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Abstract

A central question in the study of vertebrate development is how to account for 

the exquisite interplay of genes within cells as they create the organs of the vertebrate 

embryo. Gene regulation by epigenetic processes adds a formerly unappreciated level 

of complexity to the regulatory network of development. One form of epigenetic gene 

regulation is embodied in ATP-dependent chromatin remodeling complexes. Chromatin 

remodeling complexes can both promote and repress expression of a gene at the 

appropriate time and place in vertebrate development. The list of their known roles in 

development is long and growing. Here I have studied the developmental role of 

CHRAC17, a subunit of the CHRAC and ATAC complexes, by visualizing its expression and 

by ablating CHRAC17 function in Xenopus laevis embryos. Whole mount in situ 

hybridization localized CHRAC17 expression to the neural tube, cranial placodes, and 

myotomes. Loss of CHRAC17 function following injection of embryos with CHRAC17- 

specific morpholino oligonucleotides resulted in abnormal development in the neural 

tube, eyes, notochord, and pharyngeal pouches, underlining the critical importance of 

CHRAC17 function in Xenopus development. Similarly, ablating the function of CHD4, 

the ATPase motor of the NuRD chromatin remodeling complex, resulted in severe 

developmental abnormalities in early Xenopus development.
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Chapter 1 

Introduction1

Abstract

The development of a metazoan from a single-celled zygote to a complex 

multicellular organism requires elaborate and carefully regulated programs of gene 

expression. However, the tight packaging of genomic DNA into chromatin makes genes 

inaccessible to the cellular machinery and must be overcome by the processes of 

chromatin remodeling; in addition, chromatin remodeling can preferentially silence 

genes when their expression is not required. One class of chromatin remodelers, ATP- 

dependent chromatin remodeling enzymes, can slide nucleosomes along the DNA to 

make specific DNA sequences accessible or inaccessible to regulators at a particular 

stage of development. While all ATPases in the SWI2/SNF2 superfamily share the 

fundamental ability to alter DNA accessibility in chromatin, they do not act alone, but 

rather are subunits of a large assortment of protein complexes. Recent studies 

illuminate common themes by which the subunit compositions of chromatin remodeling 

complexes specify the developmental roles that chromatin remodelers play in specific 

tissues and at specific stages of development, in response to specific signaling pathways 

and transcription factors. In this review, we will discuss the known roles in metazoan 

development of three major subfamilies of chromatin remodeling complexes: the SNF2,

1 Published as "How many remodelders does it take to make a brain? Diverse and cooperative roles of 
ATP-dependent chromatin-remodeling complexes in development" (Brown, 2007)
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ISWI and CHD subfamilies.

Introduction: The SWI2/SNF2 superfamily of proteins

At all stages of development of a single-celled zygote into a multicullular 

organism the genome must be maintained as densely packed chromatin, linear arrays of 

nucleosomes consisting of DNA wrapped around a core of histone proteins and further 

compacted into higher-order structures. The complex regulation of gene expression and 

other nuclear processes during development requires modifications to the chromatin to 

render the correct segment of DNA accessible to the nuclear machinery at the correct 

time. One mechanism for controlling access to DNA is the covalent modification of 

histones, which can alter the interactions between DNA and histones and produce new 

binding surfaces for other factors (Imhof, 2006). A second major mechanism depends 

on ATP-dependent chromatin remodeling complexes that translationally reposition or 

"slide" nucleosomes along the DNA to expose specific sites on the DNA to the cellular 

machinery (Johnson, 2005; Cairns, 2005).

Many ATP-dependent chromatin remodeling enzymes have been identified and 

their structures and functions characterized. All contain a catalytic subunit belonging to 

the SWI2/SNF2 superfamily of proteins (Eisen, 1995). The family is characterized by a 

distinctive ATPase domain that is the molecular motor driving nucleosome sliding. The 

structure and function of these enzymes are highly conserved in eukaryotes from yeast 

to human. Subfamilies are defined by the degree of similarity between their ATPase 

domains and the presence of other characteristic domains. Members of the SNF2



3

subfamily contain a bromodomain which is known to bind acetylated lysines of histones 

(Marmorstein, 2001). Members of the ISWI (Imitation Switch) subfamily contain the 

HAND-SANT domain in the carboxy-terminal half of the protein (Boyer, 2002) which is 

linked to a SLIDE domain by an alpha-helical spacer (Grune, 2003); the SLIDE domain 

interacts with nucleosomal DNA (reviewed in (Dirscherl, 2004; Mellor, 2006). Members 

of the CHD (Chromodomain Helicase DNA binding) protein family contain two tandem 

chromodomains and may also contain PHD fingers; these motifs have been shown to 

interact with methylated histone tails (Wysocka, 2006; Shi, 2006; Pena, 2006; Li, 2006a; 

Woodage, 1997).

The distinct affinity of a chromatin remodeler for one or more specific histone 

modifications may serve to target it to a point in the chromatin that has been 

specifically marked by the gene regulatory apparatus. This may impart to it distinct 

roles in developmental processes (reviewed in (de la Serna, 2006; de la Cruz, 2005). All 

of the SWI2/SNF2 ATPases function as subunits of larger protein complexes. While the 

ATPase subunit serves as the motor that hydrolyses ATP and translocates histone cores 

along the DNA, the non-ATPase subunits of remodeling complexes may interact with 

tissue-specific transcription factors to target remodeling activity to specific genes, or 

may alter other structural features of the complex. The targeting of remodeling 

complexes both by specific histone marks and by tissue-specific transcription factors can 

exquisitely regulate remodeling activities to play a variety of roles in development 

(Cairns, 2005; Saha, 2006). In this review, we will summarize current data for the
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differential expression patterns and developmental functions of SNF2-, ISWI-, and CHD- 

dependent chromatin remodeling complexes.

The SWI2/SNF2 subfamily

The yeast Swi2/Snf2 protein and proteins associated with it in the prototypical 

ySWI/SNF chromatin remodeling complex were identified in yeast deficient in mating 

type switching (Switching mutants) and in sucrose fermentation (sucrose non- 

fermenters, SNF mutants). The ySWI/SNF complex is known to be necessary for the 

inducible transcription of a number of genes (Sudarsanam, 2000). Highly conserved 

homologs of SWI2/SNF2 are found in eukaryotes including Arabidopsis, Drosophila, 

zebrafish, Xenopus, chicken and mammals (Schofield, 1999; Randazzo, 1994; Brizuela, 

1994; Gelius, 1999). All are subunits of SWI/SNF-related chromatin remodeling 

complexes that are also highly conserved in eukaryotes (Mohrmann, 2005). While the 

SWI2/SNF2 subunit alone is capable of limited ATP-dependent chromatin remodeling in 

vitro, other subunits may function to maintain the SWI/SNF protein complex's structure, 

alter its enzymatic activity, or to allow recruitment of the complex to target genes 

(Yudkovsky, 1999; Moshkin, 2007; Muchardt, 1995; Peterson, 2000).

The subunit composition of SWI/SNF complexes can be used to further subdivide 

them into two classes that are themselves highly conserved in eukaryotes. In yeast, the 

subclasses are represented by the ySWI/SNF and RSC chromatin remodeling complexes. 

They share two identical and at least four homologous subunits. ySWI/SNF contains
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the ATPase Swi2/Snf2 and the Sw il subunit. RSC on the other hand contains the ATPase 

Sthl, a paralog of Swi2/Snf2, and lacks Sw il, while it contains the subunits Rscl, Rsc2 

and Rsc4 not found in ySWI/SNF. The two types of chromatin remodeling complexes 

have distinct cellular functions in yeast (for reviews, see (Mohrmann et al., 2005; 

Martens, 2003) The relationships between the two yeast SWI/SNF protein complexes 

are conserved in eukaryotes. While Drosophila contains only one SWI2/SNF2 homolog, 

Brahma (BRM), it is found in two classes of chromatin remodeling complexes 

corresponding to ySWI/SNF (BRM-associated Proteins or BAP) and RSC (Polybromo- 

associated proteins or PBAP). BAP and PBAP contain orthologs of the yeast subunits in 

combinations similar to the yeast complexes, and they mediate distinct cellular 

functions (Moshkin et al., 2007). Similarly, the mammalian SWI2/SNF2 paralogs are 

mutually exclusive subunits of mammalian SWI/SNF chromatin remodeling complexes 

(Khavari, 1993). The corresponding human SWI/SNF complexes are differentiated by 

their use of BRG1 (brahma-related gene) or hBRM (human brahma) as the ATPase 

subunit.

In the following section, we will describe the known developmental roles of 

SWI/SNF complexes in Drosophila, zebrafish, Xenopus, and mammals. The differential 

expression and known developmental functions of these remodelers are also briefly 

summarized in Table I.



T a b l e  1 Developmental roles of SWI2/SNF2 su bfamily members across species

PROTEINS
EXPRESSION PATTERNS FUNCTIONS REFERENCES

dBRM
- Ubiquitous in earlier stages 

- Restricted to neural tube in later stages

- Required for survival to early stages
- Peripheral nerve development
- Specification of anterior thorax, posterior head

segments
- Required for normal wing development

Simon and Tamkun 2002; Brizuela and Elfring 1994; 
Elfring et al. 1998; Marenda et al. 2004

xBRM Widespread, absent in branchial arches and 
tailbud

- Not Done Linder et al. 2004

mBRM - Not Done - Adult liver-specific albumin expression Inayoshi et al. 2006

zBRGl
- Ubiquitous in early stages
- Confined to anterior region in later stages

levelopment of neural tube
leural crest cell and retinal differentiation

Link et al. 2000; Gregg et al. 2003; 
Eroglu et al. 2006; Lewis et al. 2004

xBRGl
- Widespread, absent in hindbrain, 

spinal cord, pronephros and somites.
- Required for neuronal differentiation Linder et al. 2004; Seo et al. 2005

mBRGl
- (Maternal transcript) oocyte
- Ubiquitous in early stages
- Restricted to neural tissues in later stages

- Zygotic genome activation
- Implantation
- Differentiation of glial cells, neurons
- Differentiation of myelocytes
- Differentiation of bone and muscle
- Fetal liver-specific albumin expression

Bultman et al. 2006; Bultman et al. 2000; Matsumoto et 
al. 2006; Seo et al. 2005; Bottardi et al. 2006; Kadam and 
Emerson 2003; Gebuhr and Kovalev 2003;
Young et al. 2005;Roy et al. 2002, Ohkawa et al. 
2006;lnayoshi et al. 2006

SNF5/
INI1°

- Not Done - Essential before blastocyst hatching
- Liver development

Klochendler-Yeiven and Fiette 2000 
Gresh et al. 2005

Baf60c°
- Early embryonic heart and somites
- Nodal-expressing cells

- Cardiac and skeletal muscle differentiation
and heart morphogenesis

- Establishment of left-right asymmetry

Lickert et al. 2004 
Takeuchi et al 2007

0 Non-ATPase subunits of the SWI/SNF chromatin remodeling complex 
The known expression patterns and developmental functions of SWI2/SNF2 subfamily members are listed for several metazoan species. In many cases these proteins 
are essential for early development or for viability of individual cells; therefore some functions listed reflect data utilizing partial loss-of-function strategies and 
therefore cannot be considered an exhaustive list of functions, d: Drosophila melanogaster, z: zebrafish, x: Xenopus laevis, m: mammals (mouse or human).
Pronephros is primitive kidney, myelocytes are precursors to blood cells. Blastocyst hatching is the shedding of the early embryonic zona pellucida preparatory to 
implantation.

cn
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The role of SWI/SNF in Drosophila development

The SWI2/SNF2 homolog found in Drosphila melanogaster was named brahma 

after the Hindu god of fate, as it was originally identified as one of a group of genes 

(trithorax group) that determined cell fate. (Papoulas, 1998; Brizuela et al., 1994; 

Dingwall, 1995; Daubresse, 1999). The gene product BRM is similar enough to yeast 

Swi2/Snf2 that its ATPase domain is interchangeable with that of ySwi2, while that of 

Imitation Switch (ISWI, a member of a different SWI2/SNF2 subfamily) is not (Elfring, 

1994). BRM is the ATPase subunit of a protein complex analogous to ySWI/SNF 

(Dingwall et al., 1995).

Both maternal and zygotic BRM are required for normal embryogenesis. 

Unfertilized eggs contain maternal brm transcripts and depleting brm transcripts in eggs 

results in developmental defects as early as the cellular blastoderm stage. Brm function 

is required for normal oogenesis and proper expression of the segmentation gene 

engrailed (en) (Brizuela et al., 1994). Embryos lacking brm function die in late 

embryogenesis. Embryos heterozygous for brm mutations exhibit a variety of 

developmental defects (Elfring, 1998). Loss of function studies show that brm function 

is required for normal development of the peripheral nervous system in Drosophila.

During Drosophila embryogenesis the identities of anterior thoracic and 

posterior head segments, including the primordium of the larval salivary gland, are 

determined by one of the Antennapedia complex genes, sex combs reduced (Scr). The



Scr expression domain is initially determined by segmentation genes and later by 

homeotic genes of the Antennapedia and Bithorax complexes (Kennison, 1998). 

Regulation of Scr expression is maintained in later development by two antagonistic 

groups of gene products: outside of its normal domain of expression it is repressed by 

genes of the Polycomb group (Pc-G), while within its normal expression domain it is 

activated by those of the trithorax group (trx-G), including brm.

Other proteins of the trithorax group have been found to be orthologous to 

yeast SWI/SNF subunits, and to physically interact with BRM (reviewed in (Simon, 2002). 

The moira gene, encoding the protein MOR, is homologous to yeast SWI3, a subunit of 

the ySWI/SNF complex, and coimmunoprecipitates with BRM in Drosophila embryo 

nuclear extracts (Crosby, 1999). Moira and brm have strong genetic interactions in 

Drosophila (Papoulas et al., 1998). Another trx-G gene, osa,was found to interact 

genetically with brm to regulate Antennapedia expression (Vazquez, 1999). OSA 

contains an ARID domain also present in the yeast Sw il protein, another ySWI/SNF 

subunit. ARID domains usually confer non-sequence-specific DNA-binding function, with 

a general preference for AT-rich DNA binding; however, ySw il does not show significant 

DNA binding (Wilsker, 2004). Genetic analyses and loss of function studies have shown 

that SNR1, a homolog of the SWI/SNF subunit SNF5, interacts with BRM to regulate 

expression of genes involved in wing vein development (Marenda, 2004) and of 

ecdysone-responsive genes expressed at the larval-pupal transition (Zraly, 2006). 

Ecdysone is a steroid hormone required for the dramatic changes that occur during
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insect metamorphosis. The specific roles of these non-ATPase subunits have not been 

elucidated, but one likely function is that they may help recruit the Drosophila SWI/SNF 

complex to promoters of target genes (Armstrong, 2002; Armstrong, 2005).

Vertebrate SWI/SNF complexes

In vertebrates the paralogous genes brm and Brgl function as alternative ATPase 

subunits of the SWI/SNF chromatin remodeling complex (Wang, 1996). It is clear that 

BRM and BRG1 proteins have diverged in function as they interact with different groups 

of transcription factors (Kadam, 2003). Studies in a variety of vertebrate model 

organisms point to distinct roles for BRG and BRM in development, some of which are 

conserved across vertebrate evolution.

The roles of SWI/SNF in zebrafish development

In zebrafish, Brgl (encoded by the smarca4 gene) is required for normal 

development of retina, brain, and neural crest cells, and loss of Brgl function affects 

differentiation of the retina at a specific stage of development. In situ hybridization 

studies show that Brgl is expressed in early retinal development (Link, 2000; Gregg, 

2003). Brgl mutant (also known as "young" or yng) embryos develop an abnormal 

retinal morphology that is phenocopied by Brgl-specific morpholino injection. The 

same abnormal morphology occurs in embryos mutant for baf53, a subunit of SWI/SNF 

complexes known to bind Brgl. To further characterize the role of Brgl in retinal 

development, these researchers performed in situ hybridization in Brgl-deficient
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embryos to detect markers of specified retinal cell types (rx2 and vsx2). They found that 

the retinas of mutant embryos undergo a normal process of specifying retinal cells, an 

early step in retinal development, but at later stages the retinal cells fail to develop the 

normal morphology of terminally differentiated retinal cells and don't express late- 

differentiation antigens (e.g., Zn-1 antigen for red and green photoreceptors, and ID1 

antigen for rod photoreceptors). This indicates that Brgl is required for terminal 

differentiation of the retina but does not play a role in the earlier step of retinal cell 

specification.

In situ hybridization of zebrafish embryos from the one-cell stage through the 24 

hours post-fertilization (hpf) stage show that Brgl mRNA is ubiquitous until 24hpf, when 

the pattern becomes restricted to the anterior region of the embryo (Eroglu, 2006). 

Expression is most pronounced in the brain. Injection of Brgl-specific morpholino into 

zebrafish embryos causes the expansion of the domain of six3, a forebrain marker, and 

reduction of the domains of midbrain boundary marker engrailed2 (eng2) and the 

hindbrain marker krox20. Overexpression (by injecting Brgl-specific mRNA) has the 

opposite effect on six3.

In addition to the defects in brain and retinal development described above, 

these experiments also revealed defects in development of neural crest cells. Neural 

crest cells derive from ectoderm and migrate laterally through the embryo to become 

skin pigment cells, peripheral neurons and glia, and form the cartilage and bones of
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facial structures. Neural crest progenitor cells are induced at the gastrula stage in a 

process that requires function of the Wnt signaling pathway (Lewis, 2004). They later 

migrate away from neuronal cells and express neural crest specific genes.

Expression of neural crest specifiers is severely reduced in zebrafish embryos 

lacking Brgl function; the embryos exhibit defects in neural crest-derived structures and 

fail to express neural crest markers snail2,foxd3 and tfap2a (Eroglu et al., 2006). Eng2 

and snail2 are both targets of Wnt signaling; Brgl is known to bind the Wnt signaling 

pathway component |3-catenin and is recruited to the T-cell transcription factor 

(TCF/LEF) binding site of target genes including slug/snail2 (see (Gammill, 2003) for a 

review), so a role for Brgl in specific Wnt-dependent pathways is not surprising. While 

these studies have revealed a key role for zebrafish Brgl in the development of neural 

and neural crest-derived structures, little is known about corresponding roles of the 

zebrafish brm homolog (encoded by the smarca2 gene).

The roles of SWI/SNF in Xenopus development

Western analysis of staged Xenopus embryos (Gelius et al., 1999) shows that, as 

in zebrafish, BRG1 is present at all stages of oogenesis and embryogenesis and is 

expressed ubiquitously in early development, later to be restricted to neural tissues. In 

situ studies of whole mount embryos demonstrate distinct expression patterns for the 

Brgl and brm paralogs. For instance, at the tailbud stage brm is expressed in the
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hindbrain, spinal cord, pronephros and somites while Brgl is not, and Brgl is expressed 

in branchial arches and tailbud while brm is not (Linder, 2004).

Loss of BRG1 function in Xenopus prevents differentiation of neurons from 

proneural cells (Seo, 2005). The Neuron-specific tubulin (N-tubulin) gene is specifically 

expressed in differentiated neurons, dependent upon the proneural activities of the 

basic helix-loop-helix (bHLH) transcription factors Neurogenin-related-1 (Ngnrl) and 

NeuroD. Loss of Brgl function results in both a reduction of N-tubulin expression and a 

failure of Ngnrl and NeuroD to promote neuronal differentiation. Consistent with a 

direct role for Brgl in neuronal differentiation, Brgl coimmunoprecipitates with Ngnrl 

and NeuroD. An analogous relationship between Brgl and NeuroD2 was also 

demonstrated in a mammalian cell line that can be induced to differentiate into neurons 

by NeuroD.

The roles of SWI/SNF complexes in mammalian development

Considerable evidence shows that alternative mammalian SWI/SNF complexes 

containing either BRG1 or BRM perform different functions in vivo, despite the 

similarities between these complexes. GST pulldowns have demonstrated that BRG1 but 

not BRM binds to zinc finger transcription factors in vivo, while BRM but not BRG1 binds 

to ankyrin repeat proteins involved in the Notch signaling pathway. While overall the 

two proteins share 75% homology, BRG1 contains an N-terminal motif known to bind 

zinc finger proteins that is absent in the BRM protein (Kadam et al., 2003).
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A number of studies of mouse development highlight the differences in BRG1 

and BRM expression patterns and functions in development, brg l-null mouse embryos 

die around the time of implantation of the blastocyst while brm null mice exhibit only a 

mild phenotype (Bultman, 2000). As in zebrafish and Xenopus, BRG1 is expressed early 

in mouse development but progressively this expression becomes more restricted to 

neural tissue.

RT-PCR of Brgl and brm transcripts in mouse oocytes and embryos indicates that 

while both are abundant as maternally-derived products, only BRG1 is expressed at the 

start of zygotic transcription (LeGouy, 1998). Zygotic BRM expression begins later at the 

blastocyst stage when differentiation begins, and only in the inner cell mass. Similarly in 

Rhesus embryos monitored by RT-PCR, Brgl expression begins at the morula stage while 

brm zygotic expression begins later, at the hatched blastocyst stage (Zheng, 2004). In 

embryos conceived from conditional Brgl mutant-derived eggs, Brgl depletion leads to 

a zygotic genome activation failure that includes arrest at the two-cell stage and 

downregulation of about 30% of expressed genes (Bultman, 2006).

To visualize the expression of BRG1 and BRM in embryonic tissues, mouse 

embryo sections were immunostained with antibodies to BRG1 and BRM (Dauvillier, 

2001). While BRG1 is expressed widely in embryos, BRM expression is restricted to 

mesodermal tissues involved in vasculogenesis, allantois (umbilical cord precursor), 

vitelline arteries, yolk sac and cardiogenic plate. As they are required early in
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postimplanation development, these tissues are the first to be determined, coinciding 

with the onset of BRM expression.

In addition to its role in early embryonic viability, BRG1 has been implicated in a 

number of tissue-specific differentiation events, including differentiation in 

hematopoietic lineages. The zinc-finger protein Erythroid Kruppel-like factor (EKLF), 

required for tissue-specific expression of P-globin genes, associates with BRG1 in vitro, 

and in vivo is required for BRG1 recruitment to the P-globin Locus Control Region and 

promoter (Bottardi, 2006; Kadam, 2000). Mice with a partial loss-of-function mutation 

of Brgl exhibit a failure to switch from primitive yolk-sac-derived erythrocytes to 

definitive fetal-liver-derived erythrocytes, resulting in severe anemia and death at 

midgestation (Bultman, 2005). Paradoxically, other tissues develop normally in the 

mutant embryos, possibly because brm is expressed in those tissues and may 

compensate for the brgl partial loss of function, whereas brm expression is absent in 

erythrocyte precursors.

Brgl loss of function also leads to a developmental block in myeloid 

differentiation to granulocytes at the promyelocyte/metamyelocyte precursor stage 

(Vradii, 2006). T lymphocyte-specific inactivation of Brgl in mice leads to CD4 

derepression at the double negative (CD4-CD8-) stage of T cell development and a 

subsequent failure to develop to the next (CD4+ CD8+ double positive) stage of 

development (Gebuhr, 2003).
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BRG1 is expressed in neural stem cells that give rise to both neurons and glial cell 

fates (astrocytes and oligodendrocytes) (Matsumoto, 2006). Targeted loss of BRG1 

function in neural stem cells results in reduced expression of proteins required for stem 

cell maintenance, such as Pax6 and Soxl. Furthermore, BRG1 is required for gliogenesis, 

as brg l-null neural stem cells are unable to differentiate into glial cells and instead 

adopt neuronal fates. However, other studies have implicated BRG1 in neuronal 

differentiation as well. BRG1 is highly expressed in the mantle zone of the spinal cord in 

embryonic (day 12) mice; the mantle zone contains post-mitotic neurons whereas the 

underlying ventricular zone contains dividing neural stem cells and is the primary site of 

neural differentiation (Randazzo et al., 1994); this suggests a post-differentiation role for 

BRG1 as well. Also, as noted above, interference with BRG1 function prevents neuronal 

differentiation driven by NeuroD2 in a mouse cell line that can be induced to 

differentiate into neurons (Seo et al., 2005).

Indra and colleagues performed a set of experiments to specifically ablate BRG1 

function in the surface ectoderm of developing mice, which gives rise to the dermal and 

epidermal layers of the skin (Indra, 2005). They constructed transgenic mice containing 

LoxP-flanked Brgl alleles and the Cre recombinase. The Cre recombinase was under the 

control of the K-14 promoter, which is active in surface ectoderm and the basal layer of 

the epidermis. While ablation of Brgl does not alter the early differentiation of 

keratinocytes, it does cause failure of the final stages of their differentiation, resulting in 

disruption of the skin permeability barrier. The loss of Brgl in developing limb
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ectoderm results in profound hindlimb defects, indicating a role for BRG1 in limb 

patterning. Intriguingly, while BRM cannot substitute for BRG1 in limb formation, BRM 

does partially compensate for lack of BRG1 in terminal keratinocyte differentiation, 

revealing both redundant and non-redundant functions for BRM and BRG1.

Finally, BRG1 may also play an important role in bone and muscle differentiation. 

Young and colleagues demonstrated that BRG1 is expressed in the developing mouse 

skeleton, and showed that it is required for Bone Morphogenic Protein 2 (BMP2)- 

dependent induction of alkaline phosphatase (Young, 2005). Alkaline phosphatase is an 

early marker of osteoblast differentiation, dependent on the Runx2 transcription factor.

Studies of embryonic tissue and of cultured cells have revealed a requirement 

for BRG1 activation of genes required for muscle differentiation. In cultured fibroblasts 

inducibly expressing dominant negative BRM or BRG1, each of the basic helix-loop-helix 

myogenic regulatory factors MyoD, Myf5, Mrf4 require BRG1 or BRM to mediate 

expression of the myogenic markers myosin heavy chain and troponin T (Roy, 2002). 

Chromatin immunoprecipitation (ChIP) studies of differentiated embryonic muscle 

tissue demonstrate that myogenin binds at its own promoter and associates with BRG1 

(Ohkawa, 2007). In cultured fibroblasts, BRG1 is required for MyoD-mediated myogenin 

expression, and that this is accompanied by chromatin remodeling at the promoter(de 

la Serna, 2001). These results suggest that BRG1 is required for both induction of 

myogenin expression by MyoD in early myogenesis, and subsequent maintenance of
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expression by myogenin itself. These studies have also been extended into whole 

animals. In developing mouse embryos, RT-PCR and ChIP analyses demonstrate that 

myogenic late marker genes are expressed concomitant with the binding of BRG1, 

myogenin and Mef2D (a myogenic cofactor) to their promoters (Ohkawa, 2006).

Roles of SWI/SNF complexes in human development

The human homologs of SWI2/SNF2 and Brahma are designated human brahma 

(hbrm) and Brahma related gene 1 (Brgl) (Randazzo et al., 1994; Muchardt, 1993; 

Khavari et al., 1993; Chiba, 1994). Mammalian SWI/SNF complexes directly interact with 

regulatory proteins such as retinoblastoma protein, cyclin E and with a large number of 

transcription factors (Dunaief, 1994; McKenna, 1999; Glass, 2000).

Obviously, most work on the roles of BRG1 and BRM in development comes from 

studies in mice, as described in the previous section, or in work in cell culture models for 

different pathways of differentiation. However, some work has addressed how these 

results may translate to humans. For example, immunostaining of normal human tissue 

sections for BRG1 or BRM reveals different expression patterns for the paralogs. BRG1 

is predominantly found in highly proliferative cell types (e.g., endodermal and 

ectodermal epithelium, B germinal centers of tonsils and spleen) while BRM is 

predominantly expressed in non-proliferating tissues such as brain and liver (Reisman, 

2005). These different expression patterns are consistent with a number of the studies 

described above, in which BRG1 is commonly required for survival of proliferating cells
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and early stages of differentiation, while BRM may play a more critical role in terminally 

differentiated, non-dividing cells.

Non-ATPase subunits of SWI/SNF complexes

It is well established that in interactions between SWI/SNF complexes and target 

genes, the ATPase subunit performs the same basic function, that of translocating 

nucleosomes along the DNA to facilitate regulation of the gene by other factors. The 

functions of the eight or more other subunits of SWI/SNF complexes have received 

relatively less attention from investigators.

Several studies have demonstrated that the SNF5/INI1 subunit, present in both 

BRG1- and BRM-containing SWI/SNF complexes, is also essential for mouse 

development (Klochendler-Yeivin, 2000; Guidi, 2001). While mice heterozygous for 

SNFR5/INI1 survive (albeit with an increased incidence of tumor formation), nullizygous 

embryos do not survive beyond the blastocyst stage. In culture, wild type blastocysts 

hatch from the zona pellucida and form a trophectoderm, but the nullizygous embryos 

fail to do so. These results, along with the results for brg l-null mice described above, 

make it clear that the SWI/SNF complex is essential for early development in mouse.

Conditional inactivation of the SNF5/INI1 subunit of SWI/SNF complexes in the 

developing mouse liver results in neonatal death accompanied by liver defects, including 

improper formation of hepatic epithelium and a failure to store glycogen (Gresh, 2005). 

Microarray analysis reveals that 70% of the genes normally upregulated during liver
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development show reduced expression in SNF5/INIl-deficient mice. Interestingly, 

another study in hepatocytes revealed a requirement for BRG1 in expression of the 

liver-specific albumin gene in fetal hepatocytes, while expression of the same gene in 

hepatocytes from adult liver requires BRM (Inayoshi, 2006). These authors showed that 

BRG1 levels decrease and BRM levels increase during liver cell differentiation, consistent 

with other examples (discussed above) of roles for BRG1 and BRM in proliferating and 

post-mitotic cells, respectively

Another example of combinatorial assembly of SWI/SNF complexes is revealed 

by the alternative forms of Baf60: Baf60a, Baf60b and Baf60c, encoded by the 

Smarcadl, Smarcad2 and Smarcad3 genes, respectively. Baf60c is expressed specifically 

in the heart and somites of early mouse embryos (Lickert, 2004), suggesting that 

SWI/SNF complexes may have different subunit compositions in different tissues. In 

transgenic embryos, elimination of Baf60c by RNA interference disrupts normal cardiac 

and skeletal muscle differentiation and heart morphogenesis. In FleLa cells 

immunoprecipitation of BRG1 and epitope-tagged cardiac transcription factors shows 

that Baf60c is necessary for the interaction of BRG1 with cardiac transcription factors.

In zebrafish, Baf60c is expressed at late gastrulation in cells surrounding the 

forerunner of the ciliated organ of asymmetry, Kuppfer's vessicle (KV) analogous to the 

mouse node (Takeuchi, 2007). When left-right (LR) asymmetry arises during early 

somitogenesis, Baf60c is strongly expressed in notocord and around the KV, and later in 

eye, midbrain, forebrain and KV. In developing mice, Baf60c is expressed in the Nodal-
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expressing cells at the periphery of the node. The normal breaking of bilateral symmetry 

requires the secretion of the Nodal protein in cells at the periphery of the node. 

Expression of Nodal requires both a functional Notch signaling pathway and functional 

Baf60c. Bac60c loss of function causes defective LR asymmetry such as abnormal 

looping of the heart. Expression of genes associated with the cascade of asymmetry 

establishment (e.g., Ieftyl,2,3) is also perturbed. Morpholino knockdown of zebrafish 

Baf60c causes leftyl,2,3 and southpaw to be misexpressed or not expressed, 

demonstrating the conservation of functional relationships among these proteins in 

vertebrates.

In summary, the results discussed here indicate that BRG1- and BRM-containing 

SWI/SNF complexes have mostly non-redundant functions in vertebrate development. 

While their biochemical activities and certain other functions may overlap, their roles 

have diverged dramatically in the course of vertebrate evolution. Numerous examples 

support a division of labor in which BRGl-containing complexes are critical for the 

survival of dividing cells, maintenance of pluripotency, and early stages of 

differentiation, while BRM-containing complexes may have more restricted roles in 

terminal differentiation and transcriptional regulation in post-mitotic cell populations.

The ISWI subfamily

The ISWI family is the largest and most diverse subfamily of ATP-dependent 

remodelers characterized thus far. In addition to the SWI2/SNF2 superfamily ATPase
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domain, members of the ISWI family are distinguished by the SANT-SLIDE domains in the C- 

terminal half of the protein. The ISWI protein was first identified in Drosophila, in which it is 

found in three different chromatin remodeling complexes: NURF (nucleosome remodeling 

factor), ACF (ATP-dependent chromatin assembly and remodeling factor), and CHRAC 

(chromatin accessibility complex) (Tsukiyama, 1995a; Becker, 1994; Tsukiyama, 1994; 

Tsukiyama, 1995b; Ito, 1997). Subsequently, ISWI-containing complexes have been 

identified in yeast, Xenopus, Arabidopsis and mammals. There are two ISWI homologs in 

budding yeast, Iswland Isw2 (Tsukiyama et al., 1994) that are present in the lsw la , Iswlb, 

and lsw2/yCHRAC complexes (Tsukiyama, 1999; Vary, 2003; lida, 2004). In Xenopus three 

ISWI-containing complexes have been characterized: ACF, CHRAC and WICH (Guschin, 2000; 

Bozhenok, 2002). Mammals have two ISWI homologs, SNF2L and SNF2H, which show tissue- 

specific expression patterns (Barak, 2004b). SNF2H is present in at least 7 different 

complexes, including RSF (remodeling and spacing factor) (LeRoy, 1998; Loyola, 2003), 

hACF/WCRF (WSTF-related chromatin-remodeling factor) (Bochar, 2000; LeRoy, 2000), 

hCHRAC (Poot, 2000), hWICH (Bozhenok et al., 2002), hB-WICH (Cavellan, 2006), and NoRC 

(nucleolar remodeling complex) (Strohner, 2001). SNF2H has also been found to be 

associated in a large complex containing cohesin and subunits of the NuRD complex 

(nucleosome remodeling and histone deacetylase complex) that contains the Mi-2 ATPase (a 

member of the CHD subfamily (Hakimi, 2002). SNF2L is the catalytic subunit of the hNURF 

complex (Barak, 2003) and CERF (CECR2 containing remodeling factor) complex (Banting, 

2005). Recently, a Caenorabditis elegans ISWI homolog (isw-1) was identified, which
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appears to be present in a C. elegans NURF complex along with a nematode ortholog of 

NURF301 called NURF-1 (Andersen, 2006). A detailed account of the subunit compositions 

of all the ISWI complexes and their homologies in different species is reviewed elsewhere 

(Dirscherl et al., 2004; Mellor, 2006), and Mellor and Morillon (Mellor, 2004) provide an 

excellent review of the functions of yeast ISWI complexes. Here we will concentrate on the 

developmental roles of these ISWI complexes in multicellular organisms.

Developmental roles of the ISWI ATPase

Because ISWI is present in so many different complexes, studies of the in vivo roles of 

ISWI are complicated by the need to dissect the role of ISWI in the context of these 

different complexes. Two general strategies are generally taken: interference with the 

function of ISWI itself, which is assumed to impact all ISWI-dependent complexes, and 

inhibition of specific subunits within individual ISWI-containing complexes. We will first 

discuss the developmental roles of ISWI itself, then we will discuss data that address the 

roles of specific ISWI complexes in development. The developmental roles of these ISWI 

complexes have also been summarized in Table 2.

In Drosophila, null mutations in ISWI are lethal, resulting in death at the late 

larval/early pupal stages (Deuring, 2000). In order to study the role of this essential 

gene, these researchers used somatic clonal analysis (in which patches of ISWI mutant 

tissue are generated in viable heterozygous animals) and dominant-negative ISWI 

mutants to study the effects of loss of ISWI in different tissues during development. In
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fact, any tissue expressing dominant-negative ISWI results in subsequent loss of 

corresponding adult structures derived from that tissue, indicating that ISWI is globally 

required for either cell viability or division. Before death at early pupal stages, iswi 

mutants also show defects in transcription of the segmentation gene engrailed and the 

homeotic gene Ultrabithorax. Additionally, the structure of polytene chromosomes is 

altered in iswi mutants, particularly the male X chromosome, which is much shorter and 

broader than wild type. This could reflect a defect in replication or chromatin assembly 

in these mutant larvae.

Drosophila ISWI is also required for the maintenance of the self-renewal activity 

of germline stem cells (GSC) in the ovary (Xi, 2005). A FLP-mediated recombination 

method was used to eliminate ISWI function in GSCs. 99% of the homozygous iswi 

mutant germline stem cells are lost within a two-week period after elimination of ISWI, 

compared to 35% loss of wild type GSCs. The GSC division rates in iswi mutants are also 

reduced compared to wild type, suggesting that ISWI is required to stimulate division of 

GSCs.

In Xenopus, ISWI is also essential for survival during early development, 

particularly neurulation, and is also critical for later stages of neural development and 

retinal differentiation (Dirscherl, 2005). Inhibition of ISWI in vivo with anti-ISWI 

morpholinos or a dominant negative ISWI mutant leads to defects in gastrulation and 

neural fold closure, aberrant eye development, and formation of cataracts. It also leads
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to misregulation of a number of genes required for neural patterning and development, 

such as Sonic hedgehog (S/7/7 ) and Bone Morphogenetic Protein 4 (BMP4).

The two ISWI homologs in mammals, SNF2H and SNF2L, perform different functions in 

vivo. While both of these genes are expressed in nervous tissue and gonads in mice, 

they are expressed at different times or in different subpopulations within these tissues 

(Lazzaro, 2001). SNF2FI is transiently up-regulated in proliferating neural cell 

populations during embryogenesis and early post-natal development, while SNF2L 

expression is increased in terminally differentiated neurons after birth and in adult 

animals. Similarly, SNF2FI is also expressed in proliferating cells within the ovary and 

testis, while SNF2L is prevalent in differentiated cells in these tissues. This is 

reminiscent of the separation of function between proliferating and post-mitotic cells 

observed for BRG and BRM, discussed earlier.

The expression patterns of SNF2H and SNF2L differ somewhat between mouse 

and human. In adult mice, SNF2FI is expressed ubiquitously and SNF2L is restricted to 

the brain and gonad, while in humans, SNF2FI and SNF2L are both ubiquitously 

expressed (Barak, 2004a). However, in humans, a splice variant of SNF2L called 

SNF2L+13 is highly expressed in non-neuronal tissue. SNF2L+13 lacks chromatin- 

remodeling activity; therefore, functional SNF2L dominates in the nervous system, while 

in other tissues the inactive isoform is the predominant source of SNF2L. This limits the 

major activity of SNF2L to the nervous system, as in mice. This differential pattern of



Table 2 Developmental roles of ISWI subfamily members across species

PROTEINS EXPRESSION PATTERNS FUNCTIONS REFERENCES

dISWI - Restricted to CNS and gonads 

after germ band retraction

- Essential for late larval /early pupal development

- Self renewal of GSCs
Elfring et al. 1994; Deuring et al.2000

xlSWl - Brain, neural tube , eye - Essential for normal neural and eye development Dirscherl and Krebs 2005

mISWI

- (mouse) SNF2H is ubiquitously
expressed but SNF2L is restricted to 
brain and gonads

- (human) SNF2L and SNF2H are

ubiquitously expressed

- Normal differentiation and survival of embryo
- Corpus luteum formation
- Blood cell formation
- engrailed genes expression

Stopka and Skoultchi 
2003; Lazzaro et al. 2006; 

Barak et al. 2004

dNURF301a
- Not Done except wing 

Expression
- Essential for late larval/early pupal 

Metamorphosis

Badenhorst et al., 2002b; Badenhorst et al. 
2005; Deuring et al. 2000

xBPTFb - Not Done
- Essential for normal body axis, gut 

Development
Wysocka et al. 2006

mBPTF
- Flippocampusand cerebellum of adult 

mouse brain

- Required for normal expression of engrailed 
genes involved in mid-brain development

Barak et al. 2003

dTauc
- Dorsal most thoracic region, wing 

imaginal disc, wing pouch
- Essential for sensory organ development Vanolst et al. 2005

xWSTF6 - Eye, brain, neural crest cells - Essential for normal eye and CNS development
Cus et al. 2006; S.M., J. Flenry, and 
J.E.K., unpublished results

mCECR2d - Throughout nervous tissue - Essential for neurulation Banting et al. 2005

“ subunit of NURF complex; b subunit of NURF complex; c TIP-5 related protein; d subunit of CERF complex; “ subunit of WICFI complex

The known expression patterns and developmental functions of ISWI subfamily members are listed for several metazoan species. In many cases these proteins are 
essential for early development or for viability of individual cells; therefore some functions listed reflect data utilizing partial loss-of-function strategies and therefore 
cannot be considered an exhaustive list of functions, d; Drosophila melanogaster, x; Xenopus laevis, m; mammals (mouse or human). Flippocampus is a part of the 
brain involved in memory and spatial navigation; the sensory organ denotes the Dorso-Central bristle; CNS, Central Nervous System; GSC, Germline Stem Cell.

NJ
Ln
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expression probably suggests different developmental functions of these two homologs.

Consistent with the ubiquitous expression of SNF2H, and its upregulation in 

highly proliferative cells, snf2h homozygous mutant mice embryos die at the peri- 

implantation stage (Stopka, 2003). Outgrowth of blastocysts in vitro is also impaired in 

these mutant mice due to growth arrest, loss of normal differentiation of the 

trophoectoderm and inner mass cells, and ultimately cell death within 3-6 days of 

culture. These researchers also inhibited SNF2H in human primary hematopoietic 

progenitors, which then failed to differentiate into mature erythroid cells upon cytokine 

induction, indicating roles for SNF2H in both embryonic and adult differentiation 

programs.

Recent studies indicate that SNF2L may play a key role in the development of the 

corpus luteum in mammalian cells (Lazzaro, 2006), in keeping with the restriction of 

mouse SNF2L expression to gonad and brain. While SNF2H is strongly expressed during 

growth of preovulatory follicles, SNF2L expression peaks during the process of 

luteinization, which represents the final stage of differentiation of the ovarian follicle. 

SNF2L interacts directly with Progesterone Receptor A, which is essential for activation 

of genes required for ovulation. Gonadotropin stimulation, which initiates 

luteinization, leads to binding of SNF2L to the proximal promoter of the StAR 

(Steroidogenic acute regulatory protein) gene, which is essential for steroidogenesis.
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Elimination of SNF2L results in a failure to activate StAR, interfering with a key stage in 

the luteinization process.

All the findings described above indicate that ISWI proteins play a wide and 

crucial role in development, including fundamental roles in cell viability, as well as more 

specific functions in embryogenesis, development of normal reproductive organs, and 

development of neural tissues. In the following section, we will dissect the 

developmental roles of individual ISWI complexes, where the functions of individual 

complexes have been addressed.

Developmental roles of individual ISWI complexes

In this section we will focus on the NURF, NoRC, CERF, WICH, and CHIRAC 

complexes. The WICH and CHRAC complexes have some functional links, in that both 

may be involved in preventing the spread of heterochromatin and aiding in the 

movement of the replication fork through heterochromatin (Bozhenok et al., 2002; 

Collins, 2002). On the other hand NURF, NoRC, and WICH/B-WICH complexes have all 

been shown to have roles in transcriptional regulation. The NURF complex in humans is 

known to be involved in transcriptional activation (Barak et al., 2003), while other ISWI 

complexes appear to be primarily involved in transcriptional repression. NoRC is 

involved in repression of Pol I transcription (Zhou, 2002), and the yeast ISWI complexes 

repress a wide variety of genes (Fazzio, 2001; Goldmark, 2000; Kent, 2001; Ruiz, 2003; 

Vary et al., 2003). The conservation of different ISWI complexes may also reflect similar
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developmental roles of these complexes in different species. Most is known about the 

NURF complex; therefore, we will begin by illustrating its developmental role in 

different species.

NURF complex

The NURF complex was first identified in Drosophila. It consists of four subunits: 

ISWI, NURF38 (inorganic pyrophosphatase), NURF 301, and NURF55 (Gdula, 1998; 

Martinez-Balbas, 1998). In vivo studies show that, as for the iswi mutants described 

above, null mutations of nurf301 result in embryonic lethality during late larval/early 

pupal stages (Badenhorst, 2002a). nurf301 mutations result in impaired transcription of 

Ultrabithorax (Ubx) and engrailed (en), as was the case for iswi mutants, as well as the 

hsp70 and hsp26 heat shock genes. In homozygous nurf301 mutants, expression of ubx 

is undetectable in haltere and third leg discs of third instar larvae. Loss of UBX protein 

leads to homeotic transformation where the third thoracic segment (which normally 

includes the vestigial haltere and no sensory bristles) transforms into the second 

thoracic segment, resulting in increased size and sensory bristle development, and 

transformation of the haltere towards the wing fate. Also, normal expression of EN in 

the posterior compartment of the haltere and the leg discs in these mutants is reduced. 

In nurf301 mutants the females are sterile and the males have highly aberrant X 

chromosome that is reduced in length and breadth, again consistent with the effect of 

an iswi mutant, suggesting that the major developmental phenotypes observed in iswi
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mutants are primarily due to loss of the NURF complex (Badenhorst, 2002b; Deuring et 

al., 2000).

Comparison of genome-wide expression profiles of wild type and nurf301 flies 

reveals that NURF regulates a large number of ecdysone-responsive genes (Badenhorst,

2005). Ecdysone is a steroid hormone required for the dramatic changes that occur 

during insect metamorphosis. Upon ecdysone binding, the ecdysone receptor activates 

numerous genes during larval-pupal development in wild type flies; however, these 

transcriptional changes are absent in nurf301 mutants. Purified NURF complex 

physically associates with ecdysone receptor. The data indicate that the Drosophila 

NURF complex is required for ecdysteroid signaling and metamorphosis.

Human NURF, containing the SNF2L ATPase, has been implicated in 

transcriptional activation of genes involved in neuronal development in the mid

hindbrain (Barak et al., 2003). Depletion of snf2l by RNAi results in downregulation of 

the human engrailed genes en-1 and en-2 (regulators of midbrain development), which 

are homologs of the Drosophila en gene that also requires NURF for its proper 

expression (described above). Likewise, depletion of the human NURF301 homolog, 

BPTF (Bromodomain and PHD finger Transcription Factor) results in reduced expression 

of en-1 and probably en-2. Transfection of a mouse neuroblastoma cell line with wild 

type SNF2L results in significant potentiation of neurite outgrowth, also consistent with 

the role of NURF in promoting neural development in mammals.
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Recent work has uncovered a developmental role for a C.elegans NURF complex, 

containing ISW-1 and a NURF301 homolog NURF-1 (Andersen et al., 2006). This study 

implicated worm NURF in promoting vulval cell fates, in opposition to several negative 

regulators of vulval development, such as the worm homolog of the NuRD complex (see 

below).

Recent in vitro and in vivo studies in mammals and in vitro studies in Drosophila 

suggest that BPTF in humans and NURF301 in Drosophila, through their PHD zinc finger 

domains, specifically associate with trimethylated lysine 4 of histone H3 (H3K4) 

(Wysocka et al., 2006). Trimethylated H3K4 marks the transcription start site for almost 

all active genes (Ruthenburg, 2007). Depletion of trimethylated H3K4 results in 

dissociation of BPTF and SNF2Lfrom the HOXC8 promoter, which results in a 

compromised pattern of expression of this gene during development. In Xenopus, 

depletion of BPTF mRNA by anti-BPTF morpholino injection leads to axial deformities, 

gut mis-patterning, and blood defects. Xenopus BPTF depletion also causes 

deregulation of HOXC8 expression, leading to posteriorization of Hox expression by 

several somite lengths (Wysocka et al., 2006). Thus the axial deformities and 

posteriorization of Hox expression in BPTF-depleted Xenopus embryos and homeotic 

transformation in nurf301 mutant flies (as mentioned earlier) might indicate a general 

role of NURF complex in proper patterning of cells leading to a normal morphology 

during development.
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NoRC complex

The mammalian NoRC complex consists of a heterodimer of SNF2H and TIP5. It 

is responsible for transcriptional repression of Pol I genes, and acts by recruiting co

repressors to the rDNA promoters and by positioning nucleosomes to silence 

transcription (Zhou et al., 2002; Li, 2006b); recruitment of NoRC appears to require 

intergenic transcription from the rDNA intergenic spacers (Mayer, 2006). While a role 

for NoRC in mammalian development has not been investigated, in Drosophila the TIP5- 

related Tou (Toutatis) protein is necessary for sensory bristle development in 

association with Pnr (Pannier, a transcription factor that binds dorsocentral enhancer) 

and its co-factor Chip (Vanolst, 2005). Tou interacts directly with Iswi in both yeast and 

Cos cells, and Iswi also positively regulates Pnr/Chip function. This suggests that Tou 

and ISWI may act as subunits of the same multiprotein complex influencing sensory 

organ development. It is not yet known whether a Drosophila NoRC complex also 

represses Pol I transcription, or whether the mammalian NoRC complex has additional 

roles in regulation of Pol II genes.

CERF complex

CERF (CECR-2 containing remodeling factor) is a heterodimeric chromatin 

remodeling complex identified in mouse, which consists of CECR-2 (cat eye syndrome 

chromosome region candidate-2) and SNF2L (Banting et al., 2005). CECR-2 is mostly 

concentrated in nervous tissue. Homozygous mutant mice, generated by a Cecr2 gene-
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trap-induced mutation, exhibit exencephaly, a neural tube defect which is similar to 

human anencephaly and arises due to failure of neural tube closure in the midbrain.

This is reminiscent of the neural tube closure defects observed in ISWI knockdowns in 

Xenopus (Dirscherl et al., 2005). There is also a lack of cranium formation and lack of 

eyelids in exencephalic cerc-2^ mice. As discussed above, murine SNF2L has previously 

been proposed to have a role in neural development, particularly in later stages of 

differentiation; however, there is not a snf2l knockout mouse available for study. The 

identification and characterization of this SNF2L-containing CERF complex provides 

direct evidence for a role of SNF2L in normal neurogenesis.

WICH complex

The WICH complex has been identified in both mammals and in Xenopus, and 

consists of WSTF (Williams Syndrome Transcription Factor) and ISWI/SNF2H. WSTF was 

first identified in a search for genes deleted in Williams syndrome, which is an 

autosomal dominant hereditary disorder characterized by mental retardation, growth 

deficiency, elfin face and congenital vascular lesions (Lu, 1998). These developmental 

defects cannot all be attributed to lack of WICH function, as other genes are also 

deleted in Williams syndrome patients. In Xenopus embryos WSTF is differentially 

expressed in neural tissue, especially in the eye, brain and neural crest cells (Cus, 2006) 

and our unpublished results). Our own work has revealed that inhibition of Xenopus 

WSTF results in severe defects in eye and central nervous system development (S.M., J.J.
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Henry, and J.E.K., unpublished), indicating that a number of ISWI complexes play 

different roles in neural development in numerous species. Because WICH (and related 

B-WICH) complexes have been implicated in both transcriptional regulation and DNA 

replication, it will be interesting to see which of these functions is primarily responsible 

for the observed developmental defects.

The CHD subfamily

Numerous Chromodomain Helicase DNA-binding (CHD) proteins have been 

characterized in eukaryotes. As stated in the introduction, each contains two 

chromodomains that interact with methylated histone tails; some members of the CHD 

family also contain PHD domains, which have also been implicated in methyl-lysine 

recognition, while others have AT-rich DNA binding motifs (Wysocka et al., 2006; Shi et 

al., 2006; Pena et al., 2006; Li et al., 2006a; Woodage et al., 1997). Ruthenburg and 

colleagues have written an excellent recent review of methyl-lysine recognition by 

chromodomains and PHD fingers (Ruthenburg et al., 2007). Here we will describe the 

known roles of CHD family members in animal development, beginning with the best- 

characterized CHD proteins, CHD3/4 (also known as Mi-2a/(3). Data for the CHD 

subfamily is also highlighted in Table III.
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Table 3 Developmental roles of CHD subfamily members across species

PROTEINS EXPRESSION PATTERNS FUNCTIONS REFERENCES

cLET-418
CHD-3

- Not Done

- LET-418 required for development to 
the first instar larva
- Antagonize vulval cell fate 

determination

Zelewsky et al. 
2000

dMi-2° - Not Done

- Essential for development to the first or 
second instar larva

- Represses homeotic genes mediated by 
Hunchback and Polycomb
- Represses proneuronal gene expression

Kehle et al. 1998 
Yamasaki and 
Nishida 2006

dp66° - Not Done

- Required for normal metamorphosis
- May be required for ecdysone- 
mediated gene

Expression

Kon et al. 2005

XCHD2/
mCHD2t

- Eyes and neural tube
- Branchial arches
- Otic vessicle 
(presumptive ear)

- Essential for survival to perinatal stage

Linder et al. 
2004
Marfella et al. 
2006

xCHD4/m
CHD4/Mi-

2pob

- Eyes and neural tube

- Branchial arches
- Otic vessicle 
(presumptive ear)
- Somites

- Required for early stages of thymocyte 
differentiation
- Required for expression of CD4 surface 
marker
- Required for proliferation of mature T 

lymphocytes
- May function in nerve myelination

Linder et al. 
2004

Williams et al. 
2004
Srinivasan et al. 
2006

xCHD5/
mCHDS6

- Fetal and adult brain
- Otic vessicle 
(presumptive ear)
- Adrenal gland

- Possible role in development of nervous 
system

Thompson et al.

2003
Linder et al.
2004

mCHD7
- Precursors of eye, ear, 
kidney, vascular system, 
olfactory epithelium

- Essential for survival to perinatal stage
- Functions in normal closure of optic 
fissure, inner ear, heart and

genitourinary and inner ear 
morphogenesis

Sanlaville et al. 
2006
Aramak et al.

2007(Bosman,
2005)
Aramaki et al. 
2006

° Subunit of NuRD complex;b Expression studies were done for Xenopus only and functional studies for mammals only

The known expression patterns and developmental functions of CHD subfamily members are listed for several 
metazoan species. In many cases these proteins are essential for early development or for viability of individual cells; 
therefore some functions listed reflect data utilizing partial loss-of-function strategies and therefore cannot be 
considered an exhaustive list of functions, c: C. elegans, d: Drosophila melanogaster, x: Xenopus laevis, m: mammals 
(mouse or human). Hunchback and Polycomb are transcription factors that repress HOX gene expression.
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CHD3/Mi2a and CHD4/Mi26: NuRD complexes

The CHD4 protein was initially identified by Seelig and colleagues in 1995 as the 

dermatomysitis-specific autoantigen Mi-2 (antigen recognized by patient Mitchell's 

autoimmune antibodies 2) (Seelig, 1995). Subsequently, several groups identified a 

related set of remodeling complexes containing either CHD3 or CHD4 as the ATPase 

subunit. These complexes include the Xenopus Mi-2 complex (Wade, 1998) and the 

human complexes NuRD/NURD/NRD (Zhang, 1998; Xue, 1998; Tong, 1998); we will refer 

to these generically as NuRD. NuRD complexes, which generally function as 

transcriptional repressors, also contain histone deacetylases, methyl DNA binding 

proteins (MBD2 or MBD3), members of the MTA

(metastasis-associated) protein family, and Rb-associated proteins RbAp48/p46 

(reviewed in (Bowen, 2004).

Two Mi2 homologs in C. elegans, CHD-3 and LET-418, play essential and non

identical roles in embryogenesis and vulval development (von Zelewsky, 2000). Null 

mutations in let-418 are homozygous lethal at the L I larval stage, while chd-3 null 

animals are viable. However, combination of chd-3 and let-418 mutations results in 

early embryonic arrest, suggesting some redundant functions in early embryogenesis. 

These authors also showed that CHD-3 and LET-418 are negative regulators of vulval cell 

fate determination, and act by antagonizing the Ras signaling pathway required for
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vulval induction—a role in vulval cell specification that opposes that described for the 

ISWI-containing NURF complex (Andersen et al., 2006), discussed above.

Work in Drosophila has also uncovered developmental roles for the Drosophila 

Mi2 homolog, dMi-2. Complete absence of dMi-2 is lethal; maternally deposited dMi-2 

is sufficient for survival to the first or second larval instar (Kehle, 1998). Using 

heterozygous animals to alter the dosage of dMi-2, these authors showed that dMi-2 

participates in the repression of homeotic genes mediated by Hunchback and Polycomb. 

An essential protein associated with Drosophila NuRD, p66 (a p66 homolog also 

copurifies with the Xenopus Mi2 complex), is required for normal metamorphosis and 

may be critical for ecdysone-regulated gene expression (Kon, 2005).

More recent work has uncovered a specific role for dMi-2 in sensory organ 

development in Drosophila (Yamasaki, 2006). While dMi-2 null mutants normally die 

during early larval stages, approximately 0.1% will actually survive to adulthood.

Animals that escape embryonic lethality reveal ectopic development of sensory bristles, 

implicating dMi-2/NuRD in the repression of proneural gene expression. This is 

consistent with the known interaction between dMi-2 and Tramtrack69, a 

transcriptional repressor that regulates nervous system development (Murawsky, 2001; 

Badenhorst et al., 2002a).

Mammalian NuRD complexes have been implicated in cell differentiation.

Recent work shows that CHD4/ Mi-23 is required for several steps in T cell development,
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including early stages of thymocyte differentiation, CD4 expression, and proliferation of 

mature T cells (Williams, 2004). Other studies have also hinted at a role for CHD4 in 

another terminal differentiation event, nerve myelination, possibly via repression of 

Rad, a gene normally repressed in Schwann cells during peripheral nerve myelination 

(Srinivasan, 2006).

Human CHD5 is a poorly characterized member of the CHD family that is closely 

related to CHD3 and CHD4. It is preferentially expressed in fetal brain, adult brain, and 

the adrenal gland, suggesting that it too may play a role in the development of the 

neural system (Thompson, 2003).

CHD2

Unlike the other CHD family members, CHD1 and CHD2 lack the PHD domains 

found in CHD3, 4 and 5, and instead contain a unique DNA binding motif that 

preferentially binds AT-rich DNA (Stokes, 1995), though the role of this motif is not yet 

understood. A recent study from the Imbalzano laboratory reveals an essential role for 

Chd2 in mouse development (Marfella, 2006). Chd2 null mice exhibit perinatal lethality; 

i.e. they die shortly before or after birth and exhibit reduced body size compared to wild 

type littermates. Even heterozygous pups exhibit increased mortality, and present with 

multiple organ abnormalities. These studies have implicated Chd2 in cell cycle 

progression.
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CHD7

The CHD7 protein contains the diagnostic domains of the CHD subfamily, 

including the SWISNF2 ATPase domain and two chromodomains, and additionally 

contains a SANT domain and a BRK DNA-binding domain. In humans, mutations in the 

Chd7 gene have been linked to CHARGE, a constellation of congenital abnormalities 

known by the acronym for the canonical symptoms: Coloboma (failure of optic or 

choroidal fissure to close), Heart septal defects, Atresia choanae (narrowing or blockage 

of nasal passages), Retardation of growth and/or development, Genitourinary 

anomalies, and Ear/olfactory/cranial nerve abnormalities (Williams, 2005). A patient 

diagnosed with Kallmann Syndrome (poor gonad development and impaired olfactory 

function) was also shown to carry a Chd7 mutation (Ogata, 2006).

The link between CHD7 and CHARGE was uncovered by Vissers and colleagues, 

who used array comparative genomic hybridization to identify a translocation on 

chromosome 8 in an affected individual (Vissers, 2004). The translocated region 

contains the Chd7 gene; when they sequenced the region in 17 affected individuals they 

identified 10 heterozygous mutations of the Chd7 gene, suggesting that 

haploinsufficieny of the gene may be the cause of some or all cases of CHARGE. 

Genotyping of 23 patients presenting with CHARGE syndrome identified 17 Chd7 

heterozygous mutations (Aramaki, 2006). They exhibited varying levels of penetrance
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for the major and minor characteristics of CHARGE. The remaining patients may 

represent mutations in regulatory regions of the gene or a clinically distinct group.

Bosman and colleagues identified a number of ENU-induced mutations in the 

murine Chd7 homolog that result in behavioral defects attributable to inner ear 

malformations similar to those observed in CHARGE patients (Bosman, 2005). In 

normally developing mice, Chd7 is expressed in the precursors of organs affected by 

CHARGE syndrome: eye, olfactory epithelium, ear, kidney and vascular system. In 

addition to the inner ear defects, mice heterozygous for chd7 mutations also exhibit 

other defects similar to those found in CHARGE syndrome patients, such as heart and 

genitourinary defects. As in humans, all of these Chd7 mutant mice are heterozygous 

and no homozygotes have been reported to survive past birth.

Expression patterns similar to those seen in mice are also found in normally 

developing human fetuses, including expression in tissues derived from the neural crest, 

as well as in cranial nerves, auditory and nasal tissues, and neural retina (Sanlaville,

2006). A recent study of the chicken CHD7 ortholog also reveals extensive neuronal 

expression of Chd7 during early development, and expression in otic, optic and olfactory 

placodes, indicating a conserved function in development of specific organs across 

vertebrate species.
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Remodelers in development: vive la difference!

In this review, we have discussed the known developmental expression patterns 

and functions of a diverse selection of SWI2/SNF2 chromatin remodeling enzymes. The 

cartoons shown in Figure 1 visually summarize the functions we have discussed. The 

studies discussed here have revealed an array of functions for these proteins, ranging 

from viability at the level of individual cells (often revealed by essential roles in early 

development), through roles in differentiation in specific tissues. We have highlighted 

both divisions of labor between pre- and post-differentiation stages of cell fate 

determination, as well as a striking preponderance of functions in neural development, 

particularly in vertebrates. The vast proliferation of the SWI2/SNF2 superfamily 

throughout evolution has resulted in an incredibly complex assortment of chromatin 

remodeling factors, which are able to serve in both unique and overlapping roles in the 

carefully orchestrated processes of metazoan development.
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Figure 1 Cartoon representation of developmental functions of chromatin remodeling enzymes in 
metazoan development. Shaded regions indicate tissues that require one or more remodelers for their 
normal development; different colors indicate the specific remodeling complex subunit as indicated in the 
color key (bottom). Multiple colors in a single tissue indicate contribution of multiple proteins; this is not 
meant to imply positional roles within tissues. For simplicity, the relevant adult tissues are indicated in the 
cartoons of Drosophila (A), Xenopus (B) or mouse (C), and therefore do not reveal the stage of 
development during which these activities are required. For further details see the text and tables. 
Structures are not to scale. O: ovary; DCB: Dorso-Central Bristles; VNS: ventral nervous system; NT: neural 
tube; NC: neural crest; G: gut; IE: inner ear; OF: optic fissure; T: Thymus; RBC: red blood cell; HS: heart 
septum; L: liver; GU: genitourinary system; MC: myelocyte; M: muscle; B: bone.
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Chapter 2 

Materials and Methods

ATP-dependent chromatin remodeling is required for the carefully regulated 

expression of genes during development. The enzyme ISWI (Imitation Switch) is the 

ATPase motor of a number of protein complexes that exhibit chromatin remodeling 

activity. Studies have shown that while ISWI fills the same function in each complex, the 

unique complement of auxiliary proteins in each complex modifies the nature of the 

chromatin remodeling activity. This suggests that ISWI-containing complexes may have 

different roles to play in development.

While there are many obstacles to studying human development, the frog 

Xenopus laevis has proven to be well suited as an animal model of development in 

vertebrates. Three ISWI-containing chromatin remodeling complexes have been 

characterized in Xenopus: ACF, CHRAC and WICH (reviewed in [1]). Ablation of ISWI 

function results in mortality at early stages and neural and eye defects among the 

survivors. However, the individual roles of one ISWI-containing complex cannot be 

distinguished from another by ablating ISWI function, which inactivates the ATPase 

motor in all of them.

This thesis focuses on the developmental roles of the CHRAC complex and its 

impact on morphology in gene regulation in developing Xenopus. To help parse out the 

roles in development of individual ISWI-containing remodeling complexes I
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hypothesized that the CHRAC complex's role in development would be distinct from 

that of all of the ISWI-containing complexes combined. Other chromatin remodeling 

complexes that share a common ATPase subunit have been shown to have distinct 

functions in development (reviewed in [2]), and the distinct complements of auxiliary 

proteins in ISWI-containing complexes suggest distinct roles in development.

CHD4 is an ATPase chromatin remodeling enzyme, the motor of a well-characterized 

protein complex called NuRD (Nucleosome Remodeling and histone Deacetylase) complex. The 

complex has been shown to be essential for early embryogenesis and for hematopoiesis. My 

collaborator, Dr. Jonathan Henry of the University of Illinois Urbana, identified it in a screen for 

genes upregulated in regenerated lens in xenopus. I hypothesized that CHD4 may also have a 

role in eye development, and to test this I ablated CHD4 function by morpholino injection.

My research embodies the Specific Aims that follow.

Specific Aim #1: To determine the expression pattern of CHRAC17 and compare 

and contrast it with the pattern of total ISWI expression.

Specific Aim #2: To characterize the loss of function phenotype of CHRAC17.

Specific Aim #3: To characterize the CHRAC17 loss of function phenotype at the 

molecular level by measuring expression levels of putative target genes.

Specific Aim #4: To characterize the loss of function phenotype of CHD4.
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I visualized CHRAC17 expression by whole mount in situ hybridization. An 

expression pattern distinct from but with potential overlap with the pattern of ISWI 

would suggest that the ACF, CHRAC and WICH complexes may have unique roles in 

development and can function independently of each other. It is noteworthy that ISWI 

and CHRAC17 are both subunits of protein complexes other than the ISWI-containing 

chromatin remodeling complexes. Some of these are known to regulate developmental 

processes, and all act on chromatin.

The CHRAC17 protein is not found in the ACF or WICH complexes. Thus, ablation 

of CHRAC17 in developing embryos would shed light on the consequences of CHRAC17 

loss as opposed to ISWI loss. I used morpholino oligonucleotides to ablate CHRAC17 

function and observed the resulting gross morphology from stages 15 to 45. Phenotype 

analysis of embryonic structures (neural tube, eye, notochord, pharyngeal pouches) in 

finer detail was conducted by Dr. Jonathan Henry. Perturbation of gene regulation by 

CHRAC17 loss of function was measured by RT-qPCR and cDNA microarray analysis.

If there are no differences in morphology or target gene regulation between ISWI 

knockdown embryos and CHRAC17 knockdowns, it would suggest that the 

developmental role of the CHRAC complex is redundant to the other ISWI-containing 

complexes. But if there are differences between CHRAC17 knockdown embryos and 

ISWI knockdowns the hypothesis would be supported: the CHRAC complex's role in 

development is distinct. Again it is important to make such interpretations in light of
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the fact that CHRAC17 and ISWI are both subunits of other protein complexes. As well, 

whether the effect of CHRAC17 knockdown is direct or indirect would require further 

research to determine.

I used morpholino oligonucleotides to ablate CHD4 function and observed the 

resulting gross morphology from stages 15 to 45. Phenotype analysis of embryonic 

structures (neural tube, eye, notochord, pharyngeal pouches) in finer detail was 

conducted by Dr. Jonathan Henry.

If CHD4 is involved in eye development I will expect to see abnormalities of the 

eyes on the gross morphological scale or histologically. Lack of perturbed development 

would indicate that CHD4 and the NuRD complex play no role in eye development or 

that they play redundant roles. Whether or not the effects are direct or indirect would 

require further research to determine.

Generation of Xenopus embryos

I induced ovulation in female Xenopus laevis by injecting human chorionic 

gonadotropin (Intervet, Millsboro, DE) into their dorsal lymph sac. I obtained testis by 

euthanizing a male frog in 0.06% benzocaine for 45 minutes and surgically excising the 

testes. Twelve to eighteen hours after injecting the females I mimicked amplexus to 

induce them to lay eggs and immediately exposed the eggs to Xenopus dissected testis 

in 0.1X MMR. After determining that fertilization was successful I dejellied the embryos 

by exposing them to L-cysteine for 3-5 minutes. I determined the developmental stage
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of embryos according to Nieuwkoop and Faber [3], All procedures were performed in 

compliance with approved University of Alaska Anchorage IACUC protocols.

In situ hybridization

I generated digoxigenin labeled RNA probes complementary to mRNA of 

CHRAC17. Template DNA corresponding to the EST clone BJ623466 was generously 

provided by Dr. Paul Wade. A 474bp segment of it was amplified by PCR using primers

5'CGAAGATCTCAACTTGCCCAA3' and 5'TCCATCTTCTCATCTTCCTCC3'.

Using the Primer Blast tool of the National Center for Biotechnology Information (NCBI), 

I designed PCR primers to amplify probes for putative target genes of CHRAC17 

knockdown from genomic DNA template. I used the BLAST tool of NCBI to rule out 

cross-reactions of probes with extraneous Xenopus coding sequences.

The primer sequences are as follows:

BMP7: 5'GTAGACTCAAGAACCATCTGGG3' and 5'CCCAGTGATTACCAGTTGC 3'

CXCL12: 5TCAATAGGGAGGGGCACAAG3' and 3'ATTGGCACAGGGGCTCTAAT-5'

DAB2: 5'AACATCCTCAGGTCCTGCTC3' and 5'TTTGTCTGCAGGTCTGTCCA3'

FOXP1: 5’ATCTACAACTGGTTCACACGG3' and 5'TCCATACTGCCCCTTTTACG3'

FOX03: 5' GGATTGGGTGGAATATCTGGG 3' and 5' TCGCTCTGGGTTTTAGTTGG 3'
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H1F0: 5' CGTCCGGGAAGGTGCTG 3' and 3' AATTTGTGAGCAGAGCAGGC5'

H0XA13: 5' CAGCCTGGAGGAGATGAACA3' and 3' AG AAACCACG GG CAT AT CCA5'

0TX2: 5'TCGCTGCAACGATTTCTTCC3' and 5'TCCCTTGGCTGTACCCTGATG3'

POLK: 5'ACATTGACTGCAAGTGCTGG3' and 5'CCTTGAGCCCTTCCTTCTGT3'

RAX3: 5' TCAGAATGCTCACGACTTTGA3' and 5'GGAAGCAAACCAAGCCTATTTG3' 

SMARCA1: 5' TCATGCCTCAGTTGTCTTACC3' and 5' AACCTCCATTGTATCGCCC3'

SIP1: 5' ATTGTTAGTCGGATGAGCCAG 3' and 5' CAGGCCAGCAAAGCATAAAG 3'

The PCR products were ligated into pGem T plasmid (Promega, Madison, Wl) 

with T4 DNA ligase (Promega)and transformed into Nova Blue™ competent E. coli cells 

(Novagen, Darmstadt, Germany). To determine the insert's orientation and identity I 

performed restriction enzyme analysis and obtained sequence data for each clone (Yale 

DNA Analysis Facility, New Haven, CT).

To produce DNA templates for in vitro transcription I linearized the plasmid 

containing CHRAC17 sequence with the restriction enzyme Sacl for a sense template and 

Sacll for the antisense template. By in vitro transcription of the templates I produced 

digoxigenin-labeled sense and antisense RNA probes, respectively (Megascript T7™ , 

Megascript Sp6™, Ambion, Austin, Tx).
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For all other genes I linearized the plasmid containing the gene's sequence with 

the restriction enzyme Ncol or Spel and by in vitro transcription of the templates I 

produced digoxigenin-labeled sense and antisense RNA probes (Megascript T7™, 

Megascript Sp6™, Ambion, Austin, Tx).

I generated Xenopus embryos as described above. At stage 15 and 28 I collected 

and fixed whole embryos in MEMFA according to Sive, et al. [4], I hybridized the whole 

mount embryos with in situ hybridization probes according to Sive, et al., with the 

following exceptions: I omitted the RNaseA step, I chose the optional overnight 

monoclonal antibody buffer wash and BM purple color substrate and chose not to clear 

the embryos with benzylbenzene/benzyl alcohol.

Microscopy and microphotography

I observed and photomicrographed sample embryos from each injection using a 

Leica DFC320 digital camera mounted on a Leica MZFLIII dissecting microscope 

equipped with an ebq 100 UV light source (Leica Microsystems, Bannockburn, IL). 

Images were processed using the Leica Applications software installed on a Dell desktop 

computer running Windows XP. Dr. Jonathan Henry performed sectioning and 

hematoxylin-eosin staining of embryos unilaterally injected with CHRAC17 morpholino 

oligonucleotides (as described in [5]).
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Microinjection of morpholino oligonucleotides:

I designed morpholino oligonucleotides (MOs) complementary to the 5' 

untranslated region of CHD4 or CHRAC17 messenger RNA flanking the translation start 

site. I obtained the CHD4-specific MO, CHRAC17-specific MO labeled with fluorescein, 

the inverse sequence MOs, and a standard (negative) control MO that anneals only to a 

nucleotide sequence found in humans who carry a mutant a-globulin mutation 

(GeneTools, Philomath, OR). The corresponding sequences are:

CHD4 MO: GCCGGAGGCCATGCCCAGGAAGGAG

CHD4 Inverse control MO: GAGGAAGGACCCGTACCGGAGGCCG

CHRAC1 7MO: GATCTTCGGGTCTCTCGGCCATTGC (custom oligo with 3' fluorescein

CHRAC17mo 37-08Dec08A-F)

CHRAC17 Inverse control MO: 5'CGTTACCGGCTCTCTGGGCTTCTAG

Standard (negative) control MO: 5'CCTCTTACCTCAGTTACAATTTATA3'

I made stock solutions as suggested by Gene Tools by resuspending 300 nmols 

(2.53 mg) of CHD4-specific, CHRAC17-specific or Inverse control MOs in 300 pL of water. 

The resulting concentration is 1 mM (or 8.43 ng/nL). I then diluted the MO stocks in an 

equal volume of sterile nanopure water, and diluted the resulting solution in an equal 

volume of water. GeneTools recommends for Xenopus oocytes 1-10 nL of a lmM 

solution; 10 nLofthe dilutions are equivalent to 2.5 nLand 5 nLof a 1 mM solution,
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respectively, within the recommended range. To eliminate secondary structure and to 

remove particulates from the MO solutions I heated them at 65° C for 10 minutes and 

centrifuged at maximum speed for 10 minutes prior to loading in glass needles. I made 

glass needles by pulling them to a taper using a Flaming/Brown micropipette puller 

(Sutter Instruments, Novato, CA).

I obtained and dejellied embryos as described above and transferred them to 

grooves on an agarose gel flooded with Solution A (below). I injected the immobilized 

embryos using glass needles calibrated to deliver 5 or 10 nL of MO solutions; needles 

were mounted on a KITE-L micromanipulator (World Precision Instruments, Sarasota, 

FL). To deliver MO solution to embryos I applied 30 msec bursts of 8 psi of air pressure 

to the needles using a MPPI-2 pressure injector (Applied Scientific Instrumentation, 

Eugene, OR).

After the injections were complete I transferred the embryos to Solution B. At 

24 hours post fertilization, I transferred them to Solution C, and changed out Solution C 

daily thereafter.

At stage 15 and 28 I observed and photographed the gross morphology of the 

embryos, and collected embryos to fix in MEMFA or extract total RNA and protein from 

them.
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Whole protein extraction:

I collected 10-100 embryos and homogenized them by adding homogenization 

buffer containing protease inhibitors and titurating through a 23g needle twenty times.

I centrifuged the homogenates and collected supernatant, twice. I added 10% DTT and 

incubated at 95 °C for 10 minutes. I stored samples at -20 °C.

I determined concentration of the protein samples by the method of Bradford, 

using a Beckman Coulter DU530 spectrophotometer. I ran the installed Bradford 

program and set up a standard curve using a preparation of histone protein.

Alternately I measured concentration using the ND1000 Nanodrop spectrophotometer.

Total RNA extraction:

I isolated total RNA from embryos injected with CHRAC17 MO or with standard 

control MO at various times post fertilization. For each group of injectees I added ten 

whole embryos to 200 pi Trizol reagent (Invitrogen, Carlsbad, CA). I homogenized them 

by tituration with 18 to 26 gauge needles, extracted the RNA with chloroform and 

precipitated the RNA with isopropanol. I dissolved the dried pellets in 100 pi RNase free 

water.

RT-qPCR

To amplify Otx2 transcripts in whole RNA extracts, I designed primers for RT-PCR 

as described above in "in situ hybridization." The sequences are:
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X0TX2FWD: TACAGGCAACATCAGGCTACAGT

X0TX2REV: TTGTCACTGGGTTGGTGCTCATTG

I extracted total RNA as above from embryos at stages 15, 20, 25, 30 and 32. I 

measured the RNA concentration by ND1000 nanodrop spectrophotometer. I removed 

genomic DNA from RNA samples using Turbo DNase™ (Applied Biosystems/Ambion, 

Austin, TX). I performed reverse transcriptase quantitative polymerase chain reaction 

(RT-qPCR) using the SYBR Green Jumpstart™ Taq Readymix (Sigma-Aldrich, Austin, TX).

I programmed a Smart Cycler (Cepheid, Sunnyvale, CA) to anneal at 65 °C and to run 40 

PCR cycles.

Microarray analysis of total RNA:

I performed whole genome expression analysis on CHRAC17 MO-injected 

embryos to identify genes that may be misregulated due to ablation of CHRAC17 

function. I isolated total RNA as above from embryos injected with CHRAC17 MO or 

with standard control MO at stage 15 and again at stage 37. I purified the preparations 

with the RNeasy Mini Kit™ (Qiagen, Hilden, Germany) and resuspended the RNA in 

RNase free water. I measured the RNA concentration by ND1000 nanodrop 

spectrophotometer. I adjusted the concentration to 200 ng/pL by adding water.

In partnership with the NIH Microarray Consortium I sent the frozen RNA 

samples to the Duke University Microarray Facility for hybridization to the Gene Chip 

Xenopus laevis genome 2.0 array (Affymetrix, Santa Clara, CA). The Gene Chip contains
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oligonucleotide probes corresponding to 29,900 Xenopus mRNAs contained in GenBank 

databases as of September 2006 and Xenopus laevis UniGene build 69 (July 2006). The 

RNA samples were in vitro reverse transcribed to produce cDNA labeled with a 

fluorophor using the Ambion WT Expression Kit (Affymetrix, Santa Clara, CA). The cDNA 

was then hybridized to the probes of the Gene Chip; thus, luminosity of a probe was 

proportional to the expression level of the corresponding gene. After hybridization the 

luminosity of each probe was quantified using GCOS software (Affymetrix, Santa Clara, 

CA) to produce probe cell intensity files (.CEL files).

I generated tab delineated probe level summarization (.CHP) files and reports on 

the quality of the hybridization data from the .CEL files using Gene Console software 

(Affymetrix, Santa Clara, CA) running the PLIER, RMA and mas5 algorithms. The 

algorithms make background corrections, normalize the luminosity data and convert the 

probe level values to probe set expression values. They generate tab delineated files 

collating the ID of the transcript with the expression value, and in the case of the mas5 

algorithm, to a p-value which reflects the probability that the expression value is not the 

product of artifacts of the microarray method but is a valid representation of the level of 

expression of the gene in question. I transferred these data to an Excel spreadsheet to 

calculate the log2 ratios of the luminosities, to represent the expression levels from the 

CHRAC17 MO-injected embryos divided by those from the standard control MO-injected
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embryos. I created a list of all those mRNA species that had been either overexpressed 

or underexpressed by a factor of two or more for further analysis.

The summarization files are accompanied by summary quality assurance reports 

reflecting data from control probes on the microarrays and control cDNA's hybridized to 

them contemporaneously with the experimental hybridizations. These reports 

indicated that the hybridization of the Gene Chips had produced data of a quality within 

tolerances.

Pathway analysis:

I analyzed the lists of misregulated genes in CHRAC17 morphant embryos at 17 

hours post fertilization and 53 hours post fertilization using the Core Analysis of the 

web-based Ingenuity Pathway Analysis (http://www.ingenuitv.com/index.html) site.

The analysis uses the Ingenuity® Knowledge Base, annotated by reviewing literature in 

molecular biology, to identify networks of metabolic or protein/gene interactions in 

which the list of misregulated genes is overrepresented. It ranks the identified 

pathways by p-values assigned to it that reflect the likelihood that the 

overrepresentation is not due to chance. From this it may be inferred that the 

perturbation of these biological pathways may be responsible for aspects of the CHRAC17 

morphant phenotype.

http://www.ingenuitv.com/index.html
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Western blot:

I performed Western analysis according to Maniatis [6]. I resolved the whole 

protein samples extracted from embryos by SDS polyacrylamide gel electrophoresis. I 

prepared 15% polyacrylamide gels (Amresco, Solon, OH). To 10 pg whole protein 

samples I added an equal volume of denaturing buffer containing dithiothreitol (Fisher 

Scientific, Waltham, MA) and heated to 95 °C. I loaded the samples or 10 pg of 

molecular weight markers to the wells of a 15% polyacrylamide gel and applied voltage 

to separate the proteins. I blotted the resolved proteins onto a nitrocellulose 

membrane (Whatman, Dassel, Germany) and stained the blot with Ponceau S to 

determine the quality of protein and the extent of transfer to the membrane, then 

rinsed it in RO water and soaked it in Odyssey blocking buffer (Licor, Lincoln, NE).

I probed the membrane with primary antibodies in Odyssey Blocking Buffer with

0.15% Tween 20 at room temperature for two hours or at 4 °C overnight. I washed the 

blot with large volumes of PBS with 0.1% Tween 20 and incubated it with fluorescent 

secondary antibodies in Odyssey Blocking Buffer at room temperature for two hours. I 

visualized the probes by scanning on an Odyssey Infrared Imager (Licor, Lincoln, NE).

The CHRAC17 primary antibody was a generous gift from Dr. Paul Wade. 

Antibodies to EF1 alpha and nucleolin were obtained from Developmental Studies 

Hybridoma Bank (University of Iowa, Iowa City, IA).
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Reagents:

Solution A: 6% Ficoll type 400 in 0.1X MMR, with gentamicin sulfate (20 pg/mL), 

filter sterilized.

Solution B: 1% Ficoll type 400 in 0.1X MMR, with gentamicin sulfate (20 pg/mL), 

filter sterilized.

Solution C: 0.1X MMR with gentamicin sulfate (20 pg/mL).
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CHAPTER 3 

The role of CHRAC17 in Xenopus development 

Introduction

The CHRAC chromatin remodeling complex found in eukaryotes from yeast to 

human catalyzes translation of nucleosomes, promoting regular spacing of nucleosome 

arrays [1]. It has in common with the ACF remodeling complex the ACF1 protein, and 

CHRAC can be thought of as an ACF complex with two histone fold proteins added.

ACF1 is homologous to the WSTF subunit of the WICH complex, suggesting functional as 

well as structural relationships between the three complexes.

In Xenopus the histone H2B-like subunit of the CHRAC complex is known as 

CHRAC17, but in other species it is known by various other names. I will describe the 

CHRAC complexes that have been studied in yeast, Drosophila, Xenopus, and mammals 

(mouse and human), then the non-ISWI containing protein complexes that have been 

reported to contain CHRAC17.

The structure and functions of CHRAC complexes are highly conserved. The yeast 

CHRAC homolog, yCHRAC, consists of ISWI (Isw2p), ACF1 (Itclp) and two histone fold 

proteins, CHRAC17 (DPB4) and CHRAC15 (DLS1) [2], The histone fold proteins are 

homologous to those found in CHRAC complexes of other species, and contain an H2A- 

like domain and H2B-like domain, respectively; thus they are capable of
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heterodimerizing by the histone-like handshake interaction. The CHRAC17 subunit 

contacts extranucleosomal DNA from 37bp to 53bp away from the nucleosome 

exit/entry site and remains stationary on the DNA site while the core nucleosome is 

translocated [3]. Thus it may function to anchor the CHRAC complex to 

extranucleosomal DNA to facilitate translocation of core nucleosomes. The CHRAC15 

subunit was shown to be partially required for normal yCHRAC-dependent chromatin 

remodeling at a number of gene loci and for yCHRAC-dependent transcriptional 

repression of some of them [4].

In Drosophila the dCHRAC complex contains ISWI, ACF1 and the histone fold 

proteins CHRAC17 (CHRAC14) and CHRAC15 (CHRAC16). The ACF1 protein structure has 

been studied extensively in Drosophila. It contains a number of conserved domains: 

from N-terminal to C-terminal, the WAC, DDT, BAZ1, BAZ2, WAKZ domains, two PHD 

domains, and a bromodomain [5]. Analysis of truncated ACF1 proteins lacking domains 

illuminates ACFl's roles in remodeling. The N-terminal region including the WAC motif 

binds DNA [6]; a large domain between ACFl's N-terminal and C-terminal, including the 

DDT and BAZ motifs, binds ISWI's C-terminal HAND-SANT-SLIDE domain; the PHD 

domain binds all four histones of nucleosome cores [7]; in general, bromodomains are 

known to bind acetylated nucleosomes and there's evidence that acetylation of 

nucleosomes increases remodeling activity of the CHRAC complex[8].
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ACF1 embodies the concept that an ATPase subunit in a family of remodeling 

complexes such as ISWI may perform the same function in all of them, while other 

subunits modulate that function to impart distinctive activities to each complex. While 

ISWI alone is capable of ATP-dependent chromatin remodeling, ACF1 greatly enhances 

ISWI activity. Besides increasing ISWI's remodeling activity, ACF1 changes it 

qualitatively: in vitro, ISWI alone catalyzes the translocation of nucleosomes from the 

middle of the chromatin substrate toward the ends, while ISWI combined with ACF1 

slides nucleosomes in the opposite direction [9].

As in other species the Drosophila homologs of the CHRAC17 and CHRAC15 

subunits bind each other via their histone fold motifs. X-ray crystallography shows that 

the heterodimer interacts with ISWI and ACFl's N-terminus, and CHRAC17 

coprecipitates with CHRAC activity in a nucleosome sliding assay [10-12], The surface of 

the heterodimer that faces the DNA is basic and it binds DNA at low affinity. Neither the 

N-terminal of CHRAC17 nor that of CHRAC15 is necessary for DNA binding of the 

heterodimer, but deletion of the C-terminus of CHRAC17 reduces DNA binding with 

concomitant loss of nucleosome sliding activity while deletion of CHRAC15's C-terminus 

increases DNA binding. The finding that dynamic, low affinity DNA binding by 

CHRAC17/15 facilitates chromatin remodeling by CHRAC suggests that the heterodimer 

may function as a DNA chaperone analogously to the activity of the high mobility group 

protein, HMGB1, which nonspecifically binds and bends chromosomal DNA.
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ACF1 has specific regulatory roles in Drosophila development and differentiation. 

Western analysis and whole-mount immunofluorescence microscopy reveals that it is 

abundant during the first six hours of development when cell differentiation is not 

complete [13]. In contrast, 18 hours after egg laying ACF1 is undetectable in 

differentiated tissues, but remains at high levels in undifferentiated nervous tissue and 

in primordial germ cells. Unlike ISWI, ACF1 is not found in differentiated neurons.

The loss of ACF1 in embryos diminishes the periodicity of chromatin and reduces 

the distance between adjacent nucleosomes [14]. Concomitantly, heterochromatic 

genes and those regulated by the polycomb group proteins are derepressed, while the 

cell cycle is accelerated through S phase. When ACF1 was ectopically expressed in eye 

imaginal discs abnormal morphology of photoreceptor cells resulted [13], The effect 

seems to be due to the loss of synchronized progression into the S phase of the cell 

cycle by which cells differentiate and form the regular clusters of photoreceptor cells 

characteristic of the compound eye. Ablating ACF1 disrupts heterochromatin formation 

in early embryos and larvae. The implication is that the ACFl-containing complexes are 

required for appropriate euchromatin and heterochromatin assembly in early 

development.

ISWI and ACF1 have roles in Wingless signaling. In cultured Drosophila cells ISWI 

and ACF1 knockdown derepressed specific target genes of Wingless signaling [15]. Loss 

of ISWI function in wing imaginal discs dramatically increased their expression of WG
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target genes. Loss of ACF1 function did not derepress the genes, and while ISWI 

knockdown embryos died by mid pupal stage, ACF1 loss of function didn't affect 

viability or fertility of affected flies. Interestingly, the combination of ACF1 loss of 

function and ISWI loss of function produced more severe phenotypes than ISWI 

knockdown alone, suggesting that ACF1 may have roles in development independent of 

ISWI. ChIP analysis revealed that the transcriptional activator TCF, which directly binds 

target promoters in WG signaling, requires ISWI and ACF1 for binding. Conversely, WG 

signaling reduces the amount of ACF1 bound to target promoters. One interpretation 

would be that ISWI and ACF1 repress WG targets in the absence of signaling, then 

switch to a role that facilitates TCF binding in response to WG signaling.

Less is known of the roles of CHRAC17 in Drosophila development. It is expressed 

in early embryogenesis in Drosophila, but is abruptly downregulated 6 to 12 hours into 

development, suggesting a requirement for CHRAC at early stages, possibly in the rapid 

nuclear divisions of those stages. There is indirect evidence that CHRAC17 may function 

with ISWI to promote normal eye development in Drosophila [11].

The subunits of the xCHRAC complex of Xenopus include ISWI, ACF1, p70 and p55 

proteins, and CHRAC17. While a second histone fold protein subunit has not been 

characterized in Xenopus CHRAC, its existence is suggested by the presence in other 

species of a functionally important histone fold heterodimer in the CHRAC complex, and 

by the fact that in nucleosome sliding assays the CHRAC17/CHRAC15 heterodimer, but
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not the monomers, enhance nucleosome sliding activity of the hACFl-ISWI complex[10]. 

Finally, in human cell lines importinl3 mediates the nuclear import of the 

CHRAC17/CHRAC15 heterodimer, but not of the monomers [16].

HuCHRAC, the human CHRAC complex contains the subunits ISWI (SNF2H), ACF1 

and the histone fold proteins CHRAC17 (Pole3) and CHRAC15 (Pole4) [17]. The ACF1 

subunit contains the same domain structure as those of other species. Studies in 

human cells suggest that ACF1 plays a role in DNA replication through heterochromatin 

[18]. ACF1 and SNF2H colocalize to pericentric heterochromatin at that stage in the cell 

cycle (late S phase) when heterochromatin is replicated. Loss of ACF1 function impairs 

replication in late S phase and the impairment appears to result from the very compact 

nature of heterochromatin in those cells. Targeted mutation of ACFl's BAZ domain 

demonstrates that ACF1 must bind ISWI to facilitate replication through 

heterochromatin.

A survey of various human tissues showed that CHRAC17 and CHRAC 15 mRNAs 

are expressed in all of them, and the ratio of the two mRNAs is constant across the 

tissues [17]. Studies in mouse fibroblasts further suggest a function of CHRAC in DNA 

replication, in that expression of CHRAC17 (Pole3) was found to be coupled to the cell 

cycle, peaking in the start of S phase after serum stimulation. Activation of the gene is 

mediated by the binding of E2F and MYC to a bidirectional promoter that drives 

CHRAC17 and another gene of unknown function [19].
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CHRAC17 and non-ISWI-containing protein complexes

CHRAC17 also functions as a subunit of the ATAC (Ada Two A Containing) complex 

and of DNA polymerase e. I will first describe the structure and function of ATAC and 

then address polymerase s.

ATAC was first described in Drosophila [20]. It belongs to a large family of protein 

complexes that all contain relatives of the HAT (histone acetyltransferase) protein GCN5 

(General Control Nonrepressed protein 5). They include the yeast complex Ada 

(alteration/deficiency in activation, yADA), SAGA (SPT3-TAF-GCN5 Acetylase)-type 

complexes and ATAC (ADA2A Containing Complex)-type complexes. The complexes are 

found in all eukaryotes studied and despite a wide assortment of subunit compositions, 

similarities among them can be discerned.

All GCN5/PCAF-containing complexes contain a HAT subunit that functions to 

catalyze the acetylation of histones on specific lysine residues. GCN5 is found as a 

subunit in all species, while in humans there are two paralogous HATs, GCN5 and PCAF, 

and they are alternative subunits of the ATAC complex. GCN5 co-regulates gene activity 

by acetylating lysines in the tails of target histones (reviewed in [21]). In vitro it 

acetylates free histone H3 but not assembled nucleosomes. Just as ISWI's activity is 

modulated by subunits of ISWI complexes, GCN5 in association with subunits of two 

yeast protein complexes (Ada and SAGA) acetylates a broader spectrum of histone H3 

lysine residues than GCN5 alone [22]. As well, the profile of H3 lysine residues
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acetylated by the ADA complex differs from that of the SAGA complex. Similarly, the 

SAGA and ATAC complexes in Drosophila regulate different sets of genes [23]. ATAC but 

not SAGA localize to TPA-induced transcription sites on polytene chromosomes, and in 

HeLa cells knockdown of ATAC, but not of SAGA, leads to defective TPA-induced gene 

expression.

ATAC was discovered because an in silico search for Drosophila homologs to 

components of the GCN5/PCAF containing complexes revealed that there are two 

different ADA2 homologs in Drosophila, ADA2A and ADA2B [20]. Both can be found in 

complexes that contain such common subunits as GCN5 and ADA3, but ADA2A is not 

associated with the same assortment of subunits that ADA2B is known to bind. Instead 

ADA2A is a component of the ATAC (Ada Two A Containing) complex. The Ada2a gene 

has an interesting regulatory region. Like CHRAC17 in mammals, ADA2A in Drosophila is 

the product of a bicistronic gene; its promoter overlaps that of Dtl, which is also a 

transcription coactivator [24]. Ada2a also codes for RPB4 via alternative splicing; RPB4 

is a subunit of RNA polymerase II[25]. Thus, three proteins involved in transcription 

regulation are under the control of a bicistronic promoter. As suggestive as this may be, 

no functional relationship between the proteins has been established [26]. ADA2 and 

ADA3 are known to mediate recognition and acetylation by GCN5 of the N-terminal tails 

of nucleosomal H3 and H4 [27],
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All GCN5/PCAF containing complexes except yADA contain homologs of Spt 

proteins including YEATS2. The YEATS2 subunit is a scaffold subunit that forms a 

YEATS2-NC2|3 histone fold module analogous to that of the POLE3-POLE4 

heterodimer[28]. All but the yADA complex also contain numerous TATA binding 

protein (TBP)-associated factors (Tafs).

Orthologs of CHRAC17 and a histone-fold binding partner are found in human 

ATAC complexes (POLE3 and POLE4) and in Drosophila an ortholog to CHRAC14 

(CHRAC14), but not a histone-fold binding partner, is known. A study of human ATAC 

purified by anti-flag YEATS2 immunoprecipitation identified CHRAC17 (POLE3) and 

CHRAC15 (POLE4) as subunits [28], but this was not confirmed in a study of human ATAC 

purified by anti-hAda2a immunoprecipitation [23]. Affinity purification of mouse ATAC 

followed by mass spectroscopy did not identify a CHRAC17 homolog among the subunits 

[29]. Clearly the adumbration of ATAC's subunit composition is a work in progress.

Both CHRAC17 and Nc2(3 have been reported to form homodimers and CHRAC17 alone 

is able to efficiently enhance nucleosome-sliding by the ATP-dependent chromatin 

remodeling complex SWI-SNF [30]. The mechanics of the CFIRAC17/POLE4 heterodimer 

have not been studied in great detail as in the CHRAC17/15 heterodimer of the CHRAC 

complex; it would be interesting to compare these two closely related yet functionally 

distinct modules.
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While there is not abundant literature characterizing a role for ATAC in 

development, inferences can be made from what is known of its subunits. For instance, 

CSRP2BP (SPT3) has been shown in yeast to directly interact with the TBP to regulate its 

binding to certain promoters [31]. In mammalian cells deficient for CSRP2BP the ATAC 

complex is destabilized, apoptosis is increased and histone acetylation reduced. 

CSRP2BP-deficient mouse embryos have delayed development, possibly due to the 

increased apoptosis they displayed. The YEATS2-NC2P module of ATAC was also shown 

to bind the TBP and negatively regulate transcription [28]. As well, mass spectrometry 

and Western analysis of nuclear extracts from cultured human cells determined that 

ATAC physically interacts with MAP3K7/TAK1, a kinase that is activated by TGF[3 and 

bone morphogenetic protein signaling and that translocates to the nucleus during Wnt-

I  signaling. Thus, ATAC may be regulated by extracellular signaling.

The paralogous alternative HAT subunits of ATAC in humans, GCN5 and PCAF, 

confer distinctive functions upon the complex ([32-34]). GCN5 expression begins by day 

8 of gestation while PCAF expression begins on day 12. GCN5 null mutant mice fail to 

develop mesodermal lineages due to increased apoptosis and die between day 9.5 and

I I  of gestation; in contrast, PCAF null mutants have no phenotype. Embryos mutant for 

both GCN5 and PCAF have a more severe phenotype, suggesting that the paralogs have 

overlapping roles in development [32].



87

Several lines of evidence suggest that PCAF has a role in skeletal myogenesis. An 

in vitro transcription system based on an array of core histones and a reporter construct 

bearing the recognition sequence of the myogenic transcription factor MyoD revealed 

that PCAF and another acetyltransferase, p300, are required for optimal MyoD- 

dependent activation of transcription [35]. In vitro MyoD and PCAF interact directly and 

in cultured fibroblasts viral proteins known to disrupt the interactions of MyoD and 

PCAF repressed muscle differentiation [36]. Exogenous expression of PCAF promotes 

MyoD-dependent activation of transcription and muscle differentiation, while 

inactivation of PCAF prevents muscle differentiation. In the interplay between MyoD, 

PCAF and p300, PCAF acetylates three conserved lysines on MyoD itself, increasing the 

transcription factor's avidity for its cognate DNA [37], Mutating the lysines so they 

cannot be acetylated interferes with MyoD's ability to transactivate myogenic genes and 

to promote conversion of cultured fibroblasts into muscle cells. In cultured murine 

myoblasts that lack expression of insulin-like growth factor II and consequently undergo 

apoptosis in medium lacking growth factors, PCAF can promote survival in the absence 

of the growth factors [38].

The function of ADA2-like subunits of ATAC and other GCN5-containing 

complexes have been the focus of many studies. In yeast the ADA2 subunit of the yADA 

complex enhances GCN5's catalytic activity and the binding of the GCN5/ADA2 complex 

to the histone substrate [39], a role mediated by the SANT domain of ADA2 [40]. Like
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the paralogs GCN5 and PCAF, the two ADA2 paralogs are alternative subunits of the 

SAGA and ATAC complexes, respectively, and they confer upon their respective 

complexes distinct functions. In Drosophila, mutations in Ada2B, a component of the 

GCN5-containing complex SAGA, reduce acetylation of histone H3 lysines K5 and K12, 

but not of histone H4 residues[41]. In contrast, Ada2A mutations don't affect histone 

H3 acetylation[27], and there is evidence that acetylation of histone H4 is reduced in the 

mutants, although an earlier study found to the contrary ([41]). Ada2A and Ada2B have 

different functions in Drosophila development [41]; null mutations of either are lethal 

and impede cell proliferation, but they have differential effects on eye differentiation.

There is evidence that ATAC interacts genetically with ISWI-containing complexes. 

In Drosophila mutant for ISWI binding by Ada2A to polytene chromosomes is reduced, 

while Ada2B binding is unaffected [42]. Consistent with this, acetylation of H4 lysine 

K12 is reduced on polytene chromosomes in flies mutant for ISWI or for a subunit of the 

ISWI-containing chromatin remodeling complex NURF. Under the same conditions 

acetylation of histone H3 lysines K9 and K14, mediated by SAGA rather than ATAC, is 

unaffected. Thus, the NURF complex is required for recruitment of ATAC to polytene 

chromosomes and for the global acetylation of H4. Flies homozygous for mutations in a 

NURF subunit, Gcn5, or in Ada2a were studied by whole genome expression analysis. It 

found a significant correlation between downregulated genes between the NURF301 

mutants and the Gcn5 or Ada2a mutants.
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In contrast to the ATAC complex, DNA polymerase epsilon (Pol e) has been 

studied for some time. Among others it has been described in yeast [43, 44], Drosophila 

[45], Xenopus [46, 47], and HeLa cells [48]. Pol e is a holoenzyme of four subunits 

including the catalytic (cdc20+) subunit, Pole2, CHRAC17 (Pole3) and Pole4. The cdc20+ 

subunit contains in its N-terminal region the catalytic machinery responsible for its 

polymerase activity, while the C-terminal contains nonessential elements of unknown 

function. In yeast, cdc20+ and the second largest subunit, Pole2 (DPB2) are essential, 

while the CHRAC17 and Pole4 subunits, Dpb4 and Dpb3, are nonessential [44, 49], In 

yeast Dpb4 mutants the Pole complex is less stable, suggesting that Dpb4 and Dpb3 

function to provide a surface for protein interactions for Pole [50]. The CHRAC17 

homologs have been described as subunits of Pol e in fission yeast [51], Saccharomyces 

[43, 52], Drosophila [45], and Homo [53].

Pol e has attracted interest because it appears to combine the function of DNA 

replication with that of non-replicative functions such as DNA "damage sensing" and 

repair, maintenance of chromatin structures and regulation of transcription. It is one of 

three DNA polymerases needed for replication in eukaryotes; the other two are DNA 

polymerase alpha (Pol a) and DNA polymerase delta (Pol 6). Pol a is known to provide 

the RNA primer to initiate chromosomal DNA synthesis, but its low processivity and lack 

of proofreading function (intrinsic 3' exonuclease activity) make it ill suited to the 

elongation step of DNA replication. Rather, Pol 6 takes over replicating the lagging
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strand while Pol e replicates the leading strand (reviewed in [52, 54-56]). Pol 6 and Pol e 

have proofreading function and high processivity, and Pol e is further distinguished from 

the other two by not requiring the proliferating cell nuclear antigen (PCNA) for its high 

processivity [45]. In Xenopus egg extracts it was demonstrated that expression of the 

four subunits of Pol e was sufficient for rapid and efficient replication of chromosomal 

DNA [46, 47],

Numerous studies have established a role for Pol e in DNA repair. In yeast it is 

required for activation of S phase checkpoint to prevent mitosis and induction of DNA 

damage-response genes [57], The function was localized to the C terminal region which 

has a structure unique among the DNA polymerases. In nuclear extracts from yeast 

mutant for Pol e, base excision repair of DNA was defective, and Pol a  and Pol 6 

modulate the repair activity mediated by Pol e [58]. Yeast double mutants defective for 

both Pol 6 and Pol e, but not single mutants, were defective in DNA repair after UV- 

induced damage [59]. In PCNA-depleted human cell extracts, which are deficient in UV- 

damage repair, purified Pol e can efficiently repair UV-damaged DNA [60]. In calf 

thymus nuclear extract a large protein complex containing Pol e was shown to catalyze 

recombinational repair of double strand gaps and deletions in DNA by gene conversion 

[61].

Evidence that Pol e has a role in transcriptional silencing comes from studies in 

yeast [62]. The mating-type gene at locus HMR is silenced because the locus is flanked
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by binding sites for the proteins Rapl and Abfl, and for an origin recognition complex. 

The proteins affect silencing of the gene by recruiting proteins that form a chromatin 

structure inaccessible to transcription machinery. Yeast strains were constructed that 

had point mutations in the locus that ablated the silencing of the gene. But silencing 

was restored in these strains when Pol e or PCNA were also mutated. One 

interpretation is that silencing is interrupted by DNA replication through the silenced 

chromatin so PCNA and Pol e may play a role in restoring silencing after the replication 

fork has passed through the locus.

Finally, there is evidence that Pol £ has a role in sister chromatid cohesion [63]. In 

yeast mutants with inactive Pol £ there is defective sister chromatid cohesion, and it was 

shown that Pol £ binds DNA polylmerase sigma (Pol a), which is involved in sister 

chromatid cohesion.

In Xenopus, three ISWI-containing remodeling complexes have been 

characterized: ACF, CHIRAC and WICFI (reviewed in [64]). The modular nature of the 

complexes suggests that each may have distinct roles in development. The knowledge 

gleaned from ablation of ISWI function does not distinguish the roles of one ISWI- 

containing complex from another because ISWI knockdown ablates all of those 

functions. To help parse out the roles in development of individual ISWI-containing 

remodeling complexes, I determined to investigate the developmental roles of the 

CHIRAC complex. I hypothesized that the CHIRAC complex's role in development would
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be distinct from that of the three ISWI-containing complexes combined. To test this, I 

first studied the expression pattern of CHRAC17 and compared and contrasted it with 

the pattern of ISWI expression. I then studied the loss of function phenotype of 

CHRAC17, a protein not found in the ACF or WICH complexes, but present in the CHRAC 

complex. I knocked down CHRAC17 function in developing embryos using morpholino 

oligonucleotides and compared and contrasted the loss of function phenotype in the 

"morphants" with the phenotype resulting from loss of function of ISWI. To study the 

developmental consequences of CHRAC17 loss of function at the molecular level, I 

measured the level of expression of putative target genes that might be misregulated in 

CHRAC17 morphants, using qRT-PCR and whole genome microarray analysis. To identify 

possible alterations in cellular function in knockdown embryos I performed pathway 

analysis of the misregulated genes. Finally) visualized the expression patterns of 

misregulated genes in affected embryos.

I reasoned that if I were to find no differences between ISWI and CHRAC17 in 

these respects it would suggest that the CHRAC remodeling complex has roles in 

development that are equivalent or redundant to one or more of the other ISWI- 

containing complexes found in Xenopus. But if I were to find that CHRAC17's expression 

pattern is different from that of ISWI and that CHRAC17 loss of function leads to only a 

subset of the developmental defects caused by loss of function of ISWI, the hypothesis 

that the CHRAC complex's role in development is distinct from that of the three ISWI-
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containing complexes combined would be supported. It is likely that the phenotypic 

differences derive from the fact that both these proteins may be members of other 

complexes in addition to CHRAC: CHRAC17 is a subunit of the ATAC and DNA 

polymerase epsilon complexes, while ISWI may also be a subunit of other complexes.

Results:

CHRAC17 is expressed in a distinct spatiotemporal pattern over the course of Xenopus 

development.

The expression of a gene in a particular region of a developing embryo suggests 

that the gene product may be active in a developmental process in that region. I 

reasoned that where the pattern of expression of CHRAC17 and that of ISWI overlap in 

whole embryos, the CHRAC remodeling complex will be present and active. Where 

CHRAC17 is expressed but ISWI is not, it is likely that CHRAC17 is functioning in the ATAC 

complex and/or Pol e. Accordingly I visualized CHRAC17 mRNA expression in Xenopus 

embryos by whole mount in situ hybridization. This revealed that CHRAC17 is expressed 

as early as stage 15 in Xenopus and persists at least as late as stage 43 (Fig. 1). At stage 

15 expression is localized to a region parallel to the neural plate, possibly the medial 

edge of the presomitic mesoderm, and near the presumptive forebrain or eye region 

(Fig. 2). The posterior-lateral regions of the embryo exhibit diffuse signal; while the 

signal is faint, it was detected in multiple in situ hybridization experiments and likely
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represents genuine expression in this region. Sectioning of embryos followed by in situ 

hybridization will be required to confirm the findings on whole embryos.

In stage 28 embryos CHRAC17 expression is prominent in the brain and facial 

structures, the region of the olfactory placode, in pharyngeal arches or laterally-situated 

placodes, in myotomes, and the anterior-ventral region. A band of intense staining 

along the antior-posterior axis may be notochord; again, in situ hybridization of 

sectioned embryos would be needed to confirm (Fig. 3). An embryo that was fixed at 

stage 37 and was partially cleared of yolky material after in situ hybridization exhibited 

the fine detail of CHRAC17 expression in the olfactory, lens, otic, facial epibranchial 

placodes and possibly in the anterior-ventral lateral line placode, and in narrow stripes 

running dorso-ventrally in the myotomes (data not shown). A dorsal view of embryos at 

this stage of development underscores the intense expression levels anterior and lateral 

to the forebrain and other localized regions of the neural tube (Fig. 4).

This pattern contrasts with that of ISWI. ISWI is expressed in neural structures 

but not in myotomes, as CHRAC17 is, and while CHRAC17 is prominently expressed in 

the placodes listed above, there is not a comparable expression in ISWI [65].

At stages 41 and 45 CHRAC17 expression is more widespread and diffuse (Fig. 1). 

At these stages it appears that CHRAC17 is expressed in the optic cup but is no longer 

expressed in the lens, both of which are completely invaginated at these stages.
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Figure 1 In situ hybridization of staged Xenopus embryos. Embryos were probed with control probe (left) 
or CHRAC17-specific probes (right). From top to bottom, the embryos were fixed at stages 15, 22, 27, 39, 
and 43. CHRAC17 expression begins as early as stage 15 and persists beyond stage 43. By stage 27 
expression is most prominent in the head and neural structures and in myotomes. In later stages 
CFIRAC17 expression is very widespread. Abbreviations: ov, optic vesicle, cp, cranial placodes, oc, optic 
cup.



Figure 2 In situ hybridization of stage 15 embryos. Embryos were probed with control probe (left) or 
CHRAC17-specific probe (right). The CHRAC17 expression is at the margins of the neural folds, the eye 
primordia, and in the posterior region. Abbreviations: np, neural plate; pf, presumptive forebrain.

Figure 3 In situ hybridization of stage 28 embryos. Embryos were probed with control (top) or CHRAC17- 
specific probe (bottom). Staining is present in the brain and in olfactory, lens, epibranchial and otic 
placodes, in myotomes and the anterior-ventral region. Diffuse signal is seen in the tailbud and in the 
posterior-ventral region. Abbreviations: op, olfactory placode; br, brain; oc, optic cup; ot, otic vesicle, ep, 
epibranchial placode; m, myotome; tb, taiblud.



Figure 4 Dorsal view of stage 28 embryos. Embryos were probed with control (top) or CHRAC17-specific 
probe (bottom). Note the prominent staining anterior and lateral to the brain (br).

Ablation of CHRAC17 function by morpholino oligonucleotides results in a distinct 

morphant phenotype.

In order to determine the developmental roles of CHRAC17 I injected Xenopus 

embryos with CHRAC17-specific morpholino oligonucleotides (MOs). I designed the 

MOs to anneal with the region of CHRAC17 mRNA that spans the translation start site, 

thus preventing translation of CHRAC17 protein in injected embryos. As a control for 

nonspecific MO effects on development, I injected embryos from the same clutch of 

eggs, fertilized with the same testis, with negative control MOs (see Materials and 

Methods).

Embryos injected with 84 ng CHRAC17 MOs had high mortality; the majority 

were dead by stage 35 (Table 1). All survivors were severely abnormal in morphology. 

Among embryos injected with 42 ng CHRAC17 MO there was no observable phenotype
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on the gross morphological scale before stage 27. Unlike ISWI knockdowns, >80% of 

embryos survived beyond gastrula stage on average. At stage 40 a distinct phenotype 

emerged (Fig. 5). Abnormalities include a reduction of anterior-posterior axis length; to 

quantify this, the lengths of embryos from their most anterior to their most posterior 

tips were measured from three experiments (Fig. 8). The average AP length of 106 

Inverse control MO injectees was 4.19 mm, while that of 96 CHRAC17-specific MO 

injectees was 3.09 mm, significantly shorter (p<0.0001 Student's t-test).

The reduced AP length may be a reflection of the finding above that CHRAC17 is 

expressed in the myotomes. As noted above, knockdown of the BPTF subunit of the 

NURF complex results in axial deformities; the loss of function of the CHRAC complex 

could analogously lead to abnormal axial development. Knockdown of CHRAC17 might 

result in destabilization of the ATAC complex as it destabilizes Pol e in yeast, leading to 

developmental defects in myotomes or other mesodermal tissues along the anterior- 

posterior axis. Knockdown of the ATAC complex subunit Gcn5 in mice leads to increased 

apoptosis and a failure of mesoderm to develop normally. The alternative subunit,

PCAF, has a well defined role in myogenesis. If ATAC function is required for PCAF's 

myogenic function, development of myotomes may be perturbed in CHRAC17 

knockdown embryos.

Compared to controls, CHRAC17 morphant embryos show reduced head volumes, 

particularly in the areas of the forebrain and nasal placode, and possibly including the
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ventral eye vesicle. Retinal pigmented epithelium (RPE) was greatly reduced either in 

density of pigment or size of the RPE, and overall size of the eye vesicle was reduced. 

Closure of the ventral fissure of the optic vessel is incomplete at this stage, suggesting 

retarded eye development or coloboma, or a gradient of pigment loss that is greatest 

anteriorly and ventrally. The edge of the dorsal fin is irregular or serrated compared to 

controls. Development of the tailbud is delayed or otherwise abnormal in morphants.

Our collaborator Dr. Jonathan Henry (University of Illinois-Urbana) sectioned 

control and CHRAC17 morphant embryos collected at stage 41 and stained them with 

hematoxylin and eosin to study them microscopically. These sections reveal that the 

eyes develop normally in the control embryos (as expected) but are very poorly 

developed in the CHRAC17 morphants (Fig. 6). The eyes of control embryos show 

normally differentiating retinal layers including a pigmented retinal epithelium lining of 

the eye, and a layer of differentiating rod and cone cells. The lenses in control embryos 

also develop normally, with a dense inner sphere of primary fiber cells surrounded by 

secondary fiber cells, and are fully separated from the overlying ectoderm. In contrast, 

development of the eyes of CHRAC17 morphants is very abnormal. The retinas are not 

normally differentiated and are unlayered. The lenses show no secondary fiber cells and 

remain attached to the surface ectoderm. In the example shown in Fig. 6, a lens 

placode remains in the surface ectoderm, or alternatively a small lens body is present 

that contains some or no internal primary cells.
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Histology also reveals abnormal neural tube and notochord development at stage 

41 in CHRAC17 morphants (Fig. 7). The tissues of the neural tube are poorly 

differentiated and the notochord is defective in shape and in its relative position to the 

neural tube.

I classified 1300 embryos injected with CHRAC17-specific MOs or with control 

MOs as normal or abnormal using criteria based on the gross morphology of eyes and 

head and on length of the anterior-posterior axis. I compared the number of normal 

and abnormal embryos injected with control MO or CHRAC17-specific MO from eight 

independent experiments (Table 1, Fig. 9). The average percentage of abnormal 

embryos among control embryos is 16.9% and ranges from 7.8% to 28.6%, and includes 

an array of nonspecific defects. Among CHRAC17 morphants the average percentage of 

abnormal embryos is 70.1% and ranges from 53.8% to 90.0% and these defects are 

highly uniform and reproducible. Embryos injected with 21 ng of CHRAC17-specific MOs 

immediately after fertilization exhibit a milder phenotype than those injected with 42 ng 

MOs. This dosage effect is also consistent with the phenotype being caused specifically 

by the activity of the CHRAC17 MO.
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Table 1 The frequency of abnorma development in MO-injected embryos
Injectate Amount

injected
Total # of 
embryos

# of
abnormal*
embryos

% of
abnormal*
embryos

Uninjected 1111 75 7%
INV MO 42 ng 851 150 18%

84 ng 100 5 5%
CHRAC17 MO 21 ng 119 41 34%

42 ng 856 571 68%
84 ng 349 298 85%

*The morphant phenotype includes abnormal eye development combined with 
abnormal anterior-posterior axis.

After stage 28 normal embryos begin spontaneous movement and later become 

responsive to tactile stimulation. Interestingly, the CHRAC17 knockdown embryos 

remained inert and nonresponsive as late as stage 45. This is not due merely to delayed 

behavioral development, because days later knockdown embryos are still nonresponsive 

to tactile simulation. Determination of eye function depends on functional motility in 

embryos (i.e., testing whether embryos swim from shadows or other obstacles) so I was 

unable to establish whether vision is normal or abnormal in knockdown embryos. 

However, given the lack of eye differentiation observed in the morphants (see below), it 

is clear that these embryos must be entirely blind.

In Xenopus each cell of a two-cell stage embryo gives rise to either the right-hand 

side or the left-hand side of the later embryo. I wanted to determine whether injecting 

one of the two cells with CHRAC17-specific MOs would result in an embryo with normal 

morphology on the uninjected side and a morphant phenotype on the side that had 

received the CHRAC17 MO. This method provides morphological features on the
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uninjected side that can be compared to features on the side in which CHRAC17 is 

ablated. There are some caveats to this technique; for example, midline structures can 

sometimes still form as a result of signaling from the uninjected side of the embryo; 

however, the normal side generally serves as a very powerful internal control for the 

effects of the MOs.

Embryos injected unilaterally with CHRAC17-specific MO at the two cell stage are 

frequently crescent-shaped and the side of the embryo with ablated CHRAC17 function, 

identified by fluorescence of the fluorescein tag on the MO, typically form the inner 

edge of the crescent (Fig. 10). This is consistent with the AP-axis shortening observed 

in global knockdowns performed at the one-cell stage (Fig. 5).

On the gross morphological level the phenotype of unilaterally injected embryos 

appears mild compared to that of globally injected embryos, but at the histological scale 

developmental defects are obvious in these embryos (Fig. 11). Embryos fixed at stage 

41 were sectioned and stained as above by Dr. Jonathan Henry. These embryos exhibit 

developmental abnormalities of the eye, neural tube and notochord on the affected 

side, but not on the contralateral side (Fig. 12). In some cases there also appears to be 

abnormal development of mesodermal tissue.

Interestingly, the lack of response to stimulation observed in embryos in which 

CHRAC17 was bilaterally ablated was not present in unilaterally injected embryos. To 

the contrary, many of the latter are hyperactive, many displaying what could be
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described as convulsive activity. Such embryos convulse upon tactile stimulation and 

continue the activity long after the usual response would have abated. Seemingly, the 

activity is initiated spontaneously as well.

In summary, CRAC17 knockdown embryos exhibit a phenotype that overlaps with 

but is distinct from ISWI knockdown embryos. Complete ISWI knockdown results in 

death at neurulation, while 80% of CHRAC17 knockdown embryos survive to stage 45. 

This is consistent with the corresponding expression patterns of these genes as 

determined by in situ hybridization. The extent to which the differences reflect 

differences between the CHRAC complex's developmental functions and those of other 

ISWI-containing complexes will require further study.

1 mm
Figure 5 The CHRAC17 morphant phenotype in Xenopus. At stage 41, compared to the control MO 
injectee (top) the CHRAC17 MO injectee (bottom) demonstrates the characteristic developmental 
abnormalities in head structures, eyes, proctodeum and anterior-posterior axis.



F ig u re  (5 Cross sections of eyes of MO-injected embryos. Stage 4 1  embryos were injected with negative 
control MOs (left) or CHRAC17 specific MOs (right). In the control embryo, the retina contains normal 
differentiating layers of tissue including the darkly-stained pigmented retinal epithelium encapsulating the 
eye and, internal to that, the differentiating rod and cone cells. The lens, which is normally separated 
from the overlying ectoderm at this stage, contains a dense inner sphere of primary fiber cells surrounded 
by secondary fiber cells. The CHRAC17 morphant embryo (right) displays very abnormal eye 
development; the lens has no secondary fiber cells and is attached to the surface ectoderm. The retina 
lacks the normal layers of differentiating cells. Abbreviations: cn, cornea; gn, ganglion layer; in, inner 
nuclear layer; ip, inner plexiform layer; In, lens; on, outer nuclear layer; op, outer plexiform layer; pr, 
pigmented retinal epithelium.

ii

F ig u re  7  Cross sections of neural tubes of MO-inected embryos. At stage 41 the control embryo (left) 
exhibits normal development of neural tube (top) and notochord (bottom center). The morphant embryo 
(right) exhibits defective neural tube (top) and notochord (bottom center). Abbreviations: nt, neural 
tube, nc, notochord.
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Figure 8 The average AP-axis length of MO-injected embryos. Morphants are significantly shorter on 
average than those injected with negative control (INV) MOs.
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Figure 9 Numbers of normal vs. abnormal embryos. Stage 37 embryos from eight independent 
experiments injected with control MO or with CHRAC17 specific MO were sorted into normal and 
abnormal groups based on the gross morphology of the eye, face and anterior-posterior axis. For each 
experiment, the percent of abnormal and normal embryos is shown for the control embryos (blue bars) 
and the CHRAC17 morphant embryos (red bars).



F ig u re  1 0  A unilaterally injected Xenopus embryo. Fluorescein-labeled CHRAC17 specific MOs were 
injected on the left side; this is a dorsal view with head to the left and tail to the right. The typical bowing 
of these embryos suggests that the affected side is shorter along the anterior-posterior axis, presumably 
by the same mechanism that results in overall shortened AP axis length in globally injected embryos.

F ig u re  1 1  Left and right sides of a unilaterally injected embryo. CHRAC17 specific MOs were injected on 
the right side at the two cell stage. At stage 37 the right side exhibits gross morphological abnormalities 
including absence of eye structures while the left side exhibits normal development.
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Figure 12 Histological section of a unilaterally injected embryo. A two-cell stage embryo was injected 
unilaterally with CHRAC17 specific MOs. At stage 44 the unaffected side (left) demonstrates normal 
development while the right side, where CHRAC17 function is ablated, has abnormally developing eye, 
neural tube, notochord, and pharyngeal structures. Abbreviations: ec, eyecup; nt, neural tube, pp, 
pharyngeal pouches.

Loss of CHRAC17 function coincides with depletion ofxOTX2 mRNA.

In order to study the developmental consequences of CHRAC17 loss of function at 

the molecular level, I measured the level of expression of putative target genes that 

might be misregulated in CHRAC17 knockdown embryos. The homeobox gene xOtx2 is 

known to be involved in AP-axis formation at gastrulation and later is required for 

patterning of anterior head structures [66], [67], I reasoned that a misregulation of

xOtx2 by ablation of CHRAC17 function would be consistent with the pattern of
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CHRAC17 expression in these structures in normal embryos and with the perturbation of 

those structures in CHRAC17 morphants.

I injected embryos with negative control MOs or CHRAC17 specific MOs (42 ng) 

immediately after fertilization, collected 10 embryos from each group at stages 12,14, 

23, 37 and 45 and extracted total RNA from them. I measured the amount of specific 

mRNA species in the RNA samples using RT-qPCR (see Materials and Methods).

I found that the level of xOtx2 mRNA is reduced by 50% in CHRAC17 morphant 

embryos at stage 22 and remains depressed in subsequent stages, though expression 

may begin to recover at later stages (Fig. 13).

Figure 13 xOTX2 expression in staged CHRAC17 morphant embryos. Total RNA was extracted at the 
stages shown. Levels of xOTX2 mRNA were measured by RT-qPCR. The bars represent the level of xOtx2 
mRNA in CHRAC17 morphants divided by the level of xOtx2 mRNA measured in the negative control 
embryos.
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Genes that are misregulated in CHRAC17 morphant embryos are overrepresented in 

biological pathways involved in development, cell morphology and motility, and 

hematopoiesis.

In order to identify other genes regulated directly or indirectly by CHRAC17 I 

performed whole genome expression analysis of total RNA samples taken from control 

and CHRAC17 morphant embryos at stage 15 and stage 37 (see materials and methods). 

Whole genome expression analysis identified many misregulated genes at stage 15 and 

stage 37. At stage 15, 414 genes were misregulated with p values <0.001 in CHRAC17 

morphants, while at stage 37, 588 genes showed significant changes in expression 

levels. Compared to the profiles of misregulated genes in ISWI and WSTF knockdowns, 

that of CHRAC17 morphants contain unique genes; the extent to which the profiles may 

overlap has not been determined.

I focused on several genes found to be misregulated when CHRAC17 function is 

ablated , listed on Table 2. Three (CXCL12, DAB2, and MIXL1) are known to have 

regulatory functions in development. H1F0 is associated with chromosome 

condensation and cells entering terminal differentiation.

CXCL12 was first identified as a bone marrow stromal cell-derived factor and pre- 

B-cell stimulatory factor and named PBSF/SDF-1. It is known as a highly atypical 

chemokine (reviewed in [68]). While it belongs to a subfamily of proteins characterized 

by the first two cysteines being separated by one amino acid (CXC), its amino acid
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sequence is as similar to the members of another subfamily (CC) as it is to other CXC 

proteins. The sequence and function are so highly conserved across species it is 

suspected that almost all of its residues are necessary for biological activity [69].

CXCL12 was thought to be the ligand for a single receptor, CXCR4, unlike the other CC 

and CXC chemokines but lately a second cognate receptor, CXCR7, has been identified 

(reviewed in [70]). In Xenopus CXCL12 is expressed in developing mid- and hindbrain, 

otic vesicles, dorsal fin, posterior heart, and later in the proctodeum [69]. It has been 

shown that the CXCL12/CXCR4 axis is necessary for regulating the massive cell migration 

that takes place during gastrulation [71]. The paradigm for CXCL12 function is that 

CXCL12-expressing cells create an extracellular gradient of CXCL12 that attracts CXCR4- 

expressing cells. CXCR4-expressing cells include adult stem cells that might enter 

circulation from their niches, and upon encountering the CXCL12 gradient pass through 

the endothelium to their targets, much as leukocytes are known to do when attracted to 

sites of inflammation by other chemokines. An intriguing theory is that CXCR4- 

expressing cardiac neural crest cells might be attracted in this way to the ventriclular 

septum of the developing heart [69].

The microarray chip data indicated that CXCL12 was upregulated 6.8-fold at stage 

15 and 5.1-fold at stage 37. For a detailed picture of how CHRAC17 ablation affects 

CXCL12 expression in developing Xenopus I injected one cell of two-cell stage embryos 

with CHRAC17-specific MOs. My collaborator Jasmin Horn (Julius-Maximilians University
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Wuerzburg) then performed whole mount in situ hybridization with a probe for CXCL12 

mRNA on embryos fixed at stage 15 and stage 37. I found that CXCL12 mRNA was 

detectable at stage 37 in the eye, otic vesicle, mid- and hindbrain and dorsal fin, 

confirming findings of earlier studies [69] (Fig. 16). Consistent with the microarray chip 

data, the injected (right) side of the embryo has visibly more CXCL12 expression than 

the uninjected side.

DAB2 is involved in endocytosis in clathrin-coated structures at the cell surface, 

where it interacts with the cargo-binding domain of the actin-based molecular motor 

myosin VI (reviewed in [72, 73]. Myosin VI in turn promotes secretion of vascular 

endothelial growth factor (VEFG) and the serine protease, prostate-specific antigen [74], 

DAB2 is known to mediate TGF0 signaling [75]. In Xenopus DAB2 was shown to mediate 

the induction of VEGF expression by activin-like signaling, and this signaling is essential 

for the development of intersomitic blood vessels [76].

Dab2 was upregulated 2.1-fold at stage 37. To visualize how CHRAC17 ablation 

affects Dab2 expression in developing Xenopus I again unilaterally injected two-cell 

stage embryos with CHRAC17-specific MOs and Jasmin Horn performed whole mount in 

situ hybridization on embryos fixed at stage 15 and stage 37, using a probe specific to 

Dab2. I found that Dab2 mRNA was detectable at stage 37 in a diffuse pattern 

consistent with earlier studies [76] (Fig. 17). Consistent with the microarray chip data,
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the injected (right) side of the embryo has visibly more Dab2 expression than the 

uninjected side.

H1F0 is a linker histone associated with condensed chromatin and terminally- 

differentiated cells. A global gene expression experiment associated HlfO expression 

with erythroid differentiation [77]. HlfO  expression was upregulated by a factor of two 

at stage 15 and by a factor of four at stage 37. In situ hybridization detected no 

difference in its expression level between injected and uninjected sides of stage 15 

embryos, possibly an artifact due to overstaining. In situ hybridization was not 

performed on a stage 37 embryo.

MIXL1 is a paired-like homeobox protein and an activin immediate-early response 

gene. It is expressed in the Xenopus embryo's marginal zone and deep vegetal cells [78]. 

Mixll expression domain largely overlaps that of brachyury (Xbra), at the gastrula stage, 

but the two genes inhibit the expression of each other so in successive stages their 

expression patterns become exclusive [79]. This is the result of MIXLl-mediated 

induction of goosecoid (gsc) expression, which in turn directly suppresses expression of 

Xbra [80]. Thus the protein regulates mesoderm development and mediates endoderm 

differentiation. It has been shown to be required for head formation [79]. Mixll was 

downregulated by a factor of 1.5 at stage 15. Whole mount in situ hybridization of 

embryos unilaterally injected with CHRAC17-specific MOs confirm this, as the uninjected 

side exhibits higher Mixll expression than the injected side (Fig. 18).
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Figure 14 Biological pathways of misregulated genes in stage 15 morphants. The pathways are in 
descending order of significance, left to right. Note that many of the pathways are involved in embryonic 
development, hematopoiesis and in cell motility.

Figure 15 Biological pathways of misregulated genes in stage 37 morphants. The pathways are in 
descending order of significance, left to right. Note that again many of the pathways are involved in 
embryonic development, hematopoiesis, and cell motility.
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Table 2 Selected genes misregulated in CHRAC17 morphants
Gene name Gene function Degree of misregulation

Stage 15 Stage 37
CXCL12 chemokine, directs motility of cells that 

express CXCR4 or 7 (endothelial and 
neuronal cells), regulates hematopoiesis 
and development of brain, spinal cord 
and eye

6.82 5.13

DAB2 Endocytosis and angiogenesis 2.08

H1F0 Chromosome condensation at 
interphase, terminal differentiation

2.28

MIXL1 Pronephros development, endoderm 
formation and regulation of mesoderm 
development

-2.83
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Figure 16 CXCL12 expression in a CHRAC17 morphant. These are the left and right sides of a stage 37-38 
embryo injected unilaterally on the right side with CHRAC17-specific MOs, then probed with in situ 
hybridization probe specific for CXCL12 expression. The right side exhibits increased CXCL12 expression, 
consistent with the cDNA microarray results.
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F ig u re  17 DAB2 expression in a CHRAC17 morphant. These are the left and right sides of A stage 37-38 
embryo injected unilaterally on the right side with CHRAC17-specific MO, then probed with In situ 
hybridization probe specific for DAB2 expression. The right side has increased DAB2 expression, 
consistent with the cDNA microarray results.

F ig u re  1 8  MIXL1 expression in a CHRAC17 morphant. These are the left and right sides of a stage 15 
embryo injected unilaterally on the right side with CHRAC17-specific MOs, then probed with In situ 
hybridization probe specific for MIXL1 expression. The right side exhibits decreased MIXL1 expression, 
consistent with the cDNA microarray results.
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Discussion

Here I have collected evidence consistent with the hypothesis that CHRAC17, and 

by inference the CHRAC chromatin remodeling complex and/or other CHRAC17- 

containing complexes, have critical roles in development, particularly of the nervous 

system and AP axis. The role of CHRAC17 overlaps with, but is distinct from, the role of 

ISWI (representing all ISWI-dependent complexes). The expression pattern of CHRAC17 

mRNA visualized by in situ hybridization is distinct from that of ISWI, in that CHRAC17 is 

expressed in myotomes and prominently in ectodermal placodes and/or branchial 

arches, while ISWI expression is primarily confined to neural tissue. ISWI expression has 

not been detected in the myotomes.

The CHRAC17 morphant phenotype is dramatically different from that of ISWI. 

Most ISWI morphants die around the neurulation stage, while 80% of CHRAC17 

morphants survived to at least stage 45. At later stages the length of CHRAC17 

morphants is significantly shorter than that of control embryos, consistent with the 

finding that CHRAC17 is expressed in the myotomes. In ISWI morphants that survive 

(for example due to only partial knockdown of ISWI) no such phenotype is observed.

By stage 37 CHRAC17 morphants exhibit reduced head volumes relative to 

controls, particularly in the areas of forebrain and nasal placode, and possibly including 

the ventral eye vesicle. Retinal pigmented epithelium (RPE) is greatly reduced and the 

overall size of the eye vesicle is reduced. Closure of the ventral fissure of the optic
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vessel is incomplete at this stage. The edge of the dorsal fin is irregular or serrated 

compared to controls. Development of the tailbud is delayed or otherwise abnormal in 

knockdowns. This phenotype overlaps with but is distinct from the ISWI phenotype;

ISWI knockdown embryos that survive to later stages exhibit specific eye and brain 

defects that are qualitatively different from the CHRAC17 morphant phenotypes.

Histology reveals abnormal retina, lens, neural tube and notochord 

morphologies at stage 41 in CHRAC17 morphants. Again, this phenotype overlaps with 

but is distinct from that of ISWI knockdown embryos.

CHRAC17 morphants are behaviorally inert and nonresponsive as late as stage

45. Late stage ISWI embryos, while totally blind, remain responsive to touch and swim 

reasonably well.

The morphology of embryos injected unilaterally with CHRAC17 MOs dramatically 

exhibit the morphological abnormalities found in CHRAC17 morphant embryos and 

suggest that there is little cross-talk between affected and unaffected sides in the 

development of the impacted structures. Whatever the molecular mechanisms of 

perturbation of the anterior-posterior axis, neural tube, notochord and eyes in CHRAC17 

morphants, it does not seem to be significantly rescued by the normally developing 

contralateral side of unilateral injectees. The crescent shape of unilaterally injected 

embryos is consistent with the reduced anterior-posterior axis length in embryos 

injected at the one cell stage. On the other hand, the overall phenotype of unilaterally
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inected embryos appears milder than that of globally injected embryos; for instance, the 

behavior phenotype is mitigated and sometimes even reversed in unilateral morphants. 

This may reflect some cross-talk between the two halves of the embryo.

The abnormalities found in CHRAC17 morphants are consistent with the 

expression pattern of CHRAC17 as revealed by in situ hybridization. CHRAC17 is 

normally expressed prominently in the most anterior head structures and brain, while in 

morphants the most anterior head structures are absent or reduced and histologically 

the neural tube and eyes were found to be defective. The behavioral phenotype found 

in morphants may be expected to derive from neural tube defects, although more 

studies would be required to make a cause and affect argument. The reduced anterior- 

posterior axis length of CHRAC17 morphants is consistent with the observation that 

CHRAC17 is expressed in the myotomes.

RT-qPCR and pathway analysis of the whole genome expression microarray 

experiment, comparing expression of genes in CHRAC17 morphants with that of normal 

controls, reveal a significant overrepresentation of genes involved in embryonic 

development, hematopoiesis and cell motility, among the misregulated genes in 

CHRAC17 morphants.

It will require further studies to establish whether or not some developmental 

consequences of CHRAC17 knockdown may arise from loss of function of the ATAC 

complex or of DNA polymerase epsilon, rather than a loss of CHRAC function. There is
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no evidence that DNA polymerase epsilon has a role in development, but as cited in the

introduction to this chapter, biochemical and genetic studies of the ATAC complex's

subunits suggest that it could function in regulatory pathways in development.
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Chapter 4 

The role of CHD4 in Xenopus development 

Introduction

As mentioned in Chapter 1 the CHD4 protein was initially identified as the 

dermatomysitis-specific autoantigen Mi-2 (antigen recognized by patient Mitchell's 

autoimmune antibodies 2) [1], Subsequently, several groups identified a related set of 

remodeling complexes containing either CHD3 or CHD4 as the ATPase subunit. The 

genes encoding the proteins may be referred to as Chd3 and Chd4, respectively, and the 

proteins are also known as Mi-2a and Mi-2|3. These complexes include the Xenopus Mi- 

2 complex [2] and the human complexes NuRD/NURD/NRD [3-5].

Since the publication of Chapter 1 much has come to light regarding the 

developmental roles of the subunits of the NuRD complex. CHD4 regulates the relative 

amounts of mesoderm and neuroectoderm in developing Xenopus [6]. It directly binds 

the Sip l gene which suppresses Sip l expression and consequently neural development. 

Conversely, CHD4 suppression of Sip l prevents expression of the brachyury (Xbra) gene 

in the prospective neural plate while still allowing it to be expressed in prospective 

mesoderm.

The subunits MBD2 and MBD3 were confirmed to be mutually exclusive and 

were shown to confer different functions on their respective NuRD-like complexes [7].
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In cell lines expressing a tagged version of each subunit, the MBD2 complex, but not the 

MBD3 complex binds the arginine methyltransferase PRMT5. The MBD2 complex also 

binds import a nuclear transport proteins, suggesting that the MBD2 complex may 

translocate between the cytoplasm and nucleus. All three MTA proteins (MTA1, MTA2 

and MTA3) were found associated with both the MBD2 and MBD3 complexes; there is 

evidence that the MTA proteins are expressed in a tissue-specific manner, resulting in 

tissue-specific NuRD complexes so the number of tissue-specific complexes determined 

by combinations of subunits may be substantial [8], [9], The same group found 

numerous post-translational modifications of the NuRD complex, many of them 

occurring on highly conserved residues, implying that the modifications also may be 

evolutionarily conserved.

MBD2 but not MBD3 contains a motif that is a known substrate for PRMT5, and 

in vitro the MBD2 complex specifically methylates MBD2 containing the motif, but not 

MBD2 lacking the motif or MBD3. Chromatin immunoprecipitation in cultured cells 

revealed that MBD2 and PRMT5 colocalize to two genomic sites, and that PRMT5 

methylates its target histone residue H4R3 at these sites.

A critical role for MBD3 in peri-implantation development was revealed by 

mouse genetics and ex vivo studies of MBD3 null inner cell mass cells [10]. MBD3 null 

embryonic stem cells contain little or no intact NuRD complex. Embryos deficient in 

MBD3 fail to expand their pluripotent cell population or form a normal epiblast post
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implantation, and fail to develop normal extraembryonic ectoderm. Analogously, inner 

cell masses deficient in MBD3 and cultured in the presence of LIF, which inhibits 

differentiation and promotes expansion of pluripotent cell populations, fail to expand 

into a normal cell mass.

A role in gene silencing has been ascribed to the p66 subunit of the NuRD 

complex, since named Gatad2a. Mice mutant for Gatad2a die around the time that the 

embryo implants and gastrulation begins, consistent with a function in mediating DNA 

methylation and developmental gene silencing, which begin at the same stage [11]. 

However, the same study showed that Gotoc/2o-null embryonic stem cells are viable and 

capable of differentiation in embryoid bodies.

With so much functional diversity resulting from different assortments of the 

alternative MBD and MTA subunits of the NuRD complex, the question arises as to what 

functional differences might exist between the CHD3-containing and CHD4-containing 

complexes. The two complexes may be functionally redundant, or CHD3 and CHD4 may 

be among those sets of paralogous proteins that are the products of gene duplications 

and subsequent divergent evolution. To begin to answer these questions I ablated 

CHD4 function in developing Xenopus embryos to observe the consequences of loss of 

CHD4 function.
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Results

Ablation of CHD4 function by Morpholino oligonucleotides results in a distinct morphant 

phenotype.

In order to determine the developmental roles of CHD4 I injected Xenopus 

embryos with CHD4-specific morpholino oligonucleotides (MOs). I designed the MOs to 

anneal with the region of CHD4 mRNA that spans the translation start site, thus 

preventing translation of CHD4 protein in injected embryos. As a control for nonspecific 

MO effects on development, I injected embryos from the same clutch of eggs, fertilized 

with the same testis, with CHD4 inverse control MOs or with water (see Materials and 

Methods). A portion of each clutch was left uninjected.

Compared to negative control MO-injected embryos, those injected with CHD4- 

specific MOs exhibited profound developmental abnormalities (Fig. 1). The most 

anterior and dorsal head structures appeared to be reduced or missing. The eyes were 

malformed or had retarded development. The embryos exhibited varying degrees of 

cyclopia. The anterior-posterior axes were severely shortened and malformed.

I counted abnormally developing Xenopus in four independent experiments based 

on morphology of the head, eyes, and anterior-posterior axis(Table 1). Of 152 control 

embryos 1.3% exhibited abnormalities, while of 353 CHD4 morphants, 77% were 

abnormal.
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My collaborator Dr. Jonathan Henry of the University of Illinois-Urbana sectioned 

control and CHD4 morphant embryos collected at stage 44 and stained them with 

hematoxylin and eosin to study them microscopically. These sections reveal striking 

developmental abnormalities in development of neural tube, notochord, eyes, and 

pharyngeal pouches (Fig. 2). In particular the eyes reflected the varying degrees of 

cyclopia seen on the gross morphological scale. In the example in Figure 2 the retinas 

are apparently fused at the midline and the lenses are invaginated far nearer to the 

midline than in normal controls. While the pigmented retinal epithelium is discernible, 

other layers of the retina are not present. Overall, the head is much narrower than that 

of the normal control.

Table 1 Percentage of abnormal embryos in control and CHD4 morphants

Morpholino Normal # abnormal % abnormal

Control 150 2 1.3%

CHD4 82 271 76.7%
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Fogur® 1 T h e  CHD4 m o r p h a n t  p h e n o ty p e  in Xenopus. A t  sta ge  4 1 , c o m p a re d  t o  th e  c o n tro l M O -in je c t e d  

e m b r y o  ( t o p )  th e  e m b r y o  in je c te d  w it h  C H D 4 -s p e c f ic  M O  (b o t t o m ) d e m o n s tra te s  th e  c h a ra c te ris tic  

d e v e lo p m e n t a l a b n o rm a lit ie s  f o llo w in g  C H D 4  loss o f  fu n c t io n  in h e a d , e y e s ,a n d  a n te r io r -p o s t e r io r  axis.

r

F ig u re  2 C ro ss  s e c tio n s  o f  M O -in je c t e d  Xenopus e m b ry o s . E m b r y o s  w e r e  in je c te d  w it h  c o n tro l o r  CHD4- 
sp e cific  M O s . A t  s ta g e  4 1  th e  e m b r y o  la ck in g  C H R A C 1 7  fu n c t io n  e x h ib its  a b n o r m a lly  d e v e lo p in g  e yes, 

n e u ra l tu b e , n o to c h o r d , a n d  p h a ry n g e a l s tru c tu re s . A b b re v ia t io n s : ec, e v e  c u p , In, le n s ; n c , n o t o c h o r d ;  

n t, n e u ra l t u b e ;  p p , p h a ry n g e a l p o u c h ; p r , p ig m e n te d  re tin a l e p ith e liu m .
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Discussion

This study provides evidence that CHD4 and by implication the NuRD complex 

have critical roles in development, particularly in normal development of head 

structures, eyes, and the anterior-posterior axis. Embryos lacking CHD4 function exhibit 

dramatic abnormalities including cyclopia and reduced or missing structures in the 

anterior and dorsal head. The histological findings of the pigmented retinal epithelia of 

the two developing eyes fused at the midline suggest that part of the perturbation of 

development must involve failure of midline signals that commonly lead to similar 

abnormalities. The known involvement of CHD4 with positioning the 

mesoderm/neuroectoderm boundary [6] may be involved with this developmental 

abnormality. The findings point to the potential for studies at the molecular level that 

will be necessary to confirm this.
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