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Abstract

A central question in the study of vertebrate development is how to account for
the exquisite interplay of genes within cells as they create the organs of the vertebrate
embryo. Gene regulation by epigenetic processes adds a formerly unappreciated level
of complexity to the regulatory network of development. One form of epigenetic gene
regulation is embodied in ATP-dependent chromatin remodeling complexes. Chromatin
remodeling complexes can both promote and repress expression of a gene at the
appropriate time and place in vertebrate development. The list of their known roles in
development is long and growing. Here | have studied the developmental role of
CHRAC17, a subunit of the CHRAC and ATAC complexes, by visualizing its expression and
by ablating CHRAC17 function in Xenopus laevis embryos. Whole mount in situ
hybridization localized CHRAC17 expression to the neural tube, cranial placodes, and
myotomes. Loss of CHRAC17 function following injection of embryos with CHRAC17-
specific morpholino oligonucleotides resulted in abnormal development in the neural
tube, eyes, notochord, and pharyngeal pouches, underlining the critical importance of
CHRAC17 function in Xenopus development. Similarly, ablating the function of CHDA4,
the ATPase motor of the NURD chromatin remodeling complex, resulted in severe

developmental abnormalities in early Xenopus development.
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Chapter 1
Introduction®
Abstract

The development of a metazoan from a single-celled zygote to a complex
multicellular organism requires elaborate and carefully regulated programs of gene
expression. However, the tight packaging of genomic DNA into chromatin makes genes
inaccessible to the cellular machinery and must be overcome by the processes of
chromatin remodeling; in addition, chromatin remodeling can preferentially silence
genes when their expression is not required. One class of chromatin remodelers, ATP-
dependent chromatin remodeling enzymes, can slide nucleosomes along the DNA to
make specific DNA sequences accessible or inaccessible to regulators at a particular
stage of development. While all ATPases in the SWI2/SNF2 superfamily share the
fundamental ability to alter DNA accessibility in chromatin, they do not act alone, but
rather are subunits of a large assortment of protein complexes. Recent studies
illuminate common themes by which the subunit compositions of chromatin remodeling
complexes specify the developmental roles that chromatin remodelers play in specific
tissues and at specific stages of development, in response to specific signaling pathways
and transcription factors. In this review, we will discuss the known roles in metazoan

development of three major subfamilies of chromatin remodeling complexes: the SNF2,

' published as “How many remodelders does it take to make a brain? Diverse and cooperative roles of
ATP-dependent chromatin-remodeling complexes in development” (Brown, 2007)



ISWI and CHD subfamilies.
Introduction: The SWI2/SNF2 superfamily of proteins

At all stages of development of a single-celled zygote into a multicullular
organism the genome must be maintained as densely packed chromatin, linear arrays of
nucleosomes consisting of DNA wrapped around a core of histone proteins and further
compacted into higher-order structures. The complex regulation of gene expression and
other nuclear processes during development requires modifications to the chromatin to
render the correct segment of DNA accessible to the nuclear machinery at the correct
time. One mechanism for controlling access to DNA is the covalent modification of
histones, which can alter the interactions between DNA and histones and produce new
binding surfaces for other factors (Imhof, 2006). A second major mechanism depends
on ATP-dependent chromatin remodeling complexes that translationally reposition or
“slide” nucleosomes along the DNA to expose specific sites on the DNA to the cellular

machinery (Johnson, 2005; Cairns, 2005).

Many ATP-dependent chromatin remodeling enzymes have been identified and
their structures and functions characterized. All contain a catalytic subunit belonging to
the SWI2/SNF2 superfamily of proteins (Eisen, 1995). The family is characterized by a
distinctive ATPase domain that is the molecular motor driving nucleosome sliding. The
structure and function of these enzymes are highly conserved in eukaryotes from yeast
to human. Subfamilies are defined by the degree of similarity between their ATPase

domains and the presence of other characteristic domains. Members of the SNF2



subfamily contain a bromodomain which is known to bind acetylated lysines of histones
(Marmorstein, 2001). Members of the ISWI (Imitation Switch) subfamily contain the
HAND-SANT domain in the carboxy-terminal half of the protein (Boyer, 2002) which is
linked to a SLIDE domain by an alpha-helical spacer (Grune, 2003); the SLIDE domain
interacts with nucleosomal DNA (reviewed in (Dirscherl, 2004; Mellor, 2006). Members
of the CHD (Chromodomain Helicase DNA binding) protein family contain two tandem
chromodomains and may also contain PHD fingers; these motifs have been shown to
interact with methylated histone tails (Wysocka, 2006; Shi, 2006; Pena, 2006; Li, 2006a;

Woodage, 1997).

The distinct affinity of a chromatin remodeler for one or more specific histone
modifications may serve to target it to a point in the chromatin that has been
specifically marked by the gene regulatory apparatus. This may impart to it distinct
roles in developmental processes (reviewed in (de la Serna, 2006; de la Cruz, 2005). All
of the SWI2/SNF2 ATPases function as subunits of larger protein complexes. While the
ATPase subunit serves as the motor that hydrolyses ATP and translocates histone cores
along the DNA, the non-ATPase subunits of remodeling complexes may interact with
tissue-specific transcription factors to target remodeling activity to specific genes, or
may alter other structural features of the complex. The targeting of remodeling
complexes both by specific histone marks and by tissue-specific transcription factors can
exquisitely regulate remodeling activities to play a variety of roles in development

(Cairns, 2005; Saha, 2006). In this review, we will summarize current data for the



differential expression patterns and developmental functions of SNF2-, ISWI-, and CHD-

dependent chromatin remodeling complexes.

The SWI2/SNF2 subfamily

The yeast Swi2/Snf2 protein and proteins associated with it in the prototypical
ySWI/SNF chromatin remodeling complex were identified in yeast deficient in mating
type switching (SWItching mutants) and in sucrose fermentation (sucrose non-
fermenters, SNF mutants). The ySWI/SNF complex is known to be necessary for the
inducible transcription of a number of genes (Sudarsanam, 2000). Highly conserved
homologs of SWI2/SNF2 are found in eukaryotes including Arabidopsis, Drosophila,
zebrafish, Xenopus, chicken and mammals (Schofield, 1999; Randazzo, 1994; Brizuela,
1994; Gelius, 1999). All are subunits of SWI/SNF-related chromatin remodeling
complexes that are also highly conserved in eukaryotes (Mohrmann, 2005). While the
SWI2/SNF2 subunit alone is capable of limited ATP-dependent chromatin remodeling in
vitro, other subunits may function to maintain the SWI/SNF protein complex’s structure,
alter its enzymatic activity, or to allow recruitment of the complex to target genes

(Yudkovsky, 1999; Moshkin, 2007; Muchardt, 1995; Peterson, 2000).

The subunit composition of SWI/SNF complexes can be used to further subdivide
them into two classes that are themselves highly conserved in eukaryotes. In yeast, the
subclasses are represented by the ySWI/SNF and RSC chromatin remodeling complexes.

They share two identical and at least four homologous subunits. ySWI/SNF contains



the ATPase Swi2/Snf2 and the Swil subunit. RSC on the other hand contains the ATPase
Sth1, a paralog of Swi2/Snf2, and lacks Swil, while it contains the subunits Rsc1, Rsc2
and Rsc4 not found in ySWI/SNF. The two types of chromatin remodeling complexes
have distinct cellular functions in yeast (for reviews, see (Mohrmann et al., 2005;
Martens, 2003) The relationships between the two yeast SWI/SNF protein complexes
are conserved in eukaryotes. While Drosophila contains only one SWI12/SNF2 homolog,
Brahma (BRM), it is found in two classes of chromatin remodeling complexes
corresponding to ySWI/SNF (BRM-associated Proteins or BAP) and RSC (Polybromo-
associated proteins or PBAP). BAP and PBAP contain orthologs of the yeast subunits in
combinations similar to the yeast complexes, and they mediate distinct cellular
functions (Moshkin et al., 2007). Similarly, the mammalian SWI12/SNF2 paralogs are
mutually exclusive subunits of mammalian SWI/SNF chromatin remodeling complexes
(Khavari, 1993). The corresponding human SWI/SNF complexes are differentiated by
their use of BRG1 (brahma-related gene) or hBRM (human brahma) as the ATPase

subunit.

In the following section, we will describe the known developmental roles of
SWI/SNF complexes in Drosophila, zebrafish, Xenopus, and mammals. The differential
expression and known developmental functions of these remodelers are also briefly

summarized in Table I.



Table 1 Developmental roles of SWI2/SNF2 subfamily members across species

REFERENCE
PROTEINS EXPRESSION PATTERNS FUNCTIONS S
- Required for survival to early stages
dBRM I Ubiquitous in earlier stages i Zezgrii;iilonne;\;z:f:rekl)orpt::rr:x osterior head Simon and Tamkun 2002; Brizuela and Elfring 1994;
- Restricted to neural tube in later stages P - P Elfring et al. 1998; Marenda et al. 2004
segments
- Required for normal wing development
xBRM W.ldespread, absent in branchial arches and - Not Done Linder et al. 2004
tailbud
mBRM |- Not Done - Adult liver-specific albumin expression Inayoshi et al. 2006
BRG1 | Ubiquitous in early stages evelopment of neural tube Link et al. 2000; Gregg et al. 2003;
- Confined to anterior region in later stages eural crest cell and retinal differentiation Eroglu et al. 2006; Lewis et al. 2004
xBRG1 | W|d§spread, absent in hindbrain, . - Required for neuronal differentiation Linder et al. 2004; Seo et al. 2005
spinal cord, pronephros and somites.
i fnY,gT;:tginzme activation Bultman et al. 2006; Bultman et al. 2000; Matsumoto et
- (Maternal transcript) oocyte Dif;f)erenti:;'on of glial cells. neurons al. 2006; Seo et al. 2005; Bottardi et al. 2006; Kadam and
mBRG1 |- Ubigquitous in early stages . . I & § Emerson 2003; Gebuhr and Kovalev 2003;
) . . - Differentiation of myelocytes
- Restricted to neural tissues in later stages . L Young et al. 2005;Roy et al. 2002, Ohkawa et al.
- Differentiation of bone and muscle .
. . . ) 2006;Inayoshi et al. 2006
- Fetal liver-specific albumin expression
SNF5/ - Not Done - Essential before blastocyst hatching Klochendler-Yeiven and Fiette 2000
INI1” - Liver development Gresh et al. 2005
B f a B . . . .
afeoc” | Early embryonic heart and somites Cardiac and skeletal musclc—r‘ differentiation Lickert et al. 2004
- Nodal-expressing cells and heart morphogenesis Takeuchi et al 2007
P & - Establishment of left-right asymmetry

? Non-ATPase subunits of the SWI/SNF chromatin remodeling complex
The known expression patterns and developmental functions of SWI2/SNF2 subfamily members are listed for several metazoan species. In many cases these proteins
are essential for early development or for viability of individual cells; therefore some functions listed reflect data utilizing partial loss-of-function strategies and
therefore cannot be considered an exhaustive list of functions. d: Drosophila melanogaster, z: zebrafish, x: Xenopus laevis, m: mammals (mouse or human).
Pronephros is primitive kidney, myelocytes are precursors to blood cells. Blastocyst hatching is the shedding of the early embryonic zona pellucida preparatory to
implantation.




The role of SWI/SNF in Drosophila development

The SWI2/SNF2 homolog found in Drosphila melanogaster was named brahma
after the Hindu god of fate, as it was originally identified as one of a group of genes
(trithorax group) that determined cell fate. (Papoulas, 1998; Brizuela et al., 1994;
Dingwall, 1995; Daubresse, 1999). The gene product BRM is similar enough to yeast
Swi2/Snf2 that its ATPase domain is interchangeable with that of ySwi2, while that of
Imitation Switch (ISWI, a member of a different SWI2/SNF2 subfamily) is not (Elfring,
1994). BRM is the ATPase subunit of a protein complex analogous to ySWI/SNF

(Dingwall et al., 1995).

Both maternal and zygotic BRM are required for normal embryogenesis.
Unfertilized eggs contain maternal brm transcripts and depleting brm transcripts in eggs
results in developmental defects as early as the cellular blastoderm stage. Brm function
is required for normal oogenesis and proper expression of the segmentation gene
engrailed (en) (Brizuela et al., 1994). Embryos lacking brm function die in late
embryogenesis. Embryos heterozygous for brm mutations exhibit a variety of
developmental defects (Elfring, 1998). Loss of function studies show that brm function

is required for normal development of the peripheral nervous system in Drosophila.

During Drosophila embryogenesis the identities of anterior thoracic and
posterior head segments, including the primordium of the larval salivary gland, are

determined by one of the Antennapedia complex genes, sex combs reduced (Scr). The



Scr expression domain is initially determined by segmentation genes and later by
homeotic genes of the Antennapedia and Bithorax complexes (Kennison, 1998).
Regulation of Scr expression is maintained in later development by two antagonistic
groups of gene products: outside of its normal domain of expression it is repressed by
genes of the Polycomb group (Pc-G), while within its normal expression domain it is

activated by those of the trithorax group (trx-G), including brm.

Other proteins of the trithorax group have been found to be orthologous to
yeast SWI/SNF subunits, and to physically interact with BRM (reviewed in (Simon, 2002).
The moira gene, encoding the protein MOR, is homologous to yeast SWi3, a subunit of
the ySWI/SNF complex, and coimmunoprecipitates with BRM in Drosophila embryo
nuclear extracts (Croshy, 1999). Moira and brm have strong genetic interactions in
Drosophila (Papoulas et al., 1998). Another trx-G gene, osa,was found to interact
genetically with brm to regulate Antennapedia expression (Vazquez, 1999). OSA
contains an ARID domain also present in the yeast Swil protein, another ySWI/SNF
subunit. ARID domains usually confer non-sequence-specific DNA-binding function, with
a general preference for AT-rich DNA binding; however, ySwil does not show significant
DNA binding (Wilsker, 2004). Genetic analyses and loss of function studies have shown
that SNR1, a homolog of the SWI/SNF subunit SNF5, interacts with BRM to regulate
expression of genes involved in wing vein development (Marenda, 2004) and of
ecdysone-responsive genes expressed at the larval-pupal transition (Zraly, 2006).

Ecdysone is a steroid hormone required for the dramatic changes that occur during



insect metamorphosis. The specific roles of these non-ATPase subunits have not been
elucidated, but one likely function is that they may help recruit the Drosophila SWI/SNF

complex to promoters of target genes (Armstrong, 2002; Armstrong, 2005).

Vertebrate SWI/SNF complexes

In vertebrates the paralogous genes brm and Brg1 function as alternative ATPase
subunits of the SWI/SNF chromatin remodeling complex (Wang, 1996). It is clear that
BRM and BRG1 proteins have diverged in function as they interact with different groups
of transcription factors (Kadam, 2003). Studies in a variety of vertebrate model
organisms point to distinct roles for BRG and BRM in development, some of which are

conserved across vertebrate evolution.

The roles of SWI/SNF in zebrafish development

In zebrafish, Brgl (encoded by the smarca4 gene) is required for normal
development of retina, brain, and neural crest cells, and loss of Brgl function affects
differentiation of the retina at a specific stage of development. In situ hybridization
studies show that Brg1 is expressed in early retinal development (Link, 2000; Gregg,
2003). Brgl mutant (also known as “young” or yng) embryos develop an abnormal
retinal morphology that is phenocopied by Brg1-specific morpholino injection. The
same abnormal morphology occurs in embryos mutant for baf53, a subunit of SWI/SNF
complexes known to bind Brgl. To further characterize the role of Brgl in retinal

development, these researchers performed in situ hybridization in Brgl-deficient
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embryos to detect markers of specified retinal cell types (rx2 and vsx2). They found that
the retinas of mutant embryos undergo a normal process of specifying retinal cells, an
early step in retinal development, but at later stages the retinal cells fail to develop the
normal morphology of terminally differentiated retinal cells and don’t express late-
differentiation antigens (e.g., Zn-1 antigen for red and green photoreceptors, and ID1
antigen for rod photoreceptors). This indicates that Brgl is required for terminal
differentiation of the retina but does not play a role in the earlier step of retinal cell

specification.

In situ hybridization of zebrafish embryos from the one-cell stage through the 24>
hours post-fertilization (hpf) stage show that Brgl mRNA is ubiquitous until 24hpf, when
the pattern becomes restricted to the anterior region of the embryo (Eroglu, 2006).
Expression is most pronounced in the brain. Injection of Brgl-specific morpholino into
zebrafish embryos causes the expansion of the domain of six3, a forebrain marker, and
reduction of the domains of midbrain boundary marker engrailed2 (eng2) and the
hindbrain marker krox20. Overexpression (by injecting Brgl-specific mRNA) has the

opposite effect on six3.

In addition to the defects in brain and retinal development described above,
these experiments also revealed defects in development of neural crest cells. Neural
crest cells derive from ectoderm and migrate laterally through the embryo to become

skin pigment cells, peripheral neurons and glia, and form the cartilage and bones of
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facial structures. Neural crest progenitor cells are induced at the gastrula stage in a
process that requires function of the Wnt signaling pathway (Lewis, 2004). They later

migrate away from neuronal cells and express neural crest specific genes.

Expression of neural crest specifiers is severely reduced in zebrafish embryos
lacking Brgl function; the embryos exhibit defects in neural crest-derived structures and
fail to express neural crest markers snail2, foxd3 and tfap2a (Eroglu et al., 2006). Eng2
and snail2 are both targets of Wnt signaling; Brgl is known to bind the Wnt signaling
pathway component -catenin and is recruited to the T-cell transcription factor
(TCF/LEF) binding site of target genes including slug/snail2 (see (Gammill, 2003) for a
review), so a role for Brgl in specific Wnt-dependent pathways is not surprising. While
these studies have revealed a key role for zebrafish Brgl in the development of neural
and neural crest-derived structures, little is known about corresponding roles of the

zebrafish brm homolog (encoded by the smarca2 gene).

The roles of SWI/SNF in Xenopus development

Western analysis of staged Xenopus embryos (Gelius et al., 1999) shows that, as
in zebrafish, BRG1 is present at all stages of oogenesis and embryogenesis and is
expressed ubiquitously in early development, later to be restricted to neural tissues. /n
situ studies of whole mount embryos demonstrate distinct expression patterns for the

Brg1 and brm paralogs. For instance, at the tailbud stage brm is expressed in the
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hindbrain, spinal cord, pronephros and somites while Brg1 is not, and Brg1 is expressed

in branchial arches and tailbud while brm is not (Linder, 2004).

Loss of BRG1 function in Xenopus prevents differentiation of neurons from
proneural cells (Seo, 2005). The Neuron-specific tubulin (N-tubulin) gene is specifically
expressed in differentiated neurons, dependent upon the proneural activities of the
basic helix-loop-helix (bHLH) transcription factors Neurogenin-related-1 (Ngnrl) and
NeuroD. Loss of Brgl function results in both a reduction of N-tubulin expression and a
failure of Ngnrl and NeuroD to promote neuronal differentiation. Consistent with a
direct role for Brgl in neuronal differentiation, Brgl coimmunoprecipitates with Ngnrl
and NeuroD. An analogous relationship between Brgl and NeuroD2 was also
demonstrated in a mammalian cell line that can be induced to differentiate into neurons

by NeuroD.

The roles of SWI/SNF complexes in mammalian development

Considerable evidence shows that alternative mammalian SWI/SNF complexes
containing either BRG1 or BRM perform different functions in vivo, despite the
similarities between these complexes. GST pulldowns have demonstrated that BRG1 but
not BRM binds to zinc finger transcription factors in vivo, while BRM but not BRG1 binds
to ankyrin repeat proteins involved in the Notch signaling pathway. While overall the
two proteins share 75% homology, BRG1 contains an N-terminal motif known to bind

zinc finger proteins that is absent in the BRM protein (Kadam et al., 2003).
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A number of studies of mouse development highlight the differences in BRG1
and BRM expression patterns and functions in development. brgl-null mouse embryos
die around the time of implantation of the blastocyst while brm null mice exhibit only a
mild phenotype (Bultman, 2000). As in zebrafish and Xenopus, BRG1 is expressed early
in mouse development but progressively this expression becomes more restricted to

neural tissue.

RT-PCR of Brgl and brm transcripts in mouse oocytes and embryos indicates that
while both are abundant as maternally-derived products, only BRG1 is expressed at the
start of zygotic transcription (LeGouy, 1998). Zygotic BRM expression begins later at the
blastocyst stage when differentiation begins, and only in the inner cell mass. Similarly in
Rhesus embryos monitored by RT-PCR, Brg1 expression begins at the morula stage while
brm zygotic expression begins later, at the hatched blastocyst stage (Zheng, 2004). In
embryos conceived from conditional Brgl mutant-derived eggs, Brgl depletion leads to
a zygotic genome activation failure that includes arrest at the two-cell stage and

downregulation of about 30% of expressed genes (Bultman, 2006).

To visualize the expression of BRG1 and BRM in embryonic tissues, mouse
embryo sections were immunostained with antibodies to BRG1 and BRM (Dauvillier,
2001). While BRG1 is expressed widely in embryos, BRM expression is restricted to
mesodermal tissues involved in vasculogenesis, allantois (umbilical cord precursor),

vitelline arteries, yolk sac and cardiogenic plate. As they are required early in
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postimplanation development, these tissues are the first to be determined, coinciding

with the onset of BRM expression.

In addition to its role in early embryonic viability, BRG1 has been implicated in a
number of tissue-specific differentiation events, including differentiation in
hematopoietic lineages. The zinc-finger protein Erythroid Kruppel-like factor (EKLF),
required for tissue-specific expression of B-globin genes, associates with BRG1 in vitro,
and in vivo is required for BRG1 recruitment to the B-globin Locus Control Region and
promoter (Bottardi, 2006; Kadam, 2000). Mice with a partial loss-of-function mutation
of Brg1 exhibit a failure to switch from primitive yolk-sac-derived erythrocytes to
definitive fetal-liver-derived erythrocytes, resulting in severe anemia and death at
midgestation (Bultman, 2005). Paradoxically, other tissues develop normally in the
mutant embryos, possibly because brm is expressed in those tissues and may
compensate for the brg1 partial loss of function, whereas brm expression is absent in

erythrocyte precursors.

Brgl loss of function also leads to a developmental block in myeloid
differentiation to granulocytes at the promyelocyte/metamyelocyte precursor stage
(Vradii, 2006). T lymphocyte-specific inactivation of Brg1 in mice leads to CD4
derepression at the double negative (CD4-CD8-) stage of T cell development and a
subsequent failure to develop to the next (CD4+ CD8+ double positive) stage of

development (Gebuhr, 2003).
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BRG1 is expressed in neural stem cells that give rise to both neurons and glial cell
fates (astrocytes and oligodendrocytes) (Matsumoto, 2006). Targeted loss of BRG1
function in neural stem cells results in reduced expression of proteins required for stem
cell maintenance, such as Pax6 and Sox1. Furthermore, BRG1 is required for gliogenesis,
as brg1-null neural stem cells are unable to differentiate into glial cells and instead
adopt neuronal fates. However, other studies have implicated BRG1 in neuronal
differentiation as well. BRG1 is highly expressed in the mantle zone of the spinal cord in
embryonic (day 12) mice; the mantle zone contains post-mitotic neurons whereas the
underlying ventricular zone contains dividing neural stem cells and is the primary site of
neural differentiation (Randazzo et al., 1994); this suggests a post-differentiation role for
BRG1 as well. Also, as noted above, interference with BRG1 function prevents neuronal
differentiation driven by NeuroD2 in a mouse cell line that can be induced to

differentiate into neurons (Seo et al., 2005).

Indra and colleagues performed a set of experiments to specifically ablate BRG1
function in the surface ectoderm of developing mice, which gives rise to the dermal and
epidermal layers of the skin (Indra, 2005). They constructed transgenic mice containing
LoxP-flanked Brg1 alleles and the Cre recombinase. The Cre recombinase was under the
control of the K-14 promoter, which is active in surface ectoderm and the basal layer of
the epidermis. While ablation of Brg1 does not alter the early differentiation of
keratinocytes, it does cause failure of the final stages of their differentiation, resulting in

disruption of the skin permeability barrier. The loss of Brg1 in developing limb
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ectoderm results in profound hindlimb defects, indicating a role for BRG1 in limb
patterning. Intriguingly, while BRM cannot substitute for BRG1 in limb formation, BRM
does partially compensate for lack of BRG1 in terminal keratinocyte differentiation,

revealing both redundant and non-redundant functions for BRM and BRG1.

Finally, BRG1 may also play an important role in bone and muscle differentiation.
Young and colleagues demonstrated that BRG1 is expressed in the developing mouse
skeleton, and showed that it is required for Bone Morphogenic Protein 2 (BMP2)-
dependent induction of alkaline phosphatase (Young, 2005). Alkaline phosphatase is an

early marker of osteoblast differentiation, dependent on the Runx2 transcription factor.

Studies of embryonic tissue and of cultured cells have revealed a requirement
for BRG1 activation of genes required for muscle differentiation. In cultured fibroblasts
inducibly expressing dominant negative BRM or BRG1, each of the basic helix-loop-helix
myogenic regulatory factors MyoD, Myf5, Mrf4 require BRG1 or BRM to mediate
expression of the myogenic markers myosin heavy chain and troponin T (Roy, 2002).
Chromatin immunoprecipitation (ChIP) studies of differentiated embryonic muscle
tissue demonstrate that myogenin binds at its own promoter and associates with BRG1
(Ohkawa, 2007). In cultured fibroblasts, BRG1 is required for MyoD-mediated myogenin
expression, and that this is accompanied by chromatin remodeling at the promoter(de
la Serna, 2001). These results suggest that BRG1 is required for both induction of

myogenin expression by MyoD in early myogenesis, and subsequent maintenance of
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expression by myogenin itself. These studies have also been extended into whole
animals. In developing mouse embryos, RT-PCR and ChIP analyses demonstrate that
myogenic late marker genes are expressed concomitant with the binding of BRG1,

myogenin and Mef2D (a myogenic cofactor) to their promoters (Ohkawa, 2006).

Roles of SWI/SNF complexes in human development

The human homologs of SWI2/SNF2 and Brahma are designated human brahma
(hbrm) and Brahma related gene 1 (Brg1) (Randazzo et al., 1994; Muchardt, 1993;
Khavari et al., 1993; Chiba, 1994). Mammalian SWI/SNF complexes directly interact with
regulatory proteins such as retinoblastoma protein, cyclin E and with a large number of

transcription factors (Dunaief, 1994; McKenna, 1999; Glass, 2000).

Obviously, most work on the roles of BRG1 and BRM in development comes from
studies in mice, as described in the previous section, or in work in cell culture models for
different pathways of differentiation. However, some work has addressed how these
results may translate to humans. For example, immunostaining of normal human tissue
sections for BRG1 or BRM reveals different expression patterns for the paralogs. BRG1
is predominantly found in highly proliferative cell types (e.g., endodermal and
ectodermal epithelium, B germinal centers of tonsils and spleen) while BRM is
predominantly expressed in non-proliferating tissues such as brain and liver (Reisman,
2005). These different expression patterns are consistent with a number of the studies

described above, in which BRG1 is commonly required for survival of proliferating cells
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and early stages of differentiation, while BRM may play a more critical role in terminally

differentiated, non-dividing cells.

Non-ATPase subunits of SWI/SNF complexes

It is well established that in interactions between SWI/SNF complexes and target
genes, the ATPase subunit performs the same basic function, that of translocating
nucleosomes along the DNA to facilitate regulation of the gene by other factors. The
functions of the eight or more other subunits of SWI/SNF complexes have received

relatively less attention from investigators.

Several studies have demonstrated that the SNF5/INI1 subunit, present in both
BRG1- and BRM-containing SWI/SNF complexes, is also essential for mouse
development (Klochendler-Yeivin, 2000; Guidi, 2001). While mice heterozygous for
SNFR5/INI1 survive (albeit with an increased incidence of tumor formation), nullizygous
embryos do not survive beyond the blastocyst stage. In culture, wild type blastocysts
hatch from the zona pellucida and form a trophectoderm, but the nullizygous embryos
fail to do so. These results, along with the results for brg1-null mice described above,

make it clear that the SWI/SNF complex is essential for early development in mouse.

Conditional inactivation of the SNF5/INI1 subunit of SWI/SNF complexes in the
developing mouse liver results in neonatal death accompanied by liver defects, including
improper formation of hepatic epithelium and a failure to store glycogen (Gresh, 2005).

Microarray analysis reveals that 70% of the genes normally upregulated during liver
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development show reduced expression in SNF5/INI1-deficient mice. Interestingly,
another study in hepatocytes revealed a requirement for BRG1 in expression of the
liver-specific albumin gene in fetal hepatocytes, while expression of the same gene in
hepatocytes from adult liver requires BRM (Inayoshi, 2006). These authors showed that
BRG1 levels decrease and BRM levels increase during liver cell differentiation, consistent
with other examples (discussed above) of roles for BRG1 and BRM in proliferating and

post-mitotic cells, respectively

Another example of combinatorial assembly of SWI/SNF complexes is revealed
by the alternative forms of Baf60: Baf60a, Baf60b and Baf60c, encoded by the
Smarcadl, Smarcad2 and Smarcad3 genes, respectively. Baf60c is expressed specifically
in the heart and somites of early mouse embryos (Lickert, 2004), suggesting that
SWI/SNF complexes may have different subunit compositions in different tissues. In
transgenic embryos, elimination of Baf6é0c by RNA interference disrupts normal cardiac
and skeletal muscle differentiation and heart morphogenesis. In Hela cells
immunoprecipitation of BRG1 and epitope-tagged cardiac transcription factors shows
that Baf60c is necessary for the interaction of BRG1 with cardiac transcription factors.

In zebrafish, Baf60c is expressed at late gastrulation in cells surrounding the
forerunner of the ciliated organ of asymmetry, Kuppfer’s vessicle (KV) analogous to the
mouse node (Takeuchi, 2007). When left-right (LR) asymmetry arises during early
somitogenesis, Baf60c is strongly expressed in notocord and around the KV, and later in

eye, midbrain, forebrain and KV. In developing mice, Baf60c is expressed in the Nodal-
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expressing cells at the periphery of the node. The normal breaking of bilateral symmetry
requires the secretion of the Nodal protein in cells at the periphery of the node.
Expression of Nodal requires both a functional Notch signaling pathway and functional
Baf60c. Bac60c loss of function causes defective LR asymmetry such as abnormal
looping of the heart. Expression of genes associated with the cascade of asymmetry
establishment (e.g., lefty1,2,3) is also perturbed. Morpholino knockdown of zebrafish
Baf60c causes lefty1,2,3 and southpaw to be misexpressed or not expressed,
demonstrating the conservation of functional relationships among these proteins in
vertebrates.

In summary, the results discussed here indicate that BRG1- and BRM-containing
SWI/SNF complexes have mostly non-redundant functions in vertebrate development.
While their biochemical activities and certain other functions may overlap, their roles
have diverged dramatically in the course of vertebrate evolution. Numerous examples
support a division of labor in which BRG1-containing complerxes are critical for the
survival of dividing cells, maintenance of pluripotency, and early stages of
differentiation, while BRM-containing complexes may have more restricted roles in

terminal differentiation and transcriptional regulation in post-mitotic cell populations.
The ISWI subfamily

The ISWI family is the largest and most diverse subfamily of ATP-dependent

remodelers characterized thus far. In addition to the SWI12/SNF2 superfamily ATPase
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domain, members of the ISWI family are distinguished by the SANT-SLIDE domains in the C-
terminal half of the protein. The ISWI protein was first identified in Drosophila, in which it is
found in three different chromatin remodeling complexes: NURF (nucleosome remodeling
factor), ACF (ATP-dependent chromatin assembly and remodeling factor), and CHRAC
(chromatin accessibility complex) (Tsukiyama, 1995a; Becker, 1994; Tsukiyama, 1994;
Tsukiyama, 1995b; Ito, 1997). Subsequently, ISWI-containing complexes have been
identified in yeast, Xenopus, Arabidopsis and mammals. There are two ISWI homologs in
budding yeast, Iswland Isw2 (Tsukiyama et al., 1994) that are present in the 1swla, Iswlb,
and Isw2/yCHRAC complexes (Tsukiyama, 1999; Vary, 2003; lida, 2004). In Xenopus three
ISWI-containing complexes have been characterized: ACF, CHRAC and WICH (Guschin, 2000;
Bozhenok, 2002). Mammals have two ISWI homologs, SNF2L and SNF2H, which show tissue-
specific expression patterns (Barak, 2004b). SNF2H is present in at least 7 different
complexes, including RSF (remodeling and spacing factor) (LeRoy, 1998; Loyola, 2003),
hACF/WCRF (WSTF-related chromatin-remodeling factor) (Bochar, 2000; LeRoy, 2000),
hCHRAC (Poot, 2000), hWICH (Bozhenok et al., 2002), hB-WICH (Cavellan, 2006), and NoRC
(nucleolar remodeling complex) (Strohner, 2001). SNF2H has also been found to be
associated in a large complex containing cohesin and subunits of the NuRD complex
(nucleosome remodeling and histone deacetylase complex) that contains the Mi-2 ATPase (a
member of the CHD subfamily (Hakimi, 2002). SNF2L is the catalytic subunit of the hNURF
complex (Barak, 2003) and CERF (CECR2 containing remodeling factor) complex (Banting,

2005). Recently, a Caenorabditis elegans ISWI homolog (isw-1) was identified, which
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appears to be present in a C. elegans NURF complex along with a nematode ortholog of
NURF301 called NURF-1 (Andersen, 2006). A detailed account of the subunit compositions
of all the ISWI complexes and their homologies in different species is reviewed elsewhere
(Dirscherl et al., 2004; Mellor, 2006), and Mellor and Morillon (Mellor, 2004) provide an
excellent review of the functions of yeast ISWI complexes. Here we will concentrate on the

developmental roles of these ISWI complexes in multicellular organisms.

Developmental roles of the ISWI ATPase

Because ISWI is present in so many different complexes, studies of the in vivo roles of
ISWI are complicated by the need to dissect the role of ISWI in the context of these
different complexes. Two general strategies are generally taken: interference with the
function of ISWI itself, which is assumed to impact all ISWI-dependent complexes, and
inhibition of specific subunits within individual ISWI-containing complexes. We will first
discuss the developmental roles of ISWI itself, then we will discuss data that address the
roles of specific ISWI complexes in development. The developmental roles of these ISWI

complexes have also been summarized in Table 2.

In Drosophila, null mutations in ISW/ are lethal, resulting in death at the late
larval/early pupal stages (Deuring, 2000). In order to study the role of this essential
gene, these researchers used somatic clonal analysis (in which patches of ISW/ mutant
tissue are generated in viable heterozygous animals) and dominant-negative ISW/

mutants to study the effects of loss of ISWI in different tissues during development. In
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fact, any tissue expressing dominant-negative ISWI results in subsequent loss of
corresponding adult structures derived from that tissue, indicating that ISWI is globally
required for either cell viability or division. Before death at early pupal stages, iswi
mutants also show defects in transcription of the segmentation gene engrailed and the
homeotic gene Ultrabithorax. Additionally, the structure of polytene chromosomes is
altered in iswi mutants, particularly the male X chromosome, which is much shorter and
broader than wild type. This could reflect a defect in replication or chromatin assembly

in these mutant larvae.

Drosophila ISWI is also required for the maintenance of the self-renewal activity
of germline stem cells (GSC) in the ovary (Xi, 2005). A FLP-mediated recombination
method was used to eliminate ISWI function in GSCs. 99% of the homozygous iswi
mutant germline stem cells are lost within a two-week period after elimination of ISWI,
compared to 35% loss of wild type GSCs. The GSC division rates in iswi mutants are also
reduced compared to wild type, suggesting that ISWI is required to stimulate division of

GSCs.

In Xenopus, ISWI is also essential for survival during early development,
particularly neurulation, and is also critical for later stages of neural development and
retinal differentiation (Dirscherl, 2005). Inhibition of ISWI in vivo with anti-ISWI
morpholinos or a dominant negative ISWI mutant leads to defects in gastrulation and

neural fold closure, aberrant eye development, and formation of cataracts. It also leads
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to misregulation of a number of genes required for neural patterning and development,

such as Sonic hedgehog (Shh) and Bone Morphogenetic Protein 4 (BMP4).

The two ISWI homologs in mammals, SNF2H and SNF2L, perform different functions in
vivo. While both of these genes are expressed in nervous tissue and gonads in mice,
they are expressed at different times or in different subpopulations within these tissues
(Lazzaro, 2001). SNF2H is transiently up-regulated in proliferating neural cell
populations during embryogenesis and early post-natal development, while SNF2L
expression is increased in terminally differentiated neurons after birth and in adult
animals. Similarly, SNF2H is also expressed in proliferating cells within the ovary and
testis, while SNF2L is prevalent in differentiated cells in these tissues. This is
reminiscent of the separation of function between proliferating and post-mitotic cells

observed for BRG and BRM, discussed earlier.

The expression patterns of SNF2H and SNF2L differ somewhat between mouse
and human. In adult mice, SNF2H is expressed ubiquitously and SNF2L is restricted to
the brain and gonad, while in humans, SNF2H and SNF2L are both ubiquitously
expressed (Barak, 2004a). However, in humans, a splice variant of SNF2L called
SNF2L+13 is highly expressed in non-neuronal tissue. SNF2L+13 lacks chromatin-
remodeling activity; therefore, functional SNF2L dominates in the nervous system, while
in other tissues the inactive isoform is the predominant source of SNF2L. This limits the

major activity of SNF2L to the nervous system, as in mice. This differential pattern of



Table 2 Developmental roles of ISWI subfamily members across species

PROTEINS EXPRESSION PATTERNS FUNCTIONS REFERENCES
diswI - Restricted to CNS and gonads - Essential for late larval /early pupal development Elfring et al. 1994; Deuring et al.2000
after germ band retraction - Self renewal of GSCs
xISWI - Brain, neural tube , eye - Essential for normal neural and eye development Dirschert and Krebs 2005
- {mouse) SNF2H is ubiquitously .
- Normal differentiation and survival of embryo :
expressed but SNF2L is restricted to ¢ ) Y Stopka and Skoultchi
mISWI brain and gonads - Corpus luteum formation 2003; Lazzaro et al. 2006;
- Blood cell formation
- (human) SNF2L and SNF2H are ) ) Barak et al. 2004
L - engrailed genes expression
ubiquitously expressed
dNURF301° - Not Done except wing - Essential for late larval/early pupal Badenhorst et al., 2002b; Badenhorst et al.
Expression Metamorphosis 2005; Deuring et al. 2000
b - Essential for normal body axis, gut
xBPTF } Wysocka et al. 2006
Not Done Development v
- Hippocampus and cerebellum of adult - Required for normal expression of engrailed
mBPTF ppocamp q rn expression ot eng Barak et al. 2003
mouse brain genes involved in mid-brain development
c - Dorsal most thoracic region, wing .
dTau . . . . - Essential for sensory organ development Vanolst et al. 2005
imaginal disc, wing pouch
e . . Cus et al. 2006; S.M., J. Henry, and
xWSTF - Eye, brain, neural crest cells - Essential for normal eye and CNS development .
J.E.K., unpublished results
mCECR2" - Throughout nervous tissue - Essential for neurulation Banting et al. 2005

? subunit of NURF complex; °

subunit of NURF complex; © TIP-5 related protein; ? subunit of CERF complex; € subunit of WICH complex

The known expression patterns and developmental functions of ISWI subfamily members are listed for several metazoan species. In many cases these proteins are
essential for early development or for viability of individual cells; therefore some functions listed reflect data utilizing partial loss-of-function strategies and therefore
cannot be considered an exhaustive list of functions. d; Drosophila melanogaster, x; Xenopus laevis, m; mammals (mouse or human). Hippocampus is a part of the
brain involved in memory and spatial navigation; the sensory organ denotes the Dorso-Central bristle; CNS, Central Nervous System; GSC, Germline Stem Cell.

S¢
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expression probably suggests different developmental functions of these two homologs.

Consistent with the ubiquitous expression of SNF2H, and its upregulation in
highly proliferative cells, snf2h homozygous mutant mice embryos die at the peri-
implantation stage (Stopka, 2003). Outgrowth of blastocysts in vitro is also impaired in
these mutant mice due to growth arrest, loss of normal differentiation of the
trophoectoderm and inner mass cells, and ultimately cell death within 3-6 days of
culture. These researchers also inhibited SNF2H in human primary hematopoietic
progenitors, which then failed to differentiate into mature erythroid cells upon cytokine
induction, indicating roles for SNF2H in both embryonic and adult differentiation

programs.

Recent studies indicate that SNF2L may play a key role in the development of the
corpus luteum in mammalian cells (Lazzaro, 2006), in keeping with the restriction of
mouse SNF2L expression to gonad and brain. While SNF2H is strongly expressed during
growth of preovulatory follicles, SNF2L expression peaks during the process of
luteinization, which represents the final stage of differentiation of the ovarian follicle.
SNF2L interacts directly with Progesterone Receptor A, which is essential for activation
of genes required for ovulation. Gonadotropin stimulation, which initiates
luteinization, leads to binding of SNF2L to the proximal promoter of the StAR

(Steroidogenic acute regulatory protein) gene, which is essential for steroidogenesis.
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Elimination of SNF2L results in a failure to activate StAR, interfering with a key stage in

the luteinization process.

All the findings described above indicate that ISWI proteins play a wide and
crucial role in development, including fundamental roles in cell viability, as well as more
specific functions in embryogenesis, development of normal reproductive organs, and
development of neural tissues. In the following section, we will dissect the
developmental roles of individual ISWI complexes, where the functions of individual

complexes have been addressed.

Developmental roles of individual ISWI complexes

In this section we will focus on the NURF, NoRC, CERF, WICH, and CHRAC
complexes. The WICH and CHRAC complexes have some functional links, in that both
may be involved in preventing the spread of heterochromatin and aiding in the
movement of the replication fork through heterochromatin (Bozhenok et al., 2002;
Collins, 2002). On the other hand NURF, NoRC, and WICH/B-WICH complexes have all
been shown to have roles in transcriptional regulation. The NURF complex in humans is
known to be involved in transcriptional activation (Barak et al., 2003), while other ISWI
complexes appear to be primarily involved in transcriptional repression. NoRC is
involved in repression of Pol | transcription (Zhou, 2002), and the yeast ISWI complexes
repress a wide variety of genes (Fazzio, 2001; Goldmark, 2000; Kent, 2001; Ruiz, 2003;

Vary et al., 2003). The conservation of different ISWI complexes may also reflect similar
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developmental roles of these complexes in different species. Most is known about the
NURF complex; therefore, we will begin by illustrating its developmental role in

different species.

NURF complex

The NURF complex was first identified in Drosophila. It consists of four subunits:
ISWI, NURF38 (inorganic pyrophosphatase), NURF 301, and NURF55 (Gdula, 1998;
Martinez-Balbas, 1998). /n vivo studies show that, as for the iswi mutants described
above, null mutations of nurf301 result in embryonic lethality during late larval/early
pupal stages (Badenhorst, 2002a). nurf301 mutations result in impaired transcription of
Ultrabithorax (Ubx) and engrailed (en), as was the case for iswi mutants, as well as the
hsp70 and hsp26 heat shock genes. In homozygous nurf301 mutants, expression of ubx
is undetectable in haltere and third leg discs of third instar larvae. Loss of UBX protein
leads to homeotic transformation where the third thoracic segment (which normally
includes the vestigial haltere and no sensory bristles) transforms into the second
thoracic segment, resulting in increased size and sensory bristle development, and
transformation of the haltere towards the wing fate. Also, normal expression of EN in
the posterior compartment of the haltere and the leg discs in these mutants is reduced.
In nurf301 mutants the females are sterile and the males have highly aberrant X
chromosome that is reduced in length and breadth, again consistent with the effect of

an iswi mutant, suggesting that the major developmental phenotypes observed in iswi
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mutants are primarily due to loss of the NURF complex (Badenhorst, 2002b; Deuring et

al., 2000).

Comparison of genome-wide expression profiles of wild type and nurf301 flies
reveals that NURF regulates a large number of ecdysone-responsive genes (Badenhorst,
2005). Ecdysone is a steroid hormone required for the dramatic changes that occur
during insect metamorphosis. Upon ecdysone binding, the ecdysone receptor activates
numerous genes during larval-pupal development in wild type flies; however, these
transcriptional changes are absent in nurf301 mutants. Purified NURF complex
physically associates with ecdysone receptor. The data indicate that the Drosophila

NURF complex is required for ecdysteroid signaling and metamorphosis.

Human NURF, containing the SNF2L ATPase, has been implicated in
transcriptional activation of genes involved in neuronal development in the mid-
hindbrain (Barak et al., 2003). Depletion of snf2/ by RNAi results in downregulation of
the human engrailed genes en-1 and en-2 (regulators of midbrain development), which
are homologs of the Drosophila en gene that also requires NURF for its proper
expression (described above). Likewise, depletion of the human NURF301 homolog,
BPTF (Bromodomain and PHD finger Transcription Factor) results in reduced expression
of en-1 and probably en-2. Transfection of a mouse neuroblastoma cell line with wild
type SNF2L results in significant potentiation of neurite outgrowth, also consistent with

the role of NURF in promoting neural development in mammals.
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Recent work has uncovered a developmental role for a C.elegans NURF complex,
containing ISW-1 and a NURF301 homolog NURF-1 (Andersen et al., 2006). This study
implicated worm NURF in promoting vulval cell fates, in opposition to several negative
regulators of vulval development, such as the worm homolog of the NuRD complex (see

below).

Recent in vitro and in vivo studies in mammals and in vitro studies in Drosophila
suggest that BPTF in humans and NURF301 in Drosophila, through their PHD zinc finger
domains, specifically associate with trimethylated lysine 4 of histone H3 (H3K4)
(Wysocka et al., 2006). Trimethylated H3K4 marks the transcription start site for almost
all active genes (Ruthenburg, 2007). Depletion of trimethylated H3K4 results in
dissociation of BPTF and SNF2L from the HOXC8 promoter, which results in a
compromised pattern of expression of this gene during development. in Xenopus,
depletion of BPTF mRNA by anti-BPTF morpholino injection leads to axial deformities,
gut mis-patterning, and blood defects. Xenopus BPTF depletion also causes
deregulation of HOXC8 expression, leading to posteriorization of Hox expression by
several somite lengths (Wysocka et al., 2006). Thus the axial deformities and
posteriorization of Hox expression in BPTF-depleted Xenopus embryos and homeotic
transformation in nurf301 mutant flies (as mentioned earlier) might indicate a general
role of NURF complex in proper patterning of cells leading to a normal morphology

during development.
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NoRC complex

The mammalian NoRC complex consists of a heterodimer of SNF2H and TIP5. It
is responsible for transcriptional repression of Pol | genes, and acts by recruiting co-
repressors to the rDNA promoters and by positioning nucleosomes to silence
transcription (Zhou et al., 2002; Li, 2006b); recruitment of NoRC appears to require
intergenic transcription from the rDNA intergenic spacers (Mayer, 2006). While a role
for NoRC in mammalian development has not been investigated, in Drosophila the TIP5-
related Tou (Toutatis) protein is necessary for sensory bristle development in
association with Pnr (Pannier, a transcription factor that binds dorsocentral enhancer)
and its co-factor Chip (Vanolst, 2005). Tou interacts directly with Iswi in both yeast and
Cos cells, and Iswi also positively regulates Pnr/Chip function. This suggests that Tou
and ISWI may act as subunits of the same multiprotein complex influencing sensory
organ development. It is not yet known whether a Drosophila NoRC complex also
represses Pol | transcription, or whether the mammalian NoRC complex has additional

roles in regulation of Pol Il genes.

CERF complex

CERF (CECR-2 containing remodeling factor) is a heterodimeric chromatin
remodeling complex identified in mouse, which consists of CECR-2 (cat eye syndrome
chromosome region candidate-2) and SNF2L (Banting et al., 2005). CECR-2 is mostly

concentrated in nervous tissue. Homozygous mutant mice, generated by a Cecr2 gene-
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trap-induced mutation, exhibit exencephaly, a neural tube defect which is similar to
human anencephaly and arises due to failure of neural tube closure in the midbrain.
This is reminiscent of the neural tube closure defects observed in ISWI knockdowns in
Xenopus (Dirscherl et al., 2005). There is also a lack of cranium formation and lack of
eyelids in exencephalic cerc-2”" mice. As discussed above, murine SNF2L has previously
been proposed to have a role in neural development, particularly in later stages of
differentiation; however, there is not a snf2/ knockout mouse available for study. The
identification and characterization of this SNF2L-containing CERF complex provides

direct evidence for a role of SNF2L in normal neurogenesis.
WICH complex

The WICH complex has been identified in both mammals and in Xenopus, and
consists of WSTF (Williams Syndrome Transcription Factor) and ISWI/SNF2H. WSTF was
first identified in a search for genes deleted in Williams syndrome, which is an
autosomal dominant hereditary disorder characterized by mental retardation, growth
deficiency, elfin face and congenital vascular lesions (Lu, 1998). These developmental
defects cannot all be attributed to lack of WICH function, as other genes are also
deleted in Williams syndrome patients. In Xenopus embryos WSTF is differentially
expressed in neural tissue, especially in the eye, brain and neural crest cells (Cus, 2006)
and our unpublished results). Our own work has revealed that inhibition of Xenopus

WSTF results in severe defects in eye and central nervous system development (S.M., J.J.
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Henry, and J.E.K., unpublished), indicating that a number of ISWI complexes play
different roles in neural development in numerous species. Because WICH (and related
B-WICH) complexes have been implicated in both transcriptional regulation and DNA
replication, it will be interesting to see which of these functions is primarily responsible

for the observed developmental defects.

The CHD subfamily

Numerous Chromodomain Helicase DNA-binding (CHD) proteins have been
characterized in eukaryotes. As stated in the introduction, each contains two
chromodomains that interact with methylated histone tails; some members of the CHD
family also contain PHD domains, which have also been implicated in methyl-lysine
recognition, while others have AT-rich DNA binding motifs (Wysocka et al., 2006; Shi et
al., 2006; Pena et al., 2006; Li et al., 2006a; Woodage et al., 1997). Ruthenburg and
colleagues have written an excellent recent review of methyl-lysine recognition by
chromodomains and PHD fingers (Ruthenburg et al., 2007). Here we will describe the
known roles of CHD family members in animal development, beginning with the best-
characterized CHD proteins, CHD3/4 (also known as Mi-2a/B). Data for the CHD

subfamily is also highlighted in Table IlI.



Table 3 Developmental roles of CHD subfamily members across species

PROTEINS EXPRESSION PATTERNS FUNCTIONS REFERENCES
- LET-418 required for development to
cLET-418 the first instar larva Zelewsky et al.
- Not Done :
CHD-3 - Antagonize vulval cell fate 2000
determination
- Essential for development to the first or
second instar larva Kehle et al. 1998
dmi-2° - Not Done - Represses homeotic genes mediated by | Yamasaki and
Hunchback and Polycomb Nishida 2006
- Represses proneuronal gene expression
- Required for normal metamorphosis
- May be required for ecdysone-
dp66° - Not Done y q y Kon et al. 2005
mediated gene
Expression
- Eyes and neural tube Linder et al.
xCHD2/ - Branchial arches . . . 2004
b . . - Essential for survival to perinatal stage
mCHD2 - Otic vessicle Marfella et al.
(presumptive ear) 2006
- Required for early stages of thymocyte .
. L Linder et al.
- Eyes and neural tube differentiation 2004
XCHD4/m - Branchial arches - Required for expression of CD4 surface .
. . : Williams et al.
CHD4/Mi- - Otic vessicle marker 2004
ZB"’b (presumptive ear) - Required for proliferation of mature T g
. Srinivasan et al.
- Somites lymphocytes
L L 2006
- May function in nerve myelination
- Fetal and adult brain Thompson et al.
xCHD5/ - Otic vessicle - Possible role in development of nervous | 2003
mCHD5’ (presumptive ear) system Linder et al.
- Adrenal gland 2004
Sanlaville et al.
- Essential for survival to perinatal stage 2006
- Precursors of eye, ear, - Functions in normal closure of optic Aramak et al.
mCHD7 kidney, vascular system, fissure, inner ear, heart and 2007(Bosman,
olfactory epithelium genitourinary and inner ear 2005)
morphogenesis Aramaki et al.
2006

° Subunit of NuRD complex; ° Expression studies were done for Xenopus only and functional studies for mammals only

The known expression patterns and developmental functions of CHD subfamily members are listed for several
metazoan species. In many cases these proteins are essential for early development or for viability of individual cells;
therefore some functions listed reflect data utilizing partial loss-of-function strategies and therefore cannot be
considered an exhaustive list of functions. c: C. elegans, d: Drosophila melanogaster, x: Xenopus laevis, m: mammals
(mouse or human)}. Hunchback and Polycomb are transcription factors that repress HOX gene expression.
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CHD3/Mi2a and CHD4/Mi28: NuRD complexes

The CHDA4 protein was initially identified by Seelig and colleagues in 1995 as the
dermatomysitis-specific autoantigen Mi-2 (antigen recognized by patient Mitchell’s
autoimmune antibodies 2) (Seelig, 1995). Subsequently, several groups identified a
related set of remodeling complexes containing either CHD3 or CHD4 as the ATPase
subunit. These complexes include the Xenopus Mi-2 complex (Wade, 1998) and the
human complexes NURD/NURD/NRD (Zhang, 1998; Xue, 1998; Tong, 1998); we will refer
to these generically as NuRD. NuRD complexes, which generally function as
transcriptional repressors, also contain histone deacetylases, methyl DNA binding
proteins (MBD2 or MBD3), members of the MTA
(metastasis-associated) protein family, and Rb-associated proteins RbAp48/p46

(reviewed in (Bowen, 2004).

Two Mi2 homologs in C. elegans, CHD-3 and LET-418, play essential and non-
identical roles in embryogenesis and vulval development (von Zelewsky, 2000). Null
mutations in Jet-418 are homozygous lethal at the L1 larval stage, while chd-3 null
animals are viable. However, combination of chd-3 and let-418 mutations results in
early embryonic arrest, suggesting some redundant functions in early embryogenesis.
These authors also showed that CHD-3 and LET-418 are negative regulators of vulval cell

fate determination, and act by antagonizing the Ras signaling pathway required for
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vulval induction—a role in vulval cell specification that opposes that described for the

ISWI-containing NURF complex (Andersen et al., 2006), discussed above.

Work in Drosophila has also uncovered developmental roles for the Drosophila
Mi2 homolog, dMi-2. Complete absence of dMi-2 is lethal; maternally deposited dMi-2
is sufficient for survival to the first or second larval instar (Kehle, 1998). Using
heterozygous animals to alter the dosage of dMi-2, these authors showed that dMi-2
participates in the repression of homeotic genes mediated by Hunchback and Polycomb.
An essential protein associated with Drosophila NuRD, p66 (a p66 homolog also
copurifies with the Xenopus Mi2 complex), is required for normal metamorphosis and

may be critical for ecdysone-regulated gene expression (Kon, 2005).

More recent work has uncovered a specific role for dMi-2 in sensory organ
development in Drosophila (Yamasaki, 2006). While dMi-2 null mutants normally die
during early larval stages, approximately 0.1% will actually survive to adulthood.
Animals that escape embryonic lethality reveal ectopic development of sensory bristles,
implicating dMi-2/NuRD in the repression of proneural gene expression. This is
consistent with the known interaction between dMi-2 and Tramtrack69, a
transcriptional repressor that regulates nervous system development (Murawsky, 2001;

Badenhorst et al., 2002a).

Mammalian NuRD complexes have been implicated in cell differentiation.

Recent work shows that CHD4/ Mi-2B is required for several steps in T cell development,
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including early stages of thymocyte differentiation, CD4 expression, and proliferation of
mature T cells (Williams, 2004). Other studies have also hinted at a role for CHD4 in
another terminal differentiation event, nerve myelination, possibly via repression of
Rad, a gene normally repressed in Schwann cells during peripheral nerve myelination

(Srinivasan, 2006).

Human CHDS5 is a poorly characterized member of the CHD family that is closely
related to CHD3 and CHDA4. It is preferentially expressed in fetal brain, adult brain, and
the adrenal gland, suggesting that it too may play a role in the development of the

neural system (Thompson, 2003).

CHD2

Unlike the other CHD family members, CHD1 and CHD?2 lack the PHD domains
found in CHD3, 4 and 5, and instead contain a unique DNA binding motif that
preferentially binds AT-rich DNA (Stokes, 1995}, though the role of this motif is not yet
understood. A recent study from the Imbalzano laboratory reveals an essential role for
Chd2 in mouse development (Marfella, 2006). Chd2 null mice exhibit perinatal lethality;
i.e. they die shortly before or after birth and exhibit reduced body size compared to wild
type littermates. Even heterozygous pups exhibit increased mortality, and present with
multiple organ abnormalities. These studies have implicated Chd2 in cell cycle

progression.
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CHD7

The CHD7 protein contains the diagnostic domains of the CHD subfamily,
including the SWISNF2 ATPase domain and two chromodomains, and additionally
contains a SANT domain and a BRK DNA-binding domain. In humans, mutations in the
Chd7 gene have been linked to CHARGE, a constellation of congenital abnormalities
known by the acronym for the canonical symptoms: Coloboma (failure of optic or
choroidal fissure to close), Heart septal defects, Atresia choanae (narrowing or blockage
of nasal passages), Retardation of growth and/or development, Genitourinary
anomalies, and Ear/olfactory/cranial nerve abnormalities (Williams, 2005). A patient
diagnosed with Kallmann Syndrome (poor gonad development and impaired olfactory

function) was also shown to carry a Chd7 mutation (Ogata, 2006).

The link between CHD7 and CHARGE was uncovered by Vissers and colleagues,
who used array comparative genomic hybridization to identify a translocation on
chromosome 8 in an affected individual (Vissers, 2004). The translocated region
contains the Chd7 gene; when they sequenced the region in 17 affected individuals they
identified 10 heterozygous mutations of the Chd7 gene, suggesting that
haploinsufficieny of the gene may be the cause of some or all cases of CHARGE.
Genotyping of 23 patients presenting with CHARGE syndrome identified 17 Chd7

heterozygous mutations (Aramaki, 2006). They exhibited varying levels of penetrance
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for the major and minor characteristics of CHARGE. The remaining patients may

represent mutations in regulatory regions of the gene or a clinically distinct group.

Bosman and colleagues identified a number of ENU-induced mutations in the
murine Chd7 homolog that result in behavioral defects attributable to inner ear
malformations similar to those observed in CHARGE patients (Bosman, 2005). In
normally developing mice, Chd7 is expressed in the precursors of organs affected by
CHARGE syndrome: eye, olfactory epithelium, ear, kidney and vascular system. In
addition to the inner ear defects, mice heterozygous for chd7 mutations also exhibit
other defects similar to those found in CHARGE syndrome patients, such as heart a.nd
genitourinary defects. As in humans, all of these Chd7 mutant mice are heterozygous

and no homozygotes have been reported to survive past birth.

Expression patterns similar to those seen in mice are also found in normally
developing human fetuses, including expression in tissues derived from the neural crest,
as well as in cranial nerves, auditory and nasal tissues, and neural retina (Sanlaville,
2006). A recent study of the chicken CHD7 ortholog also reveals extensive neuronal
expression of Chd7 during early development, and expression in otic, optic and olfactory
placodes, indicating a conserved function in development of specific organs across

vertebrate species.
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Remodelers in development: vive la difference!

In this review, we have discussed the known developmental expression patterns
and functions of a diverse selection of SWI2/SNF2 chromatin remodeling enzymes. The
cartoons shown in Figure 1 visually summarize the functions we have discussed. The
studies discussed here have revealed an array of functions for these proteins, ranging
from viability at the level of individual cells (often revealed by essential roles in early
development), through roles in differentiation in specific tissues. We have highlighted
both divisions of labor between pre- and post-differentiation stages of cell fate
determination, as well as a striking preponderance of functions in neural development,
particularly in vertebrates. The vast proliferation of the SWI2/SNF2 superfamily
throughout evolution has resulted in an incredibly complex assortment of chromatin
remodeling factors, which are able to serve in both unique and overlapping roles in the

carefully orchestrated processes of metazoan development.
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Figure 1 Cartoon representation of developmental functions of chromatin remodeling enzymes in
metazoan development. Shaded regions indicate tissues that require one or more remodelers for their
normal development; different colors indicate the specific remodeling complex subunit as indicated in the
color key {(bottom}. Multiple colors in a single tissue indicate contribution of multiple proteins; this is not
meant to imply positional roles within tissues. For simplicity, the relevant adult tissues are indicated in the
cartoons of Drosophila (A}, Xenopus (B) or mouse {C), and therefore do not reveal the stage of
development during which these activities are required. For further details see the text and tables.
Structures are not to scale. O: ovary; DCB: Dorso-Central Bristles; VNS: ventral nervous system; NT: neural
tube; NC: neural crest; G: gut; |E: inner ear; OF: optic fissure; T: Thymus; RBC: red blood cell; HS: heart
septum; L: liver; GU: genitourinary system; MC: myelocyte; M: muscle; B: bone.
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Chapter 2
Materials and Methods
ATP-dependent chromatin remodeling is required for the carefully regulated

expression of genes during development. The enzyme ISWI (Imitation Switch) is the
ATPase motor of a number of protein complexes that exhibit chromatin remodeling
activity. Studies have shown that while ISWI fills the same function in each complex, the
unique complement of auxiliary proteins in each complex modifies the nature of the
chromatin remodeling activity. This suggests that ISWI-containing complexes may have

different roles to play in development.

While there are many obstacles to studying human development, the frog
Xenopus laevis has proven to be well suited as an animal model of development in
vertebrates. Three ISWI-containing chromatin remodeling complexes have been
characterized in Xenopus: ACF, CHRAC and WICH (reviewed in [1]). Ablation of ISWI
function results in mortality at early stages and neural and eye defects among the
survivors. However, the individual roles of one ISWI-containing complex cannot be
distinguished from another by ablating ISWI function, which inactivates the ATPase

motor in all of them.

This thesis focuses on the developmental roles of the CHRAC complex and its
impact on morphology in gene regulation in developing Xenopus. To help parse out the

roles in development of individual ISWI-containing remodeling complexes |
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hypothesized that the CHRAC complex’s role in development would be distinct from
that of all of the ISWI-containing complexes combined. Other chromatin remodeling
complexes that share a common ATPase subunit have been shown to have distinct
functions in development (reviewed in [2]), and the distinct complements of auxiliary

proteins in ISWI-containing complexes suggest distinct roles in development.

CHD4 is an ATPase chromatin remodeling enzyme, the motor of a well-characterized
protein complex called NuRD (Nucleosome Remodeling and histone Deacetylase) complex. The
complex has been shown to be essential for early embryogenesis and for hematopoiesis. My
collaborator, Dr. Jonathan Henry of the University of lllinois Urbana, identified it in a screen for
genes upregulated in regenerated lens in xenopus. | hypothesized that CHD4 may also have a

role in eye development, and to test this | ablated CHD4 function by morpholino injection.

My research embodies the Specific Aims that follow.

Specific Aim #1: To determine the expression pattern of CHRAC17 and compare

and contrast it with the pattern of total ISW/ expression.

Specific Aim #2: To characterize the loss of function phenotype of CHRAC17.

Specific Aim #3: To characterize the CHRAC17 loss of function phenotype at the

molecular level by measuring expression levels of putative target genes.

Specific Aim #4: To characterize the loss of function phenotype of CHDA4.
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| visualized CHRAC17 expression by whole mount in situ hybridization. An
expression pattern distinct from but with potential overlap with the pattern of ISW/
would suggest that the ACF, CHRAC and WICH complexes may have unique roles in
development and can function independently of each other. It is noteworthy that ISWI
and CHRAC17 are both subunits of protein complexes other than the ISWI-containing
chromatin remodeling complexes. Some of these are known to regulate developmental

processes, and all act on chromatin.

The CHRAC17 protein is not found in the ACF or WICH complexes. Thus, ablation
of CHRAC17 in developing embryos would shed light on the consequences of CHRAC17
loss as opposed to ISWI loss. | used morpholino oligonucleotides to ablate CHRAC17
function and observed the resulting gross morphology from stages 15 to 45. Phenotype
analysis of embryonic structures (neural tube, eye, notochord, pharyngeal pouches) in
finer detail was conducted by Dr. Jonathan Henry. Perturbation of gene regulation by

CHRAC17 loss of function was measured by RT-qPCR and cDNA microarray analysis.

If there are no differences in morphology or target gene regulation between ISWI
knockdown embryos and CHRAC17 knockdowns, it would suggest that the
developmental role of the CHRAC complex is redundant to the other ISWI-containing
complexes. But if there are differences between CHRAC17 knockdown embryos and
ISWI knockdowns the hypothesis would be supported: the CHRAC complex’s role in

development is distinct. Again it is important to make such interpretations in light of
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the fact that CHRAC17 and ISWI are both subunits of other protein complexes. As well,
whether the effect of CHRAC17 knockdown is direct or indirect would require further

research to determine.

| used morpholino oligonucleotides to ablate CHD4 function and observed the
resulting gross morphology from stages 15 to 45. Phenotype analysis of embryonic
structures (neural tube, eye, notochord, pharyngeal pouches) in finer detail was

conducted by Dr. Jonathan Henry.

If CHDA4 is involved in eye development | will expect to see abnormalities of the
eyes on the gross morphological scale or histologically. Lack of perturbed development
would indicate that CHD4 and the NuRD complex play no role in eye development or
that they play redundant roles. Whether or not the effects are direct or indirect would

require further research to determine.

Generation of Xenopus embryos

| induced ovulation in female Xenopus laevis by injecting human chorionic
gonadotropin (Intervet, Millsboro, DE) into their dorsal lymph sac. | obtained testis by
euthanizing a male frog in 0.06% benzocaine for 45 minutes and surgically excising the
testes. Twelve to eighteen hours after injecting the females | mimicked amplexus to
induce them to lay eggs and immediately exposed the eggs to Xenopus dissected testis
in 0.1X MMR. After determining that fertilization was successful | dejellied the embryos

by exposing them to L-cysteine for 3-5 minutes. | determined the developmental stage
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of embryos according to Nieuwkoop and Faber [3]. All procedures were performed in

compliance with approved University of Alaska Anchorage IACUC protocols.

In situ hybridization

| generated digoxigenin labeled RNA probes complementary to mRNA of
CHRAC17. Template DNA corresponding to the EST clone BJ623466 was generously

provided by Dr. Paul Wade. A 474bp segment of it was amplified by PCR using primers

5'CGAAGATCTCAACTTGCCCAA3’ and 5'TCCATCTTCTCATCTTCCTCC3'.

Using the Primer Blast tool of the National Center for Biotechnology Information (NCBI),
| designed PCR primers to amplify probes for putative target genes of CHRAC17
knockdown from genomic DNA template. | used the BLAST tool of NCBI to rule out

cross-reactions of probes with extraneous Xenopus coding sequences.

The primer sequences are as follows:

BMP7: 5 GTAGACTCAAGAACCATCTGGG3’ and 5’CCCAGTGATTACCAGTTGC 3’

CXCL12: 5'TCAATAGGGAGGGGCACAAG3’ and 3’ATTGGCACAGGGGCTCTAAT-5

DAB2: 5'AACATCCTCAGGTCCTGCTC3' and 5’TTTGTCTGCAGGTCTGTCCA3’

FOXP1: 5’ ATCTACAACTGGTTCACACGG3’ and 5’'TCCATACTGCCCCTTTTACG3’

FOX03: 5 GGATTGGGTGGAATATCTGGG 3’ and 5" TCGCTCTGGGTTTTAGTTGG 3’



67

H1F0: 5 CGTCCGGGAAGGTGCTG 3’ and 3" AATTTGTGAGCAGAGCAGGCS’

HOXA13:5' CAGCCTGGAGGAGATGAACA3’ and 3' AGAAACCACGGGCATATCCAS’

OTX2: 5'TCGCTGCAACGATTTCTTCC3' and 5'TCCCTTGGCTGTACCCTGATG3’

POLK: 5’ACATTGACTGCAAGTGCTGG3’ and 5'CCTTGAGCCCTTCCTTCTGT3’

RAX3: 5 TCAGAATGCTCACGACTTTGA3' and 5'GGAAGCAAACCAAGCCTATTTG3’
SMARCA1: 5 TCATGCCTCAGTTGTCTTACC3' and 5" AACCTCCATTGTATCGCCC3’

SIP1: 5" ATTGTTAGTCGGATGAGCCAG 3’ and 5' CAGGCCAGCAAAGCATAAAG 3’

The PCR products were ligated into pGem T plasmid (Promega, Madison, WI)
with T4 DNA ligase (Promega)and transformed into Nova Blue™ competent E. coli cells
(Novagen, Darmstadt, Germany). To determine the insert’s orientation and identity |
performed restriction enzyme analysis and obtained sequence data for each clone (Yale

DNA Analysis Facility, New Haven, CT).

To produce DNA templates for in vitro transcription | linearized the plasmid
containing CHRAC17 sequence with the restriction enzyme Sacl for a sense template and
Sacll for the antisense template. By in vitro transcription of the templates | produced
digoxigenin-labeled sense and antisense RNA probes, respectively (Megascript T7™ ,

Megascript Sp6™, Ambion, Austin, Tx).
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For all other genes | linearized the plasmid containing the gene’s sequence with
the restriction enzyme Ncol or Spel and by in vitro transcription of the templates |
produced digoxigenin-labeled sense and antisense RNA probes (Megascript T7™,

Megascript Sp6™, Ambion, Austin, Tx).

| generated Xenopus embryos as described above. At stage 15 and 28 | collected
and fixed whole embryos in MEMFA according to Sive, et al. [4]. | hybridized the whole
mount embryos with in situ hybridization probes according to Sivé, et al., with the
following exceptions: | omitted the RNaseA step, | chose the optional overnight
monoclonal antibody buffer wash and BM purple color substrate and chose not to clear

the embryos with benzylbenzene/benzyl alcohol.
Microscopy and microphotography

| observed and photomicrographed sample embryos from each injection using a
Leica DFC320 digital camera mounted on a Leica MZFLIII dissecting microscope
equipped with an ebg 100 UV light source (Leica Microsystems, Bannockburn, IL).
Images were processed using the Leica Applications software installed on a Dell desktop
computer running Windows XP. Dr. Jonathan Henry performed sectioning and
hematoxylin-eosin staining of embryos unilaterally injected with CHRAC17 morpholino

oligonucleotides (as described in [5]).
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Microinjection of morpholino oligonucleotides:

| designed morpholino oligonucleotides (MOs) complementary to the 5’
untranslated region of CHD4 or CHRAC17 messenger RNA flanking the translation start
site. | obtained the CHD4-specific MO, CHRAC17-specific MO labeled with fluorescein,
the inverse sequence MOs, and a standard (negative) control MO that anneals only to a
nucleotide sequence found in humans who carry a mutant a-globulin mutation

(GeneTools, Philomath, OR). The corresponding sequences are:

CHD4 MO: GCCGGAGGCCATGCCCAGGAAGGAG
CHD4 Inverse control MO: GAGGAAGGACCCGTACCGGAGGCCG

CHRAC1 7MO: GATCTTCGGGTCTCTCGGCCATTGC (custom oligo with 3’ fluorescein

CHRAC17mo 37-08Dec08A-F)

CHRAC17 Inverse control MO: 5’CGTTACCGGCTCTCTGGGCTTCTAG

Standard (negative) control MO: 5'CCTCTTACCTCAGTTACAATTTATA3’

| made stock solutions as suggested by Gene Tools by resuspending 300 nmols
(2.53 mg) of CHD4-specific, CHRAC17-specific or Inverse control MOs in 300 uL of water.
The resulting concentration is 1 mM (or 8.43 ng/nL). | then diluted the MO stocks in an
equal volume of sterile nanopure water, and diluted the resulting solution in an equal
volume of water. GeneTools recommends for Xenopus oocytes 1-10 nL of a 1mM

solution; 10 nL of the dilutions are equivalent to 2.5 nLand 5 nL of a 1 mM solution,
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respectively, within the recommended range. To eliminate secondary structure and to
remove particulates from the MO solutions | heated them at 65° C for 10 minutes and
centrifuged at maximum speed for 10 minutes prior to loading in glass needles. | made
glass needles by pulling them to a taper using a Flaming/Brown micropipette puller

(Sutter Instruments, Novato, CA).

| obtained and dejellied embryos as described above and transferred them to
grooves on an agarose gel flooded with Solution A (below). | injected the immobilized
embryos using glass needles calibrated to deliver 5 or 10 nL of MO solutions; needles
were mounted on a KITE-L micromanipulator (World Precision Instruments, Sarasota,
FL). To deliver MO solution to embryos | applied 30 msec bursts of 8 psi of air pressure
to the needles using a MPPI-2 pressure injector (Applied Scientific Instrumentation,

Eugene, OR).

After the injections were complete | transferred the embryos to Solution B. At
24 hours post fertilization, | transferred them to Solution C, and changed out Solution C

daily thereafter.

At stage 15 and 28 | observed and photographed the gross morphology of the
embryos, and collected embryos to fix in MEMFA or extract total RNA and protein from

them.
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Whole protein extraction:

| collected 10-100 embryos and homogenized them by adding homogenization
buffer containing protease inhibitors and titurating through a 23g needle twenty times.
| centrifuged the homogenates and collected supernatant, twice. | added 10% DTT and

incubated at 95 °C for 10 minutes. | stored samples at -20 °C.

| determined concentration of the protein samples by the method of Bradford,
using a Beckman Coulter DU530 spectrophotometer. | ran the installed Bradford
program and set up a standard curve using a preparation of histone protein.

Alternately | measured concentration using the ND1000 Nanodrop spectrophotometer.

Total RNA extraction:

| isolated total RNA from embryos injected with CHRAC17 MO or with standard
control MO at various times post fertilization. For each group of injectees | added ten
whole embryos to 200 pl Trizol reagent (Invitrogen, Carlsbad, CA). | homogenized them
by tituration with 18 to 26 gauge needles, extracted the RNA with chloroform and
precipitated the RNA with isopropanol. | dissolved the dried pellets in 100 pl RNase free

water.

RT-qPCR

To amplify Otx2 transcripts in whole RNA extracts, | designed primers for RT-PCR

as described above in “in situ hybridization.” The sequences are:
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XOTX2FWD: TACAGGCAACATCAGGCTACAGT

XOTX2REV: TTGTCACTGGGTTGGTGCTCATTG

| extracted total RNA as above from embryos at stages 15, 20, 25, 30 and 32. |
measured the RNA concentration by ND1000 nanodrop spectrophotometer. | removed
genomic DNA from RNA samples using Turbo DNase™ (Applied Biosystems/Ambion,
Austin, TX). | performed reverse transcriptase quantitative polymerase chain reaction
(RT-gPCR) using the SYBR Green Jumpstart™ Taq Readymix (Sigma-Aldrich, Austin, TX).
| programmed a Smart Cycler (Cepheid, Sunnyvale, CA) to anneal at 65 °C and to run 40

PCR cycles.

Microarray analysis of total RNA:

| performed whole genome expression analysis on CHRAC17 MO-injected
embryos to identify genes that may be misregulated due to ablation of CHRAC17
function. | isolated total RNA as above from embryos injected with CHRAC17 MO or
with standard control MO at stage 15 and again at stage 37. | purified the preparations
with the RNeasy Mini Kit™ (Qiagen, Hilden, Germany) and resuspended the RNA in
RNase free water. | measured the RNA concentration by ND1000 nanodrop

spectrophotometer. | adjusted the concentration to 200 ng/ulL by adding water.

In partnership with the NIH Microarray Consortium | sent the frozen RNA
samples to the Duke University Microarray Facility for hybridization to the Gene Chip

Xenopus laevis genome 2.0 array (Affymetrix, Santa Clara, CA). The Gene Chip contains
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oligonucleotide probes corresponding to 29,900 Xenopus mRNAs contained in GenBank
databases as of September 2006 and Xenopus laevis UniGene build 69 (July 2006). The
RNA samples were in vitro reverse transcribed to produce cDNA labeled with a
fluorophor using the Ambion WT Expression Kit (Affymetrix, Santa Clara, CA). The cDNA
was then hybridized to the probes of the Gene Chip; thus, luminosity of a probe was
proportional to the expression level of the corresponding gene. After hybridization the
luminosity of each probe was quantified using GCOS software (Affymetrix, Santa Clara,

CA) to produce probe cell intensity files (.CEL files).

| generated tab delineated probe level summarization (.CHP) files and reports on
the quality of the hybridization data from the .CEL files using Gene Console software
(Affymetrix, Santa Clara, CA) running the PLIER, RMA and mas5 algorithms. The
algorithms make background corrections, normalize the luminosity data and convert the
probe level values to probe set expression values. They generate tab delineated files
collating the ID of the transcript with the expression value, and in the case of the mas5
algorithm, to a p-value which reflects the probability that the expression value is not the
product of artifacts of the microarray method but is a valid representation of the level of
expression of the gene in question. | transferred these data to an Excel spreadsheet to
calculate the log2 ratios of the luminosities, to represent the expression levels from the

CHRAC17 MO-injected embryos divided by those from the standard control MO-injected
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embryos. | created a list of all those mRNA species that had been either overexpressed

or underexpressed by a factor of two or more for further analysis.

The summarization files are accompanied by summary quality assurance reports
reflecting data from control probes on the microarrays and control cDNA’s hybridized to
them contemporaneously with the experimental hybridizations. These reports
indicated that the hybridization of the Gene Chips had produced data of a quality within

tolerances.

Pathway analysis:

I analyzed the lists of misregulated genes in CHRAC17 morphant embryos at 17
hours post fertilization and 53 hours post fertilization using the Core Analysis of the

web-based Ingenuity Pathway Analysis (http://www.ingenuity.com/index.html) site.

The analysis uses the Ingenuity® Knowledge Base, annotated by reviewing literature in
molecular biology, to identify networks of metabolic or protein/gene interactions in
which the list of misregulated genes is overrepresented. It ranks the identified
pathways by p-values assigned to it that reflect the likelihood that the
overrepresentation is not due to chance. From this it may be inferred that the
perturbation of these biological pathways may be responsible for aspects of the CHRAC17

morphant phenotype.


http://www.ingenuitv.com/index.html
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Western blot:

| performed Western analysis according to Maniatis [6]. | resolved the whole
protein samples extracted from embryos by SDS polyacrylamide gel electrophoresis. |
prepared 15% polyacrylamide gels (Amresco, Solon, OH). To 10 pug whole protein
samples | added an equal volume of denaturing buffer containing dithiothreitol (Fisher
Scientific, Waltham, MA) and heated to 95 °C. | loaded the samples or 10 ug of
molecular weight markers to the wells of a 15% polyacrylamide gel and applied voltage
to separate the proteins. | blotted the resolved proteins onto a nitrocellulose
membrane {(Whatman, Dassel, Germany) and stained the blot with Ponceau S to
determine the quality of protein and the extent of transfer to the membrane, then

rinsed it in RO water and soaked it in Odyssey blocking buffer (Licor, Lincoln, NE).

| probed the membrane with primary antibodies in Odyssey Blocking Buffer with
0.15% Tween 20 at room temperature for two hours or at 4 °C overnight. | washed the
blot with large volumes of PBS with 0.1% Tween 20 and incubated it with fluorescent
secondary antibodies in Odyssey Blocking Buffer at room temperature for two hours. |

visualized the probes by scanning on an Odyssey Infrared Imager (Licor, Lincoln, NE).

The CHRAC17 primary antibody was a generous gift from Dr. Paul Wade.
Antibodies to EF1 alpha and nucleolin were obtained from Developmental Studies

Hybridoma Bank (University of lowa, lowa City, IA).
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Reagents:

Solution A: 6% Ficoll type 400 in 0.1X MMR, with gentamicin sulfate (20 pug/mL),
filter sterilized.

Solution B: 1% Ficoll type 400 in 0.1X MMR, with gentamicin sulfate (20 ug/mL),
filter sterilized.

Solution C: 0.1X MMR with gentamicin sulfate (20 ug/mL).
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CHAPTER 3

The role of CHRAC17 in Xenopus development

Introduction

The CHRAC chromatin remodeling complex found in eukaryotes from yeast to
human catalyzes translation of nucleosomes, promoting regular spacing of nucleosome
arrays [1]. It has in common with the ACF remodeling complex the ACF1 protein, and
CHRAC can be thought of as an ACF complex with two histone fold proteins added.
ACF1 is homologous to the WSTF subunit of the WICH complex, suggesting functional as

well as structural relationships between the three complexes.

In Xenopus the histone H2B-like subunit of the CHRAC complex is known as
CHRAC17, but in other species it is known by various other names. | will describe the
CHRAC complexes that have been studied in yeast, Drosophila, Xenopus, and mammals
(mouse and human), then the non-ISWI containing protein complexes that have been

reported to contain CHRAC17.

The structure and functions of CHRAC complexes are highly conserved. The yeast
CHRAC homolog, yCHRAC, consists of ISWI (Isw2p), ACF1 (ltc1lp) and two histone fold
proteins, CHRAC17 (DPB4) and CHRAC15 (DLS1) [2]. The histone fold proteins are
homologous to those found in CHRAC complexes of other species, and contain an H2A-

like domain and H2B-like domain, respectively; thus they are capable of
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heterodimerizing by the histone-like handshake interaction. The CHRAC17 subunit
contacts extranucleosomal DNA from 37bp to 53bp away from the nucleosome
exit/entry site and remains stationary on the DNA site while the core nucleosome is
translocated [3]. Thus it may function to anchor the CHRAC complex to
extranucleosomal DNA to facilitate translocation of core nucleosomes. The CHRAC15
subunit was shown to be partially required for normal yCHRAC-dependent chromatin
remodeling at a number of gene loci and for yYCHRAC-dependent transcriptional

repression of some of them [4].

In Drosophila the dCHRAC complex contains ISWI, ACF1 and the histone fold
proteins CHRAC17 (CHRAC14) and CHRAC15 (CHRAC16). The ACF1 protein structure has
been studied extensively in Drosophila. It contains a number of conserved domains:
from N-terminal to C-terminal, the WAC, DDT, BAZ1, BAZ2, WAKZ domains, two PHD
domains, and a bromodomain [5]. Analysis of truncated ACF1 proteins lacking domains
illuminates ACF1’s roles in remodeling. The N-terminal region including the WAC motif
binds DNA [6]; a large domain between ACF1’s N-terminal and C-terminal, including the
DDT and BAZ motifs, binds ISWI’s C-terminal HAND-SANT-SLIDE domain; the PHD
domain binds all four histones of nucleosome cores {7]; in general, bromodomains are
known to bind acetylated nucleosomes and there’s evidence that acetylation of

nucleosomes increases remodeling activity of the CHRAC complex|[8].
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ACF1 embodies the concept that an ATPase subunit in a family of remodeling
complexes such as ISWI may perform the same function in all of them, while other
subunits modulate that function to impart distinctive activities to each complex. While
ISWI alone is capable of ATP-dependent chromatin remodeling, ACF1 greatly enhances
ISWI activity. Besides increasing ISWI’s remodeling activity, ACF1 changes it
qualitatively: in vitro, ISWI alone catalyzes the translocation of nucleosomes from the
middle of the chromatin substrate toward the ends, while ISWI combined with ACF1

slides nucleosomes in the opposite direction [9].

As in other species the Drosophila homologs of the CHRAC17 and CHRAC15
subunits bind each other via their histone fold motifs. X-ray crystallography shows that
the heterodimer interacts with ISWI and ACF1’s N-terminus, and CHRAC17
coprecipitates with CHRAC activity in a nucleosome sliding assay [10-12]. The surface of
the heterodimer that faces the DNA is basic and it binds DNA at low affinity. Neither the
N-terminal of CHRAC17 nor that of CHRAC1S5 is necessary for DNA binding of the
heterodimer, but deletion of the C-terminus of CHRAC17 reduces DNA binding with
concomitant loss of nucleosome sliding activity while deletion of CHRAC15’s C-terminus
increases DNA binding. The finding that dynamic, low affinity DNA binding by
CHRAC17/15 facilitates chromatin remodeling by CHRAC suggests that the heterodimer
may function as a DNA chaperone analogously to the activity of the high mobility group

protein, HMGB1, which nonspecifically binds and bends chromosomal DNA.
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ACF1 has specific regulatory roles in Drosophila development and differentiation.
Western analysis and whole-mount immunofluorescence microscopy reveals that it is
abundant during the first six hours of development when cell differentiation is not
complete [13]. In contrast, 18 hours after egg laying ACF1 is undetectable in
differentiated tissues, but remains at high levels in undifferentiated nervous tissue and

in primordial germ cells. Unlike ISWI, ACF1 is not found in differentiated neurons.

The loss of ACF1 in embryos diminishes the periodicity of chromatin and reduces
the distance between adjacent nucleosomes [14]. Concomitantly, heterochromatic
genes and those regulated by the polycomb group proteins are derepressed, while the
cell cycle is accelerated through S phase. When ACF1 was ectopically expressed in eye
imaginal discs abnormal morphology of photoreceptor cells resulted [13]. The effect
seems to be due to the loss of synchronized progression into the S phase of the cell
cycle by which cells differentiate and form the regular clusters of photoreceptor cells
characteristic of the compound eye. Ablating ACF1 disrupts heterochromatin formation
in early embryos and larvae. The implication is that the ACF1-containing complexes are
required for appropriate euchromatin and heterochromatin assembly in early

development.

ISWI and ACF1 have roles in Wingless signaling. In cultured Drosophila cells ISWI
and ACF1 knockdown derepressed specific target genes of Wingless signaling [15]. Loss

of ISWI function in wing imaginal discs dramatically increased their expression of WG
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target genes. Loss of ACF1 function did not derepress the genes, and while ISWI
knockdown embryos died by mid pupal stage, ACF1 loss of function didn’t affect
viability or fertility of affected flies. Interestingly, the combination of ACF1 loss of
function and ISWI loss of function produced more severe phenotypes than ISWI
knockdown alone, suggesting that ACF1 may have roles in development independent of
ISWI. ChIP analysis revealed that the transcriptional activator TCF, which directly binds
target promoters in WG signaling, requires ISWI and ACF1 for binding. Conversely, WG
signaling reduces the amount of ACF1 bound to target promoters. One interpretation
would be that ISWI and ACF1 repress WG targets in the absence of signaling, then

switch to a role that facilitates TCF binding in response to WG signaling.

Less is known of the roles of CHRAC17 in Drosophila development. It is expressed
in early embryogenesis in Drosophila, but is abruptly downregulated 6 to 12 hours into
development, suggesting a requirement for CHRAC at early stages, possibly in the rapid
nuclear divisions of those stages. There is indirect evidence that CHRAC17 may function

with ISWI to promote normal eye development in Drosophila [11].

The subunits of the xCHRAC complex of Xenopus include ISWI, ACF1, p70 and p55
proteins, and CHRAC17. While a second histone fold protein subunit has not been
characterized in Xenopus CHRAC, its existence is suggested by the presence in other
species of a functionally important histone fold heterodimer in the CHRAC complex, and

by the fact that in nucleosome sliding assays the CHRAC17/CHRAC15 heterodimer, but
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not the monomers, enhance nucleosome sliding activity of the hACF1-ISWI complex[10].
Finally, in human cell lines importin13 mediates the nuclear import of the

CHRAC17/CHRAC1S5 heterodimer, but not of the monomers [16].

HUCHRAC, the human CHRAC complex contains the subunits ISW| (SNF2H), ACF1
and the histone fold proteins CHRAC17 (Pole3) and CHRAC15 (Pole4) [17]. The ACF1
subunit contains the same domain structure as those of other species. Studies in
human cells suggest that ACF1 plays a role in DNA replication through heterochromatin
[18]. ACF1 and SNF2H colocalize to pericentric heterochromatin at that stage in the cell
cycle (late S phase) when heterochromatin is replicated. Loss of ACF1 function impairs
replication in late S phase and the impairment appears to result from the very compact
nature of heterochromatin in those cells. Targeted mutation of ACF1’s BAZ domain
demonstrates that ACF1 must bind ISWI to facilitate replication through

heterochromatin.

A survey of various human tissues showed that CHRAC17 and CHRAC 15 mRNAs
are expressed in all of them, and the ratio of the two mRNAs is constant across the
tissues [17]. Studies in mouse fibroblasts further suggest a function of CHRAC in DNA
replication, in that expression of CHRAC17 (Pole3) was found to be coupled to the cell
cycle, peaking in the start of S phase after serum stimulation. Activation of the gene is
mediated by the binding of E2F and MYC to a bidirectional promoter that drives

CHRAC17 and another gene of unknown function [19].
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CHRAC17 and non-ISWi-containing protein complexes

CHRAC17 also functions as a subunit of the ATAC (Ada Two A Containing) complex
and of DNA polymerase €. | will first describe the structure and function of ATAC and
then address polymerase €.

ATAC was first described in Drosophila [20]. It belongs to a large family of protein
complexes that all contain relatives of the HAT (histone acetyltransferase) protein GCN5
(General Control Nonrepressed protein 5). They include the yeast complex Ada
(alteration/deficiency in activation, yADA), SAGA (SPT3-TAF-GCN5 Acetylase)-type
complexes and ATAC (ADA2A Containing Complex)-type complexes. The complexes are
found in all eukaryotes studied and despite a wide assortment of subunit compositions,

similarities among them can be discerned.

All GCN5/PCAF-containing complexes contain a HAT subunit that functions to
catalyze the acetylation of histones on specific lysine residues. GCN5 is found as a
subunit in all species, while in humans there are two paralogous HATs, GCN5 and PCAF,
and they are alternative subunits of the ATAC complex. GCN5 co-regulates gene activity
by acetylating lysines in the tails of target histones (reviewed in [21]). In vitro it
acetylates free histone H3 but not assembled nucleosomes. Just as ISWI’s activity is
modulated by subunits of ISWI complexes, GCN5 in association with subunits of two
yeast protein complexes (Ada and SAGA) acetylates a broader spectrum of histone H3

lysine residues than GCNS alone [22]. As well, the profile of H3 lysine residues
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acetylated by the ADA complex differs from that of the SAGA complex. Similarly, the
SAGA and ATAC complexes in Drosophila regulate different sets of genes [23]. ATAC but
not SAGA localize to TPA-induced transcription sites on polytene chromosomes, and in
Hela cells knockdown of ATAC, but not of SAGA, leads to defective TPA-induced gene

expression.

ATAC was discovered because an in silico search for Drosophila homologs to
components of the GCN5/PCAF containing complexes revealed that there are two
different ADA2 homologs in Drosophila, ADA2A and ADA2B [20]. Both can be found in
complexes that contain such common subunits as GCN5 and ADA3, but ADA2A is not
associated with the same assortment of subunits that ADA2B is known to bind. Instead
ADA2A is a component of the ATAC (Ada Two A Containing) complex. The Ada2a gene
has an interesting regulatory region. Like CHRAC17 in mammals, ADA2A in Drosophila is
the product of a bicistronic gene; its promoter overlaps that of Dt/, which is also a
transcription coactivator [24]. Ada2a also codes for RPB4 via alternative splicing; RPB4
is a subunit of RNA polymerase |I[25]. Thus, three proteins involved in transcription
regulation are under the control of a bicistronic promoter. As suggestive as this may be,
no functional relationship between the proteins has been established [26]. ADA2 and
ADA3 are known to mediate recognition and acetylation by GCN5 of the N-terminal tails

of nucleosomal H3 and H4 [27].
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All GCN5/PCAF containing complexes except yADA contain homologs of Spt
proteins including YEATS2. The YEATS2 subunit is a scaffold subunit that forms a
YEATS2-NC2p histone fold module analogous to that of the POLE3-POLE4
heterodimer[28]. All but the yADA complex also contain numerous TATA binding

protein (TBP)-associated factors (Tafs).

Orthologs of CHRAC17 and a histone-fold binding partner are found in human
ATAC complexes (POLE3 and POLE4) and in Drosophila an ortholog to CHRAC14
(CHRAC14), but not a histone-fold binding partner, is known. A study of human ATAC
purified by anti-flag YEATS2 immunoprecipitation identified CHRAC17 (POLE3) and
CHRAC15 (POLE4) as subunits [28], but this was not confirmed in a study of human ATAC
purified by anti-hAda2a immunoprecipitation [23]. Affinity purification of mouse ATAC
followed by mass spectroscopy did not identify a CHRAC17 homolog among the subunits
[29]. Clearly the adumbration of ATAC’s subunit composition is a work in progress.
Both CHRAC17 and Nc2 have been reported to form homodimers and CHRAC17 alone
is able to efficiently enhance nucleosome-sliding by the ATP-dependent chromatin
remodeling complex SWI-SNF [30]. The mechanics of the CHRAC17/POLE4 heterodimer
have not been studied in great detail as in the CHRAC17/15 heterodimer of the CHRAC
complex; it would be interesting to compare these two closely related yet functionally

distinct modules.
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While there is not abundant literature characterizing a role for ATAC in
development, inferences can be made from what is known of its subunits. For instance,
CSRP2BP (SPT3) has been shown in yeast to directly interact with the TBP to regulate its
binding to certain promoters [31]. In mammalian cells deficient for CSRP2BP the ATAC
complex is destabilized, apoptosis is increased and histone acetylation reduced.
CSRP2BP-deficient mouse embryos have delayed development, possibly due to the
increased apoptosis they displayed. The YEATS2-NC2p module of ATAC was also shown
to bind the TBP and negatively regulate transcription {28]. As well, mass spectrometry
and Western analysis of nuclear extracts from cultured human cells determined that
ATAC physically interacts with MAP3K7/TAK1, a kinase that is activated by TGFpB and
bone morphogenetic protein signaling and that translocates to the nucleus during Wnt-

1 signaling. Thus, ATAC may be regulated by extracellular signaling.

The paralogous alternative HAT subunits of ATAC in humans, GCN5 and PCAF,
confer distinctive functions upon the complex ([32-34]). GCN5 expression begins by day
8 of gestation while PCAF expression begins on day 12. GCNS null mutant mice fail to
develop mesodermal lineages due to increased apoptosis and die between day 9.5 and
11 of gestation; in contrast, PCAF null mutants have no phenotype. Embryos mutant for
both GCN5 and PCAF have a more severe phenotype, suggesting that the paralogs have

overlapping roles in development {32].
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Several lines of evidence suggest that PCAF has a role in skeletal myogenesis. An
in vitro transcription system based on an array of core histones and a reporter construct
bearing the recognition sequence of the myogenic transcription factor MyoD revealed
that PCAF and another acetyltransferase, p300, are required for optimal MyoD-
dependent activation of transcription [35]. In vitro MyoD and PCAF interact directly and
in cultured fibroblasts viral proteins known to disrupt the interactions of MyoD and
PCAF repressed muscle differentiation [36]. Exogenous expression of PCAF promotes
MyoD-dependent activation of transcription and muscle differentiation, while
inactivation of PCAF prevents muscle differentiation. In the interplay between MyoD,
PCAF and p300, PCAF acetylates three conserved lysines on MyoD itself, increasing the
transcription factor’s avidity for its cognate DNA [37]. Mutating the lysines so they
cannot be acetylated interferes with MyoD’s ability to transactivate myogenic genes and
to promote conversion of cultured fibroblasts into muscle cells. In cultured murine
myoblasts that lack expression of insulin-like growth factor Il and consequently undergo
apoptosis in medium lacking growth factors, PCAF can promote survival in the absence

of the growth factors [38].

The function of ADA2-like subunits of ATAC and other GCN5-containing
complexes have been the focus of many studies. In yeast the ADA2 subunit of the yADA
complex enhances GCN5’s catalytic activity and the binding of the GCN5/ADA2 complex

to the histone substrate [39], a role mediated by the SANT domain of ADA2 [40]. Like
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the paralogs GCN5 and PCAF, the two ADA2 paralogs are alternative subunits of the
SAGA and ATAC complexes, respectively, and they confer upon their respective
complexes distinct functions. In Drosophila, mutations in Ada2B, a component of the
GCN5-containing complex SAGA, reduce acetylation of histone H3 lysines K5 and K12,
but not of histone H4 residues[41]. In contrast, Ada2A mutations don’t affect histone
H3 acetylation[27], and there is evidence that acetylation of histone H4 is reduced in the
mutants, although an earlier study found to the contrary ([41]). Ada2A and Ada2B have
different functions in Drosophila development [41]; null mutations of either are lethal

and impede cell proliferation, but they have differential effects on eye differentiation.

There is evidence that ATAC interacts genetically with ISWI-containing complexes.
In Drosophila mutant for ISWI binding by Ada2A to polytene chromosomes is reduced,
while Ada2B binding is unaffected [42]. Consistent with this, acetylation of H4 lysine
K12 is reduced on polytene chromosomes in flies mutant for ISWI or for a subunit of the
ISWI-containing chromatin remodeling complex NURF. Under the same conditions
acetylation of histone H3 lysines K9 and K14, mediated by SAGA rather than ATAC, is
unaffected. Thus, the NURF complex is required for recruitment of ATAC to polytene
chromosomes and for the global acetylation of H4. Flies homozygous for mutations in a
NURF subunit, Gen5, or in Ada2a were studied by whole genome expression analysis. It
found a significant correlation between downregulated genes between the NURF301

mutants and the Gcn5 or Ada2a mutants.
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In contrast to the ATAC complex, DNA polymerase epsilon (Pol €) has been
studied for some time. Among others it has been described in yeast [43, 44], Drosophila
[45], Xenopus [46, 47], and Hela cells [48]. Pol € is a holoenzyme of four subunits
including the catalytic (cdc20+) subunit, Pole2, CHRAC17 (Pole3) and Pole4. The cdc20+
subunit contains in its N-terminal region the catalytic machinery responsible for its
polymerase activity, while the C-terminal contains nonessential elements of unknown
function. In yeast, cdc20+ and the second largest subunit, Pole2 (DPB2) are essential,
while the CHRAC17 and Pole4 subunits, Dpb4 and Dpb3, are nonessential [44, 49]. In
yeast Dpb4 mutants the Pole complex is less stable, suggesting that Dpb4 and Dpb3
function to provide a surface for protein interactions for Pole [50]. The CHRAC17
homologs have been described as subunits of Pol € in fission yeast [51], Saccharomyces

[43, 52], Drosophila [45], and Homo [53].

Pol € has attracted interest because it appears to combine the function of DNA
replication with that of non-replicative functions such as DNA “damage sensing” and
repair, maintenance of chromatin structures and regulation of transcription. It is one of
three DNA polymerases needed for replication in eukaryotes; the other two are DNA
polymerase alpha (Pol a) and DNA polymerase delta (Pol §). Pol ais known to provide
the RNA primer to initiate chromosomal DNA synthesis, but its low processivity and lack
of proofreading function (intrinsic 3’ exonuclease activity) make it ill suited to the

elongation step of DNA replication. Rather, Pol 6 takes over replicating the lagging
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strand while Pol € replicates the leading strand (reviewed in [52, 54-56]). Pol 6 and Pol
have proofreading function and high processivity, and Pol € is further distinguished from
the other two by not requiring the proliferating cell nuclear antigen (PCNA) for its high
processivity [45]. In Xenopus egg extracts it was demonstrated that expression of the
four subunits of Pol € was sufficient for rapid and efficient replication of chromosomal

DNA [46, 47].

Numerous studies have established a role for Pol € in DNA repair. In yeast it is
required for activation of S phase checkpoint to prevent mitosis and induction of DNA
damage-response genes [57]. The function was localized to the C terminal region which
has a structure unique among the DNA polymerases. In nuclear extracts from yeast
mutant for Pol g, base excision repair of DNA was defective, and Pol a and Pol
modulate the repair activity mediated by Pol € [58]. Yeast double mutants defective for
both Pol & and Pol g, but not single mutants, were defective in DNA repair after UV-
induced damage [59]. In PCNA-depleted human cell extracts, which are deficient in UV-
damage repair, purified Pol € can efficiently repair UV-damaged DNA [60]. In calf
thymus nuclear extract a large protein complex containing Pol € was shown to catalyze
recombinational repair of double strand gaps and deletions in DNA by gene conversion

[61].

Evidence that Pol € has a role in transcriptional silencing comes from studies in

yeast [62]. The mating-type gene at locus HMR is silenced because the locus is flanked
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by binding sites for the proteins Rapl and Abfl, and for an origin recognition complex.
The proteins affect silencing of the gene by recruiting proteins that form a chromatin
structure inaccessible to transcription machinery. Yeast strains were constructed that
had point mutations in the locus that ablated the silencing of the gene. But silencing
was restored in these strains when Pol € or PCNA were also mutated. One
interpretation is that silencing is interrupted by DNA replication through the silenced
chromatin so PCNA and Pol € may play a role in restoring silencing after the replication

fork has passed through the locus.

Finally, there is evidence that Pol € has a role in sister chromatid cohesion [63]. In
yeast mutants with inactive Pol € there is defective sister chromatid cohesion, and it was
shown that Pol € binds DNA polylmerase sigma (Pol o), which is involved in sister

chromatid cohesion.

In Xenopus, three ISWI-containing remodeling complexes have been
characterized: ACF, CHRAC and WICH (reviewed in [64]). The modular nature of the
complexes suggests that each may have distinct roles in development. The knowledge
gleaned from ablation of ISWI function does not distinguish the roles of one ISWi-
containing complex from another because ISWI knockdown ablates all of those
functions. To help parse out the roles in development of individual ISWI-containing
remodeling complexes, | determined to investigate the developmental roles of the

CHRAC complex. | hypothesized that the CHRAC complex’s role in development would
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be distinct from that of the three ISWI-containing complexes combined. To test this, |
first studied the expression pattern of CHRAC17 and compared and contrasted it with
the pattern of ISWI expression. | then studied the loss of function phenotype of
CHRAC17, a protein not found in the ACF or WICH complexes, but present in the CHRAC
complex. |knocked down CHRAC17 function in developing embryos using morpholino
oligonucleotides and compared and contrasted the loss of function phenotype in the
“morphants” with the phenotype resulting from loss of function of ISWI. To study the
developmental consequences of CHRAC17 loss of function at the molecular level, |
measured the level of expression of putative target genes that might be misregulated in
CHRAC17 morphants, using gRT-PCR and whole genome microarray analysis. To identify
possible alterations in cellular function in knockdown embryos | performed pathway
analysis of the misregulated genes. Finally1visualized the expression patterns of

misregulated genes in affected embryos.

| reasoned that if | were to find no differences between ISWI and CHRAC17 in
these respects it would suggest that the CHRAC remodeling complex has roles in
development that are equivalent or redundant to one or more of the other ISWI-
containing complexes found in Xenopus. But if | were to find that CHRAC17’s expression
pattern is different from that of ISWI and that CHRAC17 loss of function leads to only a
subset of the developmental defects caused by loss of function of ISWI, the hypothesis

that the CHRAC complex’s role in development is distinct from that of the three ISWI-
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containing complexes combined would be supported. It is likely that the phenotypic
differences derive from the fact that both these proteins may be members of other
complexes in addition to CHRAC: CHRAC17 is a subunit of the ATAC and DNA

polymerase epsilon complexes, while ISWI may also be a subunit of other complexes.

Results:

CHRAC17 is expressed in a distinct spatiotemporal pattern over the course of Xenopus

development.

The expression of a gene in a particular region of a developing embryo suggests
that the gene product may be active in a developmental process in that region. |
reasoned that where the pattern of expression of CHRAC17 and that of ISW/ overlap in
whole embryos, the CHRAC remodeling complex will be present and active. Where
CHRAC17 is expressed but ISWI is not, it is likely that CHRAC17 is functioning in the ATAC
complex and/or Pol €. Accordingly | visualized CHRAC17 mRNA expression in Xenopus
embryos by whole mount in situ hybridization. This revealed that CHRAC17 is expressed
as early as stage 15 in Xenopus and persists at least as late as stage 43 (Fig. 1). At stage
15 expression is localized to a region parallel to the neural plate, possibly the medial
edge of the presomitic mesoderm, and near the presumptive forebrain or eye region
(Fig. 2). The posterior-lateral regions of the embryo exhibit diffuse signal; while the

signal is faint, it was detected in multiple in situ hybridization experiments and likely
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represents genuine expression in this region. Sectioning of embryos followed by in situ

hybridization will be required to confirm the findings on whole embryos.

In stage 28 embryos CHRAC17 expression is prominent in the brain and facial
structures, the region of the olfactory placode, in pharyngeal arches or laterally-situated
placodes, in myotomes, and the anterior-ventral region. A band of intense staining
along the antior-posterior axis may be notochord; again, in situ hybridization of
sectioned embryos would be needed to confirm (Fig. 3). An embryo that was fixed at
stage 37 and was partially cleared of yolky material after in situ hybridization exhibited
the fine detail of CHRAC17 expression in the olfactory, lens, otic, facial epibranchial
placodes and possibly in the anterior-ventral lateral line placode, and in narrow stripes
running dorso-ventrally in the myotomes (data not shown). A dorsal view of embryos at
this stage of development underscores the intense expression levels anterior and lateral

to the forebrain and other localized regions of the neural tube (Fig. 4).

This pattern contrasts with that of ISWI. ISWI is expressed in neural structures
but not in myotomes, as CHRAC17 is, and while CHRAC17 is prominently expressed in

the placodes listed above, there is not a comparable expression in ISWI [65].

At stages 41 and 45 CHRAC17 expression is more widespread and diffuse (Fig. 1).
At these stages it appears that CHRAC17 is expressed in the optic cup but is no longer

expressed in the lens, both of which are completely invaginated at these stages.
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Figure 1 In situ hybridization of staged Xenopus embryos. Embryos were probed with control probe {left)
or CHRAC17-specific probes (right). From top to bottom, the embryos were fixed at stages 15, 22, 27, 39,
and 43. CHRAC17 expression begins as early as stage 15 and persists beyond stage 43. By stage 27
expression is most prominent in the head and neural structures and in myotomes. In later stages
CHRAC17 expression is very widespread. Abbreviations: ov, optic vesicle, cp, cranial placodes, oc, optic
cup.
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Figure 2 /n situ hybridization of stage 15 embryos. Embryos were probed with control probe {left) or
CHRAC17-specific probe (right). The CHRAC17 expression is at the margins of the neural folds, the eye
primordia, and in the posterior region. Abbreviations: np, neural plate; pf, presumptive forebrain.

Figure 3 In situ hybridization of stage 28 embryos. Embryos were probed with control (top) or CHRAC17-
specific probe {bottom). Staining is present in the brain and in olfactory, lens, epibranchial and otic
placodes, in myotomes and the anterior-ventral region. Diffuse signal is seen in the tailbud and in the
posterior-ventral region. Abbreviations: op, olfactory placode; br, brain; oc, optic cup; ot, otic vesicle, ep,
epibranchial placode; m, myotome; tb, taiblud.
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Figure 4 Dorsal view of stage 28 embryos. Embryos were probed with control {top) or CHRAC17-specific
probe (bottom). Note the prominent staining anterior and lateral to the brain (br).

Ablation of CHRAC17 function by morpholino oligonucleotides results in a distinct
morphant phenotype.

In order to determine the developmental roles of CHRAC17 | injected Xenopus
embryos with CHRAC17-specific morpholino oligonucleotides (MOs). | designed the
MOs to anneal with the region of CHRAC17 mRNA that spans the translation start site,
thus preventing translation of CHRAC17 protein in injected embryos. As a control for
nonspecific MO effects on development, | injected embryos from the same clutch of
eggs, fertilized with the same testis, with negative control MOs (see Materials and

Methods).

Embryos injected with 84 ng CHRAC17 MOs had high mortality; the majority
were dead by stage 35 (Table 1). All survivors were severely abnormal in morphology.

Among embryos injected with 42 ng CHRAC17 MO there was no observable phenotype



98

on the gross morphological scale before stage 27. Unlike ISWI knockdowns, >80% of
embryos survived beyond gastrula stage on average. At stage 40 a distinct phenotype
emerged (Fig. 5). Abnormalities include a reduction of anterior-posterior axis length; to
qguantify this, the lengths of embryos from their most anterior to their most posterior
tips were measured from three experiments (Fig. 8). The average AP length of 106
Inverse control MO injectees was 4.19 mm, while that of 96 CHRAC17-specific MO
injectees was 3.09 mm, significantly shorter {p<0.0001 Student’s t-test).

The reduced AP length may be a reflection of the finding above that CHRAC17 is
expressed in the myotomes. As noted above, knockdown of the BPTF subunit of the
NURF complex results in axial deformities; the loss of function of the CHRAC complex
could analogously lead to abnormal axial development. Knockdown of CHRAC17 might
result in destabilization of the ATAC complex as it destabilizes Pol € in yeast, leading to
developmental defects in myotomes or other mesodermal tissues along the anterior-
posterior axis. Knockdown of the ATAC complex subunit Gen5 in mice leads to increased
apoptosis and a failure of mesoderm to develop normally. The alternative subunit,
PCAF, has a well defined role in myogenesis. If ATAC function is required for PCAF’s
myogenic function, development of myotomes may be perturbed in CHRAC17

knockdown embryos.

Compared to controls, CHRAC17 morphant embryos show reduced head volumes,

particularly in the areas of the forebrain and nasal placode, and possibly including the
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ventral eye vesicle. Retinal pigmented epithelium (RPE) was greatly reduced either in
density of pigment or size of the RPE, and overall size of the eye vesicle was reduced.
Closure of the ventral fissure of the optic vessel is incomplete at this stage, suggesting
retarded eye development or coloboma, or a gradient of pigment loss that is greatest
anteriorly and ventrally. The edge of the dorsal fin is irregular or serrated compared to

controls. Development of the tailbud is delayed or otherwise abnormal in morphants.

Our collaborator Dr. Jonathan Henry (University of lllinois-Urbana) sectioned
control and CHRAC17 morphant embryos collected at stage 41 and stained them with
hematoxylin and eosin to study them microscopically. These sections reveal that the
eyes develop normally in the control embryos (as expected) but are very poorly
developed in the CHRAC17 morphants (Fig. 6). The eyes of control embryos show
normally differentiating retinal layers including a pigmented retinal epithelium lining of
the eye, and a layer of differentiating rod and cone cells. The lenses in control embryos
also develop normally, with a dense inner sphere of primary fiber cells surrounded by
secondary fiber cells, and are fully separated from the overlying ectoderm. In contrast,
development of the eyes of CHRAC17 morphants is very abnormal. The retinas are not
normally differentiated and are unlayered. The lenses show no secondary fiber cells and
remain attached to the surface ectoderm. In the example shown in Fig. 6, a lens
placode remains in the surface ectoderm, or alternatively a small lens body is present

that contains some or no internal primary cells.
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Histology also reveals abnormal neural tube and notochord development at stage
41 in CHRAC17 morphants (Fig. 7). The tissues of the neural tube are poorly
differentiated and the notochord is defective in shape and in its relative position to the

neural tube.

I classified 1300 embryos injected with CHRAC17-specific MOs or with control
MOs as normal or abnormal using criteria based on the gross morphology of eyes and
head and on length of the anterior-posterior axis. | compared the number of normal
and abnormal embryos injected with control MO or CHRAC17-specific MO from eight
independent experiments (Table 1, Fig. 9). The average percentage of abnormal
embryos among control embryos is 16.9% and ranges from 7.8% to 28.6%, and includes
an array of nonspecific defects. Among CHRAC17 morphants the average percentage of
abnormal embryos is 70.1% and ranges from 53.8% to 90.0% and these defects are
highly uniform and reproducible. Embryos injected with 21 ng of CHRAC17-specific MOs
immediately after fertilization exhibit a milder phenotype than those injected with 42 ng
MOs. This dosage effect is also consistent with the phenotype being caused specifically

by the activity of the CHRAC17 MO.



Table 1 The frequency of abnormal development in MO-injected embryos
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Injectate Amount Total # of # of % of
injected embryos abnormal* abnormal*
embryos embryos
Uninjected 1111 75 7%
INV MO 42 ng 851 150 18%
84 ng 100 5 5%
CHRAC17 MO | 21ng 119 41 34%
42 ng 856 571 68%
84 ng 349 298 85%

*The morphant phenotype includes abnormal eye development combined with
abnormal anterior-posterior axis.

After stage 28 normal embryos begin spontaneous movement and later become
responsive to tactile stimulation. Interestingly, the CHRAC17 knockdown embryos
remained inert and nonresponsive as late as stage 45. This is not due merely to delayed
behavioral development, because days later knockdown embryos are still nonresponsive
to tactile simulation. Determination of eye function depends on functional motility in
embryos (i.e., testing whether embryos swim from shadows or other obstacles) so | was
unable to establish whether vision is normal or abnormal in knockdown embryos.
However, given the lack of eye differentiation observed in the morphants (see below), it

is clear that these embryos must be entirely blind.

In Xenopus each cell of a two-cell stage embryo gives rise to either the right-hand
side or the left-hand side of the later embryo. | wanted to determine whether injecting
one of the two cells with CHRAC17-specific MOs would result in an embryo with normal
morphology on the uninjected side and a morphant phenotype on the side that had

received the CHRAC17 MO. This method provides morphological features on the
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uninjected side that can be compared to features on the side in which CHRAC17 is
ablated. There are some caveats to this technique; for example, midline structures can
sometimes still form as a result of signaling from the uninjected side of the embryo;
however, the normal side generally serves as a very powerful internal control for the

effects of the MOs.

Embryos injected unilaterally with CHRAC17-specific MO at the two cell stage are
frequently crescent-shaped and the side of the embryo with ablated CHRAC17 function,
identified by fluorescence of the fluorescein tag on the MO, typically form the inner
edge of the crescent (Fig. 10). This is consistent with the AP-axis shortening observed

in global knockdowns performed at the one-cell stage (Fig. 5).

On the gross morphological level the phenotype of unilaterally injected embryos
appears mild compared to that of globally injected embryos, but at the histological scale
developmental defects are obvious in these embryos (Fig. 11). Embryos fixed at stage
41 were sectioned and stained as above by Dr. Jonathan Henry. These embryos exhibit
developmental abnormalities of the eye, neural tube and notochord on the affected
side, but not on the contralateral side (Fig. 12). In some cases there also appears to be

abnormal development of mesodermal tissue.

Interestingly, the lack of response to stimulation observed in embryos in which
CHRAC17 was bilaterally ablated was not present in unilaterally injected embryos. To

the contrary, many of the latter are hyperactive, many displaying what could be



103

described as convulsive activity. Such embryos convulse upon tactile stimulation and
continue the activity long after the usual response would have abated. Seemingly, the

activity is initiated spontaneously as well.

in summary, CRAC17 knockdown embryos exhibit a phenotype that overlaps with
but is distinct from iISWI knockdown embryos. Complete ISWI knockdown results in
death at neurulation, while 80% of CHRAC17 knockdown embryos survive to stage 45.
This is consistent with the corresponding expression patterns of these genes as
determined by in situ hybridization. The extent to which the differences refiect
differences between the CHRAC complex’s developmental functions and those of other

ISWI-containing complexes will require further study.

N fg . - }
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Figure 5 The CHRAC17 morphant phenotype in Xenopus. At stage 41, compared to the control MO
injectee (top) the CHRAC17 MO injectee (bottom) demonstrates the characteristic developmental
abnormalities in head structures, eyes, proctodeum and anterior-posterior axis.
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Figure 6 Cross sections of eyes of MO-injected embryos. Stage 41 embryos were injected with negative
control MOs (left) or CHRAC17 specific MOs (right). in the control embryo, the retina contains normal
differentiating layers of tissue inciuding the darkly-stained pigmented retinal epithelium encapsulating the
eye and, internal to that, the differentiating rod and cone cells. The lens, which is normally separated
from the overlying ectoderm at this stage, contains a dense inner sphere of primary fiber cells surrounded
by secondary fiber cells. The CHRAC17 morphant embryo (right) displays very abnormal eye
development; the lens has no secondary fiber cells and is attached to the surface ectoderm. The retina
lacks the normal layers of differentiating cells. Abbreviations: cn, cornea; gn, ganglion layer; in, inner
nuclear layer; ip, inner plexiform layer; In, lens; on, outer nuclear layer; op, outer plexiform layer; pr,
pigmented retinal epithelium.

Figure 7 Cross sections of neural tubes of MO-inected embryos. At stage 41 the control embryo {left)
exhibits normal development of neural tube (top) and notochord {bottom center). The morphant embryo

{right) exhibits defective neural tube (top) and notochord {bottom center). Abbreviations: nt, neural
tube, nc, notochord.
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Figure 8 The average AP-axis length of MO-injected embryos. Morphants are significantly shorter on
average than those injected with negative control (INV) MOs.

100

Percent Abnormals

Experiment

Figure 9 Numbers of normal vs. abnormal embryos. Stage 37 embryos from eight independent
experiments injected with control MO or with CHRAC17 specific MO were sorted into normal and
abnormal groups based on the gross morphology of the eye, face and anterior-posterior axis. For each
experiment , the percent of abnormal and normal embryos is shown for the control embryos (blue bars)
and the CHRAC17 morphant embryos (red bars).
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Figure 10 A unilaterally injected Xenopus embryo. Fluorescein-labeled CHRAC17 specific MOs were
injected on the left side; this is a dorsal view with head to the left and tail to the right. The typical bowing
of these embryos suggests that the affected side is shorter along the anterior-posterior axis, presumably
by the same mechanism that results in overall shortened AP axis length in globally injected embryos.

-

Figure 11 Left and right sides of a unilaterally injected embryo. CHRAC17 specific MOs were injected on
the right side at the two cell stage. At stage 37 the right side exhibits gross morphological abnormalities
including absence of eye structures while the left side exhibits normal development.
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Figure 12 Histological section of a unilaterally injected embryo. A two-cell stage embryo was injected
unilaterally with CHRAC17 specific MOs. At stage 44 the unaffected side (left) demonstrates normal
development while the right side, where CHRAC17 function is ablated, has abnormally developing eye,
neural tube, notochord, and pharyngeal structures. Abbreviations: ec, eyecup; nt, neural tube, pp,
pharyngeal pouches.

Loss of CHRAC17 function coincides with depletion of xOTX2 mRNA.

In order to study the developmental consequences of CHRAC17 loss of function at
the molecular level, | measured the level of expression of putative target genes that
might be misregulated in CHRAC17 knockdown embryos. The homeobox gene xOtx2 is
known to be involved in AP-axis formation at gastrulation and later is required for
patterning of anterior head structures [66], [67]. | reasoned that a misregulation of

xOtx2 by ablation of CHRAC17 function would be consistent with the pattern of
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CHRAC17 expression in these structures in normal embryos and with the perturbation of

those structures in CHRAC17 morphants.

| injected embryos with negative control MOs or CHRAC17 specific MOs (42 ng)
immediately after fertilization, collected 10 embryos from each group at stages 12, 14,
23, 37 and 45 and extracted total RNA from them. | measured the amount of specific

mMRNA species in the RNA samples using RT-qPCR (see Materials and Methods).

| found that the level of xOtx2 mRNA is reduced by 50% in CHRAC17 morphant
embryos at stage 22 and remains depressed in subsequent stages, though expression

may begin to recover at later stages (Fig. 13).
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Developmental stage

Figure 13 xOTX2 expression in staged CHRAC17 morphant embryos. Total RNA was extracted at the
stages shown. Levels of xOTX2 mRNA were measured by RT-gPCR. The bars represent the level of xOtx2
mMRNA in CHRAC17 morphants divided by the level of xOtx2 mRNA measured in the negative control
embryos.
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Genes that are misregulated in CHRAC17 morphant embryos are overrepresented in
biological pathways involved in development, cell morphology and motility, and

hematopoiesis.

In order to identify other genes regulated directly or indirectly by CHRAC17 |
performed whole genome expression analysis of total RNA samples taken from control
and CHRAC17 morphant embryos at stage 15 and stage 37 (see materials and methods).
Whole genome expression analysis identified many misregulated genes at stage 15 and
stage 37. At stage 15, 414 genes were misregulated with p values <0.001 in CHRAC17
morphants, while at stage 37, 588 genes showed significant changes in expression
levels. Compared to the profiles of misregulated genes in ISWI and WSTF knockdowns,
that of CHRAC17 morphants contain unique genes; the extent to which the profiles may

overlap has not been determined.

| focused on several genes found to be misregulated when CHRAC17 function is
ablated , listed on Table 2. Three (CXCL12, DAB2, and MIXL1) are known to have
regulatory functions in development. H1FO0 is associated with chromosome

condensation and cells entering terminal differentiation.

CXCL12 was first identified as a bone marrow stromal cell-derived factor and pre-
B-cell stimulatory factor and named PBSF/SDF-1. It is known as a highly atypical
chemokine (reviewed in [68]). While it belongs to a subfamily of proteins characterized

by the first two cysteines being separated by one amino acid (CXC), its amino acid
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sequence is as similar to the members of another subfamily (CC) as it is to other CXC
proteins. The sequence and function are so highly conserved across species it is
suspected that almost all of its residues are necessary for biological activity [69].
CXCL12 was thought to be the ligand for a single receptor, CXCR4, unlike the other CC
and CXC chemokines but lately a second cognate receptor, CXCR7, has been identified
(reviewed in [70]). In Xenopus CXCL12 is expressed in developing mid- and hindbrain,
otic vesicles, dorsal fin, posterior heart, and later in the proctodeum [69]. It has been
shown that the CXCL12/CXCR4 axis is necessary for regulating the massive cell migration
that takes place during gastrulation [71]. The paradigm for CXCL12 function is that
CXCL12-expressing cells create an extracellular gradient of CXCL12 that attracts CXCR4-
expressing cells. CXCR4-expressing cells include adult stem cells that might enter
circulation from their niches, and upon encountering the CXCL12 gradient pass through
the endothelium to their targets, much as leukocytes are known to do when attracted to
sites of inflammation by other chemokines. An intriguing theory is that CXCR4-
expressing cardiac neural crest cells might be attracted in this way to the ventriclular

septum of the developing heart [69].

The microarray chip data indicated that CXCL12 was upregulated 6.8-fold at stage
15 and 5.1-fold at stage 37. For a detailed picture of how CHRAC17 ablation affects
CXCL12 expression in developing Xenopus | injected one cell of two-cell stage embryos

with CHRAC17-specific MOs. My collaborator Jasmin Horn (Julius-Maximilians University
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Wuerzburg) then performed whole mount in situ hybridization with a probe for CXCL12
mRNA on embryos fixed at stage 15 and stage 37. | found that CXCL12 mRNA was
detectable at stage 37 in the eye, otic vesicle, mid- and hindbrain and dorsal fin,
confirming findings of earlier studies [69] (Fig. 16). Consistent with the microarray chip
data, the injected (right) side of the embryo has visibly more CXCL12 expression than

the uninjected side.

DAB2 is involved in endocytosis in clathrin-coated structures at the cell surface,
where it interacts with the cargo-binding domain of the actin-based molecular motor
myosin VI (reviewed in [72, 73]. Myosin VI in turn promotes secretion of vascular
endothelial growth factor (VEFG) and the serine protease, prostate-specific antigen [74].
DAB2 is known to mediate TGFp signaling [75]. In Xenopus DAB2 was shown to mediate
the induction of VEGF expression by activin-like signaling, and this signaling is essential

for the development of intersomitic blood vessels [76].

Dab2 was upregulated 2.1-fold at stage 37. To visualize how CHRAC17 ablation
affects Dab2 expression in developing Xenopus | again unilaterally injected two-cell
stage embryos with CHRAC17-specific MOs and Jasmin Horn performed whole mount in
situ hybridization on embryos fixed at stage 15 and stage 37, using a probe specific to
Dab2. | found that Dab2 mRNA was detectable at stage 37 in a diffuse pattern

consistent with earlier studies [76] (Fig. 17). Consistent with the microarray chip data,
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the injected (right) side of the embryo has visibly more Dab2 expression than the

uninjected side.

H1FO is a linker histone associated with condensed chromatin and terminally-
differentiated cells. A global gene expression experiment associated H1f0 expression
with erythroid differentiation [77]. H1fO expression was upregulated by a factor of two
at stage 15 and by a factor of four at stage 37. In situ hybridization detected no
difference in its expression level between injected and uninjected sides of stage 15
embryos, possibly an artifact due to overstaining. In situ hybridization was not

performed on a stage 37 embryo.

MIXL1 is a paired-like homeobox protein and an activin immediate-early response
gene. It is expressed in the Xenopus embryo’s marginal zone and deep vegetal cells [78].
Mixl1 expression domain largely overlaps that of brachyury (Xbra), at the gastrula stage,
but the two genes inhibit the expression of each other so in successive stages their
expression patterns become exclusive [79]. This is the result of MIXL1-mediated
induction of goosecoid (gsc) expression, which in turn directly suppresses expression of
Xbra [80]. Thus the protein regulates mesoderm development and mediates endoderm
differentiation. It has been shown to be required for head formation [79]. Mix/1 was
downregulated by a factor of 1.5 at stage 15. Whole mount in situ hybridization of

embryos unilaterally injected with CHRAC1 7-specific MOs confirm this, as the uninjected

side exhibits higher Mix/1 expression than the injected side (Fig. 18).
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Figure 14 Biological pathways of misregulated genes in stage 15 morphants. The pathways arein

descending order of significance, left to right. Note that many of the pathways are involved in embryonic

development, hematopoiesis and in cell motility.
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descending order of significance, left to right. Note that again many of the pathways are involved in

embryonic development, hematopoiesis, and cell motility.



Table 2 Selected genes misregulated in CHRAC17 morphants

formation and regulation of mesoderm
development

Gene name Gene function Degree of misregulation
Stage 15 Stage 37
CXCL12 chemokine, directs motility of cells that 6.82 5.13
express CXCR4 or 7 (endothelial and
neuronal cells), regulates hematopoiesis
and development of brain, spinal cord
and eye
DAB2 Endocytosis and angiogenesis 2.08
H1FO Chromosome condensation at 2.28
interphase, terminal differentiation
MiXL1 Pronephros development, endoderm -2.83
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Figure 16 CXCL12 expression in a CHRAC17 morphant. These are the left and right sides of a stage 37-38
embryo injected unilaterally on the right side with CHRAC17-specific MOs, then probed with In situ
hybridization probe specific for CXCL12 expression. The right side exhibits increased CXCL12 expression,
consistent with the cDNA microarray results.
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Figure 17 DAB2 expression in a CHRAC17 morphant. These are the left and right sides of A stage 37-38
embryo injected unilaterally on the right side with CHRAC17-specific MO, then probed with In situ
hybridization probe specific for DAB2 expression. The right side has increased DABZ2 expression,
consistent with the cDNA microarray results.

Left Right

Figure 18 MIXL1 expression in a CHRAC17 morphant. These are the left and right sides of a stage 15
embryo injected unilaterally on the right side with CHRAC17-specific MOs, then probed with In situ
hybridization probe specific for MIXL1 expression. The right side exhibits decreased MIXL1 expression,
consistent with the cDNA microarray results.
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Discussion

Here | have collected evidence consistent with the hypothesis that CHRAC17, and
by inference the CHRAC chromatin remodeling complex and/or other CHRAC17-
containing complexes, have critical roles in development, particularly of the nervous
system and AP axis. The role of CHRAC17 overlaps with, but is distinct from, the role of
ISWI (representing all ISWI-dependent complexes). The expression pattern of CHRAC17
MRNA visualized by in situ hybridization is distinct from that of ISWI, in that CHRAC17 is
expressed in myotomes and prominently in ectodermal placodes and/or branchial
arches, while ISWI expression is primarily confined to neural tissue. ISWI| expression has

not been detected in the myotomes.

The CHRAC17 morphant phenotype is dramatically different from that of ISWI.
Most ISWI morphants die around the neurulation stage, while 80% of CHRAC17
morphants survived to at least stage 45. At later stages the length of CHRAC17
morphants is significantly shorter than that of control embryos, consistent with the
finding that CHRAC17 is expressed in the myotomes. In ISWI morphants that survive

(for example due to only partial knockdown of ISWI) no such phenotype is observed.

By stage 37 CHRAC17 morphants exhibit reduced head volumes relative to
controls, particularly in the areas of forebrain and nasal placode, and possibly including
the ventral eye vesicle. Retinal pigmented epithelium (RPE) is greatly reduced and the

overall size of the eye vesicle is reduced. Closure of the ventral fissure of the optic
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vessel is incomplete at this stage. The edge of the dorsal fin is irregular or serrated
compared to controls. Development of the tailbud is delayed or otherwise abnormal in
knockdowns. This phenotype overlaps with but is distinct from the ISWI phenotype;
ISWI knockdown embryos that survive to later stages exhibit specific eye and brain

defects that are qualitatively different from the CHRAC17 morphant phenotypes.

Histology reveals abnormal retina, lens, neural tube and notochord
morphologies at stage 41 in CHRAC17 morphants. Again, this phenotype overlaps with

but is distinct from that of ISWI knockdown embryos.

CHRAC17 morphants are behaviorally inert and nonresponsive as late as stage
45. Late stage ISWI embryos, while totally blind, remain responsive to touch and swim

reasonably well.

The morphology of embryos injected unilaterally with CHRAC17 MOs dramatically
exhibit the morphological abnormalities found in CHRAC17 morphant embryos and
suggest that there is little cross-talk between affected and unaffected sides in the
development of the impacted structures. Whatever the molecular mechanisms of
perturbation of the anterior-posterior axis, neural tube, notochord and eyes in CHRAC17
morphants, it does not seem to be significantly rescued by the normally developing
contralateral side of unilateral injectees. The crescent shape of unilaterally injected
embryos is consistent with the reduced anterior-posterior axis length in embryos

injected at the one cell stage. On the other hand, the overall phenotype of unilaterally
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inected embryos appears milder than that of globally injected embryos; for instance, the
behavior phenotype is mitigated and sometimes even reversed in unilateral morphants.

This may reflect some cross-talk between the two halves of the embryo.

The abnormalities found in CHRAC17 morphants are consistent with the
expression pattern of CHRAC17 as revealed by in situ hybridization. CHRAC17 is
normally expressed prominently in the most anterior head structures and brain, while in
morphants the most anterior head structures are absent or reduced and histologically
the neural tube and eyes were found to be defective. The behavioral phenotype found
in morphants may be expected to derive from neural tube defects, although more
studies would be required to make a cause and affect argument. The reduced anterior-
posterior axis length of CHRAC17 morphants is consistent with the observation that

CHRAC17 is expressed in the myotomes.

RT-gPCR and pathway analysis of the whole genome expression microarray
experiment, comparing expression of genes in CHRAC17 morphants with that of normal
controls, reveal a significant overrepresentation of genes involved in embryonic
development, hematopoiesis and cell motility, among the misregulated genes in

CHRAC17 morphants.

It will require further studies to establish whether or not some developmental
consequences of CHRAC17 knockdown may arise from loss of function of the ATAC

complex or of DNA polymerase epsilon, rather than a loss of CHRAC function. There is
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no evidence that DNA polymerase epsilon has a role in development, but as cited in the

introduction to this chapter, biochemical and genetic studies of the ATAC complex’s

subunits suggest that it could function in regulatory pathways in development.
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Chapter 4

The role of CHD4 in Xenopus development

Introduction

As mentioned in Chapter 1 the CHD4 protein was initially identified as the
dermatomysitis-specific autoantigen Mi-2 (antigen recognized by patient Mitchell’s
autoimmune antibodies 2) [1]. Subsequently, several groups identified a related set of
remodeling complexes containing either CHD3 or CHD4 as the ATPase subunit. The
genes encoding the proteins may be referred to as Chd3 and Chd4, respectively, and the
proteins are also known as Mi-2a and Mi-2B. These complexes include the Xenopus Mi-

2 complex [2] and the human complexes NuRD/NURD/NRD [3-5].

Since the publication of Chapter 1 much has come to light regarding the
developmental roles of the subunits of the NuRD complex. CHD4 regulates the relative
amounts of mesoderm and neuroectoderm in developing Xenopus [6]. It directly binds
the Sip1 gene which suppresses Sip1 expression and consequently neural development.
Conversely, CHD4 suppression of Sip1 prevents expression of the brachyury (Xbra) gene
in the prospective neural plate while still allowing it to be expressed in prospective

mesoderm.

The subunits MBD2 and MBD3 were confirmed to be mutually exclusive and

were shown to confer different functions on their respective NuRD-like complexes [7].
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In cell lines expressing a tagged version of each subunit, the MBD2 complex, but not the
MBD3 complex binds the arginine methyltransferase PRMT5. The MBD2 complex also
binds import a nuclear transport proteins, suggesting that the MBD2 complex may
translocate between the cytoplasm and nucleus. All three MTA proteins (MTA1, MTA2
and MTA3) were found associated with both the MBD2 and MBD3 complexes; there is
evidence that the MTA proteins are expressed in a tissue-specific manner, resulting in
tissue-specific NURD complexes so the number of tissue-specific complexes determined
by combinations of subunits may be substantial [8], [3]. The same group found
numerous post-translational modifications of the NuRD complex, many of them
occurring on highly conserved residues, implying that the modifications also may be

evolutionarily conserved.

MBD2 but not MBD3 contains a motif that is a known substrate for PRMTS5, and
in vitro the MBD2 complex specifically methylates MBD2 containing the motif, but not
MBD?2 lacking the motif or MBD3. Chromatin immunoprecipitation in cultured cells
revealed that MBD2 and PRMT5 colocalize to two genomic sites, and that PRMTS

methylates its target histone residue H4R3 at these sites.

A critical role for MBD3 in peri-implantation development was revealed by
mouse genetics and ex vivo studies of MBD3 null inner cell mass cells [10]. MBD3 null
embryonic stem cells contain little or no intact NURD complex. Embryos deficient in

MBD3 fail to expand their pluripotent cell population or form a normal epiblast post
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implantation, and fail to develop normal extraembryonic ectoderm. Analogously, inner
cell masses deficient in MBD3 and cultured in the presence of LIF, which inhibits
differentiation and promotes expansion of pluripotent cell populations, fail to expand

into a normal cell mass.

A role in gene silencing has been ascribed to the p66 subunit of the NuRD
complex, since named Gatad2a. Mice mutant for Gatad2a die around the time that the
embryo implants and gastrulation begins, consistent with a function in mediating DNA
methylation and developmental gene silencing, which begin at the same stage [11].
However, the same study showed that Gatad2a-null embryonic stem cells are viable and

capable of differentiation in embryoid bodies.

With so much functional diversity resulting from different assortments of the
alternative MBD and MTA subunits of the NuRD complex, the question arises as to what
functional differences might exist between the CHD3-containing and CHD4-containing
complexes. The two complexes may be functionally redundant, or CHD3 and CHD4 may
be among those sets of paralogous proteins that are the products of gene duplications
and subsequent divergent evolution. To begin to answer these questions | ablated
CHD4 function in developing Xenopus embryos to observe the consequences of loss of

CHD4 function.
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Results

Ablation of CHD4 function by Morpholino oligonucleotides results in a distinct morphant

phenotype.

In order to determine the developmental roles of CHD4 | injected Xenopus
embryos with CHD4-specific morpholino oligonucleotides (MOs). | designed the MOs to
anneal with the region of CHD4 mRNA that spans the translation start site, thus
preventing translation of CHD4 protein in injected embryos. As a control for nonspecific
MO effects on development, | injected embryos from the same clutch of eggs, fertilized
with the same testis, with CHD4 inverse control MOs or with water (see Materials and

Methods). A portion of each clutch was left uninjected.

Compared to negative control MO-injected embryos, those injected with CHD4-
specific MOs exhibited profound developmental abnormalities (Fig. 1). The most
anterior and dorsal head structures appeared to be reduced or missing. The eyes were
malformed or had retarded development. The embryos exhibited varying degrees of

cyclopia. The anterior-posterior axes were severely shortened and malformed.

| counted abnormally developing Xenopus in four independent experiments based
on morphology of the head, eyes, and anterior-posterior axis(Table 1). Of 152 control
embryos 1.3% exhibited abnormalities, while of 353 CHD4 morphants, 77% were

abnormal.
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My collaborator Dr. Jonathan Henry of the University of lllinois-Urbana sectioned

control and CHD4 morphant embryos collected at stage 44 and stained them with
hematoxylin and eosin to study them microscopically. These sections reveal striking
developmental abnormalities in development of neural tube, notochord, eyes, and

pharyngeal pouches (Fig. 2). In particular the eyes reflected the varying degrees of

cyclopia seen on the gross morphological scale. In the example in Figure 2 the retinas

are apparently fused at the midline and the lenses are invaginated far nearer to the

midline than in normal controls. While the pigmented retinal epithelium is discernible,

other layers of the retina are not present. Overall, the head is much narrower than that

of the normal control.

Table 1 Percentage of abnormal embryos in control and CHD4 morphants

Morpholino Normal # abnormal % abnormal
Control 150 2 1.3%
CHD4 82 271 76.7%
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Figure 1 The CHD4 morphant phenotype in Xenopus. At stage 41, compared to the control MO-injected
embryo (top) the embryo injected with CHD4-specfic MO (bottom) demonstrates the characteristic
developmental abnormalities following CHD4 loss of function in head, eyes,and anterior-posterior axis.
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Figure 2 Cross sections of MO-injected Xenopus embryos. Eimbfyo?were injected with cghtroll-or CHD4-
specific MOs. At stage 41 the embryo lacking CHRAC17 function exhibits abnormally developing eyes,
neural tube, notochord, and pharyngeal structures. Abbreviations: ec, eve cup, In, lens; nc, notochord;

nt, neural tube; pp, pharyngeal pouch; pr, pigmented retinal epithelium.
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Discussion

This study provides evidence that CHD4 and by implication the NuRD complex
have critical roles in development, particularly in normal development of head
structures, eyes, and the anterior-posterior axis. Embryos lacking CHD4 function exhibit
dramatic abnormalities including cyclopia and reduced or missing structures in the
anterior and dorsal head. The histological findings of the pigmented retinal epithelia of
the two developing eyes fused at the midline suggest that part of the perturbation of
development must involve failure of midline signals that commonly lead to similar
abnormalities. The known involvement of CHD4 with positioning the
mesoderm/neuroectoderm boundary [6] may be involved with this developmental
abnormality. The findings point to the potential for studies at the molecular level that

will be necessary to confirm this.
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