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Abstract

Turbulence and turbulent transport are ubiquitous in nature and are of fundamen

tal importance in everything from the spread of pollution to confinement in fusion 

plasmas. In order to study this, tubulence models need to be as realistic as possible 

and one must also be able to evolve the turbulence and the profiles of the quanti

ties of interest on transport (long) time scales. Improving turbulence simulations 

by the introduction of new techniques forms the basis of this research.

One part of this work involved improving the performance of a ID  transport 

model by the addition of noise.

On a more fundamental level, studying long time dynamics for turbulence sim

ulations is very difficult even with the fastest computers available now or in the 

near future. To help overcome this difficulty, a new way of simulating turbulence 

has been presented, namely parallelizing in time. Time parallelization of a fully 

developed turbulent system is a new application. Parallelizing the space domain 

to computationally solve partial differential equations has been extensively used 

and is one of the most common forms of parallelization. In contrast, the Parareal 

Algorithm parallelizes the time domain and has been found to significantly reduce 

the computational wall time in many simpler systems. Despite its success in other 

less complex problems, it has not yet been successfully applied to a turbulent sys

tem (to the best of our knowledge). If efficiently applied, this algorithm will allow 

study of the turbulent transport dynamics on transport time scales - something 

that has heretofore been very difficult.

In this work, the results of applying the Parareal Algorithm to simulations of 

drift wave turbulence in slab geometry in which the relative dominance of the 

polarization and E x B nonlinearities are tuned artificially, are presented. These 

turbulent systems are in many ways similar to neutral fluid turbulence models, so 

success of the Parareal scheme in them expands the prospect of a broader range of 

application to many other turbulent problems.

This thesis also presents the results of a modification to the algorithm. A model 

to study and predict the parameters governing the convergence of the scheme is 

also explored.
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Chapter 1 

Introduction

1.1 Turbulence and turbulent transport

The richness of complexities associated with turbulence gives rise to a lot of in

triguing physics, the pursuit of which can be as demanding as exciting. The phe

nomenon of turbulence is ubiquitous in fluids - be it in the ocean or the atmosphere 

or the hot core of stars.

A gradient in the temperature or the density in a fluid may be slowly relaxed 

by classical diffusion. It is predominantly a collisional process with the mean free 

path determined by the average distance between two successive collisions. All 

models of classical diffusion are based on the empirical formulation by Fick [1]:

§rDS <*■«
where n is the density as a function of space (x) and time (f). D is the diffusion co

efficient. Classical diffusion may be described as a random walk process. In cases 

of high collisional frequency, the mean free path is relatively very small (10-6m in 

air at sea level), so transport occurs at a very slow rate. Turbulence, on the other 

hand, has a faster rate of relaxing gradients, characterized by a much larger step 

size or mean free path, compared to classical diffusion.

It is very difficult to precisely define turbulence, although some characteristics 

generally prevail [2], [3]. A turbulent system has many degrees of freedom. Its 

high dimensionally chaotic nature results in a very high sensitivity to initial condi

tions. Thus, although it is a deterministic system, long time prediction is strongly 

limited [2]. The Lyapunov exponent, which is a measure of the rate of separation of 

lagrangian trajectories, is positive for a turbulent system. Turbulence is a nonlin

ear phenomenon, characterized by a nonlinear parameter, such as the Reynold's 

number, Rayleigh number, Turbulent Prandtl number, Grashof number, Nusselt 

number or the inverse Richardson number. A flow becomes turbulent when these 

parameters exceed certain critical values [2]. One distinctive feature of turbulence 

is the presence of vortices or eddies of varying sizes. The dynamics of a turbulent 

fluid is governed by the nonlinearly coupled interactions of these eddies across 

a huge range of spatial scales. Larger eddies may disintegrate into smaller ones,
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while eddies of small scale sizes may coalesce to form larger ones [2]. A snapshot of 

the vorticity field of a turbulence simulation (Hasegawa-Mima model, introduced 

briefly in Section 1.2 and discussed in Chapter 4) is illustrated in Fig. 1.1. The spec

trum of colors imply directions of the vortices, which highlights the randomness 

of the magnitude and orientation of the spinning of these structures.

It is the transport of particles across these different eddies that constitutes tur

bulent transport. In analogy with classical diffusion, the average eddy size quanti

fies the step size or mean free path for such a system, which may typically be of 

the order of centimeters, meters, or even kilometers [4]. Transport across eddies 

in a turbulent system is illustrated in Fig. 1.2. It is the dominance of nonlinear 

couplings over linear dynamics that leads to the transition of a laminar flow to a 

turbulent one. A single model can thus describe both a laminar as well as a turbu

lent system, depending on the strength of the linear or nonlinear terms.

A typical paradigm for describing turbulence is the Navier-Stokes equation, 

given by:

^  + v - V v  = — —  + juV 2v  +  F  (1 .2 )
at p

where v is the flow velocity, p is the fluid density, p is the pressure, /j is the kine

matic viscosity and F is an external force. The second term on the left hand side 

of the equation is a nonlinear convection term that is responsible for turbulent fea

tures in the system. Other models to describe turbulence exist, which are some 

variations of Eq. (1.2), that often include additional terms, or modifications of the 

existing ones, to relate to the physics of particular systems. Two such variations 

are discussed later in this chapter and in subsequent chapters as well.

One area where turbulent transport becomes the governing factor behind the 

dynamics of the system, and which is also a major focus of this work, is fusion 

plasma. Confining extremely hot plasma at the core of the fusion device with 

much cooler outer walls is still a major challenge. Since nature abhors any gra

dient turbulence plays a major role in relaxing the gradients. The main challenge 

to scientists has been to control turbulent transport in fusion devices. Understand

ing plasma turbulence and turbulent transport is one of the key issues in fusion 

research.
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1.2 Why Fusion?

Fusion has been an active area of research over the last few decades, and has gained 

fundamental importance in today's society as it promises to provide a largely 

clean, relatively environmentally friendly solution to our search for an alternate 

energy source [5]. Making fusion work will be a tremendous triumph for the scien

tific community as it may not only provide a virtually unlimited source of energy, 

but will also prove our understanding of many fundamental science issues.

A typical example of a fusion reaction is combining deuterium and tritium nu

clei to get a helium nucleus and a neutron, accompanied by a tremendous release 

of energy, as demonstrated in Eq. (1.3). The combined mass of the helium and the 

neutron is less than that of the reactants, and the missing mass appears as energy 

following Einstein's famous relation E = me2, where E is the energy, m is the mass 

and c is the velocity of light [6].

iD +i T — >\He+ln + Y7.59MeV (1.3)

One of the main barriers in making fusion a viable energy source is fulfilling 

the Lawson Criterion [7], [8], which requires the triple product r\xTe to be above a 

critical value. Here, r) is the electron density, x is the confinement time, and Te is 

the plasma temperature. For a typical Deuterium - Tritium reaction, the Lawson 

criterion requires x\xTe > 1021keVsm~3. However, satisfying this condition requires 

confining the plasma at a few hundred million K at the core for a finite amount of 

time, while the walls of the device are at a much lower temperature. Needless to 

say, this generates a huge temperature gradient across the system, thus trigerring 

turbulent transport processeses, which are believed to play a major role in relaxing 

the gradients. Different techniques to confine the extremely hot plasma exist, like 

magnetic confinement, gravitational confinement (as in stars) and inertial confine

ment. Of these, the first one is discussed in this work.

Magnetic confinement is employed in devices such as tokamaks and stellara- 

tors. The charged particles in the plasma are trapped around magnetic field lines. 

Fig. 1.3 is an example of the magnetic field lines inside a torus. However, under

standing turbulent transport across these field lines is critical to the building of a 

successful fusion reactor.
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Turbulent transport in plasmas is more complex than that in neutral fluids, sim

ply due to the presence of charged fluids coupled with electromagnetic fields [9].

Classical diffusion in a magnetized plasma, if described as a random walk pro-
o2cess, has a diffusivity, D, given by D ~  where pe is the electron larmor radius 

and %e is the electron collision time. Neoclassical transport, or classical transport in 

toroidal devices, has well established theories [10], [11], [12] that are based on clas

sical diffusion, taking into account toroidal geometries. The neoclassical approach 

describes three distinct regions in the plasma, based on collisionality, namely, (a) 

the collisional or Pfirsch-Schliiter regime, (b) the banana regime which is relatively 

collisionless and (c) the plateau regime, which is intermediate between the other 

two regimes [13].

However, experimental evidence suggests that the electron and ion confine

ment times in tokamaks are often up to two orders of magnitude shorter than that 

predicted by neoclassical calculations [9], [13]. A variety of approaches have been 

undertaken over the years to gain a deeper insight into anomalous transport and 

the concepts of fractional diffusion [14], [15] or self organized criticality [16] are 

examples of such attempts. A variety of instabilities have been identified as causes 

for plasma turbulence, the entire review of which is beyond the scope of the work. 

However, drift wave instabilities deserve some attention as they provide a plat

form for the work discussed in Chapters 3 and 4.

A drift wave instability can be caused by a spatial gradient in the distribution of 

particles in the plasma. [17] states "this instability mechanism can spontaneously 

convert particle thermal energy into wave energy, and the electromagnetic fields 

from the waves in turn can cause stochastic motion of the constituent plasma par

ticles." This wave driven instability is what is commonly known as drift wave 

turbulence. They are characterized by long wavelengths or low frequencies, and 

are largely responsible for transport across the magnetic field lines [13], [17].

A paradigm to capture drift wave turbulence is the Hasegawa-Mima model

[18], given by

| (1  -  p2V2 )$+ -  Pg CsV(j) x z • VV2J  = 0 (1.4)

where $ is the fluctuating potential. Vp = (psCs)L~1 represents the effective dia-
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magnetic drift velocity, where ps is the ion gyroradius, Cs is the sound speed and 

Ln is the density gradient scale length. The second term on the left hand side of the 

equation, Vojj^, represents the wave term and is responsible for the propagation 

of the waves in the y direction. The third term on the left hand side of Eq. (1.4) is 

the nonlinear term arising from the polarization nonlinearity, which may be qual

itatively described as the advection of the vorticity. This term is very similar to 

the nonlinear term in the Navier-Stokes equation for 2-D incompressible fluid (not 

plasma). This model also holds similarities with the quasi geostrophic equation 

used in geophysical models [2]. The Hasegawa-Mima model assumes adiabatic 

electrons, and predicts an inverse cascade of energy, that is, energy from small 

scales to larger ones [19].

A variation of the Hasegawa-Mima model has been derived in [20], [21], [22] 

with the addition of another nonlinearity, namely the E x B nonlinearity. This 

derivation assumes non adiabatic electrons in a dissipative trapped electron mode. 

The model is given as follows:

3 ( l - p | v iH + D ^ + '/Da$ 4L" D
d r  dy2 2 dy e1/2 Vi|i lx4■ — p£csv<|> x z • VV]_(|) = 0.

(1.5)

Once again, here, $ is the fluctuating potential. Vjj = (psQ)L^1 represents the ef

fective diamagnetic drift velocity. D = Vp/4veff, where veff is the effective collision 

frequency of ion-electron collisions. The second term, D ^ ,  represents the insta

bility drive. The fifth term on the left hand side represents the E x B nonlinearity. 

This nonlinearity is dominant at large wavelengths and predicts direct cascade of 

energy, i.e, energy transfer from large scales to smaller scales. Drift wave models 

with the polarization nonlinearity or the E x B nonlinearity or both, are used in 

Chapters 3 and 4.

While the building of the International Thermonuclear Experimental Reactor 

(ITER) (Fig. 1.4) [23], [24] is in progress, a multitude of experiments are being 

conducted around the world in numerous tokamaks and stellarators (JT-60SC [25], 

Joint European Torus GET) [26], [27], D-IIID [28], Helically Symmetric Experiment 

(HSX) [29], Large Helical Device (LHD) [30], [31], [32] and more) involving mag

netically confined hot plasmas, characteristic of fusion. (Fig. 1.4) is a cross sectional
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view of ITER, to become the largest tokamak in the world once it is built. The cross 

section of the toroidal space at the center is where the plasma is to be confined 

for fusion. All the experiments with different tokamaks and stellarators have the 

common goal of controlling turbulent transport and increasing confinement times. 

Although significant progress has been made in understanding plasma transport 

in the last few decades, a complete picture is still unavailable [3].

1.3 Numerical approach

Numerical simulations serve as an important tool to understand the underlying 

physics of all areas in modern scientific research [33], and fusion is no exception. 

Both fluid and particle codes exist for simulating turbulent transport, although 

only the former is explored in this work. As far as fluid codes are concerned a va

riety of them are used by the fusion community depending on the regime explored 

and the outcome desired. Each kind has its own strengths and weaknesses.

One dimensional codes, which typically represent a reduced physics, require 

a lot less computational wall-clock time compared to the other models. They are 

envelope models and can be run in real time with real parameters, allowing explo

ration of parts of the dynamics. Hence, having realistic dynamics is essential for 

these simulations. Both ID and 2D models allow study of how transport reacts to 

parameter regimes. 2D and 3D models may be based on primitive equations, but 

are computationally more complicated than their ID  counterpart.

A numerical study of turbulence is very intensive in terms of computational 

wall clock time. This is particularly due to the fact that turbulence involves non

linear interactions between a wide range of spatial scales, some of which cannot be 

resolved by the simulations. The most common technique is to use an "effective 

diffusivity" for scales not resolved by the model. Although this procedure may 

make the simulations feasible, they may leave out important physics by ignoring 

the dynamics of the smaller scales [20].

Improving the numerical techniques for the study of turbulence and turbulent 

transport serves as the main theme of this research. The work starts off by modi

fying an existing ID  model to obtain plausible solutions closer to observations in 

real experiments. The major concentration of this thesis is on introducing a whole
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new technique, known as the parareal algorithm, to simulations of turbulence.

The following few sub-sections serve as an introduction for the numerical tech

niques and the physical problems discussed in subsequent chapters.

1.3.1 ID envelope model

The ID model explored as part of this research in Chapter 2 is a reaction-diffusion 

model [34], [35]. Prior to this work, the model had been extensively applied to 

study transition dynamics in turbulent plasma. The model studies the evolution 

of the density fluctuation, e in the radial direction, r. The model is primarily based 

on ion temperature gradient or ITG driven instabilities at the plasma core and 

resistive ballooning mode turbulence at the plasma edge. The suppression of the 

turbulence in the model is achieved by a sheared E x B flow in the system. This 

sheared flow is produced by a gradient in the plasma pressure, which is also a 

source for driving the instabilities. Therefore, the pressure gradient serves as a 

drive for the turbulence, as well as a cause for its suppression.

The model generated plausible simulations for the Tokamak Fusion Test Re

actor [36]. The simulations showed oscillations in the density fluctuations in the 

system. Fig. 1.5 is a contour plot of the fluctuation of the density profiles, evolv

ing with time. The waves are represented by the structures observed in the region 

in space approximately between r = 80 and r = 55 (r being the radial distance and 

a being the total length). In the plot, time increases in a top-down fashion, and 

the radial distance increases from left to right. The structures curving downward 

towards the right thus indicate that the waves are moving radially outward with 

increasing time. However the waves as shown in Fig. 1.5 had a realistic presence, 

but propagated over distances that were unphysical.

In an attempt to reduce the length of propagation of these oscillations, noise 

was added to the system. The fact that noise has had interesting effects in other 

reaction-diffusion systems served as a motivation [37], [38], [39]. It has commonly 

been observed in [37], [38], [39] that the addition of noise to the numerical simu

lations helped by decorrelating the waves although noise enhanced propagation 

has been reported in given regimes. Oscillations induced by noisy perturbations 

in stocahstic systems has been observed and studied in various systems [40], [41],
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[42]. It is possible, that when the noise induced oscillation is in resonance with the 

waves in the system, noise enhanced propagation is observed. The reverse may 

occur, when the noise induced wave and the wave inherent to the system are in 

anti-phases with each other, giving rise to decorrelation. The model used in this 

work, although it deals with plasma turbulence, gave results similar to other sys

tems in terms of the behavior of noise as a decorrelation surrogate.

1.3.2 Numerical challenges in turbulence modeling

The computational approach to solving problems is becoming increasingly promis

ing, as well as challenging, with the advent of even more powerful supercom

puters. Capturing the dynamics of turbulent transport in numerical simulations 

is an example where the present computational techniques still need a dramatic 

improvement. In an attempt to capture the transport dynamics, the simulations 

would be required to resolve the smallest eddies, which would involve timescales 

that are atleast 106 —109 times smaller than the plasma confinement time! An ideal 

study of turbulence would thus require evolving the system over thousands of 

eddy decorrelation times in the presence of a self consistently evolving profile. 

The eddy decorrelation time x is defined as the average time in which an eddy dis

integrates in a turbulent fluid. It may be mathematically defined as the half width 

at half maximum (HWHM) of the power spectrum.

However, such a task is currently impossible even in the most powerful super

computers due to the extremely long wall-clock times required for these calcula

tions [43]. Simplified approaches involve allowing the turbulence to evolve over 

a few tens of decorrelation times, with the plasma profiles assumed to be frozen. 

One way to achieve the desired extent of these simulations would be to utilize 

parallel computation techniques available on supercomputers. However, even the 

state of the art fluid codes currently used by the fusion community only scale up 

to a few thousand processors, beyond which, increasing the number of processors 

does not contribute to any significant speedup. It should be mentioned here, that 

space parallelization has been the most common technique to solve the partial dif

ferential equations that characterize turbulent systems.

Since modem supercomputers have hundreds of thousands of processors and
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the current simulations (with fluid codes) with space parallelization can only use 

a few thousand of those there is room for improvement. That is where the idea of 

time parallelization introduces a whole new frontier. Combining space and time 

parallelization may allow the maximum utilization of the resources available on 

supercomputers.

1.3.3 Techniques for time parallelization and the parareal algorithm

The concept of parallelizing the time domain was proposed in 1964 [44], long be

fore extensive use of parallel processors was in vogue. This idea was further pur

sued by [45] as the multiple shooting method for boundary value problems, where 

a time interval is divided into smaller intervals, and each subinterval is solved in 

parallel with continuity of the solutions achieved by the Newton method. Since 

then, the quest for new techniques to attain temporal parallelization has contin

ued.

The parareal technique, the prime focus of this work, was first presented in 

the seminal paper by Lions et al. [46] in 2001. The algorithm was presented in 

more detail, accompanied by applications to simple problems such as molecular 

dynamics in [47] and nonlinear partial differential equations (pdes), namely the 

Black-Scholes equations in [48]. A number of publications have explored the sta

bility and convergence of the new algorithm. For example, [49] presented a study 

of the stability of the parareal technique. The stability and convergence proper

ties for time dependent equations with constant coefficients was analyzed in [50]. 

Convergence properties of the algorithm for bounded and unbounded problems 

were more recently explored in [51].

Over the last decade, the parareal algorithm has been applied to many more 

problems, ranging over a variety of physics involved. [52] illustrated an applica

tion to reservoir simulations, and the technique was tested in the laminar region 

of the Navier-Stokes equations in [53]. The study was extended to stochastic or

dinary differential equations in [54], and also to other nonlinear problems such as 

the Viscous Burgers equation and the Lorenz equations, accompanied by conver

gence analysis, in [55]. A modest success with the algorithm was reported for the 

Princeton Ocean model, where simple convection was the dominant factor [56].
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However, prior to this work, as discussed in chapter 3, this algorithm has, to 

the best of our knowledge, never been successfully applied to a system with fully 

developed turbulence. This application is an important extension, because the 

results are not only non-intuitive, but to some extent unexpected as well.

The parareal technique is unique because it parallelises an initial value prob

lem along time, despite the sequential nature of the domain. With this algorithm, 

different slices of time of a long time series are solved simultaneously on parallel 

processors, using a predictor-corrector approach. The technique employs a coarse 

solver and a fine solver. The coarse solver is called G, and the fine solver F, in this 

chapter and the rest of the thesis.

Although the algorithm is reviewed in detail in Chapter 3, two diagrams, Fig.

1.6 and Fig. 1.7 describing the technique, are presented here. In Fig. 1.6, energy 

is a function of the time dependent variable X that is updated at every parareal 

iteration, represented by k, using the parareal algorithm. The entire time series 

(along the x axis), is broken into pieces, and each piece is separately solved on a 

different processor, represented by P0, PI, P2, ... and so on. The value of energy 

at the initial time, tO, is given. There are two solvers, F and G, than can propagate 

the solution and allow the determination of the value of energy at some later time, 

like, tl , t2, t3 , ... and so on. Of these, F is said to be a fine solver, giving an accurate 

solution to the given problem. F is computationally slow, and is always used in 

parallel. G is the coarse solver, and, as its name suggests, its solutions lack in 

accuracy. However, G is much faster computationally, and is employed as a serial 

procedure.

The black line (denoted as "Actual") in Fig. 1.6 is the converged solution that is 

finally attained by the parareal algorithm. The solid red line represents a serial run 

with G, and it is the first step for the parareal scheme. This run gives each processor 

an inaccurate initial value. This step is followed by an F run (green dotted curves) 

in parallel. The initial value used by each processor is the value generated in the 

previous step. However, only processor P0 uses the correct initial value, and as F 

is an accurate propagator, P0 arrives at the correct solution in this step. This step 

is followed by another serial, but discontinuous, calculation with G (solid pink 

line). Since the solution along P0 is already the correct one, this step starts from
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PI. The initial value of the G run at subsequent processors is calculated using the 

parareal algorithm (the formula on Fig. 1.6). The G run is followed by an F run, 

and this time, too, the initial value is calculated by the same procedure as in the 

previous G run. Calculations involving the coarse and fine solvers thus alternate, 

until convergence is achieved. For a successful implementation of the algorithm, 

this convergence needs to be attained relatively fast, in as less parareal iterations 

as possible.

Fig. 1.7 is a more schematic representation of the parareal algorithm. In Fig. 1.7, 

each processor, solving the ith time chunk is represented by a block. The diagram 

gives a schematic overview of the algorithm for different parareal iterations, k, 

denoted as a superscript for the variable X. The subscript, i, for X, represents the 

time or more accurately, the processor solving the ith time chunk. So, X̂  reprsents 

the value of X in the ith time, at the kth parareal iteration. Xg = yo is known. Details 

of the error calculation and convergence are given in Chapter 3.

The system where we have applied this novel technique consists of a simple 

drift wave turbulence model, extensively studied in [20], [21], [22], [57], [58]. Once 

it has been successfully applied here, it is rather straight forward to extend it to 

other turbulent systems. The model used here is a dissipative trapped electron 

mode (DTEM) turbulence model in a doubly periodic slab geometry (x-y) with the 

E x B nonlinearity or the polarization nonlinearity or a combination of both being 

present. The model has been introduced in Section 1.2, and more details about this 

model are available in Chapters 3 and 4.

The application of the parareal algorithm to a turbulent system has proven to 

be extremely difficult due to the exponential divergence of Lagrangian trajecto

ries and extreme sensitivity to initial conditions (chaos). However, although non

trivial, the work described in Chapter 3 and 4 adapted it successfully for simulat

ing typical turbulences in plasmas, proving that a significant computational gain 

(close to an order of magnitude) can be achieved in a turbulent system using this 

algorithm.

*
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1.4 An overview of the thesis

The rest of this thesis consists of Chapters 2, 3 ,4  and 5. Of these, Chapters 2 ,3  and 

4 are either prepared for submission or have been submitted to different journals. 

Chapter 2 describes the effects of adding noise to the simulation of a ID  transport 

model, briefly described in this chapter in Section 1.3.1. The model used for the ID 

simulation is described in detail in Sec. 2.2. The technique and results are given in 

Sections 2.3 and 2.4.

Chapter 3 is about the first application of the parareal technique to fully devel

oped turbulence. A brief description of the parareal algorithm has been given in 

Section 1.3.3. More details of the algorithm and the results constitute Chapter 3. 

Chapter 4 gives two additional examples of the application of the parareal tech

nique to fully developed turbulent systems. Chapter 4 further explores the char

acteristics of convergence described in Chapter 3. It also gives an account of the 

various coarse solvers that have been explored for the application of the parareal 

algorithm to turbulence. Chapter 5 contains the concluding remarks about the en

tire work, consisting of a summary and a description of the scope for future work.

1.5 Statement of work

Chapter 2 of this thesis is a result of numerous discussions with my thesis advisor 

David E Newman. The work had been started by him and John Broussard before 

I joined in. So, some of the figures (namely Figs. 2.1, 2.4, 2.5 and 2.6) in Section

2.2 where the groundwork for the research is discussed, were generated by either 

David or John. The rest of the plots in Chapter 2 were results of simulations run by 

me, with David's inputs, of course. The simulations were completed on local linux 

computers as well as the ARSC (Arctic Region Supercomputing Center, Fairbanks, 

Alaska) super computers.

Chapter 2 is prepared for submission in the Physics of Plasmas. Along with 

my co-authors, I have presented the work, at its various stages, at the following 

conferences:

(i) Dynamics of Complex Systems Meeting, July 5 - July 7,2006; Fairbanks, Alaska.

(ii) APS - 48^ Annual Meeting of the Division of Plasma Physics, October 30 - 

November 3, 2006; Philadelphia, Pennsylvania.
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(iii) 12th US-EU Transport Taskforce Workshop, April 17 - April 20,2007; San Diego, 

California.

(iv) Dynamics of Complex Systems Meeting, July 25 - July 27, 2007; Fairbanks, 

Alaska.

Apart from David and me, Chapters 3 and 4 resulted from various ideas proposed 

by Rawl Sanchez. The model introduced in Section 3.5.2 and later discussed in 

Chapter 4 was Raul's idea. The various techniques adapted for the simulations 

described in these chapters were discussed between all of us, and implemented by 

me in the code. The simulations for these chapters were run by me on the ARSC 

super computers.

Chapter 3 has already been submitted to the Journal of Computational Physics 

[59]. Chapter 4 is prepared for submission in the Physics of Plasmas. The work dis

cussed in these two chapters have also been presented by me and my co-authors 

at the following conferences:

(i) Dynamics of Complex Systems Meeting, August 6 - August 8, 2008; Fairbanks, 

Alaska.

(ii) APS - 50th Annual Meeting of the Division of Plasma Physics, November 17 - 

November 21, 2008; Dallas, Texas.

(iii) Joint EU-US Transport Taskforce Workshop, April 28 - May 1,2009; San Diego, 

California.

(iv) APS - 51sf Annual Meeting of the Division of Plasma Physics, November 2 - 

November 6,2009; Atlanta, Georgia.

(v) Dynamics of Complex Systems Meeting, March 8 - March 11, 2010; Fairbanks, 

Alaska.

This work is to be presented at the following forthcoming conferences:

(i) US Transport Taskforce Workshop, April 13 - April 16, 2010; Annapolis, Mary

land.

(ii) International Sherwood Fusion Theory Conference, April 19 - April 21; Seattle, 

Washington.

(iii) EPS - 37th Conference on Plasma Physics, June 21 - June 25, 2010; Dublin, Ire

land.

In addition, I have also presented this research at the following seminars:
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(i) UAF/GI Physics Journal Club, October 9, 2009; Fairbanks, Alaska.

(ii) Oak Ridge National Laboratory, December 10, 2010; Oak Ridge, Tennessee.

The first draft for all Chapters 1, 2, 3, 4 and 5 were written by me. However, with 

innumerable inputs and suggestions from not just David and Raul, but from the 

rest of my committee as well, particularly Renate Wackerbauer, they now look very 

different from their original versions!
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Figure 1.1. Numerical simulation of the vorticity field of a turbulent fluid displays 
eddies of different scale sizes.
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Figure 1.2. Transport across eddies in a turbulent system leads to transport coeffi
cients much larger than classical diffusion.

Figure 1.3. A diagram of the magnetic field lines inside a device such as the toka- 
mak.
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Figure 1.4. A diagram of the interior of ITER, an international project, currently 
under construction in France. Ref : http : //fusion.gat.com.

Figure 1.5. Numerical simulation of the ID  reaction-diffusion model shows the 
presence of waves that travel unphysical distances.
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Figure 1.6. G and F are the coarse and fine solvers, respectively. Energy, along the 
y-axis, is a time dependent function for the system.
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 1

Figure 1.7. Each block represents a single processor and k is the parareal iteration. 
A.k is the variable at the i time step, for the kth iteration.
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Chapter 2

The effect of noise as a decorrelation surrogate in a reaction-diffusion equation

like transport m odel1

Abstract

Simple dynamical models of transport have been able to capture much of the dy

namics of the transport barriers found in many devices. However, these models, 

which have much in common with the classic reaction-diffusion equations, have 

wave like structures that can propagate in certain regimes near transition points. 

This extended propagation, while being realistic in a reaction diffusion model, is 

probably limited in a turbulent plasma due to the turbulent decorrelation. In order 

to investigate methods for correcting the extended propagation, noise is added to 

the system to simulate the intrinsic decorrelations. The wave propagation charac

teristics are studied as a function of the noise amplitude and compared to similar 

studies in reaction diffusion systems in which propagation can actually increase as 

well as decrease in the presence of noise.

2.1 Introduction

The successful confinement of energy and particles in fusion plasmas has remained 

an area of active research for decades. Internal transport barriers (ITB) suggest the 

possibility of a partial solution to confinement issues, but are also not devoid of 

issues that need to be resolved. The presence of internal transport barriers has 

long been verified in experiments [1], [2], [3]. However, numerical studies of 

tokamak plasmas can also help in understanding the underlying physics, although 

modeling the actual dynamics of such plasmas can be highly challenging. A full 3

D turbulence model, that encompasses the entire physics on transport timescales, 

and aims at describing all the phenomena associated with tokamak plasmas, can 

be computationally exhaustive. Therefore, the comparatively simpler approach of 

studying the dynamics by using a one dimensional transport model is often used. 

Such a model is computationally much less intensive, but can still give realistic

: D. Samaddar, D.E. Newman and J. Broussard. 2010. The effect of noise as a decorrelation 

surrogate in a reaction-diffusion equation like transport model. Prepared for submission in Physics 

of Plasmas.
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dynamics for the system.

A transport model based on nonlinear coupling between the turbulent fluctua

tions and the radial electric field, giving realistic transition dynamics for tokamak 

plasmas, has been developed and used in [4], [5]. This is an envelope model, with 

averaging over the flux surface leading to a one dimensional (radial) system. In 

this model, the turbulent fluctuations evolve with time. The model well describes 

the transport properties observed in the Tokamak Fusion Test Reactor (TFTR) [6]. 

Along with other transition dynamics, the model exhibits oscillations in the fluc

tuations, which are found to propagate through the system. As has already been 

described in [5], these waves have a physical and not numerical origin, and may be 

treated as bursts in the fluctuation level. However, although the waves are phys

ically realistic, they appear to propagate unphysically far. It is proposed that the 

cause of this enhanced propagation is the lack of realistic turbulent decorrelation 

in an envelope equation. Therefore, the addition of noise can act as a surrogate to 

decorrelate the waves.

Noise added to other systems, including those based on reaction diffusion equa

tions, have been found to have interesting consequences with respect to wave 

propagation [7], [8], [9]. In these systems, an optimal value of noise has been 

found, when an enhanced propagation of the waves is observed, whereas, for 

other values, noise leads to decorrelation. The latter type of behavior has par

ticularly acted as a motivation for adding noise to our model. In this chapter, we 

explore the question whether noise can act as a decorrelation surrogate in an enve

lope model, thus leading to more realistic results with respect to experiments.

In the next section, we briefly describe the model. The effect of noise on the 

propagation distance of the waves is discussed in Section 2.3. Section 2.4 describes 

our methods of evaluating the correlation of the waves, followed by a discussion 

of the results obtained. Section 3.5 gives a summary of the effectiveness of noise in 

decorrelating the waves in our system.

2.2 The model

The basic heuristics of the model, as proposed and studied in [4], [5], is given in 

Fig. 2.1. In this model,the turbulent fluctuations depend on the square of the gradi
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ent of the radial electric field. In addition to that, the turbulent fluctuations evolve 

with time. Moreover, the instability growth rate, y, which depends on the pres

sure gradient, has a radially dependent profile. The fluctuations lead to anomalous 

transport, helping to set a pressure gradient across the plasma. The external energy 

source also affects the pressure gradient. The radial electric field, in this model, is 

a function of the pressure gradient. Momentum transported into the plasma by an 

external source, also affects the radial electric field. The part of the loop in Fig. 2.1, 

concerning the Reynolds Stress, is primarily related to the poloidal flow, which is 

not being considered in this envelope model, at present. A system of time depen

dent equations of the density (n), ion temperature (T,), electron temperature (Te), 

and e, which is the local fluctuation intensity, is used.

dn _ „ 1 d r _  dn , .
^  = Smi + Sgp + -^ [rD n^ : ] (2.1)

3dnTj 1 3 dTi 5 ^  _ 3 n  1 dndnT( ,
2~dt~ = r^ r[r{Xin^  + 2 DnTif r )] ~ Dnn fr ~ fr ~  + Q m i + Qei{Te ~ Ti) (2'2)

l ^  =  7 | : [ r f e ” ^ 4 D ”T' ¥ )1 + D “ ^ ^ r + Q ' ™ + Q c,‘ " + & ( r ' “ I 'i) <2'3)

de r rr d ,q  Ef.-o. 1 d r _  de, ..

Er is the radial electric field given by

„ _ _ Be r dTj Ti dn
Er = — ̂ e + <̂|>7r + a [ i r - + — )yBo dr n dr

In this model, the transport is based on the ion temperature gradient (ITG) 

driven turbulence at the core. The variable Qie = —Qe, = 3^ n v e is the energy ex

change term between electrons and ions, and the other source terms are Qnbi, 

which is the heating due to the neutral beam injection, and Q0hm is the Ohmic 

heating. The source terms corresponding to the density are Sgp, which is the edge 

source term resulting from gas being pumped in from the edge, and which 

corresponds to the neutral beam injection. %i and Xe are the thermal conductivities 

for the electrons and the ions, respectively. The diffusivities are taken as constants 

in time and space, in this model, with Dn being the sum of the neoclassical and 

anomalous diffusivities, and De being the diffusivity for anomalous transport.
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Eq. (2.4) shows that the fluctuations e depend on the square of the gradient of 

the radial electric field, and e also evolves with time, t. y in Eq. (2.4) is the growth 

rate of the fluctuations. cq is given by a function of the plasma parameters and the 

mode width, as given in [4]. ot2 is a parameter which is a function of the radial 

correlation length, discussed in more detail in [4].

As is evident from the last term in Eq. (2.5), the radial electric field, Er depends 

on the gradient of the pressure, P, which is a function of the temperature, T, and the 

density, n. As there are no toroidal (<(>) or poloidal ((0) components of the velocity 

in this envelope model, Ve and V<|) in Eq. (2.5) are set equal to zero. The coefficient, 

a, is given by a  = j^, e being the charge of an electron.

In this work we have added white noise (£) at random locations to y in Eq. 

(2.4). So, y ^  y+ 4 with the addition of noise. As is evident from Fig. 2.1, the 

fluctuations, pressure gradient, radial electric field are all interdependent. This 

justifies our adding noise to just one term, to study the effects.

The radial distance, a, was divided uniformly into 100 points, also referred 

to as sites, in order to achieve spatial discretization, r is the radial separation of 

each site from the center or r = 0. At each time step, a given number of randomly 

selected sites were perturbed by random noise of a predetermined range. Since 

the sites that were perturbed were also picked randomly, it resulted in the fact that 

the same site was not perturbed for the entire length of the total simulated time. 

This method gave us two different ways of varying the noise. One way was to 

vary p or the number of sites perturbed, keeping the amplitude or a  constant. The 

amplitude or a  is the maximum fractional pertubation of . The second way was 

to vary the amplitude of noise, for a fixed number of sites. Hence, the effective 

noise in the system is a function of both the number of perturbed sites, and the 

amplitude of noise. This method gave us the opportunity to explore the parameter 

space.

2.3 Propagation distance

As stated above the noise added to our system has been quantified in two different 

ways. One way was to vary the number of sites perturbed, and the other was 

to vary the amplitude of the noise. Both variations appear to lead to interesting
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consequences. Figs. 2.2 and 2.3 show the propagation of the oscillations with time, 

in presence of different amplitudes of noise added to a fixed number (40) of sites. 

Figs 2.2 and 2.3 are contour plots of the time evolution of the fluctuation profiles, e, 

showing the waves and their propagation. The structures observed in the region in 

space approximately between r/a  = 0.08 and r/a  = 0.55 (r being the radial distance 

and a being the total length) actually represent the waves. Since the time increases 

in a top-down fashion in the plots, and the radial distance increases from left to 

right, the structures curving downward towards the right indicate that the waves 

are moving radially outward with increasing time.

As is evident from Figs. 2.2 and 2.3, a region exists around a certain radial 

location (about r/a  = 0.35), where an amplification of the waves occurs. This results 

from the fact that the v ?  and v 2P both have their maxima around that point, 

which causes a significant increase in y, the growth rate. This fact is also evident in 

the radial profile of the fluctuations, which is shown in Fig. 2.4. Fig. 2.4 is a plot 

of the fluctuation level with the radial separation. The fluctuation is very small 

at the inner edge (small radial separation), and has a maximum close to the outer 

edge (larger radial separation). However, this transition is not linear, but has a 

maximum at about r/a -  0.35 due to the variation in y, as mentioned earlier. [5] 

discusses this in greater detail.

When no noise is added to the system, waves are found to propagate to r/a = 

0.73. Oscillations in the fluctuation level can be clearly observed at r/a  = 0.60, when 

no noise is added to the system. As the noise level is increased, the propagation 

distance of the waves appears to be reduced. The oscillations in the fluctuation 

decrease as r/a  increases. In Fig. 2.5, for a case where 10% of sites are randomly 

perturbed by a noise amplitude of 20%, the oscillations die out with increasing 

radial separation. At r/a  = 0.44, the oscillations are big, but at r/a  = 0.56 the same 

oscillations are almost reduced to noise level.

As the perturbation amplitude is continued to increase, the furthest position of 

propagation or propagation length, R continues to exponentially (approximately) 

decrease, until a point is reached where increased noise has very minimal effects. 

This is evident in Fig. 2.6, although the points for very low perturbation ampli

tudes were difficult to determine because of the scatter. With systems experiencing
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most noise, the propagation distance is roughly reduced to r/a = 0.50, which is ap

proximately r/a = 0.73 in the absence of any noise. The addition of noise does not 

eliminate all oscillations in the fluctuation, but it does appear to restrict the region 

of its occurrence, perhaps consistent with real experiments.

2.4 Correlation

To obtain a quantitative estimate of the effect of noise in decorrelating the waves, 

the cross correlation function of the fluctuations at different sites is measured, with 

respect to a particular site (r/a = 0.25). The cross correlation function, C, for two 

signals g(t) and f(t), say, is defined as follows:

E / W + t )  ( 2 .6 )

L t(f2(t)g2(t)p

Fig. 2.7 shows a plot of the cross correlation functions versus x, for different ra

dial sites. The fact that the peak of the cross correlation function changes position 

with respect to x, for different cases of radial sites, actually highlights the wave

like nature of the propagation. The amplitude of the peak also decreases with 

increasing radial separation, or, as the waves propagate, which means, the waves 

are gradually decorrelated with time.

As the waves propagate, the peak in C occurs for a different lag, or x, for each 

site. Hence, C is calculated for different xs, from which the maximum (Cmax) is 

extracted, for each site. These maximum values of the correlation function are 

then plotted against the radial separations. A 'bump' or an increase in correlation 

appears in the plot at around a given value of r, resulting from the amplification of 

the waves in that region, as is evident in Fig. 2.8. This 'bump' is expected as when 

the waves are amplified around r/a  = 0.35, there is also an enhancement of the 

correlation. However, this is true only when C is measured with respect to a site 

for which r/a <  0.35. If this reference site has r/a  > 0.35, the bump is expected to 

lose prominence, as there is no significant amplification of waves at sites beyond 

the reference site. In this case, an approximately exponential decay in the cross

correlation function is expected.

At this point, it needs to be noted, that, the height and width of this bump, for 

reference site with r/a <  0.35, decreases with increasing noise, in general (Figs. 2.9
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and 2.10 ). This is due to the fact, that, if noise contributes to decorrelating the 

waves, the amplification of these waves reduces, resulting in reducing the area of 

the 'bump'. However, for low value of noise, the 'bump' becomes quite wide, and 

thus dominates the correlation. Thus, even for a reference site with r/a  > 0.35, an 

exact exponential decay of the cross-correlation function, as the radial separation 

with the reference site is increased, is not obtained.

The cross correlation function, C, is first calculated with respect to the signal 

at r/a -  0.25. So, as we move radially outward, the region of wave amplification, 

and hence, that of enhanced correlation, is included. Once C is calculated, two 

approaches are pursued to derive a measure for the correlation. If the bump that 

appears due to the enhanced correlation, is treated as a gaussian, then, the stan

dard deviation, (a), for it, may be treated as a measure of the correlation. On the 

other hand, the same plot of the maximum correlation versus radial separation, 

without the 'bump', is treated as an exponential. Now, if the area under this expo

nential fit is subtracted from the total area of the plot, the remaining area gives the 

area of the gaussian, which also serves as a measure of the correlation.

Next, C is measured with respect to r/a  = 0.40, so the 'bump' disappears from 

the radial profile of the cross correlation function. Then, if an exponential fit to 

the plot of maximum correlation vs. radial separation is made, the exponentiation 

length also gives an estimate of the correlation. It needs to be noted at this point, 

that, as already discussed, for very low noise values, when waves propagate far out 

along the radial distance, a perfect exponential decay of the maximum correlation 

with radial separation is hard to obtain. However, this method of calculating the 

correlation length also succeeds in giving an estimate about the effect of noise in 

decorrelating the waves.

2.4.1 Results

The addition of noise clearly affects our system. Our results suggest that in certain 

cases, noise can lead to enhanced correlation of the waves, and in other instances, 

the waves are decorrelated. First, we consider the situation where the reference 

site for the calculation of the cross correlation function is r/a  = 0.25. In that case, 

when a given number of sites are perturbed with gradually increasing amplitude
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of noise, the correlation exhibits an interesting trend. It initially increases with 

noise amplitude, but then starts falling off, indicating a noise induced decorrela

tion of the waves. This is evident in Fig. 2.11, where the area of the gaussian is 

taken as a measure of correlation. Using a  as a measure also gives a very similar 

result.

If the amplitude, a  is fixed at about 0.30%, and the number of sites, or (pthresh 

or p), is varied, the correlation also decreases with increasing noise, as shown in 

Fig. 2.12, where the area of the gaussian is used to measure the correlation. The 

same plot, using a , gives a similar result.

In order to explore in greater detail, the effect of noise on our system, a 3-D plot 

is used.

A three dimensional plot is made with the correlation, number of perturbed 

sites (pthresh) and noise amplitude along the three axes. In Figs. 2.13 and 2.14, the 

area of the gaussian is used to measure the correlation. In general, for a large num

ber of sites perturbed by a high amplitude of noise, the cross correlation function 

greatly reduces, indicating a strong decorrelation of the waves with noise. In this 

case, the bump in the plot for the maximum cross correlation vs. radial separation 

almost disappears. Again, for a very low number of sites, or pthresh, perturbed 

with a very small amplitude, noise is expected to have minimal effects. In that case, 

the 'bump' in the plot mentioned earlier, becomes wide, indicating the amplifica

tion of waves over a large number of sites. This leads to stronger correlation, thus 

resultig in a comparatively large value of the cross-correlation function. However, 

results become interesting, when the amplitude is slightly increased from its small 

initial value.

This is evident from Fig. 2.13 and 2.14, in which multiple regimes exist, where 

noise helps in the propagation of the waves. In case of Figs. 2.13 and 2.14, for a 

region of relatively low (but not extremely small) noise amplitude, the increase in 

amplitude first increases the cross-correlation function, then reduces it again.

The same characteristics of the correlation are observed, where the standard 

deviation, a, of the gaussian, is taken as its measure.

Next, the case with r/a = 0.40 as the reference site for the calculation of the 

cross correlation function is considered. As this reference site is at a radial distance
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greater than r/a = 0.35, the maximum value of the cross correlation function at each 

site, approximately exhibits an exponential decrease with increasing radial sepa

ration. If the exponentiation length is taken as the correlation, a three dimensional 

plot of the number of perturbed sites (pthresh), noise amplitude and the correla

tion should give a similar result as obtained in the previous case with r/a  = 0.25 as 

the reference site. This is observed in Fig. 2.15. In this case, it also becomes clearly 

evident that at low noise amplitude, there is a regime where the correlation first 

increases, then falls off again, with increasing amplitude of noise.

We tried to overlap the two parameters of noise - the amplitude and the number 

of perturbed sites- that we have separately explored. With p being the number of 

sites perturbed, a  the noise amplitude and ^  being the effective noise, the best 

relation between them that we succeeded in obtaining is

keff = (a)2 X (p), (2.7)

The variation of the correlation with noise, expressed by this relation of ampli

tude and pthresh, is shown in Fig. 2.16. It is evident that there exists some value of 

noise for which the cross correlation function increases, but for other values, there 

is decorrelation in the waves resulting in significant decrease in the value of the 

cross correlation function.

Hence, it appears that noise does not necessarily decorrelate the waves, but 

also leads to enhanced propagation, at certain regimes. This aspect of noise is also 

seen in other systems as has been discussed earlier. Systems which obey reaction 

diffusion equations tend to exhibit noise enhanced propagation for certain noise 

values, but there, too, decorrelation of the signal is observed at other noise regimes. 

However, in general, optimum noise does decorrelate the waves, thus restricting 

propagation.

2.5 Conclusion

The envelope equation used in the transport model gives realistic transition dy

namics, but the waves propagate unphysically far. Addition of a large amplitude 

of noise to a large number of sites appears to decorrelate the waves. There are 

multiple regimes in noise space where noise actually enhances propagation, but
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in general, noise reduces propagation. We have used three different measures to 

estimate the correlation - namely, the area and the standard deviation (a) of the 

gaussian for reference sites with rja  < 0.35, and the exponentiation length for ref

erence sites with r/a  > 0.35. The results based on these three methods support 

each other as expected. In all cases, the variation of the correlation with the noise 

amplitude and the number of perturbed sites is similar.

We have also tried to overlap these two parameters of noise and tried to explore 

the variation of correlation with it. This also indicates a region of noise enhanced 

propagation, while there is a decrease in the correlation for other values of noise. 

With the parameters overlapping, for very low noise values, the correlation length 

does not appear to vary significantly. With increasing noise, the correlation length 

then increases, followed by a sharp fall off.

Thus, sufficient noise may be used as a surrogate for turbulent decorrelation in 

a real turbulence model. While a region with low amplitude of noise exhibits an 

increase in the correlation, consistent with noise enhanced propagation reported 

in other reaction diffusion systems, the correlation seems to fall off for further in

crease in noise amplitude, thus suggesting a mechanism to reduce the propagation 

in the full transport model, and hence, improve their validity.

Figure 2.1. The heuristics of the ID  model.
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Figure 2.2. 40% of sites are perturbed by noise of amplitude of 0.0000001. Increased 
noise reduces the propagation length, in general.

Figure 2.3. 40% of sites are perturbed by noise of amplitude of 0.30. Increased 
noise reduces the propagation length, in general.
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Figure 2.4. A radial profile of the fluctuations shows a region of amplification of 
the waves, in the absence of any noise.

Figure 2.5. 10% of sites are randomly perturbed by 20%. The oscillations in the 
fluctuation gradually appear to die out.
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Figure 2.6. The propagation distance, or the furthest point for the observation of 
the oscillations, reduces with increasing noise amplitude, until a saturation point 
is reached.
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Figure 2.7. Cross correlation function, C, with respect to r/a  = 0.23, plotted against 
increasing x, for different radial distances. The maximum of C or Cmax reduces in 
magnitude and shifts outward with respect to x, for sites with increasing rja.



Figure 2.8. Cross-correlation function 

The maximum value of the cross-correlation function is plotted against the radial 

separation. The 'bump' is due to the amplification of the waves in that region.

Figure 2.9. The area of the bump decreases with increasing noise - as noise con
tributes to decorrelating the waves.
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Figure 2.10. Less decorrelation by small noise : The area of the bump is large for 
small noise.

Figure 2.11. The correlation tends to increase, then falls off, with increasing ampli
tude of noise, when 40% of sites are perturbed, when the area of the gaussian is 
taken as a measure of the correlation.
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Figure 2.12. As the number of perturbed sites is increased, with the perturbation 
amplitude remaining fixed at 0.30%, the correlation first decreases sharply, then 
exhibits a very slow decrease, with the area of the gaussian being a measure for 
the correlation.
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Figure 2.13. Using the area of the gaussian as a measure of the correlation, a high 
number of sites perturbed by a large noise amplitude shows reduced correlation.
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Figure 2.14. Using the area of the gaussian as a measure of the correlation, tehsemi 
log plot shows a region of low noise amplitude exists, where increasing the ampli
tude increases correlation.



Figure 2.15. When r/a  = 40 is used as the reference site for calculating the cross 
correlation function, the correlation varies similarly to the case where r/a = 0.25 is 
used as a reference site. Here, too, noise enhanced propagation is observed at a 
region of low amplitude noise.
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Figure 2.16. If the effective noise is defined as ^  = (a) 2 x (p), noise enhanced 
propagation is observed where the correlation function increases with noise.
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Chapter 3

Parallelization in time of numerical simulations of fully developed plasma 

turbulence using the parareal algorithm 1

Abstract

It is shown that numerical simulations of fully developed plasma turbulence can 

be successfully parallelized in time using the parareal algorithm. The result is far 

from trivial, and even unexpected, since the exponential divergence of Lagrangian 

trajectories as well as the extreme sensitivity to initial conditions characteristic of 

turbulence set these type of simulations apart from the much simpler systems to 

which the parareal algorithm has been applied to this day. It is also shown that the 

parallel gain obtainable with this method is very promising (close to an order of 

magnitude for the cases and implementations described), even when it scales with 

the number of processors quite differently to what is typical for spatial paralleliza

tion.

3.1 Introduction

In magnetically confined hot plasmas with interest for fusion research, such as 

those confined in a tokamak or a stellarator, the disparity in timescales between 

the microturbulence responsible for the transport processes and the plasma con

finement times is of the order of 106 —109. Thus, in order to properly capture 

the transport dynamics of these strongly turbulent plasmas, they would need to 

be simulated for thousands or even tens of thousands of turbulent decorrelation 

times. Such a task is currently well beyond the reach of even the most powerful 

supercomputers. As a result, simplified approaches are used in which the micro

turbulence is only evolved for a few tens of decorrelation times under the assump

tion that the dynamics become decorrelated after this timescale, together with the 

assumption that plasma profiles can be assumed 'frozen' during these timescales. 

These approximations enable a description via effective transport coefficients de

rived from these restricted simulations, whose validity should however be checked

1D. Samaddar, D.E. Newman and R. Sanchez. 2009. Parallelization in time of numerical simu

lations of fully developed plasma turbulence using the parareal algorithm. Submitted in Journal of 

Computational Physics.
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a posteriori, whenever possible. But even with these simplifying approximations, 

these simulations are still extremely challenging from a computational point of 

view [1]. On the one hand, because parallelization along the space domain reaches 

saturation (typically, at a few thousand CPUs in most codes, as a result of Am

dahl's law and interprocessor communication overflow), for which a further in

crease of the number of processors beyond a certain point does not contribute to 

enhanced speedup. On the other hand, higher spatial resolutions imply the use 

of smaller time steps for numerical stability reasons. This makes that reaching the 

needed simulation times takes much longer, due to the serial nature of the tempo

ral coordinate. The situation becomes even more dramatic in cases in which the 

aforementioned simplifications may not be justified, as might be the case when 

turbulence is near-marginal [2], or in the presence of strong sheared flows [3].

It thus seems self-evident that if these turbulent simulations could also be paral

lelized in time (in addition to their spatial parallelization), it would enable a more 

efficient utilization of the many processors currently available in supercomput

ers while, at the same time, allowing the running of much longer simulations in 

considerably shorter wallclock times. This would also open the path to including 

a more complete set of the physics in the simulations in the near future, maybe 

even the full transport dynamics. Various approaches have been proposed over 

the years to decompose the time direction when solving a partial differential equa

tion [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], although with varying degrees of success. Of 

these, the parareal (parallel in time) algorithm, which we explore in this paper, 

was first proposed by Lions et al. [14] and has received an increasing amount of 

attention in recent years. It has been successfully applied to a number of rela

tively simple problems, like molecular dynamics simulations [15], linear and non

linear parabolic ordinary differential equations [16,17], stochastic ordinary differ

ential equations [18], reservoir simulations [19] and even, the laminar regime of 

the Navier-Stokes equation [20]. The scheme has also been applied very recently 

to the Princeton ocean model, dominated by convection, although with a rather 

modest sucess [21].

In this paper, we report the first (and very promising) results regarding the par

allelization of the temporal direction of numerical simulations of turbulent plas
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mas using the parareal algorithm. To the best of our knowledge, the parareal tech

nique has never been applied to a fully-developed turbulent problem, although 

it has been used successfully with low-dimensional chaotic systems, such as the 

Lorenz system [22]. Turbulent systems represent a very challenging case of study, 

and there are in fact many reasons to expect failure. Indeed, the parareal algorithm 

parallelizes along time, despite the sequential nature of the time domain, using a 

predictor-corrector approach. Since the corrector step carried out at each cycle of 

the algorithm feeds on the results of the uncoupled predictor runs, it might be ex

pected that the strong sensitivity to initial conditions and exponential divergent 

growth of uncertainties characteristic of turbulence should deteriorate or even im

pede the convergence of the algorithm, in contrast to what happens in a more lam

inar regime. In this paper we show that this is not the case, and that the parareal 

method, when properly tuned, can be applied successfully to fully-developed tur

bulent simulations and yields considerable parallel speed-ups (an order of magni

tude, for the cases studied here).

In order to avoid the complexities associated with the toroidal geometries char

acteristic of fusion plasmas, we have chosen to apply the parareal method to a 

simpler dissipative trapped electron mode (DTEM) turbulence model in a doubly- 

periodic slab geometry. Some kind of drift wave turbulence is the most probable 

candidate for governing transport in these plasmas and thus, this model has been 

studied extensively [23, 24, 25, 26]. For its numerical implementation we use the 

BETA code [23], which uses a pseudo-spectral approach and advances the sys

tem in time using an implicit, preconditioned integrator. BETA routinely provides 

with fully-developed turbulent states, with large positive Lyapunov exponents. It 

thus provides an excellent platform to explore and test the merits of the parareal 

method in this context, before embarking on its implementation in any of the state- 

of-the-art codes used by the fusion community. The paper is thus organized as 

follows. Section 3.2 briefly reviews the parareal algorithm. The physics of the 

DTEM model are then described in Section 3.3. Section 3.4 introduces an analysis 

of the parallel performance to be expected from the algorithm, which will clarify 

its strong and weak points as well as guide us through its tuning. Next, Section 3.5 

comprises the numerical results obtained in this study. Finally, some conclusions
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are drawn in Section 4.6.

3.2 The parareal algorithm

In this section, we provide a review of the basic algorithm, including some modifi

cations of our own devising that are appropriate to the turbulent context and yield 

a singificant boost in its performance.

3.2.1 Review of the algorithm

The parareal algorithm is based on a predictor-corrector iterative approach. It is 

best understood by describing its application to a single ordinary differential equa

tion of the type:

^ = A (X ,t) , X(0) = Xo (3-1)

where A is an arbitrary, possibly nonlinear, function. Let's assume that we are 

interested in finding the value of X at some later time T >  0. Let's also assume 

that we can numerically advance this equation from an arbitary time t e  [0, T] to

time t + dt by means of several discretization schemes. We will formally write this

advance using;

X(t+dt) = Ftd r X(t), (3.2)

where F represents our advancing operator, acting on the appropriate space to 

which X belongs, and dependent on the discretization scheme chosen (the super

script t is used here to denote that the operator may depend explicitly on t, al

though we will drop it in what follows). Clearly, to go from the initial time to T, 

we will need to apply F as many times as required given the value of dt.

The parareal algorithm assumes that there are two different advancing opera

tors (or solvers) at our disposal, that we will denote as F and G. The distinction 

between these two solvers is that G is much faster (usually at the price of being 

coarser and more inaccurate) than F, the one we are really interested in using for 

our problem but which is computationally too expensive to be run serially between 

the initial time and T. In the parareal algorithm, G is run serially between t = 0 and 

T, whilst F is always run in parallel. Let's see how this works.

Let there be N processors, denoted by Pq̂ Pi .P i .P^, ...,Pn- i- Let the total simu

lation time, T, be divided into N smaller chunks of size AT = T/N . In what follows,
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the i index is used to represent the ith instant of time defined as f, = i ■ At for i = 0,1,2, 

N. The index k = 0,1,2. ... represents the iteration number in the parareal cycle. 

Then, represents the solution at time f(- at the k-th iteration of the parareal cycle. 

The initial value, that is already given, is then denoted by Xq.

The steps involved in the parareal scheme are as follows:

• Iteration k = 0:

Po uses G serially to calculate initial values X® for the start time of every time 

chunk, t(.

• Iteration k >  0:

Step 1: Each processor (i.e., Pj) then separately applies F to propagate the 

solution, starting with the initial values provided by G (i.e., Xj-1 ), between 

the initial (tj) and final time (fy+i) of its respective time chunk. This process is 

of course carried out in parallel. The result of this propagation is forwarded 

to the next processor in line (P/+i).

Step 2: G is now applied as a sequential (but not continuous) process, using 

the parareal prescrition to update the initial value at each time chunk:

X\tl = GAr(^ +1) + FAT(^ ) -  GAT(Af), (3.3)

Note that this part of the algorithm cannot be done in parallel, because of the 

first term on the right hand side. Note also that the second and third terms 

have already been obtained in previous steps and/or iterations.

Step 3: Check for convergence. The measure of convergence is discussed in 

the next subsection. If the solution is converged for all chunks, the cycle is 

exited. Otherwise, another iteration of the parareal cycle is done which, in 

the standard implementation, involves all chunks. This will not be the case 

in our simulations, as discussed in the next subsection.

Some remarks are useful at this point. First, in order for the parareal cycle to 

converge, certain mathematical conditions must be satisfied by G and F, which 

were made explicit in Lions et al. [14]. seminal paper and appear as specific con

ditions on the boundedness of the norm of the difference between the two solvers
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in an appropriate mathematical space [14]. Regretfully, it is very difficult (if not 

impossible) to translate these conditions into a practical prescription for any par

ticular problem. Trial and error, combined with experience, seems to be the most 

reliable guide to choose G. However, note that in practice, the parareal algorithm 

will always converge in at most N  interations, independently of how 'badly' G is 

chosen. This happens because, at the end of iteration k = 1, both Po and Pi already 

have the correct value of the solution, since F has been used in the first processor 

to propagate the exact initial condition at t = 0. For the same reason, at k -  j, all 

processors Po, • • - P, already have the correct value. And so on. However, note also 

that if N  cycles are finally needed to converge to the exact solution, we would have 

used the same (or more, including communications and time for G) wallclock time 

that if we had run the simulation serially with F. So no parallel speedup is gained, 

and we would have done N  times more computing work! Thus, parareal works 

only if convergence is achieved for a number of cycles K much smaller than N, im

plying that at each iteration more than one chunk needs to converge on average. 

Whether this is the case or not will depend on our ability to choose G for a given 

F.

3.2.2 Metric for convergence

Convergence is achieved whenever some convergence measure reduces below a 

certain prescribed tolerance. Following with our previous example, in which A,fc(t) 

represents the solution at time t in the kth iteration of the parareal algorithm, we 

define the local convergence measure as,

th parareal cycles integrated over each chunk i. It should be noted that we have 

purposely avoided using the exact serial solution that F would provide, since it 

is not useful in practice due to the fact that, in most cases of interest it will not 

be known, since the main aim of the parareal scheme is to replace calculations

(3.4)

That is, the average relative error between the solution at the k-th and the (k — 1)-

involving serial processors! The solution is then converged up to time chunk I if,

< tol, Vi < I. (3.5)
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Typically, convergence occurs in an orderly fashion, starting with the first chunk 

and propagating to later times due to the fact that errors are propagated (and en

hanced) in that direction by the parareal cycle. This fact has prompted us to modify 

the standard parareal algorithm in the following way: instead of 'correcting' the 

solution at each parareal cycle starting with the first chunk, we perform the 'correc

tion' only for those chunks corresponding to times larger than the last converged chunk 

time. In this way, one still obtains a reasonably converged solution, and avoids at 

the same time resonances that may deteriorate the solution at already converged 

chunk times as observed in some problems [12]. With this modification, the cases 

that will be discussed in Section 3.5 have been made to converge using up to four 

times less parareal cycles than with the original prescription.

3.2.3 Particulars of the application of the parareal method to fully-developed 

turbulent simulations

We now discuss some crucial issues pertaining to turbulent systems which are rel

evant to the application of the parareal algorithm to the BETA simulations. First, 

it should be noted that for any numerical simulation of a very high dimensional 

chaotic system with positive Lyapunov exponents, it is impossible to define a 

unique solution. The reason is that these systems exhibit exponential Lagrangian 

(i.e., along turbulent trajectories) divergence and as a result the final solution de

pends very sensitively on the initial values. So sensitively that, in fact, a serial run 

done with the same parameters and numerical scheme, but compiled using two 

different compilers or run on two different machines unavoidably leads to differ

ent results when the simulation time is long enough. But note that this fact does 

not make the solutions worthless because even when different, they are statistically 

identical. What we mean by that is that the fluctuations exhibit the same statistical 

and correlation properties at saturation, even if the fluctuations are not identical 

when compared point-by-point at every time. That is, if one compares the prob

ability distribution function (pdf) of the fluctuations at any point, or the temporal 

or spatial correlation functions, all these solutions will give the same results. The 

reason is ultimately the fact that the Eulerian (i.e., fixed point) fluctuations are 

bounded by the finite saturated fluctuation levels, which are themselves limited
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by the finite amount of free energy available to the system. This fact translates 

into the simulations having well-defined statistical properties. So, although the 

Lagrangian trajectories diverge due to their high sensitivity to initial conditions, 

the solutions are statistically indistinguishable. And this is ultimately what mat

ters, specially when what one cares about is the mean transport or dynamics of 

these simulations. In the case of the parareal scheme just sketched, this observa

tion is essential, because the scheme matches together solutions obtained at differ

ent chunks. If the mistmatch at those connecting times could grow exponentially 

without bound, it might prevent any convegence of the method (in fact, this is why 

it has been suggested that turbulence and parareal would be a deadly mix). But on 

the contrary, the same boundedness that exists for Eulerian fluctuations holds also 

for these mismatchs. As we will show in what follows, a solution can be found 

by the parareal method. And it is very easy to see that this parareal solution, al

though not identical to the serial one obtained starting from the same initial values, 

is statistically identical in the sense previously described.

A second important aspect regarding the parareal parallelization of turbulent 

simulation has to do with the convergence measure. As discussed in the previous 

subsection, the traditional parareal method computes the relative error between 

the solution of the problem at two successive parareal cycles. In the case of a tur

bulent simulation, the number of degrees of freedom is enormous (for instance, 

~ 6 x  105 for the BETA simulations used in this paper), which would make the 

construction of the convergence measure rather cumbersome. However, it turns 

out that this is not needed. In fact, we will show that it is enough to require con

vergence in one global quantity. In our case, the time history of the energy in the 

system, defined as:

E*(t) = l>k(f)-4>k(0, (3-6)
k

where (^(f) is the (complex) amplitude of the Fourier harmonic with wave num

ber k  (see Section 3.3 for details). Then we will show that, if the relative error 

between successive cycles of the total energy is less than a prescribed tolerance, all 

the individual modes containing enough energy to affect that tolerance value are 

also converged. This is a remarkable result, which simplifies the calculation enor

mously. It is ultimately due to the fact that in a fully-developed turbulent system,
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the relative energy fluxes between any pair of modes are set by the nonlinearities, 

which endows the system with a very strong and resilient coupling [27]. Thus, 

convergence in one quantity is only possible if all others converge simultaneously, 

so that the relations imposed by this coupling are preserved. We indeed observed 

this in our simulations, as will be shown later.

3.3 The model

The parareal algorithm is applied in what follows to numerical simulations of a 

reduced model, which is a paradigm of plasma drift waves derived in the limit of 

long wavelengths and a two-dimensional (x — y) slab geometry. This limit of the 

DTEM model has been extensively studied in the plasma physics literature [23,25]. 

It assumes that a uniform magnetic field that confines the plasma exists perpen

dicular to the slab (i.e., along z), and that all profile gradients are directed along 

the x direction. These gradients are responsible for the existence of drift waves 

that propagate along the y direction. The underlying instability is assumed to 

be the dissipative trapped electron mode (DTEM). Plasma ions are treated as a 

cold fluid, while electrons are assumed to satisfy the Boltzmann relation except for 

those trapped in the magnetic ripple, which contribute to the dynamics in a way 

that allows the drift waves to grow unstable. The model can be reduced to a single 

equation for the potential fluctuations by assuming quasi-neutrality and using the 

long-wavelegth limit to retain only the so-called E x B nonlinearity:

, x z
dy

• Vj_<|> = 0. (3.7)
dt y ys ±/Y 0y2 2 3y e1/2

Here, <j> is the fluctuating potential. Vq = ^ ^ (cT j/ eB )!"1 represents the effective 

diamagnetic drift velocity, T, being the ion temperature, e-1/2 the fraction of trapped 

electrons, B the magnetic field strength and L„ the density gradient scale length. 

D = Vp /4veff e , where veg e is the effective collision frequency of ion-electron colli

sions. The last term on the left hand side of Eq. (3.7) represents the E xB  nonlinear

ity, the second one is the instability drive and the third one is the one which causes 

the drift waves to propagate along the y direction.

The numerical solution of this model is done using the spectral code BETA [23].
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The Fourier transform of Eq.( 3.7) has the form :

D ky  x. . j  4 iL nD  x^j/ n  , / z  c  'r

- I F -  u W ^  -  -  e ^ l  + P l * ! )P»<k k ' ^  = S t “ Tk’

where <j>k are the (complex) Fourier harmonics of the potential. are sources and 

Tk are sinks in k-space that may also be added at this point for convenience. This 

set of ordinary differential equations (ODEs) are solved using a pseudo-spectral 

method to evaluate the nonlinearities. Time is advanced by the stiff solver within 

the VODPK package [28], which uses a (diagonally, right-) preconditioned, Krylov 

implicit solver based on backward differentiation formulas of variable order and 

timestep, that are tuned as the integration proceeds in order to keep the errors 

below a prescribed tolerance.

An example of a typical simulation is shown in Figs. 3.1 and 3.2. The first one 

shows a snapshot of the vorticity distribution in the system at saturation (the local 

turbulent velocity is obtained from the potential via v = Vx <|) x t ,  so that the vor

ticity is given by w = V̂ <]).]. It illustrates a salient feature of a turbulent system - 

namely, the existence of eddies at multiple scales, which nonlinearly interact with 

each other. Also, the anisotropy introduced by the explicit dependence on ky of 

the model can be noticed. Fig. 3.2 is a plot of the power spectrum that shows that 

the system is in a state of fully developed turbulence with most of the energy con

centrated at low k values. If one computes the Lyapunov exponent of the system, 

it is large and positive as expected. This is illustrated in Fig. 3.3, that shows the 

log-linear plot of the separation of two initially close trajectories along the x and y 

directions with time, the slope of which gives the Lyapunov exponent.

3.4 Expected performance of the parareal algorithm

In order to gain some insight on what could be expected from the parareal algo

rithm (and, perhaps, also allow us to design an optimal coarse solver), we carry 

out in this section a small study on the performance of the model. Two regimes 

are examined: the so-called strong and weak scaling regimes. In the strong one, the 

performance as a function of the number of processors (denoted by N) is examined 

for a problem of fixed size in time. In the weak regime, the performance as a func

tion of N  is considered as the problem is made longer, but keeping the part of the
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simulation done by a single processor constant. In perfect parallelism, one should 

find that the speed-up in the strong scaling improves as N  whilst, in the weak 

regime, one finds that the work-per-processor remains constant as N  is increased. 

Of course, in spatial parallelization these ideal scalings are only maintained up 

to a certain number of processors, above which the serial part of the calculation 

(i.e. Amdahl's law) or the inter-processor communication dominate the calcula

tion time. Due to the iterative nature of the parareal cycle, its strong and weak 

scalings are somewhat different, which sets this type of parallelization apart from 

spatial parallelization strategies. We briefly discuss them in what follows.

3.4.1 Strong scaling

We first consider the case in which the problem to be solved is fixed in size or, in 

our case, the final time T that must be reached at the end of the simulation is fixed. 

In the parareal algorithm, two propagators are used - G and F. Let the wallclock 

time to solve the problem (even if much more inaccurately) serially using G be 

TSQr(T), and to solve it serially with F, be T fr(T). We then define the parameter (3 as 

the ratio of these two times:
B _ (38) 
P T%r(T)

That is, P measures how much faster G is. Clearly, P > 1, as G is the cheap solver. 

In each cycle of the parareal algorithm, F is applied in parallel with N  processors 

for a period of the simulation AT = T/N , and G is run in serial for the whole length 

of the simulation T. Thus, the total time to solve the problem can be estimated 

(ignoring overheads) as:

Tpa = ks(N) ( r sS r(T) + (3.9)

where ks(N) is the number of iterations of the parareal cycle required to achieve 

convergence, which is an unknown function of N. Thus, the parallel speed-up fac

tor (or gain) for the parareal algorithm is given by:
-1

(3.10)
Tpa

Note that the typical strong scaling for spatial parallelization, H(N) = N, is only 

recovered when P —> °° and ks(N) = 1. But in the parareal case, ks(N) will be a
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function of N  and (3 will be finite. Success or failure of the parareal will depend on 

the value for ks(N), which will depend itself on the choice of the coarse solver G. 

But even without knowing ks(N) at this point, several things can be learnt from this 

model. First, (3 seems to roughly set the maximum number of processors for which 

the parareal method yields any net parallel gain. For N  much larger than this value, 

the serial part of the code dominates the calculation and, as predicted by Amdahl's 

law, performance deteriorates quickly (although our numerical simulations will 

show that this statement needs to be somewhat revised!). Secondly, a net parallel 

gain is obtained only for as long as ks(N) < N. In the next section we will construct 

a phenomenological model for this function based on the BETA simulations.

3.4.2 Weak scaling

We next consider the case in which the problem to be solved has a length T = N  ■ AT, 

being AT fixed. That is, the problem length increases linearly with the number of 

processors. As we said previously, in perfect parallelism one would expect that 

the wallclock time required to do the simulation is independent of N, since its 

processor would be doing exactly the same amount of work. That is,

Tn(N *AT)
Ti(AT) ’ 1 ’

where Tn(t) denotes the wallclock time needed to solve a problem of length t using 

n processors. In the parareal case, the time needed to solve a problem of size N • AT 

using N  processors is:

TpA = kw(N) (N ■ 7 f r(AT) + I f 1 (AT)) , (3.12)

from which the work for processor becomes:

Tw (  N\
W M (N ,S7 f W ) = M N ) ( 1 + f )  <3'13)

Note that the function kw(N) is different from ks(N), since now T is not kept fixed. 

As before, the classical weak scaling for the spatial case, Wpa = 1, is only recovered 

if (3 —► oo and if kw(N) = 1. This will certainly not be the case. Again, it seems 

clear that (3 roughly sets the maximum number of processors for which a favorable 

scaling for the work-per-processor should be expected, although how good the
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scaling would be ultimately depends on the form of kw(N). We will also use BETA 

simulations to try to get its phenoomenological form in the next section.

3.5 Results

In what follows, we describe the results of applying the parareal method to par

allelize in time a typical BETA simulation that implements the DTEM model as 

described in Section 3.3. The run used has a resolution of 385 x 385 (complex) 

modes in Fourier space [i.e., (kx,ky), with kx and ky running between —kmax and 

+kmax, with fcmax = 192], and corresponds to a restart from an already nonlinearly 

saturated run, in which the initial values of the mode amplitudes are read from a 

pre-existing file. Turbulence is fully developed at this stage. All linearly unstable 

modes in the simulation have |k| < 70, value that roughly sets the starting point of 

the dissipation range. Stability at higher k’s is ensured by using a hyperviscosity. 

The (modified) parareal cycle has been implemented in BETA by making extensive 

use of subroutines from the Message Passing Interface (MPI) libraries. The differ

ent solvers are added as separate subroutines (one for F, and as many as desired 

for all the G's that will be tested), and are called as required within the parareal 

cycle. The section is structured as follows: first, we will simply describe a typical 

simulation to show that the method works. Secondly, we will use all the simula

tions we have done to construct a phenomenological model for k(N, T), that gives 

the number of parareal cycles needed for convergence once N  and T are prescribed. 

We will use this function in the final two subsections, that describe the results of 

two scaling studies: one for the strong scaling regime, and a second for the weak 

scaling one.

3.5.1 Parallelization in time via the parareal scheme of BETA simulations

As already mentioned in the previous section, the success of the parareal scheme 

depends on making a sound choice of G. In fact, arguments could be made, 

based on the sensitivity to initial conditions and the exponential divergence of La- 

grangian trajectories present in turbulent situations, to the effect that such a choice 

should not exist in a turbulent system, and that the parareal algorithm will in

evitably need K = N iterations to converge when using N  processors. The results
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presented and discussed in this section simply intend to show that this is not the 

case, and that convergence can be indeed achieved for K «  N, which in itself is a 

quite remarkable result.

After exploring multiple options for G, we have found that one that seems to 

work pretty well is solving the problem using a smaller resolution in /c-space (that 

is, using a smaller km x̂ than F) and, in addition, changing the time-advance scheme 

to something simpler with respect to the fine solver F. The smaller resolution al

lows us to use a much larger time step, dtc, for the time advance (in comparison 

to that used by the fine solver, dtp). This, in combination with the simpler imple

mentation (for instance, we have tried 2nd and 4th Runge-Kutta (RK) schemes, in 

addition to the original VODPK scheme), allows us to reach values of (3 as large as 

P ~  1,000. However, the best results (i.e., maximum parallel gain) are not obtained 

for the largest p. The reason is that the strategies used to speed up G (and thus 

increase p) may also increase the number of cycles required for convergence for a 

given number of processors N  (i.e., the functions ks(N) and kw(N) from the previous 

section). For instance, we have observed that if the region of /c-space solved by G is 

too restricted (if kmax is too small), the parareal performance deteriorates quickly. 

The minimum acceptable size seems to be imposed by the physics of the under

lying turbulence: the reduced /c-space region must contain a sufficient number of 

dissipative scales!

We conclude this subsection by showing an example of a successful paralleliza

tion in time of a BETA simulation using the parareal method. In Fig. 3.4, the time 

history of the total energy of a saturated BETA simulation is shown as a function 

of the parareal cycle, k. The coarse solver used for G is a 4th-order RK scheme 

with dtc = 4Odtp, and including only a reduced k-space of size 201 x 201 harmon

ics (i.e., kmax = 100). The serial time of the simulation (that has a total length of 

T = 7,040dfp) using the fine solver is 2.62 hours on the pingo supercomputer at the 

Arctic Research Supercomputing Center (ARSC) at Fairbanks. The coarse solver 

G is about 200 times faster than F (in fact, P = 210.3). Using N = 88 processors 

(which corresponds to time chunks of size AT = 80dtp), the parareal calculation 

converges in only K = 5 cycles (see inset in Fig. 3.4), requiring only 0.29 hours. 

That is, the parareal scheme yields a speed-up Hp  ̂ = 8.80. In Fig. 3.5, we also
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show the time history of the energy contained in one of the low-fc modes (in partic

ular, the (kx,ky) = (0, —1) mode), to show that convergence of the total energy also 

implies convergence of the individual harmonics as previously stated. Similar be-

the total energy of the mode gets of the order or smaller than the required toler

ance. Thus, there is no doubt that the parareal method can be applied successfully 

to fully-developed turbulent simulations.

3.5.2 Phenomenological model for k(N, T) for the BETA model

We now carry out the first step in the determination of two unknowns of the per

formance model from BETA simulations: ks(N) (strong scaling) and kw(N) (weak 

scaling). That step is the building of a model for k(N,T), the number of parareal 

cycles needed to converge a simulation of length T using N  processors (the chunk 

size is then AT = T/N).

We proceed as follows. First, we use the simulations to 'measure' the conver

gence rate function, An(k;N,T), defined as the number of new, successive time 

chunks converged during the parareal cycle k. We have collected this informa

tion for many runs with various values of length T and number of processors N, 

and using various implementations for the coarse solver G. Interestingly, all of 

them seem to follow the same pattern, that is sketched in Fig. 3.6: at first only 

one chunk (the minimum possible, since that is the rate at which the F solution 

advances!) is converged per cycle for the first k\ parareal cycles. Then, after k > k 2 

cycles (k2 >  fci), the convergence rate is again roughly constant, but equal to some 

value B > 1. In the intermediate region, i.e. for cycles k\ < k <  k2, we assume that 

the convergence rate is described by a linear model. That is:

havior is also observed at modes with higher k's, at least until the contribution to

1, k < k i

B, k > k 2s. >

where the slope of the linear part is m = ( B -  l) /(k 2 — h )-  To find k(N, T) from Eq.
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(3.14), one first computes n(k;N,T), the accumulated number of converged time 

chunks via integration of An(k;N, T):

n(k;N,T) = <

k, k< k\

k + K ^ —^ - ) ( k - k 1)z, kx < k < k 2
2 \k2 - k i

B k - ^ i h + h ) ,

(3.15)

Finally, one inverts n(k;N, T) = N  to get:

N,

k(N,T) = h  +
h - h  
B - 1 '1 + 2(B-

N B ~ 1 n ,  ̂vr + — (kz + ki),

k > k 2

N  <N\

N\ < N  < N 2

n > n 2

(3.16)

B IB
where Ni = k\ and N2 = [(B +1)^2 — (B — l)A:1]/2.

However, Eq. (3.16) is still not very useful at this point because the values of 

ki, k2 and B change with T and N, even when the coarse solver G remains unchanged. 

An  important observation at this point is that these values seem to be roughly 

constant when the simulations keep AT fixed and use the same coarse solver. For 

example, Fig. 3.7 shows the convergence rate functions An(k; T, N ) for various rims 

done using as G the same VODPK stiff solver as for the fine solver F, but including 

only 145 x 145 modes (i.e., kmax = 72) and dtg = 4dtp (i.e., P = 16.3) [Of course, there 

are important fluctuations around the mean values, but that is also a consequence 

of the fact that one must take discrete derivatives to compute them.]. This obser

vation suggests that maybe one can find more universal quantities if k\, k2 and B 

are expressed in physical time units. And indeed, we have found that for each 

fixed solver G, fi =  N(k\) ■ AT, t2 =  N(k2) ■ AT and b = B • AT (that is, expressed in 

units of dtp, our physical timescale) are roughly the same for all the simulations. 

An example is shown in Fig. 3.8. The inset shows the convergence rate functions 

An(k) obtained again with the VODPK stiff solver as G for simulations with vari

ous chunk sizes and number of processors. They have a general shape similar to
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that sketched in Fig. 3.6, but the parameter values are all different. However, when 

expressed using physical units, all of them collapse to the same universal curve. 

What these observations suggest is that there appears to be two timescales (t\ and 

£2 ) that must be resolved before the scheme can transition from a slow (i.e., 1 chunk 

per cycle) to a fast convergence rate b which is independent of AT, or T, or N, once 

the coarse solver is chosen.

Thus, the values of { t i ,t2,b, P} seem to be a good practical way to characterize 

each G in the parareal context. We have collected in Table 3.1 the values of these 

quantities for the three coarse solvers discussed in this paper; 1) the VODPK solver 

with km̂  = 72 and dtc = 4dtf just discussed; 2) a 4th-order RK with kmax = 100 and 

dtc = 40dtp-, and 3) a 2nd-order RK with kmax = 100 and dtc = 8dtp. The last two 

coarse solvers will be used in the strong and weak scaling sections. Once fi, t2 and 

b are known (for the coarse solver G chosen), the model for k(N, T) given by Eq.

(3.16) can be completed via the inverse relations:

3.5.3 Strong scaling study

We are now in a position to discuss the strong scaling properties of the parareal 

method when applied to the BETA rims. We start by deriving an expression for 

ks(N) from Eq. (3.16). To do that, it is sufficient to require that T, the length o f the 

simulation, be fixed. The result depends on how T compares with the other two 

timescales present, fi and t2:

(3.17)

(3.18)

T <t\

ks(N)=< ^ N  + Z(ti,t2,b,T ,N ), h < T < t 2 > (3.19)
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where the complicated function for the transition range of T's is given by:

2(f2- * i ) ¥L (h ,t2,b,T ,N ) = (“) \ 1 + ((?)■-)( T - t  i) 
t2 - h

(3.20)

Although we will use the full Eq. (3.19) to compute the theoretical gains to 

compare with the simulation results, it is useful to examine this equation in several 

limits. First, one easily notes that if the simulation is so short that T < t\ then 

parareal fails completely since it will converge at a rate of one chunk per cycle, 

thus needing K = N  to converge. Indeed, the speed-up factor (Eq. (3.10)) becomes,

P
N  +  p

< 1 . (3.21)

Luckily, most actual applications will be in the opposite limit, T »  t2 (since the 

interest is in doing very long simulations of transport dynamics). Note that the 

imprint of having to resolve t\ one chunk at a time is still present in Eq. (3.10), 

(appears as t\N/T), but it is not always deleterious for performance. In fact, its 

effect is small as long as N « N S =  T1 jbt\, which separates one regime in which 

the parareal cycle converges roughly in a constant number of cycles from another 

where the number of cycles required increases with N. Clearly, the transition oc

curs when N  gets large enough so that the resolution of t\ dominates the conver

gence process. But luckily, note that this transition occurs at a rather large number 

of processors in practical cases, since Ns «  T2. Assuming bN /T »  1, P «  Ns and 

T »  t2, conditions that will be almost always satisfied in very long simulations, 

three asymptotic regimes can be identified:

N, N  «  p

&P
T ’

p r \  _i 

■fT/N ’

P «  N  «  Ns

N »  No

(3.22)

That is, the speed-up of the strong scaling increases first linearly with N  as in the 

spatial parallelization ideal scaling, but note that the slope is in general smaller
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than unity, b/T. The other aspect that is quite different from the spatial scaling laws 

is that, for a wide range of processors (between P and Ns), the speed-up saturates 

at a roughly constant maximum value, ~  bfi/T. Thus, N  ~  p sets the value of N  at 

which the speed-up no longer improves as we predicted, but it may take a much 

larger number of processors to observe deterioration of the wallclock time. The 

reason is that, in this regime, the wallclock time of the calculation is completely 

dominated by the number of times that the coarse solution with G must be applied 

serially! The efficiency of the parallel part of the algorithm is of no importance at 

this stage. Finally, when the resolution of t\ at one chunk at a time becomes the 

dominant process, the speed-up deteriorates as ~  1 /N .

The analytical considerations compare well with actual numerical calculations 

of a strong scaling sequence, although the asymptotic formulas tend to overes

timate actual results. As an illustration we present two such numerical strong 

scaling studies in Figs. 3.9 and 3.10. The first study corresponds to a BETA sim

ulation with length T = 6,400dtp, using as coarse solver the 2nrf-order RK previ

ously mentioned (see Table 3.1). The aforementioned linear phase is observed up 

to N  ~  100. The maximum speed-up obtained in the simulations is slightly below 

11 using N  = 400 processors, and it should be noted that the speed-up varies very 

little above N  ~  100. For this case, the theoretical values obtained are P ~  84.29 

and Ns ~  800, again in agreement with the simulations. However, note that the 

saturated speed-up predicted by the asymptotic formula Eq. (3.22) is H^*x ~  17.6, 

which is larger than the one observed. The reason for the discrepancy must be 

sought in the fact that the conditions to derive Eq. (3.22) are not satisfied in this 

example, since the simulation is too short ant T is only slightly larger than t2 (see 

Table 3.1). In fact, when using the full model for ks(N), the agreement is much 

better, as shown in Fig. 3.9.

The second example corresponds to a BETA simulation with length T = 25,600dtp, 

that has been done using as coarse solver the 4th order RK previously mentioned 

(see Table 3.1). The maximum speed-up observed in this case is slightly above 

5, using N  ~  300 processors, but it should be noted that the speed-up value does 

not seem to be yet close to saturation. And indeed, one finds from the asymptotic 

formulas that p ~  210.3 and Ns ~  3,000 in this case, with a maximum speed-up of
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roughly H™x ~  10. We thus expect that we could do somewhat better with more 

processors in this second case.

3.5.4 Weak scaling

We now proceed to analyze the weak-scaling properties of the parareal scheme 

implemented in BETA. The figure-of-merit here is, as previously described, the 

amount of work per processor Wp  ̂ defined in Eq. (3.11). To obtain kw(N) it is 

sufficient to assume that AT is fixed, and that the length of the simulation is T = 

N ■ AT. In this case, the process is trivial because all the relevant quantities,

jk1= i 1  B = -̂ =, (3.23)
AT AT

k2 = 2^ - + ( ± - l )  J l '
AT \AT )  AT

are all constants that do not change when the number of processors. Thus, kw(N) 

is given exactly by Eq. (3.16).

As in the case of the strong scaling, asymptotic formulas can be derived to 

better interpret the results. Two regimes can be distinguished depending on the 

value of T. First, we consider the case when N  is not large enough to resolve t\, 

N < t\jAT. Then, kw(N) = N, and the work-per-processor is:

w J<fl(N) = N ^ l + ^  > N , N < h/A T. (3.25)

which is larger than N, signaling a complete failure of parallelism, as expected.

But again the limit of interest for applications is when N  is large enough so 

that T » t 2. Then, assuming T »  t2 and b > AT, the resulting work-per-processor 

becomes:

wr>>,I<N» ~ { ( f ) N + ^ } ( 1 + ? )  <M 6)

As in the strong limit case, the imprint of having to resolve t\ still appears here 

(the t\/AT term). But now, since AT is prescribed, this term will be unimportant 

once N »  Nw — {bt\)/ (AT)2. Thus, assuming also that (3 »  Nw, one can easily
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distinguish three asymptotic regimes:

—  j  N, NW« N  «  (3 >. (3.27)

That is, the work-per-processor is first constant as in the ideal spatial parallelism 

case, although the value is usually greater than unity. And it does not imply good 

parallelism: only that the fixed amount of work needed to resolve fi dominates the 

calculation. But once N > Nw, the work-per-processor begins to increase linearly, 

in contrast to the spatial case. The slope is simply given by AT/b , as expected, 

since (AT/b)N  gives roughly the number of parareal cycles needed to converge 

in this regime, and the number of times each processor has to repeat the serial 

work. Finally, for N  »  (3, things deteriorate and the work-per-processor increases 

quadratically with N.

To illustrate this behavior, we have also carried out a numerical weak scaling 

study using as coarse solver the 4?h order RK previously mentioned and with a 

prescribed chunk size AT = 8Qdtp. The work-per-processor as a function of the 

number of processors is shown in Fig. 3.12. The first two regimes of Eq. (3.27) can 

be clearly seen in the figure. First, the work-per-processor stays roughly constant 

at about ~  4 up to N  ~  40. Then, it increases close to linearly at least until N  ~  

300 — 400 with a slope ~  0.10 < 1, indicating that weak parallelism is different from 

the ideal one but not that bad. It is interesting to compare these numbers with the 

predictions of the asymptotic formulas. For these runs, the asymptotic expressions 

just derived predict that Nw ~  17 and |3 ~  210.3, consistent with the extent of the 

linear scaling in W seen in the numerical observations. The slope predicted by 

the model would be ~  0.06. On the other hand, the constant value at the smallest 

N  would be ~  1 or 2. Again, as in the strong scaling case, these formulas tend 

to overestimate performance slightly. For completeness, we have also included a 

figure with the speed-up of the calculations, although note that the length of the 

simulation is increasing with N. The largest speed-up observed in this series is
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~  9 using N = 88 processors, corresponding to the case cited as example at the 

beginning of this section.

3.6 Conclusion

The two main conclusions of this work are that turbulent simulations can be par

allelized in time using the parareal algorithm, and that rather sizeable gains are 

achievable with this method. Indeed, we have shown speed-ups close to an order 

of magnitude, and even these could be further increased by further optimization 

of the coarse solver. As we mentioned several times, this is a remarkable result 

in view of the many existing concerns regarding the effect of the sensitivity to ini

tial conditions and exponential Lagrangian divergence on the convergence of the 

method. In fact, it has turned out that parareal may probably work better here than 

in non-turbulent systems, since convergence only needs to be enforced on a single 

scalar quantity (here, the total energy), and the whole spectrum (containing hun

dreds of thousands of degrees of freedom) also converges even when unforced (at 

least, up to modes with an energy larger than the required convergence tolerance) 

due to the existence of strong nonlinear couplings between any pair of modes. This 

is indeed a pretty remarkable result.

In this work we have also shown that it is possible to select a coarse solver 

that works for this type of problems based on using a reduced grid size in k- 

space, accompanied by a coarser timestep and a simpler time-advance scheme. We 

have also characterized the performance of the method using a model function for 

k(N, T), the number of parareal cycles required to converge that, for the BETA sim

ulations examined here, depends on four quantities: (3, flr t2 and b. Clearly, perfor

mance depends more sensitively on (3 and b. The larger they are, the larger the par

allel speed-up will be. A matter of investigation for the future will be to investigate 

the origin and meaning of all these parameters. That is, to clarify whether their val

ues are imposed by the physics of the underlying turbulence or by the choice of 

the coarse solver and its relation with the fine one. This knowledge would allow 

us to further optimize the parareal implementation inside BETA to obtain further 

gains. More importantly for other applications, we also plan to repeat the current 

exercise in other turbulent models, in order to see if the model function found phe
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nomenologically for k(N, T) has a universal character, or whether the shape used 

here is only particular to the DTEM case and the E x B-nonlinearity.

Other possibilities can and should also be explored in the future for further 

improvement in the gain and efficiency. For instance, a better G (i.e., larger (3 

and b) than the ones used here may be an option. It may be noted here, that a 

faster G (i.e., larger (3) will not necessarily mean a better one, unless the number 

of iterations required for convergence remains small enough (i.e., larger b as well) 

so that the total time for simulation is reduced. A combination of both space and 

time parallelization, thus leading to hybridization of the parallel scheme, should 

certainly be explored, since it may help to better utilize already existing resources. 

Also, it is worth noting that the current implementation of the parareal algorithm 

requires processors where convergence has been observed to remain idle until the 

solution along the entire time domain is converged. Reuse of idle processors may 

thus enhance the efficiency of the parareal scheme.
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Table 3.1. Values of parameters defining k(N) model in physical units (see Eq. 
(3.16)) for the three different coarse solvers discussed in Section 3.5.

G kmax dtp/dtc P h h b

VODPK 72 4 16.3 290 ± 6 0 4,120 ±500 1,320 ±280

RK2 100 8 84.3 32 ± 3 2 3,100 ± 1 ,600 1,340 ±480

RK4 100 40 210.3 80 ± 8 0 2,560 ± 1 ,000 1,280 ±480
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Figure 3.1. Snapshot of vorticity for a typical BETA long-wavelength DTEM simu
lation.



Figure 3.2. Power spectrum (in lin-log scale) for the same BETA simulation shown 
in Fig. 3.1.
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Figure 3.3. Separation of two initially close trajectories as a function of time for the 
same BETA simulation shown in Fig. 3.1. Both x (black) and y (red) directions are 
included.

Figure 3.4. Total energy as a funtion of time for a BETA run using N = 88 processors 
and chunk size AT = 80 as a function of the parareal cycle index k. Coarse solver 
is a 4 *  order Runge-Kutta described in Section 3.5. Convergence is observed at 
k = 5. Inset: Relative error averaged over all chunks as a function of k.
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Figure 3.5. Convergence history of the energy contained in the low -k  mode (kx,kv) = 
(0, —1) as a function of the parareal cycle index k for the same run as Fig. 3.4. Inset: 
Relative error averaged over all chunks as a function of k.

Figure 3.6. Sketch showing the typical features of the convergence rate function 
An(k}T,N) observed in the BETA simulations discussed in Section 3.5.
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Figure 3.7. Example of convergence rate function An(k;T,N) obtained with the 
VODPK coarse solver described in Section 3.5 and fixed chunk size AT = 80dtp. 
Number of processors used is shown in the legend. Inset: number of unconverged 
chunks as a function of parareal cycle index k for the same cases.
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Figure 3.8. Convergence rate in physical time 

Collapse of convergence rate curves when expressed in physical time for parareal 

BETA runs using the same coarse solver (VODPK, described in Section 3.5) and 

varying values of processors (n in legend) and chunk size AT (c in legend). Inset: 

Same convergence rate curves when expressed in parareal cycles as in Fig. 3.7.

Figure 3.9. Results of strong scaling study using as coarse solver G the 2”d-order 
Runge-Kutta solver described in Section 3.5. Model curve for gain corresponds to 
values from Table 3.1.
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Figure 3.10. Results of strong scaling study using as coarse solver G the 4^-order 
Runge-Kutta solver described in Section 3.5. Model curve for gain corresponds to 
values from Table 3.1.

Figure 3.11. Weak scaling study for series of runs done using the 4th -order Runge- 
Kutta solver described in Section 3.5. Model curve corresponds to values from 
Table 3.1.



73

Number of processors { N)

Figure 3.12. Parallel gain for weak scaling series of runs using the 4fft-order Runge- 
Kutta solver described in Section 3.5. Model curve plotted corresponds to values 
from Table 3.1.
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Chapter 4

Extension of the parareal technique to new nonlinearities and analysis of 

convergence for the case of a turbulent system 1

Abstract

In this work we show that time parallelization utilizing the parareal algorithm 

can be successfully applied to a wide variety of turbulent systems from general 

plasma turbulence to neutral fluid turbulence. The algorithm is successfully ap

plied to a drift wave turbulence model with polarization drift nonlinearity which 

is isomorphic to the quasi-geostrophic, beta-plane models for geophysical fluids. 

The algorithm is also successfully implemented in a turbulent system containing 

both the polarization and E x  B nonlinearities. The computational gain obtained 

from these simulations show great promise as shown by an analysis of the conver

gence properties. It is found that the parameters governing convergence depend 

not only on the numerics, but on the dynamics of the system as well.

4.1 Introduction

Since its introduction in 2001 by Lions et al. [1], the parareal algorithm has found 

application in many numerical problems. However, until [2], the algorithm had 

not been successfully applied, to the best of our knowledge, to any simulation of 

fully developed turbulence. Prior to [2], the algorithm had only been applied to 

problems of much less complexity, like molecular dynamics [3], reservoir simula

tions [4], the laminar region of the Navier-Stokes equations [5], nonlinear partial 

differential equations (pdes, namely the Black-Scholes equations) [6], stochastic 

ordinary differential equations [7] and other nonlinear problems such as the Vis

cous Burgers equation and the Lorenz equations [8]. The work on the Princeton 

Ocean Model by [9], where convection was the dominant factor, reported modest 

success. The stability and convergence of the parareal scheme for systems similar 

to the ones mentioned above have also received significant attention, for example

[10] presented a detailed study of the stability of the technique. The stability and

XD. Samaddar, D.E. Newman and R. Sanchez. 2010. Extension of the parareal technique to 

new nonlinearities and analysis of convergence for the case of a turbulent system. Prepared for 

submission in Physics of Plasmas.
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convergence properties for time dependent equations with constant coefficients 

was analyzed in [11]. Convergence properties of the algorithm for bounded and 

unbounded problems were more recently explored in [12].

The success of the parareal technique for a turbulence simulation is perhaps 

surprising in many ways. Turbulence is characterized by extremely high sensi

tivity to initial values and exponential divergence of lagrangian trajectories [13],

[14]. The parareal algorithm employs a predictor-corrector method to attain tem

poral parallelization, despite the sequential nature of the time domain. Since the 

solutions for different parts of the time series are obtained in parallel on differ

ent processors, convergence may be unexpected for a highly complex system such 

as turbulence where there are very strong nonlinear couplings between disparate 

scales. However, convergence, accompanied by a computational gain of almost an 

order of magnitude was demonstrated in [2].

As has already been pointed out in [2], convergence in a turbulent system may 

be possible due to the strong nonlinear couplings, which sets the relative energy 

fluxes between any pair of modes within the system. This guarantees that any 

one quantity (the total energy of the system, for example) converges, when all 

other quatities converge as well [15]. This characteristic may actually enhance 

the possibility of convergence with the application of the parareal algorithm for a 

turbulent system in comparison to a linear system.

This chapter extends the parareal technique to new nonlinearities compared to 

what was observed in [2]. A dissipative trapped electron mode (DTEM) model for 

drift wave turbulence has been used as the test bed for the parareal algorithm in

[2] as well as in this chapter. The model has doubly periodic slab geometry with 

the E x B nonlinearity. The physics of the model had already been extensively 

studied in [16], [17] and [18]. The model of plasma drift wave turbulence used 

for this new application is different from the one used in [2] due to the fact that 

here, the E x B is replaced by the polarization drift nonlinearity. This new model 

has already been derived and studied in [17]. The polarization drift nonlinearity 

is the nonlinear term in the Hasegawa-Mima equation and is isomorphic to the 

Navier-Stokes nonlinearity found in neutral fluids. The parareal technique has 

also been shown to work for a model containing both the E x B and polarization
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This chapter demonstrates that a computational gain of almost an order of mag

nitude can be obtained by the application of the parareal scheme to two new mod

els of plasma drift wave turbulence. This further establishes the utility of time 

parallelization in turbulence simulations.

A phenomenological model for the convergence rate for the application of the 

parareal algorithm in the turbulence model with the E x  B was presented in [2]. 

This model is further explored in this chapter by characterizing the various pa

rameters that control the convergence rate in this system.

To attain time parallelization, the parareal scheme employs two solvers, the 

coarse solver (used in serial) and the fine solver (used in parallel). The mathemati

cal formulation about the boundedness of norm of the difference between the two 

solvers as mentioned in [1] is very difficult to implement in a physical problem. As 

a result, the choice of the coarse solver, to date, has primarily been based on trial 

and error for all the applications of the parareal algorithm. This has also been the 

case in the application of the parareal algorithm to turbulence. This paper attempts 

to describe the choice of an appropriate coarse solver for the model explored in [2]. 

The fact that the gain and success of the parareal algorithm also depends largely 

on the physics of the turbulent system is discussed in this paper.

The rest of this paper is organized as follows. Section 4.2 gives an overview of 

the parareal technique, accompanied by the modification presented in [2]. Section

4.3 briefly describes the models studied in this paper, followed by results obtained 

by applying the parareal algorithm to them. Section 4.4 explores the parameters 

that set the convergence rate with the help of the model already introduced in [2]. 

Section 4.5 describes the different coarse solvers that have been explored for the 

application of the parareal scheme to turbulence. Section 4.6 finally summarizes 

all the results.

4.2 The parareal algorithm : a review

The parareal algorithm is based on a predictor-corrector scheme. For the time de

pendent ordinary differential equation
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let X be a function of time, t, with its initial value at t = 0 being given as Xo- Let A 

be a function operating on X and t. It is also assumed that for Eq. (4.1), there exist 

two propagators that advance X(t) to X(t + dt). Of the two propagators, F is the fine 

solver, giving a more correct solution for the problem, but is computationally very 

slow. G, on the other hand, is the coarse solver, gives a less accurate solution, but 

is computationally fast. F is always applied in parallel, and G is a serial procedure.

For the parareal scheme, the total simulation time, T, is divided into N different 

parts or chunks, defined as AT = T/N. The value of X across each such chunk is 

separately solved on individual processors, in parallel. Let there be N processors 

denoted by Po,P i ,Pz,P3,---,Pn- i to evolve X through the N different chunks. If 

k represents the parareal iteration and i is the index for the ith instant time, i.e, 

ti = i-At for i = 0,1,2, ...,N, X\ represents the solution at time t, at the k-th iteration 

of the parareal cycle. The initial value of X* is known and is denoted by A,g. The 

parareal algorithm may then be described by the following steps.

• Iteration k = 0:

Po uses G in serial, to calculate initial values X® for each processor dealing 

with separate time chunks. As G is a coarse solver, these initial values are 

only an estimation of the actual values.

• Iteration k > 0:

Step 1: Each processor (i.e., Pj) then separately applies F to propagate the 

solution, starting with the initial values provided by G (i.e., A,̂ -1 ), between 

the initial {tj) and final time (fy+i) of its respective time chunk. This process is 

in parallel. The result of this propagation is forwarded to the next processor 

in line (Pj+1).

Step 2: G is now applied as a sequential (but not continuous) process, using 

the parareal prescription to update the initial value at each time chunk:

Aj+i = Ga t(^ +1) + FAT(Af) -  GAT(Af), (4.2)

Note that this part of the algorithm cannot be done in parallel, because of the 

first term on the right hand side. Note also that the second and third terms 

have already been obtained in previous steps and/or iterations.
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Step 3: Check for convergence. The cycle is exited if the solution is converged 

for all chunks. Otherwise, another iteration of the parareal cycle follows, 

starting from the chunk previous to which all chunks have converged. This is 

a slight modification to the standard implementation of the parareal scheme, 

and is discussed in detail in [2].

Convergence is said to have occured when the average relative error between 

two successive iterations, k and A: — 1 is less than the tolerance. The average relative 

error, c^, for the chunk evolving at to 7Jf at f, is given by

4.3 Application of the technique to models with different nonlinearities

The parareal algorithm was successfully applied to a turbulent system in [2]. The 

DTEM model used in [2] consisted of the E x B nonlinear term. This chapter ex

plores the performance of the algorithm for turbulent systems with other nonlin

earities.

4.3.1 Models

The turbulence simulations discussed in this paper involve DTEM models. These 

plasma drift wave models have been extensively studied in [16], [17] and [18]. The 

models assume a shearless slab geometry in the x — y direction, with a uniform 

magnetic field along the z direction, x actually represents the radial coordinate, 

y the poloidal coordinate, and z the toroidal coordinate of an actual three dimen

sional system. In this reduced model, profile gradients exist along the x direction 

resulting in the propagation of drift waves along the y  direction. The ions are 

treated as a cool fluid and the instability drive is caused by the strongly dissipative 

trapped electron mode. The model where the parareal scheme is first applied in 

this chapter has the polarization drift nonlinearity and is given by

| x « « |  *
(4.3)

(4.4)
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where $ is the fluctuating potential, Vq = e 1/2(cTi/eB)L~l is the effective diamag

netic drift velocity and T, is the ion temperature. B represents the magnetic field 

strength. D = V^/4vette , with veffe being the effective collision frequency of ion- 

electron collisions. The second term on the left hand side of Eq. (4.4) represents the 

instability drive and the third one is the wave term which causes the drift waves 

to propagate along the y direction. The last term on the left hand side of Eq. (4.4) 

is the polarization drift nonlinearity. This nonlinear term actually represents the 

advection of the vorticity in the turbulent field.

The original turbulence model, described in [16] and [17], where the parareal 

algorithm was first applied [2], was very similar to Eq. (4.4), except for the fact 

that the fourth term on the left hand side was replaced by the E x B nonlinearity, 

given by |Vx x z • e-1/2 is the fraction of trapped electrons and Ln

is the density gradient scale length. The advection of the potential (or the density) 

is represented by the E x B nonlinearity.

Eq. (4.4) is very similar to the Hasegawa-Mima equation, while the polariza

tion drift nonlinearity is very similar to the nonlinear term in the two Dimensional 

Navier Stokes equation for incompressible fluids. This model is also similar to 

the quasi-geostrophic equation commonly used to study planetary flows. The 

polarization drift nonlinearity is dominant at short wavelengths, while the op

posite is true for the E x B nonlinearity. An example of the vorticity field of this 

model is illustrated in Fig. 4.1. The eddies in this case (unlike the E x B [2], [16],

[17]) are isotropic since the nonlinear term in k-space, for this model, given by 

Lk' fc2(k x k' • z)$k$k-k' has no exclusive dependence on kx or ky. The different 

colors in the plot represent different spinning orientations of the vortices.

This model has an inverse cascade of energy, i.e, the energy travels from small 

scales to large scales - a characteristic of the Hasegawa-Mima equation, while en- 

strophy cascades to small scales. This is in contrast to the E x B nonlinearity which 

has only one quadriatic invariant, energy, which cascades to small scales.

The fact that the E x B and the polarization nonlinearity have contrasting effects 

on the direction of the energy cascade makes study of a model containing both 

the nonlinearities interesting. The parareal algorithm is thus applied to such a 

turbulent system. The model is given by
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 ̂ /1 2i-r2\x <̂j> 4LnD [ /3<j>\ x z  -V±  ̂— p;:CsV<j) x z-VV^<j) = 0.

(4.5)

Fig. 4.2 illustrates the vorticity field for the model with both nonlinearities. The 

different colors represent the magnitude and orientations of the spins. The lack of 

isotrophy in the eddies is introduced by the presence of the E x B nonlinear term, 

which has an additional ky dependence.

The simulations were done using the pseudo spectral code BETA [16]. The 

VODPK package [19] is employed to solve the stiff problems, using a precondi

tioned, Krylov implicit solver based on backward differentiation formulas of vari

able order and timestep. The timesteps were tuned accordingly within the solver 

so that the error was always below a prescribed tolerance. In the Fourier space or k- 

space, the E x B nonlinearity takes the form Ei/ ^ ”̂ k2  ̂Ek' ^y(k x k' • z)<j>k<j>k_k/ and

the polarization drift nonlinearity is represented as £ k/ k2(k  x k' • z)<j)k<j)k_k/. The 

original grid size for the fine solver comprised of 385 x 385 modes, with kmax = 192 

representing the maximum mode number on each side of the (0,0) mode.

4.3.2 Results for model with polarization drift nonlinearity

Success of the parareal algorithm with this model was achieved by a reduction of 

the grid size in k-space for the coarse solver, as described in Section 4.5.3. The 

technique of reducing the grid size was successful only when the high k modes in 

Fourier space that were removed from the calculations in G, contained very little 

energy compared to the total energy of the system. This effect was achieved in 

our simulations in two distinct ways. One was by introducing a high damping 

coefficient for the mid k region, and another was by adding a large damping in the 

high k region. The original simulations with the E x B nonlinearity in [2] already 

had the high k modes damped, due to which they contributed very little energy to 

the entire system.

Apart from reducing the grid size in G, the VODPK solver was replaced by 2nd 

and 4f?! order Runge-Kutta solvers, which significantly reduced the computation 

time. Convergence was observed with this choice for the coarse solver for both
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cases, and as an example, Fig. 4.3 shows the convergence of the total energy with 

increasing iterations for a case where the mid k region is highly damped. Fig. 4.3 

shows a simulation with 960 processors and a total simulation length of 384000 

steps. In this figure, each color reresents the plot of the total energy of the system 

for a given parareal iteration. It may be observed that the black and the red lines, 

corresponding to the 2nd and 3rd parareal iterations, respectively, deviate largely 

from the solution from the final iterations (cyan for the 7th and pink for the 8th 

iterations). However, for a short simulation length (105), the solutions converge 

even in the 2nd and 3rd iterations. With increasing iterations, the solutions converge 

towards a final value along the entire time series, until the difference between the 

values in the total energy from two successive iterations is less than 1.5 x 10~6.

For the case where the mid k region is highly damped, a typical serial run with 

the same parameters would take approximately 38.176 hours for 384000 timesteps. 

The parareal run, with this technique, generated a gain of 4.5 with 80 processors. 

The gain increases with increasing processors (to about gain = 9.12), but is accom

panied by worse efficiency. Results were similar for the case with a hyperviscosity 

in the high k modes, where a typical serial run approximately required 5.445 hours 

for 24000 steps. A parareal run for these parameters, with 80 processors generated 

a gain of 6.25, while the use of 320 processors yielded a gain of 10.66. The bad 

efficiency rises largely from the fact that processors, for which convergence has 

already occured, and which correspond to earlier parts of the long time series, re

main idle through the rest of the parareal cycles. We believe that the efficiency 

would greatly improve if all the processors could be used uniformly through all 

the parareal iterations, which may be carried out as a future endeavor.

4.3.3 Results for model with two nonlinearities

The parareal algorithm could be successfully applied to this model. The coarse 

solver used for this implementation was very similar to the one already discussed 

in Sections 4.3.2 and 4.5.3. Once again, applying a relatively large damping in the 

mid k modes allowed the high k modes to have lesser energy compared to that of 

the entire system.

Fig. 4.4 illustrates the convergence of the parareal solution with increasing it
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erations for a simulation with 320 processors for 64000 tiemsteps. Each iteration 

(k) is represented by a different color in the plot. The total energy of the system, 

plotted against time, t, attains a steady value after 11 iterations (k = 11).

A typical serial run for this simulation took 17.52 hours for 64000 steps. Gains 

of 3.17 for 80 processors and 9.87 for 320 processors could be achieved using the 

parareal technique. The efficiency can be improved by the same technique dis

cussed in sections 4.3.3.

4.4 Convergence analysis

Once convergence is confirmed to be attainable in a turbulent system by applica

tion of the parareal algorithm, a systematic study of the convergence properties 

becomes necessary. In order to study the convergence rate of the parareal algo

rithm for turbulence simulations, a model for estimations of computational gain 

was introduced in [2]. The model calculated the computational gain for strong 

scaling studies, and work per processor for weak scaling studies. The model thus 

allowed the use of the correct number of processors with the ideal chunk size, to 

achieve optimum gain and efficiency for a given simulation. This model resulted 

from the fact that k, the number of iterations required for convergence, depended 

on the total simulation length, T, as well as the number of processors, N. For strong 

scaling studies, ks obeyed the following relation:

ks(N) =

N,

b W + l  U  T

T <t\

T >  h

where the function for the transition range of T's is given by:

L(tu t2 ,b,T ,N ) =

(4.6)

> . (4.7)

Here, t\ is a simulation time until which the convergence rate is 1, or, one pro

cessor is converged per iteration. It was observed, that beyond fi and until t2,



86

the convergence rate linearly increased with the simulation time. Beyond (2 the 

convergence rate was b 1.

Based on the expression for ks, the following expression for the gain, Hp^, was 

also derived in [2].

- ) J V ,  N « p

hl
T ’

P «  N «  Ns (4.8)

N > > N ‘
By a similar derivation for the weak scaling, the work per processor had the 

following expression in [2]:

w J f ' 2(N) ■- . N, Nw «  N «  |3 (4.9)

l ( f ) N2- N>>|5

Here, AT represents the chunk size per processor.

A reasonable agreement of the model with actual simulation results was ob

served in [2]. However, the origins of t\, t2 , b and m were not explored. A study 

of these parameters based on variations of the coarse solver is presented in Section 

4.4.1.

4.4.1 Convergence for varying Gs

A number of simulations with a variety of coarse solvers were run for the model 

with the E x B nonlinearity, in order to study the interdependence of the four pa

rameters ti, tz, b and m, as well as their dependence on the system. This was done 

in order to make the formulas have predictive values when optimizing. Three 

kinds of solvers were used for G, namely Runge Kutta 2nd order, Runge Kutta 4th



87

order and VODPK (which, also, is the fine solver). For each of the solvers, two 

reduced grid sizes with kmax = 72 and kmax = 100 were explored.

Fig. 4.5 is a sketch of the properties displayed by the convergence rate for a 

typical parareal run for a turbulent system with the E x B nonlinearity. The con

vergence rate, AN, multiplied by the chunk size, gives the physical (simulation) 

time that is converged per iteration, and this is plotted along the y-axis. The num

ber of processors that have attained convergence, multiplied by the chunk size, 

gives the physical/simulation time that has already converged, and it is plotted 

along the x-axis. The sketch shows a distinct lower flat region, till t\, where the 

number of processors converging per iteration is small. There is another flat re

gion on top, beyond f2 , where the convergence rate is higher than 1 chunk size. 

The path from fi to h  may be said to follow a straight line of slope m.

Figs. 4.6 and 4.7 are actual simulated results for the convergence rate vs. sim

ulation time. Fig. 4.6 illustrates the results in a lin-lin plot. Fig. 4.7 is a plot of 

the same simulation data, but in log-log, to highlight the flatness of the different 

regimes. pe^one is the number of processors already converged. The different colors 

on the plots correspond to different choices for the coarse solver, G. In these plots, 

RK stands for Runge Kutta. kmax_pr is the maximum number of modes on either 

side of the (0,0) mode in Fourier space, for the calculations by the coarse solver. 

dt_pr is the timestep used in G, and dt, as shown in the plot, is the time step for the 

fine solver, F. Also, in these plots, n stands for the number of processors involved 

for a given simulation, and c is the corresponding chunk size per processor for that 

simulation.

It must be noted here that the lower flat portion is not available for the sim

ulations with kmax = 100 for G in Fig. 4.6 and Fig. 4.7. This is due to numerical 

restrictions in the smallness of a given chunk size. The chunk size needs to be sig

nificantly small (and, of course, smaller than t\), for the lower flat region to appear 

on the plot. This case is further highlighted by Fig. 4.8. Fig. 4.8 may be considered 

as very similar to Fig. 4.6, with only the chunk sizes being big enough so that only 

the upper flat portion of the convergence rate is obtained. It is likely that t\ is much 

smaller when kmax = 100 is used for the coarse solver.

What is interesting about Fig. 4.6 and Fig. 4.7, is that, for the same reduced
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grid size (72 or 100) in G, the plots overlie on each other, irrespective of the solver 

- be it, Runge Kutta 2nd order, 4th order or VODPK. However, this observation is 

clearer for the case kmax = 72, where there are lesser fluctuations in the value of b 

than for kmax = 100. Table 4.1 lists the results obtained from using different solvers 

for G, all having the same reduced grid size, kmax = 72, for the coarse solver. As 

this table suggests, b ~  1200 for different coarse solvers using kmax = 72.

The grid size plays an important role in the dynamics of the system and largely 

determines how different the solution of the coarse solver is, from that of the fine 

solver. This implies that the variables t\, tz, b and m depend more strongly on 

the physics of the coarse and fine solvers. The difference in the performance with

respect to the computational gain among the three solvers is then primarily caused
T îT)by p, as given in Eq. (4.8) and Eq. (4.9). p = Tler\Ty  where T fr is the serial time using 

the fine solver F, and TSq is serial time using the coarse solver G. Typically, for the 

cases considered, for Runge Kutta 4?h order, P = 210.3, for Runge Kutta 2nd order, 

p = 84.3 and for VODPK, p = 16.3.

A similar study with the polarization drift nonlinearity would be very benefi

cial as it would allow us to see if the convergence rate illustrated in Fig. 4.5 for 

the E x  B nonlinearity also retains the same shape for the polarization drift non

linearity. However, the fact that fi is possibly very small for this case gives rise to 

figures similar to Fig. 4.8. The numerical restriction in reducing the chunk size by 

an excessive amount poses a problem in generating these plots for analysis.

4.5 Coarse solvers : a discussion

A variety of options were explored for the coarse solver, G, for the application of 

the parareal algorithm to the turbulence model described in [2]. Finding the opti

mum choice of G is a laborious task for a turbulent system. We explored various 

techniques, which we describe in the following subsections. Some of the methods 

for G were successful in terms of convergence of the parareal solutions, but did 

not help in achieving a significant speedup. The cases presented in this section 

refer to the model with the E x  B nonlinearity, but similar analysis prevails for the 

polarization drift nonlinearity as well.
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4.5.1 Coarser timesteps for G

Keeping the resolution in k-space the same in both solvers, F & G, a larger timestep 

in G, dtQ, was used in place of dtp, the timestep in F. Employing this technique for 

the coarse solver has given significant speedup in other systems. For our case, con

vergence was observed till dtc = 10dtp. The solutions diverged if dtc was increased 

more than that. The plot of the total energy in k-space as a function of time, at 

different iterations, is shown in Fig. 4.9. In this plot, k represents the parareal it

eration. It can be seen that the solutions corresponding to iterations greater that 

k = 2 almost lie on one another, highlighting the convergence of the system. The 

converged solution using the parareal algorithm in this case also matches with the 

serial solution using the fine solver, denoted as "serial" in Fig. 4.9. The solution 

using the coarse solver, denoted as "coarse", is also shown on Fig. 4.9 as one devi

ating from the fine solver solution, with increasing time.

However, convergence, when observed, was attained after about five itera

tions with 20 processors. However, the wallclock time for such a computaion was 

greater than that for a serial rim with the fine solver. Thus, although this tech

nique for G is clearly a failure in terms of the speedup, it highlights two significant 

points. First, convergence is attainable despite the sensitivity of the solutions to 

initial values. Second, this method of using coarse timesteps may be combined 

with other techniques for G to attain speedup using the parareal algorithm.

4.5.2 G with reduced grid in k-space

Since the calculations were performed with a pseudo spectral code, the resolution 

of the grid in k-space provided some space for improvement. The grid spacing 

was kept constant, but the total grid size was reduced to pursue such a method. 

Fig. 4.10 illustrates this procedure. This technique also resulted in a reduction 

in the total number of modes used for calculation in G or the coarse solver, thus 

demanding a lesser computation time.

On transfer from reduced grid size to original grid size it was necessary to give 

the spectrum a shape similar to that obtained from a serial run. So, the missing 

points were filled with a function such that the energy of these points decreased 

with increasing k.
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This technique resulted in solutions that were convergent, and the computation 

time for G was significantly lesser than that for the fine solver. Keeping in mind 

the Courant Friedrichs Lewy condition, larger time steps, dtc was combined with 

a reduced k-space to optimize G as a coarse solver for the parareal algorithm.

4.5.3 G with coarse grid in k-space

This technique was similar to the previous one in the sense that it also involved 

transforming the grid space for calculations with G. Fig. 4.11 illustrates such a 

procedure, where modes were skipped in k-space during the calculation with the 

coarse solver, G, thus increasing the grid spacing but keeping the total grid size 

constant. The missing points on the grid were filled in with a complex spline. The 

outcome of this technique is illustrated in Fig. 4.12 and Fig. 4.13. The figures 

represent the spectrum in k space or Fourier space. The energy is plotted along the 

z axis. The points on the x—y plane reprsent the modes. The maximum energy is 

concentrated in the low k modes.

However, as is evident from Fig. 4.12 and Fig. 4.13, the maximum energy in 

the former is much greater than than that in the latter. Skipping points in k-space 

for G also significantly reduced the total energy of the system although the shape 

of the spectrum remained intact. This was due to the fact that there were a few 

high energy modes in k-space, and when they were missing in the coarse grid, 

splining averaged the surrounding low energy modes to fill those points, resulting 

in modes with much lower energy. Hence, this technique led the coarse solver, G, 

to generate a solution which was very different (with much less energy in the total 

system) from the desired solution from the fine solver, F. This caused a violation 

of the conditions for the choice of G [1], [3], which is required for the stability and 

convergence of the algorithm. The parareal scheme sets limits on the inaccuracy of 

the solution of coarse solver [1], [3].

Although this particular choice of the coarse solver was ineffective in our case, 

it could be useful in systems where the energy is not concentrated on a few se

lective modes, but is more uniformly distributed. Complex splining can then be 

used to fill the missing points of the grid space and still converge with the parareal 

algorithm.
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4.5.4 G with a different solver

Another choice for the coarse solver could be to use a completely different prop

agator for the equation than that is used for the fine solver. The Gear type solver 

avaiable with the VODPK package [19], which was used for our fine solver runs, 

was replaced by the Runge Kutta solvers of both 2nd and 4th orders. The Runge 

Kutta solvers proved to be a good choice as they were much faster than the the 

fine solver, but at the same time, allowed convergence for the parareal scheme.

The Runge Kutta solvers were implemented by combining the techniques de

scribed in Sections 4.5.1 and 4.5.3. This gave an even faster coarse solver, thus 

contributing to overall computational gain.

4.5.5 G with reduced physics

If the coarse solver employs a reduced physics model as compared to the fine 

solver, computation time may be expected to decrease. However, for the turbu

lent system discussed here, simplification of the model in G generated diverging 

parareal solutions. If Vp or the diamagnetic drift velocity in Eq. ( 4.4) was ne

glected in the coarse solver, the computation time was reduced, but the method 

was not fast enough to generate computational gain. The fact that the parareal 

scheme attains convergence after a number of iterations involving successive use 

of F (in parallel) and G (in serial), the computation time for G has to be signifi

cantly lesser than F in order to observe computational gain. Moreover, although 

initial convergence was observed over a very short simulation time, solutions di

verged in case of longer runs.

4.6 Conclusion

The parareal algorithm can be successfully applied to more than one simulation of 

fully developed turbulence. The drift wave model for these simulations include 

the polarization drift nonlinearity and a combination of both the polarization and 

the E x B nonlinearities. However, having reduced energy in the high k modes as 

compared to the rest of the system allows convergence in cases where a reduced 

grid size in k-space is used for the coarse solver, G. Calculations with a reduced 

grid size in G gives a better computational gain.
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The other conclusion is that the convergence of these simulations do not en

tirely depend on the numerics, but on the physics of the coarse solver as well. So, 

an optimum choice of G is based on the dynamics of the system, along with com

putational speed. However, as also observed in [2], a good G is not necessarily a 

fast one, but one for which the convergence rate is reasonably high as well.

This work expands the prospect for the applicability of the parareal algorithm 

to other turbulent systems. This fact serves as a motivation for work on the im

provement of the efficiency of the parareal algorithm. For example, reuse of pro

cessors that currently remain idle after attainment of convergence may greatly in

crease the efficiency.

Table 4.1. The value of b is nearly constant for different coarse solvers used for the 
same reduced grid size in G.

G m̂ax dtp/dtc n c b

RK2 72 8 44 160 1200 ±160

RK2 72 8 88 80 1200 ± 8 0

RK2 72 8 200 80 1067 ± 8 0

RK2 72 8 320 80 1227 ± 8 0

RK2 72 8 640 16 1139 ± 1 6

RK4 72 40 88 80 1067 ± 8 0

RK4 72 40 200 80 1062 ± 8 0

VODPK 72 4 200 80 1200 ± 8 0

VODPK 72 4 280 80 1415 ± 8 0



Figure 4.1. Eddies are isotropic for the model with only the polarization drift non
linearity.

0.2 0 .4 0 6  o a

Figure 4.2. Vorticity field for the model with both the polarization drift nonlinear
ity and E x B nonlinearity.
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Finie, l

Figure 4.3. Convergence of the total energy of the system for the case with polar
ization drift nonlinearity. This is a simulation of 384000 timesteps with 960 proces
sors.

Figure 4.4. Convergence of the total energy of the system for the case with both 
polarization drift nonlinearity and E x B nonlinearity. This is a simulation of 64000 
timesteps with 320 processors.
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Figure 4.5. Sketch of the typical features of the rate of convergence shows that the 
rate of convergence is low till simulation time t\ is converged, and then gradually 
attains a value, b, after time tz is converged.
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Figure 4.6. The convergence rate is similar if the reduced grid size for the coarse 
solver, G, is the same, irrespective of the solver for the differential equation.
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Figure 4.7. Plot similar to Fig. 4.6, but in log-log, to highlight the flatness of the 
convergence rate at different regions of simulation time.



A
N

X
A

T

98

4000

3000

g— o R K 4  Jcm ax_pr= 100  ,dt_pr=4 0 d t:n3 2 0 ;c80 

g— © R K 4 Jcm ax_pr=7 2 ,dt_pr=4 0 dt:n3 2 0 ,c80  
o— o R K 2  Jcm ax_pr= 100  ,dt_pr=8dt:n2 0 0 ,c80 
g— o R K 2 Jcm ax_pr=7 2 ,dt_pr=8dt:n2 0 0 ,c80 
g— o V O D P K  Jcm ax_pr= 100  ,dt_pr=4 d t: n2 8 0 ,c80  
a  o  V O D P K  ,km ax_pr= 7 2  ,dt_pr=4 d t: n2 0 0 ,c80

2000 -

1000 -

25000
done

r

30000

Figure 4.8. For large chunk sizes, the convergence rate for t < t\ is absent, only 
t > t2 is present.
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Figure 4.9. Convergence with larger timesteps in G. The total energy in k-space is 
plotted as a function of time, for different iterations, represented by F.

> y

i /
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Figure 4.10. A reduced grid in k-space was attempted to use for G to speed up the 
calculation.
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Figure 4.11. A coarse grid in k-space was attempted to use for G to speed up the 
calculation.
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Figure 4.12. The total energy in k-space when calculated on the fine grid.
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Figure 4.13. The total energy in k-space after the spectrum was transferred from 
the coarse grid to the fine one, by splining.
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Chapter 5 

Conclusions

The entire work of this thesis has focused on improving the numerical techniques 

used to understand turbulence and turbulent transport, with special application 

to fusion plasmas. Perfectly modeling turbulence is still and will for the foresee

able future be an outstanding problem [1], [2]. Capturing the physics of plasma 

turbulence is even more challenging, due to the presence of charged fluids and 

electro magnetic fields [3], combined with the complex dynamics already seen in 

the turbulence in neutral fluids. This thesis has sought to make a contribution 

in improving the present computational strategies employed in two types ( a ID 

model and a 2D model) of turbulence simulations.

5.1 Application of the parareal algorithm to turbulence

The successful implementation of the parareal technique [4] to turbulence model

ing serves as the major achievement of this thesis. The value of this very non intu

itive technique lies in the fact that it solves a time-dependent initial value problem 

by time parallelization. A priori success could not be guaranteed, in fact, not ap

parently expected, due to the very high sensitivity of turbulent systems to initial 

conditions, combined with exponential divergence of lagrangian trajectories.

Turbulence simulations typically involve a wide range of timescales often span

ning more than 10 orders of magnitude. Resolving the micro turbulence of individ

ual eddies makes long time simulations virtually impossible due to the extremely 

large wall clock times required for these calculations. The only alternate approach 

is to use effective transport coefficients and assume unchanging or frozen plasma 

profiles to make long simulations. Modern supercomputers do offer a large num

ber of CPUs (of the order of 100000), but even the state of the art fluid codes for 

turbulence, using space parallelization, scale only upto a few thousand processors.

Prior to this present research, the parareal algorithm had been applied to many 

"simple" ("simple" when compared to turbulence) problems [5], [6], [7], [8], [9], 

[10], [11], [12], [13], [14]. The seminal paper on this subject, by Lions et ah, in 2002

[4], is considered a pathbreaking formulation for numerically solving time depen

dent problems. However, despite its success with problems of much less complex
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ity, the parareal algorithm, to the best of our knowledge, was never successfully 

applied to fully developed turbulence simulations.

Although in this work, the algorithm has been applied to systems of plasma 

turbulence [15], [16], [17], the models involved are very similar to a much wider 

range of problems. The parareal scheme has been shown to work for a dissipa

tive trapped electron mode (DTEM) model for drift wave turbulence, involving 

the E x B nonlinearity [18] or the polarization nonlinearity or both. The model 

with the polarization nonlinearity is similar to the Hasegawa-Wakatani model [19],

[20], also described in [16]. The polarization nonlinearity is similar to the nonlin

ear term in the two dimensional Navier Stokes equation for incompressible fluids. 

The model is also analogous to the quasi-geostrophic equation used to describe 

planetary flows. The E x B nonlinearity results in a direct cascade of energy, while 

the reverse is true for the polarization nonlinearity.

The parareal algorithm involves two propagators, namely, a coarse solver and 

a fine solver. The coarse solver employed for the algorithm used a reduced grid in 

Fourier space, implying calculations without the highest modes in k-space, which 

are otherwise present in the actual simulation. Combined with the reduced grid, 

the coarse solver also used a coarser timestep for faster computation with the 

Runge Kutta solver. The Runge Kutta solver was a replacement for the more ac

curate, but computationally intensive, propagator used by the fine solver. The 

parareal algorithm not only yielded converged solutions with this case, but also 

led to a computational gain close to a magnitude, which is very promising for a 

system as complex as this.

This thesis presents a detailed account of various choices for the coarse solver 

that may be employed for the parareal algorithm. Some of these options have not 

been effective for the turbulent system explored in this work, but those choices 

may prove to be useful in some other cases. The potential for success for various 

solvers, depending on the physics as well as the numerics of a particular problem 

are discussed.

This work also introduces a phenomenological model for the convergence rate 

of the parareal solution in case of the turbulent system involved. The purpose of 

this model is to attain predictability about the different parameters related to the
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parareal simulations and the corresponding convergence to achieve optimum per

formance. The plots for the gain in case of strong scaling and for the work done 

per processor in case of weak scaling match reasonably well with the theoretical 

predictions made by the model. This research also delves more into the details of 

the characteristics of convergence of the parareal solutions, and further explores 

the model for the convergence rate for the parareal scheme. A systematic study 

is made for various options that may be used as the coarse solver for the parareal 

algorithm, to estimate the roles and dependencies of the different parameters in

volved in the convergence.

5.2 Noise in transport model

As another contribution to the improvement of turbulence simulations, a ID  trans

port model was addressed. Specifically, the effect of noise in such a transport 

model has been studied as the first part of this thesis. Prior to the start of this re

search, the oscillatory behavior of the density fluctuation in a ID envelope model 

was extensively studied in [21], [22]. The simulations of fusion plasma, based on 

this model, already showed the transition to a high confinement region due to E x 

B shear flow suppression of turbulence. In [22], it was also observed that a regime 

existed where the damping of turbulence due to shear flow was comparable to the 

growth rate. The onset of the oscillations was also found to be in the latter region.

In the previous work just discussed [21], [22], the simulations made reason

able agreement with experimental results at the Tokamak Fusion Test Reactor [23]. 

However, the propagation length of the observed waves was unphysically large. 

The effects of noise as a surrogate for turbulent decorrelation on the propagation 

distance of the waves were explored. It became apparent that the addition of noise 

to the system led to both enhancement as well as reduction of the correlation of 

the waves, depending on the amount of noise applied. This result, though very 

interesting, and possibly seen for the first time in an envelope model of turbu

lent plasma, agrees well with the numerical observations made in other reaction 

diffusion systems [24], [25], [26]. In our simulations, decorrelation particularly oc

curred when a high amplitude of perturbation was applied to a large number of 

sites or points in space. This result implies that noise may be used as a surrogate
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for turbulent decorrelation in real turbulence models.

5.3 Future work

The research conducted as part of this thesis ushers in a lot of opportunities in 

the realm of computational study of turbulence. The application of the parareal 

algorithm discussed here involves three models of fusion plasma. However, this 

can and should be extended to other turbulence models as well.

More options for coarse solvers will need to be explored, particularly for new 

models, for optimum convergence rate and speedup.

Time parallelization has only been explored here. However, combining this 

technique with space parallelization is likely to improve the computational gain. 

Moreover, in the current scheme, processors that have attained convergence re

main idle for the rest of the parareal cycles, while calculations are performed on 

other processors. Reuse of these idle processors may greatly contribute to increas

ing the efficiency. Thus, a combination of space and temporal parallelization, ac

companied by processor reuse in the parareal technique may lead to utilization of 

processors and supercomputing resources that has not yet been achieved.
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Outline
★introduction ... turbulence 
★introduction ... fusion 
★B r ie f  overview of our work with 
noise in 10 model
★Motivation for parareal algorithm
★  Overview of algorithm

-Modification to algorithm
★  Application
★  Results tk Conclusion

“Tâ e /~Cnn̂  AA.eisg.et71 c>
•To make fusion simulations realistic, improvement of 
simulation of fusion plasmas using a hierachy of models, is 
important.
•Noise in 1 -D Transport Model can improve its 
performance.
• Dynamics of turbulent transport at long timescales is 
computationally intensive.

• Need methods to speed up.
•Space parallelization - only known technique to parallelize. 
•Parareal algorithm parallelizes time domain - is an 
innovative technique that may be applied for parallelization 
to achieve computational speedup.

PARAREAL ALGORITHM: PARALLELIZES TIM E  
DOMAIN. AND WORKS FOR A TURBULENT 
SYSTEM .

Characteristics of a Turbulent System
• One way of deminishing gradients in nature is TURBULENT 
TRANSPORT.
• Ubiquitious in nature.
• High dimensional chaotic system - so, state of system very 
sensitive to initial values.
• Many degrees of freedom.
• High Reynolds number ( > 4000).
• Existence of eddies at multiple scales, and non-linear 
interaction between them.

Vorticity in a 
turbulent system

• Example of 
turbulent system: 
Fusion plasma
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For Fusion :

•Typically, plasma at 100 million K 
• Maximize nTI (Lawson criterion)

^  . Confinement
DenSltl' J Time

Temperature

Confinement :
* Gravitational confinement - as in stars
• Magnetic Confinement of plasma 
•Inertial confinement

Problems ...

Hot core, cool walls - but 
nature abhors gradients

Turbulence relaxes the 
gradient.
Turbulent transport 
reduces confinement 
time.

Challenge : TO CONTROL THE 
TURBULENT TRANSPORT

ut- Miertic/u/:
A u l lik e

A'lfr/e-C
/  h i O t'en ’ia v

* .j ,

Magnetic Confinement

Most devices are toroidal shaped.

Used in IT E R , D I I I - D , J E T , J T - 6 0  . . .

Hierachy of numerical modelling 
- to study turbulence

• 1- 0 - Envelope models, simple, fast, but 
dynamics may not always be realistic. However, 
often used for real experiments.

• i'.- - Models using primitive equations.

•3-D fluid model <& 3-D particle model - Also use 
primitive equations. Realistic, but, much more 
complicated computationally.

Waves in the model

-'iytiumi'.v um l ha s  phy£»ref p^op-jgot'ri^ vvavfi*.

* But, waves propagate unphysicaliy far possibly due to lack of 

turbulent decorrelation in an envelope model.

* Nwsso odderf to r<*ecMon d 'ffuoon esfiatfc-r* h-.is tnctr, fourd tr 

5iW)i?iCr!*i My effect wnve propoor; iw ;.

•So we added noise to see its effect

The noise was varied in 2 ways:
• Amplitude of Noise
• Number of sites perturbed
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Results -  Key Points
■In a region of low noise amplitude, 
correlation length increases with 
amplitude, consistent with noise 
enhanced propagation in ether systems 1

• A large number of sites perturbed 
by a targe amplitude noise - 
reduced correlation

S-*
noise =■ [tunplilude)- x ijtlkrexh)

-i \ . P aper in p rogress

Motivation

• Simulations of fusion plasma is numerically very challenging - 
e.g., studying long time evolution (hundreds or thousands of 
eddy decorrelation times) of the transport dynamics is needed to 
understand turbulent transport on profile evolution timescales (in 
many plasmas and neutral fluids).

• Space parallelization is not enough.

• Is  time parallelization an option? Well, parareal algorithm has 
been reported to haw given significant speedup for simple 
codes.

• Had not (yet) been applied to a turbulence code.

Parareal Algorithm * Distinct in many ways

• Algorithm first proposed by Uons et ai. in 2001.
• Parallelizes in time, despite the sequential nature of 
the time domain.
■ Very non-intuitive as this is an initial value problem, 
and the result of each time step should depend on 
that of the previous timestep. However, in this case 
“timesteps” (chunks) are solved in parallel.

■ Decomposition of space domain - hithereto been the 
only approach to solve partial differential equations 
using parallel processors.
• Uses predictor - corrector approach.

h(ier& cAy - JZZ) P rim itive-

Pararat/'

& nacr fecbtiptu. tuj'/w fe/ic-e [U-

r  r
Oven'iacr #T

Pan:ran 'O riliiM

F  is a propagator evolving the function (energy(t)) from 
initial time, to, to a later time ...

= Gai (■*©')+Fjt (̂ >) - Gax
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F is a 
initial

I

propagator evolving the function (energy(t)) from 
time, to, to a later time ...

■ - And

PO PI I’* I'J Pt !■>

=  G j i  + FAt (-4)) - &At (4 ))

F is a 
initial 
G - f

I

propagator evolving the function (energy(t)) from 
time, to, to a later time ...  

aster but inaccurate propagator

 ̂ _ U u w  ̂  ̂  ̂iS _  ̂ _ ti ’ 

PO PI P2 PJ PI P5

*i+\ = ̂ A t  (^®*) + F At (-4)) - Ga  (^))

F is a propagator evolving the function (energy(t)) from 
initial time, to, to a later time ...
& - faster but inaccurate propagator
Solvers 6 & f  alternate

New S  O ld &

F is a propagator evolving the function (energy(t)) from 
initial time, to, to a later time ...
& - faster but inaccurate propagator

F  is a propagator evolving the function (energy(t)) from 
initial time, to, to a later time ...
& - faster but inaccurate propagator 
Solvers G 4 F alternate

New S  Old G

Basic Algorithm
k = 0 to (N -l),
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A Modification to the Algorithm

In  standard parareal algorithm, at the k** iteration, 
the sequential solver, 6  is started from processor 
Pk . However, if the algorithm is working 
successfully, n processors have attained convergence 
at the k * iteration, where n > k. We have used 
this characteristic to improve the algorithm.

We replaced Pk by Pn as the starting point for & 
and all subsequent calculations at iteration k. This 
change led to a quicker convergence of the entire 
time series.

Success of Algorithm Depends on 
Multiple Factors

Algorithm always converges if k=N.

But. success in achieving significant speedup if

•k<<N.
& is much cheaper than P.

• ‘'6aad" &■ Solutions converge •"Bad" &■ So lutions diverge

• No "fixed recipe" for G !

• D espite  solutions being very  sen sitive  to in itia l conditions fo r  

turbu lent o r chao tic  system s - it  is possible to choose G.

Parareal Algorithm has been successfully 
applied to the Lorenz System

Ref: M  J .  Gander &  E .  Hajrer(2008)

dr_pr=50dt. 32 processors

F is a propagator evolving the function (energy(t)) from 
initial time, to, to a later time ...
6  - faster but inaccurate propagator 
Solvers & & F alternate

'ica tu H o

Pararea./- . . .

In Region explored, varying Chunk-Size 
does not affect k, required for 

Convergence

»
'\aaaaa/w v V\A/#

s o t s  A time for

r  & E .  Hairer(2008)

Estimation for time gain:
I f  convergence in k=10 with 180 proces 
6  is neglected,
time^Hai = 18 * timepmr î Ref: MJ-Gan*
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Normalized error decreases with increasing 
Iteratio ns

N'onuulized error fur Lorenz system

1

As the solutions 
normalized erro

S A  '
\a J

■ 'vV,
\

solution, the 
olerance.

converge towards the serial 
r reduces below prescribed t

pe-rfv
! -L„D

Two-nonlinearity Mode! for DTEM

'  "fir,""D̂ -i Vi, —-----<b <>y
K (1H  —

(V j.fl X z) - Vii/^’V if i ) )  ^ 0

. V<(/vU2
' 2Lt,L; K-H

. ,'L,
* Evolution solved by spectral code in k*. ky space, often of 

size 385 x 385:

Oh i; + iky J
Ot i -f k2f<i

Control knobs

f i_-{nt:r„N̂ ‘‘+̂ ...vrL)=1 + A />,

■ to which sources Tk (in k space) and sinks Sk may be added 
• an external shear at (kK?0.ky=tl) may be added to explore its 
effects on turbulence transport.

Turbulent system with E  X  B non linearity

Vorticity in turbulent 
system with EXB non 
linearity

Power Spectrum in 
k space

\ ' ’
■ A  [ '
V'"- V' \
V / f ‘“1

L

/VltH'uL^Jrfiin. i/ie> Ji#rc/u^

to- & nuic/i Tur^u/eni

st/Man* ■ ■ -

Moving from the "simple" Lorenz system  to a 
much more complex Turbulent system . . .

*296450 non-linearly coupled equations (the Lorenz system had 3 
such equations) . . .  hence, the turbulent system is much more 
complex

Has positive 
Lyapunov exponent

Vorticity in turbulent 
system with 
polarization non 
linearity

Selecting Optimum Coarse Solver is 
Important

Different approaches can/should be explored to find 6. 
Any one of them, or a combination of them, may work :

• Some of the physics may be ignored when solving 
with 6, to achieve speedup.
* 6  can be same as F , but may be solved over a 
coarser k-mesh (or spatial grid).
•6  may be same as F, but may be solved with a 
larger timestep (dt) and less accuracy.
•Use a different 6.
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Reducing the Grid S ize  in K-space  
speeds &.

Grid for F
Grid for G

only the core portion of the grid used in F was used in G. 
But, core should be big enough to include dissipation scales.

Convergence is again found with 
reducea k-space & larger dt in G

Turbulent system with polarization non linearity

Convergence a t 7  iterations fo r  640 processors.

Total energy of the system is used for convergence measurement.

Modification to the /Algorithm significantly 
reduces the Number of ite ra tio ns needed foi 

Convergence

For a fixed chunk size=160, convergence occurs at 22 
iterations for 160 processors with the modification to 
the scheme. With the unmodified version, for the same 
chunk size with 80 processors, 53 iterations were 
required for convergence!_____________________________________

Convergence is found with reduced 
k-space A larger dt in 6

Turbulent system with E X  B non linearity

\j

Convergence a t 34 iterations fo r 80 :
processors.

The error fa lls o ff with iterations. 

Total energy of the system is used for convergence measurement.

. . .

/\  (TJuxyrelccaP/\iu(P/Sifysid CK

E f/za^  z cmjia/
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The Scaling varies with the Chunk Size oer 
Processor as well as the total Simulation Time
S tra n g  Scalin g :

*Total simulation time (ntstep) constant.
‘ Number of processors varied.

< So. the chunk size decreases linearly with increasing number 
of processors.

•Ideally, T pa = 1/N.

W ea k  Scalin g :

•Chunk size constant.

•Number of processors varied.

•So, the total simulation time (ntstep) increases linearly with 
the processors.
•Ideally, Tpa = constant .

Hpa depends on 0& a

For a fixed 0 , Hp* decreases with increasing a . 

For a fixed a , Hpa increases linearly with 0 .

Replacing old Solver in 6  with Runge-Kutta 
increases 0

Time for typical F  runs for 
NT5TEP= 25600:25.92hrs= 1555. Zmins
Timings for serial runs in G using Runge Kutta with kmax=72 (for 
NTS nEP=25600):

G solver Time (mlrrs) Beta
RK2,dl_G=2«Jt_F 14.56 106.61
RK2,d1_G=6dt_F 3.625 429
RK2,dt_G=l6dl_F 1.82 654.5
RK2,dt_G=32dt_F UNSTABLE (NANs)
RK4,dt_G=2dt_F 29.2 53.26
RK4,d1_G=6dt_F 7.25 214.51
RK4,d1_G=l6di_F 3.651 426
RK4,dl_G=32dl_F 1.82 654.5
RK4,dl_G=40dl_F 1.46 1065.2
RK4,d1_G=64d1_F 0.91 1709
RK4.dt_G=80di_F UNSTABLE {NANs)

Strong Scaling : Model predicts Two Regimes with 
NumBer of Processors exist for the Sain due to 

Parallelization

The gain. Hpa may be defined as :

*r,= ̂ = M ?  + w)r Where 4 *<") = ""

So *m=[jv<'G +w)]
Hence, the number of processors giving maximum gain:

Hence, the two regimes are:

H P A ~ N ' ~ a,N  « 0  H P A ~ 0 N - « , N  »  P

Convergence rate has two parameter regimes

Convergence rate is low for t  < t i and is b for t > t 2

Balancing 0  & k(N) maximizes H
cases with kmax_pr=72 Iterations to converge Time for coftvergence(hr)

VODPK in G 1t 2.88

R K  order4,dt_pr=2dt_ser 11 2.04

R K  order4,<Jt_pr«4<W_ser 11 1.76

R K  order4,dt_pr=8dt_ser 10 1.355

RK  order4,dt_pr=16dt_ser 11 1.43

RK  order4,dt_pr=40dt_ser 11 1.326

R K  order2,d1_pr=2dt_ser 10 1.58

RK  order2,dt_pr=4dt_ser 10 1.375

RK  order2,dt__pr=8dt_ser 10 1.245

R K  order2,dt_pr=16dt_ser 12 1.47
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Strong Scaling : Using Runge-Kutta solver in & 
greatly enhances the gain, H

H - T js e r  /  T_PA 

A  gain of JO ,69  Is achieved with 400  processors.

Seria l A Parareal Solutions : Similar 
(Movies)

SeHft! Swfutlen Parered Solution

Future Work

Further improvement can be pursued by:

•new strategies to improve G (L.Chacon, ORNL),
• hybrid parallelization (space ♦ time),

•reuse of processors already having attained convergence, 
•portable parareal framework (L.8erry, W. Elwasif, ORNL)

W eak Scaling : Using Runqe-Kutta solver in 6  
greatly enhances the gain, H

H = T_ser / T_PA W = T_PA / T_scr(chunk;

A  gain o f 8 .80b  is achieved with 88 processors.

Conclusions

F the parareal 
> understand turbulence A

• Improvement of the  1D model A implementation of 
algorithm to 2D mode! enhance our ability to underst 
turbulent transport.
•Noise added to a ID reaction diffusion model can act as a 
decorrelation surrogate.
• W ith the  success o f the  paroreol algorithm, the  study of the  
dynamics of turbulent transport a t  transport tim escales and other 
re levant problems in fusion plasma may be made possible.
• Parallelization in time - possible for a turbulent system and Parareal 
Algorithm works for such a case. Two coses hove been explored.
• For a successful application of the parareal algorithm to a turbulence 
code, a proper choice of the coarse solver,S, is critical.

• S  with a reduction of grid size A use of a Runge Kutta solver 
appears to work best for our case.

• A successful implementation of the paroreol algorithm may greatly 
enhance computational efficiency, and larger scalability with respect to 
processor numbers.

L>
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