

The code seeks to solve a set of fluid balance equations for 4 species (taking collisions 

into account). These four species are the electron, singly charged ion, neutral and multiply 

charged massive dust components. Integration of these equations is accomplished through 

a modified leap-frog scheme and leap-frog Dufort-Frankel methods (Roache, 1985). The 

solution is of second order in time and space. The modification to the leap-frog method 

is done to suppress the odd-even instability. The DENISIS code is a unique tool through 

which one can investigate the non-linear dynamics of a magnetized partially ionized dusty 

plasma.

2.1.1 Continuity Equations

The DENISIS code is based upon a set of dusty MHD equations with the inclusion of a 

neutral background species. The code solves the continuity equation for the dust, ion and 

neutral species, as follows:

(2.3)

(2.1)

(2.2)
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where and are the species mass density and species fluid velocity respectively (here 

k is used to index the species: dust, ion, electron, and neutral). The electron mass density 

is determined from the quasi-neutrality condition:

pe = ntef p L _ ^ P i \  (2.4)
\ m  md )

here Zd and are the dust charge number and species mass respectively. For the purposes 

of the simulations, the electron number density was considered to be heavily depleted. The 

electron depletion is attributed to the massive negative charge found on the dust, which is 

assumed in the astrophysical environment of the protosolar nebula. The negative charge is 

attributed to the absence of significant photoionization of the dust particles (Morfill et al., 

1993).

2.1.2 Momentum Equations

The DENISIS code integrates the dust and neutral equations of motion. The ion and elec­

tron fluids are treated as inertialess. The ion and electron equations of motion may then 

be substituted into the dust equation of motion through the electric field and dust-electron 

collisional term. The conservative forms of the dust momentum and neutral momentum 

equations are:

d(P iVd) 
dt

d (p nVn)

= -V  • (p ^ ^ i) -  v  (p£+pi+p,j) + ^  (v  x B) x B (2.5)

-V d n P d  (Vd - V n) ~  VmP; (V, -  V„) -  Venp e (Ve -  V„)

= - V  • (p„VnV„) -  V p n + V dnPd (v d -  Vn) + V inPi (v , -  Vn) +  Venp e  (v e ~  Vn) (2.6)
dt

where p,B, and va\, are the species pressure, magnetic field, and collision frequency between 

species a and b respectively (here the convention is to refer to B as the magnetic field, 

as opposed to its more accurate name of magnetic induction). Here we have the spatial 

part of the total fluid derivative (V • {pvv)), the pressure term (Vp), the magnetic pressure 

term (j x B), and the collisional terms (vappa (va — vp)). The collision frequencies satisfy the 

following relation pavap = PpVpa. The inertialess treatment of the ion and electron fluids 

restricts the code to examination of processes occurring on length scales longer the the
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ion skin depth (and subsequently the electron skin depth). This also places a temporal 

restriction on the timescales, in that the code is restricted to process occurring on timescales 

larger than the ion gyro-period.

The ion and electron velocities are calculated from the current density, mobilities, and 

dust velocity. The current density j  is calculated from the magnetic field in a familiar 

fashion

h ^ V x B ,  (2-7)

where c is the speed of light. The contribution to the current density via the ions and 

electrons may be written

w = j + n̂ eZdVci = eriiVj -  eneve, (2.8)

where e, n̂ , Z&, and are the electron charge, species k number density, dust charge num­

ber, and species k velocity respectively. The term w is the sum of the ion and electron 

contributions to the total current density (j). The ion velocity is expressed in terms of the 

electron velocity through mobilities. These mobilities are defined in terms of components 

of velocity parallel to B, in the Hall direction (E x B), and perpendicular to the magnetic 

field. The interested reader is invited to examine the paper describing the DENISIS code 

for further details (Schroer et al., 1998) (explicit calculations for the parameters of nebular 

environment, found in Table 1.2, can be found in Appendix A). In this case, a depleted 

electron field allows the simplification

w = eriiVi. (2.9)

Thus the ion velocity becomes an explicit function of the dust velocity (j>d) arid current 

density (j). The electron velocity then becomes zero. The implications of the choice of 

electron collision frequencies is discussed later in this chapter.

2.1.3 Energy Equations

The energy equations are derived from the following general equation

^  (P«e«) = -  V • (paEa^a) -  V • (paVa) + Q a  (2-10)

where pa, pa£a/ and Q„ are the species pressure, species internal energy density, and

energy source term respectively. The internal energy density relates to the pressure via
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P a  = (ra — l)pa£a, where Ta is the ratio of specific heats for a given species a. The temper­

ature of each fluid is then defined by T = (m /pkB)p, where kg is Boltzmann's constant. The 

energy equations may then be written:

1 f y e

T , - l  dt

1
T, - l  dt

1 t y d  

Td - 1  dt

dp„
r „ - i  dt

— V- ( p e V e ) -p eV -i (2.11)

Pn̂ ne iPe ~ Vn) ^+ m„ me + md

-2

- 2

PrfVde / kBTe kBTd
md + me 

P n̂ ne
m„ + m,

r e- i
kBTe________

r e- i  r „ - i

r d- i
kBTn

P d V d e ( V d ~ V e ) +  

Pi îe (  k[;Te

171;

171; +  m e r w

me + 
foT,- 

r , - i

P)V;t> (v e Vj)
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n ii +  md Vrrf- 1  

, P dv de (  kBTd
r , - - i
kBTe

- 2-

me + md 
kBTd kBTn
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P n V n d ( V n ~ V d ) +
mn + me

PnVnd f  kBT„ _  kBTd 
m n + m d v r „ - i  T d - 1

P nSnzkPe Vn)

In these equations one finds collisional heating terms (pavap (ua — 0p)2) and thermaliza- 

tion terms (pavap — f ^ j) ) -  The collisional terms act as frictional heating where rel-
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ative velocities between species result in heating of the species. The thermalization terms 

seek to equalize species temperatures through collisions. Note that as the adiabatic index 

(T) for a species approaches unity, the dynamic of that species becomes isothermal. The 

adiabatic index cannot explicitly be set to unity as the thermalization terms contain recip­

rocals of T — 1, which is not numerically tractable. In order to treat such a case, the relevant
1 /r

equation for a given species is replaced with the equation = (§p*) k> where pressure 

may be defined in terms of p̂  = 2u\.

2.1.4 Induction Equation

This set of equations is closed by Faraday's law

cV x E = -  — .
dt

(2.15)

The intertialess ion equation of motion may be written in terms of the electric field giving 

?./ s  1 -  s  t n i V p i  n i j  m i  W;E =E + -Vi x B =  E v {p _  y.) Vin _  Vj) ----- Vie (Vg _  v.) (2.16)
c e Pi e e e

where the gravitational term has been neglected. This is substituted into Faraday's law to 

give

^  = _ ! ^ v x  
dt e \ Pi

TTl 'C
 L v  X [vid (Vi - V d ) +  Vin (Vi - V n) +  Vie ~ V e )] ■

+ V x (di x B j  -  qV2B (2.17)

Here a resistive term (r|) has been included giving added utility to the code. The depleted 

electron field allows this equation to be written as

dB mx. Vpi \ m,
-v = -----— V x —̂  + —-ZdV x — Vd x B + -p-V  x
dt e \ pi )  md \pi )  4ne

P d. mx. V x B 

P<
x B  — fjV2B(2.18)

—— V x { — Zd  ̂ ) Vid + Zdvm V d -v inv„},

In this form the resistivity may be written in terms of the collision frequencies and the 

appended resistive term

r j = r |  +
mx

4nn,e2 ( V i d + V in) . (2.19)
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In Appendix B, a more general form of Ohm's law is presented to indicate the scaling of 

various terms (including ion inertial terms). The ion inertial term scales as the ion skin 

depth which is 7,200 km. It can also be shown that a temporal constraint exists regarding 

the neglect of ion inertia. A posteriori we find that ion acceleration was ~  0.1 in normalized 

units while the ion-neutral collisional forces were ~  20,000 in normalized units. The iner­

tialess ion assumption present here is only valid for length scales greater than the ion skin 

depth. The Hall term and ion-stress term scale as the dust skin-depth (c/(opd=2.19). Finally, 

the collisional resistivity term (due predominately to ion neutral collisions) is proportional 

to the effective resistivity (fj) and inversely proportional to the flow velocity. The effec­

tive resistivity for the protosolar nebula (5.28 x 1016 D. ■ m) indicates that even for Alfvenic 

flows (Vaifren r 106 m/s) the collisional resistivity is important over large length scales. The 

choice of grid scale must be larger than the length scales on which ion inertia plays a role 

(7,200 km) so that the inertialess ion fluid assumption made in DENISIS is accurate.

This closes our set of equations for the DENISIS code. It should be noted that equation 

2.17, is the equation integrated by the code. This diffusivity (q) is independent of the 

collision frequencies and was included in order to compare collision frequencies against 

an explicit resistivity (representative of the collision frequencies). It should also be noted 

that the collisional terms in equation 2.17 can be switched off in the code without affecting 

the collisional terms in the other equations. This is achieved through multiplication of the 

terms by integer coefficients in the DENISIS code itself.

2.1.5 Numerical Method

DENISIS uses two numerical methods to integrate these equations. The hyperbolic balance 

equations (continuity, momentum, energy) are solved using a modified leap-frog scheme 

while the parabolic induction equation is solved using a leap-frog Dufort-Frankel scheme. 

The modification to the leap-frog scheme is accomplished by splitting the scheme into 

three steps. In the first step a spatial average is performed over a half time step, the second 

step substitutes this averaged source term by a newly computed one, and in the third 

step a second half time step is performed with the new source term. Here spatial average 

refers to an averaging process that takes into account distances between neighboring grid 

points (as opposed to a statistical average). An artificial viscosity is added in step two so



31

as to suppress the odd-even instability. To illustrate, examine a simple one-dimensional 

transport equation,

at ox
The scheme splits the leap-frog method into 3 auxiliary steps: 1. As a first approximation 

the unknown quantity u\ is replaced by its spatial average, then one performs a half time 

step to obtain

u\ = u‘r 1/2 -  ^  (u\+1 -  I l l . j )  + ^  (« i+l  +M /-l) • (2 .2 1 )

2. Substitute the average source term by the newly computed one,

«! = u\ ~ (uh  + u\-1) + aAtw/- (2-22)

3. Perform the second half time step with the new source term,

« r 1/2 = uti ~ ^ c -  uUi) +aAt“/■ (2.23)

Note that an artificial viscosity is added after step 2 in order to suppress the odd-even 

instability. This viscosity takes the form of a spatial average and is only applied to points 

on the grid where the code has detected grid scale oscillations to be present. Summing up 

these steps the canonical form of the leap-frog scheme is recovered

M|+1 = u\-1 -  ^  (i4+1 -  «[_!) +2aAtu\. (2.24)

To illustrate the leap-frog Dufort-Frankel scheme (Roache, 1985), examine the advec- 

tion diffusion equation
a « M  = _  d u p t i

dt dx dt2 K ’
The scheme uses the three-point centered difference of the Richardson scheme (for the 

diffusion term) but replaces the center term TJ with an average of the neighboring time 

steps to give

2 A t  “  2Ax + “ ----------------- 4 ^ ------------------' <2'26)

The familiar explicit form is

m|+1 (1 - 2 s ) u)-1 - 2 c  ( u l ,  - u l , )  +2s (w|+1 + 1 / ( l  + 2s) (2.27)
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where s = aAt/Ax2 and c = At/Ax. The solution will then be second order in space and time 

(Press et al., 2002). Should the diffusive term (in this case resistivity) become zero then the 

method reduces to the hyperbolic leap-frog method.

The stability of these methods is determined by the Courant number. The choice of 

time step and grid scale are discussed in Section 2.2.1, as is their impact on stability of the 

code. There is an additional constraint which exists for the time step alone. It is imposed 

by the source terms and the nature of numerical integration. Take the following simple 

equation:

f = a *  (2.28)

where/ is the function we wish to integrate and g  is some source function (which may be 

a function of/). This equation then becomes

/,+1 =/f -1 + Atagi (2.29)

where the spatial subscript i has been dropped for clarity and g represents some function 

which may be a function of / (in our case the relative velocities between species in the 

momentum equation). It becomes clear that the product of At and a  scale the value of g. 

In order for this algebraic equation to be numerically tractable it is important that such a 

product scale the source term to a value that is of the order of/. A more detail discussion 

of the source terms is conducted in the next section (Section 2.2) with explicit calculations 

shown in Appendix C. Numerical tractability is achieved through careful choice of the 

time step.

2.2 Parametrization

All parameters are normalized to typical values for the protosolar nebula. The typical 

magnetic field, fluid mass density, and timescale are chosen as B = 10 4 [T], p = 10 17 

[kg/m3], and t = 1800 [s]. The magnetic field corresponds to the magnitude of magnetic 

fields recorded in the chondrules. The mass density is appropriate for assumed number 

densities and masses of the dust particles in the protosolar nebula. The timescale corre­

sponds to 30 minutes. The time step is chosen to be At = 0.0001 giving a temporal resolu­

tion of 0.36 [s]. These parameters then determine the normalizations found in Table 2.1. 

Note that the stereotypical length scale presented here (50,700,000 [km]) is four orders of
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Table 2.1. Normalizations for the protosolar nebula. Implicit in these calcualtions is the 
assumption h = 0.1.

B = 10“4 [T] p = 10" 17 [kg/m3] t = 1800 [s]

V = = 28.2 x 106 [m/s]

L = tv = 5.07 x 1010 [m]

f = l / l  = 5.56 x 10“4 [Hz]

<J> = 2n/t = 0.00350 [rad/s]

; = B/jj0L = 1.57 x l 0 “9 [A/m2]

V = B2/2h0 = 0.00398 [N/m2'

E = Bv = 2,820 [N/C]

ksT = p/n  = 0.0398 M
= L2/t  = 1.43 xlO 18 [£2 • m]

ec -  I  /Al 
V w)» 5.56 x 10' 16 [C]

magnitude larger than the ion skin depth (the aforementioned lower limit of consideration 

without inclusion of ion inertial dynamics). This is distance is equivalent to approximately 

8000 [Re] or 1/3 [Am] for reference. The nebula is assumed to be around 100 [Am] in size.

Table 2.2 shows these normalizations applied directly to the values associated with the 

protosolar nebula (found in Table 1.2). The majority of parameters scale to numerically 

tractable values. The mass densities for the dust and neutral fluids are of the order unity. 

The low ion mass density is still numerically tractable through the implementation of 64 bit 

floating point values which provide approximately 15 significant figures of storage. The 

vector quantities (velocity and magnetic field) are expected to also be of the order unity or 

less. The normalized pressures (and subsequently temperatures) present difficulties which 

are discussed and resolved below.

The pressures present a difficulty due to their low values. Specifically the code inte­

grates a modified form of the pressure equations where the substitution p = 2u[ is made. 

Thus the pressure equations transform as follows:

^  = _ V  ■ ( p v )  — ( T  — l ) p V  • v  =» ^  V  • (m o) . ( 2 .3 0 )
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The values of u for the various species become: û o = 3.65xl0-12, «,o = 9.20x10~10, ueo = 

1.45xl0-11, and u„o = 1.45x10' 5 (assume T = 5/3). The difficulty arrises from the Harris 

sheet configuration that is utilized for an initial condition. These difficulties are addressed 

in the description of the initial condition (Section 2.3.1). At this point it should suffice to 

say that the low plasma beta P = bi J2k  these parameters represent is numerically difficult 

to treat. Specifically, if we examine the neutral beta (neutral pressure to magnetic pres­

sure ratio) we find P„ = 1.73 x 1 0 '8. This low neutral beta, coupled with the large neutral 

collision frequencies, suggests that neutral pressure forces are small. The suppression of 

neutral pressure forces in the neutral equation of motion may then be considered. As a 

result, the neutral sound waves will also be suppressed. The large ion-neutral collision 

frequency suggests that these waves may be highly damped if the neutral mass density is 

much smaller than the dust mass density.

The collision frequencies play important roles in defining the coefficients for many of 

the source terms present. The time step for the code must be chosen such that the prod­

uct of the time step and source term coefficients is smaller than the quantity in question 

(the change in any quantity should be less than the value of the quantity). Appendix C 

contains calculations of the coefficients in the various equations. The largest coefficient is 

due to the ion-neutral thermalization term. It has been found that for numerical stability 

this term must be suppressed. This limitation can be overcome through the assumption 

that the ion and neutral temperatures are same owing to their large collision frequency. 

Taking into account the normalized ion pressure (being smaller than that of the neutrals), 

the time step is chosen to be At = 0.0001. The small time step provides excellent analytic 

stability parameters, while still allowing the simulation to progress in a timely manner. A 

simulation of 90,000 time steps takes ~  76 hours on an AMD Opteron chip.

A quick note should be made on the electron collisional terms in light of the neglect 

of electron dynamics. In the equations of motion the electron-neutral collision frequency 

acts as a viscosity in both the dust and neutral equations of motion. The zero electron 

velocity assumption is the source of this term. In order to avoid complications, as a result 

of an unbalanced term in the momentum equations, its value is chosen to be zero. Thus 

in all equations the electron neutral collision terms disappear. The same is done for the 

ion-electron collision frequency. For technical reasons, involving the calculation of the
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(neglected) electron velocity, the dust-electron collision frequency cannot be set explicitly 

to zero. A value of 1.37 x 10 13 is chosen so as to minimize the effects of its non-zero value. 

The effect being only seen as a small temperature reservoir for the dust.

In this parametrization, it is assumed that the electron velocity does not contribute to 

the currents. There are two important facts upon which this assumption is based. First, the 

electron density is highly depleted. The dust particles are the predominate negative charge 

carrier. The second, is that the electron mobility is small compared to that of the ions in all 

but the parallel direction. Calculations show that the ion contribution to the total current 

is approximately two orders of magnitude larger than the electron contribution. Thus for 

the dynamics under consideration, the approximation of negligible electron velocities is 

appropriate. Appendix A shows the details of this calculation. The neglect of ion inertial 

dynamics is also justified as the problem is concerned with length scales much larger than 

the dust Debye length. The length scales (and time scales) which are considered in this 

problem which are much larger than the ion inertial length scale (ion skin depth, Table 

2.2). Therefore, the neglect of the electron velocity and non-inertial ions is completely 

justified in this parameter regime.

2.2.1 The Numerical Domain

The simulation domain chosen for the code is a three dimensional cartesian box. The 

simulation domain is defined in Table 2.3. The grid itself is composed of 255 nodes in the 

x direction, 127 nodes in the y direction and 15 nodes in the z direction. One node at each 

boundary is associated with the numerical grid, while the next neighbor is the physical 

boundary. As a result the grid spacing is determined by n — 2 grid points, the extra grid 

points being used for the numerical boundary (where n is the number of grid points in a 

given direction). The numerical boundary is a requirement of the finite difference methods 

employed by the code. The grids are taken to be equidistant. The corresponding physical 

grid scales are 20,000,000 km in x, 4,060,000 km in y, and 2,540,000 km in z. These distances 

are well above the ion skin depth (ion-inertial limit), 45,200 km, allowing for the inertialess 

treatment of the ions. The time step is taken to be At = 0.0001 for numerical stability (this 

is at the limit for neglect of the ion inertia).

The stability of the leap-frog method is difficult to gauge in the compressible flow limit.



Table 2.2. Normalization of the plasma parameters for the dusty protosolar nebula. Values based on those found in Table 
1.2. Normalizations found in Table 2.1.

Dust Ions Electrons Neutrals

Number Density nk 1 10010 10 lxlO11

Charge Number Zk 10,000 1 1

Mass mk 1.00 1.67xl0“n 9.11xl0-15 1.67xl0-11

Temperature faTk 1.73xl0-19 1.73xl0" 19 1.73xl0~19 1.73xl0-19

Mass Density P k 1.00 1.67xl0-7 9.11xl0- 24 1.67

Pressure Pk 1.73xl0-19 1.74xl0-15 1.73xl0-18 1.73xl0“8

Plasma Frequency u>pk 4.86 11,900 16,100

Cyclotron Frequency 0.457 2.74xl06 5.03xl09

Neutral Collision Frequency Vfei 7.46 1.83xl06 7.82xl07

Debye Length D̂k 9.66xlO-10 9.66xl0_1° 3.04xl0-8

Skin Depth c/®pk 2.19 0.000892 0.000659

Magnetization c/Wefc 23.3 3.86xl0-6 2.11x l0-9

Plasma Parameter A 49300 493x106 15.3xl09

Plasma Beta Pit 1.74xl0-19 1.74xl0-15 1.73xl0-18

Effective Diffusivity 0.0369

Magnetic Reynolds Number Rm 2.71

Dust-Electron Collision Frequency v * 1.37xl0-13

Ion-Dust Collision Frequency Vid 2.16xl0-5

Electron-Ion Collision Frequency v« 6.80xl0“27
ojON
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Table 2.3. Parameters defining the numerical domain of the simulation. The parameter L 
defines the physical domain of the problem n — 2 gridpoints span this distance (extra grid- 
points used to determine numerical boundary). The right side of the table presents stabil­
ity parameters for the Leap-Frog (modified courant number) and DuFort-Frankel schemes. 
The parameters s is the linear stability parameter and % indicates the presence of harmonic 
solutions.

Length Gridpoints Spacing c = At/Al II > % = At2 /A/2

Lx = 100 nx = 255 Ax = 0.395 cx = 0.000253 s* = 0.000641 Xx = 6.40 x 10~8

Ly = 10 ny = 127 Ay = 0.08 Cy = 0.00125 Sy = 0.0156 Xy = 1 .56xl0~6

Lz = 0.65 nz - 1 5 Az = 0.05 cz = 0.002 sz = 0.04 Xz = 4-00 x 10~6

Af = 0.0001

Linear analysis suggests that, in the incompressible flow limit the leap-frog routine has the 

following stability restriction (in three dimensions)

vxcx + VyCy + vzcz < 1 (2.31)

where the modified courant numbers (c = At/M) are defined as shown in Table 2.3. It is 

safe to say that for non-relativistic flows the leap-frog routine is stable on our grid (note 

the normalized velocity of 28.2 x 106 m/s). For compressible flows it is customary to mod­

ify the courant stability limit through a change in velocity term (Roache, 1985). Here the 

incompressible flow velocity (u) is replaced with a summation of the flow velocity and 

stereotypical propagation velocity (w = |»| + a; where a could be the sound speed, shock 

velocity, Alfven velocity, etc). The modified stability criterion then becomes

AxAvAz
wxcx + WyCy + wzcz < y . (2.32)

(Ax2 + Ay2 + Az2)

Here modified courant numbers have been used (c = At/AT). For our simulation grid the 

right hand side of the equation is 0.0236. A flow velocity twice the Alfven velocity should 

still be numerically tractable for this time step.

The stability of the leap-frog DuFort-Frankel scheme can also be gauged from grid pa­

rameters in the linear incompressible regime. The purely diffusive term in this scheme is 

stable for all positive values of qs (Fletcher, 1991). When combined with the leap-frog ad- 

vection term, the previously derived stability constraint on the leap-frog method becomes
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the limiting factor (as is the case with our induction equation). Our choice of time step and 

grid scale is stable for trans-Alfvenic flows. An additional constraint must be considered 

for the DuFort-Frankel method in terms of the consistency of the method (Roache, 1985). 

Specifically, the method admits solutions which are harmonic in time. These harmonics 

can be suppressed if r\% is kept small. A cursory examination of % indicates that even for 

large t| > 1 these modes will be suppressed.

2.3 Simulation

The simulations, which are discussed in this thesis, are the first studies of the onset and 

nonlinear dynamics of magnetic reconnection in a dusty plasma. An equilibrium current 

sheet configuration was sought so that the dynamics of reconnection dominated over the 

collisional current sheet dynamics. An equilibrium was achieved through the implemen­

tation of a ballistic relaxation technique (Hesse and Birn, 1993) before any reconnective 

perturbation was applied. This reconnective perturbation was chosen to be of a form con­

sistent with linear reconnective theory. A test particle sub-code is utilized to gauge dust 

particle heating due to neutral collisions during the reconnective dynamics.

2.3.1 Initial Condition

A Harris like magnetic field configuration (Harris, 1962) is ballistically relaxed to allow 

for a perturbation to be applied to the current sheet and reconnection to commence. The 

Harris configuration provides an analytic equilibrium current sheet in the regime of ideal 

plasma physics. The presence of collisions destabilizes this configuration resulting in a 

non-equilibrium initial condition. Modifications to the current sheet profiles are made to 

help minimize the non-equilbrium effects. While these modifications do not allow for a 

true equilibrium they do allow for a ballistic relaxation technique to be employed in an 

attempt to find a near-equilibrium configuration. This technique allows the configuration 

to enter a relaxed state where a perturbation can be applied to the current sheet. A Harris 

like magnetic field profile allows the study of reconnection in a dusty plasma without 

knowledge of the exact formation process of the current sheet.

The current sheet configuration described by Harris provides a simple current sheet 

configuration with which to explore reconnection in a dusty plasma. The kinetic equilib­



39

rium found by Harris can be extended to a fluid equilibrium. The configuration consists 

of a one dimensional magnetic field configuration

where B0 = 1.0 and 8 = 1.00 are the asymptotic magnetic field strength and current sheet

where p0 and p0 are the asymptotic plasma pressure and permeability of free space respec­

tively. In the derivation of the Harris sheet an implicit assumption is made that the current 

sheet is isothermal. The plasma density is then determined from this assumption

where kg and T are the Boltzmann constant and plasma temperature respectively. The 

multi-fluid nature of the DENISIS code requires a more precise description of this config­

uration.

The magnetic field configuration provided through the Harris derivation may be mod­

ified to fit the multi-fluid nature of the DENISIS code. The Harris magnetic configura­

tion is chosen (subsequently the current sheet profile found by Harris). An equilibrium 

is achieved through a balance between magnetic forces and the total plasma pressure. A 

complication is introduced through the multi-fluid nature of the total plasma pressure 

(p = Pd +Pi+Pe)- The neutral pressure does not contribute to the total plasma pressure, 

which by definition includes plasma constituents only. Tight collisional coupling between 

the ions and neutrals can have an influence on force balance through thermal contact 

and unbalanced neutral pressure gradients (which are small due to the small neutral beta 

value). A simplification is made by assuming the electron pressure does not contribute 

significantly to the pressure balance (pe (y) = peo). This is directly attributed to the depleted 

electron regime which the parameters for the nebula represent. The electric field perpen­

dicular to the current sheet is taken to be zero (see Eqn. 2.16). This implies that the ion

(2.33)

thickness respectively (in normalized units). An equilibrium between the magnetic force 

(/ x B) and plasma pressure must exist for this configuration to be stable. Thus the plasma 

pressure becomes

p(y) = (2.35)
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Mass Density Magnetic Configuration

Pressures Dust Temperature

Figure 2.1. Initial density, pressure, temperature and magnetic field profiles. Electron 
density profile is constant across the simulation domain: peo = 8.98 x 10-15. The dust and 
ion pressures share similar profiles. Electron and neutral pressures are constant across the 
simulation domain: peo = 0.01 and pno = 1.01 x 109. Ion, electron, and neutral temperatures 
are constant across the simulation domain: tJ0 = teo = t„0 = 0 .00101.
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pressure should completely balance the magnetic pressure if the dust is taken to be sta­

tionary (only ion contributions to the current density). The initial conditions (Figure 2.1) 

for the simulation become

Pio +  AqBIq

Zd 2/j0Z.d cosh2 (y/5)
„ -  Pio I n °D™ UePd\y) -  7 . + n. ^7 1,2 / /s\ 7 .5 (2'36>

Pi(y) -  v 1 A 0 B x o  

10 2p0 cosh2 (y/5) ’
(2.37)

pe (y) = nekBT0, (2.38)

Vn (y) = n„kBT0, (2.39)

P d { y ) = m d \  ,
XB I o

(2.40)

p i ( y ) = mi k ^ T ’ 
fcB l o

(2.41)

( p . M  z d fd\
\ m  md )

(2.42)

pH (y) = m„n„ (2.43)

where A0 = 2 has been included to insure that the non-equilibrium dynamics are away from 

the current sheet. The following quantities are noted in simulation units (normalized): 

Pio = 10.1, Zd = 10000, Bxo = 1.0, ne = 10, ]cbT0 = 0.001, n„ = 1 x 1011, md = 1, mi = 1.67 x lO^11, 

me = 8.98 x 10 ~15, and mn -  1.67 x 10-11. The densities are larger in the current sheet to 

prevent its depletion during the ballistic relaxation process. The set of initial conditions, 

presented here, provides a best guess estimate of the configuration of a current sheet in the 

protosolar nebula.

The achieved current sheet configuration is not in equilibrium. The pressure profiles 

have been chosen to approximate a force balance and minimize electric fields perpendic­

ular to the current sheet while providing non-equilibrium motions away from the cur­

rent sheet. The ballistic relaxation technique attempts to provide a force balance while 

minimizing the perpendicular electric field and dampening the motions of the plasma 

away from the current sheet. The temperatures in this configuration are at equilibrium
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far from the current sheet. In the current sheet, collisional heating makes a thermal equi­

librium difficult. The ballistic relaxation will allow the species time to adjust their temper­

atures through convection and thermalization. The current sheet configuration will reach a 

dampened state, characterized by a minimized force norm, through the ballistic relaxation 

procedure.

2.3.2 Ballistic Relaxation

The system is ballistically relaxed in order to find both a pressure equilibrium and ther­

mally relaxed current sheet. Ballistic relaxation implies an evolution where the system 

kinetic energy is set to zero once it has reached a maximum. In simple systems the max­

imum in kinetic energy also corresponds to a minimum in potential energy and thus a 

minimum in the unbalanced forces in the system. These unbalanced forces in the system 

are characterized by the force norm. In this simulation the force norm is taken to be the 

sum of the square of the residual force in the system, attributed to an imbalance between 

the plasma and magnetic pressures. For the current sheet system, the component of the 

force perpendicular to the current sheet (y direction) is of the most relevance (as is the 

kinetic energy in that direction). The residual force in the system can be written

f  residual ~ V(pd + Pi+Pe)+]xB.  (2.44)

The force norm may then be calculated,

p , . f t  residual * BresidualdV ■ (2.45)

A frictional term is added to the dust and neutral equations of motion in order to dampen 

the effects of the initial non-equilibrium choice of the pressure profiles. The coefficient 

(a)in the term has the time dependent form,

10c o s ( f f ) + 0.1 i f f  < 1.0 

a = < 0 . 1  if 1.0 < t < 3.0 (2.46)

0.0 if f  >3.0.

Diagnostic outputs of the kinetic, internal, and magnetic energies are created during this

period of ballistic relaxation, along with the force norm. The ballistic relaxation lasts for

three scale times in normalized parameters.
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2.3.3 Reconnective Mode

Magnetic reconnection across the relaxed current sheet is achieved through a velocity per­

turbation. The reconnective mode is defined by an inflow and an outflow perturbation. 

The collisional (and/or resistive) terms in the induction equation are also switched on 

at this point in the simulation. Throughout reconnection various parameters are tracked 

in the reconnection region, defined by the initial perturbation. These parameters include 

fluxes (mass and magnetic) through the surfaces defined by this reconnection region. Var­

ious parameter regimes are investigated in order to better characterize reconnection in the 

protosolar nebula.

Reconnection in the current sheet is achieved through a velocity perturbation. The 

general structure of the perturbation includes an inflow towards the current sheet (in the 

y direction) and an outflow along the current sheet (in the x direction) (Figure 2.2). The 

current sheet itself flows in the z direction. The dust velocity is perturbed and ion velocities 

are set so as to minimize the formation of new currents. The perturbation was conducted 

in a Sweet-Parker like fashion where

Here Rm is the magnetic Reynolds number for the plasma and vAjf-oen is the asymptotic

reconnection itself through examination of flows in the (unperturbed) z direction, and to a 

lesser extent through equilibration of the inflow and outflow mass fluxes.

In order to characterize reconnection, certain parameters (and fluxes) are calculated in 

(through) the reconnection region. In these simulations a region defined by the reconnec­

tive perturbation was used to track various values (length in x of 20.0 and width in y of

2.0). Analytic models of reconnection often share conservation of mass and magnetic flux 

into the reconnection region. These quantities act as markers to help describe the state of 

reconnection. The reconnection rate is given by the maximum of the integral JE\\ds taken 

along a magnetic field line. For the resistive runs (r| ^ 0) we track

^outflow — VAlfven (2.4 7)

(2.48)

Alfven velocity. A distinction can be made between the applied reconective mode and

(2.49)
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Figure 2.2. A diagram of the initial velocity perturbation applied to the current sheet so 
as to excite reconnection. The perturbation is shown in the plane but is applied to the 
whole box. The reconnection region is defined by d = 1.0 and L = 20.0. Red arrows indicate 
magnetic field.

For the runs involving collision frequencies the electric field may be written,

These values are used to compare runs of the simulation. Calculation of the reconnection 

rate is achieved by integrating Ey along various field lines undergoing reconnection and 

taking the maximum integral as the reconnection rate. A field line which passes through 

the maximum of E|| is included in each calculation. Each term in the equations for the elec-

The ion pressure gradient term has a coefficient that scales as the square of the inverse 

ion plasma frequency (which results in a small coefficient). The collisional terms have 

coefficients that scale with the collision frequencies m{\!/e. These coefficients have values 

1.25 x IQ-12, 0.106, and 3.94 x 10-37 for the ion-dust, ion-neutral, and ion-electron colli­

sional terms respectively. The non-ideal dynamics in the system are due to the ion-neutral 

interactions and ion pressure gradient terms.

-  -  (di x B )  + —  (vtd (Vi -  vd) +vin (v, -  vn) +Vie(Vi -  ve) ) . (2.50)
p i J c \ / e

trie field scale according to coefficients (with the exception of the advection term, 3; x B).
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2.4 Test-Particle Heating Code

In order to evaluate the heating effects of reconnection on the dust, a model for heating 

of the individual particles was developed. The DENISIS fluid code does not calculate the 

individual particle temperatures of the dust. Instead it tracks the temperature of the dust 

fluid component (through the pressure and density). In order to determine the heating of 

the particles, the heating mechanisms acting on the particles must be considered. Suitable 

mechanisms include aerodynamic heating (dust-neutral drag), conduction, and radiative 

heat transfer. The supersonic velocities of the dust particles coupled with the space envi­

ronment suggest that drag heating may play an important role. Examination of the nebular 

parameters in Table 1.2 show a dust Alfven velocity many orders of magnitude larger than 

the neutral sound speed. Radiative cooling of the particles is difficult to incorporate into 

the theory of chondrule formation, given the necessary heating and cooling rates. It is un­

likely that it played a large role in chondrule formation as cooling times were on the order 

of hours to days (radiative heat transfer cools the particles far too quickly to be considered 

a relevant part of their formation mechanism). Conduction to the background neutral gas 

is a far more likely situation. This places a constraint on chondrule formation locations 

in the nebular environment. Particles in the nebular corona and at the surface of the disk 

itself would surely experience radiative cooling to deep space. Such a particle would be 

cooled from a temperature of 1500 K to 4 K in the time span of a few seconds (not the 

hours to days necessary for chondrule formation). From this point forward the notion of 

magnetic reconnection as a chondrule heating mechanism will be restricted to the interior 

of the nebular disk itself. Here radiative cooling will be negligible given the large neu­

tral density providing a thermal bath for the dust particles. While magnetic reconnection 

may also occur in other dusty-plasma environments of the nebula, only the disk interior 

provides the thermal bath necessary for chondrule formation. It is unlikely that chondrule 

formation could occur anywhere else in the nebula. The assumptions of aerodynamic drag 

heating and conductive cooling allow the development of a test particle model to evaluate 

heating of the dust particles by magnetic reconnection.

At this point it is important for a distinction to be made between fluid temperature and 

particle temperature. Fluid temperature is the rate of change of the entropy of a system 

with respect to the total energy (Kubo, 1999; Schrodinger, 1989; Pauli, 1973). That tern-



perature relates the temperature of a fluid to the motions of the individual particles that 

constitute the fluid. The particle temperature is the physical temperature of the particles 

themselves. The analogue would be vibrational and rotational states in a molecule. In 

regards to thermal processing of particles in the protosolar nebula, the particle temper­

ature is the temperature of relevance. Previous works have treated the dust particles as 

a colloidal suspension. The particles velocity has been treated as a result of friction and 

gravitational forces. The dusty plasma treatment implies that Coulomb collisions between 

charged dust particles are possible, even though the particles may never actually physi­

cally collide. This added complication requires a test particle simulation to be conducted 

in order to determine the heating of individual particles from the parameters in the fluid 

code.

A gas dynamics treatment of the energy transfer to the chondrules requires the deter­

mination of the proper flow regime: Continuum gas dynamics, slip flow, or free-molecule 

flow. Inspection of the Knudsen number (Kn) for the particle (ratio of mean free path of the 

neutral gas to the scale size of the particle) places Kn between 20 and 20,000,000. This is 

clearly well within the regime of a free-molecule flow treatment of the problem (Kn > 10) 

(Truitt, 1960). The heating of a test dust particle may then be calculated via

where w,c,rrfusf,a,rdusf,pgfls,y,CC00/,and To are the dust mass, dust specific heat, dust particle 

temperature, accommodation coefficient, dust radius, neutral gas density, relative velocity, 

cooling constant, and effective nebular temperature respectively. The first term to the right 

of the equal sign is the drag heating term (dust-neutral collisional heating). The second 

term on the right is the conductive cooling term. The values for these parameters are 

noted in Table 2.4.

Inclusion of test particles in the code is accomplished through book-keeping of the 

particle locations. The particles are propagated through the simulation box via the dust 

fluid velocity. An appropriate assumption due to the massive nature of the dust particles. 

It is unlikely that an individual dust particle will have a velocity significantly greater than 

the bulk fluid velocity of the dust fluid. Velocity is determined through an average of the 

8 grid points that form the vertices of a box containing the particle at its current location

(2.51)
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Table 2.4. Parameters for test particle heating simulation. Note that the cooling coefficient 
Ccod is calculated assuming a 1000 [K] temperature drop in 3600 [s], in agreement with the 
chondrule mineral record.

c = 695-762 (Wasson, 1974)

h = 1.5-2.4 l i l (Wasson, 1974)

a  = .5 (Wood, 1984)

Pdust = 3300 l& ] (Desch and H. C. Connolly, 2002)

raust = 1 -  -00001 [mm]

Q ool = ~  0.00191

T0 = 500 [K] (Hewins and Radomsky, 1990).

(test-particle in cell). As the particles move the previously noted temperature equation 

is evaluated (Eqn. 2.51). In this fashion the temperatures of the test particles may be 

evaluated at each time step. The particles are iterated for 10 sub-time steps for each fluid 

simulation time step. The magnitude of aerodynamic heating may be evaluated directly 

from the fluid code. This allows identification of heating regions in the reconnection event.

It is important to note that in order to simplify the implementation of the test particle 

code, values from the fluid code (density, velocity, time, etc.) are multiplied by their nor­

malizations. This allows direct computation of the temperature. The large difference in the 

ion-neutral and dust-neutral collision frequencies (along with the other collision frequen­

cies being much lower than these) has an important consequence on heating. The ions 

couple well to the neutrals while the dust is in essence free to move through the neutrals. 

An essential detail in regards to the effectiveness of the aerodynamic drag heating. The 

coupling is explored in more detail (with regards to steady state reconnection) in the next 

section.

The test-particle subcode allows an evaluation of dust particle heating in the protosolar 

nebula due to aerodynamics effects in the free-molecular flow regime. Particle propaga­

tion is accomplished through the assumption of particle motion at fluid bulk flow veloc­

ities. Allowing for both a simple update of particle location and calculation of heating. 

Conductive cooling is included in order to consistently treat the problem of chondrule for­

mation. This cooling is a parameterization of the inferred cooling rates from the mineral
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record. The test-particle code allows one to asses the role of magnetic reconnection on dust 

particle heating and thus its role in chondrule formation.

2.4.1 Reconnection Rate and Chondrule Heating

A relationship between reconnection rate and chondrule heating may now be derived. In 

this derivation, it shall be assumed that the large ion-neutral collision frequency of the 

protosolar nebula, couples the ion and neutrals. Thus their velocities may be treated as 

approximately equivalent (v„ ~  vi). Ignoring the pressure term, electron velocity, and ion- 

electron collisional term the electric field (Eqn. 2.50) may be written

-t, vjx B  rtii
E = ----------+ — Vid(Vi~vd). (2.52)

c e

Here the first term is the advective term and the second is the diffusive term due to ion- 

dust collisions. The electric field at the X-line is used as a measure of the reconnection rate. 

However, the X-Line is a stagnation point for the reconnective flow, so the advective term 

drops out leaving
-* tn •
E = ~^v,d(vt - v d). (2.53)

e
The well coupled nature of the ions and neutrals allows for the substitutions of their ve­

locities, allowing one to write

vn — vd = . (2.54)
mtvld

Allowing the aerodynamic heating of a dust particle to be written as

3

(2.55)dTd 7t 2 i -> -  i3 2= - a r j p n\vd - v „ f  = - a r j p n
eE

m,vld

A relationship between the reconnection rate (X-line electric field) and the particle temper­

ature due to aerodynamic heating can now be written

dTd _ %arjpne3
E

3
(2.56)

dt 2 cdmdmfv3d

For values (Table 1.2) representative of the protosolar nebula, and a heating rates around 

5000 K/hr, electric fields as low as 1.0 x 10”11 N /C  could heat the dust. This analysis 

neglects the effects of radiative cooling which (if present), could significantly raise the
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reconnection rate (electric field) required for chondrule formation. A steady-state has also 

been assumed for the reconnection process, which may or may not be achievable. Note 

the difficulty in achieving an 'equilibrium' Harris profile in Section 2.3.1. Clearly these 

complications warrant the simulations conducted in this work.

The calculation of the reconnection rate, in the code, is handled by calculating the max­

imum value of the parallel electric field integrated along a field line.

The code outputs the electric and magnetic fields every 200 time steps. A line of points 

(on the grid) corresponding to (x,z) = (0 ,0) and (t/,z) = (0,0) are chosen as sampling points 

for the magnetic field. The magnetic field is then normalized and the trajectories along 

the field lines are back calculated in increments of 0.1. The value of the magnetic field at a 

given location is based on an average of the 8 neighboring grid-points (a test particle in cell 

method). Having reached the simulation boundaries the integrals of the parallel electric 

field may then be calculated along the field lines. Once calculated the maximum integral is 

taken as the reconnection rate. For technical accuracy no field line with length larger than 

twice the diagonal length of the simulation box is considered and no integral is allowed to 

iterate for longer than 1000 steps.

(2.57)
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Chapter 3 

Results

Simulations of magnetic reconnection in the dusty plasma of the protosolar nebula show 

supersonic dust outflows over extended regions, capable of heating dust particles to chon- 

drule forming temperatures (1200 — 1500[fC]). A ballistic relaxation technique is employed 

to find a suitable pressure profile for a dusty Harris-like current sheet. Magnetic reconnec­

tion is explored with comparisons made between collisional and explicit resistive terms. 

Attention is paid to identifying flow regimes capable of chondrule formation. Test particle 

simulations show that individual dust particles are heated on timescales and to tempera­

tures relevant to chondrule formation in the protosolar nebula.

3.1 The Current Sheet Configuration

The simulation begins with a Harris-like current sheet configuration. In the depleted elec­

tron regime, a Harris-like magnetic field profile is a good choice (Lazerson and Wiechen, 

2008). The collisional interaction and multi-fluid nature of the partially ionized dusty 

plasma of the protosolar nebula prevents this configuration from becoming an equilibrium. 

The ballistic relaxation technique employed attempts to find an equilibrium by setting the 

kinetic energy of the system to zero at maximums in the net kinetic energy. Emphasis 

is placed on minimizing the kinetic energy and force norm (measure of the unbalanced 

forces in the system). The resulting configuration is a good approximation of a relaxed 

current sheet. The magnetic configuration is maintained through suppression of the pres­

sure, collision, and resistive terms in the induction equation. The result is a current sheet 

configuration that closely resembles the Harris sheet.

The initial condition is chosen so as to minimize heating and thermalization effects 

while attempting to balance magnetic and fluid pressures. A Harris-like magnetic field 

profile is chosen where ion pressure balances the magnetic pressure. The profiles for the 

various parameters can be seen in Figure 3.1. The fluid pressure force (—Vp) is chosen 

larger than the magnetic pressure force (j x B). Non-equilibrium forces are thus precondi­

tioned to be away from the current sheet. A pinching of the current sheet which drives 

the configuration away from a Harris-like solution is prevented. The force imbalance is an 

advantageous choice for the ballistic relaxation method.
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Initial Force Balance

Y-Axis

Figure 3.1. Initial force balance for the current sheet before relaxation. Here the large 
difference between the pressure force (—Vp) and the j  x B  force is clearly evident. The 
magnetic field profile (red) and current density profile (brown) are plotted for reference. 
Summation of j  x B  and — Vp indicate a net force away from the current sheet.

The ballistic relaxation method is implemented with a temporally varying frictional 

viscosity (Eqn. 2.46). The system is ballistically relaxed by setting all velocities to zero at 

maximums in the net kinetic energy (the sum of dust and neutral kinetic energies). The 

multi-fluid nature of the code calculates ion velocities based upon the dust and electron 

velocities and the net current density. When a ballistic relaxation is conducted the ion 

velocity is calculated based on the net current (thus it is not entirely correct to assume 

that all species velocities are set to zero). Figure 3.2 shows the evolution under ballistic 

relaxation of kinetic energy and the force norm in the y direction (along with the magnetic 

and internal energies). The invariant directions (x and z) are neglected as energies and 

force norms in these directions are negligible.
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Figure 3.2. Diagnostic plots of the ballistic relaxation. Vertical red lines depict ballistic re­
laxations. The majority of the kinetic energy is removed from the system within the first 
two scale times (along with the reduction of the force norm). A less than 0.4% change in 
magnetic energy indicates preservation of the Harris-like magnetic field profile. The ther­
mal energy plot depicts the ion (red), electron (blue), and neutral (green) energy evolutions 
associated with the left axis. The thermal energy evolution of the dust (black) is associated 
with the right axis.

The diagnostic plots shown in Figure 3.2 show the overall evolution of the system 

throughout the ballistic relaxation. The kinetic energies show 3 distinct structures. The 

first is a small peak, associated with the imbalance in forces present in the initial condi­

tion. After ballistic relaxation the dust kinetic energy shows a slightly smaller peak at 

around t = 0.5. The neutral kinetic energy then begins to quickly rise and results in the al­

most double-peaked signature present in the kinetic energies (between the first and second 

relaxation). It is worthwhile to note that the neutral kinetic energy shows a much steeper 

slope in kinetic energy after t = 1.0. The slope can be attributed to the viscosity term having 

diminished to its asymptotic value. The third peak shows an order of magnitude reduction 

in the kinetic energies, indicating a relaxed system. The achievement of a relaxed system 

is corroborated by a significant decrease in the force norm. Within the first two scale times 

(Alfven transit times) the force norm has been reduced by four orders of magnitude. The 

magnetic energy shows very little overall change. This is indicative that the Harris-like
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magnetic field profile has been maintained throughout the relaxation. The thermal evolu­

tions show a slight (0.02%) heating of the ions and neutrals with a gradual cooling of the 

dust (< 1.0%). The thermal behavior of the dust is indicative of a slight decrease in density 

which can be attributed to the non-equilibrium flows away from the current sheet. The 

ion and neutrals show a strong coupling due to the large ion-neutral collision frequency. 

Their gradual (and constant temperature increase) is attributed to the frictional heating in 

the current sheet. The presence of current sheets in collisional systems results in ohmic 

heating of both the plasma and neutral gas species. That is to say, heating which can be 

attributed to the presence of currents. It can now be recognized that through the inclusion 

of energy equations (containing collisional heating) the force balance achieved by the Har­

ris sheet will only be valid on timescales shorter than the heating timescale. The presence 

of a current implies a heating source which prevents a true force-free state. A minimum 

is clearly still achievable. At the end of the ballistic relaxation procedure, the system has 

achieved a near-equilibrium state in regards to force balance and thermal energy balance.

The ballistic relaxation technique results in force balance between magnetic and plasma 

pressure forces while allowing the system to come to thermal equilibrium. Figure 3.3 indi­

cates the extent of the changes to the initial profiles. The densities show a slight broadening 

of the dust and ion profiles, attributed to the nature of our initial force imbalance (away 

from the current sheet). The magnetic field shows little change. The ion pressure shows a 

significant reduction in the amplitude of its profile and an slight increase in pressure at the 

flanks. This is again attributed to the non-equilibrium flows present during the relaxation 

process. The temperatures of the plasma species show changes in the current sheet region. 

The dust temperature profile shows heating in the current sheet (directly attributed to the 

slight rarefaction of the densities and isothermal treatment of the dust). The cooling seen 

in the current sheet ions can be attributed to the rarefaction of the ions in that region. The 

neutrals show little change.
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Figure 3.3. Density, pressure, temperature and magnetic field profiles after ballistic re­
laxation. Values before relaxation are depicted as solid lines. Dashed lines indicate values 
after relaxation. Most show little change. Densities in the current sheet have decreased due 
to outward flows. The reduction in ion pressure (with minimum change to the magnetic 
configuration) is the desired result of the ballistic relaxation process.

The ballistic relaxation technique provides a useful technique by which a near-equilibrium 

configuration can be found for the dusty Harris-like current sheet. The technique allows 

for significant reductions in kinetic energies and residual unbalanced forces in the system 

while allowing a thermal evolution to occur. The resulting configuration may have a veloc­

ity perturbation applied which will not be overcome by non-equilibrium forces associated 

with the initial condition. This allows the study of reconnection to commence.
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3.2 Magnetic Reconnection: Resistive

Dust Velocity (X) Dust Velocity (V)

Figure 3.4. Dust velocity perturbation. Plots of the components of the dust velocity (vx, vy, 
and vz) taken in the X-Y cut plane at z = 0.0. A streamline plot has been included for clarity. 
The perturbation is taken to be uniform in the z direction.

The process of magnetic reconnection is studied through the application of a velocity 

perturbation while switching on an explicit resistivity in the induction equation. The veloc­

ity perturbation is conducted in a Sweet-Parker like fashion (Figure 3.4). Here an outflow 

is applied along the current sheet at 80% of the dust Alfven velocity while a slower 'pinch­

ing' inflow is applied to the current sheet. The explicit resistive term is set to r| = 0.0369 

which allows comparison between this term and the collisional resistivity (found in the 

next section). Various quantities are tracked through the surfaces defining the perturba­

tion. The quantities help characterize the state of reconnection, allowing comparisons to
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be made with analytic theories. Additionally, these quantities help differentiate between 

effects associated with the perturbation and those that can be attributed to reconnection. 

Various quantities are presented in order to gauge the reconnection rate of the system.

The relaxed current sheet is perturbed in a Sweet-Parker like fashion defined by an 

inflow and outflow region (Figure 3.4). The outflow region is taken to extend in the y di­

rection from —1.0 to 1.0. Here the magnitude of the outflow velocity is set equal to 80% of 

the asymptotic Alfven velocity (vx = 0.8 in normalized units). The inflow region extends 

in the x, direction from —10.0 to 10.0 pinching the current sheet. The magnitude of the 

inflow velocity is chosen as vy -  0.05 so as to minimize compression of the plasma. In the 

Sweet-Parker model the inflow velocity is chosen as the diffusive velocity (vin = r\/l, where 

I is the scale thickness of the current sheet). The outflow velocity is then chosen from con­

siderations of mass conservation. The choice of inflow velocity made here is similar to the 

diffusive velocity, however it results in very little compression of the plasma. The large 

velocities associated with the perturbation are simply chosen to start the reconnective pro­

cess. Once reconnection occurs, mass and energy transport are examined to characterize 

reconnection (steadiness of the process).

The perturbed evolution of the reconnecting system can be seen in Figure 3.5. A clear 

periodicity can be seen in the inflow mass fluxes. The periodic nature of the mass flux is 

attributed to the stagnation point flow of the perturbation itself. The outflow mass fluxes 

indicate a smooth transition from perturbation to non-compressive flows. The initial sharp 

decrease in mass fluxes is associated with momentum transfer between the perturbed 

plasma species and unperturbed neutrals. There high frequency oscillations are associ­

ated with the perturbation and are quickly attenuated. These are associated with the dust 

neutral collision frequency term (periodicities of ~  0.13 scale times). Lower frequency os­

cillations in the inflow mass fluxes scale well with the ion-neutral collisional term (period 

of ~  3.3 scale times). Explicit calculations of these coefficients can be found in Appendix 

C. The attenuation of flows in both the inflow and outflow are attributed to momentum 

transfer with the neutrals (collisional momentum exchange). It is clear that by f = 6.0 the 

flows have exchanged their momentum with the neutrals and are establishing a rarifying 

flow. This flow is governed by the dynamics of the reconnecting fields and not the ini­

tial perturbation. The inequality in mass fluxes into and out of the reconnection region
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Figure 3.5. Evolution of reconnection for the resistive runs. The net mass fluxes into (at 
y = ± 1.0) and out of (at x = ± 10.0) the reconnection region for the dust and ions are depicted 
in the graph on the upper left. Both ions and dust seem to achieve an equilibrium flow 
which is slightly rarifying (m o u t  > r i i j n )  after one scale time (Alfven transit time). Magnetic 
energy shows a compression of the field which is consistent with an inflow velocity larger 
than the diffusive velocity. Internal energy evolutions in this reconnection region indicate 
only slight changes in internal energy. The net drop in dust, ion and neutral energy is 
associated with the rarifying flow. This is coroborated by decreases in net mass in the 
reconnection region (not shown).
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is attributed to the compressional treatment of the fluids in the simulation. In addition, 

assumptions of incompressible flows in analytic models tend to neglect the nature of the 

current sheet which may have a higher density in the sheet itself than at the flanks. The 

significant increase in the magnetic energy is associated with compression of the magnetic 

field (thinning of the current sheet). A steady-state in terms of mass fluxes seems to be 

achieved in the reconnection region.

The system shows clear signatures of reconnection after the perturbation is applied 

(Figure 3.6, t = 9.0). Examination of the magnetic field profile at the flanks (far from the 

reconnection region) shows a diffusion of the magnetic field consistent with an explicit 

diffusive term (v^ff ~  0.035). The out of X-Y plane magnetic field (Bz) indicates a twisting 

of the reconnected field lines. This component of the field has been suppressed in the 

field line plot for clarity. These signatures are indicators of Hall-like effects (Terasawa, 

1983). These are most likely associated with ion-dust decoupling as opposed to the ion- 

electron decoupling associated with classical reconnection. The dust and ion fluids are 

clearly beginning to decouple in these regions. Plots of the ion-dust relative velocity shows 

strong regions of velocity decoupling within 8 scale lengths of the X-line in the outflow 

region. These dynamics near the X-line are clear indicators of the reconnection process at 

work and not the initial perturbation. Lower amounts of velocity decoupling can be seen 

to ~  23 scale lengths (in agreement with estimates of dust magnetization length scales). 

The inflow regions shows decoupling between the dust and ions on length scales of ~  2.5 

(in agreement with estimates of the dust skin depth, inertial length scale). The simulations 

tracks well with our estimates of many plasma and reconnection parameters.

The reconnection rate (Figure 3.5) indicates a rate that varies between the Sweet-Parker 

and Petschek rates with some excursions, attributed to the granularity of the grid. The ini­

tial perturbation has a scale length of L = 10.0, which coupled with the asymptotic Alfven 

velocity and resistivity, gives a Sweet-Parker reconnection rate of 0.061. The Petschek rate 

is then calculated as 0.161. The reconnection rates obtained from the simulation tend to 

fall in the range of these value. Sudden jumps in the reconnection rate can be attributed 

to the granularity of the grid and the field line integration technique. The initial pertur­

bation results in a large reconnection rate which then decreases to the Petschek rate. The 

initial decrease in reconnection rate is attributed to the equilibration of plasma and neutral
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Figure 3.6. Electromagnetic signatures of reconnection for the resistive run (f = 9.0). Plots of 
the components of the electric field (Ex, Ey, and Ez) taken in the X-Y cut plane at z = 0.0. The 
field line plot of the magnetic fields clearly shows a reconnected magnetic field. The walls 
of the field line plot show contours of magnetic flux through the walls (not normalized 
to each other, although By and Bz indicate similar scaling). Red indicates flux leaving 
simulations domain. Blue indicates flux into simulation domain. The Bz component has 
been suppressed in the field lines for clarity.
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fluxes. A jump is seen in the reconnection rate between t = 5 and t = 6. At this time the 

inflow mass flux is decreasing faster than the outflow flux. There may be a link between 

flow regime and the reconnection rate. After t = 8.0 the flows briefly become compres­

sive, while the reconnection rate jumps again. It should be clear that from t = 4.0 onward 

the system is undergoing reconnection and the effects of the initial perturbation have di­

minished. The evolving nature of the magnetic reconnection event presented here makes 

comparison with linear 'steady-state' theories difficult (further discussion is presented in 

the next chapter).

These simulations can identify possible regions of chondrule formation through exami­

nation of the dust-neutral relative flows. The cooling associated with chondrule formation 

happened on timescales orders of magnitude larger than that of the heating thus allowing 

us to focus on the heating mechanism. Cooling rates may be inferred from experimental 

data involving chondrule mineral formation. Heating of the chondrules from dust-netural 

friction (according to the model in Section 2.4) occurs for dust-neutral velocities as low as 

150,000 m /s (0.00003 in normalized simulation units). At t = 9.0, dust neutral velocities are 

still large in the outflow region. These heating regions can be divided into two sections: 

one within 10 scale lengths and one from 10 to 20 scales lengths. The inner region has dust 

velocities exceeding the neutral velocities (Av ~  0.002). The outer region has the neutral 

velocity exceeding the dust velocity (An ~  0.009). The extent of each region shows a weak 

scaling with the dust-neutral collisional length scale. The enhancement of the current sheet 

at the X-line also provides a large dust-neutral velocity (An ~  0.02). Chondrules in this re­

gion will surely be heated, with the possibility of dust evaporation in this region. The 

connection between reconnection and particle heating is most relevant in the region near 

the X-line. Approximations can be made that in the X-line region velocities and distances 

suggest chondrule formation, test particle simulations are required for a true calculation.

Resistive reconnection in a dusty plasma has been shown to produce dust-neutral flows 

capable of heating dust particles to chondrule formation temperatures. The nature of the 

reconnection event shows dynamics which indicate many of the assumptions of linear re­

connection theories do not apply. Mass fluxes, reconnection rates and pressures indicate 

a complex picture in which the state of reconnection is constantly evolving despite at­

tempts to perturb the Harris-like configuration in a linear fashion. The multi-fluid nature
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of the system is exhibited through Hall-like magnetic field signatures. The reconnection 

rate varies showing periods of reconnection between the Sweet-Parker and Petschek rates. 

A test particle simulation is clearly needed to understand the thermal evolution of dust 

particles and asses the impact of magnetic reconnection on chondrule formation.

3.3 Magnetic Reconnection: Collisional

The multi-fluid nature of this model allows for study of reconnection where explicit col­

lision frequencies are employed in the induction equation (providing the needed non­

idealization required for magnetic reconnection). The system is perturbed as in the pre­

vious section; with the modification that the explicit resistive term is set to zero and the 

collisional terms in the induction equation are switched on. Inflow and outflow pertur­

bations are applied to the plasma species. Parameters such as mass flux, internal energy, 

and reconnection rates are calculated as in the previous section. The magnetic signatures 

of reconnection are examined. The reconnection rate is compared against linear theories 

of reconnection. As before, regions of possible chondrule formation are identified through 

dust-neutral relative velocities. These are the first simulations of magnetic reconnection 

in a dusty plasma where explicit collisional terms in the induction equation have been 

considered.

The system is perturbed in the same fashion as the previous section (see Figure 3.4). It 

is at this point that the collisional terms in the induction equation are switched on. The col­

lision frequencies have an effective resistivity equivalent to that found in the resistive run 

(t| = 0.0369). Under the assumption of zero electron velocity (and negligible ion-electron 

collisions) an effective resistitivity can be calculated from the collision frequencies (Eqn. 

2.19). The system is then allowed to evolve, allowing reconnection to proceed.

The evolution of the collisional reconnection run can be seen in Figure 3.7. The mass 

fluxes indicate that the flows reach equilibrium on similar timescales as seen in the re­

sistive run. The equilibration of flows is attributed to momentum exchange between the 

plasma and neutral fluids. The ion and dust flows through the reconnection region are 

slightly rarifying and rarely equal (an important assumption made in analytic theories of 

reconnection). Magnetic energy in the reconnection region is clearly compressed (thinning 

of the current sheet). The compression is slightly greater than that seen in the resistive
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Figure 3.7. Evolution of reconnection for the collisional runs. The net mass fluxes into (at 
y = ± 1.0) and out of (at x = ± 10.0) the reconnection region for the dust and ions are de­
picted. Both ions and dust seem to achieve an equilibrium flow which is slightly rarifying 
(rnout > rhi„) after one scale time (Alfven transit time). The magnetic energy shows signs of 
greater compression (indicating less diffusion). Internal energy evolutions in this recon­
nection region indicate only slight changes in internal energy. The reconnection rate does 
not posses the large amplitude jumps seen in the resistive run.
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runs of the previous section. The enhanced compression of the magnetic field suggests 

less diffusion of the field (given equal inflow velocities). The internal energy evolution is 

similar to that as seen in the resistive run. The lower diffusion, despite similar effective 

resistivities, marks the departure between the resistive and collisional runs.

The magnetic signatures of reconnection for the collisional run at t -  9.0 are shown in 

Figure 3.8. The magnetic field far from the reconnection region shows diffusion consistent 

with the effective resistivity. Examination of the data indicates that the effective diffusive 

velocity in the collisional run is ~  10% less than that of the resistive run. However, the 

effective resistivity calculated from the collision frequencies is a function of ion number 

density which varies across the current sheet. Taking the ion number density profile into 

account, the effective resistivity drops by ~  10% in the current sheet. This explains the 

slightly lower level of diffusion for the collisional run. It can then be said that the presence 

of dust in current sheets may lower the effective resistivity of the current sheet through 

enhancements to the ion number density.

The reconnection rate for the collisional run indicates a larger rate despite similar flow 

dynamics to that of the resistive run. In general the collisional run shows that the recon­

nection rate stays higher than the Petschek rate for longer periods of time than the resistive 

rim. The large spikes in the reconnection rate seen in the resistive run are not present. At 

this time it is difficult to say if this can be attributed to the collisional form of the induction 

equation or is a function of the field line integration routine. In general, reconnection for 

both runs includes three regions. The first is an erratic region associated with the perturba­

tion. Both runs then indicate a region of lower reconnection rate. This region is associated 

with the onset of reconnection as is evident in the enhanced flows in the z direction. Then 

around t -  8 the system resumes a 'super-Petschek' rate. Longer runs with greater tempo­

ral resolution may be required to resolve this behavior.

The identification of chondrule forming regions is similar to that found in the previous 

sections for the x and y components of the dust-neutral relative velocity. A large enhance­

ment in the dust-neutral relative velocity is seen in the z direction at the X-line (Figure 

3.9). The enhancement is attributed to dust motion in this direction. The enhanced dust 

velocity can be attributed to the added compression of the magnetic field. It is important 

to note that the perturbation contained no z component. Any dynamics in this direction
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Figure 3.8. Electromagnetic signatures of reconnection for the collisional run (f = 9.0). Plots 
of the components of the electric field (Ex, Ey, and Ez) taken in the X-Y cut plane at z = 0.0. 
The field line plot of the magnetic fields shows a reconnected magnetic field with signif­
icant out of plane fields. The walls of the field line plot show contours of magnetic flux 
through the walls (not normalized to each other). Red indicates flux leaving simulations 
domain. Blue indicates flux into simulation domain. In comparison with the resistive run 
(Figure 3.6) the current sheet has undergone similar levels of diffusion. Note that the Bz 
component of the magnetic field has been suppressed in the field line plot for clarity.
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sistive and collisional runs. Resistive runs are on the left and collisional runs on the right. 
Note that the collisional run shows an enhanced region at the X-line.
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can be associated with magnetic reconnection. Thus it is safe to assume that in the recon­

nection region (near the X-line) particle heating is attributed to reconnection itself and not 

the perturbation. A test particle treatment of particle heating will be required to better 

understand the implications of this region on chondrule formation.

The collisional reconnection runs shows similar morphology to that of the resistive run. 

Key points of difference are a reduced diffusion of the magnetic field and an enhanced re­

gion of dust-neutral relative velocity at the X-Line. Similarities between the collisional and 

resistive run indicate that collisions provide adequate levels of non-ideality for reconnec­

tion to proceed. The ion number density dependence of the effective resistivity results in 

lower diffusion in the current sheet. This suggest that the presence of charged dust may be 

able to alter behavior of current sheets. Flows capable of heating dust to chondrule form­

ing temperatures are clearly present in both simulations. In the next section, test particle 

heating is investigated.
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Figure 3.10. Test particle heating code diagnostic output for a collisional run. Statistical 
data along with particle visualizations are shown. Red and yellow colored particles in­
dicate chondrule forming temperatures have been reached. Particles with temperatures 
below 1000 [X] have been omitted for clarity.

3.4 Dust Particle Heating

Magnetic reconnection produces outflow velocities on the order of the dust Aflven veloc­

ity (v = 3 x 106 m/s), which are capable of heating the dust particles through collisions. 

Test particle simulations were conducted (Figure 3.10) where the individual temperature 

and location of test particles were tracked during the reconnection process. Heating in 

the current sheet is observed due to the anti-parallel flow between dust and neutrals. The 

presence of such flows is attributed to the large ion-neutral collision frequency and dis­

parate dust length scales (inertial and magnetic) when compared to the ions. Additionally, 

enhancements of the ion velocities (and thus neutral velocities) at the X-line contributed



68

to heating in the reconnection region. The effects of the neutral density were evaluated for 

these runs.

Analytic theories of magnetic reconnection assume a conversion of magnetic energy 

into thermal and kinetic energy. This suggests that reconnection in a dusty plasma results 

in a heating of the chondrules via two methods. The first is through local enhancements of 

neutral gas temperature. Simulations shows localized enhancements of neutral gas tem­

perature around 20%. It is thought that the neutrals provide a warm bath for the dust 

particles of between 200[K] and 500[K]. Chondrule formation requires peak temperatures 

between 1200[K] and 1700[K], A 20% enhancement in neutral temperatures is not suffi­

cient. The second method by which the dust may be heated is through aerodynamic drag.

Theories of reconnection predict outflows on the order of the Alfven velocity. Simula­

tions conducted here agree with this assessment. As the dust and neutrals develop large 

relative velocities, aerodynamic heating of the dust occurs. The dust-neutral collision fre­

quency in the protosolar nebula is approximately v̂ „ = 0.004[s_1] (an upper estimate, the 

actual value may be much lower). The value of the dust-neutral collision frequency im­

plies that the dust and neutrals will equilibrate their velocities on timescales of around 

5 minutes. Simulations show regions of extended dust-neutral heating (near the X-line) 

which would take the dust around 20-30 minutes to transit. Reconnection is responsible 

for strong accelerations of the dust over extended regions which can result in aerodynamic 

heating of the dust. The heating duration experienced by chondrules is thought to be of 

the order of 10 — 20 minutes. Assuming reconnection produces dust-neutral relative veloc­

ities on the order of the Alfven velocity (28.2 x 106[m/s]) the dust may experience heating 

of the order 2000 — 5000[K/hr], The rate of heating required for chondrule formation falls 

within this range. The cooling process is known (from experimental data involving chon­

drule mineral formation) to be much slower on the order of hours to days. This cooling 

is associated with conduction to a thermal bath as opposed to radiative cooling (which 

would occur much too quickly). Therefore, it is likely that magnetic reconnection inside 

the disk of the protosolar nebula results in heating of the dust particles. Reconnection may 

be occurring elsewhere in the nebula but only the disk provides the necessary thermal 

environment to explain their formation.

The test particle simulations conducted here use a test particle-in-cell approximation.
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Implementation of this test-particle code is straightforward. The test-particle code tracks 

the location of a given particle. Relevant values for the the particle are extracted from 

the fluid simulation by averaging the 8 grid points forming a box around the particle. 

Particles are propagated using the dust fluid velocity. Each particle is iterated for 10 sub­

steps for each fluid simulation time step. The test particle code does not begin iteration 

until t = 4.0. This is done in an attempt to avoid any effects due to the initial perturbation 

(note that only the plasma was perturbed, not the neutral fluid). The 8000 particles used in 

the simulation were spaced so that they were uniformly spaced in each direction (although 

not between direction, Ax ^ Ay ^ Az). They were spaced so as to occupying 3/4 of the extent 

of each axis. This equates to a box centered at the origin which has a volume 40% of the 

simulation domain. In contrast the reconnection region occupies 8% of the simulation 

domain (approximately 850 test particles initially reside in the reconnection region).

The resistive and collisional runs were evaluated for various cooling rates. A conduc­

tive model was assumed where the particles transfer their heat to a thermal bath (possibly 

the neutral background) at 500 [X]. This is in good agreement with experiments involving 

the formation of chondrules. As an initial estimate, it was assumed that the cooling time 

for the particles from 1500 [X] to 500 [X] was one day. This did not provide enough cooling 

and the particles quickly overheated. Runs were then conducted with cooling timescales 

of 1 [hr] and 2 [hrs]. These runs indicate requisite heating of the dust to explain chondrule 

formation.

The simulations conducted with cooling timescales of one day do provide some insight 

into the heating of dust particles (Figure 3.11). In both resistive and collisional runs the 

particles show signs of strong heating in the inflow region. The heating in the inflow 

region is noteworthy as both these plots were taken toward the end of the simulation run. 

It was seen that perviously cool particles were heated. This cannot be attributed to the 

initial perturbation as the particles would have been heated from the beginning of the 

simulation. Additionally, these regions saw a sudden increase in dust-neutral velocities 

not associated with perturbation. The dust-neutral collision frequency in normalized units 

is 7.46, indicating that the dust and neutrals should equilibrate velocities on the order of 

At = .134 (or 240 [s]). Given the initial inflow velocity of v = 0.05 in normalized units, we 

would expect to see the dust and neutrals to equilibrate their flows on length scales of L =



Figure 3.11. Test particle visualization for cooling rates of one day. Resistive (left) and 
collisional (right) runs both show overheating of the dust. The collisional run shows signs 
of heating in the outflow region, the resistive does not.

0.007 for localized sources of acceleration (which is below the grid scale). The explanation 

for the inflow region heating is attributed to the choice of collision frequency (explained 

in the next paragraph). The outflow regions show drastic differences in heating between 

collisional and resistive runs (which are seen across the cooling rates). The collisional 

runs show signs of heating in the outflow direction (in the reconnection region) while 

the resistive runs do not. It can now be said that the while the choice of resistive model 

does not have a large impact on the diffusive property of reconnection it does have large 

implications for the calculation of species velocities and heating properties.

The inflow regions show unexpectedly strong signs of heating. The explanation for this 

can be seen in figure 3.9 of the previous section. The flows in the y direction indicate that 

the neutrals are reaching higher inflow velocities (in the reconnection region, approach­

ing the X-line) than that of the dust. These flows are on the order of 10% in the initial 

inflow velocity (»,„ = 0.05). Here the neutrals are coupled to the ions and dust through the 

collision frequencies. From our reconnection diagnostics it was clear that the momentum 

exchange between plasma and neutral species occurred on timescales relevant to these 

collisional processes. The difference between the velocities can be attributed to pressure 

forces. As the dust (along with the ions) is pulled into the reconnection region through 

the imbalance between magnetic and plasma pressures (due to reconnection) the neutrals
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are accelerated. However, the suppression of the neutral pressure force (coupled with the 

assumption of uniform neutral pressure across the current sheet) provides no deceleration 

mechanism for the neutrals. The neutrals are attempting to achieve a free laminar flow 

(possibly stagnation point flow ), while the dust must interact with the ion pressure, dust 

pressure, and magnetic pressure forces which are driving it. Inclusion of the neutral pres­

sure profile would require knowledge of the formation process of the current sheet and is 

beyond the scope of this work. It is expected that inclusion of a neutral pressure force in 

the neutral equation of motion will lower the dust-neutral relative velocity in this region.

Magnetic Energy Density Magnetic Energy Density

-50 0 50 -50 0 50
X-Axis X-Axis

Figure 3.12. Comparison of magnetic energy between resistive (left) and collisional (right) 
rims (f = 9.0). Note the similar asymptotic magnetic field structure between the runs. The 
collisional run shows signs of oscillation, attributed to the lack of an explicit diffusive term. 
We also note the presence of grid scale oscillations present in the inflow boundary for the 
collisional run.

The reconnection region in the outflow direction indicates drastic differences between 

collisional and resistive runs. Here the resistive runs show no signs of significant heating, 

while heating is clearly occurring in the collisional runs. The plots of dust-neutral flow in 

the z direction clearly attribute this to stronger flows in the current sheet for the collisional 

runs (Figure 3.9 of the previous section). It should be noted that the velocities indicate 

that the neutrals are flowing in the negative z direction. As the only parameter that has 

changed between these runs is the form of resistivity, the differences in flow characteristic 

must be attributed to differences in magnetic field structure (magnetic energy). Figure 3.12 

indicates that the magnetic energy in the reconnection region exhibits more drastic fea­
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tures. Enhanced gradients of the magnetic field can result in greater ion flow in the current 

sheet. The strong coupling between ions and neutrals thus results in dust-neutral relative 

flows. The association of this heating with velocities in the z direction is a clear indication 

that heating of these particles is due to reconnection and not the initial perturbation.

Simulations were conducted with cooling rates of 1 [hr] and 2 [hr] which produced dust 

particle temperature profiles capable of chondrule formation. The regions of heating were 

equivalent to those mentioned in the previous example. Temporal evolutions for each run 

can be seen in figure 3.13. It is Hear in each example that particles can be heated on time 

scales relevant to chondrule formation (~ 30 [rain]). In these plots the particles were binned 

by peak temperature in order to place emphasis on particles which were heated to relevant 

temperatures and did not experience temperatures which would be too strong to explain 

chondrule formation. In each example most of the particles experience heating at around 

180 [min] into the simulation (this equates to t = 6 in normalized units) reaching peak tem­

peratures at around 210 [min] (t = 7 in normalized units). This equates to periods when the 

inflow mass flux is at a local minimum. The striations of the data are a topological artifact 

of the particle numbering scheme. Particles heated early on cannot be solely attributed to 

the reconnective process. This is not a great constraint as the majority of particles experi­

ence heating well after the perturbation has been applied. This again enforces the notion 

that these particles are being heated by reconnection dynamics and not those of the initial 

perturbation. What is interesting to note is that the majority of particles in each simulation 

are heated to chondrule forming temperatures at around the same time. The diagnostic 

outputs of particles temperatures seem to localize this to the inflow regions.

Two other heating groups can be extracted from the graphical depiction in Figure 3.13. 

First is a group that appears to heat shortly after the test particle code is turned on. These 

particles heat in a short timespan and then cool off on the order of the cooling timescale for 

the relevant run. These particles are most likely a hysteresis effect (system memory of the 

initial perturbation, unequilibrated flows) as a result of the initial perturbation (as already 

mentioned). The second group is a group that appears to being heating toward the end 

of the simulation (present only in the 2hr runs). These occur as the simulation is again 

entering into a domain where the inflow mass flux (in the reconnection region) is again 

entering a local minimum. The extended regions of 'warm' particles seen in the two hour
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Figure 3.13. Test particle thermal evolutions for one and two hour cooling rates. The one 
hour cooling rates are on top the two hour rates are on the bottom. The resistive runs 
are on the left the collisional runs on the right. Indicated are the thermal evolutions for 
particles reaching peak temperatures over 1200 [X] but less than 1900 [X]. Striation are a
topological effect as not all particles heat in the same place at the same time. The y  axis is 
simply an index for each particle.
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cooling collisional run (lower right) are indicative of the heating in the outflow region.

It has been shown that magnetic reconnection can produce a thermal history for par­

ticles, similar to that found for chondrule, through a test particle simulation. Differences 

between collisional runs and resistive in the outflow regions are noted. Heating in the in­

flow region is correlated with oscillations in the inflow plasma mass fluxes. As the dust 

inflow velocity decreases the neutrals overtake the dust. It is clear that this can be at­

tributed to the perturbation. It is worth noting that the author has studied the form of 

the perturbation itself and found that despite choice of perturbation the mass flux profiles 

exhibited here are stereotypical of this type of reconnective mode. In light of this, these 

simulations should help forward magnetic reconnection in a dusty plasma as a chondrule 

heating mechanism.
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Chapter 4 

Discussion and Summary

Three major goals were met through these simulations. First, a dusty multi-fluid current 

sheet configuration was achieved through a ballistic relaxation technique. The relaxed cur­

rent sheet configuration allowed for the first self-consistent three dimensional simulations 

of magnetic reconnection in a dusty plasma. Second, simulations of magnetic reconnec­

tion examined both resistive and collisional forms of the induction equation. Finally, the 

notion of chondrule formation via magnetic reconnection in a dusty plasma was investi­

gated. Here high dust-neutral relative velocities give rise to aerodynamic heating during 

magnetic reconnection, as evaluated through a test particle (particle in cell) simulation.

Simulations conducted with the DENISIS code show that reconnection in a dusty plasma 

can produce strong dust-neutral relative velocities. In the context of the protosolar nebula, 

these flows produce collisional heating of the dust particles that are in agreement with 

accepted heating rates and peak temperatures associated with chondrule formation. Mag­

netic reconnection has thus been shown to be a relevant mechanism for chondrule forma­

tion. A discussion of these results fall into three categories: the current sheet, magnetic 

reconnection in a dusty plasma, and heating of dust particles by neutral collisions.

4.1 The Current Sheet Configuration

A ballistic relaxation technique was employed to help determine the equipartition of pres­

sure forces between the fluids and allow thermal relaxation of the current sheet configura­

tion. A Harris-like magnetic field profile was chosen as an initial condition as it provided 

a good abstraction to current sheets that may be found in the protosolar nebula. The form 

of the equations integrated by the DENISIS equation coupled with their collisional nature 

made a true analytic equilibrium inaccessible. The ballistic relaxation technique employed 

allowed the current sheet to achieve an approximate force balance (indicated by a sig­

nificant reduction in the force norm). The system was also able to thermally relax. The 

collisional nature of the system results in a constant heating in the current sheet (similar to 

ohmic heating found in MHD simulations). The heating prevents a true equilibrium from 

being achieved. Still a relaxed configuration is achieved which allows the application of a 

reconnective perturbation.
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The Harris-like magnetic field configuration is based on relevant parameters for the 

protosolar nebula and chondrule formation. The normalized magnetic field (relevant to 

chondrule formation) results in a large plasma pressure normalization. Coupled with the 

normalized number density, the normalized temperature becomes very large. These large 

values present a difficulty, as the assumed temperature for the nebula was relatively low 

by comparison. The decision was made to choose pressures which would allow both force 

balance between the magnetic field and plasma species while also providing a near ther­

mal equilibrium for all species. The resulting large neutral pressure was treated through 

a neglect of the neutral pressure force in the neutral momentum equation. The neglect of 

the neutral pressure force (while not trivial) can be justified through the large ion-neutral 

collision frequency (in essence coupling the two fluids) and low neutral beta (ratio of neu­

tral pressure to magnetic pressure). Here it is argued that heating is attributed to particle 

flow characteristics through the neutrals and not directly to neutral temperature increases. 

Neutral pressure forces will not be significant unless much larger neutral temperatures are 

assumed. More sophisticated simulations should be conducted in the future to address the 

issue of neutral dynamics. The ballistic relaxation technique provided a means to sort out 

the near-equilibrium configuration necessary to apply a reconnective perturbation.

In the context of the protosolar nebula, current sheet formation is attributed to turbu­

lent effects in the nebula itself. These non-linear effects includes an array of shear-flow 

(magnetorotational and Kelvin-Helmholtz) and gravitational (Rayleigh-Taylor) instabili­

ties. A Harris-like kinetic description of a current sheet would predict thicknesses on the 

order of a few Debye lengths. While this may place a minimum limit on current sheet 

thicknesses, it is expected that typical current sheets would be much thicker in the nebula. 

The protosolar nebula has scale sizes on the orders of 100's to 1000's of Astronomical Units 

(approximately 150 million kilometers per Au). The current sheet thickness in the simu­

lation was on the order of 2 million kilometers. Simulations of the entire nebula would 

be necessary to begin to estimate 'realistic' scale thicknesses for current sheet formation. 

To date these are lacking. Still, the simulations conducted here are within the range of 

acceptable scale sizes for the protosolar nebula.
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4.2 Magnetic Reconnection

The first three dimensional multi-fluid simulations of magnetic reconnection in a dusty 

plasma were conducted. These simulations focused on achieving a reconnecting magnetic 

field through a perturbation to the velocities. This limits discussion to steady-state recon­

nective models and places no emphasis on the destabilization of the current sheet con­

figuration. Examinations of the both the resistive and collisional forms of the induction 

equation were preformed. For similar resistivities different behaviors were observed. The 

resistive runs behaved in a diffusive nature, similar to what has been seen in the majority 

of MHD and eMHD simulations. Here the resistivity acts as a diffusivity allowing both 

reconnection and diffusion of the current sheet. The collisional run also indicated signs of 

reconnection with similar diffusive behavior. It is important to note that despite assump­

tions of constant collision frequencies, the effective diffusivity showed signs of variation. 

The variation in diffusivity was attributed to its dependence on the ion number density 

(which varies across the current sheet). Heating of the neutrals was small and localized to 

enhancements in the current sheet. It is unlikely that chondrule formation can be explained 

by local enhancements to neutral temperatures. Large dust-neutral relative velocities do 

offer an accepted form of chondrule heating through aerodynamic drag forces. Regions of 

dust-neutral relative flows as high as 564 km/s are indicated by the simulations in regions 

near the X-line. These flows are large enough to produce the required aerodynamic drag 

heating for chondrule formation. The presence of these strong flows coupled with the high 

Kneudsen number motived test particle heating studies.

4.3 Chondrule Formation

Magnetic reconnection in the dusty plasma of the protosolar nebula is capable of form­

ing chondrules through acceleration of the various fluid components in the reconnection 

region. Simulations of magnetic reconnection in a dusty plasma do not indicate a suffi­

cient amount of fluid heating in order to explain chondrule formation. It is unlikely that 

an enhancement of neutral gas temperature could heat precursor dust to its melting point 

to form chondrules. High velocity outflows and enhanced regions of the current sheet 

indicate that heating of dust particles can occur through aerodynamic drag between dust 

particles and neutrals. These regions are located in near the X-line and heating flows are
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often associated with the unperturbed direction (z). This lends credibility to the notion 

that reconnection and not the initial perturbation is responsible for chondrule formation. 

Test particle simulations confirm this hypothesis.

A question also remains regarding the amount of bulk material processed by magnetic 

reconnection in the protosolar nebula. The answer to this question is coupled to the ques­

tion of current sheet formation in the protosolar nebula. Clearly the timescales on which 

chondrules form are much smaller than that of nebular evolution. Even a process localized 

to small regions of the nebula could process a significant amount of the material in the neb­

ula over these long timescales (billions of years). Simulations of the global dynamics of the 

protosolar nebula must be conducted to better understand the formation process of cur­

rent sheets. This will constrain the location of reconnection sites and the scale lengths of 

such events.

4.4 Concluding Remarks

The first self-consistent simulations of magnetic reconnection in a dusty plasma and the 

first self-consistent model of chondrule heating through magnetic reconnection have been 

presented. The following was indicated by the simulations:

• Magnetic reconnection in a dusty plasma does not sufficiently heat the neutral fluid

• Magnetic reconnection accelerates the dust to Alfvenic velocities.

• The accelerated dust is aerodynamically heated to chondrule forming temperatures 

in and near the reconnection region.

• Heating of the dust particles occurs on timescales relevant to chondrule formation.

• Multiple heating events are seen for individual particles.

Magnetic reconnection in the dusty protosolar nebula will result in heating of the particles 

through acceleration and thus explain chondrule formation.

This investigation examined reconnection through an idealized model of the reconnec­

tion event in a protosolar nebula. Stereotypical parameters were chosen for the nebula 

and reconnection event. These parameters were a combination of reasonable parameters
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for the protosolar nebula and numerically tractable values for the DENISIS code. A Harris- 

like current sheet configuration provided an initial condition which allowed the study of 

reconnection without a-priori knowledge of the current sheet formation mechanism. It 

was assumed a great number of instabilities present in the nebula could be responsible for 

current sheet formation. A test-particle model of dust heating gauged reconnection as a 

chondrule forming mechanism. A conductive form of cooling, appropriate to chondrule 

formation data, was employed. This was done as a detailed thermal model of the nebula 

has yet to be presented (global approximation do exist). It is assumed that in order for 

reconnection to produce chondrules, the event must occur in a thermal bath where radia­

tive heat transfer is negligible (inside the nebular disk). These assumptions allowed for an 

investigation to be conducted into magnetic reconnection in a dusty plasma as a chondrule 

formation mechanism.

The simulations presented here were conducted within the framework of various as­

sumptions, some attributed to the nature of dusty plasmas and others concessions to the 

numerical tractability of the code. The assumption of inertialess ion and electron species 

is mitigated through careful choice of spatial and temporal scales. Care was taken to keep 

these scale lengths relevant to process under investigation. Neglect of the neutral pressure 

force was a concession made for numerical tractability. The low neutral beta (neutral pres­

sure to magnetic pressure ratio) suggests that inclusion of this force may not significantly 

change the results. The Harris-like magnetic field configuration was an idealization made 

in an attempt to generalize the problem. A detailed model of current sheet formation in 

the protosolar nebula would be needed to better parameterize the initial condition. At this 

time those details are lacking. The reconnective perturbation chosen was also open to vari­

ous possibilities. The choice of a velocity perturbation limited discussion to the reconnect­

ing state (a boundary value problem). At this point the system had little knowledge of the 

initial perturbation (corroborated through inspection of inflow and outflow mass fluxes). 

Cooling rates were assumed which fit the petrochemical evidence of chondrule formation 

but are difficult to reconcile with our assumptions of nebular thermal balance. Recent 

laboratory attempts to better understand dusty plasma bulk thermal properties suggest 

that the answer to this question may be more complicated than a gas-dynamic approach 

may suggest (Williams and Thomas, 2006, 2007). These simulations must be viewed from
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within the framework of the assumptions which have been made.

The assumptions present in this work suggest future work which will relax some as­

sumptions and better characterize the dusty plasma processes present in the protosolar 

nebula. Studies of reconnection must investigate the role that length scales play in the re­

connective event. Using a similar model to the one present here (Harris-like) the current 

sheet thickness can be varied so that the magnetization length scales may be investigated. 

Investigation into the ion inertial length scales will require a code capable of handling the 

ion inertia (currently in development under the name nMHDust). Similarly, current sheet 

formation mechanisms should be investigated to better parameterize the length scales ap­

propriate to the protosolar nebula. More advanced collisional models can also be exam­

ined. It is well known that ion-dust collisions are enhanced (beyond the classical coulomb 

rate) in laboratory dusty plasmas. A more detailed analysis of the thermal environment 

present in the nebula should be considered (possibly allowing for the inclusion of neutral 

pressure forces). Test-particle heating models could also examine dust mass spectrums and 

possible dust destruction through heating. Dusty plasmas provide a rich field of research 

and the results presented here will hopefully encourage future works.
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Appendix A 

Calculation of the mobilities

The DENISIS code (Schroer et al., 1998) calculates the electron and ion velocities through 

their mobilities. The calculation is outlined in the paper by Schroer et. al. and is repro­

duced here. It is argued that the electron and ion velocities can be related through their 

respective mobilities (p) (Mitchner and C. H. Kruger, 1973). Calculations are conducted 

with respect to the coordinates defined by the magnetic field (parrallel to B, in the Hall 

direction E x B ,  and the Pederson J_ direction)

Pill = — Pflh ViH = and vi± = — ve±.
' A-ll " m  Ve±

The current due to the inertialess species (ions and electrons) may be denoted

w = j  + Zdendvd = eriiVi — eneve,

where j,Zd,e,nk,and vk denote total current, dust charge number, electron charge, species 

number density and specieis velocity respectively. From Mitchner and Kruger the mobili­

ties may be written

tfk qk a)ck j  (jk Vk
to\\ = ^TTT’ BkH = /v2 .Iz \, and pk_L = —

MM mn vk+wdS) mk { vi + ®ck)

where k references each species (k = i,e). Here qk,mk,(ock,aTid vk correspond to the species 

charge, species mass, species cyclotron frequency, and net species collision frequency re­

spectively. We note that v, = v,£. + v,„ + vid and ve = vei + ven +ved where pavap = PpVpa. Table

1.2 gives the following values for reference

<7 i = 1.60 x 10-19[C] tfe = 1.60 x 10-19[C]

m.i = 1.67 x 10~27[kg] m e = 9.11 x 10"31[kg]

® ci = 9590[rad/s] = 17.6 x 106[rad/s]

V ie = 2.06 x 10-36[Hz] Vei = 3.78 x 10_30[H z]

Vid = 1.20 x 10_8[H z ] Ved = 8.33 x 10~4[H z]

Vin = 1020[Hz] Ven = 43,500[Hz]
The mobilities may now be calculated (note a change is made from [rad/s] to [Hz] for 

the cyclotron frequencies). All mobilities in units of [C s/kg]. For the ions

Hi\\  ------- = 93,900,
11 ffliV,>
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and

For the electrons

and

fliH  =   ( 2  01 2 \ = 9880,m  (v2 + «£.)

ELL = — ■ - -le- = 1050.
m  (V? +0)2)

^ ll = - ^ = 4 -0 4 x l ° 6 ,mevei

EeH =   / 2 = 9990,
(Va + < )

Ve± = —  f 2Va~ v =24-7. 
(vr i + o

This gives the following relationships between ion and electron velocity in the various 

directions.

u,-|l = 0.0232ue||, VjH = 0.989veH, and v,± = 42.5uc i .

The electron currents become (ne = 1 [m~3])

je || = Cn£.yf.| = Cfej|, jeH = VfteOeH = ^ eti, and je± = £tleVej_ = £Vej_.

The ion currents become (n, = 1001 [m-3])

;,|l = en,u,| = 23.2eue||, ;,h = en,u,H = 990eyeH, and ;,-j_ = = 42500eyeI.

These current equations may now be equated to find

ji\\ = 23.2/t.||, j iH = 990jeH. and j i± = 42500/eJ_.

It should be clear that in the parallel, perpendicular and Hall (E x B )  directions the ion 

contribution is at least two orders of magnitude more than that of the electrons. Thus the 

neglect of and electron velocity (and electron contribution to the total current) is justified 

for the parameter regime given by table 1.2. The ion velocity may then be determined by

w
Vi =  — . 

rij£
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Appendix B 

Ohm's Law

The DENISIS code neglects any effect due to ion inertia. It is argued that this is equivalent 

to the assumption made regarding the neglect of electron inertia in MHD. To evaluate this 

statement and better gauge the scaling of the various terms in Ohm's law, the ion inertial 

effects must be included in the derivation of the electric field. The derivation begins with 

the inertial ion equation of motion

dp,Vi
dt

- V p i  +  e r i j  ( e  +  V ,  x  b )  -  p,v,>, ( v ,  -  v n )  -  p,vld ( v ,  -  v d )  -  p ,v!f, ( v ,  -  v e ) . (B.l)

The ion inertial equation of motion can now be rewritten in terms of the Lorentz transfor­

mation from the electric field in the rest frame (E) to the co-moving frame (£')

E' = E + Vj x B = —  + — V • (fiiViVi) + —  + —  (Vi -  vn) + —  (Vi -V d) + —  (Vi -  ve) . (B.2)
etii ot erii erij e e e

We may now substitute the definition of current into this eqaution

; = eriiVi -  Zdendvd -  eneve (B.3)

which in the depleted electron regime (ne ~  l,v ie ~  0,ve ~  0) may be written

w V x B
j  = Zdend (di -  vd) = --------. (B.4)

Vo

Note that the approximation that Zdnd ~  n, has been used. In the depleted electron regime, 

Ohm's law may then be written

r' r  -  5 miE =E + vd x B  = —
el rii

m z d
e m

d t + V -(jv d + vdf )dl
if

dndvd
dt

+ (B.5)
extii \ rii erii

+ V'(ndvdvd)
Vpi rrii -? mi _

+  —  +  (V/n + V u ) j  Vin ( v d ~ V „ ) .erii e ni e

Each term in this equation scales with respect to the advective term ( v d  x  B) .  The first term 

in the equation on the left is the ion inertial term (j9//3f + V • (jvd + vdj j  ). Comparing the 

coefficient of this term with that of the advective term gives

2 mBT° ^ «  V0B0. (B.6)oZy,..- I T 1e2fti/joLoT()
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Table B.l. Scaling laws for the terms in Ohm's Law. Each term in Ohm's Law (Eqn.
B.5) scales according to various plasma parameters. Here we note the following val­
ues: Ion Plasma Frequency (cop!), Dust Plasma Frequency (copd), and Ion Gyroradius
(Rgi = y/mikbTi/eBQ).

Term Scaling

Ion Inertia d]/dt + V • (]vd + v^ j T . . . ~  c ‘-•ion-inertia ~  ^

; 2 Term v ' (jj/nt) L ..a (  V ' 3
n J

Hall Term j  x B/en.i Lhm ~  iv
Dust Inertia Term dndvd/dt + V -(ndvdvd) ^dust—intertia ~  Rgi

Ion-stress Term Vpi/erii Lion—stress ~

Collisional Resistivity Term (v«» +va ); Lcoll-res ~  ĝ~
Dust-neutral term Vm (Vd~V„) Bdust-neutral = Rgi

The following approximations were used: V « 1/Lo, |/| ~  Bo/ (j-toU)), and d / d t «  1 /To, where 

Bo, Lo, and Vq are the stereotypical magnetic field, length scale, and velocity respectively. It 

becomes clear that this term becomes important as length scales approach the ion inertial 

length scale

j .  . . 1R71L i o n - i n e r t i a - c y ^  )  -  ^  ( t i ./)

where 00p, is the ion plasma frequency. Similar constraints can be developed for each term 

in Ohm's law (Eqn. B.5), and are listed in Table B.l.

The ion skin depth (c/copi), dust skin depth(c/copd), and ion gyroradius (Rgl) give insight 

to the relevant length scales at play in the protosolar nebula. In normalized (simulation) 

units these values are c/(Opd = 2.19, c/a>p, = 0.00089, and Rgl = 3.64 x 10-7 . Given our grid 

scaling and the neglect of ion inertia in the DENISIS code, only the Hall and ion-stress 

terms are relevant. The collisional-resistivity term is also relevant given the large value of 

the ion-neutral collision frequency. These terms become relevant on length scales smaller 

than the dust inertial length scale. Given our current sheet thickness (5 = 1.0) is of the order 

of the dust inertial length scale, the effects of these terms will be present.

This analysis has been conducted in terms of the relevant length scales but time scales 

may also be examined. A similar analysis to that conducted above may be carried out.
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This time each equation is solved in terms of a time-scale. The results may also be achieved 

by simply dividing the relevant length scale by the stereotypical Alven velocity. The ion 

inertia and collisional resistivity term become relevant on timescales smaller than the ion 

gyro-period. The same can be said of the j2 term. The Hall and ion-stress terms become 

relevant on timescales smaller than the dust gyro-period. The dust inertia and dust-neutral 

term become relevant on timescales smaller than the product of the ion gyro-period and 

the square root of the plasma beta. Both temporal and spatial methodologies produce 

equivalent results when applied to a given set of parameters.
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Appendix C 

Calculation of coefficient terms

The set of equations integrated by the DENISIS code include various coefficients. These 

coefficients exist for both derivative and source terms. Explicit values for these coefficients 

are presented below for the momentum, induction, and energy equations. The continuity 

equations contain no such terms.

C .l Momentum Equations

The coefficients for the momentum equations are show in Table C .l. It should be clear 

that the dust neutral collisional term dominates with the ion-neutral term being an or­

der of magnitude less. The electron neutral collisional term is five orders of magnitude 

less than that of the dust-neutral term, validating its neglect in the code. The neglect of 

electron-neutral collisions is achieved through explicitly setting the electron neutral colli­

sion frequency to zero. The choice of electron-neutral collision frequency also addresses a 

problem associated with the low electron mobility regime. Explicitly setting the electron 

velocity to zero turns the electron neutral term into a pseudo viscosity in both momentum 

equations. The explicit choice of a zero electron-neutral collision frequency avoids this 

issue.
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Table C.l. Calculation of the coefficient terms for the momentum equations. The dust and 
neutral momentum equations contain the same coefficients so only one must be explicitly 
shown.

Equation

—5T 1 = - V  • (p dv dVd) ~ V (P e + P i  + P d) + s ( v x B ) x B  

- V d n P d  ( Vd -  V„) -  VmPi (S ;  -  V„)  -  Venpe ( Ve -  Vn) 

Nebular Values

vdnPd = (0.00415 [s”1] ) (1 x 10- 17 [kg/m3] )

vinpi = (1020 [s^1] ) (1.67 x 10“24 [kg/m3] )

V en P e  = (43500 [s-1]) (9.11 x 10" 31 [kg/m3])

Simulation (Normalized) Values 

Vd„Pd = (7.46) (1.0)

Vinpi = (1.83 x 106) (1.67 x 10“7)

Venpe = (0.0) (9.11 X 10“14)

4.15 x 10- 20 

1.70 x lO" 21 

3.96 x 10“26

7.46

0.306

0.0

kg



C.2 Induction Equation

The coefficients for the induction equation are shown in Table C.2. The ion-neutral col­

lisional term is clearly the most important followed by the ion-dust collisional term (six 

orders of magnitude smaller). The neglect of the ion-electron collision frequency is again 

motivated by its low value coupled with the perviously mentioned spurious effects of ex­

plicitly setting the electron velocity to zero.

Table C.2. Calculation of the coefficient terms for the induction equation. Neglect of the 
ion-electron collisions is clearly justified by its low value.

Equation

f  = - T V x ( | ) + V x ( 3 , - x B )

Nebular Values
= (l.67xl0-^fe1)(2.998xl0>/5]) ^ „ w ^ _ 8 ^

e ld (l.602xl0”19[C])
m c v . _ (I.67xl0-^fej)(2.998xl0>/s]) , r
e Vm ~  (l.602xl0-19[q) ( 1UZU[S

nuc. (l.67xl0~27[fcg])(2.998xl08[m/s]) f o  w  w lr,_30
e le (l.602xl0-w[C])

Simulation (Normalized) Values 

^  = (1.67 x lO "11) (2.16 x 10“5)/(2.88 x 10

r V  X [ V i d ( V i - V d ) + V i „ ( V i - V n ) + V i e ( V i - V e )]

(1.2 x 10-8 [s_1] ) =

]) =

(3.78 x K T 30 [s”1] ) =

3.59 x 10­

3190

kgm
C-s2

Gs2

1.18 x l 0“29 kg-m
Gi2"

mjVid
e

mjVi„
e

e

(1.67 x lO”11) (1.83 x 106) /(2.88 x 10 

(1.67 x 10“n ) (0.0)/(2.88 x 10“4

1.25 x l 0 “12 

0.106 

0.0
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C.3 Dust Energy Equation

The coefficients for the dust energy equation are shown in Table C.3. It becomes evident 

that the dust energy source terms are dominated by the dust-neutral thermalization term. 

The spurious effects of zero electron velocity are of little impact, given the small coefficient 

for the dust-electron collisional heating term.

Table C.3. Calculation of the coefficient terms for the dust energy equation. The polytropic 
indicies have been chosen such that y* = y = y> = J n  = 5/3 in order to simplify the terms.

Equation

dt

Nebular Values
2 md

-V- (pdvd) -\ v < F -v d

P d ^ d e  ( v d  ~  Ve )+ 5 ™  Pi -  ®i)2 + 1 (“ i  -  5»>2 + In3s*

3 mj+m, 

2 m„
3 md+m„ 

2 me
3 md+me

P iva

P d^dn 

P dVde
Wid 

mj+nti
2_P£Ldn_ 

md+m„

2  PdVde

2 ( 1 .6 7 x l0 -27f e 1 )
3 ( 1 .0 x l 0 - 16[tg])

(1.67 x 10"24 [kg/m3]) (1.20 x 10~8 [s^1]) =

2

= § (1-00 x 10 -17 [ kg/m3]) (0.00415 [s"1]) =

= 1 (L0° x 10-17 fe/™3]) (7-59 x 10-17 [s-1]) =
_  ^ ( l .6 7 x l0 _24[fcg/m3] ) ( l .2 0 x l0 _8[s_1])  _
-  ( l .0 0 x l0 - 16t e ] )  ~

_ 2 (100xl0“17[%/m3])(000415[s“1])

2

( l .0 0 x l0 - 16[itg])
(1.00x10 [/cg/m3])(7 .5 9 x l0 -17[s-1 ])

-md+me
Simulation (Normalized) Values

2  ( l .6 7 x l0 -11)
is^P iV /a

2 m„
3 m d+m„ 
2 m,

Pd̂ dn

3 md+me P d ^ d e

2  p iv id md+mi
2 Pd̂ dn 

md+m„
2 pjVrfg 

md+me

( l .0 0 x l0 - 16[)tg])

(1.67 x lO "7) (2.16 x lO "5) 

p  (1.00) (7.46)

(1.00) (1.37 xlCT13)

(1.00)
i i l £ i p (L 00)(7.46)

2  (9.11 xlO -24)
3 (TOO)

^ ( l .6 7 x l0 -7 ) (2 .1 6 x l0 -5 )
1 (L00)

t (1.00)(7.46)
Z (1.00)

0  (1 .0 0 )(l.3 7 x l0 -13)
1 (L00)

2.23 x 10“43 

4.62 x 10- 31 

4.61 x 10“48

kg

kg

4.01 x l 0 “16 [4-1ltn *s  J

8.30 x 10-*  [ ^ ]

1.57 x 10-17 [-3-IL m ŝ J

4.02 x 10“23

8.31 x 10“n

8.32 x 10- 37 

7.21 x 10-12 

14.9

2.74 x 10“13

m-'s
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C.4 Ion Energy Equation

The coefficients for the ion energy equation are shown in Table C.4. It is clear that ion- 

neutral thermalization terms dominate the ion energy equations. This implies that the ion 

and neutral pressures are well coupled. The ion-neutral collisional heating term is the only 

significant source of heating in the ion energy equation. Careful choice of the time step is 

required in order to properly resolve these thermal phenomena.

Table C.4. Calculation of the coefficient terms for the ion energy equation. The polytropic 
indicies have been chosen such that yd = y, = ye = yn = 5/3 in order to simplify the terms.

Equation
3pi
dt

g .+ 2_m» . 
' 3 m, +m„ P«vin (Pi - v n)2 + l  ^ p i v a -  vdf  + § ̂ pme _  yef

- 2 P/Vm
m j+ m n (kBTi - k BTn)~  2 | ^  (kBT, - k BTd) - 2 i ^ : (kBT, -  kBTe)m j+ m e

Nebular Values
2  r\ -v ■ —3mi+m„Ei v m -

2. m
3 ntd+mi Ei id 

2 me

3 ( L 6 7  X 1 0 ^24 ) (1020 M )

3 m.+m, ■piVfe
2  Piv  in

n ij+ m „

o PiVid
" rrid+mi

P.Vfc

=  § g g ^  ( 1 - 6 7 X 1 0 - 34 fe / m 3] )  (1 .2 0  x  1 0 - 8 [ s - 1] )

= 1 (i#7iF}li) (L67 x 10-24 fe/w3]) (2-06 x 10-36
_  O ( l .6 7 x l0 - 24[fcg/m3] ) ( l0 2 0 fs '1] )
“  (3 .3 4 x l0 -27[,tg])

(1.67 x 10-24[frg/m3])( l .2 0  x 10~8 [s-1 ])  
( l .0 0 x l0 - 16[itg]) 

( l .6 7 x l0 _24[fcg/m3] )(2 .0 6 x l0 _36[s_1])  
( l.6 7 x lO -27[Jtg])

2 ­

2 -rtJi+me
Simulation (Normalized) Values

3 ntj+m „ P iV in

§ S ^ P i va
2 me n-V-3m,-+me EivK 

-! PiVin
m j+ m n

ntd+mj 
O PMe

1 (1.67 X 1 ° -7) (1.83 x 100)

| | lg (1 .6 7 x l0 -7) (2 .1 6x10- ’ ) 

5p ^ ( 1-6 7 x i o - 7)(o.oo)
o (1 .67x 10~7)(1 .8 3 x 106)

(3 .3 4 x l0 “n )
O ( l .6 7 x l0 - 7) (2 .1 6 x l0 “5)
2  (TOO)

0 (1.67x10 )(0.00)
(1 .6 7 x 1 0 -” )

5.68 x 10-22 

1.34 x l 0 ~32 

1.23 xlO ' 63

= 1 0 2 x l 06 ( i ]

= 4.01 x 10"“  [ ^ ]  

= 4.12 x 10-®  [ i ]

0.102
2.40 x 10" 12 

0.00

1.83 x 1010 

7.21 x 10-12 

0.00
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C.5 Neutral Energy Equation

The coefficients for the neutral energy equation are shown in Table C.5. As was the case 

with the ion energy equation, the ion-neutral thermalization term dominates the neutral 

energy equation. However, the neutral-dust collisional heating is an order of magnitude

assumption of vanishing electron-neutral collision frequency is clearly justified in the case 

of the collisional heating terms. In the case of the thermalization terms it is less clear that 

the electron-neutral interaction should be neglected. In effect, the electron temperature 

should be well coupled to the ion-neutral system. The depleted electron regime implies a 

negligible contribution of the electrons to the overall dynamics of the system. The electron- 

neutral interaction may then be safely ignored.

The strong coupling between the ions and neutrals suggest that the ion and neutral 

fluids be combined into a single energy equation. If the sum of the two energy equations 

is taken and the net ion-neutral pressure is written pm = pi +p„, it may be written

larger than that of the ion-neutral collisional heating. Neglect of the electrons through the

dpin
dt

-V -  (jPinVn) -(Y-l)PmV-z5„ + ( Y - l ) ----A—̂ — (V dn +  V d i)  ~ Vnf  (C.l)
md + m„

dpd
dt

- V  • (pd vd) -  (y -  l)p dV ■ vd + ( y - 1) (vdn + vdi) {% -  v „ f  (C.2)
rrld +  ™ n

2 P d(Vdn+Vrf;)
md + mn
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Table C.5. Calculation of the coefficient terms for the neutral energy equation. The poly­
tropic indicies have been chosen such that yd = y, = ye = y„ = 5/3 in order to simplify the 
terms.

Equation

= _ v . (p„v„) -  \p„ V • vnat

Nebular Values

3 n ii+ m „  P 'V » ‘ ~

l ^ P d V d n  =
 2 Ule u —
3 m n+me P e y en ~

2 Piv)« —

2

+ i3 m,+mn P«Vm (0/-D „) +
,2 .2

3 tnd+m„ PrfVdnfaf-^) +35i^PeV«,(5e-S„>
- 2 f e  -  kBfi) - 2^ t ( kBTn- kBTd) - 2 ^ ( k BTn-  kBTe)

2 ( I .6 7 x i0 -” f e ] )  ,
3 (3 .34x l0~ 27[lg ]) X iU

2 (1.00xl0-“fe])  ̂ nfw1fW7

24

'md+mn

[ k g / m 3] )  (1020 [ s - 1] )  

-11

mn+me

mi+mn
P d^dn 

md+mn
> Pê en 
■ mn+me

5(i.oo»io-*fo]) 4 00 x 10-17 fe /m3]) (°-00415 [s_1]) =

i q^xlo-̂ jH ) (9-n  x 10-31 f e ^ 3]) (4350° ts-1i) =
0  ( l .6 7 x l0 - 24[^/m 3] )( l0 2 0 fs " 1])

(3 .3 4 x l0 -27f e j )  “
( l .0 0 x l0 -17[fc^/m3])(0 .00415fs-1 ])

( l .0 0 x l0 - 16[l:g]) “
2  (9.11 x 10~31 [fcg/m3])(43500[s~1])

(1 .67x 1 0 -27[*x ])

Simulation (Normalized) Values
m,

3 m,+m„ 

2
3 md+m n
2 m
3 m n+m.

PfVin = 
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