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Abstract

Nitrogen oxides play an important role in the atmosphere by affecting ozone-mediated 

oxidation pathways. Nitrogen oxide removal from the atmosphere occurs via nitric acid 

formation. This nitric acid deposits to Earth’s surface, leading to acidification and 

nitrogen fertilization. Under dark and cold conditions that commonly exist in the winter 

at high latitudes, nighttime reactions oxidize N O 2 to the nitrate radical, N O 3, and these 

molecules react to form N2O5. The heterogeneous hydrolysis of N2O5, which is catalyzed 

by surfaces, forms nitric acid. Modeling studies indicate that a majority of the N O x 

removal at high latitudes results from nighttime N2O5 chemistry. The N2O5 intermediate 

molecules may react on snowpack surfaces or on atmospheric particles. Past field studies 

demonstrated that aerosol surfaces are not solely responsible for the removal of N2O5 

near Earth's surface at high latitudes. In this work, we have used aerodynamic gradient 

micrometeorological methods to measure the deposition velocity o f N 20 5 to snowpack. 

This measurement is the first time that snowpack deposition has been quantified directly. 

We have found that snowpack deposition near Earth's surface at high latitudes is a 

significant chemical loss process for N2O5. Further studies demonstrated higher mixing 

ratios and longer lifetimes o f N2O5 aloft. Increasing N2O5 abundance and longevity with 

altitude implicates different loss mechanisms contribute at various altitudes in the 

atmosphere. Near Earth's surface, N2O5 is very reactive, while aloft it acts more as a 

reservoir species that can transport further. Understanding the controlling mechanisms for



N 0 X removal under high latitude conditions will lead to better characterization of the 

NOx transport in pollution plumes and nitric acid deposition patterns.
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Chapter 1 Introduction

1.1 Motivation

High temperature combustion processes produce nitric oxide, NO, which reacts with 

atmospheric ozone to form nitrogen dioxide, NO2, resulting in pollution of the 

atmosphere and changes to the atmosphere's chemical reactivity. Because of their rapid 

interconversion, we refer to the sum of NO and NO2 as the chemical family NOx. At 

high latitudes, the main source of NOx is combustion of fuels for transportation (e.g. 

automobiles, aircraft), power, heat, and industrial applications (e.g. oil and gas 

production). In the Arctic and sub-Arctic, these sources are concentrated in small 

geographic areas surrounded by large regions with little to no NOx sources. Nitrogen 

oxides are centrally involved in controlling the tropospheric ozone budget. Photolysis and 

oxidation in the atmospheric processing of NOx can destroy or produce ozone and 

produces nitric acid. In polluted lower latitude conditions, an overabundance of 

tropospheric ozone, resulting from NOx chemistry, has documented harmful effects on 

humans (Finlayson-Pitts and Pitts, 2000). The final fate o f nitrogen oxides in the 

atmosphere is further oxidation to form nitric acid. Nitric acid deposits to the Earth’s 

surface and can lead to harmful nitrification of ecosystems. High latitude NOx pollution 

will continue to increase with population growth, further oil production and new Arctic 

shipping pathways. As NOx pollution increases, nitric acid input to the Earth’s surface 

will increase affecting the Arctic ecosystem by increasing nitrification as has already 

been observed in mid-latitudes (Bytnerowicz et al., 1998; Fenn et al., 2003; Galloway et
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al., 2003; Sanderson et al., 2006; Driscoll et al., 2009).

The production mechanism and rate o f nitric acid formation are not well understood at 

high latitudes. Nitric acid is formed by a variety of competing mechanisms, each of 

which has differing dependence on atmospheric conditions. Only by understanding those 

mechanisms can we make meaningful predictions regarding the impacts of NOx pollution 

on the arctic ecosystem. Additionally, as the climate changes, there will be changes to 

how and where the NOx is oxidized and nitric acid is deposited to the Earth’s surface.

1.2 Background

In the Arctic, the cold and dark winter conditions favor the following nighttime 

pathway (R1-R3) for forming nitric acid. At night, NO2 further reacts with ozone to form 

NO3, the nitrate radical. In the absence of sunlight, the nitrate radical builds up and forms 

N2O5 via Reaction (R2).

N 0 2+ 0 3 -  NO3+O2 (RI)

NO2 + NO3 ^ N 20 5 (R2)

Surface
N 20 5 + H20  —► 2H N 03 (R3)

During the day, NO3 does not build up. The abundance of the NO3 is controlled by 

daytime processes, such as reaction with NO (R4) or photolysis (R5). Reaction (R4) is 

also a nighttime reaction near local NO emission sources before that NO has time to react 

with ozone (typically a few minutes). Once directly emitted NO has converted to NO2 at
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night, Reaction (R4) ceases. In contrast, during the day, photolysis of NO2 (R6) can 

produce a regional source o f N O , once again suppressing N O 3 abundance via reaction 

(R4).

NO + NO3 —* 2 N 0 2 (R4)

N 0 3 + /jv —>■ NO2 + O' (R5)

N 0 2 + /zv —> NO + O' (R6)

The production o f nitric acid during the day is controlled by reaction of N 0 2 with the 

hydroxyl radical, reaction (R7).

N 0 2 + 0 H ^ H N 0 3 (R7)

The oxygen radicals (O') formed in Reaction (R5-6) react with 0 2 to form ozone during 

the day. Daytime processes produce excess ozone through photolysis, as opposed to 

nighttime processes that consume ozone (Rl).

Reaction (R3) is the heterogeneous hydrolysis o f N2O5, where heterogeneous means 

the gas reacts on a surface. This reaction proceeds on a surface because the surface acts 

as a catalyst that stabilizes the intermediates and lowers the energy barriers along the 

pathway to nitric acid formation. Which surfaces act catalytically in the Arctic is not 

known. The speed o f Reaction (R3) depends upon the catalytic surface area available for 

this reaction and the uptake probability per gas-surface collision, y . Measuring the 

efficiency of the reactive uptake of N2O5 ( y ) ,  a ratio between 0 and 1, is important for
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determining the speed of Reaction (R3). If y is 1, then every N2O5 gas molecule collision 

with a reactive surface would result in the production of two molecules of nitric acid and 

the rate limiting step would actually be the production of N O 3 (Rl). If y is close to zero, 

then the majority o f N 2O5 gas — surface collisions result in no reaction, decreasing the 

efficiency of nitric acid formation at night. In this situation, N2O5 would then be 

considered a reservoir o f N O x (rather than an intermediate species) and would lead to the 

long-range transport o f the pollutant.

1.3 Reactive uptake coefficient of N2O5 - Laboratory studies

In laboratory studies, the reactive uptake coefficient of N2 0 s,y is determined using 

aqueous aerosol particles as the catalytic surface for the gas molecules of N2O5 to react 

on. Most of the earlier work characterizing y on aqueous aerosol particles was done on 

sulfate- containing aerosol particles. Sulfate aerosol particles make up a large fraction of 

tropospheric aerosol particles. They are formed from the oxidation of SO2 which results 

in sulfuric acid aerosol particles (Finlayson-Pitts and Pitts, 2000). Early laboratory 

measurements indicated that y was around 0 .1, for N2O5 reacting with aerosol particles 

containing sulfate and ammonium bisulfate (Mozurkewich and Calvert, 1988; Kirchner et 

al., 1990; Van Doren et al., 1991; Hanson and Ravishankara, 1991a). Mozurkewich and 

Calvert (1988) used a flow tube reactor system on sulfuric acid, water and ammonium 

bisulfate micron-size aerosol particles. Mozurkewich and Calvert (1988) found a y value 

of 0.12 for micron-sized aerosol particles containing sulfuric acid. Van Doren et al.
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(1991) measured a slightly lower value o f y for pure water, 0.04-0.06. Similar values of 

y in these earlier studies were also confirmed by Hanson and Lovejoy (1994) using a 

flow tube reactor system. Zhang et al. (1995) and Mentel et al. (1999) investigated the 

effect of nitric acid in addition to sulfate in aerosol particles and found that the reactive 

uptake coefficients were in the range of 0.02 -  0.04 for sulfate aerosol particles and an 

order o f magnitude lower with the addition of nitric acid. This was then called the “nitrate 

effect” by Mentel et al. (1999). Subsequent laboratory studies were performed by Hu and 

Abbat (1997) and Hallquist et al. (2000) suggested that sulfuric acid aerosol y ranges 

were 0.03 to 0.05 on sub-micron aqueous aerosol particles. However, Hu and Abbat 

(1997) also mention good agreement with y obtained in earlier lab studies by 

Mozurkewich and Calvert (1988) for ammonium bisulfate containing aerosol particles 

(NH4HSO4).

Multiple studies have indicated that the addition of organic compounds to aerosol 

particles can decrease the reactive uptake coefficient, y. Badger et al. (2006) showed that 

y was smaller for organic aerosol particles as compared to more acidic sulfate aerosol 

particles. Thornton and Abbatt (2005) and McNeill et al. (2006) showed that the gas- 

aqueous aerosol interface is influenced by salts and organics in the aerosol composition. 

Their results showed a y  in the range o f 0.016-0.03 for sea salt aerosol particles and an 

order o f magnitude lower values for aqueous aerosol particles containing organic 

coatings o f sodium dodecyl sulfate (McNeill et al., 2006) and hexanoic acid (Thornton 

and Abbatt, 2005). The reactive uptake coefficient for sea salt aerosol particles is similar
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to a previous study by Behnke et al. (1997) on NaCl aerosol particles. Thornton et al. 

(2003) showed that y depended on relative humidity and aerosol composition for malonic 

and azelaic organic aerosol particles with and without sulfate. In addition to the 

laboratory organic film aerosol studies, a recent study on water-soluble organics showed 

little to no effect o f organic compounds in a sulfate aerosol on the uptake of N2O5 

(Griffiths et al., 2009). Bertram and Thornton (2009) demonstrated a stronger 

dependence on water content than previous authors have seen (Thornton et al., 2003; 

Hallquist et al., 2000) and that CT can increase the uptake of N2O5 by lowering the nitrate 

effect.

Aerosol particles are involved in the fate o f NOx chemistry by serving as the reactive 

surface on which N2O5 reacts to form nitric acid; they also contain chloride ions that can 

lead ozone production in the following laboratory studies. Roberts et al. (2008) 

performed laboratory studies showing that N2O5 reacting with aerosol chloride forms 

nitryl chloride. They also found that during the day, photolysis forms NOx and chlorine 

radicals in atmospheric aerosol particles with low to moderate CT concentrations. They 

further confirmed that N 2O5 reacted with chloride over a wide range of aerosol substrates 

and pH levels and was in agreement with y values o f earlier studies for a narrow range of 

NaCl aerosol particles (Behnke et al.,1997).

There are several laboratory studies investigating N2O5 reactive uptake coefficients on 

ice. All o f the studies were done at very cold temperatures (180 K - 220 K) similar to the 

polar stratospheric cloud reactions that are involved in the depletion of stratospheric 

ozone (Hanson and Ravishankara, 1991b; Leu, 1988; Quinlan et al., 1990). Leu (1988)
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and Quinlan et al. (1990) found that the N2O5 reactive uptake coefficient on ice was 

0.028 and 0.03. Hanson and Ravishankara (1991b) used an ion flow tube reactor and 

showed a similar reactive uptake coefficient on pure ice of 0.024 and a sulfuric acid ice 

aerosol value of 0.008. In addition, Hanson and Ravishankara (1991b) found that adding 

nitric acid trihydrate (NAT) reduced the reactive uptake coefficient by over an order of 

magnitude to 0.0006. All o f the laboratory studies on the reactive uptake coefficient of 

N2O5 and ice are at temperatures that are not representative of tropospheric ice 

temperatures closer to freezing. Since it is still difficult to examine the surface of an 

ambient ice aerosol, more laboratory and field studies at relevant tropospheric 

temperatures are needed to better quantify y on ice.

1.4 Reactive uptake coefficient of N2O5 - Field studies

Field measurements o f N2O5 (Brown et al., 2001; Matsumoto et al., 2005; Wood et 

al., 2005; Brown et al., 2006; Osthoff et al., 2008; Bertram and Thornton, 2009) have 

been conducted recently at mid latitudes. Brown et al. (2006) conducted a major flight 

campaign field experiment in the mid latitudes to measure y for East Coast sub-micron 

aqueous aerosol particles. Brown et al. (2006) sampled three different regions for gases, 

N2O5, N O 2, O3 and aerosol particles.

As described above, the surface reactivity o f N2O5 ( 7 ) represents the number of 

reactive collisions per gas-molecule collision with an aerosol surface. To measure the 

reactive uptake coefficient o f N2O5 on submicron aqueous aerosol particles in the field



Brown et al. (2006) used the following formula 

4&,_ j v io1
c*S A

The uptake coefficient, y, is calculated using the first order loss rate coefficient (^N^Os), 

reactive surface area density (SA) in pm2/cm 3 o f submicron aerosol particles and the 

molecular speed of N2O5 (c) in m/s. Brown et al. (2006) found that sulfate-rich aerosol 

particles had greater reactive uptake coefficients than organic-rich particles. Using Eq.

(1.1), Brown et al. (2006) reported y values o f 0.017 for region I which had high sulfate 

aerosol content and an order magnitude lower, 0.0016, for region III near the coast and 

aerosol particles with low sulfate. The aerosol surface area does decrease from region I 

(SA= 1000 pm2/cm3) to region III (SA= 300 pm2/cm3), but does not control the y value 

decrease. Brown et al. (2006) found that the aerosol chemical composition varied the 

surface reactivity of N2O5. Region I was dominated by sulfate aerosol particles and 

region III had aerosol particles with low sulfate and high organic content. Brown et al. 

(2006) results confirmed laboratory studies that showed y variability is due to different 

aerosol compositions. The variability in reactive uptake coefficient led to different 

lifetimes o f N2O5 due to the varying aerosol composition.

The molecule N2O5 reacts with water, as in Reaction (R3), and N2O5 reacts with Cl' 

and has been documented in the field by Osthoff et al. (2008) to be an important halogen 

activation pathway. Halogen activation arises from formation o f nitryl chloride, a 

nighttime reservoir, photolyzes to form the chlorine radical and NO2 during the day.
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Recently, Thornton et al. (2009) showed that this halogen activation pathway is not only 

important in coastal areas, but also important inland as shown in this mid-continental 

field study performed in Colorado.

1.5 Arctic field studies of determining N2O5 lifetimes

Past work has characterized y and its dependence upon aerosol particle composition in 

laboratory and field studies. The great majority o f the work was done at mid-latitudes 

(above freezing). In the past, our group has conducted two high latitude field studies. In 

addition to measuring the lifetime of N2O5, which was completed in a field study in 2006 

(Ayers and Simpson, 2006), we completed a field study measuring N2O5 and aerosol 

surface density using a DRUM sampler (Cahill et al., 1997; Perry et al., 1999). We 

deployed a field portable N2O5 instrument that used cavity ring down spectroscopy 

(CRDS) technique to measure N2O5 in the field (Simpson, 2003; Ayers et al., 2005).

During our field campaign in 2007, we measured the mixing ratios of N2O5, NOx and 

O3 as well as aerosol particles, wind speed and temperature (Apodaca et al., 2008). We 

calculated a chemical loss o f N2O5 or &N2o 5 and a dry aerosol surface area density. In the

field, the steady state lifetime of N2O5 ( tn 0  )  is quantified by the following:

\ / k  - T  - __(12)
N A ~ N̂ ss ~ kx[N02\ 0 , \  { }

In Eq. (1.2), the source rate o f N2O5 is the rate coefficient for Reaction (R l), ki, 

multiplied by the concentrations of NO2 and ozone. The nighttime intermediate
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compound, N 2CU  can revert back to N O 2 and N O 3 at higher temperatures. The 

calculation of the steady- state lifetimes of N2O5 using Eq. (1.2) requires that chemical 

loss is from N2O5 and not reactive losses of N O 3. Because Reaction (R2) is temperature 

dependant equilibrium, we can use the following ratio as a factor in determining the 

direction of the reaction,

( i 3 )

In Reaction (R2) concentration of N2O5, is divided by the concentration of N O 3 and is 

equal to the concentration o f NO2 multiplied by the equilibrium constant, Keq. Under 

warmer temperatures commonly found in mid latitudes, the ratio shifts to the right and 

the steady state o f N O 3 needs to be addressed. At cold temperatures commonly found in 

the Arctic, the formation of N2O5 is favored and Reaction (R2) proceeds to the right. We 

assume that we are at steady state of N2O5 due to the low temperatures and fast 

conversion from N O 3 to N2O5 via the forward Reaction (R2). In addition to the fast loss 

conditions of N2O5 from near-surface field measurements 6 minutes) we achieve 

steady state rapidly in the dark and cold high latitude conditions (Apodaca et al., 2008). 

Using the steady state approximation (Eq. 1.2), we calculated the lifetimes of N2O5. We 

compared these lifetimes to the relative humidity and found a steady state lifetime for 

N2O5 of 20  minutes for unsaturated airmasses (less than 10 0% relative humidity with 

respect to ice) and 6 minutes for saturated airmasses (greater than 10 0% relative humidity 

with respect to ice).
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We measured the steady state lifetime of N2O5 and the aerosol surface area density. As 

stated earlier, Reaction (R3) proceeds on a reactive surface; in laboratory studies and 

field studies this reactive surface is considered to be atmospheric aerosol particles. 

Aerosol particles act as catalysts that increase the speed of Reaction (R3). To estimate the 

reaction speed o f R l, we used Eq. (1.1). The dry aerosol surface area was measured to be 

on the order o f 50 pm2/cm3. This value is quite low compared to that of Brown et al. 

(2006) who measured aerosol surface areas o f 1000 pm2/cm3 in the polluted Ohio River 

Valley. For our field study, even assuming unreasonably high values of y (~1), the 

observed surface area is insufficient to explain the N 2O5 chemical loss rate we observed. 

The correlation o f the lifetimes o f N2O5 and saturation with respect to ice, coupled with 

the fact that we found low dry aerosol surface area to explain the chemical loss of N2O5, 

led us to start to investigate other possible reactive surfaces for N2O5 heterogeneous 

hydrolysis. From these data, we started to implicate ice as a possible reactive surface for 

catalyzing N2O5 heterogeneous hydrolysis.

During the dark and cold conditions that exist in the Arctic, the formation of ice 

occurs. At night in the Arctic, the atmosphere near the Earth’s surface is almost always 

saturated with respect to ice (Andreas et al., 2002). There are two main possibilities for 

how N2O5 is removed by ice surfaces: snowpack deposition and reaction on atmospheric 

ice particles. Snowpack deposition due to saturated air masses is a dynamic process that 

is characterized by micrometeorological observations in addition to N2O5. Atmospheric 

ice particle nucleation is also a possibility, since ice nucleates near the threshold of 10 0% 

relative humidity (Curry et al., 1990).
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1.6 Sub-processes of heterogeneous hydrolysis of N2O5

From our previous field studies, ice surfaces are implicated in the catalysis of the 

heterogeneous hydrolysis of N 2O5 (R3) (Apodaca et al., 2008). We can consider how 

these high latitude reactive surfaces catalyze the heterogeneous hydrolysis of N2O5 by 

dividing catalyst processes into two sub-processes; depositional and atmospheric 

processes.

First, we consider depositional processes. The nighttime compound, N2O5, can be lost 

near the surface through a dynamic process that depends on meteorological conditions 

and turbulent contact with the ground. In Fig. 1.1 this process is represented as Reaction 

(R3a), depositional processes. At high latitudes, snowpack covers the Earth’s surface for 

most o f the year. Understanding N2O5 deposition to the snowpack will help quantify the 

chemical loss o f N2O5 and the effect snowpack deposition has on the steady state lifetime 

o f N2O5 (Eq. 1.2) near the surface.

To quantify the effect of snowpack deposition, we measured the deposition velocity of 

N2O5. Deposition velocity is the effective speed (cm/s) at which a gas or particle deposits 

to the Earth’s surface. Often we call this the "dry" deposition velocity as opposed to 

"wet" deposition, which means reaction in the atmosphere followed by rain scavenging of 

the aerosol-particle bound products (Finlayson-Pitts and Pitts, 2000).

Deposition velocities for the gases O3, N O , N O 2 and H N O 3 have been studied in the 

past and are involved the chemistry o f N2O5 (R1-R3). There have been many
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measurements o f the deposition velocity for O3 during the summer, spring and winter on 

varying terrain (Wesely and Hicks, 2000; Bocquet, 2007; Helmig et al., 2007). In a 

review article by Wesely and Hicks (2000), several of the ozone deposition velocities are 

summarized. For ozone over snow covered ground, the deposition velocity ranges from 

0.0 to 0.2 cm/s. More recently, Arctic studies of the deposition velocities above a snow 

pack have been measured for ozone and found to be 0.01 cm/s (Helmig et al., 2007). 

Wesely and Hicks (2000) summarized NO and NO2 deposition velocities. NO deposition 

velocities are difficult to report because o f the rapid conversion o f NO to NO2. These 

velocities are generally considered negligible and are typically studied as emission 

velocities from the snowpack (Wesely and Hicks, 2000). There are several studies 

quantifying the emission o f NOx from the snowpack and, though NOx emission from the 

snowpack can be significant, it is said to be driven by photochemistry (Honrath et al., 

1999; Jones et al., 2001). Jones et al. (2001) studied NOx emission form the Arctic 

snowpack by measuring NO2 at two different heights and found a diurnal cycling of NOx 

with deposition velocities near zero at night.

Lovett (1994) has reported deposition velocities in the range o f 1 to 4 cm/s for nitric 

acid over a canopy. The reported deposition velocity of nitric acid over snow is 0.5- 1.4 

cm/s Cadle et al., 1985). There are no past deposition velocities reported, to our 

knowledge, for N2O5.

Besides direct deposition of N 2O5 to the Earth’s surface, we want to address possible 

atmospheric processes. Reaction (R3), the heterogonous hydrolysis of N 2O5 primarily
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occurs on submicron aqueous aerosol particles at mid latitudes. The reactive uptake 

coefficient o f N2O5 has been measured in the field using Eq. (1.1) for specific surface 

area densities. We know from Arctic field studies that in addition to submicron aqueous 

aerosol particles we also have high relative humidity and cold temperatures. The reactive 

urface area can increase by the additional formation of ice particles, super cooled water 

droplets and the swelling of aerosol particles due to ice formation on the particle. All of 

these possible conditions are considered together as the atmospheric processes 

represented in Fig. 1.1 as Reaction (R3b).

Ice particle formation as an atmospheric process (R3b) is a strong possibility in the 

Arctic, because at night the temperature drops and the relative humidity rises. The 

relative humidity is often near 10 0% with respect to ice at night when the temperatures 

are low. Ice particles around 100 microns in diameter are often seen as ice pillars in the 

atmosphere due to light from city sources reflecting off the ice crystals. Classifying ice 

particles and their sizes and shapes is difficult. Most ice particle characteristics come 

from upper-atmosphere, daytime ice particles observations. Several authors have noted 

the difficulty o f quantifying ice particle formation at night, from satellite and surface 

observations (Curry et al., 1996; Zwally et al., 2002; Curry et al., 1990). Ice particle 

concentrations have been measured to exceed 1000 L ' 1 in the Arctic (Ohtake et al., 1982; 

Curry et al., 1990; Girard et al., 2005). In polluted air masses ice particle size distribution 

measurements are scarce. Benson (1965) measured ice particles in the Arctic in a polluted 

area to be between 5 and 10 microns in diameter based cooling rates. Ohtake (1969)
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measured ice fog ice particles between 4 and 6 microns in radius. Using ice crystal 

concentration and size distribution, Witte (1968) infers a radius of 10 microns in low 

flying aircraft measurements at Barrow Alaska. Curry et al. (1990) also measured the 

average radius for low level clouds in the Arctic to be 7.5 microns in diameter. Gotaas 

and Benson (1965) cite 25 microns in diameter for spherical particles for a radiative 

cooling study in the Fairbanks, Alaska area. In addition to the formation of ice particles, 

Curry et al. (1990) noted that some of the particles formed under ice saturation conditions 

in the temperature range -7 to -40°C failed to freeze and remained as super-cooled water 

droplets. In addition to the lack of freezing, the size and shape o f the ice particles is 

needed to quantify the reactive surface area available and size of potential of mass 

transfer limitation o f larger ice particles and number densities are needed to obtain a 

reasonable reactive uptake coefficient o f N 2O5.

Combining the sub-processes, atmospheric and depositional and correlating these to 

lifetimes o f N2O5 aloft and at the surface, we gain knowledge of the controlling 

mechanisms of N 2O5 at high latitudes (R3a and R3b) and the vertical profiles of N2O5.

1.7 Modeling studies for the heterogeneous hydrolysis of N205

Laboratory and field studies o f N 2O5 chemistry are used to provide input parameters or 

validate models designed to examine different atmospheric conditions on a local and 

global scale. Two o f the parameterizations of N2O5 reactivity in models are the reactive 

uptake coefficient (7) used in global and regional scale models, and the deposition 

velocity o f N2O5, used in regional and local models.
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An important global modeling study by Dentener and Crutzen (1993) found that 

during winter 80% of NOx was removed by the heterogeneous reaction (R3) at high 

latitudes. Including the reactive uptake coefficient in the model corrected the NOx budget 

and proved the importance of including Reaction (R3) in NOx chemical mechanisms. 

Dentener and Crutzen’s (1993) modeling study led to laboratory studies to parameterize 

the reactive uptake coefficient o f N2O5 (y). Since then, other modeling studies have 

included the parameter y in their models. Riemer et al. (2003) included two lower values 

o f y based more recent laboratory studies, 0 .0 2  for sulfate aerosol particles and 0 .00 2  for 

nitrate aerosol particles in their model. Evans and Jacob (2005) not only varied the 

composition o f the aerosol, but also included relative humidity and temperature 

dependences in their model. This model showed a range o f increasing uptake coefficients 

the farther north in latitude as the temperature decreased. Davis et al.’s (2008) 

parameterization model for N2O5 used all the previous laboratory results on the effects of 

different aerosol compositions in the atmosphere on N2O5 chemistry. Davis et al. (2008) 

is the first modeling study to include the reactive uptake coefficient of N2O5 on ice in the 

model. They used the N 2O5 uptake value o f pure ice from a previous laboratory study, y = 

0.024 (Hanson and Ravishankara, 1991b). Including ice in the modeling of N2O5 

chemistry proved to be an important element for mid-latitude winters and even longer 

cold, dark, winters at high-latitudes. Davis et al. (2008) also mentions that no winter field 

campaign data measuring y is available and that winter is the most important time for 

Reaction (R3) because it is a nighttime atmospheric chemistry reaction. The Davis et al.

(2008) model study reveals the uncertainty in the parameterization of y and the
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importance o f including the nighttime chemical Reaction (R3) into the NOx budget.

In addition to the modeling parameter for the reactive uptake coefficient of N2O5, 

there is another important parameter we want to consider in models near the surface at 

high latitudes, the deposition velocity. Deposition velocity is an important modeling 

parameter that determines the removal of a trace gas near the surface. A value o f 1 cm/s 

is considered a high deposition velocity (Wesely and Hicks, 2000). Sommariva et al.

(2009) modeling study parameterized NOx species in a regional model based on the 

MCM (Master Chemical Mechanism) and includes N 2O5 with a deposition velocity of 1 

cm/s. They estimated this value based on the deposition velocity o f nitric acid (HNO3), 1 

cm/s. Their model found that fog is an important sink for N 2O5 in a coastal marine 

environment. The surface area of the fog exceeded 5x10s pm2/cm3 (measured in a field 

study that provided the comparison data for model runs (Baynard et al., 2007). Though 

these temperatures are much warmer than at high latitudes, the sizes of the droplets were 

estimated to be 7.5 microns, similar to the Arctic ice fog measurements discussed above. 

The modeled N2O5 chemical losses were consistent with the heterogeneous uptake 

coefficient from their previous field studies, y values of 0.01. Sommariva et al. (2009) 

found that the model overestimated the mixing ratio of N 2O5 by 30-50% on average; they 

believe that the vertical stratification of the marine boundary layer could be one reason 

for the discrepancy.

The chemistry models MOZART and IMAGES are specifically designed for snow 

covered areas (Helmig et al., 2007). The most common value applied in large scale
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atmospheric chemistry models for the deposition velocity of ozone over a snowpack is 

0.05 cm/s (Helmig et al., 2007). Helmig et al. (2007) also states that deposition velocity 

models do not deal accurately with ozone budgets during wintertime over snowpack 

because o f the large variability in current ozone deposition velocities measurements, -3 to 

+ 2  cm/s.

1.8 Dissertation structure

First, it is necessary to determine the number density and surface area of ice particles 

in the atmosphere. Determining these variables helps to understand the atmospheric 

processes that control the chemical loss o f N2O5. The details o f the investigation into ice 

particles as a potential reactive surface for the chemical loss of N 2O5 are in Chapter 2.

Second, we can measure the snowpack deposition of N2O5 by measuring the 

deposition velocity o f N 2O5 from micrometeorological observations, chemical gas mixing 

ratios (N2O5, N O x and ozone). The experimental design of our field study to measure the 

deposition of N2O5 to the snowpack can be found in Chapter 3. This chapter includes data 

on wind speed and direction from an experimental field site used during fall 2009. From 

the gas measurements alone we can calculate the steady state lifetime of N2O5 from Eq.

(1.2) and total chemical loss o f N2O5 (R 3). These calculations and the method for the 

steady state analysis are in Chapter 4. The details of the aerodynamic gradient flux 

analysis method are given in Chapter 5. This method of measuring a flux is used to 

determine the deposition velocity o f N2O5. The results of the snowpack deposition field 

study, including deposition velocities and lifetimes of N2O5 are presented in Chapter 6 .
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Chapter 7 presents the sonic anemometer data and the eddy covariance method and used 

to validate the aerodynamic gradient flux method discussed in Chapter 5.

Thirdly we want to compare our depositional process field results from fall 2009 to 

field measurements of N2O5 mixing ratio and steady- state lifetimes aloft. Chapter 8 

contains the results from our spring 2 0 1 0  study measuring N 2O5 decoupled from the 

ground. We also measured the visibility of the atmosphere at the field site and used these 

measurements to estimate the atmospheric particle surface area. We used meteorological 

instruments to measure temperature, wind speed and relative humidity to understand the 

potential for ice particle formation.

Chapter 9 presents the conclusions and future work related to this thesis project. 

Future work gives ideas for the further role of ice surfaces in the nighttime removal of 

nitrogen oxides in high latitude plumes.
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Atmospheric
Processes

Figure 1.1. Schematic of two sub-processes for heterogeneous hydrolysis of N2O5. 

Reaction (R3) forming nitric acid, can be further partitioned into Reaction (R3a) 

depositional processes of N2Os and Reaction (R3b) N2Os reacting through 

atmospheric processes.
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Chapter 2 Further insight into ice particles

Heterogeneous hydrolysis o f N2O5 occurs on surfaces that catalyze the reaction to 

form nitric acid (R3). In the Arctic, our research group has correlated ice saturation 

conditions with increasing speed o f reaction (R3) (Apodaca et al., 2008). However, we 

do not know if ice had actually nucleated when airmasses had achieved ice saturation, so 

we discuss the literature o f ice nucleation, ice particle sizes, and number densities in the 

Arctic. Additionally ice particles can become relatively large, which means that their 

number density is reduced for a given availability of condensed water. Under these 

conditions, the distance from a N 2O5 molecule to the nearest reactive ice surface may 

become large enough (microns) that diffusion limits the rate of N 2O5 chemical loss. 

Therefore, we consider how diffusion may affect the ability of larger ice particles to act 

as a catalytic surface for Reaction (R3).

2.1 Past studies on ice particles

The formation o f ice particles in the Arctic is a common occurrence. To consider the 

significance of N2O5 reacting with ice particles, we have to consider the size, shape, 

surface area and number density o f the ice particles. As mentioned in the introduction 

several authors have measured ice particles in the Arctic. Kumai (1964) found ice 

particles sizes, in the polluted Fairbanks area, in the range o f 2 to 30 microns in diameter, 

with an average diameter o f 7 microns. The range in ice particle diameters is due to 

different types o f particles categorized as ice fog, super-cooled fog and ice crystals.
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Kumai (1964) examined ice from all three categories and found that the ice particles were 

spherical and hexagonal for ice fog and crystals respectively. Kumai (1964) concluded 

that the spherical shapes were due to the freezing of super-cooled water droplets and 

grew to become hexagonal crystals. The average size of 7 microns in diameter is similar 

to an earlier value reported by Thuman and Robinson (1954) of 13 microns in diameter. 

Benson (1965) measured ice fog in the Fairbanks area and found diameters o f 5-10 

microns, in the same range as previous authors. Gotaas and Benson (1965) separated the 

ice particles into two categories: ice fog and diamond dust. Girard et al. (2005) found an 

increased frequency of low level ice crystal events when acidic aerosol particles are 

present at the ALERT field site.

In addition to ground based studies, Witte (1968) conducted airborne observations of 

cloud particles in a remote Arctic region and reported ice particles with a modal radius of 

9 microns (18 microns in diameter). Witte (1968) concluded that Arctic clouds were 

similar to cirrus clouds and contained high number densities, over 3 particles /cm3 (3000 

L '1). Ohtake et al. (1982) reported ice crystals and diamond dust forming from open leads 

near Barrow, Alaska. Ohtake et al. (1982) found the ice crystals to be columnar in shape 

and larger at 30 to 300 microns in diameter. Curry et al. (1990) and Girard and Blanchet 

(2 0 0 1 ) identified the two categories o f ice particles: diamond dust formed during 

saturated with respect to ice air masses resulting in ice particles greater than 30 microns 

and ice fog resulting in ice particles less than 30 microns in diameter. Curry et al. (1990) 

noted that the low level ice particle concentrations are up to 1000 L '1. Curry et al. (1990),
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Girard and Blanchet (2001) and Zwalley (2002) noted the difficulty in measuring ice 

particles at night arise from darkness, varying humidity, water content and phase of the 

hydrometeor.

In an aircraft study by Brown et al. (2006), a reactive surface area of 1000 pm2/cm3 for 

sub-micron aerosol particles was found in the northeast US. There is some evidence in 

fog droplet measurements from a ship study done by Baynard et al. (2007), where surface 

areas were reported as high as 5x l0 5 pm2/cm3. Surface areas of ice particles also have 

been studied in large mid-latitude cirrus cloud studies for determining their effects on the 

Earth’s radiative balance (CRYSTAL-FACE and NASA, MidCix SHEBA, FIRE, ARM 

and EMERALD-1) (Heymsfield et al., 2004; Curry et al., 2000; Ivanova et al., 2001; 

Garrett et al., 2003). All of the mid latitude cirrus cloud studies mentioned were focused 

on greater than 50 micron ice particle diameters.

2.2 Phase transitions in atmospheric particles

In addition to the size, shape and number density that can vary among observed ice 

particle events in the Arctic, there is evidence that the water phase is also a question. The 

phase transitions in aqueous atmospheric particles are known to be very important to the 

heterogeneous reactions on ice surfaces (Martin, 2000). The phase of lower tropospheric 

particles (water or ice) is still difficult to determine because super-cooled water droplets 

form at temperatures as low at -40°C (Witte, 1968; Curry et al., 1996; Curry et al., 1990; 

Girard and Blanchet 2001; Girard et al., 2005). The phase of the hydrometeor is an 

important variable for determining the available surface area and for the reactive uptake
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coefficient of N2O5, y. If the ice particle is liquid, the reactive surface of that particle will 

be different than if it is ice as discussed in the introduction (section 1.3). The reaction 

between N2O5 and ice surfaces has been studied under stratospheric conditions, but not 

extensively. There are several studies on polar stratospheric clouds (PSCs), clouds that 

form above 15 km in the polar atmosphere at very cold temperatures, and the ice surfaces 

reacting with N2O5 (Leu, 1988; Hanson and Ravishankara, 1991). Hanson and 

Ravishankara (1991) and Leu (1988) found a reactive uptake coefficient o f N2O5 at very 

cold temperatures (180-220 K) of 0.024-0.03.

2.3 Diffusion limitations to reactions on ice surfaces

After our past field study investigation implicated ice surfaces as an important 

chemical loss mechanism of N 2O5 (Apodaca et al., 2008), we focused on the feasibility of 

N2O5 reacting with ice particles surfaces. Under the cold temperatures and high humidity 

conditions experienced at our high latitude field site, it is reasonable that the additional 

catalytic surface area needed to account for the fast chemical loss rates of N 2O5 is the 

formation of ice particles or hygroscopic growth of super-cooled water droplets at high 

relative humidity. However, we will have to theoretically predict the effect of these 

hydrometeor’s on the N2O5 chemical loss rate. We account for all of the atmospheric 

processes (R3b) by calling the particles, ice particles, in the following discussion to 

understand the effect o f varying particle size, number density and surface area on the 

lifetime of N2O5. In addition to the phase o f the ice particle, there is a large range in 

reported ice particle sizes that needs to be considered in determining the mass transfer
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limitations and terminal velocities of particles. The mass transfer limitation refers to the 

gas molecule of N 2O5 reaching a few ice particles to be able to have the possibility of 

reacting. These limitations need to be addressed when considering the reaction of N2O5 

on ice particle surfaces.

In the introduction we detail the use of Eq. (1.1) for calculating the reactive uptake 

coefficient o f N2O5 on submicron aqueous aerosol particles. The use of Eq. (1.1) is valid 

when there are submicron range aerosol particles. In order to accommodate micron-size 

ice particles or larger, we have to consider mass transfer limitations of the gas molecule 

N2O5 colliding with an ice particle’s surface. The relationship between the lifetime of a 

molecule and the chemical loss to micron-sized ice particles is complex and includes 

terms describing the diffusion, collision between the molecule and the particles surface 

and the phase o f the particle. To calculate the lifetime of N 2O5 (x) with respect to ice 

particles, we use the following formula from Martinez et al. (2000),

1T = —
N 4 7irD n v D 2 ym>D2

(2.1)

In Eq. (2.1) the variables and units are listed as the following: 

N  = particles/ m3

D =  Molecular diffusion constant (10‘5 m2/s for N 2O5) 

v = molecular velocity (236.4 m/s for N2O 5)
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Dp = particle diameter (m) 

y =  uptake coefficient of N2O5

In Fig. 2.1, we use Eq. (2.1) with a constant surface area o f the ice particles of 1000

2 3 •pm /cm and varied the reactive uptake coefficient, y, from 0.01, 0.03 to 0.1 to calculate 

the predicted lifetime of N2O5 as a function of particle size at these three values of 

surface reactivity. In the limit of smaller, submicron, particles, Fig 2.1 shows that the 

lifetime plateaus and is inversely related to the reactive uptake coefficient of N2O5, y.

That result is in agreement with Eq. (1.1), because Eq. (1.1) is only valid for submicron 

aerosol particles, where diffusion limitation is not important.

For micron-sized and larger particles, diffusion limitations begin to slow the effective 

rate o f gas-surface collisions and the lifetime increases with increasing particle size. The 

reason for this increase is that at a fixed aerosol particle surface area density (1 0 0 0  

pm2/cm3 in this case), larger particles must be present at a lower number density and 

therefore, the distance to diffuse to a particle surface becomes larger. As the inter-particle 

spacing exceeds a few microns, diffusion and not y begins to control the effective lifetime 

of N2O5. This effect is seen in Fig. 2.1 by the convergence of the curves having different 

values o f y for 100 micron or larger particles. Based upon these results, we find that 

around 10 micron particles are the transitional region where both diffusion limitation and 

surface reactivity (y) combine to control the lifetime of N2O5. It is unfortunate that the 

literature reviewed earlier in this chapter indicates that ice particle sizes are on the order 

of 10 micron diameters.
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In Fig. 2.2, we use Eq. (2.1) with a constant y = 0.03, based on Hanson and 

Ravishankara’s (1991) surface reactivity of y = 0.024 for pure ice and plot curves with 

various values of the surface area density versus the particle size. Presuming that the 

particles may have a diameter of 10 microns, and using our field observed ice-saturated 

N2O5 lifetime of 6 minutes (Apodaca et al., 2008), we would need around 3,000 pm2/cm3 

of aerosol particle surface area density to obtain the observed lifetimes of N2O5.

If  we assume that the ice particles are nearly spherical, then we can convert between 

the surface area density and the particle number density given an assumed particle 

diameter using,

SA = N tiD ] . (2.2)

In Eq. (2.2), the ice particle surface area density, SA, in pm2/cm3 is equal to the number of

-J t
particles/cm (N) multiplied by n  and the ice particle diameter squared (Dp ). For the ice 

particle size applicable to N2O5 chemistry o f approximately 10 microns in diameter and

2 3the resulting 3000 pm /cm in surface area density from Fig. 2.2, Using a surface area 

density o f 3000 pm2/cm3 from Fig. 2.2 , we require 10,000 particles L ' 1 (10 

particles/cm ). However, Curry et al. (1990) reported that the maximum ice particle 

concentration that they observed was 4000 L’1. While it is possible that our situation had 

significantly more particles present than Curry's flights measured, it seems that diffusion 

limitations are very significant if  the reaction o f N 2O5 is actually occurring on suspended 

ice surfaces.
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From these considerations o f ice particle size, ice particle abundance, possible 

supercooling of droplets, and diffusion limitations, we find that although it still seems 

feasible that suspended ice particles could be providing the reactive surface area for N 2O5 

heterogeneous hydrolysis, the number density of these particles should be towards the 

high side of typically observed ice particle densities, the size should be towards the small 

size of typically observed ice fogs, and possibly the reactive uptake coefficient should be 

relatively large (y ~ 0.1). Toon (2000) showed that in a polluted cloud, the presence of 

more condensation nuclei (the pollution) causes increased number density o f droplets and 

reduced particle size. Possibly the Fairbanks pollution plume causes the same effect to 

increase the feasibility of suspended ice particles being the major reactive site for N 2O5 

heterogeneous hydrolysis.
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Particle diameter (microns)

Figure 2.1. Plot of the lifetimes of N2O5 as a function of particle size. The surface 

area is constant at 1000 pm2/cm3. The dotted trace, dashed trace and solid line 

represents lifetime of N2O5 with y  values of 0.01, 0.03 and 0.1 respectively.
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Figure 2.2. Plot of the lifetimes of N2O5 as a function of particle size. The value of y  

is at a constant value of 0.03 . The dotted, dashed, solid and dot-dashed lines

represent the following surface areas respectivly, 300, 1000, 3000, 10,000 pm /cm
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Chapter 3 Experimental design for fall 2009 field study

We measured the flux and deposition velocity of N2O5 in a fall 2009 field study in 

Fairbanks, Alaska. The field study was designed to use meteorological techniques to 

determine a N2O5 deposition velocity. The field study considered the effect of distance 

and wind direction from downtown Fairbanks, footprint of the upwind measurement area, 

and interference from local pollution sources on the N 2O5 deposition velocity 

measurements.

The aerodynamic method relies on the Monin-Obukov (M-O) theory to measure 

fluxes, and the M -0  theory requires that flux be measured in a nearly neutral atmosphere. 

A neutral atmosphere is defined by stability parameters such as the Richardson number 

(see Chapter 5) equal to zero, where buoyancy is negligible and winds are generally high. 

The flux is inferred from the differences in chemical mixing ratios of gases, temperatures 

and wind speeds at two heights (Oke, 1987).

To measure the N2O5 flux, we have to observe the boundary layer conditions in the 

atmosphere. An atmospheric flux is affected by dynamic processes in the boundary layer 

and turbulent contact with the ground. Understanding the impacts of upwind conditions 

and site characteristics on the meteorological measurements is important to measure the 

flux correctly. The undistributed flat field upwind distance from the measurement tower 

is called the fetch. We will characterize the fetch and examine several ways to consider 

whether we have an adequate fetch for our field study to measure a flux. Then, we will 

describe the location, wind direction, relationship to downtown Fairbanks and topography
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characteristics. Lastly, we will discuss our tower placement at the site and sampling 

techniques.

3.1 Characterizing the fetch and affect on the measurement height

The placement of a flux measurement tower must allow for adequate fetch distance of 

a minimum of 100 meters per meter o f the measurement height of the tower (Businger et 

al., 1971). The fetch distance is said to be farther in the case of stable atmospheric 

conditions and more than 100  times the maximum height of the measurement tower 

(Horst and Weil, 1994; Horst, 1999). Stable conditions that are commonly found in the 

Arctic are the most difficult to measure a flux. Strong inversions have the low wind 

speeds and cold temperatures near the surface and warmer temperatures above. However, 

Munro and Oke, (1975) found contradicting evidence that a fetch distance of 100 meters 

per meter height is too long and recommended closer to 30 meters per meter of profile 

height measurement. To account for the most common Arctic conditions, a cold stable 

atmosphere, we have chosen at least 100 meters per maximum profile height.

Table 3.1 details the two possible options for our measurement tower equipment, 

instruments and fetch requirements for each configuration. The disadvantage of having a 

maximum measurement height of 4 meters is the 100:1 fetch to height rule. The 

advantage to using 4 meter and 1 meter measurement heights is a larger possible gradient 

could be measured. The lower required fetch for the 2 meter maximum measurement 

height was the deciding factor. The smaller possible gradient measurements can be 

validated by the use of high frequency meteorological data obtained from two additional
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sonic anemometers placed at the same measurements heights (two anemometers can 

validate the gradient meteorological data at any two heights). The actual heights are 2.38 

meter and 0.98 meter. The measureable vertical gradients will be smaller using a 1.4 m 

difference in height, instead o f a 3 meter gradient and the highest measurement height of 

2.38 meter. The maximum height o f 2.38 meters should have a constant flux layer about 

10 times the maximum measurement height or a height of 23.8 meters. The surface layer 

is commonly considered the “constant-flux” layer and the lower 10% of the boundary 

layer (Arya, 2001).

We estimated the required fetch distance for a 2.38 meter measurement height and for 

comparison a 4 meter height using the following relationship between height and surface 

roughness as proposed in Horst and Weil (1994) as Z J Z 0. This ratio is the normalized 

measurement height, where Zm is the maximum measurement height in meters and Zq is 

the roughness length in meters. The roughness length (Zo) indicates the roughness of the 

surface and effect on neutral stability (Stull, 1988).

The ratio of Z J Z 0 , using 2.38 m and 0.005 roughness length for snow from Stull 

(1988) is 476. Using these values and method described in Horst and Weil (1994), we 

would need 1,0 00  meters o f required fetch to calculate a flux under the most stable 

atmospheric conditions. The required fetch using a 4 m maximum height and the most 

stable conditions is 3,000 meters. The probability o f observing a stable atmosphere 

requiring a longer than 100:1 fetch-to-height ratio is high so we chose a height o f 2.38
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meters to decrease the fetch required at our site. According to Horst and Weil (1994), 

both height scenarios would still be measuring 90% of the flux.

Schuepp et al. (1990) uses the cumulative normalized flux relationship between the 

maximum fetch and measurement height to understand the percentage o f flux measured. 

Using an analytical technique to examine flux requirements, Schuepp et al. (1990) reports 

that at a fetch o f 1,000 meters and a measurement height of 5 meters, 95% of the surface 

flux will be measured.

3.2 Controlling features of the field site

After determining appropriate measurement heights, we have to determine the 

potential effect o f our field site location only having a fetch distance of 400 meters. The 

chosen field site is located 20 miles downwind from downtown Fairbanks on a flat 

agricultural farm. Figure 3.1 shows the actual field site. The white line represents a 

distance of 400 meters from the measurement towers to the start o f a spruce forest. The 

spruce forest is considered a disturbance in the flat terrain of the field and therefore 400 

meters is the maximum fetch available at this site.

The maximum wind speeds at the field site are 3.5-4 m/s in every direction including 

the main wind direction o f 45 degrees. An adequate fetch distance at 2.38 meter 

measurement height is 238 meters according to the 100:1 fetch to height ratio. For the 

most stable atmospheric conditions, we would need 1000 meters, according to the Horst 

and Weil (1994) method using a Richardson stability number of 0.25, the most stable.
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However, we filter the data so that 0.12 is the threshold for stable atmospheric conditions 

(Chapter 5 details the Richardson number), reducing the required fetch distance.

Figure 3.3 shows that the field site is surrounded by a ridge to the NW, the Tanana 

River to the South and Fairbanks to the NE. A topographical view of the field site and 

surrounding area are shown on a contour map in Fig. 3.4. We need to know the 

surrounding area’s topography so the effects o f the topography on the meteorological air 

flow to the field site can be examined. The topographical structure of the area, as seen in 

the Fig. 3.4, creates a drainage flow guided by a U-shaped ridge that forms a bowl around 

the field site. Mildly polluted air originating in Fairbanks is carried from the northeast 

direction by a down-slope drainage flow towards the field site. The elevation profile of 

the upwind distance from the measurement towers is important, because if the terrain is 

hilly then extra correction factors have to be added to the flux data to account for 

turbulence resulting from the slope of the field (Tumipseed et al, 2003).

3.3 Designing the measurement towers

We analyzed the field site and meteorological components needed to successfully 

measure the snowpack deposition o f N 2O5 at high latitudes and decided that the field was 

appropriate for this experiment. Then we designed two measurement towers and an 

instrument hut to run the field experiment. We decided to run power 200 meters over a 

local driveway and out into the field, while still allowing for 400 meter undisturbed 

distance to the upwind forest edge. We pulled an insulated hut into the field to house the 

instruments and run the gas sampling inlet for N2O 5, NO, N O 2 and ozone from the hut.
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Figure 3.6 shows the hut’s position and the field prior to a larger snow fall that provided 

an undisturbed snow surface on the field during our measurement period. The exact 

height o f all of the instruments on both the gas sampling and the meteorological tower are 

depicted to scale in Fig. 3.7.

The measurement towers were located 3 meters upwind from the instrument hut. The 

meteorological tower (B) held two RM Young cup anemometers and wind vanes (model 

03001-5) to measure wind speeds and directions and two temperature sensors (RM 

Young 41342) at the same heights as the moveable gas inlet sampling heights (within a 

few cm for vertical alignment). The data from these instruments were recorded as 1 

minute averages on a Campbell Scientific CRIOx data logger. The meteorological 

measurement tower (B) also had two sonic anemometers (RM Young model 84000) 

logging 10 Hz data on a separate data logger (Chaparral Physics). Both the sonic and cup 

anemometers were aligned to true north using a Garmin Venture GPS. The 

meteorological tower and sampling inlet both faced into the main wind direction o f 45 

degrees. Tower (A) consisted o f a moveable gas sampling inlet that ran from the 

instrument hut. The gas sampling inlet faced into the wind and slightly at an angle to 

prevent larger particles from getting into the inlet. The Teflon inlet was 3/8” inner 

diameter and sampled the chemical gases: N2O 5, N O 2, N O  and O3. The inlet was moved 

up and down to sample at the same two heights (2.38 m and 0.98 m) as the 

meteorological instruments. A long chain driven by a stepper motor allowed the inlet to 

move to an exact position. The inlet was moved every 120 seconds to match the



47

measurement cycle on the cavity ring down instrument that analyzed the sampled air for 

the mixing ratio of N 2O5 . Cavity ring down spectroscopy is the technique used to 

measure N2O5 in the portable instrument that was designed in our lab and used in 

previous field experiments (Simpson, 2003; Ayers et al., 2005). NOx and O3 were 

measured by the following standard instruments: Thermo Environmental 42c and Dasibi 

1008 RS and logged at 6 second data rate. All computers that logged data from four 

different sources were time synced prior to the start of the field study and verified daily. 

The complete synchronization of the instrumentation, placement and field location 

allowed us to measure a gradient between the two heights of N 2O5 and calculate the 

deposition velocity of N2O5.
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Table 3.1. Profile height comparison

Heights Advantage Disadvantage

4 and 1 meter Less critical inlet placement 

(larger gradients could be 

measurement with less error)

3 meter height gradient

Larger fetch distance 

(400 meters minimum)

2 and 0.5 meter Smaller fetch distance

(2 0 0  meters minimum)

Easier to be the same 

atmospheric layer under stable 

inverted conditions

Need accurate 

instruments, sonic 

anemometers for small 

gradients

Critical inlet placement

(smaller gradients could 

have greater error)

1.5 meter gradient
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Figure 3.1. A Google image of the field study site. The field site is 20 km SW of 

Fairbanks. The location of the measurement instruments is represented by the 

yellow pin and labeled Field Site. The white line indicates the length of the field (400 

m) in the main wind direction (45°). The due North wind direction, not including 

declination, is given by the N in the top right hand corner (Google Inc., 2009).
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180

Figure 3.2. A wind plot representing the measured wind speed in m/s. The bins are 

0.5 m/s and colored for each wind direction (in degrees) at the field site.



Figure 3.3. A Google map of the location of the field site with proximity to 

Fairbanks. The site is shown as approximately 20 km SW of downtown Fairbanks 

and labeled with a yellow pin. The site coordinates are 64.75929° North, 148.10618° 

West and 161 meters above mean sea level (Google, Inc., 2009)
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Figure 3.4. A topological contour plot using Garmin software. Contour lines are in 

meters of the fall 2009 field study site and surrounding area. The black square is the 

field site.
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Figure 3.5. An elevation profile from the contour plot. The upwind distance from 

the measurement towers and heading in the main wind direction of 45 degrees until 

it reaches edge of the field at 400 meters.



Figure 3.6. Placement of the instrument hut. The view range of the picture is 

approximately 0-90 degrees.
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Figure 3.7. A to-scale depiction of the field site. I) The top down view and 

orientation of the two measurement towers and instrument hut. II) Detail plan view

of the moving inlet tower (A) and the meteorological tower (B).
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This chapter focuses on measuring N2O5 in the field and under conditions appropriate 

for calculating a steady state lifetime of N2O5. The first section details measuring N 2O5 

in the field and the second section details using the steady state approximation to 

determine the lifetime o f N 2O5.

4.1 Measuring N2O5 in the field

We fielded a deployable instrument based on the CRDS (cavity ring-down 

spectroscopy) technique that measures N 2O5 mixing ratios down to a few pptv. We have 

used this CRDS instrument during past field studies (Ayers and Simpson, 2006; Apodaca 

et al., 2008) . The CRDS instrument uses a high-flow Teflon inlet with a 9.4 mm inner 

diameter (3/8") and flow rate o f 100 slpm to sample ambient air. The inlet is 10 meters 

long and has a gas residence time o f 0.4 seconds. Using this configuration, the N2O5 inlet 

transmission was measured to be 76% through flow changing studies. The N2O5 loss on 

the inlet and instrumental surfaces were taken into account in the analysis. The sampled 

air leaves the sampling inlet and enters a 100°C heated instrument inlet where the N2O5 

fully dissociates into N O 3 and N O 2. Next, the air flow enters at the 85°C heated 

measurement cell where N O 3 is measured by cavity ring down spectroscopy at 662 nm. 

The CRDS measures the optical loss in the cell, the time for the light to fully exist the 

cell with present absorbers (N O 3), by measuring a ring down during the measurement 

cycle and subtracting from a base line ring down during the titrant cycle. The chemical 

zero, which creates the reference for the base line ring down time, is formed by adding to

Chapter 4 Methods for measuring N2 O5
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the airflow, NO which reacts quickly with NO3. The result is an optical loss that is 

converted into a concentration using the following formula:

[M?3] = l/c < r [l/r - l/f0]. (4.1)

In this equation c is the speed of light in m/s, a  is absorption cross section in 

cm2/molecule and r  is ring down time in the cavity (Simpson, 2003; Ayers et al., 2005). 

The data is post-processed and the ambient mixing ratios of N 2O5 are corrected by the 

transmission as has been done in our past field studies (Ayers and Simpson, 2006 ; 

Apodaca et al., 2008).

4.2 Calculating the steady state lifetime of N2Os

Applying the steady state equation requires knowledge of the sources and sinks 

involved in the chemistry of N2O 5. The following reactions are involved in the chemistry 

o f N 2O5 and used to calculate the steady state lifetime.

N 0 2+  O3 “ *■ N O 3+O 2 ( R l)

N O 2 +  N O 3 -  N 20 5 (R2a)

N O 2 +  N O 3 ^ N 20 5 (R2b)
Surface

N20 5 + H20  —► 2HNO3 (R3)

The cold temperatures at the field site allow us to assume rapid conversion of N O 3 to 

N 2O 5. The thermal dissociation o f N2O5 (R2b) is slower than the heterogeneous
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hydrolysis of N 2O5 (R3) (Apodaca et al., 2008). This results in the following expression 

for the change in N2O5 with time:

d[N20 5]/dt = *i[N 02][0 3]- /c3[N20 5]. (4.2)

If we assume N 2O5 is at steady state, then we set Eq. (4.2) equal to zero and rearrange it 

to get the following formula for the steady state lifetime of N 2O5. The lifetime of N 2O5 is 

the inverse of its destruction rate:

1 [A W ]
k, * ,[* 0 ,1 0 ,] 't n 2o 5ss  =  —  =  ,  r . . i  t L  1 • ( 4 - 3 )

As stated in chapter 1, the source rate o f N2O5 is the rate coefficient for Reaction (R l), k\, 

multiplied by the concentrations of NO2 and ozone.

To indentify data where the steady state approximation is valid (Eq. 4.3), we have to 

consider the following reaction with NO:

N O 3 + N O - 2 N O 2  (R4)

The nitrate radical (N O 3) can react rapidly with N O  so to ensure that our N2O5 mixing 

ratio is not suppressed by this fast reaction, we eliminate all data where N O  is greater 

than 1 ppbv. We also filter the data using the source rate; if  the source rate is less than 10 

pptv/hr. We only analyzed data when a pollution plume was present. In addition using 

chemical filters to remove data, we also removed data from when the sun was above the 

horizon to focus on nighttime reaction of N2O 5. Additional meteorological filters were
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applied depending on the atmospheric stability, wind speed and wind direction (detailed 

in Chapter 6).
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Chapter 5 Analysis using the aerodynamic gradient method

We use the aerodynamic gradient method to calculate a chemical flux of N2O5 and 

wind speed, wind direction and temperature data to understand the associated 

micrometeorological conditions. In this Chapter, we review the theory behind the 

aerodynamic gradient method and how we applied this method to our data to arrive at a 

deposition velocity of N2O5.

5.1 Monin-Obukhov similarity theory

To measure the deposition velocity, we use the aerodynamic gradient method. The 

atmosphere needs to be neutral, or near neutral stability, so that moderately turbulent 

flow over the snowpack is occurring in the nocturnal boundary layer. Neutral stability is 

defined by an air parcel motion where advection or dampening is not occurring. The 

aerodynamic method relies on the Monin-Obukhov similarity theory, which states that 

momentum and heat fluxes are constant with height under neutral atmospheric 

conditions. Using four independent variables, the height above the surface, surface drag, 

heat flux and buoyancy, we can quantify an unknown flux (Arya, 2001).

Under neutral atmospheric conditions, the logarithmic wind profile equation is as 

follows:

u z = — In —  . (5.1)
k  z 0

In Eq. (5.1), z is the atmospheric height (m) above the surface, u, is the friction velocity
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in m/s, Uz is the wind speed in m/s, k is the Von Karman constant at a value of 0.4, and z0 

is the surface roughness in m. The Monin-Obukhov theory assumes neutral stability of 

the atmosphere, constancy o f flux with height and similarity o f all transfer coefficients 

for momentum ( K m), heat ( K Q), and gas ( K N O ) (Oke, 1987; Arya, 2001; Monteith and

Unsworth, 1990). Therefore, under neutral conditions we set the momentum flux equal to 

the unknown N2O5 flux and solve for the unknown flux as shown in Oke (1987):

r = pul = K-d(Pu) = - JW ( c»,o,) (52)
dz 8z

In Eq. 5.2, the momentum flux is r  , density o f air is p  and CN0 is the mixing ratio of

N2O5 in pptv. Rearranging Eq. 5.2, the transfer coefficient for momentum and N2O5 

cancel out and the N 2O5 chemical flux equation becomes (Oke, 1987):

AwACV q  .
- ( < v * v 0. r 1- (5-3)N v z jr  M  N ' ° * -

In Eq. 5.3, the flux o f N 2O5 is determined by the wind speed, Au in m/s, and the N2O5 

mixing ratio ( CN 0 ) in pptv difference between the two heights in meters as Z2 and z/.

The differences are divided by the natural logarithm of the ratio o f the two heights, z; and 

Z2. The last term is the generalized stability factor, ($>M0>N O ) 1 which corrects the flux in

a near neutral atmosphere so the logarithm of the wind speed is linear, as in a neutral 

atmosphere, and follows Eq. (5.1). Details of the generalized atmospheric stability 

parameterized by the Richardson number, Rt, are detailed below.



5.2 Gradient Richardson number ( R $

One selection criterion for using the aerodynamic gradient method to measure a flux is 

the stability o f the atmosphere. We use wind speed and temperature gradients to estimate 

atmospheric conditions near the surface and classify the atmosphere as: unstable, stable 

and neutral (Monteith and Unsworth, 1990). The Richardson number is an important 

parameter used to characterize the stability o f the atmosphere and the degree of 

turbulence. The Richardson number is undefined above 0.25, because the turbulence 

decays and the atmosphere is very stable. The Richardson number is undefined less than 

-1 because the atmosphere is dominated by free convection (Monteith and Unsworth, 

1990; Stull, 1988). The critical Richardson number is 0.25 and at this point the turbulent 

exchange is completely dissipated. Though the critical Richardson number value of 0.25 

is still debated and is only an approximation to limit of turbulent exchange, some 

turbulent exchange as high as a Richardson number equal 1 can occur (Pardyjak et al., 

2002). The dimensionless Richardson number relates the vertical gradients of wind and 

temperature by taking the ratio o f the buoyancy to shear stress using the following 

equation (Oke, 1987):
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The wind speed gradient in m/s/m is — , the temperature gradient in °C/m i s  , and g
Az A z

is the gravitational constant.

5.3 Generalized stability function

When the Richardson number is zero, the atmosphere is defined as neutral. Since the 

atmosphere is dynamic and constantly changing, a completely neutral atmosphere is rare. 

We can use the Richardson number to define a range of near neutral conditions and can 

correct the flux of N2O5 using the generalized stability function, (O a/O v 05 ) _1 so that the 

logarithmic wind profile Eq. (5.1) is still valid. The flux o f N 20 5 , FNOs is applicable

under a larger window of a near neutral atmosphere by using the generalized stability 

function.

Outside o f the gradient Richardson number range of -1 to 0.25, the generalized 

stability function needs to corrected by greater than a factor of 8 for very stable (> 0.25) 

or very unstable (> - 1) conditions and we cannot correct the flux to account for near 

neutral atmospheric conditions. Therefore, we used two different generalized stability 

functions, Eq. (5.5) for stable conditions and Eq. (5.6) for unstable conditions (Oke, 

1987):

The dimensionless generalized stability functions are as follows: 

ft)" ' = ( 1 - 5 * , ) 2 « > 0 )  (5.5)

and
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(® m ® n2o X = ( i ~ i 6 R i y  ^ < o )- (5-6)

There are different value ranges and powers o f the generalized stability factor formula 

(0 ^ 0 ^ ^ )  ' used to correct the flux by extending the flux equation beyond a neutral

atmospheric conditions (Oke, 1987; Monteith and Unsworth, 1990; Arya, 2001). We used 

the formulas and suggested Rt range from Oke (1987) in Eq. (5.5 and 5.6).

In addition to applying different correction factors, we narrow the range of acceptable 

atmospheric stability by using very small Richardson number range of 0.12 to -0.1 and 

allow the N2O5 flux data to be within the limits o f our available fetch (Chapter 3).

5.4 Flux divergence

In addition to the flux only being applicable under conditions of neutral stability, the 

aerodynamic gradient approach only applies when there is a “constant flux layer” and no 

divergence o f fluxes. A flux divergence for N2O5 occurs when there are other competing 

chemical reactions that are taking place between the two measurements levels. Chemical 

reactions can affect the flux measurements and the time scales of these reactions need to 

be addressed. (Kramm et al., 1991; Kristensen and Fitzjarrald, 1984). In the case of N2O 5, 

we are measuring at night and we have to consider the reactions that would affect the 

mixing ratio o f N2O5.

The main reaction that can compete for N O 3 with the formation of N2O5 (R 3) is:

NO + N 0 3 -  2 N 0 2 (R 4)
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The rate constant for this reaction is very fast at 2.9 x 10' 11 cm3 molecule’ 1 s’ 1 at 298 K. 

However, Reaction (R4) is filtered from the data set by elimination all data points that 

have a NO mixing ratio > 1 ppbv. Therefore, no points influenced by flux divergence, are 

used in this analysis.

5.5 Deposition velocity

We use a two-point profile to measure the gradients in wind speed, temperature and 

N 2O5 to calculate a flux using Eq. (5.3). If the N 2O5 flux is negative, a high mixing ratio 

o f N 2O5 at a higher level than near the Earth’s surface, the N2O5 flux is directed 

downward toward the snowpack. Therefore the deposition velocity o f N2O5 has a 

negative sign in the following Eq. (5.7) and a positive deposition velocity is being 

directed toward the snowpack. We divide the flux by the average mixing ratio of N2O5 to 

obtain the deposition velocity in the following equation:

AuACN2q5

e  [ h O ,/z ,) r  (0 ^ 1 , (5.7)
L n 2o 5

In Eq. (5.7), Au is the change in the average wind speed in m/s, ACN O is the difference 

o f 30 minute average periods o f mixing ratio o f N 2O5 in pptv, CN Os is the average N2O5

mixing ratio, k is the Von Karman constant 0.4. The value of the deposition velocity is 

independent of the mixing ratio of N2O5 and therefore a more accurate measurement of 

snowpack deposition.

Vdep = “
N , 0 ,
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5.6 Operational approach to data analysis for deposition velocity

To use Eq. (5.3) for calculating a flux we first measured the N2O5 mixing ratio in pptv 

at two different heights, 2.35 meters and 0.95 meters. Initially the N 2O5 data is collected 

at 0.5 Hz, processed to remove the instrument’s zero cycle and then averaged over 6 

seconds. Figure 5.1 displays 6 second averaged data for one of the selected nights, 5 Nov 

2009. The mixing ratio o f N2O5 is higher at the upper measurement height and lower near 

the ground. This gradient sign indicates a downward directed flux, which is represented 

by a negative flux o f N2O 5. The upper and lower level mixing ratios of N2O5 were then 

averaged to half hour data points, and differenced to calculate a flux.

Figure 5.2 also shows a slightly positive or directed upward flux of N2O5 and this is 

during a period with a very low difference in the mixing ratios of N2O5 between the two 

measurement heights. This data was used with the average wind speed difference for the 

two heights on the 5 Nov, 2009 was 0.45 m/s. The gradient in wind speed and N2O5 were 

then used to calculate the flux of N2O5 using Eq. (5.3). The maximum downward directed 

flux o f N2O5 on 5 Nov, 2009 is -0.3 pptv m/s for flux calculated using Eq. (5.3), corrected 

by the generalized stability (Fig. 5.2). The average flux for the 5 Nov, 2009 is -0.12 pptv 

m/s. Note that the largest correction factors applied to the flux occur when the 

atmosphere is the farthest from neutral, but still in the acceptable Richardson number (/?,) 

range of -0.1 to 0 .1 2 .

The flux o f N2O5 also depends on the gradients in NO2 and ozone. These two 

molecules are important for measuring the gradient in N2O 5, because they are both 

involved in the N2O5 formation (R1-R3). In Figure 5.3, the high and low measurements
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for NO2 and ozone were averaged over a half hour period. The high and low 

measurement heights show negligible differences in the mixing ratios of NO2 and ozone. 

The average difference in NO2 mixing ratios between the two measurement heights 

varied by less than 2.6 +/- 3% and the ozone varied by 1 +/- 2%.
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11/5/2009
UTC

Figure 5.1. Time series of N2O5 mixing ratio in pptv on 5 Nov, 2009. The data points 

are 6  second averages with the 40 second zero (NO titrant) cycle removed and the 80 

second measurement cycle present. The blue trace is for the upper measurement 

tower height and the red trace is for the lower height.
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Figure 5.2. Times series of the flux of N2O5. The flux is averaged over a half hour 

with the generalized stability as the black solid line. Wind speed in m s' 1 and the 

mixing ratio of N2O5 in pptv are shown as the higher measurement height 

represented by the blue dotted line and lower measurement height as the red solid 

line.

Wind Speed (m 
s' )
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Figure 5.3. Difference of NO2 and O3 mixing ratios in ppbv. The mixing ratios are 

averaged over a half hour with the higher measurement height as the blue dotted 

line and the lower measurement height as the red solid line.
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Chapter 6  Deposition of dinitrogen pentoxide, N2O5, to the snowpack at high

latitudes1

Dinitrogen pentoxide, N2O5, is an important nighttime intermediate in oxidation of 

NOx that is hydrolyzed on surfaces. We conducted a field campaign in Fairbanks, Alaska 

during November, 2009 to measure the flux (and deposition velocity) of N2O5 depositing 

to snowpack using the aerodynamic gradient method. The deposition velocity of N2O5 

under Arctic winter conditions was found to be 0.59 +/- 0.47 cm/s, which is the first 

measurement o f this parameter to our knowledge. Based on the measured deposition 

velocity, we compared the chemical loss rate of N 2O5 via snowpack deposition to the 

total steady state loss rate and found that deposition to snowpack is a significant fraction 

of the total chemical removal of N2O5 measured within a few meters of the ground 

surface.

6.1 Introduction

High-latitude nighttime nitrogen oxide chemistry is dominated by the oxidation of 

N O 2 by ozone to form nitrate radical, N O 3 (R l). N O 3 and N O 2 combine to form N2O 5,

1 Huff, D.M., Joyce, P.J., Fochosatto, G.J., and Simpson, W.R. Deposition of dinitrogen 
pentoxide, N2O 5, to the snowpack at high latitudes, (submitted to Atmospheric Chemistry 
and Physics Discussions (ACPD), 22 Sept 2010)
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(R2) in a temperature dependent equilibrium that is favored under cold and dark 

conditions that exist in winter at high latitudes.

The major chemical loss process for N2O5 is heterogeneous hydrolysis (R3). The 

following reactions are the nighttime pathway for N2O5 chemical removal.

NO2+ O3 -*■ NO3+O2 (R-l)

NO2 + NO3 ^ N 20 5 (R2)

Surface
N 20 5 + H20  —► 2H N 03 (R3)

The production of nitric acid (R3) contributes to acid rain, adds fixed nitrogen to the 

ecosystem, and removes NOx. Acid rain is known to have many damaging effects on the 

environment. The effects of nitrification have been documented in mid latitudes 

(Andersen and Hovmand, 1995; Bytnerowicz et al., 1998; Fenn et al., 2003), and removal 

o f NOx affects the possibility o f downwind ozone production.

The heterogeneous reaction of N2O5 (R3) is an important reaction for NOx loss. In a 

modeling study, Dentener and Crutzen (1993) found that during the winter 80% of high 

latitude NOx is lost by Reaction (R3), which is the dominant dark pathway to nitric acid. 

Since the Dentener and Crutzen (1993) modeling study, many laboratory experiments 

have been completed investigating N 2O5 heterogeneous hydrolysis and the dependence 

on aerosol particle chemical composition (Mozurkewich and Calvert, 1988; Kirchner et 

al., 1990; Hanson and Ravishankara, 1991a; Van Doren et al,. 1991). The N 2O5 uptake 

coefficient, or surface reaction probability, y, describes the probability of chemical
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reaction of N2O5 on an aerosol surface. In more recent models, different 

parameterizations o f y have been used that identify the dependence on aerosol 

composition and temperature (Riemer et al., 2003; Evans and Jacob, 2005). Bertram and 

Thornton (2009) parameterized N2O 5 based on y’s dependence on H2 0 (l), Cl' and N O 3' 

for organic and inorganic mixed aerosol particles.

There have been several field measurements of N2O5 at mid-latitudes (Brown et a l . , 

2001; Matsumoto et al., 2005; Wood et al., 2005; Brown et al., 2006; Bertram et al., 

2009). Brown et al. (2006) was the first field study to show a dependence on aerosol 

particle composition in a large aircraft field study over the Eastern US. Brown et al. 

(2006) related N 2O5 chemistry to sulfate aerosol particle content and observed faster 

uptake of N2O5 to the aerosol particles when the aerosol particles had high sulfate 

content. Most recently, mid-latitude field studies found N 2O5 in both coastal (Roberts et 

al., 2008) and inland (Thornton et al., 2009) regions reacts with chloride and forms nitryl 

chloride. Nitryl chloride is a photolabile nighttime reservoir that can produce reactive 

chlorine radicals when photolysed at sunrise (Thornton et al., 2009). Bertram et al. (2009) 

employed a new technique measuring the uptake coefficient of N 2O5 on ambient aerosol 

particles directly by using chemical ionization mass spectroscopy (CIMS) to measure 

reactive loss of N 2O5 when added to a flow tube reactor containing ambient aerosol 

particles.

Our research group has previously performed high latitude field studies and have 

reported aerosol surfaces densities were insufficient to account for all o f the chemical 

loss o f N2O5 at high latitudes (Ayers and Simpson, 2006; Apodaca et al., 2008). We
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implicated other reactive surfaces for N2O5 chemical loss, such as ice, either on 

atmospheric particles or in the snowpack. Ayers and Simpson (2006) measured N2O5 on 

the top o f a building, 30 meters above the local topography and found higher mixing 

ratios aloft, which is consistent with some of the N 2O5 removal being by deposition to 

Earth's snow-covered surface. Calculated lifetimes aloft ranged from minutes to several 

hours. Higher N2O5 mixing ratios further from Earth's surface is in agreement with others 

who have studied the vertical profile o f N2O5 (Brown et al., 2003; Geyer and Stutz, 2004; 

Stutz et al., 2004; Brown et al., 2007a; Brown et al., 2007b). Apodaca et al. (2008) 

observed the mixing ratios of N 2O5 to be much lower and the average lifetime was 6 

minutes under nighttime high relative humidity conditions, which is common in the 

wintertime Arctic near the surface. In these past studies, there was not a sufficient amount 

of meteorological data recorded to separate snowpack deposition from reaction on 

particles.

Here, we report upon a field campaign quantifying the heterogeneous hydrolysis loss 

of N2O5 by snowpack deposition. The deposition velocity of N2O5 helps to improve 

process-based models aimed at understanding the vertical profile of N2O5 at high 

latitudes and the fate o f NOx via the nighttime chemical pathway. Measuring a flux 

during nighttime in the Arctic is difficult due to extreme atmospheric stability. In a very 

stable atmosphere the vertical mixing is hindered and turbulence is sporadic and upper 

layers may become decoupled from the ground (Anderson and Neff, 2008). The 

experimental design to measure a flux required sufficient instrumentation and 

calculations to have an adequate fetch and neutral atmospheric conditions appropriate to
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satisfy the Monin-Obukhov similarity theory. Although the deposition velocity of N2O5 

has not been measured, its value is thought to be similar to that of nitric acid (Cadle et al. 

1985; Lovett, 1994; Wesely and Hicks, 2000). Sommariva et al. (2009) conducted a large 

scale modeling study on marine boundary layer deposition and used a value for N2O5 of 1 

cm/s based on Brown et al. (2004) reported deposition velocity of nitric acid.

In this study, we measure the N2O5 deposition flux using the aerodynamic gradient 

method. From the flux we can calculate the deposition velocity of N2O 5. In addition to 

deposition o f N2O5 to the surface, N2O 5 is also lost by reaction on atmospheric particles. 

Therefore, we can divide Reaction (R3) into two sub-processes.

N2O5 +H2O -►2HNO3 (snowpack deposition) (R3a)

N 2O5 +H2O -*-2 HN0 3  (reaction on particles) (R3b)

The measured deposition velocity of N2O5 is combined with atmospheric assumptions to 

estimate the effective snowpack deposition rate &3a (R3a). We also measured the total 

chemical removal rate o f N 2O5 via a steady-state analysis, which determines the sum of 

the loss rates k%a and k ^ .  Therefore, the relative role of the two sub-processes, snowpack 

deposition and atmospheric reactions, is determined. We conclude by discussing 

implications of these results for the deposition of nitric acid, NOx losses, and N2O5 

vertical profiles at high latitudes.
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6.2 Experimental design

The field site for the study was located in a snow-covered agricultural field 20 km 

southwest of the city o f Fairbanks (the site coordinates are 64.75929° North, 148.10618° 

West, 161 meters above mean sea level). An insulated hut on skis housed the instruments 

at this remote field site. The field study operated continuously from 5 Nov 2009 until 18 

Nov, 2009. Mildly polluted air originating from Fairbanks is carried from the northeast 

direction by a down-slope drainage flow towards the field site. The local drainage flow is 

guided by a U-shaped ridge that forms a bowl around the field site as seen in the contour 

map in Fig. 1A.

Using the contour lines in Fig. 1A, we can estimate the slope o f the field site. The 

bowl loses 6 meters of elevation in 400 meters of fetch, a change o f 1.5% or a 0.8° slope. 

The fetch is a uniform flat upwind distance from the measurement towers. Oke (1987) 

estimates that the fetch should be at least 100  times the maximum measurement height, 

which, in our case, is 2.4 meters, indicating a 240 meter fetch is required. Our site 

satisfies the minimum requirement with a 400 meter fetch. Under the common nighttime 

cold and stable air flow in the Arctic, we recognize the possibility of needing longer 

fetch. Therefore, we considered other methods as described in Horst and Weil (1994) to 

calculate the adequacy o f the fetch and are discussed in Huff (2010).
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6.3.1 Chemical measurements

A field portable instrument using the cavity ring down spectroscopy (CRDS) was 

developed in our laboratory to measure N2O5 at remote sites (Simpson, 2003; Ayers et 

al., 2005). We have used this CRDS instrument during past field studies (Ayers and 

Simpson, 2006; Apodaca et al., 2008) and the major modification we made for the 

present field study was adding a 10 meter Teflon inlet. The 3/8" (9.5 mm) inner diameter 

PFA Teflon inlet was configured with a 100 slpm bypass flow to minimize the contact 

time o f the sampled air with the inlet. The total residence time in the fast-flow inlet is 0.4 

seconds. Flow-changing studies were carried out to determine inlet loss of N2O5 on the 

tubing resulting in a transmission of 76%. The transmission of N2O5 on the inlet and 

instrumental surfaces were taken into account in the analysis resulting in corrected 

ambient mixing ratios, as has been done in past studies (Ayers and Simpson, 2006; 

Apodaca et al., 2008). In addition to the N2O5 instrument, the same high-flow inlet 

provided air to ancillary instruments that measure NOx (Thermo Environmental 42c) and 

ozone (Dasibi 1008 RS). The intake of the inlet was held on the chemical measurement 

tower and moved between two heights to quantify gradients in each chemical species 

being measured (Fig. 2, Part II).

6.3.2 Steady state analysis of N2O5 measurements

We use the steady state approximation to calculate a lifetime of N2O5 from the mixing 

ratio o f N2O5 divided by the source rate o f N2O5 (Apodaca et al., 2008),

6.3 Methods
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The source rate o f N2O5 is the rate coefficient for Reaction (R l), k\, multiplied by the 

mixing ratios of NO2 and ozone. We assume we achieve steady state rapidly (Apodaca et 

al., 2008), although this assumption is discussed later. The steady-state lifetime of N 2O5 

is used to determine the total heterogeneous hydrolysis rate of N2O 5, the sum of 

Reactions (R3a) and (R3b).

6.3.3 Near surface gradient measurements

Figure 2 shows the field configuration of the chemical inlet and meteorological 

measurement towers designed for near-surface gradient measurements. Two separate 

towers, one with a moving inlet for chemical measurements and one for meteorological 

measurements, were used so the vibration of the moving inlet did not affect the 

meteorological measurements. The measurement towers were located 2 meters upwind 

from the instrument-housing insulated hut.

The moveable-inlet tower alternated position between "up" and "down" heights, 2.35 

meters and 0.95 meters, respectively. The moveable inlet sampled the gases, N 2O 5, NOx 

and ozone, at the two levels. The up/down state o f the inlet was recorded in data files and 

used in post-processing to calculate gradients in each chemical. The moveable inlet was 

mounted on a separate tower horizontally displaced 0.5 meters from the meteorological 

tower.
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The meteorological tower supported both slow- and fast-response instrumentation.

The slow-response system consisted of two RM Young cup anemometer and wind vanes 

to measure wind speed and direction (model 03001-5) and two temperature sensors (RM 

Young 41342) at the same heights as the moveable inlet (within a few cm, as noted on 

Fig. 2) and logged as one minute averages on a Campbell Scientific CRIOx data logger. 

The meteorological tower and sampling inlet both faced into the prevailing wind 

direction at approximately the same length from the towers (within a few cm) so they 

were horizontally aligned.

The meteorological measurement tower also supported two sonic anemometers (RM 

Young model 84000) producing 10 Hz data on a separate data logger (Chaparral 

Physics). The purpose of the sonic anemometers at the same height as the low frequency 

meteorological tower instruments is twofold. First, the redundant measurements verify 

the temperature, wind speed and direction data and gradients. Second, the high frequency 

data from the sonic anemometers allow validation of our flux measurements by 

calculating the heat flux by both the aerodynamic gradient method and eddy covariance. 

The details o f the heat flux comparison by the aerodynamic and eddy covariance methods 

can be found in the supplemental material.

6.3.4 Aerodynamic gradient flux analysis

There are three main flux measurement techniques: the aerodynamic method, the 

Bowen ratio method, and the eddy covariance method (Oke, 1987; Monteith and 

Unsworth, 1990; Bocquet, 2007). The aerodynamic method uses a two (or more) point
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profile system to measure the chemicals near surface gradient and anemometers to 

measure the wind speed and direction and gradients. Using the aerodynamic method, we 

rely on the Monin-Obukhov similarity theory to derive a flux equation for N2O 5. The 

similarity theory states that under neutral atmospheric stability the surface layer is 

homogenous and the eddy diffusivity transfer coefficient o f momentum, Km , is equal to 

the gas's transfer coefficient, K N 0 (Oke, 1987; Monteith and Unsworth, 1990; Arya,

2001). The two transfer coefficients can be set equal and the unknown flux can be solved 

for using the aerodynamic approach found in Oke (1987). A negative flux of N2O5 results 

from a higher mixing ratio of N2O5 at the higher measurement level than near the surface, 

which is a downward-directed flux. To obtain the deposition velocity, we divide the 

opposite of the flux by the average mixing ratio of N 2O5,

A uA C ,,^

= -*  — (6-2)
t - ' V 20 5 N 2O s

In this equation, Au is the average difference in wind speed between the two heights, z\ 

and Z2, ACN O is the average difference in mixing ratio o f N 2O5 between the two 

heights, k is the Von Karman constant, which equals 0.4. The generalized stability 

factor, (® M® NO )”\  allows us to correct the flux ( FNi0; ) for atmospheric conditions that

are near neutral (Oke, 1987). The generalized stability factor has different equations 

under different atmospheric stabilities and we used the generalized stability factors and Rt 

range found in Oke (1987) and these factors are the same as Monteith and Unsworth
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(1990), but the R t range application is different. The average N2O5 mixing ratio is CN O .

The deposition velocity ( vd ) is independent of the amount of pollution (the amount of

N 2O 5) and is therefore more useful for modeling o f snowpack deposition. When the 

deposition velocity is positive, N2O5 is directed downward toward the surface.

The aerodynamic method for calculating the flux o f N20 5, FN̂  only applies under a

very narrow window of atmospheric stability under a nearly neutral atmosphere. A 

neutral atmosphere is defined by having negligible buoyancy effects. We can use the 

gradient Richardson number, Ru to indentify appropriate atmospheric stability conditions 

and to correct the flux for a slightly stable or unstable atmosphere. The dimensionless 

Richardson number relates the vertical gradients o f wind and temperature by taking the 

ratio of the buoyancy to shear stress, (Stull, 1988)

''a t ''

< « )
r A u

\A z  j

The linear approximation for Richardson number Eq. (6.3) is more accurate than the 

logarithmic approximation (Arya, 2001) under stable atmospheric conditions. Under 

nighttime Arctic conditions, we are more commonly under stable atmospheric conditions, 

so we used the linear approximation for the Richardson number. On the other hand, when 

the Richardson number is above 0.25, turbulence decays and the atmosphere is very 

stable, and laminar flow, once established, is stable. When the Richardson number is less 

than -1, the atmosphere is dominated by free convection (Monteith and Unsworth, 1990;
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Stull, 1988).

Outside of the gradient Richardson index range -1 to 0.25, the general stability factors, 

(Ojy.CJjy 0 )”' are unusually large or small and cannot correct the flux to account for

divergence from near neutral atmospheric conditions. As the Richardson number 

approaches 0.25, this is considered the critical Richardson number beyond which 

turbulent exchange is completely dissipated. Though the value of 0.25 is still debated and 

is only an approximation to limit o f turbulent exchange, some turbulence exchange with a 

gradient Richardson number as high as 1 (Pardyjak et al., 2002). Although other authors 

(Monteith and Unsworth, 1990; Stull, 1988; Arya, 2001) propose slightly different 

limiting values ranges and formulations for the general stability factors, we chose to 

use general stability factors and acceptable R{ ranges from Oke (1987). Two different 

general stability factor correction functions are used, one for positive R t values, and one 

for negative R t values. Because these general stability factors become large towards 

limits, we only analyzed data in the range -0.1 < Ri < 0.12. We used a narrow range of Rj 

values to ensure we not reaching our fetch limitations, and based on a method described 

in Horst and Weil (1994), we are measuring > 90% of the true flux.

6.4 Results

Chemical species (N 2O 5, N O 2, and O 3) were averaged over 30 minute intervals.

Within each half-hour data-averaging period, there are 15 minutes of “up” and 15 

minutes of “down” data. The two individual state averages were differenced and divided 

by the height difference to get the chemical gradients. Steady-state chemical lifetimes
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were calculated using temperature-dependent formation kinetics. Wind speed and 

temperature differences were calculated from the two inter-calibrated instrument sets. 

The gradient Richardson number, i?i, was calculated to determine periods where the 

stability was appropriate for the calculation of fluxes.

First, a filter was applied for the wind direction and a solar flag for nighttime data to 

find appropriate nights for analysis. The data were then selected by calculating the 

Richardson number in Eq. (6.3) and using the narrow range of 0.12 > R [ > - 0.1. From the 

results of the gradient Richardson number calculation, wind direction, and instrument 

calibrations we focused our analysis on three nights of the campaign. The three nights 

were 5, 10 and 11 Nov, 2009. On these three nights the parameters were met for 

calculating a deposition velocity except for one half hour period on 5 Nov, 2009 where 

the Richardson number was 0.16, and was slightly out of range; however, this point was 

included in the analysis for completeness.

In Fig. 6.3, all three nights had neutral to near neutral atmospheric conditions. The 

temperature averages on the 5, 10, and 11 Nov 2009 were -4°, -18°, -14°C, respectively. 

The highest temperature gradient was seen on 5 Nov with a 1°C difference in the two 

heights and a stable atmosphere. In this case, the upper level was warmer indicating an 

inversion, which is typical of cold, stable Arctic nights. Most o f the data had small to no 

inversions, which was appropriate o f measuring a flux. The average wind speeds were 

2.3, 2.7 and 2.5 m/s, respectively. The difference in wind speeds and the difference in 

N2O5 mixing ratios were used to calculate the flux, the numerator in the deposition 

velocity Eq. (6.2). Figure 6.4 shows a histogram of the measurements of the deposition
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velocity. More than 90% of the deposition velocities are positive or directed downward 

toward the snowpack. The average deposition velocity is 0.59+/-0.47 cm/s.

In addition to measuring chemical gradients and comparing the gradient data to the 

meteorology, we also used chemical measurements to calculate the steady state lifetime 

o f N2O5 using Eq. (6.1). The steady state lifetime represents total chemical loss of N2O5, 

including snowpack deposition and atmospheric reactions. The time series o f the average 

NO2, O3, source rate, N2O5 and steady state lifetime of N2O5 are displayed in Fig. 6.5.

The mixing ratio o f NO2 in ppbv ranges from a few ppbv to 20 ppbv at night. Although 

we found large differences in N2O5 between heights (15% on average and up to 50%), the 

difference between NO2 and ozone between the heights was small. The average 

difference in NO2 between the two measurement heights varied by less than 2.6 +/- 3% 

and the ozone varied by 1 +/- 2%. Because the gradients in all chemicals other than N2O5 

were small, Fig. 6.5 shows half-hour averages independent o f the up/down state of the 

sampler.

The average steady state lifetime of N2O5 is 6 minutes. The transport timescale of 

polluted air to reach the site from Fairbanks given an average measured speed of 2.3 m/s 

and 20 km distance and assuming direct transport is around 2 hours. The transport 

timescale is longer than the maximum calculated lifetime of N2O5 of 10 minutes, 

reinforcing the picture that the steady-state approximation is decent in this application.



6.5.1 Deposition velocity of N2O5

Deposition velocities are parameters used to model the effects of nitrogen oxides on 

the environment. There are many studies using micrometeorology methods to measure 

trace gas dry deposition velocities ( Lovett, 1994; Wesely and Hicks, 2000; Watt et al., 

2004; Muller et al., 2009). Deposition velocities above a snow pack have been measured 

for ozone and our summarized in, Helmig et al. (2007) and Wesley and Hicks (2000). 

Arctic studies o f the deposition velocities to snow pack have been measured for ozone 

and found to be less than or equal to 0.01 cm/s (Helmig et al., 2009). Wesely and Hicks 

(2000) summarized N O  and N O 2 deposition velocities and found they are generally 

negligible. There are several studies quantifying the emission of N O x from the snowpack 

and though N O x emission from the snowpack can be significant, it is driven by 

photochemistry (Honrath et al., 2002; Jones et al., 2001), which is not relevant in the 

present nocturnal study. Jones et al. (2001) studied N O x emission form the Arctic 

snowpack by measuring N O 2 at two different heights and found a diumal cycling of N O x 

with deposition velocities near zero at night. To our knowledge, there are no reported 

deposition velocities for N 2O 5. A positive deposition velocity means N2O5 is reacting to 

other species on snowpack surfaces. At high latitude in winter, snow pack covers almost 

the entire ground surface. The snowpack deposition is a reactive loss of N2O5 and it is 

therefore important to quantify the deposition velocity for understanding the fate of 

nitrogen oxides in the high latitude environments.

6.5 Discussion
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Our measured downward directed deposition velocity of N2O5 to the snowpack is on 

the order of 1 cm/s and is in the same range as previously reported values for nitric acid 

over snow (0.5- 1.4 cm/s) (Cadle et al., 1985). In Fig. 6.4, the average deposition velocity 

for all three focus nights is 0.59 +/-0.47 cm/s.

6.5.2 Comparisons of N2O5 chemical removal rates

To compare the atmospheric N2O5 chemical removal rate arising from snowpack 

deposition to the total steady state chemical removal rate, we need to estimate an 

effective deposition layer height. The profile of the N 2O5 deposition flux through the 

boundary layer is unknown, but decays to zero at the boundary layer height by the 

definition that the boundary layer is the region influenced by surface chemical processes. 

Because the flux decreases with height, the effective layer height, zeff, over which N 2O5 is 

deposited, is less than the boundary layer height under moderately stable conditions.

The profile of the momentum flux is represented by the shear stress equation for a 

moderately stable boundary layer and decays toward zero as a power law, as shown in 

Arya (2001). The local scaling law that applies to the power law in Arya (2001) was 

originally proposed by Nieuwstadt (1984) showing that local friction velocity parameters 

and temperature scales are similar to the Monin-Obukhov similarity theory parameters 

under slightly stable boundary layer conditions. The vertical profile of the N 2O5 

deposition flux has the same shape as the momentum flux profile based the Monin- 

Obukov similarity theory, which assumes that all the fluxes are the same in the surface 

layer, typically the lower 10% of the boundary layer (Oke, 1987; Monteith and
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Unsworth, 1990; Arya, 2001). Using this flux profile, we show in the supplemental 

material that zeff is approximately 15 meters. The N 2O5 chemical removal rate arising 

from snowpack deposition (R3a) is then given by

. (6.4)
Z e f f

For these three nights, the average chemical removal rate is 0.024 min' 1 for snowpack 

deposition (k 3a). This chemical removal can be compared to the total removal rate that is 

estimated from the steady-state lifetime o f N2O5 by

k3 1 / zn2osss * (6-5)

During these three nights, we find that the total chemical removal rate, k3, of N2O5 is 0.18 

min’1.

From these results, we find that, on average, about 1/8 of the chemical removal of 

N2O5 arises from deposition o f N 2O5 to the surface. However, there are a number of 

reasons that this estimate of the fraction of N2O5 depositional loss might be larger. First, 

the calculation o f the effective surface layer relies upon an unknown flux profile for N2O5 

and similarity theory. Because boundary layer height is difficult to determine under 

stable Arctic conditions, (Anderson and Neff, 2008) an error in the estimation of zeff from 

the boundary layer height would directly impact the fraction o f chemical removal that is 

due to surface deposition. Second, although the fetch in our experiment satisfies the Oke 

(1987) criteria, other authors (Horst and Weil, 1994; Horst, 1999) indicate that during
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stable atmospheric conditions, more fetch is required. If the fetch were not sufficient, 

then the gradient in N 2O5 would have not fully developed at the point of measurement 

and the deposition velocity would be underestimated. A larger value of deposition 

velocity would increase the fraction of the chemical removal that is due to the surface 

deposition. Lastly, it is possible that the system does not completely achieve steady state, 

in which case the total chemical removal of N2O5 would be overestimated. The majority 

of these factors would raise the fraction o f chemical removal that is due to deposition to 

the snowpack, possibly even making it the dominant process for air masses sampled 

within a few meters o f the snowpack.

The other possible chemical removal o f N2O5 is heterogeneous hydrolysis on aerosol 

particles. Apodaca et al. (2008) found that measured aerosol particle loadings along with 

reasonable assumptions for reactive uptake o f N2O5 ( ^ 205) were insufficiently fast to 

explain the total steady-state removal of N2O5 measured earlier at this same field site. 

Apodaca et al. (2008) also found chemical removal of N 2O5 is faster in the presence of 

ice saturation conditions, which was interpreted as possibly due to reactions on ice 

particles in the atmosphere or reactions on the snowpack. Reactions on the snowpack 

would give the signature o f increased chemical removal of N 2O5 for ice-saturated 

airmasses because air that comes in contact with snowpack will become saturated with 

respect to ice by either sublimation of the snowpack ice or condensation of super

saturated water vapor onto the snowpack. Therefore, the current measurements, which 

indicate a significant role for snowpack deposition combined with the result that aerosol
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processes are probably too slow to be a major sink of N2O5 and the correlation with ice 

saturation all appear to point to a significant role for deposition of N2O5 to snowpack as a 

major process for air sampled within meters of the snowpack surface. This finding in 

combination with the fact that the Arctic wintertime conditions are very often stable with 

hindered vertical mixing indicates that removal process of N2O5 even just tens of meters 

from the Earth's surface are likely to be quite different and probably significantly slower. 

If the chemical removal o f N2O5 is significantly slower at higher altitudes, N 2O5 may act 

as a reservoir and transport farther than would be indicated by ground-based studies 

alone. Aircraft, or possibly tethered balloon studies would be able to assess the question 

o f the fate of N2O5 aloft and possible role for frozen or unfrozen aerosol particles in that 

atmospheric layer.

6 .6  Conclusions

The average deposition velocity towards the snowpack surface of N2O5 is 0.59+/-0.47 

cm/s. The calculation o f this deposition velocity is dependent upon the fetch being 

sufficient for complete development of the near-surface gradient as well as general 

stability factor corrections, which may act to underestimate the actual deposition velocity. 

This deposition velocity parameter can be used in models to help understand the fate of 

NOx pollution at high latitudes. The deposition velocities along with an assumed flux 

profile were used to approximate the chemical removal rate arising from deposition and 

to compare this rate to the total steady state chemical removal rate. In this comparison, 

we find that deposition to snowpack is responsible for 1/8 of the total removal, and also
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that the actual fraction o f N2O5 deposition to snowpack may be more than this estimate. 

Therefore, we conclude that deposition of N2O5 to the snowpack is a significant and 

possibly the dominant process for air sampled with a few meters above snowpack. 

Airmasses aloft may experience slower losses, which would lead to enhanced transport of 

N2O5 aloft as well as an important role for vertical mixing in the fate of N2O5 emitted at 

high latitudes.
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Figure 6.1. Field site location. A) contour map of field site with a black outline of the 

field site area. B) Expanded satellite image of the inside of the black box area on 

map A. The black arrows in map B represent the wind direction selection criteria. 

The white line is the dominant wind direction with a maximum distance to the trees 

of 400 meters (fetch). The yellow marker is location of field site. During the field 

campaign, the field was covered with snow.
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Figure 6 .2 .1 The plan view and orientation of the two measurement towers. II. 

Elevation view of the moving inlet tower (A) and the meteorological tower (B). All 

distances are in meters.
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Figure 6.3. Time series of the Richardson number and components. Temperature 

(°C), wind speed (m/s), Richardson number and mixing ratio of N2O5 in pptv for A. 

5 Nov 2009, B. 10 Nov 2009 and C. 11 Nov 2009 . The red solid trace is always the
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lower height and the blue dashed trace is the higher measurement height. The black 

solid line, 3rd axis from the top is the Richardson number.
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Figure 6.5. Times series of steady state lifetimes of N2O5 and chemical components. 

From top to bottom are the mixing ratios of NO2 (ppbv), O3 (ppbv) and N2O5 (pptv), 

source rate of N2O5 (pptv/hr) and the steady state lifetime of N2O5 as TN2O5 (min) on 

three nights 5,10 and 11 Nov 2009.
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Chapter 7 Comparison of the aerodynamic gradient to eddy covariance method

The eddy covariance (EC) method is a more direct method to measure fluxes than the 

aerodynamic gradient method. However, measurements using the EC method require 

high-frequency (at least 10 Hz) observations of both air motion and the species 

interacting with the surface. Because our chemical instruments and inlet have a response 

time slower than 1 second, we cannot use the EC method to measure N20s deposition 

fluxes. However, the meteorological observations were sufficient to measure the sensible 

heat fluxes by both the aerodynamic gradient method and the EC method, allowing 

validation o f the gradient method for that property. Similarly, we have used the EC 

measurements to calculate the friction velocity and stability parameter, zJL, to ensure the 

boundary layer parameter calculations.

7.1 Boundary layer characteristics

Because the aerodynamic method is applicable under very restricted stability 

conditions, it is necessary to ensure that little change in flux occurs across the 

observations heights.

2 Expanded version o f Supplemental material submitted to Atmospheric Chemistry and 
Physics Discussions as a part of “Huff, D.M., Joyce, P.J., Fochosatto, G.J., and Simpson, 
W.R. Deposition o f dinitrogen pentoxide, N2O5, to the snowpack at high latitudes, 
(submitted to ACPD, 22 Sept 2010)”
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In addition, the two measurement heights need to remain in the same atmospheric 

layer. These conditions are achieved if  the highest measurement point remains below 

10% of the boundary layer height (Oke, 1987; Monteith and Unsworth, 1990), therefore 

constraining the measurements in the "constant flux layer". Because the highest 

measurement height is 2.38 meters, this criterion requires boundary layer heights of more 

than 24 meters. There are slightly different percentages given for the estimate of the 

constant flux layer and Stull (1988) estimates the boundary layer to be the lowest 5%. In 

this case the criterion would be 48 meters minimum boundary layer height, or 20 times 

the highest measurement height. In addition to the percentage of the constant flux layer, 

there are several different parameterizations to define the boundary layer height. We have 

chosen the most applicable to our data, but note the difficulty in estimating a boundary 

layer height under stable Arctic conditions (Anderson and Neff, 2008).

The gradient boundary layer height, H g, is given by (Arya, 2001)

Hg =  1-2w »(/jV )”0 5 . (7.1)

In this equation, u, is the friction velocity, /  is the Coriolis force, and N  is the Brunt-

Vaisala frequency, which is given by

(7.2)
0  Az

In Equation (7.2), g  is the gravitational constant, 6  is the potential temperature, and z is 

the measurement heights. Figure 7.1 shows the gradient boundary layer height during
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each night o f the campaign during which we measured the deposition velocity. The 

gradient boundary layer height using Eq. (7.1) ranges from 15 meters to 150 meters for 

the three nights under study. The average gradient boundary layer height during the 

observation periods used to measure fluxes was 45 meters.

The friction velocity can be calculated using the gradient method by

In Equation (7.3), O m, is the stability correction factor for momentum and is unity, less

than unity or greater than unity under neutral, unstable or stable conditions respectively. 

The variable U, is the wind speed, k the Von Karman constant, which has the value 0.4, 

and the z; values are the measurement heights. Figure 7.2 shows the friction velocity for 

the three study nights that we calculated a deposition velocity. The average friction 

velocity using the gradient method was 0.13 +/- 0.02 m/s.

The calculation o f the friction velocity, w,, using eddy covariance, EC, observations is 

given by Stull (1988),

Where the primed variables are the turbulent components and the mean, is represented by 

a bar over the variable. For example, the vertical component o f the wind, w, has its 

fluctuations and means defined by

(7.3)

(7.4)
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w = w - w . (7.5)

All properties (e.g. vertical wind, w) are measured at 10 Hz, and the turbulent quantities 

are calculated based on the streamline coordinates rotation and mean subtraction by half

hour block with the corresponding de-trending of the signals. Similar separations of 

fluctuations exist for horizontal wind components, u and v, and temperature, T.

The Obukhov length, L, is given by

The product w'O' is the covariance of the vertical wind velocity, w, and the potential 

temperature, 6 .  In Equation (7.6), the friction velocity is calculated from high frequency 

data using Eq. (7.4). In Fig. 7.2, the average friction velocity for the eddy covariance 

method was 0.09 +/- 0.05 m/s.

The eddy covariance derived stable boundary layer height, H , is (Arya, 2001)

In Eq. (7.7), d  is a constant at 0.3, u, is the friction velocity ,/is the Coriolis force and L 

is the Obukhov length determined using Eq. (7.6). The third night 11 Nov, 2009 is 

marginally unstable and instead we use the following formula from Mahrt (2003),

ul 6
(7.6)

k g (w '0 ')

H  = d ( u » L / f ) 05 (7.7)

H  = 0 . 6 ( u j f ) . (7.8)
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Equation (7.8) uses the friction velocity (u t ) divided by the Coriolis force (J). 

Zilintinkevich and Baklanov (2002) summarize several boundary layer height equations 

that are in the literature including Mahrt (2003).

In Fig. 7.1., the first two study nights, 5 and 10 Nov, 2009 are marginally stable 

nights and the boundary layer height cannot be determined using Eq. (7.1) because the 

Brunt-Vaisala frequency will be imaginary and instead we used Eq. (7.8). The red solid 

line with markers in Fig. 7.1 represents the results of using the gradient boundary layer 

Eq. (7.1). In Fig. 7.1 the eddy covariance method of calculating a boundary layer height 

(Eq. 7.7) is represented by the black solid line. Equation (7.7) was used to calculate the 

boundary layer height for the first two nights under neutral to slightly stable conditions 

with an average o f 39 meters. In Fig. 7.1, on the third night the conditions were slightly 

unstable. Under these conditions, we calculated a negative L using the eddy covariance 

method so we used Eq. (7.8) to calculate the boundary height represented by the blue 

solid line. Using Eq. (7.8), we find an average o f 38 meters for all three nights. When the 

Obukhov length is negative (11 Nov 2009) the estimate of boundary layer height is not 

reliant on the turbulence length scale (Arya, 2001). Calculating the boundary layer height 

shows that even under the most restricted conditions (i.e., H ^ 2 A  m) the sampling height 

(2.38 meters) remains within the constant flux layer a majority of the time.

The friction velocity can be used to filter data when the wind effect on the surface is 

too large and no measurable gradients will exist, approximately > 0.5 m/s or < 0.05 m/s, 

but the threshold is not agreed upon (Arya, 2001, Andreas et al., 2004). The threshold
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varies with experimental instruments, such as cup or sonic anemometers and study site 

constraints. Andreas et al. (2004) found an upper limit of friction velocity for blowing 

snow particles at > 0.3 m/s. Bocquet (2007) used a minimum threshold o f 0.05 m/s 

because cup anemometers were used. We used sonic anemometers for the EC method and 

did not have a threshold, because our maximum friction velocity was 0.28 m/s for study 

nights 5, 10 and 11 Nov, 2009.

Figure 7.3 correlates the stability parameter calculated by the eddy covariance and to 

the same parameter calculated by the aerodynamic gradient method and the agreement is 

reasonable with an r2 = 0.56. Comparing the stability parameter by the eddy covariance 

method to the same parameter calculated by the aerodynamic gradient method, the results 

are similar to other authors Bocquet (2007).

The Obukhov length scale, L, is an important parameter that is also used in the stability 

parameter relationship (Arya, 2001) z/L. This relationship is used to characterize the 

atmospheric stability similar to the Richardson number (Eq. 6.3). The height, z, in meters 

is the sonic anemometer height and L, as mentioned earlier, is the Obukhov length in 

meters. The Obukhov length, L, can be negative or positive and corresponds to an 

unstable or stable atmosphere for the stability parameter z /L, similar to the Richardson

number. When the covariance w '6' in the denominator of Eq. (7.6) is positive, then L is

negative for an unstable atmosphere. When w '0' is negative the result a positive z/L 

stability parameter. To compare the stability parameters the Richardson number to z/L, 

the following corrections factors need to be used from Kaimal and Finnigan (1994):
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Rj = z/L (for unstable conditions R, < 0) (7.9a)

Ri = z/L (1+5 (z/L))'1 (for stable conditions /?, > 0). (7.9b)

We compared our results for the Richardson number, which we used to define the 

acceptable range of 0.12 > Rj >  -0.1 for measuring a flux, to z/L using the sonic 

anemometer data.

7.2 Comparison of heat flux measured by eddy covariance and gradient method

To validate the use of the aerodynamic gradient method, we compared sensible heat 

fluxes measured by the aerodynamic gradient method to the eddy covariance method. 

The eddy covariance (EC) derived sensible heat flux, Qec, is (Arya, 2001)

In Equation (7.10), p  is the air density, cp is the heat capacity. Similar to Eq. (7.4) w ’ is 

the vertical turbulent component o f the wind. The temperature, T ’ is a scalar quantity and 

also averaged to a half hour together w  T ’ is the covariance of the vertical wind and 

temperature.

Q ec ~  PCpW'T' ■ (7.10)

The aerodynamic gradient method can also be used to calculate the sensible heat flux,

Qaero, using an equation similar to Eq. (6.2) in the Chapter 6 , (Arya, 2001)

Qaero = pC p
AuAT (7.11)

[ln( z 2 / z,) ]2
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Note that the same generalized stability flux correction factors are used in Eq. (7.11) and 

Eq. (6.2) in the Chapter 6 . We use the generalized stability correction factor equation 

from Oke (1987) for both gradient flux calculations. The use of these correction factors 

is critical in arriving at a good correlation between the two methods shown below, and 

thus it is important that we consistently use these validated factors in the calculation of 

N2O5 deposition velocity in the Chapter 6 .

The heat fluxes are measured by the two different methods (Fig. 7.4) and are in good 

. 2
agreement with an r  = 0.76, importantly, the slope is within standard error of unity. The 

heat flux ranged from + 8  to -70 W/m2, with the average heat flux of -5.4 W/m2. At the 

larger negative heat flux values, the atmosphere becomes increasingly stable, requiring a 

large stability correction factor. The effect o f these large corrections is seen in the high 

scatter at negative heat flux values.

7.3 Estimation of the height of N2O5 snowpack deposition

In a stable boundary layer, the flux is a function of height, with a maximal value at the 

surface that decreases to zero at the top of the boundary layer. The shape o f this flux 

profile is not known for N2O5, but by extension of the similarity theory, we expect that 

the shape o f the deposition flux profile is similar to that of the momentum flux profile 

r ( z )  Micrometeorological observations o f the stable boundary layer typically found in 

the Arctic indicate that the momentum flux profile is described by a power law, (Arya, 

2001)
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t( z)  = p u l  (1 -  z / H ) a' . (7.12)

The exponent value, oti, can change depending upon the development of the stable 

boundary layer (Arya, 2001), but is often assumed to be 1.75 (Lenschow et al., 1988; 

Smedman, 1991). If we assume the same power law dependence for the flux profile of 

N2O5, we find that the vertical dependence o f the flux is

In this equation, the surface flux, which we have observed, is indicated by the "surf' 

subscript, and the flux is a function of height, z. We define the effective height for N2O5 

deposition, zeff, by the height o f the box profile (constant flux with height through some 

effective height, zeff) with the same integral as the power law flux profile, Eq. (7.13). The 

result is

We use the average boundary layer height, H =  43 meters, and ai = 1.75, to find that zes  -  

15 meters.

(7.13)

H
(7.14)
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Figure 7.1. Boundary layer heights. Boundary layer is H in meters for 5 Nov 2009, 

10 Nov 2009 and 11 Nov 2009. The red line and marker traces are always the 

boundary layer height (H g) using the aerodynamic gradient method and Eq. (7.1). 

The black solid trace is eddy covariance method (H )  using Eq. (7.7). The blue 

dotted line trace is the boundary layer height using the eddy covariance method and 

Eq. (7.8).
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Figure 7.2. Time series of the friction velocity, u , (m/s). The 3 selected nights are 5 

Nov 2009,10 Nov 2009 and 11 Nov 2009. The red line and marker trace is the 

aerodynamic gradient method of calculating the friction velocity, using Eq. (7.3) and 

the black solid trace is eddy covariance (EC) method to calculate the friction 

velocity using Eq. (7.4).
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Ri (aerodynamic method)

Figure 7.3. Comparison of the stability parameters. The stability parameter, the 

Richardson number, R i  calculated by the aerodynamic gradient method and by the 

eddy covariance method. R { (eddy covariance) is calculated using the relationship 

z / L  and Eq. (7.9a and 7.9b).
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Figure 7.4. Comparison of the sensible heat fluxes. The eddy covariance method, 

Q e c »versus sensible heat flux by the aerodynamic gradient method, Qaero. The 

errors are reported as +/- 1 standard deviation.
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Chapter 8  Measurements of N2O5 mixing ratios and lifetimes aloft at high latitudes3

The vertical profile o f dinitrogen pentoxide, N 2O5, is important for nighttime 

chemistry and implicates different loss mechanisms near the Earth’s surface and aloft at 

high latitudes. We conducted a field campaign in Fairbanks, Alaska during March, 2010 

on top of a building, at a height o f 30 meters from the local topography to measure the 

chemical removal rate and steady state lifetime o f N2O5 decoupled from the Earth’s 

surface. The average steady state lifetime of N2O5 aloft was 44 minutes with a maximum 

lifetime greater than two hours. The transport distance from source to the field site is 

probably comparable to these inferred steady-state lifetimes, possibly invalidating the 

steady-state assumption and implying an even longer lifetime than the steady-state 

method calculates. The lifetimes o f N2O5 are compared under different meteorological 

conditions that occurred during the sampling period and recent observations from our 

previous field studies performed near the Earth’s surface. We found that the N2O5 mixing 

ratio increases with height and that the steady state lifetime of N2O5 are a factor of 5 

longer aloft than near the Earth’s surface at high latitudes during winter.

3Huff, D.M., Joyce P.L., Donohoue D.L., Simpson, W.R.: Measurements of N 2O5 mixing 
ratio and lifetimes aloft at high latitudes, (In preparation for ACPD).
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The role of nocturnal nitrogen oxide chemistry in the removal of pollutants and 

formation o f nitric acid is especially important at high latitudes where dark and cold 

conditions dominate during winter. The chemical family N O x (N O + N O 2 ) is a combustion 

pollutant emitted by industry, home heating and automobiles. As this pollution ages, it 

forms the nitrate radical, N O 3, and dinitrogen pentoxide, N2O5. The nitrate radical is 

formed from the oxidation o f N O x at night, when the photochemical processes that 

degrade N O 3 are suppressed and the formation of N2O5 is favored (R1-R3).

N O 2 +  O3 —* N O 3+O 2 ( R I )

N O 2 +  N O 3 ^ N 20 5 (R2)

Surface
N2O5 + H20  —► 2HNO3 (R3)

Reaction (R3) is the heterogeneous hydrolysis of N2 0 5> which requires a surface to 

catalyze the reaction to form nitric acid. The process of N2O5 reacting with a surface 

depends on the atmospheric processes aloft coupled with surface depositional processes. 

The atmospheric processes include interactions with aerosol particles, super cooled water 

droplets and ice particles that all may be present in some form in the atmosphere at high 

latitudes. The depositional processes include chemical loss of N2O5 due to deposition to 

the snowpack.

Several studies have measured the vertical profile o f N 2O5 and found that its mixing 

ratio increases with height (Brown et al., 2003; Stutz et al., 2004; Brown et al., 2007a;

8.1 Introduction
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Brown et al., 2007b). Brown et al. (2007b) conducted a field study on a 300 meter tower 

to get a high-resolution vertical profile o f N 2O5 mixing ratios near the Earth’s surface up 

to 300 meters. Brown et al. (2007b) found three distinct layers: the surface layer (20 m or 

less), boundary layer (up to 150 m), and residual layer (>150 m). The mixing ratio of 

N2O5 increased with height through the boundary layer (150 m) and then stabilized at a 

constant mixing ratio. Brown et al. (2007a) found similar results during an aircraft study 

over the Northeast US. The aircraft measurements did not penetrate the boundary layer, 

but in situ N2O5 measurements were made simultaneously at the surface. Brown et al. 

(2007a) found higher mixing ratios aloft, as high as 1 ppbv of N2O5 (> 150 m), than near 

the surface. They also found much longer lifetimes of N 2O5 aloft (> 150 m) implying that 

different chemical loss mechanisms occur near the surface. These findings imply that 

NOx is a sink for ozone and a reservoir o f NOx aloft (Brown et al., 2007a). Stutz et al. 

(2004) was in agreement with these findings. They found calculated steady state N 2O5 

mixing ratios increased with height up and a maximum mixing ratio of 300 pptv aloft in a 

Texas air quality study (TEXAQS).

In addition to measuring the vertical profiles of N2O5, we can determine the efficiency 

o f the reaction o f gaseous N2O5 colliding with the surface of submicron particles by 

measuring the reactive uptake coefficient of N2O5, y. The reactive uptake coefficient of 

N2O5 has been studied in the lab (Mozurkewich and Calvert, 1988; Kirchner et al., 1990; 

Hanson and Ravishankara, 1991; Van Doren et al., 1991; Hu and Abbatt, 1997) and at 

mid-latitudes in the field (Brown et al., 2006; Bertram and Thornton, 2009). These lab
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and field experiments investigated N 2O5 heterogeneous hydrolysis and the dependence of 

the rate of hydrolysis on aerosol chemical composition.

We have conducted several high latitude field studies that measured the mixing ratios 

and steady state lifetimes o f N2O5 (Ayers and Simpson, 2006; Apodaca et al., 2008). We 

reported fast lifetimes on the order o f 10 minutes near the Earth’s surface and average 

N2O5 mixing ratios o f 20-40 pptv near the surface and few hundred pptv aloft. In addition 

we measured the deposition velocity of N 2O5 to be downward at 0.6 cm/s (Huff et al., 

2010). This deposition velocity caused a significant loss o f N2O5 near the Earth’s surface. 

Snowpack deposition for N2O5 implies additional chemical loss mechanisms near the 

Earth’s surface.

Modeling studies investigated the heterogeneous hydrolysis of N2O5. Dentener and 

Crutzen (1993) found that during the winter 80% of high latitude NOxis lost by Reaction 

(R3), the dominant dark pathway to nitric acid. In addition, recent models have used 

different parameterizations o f y from laboratory and field studies to identify the 

dependence o f N2O5 on aerosol composition and temperature (Riemer et al., 2003; Evans 

and Jacob, 2005). Bertram and Thornton (2009) parameterized N2O5 based on y’s 

dependence on H2CKI), Cl' and NO3' for organic and inorganic mixed aerosol particles.

Due to additional chemical reactions o f NOx occurring during profile measurements, 

modeling been used to interpret the vertical profiles. Modeling vertical profiles of N 2O5 

(Geyer and Stutz, 2004) shows different possible loss mechanisms near the Earth’s 

surface and aloft. Geyer and Stutz (2004) used dry deposition velocities near the Earth’s
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surface from HNO3 and reactive uptake coefficients of N2O5 (y) from the laboratory study 

by Hu and Abbatt (1997). Geyer and Stutz (2004) found that the model results followed 

experimental data showing different loss mechanisms for N 2O5 at different altitudes.

The heterogeneous reaction of N2O5 (R3) is an important reaction for NOx loss and 

needs to include the partitioning of different chemical loss mechanisms with increasing 

altitude. Here, we report on steady state lifetimes and mixing ratios of N2O5 aloft and 

compare these lifetimes to those obtained from snowpack deposition studies (Huff et al., 

2010). Since the past measurements o f N2O5 (Ayers et al., 2006) on the roof of the 

Geophysical Institute at the University of Alaska Fairbanks, in Fairbanks Alaska, we 

have added an improved inlet for sampling unobstructed air flow, meteorological data of 

wind speed, wind direction, temperature and a visibility monitor. We also compare 

different meteorological conditions and the visibility to surface area relationship to 

atmospheric particles. These particles may include ice particles and super-cooled water 

droplets in addition to aerosol particles, which may increase the surface area available for 

chemical loss of N 2O5 at high latitudes.

8.2 Experimental

8.2.1 Instrumental and site descriptions

To measure the mixing ratio and steady state lifetime of N2O5 aloft, we chose a field 

study site on top of the Geophysical Institute’s Elvey Building. Downtown Fairbanks is 

located approximately 6 km from the Geophysical Institute (Fig. 8.1). The roof top is 85 

meters above the Tanana valley floor and 220 meters above sea level. However, our 

sampling location is on the Northwest (NW) side of the building and the topography is
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sloping. The height o f the Geophysical Institute’s Elvey building is 30 meters high from 

local topography in the main sampling direction and the Tanana Valley floor 85 meters 

below is south o f the building. The instruments were located on the NW comer of the 

building and the north-facing side o f the roof is aligned at 90 degrees to the sampling 

inlet. The main flow inlet for sampling all chemical gases (N2O5, NOx and O 3) was 10 

meters long and attached securely at the NW comer edge of the building, 3 meters up and 

1 meter out from the building housing the instruments. The sampling inlet direction and 

location minimized influences from the building, rooftop objects and surrounding 

buildings. The data was only analyzed when the wind direction was greater than 300 

degrees and less than 30 degrees in true coordinates in order to minimize influence from 

the building’s edge.

A field-portable instrument using cavity ring down spectroscopy (CRDS) was 

developed by our laboratory group to measure N2O5 at remote sites (Simpson, 2003; 

Ayers et al,. 2005). We have used this CRDS instrument during past field studies (Ayers 

and Simpson, 2006; Apodaca et al., 2008, Huff et al., 2010 [submitted]). In addition to 

the CRDS, instruments that measure NOx (Thermo Environmental 42c) and ozone 

(Dasibi 1008 RS) were also sampled from the same inlet.

The pole that held the high flow sampling inlet had meteorological instruments 

including an RM Young cup anemometer and wind vane to measure wind speed and 

direction (model 03001-5), a temperature sensor (RM Young 41342) and a relative 

humidity and temperature sensor combined (HMP 45). These instruments were at the 

same height as the sampling inlet and logged one-minute averaged data on a Campbell
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Scientific CRIOx data logger. Located 10 meters east from the chemical and 

meteorological instruments was a visibility monitor (Vaisala FS11) that measured 

visibility and logged in 1 minute intervals. All instruments collected data continuously 

from 16-31 March, 2010.

8.2.2 Steady state assumptions

Given the close proximity to town the steady state analysis is complicated and the air 

parcel transport to the site becomes important. The site’s meteorology is detailed in the 

discussion section. We used the steady state approximation to calculate a N2O5 lifetime 

from the N2O5 concentration divided by the N2O5 source rate (Apodaca et al., 2008),

r  K o , 1  f 8 n
“ k \ N 0 2 \ 0 , ]  ' ' '

The N2O5 source rate is given by the rate coefficient for Reaction (R l), k\, multiplied by 

the concentrations o f NO2 and ozone.

8.3 Results

The mixing ratios o f the chemical species (N2O5, N O 2, and O 3) were averaged to 1 

minute intervals. The N 2O5 source rate was calculated using the denominator in Eq. (8.1) 

and the steady state lifetime was calculated using Eq. (8.1). The relative humidity, 

temperature, wind direction, and wind speed were averaged over 30 minute intervals.

The entire meteorological time series for the field study is displayed in Fig. 8.2. The 

relative humidity with respect to ice is only saturated (>100%) on one night, 16 March, 

2010. The average temperature was 4.6°C with minimum temperature -15.2°C on 27 

March, 2010. The wind direction was used to filter out the data from > 300 degrees and <
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30 degrees. We then filtered out for wind speeds less than 1 m/s, the threshold o f the cup 

anemometers. The source rate, mixing ratio and lifetime of N2O5 were averaged to one 

minute. A filter was applied with a minimum value of the source rate of 10 pptv/hr in 

order to filter out clean, unpolluted air masses in the steady state lifetime calculations. 

The N2O5 source rate threshold allows us not to analyze clean air episodes where 

negative steady state lifetimes o f N2O5 would occur due to levels of N2O5 near the 

detection limit o f 2 pptv. During the study we had a high synoptic pressure gradient form, 

which resulted in uncharacteristically high winds and unpolluted air flow into Fairbanks 

area from 21-26 March, 2010.

In Fig. 8.3 we compare the steady-state lifetimes of N2O5 on three nights with 

different meteorology in which all of our meteorological (wind speed and direction) and 

chemical (> 10  pptv/hr source rate) filters were applied. The first night, 16, March 2010 

is characterized by high humidity with respect to ice (> 10 0%), colder temperatures and a 

NNW wind direction. The average steady state lifetime of N 2O5 is 20 minutes. The 

second night, 20 March, 2010, has the same wind direction, temperatures, and low 

relative humidity o f 48% and a steady state lifetime of 22 minutes. The third night, 27 

March 2010, also has low relative humidity with respect to ice (47%), slightly warmer 

temperature average and similar wind direction (NNW) and an average lifetime of 90 

minutes.
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8.4.1 Steady state lifetimes of N2O5 aloft

In order to compare the steady state lifetimes of N2O5 aloft, we need to make sure our 

steady state assumptions are valid and our transport time of the polluted air flow to our 

site is longer than the observed steady state lifetimes of N 2 O 5 . In Fig. 8.3 the source rate 

and mixing ratio of N2O5 are plotted on the same axis against time for the three study 

nights. On all three nights the source rate follows the mixing ratio of N 2 O 5 , suggesting 

that the N2O5 is at steady state. On the first two nights we have a steady state lifetime 

calculated using Eq. (8.1) o f 22 minutes.

The transport time for the polluted air flow to reach the observation site is part of a 

drainage flow with complex characteristics. The straight line distance to downtown 

Fairbanks is 6 km and the average wind speed (Fig. 8.1) is 2.8 m/s during the field study. 

The air-flow traveling from downtown to the site if  direct would be around 30 minutes 

and our steady state assumption would mostly likely be valid because the steady state 

lifetime of 20-22 minutes on 16th and 20st o f March, 2010 is slightly shorter than the 

transport time. In addition, the source rate follows the mixing ratio of N 2 O 5 . The direct 

air flow regime, where downtown air is flowing towards the site (from the SE), only 

occurs when a high pressure gradient and high winds are present. On the other nights, a 

defined drainage flow originating from the Goldstream Valley and flowing towards the 

Tanana Valley is present. The drainage flow wind direction is typically from the NW. 

The drainage air-flow regime can be seen in Figure 8.2 during the nights when the wind 

speed changes direction coming from NW at night and increases in speed. This forms a

8.4 Discussion
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drainage flow originating from the concave shape of the surrounding hills and funnels 

down Goldstream Valley (Fig. 8.1). At this point, the synoptic wind flow in the Fairbanks 

area is opposite the drainage flow from the Goldstream valley. Under these conditions the 

synoptic winds are calm and temperature gradients form between the bottom of the 

Tanana valley to the top o f Geophysical Institute’s Elvey building. The Fairbanks area is 

known to have strong inversions where the air temperature at the surface is often 20°C 

cooler than air 100 meters aloft. For example, using the temperature at the Fairbanks 

International Airport located at the bottom of the Tanana Valley on night the 16 March, 

2010 (UTC) the average surface temperature at night was -19°C and the average 

temperature on the roof was -12°C, a gradient o f 7°C over 85 meters.

The air mass that flows from the drainage, presumably from the Goldstream Valley 

(Fig.8.1) and possibly including downtown, is polluted. This implicates that either the 

valley or the town is producing the observed pollution because Fairbanks is isolated and 

the next major town is 400 km to the south. The Goldstream Valley is approximately 10 

km from the sampling site and the air transport time is approximately 1 hour at a wind 

speed of 2.8  m/s.

The topography and wind speed data crudely estimate that possible transport times of 

pollution from the north are on the order o f an hour, indicating that inferred steady state 

lifetimes less than an hour may be accurate, while inferred lifetimes over an hour are 

probably underestimated. The timescale of air transport to the field site of 1 hour, coupled 

with Fig. 8.3 showing the source rate following the mixing ratio of N2Os and the third 

night 27 March, 2010 with an average 90 minute steady state lifetime (maximum around
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2 hours), may not be at steady state. The average steady state lifetime of N 2O5 on 27 

March, 2010 is directly following the high pressure synoptic gradient episode and high 

winds seen from 21-26 March, 2010. The longer lifetimes and higher mixing ratio of 

N2O5 could be from the low surface area of atmospheric particles to react with N2O5 due 

to the high winds bringing unpolluted air to Fairbanks on the previous nights. If the N 2O5 

is not allowed to build to steady levels then our steady state lifetime would be 

underestimated and increase the average steady state lifetime of N 2 O 5 .

If we compare these steady state lifetimes and the three night average of 44 minutes 

to the steady state lifetimes obtained near the surface o f 6 minutes from our previous 

campaign, we see much longer lifetimes aloft than near the Earth’s surface (Huff et al., 

2010). The average lifetime aloft of 44 minutes is a factor of 5 longer than the lifetime of 

N2O5 near the Earth’s surface and further enforces our findings that snowpack deposition 

is a major chemical loss process for N 2O5 near the surface. In addition the mixing ratios 

of N 2O5 on all three nights in Fig.8.3 reach a maximum of 400 pptv and are higher than 

mixing ratios o f N2O5 with a maximum of 80 pptv found near the surface (Huff et al., 

2010, Apodaca et al., 2008).

8.4.2 Ice particles and visibility

On the nights we have measured the steady state lifetimes of N 20 5 , we want to 

compare relative humidity with respect to ice and the saturation of the air mass. If the 

relative humidity with respect to ice is greater than 10 0%, the conditions are favorable for 

additional ice surface area in the form of ice particles to be present. If ice particle 

formation is favorable then we can use the visibility monitor data to relate visibility to
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atmospheric particle surface area using Eq. (8.4). In Fig. 8.3, two nights have short 

lifetimes, 16 and 20 March, 2010 with an average steady state lifetime of N2O5 of 20 

minutes. Interestingly, 16 March 2010 was the only night with >100% relative humidity 

with respect to ice, which would implicate the possibility of ice particle formation 

(Apodaca et al., 2008). The relative humidity was much lower (48%) on 20 March, 2010, 

but we still see a relatively short lifetime of 20 minutes. The first hypothesis that could 

explain these results are that the same lifetime under different relative humidity 

conditions on the two nights (100 and 48%) indicates that the atmospheric loss to ice 

particles is not occurring. Unfortunately, we only have one night with high relative 

humidity during the field study available for comparison. Secondly, the second night may 

not be at steady state and that the lifetimes could be longer, but would require the 

transport time to the site to be at least double under the present average wind speeds.

Another way to measure the effect o f ice particle is by measuring an available surface 

area density. We used the inverse relationship of visibility to surface area. To use this 

relationship, we used a visibility monitor to measure the scattering and absorption of 

particles in the atmosphere. Measuring the extinction coefficient of these particles allows 

us to calculate a surface area density (Finlayson-Pitts and Pitts, 2000). The following set 

of equations is used:

V „ = 3 .9 / b M (8.2)

bext= S A * Q exl/ 4 * S A / 2 .  (8.3)

In Eq. (8.2), Vis is the visibility in meters andbext is equal to Eq. (8.3). In Eq. (8.3),
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Qext = scattering plus absorption. It is unitless and approaches 2 as particle size increases.

The variable SA is the surface area of the particle in pm2/cm3. Rearranging Eq. (8.3) and 

substituting it into Eq. (8.2), results in an equation that directly relates the visibility to an 

approximate surface area density;

Vis = 3.9/ (SA/2) = 7.8 / SA. (8.4)

A visibility o f 10 miles (16 km) would correlate to approximately 800 pm2/cm3of 

possible surface area for the N2O5 heterogeneous hydrolysis by atmospheric processes. 

The surface area density value for a non-spherical ice crystal is measured by the 

equivalent spheres method (Neshyba et al., 2003). The ice crystal's non-spherical shape 

correlates to an equivalent sphere o f the volume of the ice crystal. We did have the 

lowest visibility on the shortest average N2O5 lifetime day 16 March, 2010 (Fig. 8.1) and 

highest 100% RH with respect to ice (Fig. 8.2) at 14 km. However the range of 

visibilities over the entire field study was 12 to 25 km and we did not have any extremely 

low or high visibility days with which to compare.

8.5 Conclusions

The average steady state lifetime of N 2O5 was 44 minutes in March, in Fairbanks 

Alaska. The mixing ratios o f N2O5 at this roof top site were a few hundred pptv aloft as 

compared to previous measurements near the Earth’s surface in November, December 

and January where the typical mixing ratios are 40 pptv. In addition to increasing mixing 

ratios with height we also found that the lifetimes were longer aloft (44 minutes) 

compared to near surface measurements over a snowpack at high latitudes (6  min). A
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longer lifetime aloft than near the Earth’s surface reinforces the importance of snowpack 

deposition as a chemical loss mechanism for N2O5 near the surface and implies different 

chemical loss mechanisms o f N2O5 at different altitudes.
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Figure 8.1. Contour plot and location of the Geophysical Institute building. With 

respect to downtown Fairbanks, Goldstream Valley (A) and the Tanana Valley (B). 

Downtown Fairbanks is located approximately 6  km and the Goldstream Valley (A) 

is approximately 10 km from the observation site at the Geophysical Institute.
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Figure 8.2. Time series of the meteorological data. The relative humidity (%), 

temperature (°C), and wind speed (m/s) and wind direction (degrees) are in half 

hour data points for 16-28, March 2010.
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Figure 8.3. Time series of N2O5, mixing ratio, source rate and lifetimes. Comparison 

of the N2O5 mixing ratios in pptv (red solid trace), source rate (blue dotted trace) in 

pptv/hr and steady state lifetimes of N2O5 (black trace, top axis) in minutes on 16, 2 0  

and 27 March, 2010.
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Chapter 9 Conclusions and outlooks

We completed field studies investigating the chemical loss of N 2O5 by snowpack 

deposition near the Earth’s surface and the N2O5 lifetimes and mixing ratios aloft. We 

measured the average deposition velocity o f N2O5 to 0.6 cm/s and downward directed 

toward the snowpack. The calculation of this deposition velocity is dependent upon near

surface meteorological conditions related to the stability of the atmosphere. The boundary 

layer conditions in the Arctic are very complex (Anderson and Neff, 2008) and include 

stable air with strong inversions. We limited our data to periods with neutral, and near 

neutral, stability conditions to minimize the complex structure that forms under very 

stable conditions. This limitation allowed the data to still satisfy the assumptions required 

by the aerodynamic gradient method we used to determine a flux and calculate the 

deposition velocity. The deposition velocity was then used to calculate the chemical 

removal rate due to snowpack deposition and compare it to the overall steady state 

removal rate for N2 0 5. We found that deposition to the snowpack is responsible for at 

least l / 8th o f the total N2O5 removal and likely even a higher fraction due to possible 

differences in the boundary layer height calculations. The overall steady state lifetime of 

N2O5 near the surface during the snowpack deposition field study was 6 minutes.

In addition to snowpack deposition we also measured the N2O5 mixing ratio and 

steady state lifetimes aloft. We found the N2O5 steady state lifetime aloft to be 44 

minutes, which is much longer than the approximate 10 minute lifetime observed near the
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surface (Apodaca et al., 2008; Huff et al., 2010). The mixing ratio of N 2O5 also increased 

with height from less than 80 pptv near the Earth’s surface to a few hundred pptv aloft (at 

a height of 30 meters). We did see a slight difference in visibility on high relative 

humidity days aloft that may have shortened the lifetime of N2O5 due to a higher surface 

area associated with the visibility-reducing particle availability to catalyze the 

heterogeneous hydrolysis o f N 2 O 5 . However, the effect was small enough that we could 

not quantitatively see a correlation between surface area of atmospheric particles and 

steady state lifetimes of N 2 O 5 .

We have concluded from our experimental data near the surface and aloft that N2O5 

mixing ratios and lifetimes increase with height. We have seen that near the surface 

snowpack deposition plays an important role in the overall heterogeneous hydrolysis of 

N 2 O 5 . In addition, we see short lifetimes near the surface (-10 minutes) and longer 

steady-state lifetimes aloft (-44  minutes).

Airmasses aloft may experience slower N2O5 chemical losses than near-surface 

airmasses, which would lead to enhanced transport of N 2O5 aloft. Vertical mixing will 

play an important role in the fate o f N 2O5 emitted at high latitudes. A longer lifetime aloft 

than near the Earth’s surface reinforces the importance o f snowpack deposition as a 

chemical loss mechanism of N2O5 near the surface and implicates different chemical loss 

mechanisms o f ^ O s  at altitude. If the steady state lifetimes of N2O5 are underestimated 

due to validity of the steady state approximation from short transport times of the 

polluted plume then even further range transport o f NOx is possible. If the N2O5 lifetimes
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are found to be on the order of the length of night, then this would implicate N2O5 as a 

NOx reservoir and lead to a source o f NOx and ozone farther downwind of the original 

pollution plume.

To further characterize the vertical distribution of N2O5, we can use the deposition 

velocity parameter in models to help understand the fate of NOx pollution at high 

latitudes. We can sample ambient air further aloft in aircraft studies to ensure that we are 

away from any turbulence around buildings and validate the measurements of the steady 

state lifetime of N 2O5 by moving farther from the pollution sources. We can couple 

aircraft studies of N2O5 at high latitudes with modeling of the near surface conditions 

using the deposition velocity to characterize the different chemical loss mechanisms of 

N2O5. Currently, ongoing research in our lab is focusing on using our measured 

deposition velocity of N2O5 as a parameter in the one-dimensional (vertical) model 

MISTRA (Von Glasow, 2008). The main goal is to further quantify the partitioning of 

chemical loss of N2O5 aloft, using Bertram and Thornton’s (2009) y parameterization and 

the dry deposition velocity of N2O5 measured in our previous field study (Huff et al., 

2010).
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