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Abstract

This dissertation focuses on the overwintering o f  three insects from Interior 

Alaska: a hemipteran, Elasm ostethus interstinctus, and a coleopteran, Cucujus clavipes  

puniceus, that are freeze avoiding in the strict sense o f  the phrase, and a dipteran, Exechia  

nugatoria, that is simultaneously partially freeze avoiding and freeze tolerant. The 

variability within the freeze avoidance strategy itself is a key theme throughout this 

dissertation.

Two significant contributions to comparative physiology are the confirmation o f  

insect vitrification (glass formation) with its attendant extension o f  freeze avoidance and 

survival into a new, extreme low temperature record o f  -100°C and the simultaneous 

coupling o f  freeze avoidance and tolerance within an individual, which may more 

properly be described as a new overwintering strategy. Vitrification is the process by 

which ice crystallization is circumvented, resulting in a supercooled amorphous solid. 

Through a combination o f  antifreeze proteins that inhibit ice nucleation, dehydration 

tolerance, presence o f  high glycerol concentration, and low temperatures, the mobility o f  

the remaining liquid water molecules is reduced, effectively by-passing the crystalline 

state. The second contribution is the discovery o f  a new overwintering strategy that 

combines freeze avoidance and freeze tolerance within an individual. In this case, the 

abdomen freezes (and the insect survives), while the contiguous head/thorax remains 

supercooled.

These findings lead to the following evolutionary and trans-disciplinary questions. 

Is vitrification an adaptation? What is the selective advantage o f  compartmentalizing ice



between body sections o f  an individual insect? Is this new overwintering strategy an 

example o f  a species transitioning between either becoming exclusively freeze avoiding 

or free tolerant? Applying new understanding o f  mechanisms o f  insect vitrification and 

avoidance o f  devitrification to cryomedicine m ay extend preservation o f  human tissues 

and organs. Similarly, for physical and material scientists, by understanding the patterns 

o f  ice formation within insects that tolerate, inhibit, and/or impede ice formation below 

the hom ogeneous ice nucleation temperature o f  water (-40°C), new biomimetic 

possibilities can be envisioned.
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Introduction: Brief History o f  Research on Jnsect Overwintering Physiology in Alaska 

What follows is a brief  review o f  insect overwintering physiology conducted in

Alaska by researchers affiliated with the University o f  Alaska Fairbanks (UAF) and/or

the Institute o f  Arctic Biology (IAB). This is an abbreviated history and is not meant to

be a complete review. In fact, many additional UAF/IAB biologists have also

contributed to overwintering research and their work cited. For instance, two o f  Stephen

F. M acL ean’s works (MacLean 1973 and M acLean and Hodkinson 1980) correlate

temperature, life histories, and distributions o f  high latitude insects, especially on the

North Slope o f  Alaska. These works have contributed to an understanding o f

overwintering based on low temperature effects; however, this introduction is intended to

serve as a record o f  the people and papers that have more directly influenced the research

in this dissertation.

General Insect Research and Climate Characteristics in Alaska

Insect research in Alaska has been conducted on and o ff  for over 100 years. The 

first major report o f  insects in Alaska was carried out by the Harriman Alaska 

Expedition, from 1 June to 1 August 1899. Alaska was regarded as “ terra incognita,” 

especially for hymenopterologists who had known o f  only 30 species prior to the 

Expedition. By the end o f  the two month journey, 335 species were added (W. Ashmead 

in Harriman Alaska Expedition, 1899 (1910), Vol. IX). Overall, the collection o f  insects 

in Alaska increased by nearly 8,000 specimens representing a “ thousand species” under 

the direction o f  Trevor Kincaid, entomologist o f  the Expedition (Merriam, Harriman



Alaska Expedition, 1899 (1910), Vol. VIII). Even today, new species continue to be 

found (D. Sikes, UAF/IAB, Pers. Comm.). While the Harriman Alaska Expedition 

focused on insects from southeast to south central Alaska (Juneau to Seldovia), a more 

northern focus took place in the 1960s near Point Hope Alaska. Concern over the health 

o f  Inupiaq-Eskimos was raised in relation to Project Chariot, a program sponsored by the 

Atomic Energy Commission, whereby an “ instant harbor” was to be created by atomic 

detonations (initially in the megaton range) at Ogoturuk Creek near Point Hope, Alaska 

(O'Neill 1995). A  proto-environmental impact statement that came to be known as 

E nvironm ent o f  the Cape Thom pson Region, A laska, was completed in 1966. The chapter 

in this report entitled “Terrestrial Invertebrates” includes lists o f  both terrestrial and 

freshwater invertebrates o f  the Ogoturuk Valley collected in the summers o f  1959-1961 

(Watson et al. 1966). Besides systematics, more recent studies on insect 

thermoregulation, ranging from bees (Bishop and Armbruster 1999) to dragonflies 

(Sformo and Doak 2006), have been completed.

One feature common to all o f  the above research, however, is that each was 

conducted during relatively warm conditions from spring through fall and not under 

winter-like conditions. Yet, Interior Alaska, an area co-extensive with the taiga forest 

and taiga snow-type (Sturm et al. 1995) extending roughly south o f  the Brooks Range 

(68° 02 ’ N) to the Alaska Range (62° 58’ N) (Benson 2001) may have winter-like 

conditions between 150 to 200 days o f  the year (Sturm et al. 1995; Benson 2001; Shulski 

and W endler 2007). The climate o f  Interior Alaska has been classified as extreme 

continental climate due to its long duration o f  snow cover, low temperature range, and

2



persistent thermal gradient within the snow pack (Benson 2001). W iseman and 

Fairbanks, Alaska, are two locations that have experienced some o f  the coldest 

environments in North America. In 1971, for instance, the Prospect Creek Camp, 235 km 

north o f  Fairbanks and 87 km south o f  Wiseman, recorded the lowest official temperature 

ever in Alaska o f  -62 °C. In Fairbanks, the lowest temperature ever recorded was -52 °C, 

recorded at the Fairbanks International Airport in 1962. This is approximately three 

kilometers from the on-campus insect enclosure at the University o f  Alaska Fairbanks. In 

general, the extent o f  low temperatures that overwintering insects could experience in 

Fairbanks can be seen in terms o f  mean num ber o f  days below particular temperature 

thresholds as measured between 1949 -  2005. During that period, Fairbanks experienced 

an average o f  ten days below -40 °C, 44 days below -28.8 °C, 113 days below -18 °C, 

and 221 days below 0 °C, although the num ber o f  days at low temperature extremes is 

declining (Shulski and W endler 2007).

While there are a num ber o f  official stations that have been recording temperature 

throughout the state for nearly 100 years (in some locations), the size o f  Alaska in general 

and interior Alaska in particular, with its many low-lying valleys, is too great an area to 

assume that extreme conditions have been adequately monitored. Therefore, the 

officially recorded extreme minima is most likely an under-representation o f  low 

temperatures that overwintering fauna may experience, and unofficial observations 

suggest that temperatures in the -60s °C have been reached in the W iseman area (personal 

comm. Jack Reakoff, Wiseman Alaska). With long winters, the range o f  low temperature 

minima (< -40 °C), and the large persistent thermal gradient (> 0.1 °C • cm"1) within the

3



snow pack (LaChapelle 1992; Sturm and Benson 1997), overwintering physiology in 

Interior Alaska may be at times more properly described as extreme overwintering 

physiology.

Per (Pete) Scholander

Pete Scholander’s work stands at the forefront o f  comparative physiology not only 

temporally speaking but also for its far-ranging implications beyond insect physiology. 

The most direct connection between my work in this dissertation and his relies on his 

pioneering work in the 1940s and 1950s on insects in Barrow, Alaska. Scholander was 

the first scientist to examine overwintering strategies o f  insects in Alaska. In 1947, 

Scholander measured temperature and respiratory rate on insects (and lichens) in Barrow, 

Alaska. Since this was the heyday o f  comparative physiology, after making 

measurements on high latitude fauna and flora, he felt that a comparison had to be made 

on lower latitude individuals, so he immediately flew on a military transport to Cuba, 

where the “air command gave [him] a jeep and [he] drove at night up to the little town o f  

Guantanam o” (Scholander 1990). Here, he collected tropical insects and lichens and 

brought them back to Barrow. In January 1948, he measured respiratory rate from 0 to 

30 °C and did not detect significant differences among insects (or within lichens) from 

the two regions (Scholander et al. 1953).

Although this project was abandoned, he continued to examine ice-trapped insects 

at the bottom o f  shallow tundra ponds. In the ice, midge (chironomid) larvae were 

embedded. As he thawed larvae under warm water, they changed from a yellow to a 

bright red, and two questions were raised, one o f  which has had substantial implications
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beyond overwintering physiology. First, were these larvae truly frozen and, therefore, 

freeze tolerant, or were these larvae freeze avoiding and, therefore, overwintering in a 

supercooled state? This is one o f  the first instances when the two major overwintering 

strategies-freeze tolerance and freeze avoidance-w ere brought into sharp focus, and 

these strategies continue to be examined today by physiologists. In the last chapter o f  

this dissertation, these two strategies are brought into sharp focus with the discovery o f  

an insect that is capable o f  simultaneous freeze tolerance and avoidance within an 

individual. In fact, Scholander’s 1948 inquiry was most likely the first time that the 

overwintering status o f  insects from Alaska was distinguished. The second question that 

the embedded larvae raised was gas permeability in ice. In experiments with 0.1 mm 

layers o f  ice and known concentration o f  gasses, Scholander and his group conducted the 

first micro-gas analysis and showed gas permeability o f  ice to be low. A later study (EA 

Hemmingsen 1959) showed oxygen permeability to be even lower than that found by 

Scholander et al. (1953). While Scholander’s finding has been very important to the 

study o f  fauna and flora overwintering, the greatest influenceof this finding may be on 

the method o f  measuring “ancient atmospheres” (Scholander 1990) such as greenhouse 

gas concentration from air bubbles trapped in ice cores. Micro-gas analysis is routinely 

used today to estimate carbon dioxide levels in glaciers dating back hundreds o f  

thousands o f  years in order to more clearly understand past climates and atmospheric 

C O 2 levels related to global climate issues.

A second interesting historical relationship between Scholander’s work and mine 

is his questioning how polar fishes in ice-leaden seas do not freeze despite the fact that
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their p lasm a’s equilibrium freezing point is higher than the sea’s freezing point. This 

question was pursued and answered (antifreeze glycoproteins, AFGP) by Dr. Art 

DeVries, who was my co-adviser’s (Dr. John “Jack” D um an’s) major professor.

DeVries and D um an’s work on antifreeze proteins in fish led to D um an’s discovery o f  

insect antifreeze proteins (1977) that was a major factor in the collaboration between 

Duman and m y other co-adviser Dr. Brian M. Barnes (University o f  Alaska 

Fairbanks/Institute o f  Arctic Biology).

Keith Miller

Keith Miller, a retired professor at University o f  Alaska Fairbanks (UAF) and the 

Institute o f  Arctic Biology (1AB), also contributed substantially to understanding o f  the 

overwintering physiology o f  insects. In a conversation with him I explained that one o f  

my goals was to work on an insect that he had not already exam ined -I ’m still searching. 

Although an exhaustive examination o f  M iller’s published work is beyond the scope o f  

this b rief  history, three works in particular reveal the breadth o f  his work and its influence 

on not only my dissertation but also on the work o f  Dr. B.M. Barnes (UAF/IAB) and Dr. 

J.G. Duman (University o f  Notre Dame). In 1982, Miller published “Cold-hardiness 

strategies o f  some adult and immature insects overwintering in interior Alaska.” This 

paper reviewed a range o f  cold-hardiness factors including freeze tolerance and 

avoidance, supercooling, lower lethal temperatures, survival, and seasonal changes in 

polyhydric alcohols. Am ong these overwintering features, he was able to associate no 

less than six orders, 15 families, and 17 species o f  insects from Interior Alaska. This 

work in particular has been used by me not only as a reference but as a guide.
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After finding dual supercooling events in a fungus gnat (see Chapter 4), 1 

consulted this work in order to find which insects from Alaska had already been known 

to have dual supercooling events. While Miller showed dual supercooling points (SCPs) 

in some insects, he did not find it in the fungus gnats. I suspect that Miller would have 

discovered dual freezing events in this gnat had he been less conscientious in examining 

freezing and survival: after he had found the first freezing event, he re-warmed the bath 

to see if  the gnats survived, which they did. W hen I called him to discuss my findings, it 

became clear to me that I had just been lucky enough to be freezing the gnats with other 

insects that required very low temperatures.

Another direct influence o f  M iller’s work on the Barnes and Duman collaboration 

is the procedure o f  reducing bath temperature by 0.2 °C / min. Miller, when examining 

the adult Upis ceram boides  found that this freeze-tolerant beetle would survive freezing 

nearly 100 % when the bath was reduced < 0.3 °C / min down to -62 °C. If  the bath 

temperature had been reduced by 0.35 °C / min, substantial mortality resulted (Miller 

1978). Miller and Werner (1987) examined extreme supercooling in three species o f  

freeze-avoiding willow gall insects. These species still hold the supercooling record in 

Alaska, with some individuals supercooling down to -64 °C. W hat was also interesting 

was their association between low supercooling, high molality (4 to 6) glycerol, and low 

hemolymph melting points (-14 to -18 °C). This paper pointed the way for the work on 

the extreme supercooling and vitrification in Cucujus clavipes puniceus  (Chapters 2 and 

3).
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M ark Oswood

Mark Oswood, a retired professor at UAF/IAB, gave me the idea o f  working on 

Odonata (dragonflies) for my M.S. which 1 pursued with Dr. Pat Doak. M y initial 

interest in overwintering was piqued while taking a course in aquatic entomology with 

Dr. Oswood, especially when the class was in the field collecting insects and while 

listening to him and his guest speaker Dr. John “Jock” G. Irons III describe their 

experiences and experiments with overwintering o f  freshwater benthic invertebrates 

(Oswood et al. 1991; Irons et al. 1992). Like Scholander in the 1940s in Barrow, Dr. 

Mark Oswood noted that arthropods could be found in frozen substrate (Oswood et al. 

1991). In personal communications with Oswood, Miller, and Irons, they have also 

described to me the complexity o f  the freezing environment in lentic and lotic habitats. 

Oswood et al. (1991) concluded his publication with “Questions and Opportunities” that 

highlighted the intricacies o f  the freshwater situation: Year-to-year differences in benthic 

temperatures, some o f  which may or may not stress invertebrates; differences in 

supercooling capacity when animals are frozen in contact with moist vegetation, with 

water, or under dry condition; the presence o f  antifreeze proteins. These ideas were 

helpful when on 20 September 2004, while returning from Toolik Field Station (68° 

38'N), we (Duman, Barnes, Walters, and I) found many stoneflies in temporary runoffs 

during our descent from Atigun Pass. In contrast to many subarctic streams that flow 

throughout winter (Irons et al. 1992), we collected and examined individuals from a 

stream (the West Fork o f  the North Fork o f  the Chandalar River) approximately three km 

south o f  Atigun Pass that completely freezes (and even temporarily dries up in summer).



The works by Oswood, Miller, and Irons helped prepare me for my contribution to the 

Walters et al. (2009) paper on the freeze-tolerant stoneflies. One last interesting note on 

the stoneflies: We began with unidentified individuals. Although they were found in one 

location, our initial attempts to identify this species were difficult. I contacted a number 

o f  individuals who were not interested. After discussing this problem with Dr. Mark 

Wipfli (UAF/IAB) and Dr. Nick Flughes (UAF/School o f  Fisheries and Ocean Sciences),

I found Dr. Richard Baumann at Brigham Young University who was willing to identify 

individuals to species. The difficulty in identification o f  insects, especially in Alaska, is a 

common theme throughout this work.

Brian Barnes and Jack Duman

As part o f  a course entitled Physiological Ecology o f  Overwintering (Biology 

623, 1994-1995), Brian Barnes conducted a study (Barnes et al. 1996) on the northern 

green stink bug Elasm ostethus interstinctus (Heteroptera: Acanthosomatidae, Linnaeus,

1758). In this course, he and his students found that the stink bug successfully 

overwinters through a combination o f  supercooling and selection o f  appropriate 

overwintering microhabitat; however, this freeze-avoiding insect was susceptible to 

inoculative freezing by external ice crystals. In fact, they found that inoculative freezing 

resulted in higher lethal subzero freezing events that were near or higher than 

microhabitat temperatures, implying that stink bugs must either position themselves so as 

to avoid contact with ice crystals or suffer substantial mortality. They did not note any 

unique overwintering posture for these animals, as they had for the freeze-avoiding wasp 

( Vespula vulgaris) that overwinters in the same leaf litter microhabitat as the stink bug.
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Overwintering V. vulgaris can be found hanging below leaves by grasping vegetation 

with its mandibles and folding its wings to cover the ventral part o f  its body to prevent 

inoculative freezing (Barnes et al. 1996). In discussions about this paper, Drs. J.G. 

Dum an and B.M. Barnes began a collaboration in which I have been involved, and it is 

with a response to this paper that my dissertation begins (Chapter 1).

Barnes and Duman first met at the A A A S (regional) meeting at Denali Park, 

Alaska, 1999. This meeting resulted in the first o f  two collaborative NSF grants and my 

becoming a PhD student under their supervision. M y first work included collecting 

insects and testing for antifreeze proteins (AFPs) as part o f  a general survey (see Duman 

et al. 2004) o f  insects from areas north o f  the Brooks Range to Anchorage. In addition, I 

had the great pleasure o f  spending two years at Notre Dame in the Duman lab. I was also 

responsible for work on the green stinkbug Elastm ostethus interstinctus  (Chapter 1), and 

it was at Notre Dame that 1 learned about insect antifreeze isolation. It was near the end 

o f  the first grant and my stay at Notre Dame that Duman and I discussed the possibility o f  

examining deep supercooling and vitrification in Cucujus clavipes puniceus  (Chapters 2 

and 3), especially since returning to UAF would allow me to examine these 

overwintering features at the organismal level. Finally, in 2008, a Fairbanks collecting 

trip was arranged for a UAF photographer that resulted in a serendipitous examination o f  

the fungus gnat Exechia nugatoria , an insect not previously scrutinized by any o f  us in 

this collaboration. Examination o f  the dual freezing events found in this species is a 

testament to my advisors’ willingness to allow me to explore new species, resulting in the 

finding o f  a new overwintering strategy “on my own.” Obviously, much more could be
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stated about the work o f  Drs. Duman and Barnes, but that will be left to the results o f  the 

four principal chapters o f  the dissertation.

Summary o f  significant results by insect

Chapter 1 Elasm ostethus interstinctus'. Resistance to Inoculative Freezing

The Barnes et al. (1996) paper on two freeze-avoiding insects including the green 

stink bug Elasm ostethus interstinctus  served as a scientific backdrop for this chapter. 1 

measured seasonal changes in supercooling capacity, dehydration, and thermal hysteresis 

in relation to microhabitat temperatures and tested susceptibility to inoculative freezing 

by wrapping moistened paper around individuals and freezing them in direct contact with 

ice. While Barnes et al. (1996) found this species to be susceptible to inoculative 

freezing as high as -6 °C in the spring, 1 found an increase in the capacity to resist 

inoculative freezing to -16 °C. In addition, by measuring the seasonal increase in thermal 

hysteresis, indicative o f  the presence o f  antifreeze proteins, 1 found that stink bugs were 

capable o f  13 °C o f  supercooling while in contact with ice below their hemolymph 

freezing point. Although physiological adjustments help ensure that their supercooling 

capacity is not exceeded, this freeze-avoiding insect must select appropriate below-snow 

microhabitats to ensure their supercooling capacity is not surpassed by low temperature 

minima.

Chapter 2 Cucujus clavipes puniceus'. Deep Supercooling and Vitrification

Vitrification in the beetle larvae Cucujus clavipes  was predicted to occur based 

on earlier work by Bennett et al. (2005). My work confirms this hypothesis. First, the
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species was found to be a subspecies o f  Cucujus clavipes known as Cucujus clavipes 

puniceus, a western subspecies located in Pacific coastal states and Alaska. It is also a 

freeze-avoiding insect. The geographical range o f  this species is not known. In 

attempting to categorize supercooling as deep supercooling, Bennett et al. (2005) and this 

work found that i f  larvae avoided freezing to -58 °C, then there was no evidence o f  

freezing as low as the laboratory bath could go (ca. -75 °C). W e subsequently used 

temperature below -58 °C as the threshold to describe deep supercooling. At the same 

time as testing deep supercooling, we sent larvae that did not freeze at this threshold to 

21st Century Medicine (California) to confirm vitrification. Vitrification is the condition 

whereby the diffusion o f  water is inhibited and the phase change from a liquid to a solid 

crystalline state is by-passed. Antifreeze proteins function to inhibit ice nucleation, and 

through the combination o f  low water content and high colligative antifreeze (glycerol) 

concentration, the molecular mobility o f  remaining water molecules in high viscosity and 

at low temperatures is arrested. Under the direction o f  Drs. Greg Fahy and Brian W owk 

at 21st Century Medicine (California), we found that larvae did not freeze when the 

temperature was lowered to -150 °C. We also found that larvae would not freeze upon 

re-warming, a condition known as devitrification, that can take place when water 

molecules regain the ability to diffuse. Devitrification is a major stumbling block in 

vitirifcation processes in general, and my findings may serve an example for future 

biomimetic research in cryopreservation; furthermore, we found that the highest 

temperature at which larvae can vitrify is -58 °C, the temperature o f  our proposed deep 

supercooling threshold. I do not show that vitrification occurs in nature. However, since
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the lowest officially recorded temperature in Alaska is -62 °C (officially recorded at 

Prospect Creek, south o f  the northern range o f  C.c. puniceus), I conclude that larvae 

could potentially vitrify and subsequently overwinter in this condition. This adds 

vitrification as a third overwintering strategy to the long-standing categories o f  freeze 

tolerance and avoidance.

Chapter 3 C ucujus clavipes pun iceus : Probability o f  Freezing

In attempting to analyze some o f  the variables that allow individual Cucujus 

clavipes puniceus  to deep supercool, I enlisted the help o f  Dr. Julie McIntyre (UAF, 

Department o f  M athematics and Statistics). Over many discussions, logistic regression 

was found to be a method by which I could create a statistical model for determining 

which parameters are significant in the insect’s not freezing. Logistic regression can be 

used to determine the probability o f  a given dichotomous variable occurring, (in this case 

“ freeze or not freeze”). In addition, logistic regression has also allowed me to estimate 

water content leading to the probability that 50 % o f  larvae would deep supercool rather 

than freeze. The amount o f  water at which 50 % o f  larvae would deep supercool was 

greater in Wiseman larvae than in the Fairbanks larvae.

Chapter 4 Exechia nugatoria : Simultaneous Freeze Tolerance and Avoidance

This chapter on the fungus gnat provides evidence o f  another overwintering 

strategy that had not been known: the simultaneous freeze tolerance and avoidance in 

individual fungus gnats, Exechia nugatoria. This fly both tolerates and avoids freezing in 

different body compartments at temperatures o f  -30 to -50°C while overwintering in
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Fairbanks, Alaska. I suggest that this differential freezing is accomplished by regional 

dehydration that prevents inoculative freezing between the frozen abdomen and the 

supercooled thoracic and head compartments. These results should be interesting to a 

broad range o f  investigators including biologists, material scientists, and biophysicists, 

given that this insect illustrates the ability to supercool beyond the homogenous ice 

nucleation temperature (~ -40°C) and inhibits the propagation o f  ice at low temperature.
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Chapter 1 Overwintering and inoculative freeze resistance in the freeze-avoiding stink 

bug Elasm ostethus interstinctus  (Heteroptera: Acanthosomatidae) in A laska1

Abstract

Selection o f  below snow microhabitat for overwintering by freeze-avoiding insects can 

reduce exposure to cold by 30 to 40 °C compared to uncovered locations. However, 

subnivean microhabitats can subject animals to direct contact with ice crystals that may 

compromise supercooling capacity and result in mortality due to inoculative ice 

nucleation and freezing. We examined the overwintering behavior and physiology o f  the 

freeze-avoiding stink bug Elasm ostethus interstinctus  from Interior Alaska. We found 

significant seasonal changes in supercooling points and water content o f  adult insects 

from summ er maxima near -11 °C and 1.8 mg • mg dry mass 1 to winter minima near -

22.5 °C and 1.3 mg • mg dry mass"1, respectively. We tested susceptibility to inoculative 

freezing by cooling individuals while in direct contact with ice. Under these conditions, 

stinkbugs remained unfrozen to a minimum o f  -18 °C, a level o f  supercooling that is 

lower than the microhabitat temperatures they normally encounter in winter. 

Nevertheless, mortality o f  insects held in semi-natural conditions increased over the 

winter suggesting that individuals may experience inoculative freezing.

1 T odd  Sformo, Kent Walters, Brian M. Barnes, and John G. Duman. 2009. O verw in ter ing  and inoculative 
freeze resistance in the freeze-avoiding stink bug  E lasm oste thus in terstinctus  (Heteroptera: 
A can thosom atidae)  in Alaska. Prepared for the journal Physiological and  B iochem ical Z oology



Introduction

To survive winter, arctic and subarctic arthropods must adapt to low temperatures 

physiologically and behaviorally. The two predominate physiological strategies are 

freeze tolerance (the ability to survive freezing o f  extracellular body water) and freeze 

avoidance (Bale 1987; Duman 2001; Holmstrup et al. 2002). Recently identified in the 

Alaskan fungus gnat Exechia m igratoria, a third strategy (more typical o f  plants) 

combines both tolerance to ice formation within certain tissues and avoidance o f  ice in 

other contiguous, supercooled tissues (Sformo et al. 2009).

For freeze-tolerant organisms, the steady-state o f  being frozen leads to a reduction 

in metabolic rate that allows significant energy savings over the winter (Lundheim and 

Zachariassen 1993; Irwin and Lee 2002). Also, frozen individuals are in vapor pressure 

equilibrium with their surroundings and do not lose water to the environment since there 

is no gradient driving water from a high to a low vapor pressure (Lundheim and 

Zachariassen 1993; Irwin and Lee 2002; Zachariassen et al. 2004). Ice formation in 

freeze-tolerant organisms tends to occur at high subzero temperatures between -5 to -12 

°C with the aid o f  ice nucleating factors (Zachariassen 1985; Duman 2001).

Freeze-avoiding organisms avoid spontaneous freezing by removing ice- 

nucleating factors (Zachariassen 1985; Neven et al. 1986), producing antifreeze proteins 

(AFPs) (Duman 2001) and/or colligative antifreezes such as glycerol (Storey and Storey 

1991; Duman 2001; Duman and Serianni 2002), and/or undergoing cryoprotective 

dehydration (Bayley and Holmstrup 1999; Bennett et al. 2005).
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Selection o f  overwintering microhabitat can be an important component in 

overwintering success by ensuring that temperatures do not exceed the lower limits o f  

freeze tolerance or avoidance (Werner 1978; Marchand 1982; Bale 1987; Hayhoe and 

Mukerji 1987; Olsen et al. 1998). Many freeze-avoiding insects select overwintering 

sites below snow cover to take advantage o f  insulating effects o f  snow, leaf litter, and soil 

(Danks 1978, 1981; Pruitt 1979; Marchand 1982; Kalliomaki et al. 1984; Miller and 

W erner 1987; Hayhoe and Mukerji 1987; Sturm et al. 1995; Benson 2001; Olfert and 

Weiss 2006). To avoid freezing by innoculative ice nucleation, freeze-avoiding insects 

also select overwintering sites that minimize contact with ice crystals (Barnes et al.

1996).

The northern green stink bug Elasm ostethus interstinctus Linnaeus, also known as 

a birch bug, is a hemipteran (Heteroptera: Acanthosomatidae) whose palearctic 

distribution includes Siberia, northern China and Japan (Barber 1932), northern Europe, 

the Northwest Territories in Canada, and Alaska (Thomas 1991). This species is also 

commonly found in southern Finland and Sweden, where it is referred to as a shield bug 

(Mappes et al. 1996). The most northern observation was near Aklavik in the Northwest 

Territories o f  Canada close to the “delta o f  the Mackenzie River” (Barber 1932). In 

interior Alaska, Barnes et al. (1996) showed that this species overwinters as a freeze- 

avoiding adult, and Duman et al. (2004) demonstrated the presence o f  hemolymph 

antifreeze protein indicated by thermal hysteresis activity. In this study, we found 

specimens as far north as treeline on the south side o f  the Brooks Range (~ 67° 30' N), 

Alaska. The locations o f  specimens near the Brooks Range and interior Alaska, two o f
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the coldest environments in North America (Shulskiand W endler 2007), suggest that 

these insects have adapted to thermal challenges throughout their life cycle.

Barnes et al. (1996) concluded that adult stink bugs survive Alaska winters 

through a combination o f  supercooling and selection o f  appropriate overwintering 

microhabitat, since they are susceptible to inoculative freezing by contact with external 

ice. Inoculative freezing resulted in lethal freezing at temperatures that were near or 

higher than microhabitat temperatures, implying that stink bugs must either position 

themselves to avoid contact with ice crystals or suffer substantial mortality. Stink bugs 

did not adopt a protective overwintering posture, as was observed in the freeze-avoiding 

yellow jacket wasp ( Vespula vulgaris) that overwinters in the same leaf litter 

microhabitat. Overwintering V. vulgaris can be found hanging by its mandibles below 

leaves with wings folded over legs and ventrum (Barnes et al. 1996). This earlier study 

examined autumn and spring individuals and did not include winter adapted insects and 

consequently did not determine effects o f  inoculative freezing on the most cold 

acclimated individuals. The goal o f  this study was to investigate resistance to inoculative 

freezing by assessing seasonal changes in wet and dry supercooling capacity, water 

content, and thermal hysteresis in adult stink bugs from three geographical locations in 

Alaska: Wiseman, Fairbanks, and Anchorage, a latitudinal gradient o f  nearly 700 km.

Materials and Methods

Anim als

At all study sites, stink bugs descend from birch trees where they have been feeding in 

the canopy and make their way into leaf litter where they spend the winter. While we
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have found only a few stink bugs in the leaf litter in August, they are found in greater 

numbers in September and October during leaf-fall. Insect are found as individuals or 

together in small groups under the current year’s leaf litter or inside curled-up leaves. 

Individuals were covered by at least one leaf. We rarely observed stink bugs within the 

previous year’s leaves or near the soil surface. Adults were collected at the end o f  

September through early October in leaf litter in the forest behind the Institute o f  Arctic 

Biology on the University o f  Alaska Fairbanks campus (64° 7 2 ’N). This site contains a 

variety o f  vegetation, including Betula papyrifera  (paper birch), Alnus crispa  (alder), 

Salix  spp. (willow), and Picea glauca  (white spruce). Insects were collected by hand and, 

for later retrieval during winter, placed inside plastic containers that were placed within 

the leaf litter on the ground surface in a fenced enclosure 50-300 meters from collecting 

locations. Other containers were placed 1-2 m above the ground where they remained 

uncovered by snow. Periodically throughout winter, insects were retrieved from the 

containers, brought into the laboratory, and tested for supercooling points within one 

hour. Stink bugs were also collected from near W iseman (67° 3 0 ’ N) and at Alaska 

Pacific University, Anchorage (61° 11 ’N), Alaska in habitats similar to collecting 

locations in Fairbanks.

M icrohabitat Tem perature

We recorded above- and below-snow micro-habitat temperatures with thermister probes 

attached to Hobo Temperature Dataloggers (Onset Instruments, Pocasset, Mass.) every 

three hours in 2002-2003 and every 30 minutes in 2004-2006. A probe was placed 1 m
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above ground to record ambient conditions and another within the current year’s leaf 

litter to record below-snow temperature at the location o f  overwintering stink bugs.

Since few individuals were collected from Wiseman, temperature data are not provided; 

however, both examples o f  above- and below- snow temperatures patterns for this area 

can be found in Bennett et al. (2005).

Supercooling and Survival

To assess supercooling capacity, individuals were placed in either a 0.6 or 1.5 mL m icro

centrifuge tube, and a thermocouple was placed against the body, with a small piece o f  

packing foam securing the insect and thermocouple. Up to 16 tubes with individuals 

were then placed into a beaker that was immersed in an ethanol bath and equilibrated to 0 

°C. Thermocouple leads were attached to a computer controlled multi-channel 

thermocouple thermometer (Iso-Thermex, Columbus Instruments, Columbus, Ohio,

USA) that recorded temperature every five seconds. Cooling proceeded at 0.2 °C min-1. 

The lowest body temperature recorded at the release o f  the latent heat o f  fusion, as 

evidenced by an exotherm, was recorded as the supercooling point (Lee 1991). To 

determine susceptibility to inoculative freezing during supercooling, supercooling point 

(SCP) measurements were conducted on individuals while in contact with ice (designated 

“wet”). After attachment to a thermocouple as above, individuals were surrounded with 

moist paper towel and placed into the tube. Tubes were equilibrated at -2 to -5 °C until 

an exotherm indicated that ice had formed within the paper towel. The temperature was
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then lowered at 0.2 °C min 1 until exotherms associated with the insects freezing were 

recorded.

We assessed survival o f  insects under field conditions and after supercooling tests 

by retrieving insects from containers left above or below snow cover. Insects were 

placed on moist paper towels held at 2.5 to 4 °C and observed for coordinated movements 

each day for one week.

W ater Content

Body water content was determined according to Rojas et al. (1986). Individual larval 

fresh mass was determined to the nearest 0.1 mg. Larvae were then dried at 60 °C (~ 72 

h) to constant dry mass. W ater content was calculated as mg • mg 1 dry mass (Hadley 

1994).

Therm al H ysteresis A ctivity

Thermal hysteresis (TH) activity, an indication o f  the presence o f  antifreeze proteins 

(AFPs), was determined according to the method o f  DeVries (1986). Hemolymph 

samples (~ 1-3 pL) were drawn from individual larva by pricking the pronotum with a 26 

ga. needle; hemolymph was collected using a 10 pL capillary tube. The tubes were 

flame-sealed at one end and sealed with mineral oil at the other, leaving a gap between 

the hemolymph and oil. The sample was sprayed with an aerosol that partially froze the 

hemolymph. The sample was placed into a bath where the temperature was raised and 

lowered to find the melting and freezing points, while observing the crystal using a
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stereomicroscope. The melting point was defined as the temperature at which the ice 

disappeared. Beginning again with a small crystal (~ 0.25 mm), we determined the 

freezing point by lowering the temperature until the crystal grew. In the absence o f  

AFPs, i f  the temperature is lowered 0.01 - 0.02 °C below the melting point, the crystal 

will grow (i.e., the equilibrium melting and freezing points are nearly identical); however, 

i f  AFPs are present, the crystal will not grow until the temperature has been lowered to 

the hysteretic freezing point, at which point crystal growth is rapid (i.e., melting point ^  

freezing point). The difference between melting point and freezing point is the thermal 

hysteresis activity and is an index o f  the amount o f  AFP activity.

Polyol D eterm inations

W inter acclimated individuals from Anchorage and Fairbanks were bled and hemolymph 

pooled (N = 52) for determination o f  polyols. Hemolymph glycerol concentrations were 

measured by a spectrophotometric (UV) assay (Boehringer M annheim/R-Biopharm, 

Marshall MI, USA). The test was calibrated with glycerol standards.

I3C N M R  was used to determine the presence o f  polyols and other potentially 

important solutes in the hemolymph o f  cold acclimated stink bugs. The 1 ’C {1H } N M R 

spectrum was obtained on a Varian Unity Plus  600-M Hz NM R spectrometer equipped 

with dual 'H / i3C 3-mm microprobe (Nalorac), operating at 150.86 MHz for l3C. The 

hemolymph sample (250 pL) was diluted with 30 pL o f  H 2O) and transferred to the 

N M R  tube prior to data collection. Data acquisition conditions were as follows: 31,000 

transients; 2.5 s recycle time; 303 K; 1-230 ppm spectral window. The resulting FID
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was zero-filled (yielding a final digital resolution o f  0.14 Hz/pt), and a 1-Hz line 

broadening function was applied prior to Fourier transformation. Chemical shifts were 

externally referenced to the most intense C1/C3 signal (64.2 ppm) observed in the 

spectrum o f  a glycerol standard (Kukal et al. 1988).

Statistical Analysis

Comparisons o f  normally distributed data (Shapiro-Wilk test P > 0.05, a =0.05) were 

compared by T-test. The Brown -Forsythe homogeneity o f  variance test was performed. 

I f  variances were found to be heterogeneous (P  < 0.5), a weighted mean was used for 1

W ay ANOVA, with the post hoc Tukey-Kramer Adjustment for Multiple Comparison 

tests, and is designated “weighted m ean” (SAS 9.1, SAS Institute, Inc). The association 

between water content and SCPs was examined by Spearman Rank Correlation across 

years by season: Sum m er months were defined as 21 June - 2 0  September, autumn as 21 

September - 2 0  December, and winter as 21 December - 2 0  March, and spring as 21 

March - 2 0  June. Unless otherwise noted, all values are given as mean ± standard error o f  

mean, and number (N) o f  individuals tested (mean ± s.e.m., N).

Results

Animals, M icrohabitat, and  Survival

In Fairbanks, adult stink bugs emerged from the leaf litter in m id-M ay, although they 

were usually not conspicuous until late M ay-early  June when they were frequently seen 

on birch catkins. Mating was observed mid-June through July. From July through late 

September, adults and nymphs were difficult to find, and we assume most were in the
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upper canopies o f  trees. By early October, adults were found in the current year’s leaf 

litter, where they overwintered. We do not know whether stink bugs overwinter as adults 

for more than one winter.

Over the four winters o f  this study, below-snow temperatures in the leaf litter in 

Fairbanks were rarely observed to be lower than -15 °C while above-snow air 

temperatures were regularly < -30 °C (Fig. 1.1). Only once between 2002 -  2006 was 

below-snow temperature < -15 °C: on 28 January 2006 minimum temperature was -23.5 

°C. In Anchorage, between October 2003 -  January 2004, the above-snow temperature 

minimum was -24.3 °C while the below-snow m inimum was -14.9 °C. After January, the 

logger stopped collecting data for an unknown reason. From February 2005 to N ovem ber 

2005, the above-snow minimum at the Anchorage site was -15.0 °C while the below- 

snow was minimum -11.7 °C.

Under laboratory conditions, stink bugs that froze during SCP measurements 

showed 100% mortality. Individuals left in containers located above-snow in Fairbanks 

also showed 100 % mortality, while survival rates o f  stink bugs located in containers 

placed below-snow varied. On 10 January 2003, 18 o f  21 individuals collected in 

Fairbanks and held below-snow were alive. We held 15 o f  18 o f  the live individuals for 

one week in the lab, and within that time 12 o f  15 took flight. The lowest below-snow 

temperature by this date had been -1 4 .1 °C, while above-snow temperature was as low as 

-37 °C. However, only 18 o f  40 insects retrieved on 1 April 2003 from containers held 

below-snow were alive, even though the lowest below-snow temperature was -14.4 °C, 

recorded on 10 January 2003. In comparison, 100% (16 o f  16) survival was found in
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2004 -  2005 season o f  Fairbanks-collected adults held in Fairbanks below-snow 

individuals and retrieved on 15 April 2005. M inimum below-snow temperature that year 

was -10.6 °C in late December (Fig. 1.1).

Stink bugs collected in Fairbanks were also held over the winter in containers 

placed above- and below-snow in Wiseman, Alaska, near the northern limit o f  their 

distribution. On 5 April 2003, all above-snow individuals were dead, but 73 o f  100 

below-snow individuals were alive. M inimum below-snow temperature was -13.0 °C in 

late October. For the remainder o f  winter, below-snow temperatures were -2 to -8 °C, 

and it was not until late March that below-snow temperatures decreased below -10 °C 

again.

Supercooling and W ater Content

Am ong the three populations, values for dry supercooling points (insects cooled 

without contact with ice) and water contents (WC) were not significantly different in 

January 2003. Wet (insects cooled in contact with ice) and dry supercooling points were 

not significantly different in June 2003 or in September 2003 in Fairbanks. Water 

contents were not significantly different in September 2003 between Fairbanks and 

Anchorage, except for a slight (0.1 mg • mg"1 dry) but significantly different WC in June 

2003. Since supercooling points and water contents did not significantly vary during 

overwintering months in the Fairbanks and Anchorage populations, we combined data 

from all individuals in these locations for the rest o f  the study.
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M ean dry supercooling points determined in stink bugs collected from Fairbanks 

and Anchorage (2002-2005) declined by 10 to 12 °C in winter and spring, respectively, 

from a summer high SCP o f -12.1 °C (Table 1.1). The lowest individual SCP in this 

study was -27.4 °C. Body water content also decreased from a summ er high o f  1.8 mg • 

mg dry m ass’1 to 1.3 mg • mg dry m ass’1 in autumn and spring. The lowest average WC 

occurred in winter (1.1 mg • mg dry m ass’1) and represents a loss o f  0.6 mg • mg dry 

mass’1 (Table 1.1).

Dry supercooling points decreased between September 2004 and February 2005 

by 5.7 °C (combined averages) (Table 1.2). Wet supercooling points over the same 

period varied by 8.6 °C (combined averages). The subzero wet supercooling points 

between September and N ovem ber 2004 were significantly higher than the dry 

supercooling points at the same time. It was not until 24 January 2005 that the wet 

supercooling points declined and were found not to be significantly different than dry 

supercooling points between September -  January. Although there was a trend toward a 

lower wet mean supercooling point in February, there was also a further decrease in the 

mean dry supercooling temperature (Table 1.2).

The most extensive collection o f  stink bugs in one location occurred in Fairbanks 

from autumn 2004 through the spring o f  2006. Mean supercooling points and water 

contents are shown in relationship to above- and below-snow temperatures (Fig. 1.1). 

Mean supercooling points reached the lowest values (i.e., the highest supercooling 

capacity) o f  -22.9 and -23.5 °C on 12 March 2005 and 23 March 2006, respectively. 

Supercooling points rose in May 2005 and remained high through August 2005, with
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means varying by testing date between -8.2 to -15.3 °C. Low water contents were 

recorded by October 2004, and they did not statistically differ through April 2005 and 

between September 2005 through March 2006, with a range in means by testing date 

between 1.1 to 1.4 mg • mg dry mass"1. M ean water contents, which varied between 1.7 

to 2.4 mg • mg dry mass"1, rose in May and remained high through August 2005.

P olyol D eterm ination

W hile glycerol tends to be the most commonly accumulated polyol in the hemolymph o f  

many overwintering insects, the colorimetric assay did not detect glycerol in the winter 

hemolymph o f  E. interstinctus. I3C N M R  analysis o f  winter hemolymph confirmed the 

absence o f  glycerol, and instead indicated that a a ,a-trehalose accumulated in the winter 

hemolymph (results not shown). The presence o f  six approximately equally intense l3C- 

signals in the winter hemolymph, which exhibited chemical shifts characteristic o f  C1-C6 

o f  a ,a-trehalose (Kukal et a l ., 1988), unambiguously supported the presence o f  trehalose. 

Peak heights o f  the trehalose signals were approximately ten times greater than those o f  

any other low molecular mass organic solutes.

Correlation betw een water content and SCP

There was a significant positive association between WC and SCP during summer 

months (p = 0.1944, P  < 0.01, N = 155) with WC explaining approximately 6 % o f  the 

variation in SCP; however, no significant associations were found in autumn (p = 0.0300, 

P = 0.69, N = 177) or winter (p = -0.007, P = 0.9461, N = 88).
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Therm al H ysteresis and  M elting Points

M ean hemolymph TH values increased by 2 to 3 °C between summ er and winter (Table 

1.3), an indication o f  synthesis and secretion o f  antifreeze proteins (AFPs). These values 

combine measurements within months and across years (2002-2004). Hemolymph 

melting point temperatures decreased significantly from summer to winter, signifying an 

accumulation o f  low molecular mass solutes. The decrease in hemolymph freezing 

points from summ er to winter reflected the combined effects o f  lower melting points and 

increased thermal hysteresis. Thermal hysteresis values plateaued October-January 

reaching mean values o f  2.4 °C. Although it appears that MP, FP, and TH continued to 

decline after January, the loss o f  body water made it difficult to collect hemolymph.

Even cutting legs and antennae and centrifuging insects to force hemolymph out did not 

produce useful samples. This difficulty in obtaining hemolymph in February and March 

resulted in too few samples to include in the statistical analysis.

Discussion

In this study o f  overwintering strategies in adult green stink bugs, we found that 

supercooling point values o f  insects tested dry, while not in contact with ice, decreased 

from summer values o f  -12.1 °C to winter values o f  -22.7 °C. This increase in 

supercooling capacity is correlated with accumulation o f  trehalose and antifreeze protein 

within the hemolymph. The leaf-litter microhabitat where stinkbugs overwinter is 

usually insulated by snow against low air temperatures that were found regularly to 

exceed dry winter supercooling capacity. Despite increased supercooling capacity in



winter, survival rates o f  stink bugs placed below the snow decreased from 45 % (April 

2003), while minimum below-snow temperatures varied by year: -14.0 °C (2002 -  

2003), -15.0 °C (2003 -  2004), -11.5 °C (2004 -  2005), and -23.5 °C (2005 -  2006). 

W hen tested while in contact with ice, insects froze at values ranging from high subzero 

temperatures near -8.2 °C in autumn to -18.3 °C in winter, suggesting that inoculative 

freezing continues to be a threat to freeze-avoiding stink bugs over the long Interior 

Alaska winter.

Mean dry supercooling points demonstrated in this study (-18 °C in autumn and - 

23 °C in spring) are lower than values shown previously for E. interstinctus stink bugs 

from the same area. Barnes et al. (1996) reported dry supercooling points in autumn- 

collected adults o f  -9 °C and -17 °C in spring. Differences in pre-treatment and handling 

o f  individuals for testing between the two studies may account for these differences. 

Autumn-collected individuals in Barnes et al. (1996) were acclimated in the laboratory at 

4 °C in constant darkness for two to three weeks before testing. In this current study, 

insects were acclimatized under more naturally changing conditions o f  temperature, 

humidity, and photoperiod in an outside enclosure, which may have led to enhanced 

levels o f  cold-hardiness. Our testing for supercooling points by placing insects in contact 

with thermocouple junctions involved less manipulation o f  individuals as compared to 

Barnes et al. (1996). They used beeswax to secure thermocouple junctions to insects, 

potentially increasing susceptibility to freezing due to abrasion o f  cuticle or breaking o f  

fine cuticular hairs (Bennett et al. 2005).
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W e anticipated that decreases in water content would correlate with increases in 

supercooling capacity o f  stink bugs in winter, but we did not find this to be the case. The 

lack o f  a relation between WC and SCPs is not unusual, however. While the western 

subspecies o f  flat red bark beetle larvae, Cucujus clavipes puniceus, also found in Interior 

Alaska, loses substantial body water and increases supercooling capacity during winter, 

the eastern subspecies Cucujus clavipes clavipes  from Indiana (~ 41° 45' N) does not 

dehydrate in winter but supercools to approximately -23.0 °C by increasing colligative 

antifreezes and noncolligative AFPs (Bennett et al. 2005). W ater loss in stinkbugs in late 

August -  September (Fig. 1.1) may be coincident with cessation o f  feeding on birch 

catkins. In additional, there was a small but significant decline in W C and SCPs from 

autumn to winter (Table 1.2). The m echanism o f  water loss at this time o f  the year is 

most likely evaporation due to differential vapor pressure between the insect and the 

frozen environment (Lundheim and Zachariassen 1993; Zachariassen et al. 2004). At 

subzero temperatures, supercooled body fluids have higher vapor pressure than 

surrounding air. Consequently, insects lose water to the environment until vapor pressure 

between the supercooled fluid and the frozen microhabitat come to equilibrium 

(Lundheim and Zachariassen 1993; Bayley and Holmstrup 1999).

Water loss increases solute concentration and lowers the equilibrium melting- 

freezing point (Zachariassen, 1985; Holmstrup et al. 2002). Melting points decreased 

from -0.4 °C in summer to -1.8 °C to -1.9 °C in autumn and winter, respectively. 

Calculated from the melting points in summ er vs. autumn or winter measurements, stink 

bugs hemolymph osmolality increased by 0.7 - 0.8 Osmol., representing approximately a

33



25 - 28 % increase. That trehalose signals were approximately ten-fold more intense than 

other low molecular weight solutes observed in the hemolymph suggests that 

accumulation o f  trehalose as a predominant osmolyte explains most o f  the melting point 

depression. Although glycerol tends to be the most comm only accumulated solute in 

winter by insects (Somme and Block 1991), trehalose, the common blood sugar in insects 

(Storey and Storey 1991), has also been found to accumulate in response to changes in 

water content and temperature. Under extreme desiccation, trehalose stabilizes 

membranes by replacing water via binding to the headgroups in phospholipid bilayers 

(Crowe et al. 1997) in a variety o f  arthropods such as Collembola (Worland et al. 1998), 

tardigrades (Westh and Ramlov 1991; Hengherr et al. 2007), and chironomid larvae 

Polypedilum  vanderplanki (Watanabe et al. 2002). In terms o f  overwintering, a 

temperature-dependent accumulation o f  trehalose has been shown in the silkworm 

Philosam ia cynthia  (Hayakawa and Chino 1981 and 1982) and in the soybean pod borer 

Legum invora glycinivorella  (Shimada et al. 1984) has been shown to stabilize proteins.

As a protein-stabilizing osmolyte, trehalose functions entropically: it is accommodated 

within bulk water and is predominately excluded from the protein surface. This 

preferential exclusion o f  trehalose away from the protein surface forces the hydration o f  

the protein that maintains native protein conformation (Hochachka and Somero 2002).

Accumulation o f  colligative antifreeze (trehalose) and noncolligative AFPs in 

autumn is correlated to lower dry supercooling values (-22 °C) in all three o f  the 

populations examined; however, stink bugs must still find appropriate snow covered 

microhabitats to successfully overwinter, since all insects placed above snow died. Even
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when insects were placed below snow, survivorship varied between 86 to 55 % for 

m inimum  winter microhabitat temperatures down to approximately -14 °C. These results 

suggest that some stink bugs are still susceptible to inoculative freezing. Although we 

did not directly determine the minimum temperature that stink bugs survive under snow 

cover, we found the -14 °C below-snow temperature is comparable to below-snow 

temperatures found in Fairbanks in previous years (Barnes et al. 1996; Bennett et al. 

2005), but it is a lower temperature than is noted for taiga forests in Interior Alaska, 

where Sturm et al. (1995) reported temperature ranges at snow-ground interface o f  -3 to - 

5 °C. I f  stink bugs were more typically confronted with these higher temperatures, then 

even the wet supercooling value o f  -9.7 °C found in September (Table 3) would most 

likely afford more survival.

The presence o f  antifreeze proteins, indicated by hemolymph thermal hysteresis, 

did not significantly vary from October through January (Table 4). Olsen et al. (1998) 

found AFPs to be effective against inoculative freezing. In their study, the beetle larvae 

D endroides canadensis  (Olsen et al. 1998) increased in resistance to inoculative freezing 

during winter. In addition to hemolymph antifreeze proteins, immunofluorescence that 

identified antifreeze proteins showed the presence o f  AFPs in the epidermis underlying 

the cuticle in winter that was not present in summer. The beetle showed 11.9 °C o f  

protection against external ice inoculation below the hysteretic freezing point in 

hemolymph. In our study, we showed approximately the same level o f  protection for 

stink bugs in winter, a wet SCP 13.2°C below the hysteretic freezing point (Table 1.3).
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In autumn, the surfaces o f  leaves in the litter have various degrees o f  wetting, but 

even during rainy conditions, stink bugs remain dry under the leaf litter. W hen frost 

forms or when snow falls, the outer surfaces o f  leaves that accumulate the various forms 

o f  solid state water, but stink bugs are protected from direct contact by the leaf litter. 

During the autumn/winter period, the substrate is frozen, and individual stink bugs can 

be in contact with ice; but by then (October), stink bugs have already reached m axim um  

thermal hysteresis (Table 1.4), have decreased water content to winter levels, and 

displayed resistance to inoculative freezing to temperatures o f -8 to -10 °C (Table 1.3).

As winter proceeds, a thermal gradient between the air/snow and the soil/snow interface 

leads to recrystallization (Sturm et al. 1995; Benson 2001) and the rearrangement o f  ice 

crystals into depth hoar that decreases the num ber o f  crystals leading to fewer but larger 

crystals. The decrease in num ber and the surface area to volume ratio o f  ice crystals 

should reduce the area o f  contact between a crystal and the insect, leading to lower 

susceptibility to inoculative freezing (Leather et al. 1993; Olsen et al. 1998). Under the 

snow where stink bugs overwinter, the metamorphoses o f  ice crystals into depth hoar 

may lead to a drying out o f  microhabitat and be a reason for the discrepancy between the 

current study and the earlier work by Barnes et al. (1996). While the contact between 

cuticle and ice was not determined in either study, it could be that our wrapping was not 

as form fitting around an individual as we had thought, leading to less contact. 

Conversely, the use o f  surface snow by Barnes and colleagues, while finer than our 

wrapping method, is most likely not characteristic o f  ice crystals at the base o f  the snow 

pack. In fact, great care must be taken so that snow does not melt from room temperature
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exposure or from a slightly w anned insect itself, leading to water on the surface that may 

be able to more efficiently inoculate an insect as the water re-freezes.

There appear to be three components to overwintering success in stink bugs: 

below-snow conditions, contact moisture, and the presence o f  antifreezes. Stink bugs 

must be below the snow to insulate themselves from low air temperatures that regularly 

exceed supercooling capacity. Once under snow cover, stink bugs have the greatest 

ability to decrease SCPs with colligative and noncolligative antifreezes under dry 

conditions, and only once during the years o f  this study did below-snow temperatures 

exceed dry supercooling ability; however, dry below-snow habitat may not always be 

found, especially with the constant movement o f  water vapor under the snowpack.

Contact moisture associated with ice crystals at the ground level compromises 

supercooling capacity, potentially leading to higher “wet” supercooling values. Though 

there is a progression toward both lower dry and wet SCPs as winter proceeds, 

susceptibility to inoculative freezing remains relatively high. Excluding the extreme -

23.5 °C below-snow temperature, we show that at best stink bugs have a margin o f  

supercooling ability o f  about 3 to 7 °C under wet conditions. At worst, low below-snow 

temperatures can be lower than the insects’ ability to supercool under wet conditions. O f  

course, one assumption is that stink bugs remain in constant contact with ice crystals 

throughout the winter, but the microclimatology o f  ice crystals in interior Alaska may 

reduce the probability o f  contact due to the temperature gradient within the snowpack.

The metamorphoses o f  snow into hoar frost at the base o f  the snowpack as a result o f  

recrystallization results in the multitude o f  small (1-5  mm) stellar ice crystals, with high
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surface area to volume ratio, being reduced in favor o f  fewer but larger (6-25 mm) prism 

like crystals with a smaller surface area to volume ratio. This transformation takes place 

throughout winter, reaching the largest size in midwinter (Sturm and Benson 1997). The 

change in num ber and shape o f  crystals over the course o f  the winter may reduce the 

incidence o f  inoculative freezing in the stink bug. The next task will be to not only 

carefully excavate overwintering stink bugs through winter to determine the exoskeleton- 

ice surface interface but also to devise repeatable procedures to simulate ice crystal 

formation on cuticle at various times o f  the winter in order to estimate more precisely the 

inoculative freezing effect.
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Figure 1.1 Microhabitat temperatures at the overwintering enclosure on the University o f  
Alaska Fairbanks campus in Fairbanks, Alaska (2004-2006). Below-snow temperature is 
represented by the grey line, and above-snow temperature is represented by the black 
line. M ean (± sem) water content (cyan triangles) and supercooling points (blue circles) 
o f  Fairbanks adults are shown in relation to temperatures. Different letters indicate 
significant difference in means (P < 0.05) with the Tukey-Kramer adjustment for multiple 
comparisons within WC or SCP. All insects, except for those measured in August 2005, 
are individuals collected and held at the collecting site. August 2005 measurements were 
field-collected and immediately tested.
Abbreviations: wc = water content; scp = supercooling.
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Tables

Table 1.1 Dry supercooling points (SCP, °C) and water content (WC, mg • mg"1 dry) for 
pooled data from Fairbanks and Anchorage (2002-2005). For each variable, the Brown- 
Forsythe test indicated heterogeneity o f  variance (P < 0.001); therefore, statistical 
significance is based on weighted means. Superscript letters and numbers indicate 
significant difference in means (P < 0.05) using Tukey-Kram er adjustment for multiple 
comparisons, with in SCP or WC.

Summer

Autumn

Winter

SCP WC
Mean ± s.e.m. (N) Mean ± s.e.m. (N)

-12 .l a± 0.03 (201) 1.8' ± 0 .03  (256)

-17.9b ± 0.3 (216) 1.32 ± 0.02 (216)

-22.0C ± 0.3 (151) 1.13 ± 0 .02  (127)
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Table 1.2 W eighted mean o f  supercooling points (SCP, °C) from both dry and wet (ice 
present) supercooling trials from autumn to winter 2004 -  2005. W ater content did not 
significantly differ (P > 0.1) between wet and dry insects among these dates, so values 
were combined (1.2 ± O.Olmg-mg"1 dry, N = 154). Also presented are m ean above- and 
below- snow temperatures along with minimum and maximum  temperatures (°C) by 
month at the collecting location during these trials. Superscript letters indicate significant 
difference in means (P < 0.05) using Tukey-Kram er adjustment for multiple comparisons. 
Note that “N ” under below-snow min, max is the same for above-snow.

Date

D ry
S C P  ± s .e .m ., N

W et
S C P  ± s.e .m ., N

Above-Snow
temperature

Above-Snow 
min, max

Below-Snow
temperature

Below-Snow 
min, max

09/24/04 -17.0a ± 0.78, 32 -9.7C ± 0.9, 38 1.6 ± 0 .3 -10.8, 13.4 2.3 ± 0 .2 -1.4, 10.4

10/14/04 -17.6ab ± 1.8, 14 -8.2C ± 0.8, 16 -1.8 ± 0.3 -15.9, 11.9 0.2 ±0.1 -2.6, 5.2

11/20/04 -18.0ab ± 1.2, 26

oCO+iCOo

-12.5 ± 0 .3 -24.8 ,-2 .6 -4.0 ± 0.1 -6 .4 ,-1 .0

01/24/05 -21.6b ± 0.8, 19 -15 7abcd ± 2.7, 8 -18.6 ± 0.7 -38.9, -1.7 -5.7 ± 0.1 -6.9, -3.0

02/08/05 -22.7b ± 0.9, 16 -18.3abd ± 1.0, 8 -16.1 ± 0.7 -35.4, -4.4 -6.7 + 0.1 -8.6, -5.2
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Table 1.3 Mean melting (MP) and freezing (FP) points and thermal hysteresis (TH) (all 
°C) pooled by month from 2002-2004  from Fairbanks specimens. Superscript letters 
indicate significant difference in means (P < 0.01) within the MP, FP, and TH categories 
using Tukey-Kram er adjustment for multiple comparisons.

M onth  M P  ± s.e .m.,  n FP ± s.e .m.,  n T H  ± s.e .m.,  n

June -0 .4a ± .01, 16 -0 .6a ± .04, 16 0 .2 a ± .03, 16

S ep tem ber -1 .0b ± 0.1, 23 -1 .8b ± 0.2, 21 0 .8 h ± 0.1, 21

October - l . l b ± .04, 13 -3 .5C ±  0.3, 13 2 .4C ± 0.3, 13

N o v em b er -1 ,8bt ± 0.3, 12 -4. H i  0.4, 10 2 .4a ± 0.3, 10

January -1 .9b t ± 0.2, 15 -4 .4C ± 0.4, 15 2 .4 C ± 0.3, 15

February -2.9  ± 0.9, 2 -5.9  ± 0.1, 2 3.1 + 0.9, 2

March -2.0  ± 0.1, 2 -4.7 ± 0.1, 2 2.7 ± 0.0, 2
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Chapter 2 Deep Supercooling, Vitrification, and Limited Survival to -100°C in the 

Alaskan Beetle Larvae Cucujus clavipes puniceus (Coleoptera: Cucujidae)1

Summary

Larvae o f  the freeze-avoiding beetle Cucujus clavipes puniceus (Coleoptera: 

Cucujidae) in Alaska have mean supercooling points in winter o f  -35 to -42°C, with the 

lowest supercooling point recorded for an individual o f  -58°C. We previously noted that 

some larvae did not freeze when cooled to -80°C, and we speculated that these larvae 

vitrified. Here we present evidence through differential scanning calorimetry that C. c. 

puniceus larvae transition into a glass-like state at temperatures < -58°C and can avoid 

freezing to at least -150°C. This novel finding adds vitrification as an insect 

overwintering strategy. While overwintering beneath the bark o f  fallen trees, C. c. 

puniceus larvae may experience low ambient temperatures in the -40s°C (and lower) 

when microhabitat is un-insulated due to low snow cover. Decreasing temperatures in 

winter are correlated with loss o f  body water from summer high levels near 2.0 to winter 

lows levels near 0.4 mg • mg 1 dry mass with concomitant increase in hemolymph 

measures o f  glycerol concentrations (4 - 6 M) and thermal hysteresis. Finally, we 

provide direct evidence that Cucujus from W iseman, Alaska, survive temperatures to - 

100°C.

Key Words: SCP, supercooling point; AFP, antifreeze protein; DSC, differential 

scanning calorimetry; TH, thermal hysteresis

1 Todd Sformo, K ent Walters, Kennan Jeannel, Brian W ow k, G reg Fahy, Brian M. Barnes, and John G. 
D uman. Jo urna l o f  E xperim en ta l B io logy  (In Press).



Introduction

The red flat bark beetle, Cucujus clavipes, has a broad latitudinal range in North 

America that extends from above the Arctic Circle (~ 68°N) to North Carolina (~ 35°N), 

and exists as a western subspecies (C. c. puniceus Mannerheim) that occurs in Alaska 

through to the Pacific coast and as an eastern subspecies (C. c. clavipes Fabricius) that 

extends east from the Great Plains (Thomas 2002). Consequently, investigations o f  this 

species present an opportunity to study insect overwintering physiology over a large 

latitudinal expanse including Interior Alaska, one o f  the coldest environments in North 

America.

Insects that overwinter in freezing regions survive either by being freeze tolerant 

(able to survive the freezing o f  their extra-cellular water) or freeze avoiding 

(Zachariassen 1985; Bale 1987; Storey and Storey 1988; Block 1990; Danks, 1991; 

Duman et al., 1991a; Lee and Denlinger, 1991), and, in one case, simultaneous freeze 

tolerance and avoidance (Sformo et al., 2009). Insects, and certain other terrestrial 

arthropods such as collembola, avoid freezing by use o f  combinations o f  molar 

concentrations o f  cryoprotectant polyols such as glycerol, antifreeze proteins (Duman,

2001), removal and/or masking o f  ice nucleators (Neven et a l ., 1986; Duman, 2001), 

and/or dehydration (Rickards et al., 1987; Lundheim and Zachariassen, 1993; Worland, 

1996; Holmstrup and Somme, 1998; Worland et al., 1998; Danks, 2000; Block, 2003; 

Worland and Block, 2003). Some collembola and earthworm cocoons (Holmstrup et al.,

2002) and the Antarctic midge Belgica antarctica (Elnitsky et al., 2008) cryoprotectively
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undergo extreme water loss by dehydrating until they are in vapor pressure equilibrium 

with surrounding ice and therefore do not freeze.

Overwintering adaptations are exaggerated in insects from arctic and subarctic 

regions, where temperatures can reach below -60°C (Danks, 1981; Miller, 1982; Ring, 

1982; Somme and Block, 1991). Alaska populations o f  C. c. puniceus  larvae are known 

to be freeze avoiding and routinely supercool to group means near -40°C, with 

individuals supercooling to as low as -58°C (Bennett et al., 2005); in some cases larvae 

did not freeze when cooled to -80°C in that study. This level o f  supercooling appeared 

irregularly among larvae collected near Fairbanks, AK (64° 72'N) but appeared more 

often in larvae collected further north near W iseman, A K  (67° 37'N) in late Novem ber to 

March. Factors contributing to the ability o f  C. c. puniceus  to supercool to low 

temperatures identified in that study are production o f  antifreeze proteins (AFPs), 

accumulation o f  glycerol, diapause (reduced metabolism in winter), and extensive 

dehydration. In contrast to the Alaska C. c. puniceus, C. c. clavipes  larvae from northern 

Indiana (41°45 'N ) show mean winter supercooling points (SCPs) o f  -23°C and do not 

dehydrate or diapause in winter (Bennett et al., 2005).

Dehydration contributes to the ability to supercool to low temperatures in Alaska 

C. c. puniceus, in part, by causing the concentrations o f  AFPs and glycerol to increase 

(by as much as 5-fold) over the levels synthesized prior to dehydration and by decreasing 

the amount o f  water in the insect that is available for freezing (Bennett et al., 2005). 

Antifreeze proteins can mask ice nucleators and also inhibit inoculative freezing initiated 

by external ice in contact with the cuticle. AFPs enhance supercooling by both these
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mechanisms in larvae o f  the beetle Dendroides canadensis (Olsen et al., 1998; Olsen and 

Duman, 1997a,b; Duman, 2002). C. c. puniceus produce a family o f  AFPs that are 

similar but not identical to those o f  D. canadensis (Duman et al., 1998, 2004; Andorfer 

and Duman, 2000). The extreme desiccation o f  C. c. puniceus makes it impossible to 

sample hem olymph from animals in mid-winter. However, when hemolymph was 

collected in the autumn (after AFPs and glycerol had been produced, but prior to 

dehydration) and then concentrated 3.2-fold to reflect a level o f  dehydration near that o f  

winter larvae, the concentrated hemolymph exhibited nearly 13°C o f  thermal hysteresis 

(Bennett et al., 2005). This is the highest thermal hysteresis ever m easured in association 

with any organism. Thermal hysteresis activity (THA) is the difference between the 

freezing and melting points o f  the sample and reflects the amount o f  depression o f  the 

freezing point caused by the AFP, in the presence o f  ice, below the melting point 

(DeVries, 1986). However, the level o f  protection afforded to whole insects by AFPs 

generally greatly exceeds the magnitude o f  THA that can be measured in the hemolymph 

(Zachariassen and Husby, 1982; Olsen et al., 1998; Duman, 2001, 2002; Duman et al.,

2004). Consequently, the protection provided by AFPs in C. c. puniceus larvae is 

probably much greater than even the level o f  THA demonstrated in the concentrated 

hemolymph.

While a few northern or alpine insects have been shown to have supercool points 

o f  -40 to -60°C, not much is known about the mechanisms that contribute to this ability. 

Three freeze-avoiding Alaska and Canadian Rocky Mountain species that overwinter in 

willow galls in exposed branches had mean SCPs o f  -56 to -58°C, with individual SCPs
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to -63°C (Miller and Werner, 1987; Miller, 1982; Ring and Tesar, 1980). Mean SCPs o f  

-54°C have been reported in larvae o f  the beetle Pytho deplanatus that overwinter under 

the bark o f  fallen spruce trees in the Canadian Rockies (Ring 1982). These levels o f  

freeze-avoidance have been attributed to high concentrations o f  polyols and removal o f  

ice nucleators and are described as extreme or deep supercooling; however, an ability to 

deep supercool to below -65°C has not previously been demonstrated in insects. This 

paper examines the deep supercooling capacity, defined as cooling without freezing 

below -58°C, o f  C. c. puniceus larvae in Alaska. We examine correlations among body 

water, glycerol concentration, thermal hysteresis, and ambient temperature to identify 

physiological and abiotic factors associated with deep supercooling. We demonstrate that 

C. c. puniceus larvae can avoid freezing to -150°C, their body water vitrifies (turns to 

glass) at a mean temperature o f  approximately -76°C, and larvae can survive exposure to 

-100°C.

Methods

Insect Collection and Microhabitat Characteristics 

We collected C. c. puniceus larvae from under the bark o f  standing dead Poplar

spp. trees near Wiseman and Fairbanks, AK, in Septembers o f  2005-2007. Larvae were

placed in plastic food storage containers (20 x 15 x 10 cm; 20 -1 5 0  per box) perforated

for gas exchange, along with moist bark from their host trees. Insects were left to

acclimatize to local winter conditions by placing the containers either on the ground or

suspended (so as not to be covered by snow) for 1-4 months either in undisturbed

wooded areas on the University o f  Alaska Fairbanks campus or near Wiseman. Air and



microhabitat temperatures at these overwintering locations were monitored using Hobo 

Pro Series data loggers and downloaded with BoxCar Pro 4 software (Onset Computer 

Corporation, Bourne, Massachusetts, USA).

Supercooling Points 

Insects were recovered from containers at different times in winter and brought

into the laboratory at the Institute o f  Arctic Biology in Fairbanks to determine the

supercooling point (SCP) and water content. Insects retrieved from W iseman were kept at

-18 to -20°C during transport to Fairbanks and tested within nine hours. Larvae were

tested for individual SCP by placing a thermocouple junction (copper-constantan, 36

gauge) against their body in a 0.6 ml plastic tube. Thermocouple leads, monitoring up to

16 larvae at a time, were attached to a computer controlled multi-channel thermocouple

thermometer (Iso-Thermex, Columbus Instruments, Columbus, Ohio, USA) that recorded

temperature every five seconds. Closed tubes were placed inside a 500 ml glass beaker

that was covered and mostly submerged in an alcohol-water cooling bath. Once the

temperature o f  the insects equilibrated to 0°C, bath temperature was reduced at 0.2

°C/min, typically to -60 to -70°C. Before and after supercooling runs were performed,

each thermocouple-attachment was visually inspected to ensure that the thermocouple

junction was in direct contact with the insect. The lowest body temperature recorded at

the release o f  the latent heat o f  fusion, as evidenced by an exotherm in the temperature

recording, was recorded as the SCP; and since C. c. puniceus  is a freeze-sensitive insect

(Bennett et al., 2005), the SCP is also the lower lethal temperature. Larvae that did not

exhibit an exotherm when cooled to -60°C or lower were recorded as deep supercooling.
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Water Content

Individual larvae were weighed to the nearest 0.1 mg and then dried at 60°C (48 

h) to constant mass. Absolute body water content (WC) was calculated as mg water ■ mg" 

1 dry mass (Rojas et al., 1986; Hadley, 1994).

G lycerol
Individuals were randomly chosen from those sampled during the 2005 and 2006 

field seasons and, based on supercooling point determinations, categorized as freezing 

(exotherm present) or deep supercooling. Fresh and dry mass (nearest 0.1 mg) were 

recorded, and individuals were homogenized in distilled water at a 1:1000 dilution. 

Samples were centrifuged and the supernatant removed. Twenty microliter sub-samples 

were removed and further diluted by a factor o f  ten and analyzed for glycerol content 

using the Boehringer-Mannheim Glycerol Kit. This method measures the amount o f  

NADH oxidized to N A D + that is stoichiometrically proportional to the initial glycerol 

concentration o f  the sample. The glycerol concentration o f  each individual was 

calculated based on the glycerol determination and the body water content, assuming 

equal distribution o f  glycerol. Glycerol standards were run to check the accuracy o f  the 

procedure.

Therm al H ysteresis

In winter, hemolymph cannot be sampled due to the dehydrated state o f  insects. 

Consequently, homogenates o f  larvae were prepared to compare thermal hysteresis 

activities. Dry larvae were homogenized in a volume o f  water equal to 100 times the 

body water. This solution was further diluted 1:7 with 40 m M  phosphate buffer (pH 7.5),
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and subsamples were tested for thermal hysteresis using a Clifton nanoliter osmometer 

(Clifton Technical Physics, Hartford, NY, USA) (Chakrabartty and Hew, 1991). A 

micrometer syringe delivered 25-100  nl o f  sample into heavy mineral oil located in the 

sample well o f  the osmometer. The sample was initially frozen by cooling to -40°C and 

then warmed until a single small ice crystal remained. Temperatures were increased by 

0 .01-0 .02°C until the crystal disappeared as assessed visually, thus determining the 

melting point temperature. This routine was repeated at temperatures below the melting 

point with a single small crystal present, and the temperature was slowly lowered until 

the crystal grew; this is the freezing point temperature.

Differential Scanning Calorimetry  

Differential scanning calorimetry (DSC) is a technique used to measure the

change in heat capacity that is indicative o f  transitions to or from a vitrified or glassy

state. The phase transition o f  a liquid to a vitreous state occurs at the glass transition

temperature in the absence o f  a change between a liquid and solid state. To determine the

glass transition temperature, an insect is sealed in an aluminum sample pan within a

chamber that also contains a reference pan with no insect present. The two pans are

heated and cooled to maintain equivalent temperatures. This requires differential heating

and cooling due to the presence o f  the insect. By monitoring heat flow and change in

temperature over time, the unit o f  heat capacity is measured. W hen a liquid transitions to

a vitreous condition, there is solidification with a concomitant change in heat capacity but

without release o f  the latent heat o f  crystallization (Fahy, 1995).
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W hen supercooling tests demonstrated that larvae retrieved from the field could 

deep supercool to -70°C, additional individuals from a second collection container were 

packed on ice and shipped overnight from Fairbanks to 21s1 Century M edicine in Fontana, 

CA. There, a Perkin-Elmer DSC 7 with Pyris software tested for vitrification o f  insects 

through differential scanning calorimetry. The temperature scale o f  the instrument was 

calibrated by measuring the onset o f  the crystal transition o f  cyclohexane at -87.06°C and 

the temperature when ice water melts while warming at 1 °C/minute. Heat flow was 

calibrated by measuring the area under the melting curve o f  a known mass o f  water ice. 

Four larvae o f  approximately 10 mg mass each were folded and sealed in individual 

aluminum sample pans (Perkin-Elmer part no. 0219-0062). Each larva was cooled from 

+ 10 to -150 °C at a rate o f  1 °C/minute, and then warmed to +10°C at a rate o f  40 

°C/min. Thermogram s obtained at this high warming rate provided high sensitivity to 

detect small phase transitions. Additionally, each sample was cooled to -150°C at a rate 

o f  100 °C/min, and thermograms were obtained during warming to +10°C at 5°C or 10 

°C /min. Three smaller larvae (< 2 mg) that deep supercooled were tested separately by 

cooling from +10°C to -150°C at a rate o f  10 °C /minute and then warming back to 

+ 10°C at a 10 °C/minute.

Survival

In winter 2005-2006, if  a majority o f  insects taken from the outdoor enclosure on 

a specific date did not freeze when cooled to below -60°C, additional insects from the 

same group were cooled in plastic tubes at 1 °C/minute to -80 or -100°C. Insects in this 

second trial that did not display an exotherm were warmed at the same rate to -16°C and
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placed back into the container onto cold (-18°C) bark either in a plastic bag (N=12) or not 

(N=33). Containers were then returned to the outdoor enclosure and replaced under snow. 

On 1 May, containers were warmed to 20°C, and insects were assessed for survival and 

activity over a one week period. In winter 2007-2008, after larvae from the field 

containers exhibited deep supercooling, whole containers with larvae on bark and within 

plastic bags were cooled at 1 °C/minute to -80 or -100°C before being returned to the 

field, and larvae were checked for survival in April.

Statistical Analysis

Norm ally distributed data (Shapiro-Wilk test P > 0.05) were compared by T-test 

or Tukey-Kramer for multiple comparison; non-normally distributed data were compared 

with a Mann-W hitney and Chi-Square tests (SAS 9.1, SAS Institute, Inc). Unless 

otherwise noted, values are presented as mean ±  s.e.m. To assess association, the 

Spearman Rank Correlation test was used with averaged rank used for tied observations. 

Since winter values for m ean SCPs and body water content o f  larvae collected in 

W iseman and held either in W iseman or Fairbanks did not differ (Mann-W hitney, P > 

0.2), these data were combined and are collectively referred to as the Wiseman 

population.

Results

M icrohabitat Characteristics 

Below freezing temperatures began in mid-August in W iseman and in mid-

September in Fairbanks and extended to mid-April in Fairbanks and mid-M ay in

Wiseman (see Bennett et al., 2005 for more detail o f  conditions at these two sites).
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Although air temperatures regularly decreased to lower than -40°C, insulating snow cover 

resulted in m inim um  ground temperatures typically near -20°C in both locations. In 

Wiseman during 2006-2007, however, low snow cover resulted in similar conditions 

below and above the snow for much o f  the winter (Fig. 2.1). On 7 Jan 2007, for example, 

above-snow temperature was -43°C and below-snow temperature was -40°C. In summer, 

there were several transient cold snaps in W isem an including on 4 June 2006 when 

ambient temperatures reached near -5°C. Above- and below- snow temperatures are 

presented for Fairbanks from October to April 2005-2006  and 2007-2008 in Fig. 2.2.

Supercooling Points and  W ater Content 
Changes in SCP, WC, and ambient temperature over three overwintering seasons

showed generally the same trends (Fig. 2.2 and positive correlations Table 2.1) (Note that

these data do not include larvae that deep supercooled and did not freeze). As ambient

temperatures decreased between summ er and autumn, mean supercooling points

determined in Cucujus  larvae collected from Fairbanks and W iseman populations

declined by 20°C from values as high as -7.0°C and by a further 6 to 7°C between

autumn and winter to average seasonal minima o f  approximately -37°C (Table 2.1). The

lowest individual SCP was -54.3°C. Body water content o f  larvae also decreased

between sum m er and winter from 2.1 to 0.8 mg • mg dry mass 1 (averages combined for

both locations, Table 2.1). Associations between SCPs and W Cs by season and location

are reported as correlation coefficients (Table 2.1), and, except for the summer W iseman

value, all were significant (P  < 0.0001). Results restricted to dates when both freezing

and deep supercooling occurred in the same experimental run indicate that variation in
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water content o f  Fairbanks larvae explained approximately 24% o f  the variation in SCP 

(P  < 0.001, p = 0.4976, n = 175). For W iseman larvae, water content explained 

approximately 41%  o f  the variation in SCP (P  < 0.001, p = 0.6393, n = 202). Overall, 

mean SCPs decreased with mean W C, when values from insects collected at both sites 

throughout the study were compared (Fig. 2.3).

D eep Supercooling and Vitrification  

Over ha lf  (111 o f  210; 52.8%) o f  the Cucujus larvae from the Wiseman

population did not exhibit an exotherm when cooled to -60 to -70°C during Novem ber to

February 2005-2008  (Table 2.2). Over ha lf  (84 o f  165; 50.9%) o f  the larvae from the

Fairbanks population also did not exhibit an exotherm when cooled to -60 to -70°C

during December to March 2005-2008 (Table 2.2). W e refer to this result as deep

supercooling, and we believe these individuals enter a stable, non-crystalline vitreous

state. When individuals from Fairbanks and W iseman were tested on the same day

during December to February 2007, 18 o f  26 (69.2%) Fairbanks individuals and 11 o f  34

(32.3%) W iseman insects deep supercooled (Chi-Square yj = 2.74; d f= l ,  P  = 0.09).

There was no significant difference (P > 0.05, Tukey-Kramer adjustment for multiple

comparisons test) between WC o f  individuals that deep supercooled between populations:

Fairbanks WC was 0.4 ± 0.02, n=52 (winter), and Wiseman W C was 0.3 ± 0.02, n=32

(autumn) and 0.4 ±  0.02, n=59 (winter).

Compared to larvae that froze, individuals that deep supercooled had half o f  the

water content, a 1.57-fold greater concentration o f  glycerol, and a 1.16-fold greater level

o f  thermal hysteresis (Table 2.3), all statistically significant differences.
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D ifferential Scanning Calorim etry  

No evidence o f  the formation o f  ice in deep supercooled C. c. puniceus  larvae was

observed by differential scanning calorimetry when larvae were cooled to -150°C at all

cooling and w anning  rates studied. The most sensitive test used for detection o f  freezing

events was cooling at 1 °C/min, followed by warming at 40 °C/min. The rapid wanning

rate increases detection sensitivity for melting peaks because a faster warming rate

requires larger heat flow, helping raise small heat flow changes above the noise level

(Saunders et al., 2004). In the experience o f  one o f  the authors (B. W owk), the detection

sensitivity o f  the instrument analysis software at this warming rate is approximately 0.05

J/g, conesponding  to a mass o f  ice equal to 0.015% the sample mass.

Thermograms (change in heat capacity as a function o f  temperature) obtained 

during warming o f  four large larvae at 40 °C/min show a large change in heat capacity 

within a narrow temperature range that indicates a transition to glass (Fig. 2.4). Glass 

transition or vitrification temperatures, indicated as the thermogram inflection point while 

warming at 5 °C/min, are presented in Table 2.4. Two large larvae showed a small glass 

transition near -97 ±1°C followed by a larger transition near -70°C. All four o f  the large 

larvae showed a consistent large glass transition at -76°C ±1°C. The three small larvae 

(1.7 to 3.3 mg) showed higher and more variable glass transition temperatures. In 

addition, the glass transitions appeared at the same temperature (accounting for a few 

degrees scanning lag) whether scanning up or down (warming or cooling) through the 

glass transition.
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The glass transition temperature o f  aqueous solutions in general increases with 

increasing solute concentration, and the higher glass transition temperature o f  the smaller 

larvae suggests the possibility o f  greater drying due to their greater surface-area-to- 

volume ratio; furthermore, the two separate glass transitions seen in some animals are 

indicative o f  two separate fluid compartments, one with a higher water concentration that 

undergoes a glass transition at a lower temperature, and one with a lower water 

concentration that transitions at a higher temperature.

Survival
Survivorship (2005-2006) o f  larvae from Fairbanks and W iseman left below- 

snow overwinter was 93%  and 92%, respectively, when assessed in the spring o f  each 

year. In 2007-2008, Fairbanks and W iseman individuals maintained above the snow in 

Fairbanks showed 57 and 80% survival, respectively, while 90% o f  below-snow 

individuals survived in both groups.

On 18 January 2006, larvae (N =16) from W iseman held in Fairbanks were cooled 

in contact with individual thermocouples to -72°C at 1 °C/min. No exotherms occurred. 

Twelve o f  these were placed on bark, sealed in a plastic bag, and returned to the outside 

enclosure. On 1 May 2006, 6 o f  12 were alive. On 20 December 2007 half  o f  Wiseman 

larvae retrieved from the outdoor enclosure (N = 8) deep supercooled, and ha lf  froze 

when cooled to -71°C. The next day, 41 additional larvae were retrieved from the same 

enclosure and cooled to -100°C at l°C/min. These larvae were held below -58°C (the 

lowest exotherm temperature we have measured) for approximately 84 minutes. After 

reaching -100°C, they were warmed at 1 °C/min to approximately -25°C and then



returned to the enclosure, as above. On 7 April 2008, 3 o f  41 were alive. N o other 

insects (N =138) survived deep supercooling from -70 to -100°C. Note that we have not 

yet directly shown that specimens found to vitrify based on differential scanning 

calorimetry are alive after rewarming, but our data appear to be compatible with the 

possibility o f  such a demonstration in the future.

Discussion

This study provides the first evidence o f  an insect avoiding freezing in extreme 

low temperatures by entering a stable, non-crystalline vitreous condition that is, at least in 

some individuals, survivable. Differential scanning calorimetry o f  rapidly cooled 

individuals reflected vitrification (glass transition) at temperatures as high as -58°C. This 

vitrified fluid is well-protected against freezing, showing no detectable tendency to form 

ice. The fact that these larvae can vitrify, however, does not mean that all survive these 

low temperatures. H alf  o f  the larvae cooled between -70 to -73°C survived, while only 

7% cooled to -100°C survived. One possible reason for the lower survivorship between - 

70 to -100°C may have to do with our method o f  transporting larvae from the enclosure 

to the low temperature bath and back to the enclosure. Larvae were deposited in an 

outside enclosure in September and were typically retrieved for testing when ambient 

conditions were < -20°C (late Novem ber through March). Many o f  the containers that 

held the insects were frozen to the ground. To retrieve insects, the containers had to be 

forcefully removed. This jostling may cause already supercooled insects to nucleate or 

become mechanically damaged and thus be a source o f  mortality. Similar manipulations 

and rapid temperature changes in the laboratory also may be damaging.
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Fairbanks and Wiseman, locations in interior Alaska, provide excellent low 

temperature settings to examine extreme overwintering physiology o f  insects. Both 

locations have some o f  the coldest environments in North America with official 

recordings o f  -52°C in Fairbanks in 1962 and -62°C in 1971 at Prospect Creek Camp 

(Shulskiand Wendler, 2007) 87 km south o f  W isem an and approximately 107 km south 

o f  the northern limit o f  C. c. puniceus. These minima are likely an under representation 

o f  temperatures that C. c. puniceus as a species have experienced, both historically and in 

recent years. Unofficial evidence suggests that temperatures in the -60s°C have recently 

been reached in the W iseman area. This is low enough to expose C. c. puniceus to their 

highest glass transition temperature as recorded in the present study. Low ambient 

temperatures are usually buffered by an insulating layer o f  snow; however, there are 

years when snow cover is minimal, resulting in below-snow temperatures that are 

comparable to above-snow temperatures (Fig. 2.1).

Regardless o f  location, supercooled C. c. punicius larvae were regularly found in 

direct contact with ice crystals for months at a time and at low temperatures (Bennett et 

al., 2005). Since larvae were found not to be at increased risk o f  inoculative freezing 

(Bennett et al., 2005), direct ice contact and low temperature may enhance dehydration, 

which we assume is taking place through differential vapor pressure between the 

unfrozen insect and external ice. This process has been noted in other organisms such as 

earthworm cocoons (Dendrobaena octaedra) and collembola (Onychiurus arcticus) 

(Flolmstrup et al., 2002), and the Antarctic midge, Belgica antarctica (Elnitsky et al.,

2008). The direct contact between ice and the body o f  the larva reduces the diffusion
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distance, which is inversely proportional to water loss rate (Holmstrup and Zachariassen, 

1996). Exposure to low temperatures increases differential vapor pressure between the 

frozen microhabitat and the supercooled body fluids; consequently, these organisms lose 

water to the environment until they come to a new equilibrium. It is problematic whether 

C. c. pun iceus  larvae reach vapor pressure equilibrium with the environment at the 

extremely low temperatures to which they are exposed, and consequently, they may not 

correctly be said to undergo “cryoprotective dehydration” that requires vapor pressure 

equilibrium (Holmstrup et al., 2002). However, dehydration results in the low water 

contents that are found in larvae in winter, especially those that deep supercool. For 

Fairbanks larvae, the range o f  water contents associated with deep supercooling was 0.6 

to 0.2 mg • m g '1 dry mass (compared to 2.0 mg mg"1 dry mass in summer) and 0.9 to 0.3 

mg • mg"1 dry mass for the Wiseman population. There is no significant difference 

between mean water content (approximately 0.4 mg • mg 1 dry mass) between 

populations.

In addition to decreasing the amount o f  water available for freezing, dehydration 

also causes concentration o f  solutes. There was a 1.6-fold increase in mean glycerol 

concentration in individuals that did not freeze as compared to insects that froze, with one 

individual having a 6.5 M glycerol concentration (Table 2.3). Although we did not 

directly measure antifreeze protein concentration, there was also a 1.2-fold increase in 

thermal hysteresis activity (a proxy for the presence and concentration o f  antifreeze 

proteins) in diluted homogenates o f  unfrozen individuals compared to those o f  

individuals that froze. In general, the amount o f  dehydration measured could cause the
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concentration o f  antifreezes to increase by as much as 5-fold; therefore, AFPs not only 

contribute to supercooling ability o f  non-deep supercooling individuals, but they also 

almost certainly contribute to the ability o f  individuals to deep supercool and vitrify. The 

inability to sample larval hemolymph, due to their extreme desiccation in winter, 

precludes the determination o f  hemolymph thermal hysteresis, therefore necessitating the 

measurement o f  thermal hysteresis in homogenates. As a result we do not know the 

thermal hysteresis activity o f  winter hemolymph; however, Bennett et al. (2005) reported 

earlier that hemolymph from autumn larvae prior to desiccation exhibited nearly 13°C o f  

thermal hysteresis when concentrated 3.2x to reflect a level o f  dehydration experienced 

by winter larvae under a lesser level o f  dehydration. The known ability o f  AFPs nearly 

identical to those o f  C.c. puniceus  to inhibit ice nucleators (Duman, 2001, 2002) indicates 

that the Cucujus AFPs assist deep supercooling and vitrification.

Although dehydration in Alaska C. clavipes  larvae contributes to cold hardiness, 

many insect species do not readily lose body water over the winter period yet still show a 

seasonal increase in supercooling capacity (Zachariassen, 1985; Duman et al., 1991a; 

Bennett et al., 2005). Even the eastern subspecies o f  Cucujus from northern Indiana 

( - 4 1 °  45'N) does not dehydrate in winter but supercools to approximately -23.0°C 

(Bennett et al., 2005). In contrast, the western subspecies investigated in this study loses 

body water and increases supercooling capacity during winter, with the annual minimum 

supercooling point for the eastern subspecies being achieved by the western subspecies in 

Alaska in October, prior to dehydration. For other insects, like the western subspecies o f  

C. clavipes, increased supercooling capacity is correlated to a decrease in body water,
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although vapor pressure equilibrium, and therefore strict cryoprotective dehydration, may 

not be attained (Lundheim and Zachariassen, 1993; Gehrken, 1989; Rickards et al., 1987; 

Leather et al., 1993; Block, 2003; Worland and Block, 2003; Danks, 2000; Bennett et al.,

2005). In fact, the association between water content and supercooling in this study 

indicates that Fairbanks populations maintain a moderate association (R2 =  24%) between 

SCP and WC in autumn and winter. For the W isem an population, the association 

increases from 24%  in the autumn to near 40%  in winter. Zachariassen et al. (2004a,b) 

explain the correlation between log body mass and supercooling point in freeze-avoiding 

insects by citing the work o f  Bigg (1953), who found a linear relationship between 

supercooling and the logarithm o f  water volume: as log mass (and volume o f  water) 

declines, supercooling capacity increases. As a consequence o f  low water content 

through dehydration and high solute concentration, the diffusion o f  water molecules 

should be inhibited at some low temperature, allowing the remaining water to turn to 

glass, a situation that has been described as a “viscous slowing down o f  supercooling 

liquid” (Tarjus and Kivelson, 2000). W e believe that this low temperature threshold in

C.c. puniceus  larvae is approximately -58°C. Bennett et al. (2005) and this study did not 

record any freezing events in Cucujus larvae at temperatures < -58°C.

The present study provides direct evidence through differential scanning 

calorimetry that a glass transition temperature can occur at -58°C. Through dehydration 

tolerance, the combination o f  noncolligative AFPs and colligative antifreeze (glycerol), 

and by the depression o f  the homogeneous nucleation temperature o f  body water to 

below the glass transition temperature (Fahy et al., 1984), C. c. punicius  larvae should
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not be threatened with ice nucleation, even under extreme low ambient temperatures and 

in direct contact with ice crystals. Theoretically, vitrified larvae should be stable for long 

periods o f  time due to the unique properties o f  a vitrified substance. Larvae in a vitrified 

condition will not have the stress o f  volume expansion and grain growth o f  ice in tissues 

(Hochachka and Somero, 2002), and since the vitrified condition encompasses both intra- 

and extra-cellular fluids, vitrified larvae should not encounter the differential osmotic and 

ionic stress (Storey, 2004) that is associated with concentration o f  solutes when extra

cellular water freezes. It is interesting that Holmstrup et a l ., (2002) also demonstrated 

that ice formation did not occur in dehydrated collembola and earthworm cocoons cooled 

to -60°C, although vitrification was not reported.

We suggest that over a broad range o f  temperatures, C. c. puniceus  larvae 

overwinter through a continuum o f  supercooling capacities by which they survive high 

latitude winters in a freeze-avoiding state. Production o f  AFPs in early autumn, followed 

by cessation o f  feeding and clearing o f  the gut, lower the SCPs into the -20°C range.

Then between autumn and winter glycerol accumulates, body water decreases, and there 

is a concomitant increase in solutes (including glycerol and antifreeze proteins) that 

affords individuals low temperature freezing resistance to approximately -40°C. As body 

water declines to near 0.4 mg ■ mg"1 dry mass, the additional increase in solutes (which in 

one case reached approximately 6 M glycerol) has the additional benefit o f  increasing 

viscosity, leading to a threshold for vitrification o f  approximately -58°C. W e have 

measured hundreds o f  nucleation temperatures in winter C.c. puniceus  larvae, and -58°C 

is the lowest SCP that we have recorded, a temperature which is consistent with the
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highest glass transition temperature measured in larvae. For temperatures lower than - 

58°C, the combination o f  low body water, increase in viscosity, and low temperatures 

promote vitrification o f  body fluid that augments survival o f  individuals well beyond 

temperatures officially recorded in Alaska, putatively adding vitrification to the list o f  

potential insect overwintering strategies. While most C. c. pun iceus  larvae overwintering 

in situ  are covered by an insulating snow cover for much o f  the winter, this is not always 

the case (Fig. 2.1). Although our evidence o f  low temperature survival indicates that 

individuals can survive temperatures lower than the lowest glass transition range, we did 

not directly test survival and vitrification simultaneously. The next tasks are to examine 

whether larvae truly vitrify in nature and whether they are capable o f  surviving 

vitrification under laboratory conditions.
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Figure 2.1 Above- and below- snow temperatures (black and red lines, respectively) 
from W iseman 2006-2007. This figure indicates similarity between above- and below- 
snow temperatures when snow accumulation is low.
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Figure 2.2 Above- and below- snow temperatures (black and red lines, respectively) 
from Fairbanks, mean (± s.e.m.) supercooling points (blue ovals), and water content (red 
ovals) o f  W iseman C. c. puniceus larvae held in Fairbanks during October to M ay 2005
06 and 2007-08. Note that on some o f  these dates larvae deep supercooled (did not 
freeze), and these are not included in the data shown.



76

_1
W a te r C o n te n t (mg mg d ry  )

Figure 2.3 M ean supercooling points and water content (± s.e.m.) o f  larvae from 
Fairbanks (blue triangles) and W iseman (red circles). Data are from Novem ber to 
February trials, w hen individuals were also capable o f  deep supercooling (no exotherm < 
-60 to -70°C); however, these deep supercooling larvae are not included in these data.
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Figure 2.4 DSC thermogram shows warming thermograms o f  larvae. The warming rate 
was 40 °C/minute. The thermogram heat flows are normalized to specific heat capacity 
units. The starting point on the vertical scale for each thermogram is arbitrary. Two o f  
the four larvae exhibited a double glass transition.
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Tables

Table 2.1 Seasonal changes in mean (±s.e.m. (N)) supercooling points (°C) and water 
content (mg • m g’1 dry mass) o f  insects that froze (exotherm). Note that these data do not 
include deep supercooling individuals.

Season Months Loc
Supercooling

point
W ater Content 

(exotherm)
Correlation
Coefficient

Summer

May - 
September

F -8.2a ± 0.3 (170) 2.0d± 0.04 (169) 0.36

July W -7.0a± 0.3 (21) 2.2d± 0.2 (21) NS

Autumn

October-
December

F -28.1b± 1.0 (65) 1.4e± 0.05 (65) 0.48

October-
November

W -30.0b± 1.0 (91) 1.2 '±  0.04 (91) 0.35

Winter

December - 
April

F -36.4C± 0.7 (174) 0.89 ± 0.03 (175) 0.49

December - 
March

W -38.7C± 0.8 (168) 0.89 ± 0.02 (170) 0.62

Abbreviations: Loc = population; F = Fairbanks; W = Wiseman Superscript letters indicate
significant difference in column means (P < 0.05) with Tukey-Kramer adjustment for multiple comparisons.
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Table 2.2 Proportion o f  individuals that deep supercooled compared to total tested per 
supercooling run by month and year o f  larvae from both locations and m ean water 
content (WC, mg • mg"1 dry mass) o f  individuals that deep supercooled.

Fairbanks Wiseman

Date

Deep
supercooling/

total
WC (deep 

supercooling) Date

Deep
supercooling/

total
WC (deep 

supercooling)

December 05 1/12 0.6 November 05 5/13 0.6

January 06 10/10 0.2 November 05 3/15 0.4

March 06 1/14 0.6 November 05 9/16 0.4

December 06 5/11 0.4 November 06 19/24 0.3

December 06 7/7 0.5 December 05 12/13 0.4

January 07 1/11 0.4 December 05 2/12 0.9

February 07 1/15 0.4 January 07 4/13 0.4

February 07 4/6 0.4 February 07 2/16 0.5

March 07 14/16 0.4 February 07 10/12 0.4

December 07 10/14 0.2 February 07 7/8 0.3

December 07 1/12 0.2 December 07 11/29 NA

January 08 8/9 0.3 January 08 8/8 0.4

March 08 21/28 NA January 08 12/16 NA

January 08 7/15 NA

Grand Mean ± s.e.m. WC 0.38 ± 0.04 0.45 ± 0.05

Table 2.3 Mean (±s.e.m. (N)) body water, glycerol, and thermal hysteresis levels in 
larvae that froze or did not freeze. Individuals were sampled October to December 2005 
and February to March 2007. Superscript numbers indicate statistical test used, while 
superscript letters indicate significant difference (P< 0.05)._________ ___________________

Supercooling point 
(°C)

W ater C ontent1 
(mg ■ mg 1 dry)

G lycerol2
(M)

Thermal
Hysteresis3

(°C)
Exotherm -39.5 ± 1.6 (39) 0.8 ± 0.07a (39) 2.8 ± 0.19a (37) 2.07 ± 0 .11a (21)

No exotherm Did not freeze (36) 0.4 ± 0 .1 3 b(36) 4.4 ± 0.13b (36) 2.39 ± 0.08b (21)
'M ann-W hitney ,  U  =796.5 , P< 0.0001

2T-test with unequal variance, t = 6.73, d f  =  63.6, P<  0.0001

3T-tesl with equal variance, t = 2.33, d f  = 40, P = 0.02
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Table 2.4 Temperatures o f  glass transition o f  Cucujus clavipes puniceus larvae.

Individuals

1

2

3

4

5

6 

7

Mass
(mg)

Large
glass

transition
temp.
(°C)

Small
glass1

transition
temp.

(°C)

Magnitude 
(J/g/K) 
of large 
glass 

transition

Magnitude 
(J/g/K) 

of small 
glass 

transition

1.7 -662 not obs 0.6 not obs

2.3 -582 not obs 0.6 not obs

3.3 -712 not obs 0.6 not obs

6.5 -763 not obs 0.6 not obs

10 -753 -96 0.45 0.15

10.6 -763 not obs 0.6 not obs

12 -762 -98 0.45 0.15

1The small glass transition temperature, which could not be detected while 
warming at 5 °C/min, was obtained from the 40 °C/min thermogram 
and adjusted for thermal lag by subtracting the temperature difference 
between the large glass transition events on the 40 °C/min and 5 
°C/min thermograms.

2Glass transition temperature was measured while warming at 10 °C/min.
3Glass transition temperature was measured while warming at 5 °C/min.
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Chapter 3 Probability o f  Freezing in the Freeze-Avoiding Larvae o f  the Beetle Cucujus 

clavipes pun iceus  (Coleoptera: Cucujidae) from Interior A laska1

Abstract

Freeze-avoiding insects must resist freezing or die. A suite o f  low-temperature 

adaptations, including the production o f  noncolligative antifreeze proteins, colligative 

antifreezes (polyols), and dehydration, allows most individuals to resist freezing below 

the lowest ambient temperatures experienced in situ. Despite these adaptations, some 

individuals freeze at temperatures slightly below ambient, while others resist freezing 

significantly (20 to 50 °C and greater) below ambient temperatures. W e used logistic 

regression to estimate the probability o f  freezing in larvae o f  the freeze-avoiding beetle 

Cucujus clavipes puniceus. W e hypothesized that water content < 0.5 mg • mg 1 dry mass 

would lead to deep supercooling (resistance to freezing below < -58 °C). W e found a 

significant interaction between water content and ambient below-snow temperature and a 

significant difference between individuals collected from W iseman and Fairbanks,

Alaska. Individuals from Wiseman deep supercooled with greater water content and over 

a greater range o f  ambient temperatures than individuals from Fairbanks, leading to 

significantly different lethal water content associated with 50 % probability o f  freezing.

Key Words: SCP, supercooling point; logistic regression; exotherm; LD50

'Sform o T, Mueller-Stoffels M, Walters K, Dum an JD, Barnes BM , McIntyre J. 
Submitted to Journal o f  Insect Physiology



Introduction

All organisms subjected to subzero temperatures face potentially lethal freezing 

events, whether due to ice formation, ice crystal growth, or cellular dehydration and 

associated increases in solute concentration (Zachariassen 1985; Costanzo et al. 1995; 

Duman 2001; Wolfe and Bryant 1999); however, the stochastic nature o f  ice nucleation 

makes prediction o f  the temperature o f  ice formation and the extent o f  supercooling 

difficult (Dorsey 1948; Bigg 1953; Knight 1967; Vali 1995). While there is agreement 

on the hom ogeneous ice nucleation temperature range o f  -39 to -41 °C for small volumes 

o f  pure water, biogenic ice formation most likely proceeds by heterogeneous ice 

nucleation (for a contrary view, see Zachariassen et al. 2004). In heterogeneous ice 

nucleation, organic, inorganic, and even surface impurities o f  containers holding aqueous 

solutions can function as nucleation sites. Impurities and sites can catalyze ice formation 

at subzero temperatures substantially higher than -40 °C, and especially active ice 

nucleators initiate ice only slightly below the equilibrium freezing point. Investigations 

on overwintering organisms such as terrestrial invertebrates have occasionally reported 

supercooling ability below the homogenous ice nucleation temperature o f  water (Miller 

1982; Ring 1982; Bennett et al. 2005; Sformo et al. 2009). For example, recently it was 

demonstrated (Sformo et al. 2009; chapter 2) that larvae o f  the beetle Cucujus clavipes  

puniceus  from Alaska can deep supercool to temperatures well below -40 °C by entering 

a vitreous state.

Overwintering insects adapt physiologically by becoming freeze tolerant (able to 

survive the freezing o f  their extra-cellular water), freeze avoiding (Zachariassen 1985;
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Bale 1987; Storey and Storey 1988; Block 1990; Danks, 1991; Duman et al. 1991; Lee 

and Denlinger 1991), and, in one documented case, through a combination o f  

simultaneous freeze tolerance and avoidance in which individuals survive ice formation 

in the abdomen, while inhibiting freezing in the head and thorax by supercooling (Sformo 

et al. 2009). For freeze-tolerant insects, ice nucleation o f  the extracellular water is a 

protective mechanism, inhibiting lethal intracellular ice, and allowing significant energy 

and water savings over the course o f  winter (Lundheim and Zachariassen 1993; 

Zachariassen et al. 2004). Ice formation in many freeze-tolerant organisms tends to 

occur at high subzero temperatures, between -5 °C and -12 °C in insects, and generally 

with the aid o f  ice nucleating proteins (Zachariassen 1985; Duman 2001). Ice nucleation 

at high subzero temperatures leads to slower freezing rates (Mazur 1984) and to the 

formation o f  a lower amounts o f  extracellular ice (Mazur 1984). Freeze-avoiding 

organisms, on the other hand, must avoid freezing at the lowest ambient temperatures that 

occur within their microhabitat. To avoid freezing, organisms are known to remove ice- 

nucleating factors (Zachariassen 1985; Duman 2001), produce antifreeze proteins (AFPs) 

(Duman 2001), accumulate colligative antifreezes like glycerol (Storey and Storey 1991; 

Duman 2001; Duman and Serianni 2002), and employ dehydration (Bayley and 

Holmstrup et al. 1999; Bennett et al. 2005).

Overwintering insects m ay enhance their survival beyond what is provided by 

physiological mechanisms by appropriate selection o f  microhabitat. Microhabitat 

selection can substantially ameliorate low temperatures experienced over the winter 

(Werner 1978; Marchand 1982; Hayhoe and Mukerji 1987). However, some freeze-
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tolerant organisms are thought to select above-snow locations to minimize the insulating 

effects o f  snow (Miller 1982; Bennett et al. 2005) resulting in the earliest possible onset 

o f  ice nucleation, leading to longer periods o f  time frozen in order to save water and 

energy (Bale 1987). Freeze-avoiding insects, on the other hand, are thought to select 

below-snow sites to mollify the extremes in low winter temperatures and decrease wide 

variability in temperatures through the insulating effects o f  snow and the warmer 

temperatures associated with ground cover (Danks 1991; Pruitt 1979; Marchand 1982; 

Kalliomaki et al. 1984; Miller and W erner 1987). A few exceptions (Miller and W erner 

1987) have been noted, including Bennett et al. (2005) who found the freeze-avoiding 

beetle larvae C ucujus clavipes from W iseman and Fairbanks (64° 72' N), Alaska, 

overwintering both above- and below-snow; yet, survivorship in either location was high 

(90 %) even w hen temperatures were in the -40s °C.

A recent study on the red flat bark beetle C. c. puniceus  (see Chapter 2) showed 

that larvae under experimental conditions entered a vitrified (glassy) state at temperatures 

between -58 to -80 °C and 7 % o f  larvae survived after exposure to -100 °C at a cooling 

rate o f  1 °C/min. Factors contributing to this ability to deep supercool (temperatures 

< -58 °C) were production o f  antifreeze proteins (AFPs), accumulation o f  glycerol, 

diapause (reduced winter metabolism, in Bennett et al. 2005), and extensive dehydration. 

The larval stage o f  this species transitions from autumn to winter conditions by losing 

body water and increasing solutes (glycerol and antifreeze proteins). As body water 

declined to approximately 0.4 mg • mg"1 dry mass, the concomitant increase in solutes 

had the additional benefit o f  increasing viscosity and enhancing AFP activity leading to
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deep supercooling. The low temperature observed, however, was not the lower limit o f  

supercooling (Bennett et al. 2005). Supercooling points near -58 °C appeared to be a 

threshold below which no further evidence o f  freezing was observed: if individuals 

avoided freezing to at least -58 °C, no individuals were found to freeze w hen cooled to 

the -70s °C (the lower limit o f  the cooling bath). Under separate experimental 

procedures, it was shown that there was no detectable tendency to form ice found to -150 

°C. The combination o f  low body water, the increase in viscosity, and low temperatures 

promoted vitrification o f  body fluids that augment survival o f  individuals well beyond 

minimum temperatures officially recorded in Alaska (Shulski and W endler 2007).

Although some individuals collected at a certain place and time reach deep 

supercooling levels and can vitrify (mean glass transition temperature o f  -72 °C), not all 

larvae avoid freezing. In fact, differences were noted in deep supercooling status 

between Cucujus clavipes puniceus  larvae collected from W iseman and Fairbanks (see 

Chapter 2). Fairbanks and Wiseman, locations in interior Alaska, provide low 

temperature winter settings with which to examine extreme overwintering physiology o f  

insects. Both locations have some o f  the coldest environments in North America. An 

official recording o f  -52 °C was noted in Fairbanks in 1962. In 1971 at Prospect Creek 

Camp 87 km south o f  W iseman and approximately 107 km south o f  the northern limit o f

C. c. pun iceus , -62 °C was recorded (Shulski and W endler 2007). W iseman larvae have 

the ability to deep supercool as early as N ovem ber compared to only the beginning o f  

December for Fairbanks individuals; and W iseman larvae deep supercooled over a 

greater range o f  individual water content (0.3 to 0.9 mg • mg’1 dry mass), after they had
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been winter acclimatized. One reason for these differences m ay have to do with 

environmental conditions. In W iseman, low snow accumulation resulted in comparable 

above- and below- snow ambient temperatures, with minima near -30 °C (see Chapter 2). 

In contrast, in Fairbanks, snow cover typically resulted in a blanket o f  snow sufficient to 

buffer below-snow m inim a between -10 to -20 °C (for more detailed examinations o f  

these temperatures in these two locations, see W agener 1995; Bennett et al. 2005).

From previous w ork (Bennett et al. 2005), the authors speculated that low water 

content promoted deep supercooling in Cucujus clavipes puniceus  larvae. We 

hypothesized that individuals with body water content < 0.5 mg • mg"1 dry mass would 

deep supercool. To test this hypothesis, we evaluated the water content, the effects o f  

ambient temperature one day prior to w hen insects were collected, and overwintering 

location on deep supercooling capacity in larvae from W iseman and Fairbanks, Alaska, 

over a three year period. In addition, we used logistic regression to determine the 

probability o f  the dichotomous outcom e-freezing or not freezing-to evaluate the relative 

contributions o f  these potential variables.

Methods

Insect Collection and Microhabitat Characteristics

We collected C. c. puniceus  larvae from under the bark o f  fallen and standing 

dead Poplar spp. trees each September 2005-2007  near Fairbanks (64° 72' N) and 

W iseman (67° 30' N), Alaska, a distance o f  approximately 437 km. W iseman Alaska is 

100 km north o f  the Arctic Circle; the latitudinal tree line is approximately 50 km north 

o f  Wiseman, and altitudinal treeline is about 150 meters high on local ridges; therefore,
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this site is near the distribution limit for C. c. puniceus. After collection, larvae were 

placed in plastic food storage containers (20 x 15 x 10 cm; 20 -1 5 0  per box) perforated 

for gas exchange, along with moist bark from their host trees. Insects were left to 

acclimatize to local conditions by placing the containers either on the ground where they 

were likely to be covered by insulating snow cover or above the ground approximately 

two meters where they were un-insulated by snow. Larvae collected from poplar trees in 

Fairbanks were placed in a wooded area on the University o f  Alaska Fairbanks campus. 

Insects collected near W iseman were held either at W iseman or at the University o f  

A laska site. Air (ambient) and microhabitat temperatures at these overwintering 

locations were monitored using Hobo Pro Series data loggers and downloaded with 

BoxCar Pro 4 software (Onset Computer Corporation, Bourne, Massachusetts, USA).

Determination o f  Supercooling Points

Insects were recovered from containers at different times in winter and brought 

into the laboratory in Fairbanks to determine supercooling points and water content. 

Insects retrieved from W iseman were kept at approximately -18 to -20 °C during 

transport to Fairbanks and tested within nine hours. Individual larvae were tested by 

placing a thermocouple junction (copper-constantan, 36 gauge) against the insect body in 

a 0.6 ml plastic tube. Thermocouple leads, up to 16, were attached to a computer 

controlled multi-channel thermocouple thermometer (Iso-Thermex, Columbus 

Instruments, Columbus, Ohio, USA) that recorded temperature in five second intervals. 

Closed tubes were placed inside a 500 ml glass beaker that was covered and mostly 

submerged in an alcohol-water cooling bath. Once insects equilibrated to 0 °C, bath
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temperature was reduced at 0.2 °C/min, typically to -60 to -70 °C. The lowest body 

temperature recorded at the release o f  the latent heat o f  fusion, as evidenced by an 

exotherm, was recorded as the supercooling point. Larvae that did not exhibit an 

exotherm to < -58 °C were designated as deep supercooling.

W ater Content

Individual larvae were weighed to the nearest 0.1 m g and then dried at 60 °C (48 

h) to constant mass. W ater content (WC) was calculated as mg • mg"1 dry mass (Rojas et 

al. 1986; Hadley 1994).

Probability o f  Freezing

Logistic regression models an event (freezing) occurring as a linear function o f  

the predictor variables compared on a log scale. Odds are defined as a ratio o f  the 

probability o f  an event occurring over the probability o f  an event not occurring. From the 

logistic model, probabilities can be estimated. By exponentiating the parameter 

estimates, log (odds) can be transformed into odds and then into probability, where 

probability = odds / 1 + odds. An a priori set o f  potential predictors o f  whether freezing 

would occur and all appropriate two-way interactions were used to derive the model 

(Table 3.1). Non-significant interactions were dropped, and the reported results are for 

reduced models. Mean-b (mean temperature below-snow) was created by averaging 

microhabitat temperatures recorded at the collection site every 30 minutes for 24 hours 

prior to when animals were retrieved and brought to the laboratory to be tested for 

supercooling ability. Due to the distance between W iseman and Fairbanks and the time
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required for a single complete supercooling run, it was necessary to store larvae at -18 

°C. This temperature was not figured into mean temperature one day prior to a SCP run.

Using the values from the parameter estimates o f  the reduced model, an LD50 can 

be estimated. Specifying water content as the principle parameter, LD50 estimates the 

water content at which 50 % o f  larvae freeze. The general equation is the following:

LD 50 = 0.5 = e(a + zpiXi) / 1 +  e(a + I|3ixi), eq. 1 

where a  = intercept term, Pi are the P coefficients associated with statistically significant 

variables derived from the logistic regression analysis.

Logistic regression was performed with SAS (SAS 9.1, SAS Institute, Inc), and R 

(2.3.0, The R Foundation for Statistical Computing) was used to graph the probability o f  

freezing in Fairbanks and Wiseman larvae. A Spearman Rank Correlation test was used 

a priori to estimate correlation between mean above-snow and mean below-snow 

temperatures. Unless otherwise noted, values are given as means, ±  standard error o f  the 

mean, and num ber o f  individuals used to estimate mean (N): (mean ± S.E.M, N).

Results

W inter Microhabitat Characteristics

With an insulating cover o f  snow, minimum below-snow temperatures typically 

ranged between -10 to -15 °C, while above-snow temperatures exceeded -30 °C and often 

approached -40 °C and lower for various lengths o f  time, as presented in Figure 3.1. In 

January 2007 in Wiseman, the containers with insects placed on the ground were clearly 

visible due to the lack o f  snow fall. This low snow year resulted in similar above- and 

below-snow temperatures and lower m inimum below-snow temperatures than typically
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recorded; for example, on 7 January 2007, above-snow temperature was -43 °C and 

below-snow temperature was -40 °C (see Chapter 2). Above-snow minimum 

temperatures in Fairbanks and W iseman were similar, ranging down into the -40s °C.

In Fairbanks and W iseman, the Spearman Rank Correlation tests indicated that 

the mean above-snow and m ean below-snow temperatures were correlated (Fairbanks: p 

= 0.855, R-value < 0.0001 N =  10896. Wiseman: p = 0.837, P-value < 0.0001, N  = 

10896); therefore, only mean-b (mean below-snow temperature for 24 hours prior to SCP 

determination) was chosen for further analysis since many C. c. puniceus  were typically 

collected during winter months at or below snow level.

Supercooling, Deep Supercooling, and W ater Content

Changes in SCP, W C, and ambient temperature over one overwintering season 

are presented (Fig. 3.1). For a more detailed examination, see Chapter 2). By late 

Novem ber 2006, mean SCP and W C were approximately -30 °C and < 0.9 mg • mg 1 dry 

mass. There were further decreases in both variables by January 2007, where mean SCP 

was near -50 °C and W C dropped to 0.5 mg • m g "1 dry mass. Note that these data do not 

include larvae that deep supercooled, i.e., did not freeze. As ambient temperatures 

decreased between summ er and autumn, mean supercooling points determined in 

Cucujus  larvae collected from Fairbanks and W iseman populations declined by 20 °C 

from values as high as -7.0 °C and by a further 6  °C to 7 °C between autumn and winter 

to average seasonal minima o f  approximately -37 °C (Table 3.2). The lowest temperature 

that any larvae exhibited an exotherm (the lowest SCP) was -54.3 °C, regardless o f
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collection location. Larvae that supercooled to below -54.5 °C remained unfrozen to the 

lowest temperatures we were capable o f  testing. W iseman larvae deep supercooled (no 

exotherm) when cooled to -70 °C (Table 3.2) as early as November, but it was not until 

December that Fairbanks larvae deep supercooled. Since winter values for m ean SCPs 

and body water content o f  larvae collected in W isem an and held in W isem an or 

Fairbanks did not differ (Sformo et al. 2009), data were combined and are collectively 

referred to as larvae from Wiseman. Supercooling points and water contents within 

months were not statistically different (Table 3.2), except for the comparison between 

Fairbanks and W isem an water contents in October - early December (Table 3.2).

Mean water content o f  frozen and supercooled larvae were significantly different, 

with deep supercooling larvae having between one-half  and one-quarter the amount o f  

water per milligram dry tissue as compared to larvae that froze. Mean water content 

(combined average) o f  individuals that deep supercooled was about 0.3 mg ■ m g ' 1 dry 

mass (Table 3.2).

Mean supercooling point temperatures, water contents, and percentage o f  insects 

that deep supercooled are shown in Figure 3.2 by location o f  collection and below-snow 

temperature during the 24 hours prior to collection. The range o f  W Cs associated with 

high probabilities o f  deep supercooling in Fairbanks was 0.2 to 0.6 mg • m g ’ 1 dry mass, 

and the range o f  below-snow temperature was -8.3 to -17.4 °C (Fig. 3.2). An increase in 

the proportion o f  deep supercooling in the Fairbanks population took place at WCs near 

0.4 mg • mg ’ 1 dry mass and below-snow temperatures near -11 °C (Fig. 3.2). In contrast, 

the Wiseman population displayed a more gradual increase in deep supercooling that
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extended over a greater range o f  W Cs and below-snow temperatures. W C varied 

between 0.3 to 0.9 mg • m g "1 dry mass, and the range o f  below-snow temperature was -3 

to -20 °C (Fig. 3.2).

Log (odds), Probability o f  Freeing, and LD50

All main effects in the initial model were significant (not shown), and the 

Fairbanks population significantly differed (P  < 0.05) from both W isem an insects held in 

Fairbanks and from W iseman insects held in W iseman, but the latter two did not 

significantly differ from each other (P = 0.5269). This indicated that the original location 

o f  larvae rather than the overwintering location was important; therefore, we combined 

insects collected from W iseman and re-ran the analysis with two populations (Fairbanks 

vs. W iseman). This analysis revealed a significant interaction (Table 3.3) between water 

content and mean below-snow temperature (MB1) in predicting whether insects froze.

The Goodness-of-Fit (Hosmer and Lemeshow) test indicated that the model fit the data: 

Chi-Sq: 3.646, d f  = 7, P > 0.9, and the C statistic was 0.96 out o f  1.0, also indicating that 

the model fits the data.

Positive parameter estimates (|3js) (Table 3.3) indicate a linear increase in the log 

(odds) o f  freezing, whereas negative parameter estimates indicate a decrease in the log 

(odds) o f  freezing. For example, the negative parameter estimate o f  “ loc” indicates that 

the W isem an population is less likely to freeze than the Fairbanks population. The 

parameter estimate o f  water content indicates that for each increase o f  0 . 1  mg • m g "1 dry 

mass, there is an 11.47-fold increase in log (odds) o f  freezing. Similarly, when below- 

snow temperature one day prior to testing (MB1) increased by 1 °C, there is a 0.44
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increase in log (odds) o f  freezing. The significant interaction between water content and 

below-snow temperature indicates dependence o f  freezing upon both variables. Plotting 

the (log) odds o f  freezing by W C and MB1 (Fig. 3.3) reveals the interaction: larvae at 

higher temperatures have greater log (odds) o f  freezing than larvae at cooler 

temperatures, and larvae with greater W C do not have as great a decrease in the log 

(odds) o f  freezing as larvae with a lower water content.

By exponentiation, the log (odds) parameter estimates are transformed into 

probability (see methods), and by specifying 5 °C changes in MB1 and 0.1 mg • m g ’ 1 

changes W C, the probability o f  freezing in Fairbanks and W iseman larvae is shown in 

Figure 3.4. In general, there is a greater decrease in the probability o f  freezing in 

W iseman than in Fairbanks larvae for a given temperature (Temp) and water content 

(WC). In the upper figures (Fig. 3.4), the probability o f  freezing by WC at a specified 

temperature (colored lines) is shown in the typical “s-shaped” curves associated with 

logistic regression. At 0.6 WC, regardless o f  temperature, the probability o f  freezing 

varies between 93 to 98 % for Fairbanks larvae, whereas for W iseman larvae probability 

o f  freezing varies between 82 to 95 %. At the lowest WCs, probability o f  freezing varies 

between 0 to 39 % for Fairbanks larvae, whereas for W iseman larvae probability varies 

between 0 to 18 %. In Figure 3.4, the lower figures represent the decline in the 

probability o f  freezing for insects by temperature at given WCs (colored lines). In the 

lower figures, the dotted lines bracket the highest MB1 at which deep supercooling was 

observed that ranged for Fairbanks larvae between -8.3 to -17.4 °C and for W iseman 

larvae between -3 to -20.1 °C. Taking 0.4 mg ■ m g ’ 1 dry mass as expedient value o f  mass,
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the probability o f  freezing for Fairbanks larvae varies approximately between 10 to 50 %, 

while probability o f  freezing for W isem an larvae varies approximately between < 5 to 

50 %.

Utilizing eq. I for LDsoand specifying W C as the principle parameter, we 

estimate LD50 by the following equation:

W C 50 = (-a -  P2X 10C- P3X 1MBI) / (Pi +P4XMBI), eq- 2  

Fairbanks larvae, as compared to W iseman larvae, must lose more body water to reach 50 

% o f  the larvae freezing (Table 3.4). Since there is a significant interaction between 

water content and temperature, the LD50 will be different at each temperature.

Discussion

The logistic regression analysis revealed that the probability o f  C. c. puniceus  

larvae freezing (and, therefore, dying) decreased with decreasing body water content and 

microhabitat temperature, measured over one day prior to sampling, in both populations. 

The probability (and log (odds)) o f  freezing declined at various “rates” (slopes in Fig 3.3) 

as a function o f  the interaction between temperature and water content. The general 

assessment o f  the probability o f  freezing is similar for both W iseman and Fairbanks 

larvae: if  temperature was held constant, then individuals with the highest water content 

had the highest probability o f  freezing, and individuals with the lowest water content had 

the lowest probability o f  freezing (Fig. 3.4, upper panels); i f  water content were held 

constant and individuals were subjected to increasingly lower temperatures, then the 

factor by which the probability o f  freezing declined was greatest for larvae with the 

lowest water content (Fig. 3.4, lower panels); however, the interaction between
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temperature and water content on percent deep supercooling (Fig. 3.2) and LD50 (Table 

3.4) differed between Fairbanks and W isem an larvae.

The differences between the proportions o f  larvae that deep supercool in 

W isem an vs. Fairbanks, especially at the warmer microhabitat temperatures, may reflect 

greater variation in environmental conditions. In Fairbanks, 90 % o f  individuals deep 

supercooled when temperatures were < -9 °C and WCs ranged from 0.2 to 0.5 mg • mg"1 

dry mass (Fig. 3.2). Only two individuals (3 %) were found to deep supercool at 

temperatures above -9 °C: one deep supercooled with 0.6 mg • mg"1 dry mass and at 

MB1 o f  -8.9 °C, and the second deep supercooled with 0.4 mg • mg"1 dry mass and at 

MB1 o f  -8.3 °C. Using the 90 % criteria specified above, we not only found that 67 % o f  

larvae from W iseman deep supercooled within these ranges o f  temperature and W Cs but 

also that 33 % deep supercooled at temperatures > -9 °C (up to -3 °C) and within a range 

o f  WC o f  0.4 to 0.9 mg • mg"1 dry mass. While Fairbanks and W iseman have similar low 

ambient (above-snow) temperatures, winter in W isem an tends to commence earlier in the 

fall and last longer into the spring (Bennett et al. 2005). In addition, Sformo et al. (see 

Chapter 2) have shown that at least below-snow temperature in Wiseman on one occasion 

between 2002-2007 approached -30 °C in a low snow year. In Fairbanks, over this same 

time period, the lowest temperature recorded was approximately -23 °C. With the earlier 

onset and longer duration o f  below-snow temperatures in Wiseman, the differences could 

lead to the greater likelihood o f  W iseman individuals deep supercooling due to the 

greater differential in vapor pressure o f  the frozen habitat and the vapor pressure o f  the 

supercooled body fluid, leading to increased water loss.
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The loss o f  W C required to reach deep supercooling was less in the Wiseman 

larvae than in the Fairbanks larvae (Table 3.4), suggesting that the former may have 

lower water stress because W iseman larvae can maintain greater W C and still deep 

supercool as well as reach 50 % probability o f  freezing at higher MB1 (Fig. 3.4, lower 

panels). During periods when larvae froze and others were capable o f  deep supercooling, 

water content o f  those that froze was 0.8 mg • mg"1 dry mass, and the mean supercooling 

point was approximately -37 °C, regardless o f  population. The temperature-dependent 

water contents found to deep supercool in Fairbanks larvae ranged between 0.2 to 0.6 mg 

• m g '1 dry mass (Fig. 3.2). The W C ratio between larvae that froze and larvae that deep 

supercooled from Fairbanks larvae represents a 2.0 to 4.0-fold further decrease in WC 

beyond the water already lost in late autum n-winter. In contrast, in the Wiseman 

population, individuals that deep supercooled had WCs ranging from 0.3 to 0.9 mg • m g 1 

dry mass. The WC ratio between larvae that froze and larvae that deep supercooled from 

W isem an represents only a 2.6-fold further decrease in WC beyond that already achieved. 

Theoretically, then, the low WC o f  W iseman larvae that froze in Decem ber-M arch 

already approached WC necessary to deep supercool. Although this indicates that other 

variables may be important to deep supercooling, it also indicates a lower demand o f  

further water loss (and possibly even permits a slight gain in WC); hence, there is less 

water stress in the W iseman individuals. While these differences in WC between and 

within the location o f  these larvae might appear to be slight, it should be kept in mind that 

the lower water content in the Fairbanks population may be approaching a limit near 0.25 

g • g"1 dry mass, a water content value associated with problems in the physical properties
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o f  bio-m olecules such as m em brane fluidity (Crowe et al. 1988), although it should be 

kept in m ind that Crow e et al. (1983) showed that some organism s are capable o f 

surviving w ater losses below  this value.

M oderate w ater loss and low tem peratures, in addition to colligative antifreeze 

(glycerol) and noncolligative antifreeze proteins (Bennett et al. 2005; Sform o et al.

2009), allow  larvae to avoid freezing under w inter conditions in interior A laska to 

approxim ately -40 °C (Table 2). M ost larvae are found to overw inter under the bark o f 

trees at or below  snow cover; how ever, some individuals can be found to overw inter 

above snow where am bient tem peratures are low er than -40 °C. Also, there are times 

when below -snow  tem perature is not m oderated by sufficient snow cover, and larvae 

overw intering closer to the ground m ay experience tem peratures more typical o f  above

snow conditions. The interaction betw een low m icrohabitat tem perature and low w ater 

content allows individuals to deep supercool (< -58 °C). For these larvae, there is no 

evidence o f  freezing at tem peratures. In fact, larvae enter a stable, non-crystalline 

vitreous state near -58 °C, with a m ean glass transition (vitrification) tem perature near - 

70 °C (see Chapter 2). O nce larvae deep supercool to tem peratures < -58 °C, they 

potentially undergo vitrification that should allow larvae to be stable for long periods o f  

time due to the unique properties o f  a vitrified substance. Larvae in a vitrified condition 

will not have the stress o f  volum e expansion and grain growth o f  ice in tissues 

(H ochachka and Som ero, 2002); and since the vitrified condition encom passes both intra- 

and extra- cellular fluids, vitrified larvae should not encounter any differential osm otic 

and ionic stress (Storey, 2004) that is associated with concentration o f  solutes when
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extra-cellular fluids freeze. This vitrified fluid is w ell-protected against freezing, 

show ing no detectable tendency to form  ice during transitions in tem perature from  -70 to 

- 1 5 0 °C.
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Figures

10/01/06  11/01/06 12/01/06 01 /01 /07  0 2 /01 /07  03 /01 /07  04 /01 /07  05 /01/07

Figure 3.1 Above- and below - snow tem peratures in Fairbanks and supercooling points 
and w ater content. Above- and below - snow tem peratures (black and red lines, 
respectively) from  Fairbanks, m ean (± s.e.m .) supercooling points (blue ovals), and w ater 
content (red ovals) O ctober to May 2006-07. N ote that larvae on some o f  these dates deep 
supercooled (did not freeze), and these are not included in the data shown.
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MB1

Figure 3.2 T he  percent o f  deep supercooling  by be low -snow  temperature. The percent o f  deep 
supercooling  by m ean b e low -snow  tem perature  24 hours before testing (M B1, °C) is show n for Fairbanks 
and  W isem an larvae. Supercooling  tests that resulted in individuals deep supercooling  are designated  
above the dotted line (0 % deep  supercooling) in red circles, and  individuals trails that resulted in larvae 
that froze (supercooled) are d isplayed below  the dotted line and with b lue cross hairs. A bove each shape is 
the m ean value for w ater conten t (m g  • m g '1 dry mass) per test. N u m b e r  o f  individuals per supercooling  
test is show n within the circle or be low  the cross-hairs. Mean supercooling  points (°C) per trial are show n 
below  cross hairs. T here  is not necessarily  a one-to-one co rrespondence  be tw een  deep supercooling and 
supercooling trials since in each case some trials resulted in e ither 100% deep supercooling  or 100% 
freezing. Som e results overlapped  MB1 and could not be displayed individually; therefore, the high and 
low m in im um  and m ax im u m  w ater  contents and supercooling  points and total num ber  o f  individuals tested 
are show n grouped.
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■oo

M B 1

Figure 3.3 The log (odds) o f  freezing. The log (odds) o f  freezing by m ean below -snow  
tem perature (M B1) at selected w ater contents (W C, m g • m g '1 dry m ass) specified by 
individuals curves from  the first (top curve o f  each panel) from  0.6, 0.5, 0.4, 0.3, and 0.2 
(low est curve in each panel) mg • m g’1 dry mass.



105

Fairbanks

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

WC (mg mg-1 Dry Mass)

W iseman

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

WC (mg-mg-1 Dry Mass)
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Figure 3.4 Interrelationships am ong probability o f  freezing o f  larvae from Fairbanks or 
W isem an and insect w ater content (W C, mg • mg"1 dry m ass) and tem perature (Tem p, °C) 
one day prior to testing. Since there is a significant interaction, each figure displays 
separate pieces o f  inform ation: The vertical axis is probability that an individual will 
freeze, and the horizontal axis in the upper two figures is WC. The colored lines in the 
upper figures show the decline in the probability o f  freezing at W Cs and at a given 
tem perature (°C): cyan = tem perature at 0, blue = -5, green = -10, black = -15, and red = 
-20. In the low er two figures, probability o f  freezing by tem perature is displayed with the 
colored lines representing WC (mg • mg"1 dry mass): cyan = 0.6, blue = 0.5, green = 0.4, 
black = 0.3, and red = 0.2. Probability is extrapolated at W C < 0.2 and > 0.6 and 
tem peratures > -5 and < -20. The vertical dotted lines approxim ate the range o f  MB1 
w hen larvae were actually observed to deep supercool.
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Tables

Table 3.1 L ist o f  the potential variables for the logistic regression model. A list o f  the 
potential variables (m ain effects and tw o-w ay interactions) for the logistic regression 
m odel o f  larvae freezing vs. not freezing.

N u l l R a n d o m  o u t c o m e l o g [ p / ( l - p ) ] =  p 0

W C W a t e r  c o n te n t  ( m g  • m g ’1 d r y  m a s s ) l o g [ p / ( l - p ) ] =  P0 + P , W C

L o c a t i o n P o p u l a t i o n @ L o c a t i o n l o g [ p / ( l - p ) ] =  p 0 + P , L o c

M e a n - b
( b e l o w - s n o w )

M e a n  b e l o w - s n o w  t e m p e r a t u r e  ( ° C )  
o n e  d a y  p r i o r  to  S C P  r u n

l o g [ p / ( l - p ) ] =  p 0 + p ,  M e a n - b

W C  L o c a t i o n W a t e r  c o n t e n t  L o c l o g [ p / ( l - p ) ] = P 0 + P , W C  + p 2L o c

W C  | M e a n - b W a t e r  c o n t e n t  | M e a n - b
l o g [ p / ( l - p ) ] =  p 0 + P , W C  

+ P 4M e a n - b

Note: “ | ’’ designates interaction

Table 3.2 Seasonal changes in supercooling and w ater content o f  insects that froze vs. 
those that did not freeze. Seasonal changes in m ean (±SEM  (N)) supercooling (°C) and 
w ater content (m g ■ m g '1 dry mass) o f  insects that froze (exotherm ) and did not freeze (no 
exotherm  to -70 °C).

Collection Months
Location of 
Population Supercooling Point

Water Content (insects 
that froze)

Water Content 
(insects that deep 

supercooled)

Oct.-early Dec. Fairbanks -28.2a ± 1 (65) 1,4a ± 0.05 (65) NA

Oct.-Nov. Wiseman -30.0a ± 1 (91) 1.2b± 0.04 (91) 0.3d ± 0.03 (32)

Late Dec.-Apr. Fairbanks -36.4b t  0.7 (174) 0.8C ± 0.03 (175) 0.3d ± 0.02 (52)

Dec.-March Wiseman -38.7b± 0.8 (168) 0.8C ± 0.02 (170) 0.4d ± 0.02 (59)

Superscript letters indicate significant difference in means (P < 0.05) with Tukey-Kramer adjustment for multiple comparisons. 
NA = not available.
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Table 3.3 The reduced logistic regression m odel. Results for the reduced logistic 
regression m odel specified for two locations: W isem an larvae are com posed o f  
individuals collected in W isem an and held in W isem an or Fairbanks; Fairbanks larvae 
w ere collected and held in Fairbanks.

P aram eter D F Estimate S T D  Error W ald  C hi-Square  P r  = ChiSq

In tercept (a) 1 -2.73 1.18 5.30 < 0 .0 2 1 3

W C  (0.1 mg-mg-') (P,) 1 11.47 1.87 37.34 < 0 .0 0 0 1

loc W isem an  (P,) 1 -1.04 0.37 7.85 0.0051

m b l  (1°C) (P3) 1 0.44 0.08 26.70 <0.0001

W C  11 |mbl (1°C) (P4) 1 -0.61 0.14 18.95 <0.0001

Abbreviations:
WC = water content, loc = location, mb1= mean below-snow temperature one day prior to testing

Table 3.4 LD 50 estim ates o f  w ater content. From  the m odel, estim ated w ater content 
(W C, m g • m g’1 dry m ass) by location at which 50 % o f  insects froze (W C50) calculated 
at various tem peratures (°C) by eq. 2.

Population 
Fairbanks 

(W C)
W isem an 

(W C)

Tem perature
-20 -15 -10 -5 0

0.49 0.45 0.40 0.34 0.23

0.53 0.50 0.46 0.41 0.32
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Chapter 4 Sim ultaneous freeze tolerance and avoidance in individual fungus gnats,

Exechia nugatoria

Abstract

Freeze tolerance and freeze avoidance are usually described as m utually exclusive 

strategies for overw intering in anim als. Here we describe an insect species that com bines 

both strategies. Individual fungus gnats, collected in Fairbanks, Alaska, display two 

freezing events w hen experim entally cooled and different rates o f  survival after each 

event (mean ± s.e.m.: -31.5 ± 0.2 °C; 70 % survival and -50.7 ± 0.4 °C; 0 % survival).

To determ ine w hat body com partm ents froze at each event, we dissected the abdom en 

from  the head/thorax and cooled each part separately. There was a significant difference 

betw een tem perature levels o f  abdom inal freezing (-30.1 ± 1 .1  °C) and head/thorax 

freezing (-48.7 ± 1.3 °C). We suggest that freezing is initially restricted to one body 

com partm ent by regional dehydration in the head/thorax that prevents inoculative 

freezing between the freeze-tolerant abdom en (71.0 ± 0.8 % water) and the supercooled 

and freeze-sensitive thorax and head (46.6 ± 0.8 % water).

Key W ords: M ycetophilidae, Exechia nugatoria, supercooling, exotherm

1 Sform o T, F. Kohl, J. M cIntyre, P. Kerr, J. Dum an, andB . M. Barnes 2009. 
Sim ultaneous freeze tolerance and avoidance in individual fungus gnats, Exechia  
nugatoria. Published in Journal o f  Com parative Physiology B: Biochem ical, System ic, 
and Environm ental Physiology 179: 897-902 (DOT 10.1007/s00360-009-0369-x) online 
June 04, 2009
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Introduction

The fungus gnat Exechia nugatoria  Johannsen (1912) (D iptera: M ycetophilidae) 

found in Fairbanks, A laska, survives the w inter as an adult above the snow under the bark 

o f  dead trees, a m icrohabitat that does not significantly insulate individuals from  

fluctuating am bient conditions, including low tem peratures that can decline below  -50 

°C. Fungus gnats are a diverse and abundant group o f  insects that can be recognized by 

their hum p-backed appearance, stout and elongate coxae, and w ell-developed tibial spurs. 

They often attain large population sizes and play an im portant role in the food web within 

the forest environm ents where they reside. M ycetophilidae are the m ost diverse in the 

northern Palearctic Region (Jaklovlev and Siitonen 2004), and in cold clim ates m any 

m em bers are know n to overw inter as adults, particularly those o f  the tribe Exechiini.

Their overw intering sites include caves (K jaerandsen 1993; K urina 1996; Hedm ark

2000), hollow  stem s o f  um belliferous plants (V aisanen 1981), and under the bark  o f  dead 

trees (Fledm ark 2000). In these studies, m icrohabitat tem peratures w ere found to be 

relatively m oderate (approxim ately -6 °C).

In extrem e cold clim ates such as the interior o f  A laska, insect species either avoid 

or tolerate freezing to survive w inter. Insects m ay behaviorally seek m icrohabitats that 

am eliorate low subzero tem perature. Freeze-avoiding species cease feeding and 

elim inate the contents o f  their gut to prom ote supercooling o f  body fluids to tem peratures 

well below  their equilibrium  freezing point (Zachariassen 1985). In addition, these 

insects m ust rem ove ice-nucleating factors, prevent inoculative freezing by production o f



noncolligative antifreeze proteins (A FPs) (D um an 2001), and/or synthesize colligative 

antifreezes such as glycerol and other polyols (Storey and Storey 1991). In contrast, 

freeze-tolerant insects w ithstand freezing o f  extracellular water, often by inducing 

freezing at high subzero tem peratures, typically -5 to -12 °C, via ice-nucleating factors 

(Zachariassen 1985; D um an 2001); furtherm ore, in A laska some freeze-tolerant insects 

can be found in m icrohabitats such as on vegetation that lies above the snow where 

exposure to low am bient conditions is relatively unim peded (M iller 1982).

Consequently, these individuals are often exposed to tem peratures that can cause ice 

nucleation. In studies that included fungus gnats in Alaska, M iller (1978, 1982) showed 

that M ycetophila  spp. and Exechia  spp. in Fairbanks are freeze tolerant but supercool to - 

30 °C, a low tem perature that is m ore typically associated with freeze-avoiding insects.

He did not note dual freezing events in these gnats. He did describe two nucleation 

events occurring in a Lepidopteran (M artyrhilda ciniflonella, at -25 and -36 °C) and a 

N europteran (H em erobius sim ulans , at -15 and -36 °C), although he did not report on 

differential survival o f  individuals betw een the two freezing events.

W e present evidence that freeze tolerance and freeze avoidance in individual E. 

nugatoria  are not m utually exclusive. We report on adults that survive initial freezing 

near -30 °C but do not survive a second freezing event near -50 °C. U nderstanding how 

these flies survive low tem perature conditions m ay help explain how they have becom e 

w idespread in cold regions.
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Materials and Methods

Insect collection and m icrohabitat characteristics

W e collected adult E. nugatoria  N ovem ber 2007-D ecem ber 2007 from  large 

aggregates o f  fungus gnats found under bark o f  dead and dry standing Poplar  spp. in 

Fairbanks, A laska, near the Fairbanks International A irport. W e estim ate that some trees 

housed greater than 1,000 individuals. A ll insects were located above the snow. Insects 

were transported in cold insulated containers and tested in the laboratory for freezing 

responses either w ithin one hour o f  collection or after ten days o f  acclim ation at 4 °C in 

100 % relative hum idity  (RH).

On the north side o f  a tree at the collecting site, tem peratures o f  the air (2.2 m 

above ground) and m icrohabitat (under the bark at 1 m above ground) were m onitored 

using Hobo Pro Series data loggers and dow nloaded with BoxC ar Pro 4 software (O nset 

Com puter C orporation, Bourne, M assachusetts, USA).

Supercooling

To determ ine supercooling points o f  gnats, a single copper-constantan 

therm ocouple junction  (36# g) was placed against an individual. The junction  and insect 

were placed in closed 0.6-m l plastic vials subm ersed in alcohol/w ater baths that were 

cooled from 0 °C at 0.2 °C/min. Therm ocouple leads were attached to a com puter 

controlled m ulti-channel therm ocouple therm om eter (Iso-Therm ex, Colum bus 

Instrum ents, Colum bus, Ohio, USA) that recorded tem perature every five seconds. The 

lowest body tem perature recorded at the onset o f  freezing, as evidenced by an exotherm

I l l



(a transient rise in tem perature due to the release o f  the latent heat o f  fusion), is the 

supercooling point (SCP).

Since we found that these insects displayed dual exotherm s, we investigated 

w hich body com partm ents were responsible for each freezing event by dissecting with 

scissors the abdom en from  the head/thorax (including w ings, legs, and antennae), and 

cooling each body com partm ent in separate tubes. I f  either halter, the reduced second 

pair o f  w ings used for balance, was accidentally severed, a new individual was used. 

Im m ediately after dissection, each body part was placed in a tube so that it rested against 

a therm ocouple; a m icroscope was used to ensure the body part was in contact with the 

therm ocouple junction. Since this visual inspection showed little to no fluid loss, the 

dissected parts were not sealed with oil.

To ensure that the second exotherm  in whole insects was not dependent on the 

first, a supercooling run was perform ed in M arch 2008 in which the bath was 

program m ed to hold at tem peratures below  the first supercooling point (approxim ately - 

34 °C) for 48 h. A fter 48 hours, the bath was program m ed to cool to -60 °C to record a 

possible second exotherm.

Survival

To assess im m ediate survival o f  gnats rem oved from the field, insects were 

collected on several occasions in N ovem ber and D ecem ber 2007. They were brought to 

the lab and placed on m oist towels at 4 °C and 100 % RH to assess survival (return o f 

coordinated m ovem ents) over a one-w eek period. To determ ine w hether flies survived 

the first freezing event, they were cooled to approxim ately -35 °C on 20 and 30
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N ovem ber and on 18 and 21 D ecem ber 2007 and then w arm ed to 0 °C. Both cooling and 

warm ing rates w ere conducted at 0.2 °C/m inute. Individuals were held overnight on ice. 

They were then transferred to a container at 4 °C and 100 % RH. Sim ilarly, to determ ine 

w hether flies survived the second freezing event, they were cooled to approxim ately -58 

°C on 20 and 30 N ovem ber 2007 then re-w arm ed as above.

W ater Content

M asses o f  individual larvae (whole body) were determ ined to the nearest 0.1 mg. 

Larvae were dried at 60 °C for 5 days to constant mass. A bsolute body w ater was 

calculated as mg • mg"1 dry m ass and term ed w ater content (W C) (H adley 1994). W ater 

contents o f dissected body parts (the abdom en vs. the head/thorax) were sim ilarly 

determ ined to the nearest 0.01 mg.

Results

M icrohabitat tem peratures varied w idely from  transient highs above 0 °C to lows 

o f  -41 °C during this study, and air and under-bark m icrohabitat tem peratures were 

sim ilar (Fig. 1; m ean difference = 0.2 °C; n = 8281). From 1 D ecem ber 2007 to 28 

M arch 2008, m ean tem perature was -18.1 ± 0 .1  °C (n=5710, recorded every 30 min).

D irectly after collection from the field, gnats (fresh m ass = 1.7 ± 0.4 mg, n=78) 

froze at an initial supercooling point (SCP1) o f  -31.5 ±  0.2 °C (Fig 2a); 70.2 % o f these 

were alive after thaw ing, a survival rate sim ilar to that in field-collected insects that were 

assessed for m ovem ent after direct transfer to the lab and w arm ed to 4 °C (Table 1;
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com bined average 85 %). Gnats cooled below  SCP1 show ed a second exotherm  (SCP2) 

at -50.7 ± 0.4 °C (Fig 2a) that was lethal (Table 1).

The dissected body com partm ents o f  new ly collected individuals were cooled as 

above to determ ine w hich body segm ents w ere responsible for SCP1 and SCP2. 

Supercooling point values o f  dissected gnat abdom ens averaged -30.1 ± 1.1 °C and were 

statistically indistinguishable from  average SCP1 values from  intact gnats (Fig 2a). 

Supercooling values o f  dissected head/ thoraces w ere -48.6 ± 1.3 °C and did not differ 

from  the average SCP2 in intact insects (Fig. 2a). These results suggest that freezing o f  

the abdom en is responsible for SCP1, and freezing o f  the head/thorax com plex is 

responsible for SCP2 in intact gnats. A fter 10 days o f  acclim ation at 4 °C and 100 %

RH, whole gnats froze at -20.6 ± 0.6 °C, and all died (Table 1). A second exotherm  was 

not observed in these acclim ated anim als when they were cooled to -60 °C (Fig 2a).

Insects in the field are regularly exposed to tem peratures below  the SCP1 (Fig. 1). 

For exam ple, insects w ere collected after a cold period 3-9 February 2008 (Fig. 1) when 

m ean am bient tem perature was -39.2 ± 0 .1  °C (n = 282), with extrem es o f  -31 and -43 

°C. Survivorship was 91 % (64/70) when insects were brought into the laboratory on 18 

February. This suggests that fungus gnats naturally  survive the freezing o f  their 

abdom ens and that, since freezing o f  the thorax and head is lethal, abdom inal ice does not 

inoculate freezing in anterior body com partm ents, even when exposed to tem peratures 

low er than SCP1 for several consecutive days.

W e also dem onstrated that SCP2 is not dependent on S C P ]. On 28 M arch 2008, 

the bath was program m ed to hold at approxim ately -34.5 °C for 48 hours. A fter this
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hold, the bath was decreased to -60 °C to trigger SCP2. A lthough gnats appeared to be 

acclim ating to spring conditions as early as 23 M arch and SCP2 increased to -42 °C ± 1.3 

(N = 16), there was a statistically significant difference (P< 0.05; T-test with equal 

variance, t = 5.50, P = < 0.001, d f  = 24) in SCP1 vs. SCP2 (-33.2 ± 0.6 °C, n = 16 vs. - 

39.2 ±  0.8 °C, n = 10, respectively) w ith 10/16 individuals exhibiting SCP2. W e believe 

that if  this experim ent had been carried out when gnats w ere still under w inter field 

conditions, SCP2 w ould have been lower, and all w ould have displayed a second 

exotherm .

Discussion

Exechia nugatoria  in w inter displayed two freezing events when experim entally 

cooled; they survived the first that occurs at tem peratures o f  approxim ately -32 °C, but 

they did not survive the second freezing event that occurred at approxim ately -51 °C. 

Testing body com partm ents separately suggests that it is the abdom en that freezes first 

while the head/thorax freezes second. Since fungus gnats overw intering in A laska 

routinely survive tem peratures betw een -30 and -40 °C, they m ust in nature becom e 

partially frozen and prevent the inoculation o f  ice from occurring betw een adjoining body 

segments.

W hy did this unusual dual strategy evolve in this species? Lundheim  and 

Zachariassen (1993) and Zachariassen et al. (2004, 2008) suggest that some freeze- 

tolerant insects that have greater trans-cuticular w ater perm eabilities than related freeze- 

avoiding species conserve body w ater and avoid dehydration while frozen because they 

are in vapor pressure equilibrium  with ice in the surrounding environm ent. Since the
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overw intering site o f  E. nugatoria  is a cold, dry m icrohabitat, an advantage o f  

m aintaining ice in the abdom en m ay be to lessen evaporative w ater loss over the course 

o f  a long winter. N ot only w ould abdom inal w ater be conserved but also some 

head/thoracic w ater vapor m ay be directed to the abdom en, rather than being lost to the 

environm ent. I f  the entire body froze, however, w ater loss w ould be even less. Freezing 

o f  the head and thorax m ay be avoided due to an increased susceptibility o f  neural tissue 

to dam age from  freezing as has been suggested to occur in other freeze-tolerant insects 

(Collins et al. 1997; Yi and Lee 2003). The large changes in ion concentrations in the 

rem aining unfrozen fraction that result from  extracellular freezing m ay not be tolerated 

by certain neurons or o ther cells o f  the anterior central nervous system.

A second obvious question arising from  this study is, how  is it possible for the 

head/thorax to rem ain unfrozen while w ater in the thorax is apparently in direct contact 

w ith the frozen abdom en? Freshly dissected abdom ens contained approxim ately 71 % 

water, and heads/thoraces had 47 % water, due either to proportional differences in hard 

body parts such as cuticle in these different body com partm ents or the selective 

w ithdraw al o f  w ater from  the thorax during freezing. Dehydration decreases SCPs in 

freeze-avoiding insects (Zachariassen 1985; Bennett et al. 2005), and resistance to 

inoculative freezing increases with dehydration in the A ntarctic m idge Belgica antarctica  

(E lnitsky et al. 2008); both o f these relationships could contribute to the stability o f 

partial freezing in the fungus gnat. W hile survival o f  an individual that both tolerates and 

avoids freezing has not been noted previously in insects, it occurs in plants, although the 

underlying m echanism s are not satisfactorily understood (W isniew ski 1995; Quam m e
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1995). Two exotherm s are com m on in the stem s o f  m any species o f  trees and typically 

consist o f  a high tem perature exotherm  (HTE) betw een -7 to -1 3  °C and a low 

tem perature exotherm  (LTE) below  -4 0  °C (Q uam m e et al. 1972; George et al. 1974). In 

stem s o f  hardw ood and softw ood trees from  tem perate regions, the HTE is due to 

freezing o f  extracellular water, especially in the xylem , while the LTE represents freezing 

in freeze-sensitive xylem  ray parenchym a. Consequently, avoidance o f  the LTE in the 

freeze-sensitive parenchym al tissue perm its adaptation to relatively low tem peratures in 

these trees but also im poses lim its in their ranges in terms o f  latitude and extrem e low 

tem peratures (G eorge et al. 1974) and altitude (Becw ar et al. 1981). W ater associated 

with the xylem  ray parenchym a may rem ain supercooled while surrounding w ater in the 

xylem  is frozen. This is due, at least partially, to cell wall structures and pectin 

interactions w ith the cell wall (W isniew ski 1995). Recently, freeze-avoiding xylem  ray 

parenchym a o f  the katsura tree Cercidophyllum  japonicum  are reported to have flavonol 

glycosides with anti-ice nucleation activity that prom ote supercooling (K atsuga et al. 

2008). Supercooling o f  freeze sensitive flow er and leaf buds that are surrounded by 

frozen extracellular w ater is also com m on in trees (Q uam m e 1995). In conifers, after the 

extracellular w ater in tolerant tissues freezes, prim ordial shoot w ater m igrates toward the 

frozen tissue where it subsequently freezes. Sakai (1979) describes this as ‘extraorgan 

freezing’ that allow s the freeze-intolerant prim ordium  to supercool to low er tem peratures 

due to the rem oval o f  water. Cary (1985), w orking on Prunis (peach and prune) flowers, 

m odeled supercooling in floral tissue with ice present, showing that w ater vapor flow ing 

toward ice crystals m ay “cause a discontinuity in the liquid phase” that acts as a barrier to
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nucleation. The abdom inal freezing o f  the fungus gnat may function as “extraorgan 

freezing” allow ing w ater to be w ithdraw n from  the thorax to further decrease the 

supercooling point. In fungus gnats, abdom inal freezing (-30 °C) and a subsequent 

m ovem ent o f  w ater vapor from  the head/thorax m ay create a dry area (discontinuity) as a 

barrier against inoculative freezing o f  the rem aining supercooled fluid in the thorax. This 

m echanism  is dependent on a freezing event, yet our observations o f  w ater content 

differences were on unfrozen insects. These m ay have previously frozen and the 

differences in w ater content rem ained after thawing. Even though the gnats display a 

difference in w ater content after they have rew arm ed, the gnat acclim ation to above

freezing tem perature and hum idity after 10 days increases total body w ater through 

rehydration o f  the head/thorax that also results in high, lethal SCPs and the absence o f  

SCP2. W ith the slight but significant increase in w hole-body w ater content, there is an 

increase in the tem perature o f  the first freezing event and elim ination o f  the second, and 

no gnat survives.

This study presents a unique exam ple o f  a m ixed overw intering strategy in a 

single insect, tolerating freezing in the abdom en while avoiding freezing in the thorax and 

head. W hile a sim ilar m ixed overw intering strategy is more typical in plants, this is the 

first arthropod known to overw inter in this m anner. At present, the m echanism (s) 

underlying this strategy and rationale for its evolution rem ain unknown.
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Figure 4.1 M icrohabitat (under bark) tem perature 1 m eter above the ground (red) and air 
tem perature 2.2 m eters above the ground (black) at the fungus gnat collecting site.
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Figure 4.2 M ean (± sem) supercooling (a) and w ater content (b) in fungus gnats brought 
in from the field or after exposure to 4°C for 10 days. Num bers w ithin parentheses are 
percent w ater and/or sam pling num ber. D ifferent letters indicate significant differences 
in means. In Figure 4.2a, SCPs o f  fungus gnats im m ediately after they were collected 
and transferred to the laboratory: Shapiro-W ilk norm ality test, P < 0.05; W ilcoxon two- 
sam ple test, S=1653.0, P <  0.0001. A bdom en vs. head/thorax is significantly different: 
Shapiro-W ilk test, P > 0.05; T-test w ith unequal variance, t = -17.60, P = 0.0001, 
df=35.6. SCP1 (collected vs. dissected): Shapiro-W ilk norm ality test, P < 0.05; 
W ilcoxon rank-sum , S = 666.0, P = 0.3301. SCP2 (collected vs. dissected): Shapiro- 
W ilk norm ality test, P < 0.05; W ilcoxon rank-sum , S = 355.0, P = 0.1813. In Figure 
4.22b, whole body vs. w hole body (acclim ated) w ater content, Shapiro-W ilk norm ality 
test, P< 0.05; W ilcoxon rank-sum , S = 1049.0, P < 0.0001. For body com partm ents, 
Shapiro-W ilk test, P < 0.05; W ilcoxon rank-sum , S = 465, P < 0.0001.
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Table

Table 4.1 Survival results based on individuals brought in from the field and 
experim entally frozen to SCP1 or SCP2 or after acclim ation.

Date Condition Percent N
11/16/07 Field 93.2 44
11/20/07 SCP1 81.3 16
11/20/07 SCP2 0.0 16
11/30/07 Field 92.1 126
11/30/07 SCP2 0.0 15
12/18/07 Field 68.5 73
12/18/07 SCP1 46.7 15
12/22/07 SCP1 81.3 16
12/28/07 SCP2 0.0 16
12/31/07 Acclimated 0.0 32
02/28/08 Field 91.4 70
‘ Condition:
Field = collected and im m ediately placed into 4 °C and 
100 % RH; no supercooling.
SCP1 = supercooled below SCP1 to -34 °C.
SCP2 = supercooled below SCP2 to -58 °C.
Acclim ated = collected and stored at 4 °C and 100 % RH fo r ten days, 
and tested acclim ated individuals to a bath tem perature of -29 °C, 
resulting in a mean SCP o f -19.3 °C ± 0.9; none survived.
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A ppendices

These appendices provide future directions o f  my w ork on overw intering 

physiology in the form  o f  a proposal (A ppendix 1) and a sum m ary on a variety o f  insects 

that I w orked on during the dissertation but that were not exam ined in enough detail to 

w arrant a full paper (A ppendix 2). This research was conducted opportunistically or was 

conducted for others outside the B am es/D um an collaboration. A ppendix 3 provides raw  

data on the carpenter ant C am ponotus herculeanus, and it is hoped that others w ill be able 

to utilize them  for further overw intering work.

A ppendix 1: Future D irections

M y future directions include the study o f  in situ  ice form ation in floral and faunal 

tissues using a phase-enhanced synchrotron x-ray im aging system  such as the one at the 

A rgonne National Lab. All flora and fauna subjected to subzero tem peratures face 

potential lethal freezing events, w hether due exclusively to ice growth or associated 

increases in ion concentration (Zachariassen 1985; Duman 2001; Costanzo et al. 1995).

In fact, in some freeze-tolerant organism s, the freezing leads to controlled hyperglycem ia 

(Costanzo et al. 1995). The fate o f  tissue, therefore, in a freezing environm ent is 

com plex, and the direct, internal visualization o f  these events will allow  us to understand 

how  diverse organism s tolerate ice and m itigate cryoinjury. Substantial econom ic and 

m aterial losses due to uncontrolled freezing in cultivated agriculture products



(T iefenbacher et al. 2000) and in tissue and organ preservation (Costanzo et al. 1995) can 

be am eliorated.

The advanced im aging 1 propose w ould provide direct internal visualization o f  ice 

form ation in real tim e in distinct body com partm ents. Previous im aging w ork on freezing 

relies on either dissection or on external v isualization such as infrared therm ography. 

W hile these techniques provide insight, the fine structures o f  tissue m ust be destroyed in 

the form er, while the latter relies on the surface effect o f  the release o f  the latent heat o f  

fusion. A t a cellular and tissue level, we do not know  how ice grow th is m anaged. In 

fact, we do not know  w hether bacteria that are “tolerant” o f  freezing are freeze tolerant as 

described in this dissertation or w hether they are freeze avoiding. W hat actually freezes 

in a single-celled organism ? M ight ice form  outside the cell, or does intra-cellular ice 

form  in these organism s?

By using a phase-enhanced synchrotron x-ray im aging system  with a high-speed 

video recording cam era, I propose to image ice form ation and m echanism s o f  inhibiting 

low -tem perature ice propagation in diverse biological tissues. A lthough plant and insect 

anatom ies differ, the biom echanical processes o f  ice form ation, segregation, and the 

consequent m ovem ent o f  w ater may be sim ilar.

F lora: The geographic distribution o f  w oody plants has been correlated to survival o f 

high tem perature freezing events or exotherm s (HTEs, ~ -1 1°C) and avoidance o f  low 

tem perature exotherm s (LTEs, ~ -40°C) in the prim ary w ater conducting tissue o f plants 

(xylem ) (G eorge et al. 1974; Cary 1985; W isniew ski 1995; Q uam m e 1995). The 

m ovem ent o f  w ater and grow th o f  ice during these exotherm s has not been established
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due to lim ited im aging techniques, yet know ledge o f  how and where ice is 

com partm entalized during freezing is essential to understanding freeze tolerance in m any 

cultivated fruit crops (G eorge et al. 1974; Sakai 1979; Cary 1985; Quam m e 1995; 

W isniew ski 1995). D irect v isualization o f  water, ice, and ice grow th in intact xylem  

during HTEs and LTEs w ould answ er this question. By exam ining angiosperm s and 

gym nosperm s from both eastern deciduous and boreal forests from three tem perature 

zones (plants in areas where there is little probability o f tem peratures at or below  -40°C, 

southw est USA; plants in areas w ith a greater probability o f  reaching this tem perature, 

upper M idw est USA; and plants in areas w here average m inim um s are below  -40°C, 

northw est USA such as A laska), 1 plan not only to exam ine the particularities o f  w ater/ice 

m igration w ithin plants but also correlate plant distribution on a cellular scale to w ater 

m igration patterns w ithin xylem  (G eorge et al. 1974).

Fauna: In contrast to w oody plants, the geographic distribution o f  insects based on 

overw intering strategies is m ore com plicated since diverse species at all stages o f 

developm ent can be found in the same location. The overlap in distribution, however, 

m eans that a great num ber o f  the m ajor insect orders (C oleoptera (beetles), D iptera 

(flies), Hem iptera (true bugs), H ym enoptera (bees and ants)) can be surveyed from  the 

same geographical and tem perature related regions as described above. M ovem ent o f  

w ater and growth o f ice during nucleation are critical to understanding the m echanism s o f 

the overw intering strategies: W hat allow s, for instance, freeze-tolerant insects, as 

opposed to freeze-avoiding insects, to survive ice form ation? A natom ically, all insects 

have an open circulatory system , so a freezing event in one body segm ent w ould be
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expected to inoculate the next. Freeze-tolerant insects tend to have HTEs (sim ilar in 

tem perature range to plants) that appear to nucleate a significant proportion o f  w ater 

throughout the body, as com pared to single lethal LTEs (occurring at a w ider range o f  

tem peratures than plants) in freeze-avoiding insects (Zachariassen 1985; Dum an JG

2001). For insects that are sim ultaneously freeze tolerant and avoiding, like plants, how 

and where is ice propagation halted? A nsw ers to these questions are com pounded by the 

presence o f  three or four different extracellular fluid com partm ents that extend 

throughout the body o f  insects: hem olym ph/heart, gut, extracellular fluid in the ventral 

nerve cord, and tracheoles. The phase-enhanced synchrotron x-ray im aging system  will 

provide visualization o f  ice form ation in live anim als and w ithin-body com partm ents. 

D irect internal im aging o f  ice will allow  me to observe w hether anatom ical features such 

as air sacs inhibit ice growth and/or w hether ice is inhibited near central nervous system s 

w here increasing ion concentration could im pede action potentials in neurons. 

Establishing the pattern o f  ice nucleation and inhibition in these diverse insect orders will 

extend know ledge o f  overw intering physiology and the possible selective advantage o f  

each strategy.

The significance o f  the proposed research is not only in understanding 

evolutionary “solutions” to extrem e conditions and the limits o f  these m echanism s will 

significantly advance com parative physiology but also in advancing applied research in 

the areas o f frost control. K now ledge o f  the m echanism s o f  biogenic ice form ation will 

have trans-disciplinary impact, too. A key m edical concern is the deleterious effects o f  

increased solute concentration on tissue function. By im aging patterns o f  ice form ation
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in these diverse organism s, cryom edicine (Costanzo et al. 1995) will gain an 

understanding into the preservation o f  hum an tissues and organs w ith these already- 

developed evolutionary “solutions.” Sim ilarly, for physical scientists, my future research 

on tissues and com partm ents that inhibit, tolerate, and/or im pede ice below  the 

hom ogeneous ice nucleation tem perature o f  w ater (-40°C) will show case other 

biom im etic possibilities Billions o f  dollars in lost revenue as well as m aterial loss o f 

thousands o f  hectares o f  plants such as citrus trees (T iefenbacher et al. 2000) can be 

m itigated by visualizing and understanding biogenic ice form ation in these organism s.
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A ppendix 2: Lim ited overw intering physiology o f  H ypnoidus bicolor, Phyllocnistis 

populiella , C am ponotus herculeanus, and an unidentified parasitic wasp.

H ypnoidus bicolor  Eschscholtz, a click beetle

H ypnoidus b icolor  (Coleoptera: Elateridae) is a beetle also known as “ tundra” or 

m ore com m only a “click” beetle (Strong et al. 2002) due to its fully articulated prothorax 

that snaps and propels the beetle in a clicking habit (A rnett 1968). It has a palearctic 

distribution, com m on in the high and low arctic, but not found in G reenland (Danks 

1981). W hile Brooks (1961) spells the scientific nam e H ypolithus bicolor  and notes its
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distribution from  southern A lberta, Saskatchew an, and M anitoba (Churchill), Arnett 

(1968) and D anks (1981) note the various spellings o f  the genus in which H ypnoidus 

appears to have gained consensus. Strong et al. (2002) collected this species in higher 

elevations in Verm ont, USA, at the Stowe M ountain Ski Resort (44 ° 32 .6 ’ N) betw een 

1019 and 1097 m eters. Brooks, citing Zacharuk 1958, states that “ this species apparently 

reproduces pathogenically  in the north and w est as no m ales have been collected in the 

grey-soil [grey-soil not defined] forest areas” (p. 25). Strong et al. (2002) exam ined 

beetle com m unity structure betw een forested areas and on ski trails as edge and disturbed 

sites. They found that H ypnoidus  spp., including H. bicolor, were “ in the ski trail” and 

not in the forested area.

W ork on H ypnoidus bicolor was a group effort in w hich we docum ented the 

presence o f  therm al hysteresis activity, i.e., the presence o f  antifreeze proteins (Dum an et 

al. 2004). C ollection o f  insects was conducted at and north o f  the Toolik Field Station 

(Toolik, 68° 3 8 ’N), with one sum m er trip at A tigun Pass (June 2004); however, m ost 

effort focused on a D epartm ent o f  Transportation (DOT) site near the Sagavanirktok 

R iver called the Sag R iver DOT site (approxim ately 68° 45' N). This location is near 

active gravel pits that are being excavated for the Dalton (“ Haul R oad”) Highway. The 

m ost fruitful collection o f  individuals was o ff  a side road that form ed a cul-de-sac. This 

site was overrun w ith vegetation (plants to shrubs) and m any rocks. In general, this site 

could be described as disturbed, confirm ing the presences o f  this species in such sites as 

notes by Strong et al. (2002). To collect, we upended rock and found H. bicolor, am ong 

m any species o f  spiders and at least one species o f  Collem bola (D um an et al. 2004). We
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also placed loggers to record above- and below -snow  tem peratures. In addition, 

individuals were placed above- and below - snow at the Toolik Field station near the 

“ W inter Lab” in some years.

The earliest w ork on supercooling assessm ent was conducted at the Toolik 

Station, w hile in later years, individuals were brought back to UAF for testing. 

A ssessm ent o f  both w et and dry supercooling was conducted by securing individuals to a 

therm ocouple with Vaseline. This m ethod continued until 23 Septem ber 2004, when I 

used sm aller tubes that no longer required the use o f  V aseline (the first non-V aseline 

isotherm ex file is designated 092304c).

Representative m ean supercooling (± S E M ) points are shown in Figure A l along 

with above- and below -snow  tem peratures at the Sag Site. In 2006, I used an Ibutton 

(Figure A2, only one channel) to record tem peratures at the Toolik enclosure site. There 

is a seasonal increase in supercooling capacity from relatively high subzero supercooling 

tem peratures o f  -7.7 ± 0.4 (N = 25) and w ater content o f  1.3 ± 0.1 m g • mg"1 dry m ass (n = 

21) in June 2004 and July 2005 (com bined averages) to low supercooling ranges betw een 

-22 to -27 in D ecem ber -  M arch m onths (and over the years) while w ater content over 

this same overw intering period varied betw een 0.5 to 0.9 m g • mg"1 dry mass.

No individuals survived any freezing event. W hen we tested survival after 

retrieving overw intering containers at various tim es o f  the year and locations (Sag and 

Toolik sites), it appeared that tem peratures in the -20 °C range was a limit, although 

individual supercooling points as low as -27 °C were recorded; however, due to m any 

logger failures, especially early in the study betw een 2003-2005, we do not alw ays have
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tem perature data. A lso, abrasion from  natural substrate-stones from the underside o f  

overturned rocks-m ade it difficult to tell w hether supercooling ability was com prom ised. 

W e also had difficulty in transporting individuals back to Fairbanks. Since containers 

w ere not packed full w ith natural substrate and, therefore, stones could be easily jostled  

and potentially  dam age individuals. Early in the study, we placed collecting containers in 

un-insulated ice chests for the eight hour ride back to UAF. On some occasions, 

tem peratures dipped below  -35 °C, and we saw no survival in containers. A t Toolik, 

p lacem ent o f  below -snow  containers literally below  the w inter lab m ay also have been 

problem atic. W hen traveling to Toolik in m id-w inter, I saw at tim es either a thin layer o f  

hard, w ind-packed snow that could decrease the insulating cover or irregular drifts 

form ed due to the build ing’s pilings that resulted in snow cover that appeared m uch less 

“natural” than snow cover at the overw intering Sag site. One interesting note on 

tem perature at the Toolik enclosure site was that during the 2006-2007 season, Toolik  

above-snow  tem peratures reached -47.8 °C, while at the same time, the below -snow  

tem perature was near -19.8 °C. It was not until 22 M arch that below -snow  tem perature 

fell to its lowest o f  -20.9 °C. N o above- or below - snow click beetle survived.

In a series o f  supercooling tests com paring dry vs. wet individuals, 1 found m ixed 

results (Fig. A3) with some tests indicating that m ean w et SCPs w ere low er than m ean 

dry SCPs; however, this was not consistent. For instance, during four consecutive days 

o f  testing, tests on 15 and 16 M arch 2004 show ed a trend toward low er w et SCPs, but on 

17 and 18 M arch 2004, wet and dry SCPs appeared sim ilar (Fig. A3). On 21 and 22
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Septem ber 2003, wet SCPs were low er than dry SCPs. In contrast, 23 Septem ber 2004 

indicated that w et SCPs were h igher than dry SCPs.
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B. P hyllocnistis populiella  Cham bers, the aspen leaf m iner

Phyllocnistis populiella  is a lepidopertan (G racillariidae). Population outbreaks 

o f  this species in A laska have been reported from  the 1950s to the present (Doak et al. 

2007; W agner et al. 2008). In 2005, the area o f  infestation o f  this herbivore o f  aspen 

(.Populus trem uloides) was estim ated to be greater than 600,000 acres (U.S. Forest 

Service 2005). A lthough the area o f  defoliation has decreased to 210,000 acres in 2007, 

this insect rem ains the m ost w idespread pest in A laska (U.S. Forest Service 2008) w ith its
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telltale epiderm al lea f m ines found as far north as the south slopes o f  the Brooks Range to 

Talkeetna (U.S. Forest Service 2008).

Drs. P. D oak and D. W agner (UAF/1AB) continue to exam ine the leaf m iner in 

relation to quaking aspen ecology. Doak et al. (2007) found that extrafloral nectaries on 

short but not tall aspen ram ets reduced leaf mining. W agner et al. (2008) found that 

aspen grow th, leaf longevity, and photosynthesis declined w hen m ining dam age occurred 

on the abaxial (underside) surface o f  leaves. W hen, experim entally, they restricted leaf 

m iners to the adaxial (topside) surface, they found that photosynthesis was not 

significantly different than leaves w ithout m iners present. They concluded that w hile the 

leaf m iners do not consum e photosynthetic tissue o f  the m esophyll, m iners m ost likely do 

consum e tissue o f  guard cells that open and close stom ata that are located on the abaxil 

surface. W ater conductance, therefore, appears to be affected by the abaxil m ines that 

then decrease photosynthesis.

I was approached by Drs. Doak and W agner to co-m entor a high school student 

(see outreach). The project entailed determ ining the freeze-tolerance or freeze-avoiding 

status o f  the leaf m iner as well as exam ining the seasonal changes in its supercooling 

capacity. A dult leaf m iners overw inter in leaf litter at the base o f  trees (Doak et al. 2007; 

W agner et al. 2008). To assess supercooling capacity, individuals were collected on the 

U niversity o f  A laska Fairbanks (UAF) cam pus and various locations surrounding 

Fairbanks. They w ere held outside (usually less than one hour after capture) until testing. 

Insects were placed on a pre-cooled w atch-glass on ice in a standard refrigerator. Active 

individuals w ere allow ed to crawl into the pre-cut (~ 20 m m ) 0.4 m L m icrocentrifuge
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plastic tubes, while inactive individuals w ere placed in tubes. A therm ocouple (36 

gauge) juncture was rested against the surface o f  an individual. Tubes were then placed 

inside a larger glass beaker that was placed in a cooling bath (Neslab). Once insects 

equilibrated to ~ 0 °C, bath tem perature was reduced at 0.2 °C/min. The lowest body 

tem perature recorded (Iso-Therm ex) at the release o f  the latent heat o f  fusion, as 

evidenced by an exotherm , was taken to be the supercooling point (SCP).

The B row n-Forsythe hom ogeneity  o f  variance test was perform ed. If  variances 

were found to be heterogeneous (P  < 0.5), a w eighted m ean was used for 1-Way 

A N O V A , with the post hoc Tukey-K ram er A djustm ent for M ultiple Com parison tests 

(SAS 9.1, SAS Institute, Inc). M eans (±S.E.M .) were calculated from  the supercooling 

points/run.

Representative m ean supercooling (± S E M ) points are shown in Figure B l. There 

is a seasonal increase in supercooling capacity from  relatively high subzero supercooling 

tem peratures o f  -16.7 ± 0.42 °C (n = 94) during A ugust-Septem ber 2007 and A pril-June 

2008 to low m ean supercooling o f  -31.6 ± 0.45 °C (N = 100) for the rem aining months.

On 13 A ugust 2007, a supercooling test was run on individuals collected by D. 

W agner from Ridge Point Drive (Fairbanks). One individual did not freeze when the 

bath had been taken down to approxim ately -20 °C; the rest (n = 14) froze (-16.4 ± 0.3 

°C). This individual was the only one alive, indicating that leaf m iners are freeze- 

avoiding insects. No individuals survived freezing (N = 14/14 on 13 A ugust 2007, 8/8 on 

31 O ctober 2007, and 13/13 on 27 N ovem ber 2007).
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On 9 O ctober 2007, individuals collected approxim ately 10 days prior and held in 

small containers outside w ere tested. O f  the 6/7 show ed m ovem ent when placed on the 4 

°C w atch glass. From  approxim ately late Septem ber / O ctober through the end o f 

February, individuals did not show  shins o f  m ovem ent w hen brought in from  the outside 

and placed on the w atch-glass. The earliest evidence o f  “recovery” from  overw intering 

occurred on 29 February 2008. Pat Doak had collected individuals that m orning, and I 

ran a supercooling test w ithin an hour. On the w atch-glass 6/15 either had legs m oving 

or show ed some am ount o f  m ovem ent. By 27 M arch 2008, 10/14 displayed m ovem ent, 

and by 23 April 2008, 14/14 could be seen w alking on the watch-glass.
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C. Cam ponotus herculeanus  Linnaeus, carpenter ant

Cam ponotus herculeanus  is an om nivorous boreal carpenter ant (H ym enoptera) in 

the fam ily Form icidae (Fleinze 1993). This species excavates wood for nesting sites 

(N ielson 1987). Besides this species, others form icids in the genus Form ica  and Lusius  

are know n to be abundant in cool, boreal regions from  Eurasia and N orth A m erica 

(F isher and Cover 2007), including Interior A laska (Heinze 1993). The C. herculeanus  

individuals exam ined in this study (A scension # U A M -2008.16-Sform -Ento) have been 

regularly  observed but not collected and tested until Septem ber 2008. Individuals were 

collected from  approxim ately seven trees at 12 m ile Cache Creek (64° 5 4 ’ N) outside o f  

Fairbanks, Alaska.

In Septem ber, while tearing apart standing or dow ned dead trees or stum ps, ants 

could be found m oving en m ass, m ost likely due to a nest at or below  ground o f  the 

stum ps. Large queens were observed along with two size classes o f  workers. Fisher and 

Cover (2007) note that w orker castes can be di- or poly-m orphic.

During the Septem ber collecting, m any queens were found w ithin one tree and 

were m ixed with both w orker caste sizes, so it was not possible to tell w hether a stum p 

served as a single nest that had m any queens. Eidmann (1943) found the same 

overw intering collection o f  size classes and queens and even noted that larvae could also 

be found (as paraphrased in Henize 1993). I did not exam ine overw intering sites well 

enough to conclude where larvae or eggs could be found at this tim e in preparation for 

overw intering. In October, after freeze-up, ants w ere found in horizontal logs o f  various 

tree species. A fter peeling away bark, small circular cells that contained both sizes
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w orkers but usually  only one queen could be found. Since these cells were closest to 

am bient conditions, tem peratures m ost likely faced by these ants could be sim ilar to 

tem peratures recorded by Bennett et al. (2005), where they note poorly insulated 

horizontal log tem peratures m easured under the bark, Fig. 1 A). On two occasions, the 

interior o f  logs were fully dism antled. These logs w ere located on the ground and w ould 

have better insulated both w orker classes were found in restricted areas but in less w ell- 

form ed cells and w ith m ore than one queen.

H einze (1993) noted that m any species o f  boreal ants have a system  known as 

social budding w hereby m ore than one queen overw inters in a nest and “spontaneous 

fractioning o f  colonies (budding)” takes place in the spring. N ielson (1987) stated that 

Interior A laska sexuals are produced late in sum m er and overw inter, and H olldobler and 

W ilson 1990 also noted generally that C. herculeanus  m ale and fem ales overw inter in 

m aternal nests. M ating flights and dispersal take place in June, and individuals can be 

carried aloft (N ielson 1987). The m ost northern collection o f  this species in A laska 

occurred at Sukakpak M ountain (approxim ately 67 °N), north o f  W isem an, Alaska 

(N ielson 1987).

A nt overw intering research is not extensive, and alm ost nothing has been 

conducted in Interior Alaska. Heinze (1993), citing Leyrikh 1989, found that 

overw intering species Leptothorax acervorum  (subfam ily M yrm icinae) from  Siberia 

possessed anti-freeze polyols and could survive -40 °C. This species is also known to be 

in Interior A laska (H einze 1993). Since ants were plentiful in Septem ber and O ctober 

2008, I decided to test overw intering status to determ ine w hether they were freeze
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tolerant, freeze avoiding, and even sim ultaneous tolerance and avoidance since these ants 

have a pronounced “w asp w aisted” connection betw een the thorax and abdom en. Also, 

since hym enoptera have not been found to possess antifreeze protein (D um an et al.

2004), this seem ed to be a good candidate to test for therm al hysteresis activity (THA).

Supercooling testing was conducted, and the B row n-Forsythe hom ogeneity o f  

variance test indicated hom ogeneous variance (P > 0.2) for w ater content and 

supercooling points (Fig. C l) . A 1-Way A N O V A , with the post hoc Tukey-K ram er 

A djustm ent for M ultiple Com parison tests was used (SAS 9.1, SAS Institute, Inc). This 

species displayed two freezing events per individual, term ed supercooling point 1 (SCP1) 

and supercooling point 2 (SCP2). Representative m ean supercooling points ( ± SEM ) 

and w ater contents are shown in Table C l ,  while Figure C l displays the spread o f  SCP1, 

SCP2, and W C over the testing periods and under treatm ents. Survival after the first 

freezing events was conducted on 8 O ctober 2008 by holding ants at -15 °C for 24 hours. 

A fter returning to 0 °C, ants w ere placed on ice for 24 h and then transferred to a 

refrigerator betw een 2 to 4 °C in 100 % RH. These were checked every day. By the time 

I returned in O ctober to collect more ants, snow had fallen, and ants were not as easy to 

find; therefore, survival o f  the second freezing event was not conducted.

For therm al hysteresis analysis, a 26 gauge needle was used to pierce the various 

hard body parts, and a pulled glass m icropipette was used to w ick-up a small volum e o f  

hem olym ph (< 0.25 pi). A m icrom eter syringe then delivered betw een 25 and 100 nl o f  

hem olym ph into heavy m ineral oil located in the sample well o f  a nanoliter osm om eter 

(Otago O sm om eters, Dunedin, New Zealand). The sam ple was frozen by cooling to -40
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°C and then warm ed until a single ice crystal was attained. The m elting and freezing 

points o f  the ice crystal, as well as its grow th m orphology, were determ ined at 300x 

m agnification.

Therm al hysteresis results (Table C2) indicate very little to no hysteresis, and the 

ice crystal shape (round) indicates that these individuals do not possess antifreeze 

proteins; however, the m elting points o f  hem olym ph sam ples from  the thorax and 

abdom en (~ -2 to -5 °C) indicate that polyols are present (Table C2). Only one sample 

from  the head was m easured, but its low m elting point indicates that substantial 

concentration o f  polyols (approxim ately 5.3 O sm ol.) are present. A lthough only one 

sam ple from  the head was tested, it m ay be speculated that the low er supercooling point 

SCP2 is associated w ith the greater concentration o f  polyols in the head.

Raw  data for both supercooling points (1 and 2) and W Cs are provided for 

convenience in A ppendix 2.
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D. Parasitic W asp. A n unknow n parasitic wasp (A scension # U A M 100023847)

A ccording to Dr. D. Sikes (U A F/IA B ), parasitic wasp species num ber in the

thousands and are undergoing a m ajor taxonom ic re-evaluation; consequently, no one has

been w illing to identify to species. Our best attem pt at having it identified was by photos

sent to Dr. J. F. Triana, w ho stated in an email to Sikes on 8 A pril 2009:

. . . belongs to the subfam ily Ichneum oninae. [. . .] A ndy B ennett (a CNC 
specialist on Ichneum onidae) and I ju st looked at your photos closely and 
we think it CO U LD  be the genus Ichneum on-w hich have alm ost 700 
described species, over 150 w ithin the N earctic . . . We cannot be sure o f  
the genus though . . . Andy suggested that you should contact David 
W ahl at the AEI in G ainesville. Fie is the best expert on that group at 
present and w ould be able to provide you with a m ore accurate and 
com plete ID.

The inclusion o f  this quotation is used to illustrate the fundam ental level at which m uch 

o f  the insect overw intering work begins (at least in Alaska) and the im portance o f 

taxonom y. Even among professionals, the identity o f  insects can be problem atic, and the 

parasitic w asp serves as an exam ple (in another instance, initial work was begun on 

centipedes, which, it turns out, could only be identified by a taxonom ist from  Italy; 

furtherm ore, he noted that the sam ple contained three species).

Forty-one individual parasitic wasps were collected in early O ctober 2009 at 12 

m ile Cache Creek (64° 54 ’ N) outside o f  Fairbanks, Alaska. All came from  one 

horizontal log that was about one m eter o ff  the ground. The wasps appeared to be in a



loosely form ed cell. Since parasitic wasps have been known to be pathogenic (as noted 

by Dr. J. A vise during an IAB sem inar entitled: Clonality: Genetics, Ecology and 

Evolution o f  Sexual A bstinence on 7 M ay 2009), this single collection o f  wasps from  one 

tree could potentially  be clones and, therefore, m ay not be independent and constitute an 

N =1, rather than 40 (one individual was crushed in the container). D espite this caution, 

overw intering status, m ean supercooling points and w ater content, and therm al hysteresis 

analysis was conducted under the assum ption o f  independence. These individuals also 

displayed a very narrow  “wasp w aisted” connection betw een thorax and abdom en and, 

therefore, a candidate for dual supercooling points. A t the sam e tim e that supercooling 

testing was conducted, survival testing was also done to see if  individuals were freeze 

tolerant (see m ethod above). Finally, I also tested for therm al hysteresis activity with the 

nanoliter osm om enter (see m ethod above).

Once collected, individuals were stored at the UA F/IA B insect enclosure on the 

ground. W ith only 40 individuals, testing was conducted twice. On 16 February and on 

27 April 2009, supercooling tests were conducted, resulting in only one freezing event, 

despite the bath being taken down to -70 °C. Supercooling points and w ater contents are 

shown in Table D 1. Based on the survival data, the w asp is freeze tolerant, having an 

average supercooling point o f  -9 °C (com bined average, Table D l). A lthough data are 

few, it appears that over the w inter, W C increases, SCPs decrease, and the proportion that 

survive after freezes decreases. The prediction o f  dual supercooling events was not 

confirmed.
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Therm al hysteresis values as well as qualitative assessm ent o f  ice crystal shape 

are shown in Table D2. The value o f  0.2 and greater in therm al hysteresis is consistent 

with the presence o f  antifreeze proteins in freeze-tolerant insects. In addition, crystal 

shape associated w ith these values w ould also indicate antifreeze proteins. This m ay be 

the first case o f  antifreeze proteins in hym enoptera.



145

Figures (A ppendix 2)

E03
CO
+1̂
c
0 303

CD
0 3
3

in
CD

3

SI
CD

oo3
CD3
IfCQ

Q.

3
0 3in
in

CD ID CO CO CD CD CD

Date

Figure A . l . Above- and below - snow tem peratures (blue and grey lines, respectively) 
near the Sagavanirktok “ Sag” River site 2004-2006. Gold squares are w ater content and 
black diam onds are supercooling points for H ypnoidus bicolor.
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Figure A.2. Below -snow  tem peratures (blue line) from  the Toolik enclosure site 2006
2007 for H ypnoidus bicolor. Gold squares are w ater content and black diam onds are 
supercooling points (SCPs).
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Figure A .3. H ypnoidus bicolor  dry (black squares) vs. w et (gold diam onds) m ean (± 
sem) supercooling points. Note that on several occasions wet SCPs are low er than dry 
SCPs.
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blue diam onds. D ifferent letters above dates indicate significant differences (P  < 0.05) 
w ith the Tukey-K ram er adjustm ent for m ultiple com parisons.
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Figure A .5. The range o f  Cam ponotus herculeanus  supercooling points (°C) (SCP1 = 
blue diam onds, SCP2 = pink squares) and w ater contents (gold triangles) by testing date.

Tables (A ppendix 2)

Table A .I . M ean (±sem ) supercooling points (°C) for the two supercooling events, SCP1 
and SCP2, and w ater content (percent) for Cam ponotus herculeanus.

mean mean mean %
Date SCP1 sem SCP2 sem WC sem

09/26/08 -7.3a 0.5 -12.1a 1.2 54.9a 1.4

10/08/08 -9.8b 0.2 -31.1ab 1.2 NA NA

10/09/08 -10.0b 0.2 -9.8* 0.2 NA NA

10/30/08 -11.4b 1.1 -22.5a 1.7 59.1b 0.9

02/12/09 -9.6a 0.7 -24.4ab 4.7 53.7a 0.9

04/25/09 -9.1a 0.5 -22.5a 1.3 62.1b 0.9

Superscript letters indicate significant difference in means (P < 0.05) 
within category using Tukey-Kram er adjustment for multiple comparisons.



150

Table A .2. Therm al hysteresis (th) analysis calculated from m elting points (mp) and 
freezing points (fp) from  the hem olym ph o f  Cam ponotus herculeanus  queens on 8 
O ctober 2008. All ice crystals were form ed in the nanoliter osm om eter and appeared 
round.

mp fp th body part
-2.2 -2.24 0.04 ab
-5.08 -5.18 0.1 th
-4.63 -4.71 0.08 th
-2.72 -2.77 0.05 th
-4.66 -4.79 0.13 th
-2.77 -2.83 0.06 th
-2.79 -2.84 0.05 th
-4.24 -4.37 0.13 th
-9.96 -10.15 0.19 h

Abbreviations: ab = abdomen, th = thorax, and h = head

Table A .3. M ean supercooling points (SCP °C) and w ater contents (mg • mg"1 dry mass) 
are shown for two testing dates for an unidentified species o f  parasitic wasp.

D a te

M e a n

S C P 1 s e m

M e a n

W C 2 s e m S u rv iv a l

0 2 /1 5 / 0 9 - 9 .9 a 0 .3 4 l . P 1 0 .0 3 8/8

0 4 /2 7 / 0 9 - 8 .1 b 0 .1 8 l . 5 b 0 .0 3 8 /1 4

S u p e r s c r ip t  le t te r s  in d i c a te  s ig n i f i c a n t  d i f f e r e n c e  in m e a n s  ( P  < 0 .0 5 )  w i th in  c a te g o r y .

1 S C P :  T - te s t ,  e q u a l  v a r i a n c e ,  t =  2 .1 8 ,  d f = 2 8 ,  P  < 0 .03

2 W C :  W i l c o x o n  S =  3 7 .5 ,  P  = 0 .001
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Table A .4. Therm al hysteresis (th) analysis on parasitic wasp. Therm al hysteresis was 
calculated from m elting points (mp) and freezing points (fp) from  the hem olym ph o f 
wasps bled on 15 February 2009. In addition, ice crystal character is described as round 
(characteristic o f  little to no antifreeze protein), slight hexagonal shape (characteristic o f 
the presence o f  som e sm all quantity o f  antifreeze protein), and strong hexagonal shape 
(characteristic o f  the presence o f  a larger quantity o f  antifreeze protein).

Ice Crystal
mp fp th Character

-8.44 -8.95 0.51 hexagonal, strong

-7.32 -7.49 0.17 round

-8.48 -8.72 0.24 hexagonal, strong

-6.23 -6.28 0.05 round

-6.13 -6.31 0.18 round

-5.37 -5.46 0.09 round

-7.01 -7.22 0.21 hexagonal, slight

-7.83 -7.98 0.15 hexagonal, slight
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A ppendix 3. Table o f  raw  data collected for Cam ponotus herculeanus.

Date
scpl
(°C)

scp2
(°C)

Fresh
M ass
(mg)

Dry
M ass
(mg)

Percent
W ater

W ater 
Content 

(mg • m g ' 
D ry M ass)

Survive 
( l= y e s ,  
2 = no,

= NA )
09/26/08 -5.7 -9.8 42.20 17.8 57.9 1.4

-7.0 -21.0 70.70 34.9 50.7 1.0
-9.7 -11.4 40.80 17.8 56.4 1.3
-6.9 -8.4 58.30 26.0 55.4 1.2

-13.6 28.60 11.1 61.2 1.6
-7.4 -19.8 72.70 38.2 47.5 0.9
-6.3 -9.1 43.10 17.1 60.3 1.5
-7.9 -19.8 78.80 37.8 52.0 1.1
-5.7 -7.9 67.40 32.2 52.3 1.1
-6.5 -11.4 54.60 24.5 55.1 1.2

29.90 . 1
-5.9 -11.1 74.80 . 0
-7.1 -13.6 62.40 . 0

69.80 . 1
73.50 . 1

-7.8 -14.0 73.50 . 0
-6.9 -7.5 64.80 . 0
-6.0 -9.2 63.30 . 0

81.40 . 1
-6.0 -7.8 68.90 . 1

10/08/08 -9.4 -34.1 16.07 6.8 57.8 1.4
-9.9 -27.3 4.91 1.7 66.4 2.0

-10.5 -33.5 18.76 8.2 56.5 1.3
-9.6 -33.3 5.35 2.1 60.2 1.5

-10.3 -33.1 15.21 6.7 55.8 1.3
-9.5 -30.0 9.69 4.1 57.7 1.4
-9.2 -26.0 6.15 2.4 61.6 1.6

-11.0 -30.2 13.08 5.7 56.8 1.3
-10.6 -35.4 56.95 22.1 61.2 1.6
-10.2 -30.9 62.86 29.1 53.7 1.2
-9.5 -36.9 111.24 48.8 56.2 1.3
-8.8 -29.9 11.58 5.1 56.0 1.3
-9.3 -30.1 10.86 4.9 55.2 1.2

-11.0 -37.6 74.24 34.3 53.8 1.2
-9.5 -30.0 78.34 37.6 52.0 1.1
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-9.2 -18.6 6.90 2.7 60.9 1.6
10/09/08 -9.0 63.97 . 1

-8.8 39.40 . 1
-11.1 22.50 . 1
-8.5 91.02 . 1
-9.3 5.92 . 1
-8.3 81.27 . *

-10.3 13.32 . 1
-8.7 10.62 . 1
-9.1 5.32 . 1

-10.4 9.24 . 1
-10.9 15.33 . 1
-11.1 23.99 . 1
-10.5 11.53 . 1
-11.2 10.51 . 1
-9.7 9.92 . 1

-10.4 15.94 . 1
10/30/08 -9.0 -26.8 65.80 30.0 54.5 1.2

-25.9 -25.5 39.43 17.5 55.7 1.3
-12.6 -28.4 23.03 9.2 60.0 1.5
-8.7 -10.1 90.99 42.3 53.6 1.2

-10.1 -10.1 6.47 2.3 65.1 1.9
-8.4 -9.0 76.52 35.8 53.3 1.1

-10.4 -28.6 13.18 5.5 58.1 1.4
-10.1 -26.8 11.36 4.3 62.2 1.6
-9.8 -20.0 5.55 2.0 63.8 1.8

-10.8 -26.1 9.62 3.5 64.0 1.8
-10.9 -27.1 16.16 6.3 61.3 1.6
-11.9 -23.8 24.81 9.4 62.3 1.7
-10.8 -27.0 12.18 5.2 57.3 1.3
-10.7 -27.5 10.18 4.4 57.3 1.3

-22.0 10.11 4.2 58.1 1.4
-10.3 -21.4 15.84 6.6 58.5 1.4

02/12/09 -12.2 52.88 23.7 55.2 1.2
-11.6 -30.0 16.30 7.6 53.6 1.2
-10.3 -37.5 11.69 5.5 53.0 1.1
-6.6 -7.2 55.76 26.1 53.3 1.1
-7.7 57.60 27.8 51.8 1.1
-7.7 -15.8 68.63 35.1 48.9 1.0

-10.3 -34.1 17.11 7.4 56.9 1.3
-10.6 -21.9 10.54 4.6 56.8 1.3

04/25/09 -7.6 -24.9 7.26 2.5 66.0 1.9
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-7.7 -12.4 13.07 4.5 65.8 1.9
-18.3 12.22 4.7 61.8 1.6

-10.5 -21.2 12.66 4.7 62.8 1.7
-8.9 -28.4 6.11 2.3 63.0 1.7
-8.8 -23.7 11.43 4.2 63.0 1.7

-29.4 3.69 1.4 61.0 1.6
-10.9 -22.6 16.61 6.1 63.2 1.7
-7.2 -25.1 3.93 1.5 62.3 1.7

-10.7 -22.0 28.71 10.9 62.1 1.6
-22.8 64.84 30.2 53.4 1.1

-10.0 -19.3 10.98 4.3 61.2 1.6


