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Abstract

Environmental conditions in the Subarctic Northeast Pacific Ocean are an 

important component o f North American climate patterns, as well as a potential driver o f 

Northern Hemisphere climate variability. The North Pacific Ocean is also the terminus 

o f modern global thermohaline circulation, suggesting that paleoceanographic records 

from this region have the potential to preserve evidence o f both climate forcing and 

response on regional and global scales. A suite o f high-resolution marine sediment cores 

collected from the G ulf o f Alaska margin in 2004 provide new paleoceanographic records 

at decadal and centennial timescales from fjord and continental slope environments. Key 

findings include: (i) decadal oscillations in marine productivity correlate with previously 

identified terrestrial records, indicative o f forcing by the Aleutian Low pressure cell; (ii) 

the standard binary model o f the modem Pacific Decadal Oscillation (PDO) as the major 

pattern o f ocean-atmosphere variability is insufficient to describe the full range o f 

Holocene paleoenvironmental fluctuations observed in G ulf o f Alaska records o f marine 

productivity, freshwater discharge, and bottom-water anoxia; (iii) the North Pacific 

ecosystem is a sensitive recorder o f  abrupt climate events observed in global records; and 

(iv) the fjords o f  Southeast Alaska contain a detailed record o f  volcanic activity and fall

out events useful for developing composite chronological models o f sedimentation that 

correlate with other regionally important stratigraphic records. Collectively, the results 

presented here will potentially redefine current theoretical models o f atmosphere-ocean- 

ecosystem variability in the North Pacific Ocean, as well as contribute to a growing body 

o f  high-resolution paleoenvironmental time-series datasets from the high latitudes.



IV

Signature P a g e ....................................................................................................................................... i

Title P ag e ............................................................................................................................................... ii

Abstract................................................................................................................................................iii

Table of C ontents..............................................................    iv

List o f F igures...................................................................................................................................... ix

List o f T ab les .............................................................................................................................   xii

List o f A ppendices........................................................................................................................... xiii

A cknowledgem ents............................................................................................................................ 14

Chapter 1 Introduction.................................................................................................................... 1

1.1 References........................................................................................................................4

Chapter 2 M arine tephrochronology o f the Mt. Edgecumbe Volcanic Field,

Southeast Alaska, U SA .....................       7

2.1 A bstract............................................................................................................................ 7

2.2 Introduction......................................................................................................................8

2.2.1 Geologic Setting .............................................................................................................8

2.3 M ethods......................................................................................................................... 10

2.3.1 G eochronology............................................................................................................. 13

2.4 Results.............................................................................................................................14

2.5 D iscussion....................................................................................................................  15

2.5.1 Correlations: MEVF suite............................................................................................ 15

Terrestrial-marine relationships with the MEVF su ite ................................................. 16

2.5.2 Correlations: EW0408 tephras and non-MEVF contemporaneous deposits .17

EW 0408-22JC...................................................................................................................... 17

EW 0408-33JC at 12.78 m bsf.............................................................................................19

Table o f Contents

Page



EW0408-33JC at 16.18 m bsf and EW0408-47JC at 6.46 m bsf ( I ) ..........................20

EW 0408-25M C3.................................................................................................................. 21

EW 0408-40JC....................................................................................................................... 22

2.5.3 Implications and volcanic hazards............................................................................22

2.6 Conclusions................................................................................................................... 24

2.7 Acknowledgem ents..................................................................................................... 25

2.8 References......................................................................................................................26

2.9 Tables..............................................................................................................................33

2.10 Figures.............................................................................................................................37

2.11 Appendix........................................................................................................................47

Chapter 3 Holocene evolution of the Pacific Decadal Oscillation in the Gulf of 

A laska...................................................................................................................................................54

3.1 A bstract.......................................................................................................................... 54

3.2 Introduction................................................................................................................... 55

3.3 Comparison between EW0408-33JC and regional paleoclimate records 58

3.4 Role o f the Intertropical Convergence Zone in the North Pacific O cean 60

3.5 References..................................................................................................................... 62

3.6 A ppendix........................................................................................................................68

Chapter 4 High-resolution paleoproductivity evidence for Holocene evolution of the 

Aleutian Low Pressure System from coastal Qords in the Subarctic Northeast 

Pacific O cean.....................................................................    72

4.1 A bstract.......................................................................................................................... 72

4.2 Introduction................................................................................................................... 73

4.2.1 Site descriptions............................................................................................................75

4.2.2 Philosophy o f approach............................................................................................. 79

4.3 M ethods..........................................................................................................................81

4.3.1 Core descriptions.........................................................................................................81

4.3.2 Geochronological approach.......................................................................................81

V

Page



VI

4.3.3 Biogeochemical approach...........................................................................................82

4.3.4 Statistical treatm ent..................................................................................................... 85

4.4 Results.............................................................................................................................86

4.4.1 Lithologies and geochronology................................................................................ 86

EW 0408-11JC....................................................................................................................... 86

EW 0408-22JC..................................................................................   88

EW 0408-33JC....................................................................................................................... 89

EW 0408-44JC....................................................................................................................... 90

4.4.2 Paleoproductivity and organic matter trends......................................................... 91

4.4.3 Terrestrial OM and detrital accumulation...............................................................93

Inorganic geochemistry and bulk lithic trends in EW0408-11JC, -22JC, and -33 JC

...................................................................................................................................................94

Organic geochemistry trends in EW 0408-11JC ........................................................... 97

4.4.4 Bottom-water an o x ia ...................................................................................................97

4.5 D iscussion....................................................................................................................101

4.5.1 Site-specific variability in fjord sites..................................................................... 101

4.5.2 The Holocene/LGM deglaciation...........................................................................102

4.5.3 Common Holocene trends in fjord-based paleoenvironmental reconstructions

108

4.5.4 High-resolution time-series analysis o f fjord paleoenvironmental da ta  I l l

4.6 Conclusions..................................................................................................................113

4.7 Acknowledgements....................................................................................................114

4.8 Figures...........................................................................................................................115

4.9 T ables.............................................................................   134

4.10 References....................................................................................................................138

4.11 Appendices...................................................................................................................147

Page



Page

Chapter 5 Decoupling o f the coastal marine ecosystem and glaciomarine CordiJleran 

Ice Sheet dynamics in the G ulf of Alaska during the Last Glacial 

M aximum/Holocene transition ................................................................................................. 163

5.1 A bstract........................................................................................................................ 163

5.2 Introduction................................................................................................................. 164

5.2.1 Modern environment and paleoceanographic setting ........................................ 165

5.3 M ethods........................................................................................................................ 170

5.3.1 Core description..........................................................................................................170

5.3.2 Geochronological approach..................................................................................... 170

5.3.3 Biogeochemical approach........................................................................................ 170

5.4 Results...........................................................................................................................175

5.4.1 Core lithology and geochronology........................................................................ 175

5.4.2 Paleoproductivity and redox-sensitive elem en ts................................................ 176

5.4.3 Detrital accumulation and mineralogy...................................................................179

5.5 D iscussion....................................................................................................................182

5.5.1 Relationships between productivity and environmental proxies during the

Last Glacial Maximum and the H olocene........................................................................ 182

5.5.2 The Bolling-Allerod in the northern G ulf o f  Alaska: decoupling between

glaciomarine sedimentation and the North Pacific marine ecosystem .......................187

5.5.3 Evidence for modulation o f the N cycle and productivity by micronutrient 

availability?.............................................................................................................................. 190

5.5.4 Carbon cycle perturbations during the Younger Dryas and 8000 yr BP? ... 193

5.6 Conclusions..................................................................................................................196

5.7 Acknowledgements....................................................................................................197

5.8 Figures...........................................................................................................................198

5.9 Tables........................................................................................................................... 208

5.10 References....................................................................................................................214

vii



Vlll

Page

Chapter 6 Conclusions................................................................................................................. 227

6.1 Future d irections.......................................................................................................230



ix

List o f Figures

Figure 2.1: Location map o f R/V Maurice Ewing marine sediment co res...........................37

Figure 2.2: Quaternary history o f terrestrial volcanic tephra deposits from the M EVF... 38 

Figure 2.3: (A) High-resolution linescan imagery, simplified lithology, tephra sample 

positions and GEOTEK geophysical measurements from core EW0408-40JC. (B) 

Volume magnetic susceptibility logs used to assist with identification o f cryptotephras in

cores EW0408-22JC, -33JC, and -4 7 JC .......................................................................................39

Figure 2.4: Depth-age relationships for EW0408 tephra-bearing marine sediment cores

................................................................................................................................................................ 41

Figure 2.5: Total alkali-silica diagram (A) and oxide variation diagram (B) o f individual

EW0408 tephra glass shards............................................................................................................42

Figure 2.6: CaO-K20  oxide variation diagram for representative EW0408 tephra

geochemical units...............................................................................................................................43

Figure 2.7: Correlation between published lake core from Baranof Island (Fig. 2 .1; Riehle

et al., 1992b) and EW 0408-40JC................................................................................................... 44

Figure 2.8: TAS and ternary oxide variation diagrams for EW0408 tephra deposits and

regionally significant tephra deposits........................................................................................... 45

Figure 2.9: Bathymetry o f Sitka Sound in relation to mapped subaerial pyroclastic flows

from the M EV F...................................................................................................................................46

Figure 3.1: Location o f cores EW0408-32MC3 and -33JC, high-resolution regional 

paleoclimate records, and generalized atmospheric and oceangraphic circulation o f the

Subarctic North Pacific O cean..........................   65

Figure 3.2: Biogeochemical proxy data from EW 0408-33JC ............................................... 66

Figure 3.3: Principal component analysis o f high-resolution paleoclimate da ta ............... 67

Figure 4.1: (a) Location map o f EW0408 sites along Gulf of Alaska margin. Dashed 

insets indicate extents o f (b) Baranof Island fjord sites and (c) the G ulf o f Esquibel.... 115 

Figure 4.2: August 2004 (a) temperature and (b) salinity water column d a ta ................ 117

Page



X

Figure 4.3: Idealized circulation in a temperate ice-free fjord from southeast Alaska... 118

Figure 4.4: Southern Alaskan fjord EW0408 core lithologies............................................... 119

Figure 4.5: Composite age-depth models for EW0408 marine sediment c o re s ................120
I

Figure 4.6: Bulk mass accumulation rates calculated based on composite AMS C age-

depth m odels..................................................................................................................................... 121

Figure 4.7: Sedimentary organic matter biogeochemical relationships, (a) Limited 

correspondence between carbonate-free TOC and opal values suggests TOC is not a

robust indicator o f  export productivity, (b) OM provenance analysis................................ 122

Figure 4.8: Opal productivity proxy data for nearshore southeast Alaska fjord sites.......123

Figure 4.9: Refractory element bivariate diagrams (a, b) for cores EW0408-11JC, -22JC,

and -33J C ........................................................................................................................................... 124

Figure 4.10: Lithic mass accumulation rates (thick lines) and lithic concentrations (thin 

lines) for (a) cores EW 0408-11 JC and -22JC for the last 18,000 years, and (b) cores

EW0408-11JC, -22JC, and -33JC for the last 7,500 y ea rs .....................................................125

Figure 4.11: EW 0408-11JC record o f sedimentary 5 I3C (thick line) and C/N ratio (thin

line) o f carbonate-free organic matter..........................................................................................126

Figure 4.12: Redox-sensitive element concentrations for cores EW0408-11JC, -22JC, and

-33JC ................................................................................................................................................... 127

Figure 4.13: Paleoanoxia record from EW 0408-11JC.............................................................128

Figure 4.14: Paleoanoxia record from EW 0408-22JC.............................................................129

Figure 4.15: Paleoanoxia record from EW 0408-33JC.............................................................130

Figure 4.16: The Late glacial/Holocene transition recorded in EW 0408-11JC............... 131

Figure 4.17: Regional Holocene sub-millenial reconstruction o f the nearshore G ulf of

Alaska marine environm ent  .................................................................................................132

Figure 4.18: REDF1T Lomb-Scargle Fourier time-series analyses o f high-resolution

EW0408 opal mass accumulation rate d a ta ............................................................................... 133

Figure 5.1: (a) Location o f EW0408-85JC and generalized surface circulation o f the 

North Pacific O cean.........................................................................................................................198

Page



X I

Figure 5.2: Lithological characteristics o f EW0408-85JC and age-depth m odel 199

Figure 5.3: EW0408-85JC biogenic sediment concentrations for (a) total organic carbon

(TOC), (b) CaC0 3 , (c) opal, and (d) marine-derived TO C.................................................... 200

Figure 5.4: Bivariate relationships between opal and (a) TOC, (b) sedimentary 5 I3C, and

(c) sedimentary 5 I5N ....................................................................................................................... 201

Figure 5.5: Organic matter provenance diagram s.................................................................... 202

Figure 5.6: EW0408-85JC downcore results for opal, molar C/N ratios, carbonate-free

sedimentary isotope data, and redox-sensitive element concentrations.............................. 203

Figure 5.7: Refractory element ternary diagram .......................................................................204

Figure 5.8: EW0408-85JC downcore refractory element accumulation trends for niobium

relative to local glacal advance p hases .......................................................................................204

Figure 5.9: X-ray diffraction patterns and RockJock calculated com positions................ 205

Figure 5.10: Bivariate diagrams o f ICP-MS geochemical analyses and selected XRD

results ..................................................................................................................................................206

Figure 5.11: Holocene, LGM, and B-A Fe concentrations partitioned by mineral phase

 206

Figure 5.12: Productivity, N-cycle dynamics, and total iron availability in EW0408-85JC 

since the LGM ...................................................................................................................................207

Page



Table 2.1: AMS l4C dates constraining EW0408 tephras.........................................................33

Table 2.2: Mean glass EPMA analyses o f EW0408 tephra sam ples..................................... 34

Table 2.3: EW0408 tephra S1MAN similarity coefficients..................................................... 35

Table 2.4: Marine EW0408 - terrestrial MEVF correlations...................................................35

Table 2.5: Correlations between EW0408 marine tephras and contemporaneous deposits.

.................................................................................................................................................................36

Table 4.1: M odem physical fjord characteristics o f core sites...............................................134

Table 4.2: EW0408 core details.................................................................................................... 134

Table 4.3: Geochronology results for EW0408 cores.............................................................. 135

Table 4.4: Principal component analysis o f redox-sensitive elements in EW0408-33JC

...............................................................................................................................................................136

Table 4.5 Late glacial/FIolocene deglacial transition phases in EW 0408-11 JC and inferred

paleoenvironmental conditions......................................................................................................137

Table 5.1 Mineralogical analysis calculated from composite RockJock model fit o f

measured XRD pattern....................................................................................................................208

Table 5.2 EW0408-85JC biogeochemical dataset.................................................................209

Table 5.3 XRD and ICP-MS nonparametric correlations that exceed 95% significance 

level..................................................................................................................................................... 213

List of Tables

Page

Table 6.1: Significant paleoclimate datasets generated by the author for this w o rk ....... 231

Table 6.2: The analytical contributions o f the author for the work presented in this 

volume................................................................................................................................................ 232



Appendix 2.1 Individual tephra grain analyses........................................................................... 47

Appendix 3.1: Bulk sedimentary organic matter (OM) provenance diagram after (28) ..  68 

Appendix 3.2: Correlation coefficients o f EW0408-32MC biogeochemical proxies and

decadal-scale North Pacific climate ind ices................................................................................69

Appendix 3.3: Morlet wavelet time-series analyses for (a) EW0408-33JC opal M AR data

and (b) Mt. Logan 5 ,80  reco rd .......................................................................................................70

Appendix 3.4: Depth-age models for marine sediment cores (a) EW 0408-32MC and (b)

EW 0408-33JC..................................................................................................................................... 71

Appendix 4.1 EW0408-11JC biogeochemical data.................................................................147

Appendix 4.2 EW0408-22JC biogeochemical da ta ................................................................149

Appendix 4.3 EW0408-33JC biogeochemical da ta ................................................................ 152

Appendix 4.4 EW0408-44JC biogeochemical d a ta ................................................................158

Appendix 4.5: EW0408-11JC downcore productivity proxies.............................................159

Appendix 4.6: EW 0408-22JC downcore productivity proxies.............................................160

Appendix 4.7: EW 0408-33JC downcore productivity proxies.............................................161

Appendix 4.8: EW 0408-44JC downcore productivity proxies.............................................162

List of Appendices

Page



xiv

The first and by far the most important person involved in this work is my 

wonderful wife Jennifer; her dedication and patience are worthy o f song and poem. My 

family and friends were also important, but most notably my mother whom fostered an 

early love o f science in me. I am indebted to my advisors Bruce Finney and Jim Beget. 

Their guidance over the last five years has been instrumental in my professional 

development. I also thank my graduate advisory committee members: Nancy Bigelow, 

Mat Wooller, Sathy Naidu, and Dean Stockwell. In the laboratory, I have benefitted 

greatly from discussions with Andy Krumhardt, Nicole Misarti, and Mark Shapley, as 

well as the dedication o f Tara Borland, Jamie Coon and Lisa Baraff. Ken Severin, Tom 

Trainor, Karen Spaleta, and Thomas Kircher at the UAF Advanced Instrumentation 

Laboratory, and Tim Howe and Norma Haubenstock at the Alaska Stable Isotope Facility 

provided the high-technology toys I have now become addicted to using for good. I am 

also appreciative o f Shelly Baumann at the UAF Graduate School for assistance with 

formatting o f this dissertation.

Over the course o f this project, I have also been honored to work with a number 

o f  colleagues all over the United States: John Jaeger and Gillian Rosen at the University 

o f Florida; Joe Stoner, Alan Mix, Fred Prahl, and Maureen Davies at Oregon State 

University; Tom Ager, John Barron, and Walt Dean at the US Geological Survey; Ellen 

Cowan at Appalachian State University; Ross Powell at Northern Illinois University;

Sean Gulick at the University o f Texas at Austin; Larry Mayer at the University o f New 

Hampshire; and Sally Zellers at the University o f Central Missouri. At one time or 

another, all o f these investigators have had to deal with a dumb question from an Alaskan 

graduate student -  their patience during this process has been greatly appreciated.

Several funding agencies have supported me during my graduate student career.

In particular, funds provided by the Center for Global Change and the Cooperative 

Institute for Arctic Research through cooperative International Polar Year agreement 

NA17RJ1224 with NOAA were instrumental. Additional funds awarded through the 

UAF Graduate School’s Thesis Completion Fellowship Program were also vital.

Acknowledgements



1

Chapter 1 Introduction

Earth’s climate history is complex, and a comprehensive description o f its past 

variability is essential for future prediction. The geological sciences have contributed 

much to the science o f paleoclimatology at timescales ranging from millions o f years to 

seasonal variations, yet the spatial coverage o f high-quality records remains sparse. This 

scarcity complicates climate modeling efforts, as do parameters that are not preserved in 

the sedimentary record. Nevertheless, these complex models are the only tools capable 

o f predicting future climate change and are thus a necessity for preparing human society 

for these changing conditions (Randall et al., 2007). Yet general circulation models are 

only capable o f describing the datasets that they incorporate, thus as a shared necessity, it 

is imperative the scientific community increases the spatial and temporal resolution o f 

high-quality paleoclimatology datasets (Lohmann, 2008).

The G ulf o f Alaska is a dynamic region for studying past climate histories. This 

basin dominates the Subarctic Northeast Pacific Ocean, an important component of 

Northern Hemisphere climate patterns with atmospheric teleconnections reaching as far 

east as the US Atlantic Coast (Trenberth and Hurrell, 1994), and as far south as the 

Sonoran Desert in northern Mexico (Latif and Barnett, 1994). The G ulf o f Alaska is also 

the terminus o f modem global thermohaline circulation (Broecker, 1991) which suggests 

any perturbation in the North Atlantic, Southern, or Indian Ocean deep waters will 

invariably manifest itself in the North Pacific as well. Modeling studies have also 

suggested that perturbations originating in the Subarctic Northeast Pacific Ocean can also 

drive abrupt climate events on global scales (Peteet et al., 1997; Kiefer et al., 2002).

Despite the obvious role the G ulf o f Alaska plays in modem climate, and by 

inference past climates, the G ulf remains one o f the most poorly studied regions in the 

world ocean, second perhaps only to the sea-ice covered Arctic Ocean. Several important 

high-resolution paleoclimate datasets have been recovered from the terrestrial margin o f 

the G ulf o f Alaska, including ice cores (Moore et al., 2002; Rupper et al., 2004; Fisher et 

al., 2008), paleovegetation records (Peteet, 1991; Mann and Peteet, 1994; Peteet and 

Mann, 1994), and lacustrine sediments (Finney et al., 2000; Finney et al., 2002; Anderson
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et al., 2005), yet none o f these data directly preserve ocean conditions in this region. 

Those paleoceanographic records that have been recovered from the region suffer either 

from poor core recovery (DSDP Site 178; Kulm et al., 1973), low temporal resolution 

(ODP Site 887; Rea et al., 1995), or insufficient length to resolve periods greater than a 

few millennia (Boughan, 2008).

Some o f the same processes that manifest themselves as important drivers o f 

hemispheric climate also make the G ulf o f Alaska and its margin a region o f extreme 

conditions. Collisional tectonics over the relatively short time interval o f the last 10 

million years have generated the massive Kenai-Chugach-St. Elias mountain complex 

adjacent to the G ulf o f Alaska with many peaks exceeding 5000 m in elevation within 25 

km of sea level (Gulick and Jaeger, 2003). These mountains have strong orographic 

effects on precipitation with local maxima o f 700 cm-yr'1, making this one o f the highest 

precipitation rates in the world. In turn, this precipitation drives a highly effective glacial 

erosion system with denudation rates exceeding 10 mm-yr'1 with minimal terrestrial 

sediment storage (Hallet et al., 1996). Marine sediment accumulation rates are 

correspondingly high, ranging from 0.02 -  >100 cm-yr'1 (Jaeger et al., 1998; W alinsky et 

al., 2009). Furthermore, oceanographic conditions in the G ulf o f Alaska support a 

diverse marine ecosystem with high seasonal primary productivity and several 

economically valuable commercial fisheries (M ueter and Norcross, 2002; Childers et al., 

2005). Taken as a whole, these environmental and ecological conditions are ideal for 

preserving a highly detailed sedimentary record o f paleoclimatic change from the G ulf o f 

Alaska.

The data presented in this dissertation are some o f the first results from cruise 

EW0408, a comprehensive geophysical and sediment coring survey conducted along the 

southern coast o f Alaska during the summer o f 2004 by the R/V Maurice Ewing. 

Sediment cores were collected between 55°N to 60°N latitude, spanning many o f the 

unique environments that dot the Alaskan continental shelf, including tidewater glacier 

bays, ice-free temperate fjords, deep-sea submarine fans, and the continental slope and 

shelf. This cruise was undertaken as an assessment for coordinating a future Integrated
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Ocean Drilling Program cruise, and included extensive high-resolution multibeam 

bathymetry mapping, seismic imaging, water column sampling, and benthic multicore 

and jum bo piston coring operations. Collaborations with workers at Oregon Statue 

University, University o f Florida, Appalachian State University, Northern Illinois 

University, University o f New Hampshire, University o f Texas at Austin, and the United 

States Geological Survey have all contributed vital elements o f the work presented here.

This dissertation focuses on results from the sediment coring portion o f the multi

disciplinary EW0408 cruise. The contributions presented here can be divided broadly 

into two categories: (i) establishing chronological constraints for the regional Late 

Quaternary sedimentary record, and (ii) developing high-resolution datasets o f 

paleoproductivity and paleoenvironmental change to reconstruct ocean, atmosphere, and 

ecosystem variability in the G ulf o f Alaska since the Last Glacial Maximum around 

18,000 years ago. Chapter 2 describes the Late Quaternary history o f marine volcanic 

ash deposition (tephrochronology) along the Alexander Archipelago in southeast Alaska, 

and uses the stratigraphy o f these deposits to establish a chronological framework for 

linking depositional records from marine and terrestrial environments along the G ulf o f 

Alaska margin. The remaining chapters are focused exclusively on paleoceanographic 

reconstructions, including: a decadal-scale record o f  productivity and sedimentary isotope 

accumulation trends for the last 8,000 years from a fjord on Baranof Island that reflects 

high-frequency climate changes driven by the Pacific Decadal Oscillation (PDO) and the 

Aleutian Low pressure cell (Chapter 3); a transect o f high-resolution fjord records that 

span the last 18,000 years and exhibit coherent patterns in productivity and 

biogeochemical proxies that reflect both decadal-scale PDO changes, and previously 

unknown millennial-scale regime shifts (Chapter 4); and a record from the continental 

shelf o f the northern G ulf o f Alaska that reflects basin-wide North Pacific Ocean changes 

and Cordilleran Ice Sheet dynamics since the Last Glacial Maximum (Chapter 5). This 

compilation is then summarized in Chapter 6 with a comprehensive outline o f major 

outcomes from this body o f research.
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Recurring themes between all o f these dissertation chapters include: use of 

radiometric techniques as geochronologic constraints; the effect o f relative sea-level 

change along this tectonically-active margin; changes in sedimentation regimes due to 

retreat o f the Cordilleran Ice Sheet and associated climate change; high spatial and 

temporal variability in sedimentology and organic matter composition between different 

depocenters along the G ulf o f Alaska margin; and the tightly coupled atmosphere-ocean- 

ecosystem structure that exists in the Subarctic Northeast Pacific Ocean. It is this last 

component that is the primary focus o f the paleoceanographic work, namely that use of 

records that preserve variations in export productivity and other parameters can be used 

to reconstruct both high-frequency climate oscillations and abrupt climate events.

Each o f Chapters 2-5 have been prepared as a series o f manuscripts intended for 

future publication. Chapter 2 has been written for the journal Quaternary Research, and 

has been accepted by the journal editorial board. Chapter 3 is a short article intended for 

submission to Science, while Chapters 4 and 5 have both been prepared for the journals 

Continental She lf Research and Paleoceanography, respectively.

1.1 References

Anderson, L., Abbott, M. B., Finney, B. P., and Bums, S. J. (2005). Regional
atmospheric circulation change in the North Pacific during the Holocene inferred 
from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quaternary 
Research 64, 21-35.

Boughan, M. M. (2008). "Paleoceanographic shifts in the G ulf o f Alaska over the past 
2000 years: a multi-proxy perspective." University of Alaska Fairbanks.

Broecker, W. S. (1991). The great ocean conveyor. Oceanography 4, 79-90.

Childers, A. R., Whitledge, T. E., and Stockwell, D. A. (2005). Seasonal and interannual 
variability in the distribution o f nutrients and chlorophyll a across the G ulf o f 
Alaska shelf: 1998-2000. Deep-Sea Research Part II-Topical Studies in 
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Chapter 2 Marine tephrochronology of the Mt. Edgecumbe Volcanic Field,

Southeast Alaska, USA1

2.1 Abstract

The Mt. Edgecumbe Volcanic Field (MEVF), located on Kruzof Island near Sitka 

Sound in southeast Alaska, experienced a large multiple-stage eruption during the Last 

Glacial Maximum (LGM) -  Holocene transition that generated a regionally extensive 

series o f compositionally similar rhyolite tephra horizons, and a single well-dated dacite 

(MEd) tephra. Marine sediment cores collected from adjacent basins to the MEVF 

contain both tephra-fall and pyroclastic flow deposits that consist primarily o f rhyolitic 

tephra and a minor dacitic tephra unit. The recovered dacite tephra correlates with the 

MEd tephra, whereas many o f the rhyolitic tephras correlate with published MEVF 

rhyolites. Correlations were based on age constraints and major oxide compositions o f 

glass shards. In addition to LGM-Holocene macroscopic tephra units, four marine 

cryptotephras were also identified. Three o f these units appear to be derived from mid- 

Holocene MEVF activity, while the youngest cryptotephra corresponds well with the 

White River Ash eruption at ~ 1 147 cal yr BP. Furthermore, the sedimentology o f the 

Sitka Sound marine core EW0408-40JC, as well as high-resolution SWATH bathymetry, 

both suggest that extensive pyroclastic flow deposits associated with the activity that 

generated the MEd tephra underlie Sitka Sound, and that any future MEVF activity may 

pose significant risk to local population centers.

'Addison, J.A., Beget, J.E., Ager, T.A., and Finney, B.P. (accepted). Quaternary 

Research.
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2.2 Introduction

Tephrochronology has long been recognized as an important tool for establishing 

regional correlations and constraining chronostratigraphic units in terrestrial areas that 

have extensive historic and prehistoric volcanism. Recent studies have also begun to 

utilize tephrochronology to correlate between terrestrial and marine sedimentary records 

in an effort to develop more complete and comprehensive chronologies o f regional 

geologic change (Stoner et al., 2007; Hillenbrand et al., 2008). Tephra correlations can 

provide precise tie points between widely separated terrestrial and marine proxy climate 

records, and can also be used to determine the reservoir age-correction factor for marine 

radiocarbon samples, thus providing an additional tool to constrain marine sediment core 

chronologies for calculating age-depth models (Sikes et al., 2000). The recognition of 

cryptotephra deposits has added further value to tephrochronological studies because of 

the prevalence o f  these units in several types o f marine and terrestrial sedimentary 

sequences (Turney et al., 1997; Davies et al., 2005), with cryptotephras typically 

comprised o f fine volcanic glass shards (<100 pm diameter) sparsely preserved and/or 

invisible within peat, lacustrine, marine, or ice core archives (Lowe, 2008).

This study reports on the marine tephrochronologic record o f southeastern Alaska 

using a suite o f sediment piston cores recovered by the R /V  Maurice Ewing  in 2004. 

Tephra samples were geochemically analyzed to chronologically constrain these 

sediment cores, as well as develop marine-terrestrial correlations for these fallout 

deposits. This paper is the first study o f coastal marine-terrestrial tephra correlations in 

the Subarctic Northeast Pacific Ocean.

2.2.1 Geologic Setting

Quaternary volcanism in southeast Alaska is dominated by the regionally- 

extensive volcaniclastic deposits o f the Mt. Edgecumbe Volcanic Field (MEVF), located 

on the southern end o f K ruzof Island near Sitka Sound (Fig. 2.1; Grewingk, 1850). The 

MEVF is composed o f two eruptive centers arranged along a northeast-southwest axis, 

and has had intermittent activity since 611 ± 74 ka (Riehle et al., 1989) with its most
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recent eruption between 4260 -  4820 calibrated years before present (cal yr BP; Riehle 

and Brew, 1984). Bathymetric surveys o f the adjacent Kruzof Island shelf have also 

revealed an additional extensive submarine volcanic field that was exposed during the sea 

level lowstand associated with the Last Glacial Maximum (LGM) and perhaps other 

glacial stadia (Greene et al., 2007).

Volcaniclastic deposits from the MEVF range in composition from basalt to 

rhyolite (Fig. 2.2) and reflect a stratified magma chamber source (Riehle et al., 1992a). 

Early eruptive products were dominated by basalt, basaltic andesite, and andesite; activity 

then transitioned to more silicic material that resulted in several extensive Latest 

Pleistocene and early Holocene tephra-fall deposits (Riehle et al., 1992b; Beget and 

Motyka, 1998). O f these silicic deposits, a single dacite unit MEd has been correlated 

regionally and well-dated to between 13,050 -  13,250 cal yrs BP (Beget and Motyka, 

1998).

The southeast Alaska margin has also experienced limited volcanism unrelated to 

the MEVF. Several small vents have generated small effusive basalt flows, but no major 

intermediate or silicic eruptive units unrelated to activity at MEVF have been observed 

(Eberlein and Churkin, 1970). A recent survey o f terrestrial peat bogs near the Juneau 

area found several cryptotephra deposits (Payne and Blackford, 2004; Payne et al., 2008), 

though surprisingly none o f these tephras share a geochemical affinity with published 

data on MEVF deposits. Payne et al. (2008) recognized a consistent ‘Lena tephra’ 

common amongst the five peat cores they analyzed. Although this Lena tephra was 

geochemically correlative with the White River Ash (WRA) deposit (Downes, 1985; 

Beget et al., 1992; Richter et al., 1995), two accelerator mass spectrometry (AMS) 

radiocarbon dates underlying the deposit in one peat core gave an age range o f 280 -  460 

cal yr BP (equivalent to AD 1670 -  1490), making the Lena tephra five hundred years 

younger than the extensive and well-documented WRA. In addition, Payne et al. (2008) 

also discovered evidence o f (i) a single tephra layer at 1260 -  1375 cal yr BP, identical to 

the W RA as dated by Clague et al. (1995); (ii) a previously-unidentified Aniakchak
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eruption that occurred between 5030 -  5300 cal yr BP; and (iii) a second WRA-like 

tephra at -6330  cal yr BP.

2.3 Methods

The R/V Maurice Ewing collected a suite o f short multicores, trigger cores, and 

jum bo piston cores (10-cm diameter and up to 18 m length) along the continental shelf o f 

southeast and south-central Alaska in 2004. A suite o f geophysical measurements was 

performed on each core using a ship-bome GEOTEK Multi-Sensor Core Logger, 

including continuous one-centimeter-resolution measurements o f both gamma-ray wet 

bulk density and volume magnetic susceptibility. Following geophysical analysis, each 

core was subsequently split, the sedimentary lithologies were described, and high- 

resolution linescan images were recorded.

Nine tephras were visually identified in core EW0408-40JC (Fig. 2.3A), as well 

as an additional macroscopic tephra in EW0408-25MC3. While tephras tend to have 

both higher density and magnetic susceptibility values relative to biogenic-rich sediments 

(Beget et al., 1994; Haberle and Lumley, 1998; Lowe, 2008), several o f the EW0408- 

40JC tephras do not exhibit such geophysical properties, possibly as a result o f either low 

iron concentrations or inaccuracies due to the bulk whole-core measurements. 

Nevertheless, the volcanic nature o f these identified units was confirmed by optical smear 

slide analysis and subsequent geochemical analysis as described below. Combined 

volume magnetic susceptibility measurements and smear slide analysis also revealed the 

presence o f two additional cryptotephras in EW0408-33JC, and one cryptotephra each in 

cores EW0408-22JC and -47JC (Fig 3B).

Approximately 20 cm3 o f material was collected from each tephra sample. The 

four cryptotephra samples were concentrated using the sodium polytungstate density 

separation technique outlined by Blockley et al. (2005), with minor modifications 

including the use o f a weaker 5% HC1 acid wash and targeted sieving for tephra-rich size 

fractions in bulk sediment splits. Samples were dried at 50°C for several days to drive 

off moisture, and thin sections were prepared for each sample. Tephra grains were set in 

a matrix o f Petro-Poxy© and the surface was polished to a smoothness o f <1 pm.
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Following the application o f a 300-A-thick carbon coating, samples were analyzed for 

major elemental compositions using grain-specific electron probe microanalysis (EPMA) 

on a Cameca SX-50 microprobe with four wavelength-dispersive spectrometers at the 

University o f Alaska Advanced Instrumentation Laboratory. Beam conditions were set to 

an accelerating voltage o f 15 keV at 10 nA current with a beam diameter o f 10 pm. A 

minimum of forty glass grains per sample were analyzed to minimize intra-sample 

variations. Replicate samples o f the well-characterized Old Crow tephra (Beget and 

Keskinen, 2003) were also analyzed to monitor inter-run accuracy and instrument drift 

during EPMA analysis. Inaccurate grain analyses were removed from each sample 

dataset based on the following qualifiers: (i) obvious non-tephra geochemistry (e.g. 

feldspar, quartz, olivine, etc.); (ii) calculated H2O content >10 wt% (Pollard et al., 2006; 

Pearce et al., 2008); (iii) any elemental concentration below EPMA detection limits; and 

(iv) single outliers in discernible grain populations. While discarding single grains may 

inadvertently remove subpopulations from the larger sample dataset, these single grains 

may represent magma heterogeneities (Downes, 1985; Riehle et al., 2008; Shane et al., 

2008), volatilization o f mobile elements during EPMA analysis (Goldstein et al., 2003), 

or alternatively potential contamination by reworked tephra from earlier eruptive activity. 

Given that tephra glass is an ubiquitous background component o f G ulf o f Alaska 

sediment (Shipboard Science Party, 1993) and the large number o f explosive eruption 

events along the Alaskan coastline throughout the Quaternary Period (e.g. M iller and 

Smith, 1987; Riehle et al., 1999; Fierstein, 2007), this conservative approach seems 

appropriate to distinguish primary tephra-fall events from post-eruptive sedimentary 

mixing.

Tephra-derived glass samples were classified according to the International Union 

o f Geological Sciences total alkali-silica classifications o f Le Bas et al. (1986) after 

normalizing analytical totals to 100 wt% on a volatile-free basis. Correlations to 

published MEVF tephra glass deposits were made using the datasets o f  Riehle and Brew 

(1984), Riehle et al. (1992a), Riehle et al. (1992b), Beget and Motyka (1998), and 

unpublished datasets provided by J. Riehle and J. Westgate. Correlation coefficients
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between samples were calculated using the standard-deviation-weighted multivariate 

SIMAN analysis o f (Borchardt et al., 1972; Borchardt, 1974). This statistical approach 

derives a similarity coefficient d  between tephra sets A and B such that

± R , g '
d (A,B))= J d -̂------ [E q n l .l]

2
i=1

where R  is the ratio between a mean oxide concentration ( X ) from A and B where

R = .f x _b  > x _a or R = X j b _  if  X ia >  X j B  [E L 2 j
Xm  X iA

Eqn 1.1 also includes a weighting term g  that is derived from the relationship between the 

standard deviation (a) and mean o f an oxide analysis by means o f the relative analytical 

deviation function RD  

RD
g i = 1----------1—  [Eqn 1.3]

' ERLEV

RE>: =
/  V  ^  \ 2

,A +
\ X  iA J \ X  iB J

[Eqn 1.4]

The ERLEV function is the relative analytical deviation corresponding to the 

instrumental detection limits, and is assigned a value between 0 and 1 by the investigator. 

It has the practical effect o f  minimizing the weighting o f a particular oxide that may have 

a large uncertainty associated with its measurement as determined by the standard 

deviation from the mean. This weighted SIMAN approach differs from its traditional 

application in tephra similarity analyses (e.g. Beget et al., 1992; Payne et al., 2008). In 

this paper, ERLEV was intentionally minimized on a sample-by-sample basis such that 

the oxides with the largest standard deviations were excluded from the similarity 

calculations. For a mean ERLEV value o f 0.85, this approach usually removed Ti02, and 

occasionally Cl, from the similarity calculations. The accuracy o f the SIMAN analysis 

was verified using oxide bivariate and ternary plots.
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2.3.1 Geochronology

A core chronology was developed for EW0408-40JC using AMS radiocarbon 

dates on five marine bivalves (Table 2.1; Fig. 2.4). Calibrations to calendar years BP 

were calculated according to the INTCAL04 curve (Reimer et al., 2004), using the 

CALIB 5.01 software o f Stuiver and Reimer (1993), assuming a carbon reservoir effect 

of 732 years, based on the mean !4C date discrepancy between paired marine bivalve and 

terrestrial wood samples from three different EW0408 coastal marine sediment cores. A
■y

linear interpolated depth/age model ( r  = 0.98) was then used to convert depths in 

EW0408-40JC into ages.

The EW 0408-22JC cryptotephra at 1.63 meters below seafloor (mbsf) is 

constrained by two AM S-radiocarbon-dated wood fragments, while an additional AMS 

sample at 0.98 m bsf was rejected due to an apparent age reversal (Table 2.1). The 

stratigraphic order and lack o f overlap between the uncalibrated l4C dates o f the two 

accepted AMS samples argue against deposition o f reworked organic material. The 2a  

INTCAL04 calibration ranges o f the two AMS samples overlap, indicating a period of 

rapid sediment accumulation during this interval. Applying a linear interpolation 

between these two samples and assuming steady-state sediment accumulation gives an 

age for the EW0408-22JC cryptotephra o f -1200  cal yr BP. An ij7Cs- and excess 2l0Pb- 

supported chronology developed for the corresponding gravity core EW0408-21GC 

yields a maximum apparent sedimentation rate o f between 3 and 4 mm/yr (Jaeger, J.M. 

and Rosen, G.P., personal communication, 2007), in broad agreement with the 

interpolated calibrated l4C age. Given the limited geochronological constraints in this 

interpolation, the age o f deposition o f the cryptotephra should be considered a first-order 

approximation.
14Four AMS C dated wood fossils constrain the two cryptotephas within core 

EW0408-33JC (Table 2.1). These four samples are part o f a larger AMS dataset that 

chronologically constrains the full length o f EW0408-33JC (Fig. 2.4); the full description 

o f these data is beyond the scope of this current work. The full model yields a linear
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interpolated age for the upper tephra at 12.78 m bsf o f -5300  cal yr BP, whereas the lower 

cryptotephra at 16.18 m bsf is calculated to be -6750  cal yr BP.

The cryptotephra deposit at 6.46 m bsf recovered in core EW0408-47JC lies above 

three AMS ,4C samples o f terrestrial wood fragments (Fig. 2.4). The closest radiocarbon 

date to the tephra is between 7501 -  7608 cal yr BP at 7.28 m bsf (Table 2.1). A linear 

depth-age model constructed using this AMS sample and the two lower samples deeper 

in core EW0408-47JC give an extrapolated age for the tephra o f -7300 cal yr BP.

Because o f the prevalence o f bioturbation along the G ulf o f Alaska continental 

slope, the visible macroscopic tephra in core EW0408-25MC3 at 0.21 m bsf remains 

undated at this time. It lies below the 11-cm-thick surface mixed layer, as evidenced by 

the maximum depth o f excess 2l0Pb, so it is a minimum o f 100 years old (Rosen et al., 

2005; Walinsky et al., 2009). Rosen et al. hypothesize the relatively high levels of 

bioturbation in this core are a consequence o f a reduced continental shelf accumulation 

rate due to sediment entrapment by adjacent nearshore embayments.

2.4 Results

Fourteen tephras were geochemically analyzed by EPMA (Table 2.2). Two 

coherent subpopulations were also found in samples 9.08 m bsf and 6.46 m bsf in cores 

EW 0408-40JC and -47JC, respectively. These subpopulations were identified on the 

basis o f (i) distinctive differences in geochemistry from the primary population and (ii) 

several glass particles shared this same composition. For the purposes o f discussion in 

this text, the primary populations are indicated by the (I) designation, while the secondary 

populations are marked by a (II) label. According to the Le Bas et al. (1986) 

classification, all samples are rhyolitic except for the dacitic secondary population in the 

EW0408-47JC sample at 6.46 m bsf (Fig. 2.5A). All geochemical analyses are included 

in the online data repository.

The multivariate SIMAN similarity analysis indicates four distinct rhyolitic 

groupings o f these data (Table 2.3). With the exception o f samples EW0408-40JC at

9.08 m bsf (11) and EW0408-22JC at 1.63 m bsf designated as Units C and D, respectively, 

all studied tephras fall into two general categories. Unit A tephras generally contain
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lower concentrations o f SiC>2 and total alkali, and higher Fe2C>3 contents, than Unit B 

tephras. Both total-alkali-silica (TAS) and C a0-K 20 variation plots agree with these 

generalized geochemical classifications (Fig. 2.5).

2.5 Discussion

2.5.1 Correlations: M EVF suite

The chronological and geochemical characteristics o f the marine tephras 

described here are similar to those o f several terrestrial tephras known to be part o f the 

MEVF eruptive sequence. Applying the same SIMAN similarity analysis to previous 

MEVF tephra analyses yielded strong correlations (>0.95) between the Unit A tephras 

and several high-Si rhyolitic tephras described by Riehle et al. (1992a, b), and with an 

unpublished high-Si rhyolite tephra described by Westgate (Table 2.4). The Unit B 

tephras also bear some resemblance to the Riehle high-Si rhyolite (Table 2.4); however, 

the compositions appear to be distinctly different in several oxides (Fig. 2.6), suggesting 

that Unit B may be unique to this study. It is important to note that, despite the 

geochemical differences between Units A and B, the presence o f both units in fine- and 

coarse-grained Ethologies in core EW0408-40JC suggests the same volcanic source (e.g. 

the MEVF).

Unit C is composed solely o f a secondary population (n=7) identified in a tephra 

sample in core EW0408-40JC at 9.08 m bsf (II) (Tables 1 and 2). The SIMAN analysis o f 

Unit C indicates strong affinities to several potential deposits (Table 2.4). However, it is 

the only EW0408 tephra recovered that has a relatively high similarity coefficient (>0.93) 

with the MEd dacite tephra o f Beget and Motyka (1998). A CaO-K.20 variation plot (Fig. 

2.6) shows considerable compositional overlap between EW0408 Unit C, the MEd dacite, 

and the low-Si rhyolite o f Riehle et al. (1992a, b). The MEd tephra is constrained by five 

radiocarbon dates that, when calibrated according to the method described above, places 

the time o f deposition o f the MEd deposit between 13,050 -  13,250 cal yrs BP (Beget and 

Motyka, 1998), suggesting that Unit C is broadly equivalent in age to the MEd tephra.

The late Pleistocene MEVF eruptions produced both tephra-fall and pyroclastic flow
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deposits with very diverse geochemical characteristics (Fig. 2.2; Riehle et al., 1989; 

Riehle et al., 1992a, b), consistent with the somewhat heterogeneous nature o f sample

9.08 m bsf (II) (Fig. 2.6).

Terrestrial-marine relationships with the M EVF suite

The stratigraphy o f the tephra sequence in marine core EW0408-40JC resembles 

that o f a lacustrine core (Fig. 2.7) recovered from an unnamed lake on Baranof Island 29 

km NNE of the MEVF (Fig. 2.1) by Riehle et al. (1992b). The lake core (herein referred 

to as the Riehle lake core) contains >0.7 m o f volcanic material within lacustrine silts, 

which in turn overlie a glacial till. The volcaniclastic deposits (listed in order of 

increasing core depth) consist o f a rhyolitic tephra, a dacitic tephra, a second rhyolitic 

tephra, an andesitic tephra, a mixed rhyolitic/andesitic tephra, and a basal basaltic- 

andesitic tephra (Fig. 2.7). The thickness o f the volcanic units in the Riehle lake core are 

comparable to the total thickness o f volcanic material contained within EW0408-40JC 

after correcting for the presence o f autochthonous diatom-rich muds.

The uppermost rhyolite and dacite tephra units in the Riehle lake core are likely 

correlative with the primary and secondary populations o f rhyolitic tephra found in the

9.08 m bsf sample from EW 0408-40JC (Fig. 2.7). The 9.08 m bsf samples are associated 

with a coarse sand that underlies a massive lithogenic mud; this fining-upwards sequence 

suggests deposition by a fallout event into the marine environment, interrupting the 

deposition o f in-situ diatomaceous organic matter. The lack o f autochthonous organic 

matter in the Riehle lake core underlying the dacite may reflect (i) an erosional 

unconformity or hiatus between the dacite and upper rhyolite or (ii) much lower 

sedimentation rates, relative to the extremely high rates evident in EW0408-40JC.

The lower rhyolitic tephra in the Riehle lake core is composed o f lapilli-size clasts 

(Riehle et al., 1992b), and is correlative with the upper poorly-sorted lithogenic mud and 

gravel in EW0408-40JC (Fig. 2.7). EPMA analysis o f volcanic glass from EW0408- 

40JC tephra samples 9.80 and 10.00 m bsf confirms a rhyolitic composition for this unit.

The andesitic tephra in the Riehle lake core does not appear in the EW0408-40JC 

core (Fig. 2.7). Given that the two cores are equidistant from the MEVF (Fig. 2.1), this
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absence suggests that the andesite deposition may have been more heavily influenced by 

wind direction or other processes that resulted in non-deposition.

The andesitic tephra is underlain by a mixed rhyolite/andesite unit in the Riehle 

lake core (Fig. 2.7). Although a definitive andesite population was not recognized within 

any o f the EW 0408-40JC tephra deposits, the post-EPMA data treatment o f the rhyolite 

sample at 10.29 m bsf eliminated several glass shards. These shards represented a widely 

heterogeneous grouping that did not warrant classification as a separate population due to 

the calculated means and standard deviations for these shards (ex. SiCE = 65.23 ± 4.07 

wt%; n=4). Nevertheless, the low SiCE content suggests a possible andesitic deposit 

within the EW 0408-40JC core; further analysis is required to confirm this possibility.

The lowermost volcaniclastic unit in the Riehle lake core, a basaltic andesite, does 

not occur in EW 0408-40JC, nor do the basal rhyolitic volcaniclastic units from EW0408- 

40JC appear in the Riehle lake core (Fig. 2.7). The divergence in sedimentology between 

the two cores most likely represents differences in topography related to the two coring 

locations. Given that Lower Sitka Sound is directly downslope from the MEVF, while a 

topographic high separates the Riehle lake core site from the MEVF, it follows that only 

fallout volcanic deposits should accumulate at the Riehle lake core location whereas both 

fallout and gravity-driven deposition will accumulate at the EW0408-40JC site. Thus, it 

seems likely that EW0408-40JC did not penetrate deep enough into the seafloor to 

recover the basaltic andesite observed in the Riehle lake core.

2.5.2 Correlations: EW0408 tephras andnon-M EVF contemporaneous deposits

EW0408-22JC

The estimated age o f the cryptotephra at 1.63 m bsf in core EW0408-22JC places 

this event at -1200  cal yr BP. The deposition o f this tephra is thus contemporaneous 

with the regionally-extensive White River Ash deposited at -1147  cal yr BP (Downes, 

1985; Richter et al., 1995). Recent work by Robinson (2001) extends the eastern lobe of 

this Plinian eruption from its source near Mt. Churchill in east-central Alaska to the Great 

Slave Lake in Canada, with an estimated eruptive volume o f approximately 47 km3
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(Lerbekmo, 2008). Furthermore, electrical conductivity spikes tied to an accumulation 

age model in the Prospector Ridge Col ice core from Mt. Logan are attributed to 

deposition o f volcanic sulfate from the White River Ash eruption (Fisher et al., 2004). 

However, some doubt has been cast upon Mt. Churchill as the source o f the White River 

Ash because o f the lack o f an appropriately-aged deposit within an ice core collected 

from the col between Mts. Churchill and Bona (Mashiotta et al., 2004).

Payne et al. (2008) recovered a cryptotephra sample (LNA 100) from a peat bog 

near Juneau, Alaska, that is convincingly derived from the White River Ash. Payne et al. 

showed that their LNA 100 sample has a high geochemical similarity coefficient (>0.93), 

agreeing closely with previous published analyses o f the White River Ash. The LNA 100 

cryptotephra is also directly underlain by two fragments o f Sphagnum  moss that were 

AMS radiocarbon dated to 1260 -  1360 and 1290 -  1375 cal yr BP, respectively.

Applying the SIMAN similarity analysis to the published geochemistry o f the 

White River Ash and the cryptotephra in EW0408-22JC shows that the two deposits have 

a similarity coefficient of 0.90 for published distal deposits and 0.89 for ash deposits 

recovered from the summit o f Mt. Churchill proper (Table 2.5). However, the SIMAN 

analyses o f both EW0408-22JC and LNA 100 o f Payne et al. (2008) show a strong 

relationship with a similarity coefficient o f 0.93. The oxide compositions o f the 

EW0408-22JC cryptotephra and LNA 100 show a high degree o f overlap (Fig. 2.8A).

The relatively low degree o f similarity calculated by the SIMAN analysis for the 

EW 0408-22JC sample and the Mt. Churchill samples may reflect differences associated 

with statistical analysis (e.g. normalizations, Fe calculated as FeO or Fe203, etc.). 

Nevertheless, the available dates and geochemical analyses o f the EW0408-22JC 

cryptotephra agree very well with those o f the LNA 100 sample o f Payne et al. (2008). 

Furthermore, a SIMAN analysis conducted between the EW0408-22JC deposit and distal 

White River Ash deposits collected from eastern central Alaska (Beget et al., 1992) have 

a calculated similarity coefficient o f 0.94, clearly indicating the presence o f the White 

River Ash within EW0408-22JC.
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EW 0408-33JC at 12.78 m bsf

The SIMAN analyses o f the full EW0408 tephra dataset presented in this paper 

classified the two cryptotephras from EW0408-33JC at 12.78 and 16.18 mbsf, and the 

sample at 6.46 m bsf (1) in EW0408-47JC, all as Unit A (Table 2.3). As described earlier, 

Unit A has a very high similarity coefficient with rhyolites from the MEVF (>0.96; Table

2.4). Other mid-Holocene eruptions do not appear to share similarly high values (Table

2.5). O f the tephra deposits examined in this paper, the strongest non-MEVF 

relationship for all three o f the mid-Holocene EW0408 samples is with ECR 162 of 

Payne et al. (2008), which is chronologically constrained by an underlying Sphagnum  

moss fragment radiocarbon dated by AMS to between 5030 -  5300 cal yr BP. Despite a 

similar age with an eruption at Black Peak on the Alaska Peninsula (Miller and Smith, 

1987), Payne et al. found little geochemical similarity between ECR 162 and the Black 

Peak tephra (Riehle et al., 1999); likewise, a low similarity coefficient is calculated for 

the potentially contemporaneous EW 0408-33JC cryptotephra at 12.78 m bsf (Table 2.5). 

Payne et al. instead attributed ECR 162 to a previously unidentified Aniakchak eruption 

that is significantly older than the large caldera-forming eruption at 3400 cal yr BP 

(Beget et al., 1992).

The chronology o f core EW0408-33JC places the date o f deposition o f the 12.18 

m bsf cryptotephra at -5300 cal yr BP, which is equivalent to the age associated with 

ECR 162 o f Payne et al. (2008). The geochemical composition o f these two cryptotephra 

units bear some overlap (Fig. 2.8B). However, the 12.18 m bsf tephra in EW0408-33JC 

appears more closely related to the rhyolitic activity from the MEVF than either ECR 162 

or its purported source at Aniakchak on the Alaska Peninsula. Nevertheless, Aniakchak 

is known to have had at least 40 Holocene eruptions, with at least half of these occurring 

between 3,500 and 10,000 years ago (Riehle et al., 1999; Neal et al., 2001). It is difficult 

to disregard Aniakchak as a distal source particularly since it plots in the region of 

overlap between the EW 0408-33JC 12.78 m bsf tephra and ECR 162 in a ternary K2O- 

CaO-Fe2C>3 diagram (Fig. 2.8B). Conversely, the strong geochemical relationship 

between the MEVF and the -33JC tephra suggest the likelihood o f a mid-Holocene
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eruption o f Mt. Edgecumbe. This observation is supported by independent age dating o f 

bulk peat deposits by Riehle and Brew (1984) that bracket a rhyolitic tephra horizon 

between 4000-4300 l4C yr BP (4800 -  5300 cal yr BP; Fig. 2.2) recovered on the western 

slope o f Mt. Edgecumbe proper.

EW 0408-33JC at 16.18 m bsf and EW 0408-47JC at 6.46 m bsf (I)

The cryptotephras in cores EW0408-47JC and EW0408-33JC at 6.46 m bsf (1) and 

16.18 mbsf, respectively [referred to as the -47JC and -33JC tephras for brevity in the 

following section], show several equivalent characteristics. The -33JC tephra is well- 

constrained chronologically by a wood macrofossil only 18 cm above the tephra that was 

AMS radiocarbon dated to between 6659 -  6743 cal yr BP (Fig. 2.4). Although the - 

47JC tephra has no upper bounding date, it is underlain by a wood fragment between 

7501 -  7608 cal yr BP that is 82 cm below the tephra. The interpolated dates for both 

tephras using the age models plotted in Fig. 2.4 place the -33JC tephra at -6800  cal yr 

BP, and the -47JC tephra at -7300  cal yr BP, a difference o f only 500 years which may 

be sufficiently explained by errors in the age models o f the two different cores (Telford et 

al., 2004).

The geochemical characteristics o f both the -33 JC and -47JC tephras are also 

comparable. Oxide variation diagrams show both tephra populations overlapping (Fig. 

2.8C). The multivariate SIMAN analysis calculated a similarity coefficient o f 0.99 

(Table 2.3), indicating that the two tephras are virtually identical, and belong to the Unit 

A designation for the EW0408 tephra suite.

As stated earlier, Unit A is most likely derived from MEVF rhyolitic activity, and 

potential alternative sources for the -33JC and -47JC tephras appear unlikely (Table 2.5). 

The Oshetna tephra, dated to 6700 -  7000 cal yr BP, and observed in south-central 

Alaska (Dixon and Smith, 1990; Child et al., 1998), bears little similarity to either the 

-33JC or -47JC tephras (Table 2.5; Fig. 2.8C). Surprisingly, the best similarity 

coefficient for -47JC is observed with ECR 162 o f Payne et al. (2008), but the -47JC 

geochemical data suffer from the same problems as noted above for the 12.18 mbsf 

tephra in EW0408-33JC, in that while ECR 162 is attributed to an undocumented
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Aniakchak eruption (Payne et al., 2008), the geochemical composition o f the -47JC 

tephra correlates better with an MEVF source (Fig. 2.8C).

The potential for an MEVF source for both the -33JC and -47JC tephras is further 

supported by a dated rhyolitic horizon contained within a single dated peat sample of 

6400 -  6700 cal yr BP on the southwest coast o f ICruzof Island (Riehle and Brew, 1984). 

This terrestrial peat date is consistent with the interpolated chronology for the -33JC 

tephra, but is slightly too young for a chronological correlation to the -47JC tephra. If the 

interpolated age o f -47JC is correct, then the occurrence o f two explosive MEVF 

eruptions o f identical composition occurring within 500 years o f one another may be a 

potential alternative explanation.

EW0408-25MC3

The poor age control associated with the EW0408-25MC3 core is problematic for 

understanding its role in the accumulation o f MEVF pyroclastic material. The 35-cm- 

long core is composed of: (i) an upper 19 cm o f olive-green diatomaceous silty clay; (ii) a 

macroscopic 3-cm-thick sandy rhyolitic tephra (Table 2.2); and (iii) a lower mottled dark- 

gray silty clay for the remaining 13 cm o f the core. In other EW0408 cores from the G ulf 

o f Alaska continental shelf, the upper contact o f the dark-gray silty clay unit occurs 

approximately 12,000 cal yr BP, with the silty clay unit likely reflecting increased 

glaciomarine sedimentation during deglaciation (Barron et al., 2009). I f  the overlying 

diatomaceous clay is a continuous autochthonous record o f Holocene biogenic 

sedimentation, then the EW0408-25MC3 tephra may be contemporaneous with the Latest 

Pleistocene eruptions o f the MEVF. Indeed, the geochemistry o f the EW0408-25MC3 

tephra supports an MEVF source because o f its high similarity to other M EVF-derived 

EW0408 tephras described here (Table 2.3; Fig. 2.5). Until a comprehensive chronology 

is developed, the conservative interpretation o f the EW0408-25MC3 tephra is that it is 

derived from MEVF activity that is older than 100 years BP based on interpretation of 

excess 2l0Pb data (Rosen et al., 2005; Walinsky et al., 2009).
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EW0408-40JC

Whereas the close proximity o f the MEVF to the EW0408-40JC core location 

makes the MEVF seem the likely source o f the pyroclastic material contained within - 

40JC, other large Late Pleistocene eruptions may have potentially contributed tephra.

The Lethe tephra represents one o f  the most explosive eruptions from the Valley o f  Ten 

Thousand Smokes in Katmai National Park, Alaska, and occurred at least 14,300 -  

15,200 cal yrs BP (Pinney and Beget, 1991; Fierstein, 2007). Further dating by Reger et 

al. (2007) on the Kenai Peninsula also constrains several periods o f explosive activity to 

between 16,300 -  19,200 cal yr BP. Lethe tephra deposits have been identified in several 

locations throughout the Kenai and Alaska Peninsulas with some compositional 

heterogeneity (Pinney, 1993; Riehle et al., 2008), and because o f the possibility of 

deposition in southeast Alaska, the geochemistry o f the ‘average’ Lethe tephra (Pinney 

and Beget, 1991) was compared against the EW0408 tephra geochemistries. O f the three 

EW0408 tephra geochemistries, Unit C is the most similar to the Lethe deposit but only 

with a similarity coefficient o f 0.91 (Table 2.5). This result suggests little similarity 

between any o f the EW0408 tephras and the Lethe tephra. Therefore, it seems most 

likely the tephras recovered from core EW0408-40JC are all derived from the MEVF and 

not from distal volcanic activity along the Alaska Peninsula.

2.5.3 Implications and volcanic hazards

The complicated stratigraphy o f core EW0408-40JC makes interpretation o f these 

tephra units difficult (Fig. 2.7). With the exception o f the sample from 9.08 mbsf, the 

Unit A samples consistently underlie poorly sorted lithogenic muds and gravels that fine 

upwards into diatomaceous silty clays. These latter deposits presumably represent the 

autochthonous biogenic sedimentation regime present in Lower Sitka Sound, whereas the 

sedimentology o f the former deposits suggests emplacement by episodic subaqueous 

pyroclastic flows (Fisher, 1979). Proximal deposits from turbulent subaerial pyroclastic 

density currents that enter large water bodies and mix with water may transition into 

aqueous density currents (Orton, 1996), which are known to include a lowermost massive 

poorly-sorted unit with a sharp basal contact that fines upwards (Cole and DeCelles,
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1991). Both o f these characteristics are present in the deposits contained within 

EW 0408-40JC, as well as several fine-grained upper units that may represent the 

atmospheric fallout o f volcanic ash. Recent high-resolution bathymetric mapping of 

Sitka Sound (Fig. 2.9; National Ocean Service Flydrographic Database) shows a low- 

angle submarine slope extending from the southeast coastline o f Kruzof Island towards 

the site o f EW0408-40JC. Previous mapping by Riehle et al. (1989) indicates subaerial 

pyroclastic flow deposits adjacent to this submarine slope, suggesting that the low-angle 

slope may be the submarine expression o f the subaerial pyroclastic flow deposits (Fig. 

2.9).

The land-sea configuration o f K ruzof Island and Sitka Sound prior to deposition 

o f the MEd tephra is complicated by deglacial changes in both eustatic and relative sea 

level. The LGM lowstand likely exposed a large subaerial region o f the shallow margin 

o f K ruzof Island and portions o f Sitka Sound. Radiocarbon constraints on the MEd 

tephra correspond to a eustatic sea level at least 70 m lower than that o f today (Fairbanks, 

1989). M odem Sitka Sound bathymetric features include an outer sill at approximately 

130 m water depth, and the EW0408-40JC core was recovered from an inner basin at 216 

m water depth. The presence o f freshwater lacustrine diatoms within the laminated 

siliceous muds (Starratt, S.W., personal communication, 2009) intercalated between the 

tephra deposits below 9 m bsf in EW0408-40JC (Fig. 2.3A) argues for the closing o f Sitka 

Sound from the open G ulf o f Alaska sometime during the LGM/Holocene deglacial 

transition. The lack o f submerged well-defined cut marine terraces within Sitka Sound 

(Fig. 2.9) imply that the major topographic barrier to the G ulf o f Alaska was likely the 

outer sill, and would thus require some amount o f vertical adjustment to isolate Sitka 

Sound. These constraints suggest the pre-MEd pyroclastic flows from the MEVF crossed 

the then-exposed margin o f Kruzof Island and were deposited within “paleolake” Sitka 

Sound, which was then subsequently inundated by marine waters. Additional AMS l4C 

dating and diatom biostratigraphy o f EW0408-40JC is underway to better constrain the 

timing o f  this inundation.
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The tephra stratigraphy o f EW0408-40JC is complicated by the consistent 

presence o f the Unit B tephras within, or directly overlying, the poorly-sorted mud and 

gravel units. If  these poorly-sorted units are preserved portions o f two different 

pyroclastic flow deposits, then possibly the Unit A tephras represent the early-stage 

eruptive products, whereas the Unit B tephras occurred later in the eruption sequence. 

This explanation is consistent with the MEVF originating from a stratified magma 

chamber (Riehle et al., 1992a).

Subaqueous emplacement o f large subaerial pyroclastic flows represent a 

significant risk in terms o f tsunami generation. Although direct displacement o f water by 

the entrance o f a pyroclastic flow into the sea is known to generate tsunami waves (e.g. 

Beget et al., 2008), experimental evidence has also shown that flows at >250°C that 

encounter bodies o f water are also able to generate tsumani via steam explosions 

(Freundt, 2003). Regardless o f the mechanism, tsunamis generated by pyroclastic flows 

have caused massive loss o f life in many regions, including the AD 1883 Krakatau 

eruption (Carey et al., 2000; Carey et al., 2001) and the Late Bronze Age eruption o f 

Thera on Santorini (McCoy and Heiken, 2000a, b). The close proximity o f  the city o f 

Sitka to both Kruzof Island and Sitka Sound, combined with the observation that the 

MEVF has been active several times throughout the Holocene (Riehle and Brew, 1984; 

Riehle et al., 1992b; this study), suggests that this active volcanic center poses potential 

future risk to inhabitants and warrants further evaluation for safety considerations.

2.6 Conclusions

The marine record o f volcanic activity preserved along the G ulf o f Alaska margin 

will prove to be an important component o f  future Holocene and Late Pleistocene 

stratigraphic correlations between terrestrial and marine environments in this region.

Two examples o f such correlations were presented in this paper: (i) a Latest Pleistocene 

MEVF eruption sequence correlation between EW0408-40JC and a nearby lake core 

from Baranof Island; and (ii) the regionally-extensive ~ 1 147 cal yr BP White River Ash 

deposit. In the case o f the White River Ash, this unit has been mapped previously from 

the Wrangell Volcanic Field eastward into the Canadian Yukon Territory as far as the
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Great Slave Lake. The discovery o f White River Ash in core EW0408-22JC makes this 

the most southerly Pacific Coast location yet described, and implies a much more 

widespread eruption than previously thought. Corroborating evidence for this southerly 

dispersal is the presence o f White River Ash contained within peat deposits near Juneau, 

Alaska (Payne et al., 2008).

The MEVF itself has also proven an important source o f regional stratigraphic 

horizons. The MEd dacitic tephra (Engstrom et al., 1990; Beget and Motyka, 1998; 

Riehle et al., 1992b) already provides a useful regional chronostratigraphic marker, but 

pyroclastic flow deposits in EW0408-40JC show evidence o f at least two major eruptions 

prior to the deposition o f MEd (Fig. 2.9), agreeing with previous terrestrial survey work 

(Riehle et al., 1992a, b). The identification o f three mid-Holocene MEVF cryptotephras 

in cores EW0408-33JC and -47JC argue for the presence o f additional stratigraphic 

markers in the adjacent terrestrial environment. It is important to note, however, that the 

limited range o f MEVF rhyolitic major-element compositions will not make stratigraphic 

correlations between sites easy and straightforward, particularly if no chronological 

information is available.
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Table 2.1: AM S l4C dates constraining EW 0408 tephras.

Core depth 
(mbsf) Material

Reported ,4C age 
(yrs BP)

Corrected 14C 
age (yrs BP)a

2& calibrated 
range (yrs BP)

AMS ,4C 
Laboratory15 Sample ID

EW0408-22JC
0.82 terrestrial organics 1240 ± 20 1083 - 1263 Keck - UCI 65503
0 98 terrestrial organics* 1505 ± 20 1336 - 1480 Keck - UCI 50810
2.17 wood fragment 1335 ± 20 1185 - 1300 Keck - UCI 50811

EW0408-33JC
10.99 terrestrial organics 3980 ± 20 4416 - 4517 Keck - UCI 50818
13.94 wood fragment 4985 ± 30 5619 - 5878 C AM S-LLNL 127768
16.00 terrestrial organics 5880 ± 20 6659 - 6743 Keck - UCI 50819
17.03 wood fragment 6485 ± 20 7327 - 7434 Keck - UCt 50820

EW0408-40JC
0.96 bivalve 10881 ± 61 10149 ± 61 11408 - 12054 N S F - AAMS WW5472
1.89 bivalve 10952 ± 55 10220 ± 55 11713 - 12142 N S F - AAMS WW5473
3.75 bivalve 10987 ± 56 10255 ± 56 11759 - 12348 N S F - AAMS WW5474
5.94 bivalve 11126 ± 59 10394 ± 59 12055 - 12605 N S F - AAMS WW5475
8.61 bivalve 11522 ± 58 10790 ± 58 12725 - 12885 N S F - AAMS WW5476

EW0408-47JC
7.28 wood 6685 ± 30 7501 - 7608 NSF - AAMS WW6079

11.28 wood 7660 ± 30 8398 - 8538 NSF - AAMS WW6080
17.80 wood 8865 ± 50 9744 - 10176 N SF-AAM S WW6104

* Sample rejected from age model; see text fo r details, 
a: M arine reservoir correction o f 732 yrs subtracted from carbonate samples.
b: Keck - UCI = Keck Carbon Cycle AM S facility. University o f California - Irvine; CAMS - LLNL = Center for Accelerator M ass Spectrometry, 

Lawrence Liverm ore National Lab; NSF - AAM S = National Science Foundation - Arizona AM S facility, Tucson

2.9 
Tables



T ab le  2.2 M ean  g lass E PM A  an a lyses o f  E W 0408 tephra sam p les, n  =  total nu m b er o f  g lass shards analyzed  for each  tephra  sam ple. M ean  
and  estim ated  error  to one standard  d eviation  show n for each sam ple. A nalyses norm alized  to 100 w t%  on a w ater-free  basis. W ater  conten t 
ca lcu la ted  by d ifferen ce  from  an alytica l total. T ota l iron ox id e  con cen tration  expressed  as F e2O j. Ind ividual g lass shard  analyses con ta in ed  in 
on lin e  su p p lem en ta l m aterial.

n Na20

Old Crow Tephra
internal standard 194 3.80 ± 0.30

MgO AljOi Si02 Cl K ,0 CaO TiO, FerOi h 2o

0.30 ± 0.03 13.24 ± 0.20 75.05 ± 0.38 0.29 ± 0.06 3.72 + 0.23 1.45 ± 0.10 0.30 ± 0.17 1.85 + 0.15 5.10 ± 2.07

EW0408-2?JC: Crawfish inlet
1.63 mbsf 11 4.17 ± 0.36 0.32 ± 009 14.63 ± 0.08 73.28 ± 0.33 0.19 + 0.15 2.93 ± 0.41 1.89 + 0.10 0.28 ± 0.14 2.32 ± 0.51 4.41 ± 2.48

EW0408-25MC3: Sitka 
0.21 mbsf

Slope
20 4,49 ± 0.16 0.31 ± 004 14.05 ± 0.35 73.34 ± 0.50 0.15 ± 0.10 2.61 ± 0.09 1.86 ± 0.17 0.25 ± 0.16 2.92 ± 0.15 1.36 ± 2.23

EW0408-33JC: Katlian Bay 
12.78 mbsf 13 4,58 ± 0.13 0.29 ± 0.05 14 72 ± 0.35 72.95 + 0.40 0.09 + 0.03 2.58 ± 015 1 89 ± 0.17 0.17 ± 0.09 2.74 0.17 2.77 ± 1.57
16.18 mbsf 19 5.02 ± 0.19 0.28 ± 0.06 14.35 ± 0.38 72.97 ± 0.58 0.09 ± 003 2.52 ± 0,19 1.64 ± 0.25 033 ± 0.12 2.81 + 0.21 3.80 ± 2.71

EW0408-40JC: Lower Sitka Sound 
9 08 mbsf (I) 21 5.01 ± 0.33 0 31 ± 0.13 14.58 ± 0.28 72.50 ± 0.55 0 08 ± 0.03 2.56 ± 0 1 5 1 73 ± 0.12 0.33 ± 0.10 2.90 ± 0.30 4.55 ± 1.30
9.08 mbsf (II) 7 5 03 ± 0.37 0,58 ± 0.43 14.77 ± 0.78 71.27 ± 0.52 0.09 ± 0.01 2.36 ± 0.19 1.95 ± 0.22 0.57 ± 0.21 3.37 ± 0.91 3.35 ± 1.50
9.80 mbsf 14 5.36 ± 0.61 0.28 + 0 04 14.53 ± 0.17 72.93 ± 0.50 0.08 ± 0.03 2.20 ± 0 13 1.45 ± 0.19 0.31 ± 0.12 2.85 + 0.18 1.71 ± 1.59
10.00 mbsf 10 5.82 ± 0.35 0.29 ± 0 05 14.34 ± 030 72.88 ± 0,65 0.09 + 0.03 2.28 ± 0  23 1.48 + 0.23 022 ± 0.18 2.60 ± 0.16 4 61 ± 0.91
10.29 mbsf 58 4,75 ± 0.39 0.28 ± 0.05 14.65 ± 0.48 72.72 ± 0.57 0.09 ± 003 2.66 ± 0.18 1.76 ± 0.20 0.31 ± 0.15 2.79 ± 0.25 2.66 ± 2.05
10.49 mbsf 20 5.37 ± 0.38 0.29 ± 0.07 14 .56 ± 0.38 73.01 ± 0.62 0 09 ± 0.03 2.16 ± 0.18 1.43 ± 0.20 0.30 ± 0.13 2.80 ± 0.35 1.93 ± 1.57
10.82 mbsf 27 5.43 ± 0.37 0.26 ± 0.04 14.59 ± 0,44 72.97 ± 0.74 0.08 ± 0C2 2.21 ± 0.19 1.47 ± 0.30 0.22 ± 0.17 2.76 ± 0.29 1.81 ± 1 60
11.08 mbsf 19 5.08 ± 0.18 0.30 ± 0.06 14 44 ± 0.25 72 80 ± 0 45 0 09 + 004 2.48 ± 0.09 1 56 ± 0.15 0.33 ± 0.08 292 ± 0.21 3.27 ± 2.23
11.10 mbsf 29 5.46 ± 0.41 0 26 ± 006 14.53 ± 0.39 72.93 ± 0.55 0.09 ± 0.03 2.36 ± 0.17 1.44 ± 0,26 028 + 0.19 2.65 + 0.29 1.79 ± 1.14
11.20 mbsf 21 5.09 ± 0.40 0.32 + 0.08 14.57 ± 0 29 72.37 ± 0.67 0.09 + 0.03 2.58 ± 0.12 1.74 ± 0.17 0.32 ± 0.11 2.91 ± 0.19 4.43 ± 1.46

EW0408-47JC: Slocum Arm 
6.46 mbsf (1) 14 5.06 ± 0.25 0.30 ± 0.07 14.26 ± 0.29 72.78 ± 0.42 0.10 ± 0.04 2.57 ± 0.11 1.68 ± 0.09 0.30 ± 0 08 2.96 ± 0.23 1.74 ± 1.62
6 45 mbsf fill 10 5 28 + 0.17 0.70 ± 0 06 15 28 ± 0.18 69.44 ± 0 50 0.07 + 0.04 2.04 ± 0 07 2.72 ± 0.14 0 51 ± 0 14 3.97 ± 0 21 3.77 ± 339

4̂



T able 2.3 EW 0408 tephra SIMAN sim ilarity coefficients.
EWQ4QQ

Core
Safnple depth 

(mbsf)
25MC3

0.21

3 3JC 

12.78 16.18 9.03(1) 9.80 10.00
40JC 

10.29 10.49 10.82 11.08 11.10 11.20

47JC 

6.46 0) 6.46 01)
22JC tete&fcd 0.94 0.93 0.89 0.91 0.87 0.86 U.87 0.93 0.86 0.86 0.89 0.86 0.91 U.90 0.77

25MC3 0.21 0 .06 0 .94 0.96 0.92 0.90 0.89 0 .95 0.90 0.89 0 .94 0.89 0.96 0 .96 0.76
12.78 - 0 .97 0 .95 0.93 0.91 0.91 0 .9 7 0.92 0.92 0 .94 0.91 0.95 0 .95 0.78(JJvO 16.18 . 0 .98 0.91 0.95 096 0.97 0.95 0.94 0.98 0.94 0.97 0.98 0.79

9.08(1} . - . - 0.91 0.94 0.92 0 .97 0.93 0.93 0.97 0.93 0 .99 0 .99 0.81
- - - - - 0.89 0.90 0.92 0.89 089 0.91 0.91 0.93 0.89 0.88

9.80 - 0 .96 0.94 0 .98 0 .98 0.95 0 .97 0.93 0.94 0.79
10.00 - - - 0.91 0.96 0.96 0.94 0.97 0.92 0.92 0.77
10.29 - - - - - - - 0.93 0.93 0.95 0.93 0.97 0.96 0.78
10.49 - - - - - - - - - 0 .96 0.95 0 .96 0.97 0.93 0.81
10.82 - - - 0.94 0.99 0.92 0.02 0.79
11.08 - - - - - 0.94 0.97 0.98 0.78
11.10 - - - - - - - 0.92 0.92 0.79
11.20 - - . - . - - . . - - - 0.98 0.80

47JC 6.46 m - - - 0.78

U nit EW0408 tep hra  horizons (m bsf)

A 25MC.3 - 0.21; 33JC -1 2 .7 8  & 16.18; 40JC - 9.08 (I), 10.29, 11.08, 11.20; 47 JC - 6.46 (I)

B 40JC - 9.80, 10.00, 10.49,10.82, & 11.10

V/X/A 40JC - 9.08 (II)

22JC-1.63

T ab le  2.4 (Marine E W 0408 - terrestr ia l (MEVF correlations.
EW0408 geochemistry Unit A Unit B Unit C* Unit D

Representative sample 40JC. - 70 29 mbsf 40JC ■ 9 SO mbsf 40JC ■ 9 0S (II) mbsf 22JC-1.63 mbsf
Riehle high-Si dacite 0.78 0.78 0.87 0.79
Riehic- low-Si rhyolite 0.87 0 87 0.94 0.85
Riehle high-Si rhyolite 0.98 0.94 0 94 0.92

Beget dacite 0.81 0.81 0.93 0.80

Westgate iow-Si rhyolite 0.81 07 9 0.90 0.78
Westgate high-Si rhyolite 0.96 0.91 0 95 0.90

* SIM A N  an a lysis d id  not use M gO  data  d u e to high stan d ard  deviation .



Table 2.5 C orrelations between EW 0408 m arine tephras and contem poraneous deposits.

Approximate age (cai yrs BP)

Mt. Katmai 

Novarupta3 

AD 1912

Lena

tephra0

280-320

?

-480

White River Ash 

1147

?

1260-1375

D acite  Andesite E C R  32 C H P  184 °

M i C hurchill 

s u m m itC
D is ta l11 LN A  100°

EW0408-25MC3
0.21 mbsf >50 0.83 0.87 0 84 0 81 0.83 0.84 0.86

EW0408-22JC
Unit Df1.63 mbsf! -900 0.88 0.86 0.90 0.86 0.89

0.90“
0.940 0.93

Approximate age (cat yrs BP)

Bridge River 

tephra0 
-2600

Oiler Creek Boa '

Aniakchak9

-3400

Jarvis Creek 

ashh 
-3600

Black Peak' 

4600-56003

?

5030-5300
ECR 162 ‘

Oshetna

tephra'
-6000

?

-6300
MTR 146 ‘

EW0408-33JC
12.78 mbst -5300 0.83 0.87 0.79 0.81 0.90 0.89 0.83
16 18 mbsf -6700 083 0.89 0.77 0.80 0.89 0.85 0.83

EW0408-47JC
6.46 mbsf (I) -7300

0.83 0.88 0.78 0.80 0.90 0.83 0.85
6 46 mbsf (Ilf 0.69 0.82 0.76 0.69 0.79 0.82 0.70

Lethe tephra*
Approximate age (cal yrs BP) -12600

EW0408-40JC
Unit A{10 29 mbsf) >12800 0.81
UnitB (9.80 mbsf) >12800 0.80 

Unit C(9.08 mbsf II)’ 13154H 002 0.91
Data sources
a: Fierstein & Hildreth, 1992

f: Westgate, 1977 
g: Beget et al., 1992

b: Payne et al., 2008 h: Beget et al.. 1991
1: SIMAN analysis did not use MgO data due to high standard deviation c: Richter et al., 1995 i: Riehle et al., 1999
2: Calibrated from AMS dates on MEd data presented in Beget & Motyka (1998) d: Downes, 1985 j: Child et al., 1998
3: Calibrated from AMS date presented in Payne et al., 2008 e: Zoltai, 1988 k; Pinney & Beget. 1991

as
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o f  lake core d escrib ed  in text (R ieh le  et al., 1992b). D ashed  inset represen ts ex ten t o f  F igure 9.
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G E O T E K  geop h ysica l m easu rem en ts from  core EVV0408-40JC. (B ) V olu m e m agnetic  susceptib ility  
logs used to  assist w ith  iden tifica tion  o f  cryto tep h ras in cores EVV0408-22JC, -33JC , and -47JC'; 
tephra presen ce  w as con firm ed  using sm ear slide light m icroscopy.
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F igure 2.4: D ep th -age re la tion sh ip s for EW Q408 tep h ra-b earin g  m arine sed im en t cores d iscu ssed  in  
the text. E rror bars rep resen t the 2a  ca libration  range for d ated  A M S  sam ples. B old  error  bars 
corresp on d  to E W 0408-22JC  age m odel. B ecause o f  poor age con tro l, the E W 0408-25M C 3 tephra is 
only con stra in ed  beyond  the d epth  o f  excess 210Pb (>100 yr  B P; R osen  et al., 2005; W alinsky  et al., 
2009). D ep th s o f  grav ity  and pyroclastic  flow  deposits are in d icated  for E W 0408-40JC ; lithologies  
are the sam e as in F igure 3. T h ick n ess o f  basal E W 0408-40JC  p yroclastic  dep osit is unknow n.
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F igure 2.5: T otal a lk a li-silica  d iagram  (A ) and oxide variation  d iagram  (B ) o f  ind iv idual EVV0408 
tephra g lass sh ards. C lassifica tion  b ased  on the Le B as et al. (1986) IU G S volcan ic c lassification . 
H ollow  sym b ols in d ica te  geoch em ica l affin ities to S IM A N -id en tified  U nit A; dark  filled  sy m bols 
represen t U nit B; gray sym bols represen t U nit C; X  sym bols corresp on d  to U nit D. A pproxim ate  
com p osition a l ranges are ind icated; region  o f  com p osition a l overlap  betw een  U nits A , B , and  D 
in d ica ted  by slanted  lines.
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F igure 2.6: C a 0 -K 20  ox id e  varia tion  d iagram  for rep resen ta tive E W 0408 tephra geoch em ica l units 
com pared  to previou s pu b lish ed  M E V F  d atasets (see tex t for references).



44

EW0408-40JC Lower Sitka Sound 
(22 km E o f MEVF)

mbsf
Linescan
imagery Simplified siihoicgy

SIMAN
geochemical

affinity

1992b) and E W 0408-40JC . B ased on the SIM A N  sim ilarity  ca lcu la tion , the U nit C ch em istry  is 
analogous to the dacite  unit. * ind icates a p ossib le  correlation ; see text for exp lan ation . L ithologies  
sam e as in Fig. 2.3.
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Figure 2 .8: T A S and ternary  ox id e  variation  d iagram s for E W 0408 tephra dep osits and  regionally  
sign ifican t tephra d eposits. (A ) T he com p osition  o f  the cryp to tep h ra  from  core E W 0408-22JC  
app ears s im ilar  to L N A  100, a cryp toteph ra  from  a p eat dep osit near Ju n eau , A lask a , that has been  
linked  to the W hite R iver A sh . (B) Som e com p osition a l overlap  ex ists betw een  the cryptoteph ra  at 
12.78 m b sf in core E W 0408-33JC  and  E C R  162; E C R  162 is com p osition a lly  sim ilar to th e  3400  cal 
yr BP eruption  o f  A n iak ch ak  (B eget et a l., 1992), w hereas E W 0408-33JC  at 12.78 m b sf bears 
sim ilarities to  M E V F  activ ity . (C ) T he cryp totep h ras in cores E W 0408-33JC  (at 16.18 m bsf) and - 
47JC  (at 6 .46 m sb sf [I]) are com p osition a lly  id en tica l, and overlap  som ew h at w ith  E C R  162 w hich  
has been attrib uted  to a p reviously  u n id en tified  A n iak ch ak  eruption  by P ayne et al. (2008).
H ow ever, both cryp totep h ras in -33JC  and -47JC  m ore closely  resem ble rhyolitic  deposits associated  
w ith M E V F  activ ity . E rror bars (w h ere  show n) in d icate 1 o  stand ard  deviation  o f  published  
p op u la tion  m eans w h ere ind iv idu al g lass analyses w ere unavailab le .
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135 '40 'W  135 35 W 135 3 0 'W 135'25'W

F igure 2.9: B athym etry  o f  Sitka Sound in relation  to m apped  sub aeria l pyroclastic  flow s from  the  
M E V F  (R ieh le et al., 1989). T he geom etry  o f  th e  lobe, as w ell as th e sed im en to logy  o f  EVV0408-40JC, 
suggest th is m ay be the su b m erged  ru n -ou t o f  th e  ad jacen t su b aeria l flow . W hite  con tou r line at 70  
m w ater  depth  ind icates eustatic  sea level at the tim e o f  d ep osition  o f  the M E d tephra (F a irb ank s, 
1989).
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2.77 Appendix

A pp en d ix  2.1 In d iv id u a l tephra  grain  analyses.
Sam ple deptn

U N N O R M A L IZ E D  R A W  D A T A

(.inc.- Nur.ibnrn N .j^O  '% > M g O  (V .) A liO .  <«*>> SiO.- :»/•„> Cl K _0  ('»/,.) C a O  (,% ) ■|iO» :% j f « 3o s Total F otti;l>I«j H jO fa ci or
4 25 0.20 13.90 6P.06 o 09 2.56 1 69 0.37 2. 1 94.70 3.55 1.0560 I 5104

6S4 2 62 O 39 1 3  71 69 24 O 31 3 05 1 91 O 23 1.60 94 06 4 33 1 053161591
664 4 26 0.23 14.25 71 83 0 13 2.57 1 70 0.29 2 66 97 94 3 26 1 0210450 71
865 4 06 0.2-1 I 4 06 69 79 O 06 2.63 1 73 0.51 2.56 96.99 2.20 1 0417608/9
866 4 0 1 0.32 13 57 67 50 O 09 2.42 1.83 O.OC 2.61 92 35 6 04 1 082813 134
860 8 0 1 0 21 13. 19 66 70 Cl 05 7 33 1 32 O 33 2.30 90 82 7 49 1 10106315
370 3 64 0.32 •’ 4.10 70 64 CJ 38 3.61 1 9 2 0.3* 1 54 96.45 1 95 1.03683'053
07 1 3 20 0.00 1 3.57 G7 09 O 30 2 90 1 7 2 0.25 1 G2 52.01 G 40 1 .000032770
1020 3.42 0.50 13.51 6 7 20 0.34 3.16 1.7 3 O. 18 1..8S 9 1.32 6 84 1.09 1426198
1028 4 34 0.26 13 90 70 26 O 09 7 4,5 1 74 9 28 2 36 95 77 2 48 I 044212602
1020 4 06 0.20 13 35 67 : o o  o r 2.49 1 70 O 10 2 33 9 1 49 7 OO 1 094121555

N O R M A L IZ E D
Line Num O“ f3 KB..O M q O  (% ' Ai; 0 ;, t % ) SiOs (% ) C i  (% ) k ;.o  r%> C a O  <%> TiOa (% ) F c jO ;. (=-<,> Total Formula K ;.0

841! 4 48 0.23 14 08 72.72 0.10 2.70 1.79 0.39 2 06 100.00 3.65
054 3 85 O 4 1 1 4.58 73 G1 O 33 3.24 2 03 0.25 1 70 IOO OO 4 33
364 4 37 O 24 14.55 73 34 0 13 2.62 1 73 O 30 2 72 1 OO OO 0.26
065 4.54 0.32 14.64 72 70 0.06 2 74 1 80 0.53 2.67 100.00 2.20
666 4 34 0.24 14.70 73.09 O. IO 2.62 1.93 0.00 2 02 100.00 0.04
0OO 4.20 Cl,23 14.62 73.44 0.05 2.50 2 OO 0.37 2.62 10CJ OO 7.49
870 3 77 O 33 14.51 73 24 O 39 3.75 1 99 0.3 2 1 59 •*00.00 1.95
87 1 0.53 0,33 14.75 73.76 0.41 3.24 1 .67 0.26 1 76 100.00 S .40
1 020 3.73 0.55 14.74 73.35 0 27 3.45 1.69 O 19 1 73 100.00 6.84
1028 4.33 0.27 14.59 73.36 O. O 2.57 1.81 0.29 2.4 7 100.00 2.48
1020

M E A N

4.45 0.22 '4 .6 1 73.42 0.07 2.72 1 .60 O i l 2 55 io o  OO 7 OO

n N a -O  <**>) M g O  (% ) A 1 ,0 , 1%1 5*Oi <%> C l 1%) K jO  <%> C a O  <7=) TIO s  1%) F © jO , (% ) To ta l M70  ( e/e>
4 17 O 32 14 63 73 28 O 19 7 93 1 39 O 28 2 32 100.00 4 4 1

1 S C 0.36 0.09 0 08 O 33 0 15 0.41 O IO 0.14 0 5 1 2 4B

C o re  E W 0 4 0 8 -2 S M C 3  
S am p le  depth 0.21 m b sf

U N  N O R M A L IZ E D  R A W  D A T A
1 0 0 %

Norm alisation
N u m b e rs N a ;.0  ( % ) M g O  <%'. A I,.O j ( % ) S iO , { % ) C i  (% ) K ?0  !% .) C a O  (% > TiO i. ( % ) F e ^ O , i % ) To la i F o rm u la  H ^ O factor
426 4.56 0.37 13 94 73.40 0.25 2 47 1.85 0.45 2 ,9 3 100.23 -0 .2 3 1.00
429 4.21 0.36 13 99 70 52 0.09 2 43 1.84 0.24 3.02 96 .74 3 26 1 03
430 4.34 C 33 13 27 73.04 0.38 2.72 1.81 0.07 2,94 9 9 .8 9 1 1 I 1.01
433 4.47 0.26 13.81 74 19 0.15 2 57 1.71 0.22 2.62 69.99 0 01 1 00
435 4.81 0 35 13.96 72 23 0.29 2.62 2.07 0.42 2.92 99.65 0 35 1.00
440 4.28 0.29 14.31 72.65 0.10 2.73 1.62 0.23 2.95 99.15 0.95 1.01
443 4 4 9 0.22 13.53 72.89 0.09 2.59 1.43 0.54 2.95 98 .7 3 1.27 1 01
444 4 £4 0.26 13 97 72 33 0 32 2 65 1.71 0.06 2 99 98 82 1 18 1 01
445 4 46 0 35 13 69 72 2S 0.07 2.54 1.93 0.22 3 03 98.56 1.44 1.01
446 4 30 0 32 12.97 70.06 0.05 2.55 1.91 0.20 2.95 95.31 4 59 1.05
446 3.71 0.31 12.41 6 7 .3 0 0.11 2.36 1.78 0.36 2 .57 90 .9 0 9 .10 1 1 0
449 4.45 0 26 14.37 73 50 0.19 2.6* 1.92 0.25 2.90 100.46 -0 .4 8 1 00
451 4.44 0.30 13.99 73 07 0.08 2.52 1 96 C 21 3 04 99 .6 0 0 40 1 00
452 4.59 0 27 14 70 72 97 0.15 2.61 1 66 0.08 2 71 99 .7 2 0 .26 1.00
454 4 .60 0 30 14.30 72 .4 6 0.06 2.50 2. ? I 0 .56 2.95 9 9  84 0.16 1.00
457 4 .28 0.32 13.77 73.64 0.07 2.75 1.85 0.13 2.66 9 S.45 0.54 1.01
459 4 56 0.33 14 64 72.91 C.08 2.59 1.91 0.23 3.13 IC O  37 -0  37 1.00
460 4.45 0.3C 13.83 71 20 0.06 2 67 1.91 0.24 2 68 97 .3 3 2 G7 1 03
466 4 43 0.29 13 94 73.21 0  07 2 49 1.65 0.09 2.96 99 .1 3 0.81 1.01
468 4.66 0.35 13 97 72 .8 9 0.28 2.53 1 96 0.45 2.75 99 .8 5 0 14 1.00

N O R M A L IZ E D
Li n e  N u m b e r s N a 20  ( % ) M g O  ( % ) A1?Oj. < % ) SiOa < % ) C l ( % ) K r O  {% ) C a O  < % ) TiO ?  ( % ) F e 2O j  t% « To ta l F o rm u la  H 20

426 4.55 0 .37 13 90 73 23 0 25 2.47 1.34 0.43 2.92 1CO.OO -C .2 3
429 4.35 0.38 14.46 72.90 0.09 2.55 1.90 0.25 3.12 1 0 0.00 3.26
430 4 38 0 33 13.42 73 87 0.39 2.75 1.83 0.07 2.97 10 0.00 1.11
433 4 47 0.26 13 81 74 20 0 15 2.57 1 71 0  22 2 62 ICO 0 0 0 01
435 4 S3 0 .35 14.00 72 48 0.29 2 62 2.08 0.42 2 93 1 CO OO 0.35
4 40 4.32 0 .29 14 43 73  27 0.10 2.75 1.63 C.23 2.98 130 00 0 85
443 4.55 0 .23 13.70 73.82 0.09 2 63 1.45 0.55 2.99 -.0 0 .0 0 1.27
444 4 £9 0.26 14 14 73 15 0.32 2.68 1.72 0.C6 3.02 IC C  OO 1 18
445 4 52 0.36 13.89 73.32 0.07 2.58 1.95 0 .22 3 08 1 CIO.GO 1 44
446 4.51 0.33 13.60 73 -S1 0.05 2 68 2.01 0.21 3 10 1C0 OO 4 .59
448 4 06 0.34 13 65 74 03 0.12 2.59 1.96 0.39 2 82 *00.00 9 .10
449 4.43 0.26 54.30 73  14 0.19 2.62 1.91 0 2 5 2.89 i 0 0 .0 0 -0 .4 8
451 4.45 0 .30 14 04 73 36 0.08 2.53 1.97 0 21 3 05 IOO 00 3 40
452 4.6C C.27 14 74 73.18 0.15 2 62 1.67 0 0 6 2.72 I jQ  CO C 28
454 4.61 0 30 14 32 72 53 0.06 2 50 2.11 0.56 2 ee 100 00 O .lS
457 4.30 0.32 13.84 74.04 0.07 2.77 1.66 0.13 2.8-3 100.00 0.54
459 4 55 0.32 14.58 72 64 0.08 2.58 1.90 0.23 3.12 1 3 0.0 0 -0 .3 7
460 4 57 0.31 14 21 73 15 0.06 2.7* 1.&6 0 2«» 2 76 100 CO 2 6 7
466 4 52 0.30 14.05 73 81 0.07 2.5* 1.63 0 09 2 93 1 DC- 0 0 0.31
4 68 4 - 6 0 35 *3 99 72 93 0 28 2.54 1 93 0.45 2 75 100 OO 0 14

M E A N
n 1 N a 2 0 M q O A I2 0 3 S i0 2 C l K 2 0 C a O T i 0 2 F e 2 0 3 T o ta l H 2 0

2u 4 4S 0 31 14.05 73  34 C.15 2.61 1 36 0.27 2 92 100 00 1 36
1 S D 1 0 .16 0 04 0 35 3  50 0 10 0 09 0.17 0.16 0 1 5 7  23



C ore .  E W 0 4 0 Q - 3 3 J C
S a m p 's  depth f6.18 m b s f

U N N O R M A L IZ E D  R A W  D A T A

Line N um b e rs NS.-.0 ( % ) M g O  { % ) A I? O j  ( % ) S i O ? ( % l Cl  <%) K , Q  <%> C a O  ( % ) T i O j  ( % ) F e z0 3 ( % ) Talat Koimula H j O

1 0 0 %
Normalization

factor

1333 5 10 0 22 14.05 71.49 0.1 1 1.86 1 20 0.21 2 S3 96.85 3.15 1.033
1335 4.70 0 21 14.47 70.59 0 03 2.17 1 54 0.13 2.42 96.66 3.34 1.035
133G 4.90 0 26 14.3e 71.45 0.07 2.40 1.74 0.33 2.83 96.43 1.57 1.016
1338 5.10 0.33 14 58 72.91 0 05 2 65 1.74 0.37 2.62 100.41 -0 41 0.996
1339 4.82 0.26 13 31 68 55 0 07 2.27 1.79 0.34 2.76 94 17 3.33 1.062
1340 5.03 0.31 14.50 70.97 0.12 2 .49 1.85 0.39 2.72 98.39 1.61 1.016
1343 4.99 0.31 13.44 67 .75 0.11 2.40 1.52 0.19 2.56 93.26 6.74 1.072
1345 4.90 0.21 14.23 71.70 0.08 2.56 1 69 0.17 2.57 98.09 1.91 1.019
1340 4 5.1 0 28 13.44 53 .73 0 11 2.34 1.49 0.45 3.14 94 58 5 44 1.058
135 J 5 00 0 28 14.01 70.82 0.1 1 2.47 1.50 0 0 7 2.64 96.98 3.02 1.031
1358 4 63 0 32 13.00 £5 .23 0 09 2.15 1 64 C.32 2.64 9 0  16 9.84 1.109
1359 5 07 0 20 13.77 72.88 0 13 2.65 1.09 0.51 2 74 99.03 0 97 1 010
1362 4.28 0 19 12.64 57.35 0.05 2.57 1.22 0.34 2 47 91.10 8.90 1.098
1365 4.73 0 30 13.90 63.97 0.12 2 38 1.64 0.34 2.50 94.89 5.11 1.054
1368 4.78 0 40 13.46 71.87 0 08 2 60 1 31 0 38 2 72 97.59 2,4 1 1.025
1370 4.84 0 31 14.19 69.10 0.08 2 45 1.70 0-44 2.58 95.70 4 30 1.045
1372 4.40 0.20 12.85 70.40 0 06 2.50 1 20 0.47 2.97 95.08 4.92 1.052
1373 4.67 0.23 13.64 71.41 0.12 2.G3 1.72 0.31 2.79 97.91 2.09 1.021
1374 4 91 0.26 14.14 7 1.44 0  14 2 52 1.66 0.31 3.06 9 8  64 1.36 1 014

N O R M A L I Z E D
Line Numfcem Ma?0  (%> M g O  < % ) AI2O j  ( % ) S i O :  ( % ) Ct K j O  <%) C a O  (%> T i O j  (%> F e p O j  ( % ) Tefal Formula H j O

1333 5.27 0 23 14 51 73.82 0 11 1.94 1 30 0 21 2 61 100.00 3 15
1335 4.87 0.22 14.97 73.03 0 93 2 24 2.00 0.14 2.50 100.00 3.34
1336 4.98 0 26 14.51 72.59 0 07 2.44 1.76 0.33 2.94 100.00 1.57
1336 5.13 0 33 14.52 72 .61 9 05 2 64 1 74 0 37 2(51 100.00 0.4 1
1339 5.12 0 27 14.14 72.80 0 08 2.4 1 1.90 0.36 2 93 100.00 5.83
1340 5.12 0 31 14.74 72.14 0.12 2.53 i.es 0 4 0 2.77 100.00 1.61
134 3 5.35 0.34 14.41 72.64 0 12 2.58 1.63 0.20 2.74 100.00 6.74
1345 5.00 0 21 14.50 73.10 0 06 2 .6 1 1.72 0 1 7 2.62 100.00 1.91
1349 4 70 0 30 14.21 72 75 0.1 1 2 47 1 58 0 47 3.32 100 00 5.44
1351 5.24 0.28 14.45 73.03 0 1 1 2.55 1.55 0.07 2.73 100.00 3.02
1358 5.13 0 36 14.51 72.42 0 09 2.39 1 82 0.36 2.93 100.00 9.84
1259 5.12 0 20 13.90 73.59 0.13 2 67 1 10 C.52 2.76 100.00 0.97
1362 4 70 0 21 13.87 73 93 0.06 2 82 1.33 0.37 2.71 100 00 8.90
1365 4.99 0 31 14.65 72.59 0 13 2 51 1.73 0-3S 2.64 100.00 5 1 1
13GB 4.90 0.41 13 79 73 64 0 06 2 67 1 34 0.39 2 78 ico.no 2.4 i
1370 5.05 0 33 14.83 72.20 0 08 2 56 1 78 0.46 2 7Q 100.00 4 30
1372 4.63 0 21 13.51 74.05 0 08 2.63 1.26 0 49 3.12 100.00 4.92
1373 4.97 0 23 14.13 72.93 0 13 2.68 1.76 0.31 2.85 100.00 2.09
1374 4 98 0 29 14.33 72.42 0 14 2 55 1 88 0 . 3 ’ 3 10 1(10 00 1.36

M E A N
n N a 2 0 M O O A I 2 0 3 S i 0 2 Cl K 2 Q C a O T i 0 2 F © 2 0 3 To ta l H 2 0
19 5 02 0 28 14.35 72 97 0 09 2 52 1 64 0.33 2 31 100 00 3 80

1 E d 0.19 0 06 0.38 0.53 0 03 0.19 0.25 0.12 0.21 - 2.71
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Appendix 2.1 (continued)
C ore: S W 0 4 0 e -3 3 .iC .

Sample depth 12.73  m tis f

U N  N O R M A L IZ E D  R A W  O A T A

Line Numbers. N a rO  (% ) MgO (%) A I,O j  (% ) S iO , (% ) C l {% } K?0  <%> C a O  (% ) T iO * <%) Fe20 ?. (% ) T o ta l F o rm u la  H ^O

100%
Normalization

factor

877 4.36 0.25 14.30 70.44 0.13 2.76 1.84 0.14 2.77 96.98 1.32 1.031107889
3 79 4.47 0 24 15.17 69.53 0 05 2.24 2 28 0 10 2 36 96 43 1 86 1.037008602
880 4.47 0.37 14.01 70.18 0.07 2.60 1.92 0.12 2.93 96.66 1.63 1.0-34596121
381 4.32 0.23 13 79 63.62 0 07 2.28 1.73 0.08 2 65 93.77 4.55 1.066397957
882 4.30 0.24 13 90 69 6-5 0 07 2.40 1.67 0.14 2.54 93.91 4.41 1.064830501
383 4.52 0.26 13.93 70.45 0 16 2.33 1.93 0.27 2.41 96.25 1.97 1.038919641
390 4.57 0.40 14 82 71.15 0.09 2.54 1.87 0 0 4 2.85 98.34 -0 07 1.016850318
892 4.13 0.25 13 71 69.13 0 03 2.61 1.72 0.20 2.59 94.41 3 90 1 059249205
893 4.33 0.24 13.59 68.48 0.06 2.34 1.64 0.29 2.49 93.47 4.80 1.069B10805
896 3 99 0.26 13.65 68 66 0 10 2.30 1.76 0.08 2 74 93.55 4.77 1 068933553
900 4.53 0.28 14.02 69.63 0 09 2.44 1.78 0.14 2.45 95.36 2.94 1.048649152
902 4.41 0.24 14 14 70 60 0 10 2.64 1.70 0.21 2 58 96 63 1.64 1 034920572
903 4.45 0.30 13.77 70.29 0 10 2 55 1.65 0.25 2 63 95 99 2.26 1 041743903

N O R M A L IZ E D
Line Num bers N a20  (% ) M g O  <%) AJ20 3 <%> S i0 2 <%) Cl <%.

377 4.50 0.26 14.74 72.63 0.13
879 4.63 0 25 15.73 72 10 0 05
380 4.63 0.38 14.43 72 61 0.07
381 4 60 0 24 14 70 73.17 0 08
382 4.58 0.2S 14.80 73 10 0.08
883 4.70 0.27 14.47 73 19 0 16
390 4.64 0.41 15.07 72.35 0.09
392 4.38 0.26 14.52 73 23 0 03
893 4.63 0.26 14.54 73.26 0.07
395 4.25 0.28 14.59 73.41 0 11
900 4.75 0.30 14.70 73.02 0.10
902 4.57 0.25 14 63 73.06 0.10
903 4.63 0.31 '4  35 73 23 0.11

K ,0  <%> C a O  (% ) TiO^ (% ) Fe 20 3 <%) Total Formula H^O
2.85 1.90 0.14 2.85 100.00 1.32
2.32 2.37 0.10 2.45 100.00 1 36
2.69 1.98 0.12 3.03 100.00 1.63
2.43 1.85 0.08 2.83 100.00 4.55
2.55 1.78 0.15 2 71 100.CO 4 4 1
2.42 2.00 0 26 2.50 100.00 1.97
2.59 1.91 0.04 2.90 100.00 -0.07
2.76 1.82 0.21 2 74 100.00 3.90
2.51 1.76 0.31 2.67 100.00 4.30
2.46 1.88 0 03 2.93 100.00 4 77
2.56 1.87 0.14 2.57 100.00 2.94
2  74 1.76 0.22 2.67 100.00 1 64
2.G6 1.72 0.26 2.74 100.00 2.26

M E A N
n N a 2 0 M a O A I2 0 3 S102 Cl K 2 0 C a O T I0 2 F e2 0 3 Total H 2 0
13 4.58 0 29 14.72 72 95 0 09 2.58 1.89 0.17 2 74 100.C0 2 77

1 S D 0.13 0 05 0 35 0 40 0 03 0.15 0.17 0.09 0.17 - 1.57
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Appendix 2.1 (continued)
Cor® E W 0 40 3-4 0JC

Sam ple depth: 9.08 m bsf (I)

U N N O R M A L IZ E D  R A W  D A T A
ico%

Norm alizat io n

Lin® Numbers z EJ 0 M gO  (% ) AI2O s (% ) S i0 2 :'%> C l <%) K ,0  (% ) C a O  (% } T iO z (% ) F e .O , {% ) Total Formula H -O factor

1671 5.08 0.30 14.34 69.18 0.10 2 51 1.76 0 14 3 03 95 43 3 5 7 1.037012096
1672 4.61 0.26 14.13 68.36 0.07 2 46 1.69 0.33 2 64 95.78 4.22 1.044011992
1673 4 80 0 30 14.20 70.06 0.03 2 40 1.72 0 14 2 68 96.35 3.65 1.03791 7233
1678 4.73 0.26 13 70 69 71 0.06 2 67 1 58 0 33 2 68 95.75 4.25 1.044357303
1682 4 73 0.22 13.90 69 29 0.10 2 66 1.58 0.28 2 53 95 23 4.72 1.043548574
1686 4.64 0.30 13.94 68.46 0.04 2 46 1.69 0.33 2.69 94.56 5.44 1.05751901
1689 5.33 0.33 14.06 69 23 0.12 2.61 1.85 0 37 2 38 95.80 3.20 1.033106312
1690 4 52 0 28 13.29 88.88 0.13 2 42 1.45 0 28 2 64 93 89 6.11 1.055091873
1691 4 21 0 09 14.12 69.19 0 10 2 33 1.44 0 37 2.15 94.00 6.00 1 063835851
1692 4.86 0.22 13.55 69.35 0.10 2.24 1.54 0.37 2. S3 94.88 5.12 1.053973279
1697 5 37 0.25 13.99 68.75 0.07 2 49 1.56 0.19 2.53 95.13 4 82 1.050639874
1698 4 43 0 28 14.33 70 54 0 07 2 63 1.68 0 22 2.87 97 06 2.94 1.030232341
1599 4.57 0.24 13.94 69.06 0.07 2.12 1.72 0.30 2.87 94 88 5.12 1.054005509
1700 4.29 0 80 13.07 68.89 0.03 2.16 1.65 0.31 3.65 94.66 5.14 1 054 163348
1702 4 55 0.33 13.37 68.83 0.08 2 39 1.89 0 43 3.02 95 44 4 55 1.047741479
1703 5 04 0.30 14.03 69 09 0.09 2.48 1.63 0 43 2 50 95 61 4.33 1.045913671
1704 4 99 0.32 14.43 69 91 0.06 2 43 1.81 0 45 2 85 97.24 2.76 1 026428799
1705 5.34 0.31 14.12 69.12 0.07 2 61 1.59 0 39 2.81 96.37 3.63 1.03766171 1
1706 4.16 0.28 13 30 65.59 0.10 2 43 1.46 0.24 2 62 91.58 8 42 1 09194B952
1707 5.10 0.28 14.28 69 67 0.04 2 42 1.82 0.35 2.87 96.33 3.17 1 0327222C2
1709 4.84 0.27 13.67 69.49 0.06 2 50 1.54 0.37 2.99 95.74 4.26 1.044524521

N O R M A L IZ E D
Line Numbers N a?0  (% ) M gO  (Vo) Al>0* (% ) SiO? (% ) c :  (% ) K2O  [% ) C a O  :% ) T iO j  (% ) F e^O } <%) Totai Formula FLO

1671 5.26 0.31 >4 87 71 74 0 1 0 2 60 1.82 0.14 3.14 1 0 0  0 0 3 57
1672 5 03 0 29 14 75 72 42 0.07 2 57 1.76 0 35 2.76 100.00 4.22
1673 4.98 0.32 14.74 72.72 0.04 2 49 1.79 0.14 2.79 100.00 3.65
1678 4.99 0.27 14.30 72 BO 0.06 2.79 1.65 0.35 2.80 100.00 4.25
1582 4 96 0.23 14.59 72 72 0.10 2.79 1.66 0.29 2.65 100 00 4.72
1686 4 91 0 32 14.74 72 40 0.04 2 60 1.79 0 35 2.84 100.00 5.44
1689 5.50 0.35 14.52 71.52 0.13 2.70 1.92 0.39 2.97 100.00 3.20
1690 4.82 O 30 14 15 73.36 0.14 2 57 1.54 0.29 2 82 1 0 0 . 0 0 6.11
1691 4 48 0.09 15.02 73.51 0.11 2.48 1.53 0 40 2.29 100.00 6.00
1692 5.13 0 24 14.29 73 09 0.10 2.36 1.63 0.39 2.77 100.00 5.12
1657 5 64 0.26 14 70 72.23 0 07 261 1.64 0.19 2.66 100 00 4 B2
1698 4.56 0 29 14.76 72.63 o.oe 2 71 1 73 0 22 2 96 100.00 2.94
1599 4.82 0.25 14.69 72.79 0.07 2.23 1.81 0 31 3.02 100.00 6.12
1700 4.53 0.34 13.78 72 63 0.04 2.27 1.74 0.33 3.85 100.00 5.14
1702 4.77 0.35 14.53 72 16 0 08 2 51 1.98 0 45 3.16 100.00 4 56
1703 5.27 0.32 14.6e 72 26 0.10 2.60 1.71 0 45 2.62 100.00 4,39
1704 5.13 0.33 14 34 71 90 0 OS 2 50 1 86 0.47 2 93 100.00 2.76
1705 5.54 0 32 14.65 71.73 0.07 2 71 1.55 0.41 2.92 100.00 3.63
1706 4.54 0.31 14.53 73 15 0.11 2.65 1.60 0.26 2.87 100.00 8.42
1707 5.27 0.29 14.75 71 94 0.04 2 50 1.87 0.37 2 96 100.00 3.17
1709 5.05 0 28 14 28 72.59 0 Of 261 1.61 0 39 3.12 100.00 4 2c

M E A N
n N a2 0 M aO A I2 0 3 S i0 2 C l K 2 0 C a O T i0 2 F e2 0 3 Total I H 2 0
21 5 01 0.31 14.58 72 50 0.08 2 56 1.73 0.33 2.90 100 00 ! 4 . 5 5

1 S O 0 33 0 13 0 28 0.55 0 03 0 15 0.12 0 10 0 30 I 1.30

C ore  E W 0 4 0 8 -4 0 JC
Sam ple depth: 9.08 m bsf (II)

U N N O R M A L IZ E D  R A W  D A T A
100%

N or m ali zat ion

Line Num bers Na^O (%) MgO (%) Al70 3 !%) SiO^ {%) c: (%) KvO  (%) CaO {%) TtOj (%) Fe20 :> (%) Total Formula HaO facto

734 4.36 0.30 13.80 69.09 0.03 2.51 175 0.51 2.70 95.09 3.10 1 05
744 4 35 0 30 14.39 70.91 0 11 2.45 1.75 0.43 2.69 97 40 0 75 1.03
759 4.60 0.79 13 59 6 6 .SO 0.10 2.0S 1.93 0.19 3.64 93.83 4.40 1 07
762 3 85 1.14 12.50 67.70 0.11 2.07 1.71 0.33 4.50 93.91 4.19 1 06
766 4 62 0.26 14.17 67.65 0 10 2.21 1.95 0 23 2.54 93.74 4.55 1.07
786 4.10 0.39 13.53 67.62 0.10 2.21 1.79 0.56 3.26 93.59 4.55 i .07
795 4 84 0.19 15 24 69.05 0 13 2.01 2.34 0.35 2.14 96.29 1 92 1.04

NORMALIZED
Line Numbers Na^O (%) MgO (%) A i.O , (% ) S iO i  <%) Cl (%) k * o  (%) CaO (%) T .0 2 (%) Fe20 3t% ) Total Formula H 20

734 4  98 0 36 14 64 71 77 0 07 2.56 1.80 0.73 2.95 100.00 3.10
744 4 56 0 36 14.91 71.96 0.09 2.55 1.76 0,64 2 87 100.00 0.76
759 5 33 0.96 14.61 70.43 0.09 2.25 2.01 0.30 4.03 100.00 4.40
762 4 45 1 39 13.41 71 16 0 10 2 22 1.78 0.51 4.98 100.00 4.19
7G6 5 36 0.32 15.26 71.36 0.09 2 38 2.03 0.36 2.82 100.00 4.SS
786 4.76 0 4 6 14.57 71.04 0 09 2.3S 1.87 0.B8 3.64 100.00 4.55
795 5.47 0.23 15 98 70.89 0  11 2.11 2.38 0.53 2.31 100.00 1.92

M E A N
rj N a 2 0 M flO A I2 0 3 S i0 2 Cl K 2 0 C a O T i0 2 F e 2 0 3 Total H 2 0
7 5 03 0 56 14.77 71.27 0 09 2 35 1.95 0.57 3.37 100 00 3.35

1 S D 0 37 0.43 0 78 0.52 0.01 0.19 0.22 0 21 0 91 1 50
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U N N O R M A L I Z E D
unsi/oi/HOte.1 p/ease ccvtfanf J A  A c lc / is o n  r jm a a i/ y  f a r  tf/ iv  c/afa

Appendix 2.1 (continued)
C o r e : E W O -iO Q -

S a m p le  de ptti 9 .8 0  m b s/

N O R M A L I Z E D
L in e  N u m b e rs N a ..O  { % ) M g O  (Vo) AI.'O ;, ( Vc) S iO „  (Vo) C l (Vo) K ..O  (V-0 C n O  ( % ) T lO .. ( V r ) F e .,0 ., ( % ) To ta l F o rm u la  H ;, 0

5 .7 3 0 .3 0 14.S© 72.2© 0 .0 6 2.2 4 1 .54 0 .3 3 2 .9 4 IO C  OO 1 .20
182$) 5  4 5 0 .3 5 1 4 .6 6 72 37 O 08 2 .2 6 1 19 0 .4 0 3 16 I OO OO -0  18
1031 5 .3  1 0 .2 9 14 84 72 53 0 .0 8 2 .3 9 1 50 0 .2 5 2 8 1 1 OO OO I .8 9
18 14 5 .5 3 0.2© 14.3© 72 .54 0 .0 7 2 .2 8 1.63 0 .3 3 2 .9 5 1 0 0 .0 0 2 .0 7
1 8 15 5 34 O 22 •14 S3 72. 79 O 1 2 2 .3 0 1 66 0 .4 5 2 57 1 OO OO 1 6©
i a i 3 s e e 0 .3 2 14 4 5 72 ©3 0  08 2 20 1 43 0 .2  1 2 63 1 OO 30 2 44
1822 6 .0 4 0,2© 14.37 72 84 O.C4 1 .93 1.16 0 .5 2 2 84 1 0 0 .0 0 •O. 7 1
1821 5 .3 0 0 .2 3 14 .07 72 60 0 .0 9 2 23 1 .56 0 .1 7 2 .e i lO O  OO 4 63
1320 5. /2 0 .3 0 1 4 .3 3 72 50 0 .1 2 2 0 7 1 .37 0 .2 9 2 91 1 OO OO 1 S3
132'/ S 38 0 .2 5 14 « s 72  94 O 10 2 29 1 .27 O 2 9 2 81 1 OO OO 3.21
1830 5 .3 5 0 .2 7 14 .57 73 O 1 O 08 2 26 1 35 0 .4 5 2 5© 1 0 0  OO 0 .9 0
1 3 23 5.8© 0 .2  1 14.35 7 3 .35 o.o© 2 .0 6 1 .26 0 .2 0 2 .6 5 1 0 0 .0 0 -0 .8 0
1819 4 .7 s 0 .2 2 14 31 73 6 7 0 .0 7 2 .0 6 1 .63 0 .2  1 3 04 1 OO OO 1 .64
1035 3 .3 ? 0 .2 0 14 66 74 1 5 O 13 2 .2 3 1 79 O 17 3 DC 1 OO OO 3 .3 8

M E A N
rt N o J O M a O A 12 03 S l 0 2 C l K  2 0 1 C a O T 1 0 2 F e 2 0 3 T o t a l H  2 0
1 4 S .3 8 0.2© 14 53 72 93 O 08 2 2 0 1 46 O 31 2 80 1 OO OO 1 7  1

1 3 D 0  6 1 O 04 0  17 O 50 0 .0 3 O. 1 3 1 0  19 O 1 2 O 18 1 .59

Curu. EHW 00-40./C
.S«imp!e depth 1 0 .0 0  tn to fif

U N N O R M A L I Z E D
ti/iai'fli'/aWfi’. p/9.is« co/iiacf dA Aocu'soo c iitx to ity  f o r  t h is  clOt.it

N O R M A L I Z E D
L irio Nm nbCifti N f » ;0  (V-.> M g O  ( % ) a i ^ O ji <>>:•) 3 I O ? (V o ) C l (Vi.> K ; O  1 % ) C a O  (Vi,* TlO ,- (V . . ) F e ,D . ,  (Vo) T o ia i F o rm u la  H.-.O

181 1 6.51 0 .2 9 14 2 9 72 1 1 0.10 2.1 3 1 52 0 .3 4 2.71 lOO 3 .6 9
17 90 5 6 0 0 .3 7 1 4 .6 0 72 .2 3 O 07 2 4 2 1 80 0.1 ? 2 6 3 to o S 24
1799 5 .6 0 0 .2 4 1 4 .55 72 35 0 .0 9 2 36 1 -76 O. 25 2.00 1 OO 3 .4 0
1780 5.©5 0 .3 2 14.5© 72 47 O OO 2 O l 1 .70 O OO 2 7© 1 OO 4.6©
1 7 7 7 G. 1 7 0 .2 8 14.77 72 58 0 .0 7 2 .2 5 1.12 0  17 2 .5 9 1 OO 5 .7 2
1802 6 .0 0 0 .3 4 14 .39 7 2 .8 4 O. 1 3 2 4 9 1 .39 0  2 1 2 .3 5 IO C 4 .1 6
1783 5 51 0 .2 6 14 17 73 39 O 04 2.54 •t .50 O OO 2 4 9 •1 OO 5 81
1 792 5 .3 2 0 .3 6 1 3.32 73 .4 1 0 .0 7 2 .3 6 1 .34 0 .0 4 2 .7 6 1 OO 4 .3 0
1 784 5 4 3 0 .2 7 1 4 .06 73 66 0.11 2.37 1 as 0 3 4 2 .4 9 1 OO 5 .4 5
17 93 5 .4 3 0 .2 3 14.13 7 3 .9 3 O 1 o 1 8 1 1 .30 O 6 3 2 .4 0 lOO 3.61

M E A N
f-f N o  2 0 A I 2 0 3 S i 0 2 C l K 2 0 C a O T1 0 2 F o 2 0 .1 T o t a l H 2 0

5 8 2 72 88 O 09 2 .2 6 1 .40 O 22 2 6 0 lO O  OO 4.61
1 6 0 0 .3 5 0 .0 5 0 .3 0 0 .6 5 0 .0 3 0 2 3 0 .2 3 0 .1 8 0 .1 6 0.91

Core: C
somple depth J 0 . 2 9  m t o s f

U N N O R M A L I Z E D
nn.at'aiLiOfe; please- c-cv>f«c-f -’A -Add/ciOr? O ir e c t ly  f o r  t h ‘* c/a fa

N O R M A L I Z E D
L in e  N um D ei'5 N a ? 0  (V„) M g O  (Vi.) A I . O ;l ('4,) S i© ., (V ») C l <Vc) K..-0 (V .) C a O  (Vb) T IO -.  (Vo) 5€?;,0 . ,  (V . ) To ta l F o rm u lfl H ) 0

1 592 0 .1 6 0 .2 6 14 .57 7 1 ©S 0.0© 2 .5 0 1 .7 5 o. io 2 0 5 0 0 .0 0 3 .1 9
1593 5  27 0.2 4 14 6 3 72 27 0 .1 2 2 07 1 62 O 3S 2 .0 3 TOO OO 4 4 6
1504 4.61 0 .2 5 14.41 7 3  05 O.C9 2 .4 3 1.62 0 .6 0 2 74 1 0 0 .0 0 5 20
1508 5 OO O 31 1 4 .68 72 aa O 14 2 01 1.76 O 4 7 3 0 3 10 0 .0 0 2 OS
1600 5 59 0 .3 0 14 6 0 71 71 O 13 2 76 1.76 O 36 2 7 6 'i 0 0 .0 0 G 51
190 1 4 54 0 .3 5 14 54 7 2  28 O 09 2 58 1 67 O 35 3 4 1 10 0.0 0 3 4 6
1802 5  3 7 O 32 14 .62 7 0  26 0 .0.9 2 51 1,04 O 19 2 ©1 10O. OO 4 S O
1603 4 44 O 31 14.2© 73 31 O 1 1 2 36 1.(52 O 7 5 2 63 100.00 S 6 2
1805 4 95 0 .3 3 14.73 72 60 O 13 2 50 1 62 O 30 2 .7 9 1 0 0 .0 0 7. 18
1607 4 58 0 .3 0 14 7 4 72  32 0 07 2 52 1.33 O 6 5 2 9 9 •100.00 3 6 3
1610 4 .7 5 0.2  5 14 d l 73 11 0.07 2 7 3 1.56 O 4 1 2 ©6 1 0 0 .0 0 4 0 3
1G-1 1 4 74 O 2 0 14 53 7 3  42 O 0 9 2 66 1 4© O 3 1 2  s e 1 0 0 .0 0 4. IO
1814 4.5B 0 .3 2 14 .88 72.31 O OS 2 59 1.80 O 12 2 .3 6 1 0 0 .0 0 5 35
10 15 5 02 0 .2 4 1 3 .07 7 3  64 0 .1 2 2 4© 1.4 I O 25 2 .7 0 100 OO G OO
16 20 5 40 0.2© 14 61 7 1 .3 5 O 07 2 .5 3 1 6© O 4 5 3 0 9 1 0 0 ,0 0 7 37
1821 S OG O 31 14 6 7 7 1 ©9 O 0 9 2 57 1 .3 6 O 26 3 I S 100 OO 3 15
1622 4 .0 9 O. 30 14.5© 72 .8 5 0 .0 9 2 .6 8 1.7'9 0 .5 0 3.13 1 0 0 .0 0 5 .1 5
•1623 5 32 O 26 1 4 .4 8 72 63 O 07 2 .6 0 1 .7 7 0 .2 7 2 39 1 0 0 .0 0 4 54
1624 5 6 0 0 .2 9 14.21 72 52 0 12 2 .3 5 1.64 0 .3 2 2 .9 5 100.00 2 .7 2
1625 4 8 6 0 .2 6 14 6 6 72 52 0 .0 8 2 64 1.61 0 .4 0 2 .8 9 I 0 0 .0 0 5 54
1626 4 .3 3 0.31 14 .63 72.92 0.0© 2 .6 3 1 .7 0 0 19 2 .9 8 • 0 0 .0 0 4 .5 S
367 4 sa 0 .2 7 •14.71 72 6© O 14 2 96 1.53 O 4 6 2 6 S •100.00 C G I
38 8 4  73 0 3 2 14 .67 7 2 .6 3 0 .0 8 2 .6 7 1.02 0 .3 7 2 9 0 10 0.00 1.20
395 4 56 0 .2 8 14 .e o 73 .1 6 0 12 2 69 1.66 O 17 2 75 100 DO 2 0 6
396 4 .5 7 0 .2 9 14 .63 72 9S 0 .0 6 2 .7 3 1.8 0 0 .2 3 2 8 4 10 0.00 O 11
397 4 52 0 .2 9 1 4 .74 72 56 o to 2 76 I 0 9 O 23 2 9 0 109 CO O 2S
39 6 4 .S 3 0 .2 9 14.69 72.8© o. to 2.6© 1.89 0.1© 2 82 1 0 0 .0 0 O 57
39 9 4.31 0.31 1 4 .66 7 2 .5 0 O. 14 2 61 1.7 9 G 16 3 0 3 1 0 0 .0 0 1 3 /
40 2 4 .2 7 O. 33 1 4 .40 7 2 .39 C .1 2 2 .8 2 1.77 0 .3 8 3.C2 1 0 0 .0 0 2 .5 2
40 3 4 .3 6 0 2 9 •14.61 72 .94 0.1 3 2 67 1.54 O 0 3 2 64 i o o .o c 1 38
4 0 5 4 .8 4 0 .2 5 14 .44 72 .90 0 .0 5 3. IO 1.5© 0 .2 8 2 .7 8 1 0 0 .0 0 2.94
407 4 56 0 .2 8 14 .53 72. S4 0 .0 0 2 61 1 . 8 1 O 37 3 C2 1 0 0 .0 0 G. 82
4 0 8 4 .5 4 0 .3 3 1 4 .5 0 7 2 .9 3 0 .0 8 2 67 1.53 0 .1 6 2 .8 6 1 0 0 .0 0 0 .7 0
4 1 0 4 4 6 O 3 0 1 4 .5 0 7 2 .6 3 0.07 2 73 1 .0 0 0 44 2 0 9 1 0 0 .0 0 O 04
41 2 4 .4  2 0 .2 3 14.4© 7 3 .2 3 0 .0 8 2.81 1.72 0.31 2 .7 3 1 0 0.0 0 4 .1 4
4 *.3 4 70 O 24 14 37 72 .37 0 .0 9 2 01 1 ©5 0 .3 4 3 14 1 OO. DC 4  a s
414 4 .4 5 0 .2 6 14 .54 7 2 .9 3 0.1 1 2 .6 8 1.73 0 .9 3 2 .7 0 1 0 0 .0 0 0 . 5 9
421 4 .4 6 0 24 1-1.37 73 2 0 C .IO 2 72 1 .8 0 0 21 2 .0 6 1 9 0 OO 0  3 1
42 2 4 .5 8 0 .2 9 14,35 7 2 .9 9 0 .0 5 2 .8 4 1.S1 O 33 2 .9 / 1 0 0 .0 0 2 . 0 0
42 3 4 38 O 24 14 3 3 73 29 0.11 2 03 1.70 0  43 2 OB TOO OO - 0  S3
4 30 4 .7 2 0 .2 5 14.©9 72. 72 0 .0 7 2.91 1.79 O 24 2.© 1 100.00 2. 71
431 ■1 44 0 .2 2 14 45 73 13 O 09 2 04 1 G4 C 3 ? 2 78 •1 0 0 .0 0 C 5 1
432 4 .4 4 0 .2 4 •14.7 1 72. 95 o. io 2 .6 3 1.73 O 39 2 6 0 10 0.00 0 .9 7
4 3 3 4 55 O 2© 14 84 73 1 4 O 06 2 6 5 1.7 3 O 21 2 5 5 100 o c O 70
434 4 .5 3 0 .3 3 1 4 .50 7 2 .95 O. 1 1 2 .6 3 1.64 O 0 5 2 76 1 oo .o c 1 12
43© 4 O0 O 2© 14 8 T 7 2 .5 7 O 09 2 57 1.93 O 28 2 72 1 0 0 .0 0 0 .2 8
43 7 4 .5 3 O. 19 15. 12 7 2 .54 O . 1 1 2 .9 2 1.7 9 O 19 2 6 0 10 0.00 2 .5 9
43 6 4 59 O 24 14 55 7 3  OO a 0 7 2 03 1 8 3 O 30 2 79 100 CO 0.01
417 5 OO C 20 IS  34 7 1 .3 9 0 .0 5 2 4 2 2 .2 3 O 14 2 .1 6 IOO.OC 3 .4 7
4 0 9 5  11 0 21 1G. 40 71 4 4 o 1 0 2 23 2.35 O 0 7 2. TO TOO OO - 0  :?a
4 2 7 s.oe O 2 t 13 .69 7 1 6 3 O 07 2 .3 6 a 2 3 O 1 4 2 .5 5 1 OO CO 0 . 7 7
40© 5 2 0 O 2 0 15 91 7 1 6© O 0 7 2 33 a a s O 23 2 O l lOO OO 2 1 4
4 15 4 90 O 20 1 S 3 6 72 .37 0 .0 7 2 36 2 .1 3 O 09 2 4e 100.00 2 0 3
474 4  6© O 24 14 31 73 4? O 07 2 7 1 1 73 O 26 2 5 7 -I OC OO 2 .7 2
4 2 9 4 S3 O 2 9 1 4 .0 5 73 4© 0 .0 7 2 6 1 1 6 7 O 20 2 77 1 OO CO O 16
392 4  V>? O 56 13 S3 7 3  04 n o© 2 70 1 6 3 O 38 3 20 i on c o 2 20
4 0  1 4  29 0 .2 7 14 23 7 3  56 O 07 2 97 1 27 O 45 3 59 1 9 0 .0 0 3 4 9
4 2 0 4  4 8 O 25 14 •© 73 3 1 O 13 V. 7 7 1 5  1 O 05 2 84 t C.O OO 1 40

M E A N
N a 2 0 M a O A I 7 0 3 S I 0 2 C l K 2 0 C a O T 107 F a 2 0 3 T  o ta l H 2 0

58 4 76 O 28 1 4 G5 7 ?  72 o o© 5 66 1 76 O 31 2 7© to o  OO 2 6 6
1 3 D O 39 0 .0 5 n 40

rr--i/i0

0 .0 3 o  i e o :>r> O IS 9  3 5 2 OS
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UNNORMALIZED
u n a v a ila b le : p le a s e  c o n ta c t  J A  A d d is o n  d ire ctly  fo r th is  data

Appendix 2.1 (continued)
Core: E W 0 4 0 8 -4 0 JC

Sample depth 10.49 m b s f

NORMALIZED
L ine N u m be rs N a *0  (% ) M gO  (%> AI2C 3 (%) S i0 2 (% ) C l (%) K 20  (% ) C aO  (% ) T iO z (% ) Fe20 3 (% ) Tota l Form u la  H 20

1883 5.31 0.28 14.34 73.37 0.05 1.98 1.46 0.30 2.91 100.00 5.98
1885 4.60 0.36 14.76 73.20 0.12 2.11 1.82 0 .33 2.70 100.00 1 84
1887 5.46 0.20 14.19 73.38 0.11 2 21 1.56 0.21 2.68 100.00 1.82
1888 4 .99 0.32 14.36 73.51 0.12 2.22 1.46 0 .13 2.88 100.00 4 .25
1889 6.10 0.26 14.37 72.67 0.09 2 .07 1.50 0.24 2.70 100.00 0.61
1890 5.11 0.23 14.87 73.51 0.13 1.88 1.30 0 .12 2.84 100.00 2.43
1892 6 .00 0.26 14.43 72.83 0 04 2 .12 1.38 0.21 2.74 100.00 2 .27
1893 5.71 0.31 14.53 72.48 0.07 2 .23 1.27 0.41 3.00 100.00 1.68
1894 5.07 0.33 14.57 72.70 0.08 2.40 1.17 0.33 3.34 100.00 1.33
1895 5.15 0.31 14.88 72.60 0.10 2.37 1.32 0.37 2.89 100 .00 0.76
1895 5.28 0.30 14.46 72.71 0.08 2.27 1.30 0.57 3.02 100.00 0.32
1899 5.65 0.28 14.21 72.79 0.09 2 .28 1.38 0.41 2.92 100.00 0.11
1904 5.16 0.09 13.93 74.92 0.07 2.26 1.25 0.38 1.94 100 .00 3.56
1908 5.78 0.38 14.81 72.22 0.08 1.82 1.80 0.41 2.71 100.00 0.62
1912 5.22 0.27 14.19 73.42 0.13 2 .05 1.43 0.12 3.17 100.00 0 .33
1913 4.92 0.41 14.48 73.66 0.07 1.96 1.38 0.13 2.99 100.00 3.24
1920 5.61 0.35 14.51 72.66 0.10 2.24 1.25 0.41 2.86 100.00 1.49
1921 5.16 0.26 15.00 72.47 0 09 2 .42 1.50 0.37 2.73 100.00 1.23
1922 5.43 0.18 15.73 72.58 0.12 1.85 1.81 0.42 1.88 100.00 4 .03
1923 5.75 0.32 14.56 72.48 0.13 2 .36 1.19 0.20 3.01 100.00 C 63

MEAN
n Na20 s !Q o AI203 Si02 Cl K20 CaO TI02 Fe203 Total H20
20 5.37 0 .29 14.56 73.01 0.09 2.16 1.43 0.30 2.80 100 .00 1 93

1 SD 0.38 0.07 0.38 0 52 0.03 0.18 0.20 0.13 0.35 - 1 57

C ore: E W Q 4 0 8 -4 Q J C
Sam ple  dep th  1 0 .8 2  m b s f



UNNORMALIZED
u n a v a ila b le ; p le a s e  c o n ta c t J A  A d d is o n  d ire c tly  fo r th/s da ta

N O R M A L IZ E D
L ine N um bers Na^O  (% ) M gO  {% ) AfijO , (%) S iC 2 (%) Ci <%) KitO (% ) C aO  (%) t \o 2 (%) F e ,0 3 <%) Tota l Form ula  H-

1S36 5.12 0.22 14.22 73.82 0.12 2 27 1.59 0.25 2 39 100.00 1.65
1837 4.94 0.22 15.13 73.13 0 11 2 22 1 80 0.04 2.41 100.00 2.92
1839 5.73 0.26 15.11 72.15 0.11 1.88 1.96 0.24 2.56 100.00 -0.27
1340 5.55 0.29 14.15 73.87 0 06 2.24 1.19 0.13 2.52 100.00 2.97
1841 4.89 0.36 14.96 72 92 0.08 2.18 1.84 0 .0 0 2.78 100.00 2.52
1842 5.29 0.30 15.10 72.43 0.04 1.90 1.76 0.45 2.71 100.00 1.05
18^3 6.35 0.25 14.44 72.12 0.09 1.86 1.59 0.28 3.00 100.00 -0.12
1844 5.78 0 2 1 13.68 74.41 0.07 2.13 1.06 0.13 2 53 100.00 3.45
1845 5.73 0.25 14 54 73.30 0.10 1 87 1.54 0.21 2.47 100.00 2.52
1847 6.26 0.30 14.87 71,91 0.09 2.34 1.22 0 .0 0 3.00 100.00 0.08
1849 5.33 0.22 14.70 73.12 0.08 2.41 1.27 0.13 2.76 100.00 3.62
1850 5.30 0.24 14.34 73.06 0.08 2.31 1.20 0.41 3.05 100.00 2.28
1851 5.40 0.27 13.91 73.51 0.07 2.17 1.19 0.32 3.16 100.00 -1 .35
1852 5.45 0.25 15.77 71.45 0.07 2.05 2.23 0.41 2.31 100.00 1.07
1853 5.49 0.24 14.51 73.58 0.09 2.19 1.10 0 .0 0 2.81 100.00 1.99
1854 5.54 0.24 14.14 72.29 0.14 2.39 1.69 0.51 3.06 100.00 3.88
1860 5.28 0.33 14.54 72.82 0.10 2.21 1.65 0.13 2 94 100.00 3.90
1864 5.26 0 26 14.75 73 24 0.08 2.14 1.36 0.29 2 61 100.00 1.65
1865 5.05 0.26 14.39 74.30 0.08 2.09 1.30 0 00 2 53 100.00 2.81
1866 5.52 0.28 14.50 73.01 0.07 2.25 1.54 0.16 2.67 100.00 -0.17
1869 5.00 0.33 15.04 71.92 0.07 2.46 1.34 0.16 3.68 100.00 -0.75
1672 5.74 0 25 14.37 73.02 0.09 2.30 1.16 0.45 2 .53 100.00 1.06
1873 4.98 0 27 14.78 73.45 0.04 2 31 1.15 0.30 2 72 100.00 4 91
1874 5.56 0.29 14.56 72.38 0 06 2.25 1.59 0.54 2.77 1C0 00 2 55
1875 5.67 0.13 14.82 72.51 0.G5 2.34 1.75 0 .0 0 2.63 100.00 1.96
1876 5.45 0.27 14.54 72.92 0.09 2.26 1.40 0.08 2.99 100.00 2.59
1877 5.02 0.19 14.13 73.56 0.11 2.70 1.21 0.37 2.70 100.00 0.02

MEAN
n N a 2 0 MqO A I2 0 3 S i0 2 Cl K 2 0 CaO T i0 2 F e 2 0 3 T o ta l H 2 0
27 5.43 0.26 14.59 72.97 0.08 2.21 1.47 0.22 2.76 100.00 1.81

1 SD 0.37 0.04 0.44 0.74 0.02 0.19 0.30 0.17 0.29 1.60
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U N N O R M A L I Z E U  R A W  D A T A

Appendix 2.1 (continued)
C o r e :  F W 0 4 0 8 - 4 0 J C

Sampie depth. 1 1 . 0 8  m b s f

Li ne  Numb ers . N a j O  {% > M g O  ( % ) A l ; O s  (5ol S i O r ('*•) C l  ( % ) K 20  < % ) C a O  ( % ) T i 0 3 (% > F e 2O a ( % ) Total Foi  m u la  M j O

100'*,
N o r m a. iz a i i on

factor

1387 4.74 0 .2 3 I 3  74 S 8. 9 5 0 .1 5 2. 32 1.54 0.33 2. 49 94 .54 5.46 1 0 5 7 7 7 7 0 3
1389 4.64 0 .3 9 13.28 6 6 .2 5 0 .1 0 2 36 1 52 0 26 2.93 93.7 5 6.25 1 . 0 6 6 6 6 3 4 7
1391 5.32 0 30 13.69 70.31 0  15 2.50 1 4 7 O 26 2 83 97 4 0 2 GO 1 0 2 6 6 7 5 5 4 G
1392 4.74 0 .2 9 14.13 7 0  20 0 .1 5 2. 45 1 .49 0 4 5 2 71 96  6 0 3 4 0 1 . 0 3 5 2 2 2 / 7 2
1394 4 .6 6 0.22 13.95 7 1.9 3 0 .0 9 2.39 1 31 O 31 2 66 9 7 .5 2 2.48 i . 0 2 5 3 9 1 3 3 5
1397 4 .6 8 0 .4 5 14.19 0 8 .9 2 o oe 2.41 I 79 0 2 5 3.06 9 0 .0 3 3 97 1 0 4 1 3 3 6 5 2
1398 4 9 2 0 .2 2 14.36 70.71 D 05 2 31 1 25 0 23 2 37 96 .7 2 3 2H 1 0 3 3 9 3 8 8 1 4
1399 4 .8 5 0 .2 9 14.45 7 2 .8 7 0 .0 7 2 .4 0 1.53 0 .35 2 67 99 4 9 0 51 1 . 0 0 5 1 7 4 5 9 3
1401 4 .9 0 0 .2 9 14.40 70  92 0.05 2 45 1 6 4 0 29 2.56 97 4 9 2.51 1 0 2 5 6 0 4 6 1 4
1402 4 93 0 30 14.39 7 0 .9 8 O 1 1 2 42 1.30 0  45 2.04 97 83 2.1 7 1 0 2 2 1 3 2 4 0 7
1403 5 24 0 .2 7 14.21 71 .8 0 0 . 0 6 2 .4 7 1 €3 0 .2 0 2.64 9 8 .7 2 1 2S 1 0 1 2 9 3 2 6 2 7
1404 4 .9 6 0 .2 9 14.44 7 2 .2 3 O 0 6 2 .3 5 1.54 0 2b 3 OO 9 9  1 1 0 89 1 0 0 0 9 4 4 1
14 Of? 4.94 0 26 1 3 8 1 71 17 O.C4 2 .2 0 1 37 O 22 2 59 9 6.6 0 3 43 1 0 0 5 1 4 0 7 2
1410 4 .8 9 0 .2 7 14 .3 9 72 .1 6 0 .07 2.55 1.51 0 42 2.83 99.11 0.89 1 . 0 0 8 9 6 7 6 2 4
1412 4.78 0 . 2 9 12.55 6 5 .8 4 0 . 0 9 2 33 1 3 5 O 40 2 69 9 0  33 9  67 1 1 0 7 0 6 6 7 9 9
1413 4.97 0 .3 2 14.14 71.92 0.0  7 2 .4 3 1 65 0 32 3.18 9 9  00 i oo I .0101 19 36 6
1414 4 . 7 3 0 .2 9 13.51 6 9 .2 9 0 04 2.44 1.54 0.41 3.12 9 5  38 4 52 1 . 0 4 8 4 6 3 2 3 3
1415 4.96 O 3 0 13.93 6 9.51 0 .0 9 2.25 1.56 0 28 2.76 95  6 6 4 34 1 C 4 5 3 G 7 . M B
14 1 7 5.21 O 29 13 6 9 6 9 .7 7 0 .1 3 2.49 1 6 9 0 27 3 08 96 6 2 3 38 1 0 3 4 9 0 7 9 5 9

N O R M A L I Z E D
Line N u m b e r * N a , 0  C M M g O  < % ) A F O -  <°/c) S iO ? (*Hj ) C l  ( % ) K j O  <V'I C a O  < % ; T i O r  ( % ) F e , 0 ; .  (■«.) Total F o r m u l a  H ?0

13B7 5 01 0 2 4 14 53 7 2 .9 3 0 .1 6 2 46 1 6 3 O 4 0 2 63 100 00 5.46
1389 4 .9 5 0 .4 2 14.16 72.81 0.11 2.52 1.62 0 28 3. 12 100 00 6.25
1391 5 .4 6 O 30 1 4 2 6 72.5 0 0 16 2 63 1.51 O 27 2 91 100.OC 2 6 0
1392 4.91 0 .3 0 14.63 72 .6 7 0  15 2.54 1 54 0  46 2 00 100 OO 3 40
1394 4 . SO 0 .2 3 14 .30 73 .7 6 0.09 2 .4 5 1.34 0.32 2.72 1 0 0. 0 0 2 4 6
1397 5.08 0 .4 6 14.77 71 .7 7 0 . 0 9 2.51 1 06 0  27 3 19 1O0 00 3 97
1398 5 0 8 O 23 14 65 7 3  1 1 0 05 2 39 1 29 0.24 2 76 10O 00 3 28
1399 4 .8 6 0 .2 9 14.52 73 .2 5 0 .0 8 2.41 1.54 0.35 2 69 1 0 0. 0 0 0.51
1401 5.03 0  30 1 4 .77 7 2  74 0  0 5 2.51 1 68 O 30 2 67 10O 00 2 51
1402 5.04 O 31 14.71 7 2.55 0 12 2 .4 8 1 33 O 46 3 01 100.00 2 17
1403 5.31 0 .2 7 14 .3 9 72 .7 3 0.0G 2 .5 0 1.65 0.21 2.08 100.00 1.23
1404 5.01 O 2 9 14 .57 ? 2 .8 7 0 .0 5 2  37 1 56 O 25 3 03 100 00 0  89
1406 5 11 0 .2 7 14 .30 73 .6 7 0 04 2 20 1 42 0 2 3 2.69 1 OO OO 3 4 0
1 410 4 .9 3 0 .2 8 14.52 72.81 0 .0 7 2.57 1.53 0 .4 2 2.86 10O DO 0.89
1412 5 .2 9 0  32 13.90 7 2 .8 9 0 .1 0 2.58 1.49 0 44 2.90 100 00 9  G7
1413 5 02 0  32 14.28 72 6 5 0 0 7 2 .4 5 1 67 0 32 3 21 10 0 OO 1 DO
1414 4.96 0.31 14.17 72 .6 5 0.04 2.56 1.62 0.43 3.27 to o  00 4.62
1415 5 .2 0 0  31 14 .56 7 2 .6 7 0 .0 9 2.35 1 63 0 29 2 68 100 00 4 34
1417 5 .3 9 0 .3 0 14.17 72.21 O. 13 2.58 1 75 O 28 3.19 100 OO 3.38

MEAN
n N a 2 0 M a o A I 2 0 3 5 1 0 2 C l K 2 0 C a O T i 0 2 F 0 2 O 3 T o t a l H 2 0
19 s OS 0 30 14.44 72 a o 0 .0 9 2 48 1 56 O 33 2 92 lOO 00 3 27

1  s o O. 18 o oe O 25 O 4 5 0.04 O 09 0  15 O 08 O 21 2 23

C ore  E W Q 4 0 8 -4 0 JC
Sam ple depth: 11.10 m bsf

U N N O R M A L IZ E D
unavailable, please contact J A  Addison directly for this data

N O R M A L IZ E D
Line Num bers Na20  (.%) M g O  (% ) AI2O j (% ') S i0 2 (%.} C l (% ) K .O  (% ) C a O  (% ) TiO? (% ) F e 20 ? (% ) Total Form ula H sO

1926 5.40 0 25 13.52 73.49 0.08 2 35 1.41 0.47 3.02 100 4.00
1929 6.21 0.10 14.41 72.82 0.09 2 50 1.32 0.54 2.02 100 1.47
1930 5.34 0.22 14 59 72.30 0.07 2.47 1.65 0.62 2.54 100 1.08
1931 6.31 0 31 14 33 72.10 0 05 2 38 1.52 0.08 2 31 100 0 37
1932 5 64 0.19 14.28 72.58 0.11 2.26 1 78 0 49 2.68 100 1.42
1934 4.99 0.29 14 81 73.12 D. 10 2.41 1 67 0.00 2.61 100 1.52
1935 5 14 0 23 14 90 73.23 0.08 2.33 1.62 0.21 2.27 IOC 2 07
1936 5.02 0.28 14.66 73.24 0.04 2.32 1.49 0.25 2.72 100 1.10
1937 5.37 0.28 14 78 72.93 0.10 2.14 1 43 0.25 2.73 100 0.97
1938 4.68 0.43 14 47 73 22 0.C8 1.94 1 67 0.53 2 87 100 3.73
1940 4.95 0.1S 14 88 73.65 0.05 2.37 1.21 0.45 2.26 100 0.47
1941 5.72 0.25 14 36 72 96 0.03 2.39 1 49 0 16 2.63 100 1.53
1942 5 55 0.28 14.75 72 62 0.10 2.13 1.80 0.00 2.77 100 2.54
1943 6.01 0.35 14.64 72 00 0.11 2.14 1 41 0 41 2.92 100 1 79
1944 5 46 0 25 14.54 72 71 0.10 2.18 1 52 0.21 3 02 100 2.34
1945 5 15 0.29 13.96 73.34 0.10 2.52 1.47 0.37 2.80 100 1.60
1947 5 31 0 28 14.93 73 04 0 OS 2.44 1.06 0.45 2.45 100 -0.30
1949 5.85 0.24 14.35 72.60 0.13 2.52 0.93 0.37 2.96 100 1.50
1951 5 31 0.32 14 29 73 63 0 06 2 45 1 04 0.00 2.88 100 2 24
1952 4.93 0.21 14.07 74.00 0.13 2.42 1 29 0.04 2 91 100 1.05
1953 5 54 0 23 14.34 72 15 0.10 2.37 1 78 0.50 2.99 100 1.62
1954 5 29 0.19 15.31 72.38 0.11 2 08 1 64 0.37 2 63 100 0.54
1955 5.50 0.25 14.39 73.05 0 14 2.29 1 34 0.29 2.74 100 1.45
1957 5.76 0.34 14 78 72.20 0 QT 2 47 1 41 0.08 2 SO 100 1.41
1958 5 60 0.22 14.60 72.79 0.06 2.67 1.32 0.21 2.53 100 1.06
1959 6 10 0 32 14.53 72.14 0.03 2.40 1 63 0.13 2 52 100 3 07
1960 5 67 021 13.32 73.80 0.12 2 64 0 96 0.29 2 50 100 3 31
1961 5.57 0.24 15.27 73.45 0.09 2.28 1.24 0.00 1.86 100 1.65
1964 4 SO 0 28 14 67 73.32 0.09 2 49 1 16 0 38 2 71 100 4.91

M E A N
n N a2 0 M q O A I2 0 3 S i0 2 C l K 2 0 C a O T i0 2 F e 2 0 3 Total H 2 0
29 5 46 0 26 14 53 72 93 0.09 2 36 1 44 0.28 2.66 100.00 1.79

1 S D 0.41 0.06 0.39 0.55 0.03 0.17 0 26 0.19 0.29 1.14
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A p p en d ix  2.1 (con tinued)
C o ro  E *V 0 4 0 S -4 0JC

■Sample depth. 1 1 . 2 0  m bsf

U N N O R M  A L IZ E O
w'-avS 'iab'e ’ 0 ‘aase contact J A  A d d 'so n  di'e ct'y  for data

N O R M A L IZ E D
Line Nurr.beis NB j,0  (% )t M g O  <%.l A!;,03 (‘st.) S iC j  <■'/,.> C l (%>

1G30 5.47 0.29 14.63 72.10 0.06
1C31 5 55 0.23 14 70 71 97 0 09
1632 5.75 0.30 14 76 71 91 3 01
1635 4.32 0.29 14.79 72.34 0.11
1637 «  05 0 33 14 72 7 ?  29 0.07
1539 4 99 0.35 14 78 7 1 69 0.13
1640 4.99 0.33 14.60 72.26 0.14
I 54 1 5 41 0 63 14 49 71 52 o.cn
1542 5 35 O 29 14 79 71.87 Cl 08
1G44 5.23 0.27 14.25 72.50 0.11
1645 4.71 0.33 14 07 73 35 0 14
1646 5 36 0.34 14 63 7 I 93 Cl 1 1
1S49 5.60 0.30 14 73 71 36 0.08
1650 5 22 0.29 14 63 72 34 0 12
1R5-A 4.72 0 32 13 62 73 77 U.03
1666 4.55 0.25 1-4.32 73.39 0 11
1657 4 06 0 20 14 46 72 42 o oa
1659 A 74 0.25 14.47 73 24 0.09
1662 4.79 0 20 14 72 72.62 0 10
1663 5.57 0 35 14.79 71 49 0 06
1666 4.83 o.ze 14.78 72.25 0.08

K ;.0  C’A ) C a O  (SSI T .O ? ( % ) F e .O -  <%) ra ta l ro m iu ln  r*.;.0
2 55 1.77 0.20 2 38 100.00 3.51
2 45 •> tiG 0 71 3  04 109 .00 3 00
2 41 1 89 0 25 2 71 100.00 4 .28
2.72 1.79 0.10 3 .03 100.00 5.C5
2 02 1 no 0 33 2 84 100.00 4 .6 3
2 62 1 76 0 47 3 01 100.00 3 05
2.35 1.81 0.43 2 .30 100.00 3 .60
2 46 1 94 0 41 3 07 100.00 3 57
2 49 1 91 Cl 36 2 as 100 00 2 6 9
2.68 1 09 C.2S 2 .90 100.00 2.76
2 41 1 49 0 15 3 .36 100 00 5 .83
2 50 1 88 0 36 2 .36 ICO.00 4 83
2 59 1.66 0 28 3 15 1C0.00 2 * 6
2 55 1 G4 0 27 2 33 100.00 4.48
2 91 1 25 0 43 2 92 100.00 7 64
2 65 '  .56 0.35 2.82 100.00 5.52
2 71 1 74 0 43 3 00 100 00 3 .99
2 45 1 61 O 34 2.32 100.00 7.75
2 69 1 74 0 19 2 Bfi 100.00 4.66
2 55 1 83 C 43 2 90 109.00 3.50
2.43 1.34 C 49 2.91 100.00 4.63

M E A N
N a 2 0 s a 0 A I2 0 3 S102 C l K 2 0 C a O T i0 2 F o 2 0 3 T o ta l H 2 0

21 5.09 O 32 14 57 72 37 0 09 7 58 1 74 O 32 2 91 100 00 4 43
1 S D 0.40 0 oa 0 29 0 67 0 03 0 12 0 1 7 0 1 1 0 19 1.46

C<v,y EW 0 403- 4 7JC
Sample depth' S 46 /r>Onf (!) £ (II)

U N N O R M  A L IZ E O  R A W  D A T A

Line N um bers N s -O  (Ht) M&O A.aO j ( « * ) & 0 *  (% ) Cl \fA ) KyO <•%>
1132 4 .539512 O 659479 13.59266 63.276-38 0.133375 1.9C3853
1 133 5 210019 0 233653 14.53042 71 36729 0.C53323 2 050304
1 134 5 363358 0.358111 13.32792 70 10425 0 .096702 2.460503
1 135 4.994672 0  29735^ 14 20361 71 79261 0 13-4324 2 580903
1136 5.032862 0.240735 13 59744 71 15466 0 .1 138&2 .? 4827-77
1140 5.216774 0.639237 15.01426 67.46873 0 .081598 1.901022
1141 5.36231 1 0  747083 15 16347 33 45419 0.019558 2 133793
1143 4 .650967 0 23639 14 46952 72 2223 0.10223 2 511715
1144 4 .875325 0.275281 13.93455 71.68599 0 0S3C59 2.565132
1146 5.365315 0.575773 15.05053 6 7 31 763 0.0C-133& 1.993835
1147 4 776947 0  638433 13 36933 63 57019 C.0G0-.65 1 032491
1 154 S .13704 O 248069 1 0 S525 1 72 Z8371 0. ’ 00552 2 53 87 4
1156 5 177392 0  258111 13 9907 70 02615 0.122045 7. 399768
1157 4.723346 0  439432 13 10366 6-5.79337 0.113451 2.4S4534
1 15S 4 .659359 0.251910 12 5423 71.20478 0.04S391 2 5 3 2 1 4 8
1152 5.000344 0 235048 14.41063 72 32708 0 193352 2 3122 7
1153 501 90 4 1 0  33C905 14 0709 7 2  49049 0 115921 2  4 3 1 634
1184 4  642804 0.315924 14 64261 73.29491 0.064 36 2.682478
1155 t  030411 0.2593*36 -.3.ft400e 72 C5222 Q.0G0SB8 2 53G942
1166 5.20251 0.726469 14 61813 60.02523 0 .0 5 1G93 1 699833
1167 5.215014 0  720963 15 28028 63 73956 0 054351 2 013593
1158 5 .002506 0 766592 15 26115 67 93509 0 099548 1 913875
1170 5.325482 0 044097 14 35213 69.1 .549 0.086033 2 078636
1 171 a  765526 0 54 1742 14 29856 63 1376 0 036395 1 931332

P O P U L A T IO N  1 
N O R M A L IZ E D

L.iro N u m bers  Na?C3 (% ) M oO A i^ o ,  ;% ) S O ;  i-*i> Ci f/v'-.l K ;0  |%1
1133 5.28 0.29 i4 .eo 72.19 0 0 6 2.69
1 134 5 52 0.37 14 23 72 16 G 10 2 53
1135 5 07 0.30 14 41 72 63 0 14 2 52
1138 5 IS 3.25 *4 32 72.52 0 12 2.54
1143 4.60 0.24 14.02 rz .  &a O 10 2.54
1144 4 97 C.20 14.20 73 10 0  og 2.72
1154 5 23 0 25 13 78 73.50 0  10 2 58
1156 5 35 0 23 14 48 72 43 0 13 7. 48
1157 4.99 0.52 13.35 72.72 C.12 2 64
1159 4 80 0 26 13 95 73 48 C 05 2 51
1152 5 0 7 0 .2 7 14 36 72 39 0 19 2 .3 0
1165 5 0 4 0 33 !4 13 72 82 0 I? 2 44
1164 4 59 0.31 14.3S 72.52 0 0 3 2 65
11G5 5 10 0.26 14 02 7 2.97 C 06 2.57

C a O  ( c/») T iO j  £%) FftpO. <%> Totai Formula H jO

s 00%
Narm allzafon

factor POPULA
2.5 14 568 0 324 229 3 737479 SO €9203 9 307967 1 192632687 2
1.5954 1 7 0.22144 2 B 21301 36.65397 ! 146027 1 01159813 1
1.646287 0,343623 2.960036 1.-7 16879 2.83121 t 029137031
1.608329 O 23C1572 2 640694 53 57387 1 426126 1 014467586 1
1 7592.7 0 1G0179 2.782254 S7.7 1223 2 287712 1 023412736 1

2.797999 0.625031 3.877088 97 62172 2.S;’32VS 1.024362139
A 717689 0 37575.7 4 229073 99 .7119 0 783103 1 007^43634
1.55259 0 273232 2 95736-1 96 95643 1 043586 1 010545711 t
1.713012 0 315945 2.4S2591 S3.05492 1 935081 1.019752653 1
2.76172: 0592131 3.7 13735 37 53465 2.435347 1 02490*1366
2.234034 0.3433*6 3.303253 60.62828 9.371723 1.103406377 2
1 503331 O 270063 2 825784 3S 31477 1 605234 1017141209 1
1 549567 0 381-1-11 2 751975 S6G 7595 3 324053 1 03<l;\83454 -1
1.50860-5 O 211855 3.060787 94.59926 5.400736 1 057090677
1.522287 0.273233 2.002681 97.U 1 709 2.982913 1.330746264 1
1.776366 0 371961 3 2052S9 IOO 3330 -0.333249 0 996674605 1
1.692285 0 235511 3 16-3093 99 54693 0 450019 1 004520533 -1
I.S49466 0 409827 3 2S9817 101.062 -1 061995 098649*648 1
1.515055 0 400163 3.0410B4 98 74185 1.263 14G 1 C12V4177 1
2.67306 0 570188 3.904176 95 6802 d.5.19700 1 0-4S14830C 2

2 751174 0 49£8*3 4 11 1455 99 33435 0 S65055 1 0 0 67 0 M 57 2
2.777193 0 724692 3 89661 98 23676 1 763242 1 017940903 2
2.520346 G.S01383 4.09872 99.32312 0 6/6SV7 1 .006814893 2
2402129 O 379676 3 51460*. 94 (10494 b 99.5065 1 0G3773SG9 2

C a O  i-Vo) t iO j (% } f  e : 0 ;, 1%) Total rcrrnu la  H ?0
1.61 0.22 2 85 100.00 1.15
’ 69 0 35 3 05 100.00 2 03
1 72 0 23 2 68 100.00 1 43
1 SO 0. 16 2 33 100.00 2 23
1 37 0 23 2 99 100.00 1 04
1 75 0 32 2.53 100.00 1 94
1 52 0 28 2 67 100.00 1 69
1 60 0 39 2 85 130.00 3 32
1 70 0.22 3.24 100.00 6.40
1 b? 0  28 .? 99 ico 00 2.93
1 77 3 3 7 3 27 100.00 •0 53
1 70 0 24 3 18 10 0  00 0 45
1 33 0 4 1 3 23 10 0  00 •1 'J6
1 53 0.41 3 03 100.00 t 25

M E A N
I N a 2 0 5 t> O A I2 0 3 S I0 2 Cl K 2 0 C aO T102 F e 2 0 3 To ta l « H 2 0

14 L... _ 14 2S 72. Vis c. 10 2 57 ‘, .6 3 0 30 2.9S 100.00 I 1 74
1 S D 0.07 0 29 f. 42 U 04 0  1 1 0 09 0 08 0 23 - 3 \ 62
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Chapter 3 Holocene evolution o f the Pacific Decadal Oscillation in the G ulf of

A laska1

3.1 Abstract

Sediment core EW0408-33JC is the first high-resolution marine record from the 

Subarctic Northeast Pacific Ocean that demonstrates environmental variability at 

decadal- to centennial-timescales over the last 7,500 years. This variability is likely 

associated with the Pacific Decadal Oscillation (PDO). By comparing the 

biogeochemical record o f this marine core with terrestrial records from the adjacent 

continent, we are able to interpret the composite record in terms o f both 

atmosphere/ocean variability and marine ecosystem change. Our analysis indicates that 

the onset o f modem PDO variability began about 4,000 years ago with the onset o f the 

Holocene Neoglacial cooling period. Furthermore, we also provide evidence that shows 

the current binary model o f PDO regime shifts is inadequate to fully encompass the 

Holocene record o f environmental and ecosystem change in the North Pacific Ocean.

’j.A . Addison, and B.P. Finney, prepared for submission to Science.
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3.2 Introduction

The Subarctic Northeast Pacific Ocean is a unique area where atmospheric 

circulation and oceanography are linked with marine ecosystem variability. This region, 

dominated by the G ulf o f Alaska basin (Fig. 3.1), is the modem terminus o f the global 

thermohaline circulation system yet its significance as a key contributor to global climate 

remains largely overlooked. Instrumental data o f Northern Hemisphere sea level pressure 

(SLP) show evidence o f teleconnections between the Subarctic North Pacific, the 

Equatorial Pacific, the American Midwest and Southeast, and the Sonora Desert regions 

(7-3). Outputs from coupled atmosphere-ocean general circulation models have also 

shown that changes in the Northeast Pacific can be an important driver for Northern 

Hemisphere climate, particularly during periods o f  abrupt climate change (4).

Seasonal atmospheric dynamics in the G ulf o f Alaska are controlled by the 

position and intensity o f the Aleutian Low (AL) pressure cell (Fig. 3.1; 5). During the 

winter, the center o f the AL is located in the central Northeast Pacific Ocean where it 

contributes to reduced sea surface temperatures (SST) and SLP, increased precipitation, 

and intensification o f the northeastern storm track (2). The AL-driven reduced SLP also 

leads to enhanced upwelling in the Alaska Gyre, a high-nitrate-low-chlorophyll zone 

(HNLC; 6). The cyclonic rotation o f the Alaska Gyre leads to horizontal advection o f 

shallow nutrient-rich water towards the continental shelf o f the Gulf o f Alaska where it 

contributes to large phytoplankton blooms in the spring and summer (7). Concurrent 

with the spring bloom is the spring freshet along the margin when freshwater discharge 

into the G ulf o f Alaska is at a maximum (8). This low-salinity Alaska Coastal Current 

water circumnavigates the inner shelf o f the G ulf o f Alaska in a cyclonic fashion (Fig.

3.1), and leads to the development o f a pronounced halocline (7). The advected nutrients 

from the Alaska Gyre, and the enhanced stratification present along the shelf due to 

reduced salinity from freshwater discharge, are thought to trigger the high seasonal 

primary productivity and the associated economically valuable G ulf o f Alaska 

commercial fisheries, particularly in the case o f Pacific salmon populations (7, 9). The 

high fluvial discharge also contributes significant amounts o f the micronutrient iron to the
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HNLC G ulf o f Alaska, which likely plays a role in stimulating the strong seasonal 

productivity signal as well (6, 10, 11).

Interdecadal variability in the atmosphere and G ulf o f Alaska ocean conditions 

has been recognized in instrumental records o f SST, SLP, precipitation, freshwater river 

discharge, and wind stress fields. These physical parameters indicate several shifts 

between decadal-scale regimes during the last century, with the most distinctive recent 

shift occurring during AD 1976/1977 (/, 2, 12). The marine ecosystem also underwent 

contemporaneous changes in the abundance o f phytoplankton and zooplankton (13), and 

contributed to a notable increase in Alaskan salmon catch records likely due to bottotn-up 

forcing (14).

These historical regime shifts have been linked to the PDO, defined as the leading 

principal component o f variability in North Pacific SST, and have been used to 

characterize shifts on 40-to-70 year time scales throughout the 20th century (15, 16). The 

primary forcing mechanism o f the PDO is the strength and position o f the AL pressure 

system (2, 3). The AL cell oscillates between an intensified locus in the eastern Aleutian 

Islands, while the less intense locus occurs in the western Aleutian Islands (Fig. 3.1; 17). 

AL activity is more directly described by the North Pacific Index which exhibits decadal- 

scale variability (2), and strongly correlates with the PDO (15). PDO-associated 

downstream variability has also been observed in the tropical Pacific, with changes in the 

volume and heat transport o f the Indonesian Throughflow during PDO regime shifts (18), 

reinforcing the notion that marine conditions in the Subarctic Northeast Pacific Ocean are 

strongly linked with global circulation and climate.

Records o f PDO and AL variability extending beyond 20th century observations 

are rare. Several annually-resolved datasets exist from the G ulf o f Alaska margin that 

describe terrestrial and marine variability, but these capture only the last 1,300 years o f 

regional climate variability (19-21). Older paleoenvironmental records from the region 

are confounded by a lack o f high temporal resolution. A notable exception is the 

Prospector Ridge Col ice core from Mt. Logan in the St. Elias Range (Fig. 3.1; 22). In 

this study, we present the first high-resolution marine sediment record from the Gulf o f
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Alaska that exhibits decadal-scale behavior, and interpret this record in terms o f  AL 

variability and ecosystem change. We combine these new findings with other regionally 

important datasets to develop an integrated model o f  climate-ocean dynamics and 

associated ecosystem linkages for the last 7,500 years.

Marine sedimentary records from the G ulf o f Alaska margin contain extremely 

high accumulation rates throughout the Holocene, permitting rare high-resolution 

reconstructions o f North Pacific climate. The highest non-glacially-driven rates (0.1 -  

0.4 cm-yr'1) occur in the hundreds o f shallow-silled ljords located along the eastern North 

Pacific coast, many o f which have been ice-free since the early Holocene. Fjord 

sediments favor excellent organic matter preservation because (i) shallow sills restrict 

water exchange and can facilitate seasonal bottom-water anoxia, and (ii) fjords tend to be 

seasonal hotspots o f biological primary productivity (23). Such basins can thus preserve 

exceptional high-resolution records o f marine paleoproductivity (24). Sediment core 

EW0408-33JC, recovered from Katlian Bay, an ice-free temperate fjord on Baranof 

Island, Alaska (Fig. 3.1), preserves the last 7,500 years o f paleoenvironmental change 

along the G ulf o f Alaska margin at decadal timescales (25).

Measurements o f biogenic silica (opal), total organic carbon (TOC), C/N weight 

ratios and carbonate-free sedimentary 5 I3C ratios (26, 27) on EW0408-33JC provide 

insight into organic matter dynamics. Both highly depleted bulk sedimentary stable 5 I3C 

isotope values and high C/N ratios (28) suggest the TOC is dominantly terrestrial organic 

matter, transported into Katlian Bay by fluvial discharge or freshwater runoff from the 

adjacent watershed (Appendix 3.1). The application o f a linear mixing model (Appendix

3.1) allows the extraction o f terrigenous TOC contributions as a precipitation-driven 

terrestrial erosion proxy. When combined with the opal mass accumulation rate (MAR) 

as a proxy for marine primary productivity, these two independent datasets in EW0408- 

33JC document decadal-scale environmental and ecological variability in the G ulf of 

Alaska environment since the early Holocene.
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Primary productivity records in EW0408-33JC show a strong relationship to the 

PDO over the last millennium (Fig. 3.2a). With the exception o f an out-of-phase period 

beginning around AD 1840, the opal MAR correlates significantly (n = 43, r = 0.41 ,P <  

0.01) with a tree-ring derived composite PDO reconstruction (20). This result implies 

that prior to AD 1840, positive PDO phases favored enhanced G ulf o f  Alaska marine 

productivity, and is consistent with modem positive feedback models linking 

precipitation, ocean stratification, and marine productivity (13, 14). While the AD 1840 

anomaly introduces some doubt about the relationship between the PDO and EW0408- 

33JC opal data over millennial timescales, this specific time interval has been recognized 

as an irregularity in other long terrestrial paleoclimate records from the G ulf o f Alaska 

margin (22, 29; Appendix 3.2). The EW0408-33JC opal MAR record thus appears to be 

sensitive to past PDO variability, and suggests that this dataset may be useful as a PDO 

proxy for interpretation o f the longer Flolocene record.

Previous paleoclimate compilations o f PDO and AL dynamics indicate nearly 

synchronous behavior attributed to atmospheric forcing. Comparison with records 

sensitive to these past dynamics, and the record preserved in EW0408-33JC, can be used 

to differentiate between regional processes and local signals unique to Katlian Bay. The 

in-phase relationship between 5 lsO records from Mt. Logan (22) and the EW0408-33JC 

terrestrial erosion proxy (Fig. 3.2b, c) correspond with modem observations, namely that 

periods o f enhanced/eastern AL cells tend to favor meridional atmospheric circulation 

patterns that bring moisture derived from the tropical Pacific Ocean northwards into the 

G ulf o f Alaska, and lead to increased precipitation and terrestrial runoff along the 

continental margin. This in-phase relationship appears to hold for the last 2,000 years, as

well as periods between 3,100-4,800 and 5,800-7,100 years ago (Fig. 3.2b, c). The
18carbonate 5 O record from Jellybean Lake in the Yukon Territory (29) shows similar 

trends to these results, further confirming the EW0408-33JC terrestrial erosion data as a 

sensitive proxy for Aleutian Low intensity.

3.3 Comparison between EWQ408-33JC and regionalpaleoclimate records
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Combining the record o f siliceous productivity from EW 0408-33JC (Fig. 3.2d) 

with these proxies o f atmospheric dynamics yields additional insight into the linked 

atmosphere-climate-ecosystem structure at work in the G ulf o f Alaska. Surprisingly, 

there is no correlation between the opal MAR data and either Mt. Logan (n = 305, r = 

0.083, p  < 0.150) or the terrestrial TOC MAR o f EW0408-33JC (n = 304, r  = -0.100, p  <

0.100). These observations are not consistent with current models o f the PDO and its 

influence on the Northeast Pacific Ocean ecosystem. This lack o f coherency in the mid- 

and early Holocene also conflicts with our earlier findings that the EW 0408-33JC opal 

MAR record is correlated with PDO reconstructions for the last millennia (Fig. 3.2a).

Applying wavelet time-series techniques (30, 31) to the EW 0408-33JC opal MAR 
18and Mt. Logan 6  O records highlights high power in the 40-to-70-yr period for the last

1,000 years, with the Mt. Logan spectrum continuing to display significant power until 

about 3,300 calibrated years before present (cal yrs BP; Appendix 3.3). In contrast, the 

EW 0408-33JC opal MAR has a noticeable reduction in power from about 800 -  2,000 cal 

yrs BP but returns to higher power from 2,000 -  3,500 cal yrs BP. The cross-wavelet 

coherence pattern o f both spectrums (Appendix 3.3c) also exhibits periodic power 

increases in the decadal band for the last 4,000 years. Prior to this period, however, there 

is little relationship between the two records, suggesting that the environmental linkage 

between the independent datasets does not occur before this point. We hypothesize that 

this decadal-scale wavelet coherence pattern reflects an abrupt baseline change-of-state in 

AL-driven conditions in the North Pacific about 4,000 years ago. The somewhat regular 

pattern o f  in-phase and out-of-phase behavior between Mt. Logan and EW0408-33JC, 

particularly in light o f our understanding o f simple binary PDO phases, suggests that this 

model o f North Pacific environmental variability may be insufficient to describe 

Holocene conditions for this region.

A key example o f the need for better models o f decadal-scale North Pacific 

climate variability is exemplified with the anomalous regional behavior in various 

paleoclimate records that started around AD 1840. This period coincides with the 

termination o f  the Little Ice Age and the onset o f 20th century warming across the Arctic
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(32), and is a time o f global climate reorganization (33). Specifically within the G ulf o f 

Alaska region, the proxy evidence points to an intensification o f the AL pressure cell and 

increased delivery o f tropical Pacific moisture (Fig. 3.2b, c), while marine 

paleoproductivity data suggest a decrease in both primary producers (Fig. 3.2d) and some 

marine consumers (e.g. pelagic fish and pinnipeds; (34-36). This anti-phase behavior is 

in direct contrast to modem observational data o f SST, SLP, and biological productivity 

as exemplified by the North Pacific regime shift during AD 1976/1977 (15). An 

important distinction between these differing types o f datasets is that reliable SST and 

SLP records for the North Pacific only extend back in time to AD 1900 (2), while robust 

plankton and fisheries data cover only the last fifty years at best (37). In other words, the 

time span o f human scientific observation is probably too small to account for the full 

range o f potential North Pacific environmental variability.

The phase changes observed between the EW0408-33JC opal M AR record and 

the Mt. Logan 5 I80  data suggest a disconnect between AL-driven forcings (e.g. Alaska 

Gyre upwelling) and marine ecosystem variability as understood by a simple binary PDO 

model. Recent SLP, SST, and fisheries catch data has identified a similar disconnect 

between North Pacific climate and ecosystem response between AD 1990-2002, termed 

the “Victoria Pattern” (38, 39). By using three independent paleoenvironmental records 

influenced by Aleutian Low variability, and by inference PDO regime changes, we 

provide evidence for such alternate modes o f North Pacific variability.

3.4 Role o f  the Intertropical Convergence Zone in the North Pacific Ocean

Our integrated analysis indicates that the Aleutian Low pressure cell, the 

dominant control on PDO variability, undergoes its earliest period o f intensification in 

the G ulf o f Alaska region around 4,000 years ago, during the onset o f Neoglacial 

conditions. Global data compilations suggest this period favored cooler, wetter high- 

latitude conditions, while equatorial regions tended towards increased aridity (40), 

attributed to a southward shift o f the Intertropical Convergence Zone (ITCZ) associated 

with the onset o f modem El Nino -  Southern Ocean (ENSO) periodicity (41). The
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negative anomaly in the Mt. Logan 5 O data at 4,200 cal yrs BP (Fig. 3.2c) indicates an 

active meridional circulation pattern that agrees with the suggested ITCZ shift. The 

location o f the ITCZ is sensitive to interhemispheric temperature contrasts (42), and high- 

latitude cooling promotes the expansion o f sea ice which has a feedback on ITCZ 

conditions (43). Variability in Bering Sea ice cover since AD 1947 has been linked to 

PDO regime shifts (44), suggesting a possible feedback mechanism linking North Pacific 

Aleutian Low dynamics with the equatorial ITCZ. We speculate that the onset o f mid- 

Holocene G ulf o f Alaska AL intensification is related to the increase in the meridional 

temperature gradient between the equatorial and high-latitude regions. This north-south 

gradient is responsible for controlling Hadley cell heat transport to the poles, and is the 

ultimate driver o f atmospheric meridional convective circulation. This hypothesis is also 

consistent with modeling efforts that describe the 4,000 cal yr BP onset o f ENSO 

dynamics (45).

To test the hypothesis that the ITCZ-Aleutian Low linkage is responsible for these 

alternate modes o f North Pacific climate variability, we combined our Alaskan high- 

resolution paleoenvironmental records (Fig. 3.2b-d) with two additional lower latitude 

high-resolution records: (i) a subdecadally-resolved speleothem from the Guadalupe 

Mountains in the Sonoran Desert (Fig. 3.2e; 46), and (ii) the equally high-resolution 

titanium concentration record recovered from Ocean Drilling Program (ODP) Site 1002 

in the Cariaco Basin (Fig. 3.If; 47). The speleothem record is sited in a region o f strong 

atmospheric teleconnection with the Aleutian Low through the Pacific North America 

Pattern (2, 48), while ODP Site 1002 reflects the latitude o f the ITCZ. Using the 

combined paleoclimate datasets in a principal component analysis (PCA), we find two 

components alone account for 50% of the variance within this composite dataset, with 

high loadings on PCI in records that reflect an Arctic -  Equator linkage possibly via 

intensification o f the Hadley cell circulation, w'hile PC2 is strongly associated with 

records o f Aleutian Low intensity in the G ulf o f Alaska (Fig. 3.3<r/). Plotting individual 

values o f PCI and PC2 shows that the composite PCA dataset breaks into four zones, two 

o f which are the likely classic binary PDO modes, while two alternate regime patterns are

18
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also identified (Fig. 3.3b). One o f these alternate modes is likely synonymous with the 

Victoria Pattern as it is currently understood (38, 39). PCI shows a distinctive shift at 

approximately 4000 cal yrs BP towards regimes characteristic o f an enhanced meridional 

temperature gradient (Fig. 3.3c), consistent with our hypothesis that the ITCZ is forcing 

the AL strength during mid- and late Holocene times. Linking these shifts in the ITCZ 

with the composite Aleutian Low intensity record derived from PC2 (Fig. 3 .ic) shows 

that between 3,500 -  1,800 cal yrs BP, the North Pacific climate alternated at decadal 

timescales between positive PDO regimes and the Victoria Pattern, and that most positive 

PDO states (e.g. strengthened AL regimes) have occurred since only 4,000 years ago.

It is becoming clear from the mounting evidence that the onset o f mid-Holocene 

Neoglacial conditions are truly the beginning o f modem North Pacific atmospheric and 

oceanic variability, and that subsequent climate events (e.g. the Little Ice age 

termination) have intensified these cycles. In conclusion, reorganization o f atmospheric 

dynamics occurred several times throughout the Holocene, and that greater occurrences 

o f positive PDO states since 4,000 years ago argues that the PDO is a direct manifestation 

o f cooling o f the high latitudes. If  true, then modem greenhouse warming may ultimately 

suppress PDO cycles in the future.
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This pattern o f marine- versus terrigenous organic matter was utilized to extract the 

percent contribution o f terrestrial TOC from the total measured TOC in EW0408-33JC by 

use o f the equation

8 n C . - 8 n C ,sa m p le  m a rin e

te r re s tr ia l _  o !3 / ^  A ' ' - X  sam ple

te r re s tr ia l m a rin e

where TOCtcITestriai is the calculated terrigenous-derived TOC (in wt%) for any given
13 1 3 1 3  13sample, 5 Csamp]e is the measured 5 C , 5 C marjnc is the fully marine endmember 5 C, 

§ 13CtCrrestriai is the fully terrestrial endmember 5 IjC, and TOCsampic is the measured total 

TOC for a sample. 5 I3C values o f -21 %o (modem marine particulate organic matter) and 

-27%o (modem pollen) were used as the marine and terrestrial 8 I3C endmember values, 

respectively, as measured by McQuoid et al. (2001) in Saanich Inlet, British Columbia.
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A p p en d ix  3.2: C orrela tion  coeffic ien ts o f  E W 0408-32M C  b iogeoch em ica l prox ies and d ecadal-sca le  
N orth  P acific c lim ate  ind ices. B ecause the -32M C  p op u la tion  size is sm all (n =  8), n one o f  the 
correla tion s are sign ifican t at the 95%  con fid en ce  level. B old  type ind icates sign ifican ce at the 85%  
con fid en ce level. SL P  =  sea level pressure; SST  =  sea  surface  tem perature; SSH  =  sea surface height.

NPIa PDOb NPGOc
Defining oceanic parameter

SLP
SST
SSH

X

X

X

EW0408-32MC3
GRA wet bulk density 0.09 -0.03 -0.16

Opal 0.70 -0.26 -0.30

Opal MAR 0.58 -0.21 -0.29

TOC - 0.58 0.27 -0.10

TOC MAR - 0.66 0.30 -0.16

Atomic C/N ratio 0.14 -0.11 -0.04

Sedimentary 513C 0.13 0.11 -0.02

Sedimentary 815N -0.10 -0.13 0.34

3 North Pacific Index (2) 

b Pacific Decadal Oscillation (15) 

c North Pacific Gyre Oscillation (39)
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A p p en d ix  3 .3: M orlet w avelet tim e-series analyses for (a) E W 0408-33JC  opal M A R  data and (b) M t. 
L ogan  5 <80  record  (3 0 ) . D iam on d  pattern  ind icates range o f  m odern  P D O  p eriods; th ick  lines 
ind icate 95%  sign ifican ce level aga in st red noise and  cone o f  in fluence w here edge effects bias 
analysis, (c) W avelet coh eren ce (3 1 )  betw een  stan d ard ized  E W 0408-33JC  opal M A R  and M t. L ogan  
records; relative p h ase  re la tion sh ip  in d ica ted  by arrow  d irection s. R elative w avele t pow er in d ica ted  
by vertica l co lor  bars on  r igh t o f  each  fram e.
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A p p en d ix  3.4: D ep th -age m od els for m arin e sed im en t cores (a) E W 0408-32M C  and (b ) E W 0408- 
33JC . E W 0408-32M C  is con stra ined  by the A D  1964 p eak  in an th ropogen ic fa llou t from  
a tm osp h eric  testin g  o f  n u clear w eap on s and  the m in im um  d etectab le  activ ity  o f  210Pb; the presen ce  o f  
a m ixed su rface  layer  from  0 -  10 cm  in d ica tes fu ll recovery  o f  m odern  sed im en t. C ore E W 0408- 
3 3JC  is con stra in ed  by n ine A M S  ,4C  dated  w ood  m acrofossils; overlap  in the geop h ysica l p rop erties  
o f  both  E W 0408-32M C  and the top o f  -33JC  perm its the ap p lication  o f  the -32M C  ch ron o log ica l 
con stra in ts to the top o f  th e  -33JC  age m odel. E rror bars in  b  are 2a ; red dash ed  lines in d icate the  
95%  con fid en ce in terva l for the l4C -con stra in ed  age m odel.

EW0408-33JC Core depth (mbsf)
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Chapter 4 High-resolution paleoproductivity evidence for Holocene evolution of the 

Aleutian Low Pressure System from coastal fjords in the Subarctic Northeast

Pacific Ocean1

4.1 Abstract

Environmental conditions in the Subarctic Northeast Pacific Ocean are an important 

component o f North American climate patterns, as well as a potential driver o f Northern 

Hemisphere climate variability. This region experiences a dynamic linkage between the 

atmospheric Aleutian Low pressure cell and the Alaska Gyre upwelling zone that 

contributes to the maintenance o f a highly productive nearshore marine ecosystem. The 

paleoclimatic record o f Aleutian Low dynamics since the Last Glacial Maximum are 

explored using biogeochemical proxies o f paleoproductivity, freshwater discharge, and 

ocean circulation preserved in four fjords from the southeast Alaskan margin. Major 

results indicate (i) the onset o f modem fjord-style reverse estuary circulation begins 

around 12000 years ago; (ii) an intensification o f the Aleutian Low between 4800 -  2700 

years ago initiated regional increases in productivity and freshwater discharge; and (iii) a 

decoupling between the marine ecosystem and the Aleutian Low-Alaska Gyre system 

from 8000 -  6500 years ago argue against a simple binary dipole model for 

environmental and ecological regime shifts in the North Pacific Ocean. A high- 

resolution analysis o f  variability present within the productivity records also indicate 

significant power in the 40-100 yr-cycle"1 range o f periodicity consistent with the short 

historical record. This study highlights the need for longer datasets o f climate and ocean 

phenomena to better identify the full range o f variability possible within a given region.

'Addison, J.A., Finney, B.P., Dean, W.E., and Jaeger, J.M., 2009. Prepared for 

submission to Continental Shelf Research.
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4.2 Introduction

A dynamic linkage exists between Northern Hemisphere atmospheric circulation 

and oceanographic conditions in the Subarctic Northeast Pacific Ocean. A key 

component o f this system is the Aleutian Low (AL) pressure cell, a coherent sea level 

pressure (SLP) feature located near the Aleutian Islands, which controls both seasonal 

and multi-decadal environmental variability at multiple spatial scales, ranging from local 

effects within the Bering Sea and G ulf o f Alaska to teleconnections with Mexico and the 

southeastern United States (Latif and Barnett, 1994; Trenberth and Hurrell, 1994; 

Rodionov et al., 2007).

Seasonal atmospheric dynamics in the G ulf o f Alaska are controlled by the 

position and intensity o f the AL (Mundy and Olsson, 2005). During the winter, the 

center o f the AL is located in the central northeast Pacific Ocean where it reduces sea 

surface temperature (SST) and SLP, increases precipitation, and intensifies the 

northeastern Pacific storm track (Trenberth and Hurrell, 1994). The AL-driven SLP 

reduction leads to enhanced upwelling in the Alaska Gyre (Harrison et al., 1999). 

Cyclonic Alaska Gyre circulation leads to horizontal advection o f shallow nutrient-rich 

water towards the continental shelf o f the G ulf o f Alaska where it contributes to large 

phytoplankton blooms in the spring and summer (Childers et al., 2005). Concurrent with 

the spring bloom is the seasonal freshet along the margin when freshwater discharge into 

the G ulf o f Alaska is at a maximum (Royer, 2005). The summer runoff maxima (Royer 

et al., 2001) thus reflects atmospheric conditions driven by the preceding wintertime AL.

Interdecadal climate variability has also been recognized in the G ulf o f Alaska. 

Instrumental records o f SST, SLP, precipitation, freshwater discharge, and wind stress all 

indicate an environmental regime shift during the late 1970s (Carleton et al., 1990; 

Trenberth, 1990; Trenberth and Hurrell, 1994; W eingartner et al., 2005). In the G ulf of 

Alaska, the marine ecosystem underwent a significant change in the abundances of 

plankton populations (McFarlane and Beamish, 1992), and contributed to a notable 

increase in Alaskan salmon catch records (Mantua et al., 1997). Instrumental and 

observational evidence for environmental regime shifts in the G ulf o f Alaska extend to
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the early twentieth century, and document three to four shifts since AD 1900 (Mantua et 

al., 1997). The Pacific Decadal Oscillation (PDO), defined as the leading principal 

component o f variability in SST anomalies in the North Pacific Ocean (Mantua et al., 

1997; M antua and Hare, 2002), operates on time scales ranging from 40-80 years. The 

primary forcing mechanism o f the PDO is the position and strength o f the AL pressure 

system (Latif and Barnett, 1994; Trenberth and Hurrell, 1994). Royer et al. (2001) 

developed a hydrological model describing coastal G ulf o f Alaska circulation, and found 

significant variability at seasonal and decadal timescales, with the latter pattern being 

attributed to PDO regime shifts, respectively.

While the interactions between the modem atmosphere, ocean, and marine 

ecosystem have been fairly well characterized, the long-term evolution and variability o f 

the AL remains an area o f active research. Recent work has established 

contemporaneous environmental changes at millennial and centennial scales in ice, 

terrestrial, and marine datasets that record different AL parameters for the last 7500 years 

from the G ulf o f Alaska margin (Addison and Finney, in prep.). The carbonate Sl80
1 Rrecord from Jellybean Lake in the Canadian Yukon (Anderson et al., 2005), the 5 O 

record in an ice core recovered from Mt. Logan (Fisher et al., 2004; Fisher et al., 2008), 

and terrestrially-derived total organic carbon (TOC) preserved in marine sediment core 

EW0408-33JC from Katlian Bay in coastal southeast Alaska (Addison and Finney, in 

prep.) have all been interpreted directly in terms o f atmospheric dynamics controlled by 

the AL. Changes in the 5 I80  records o f Jellybean Lake and Mt. Logan reflect variations 

in moisture source and pathway, while the Katlian Bay terrestrial influx dataset is 

representative o f coastal precipitation intensity. Prior to ~AD 1000, AL existed in a 

weakened state and/or more westerly location with a northern zonal moisture source, and 

reduced precipitation along the G ulf o f Alaska margin that limited marine productivity. 

During the Little Ice Age, between AD 1200 -  1850, the dynamics o f this system altered 

drastically; the Aleutian Low became more intensified and/or easterly with tropical 

moisture delivered by meridional circulation. These changes resulted in increased 

precipitation and enhanced marine productivity within the G ulf o f Alaska. These shifts in



75

state are unprecedented in magnitude relative to the AL regime shifts documented 

historically (Trenberth and Hurrell, 1994).

In this paper, high-resolution paleoceanographic records preserved in three 

southeast Alaskan fjords, along with the EW 0408-33JC record from Katlian Bay, are 

studied to determine patterns o f regional coastal change since the Late glacial/Holocene 

transition. The oceanography o f fjords tend to favor excellent organic matter (OM) 

preservation because (i) shallow sills restrict water exchange and can facilitate seasonal 

bottom-water anoxia, and (ii) fjords tend to be seasonal hotspots o f biological primary 

productivity (Burrell, 1989). Fjord basins can thus preserve exceptional high-resolution 

records o f  marine paleoproductivity (Gilbert, 2000). This innovative approach benefits 

from the use o f multiple fjord records such that the influence o f local effects on an 

individual fjord’s sedimentary record can be identified by cross-referencing across the 

larger data compilation. Because o f differing sedimentary accumulation rates (SARs) 

within this subset o f Alaskan fjords, multiple temporal patterns o f change can be 

distinguish, ranging from subdecadal through millennial timescales. Parameters o f 

interest include (i) marine primary productivity; (ii) erosion intensity o f the adjacent 

terrestrial landscape; and (iii) water column anoxia. These parameters will then be used 

to investigate regional mechanisms o f millennial- and decadal-scale change attributable 

to Aleutian Low-Alaska Gyre linkages throughout the Holocene.

4.2.1 Site descriptions

The Subarctic Northeast Pacific Ocean is dominated by the G ulf o f Alaska basin, 

and is bordered by the Kenai -  St. Elias -  Chugach Range complex along its eastern 

margin (Fig. 4.1a). These mountains are significant orographic barriers, with the tallest 

peak at Mt. St. Elias exceeding five kilometers in elevation. The coast o f southeast 

Alaska was extensively glaciated during the Last Glacial Maximum (LGM; Fig. 4.1a). 

Tidewater glaciers were common throughout the region (Mann et al., 1998) and the 

evidence o f their extents include the complex network o f fjords that now cover the 

region. A fjord is a deep, high-latitude estuary that has been (or is presently being) 

excavated or modified by land-based ice (Syvitski et al., 1987). A shallow sill at the
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mouth o f a fjord tends to restrict water exchange with the open ocean, and often leads to 

seasonal or permanent anoxia in the bottom waters within the fjord particularly when 

vertical mixing is minimal (Skei et al., 2003). Many o f these southeast Alaska fjords are 

now completely free o f perennial ice with no evidence of Holocene ice within their 

terrestrial watersheds. The sediment fill o f many o f these fjords thus represent a 

continuous Holocene record o f sedimentation derived from autochthonous marine 

organic material, allochthonous terrestrial organic and detrital material from either fluvial 

systems draining into the fjord or precipitation run-off, and episodic disturbance events 

(e.g. seismic or aseismic debris flows and turbidity currents; Syvitski et al., 1987).

This study focuses on three fjords from western Baranof Island (Fig. 4.1b), as 

well as a site in the G ulf o f Esquibel (Fig. 4.1c). All four locations share several 

characteristics, including either a single sill at the head o f a basin, or multiple sills within 

a complex basin (Table 4.1). Hydrographic profiles o f temperature (/) and salinity (s) 

collected in August 2004 during coring operations indicate strongly stratified water 

columns (Fig. 4.2), consistent with fjord estuarine circulation patterns characteristic o f 

the North Pacific coast (Fig. 4.3). Comparison with a deepwater profile at the continental 

slope adjacent to Baranof Island exhibits similar t-s properties between shallow offshore 

and nearshore fjord water columns.

Previous oceanographic time-series observations in Boca de Quadra (Burrell, 

1989), a fjord 170 km east-south-east o f the G ulf o f Esquibel, suggest the fjord sites 

presented in this study are approaching the autumn period o f greatest stratification, driven 

by seasonal maxima in precipitation and fluvial discharge (Fig. 4.2c). However, the 

surface salinity in these fjords appears to be higher than other locations around the 

Alaskan coast, particularly compared to fjords and inlets within Prince William Sound 

(Gay and Vaughan, 2001), probably as a result o f (i) smaller rivers at the fjord heads, and 

(ii) no upland glaciers or icefields present within the terrestrial drainage basins. 

Nevertheless, this stratified condition will most likely be disrupted during the subsequent 

winter when vertical mixing within the surface layer is enhanced by the combination of
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minimal freshwater flux and strong down-fjord winds tunneled by the high relief 

topography along the fjord margin (Nebert, 1982).

The intermediate zone, characterized as the depth range between the surface water 

mass and the sill depth, is unique in fjord-style estuary circulation because it is a major 

influx o f water and nutrients into a fjord from the open ocean (Syvitski et al., 1987). The 

presence o f G ulf o f Alaska-derived intermediate zone water is suggested in the 

relationship between the offshore hydrographic data and the fjord data in the t-s diagram 

(Fig. 4.2c), where the continental slope site crosses the fjords’ trends above sill depth. In 

the multiple-basin Boca de Quadra fjord, the outermost (seaward) basin intermediate 

zone is in continuous contact with G ulf o f Alaska shelf water throughout the year, while 

up-fjord transport into successive basins occurs during the winter as a function of 

Aleutian Low-driven onshore convergence and Ekman transport (Burrell, 1989; 

W eingartner et al., 2005). The up-fjord transport o f this nutrient-rich water allows for the 

annual replacement o f nutrients at depth. Coupled with increased vertical mixing during 

the winter due to the reduction in freshwater accumulation in the surface layer, this 

combination o f processes allows for the ‘prim ing’ o f the euphotic zone with new 

nutrients to sustain the high levels of primary productivity during the following spring 

bloom (Childers et al., 2005). Increasing stratification from precipitation and solar 

radiative heating in the spring o f the surface layer may also help to contribute to the high 

levels o f primary productivity associated with the Northeast Pacific coast (Gargett, 1997).

An important component o f all four fjord profiles is the presence o f the 

homogenous water mass at the bottom of each fjord below sill depth (Fig. 4.2). This 

bottom water is derived from summer advection o f denser water from the G ulf o f Alaska 

shelf across the sill into the fjord basin. The Boca de Quadra study (Burrell, 1989) shows 

that this replacement usually occurs annually in response to diffusive salt loss from the 

bottom fjord waters to the overlying intermediate waters. However, Burrell also 

emphasizes that this cycle o f bottom water renewal during the summer is not always the 

case if sufficiently dense waters are not present outside the fjord.
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A key difference exists between Boca de Quadra and two o f the fjords in this 

study. The shallowest sill in Boca de Quadra is at 85 m water depth, while Deep Inlet 

and Katlian Bay have sills at 24 and 31 m water depth, respectively (Table 4.1). These 

shallow sills most likely restrict bottom water renewal events, and probably contribute to 

multi-annual residence times for these bottom water masses. Indeed, the divergence 

between the t-s properties o f the fjord water masses below sill depth and the continental 

shelf suggests that none o f the Baranof Island fjord bottom waters have undergone 

exchange with the shelf during the 2004 summer (Fig. 4.2c). This contrasts with the Gulf 

o f Esquibel profile, in that given the t-s properties o f its bottom water, it probably has 

experienced bottom-water exchange relatively recently.

The episodic replacement o f fjord bottom waters, coupled with the high primary 

productivity o f the overlying euphotic zone and subsequent export to the stagnant bottom 

water and sediment, suggests that fjord sedimentary records can serve as excellent high- 

fidelity repositories o f paleoceanographic information (Gilbert, 2000). Indeed, low 

dissolved oxygen concentrations, rapid export rates and low microbial respiration rates all 

tend to favor high organic matter preservation (Hartnett et al., 1998; Hedges et al., 1999). 

While direct dissolved oxygen concentration data are not available from any o f the fjord 

sites considered in this study, several Norwegian and British Columbian fjords are known 

to become seasonally anoxic (Syvitski et al., 1987; Skei et al., 2003), as is Skan Bay on 

Unalaska Island in the Aleutian Archipelago (Sugai et al., 1994), and Saanich Inlet on 

Vancouver Island (Timothy and Soon, 2001). Dissolved oxygen measurements within 

the bottom waters o f Boca de Quadra, however, were never less than 3 ml/L over a three- 

year observational period, and this is due largely to the high dissolved O2 concentrations 

in the residual water mass following the conclusion o f the summer flushing sequence by 

0 2 -rich G ulf o f Alaska shelf water (Burrell, 1989). The dissolved O2 minima in both 

Boca de Quadra and Skan Bay occur during the winter. Additionally, low dissolved O 2 

water masses may occasionally be upwelled from the abyssal G ulf o f Alaska, and advect 

into coastal areas (Burrell, 1989).
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4.2.2 Philosophy o f  approach

These m odem  observations o f Northeast Pacific fjord oceanographic dynamics 

suggest that a sedimentary record derived from fjord depocenters can potentially preserve 

evidence o f several regional and local processes. When combined with a diverse multi

proxy analysis o f paleoceanographic parameters, a complex dataset can be developed that 

details the effects o f changing environmental conditions on marine primary producers, 

terrigenous sedimentation regimes, and bottom-water circulation dynamics. Because each 

proxy has its own assumptions and limitations for use, this multi-proxy approach allows 

for cross-validation and an increasingly robust interpretation. Furthermore, due to the use 

o f multiple fjord sediment records, local basin effects and regional forcings can be 

distinguished across the Subarctic Northeast Pacific Ocean coastal zone as a whole.

The influx o f intermediate zone water from the nutrient-rich G ulf o f Alaska (Fig. 

4.3) provides a pathway to relate fjord paleoproductivity records to shelf conditions. 

Sedimentary opal is derived primarily from the tests o f diatoms, the dominant 

phytoplankton group in the North Pacific Ocean (Miller, 1993), and presents a resilient 

record o f export production that has been recognized at all ocean depths, latitudes, and 

climate zones o f the ocean (Ragueneau et al., 2000). However, additional proxies are 

necessary due to potential uncoupling o f the Si:C cycle and differential opal dissolution 

(Ragueneau et al., 2000; Dezileau et al., 2003). Therefore, as an additional independent 

paleoproductivity proxy, bulk sedimentary total organic carbon (TOC) will also be 

measured. These results will then be compared against measurements o f total nitrogen 

(TN), 5 I3C o f organic matter, and TOC/TN weight ratios (for brevity, C/N ratio hereafter) 

to evaluate changes in the TOC composition as indicative o f either (i) past water column 

nutrient dynamics, or (ii) changes in the proportions o f marine algal material versus 

terrestrial vascular plant debris to the sediment (Meyers, 1994; Bickert, 2006).

Terrigenous sedimentation within the ice-free fjords o f southeast Alaska is driven 

primarily by freshwater runoff from the adjacent terrestrial watershed. This runoff 

manifests itself as the shallow low-salinity surface water present in fjord circulation 

regimes (Fig. 4.3). Therefore, terrigenous sediment accumulation can be utilized as a
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proxy for seasonal runoff (Haug et al., 2001). Terrigenous sedimentation is evaluated 

using concentrations o f lithophilic elements known to accumulate as detrital phases, due 

to physical weathering o f primary igneous or secondary sedimentary lithologies. These 

include Zr (as zircon or baddeleyite), Ti (as rutile or anatase), and Al (as representative o f 

the bulk aluminosilicate fraction) (Marshall and Fairbridge, 1999). The primary 

similarity between all o f these elements is that they are classified as either highly 

refractory or super refractory (McLennan, 1999), and thus are associated predominantly 

with the detrital mineral flux, though some authigenic precipitation o f Al-bearing clays 

and oxyhydroxides is known to occur in aqueous environments (e.g. Langmuir, 1997). 

Nevertheless, detrital accumulation behavior is inferred for these elements due to the (i) 

highly insoluble nature o f the carrier mineral phases as imposed by thermodynamic 

constraints (Faure, 1998), (ii) rapid transport o f sediment from the terrestrial margin to 

the G ulf o f Alaska basin (Hallet et al., 1996; Jaeger et al, 1998; Walinsky et al., 2009) 

thus minimizing chemical weathering reaction times, and (iii) limited X-ray diffraction 

analysis o f the bulk mineral assemblage contained in EW0408-33JC shows highly 

immature mineral phases dominated by chlorite, quartz, illite, plagioclase, and amphibole 

(R. Newberry, pers. comm., 2006).

Without knowing the dissolved oxygen concentration o f the fjords considered in 

this study a priori, past redox conditions o f these fjords can be reconstructed using the 

accumulation o f  redox-sensitive elements contained within the bulk sediment.

These elements are derived from two sources, either associated with terrestrially-derived 

detrital mineral phases and organic matter via substitution or adsorption processes 

(Calvert and Pedersen, 1993), or direct precipitation from seawater as reduced sulphide 

phases sensitive to prevailing redox potential (Eh) conditions within the water column 

(Crusius et al., 1996; Piper and Dean, 2002). Following the guidelines described by Piper 

(2001) and Piper and Calvert (2009), a suite o f elements are studied that cover a range o f 

environmental Eh values, as determined by empirical thermodynamic constraints on half

cell reactions. Authigenic Mn4f-bearing oxides, oxyhydroxides and carbonates 

precipitate under oxidizing conditions from dissolved Mn2+ at Eh values exceeding 0.704
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eV in seawater, which is an Eh value only slightly higher than that associated with 

denitrification o f nitrate (Piper and Calvert, 2009). Therefore, enrichments o f excess Mn 

can be used to infer oxic water conditions, while depletions indicate suboxic or anoxic 

conditions (Tribovillard et al., 2006). Similarly, both excess Cr and excess V are 

adsorbed onto sinking particles as oxyanions or precipitate as Cr(OH )3 or vanadium- 

bearing oxides or oxyhydroxides [V2O 3, V2O4, V(OH)3] at Eh values below 0.545 eV and 

-0.040 eV, respectively (Piper, 2001). This latter value is only slightly higher than the 

predicted Eh value o f -0.055 eV for sulfate reduction, thus implying that both excess Cr 

and excess V enrichments are indicative o f suboxic or anoxic conditions, while 

depletions suggest an oxic water column. Enrichments o f excess Mo and excess U are 

used to infer full anoxia. Dissolved M o 0 42~ and U0 2 (C0 3 )34" are the predominant species 

in oxygenated seawater (Calvert and Pedersen, 1993), and are reduced to solid-phase 

M 0 S2 and several U-bearing oxides o f which UO2 is the dominant form, or as the 

particle-reactive MoC>2+ species.

4.3 Methods

4.3.1 Core descriptions

Sediment cores were recovered by the R/VM aurice Ewing  from four fjords along 

the G ulf o f Alaska margin in 2004 (Fig. 4.1). Each station was sampled with either short 

gravity- or multicore-type cores, and longer piston-type jum bo cores (Table 4.2). 

Following retrieval, each core was sectioned and analyzed shipboard using a GEOTEK 

Multi-Sensor Core Logger (MSCL) for high spatial resolution geophysical properties at 

1-cm intervals. Cores were then subsequently split, lithologies described and high- 

resolution linescan imagery was collected. All EW0408 sediment cores are stored at the 

Oregon State University core repository.

4.3.2 Geochronological approach

To develop a chronological framework for this study, a complementary approach 

was employed using excess 2 l0Pb, lj7Cs, and 226Rn activities, l4C accelerator-mass-



82

spectrometry (AMS) dating o f terrestrial and marine macrofossils, and 

tephrochronological correlations to previously dated terrestrial volcaniclastic deposits. 

Furthermore, due to the tendency towards core top loss during piston coring operations, 

multi-cores or benthos gravity cores were used to recover surface sediment. These short 

cores were then correlated to the appropriate longer piston core using radionuclide 

activities, MSCL geophysical properties or biogeochemical marker horizons to generate a 

composite record for each site. Excess 210Pb, 137Cs, and 226Rn activities were measured 

following the methods described in Walinsky et al. (2009).

4.3.3 Biogeochemical approach

Bulk 1-cm-thick sediment samples were collected from each core (Table 4.2). 

Samples were then freeze-dried, homogenized by hand with a ceramic mortar and pestle, 

and subsampled. One split for all jum bo piston core samples (except EW0408-44JC due 

to insufficient sample masses) was pressed into 5 g pellets under a confining pressure o f 

ten metric tonnes for two minutes. The pressed pellets were then analyzed for major, 

minor, and trace element concentrations using a PANalytical Axios wavelength 

dispersive x-ray fluorometer (XRF). The XRF analytical routine was calibrated using 40 

international standards, standardized fused disks were run as machine drift monitors, and 

two internal standards (MAG-1 and SDO-1) were run alongside each analytical set o f 20 

samples. Replicate analyses o f the internal standards yielded standard deviations less 

than 5% of the mean for 28 elements. The geochemistry o f core EW 0408-11 JC was 

analyzed by inductively coupled plasma mass spectrometry (ICP-MS). A full description 

o f ICP-MS methods and analytical precision, as well as the coulometric method for 

measuring CaCC>3 concentrations, are all presented in Addison et al. (inprep.).

Concentrations o f inorganic elements were interpreted in terms o f their respective 

geochemical behaviors. In the case o f the refractory elements Al, Ti, and Zr, these were 

used in bivariate and ternary plots to identify detrital element provenance. If it was found 

that only a single geochemical source contributed detrital sediment, then the 

concentration o f Ti was used as a proxy for terrigenous erosion (e.g. fluvial discharge
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and/or terrestrial run-off). However, if  multiple detrital sources were indicated, then a 

more general approach was used to estimate the bulk terrigenous content,

L = 100 - (opal + C a C 0 3 + (2 x TOC)) [Eqn. 1]

where L is the total lithic concentration, and the other components are assumed to fully 

account for the biogenic phases. Because CaCCb was not measured in core EW0408- 

22JC directly, CaCC>3 content was estimated by multiplying the total Ca concentration by 

a factor o f 2.01, based on the mean Holocene CaCCVCa ratio observed in EW0408-11JC 

(n = 52, r = 0.754, p <  0.01).

The concentrations o f the redox-sensitive elements Mn, V, Cr, U, and Mo were 

used to estimate the authigenic precipitate fraction as a qualitative proxy for dissolved 

oxygen content in the ambient water column, according to the equation

X '

avg  sed  J

excess X = X measured
'  T y I  ^A1 ^

m easured

V Al
[Eqn. 2]

where X measurCd is the measured XRF or ICP-MS sample concentration o f the element o f 

interest, and (X/Al)avg Scd is the global mean sediment Al-normalized ratio for element X 

(McLennan, 1995). This calculation has been used extensively in many different 

sedimentary environments, including nearshore continental margins (e.g. Dymond,

1981). This approach assumes a constant element/Al ratio, implying only one source o f 

terrigenous sediment (Anderson and Winckler, 2005). Based on the detrital provenance 

analysis results presented in the next section, this assumption is violated for cores 

EW 0408-11JC and -22JC due to mixing between different sources; this complexity is 

addressed by examining a full gamut o f redox-sensitive elements.

The second sample split was treated in 2 N HC1 overnight, rinsed with Millipore 

distilled water three times, and freeze-dried. A subsample was then measured for 

biogenic silica (opal) using a wet-alkali extraction method (Mortlock and Froelich, 1989), 

with an estimated error o f 1 1  % based on replicate measurements o f an internal sediment 

standard. A second subsample was combusted with a Costech 4010 HCNS elemental 

analyzer for TOC and TN concentrations that was coupled to a Finnigan DeltaplusXP
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isotope ratio mass spectrometer for stable 5 I3C measurement. All isotope values are 

reported in permil units (%o) according to the relationship

S X =  R ^mple ~ Rstandard xiQQo [Eqn. 3]
^ ■ s ta n d a rd

where X  is the element o f interest and R is the measured isotopic ratio. All carbon 

measurements are relative to the V-PDB standard (5 I3C = 0.0%o). Replicate 

measurements (n > 100) o f internal standards run alongside TOC, TN, and sedimentary 

6 I3C samples yielded one standard deviation from the mean o f 2.6%, 3.8%, and 1.0% , 

respectively.

A linear mixing model approach was used to estimate the terrestrial TOC 

contribution to the fjord sediment because o f the high proportions o f terrestrially-derived 

TOC likely present within the total TOC measurements at these nearshore sites using the 

equation

% terrestrial C = J  5  C —  x \ 0 0  [Eqn 4]
c l 3 x ~ »    e l 3  l  ~ i j

terrestria l m arine

where 5 13Csampie is the measured 5 13C, 5 13Cmarine is the fully marine endmember 6 13C, and 

5 l3Cterrestriai is the fully terrestrial endmember 6 13C. Normal application o f Eqn. 4  places 

values o f approximately -21.0% o (modem marine phytoplankton) and -27.0% o (modern 

pollen) as the marine and terrestrial 8 13C endmember values, respectively, (Meyers, 1994; 

McQuoid et al., 2 0 0 1 ). In this study, the endmember ranges were broadened slightly to 

-2 0 .0  (marine) and -28.0% o (terrestrial) because many o f the E W 0408  samples considered 

here exceeded the customary range o f 5 13C values. Such variability is not unusual for 

continental margin sediments (e.g. Nuwer and Keil, 2005; Walsh et al., 2 0 0 8 ).

To estimate the export flux o f  biogenic and terrigenous material for each core, 

mass accumulation rates (MAR) were calculated according to the relationship 

Bulk MAR = y9 bulk x SAR [Eqn. 5a]

where bulk MAR is the bulk mass accumulation rate (in units g/cm2/yr), pbuik was 

estimated from the gamma-ray-attenuated bulk density measurements from the MSCL (in
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units g/cm3), and SAR is the interval sedimentation rate (in units cm/yr) calculated 

between each biogeochemical sample using the interpolated ages for each sample based 

on the respective age-depth model for each core. Then, to determine the flux o f specific 

sediment phases

X MAR = Bulk M AR x X measured [Eqn. 5b]

where A'mar is the mass accumulation rate o f component X (in units g/cm2/yr or 

pg/cm 2/yr), and ^measured is the concentration o f the phase o f interest (either in units ppm 

= pg/g, or wt% = g/g).

4.3.4 Statistical treatment

Statistical considerations were limited chiefly to correlation calculations, data 

reduction, and time-series analyses. Bivariate Pearson correlation coefficients were 

calculated for natural-log-transformed datasets to ensure normal distributions (Davis, 

2002). Natural-log transformation has the added benefit o f circumventing the constant- 

sum problem (Aitchison, 1986; Aitchison, 1999). In the case o f core EW0408-33JC that 

was sampled at extremely high temporal resolution and yielded more than 350 individual 

samples, bivariate correlations were not realistic. Instead, principal component analysis 

was used to simplify the redox-sensitive element concentration data into three factors 

with eigenvalues > 1 , using a varimax rotation to maximize the variance o f the element 

loadings onto the extracted factors (Davis, 2002). These extracted factors were then 

interpreted in terms o f the environmental processes that may control the observed 

elemental loading patterns.

Time-series analysis was performed using the REDFIT analysis software package 

(Schulz and Mudelsee, 2002). Briefly, this program utilizes a bias-corrected Lomb- 

Scargle Fourier transform appropriate for unevenly-spaced data with no need for 

interpolation to equal time steps. To assess the significance o f resulting spectral peaks, 

REDFIT calculates a first-order autoregressive (AR1) process representing stochastic 

variability in the dataset, and then tests the data time-series against the AR1 time-series 

using a Monte Carlo ensemble. For the time-series analysis o f the high-resolution opal
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MAR datasets from cores EW0408-22JC, -33JC, and -44JC, peaks exceeding the 95% 

confidence level were considered significant. The REDFIT approach inherently assumes 

that the AR1 process approximates the background noise in the respective datasets, and 

that the distribution o f data along the time axis is not too clustered (Schulz and Mudelsee, 

2002).

4.4 Results

4.4.1 Lithologies and geochronology

Radiometric dating results are presented in Table 4.3. AMS 14C dates were 

calibrated to calendar ages (denoted as cal yrs BP, or cal kyrs BP) using the CALIB 5.01 

software (Stuiver and Reimer, 1993) and the INTCAL04 calibration curve (Reimer et al.,

2004). All ages are reported as the 2a  median probability age with uncertainties o f one- 

half o f the 2a  calibrated age range. In the case o f marine macrofossils, a marine 

carbonate reservoir age o f 732 years was subtracted from the 14C date prior to calibration. 

This reservoir age is based on the mean l4C date discrepancy between paired marine 

bivalve and terrestrial wood samples from three different EW0408 cores. In an effort to 

minimize the use o f reservoir corrections, terrestrial-derived wood fragments, spruce 

needles, leaves and seeds were preferentially selected for AMS radiocarbon dating where 

available following wet sieving with a 250-pm-screen o f approximately 10 cm 3 bulk 

sediment samples. To determine if  older macrofossils were inadvertently sampled with 

this strategy, each AMS l4C date was evaluated against both the lithostratigraphy and the 

full age-depth model for each respective core.

EW0408-11JC

The piston core EW 0408-11JC recovered from the G ulf o f Esquibel is composed 

o f three major lithologic units (Fig. 4.4). The uppermost Unit 1 is an olive-gray silty clay 

marked with faint laminations that extends from 0 -  1230 cm bsf, and conformably 

overlies a massive dark gray silty clay (Unit 2) with moderate bioturbation from 1230 -  

1314 cm below sea floor (cm bsf). Within this massive silty clay at 1295 -  1298 cm bsf,
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a black tephra bed with a graded top contact and sharp bottom contact is present. Below 

1314 cm bsf is a conformable contact with a color interstratified (reddish-brown/light 

gray/dark gray) silty clay containing rare dropstones (Unit 3) that extends to the bottom 

o f core EW0408-11JC at 1762 cm bsf.

The suite o f geophysical and biogeochemical analyses conducted on the multi

core EW 0408-I0M C indicates no overlap with the longer EW0408-11JC piston core, nor 

with its accompanying trigger core, indicating a gap o f unknown length exists between 

the bottom o f the multicore and the top o f the piston core. Using a suite o f 11 AMS 14C 

samples and a tephra correlation to a nearby lake core (Barron et al., 2009), a fifth-order 

polynomial age model was generated that explained >99% of the variance in the depth- 

age relationship for the dated samples in the EW 0408-11JC piston core (Fig. 4.5). This 

age model places the top o f EW0408-11JC at -1600  cal yrs BP, corresponding to 

approximately 1 m loss o f core top material. Additional dating efforts are underway to 

constrain the age o f this core more fully. This geochronological approach differs from 

that presented by Barron et al. (2009), in that (i) their age model is based on a 3-part 

linear fit to these dates and (ii) assumes no core top loss. The practical result o f these 

differences in age models is that the late Holocene dates discussed in this paper are older 

than those reported by Barron et al. (2009).

Linear estimations o f the polynomial age-depth model were required for the 

calculation o f bulk mass accumulation rates (Fig. 4.6a). In particular, the rapid shift in 

sedimentation rates between 11.8 -  10.8 cal kyrs BP presents a considerable problem for 

this approach. Linearization removes distortion induced in the accumulation rate 

calculations by the presence o f inflection points within the age model, though at the cost 

o f imposing abrupt changes in sedimentation. Opal concentrations are also highly 

correlated with density (Fig. 4.6b; n = 93, r = -0.921 , P < 0  .0 1 ), which further biases mass 

accumulation calculations and indicates opal is a key component o f the bulk 

sedimentation regime. To resolve these complications, the EW0408-11JC age model 

required three different linear sedimentation rates for a somewhat realistic bulk MAR:
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0.022 cm/yr between 21.0 to 11.8 cal kyrs BP; 0.563 cm/yr between 11.8 to 10.8 cal kyrs 

BP; and 0.102 cm/yr younger than 10.8 cal kyrs BP.

EW0408-22JC

EW 0408-22JC is 11.84 m long, and is composed o f three lithologic units (Fig. 

4.4). The uppermost massive olive gray clay unit extends from the core top to 50 cm bsf. 

It conformably overlies a slightly coarser massive dark olive gray clay that extends to 460 

cm bsf. The lowermost conformable unit is a massive dark grayish-brown silty clay with 

dispersed sand grains from 460 -  1184 cm bsf. EW 0408-22JC also contains six thin sand 

beds, and rare sand pods or gravel clasts (Fig. 4.4). For the biogeochemical analyses, 

these coarser units were avoided during sampling.

Both geophysical and biogeochemical analyses indicate an overlap between the 

benthos gravity core EW0408-21GC and EW0408-22JC that corresponds to a loss o f the 

upper 30 cm from the EW 0408-22JC piston core. Measurements o f excess 2l0Pb activity 

from EW 0408-21GC are consistent with a maximum apparent steady-state accumulation 

rate o f 2.4 -  4.5 mm/yr ip < 0.05); this rate is corroborated with l37Cs activities that 

indicate a maximum apparent mean accumulation rate based on the first appearance o f 

,37Cs o f 3.0 -  3.7 mm/yr. For the purposes of generating a composite age-depth model 

for EW0408-22JC, the first appearance o f l37Cs at 13.5 cm bsf was considered as 

equivalent to AD 1964, and the first appearance o f  excess 210Pb activities at 40 cm bsf as 

AD 1893 (Table 4.3).

Seven AMS ,4C samples and the White River Ash (Addison et al., accepted) 

constrain EW 0408-22JC (Table 4.3). Due to an apparent age reversal, an additional 

AMS sample at 1.28 m bsf was rejected. While the lithostratigraphic unit associated with 

this sample does not suggest emplacement o f reworked material from upslope, there are 

numerous broken shell fragments and dispersed sand grains throughout the core implying 

episodic cryptic turbidites or iceberg-rafted debris (IRD) accumulation within the 

homogenous silty clay sections (Fig. 4.6). Nevertheless, the ordered chronology o f the 

remainder o f the AMS l4C samples gives us confidence in the geochronological method 

employed in this study.
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The composite age-depth model generated from the complementary 

geochronological approaches utilized for EW0408-22JC is a quadratic fit forced through 

AD 2004 at the core top (R = 0.983). To evaluate the most appropriate age-depth model 

for these data, the significance o f two alternate models (linear and cubic) were tested 

using an analysis o f variance (ANOVA) coupled with an F-test (Davis, 2002). While all 

three models are statistically significant (p < 0.05) in describing the age control points, 

the quadratic model was a significant improvement over the linear model, while the cubic 

model was not a significant improvement (p  > 0.05) over the quadratic model. The 

curvature o f the quadratic model suggests non-steady-state accumulation throughout the 

Holocene, with rates highest during the late Holocene (Fig. 4.6a). There is a strong 

negative correlation between opal concentrations and the bulk density (Fig. 4.6b; n = 243, 

r = -0.578, p < 0.01). Because Eqn. 5a relies on both sedimentation rate and bulk density, 

this result indicates opal accumulation is intimately related to the sedimentation regime at 

this site. The mean accumulation rate for the full core is 1.25 mm/yr, which is less than 

half the rate suggested by either excess 210Pb or l37Cs activities measured in recent 

sediment.

EW0408-33JC

Core EW0408-33JC is 18.19 m long, and composed o f a massive olive gray clay 

that coarsens slightly to a silty clay at 497 cm bsf that extends to the bottom o f the core 

(Fig. 4.4). No sand lenses are present, though several shell hash layers are evident. The 

major chronological constraints for core EW0408-33JC have been presented previously 

(Addison and Finney, in prep.). Briefly, EW0408-33JC is constrained by nine terrestrial 

AMS l4C dated macrofossils, and the corresponding multicore EW 0408-32MC by excess 

2l0Pb and l37Cs activities. To these age control points, two cryptotephras recently 

identified in EW0408-33JC (Addison et al., accepted) were included. These 

cryptotephras are derived from previously dated explosive activity from nearby Mt. 

Edgecumbe (Riehle and Brew, 1984) The cryptotephras are geochemically identical to 

macroscopic tephra deposits that are constrained by conventional 14C dates on underlying 

peat deposits. The new age-depth model constructed for this work is linear and describes
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>99% o f the variance within the dataset. This excellent fit to the data indicates that, 

despite the shell hash horizons suggesting episodic turbidite deposition, the full EW0408- 

33JC core is a continuously accumulating record o f hemipelagic sedimentation. The 

mean sedimentary accumulation rate for the full core is 2.4 mm/yr (Fig. 4.6b).

EW0408-44JC

Core EW0408-44JC is 15.61 m long following correction for gas voids (Table 

4.2). EW0408-44JC is composed o f a laminated black silty clay that fines slightly to clay 

at 724 cm bsf and below (Fig. 4.4). This core contains several prominent graded dark 

laminations that consist o f coarser sediment including several noted terrestrial 

macrofossil-rich horizons.
”710 *)*)£>

Radiometric dating (excess Pb and Rn activities) indicates a surface mixed 

layer 20 cm thick in EW0408-43MC, with a steady-state maximum apparent 

accumulation rate o f 5.2 -  6.7 mm/yr (p < 0.05). The same radionuclide measurements 

from the top o f EW0408-44JC indicate approximately 25 cm was lost during core 

recovery. Unlike the other cores considered in this study, the uppermost sections of 

EW0408-44JC suffered from excessive gas expansion, such that correlations o f the high- 

resolution MSCL geophysical data between cores EW0408-43MC and EW0408-44JC 

were impractical.

The EW0408-44JC piston core is constrained by 8 AMS 14C dates on terrestrially- 

derived organic macrofossils (Table 4.3). An additional AMS l4C sample from 1.21 m bsf 

was rejected due to an anomalously old date, suggesting emplacement o f upslope older 

sediment at the coring location. The age-depth model selected for the indicated EW0408- 

44JC chronological constraints is a cubic model with an R2 value o f >0.99 (Fig. 4.5). A 

linear model (R2 =0.96) was tested as a less complicated alternate age-depth model, but it 

was discarded due to the results o f an ANOVA test that indicated the cubic model was a 

significantly better fit (p < 0.05) for the data. However, as with EW0408-11JC, the cubic 

age-depth model for EW0408-44JC also contains an inflection point that bias the bulk 

mass accumulation rate (Fig. 4.6c) calculations necessary for evaluating productivity. To 

circumvent this problem, a simplifying linear sedimentation rate o f 0.40 cm/yr was used.
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4.4.2 Paleoproductivity and organic matter trends

The record o f sedimentary organic matter accumulation preserved within the 

fjords o f southeast Alaska is complex. Both TOC and opal accumulation rates vary by an 

order o f magnitude between fjord sites (Figs. 4.7 and 4.8), and the relationship between 

these components is not straightforward. Cores EW0408-11JC and EW0408-22JC both 

show strong positive correlations between TOC and opal (r > 0.85), but lack o f a 

correlation for EW0408-33JC, and a negative correlation for EW0408-44JC (Fig. 4.7a), 

indicate a complicated relationship between siliceous export productivity and organic 

carbon accumulation in these different fjords. Organic matter source analysis using bulk 

sedimentary 5 I3C isotopic values and C/N ratios (Meyers, 1994) also show variable 

contributions o f both terrestrial vascular plant material and marine algae (Fig. 4.7b).

Core E W 0 4 0 8 - 1 1JC has both low opal and TOC concentrations prior to ~ 1 4  cal 

kyrs BP (Appendix 4 .5 ) .  Following 14 cal kyrs BP, these data begin a steady monotonic 

increase that reaches maximum values o f 40%  and 7.5% , respectively, at the top o f the 

core, corresponding to - 1 6 0 0  cal yrs BP. The lowest values in sedimentary 5 I3C also 

occur prior to 14 cal kyrs BP ( -2 9 .0  ±  0.3%o), and are contemporaneous with the highest 

C/N ratios (1 5 .3  ±  1.9). Between 10 -  14 cal kyrs BP, the 5 I3C values increase rapidly by 

+7%o, and then slowly increase to a late Holocene maximum o f - 2 1 ,0%o; the C/N ratio 

data show the opposite trend, with a late Holocene minimum o f 9.6.

EW 0408-22JC contains similar trends as -11 JC, albeit with greater variability in 

opal concentrations (Appendix 4.6). Both TOC and opal values increase from minima 

during the early Holocene (prior to -7000  cal yrs BP), and culminate in late Holocene 

maxima. With the exception o f a few isolated peaks, the C/N ratio remains fairly 

constant throughout the entire core (9.82 ± 0.82), while the sedimentary 5 I3C data show a 

steady increase to late Holocene values, similar to both the opal and TOC trends. There 

are significant correlations between 5 I3C and both TOC (n = 69, r = 0.808, p < 0.01) and 

the C/N ratio (n = 69, r = -0.312, p < 0.01).

The high-resolution productivity record in EW0408-33JC (Appendix 4.7) differs 

from both -11 JC and -22JC in many aspects. The presence o f  decadal-scale variability is
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indicated in several proxies throughout the entire core length. During the early Holocene 

(from -7500  to -5500  cal yrs BP), decadal-scale opal concentration variability is 

superimposed over a millennial-scale background decline o f approximately - 1 0 %. 

Between 5500 to 2700 cal yrs BP, the opal background increases by -10% , but then 

declines again from 2700 to 1000 cal yrs BP The late Holocene sees a short-lived 

increase to opal concentration values exceeding 35%, and then gives way to an abrupt 

decline in the most recent sediment. These trends in biogenic silica are largely not seen 

in any other proxy from core EW0408-33JC. Instead, there is considerable coherency in 

the relationships between 5 n C and both TOC (n = 362, r = 0.265, p < 0.01) and the C/N 

ratio (n = 362, r = -0.713, p < 0.01). The most striking behavior in these related proxies 

is seen between the core top and -1000  cal yrs BP, when TOC, the C/N ratio and 

sedimentary 5 I3C data show large magnitude in-phase oscillations.

Opal, TOC, the C/N ratio, and sedimentary 5 I3C data are all highly correlated in 

core EW0408-44JC. As described above for EW0408-33JC, core -44JC contains high- 

frequency variability in all organic proxies superimposed over lower frequency changes 

in the millennial-scale background. All four proxies are correlated at the 99% confidence 

level. For both opal and 5 I3C (n = 128, r = 0.791, p < 0.01), the oldest part o f the core at 

-4000  cal yrs BP contains a background maxima that decreases to a minima around 3000 

cal yrs BP. The opal and 5 13C background then increases again until 2000 cal yrs BP. 

This interval is then followed by a reduction to minimum values around 1200 cal yrs BP, 

and then a second increase that terminates in the modem core top sediment. These 

millennial-scale trends are anti-correlated with the patterns observed in both TOC and 

C/N ratio data, particularly with respect to opal where both TOC (n = 128, r = -0.743, p 

< 0.01) and the C/N ratio (n =  128, r = -0.837, p < 0.01) exceed the 99% confidence level.

The strong correlation between TOC and both C/N and sedimentary 5 I3C ratios in 

all four cores, as well as the lack o f a positive correlation between opal and TOC in both 

cores EW0408-33JC and -44JC, suggest TOC MARs as calculated by Eqn. 5 are unlikely 

to faithfully indicate only marine productivity. The results o f the linear mixing model 

using the measured sedimentary 5 I3C data from cores EW 0408-11 JC, -22JC, -33JC, and -
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44JC indicate mean Holocene terrestrial-derived C proportions o f 16.8 ± 5.5%, 17.9 ± 

6.2%, 27.8 ± 9.5%, and 15.8 ± 10.1%, respectively. Therefore, opal MAR calculations 

alone are considered as key to describing changes in siliceous marine primary 

productivity (e.g. diatoms) in these fjord cores.

The effects o f the Holocene/LGM transition on nearshore siliceous productivity, 

as preserved in EW 0408-11 JC, indicate a shift from relatively low LGM values to a peak 

during the deglacial transition (Fig. 4.8a). This deglacial peak, driven partly by a short

lived rapid bulk accumulation rate change (Fig. 4.6a), is a real productivity maxima as 

evidenced by the same peak in the unmodified opal concentration data. The deglacial 

peak then gives way to an early Holocene minimum at 10.7 cal kyrs BP. At 10.0 cal kyrs 

BP, siliceous productivity increases in EW0408-11JC, and then transitions to a more 

gradual increase from 9500 -  2600 cal yrs BP (Fig. 4.8b).

The joint Holocene record o f productivity recorded within the overlapping time 

periods preserved within the four fjords is complex (Fig. 4.8b). For example, between 

10000 -  4000 cal yrs BP, core EW0408-22JC shows a prolonged opal MAR minima that 

is only disrupted (i) between 8500 -  8000 cal yrs BP, when values show several rapid 

fluctuations within a relatively narrow time range, and (ii) during a diffuse peak between 

7000 to 6500 cal yrs BP. Opal accumulation rates then increase monotonically into the 

late Holocene starting around 4000 cal yrs BP. Core EW0408-33JC shows a similar 

trend to that o f EW0408-11JC, with increasing productivity beginning around 5500 cal 

yrs BP and terminating at 2800 cal yrs BP. Finally, while the accumulation rate o f core 

EW0408-44JC is extremely high, it only preserves the last 3800 years o f export 

productivity within Deep Inlet. Nevertheless, during this period, it shows several periods 

o f elevated productivity beginning at approximately 3500, 2700, 1900, and 1200 cal yrs 

BP.

4.4.3 Terrestrial O M  and detrital accumulation

Proxy datasets for describing the accumulation o f terrigenous sediment are based 

on (i) geochemical assays o f bulk untreated sediment samples using either ICP-MS or 

XRF techniques (EW0408-11JC, -22JC, and -33JC), (ii) bulk lithic calculations based on
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Eqn. 1, and (iii) terrestrially-derived organic matter as determined by carbonate-free bulk 

sedimentary 5 n C isotope data and C/N ratios. This third approach indicates sustained 

changes in the relative proportions o f  marine- and terrestrially-derived organic matter in 

core EW 0408-11JC (Fig. 4.7). Due to the greater prevalence o f marine-derived organic 

matter in the other sediment cores discussed in the previous section, the organic matter 

provenance records from EW0408-22JC, -33JC and -44JC will not be examined as 

records o f long-term terrestrial OM erosion.

Inorganic geochemistry and bulk lithic trends in EW0408-11JC, -22JC, and -33JC

The elements Al, Ti, and Zr occur dominantly within independent, highly 

insoluble mineral phases and are commonly associated with the sedimentary lithogenic 

fraction. W hen the Ti and Zr concentration data are plotted against Al in bivariate 

diagrams, both cores EW0408-22JC and -33JC follow an average shale composition (Fig. 

4.9a, b). EW 0408-11 JC is more complex; while the Holocene ( < 11 cal kyrs BP) Ti/Al 

ratio data is similar to that o f the global average shale (Fig. 4.9a; Turekian and Wedepohl, 

1961), the LGM values are depleted relative to Ti. The Zr/Al ratio is also very different 

from an average shale composition (Fig. 4.9b); however, an extrapolation o f the Zr/Al 

data back to the origin suggests both elements are still associated with a lithogenic 

source.

Examining the concentrations o f Al, Ti, and Zr in ternary space (Fig. 4.9c) 

indicates the presence o f multiple geochemically-distinctive detrital sources within cores 

EW0408-11JC and -22JC, while the small degree o f scatter in the EW0408-33JC dataset 

suggests only one sediment source. The overlap between the EW0408-22JC and -33JC 

ranges suggests related sources, and that the composition o f EW0408-33JC is likely 

representative o f one o f the two endmembers present along the EW0408-22JC mixing 

line. The bedrock geology o f the EW0408-22JC site in West Crawfish Inlet is composed 

exclusively o f the Crawfish Inlet pluton complex (Loney et al., 1975; Reifenstuhl, 1986), 

with only tonalite and granodiorite exposures in outcrop along the shoreline o f the fjord, 

suggesting that the variability indicated in the refractory element concentrations in 

EW0408-22JC may be related to magmatic processes.
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The detrital provenance analysis also indicates different sediment sources present 

within the EW0408-11JC dataset (Fig. 4.9c). While there is excellent agreement between 

the Zr and Al data (Fig. 4.9b), the relationship between Ti and Al suggests two potential 

sediment sources, with one source substantially depleted in Ti relative to the other (Fig. 

4.9a). Reconnaissance geological mapping o f adjacent Prince o f Wales Island (Brew,

1996) indicates many geochemically diverse source lithologies may be contributing 

sediment to the G ulf o f Esquibel, and that an assignment o f representative lithologies 

based on the detrital geochemical data is not straightforward. Nonetheless, the 

provenance diagram also indicates little mixing between the two sources, and that the 

relative contribution o f these sources is time-transgressive (Fig. 4.9c). Therefore, this 

“detrital switch” between sources is likely related to paleoenvironmental conditions, and 

occurs between 12.4 -  10.2 cal kyrs BP.

Given these inorganic geochemical results, it appears that the mass accumulation 

rates o f refractory elements is likely only applicable for reconstructing terrigenous flux in 

core EW0408-33JC. The Ti concentration data was used for this approach, though Zr 

would have been equally appropriate given the high correlation between these two 

datasets (n = 364, r = 0.874, p < 0.01). The refractory element complications were 

circumvented for cores EW0408-11JC and -22JC by using the bulk lithic calculation 

described in Eqn. 1. While this equation does not account for authigenic sedimentation, 

it is likely that contributions by such processes would be minimal due to the greater 

proportions o f the biogenic and terrigenous sediment fractions. Authigenic sedimentation 

is evaluated in greater detail in a following section.

The downcore trends in terrigenous accumulation rates from cores EW0408-11JC, 

-22JC, and -33JC are complex. EW0408-11JC contains high concentrations o f lithic 

components during the LGM (mean 8 8 %; Fig. 4.10a) until approximately 12 cal kyrs BP, 

when the concentrations begin a steep decline to 50% around 9.5 cal kyrs BP. Holocene 

lithic concentrations continue to decline steadily to a minimum lithic concentration o f 

37% at the core-top. The lithic MAR calculation indicates the lowest flux was associated 

with the LGM (mean 2.96 g/cm 2/yr), with a short-lived increase to 58.58 g/cm2/yr
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between 1 1 .8 -  10.8 cal kyrs BP, and a Holocene mean value o f 6.38 g/cm2/yr. The 

elevated deglacial flux rate is likely an artifact o f the bulk MAR given there is no such 

increase indicated in the lithic concentration data.

EW0408-22JC has greater variability in both lithic concentations and the lithic 

MAR than core EW 0408-11 JC in the overlapping time period (Fig. 4 .10a). There is a 

distinctive increase in both datasets between 10.0 -  8.2 cal kyrs BP, followed by a 

reduction that lasts until 5.5 cal kyrs BP. This interval is the lowest lithic MAR period in 

the entire core, with a mean rate o f 5.64 g/cm2/yr. This minima then rapidly transitions to 

the highest lithic MAR o f 9.29 g/cm2/yr at 4300 cal yrs BP. Between 4300 -  2500 cal yrs 

BP, both the lithic concentration and lithic MAR undergo a series o f rapid oscillations 

that ultimately end in minima for both data around 1800 cal yrs BP. At this point, the 

lithic concentration data and the lithic MAR rates diverge, with the lowest lithic 

concentration in EW0408-22JC occurring in the modem sediment, while the lithic MAR 

increases to a late Holocene mean o f 6.59 g/cm 2/yr. The late Holocene divergence 

between the lithic concentrations and the lithic M AR seem likely related to the late 

Holocene increase in both opal concentrations and the bulk MAR (Fig. 4.6a, b), 

suggesting the apparent increase in the lithic MAR is an artifact o f the MAR calculation.

As in the case with productivity, both Ti concentrations and the Ti MAR in 

EW0408-33JC indicate high frequency decadal-scale variability superimposed over lower 

frequency millennial- and centennial-scale oscillations (Fig. 4.10b). Because both Ti 

concentrations and the Ti M AR record are highly correlated (n = 363, r = 0.772, p < 0 .0 1 ) 

due to the linear bulk MAR calculated for this core (Fig. 4.6c), only the millennial-scale 

Ti MAR results will be addressed for brevity. Low-frequency Ti MAR increases are seen 

between 7500 -  5500, 2400 -  1500, and 600 -  recent. Several higher-frequency 

increases in Ti MAR also occur throughout the mid- and late Holocene sections of 

EW0408-33JC, including the highest Ti M AR value at 0.16 g/cm2/yr occurring between 

6800 -  6600 cal yrs BP.

The three cores considered here show a number o f contemporaneous increases in 

terrigenous accumulation fluxes, as determined either by Ti-based or lithic-based MAR
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calculations (Fig. 4 .1 0 ) .  There are several periods when all three cores indicate broadly 

consistent increases in terrigenous accumulation: 6 3 0 0  -  5 6 0 0 ,  4 6 0 0  -  2 5 0 0 ,  and 2 4 0 0  -  

1500  cal yrs BP. Based on this consistent multi-basin record o f terrigenous 

accumulation, these results are likely representative o f enhanced precipitation and 

associated fluvial discharge throughout the southeastern Alaska region during the 

Holocene.

Organic geochemistry trends in EW 0408-1IJC

The E W 0 4 0 8 -1  IJC OM record indicates several sustained shifts in the 

proportions o f marine- and terrerstrially-derived OM sources throughout the last 18 000  

years (Fig. 4 .1 1 ) .  The major deglacial change in OM provenance occurs in steps, 

beginning with a gradual enrichment from an LGM 8 ljC value o f -29.0%o to -26.8%o 

between 1 4 ,300  -  1 2 ,500  cal yrs BP (phase I), with no obvious changes in the high C /N  

values during this interval. This time interval is associated with a mean terrestrial- 

derived C contribution o f 89% , as indicated by Eqn. 4. The second deglacial shift (phase 

II) occurs between 12.5 -  10.8 cal kyrs BP, and during this period o f  rapid increase o f 

8 ,3C values, C /N  values increase abruptly, perhaps associated with selective degradation 

o f N  compounds, or more likely, a period o f increased productivity (Fig. 4.8a). This is 

the same time frame associated with the E W 0 4 0 8 -1  IJC detrital ‘switch’ as described 

previously. The third phase o f the deglacial shift (phase III) is marked by a final increase 

in 8 13C to - 2 1 ,7%o, and a reduction in the C /N  ratio to 9.5 , both o f which are clear 

indicators o f predominantly marine-derived OM, and an estimated terrestrial contribution 

o f only 20% . Throughout the rest o f the E W 0 4 0 8 -1  IJC record into the late Holocene, 

both 8 i3C and C /N  values are relatively constant with long-term trends towards 

increasing marine-derived OM with the exception o f two perturbations at 8 2 0 0  and 2 6 0 0  

cal yrs BP, respectively (Fig. 4.11).

4.4.4 Bottom-water anoxia

Several redox-sensitive elements exhibit high enrichments in cores EW0408- 

1 IJC, -22JC, and -33JC (Fig. 4.12). Enrichments above standard shale values (Turekian
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and Wedepohl, 1961) in Mn (Fig. 4.12a) and Mo (Fig. 4.12c) are strong indications o f 

oxic and anoxic conditions, respectively, such that a plot o f Mn versus Mo can be used to 

qualitatively identify dominant sedimentary oxygenation regimes (Fig. 4.12d). In 

particular, all Mo concentrations in EW0408-22JC are above the average shale values 

suggesting dominantly anoxic or suboxic conditions. Conversely, both cores EW0408- 

11 JC and -33JC show Mo concentrations both above and below the average shale, 

suggesting that these fjords have experienced periods o f either enhanced bottom-water 

renewal or stagnation. The linear behavior o f V in all three cores suggests V is related to 

terrigeneous clastic material (Fig. 4.126). Unlike both EW 0408-11 JC and -33JC, 

however, extrapolation o f the EW0408-22JC vanadium concentrations to 0% Al 

concentration yields a value o f 43 ppm V, indicating some authigenic precipitation o f V 

occurred, likely associated with suboxic or anoxic conditions as inferred from the Mo 

data (Fig. 4 .12c, d).

These qualitative results are further substantiated with statistical results associated 

with the excess elemental concentration calculations. In particular, negative correlations 

between natural-log-transformed concentrations o f solid-phases that accumulate under 

oxic (Mn) and anoxic (U and Mo) conditions are statistically significant (U: n = 492, r = - 

.398, p  <0.01; Mo: « = 519, r  = -.214,/? <0.01), and are consistent with thermodynamic 

predictions (Piper, 2001). The identification o f suboxic conditions is more difficult (Fig. 

4.126). There are inconsistent relationships between excess V, oxic, and anoxic proxy 

elements in EW0408-11JC and -22JC that complicate its use as a proxy for suboxia. In 

the case o f EW 0408-11 JC, excess V exhibits a positive correlation with excess Mn (n = 

95, r = 0.737,/? < 0.01) and a negative correlation with excess Mo {n = 95 , r  = -0.729, p  < 

0.01), suggesting that V is accumulating under dominantly oxic conditions. The other 

important suboxia indicator, excess Cr, also has a negative correlation with V (n = 95, r = 

-0.501, /? < 0.01), suggesting that the oxic-suboxic boundary in the G ulf o f Esquibel lies 

somewhere between the Eh potentials o f these two elements. Therefore, the 

accumulation o f excess Cr in EW 0408-11 JC appears to be more diagnostic o f suboxic 

conditions while excess V reflects oxic conditions. On the other hand, the low
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correlation values in core EW0408-22JC between excess V, and both the excess Mn and 

Mo datasets (Fig. 4.12b), indicates V is a reliable indicator o f suboxia because o f its low 

range o f variability relative to either Mn or Mo, suggesting that processes independent o f 

those controlling excess Mn or Mo accumulation (e.g. exclusively oxia or anoxia, 

respectively) are dominant.

The large number o f samples in EW0408-33JC makes simple qualitative 

interpretations more difficult. To simplify this process, a PCA method was applied to a 

geochemical dataset composed o f the excess contributions o f Mn, Fe, Cr, U, V, Mo, Cu, 

Zn, and Ni (Piper and Calvert, 2009). The PCA identified three principal components 

that described 65% o f the variance within this suite o f redox-sensitive elements. The 

loading scores for each element (Table 4.4) agree with previous assumptions about the 

behavior o f these elements, namely that PC 1 dominantly reflects oxic accumulation 

conditions, PC 2 is controlled by suboxia, and the accumulation o f solid-phase elements 

associated with PC3 are driven by bottom-water anoxia. This interpretation is somewhat 

complicated by nearly equal loadings between components 1 and 2 for excess Fe and Cu, 

as well as Ni being contained almost entirely within PC 1; these results suggest that, in 

addition to oxic environmental conditions, some detrital-associated accumulation may 

also be reflected within these data that is not completely addressed by the excess 

accumulation calculations. Nevertheless, the identification o f the three dissolved oxygen 

conditions, as well as high correlations between excess Mn and PC 1 {n = 364, r = 0.873, 

p  < 0.01), excess V and PC 2 (n = 364, r = 0.929,/? < 0.01), and excess Mo and PC 3 (n = 

364, r = 0.776,/? < 0.01), gives us confidence in this approach.

Examining the history o f water column anoxia preserved within cores EW0408- 

1 IJC, -22JC, and -33JC presents a detailed record o f  fjord paleocirculation. At the 

coarsest temporal resolution, core EW0408-1 IJC indicates two distinctive periods o f 

intense anoxia (Fig. 4.13). The earliest period o f  anoxia occurs immediately prior to the 

Holocene/LGM transition, between 15.6 -  14.0 cal kyrs BP, and corresponds to a 

reduction in the accumulation o f excess Mn, and increases in the accumulation o f excess 

U and V. A second period o f intense anoxia occurs during the mid-Holocene, from about
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7000 -  4000 cal yrs BP. This intense mid-Holocene anoxia is bracketed by periods o f 

suboxia from 7500 -  7000 and 4000 -  2000. Two additional periods o f dominantly 

suboxic conditions occur around 12.0 and 9.5 cal kyrs BP.

Increasing the temporal resolution o f the bottom-water anoxia record using core 

EW0408-22JC provides additional information. Three periods o f intense anoxia are 

evident in the redox-sensitive elemental concentration data, from 7700 -  7500, 6500 -  

5500, and 4700 -  4200 cal yrs BP (Fig. 4.14). Several short-lived periods o f dominantly 

suboxic conditions are also evident around 9400, 6800, 3100, and for the most recent 600 

cal yrs BP. However, the interpretation o f bottom-water anoxia is confounded by an 

apparent decrease in all redox-sensitive elements between 8500 -  8000 cal yrs BP. The 

highest resolution record o f bottom-water anoxia is contained within EW0408-33JC, and 

is resolved at multiple timescales. The PCA analysis indicates three millennial-scale 

regimes. During the early Holocene, oxic bottom-water conditions appear to have 

dominated, as evidenced by the consistently high values associated with PCI (Fig. 4.15). 

From approximately 5300 to 3500 cal yrs BP, anoxia appears to have become more 

dominant as implied by high PC 2 and PC 3 values. These conditions then gradually 

transitioned to suboxia starting around 2400 cal yrs BP.

Lastly, while there were no direct measurements o f redox-sensitive geochemical 

components in EW0408-44JC, anoxic conditions are suggested throughout this entire 

core by the presence o f mm-scale laminated sediments (Fig. 4.4). The frequent 

occurrence o f prominent dark fibrous organic-rich horizons indicates minimal organic 

degradation has occurred within Deep Inlet. Thus, at least suboxic conditions appear to 

have been dominant in Deep Inlet since approximately 4000 cal yrs BP.

All four cores indicate consistent patterns o f anoxia. In particular, the period 

from about 6500 -  3500 appears to have been dominantly anoxic in Katlian Bay, West 

Crawfish Inlet, and the G ulf o f Esquibel. This period o f regional anoxia appears to have 

weakened during the late Holocene, when either suboxic or oxic conditions became more 

common in these three deeper-silled fjord records. Furthermore, the period between 

about 10.0 -  9.0 cal kyrs BP was likely dominated by regional suboxia, as evidenced by
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an increase in either excess Cr or excess V in cores EW0408-1 IJC and EW0408-22JC, 

respectively.

4.5 Discussion

4.5.1 Site-specific variability in f o r d  sites

The four cores examined in this study exhibit a large degree o f site-specific 

variability in accumulation as evidenced by the need for four different age-depth models 

(Fig. 4.5). Some o f this variability can be ascribed to differences related to fjord 

geomorphology (Table 4.1). For example, the Holocene G ulf o f Esquibel is not fed 

directly by any large fluvial systems, unlike the other fjords considered in this study so it 

has one o f the lowest bulk MARs (Fig. 4.6a). Both depth and number o f sill(s) also likely 

play a role in mass accumulation. This relationship is particularly highlighted by the 

laminated nature o f EW0408-44JC, as well as its extremely high OM content (mean opal 

64% and TOC 8.5%; Appendix 4.8) and high bulk M AR (Fig. 4.6c). Deep Inlet has the 

shallowest sill o f any fjord in this study, which contributes to the maintenance o f anoxic 

bottom-water conditions that enhance OM preservation in this fjord.

Small differences in sill depth and fluvial discharge rates seem enough to cause 

very different sedimentation regimes in southeast Alaskan fjords. Both Deep Inlet and 

Katlian Bay are small tributary fjords opening into the larger Sitka Sound (Fig. 4.1b).

The sill at the mouth o f Katlian Bay is approximately 7 m deeper than the Deep Inlet sill. 

However, Katlian Bay has greater fluvial discharge as evidenced by its deeper halocline 

(Table 4.1). Together, the slightly deeper sill and the increased river flow is sufficient to 

generate a homogenous silty clay in Katlian Bay, while the shallower sill and reduced 

fluvial discharge lead to laminations in Deep Inlet.

The marine ecosystem plays an important role in sediment accumulation in the 

fjords as well. Cores EW0408-1 IJC, -22JC, and -33JC all show significant correlations 

between opal concentrations and the bulk sediment density (Fig. 4.6b, d). Because the 

bulk MAR calculation [Eqn. 5a] contains a density term, changes in the opal 

concentration can exert a control on the bulk MAR given a high enough opal
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concentration. Such is the case with both EW0408-11JC (post 10 cal kyrs BP) and 

-22JC. In the latter example, the bulk MAR indicates a monotonic increase in 

accumulation during the late Holocene (Fig. 4.6a); this increase is mirrored in the bulk 

opal concentration as well as the bulk density. However, such an increase is not observed 

in the lithic fraction concentrations, yet the lithic MAR records an increase during this 

same late Holocene period (Fig. 4.10b).

Ultimately, these site-specific differences in accumulation highlight the 

importance o f recognizing the role local effects can have in these fjord records.

However, by combining these different datasets into a composite reconstruction, regional 

changes can be identified that are common to all four sites considered here, and 

extrapolate these results across the larger southeast Alaskan margin.

4.5.2 The Holocene/LGM deglaciation

Core EW0408-11JC is unique in this study o f southeastern Alaskan fjord 

sediment cores, in that it preserves paleoenvironmental conditions during the 

Holocene/LGM deglacial transition from the nearshore North Pacific Ocean margin.

This core presents a rare opportunity to study this major change in the linked atmosphere - 

ocean system in a region where this transition remains poorly understood. The suite of 

biogeochemical data available adds further detail previously unknown from this region. 

While the focus o f this paper is to describe past Aleutian Low dynamics and associated 

G ulf o f Alaska circulation patterns, and their impact on the marine ecosystem, a solely 

climatic interpretation from EW 0408-11 JC is not simple during the Holocene/LGM 

transition because o f the role o f changing sea level, due to both eustasy and regional 

glacial isostatic crustal adjustments. While the G ulf o f Esquibel itself exceeds a water 

depth o f 300 m, it is connected to the G ulf o f Alaska via several shallow channels, none 

o f which exceed 70 m in depth (Fig. 4.1c). Eustatic sea level rise did not breach the 70- 

m-isobath until approximately 13.0 cal kyrs BP (Fairbanks, 1989). A recent analysis o f 

the siliceous microfossil communities preserved in EW 0408-11 JC during the deglacial 

transition indicates a significant presence o f both freshwater and sea-ice associated 

diatoms, together making up more than 40% of the total diatom assemblage in some
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samples, as well as numerous oceanic and coastal species (Barron et al., 2009). The 

presence o f mixed salinities inferred from the different diatom populations clearly 

indicates EW0408-1 IJC was never disconnected from the North Pacific Ocean during the 

LGM deglaciation. However, fine-scale vertical adjustments o f these channels driven by 

ice loading feedbacks, coupled with disruptions in water column dynamics by changes in 

freshwater discharge and bottom-water ventilation events, most likely contributed to the 

diverse conditions preserved in EW0408-1 IJC throughout the LGM/Holocene transition. 

While no direct data exists for reconstructing relative sea level during the LGM/Holocene 

deglaciation adjacent to the G ulf o f Esquibel from Prince o f Wales Island or nearby 

Heceta Island, there is good evidence that the area was not extensively glaciated and that 

several ice-free refugia existed during the LGM (Heaton and Grady, 2003; Carrara et al., 

2007), contrary to reconstructions o f regional ice margins in southeast Alaska (Clague 

and James, 2002; Kaufman and Manley, 2004).

Examining the detailed biogeochemical proxy evidence in EW0408-1 IJC 

alongside the diatom and silicoflagellate population data o f Barron et al. (2009) allows a 

detailed analysis o f the G ulf o f Esquibel paleoenvironment during the deglacial 

transition, and presents several distinct periods o f change (Fig. 4.16). At about 15.3 cal 

kyrs BP (t0; Table 4.5), there is a major conformable lithologic change from a dropstone- 

rich color interstratified silty clay to a moderately bioturbated massive silty clay, 

presumably representing a sedimentation regime shift from somewhat proximal 

glaciomarine-dominated conditions to hemipelagic conditions. During this transition, 

there was also a shift towards bottom-water anoxia which suggests an increase in water- 

column stability, possibly due to a reduction in bottom-water renewal events.

The next major deglacial shift in EW0408-1 IJC occurs at 14.3 cal kyrs BP (t|), as 

indicated by (i) the sudden appearance o f a diverse diatom and silicoflagellate 

community, with freshwater, oceanic, and coastal marine diatoms present (Barron et al., 

2009); (ii) a modest increase in opal concentration; (iii) prevalent oxic bottom-waters; 

and (iv) the initiation o f a shift towards greater inputs o f marine-derived OM (Fig. 4.16). 

Collectively, these proxy changes seem to be best explained as indicative o f a river-
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dominated estuary (Reading and Collinson, 1996). This suggests the channels connecting 

the G ulf o f Esquibel to the North Pacific Ocean were thus probably dominated by an 

outflux o f  low-salinity waters reminiscent o f the modem surface waters now present 

throughout the fjords o f southeast Alaska (Burrell, 1989). Furthermore, these channels 

were likely shallow enough to restrict major influxes o f both nutrient-rich intermediate 

zone water and suboxic-to-anoxic bottom-waters from the G ulf o f Alaska, thus limiting 

both productivity and bottom-water ventilation. The reduction in bottom-water renewal 

events suggests anoxia should be dominant, yet the enrichments in excess Mn and 

depletions in excess U indicate oxic bottom waters, both o f which seem likely tied to a 

combination o f oxygen-rich fluvial discharge and low export productivity. During the ti 

interval, eustatic sea level surpassed the 70 m isobath, yet no noticeable change in the 

relative proportions o f freshwater and marine diatoms occurred during this phase (Barron 

et al., 2009), implying regional isostatic subsistence was maintaining a shallow depth in 

the seagoing channels in the G ulf o f Esquibel during this phase.

At 12.4 cal kyrs BP C2), several radical shifts occur: (i) a conformable lithology 

change from the massive very dark gray bioturbated silty clay to a faintly laminated olive 

gray silty clay; (ii) a small increase in opal concentrations; (iii) a major reduction in both 

freshwater and sea ice diatom populations; (iv) a decrease in subarctic, and warm and/or 

deep thermocline silicoflagellates; (v) an increase in upwelling-associated 

silicoflagellates; (vi) a possible change to suboxic bottom-water conditions; (vii) the 

‘detrital sw itch’ in refractory elements as described above, reflected in the increase o f the 

Ti/Zr ratio; and (viii) an enrichment in sedimentary 5 13C and a decrease in the C/N ratio 

(Fig. 4.16). These changes in multiple datasets are consistent with a reconfiguration of 

sea level in the G ulf o f Esquibel and adjacent channels. The reduction in both freshwater 

and sea-ice diatoms indicates an increase in salinity, while increases in upwelling-related 

silicoflagellates suggests the advection o f intermediate zone waters into the G ulf o f 

Esquibel (Fig. 4.3; Burrell, 1989). The increases in marine productivity, as evidenced by 

the opal increase and isotopic enrichment, could thus be explained by an influx o f this 

nutrient-rich water. The higher 5 I3C values may also indicate the influx o f older North
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Pacific water containing enriched 13C into the G ulf o f Esquibel (Kroopnick, 1985). 

Collectively, these proxies therefore represent the onset o f modem fjord-style reverse 

circulation (Syvitski et al., 1987) during the LGM/Holocene deglaciation. Considering 

these conditions as a function o f sea level requires deepening o f the seagoing channels to 

facilitate intermediate zone water advection beneath the fluvially-dominated surface 

waters. The Barbados eustatic sea level reconstruction o f Fairbanks (1989) shows global 

sea level deepening from 60 to 55 m below present sea level during interval t2. While 

this deepening was in the correct direction o f sea level change required for intermediate 

zone water advection from the G ulf o f Alaska, it seems unlikely that only a 5 m change 

would effect such a drastic shift in microfossil community structure and biogeochemical 

proxy data. Continued isostatic subsidence seems necessary as well.

Between 11.7 -  10.8 cal kyrs BP (t3), there was a productivity spike indicated in 

both opal concentrations and opal M AR calculations (Fig. 4.16). Accompanying the 

abrupt productivity maxima, there was also an increase in temperate oceanic diatoms, and 

a gradual reduction in sea-ice related diatoms, as well as a total loss o f both subarctic and 

warm and/or deep thermocline-associated silicoflagellates, and all freshwater-associated 

diatoms. Additionally, the “detrital switch” completes during this period, the lithic MAR 

increases abruptly while the concentration o f lithic material decreases from 90 to 70%, 

and bottom-waters appear to be dominantly oxic. Interval t3 also has the highest bulk 

accumulation rate for the entire EW0408-1 IJC core (Fig. 4.6a), suggesting the high lithic 

MAR is an artifact o f the bulk MAR that is biased by opal (Fig. 4.6b). The collective 

evidence points to (i) an increase in local SST as evidenced by the loss o f cryophilic 

marine microfossils and (ii) an increase in advection o f intermediate zone water, which 

was the ultimate cause o f the massive productivity spike observed during interval t3. It is 

unusual that bottom-water anoxia is not indicated at this time since this condition should 

be favored by both high export productivity and high accumulation rates. Enhanced 

winter vertical mixing may account for this seeming contradiction, though modem 

observations o f warmer SSTs tend to be associated with periods o f reduced winter storm 

activity, w'hich are necessary for seasonal mixing along the G ulf o f Alaska coast
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(Childers et al., 2005; Rodionov et al.* 2005). Alternatively, the increase in temperate 

oceanic diatoms and total absence o f freshwater diatoms suggest the G ulf o f Esquibel has 

attained full connection to the Subarctic Northeast Pacific Ocean with advection o f both 

nutrient-rich intermediate zone waters, and regular bottom-water renewal events. This 

explanation is supported by the observation that there is little change in upwelling- 

associated silicoflagellates, suggesting interval t3 is a period o f intensification o f fjord- 

style circulation, requiring additional deepening o f the seaward channels connecting the 

G ulf o f Esquibel to the Pacific. The decrease in lithic concentrations and the “detrital 

switch” phenomenon can both be attributed to increasing distance from the local 

Cordilleran Icesheet margin. This increasing distance would have led to the 

establishment o f dominantly local sediment sources, as well as a reduction of 

glaciomarine sediment accumulation. By this time, isostatic subsidence would also have 

ceased due to the widespread retreat o f the Cordilleran Icesheet along the Pacific coast 

(Clague and James, 2002). Field data and modeling studies for the Queen Charlotte 

Islands 150 km to the SSE indicate rapid crustal displacement changes from +30 m above 

modem sea level between 12.8 -  11.8 cal kyrs BP, to -30 m below sea level between 

11.80 -  11.17 cal yrs BP (Hetherington et al., 2004). The drastic change in crustal 

elevation was associated with a forebulge collapse due to the retreat o f the Cordilleran 

Icesheet, yet the location o f associated shorelines during this time interval exhibit little 

change (Fedje and Christensen, 1999; Hetherington et al., 2004; Carrara et al., 2007). 

Extrapolating these results to the G ulf o f Esquibel area suggests that this time period saw 

rapid deepening o f the seagoing channels connecting the G ulf o f Esquibel to the North 

Pacific Ocean, which is consistent with the biogeochemical results suggesting 

intensification o f fjord-style reverse circulation during interval tj.

EW0408-1 IJC deglacial interval U occurred between approximately 10.8 -  10.0 

cal kyrs BP, and is the final period o f dramatic shifts in biogeochemical paleoproxies. In 

particular, the bulk accumulation rate slowed dramatically (Fig. 4.6a), and with it, there 

was a productivity decline in both opal M AR calculations and opal concentrations (Fig.

4.16). In the diatom assemblage data, there was a continued reduction in sea-ice related
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forms, and a major reduction in temperate oceanic forms. There was also a minor return 

o f  subarctic, and warm and/or deep thermocline silicoflagellates. In terms o f refractory 

elements, the “detrital switch” is now complete, and both the lithic MAR and lithic 

concentrations imply decreased terrigenous sedimentation, and by implication, a decrease 

in precipitation and freshwater runoff. Bottom-waters remain fully oxic during this 

phase, most likely due to the reduction in export productivity. Besides the decline in 

productivity, the second-most drastic proxy change observed during this phase is the 

transition towards a fully marine-dominated OM system, as evidenced by rapid shifts in 

both carbonate-free sedimentary 5 C and C/N ratios. The marine OM signature suggests 

t4 is the final phase o f channel deepening adjacent to the G ulf o f Esquibel, but with a 

climatic overprint indicated by the final drawdown o f cryophilic microfossils. The 

warming climate signal is consistent with onset o f the Holocene Thermal Maximum in 

southern Alaska (Kaufman et al., 2004).

Deglaciation appears to be complete around 10.0 cal kyrs BP in core EW0408- 

11 JC (Fig. 4.16). At this point, siliceous productivity begins a slow increase towards a 

culmination during the mid-Holocene; temperate oceanic diatom forms become common 

once again; lithic accumulation rates and concentrations are low; and suboxic bottom- 

water conditions appear to become more regular as indicated by increasing 

concentrations o f excess U. It is also significant that the OM provenance is dominated by 

marine contributions, perhaps as high as 85%. Taken as a group, these data all appear 

consistent with the onset o f the Holocene Thermal Maximum (e.g. warm and dry 

conditions), with no indication o f further changes related to isostatic dynamics. 

Nevertheless, an elevated paleoshoreline at 12.5 m above present sea level on Prince o f 

Wales Island has been dated to 9200 -  9700 l4C yrs BP (Putnam and Fifield, 1995); 

correcting these bivalve dates using a marine reservoir correction o f  732 yrs and 

calibrating against the INTCAL04 curve (Reimer et al., 2004) places the formation o f this 

shoreline between approximately 9500 -  10200 cal yrs BP, and suggests some continued 

isostatic rebound during the early Holocene. The impact o f this vertical motion on 

circulation in the G ulf o f Esquibel appears to be minimal, suggesting that the seagoing
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channels were sufficiently deep to facilitate continued fjord-style reverse estuary 

circulation following the LGM/Holocene deglaciation despite isostatic adjustments. 

Therefore, it appears that paleoclimate inferences based on the EW0408-1 IJC 

biogeochemical record are valid after about 10.0 cal kyrs BP due to a lack o f appreciable 

impact by continued isostatic effects.

The chronology o f many o f these site-specific events correspond to large-scale 

paleoclimate changes recognized in the Greenland NGRIP ice core (Table 4.5;

Rasmussen et al., 2006; Steffensen et al., 2008). In particular, the sudden appearance o f  a 

diverse diatom and silicoflagellate community at 14.3 cal kyrs BP in EW0408-1 IJC is 

nearly contemporaneous with the onset o f Bolling-Allerbd warming in Greenland. The 

rapid opal productivity increase during deglacial phase t3 (11.7 -  10.8 cal kyrs BP) is 

contemporaneous with a similar increase observed along the G ulf o f Alaska continental 

slope (Addison et al., in prep.), both o f which correspond with the Preboreal Oscillation 

identified throughout the North Atlantic (Rasmussen et al., 2007). These observations 

suggest that the complex deglaciation events preserved in EW0408-1 IJC may record 

global paleoclimate signals as well as local environmental signals. However, the current 

age-depth model for EW0408-1 IJC is limited by a lack o f dated AMS 14C samples 

beyond 11.5 cal kyrs BP (Fig. 4.5). The older portions o f the core are constrained purely 

by the tephra at 1295 cm bsf; additional dating efforts are currently underway to improve 

the chronology presented in this paper.

4.5.3 Common Holocene trends in fjord-basedpaleoenvironm ental reconstructions

The results indicate several distinct periods o f nearshore Holocene environmental 

change common throughout our analyses o f southeast Alaskan fjord sediment cores at 

multiple time resolutions. The broadest temporal approach that allow us to distinguish 

sub-millennial patterns common in all four fjord records suggest a variable coupling 

behavior between marine productivity, terrestrial erosion, and ocean circulation (Fig.

4.17). In particular, there are two prominent periods o f high productivity between 2700 -  

4800 and 6500 -  8000 cal yrs BP.
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The mid- to late Holocene productivity enhancement from 2700 -  4800 cal yrs BP 

corresponds to a distinctive increase in terrestrial erosion and implied freshwater run-off. 

Pollen-based reconstructions suggest this interval is associated with low summer air 

temperatures and increasing mean annual precipitation (Heusser et al., 1985). These 

environmental conditions, combined with the fjord results, suggest that the increased 

freshwater runoff, probably driven by a millennial-scale enhancement o f the AL, likely 

stimulated an increase in nearshore primary productivity due to a more strongly stratified 

euphotic zone as envisioned by the stratification-productivity positive feedback model o f 

Gargett (1997). This same time interval is also associated with a regional increase in 

anoxic or sub-oxic conditions in all four fjords. The enhancement o f both 

paleoproductivity and reduced dissolved oxygen concentrations imply that increased 

export o f organic matter to the benthos stimulated enhanced microbial consumption of 

oxygen, as suggested by the observed increases in excess U and Mo accumulation from 

these fjords (Figs. 4.13 - 4.15). This anoxia may also suggest a reduction in ventilation o f 

fjord bottom waters, and that across-sill transport o f oxic water masses is slowed during 

this time period, though this seems unlikely since an enhanced AL would favor increased 

bottom-water renewal at the deeper silled sites due to increased upwelling o f deep waters 

in the Alaska Gyre. Though the anoxia data may be inconclusive, the synchronous 

increases in both primary productivity and precipitation are most readily explained by the 

modem stratification-productivity feedback paradigm as it is understood for the modern 

G ulf o f Alaska.

The early Holocene period between 8000 -  6500 cal yrs BP is also an interval o f 

enhanced productivity in all four fjords. Unlike the mid-Holocene productivity maxima, 

however, this early Holocene productivity increase occured during a period o f reduced 

terrestrial runoff (Fig. 4.17), seen both in regional pollen reconstructions (Heusser et al., 

1985) and the independent composite record o f fjord terrigenous sedimentation. This 

early Holocene period also sees enhanced bottom-water oxygen concentrations. 

Collectively, these relationships are more difficult to reconcile with known observations 

o f AL -  G ulf o f Alaska dynamics. A decrease in freshwater runoff is consistent with a
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weaker and/or more westerly AL pressure cell (Rodionov et al., 2005; W eingartner et al.,

2005). The enhanced regional productivity associated with this period is in direct 

contrast with modem observations o f atmosphere-ocean-ecosystem linkages between the 

AL and the G ulf o f  Alaska. M odem weak/westerly AL cells favor reduced productivity 

due to reduced Alaska Gyre upwelling o f deep water and reduced euphotic zone 

stratification (Francis et al., 1998). A possible explanation for this dichotomy o f high 

productivity during a weak AL regime is that enhanced preservation in anoxic bottom- 

waters maintained high concentrations o f OM, and that the paleoproductivity proxies 

actually reflect this preservation signal instead o f true enhanced productivity. This 

possibility seems remote, however, because an increase in bottom-water oxygenation 

would likely favor enhanced OM degradation through microbially-mediated oxidative 

respiration pathways within both the water column and the shallower portions o f the 

sediment (Froelich et al., 1979; Hedges et al, 1999). Furthermore, the preservation o f 

biogenic silica is driven by dissolved silica concentrations, not oxygen concentration 

(Ragueneau et al., 2000). Therefore, the lack o f appreciable bottom-water anoxia implies 

(i) that seasonal export productivity was not high enough to drive benthic microbial 

respiration to consume all available dissolved oxygen, or (ii) the rate o f ventilation o f the 

deep fjord bottom-waters occurred regularly to minimize anoxia.

An alternative explanation for this early Holocene pattern o f enhanced 

productivity and reduced freshwater discharge could indicate an increased influence o f 

“intermediate zone” water flux into the fjords o f nearshore southeast Alaska (Fig. 4.3). 

Because the intermediate zone water is derived ultimately from the nutrient-rich Alaska 

Gyre upwelling center, enhanced across-sill advection would lead to an increase in 

nutrient delivery to the constricted fjord marine environment. While the reduction in 

freshwater discharge would reduce stratification o f the euphotic zone and potentially lead 

to deleterious growth conditions for diatoms and other phytoplankton, the increased 

influx o f nutrients may offset this effect. Taken together, the increase in intermediate 

zone water transport and the increase in productivity would then be sufficient to (i) 

decrease across-sill transport o f bottom-waters and reduce ventilation events and (ii)
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drive the available bottom-waters to at sub-oxic levels due to the enhanced OM flux. 

Unlike the previous explanation, this mechanism would be consistent with a stronger AL, 

in that it favors both higher productivity and increased Alaska Gyre upwelling; however, 

the decline in precipitation remains inconsistent with known patterns o f AL dynamics.

M odem observations o f physical dynamics and productivity dichotomies in the 

Subarctic Northeast Pacific Ocean have only recently been observed. The “Victoria 

Pattern” (Bond et al., 2003; Peterson and Schwing, 2003) reflects such a change in 

behavior o f the linked atmosphere-ocean system in the North Pacific. Unlike the 

traditional binary dipole relationship between SLP, SST, and marine productivity 

observed between the subarctic and temperate sectors o f the Northeast Pacific Ocean 

described by the Pacific Decadal Oscillation (Trenberth and Hurrell, 1994; Mantua et al.,

1997), the Victoria Pattern indicates a period o f decoupling in these environmental 

parameters between AD 1999-2002. This data indicates the Victoria Pattern can occur 

over millennia] timescales, and has done so for long periods o f time during the Holocene. 

The hemispheric comparison o f EW0408-33JC and other sensitive, high-resolution 

paleoclimate datasets from the Pacific margin (Addison and Finney, in prep.) further 

support this observation o f mid-Holocene decoupling between the linked atmosphere- 

ocean structure and the marine ecosystem. In the fjord synthetic record presented here, as 

well as the larger Pacific margin reconstruction paleoclimate dataset, the period 

associated with the onset o f the Northern Hemisphere Neoglaciation (between 4,000 -  

5,000 cal yrs BP) is highlighted as a key transition in the fundamental behavior of 

Holocene climate dynamics. The consistency between the fjord records further support 

this analysis, and further the assertion that instrumental observations o f North Pacific 

climate from the last century are inadequate to encompass the full range o f climatic 

variability within this region.

4.5.4 High-resolntion time-series analysis ofjjordpaleoenvironm ental data

The combination o f high accumulation rates and high spatial sampling intensity 

provides a rare opportunity to examine the Holocene paleoproductivity record preserved 

in cores EW0408-22JC, -33JC, and -44JC at decadal timescales, with mean sampling
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resolutions o f 44, 21, and 30 yrs per sample, respectively. Application o f the REDFIT 

time-series analytical program (Schulz and Mudelsee, 2002) yields dominant periods in 

both the decadal and centennial ranges at the 95% and 99% significance levels (Fig.

4.18).

All three cores exhibit several significant spectral amplitude peaks within the 40

100 yr/cycle range. This period corresponds with the PDO/AL variability identified from 

modem  instrument data in the G ulf o f Alaska (Trenberth and Hurrell, 1994; Mantua et 

al., 1997; Minobe and Mantua, 1999), as well as shifts in marine ecosystem productivity 

levels in the North Pacific Ocean (Mantua and Hare, 2002). The use o f multiple fjord 

records o f paleoproductivity give us confidence in these results being indicative o f 

regional decadal-scale variability present in the marine ecosystem o f southeast Alaska. 

While it is difficult to evaluate the effects o f these prehistoric high-frequency shifts in 

primary productivity on primary and tertiary consumers that provide limited 

biogeochemical evidence in marine sedimentary records, bottom-up ecological forcing 

principles suggest these alternating periods o f relatively high and low primary 

productivity would have maintained similar shifts throughout multiple trophic levels 

within the marine ecosystem (Finney et al., 2000; Finney et al., 2002), as well as coastal 

terrestrial ecosystems that incorporate marine-derived nutrients from spawning salmonids 

(Heaton and Grady, 2003; Misarti et al., 2009). Indeed, high-frequency fluctuations have 

been observed in the late Holocene paleoabundance record o f Pacific sockeye salmon at 

Karluk Lake on Kodiak Island (Finney et al., 2002), which exhibit similar behavior as 

that o f  the EW0408-33JC opal MAR dataset. These independent corroborating records 

thus indicate consistent forcing o f the Subarctic Northeast Pacific marine ecosystem by 

AL dynamics throughout the Holocene.

Though the productivity records along the G ulf o f Alaska margin appear to 

exhibit similar behavior throughout the Holocene, other biogeochemical proxies do not 

appear to be as easily interpretable. Further examination o f the high-resolution record o f  

terrestrial erosion and inferred freshwater discharge preserved within the Ti MAR data o f 

EW 0408-33JC indicates that a period o f 47 yrs/cycle exceeds the 95% Monte Carlo
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significance level (plot not shown). The same REDFIT approach used for the opal MAR 

dataset in EW 0408-33JC yields roughly equivalent periodicity (Fig. 4.18b), yet the 

relatively poor correlation between the two datasets (n = 362, r -  -0.310, p  < 0 .0 1 ) 

suggests processes beyond the simple stratification-productivity model are also at work. 

Following the earlier argument that accumulation o f Ti within the sediment o f Katlian 

Bay is attributed purely to erosion o f subaerial lithic material driven by precipitation, then 

it may be necessary to partition the precipitation between rainwater and snow 

accumulation within the adjacent alpine areas to reconcile this apparent disconnect. Such 

an analysis is beyond the scope o f this work. Nevertheless, the longer residence time o f 

precipitation stored within the alpine snowpack relative to the geologically instantaneous 

delivery o f rainwater to the fjord environment may provide a likely explanation to this 

anomalous behavior.

4.6 Conclusions

Using a comprehensive set o f biogeochemical proxies from four fjords along the 

southeast Alaskan margin, a detailed record o f productivity, freshwater discharge, and 

circulation since the LGM/Holocene deglaciation was presented at multiple time 

resolutions. This data indicates the nearshore LGM/Holocene transition occurred in 

several phases along this margin, and that a straightforward climatic interpretation is 

complicated by changes in relative sea level caused by proximity to the Cordilleran Ice 

Sheet. Despite these complexities, periods o f major environmental change appear to 

correlate with both regional offshore sediment records, as well as hemispheric climate 

records. During the Holocene, there are several trends consistent amongst the fjord 

records, with two intervals standing out. The period from 4800 -  2700 cal yrs BP is 

consistent with a millennial-scale intensification o f the AL-Alaska Gyre linkage, while 

the period 8000 -  6500 cal yrs BP appears to be similar to the recently identified Victoria 

Pattern, in that intense marine productivity is favored during a period o f less intense AL 

dynamics. Finally, there is also clear evidence o f high-frequency decadal-scale 

variability present within the ultrahigh-resolution siliceous productivity datasets of 

EW0408-22JC, -33JC, and -44JC, attributable to consistent decadal-scale influences of
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the marine ecosystem by the AL pressure cell This decadal variability overprint o f 

millennial-scale features suggests that the relatively short period o f available regional 

instrument data is likely insufficient to encompass the full range o f variability possible in 

the Subarctic Northeast Pacific Ocean, and its accompanying marine ecosystem. This 

study highlights the need for longer datasets o f climate and ocean phenomena to better 

identify the full range o f variability possible within a given region.
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Figure 4.1 (a) Location map of EW0408 sites along Gulf of Alaska margin. Dashed insets indicate 
extents of (b) Baranof Island fjord sites and (c) the Gulf of Esquibel. The depths in (c) are derived 
from a digital bathymetry model of available NOAA digital sounding data; contours at 50 m 
intervals. Note the shallow channels that connect the Gulf of Esquibel to the open North Pacific 
Ocean.
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Figure 4.1 (continued)
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Figure 4.5 Composite age-depth models for EW0408 marine sediment cores. Error bars represent 
2a  calibrated age range; bold error bars correspond to the EW0408-22JC model only.



121

0 3000 6000 9000 12000 15000 18000

C alib rated  yrs BP

0 1000 2000 3000 4000 5000 6000 7000 8000

Calibrated yrs BP

Figure 4.6 Bulk mass accumulation rates calculated based on composite AMS l4C age-depth models 
for cores (a) EVV0408-11JC and -22JC, and (c) EW0408-33JC and -44JC. The relationships between 
bulk density and opal concentration are also shown (b, d), all of which correlate at the 95% 
significance level except EVV0408-44JC. Due to non-steady-state accumulation patterns, a linear 
sedimentation rate (SAR) approximation was imposed for cores EW0408-13JC and -44JC. This 
approach was not used for EVV0408-22JC due to the strong correlation between opal and bulk MAR  
(b), suggesting that opal accumulation is intimately related with the sedimentation regime. The 
linear M AR  for EW0408-44JC over the most recent 1000 yrs is due to the use of a constant mean 
density due to poor data quality from the M SCL instrument.
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Figure 4.7 Sedimentary organic matter biogeochemical relationships, (a) Limited correspondence 
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o■c

Calibrated years BP 

O p a l m ass a c c u m u la tio n  rates (g / c m z/yr)
E W 0 4 0 8 -4 4 JC E W 0 4 0 8 -3 3 JC E W 0 4 0 8 -2 2 JC E W 0 4 0 8 -1 1 JC

O pal (wt%)

Figure 4.8 Opal productivity proxy data for nearshore southeast Alaska fjord sites. Opal mass accumulation rates (thick lines) and opal 
concentrations (thin lines) for (a) cores EW0408-1 IJC and EW0408-22JC for the last 18,000 years, and (b) all cores considered in this study for 
the last 7,500 years. Due to inflection points in the age-depth models for cores EW0408-11JC and EW0408-44JC, the accumulation rates for 
these cores have been calculated based on linear sedimentation rates. Thick bold lines are a 5-pt running mean of the opal mass accumulation 
rates. Shaded regions indicate sustained periods of increasing export productivity.
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Figure 4.9 Refractory element bivariate diagrams (a, b) for cores EW0408-11JC, -22JC, and -33JC. 
All Pearson correlation r values are statistically significant at the 99% significance level, and were 
calculated on natural-log-transformed concentration data. Average shale values from Turekian and 
Wedepohl (1961). (c) Detrital provenance ternary diagram highlighting relationships between 
sedimentary sources for cores EW0408-11JC, -22JC, and -33JC. The overlap between cores -22JC 
and -33JC suggest similar sources, while the divergence in the -11JC geochemical data corresponding 
to Holocene and LG M  intervals indicate different sedimentary sources.
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Figure 4.10 Lithic mass accumulation rates (thick lines) and lithic concentrations (thin lines) for (a) 
cores EVY0408-11JC and -22JC for the last 18,000 years, and (b)  cores EW0408-11JC, -22JC, and 
-33JC for the last 7,500 years. Gray shading indicates centennial-scale periods of increased 
terrigenous accumulation. Dashed lines are a 5-pt running mean where indicated. Because only one 
detrital source was indicated by Fig. 4.9 for core EW0408-33JC, titanium MARs were calculated in 
lieu of bulk lithic MARs.
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Figure 4.11 EW0408-11JC record of sedimentary 51;,C (thick line) and C/N ratio (thin line) of 
carbonate-free organic matter. Light gray shaded regions indicate periods of increased terrestrially- 
derived OM. Gray shaded boxes with Roman numerals indicate deglacial phases as described in the 
text. Suggested biogeochemical boundaries as suggested by Meyers (1994). Note 5,3C axis is 
reversed.
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Figure 4.12 Redox-sensitive element concentrations for cores EW0408-11JC, -22JC, and -33JC. 
Enrichments above average shale values (Turekian and Wedepohl, 1961) suggest authigenic 
precipitation with enrichments in Mn indicating oxic conditions (a), V enrichments suggesting 
suboxic conditions (b), and Mo diagnostic of anoxic conditions (c). A  comparison between the 
concentrations of Mn and Mo (d) indicate past changes between oxic (Mo depletion) and anoxic (Mo 
enrichment) regimes preserved within cores EW0408-11JC and -33JC.
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Figure 4.13 Paleoanoxia record from EW0408-11JC. The oxic, suboxic, and anoxic boundaries are 
defined by thermodynamic calculations (Piper, 2001). Dashed lines indicate calculated excess 
concentrations either below analytical detection limits, or negative values relative to a global mean 
sediment composition (McLennan, 1995).
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Figure 4.15 Paleoanoxia record from EW0408-33JC. Elements indicated in the legend are assigned 
to the different principal components based on their highest loading value. Shading transitions 
between 5300-4800 and 3500-2500 cal yrs BP indicates uncertainty in millenial-scale shifts in 
dominant dissolved oxygen regime. Excess Ni and Cr were included in the principal component 
analysis, but both had their highest loadings associated with PCI. This result is suspect given the Eh 
ranges associated with authigenic precipitation, suggesting an alternative process is responsible for 
the accumulation of these elements.
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Figure 4.16 The Late glacial/HoIocene transition recorded in EVV0408-11JC. Diatom and 
silicoflagellate assemblage data from Barron et al. (2009). Core lithology same as Fig. 4.4; dashed 
lines in excess Mn and U datasets indicate values less than 0 ppm.
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Figure 4.17 Regional Holocene sub-millenial reconstruction of the nearshore Gulf of Alaska marine 
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Figure 4.18 REDFIT Lomb-Scargle Fourier transform time-series analyses of high-resolution 
EW0408 opal mass accumulation rate data from cores (a) EW0408-22JC, (*) -33JC, and (c) -44JC. 
Significance of spectral amplitudes (thick lines) evaluated against the theoretical red-noise spectrum 
and by using a Monte Carlo test at the 90, 95, and 99% significance levels (dashed lines). ’



Table 4.1 M odern physical fjord characteristics of core sites.

Location Morphology
Maximum 
depth (m)

Depth of sill (m)
Depth of 
surface mixed 
laver (nil

Depth of
thermocline
(mi

... « River Depth of
. . . .  . , present at 
halocune tm i r.

head?

Gulf of Esquibel Complex-basin fjord 340
20-70
(multiple channels)

5 48 37 n/a

Oeep Inlet Single basin fjord 91 24 8 35 25 Y

Katlian Bay Single basin fjord 146 31 10 40 36 Y

West Crawfish Inlet Single basin fjord 267 80 17 37 18 Y

Table 4.2 EW0408 core details.

Location Core ID Core type
Latitude 

C N)
Longitude
(°W)

Water depth 
of core (m)

Core length 
(mbsf)

Sampling 
resolution (cm)

Gulf of Esquibel
EW0408-10MC 
EW0408-11TC 
EW0408-1 IJC

Multicore 
Trigger core 
Jumbo piston core

55 6266
55.6267
55.6267

133.512
133.511
133.511

184
183
183

0.41
1.48
17.52

5
5
15

Deep Inlet
EW0408-43MC
EW0408-44JC

Multicore 
Jumbo piston core

56.965
56965

135.268
135.268

90
90

0.68
18.14

5
5 or 10

Katlian Bay
EW0408-32MC
EW0408-33TC
EW0408-33JC

Multicore 
Trigger core 
Jumbo piston core

57.162
57.162
57.162

135.357
135.357
135.357

141
144
144

0.40
0,71
18.19

5
5
5

West Crawfish Inlet
EW0408-21GC
EW0408-22JC

Gravity core 
Jumbo piston core

56.802
56.802

135.212
135.211

185
188

1.10
11.84

5
5 or 20

4.9 
Tables



Table 4.3 Geochronology results for EW0408 cores.
Core depth R eported '“C oge Corrected UC age 2n calibrated range

(mbsf)_____________ Matftiia!_______________ tyis BP) (yrs BP)______________ (yrs BP)_____

EW0408-11JC
1 62 terrestrial organics 2640 ± 35 2640 t  35 2727 • 2844
2.78 wood fragment 2690 i  40 2690 ± 40 2747 - 2061
4.15 terrestrial organics 4815 ± 25 4815 ± 25 5477 - 5601
6.13 wood fragment** 3565 ± 40 3565 ± 40 3722 - 3975
6 39 terrestrial organics 7350 ± 70 7350 ± 70 8016 - 8329
7 42 plant material 0306 i  47 8306 ± 4 7 9138 - 9442
8.20 terrestrial organics 9110 ± 70 9110 ± 70 10176 * 10492
9 52 terrestrial organics 9615 ± 35 9615 ± 35 10780 - 11167

10.20 wood fragment 9707 ± 49 9707 ± 49 10009 - 11234
10 07 plant material 9733 ± 49 9733 ± 49 10878 - 11244
1U 97 bivalve shell* 10399 ± 52 9733 ± 52 10874 - 112.46
11 78 wood fragment 9812 ± 62 9812 ± 62 11109 - 11390
11 85 bivalve shell 10597 i  54 9865 ± 54 11184 - 11590
12.98 Leecn Lake tephra 12505 ± 4 0 12975 ± 40 14266 - 14952

08-22JC r

0.00 sediment surface (multicorc) -54
0.14 f.a.o 1J,Cs (multicore) -14 - -4
0.40 f.a cl excess 2l0Pb (rnulticore) 46 - 66
1 28 terrestrial organics*1 1505 ± 20 1505 ± 20 1336 - 1480
1.93 Wivte River Ash 1147
2 47 terrestrial organics 1335 ± 20 1335 t  20 1185 - 1300
4 42 terrestrial organics 2070 i  20 2070 ± 20 1909 - 2116
5 08 wood fragment 3045 t  35 3045 ± 35 3161 - 3359
8 15 terrestrial organics 6220 ± 20 6220 ± 20 7020 - 7243

10.19 terrestrial organics 7305 ± 20 7305 ± 20 8037 - 0174
11.65 bivalve sheii 8931 ± 48 8199 ± 48 9018 - 0294
12.08 terrestrial os games 9350 ± 25 9350 ± 2b 10501 - 10656

EW0408-33JC
0 00 sediment s o lac e  (muiticore) -54
0 24 f a d  l3,Cs (rnulticore} -14 - -4
0 55 t.a d excess ?,°Pb (ntulituore) 46 - 66
2.00 terrestrial organics i 155 ± 35 1155 ± 35 978 - 1172
4.08 wood fragment 1685 ± 30 1685 ± 30 1528 - 1692
7 33 wood fragment 2818 ± 35 2816 ± 35 2806 - 3061
7 33 bivalve shell* 3559 t  38 2827 ± 3fi 2849 - 3064
9.38 wood fragment 1S40 ± 20 3540 ± 20 3724 - 3092

10.99 terrestrial organics 3980 ± 20 3980 ± 20 4416 - 4517
1? 78 MFVF tephra 4310 t  140 4310 t  140 4523 - 5307
13.94 wood fragment 4905 t  30 4985 ± 30 5619 - 5878
16 00 terrestrial organics 5880 i  20 5880 ± 20 6659 - 6743
16.10 MEVF tephra 5760 ± 70 5760 ± 70 6407 - 6726
17.03 wood fragment 6485 ± 20 6485 ± 20 7327 - 7434
17 8? wood fragment 6510 ± 30 6510 ± 30 7328 - 7483



AMS "C
Laboratory Sample ID Notes

Keck . UCI SOSOS
CAMS - LLNL 127764
Keck - UCI 50800
CAMS - LLNL 127765
Keck - UCI 50807
NSF - .AAMS VWV61G5
Keck - UCI 50808
Keck - UCI 50809
NSF - AAMS WWS106
NSF - AAMS WWG1Q7
NSF-AAMS WW6108
NSF - AAMS WVV5485
NSF-AAMS WW5468

Barron et a l . 2009

Keck - UC<

Keck - UCI 
Keck - UC> 
CAMS - LLNL 
Keck - UCi 
Keck - UCi 
NSF -AAMS 
Keck * UCI

50810

5U81! 
50K17 
l2/8i> 
5081 i  
50814 

WW5471 
508 IS

AO 2004 
AO 1964 1954 
AO 1884-1904

Clague et al.. 1995:
Addison ot al.. accepted

Keck • UCi 
CAMS - LLNL 
NSF - AAMS 
NSF . AAMS 
Keck - UCi 
Keck - UCi

CAMS-LLNL 
Ker.k - UCf

Keck - UCI 
CAMS - LLNL

AO 2004 
AD 1964-1954 
AD 1904-1884

50818
127767 

WW6110 
WW6109

5081 / 
50816

127768
50819

50820 
127760

Riehle & Brew, 1984;
Addison et a l, accepted

Riehle & Brew. 1984;
Addison et ol., accepted



Tabic 4.3 (continued).
Core depth Reported “ C age Corrected HC age 2<J calibrated range AMS 14C

(mbsfl Materia! (vrs BP) (vrs BP) (vrs BP) Laboratory Sam ple ID Notes

EW 0408-44JC r

0.00 sedim ent surface (rnullicore) -54 AD 2004
0.86 f.a.d, excess J10Pb (multicore) 46 - 66 AD 1904-1884
1.21 terrestrial organics'* 1585 ± 20 1585 ± 20 1413 - 1525 Keck - UCI 5U821
2.92 wood fragment 1225 ± 30 1225 ± 30 1065 - 1260 CAMS - LLNL 127770
4.62 terrestrial organics 1600 ± 20 1600 ± 20 1416 - 1534 Keck - UCI 50822
6.42 terrestrial organics 1735 ± 30 1735 ± 30 1562 - 1712 Keck - UCI 50823
8 08 wood fragment 2090 ± 35 2090 ± 35 1951 - 2150 CAMS-LLNL 127831

10 03 terrestrial organics 2415 ± 20 2415 ± 20 2353 - 2673 Keck - UCI 50824
12.40 wood fragment 2700 ± 40 2700 ± 40 2749 - 2868 CAMS-LLNL 127832
13.59 terrestrial organics 2995 i  20 2995 ± 20 3079 - 3317 Keck - UCI 50825
15.35 wood fragment 3530 i  30 3530 ± 30 3708 - 3891 CAMS - LLNL 127771

*  sam pie nu l included in aye  m odel ca lcu la tions d ue  lu  use as m a iine  earbonale  cu irectiun  

cam ple re jected from  age m odel; see text fo r  deta ils  

t corrected co ie  depths, see text tor details

C AM S • LLNL = Cenler for A cce le ra to r M ass S pectrom etiy, Law rence L iverm ore N ational Lab 

Keck - UCI = Keck C arbon Cycle  AM S facility. U niversity o f  C aliforn ia  - irvme 

NSF AAM SF -  N ational Science Foundation - Arizona A M S facility, Tucson

f.a.d. -  first appearance datum  

M F iv f = Mt. E dgecum be V o ican ic  Field

Table 4.4 Principal component analysis of redox-sensitive elements in EW0408-33JC. Analysis included components with eigenvalues >1, and 
loadings were rotated using the Varimax method with a Kaiser normalization. Bold values indicate loadings that exceed 0.4 units.

Component 1 Component 2 Component 3 
  _______  oxic__________suboxic________ anoxic

excess Mn 0.879 -0.241 0.103
excess Fe 0.622 0.470 0.064
excess Cr 0.686 0.230 -0.271
excess U 0.012 0.042 0.738
excess V -0.099 0.917 -0.036
excess Mo 0.053 0.096 0.780
excess Cu 0.508 0.697 0.082
excess Zn 0.077 0.482 0.321
excess Ni 0.823 0.100 0.187



Table 4.5 Late glaeial/H olocene deglacial transition phases in EW 0408-11JC and inferred paleoenvironm ental conditions.
EW0408-11JC Onset Termination Approximate NGRIP chronozone boundaryT
deqlacial phase (cal vrs BP) (cal vrs BP) Inferred Gulf of Esauibel paieoenvironment (date of boundary in parentheses)

LGM ? 15,300 CIS glacimarine depocenter LGM

f 0 15,300 14,300 Rapid retreat of CIS ice margin LGM/Bolling-Allerdd transition (14,700)

f) 14,300 12,400 River-dominated estuary with shallow channels Bolling-Allerod/Younger Dryas transition (12,900)

t-. 12,400 11,700
Onset of fjord-style reverse estuary circulation 

with deepening channels
Younger Dryas/Preboreal transition (11,700)

t 3 11,700 10,800
Intensification of fjord-style circulation due to 

rapid deepening of channels: collapse of 
regional forebulge?

Preboreal termination (11,300); onset of 
Holocene Thermal Maximum (11,300±1.500)*

<4 10,800 10,000
Continued deepening of channels; evidence of 

warming SST
-

early Holocene 10,000 -
Modern fjord-style circulation; only minor 

isostatic adjustments
-

t  dates from GICC05 timescale (Rasmussen e ta l., 2006; Steffensen et al., 2008) 
* Central-eastern Beringian synthesis from Kaufman et al., 2004 
CIS: Cordilleran Ice Sheet
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Appendix 4.1 EW 0408-11JC biogeochcm ical data.
Isotopic and biogeochomical data Sedimentary Inorganic geocliemical data

Sample depth Opal TOC C/N ratio iS13C Sample depth Al
(cm bsf) (wt%) (w t% ) VPDB) (cm  bsf) fwt%>

0 •- 1 38.22 7.23 9.44 -21.02 2 3 3.54
15 •• 16 41.67 6 31 9.76 -20.76 17 - 18 3.33
30 •- 31 42.08 6.07 9.61 -20 86 32 - 33 3.35
45 • 46 43.12 6.11 9.65 -20.89 47 48 3.35
60 • 61 40.14 6.19 9.84 -21 03 62 - 63 3 20
75 •- 76 38.07 6 35 9.68 -21.08 77 78 3.70
90 •- 91 36.29 6.59 9.54 -21.07 92 - 93 3.79

105 • 106 41.64 6.01 9.56 -20.91 107 - 108 3.43
120 ■• 121 44.32 5.85 9.54 -20.89 122 - 123 3.36
135 ■ 136 37.48 5.93 9.51 -20.96 137 - 138 3.55
150 •• 151 43.24 6.57 10.41 -21 68 152 - 153 3.55
105 ■• 166 43.36 5.56 9.59 -20.88 167 168 3.48
180 • 181 38.72 5.42 9.95 -21.10 182 - 163 3.66
195 ■• 196 44 61 5.10 9.81 -2089 197 - 198 3.58
210 •• 211 43,31 5.44 9.95 -21.12 212 - 213 3.44
225 - 226 42.92 5.55 9.95 -20,98 227 - 228 3.55
240 • 241 41.07 5.28 9.98 -20.97 242 - 243 3.60
255 •• 256 34.52 5 20 10.14 -21.03 257 - 258 3.62
270 ■• 271 43.18 5.03 10.16 -21.05 272 - 273 3.69
285 • 286 39.51 5.17 10.09 -21.02 287 - 288 3.79
300 •- 301 38.80 5.13 10.37 -21.18 302 - 303 3.76
315 ■- 316 36.29 5.20 10.22 -21.06 317 - 318 4.05
330 -• 331 34 28 4 95 10.34 -21.15 332 333 3.89
345 •■ 346 37.59 5.05 10.29 -21.14 347 - 348 3.78
360 •• 361 37.20 362 - 363 3.81
375 •• 376 40.31 4.68 10.58 -21.24 377 - 378 3.78
390 •• 391 34.51 4.96 10.44 -21 31 392 393 3.86
405 • 406 36.42 4.88 10.63 -21 26 407 - 408 3.94
420 •• 421 35.02 4.80 10.47 -21.05 422 - 423 3.98
435 -• 436 34 67 4.42 10.56 -21.09 439 - 440 4.14
450 •• 451 35.98 4.46 10.41 -21.04 452 - 453 4.19
465 •• 466 37.97 4.58 10.49 -21.15 467 - 468 4.26
480 -• 481 26.15 4.67 11.11 -21.48 482 - 483 4.57
495 •- 496 36.24 4 68 10.75 •21.32 497 - 498 4.25
510 - 511 33.71 4.31 11 13 -21.65 512 513 4.26
525 •• 526 36.29 4.19 10.91 -21.36 527 - 528 4.17
540 -■ 541 31.78 3.97 10.87 -21.35 642 - 543 4.24
555 ■• 556 31.92 3.70 11.13 -21.38 557 - 558 4.42
570 • 571 33.10 3 90 11.45 -21.49 572 573 4.53
585 •■ 586 30.34 3.50 11.17 -21.49 587 - 588 4.49
600 •- 601 31.06 3.68 11 51 -21.63 602 - 603 4.95
615 • 616 35.44 3.45 11.40 -21.80 617 - 618 4.72
630 • 631 20.35 3 80 12.85 -22 91 632 - 633 4.86
645 •- 646 30.78 3.14 12.26 -21.94 647 - 648 5.02
660 • 661 31.00 3 06 12.04 -22.03 662 - 663 4.76



Ti
(wt%>

Zr
(ppm)

Mn
(ppm)

V
(ppm)

Cr
(ppm)

Mo
(ppm)

U
(ppm)

0.20 33.5 392 114 48 8.70 7.0
0 19 27.7 379 103 42 6.46 4.3
0.19 26.0 401 100 40 6.65 3.6
0 19 28.0 393 105 42 4.53 3.2
0.18 26.8 381 100 40 4.66 2.4
0 21 30.0 438 116 44 7.92 3.9
0.22 30.6 453 115 46 7.31 3.7
0 19 27.5 410 104 42 5.33 3.3
0.19 26.3 381 102 40 5.28 3.8
0.21 30.1 429 110 42 5.38 3.7
0.20 26.6 414 106 41 5.13 2.9
0.19 26.9 419 104 42 5.71 3.1
0.21 29.1 433 113 43 5.15 34
0 20 27.9 430 109 41 5.95 3.5
0 19 26.8 417 106 41 5.98 3.6
0.20 28.5 407 108 42 5.77 3.7
0.20 27 7 426 111 41 8.76 5.7
0.20 28.7 446 107 41 8.94 5.2
0.21 29.8 446 113 42 8.75 5.7
0.21 29.9 460 117 43 8.25 5.3
0.21 30.1 447 116 42 7.86 5.7
0.23 30.9 479 118 46 7.81 5.0
0.22 31.3 479 120 44 10.10 6.7
0.21 31.1 467 118 45 11.70 8.0
0.21 30.5 472 114 45 10.10 6.0
0.22 30.7 468 112 43 8.33 5.1
0 23 32.4 481 117 44 9.13 5.0
0.22 31.9 491 118 44 10.10 6.5
0.23 32.8 480 122 45 9.17 4.9
0.24 35 1 509 131 47 10.50 6.4
0.24 34.0 529 130 46 10.10 5.8
0.24 33.9 518 133 47 11.50 7.4
0 26 36.2 542 153 52 11.60 9.8
0 24 33.1 521 126 47 12.10 5.8
0.25 34.0 533 132 50 11.00 7.5
0.25 32.5 520 131 46 9.27 5.3
0 26 35.9 545 136 47 8.80 4.4
0.28 37.1 574 143 52 6.96 5.0
0.29 37.7 593 149 53 7.23 4.6
0 28 37.7 596 148 51 8.15 5 6
0 31 40.3 645 155 53 7.70 5.1
0.31 39.9 666 154 52 6.56 3.8
0.32 40.6 657 160 53 6.07 3.9
0.34 40.6 698 161 53 7.01 4.0
0.32 40.1 679 157 55 5.99 3.8

g.
O'
to

4̂



Appendix 4.1 (continued)
Isotopic and biogeochernical data Sedimentary Inorganic geochemical data

Sample depth 
(cm bsn

Opal
(wt%)

TOC
(wt%)

C/N ratio <s,3C 
(%0, VPDB)

Sample depth 
(cm bsf)

Al
fwt%)

Ti
(wt%‘>

Zr
(ppm)

Mn
(ppm)

V
(DPm)

Cr
(ppm)

Mo
(ppm)

U
(pom)

676 • 676 26.81 2.80 11.92 -22.02 677 - 678 4.90 0.33 42.5 665 161 56 6.75 3.6
690 - 691 33.20 2.43 12.30 -21.97 692 - 693 4.78 0.33 42.6 669 159 54 5.64 3.5
705 706 28.65 2.87 11.94 -21.91 707 - 708 5.03 0.36 46.0 718 169 57 5.18 3.7
720 - 721 29.16 2.64 11.83 -21.95 722 - 723 5.14 0.36 45.1 729 173 57 3.64 2.8
730 - 736 31.49 2.65 11.64 •22.00 737 - 738 4.99 0.35 47.4 722 174 57 3.41 2.9
750 - 751 26.32 2 52 9.56 -21.76 752 - 753 4.98 0.35 45.6 719 173 57 3.97 3.1
765 - 766 24.85 2.32 10.57 -22.12 767 - 768 5.32 0.38 49.4 792 189 57 3.23 2.7
780 - 781 24.03 2.10 12.27 -22.75 782 •• 783 5.77 0.40 55.0 847 204 64 2.80 2.2
795 - 796 21 70 1.98 11.57 -22.74 797 - 798 5.63 0.39 54.5 817 198 61 3.25 2.6
810 •• 811 1.84 11.09 -22.46 812 - 813 5.63 0.40 57.4 827 204 60 2.79 2 4
825 • 826 19.09 1.85 11.27 -22.53 827 - 828 5.99 0.42 60.0 833 213 63 2.56 2 2
840 • 841 19.02 1.70 12.29 -23.67 842 - 843 6.02 0.41 58.0 840 204 60 1.85 1.9
855 - 856 19.83 2.11 12.71 -23.54 857 • 858 5.94 0.40 59.9 858 211 60 1.81 1.9
870 - 871 16.76 1.84 13.26 -24.02 872 - 873 6.21 0.42 63.2 869 218 61 1.89 2.1
885 886 18.56 1.75 13.81 -24.42 887 - 888 6.25 0.42 62.6 901 219 60 1.70 1.9
900 • 901 15.98 1.68 14.00 -24.44 902 - 903 6.36 0.43 63.1 869 224 59 1.53 1.9
915 916 17.72 1.76 13.73 -24.53 917 - 918 6.39 0.43 62.9 914 230 5? 1.91 2.0
930 - 931 17.19 1.67 14.69 -24.65 932 - 933 6.33 0.42 61.8 884 227 57 1.94 2.1
945 •• 946 19.32 1.94 14.36 -24.55 947 - 948 6.49 0.43 63.1 893 230 57 2.05 2.3
900 - 961 19.63 1.68 13.96 -24.65 962 - 963 6.56 0.42 63.3 900 222 54 2.48 2.3
975 • 976 18.80 1.83 14.94 -24.49 977 - 978 6 45 0.42 63.8 859 219 53 2.06 2.2
990 ■ 991 18.18 1.61 13.94 -24.58 992 - 993 6.44 0.43 63.5 829 217 50 1.60 2 1

1005 -• 1006 16.72 1.63 13.92 -24.53 1007 - 1008 6.47 0.42 63.8 864 218 52 1.82 1.9
1020 •• 1021 19.08 1.95 15.07 -24.82 1022 - 1023 6.40 0.43 62.4 843 222 51 2.98 2.0
1035 - 1036 18.16 1.83 14.34 -24.66 1037 - 1036 6.38 0.41 62.3 937 210 51 2.29 2.0
1050 • 1051 21.19 1.93 14.93 •24.58 1052 - 1053 6.45 0.41 60.8 925 217 52 1.89 2.0
1065 •■ 1066 26.22 1.92 14.90 -24.61 1067 - 1068 6.35 0.41 59 2 907 211 49 1.95 1.9
1080 •• 1081 21 67 1.96 15.33 -24.67 1082 - 1083 6.45 0.41 57.3 914 208 49 2.63 2.0
1095 - 1096 23.21 1.92 14.85 -24.66 1097 - 1096 6.11 0.39 57.9 917 224 51 2.99 2 2
1110 - 1111 20.92 1.75 15.38 -24.57 1112 - 1113 6.56 0.41 57.5 912 211 53 2.18 1 9
1125 - 1126 19.50 041 -24.57 1127 - 1128 6.72 0.45 65.3 974 216 57 2.16 2 1
1140 •• 1141 15 97 1.67 14.76 -24.83 1142 - 1143 6.71 0.43 58.0 958 218 55 2.28 2.1
1155 1156 15 96 2.46 15.45 -24.97 1157 • 1158 6.77 0.42 61.3 920 22? 56 2.48 2.4
1170 - 1171 12 03 1.79 15.26 -25.10 117? - 1173 6.85 0.42 60.1 882 210 55 2.09 2.4
1185 • 1186 13 38 1.92 16.07 -25.29 1187 - 1188 6.72 0.40 62.7 845 219 55 2.58 2.6
1200 •- 1201 11.18 1.66 14.83 -25.77 1202 - 1203 7.26 0.40 69.3 831 238 57 3.07 3.1
1215 • 1216 14.81 1.88 14.90 -25.42 1217 - 1218 6.95 0.40 658 869 229 59 3.76 3 3
1230 - 1231 10.79 1.37 14.19 -26.76 1232 - 1233 7.69 0.40 75.6 842 257 60 1.86 3 0
1245 - 1246 11.32 1.73 14.47 -26.79 1247 - 1248 7.73 0.41 78.4 992 269 60 2.97 3.0
1260 - 1261 9 77 1.52 14.35 -26.30 1262 - 1263 7.62 0.41 77.2 1120 270 61 3.09 3.2
1275 . 1276 10.83 1 78 14.05 -26.91 1277 - 1278 7.62 0.39 83.3 1190 277 62 2.49 3 1
1290 ■ 1291 6.78 1.01 14.52 -29.02 1292 - 12S3 8.41 0.43 92.8 693 304 62 0.89 5.0
1306 - 1306 5.97 0.95 12.29 -28.49 1307 - 1308 8.74 0.40 89.1 700 328 64 1.11 3.0
1320 • 1321 6.36 0.58 13.76 -28.87 1322 • 1323 9.22 0.37 80.5 908 315 78 0.77 2.1
1335 - 1336 5.30 0.42 16.69 -28.90 1337 - 1338 9.18 0.39 82.7 1030 302 84 0.84 2.2
1350 - 1351 5.30 0.56 14.70 -28.78 1352 - 1353 8.64 0.40 84.4 958 294 71 0.75 2.4
1365 - 136G 5.08 0.56 16.68 -2D. 13 1367 - 1368 8.63 0.35 72.6 1170 315 73 0.D5 2.1
1380 • 1381 4.81 0.47 18.43 -29.34 1382 - 1383 8.25 0.36 77.3 1210 281 69 0.94 2.2
1395 - 1390 6 07 0.59 15.39 -29.29 1392 • 1393 8.93 0.35 73.5 1100 330 74 1.12 2.1

1396 - 1397 8.62 0.37 78.0 1140 320 77 1.03 2.3

4̂
00



Appendix 4.2 EW 0408-22JC biogeochem ical data. * indicates com posite depth due to splicing o f EW 0408-21GC with -22JC between 57 and
62 cm bsf.

Isotopic and Piogeochemica! data Sedimentary Inorganic geochem ical data
Sam ple dep th ' 

tern bsf)
Opal

<wt%)
TOC
(wt%)

C/N ratio ft13C 
<%o. VPDB)

Sam ple depth 
('em bsf)

A!
(wt%)

Ti
(wt%>

Zr
(ppm)

Mn
(ppm;

>
1a Cr

(ppm)
Mo

(ppm)
U

(ppm)

0 - 1 40.28 7.97 9.08 -21.26 32 33 2.67 0.21 41.41 438 69.3 41.1 2.69
2 - 3 45.28 7.63 9.03 -21 22 52 - 53 2.51 0.20 47.84 448 66.8 35.3 2.49
7 - a 41.24 7.43 9.03 -21 23 72 7 3 2.46 0.20 37.52 418 70.5 33.4 3 13

12 - 13 44.23 7.50 8.92 -21.00 92 93 2.79 0 22 44.66 456 70.8 40.1 2.01
17 - 18 47.07 7.15 3.82 -21 10 112 - 113 2.89 0.22 43.20 425 68.5 37.1 3.78
22 23 47.53 7.18 8.84 -21.02 132 - 133 2.68 0.21 39.98 430 70 8 38.9 4.00
27 - 28 44 32 7.43 9.03 -20.96 152 - 153 2.82 0.22 48.85 454 72.8 34.7 2.82
32 - 33 45.01 6.95 8.91 -20.96 172 - 173 2.99 0.23 46.01 458 73.5 44.8 2.53
37 • 38 45.93 7.09 8.87 -20.75 192 - 193 2.98 0.23 48.95 482 74.7 41.7 2.47
42 • 43 45.21 7.12 8.83 -20.62 212 - 213 2.79 0.21 44.49 463 72.6 41.0 3.24
4 7 - 48 48.40 6.69 8.63 -20.72 232 233 2.82 0.22 48.17 470 76.1 45.0 2.66
52 - 53 49.95 6.72 8.73 -20.78 252 - 253 2.82 0.22 44.47 469 75.8 40.5 1.92
57 - 58 48.64 6.68 8.66 -20.70 272 - 273 2.86 0.22 46.18 493 71.5 41.5 2.45
62 - 63 45.01 292 - 293 2.79 0.21 41.04 485 74.0 32.9 2.67
67 - 66 43.68 312 - 313 2.76 0.22 42.58 487 74.5 36.4 2.44
72 - 73 46.12 7.38 10.18 -21.36 332 333 2 71 0.21 43.87 509 71.2 39.6 2 53
77 - 78 42.10 352 - 353 2.82 0.22 46.53 475 70.8 37.0 1.55
62 - 83 40.22 372 - 373 2.82 0.22 45.79 472 7 1 0 38.5 2.55
87 - 88 48.81 392 - 393 2.87 0.22 43.02 496 72.4 41.5 3.26 1.06
92 - 93 46.00 6.93 9.74 -21.07 412 413 2.98 0 22 73.67 483 71.5 34.7 3 30 1.41
97 - 98 47.30 432 - 433 2.86 0.22 50.00 493 71.7 39.6 2.28

102 - 103 44.56 452 - 453 2.79 0.21 52.31 500 69.5 38.0 2.79 0.88
107 - 106 43.65 472 - 473 2.71 0.21 64.49 433 74.9 38.4 3 72 1.09
112 - 113 46.01 7.14 9.96 •21 06 492 493 2.88 0.22 48.42 457 68 0 34 8 2.77
117 • 118 45.62 512 - 513 3.09 0.23 53.76 417 79.2 39.5 3.36
122 - 123 45 29 532 - 533 3.26 0.24 54.15 443 73.1 43.6 2 27 1 44
127 - 128 44,17 552 - 553 3.03 0.23 52.58 473 74.6 43.0 2 96 1.21
132 - 133 44.99 6.73 10 03 -21.11 572 573 2.88 0.23 60.12 500 74.7 41 2 2 24 0.99
137 - 138 43.68 592 593 3 06 0.25 58.78 516 76.8 42.5 2.10 1.87
142 - 143 40.52 612 613 2.78 0.23 54.08 518 72.5 38.8 3.77 1.66
147 - 146 44.62 632 - 633 2.65 0.21 55.35 458 65.6 31.5 2.66 1.26
152 • 153 45.63 6.71 9.86 -21.02 652 - 653 3.13 0.26 85.07 515 70.5 44.0 1.81 3.24
167 - 158 41.52 672 - 673 3.00 0.25 58.08 502 72.2 41.9 3.67 2 78
162 - 1G3 44.56 692 - 693 2.96 0.24 72.43 486 71.6 37.0 2.97 1.76
167 - 168 43.68 712 - 713 3.18 0.27 7 7.25 514 75.6 38.7 1.83 1.99
172 - 173 37.67 6.62 9.88 -21.10 732 - 733 3 22 0.27 68.66 491 75.4 40.6 2.31 2 44
177 - 178 39.53 752 - 753 3.13 0.27 73 47 494 75.3 45 9 2.08 1.43
182 - 183 36.25 772 - 773 3.28 0.27 73.03 504 77.3 42.0 3.06 3.25
167 - 186 44.87 792 - 793 3.19 0.26 59.09 4 77 79.7 36.8 4.66 3.86
192 • 193 43.16 7.03 9.79 -20.96 813 814 3-21 0.26 57.58 477 77.5 41.5 5.04 3.07
197 - 198 34.23 832 833 3.14 0.25 61.52 462 75.2 42.5 4.96 3.78
202 - 203 37 88 852 - 853 3.06 0.25 54.58 454 74.1 34.4 5 34 3.26
207 ■ 208 45.36 872 873 3 13 0.26 57.20 487 78.0 37.0 4.82 3.54
212 - 213 40.44 6.63 9.76 -20.97 892 - 693 3.15 0.25 64.76 461 78.4 39.2 3.56 3.35
217 - .218 42.60 912 - 913 2.83 0.24 64.78 443 68.8 32.7 3.96 3.27
222 - 223 36.73 932 - 933 3.08 0.26 97.41 471 72 5 43.1 3.38 3 33

VO



Appendix 4.2 (continued)
Isotopic und tjiogvochomical data Sedimentary Inorganic geochemical data
Sample depth* Opal TOC C/N ratio i>1iC Sample depth Al Ti Zr Mn V Cr Mo U

(cm bsfi (wt%l twt%1 (%0, VPDB) (cm bsf) (W t% ) (wt%l (ppm) (ppm) (DPm) (pom) (ppm) (ppm)

227 228 45.10 952 - 953 3.09 0.25 61 94 491 75.9 40.3 3.34 2 37
232 - 233 39.42 6 29 9.89 -21.00 972 - 973 3.29 0.26 64.06 463 77 8 39.1 4.73 4 02
237 - 238 46.69 992 - 993 3.35 0.27 65.01 482 79.8 47.2 3.60 2.24
242 - 243 46.59 1012 - 1013 3.51 0 29 7976 477 80.0 42.8 3.34 3.19
247 - 248 41 28 1032 - 1033 3.61 0.28 83.53 462 756 44.9 2.14 2.46
252 - 253 42.88 6.41 10.00 -21.11 1052 - 1053 3.43 0.26 98.63 455 74.8 45.2 2 46 2.65
257 - 258 40 38 1072 - 1073 3.59 0.29 69.12 476 79.3 48 7 3.59 4.02
262 - 263 47.92 1092 - 1093 3.63 0.28 84 67 496 78.1 40 5 4.02 2.56
267 • 268 43.56 1112 - 1113 3.44 0.28 71.69 468 82.9 43.5 4.06 3.38
272 - 273 38 57 6.74 10.02 -21.03 1132 - 1133 3.46 0.27 73.74 461 80.3 40.2 3.93 3 42
277 - 278 40 07 1152 - 1153 3.32 0.27 63 12 481 76.6 40.1 4.35 3.18
282 - 283 41.83 1172 - 1173 3.40 0.28 81.18 494 79.7 43.1 4.62 4.04
287 - 288 38.04 1192 - 1193 3.44 0.27 66.23 496 78.3 46.1 5.26 3.47
292 - 293 42.04 6.42 9.83 -20.91 1212 - 1213 3.24 0.26 60 03 466 75.2 39.7 5.14 3.92
297 - 296 41.44
302 - 303 45.90
307 - 308 41 77 Isotopic and biogeochernical data Sedimentary
312 • 313 45.55 6.55 9.88 -20.96 Sample■ depth* Opai TOC C/N ratio 6n C
317 - 318 42.84 (cm bsfi (wt%) (wt%1 (%0. VPDB)
322 - 323 44.61
327 - 328 42.05 467 -■ 468 34.36
332 - 333 44.58 6.59 9.88 -21.06 472 •• 473 33.45 6.37 10.04 -21.20
337 - 338 37.79 477 •■ 478 34.91
342 - 343 26.80 482 •• 483 35.51
347 - 348 44.19 487 -- 488 34.80
352 - 353 38.54 6.61 9.98 -21.01 492 -• 493 33.59 6.02 10.01 -21 28
357 - 358 40.89 497 -■ 496 32.52
362 - 363 39.79 502 -• 503 30.48
367 - 368 41.42 507 -• 508 31.43
372 - 373 44.12 6.51 9.87 -20.98 512 • 513 27.75 6 54 13 43 -22 93
377 • 378 39.88 517 •- 518 31.68
382 383 40 67 522 - 623 29 22
387 • 388 41 89 527 -- 528 27.14
392 - 393 40.95 6.45 10.25 -21.32 532 -• 533 26.42 3.03 10.70 -21.92
397 - 398 47 28 537 -• 538 26.90
402 - 403 37.80 542 •• 543 38.13
407 - 408 36.82 547 -• 548 36.36
412 - 413 33.75 6.18 10.10 -21.21 552 -• 553 37.90 6.15 9.98 -20.97
417 - 418 40.86 557 -• 558 35.42
423 - 424 34.60 562 •• 563 36.20
427 - 428 35.90 567 -• 568 35.86
432 - 433 29.53 6.72 9.98 -21.11 572 -• 573 38.09
437 - 438 36.69 577 ■• 578 36.76
442 - 443 37.31 582 •• 583 32.24
447 - 448 33.95 587 •• 588 37.49
452 - 453 36.55 6.19 10.08 -21.27 592 ■• 593 31.43
457 - 458 39.43 597 •• 598 30.07
462 - 463 37.33 602 •• 603 26.57

C/i
o
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Appendix 4.2 (continued)_______________________  ________________________________________________
Isotopic and biogeochemical data Sedimentary tsotopic and biogeochemical data Sedimentary

Sam ple depth* 
(cm bsf)

Opal
(wt%)

TOC
(wt%)

C/N ratio 6 '3C 
(%o. VPDB)

Sam ple depth" 
(cm bsf)

Opal
(wt%)

TOC
(wt%)

C/N ratio 5 !3C 
(%=, VPDB)

607 - 6oa 32 52 917 - 918 33 97
612 - 613 38.81 5.52 10.38 -21.07 922 - 923 33.59
617 - 618 24 82 927 - 928 37.69
622 - 623 25.73 932 - 933 27.96 3.29 8.85 -21.96
627 - 628 17.92 937 - 938 31.76
632 - 633 33.17 5.44 10.30 -21.10 942 - 943 29.76
637 - 633 24 19 947 - 948 26.04
642 - 643 21.81 952 - 953 29.60 3.75 9 32 -21.83
647 - 648 25.33 957 - 958 27 37
652 - 653 16.98 1.98 10.20 -22.35 962 - 963 27.47
657 - 658 22.46 967 - 968 27,64
662 - 663 24 97 972 - 973 23 85 4.03 9.62 -21.77
657 - 668 21.56 977 - 978 27.54
672 - 673 27.35 4.25 10.51 -21.45 932 - 983 26.03
677 - 678 23.38 987 - 988 30.93
682 - 683 23.38 992 - 593 25.20 3.90 9.80 -22.08
687 - 688 28.90 997 - 998 27.74
692 - 693 31.45 3.44 10.38 -21.68 1002 - 1003 24.60
697 - 698 2 8 3 2 1007 - 1008 19.90
702 - 703 30.08 1012 - 1013 25.39 3.59 9.62 -22.17
707 - 708 28.50 1017 - 1018 26 67
712 - 713 28 16 4.19 1042 -21.41 1022 - 1023 23.11
717 - 718 30.55 1027 - 1028 34.27
722 - 723 29.03 1032 - 1033 11.41 1.91 8.28 -22.52
727 - 728 22.72 1037 - 1038 29.34
732 - 733 29.09 4.63 10.98 -21.76 1042 - 1043 34.25
737 - 738 29 54 1047 - 1048 26.07
742 - 743 29.99 1052 - 1053 17.68 1 72 7.60 -22.36
747 - 748 25.82 1057 - 1058 33.64
752 - 753 27.04 4.45 10.66 -21.60 1062 - 1063 29.01
757 - 758 34.78 1067 - 1068 30.70
762 - 763 26.63 1072 - 1073 32.16 4.13 10.66 -21.80
767 - 768 30.34 1077 - 1078 25.92
772 - 773 28.07 4.72 11.33 -21.97 1082 - 1083 26.26
777 - 778 30.08 1087 - 1088 29.43
782 - 783 30.99 1092 - 1093 24.31 3.57 10.03 -21.76
787 - 788 28.45 1097 - 1098 23.81
792 - 793 33.54 4.62 10.77 -21 69 1102 - 1103 27 46
797 - 798 28.63 1107 - 1108 25.92
802 - 803 28.64 1112 - 1113 27.49 3 83 10.48 -21.93
807 - 808 31.54 1117 - 1118 31.29
813 - 814 30.21 4.89 10.65 -21.60 1122 - 1123 29.98
817 - 818 29.06 1127 - 1128 29.10
822 - 823 36.48 1132 - 1133 25.86 3.74 10.14 -21.73
827 - 828 29 75 1137 - 1138 31.04
832 - 833 29.95 3.95 9.37 -21.71 1142 - 1143 28.77
843 - 844 29.11 1147 - 1148 32.43
847 - 848 31.24 1152 - 1153 31 95 3 79 10.20 -21.84
852 - 853 34.56 3.69 9.17 -21.71 1157 - 1158 30.54
857 - 858 28.69 1162 - 1163 26.93
862 - 863 30.96 1167 - 1168 31.45
867 - 368 29.38 1172 - 1173 29.86 3.48 10.01 -21.83
872 - 873 33.09 4.11 9.63 -21.75 1177 - 1178 34.89
877 - 878 31 43 1182 - 1183 31.88
882 - 883 29.18 1187 - 1188 30.78
887 - 888 35 18 1192 - 1193 35.59 3.57 10.11 -21.93
392 - 893 30 34 4.19 10.30 -22.11 1197 - 1198 26.55
897 - 898 33.68 1202 - 1203 32.01
902 - 903 36.72 1207 - 1208 33.50
907 - 908 30 84 1212 - 1213 31.78 3 58 10 27 -22.22
912 - 913 38.13 3.67 9 19 -21.77
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isotopic and biogeochemical data Sedimentary Inorganic geochemical data
Sample depth Opal TOC C/N ratio ^ °C Al Ti Zr Mn V Cr Mo U

icm bsf)________ (wt%) (wt%)____________ (%c. VPDB) (wt%) (wt%) (ppm) (ppm) /ppm) (ppm) topm) (ppm)

Appendix 4.3 EVV0408-33JC biogeochem ical data._____________________________________

2 - 3 25.29 3.83 9.74 -21.90 5.24 0.40 81 505 165 126 2.8 1.7
7 - 8 25.35 3.92 11.42 -24.61 5 49 0.42 88 912 172 123 3.5 2.3

12 - 13 27.23 5.06 11.47 -25.65 5.32 0.40 82 8S9 172 132 3.8 1.8
17 - 18 24.69 3.23 11.72 -24.53 5.23 0.39 77 892 167 133 3.7 1.5
22 - 23 20.34 3.40 12.81 -25.72 5.30 0.41 82 912 163 128 2.2 1.7
27 - 23 23.89 3.36 10.10 -22.47 5.07 0 38 77 872 157 123 2.8 1.3
33 - 34 23.10 3.73 1000 -22.30 5 09 0.39 78 879 162 129 3.7 1 9
37 - 38 28.51 3.38 10.05 -22.33 5.14 0.39 80 879 163 136 2.8 2 5
42 - 43 27.43 3.52 10 13 -22 04 5 28 0.41 82 899 165 129 3.3 2 8
47 - 48 31.13 3.31 10.11 -22.34 5.17 0.40 80 879 163 129 3.0 19
52 - 53 33.56 3 89 9.93 -22.29 5.00 0.39 79 885 161 139 2 1 1.8
57 - 58 29.17 3.66 1043 -22.31
62 - 63 31.05 4.56 10.38 -23.37 5.04 0.39 80 879 159 134 2.3 1.9
67 - 68 34.45 4.08 9.75 -22.49 5.18 0.40 82 899 160 125 2.8 2.4
72 - 73 30.21 3.94 9.41 -22.10 5 18 0.40 80 692 165 127 3.5 1.7
77 - 78 21.38 4.99 9.87 -22.15 5.04 0.40 81 872 162 128 3.2 2.4
82 - 83 29.96 3.74 10 01 -22.29 5.C2 0.39 81 872 160 127 3.1 1.6
87 - 88 32.12 3.66 9.84 -22.17 5 13 0.40 80 892 165 125 3.2 1 8
92 - 93 26.94 5.43 11 76 -26.59 5 10 0.40 81 885 163 125 4.2 1 7
97 - 98 28.31 4.59 10 92 -23.91

102 - 103 27.53 3.76 9.78 -22 07 5.06 0.40 82 879 160 130 8.2 2.5
107 - 108 32.42 3.90 9.75 -22.14 5.03 0.39 81 885 163 131 4.1 2.7
112 - 113 33.23 4.46 11.64 -25.20 4 93 0.39 79 879 156 133 3.8 2.5
117 - 118 27.8C 4.08 10.08 -22.77 4,94 0.39 81 899 163 126 3.2 2.8
122 - 123 34.58 4.72 9.53 -22.03 5.04 0.40 80 899 163 131 2.8 1.7
126 - 127 37.34 3.91 10.03 -22.15 4.86 0.38 78 £66 159 127 3.0
132 - 133 27.97 3.92 9.75 -22.04 5.05 0.39 80 885 158 133 3.0 2 2
137 - 138 32.52 5.45 11.86 -26.48 4 93 0.39 79 879 155 130 3.3 2.3
142 - 143 18.11 4.06 9.57 -22.18 5.04 0.39 79 679 160 123 4.4 2 2
147 - 148 34.42 4,14 991 -21.82 4.72 0.37 76 859 152 123 2.2 1 6
152 - 153 31.25 4.15 9.70 -21.86 4.80 0.37 76 852 153 126 2.3 1.5
157 - 158 32.41 4.10 10.12 •21.98 4 91 0.39 79 859 157 125 4.7 2.0
162 - 163 28.38 4.07 10.10 -21.93 4.95 0 38 76 852 159 125 4.5 1.8
167 - 168 32.86 4.49 11.49 -24.64 4.85 0.38 78 646 159 128 3.6 1.8
172 - 173 29.95 3.99 9.94 -22.04 4.90 0.39 79 872 159 124 3 3 1.0
177 - 178 28.77 4 21 10 93 -21 82 4.94 0 4 0 80 835 163 133 31 1 6
182 - 183 29.30 4.25 9.23 -21.69 4 9 5 0.39 79 679 162 130 3.4 1 9
187 - 188 30.52 3.86 9.95 -21.89 5 15 0.40 33 906 165 130 3.7 1 0
192 - 193 30.81 4.44 11.70 -24.54 5.08 0.40 80 872 164 125 3.5 2.1
197 - 198 31.45 4 63 11.88 -24.94 5.06 0.40 79 872 166 129 4.6 2.6
202 - 203 29.88 3.89 9.92 -22.25 5.14 0.40 81 885 168 130 3.5 2.4
207 - 208 29.56 3.97 10.08 -22.09 5.34 0.41 84 SO 5 171 130 3.3 1.4
212 - 213 25.23 3.79 10.66 -22.13 5.56 0.43 83 945 177 135 4.0 1 9
217 - 218 26.78 3.87 10.91 -21.90 5.45 0.43 86 912 175 140 5 3 2.7
222 - 223 23.59 4.20 10 45 -22.12 5.60 0 4 3 90 9.22 180 138 5.4 3.2
227 - 228 24.88 4.15 11.88 -24.19 5.54 0.43 83 918 173 131 6.4 3.4
232 - 233 24.40 3.81 10.56 •22.06 5 43 0.43 33 905 172 135 6.0 3.8
237 - 238 25 26 4.31 11.13 -2357 5.36 0.42 86 885 171 133 5.7 3.1
242 - 243 25 13 4.40 11.26 -24,33 5.37 0.42 87 905 173 131 4.7 2 2
247 - 248 25.58 4.53 11.55 -24.13 5.34 0.42 87 905 179 129 3 5 2.8
252 - 253 27.01 3.65 9.86 -22.02 5.34 0.43 89 925 174 136 4.0 2.6
257 - 258 26.19 3 43 5.85 -22.15 5.39 0.43 90 925 175 137 5.6 2 7
262 - 263 29.92 4.06 9.76 -22.00 5.24 0.42 87 835 167 129 4.6 2.5
267 - 268 29 90 4.01 9 62 -21.97 5.32 0.42 36 905 174 130 2.7 1.2
272 - 273 28.44 3.57 3-31 -22.05 5.28 0.41 83 899 175 131 4.5 14
277 - 278 27.60 3.48 10.01 -22.22 5.29 0.41 84 912 172 131 5.3 1 8
282 - 283 31.49 3.70 9.74 -21.93 5.26 0.41 83 879 173 130 3.1 3 4
287 - 238 27.88 3 84 9.63 -21.97 5.25 0.41 34 672 173 130 2.6 1 7
292 - 293 29.07 4.10 9.63 -21.75 5.04 0 40 82 S52 164 126 3 3 1.0
297 - 298 31.36 3.93 9 43 -21.91 5.05 0.40 82 846 164 123 2.5 1 7
302 - 303 29.78 3.39 9 73 -22.12 5.06 0.40 81 845 167 125 3.7 3.0
307 - 308 30.96 4 34 9 65 -21.72 5.01 0.40 81 866 159 130 3.9 1.3
312 - 313 27 14 3.59 1021 -21 96 5.G3 0.39 80 566 163 124 4.5 1 7
317 - 318 30.70 3.60 3 78 -21.81 5.05 0.39 30 872 160 127 5.4 1 8
322 - 323 28.73 4.00 10.14 -21.97 5 06 0.40 81 572 161 131 3.1 1.9
327 - 328 29.12 3.93 10 22 -22.07 5.09 0.40 81 872 160 128 5.5 2.4
332 - 333 30.87 3.75 9.85 -21.96 5.05 0.40 83 866 160 123 2.8 1.9
337 - 338 25.99 4.22 10.13 -21.92 5 09 0.41 84 872 165 129 5 2 2.6
342 - 343 28.37 4.04 10.74 -22.19 4.97 0.39 81 859 157 123 4.6 2.8
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Appendix 4.3 (continued)
iofopic and b/ogeocftemjca/ data 
Sampie depth Ooai TOC 

(cm bsf! (wt%) (\vt%)
C/N ratio

Sedimentary
s '3c

<%>. VPDB)

Inorganic geochemical data 
Ai Ti Zr Mn 

iwt%) (wt%) (Dbm) (DDm)

> 
1 Q

Cr
(ppm)

Mo
(opm)

U
(pDm

347 - 348 29.05 3.59 10.37 -21.93 4.SO 0.39 81 846 158 126 2.3 1.7
352 - 353 28.30 3.11 10.88 -22.06 4.95 0.39 80 852 162 122 4.0 2.5
357 - 358 27.53 3.78 10.41 -22.00 5.01 0.39 81 859 160 125 3.6 0.9
362 - 363 31.22 3.68 10.30 -21.90 5.25 0.41 84 906 164 125 2.7 0.9
367 - 368 28.63 4.00 10.19 -22.11 5.14 0.41 83 892 165 128 3.0 2.4
372 - 373 26.11 3.43 10.73 -22.12 5.42 0.42 87 929 167 135 3.5 2 2

377 - 378 26.89 3.74 10.48 -21.97 5.33 0.42 85 912 165 132 5.2 3.1
362 - 333 30.45 3.90 10.62 -22.12 5.23 0.41 83 899 171 130 4.3 3 0
387 - 338 27.83 3.71 10.42 -22.07 5.14 0.40 82 875 168 127 5.1 1.9
392 - 393 31.47 3.86 10.44 -22.10 5.23 0.41 84 914 165 133 5.1 2 5
397 - 398 29.55 3.69 10 32 -22.06 5 11 0.41 83 899 166 129 4.2 1.5
402 - 403 26.92 4.15 10.23 -22.12 5.06 0.40 81 899 165 128 4.5 1 9
407 - 408 26 71 4.60 10.20 -22.12 5 11 041 82 899 167 128 3.8 3.0
412 - 413 25.97 4.04 10 44 -22.18 5.15 0.41 84 905 171 136 3.1 3.4
417 - 418 27.61 4.37 10.28 -22.12 5 17 0.41 84 899 169 132 2.5 1 l
422 - 423 26.22 4.56 10 07 -21.99 5.15 0.41 83 892 169 129 4.3 3.5
427 - 428 30.59 4.32 10 14 -22.03 5.13 0.41 83 892 169 129 4.3 1 7
432 - 433 27.13 4.41 10.29 -21.91 4.99 0.40 82 872 165 124 8.7 4.6
437 - 438 31 28 4.48 10.17 -22.14 52 3 041 87 522 170 127 5 6 4.3
442 ■■ 443 27.41 3.91 10.51 -22.02 5.01 0.42 90 929 165 131 3.2 3.3
447 - 448 28.32 4.53 10.56 -21.99 5.01 0.40 83 860 162 127 4.9 3.8
452 - 453 33.96 5.10 10.01 -22.05 5.00 0.40 82 852 162 123 4.3 1.7
457 - 458 27.98 4.47 10 05 -21.96 4.94 0.40 83 852 164 128 3.3 2 7
462 - 463 22.38 3.33 11.93 -22.92 5.16 0.44 91 971 177 137 2.7 1.3
467 - 468 29.80 4.24 9 95 -22.01 4.98 0.39 80 859 157 120 4.5 1.7
472 - 473 24.35 4.48 10.00 -22.19 5.04 0.41 84 922 164 130 6.2 2.1

477 - 478 29.19 4.34 9.72 -21.73 5.00 0.39 80 866 166 126 4.2 2.3
482 - 483 28.94 4.08 9.51 -21.55 5.03 0.39 80 869 164 122 4.4 3.0
487 - 488 28.28 3.94 9.64 -21.78 5.00 0.39 82 859 169 128 6.4 3.8
492 - 493 26.65 4.13 9.S3 -21.93 4.83 0.38 80 839 161 119 3 9 2 3
497 - 498 27.01 4.00 10.21 -21.87 4.97 0.40 82 866 163 125 4.5 1.5
502 - 503 26.74 4.82 9.79 -21.94 4.93 0.39 82 844 160 123 4.9 1 9
507 - 508 32.03 4.03 10.46 -22.19 4.92 0.39 82 852 163 120 5.2 3.3
512 - 513 33.69 5.80 12.18 -22.85 4.89 0.39 79 846 162 120 8.2 1.9
£17 - 518 30.11 4.83 9.93 -22.09 4.81 0 38 80 844 160 120 7 0 2 4
522 - 523 30.57 4.12 10.19 -22.37 4.80 0.38 78 859 154 124 5.8 3.4
527 - 528 25.53 4.20 10 13 -21.81 5.05 0.40 83 891 159 125 7.4 2 6
532 - 533 28.74 4.79 10.19 -21.90 5.15 0.41 85 875 163 124 4.4 3.1
537 - 538 32.44 4.S3 10.11 -21.82 5.OS 0.40 84 859 161 122 2.6 2 3
542 - 543 29.09 4.27 10.06 -21.75 5.CO 0.40 81 852 159 123 2.8 2.0
£47 - 548 26.67 3.73 10.13 -21.81 5.10 0.40 83 872 162 123 2.7 2.1

552 - 553 30.53 4.34 9.86 -21.81 4.98 0.40 80 859 156 125 2.6 2.6
557 - 558 30.18 4.43 9.70 -21.91 4.95 0.39 81 852 155 125 2.9 2.0
562 - 563 28.25 4.44 9.45 -21.61 4.99 0.39 82 859 158 119 4.0 2.1
£67 - 568 29.16 4.12 9 66 -21.31 5 00 0.40 83 885 159 123 3.4 3.3
572 - 573 37.38 4.36 9.46 -21.93 4.91 0.39 80 866 154 120 2.6 1.7
577 - 578 29.01 3.66 10.71 -21.91 4.88 0.38 79 852 149 113 2.9 1 1
532 - 583 27.33 4.11 9.57 -21.81 5.05 0.40 31 866 159 119 3.4 1.8
587 - 563 25.30 4.05 9.65 -21.92 5.00 0.40 84 852 152 119 3.1 2.5
£92 - 593 31.24 4.20 9 76 -21.31 5.03 0.40 84 666 157 120 2.1 1.6
597 - 598 26.65 3.90 9.69 -21.95 5.12 0.40 83 869 160 121 3.8 2.3
602 - 503 25.59 3.92 9.72 -22.32 5.05 0.39 81 872 154 123 3.8 0.7
507 - 508 31.42 3.40 £.87 -22.39 5.00 0.38 80 879 154 118 2.7
612 - 613 29.59 4,32 9 40 -22.01 4.89 0.38 79 872 152 116 4.2 0 9
617 - 618 30.42 3.69 9.74 -21.99 4.84 0.39 80 872 159 122 4.3 2.3
622 - 523 33.79 3.42 9 99 -21.85 4.80 0.38 79 866 155 121 5 3 2.4
627 - 628 30.90 3.17 9.73 -21.90 4 88 0.38 80 883 154 120 4.6 2.5
632 - 633 30.73 3.81 9 77 -22.01 4 96 0.39 80 879 161 123 3.3
£37 - 638 29.40 3.33 S.83 -22.02 4.39 0.38 81 860 155 121 3.2 2.9
542 - 543 26.69 4.29 9.81 -22.05 5.06 0.39 82 879 155 126 3.2 1 7
547 - 648 30.92 3.77 1028 -22.05 5.01 0.40 32 876 159 124 5.2 2.8
652 - 653 31.64 3 86 9 65 -22.08 5.27 0.40 85 833 162 127 5.0 3.2
557 - 658 29.57 3.59 10.17 -22.27 5.05 0.39 83 859 155 123 2.4 0.9
662 - 663 35 15 3.91 9 67 -21.99 4 98 0.39 80 859 154 122 3.3 2 8
567 - 668 35.36 3.84 10.02 -21.83 4 37 0.38 79 852 152 123 3.4 3.7
572 - 673 34.27 3.65 9.79 -21.94 4.77 0.39 79 859 153 123 6.1 2 6
577 - 578 34.45 4.44 3.53 -22.12 4 92 0.39 80 872 152 118 6.0 1.4
582 - 633 35.12 3.69 10 07 -21.91 4.20 0.39 81 875 153 119 5.9 1.0
687 - 688 30.69 3.53 10 14 21.89 4.95 0.39 81 872 154 125 2.9 2 2
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Appendix 4.3 (continued) ;____________ ______________________
isotopic and biogeochemica! data Sedimentary Inorganic geochemical data
Sample depth Opa' TOC C/N rat'O cVnC Al Ti Zr Mn V Cr Mo U

(cm bsf) (wt%) (wt%) (%0. VPDB) (wt%) (wt%s (D P m ) (DDm) (D D m ) (D D m ) (D D m ) tDomi

692 - SS3 38.20 3.84 10.09 -22.01 4.28 0.40 82 875 154 123 3.0 2.3
697 - 598 30.78 3 35 10.59 -22.13 4.99 0 39 80 859 153 125 2.8 16
702 - 703 25.53 3.67 10.20 -22.29 4.93 0.39 79 839 157 124 3.2 3.0
707 - 708 30.35 3.41 10.25 -22.58 4.S3 0.39 81 B33 153 119 2 9 2 9
712 - 713 27.44 3.39 10.54 -22.16 4.93 0.39 8G 846 158 123 2.6 2.3
717 - 718 33.43 3.52 10.10 -22.03 4 98 0.39 81 846 155 123 3.4 2 8
722 - 723 26.20 3.95 10.51 -22.26 4.73 0.38 77 826 154 120 4.9 2.0
727 - 728 30.33 3 42 10.50 -22.18 4.97 0.39 78 833 155 121 6.1 2 4
732 - 733 27.53 3.97 10.61 -22.25 4.69 0.38 77 833 149 117 2.9 1.9
737 - 738 29.40 3.73 10.23 -22.14 4.76 0.38 77 846 154 119 3.6 2 3
742 - 743 31.72 3.44 10.81 -22.16 4.82 0.38 79 852 151 120 3.5 2.3
747 - 748 31.36 3.49 10.70 -22.04 4.85 0.38 79 846 151 116 3.2 1 6
752 - 753 26.00 3 98 10.21 -22.37 4 79 0 39 79 846 154 121 2.3 1.1
757 - 758 19.91 4.17 9.98 -22.21 4.83 0.38 78 833 153 119 2.9 1 1
762 - 763 26.56 4 03 9.99 -22.31 4 75 0.38 80 833 152 121 2 8 0 7
767 - 768 30.29 4.10 10.12 -22.28 4.87 0.39 81 860 159 123 5.6 3.1
772 - 773 27.17 4.17 9 69 -22.23 4.81 0.38 81 652 152 124 2 6 1 4
777 - 778 30.29 4.09 9.72 -22.06 4.75 0.38 80 836 150 117 1.9 1.6
782 - 783 29.23 4.06 9.90 -22.04 4.77 0.38 80 844 153 122 2.9 1 8
787 - 788 28.36 4.01 10.02 -22.05 4.60 0.37 77 821 145 121 2.8 0.9
792 - 793 30.99 4,10 9 77 -21.87 4.67 0.38 80 821 151 117 2.8 2 0
797 - 798 29.60 4.01 9.97 -21.98 4.65 0.38 77 852 151 118 2.8 3.6
802 - 803 28.19 4.02 10.16 -22.10 4.86 0.38 80 833 154 123 4.0 2.0
807 - 808 26.50 3.89 3.85 -21.98 4.62 0.37 77 852 146 115 3.1 2.0
812 - 813 30.01 4.05 9.90 -22.05 4.71 0.38 79 860 152 118 2.9 2 6
917 - 818 27.24 3.92 10.04 -22.02 4.68 0.38 80 856 153 123 3.4 2.4
822 - 823 28.76 3.96 9.95 -21.97 4.52 0.38 79 840 148 122 3.6 1 5
827 - 828 27.60 3 96 9.95 -21.93 4.45 0.36 75 813 144 115 3.7 2 9
832 - 833 30.55 3.95 9 83 -21.80 4.63 0.36 76 829 149 118 3.0 3.5
837 - 838 27.45 4.27 9.84 -21.89 4 61 0.36 76 813 150 115 3.5 1 2
842 - 843 28.94 3.92 9 98 -21.93 4.78 0.38 80 852 155 124 2.5 2.7
847 - 848 27.78 3,63 10 02 -21.90 3.96 0.38 78 829 150 122 2.9 13
852 - 853 26.75 3,80 10.69 -22.12 4.61 0.38 79 636 152 123 3.5 1.3
857 - 858 24.25 3.68 10.39 -22.11 4.83 0.38 80 867 156 124 3.6 1.2
862 - 863 24.71 3.75 10 15 -21.95 4.93 0.39 60 853 154 120 3.3 2.2
367 - 868 26.28 3.83 10.13 -21.86 4.77 0.38 81 860 156 123 3.7 2.7
872 - 873 29.53 3/M 10.31 -21.89 4.96 0.39 82 891 160 124 4 9 32
877 - 878 24.44 3.87 10.56 -22.13 4.16 0.39 83 833 156 116 3.7 1.9
882 - 883 25.93 3.98 10.37 -22.01 3 92 0.37 79 867 152 118 4.2 2 4
887 - 888 35.32 3.53 10.00 -21.91 4.54 0.37 77 852 152 113 3.3 3.0
892 - 893 26.96 3.74 10.72 -21.89 4 57 0.39 83 852 157 126 2.9 2 9
897 - 398 25.87 3.77 10.74 -21.98 4.68 0.39 82 667 156 119 4.8 2.9
902 - 903 27.94 4.21 10.94 -22.18 4.41 0.35 76 829 152 116 4.5 1.6
907 - 908 25.e5 3.96 10.GO -21.72 4.53 0.37 78 836 150 119 4.2 3 8
912 - 913 24.49 4.18 9.82 -21.93 4.77 0.39 80 875 159 125 5.5 2 6
917 - 918 24.71 4.61 10.62 -22.01 4.55 0.39 62 852 157 123 4.7 2 7
922 - 923 26.26 4.41 10.06 -22.10 4.64 0.39 80 860 154 124 5.6 2.6
927 - 928 28.24 4.18 10.40 -22.14 4.78 0.38 79 875 159 124 7.4 3.1
932 - 933 24.91 4.18 9.62 -21.83 5.00 0.40 82 883 160 126 7.4 1.6
937 - 938 24.72 4.81 0.41 84 691 164 134 6.5 3.4
942 - 943 27.62 3.69 10.42 -22.08 4.71 0.39 83 883 157 127 5.0 2.4
947 - 943 23.67 3.61 10.23 -22.05 4.83 0.40 84 883 161 124 5.6 2.7
952 - 953 27.65 4.24 10 34 -21.92 4.87 0.40 83 929 158 124 7.2 1.8
957 - 958 30.29 3.86 9.93 -21.99 4 70 0.39 81 875 153 125 5.9 2.8
962 - 963 29.38 4.10 9.85 -21.76 4.75 0.39 82 898 157 121 7.3 2 9
967 - 968 25.78 4.03 9 91 -21.83 4 57 0.37 73 852 150 122 8.7 4.2
972 - 973 27.04 4.03 9.98 -21.77 4.45 0.35 75 821 145 111 7.4 1 7
977 - 978 30.45 3.68 9.55 -22.02 4.38 0.35 74 829 145 109 6.5 2.5
982 - 983 27.47 3.67 9.23 -21.90 4.49 0.36 76 829 148 115 5.2 2.2
987 - 988 27.93 3.39 9.59 -22.13 4.59 0.38 78 860 152 123 4 2 1 3
992 - 993 27.81 4.01 3.52 -23.54 4.29 0.34 73 821 140 111 4.3 2.6
997 - 998 25.55 3.98 9.70 -22.15 4.45 0.36 73 829 145 111 4.8 4,0

1002 - 1003 24.28 4.15 10 22 -22.57 4.62 0.37 73 552 151 118 4.7 2.8
1007 - 1008 23.33 4.26 1020 -22.65 4 85 0.39 82 893 157 126 3.9 1.8
1012 - 1013 23.43 4.19 10.28 -22.71 4.78 0.38 30 898 154 122 4.9 2.5
1017 - 1018 25.44 4.30 10 03 -22.62 5.09 0.41 85 929 157 130 4 7 0.7
1022 - 1023 28.52 4.28 10.07 -22.65 4.93 0.40 84 922 159 125 3.7 3.C
1027 - 1028 29.39 4.30 9.92 -22.57 4.88 0.40 85 883 155 129 3.5 2.5
1032 - 1033 26.21 4.26 3 79 -22.33 4.78 0.39 82 867 155 125 3.5 3.2
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Appendix 4.3 (continued)__________________ _____ ________________
!sotopic and biogeochemical data Sedimentary Inorganic geochemical data
Sample depth Opal TOC C/N ratio 6 “C Al Ti Zr Mr. V Cr Mo U

(cm bsf) fwt%) (wt%) (%t>. VPDB) (Wt%l (Wt%| (Dpm) (ppm) (ppm) (oom) t'opm) (porrO

1037 - 1038 25.06 4,31 10.19 -21.97 4.65 0.38 81 852 148 123 3 1 2 8
1042 - 1043 29.69 4.35 3.82 -22.08 4.73 0.39 82 667 153 130 3.5 2 3
1047 - 1048 26.55 4.13 9.97 -22.31 4.77 0.39 81 875 154 124 3.7 3.2
1052 - 1053 29.81 4.29 9.78 -22.33 4.69 0.39 83 875 150 121 3.0 2.4
1057 - 1058 26.04 4.12 9.84 -21.87 4.59 0.38 81 833 152 124 3.0 2.9
1062 - 1053 24.41 4.19 9.87 -21.78 4.65 0.33 80 506 152 124 2.3 2.2
1067 - 1068 29.23 4.05 10.09 -21.38 4.68 0.39 83 833 154 127 4.1 1.5
1072 - 1073 23.27 3.89 10.09 -21.97 4.63 0.38 82 883 151 121 4.5 1.2
1077 - 1078 24.52 3.98 10 00 -21.91 4.77 0.39 80 860 151 118 4.9 1.7
1082 - 1033 23.74 3.97 10.09 -21.84 4.81 0.39 82 867 154 121 4.9 3 5
1087 - 1088 25.90 4.03 10.15 -22.04 5.06 0.40 84 898 157 128 4 5 4 2
10S2 - 1093 24.19 4.06 9 81 -21.93 5 10 0.41 85 906 165 129 4.1 3.2
1097 - 1098 22.51 3.68 10.10 -21,97 5.02 0.40 84 898 153 129 3 8 2.6
1102 - 1103 27.44 3.74 10.10 -22.01 4.94 0.40 83 891 162 127 4.2 3 5
1107 - 1108 28.93 3.72 10.17 -22.10 4.95 0.40 83 906 158 124 3.5 2.5
1112 - 1113 27.80 3.54 10.24 -22.00 4 99 0.40 83 598 158 120 3.0 2 4
1117 - 1113 31.60 3.46 10.28 -22.04 4.93 0.39 S3 898 156 124 3.5 2.5
1122 - 1123 26.59 3.62 10.23 -21.99 4.78 0.39 80 891 155 124 6.3 3.2
1127 - 1128 26.45 3.73 10.35 -21.92 4 72 0.39 80 906 151 119 5.0 2 2
1132 - 1133 28.56 3.84 10.30 -21.90 4.64 0.37 77 S02 149 120 4.3 2.2
1137 - 1138 28.62 3.55 10.27 -22.01 4.62 0.37 77 905 152 120 6.4 1 8
1142 - 1143 26.83 3.98 9 93 -22.04 4.85 0.40 82 937 158 130 7.1 3 4
1147 - 1148 29 85 4.05 9.83 -22.11 4.70 0.38 78 891 150 129 6.1 3.0
1152 - 1153 24.54 3.88 10.08 -21.93 4.67 0.38 79 879 143 121 6.0 3.7
1157 - 1158 25.35 3.80 10.20 -22.08 4.85 0.39 30 914 156 124 6.0 3.4
1162 - 1163 25.51 3.84 10.02 -21.90 4.76 0.39 80 906 153 127 3.8 2 6
1167 - 1168 25.87 3.70 10.22 -22.03 4.68 0.38 80 883 147 115 3.5 2.7
1172 - 1173 27.51 3.81 9.95 -21.74 4.56 0.37 79 860 142 113 3.9 1.7
1177 - 1178 24.28 3.89 9.99 -21.76 4.89 0.39 82 S22 153 121 4.3 1.7
1182 - 1183 27.12 3.86 9.90 -21.78 4.87 0.39 83 914 151 124 4.3 2.1.
1187 - 1188 28.73 4.09 a.72 -21.12 4.87 0.40 82 937 153 128 3.2 2.1
1194 - 1-195 27 18 3.86 10.21 -22.05 4.74 0.39 79 922 148 124 4.0 2 0
1197 - '1198 30.33 3.93 10 06 -21.84 4,71 0.38 73 898 151 121 4.2 14
1202 - 1203 29.85 4.05 10.05 -21.79 4.63 0.40 80 945 143 127 6.3 2.0
1207 - 1208 32.20 4.05 10.00 -21.91 4.56 0.38 79 898 149 118 S.O 2.7
1217 - 1213 27.66 3 85 9.75 -21.84 4 64 0.38 79 891 148 119 4.6 3 2
1222 - 1223 25.41 3.91 10.14 -22.15 4.60 0.38 78 691 147 120 5.8 2.2
1227 - 1228 23.36 3.91 10 21 -22.22 4.47 0.36 77 560 139 118 4.2 3.1
1232 - 1233 24.18 3.95 10.10 -22.16 4.73 0.39 81 906 147 118 5.1 4.4
I237 - 1238 3.92 10.25 -21.80 4.63 0.39 81 898 147 118 3.5 1.9
1242 - 1243 26.8C 3.73 10.27 -21 88 4.74 0.40 81 914 150 120 4.7 1 7
1247 - 1248 26.54 3.83 10.22 -21.91 4.8-3 0.40 85 937 151 125 3.3 1.2
1252 - 1253 25.22 3.98 10.39 •21.96 4.87 0.40 35 968 155 127 3.4 1.9
1257 - 1253 22.64 4.17 10.17 -22.68 4.79 0 4 0 82 937 151 122 5.1 2 8
1262 - 1263 22.16 4.07 10.25 -22.41 4.84 0.40 84 1022 154 125 4.7 2.4
1267 - 1258 23.38 3.94 10.43 -22.21 4.73 0.40 81 937 153 124 4.4 2 7
1272 - 1273 28.53 4 23 9.71 -21 91 4.68 0.39 80 991 148 120 4.3 2.0
1277 - 1273 28.45 3.95 9 37 -21 88 4 88 0.41 87 922 156 128 4.1 1 9
1202 - 1283 27.02 4.12 9 57 -21.73 4 92 0.41 88 922 154 127 4.0 2.7
1287 - 1288 26.74 3.93 10.02 -22.07 4.59 0.38 80 898 143 119 2.7 3 3
1292 - 1293 24 22 3.96 9 8 8 -21.92 4.77 0.40 83 929 148 121 4.0 1.9
1297 - 1298 24.11 3.91 3.94 -21.92 4.90 0.40 84 922 155 121 3.3 1.3
1302 - 1303 23.94 3.77 10.10 -21.84 4.93 0.40 84 929 151 124 3.2 2.6
1307 - 1303 26.58 3 95 10.10 -22.09 4.72 0.39 83 898 150 121 3.6 1 6
1312 - 1313 25.59 3.88 10 04 -21.95 4.S3 0.41 87 929 155 128 3.3 15
1317 - 1318 22.35 3.91 10.13 -22.13 4.87 0.41 85 945 154 128 3 5 1.6
1322 - 1323 22.42 4 11 591 -21.97 4.85 0.40 83 914 152 127 2.9 2 1
1327 - 1328 24 87 3.61 10.53 -22.11 4 89 0.41 35 914 152 126 3.2 1.4
1332 - 1333 24 05 3 61 1044 -22.22 4 94 0 41 85 906 155 131 3.2 I 7
1337 - 1338 19.32 3.95 10 35 -22.21 4 97 0.4! 86 937 155 124 3.9 1.9
1342 - 1343 20.38 3.74 10.68 -21 99 5.05 0.42 89 945 159 141 3.1 2.4
1347 . 1348 25.36 4.12 1021 -22.15 5 16 0.43 91 953 159 134 3 5 2.1
1352 - 1353 24.81 4.00 10.00 -22.14 5.11 0.43 9 1 937 156 135 3.4 1.9
1357 - 1358 20.72 4.24 g 92 -22.11 5 29 0.43 91 953 160 131 4.2 1.1
1362 - 1363 24 38 3.99 9.78 ■21.68 5 09 0.42 90 922 155 131 4 6 4 0
1367 - 1368 23.90 3.93 10 28 -22.10 5.20 0.42 88 960 163 131 4.8 1.7
1372 - 1373 25.36 4.02 9.85 -21.64 5.26 0.43 91 S60 161 130 5.8 3 1
1377 - 1378 24 23 4.03 10 15 -22.18 5.CO 0.42 90 922 1 56 131 3.8 2 3
1382 - 1383 25 72 4.05 9 75 -21.89 4.99 0.41 87 929 157 133 4 7 3 3
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Appendix 4.3 (continued)
Isotopic and biogeochemical data 
Sample depth Opai TOC 

(cm bsf) (wt%1 (wt%)
C/N ratio

Sedimentary
■5’2C 

( V  VPDB)

Inorganic geochemical data 
Ai Ti Zr Mn 

fwt%) fwt%) (opm) (ppm)
V

fppm)
Cr

/opm)
Mo

(DDm)
U

I'pom

1387 - 1388 23.29 4.04 10.07 -21.99 5.11 0.41 87 937 153 132 4 3 1.7
1392 - 1393 22.51 4.10 10.31 '22.67 5.08 0.42 87 937 154 133 4.2 4.0
1397 - 1398 21.59 3.91 10 36 -22.78 4.81 0.40 83 891 148 127 6.2 2.8
1402 - 1403 27 06 3.75 10.33 -22.22 4.81 0.40 83 953 151 124 4.5 2.7
1407 - 1408 26.59 3.38 10.2.7 ■22.25 5.03 0.41 85 968 157 125 S 3 2.0
1412 - 1413 24.02 3.80 10.20 -22.12 4.64 0.41 84 945 159 134 3.2 4.4
1417 - 1418 23.59 3.83 10.22 -22.05 4.74 0.39 80 914 143 127 5.9 3.4
1422 - 1423 27.19 3.95 9.87 -21.86 4.77 0.40 84 914 151 126 5.2 2.3
1427 - 1428 29.85 3 98 9.92 -21.90 4 95 0.41 84 929 153 123 3.7 3 0
1432 - 1433 24.40 4.16 9.89 -21.92 5 01 0.42. 89 960 153 131 3.2 2.0
1437 - 1433 22.22 4.12 9.97 -21.93 4.78 0.40 85 914 150 131 3.2 1 6
1442 - 1443 24.58 3.89 10.01 -22.02 4.31 0.40 83 698 146 124 2.0 2.1
1447 - 1448 29.77 4 03 9 92 -21.80 4 88 0.41 84 914 148 129 3.4 1 5
1452 - 1453 35.82 3.95 9.67 -21.76 4.82 0.40 85 898 147 128 3.2 1,7
1457 - 1458 33.36 4 00 9 79 -21.91 4 33 0.40 86 906 154 136 2.4 2 2
1462 - 1463 28.87 3.96 9.75 -21.77 4.45 0.40 86 898 148 130 4.4 2.4
1467 - 1468 25.96 3.85 9.87 -22.07 3 87 0.34 74 798 129 112 2.7 1.9
1472 - 1473 26.22 3.85 10.06 -21.98 4.28 0.37 76 844 139 125 3.7 2.0
1477 - 1478 27.82 4.13 tO 15 -22.19 4 43 0.38 80 844 144 127 5.0 2.5
1482 - 1483 25.65 3.67 10.13 -21.89 4 28 0.37 78 613 134 121 3.8 13
1487 - 1488 28.06 3.94 9.81 -21.85 4.58 0.39 83 883 14Q 125 3.4 1.3
1492 - 1493 24.41 4.13 10.00 -22.03 4.65 0.42 38 883 151 136 2.9 1.9
1497 - 1498 24.08 4.00 9.92 -21.88 4.84 0.41 85 960 149 131 3.2 2.3
1502 - 1503 24.86 3.96 9.95 -21.95 4.72 0.40 84 883 152 132 2.6 2 3
1507 - 1508 28.44 4.27 10.02 -22.12 4.77 0.41 87 906 153 135 3.3 2.7
1512 - 1513 28.13 4.07 9.77 •21.85 4.70 0.40 84 906 149 123 2.6 3.5
1517 - 1518 28.17 4.26 10.02 -22.67 4.71 0.41 86 906 149 134 2.8 1 2
1522 - 1523 28.61 3.82 10.14 -22.49 4.78 0.40 86 906 149 128 2.8 1.4
1527 - 1528 30.85 4.31 9.99 -22.34 4.70 0.40 85 898 145 129 3.0 2.0
1532 - 1533 28.19 4.16 10.12 -22.34 4.49 0.38 80 883 140 118 5.0 2.2
1537 - 1538 29.33 3.93 9.79 -21.34 4.39 0.37 80 652 138 116 4.7 3 9
1542 - 1543 27.65 4.18 10.17 -21.93 421 0.37 73 867 136 116 5.3 1 5
1547 - 1548 27.18 4.01 9.94 -21.54 4.27 0.36 79 867 138 113 5.3 1.1
1552 - 1553 26.79 4.13 10.25 -22.07 4.37 0.37 79 860 137 119 5.0 3.6
1557 - 1558 29.69 4.10 S.78 -21.35 4.51 0.39 85 883 143 123 4.0 2 0
1562 - 1563 28.45 4 26 9.90 -21.66 4.56 0.40 85 691 142 125 3 3 1.1
1567 - 1568 26.76 4.07 9.79 -21.40 4.57 0.40 85 906 145 130 3.2 1.3
1572 - 1573 24.46 4.19 10.20 -21.93 4.38 0.40 84 898 144 127 3.3 2.7
1577 - 1578 27.97 4.23 10.27 -21.66 4.43 0.39 34 883 144 121 3.3 2.0
1582 - 1583 22 93 4.04 9 92 -21.52 4 68 0.41 86 914 151 125 4.0 2 2
1587 - 1588 28.71 4.15 10.11 -21.99 4.65 0.40 85 875 144 124 4.8 2.6
1592 - 1593 26.10 3.83 10.10 -22.06 4.63 0.40 85 898 144 129 4.4 2.3
1597 - 1598 25.54 3.76 10.27 -22.25 4.64 0.41 86 883 146 133 4.5 2.1
1602 - 1603 21.53 3.75 10 17 -22.27 4 44 0.39 83 860 144 119 4.1 1.9
1607 - 1608 22.03 3.61 10.27 ■22.20 4.67 0.40 87 898 148 134 4.3 2.8
1512 - 1613 17.29 3.44 10.61 -22 57 4 89 0.42 90 937 157 139 3.5 3 6
1517 - 1618 17.98 3.29 10.84 -22.70 4.S4 0.43 91 945 156 140 2.9 3.0
1622 - 1623 22.10 3.63 1046 -22.31 5.09 0.44 93 953 167 141 3.1 1.4
1627 - 1628 30.10 5.04 12.87 -23.94 5.34 0.47 98 1022 171 155 2.8 0.9
1632 - 1633 27.76 3.99 10.06 -21.80 5.38 0.43 99 1038 175 158 2 9 3 2
1637 - 1633 29.79 3.84 10.05 -21.87 4.93 0.44 95 953 158 140 3.5 2.1
1642 - 1643 27.49 3.99 10.06 -21.81 4.39 0.38 80 883 143 127 4.0
1647 - 1648 27.18 4.09 10.27 -22.49 4.35 0.38 31 883 137 125 3.8 2.1
1552 - 1653 32.61 4.03 9.82 -21.59 4 43 0.37 79 883 135 126 3.3 2.0
1557 * 1658 29.07 4 04 9.94 -21.53 4.42 0.38 79 898 142 123 3 8
1662 - 1663 25.57 3.85 5 86 -21.44 4.45 0.38 81 883 137 120 3.4 2.3
1667 - 1668 26.96 3.98 9,93 -21.35 4.57 0.39 83 883 140 128 3.9 2.4
1672 - 1673 32.04 3.91 9.92 -21.67 4,58 0.39 83 898 140 129 4.7 2 2
1577 - 1678 25.44 3.58 9 88 -22.10 4.64 0.39 83 875 139 125 3.2 1 1
1682 - 1683 32.70 3.81 S.67 -21.39 4.72 0.40 86 891 144 129 3.6 1 7
1687 - 1688 35 53 4.06 1000 -22 12 4.63 0.39 83 860 141 127 3.7 1 9
1592 - 1693 27.75 3.97 9 91 -22.13 4.59 0.39 87 844 135 121 3 2 17
1597 - 1698 31.85 3.70 9.70 -21.93 4.60 9.39 83 891 138 126 4.3 1.5
1702 - 1703 29 87 3.85 S.68 -21.75 4.59 0.40 85 89S 148 129 3.6 1.8
1707 - 1708 27.75 3.60 9.70 -22.07 4.12 0.39 83 875 145 126 2 5 3.1
1712 - 1713 32.29 3.68 9.65 -21.92 4 27 0.40 87 675 143 126 4.0 2 6
1717 - 1718 33.93 3.91 9.87 -22.50 4.22 0.39 86 833 144 129 3.9 3.7
1722 - 1723 35.53 4.05 10.23 -22.83 4.59 0.38 83 860 138 122 4.1 2.9
1727 - 1728 31.32 3.91 9.65 -21.95 4.48 0.33 81 875 13o 120 3 4 1.7
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Appendix 4.3 (continued)
Isotopic and biogeochemical data Sedimentary Inorganic geochemical data

Sample depth Opal TOC C/N ratio »V3C Al Ti Zr Mn V Cr Mo U
(cm bsf) fwt%) (%o. VPDB) ivvt%) fwt%) (Dom) loom) (pom) (Dom) (ppm) (oom}

1732 - 1733 29.68 3 98 9.54 -21.83 4.35 0.37 80 844 136 115 3.4 3 1
1737 - 1738 31.06 4.05 9.87 -22.26 3.95 0.38 82 875 142 119 3.5 1.7
1742 - 1743 30.52 3.98 9.95 -22.31 3.92 0.38 82 852 135 118 3.6 2 6
1747 - 1748 37 45 4.02 9.76 -22.14 4.12 0.39 84 891 144 117 4.1 1.9
1752 - 1753 27.89 3.72 9.77 -22.10 4.13 0.39 85 698 145 119 5.5 1 8
1757 - 1758 29.35 3.97 11.13 -23.03 4.14 0.40 87 914 147 122 4.6 1.0
1762 . 1763 32.54 3.95 10.08 -21.49 4.22 0.39 84 883 145 118 4.0 1 5
1767 - 1768 34.36 3.79 9.65 -21.31 4.25 0.39 86 922 142 124 3.8 0.8
1772 - 1773 30.73 4.09 9.83 -21.38 4.20 0.38 85 893 144 120 3.3 2.9
1777 - 1778 30.06 4.09 9.39 -22.00 4.18 0.39 84 898 144 129 3.1 2 4
1782 - 1783 29.30 4.10 9.S6 -22.01 4.08 0.39 84 398 138 119 3 2
1787 - 1783 29.90 4.08 10.07 -21.93 4.26 0.40 87 922 148 122 3.5 1.1
1792 - 1793 24.89 3.84 10.12 -21.97 4.14 0.40 87 391 144 125 3.7 13
1797 - 1793 30 64 3.94 9.94 -21.98 4.31 0.40 88 898 149 126 3.0 1 9
1802 - 1803 25.90 3.96 9.99 -22.37 4.25 0.40 88 391 147 126 4.0 1 8
1807 - 1803 30.59 3.84 10.12 -22.32 4.14 0.38 87 852 143 124 3.4 0.9
1812 - 1813 30.78 3.85 9.92 -22.31 4.04 0.38 81 852 133 115 4.6 1.7
1617 - 1818 29.53 4.00 9.90 -22.40 4.07 0.37 81 391 139 113 5.5 2.6
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Appendix 4.4 EW0408-44JC biogeochemicai data. Sample depths corrected for gas expansion and 
overlap with EW0408-43MC as described in the text. ________________________________________________

Corrected Sedimentary Corrected Sedimentary
sampie depth 

(cm bsf)
Opal

fwi%)
TOC
(wt%)

C/N ratio 6i3C 
( V  VPDB)

sample depth 
(cm bsf)

Opal
fwt%)

TOC C/N ratio 5 ’3C 
( V  VPDB)

25 - 26 68.75 8.27 9.15 -21.21 575 - 576 52.59 8.34 8.45 -20.66
27 - 28 60.77 8.54 S.95 *22.12 593 - 594 51 74 9.33 9.80 -21.38
33 - 34 60.42 8.89 9.17 -21.28 600 - 601 70 15 8.91 9.00 -20.95
37 - 38 63.68 9.52 8.71 -20.62 608 - 609 70.14 9.00 9.24 -21.09
42 - 43 64.02 8.30 8.30 -20.25 626 - 627 80.87 9.82 10.62 -22.10
43 - 44 64.65 8.90 8..97 -21.31 645 - 646 68.75 9.17 8.60 -20.74
46 - 47 60.41 9.40 9.54 -21.57 663 - 664 57.92 9 13 9.09 -21 34
51 - 52 54.83 10.09 9 07 -20.77 679 - 680 64.74 9.07 8.94 -20.86
52 - 53 52.88 9.78 9 82 -22.15 695 - 695 57.08 B 75 8.67 -20.80
55 - 56 53 70 9.19 9.54 -21.19 705 - 706 71.13 8.10 9.33 -21.32
58 - 59 54.85 9.99 9.19 -20.61 720 - 721 34.69 12.02 18.55 -24.67
62 - 63 57.11 9.29 9.33 -21.88 729 - 730 74.78 7 57 8.84 -20.97
63 - 64 58.74 8.88 9.05 -20.72 749 - 750 64 67 8.20 9.31 -21.40
67 - 68 61.82 9.63 8.93 -20.60 769 - 770 84.57 6.72 7.82 -19.91
72 - 73 71.68 7.71 8.21 -19.79 789 - 790 21.20 16.44 28.80 -26.05
75 - 76 65.73 8.78 8 96 -20.69 809 - 810 64.87 8.18 9.78 -21.57
79 - 80 60.28 9.60 8.90 -21.41 829 - 830 63.46 9.42 9.72 -21.32
80 - 81 61.41 8.74 8.73 •20.54 849 - 650 76.54 8.53 9.23 -21.12
84 - 85 65.14 7.98 8.80 -20.56 859 - 860 73.39 7.32 8.56 -21.03
89 - 90 73.72 7.73 8.50 -20.07 869 - 870 65.42 7.56 8.92 -21.36
92 - 93 64.73 8.89 8.71 -20.27 889 - 890 55.17 8.42 9.07 -21.19
96 - 97 69.21 7.98 3.71 -20.49 909 - 910 61 58 8.37 9.59 -21 53
97 - 98 63.98 9.02 8.86 -20.89 929 - 930 64.88 8.07 9.21 -21.35

101 - 102 62.13 9.05 S.02 -20.62 949 - 950 67.85 8.19 9.27 -21.46
105 - 106 66.04 8.52 8.63 -20.27 969 - 970 74.56 8 18 8.97 -20 94
110 - 111 58.72 8.19 9.14 -20.85 986 - 987 66 39 8.34 9.24 -21.53
114 - 115 68.21 7.82 9.10 -21 56 992 - 993 68.72 8.31 8.89 -21 22
115 - 116 57.89 7.98 9.03 -20.78 1002 - 1003 70.83 5 82 9.38 -21.72
120 - 121 70.35 7.31 8.65 -20.44 1022 - 1023 60.76 9.58 9.90 -22.19
125 - 126 63.19 8.15 9.20 -21.05 1042 - 1043 63.37 8.89 9.37 -21.58
130 • 131 63.25 8.48 9.02 -20.65 1062 - 1063 69.38 8.34 9.08 -21.80
134 - 135 67.19 7.97 9.09 -21.47 1077 - 1076 59.25 8.72 9.65 -21.83
135 - 135 70.72 7.55 8.71 -20.77 10S7 - 1098 57.30 8.99 9.57 -21.73
140 * 141 72.27 7.55 8.61 -20.41 1117 - 1118 64,27 8.26 S.42 -21.62
141 - 142 62.20 8.94 8.77 -21.49 1124 - 1125 70.92 7.49 8.80 -21.10
148 - 149 55.34 9.75 9.42 -21.94 1130 - 1131 71 28 7 83 9.11 -21.33
157 - 158 55.42 9.69 9.05 -21.46 1148 - 1149 56.59 8.35 9.79 -22.07
169 - 170 68.18 9.17 8.84 -21.23 1 168 - 1169 46.70 8.22 10.38 -22.32
185 - 186 68 59 8.61 9.25 -21.49 1183 - 1189 62.68 8.04 9.94 -22.01
202 - 203 73.99 8.40 8.87 -21.09 1206 - 1207 59.54 9.41 9.52 -21.39
211 - 212 58 24 9.82 9.26 -21.81 1227 - 1228 83.36 5.94 8 77 -20.33
2 17- 218 62.94 3.67 9.12 -21 73 1246 - 1247 60.94 8.07 9.15 -21.44
229 - 230 63.35 8.97 9.01 -21.66 1266 - 1267 69.53 7.77 8.96 -20 81
239 - 240 57.12 8.40 8.82 -21.30 1270 - 1271 60 35 7.55 9.25 -21.09
257 - 258 62.01 9.02 9.03 -21.66 1280 - 1281 61.74 7.77 8.53 -20.86
275 - 276 55.28 9.64 9.32 -21.64 1300 - 1301 78.05 6 65 9.34 -20.91
280 - 281 61 72 9.12 9.09 -21.49 1320 - 1321 59.03 7.75 9.05 -20.92
300 - 301 59.96 9.30 9.11 -21.87 1339 - 1340 58 19 6.92 9.87 -21.61
320 • 321 58.43 9.95 8.95 -21.66 1358 - 1359 62.22 6.35 8.95 -20.63
340 - 341 60.80 9.33 9.80 -21.58 1378 - 1379 61.64 7.32 9.20 -20.70
360 - 361 58.74 9.87 9.95 -22.19 1398 - 13S9 58.84 8.55 10.34 -21.83
371 - 372 45.58 11.55 11.35 -23.28 1401 - 1402 38 47 11.24 14.70 -23.99
378 - 379 62.75 9.56 8.64 -21.38 1413 - 1414 60.25 6.76 9.24 -20.97
398 - 399 54.04 8.42 8.84 -21.25 1419 - 1420 69.24 7.19 8.95 -20.64
418 * 419 68.71 8.46 8.33 -20.61 1439 - 1440 74.89 6.50 9.03 -20.48
438 - 439 55 50 8.72 9 72 -21.87 1459 - 1450 71.77 7.32 S.03 -20 72
458 - 459 72.99 7.40 8.50 -20.47 1478 - 1479 59 42 6.63 9.42 -21.34
473 - 474 78 22 7.35 8.35 -20 40 1494 - 1495 6365 7.36 9.89 -21.27
476 - 477 77.51 7.16 8.56 -20 48 15C7 - 1508 60.22 7.76 S.81 -21.62
435 - 486 67.14 7.83 8.50 -20.70 1526 - 1527 68.63 7.14 10 35 -21.37
495 - 496 60.90 8.62 8.64 -21 07 1546 - 1547 82 32 6 29 878 -20.33
515 - 516 76 44 6.94 8.52 -20 80 1550 - 1551 69 25 6.S6 3.54 -20 76
535 - 536 64.46 8.37 9.26 -21 46 1554 - 1555 73.97 6.76 8.35 -20.50
555 - 556 70.00 8.e2 9.24 -21.12 1557 - 1553 69.07 7.33 8.53 -20.76



Appendix 4.5: EW 0408-11JC downcore productivity proxies.
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Appendix 4.6: EW 0408-22JC downcore productivity proxies.
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Appendix 4.7: EW 0408-33JC downcore productivity proxies.
EW0408-33JC Bulk MAR (g/cm^yr) Opai (wt%)
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Appendix 4.8: EW 0408-44JC downcore productivity proxies.
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Chapter 5 Decoupling of the coastal marine ecosystem and glaciomarine 

Cordilleran Ice Sheet dynamics in the Gulf of Alaska during the Last Glacial

M aximum/Holocene transition1

5.1 Abstract

Environmental conditions in the Subarctic Northeast Pacific Ocean (SNPO) are an 

important component o f North American climate patterns, as well as a potential driver o f 

Northern Hemisphere climate variability. The SNPO is also the terminus o f modem 

global thermohaline circulation. Paleoceanographic records from the SNPO thus have 

the potential to preserve detailed evidence o f both climate forcing and response on 

regional and global scales. Paleoproductivity, biogeochemical, and mineralogical data 

are presented from a well-dated, high-resolution jum bo piston core (EW0408-85JC) 

recovered from the northern G ulf o f Alaska continental slope at 682 m water depth. 

Holocene productivity proxies are consistently higher than those o f the Last Glacial 

Maximum (LGM) and the Younger Dryas, with maxima associated with the deglacial 

Bolling-Allerod (B-A) and the early Holocene Preboreal Oscillation. The B-A interval is 

laminated, and enrichments o f redox-sensitive elements are present, suggesting 

productivity-driven dysoxic-to-anoxic conditions in the water column. These laminations 

are also associated with an increase in total iron concentrations and enriched sedimentary 

5 15N ratios, suggesting a link between productivity, N cycle dynamics and micronutrient 

availability. Similar laminations and/or abruptly elevated B-A productivity trends have 

been observed during the deglacial transition in other continental margin settings of 

North America, as well as in the Cariaco Basin in the Atlantic, indicative o f  a systematic 

marine response to a large-scale atmospheric forcing. However, refractory element 

provenance analysis in EW0408-85JC indicates that terrestrial sediment sources

'Addison, J.A., B.P. Finney, W.E. Dean, and M.H. Davies, (2009), prepared for 

submission to Paleoceanography
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were similar during both the LGM and B-A. This temporal decoupling between biogenic 

and terrigenous sedimentation during the Holocene/LGM transition is likely associated 

with a slow Cordilleran Icesheet response to rapid changes in the North Pacific thermal 

regime.

5.2 Introduction

Strong evidence exists for modulation o f past climate by atmospheric CO2 

concentrations (pCCL) at glacial and interglacial timescales [Petit et al., 1999], The 

biosphere is thought to be a major control on pC O i levels, with the marine ecosystem 

component o f this biological C pump appearing to exert the dominant influence on these 

timescales. Data linking primary productivity fluctuations with paleoenvironmental 

forcing mechanisms remain inconclusive however. Changes in delivery o f iron bound in 

aeolian sediment to micronutrient limited regions o f the world ocean is a favored 

hypothesis to induce large marine productivity changes [Martin, 1990], Several studies 

o f artificial iron seeding in the Southern [Coale et al., 2004] and North Pacific Oceans 

[Boydet a l ,  2004] support the Fe-limitation hypothesis. Indirect evidence is also 

provided by terrestrial paleoclimate studies [e.g. Beget, 2001] and GCM results 

[Kutzbach et al., 1998] that show large continental areas were both more arid and 

susceptible to enhanced aeolian erosion during glacial stades relative to present. Several 

recent studies indicate that Fe delivered to the ocean via aeolian deposition is less soluble 

than Fe associated with other transport modes [Schroth et al., 2009], and thus less 

bioavailable for primary producers. These observations therefore suggest additional 

sources o f Fe beyond aeolian dust input may be necessary to initiate large basin-scale 

increases in primary productivity to adequately reconcile proposed changes in the marine 

biological C pump and atmospheric p C O2 .

The North Pacific Ocean (Fig. 5.1a) is the largest high-nutrient-low-chlorophyll 

(HNLC) region in the Northern Hemisphere, and the productivity in this area is largely 

iron-limited [Harrison et al., 1999], In contrast, the coastal regions o f both the Northeast 

and Northwest Pacific are macronutrient-limited (e.g. nitrate, silicic acid) [Whitney et al., 

2005], Cross-shelf exchange o f water masses between the shallow and deep basinal
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waters is the chief mechanism underlying the high seasonal productivity observed in the 

North Pacific [Ladd et al., 2005], Hydrographic time-series data in the northern G ulf o f 

Alaska show an onshore nutrient flux below a prominent halocline forced by increased 

freshwater discharge during the spring and summer [Weingartner et al., 2005], and that 

subsequent intense vertical mixing by winter storms bring these nutrients into the 

euphotic zone, where they are then completely utilized during the spring phytoplankton 

bloom [Childers et al., 2005], W ater column iron concentrations along a transect from 

the Northeast Pacific shelf to the deep basin show orders o f magnitude greater iron 

concentrations in shelf waters derived from fluvial sources [Nishioka et al., 2001]. 

Additionally, seasonal measurements o f water column iron concentrations offshore from 

river mouths along the Northeast Pacific margin indicate shelf accumulation o f iron- 

bearing flocculants during the high-flow season, with subsequent release o f this bound 

iron to the euphotic zone during periods o f relaxed stratification [Chase et al., 2007], 

Finally, mesoscale eddies that form in the coastal areas and spin out into the open 

Northeast Pacific lead to large-scale increases in productivity due to transport o f this 

continentally-derived iron into the HNLC zone [.Johnson et al., 2005],

These observations suggest strong linkages between hydrography, nutrient 

availability, and productivity exist in the North Pacific Ocean. In this report, a high- 

resolution proxy record o f paleoproductivity that spans the last 18 calibrated kiloyears 

before present (cal kyr BP) is examined, in conjunction with a suite o f geochemical and 

mineralogical assays from the continental slope o f the northern G ulf o f Alaska (Fig. 

5.1b). In particular, the relationship between primary productivity, iron availability, and 

nutrient cycling during the LGM /Holocene transition is highlighted.

5.2.1 M odem  en vironment and paleoceanograph ic setting

The G ulf o f Alaska is bordered along its eastern and northern margins by the St. 

Elias, Wrangell, and Chugach Mountain Ranges; these high-relief features contribute to 

making this margin a location o f extreme precipitation, exceeding 2 - 4  m/yr 

[Weingartner, 2005], In turn, this precipitation drives a highly effective glacial erosion 

system with denudation rates exceeding 1 0  mm/yr with minimal terrestrial sediment
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storage [Hallet et al., 1996]. Correspondingly, the Copper. Susitna, and Stikine Rivers 

along the G ulf o f Alaska margin collectively drain <4% of the area o f the Mississippi 

River valley, yet discharge nearly a third as much sediment [Milliman and Syvitski,

1992], Terrestrial-derived marine sediment accumulation rates are thus relatively high, 

ranging from 0.02 - 20 cm/yr [Jaeger et al., 1998; Ullrich et al., 2009],

Ocean circulation in the G ulf o f Alaska is dominated by a dynamic atmosphere- 

ocean linkage between the Aleutian Low (AL) pressure cell and the Alaska Gyre (Fig.

5.1). During the winter months (e.g. November to March), the statistical center o f the AL 

is located over the central G ulf o f Alaska, where it favors: (i) enhanced upwelling in the 

HNLC Alaska Gyre; and (ii) vigorous vertical mixing by winter storms [Rodionov et al., 

2005; Rodionov et al., 2007]. The spring and summer seasons (e.g. April -  September) 

see a relaxation in the AL and the resumption o f a strongly stratified water column forced 

by the spring freshet and enhanced thermal warming o f the upper water column [Mundy 

and Olsson, 2005],

Seasonal atmospheric dynamics in the G ulf o f Alaska are controlled by the 

position and intensity o f the AL [Mundy and Olsson, 2005]. During the winter, when the 

AL is located over the G ulf o f Alaska, it reduces sea surface temperature (SST) and sea 

level pressure (SLP), increases precipitation, and intensifies the northeastern Pacific 

storm track [Trenberth and Hurrell, 1994; Rodionov et al., 2007]. The AL-driven SLP 

reduction leads to enhanced upwelling in the Alaska Gyre [Harrison et al., 1999], 

Cyclonic Alaska Gyre circulation leads to horizontal advection o f shallow nutrient-rich 

water towards the continental shelf o f the G ulf o f Alaska where it contributes to large 

phytoplankton blooms in the spring and summer [Childers et al., 2005], Concurrent with 

the spring bloom is the seasonal freshet along the margin when freshwater discharge into 

the G ulf o f Alaska is high, and is entrained in the Alaska Coastal Current [Royer, 2005], 

The summer runoff maxima thus reflects atmospheric conditions driven by the preceding 

wintertime AL [Royer et al., 2001],

The G ulf o f Alaska is an integral component o f the global ocean-atmosphere 

system. Environmental conditions within this region have been linked with decadal-scale
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atmospheric variability patterns that affect Northern Hemisphere temperature and 

precipitation regimes as distant as the Atlantic coast o f the southeastern United States 

[Wallace and Gutzler, 1981; Trenberth andH urrell, 1994; Royer et al., 2001], and the 

Sonoran Desert in northern Mexico [Carleton et al., 1990; Higgins and Shi, 2000], The 

Subarctic North Pacific Ocean is also viewed as the terminus o f the global thermohaline 

circulation [Stommel, 1958; Broecker, 1991], thus linking it to circulation changes in the 

world ocean. Collectively, these observations serve to indicate that paleoceanographic 

records from the G ulf o f Alaska have the potential to preserve evidence of both climate 

forcing and response on regional and global scales. However, there are relatively few 

high-resolution records o f the paleoceanographic development o f the G ulf o f Alaska 

since the Last Glacial Maximum (LGM). This lack o f data is compounded by a complex 

LGM environment that has no modem analogue that incorporates (i) more than 3,500 

kilometers o f coastline engulfed by the Cordilleran Ice Sheet (CIS) [Kaufman and  

Manley, 2004], (ii) complex relative and eustatic sea level changes associated with a 

tectonically-active margin [Gulick and Jaeger, 2003], and (iii) a re-organization o f North 

Pacific Ocean circulation due to the LGM closure o f the Bering Strait and the emergence 

o f central Beringia [Hopkins, 1959].

The limited paleoceanographic data available from the G ulf o f  Alaska is primarily 

associated with DSDP Leg 18 [Kulm et al., 1973], activities connected with ODP Site 

887 [Rea et al., 1995], and investigations o f the Outer Continental Shelf Environmental 

Assessment Program [e.g. Molnia, 1982], The ODP Site 887 has provided a well- 

resolved millennial-scale record o f pelagic sedimentation [Rea and Snoeckx, 1995], 

productivity [McDonald et al., 1999], and nutrient cycling [Galbraith et al., 2007; 

Galbraith et al., 2008a] for the last 750 kyr. In addition, cores collected during cruise 

PAR87A from the Patton-Murray Seamounts (ODP Site 887) preserve detailed sub- 

millenial patterns o f G ulf o f Alaska paleoceanographic change from the LGM and 

Holocene [De Vernal and Pedersen, 1997]. Collectively, these studies indicate the LGM 

G ulf o f Alaska was cooler, experienced a high ice-rafting sediment flux, and had 

relatively low primary productivity.
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Key paleoceanographic reconstructions from the Bering Sea [Sancetta et al.,

1985; Cook et al., 2005; Okazaki et al., 2005] and the Sea o f Okhotsk [Morley et al.,

1991; Gorbarenko, 1996; Keigwin, 1998; Gorbarenko et al., 2004] give additional insight 

into the state o f the marginal seas o f the Subarctic North Pacific Ocean during the LGM 

and subsequent deglaciation. While the Bering Sea shelf was subaerially exposed due to 

the low LGM eustatic sea level stand [Hopkins, 1959; Fairbanks, 1989], the deeper 

Bering Sea basin was exposed to continuous marine sedimentation throughout both the 

LGM and Holocene [Sancetta et al., 1985]. High LGM concentrations o f the diatom 

species Thalassiosira antarctica and the genus Nitzschia, combined with depleted diatom 

5 ,80  values, are consistent with the presence o f LGM sea ice and an enhanced freshwater 

flux, both o f which would have facilitated the formation o f strongly stratified, cold, and 

low-saline surface waters that restricted primary productivity [Sancetta et al., 1985],

This observation o f low LGM productivity is seen in other proxies from the deep Bering 

Sea, including reduced concentrations o f sedimentary biogenic silica and total organic 

carbon (TOC) [Okazaki et al., 2005], and reduced concentrations o f the high-TOC-flux- 

associated diatom Rhizosolenia hebetata [Cook et al., 2005]. Clay mineral and detrital 

provenance analyses o f these LGM sediments are indicative o f high fluvially-derived 

sediment input to the basin, consistent with increased terrestrial drainage from the 

subaerial Bering shelf [Sancetta et al., 1985; VanLaningham et al., 2009]. Several 

aspects o f the Holocene sedimentary record contrast with many o f these LGM proxy 

trends, including: (i) much higher siliceous primary productivity; (ii) sharp reduction in 

fluvially-derived terrigenous sediment; (iii) a reduction or absence o f sea ice; and (iv) 

increasing salinity o f surface waters. All o f the authors above ascribe these changes to a 

combination o f a warming Northern Hemisphere and rising eustatic sea level, permitting 

the inundation o f most o f the shallow Bering Sea shelf between 11.3 -  12.4 cal kyr BP 

[Keigwin et al., 2006], as well as the onset o f modem Bering Sea circulation that favors 

high levels o f productivity along the shallow Bering shelf and “Green Belt” o f Springer 

et al. [1996].



169

Proxy evidence from the Sea o f Okhotsk indicate similar productivity minima 

during the LGM  [Gorbarenko, 1996], as well as higher occurrences o f coarse lithic 

iceberg-rafted debris (IRD), both o f which are likely associated with increases in sea ice 

cover [Gorbarenko et al., 2004], However, the glacial ocean conditions in the Sea o f 

Okhotsk have broader implications for North Pacific circulation. This marginal basin is 

the dominant source o f North Pacific Intermediate Water (NPIW) via cabelling o f low- 

saline coastal waters derived from freshwater influx along the margin, and North Pacific 

waters that enter through the Kurile Island Straits [Talley, 1993; You et al., 2000].

During the LGM, foraminiferal isotope evidence [Keigwin, 1987; Keigwin et al., 1992; 

Gorbarenko, 1996; Keigwin, 1998], diatom assemblages and sediment characteristics 

[Gorbarenko et al., 2004] indicate that the extensive sea ice cover present in the Sea of 

Okhotsk strengthened NPIW  formation via lower regional sea surface temperatures 

[COHMAP, 1988; Kutzbach et al., 1998] and increased salinity from brine rejection 

during sea ice formation. Changes in NPIW circulation have been linked with 

paleoenvironmental shifts as distant as the Mexican margin in the subtropical Northeast 

Pacific Ocean [van Geen et al., 2003; Crusius et al., 2004].

The preceding observations o f the Bering Sea and the Sea o f Okhotsk indicate the 

marginal seas o f the Subarctic Northeast Pacific Ocean have experienced large variations 

in oceanographic conditions since the LGM, and that this variability has had basin-wide 

effects throughout the North Pacific Ocean. By comparison, the G ulf o f Alaska has not 

received similar levels o f scrutiny despite its clear importance in modem Northern 

Hemisphere climate dynamics. This lack o f paleoceanographic data highlights the 

importance o f  developing such high-resolution records from the G ulf o f  Alaska. 

Furthermore, the dynamic atmosphere-ocean-ecosystem feedback system in the G ulf of 

Alaska is a natural laboratory for studying past environmental variability and its effects 

on marine primary productivity.
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5.3.1 Core description

Jumbo piston core EW0408-85JC (59° 33.3’N, 144° 9.21’W, depth 682 m) was 

recovered by the R /V  Maurice Ewing from the continental slope along the G ulf o f Alaska 

margin in 2004 (Fig. 5.1). Following retrieval, the core was sectioned and analyzed 

shipboard using a GEOTEK M ulti-Sensor Core Logger (MSCL) to measure high spatial 

resolution geophysical properties at 1-cm intervals [Blum, 1997], Each core section was 

subsequently split, lithologies described and high-resolution linescan imagery was 

collected. All EW0408 sediment cores are stored at the Oregon State University core 

repository in Corvallis, Oregon.

5.3.2 Geochronological approach

The chronological approach presented here builds on that presented by Barron et 

al. [2009]. These authors used accelerator mass spectrometry (AMS) 14C dates derived 

from three marine bivalve shells to constrain the geochronology o f EW0408-85JC, and 

further refined this chronology by using stratigraphic correlations to similar lithologies 

from the temperate North Pacific margin. In this work, these bivalve dates are 

supplemented with 33 AMS ,4C dates on planktonic foraminifera. This dating approach,
18 13as well as a high-resolution foraminiferal 5 O and 5 C record, will be the subject o f a 

forthcoming paper by Davies et al. [in prep.].

5.3.3 Biogeochemical approach

Bulk 1-cm-thick sediment samples were collected from EW0408-85JC at 5 cm 

intervals. Samples were then freeze-dried, homogenized and powdered by hand with 

mortar and pestle, and further subsampled. The first split was treated in 2 N HC1 

overnight, rinsed with Millipore distilled water three times, and freeze-dried. An aliquot 

powder was then measured for biogenic silica (opal) following a wet-alkali extraction 

method and using a Spectronic 20D+ spectrophotometer set at a wavelength o f 812 nm 

[Mortlock andFroelich, 1989]. An estimated error o f 4.6% (calculated as the coefficient

5.3 Methods
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o f variation, e.g. the standard deviation divided by the mean) based on replicate 

measurements o f  two internal opal-rich sediment standards was determined for this 

method, and is broadly equivalent to the results o f an interlaboratory comparison for this 

technique [Conley, 1998], A second carbonate-free subsample was combusted in a 

Costech 4010 HCNS elemental analyzer to determine TOC and total nitrogen (TN) 

concentrations. The analyzer was coupled to a Finnigan DeltaplusXP isotope ratio mass 

spectrometer for § I3C and § I5N measurements. All isotope values are reported in permil 

units (%o) according to the relationship

R s a m p l e - R standard x l 0 0 Q

ŝtandard [Eqn. 1]

where X  is the element o f interest and R is the measured stable isotopic ratio. All carbon 

isotope measurements are relative to the V-PDB standard (§13C = 0%o) and all nitrogen 

measurements are relative to atmospheric nitrogen (§ ,5N = 0%o). M olar ratios o f 

TOC:TN (hereafter referred to as C/N ratios) were calculated for use in describing 

sedimentary organic matter provenance and nutrient cycling. While Muller [1977] noted 

sorption o f ammonium ions to clays in the deep sea manifested as C/N values <6 , the 

assumption that sedimentary TN values are representative o f total organic nitrogen seems 

plausible due to (i) water depths o f 680 m that favor reduced remineralization relative to 

abyssal depths and (ii) minimal clay fractions present within the full mineral assemblage 

(Table 5.1). To fully address this issue requires additional analyses beyond the scope o f 

this present work. Replicate measurements o f  internal standards run alongside TOC, TN, 

sedimentary § 13C and sedimentary § 15N samples yielded coefficients o f variation o f 

4.4%, 6.9%, 1.2%, and 2.8%, respectively.

A second non-acid-treated split was used for geochemical and mineralogical 

assays. Total inorganic carbonate concentrations were measured by standard coulometric 

methods, and then multiplied by 8.333 (the molar stochiometric ratio o f CaCCVC) to 

convert to CaC0 3  concentrations. The bulk inorganic geochemistry o f core EW0408- 

85JC was analyzed by a combination o f inductively coupled plasma optical emission 

spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS)
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by SGS Minerals Services. Samples were digested in a sequential acid leaching method 

using HNO 3, HC1, HF, and HCIO4. Following the acid digestion, the bulk geochemistry 

sample was divided into 2 aliquots for analysis by 1CP-OES and ICP-MS, and yielded a 

suite o f 40 element concentrations. This data is presented in Barron et al. [2009], 

Replicate samples and international standards (SGR-1, NBS-SRM1646, and PBD-1) 

were analyzed within the analytical runs to monitor accuracy and precision. The mean 

percent difference between analyzed concentrations and literature values for the standards 

for all elements was 11%, and most elements are within the reported l a  range. A mean 

coefficient o f variation for all elements calculated from all replicate samples was 4.1%. 

For the purposes o f reconstructing CIS-derived glaciomarine sediment, elements derived 

from the accumulation o f detrital mineral phases (Al, Ti, Zr, K, Nb, Y, and others) are o f 

primary interest. These refractory elements are generally associated with aluminosilicate 

and oxide minerals that are highly insoluble in natural waters [Marshall and Fairbridge, 

1999], and thus their presence in core EW0408-85JC can be used to infer terrigenous 

sediment input [Haug et al., 2001] and sedimentary provenance [McLennan et al., 1993], 

As an aside, this approach implicitly assumes these mineral phases were dissolved 

completely during the ICP-OES and ICP-MS analyses [Wray, 2005]. Several redox- 

sensitive elements (U, Mo, Fe, and Mn) are also of interest, and while these were 

discussed at length by Barron et al. [2009] as proxies o f bottom-water oxygen 

concentration, the coupling between biogeochemical cycling and the independent 

productivity datasets o f opal and TOC are o f primary interest in this paper [Morel and  

Price, 2003], Briefly, the redox-sensitive elements are predominantly derived from two 

sources, either associated with terrestrially-derived detrital mineral phases and organic 

particles via substitution or adsorption processes, or direct precipitation from seawater as 

reduced sulphide phases sensitive to prevailing Eh conditions within the water column 

[e.g. Calvert and  Pedersen, 1993; Tribovillard et al., 2006; Piper and Calvert, 2009], To 

estimate the precipitated authigenic fraction, the excess fraction was calculated based on 

normalization to a global average sediment composition, assuming a constant 

aluminosilicate-hosted terrigenous flux according to
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/ \

excess X = X Al
X

measured measured
X

Al avgsed y [Eqn. 2]v

where X m casurcd is the measured ICP-MS sample concentration o f the element o f interest, 

and (X/Al)avg sed is the global mean sediment Al-normalized ratio for element X 

[McLennan, 1995]. In other cases presented in this paper (opal and Nb), the 

unnormalized concentration divided by the total aluminum concentration [e.g. Van der 

Weijden, 2002] is used as a method to correct for dilution by the large contributions o f 

detrital aluminosilicates delivered to the nearshore environment along the G ulf o f Alaska 

continental slope.

X-ray diffraction (XRD) analyses were performed on 16 sediment samples that 

span the full compositional (both lithological and geochemical) range o f EW0408-85JC. 

Samples for quantitative mineralogical analysis were prepared by combining 2 g sample 

with 0.222 g o f zincite (ZnO) and 8 mL o f methanol, pulverizing the resultant mixture for 

5 min in a SPEX 8000D sediment mixer using hardened stainless steel vials, and then 

heating at 85°C for 30 minutes for methanol evaporation. The XRD samples were then 

re-homogenized by hand using a mortar and pestle, and gently packed into a glass sample 

mount to ensure random grain orientation. XRD patterns were obtained on a PANalytical 

MRD instrument with a Cu X-ray tube (K a radiation = 1.5916A). The following optical 

package was used, arranged in order o f beam path: X-ray generator, Ni attenuator, 0.02° 

soller slit, 10-mm Ni mask, 0.5° divergence slit, 1° aperture slit, sidemount sample 

holder, 6 .6 -mm aperture slit, 0.02° soller slit and an X ’Celerator solid state multi-strip 

detector. A minimum of ten XRD patterns per sample were scanned from 5 to 65° 26 at a 

step-size o f 0 . 0 1 2  °/s; the resulting patterns were then averaged and the results 

interpolated to a step-size of 0 . 0 2  °/s for semi-quantitative estimation o f major phases 

using the RockJock 7.0 software package [.Eberl, 2003]. This analysis uses a Microsoft 

Excel macro routine with previously measured mineral intensity factors, and combined 

with the inclusion o f a known ZnO:sample ratio o f 10 wt%, permits a semi-quantitative 

estimation o f bulk mineralogy o f randomly oriented samples. The RockJock program 

utilizes the embedded SOLVER macro within Excel to fit a composite pattern o f user-
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selected minerals to the measured sample pattern, and then evaluates the model using a 

calculated “degree o f fit” parameter. The ability o f RockJock to quantify mineral phases 

was evaluated independently using several prepared simple mixtures o f quartz, kaolinite, 

smectite, iron-rich smectite, and illite.

The mineral assemblage selected for this study (Table 5.1) met several 

qualifications for inclusion, including (i) previously recorded mineral presence along the 

G ulf o f Alaska continental shelf [Slatt and Piper, 1974; Naidu et al., 1976; Molnia and  

Hein, 1982; Naidu andM owatt, 1983; Eberl, 2004]; (ii) specific interest from a 

biogeochemical cycling perspective [Cole and Shaw, 1983; Dean and Arthur, 1989; 

Dymond, 1992]; and (iii) RockJock outputs from test patterns. In all samples, the degree- 

of-fit parameter was <0.065, indicating good agreement between experimental and 

modeled XRD patterns. A second check o f RockJock accuracy is that the individual 

sample mineral concentration totals do not exceed 100 wt%. The complicated multi

phase nature o f the EW0408-85JC sediment samples however exceeded an unnormalized 

100 wt% total. Common reasons for analyses exceeding 100 wt% include insufficient 

sample homogeneity, preferred orientations induced during XRD sample mounting, or 

zincite peak shape changes induced during grinding [Eberl, 2003; D. Eberl, personal 

communication]. As an additional check o f RockJock concentrations, correlation 

coefficents between selected element concentrations measured by ICP-MS and the 

associated mineral phases calculated by RockJock were also calculated.

The stoichiometries o f Fe-bearing mineral phases were used to estimate the total 

concentration o f solid-phase ferrous and ferric iron as a proxy for bioavailable iron in the 

sedimentary record. Because Fe2+-bearing silicates and sulphides tend to be more soluble 

than Fe3+ phases under oxidizing water conditions [Langmuir, 1997; Moffett, 2001], it 

follows that higher dissolution fluxes o f Fe2+ into the oxygenated portions o f the water 

column would be associated with higher sedimentary accumulation o f these solid-phase 

ferrous minerals. Using the semi-quantitative concentrations o f amphibole (treated as 

hornblende for calculation purposes), pyrite, goethite, ilmenite, and biotite, these values 

were multiplied by the stoichiometric percentage o f atomic Fe2+ or Fe3+ contained within
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each mineral phase. For chlorite, RockJock was unable to differentiate between Fe-rich 

chlorite and other chlorite phases successfully. To correct this problem, the relative peak 

height difference between the 1 4 A : 7 A  chlorite peaks were used to estimate the 

percentage o f Fe-rich chlorite. The stoichiometry o f a mixed chamosite composition 

(Fe2+2Mg)i.5(Fe3+o.5Al)Si3A 1 0 i2(OH)6 was then used to calculate the relative Fe2+ and 

Fe3+ contributions from chlorite.

Time-series analysis was performed on the mid- and late Holocene organic matter 

data using the REDFIT analysis software package [Schulz and Mudelsee, 2002]. Briefly, 

this program utilizes a bias-corrected Lomb-Scargle Fourier transform appropriate for 

unevenly-spaced data with no need for interpolation to equal time steps. To asses the 

significance o f resulting spectral peaks, REDFIT calculates a first-order autoregressive 

(AR1) process representing stochastic variability in the dataset, and then tests the data 

time-series against the AR1 time-series using a Monte Carlo ensemble. The REDFIT 

approach inherently assumes that the AR1 process approximates the background noise in 

the respective datasets, and that the distribution o f data along the time axis is not too 

clustered [Schulz and Mudelsee, 2002].

5.4 Results

5.4.1 Core lithology and geochronology

Sediment core EW 0408-85JC is composed o f four major lithologic units (Fig.

5.2). The uppermost unit, a dark gray silty clay [Unit 1] that extends from 0 -  610 cm 

below the seafloor (bsf), conformably overlies a gray coarser silty clay with dispersed 

sand grains [Unit 2] from 610 -  645 cm bsf. A highly-organic, gray silty clay with olive 

brown laminations [Unit 3] extends from 645 -  680 cm bsf, which in turn grades 

downcore into a dark gray massive diamicton with scattered pebbles and large angular 

clasts [Unit 4] that continues to the bottom of EW0408-85JC at 1124 cm bsf. In general, 

the ultrahigh-resolution gamma-ray attenuated wet bulk density scan corresponds to these 

lithologic units (Fig. 5.2).
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The high-resolution age-depth model o f  Davies et al. [in prep.] reveals that 

EW 0408-85JC contains a continuous record o f sedimentation since the Late Pleistocene 

(Fig. 5.2). The mean sedimentation rate for the Holocene portion [Unit 1] is 0.05 cm/yr, 

whereas the LGM section [Unit 4] older than -16 .7  cal kyr BP accumulated at a much 

higher rate o f  0.53 cm/yr. The intervening Units 2 and 3 correspond to the Younger 

Dryas (YD) and Bolling-AllerOd (B-A) periods, respectively, and together with the 

uppermost ~70 cm o f Unit 4 were deposited at a linear accumulation rate o f 0.03 cm/yr. 

A low-density sediment layer is present immediately following the YD/Holocene 

transition, and appears chronologically analogous with the Preboreal Oscillation (PBO) 

identified in the North Atlantic region [Rasmussen et al., 2007],

5.4.2 Paleoproductivity and redox-sensitive elements

Biogenic sediment concentrations suggest a high degree o f  variability in marine 

ecosystem paleoproductivity since the LGM. Both opal and TOC proxies show 

consistently higher Holocene concentrations relative to lower LGM concentrations (Fig. 

5.3a, c). Natural-log-transformed opal and TOC concentrations are significantly 

correlated (n = 165, r = 0.718, p < 0.01; Fig. 5.4a), indicating excellent preservation o f 

these export productivity proxies given the different conditions under which these 

sedimentary components are preserved [Hedges et al., 1999; Ragueneau et al., 2000]. 

The CaC0 3  record displays only limited correspondence to either the opal or TOC trends 

(Fig. 5.3b), suggesting alternative processes controlling carbonate accumulation such as 

differential CaCC^ preservation or detrital carbonate contributions from the erosion o f 

adjacent terrestrial carbonate outcrops. An issue arises when attempting to use mass 

accumulation rates (MARs) to infer paleoproductivity from biogenic fluxes in core 

EW0408-85JC; this problem will be fully addressed in the following discussion section.

The Holocene/LGM transition preserves striking evidence for abrupt ecosystem 

shifts. For example, the transition from minimal LGM opal concentrations to maximal 

B-A concentrations indicate a three-fold increase in siliceous concentrations. This 

increase is short-lived, and ends abruptly during the YD/B-A transition about 1500 years 

later, when opal concentrations drop by 40% relative to B-A values. A second abrupt
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increase is observed during the PBO; the transition from this period o f heightened 

productivity into the early Holocene is associated with a decrease o f opal concentrations 

from 9.5 to 6.5 wt%.

The sedimentary 5 I3C, 5 15N, and molar C/N ratios show a large range o f 

variability, with values between -26.3 to -22.1%o, 2.2 to 6.7%o, and 8 . 8  to 28.0, 

respectively (Fig. 5.4). These elemental and isotopic ranges suggest differing 

contributions o f autochthonous organic matter sourced from the marine environment, and 

allochthonous organic matter derived from the adjacent terrestrial margin. To estimate 

the relative proportions o f marine- versus terrestrial organic matter, a linear mixing 

model was employed following the guidelines o f Walinsky et al. [2009] that was used to 

evaluate the organic matter provenance o f surface sediment samples from different 

depocenters along the G ulf o f Alaska margin. These authors calibrated their model using 

three end-member compositional ranges for marine phytoplankton, vascular plant 

detritus, and soil based on literature values [M eyers, 1994; M cQuoid et al., 2001; Geider 

andLaRoche, 2002; Gaye-Haake et al., 2005; Walsh et a l ,  2008]. The application o f 

this mixing model yields mean terrestrial contributions o f 50, 48, 37, 43, and 77% for 

Holocene, PBO, YD, B-A, and LGM intervals, respectively. When these values are 

viewed in terms o f modem G ulf o f Alaska surface sediment provenance values [ Walinsky 

et al., 2009], the LGM samples have characteristics similar to sediments derived from 

modem Bering Glacier outwash, while the remainder o f the Holocene EW0408-85JC 

samples are broadly analogous with the ranges measured for offshore locations along the 

northern G ulf o f Alaska shelf (Fig. 5.5). When viewed in relation to the biogenic opal 

data, the LGM opal minima is clearly associated with isotopically light 5 ,JC and 5 I5N, 

consistent with the predominant source o f organic matter being terrestrially-derived (Fig. 

5.4). The elevated Holocene opal concentrations are linked with relatively more enriched 

isotopic values though there is a large degree o f variability, indicative o f fluctuations in 

the proportions o f marine- versus terrestrially derived organic matter. Deviations from 

the genera! pattern o f  terrestrial- versus marine-derived organic matter mixing are seen 

during the Holocene/LGM deglaciation, in that the YD and early Holocene are somewhat
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13C-enriched (Fig. 5.4b), while the PBO and B-A display anomalously enriched 8 15N 

values (Fig. 5.4c).

Because o f the high proportions o f terrestrially-derived TOC present within the 

total TOC measurements in the EW0408-85JC samples, the mixing model approach was 

again used to estimate the marine TOC contributions as an independent measure of 

productivity using the equation

£ 13C , - d ' i3C,
T O C „  = “ ■ * '  _ x T O C ^„ [Eqn. 3]

m a rin e  le ir e s t r ia l

where T O C marinc is the calculated marine-derived T O C  (in wt%), 5 13C sampie is the 

measured 8 13C , 5 l3C marine is the fully marine endmember 5 I3C , 5 l3C terrcstriai is the fully 

terrestrial endmember 8 13C , and T O C sampie is the measured total T O C  for a sample. 

Values o f  -21%o (modem marine phytoplankton) and -26%o (vascular plant detritus) were 

used as the marine and terrestrial 5 13C endmember values, respectively, following the 

similar approach o f Walinsky et al. [2 0 0 9 ], Given the anomalous sedimentary 5 I3C 

values observed during the YD (Fig. 5.4b), this calculation is not appropriate for 

estimating marine TO C  during this time interval. It is also unlikely to accurately depict a 

similar anomaly during the early Holocene that is marked with moderate opal 

concentrations but enriched 5 I3C values (Fig. 5.4b). Therefore, these intervals are 

indicated on the downcore plot o f marine-derived TO C  (Fig. 5.3d). The results o f Eqn. 3 

are broadly consistent with both total TO C  and opal measurements.

A comparison o f  the downcore trends in opal, molar C /N  ratio, and sedimentary 

S 13C and 8 I5N  data show several coherent patterns (Fig. 5 .6 ). LGiM sediments are 

composed o f low opal concentrations (< 4 .8% ), high molar C /N  ratios, and depleted S I3C 

and 8 ISN  values, all o f which are consistent with low export siliceous productivity and 

predominantly terrestrial-derived organic matter. This contrasts with the opal maxima 

seen during the B-A and PBO, both o f which are associated with moderate C /N  ratios 

(12.1 -  13.8), and enriched 5 I3C and 8 I5N  (mean values o f -23.2% o and 5.9%o, 

respectively). The Younger Dryas is marked with opal values similar to Holocene 

concentrations (mean 6.1% ), a slightly lower mean C /N  ratio o f 11 .15 , a mean
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sedimentary 8 13C value o f -22.8% o, and a mean 8 I:,N  value o f 5.3%o. Holocene sediments 

preserve moderate opal concentrations (mean 8 .8 %) with little variability, but in-phase 

shifts during the mid- and late Holocene are observed in the molar C /N  ratio, and 

sedimentary 8 I3C and 8 I5N . The organic matter provenance model described above 

indicates changes from a maximum o f 62 .8%  terrestrial-derived organic matter at - 3 7 0 0  

cal yr BP to a minimum value o f 29.6%  at - 2 6 0 0  cal yr BP.

Sedimentary concentrations o f the redox-sensitive elements Mn, Mo, and U also 

show distinctive intervals o f authigenic enrichment associated with changing lithologies 

in core EW0408-85JC (Fig. 5.6). In particular, high excess concentrations o f Mo and U 

are indicative o f bottom-water anoxia during both the laminated B-A and massive PBO 

deglacial intervals, which are also contemporaneous with high TOC and opal 

concentrations. Conversely, high excess Mn and minimal excess Mo and U during the 

Younger Dryas interval argue for suboxic bottom waters, while Holocene excess Mn 

concentrations are likely indicative o f fully oxic water conditions.

5.4.3 D etrital accumulation and mineralogy

The ICP-MS and XRD analyses indicate several distinctive geochemical and 

mineralogical associations in core EW0408-85JC. Considering the concentrations o f 

several refractory or highly refractory elements [M cLennan , 1999] in ternary space as 

indicative o f detrital sediment provenance (Fig. 5.7), two distinctive patterns are apparent 

when samples are grouped by time o f deposition. There is relatively little compositional 

variability during the LGM and the B-A, suggesting only one source o f detrital sediment. 

The much greater compositional variability in the Holocene data, and to some extent 

during the YD and the PBO, indicates multiple sediment sources. This Holocene 

variability likely reflects mixing between two distinctive geochemical signatures, with 

one source (high Nb -  low Y) containing the same refractory elemental composition as 

during the LGM, and the second source (low Nb -  high Y) unique to the Holocene, YD, 

and PBO. These fluctuations are illustrated in the downcore Nb record (Fig. 5.8). Prior 

to YD time, Nb concentrations are 7.4 ± 0.6 ppm. Beginning around 13.0 cal kyr BP, 

these Nb values change to 6.5 ± 2.0 ppm. The application o f Levene’s test for equality o f
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variance [Levene, 1960] indicates the difference in variance between the two time groups 

(e.g. pre-YD and YD/post-YD) is statistically significant at the 95% confidence level.

The results o f this test reflect the change from a single sediment source with a consistent 

Nb concentration during the LGM and B-A, to a YD/post-YD environment that receives 

sediment from alternating between two different sources with different Nb 

concentrations. However it is also important to note that the same high Nb detrital 

signature seen during the LGM dominates during the late Holocene from ~3000 cal yr BP 

to recent time (Fig. 5.8).

The measured XRD patterns from the EW0408-85JC samples point to a 

dominantly detrital mineral character with only minor contributions o f clay minerals (Fig. 

5.9). Comparison between patterns derived from prepared samples and EW0408-85JC 

samples indicate little smectite o f any variety. RockJock quantification o f major 

components (Table 5.1) are dominated by plagioclase (20.5±1.2 wt%), quartz (16.1±3.6 

wt%), and illite (13.9±1.9 wt%). An independent samples t-test performed on the 

Holocene and LGM estimated quartz concentrations show that the Holocene values are 

significantly lower (exceed the 95% rejection level) relative to the LGM. The combined 

XRD analyses also indicate a mean kaolinite concentration o f 5.0±1.2%, an anomalous 

finding given all previous XRD work has measured <1% kaolinite within the clay-size 

fraction from this region o f the G ulf o f Alaska continental shelf, if  any [e.g. Naidu et al., 

1976; Molnia and Hein, 1982; Naidu and Mowatt, 1983]. This result may reflect 

differences in sample preparation technique, and requires further analysis for 

confirmation.

Nonparametric coefficients o f correlation show significant positive relationships 

between several groups o f minerals and key elements (Table 5.3). Several refractory 

elements (e.g. Al and K) and some redox-sensitive elements (Fe, Co, Ni, Cu, and Zn) 

have high correlations with the minerals amphibole, chlorite, and goethite. Both pyrite 

and barite are correlated with S, which is reasonable given these two minerals are major 

inorganic solid-phase S carriers in marine sediments [Kastner, 1999]. The high 

correlation between the XRD-derived estimation o f calcite content and the coulometric
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CaC0 3  values also provide an independent check o f the RockJock quantification results 

(Fig. 5.10a). While RockJock appears to consistently overestimate coulometric analyses 

by approximately 1 wt%, the correlation between the two different techniques is highly 

significant (n = 12, r = 0.834, p < 0.01). Therefore, it seems most appropriate to consider 

the RockJock mineral concentration data as semi-quantitative under these circumstances.

The estimated concentrations o f amphibole, chlorite, and goethite (Table 5.1), as 

well as the high correlation coefficients with total Fe concentration measured by ICP-MS 

(Table 5.3), indicate these minerals are the dominant sources o f iron to the EW0408-85JC 

sedimentary record. This is confirmed through the stoichiometric calculations o f Fe 

concentrations partitioned between all iron-bearing mineral phases contained within the 

XRD dataset (Fig. 5 .1 1). Together, both amphibole and goethite account for >60% o f the 

solid-phase iron present within both the Flolocene and LGM sediments. Accounting o f
2 ‘b 3 'bthe Fe and Fe atomic concentrations contained within these iron-bearing minerals 

shows that the ratio o f  Fe2+:Fe3+ has remained fairly constant through time (Holocene 

67:33% and LGM 68:32%, respectively) over the period o f  deposition o f EW0408-85JC, 

while a single B-A sample shows a minor increase in this ratio (70%:30%).

The solid-phase iron partitioning estimates seem robust, given the high correlation 

between the measured ICP-MS total Fe concentration and the derived Fe concentration 

data from the XRD mineralogy (Fig. 5.10b; n = 15, r = 0.853, p < 0 .01). However, the 

difference in absolute values suggest a key phase is not included in the stoichiometric 

calculations. This systematic error may be due to the presence o f Fe contained within 

non-crystalline phases not measurable with standard XRD methods, such as amorphous 

Fe oxyhydroxides or ligand-complexed Fe associated with organic matter [Moffett, 2001]. 

Therefore, these results should serve only as a first-order estimation o f Fe geochemical 

dynamics within this limited dataset. An improved methodology to measure the 

concentration o f various solid-phase Fe carriers using a sequential chemical extraction 

technique [Chester and Hughes, 1967; Tessier et al., 1979; Filgueiras et al., 2002] is 

currently underway.
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5.5.1 Relationships between productivity and environmental proxies during the Last

Glacial Maximum and the Holocene

The biogenic sediment preserved in EW0408-85JC presents the first high- 

resolution productivity record spanning the LGM to present for the northeastern G ulf o f 

Alaska continental slope. This unique location captures coastal primary productivity 

changes, but also is influenced by Cordilleran Ice Sheet dynamics during the LGM and 

subsequent deglaciation. The order-of-magnitude difference in sedimentation rates 

between the Holocene and older LGM portions o f EW 0408-85JC bias calculations o f

biogenic mass accumulation rates (MARs) for use as primary productivity proxies. This
-2 -1discrepancy is illustrated by comparing the mean Holocene opal MAR of 1.34 g-cm" -yr" 

with the mean LGM value o f 9.62 g-cm ^ y r '1. The higher LGM opal MAR seems 

unlikely to reflect higher productivity given the probable growing conditions experienced 

by primary producers within the LGM G ulf o f Alaska. For instance, the paraglacial 

environment at the EW0408-85JC site saw extensive light limitation from suspended 

glacial flour (Fig. 5.1b) from extensive meltwater discharge, as well as very cold surface 

water temperatures with ample sea ice [De Vernal and Pedersen, 1997], all o f  which 

would have likely limited primary productivity. Micropaleontology results from 

EW0408-85JC also support lower productivity, indicating a microfossil-barren zone 

extending from 14,800 cal yrs BP to the bottom of the core [Barron et al., 2009]. 

Collectively, these observations suggest biogenic MAR calculations for this core are not 

proportional to export productivity, and thus likely reflect preservation, sediment 

focusing, or other redistribution processes on the seafloor [Francois et al., 2004].

The multi-proxy methodology can assist in circumventing the sedimentation rate 

problem to address paleoproductivity changes. By combining the records o f opal and 

marine-derived TOC concentrations with the sedimentary 5 I5N and redox-sensitive 

element evidence, marine ecosystem dynamics along the G ulf o f Alaska slope for the last 

18,000 years can be documented. As stated above, the LGM sediments in EW0408-85JC 

preserve low concentrations o f autochthonous marine organic matter, as evidenced by

5.5 Discussion
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low opal and marine TOC concentrations (Fig. 3a, d), but contains high concentrations o f 

terrestrially-derived organic matter, exceeding 70% o f the total organic matter in this 

portion o f the core based on the relatively low isotopic ratios in both sedimentary 5 n C 

and 6 15N (Figs. 5.3, 5.5). Given the lack o f terrestrial vegetation present along the G ulf 

o f Alaska margin during this cold period, it seems likely that the allochthonous organic 

matter is derived primarily from eroding sedimentary bedrock. This same conclusion is 

consistent with that o f Walinsky et al. [2009] for similar trends in isotopic and molar C/N 

ratios associated with sediments from modem Bering Glacier outwash. When viewed 

alongside the excess Mn, U, and Mo records (Fig. 5.6), the lack o f appreciable authigenic 

precipitation o f any o f these elements suggests a dominantly detrital source for these 

normally redox-sensitive elements, consistent with the extremely high sedimentation 

rates (>0.5 cm/yr) experienced at the EW 0408-85JC site during the LGM. Collectively, 

these observations imply the LGM G ulf o f Alaska continental slope was functionally 

similar to one o f  the many glaciated fjords along the modem coast, with a cold and 

strongly stratified euphotic zone [De Vernal and Pedersen, 1997], ample terrestrially- 

derived suspended sediment and glacial flour, extremely low primary productivity, 

icebergs, and seasonal sea ice [Barron et a l ,  2009], The absence o f sedimentary 

structures, and the absence o f authigenic precipitation o f Mo and U, also imply the 

bottom-waters were likely oxygenated enough to maintain a benthic biota capable o f 

surviving in this rapidly-accumulating environment.

The Flolocene portion o f EW0408-85JC by comparison represents a completely 

different environment relative to the LGM G ulf o f Alaska. The regional Cordilleran Ice 

Sheet likely became grounded sometime around 14.0 -  13.7 cal kyr BP [Molnia and Post, 

1995; D. Peteet, personal communication, 2009]; the majority o f sea-ice and sea-ice- 

related diatom taxa and subarctic silicoflagellate taxa disappear from EW0408-85JC at 

the end o f the Younger Dryas around 11.4 cal kyr BP [Barron et a l ,  2009]; and dinocyst- 

based transfer functions indicate the onset o f modem regional surface salinities (>32 psu) 

by at least 10.2 cal kyr BP [De Vernal and Pedersen, 1997], These results indicate the 

onset o f Flolocene conditions favored enhanced primary productivity relative to LGM
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levels (Fig. 5.3a, d). During the early Holocene (11.0 -  8.5 cal kyr BP), relatively low 

molar C/N ratios are indicative o f algal-derived organic matter, and combined with 

moderate opal and sedimentary 8 13C values, suggest that primary production may have 

been nutrient-limited. The dissolved anion HCO3" is the dominant C substrate for marine 

phytoplankton during photosynthesis, and thus fluctuations in HCO3" (aq) concentrations 

can be driven by changes in productivity [Sarmiento and Gruber, 2006], These nutrient 

dynamics are recorded in l3C /12C fractionation associated with biological uptake 

following Rayleigh closed-system dynamics [Ran et al., 1989; Laws et al., 1995].

The early Holocene sedimentary 5 I5N record (Fig. 5.6) exhibits some o f the same 

behavior as the sedimentary § I3C, in that LGM sediments tend to have more depleted 

values (mean 3.09±0.37%o) relative to an early Holocene mean 5 I5N o f 4.64±0.51%<>; an 

independent-samples t-test indicates the differences between the Holocene and LGM 

Sl3N data are significant at the 95% confidence level. This difference reflects the 

relatively greater contributions o f terrigenous OM contained within the LGM sediments 

(Fig. 5.5), thus the LGM data appear to be more diagnostic o f N-fixation o f atmospheric 

N 2 (815N = 0%o) by terrestrial plants. In contrast, the early Holocene 8 I5N data are 

virtually indistinguishable from modem marine nitrate 815N (4.1±0.9%o) measured at 400 

m water depth at Ocean Station Papa near Vancouver Island [ Wu et al., 1997], or world 

oceanic mean nitrate 5 I5N o f approximately 5%o [Galbraith et al., 2008b]. Because 

observations from multiple high-export-productivity margins indicate bulk sedimentary 

8 15N has an excellent correlation with local sub-euphotic zone nitrate 5 I5N [Altabet and  

Francois, 1994; Thunell et al., 2004], the early Holocene values present within EW0408- 

85JC appear to record N-cycle variations driven by nitrate utilization by primary 

producers, such that complete nitrate utilization (and hence high productivity) is 

suggested by sedimentary 8 I5N values approximately equal to mean oceanic nitrate 8 I5N.

The synchronicity o f the sedimentary § I3C, 8 ,5N, and molar C/N ratio data after 

7500 cal yr BP suggest a linked process independent of marine productivity 

contributions, as evident in the approximately constant opal values during this same time 

span (Fig. 5.6). The highly depleted mid-Holocene 8 |5N values can be explained by two
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mechanisms: (i) increased contributions o f terrigenous OM, which is consistent with the 

sedimentary 5 13C and C/N ratio trends (Fig. 5.6); or (ii) incomplete nitrate utilization that 

limits export productivity. Increased N-fixation can also result in lightening o f 5 1SN 

values [Carpenter et al., 1997], but modem circulation patterns in the North Pacific 

Ocean argue against increased N-fixation as evidenced by (i) negative N* values 

throughout the entire water column o f the Subarctic Northeast Pacific Ocean [Gruber and  

Sarmiento , 1997; Sarmiento and Gruber, 2006] and (ii) high nitrate concentrations 

measured directly in the Alaska Gyre and along the adjacent G ulf o f  Alaska shelf 

[Childers et al., 2005]. Given these N-cycle constraints, and the synchronicity o f the 

mid- and late Holocene fluctuations in sedimentary 5 13C, 6 I5N, and molar C'/N ratio data, 

the most straightforward interpretation is that these cycles represent discrete periods o f 

enhanced terrigenous sediment delivery along the G ulf o f Alaska slope.

The proximity o f the EW0408-85JC site to both the Copper River delta and the 

terminus o f Bering Glacier suggests both fluvial and glaciomarine processes likely 

contribute terrigenous sediment. However, the constant refractory elemental pattern 

preserved during the late Holocene (Figs. 5.7 and 5.8) remains unchanged throughout 

both millennial- and centennial-scale advances o f the Bering Lobe during the late 

Holocene [Wiles et al., 1999; Calkin et al., 2001], implying the organic matter 

sedimentation oscillations are unrelated to Bering Glacier dynamics. Contributions o f 

terrigenous organic material from longshore transport sourced in the heavily forested 

region o f southeast Alaska can also be ruled out because modem  sediments in both the 

nearshore and outer shelf regions in the northern G ulf o f Alaska indicate accumulation o f 

dominantly marine organic matter, and thus limited export o f terrestrial material beyond 

the southeast Alaskan fjords in which these terrigenous sediments accumulate [Walinsky 

et al., 2009],

M odem satellite imagery shows distinctive sediment plumes transported 

westward by the Alaska Coastal Current along the northern G ulf o f Alaska shelf (Fig.

5. lb). These plumes are driven primarily by summer meltwater discharge, and surface 

sediments from this area are characteristically rich in terrigenous organic matter
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[Walinsky et al., 2009], Changes in this coastal meltwater discharge thus appear to be the 

most likely source o f the low-frequency shifts in terrigenous organic matter preserved in 

EW0408-85JC. REDFIT time-series analysis o f the Holocene portion o f the sedimentary 

5 i3C dataset indicates a 600-yr frequency that exceeds a Monte Carlo test at the 80% 

significance level. This centennial-scale frequency pattern has not been recognized 

previously in Alaskan coastal records, probably because most paleoclimate datasets from 

this area capable o f resolving such oscillations are either too short [Wiles et al., 2004; 

M acDonald and Case, 2005] or too low-resolution [Peteet and Mann, 1994], In other 

long paleoceanographic records where such resolution is possible from the southeast 

Alaskan fjords [Addison, 2009], there is also no such frequency, suggesting this 

phenomena may be limited only to the northern G ulf o f Alaska shelf. While the presence 

o f similar frequencies in independent records do not necessarily indicate related 

processes, a 700-800 yr frequency range in proxies o f  Kuroshio Current SST was recently 

identified [Jian et a l,  2000] and attributed to the second harmonic o f a Holocene 1500-yr 

cyclicity in North Atlantic ice rafting events [Bondet al., 1997], At this time, the 

Holocene relationship between northern G ulf o f Alaska meltwater discharge, western 

Pacific SST and North Atlantic ice discharge is tenuous and requires continued analysis 

for verification.

The Holocene record o f redox-sensitive elements shows a distinctively different 

behavior than that associated with the LGM (Fig. 5.6). Starting around 11.0 cal kyr BP, 

there is a monotonic increase in excess Mn concentrations, while there is almost zero 

accumulation o f excess U or Mo. These respective patterns are only disrupted during (i) 

the PBO/Holocene transition, when minimal excess Mn and maxima in both excess U 

and Mo suggest productivity-induced bottom water anoxia; (ii) a single data point at 10.5 

cal kyr BP, high in excess U and Mo unrelated to productivity changes that may be an 

anomaly in the dataset; and (iii) a maxima in excess Mn around 3,000 cal yr BP. 

Interpreted purely in qualitative terms o f bottom-water oxygenation, it appears that the 

Holocene G ulf o f Alaska continental slope has become progressively more oxygen-rich 

despite the higher Holocene export productivity. This increasingly oxic bottom water
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may be related to a number o f factors, including enhanced vertical mixing, better 

ventilation o f deep waters, or reduced remineralization rates o f sinking particles.

Because none o f these conditions seem likely given the G ulf o f Alaska is in the modem 

North Pacific Oxygen Minimum Zone [Paulmier and Ruiz-Pino, 2009], an alternative 

explanation is that the Mn/Al ratio o f McLennen [1995] does not adequately describe the 

bulk detrital sediment composition along the G ulf o f Alaska margin for excess element 

calculations. Nonetheless, it is clear the lack o f Holocene enrichments in Mo and U, and 

at least some precipitation o f authigenic Mn, are likely due to at least suboxic dissolved 

O2 concentrations [Calvert and Pedersen, 1993; Tribovillard et al., 2006].

5.5.2 The Ball ing-A llerod in the northern G ulf o f  Alaska: decoupling between

glaciomarine sedimentation and the North Pacific marine ecosystem

The Bolling-Allerod period occurs between 14.7 -  12.9 cal kyr BP in the North 

Atlantic region [Steffensen et al., 2008], This time range corresponds to an interval o f 

radical change in all biogenic proxies in core EW0408-85JC. Sedimentation rates rapidly 

decrease by an order-of-magnitude to 0.03 cm-yr"1, while biogenic siliceous and marine 

TOC concentrations double relative to prior LGM values (Fig. 5.3a, d). Sedimentary 

8 13C and 5 I5N ratios become relatively enriched (-23.15 ±0.24%o and 5.65±0.31%o, 

respectively). In addition, the combined presence o f excess Mo, U, and Mn 

concentrations, as well as 1- to 2-cm-thick laminations (Fig. 5.6), are all suggestive of 

dysoxic-to-anoxic bottom water oxygen concentrations.

This data collectively suggests enhanced primary productivity, though as 

described above, the biogenic export flux calculations do not show an increase likely due 

to the sedimentation rate changes. However, micropaleontology results from EW0408- 

85JC [Barron et al., 2009] show that the B-A is associated with increased percentages o f 

the diatoms Thalassiosira pacifica and Neodenticula seminae and the silicoflagellate 

Distephanus speculum speculum, all o f which are considered to be diagnostic o f high 

primary productivity conditions. Considered alongside the biogenic sediment 

concentrations, both lines o f evidence argue for enhanced marine ecosystem productivity 

during the B-A. The enriched 8 I5N values are thus consistent with enhanced nitrate
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assimilation to the point o f either almost complete consumption o f the residual nitrate 

pool [Altabet, 2006; Knies et al., 2007], or mild denitrification [Altabet et al., 1995; 

Ganeshram et al., 1995], This intense productivity then seems likely responsible for the 

generation o f the low bottom-water oxygen concentrations, probably facilitated by 

enhanced export o f organic matter to the benthos and remineralization o f sinking 

particulates within the water column.

While it appears that abrupt deglacial shifts in ecosystem parameters in the G ulf 

o f Alaska correspond to the timing o f similar paleoceanographic changes throughout the 

Pacific and Atlantic Oceans [Zheng et al., 2000; Dean, 2007], the detrital element record 

o f EW 0408-85JC does not correspond to such abrupt changes. Given its small degree o f 

variability, the most straightforward interpretation o f the LGM detrital element signature 

(Figs. 5.7 and 5.8) is that it represents CIS sediment delivery, given that glacial sediment 

transport processes tend to homogenize entrained sediment from multiple sources 

[Klassen, 2001], Therefore, despite the diverse lithologies o f southern Alaska [Beikman, 

1994], the large extent o f the CIS would likely homogenize these distinctive geochemical 

signatures and produce the low variability refractory signature preserved in EW0408- 

85JC. The massive diamicton lithology, dominantly terrestrial organic matter 

provenance, and sedimentation rates associated with the LGM section (Unit 4; Fig. 5.2) 

are also consistent with glacial delivery, though these rates are too low to represent a full 

proximal glaciomarine sedimentation regime [Jaeger et al., 1998; Ullrich et al., 2009] 

suggesting instead the CIS margin is tens o f kilometers away from the EW0408-85JC 

site.

The lack o f a discemable trend in the detrital sediment provenance during the 

LGM/B-A transition despite the high peak in primary productivity suggests a temporal 

decoupling between CIS glaciomarine dynamics and the North Pacific marine ecosystem. 

The correspondence between the productivity dataset in EW0408-85JC and other 

Northern Hemisphere paleoenvironmental datasets during this time interval is indicative 

o f a rapid environmental perturbation o f global extent, possibly transmitted from the 

North Atlantic Ocean to the Pacific via shifts in atmospheric circulation [Dean, 2007].
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Unlike those other sites, however, EW0408-85JC contains an exclusively subarctic 

climatic signature that is controlled to some degree by local CIS dynamics during the 

LGM and the subsequent B-A. Barron et al. [2009] present diatom and silicoflagellate 

population data from EW0408-85JC, and while their assemblages are barren during the 

LGM, the B-A populations show evidence o f relatively high concentrations o f sea-ice 

and sea-ice related diatom groups and the subarctic silicoflagellate Distephanus 

octangulatus. Combined with the detrital element data, these multiple lines o f evidence 

indicate proximity to the CIS still exerted some control over local water conditions, in 

that while the B-A is classically considered a global period o f warming, the 

micropaleontology data clearly show the northern G ulf o f Alaska remained cold and 

contained at least seasonal sea ice. A terrestrial ice advance along the Kenai Peninsula 

during the Elm endorf stade that peaked at 14,400 calibrated yrs BP agrees with this 

interpretation [Reger et a l ,  2008], as does an increase in CIS-derived IRD observed 

along the Vancouver Island continental shelf between 14,600 -  14,800 cal yrs BP [Hendy 

and Cosma, 2008]. A millennial-scale sea surface environmental reconstruction using 

dinocyst transfer functions from core PAR87A-10 in the central G ulf o f Alaska indicate 

warming winter and summer SST conditions, but decreasing salinity and a concomitant 

increase in sea ice during the deglacial transition [De Vernal and Pedersen, [991]. This 

sea ice expansion dropped from approximately 8 mths yr"1 at 15.3 cal kyr BP to 0 by 10.2 

cal kyr BP, encompassing both the B-A and YD chronozones identified in EW0408- 

85JC.

Why does this B-A disconnect between northern G ulf o f Alaska CIS dynamics 

and the productivity status o f North Pacific marine ecosystems occur? One explanation 

is that the increased thermal “inertia” o f the extensive CIS dampens response to abrupt 

environmental shifts, relative to the marine system which may be more sensitive to 

perturbations. The transgressive pattern o f onset o f the Holocene Thermal Maximum 

across arctic and temperate North America is a good example o f this damping behavior 

related to the position o f the Laurentide Ice Sheet [Kaufman et al., 2004], The decreased 

surface salinities identified by De Vernal and Pedersen [1997], presumably derived from
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meltwater from the receding CIS, would also have strengthened stratification along the 

continental shelf o f the G ulf o f  Alaska, as well as enhanced the Alaska Coastal Current. 

The positive feedback cycle between modern freshwater discharge, Alaska Coastal 

Current transport, and primary productivity [Mundy and Olsson, 2005] suggests that the 

coastal B-A productivity maxima was intimately related to the adjacent CIS margin and 

its associated meltwater discharge. Therefore, the modem feedback paradigm appears 

sufficient as a first-order approximation to describe the anomalous B-A conditions that 

occurred along the G ulf o f Alaska margin 15,000 years ago.

5.5 .3 Evidence fo r  modulation o f  the N  cycle and productivity by micronutrient

availability?

Enhanced stratification from CIS meltwater during the B-A alone seems 

insufficient to explain the heightened productivity shifts preserved along the G ulf of 

Alaska slope relative to modem Holocene productivity. While the freshwater- 

stratification-productivity positive feedback mechanism agrees with modem observations 

[Gargett, 1997], stratification by itself does not enhance primary productivity. Sustained 

phytoplankton blooms also require macro- and micronutrients, and it is well established 

that the downwelling margin o f the Subarctic Northeast Pacific Ocean is an HNLC region 

(Fig. la), and that productivity within the Alaska Gyre is dominantly iron limited 

[Martin, 1990; Harrison et al., 1999], Given the changing environmental conditions 

associated with the B-A, perhaps indirect effects o f regional climate change are 

responsible for this large productivity peak?

One potential climate-induced environmental shift may be a relaxation o f iron 

limitation in the nearshore G ulf o f Alaska. Iron is an important component o f the marine 

food web and the N cycle. The nitrogen-fixation pathway utilized by diazotrophic 

cyanobacteria requires dissolved Fe [Falkowski et a l ,  1998], while nitrate assimilation by 

large celled phytoplankton is inhibited by low ambient Fe concentrations [Price et al., 

1994], Several well-documented iron enrichment experiments in the North Pacific have 

initiated substantial phytoplankton blooms, particularly among large-celled diatoms, and 

resulted in significant reductions in nitrate [e.g. Coale et a l ,  1996; Boyd et a l ,  2004],
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While aeolian dust has been the favored mechanism for alleviating iron limitation in 

HNLC regions, two recent papers have considered iron fluxes related to continental shelf 

sedimentation as equally important. Lam and Bishop  [2008] examined the concentration 

and speciation o f dissolved iron along both the Northwest and Northeast Pacific Ocean 

margins, and found a subsurface particulate Fe maxima. Lam and Bishop also discovered 

that the particulate Fe maxima in the Northwest Pacific contained a relatively large 

contribution o f Fe24 (up to 25% of the total Fe) diagnostic o f iron derived from the 

dissolution o f primary minerals along the Kuril/Kamchatka margin. A series o f leaching 

experiments by Schroth et al. [2009] on samples o f Alaskan glacial flour, and dust from 

the Chinese Loess Plateau and Saharan Africa, showed that iron derived from glacial 

flour was an order o f magnitude more soluble than iron from either dust sample. Schroth 

et al. [2009] also examined the iron speciation o f these samples, as well as the Fe-bearing 

mineral phases, and found that Alaskan glacial flour was overwhelmingly dominated by 

Fe2+ phases: 44% hornblende, 40% biotite, 9% ferrihydrite, and 7% magnetite. This 

assemblage is equivalent to an Fe“ :Fe ratio o f 79% : 21%. The relatively high 

concentration o f Fe2+ is significant because Fe2+-dominated primary mineral phases tend 

to be more soluble under oxidizing water conditions [M offett, 2001], implying higher 

dissolution o f iron into the water column where it would become more bioavailable. 

Indeed, the addition o f ferrous sulphate (Fe2+SC>4) was the basis by which large 

phytoplankton blooms were induced during the SERIES iron addition experiment in the 

G ulf o f Alaska [Boyd et al., 2004],

The calculated Fe2+:Fe3f ratio o f all Fe-bearing phases in the XRD samples from 

EW0408-85JC (Fig. 5.11) agree broadly with the iron speciation results o f Schroth et al. 

[2009] on modem Alaskan glacial flour from M atanuska Glacier outwash, with minor 

differences in the Fe-bearing mineral assemblage. In the case o f the amphibole and 

chlorite concentrations, both phases are likely due to detrital sediment influx to the 

EW 0408-85JC site, as has been observed in other mineralogy studies o f the northern G ulf 

o f Alaska shelf [Slatt and Piper, 1974; Feder et al., 1976; Naidu et al., 1976; Naidu and  

Mowatt, 1983]. Goethite is a weathering product derived from the oxidation o f primary
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ferrosilicates and other oxyhydroxides, particularly ferrihydrite, and is the most 

thermodynamically stable oxyhydroxide in cold natural waters [Langmuir, 1997]. While 

goethite was not found in the study o f Schroth et al. [2009], ferrihydrite accounted for 

approximately 10-20% o f the Fe-bearing species in different samples o f Alaskan glacial 

flour, suggesting the goethite results may be due to geochemical reactions during 

transport from terrestrial outcrop sources to the marine continental shelf sediment sink. 

This explanation also accounts for the relatively smaller percentages o f biotite and 

amphibole. Therefore, the results o f the iron speciation calculations based on the XRD 

results appear analogous with those o f modem Alaskan glacial flour [Schroth et al., 

2009], While there are some minor differences between the calculated Fe2+:Fe3+ ratios

between the Holocene, LGM, and B-A intervals (Fig. 5.11), it seems unlikely that the 2-
2_|_

3% increase in Fe concentrations during the B-A is significant. Further statistical 

testing o f this relationship is hampered by the small B-A sample population size.

Because there appears to be little covariation between the productivity and
2"Fmineral-hosted Fe concentrations, the hypothesis o f a relaxation o f iron limitation 

during the B-A as an explanation for the enhanced nitrate utilization leading to the 

pronounced productivity maxima requires further testing. The total Fe concentration 

measured by ICP-MS shows an abrupt increase at the LGM/B-A boundary, as do both 

opal concentrations and sedimentary 6 ,5N (Fig. 5.12). The synchronous increase o f these 

three different measurements at this boundary argue for a related process. Further 

investigations o f alternative Fe phases that could account for this large shift in total Fe 

concentrations is required. The difference between the total XRD-estimated and ICP-MS 

iron concentrations (Fig. 5.10b) suggests a phase invisible to XRD analysis is important. 

Therefore, the application o f a sequential chemical leaching method to distinguish 

between exchangeable, carbonate-bound, reducible, oxidizable, and detrital Fe phases is 

underway [Chester and Hughes, 1967; Tessier et a l ,  1979; Filgueiras et a l ,  2002],

The Fe-8l;>N-opal pattern seen along the G ulf o f Alaska slope during the B-A is 

likely insufficient to explain similar increases in productivity seen along other regions o f 

the coastal North Pacific Ocean. The G ulf o f Alaska is unique in this case due to the
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proximity o f the CIS to this location. A recent compilation o f Northeast Pacific Ocean 

continental shelf sedimentary 5 I5N records from northern Mexico to ODP Site 887 in the 

central G ulf o f Alaska show remarkable correspondence in enriched 8 I5N during the B-A, 

with values exceeding 9%o in the south, and 7.5 -  8%o in the far north [Chang et al., 

2008], While these authors attribute this latitudinal gradient to transport o f l3N-enriched 

nitrate northwards by the California Undercurrent as suggested by Galbraith et al. 

[2008a], increased iron availability and associated increased nitrate utilization for both 

the G ulf o f Alaska and the Vancouver Island continental shelves could be an alternative 

explanation. Further studies of past iron accumulation and speciation patterns from the 

Northeast Pacific margin are required to fully evaluate this alternate hypothesis.

5.5.4 Carbon cycle perturbations during the Younger Dry as and 8000 y r  BP?

Two sections o f the EW0408-85JC sedimentary 5 13C record are difficult to 

explain in either productivity or organic matter provenance terms. The Younger Dryas 

period is marked with reduced opal, TOC, and a low molar C/N ratio (Fig. 5.6), which 

indicate low plankton-derived export productivity and relatively low contributions (37%) 

o f terrestrial-derived organic matter (Fig. 5.5). Under the assumption that sedimentary 

8 I3C can be used as a qualitative estimator o f nutrient availability under dominantly 

authochtonous marine organic matter accumulation conditions [Rau et al., 1989; Laws et 

al., 1995], then low productivity would favor nutrient-replete conditions and hence more 

depleted 5 I3C values. Instead, the opposite is true in that the YD data indicates enriched 

5 I3C values (Fig. 5.6). While sedimentary 8 I3C ratios are not the ideal proxy for 

discussing marine C cycle dynamics, the EW0408-85JC data warrant explanation 

nonetheless.

Elevated excess Mn values in EW0408-85JC indicate an oxic water column, 

consistent with increased vertical mixing o f YD surface waters observed as far south as 

the Santa Barbara Basin [Kennett and Ingram, 1995]. Several coastal Alaskan sites 

indicate abrupt environmental shifts during the YD, generally trending towards more 

cryophilic and/or xerophilic vegetation [Engstrom et al., 1990; Mathewes, 1993;
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Mathewes et al., 1993; Peteet and Mann, 1994; Bigelow and Edwards, 2001], though 

some coastal areas lack similarly persuasive evidence \Ager, 1998], A recent review o f 

terrestrial YD records from Beringia coupled with synoptic-scale atmospheric modeling 

results point to coastal Alaskan records being forced by enhancements o f both the 

wintertime Aleutian Low and the summertime Pacific Subtropical High pressure cells, 

coupled with complex local topographic effects [Kokorowski et al., 2008], ultimately 

responding to cooling o f North Pacific sea surface temperatures [Kiefer and Kienast, 

2005],

Carbon cycle modeling efforts based on data from the Cariaco Basin and G1SP2 

ice core show maxima in atmospheric AI4C during the YD can be accounted for by 

carbon cycle perturbations forced by changes in global ocean circulation during this 

abrupt climate event [Hughen et al., 2004], Given the multiple proxy datasets from 

EW0408-85JC, the YD sedimentary 5 I3C data seems best explained by an ocean 

circulation perturbation manifested by enriched 5 I3C values. These relatively high 5 I3C 

samples likely reflect a change in isotopic source caused by an increase in ventilation 

rates o f the deep Pacific carbon pool. An enhanced YD Aleutian Low cell would 

increase the rate o f upwelling in the Alaska Gyre thus enhancing transport o f deep North 

Pacific waters to the G ulf o f Alaska slope. As a result, any geochemical signal present 

within this deep water mass could be expressed at the relatively shallow EW0408085JC 

site. However, McManus et al. [2004] show convincing evidence for a reduction in 

North Atlantic Deep Water (NADW) formation during the YD using excess 231Pa/230Th 

ratios as a proxy for particle flux rate. Linking the Santa Barbara Basin bioturbation 

index [Kennett and Ingram, 1995] with benthic foraminiferal isotope data from the 

Northeast Pacific abyssal plain [Lund and Mix, 1998] and planktic foraminferal isotope 

data from the northern California shelf [Mix et al., 1999], Lund and Mix suggest the 

spatial and depth patterns o f enriched North Pacific 5 I3C values during periods o f 

reduced NADW  formation are due to the “Antarctic flywheel” mechanism, in which 

increased southward transport o f North Pacific Deep Water occurs as a necessity for 

compensating flow to the Southern Ocean due to the reduction in southward NADW
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flow. This mechanism thus decreases the residence time o f North Pacific Deep Water 

during the YD and enriches the 813C pool, and could account for increased Alaska Gyre 

upwelling and the preservation o f enriched sedimentary 813C values along the Gulf of 

Alaska slope.

A second period o f enriched sedimentary 813C in EW0408-85JC occurs between 

7800-8400 cal yrs BP (Fig. 5.6). This early Holocene period coincides with a short-lived 

switch from Holocene Thermal M aximum conditions [Kaufman et al., 2004] to relatively 

cooler and/or drier conditions based on several terrestrial Alaskan records [Denton and  

Karlen, 1973; Andreev andPeteet, 1997; Mason et al., 2001]. It also corresponds to a 

very rapid decrease in the Mt. Logan ice core St80  record [Fisher et al., 2008], followed 

by a 500-yr-long interval of nearly constant composition that is coeval with the 

sedimentary 8 I3C perturbation in EW0408-85JC. This anomalous interval in EW0408- 

85JC encompasses the time range o f the “8200 yr event,” an early Holocene abrupt 

cooling interval recognized in the Greenland ice core 8 I80  datasets and lasting 

approximately 200-300 years [Alley and Agustsdottir, 2005], This climate event is not 

globally recognized, and thus is interpreted to represent a somewhat weaker 

manifestation o f YD-like perturbations, yet this time interval contains the most enriched 

8 13C values in the entire EW0408-85JC core. The longer time span in EW0408-85JC 

associated with the “8200 yr event” may be an artifact of bioturbation. Furthermore, 

unlike the YD sedimentary 8 I3C signal preserved in EW0408-85JC, this period is also 

marked with less enriched 8 l5N values indicative o f normal levels o f nitrate utilization for 

the G ulf o f Alaska [Wu et al., 1997]. Because most North Pacific marine records either 

have resolution too low to recognize sub-millenial events, or poor Holocene recovery, it 

is difficult to assess Pacific-wide forcing mechanisms for this biogeochemical signal. 

Nevertheless, an increase in North Pacific ventilation rates would also be consistent with 

these enriched sedimentary 8 I3C values.
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The productivity, sedimentary isotope and detrital mineral accumulation patterns 

preserved in core EW 0408-85JC from the northern G ulf o f Alaska slope provides a 

detailed reconstruction o f many environmental parameters at this site since the LGM.

The low concentrations o f siliceous primary producers during the LGM relative to 

Holocene levels suggests this shelf region experienced reduced productivity despite 

increased iron availability inferred from increased LGM aeolian dust fluxes [Kienast et 

al., 2004]. An increase in productivity during the B-A is associated with an increase in 

nitrate utilization efficiency and total iron concentrations, suggesting an ecosystem 

feedback potentially driven by an interplay between the N cycle and micronutrient 

availability within the context o f Cordilleran Ice Sheet glaciomarine dynamics. This 

period o f increased productivity is observed throughout the marginal North Pacific 

Ocean, and while these other locations are certainly not proximal to icesheets, perhaps 

increased fluvial discharge and/or upwelling o f dissolved iron was related to 

hypothesized changes in B-A atmospheric dynamics that lead to these productivity 

maxima [Dean, 2007],

The strong indication o f  abrupt environmental changes along the northern G ulf o f 

Alaska continental slope reinforces the idea that high-latitude regions are sensitive to 

both global and regional climate forcing processes. The distinctive indication o f 

productivity and isotopic perturbations preserved during the YD, the B-A, and the PBO 

highlight the sensitivity o f marine ecosystems to abrupt change. However, it is also clear 

that the retreat o f the CIS lagged the shifts in the marine ecosystem by over a thousand 

years. When considered in this context, it is apparent that the marine ecosystem is a 

much more sensitive system than glacial icesheets for highlighting the effects o f rapid 

climate shifts. However, the marine ecosystem also has a level o f inherent resiliency, in 

that it can reach a new equilibrium relatively quickly under radically different 

environmental conditions as observed in the equivalent levels o f siliceous productivity 

seen during the YD and the early Holocene, two periods with radically different climatic 

configurations. These productivity fluctuations have broad implications for the marine

5.6 Conclusions
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environment, as well as coastal terrestrial environments that depend on marine-derived 

nutrient supplies.
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5.8 Figures
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Figure 5.1: (a) Location of EW0408-85JC and generalized surface circulation of the North Pacific 
Ocean. Shading and contours indicate dissolved nitrate concentrations (pmoles-L'1; data from 2005 
World Ocean Atlas and plotted with Ocean Data View). AC = Alaska Current, ACC Alaska 
Coastal Current (white line), AG  = Alaska Gyre, AS = Alaska Stream, CC California Current, 
KaC Kamchatka Current, KuC Kuroshio Current. (b) Northern Gulf of Alaska shelf. Solid 
white lines are 1000-m-interval bathymetry contours. Dashed white line indicates LG M  ice margin 
\Kaufm an and M anley, 2004j. Base MODIS satellite image taken 22 August 2003 
[http://visibleearth.nasa.gov, catalogue number 5723). Note extenshe light-colored sediment plumes 
traveling west along shelf.

http://visibleearth.nasa.gov
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Figure 5.2: Lithological characteristics of EW0408-85JC and age-depth model of Davies et al. [in 
prep.l.
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Figure 5.3: EW0408-85JC biogenic sediment concentrations for (a) total organic carbon (TOC), (b) 
C aC 03, (c) opal, and (d) marine-derived TOC, estimated by use of Eq. 3.
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•  Holocene Nb

Figure 5.7: Refractory element ternary diagram. Titanium and ytterium coefficients used for scaling 
purposes to maximize dispersion of data points. Values along axes indicate normalized 
concentrations for this three-component system.
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Figure 5.8: EVV0408-85JC downcore refractory element accumulation trends for niobium relative to 
local glacial advance phases during the LGM  and Holocene.



P rep are d  co m p o sitio n s
R ockJock calculated  
com p o sitio n s

0 K a o lin ite  (33  w t'K j) 
O u o r t z  (33  w t % )  

N o -r ic h  s m e ctite  (33  w t % }  
Z n O

K a o lin ite  (S wtHb) 
Q u a r t z  (4 5  w t % )  

N a -r ic h  sm e ctite  (2 0  w r % )  
F e -ric h  sm e ctite  (3 0  w t % )  

Z n O

K a o lin ite  (3 0  w t % )  
Q u a r t z  (3 0  w t % )  

N o -r ic h  s m e c iite  (2 0  w t % )  
UUte (2 0  w t % )  

Z n O

R ep resen tative  
H o lo ce n e  p attern

F W 0 4 0 8 -8 5 JC . 3 .5 7  m b s f

R ep resen tative  
L G M  p attern

C W 0 4 0 8 -9 5 J C  11.02 m b s f

K a o lin ite  (3 3 .7  w t % )
Q u a r t z  (3 4 .4
N a -r ic h  s m e c iite  (3 1 .8  w t % )  

d e g re e -o f -d t : 0 .0809

K a o lin ite  ( 1 1.3 w t % )
Q u a r t z  (3 0 .7  w l % )
N o -r ic h  s m e c tite  (2 2 .7  w t % )  
Fe -rich  s m e c tite (2 9 .3  w t % )

d e g re e -o f -f it : 0 .0 8 9 7

I  K a o lin ite  (3 5 .8  w l% )
Q u a r t z  (2 9 .2  w t % )
N a -r ic h  s m e c tite  (2 6 .4  wt'Fo) 
IHite (8 .6  w t % )

j  d e g re e -o f -d t : O . W l f  

Legend
a a m p h ib o le
ap a p a tite
b
ba

b io t ite  
b a rite  

c c h lo r ite
ca ca lc ite
f  K -fe ldspar
g  g o e th ite
I illive
it ilm e n ite
k k a o lin ite

m a

0
py
q

m u s c o v ite
m a g n e tite
p la g io c la se
p y r ite
q u a rtz
s m e c tite
s e rp e n tin e
z in c ite  (s ta n d a rd )

Figure 5.9: X-ray diffraction patterns and RockJock calculated compositions for (a) prepared sample mixtures and (b) representative EW0408- 
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calculations of Fe-bearing minerals quantified by RockJock XRD analysis.
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Figure 5.11: Holocene, LGM , and B-A Fe concentrations partitioned by mineral phase. Black 
lettering indicates Fe2+-bearing phases and Fe3* phases are indicated by the white lettering. Chlorite 
contributions of both Fe species are also depicted. The ratio of Fe2*:Fe3+ has remained fairly 
constant through time.
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Figure 5.12: Productivity, N-cycle dynamics, and total iron availability in EW0408-85JC since the 
LGM . High terrigenous organic matter-dominated portions of the sedimentary 8|3N dataset have 
been excluded due to scaling considerations. The onset of the Bolling-Allerod period sees 
contemporaneous onset of laminated sedimentary structures, enhanced opal concentrations, enriched 
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5.9 Tables

Table 5.1 Mineralogical analysis calculated from composite RockJock model fit of measured XRD  
pattern. Values are normalized to 100 wt%.

Holocene Younger Dryas Bolling-Allerod Last Glacial Max. all sam ples  
n = 7____________n = 2____________ n = 2________ n = 5____________n = 1S

calculated  

degree o f fit
0.057 + 0.004 0.061 + 0.000 0.063 ± 0.001 0.C60 ± 0.001 0.059 ± 0.003

K-feldspar* 5.4 + 0 5 6 0 + 0.5 6.5 + 0.2 5 6 + 0.3 5 7 + 0.5

Plagioclasef 20.0 + 0.9 20.6 + 0.8 19.8 + 1.7 21.4 + 1.2 20.5 + 12

Calcite 3.1 + 0.6 6.5 ± 1.1 4.1 + 0.6 3.3 ± 1.5 3.7 ± 1.5

Am phibolef 5.6 + 0.8 4.6 ± 0.7 4.1 ± 0.1 3.8 + 0.6 4.7 + 1.0
Pyrite 0.2 + 0.1 0 3 + 0.2 0.3 + 0.2 0.2 + 0.1 0.2 + 0.2

Barite 0.7 + 0 1 0.9 + 0.0 0.7 + 0.1 0.7 + 0 1 0.7 + 0.1

Magnetite 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0
Goethite 1.9 + 0.4 1.5 + 0.1 1.6 + 0.1 1.4 + 0 2 1.6 + 0.4

Apatite 1.5 + 0 3 1.7 + 0.2 1.9 + 0.2 1.6 + 0 2 1 6 + 0.3
llmenite 0.4 + 0.1 0.6 + 0.1 0.6 + 0.1 0.5 + 0.1 0.5 + 0.1

Quartz 14.2 ± 0.8 16.7 + 0.4 12.6 ± 0.5 20.0 ± 3.8 16.1 + 3.5

Kaolinite 4.4 + 1.1 5.5 ± 0.7 6.4 ± 0.9 5.3 ± 1.1 5.0 ± 1.2
lllite 14.2 + 2.7 12.6 + 1.1 15.6 + 1.0 13.4 + 0.6 13.9 + 1.9

Biotite 2.3 + 0.7 2.2 + 0.2 3.7 + 0.2 1.9 + 0 6 2.3 + 0.8

Chlorite 10.8 + 2.5 7 3 + 0.1 7.7 + 0.6 7.3 + 16 8 9 + 2 5

Serpentine 7.4 + 2 0 8.4 + 1.0 8.1 + 0.9 8.5 ± 1.2 8.0 + 1.6

Muscovite 8.2 + 0.9 4.8 + 1.1 6.2 ± 2.7 4.9 + 2.3 6.5 + 2.2

N on -c lay  subtotal 52.9 + 2.6 59.3 + 2.0 52.2 ± 2.7 58.6 + 5.3 55.4 + 4.6
C lav subtotal 47.1 + 2 6 40.7 + 2 0 47.8 ± 2.7 41.4 + 5 3 44.6 + 4.6

* as microcline 
t  as albite
t  as ferrotschermakite (hornblende)
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Table 5.2 EW0408-85JC biogeochemical dataset. All units are wt% unless otherwise indicated. For 
calculated excess elemental concentrations less than zero, values have been replaced with zeros,
indicating no authigenic precipitation.

Sample depth 
(cm bsf)

Opal CaC03 TOC C/N ratio
i

Sediment
o13C 

f%c. V-PDBi

ary
c 'sN 

(%•>. air)
Al Fe Ti Nb

(ppm)
Y

(ppm)

Calculated excess 
Mn Mo U 

(ppm) (ppm) (ppm)

0 - 1 5.85 1.83 0.91 11.19 -23.41 300 7.30 501 0 47 7.8 13.2 01.0 0.00 0.00
2 - 3 6.34 0.95 10.58 -23.41 3.98
7 - 8 8.79 0.36 11.76 -24.02 3.50
3 • 10 1.58 8.25 6.04 0.50 8.3 17.2 100.9 0.00 0.00

12 - 13 7.44 0.90 12.12 -23.96 3.39
17 - 13 4.23 089 11.96 -23 79 3 51
18 - 19 1.75 7.77 5.30 G.48 8 3 17.6 99.8 0.00 0.00
22 - 23 7.28 0.96 11.28 -23 56 3.97
27 - 28 6.11 0.95 10.65 -23.60 3.95
23 - 29 2.08 7.79 5.91 0.48 8.1 17.7 87.9 0.00 0.00
32 - 33 6.30 0.97 10.85 -23 55 4 21
37 - 38 5.77 0.81 10.55 -23 11 4.28
39 - 40 3.17 7.32 5.55 0.45 7.7 17.6 119.9 0.00 0.00
42 ■ 43 5.99 0.95 12.84 -23.20 3.99
47 - 48 4.02 0.94 13.03 -23.08 4.16
43 - 49 3.08 7.92 5.97 0.49 7.8 17.9 110.5 0.00 0.00
52 - 53 5.67 0.39 11.77 -22.99 4.29
57 - 58 5.39 094 11.24 -22.94 4.34
59 - 60 3.25 7.41 5.57 0.47 7.7 18.0 143.3 0.00 0.00
52 - 63 5.39 0.99 10.99 -22.86 4.31
67 - 68 5.59 0 85 11.18 -23.00 3.96
69 - 70 3.75 7.66 5.70 0.48 7.9 18.3 107.4 0.00 0.00
72 - 73 5.31 0.82 10.14 -23.03 4.40
77 - 78 7.04 0.72 10.59 -22.98 4C1
79 - SO 3.75 7.43 5.59 0.47 7.5 18.3 105.4 0.00 0.00
82 - 83 5.16 0.98 9.30 -22.48 5.01
67 - 88 4.38 0.69 9.62 -22.86 4.63
88 - 89 3.58 7.21 5.42 0.45 7 3 10.7 128.5 0.00 0.00
92 - 93 4.90 0.64 10.75 -22.96 4.28
97 - 98 4.73 0.69 10.20 -22.94 4 38
99 - 100 242 7.5“ 6.13 0.50 7.4 10.8 207.0 0.00 0.00

102 * 103 6.51 0.63 10.55 -23.09 4.57
107 - 108 6.19 0.63 10.90 -23 24 4.44 7 85 6.01 0.46 5.0 19.7 229 2 0.00 0.00
112 - 113 5.12 0.65 10.06 -22.96 4.16
117 - 118 4.90 0.63 10.87 -23.11 3.92
119 • 120 3.00 7.47 5.81 0.49 7.6 18.7 183.6 0.00 0.00
122 - 123 4.36 068 10.51 -23.06 402
127 - 120 4.85 0.70 11.29 ■23.12 4.19 7.82 5.71 0.43 4.0 19.4 117.0 0.00 0.00
132 - 133 5.92 0.73 12.03 -23.10 3.84
137 ■ 138 6.14 0.75 13.37 -23.59 3.35 8.57 6.00 0.44 3.3 16.8 98.2 0.00 0.00
142 - 143 5.03 0.72 13.13 -23.74 3.19
147 - 148 5.71 0.70 12.54 -23.81 3.21
149 - 150 1.33 8.20 6.06 0.49 8.0 17.0 111.6 0.00 0.00
152 • 153 6 44 0.80 12.50 -23.87 3.49
157 - 158 5.40 0.65 13.34 -24.03 2.83 8 71 5.98 0.46 6.7 17.3 78.3 0.00 0.00
162 - 163 5.44 0.61 13.37 -24.14 3.01
167 - 168 6.10 0.75 12.52 -23.93 3.22
169 - 170 2.25 9.oe 5.59 0.54 9 3 19.6 104.4 0.00 000
172 - 173 6.54 0.69 12.95 -23.93 3.11
177 - 178 3.34 0 70 12.50 -23.85 3.31 3 58 5.65 0.36 1.6 17.0 71.3 0.00 0.00
182 - 103 6.15 0.70 11.50 -23.57 3.79
187 - 133 5.68 0.63 12.31 -23.72 3.21
189 - 190 2.33 8.10 5.91 0.48 8.0 17.2 102 2 0.00 0.00
192 - 193 5.89 0.62 12.31 -23.57 3.49
197 198 5.55 0 65 12.43 -23.46 3.60 832 5.72 G.36 1.6 17.4 81.2 0.00 o.oo
202 - 203 5.18 0.63 11.74 23.31 3.50
207 • 208 5.05 0.60 11.76 -23.32 3.37 8 60 5 65 0.40 2 4 177 81 3 0.00 0 00
212 - 213 5.00 0.65 11.56 -23.46 3 76
217 - 218 5 52 0.67 11.05 -23 51 3.71
219 - 220 1.75 8.04 5.72 0.47 8.0 10.4 1- 30 0.00 0.00
222 - 223 5.33 0.66 11.15 -23.62 3 32
227 - 228 5.75 0.69 11.96 -23.69 2 21 6.46 5.82 0.44 4.B 10.2 30.7 0.00 0.00
232 - 233 5.74 066 12.26 -24.06 3.16
237 - 238 6.56 0.78 12.33 -23.96 3.70
239 - 240 158 8.02 5.72 0.48 7.5 16.0 90.9 0.00 0.00
242 - 243 5.79 0.66 14.08 -23.99 2.77
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Table 5.2 (continued)

Sample depth 
(cm bsf)

Opal CaCO;j TOC C/N ratio
Sedimentary

6,3C
( V  V-PDB) (%». air)

Al Fe Ti Nb Y 
(ppm) (ppm)

Calculated excess 
Mn Mo U 

(DDm) (oDm) (DDm)
247 - 248 6.76 0.70 12.76 -23 98 3.75 8.34 5.75 0.44 4.6 18.4 tOO.2 0.00 0.00
252 - 253 6.25 0.73 12.81 -24.00 3.71
257 - 258 6.06 0.75 11.74 -23.84 4.36 8.36 5.83 0.45 7.3 17.3 78.3 0.00 0.00
252 - 263 6.76 0.75 11.65 -23.70 3.74
267 - 268 7.35 0 77 11.41 -23.51 4.23
269 - 270 1 92 7.57 5.77 0.46 7.7 16.6 118 4 0.00 0.00
272 - 273 6.20 0.73 11.67 -23.38 4.32
277 - 278 5.32 0.76 11.34 -2323 4.61 7 87 5.40 0.38 2.9 19.7 39.3 0.00 0.00
282 - 283 6.03 0.70 11.24 -23.33 4.14
287 - 288 5.59 0.68 11.70 -23.25 4 35 8.20 5.57 0.36 1.7 18.7 45.6 0.00 0.00
292 - 293 6.04 0.77 11.27 -23.17 4.29
297 - 298 6.00 0.70 12.94 -2325 354
299 - 300 4.08 7.38 5.26 0.45 7.2 17.3 90.2 0.00 0.00
302 - 303 6.01 0 71 11.41 -23 25 4 32
307 - 308 7.13 0.68 12.62 -23.62 3.43 8.12 5.54 0.43 7.0 19.1 61.3 0.00 0.00
312 - 313 6.24 0.73 13.15 -23.82 3.42
317 - 318 6.46 0.72 12.93 -23.84 3.81
319 - 320 1.83 7 90 5.61 0.47 8.1 16.6 67.4 0.00 000
322 * 323 6.21 0.78 13.15 -24,07 3.71
327 * 328 6.10 0 76 12.30 -23 87 364 8.01 5.51 0.40 3 9 19.3 81.8 0.00 0 00
332 - 333 6.40 0.73 12.85 -23.77 3.70
337 - 338 6.53 0.75 13.27 -23 88 3.10 8.75 5.88 0.47 7.2 17.0 61.0 0.00 0.00
342 - 343 5.88 0.68 11.60 -23.38 4.07
349 - 350 242 7.67 5 49 0.46 7.8 16.4 86.4 0.00 000
352 - 353 6.03 0.72 11.80 -23.31 4.22
357 - 358 6.19 0.78 10.98 -23.20 4 59
358 - 359 292 7.67 5.53 0.48 7.8 17.5 97.4 0.00 0.00
362 - 363 6.71 0.78 10.80 -23.05 4.58
367 - 368 6.23 0.82 11.62 -23.15 4.54 7.99 5.58 0.44 6.0 16.3 95.8 0.00 0.00
372 - 373 5.73 0.88 11.36 -23.02 4.69
377 - 378 6.04 0.82 10.61 -22.90 4.68
379 - 380 3.17 7 75 5.65 0.49 7.8 18.3 77.7 C.00 0.00
382 - 383 6.93 0.83 11.18 -23.25 4.68
387 - 388 6.74 0.86 10.86 -23.17 4.96 7.69 5.28 0.43 6.6 17.8 59.5 0.00 0.00
392 - 393 6.53 0.82 11.14 -22 28 4.49
397 - 398 7.25 0 84 11.13 -22.13 4.98 7.97 5.42 0.43 5.3 18.5 62.7 0.00 0.00
402 - 403 7.02 0.77 10.98 -22 42 4 33
407 - 406 7.06 0.74 10.49 -22.53 4.61
409 - 410 2.50 7 79 5.47 0.46 8.0 17.1 86.9 0.00 0.00
412 - 413 6.69 0 77 10.40 -22.51 4.82
417 • 418 7.58 0.76 10.80 -22.67 4.01
419 - 420 2.00 7.96 5.74 0.46 7.7 16.5 64.6 0.00 0.00
422 - 423 6.70 0.86 10.23 -22 85 4.61
427 - 428 6.31 0.77 10.21 -22.86 4 51 8.17 5.66 0.40 2.9 15.9 56.5 0.00 000
432 - 433 6.41 0 74 10.43 -23.13 432
437 - 438 7.26 0.65 9.10 -22.81 4.42 8.33 5.75 0.44 5.1 18.2 59.2 0.16 0.00
442 - 443 6.56 0 76 12.53 -23.76 4 13
447 - 448 6.60 0.79 11.77 -23.75 4.39
449 - 450 2 75 8.01 563 04 6 7.9 16 4 37.8 0.00 0 00
452 - 453 6.52 0.86 11.02 -23.50 4.25
457 - 458 6.79 081 10.38 -23 34 423
459 - 460 2.75 8.05 5.56 0.46 7.9 16.0 45.0 0.00 0.00
462 - 463 7.54 0.85 10.79 -23.68 4.35
467 - 468 6.S9 0.91 10.40 -23.63 4.46
469 - 470 2.67 7.65 5.28 0.45 8.0 15.7 56.3 0.00 0.00
472 - 473 6.97 0.86 10.38 -23.66 4 40
477 - 478 6.55 0.83 11.93 -24.11 4 02
479 - 48G 200 7.78 5.57 0.46 7.7 15.9 70.9 0.00 000
482 - 483 5.85 0.75 11.63 -24.21 3.85
467 • 488 6.07 0.81 12.15 -24.25 3.71
489 - 490 1.75 7.90 5.82 0.48 8.4 17.0 82.4 0.00 0.00
492 - 493 5.94 0.76 11.19 -24.07 396
497 - 498 6.74 0.78 10.37 -24.02 4 46 8.52 5.74 0.45 7.4 16.7 52.0 0.00 0.00
502 - 503 6.75 0 76 10.74 -23.79 4 26
507 - 508 6.29 0.83 9.59 -23.56 4.94
509 - 510 2 42 8.09 5.67 0.47 3 0 16.4 *7 2 0.00 000
512 - 513 5.09 0.65 10.91 -23.81 4.30
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Table 5.2 (continued)

Sample depth 
(cm bsf)

Opal CaCO;i TOC C/M ratio
Sedimentary

,S’:,C <V5 N 
(%,. V-PDB) (%o. air)

Al Fe Ti Nb
(ppm)

Y
(ppm)

Calculated excess 
Mn Mo 'J 

(ppm) (ppm) (ppm)
517 - 518 6.25 0.78 10.31 -23.55 4.62 8.15 5.42 0.39 3.0 17.4 39.4 0.00 O.CO
522 - 523 5.85 0.76 10.51 -23.75 4.74
527 - 528 5.54 0.82 10.99 23.71 4.32
529 - 530 2.67 7.94 5.42 0.46 7.9 16.2 25.5 0.00 0.00
532 - 533 5.82 0.72 11.19 -24.04 4.83
537 - 538 6.56 8.32 564 0.43 7.6 18.0 35.2 0.00 000
540 ■ 541 5.86 0.86 11.20 -24.54 4.30
543 - 544 6.23 0.96 10 60 -24.09 4.97 8.19 5.42 0 37 2 9 16.6 19.6 000 0.00
547 - 548 5.81 0.94 10.26 -23.93 5.02
549 - 550 3.25 7.71 5.56 0.45 8.1 16.2 19.6 0.04 0.00
552 - 553 6.50 0.96 10.38 -23.85 4.84
557 - 558 5.87 0.96 9.92 -23.80 524 8.56 562 0.43 6.1 16.6 0.2 0.00 0 00
562 - 563 5.93 0.86 10.20 -24.07 4.63 6.14 5.36 0.43 6.7 16.7 38.4 0.00 0,00
567 - 568 5.88 0.81 9.49 -23.98 4.83
569 - 570 308 8.01 5.45 0.47 8.3 16.1 49.8 0.00 0.00
572 - 573 6.38 0.59 9.11 -24.40 4.68 8.03 5.27 0.42 4.8 17.4 46.9 0.00 0.00
577 - 578 6.79 0.74 8.69 -23.94 5.50
579 - 580 4 00 7.79 5.41 045 8.2 16.7 28.9 2 45 1.18
582 - 583 6.42 0.64 8.38 -24.00 5.80 8.05 5.20 0.42 5.3 16.6 27.0 0.17 0.09
587 - 588 5.93 0.60 7 98 -23.82 6.14
589 - 590 3.33 7.S2 5.04 0.46 7.8 16.3 14.2 0.34 0.13
592 - 593 6.93 0.72 8.80 -23.63 5.86 8.37 5.41 0.46 7.6 18.0 23.4 0.40 0.00
597 - 598 7.63 0.78 7.84 -23.48 6.29
599 - 600 3.00 742 4.89 0.44 7.7 16.4 2.4 2.16 1.80
602 - 603 9.09 0.09 7.88 -23.17 6.68 7.95 5.07 0.42 7.5 18.7 0.6 2.98 0.12
607 - 608 10.01 0.96 8.15 -23.27 6.30 8.06 5.21 0.42 4.6 17.3 11 1 1.09 0.00
612 - 613 6.84 063 8.18 -23.07 5.59 7.89 5.00 0.38 2.9 18.1 16.3 0.49 0,00
617 - 618 7.23 0.68 8.65 -22 97 5.77
619 - 620 4.42 7.34 4.86 0.44 7.0 158 25.0 0.87 0 00
622 - 623 5.27 0.58 8.52 -22.72 5.54 7.83 4.98 0.41 6.6 17.7 25.1 0.51 000
627 - 628 6.15 0.55 8.57 -22.75 5.73 7.90 5.15 0.40 3.8 18.5 55.4 0.42 0.00
632 - 633 6.01 0.43 8.31 -22.71 55 3 7.62 5.27 0.41 7.0 17.7 1232 0.30 000
637 * 638 5.84 0.62 11.97 -22.67 397
539 ■ 640 5.58 7.38 4.80 0.44 5.4 17.0 46.2 0.57 0.11
642 - 643 5.64 0.97 11.61 -23.00 4.86 7.29 4.55 0.39 7.0 18.2 19.8 0.86 0.24
647 - 648 7.70 1.07 11.84 -23 52 523
649 - 650 4.03 7.49 4.96 0.44 7.4 15.7 30.6 1.83 0.97
652 - 653 10.04 1.14 10,03 -22.78 5.66 7.42 4.93 0.39 6.6 18.8 35.4 1.79 0.30
657 - 658 9.90 116 10.92 -23.06 6.02 7 47 4.80 0,40 7.7 18.3 59.6 1.90 1.28
662 - 653 8.95 1.15 11.43 -23.33 6.02 8.06 5.40 0.42 7.4 18.3 54.1 2.47 0.79
667 - 668 9.95 1.15 10.53 -23.01 5.77
668 - 669 3.17 7.95 5.34 0.46 8.3 17.2 55.6 1.58 0.52
672 - 673 9.71 1.03 11.04 -23.25 5.32 7.71 5.01 0.40 8.2 185 71.6 1.53 0.30
676 - 677 1.75 7.52 5.20 0.45 7.3 17.6 60.2 1.57 0.43
677 - 678 10.46 1.05 10.01 -23.13 5.55
682 - 683 3.57 6.33 0.48 19.88 -24.07 3.67 6.61 3.81 0.38 6.8 15.4 0.0 0.97 0.46
687 - 688 3.06 0.47 15.79 -24.03 4.01 7.12 4.08 0.37 59 15.9 0.0 0.02 OCiO
692 - 693 3.00 0.51 20.04 -24.23 2.87 7.41 4.27 0.40 6.2 16.9 0.0 0.00 0.20
697 - 698 4.19 0.48 15.76 -23.93 3.50 7.56 4.49 0.40 6.0 17.1 25.9 0.00 0.00
702 - 703 3.99
707 - 708 3.20
712 - 713 2.30
717 - 718 3.76
722 - 723 3.25 0.67 17.17 -24.42 3.22 7.49 388 0.40 7.4 17.7 0.0 0.11 0.00
727 - 728 2.69
732 - 733 3.57 0 60 15 09 -24.49 341 7 54 3.94 0.40 68 17.7 0.0 0.00 0.00
737 - 738 3.37
742 - 743 2.76 0.55 16.89 -24.63 2.91 7.71 4.01 0.41 6.8 17.4 0.0 0.00 0.00
747 - 748 4.10
752 - 753 3.93 0.61 17.07 -24.74 2.60 8.11 4.33 0.44 7.3 17.4 0.0 0.00 0.00
757 - 758 3.03
762 - 763 330 0.50 14.76 -24 70 2.93 8.28 4 53 0.46 82 18.5 0.0 0.26 000
767 - 768 3.32
772 - 773 2.40 0.41 17.06 -24.56 2 44 7.63 4.04 0.42 72 176 0 0 0 00 0,00
777 • 779 3.18
782 - 783 2.99 0.44 15.92 -24.72 2.97 7.81 4.20 0.43 7.3 17.9 0.0 0.00 0.00
787 - 788 4.41
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Table 5.2 (continued)
Sedimentary Calculated excess

Sample depth Opal CaC03 TOC C/N ratio o ?C 6,5N Al ce Ti Nb y Mn Mo U
(cm bsf) t%c. V-PD6) (%c. air) (ppm) (ppm) . (ppm) (ppm]i (DPmi

792 - 793 3.09 0.55 15.44 -24.83 3.21 7.95 421 0.43 7.6 18.1 0.0 0 03 0.00
797 - 793 3.76
802 - 803 3.31 0.45 15.26 -24 76 3.16 7.94 4.39 0.44 7.3 175 0.0 0.02 0.00
807 - 808 2.73
812 - 813 3.21
817 - 818 2.69
821 - 822 4.02 0.55 17.78 -24 76 2.46 8 01 4 26 0.43 7.6 178 0.0 0.00 0 00
823 - 824 3.42
827 - 823 3.60
832 - 833 2.91
837 - 838 3.20
642 ■ 843 3.19 0.69 17.13 -2490 2.85 8.33 4 60 0 47 8.3 17,3 0.0 007 0.00
847 - 848 3.14
852 - 853 3.55
857 - 858 3.29
862 - 863 4.09 0.61 15.78 -24.78 2.74 8.32 4.59 0.45 7.9 17.3 0.0 0.00 0.00
867 - 868 3.11
872 - 873 3.52
877 - 878 3.81
882 - 833 4.32 062 18.56 -25 75 2 70 0.07 4 44 0.44 7.3 179 0 0 0 65 000
887 - 888 4.13
892 - 893 3.06
697 • 898 3.26
902 - 903 3.89 0.66 23 67 -2587 2 63 800 4.35 0 45 7.8 183 0 0 0 00 0 00
907 - 908 3.67
912 - 913 4.15
917 - 918 4.26
922 - 923 3.20 0.64 17.77 -24.89 3 01 8.45 4.76 0 47 8.4 184 0.0 000 0.00
927 • 928 3.98
932 - 933 4.29
937 - 938 4.83
942 - 943 3.88 0.60 17.77 -25 01 2.94 8.50 4.53 0.45 8.1 184 0.0 0.00 0.00
947 - 943 3.38
952 - 953 3.63
957 - 953 3.66
962 - 963 3.07 0.59 16.25 -25.03 3.34 8.10 4.31 0.44 7.4 18.0 0.0 0 00 0.00
967 - 963 3.52
972 - 973 4.01
973 - 974 3.21
977 - 978 4.39
982 - 983 3.92 0.71 1523 -25 07 3.22 6 19 4 36 044 8 3 17.9 0.0 0 00 000
987 - 988 3.53
992 - 993 3.28
997 - 998 3.94

1C02 • 1003 3.32 0.47 12.38 -2-3.94 3.26 8.37 4.58 0.45 7.3 18.6 0.0 0.00 0.00
1007 - 1008 4.04
1012 - 1013 4.02
1017 - 1018 3.68
1022 - 1023 3.05 0.44 12.81 -24.82 3.44 7 98 4.33 0.44 7.7 188 0.0 0.00 000
1027 - 1028 3 32
1032 - 1033 3.25
1037 - 1038 360
1042 - 1043 3.36 0.42 12 68 -2458 3.33 8.01 4.47 0.45 7.6 18.1 0.0 0.09 000
1047 - 1048 4.22
1052 - 1053 3.52
1057 - 1058 3.24
1062 - 1063 4.13 0.36 10.47 -25.13 3.57 6 16 4.64 0.45 7.4 192 0.0 0.38 000
1067 - 1068 3.34
1072 - 1073 3.58
1077 - 1078 3.16
1082 • 1083 3.57 0.44 14.07 -25.95 3.00 8 23 4.67 0.46 0.0 18 3 0.0 0.59 000
1087 - 1088 3.66
1092 - 1093 3.73
1097 - 1098 4.16
1102 - 1103 3.46 0.41 1399 -2623 3.09 8 19 4.63 0.45 7.5 180 0.0 0.00 0 00
1107 - 1108 3.87
1112 - 1113 3.74
1117 - 1113 4.66
1120 - 1121 3.29



Table 5.3 XRD and ICP-M S nonparam etric correlations that exceed 95%  significance level.

Minerai(s) Associated elements

Amphibole, chlorite, Li, Mg, Al (chlorite only), K, V, Cr, Mn,
goethite Fe, Co, Ni, Cu, Zn (goethite only)

Biotite, muscovite Mn, Cd, Sb, (J

Calcite S, Ca, Sr, U

Pyrite, barite S, Sr, Mo, Ag, Cd
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The work presented in this volume describes several aspects o f the climatic and 

oceanographic evolution o f the G ulf o f Alaska region since the Last Glacial Maximum 

(LGM). Perhaps the single most important observation from this work is that the North 

Pacific marine ecosystem is a sensitive high-fidelity recorder o f past environmental 

conditions, both in a direct manner as forced by oceanographic conditions, and indirectly 

via atmosphere-climate-ocean linkages. Paleoenvironmental reconstructions that depend 

heavily on marine productivity parameters can potentially yield incredibly detailed 

records o f past changes. However, the major limitation o f using records o f marine 

productivity as a basis for paleoenvironmental work is also its greatest benefit -  marine 

ecosystems by their very nature are complex and complicated systems. Only through the 

utilization o f multi-proxy approaches can these complications be addressed. Other key 

findings presented in this volume, divided by chapter, are as follows:

Chapter 2: Marine tephrochronology o f  the Mt. Edgecumbe Volcanic Field, Southeast 

Alaska, USA

• While few terrestrial deposits o f tephra exist along the terrestrial margin o f the 

G ulf o f Alaska, there is an extensive record o f Late Quaternary volcanism 

preserved in the adjacent marine environment. These marine macroscopic tephra 

and cryptotephra deposits are useful marker horizons for establishing stratigraphic 

correlations between marine sediment cores, as well as linking offshore deposits 

with terrestrial outcrops and ice cores. Combined with AMS l4C dating of 

macrofossils, complementary geochronologies can be established with high 

fidelity, yielding paleoenvironmental records o f sub-decadal temporal resolution.

• The tephra deposits o f the Mt. Edgecumbe Volcanic Field provide a series of 

useful LGM and Holocene horizons. In particular, the MEd dacite tephra is 

important due to its association with the Pleistocene/Holocene boundary.

Chapter 6 Conclusions
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•  The regionally significant White River Ash, dated at 1147 cal yr BP, is found in 

southeast Alaska over 1,000 km from its postulated source in the Wrangell 

Volcanic Field.

Chapter 3: Holocene evolution o f  the Pacific Decadal Oscillation in the G u lf o f  Alaska

•  The coupled atmosphere-ocean-ecosystem structure in the G ulf o f Alaska has 

experienced multiple modes o f variability throughout the Holocene, ranging from 

seasonal to millennial time scales. The sediment records described in this volume 

exhibit patterns o f decadal- and centennial-scale variability.

•  Models o f North Pacific climate variability based on modem human observations 

can be inadequate for describing the full range o f potential environmental 

conditions, particularly for systems that operate at periods exceeding 100 years. 

The Pacific Decadal Oscillation appears to be such a system, based on a synthesis 

o f high-quality spatially diverse Northern Hemisphere paleoclimate records, 

including data from the fjords o f southeastern Alaska.

•  The onset o f mid-Holocene Aleutian Low intensification in the G ulf o f Alaska at 

4000 cal yr BP is due to a linkage with the Intertropical Convergence Zone, more 

than 5000 km distant. This linkage was facilitated by an increase o f the 

meridional temperature gradient between equatorial and high-latitude regions that 

enhanced heat transport to the poles via Hadley cell circulation.

Chapter 4: High-resolution paleoproductivity evidence fo r  Holocene evolution o f  the 

Aleutian Low Pressure System from  coastal fjords in the Subarctic Northeast Pacific 

Ocean

• Multiple fjords throughout the G ulf o f Alaska region preserve a complementary 

regional record o f Holocene marine productivity and terrestrial run-off intensity. 

Together, these records indicate a millennial-scale mid-Holocene intensification 

o f the Aleutian Low pressure cell responsible for enhancing primary productivity 

and precipitation. However, between 8000 -  6500 cal yr BP, these same sites
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indicate a decoupling between Aleutian Low atmospheric dynamics and marine 

ecosystem variability.

• The onset o f fjord-style reverse estuarine circulation in the Southeast Alaska 

region is complicated by changes in both eustatic and relative sea level due to the 

high levels o f tectonism and isostasy present along this margin. Nevertheless, 

using a combined approach consisting o f  biogeochemical, isotopic, and inorganic 

geochemistry, as well as diatom and silicoflagellate population data, fjord-style 

circulation appears to have initiated around 12,000 years ago following the retreat 

o f the regional Cordilleran Ice Sheet.

Chapter 5: Decoupling o f  the coastal marine ecosystem and glaciomarine Cordilleran Ice  

Sheet dynamics in the G u lf o f  Alaska during the Last Glacial Maximum/Holocene 

transition

•  The continental shelf o f the northern G ulf o f Alaska preserves evidence linking 

paleoceanographic conditions in the Subarctic Northeast Pacific Ocean to abrupt 

changes occurring in the North Atlantic Ocean during the LGM/Holocene 

transition. In particular, the presence o f laminated intervals along the G ulf o f 

Alaska continental slope associated with the Bolling-Allerod (B-A) chronozone, 

as identified in the Greenland GISP2 ice core and other continental margin 

settings o f North America, demonstrate this connection.

• The response o f  the LGM glaciomarine Cordilleran Ice Sheet complex (presen t 

along the continental shelf o f the G ulf o f Alaska) during the deglacial transition 

lags contemporaneous changes in the record o f marine primary production. This 

apparent decoupling suggests the marine ecosystem is much more sensitive to 

global environmental change, yet the marine ecosystem also displays a high 

degree o f resiliency as indicated by rapid shifts to steady-state conditions under 

radically different environmental parameters.

• The laminated B-A interval contains evidence for high primary productivity, 

facilitated by enhanced nitrate utilization and a possible reduction in
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micronutrient limitation. This data suggests a link between active tectonism, 

climate and the marine ecosystem, but requires further testing.

6.1 Future directions

There is still much scientific work to be done along the G ulf o f Alaska margin.

Data from seven EW0408 sediment cores were presented in this dissertation (Tables 6.1

and 6.2); an additional 23 cores await detailed analysis. One o f the major strengths o f the

EW0408 sediment core collection is that most are long enough to resolve millennial

timescales without requiring painstakingly precise spatial sampling strategies. Future

work this author has planned for the EW0408 collection capitalizes on these high

accumulation rates to conduct ultra-high-resolution analyses o f biogeochemical

parameters using advanced X-ray fluorometry core scanning instrumentation, as well as

refining new isotopic proxies focused on the use o f diatom frustules for paleosalinity

reconstructions. This first technique will potentially yield seasonal records o f authigenic

element precipitation patterns relevant to reconstructing the occurrence o f bottom-water

renewal events in the fjords o f southeast Alaska, and by inference regional scale
18 • •circulation patterns in the G ulf o f Alaska. Combined with a 5 Odiatom paleosalinity 

record o f the Alaska Coastal Current, I hope to achieve some o f the most detailed records 

ever developed from the Northeast Pacific Ocean margin. Better measurements o f past 

iron availability are also necessary; the estimation technique presented in Chapter 5 can 

be improved using synchrotron-based iron speciation measurements. Additionally, I also 

hope to participate in future IODP cruises to the G ulf o f Alaska for which the EW0408 

cores were originally collected. The work presented in this volume has evidently only 

whetted my appetite for future G ulf o f Alaska investigations.
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Table 6.1: Significant paleoclimate datasets generated by the author for this work. Following journal 
publication, these datasets will be available for public use from the NOAA Paleoclimatology website 
(http://www.ncdc.noaa.gov/paleo/data.html).

EW0408-11JC (55 .63°N , 1 3 3 .5 1°W . 183 m w ater dep th)

C om posite  age  m odel based on  A M S "c m acrofossils and 1 tephra co rrelation  

B iogenic silica  (opal)

Total o rgan ic  carbon  (T O C ) and  totai n itrogen  (T N )

C arbonate -free  sed im en tary  5 |JC and o 15N

EW0408-22JC (56 .80°N , I35 .21°W , 188 m w ater depth)

C om posite  age  m odel based  on A M S MC m acro fossils  and I tephra  correlation  

B iogenic silica  (opal)

Total o rgan ic  carbon  (T O C ) and total n itrogen  (T N )

C arbonate -free  sed im en tary  8 ,?C and S'-’N 

Inorgan ic  geochem istry  (28  e lem ents)

EW 0408-33JC ( 5 7 .16°N, 135.36°W , 144 m w ater depth)

C om posite  age m odel based  on A M S UC m acro fossils  and  2 tephra corre la tions 

B iogenic silica  (opal)

T otal o rgan ic  carbon  (T O C ) and  total n itrogen  (T N )

C arbonate -free  sed im en tary  8 I3C and 5 1:iN 

Inorganic geochem istry  (28 e lem ents)

EW 0408-44JC (56 .97°N , 135.27°W , 90 m w ater dep th)

C om posite  age m odel based on A M S MC m acrofossils 

B iogenic silica  (opal)

Total o rgan ic  carbon  (T O C ) and total n itrogen (T N )

C arbonate -free  sedim entary ' 8 13c  and 8 LN 

Inorganic  geochem istry ' (28 e lem ents)

EWO408-85.JC (59 .56°N , 144 .15°W, 680 m w ater dep th)

B iogenic silica  (opal)

Total o rgan ic  carbon  (T O C ) and  total n itrogen  (T N )

C arbonate -free  sedim entary  0 L’C and 

X RD  quan tita tive  m ineralogy

http://www.ncdc.noaa.gov/paleo/data.html
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Table 6.2: The analytical contributions o f the author for the work presented in this volum e.

E W 0 4 0 8 -M J C
Collected all macrofossil samples for AMS I4C analysis 
Collected and analyzed tephra samples at 1295-1299 cm bsf 

for major oxide geochemistry'
Derived age model calculations 
Collected all ICP-MS samples
Performed all univariate and multivariate statistical analyses 
Extracted NOAA bathymetry data and generated a digital 

elevation model (DEM; see Fig. 4.1c)

E W 0 4 0 8 -2 2 JC
Collected all macrofossil samples for AMS MC analysis 
Collected and analyzed cryptotcphra sample at 163 cm bsf 

for major oxide geochemistry 
Derived age model calculations 
Collected all biogenic silica (opai) samples 
Collected all TOC, TN. and stable isotope samples 
Collected all XRF geochemistry' samples 
Performed all XKF geochemistry' analyses 
Performed all univariate and multivariate statistical analyses 
Performed all time-series statistical analyses

F .W 0 4 0 8 -3 3 JC
Collected all macrofossil samples for AMS I4C analysis 
Collected and analyzed cryptotephra samples at 1278 and 

1618 cm bsf for major oxide geochemistry'
Derived age model calculations 
Collected all biogenic silica (opal) samples 
Collected all TOC, TN. and stable isotope samples 
Collected all XRF geochemistry samples 
Performed all XRF geochemistry- analyses 
Performed all univariate and multivariate statistical analyses 
Performed all time-series statistical analyses 
Performed spatial and temporal analyses for North Pacific 

teleconnection dataset

E W 0 4 0 8 -4 0 JC
Analyzed 10 tephru samples for major oxide geochemisliy 
Derived age model calculations
Performed all univariate and multivariate statistical analyses 
Extracted NOAA bathymetry and generated a DEM (see Fig. 2.9)

E W 0 4 0 S -4 4 JC
Collected nil macrofossil samples for AMS I4C analysis 
Derived age model calculations 
Collected biogenic silica (opal) samples 
Collected TOC, 'FN, and stable isotope samples 
Performed all univariate and multivariate statistical analyses 
Performed all time-series statistical analyses

F W U 4 0 8 -6 6 JC
Derived 3ge model calculations
Collected all biogenic silica (opal) samples
Collected all TOC, TN. and stable isotope samples
Collected all XRF geochemistry .samples
Performed all XRF geochemistry' analyses
Performed al) univariate and multivariate statistical analyses

E V V 0408-79JC
Collected biogenic silica (opal) samples 
Collected TOC, TN, and stable isotope samples 
Collected all XRF geochemistry samples

E W 0 4 0 8 -8 5 JC
Collected all biogenic silica (opal) samples
Collected all TOC, TN, and stable isotope samples
Collected ICP-MS geochemistry' samples
Collected and analyzed a!I XRD samples
Performed all univariate and multivariate statistical analyses
Performed all time-series statistical analyses


