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Abstract

Understanding processes and mechanisms resulting in observed 

ecological patterns is critical information for biologists charged with effectively 

managing and conserving wildlife populations. In many areas across North 

America woodland caribou (Rangifer tarandus caribou Gmelin) populations are 

declining, as are caribou and reindeer populations globally. Why these declines 

are occurring is a key research question of biologists and managers.

I investigated factors influencing recruitment of mountain-dwelling 

woodland caribou using long-term time series from ten herds (populations) in the 

Yukon Territory, Canada (Yukon). Recruitment was indexed by the calf:cow ratio 

observed during the fall breeding season using data collected during aerial 

monitoring surveys.

I first examined the seasonal effects of the Pacific Decadal Oscillation 

(PDO), on observed recruitment in these herds. The PDO was positively related 

to recruitment and had its strongest effect during the winter preceding birth and 

immediately before calving. These results indicate that female body condition, 

and hence conception rates, were not affecting observed recruitment patterns. 

Rather, parturition and/or early calf survival were the most likely vital rates 

affecting the number of calves being recruited into the breeding population.

I next examined the interacting effect of large-scale climate (PDO) and 

predation [wolf (Canis lupus L.) density] on recruitment in the Finlayson herd of 

east-central Yukon. A large-scale wolf control program in the 1980s allowed me 

to assess recruitment over a range of wolf densities and climatic conditions. The 

effect of the PDO immediately before calving was negligible when wolf numbers 

were significantly reduced indicating the climatic effect was modified by wolf 

density. Additionally, as springtime climate improved (i.e. increasing PDO) the 

difference in recruitment between years with and without wolf removals was 

reduced.



iv

Finally, I examined the degree of spatial synchrony in recruitment across 

ten herds and modeled inter-herd synchrony by differences in their landscape 

characteristics. Spatial synchrony in recruitment was generally low and much 

less than spatial synchrony in snow depth measurements across the Yukon. The 

only landscape characteristic influencing the correlation (synchrony) in 

recruitment between herds was the difference in elevation variability of calving 

locations.
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CHAPTER 1 GENERAL INTRODUCTION

1.1 Introduction

Across their range, many woodland caribou (Rangifer tarandus caribou 

Gmelin) populations (or herds1) in North America (Fig. 1.1) have or are 

experiencing declines (Bergerud 1974; Thomas & Gray 2002), in line with 

Rangifer declines globally (Vors & Boyce 2009). In southern British Columbia 

and northern Alberta, some herds are at drastically low levels (Wittmer et al. 

2005a) and are at risk of extirpation (McLoughlin et al. 2003; Schneider et al. 

2010; Wittmer, Ahrens & McLellan 2010). Some herds in northern regions, such 

as the Yukon Territory (Yukon), have also experienced declines (e.g. Farnell et 

al. 1998; Hayes et al. 2003). Many of these declines have been linked to 

anthropogenic factors including habitat loss, human harvest, and altered 

predator-prey relationships (Sorenson et al. 2008; Wittmer, Sinclair & McLellan 

2005b; Wittmer et al. 2010). As human activity increases in caribou ranges, 

effective management and conservation of caribou will require sound information 

on demographic processes to mitigate or reverse declining trends (Gordon, 

Hester & Festa-Bianchet 2004).

In addition to direct anthropogenic impacts, climatic factors also have a 

strong influence on caribou population dynamics (Saether 1997). For example, 

the Chisana herd in southwest Yukon and east-central Alaska (Fig. 1.2) 

experienced dramatic declines over the past decade (Farnell & Gardner 2002). 

These declines, brought on by poor calf recruitment, resulted in a drop in 

estimated herd size from > 1000 in 1989 to below 500 in 2001. These years of 

low recruitment were initiated by a series of years with severe winters (e.g. 

deeper snow). Climate can influence population dynamics through a number of

1 In keeping with the nomenclature typically used to describe caribou, the term herd (e.g., 

Chisana herd) is used to define a discrete “local population” and the term population (e.g., 

Northern Mountain Population) is used to define a collection of local populations (Thomas and 

Gray 2002).
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mechanisms. Hebblewhite (2005) reported that climate played a strong role in 

wolf (Canis lupus L.) predation on elk (Cervus elaphus L.) in the Rocky 

Mountains of Alberta primarily through changes in snow depth. Poor winter 

weather (e.g. deep snow) may reduce female energy reserves leading to lower 

calf weights (Adams 2005; Weladji & Holand 2003) thus reducing calf survival 

(Cook etal. 2004). Poor summer weather (e.g. short growing season) may limit 

the nutritional quality of forage thus limiting body mass gain during the summer 

and leaving animals (calves and adults) in a more vulnerable state for winter 

(Cook etal. 2004; Pettorelli etal. 2005a, b).

The influence of large-scale climate indices on a variety of ungulates has 

been well-documented elsewhere (e.g. Post & Stenseth 1999; Weladji etal.

2002), and includes, for example, the relationship between the Arctic Oscillation 

(AO) and the Porcupine caribou herd (Griffith etal. 2002) and the influence of the 

North Atlantic Oscillation (NAO) on caribou and muskoxen (Ovibus moschatus 

Zimmermann) in Greenland (Forchhammer etal. 2002), Soay sheep (Ovis aries 

L.) on St. Kilda, Scotland (Coulson et al. 2001), and elk in Yellowstone National 

Park (Garrott et al. 2003). In addition to its direct effect on vital rates, climate has 

also been shown to influence population dynamics through its effect on spatial 

synchrony among populations (Aanes et al. 2003; Grotan et al. 2005; Post & 

Forchhammer2004), offspring sex ratios (Mysterud etal. 2000; Post etal. 1999), 

density-dependent processes (Forchhammer et al. 1998), and harvest rates 

(Mysterud et al. 2000).

Interest in resource development in the Yukon is increasing (e.g. Yukon 

Oil and Gas Branch 2005) and includes mining, forestry, oil/gas exploration, 

agriculture, and pipeline construction. Given observed global caribou declines, 

increasing development on the landscape, and the observed effects of 

development on caribou from southern regions (Dyer et al. 2001), an 

understanding of processes that affect population dynamics is needed to guide 

land-use management to sustain caribou populations. However, efforts to
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project future population dynamics that consider only landscape effects may be 

flawed and overly optimistic without a consideration of climatic variability. Climate 

change will have varying influences on caribou (e.g. Porcupine herd; Inkley etal. 

2004) through changes in long-term average climatic conditions and increased 

climatic variability and extreme events (Drake 2005; Stenseth etal. 2002;

Walther et al. 2002), such as rain on snow events causing icing. Indeed, these 

effects may occur regardless of any direct anthropogenic factors.

To investigate how climatic factors influence population dynamics, long

term studies incorporating sufficient temporal climatic variability are necessary 

(Gaillard etal. 2000). Models that forecast how populations will respond to 

changes in climatic conditions should be based on how populations have 

responded to climatic variability in the past. Furthermore, individual populations 

may have localized responses to climatic variability possibly through differential 

climatological downscaling (Pettorelli etal. 2005b; Joly et al. In Press) across 

ranges. Therefore, to obtain a robust and generalizable understanding of climatic 

influences on population dynamics multiple populations should, ideally, be 

considered to account for this inter-population (i.e. spatial) variability (Boyce,

Irwin & Barker 2005; Frederiksen, Harris & Wanless 2005).

Mountain-dwelling caribou are an opportune species to investigate 

climatic patterns because they are distributed in discrete herds with substantial 

habitat variability. Using population data from multiple years provides a source of 

temporal variability. By including multiple herds in the analysis spatial variability 

is incorporated, allowing results and inferences to be generalized across herds 

(Gelman & Hill 2007). Examining this variation in population dynamics among 

herds provides more robust results and a greater understanding of the 

population dynamics of mountain-dwelling caribou.

Wildlife managers commonly collect information such as age ratios for 

monitoring ungulate populations (e.g. Bender 2006). While this information is 

useful for assessing the status of a population, it may also be valuable for
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assessing processes affecting population dynamics. As part of annual monitoring 

activities for mountain-dwelling caribou in the Yukon, fall composition surveys, 

conducted during breeding, are routinely carried out to collect information on the 

age and sex composition of surveyed herds. Recruitment is represented by the 

fall calf:cow ratio (e.g. Garrott etal. 2003; Grotan etal. 2009). These surveys 

have been conducted in the Yukon since the early 1980s (Farnell etal. 1998) 

providing a rich dataset of time series from a number of herds (Fig. 1.2) with 

which to investigate processes affecting herd dynamics.

For mountain-dwelling caribou, the majority of calf mortality occurs within 

the first month of life (Adams, Singer & Dale 1995; Gustine et al. 2006) and thus 

these age ratios are deemed an adequate measure of the number of calves 

“entering” the herd (i.e. recruitment). Pregnancy rates in mountain-dwelling 

caribou are typically high and generally show low annual variability (Wittmer et 

al. 2005a, b) and thus fall calf:cow ratios can be considered a useful proxy for 

calf survival (e.g. Harris, Kauffman & Mills 2008) to approximately 4-5 months of 

age. Variation in large herbivore population growth rate is often best explained 

by variability in juvenile survival (Gaillard, Festa-Bianchet & Yoccoz 1998). 

Therefore, obtaining an understanding of the processes influencing caribou 

population dynamics will benefit from investigating mechanisms affecting juvenile 

survival (i.e. calf:cow ratio).

1.2 Research Objectives

The primary goals of this research are two-fold. First is to contribute to the 

broader body of knowledge of ungulate population dynamics. Second is to 

investigate mechanisms influencing recruitment of mountain-dwelling caribou in 

the Yukon. To allow for findings to be applicable to populations and species 

beyond mountain-dwelling woodland caribou in the Yukon, a process-oriented 

(i.e. mechanistic) approach is used rather than simply describing patterns of the
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observed data (Krebs & Berteaux 2006). Within these broader goals are 5 

specific research objectives.

First, I examined the seasonal effects of Pacific-based climate on 

recruitment in mountain-dwelling caribou herds in the Yukon (Objective 1). These 

herds are commonly assumed to be predator-limited (Bergerud & Elliot 1986; 

Hayes etal. 2003; Seip 1992), and ungulate populations occurring in areas with 

predator-prey communities often exhibit weak, if any, density-dependent 

regulation of population growth (Wang et al. 2009). While the influence of 

Atlantic-based climate has been well-studied in ungulate populations in western 

Europe and eastern North America (e.g. Patterson & Power 2002; Post & 

Stenseth 1998, 1999; Vucetich & Peterson 2004), there are relatively few reports 

of the effects of Pacific-based climate on ungulate populations or on ungulate 

populations coexisting with predators (but see Hebblewhite 2005). Climatic 

effects on ungulate populations co-existing with large predators may differ than 

those found in predator-free environments. For example, ungulate populations 

near carrying capacity may be strongly influenced by winter weather affecting 

female body condition and subsequent fecundity (e.g. Post & Stenseth 1999). 

Alternatively, ungulate populations exposed to predation may be more strongly 

influenced by climatic conditions during different seasons through climate’s 

influence on predation rates (Hebblewhite 2005).

Due to the relative scarcity of research on Pacific-based climatic effects 

on animal populations and the variety of Pacific-based climate indices available, I 

compared two previously used indices to model recruitment in Yukon mountain- 

dwelling caribou (Objective 2). Hebblewhite (2005) used the North Pacific Index 

(Trenberth & Hurrell 1994) in a study of elk population dynamics in the Canadian 

Rocky Mountains and both Hik & Carey (2000) and Morrison & Hik (2007) used 

the Pacific Decadal Oscillation (Mantua & Hare 2002) in assessing population 

parameters of Dali’s sheep (Ovis dalli dalli Nelson) and collared pika (Ochotona 

collaris Nelson), respectively.
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Additionally, Hallett etal. (2004) noted that large-scale climate indices 

may better predict ecological processes than local weather measurements (e.g. 

snowfall, temperature). This may be due to the ability of large-scale indices to 

incorporate broader spatio-temporal heterogeneity into one metric (Stenseth & 

Mysterud 2005). However, in some systems, local weather proved a better 

predictor than large-scale climate indices (Mysterud etal. 2007; Ogutu & Owen- 

Smith 2003). Thus, in addition to comparing Pacific-based climate indices, I also 

compared the strength of large-scale climate and local weather metrics in 

modeling Yukon caribou recruitment (Objective 3).

Most research on the influence of large-scale climate on ungulate 

populations has focused on “bottom-up” effects (e.g. Forchhammer et al. 1998; 

Pettorelli et al. 2005b); largely as many of these populations occur in predator- 

free environments. However, climate also influences “top-down” processes 

(Hebblewhite 2005; Krebs 2009; Wilmers etal. 2006). During the 1980s, a large- 

scale predator removal program (i.e. wolf control) occurred in the range of the 

Finlayson caribou herd of east-central Yukon (Fig. 1.2; Hayes & Harestad 2000). 

Wolf and caribou population data were collected during this time providing a 

“natural” experiment to assess the influence of climate on recruitment across a 

gradient of wolf densities (Objective 4).

Spatial variability in the effect(s) of climate on populations are in part due 

to the differential downscaling of climate to observed local weather patterns 

(Pettorelli et al. 2005b). In the heterogeneous landscapes of the Yukon, 

mountain-dwelling caribou herds occur over a range of landscape conditions. 

These conditions likely result in differing local weather patterns. Thus, to better 

understand processes by which climatic conditions affect caribou population 

dynamics, investigating the role of landscape conditions may prove useful. 

Understanding factors affecting spatial synchrony in population dynamics is a 

valuable approach for identifying mechanisms of population dynamics (Ranta et 

al. 1995). To accomplish this, I estimated the degree of spatial synchrony in
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recruitment among these caribou herds (Fig. 1.2) and subsequently examined 

how landscape similarity was related to recruitment synchrony between herds 

(Objective 5).

1.3 Study Area

Mountain-dwelling woodland caribou in the Yukon belong to the Northern 

Mountain Population of woodland caribou in Canada (Thomas & Gray 2002) and 

are nationally designated as a species of special concern (COSEWIC 2002) 

under Canada’s Species at Risk Act (SARA). This designation was primarily due 

to increasing levels of anthropogenic activity within Northern Mountain caribou 

range (Thomas & Gray 2002). The Northern Mountain Population represents a 

caribou ecotype. This ecotype is characterized by animals that typically forage 

on terrestrial lichen (e.g. Cladina mitis Sandst.) during winter and which migrate 

between seasonal ranges, although these migrations are substantially smaller 

than those observed in tundra-dwelling caribou (e.g. R. t. groenlandicus 

Borowski). Woodland caribou elsewhere in Canada belong to the Southern 

Mountain Population and the Boreal Population (Fig. 1.1) which are both 

designated as threatened under SARA. SARA defines a threatened species as 

one that is likely to become endangered if limiting factors are not reversed while 

a species of special concern is one which has characteristics making it 

particularly sensitive to anthropogenic effects or natural events. Endangered 

status implies a species faces imminent extirpation or extinction.

Mountain-dwelling caribou in the Yukon are distributed over roughly the 

southern half of the territory. Twenty-six distinct herds have at least some portion 

of their annual range within the Yukon (Fig. 1.2). With a few exceptions, these 

herds occupy habitats with minimal human footprints, in comparison to caribou 

herds in southern British Columbia and Alberta (Sorensen et al. 2008; Wittmer et 

al. 2010), and generally exist within intact multi-predator multi-prey systems with 

varying levels of human harvest. These herds occur in both the Boreal Cordillera
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and Taiga Cordillera ecoregions (Marshall & Schut 1999) and are found across a 

range of terrain variability (Table 4A.1). Environmental conditions are highly 

seasonal sub-arctic climate represented by typically long, cool winters and 

relatively short, mild summers.

Data from 10 herds (Fig. 1.2) were used for the research in this 

dissertation because they had time series of data longer than five years. These 

herds are well distributed across the Yukon and exist across a range of habitat 

conditions. This includes, for example, those with a relatively high human 

footprint in their range, such as the Carcross herd found adjacent to Whitehorse 

(Florkiewicz et al. 2007), and those with virtually no human footprint such as the 

Chisana herd (Farnell & Gardner 2002). The status of these herds represents a 

range of states including increasing, decreasing and stable trajectories, with 

population estimates ranging from < 200 to > 3000 (Table 1.1).

1.4 Management Implications

Knowledge of which Pacific-based climate index influences recruitment in 

these herds is useful as it provides a temporal variable potentially that may be 

useful for assessing annual recruitment in areas where local weather 

measurements are unknown. Further, having a generalizable model of 

recruitment incorporating this index, coupled with an estimate of the degree of 

spatial synchrony of recruitment, will assist managers in predicting annual 

recruitment in herds that are not monitored. Ultimately, linking recruitment to 

large-scale processes occurring in the Pacific Ocean may be valuable in 

assessing the effects of global climate change on these herds as it provides a 

direct linkage to oceanic conditions that driver global climate.

Environmental conditions during different seasons have differing effects 

on caribou population parameters (e.g. calf survival, fecundity). Knowledge of 

which seasonal climatic conditions most strongly explain variability in recruitment 

is valuable for understanding how population growth is limited. For example, if
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climate preceding conception (i.e. affecting female body condition at breeding) is 

most influential, this would indicate that fecundity may be limiting recruitment. 

However, if environmental conditions at, or shortly after, calving are most 

influential, this may indicate that calf survival is limiting recruitment. This 

information is important for management as it allows for informed decisions to be 

made regarding mechanisms affecting recruitment.

Mountain-dwelling woodland caribou in the Yukon exist in generally intact 

ecosystems with both top-down and bottom-up forces acting on population 

dynamics. Predation is commonly assumed to be the primary limiting factor of 

these herds. Therefore, understanding how predation and climate interact to 

influence recruitment is valuable information to evaluate management options 

(e.g. predator control) related to caribou management as it may be used to 

assess the likelihood of meeting management objectives.

Finally, investigating how broad-scale landscape factors affect the 

synchrony in recruitment between herds can be used to identify those features 

influencing population dynamics. Those factors influencing spatial synchrony can 

then be considered for future research into their direct effects on recruitment, 

which may subsequently be useful for assessing environmental impacts on 

caribou herds.
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Table 1.1. Status of the ten mountain-dwelling woodland caribou herds in the 
Yukon Territory, Canada, included in this research (Environment Yukon, 
unpublished data).

Herd
Population

Estimate

Last

Surveyed

Estimated

Trend8

Aishihik 2044 2009 Increasing

Burwashb 181 2003 Decreasing

Carcross 775 2008 Stable

Chisana 766 2007 Stable

Ethel Lake 300 1993 Stable

Finlayson 3100 2007 Decreasing

Ibex 850 2008 Increasing

Klaza 650 2000 Increasing

Tatchun 500 2000 Stable

Wolf Lake 1400 1998 Stable

a: Estimated trends based on empirical population estimates or local knowledge of Environment 
Yukon biologists; b:Also referred to as the Kluane herd.
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Figure 1.1. Distribution of woodland caribou in North America (from Thomas & 
Gray 2002).
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Figure 1.2. Mountain-dwelling woodland caribou herds found in the Yukon 
Territory, Canada. Hatched ranges indicate those herds included in this 
research. Herds with solid grey ranges were excluded from the analysis due to 
insufficient data.
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CHAPTER 2 SEASONAL EFFECTS OF PACIFIC-BASED CLIMATE ON 

RECRUITMENT IN A PREDATOR-LIMITED LARGE HERBIVORE1

2.1 Introduction

The influence of climate on ungulate population dynamics and life-history 

traits is well documented in western Europe (e.g. Post & Stenseth 1999; Coulson 

etal. 2001; Mysterud etal. 2001) and eastern North America (e.g. Post & 

Stenseth 1998, 1999; Patterson & Power 2002; Vucetich & Peterson 2004) 

where the ecological effects of the North Atlantic Oscillation (NAO) are strong 

(Stenseth et al. 2002, 2003; Mysterud et al. 2003). Research on the influence of 

climate on ungulates in western North America is sparse (Griffith et al. 2002), 

and few studies have explicitly examined the role of Pacific-based climate 

(Hebblewhite 2005). Further, much of the research relating large-scale climate to 

large herbivore populations has been assessed on forage-limited populations 

with few or no natural predators. Climate influences herbivore population 

dynamics through its effect on forage characteristics (Forchhammer etal. 1998; 

Vucetich & Peterson 2004); however, in predator-limited populations climate may 

also affect population dynamics through its effect on predation rates 

(Hebblewhite 2005). Here we investigated the seasonal influence of climate on 

population recruitment patterns of northern mountain-dwelling caribou in the 

Yukon Territory (Yukon), Canada, using the Pacific Decadal Oscillation (PDO; 

Mantua et al. 1997) as a climate index.

Mountain-dwelling caribou populations in northwest North America are 

considered predator-limited (Gauthier & Theberge 1986; Hayes et al. 2003) and 

typically occur at low density. They are generally characterized by high 

pregnancy rates (Wittmer, Sinclair & McLellan 2005; Gustine et al. 2006), 

variable parturition rates (Adams & Dale 1998; Gustine et al. 2006), and low

1 Hegel, T.M., Mysterud, A., Ergon, T „ Loe, L.E., Huettmann, F. & Stenseth, N.C. (2010) 

Seasonal effects of Pacific-based climate on recruitment in a predator-limited large herbivore. 

Journal o f Animal Ecology, 79, 471-482.
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juvenile survival (Seip 1992; Hayes et al. 2003) in which predation on neonates 

is often the primary mortality source (Adams, Dale & Mech 1995a; Adams,

Singer & Dale 1995b; Gustine et al. 2006). Density plays a weak role in the 

dynamics of these populations as predators keep numbers sufficiently low to limit 

density-dependent forces (Crete 1999; Wang etal. 2009). Recruitment (i.e. the 

joint contribution of fecundity and calf survival), indexed here by the fall calf:cow 

ratio, is highly variable and often < 0.3 (Hayes et al. 2003). Age ratios such as 

this are effective at tracking population growth rates and trajectories (Harris, 

Kauffman & Mills 2008), yet the role of climate on recruitment in these 

populations is currently not well understood.

Mechanistically, climate may be related to recruitment through its 

influence on fecundity and/or calf survival (Table 2.1). We hypothesized (H1)that 

because of high neonatal calf losses from predation, seasonal climate during 

winter preceding birth (in utero) and in springtime should have a strong influence 

on recruitment through its effect on snow depth during the neonatal period.

Due to high neonate losses, the majority of females are unburdened of providing 

energetic resources to offspring, thus allowing them to allocate all acquired 

resources to self-maintenance. However, given the highly seasonal conditions in 

the Yukon, female fecundity may be influenced by pre-conception climate (Table

2.1) as a result of an insufficient time window to restore body reserves prior to 

breeding, resulting in a stronger influence of these climate conditions (H2). H1 

and H2 are not mutually exclusive.

2.2 Methods

2.2.1 Study Populations

Recruitment data are from 10 northern mountain caribou herds (i.e. 

populations; Fig. 2.1), representing nearly half of the 22 herds residing at least 

partially in the Yukon (Farnell et al. 1998). They represent the northern mountain 

ecotype of woodland caribou in Canada (Thomas & Gray 2002) and are federally
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designated as a species of special concern under Canada’s Species at Risk Act 

(COSEWIC 2002). Densities ranged from approximately 0.03 to 0.20 

individuals/km2 (Thomas & Gray 2002) and are much lower than those reported 

for forest-dwelling reindeer in, for instance, the mountainous regions of Norway 

with much fewer natural predators (e.g. 1.03 to 1.41 individuals/km2: Reimers et 

al. 1983). All herds reside within relatively intact multi-predator (e.g. black bear 

Ursus americanus Pallus, grizzly bear U. arctos L., wolf Canis lupus L.), multi

prey (e.g. Dali’s sheep, moose Alces alces L.) systems (Hayes et al. 2003). 

Mountain caribou are seasonal migrants moving relatively short distances 

between seasonal ranges. Terrain within herd ranges was mountainous with 

substantial topographic relief. Mean elevation varied from approximately 1000 to 

1500 m above sea level. Herds were distributed in the southern portion of the 

Yukon (approximately 60° -  63°N, 129° -  141 °W) in the boreal cordillera 

ecozone (Marshall & Schut 1999) with highly seasonal sub-arctic climate 

characterized by long, cold winters and relatively short, mild summers.

2.2.2 Caribou Recruitment Data

Herds were aerially surveyed from a rotary aircraft to estimate recruitment 

from 1980 to 2007 as part of monitoring activities in the Yukon (Farnell etal. 

1998). Following a standardized protocol, surveys occurred during the fall 

breeding season from the last week of September through mid-October. Groups 

of animals were classified and the ratio of total numbers of calves to cows used 

as an index of recruitment at the population (i.e. herd) level. Calves were 

identified by their small size and females distinguished from immature males by 

the presence of a black vulva patch. During breeding, animals aggregate on high 

alpine plateaus devoid of trees, thus making sightability of animals, particularly 

calves, much greater than in forested habitats. A comparison of calf:cow ratios 

based on aerial survey data, as used here, with temporally concurrent calf:cow 

ratios based on sampled adult females, captured for radio-collaring, indicated no
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significant difference (T. Hegel, unpublished data). Data on recruitment rates 

represented 165 herd-years from 10 herds during the period 1980 -  2007 (Fig. 

2.2). The total number of annual recruitment rates estimated per herd ranged 

from nine to 26. The average number of animals classified to estimate an annual 

recruitment rate, across all herds and years, was 516.9 (SE = 42.5).

2.2.3 Population Recovery Activities

A number of management programs aimed at increasing low population 

sizes have occurred in the Yukon (Farnell et al. 1998). During 1983 -  1989, 

wolves were annually removed from the Finlayson herd range (Fig. 2.1) to < 20% 

of pre-removal numbers (Farnell & McDonald 1987; Hayes & Harestad 2000). 

During 1993 -  1997, a wolf removal and sterilization program occurred in the 

Aishihik herd range, with some actions overlapping onto the ranges of the 

adjacent Burwash and Klaza herds (Fig. 2.1; Hayes etal. 2003). During 2003 -  

2006 a captive-rearing program was undertaken for the Chisana herd (Fig. 2.1) 

to enhance low recruitment. During late winter, parturient females were captured 

and transferred to a predator-free facility where they calved and were 

subsequently released in early June. To avoid potential bias associated with 

increased survival and recruitment due to the Chisana recovery program, we 

censored captured females and their surviving captive-born calves (Yukon Fish 

and Wildlife Branch, unpublished data) from the data.

2.2.4 Climate Data

The PDO is a measure of climatic variability in the north Pacific region 

characterized by shifts between warm and cool phases on an interdecadal time 

scale (Mantua et al. 1997; Mantua & Hare 2002). It is measured as the leading 

principal component of monthly sea surface temperatures (SST) in the north 

Pacific from 20°N poleward. Positive (warm phase) PDO values are 

characterized by cool SST in the central Pacific and warm SST along coastal
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areas. The PDO is related to sea level pressure (SLP) such that warm phase 

PDO values (i.e. cool SST) generally coincide with below average north Pacific 

SLP (Stenseth et al. 2003). The PDO is also related to terrestrial weather 

patterns (Mantua et al. 1997; Papineau 2001) and ecological processes such as 

forest fires (Duffy et al. 2005) in western North America. The PDO likely also 

influences population dynamics in other vertebrate taxa in the Yukon (Hik & 

Carey 2000; Morrison & Hik 2007).

We used summarized PDO values (data available at 

http://jisao.washington.edu/pdo) in seasons with biological significance for 

caribou recruitment: Winter (November to April), Summer (June to August), Fall 

(September to November), and Spring (March to May) or calving (April, May, and 

June). We used four time windows from March through June, representing the 

springtime/calving seasons, as each could have a different mechanistic effect on 

caribou. March to May (early Spring) PDO values represent conditions of the 

three months immediately preceding calving when most fetal mass is deposited 

in utero (Barboza & Parker 2006). April represents conditions immediately prior 

to calving. May climate summarizes conditions during peak calving season (mid 

to late May; Yukon Fish and Wildlife Branch, unpublished data) and June 

represents conditions for lactation when the need for highly nutritious forage is 

strong.

In the Yukon, the PDO is positively correlated with mean air temperature 

across all seasons (Table 2.A-1). Winter-PDO is negatively correlated with total 

precipitation (Table 2.A-1), and there is a negative relationship between both 

springtime and Winter-PDO and the Julian date of the first snow-free day of the 

year (Morrison & Hik 2007, Table 2.A-2) and snow depth (Table 2.A-3). The 

relationship between Summer- and Fall-PDO and precipitation is generally weak 

(Table 2.A-1).

http://jisao.washington.edu/pdo
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2.2.5 Statistical Analysis

We used generalized linear mixed-effects models (GLMM; Skrondal & Rabe- 

Hesketh 2004; Gelman & Hill 2007) with a binomial distribution and logit link 

function to model recruitment (calf:cow ratio) as a function of seasonal PDO, and 

other covariates. Since female caribou typically do not produce twins, limiting the 

response to the unit scale (0, 1) was deemed appropriate. We included “Herd” 

and “Year” as crossed (i.e. non-hierarchical) random effects. We treated them as 

random effects because we assumed they contained unobserved heterogeneity 

we could not model and to account for pseudo-replication. Further, one of our 

aims was to estimate a global (i.e. population-averaged or marginal) model of the 

effect of PDO on recruitment which could be used to generalize beyond these 

years and herds (Skrondal & Rabe-Hesketh 2004), and our data were 

unbalanced across herds and years which could bias parameter estimates 

(Gillies etal. 2006). We included a “Trend” variable to account for possible long

term trend in recruitment which could potentially mask a climate effect. The 

effects of seasonal PDO and Trend were modeled as random coefficients 

varying among herds because we could not assume a constant effect across all 

herds. Since binomial count data, such as used here, often contain extra

binomial variation (i.e. are overdispersed) which may bias precision estimates 

(Gelman & Hill 2007), we fitted models using a quasi-GLMM approach whereby 

this extra variation (0), or dispersion parameter, was also modeled. We used the 

package ‘Ime4’ (Bates & Maechler 2009) in the statistical program R 2.9.1 (R 

Development Core Team 2009).

We compared models using a quasi-Akaike information criterion (QAIC) 

adjusted for small sample sizes (QAICc; Burnham & Anderson 2002). Within the 

candidate set, the model with the lowest QAICc was selected as best, with 

models having AQAICc < 2 compared to the best model interpreted as having 

strong support (Burnham & Anderson 2002). A current challenge for model 

selection among competing random-effects models is the calculation of degrees
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of freedom (df). For any random effect (e.g. year), the number of effective 

parameters may range between 1 and N-1, where N is the number of levels 

within the random effect (Bolker et al. 2009). As our level of inference was not 

focused on the specific herds or years, per se, we counted one df for each fixed- 

effect, one for each random coefficient and intercept, and one for 0 (Vaida & 

Blanchard 2005).

While our objective was not to estimate the effect of wolf control on 

recruitment per se, accounting for its effect was necessary in order to adequately 

separate climatic effects from recruitment changes due to reduced wolf numbers. 

A description of how this effect was modeled is provided in Appendix 2B. 

Following the identification of models to account for wolf control, we specified 

models including single- and multi-season PDO variables (seasons identified in 

Table 2.1). Correlated seasons (r > 0.6; Table 2.A-6) were not specified in the 

same model. For models including PDO values from >1 season, springtime 

(calving season) was represented by the season/month (Spring, April, May or 

June) having the lowest QAICc among these four single-season models.

2.3 Results

The effect of wolf removal was represented by a constant effect during the 

years of active removal for the Treatment herds (Aishihik and Finlayson) followed 

by a five-year declining effect (Table 2.A-4). For the Adjacent herds (Burwash 

and Klaza), a two-year lag followed by a constant effect during the remaining 

years of active removal (Table 2.A-5) best represented the wolf removal effect on 

recruitment. In years of active wolf removal the average increase in recruitment 

rate for the treatment and adjacent herds was 0.20 and 0.11, respectively.

Of the candidate models, the most supported model included Winter- and May- 

PDO (Table 2.2), supporting H1. Coefficients for both climate variables were 

significant, with the effect size of Winter-PDO (3 = 0.110, SE = 0.007) being 

substantially greater than that for May-PDO (3 = 0.013, SE = 0.006) (Table 2.3).
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Standardized estimates were calculated, on the scale of two standard deviation 

units (Gelman 2008), to allow for easier comparison between them and were 

0.171 and 0.024 for Winter- and May-PDO respectively. Recruitment rose with 

increasing Winter- and May-PDO, corresponding to increasing temperature and 

decreasing precipitation during these periods (Tables 2.A-1 to 2.A-3). The most 

supported model also indicated a declining trend in recruitment ((5 = -0.023, SE = 

0.001).

The estimated dispersion parameter (0) was 0.045 for the top model in 

Table 2.2, indicating underdispersion. This underdispersion may be due to 

increased variability in the data being modeled through the random components 

of the model. For example, 0 estimated from the data in the absence of any 

random effects, but with the same fixed effects as the top model, was 17.011. 

This indicates that in the absence of these random effects accounting for 

unobserved heterogeneity, substantial overdispersion was present. There is a 

lack of consensus on whether or not QAICc should be used in the presence of 

underdispersion (Cooch & White 2009). Model rankings were insensitive to the 

use of either AlCc or QAICc and thus we report only AlCc (Table 2.2). For 

comparison, results for the top model fitted without adjusting for underdispersion 

are provided in Table 2.A-7. Coefficients were unchanged; however standard 

errors and deviations of the fixed and random effects, respectively, were 

increased by a factor of 0"1.

There was considerable variability in the herd-specific responses to both 

Winter- and May-PDO (Fig. 2.3, Table 2.A-8) and Trend (Table 2.A-8). In all 

cases a random-coefficient model was more supported than only a random- 

intercept model. For comparison, AAlCc of the Winter- and May-PDO model 

without random coefficients was 384, and the most supported model with no 

random coefficients included Winter^- and Falln-PDO and had AAlCc = 379. 

Residuals were assessed using a Shapiro-Wilk test and were normally 

distributed when pooled across Herd and Year (W = 0.99, P = 0.50). When
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assessed by Herd and Year individually, residuals were normally distributed for 

all levels with the exception of 1993 (W = 0.78, P = 0.01). We also assessed 

residuals, by Herd, for any remaining autocorrelation not accounted for in the 

model structure. There was indication of remaining autocorrelation for the 

Tatchun herd [AR(1) = -0.51, P = 0.024],

The model fit the pooled data well (Fig. 2.4), with predicted and observed 

recruitment rates highly correlated (r = 0.86, P < 0.001). The degree of model fit 

varied by herd (Fig. 2.5) and the correlation between predicted and observed 

recruitment ranged from r = 0.97 to r = 0.07. Generally, model fit was adequate 

for all herds except Tatchun and Wolf Lake.

From the most supported model (Table 2.3), we compared predicted to 

observed recruitment from an external dataset of 13 recruitment rates estimated 

on eight herds (two of which were not included in the training dataset) over six 

years (one of which was not included in the training dataset). The mean percent 

error of predicted recruitment values was 15.7% (Fig. 2.6). The two herds not 

included in the training dataset, Nahanni and Coal River (Weaver 2008), are both 

distributed along the eastern Yukon border with the Northwest Territories and are 

located directly east and southeast of the Finlayson herd (Fig. 2.1) respectively.

2.4 Discussion

Recruitment is a valuable indicator of population productivity as it 

represents the joint contribution of fecundity and calf survival. It is the most 

variable parameter in ungulate populations and thus a key factor influencing 

observed variation in population growth rates (Gaillard, Festa-Bianchet & Yoccoz

1998). We have provided a comprehensive analysis, in terms of numbers of 

populations and years, on the influence of large-scale climate on recruitment in a 

predator-limited large herbivore. Our work also adds to the sparse body of 

literature on the effects of Pacific-based climate on large herbivore population 

dynamics.
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Seasonal climate affecting environmental conditions at calving (see Table

2.1) were much more supported than those affecting fecundity (i.e. pre

conception) in mountain-dwelling caribou in the Yukon (Table 2.2), supporting 

H1. Recruitment was positively related to both Winter- and May-PDO. There was 

weak support for H2, that seasonal climate affected fecundity in these 

populations. Higher Winter- and May-PDO represents decreased precipitation 

and increased temperature through the winter and May respectively, a reduced 

snowpack at calving, and an earlier onset of the first snowfree day of the year.

Consistent with the view that wolf predation plays a major role on 

recruitment in these populations there was a marked effect (Table 2.3) of the 

wolf removal programs as earlier reported (Hayes et al. 2003). There was a 

strong, and spatially variable, relationship between the PDO and local 

environmental conditions (e.g. snow depth). Wang et al. (2009) reported that 

density dependence was weak for northern ungulates coexisting with large 

carnivores. Our results confirm that in these relatively small populations with 

intact predator communities, top-down forces play a greater role on recruitment 

than bottom-up factors. Prevailing weather conditions such as snow depth are 

known to influence predation rates on neonatal ungulates (Bergerud & Page 

1987; Adams et al. 1995b). Winter-PDO was negatively related to both the 

amount of snowfall in the spring (Table 2.A-3) and the first snow-free day of the 

year (Table 2.A-2). Both of these environmental factors could influence the 

degree of predation on newborn caribou calves by limiting the ability of parturient 

caribou to move away from predators and other calving females (Bergerud & 

Page 1987), and possibly on the ability of post-parturient caribou and their calves 

to move away from calving locations (Gustine etal. 2006). Skogland (1991) 

commented that the spatial relationship between predator and prey may be a 

large factor affecting predator-prey dynamics. The inability of parturient caribou 

to move away from predators due to environmental conditions at calving, 

following a low Winter-PDO, supports this assertion. Given this strong
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mechanistic link between snow depth at calving and neonatal calf survival, the 

strong effect of Winter-PDO was expected.

The effect of climate at calving (May-PDO), while smaller than for winter 

(Table 2.3), was nevertheless sufficiently influential to be present in the most 

highly supported model (Table 2.2). One would anticipate climate at calving to 

influence calf survival given the high degree of mortality shortly after birth.

Indeed, an extremely warm spring (high PDO) could negate the effect of a high 

winter snowfall, or a very poor spring (e.g. heavy spring snowfall) could result in 

higher calf mortality regardless of in utero winter conditions. Thus, extreme 

springtime climate (above or below average) may be influencing recruitment in 

these herds where extremely warm and dry springs result in a reduced 

snowpack and earlier snowmelt, thus reducing predation rates on neonates. 

Conversely, a strongly below average spring characterized lower temperatures 

and/or increased precipitation in the form of snow, may limit parturient female’s 

movements to safe calving grounds. Extremely poor weather at calving (e.g. cold 

and wet) may also have a direct influence on neonate survival (Gauthier & 

Theberge 1986). Extreme climate events are influential in the population 

dynamics of numerous species (Parmesan, Root & Willig 2000). For example, an 

extreme icing event in winter coated forage with thick layer of ice and resulted in 

the 80% decline of a reindeer population on Svalbard (Chan etal. 2005).

The positive effect of the PDO on caribou recruitment in the Yukon is 

consistent with Hebblewhite’s (2005) finding of a negative effect of the North 

Pacific Oscillation (NP) on elk population growth rates in Alberta, Canada, given 

the negative relationship between the PDO and NP (Yang etal. 2005). 

Hebblewhite (2005) also reported variability across populations in their growth 

rate response to the NP. Elk density and the NP were more influential when 

wolves were rare, while predation and its interaction with the NP became more 

influential when wolf numbers were greater. We regarded our index of a wolf 

removal effect on recruitment as too coarse, and the absence of wolf population
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data across herds insufficient to warrant inclusion of wolf abundance as an 

interaction with the PDO.

Calf body mass in ungulates is related to climate (Weladji & Holand 2003; 

Adams 2005), maternal condition during gestation (Thorne, Dean & Hepworth 

1978; Keech et al. 2000), and maternal body mass at breeding (Kojola 1993; 

Adams 2005). Subsequent calf development is also related to pre-parturition 

conditions (Kojola 1993; Adams 2003). Lighter-born calves and those with 

reduced growth and developmental capabilities early in life may be subject to 

increased mortality from birth throughout the summer (Guiness, Clutton-Brock & 

Albon 1978; Mech, Nelson & McRoberts1991). Winter-PDO and winter snowfall 

were positively and negatively correlated, respectively, with average annual birth 

mass of Denali calves (from Adams 2005; Fig. 2.7). Thus, winter climate may 

affect calf survival throughout the first summer of life, in addition to early mortality 

due to predation. Our index of recruitment measured during the fall could not 

separate mortality occurring during different periods after birth.

Since our results were only suggestive of an effect on calf survival, we 

related seasonal PDO to calf mortality over different time periods shortly after 

birth using mortality hazard rates from radio-collared neonates in Denali (from 

Adams et al. 1995a, b). For comparative purposes, we included seasonal climate 

both pre- and post-conception. As expected (Table 2.1), climate affecting 

environmental conditions at calving (i.e. Winter-PDO, May-PDO) was negatively 

correlated with early calf mortality, while the relationship with mortality later 

through summer became weaker (Table 2.4). Conversely, seasonal climate 

affecting female condition at breeding (i.e. Winter-PDOn, Summer-PDOn, and 

Fall-PDOt-i) was more strongly related to later calf mortality. While the correlation 

between pre-conception climate and later calf mortality was strong and 

significant for the Denali herd, these relationships, if present, were not influential 

enough to result in pre-conception climate being supported in our candidate 

models of Yukon caribou recruitment.
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For both of the climate predictors there was considerable variability in 

their herd-specific effects on recruitment (Fig. 2.3, Table 2.A-8). This variability is 

consistent with Martinez-Jauregui et al. (2009) who found a lack of a general 

climatic effect on red deer weights across Europe. While the average effects of 

Winter- and May-PDO were positive and significant in our model, local 

characteristics of individual herds and their ranges (e.g. terrain features, latitude) 

may result in the downscaled effect of the PDO resulting in different localized 

weather conditions (Mysterud etal. 2000; Pettorelli etal. 2005). The spatial 

variability in the correlation between local weather and large-scale climate 

(Tables 2.A-1, 2.A-3), such as the PDO, may also lead to variability in its effect 

on herd population parameters (Ginnett & Young 2000). Additionally, intrinsic 

characteristics of these herds may also affect the role of climate on recruitment. 

For example, the effect of climate may be more pronounced at higher population 

density (Wilmers et al. 2006), and may affect age classes differentially (Coulson 

et al. 2001). Information on age-structure for the herds considered here was 

unavailable. However, herds with greater proportions of young and/or older 

females may be expected to respond to winter climate more strongly as smaller 

(e.g. younger) females or those with reduced body conditions (e.g. senescent 

animals) may not be able to fully carry a calf to term under more severe winter 

weather.

Given the strong effect of predation on recruitment in these herds, 

predator and alternate prey density may also play an important role in influencing 

the effect of climate. Wolf numbers may also be influenced by climate indirectly 

through the direct influence on their prey base (Post & Forchhammer 2001). This 

may result in a lag effect as wolves numerically respond to changes in prey 

density (Fuller, Mech & Cochrane 2003). In systems where moose and caribou 

coexist with wolves, and other predators, caribou are often a secondary prey 

species with wolf density being most strongly affected by moose density (Seip 

1992). Thus, climate effects on moose may also play a large part in predation
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rates on caribou, heightening the complexity by which climate affects wolf 

populations and hence caribou numbers. Further, climate may affect wolves 

behaviorally by altering characteristics such as pack size which in turn may 

increase predation rates (Post etal. 1999). Incorporating annual variability in 

predator and/or alternate prey density across herds could strengthen our 

understanding of climate’s effect on recruitment. The influence of calving season 

climate may also best be understood in terms of its interaction with predator 

density, since it is environmental conditions at calving that can have a strong 

influence on predation rates. Hence, a multiplicative rather than additive effect of 

calving season climate may be warranted. Predator data were unavailable for the 

majority of years and herds considered here, precluding the incorporation of 

such an interactive effect in this study.

Overall, our model fit the pooled and herd-specific data well (Fig. 2.4, 2.5). 

However, two herds, Tatchun and Wolf Lake, were poorly fitted. These herds 

had the fewest data points among all the herds considered (Fig. 2.2) which could 

have affected their modeled relationship with the PDO. The external data used to 

evaluate the model also indicated relatively good predictive ability (Fig. 2.6). As 

should be expected, since our model did not incorporate herd-specific 

characteristics, it generally predicted recruitment better for those herds included 

in model training (e.g. Finlayson, Aishihik). The incorporation of herd-specific 

variables may enhance our understanding of the environment-climate 

mechanisms (e.g. Pettorelli et al. 2005) shaping recruitment patterns.

Our goal was not to compare the PDO with local weather variables in their ability 

to explain recruitment patterns. Indeed, given the remoteness of some of the 

herds used in this analysis, weather stations at relevant locations were not 

available. This fact demonstrates the utility of using large-scale climate indices. 

Additionally, weather variables measured at one location may not be relevant for 

a highly mobile species such as caribou (Stenseth & Mysterud 2005). Elsewhere 

in a direct comparison of local weather and the PDO, the PDO proved to be a
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more highly supported predictor of caribou population parameters than local 

weather (Hegel et al. In Press). Rather, our goal was to compare the effect of 

different seasons on recruitment in these herds using the PDO to facilitate that 

comparison. We acknowledge that there are limitations in using a large-scale 

climate index across seasons. For example, the relationship between the PDO 

and local weather may not be consistent across seasons. In the Yukon, the 

PDO-local weather relationship appears strongest during winter and spring, with 

a weaker relationship in summer, thus reducing our power to detect a 

relationship between the PDO and recruitment at this time. However, this would 

not have affected our ability to detect a difference between in utero winter 

climate (Winter-PDO) and pre-conception winter climate (Wintert-rPDO). The 

PDO may also not be related to a specific local weather variable important to 

recruitment. However, this issue is present in any observational study in that the 

proper variable(s) must be selected for analysis. Finally, the PDO-local weather 

relationship may also vary spatially. Such a spatially varying relationship could 

confound a general relationship between the PDO and recruitment, however, the 

inclusion of random-coefficients across herds would aid in accounting for this 

spatial variability.

This is one of the first studies to explicitly examine the influence of the 

PDO on large herbivore populations. Hik & Carey (2000) reported an oscillatory 

pattern of horn growth in Dali sheep rams with a suggested relationship to the 

PDO. In northern Yukon and Alaska, phase-shifts in the PDO was suggested as 

a factor influencing changing trends in population growth of the Porcupine 

caribou herd (Griffith et al. 2002). A phase-shift of the Winter-PDO from -1.5 to 

+1.5, for example, would result in an average increase in recruitment of 

approximately 25% in Yukon mountain caribou. The PDO has previously been 

shown to be a factor in the population dynamics of, for example, Pacific salmon 

{Oncorhynchus spp.; Mantua etal. 1997), songbirds (Ballard etal. 2003), and 

small herbivores (Ochotona collaris Nelson; Morrison & Hik 2007). At broader
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scales the PDO influences freshwater (Winder & Schindler 2004), marine (Field, 

Francis & Aydin 2006), and terrestrial (Loik etal. 2004) ecosystem dynamics.

Recent future climate scenarios indicate that while temperatures are 

expected to increase over the next century across the Yukon, precipitation will 

also rise, as will the frequency of extreme climatic events (Carter et al. 2007) 

such as rain-on-snow icing events, which can have a substantial negative effect 

on ungulate populations (Chan et al. 2005; Helle & Kojola 2008). Climate 

projection models suggest increases in winter precipitation in the Yukon ranging 

from approximately 5 to +30% (Canadian Climate Change Scenarios Network: 

www.cccsn.ca). Increases in snowfall of this magnitude could have significant 

impacts on recruitment; however, given an increase in temperature both in spring 

and fall it is uncertain how this would affect the length of the summer growing 

season. Further, in multi-predator multi-prey systems such as the Yukon, the 

interactions across trophic levels (Post & Forchhammer 2001) coupled with 

individual species’ responses to changes in climatic conditions are complex and 

difficult to predict (Stenseth et al. 2002; Walther et al. 2002).
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Table 2.1. Potential mechanisms relating seasonal climate to fall recruitment in 
northern mountain-dwelling caribou through effects on a) fecundity and b) calf 
survival. The subscript M  indicates a pre-conception season. Variables without a 
subscript represent seasons post-conception. We treated fall climate during 
breeding as occurring prior to conception. Based on PDO -  local weather 
relationships (see Tables 2.A-1 -  2.A-3) we expect the relationship between 
each season and recruitment to be non-negative.

Season3 Mechanism Reference
a) Fecundity 
Wintert-i Flarsh conditions in the winter prior to conception may result in 

females being in sufficiently poor condition that they may be 
unable to regain adequate body mass to reproduce the 
subsequent year.

Adams & Dale 
(1998)

Summert-i
Fallt-i

Fecundity is strongly related to female body condition at 
breeding. Poor forage conditions prior to breeding may limit 
successful reproduction by females unable to obtain sufficient 
resources during summer and fall.

Cameron et al. 
(1993); Crete & 
Flout (1993); Cook 
e ta l. (2001, 2004)

b) Calf survival 

Spring

Increased snow depth due to either cool temperatures and/or 
spring snowfall may prevent parturient females from moving up in 
elevation (i.e. dispersing) to calving sites away from predators.

Bergerud & Elliot 
(1986); Bergerud & 
Page (1987)

April
May
June

Climatic conditions leading to poorer forage quality and/or 
quantity can result in reduced calf development and survival. 
Nutritional requirements at this time are high as it is the period of 
peak lactation.

Albon, Guinness & 
Clutton-Brock 
(1983); Griffith etal. 
(2002); Pettorelli et 
al. (2005, 2007)

Temperature may influence insect harassment levels thus 
affecting energetic demands, through avoidance behavior, and 
subsequently calf growth and survival.

Helle & Tarvainen 
(1984)

Summer Climatic effects on summer forage conditions may influence calf 
growth and development.

Reimers, Klein & 
Sorumgard (1983); 
Crete & Hout 
(1993); Lenart eta l. 
(2002)

Calf birth mass and development negatively related to winter 
severity during gestation.

Adams et al. 
(1995a); Adams 
(2003, 2005)

Winter Increased snowfall that persists late into the spring may prevent 
parturient females from moving up in elevation away from 
predators.

Bergerud & Elliot 
(1986); Bergerud & 
Page (1987); 
Adams et al. 
(1995a,b)

Winter^
Fallt-i
Summert-i

Calf birth mass positively correlated to maternal mass at 
breeding, which is subsequently influenced by climatic conditions 
prior to conception (see above).

Reimers et al. 
(1983); Adams 
(2005)

a: Seasons defined in the text (see Methods).
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Table 2.2. Models of the effect of seasonal PDO on calf recruitment (n = 165). 
Models include the seasonal PDO values modeled as random coefficients, trend, 
two variables representing the effects of wolf removal (see Table 2.A-5), and 
random intercepts for both Herd and Year. A null model with no PDO variables is 
included for comparative purposes.

Number Model
Log-

Likelihood
K8 AlCc AAlCc

1 Winter + May -487.6 11 998.93 0.00

2 Summer + Winter -506.3 11 1036.33 37.40

3 May + Wintern -520.0 11 1063.73 64.80

4 Summer + Winter^ -522.1 11 1067.93 69.00

5 Winter + Winter^ -524.6 11 1072.93 74.00

6 Falln + May -528.0 11 1079.73 80.80

7 Summert-i + May -530.1 11 1083.93 85.00

8 Summert-i + Summer -531.3 11 1086.33 87.40

9 Summer + Fallt-i -531.5 11 1086.73 87.80

10 Summer -538.6 9 1096.36 97.44

11 May -539.0 9 1097.16 98.24

12 Winter -546.4 9 1111.96 113.04

13 June -547.8 9 1114.76 115.84

14 Fallt-i + Winter^ -546.5 11 1116.73 117.80

15 Summert-i + Wintern -549.0 11 1121.73 122.80

16 April -554.5 9 1128.16 129.24

17 Spring -556.4 9 1131.96 133.04

18 Wintern -556.9 9 1132.96 134.04

19 Fallt-i -565.4 9 1149.96 151.04

20 Summert-i -566.2 9 1151.56 152.64

21 Null -574.1 7 1162.91 163.99
a: Number of estimated parameters.
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Table 2.3. Parameter estimates (logit scale) and standard errors for the top- 
ranked model (Table 2.2) relating seasonal PDO and wolf control effects on 
recruitment.

Variable Parameter SE

Winter-PDO 0.110 0.007

May-PDO 0.013 0.006

Trend -0.023 0.001

Treatment 0.824 0.003

Adjacent 0.489 0.006

Constant -0.742 0.019

aa (Winter-PDO Random Coefficient) 0.012

a (May-PDO Random Coefficient) 0.011

a (Trend Random Coefficient) 0.002

a (Year Random Intercept) 0.019

a (Herd Random Intercept) 0.053

0b 0.045

a: Standard deviation; b: Dispersion parameter.
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Table 2.4. Correlation between seasonal PDO and mortality hazard rate3 over 
various ages and time periods for caribou calves in Denali National Park, Alaska 
(1984-1991).

Mortality time period

Season Birth to 15 

daysb

Birth to 30 

daysb

Birth to 120 

daysc

30 to 120 

days0

Winter-PDO -0.90d -0.80 -0.81 -0.78

Winter-PDOn -0.58 -0.86 -0.92 -0.91

Summer- -0.65 -0.56 -0.69 -0.69

PDOn

Fall-PDOn -0.71 -0.68 -0.80 -0.79

May-PDO -0.91 -0.77 -0.86 -0.84

Years of Data 8 7 5 5

a: Mortality hazard rates were calcuiated as -loge(S), where S is the percentage of caives alive at 
the beginning of the time period surviving to its end. Hazard rates were used instead of S as they 
make the correlations invariant of the time units; b: Source -  Adams et al. (1995a, b); c: Source -  
Adams et al. (1995a); d: Significant correlations (P < 0.05) are bolded.
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Figure 2.1. Locations of ten mountain-dwelling woodland caribou herds in the 
Yukon Territory, Canada, in which seasonal effects of the PDO on calf 
recruitment were assessed.
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Figure 2.2. Annual recruitment rates (calf:cow ratio) for ten mountain-dwelling 
caribou herds in the Yukon Territory, Canada (1980-2007).



Figure 2.3. Relationship between recruitment (calf:cow ratio) and a) Winter-PDO and b) May-
PDO. Black circles represent observed recruitment rates while open circles indicate model
predictions of recruitment. Black and grey lines represent lines of best fit for observed and
predicted recruitment respectively. ro
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Figure 2.4. Relationship between observed and predicted recruitment rates 
pooled across all herds and years (r = 0.86, P < 0.001). The diagonal line 
represents perfect correlation {r = 1.0).



54

Figure 2.5. Relationship between observed and predicted recruitment rates by 
herd. All correlations reported are significant (P < 0.05) except for Tatchun (P = 
0.82) and Wolf Lake (P = 0.45). The diagonal lines represent perfect correlation 
( r =  1.0 ).
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Figure 2.6. Predicted (grey circles) and observed (black circles) for 13 additional 
recruitment rates of mountain dwelling caribou in the Yukon Territory. Error bars 
represent 95% confidence intervals of the observed rates. Herd names are noted 
on the x-axis and are followed by the year of the recruitment estimate.
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Figure 2.7. Relationship between average caribou calf birth mass by sex (1987 -  
1997) from Denali National Park, Alaska (data from Adams 2005) and a) Winter- 
PDO and b) winter snowfall. Lines of best fit with 95% confidence intervals are 
shown. P <  0.05 for all reported correlations.



Appendix 2A. Chapter 2 Supplementary Tables

Table 2.A-1. Correlation between a) average temperature (°C) and b) precipitation (mm of water) and 
seasonal/monthly PDO from 8 weather stations (c) across the southern portion of the Yukon Territory, Canada 
(1980 - 2007). Weather data are available on-line from Environment Canada (www.climate.weatheroffice.ec.gc.ca).

Weatherstation
Anvil Burwash Dawson City Faro Haines Junction Teslin Watson Lake Whitehorse

a) Temperature -  
Fall

■ PDO Correlation
0.32 0.29 0.21 0.41 -0.74 0.27 0.25 0.10

Summer -0.46 0.06 -0.03 -0.12 -0.55 -0.06 -0.08 -0.12
Winter 0.06 0.50a 0.35 0.14 -0.53 0.42 0.03 0.43
Spring 0.49 -0.12 0.20 0.36 -0.35 -0.25 0.06 0.27
April -0.46 0.03 0.06 -0.04 0.40 0.11 0.11 0.10
May 0.10 0.33 0.36 0.33 0.51 0.30 0.30 0.45
June -0.74 -0.04 -0.25 -0.22 -0.38 -0.17 -0.17 0.12

b) Precipitation -  
Fall

PDO Correlation 

0.30 -0.05 -0.06 -0.20 -0.04 0.24 0 -0.04
Summer 0.51 -0.01 0.09 0.23 -0.52 -0.17 0.09 0.01
Winter -0.23 -0.29 -0.07 -0.34 0.09 0 0.08 -0.18
Spring -0.60 -0.07 0 0.24 -0.77 -0.27 0.02 0.01
April -0.07 0.12 0.13 0.03 -0.93 0.28 -0.10 0.02
Mayb -0.18 0.15 -0.-6 0.19 -0.29 -0.05 -0.01 -0.16

(-0.34) (0.17) (-0.03) (0.14) (0.32) (-0.15) (0.01) (-0.13)
June 0.50 -0.32 0.37 0.09 0.45 0.18 0.15 0.20

c) Station Details
Number of 8 26 26 26 11 20 26 25
Years
Latitude 62»37' 61*22' 64*2’ 62*12’ 60*46’ 60*10’ 60*7' 60*42’
Longitude 133-38' 139*3’ 139*7' 133*22’ 137*34’ 132*44’ 128*50’ 135*4’

Elevation (m 1158 807 370 716 599 705 685 700
a.s.l.)

a: Significant correlations (P < 0.05) are bolded; b: Values in parentheses represent the correlation between PDO values and square-root transformed

http://www.climate.weatheroffice.ec.gc.ca
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Table 2.A-2. Correlation between the annual first snow-free day (measured as 
the Julian date) in the southwest Yukon Territory, Canada, (Morrison & Hik 2007) 
and Spring-, April-, May-, June-, and Winter-PDO values (1995-2001).

Seasona/Month r P

Winter-PDO -0.81 0.028

April-PDO -0.74 0.060

May-PDO -0.65 0.112

June-PDO -0.60 0.155

Spring-PDO -0.76 0.048

a: Seasons defined in the text (see Methods).



Table 2.A-3. Correlation between Winter-, Spring-, April-, and May-PDO values and snow depth (cm) data in the 
first week of a) March, b) April, and c) May from d) 15 snowcourse stations across the southern Yukon Territory 
and northern British Columbia, Canada (1980 -  2007). Data were provided by Environment Yukon (Water 
Resources Branch).

Snowcourse Station
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a) Correlation W ith March Snow Depth (cm )

W inter-PDO -0.43 -0.27 - 0 .51“ -0.06 -0.21 -0.41 - 0.53 -0.25 -0.01 -0.19 -0.26 -0.26 -0.19 -0.27 -0.37

Spring-PDO -0.25 -0.18 - 0.45 -0 08 -0.14 -0.43 -0.47 -0.22 0.12 0.08 -0.12 -0.12 -0.26 -0.29 -0.28

b) Correlation W th April Snow Depth (cm )

W nte r-P D O -0.48 -0.16 -0.40 -0.07 -0.21 -0.45 - 0.38 -0.23 -0.04 -0.15 -0.31 -0.27 -0.27 -0.24 -0.37

Spring-PDO -0.23 -0 12 -0.41 0.03 -0.08 -0.40 -0.36 -0 18 0.07 0 01 -0.17 -0  17 -0.26 -0.27 -0.22

Aprii-PDO -0.21 -0.11 -0.48 -0.04 -0.14 -0.45 -0.41 -0.25 -0 01 -0.05 -0 21 -0.21 -0.32 -0.30 -0.24

c) Correlation W th May Snow Depth (cm )

W nte r-P D O -0.66 0.12 0.05 -0.34 -0.19 -0.30 -0 15 -0.03 0.07 -0.06 -0.19 -0.07 -0.12 -0.21 -0.04

Spring-PDO -0.72 -0.03 -0.16 -0.42 -0.21 -0.43 -0 17 -0.16 -0.05 0 09 -0.17 -0  14 -0 24 -0.21 -0.22

April-PDO -0.65 0.01 -0.12 -0.37 -0.23 - 0.44 -0.17 -0.19 -0.05 0.04 -0.17 -0  14 -0.24 -0.19 -0.20

May-PDO -0.60 -0 15 -0.27 -0.45 -0.12 - 0.50 -0 23 -0.32 -0 14 0.16 -0.24 -0.19 -0.33 -0.17 -0.33

d) Station Details

Num ber of 
Years

14 28 28 21 28 28 28 28 28 19 28 28 27 28 28

Latitude 61*12‘ 59*34 62*25 61*42 61*31 61*43 60*35 62*2 63*31 64*17 60*51 60*17 61*5 60*7 60*42

Longitude 137*0' 133*2 140*5 130*4 128*1 137*2 133*5 136*1 132*3 133*1 137*4 134*1 131*1 128*5 135*4

Elevation 
(m a s  1 )

945 730 655 988 855 1160 1235 1035 830 1040 1000 1080 1067 685 700

a: Significant correlations (P < 0.05) are bolded.

cnCD



Table 2.A-4. Models representing the effect of wolf removal on calf recruitment on woodland caribou herds in the 
Yukon Territory, Canada, for herds in which wolf removal programs were directed (Aishihik and Finlayson herds). 
All models have 4 parameters (intercept, “Treatment” effect, year-level variance, herd-level variance). The 
“Treatment” coefficient represents the effect of wolf control on recruitment during the years of wolf removal and k 
years after removal ended, where k ranges from 1 to 6 and represents when the wolf control effect is not 
detected. AAlCc is also presented for ease of model comparison.

Model Log-

Likelihood

AAlCc “Treatment" 

coefficient (SE)

No effect after wolf removal ended (k = 1) -1200.489 141.412 0.726 (0.053)

Declining effectfor 1-year after wolf removal ended (7c = I) -1183.060 106.554 0.762 (0.051)

Declining effectfor 2-years afterwolf removal ended (k = 3) -1163.869 68.172 0.797 (0.049)

Declining effectfor 3-years afterwolf removal ended (k = 4) -1151.719 43.872 0.806 (0.048)

Declining effectfor 4-years after wolf removal ended (k = 5) -1136.376 13.186 0.834 (0.047)

Declining effect for 5-years after wolf removal ended (k = 6) -1129.783 0 0.848 (0.047)

CDo



Table 2.A-5. Models representing the effect of wolf removal on calf recruitment on woodland caribou herds in the 
Yukon Territory, Canada, for herds adjacent to those in which wolf removal programs were directed (Burwash 
and Klaza herds). All models have 5 parameters. In addition to those described in Table 2.A-4, the “Adjacent” 
coefficient represents the effect of wolf removal on recruitment in adjacent herds beginning m years after wolf 
removal began (lag effect), where m ranges from 0 to 4, and an effect from k = 1 to 6 years following cessation of 
wolf removal. AAlCc is also presented for ease of model comparison.

Model Log-

Likelihood

AAlCc “Adjacent"

coefficient

(SE)

Effect during all wolf removal years (m = 0 , k = 1) -1125.690 13.186 0.239 (0.083)

Effect 1-year after removal begins ( m=  1 , k = 1) -1122.023 5.852 0.348(0.088)

Effect 2-years after removal begins ( m=  2 , k =  1)a -1119.097 0 0.441 (0.094)

Effect 3-years after removal begins (m = 3 , k = 1) -1122.797 7.400 0.416(0.110)

Effect 4-years after removal begins (m = 4 , k = 1) -1127.568 16.942 0.328(0.154)

Effect 2-years after removal begins and 1-year after control ends (m= 2 , k -  2) -1119.657 1.120 0.430(0.095)

Effect 2-years after removal begins and 2-years after control ends(m = 2 , k =  3) -1120.753 3.312 0.407 (0.095)

Effect 2-years after removal begins and 3-years after control ends (m = 2 , k = 4) -1120.611 3.028 0.415(0.096)

Effect 2-years after removal begins and 4-years after control ends (m = 2 , k =  5) -1120.245 2.296 0.427(0.097)

Effect 2-years after removal begins and 5-years after control ends(m = 2 , k =  6) -1120.517 2.840 0.427(0.099)

a: This is the Null model (after adding a trend variable) reported in Table 2.2.
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Table 2.A-6. Matrix of pairwise correlation coefficients between seasonal 
(monthly) PDO values (1980 -  2007).

OQ
CLI
15

April-PDO 1 0.86a 0.70 0.98 0.60 0.53 0.77 0.08 0.61

May-PDO 1 0.86 0.91 0.76 0.44 0.53 0.05 0.51

June-PDO 0.74 0.91 0.27 0.41 0.03 0.34

Spring-PDOb 1 0.63 0.51 0.75 0.08 0.62

Summer-PDO 1 0.18 0.37 0.08 0.36

Summer-PDOt-i 1 0.58 0.39 0.79
Winter-PDO 1 0.11 0.82

Winter-PDOt-i 1 0.13

Fall-PDOt-i 1
a: Significant correlations (P < 0.05) are bolded; b: Seasons defined in the text (see Methods).
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Table 2.A-7. Parameter estimates (logit scale) and standard errors for the top- 
ranked model (Tables 2.2, 2.3) without adjustment for underdispersion.

Variable Parameter SE

Winter-PDO 0.110 0.156

May-PDO 0.013 0.138

Trend -0.023 0.020

Treatment 0.824 0.062

Adjacent 0.489 0.139

Constant -0.742 0.428

ct3 (Winter-PDO Random Coefficient) 0.273

ct (May-PDO Random Coefficient) 0.239

ct (Trend Random Coefficient) 0.054

ct (Year Random Intercept) 0.422

ct (Herd Random Intercept) 1.168

a: Standard deviation.
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Table 2.A-8. Herd-specific coefficients of the relationship between recruitment 
and May-PDO, Winter-PDO and Trend. Coefficients were calculated by adding 
each herd’s empirical Bayes predicted random effect for a specific variable to the 
global parameter estimate from Table 2.3.

Herd Intercept Trend Winter-PDO May-PDO

Aishihik -1.60 0.015 0.225 0.076

Burwash -0.59 -0.040 0.072 -0.082

Carcross 1.24 -0.104 0.020 -0.213

Chisana -2.37 0.017 0.623 -0.438

Ethel Lake -0.40 -0.052 0.011 0.247

Finlayson -0.91 -0.022 -0.020 0.102

Ibex 0.24 -0.070 -0.224 0.418

Klaza -1.16 0.008 0.003 0.082

Tatchun 0.51 -0.062 -0.135 -0.015

Wolf Lake -2.34 0.080 0.525 -0.045
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Appendix 2B. Modeling the Effect o f W olf Removal on Recruitment

Hayes & Harestad (2000) reported that in Finlayson (Fig. 2.1), the wolf 

population recovered to pre-removal levels in six years. We therefore fit a series 

of models with a “Treatment” variable, indexing a potential linear decline in 

recruitment following wolf removal for the Aishihik and Finlayson herds (i.e. the 

wolf control treatment herds). Years with active wolf removal had a value of 1.0 

and linearly decreased in value, on the logit scale, after wolf removals ceased. 

We compared models which differed in when the wolf removal effect became 

undetectable (k). This ranged from a lack of effect in the first year after wolf 

removal (k = 1) to a lack of effect at six years {k = 6). The value (Vi) of the 

Treatment variable was calculated by V-, = 1 -  i/k, where 1 <k>Q,  and i = 

number of years after wolf removals ceased (i <k).  All other years were valued 

at 0. The best value of k was chosen based on the model with the greatest log- 

likelihood.

Further, because the Aishihik wolf control area overlapped onto the 

ranges of the Burwash and Klaza herds (i.e. the herds adjacent to the treatment 

herds; Fig. 2.1) we accounted for a wolf removal effect in these herds, although 

we assumed this effect would be different than for the Aishihik or Finlayson 

(Treatment) herds because the proportion of the herd’s ranges covered was 

substantially less (Hayes etal. 2003). Since wolf removals occurred on the 

periphery of these herds’ ranges we were uncertain as to the nature of the 

response in recruitment. Therefore, we considered a number of possible 

response patterns following wolf removal in these two adjacent herds, specified 

as an “Adjacent” variable. These possible response patterns included a direct 

effect during all years of wolf removal, a lag effect in which the effect of wolf 

removal was not detected until 1 -  4 years (m) after removals began, and a 

possible linear decline in recruitment after wolf removal ceased for k number of 

years. The possible number of years for which a post-wolf removal effect was 

tested (k) depended upon results from the Treatment herds, since we regarded it
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implausible that a wolf removal effect could remain longer in the adjacent herds 

than the treatment herds. Therefore, to account for wolf removal in subsequent 

models, we included two variables: one for the Treatment herds and one for the 

Adjacent herds, which represented an index of wolf removal on recruitment. 

Overall, our results for the climatic effect on recruitment were insensitive to the 

detail on how wolf removal was modeled.

The effect of wolf removal on recruitment was confirmed for the 

“Treatment” herds, and represented a constant positive effect on recruitment 

during active removal followed by a post-removal six-year linear decline (Table 

2.A-4; k = 6). For the “Adjacent” herds, a variable representing a two-year lag 

effect after wolf removal began, with no post-removal effect, was selected (Table 

2.A-5; m = 2, k = 1).
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CHAPTER 3 INTERACTING EFFECT OF WOLVES AND CLIMATE ON 

RECRUITMENT IN A NORTHERN MOUNTAIN CARIBOU POPULATION1

3.1 Introduction

The use of large-scale indices has proven successful in enhancing our 

understanding of climate’s influence on ecological patterns (Stenseth et al.

2003). In western Europe and eastern North America, the North Atlantic 

Oscillation (NAO) index sometimes better predicts ecological processes (e.g. 

survival) than measures of local weather, as it captures variation across multiple 

months (i.e. time window), spatial scales (e.g. altitude, latitude), and incorporates 

variation and interactions from multiple weather variables (e.g. precipitation, 

temperature) into one parsimonious metric (Hallett et al. 2004, Stenseth and 

Mysterud 2005). For mobile and/or dispersed individuals in a population, one 

single weather metric may not represent conditions experienced by all 

individuals. However, in some continental areas of Europe far from the coast, the 

impact of the NAO is weaker and principal component-based indices of local 

weather parameters were better predictors (Mysterud et al. 2007). Additionally, 

an integrated climate index may represent more complexity than necessary if a 

single local weather variable is the primary factor affecting an ecological process 

(e.g. population growth). For example, ungulate population dynamics in South 

Africa are largely influenced by dry season rainfall limiting plant growth, rather 

than a large-scale climate index (Ogutu and Owen-Smith 2003).

Recently, two Pacific-based indices have been related to terrestrial 

vertebrate population dynamics in North America (Hebblewhite 2005, Morrison 

and Hik 2007, Hegel et al. 2010): the North Pacific Index (NPI) and the Pacific 

Decadal Oscillation (PDO). However, the identification of a “best” Pacific-based 

climate index in terms of influencing terrestrial vertebrate population dynamics 

over a broad geographical scope, akin to that of the NAO (Stenseth et al. 2003),

1 Hegel, T. M., Mysterud, A., Huettmann, F. and Stenseth, N. C. In Press. Interacting effect of 

wolves and climate on recruitment in a northern mountain caribou population. Oikos.
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remains elusive and identification of such an index may enhance our 

understanding of ecological systems. The PDO is a measure of climatic 

variability in the north Pacific region characterized by shifts between warm and 

cool phases on an interdecadal time scale (Mantua et al. 1997, Mantua and Hare 

2002). It is measured as the leading principal component of monthly sea surface 

temperatures (SST) in the north Pacific from 20°N poleward and 110°E-110W°. 

Positive (warm phase) PDO values are characterized by cool SST in the central 

Pacific and warm SST along coastal areas. The PDO is related to sea level 

pressure (SLP) such that warm phase PDO values generally coincide with below 

average north Pacific SLP (Mantua et al. 1997, Stenseth et al. 2003). The NPI is 

an area-weighted mean SLP index summarizing the north Pacific from 30°N- 

65°N and 160°E-140W° (Trenberth and Hurrell 1994). Due to the negative 

relationship between SST and SLP in the North Pacific region, relationships 

between the PDO and local weather variables (e.g. snowfall) are opposite in 

direction to NPI -  local weather relationships.

Climate can have both direct and indirect effects operating through trophic 

interactions (Mysterud et al. 2008). Most research on trophic interactions has 

focused on bottom-up effects (Post and Stenseth 1999, Mysterud et al. 2001, but 

see Stenseth et al. 2004 for dynamics of Canada lynx Lynx canadensis); 

however, climate may also affect top-down interactions with predators 

(Hebblewhite 2005, Wilmers et al. 2006). For example, Hebblewhite (2005) 

reported that in elk populations exposed to wolf predation, snow depth explained 

more variation in population growth rate than the NPI, whereas in populations 

absent of wolves the NPI was a better predictor. Winter and spring PDO is also 

negatively correlated with snowmelt phenology (Morrison and Hik 2007, Hegel et 

al. 2010) such that high values indicate an earlier first snowfree day of the year.

Northern mountain-dwelling caribou in the Yukon Territory, Canada 

(Yukon; Farnell et al. 1998) are regarded as predator-limited (Hayes et al. 2003), 

primarily through predation on newborn calves (Adams et al. 1995, Gustine et al.
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2006) which limits recruitment. As with most ungulate populations that occur with 

natural predators, density dependent factors regulating population growth are 

weak (Crete 1999, Wang et al. 2009). Previous research indicates that 

recruitment dynamics in these populations are influenced by climate affecting 

environmental conditions at calving (Hegel et al. 2010). However, there is 

variability in the relationship between climate and recruitment across populations 

(Grotan et al. 2009), not unlike the variable response in red deer C. elaphus 

body weight to environmental conditions across Europe (Martfnez-Jauregui et al.

2009). One possible explanation for this is that the effect of climate at calving is 

related to variable predator densities. At calving, parturient female caribou move 

up in elevation to separate themselves from predators and other parturient 

females (Bergerud and Page 1987). In years with high snow depth during the 

calving season, this upward movement may be limited, resulting in higher 

predation rates on neonates (Bergerud and Page 1987, Adams et al. 1995).

Thus, the effect of climate on recruitment may be modified by the number of 

predators present on the landscape.

We used long-term recruitment data from the Finlayson caribou 

population (herd) in the Yukon to test three hypotheses regarding the influence 

of large-scale climate, local weather, and predator density on recruitment 

dynamics. Local weather and wolf abundance data were available for the 

Finlayson herd allowing us to focus explicitly on the influence of a predator- 

climate (local weather) interaction on recruitment. First (H1: regional climate vs. 

local weather hypothesis), we tested the prediction (H1a) that large-scale climate 

indices would better explain observed patterns in recruitment than local weather 

variables (Hallett et al. 2004) versus the prediction that local weather was a 

better explanatory variable (H1b). If local weather better explained observed 

recruitment patterns, we predicted that this would be most evident with respect to 

those weather variables related to environmental conditions at calving, such as 

winter snowfall, given the high predation on neonates in mountain caribou
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populations. Second (H2: PDO vs. NPI hypothesis), we tested the hypothesis 

that the PDO and NPI are equally supported in their ability to explain observed 

recruitment patterns. Due to the lack of direct comparative analyses between 

Pacific-based climate indices on ungulate population dynamics we had no a 

priori basis to assume one index would outperform the other. Finally (H3: 

climate-predation interaction hypothesis), we predicted that the influence of 

seasonal climate, or local weather, on caribou recruitment would change (Table 

3.1) with reduced wolf densities following a large-scale predator removal 

program (Farnell and McDonald 1987, Hayes and Harestad 2000).

3.2 Methods

3.2.1 Study Area and Population Data

The Finlayson mountain-dwelling caribou herd (~ 62°N, 128°W), a 

member of the Northern Mountain ecotype of woodland caribou, is located in the 

east-central Yukon (Farnell et al. 1998) and is a part of a multi-predator (e.g. 

wolf, grizzly bear, black bear), multi-prey system (e.g. Dali’s sheep, moose). 

Details regarding the environmental characteristics of its range are described by 

Farnell and McDonald (1987) and Hayes and Harestad (2000).

Aerial surveys were conducted during rutting (breeding) season (late 

September to mid-October) with total counts of observed calves and adult 

females used to estimate recruitment (calf:cow ratio; Farnell et al. 1998). The 

dataset used here consisted of 27 annual estimates during the period 1982 -  

2008, and recruitment ranged from 0.09 -  0.62 (Fig. 3.1). The total number of 

animals classified during the surveys ranged from 393 to 2247. The recruitment 

estimates used here represent a combined measure of fecundity and calf 

survival to approximately 4 months of age. Age ratios such as the calf:cow ratio 

used here are positively correlated with population growth rates (Harris et al. 

2008). During the rut, animals are aggregated above treeline in high alpine 

habitats reducing misclassification errors and increasing detectability of calves. A
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recent comparison of recruitment estimated aerially with one derived 

concurrently from individually captured females indicated no meaningful 

difference in recruitment rate (0.10 vs. 0.095, Hegel unpubl.).

In response to perceived poor recruitment and a declining population, a 

recovery program was initiated for the herd during 1983 -  1989 (Farnell et al. 

1998). During late-winter, wolves were removed from the herd’s range to < 20% 

of pre-removal levels (Farnell and McDonald 1987). Hence, the wolf population 

was reduced substantially during the years of active removal (Fig. 3.1) with 

numbers increasing following removal efforts to pre-removal level (Hayes and 

Harestad 2000). During this time wolf numbers were estimated annually (Farnell 

and McDonald 1987) as described in Hayes and Harestad (2000). We did not 

have absolute wolf density estimates for the full range of the Finlayson caribou 

recruitment time-series; therefore, we generated a relative wolf density index 

(Wolf) ranging on the unit interval (0, 1). This index represents the proportion of 

the pre-removal (i.e. not reduced via management actions) wolf population in a 

year, calculated by Wt /10.3, where Wt was the wolf density estimate in year t 

and 10.3 was the wolf density (wolves/1000 km2) estimated prior to wolf removal 

activities (Environment Yukon unpubl.). Years prior to wolf removal and following 

the wolf population’s return to pre-removal levels were valued at 1.0. The relative 

wolf density index ranged from 0.126 -  1.0 (Fig. 3.1).

3.2.2 Climate and Local Weather Data

We used seasonal PDO values obtained from the Joint Institute for the 

Study of the Atmosphere and Ocean at the University of Washington (Mantua et 

al. 1997) (<http://jisao.washington.edu/pdo>). NPI values were obtained from the 

Climate Analysis Section of the National Center for Atmospheric Research 

(Trenberth and Hurrell 1994) (<www.cgd.ucar.edu/cas/jhurrell/npindex.html>). 

Seasons for which index values were obtained are described in Table 3.1 and 

were selected because they were identified as potentially influencing recruitment

http://jisao.washington.edu/pdo
http://www.cgd.ucar.edu/cas/jhurrell/npindex.html
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in northern mountain caribou in the Yukon. Seasonal PDO values were positively 

correlated with local weather, such as precipitation and temperature, across the 

Yukon (Hegel et al. 2010) and this study area (Table 3.2). Relationships between 

local weather and NPI (Table 3.2) were in the expected opposite direction to 

those between the PDO and local weather (Mantua et al. 1997, Yang et al.

2005).

Local weather was represented by snow depth data collected at the Hoole 

River snowcourse station (61°32’N, 131°36’W) located within the Finlayson 

herd’s range (data provided by Water Resources Branch, Environment Yukon). 

Two snow measurements (cm), collected at the beginning of the month, were 

used: May-snow represented snow levels immediately prior to calving (May- 

Snow), and April-snow represented the overwinter (in utero) accumulation of 

snow. Separate April and May snow depth measurements were used because 

spring snowmelt often begins in April. Thus, May snow depth is related to both 

April climatic conditions and overwinter snowfall. Data from multiple seasons 

were used to allow for a direct comparison of seasons with differing mechanistic 

effects on recruitment (Table 3.1).

3.2.3 Statistical Analysis

We modeled caribou recruitment by fitting a suite of candidate generalized 

additive models (GAM; Wood 2006) which allowed us to account for possible 

non-linearity (Mysterud et al. 2001). If non-linear relationships were not 

supported, generalized linear models (GLM) were fitted instead. All models were 

fitted using the binomial family and a logit link function. All models were fitted 

using the ‘mgcv’ package (Wood 2006) for the statistical software R 2.9.2 (R 

Development Core Team 2009). We fitted a suite of candidate models using 

Wolf and the seasonal NPI, PDO, and local weather variables (Table 3.1), 

specified as interactions. For GAMs, a tensor-product smooth term represented 

the interaction. Candidate models were also fitted in which Wolf and the
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climate/weather variables were specified with separate terms (i.e. no variable 

interaction). A null model (i.e. no predictors) was also fitted for comparison. We 

did not include more than one seasonal variable in a model as we regarded this 

time-series too short to estimate more complex models. All GAM smooth terms 

were penalized thin-plate regression splines with the degree of smoothing, 

limited to a maximum of four degrees of freedom (df = 4), selected using 

generalized cross-validation (Wood 2006).

Candidate models were ranked using the Akaike Information Criterion 

adjusted for small sample size (AlCc; Burnham and Anderson 2002). For each 

model (i) we calculated AAlCq, which is AlCq minus the minimum AlCc from all 

models in the candidate set. Models with AAlCc < 2 and large Akaike weights, 

indicating the probability that model i is the top model among the candidate set, 

were interpreted as having the strongest support (Burnham and Anderson 2002).

3.3 Results

The best model of recruitment was represented by the interaction of Wolf 

and April-PDO (Table 3.3; Fig. 3.2). It explained 80.5% of the deviance relative 

to the null model and had an Akaike weight of 0.99. Wolf explained 69.3% of the 

deviance, while April-PDO and the interaction of Wolf and April-PDO explained 

11.9% and 5.7% respectively. No other models had AAlCc < 10. The constant- 

only (null) model (AAlCc = 101.5), models with either Wolf (AAlCc = 572.74) and 

April-PDO (AAlCc = 807.66) as single predictors, and the model with Wolf and 

April-PDO as separate smooth terms (AAlCc = 67.93) received less support. NPI 

and local weather were not represented in the top-ranked models, and the AAlCc 

values of the best models including these variables were 24.56 and 46.21 

respectively (Appendix Table 3.A-1).

The significant interaction between Wolf and April-PDO (Table 3.3) 

highlighted the important non-additive relationship between these two variables 

and recruitment. There was a negative effect of increasing wolf density on
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recruitment across the range of April-PDO values (Fig. 3.2), although this 

relationship lessened as April-PDO increased suggesting that in “good” springs, 

climate partly buffered the effect of wolves. The relationship between April-PDO 

and recruitment was positive at high wolf densities; however with reduced wolf 

numbers the direction of this relationship changed to one that was slightly 

negative (Fig. 3.2 and 3.3). For example, predicted recruitment with April-PDO at 

2.0 and -1.5 was 0.29 (SE = 0.03) and 0.12 (SE = 0.03), respectively, at high 

wolf density (Wolf = 1.0). At low wolf density (e.g. Wolf = 0.15) there was a slight 

negative effect of increasing April-PDO on recruitment (Fig. 3.3). For example, 

predicted recruitment at April-PDO of 2.0 and -1.5 was 0.45 (SE = 0.04) and 0.55 

(SE = 0.10) respectively. The difference in predicted recruitment between these 

two climatic extremes was not significant given the high amount of overlap of 

95% confidence intervals of the predictions. Residuals from the top model were 

normally distributed (Shapiro-Wilk test: W = 0.97, P = 0.59) and an 

autocorrelation plot indicated no significant serial autocorrelation.

3.4 Discussion

The presence of only large-scale climate indices in the top ranked models 

provided support for H1a, that large-scale climate would better explain 

recruitment patterns than local weather metrics. The lack of the NPI in any of the 

top ranked models also led us to reject H2, that the NPI would be an equally 

good predictor of recruitment as the PDO. Finally, our results provide support for 

H3, that a reduction in predator density would affect the relationship between 

climate and recruitment.

3.4.1 Regional Climate vs. Local Weather

Our findings, indicating large-scale climate’s greater explanatory 

performance than local conditions, represented by snow depth, are consistent 

with those previously reported for a variety of ecological systems (Attrill and
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Power 2002, Hallett et al. 2004). Given the strong mechanistic link between 

snow conditions at calving and predation on neonates in northern mountain- 

dwelling caribou (Bergerud and Page 1987), and the increased effect of local 

weather on elk population growth following wolf recolonization in the Canadian 

Rocky Mountains (Hebblewhite 2005), we expected snow conditions to be 

important for recruitment in the Finlayson caribou herd. Our snow depth 

measurements were obtained from within the range of the herd. However, this 

site may not have captured all the spatial variation in snow depth across the 

herd’s range, both in area and elevation, making the PDO a better proxy than 

snow depth from a single station.

When one localized metric is used to represent weather conditions for a 

mobile species, it may not represent the full range of conditions experienced by 

individuals. This is particularly relevant for snow depth which may be more 

spatially variable than either precipitation or temperature. For species such as 

northern mountain caribou which disperse away from conspecifics during 

calving, finding one localized weather measurement to represent the 

environmental conditions experienced by the population may be difficult. Indeed, 

northern mountain caribou are most widely dispersed during the calving season.

While snow depth is an important factor influencing predation rates 

(Huggard 1993), snowmelt patterns may also influence predation rates by 

creating a more heterogeneous landscape, which may reduce predator 

searching efficiency and enhance neonate survival (Bergerud and Page 1987, 

Eastland et al. 1989). If a heterogeneous snowmelt pattern is important for 

influencing neonate survival, and hence recruitment, an integrated index 

representing temperature and precipitation prior to calving would thus provide 

more explanatory power. The complexity of snowmelt patterns may be further 

enhanced in mountainous and topographically variable terrain. April-PDO may 

therefore represent the combination of temperature and precipitation during April, 

immediately prior to calving, which subsequently better describes snow depth
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and snowmelt heterogeneity, within a broader “spatial window” (Stenseth and 

Mysterud 2005), than a single local weather metric. The spatio-temporal 

complexity of how local weather translates to actual environmental conditions 

may explain why, in some systems, local weather variables that should in theory 

be strongly related to animal population dynamics, do not necessarily provide the 

predictive ability expected (e.g. Jonzen et al. 2005). The use of multiple local 

weather measurements in the Finlayson herd’s range could provide a more 

spatially complete description of snow depth and a principal components 

approach to providing a single snow metric (e.g. Mysterud et al. 2007) may prove 

to be a better explanatory variable than a large-scale index. However, there were 

not sufficient numbers of weather stations available in the herd’s range to allow 

for this. This is a typical situation in remote areas where only one station may be 

available (e.g. Adams 2005).

3.4.2 The Pacific Decadal Oscillation vs. North Pacific Index

There were relatively similar relationships between the NPI and PDO and 

local weather, however the signal by which the PDO manifested itself into 

complex local weather patterns was stronger than the NPI for recruitment in the 

Finlayson caribou herd. In addition to caribou recruitment patterns (Hegel et al.

2010) and collared pika survival (Morrison and Hik 2007) in the Yukon, the PDO 

is correlated with a variety of broad-scale terrestrial environmental phenomena in 

North America including forest fires (Skinner et al. 2006) and summer drought 

(Shabbar and Skinner 2004). The NPI is also related to weather patterns across 

North America (Trenberth and Hurrell 1994; Yang et al. 2005), and showed 

comparable, and sometimes stronger, relationships to local weather in this study 

area to the PDO.

Indeed, the NPI is strongly related to snow conditions in the Canadian 

Rocky Mountains (Hebblewhite 2005) and may perform better than the PDO in 

that system. Understanding why this may occur is complicated by the uncertainty
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of the physical mechanisms driving Pacific decadal variability in North Pacific 

climate (Miller and Schneider 2000; Mantua and Hare 2002), and the additional 

complex relationships between the NPI and PDO and other global indices such 

as the El Nino Southern Oscillation (Tianjun et al. 2002). There remains a need 

for more investigation, over a broad geographic region, into the performance of 

different Pacific-based indices in explaining ecological patterns.

3.4.3 Interaction of Wolves and Climate on Recruitment

Our results demonstrate that the effect of April-PDO on recruitment in the 

Finlayson caribou herd may change direction with substantially reduced wolf 

numbers. With higher wolf numbers, recruitment increased in years with “better” 

springs (i.e. higher PDO, less snow on the ground). Predation on neonatal 

caribou in the Finlayson herd is apparently moderated by spring climate 

conditions. In good springs, recruitment rates in the absence of active wolf 

removal approached those when the wolf population was reduced by ~85%. This 

“environmentally modulated predation” (sensu Newsome et al. 1989) can result 

from reduced predator efficiency due to an increased ability for prey to disperse 

in years with lower snow depths at calving thus reducing prey densities and 

increasing search times (Bergerud and Page 1987), increased vulnerability of 

prey due to environmental conditions as seen by increased wolf predation 

success on elk in Yellowstone National Park during severe winters (Mech et al. 

2001), and the effect of snow characteristics (e.g. hard vs. soft) on predation 

success as seen for Canada lynx (Stenseth et al. 2004). Our results are 

consistent with Melis et al. (2009) who found a significant interaction between 

winter severity and the presence of large predators affecting the densities of roe 

deer Capreolus capreolus across Europe. They found that winter severity was 

only a factor shaping population densities when large predators were present. 

Modulation of predation rates is also observed in aquatic systems where 

changes in environmental features such as water temperature impose
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physiological constraints on predator efficiency (Kashi et al. 2005). Climate can 

also modulate the influence of predators by directly affecting predator abundance 

and hence subsequent predation impacts on prey (Preisser and Strong 2004).

The reduced and reversed effect of climate on recruitment in the 

Finlayson herd following wolf reduction differs from similar situations observed 

elsewhere. Following massive disease-related wolf losses on Isle Royale, the 

effect of winter NAO on moose population growth increased substantially as 

bottom-up factors became more influential (Wilmers et al. 2006). Our results 

indicate that rather than exerting a buffering capacity against climate by keeping 

population densities sufficiently low enough to limit density dependent effects, 

the presence of wolves enhanced the effect of spring climate on caribou 

recruitment dynamics. These contrasting results may be due to differing degrees 

of bottom-up limitation occurring in each population prior to the reduction of 

wolves (Vucetich and Peterson 2004) and that the Finlayson caribou herd would 

not have been as spatially limited as the island moose population of Isle Royale 

following population increases.

The slightly negative relationship between April-PDO and recruitment 

following the substantial reduction in wolf numbers suggests an alternative 

mechanism operating once a substantial portion of predation is removed from 

the system. April-PDO is positively correlated to earlier snowmelt and 

temperature (Hegel et al. 2010). In springs with higher PDO, forage green-up 

may occur earlier and more rapidly. Rapid changes in plant productivity, 

following high April-PDO, may have a negative effect on calf growth (Pettorelli et 

al. 2007) and subsequent survival. In mountainous environments, a very warm 

spring may reduce the heterogeneity of snowmelt, thus reducing the temporal 

availability of highly nutritious green forage available to lactating females and 

growing calves. Warmer temperatures may also result in reduced forage quality 

such as nitrogen content (Lenart et al. 2002), further affecting calf growth. That 

this relationship was only detected in the absence of a large portion of the
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primary predation source indicates the dominant effect of predation on 

recruitment in this population. Population density does not provide an adequate 

explanation for this observed pattern, as all but one of the observed recruitment 

rates during years with no wolf removal in Fig. 3.3 (i.e. the gray circles) were 

obtained after wolf control was implemented and thus densities were higher 

during these years.

3.5 Conclusion

This study indicates the potential importance of considering climate during 

management activities such as predator control (Reynolds and Tapper 1996) or 

reducing the impacts of introduced species (Harding et al. 2001), which could 

provide insight into their level of success (Keedwell et al. 2002). Our results 

suggest that wolf removal would be most effective, in terms of increasing calf 

recruitment, during poor springs. In years with high April-PDO, the effect of wolf 

removal on recruitment may be reduced. Given the social controversy 

surrounding predator control (Martinez-Espineira 2006), its financial costs 

(Engeman et al. 2002), and the possible ecosystem effects of top predator 

reduction (Duffy 2003), understanding how climate may influence a program’s 

success may prove useful for decision making (Knowlton et al. 1999). This could 

include consideration of upcoming seasonal weather forecasts. For example, the 

decision to undertake a predator reduction program that must occur in the winter 

due to logistical and other environmental constraints may use a forecast of 

upcoming springtime weather as one factor in deciding whether to proceed with 

the activities. The usefulness of such an approach would largely depend on how 

well future weather can be forecasted in a particular location and the ability of a 

management agency to adapt quickly to changing conditions. While spring 

climate was the most influential season in our study, the effect of seasonal 

climate on predation should be assessed at a local level and in other systems 

variables such as winter snowfall may be more influential (Hebblewhite 2005).
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Our results may prove useful for understanding the factors affecting the 

broad-scale decline of woodland (boreal forest and mountain-dwelling) caribou 

across North America (McLoughlin et al. 2003, Wittmer et al. 2010). Numerous 

proximate and ultimate factors influence these declines, including human 

disturbance (Environment Canada 2008), habitat loss (Wittmer et al. 2010), and 

predation (Wittmer et al. 2005). Incorporating climate variables as non-additive 

interactions with other influential variables (e.g. % forest cover) could strengthen 

the predictive power of demographic and population models. Recent work 

suggests Allee effects may be present in low density mountain caribou 

populations in British Columbia driven largely by predation and apparent 

competition with alternate prey (Wittmer et al. 2005). Our results suggest that in 

poor years (e.g. high snow depth at calving) these Allee effects could be more 

pronounced. Further, climatic conditions that are generally favorable to alternate 

prey may indirectly affect caribou through apparent competition. Ultimately, what 

our research and others’ indicates is that the role of predation on the population 

dynamics of mountain dwelling caribou is complex and its effect may be best 

understood when considering other ecological factors.

The greater support of the PDO over the NPI in predicting recruitment 

patterns in the Finlayson caribou herd, and the strong effect of the NPI on 

ungulate population dynamics elsewhere in western North America (Hebblewhite 

2005), coupled with the relatively sparse literature on Pacific-based climatic 

impacts on terrestrial vertebrate population dynamics, highlights our lack of 

knowledge on its broad-scale effects, certainly in comparison to the NAO 

(Stenseth et al. 2003). Assuming one exists; identifying a Pacific-based index 

that is consistently strong in explaining ecological patterns across western North 

America would provide researchers a common metric for analysis, which would 

allow for more direct comparison across study areas and taxa. The stronger 

support of the PDO over snow depth, and other local weather variables, 

suggests that while specific processes, such as predation, are assumed to have
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very strong mechanistic linkages to a single weather variable, these linkages 

may be more complex than a single metric. The complex spatio-temporal nature 

of snowmelt (Mysterud et al. 2000), particularly in a dynamic season such as 

spring, highlights the utility of using large-scale indices to explain ecological 

patterns, when their relationships to local weather patterns are known (Stenseth 

et al. 2003), as they inherently capture this variability over space and time 

(Stenseth and Mysterud 2005).

Finally, the non-additive effect of climate and wolf density found in this 

study highlights the importance of understanding the mechanistic relationship 

between climate and the ecological parameter of interest. Interacting ecological 

variables were important factors shaping roe deer densities across Europe (Melis 

et al. 2009). The role of large predators on population density was largely 

context-specific and differed depending on winter severity as well as habitat 

productivity. The influence of climate on recruitment in the Finlayson caribou 

herd was most pronounced when wolf density was also accounted for. This 

indicates the importance of ecological factors extrinsic to the population (e.g. 

predators) in determining the strength of the climatic effect, similar to the 

influence of intrinsic factors, such as population density (Mysterud et al. 2001), in 

affecting the role of climate in influencing population dynamics. Hebblewhite 

(2005) noted that density-climate interactions for elk in western Canada were 

weak without the presence of wolves. Indeed, how climate influences 

populations may be governed by both extrinsic and intrinsic factors, as 

suggested by the different response to large-scale climate following wolf 

reduction in the Finlayson caribou herd and the Isle Royale moose population 

(Wilmers et al. 2006). Generalizing the effect of climate across spatially discrete 

populations has proven difficult (Martlnez-Jauregui et al. 2009). Our research 

also demonstrates that the effect of climate on a population’s dynamics may also 

vary temporally within that population, further complicating the attempt to find 

broad-scale climatic influences on ungulate population dynamics.
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Table 3.1. Predicted relationships (a) and mechanisms (b) between seasonal 
PDO (NPI relationship in parentheses) and local weather variables, and 
mountain-dwelling caribou recruitment, with unaltered and reduced (following 
wolf removal) wolf density in the Yukon Territory, Canada (+: positive 
relationship; negative relationship).

a) Seasonal Relationshi ps
Seasonal
Climate/Weather
Variable

Predicted 
relationship with 
unaltered wolf 

density

Predicted change 
in magnitude of 
the relationship 

with reduced wolf 
density

Mechanism

April-PDO (NPI) 
May-PDO (NPI)

+ (-) Decrease 1

Winter-PDO (NPI)a 
Late Winter-PDO 
(NPI)b

+ (-) Decrease 2

April-Snowc - Decrease 1,2

May-Snow - Decrease 1
b) Mechanism
1 Conditions resulting in increased snow depth at calving results in greater 

predation on neonates and hence reduced recruitment. These conditions 
should become less influential as wolf densities decrease.

2 Increased snowfall during winter results in calves born in poorer condition 
with reduced survival during their first summer, and higher snow depth at 
calving which increases predation. With reduced wolf density, more 
pregnant females may enter winter in poorer condition and thus be more 
sensitive to winter conditions, suggesting a strengthening relationship with 
winter climate/weather. However, given the role of winter snowfall on 
predation of neonates, the effect of winter climate/weather following wolf 
reduction could also be expected to weaken (i.e. similar to Mechanism 1). 
Due to the substantial influence of predation on recruitment in these 
populations, we ultimately expect the weakening of effect size (i.e. 
Mechanism 1) to outweigh any strengthening of due to increased 
sensitivity to in utero conditions.

a: Winter (November -  April); b: Late Winter (March -  May); c: Overwinter snow accumulation 
measured the beginning of April.
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Table 3.2. Correlation between seasonal values of the PDO and NPI and local 
weather variables in the Finlayson caribou herd range in east-central Yukon 
Territory, Canada (1982 -  2008). (P > 0.05 for all correlations)

Weather Variable
Winter13 April Late Winter13

PDO NPI PDO NPI PDO NPI

Winter Snowfall8 -0.30 0.22 -0.18 -0.07

May Snow Depth8 -0.08 0.10 -0.17 0.26 -0.19 0.24

a: Data from the Hoole River snowcourse station (61°32’N, 131°36’W); b: Winter: November -  
April; Late Winter: March -  May.
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Table 3.3. Parameter estimates of the top generalized linear model of 
recruitment rate for the Finlayson caribou herd in the Yukon Territory, Canada 
(1982 -  2008). The model explained 80.5% of the deviance relative to the null 
model.

Parameter Coefficient SEa

Intercept 0.312 0.227

Relative Wolf Density Index -1.823 0.272

April-PDO -0.191 0.176

April-PDO * Relative Wolf Density Index 0.509 0.229

a: Bootstrapped standard errors estimated from 1000 simulations.
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Figure 3.1. Annual caribou recruitment rates (calf:cow ratio) for the Finlayson 
caribou herd in the Yukon Territory, Canada, and relative wolf density index 
values in the herd’s range (1982 -  2008).
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Figure 3.2. Relationship between recruitment (calf:cow ratio) and the relative wolf 
density index*April-PDO interaction, estimated from a generalized linear model, 
for the Finlayson caribou herd of the Yukon Territory, Canada.



93

Figure 3.3. Predicted recruitment rates (calf:cow ratio) for the Finlayson caribou 
herd in the Yukon Territory, Canada, based on a generalized linear model of 
recruitment including April-PDO and relative wolf density index (Wolf) as 
covariates (Table 3.3). Solid lines represent predicted recruitment rates during 
two extremes representing no wolf removal (Wolf = 1.0, gray lines) and active 
wolf removal (Wolf = 0.15, black lines). Dashed lines indicate 95% confidence 
intervals of the predictions. Observed recruitment rates during active wolf 
removal (Wolf < 0.3, black) and no wolf removal (Wolf = 1.0, gray) are indicated 
by solid circles. Values of April-PDO (-1 .5-2.15) used for model predictions 
were restricted to the range of values present in the model training dataset.
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Appendix 3A. Chapter 3 Supplementary Table

Table 3.A-1. Models of annual recruitment for the Finlayson northern mountain 
caribou herd in the Yukon Territory, Canada. The ‘f  prior to a model term 
indicates a smoothing function estimated from the data as represented by a 
generalized additive model. Lack of an ‘f  prior to model terms indicates a 
generalized linear model. Seasons are defined in Table 3.1.

Model Ka Log-
Likelihood

AlCc AAlCc

Wolf * April-PDO 4 -213.60 437.01 0
Wolf * Late Winter-PDO 4 -224.39 458.60 20.55
f(Wolf) + April-NPI 3.27 -227.42 462.61 24.56
W olf* April-NPI 4 -228.64 467.10 29.05
f(Wolf* Late Winter-NPI) 4.49 -230.55 472.37 34.32
Wolf * May-PDO 4 -236.95 483.71 45.66
f(Wolf * April-Snow) 4.54 -236.42 484.25 46.21
f(Wolf) + April-Snow 3.59 -238.29 485.22 47.17
Wolf + May-PDO 3 -246.73 500.49 62.45
Wolf + April-PDO 3 -249.47 505.97 67.93
Wolf + Late Winter-PDO 3 -254.67 516.38 78.34
Wolf * Winter-PDO 4 -254.87 519.55 81.50
Wolf + Late Winter-NPI 3 -260.02 527.08 89.04
Wolf * Winter-NPI 4 -267.35 544.52 106.47
Wolf + Winter-PDO 3 -272.07 551.18 113.14
f(Wolf) + May-Snow 3.15 -273.20 553.83 115.79
W olf* May-NPI 4 -273.13 556.07 118.02
Wolf * May-Snow 4 -275.07 559.96 121.91
Wolf + May-NPI 3 -282.56 572.16 134.12
Wolf 2 -284.12 572.74 134.69
Wolf + Winter-NPI 3 -283.00 573.04 135.00
f(Winter-NPI) 3.44 -578.47 1165.16 727.12
f(Late Winter-PDO) 3.86 -608.45 1226.30 788.26
f(April-PDO) 3.51 -618.64 1245.71 807.66
f(Winter-PDO) 3.52 -634.62 1277.70 839.65
f(May-PDO) 3.44 -639.56 1287.34 849.30
April-Snow 2 -657.61 1319.72 881.67
Late Winter-NPI 2 -708.22 1420.93 982.88
f(May-Snow) 2.16 -714.02 1432.92 994.88
April-NPI 2 -720.30 1445.09 1007.04
Null 1 -723.71 1449.58 1011.53
May-NPI 2 -722.55 1449.59 1011.54

a: Effective number of model parameters.
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CHAPTER 4 DEMOGRAPHIC SPATIAL SYNCHRONY IN MOUNTAIN- 

DWELLING WOODLAND CARIBOU1

4.1 Introduction

Spatial population synchrony is the correlated fluctuation, in abundance or 

other demographic parameter, of spatially distinct populations over time (Ranta 

et al. 1998). Spatial synchrony is relatively ubiquitous in nature and has been 

documented in a variety of taxa (Liebhold et al. 2004) from aphids (Hanski and 

Woiwod 1993) to ungulates (e.g., Grenfell et al. 1998; Grotan et al. 2005). 

Investigating the factors influencing the degree of spatial synchrony may aid in 

identifying mechanisms of population dynamics (Ranta et al. 1995). For 

management purposes, understanding synchrony is valuable as highly 

synchronized populations may be at a greater risk of extinction (Heino et al.

1997; Engen et al. 2002). In many instances managers may not be able (e.g., 

financially, logistically) to monitor all the populations under their responsibility. In 

these situations, the presence of strong spatial synchrony may aid in inferring the 

annual dynamics of unmonitored populations from those that are monitored.

Three dominant mechanisms driving spatial synchrony have been 

identified in the literature: dispersal, shared predation, and environmental 

covariance (Liebhold et al. 2004; Ranta et al. 2006). First, populations linked via 

dispersing individuals can be brought into synchrony if they share sufficiently 

similar density-dependent processes (Ranta et al. 1995; Kendall et al. 2000). 

Secondly, shared nomadic predators have been demonstrated to synchronize 

small mammal dynamics through their common effect on two, or more, prey 

populations (Ims and Andreassen 2000). This mechanism requires individual 

predators to be able to cover large areas, relative to prey distribution, over short 

time periods (Ranta et al. 2006). Finally, populations sharing a common density- 

dependent structure are predicted to be synchronized to a degree equal to their

1 Hegel TM, Verbyla D, Huettmann F, Barboza PS (In Review) Demographic spatial synchrony in 

mountain-dwelling woodland caribou. Population Ecology.
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environmental covariance; this is termed the Moran (1953) effect (Benton et al. 

2001; Engen and Saether 2005). These three mechanisms may interact to 

influence synchrony (Kendall et al. 2000), and habitat characteristics may also 

influence the degree of synchrony between populations (Paradis et al. 2000; 

Huitu et al. 2003; Drever 2006) via their effect on one or more of these 

mechanisms.

Spatial synchrony is often assessed on population abundances (Tedesco 

et al. 2004) or growth rates (Aanes et al. 2003), and more rarely on demographic 

rates (Myers et al. 1997; Schaub et al. 2005). However, exploring spatial 

synchrony of individual demographic parameters provides a more mechanistic 

(i.e., process-oriented) understanding of the factors affecting synchrony in 

population dynamics (Bjornstad et al. 1999). Here we investigate the pattern of 

demographic spatial synchrony in ten mountain-dwelling woodland caribou herds 

(populations), hereafter termed mountain caribou, in the Yukon Territory (Yukon), 

Canada (Fig. 4.1). We examined spatiotemporal relationships in recruitment, as 

indexed by the fall calf:cow ratio (e.g., Grotan et al. 2009).

The calf:cow ratio used here to index annual recruitment represents the 

joint contribution of fecundity and calf survival to 4-5 months of age. Recruitment 

indexed by age ratios is often strongly related to calf survival (Harris et al. 2008), 

which is a highly variable demographic parameter in ungulate populations and 

may explain considerable variation in population growth rate (Gaillard et al. 1998, 

2000). Age ratios such as the calf:cow ratio used here are positively correlated 

with population growth rates (Harris et al. 2008). Mountain caribou in the Yukon 

are considered to be predator-limited (Seip 1992; Bergerud and Elliot 1998; 

Hayes et al. 2003) and characterized by relatively high and stable fecundity 

(Wittmer et al. 2005a) and low calf survival. The majority of calf mortality occurs 

within the first month of life (Adams et al. 1995a, b; Gustine et al. 2006). Typical 

of ungulate populations coexisting with large predators, intrinsic density- 

dependent regulation of population growth is weak (Crete 1999; Wang et al.
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2009). Recruitment in these herds shows high annual variability (Hegel et al.

2010). Previous research of mountain caribou recruitment dynamics in the Yukon 

indicated a strong influence of winter and spring climate affecting environmental 

conditions at calving (e.g., snow depth), likely influencing predation rates (Hegel 

et al. 2010). Climatic conditions during seasons predicted to influence fecundity 

(i.e., pre-conception climate) were poor predictors of recruitment, further 

supporting calf survival as the vital rate best represented by calf:cow ratios 

considered here.

Previous research on spatial synchrony in population dynamics has noted 

the challenge of separating the contributing effects of its three primary 

mechanisms (Ranta et al. 1995; Kendall et al. 2000). By using recruitment we 

can specifically focus our investigation on the Moran effect. In ungulates, males 

are typically the primary dispersers and females exhibit greater fidelity to natal 

areas (Greenwood 1980; Clutton-Brock et al. 2002). As our recruitment index 

only considers calves and females, any male dispersal to or from a herd would 

not affect the magnitude of the ratio. Additionally, adult sex ratios in Yukon 

mountain caribou are typically greater than 40 bulls:100 cows (e.g., Hayes et al. 

2003), and are therefore unlikely to limit the breeding of females (Mysterud et al. 

2002). Since these herds exist at low densities and density is a weak regulatory 

force on their population dynamics, any impact of added immigrant males is 

likely negligible with respect to a reduction in forage availability. Hence we can 

rule out dispersal as a likely mechanism influencing synchrony in recruitment in 

these herds.

Mountain caribou are dispersed during calving (Bergerud et al. 1984; 

Bergerud and Page 1987) when the majority of mortality occurs, and are 

distributed over an area substantially larger than either the home range of a wolf 

pack or grizzly bear. For example, within the Finlayson herd range (-7270 km2, 

Table 4.A-1) in the east-central Yukon (Fig. 4.1), over 30 wolf packs were 

monitored from 1990-96 (Hayes and Harestad 2000). In the southwest Yukon,
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male and female grizzly bear home ranges averaged 824 km2 and 305 km2, 

respectively (Maraj 2007). Given the large ranges of caribou herds relative to 

their predators, and the narrow time window during which the majority of 

predation occurs, we can effectively eliminate shared, or nomadic, predators as 

a causal mechanism of spatial synchrony in these herds.

Our objectives for this research are threefold. First, we assess the extent 

of spatial synchrony in snow depth across the Yukon. In doing so, we are able to 

relate the spatial synchrony in recruitment to spatial covariance in weather 

across sites. Given patterns of spatial synchrony reported elsewhere (Koenig 

2002) we expect relatively strong spatial synchrony in snow depth across the 

Yukon. Second, we assess the extent of spatial synchrony in recruitment among 

multiple mountain caribou herds in the Yukon. Varying levels of spatial 

synchrony in ungulate population dynamics have been reported (e.g., Grotan et 

al. 2005, 2008; Post and Forchhammer 2004, 2006), thus we have no a priori 

prediction of the degree of spatial synchrony in caribou recruitment in the Yukon. 

However, because of a lack of perfect correlation between snow depth and 

recruitment, we anticipated that the extent of spatial synchrony in caribou 

recruitment would be less than that of snow depth (Benton et al. 2001). Finally, 

we assess how habitat characteristics affect the degree of spatial synchrony in 

these herds. We focus on terrain features since, for example, they influence 

snow accumulation and ablation patterns in mountainous environments (Elder et 

al. 1991; Watson et al. 2009; Winstral and Marks 2002), which may subsequently 

influence ungulate vital rates (Mysterud et al. 2000, 2001; Pettorelli et al. 2005). 

We predict that herds with more similar terrain features have more synchronous 

recruitment dynamics.
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4.2 Methods

4.2.1 Caribou Recruitment Data

Ten herds (Fig. 4.1) were surveyed from a helicopter to estimate 

recruitment from 1982 to 2008 as part of caribou monitoring activities in the 

Yukon (Farnell et al. 1998). Surveys occurred during the fall breeding season 

from the last week of September through mid-October. Groups of animals were 

classified and the ratio of total calves to total cows used as an index of annual 

recruitment at the herd level. Calves were identified by their small size and 

females were distinguished from immature males by the presence of a black 

vulva patch (Bergerud 1961). During breeding, animals aggregate on high alpine 

plateaus, thus making sightability of animals, particularly calves, much greater 

than in forested habitats. Data on recruitment rates represented 170 herd-years 

during the period 1982 -  2008. Additional details regarding the study area are 

provided in Hayes et al. (2003) and Hegel et al. (2010).

A number of management programs aimed at increasing low population 

sizes have occurred in the Yukon (Farnell et al. 1998). During 1983 -  1989, 

wolves were annually removed from the Finlayson herd range (Fig. 4.1) to < 20% 

of pre-removal numbers (Farnell and McDonald 1987; Hayes and Harestad

2000). During 1993 -  1997, a wolf removal and sterilization program occurred in 

the Aishihik herd range, with some actions overlapping onto the ranges of the 

adjacent Burwash and Klaza herds (Fig. 4.1; Hayes et al. 2003). The effects of 

wolf removal on recruitment in the Aishihik and Finlayson herds persisted for five 

years (Hegel et al. 2010). In the Burwash and Klaza herds, the effect on 

recruitment was detected two years after active wolf removal began and did not 

persist once removals ceased (Hegel et al. 2010). Additionally, from 2003 -  2006 

a captive-rearing program was undertaken for the Chisana herd (Fig. 4.1) to 

enhance low recruitment. During late winter, parturient females were captured 

and transferred to a predator-free facility where they calved and were 

subsequently released in early June. To avoid potential bias associated with
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increased survival and recruitment due to the Chisana recovery program, we 

censored captured females and their surviving captive-born calves from the data 

(Yukon Fish and Wildlife Branch, unpublished data).

Prior to analysis, the effects of wolf removal and any long-term trend in 

recruitment were removed (Ranta et al. 2006), by fitting a binomial generalized 

linear model, with a logit link function, to each herd’s time series of recruitment. 

Models were fitted with ‘Year’ and variables representing the effect of wolf 

removal on recruitment as covariates (see Hegel et al. 2010). Subsequent 

analyses were carried out on residuals (Fig. 4.2).

4.2.2 Snow Depth Data

Snow depth data from 19 stations across the Yukon (Fig. 4.1) were 

obtained from Environment Yukon (e.g., Water Resources Section 2008). At 

each station, the snow depth (cm) was measured shortly after April 1. Station 

elevations ranged from 540 -  1,235 meters above sea level. To maintain 

temporal consistency with the available caribou recruitment data, only snow 

depth data from 1982-2008 were used resulting in 487 annual measurements. 

Occasionally, individual stations were not visited in a specific year (e.g., due to 

poor weather preventing access to the site) thus resulting in less than the 513 

total possible measurements. Data were detrended prior to analysis (Ranta et al.

2006). For each location snow depth was linearly regressed on year and 

residuals calculated and used for subsequent analysis.

4.2.3 Caribou Herd Ranges and Terrain Data

To assess how terrain relates to the degree of synchrony between herds 

we summarized a suite of terrain metrics based on their multi-year annual, winter 

(November -  April) and calving (mid- May to first week of June) season 

distributions. We summarized these features for winter and calving seasons as 

these were previously identified as key periods influencing recruitment in these
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herds (Hegel et al. 2010). Annual and winter ranges were estimated using 

available aerial survey and radio-telemetry data (Table 4.A-1). Parturient 

mountain caribou are dispersed during calving (Bergerud et al. 1984; Bergerud 

and Page 1987) and herds do not have ranges perse, therefore we summarized 

terrain features by averaging values of each metric from the set of calving 

season point locations (Table 4.A-1).

Annual and winter ranges (90% utilization distributions) were estimated 

from local convex hulls (LoCoH: Getz and Wilmers 2004; Getz et al. 2007), 

which is a nonparametric approach for estimating utilization distributions. Around 

each location (root point), a subset of its nearest neighbours is sampled and a 

convex hull created from this subsample of points. This is carried out for each 

data point from a herd’s full set of points, and the total set of convex hulls are 

then ordered (smallest to largest) and merged consecutively to create isopleths 

based on the percentage of points falling within the merged convex hulls. For 

example, the union of convex hulls that encompasses 50% of all location points 

is thus the 50% isopleth. The key parameter for this method is the determination 

of the size of the nearest-neighbour subset around each location point. We used 

an adaptive approach (a-LoCoH in Getz et al. 2007) whereby spheres of varying 

radii are placed around each root point and all nearest neighbours within that 

sphere are used for convex hull creation (see Getz et al. 2007 for a detailed 

description of the methodology). The size of the sphere is determined by the 

degree of aggregation of the locations such that within a sphere the sum of the 

distances between all nearest neighbours and the root point are less than or 

equal to a. Hence, small convex hulls are created in high use areas resulting in 

more defined isopleths. This adaptive radius approach generally produces better 

home range estimates than either fixed-radius or fixed number of points 

approaches (Getz et al. 2007). Annual and winter ranges were estimated using 

the ‘adehabitat’ package (version 1.8.3; Calenge 2006) for the statistical software 

R version 2.10.1 (R Development Core Team 2009).
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For each herd, we estimated 90% annual and winter range isopleths. 

Following Getz et al. (2007), we set a as the maximum distance between any 

two points in a herd’s dataset. Each herd’s annual and winter ranges, and its 

calving season locations, were imported into ArcGIS 9.3 (ESRI 2009). Terrain 

metrics (Table 4.1) were summarized within each range and averaged across 

calving locations. Metrics were derived from a 90-meter digital elevation model 

(1:50,000 scale).

4.2.4 Data Analysis

For both snow depth and caribou recruitment (i.e., residuals) we assessed

the overall regional synchrony p in the data. It represents the average pairwise

cross-correlation (pjtk) of all combinations of time series {j, k\ Bjornstad et al. 

1999). We used a nonparametric covariance function (NCF; Bjornstad et al.

1999; Bjornstad and Falck 2001) to estimate the spatial scale of synchrony (c)

which is the distance at which p is reached. Since data used for spatial

synchrony analyses are inherently non-independent, we used a bootstrapping 

procedure with 500 simulations to estimate confidence intervals on all estimated 

parameters. Analyses were carried out using the ‘ncf package (version 1.1-3, 

Bjornstad and Falck 2001) in the statistical software R version 2.10.1 (R 

Development Core Team 2009).

To assess the influence of terrain features on spatial synchrony we fitted 

parametric nonlinear exponential decay models to the phk of caribou recruitment. 

Using parametric nonlinear models allowed us to directly compare different 

seasonal terrain features under a model selection framework. We used a model 

(Myers et al. 1995, 1997) of the form:

p(d) = poe'd/v ; (4.1)

where po is the correlation when d = 0, d represents the distance (spatial or 

ecological) between two herds (e.g., the difference in mean elevation between 

two herds), and v is the decay rate, or e-folding scale, which describes the
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distance at which the correlation is reduced by a factor of e'1, and is also used as 

a measure of the scale of synchrony (e.g., Myers et al. 1995; Engen et al. 2005).

Following Myers et al. (1997) we fixed p o  = 1.0, as we were primarily 

interested in the shape of the exponential decay. Nonlinear models were fitted 

using ordinary least-squares in Stata/SE 10.1 (StataCorp 2009). Prior to 

analysis, Pj:k were transformed using a Fisher’s z-transformation (Zar 1998), 

which removed the potential for model predictions to range beyond -1 to +1. 

Fitted values were subsequently back-transformed to the original (-1, +1) scale 

for reporting. As noted above, due to lack of independence in the data, reported 

parameter estimates and standard errors were generated via bootstrapping with 

500 simulations.

Candidate models (/') were ranked using Akaike’s Information Criterion 

(AIC, Burnham and Anderson 2002) adjusted for sample size (AlCc). Delta-AICc 

(AAlCc) values were calculated by subtracting the AlCc of model / from the 

model with the smallest AlCc value in the candidate set. Models having AAlCc 

less than 2 were inferred as having strong support, models with AAlCc ranging 

from 2-10 having weak support, and those with AAlCc > 10 having virtually no 

support (Burnham and Anderson 2002). Akaike weights (w,) were also calculated 

providing a measure of the probability of model /' being the “top” model in the 

candidate set (Burnham and Anderson 2002).

4.3 Results

The average regional synchrony ( p ) in snow depth (residuals) was 0.46

(95% Cl: 0.37 -  0.55) and pairwise correlation coefficients between snow 

stations (n = 171) ranged from -0.17 to 0.85 with the majority being positive, and

roughly followed a normal distribution (Fig. 4.3a). The distance at which p was

reached (c) was 330.2 km (95% Cl: 236.3 -  370.0). The e-folding scale (v in Eq.

4.1) was 393.7 km (95% Cl: 314.0 -  518.3). The maximum distance between
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any two stations was 660 km and synchrony decreased linearly as the distance 

between stations increased (Fig. 4.4).

The average regional synchrony ( p ) in caribou recruitment (residuals)

was 0.07 (95% Cl: -0.13 -  0.29) and pairwise correlation coefficients between 

herds (n = 45) ranged from -0.86 to 0.89 (Table 4.2). The distribution of 

correlation coefficients for caribou recruitment was also roughly normally

distributed (Fig. 4.3). The distance at which p was reached was 170.0 km (95%

Cl: 69.5 -  282.8); roughly half that for April snow depth. The e-folding scale (v in 

Eq. 4.1) was 124.8 km (95% Cl: 69.5 -  278.0). The maximum distance between 

herds was 560 km and the pattern of synchrony exhibited an inverse quadratic 

relationship with spatial distance whereby nearer herds had more synchronous 

recruitment, with the degree of synchrony decreasing to a distance of 

approximately 250 km. After this, the degree of synchrony rose again, with more 

distant herds also exhibiting higher levels of synchrony (Fig. 4.5a). There was no 

difference in either c or the shape of the distance-synchrony relationship when 

using annual or winter range centers or the median coordinates of calving 

locations to represent the spatial location of herds. We therefore used annual 

range centers for all further analyses.

Herd-specific values of terrain metrics are provided in Table 4.A-1. Only 

two models relating caribou recruitment synchrony to terrain and distance were 

supported based on AAlCc and Akaike weights (Table 4.A-2). Spatial distance 

between herds was the most supported model among the candidate set (AAlCc 

= 0 , w = 0.73). Due to the declining then subsequent increasing relationship 

between distance and synchrony, we fitted this model with a quadratic function. 

To maintain consistency with the exponential decay models, the constant term in 

the distance model was fixed to 1.0. For comparison, we also fitted spatial 

distance within the exponential decay model (Eq. 4.1) which had weak support 

(AAlCc = 12.01). The only terrain variable model with any substantial support 

represented difference in elevation variability of calving season distribution (Elev-
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SD in Table 4.1; AAlCc = 2.16, w = 0.25), indicating herds having more similar 

variability in elevation of calving areas had more synchronous recruitment. The 

models including spatial distance and C-Elev-SD explained 32% and 25% of the 

variation in the data, respectively (Table 4.3). Spatial distance and difference in 

C-Elev-SD were weakly correlated (r = -0.11, P = 0.47).

Synchrony between herds decreased to roughly zero as spatial distance 

increased to approximately 250 km, and after approximately 300 km it 

subsequently rose to a maximum level (Fig. 4.5a). With respect to terrain, 

synchrony decreased to zero as the difference in C-Elev-SD between herds 

reached approximately 25 m (Fig. 4.5b). To ensure that the two observations 

having the greatest spatial distance between herds (Fig. 4.5a) were not overly 

influential on the overall fit of the model, we refitted the spatial distance model 

withholding those two data points. Model results were nearly identical to those 

reported in Table 4.3 providing confidence that our results were not overly 

influenced by outliers.

4.4 Discussion

Synchrony in recruitment among mountain caribou herds in the Yukon is 

influenced in part by both spatial environmental covariance, represented by 

spatial distance between herds, and differences in terrain features of calving 

areas. Our finding of an inverse quadratic relationship between synchrony and 

distance was unexpected given both the linear decay of April snow depth 

synchrony with increasing distance across the Yukon, and other reported 

patterns of spatial synchrony of environmental variability (Koenig 2002) and 

ungulate population dynamics (e.g., Grotan et al. 2005).

The initial decay of recruitment synchrony with increasing distance 

between herds and the overall spatial scaling of synchrony are consistent with 

the pattern of spatial synchrony in April snow depth. The lower spatial scaling of 

recruitment synchrony compared to local weather was expected (Benton et al.



106

2001) as a variety of processes likely influence recruitment beyond snow depth 

before calving. The spatial scale of recruitment synchrony reported here (6 = 

-165 km) is similar to those reported for ungulate population dynamics 

elsewhere, such as 191 km for Norwegian roe deer ( Grotan et al. 2005), 

although substantially larger than the -15 km scaling distance for Swiss ibex 

(Capra ibex\ Grotan et al. 2008). At a circumpolar scale Post and Forchhammer

(2006) reported synchronous dynamics among caribou and reindeer populations 

in Greenland and Russia, respectively, separated by over 6500 km. The 

variability in synchrony of Yukon caribou recruitment (Fig. 4.3b) could be due to 

observed spatial variability in population-specific responses (i.e., forcing) to 

large-scale climate (Hegel et al. 2010). Grotan et al. (2008) suggested that large 

spatial variability in ibex population responses to climatic variables may be the 

reason for the generally low spatial synchrony in that system. This may be due to 

the highly mountainous and heterogeneous terrain in both the Yukon and 

Switzerland resulting in more variable climate forcing. The relationship between 

spatial population synchrony and similarity in response to the North Atlantic 

Oscillation among caribou and reindeer populations of Greenland and Russia 

was positive and linear (Post and Forchhammer 2006).

The presence of an increasing relationship between spatial distance and 

synchrony after approximately 300 km suggests that some additional factor(s), 

positively correlated with distance, are influencing mountain caribou recruitment 

synchrony in the Yukon. Kausrud et al. (2007) found a similar quadratic 

relationship between distance and synchrony in gerbil (Rhombomys opimus) 

populations; however, they also reported a similar pattern between 

environmental variability (i.e., forage productivity) and distance, thus providing a 

mechanism for the observed pattern of spatial synchrony. No such pattern was 

identified in our study.

A number of factors may have influenced the quadratic relationship 

between recruitment synchrony and distance. Recruitment in these herds is
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largely influenced by predation (Hayes et al. 2003), which interacts with climate 

in a non-additive manner (Hegel et al. In Press). Similar interspecific interactions 

between herds, independent of distance, could result in more synchronous 

recruitment dynamics at large distances. Spatial synchrony can propagate 

through food webs (Haynes et al. 2009) and the synchronous fluctuation of other 

species’ populations could confound the relationship between recruitment 

synchrony and distance via “biological filtering” (Ripa and Ranta 2007). In our 

system, herds may be synchronized when predator densities are also 

independently synchronized between herd ranges. Synchronous densities of 

alternative prey such as moose may subsequently synchronize predator 

densities and thus caribou recruitment (Wittmer et al. 2005b; McLellan et al.

2010), possibly via asymmetric apparent competition (DeCesare et al. In Press). 

This mechanism differs from the shared nomadic predator mechanism (Ims and 

Andreassen 2000) in that it does not require the same individual predator(s) as 

the synchronizing force. Rather, two (or more) herds may be synchronized by the 

same predator species, but independently.

If such a mechanism is occurring where moose density subsequently 

influences mountain caribou recruitment, a lagged effect would be anticipated 

such as observed in the southwest Yukon where Dali’s sheep and snowshoe 

hare (Lepus americanus) cycles are inversely synchronized likely through the 

effect of shared predators between the species (Wilmshurst et al. 2006). In that 

system high snowshoe hare density was correlated with reduced Dali’s sheep 

lamb productivity in the following one and two years. Although we controlled for 

reduced wolf densities following management activities, moose and the primary 

predators of caribou are all harvested species in the Yukon. Thus, predator and 

alternate prey density across space may be influenced by ecological 

mechanisms as well as anthropogenic effects. Further, differing levels of 

disturbance on the landscape (e.g., access, industrial development, fire) could 

have habitat-related effects on predator and alternate prey densities, which may
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subsequently be filtered to caribou (Wittmer et al. 2007). We did not have 

comprehensive data on these other species covering the same spatio-temporal 

frame as the caribou recruitment data presented here and were therefore unable 

to test this hypothesis.

We focussed our assessment of terrain factors influencing synchrony to 

variables which we believed could influence environmental covariation between 

herds through similar climatological downscaling (Pettorelli et al. 2005).

However, other habitat factors may also influence mountain caribou recruitment. 

For example, woodland caribou survival and population viability in more heavily 

managed landscapes in southern British Columbia, Canada, is influenced by 

forest age structure which may affect predation rates on caribou due to the 

relationship with moose density (Wittmer et al. 2007, 2010). Fire may also 

influence recruitment through loss of forage (i.e., lichen, Klein 1982; Joly et al. 

2009) and changes in forest structure (Edwards 1954). Furthermore, human 

activities may also reduce the effectiveness of important habitats (e.g., Seip et al. 

2007) and calving animals may be particularly at risk from disturbance (Wolfe et 

al. 2000; Vistnes and Nellemann 2001).

We specifically chose April snow depth as our representation of 

environmental variability as this factor has strong mechanistic linkages to 

predation rates on mountain caribou calves (Bergerud et al. 1984; Bergerud and 

Page 1987), which is generally the largest source of mortality (Bergerud and 

Elliot 1986; Adams et al. 1995a; Gustine et al. 2006). Hence, we chose terrain 

factors which we believed had a mechanistic relevance for their influence on 

environmental variation (i.e., snow depth) and thus recruitment. The strong 

performance of elevation variability in calving sites, relative to other terrain 

metrics, provides further evidence as to the importance of snow at parturition for 

these populations. With access to greater variability in elevation, parturient 

female mountain caribou may be better able to “track” snowmelt ablation 

patterns to remove themselves from predators and other calving females
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(Bergerud and Page 1987). Greater variability in snowmelt patterns may 

increase the ability of calving caribou to hide from predators as increased 

snowpatch heterogeneity on the landscape may reduce predator’s searching 

efficiency (Eastland et al. 1989). Oosenbrug and Theberge (1980) noted that 

individuals in the Burwash herd (Fig. 4.1) demonstrated attraction to emerging 

snowfree sites in May. Mysterud et al. (2001) reported a similar pattern for red 

deer in Norway in which the availability of increased diversity (i.e., variability) in 

elevation and aspect to individual animals was positively related to body weight. 

This was due to an animal’s ability to track plant phenology across this diversity, 

with more variable terrain prolonging the access to high quality forage in the 

spring. Similarly, Wang et al. (2009) used the standard deviation of elevation 

within population ranges as a proxy for resource heterogeneity. In the Yukon, 

herds with similar elevation variability in their calving areas may have similar 

snow ablation patterns and thus more synchronous recruitment rates resulting 

from either correlated predation rates and/or nutritional effects on juveniles, and 

subsequent survival, due to similar springtime plant phenology (Pettorelli et al. 

2007).

The weak average regional synchrony in mountain caribou recruitment 

across the Yukon was unexpected as we anticipated that it would be largely 

influenced by April snow depth (i.e., environmental noise), which was more 

strongly synchronized across space. A number of factors may have influenced 

this finding. Lande et al. (1999) noted that estimation errors in population 

abundance should bias synchrony low. Errors in our estimates of recruitment 

would also therefore be anticipated to bias synchrony low.

Our index of recruitment represents a combination of two processes: 

fecundity and calf survival. Identifying a signal of synchrony could be confounded 

by our inability to separate synchrony in each of these rates. However, 

pregnancy rates in mountain-dwelling caribou are generally high and consistent 

across years (Wittmer et al. 2005a), and with the exception of extremely severe
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winters, adult female reproductive success is consistently high, possibly due to 

the high losses of neonatal calves, precluding females from providing resources 

to their offspring (Adams and Dale 1998). Thus, given the amount of interannual 

variation (Fig. 4.2), our index of recruitment (calf:cow ratio) likely tracks calf 

survival more strongly than fecundity (e.g., Harris et al. 2008). Additionally, 

previous analyses using portions of these data (Hegel et al. 2010, In Press) 

found strong mechanistic relationships with environmental predictors influencing 

calf survival and not female fecundity. While some error is inevitable in the 

estimation of population parameters, had error in recruitment estimates been 

substantial it is doubtful that such mechanistic models would have been 

supported. Rather, random error (i.e., noise) in recruitment estimates would have 

cancelled out the ecological signal. Use of residuals to explore spatial synchrony, 

while necessary (Ranta et al. 2006), may also have added a source of error into 

the data as they themselves are estimates (Chatfield 2003).

Two other factors provide more plausible explanations for the weak 

average regional synchrony. First, synchronous dynamics may not be constant 

over time (Ranta et al. 1997b). Post and Forchhammer (2004) reported non

constant spatial synchrony in caribou population dynamics in Greenland, with 

synchrony increasing with an increasing large-scale climatic trend. The time 

series used by Ranta et al. (1997b) and Post and Forchhammer (2004) were 

substantially longer than ours (i.e., multiple decades) and whether non-constant 

synchrony was present in our relatively shorter time series of recruitment data is 

uncertain. As most of our herd’s time series were not complete over the entire 

time span of the full dataset, a moving window analysis (Ranta et al. 1997b) to 

assess changing synchrony was not possible. Second, the weak regional 

average synchrony may be due to weaker cycling in these caribou herds. Low 

synchrony in noncyclic populations may be due to weaker lagged density 

dependence (Ranta et al. 1997a). Paradis et al. (2000) suggested this as a factor 

in the low synchrony in a number of British bird species. The weak regulatory
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force of density in these herds may be a factor in the low regional average 

synchrony observed in the Yukon.

Is then the Moran effect acting on recruitment synchrony in mountain 

caribou in the Yukon? Given the differing pattern of spatial synchrony in 

recruitment compared to April snow depth, evidence of such an effect is 

equivocal. Typically, evidence of declining synchrony with increasing distance is 

treated as evidence that a Moran effect is occurring, assuming a similar pattern 

occurs with environmental spatial covariance. However, focussing solely on 

distance may not necessarily confirm the presence of a Moran effect (Abbott

2007). Environmental variability is often represented by weather as it can be 

strongly related to population dynamics. However, biologically meaningful 

environmental variability may be represented by other variables (e.g., predator 

and/or alternative prey densities). For populations affected by multiple interacting 

factors, possibly across trophic levels, measuring and identifying this 

environmental variability may be more challenging than focussing solely on 

weather. This may result in an aspatial Moran effect if these variables are not 

spatially correlated. To incorporate meaningful factors affecting population 

synchrony, a broadened view of spatio-temporal environmental variability may be 

necessary to enhance our understanding of a population’s dynamics.
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Table 4.1. Metrics used to assess the relationship between recruitment 
synchrony and terrain in mountain caribou in the Yukon Territory, Canada.

Metric Units Description

Distance km Spatial distance between herd centers

Elev-Mean meters Average elevation

Elev-Max meters Maximum elevation

Elev-Min meters Minimum elevation

Elev-Range meters Difference between maximum and minimum 

elevations

Elev-SD meters Standard deviation of elevation representing 

elevation variability

Northness N/A Calculated as the cosine of aspect (°) ranging 

from -1 to 1, where 1 represents north and -1 

represents south

Northness-SD N/A Standard deviation of northness representing 

aspect variability along a north-south gradient

Eastness N/A Calculated as the sine of aspect (°) ranging from - 

1 to 1, where 1 represents east and -1 represents 

west

Eastness-SD N/A Standard deviation of eastness representing 

aspect variability along an east-west gradient



Table 4.2. Inter-herd synchrony (Pearson correlation coefficients) of annual recruitment residuals and inter-herd 
spatial distance (km) for 10 mountain caribou herds in the Yukon Territory, Canada (1982 -  2008). Correlation 
coefficients (bold values indicated P < 0.10) are found in the upper diagonal of the table and spatial distance 
between herds provided in the lower diagonal.

Aishihik Burwash Carcross Chisana Ethel

Lake

Finlayson Ibex Klaza Tatchun W olf

Lake

Aishihik 0.43 0.27 0.84* 0.24 0.49* -0.44 0.55 - 0.50 0.18

Burwash 69 | | 0.13 0.45 0.08 0 .48* 0.13 0.38 -0.13 -0.17

Carcross 233 293 | | -0.03 0.30 0.19 0.42 -0.30 -0.25 -0.56

Chisana 175 108 399 -0.38 0.72* -0. 69* 0.18 -0 . 60* 0.89*

Ethel Lake 219 261 325 328 -0.45 0.60 0.42 0.32 0.08

Finlayson 374 443 237 546 304 -0.09 -0.35 -0.29 -0 . 86*

Ibex 179 233 69 337 314 292 -0.02 0.23 -0.10

Klaza 79 108 280 185 153 371 238 0.10 0.78

Tatchun 160 222 224 313 101 246 215 129 I -0 50 1
W olf Lake 358 426 161 533 356 111 228 378 272 |

a: P < 0.05.
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Table 4.3. Parameter estimates for the two most supported models relating: a) 
spatial distance between herds and b) difference in calving season elevation 
variability (C-Elev-SD) between herds, to mountain caribou recruitment 
synchrony in the Yukon Territory, Canada. Model parameters were estimated 
using Fisher z-transformed correlation coefficients.

Parameter Estimate SEa

a) Distance + Distance2

Distance -0.0076 9.3*10'4

Distance2 1.5*10'b 2.5*10'b

a2 0.50

R2 0.32
-(C-Elev-SD) 

b) e v

V 16.59 9.91

oz 0.52

R2 0.25

a: Standard errors generated from 500 bootstrap simulations.
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Fig. 4.1. Locations of the 10 mountain caribou herds (shaded polygons) and 19 
snowcourse stations (•) in the Yukon Territory, Canada, for which synchrony in 
annual recruitment and April snow depth was assessed, respectively.
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Fig. 4.2. Residuals used to assess synchrony in recruitment in ten mountain 
caribou herds in the Yukon Territory, Canada (Fig. 4.1). Residuals were 
calculated from raw recruitment (calf:cow ratio) rates after detrending and 
removing the effect of wolf removal.
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Fig. 4.3. Frequency histograms of spatial synchrony (pairwise Pearson 
correlation coefficients) in a) April snow depth residuals (n = 171), and b) 
mountain caribou recruitment residuals (n = 45) in the Yukon Territory, Canada 
(1982- 2008).
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Fig. 4.4. Spatial synchrony of April snow depth residuals in the Yukon Territory, 
Canada (1982 -  2008) in relation to the distance (km) between snowcourse 
stations. Observed synchrony measures (pairwise Pearson correlation 
coefficients) are represented by filled circles (n = 171). The mean spatial 
nonparametric covariance function is represented by the solid line,with the 
dashed lines representing bootstrapped (B = 500) 95% confidence intervals. The 
solid horizontal line (p = 0.46) is the regional average spatial synchrony.
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Fig. 4.5. Observed and fitted values of synchrony in mountain caribou 
recruitment residuals in the Yukon Territory, Canada. Filled circles indicate 
observed synchrony measures (pairwise Pearson correlation coefficients) and 
solid lines represent fitted predictions from models (Table 4.2) relating a) spatial 
distance between herds, and b) the difference in variability (standard deviation) 
of calving distribution elevation (Elev-SD in Table 4.1). Model predictions were 
initially generated as Fisher z-transformed values, and subsequently back- 
transformed for reporting.



Appendix 4A. Chapter 4 Supplementary Tables

Table 4.A-1. Terrain metrics and details regarding data availability and range areas for a) annual, and seasonal [b) 
winter; c) calving] distribution of 10 mountain caribou herds in the Yukon Territory, Canada, used to assess 
synchrony in recruitment.

V a r i a b l e 3 A i s h i h i k B u r w a s h C a r c r o s s C h i s a n a E t h e l  L a k e F i n l a y s o n I b e x K l a z a T a t c h u n W o l f  L a k e
a) Annual D istribution

Elev-M ean (m) 1379.21 1326.43 1061.75 1392.93 1168.35 1235.16 1417.19 1250.45 1111.73 1254.57
Elev-Max (m) 2320 2314 2184 2765 2177 2317 2129 1995 2108 2178
E lev-M in (m ) 784 685 612 590 597 753 950 632 546 709
Elev-Range (m ) 1536 1629 1572 2175 1580 1564 1179 1363 1562 1469

Elev-SD (m) 266.73 301.08 301.81 316.88 284.21 279.00 232.23 196 25 310.21 237.25
Northness -0.0062 -0.0049 -0.0088 -0.0097 -0.0031 -0.0090 -0.0032 -0.0037 -0.0070 -0  0083
Northness-SD 0.7082 0.7076 0.7065 0.7070 0.7074 0.7067 0.7070 0.7075 0.7066 0.7070
Eastness 0.0040 0.0039 0 0063 0 0071 0 0025 0.0055 0.0051 0.0024 0.0018 0 0037
Eastness-SD 0.7060 0.7065 0.7076 0.7071 0.7068 0.7074 0.7072 0.7067 0.7076 0.7072
#  observations 2338 895 1444 6510 346 4568 673 1032 429 1710
&  (km ) 178 105 234 203 105 214 79 123 150 208

90% Isopleth Area (km 2) 5060 1438 6216 4362 1459 7270 838 2701 3219 7687
b) W in te r D istribution
Eiev-M ean (m) 1044.92 847.82 1150.65 1304.70 1071.02 943.20 1322.27 928.48 1173.90 1285 59
E lev-M ax (m) 1738 1685 1857 2099 2092 1736 2471 1991 2085 2223
Elev-M in (m) 709 475 526 883 754 566 586 612 658 784

Elev-Range (m ) 1029 1210 1331 1216 1338 1170 1885 1379 1427 1439
Elev-SD (m ) 138.73 190.65 172.92 219.42 252.63 219.49 306.93 222.49 290.95 263.85
Northness -0.0130 -0.0088 -0.0053 -0.0041 -0.0128 -0 0071 -0.0110 -0.0120 -0.0114 -0.0072
N orthness-SD 0.7063 0.7069 0.7073 0.7073 0.7057 0.7064 0.7070 0.7052 0 7064 0 7077
Eastness 0 0062 0 0038 0.0011 0.0020 0.0091 0.0064 0.0066 0.0082 0.0050 0.0051
Eastness-SD 0.7077 0.7073 0 7069 0 7069 0.7084 0.7078 0.7071 0.7088 0 7077 0 7065
#  observations 849 292 671 1961 103 1974 236 426 109 699
a (km ) 152 100 212 203 105 166 57 113 109 158

90% Isopleth Area (km 2) 4148 1247 2537 4302 800 2843 467 2075 2089 2522
c) Calving D istribution
Elev-Mean (m) 1492 1384 1257 1346 1233 1267 1596 1352 1357 1330
Elev-Max (m) 2095 2039 1894 2307 1693 1804 2009 1928 1821 1746
E lev-M in (m ) 771 742 656 608 801 759 1089 763 690 816

Elev-Range (m ) 1324 1297 1238 1699 892 1045 920 1165 1131 930

Elev-SD (m) 275 309 332 280 200 280 252 207 259 215
Northness 0 009 0.001 0.0422 -0.0003 -0.0034 -0.057 0 0653 -0.0394 -0.141 -0.125
N orthness-SD 0.704 0.687 0 718 0.718 0.639 0.755 0.739 0.7212 0.695 0.6756
Eastness 0 0166 -0.196 -0.0003 -0.0022 -0.0417 0.0433 0.259 0.0214 -0.029 -0.0594
Eastness-SD 0.707 0.693 0.68 0.696 0.768 0.646 0.618 0.681 0.704 0.72
#■ observations 257 96 116 1143 29 130 24 137 51 173

a:Terrain variables defined in Table 4.1; b: Parameter determining the radius placed around each location for estimation of local convex hull ranges using LoCoh.
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Table 4.A-2. Results of nonlinear exponential decay models (Eq. 4.1) relating 
synchrony (n = 45) in mountain caribou recruitment in the Yukon Territory, 
Canada, to differences in terrain features, and spatial distance (Distance), 
between herds. Only estimable models are reported as not all models with 
variables listed in Table 1 converged during estimation. The model including the 
distance variable is represented by a quadratic function. All models were fitted 
such that p0, the synchrony when the model variable equals 0.0 (i.e., no 
difference between herds), was fixed to 1.0.

Variable3 K? Log-
likeli hood

AlCc AAlCc w0

Distance + Distance2 3 -32.00 70.58 0 0.73
C-Elev-SD 2 -34.23 72.74 2.16 0.25
C-Northness 2 -38.19 80.66 10.08 < 0.01
W-Elev-Range 2 -38.38 81.05 10.47 < 0.01
W-Elev-SD 2 -38.70 81.69 11.11 < 0.01
W-Elev-Max 2 -38.80 81.89 11.31 < 0.01
A-Elev-Mean 2 -38.94 82.17 11.59 < 0.01
C-Elev-Mean 2 -39.35 82.99 12.41 < 0.01
A-Elev-Max 2 -39.55 83.38 12.80 <0.01
A-Northness 2 -39.58 83.45 12.87 <0.01
C-Elev-Min 2 -39.67 83.62 13.04 <0.01
C-Eastness 2 -39.87 84.02 13.44 <0.01
W-Elev-Min 2 -39.94 84.16 13.58 < 0.01
C-Elev-Range 2 -40.37 85.02 14.44 < 0.01
W-Elev-Mean 2 -40.37 85.03 14.45 < 0.01
A-Elev-Range 2 -40.54 85.37 14.79 < 0.01
C-Elev-Max 2 -40.54 85.37 14.79 < 0.01
A-Elev-SD 2 -40.96 86.20 15.62 <0.01
W-Eastness-SD 2 -41.11 86.50 15.92 <0.01
C-Eastness-SD 2 -41.34 86.97 16.39 <0.01
A-Northness-SD 2 -41.49 87.27 16.69 <0.01
W-Northness-SD 2 -40.79 88.17 17.59 < 0.01

a: Variables defined in Table 1. The ‘A’, ‘C’, and ‘W’ before each variable indicates whether the 
variable represents Annual, Calving, or Winter features, respectively; b: Number of model 
parameters including a2; 
c: Akaike weight.
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CHAPTER 5 GENERAL CONCLUSION

5.1 Dissertation Summary

Recruitment in mountain-dwelling woodland caribou in the Yukon 

demonstrates substantial annual variability both temporally and spatially (Fig.

2.2). Understanding mechanisms contributing to this variability can be used for 

managing and conserving these herds. Pacific-based climate provides one 

source of this annual variability. Recruitment in these herds is influenced by 

climatic conditions during winter preceding birth and at or immediately before 

calving (Objective 1). The weak influence of climate preceding conception (late 

September to early October), which would influence female body condition and 

subsequently fecundity (Cameron etal. 1993; Langvatn et al. 2004), indicates 

that on average, pregnancy rates are not a limiting factor for recruitment. 

Mountain-dwelling caribou in the Yukon (Farnell & Gardner 2002) and British 

Columbia (Wittmer, Sinclar & McLellan 2005; Gustine et al. 2006) demonstrate 

generally high and stable pregnancy rates. Given this low annual variability in 

pregnancy rate, a weak pre-conception climate effect is understandable. This 

further suggests that forage-limitation is not a contributing factor for recruitment 

dynamics.

Results from Chapter 2 indicate two possible mechanisms explaining 

recruitment patterns in these herds. First, the presence of a climatic effect during 

gestation (i.e. winter) may result in females losing their calves in years with 

severe winters. Parturition rates are generally more variable than pregnancy 

rates (Farnell & Gardner 2002; Gustine et al. 2006). During severe winters (e.g. 

high snowfall), females may be unable to devote sufficient resources to fetal 

development. Second, environmental conditions at calving caused by overwinter 

snowfall, for example, or weather patterns at or immediately before calving 

(Chapter 3), may result in parturient females unable to disperse away from 

predators and/or other parturient females (Bergerud & Page 1987) or possibly 

direct losses of neonates due to harsh weather conditions although Miller & Gunn
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(1986) suggest this source of neonate mortality is unlikely. This may result in 

higher predation rates on neonates during these years or reduced calf survival 

during summer if the nutritional quality of forage resources is inadequate 

(Pettorelli et al. 2007). The majority of research on climatic effects on ungulate 

population dynamics focuses on winter effects. Our results demonstrate that 

investigating climate effects during different seasons is warranted depending on 

the various mechanisms by which climate acts on vital rates.

Given the value of using large-scale climate indices for investigating 

ecological processes (e.g. Stenseth etal. 2003), identifying an appropriate 

climate index is critical (Objective 2). In the Yukon, the Pacific Decadal 

Oscillation (PDO) proved a useful index in this study (Chapter 3) and elsewhere 

(Hik & Carey 2000; Morrison & Hik 2007; Joly et al. In Press). While the North 

Pacific Index proved a good predictor in the Canadian Rocky Mountains 

(Hebblewhite 2005), the PDO was a better predictor in the Yukon. Our research 

(Chapter 3) also demonstrated that large-scale climate indices were better 

predictors than local weather measurements (Objective 3) in modeling 

recruitment patterns. This may reflect the complexity of how weather interacts to 

result in “on the ground” environmental conditions actually experienced by 

caribou. Particularly with respect to snowfall patterns, these can be influenced by 

temperature, precipitation and wind patterns that may be difficult to capture in 

one local metric. Additionally, given the wide-ranging spatial distribution of these 

herds (Fig. 1.2), a single local weather measurement may not be able to capture 

the broader spatial variability. Large-scale indices may better capture this spatial 

variability as well as incorporating a broader window of variability (i.e. seasonally) 

making these climate indices good predictors (Stenseth & Mysterud 2005). This 

finding may not be applicable in other systems and would largely depend on the 

strength of the relationship between a chosen climate index and local weather. 

Further, in systems where one single weather variable is the primary ecological
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driver, an integrated climate index may in fact be too complex and thus a single 

weather variable would be more useful (e.g. Ogutu & Owen-Smith 2003).

The varied factors affecting caribou do not act in isolation and assessing 

how they interact may provide a more complete ecological understanding of the 

processes influencing recruitment (Objective 4). Our research has shown that 

both climate and wolf predation interact to influence recruitment and that their 

individual effects are non-additive, that is their effects vary depending on levels of 

the other (Chapter 3). The effect of wolf predation (measured through wolf 

density) was stronger during poorer springs (low April-PDO) whereas the effect 

of April-PDO was virtually eliminated during peak wolf removal in the Finlayson 

herd. This effect was striking in that it indicates that springtime climate only has a 

strong effect in the presence of an additional variable (i.e. wolves). This is likely 

due to how spring climate influences environmental conditions at calving and 

subsequently how those environmental conditions affect predation rates. These 

findings clarify the importance of knowing the ecological processes affecting a 

variable of interest, such as recruitment, in order to accurately interpret how 

different variables influence it. Without this mechanistic knowledge the likelihood 

of faulty inference and management will increase.

Spatial synchrony in population dynamics is a relatively ubiquitous pattern 

across taxa (Liebhold, Koenig & Bjornstad 2004). We assessed the degree of 

spatial synchrony in recruitment of mountain-dwelling caribou herds across the 

Yukon (Chapter 4, Objective 5). Average spatial synchrony in recruitment was 

low; however, the degree of synchrony between herds ranged widely. Spatial 

distance between herds was the best predictor of the level of synchrony between 

herds. However, the inverse quadratic pattern of this synchrony-distance effect 

was unexpected suggesting additional factors are influencing recruitment 

patterns. The lack of such an inverse quadratic pattern in snow depth across the 

Yukon generally rules out covariation in weather patterns at larger distances. The 

best terrain predictor of synchrony between herds was the similarity of calving
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site elevation variability, suggesting that these herds may have more similar 

climatological downscaling within their ranges. A possible explanation for the 

weak average spatial synchrony in recruitment reported here is the high level of 

landscape heterogeneity found across the Yukon; thus reducing the similarity in 

environmental conditions experienced by different herds.

5.2 Management Implications

1. The strong effect of the PDO on recruitment reported here, added to the 

PDO’s effect on Dali’s sheep horn growth (Hik & Carey 2000) and collared pika 

survival (Morrison & Hik 2007), indicates the PDO is a meaningful large-scale 

climate index for studying environmental phenomena in the Yukon. Given the 

remoteness of many areas of the Yukon and the lack of weather stations, using 

the PDO to investigate how annual environmental variability affects ecological 

dynamics is a viable tool for wildlife managers. Additionally, that the PDO proved 

a better predictor of recruitment than local weather measurements indicates the 

potential importance of using an integrated index of annual environmental 

variability than one single weather metric. Given the complexities of how different 

weather variables interact to influence ecological patterns, focusing solely on a 

single weather metric may not provide the complexity necessary to accurately 

identify factors affecting those patterns. If management decisions are to be 

informed by an understanding of how annual environmental variability shapes 

ecological patterns, missing or incomplete information can have significant 

effects on the decision-making process resulting in inaccurate decisions being 

made.

2. Results from Chapter 2 suggest that on average, female body condition is not 

a likely factor affecting the variability in recruitment patterns observed in the 

Yukon. Thus, management actions directed towards recruitment should focus 

either on factors affecting parturition rates, such as late winter habitat, or early 

calf survival. However, the recruitment index used here cannot discern between
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parturition and early calf survival, and both demonstrate substantial annual 

variability. Therefore this research cannot reliably determine which vital rate 

management actions should be directed toward without additional research. 

Nevertheless, late winter, calving, and post-calving habitat are important 

considerations when assessing environmental impacts of anthropogenic effects 

in caribou range. Impacts on these ranges may be dynamic dependent upon the 

annual climatic conditions. Thus, impacts of anthropogenic activities could be 

assessed under a range of annual conditions to more accurately reflect their 

influence on caribou.

3. Understanding how climatic variability influences recruitment dynamics, and 

hence herd sizes, could be considered in developing dynamic harvest systems. If 

managers have an understanding of the number of recruits into a herd, this 

information can be used to ensure harvest is conducted in a sustainable manner. 

This may be particularly important following a number of years with poor climatic 

conditions (i.e. low PDO) in which recruitment may be low. Maintaining a high 

harvest rate during these years could result in overharvesting, thus exacerbating 

reduced recruitment. Information on the effect of climatic variability on 

recruitment could also be provided to the hunting public to inform them of 

changes in animals available for harvest such that they can adapt their own 

expectations to changing conditions.

4. The strong interaction effect between wolf density and spring climate 

demonstrates the importance of understanding the mechanistic processes which 

effect recruitment. Management actions directed at predation (e.g. wolf control) 

should consider how external annual environmental variability may influence their 

results. In years having good springs (i.e. high PDO), recruitment with and 

without wolf removals in effect near one another (Fig. 3.3). Thus, the success, or 

failure, of a management intervention may largely be influenced by non- 

manageable factors such as climate. Prior to undertaking expensive and
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controversial actions such as predator control, a thorough understanding of 

relevant ecological relationships should be known.

5.3 Future Research Recommendations

1. A more detailed understanding of how the PDO is related to local weather 

variables across the Yukon would assist managers in understanding the 

mechanisms by which it influences ecological processes. This would include 

examining the PDO-weather relationship using more sites and across a range of 

terrain gradients, as these terrain features influence the climatological 

downscaling process. Additionally, because of the Arctic Ocean’s influence from 

the north, an assessment of the PDO’s influence geographically would be useful 

as it would indicate where the PDO’s influence is weakened or lost.

2. The recruitment index used in this research (i.e. fall calf:cow ratio) 

incorporates both parturition rates and early calf survival rates. These vital rates 

have differing factors operating on them mechanistically and for management 

actions directed at recruitment to be delivered most effectively, research that 

allows the calf:cow index to be decomposed into its constituent rates is 

necessary.

3. This research focused on temporally varying factors influencing recruitment; 

however, more static factors possibly interacting with climate, for instance, may 

affect recruitment. These may include landscape features, habitat characteristics, 

and fire history. Since environmental assessments of impacts caused by 

anthropogenic activities within caribou ranges are often associated with their 

effects on habitat, incorporating these features into models of recruitment could 

assist managers in predicting their effects on caribou populations.

4. Coefficients from these climate-based models of recruitment should be 

incorporated into broader caribou population models. A number of herds in the 

Yukon have had multiple population estimates completed. Assessing how well 

these recruitment models predict known population sizes would be valuable
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information to understand how sensitive population growth rate is to the PDO, 

and hence how much variation in population growth rate is explained by climatic 

processes.

5. Additional research examining what factors influence the degree of recruitment 

synchrony between herds will greatly assist managers in identifying important 

ecological mechanisms affecting caribou population dynamics. These could 

include other habitat factors such as fire history or human disturbance, or inter

specific interactions including predator and alternate prey densities.
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