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Abstract

The thesis is devoted to control and inverse problems (dynamical and spectral) for
systems on graphs and on the half line.

In the first part we study the boundary control problems for the wave, heat, and
Schrodinger equations on a finite graph. We suppose that the graph is a tree (i.e.,
it does not contain cycles), and on each edge an equation is defined. The control is
acting through the Dirichlet condition applied to all or all but one boundary vertices.
The exact controllability in Ly-classes of controls is proved and sharp estimates of the
time of controllability are obtained for the wave equation. The null controllability for
the heat equation and exact controllability for the Schrédinger equation in arbitrary
time interval are obtained.

In the second part we consider the in-plane motion of elastic strings on a tree-like
network, observed from the ‘leaves.” We investigate the inverse problem of recovering
not only the physical properties, i.e. the 'optical lengths’ of each string, but also the
topology of the tree which is represented by the edge degrees and the angles between
branching edges. It is shown that under generic assumptions the inverse problem can
be solved by applying measurements at all leaves, the root of the tree being fixed.

In the third part of the thesis we consider Inverse dynamical and spectral problems
for the Schrodinger operator on the half line. Using the connection between dynam-
ical (Boundary Control method) and spectral approaches (due to Krein, Gelfand-
Levitan, Simon and Remling), we improved the result on the representation of so-
called A—amplitude and derive the “local” version of the classical Gelfand—Levitan

equations.
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General Introduction

0.1 Introduction.

This work is devoted to some control and inverse problems for dynamical systems on
the half line and on finite trees. The work consists of three chapters. Each of them is
self contained and preceded with its own introduction. The common subject of the
problems under the consideration is that we are interested in the control and inverse
problems for dynamical systems.

The control theory of distributed parameter systems is a broad area of mathe-
matics and engineering (to mention just {70, 80, 8]). The general question is the
following: having in hand some dynamical system, to determine if is it possible by
applying some external force (control) to it to achieve a prescribed “state” of the
system. Such control theory has a lot of applications in physics, engineering and
mechanics. In the last fifty years several general approaches were developed, includ-
ing the Hilbert Uniqueness method (see [70, 62]) and the approach via nonharmonic
Fourier series (see [80, 81, 8]). The first one is based on the a priori estimates for
the solutions of partial differential equations that describe the dynamical system.
The second approach is based on the relation, given by the method of moments, be-
tween the control properties of the dynamical system and properties of corresponding
exponential families.

Inverse problems of mathematical physics are problems of the following type: we
have some physical process, usually described by partial differential equations over
some bounded or unbounded domain or manifold. Assume that we can only measure
some partial information (dynamical, spectral or scattering) related to this process.
The question is whether it is possible to recover the whole physical process via the
measurements. The problem is important in physics, engineering, geophysics and
tomography. It has a lot of applications , including the inverse scattering method
for KdV-equation and other nonlinear problems. The data for the inverse prob-
lems could be dynamical (e.g. dynamical Dirichlet-to-Neumann response operator),
spectral (spectral data, or spectral function) or scattering (scattering matrix). The

Inverse Problem theory has been developing from 1930s starting from works by Am-



bartsumyan, Borg and Marchenko on the inverse spectral problem for the Schrodinger
operator on the interval. Since then several general approaches to inverse problems
were developed (see [65, 26, 46, 54, 71]).

In the middle of '80s M. Belishev and his co-authors S. Avdonin, S. Ivanov, A.
Kachalov, Y. Kurylev developed the general approach to multidimensional dynamical
inverse problems, the boundary control method (BC method). The approach is based
on the connection between the controllability and identification problems for partial
differential equations. In many situations the BC method gives the affirmative answer
on R. Kalman’s hypothesis that the dynamical system is identificable if and only if
it is controllable. The BC method has been successfully applied to wave [18, 19],
Schrodinger [10, 11]), Maxwell equations [27, 28], Lame-type system [24], problem
of identification of manifold by dynamical or spectral data [20, 21], problems on
graphs [9, 23, 35|, etc. Surprisingly, the BC method is applicable even in problems
where no boundary is present (see for example Chapter II of [43]). The approach
is complex: it involves the control theory for corresponding dynamical systems and
methods of the geometrical optics (propagation of singularities for wave equations).
We remark that the approach is essentially dimension-independent, and, at least in
one-dimensional situation, leads itself to straightforward algorithmic implementations
and stable numerical schemes (see [6, 7, 34, 29, 33]). Another advantage of the BC
method is its locality: the knowledge of the inverse data on some time interval allows
one to recover the parameters of the dynamical system on a certain smaller interval,
though to formulate the exact statement, we need to introduce so-called “optical
distance” (see e.g. [21]).

Throughout the thesis the following idea on the connection of the control and in-
verse problems is emphasized: the controllability properties of the dynamical system
are connected via the method of moments with the properties of the corresponding
families of exponentials. Such an idea was used in Chapter I of [43] for the construc-
tion of sampling and interpolating sequences for multi-band signals. The Boundary
control method is essentially based on the connections between controllability and
identification problems for systems described by partial differential equations. So the

progress in one of these three fields (control theory, inverse problems, nonharmonic



Fourier series) leads to the progress in two other fields.

The first part of the thesis deals with the problems on trees. The tree consists of
edges connected at the vertices. Every edge is identified with an interval of the real
line. The vertices can be considered as equivalence classes of the edge end points.
The vertices with valency one are called boundary, all other are interior. We always
assume that the tree is finite (we have only finite number of edges) and compact (no
edges with infinite length present). On every edge of the tree a differential equation
is given. Also the matching or coupling conditions are given at the interior vertices
and some boundary conditions are given at the boundary of the tree.

Differential equations on graphs are used to describe many physical processes such
as mechanical vibrations of multi-linked flexible structures (usually composed of flex-
ible beams or strings), propagation of electro-magnetic waves in networks of optical
fibers, heat flow in multi-link networks, and also electron flow in quantum mechanical
circuits. Recently, quasi-one-dimensional structures (graphs), like quantum, atomic,
and molecular wires, have become the subject of extensive experimental and theo-
retical studies. The simplest model is a wave equation on the planar graph. In the
last few years dynamical control and inverse problems for the wave equation and
spectral inverse problems for the Schrodinger equation on the planar graphs with no
circles (trees) have received a lot of attention. The control problems on graphs (in
different settings) were solved in [8, 22, 44, 61]. The dynamical and spectral inverse
problems by BC method were considered in [9, 23, 35|, different methods were used
in [87, 40, 41).

In the first chapter we use results on the partial controllability of the wave equation
on a tree [22], results on exponentials families [8], and on method of transmutation
[73, 74] to show the exact controllability of the wave equation and null controllability
of the parabolic and Schrodinger equations on the tree.

In the second chapter we consider the more complicated system on the tree: two-
velocity dynamical system with constant densities. The difference with the wave
equation on the tree is that on each edge the wave propagates in two channels and
the coupling conditions at the interior vertices reflect the geometry of the graph (i.e.

the angles between edges). We solve the inverse spectral problem for this system



using the BC method.

The third part of the thesis is devoted to the inverse dynamical and spectral
problems for the Schrédinger operator on the half-line. Using the ideas of boundary
control approach we refine results due to F. Gesztesy and B. Simon [83, 49] and
C. Remling [78] on the representation of so-called A—amplitude (response function
in our terms). We also made a contribution to boundary control method: using
dynamical approach and ideas of the BC method we derived the classical Gelfand-

Levitan equations for the inverse problem.

0.2 Statement of contributions

In Chapter I we deal with the control problem for the wave equation on the finite
tree. My advisor Prof. Avdonin stated the goal of proving the exact controllability
result in the sharp time. He pointed out the way of proving Theorems 1 and 2, using
ideas from [8] and the results on partial controllability from [22]. I have performed all
work and proved also Theorem 3 on the exact controllability of the dynamical system
governed by the Schrodinger equation.

In Chapter 2 we deal with the identification problem for the two-velocity system
on the finite tree. The statement of the problem was formulated by Prof. S. Avdonin
and Prof. G. Leugering. Also some of the results from paragraph 2.4 were obtained
by Prof. S. Avdonin, who offered me opportunity to extend these results to the case of
a star graph and arbitrary tree and to develop an algorithm of finding angles between
edges. All results from paragraphs 2.5, 2,6 and the method of finding angles between
edges in 2.4 were obtained by me.

In the third Chapter we study the Inverse dynamical and spectral problems for
the Schrodinger operator on the half-line. Prof S. Avdonin formulated the problem to
generalize the main results of the BC method to the case of L; potential and pointed
out the connections of the BC method with other methods for inverse spectral and
dynamical problems. I performed all work and obtained results from paragraphs 3.2.4
and 3.2.5.

So, the main results of the thesis obtained by me are the following:

1) Controllability of the Schrodinger equation on tree-like graphs (Chapter I).



2) Extension of the BC method to the two-velocity wave equation on trees, devel-

oping of the ‘reduction’ method (Chapter II).

3) Derivation of the local version of the Gelfand-Levitan equations using the BC

approach (Chapter III).

4) New convergence result for the spectral representation of the response function

and A—amplitude (Chapter III).

The main results of the thesis were presented at: Conference on Operator Theory,
Analysis and Mathematical Physics (OTAMP), Lund, Sweden 2006; Petrovskii Con-
ference (22-d meeting) Differential equations and related topics, Moscow State Uni-
versity, Moscow, Russia, 2007; ESF Mathematical Conference on Operator Theory,
Analysis and Mathematical Physics, Poland, Bedlewo, 2008; Colloquiums Depart-
ment of Mathematical Sciences, University of Alaska, Fairbanks, Spring 2006, Spring
2007, Spring 2008; Colloquium University of Tennessee, Knoxville, January 2009; V..
Smirnov Seminar on Mathematical Physics at V.A. Steklov Mathematical Institute,
St.-Petersburg, Russia, May 2009, and are published or submitted for publishing in
(13, 14, 15].



Chapter 1
Controllability of partial differential equations on graphs

1.1 Introduction.

Controllability problems for multi-link flexible structures or, in other words, for the
wave and beam equations on graphs were the subject of extensive investigations of
many mathematicians (see, e.g. the review paper (2] and references therein). Lagnese,
Leugering, and Schmidt in [61, 62] used the method of energy estimates together with
the Hilbert Uniqueness Method to show that the exact controllability can be achieved
in optimal time for tree-like graphs consisted of homogeneous strings, when all but
one exterior nodes are controlled. Independently Avdonin and Ivanov [8, Ch. VII]
applied the method of moments and the theory of vector-valued exponentials to study
controllability problems on graphs for the wave equation. The authors have proved
the exact controllability in the optimal time for the wave equation on the star-shaped
graph of non-homogeneous strings. Belishev in [22, 23] using the propagation of
singularities method obtained result on boundary controllability for a tree of non-
homogeneous strings with respect to the first component (the shape) of the complete
state.

The results on exact controllability fail as soon as cycles occur within the network,
even if all nodes (including the interior nodes) are subjected to control. The reason
for this effect is that eigenfunctions vanishing on certain edges can occur (see e.g. [8,
Sec. VIIL.1]). However, the spectral controllability may be retained for many graphs
with cycles (see [8, Ch. VII], [44, 62] for details). In [69] for the tree of homogeneous
vibrating strings, the authors prove the exact controllability for some special class of
initial/final data. Many interesting results on spectral controllability are obtained in
(44].

In this chapter we prove the result on the exact controllability for the wave equa-
tion on a tree-like graph of non-homogeneous strings for controls acting through
Dirichlet conditions applied to all or all but one boundary vertices. Our result gener-
alizes the ones from (8] and [62]. Using the controllability of the wave equation and
results from (8, 73, 74, 80|, we prove also the null controllability of the parabolic and

exact controllability of the Schrodinger equations on trees.



Controllability problems for partial differential equations on graphs have many
important applications. They are also related to inverse problems on graphs [9, 22, 35]
and to harmonic analysis [8, Ch. VII]. In this chapter we use some known and
prove several new results describing connections between controllability of distributed

parameter systems and properties of exponential families.

1.2 Statement of the problems and main results.

Let €2 be a finite connected compact graph without cycles (a tree). The graph consists
of edges £ = {ei,...,en} connected at the vertices V = {v;...,un41}. Every edge
e; € E is identified with an interval (ag;_;,as;) of the real line. The edges are
connected at the vertices v; which can be considered as equivalence classes of the
edge end points {a;}. The boundary I' = {1, ...,¥m} of  is a set of vertices having
multiplicity one (the exterior nodes). We suppose that the graph is equipped with
the density

p(z) > const >0, z€Q\V, peCl(g), j=1...,N. (1.2.1)

All the results of this paper are valid also for piecewise continuously differentiable
functions p, because discontinuity of p or its derivative in the interior an edge is
equivalent to the addition of an inner vertex of multiplicity two (see the compatibility
conditions (1.2.3), (1.2.4) below).

Since the graph under consideration is a tree, for every a,b € , a # b, there exist
the unique path 7[a,b] connecting these points. The density determines the optical

metric and the optical distance
do? = p(z)|dz|?, z€Q\V,
s@h)= [ Vo@ldsl, aben,
m{a, bj

The optical diameter of the graph €2 is defined as

d(Q) = max o(a,b).

a,ber
The graph © and the optical metric determine the metric graph denoted by {2, p}.
For a rigorous definition of the metric graph see, e.g. [55, 58, 59, 72, 77]. The space



of real valued functions on the graph, square integrable with the weight p is denoted
by Lg,p(Q).

1.2.1 Dirichlet spectral problem.

Let Ow(a;) denotes the derivative of w at the vertex a; taken along the corresponding
edge in the direction toward the vertex. We associate the following spectral problem

to the tree:

1 d*w
w e C(9), (1.2.3)
Z Ow(a;) =0 forve V\I, (1.2.4)
aj;EV
w=0 onI. (1.2.5)

The condition (1.2.4) is also known as the Kirchhoff rule, represent the conservation
of flow trough the vertex. In different situations it could mean the conservation of
charge, energy, etc.

It is well-known fact (for general compact graphs, see [37, 72, 84]) that the problem
(1.2.2)—(1.2.5) has a discrete spectrum of eigenvalues 0 < A} < A; < Ag..., Ap — +00
and corresponding eigenfunctions ¢, ¢, ... can be chosen so that {#;}52; forms an

orthonormal basis in H := L, ,(£2):

(@8 = [ $ia)s@)ola) dz = 8.
Set s (y) = Odi(7y), v € I'. Let oy be the m-dimensional column vector defined as
_ ()
o = col (_‘/f)wer'

Definition 1. The set of pairs
{/\k) ak}?):l (126)

is called the Dirichlet spectral data of the tree {Q, p}.



1.2.2 Initial boundary value problems. Control from the whole boundary.

We associate three dynamical systems, described correspondingly by the wave, heat

and Schrodinger equations, to the tree {2, p}. The first one has the form:

pu — Uz =0 in Q\V x [0, 7], (1.2.7)

Ult=0 = Ut|t=0 = 0, (1.2.8)

u(-,t) satisfies (1.2.3) and (1.2.4) for all ¢ € [0, T], (1.2.9)
u=f onTl x10,T]. (1.2.10)

Here T > 0, f = f(v,t), v € T, is the Dirichlet boundary control which belongs to
FI' = Ly([0, T]; R™). The inner product in 77 is defined by

(£,9)rr = Z/O f(v, t)g(, t) dt.

Let D'(2) be the set of distributions over the tree. We introduce the space

= "(Q) : a:=oo z), 4 I N 2 ¢
H_l—{QED(Q)-g() ;gkék(),{\//\—k} El}

k=1

The initial boundary value problem (1.2.7)—(1.2.10) has a classical solution if
f € C*([0,T],R™). In our case when f € FZ, the solution to (1.2.7)—(1.2.10) is
understood in weak (distributional sense). It can be proved (see [8, 35, 44, 62]) that

the solution u/ satisfies the inclusion
uf € C([0, T}, H) N CH([0, T]; H-a).

This means that u(-,t) € H, w(-,t) € H-y for all ¢ € [0,T], and both functions
are continuous with respect to ¢ in corresponding norms. In other words, the state
of the dynamical system (1.2.7)—(1.2.10) (u(-,t), u:(-,t)) is a point of H x H_;, and
the trajectory of the system is a continuous curve in the state space H x H_;. This
regularity result is sharp, see [8].

One of the main results of the present paper demonstrates the ezact controllability

of the system (1.2.7)—(1.2.10).
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Theorem 1. For arbitrary state {a,b} € HxH_;, there exists such a control function
flv,t) € FE with T = d(Q), that solution of the initial boundary value problem
(1.2.7)-(1.2.10) satisfies the equalities v/ (-, T) = a, uf (-,T) =b.

Another system we associate to the graph {Q, p} is

pus — Uz, =0 in Q\V x [0, 7], (1.2.11)

Uls—o = a, (1.2.12)

u(-,t) satisfies (1.2.3) and (1.2.4) for all t € [0, 7], (1.2.13)
u=f onT x][0,7], (1.2.14)

where 7 >0, f € 7L and a € H_;.
It is known (see e.g. [8, 38, 61]), that the solution u/ of the system (1.2.11)-(1.2.14)

satisfies the inclusion

uf € C([0,7); H_1).

For the parabolic-type dynamical systems various types of controllability are con-
sidered in the literature (see [8, 62]). The following result demonstrates the null

controllability of the system (1.2.11)—(1.2.14).

Theorem 2. For arbitrary given state a € H_1 and for arbitrary time interval [0, 7],
T > 0, there exists a control f € Ff such that the solution of the initial boundary

value problem (1.2.11)-(1.2.14) satisfies the equality u/(-,7) = 0.

The Schrodinger equation can also be associated to the graph {2, p}:

pue + itgs = 0 in Q\V x [0, 7], (1.2.15)

Uli=0 = a, (1.2.186)

u(-,t) satisfies (1.2.3) and (1.2.4) for all t € [0, 7], (1.2.17)
u=f onTl x|0,7], (1.2.18)

where f = f(v,t) € Ff, a € H_1. It is known (see, e.g. [10, 86]) that solution
uf(z,t) of (1.2.15)—(1.2.18) satisfies the inclusion

uf € C([0,T); H-1).
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For the dynamical system governed by the Schrodinger equation (1.2.15)—(1.2.18)
the following result on the exact controllability holds. (Due to time reversibility, the

exact and null controllability are equivalent for the Schrodinger equation.)

Theorem 3. For arbitrary initial state a € H_; and for arbitrary time interval [0, 7],
T > 0, there exists such a control f € F{ that the solution to the initial boundary
value problem (1.2.15)-(1.2.18) satisfies the equality v/ (-,7) = 0.

1.2.3 Initial boundary value problems. Control from a part of the bound-

ary.

In the case when the graph is controlled from the whole boundary but contains cycles,
the system (1.2.7)—(1.2.10) is not exactly controllable (see, e.g. [8, Sec. VIL1]).
Similarly, if the graph is a tree, but the system is not controlled at two or more
boundary points (the Dirichlet condition v = 0 is imposed there), the Theorem 1
fails; the corresponding example (in the case of homogeneous strings) is given in
[44, Sec. 6.3] (see also [2]). Suppose that the graph is not controlled at one of the
boundary points, say ;. Then one can introduce the length of the longest path from
v to the rest of the boundary I'y =T\ {m }:

dl(’)’h Q) = ma‘XT(’Yl, ’7)
vyel

The boundary conditions for the system (1.2.7)—(1.2.9) have the form:

u(y1,t) =0, ulv,t)=f(yt), i=2,...,N, (1.2.19)

where f € Ff. = Ly([0,T];R™ ). In this situation the analog of Theorem 1 holds

true:

Theorem 4. For arbitrary state {a,b} € H X H_; there ezists such a control function
f(v,t) € FE, with T = 2di(,Q) that the solution of the initial boundary value
problem (1.2.7)-(1.2.9), (1.2.19) satisfies the equalities u/(-,T) = a, ul (-, T) =b.

For the parabolic and Schrédinger type systems (1.2.11)—-(1.2.13), (1.2.15)—(1.2.18),

we can also consider the problem of the controllability from the part of the boundary,
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i.e., we add the boundary conditions (1.2.19) to the initial-value problem (1.2.11)-
(1.2.13) and to the problem (1.2.15)—(1.2.17). In this case one can prove the analogs
of Theorems 2 and 3:

Theorem 5. For arbitrary given state a € H_, and for arbitrary time interval [0, 7],
7 > 0, there exists such a control f € Ff that the solution of the initial boundary
value problem (1.2.11)-(1.2.18), (1.2.19) satisfies the equality u’(-,7) = 0.

Theorem 6. For arbitrary initial state a € H_, and for arbitrary time interval [0, 7],
T > 0, there exists such a control f € F that the solution of the initial boundary
value problem (1.2.15)-(1.2.17), (1.2.19) satisfies the equality u/(-,7) = 0.

1.3 Auxiliary results.

In [22]-[35] the following result concerning the controllability with respect to the
first component (the shape) of the complete state {u,u;} of the dynamical system
(1.2.7)-(1.2.10) has been proved:

Theorem 7. Let T = d(2)/2, then for arbitrary a € H there exists such a control
f(y,t) € FF that the solution of the initial boundary value problem (1.2.7)-(1.2.10)
satisfies the equality uf (z,T) = a(z).

In other words, the system (1.2.7)—(1.2.10) is controllable with respect to the shape
for the time equal to the half optical diameter of the graph. Note that in general such
a control is not unique.

To prove Theorem 7 the propagation of singularities method has been used and
the controllability was reduced to solvability of the Volterra type equation. It was
supposed in [22]-[35] that p € C? on all edges, however, the method works for p € C?!
as well. The same technique can be applied to obtain the result on the controllability
of the system (1.2.7)—(1.2.10) with respect to the second component (the velocity) of

the complete state:

Proposition 1. If T = d(£2)/2 then for arbitrary b € H_,, there exists such a control
f(y,t) € FE, that the solution of the initial boundary value problem (1.2.7)-(1.2.10)
satisfies the equality uf (z,T) = b(z).
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In the following two propositions we consider the case of boundary condition
(1.2.19) for the system (1.2.7)—(1.2.9). The proof of the first proposition can be
extracted from the proof of Theorem 7 [35, Sec. 2]. Let us introduce the ‘optical
center’ of the graph 2, i.e., such a point £ € Q, that rzylgrx T(€,v) = d(2)/2 =T. Since
Q2 is a tree, there can be only one optical center. Suppose that the final state a(z)
is supported in such a subtree Q; C Q that £ ¢ Q. As it was shown in [22]-[35],
to solve the control problem one need to use controls supported on the part of the
boundary of the graph 2 which is the boundary of ;. In other words, it is possible
to construct such a control f € FI that u/(T,z) = a(z) and f(v,t) = 0 for v ¢ Q.
The authors offers the explicit procedure of the construction of such a control. If
instead of the ‘optical center’ of the graph we take a boundary point y; where the
homogeneous Dirichlet condition u(v;,t) = 0 is imposed, we come to the following

statements:

Proposition 2. If T = di(y1,Q), then for arbitrary a € H, there exists such a
control f € FL, that the solution of the boundary value problem (1.2.7)-(1.2.9),
(1.2.19) satisfies the equality v/ (z,T) = a(z).

The same result holds true for the controllability with respect to the velocity:

Proposition 3. If T = d(v,,?) then for arbitrary b € H_,, there exists such a con-
trol f € Fi. that the solution of the boundary value problem (1.2.7)-(1.2.9), (1.2.19)
satisfies the equality uf (z,T) = b(z).

1.4 Proof of Theorem 1.

We begin with the reducing the problem of controllability of the dynamical system
(1.2.7)—(1.2.10) to the moment problem in F¥. Solving the initial boundary value
problem (1.2.7)—(1.2.10) by the Fourier method and looking for the solution in the

form
oo

uf (z,t) = ) cl(t)gu(z), (1.4.1)

k=1
we get the expression for the coeflicients:

l(t) = Y- 20 [Csin /3o = )f(5)ds



14

Suppose that we are given the final state {a,b} € H x H_; at t = T, where the

functions a(z), b(z) have the expansions
a(z) = Zak¢k($)a b(z) = Zbk¢k(m),
k=1 k=1

for some {ax}2, € lp and {;—i—k}z":l € lp. Then for an unknown control f € F¥, the

following moment equalities should hold at time t = T

ar = cl(T) = ; }ijf\lk) /0 sin /A(T — s)f(7,s)ds, k€N, (1.4.2)

b —@— #(7) Tcos - S s)ds
V_A—k_m_;mfo VMT =) f(y,s)ds, keN.  (1.4.3)

Using Euler formulas for exponentials, we rewrite (1.4.2), (1.4.3) as

be . () /T +iy/An(T—s)
— tia = — VAT f(y s)ds, k€N, 1.44

VD v, 49
Definition 2. We call the moment problem (1.4.4) solvable (and f(v,t) a solution of
the moment problem) in the time interval [0,T) if, for arbitrary {ax}>,, {;—j—k}f’:l €
lo, there exist such a function f € FE that equalities (1.4.4) hold.

We emphasize that the solvability of the moment problem (1.4.4) in the time
interval [0, T)] for some T > 0 is equivalent to the controllability of the dynamical
system (1.2.7)—(1.2.10) in the sense of Theorem 1 in the same time interval. This is
a basic statement of the method of moments (see, e.g. [8, Ch. III], [80]).

We need a couple of definitions concerning vector families in arbitrary Hilbert

space.

Definition 3. The family {£.}%2, in a Hilbert space H is called a Riesz basis, if it
s an image of an orthonormal basis under the action of some linear isomorphism

(bounded and boundedly invertible operator).

Definition 4. The family {£:}32, in a Hilbert space H is called an L-basis, if it is a

Riesz basis in the closure of the linear span of the family.
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The result on the controllability formulated in Theorem 7 implies the solvability
of the moment problem (1.4.2) for T' = d(Q)/2 for every {ax}32,. The controllability
result formulated in Proposition 1 implies the solvability of the moment problem
(1.4.3) for T = d(Q2) /2 for every {\/b—j—k};“;l € ly. Our goal is to show that the solvability
of the moment problems (1.4.2) and (1.4.3) for T' = d(€2)/2 implies the solvability of
the moment problem (1.4.4) for T = d(f2). Let us put T, = d(2)/2 and introduce the

families of vector valued functions

Se(t) = agsin\/ Agt, Cy(t) = apcos/Axt, ke N.

According to Theorem II1.3.3 of [8] the solvability of the moment problems (1.4.2)
and (1.4.3) means that the families {Sk(t)} -, and {Ck(t)} 5o, form L-bases in Ly ([0, T.]; R™).
Let us introduce subspaces of Ly ([0, T,]; R™):

Zo= VSO, 2= \V{GMmi2,
where \/ denotes the closure of the linear span of a family. We extend the functions

from Z, to the interval [T}, 0) in the odd way:

_ t), t=0, i
o(t) = elt) , -T.<t<T., ¢p€=,,
_(p(_t), t< Oa

t), t>0, _
a(t)={“’() ~T.<t<T, pe=,.

Let us denote the spaces of extended functions by EO and =, and notice that the
extended families {gk(t)}i‘;l and {ék(t)}i‘_’__l are Riesz bases in Z, and Z, corre-
spondingly. The orthogonality of the spaces _E.o and =, implies that the union

o0

GV CIC N

forms a Riesz basis in =, @ée C Lo([-T., T.]; R™). Introducing functions

Esx(t) = Ck(t) £ iSk(t) = ape™ ™, k€N, (1.4.5)
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we see that the set {FEij}ren forms an L-basis in Lo([—T, T,]; C™). Shifting the
argument, we come to the conclusion that the same family forms an L-basis in
Ly([0,2T,];C™). Then according to Theorem II1.3.3 of [8], the moment problem
(1.4.4) is solvable for time T = 2T, = d(2). As we have already noticed, this implies
the exact controllability of (1.2.7)-(1.2.10) in the time interval [0, d(€?)]. Theorem 1
is proved.

The proof of Theorem 4 is analogous to the previous one. We set ), to be the

(m — 1)-dimensional column vector defined as

o, = col (%)m . (1.4.6)

There naturally arise the families of vector functions in Lo([0, T1]; R™!) with T} =
di (’71a Q)

Si(t) = apsiny/Mt, Ci(t) = ajcos\/Mt, k€N

One should perform the same procedure (using Propositions 2 and 3 instead of Theo-
rem 7 and Proposition 1) as in the proof of Theorem 1, construct the family of vector

exponentials
{ELtiey Eix() =cjet™™ te(0,2T1), keN, (1.4.7)

and use the connection between controllability and vector exponentials (8], Theorem
I11.3.3).
In the proofs of Theorems 1 and 4 we have got important results which are of

independent interest in Function Theory.
Proposition 4. The family {Eix} oy (see (1.4.5)) constructed using the Dirichlet
spectral data (1.2.6) is an L-basis in Lz([0,d(Q2)]; C™).

Suppose that we pick arbitrary boundary point of the graph (we keep the notation
v, for it), then we get

Proposition 5. The family {Eik}keN (see (1.4.7)) constructed using the Dirichlet
spectral data (1.2.6), (1.4.6) is an L-basis in Ly([0,2T1];C™ 1) for Ty = di(m, Q).

It seems to be very difficult to obtain these results without using the control

theoretic approach.
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1.5 Proof of Theorem 2.
Looking for the solution of (1.2.11)—(1.2.14) in the form (1.4.1) for the fixed initial
state a € H_; with the expansion

a(z) = Zakqﬁk(x), (1.5.1)
k=1
we come to the following formulas for the coefficients:

t
() = are ™ + 3 () / =) () ds.
0

~yel

Solving the control problem associated with (1.2.11)—(1.2.14) in the time interval
[0,7], we need the equation c/(7) = 0, k € N to be satisfied. This leads to the

following moment problem

k. _x.» () /T —Ar(r—s)
0= —=e " 4+ — | ek f(v,8)ds, keN. 1.5.2
= ) (15.2)

Definition 5. The moment problem (1.5.2) is solvable in the time interval [0, 7] for

some T > 0 if and only if, for arbitrary {j—f—;}k € Uy, there exists f € F{ such that
=1

equalities (1.5.2) hold.

Note that solvability of the moment problem (1.5.2) is equivalent to the null
controllability of the dynamical system (1.2.11)—(1.2.14).

Definition 6. The family {£c}52, in a Hilbert space H is called minimal if, for every
k € N, element & does not belong to the closure of the linear span of the remaining

elements.

Another equivalent characteristic of the minimal family {£,}$2; in a Hilbert space
H with the scalar product < .,- > is the existence of the bi-orthogonal family
{&.}32, C H such that
<&, & >=0kn, k,neN.

It is well known, that if a vector family is an L-basis in H, it is minimal in H.
Proposition 4 states that the ‘hyperbolic’ family { F1x }ken defined by (1.4.5) forms
an L-basis in Ly([0,d(2)];C™). Let us denote by {E’,;}ken the family bi-orthogonal
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to { Exx }ren. There are connections between the ‘hyperbolic’ family (1.4.5) and the

‘parabolic’ one,

{Qr}oe:, Qi(t) =oe™, keN, (1.5.3)

first established by D.L. Russell {80]. We use his result in a slightly more general
form, formulated in Theorem I1.5.20 of (8], from which it follows that the ‘parabolic’
family {Qx}r, is minimal in Ly ([0, 7], C™) for every 7 > 0 and for the members of

the ‘parabolic’ bi-orthogonal family {Q}}s2, the following estimates hold:

1Q%l L2 omemy € CO Bl aoamyeme®V*, k€N, (1.5.4)

with positive constants C(7) and g.
To prove Theorem 2, one needs to show the solvability of the moment problem

(1.5.2) which can be rewritten as

b4

%(7)
VA

Ak — AT __ /T ~ Akt
——e€ = e f(y, 7 —t)dt, keN,
V Ak ; 0

or, shortly, as

L Ve g T keN 1.5.5
me (Qk:f )fr" 3 ( oS )

where f7(v,t) = f(v,7 —t). One can check that a formal solution of (1.5.5) has the

form
[0, ]

Front) == ae™ Qi(t). (1.5.6)

k=1

Estimates (1.5.4) imply that f7(v,t) defined by (1.5.6), belongs to Ff and therefore,
the moment problem (1.5.2) is solvable. This completes the proof of Theorem 2.

The proof of Theorem 5 is similar. The corresponding family of exponentials that

arise while reducing the control problem to the moment problem has the form:

{Qitrys Qi) =ae™' keN. (1.5.7)

We conclude this section with results about families of vector exponentials that

naturally appeared in the proofs.

Proposition 6. The family {Qx}re, (see (1.5.3)) constructed using the Dirichlet
spectral data (1.2.6) is minimal in Le([0, T]; C™) for any T > 0.
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Suppose that we pick arbitrary boundary point of the graph (we keep the notation

v for it), then the following statement is true.

Proposition 7. The family {Qi}ee, (see (1.5.7)) constructed using the Dirichlet
spectral data (1.2.6), (1.4.6) is minimal in Lo([0, T];C™1) for any T > 0.

We emphasize that an independent proof of Propositions 6, 7 without using the

control theoretic approach would be very difficult.

1.6 Proof of Theorem 3.
To prove Theorem 3 we use the scheme proposed in [73]. We reformulate the ini-
tial boundary value problems (1.2.7)—(1.2.10) and (1.2.15)—(1.2.18) in the operator
form. Results concerning the dependance of solutions to systems dual to (1.2.7)-
(1.2.10), (1.2.15)—(1.2.18) on the initial data, allow us to use the Theorem 3.1 of
(73] that derives the exact controllability of the first-order system (1.2.15)—(1.2.18) in
the arbitrary time interval from the exact controllability of the second-order system
(1.2.7)—(1.2.10) in some time interval.

Let us introduce the operator A = —%Zd;g in Hy :="H = Ly, ,(). If the density
p satisfies (1.2.1), the operator A is self-adjoint, positive definite and boundedly

invertible with the domain
D(A) = {a € Hy, al., € H*(e;), a satisfies (1.2.3), (1.2.4)), a|r = 0} .

This operator defines the scale H,, p € Z, of Hilbert spaces. For p > 0, integer,
H, = D(A?%) with the norm ||z||, = |A%z|, H_, is dual to H, with respect to the
scalar product in Hy. Another characterization of H_,(2) is that it is the completion
of Hy with respect to the norm |z||_, = |A~%z|. By A’ we denote the operator
dual to A: it is the extension of A to H_; with the domain Hy. Let ¥ = R™ and
C : Hy — Y be defined by:

Ca = col (9a(7))er -

Let the operator B : Y +— H_; be dual to C. In this notations we can rewrite the

dynamical system (1.2.15)-(1.2.18) as

u(t) — 1A'u(t) = Bf(t), u(0)=a € Hy. (1.6.1)
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The dual observation system with output function y is defined by
ur(t) —1Au(t) =0, u(0) =wug € Hy, y(t) = Cult). (1.6.2)

The smoothness of the solution of (1.6.2) (see [10] for the case of one interval) guar-

antees that for the observation operator C, : ug — y(t) the following estimate holds:
ICsuollrr < Krlluolla, o € Ha (1.6.3)

with Kr > 0.
System (1.2.7)—(1.2.10) can be rewritten as

u(t) + A'u(t) = Bf(t), u(0) =0, u(0) = 0. (1.6.4)
The dual observation system with the output function z has the form
up(t) + Au(t) =0, u(0) =wuy € H, us(0) =uy € Hy, 2(t) = Cu(t).
The observation operator C,, : {ug, u;} — 2(t), satisfies the estimate:

ICw{uo, urHipr < Kr(lluoller, + fluallim,) (1.6.5)

with K7 > 0 (see [64]). Now we can use Theorem 3.1 of [73], which says that if
the dynamical system (1.6.4) is exactly controllable in some time interval (in our
case it is controllable in the time interval (0,d(£2)), then the system (1.6.1) is exactly
controllable in any time interval, provided observation operators satisfy inequalities

(1.6.3), (1.6.5). This completes the proof of Theorem 3.

Remark 1. The proof of Theorem 6 is similar, one should refer to Theorem 4 for

the controllability of the corresponding second order dynamical system.

Looking for the solution of (1.2.15)—(1.2.18) in the form (1.4.1) for the fixed initial
state a € H_; with the expansion (1.5.1), we come to the following formulas for the

coefficients:

t
dt) = ase™ 4 () [ Ifr,0)ds
0

v€ET
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Solving the control problem associated with (1.2.15)—(1.2.18) in the time interval

[0, 7], we obtain the following moment problem

Gk s }fk(’)') /T Ak (T—8)
0= —e""*" + ek f(v,s)ds, keN. 1.6.6
VP PR, ol ) .

Theorem 3 implies that the moment problem (1.6.6) is solvable for any 7 > 0. Using
Theorem I11.3.3 of [8] we deduce the result about family of vector valued exponentials

that appeared in the moment problem (1.6.6).

Corollary 1. The family
{Dk}?_—l , Dk(t) = akei’\kt, ke N,

constructed using the Dirichlet spectral data (1.2.6) is an L-basis in Ly([0, 7]; C™) for

any T > 0.

Picking arbitrary boundary point of the graph (we keep the notation +, for it)

and using Theorem 6, we get
Corollary 2. The family
{Di}isys  Dilt) = ce™,

constructed using the Dirichlet spectral data (1.2.6), (1.4.6) is an L-basis in Ly([0, 7]; C™1)

for any T > 0.
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Chapter 2
On an inverse problem for tree-like networks of elastic strings

2.1 Introduction.

In many problems in science and engineering network-like structures play a fundamen-
tal role. The most classical area of applications consists of flexible structures made of
strings, beams, cable and struts. Bridges, space-structures, antennas, transmission-
line posts, steel-grid structures as reinforcements of buildings and other projects in
civil engineering. See Lagnese, Leugering and Schmidt [62] for an account of multi-
link structures. More recently applications also on a much smaller scale came into
focus. In particular hierarchical materials like ceramic or metallic foams, percolation
networks and even carbon nano-tubes have attracted much attention. In the latter
context, the problem is understood as a quantum-tree-problem. See, e.g. Kuch-
ment [58], Kostrykin and Schrader [55], Avdonin and Kurasov [9]. In all of these
areas the topology of the underlying networks or graphs plays a dominant role. The
understanding of the influence of the local topology and physical parameters, say at
a given branching point, on the global mechanical or scattering properties is crucial
in this area. Failure detection in mechanical multi-link structures by non-invasive
methods as well as topological and material sensitivities with respect to an observer
play an important role. Gaining this understanding is the central focus of this paper.
Undoubtedly, the inverse problem for mechanical structural elements like membranes
and plates has been discussed in the literature. The famous question by Kac [52]:
“can one hear the shape of a drum” initiated major research in this direction. This
questioh has been repeated in the literature regarding other structures, also for string-
networks on a tree by Belishev and Vakulenko [23, 35], Brown and Weikard [40], and
Avdonin and Kurasov [9]. However, in that work strings have been considered as
deflecting out of the plane rather than in the plane. The important and in fact cru-
cial difference is that such networks are insensitive for the geometry of the graph in
the sense that the coupling conditions do not reflect the angles at which the strings
are ‘glued’ together. Only in the case of in-plane motion are the coupling conditions
dependent on the local geometry of the multiple joints. This observation is even more

relevant for networks containing beams, a case that is subject to current investigation.
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In a more abstract setting, where also electromagnetic or quantum effects are consid-
ered on graphs, one observes that such an in-plane modeling involves multi-channel
and multi-velocity models for wave propagation in thin structures.

Tackling inverse problems involves the understanding Steklov-Poincaré operators
just as in the case of domain decomposition. Such operators for problems on graphs
have been investigated in Lagnese and Leugering [60]. Scattering matrices, indeed the
Tichmarsh-Weyl function for in-plane-networks of strings, at that time called echo-
analysis, have been investigated in Leugering [67]. In particular, the understanding
of controllability properties of the underlying structures is crucial for a dynamic, and
indeed real-time, detection of physical and geometrical properties. Again, exact con-
trollability of networks of strings both in the out-of-the-plane and the more important
in-plane mode has been investigated by Lagnese, Leugering and Schmidt [63, 61, 62],
and by Avdonin and Ivanov [8], see also [2, 13]. There it has been shown that under
generic assumptions, controllability of a rooted tree holds by controls at the leaves.
Later Leugering and Zuazua [69] showed that under more refined assumptions on
the nature of the out-of-the-plane string-tree exact controllability in refined spaces
was even possible when the root was controlled only. This research has been ex-
tended considerably in Dager and Zuazua [44]. As it turned out in Belishev and
Vakulenko [23, 35|, Avdonin and Kurasov [9] exact controllability of both the state
and the velocity appeared too demanding. Indeed, their ‘boundary-control-approach’
is based on controllability of the state only. The work on inverse problems by the
way of the boundary-control-approach has by now become a major tool. The current
paper is no exception in that direction. For inverse spectral problems on graphs see

also the works of Freiling and Yurko [45, 87).

2.2 Forward dynamical and spectral problems for the two-velocity system
on the tree.

Let Q be a finite connected compact planar graph without cycles, i.e. a tree. The

graph consists of edges £ = {e1,...,en} = {e;]1 € T}, where T := {1,...,N},

connected at the vertices (nodes) V' = {v;...,un41} (see Figure 2.1).

Every edge e; € E is identified with an interval [Bs;_1, B2;] of the real line. The
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Figure 2.1: The tree

Figure 2.2: Representation of planar displacement

edges are connected at the vertices v; which can be considered as equivalence classes
of the edge end points {g;}.

Once the geometry of the underlying graph is defined, one introduces displace-
ments 7¢(z) € R? at each point of the graph. As each edge carries along an individual
coordinate system e;, e; the displacement decomposes as follows:

r'(z) == u'(z)e; + w'(z)e;

where u'(z) is the longitudinal (tangential) displacement and w'(zx) the vertical (in
the plane) or normal displacement w*(z) at the material point z € [By_1, 8] (see
Figure 2.2).

The corresponding strains decouple accordingly: 7¢(z) = u®(z)e;+wt(x)e;i, where
the suffix = signifies a derivative with respect to the variable z. We assume linear

Hookean material. The stiffness matrix can then be expressed as

2. .T 2 L/ IN\T
K; = kjjee; + kje;(e; ).
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In this article we assume that the tangential and normal stiffness parameters are
constant along each edge e;. The local balance of forces along an individual edge

then turns into the classical equation for the transient motion of a planar string:
rh — Kirg, = fi,

where now the suffix ¢ represents a time-derivative and f; is an external force acting
on edge e;. In this notation the mass is incorporated into the stiffness parameter.
Indeed, for = € e; C Q\V we may define the density p(z) := max {ﬁ;, é;}

Since the graph under consideration is a tree, for every a,b € 0, a # b, there exist
the unique path 7{a,b] connecting these points. The density p determines the optical

metric and the optical distance

do:=+/p(z)|dz|, ze€Q\V,
o(a,b) = / Vvplx)ldz], a,be€Q,

mla, b]

The optical diameter of the graph 2 is defined as

Q) = max o(a,b).

The graph Q and the optical metric determine the metric graph denoted by {2, p}.
For a rigorous definition of the metric graph see, e.g. [55, 58, 59, 72, 77].

Once the equations of motions along an individual edge are given, we have to
describe the coupling conditions across multiple joints. We are going to do that for
general planar graphs rather than just for trees. To this end we introduce some
additional notation. For the convenience of the reader we label vertices by upper case
letters in order to distinguish clearly from edge labels which, in turn, are given by
lower case letters. This convention is dropped in the analysis later because the tree
structure implies a more direct labeling.

Given a node v; we define Z; := {i € Z|e; is incident at v;} the incidence set, and
dy = |Z;| the edge degree of v;. The set J = {J|v; € V'} of node indices splits into
Js and Jup which correspond to simple and multiple nodes according to d; = 1 and

dy > 1, respectively.



26

The set of simple (exterior) nodes is called the boundary of the graph Q and is
denoted by I'. In this paper we suppose that external forces act only at the boundary
of the graph through the non-homogeneous Dirichlet boundary conditions.

For © € Z; we set
r'(Bej—1) if edge ¢ starts at vy,

r(vs) =
7 (Ba;) if edge ¢ ends at vy,

. —71(Bej—1) if edge i starts at vy,
ra(vs) =4
7% (Ba;) if edge ¢ ends at v;.
This means that 7% (vy) is the derivative of 7 taken along the edge e; at the endpoint
corresponding to the vertex vy in the direction towards the vertex.
We may then consider time dependent displacements r*(z,t), t € [0,T], (T is an
arbitrary fixed positive number). The system of equations governing the full transient
motion is given by

( ry, — Kiri, =0, z€ (B2j-1,B2;), t € (0, T), t € T,
r(vy,t) = f5(t), 1€Z;, J€Ts, t€(0,T),

) r(vy,t) =17 (vy,t), 4,7 €Ly, JE€ Tn, t€(0,T), (2.2.1)
> Kiri(vs,t)=0, J€Jy, t€(0,T),
i€l

| (2,0) =75, 73(2,0) =71, T € (By;-1,0), €T
It is important to understand the coupling conditions (2.2.1)3 4. Indeed, the first of
these conditions, namely r*(vs,t) = r7(vy,t) for 4,5 € Z;,J € Jur, simply expresses
the continuity of displacements across the vertex vy;. Without this condition the
network falls apart. The second condition, namely Z Kiri(vs,t) = 0 for J € Ju,
reflects the physical law that the forces at the vertexzevrj, in the absence of additional
external forces acting on v;, should add up to zero. Notice that the coupling at
multiple nodes v;, those where d; > 1, is a vectorial equation. This is in contrast to
the out-of-the-plane model, where no such vectorial couplings occur which, in turn,
makes the problem then independent of the particular geometry. In the case treated

here the geometry, represented by the pairs (e;, e;) does play a crucial role.
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In Leugering and Sokolowski [68] the static system, i.e. (2.2.1) without time-
dependence, has been investigated with respect to topological sénsitivities, such that
the potential energy or other functionals are considered under variation of the edge-
degree, nodal positions and edge-deletion. Like in this paper, the analysis of the
Steklov-Poincaré operators plays a crucial role.

Another remark about model (2.2.1) is in order. If the system is static, the stiffness
only active for longitudinal displacements, and if the state is edge-wise linear, then

(2.2.1) comes down to a truss-model.

In the global Cartesian coordinate system, one can represent each edge by a ro-

cosa —sino
Se = . )
sina coso

where e = (cosa,sina)?. In fact, it is the global coordinate system that we will

tation matrix

use throughout the paper, as we are going to identify the angles a;; between two

branching edges.

2.2.1 Spectral settings.

Now we introduce the spaces of real valued square integrable functions on the graph

Q:
N
Ly(Q) = €P La(ei, R?). (2.2.2)

For the element U € Ly(2) we write
AN
ut o
U= {uw}= {( )} ,  u,w' € Ly(e;). (2.2.3)
v i=1
We can reformulate the compatibility conditions in (2.2.1) at multiple nodes (ver-
tices) v using global coordinates. For the sake of self-consistency in this framework
we put this in the format of definitions. We denote by «;; the angle between two

edges e; and e; counting from e; counterclockwise and introduce the matrices

’ kzzl 0 -
D, = , 1€T. (2.2.4)
0 k%
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We set S;; := Sa,;-

Definition 1. We say that the edge-wise continuous function U satisfy the first con-

dition (continuity) at the (multiple node) internal vertex vy if

u'(vy) v (vy) .
'-_—Sij . , 1, 1. 2.2.5
(w%w)) (w](vj)) P (229

Let e; be an edge incident at v;.

Definition 2. We say that the edge-wise continuously differentiable function U sat-

isfies the second condition (force balance) at the internal vertex vy if

Z&W%%Wv=- (2.2.6)

It is easy to check that if the condition (2.2.6) is satisfied for some i € 7, then it

is valid for any ¢ € Z;.

NN
We put {¢, v} = { (:Z) } € Ly(9) and associate the following spectral prob-

i=1
lem to the graph:

—k2 4. = A\
o ¢.} r€e i€1T, (2.2.7)

ke, = A
{¢, 9} satisfies (2.2.5), (2.2.6) at all internal vertices vy, J € Ju, (2.2.8)
{¢,%} =0 on the boundary I’ (2.2.9)

The last equality means that ¢*(vy) = ¥'(vy) =0, fori € Z;, J € Js.
Definition 3. By S we denote the spectral problem described by (2.2.7)-(2.2.9).

It is known that the problem S has a discrete spectrum of eigenvalues 0 < A; <
A1 € A € ..., — oo. Corresponding eigenfunctions {¢,%} can be chosen such
that they form an orthonormal basis in L,(2). Indeed, for scalar problems, i.e. out-
of-the-plane displacements in the mechanical context or conductivity, the spectral
behavior has been explored by von Below [37], Nicaise [76] and others. The in-plane

case discussed here has been treated in Lagnese, Leugering and Schmidt [62].
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2.2.2 Dynamical settings.

Along with the spectral, we consider the dynamical system, described by the two-
velocity problem on the each edge of the graph: '
1

k—zuﬁt —ul, =0, t>0, z€e (2.2.10)
i1

1 . )

k—zzw’t‘t —w,, =0, t>0, z€e,. (2.2.11)

Here the coeflicients k;;, k; play the role of speeds of the wave propagation on the
edge e;, 7 = 1,... N in the first and second channels.
We assume that |Js| = m. By FI = Ly([0,T],R?™) we denote the space of

controls acting on the boundary of the tree. For the element F € FI we write

We will deal with the Dirichlet boundary conditions:
{u,w} ={f,¢9}, onT x[0,T]. (2.2.12)

where f, g € F£. The last equality means that u'(vy) = fi(vy), v*(vs) = g*(vy), fori €
Zy,, Je Js.

Definition 4. By D we denote the dynamical problem on the graph S, described by
the equations on the edges (2.2.10), (2.2.11) which satisfies compatibility conditions
(2.2.5), (2.2.6) at all internal vertezes for any t > 0, Dirichlet boundary condition
(2.2.12) and zero initial conditions {u(-,0),w(-,0)} = {0,0}, {u(-,0),w(-,0)} =
{0,0}.

It is known that for any T > 0, {u,w} € C([0,T); L%()) if F € FL (see, e.g.
[62, 60]).

2.3 Inverse dynamical and spectral problems. Connection of the inverse
data.
We use the Titchmarsh-Weyl (TW) matrix as the data for the inverse spectral prob-

lem. For the spectral problem on an interval and on the half line the TW function is
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a classical object. For the inverse spectral problem on trees it was used in [9, 40, 87].
The general properties of the M —operator for self-adjoint operators are considered
in (1, 42, 17).

Let us choose A ¢ R. We define {¢*,¢'}, {¢?,¥*} — two solutions of (2.2.7),
(2.2.8) and the following boundary conditions:

(0,0) (0,0)
{QS Y } = (1’0) ) {QS P } = (0’ 1) on I, (231)
0,0) 0,0

where nonzero elements are located at the i—th row. Then the TW matrix M(}) is

defined as M(X) = {M;;(A)}7%-, where each M;;(}) is a 2 x 2 matrix defined by

Miy(3) = (‘ﬁi(% N ¥ )

1<, j<m (2.3.2)
(ﬁi(’Uj,/\) 1/):2:(1)]")‘)

Let us consider the nonhomogeneous Dirichlet boundary condition

{¢, ¥} ={¢, v} onT, (2.3.3)

where {{,v} € R®*™, and let {¢,%} be the solution to (2.2.7), (2.2.8), (2.3.3). The
Titchmarsh-Weyl matrix connects the values of {¢, ¥} on the boundary and the values

of its derivative {¢,, .} on the boundary:

{¢2) ¥z} = M(A){¢,v} onT. (2.3.4)

We set up the inverse spectral problem as follows: given the TW matrix M(A),
A ¢ R, to recover the graph (lengths of edges, connectivity and angles between edges)
and parameters of the system (2.2.7), i.e. the set of coefficients {k;y, kip}¥,.

Let {u,w} be the solution to the problem D with the boundary control {f,g} €
FI. We introduce the dynamical response operator (the dynamical Dirichlet-to-

Neumann map) to the problem D by the rule

ET{£,g}(t) = {ua(,8),wa(, )} , e [0,7] (2:3.5)
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The response operator has the form of a convolution:

(R™{f.9}) (&) = R {f,g}) (t),t € [0, T, (2.3.6)

where R(t) = {R;;(t)}7%-; and each Ry;(t) is a 2 x 2 matrix. The entries Ry;(t) are
defined by the following procedure. We set up two dynamical problems defined by
the equations (2.2.10), (2.2.11), (2.2.5), (2.2.6) and the boundary conditions given by

(0,0) (0,0)
U, t), Wi, t)y=1| 7 AU ), W)Yy =| T onI. (2.3.7
{U (1), W (-, 1)} (6(1).0) {U°(-,1), W*(-, 1)} (0.5(1)) (2.3.7)
(0,0) (0,0)

In the above notations, the only nonzero rows is i—th. Then

. — Ui(vjat) W,}(Uj,t)
Ry;(t) (Uzz(vj,t) W,f(vj,t))’ (2.3.8)

So, to construct the entries of R, we need to set up the boundary condition at i—th
boundary point in the first and second channels, while having other boundary points
fixed (impose homogeneous Dirichlet conditions there) and measure the response at
j—th boundary point in the first and second channels.

We set up the dynamical inverse problem as follows: given the response operator
RT (2.3.5) (or what is equivalent, the matrix R(t), t € [0,7T]), for large enough
T, to recover the graph (lengths of edges, connectivity and angles between edges)
and parameters for the dynamical system (2.2.10), (2.2.11), i.e. speeds of the wave
propagation on the edges.

The connection of the spectral and dynamical data is known and was used for
studying the inverse spectral and dynamical problems, see for example [53, 9, 12].
Let {f,g} € Ff N (C(0, +00))*™ and

{7 ahk) = / T L), g(t)) e de

be its Fourier transform. The equations (2.2.10), (2.2.11) and (2.2.7) are connected
by the Fourier transformation: going formally in (2.2.10), (2.2.11) over to the Fourier
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transform, we obtain (2.2.7) with A = k2. It is not difficult to check (see, e.g. [9, 12])
that the response matrix-function and Titchmarsh-Weyl matrix are connected by the

same transform:
M(k?) = / R(t)e™* dt, (2.3.9)
0

where this equality is understood in a weak sense.

2.4 Solution of the inverse problem. The case of two intervals.
We start with the inverse problem for two connected intervals. For the two-velocity
system even this simple situation is nontrivial.

Suppose that a tree consists of two edges, e; and e; with the (unknown) lengths
[, and l;. The angle between edges we denote by a := a2, the boundary T is {v;, v}
and the only internal point is v3. We suppose also that e; begins at v; and ends at
vz and e, begins at vz and ends at v,.

We consider the dynamical problem D on the tree and show that one needs to
know the response operator or the TW function associated with one boundary vertex
only to recover the graph.

Let us consider the initial boundary value problem (2.2.10), (2.2.11), (2.2.5),
(2.2.6) with the boundary conditions given by

_(6@.0)
{u,w} = ( 0,0 ), I (2.4.1)

The solution of the above problem can be evaluated explicitly. For 0 <t < kl—lll it is

given by
Yz, t =(5(t—£—),
u(z,t) ™
w'(z,t) =0

20y
min {k21,k22}

2
gt =5(t—i>+a5(t+i——l>,
U( ) kll ! kll kll

l I
1 t — b t i . = — -,
w (J:, ) 10 + P Y2 ), M2 P + P

On the time interval kl—lll <t< on the first edge we have
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and on the second edge
x [ l
21

{ {
w?(z,t ——bé(t——z— ), =2 _ 2
( ) 2 Fios Y22 Y22 kit Fog

In the formulas above, the coefficients a,, a,, b, by are unknown.

From the condition (2.2.5) we obtain that

1+
“) =5 (). | (2.4.2)
by by
Condition (2.2.6) implies

-1 4 e —_ g2
Dy ™ ) =80y ). (2.4.3)
Fiz "z

After introducing the notation

kil 0 .
D-i: y Z:1,...N,
0 ki

1
N R PN (2.4.4)
by by

Combining (2.4.2) and (2.4.4), we obtain

-1 1
o ‘“) = _S.D5S_,, ( + al) . (2.4.5)
by b1

Let us now consider the problem (2.2.10), (2.2.11), (2.2.5), (2.2.6) with the nonzero

boundary condition at the second channel:

_ (0w
{u,v} = ( 0.0 ) T, (2.4.6)

one can rewrite (2.4.3) as

The computations similar to above show that the following condition must hold:

b b
Dy Yol ==8.DS. | ], (2.4.7)
-1 + 51 1 + a,
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where the coefficients a1, a,, 31, 52 are unknown.
The function u!(z,t), the first component of the solution to (2.2.10), (2.2.11),
(2.2.5), (2.2.6), (2.4.1) has the following representation on the time interval :—ill <t<

2l T 21
ul(z,t =5(t——x—)+a5<+———1—)—a5(t—————1> 2.4.8
(2:2) k11 ' kin  ku ' ki ku ( )

Thus (see the definition of the response operator (2.3.8)), for such ¢,

2a; 21
{Ri1}11(t) = uy(0,t) = ——5( )+ =26 (t - —1> (2.4.9)
k11 k11 k11
A similar argument shows that for 4 + kl <t< ﬁu + ll + 2m1n”{k }
1 bl 1
{Ri1}12(t) = w,(0,¢t) = Qk—5 (t —m2). (2.4.10)
12

Therefore, using the {Ri;}2, {R11}12 components of the response operator on the
described time intervals, one can determine ki1, k2, a1, b1, 1. Applying the same
argument to the problem (2.2.10), (2.2.11), (2.2.5), (2.2.6), (2.4.6), we conclude that
{R11}21, {R11}22 components of the response function determine aj, by.

Let us introduce the notations

& =1+a, m=b,
glzbl) 771=1+517

and rewrite (2.4.5), (2.4.7) as

(SaD2S_o + D) (§1> =2D, <1> , (2.4.11)
m 0

(SaDS_o + Dy) (fl) = 2D, (?) . (2.4.12)
s

In the forward problem, the equations (2.4.11) and (2.4.12) can be used for the de-
termination of the reflection and transmission coefficients a;, b;, a;, 51. Since the

(given) matrixes SoD2S_, + D7 and D, are positive definite (it is easy to check that
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SeD;S_o = min{k;y, k;2} 1), these coefficients are uniquely determined from (2.4.11),

(2.4.12). Moreover, we necessarily have

(51) £ (fl> . (2.4.13)
T ™

On the other hand, in the inverse problem we know Dy, &, 1, El, 71 (we can determine
all these coefficients from R;; component of the response operator). Thus equations
(2.4.11), (2.4.12) determine the matrix A = S,D25_,. Using the invariants of matrix

— the determinant and trace, we can find the matrix D, from the equations
k21 + k‘zz =tr A, k‘glk‘gg = det A. (2414)

The existence of angle o follows from the spectral theorem — S, puts the operator
A to a diagonal form.

Notice that if Dy = I, there is no dependence on « in equations (2.4.11), (2.4.12).

We point out that we still need to determine the length of the second edge. For this
aim we could analyze the representation of the solutions u!, w! on a sufficiently large
time interval. It would lead to an increasing number of terms in the representations
(2.4.8), (2.4.9) and (2.4.10). Instead of that we will develop the method which works
for general trees following the ideas of [9]. Let us consider the new tree, consisting of
one edge: Q) = e;. Idea of the method is to recalculate the TW matrix for the new
tree using the TW matrix and response operator for the whole tree €2 and the data
that we obtained on the first step, i.e. parameters of the first edge and the angle
between edges.

Let {U, W} be the solution of (2.2.7), (2.2.8) on §2 with boundary conditions
{U,W} ={¢(,v}, atvi, {U,W}={0,0}, at v,. (2.4.15)

The compatibility conditions at the internal vertex vz are:
Ul (vg, A U?(v3, A
('UBa ) _ Sa (UB ) , (2416)
Wl (U37 A) W2(U37 A)

D! (UII(UB"A)) = S.D, (Uf(UB’A)> . (2.4.17)
W, (v3, A)
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Let M()\) be the TW matrix for the tree . We see that Mn()\) — component

associated with the “new” boundary point v; satisfies the equation:

(Ug(vg””) = My (N (Uz(US’A)) (2.4.18)

From (2.4.16)—(2.4.18) it follows that

D, (Ui(w’”\)) — S,DyMy;(\)S_a (Ul(v?’”\)) : (2.4.19)
W;(’U;;, )\) Wl(’U3,)\)

We emphasize that in (2.4.19) we know everything but the matrix M(A) Choosing
different boundary conditions for the problem in (2.4.15), we can get linear indepen-
U (v3, A)
W(vs, A)

The matrix Mn uniquely determines the corresponding component of the response

dent vectors ( ) in (2.4.19). Thus (2.4.19) determines the matrix ]\Ain()\).

operator Ri; (see (2.3.9)). The latter operator in turn, allows us to find the param-
eters of the second edge, exactly as R;; determines the parameters of the first edge.
(In our simple case of the two edge tree, the only parameter which we need to recover
is the length of the second edge.)

We conclude the results of the present section in the following statement

Theorem 1. Let Q) be the tree consisted of two edges. Then the tree and the parame-
ters of the systems (2.2.10), (2.2.11) and (2.2.7) are determined by the 2 x 2 matrix
M1 (\) — the diagonal element of the TW matriz, associated with the first boundary

point.

2.5 Solution of the inverse problem. The case of a star graph.
Suppose that the tree is a star graph with edges e;,...e,. We will show that to
recover the graph and the parameters of the system (2.2.10), (2.2.11) it is sufficient
to use the diagonal elements of the response operator (or diagonal elements of the
Weyl matrix), associated to all but one boundary vertices.

Let us set up the initial-value problem (2.2.10), (2.2.11), (2.2.5), (2.2.6) with the
boundary conditions given by the first equation in (2.3.7). We suppose that the only
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nonzero boundary conditions are given at the first channel of the 7 — th boundary
vertex, ¢ # n. We suppose that e; begins at v; and ends at v,4; and all other e,
J=1,...,n, 7 # i begin at v,,; and end at v;. Analyzing the solution {u,w} of
these problems in a way we did for the case of the graph of two edges, we obtain that

on the time interval 7:—1 <t< kl—ll + 2min; j{;%} on the i—th edge we have
3 i 15

‘ T - T 2L
z,t)=6(t— — it — - =
w(@1) 5( kﬂ) ““‘5( s kﬂ)’

. . T l; l;
! t) = b’5 t T — N 5 12 = - -—1—

and on other edges (j=1...n, j #1):

Wz, t)=ad|(t———v1 ), Y1i=———,
(IE, ) 5 ( kj ’Y]l) i1 kit kjl
j ; T l; l;
w’ .’I),t =X t—_.-—f)/-2), .2:_1_._1_'
=0 =4 ( kp 7 Tk Ry
Where a, b%,4=1,...,n—1,j = 1,...,n are reflection and transmission coefficients

associated with the ¢ — th vertex. Let us introduce new parameters
&=1+al, m=b, i=1,...,n—1. (2.5.1)

The compatibility conditions (2.2.5), (2.2.6) at the internal vertex v,.; (we need to
rewrite them in a way we did for the case of two edges) lead to the following equalities

(cf. (2.4.11)):

zn: Si;D;(Si;) "t + Di) (5") = 2D, ((1)) L i=1,..n—1.  (2.52)

=1, j# U
Let us now set up the initial-value problem with the delta function in the second
channel at i—th boundary point, ¢ # n, which is given by (2.2.10), (2.2.11), (2.2.5),
(2.2.6) and the boundary conditions given by the second equation in (2.3.7). Using

the same orientation of edges as in the first case, we can obtain and analyze the

representation for the solutions {u,w} of these problems. Let a,, E, t=1,...,n—
1, 7 = 1,...,n, be the reflection and transmission coefficients. Introducing new
parameters

=6, m=1+a, i=1,..n—1 (2.5.3)
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and making use the compatibility conditions (2.2.5), (2.2.6) at the internal vertex, we

obtain the following equalities (cf. (2.4.12)):

Z SiiD;(Si;)~ +Di> <§’) = 2D, (?) , t=1,...n-1 (2.5.4)

=1, j#i :

The matrices (Z" Si;D;(Sy) ™t + D,'), i=1,...,n — 1 are positive definite. If

=1, 5
all angles between edges and all matrices D, are known, the systems (2.5.2), (2.5.4)

can be solved for &;, 7, 5, 7;. Note that necessarily

(E) £ (5’), i=1,..n—1.
Uy Ui

In the situation of the inverse problem, using the diagonal elements {R;}, ¢ =

1,...,n — 1, of the response operator, we can determine the reflection and transmis-
sion coefficients al, b, @, b, as well as [;, D; for i = 1,...,n — 1. Indeed, analyzing

the solution to the dynamical system D with the boundary condition given by the
delta function in the first channel at the i—th boundary vertex, it is easy to see (cf.

(2.4.9), (2.4.10)) that:

(Radua(t) =i (0,1) = -~ 5/(t) + 2%y (t _ -21) ,

o, 9. L
24 L]
o St t2min{)

(3

{Rii}12(t) = wl(0,t) = %5' (t —72),

32

¥
Yie < t < Yiz + 2m1n{—z}
7 k”

The above representation allows one to determine a, b, I;, k;; for i = 1,...,n — 1.
Analyzing the solutions to the dynamical system D with the boundary condition

given by the delta function at the second channel of the i—th boundary vertex, we

can determine at, b, k;p fort=1,...,n — 1.

Thus, since the vectors (%) and (61) in (2.5.2), (2.5.4) are known and nec-
Uy i

essarily different, the equations (2.5.2), (2.5.4) completely determine the matrixes
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> SuDi(Sy) '+ Dy, i=1..n-1 (2.5.5)

J=1,5#1 ‘

In (2.5.5) we do not know n — 1 angles between edges and the matrix D,,. We use
the system (2.5.5) to determine them in the same way we did it for the case of two

intervals, but calculations are more involved.

Let us consider the condition (2.5.5) for ¢ = k and for i = {:

D + Slel Skl Z Sk] Sk] = Ay, (2.5.6)
J=1 Jaék {
D, + SiDi(Si)™ Z S;;D;(Sy)" = Ag; (2.5.7)
J=1,i#k,1

the matrices A; and A; here are known. Note that after the multiplication of (2.5.7)
by Sy from the left and by (Sy)~! from the right, and using that Sy = (Si)7!,
SkiSij = Skj, we obtain

A = S Ai(Su) ™!

The angle ay; can now be found using the spectral theorem. Repeating this procedure
for various 7, [ we can determine all angles. After that we can use any of the conditions

(2.5.5) to determine D,,. Indeed, taking i = k we have
SinDn(Skn) ™" = By (2.5.8)
for some known matrix Bi. Then
kn1 + kno = tr By,  knpikno = det By. (2.5.9)

The next step is crucial for solving the inverse problem: we have already recovered
a part of the tree, and our next goal is to find the inverse data for the smaller “new”
tree, using the initial inverse data and information that we obtained on the previous
steps.

Let us consider the new tree, consisting of the one edge Q = e, By {®, ¥} we

denote the solution to (2.2.7), (2.2.8) and the following boundary conditions

{®,9} = {¢,v}, at v, {@,¥}={0,0}, at v, 2< i< n (2.5.10)
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As in the case of a graph consisting of two intervals, our goal is to obtain the coefficient
Mn of the TW-matrix for §~2, associated with the “new” boundary edge v,.1. Note
that we can assume that we have already recovered the information about all other
edges and angles between them. So we have in hands the matrices D], and o, for
t1=1,...n

Note that solution to (2.2.7), (2.2.8), (2.5.10) on the edge e; solves the Cauchy

problem
—k2 @l = 2D, —KLUl =)' zeg (2.5.11)
{q)l(vl)a\pl(vl)} = {<7V}a (2512)
®;(v1) ¢

‘ = {M:(A , 2.5.13
(‘Ili(vl) {M11(N)} ) ( )

and on edges e, ..., e,_1 solves the Cauchy problems
—K3®L =20, —kRVUL =2V, z€e (2.5.14)
{(I)l('ui),\lll('ui)} = {an}a (2515)

O (vi) ¢
— (M) _ 2.5.16
(o) =m0 (0 as1o

Thus the function {®, ¥} and its derivative is known on the edges e;,...,e,_1. At

the internal vertex v, the compatibility conditions hold:
(@1(%“,)\)) s (q;n(v,m,)\))
U (v,11, \) U™ (vny1,0) )
DL (vps1, A = (Vnt1, A % (11, A
D 1v+1 ) le 7 (Unt1 )>+S1nD;<n(v+1 ))
v ('Un+17)‘) \I}] (’Un+1a)‘) \I’I(’Un+1,)\)

Using these conditions and the definition of the component of TW-matrix associated

with the n—th edge:
o7 ,)\ T o n 7)\
200\ _ 57 o ( s )))
U (2, A) U™ (U401, A)
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we get the equations

‘I) ’U 1 -1 ’U 1 A)
D ( b ) Z ( T ) + (2.5.17)
V2 (Vns1, A) =2 W2 (Uns1, A)

@ (Vg1 A))

S1n D M1 (M) (S1n) ™!
D)) <w1<vn+1,x)

Choosing the different boundary conditions at the ¢—th boundary point, we can
(bi(ZOa A)
\IJi(ZO>)‘)

other terms in (2.5.17), this equation determines AZl(A). Using the connection of

get vectors ( ) in (2.5.17) to be linearly independent. Since we know all

the dynamical and spectral data (2.3.9), we can recover the Ru component of the
response function associated with Q2 and reduce our problem to the inverse problem
for one edge. (Really we still need to recover only the length of the n—th edge.)

We combine all results of this section in

Theorem 2. Let 2 be the a star graph consisted of n edges. Then the graph and
the parameters of the systems (2.2.10), (2.2.11) and (2.2.7), are determined by the
diagonal elements (2 X 2 matrices) My;(A) 1 < i< n—1 of the TW matrix.

2.6 Solution of the inverse problem. The case of an arbitrary tree.

Let §2 be a finite tree with m boundary points ' = {vy,...,vm}. Any boundary vertex
of the tree can be taken as a root, so without loss of generality we can assume that the
boundary vertex v,, is a root of the tree. We consider the dynamical problem D and
the spectral problem S on 2. Then the reduced response function £(t) = {R;;(t) }]- =

and the TW matrix M () = {M;;(A)}["_; associated with all other boundary points

are constructed in the same way as in the section 3.

Let us take two boundary edges, e; with the length I; and velocities in channels
ki1, ki2 and e; with the length I; and velocities in channels k;;, kj2. These two edges
have one common point if and only if
=0, fort< ‘1 +£—’1

i 1<4,j<m—1. (2.6.1)

. t) =
Highu (0 £0, fort>f 4
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Note that one can use other components of R;; to determine the connectivity of edges.

This method allows us to divide the boundary edges into groups, such that edges
from one group have a common vertex. Let us take the first of such groups, say
€1,.--,€em, With boundary vertices vi,...,vn,. These edges together with another
edge €;,, form a star graph with the internal vertex vy, the subgraph of (2. Note, that
using the diagonal elements of the response operator R;;(t) or the diagonal elements of
the TW-matrix M;;()), 7 = 1,...,mg by the same method as in the case of star graph,
we can determine angles and velocities for all edges e, ..., em,, €, = [VUm), Umy] and
lengths all boundary edges ey, ..., €n,.

We take the new tree = Q\ U e;. Our goal as in the previous cases is to
calculate M(/\), the (reduced) TW-matrix associated with Q.

Choose the orientation on the subgraph: the edge e, starts at v; and ends at v,,,
edges e; start at v, and end at v; for 1 = 2,...,my, €, starts at v,,; and ends at
Umy. By {@, ¥} we denote the solution to (2.2.7), (2.2.8) and the following boundary

conditions
{0,¥} ={¢, v}, at vy, {®,¥}=1{0,0}, at v;, 2 <7< m. (2.6.2)

Note that the solution to (2.2.7), (2.2.8), (2.6.2) on the edge e; solves the Cauchy

problem
—k3®L = \®!, KLUl =)V, z€e (2.6.3)
{@'(v), ¥ (1)} = {¢ vk (2.6.4)
ol(v
()} _ {M1:(\)} Sl (2.6.5)
Ul(vy) v
and on the edges ey, ..., €, solves
—E20L = \®', —kLUL =)0, zEg (2.6.6)

@ (v;) ¢
= {M;(\ . 2.6.8
(o) =09 () 259

Thus the function {®, ¥} and its derivative is known on edges ey, . .., €mp,.
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At the internal vertex v, compatibility conditions hold:

D™ (U , A
= Slm6 ,(U ¢ ) ’ (269)
) Yo (’Umf,; ’\)

D, q):}:(v;nn”\) — . Sl'D,~ q);(vm()’)\) + (26 10)
0,0 T 5T W )

Using these conditions and the definition of the component of the (reduced) TW-

! .
mp’

T, A~ O™ (U, A
m@°)=mmw " ) (2.6.11)
z" (vm(’p ’\) Wmo (’Um/ s ’\)

0

matrix of the new graph ﬁ, associated with the edge e

we obtain that
! 'Um'y/\ o %) vm’>)‘
py [$=Eme ) 5t g py (O V) (2.6.12)
U (vm,N)) 5= W3 (Umys A)
s 1
Sa17"6 D;n6M7n67n6()‘)(S17n6)—1 (

Equation (2.6.12) determines the matrix Mmama()‘)' By the definition of the reduced

TW-matrix we have

On the other hand, by the definition of the reduced TW-matrix for the new tree 6,

() _ o Pro(um)\
(\Iﬂ'(vj)) = {Mpm;;(N)} (\I!mfl(vm;] ) , 0 < j<m. (2.6.14)

Thus {]\A/[/m;)j()\)} component of the TW matrix can be found from the equation

(M5} (ii"‘;) — (M) (4)  me<j<m. (26.15)
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To find the components ]\ng(/\)y mg < 1 < m, we fix v; and denote by {®, U}
the solution to (2.2.7), (2.2.8) with the boundary conditions

{9,9} = {¢,v}, at v;, {®,¥}={0,0}, atv;, j=1,...m, j#1. (2.6.16)

Note that on the edges ey, ..., en, {®, ¥} satisfies the equations

—kL @1, =AY, —kHUI =\, zeEe (2.6.17)
{®7(v;), ¥7(v;)} = {0,0}, (2.6.18)
@7 (v5) ¢ |
) = {M;;(N)} . (2.6.19)
W (v;) v
Thus, the function {®, ¥V} and its derivative are known on the edges e1,...,€m,.

Using the compatibility conditions at the internal vertex v, for every ( ) we can
v

P m’)/\ (I);”'f) mfy s A
find the vectors ( * (0 )), ( (s )

U (0 A) )T \ LT (0, A)

{®, ¥} does not satisfy zero Dirichlet conditions at v,,,. Components AA/fima(A), i=

). We emphasize that the function

mo+ 1,...,m — 1 can be obtained from the equations

;n;) mh /\ — (I)'m;) m!y /\ —~—
m! (v 0 ) - Mmf)mf)(’\) ' (v 0 ) = Mz’m6 (’\) C ) (2620)
T O(Uma, /\) Yo (’Uma, /\) v

The procedure described reduces the initial problem to the inverse problem on the
smaller subgraph. By repeating these steps a sufficiently many times we recover the

whole graph and all parameters. We conclude this section with

Theorem 3. Let §) be an arbitrary tree. Then the tree and the parameters of the
systems (2.2.10), (2.2.11) and (2.2.7), are determined by the elements (2x2 matrices)
M;;(N), 1 <4,j <m—1, of the TW matriz.
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_ Chapter 3
The boundary control approach to inverse spectral theory
3.1 Introduction.

In the Chapter I of this thesis we consider the Schrodinger operator
H=-0*1+q(2) (3.1.1)

on L? (R,), Ry := [0, 00), with a real-valued locally integrable potential g and Dirich-
let boundary condition at z = 0. Let dp(\) be the spectral measure corresponding to
H, and m(z) be the (principal or Dirichlet) Titchmarsh- Weyl m-function.

In this section we give a brief review of five different approaches to inverse problems
for the operator (3.1.1): the Gelfand-Levitan theory, the Krein method, the Simon
theory, the Remling approach and the Boundary Control method. In the next section
we describe the Boundary Control method in more detail and establish its connections

with the other approaches (see also [82]).

3.1.1 Gelfand—Levitan theory.

Determining the potential g from the spectral measure is the main result of the seminal

paper by Gelfand and Levitan [47]. To formulate the result let us define the following

functions:
A —ZAE, A0,
o(A) = P = 3 (3.1.2)
p(A), A<0
F(z,t) = / Sin \/X“’Asm \/Xtda(A). (3.1.3)
Let ¢(z, A) be a solution to the equation
—¢" +q(x)p = Ap, x>0, (3.1.4)
with the Cauchy data
0(0,A) =0, ¢'(0,A)=1. (3.1.5)

The so-called transformation operator transforms the solutions of (3.1.4), (3.1.5) with

zero potential to the functions ¢(z, A):

sin vV Az T sin V¢
s +/0 K(z,t) Vel

dt. (3.1.6)

oz, A) =
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The kernel K(z,t) solves the Goursat problem

{ Ku(z,t) — Kea(z,t) + g(z) K (2, 1) = 0, (3.1.7)

K(z,0)=0, £K(z,z)=1q(z)

It was proved in [47] that K (z, t) satisfies also the integral (Gelfand-Levitan) equation

F(z,t) + K(z,t) +/ K(z,s) F(s,t)ds =0, 0<t<z. (3.1.8)
0
The potential can be recovered from the solution of this equation by the rule
d
q(z) = 28—3-:-K(x,x). (3.1.9)

3.1.2 The Krein method.

In the beginning of fifties M. Krein developed an approach (see [56, 57]) to spectral
inverse problems for the string equation which is different from the Gelfand-Levitan
theory. Using the method of directing functionals developed by himself in the forties,
Krein reduced the inverse problem to solving linear integral equations. Later this
equation was derived by Blagoveschenskii [39] and independently by Gopinath and
Sondhi [50, 51] using the dynamical approach.

3.1.3 Simon approach.

In [83] Barry Simon proposed a new approach to inverse spectral theory which has got
a further development in the paper by Gesztesy and Simon [49] (see also an excellent
survey paper [48]). As the data of inverse problem they used the Titchmarsh—Weyl m-
function which is known to be in one-to-one correspondence with the spectral measure.
It was shown in [83] that there exists a unique real valued function A € L}, (R,) (the

loc
A—amplitude) such that

m(—k2) = —k — /0 T A(®)e 2k dt (3.1.10)

The absolute convergence of the integral was proved for ¢ € L' (R,) and g € L™ (R;)

in [49] for sufficiently large Rk. In general situation one has an asymptotic equality

m(—k?) = -k — /0 A(t)e ® dt + O(e™2k) (3.1.11)
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(see (83, 49] for details).

Simon [83] put forward the local approach to solving the inverse problems (locality
means that the A—amplitude on [0, a] completely determines ¢ on the same interval
and vice versa). First, based on (3.1.11) Simon proved the local version of the Borg-
Marchenko uniqueness theorem: m, (—k?)—my(—k?) = O(e~?%*) if and only if ¢, (z) =
g2(z) for z € [0, a.

Second, he described how to recover the potential from the A—amplitude. If
A(-, z) denotes the A—amplitude of the problem on [z, 00), then this family satisfies
the nonlinear integro-differential equation

OA(t,z) 0A(t,x)
or Ot

+ /t A(s,z)A(t — s,z)ds = 0. (3.1.12)

If one solve this equation with the initial condition A(¢,0) = A(t) in the domain
{(z,t) : 0< z <a, 0<t<a-z}, then the potential on [0, a] is determined by

ltilrgl At,z) =q(z), 0 <z < a. (3.1.13)
The A—amplitude has the explicit répresentation through the spectral measure

by the formula derived in [49]:

A(t) = —2lim [ e~ EI—IM dp(A) a.e. (3.1.14)

-0 /g V2

Without the Abelian regularization the integral need not be convergent (even condi-
tionally) [49].
3.1.4 Remling approach.

Motivated by Simon, Remling [78, 79] proposed another local approach to inverse
spectral problems based on the theory of de Branges spaces. He introduced the

integral operator K acting in the space FT := L%(0,T),

(Kf)(z) = /0 k(z,1) F(t) dt, (3.1.15)

where

1 {z|/2
(1) = 6z — 1)~ d(z + 1), o(a) =/0 At) dt. (3.1.16)
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Remling proved that given a function A € L!(0,T), there exists a unique q € L!(0,T)
such that A is the A—amplitude of this g if and only if the operator I + K is positive
definite in 7. The same positivity condition was proved in [79] to be necessary and
sufficient for solvability of the equation (3.1.12).
He proved the following representation of the A—amplitude through the regular-
ized spectral measure do:
At) = -2/ SIn(2VA) 4o (3.1.17)
R VA
with the convergence in the sense of distributions.

Remling derived two linear integral equations,

y(z,t) + /OI k(t,s)y(z,s)ds =t, (3.1.18)

z(z,t) + /Oz k(t,s)z(z,s)ds = ¥(t), (3.1.19)

where 0 <t <z < T and ¢(t) = -1 — fot &(s) ds. The potential ¢(z) on [0,7] is
uniquely determined by any of the functions y or z:

d? d?

q(z) = % q(z) = —E—I:—(ZI(Z—;:) (3.1.20)

3.1.5 The Boundary Control method.

The Boundary Control (BC) method in inverse problems was developed about two
decades ago by M. Belishev and his colleagues [18, 32, 31, 25, 5]. As well as methods of
Simon and Remling, the BC method provides the local approach to inverse problems
developing ideas of A. Blagoveshchenskii {39] who was a pioneer of the local approach
to the 1d wave equation. It is worth to notice that the papers by Simon, Gesztesy and
Remling (and also by Krein [56, 57]) are based on the spectral approach, and locality is
proved there using sophisticated analytical tools. In the BC method, locality naturally
follows from the finite speed of the wave propagation.

The main idea of the BC method is to study the dynamic Dirichlet-to-Neumann

map R : u(0,t) — u,(0,t) for the wave equation associated with the operator (3.1.1):

U — Ugr + q(z)u=0, z>0,1t>0, (3.1.21)
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with zero initial conditions and boundary conditions u(0,t) = f(t). Operator R has

the form
(RF)(E) = —f'(8) + / r(s)f(t — 5) ds,  (31.22)
0

and function r(t) is considered as inverse data. Let us introduce the operator acting

in Ly(0,7):
(CT)(t / 2T —t—s) —p(t —s)]f(s)ds, 0 <t < T, (3.1.23)

where
1 rld
p(t) == —/ r(s) ds. (3.1.24)
0
It is proved (see, e.g. [5]) that one can recover the potential using the unique solution

to any of the equations

CTfft)=T—t, t€0,T), (3.1.25)
(CT)(E) = =((RT)"»")(t), t € [0, T), (3.1.26)

where the operator RT in the second equation is determined by r(t), t € [0,7] and
#(t) =T —t. Then
T
+0
q(T) = @L_),
fi (+0)

It is important to note that the Krein equation, the Remling equation and the

j=12 (3.1.27)

equation of the BC method can be reduced to each other by simple changes of vari-
ables. More exactly, Krein in [56, 57] considered the problem with Neumann bound-
ary conditions at z = 0, and one of the equations derived in [78] can be reduced
to the Krein equation. Equations (3.1.25), (3.1.26) and (3.1.18), (3.1.18) concerning
Dirichlet conditions can be easily transformed to each other.

The main goal of this paper is to demonstrate the connections between all ap-
proaches mentioned above. We provide a new proof of the Gelfand-Levitan equations
which demonstrates their local character. We describe in detail relations between dy-
namical and spectral approaches, in particular, we prove convergence a.e. in formula

(3.1.17).
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3.2 The Boundary Control approach.

The BC method uses the deep connection between inverse problems of mathematical
physics, functional analysis and control theory for partial differential equations and of-
fers an interesting and powerful alternative to previous identification techniques based
on spectral or scattering methods. This approach has several advantages, namely: (i)
it maintains linearity (does not introduce spurious nonlinearities); (ii) it is applicable
to a wide range of linear point and/or distributed systems and reconstruction situ-
ations; (iii) it can identify coefficients occurring in highest order terms; (iv) it is, in
principle, dimension-independent; and, finally, (v) it lends itself to straightforward
algorithmic implementations. Being originally proposed for solving the boundary
inverse problem for the multidimensional wave equation, the BC method has been
successfully applied to all main types of linear equations of mathematical physics (see
the review papers (20, 21] and references therein). In this paper we use this method in
1d situation applying it to inverse problems for the operator (3.1.1) and demonstrate
its connections with the methods described above. We consider here Dirichlet bound-
ary condition and note that our approach works also for other boundary conditions

(see, e.g. [10] for Neumann condition and [16] for a non-self-adjoint condition).

3.2.1 The initial boundary value problem, Goursat problem.

Let us consider the initial boundary value problem for the 1d wave equation:

{ u(z,t) — uzge(z,t) + g(x)u(z,t) =

0, £>0,t>0,
U(.’L‘,O) = Ut(.’I),O) = 0) U(Oat) = f(t)

(3.2.1)

2
loc

Here q € L}, (R.) and f is an arbitrary L2 (R.) function referred to as a boundary
control. The solution u/(z,t) of the problem (3.2.1) can be written in terms of the

integral kernel w(z, s) which is the unique solution to the Goursat problem:

{wﬂ%ﬂ—%ﬂ%ﬂ+ﬁ@MLﬂ=Q O<z<t, (3.2.2)

w(0,t) =0, w(z,z) = —1/2 f; q(s) ds.
The properties of the solution to the Goursat problem are given in Appendix.
Let us consider now the dynamical system (3.2.1) on the time interval [0, T] for

some T > 0.
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Proposition 1. a) Ifqe€ CYR,), f € C*R,) and f(0) = f'(0) = 0, then

(ot :{ ft—2)+ [fw(z,8)f(t—s)ds, =<t (32.3)

0, x>t

is a classical solution to (3.2.1).

b) If g € Ly, 10c(Ry) and f € Lo(0,T), then formula (3.2.3) represents a unique
generalized solution to the initial-boundary value problem (3.2.1)
uf € C([0,T); HT), where

H=L;.0,00) and HT :={ueH: suppucC[0,T]}.

loc

First statement of the proposition can be checked by direct calculations. The

proof of the second one follows from Propositions 5 and 6 (see Appendix).

3.2.2 The main operators of the BC method.

The response operator (the dynamical Dirichlet-to-Neumann map) RT for the sys-
tem (3.2.1) is defined in FT := Ly(0,T) by

(RT £)(t) = ©/(0,1), t € (0,T), (3.2.4)

with the domain {f € C%([0,T]) : f(0) = f'(0) = 0}. According to (3.2.3) it has a

representation .
(RTA)(t) = —f'(t) + /0 r(s)f(t — s)ds, (3.2.5)
where r(t) := w;(0,t) is called the response function.
The response operator RT is completely determined by the response function on
the interval [0, 7], and the dynamical inverse problem can be formulated as follows.
Given r(t), t € [0, 2T, find ¢(z), z € [0,T].

Notice that from (3.2.2) one can derive the formula

r(t) = —%q(%) - %/Ot q(t . C)v({, t)dc. (3.2.6)

where
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To solve the dynamical inverse problem by the BC method let us introduce a couple

more operators. Proposition 1 implies in particular that the control operator W7,
WT . FT—HY, WTf =4/ (-, T),
is bounded. From (3.2.3) it follows that

T
WTH@) = T =2)+ [ wie,n)f(T -r)dr (327)
The next statement claims that the operator W7 is boundedly invertible.

Proposition 2. Let ¢ € L} (R.) and T > 0, then for any function z € HT, there

exists a unique control f € FT such that
u(z,T) = 2(z). (3.2.8)

Proof. According to (3.2.7), condition (3.2.8) is equivalent to the following integral

Volterra equation of the second kind

z(z) = f(T—:I:)+/ w(z,7)f(T —7)dr z€(0,T). (3.2.9)

The kernel w(z,t) is continuous and therefore equation (3.2.9) is uniquely solvable,

which proves the proposition. O

The connecting operator CT : FT +— FT plays a central role in the BC method.
It connects the outer space (the space of controls) of the dynamical system (3.2.1)

with the inner space (the space of waves) being defined by its bilinear product:

<CTf’g>_7-‘T = <uf("T)’ ug('aT)>HT (3210)

In other words,
cT = whywt, (3.2.11)

and Propositions 1, 2 imply that this operator is positive definite, bounded and
boundedly invertible on F7T.

Let ¢, € C®(R,), n=1,2,... and ¢, — ¢ in Ly ;,(R+). We denote by the 7,(t)
the response function, corresponding to ¢,. Formula (3.2.6) and Proposition 6 yields

Ll
Tn —5 T, asm — 00. (3.2.12)
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Along with WT and CT we consider operators, W and CT, corresponding smooth

potentials ¢q,, n = 1,2,.. ..
Lemma 1. Let WX, CT be as described above, then:
|WE —WT|| -0, asn— oo, (3.2.13)
ICT - CT|| -0, asn— oco. (3.2.14)
Proof. Let us take arbitrary f € F7, then from (3.2.7) we see that

I(W = W)(H)I? < sup |w(z,s) —walz, 8)|IT?IIFI?,

0<z<s<T
Using (3.3.16) we obtain the first statement of the lemma. The second statement

follows from the first one and the representation of CT (3.2.11). O

The remarkable fact is that CT can be explicitly expressed through R* (or
through r(t), t € [0,277).

Proposition 3. For g € L} (0,00) and T > 0, operator CT has the form

loc

(CTAHE) = ft) +/0 cI'(t,s)f(s)ds, 0<t<T, (3.2.15)

where
cI(t,s) = [p(2T —t — s) — p(t — s)]. (3.2.16)

and p(t) is defined in (3.1.24).

Proof. For smooth potentials formula (3.1.23) is well known (see e.g [5]), therefore we
give here only a sketch of the proof. One can easily check that for ¢ € C*°(R,) and
any f,g € C$°(0,T) the function U(s,t) := (u/(-, s),u9(~,t))H satisfies the equation

Ut — Uss = (R f(5)g(t) = f(s)(RT9)(t), s,t>0,
with the boundary and initial conditions
U(0,t) =0, U(s,0) =U(s,0) =0.

Using the D’Alambert formula gives representation (3.1.23). Making use of the results
on the convergence of operators (3.2.14) and response functions (3.2.12), we can claim

that representation 3.1.23 is valid also for ¢ € Ly j0.(R). O
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3.2.3 The Krein type equations.

Let us suppose that ¢ € C*°(R,) and consider the Cauchy problem:
~y"+q(z)y=0, z>0; y(0)=a, y(0)=2. (3.2.17)
Let f7 be a solution of the control problem

y(z), 0 <z <T,

(3.2.18)
0, z>T.

(WTfT)(z) = {
For any g € C§°(0,T) the identity
T
w(z,T) = / i (udy(z, t)dt, »T(t): =T —t
0
is valid, and we have
T T T
TfT g) = z)ud(z = z 2 (t)u?
©0) = [ vape@Tde= [ @) [ o Outia,t) s
T
- [ O ) - e @ DRt
T
= || B 1a(e) — 0 O a)(0)dt = (BT = a(RTY 7 ).
Here (RT)* is the operator adjoint to RT in F7:

(RTY F)() = F(¢) + [ r(s — £)f(s) ds. (3.2.19)

We have used the fact that the solution u¢(z, t) is classical and w9 (T, T) = u4(T,T) =
0 (see (3.2.3)).

Let us denote by y;, fF

()

1 = 0, 1, the functions corresponding the cases a = 0,
B =1and a = 1, B = 0 respectively. Since g is an arbitrary smooth function, the

functions fI and fT satisfy the equations
CTf)®) =T —t, (CTA)E)=—((RT)">")(t), tel0,T]. (3.2.20)
Using (3.1.23) these equations can be rewritten in more detail:

L) —I—/O c(t,s) fi(s)ds =T —t, t€{0,T], (3.2.21)
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) + /0 c(t,s) fl(s)ds =1— /t r(s—t)(T —s)ds, t€[0,T], (3.2.22)

Function ¢ is defined in (3.2.16), and from (3.2.21), (3.2.22) it follows that functions
fF, 3= 0,1 possess additional regularity: fT € H'(0,T).

Remark 1. Taking into account (3.2.14) and (3.2.12) we can claim that (3.2.21),
(3.2.22) hold for q € L} (R,) as well.

loc

Using any of functions one can easily find the potential ¢ in the following way.
From equation (3.2.3) it follows that u/(¢ — 0,¢) = f(+0), and in particular, y;(T) =
fF(+0). Let us denote fT(+0) by u(T). Then

wi (1)
Q7)) = /—.
=)

Equations (3.2.20)~-(3.2.23) were obtained for a matrix valued ¢ of a class C' in
5].

In [12] we showed that the Titchmarsh-Weyl m-function (the spectral Dirichlet-

(3.2.23)

to-Neumann map) and the response operator (the dynamical Dirichlet-to-Neumann
map) are connected by the Laplace (or Fourier) transform and established the relation

between the A—amplitude and the response function:
At) = —2r(2t). (3.2.24)

Using this relation it is easy to check that the positivity condition of Remling’s opera-
tor I + K is equivalent to the fact that the operator C7 is positive definite. Equations
(3.2.21), (3.2.22) are reduced by simple changes of variables to equations (3.1.18),
(3.1.19).

The fact that the positivity of CT give the necessary and sufficient conditions of
the solvability of the inverse problem was known in the BC community for a long time.
A. Blagoveshchenskii [39] in 1971 obtained the necessary and sufficient conditions of
the solvability of the inverse problem for the 1d wave equation (with smooth density)
which are equivalent to the positivity of CT. (Certainly these conditions were in other
terms — the BC method and the operator CT were proposed fifteen years later).
Belishev and Ivanov [30] considered the two velocity system with smooth matrix-

valued potential. In a particular case when two velocities are equal, their necessary
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and sufficient condition is the positivity of CT. In [4] necessary and sufficient condition
for solvability of a nonselfadjoint inverse problem with a matrix-valued potential in
terms of CT was formulated.

The equivalent necessary and sufficient conditions for the solvability of the inverse
spectral problem for the string equation (in the form of positivity of certain integral
operator) were obtained by Krein [56], [57].

The method proposed in [30] works also for non smooth potentials which leads
to the following result. For given r € L*(0,2T), there exists a unique ¢ € L*(0,T)
such that r is the response function corresponding to the problem (3.2.1) with this ¢
if and only if the operator CT constructed by this r according to (3.1.23) is positive
definite. The fact that r and ¢ belong to the same functional class is confirmed by

formula (3.2.6).

3.2.4 Spectral representation of r and c”.

The aim of the present section is to obtain the representation for the kernel of the
integral part of the operator C7, the function ¢’ (t,s) and response function r(t) in
terms of the spectral measure of operator (3.1.1).

We consider the Schrédinger operator with a real valued potential g € Ly, .(R+)

and Dirichlet boundary condition:

$(0) = 0. (3.2.26)

By ¢(z, ) we denote the solution to (3.2.25) satisfying the initial conditions
0(0,0) =0, ¢(0,\)=1. (3.2.27)
It is known that there exist a spectral measure dp()), such that for all f,g € Ly(R4):
| t@a@ds = [ FHOIEDN) dol) (3.2.28)
(Ff)(A) = /Ooof(a:)go(a:, A) dz. (3.2.29)
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The so-called inverse transformation operator transforms solutions of (3.2.25), (3.2.26),

solutions of (3.2.25), (3.2.26) with ¢ =0, (cf. (3.1.6)) :

sin \/)—\:1:
VA

where the kernel L(z,t) satisfy the Goursat problem (see, e.g [65, 75]):

= p(z, A) + /01 L(z,t)p(t,A) dt =: (I, + L)y, (3.2.30)

{ Lu(z,t) = Lyz(z,t) — q(t)L(z,t) =0, 0<t<uz, (3.2.31)

L(z,0) =0, £L(z,z) = —3q().

Comparing (3.2.2) and (3.2.31) we conclude that w(z,t) = L(t,z), and thus

8 sin v s
w(s, A +/wx,sgox,)\ dr = . (3.2.32)
(s,2) i (z,8)p(z, ) 7
Let us introduce functions
D, (s,t) = / s‘“ﬁt:‘“ Vs do()), (3.2.33)

where () is defined in (3.1.2). The fact they are well-defined follows from the proof
of the lemma below. The following result seemed to be classical, although we have not
been able to find it in the literature for the case of Dirichlet boundary condition. The
case of Neumann boundary condition is considered in [65], [75] where the convergence
of corresponding analogues of ®, was proven. We provide the proof here for the sake

of completeness.

Lemma 2. The sequence of functions ®,(s,t) converges to a continuous function
®(s,t) differentiable outside the diagonal uniformly on every bounded set in R? as

n — o0.

Proof. We follow the scheme proposed in [65], Lemma 2.2.2. In [66] it is shown that

the sequence of functions

U, (t, ) :/" ot \)o(s, \) dp()\)—/n Si“ﬁt;i“ﬁsd(%ﬁ) (3.2.34)

—00 0

converges uniformly on every bounded set to the differentiable outside the diagonal

function as n tends to infinity. Applying operators (Is + Ls)(I; + Lt) to (3.2.34) we
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have:

(I, + L) (I + L)Wn(t,s) = ®u(s,t) —  (3.2.35)

([ o) o )
[ ([t ) g(z)-
[ ([ s ([ ) (1)

The sum of the last three terms in the right hand side of the above expression con-
verges to —L(s,t) — fmm{s 2 L(s,7)L(t,7)dr. This fact and the convergence
of the left hand side of (3.2.35) imply the statement of the Lemma. d

The following theorem gives an expression for the integral part of the kernel of

the operator C7 in terms of the spectral measure.

Theorem 1. The kernel cf'(s,t) admits the following representation:

s) do()), ste[0,T], (3.2.36)

T [ sin V(T = t)sin V(T —
c (s,t) _/ .

where the integral in the right-hand side of (3.2.36) converges uniformly on [0,T) x
[0, T7.

Proof. Let us take arbitrary f,g € FT. Using (3.2.28), (3.2.29) we rewrite (CT f,g)rr

as

(CTf,g)rr = /0 uwf (2, Tud(z,T) dz = / Oo(Fuf)()\,T)(Fug)()\,T) dp()\). (3.2.37)

—00

Here (see also (3.2.3))
(Fuf)(\, T) = /0 o(z, Nul (2, T)dzx =
/0 oz, A) (f(T —z) +/0 w(z, s)f(T —s) ds) dz.
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Changing the order of integration and using the fact that w(z,s) = 0 for s < z, we

arrive at
T s
(Fu (A, T) :/ f(T =5s) ((p(s,)\) +/ w(z, s)p(z, A) dx) ds. (3.2.38)
0 0
Making use of (3.2.38), (3.2.32), we can rewrite (3.2.37) as

o= [ / / sin VAT = )5 VAT = 5) f4)g(s) e ds dp().

Comparing the last formula with (3.1.23), we see that

[ L sin VAL =S = 9) )5y de dsdph) = (3239

/OT fls)als)ds + /0 ' /0 (s, gl (t) de s

Now we make use of the sin transform: for all h,j € Ly(R,):

E(A):/Omh(a:)s—in(T\ﬁXI)dm,‘ h(x)=/ooo h(\ )sm(\/_a:) (%,\%>,
/0 " h(@)j(z) do = /0 AONF0) d (3%/\)

Let us suppose that f(t) = g(t) = 0 for t > T and ¢t < 0 and use the notation
fr(s) = f(T —s). Then we can rewrite the first term in the right hand side of

(3.2.39) as
/oT fit)g(t) dt = /oo f(T—s)g(T —s)ds= (3.2.40)
[ e a2

/000 /OT /OT sin\/X(T—t)/\Sin\/X( —s)f(t)g(s)dtdsd<3%r/\g>-

Plugging (3.2.40) in (3.2.39), we have that

/;oo /OT \/OT sin \/X(T — t)/\Sin \/X(T - 3) f(t)g(s) dt ds do’(,\) _ (3241)

/ / g(s) dt ds.

Il
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In the last formula the function

C(s,t) = /_m sin V(T — t) sin VA(T — s)

) do(A)

is a distributional kernel, whose action on functions f, g is defined by the left hand
side of (3.2.41). On the other hand, comparing C(s,t) with ®(s,t), we see that
C(s,t) = (T — s, T —t) and according to Lemma 2, C(s, t) is a continuous function
on [0, 7] x [0, T]. Since (3.2.41) holds for arbitrary f,g € F7, we deduce that

* sin V(T — t) sin VAT — s)

5 do(}), t,s€l0,T). (3.242)

cT(s,t) = C(s,t) = /

—00

]

Using the representation for c?(t,s) obtained in Theorem 1, we can derive the

formula for the response function:

Theorem 2. The representation for the response function r

r(t) = /_ ” Siri/?t do()), (3.2.43)

holds for almost all t € [0, +00).

Proof. Let us note that

A =T -t,T—3s), tsel0,T)]. (3.2.44)

q>(s,t)=/ 20 ‘/’—\t/\sm‘/xs do

oo

Using (3.1.23) we have

t+s
(T —-t,T-s)= %/ r(r)dr, t,s€][0,T). (3.2.45)
|t—s|

The integral in (3.2.44) can be rewritten as
do(A) = (3.2.46)

A
1 [ [tsinV)\
- dddo(A), t,se|0,T].

‘P(S, t) = 5

1/°° (cos VA(s +t) — 1 — (cosvVA|s — t| = 1)

oo




61

Equating the expressions in Thus (3.2.45) and (3.2.46) for t = s we get
2t 2t
o%T(T —t,T —t) = / ) dr = / / sin ‘/_0 dodo()), te0,T] (3.247)

According to (3.2.5) r € L;(0,T), so we can use the Lebesgue theorem and differenti-

ate the last equation. We obtain the following equality almost everywhere on (0, 27)

r(t) = ™ sin vt do(X). (3.2.48)

~o VA

Since the parameter T in consideration can be chosen arbitrary large, the last formula

proves the statement of the proposition. a

A direct consequence of this theorem is that integral in formula (3.1.17) converges
for almost all t € [0, +00).

The finite speed of the wave propagation (equal to one) in the equation (3.2.1)
implies the local nature of the response function r(¢): the values of r(t), t € (0,2T)
are determined by the potential ¢(z), z € (0,T). This implies that if we are interested
in the spectral representation of ¢’ (s,t) for s,¢ € (0,T) and of r(¢) for ¢t € (0,27T) in
the formulas (3.2.36), (3.2.43) we can replace (for example) the regularized spectral

function o(A) by any of the following functions:

o (A) = { pul) = 32_)\

. A=0, pa(X) — po(R), A =0,
) Ud()‘)
ptr()‘)a )‘ 0

pd()\), A <0.
(3.2.49)

Here p:. is the spectral function corresponding to the truncated potential gr(z) =
g(z), when 0 < z < T and gr(z) = ¢(z), when £ > T, § € L; 10c(t, +00); pa(A) is the
spectral function associated to the discrete problem on the interval (0,7) with the
potential g4(z) = q(x), z € (0,T) and py(A) is the spectral function associated to the
discrete problem on (0,T) with zero potential (and with any self-adjoint boundary

conditions at z =T.)

3.2.5 Gelfand-Levitan equations.

In this section, using the BC approach we derive the local version of the classical

Gelfand-Levitan equations (3.1.8). The proof is based on the fact that the kernel K
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of the transformation operator (3.1.6) satisfies a Goursat problem (3.1.7). We show
that the kernel v of the operator (WT)~! (which is inverse to the control operator
WT) satisfies a similar Goursat problem. We observe that the operator (WT)~1! :
HT +— FT can be constructed in the following way: we consider the initial-boundary

value problem.

{ Un(Z,1) = Use(2,1) + g(T)u(z,t) =0, 0<z, 0<t<T, (3.2.50)

u(z,T) =a(z); u(z,t)=0, z>T,

and denote by u*(z,t) the solution of this problem. Basing on the uniqueness of the
solutions to the initial boundary value problems (3.2.1) and (3.2.50) one can check
that

((WT)_la) (t) =u®(0,t), 0<t<T,

(see, e.g. [3] for more details). When ¢ € CL.(R;) and a € C*(0,T), a(0) = 0,

u*(z,t) is a classical solution and admits the representation

—t4+ D)+ [T —2,5T ~t)a(T —s)ds, z<t,
ity =] 4 V) T =25 T =ta(T = s)ds, o< (3.2.51)
0, z>t.
in terms of the solution v(z, s,t) to the following Goursat problem:
'Utt(xa's)t) _vss(xasat) +q(T—S)’U($,S,t) = 07 0<s<z —t, (3252)
v(z,5,0) =0, Lv(z,t,z —t) = 19(T — z +¢).

By the analogy with Propositions 5, 1 one can show that formula (3.2.51) gives a
generalized solution for the case of non-smooth potential ¢ and boundary condition

1

a. From representation (3.2.51), the formula for (W7)~! immediately follows:

t
(W) a) B =a(T—t) + / V(y,t)a(T - y) dy, (3.2.53)
0
Here the kernel V (s, t) satisfies the Goursat problem

Vils,t) = Va(s, ) + a(T = )V (s5,8) =0, 0<s<t,
V(s,T) =0, £V(t,¢) = 3q(t).
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Let us introduce the following operators
Jr: L(0,T) = L2(0,T), (Jra)(y) = o(T —y),
K : Ly(0,T) — Ly(0,T), (Ka)(t)= /Ot V(y,t)aly)dy, te€(0,7),
K*: Ly(0,T) — L2(0,T), (K*b)(t)= /tT V(t,y)b(y)dy, te(0,T).
Using these definitions, we can rewrite (3.2.53) as
(WT) " a=(I + K)Jra. (3.2.55)
Proposition 2 and formula (WT)* = J&(I + K*) yield
Proposition 4. The operator I + K* : Ly(0,T) — L2(0,T) is boundedly invertible.
For arbitrary f,g € F7, by the definition of CT we have:
(CTf,9)pr = (WTf,WTg)yr. (3.2.56)
Let us put f = (WT) la, g = (WT)71b, a,b € HT and rewrite (3.2.56) as
(CT(I + K)Jra, (I + K)Jrb)zr = (a,b)yr = (Jra, Jrb)xr, (3.2.57)
Since (3.2.57) holds for all a,b € HT, this leads to the following operator equation
(I+K)CT(I+K)=1 (3.2.58)
Introducing the operator
T
©rne) = [ e0f(s)ds
and using (3.2.15) we can rewrite (3.2.58) as
K*+ (I +K*) (K +Cr+CrK) =0. (3.2.59)

The function V(y,t) was defined in (3.2.54) for 0 < y < t < T, let us continue it
by zero in the domain ¢ < y < T and introduce the function ¢,(t), y,t € [0,T] by the

rule
&y (t) = V(y,t) + I (y,t) + /0 c'(t,5)V (y,s) ds. (3.2.60)
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The equality (3.2.59) implies

V(t,y) + oy(t) + /OT V(t, z)py(2)dz =0, z,t€ (0,T). (3.2.61)

Since V(t,y) =0 for 0 < y <t < T, we obtain that

T
by (t) +/ V(t,2)p,(2)dz=0, O0<y<t<T. (3.2.62)
t
Rewriting this equation as
(I+K")o,)(t) =0, O<y<t<T, (3.2.63)

and taking into account the invertibility of / + K* (see Proposition 4), we get
T
by (t) = V(y,t) + T (y,t) + / F(t,s)V(y,s)ds=0, O0<y<t<T. (3.2.64)
y

Let us formulate this result as

Theorem 3. The kernels of operators CT and K satisfy the following integral equa-

tion
T
Vi t) +c(u,t) + / Tt s)V(y,s)ds =0, 0<y<t<T (3.2.65)
v
Solving the equation (3.2.65) for all y € (0,T") we can recover the potential using

qly) = 2d%V(y,y)-

It is easy to see that the kernel V' is connected with the kernel of the transformation
operator (3.1.6) by the rule V(T —y,T —t) = K(y,s) and ¢ is similarly related to
F defined in (3.1.3): ¢I'(T —z,T —t) = F(z,t). Therefore, equations (3.2.65) can
be rewritten in a classical form (3.1.8). On the other hand, equations (3.2.65) have
clearly a local character since V(y,t) and ¢ (y,t) are completely determined by q(y)
on the interval [0, T).
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The Goursat problem was studied in [85, Sec. II.4] for smooth ¢, but the method

works for ¢ € L(0,a) as well (see [10, 11, 12, 9]).

Proposition 5. a) If ¢ € L} (R,), then the generalized solution w(z,s) to the

loc

Goursat problem (3.2.2) is a continuous function and

s+z

wa o< (5 [ la)lda) ew{*TE [ N lg(e)|da},

wa:(': S)7w5('a 3)) wm(xa ')7w5($a ) € Ll,loC(R+)'

(3.3.1)

(3.3.2)

Partial derivatives in (3.3.2) continuously in Li,.(R,) depend on parameters z,

s. The equation in (3.2.2) holds almost everywhere and the boundary conditions

are satisfied in the classical sense.

b) If g € Cioc(Ry), then the generalized solution to the Goursat problem (3.2.2) is

C'-smooth, equation and boundary conditions are satisfied in the classical sense.

c) If g € CL (R,), then the solution to the Goursat problem (3.2.2) is classical, all

its derivatives up to the second order are continuous.

Proof. By setting £ =s —xz, n = s+ z, and

e = (1)

equation (3.2.2) reduces to

{ vgy — 2q(LE)w =0, 0<é<nm,
w(n,m) =0, v(0,7) = =1 [ ¢() da.

Boundary value problem (3.3.4) is equivalent to the integral equation

vem =3 [ " ieyin-} [ [ ma(B G Yot

/2

Introduce a new function

(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)
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and the operator K : C(R?) — C(R?) by the rule

COIGOR %/OE g, /; dmg (% ggl)v(&,m). (3.3.7)

Rewriting (3.3.5) as
v=0Q — Kv (3.3.8)

and formally solving it by iterations, we get
v(&,n) = Q&M + Y _(-D"K"Q)(,n). (3.3.9)
n=1

To prove the convergence of (3.3.9) we need suitable estimates for |[K"Q|(§,n). Ob-

serve that
n/2
QEmI<; [ lafo)lda=S(m) (33.10)

For the first iteration we have

(KQ)(Em) /d&/ anna( ) |s(m)

S(n) S*(n)
<% / dt, / nlar < T
Easy induction arguments yield the following estimate
. 5™ () €
I(K"Q)(& m)| < 2n( )n,, n € N. (3.3.11)

Combining (3.3.9) and (3.3.11) one has

[v(&,m)| < eXP{ } (3.3.12)

)
2
which due to (3.3.3) implies (3.3.1). Differentiating (3.3.5) we can obtain formulas

) _ 43/05 q(” 5 C)v(g,n) dc, (3.3.13)

n
2
)‘z/£ a(S52)ole. ) dc + (3:3.14)

i[5 )c o

for the derivatives of v:

vn(€,m) = —;iq(
w€m) = 74
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which lead to (3.3.2).

When g € Cj,.(R,), we can differentiate one more time in (3.3.13) with respect
to £ which proves that v(£,7) is a classical solution of (3.3.4). For w(z,t) this implies
that wy — wey € Clee(Ry X Ry) and equation in (3.2.2) holds in the classical sense.

When g € C} (R, ), we can use (3.3.13), (3.3.14) to show that w has all continuous

derivatives of the first and second order and thus is classical. a
Let us emphasize the following simple observation:
Remark 2. Solution to the boundary value problem (8.2.2) is unique.

Let {g.}2; € C*(R,) be such that

Llloc
n —> ¢ asm — oo; (3.3.15)

by w,(z, s) we denote the solution of (3.2.2) corresponding to the potential g,.

Proposition 6. For solutions w,, w the following holds:

loc

oz " Bz
Proof. 1t is sufficient to prove only (3.3.16), since (3.3.17) and (3.3.18) follows from
this and formulas for derivatives (3.3.13), (3.3.14). We prove the convergence for the

w, s w, asn — oo, (3.3.16)
1
%wn Liog %w, as n — 0o, (3.3.17)
0 Lt 0

w, asmn — oo. (3.3.18)

sequence {v,}S2 , that is obtained from {w,}5; by the change of variables (3.3.3).

Let us set Qn = [0, N] x [0, N] and take arbitrary subsequence from {v,}3 , we
keep the same notations for it. It is straightforward to check that sequence {v,}3 ,
being restricted to the compact €2y, satisfies the conditions of the Arzela-Ascoli the-

orem in C(2x). Then there exist such a v € C(€y) that for some subsequence
Un, — U, in C(ly), (3.3.19)
as k — oo. We rewrite (3.3.8) as

v = Qq — K(q)v, (3.3.20)
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where Q : L,(0,2N) — C(f2y) is defined by (3.3.6) and K : L;(0, N) x C(Qy)
C(S2v) is defined by (3.3.7). We have

v —n, = Qg —qn,) —K(q = ¢n,) (v + vn,) — K(gn v + K(q)vp,. (3.3.21)
Going to the limit in (3.3.21) we get that
v—v=~K(q)v+ K(q)v. (3.3.22)
Thus v satisfies the equation
v = Qg - K(q)v. (3.3.23)

Since the solution to (3.3.8) is unique (see remark 2), v = v. Thus, every subsequence
of {v,}22, contains a subsequence, convergent to v in C(Q2y). It implies that the very

sequence converges to v. Since N is arbitrary, we arrive at (3.3.16). (I
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Chapter 4
Conclusions
In this work we investigated some inverse and control problems for dynamical systems
on the half line and on finite trees.

The general concept that we bore in mind was the following ideas on the connection
of the inverse and control problems: the controllability properties of the dynamical
system are connected (via the method of moments) with the properties of the corre-
sponding families of exponentials. On the other hand, the Boundary Control method
is based on the connections between controllability and identification problems for
system described by partial differential equations. Thus, the progress in one of the
fields (control, and inverse problems, and families of exponentials) could potentially
lead to the progress in one or both of the other fields.

In the first Chapter the exact controllability for the wave equation on the finite
tree has been proved. The control acts through the Dirichlet boundary data, where
one of boundary vertices could be “clamped”. Using the methods from [8] and (73, 74]
the result on the null controllability for the parabolic and Schroédinger equations on
the same tree was derived. The approach we used allowed us to obtain the new results
on the families of exponentials associated with the wave, parabolic and Schrodinger
equations on the tree (see also [8]). The partial (with respect to the shape) control-
lability result for the wave equation is interesting in itself. It is of great importance
for dynamical inverse problems (see e.g. [22, 23, 35]) and could be considered as
an intermediate step for solving the dynamical inverse problems. The extension of
partial and exact controllability results on the new types of equations on trees, for
example for the two-velocity dynamical system, Euler and Timoshenko beams and
others could be of interest for studing the inverse problems (an application of BC
method) and for the theory of functions (exponential families).

In the second Chapter we have investigated the inverse problem of recovering the
material properties and the topology of a tree constituted by linear elastic two-velocity
channels or in-plane-models of elastic strings. For a rooted tree this problem can be
solved using measurements at all leaves (besides the root). The most remarkable

novelty is the detection of the angles between two consecutive elements. Problems
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of the same type with variable coefficients (densities) is of great interest, as well as
the problems involving frames of Euler-Bernoulli and Timoshenko beams. We believe
that the method developed in the second chapter (see also [9, 35]) will help us to
extend the local approach to inverse problems to other types of equations on graphs
(trees).

In the third Chapter we have shown that the boundary control method (see [20, 21,
4, 5]) offers powerful tools for solving the dynamical and spectral inverse problems for
the Schrodinger operator with the potential on the half line. Moreover, it is shown
that the central objects of Gelfand-Levitan [47], Krein [56, 57], Simon (83, 49, 48]
and Remling [78, 79] approaches to the spectral inverse problem naturally appear
in the BC method. The BC method offers the elegant way to show the connection
between the dynamical and spectral data (see also [53, 49]), this connection could
be important for solving the inverse problems. By means of the boundary control
method we derived the classical Gelfand-Levitan equations and improved the results
of Simon and Remling on the convergence of A—amplitude, which is an important
contribution to the BC method and spectral theory. The extension of our results
to the new type of equations (first order hyperbolic systems, Hamilton system, etc.)
and new type of problems (e.g. inverse scattering, see [36]) seems to be a promising
direction in the development of the BC-method.

Everything that was said above allows us to conclude that the method of mo-
ments, families of exponentials and the Boundary Control method based on the the
connection between controllability and identification properties of the dynamical sys-
tem combined together provide the powerful tools for solving the control and inverse
dynamical and spectral problems. Application of these methods to the new types of
equations as well as to the new types of objects (for example, graphs with circles,
infinite graphs, etc.) is a promising direction in the theory of Control and Inverse

Problems and theory of vector valued exponential functions.
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