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ABSTRACT

Marine mammals are dietary staples among many indigenous peoples of the Arctic, 

but these foods sometimes contain high levels of mercury, a toxic heavy metal that can 

cause nerve and brain damage. Because mercury can be released into the environment 

by both industrial and natural processes, prehistoric marine mammal consumers may 

have been exposed to this toxicant, but little is known about preindustrial mercury levels. 

This research examined the potential for using the mercury concentration of 

archaeological bone as a biomarker o f mercury exposure. Two requirements of valid 

biomarkers of exposure were explored: 1) measurement accuracy (trueness and 

precision) and 2) correspondence with the extent of exposure. Measurement accuracy 

was evaluated using repeated determinations of mercury concentration in a sample of 

modem seal bones. Correspondence with exposure was examined by comparing bone 

mercury concentration to controlled exposure level in laboratory rats, and to the stable 

nitrogen isotope ratio (815N) (a proxy measure of exposure) in prehistoric ringed seals 

from Thule-period archaeological sites in Alaska. Results show that mercury 

measurements have acceptable accuracy and that bone mercury is strongly related to 

exposure. These promising results suggest that, with further validation on human 

subjects, bone mercury may provide a reliable archive of mercury exposure in 

preindustrial archaeological populations.
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1

1. INTRODUCTION

Marine mammals are dietary staples among many coastal populations o f the world, 

but these traditional foods often contain high levels of mercury, a toxic heavy metal that 

can cause nerve and brain damage (EPA, 1997c:l 1; National Research Council, 2000; 

WHO, 1990). People who consume these traditional resources can accumulate mercury 

in their tissues to levels that are considered unsafe (Burkow and Weber, 2003; EPA, 

1997a; Van Oostdam and Tremblay, 2003). Today, some of the highest documented 

tissue mercury levels occur in the coastal Inuit of arctic North America and Greenland, 

where diets are rich in marine foods (AMAP, 2003a; Deutch, 2003). Mercury-related 

decreases in cognitive function may have grave societal repercussions, including 

economic costs associated with diminished productivity (Grandjean and Perez, 2008; 

Trasande et al., 2006)

The ultimate source of mercury in marine foods is unclear, because mercury can be 

released into the environment by both industrial activities, such as coal burning, and by 

natural processes, such as volcanic eruptions (AMAP, 2002; Pyle and Mather, 2003). 

After mercury is released into the atmosphere, it can travel thousand of kilometers 

through the hemisphere and deposit onto the surface far from where it originated. Some 

of the deposited mercury settles in marine sediments, where it can be taken up by 

organisms and enter the marine food chain (Clarkson and Magos, 2006). Once in the 

food web, mercury biomagnifies, so that animals at the apex of long food chains, such as 

marine mammals, have mercury levels many times over those at the base.
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The same pathway that operates today to cause high mercury levels in arctic marine 

animals and in the people who consume them likely operated in the preindustrial past, 

since mercury can be emitted to the atmosphere through natural processes. In this way, 

preindustrial arctic Eskimo and Inuit who relied heavily on marine foods may have been 

exposed to relatively high levels of mercury from their diet, just as their modem 

counterparts are today. Naturally-released mercury is indistinguishable from 

industrially-released mercury (Wiener et al., 2003) and therefore may have the same 

toxic properties

While preindustrial levels of mercury in the atmosphere have been studied through 

sediment and ice core deposits (Biester et al., 2007; Givelet et al., 2004; Schuster et al., 

2002), little information is available on preindustrial mercury levels in food webs. A 

potential archive of such information is the skeletal remains of animals and humans 

recovered from archaeological sites. Levels of mercury in preserved bone could serve as 

an index of preindustrial exposure, if bone can be shown to be a valid biomarker of 

mercury exposure.

Biomarkers of exposure characterize exposure to a substance based on its 

concentration in a biological tissue (National Research Council, 2006). For mercury, 

typical biomarkers of exposure in living humans and mammals include blood and hair, 

for which the relationships between mercury dose and tissue concentrations have been 

well established (National Research Council, 2000). Ancient human and animal hair 

samples have been analyzed for mercury content, but preserved hair is rare in
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archaeological sites (Aufderheide, 2003). Bones are more commonly preserved, and 

mercury has been detected in human and animal bone, including archaeological bone, 

with published mean total mercury concentrations ranging from the parts per billion to 

parts per million range (Baranowski et al., 2002; Yamada et al., 1995). However, bone 

concentrations of an element do not always reflect dietary intake levels, because 

elements ingested by humans and animals have complex pathways of absorption, 

movement, incorporation into tissues, and excretion (Ezzo, 1994). Bone mercury 

concentration must be validated as a biomarker of exposure before it can be applied to 

human skeletal samples to reconstruct mercury exposure in the past.

This dissertation research investigated the potential for using mercury concentration 

in archaeologically-recovered bone as a biomarker of mercury exposure in preindustrial 

animals and humans. The ultimate research goal is to find a convenient, reliable 

indicator of past mercury exposure in order to establish the natural baseline level of 

human exposure, to track changes in exposure levels through time, and to reconstruct the 

health consequences of mercury exposure in past populations. While mercury has been 

measured in bone, including prehistoric bone, the mere presence of a substance in a 

tissue is not enough to ensure that its concentration reflects exposure level. A candidate 

biomarker must be validated before being used to assess exposure in individuals and 

populations, be it in modem or prehistoric populations. For a biomarker of exposure to 

be valid, it must meet two criteria: 1) the analytical method used to measure the 

biomarker must produce accurate results (analytical validity) and 2) the biomarker must 

correspond with the extent of exposure (intrinsic validity) (Lee et al., 2006; WHO,

3
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2001). Since mercury exposure in humans and animals is almost entirely through diet, a 

biomarker of mercury exposure must reflect dietary mercury intake. Given the 

requirements for a valid biomarker of mercury exposure, this dissertation was guided by 

two central research questions:

1. Can bone mercury be accurately measured?

2. Does bone mercury level reflect dietary intake level?

Bone mercury measurement accuracy was assessed in terms of its two components: 

trueness, which refers to how close measurement results are to accepted values, and 

precision, which refers to how close repeated measurements are to each other 

(Thompson et al., 2002). A series of bone samples was analyzed for mercury 

concentration using Cold Vapor Atomic Fluorescence Spectrometry (CVAFS), which is 

a well established method for measuring mercury in many biological tissues (Jones et al., 

1995), but which had not been tested on bone. Trueness and precision were calculated 

from the resulting bone mercury concentration measurements, and these were compared 

to internationally recognized standards for chemical measurement accuracy. The sample 

used to assess measurement accuracy included bones of modem marine mammals from 

western Alaska that had been collected by a state game management agency.

The intrinsic validity of a biomarker, or the correspondence of the biomarker to the 

extent of exposure, was examined in two ways. First, bone mercury concentrations were 

compared to known, controlled exposure levels in mercury-dosed laboratory rats. If

4
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bone mercury reflects dietary mercury intake, then bone mercury concentration should 

increase as daily exposure increases. Second, mercury level in a sample of prehistoric 

marine mammal bone was compared to the stable nitrogen isotope ratio, used here as a 

proxy measure of mercury exposure, since it tends to increase with trophic position. If 

bone mercury concentration faithfully tracks dietary intake level, then bone mercury 

concentration should increase as the stable nitrogen isotope ratio increases.

Research area

As a method validation study, much of this dissertation research transcended any 

particular geographic area. Of necessity, it relied heavily on controlled experiments 

using laboratory animals. At the same time, this study extended beyond the laboratory 

and into natural populations, and here the focus was on the Arctic. The coastal areas of 

arctic North America and Greenland offer an obvious location for the study of mercury 

exposure, since indigenous populations here, the Yupik and Inupiaq Eskimo of Alaska 

and the Inuit of Canada and Greenland (Figure 1.1), have some of the highest exposure 

levels in the world due to reliance on sea mammals in the diet.

While the Arctic may be defined in many ways, it will here be defined as that area of 

the circumpolar north that is beyond tree line (see Figure 1.2). This treeless tundra 

landscape is remarkable for its low productivity, with a vegetation consisting largely of a 

mat o f mosses, lichens, and low bushes that supports few large terrestrial mammals 

(Moran, 1982; Weddell, 2002). The productivity of the oceans, however, is much 

greater (Weddell, 2002). Though ice-covered for much of the year, the sea supports an
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abundance of large-bodied and easily-storable mammals, including a variety of seals, 

walrus, and whales (Freeman, 1988). Not surprisingly, marine mammals have been 

dietary mainstays of the Eskimo and Inuit from prehistoric through modem times. 

Archaeological sites throughout arctic North America and Greenland are rich with the 

remains of these animals, and occasionally of the humans who hunted them, affording a 

unique opportunity to study mercury exposure through time. In this initial method 

validation study, the focus is on the archaeologically-derived remains of animals that 

formed the diet of the prehistoric coastal Eskimo of Alaska.
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Figure 1.1. Arctic boundary as defined by treeline. Reprinted from AMAP (1998).
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Figure 1.2. Cultural map of the Arctic showing the area inhabited by the Alaskan 
Eskimo (Yupik and Inupiat) and the Canadian and Greenlandic Inuit. Reprinted 
from AMAP (1998).
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Organization of Dissertation

The remainder o f this dissertation is organized as follows. Chapter Two, the 

Research Background, includes a review of the literature on diet and mercury exposure 

in modem Eskimo and Inuit populations and in their prehistoric ancestors, the Thule.

This is followed by a discussion of previous attempts to reconstruct prehistoric mercury 

exposure using preserved hair as a biomarker, and the potential advantages and 

limitations of using archaeological bone as a biomarker of prehistoric exposure. The 

bioarchaeological applications of analyzing trace elements and toxic metals in human 

skeletal remains are also summarized. Finally, methods of validating candidate 

biomarkers are examined.

Chapter Three, Research Materials and Methods, describes the research design, 

specific research questions addressed, and materials used in the study. The data 

collection and data analysis procedures are also detailed, including the statistical tests 

used and the formulation of specific statistical hypotheses.

Chapter Four, Results, presents descriptive and inferential statistics for the variables 

studied in each of the samples. The outcomes o f specific statistical hypotheses tested are 

also explained.

Chapter Five, Discussion, compares the results of this study to previous findings and 

to expected results. Alternative explanations for the findings are considered.

9
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Chapter Six, Summary and Conclusions, explores the results of this study in the 

context o f the major research aims and questions. It discusses the broader implications 

o f the research and makes suggestions for future studies on bone as a biomarker of 

ancient mercury exposure.

Appendix A includes a list of abbreviations used in this dissertation.

10
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11

2. RESEARCH BACKGROUND 

Mercury toxicity

Mercury is a heavy metal that exists naturally in many forms, including elemental, 

inorganic, and organic mercury (ATSDR, 1999b). All forms of mercury are toxic, but 

the organic form methylmercury (MeHg) is of the greatest health concern because it is 

easily taken up by organisms, including humans, through foodstuffs (EPA, 1997a). The 

primary target for methylmercury damage is the central nervous system (Clarkson and 

Magos, 2006).

Adults exposed to high levels of methylmercury in accidental large-scale poisoning 

incidents in Iraq and Japan in the 1960s and 1970s suffered a number of central nervous 

system effects depending on degree of exposure, from parasthesia (numbness in the 

fingers and toes), to loss of motor coordination, deafness, blindness, and finally, coma 

and death (Clarkson and Magos, 2006; FDA, 1994). Analysis o f these accidental 

poisonings suggests that the threshold for the mildest clinical symptoms in adults 

(parasthesia) occurs at a hair total mercury concentration of around 100 ppm, which 

corresponds to a blood total mercury concentration of around 400 ppb (Clarkson and 

Magos, 2006; WHO, 1990:section 10.3). Blood and hair mercury concentrations in this 

range can be achieved with a daily ingestion of around 10 micrograms (pg) of 

methylmercury per kilogram of body weight (WHO, 1990:section 10.2.1). Death occurs 

at blood levels over 2000 ppb (WHO, 1976:section 6.6; WHO, 1990:section 9.4.1.2).
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Methylmercury is especially toxic prenatally, when the brain is developing rapidly 

(Myers and Davidson, 2000). Infants bom to mothers who accidentally ingested 

methylmercury showed central nervous system impairments, including delays in speech 

and motor development, mental retardation, cerebral palsy, reflex abnormalities, and 

seizures (EPA, 1997c; Myers and Davidson, 2000). Estimates of the threshold for 

delayed walking in infants exposed in utero are as low as 10 ppm maternal hair total 

mercury (40 ppb blood total mercury) (Clarkson and Magos, 2006).

Detrimental effects have also been seen in children who were exposed prenatally to 

methylmercury through maternal consumption of fish and marine mammals. Major 

longitudinal studies on the effects of fetal methylmercury exposure have been conducted 

in two seafood-eating populations, the inhabitants of the Faroe Islands (located in the 

North Atlantic between Scotland and Iceland) and the Seychelle Islands (located in the 

Indian Ocean northeast of Madagascar), but their conclusions are inconsistent. The 

Faroe Islands study found an adverse association between prenatal methylmercury 

exposure and performance on neurodevelopmental tests, especially on tests of attention, 

fine-motor function, language, visual-spatial abilities, and verbal memory (Myers and 

Davidson, 2000; National Research Council, 2000). However, in the Seychelles study, 

which used a different battery of tests, no neurodevelopmental deficits were observed 

(Myers and Davidson, 2000; National Research Council, 2000).

Based on the Faroe Islands study, the U.S. Environmental Protection Agency (EPA) 

(2001c) concluded that the methylmercury benchmark dose— the dose at which there is
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moderate increase in the frequency of adverse effects over the background rate— is 85 

ppb maternal blood mercury. The lower 95% confidence limit on this dose, the 

“benchmark dose lower limit” or BMDL, is 58 ppb maternal blood mercury. The 

benchmark dose lower limit is assumed to represent a dose level at which no adverse 

effects are seen (Clarkson and Magos, 2006). A 58 ppb blood mercury concentration 

can be achieved with a steady daily ingestion of around 1 microgram of methylmercury 

per kilogram of body weight. The EPA applied an uncertainty factor of 10 to this dose 

to arrive at its “reference dose” (RfD)— a dose that is “likely to be without an 

appreciable risk of deleterious health effects during a lifetime”— of 0.10 pg/kg bw/day 

for methylmercury (EPA, 2001 c:4-1).

As seen in Table 2.1, the World Health Organization’s recommended tolerable intake 

is more liberal, at 0.23 pg/kg bw/day for methylmercury (WHO, 2004). Variations 

between the EPA and WHO in acceptable levels of methylmercury exposure are due to 

reliance on different studies, different points o f departure, and different levels of 

uncertainty (Myers and Davidson, 2000; National Research Council, 2000). Table 2.1 

also shows the blood and hair mercury levels that correspond to the intake levels. Note 

that the allowable intake refers specifically to methylmercury, while the tissue 

concentrations are measured as total mercury.

13
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Table 2.1. Guidelines from  EPA and WHO fo r  tolerable levels o f  methylmercury intake
and corresponding blood and hair levels

Agency Guideline

Allowable
MeHg
intake
(Pg/kg

bw/day)

Associated 
blood THg 

(ppb)

Associated 
hair THg 

(ppm) Reference

EPAa Reference
Dose 0.10 5.80 1.34 (EPA, 2001c)

WHOb Provisional 
Tolerable 
Daily Intake 0.23 8.76 2.19 (WHO, 2004)

aEPA associated blood THg is the EPA benchmark dose lower limit (58 ppb blood THg), divided 
by the EPA uncertainty factor of 10 (EPA, 2001c:4-61). EPA associated hair THg was converted 
from blood level using a hair-to-blood ratio of 250:1 (EPA, 2001c:4-77).

bWHO daily intake guideline has been converted from the Provisional Tolerable Weekly Intake 
(WHO, 2000; WHO, 2004). WHO associated hair THg is the WHO benchmark dose lower limit 
(14 ppm hair THg) divided by the WHO uncertainty factor of 6.4 (WHO, 2004:sections 4.3 and 
5). WHO associated blood THg was converted from the hair level assuming a hair-to-blood ratio 
of 250:1 (WHO, 2004:section 4.3 ).
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Pathways of methylmercury exposure

Today, human exposure to methylmercury is almost exclusively through 

consumption of fish and marine mammals, and individuals who rely on these foods can 

accumulate mercury in their tissues to levels that may be unsafe (Burkow and Weber, 

2003; Clarkson and Magos, 2006). Methylmercury occurs in high levels in marine 

mammals and predatory fish due to a complex pathway of transport, transformation, 

uptake, and magnification. It begins when inorganic mercury is released into the 

atmosphere by either industrial activities, such as coal burning, or by natural processes, 

such as volcanic eruptions (AMAP, 2002; Pyle and Mather, 2003). Mercury in the 

atmosphere can travel thousands of kilometers throughout the hemisphere. Some of the 

inorganic mercury in the atmosphere is deposited onto the surface, settles in marine 

sediments, and is converted to methylmercury by microorganisms (Clarkson and Magos, 

2006).

Once methylated, mercury enters the marine food chain and becomes concentrated 

(biomagnifies) as it moves up the chain. Because ocean food chains are often long, 

animals at the apex have mercury levels many times over those at the base, and their 

tissue mercury levels can exceed those considered safe for humans to eat (AMAP, 2002; 

FDA, 1994). A similar mercury pathway occurs in freshwater systems, where predatory 

fish can accumulate high levels of mercury (Power et al., 2002). However, freshwater 

systems will not be emphasized in this dissertation, because of the dearth of fish remains 

from prehistoric archaeological sites on the arctic tundra (as reviewed by Whitridge,

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2001). The same pathway that operates today to cause high mercury levels in marine 

animals likely operated in the preindustrial past, since mercury can be emitted to the 

atmosphere through natural processes. In this way, preindustrial seafood consumers may 

well have been exposed to relatively high levels of mercury from their diet, just as their 

modem counterparts are today.

Mercury exposure in modern populations

Some of the highest documented exposures to methylmercury occur in the coastal 

Inuit populations of arctic Greenland and Canada, where diets are rich in marine foods 

(AMAP, 2003a; Deutch, 2003). Dietary surveys suggest that the Inuit of Baffin Island 

have an average total mercury intake of 1.03 pg/kg bw/day (Kuhnlein et al., 2000), 

which is several times higher than the EPA and WHO limits for methylmercury intake of 

0.10 and 0.23 pg/kg bw/day (see Table 2.1). In this population, ringed seals are the 

greatest contributor to mercury intake. In adult Inuit of arctic Quebec, blood total 

mercury levels average 21.3-23.7 ppb (Dewailly et al., 2001), far exceeding the WHO 

and EPA safety guidelines of 5.8 ppb and 8.7 ppb, respectively. Here, blood mercury 

concentration is directly correlated with frequency of seal and beluga whale 

consumption. Similar high exposures are seen for Inuit adults in southwestern 

Greenland, where dietary surveys suggest an average total mercury consumption of 1.33 

pg/kg bw/day, with seal, especially ringed seal, and whales contributing most to the 

intake (Deutch, 2003). Average blood total mercury concentrations for Inuit men in 

three regions of Greenland are extremely high, ranging from 14.2 ppb in the central
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eastern region to 52.0 in the central western region, and total blood mercury appears to 

be associated with the frequency of seal consumption (Deutch, 2003).

Studies that assess mercury exposure from traditional foods are lacking for Alaska. 

However, dietary surveys and subsistence harvest data suggest that the coastal Eskimo of 

Alaska consume substantial amounts of marine mammals, including seals and whales 

(Ballew et al., 2006; Ballew et al., 2004; Conger and Magdanz, 1990). Preliminary 

results from a study by the Alaska Native Tribal Health Consortium show mean blood 

total mercury concentrations of 1.5 ppb for a sample of 29 women in Barrow 

(presumably Inupiaq Eskimo) and 6.5 ppb for 52 women from Bethel (presumably 

Yupik Eskimo) (as reported in Arnold and Middaugh, 2004). The latter concentration 

exceeds the EPA guideline for “safe” mercury intake. No corresponding dietary 

information is available for these subjects.

Ringed seal consumption and mercury exposure

In modem Inuit populations, ringed seal (Phoca hispida), is a common source of 

dietary mercury exposure, as detailed in previous sections. This small ice seal has a 

circumpolar distribution and is dependent on sea ice for feeding, resting, and breeding 

(Jefferson, 1993; Quakenbush and Sheffield, 2006). An adult ringed seal typically 

weighs between 50 to 110 kg (110-240 lb ) (Jefferson, 1993). As a fish-eater, the ringed 

seal occupies a position near the top of the marine food chain, and the relatively high 

levels of mercury in its tissue reflect this. Table 2.2 shows reported levels of total 

mercury in muscle of ringed seals from Alaska, Canada, and Greenland.
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Ringed seal do not have the highest levels of tissue mercury among arctic marine 

mammals, as even higher levels are found in the toothed whales (e.g., beluga whale and 

narwhal), which often have average muscle mercury levels above 1.0 ppm (AMAP, 

2005). But, in many areas of the Arctic, ringed seal is the most frequently consumed 

marine mammal in coastal populations. To put ringed seal mercury levels into 

perspective, Table 2.3 shows the mean mercury levels for selected traditional foods for 

the Inuit of west Greenland. Here, plants and terrestrial animals have low mercury 

concentrations (<0.015 ppm), as do marine invertebrates. Most marine fish have levels 

below 0.10 ppm, while the marine mammals listed here— all fish-eating species— have 

the highest levels.

18
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Table 2.2. Mean total mercury concentration in muscle o f  ringed seal from  Alaska,
Canada, and Greenland

Location

Mean muscle 
THg pg/g (ppm) 

(wet weight) n Reference

Barrow 
Alaska USA 0.10 59 Dehn et al. (2005)

Ungava Bay 
Nunavut Canada 0.25 13 NCP (2003)

Hudson Strait 
Nunavut Canada 0.18 22 NCP (2003)

Nain/Makkovik 
Labrador Canada 0.33 28 NCP (2003)

West Greenland 0.22 >20 NCP (2003)
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Table 2.3. Mean total mercury levels in selected traditional 
Inuit foods in west Greenland

Food Item Scientific name Tissue n
Mean THg

pg/g (ppm)a

Terrestrial

Plants

Blueberry Vaccinium uliginosum Berry 5 <0.001

Mammals

Caribou Rangifer tarandus Muscle >100 0.014

Musk ox Ovibos moschatus Muscle 9 0.002

Marine 

Invertebrates 

Blue mussel Mytilus edulis Soft parts 15 0.001

Fish

Arctic char Salvelinus alpinus Muscle 72 0.043

Atlantic salmon Salmo salar Muscle 20 0.040

Atlantic cod Gadus morhua Muscle 9 0.014

Halibut
Reinhardtius
hippoglossoides Muscle >5 0.154

Mammals 

Ringed seal Phoca hispida Muscle >20 0.221

Harp seal
Pagophilus
groenlandicus Muscle >10 0.210

Beluga whale Delphinapterus leucas Muscle >10 0.790

a All values are from Johansen et al. (2003).
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The amount of ringed seal muscle that would have to be consumed to exceed the 

various safety and health outcome thresholds can be calculated for each person based on 

body weight. For example, to meet the EPA (2001c) allowable mercury intake (the 

RfD) of 0.1 pg/kg bw/day, a 60 kg person would have to ingest mercury at a level of 6.0 

pg/day, which could be accomplished by eating 6 g/day of a food item with a mercury 

concentration of 1.0 pg/g. For thresholds that are expressed in terms of blood mercury 

levels, the corresponding daily dose must be calculated using the EPA (2001c:4-77) dose 

conversion formula:

Daily methylmercury intake = (blood TH gx b x V)/ (A x f  xbw )

where:

daily methylmercury intake is expressed as pg MeHg/kg bw/day 

blood THg is expressed as pg/L (ppb) 

b = the elimination constant (= 0.014 days-1)

V = the volume o f blood in the body ( = 5 L  for a 65 kg woman)

A = the absorption factor (= 0.95, unitless) 

f  = the fraction of daily intake taken up by blood (= 0.059) 

bw = body weight in kg
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Table 2.4 shows the intake of ringed seal muscle required for a 60 kg (132 lb) person 

to meet selected health thresholds, assuming that the seal has an average mercury 

concentration of 0.2 ppm. For foods with this concentration of mercury, a person 

weighing 60 kg will exceed the EPA Reference Dose by ingesting only 30 g (1.0 oz) of 

the food per day. Daily consumption of 480 g (17 oz) of such a food will exceed the 

EPA benchmark dose, the dose that corresponds to a 5% increase over background rates 

in the incidence of adverse effects in prenatally exposed children. The intake amount 

required to meet the threshold for observable clinical symptoms in adults is 3000 g (106 

oz) per day.
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Table 2.4. Calculated daily intake o f  a food  with 0.2 ppm mercury required to meet selected threshold doses associated with
health outcomes

Threshold Description
Threshold daily dose 

(pg/kg bw/day)

Corresponding mercury 
intake (pg/day) for 

60 kg person

Corresponding food intake 
(g/day) for a food with 0.2 

pg/g mercury

EPA Reference Dose 
(EPA, 2001c) 0.1 6 30 g (1 oz)

EPA Benchmark Dose3 
(EPA, 2001c) 1.6 96 480 g (17 oz)

Parasthesia in adults 
(WHO, 1990:section 10.2.1) 10 600 3000 g (106 oz)

aEPA benchmark “dose” is expressed as a blood mercury level of 85 ppb; it was converted to a daily mercury dose using the EPA 
(2001c:4-77) dose conversion formula (see text for further explanation).



Ringed seal in the historic Eskimo and Inuit diet

Written accounts of Eskimo and Inuit life during the historic period often contain 

general descriptions of hunting activities and the major animal resources used, but rarely 

provide quantitative data on food consumption. Nevertheless, these early accounts 

reveal that marine mammals, particularly seals, were key to the Eskimo and Inuit diet.

For instance, John Murdoch (1892:61), naturalist for the International Polar Expedition 

to Point Barrow (1881-1883) wrote of the Eskimo diet that “the staple article of food is 

the flesh of the [ringed] seal, of which they obtain more than of any other meat.” In this 

passage from Boas (1888:419) describing the Central Inuit of Canada (i.e., the Caribou, 

Copper, Netsilik, Iglulik, Baffin Island, Labrador, and east Hudson Bay Inuit) during the 

late 19th century, seals are seen as critical to survival:

As the inhospitable country does not produce vegetation to an extent 

sufficient to sustain life in its human inhabitants, they are forced to 

depend entirely upon animal food. In Arctic America the abundance of 

seals found in all parts of the sea enables man to withstand the 

inclemency of the weather and the sterility of the soil.

Writing of the Greenlandic Inuit in the late 19th century, Dr. H. J. Rink, a 

geographer-naturalist and later Royal Inspector of southern Greenland for the Danish 

government, observed that “the sustenance of the Eskimo is entirely derived form the 

capture of seals and cetaceous animals” (Rink, 1875:6). Rink provides the only 

quantitative information on the historic period Inuit diet. He conducted an annual food

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



consumption survey among the Inuit of southwestern Greenland in 1855. Based on 

Rink’s survey, Sinclair (1953) estimated that the typical daily diet of an adult Inuit 

included 3359 calories and contained 63% protein (nearly all animal protein), 27% fat, 

and 10% carbohydrate by weight. In terms of specific foodstuffs, the diet was 

predominantly seal flesh, both in terms of weight (860 g/2175 g = 40%) and calories 

(1686 Cal. /3359 Cal. = 50%) (Table 2.5). The next most important food item was 

capelin (a small salmonid fish), with other fish and mammals making up most of the 

remainder.

Some researchers have used interviews with 20th century Eskimo elders, 

supplemented by historical documents, to reconstruct the traditional diet. Using this 

method, Ray (1964) determined that there were three traditional subsistence patterns 

among the 19th century Inuit around Bering Strait: 1) the whaling pattern, focused on 

bowhead whales, walrus, and seals; 2) the caribou hunting pattern, focused on caribou, 

fish, and some sea mammals; and 3) the small sea mammals pattern, focused on seals 

and beluga. At the same time, Ray (1964:61) noted that “all o f the inhabitants of the 

area, however, depended on seals and fish for basic foods.” Based on interviews with 

Inupiaq elders in the Point Hope region in the late 1950s, Foote (1965:286) estimated 

that in the mid-nineteenth century, the Point Hope Eskimo derived most of their winter 

food from seals (40%), followed by bowhead whale (35%), and walrus (10%).

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

Table 2.5. Southwestern Greenlandic Inuit daily diet ca. 1855 AD as reconstructed by
Sinclair (1953)

Food Item
Amount 

consumed (g) Weight %
Calories

consumed Calorie %

Seal flesh 860 40 1686 50

Capelin (salmonid) 620 29 645 19

Other fish 370 17 444 13

Other flesh 225 10 441 13

Berries 50 2 14 1

Eggs 5 <1 8 <1

Imported foods 45 2 121 4

Total 2175 100% 3359 100%
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Ringed seal in the prehistoric Eskimo/Inuit (Thule) diet

Archaeologists widely agree that the modem Eskimo and Inuit of Alaska, Canada 

and Greenland are direct biological and cultural descendents of the prehistoric Thule 

(Ackerman, 2001; Dumond, 1987a; Giddings and Anderson, 1986; Hayes et al., 2005; 

Maxwell, 1980; Maxwell, 1985; Morrison, 1994; Morrison, 1999). This archaeological 

culture emerged around the beginning of the Christian era in the islands of Bering Strait, 

and was established on mainland Alaska by around 500 AD (Dumond, 1987a; Dumond, 

1987b). For decades, conventional wisdom held that the Alaskan Thule began to spread 

east around 1000 AD, reaching Greenland within two or three hundred (Maxwell, 

1980:171). Newer analyses of radiocarbon dates suggest that the initial migration may 

have begun centuries later, around 1200 AD (Friesen and Arnold, 2008; McGhee, 2000), 

although Morrison (2001:82) suggests that this view is “too extreme,” and that the Thule 

reached the eastern Canadian Arctic “within a generation or two” of 1000 AD. In terms 

o f cultural remains, the Thule Tradition is characterized by large coastal settlements with 

multi-roomed houses, kayaks and umiaks, ground-slate tools, grit-tempered pottery, 

toggling harpoon heads, and seal oil lamps (Ackerman, 2001; Dumond, 1987a; Giddings 

and Anderson, 1986; Mason, 1992; Maxwell, 1980; Maxwell, 1985; Morrison, 1994; 

Morrison, 1999).

Faunal remains from Thule sites suggest that a variety of sea mammals were 

harvested, including seals, walrus, beluga whales, and bowhead whales, in addition to 

terrestrial mammals, such as caribou and musk ox (Morrison, 1994; Whitridge, 2001;
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Yorga, 1979). Whitridge (2001) analyzed faunal data from 43 prehistoric Thule sites 

across Canada and estimated the dietary contribution of various categories of vertebrates 

(sea mammals, land mammals, fish, and birds) based on the number o f individual 

specimens (N1SP) combined with usable meat weights of each species. Whitridge’s 

calculations suggest that sea mammals made up an extraordinary 90% or more of the 

diet at nearly half of these sites, and between 60% and 90% of the diet at an additional 

one-quarter of the sites.

Whitridge (2001) does not specify which species made up the marine mammal 

portion of the Thule diet. Some archaeologists attribute the fluorescence of Thule to a 

new subsistence focus on whale hunting, especially the large bowhead whale (Harritt, 

1994). Indeed, whaling has been considered synonymous with Thule since the earliest 

description of this prehistoric culture by Mathiassen (1927). The spread of Thule 

eastward coincides with a period of climatic warming (the Medieval Warm Period, ca. 

900-1300 AD) (Mann, 2002) that may have extended the range of bowhead whales 

(Dumond, 1987a; Harritt, 1994; Morrison, 1999). Others argue that whales have been 

overplayed as central to Thule subsistence (Freeman, 1979).

Park (1999:82) notes that while Thule in some areas hunted the enormous bowhead 

whale or the smaller beluga whale and narwhal, “seal remains represent the most 

abundant finds by far in the faunal assemblages.” Furthermore, he contends that o f the 

three seal species routinely hunted— ringed, bearded, and harp—the ringed seal was the 

most important because their use of breathing holes in the winter sea ice made them
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available year-round. The importance of ringed seals to the prehistoric inhabitants of the 

Arctic is echoed by Murray (2008:S50), who notes that along the coastal areas of arctic 

Alaska, Canada, and Greenland, “ringed seal remains are ubiquitous in archaeological 

deposits, regardless of cultural affiliation, region, or time period.”

The importance of seals to the Thule diet also finds support from stable isotope 

studies of skeletal remains from Thule sites. Coltrain et al. (2004b) measured carbon 

and nitrogen stable isotope ratios on both human and animal remains from three 

archaeological sites in the Hudson Bay region. Using simple linear mixing models, they 

calculated that seals made up between 47% and 87% of the prehistoric Thule diet in this 

area. It should be noted, however, that this analysis was constrained to consider only 

three food items (the researchers selected seals, caribou, and whales), and that modeled 

values (versus actual measured values) were used for caribou nitrogen isotope ratios.
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Mercury levels in humans and animals during Thule times

Mercury concentrations have been measured in small samples of archaeologically 

preserved human and animal hair from Thule sites in Alaska, Canada, and Greenland 

(Table 2.6). The mean values for the Alaskan and Greenlandic Thule hair are both 

around 3.0 ppm total mercury. Modem hair mercury levels are not available for the 

same regions of Alaska and Greenland, but blood total mercury levels have been 

published, and they can be converted to hair levels using the hair-to-blood ratio of 250 

(EPA, 2001c). Conversion of the mean blood mercury concentration for a sample of 29 

modem Barrow Inupiaq Eskimo women reported in Arnold and Middaugh (2004) gives 

a calculated mean hair total mercury concentration of 0.3 ppm, which is lower than the 

Barrow Thule average. In contrast, the calculated mean hair total mercury level is 13.0 

ppm for a group of 48 adult Inuit men from the Uummanaq region of Greenland (based 

on blood levels from Deutch, 2003), which is much higher than the Thule-period sample 

from the same region. The Canadian Thule hair sample has an average methylmercury 

concentration of 1.3 ppm, while the mean for modem Inuit in Nunavut/Northwest 

Territories is 8.0 ppm (Wheatley and Paradis, 1998; Wheatley and Wheatley, 1988).

Animal hair from Thule sites has also been analyzed for mercury (Table 2.7).

Caribou hair from the Deering site in northwest Alaska has a mean total mercury level of 

less than 0.1 ppm, which is similar to modem caribou hair from the same region (Duffy 

et al., 2005; Gerlach et al., 2006). Polar bear hair from the Nunguvik site on Baffin
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Island, Canada, has a mean methylmercury concentration of 3.0 ppm, compared to 6.6 

ppm for modem polar bears (Wheatley and Wheatley, 1988).

Mercury concentrations have been measured in tooth cementum from beluga whale 

and walrus recovered from Thule sites in arctic Canada (Table 2.8). Cementum levels 

are lower than hair levels and are expressed in the parts per billion (ppb) range. The 

ancient beluga show a lower mean total mercury concentration (5.0 ppb) in tooth 

cementum compared to a modem sample (98.4 ppb), but the Thule period and modem 

walrus samples have nearly identical mean total mercury concentrations (around 1.0 

ppb) (Outridge, 2005; Outridge et al., 2002).
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Table 2.6. Mercury concentrations in preserved human hair from  Thule-period archaeological sites

Site/Region Date
Mean THg 
M-g/g (PPm)

Mean MeHg 
Pg/g (PPm) n Reference

Utqiagvik 
Alaska USA ca. 1500-1850 AD 3.0 NA 2

(Newell, 1984; Toribara and 
Muhs, 1984)

Nunguvik 
Baffin Island CAN ca. 1150 AD NA 1.3 5

(Wheatley and Wheatley, 
1988)

Qilakitsoq
Greenland ca. 1401-1500 AD 3.2 NA 6 (Hansen et al., 1989)
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Table 2.7. Mercury concentrations in preserved animal hair from Thule-period archaeological sites

Species Site/Region Date
Mean THg 
pg/g (ppm)

Mean MeHg 
pg/g (ppm) n Reference

Polar Bear Nunguvik 
Baffin Island CAN ca 1000-1500 AD NA 3.0 3

(Wheatley and 
Wheatley, 1988)

Caribou Deering 
Alaska USA ca. 1035-1270 AD <0.1 NA 37

(Gerlach et al., 
2006)

u>
u>
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Table 2.8. Total mercury concentrations in Thule period marine mammal tooth cementum.

Species Site/Region Date
Mean THg 
ng/g (ppb) n Reference

Beluga Gupuk
NW Territories CAN ca. 1450-1650 AD 5.0 28 (Outridge et al., 2002)

Walrus Igloolik, 
Nunavut CAN ca. 1200-1500 AD 1.0 11 (Outridge, 2005)



Bone as a potential biomarker of mercury exposure in prehistory

While hair is a well-validated and commonly used biomarker of mercury exposure 

(National Research Council, 2000), it is rarely preserved in archaeological sites 

(Aufderheide, 2003). In contrast, the bones of animals and humans are more commonly 

preserved, and usually they can be securely dated (Reitz and Wing, 1999). The use of 

ancient bone as a biomarker of prehistoric mercury exposure would allow the tracking of 

exposure levels in animals and humans at a fairly fine-grained scale through space and 

time. However, before bone mercury can be employed to answer questions about 

preindustrial exposure, it must be validated as a biomarker of exposure.

In the field of toxicology, biomarkers of exposure characterize exposure to a 

substance based on its concentration in a biological tissue, such as blood or hair 

(National Research Council, 2006). Validating a biomarker of exposure involves 

demonstrating that a relationship exists between the biomarker and external exposure 

(WHO, 2001). Validity refers to “the accuracy with which a biomarker reflects the true 

exposure level” (WHO, 2001 :Section II.3.3). For methylmercury, validated biomarkers 

of exposure in living humans and mammals include blood or hair, for which the 

relationships between methylmercury dose and tissue concentrations have been well 

established (National Research Council, 2000).

The National Research Council (2006) recognizes a progression in the validation of 

biomarkers in humans. The earliest step is observing a substance in a tissue (Group I 

biomarker), followed by demonstrating that sampling and analytical methods yield
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reproducible results (Group II). Subsequent validation steps include demonstrating a 

relationship between external dose and concentration of the biomarker in laboratory 

animals (Group III) and demonstrating a relationship between external dose and 

concentration of the biomarker in humans (Group IV). External dose is here defined as 

“the amount o f chemical that is inhaled, is ingested, or comes in dermal contact and is 

available for systemic absorption” (National Research Council, 2000:75).

Bone mercury has met only the lowest level o f validation; that is, mercury has been 

detected in bone. Reports of mercury concentrations in either modem or ancient bone 

are sporadic, and none have focused on addressing the relationship between mercury 

concentration and exposure. Table 2.9 provides published mean mercury levels in 

modem human, while tables 2.10 and 2.11 show values for modem terrestrial and 

marine mammal bone, respectively. Table 2.12 shows values for ancient human bone. 

For both the modem and the prehistoric human samples, published means for bone total 

mercury vary widely. Among the modem human samples, mean values range from a 

low of 10 ng/g in Polish neonates to a high of 2300 ng/g in Korean adults. In modem 

terrestrial mammal samples, reported means for bone total mercury range from only 10 

ng/g in gray squirrels to 680 ng/g in the white-toothed shrew. Marine mammals have 

reported mean bone mercury levels of between 38 ng/g in Pacific harbor seal pups from 

California to 7900 ng/g in a single bottlenose dolphin from the French Mediterranean. A 

sample of five caribou bones from a historic Inupiaq site in Alaska produced an average 

total mercury concentration of 103 ppb (Duffy et al., 2003) (not shown on table). Total 

mercury has also been measured on bird bone, with reported mean concentrations
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varying from less than 1 ppb to over 400 ppb in Alaskan waterfowl (Rothschild and 

Duffy, 2005).

It is unclear whether these values reflect actual variation in bone mercury levels, or 

whether variation is due to differences in the bone element sampled (often unspecified), 

rigorousness of bone cleaning (e.g., removing traces of muscle tissue and blood), or 

method of tissue digestion and mercury detection. Methods of mercury detection can 

vary by orders of magnitude in their minimum detection limits, such that some methods 

may detect mercury in the ultratrace range (parts per trillion) while others detect mercury 

only if  it is above several parts per million (Clevenger et al., 1997). This may lead to 

inflation in reporting means when a significant proportion of the sampled individuals 

have “not detected” mercury levels, and only those with unusually high levels are used 

in computing means. The wide variation in bone mercury values highlights the need to 

determine the causes of this variation and to investigate whether bone mercury 

accurately reflects exposure levels.
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Table 2.9. Total mercury concentration in bones o f  modern humans

Region and country Age Bone n
Mean THg 
ng/g (ppb) Reference

Minnesota
USA Adult NA 30 180 (Bush et al., 1995)

Skelleftehamn
Sweden Adult Femur 7 45a (Lindh et al., 1980)

Glasgow
Scotland Adult NA 16 450 (Liebscher and Smith, 1968)

Bohemia 
Czech Republic Adult Parietal 70 70a (Benes et al., 2000)

Upper Silesian 
Poland Neonate Frontal 77 10 (Baranowski et al., 2002)

Seoul
Korea Adult NA 161 2300 (Yoo et al., 2002)

a Median value.

00
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Table 2.10. Total mercury concentration in bones o f  modern terrestrial mammals

Species
Region and 
country Age Bone n

Mean 
THg ng/g 

(ppb) Reference

Cottontail rabbit 
(Sylvilagus floridanus)

Ohio
USA NA Femur 30 140 (Lynch, 1973)

Gray and Fox Squirrel 
(Sciurus sp .)

Ohio
USA NA Femur 20 10 (Lynch, 1973)

White-tailed deer 
(Odocoileus virginianus)

Ohio
USA NA Metacarpal 29 21 (Lynch, 1973)

White-toothed shrew 
(■Crocidura russala)

Medas Islands 
Spain Adult NA 5 680

(Sanchez-Chardi et 
al., 2007)
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Table 2.11. Total mercury concentration in bones o f  modern marine mammals

Species
Region and 
country Age Bone n

Mean 
THg ng/g 

(ppb) Reference

Pacific harbor seal 
(Phoca vitulina richardii)

California
USA <1 yr

Femur & 
Rib 26 38

(Brookens et al., 
2008)

Bottlenose dolphin 
(Turslops truncates)

Mediterranean
France 3.5 yr NA ■ 1 7900 (Frodello et al., 2000)

Common dolphin 
(Delphinus delphis)

Mediterranean
France 2 yr NA 1 3400 (Frodello et al., 2000)

Pilot whale 
(Globicephala melas)

Mediterranean
France 6 yr NA 1 2300 (Frodello et al., 2000)

Striped dolphin 
(Stenella coeruleoalba)

Mediterranean
France >7 yr NA 1 2100 (Frodello et al., 2000)

Kii Peninsula 
Japan 20.5

Combined
elements 1 2060 (Honda et al., 1984)
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Table 2.12. Total mercury> concentrations in archaeological human bone

Site and Country Date Maturity Bone n

Mean 
THg ng/g 

(ppm) Reference

Odense Franciscan Friary 
(Denmark) ca. 1400- 1800 AD adult femur 17 67a

(Rasmussen et 
al., 2008)

Svendborg Franciscan Friary 
(Denmark) ca. 1400-1650 AD adult femur 16 49a

(Rasmussen et 
al., 2008)

0m  Cistercian Abbey 
(Denmark) ca. 1170- 1530 AD adult femur 27 89a

(Rasmussen et 
al., 2008)

Tokushima and Matsuyama, 
(Japan) ca. 1100- 1700 AD adult NA 11 8200

(Yamada et al., 
1995)

PUM II mummy of unknown
provenance
(Egypt) ca. 170 B.C. adult vertebra 1 430

(Cockbum et 
al., 1975)

PUM I mummy of unknown
provenance
(Egypt) ancient adult long bone 1 100

(Cockbum et 
al., 1975)

aMean and standard deviation recalculated from data presented in Rasmussen et al. (2008) to include only adult, non-diseased femora.



Validation of bone trace elements as biomarkers of nutritional exposure

Though the term “biomarker” is not used in paleodietary studies, the concentration of 

a trace element in a prehistoric bone is treated as a biomarker when it is used to 

reconstruct dietary intake of (“exposure to”) that element. In fact, the term “biomarker 

of nutritional exposure” is now used in modem diet studies to mean a marker that 

reflects intake of a nutrient or element (Marshall, 2003). In modem dietary studies, 

these markers are typically hair, blood, or nails, but a wide variety of trace elements, 

including many metals, accumulate in the skeleton. These elements occur as impurities 

in the bone mineral, where they are incorporated into the hydroxyapatite crystals or 

adsorbed onto the surface of the crystals (Ezzo, 1994). Trace elements can also be 

attached to the protein phase of bone, which is predominately collagen (Ezzo, 1994; 

Tuross, 2003). The concentrations of trace elements in bone can vary from population to 

population, and from person to person, based on the elements contained in the foods 

eaten, the water consumed, the air breathed, and even the substances touched. This 

variation is of interest to bioarchaeologists, who study prehistoric human and animal 

skeletal remains to answer questions about past diet and health (Burton and Price, 2000; 

Larsen, 1997; Sanford and Weaver, 2000).

As with any biomarker, paleodietary indicators must be validated. Bone 

concentrations of an element do not always reflect dietary intake levels due to complex 

pathways o f absorption, movement, incorporation into tissues, and excretion (Ezzo,

1994). Unfortunately, bioarchaeologists have sometimes been too hasty in using bone
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trace element concentrations to reconstruct aspects of past diet without proper validation 

(see reviews in Burton and Price, 2000; Ezzo, 1994). The use of unproven bone trace 

elements to support far-reaching and sometimes fantastical conclusions about past diet 

has brought wholesale discredit to the trace element approach. The misuse of bone 

element data is unfortunate, because more careful validation studies have demonstrated 

that some bone trace elements can provide accurate signatures of past diet, and, just as 

importantly, that others are not valid indicators of past diet and should be abandoned.

Validation of candidate bone paleodietary indicators should proceed in the same 

fashion as for biomarkers of toxic exposure. Yet, as noted by Sanford and Weaver 

(2000:334), “the effects of dietary intakes . . .  on skeletal element concentrations remain 

among the least explored areas of anthropological trace element research.” There are a 

few exceptions to this characterization. An extensive bone paleodietary indicator 

validation study was conducted by Lambert and Weydert-Homeyer (1993), who used a 

complex controlled feeding experiment in rats to determine the relationship between diet 

and bone concentrations of ten elements (phosphorous, calcium, magnesium, strontium, 

barium, potassium, sodium, zinc, iron, and aluminum). The results of this study indicate 

that only iron and potassium have a strong positive relationship between diet levels and 

bone levels. Bone levels of some of the other elements do not have a simple relationship 

with diet, but can be explained in terms of interactions between elements. For example, 

when strontium and barium are considered as ratios to calcium (Sr/Ca and Ba/Ca), the 

correlations between diet and bone are high (r=0.83 and r=0.42, respectively) (Lambert 

and Weydert-Homeyer, 1993).
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Other controlled feeding experiments conducted by bioarchaeologists include a study 

of strontium in rats (Price et al., 1986), which showed that bone strontium levels reflect 

dietary intake levels when other dietary factors are held constant. Klepinger (1990) fed 

high and low levels of magnesium to pigs and found that bone magnesium levels do not 

reflect ingestion levels. Bioarchaeological researches have also relied on studies 

conducted by researchers in other disciplines to validate biomarkers o f nutritional 

exposure. In this manner, Klepinger (1993) synthesized results from several controlled 

feeding studies of zinc in rats to conclude that bone zinc is responsive to dietary zinc.

A few validation studies of bone trace elements as paleodietary indictors have built 

on laboratory controlled feeding experiments and examined the behavior of the 

candidate indicator in natural samples, both modem and prehistoric. Burton et al. (1999) 

measured bone Sr/Ca and Ba/Ca ratios in several modem mammal and plant species and 

confirmed that the bone ratios faithfully reflect the dietary ratios. A similar investigation 

was conducted in South Africa, where bones from modem marine and terrestrial animals 

confirmed the theoretically expected pattern of reduced Ba/Sr and Ba/Ca ratios in marine 

animals (Gilbert et al., 1994). This validation was carried further by comparing Ba/Sr 

and Ba/Ca ratios to stable carbon isotope ratios, an established indicator o f marine food 

intake, in prehistoric skeletal material. Burton and Price (1990) field validated the use of 

the Ba/Sr ratio as a paleodietary indicator of marine diets by comparing the ratios 

measured in prehistoric human bone from coastal sites to those from inland sites.
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In addition to studying paleodietary indicators in bone, bioarchaeologists have 

studied indicators of toxic metal exposure in bone, especially exposure to the heavy 

metal lead (Amay-de-la-Rosa et al., 2003; Aufderheide et al., 1992; Aufderheide et al., 

1988; Budd et al., 2004; Drasch, 1982; Ericson et al., 1979; Ericson et al., 1991; Farrer, 

1993; Flegal and Smith, 1992; Gonzalez-Reimers et al., 2005; Gonzalez-Reimers et al., 

2003; Grandjean et al., 1979; Handler et al., 1986; Hisanaga et al., 1988; Keenleyside et 

al., 1996; Kowal et al., 1991; Kowal et al., 1989; Patterson et al., 1991; Steinbock, 1979; 

Waldron, 1982; Waldron et al., 1976; Waldron and Wells, 1979; Wittmers et al., 2002; 

Woolley, 1984). Lead exposure in archaeological populations varied tremendously, 

depending on the use of lead in technology (Aufderheide, 1989). While modem 

populations are exposed to lead largely through inhaling polluted air from industrial 

discharge and lead fuel additives, in antiquity, exposure was largely due to consumption 

of lead-contaminated foods and water or through inhalation of lead dust and fumes 

produced from mining and processing ores (Aufderheide, 1989; Budd et al., 2004).

Toxicological studies of living humans and animals have demonstrated that lead 

concentration in bone is a reliable indicator of exposure to the metal (ATSDR, 1999a). 

Because bone has a slow turnover rate, lead levels in bone are generally thought to 

represent cumulative, lifetime exposure to the metal (Aufderheide and Rodriguez- 

Martin, 1998). Bone lead can be reliably measured using both non-destructive X-ray

45

Bone heavy metal concentrations as biomarkers of toxic exposure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



methods and direct measurement methods, and bone lead concentrations are usually in 

the parts per million range (Aufderheide, 1989).

Studies of lead concentrations in ancient human remains have been conducted to 

establish baseline levels of lead exposure in pre-metallurgical societies, to assess the 

health consequences o f exposure, and even to determine the socioeconomic status of 

individuals (Aufderheide, 1989). Lead determinations on human skeletal remains from 

pre-metallurgical societies show a clear pattern of lead concentrations below 1.0 ppm, 

compared to around 5.0 ppm in present-day populations with no unusual lead exposure 

(Drasch, 1982; Grandjean et al., 1979; Patterson et al., 1991).

A particularly fascinating line of inquiry has been lead poisoning among the ancient 

Romans, who mined, processed, and utilized lead in a number of ways (Aufderheide,

1989). The population at large was exposed to this toxic metal through the use of lead 

drinking water pipes, foodware made of pewter (a lead-tin alloy), and the widespread use 

of “sugar of lead” or lead acetate to sweeten wine and other foods (Aufderheide, 1989; 

Nriagu, 1983a; Waldron and Wells, 1979; Woolley, 1984). Analyses of Roman-age 

skeletal remains confirm high lead exposure throughout the Roman Empire, with bone 

lead concentrations generally above 40.0 ppm (Aufderheide et al., 1992; Bisel and Bisel, 

2002; Grattan et al., 2002; Wittmers et al., 2002). Based on historical descriptions of 

food preparation, storage, and consumption, Nriagu (1983b) estimated that lead intake 

among Roman aristocrats was high enough to have caused lead poisoning, and may even 

have contributed to the fall of the Empire (Gilfillan, 1990).
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The health effects of ancient lead exposure can be reconstructed by translating bone 

lead levels into blood levels, which are correlated with health outcomes (Aufderheide 

and Rodriguez-Martin, 1998). This procedure has been used to assess the health status 

o f historic rum-plantation slaves in Barbados, who consumed lead-contaminated rum.

By estimating blood lead from lead measurements made on the skeletal remains of 

Barbadian slaves, researchers concluded that a significant fraction of the slaves would 

have experienced mild to moderate lead poisoning symptoms (e.g., stomach cramping to 

peripheral nerve defects), and that a small number with bone lead concentrations over 

200 ppm experienced severe poisoning and likely died of lead-related brain toxicity 

(Handler et al., 1986).

Skeletal remains from members of the ill-fated Sir John Franklin expedition of 

1845-1848, in which 129 crewmen and officers died in search of the Northwest passage, 

have also been analyzed for lead content (Keenleyside et al., 1996; Kowal et al., 1990). 

These individuals were likely exposed to lead by the solder used to seal the food tins that 

made up the bulk of their provisions (Kowal et al., 1990; Kowal et al., 1991).

Translating bone lead levels into blood levels and related health effects, Kowal et al. 

(1991:194) concluded that most of the crew members suffered from lead poisoning and 

that “the physiological and neurological effects of lead intoxication could have played a 

major role in the loss of the expedition.”
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Validating biomarkers of mercury exposure

Researchers must be confident that biomarker measurements are accurate in order to 

make statements about individual or group differences in exposure or health risks. But 

measurements of chemical concentration are never exact, as the very act of measurement 

causes variation in the analytical result due to imperfect performance of instruments and 

observers (Schuster and Powers, 2005; Vineis et al., 1993). Analytical results should 

thus be viewed not as concentrations, but as “error-prone estimates of concentrations” 

(AOAC, 2002). This error—the difference between the true value and the analytical 

result—may be random, which causes imprecision, or nonrandom, which causes bias 

(Tavemiers et al., 2004; Vineis et al., 1993). The accuracy of measurement results is 

usually expressed in terms o f both trueness (or bias) and precision (or imprecision) of 

the results (Hauck et al., 2008).

Accuracy is here defined as the “closeness of agreement between a quantity value 

obtained by measurement and the true value” (Menditto et al., 2007:45). Under this 

definition, accuracy reflects both the degree of trueness (lack of bias) and precision (lack 

o f imprecision) of a measurement result. Measurement accuracy is not a quantity and 

should not be given a value, but “a measurement is said to be more accurate when it 

offers a smaller measurement error” (Hauck et al., 2008:841).

Trueness is defined as “the closeness of agreement between a test result and the 

accepted reference value” (Thompson et al., 2002:847). Trueness is expressed 

quantitatively, often as the percentage of recovery of a known amount of analyte in a
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sample. Precision is “the closeness of agreement between test results” (Thompson et al., 

2002:848). It too is expressed quantitatively, usually in terms o f imprecision, as the 

standard deviation or relative standard deviation of sample replicates. The term 

“repeatability precision” refers to within-laboratory variation from repeated sample 

measurements made in a single laboratory on the same day or different days. In the 

latter case, the term “intermediate within-laboratory precision” is sometimes used 

(AOAC, 2002:21).

According to the above definitions, trueness is inversely related to systematic 

measurement error (bias), while precision is inversely related to random measurement 

error (Hauck et al., 2008). Note that the terms trueness and precision can be used to 

characterize measurement values as well as to characterize the measurement method 

used to derive the values (AOAC, 2002; Hauck et al., 2008).

There is a great deal of inconsistency in the use of the terms accuracy and trueness in 

the measurement methods literature. As defined above, accuracy (or inaccuracy) is the 

deviation of a result from the true value due to both random and systematic effects 

(Hauck et al., 2008). This definition, in which accuracy encompasses both trueness and 

precision, is used by the International Organization for Standardization (ISO) and the 

International Union of Pure and Applied Chemistry (IUPAC) and appears in the 

International Vocabulary o f  Metrology {VIM)  (as summarized in Hauck et al., 2008). 

This usage has recently been adopted by the U.S. Environmental Protection Agency in 

its guidelines for validation of methods of chemical analysis (Mishalanie et al., 2005).
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However, the term accuracy is sometimes used instead of trueness to refer to the degree 

of systematic error only. This usage is still in effect for most of the U.S. pharmaceutical 

industry as well as in much of the atomic spectrometry literature (Hauck et al., 2008; 

Menditto et al., 2007).

Several international organizations concerned with the quality of analytical 

measurement results have offered guidelines for assessing the accuracy and other 

performance characteristics of methods of chemical measurement, including the IUPAC, 

ISO, and AOAC International (formerly the Association of Official Analytical 

Chemists). These organizations have collaborated to standardize or “harmonize” 

analytical validation procedures, and have jointly published protocols such as the 

“Harmonized guidelines for single-laboratory validation of methods of analysis” 

(Thompson et al., 2002) and the “Guidelines for single-laboratory validation of 

analytical methods for trace-level concentrations of organic chemicals” (Alder et al., 

2000). These guidelines include procedures for evaluating measurement accuracy 

(trueness and precision). Specific criteria for acceptable levels of precision (as the 

repeatability relative standard deviation) and trueness (as percent recovery) are provided 

by AOAC International (AOAC, 2002).

Trueness of a chemical measurement is often expressed as the percent recovery o f a 

known amount in a certified reference material. However, certified reference materials 

do not exist for every matrix of interest, so trueness can also be expressed in terms 

percent recovery of a known amount of analyte that has been added to a sample (a
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“spike”) (Thompson et al., 1995). Recovery tends to vary as a function of analyte 

concentration, with better recovery at high concentrations (AOAC, 2002). Thus, the 

acceptable recovery limits for an analyte with a concentration around 100 ppm are 

between 85-100%, while the limits for concentrations around 1 ppm are between 75­

120% (see Table 3.3 for a complete list of acceptable recoveries).

The repeatability relative standard deviation (RSDr), sometimes referred to as the 

coefficient of variation, is calculated from repeated measures on the same sample or 

samples and provides a measure of the magnitude of measurement imprecision, 

expressed as a percent (see calculation in Chapter 3). A higher RSDr indicates greater 

imprecision among repeated measurements. The precision of concentration 

measurements tends to decrease as concentration of the analyte decreases. Given this 

relationship, acceptable RSDr values vary as a function of concentration (AOAC, 2002). 

For example, the within-laboratory RSDr for analyte concentrations around 100 ppm is 

expected to be around 4%, while the RSDr for analyte concentrations around 100 ppb is 

expected to be around 11% (see Table 3.2 for complete list of expected RSDr values by 

concentration).

Published guidelines for validating biomarkers o f exposure stress the importance of 

ensuring measurement accuracy, including both measurement trueness and precision. 

Measurement trueness (as recovery) and precision (as the repeatability relative standard 

deviation) have often been explicitly addressed in the literature when researchers have 

proposed a novel or improved method of mercury measurement (e.g., mercury detection
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by inductively-coupled plasma-atomic emission spectroscopy). In such cases, precision 

and accuracy are typically assessed using repeated analysis of a certified biological 

tissue, such as whole animal blood or human hair (Barbosa et al., 2004; Gill et al., 2004; 

Sandborgh-Englund et al., 1998).

Few researchers have explicitly considered measurement accuracy when introducing 

a novel biomarker of mercury exposure. For example, both Rees et al. (2007) and 

Alfthan (1997) reported on human toenail mercury as a possible biomarker of exposure, 

but neither study addressed the accuracy of toenail mercury determinations (by Cold 

Vapor High Resolution Inductively Coupled Mass Spectrometry and Automated Cold 

Vapor Atomic Absorption Spectrometry, respectively). One study compared the 

precision of several mercury biomarkers of exposure (whole blood, red blood cells, 

plasma, hair, and urine) based on repeated measurements of certified reference materials. 

They found the greatest precision in hair and the lowest precision in blood and plasma 

(Berglund et al., 2005).

Reporting of analytical error in biomarker measurement is also inconsistent and 

incomplete in studies applying mercury biomarkers to assess exposure levels and health 

outcomes, including the well-known longitudinal studies conducted in the Faroe and 

Seychelle islands. The National Research Council (2000:127-128) criticizes the 

reporting in both of these studies for either a complete lack of measurement bias and 

imprecision data or for characterizing these data in vague terms such as “within the 

acceptable range,” or within the “target value,” without defining the acceptance criteria.
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Another early step in the process of validating a potential biomarker of exposure is to 

demonstrate a relationship between external dose and concentration of the biomarker 

through controlled dosing experiments. For mercury, such studies have been conducted 

on a variety of animals, including small rodents, rabbits, cats, pigs, and monkeys, and 

these have provided information on the quantitative relationship between exposure level 

and blood and organ concentrations (Gyrd-Hansen, 1981; Magos and Butler, 1976; 

Thomas et al., 1988; WHO, 2000). These studies have not been geared specifically 

towards validating biomarkers of methylmercury exposure, but towards modeling the 

biokinetics of methylmercury. Biokinetics, also referred to as toxicokinetics or 

pharmacokinetics, is the study of the absorption, tissue distribution, metabolism, and 

excretion of chemical substances in the body (Clewell and Clewell, 2008).

Biokinetic studies of mercury involve tracking the fate of mercury in the body over 

time after one dose or a series of doses. This allows the determination of various 

biokinetic parameters, such as the absorption rate, the elimination rate, and distribution 

rate (fraction of the dose that is distributed to the tissue of interest) (Gyrd-Hansen,

1981). These biokinetic parameters can then be used to formulate biokinetic equations 

to predict tissue mercury concentration from dose, and, by extension, to back calculate 

dose from tissue concentration.

The most commonly used biomarker of mercury exposure in humans, blood mercury 

concentration, has been shown to be related to exposure through controlled or semi­

controlled biokinetic studies of methylmercury administered to human volunteers via
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injection or via consumption of methylmercury-containing fish (Kershaw et al., 1980; 

Miettinen et al., 1971; Sherlock et al., 1984; Smith et al., 1994). These investigations 

have allowed the development of biokinetic models that link mercury dose to blood 

concentration (EPA, 2001c; Stem, 1997; WHO, 1990).

Some models linking methylmercury dose to blood mercury level are simple linear 

equations, such as that used by the United Nations Environment Programme (UNEP, 

2008) in which Dose (pg/kg bw/day) = blood THg (pg/L) X 0.02. However, probably 

the most widely accepted model for converting human blood mercury concentration to 

daily dietary intake is the more complicated one-compartment biokinetic model used by 

the World Health Organization and the U.S. Environmental Protection Agency (EPA, 

2001c; WHO, 1990). It is called “one compartment” because in this model, all of the 

body compartments are compressed to one: blood. The dose conversion equation, which 

was introduced in a previous section, includes several physiological and metabolic 

parameters, such as the absorption rate, the elimination rate, the fraction of absorbed 

mercury present in blood, etc. The one-compartment dose conversion model has been 

shown to have a reasonably good fit to observed blood mercury concentrations in 

humans exposed to controlled levels of methylmercury in fish (Ginsberg and Toal,

2000). However, the dose conversion model has not been rigorously tested under natural 

conditions, and where studies have been done, there is some disagreement between 

observed and predicted methylmercury intake.
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A recent study of 385 seafood consumers living in French coastal areas compared 

estimated methylmercury intake calculated from a food frequency survey to estimated 

methylmercury intake calculated from blood mercury concentrations using the one- 

compartment dose conversion formula (Sirot et al., 2008). While the two estimates were 

highly and significantly correlated, the intake estimates from the food surveys (mean =

0.23 pg MeHg/kg bw/day) were much higher than the intake estimates from blood 

mercury (mean = 0.09 pg MeHg/kg bw/day). The authors conclude that the food 

surveys overestimated methylmercury intake, rather than that the dose conversion 

equation underestimated intake, but the evidence supporting their conclusion is not 

clearly stated (Sirot et al., 2008:37).

While the relationship between dietary methylmercury level and blood concentration 

can be readily examined through controlled feeding experiments, further validation of 

the biomarker in natural populations is more difficult, since dietary mercury intake is 

unknown. Such field validation studies usually rely on proxy measures of mercury 

intake. Proxy measures of exposure are “substitutes for direct measurements” that 

approximate exposure levels (Friis, 2007:40). For humans, proxy measures o f mercury 

exposure have ranged from the crude, such as distance of residence from a point source 

of mercury pollution, to the more refined, such as self-reported frequency of fish meals 

(Barany et al., 2003; Bjomberg et al., 2005; Hodgson et al., 2007; Hsu et al., 2006; 

Khoury et al., 1993; Rees et al., 2007). More refined still is the “duplicate diet” method 

of estimating mercury exposure, in which identical portions of foods actually consumed 

are analyzed for mercury concentration (National Research Council, 2000). Biomarkers
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of exposure such as blood or hair are themselves surrogate measures of exposure 

(Khoury et al., 1993). Numerous studies have found a positive correlation between 

blood mercury and the self-reported frequency of fish or sea mammal consumption as an 

indicator of exposure level in humans (Barany et al., 2003; Berglund et al., 2005; 

Bjomberg et al., 2005; Chang et al., 1992; Dewailly et al., 2001; Gundacker et al., 2006; 

Hightower and Moore, 2003; Hsu et al., 2006; Ip et al., 2004; Mahaffey et al., 2004).

Human hair is a widely accepted biomarker of mercury exposure. Indeed, hair 

mercury is used interchangeably with blood mercury in exposure estimates based on the 

one-compartment dose conversion equation by simply using the hair-to-blood mercury 

ratio of 250:1 (EPA, 2001c; National Research Council, 2000; Stem, 1997; WHO,

1990). The relationship between human hair mercury and exposure does not seem to 

have been studied through controlled dosing experiments, although information was 

gained through comparisons of hair concentrations to the level o f methylmercury 

accidentally ingested in the widespread Iraqi poisoning incident (Bakir et al., 1973).

Hair has been further validated as a biomarker of mercury exposure through field studies 

that have shown a correlation between hair mercury and indicators of exposure, such as 

blood mercury (WHO, 2000:3.2) or and the frequency of fish and sea mammal 

consumption (Batista et al., 1996; Berglund et al., 2005; Bjomberg et al., 2005; Ip et al., 

2004; Pesch et al., 2002; Rojas et al., 2007).

Few studies have considered biomarkers of mercury exposure other than human 

blood or hair. Two separate studies attempted to validate human toenail mercury
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concentration as a biomarker of exposure by examining the relationship between toenail 

mercury and indicators of exposure, including hair and blood mercury and the frequency 

o f fish consumption (Alfthan, 1997; Rees et al., 2007). The Alfthan (1997) study found 

high correlations between toenail mercury and hair and blood mercury as well as with 

the frequency of fish consumption, while the Rees et al. (2007) study found only a 

moderate correlation with fish consumption. A recent study investigated rat nails as a 

biomarker of mercury exposure through a controlled dosing experiment and found a high 

correlation between dose and nail mercury level (Brockman et al., 2008). Another study 

evaluated urine as a potential biomarker of methylmercury exposure by comparing urine 

mercury concentration to the frequency of fish consumption, but found that the two 

variables were unrelated (Pesch et al., 2002).

Biomarkers of mercury exposure in wildlife have been evaluated through controlled 

feeding studies in captive birds and mammals, as well as through field studies (Casini et 

al., 2003; Fournier et al., 2002; Wiener et al., 2003; Wobeser et al., 1976). As 

mentioned previously, field validation studies must rely on proxies of mercury intake 

when evaluating biomarkers. In one study, which investigated blood mercury 

concentration as a potential biomarker of exposure in loons, daily mercury intake was 

estimated by combining information on mercury levels in dietary items with their 

consumption rates (Merrill et al., 2005). Another field validation method is to compare 

mercury levels in potential biomarkers, such as bird feathers or mammalian hair, to 

levels in a previously validated biomarker, such as blood or kidney (Evans et al., 1998; 

Evers et al., 2001; Ikemoto et al., 2004; Klenavic et al., 2008; Mierle et al., 2000). The
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average mercury level in prey in an animal’s feeding area was used as a surrogate 

measure of mercury exposure in an evaluation of fur as a biomarker in mink and otter 

(Wren et al., 1986).

In animal studies, mercury exposure has been approximated using the trophic level at 

which an animal feeds, based on the observation that mercury tends to biomagnify up the 

food chain (EPA, 1997b; EPA, 2006; Nichols et al., 1999). A potential proxy measure 

o f mercury exposure is the stable nitrogen isotope ratio, which increases with an 

animal’s trophic position, and thus may serve as an indirect measure of mercury 

exposure. The stable nitrogen isotope ratio is now widely used as a continuous measure 

of relative trophic position (Fry, 2006; Kelly, 2000; Vander Zanden and Rasmussen, 

1996), which, if  high, suggests that high mercury levels may also be found. Potential 

biomarkers of exposure have been compared to stable isotope ratios as a proxy for 

mercury intake, as was done in evaluations of bird feathers (Sanpera et al., 2007b; 

Thompson et al., 1998) and turtle blood (Bergeron et al., 2007). Stable isotope ratios are 

of special interest here, because they can be measured on bone collagen, including 

prehistoric bone collagen. Thus, stable isotope ratios could be used to help validate bone 

as a biomarker of mercury exposure using skeletal remains from archaeological sites.

Stable isotope ratios and mercury levels

Studies indicate that elevated mercury levels correlate with elevated stable nitrogen 

isotope values in animal tissues (Atwell et al., 1998; Cabana and Rasmussen, 1994).

The latter is determined by measuring via mass spectrometry the ratio o f 15N to 14N
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(15N /I4N) in an organic sample. The resulting value is conventionally expressed in delta 

(5) notation in parts per thousand (%o or “per mil”) relative to an international standard. 

The stable nitrogen isotope ratio, or 815N, has been shown to systematically increases by 

about 3%o from diet to consumer tissues, such that carnivores typically have higher 

values than herbivores, which have higher values than plants (Ambrose, 2000; Kelly, 

2000). The basis for the trophic increase in 815N is fractionation, or the change in 

isotope ratios between product and substrate (Fry, 2006). Isotopes of an element have 

small mass differences, which causes them to behave differently during chemical 

reactions and in physical processes, such that the lighter isotope reacts more quickly and 

forms weaker bonds than the heavier isotope (Gannes et al., 1998). Differences in 

fractionation among biological materials leads to distinctive isotopic compositions or 

“signatures” in biological materials (Gannes et al., 1998).

In marine ecosystems, the nitrogen isotope composition of phytoplankton at the base 

o f the foodweb depends largely on the 815N of the nitrogen source (mostly dissolved 

nitrate), the isotopic fractionation during assimilation, and on the fraction of the nitrogen 

supply consumed (Schell et al., 1998; Schulz and Zabel, 2000). In laboratory studies, 

there is a small isotopic fractionation during nitrogen assimilation, such that 

phytoplankton are depleted in 15N relative to nitrate by about 5%o, although this varies 

between taxa, with growth conditions, and on the supply o f nitrogen (Peterson and Fry, 

1987; Schulz and Zabel, 2000). In field studies, the S15N of phytoplankton (~ 6%o in the 

North Pacific) tends to resemble that of upwelled nitrate (~ 5 to 7%o) (Schell et al.,

1998). In general, the nitrogen isotope composition of marine organisms is not useful
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for identifying sources of nitrogen, with the exception of reefs and mangrove ecosystems 

in which nitrogen-fixing blue-green algae contribute substantially to the nitrogen pool 

and estuarine systems with significant inputs of terrestrial nitrogen (Keegan and DeNiro, 

1988; Michener and Schell, 2007). Instead, the utility of the stable nitrogen isotope ratio 

is in tracing trophic level, due to the fractionation that occurs between diet and 

consumer. During nitrogen assimilation by animals, the lighter isotope (14N) is 

preferentially excreted in urea, leading to 8I5N values that are around 3%o higher in 

consumer tissues relative to diet (Gannes et al., 1998; Kelly, 2000; Peterson and Fry, 

1987). Fry (2006:56) describes this regular 815N increase as a nitrogen isotope 

“trophometer.” The nitrogen stable isotope ratio is now widely used as a continuous 

measure of relative trophic position (Fry, 2006; Kelly, 2000).

Stable nitrogen isotope ratios have been used to assess degree of camivory versus 

herbivory in both terrestrial and aquatic food webs and in both modem and 

archaeological populations (Ambrose, 1993; Gannes et al., 1998). Stable nitrogen 

isotope composition can also assess the relative contributions of marine vs. terrestrial 

foods to the diet, because marine plants and animals tend to be enriched in 15N (have 

higher 8 15N values) compared to terrestrial plants and animals (Gannes et al., 1998; 

Larsen, 1997; Schoeninger and DeNiro, 1984). For bone collagen, typical 815N values 

are around 5%o for terrestrial herbivores and 8%o for terrestrial carnivores (Schoeninger 

and DeNiro, 1984). Marine mammal bone collagen shows a similar trophic level 

distinction, with 8,5N values of around 14%0 for invertebrate and plankton consumers 

and around 17%o for fish eaters (Schoeninger and DeNiro, 1984). The bone collagen
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515N values of humans whose diet was mostly from marine sources cluster around 

14.0%o to 20.0%o, compared to around 6.0%o to 12.0%o for agriculturalists (Richards and 

Hedges, 1999; Schoeninger et al., 1983). Because of its slow turnover rate, bone 

collagen is thought to represent an individual’s diet over a period o f 10 years or more 

(Hedges et al., 2007).

Since both mercury and 5I5N tend to increase with trophic level or reliance on 

marine foods, the two variables should be positively correlated in animal tissues. The 

stable nitrogen isotope ratio is now a well established correlate of mercury level in 

animal tissues across a broad range of species and environments, including entire marine 

and freshwater foodwebs (Atwell et al., 1998; Campbell et al., 2005; Dehn et al., 2006b; 

Jarman et al., 1996; McIntyre and Beauchamp, 2007; Riget et al., 2007a; Riget et al., 

2007b), in marine mammals (Capelli et al., 2008; Dehn et al., 2006a; Dietz et al., 2004; 

Hobson et al., 2004), in marine fish (Bank et al., 2007; Cai et al., 2007), in fish-eating 

birds (Elliott, 2005; Ricca et al., 2008; Tavares et al., 2007) and in freshwater fish and 

reptiles (Bergeron et al., 2007; Burgess and Hobson, 2006; Cabana and Rasmussen,

1994; Campbell et al., 2008; Campbell et al., 2004; McIntyre and Beauchamp, 2007; 

Muir et al., 2005; Power et al., 2002).

No studies could be found that compared human mercury concentrations to 8I5N in 

human tissues. Humans are among the few mammals that may routinely feed from both 

the aquatic and the terrestrial food chains. Others include mink (Mustela vison) (Braune 

et al., 1999), brown bear ( Ursus arctos) (Felicetti et al., 2004), arctic fox (Alopex
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lagopus) (Hoekstra et al., 2003), and raccoon (Procyon lotor) (Lord et al., 2002). 

Unfortunately, the relationship between mercury levels and 815N has not been studied 

extensively in these species either. One exception is a study of raccoons, which found a 

positive relationship between muscle mercury concentration and 815N (Gaines et al., 

2002).

Possible confounding factors that may affect the relationship between mercury 

concentration and 815N include fluctuations in tissue values due to diet shifts, variation 

in tissue protein content, and variation in mercury levels of different feeding zones 

(Balshaw et al., 2008; Sanpera et al., 2007b; Thompson et al., 1998; Tremblay et al., 

1996). Some have suggested that it may be useful if  mercury concentration were 

normalized in terms o f protein matter or sulfhydryl content (Woshner et al., 2008).

Stable carbon isotope ratios ( C/ C, expressed as 8 C) have also been studied in 

relation to mercury levels in tissue, but the expected relationship between the two 

variables is not clear-cut. Stable carbon isotope ratios are not good indicators of trophic 

position; rather, they can distinguish among food chains (horizontal food web position) 

because there is variation in carbon isotope composition at the base of different food 

chains (Gannes et al., 1998; Kelly, 2000). In aquatic animals, differences in 813C largely 

reflect feeding zone, such as inshore versus offshore or benthic versus pelagic (Clementz 

and Koch, 2001; Hobson et al., 1997).

Marine primary producers include microalgae (phytoplankton), macroalgae

13(seaweed) and seagrass (Dawes, 1998), which exhibit large ranges of 8 C values:
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typically around -3 0  to -18%o for phytoplankton, -27 to -8 for macroalgae and -15  to 

-3%o for seagrasses (Fry and Sherr, 1984). Factors controlling this variation are 

complex, and include differences in the isotopic composition of source carbon, 

differences among species in fractionation during photosynthesis, and 

microenvironmental factors, such as turbulence, light intensity, and temperature (France, 

1995; Goericke et al., 2007). The source of carbon for primary producers at the base of 

marine food webs is dissolved inorganic carbon, mostly bicarbonate and carbon dioxide, 

which typically have 513C values of around 0%o and -9%o, respectively (Goericke et al., 

2007; Hemminga and Mateo, 1996; Michener and Schell, 2007). During photosynthesis, 

fractionation of carbon isotopes results in preferential incorporation of the lighter isotope 

(12C) in marine primary producers. The differences in isotopic composition among 

marine primary producers are passed on to consumers, with little further fractionation 

between diet and the consumer’s whole body, although there is variation in isotopic 

composition among tissue types (Gannes et al., 1998; Kelly, 2000).

Stable carbon isotope ratios are often enriched for nearshore feeders compared to 

offshore feeders, and for benthic (bottom) feeders compared to pelagic (open-water) 

feeders (Burton et al., 2001; Clementz and Koch, 2001; France, 1995; McConnaughey 

and McRoy, 1979; Walker et al., 1999). Mercury levels sometimes vary in the opposite 

way, with higher levels in open-water and offshore feeders compared to bottom and 

nearshore feeders (Chen et al., 2008; Embury, 2000; Goodale et al., 2006; Lacerda et al., 

2007; Lasora and Allen-Gil, 1995; Ricca et al., 2008; Rumbold et al., 2003) although 

this pattern has not been fully investigated. Some studies have found a negative
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relationship between mercury concentration and stable carbon isotope ratios, including 

in fish-eating birds (Bearhop et al., 2000; Ricca et al., 2008) and freshwater fish (Ethier 

et al., 2008; McIntyre and Beauchamp, 2007; Power et al., 2002). However, other

13studies comparing mercury concentration and 8 C in animal tissues have found no 

relationship (Hobson et al., 2004; McIntyre and Beauchamp, 2007; Riget et al., 2007a; 

Thompson et al., 1998) or a positive relationship between the two variables(Dehn et al., 

2006a; Dietz et al., 2004; McIntyre and Beauchamp, 2007). Possible confounding 

factors that may affect the distribution of mercury by feeding location include depth of 

the water column, freshwater inputs, and point sources of mercury pollution (Al-Majed 

and Preston, 2000; Chumcal et al., 2008; Sanpera et al., 2007a).

Summary

Marine mammals are dietary staples among the arctic Eskimo and Inuit, but these 

traditional foods often contain high concentrations of mercury, a toxic heavy metal 

(ATSDR, 1999b; EPA, 1997c: 11; National Research Council, 2000; WHO, 1990).

People who consume these traditional resources are exposed to mercury, which can 

accumulate in their tissues to levels that are considered unsafe (Burkow and Weber,

2003; EPA, 1997a; Van Oostdam and Tremblay, 2003). A key contributor to mercury 

exposure today is the ringed seal, which tends to have high mercury concentrations in its 

edible tissues and is frequently consumed by indigenous peoples of the Arctic.

Because mercury can be released into the environment through natural as well as 

industrial processes, the same pathway that operates today to cause high mercury
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concentrations in arctic marine animals and their consumers likely operated in the 

preindustrial past. In this way, prehistoric Eskimo and Inuit (Thule) who relied heavily 

on marine foods, including the ringed seal, may well have been exposed to relatively 

high levels of mercury, just as their modem counterparts are today.

Little information is available on preindustrial mercury levels in the food chain. One 

potential archive of past mercury levels is the skeletal remains of animals and humans 

from archaeological sites. Mercury concentrations in preserved bones could indicate the 

degree of preindustrial exposure, if  bone can be shown to be a valid biomarker of 

mercury intake. Biomarkers of exposure can be validated through controlled feeding 

experiments and through field studies that compare the candidate biomarker to estimates 

or proxies of mercury intake. One such proxy is the stable nitrogen isotope ratio (815N) 

which increases with an animal’s trophic position, and thus may serve as an indicator of 

mercury exposure. Many studies have found that mercury level and 515N are correlated 

in animal tissues. Because 815N can be measured on bone collagen, this chemical 

measurement offers a means to validate bone as a biomarker o f mercury exposure using 

skeletal material preserved in archaeological sites.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

3. RESEARCH MATERIALS AND METHODS

The aim of this dissertation research was to investigate the potential for using 

archaeological bone mercury concentration as a biomarker of mercury exposure in 

preindustrial animals and humans. While mercury has been measured in bone, including 

prehistoric bone, the mere presence of a substance in a tissue is not enough to ensure that 

its concentration reflects exposure. A candidate biomarker must be validated before 

being used to assess exposure in individuals and populations, whether those individuals 

and populations are modem or prehistoric. For a biomarker of exposure to be valid, it 

must meet two criteria: 1) the analytical method used to measure the biomarker must 

produce accurate results (analytical validity) and 2) the biomarker must correspond with 

the extent of exposure (intrinsic validity). The value of a biomarker depends on the 

quality of its measurement; if  measurements differ markedly from one occasion to 

another, then the biomarker is of little value. By the same token, a biomarker that can be 

accurately measured but that cannot be linked to exposure is also o f limited value. In the 

case of methylmercury, since exposure in humans and animals is almost entirely through 

diet, a candidate biomarker of mercury exposure should reflect dietary mercury intake.

Given the requirements for a valid biomarker of mercury exposure, this dissertation 

was guided by two central research questions:

1. Can bone mercury be accurately measured?

2. Does bone mercury level reflect dietary intake level?
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Measurement accuracy was evaluated in terms of the trueness and precision of a 

series of mercury concentration measurements made on bone from modem western 

Alaska ringed seals. Trueness was calculated based on the percent recovery of a known 

amount of mercury added to a select number of samples, while precision was calculated 

based on the variation in repeated measurements of mercury concentration.

The association between bone mercury and exposure was examined by first 

comparing bone mercury concentrations to controlled exposure levels in mercury-dosed 

laboratory rats. To further explore the association, bone mercury was compared to a 

proxy measure o f mercury exposure, the stable nitrogen isotope ratio, in a sample of 

prehistoric archaeofaunal remains. The remainder of this chapter details the methods 

and samples used to address each of the biomarker validity criteria.

Bone mercury in methylmercury-dosed laboratory rats

A valid biomarker of exposure must correspond to actual exposure level. When 

exposure is mainly through diet, as for methylmercury, laboratory biomarker validation 

is typically accomplished using controlled oral dosing, either through food or water. 

Potential biomarkers of methylmercury exposure have been studied in this way in 

laboratory rodents by comparing the mercury concentration in the candidate biomarker 

to the known exposure level (Nielsen et al., 1994; Woods, 1996). The mercury 

concentration in the biomarker may also be compared to the concentration in an internal 

organ as a measure of “internal dose” (WHO, 2001). In the present study, laboratory 

rats were dosed with known levels of methylmercury in their drinking water, and bone
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mercury concentration was compared to both known exposure level and to kidney 

mercury concentration. The kidney is often the organ of greatest mercury accumulation 

in the rat and other mammals (Gyrd-Hansen, 1981; Magos and Butler, 1976), and is here 

used as an independent measure of internal dose, which refers to the amount of a 

chemical found in a biological medium (National Research Council, 2006:289). In 

addition, to shed light on other factors contributing to bone mercury variation, mercury 

concentrations were compared in three different bone elements (cranium, humerus, and 

femur), and the proportion of organic mercury to inorganic mercury in bone was 

measured.

Subjects (methylmercury-dosed rats)

Subjects were 15 Long-Evans adult female rats, some of which were exposed to 

methylmercury chloride as part of an unrelated project conducted at Auburn University 

under the direction o f Professor Christopher Newland. The original study was limited to 

female rats because one of the treatment categories involved breeding the rats to 

examine gestational exposure to methylmercury; however, the specimens used in the 

present study were not breeders.

Exposure details can be found in Newland et al. (2006). Briefly, approximately 16 

week-old Long-Evans rats were purchased from Harlan (Indianapolis, IN), pair-housed 

in conventional shoebox type cages, and fed a casein-based semipurified diet (AIN-93 

formulation for rodents). Methylmercury exposure began four weeks after arriving at 

the Auburn colony, when the rats were about 20 weeks of age (Newland et al., 2006).
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Exposure was via drinking water that contained 0, 0.5 or 5.0 ppm of mercury as 

methylmercuric chloride (CH3ClHg). This produces approximately 0, 40, and 400 pg/kg 

bw/day of methylmercury exposure (Newland and Reile, 1999). The present study used 

four rats that consumed 0.5 ppm Hg in drinking water and eight that consumed 5.0 ppm 

in water for 96 days before being sacrificed. Three control subjects were treated in the 

same manner as exposed rats, but did not receive mercury in their water. As part o f the 

original experiment, subjects were assigned to a high- or low-selenium diet. This 

treatment did not influence blood or brain concentrations at six months of exposure 

(Newland et al., 2006), and no selenium diet effect was detected in the bone samples, so 

diet groups were combined for the present analyses.

Tissue sampling and pretreatment (methylmercury-dosed rats)

Rat carcasses were transferred to the University of Alaska Fairbanks, where they 

were kept frozen until preparation for soft tissue removal by dermestid beetles. All 

instruments and labware used in preparing bone samples were acid-cleaned prior to use 

and in between subjects. Skin, organs, and major muscle masses were removed with a 

scalpel prior to placing specimens into the beetle colony. The right kidney was retained 

and frozen until further preparation. Soft tissue remaining after the dermestid treatment 

was removed by gently scraping with a scalpel, followed by rinsing in ultrapure water 

(18.0 megohm/cm resistivity), and air drying overnight. Cleaned and dried bones were 

kept frozen until further preparation.
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Three types of bone were isolated for further analysis: humeral shaft cortical bone, 

femoral shaft cortical bone, and combined cranial bones. For long bones, bone marrow 

and trabecular bone were removed after detaching the proximal and distal epiphyses.

The cortical bone portion of long bone shafts was chosen for analysis because this dense 

bone is often preserved in archaeological contexts and is though to be less susceptible to 

post-depositional mineral uptake than the more porous trabecular bone (Kohn and 

Cerling, 2002; Reitz and Wing, 1999). Femoral shafts were defatted by soaking for 24 

hours in a 3:2 hexane:isopropanol solution; however, this step was not performed on the 

other bones because of concerns that the solvents could extract methylmercury. To 

isolate cranial bones, mandibles were removed, and maxillary teeth were removed after 

soaking skulls in ultrapure water until the teeth were loose enough for pulling 

(approximately four hours). Crania were selected for both total mercury and 

methylmercury determinations because of their higher sample mass (~2 g) compared to 

the combined femora and humeri (~ 0.3-0.5 g).

Cleaned humeri, femora, and crania were freeze dried for 24 hours, pulverized in a 

ball mill to less than 0.3 mm, and stored in plastic containers at room temperature until 

further analysis. Whole kidneys were rinsed in ultrapure water, blotted with a delicate 

task wipe, and kept frozen until further analysis.

Mercury determination (methylmercury-dosed rats)

Pulverized bone samples, weighing approximately 0.3 g each for humeri (combined 

right and left shafts, cortical bone only), 0.5 g for femora (combined right and left shafts,
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cortical bone only) and 2.0 g each for crania (combined bones of the cranium, both 

cortical and trabecular bone), and whole frozen kidneys weighing approximately 0.7 g 

were shipped to Frontier Geosciences, Inc. (Seattle, Washington) for total mercury 

analysis (all bone types and kidneys) and methylmercury analysis (crania only) by Cold 

Vapor Atomic Fluorescence Spectrometry. Frontier Geosciences was selected as the 

analytical laboratory because it is a recognized leader in the development and refinement 

of methods for mercury analysis, and was one of the chief architects o f the methods 

employed by the U.S. Environmental Agency for mercury determination in water, solids, 

and biological tissues (EPA, 2001a; EPA, 2001b; EPA, 2002).

Frontier Geosciences determines total mercury in tissue using a modified version of 

EPA Method 1631 (EPA, 2001a) (C. Molder, Frontier Geosciences, personal 

communication 2008). Mercury may exist in tissues in several forms, so treatment of 

tissue prior to spectroscopic analysis involves a series of steps designed to release all of 

the mercury from the matrix and then convert it to its elemental form, Hg°. Briefly, the 

tissue is digested by hot refluxing in a 70:30 mixture of concentrated nitric acid (HNO3) 

and sulfuric acid (H2SO4), followed by bromine monochloride (BrCl) oxidation (EPA, 

2001a). The BrCl addition both destroys remaining organic matter and oxidizes all 

mercury present to Hg2+ (mercuric mercury). The oxidized digestate is then reduced

2_|_ A

with stannous (tin) chloride (SnCl) to convert all Hg to elemental mercury, Hg . The 

Hg° is separated from solution by purging with nitrogen or argon gas, collected onto a 

gold trap, and finally, desorbed from the trap in a gas stream that carries the Hg into the 

cold-vapor atomic fluorescence spectrometer for detection.
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For methylmercury detection, samples are first digested in a 25% potassium 

hydroxide and methanol solution to release methylmercury from its host matrix (EPA, 

2001b; Puckett and Buuren, 2000). The methylmercury in solution is then distilled and 

ethylated with sodium tetraethyl borate. The ethylated methylmercury is purged from 

solution with nitrogen gas, collected on a carbon trap, and heated in a pyrolytic 

decomposition chamber to convert the organic mercury to its elemental form, Hg°. 

Finally, the elemental mercury is carried into the cold-vapor atomic fluorescence 

spectrometer for detection. This method detects all forms of methylmercury including 

CH3Hg+, CH3HgCl, CH3HgOH, and CH3HgS-R (Puckett and Buuren, 2000).

Using the methods described above, the method detection limit, defined as the lowest 

concentration at which a substance can be detected, is around 0.24 to 0.48 ng/g for 

mercury (EPA, 2001a). The minimum level of quantitation, defined as the lowest 

concentration in a sample that can be measured with a known level of confidence, is 1.0 

ng/g for mercury in solids (EPA, 2001a). Frontier’s standard quality control measures 

per analytical batch of 20 samples include mercury analysis of the following (C. Molder, 

Frontier Geosciences, personal communication, 2008):

1. Method blanks (3). Method blanks include all sample processing steps and 

chemicals without any sample material. Blank THg must be less than 50 ng/L 

(parts per trillion).

2. Sample duplicate (1). The relative percent difference between the two 

measurements must be 25% or less. The relative percent difference is the
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absolute difference between the sample and the sample duplicate, divided by the 

mean of the two measurements, expressed on a percent basis (EPA, 2000:8-37).

3. Spiked sample (1, in duplicate). Percent recovery must be between 75-125%.

4. Certified reference material (1, in duplicate). Percent recovery must be between 

75-125%.

Statistical analysis (methylmercury-dosed rats)

All statistical analyses were conducted using SPSS version 15.0. Initial inspection 

o f the mercury concentration data indicated that variances were not equal across 

exposure groups, so to equalize variance, all bone and kidney THg concentrations were 

transformed to their common logarithms (logio) following Zar (1996). For all statistical 

hypothesis testing, the null hypothesis was rejected if the p-value was less than the 

significance level (a) of 0.05.

One-way analysis of variance (ANOVA) was conducted to identify differences in 

mean bone THg (logio ng/g) among the three exposure groups: control (0 pg/kg bw/day 

methylmercury), low exposure (40 pg/kg bw/day methylmercury) and high exposure 

(400 pg/kg bw/day methylmercury). The ANOVA tested the following null (Ho) and 

alternative (HA) hypotheses:

H0: The true means for bone total mercury are equal among the three 

exposure groups.

Ha : At least two group means are unequal.
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Note that the ANOVA on log-transformed variables is a comparison of geometric 

means (White and Thompson, 2003). If significant differences were found, a multiple 

comparisons test (Least Significant Difference) was conducted to identify which pairs of 

means differ. The Least Significant Difference (LSD) procedure is appropriate when the 

number of comparisons is small (Cabral, 2008), as is the case in this study with only 

three pairs of groups.

Least-squares linear regression analysis was performed to determine the form, 

strength, and significance of the relationship between bone mercury and daily mercury 

exposure level. Linear regression analysis describes the relationship between a 

dependent variable, x, and an independent variable, y, in the form of an equation in 

which y  is a linear function of x, as follows: y  = a + bx. In this equation, a is the y- 

intercept and b is the slope, which describes the change iny  for a one-unit increase in x 

(Agresti and Finlay, 1997). If there is no linear relationship between the two variables, 

theny is equally likely to increase or decrease with a unit increase in x, and the slope of 

the regression line will be zero (Agresti and Finlay, 1997). Significance testing in 

regression analysis thus examines the possibility that the slope of the regression line is 

equal to zero In the present research, linear regression analysis tested the following null 

and alternative hypotheses (following Sokal and Rohlf, 1969):

Ho: The true slope of the regression line relating log-transformed bone 

total mercury to daily methylmercury exposure level is equal to zero.

Ha : The true slope of the regression line is not equal to zero.
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In other words, the null states that bone mercury does not tend to increase or 

decrease with a unit increase in exposure level. The regression analysis was conducted 

for each of the three bone types (cranium, humerus, and femur).

Linear regression analysis was also conducted to determine if bone mercury is 

related to kidney mercury as a measure o f internal mercury dose. As before, this 

analysis tested the following null and alternative hypotheses:

Ho: The true slope of the regression line relating log-transformed bone 

total mercury to log-transformed kidney total mercury is equal to zero.

Ha : The true slope of the regression line is not equal to zero.

The adequacy of each model to describe the relationship between the dependent and 

independent variables was assessed by examining the model’s slope significance level, 

the coefficient of determination (r2), and the prediction residuals.

To explore differences in mean mercury concentration among bone types (cranium, 

humerus, and femur), a repeated measures ANOVA was conducted. The repeated 

measures ANOVA tested the following null and alternative hypotheses:

Ho: The true means for log-transformed bone total mercury are equal for 

the three bone groups.

Ha : At least two group means are unequal.
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As mentioned previously, the ANOVA on log-transformed variables is a comparison 

of geometric means. If significant differences were found, a multiple comparisons test 

(Least Significant Difference) was conducted to identify which pairs of means differ.

Relationships between pairs of bone mercury variables were explored using the 

Pearson correlation coefficient (r), which measures the strength of the linear association 

between variables and varies from -1  (perfect negative linear relationship) to +1 (perfect 

positive linear relationship) (Norusis, 2004). An r value of 0 indicates the two variables 

do not covary in a linear fashion. Correlation coefficients were calculated for three pairs 

o f variables: 1) cranium and humerus THg (logio ng/g), 2) cranium and femur THg 

(logio ng/g), and 3) humerus and femur THg (logio ng/g). In terms of significance 

testing, correlation analysis tested the following null and alternative hypotheses for each 

bone combination (following Sokal and Rohlf, 1969):

H0: The true correlation coefficient between log-transformed bone total 

mercury in any two bone elements is equal to zero.

Ha: The true correlation coefficient is not equal to zero.

In other words, the null hypothesis states that there is no linear association between the 

two variables (e.g., between log-transformed cranium THg and log-transformed humerus 

THg).
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The relationship between cranial bone THg (logio ng/g) and MeHg (logio ng/g) was 

also explored through correlation analysis, which tested the following null and 

alternative hypotheses:

H0: The true correlation coefficient between log-transformed cranium 

total mercury and log-transformed cranium methylmercury is equal to 

zero.

Ha: The true correlation coefficient is not equal to zero.

Bone mercury and indicators of exposure in archaeofauna

Testing the correspondence between a candidate biomarker and exposure levels in 

natural populations is difficult because actual exposure level is unknown. Thus, 

investigators must estimate exposure or use proxy measures of exposure. Because tissue 

mercury concentration tends to increase with trophic position (Atwell et al., 1998;

Cabana and Rasmussen, 1994), and 815N is a measure an individual’s relative trophic 

position (Ambrose, 2000; Kelly, 2000), 815N can be considered to be a proxy measure of 

mercury exposure. If  bone mercury concentration reflects dietary mercury level, then 

bone mercury should increase as 815N increases, assuming that both variables are in 

equilibrium with the diet (i.e., when tissue values have stabilized and are not fluctuating 

due to dietary changes). In the present study, bone mercury was compared to bone 

collagen 815N in a sample of prehistoric ringed seals derived from a Thule-period 

archaeological site in arctic Alaska. To shed light on additional factors that might affect 

mercury deposition in bone, bone mercury concentration was compared to the stable
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carbon isotope ratio (813C) measured on bone collagen, as well as to other elemental 

concentrations measured on whole bone, including total nitrogen (%N), carbon (%C), 

and sulfur (%S). These variables are related to factors that may confound the 

relationship between tissue mercury and SI5N, including variation in feeding zone (as 

evidenced by 8i3C) and variation in tissue protein content (as evidenced by %N, %C, 

and %S) (Chen et al., 2008; Tremblay et al., 1996). Finally, in an exploratory test, two 

bone samples were demineralized prior to mercury analysis to determine if mercury can 

be measured on isolated bone protein.

Materials (prehistoric ringed seals)

A total of 23 archaeologically-derived ringed seal mandibles were selected for 

analysis of total mercury and 815N. Ringed seal was selected as an appropriate species to 

analyze for mercury content because this top marine predator has relatively high tissue 

mercury levels in the present and likely had high levels, relative to other species, in the 

past. Also, this species was a primary food source for both prehistoric and historic 

Eskimo and Inuit in the coastal areas of arctic Alaska, Canada, and Greenland, and today 

is a primary contributor to mercury exposure in these populations. Finally, because 

ringed seal has a circumpolar distribution, it is used as a biomonitoring species, allowing 

geographic comparison of mercury levels (Riget et al., 2005), and could potentially be 

used to compare regions in prehistory. Mandibles were chosen as the bone element to 

study because this dense bone is often preserved in archaeological contexts. Also, 

government wildlife management agencies often collect mandibles from modem
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subsistence-hunted seals for the purpose of determining age of the animal using growth 

rings that occur on tooth cementum. Thus, bone mercury levels could potentially be 

compared between past and present.

The ringed seal mandibles originate from three sites, KTZ-087, KTZ-088, and KTZ- 

101 that are part of a cluster of Western Thule period sites on Cape Espenberg, Alaska. 

The cape, which forms the northernmost portion of the Seward Peninsula, lies just above 

the Arctic Circle, jutting into the Chukchi Sea at the entrance to Kotzebue Sound (see 

map in Figure 3.1). The sites were excavated by National Park Service archaeologists in 

the 1980s and are described in a detailed monograph by Harritt (1994). The Cape 

Espenberg sites were selected because they were known to contain ringed seal remains, 

had been radiocarbon dated, and their faunal remains had already been studied and 

described in the literature (Saleeby, 1994).

Sites KTZ-087, KTZ-088, and KTZ-101 are located on adjacent coastal beach ridges 

approximately 1000 m northwest o f the terminus (southeastern end) of the cape (Harritt, 

1994:98). The sites contain the remains of multi-roomed houses, cache pits, harpoon 

heads, ulus, sled runners, and pottery, among other items. They have been interpreted as 

representing small winter villages where seals and some caribou were hunted. Whaling, 

however, does not seem to have been important, based on the paucity of whale bones 

and whaling tools, such as large harpoon heads (Harritt, 1994).
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The seal mandibles analyzed in this project derive from various features at the two 

sites that date to the Western Thule period on the Seward Peninsula (ca. 950 AD to the 

19th century) (Harritt, 1994:250). Table 3.1 shows the site and feature affiliation o f each 

of the specimens studied. All of the dates for site KTZ-087 cluster around 1270-1280 

cal AD (calibrated radiocarbon age intercept). Dates for KTZ-088 include one in this 

same range (1272 cal AD) and one younger date (1636 cal AD), while dates for KTZ- 

101 fall around 1640 AD (all dates are from Harritt, 1994).

The bones selected for analysis here had been previously identified as ringed seal 

mandibles by trained faunal analysts (as described in Saleeby, 1994). The National Park 

Service Western Arctic National Parklands office in Anchorage (Alaska) provided 

computer printouts from an electronic database that described the faunal analysis 

findings for each of the specimens from KTZ-088 and KTZ-101, and provided copies of 

the original “Faunal Analysis Record” sheets for KTZ-087. These described the taxon, 

bone element, and completeness for each specimen. Based on these lists, a request was 

made to the National Park Service for sampling of all of the identified ringed seal 

mandibles. Permission was granted under BELA Loan Out L.2008.002 dated April 23, 

2008 and Loan Out L.2008.003 dated April 28, 2008.

All ringed seal mandibles identified in the faunal records were inspected for 

inclusion in the study. Specimens were selected for further analysis if  they were at least 

1.5 g in weight (as estimated without teeth), included the entire portion of the mandible
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under the post-canine tooth row, and were not obviously burned or otherwise severely 

degraded. This resulted in a final sample of 23 mandibles.

The sex and age for individual ringed seal specimens were not described in the 

National Park Service faunal remains database or record sheets, likely because these two 

variables are difficult to determine from morphological features of the mandible. While 

age can be accurately determined from microscopic examination of tooth cementum 

annuli (Stewart et al., 1996), most of the Cape Espenberg ringed seal specimens used in 

this study lacked teeth, so this method could not be used. However, as indicators of 

body size, the length of the post-canine tooth row and the maximum thickness (bucco- 

lingual) inferior to post-canine 5 were measured, following Woollett et al. (2000). No 

size effect on bone total mercury concentration was detected, so all Cape Espenberg 

ringed seal specimens were combined for further analysis.
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Table 3.1. Ringed seal specimens from prehistoric Thule levels at sites KTZ-087, KTZ-088, and KTZ-101 (Cape Espenberg,
Alaska) used in this study

ID# NPS Catalog # Feature3 Level
Feature calibrated radiocarbon dates 

(intercept and one-sigma range)b Material dated Lab ID
2001 KTZ087.10 F013 10 2 1279 (1262-1375) cal AD charcoal Beta 28006
2002 KTZ087.10 F013 10 2
2004 KTZ087.10 F015 10 2
2005 KTZ087.10 F015 10 2
2006 KTZ087.10 F015 10 2
2008 KTZ087.10 F023 10 2
2009 KTZ087.10 F089 10 2
2010 KTZ087.10 F001 10 2
2011 KTZ087.10 F109 NA NA
2016 KTZ087.10 F202 30 8 1272 (1225-1295) cal AD wood/charcoal Beta 28011
2017 KTZ087.10 F222 30 9
2018 KTZ087.10 F234 30 NA
2019 KTZ087.10 F242 30 7
2020 KTZ087.10 F253 30 4
2022 KTZ088.10 FI 36 24 9 1272(1221-1374) cal AD wood Beta 28013
2026 KTZ088.10 F196 24 3 1636 (1505-1651) cal AD wood Beta 28195
2027 KTZ088.10 F211 24 9
2028 KTZ088.10 F230 24 9
2029 KTZ088.10 F237 24 9
2031 KTZ101.10 F032 NA NA
2032 KTZ101.10 F099 NA NA
2033 KTZ101.10 F189 2 NA 1648 (1528-1663) cal AD wood Beta 28019
2034 KTZ101.10 F268 15 6 1639(1474-1952) cal AD wood Beta 28021

1654 (1528-1955) cal AD wood/charcoal Beta 28022

3 Specimens listed here as Feature 30 are associated with site KTZ-087 on the original labeled collection bags and Appendix I of Harritt 
(1994), but with KTZ-088 in the main text of Harritt (1994) and the faunal analysis by Saleeby (1994).

b Dates are calibrated radiocarbon age intercepts and 1 sigma range from Harritt (1994:82,141, 299-301). .
00
u>



Bone sampling and pretreatment (prehistoric ringed seals)

Samples weighing at least 1.0 g were removed from the prehistoric ringed seal 

mandibles using a diamond cutting wheel attached to a Dremel tool. For the larger and 

more complete specimens, the sampling area included the inferior (bottom) portion of 

the horizontal ramus in the region posterior to post-canine 5 and anterior to the 

mandibular foramen (Figure 3.2). When necessary because of small size or 

incompleteness, sections were detached that included the superior portion of the 

horizontal ramus, or that included sections anterior to post-canine 5 or posterior to the 

mandibular foramen. The detached bone chunks were lightly abraded with a sanding 

drum to remove sediment and other contaminants at the surface of the bone, after which 

they were ultrasonicated in ultrapure water for 15 minutes and air dried overnight. 

Cleaned samples were freeze-dried for 24 hours, pulverized in a ball mill to less than 0.3 

mm. Samples of bone powder were separated into portions intended for total mercury 

analysis (-800 mg), total nitrogen and carbon analysis (~2 mg), total sulfur analysis (~40 

mg), and collagen extraction followed by 815N and 813C analysis (-50 mg). They were 

stored in plastic containers at room temperature until further analysis.
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Figure 3.2. Ringed seal mandible recovered from prehistoric Thule site KTZ-087, 
Cape Espenberg, Alaska, ca. 1275-1640 AD. Scale is centimeters.
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Two bone samples prepared in the above fashion were split, and one portion was 

further treated to remove bone mineral. The samples were demineralized as follows, 

using a modified version of the method described by Bell et al. (2001):

1. Approximately 0.8 to 1.0 g o f cleaned, freeze-dried bone powder was weighed 

into a 45.0 ml plastic centrifuge tube.

2. Approximately 20 ml of 0.5 M HC1 was added to the tube, vigorously mixed 

with the Touchmixer, and allowed to stand for 30 minutes, with vigorous mixing 

at 10 minute intervals.

3. Samples were centrifuged at 3000 rpm (relative centrifugal force = 1811 x g) for 

2 minutes, and the supernatant was poured off.

4. Steps 2 and 3 were repeated two more times for a total of 90 minutes in the acid 

solution.

5. Samples were rinsed three times in ultrapure water, with centrifuging and 

pouring off the supernatant in between each rinse.

6. After freezing overnight, the samples were freeze-dried for 24 hours.

Note that modifications to the referenced method include a larger starting mass and a 

stronger acid concentration (0.5 M versus 0.1 M), as discussed in more detail in a later 

section.
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Approximately 0.25-1.0 g of cleaned, freeze-dried prehistoric ringed seal bone 

powder was weighed off and shipped to Frontier Geosciences Inc. (Seattle, Washington) 

for total mercury analysis by Cold Vapor Atomic Fluorescence Spectrometry. Methods 

used by Frontier were described previously for methylmercury-dosed laboratory rat 

bone.

For total nitrogen and carbon determinations, samples of bone powder weighing 

approximately 0.5 mg were submitted to the Alaska Stable Isotope Facility at the 

University of Alaska Fairbanks. This facility determined percent nitrogen and carbon 

using the Costech Elemental Analyzer (ECS 4010), with peptone from animal tissue as a 

standard.

Because the Alaska Stable Isotope Facility does not conduct total sulfur 

determinations, samples were sent to the Washington State University Stable Isotope 

Core Laboratory for this analysis. This facility was selected for its rigorous quality 

control measures, including using multipoint normalizations and “blind” quality control 

samples in each analytical run (Benjamin Harlow, personal communication, 2009). This 

laboratory calculated percent sulfur with the ECS 4010 Elemental Analyzer using 

sulfanilamide as a standard.
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Nitrogen and carbon stable isotope ratios (515N and 813C) were determined on bone 

collagen, so whole bone first had to be pretreated to remove mineral and contaminating

♦ ♦ * 1 3substances. Bone powder was first defatted, since lipids are typically depleted in C 

relative to protein (Liden et al., 1995). Lipid extraction followed the method of Radin 

(1981), as described below:

1. Approximately 0.05 g of cleaned, freeze-dried bone powder was weighed into a 

2.0 ml microcentrifuge tube.

2. Approximately 1.5 ml of a 3:2 mixture of hexane:isopropanol was added to the 

bone powder, mixed vigorously with a vortex mixer and left to stand for one 

minute.

3. The sample was centrifuged for 15 seconds at 5000 rpm (relative centrifugal 

force = 1677 x g) and the supernatant poured off.

4. An additional 1.5 ml of defatting solution was added to the vial, mixed, left to 

stand for two minutes, centrifuged, and poured off.

5. Step 4 was repeated once.

6. The sample was left with the cap open under the fume hood overnight to 

evaporate the remaining hexane:isopropanol solution.
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Next, the bone powder was demineralized following Bell et al. (2001), (with 

modifications, discussed below) as follows:

1. Approximately 1.5 ml of 0.5 M HC1 was added to the vial containing the defatted 

bone powder, vigorously mixed with a vortex mixer, and allowed to stand for 30 

minutes, with vigorous mixing at 10 minute intervals.

2. The sample was centrifuged for 15 seconds at 5000 rpm (relative centrifugal 

force = 1677 x g), and the supernatant poured off.

3. Steps 1 and 2 were repeated two more times for a total of 90 minutes in the acid 

solution.

4. The sample was rinsed three times in ultrapure water, with centrifuging and 

pouring off the supernatant in between each rinse.

One minor modification from the Bell et al. (2001) method is that the present study 

used a larger starting sample mass for ease in handling and because it was not 

constrained by the small sample masses resulting from bone density fractionation as in 

the referenced study. The amount of treatment solution was likewise increased to 

accommodate the increased sample amount. Note also that the acid concentration is a 

departure from Bell et al. (2001), who used a weaker acid strength (0.1 M HC1). The 

concentration was changed in the present study after initial informal laboratory trials 

indicated that the weaker acid strength did not fully demineralize the bone samples, as 

judged from the percent yield. The percent yield is the post-demineralization mass
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expressed as a percent of the initial sample mass. Since collagen makes up 

approximately 20-30% of modem whole bone (Kennedy, 1988), percent yields above 

this indicate incomplete demineralization, and the laboratory trials using the 0.1 M HC1 

produced yields that were all over 50%. An HC1 concentration o f 0.5 M was selected 

because it is the concentration used by many leading bone collagen stable isotope 

researchers (Bronk Ramsey et al., 2004; Richards et al., 2006; Richards and Hedges, 

1999; Sealy, 1997), and initial laboratory trials showed that the post demineralization 

percent yields were within the acceptable range (<30%).

To remove humic acid and other base-soluble contaminants, the samples were 

treated with an alkali solution, following Bell et al. (2001), as follows:

1. Approximately 1.5 ml o f a 0.1 M NaOH solution was added to the sample vial 

containing the defatted and demineralized bone powder, vigorously mixed with a 

vortex mixer, and left to stand for 10 minutes.

2. The sample was centrifuged at 5000 rpm (relative centrifugal force = 1677 x g) 

for 15 seconds and the supernatant poured off.

3. The sample was rinsed three times in ultrapure water, with centrifuging and 

pouring off the supernatant in between each rinse.

4. The sample was frozen for at least one hour, followed by freeze-drying for 24 

hours.
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In paleodietary studies, the product remaining after bone demineralization and alkali 

treatment is typically referred to as “collagen” (sometimes in quotation marks), but it 

likely contains non-collagenous proteins as well. Technically, the product is weak-acid- 

insoluble bone protein (Bell et al., 2001).

The origin of the bone collagen extraction method used here is not explicitly 

described in Bell et al. (2001); however, based on author affiliation, the procedure 

appears to have derived from the method employed by the so-called “Cape Town group” 

(van der Merwe et al., 2003:249). As described by Sealy and van der Merwe (1986) 

with updates provided by van der Merwe et al. (2003), the collagen extraction method 

employed by the Cape Town group is noted for its use of bone chunks, rather than bone 

powder, and for excluding the collagen gelatinization treatment (dissolving the protein in 

hot dilute acid) introduced by Longin (1971). The Bell et al. (2001) method thus 

deviates from the typical Cape Town procedure by using bone powder, which is also 

used by many isotope researchers (Ambrose et al., 1997; Bocherens et al., 1991; Bronk 

Ramsey et al., 2000; Brown et al., 1988).

Nitrogen and carbon isotopic analyses of bone collagen were conducted at the 

Alaska Stable Isotope Facility housed at the University of Alaska Fairbanks. Bone 

collagen samples of approximately 0.3 mg were loaded into tin cups for stable isotopic 

analysis on the Thermo Finnigan Delta-Plus XP continuous flow isotope ratio mass 

spectrometer, coupled to a Costech Elemental Analyzer (ECS 4010). Typically, 

instrument precision for this lab is <0.2%o based on repeated analysis of an in-house
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standard (animal meat peptone) (T. Howe, Alaska Stable Isotope Facility, personal 

communication, 2 0 0 8 ) .  A sample of modem ringed seal bone collagen from the present 

study was run a total of 12 times on the same and different days, and results yielded a 

standard deviation of 0.1% o for both 8 15N  and 5 13C  (data not shown).

The ratios of nitrogen stable isotopes (15N /14N) and carbon stable isotopes (13C/I2C) 

are conventionally expressed in delta (8 )  notation in parts per thousand (per mil; %o) 

relative to a standard:

8 (%o) =  (CRsample-/?standard)//?standard) X 1 0 0 0  [Eq. 1]

where /?sampie and /? standard are the ratios of the heavier to the lighter isotope in the sample 

and the standard, respectively (Ambrose, 1 9 9 3 ; Kelly, 2 0 0 0 ) .  The delta value is a ratio 

o f a ratio and is thus dimensionless. However, it has a “pseudo-dimensional unit,” the 

“per mil” (Speakman, 1 9 9 7 :2 5 6 ) . The delta value is the difference between the sample 

isotope ratio and the standard isotope ratio, expressed in thousandths of the standard 

isotope ratio (Speakman, 1 9 9 7 ) . The international standard for nitrogen is atmospheric 

nitrogen (AIR), while that for carbon is Peedee belemnite (PDB) (Ambrose, 1 9 9 3 ) . A 

delta value o f 0%o means there is no difference in the ratio of the heavy to light isotope 

between the sample and the standard. A positive 8 value indicates that the sample has 

more of the heavy isotope than the standard (i.e., is enriched), while a negative value 

indicates that the sample has less of the heavy isotope than the standard (i.e., is 

depleted).
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Initial inspection of the mercury concentration data indicated that variances were not 

equal across values of the independent variables, so bone THg concentrations were 

transformed to their common logarithms (logio) following Zar (1996). For all statistical 

analyses, specimens from all sites (KTZ-087, KTZ-088, and KTZ-101) were combined, 

since exploratory data analysis showed no significant differences among sites for all 

variables. As stated for the statistical analysis of methylmercury-dosed rats, for 

statistical hypothesis testing, the null hypothesis was rejected if the p-value was less than 

the significance level (a) of 0.05.

Separate least-squares linear regression analyses were performed to determine the 

strength, form, and significance of the relationship between log-transformed bone total 

mercury concentration (the dependent variable) and several independent variables: bone 

collagen 815N and 813C, as well as whole bone %N, %C, and %S. For each analysis, the 

following null and alternative hypotheses were tested (following Sokal and Rohlf, 1969):

Ho: The true slope of the regression line relating log-transformed bone 

total mercury to the independent variable is equal to zero.

Ha: The true slope of the regression line is not equal to zero.

In other words, the null states that log-transformed bone THg does not tend to go up or 

down with a unit increase in the independent variable.
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As discussed previously for the rat bone data set, the adequacy of each regression 

model to describe the relationship between log-transformed bone mercury concentration 

and the independent variables was assessed by examining the model’s slope significance 

level, coefficient of determination (r2), and prediction residuals.

Bone mercury measurement accuracy

Accuracy is here defined as the “closeness of agreement between a quantity value 

obtained by measurement and the true value” (Menditto et al., 2007:45), and is 

expressed in terms o f both trueness and precision of the results (Hauck et al., 2008). 

Trueness is defined as “the closeness of agreement between a test result and the accepted 

reference value” (Thompson et al., 2002:847). Trueness is usually expressed as the 

percentage of recovery of a known amount of analyte in a sample. Precision is “the 

closeness of agreement between test results” (Thompson et al., 2002:848), and is usually 

expressed in terms of imprecision, as the standard deviation or relative standard 

deviation of sample replicates.

In the present study, bones of modem ringed seal from western Alaska were 

analyzed for mercury concentration using CVAFS. Trueness and precision were 

calculated from the resulting bone mercury concentration measurements, and these were 

compared to internationally recognized standards for chemical measurement accuracy. 

Specific criteria for acceptable levels of precision (as the repeatability relative standard 

deviation) and trueness (as percent recovery) followed those provided by AOAC 

International (AOAC, 2002).
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The sample used to assess bone mercury measurement accuracy included modem 

ringed seal mandibles from western Alaska. A total of 20 modem ringed seal dentaries 

(i.e., the right or left half o f a mandible) were sampled and analyzed for total mercury 

concentration. These mandibles had been subjected to varied methods of preparation for 

museum storage, which may have included treatments that removed inorganic or organic 

mercury from the bone, including submersion in maceration tanks and/or soaking in 

ammonium hydroxide. The very low concentrations of mercury found in these 

mandibles suggest that some storage treatment or treatments did extract mercury.

Because of the probable leaching of mercury from these bone samples, they could not be 

used to compare bone to soft tissue mercury concentrations, as originally intended. 

However, these specimens are still useful for determining the bone mercury 

measurement quality. Additionally, four of the methylmercury-dosed rat bone samples 

were included in the trueness (percent recovery) analysis.

Bone sampling and pretreatment (modern ringed seals)

Samples weighing at least 1 g were removed from the mandible in the same manner 

as described previously for prehistoric ringed seals. These were stored in plastic vials at 

room temperature until further analysis.

95

Materials (modem ringed seals)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

Approximately 0.75 g of cleaned, freeze-dried modem seal bone powder was 

weighed off and shipped to Frontier Geosciences Inc. (Seattle, Washington) for total 

mercury analysis by cold vapor atomic fluorescence spectrometry, as described in 

previous sections. At Frontier, samples were split prior to sample digestion and prepared 

and analyzed in separate runs approximately two weeks apart. This approach allows 

calculation of between-run (different-day) analytical error. Also, four samples were ran 

in duplicate within the same ran, allowing measurement of within-run (same-day) error. 

To assess measurement trueness, four modem seal bone samples were spiked with a 

known quantity of mercury (to equal approximately 400 ppb) and percent of mercury 

recovered was calculated. In addition, four methylmercury-dosed rat bones were spiked 

with a similar quantity of mercury to allow calculation of percent recovery. The amount 

of the spike added should be high enough to overwhelm the contribution from the native 

mercury already present in the sample (Lee et al., 2006), although the analytical method 

validation literature offers little detail as to appropriate spiking levels. Since little 

information was available on the expected range of mercury concentrations in bone 

(from any species), the Laboratory’s default spike level of 400 ppb was used (C. Molder, 

Frontier Geosciences Inc., personal communication, 2008).

Statistical analysis (modern ringed seals)

The differences between the duplicate THg measurements were calculated and 

inspected for outliers, following Fraser (2004). Any absolute difference measurement

Total mercury determinations (modern ringed seals)
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that was greater than three standard deviations above or below the mean absolute 

difference was classified as an outlier (following Stevens, 1999) and eliminated from 

consideration. While eliminating deviant cases from a data set intended to measure 

variation may at first seem counterintuitive, Fraser (2004:21) points out that outliers 

must be removed because “even a single unusual observation, perhaps resulting from an 

analytical mistake or simple misdirection of a sample, can greatly influence the estimate 

of the components of variance.”

Precision of bone mercury determinations was estimated using the repeatability 

standard deviation and the relative repeatability standard deviation. The repeatability 

standard deviation (SDr) was calculated as follows, for repeats that are n sets of 

duplicate measurements (AOAC, 2006: D8; Synek, 2008):

Repeatability Standard Deviation (SDr)= -yj(sum o f  d 2) / 2n  [Eq. 2]

where d  is the difference between the duplicates and n is the number of pairs. This 

provides a measure of imprecision in units o f the original data (e.g., ng/g).

The repeatability relative standard deviation provides a measure of the magnitude of 

the method imprecision and is expressed as a percent. The repeatability relative standard 

deviation was calculated as follows (AOAC, 2006:D9):

Repeatability Relative Standard Deviation (RSDr) = 100(SDr/jc ) [Eq. 3] 

where SDr is the repeatability standard deviation, and x is the mean o f all of the 

measurements. The repeatability relative standard deviation is sometimes referred to as
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the “relative standard deviation” or the “coefficient of variation” (EPA, 2000:8-37; 

Willetts and Wood, 1999:288). The RSDr was calculated for the 20 samples measured 

in duplicate and the result was compared to the acceptance criteria in Table 3.2. The 

expected within-laboratory RSDr = C‘°'15, where C is the concentration of the analyte 

expressed as a mass fraction. Note that the formula for between-laboratory expected 

RSDr is 2C"° 15 (AOAC, 2002:21; AOAC, 2006). Acceptable limits are between 0.5 and 

2 times the expected RSDr (AOAC, 2002:22), up to a maximum of 30% (Horwitz and 

Albert, 2006). Values below the lower limit are not undesirable (i.e., they show better 

precision) but fall outside the range of historically expected precision, which could 

indicate unreported averaging or previous knowledge of the analyte concentration 

(Horwitz and Albert, 2006). If the RSDr value for duplicate THg determinations on 

modem seal bone was within the recommended range, it was deemed acceptable.

Trueness was expressed as the percent recovery of a spiked sample. The percent 

recovery was calculated as follows (AOAC, 2006:D8):

Percent Recovery = 100 * ((Cf -  CU)/CA) [Eq. 4]

Where Cf is the measured concentration of the fortified (spiked) sample; Cu is the 

measured concentration of the unfortified sample (before spiking); and CA is the amount 

of analyte added to the sample. The mean percent recovery was calculated for the 

modem ringed seal sample and the mercury-dosed rat sample, and the results were 

compared to the acceptance criteria as outlined in Table 3.3. If the mean percent 

recoveries were within the recommended range, they were deemed acceptable.
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Table 3.2. Acceptable within-laboratory precision limits fo r  concentration measures as a
function o f  concentration

Analyte Mass 
Fraction Unit Expected RSDr (%)a Allowable RSDr (%)b

1 100% 1 0.5-2

0.1 10% 1.5 0.7-3

0.01 1% 2 1-4

0.001 0.10% 3 1.5-6

0.0001 100 ppm 4 2-8

0.00001 10 ppm 6 3-12

0.000001 1 ppm 8 4-16

0.0000001 100 ppb 11 5.5-22

0.00000001 lOppb 16 8-30

0.000000001 1 ppb 22 11-30

a The expected within-laboratory RSDr = C 015, where C is the concentration of the analyte 
expressed as a mass fraction. (AOAC, 2002:21; AOAC, 2006).

b Acceptable limits are between 0.5 and 2 times the expected RSDr (AOAC, 2002:22), up to a 
maximum of 30% (Horwitz and Albert, 2006).
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Table 3.3. Acceptable recovery limits (%) as a function o f  analyte concentration

Analyte Mass Fraction Unit
Acceptable Recovery Limits

(%)a

1 100% 98-101

0.1 10% 95-102

0.01 1% 92-105

0.001 0.10% 90-108

0.0001 100 ppm 85-110

0.00001 10 ppm 80-115

0.000001 1 ppm 75-120

0.0000001 100 ppb na

0.00000001 10 ppb 70-125

0.000000001 1 ppb na

a From AOAC (2002:19)
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Bone mercury in methylmercury-dosed laboratory rats 

Bone mercury versus daily exposure (methylmercury-dosed rats)

Some mercury was detected in all bone samples from methylmercury-dosed rats, 

including those from the control (and nominally unexposed) group (Table 4.1). All 

quality control measures for mercury detection fell within the acceptance criteria of the 

analytical laboratory (Frontier Geosciences), (as described in the Methods section.

Table 4.2 shows arithmetic and geometric mean total mercury (THg) concentrations in 

cranial bone, humeral cortical bone, and femoral cortical bone, for each exposure group. 

The one-way ANOVAs on log-transformed cranium, humerus, and femur THg identified 

significant differences in means (p < 0.001) among the exposure groups for all bone 

types (Table 4.3). The null hypothesis o f equal means among exposure groups was thus 

rejected for all bone types. Subsequent multiple comparisons tests (Least Significant 

Difference) showed that differences are significant among all possible pairs of means for 

all bone types (Table 4.4).

4. RESULTS
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Table 4.1. Bone and kidney total mercury concentrations in methylmercury-dosed rats
by individual

ID
MeHg Exposure 
(pg/kg bw/day)

Cranium 
THg (ng/g)

Humerus 
THg (ng/g)

Femur THg
(ng/g)

Kidney 
THg (ng/g)

100 0 5.1 3.2 1.8 14.7

150 0 5.0 3.3 2.8 14.5

200 0 3.9 3.9 2.0 15.3

250 40 16.6 11.6 10.8 2990.0

300 40 9.2 6.8 5.3 1810.0

350 40 9.9 8.2 5.6 945.0

400 40 5.9 6.4 5.2 1190.0

450 400 907.0 850.0 907.0 81300.0

500 400 720.0 894.0 523.0 43800.0

550 400 1130.0 1150.0 1020.0 79600.0

600 400 778.0 381.0 493.0 53300.0

650 400 2640.0 1060.0 721.0 69100.0

700 400 1500.0 928.0 699.0 67300.0

750 400 1820.0 672.0 597.0 NA

800 400 1740.0 793.0 570.0 53400.0
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Table 4.2. Means and standard deviations fo r  bone and kidney total mercury by 
exposure group in methylmercury-dosed rats

Tissue Exposure
Group3 n

Arithmetic 
Mean THg 

(ng/g)
Standard
deviation

Geometric 
mean THg 

(ng/g)

Cranium 
(dry weight) Control 3 4.67 0.64 4.64

Low 4 10.39 4.49 9.71

High 8 1404.37 655.16 1279.87

Total 15 752.70 857.11 113.17

Humerus 
(dry weight) Control 3 3.47 0.37 3.45

Low 4 8.25 2.36 8.02

High 8 841.00 237.96 803.96

Total 15 451.43 462.77 79.11

Femur 
(dry weight) Control 3 2.20 0.53 2.16

Low 4 6.73 2.72 6.39

High 8 691.25 187.76 670.62

Total 15 370.90 378.54 61.54

Kidney 
(wet weight) Control 3 14.83 0.42 14.83

Low 4 1733.75 913.19 1570.66

High 7 63971.43 14226.94 62563.34

Total 14 32484.25 34083.83 3649.91

a Low exposure = 40 pg/kg bw/day methylmercury x 96 days; High exposure = 400 pg/kg 
bw/day methylmercury x 96 days
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Table 4.3. Results o f  one-way ANOVA comparing mean bone total mercury (logio ng/g) 
among three exposure categories in methylmercury-dosed rats

Bone
d f between groups, 

df within groups F P

Cranium 2, 12 296.4 <0.001

Humerus 2, 12 525.1 <0.001

Femur 2, 12 632.3 <0.001

Note: exposure categories include: 1) Control (no exposure); 2) Low exposure (40 pg/kg bw/day 
methylmercury x 96 days); and 3) High exposure (400 pg/kg bw/day methylmercury x 96 days)
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Table 4.4. Multiple pairwise comparisons (Least Significant Difference) fo r  mean bone 
total mercury (logio ng/g) by exposure categories in methylmercury-dosed rats

Exposure Group Comparison
Mean Difference bone THg 

(log io ng/g) P

Cranium

Control-Low -0.32 0.038

Control-High -2.44 <0.001

Low-High -2.12 <0.001

Humerus

Control-Low -0.37 0.003

Control-High -2.37 <0.001

Low-High -2.00 <0.001

Femur

Control-Low -0.47 <0.001

Control-High -2.02 <0.001

Low-High -2.02 <0.001

Note: exposure categories include: 1) control (no exposure); 2) Low exposure (40 pg/kg bw/day 
methylmercury x 96 days); and 3) High exposure (400 pg/kg bw/day methylmercury x 96 days)
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Linear regression plots relating log-transformed bone THg concentration (logio ng/g) 

to exposure level (pg/kg bw/day methylmercury) in methylmercury-dosed rats are shown 

in figures 4.1-4.3 for each bone type. The plots indicate that each of the log- 

transformed bone total mercury variables has a positive linear relationship with raw 

exposure level. Linear regression equations relating log-transformed bone THg to daily 

exposure are found in Table 4.5. The slopes for the regression lines relating log- 

transformed cranium THg, humerus THg, and femur THg to exposure are similar, 

rounding to 0.006, and all differ significantly from zero (p<0.001). The null hypothesis 

that the true slope is equal to zero for the regression line relating log-transformed bone 

THg to exposure level was thus rejected for all three bone types.

The coefficients of determination (r2) are high (0.98-0.99) for the linear regression 

models for all three bone types, indicating that between 98% and 99% of the variation in 

bone THg may be accounted for by variation in exposure level. Visual examination of 

the linear regression plots (figures 4.1—4.3) shows that the models slightly overestimate 

mercury concentration for the control group for all bone types, but that the predicted 

values for the other exposure groups appear to be unbiased.
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Exposure level (pg MeHg/kg bw/day)

Figure 4.1. Cranium total mercury vs. exposure level in methylmercury-dosed 
rats, showing least-squares regression line (solid) and 95% confidence belt for 
the predicted mean (dashed lines).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

Exposure level (pg MeHg/kg bw/day)

Figure 4.2. Humerus total mercury vs. exposure level in methylmercury-dosed 
rats, showing least-squares regression line (solid) and 95% confidence belt for 
the predicted mean (dashed lines).
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Exposure level (pg MeHg/kg bw/day)

Figure 4.3. Femur total mercury vs. exposure level in methylmercury-dosed rats, 
showing least-squares regression line (solid) and 95% confidence belt for the 
predicted mean (dashed lines).
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Table 4.5. Regression equations relating bone THg to exposure level in methylmercury-dosed rats

Predictor variable 
(x)

Response variable
(y) r2

Standard 
error of 

estimate Regression equation P

MeHg exposure 
(pg/kg bw/day)

cranium THg 
(log 10 ng/g) 0.98 0.175 y  -  0.0060* + 0.711 <0.001

humerus THg 
(logio ng/g) 0.99 0.134 y  = 0.0057x + 0.613 <0.001

femur THg 
(log, o ng/g) 0.99 0.145 y  = 0.0059* + 0.462 <0.001

o



I l l

Bone mercury versus kidney mercury (methylmercury-dosed rats)

Mercury was detected in all rat kidneys (Table 4.1), with mean concentrations 

varying by several orders of magnitude across exposure groups (Table 4.2). Linear 

regression plots relating log-transformed bone mercury concentrations to log- 

transformed kidney mercury concentrations for all exposure groups combined are shown 

in figures 4.4 through 4.6. Visual inspection of the regression plots shows that the linear 

function provides a poor fit to the data for all bone types, despite the fact that the models 

have high significance (p<0.01) and high r2 values (>0.80). The plots clearly show 

systematic underprediction of bone THg values for the control and high dose groups and 

large overprediction of bone THg values for the individuals in the low-dose group. 

Predicted bone mercury values for this last group were all overestimated by a factor of 

two to six (data not shown).
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Kidney THg (Iog10 ng/g)

Figure 4.4. Cranium THg (logio ng/g) versus kidney THg (logio ng/g) in 
methylmercury-dosed rats (control group included). Note the poor fit between 
the prediction line and the data points, despite the high r2 value.
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Kidney THg (Iog10 ng/g)

Figure 4.5. Humerus THg (logio ng/g) versus kidney THg (logio ng/g) in 
methylmercury-dosed rats (control group included). Note the poor fit between 
the prediction line and the data points, despite the high r2 value.
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Kidney THg (Iog10 ng/g)

Figure 4.6. Femur THg (logio ng/g) versus kidney THg (logio ng/g) in 
methylmercury-dosed rats (control group included). Note the poor fit between 
the prediction line and the data points, despite the high r2 value.
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When only the exposed rats are considered, however, the linear regression models 

relating logio bone THg to logio kidney THg appear to provide a provide a better fit, as 

seen in figures 4.7-4.9. Table 4.6 provides the regression equations relating bone THg 

to kidney level with the control group excluded. For all three bone types, the slopes of 

the regression lines are positive and significantly different from zero (p<0.001). Thus, 

the null hypothesis that the true slope is equal to zero for the regression line relating log- 

transformed bone THg to log-transformed kidney THg was rejected for all three bone 

types. The models have high coefficients of determination for all three bone types 

(Table 4.3), indicating that over 96% of the variance in bone total mercury may be 

explained by variation in kidney total mercury. Visual inspection of the regression 

models indicates that there is no systematic over- or under-prediction of bone THg from 

kidney THg.
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Kidney THg (iog10 ng/g)

Figure 4.7. Cranium THg (logio ng/g) versus kidney THg (logio ng/g) in 
methylmercury-dosed rats (control group excluded), showing least-squares 
regression line (solid) and 95% confidence belt for predicted means (dashed 
lines).
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Kidney THg (Iog10 ng/g)

Figure 4.8. Humerus THg (logio ng/g) versus kidney THg (logio ng/g) in 
methylmercury-dosed rats (control group excluded), showing least squares 
regression line (solid) and 95% confidence belt for predicted means (dashed 
lines).
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Kidney THg (Iog10 ng/g)

Figure 4.9. Femur THg (logio ng/g) versus kidney THg (logio ng/g) in 
methylmercury-dosed rats (control group excluded), showing least squares 
regression line (solid) and 95% confidence belt for predicted means (dashed 
lines).
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Table 4.6. Linear regression equations fo r  log-transformed bone THg against log-transformed kidney THg in methylmercury-
dosed rats (control group excluded)

Predictor variable 
(x) Response variable (y) r2

Standard error of 
estimate Regression equation P

Kidney THg 
(log l0 ng/g)

Cranium THg 
(logio ng/g) 0.97 0.20 y  =1.29x -  3.11 <0.001

Humerus THg 
(logio ng/g) 0.97 0.18 y =  1.23jc-3.01 <0.001

Femur THg 
(logio ng/g) 0.99 0.09 y  = 1.25x -  3.18 <0.001



Bone mercury in cranium, humerus, and femur (methylmercury-dosed rats)

Differences in geometric mean THg concentration among methylmercury-dosed rat 

cranial bone, humeral bone, and femoral bone were examined using the repeated- 

measures ANOVA on log-transformed total mercury concentrations. The results show a 

significant difference in geometric mean THg concentration among the three types of 

bone (F2,28=23.63; p<0.001), in which the order o f means is cranial THg > humerus THg 

> femur THg. Thus, the null hypothesis that there is no difference in mean bone THg 

(logio ng/g) among the three bone types (cranium, humerus, and femur) was rejected. 

Subsequent pairwise comparisons (Least Significant Difference) showed that all possible 

mean pairs are significantly different (Table 4.7).

Figures 4.10-4.12 show scatterplots of pairs o f log-transformed bone total mercury 

concentrations (cranium vs. humerus, cranium vs. femur, and humerus vs. femur).

These plots show clear clusters of points, which correspond to the three exposure groups, 

and all pairs of variables have high and significant Pearson correlation coefficients 

(r>0.98, two-tailed p<0.001). Thus, for each bone combination, the null hypothesis that 

the true correlation coefficient between the two bone total mercury concentrations is 

zero was rejected.

1 2 0
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Table 4.7. Multiple pairwise comparisons (Least Significant Difference) fo r  mean bone 
total mercury (logio ng/g) by bone type (cranium, humerus, femur) in methylmercury-

dosed rats

Mean Difference bone THg
Bone Type Comparison (logio ng/g)a P

Cranium-Humerus 0.155 0.002

Cranium-F emur 0.265 <0.001

Humerus-F emur 0.109 0.001

a Note that the difference measure is in logio units
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Figure 4.10. Bivariate scatterplot o f cranium THg (logio ng/g) and humerus 
(logio ng/g) in methylmercury-dosed rats.
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Figure 4.11 Bivariate scatterplot of cranium THg (logio ng/g) and femur THg 
(logio ng/g) in methylmercury-dosed rats.
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Humerus THg (Iog10 ng/g)

Figure 4.12. Bivariate scatterplot of femur THg (logio ng/g) and humerus THg 
(logio ng/g) in methylmercury-dosed rats.
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Table 4.8 presents results for methylmercury (MeHg) determinations compared to 

total mercury (THg) for crania in methylmercury-dosed rats. Methylmercury was 

detected at or above the minimum reporting limit (4.0 ng/g) in all of the high exposure 

individuals, two of the low exposure samples, and none of the control group samples. 

When detected, methylmercury makes up approximately 67% to 94% of total mercury in 

the cranial bone samples. A scatterplot of logio cranium THg against logio cranium 

MeHg appears in Figure 4.13. The two variables have a significant and nearly perfect 

correlation (r=0.999; two-tailed p<0.001), so the null hypothesis that the true correlation 

coefficient between logio cranium THg and logio cranium MeHg is zero was rejected.

Organic and inorganic mercury in bone (methylmercury-dosed rats)
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Table 4.8. Cranium THg compared to MeHg in methylmercury-dosed rats

Exposure Group ID # THg (ng/g) MeHg (ng/g) %MeHg

Low 250 16.6 11.8 71

350 9.9 6.6 67

High 450 907.0 708.0 78

500 720.0 610.0 85

550 1130.0 782.0 69

600 778.0 599.0 77

650 2640.0 2480.0 94

700 1500.0 1220.0 81

750 1820.0 1490.0 82

800 1740.0 1630.0 94
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Cranium THg (Iog10 ng/g)

Figure 4.13. Bivariate scatterplot of cranium methylmercury (logio ng/g) and 
total mercury (logio ng/g) for methylmercury-dosed rats.
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Bone mercury and indicators of mercury exposure in archaeofauna 

Bone mercury, nitrogen, carbon, and sulfur (prehistoric ringed seals)

Frontier Geosciences reported that all quality control measures were within the 

established control limits for total mercury determinations (C. Molder, personal 

communication, 2008). Mercury is present in all of the prehistoric ringed seal 

mandibles, as shown in Table 4.9. One case (2022) with a very high concentration of 

mercury (55.1 ng/g) was eliminated as an outlier as defined by Stevens (1999), since it 

was over 3.5 standard deviations from the mean of all THg values.

A second case (2022) was eliminated as a regression outlier, which is a case with an 

observed value that differs appreciably from the predicted value under a regression 

model. Following Heiberger and Holland (2004), cases with studentized deleted residual 

values greater than 2 should be considered outliers in small (<30) samples, and case 

2022 had values of over 2.6 to 4.0 for regressions o f log-transformed bone THg versus 

815N, %N, %C, and %S. The values for the outlier cases are shown in the data tables 

(tables 4.9 and 4.10) but are excluded from the calculation of summary statistics and 

from all further statistical analyses. The outlier cases may represent a single individual, 

as they are right and left dentaries and were recovered from adjacent excavation units at 

site KTZ-088 (as indicated on original sample collection bag). They have similar values 

for all metrics, including size measurements, although their total mercury values, while 

both high, are disparate.
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For the remaining 21 cases, concentrations of total mercury range from 4.36 ng/g to 

32.80 ng/g, with a mean of 13.10 ± 6.5 ng/g . Table 4.9 also shows the percent nitrogen, 

carbon, and sulfur on whole bone. Total nitrogen ranges from 3.30% to 4.40% 

(mean=3.90 ± .3%), while total carbon ranges from 9.82% to 13.74% (mean=l 1.76 ± 

1.2). Total sulfur concentrations are lower, ranging from 0.086% to 0.123%, with a 

mean of 0.109 ± .01 %.

Nitrogen and carbon isotope ratios on bone collagen (prehistoric ringed seals)

Table 4.10 shows the 615N value for each sample, along with the collagen quality 

indicators. For the non-outlier cases only (n=21), the 515N values range from 17.1 %o to 

18.7%o, with a mean of 17.8 ± 0.4%o, while 813C values range from -14.9%o to -12.5%o, 

with a mean of-13.6%o ± 0.6%o. All quality indicators are within accepted limits for 

well preserved bone collagen, including %N above 5% and %C above 13% (Ambrose, 

1990), atomic C:N ratios between 2.9 and 3.6 (DeNiro, 1985), and collagen yields above 

1% (van Klinken, 1999).
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Table 4.9. Whole bone THg, %N, %C, and %S fo r  prehistoric ringed seal mandibles 
from Thule archaeological sites at Cape Espenberg, Alaska

Specimen ID THg (ng/g) %N %C %S
2001 14.20 4.08 13.08 0.1154
2002 16.70 4.26 13.74 0.1226
2004 11.80 4.17 13.22 0.1220
2005 12.40 4.24 13.22 0.1099
2006 9.56 3.82 11.85 0.1185
2008 14.00 4.28 13.14 0.1207
2009 13.10 3.40 10.50 0.0993
2010 8.72 4.40 12.44 0.0979
2011 6.63 3.85 11.34 0.1014
2016 6.74 3.36 10.01 0.1026
2017 10.20 4.06 11.73 0.1116
2018 15.10 4.12 13.07 0.1172
2019 32.80 4.38 12.63 0.1200
2020 4.36 3.30 9.82 0.0864
2022* 55.10 3.84 11.55 0.1205
2026 18.70 3.89 11.42 0.1108
2021* 32.00 3.84 11.05 0.1042
2028 19.50 4.04 11.63 0.1198
2029 16.80 3.85 11.11 0.0996
2031 21.00 4.03 11.79 0.1097
2032 6.20 3.58 10.90 0.1065
2033 10.30 3.52 10.12 0.0926
2034 6.49 3.64 10.29 0.1002
Mean** 13.10 3.91 11.76 0.1088
Std. Dev.** 6.54 0.34 1.20 0.0105
Geometric mean** 11.72 — — —

* Outlier case excluded from all summary statistics and analyses.

** Summary statistics exclude outlier cases.
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Table 4.10. Bone collagen 8I5N  and S,3C and quality indicators fo r  prehistoric ringed seal mandibles from Thule
archaeological sites at Cape Espenberg, Alaska

Sample ID S15N % o 5I3C % o %N %C Atomic C:Na Yield (%)
2001 18.0 -13.5 16.8 46.3 3.2 19.9
2002 18.0 -14.2 16.1 46.3 3.4 20.4
2004 17.6 -13.9 16.3 47.4 3.4 21.2
2005 17.9 -14.2 16.4 47.8 3.4 22.4
2006 17.2 -13.3 17.3 48.3 3.3 19.5
2008 18.4 -14.9 16.1 47.3 3.4 22.7
2009 18.0 -13.8 16.6 47.3 3.3 20.2
2010 18.0 -13.6 18.0 47.9 3.1 19.2
2011 17.1 -12.8 17.5 48.0 3.2 21.5
2016 17.8 -13.1 17.9 47.5 3.1 21.6
2017 17.5 -13.4 16.8 46.4 3.2 20.8
2018 17.9 -13.8 16.1 45.3 3.3 22.6
2019 18.7 -14.1 18.0 47.7 3.1 20.4
2020 17.3 -13.3 17.4 48.0 3.2 15.8
2022* 17.7 -12.9 16.2 45.1 3.3 17.6
2026 18.3 -13.3 16.5 46.6 3.3 21.9
2027* 17.3 -12.5 16.4 43.5 3.1 19.7
2028 17.9 -13.1 16.4 45.7 3.2 19.5
2029 17.4 -12.5 17.4 46.8 3.1 19.8
2031 18.1 -14.8 16.7 46.7 3.3 21.3
2032 17.4 -13.0 17.0 46.1 3.2 18.0
2033 18.0 -13.3 16.6 45.3 3.2 18.7
2034 17.2 -13.1 15.9 45.7 3.4 18.3
Mean** 17.8 -13.6 16.8 46.9 3.3 20.3
Std. deviation** 0.4 0.6 0.7 1.2 0.1 1.7

3 Atomic C:N ratio = (%C/%N) * 1.167 (Kennedy, 1988:54)
* Outlier case excluded from all summary statistics and analyses. 
** Summary statistics exclude outlier cases.
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Figure 4.14 shows log-transformed bone total mercury concentration (logio ng/g) 

regressed against bone collagen 815N for prehistoric ringed seals, while Table 4.11 

shows the linear regression equation relating the two variables. The slope of the 

regression line is positive (6=0.37) and differs significantly from zero (p < 0.001), so the 

null hypothesis that the true slope is equal to zero for the regression line relating log- 

transformed bone THg to bone collagen 815N was rejected. The regression coefficient of 

determination (r2) for the linear regression equation is high (0.55), suggesting that 55% 

of the variation in bone mercury is accounted for by variation in 815N. Furthermore, 

visual inspection of the regression plot shows no systematic bias in prediction of log- 

transformed bone THg from bone collagen 8I5N.

Bone mercury versus bone collagen S15N  (prehistoric ringed seals)
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Table 4.1 L Linear regression equations relating bone THg (logio ng/g) to 815N, 8 J3C, %N, %C and %S fo r  prehistoric ringed
seal mandibles from  Thule archaeological sites at Cape Espenberg, Alaska

Response variable (y) Predictor variable (x) r2
Std. error of 
the estimate Regression equation P

Seal mandible THg 
(logio ng/g) Bone collagen 815N  (%o) 0.55 0.15 y  -  0.373x -  5.567 <0.001

Bone collagen S,3C (%o) 0.22 0.19 y  = -0 .163x -  1.141 0.034

Bone %N 0.38 0.17 y  = 0.384x -  0.437 0.003

Bone %C 0.30 0.18 y  — 0.095x -  0.052 0.011

Bone %S 0.39 0.17 y =  12.609x- 0.303 0.003
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Figure 4.14. Bone THg (logio ng/g) versus bone collagen 815N (%0) for prehistoric 
ringed seal mandibles from Thule archaeological sites at Cape Espenberg, Alaska.
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Figure 4.15 shows log-transformed bone total mercury concentration (logio ng/g) 

regressed against bone collagen 513C for prehistoric ringed seal mandibles, while Table 

4.10 shows the linear regression equation relating the two variables. The slope of the 

regression line is negative, and differs significantly from zero, so the null hypothesis that

the true slope is equal to zero for the regression line relating bone THg (logio ng/g) to

1 * * 2 bone collagen 5 C was rejected. The regression coefficient of determination (r ) for

log-transformed bone THg versus bone collagen 513C is moderate (0.22), suggesting that

• • • 13only 22% of the variation in bone mercury is associated with the variation in 5 C.
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Bone mercury versus bone collagen dI3C (prehistoric ringed seals)
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Bone collagen 513C (%o)

Figure 4.15. Bone THg (logio ng/g) versus bone collagen 813C (%o) for 
prehistoric ringed seal mandibles from Thule archaeological sites at Cape 
Espenberg, Alaska.
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Figures 4.16 through 4.18 show log-transformed bone total mercury concentration 

(logio ng/g) regressed against percent nitrogen, percent carbon, and percent sulfur, 

respectively, for the prehistoric seal mandibles. Linear regression equations relating log- 

transformed bone THg to the %N, %C and %S can be found in Table 4.10. All of the 

slopes are positive and differ significantly from zero (p<0.011), so the null hypothesis 

that the true slope of the regression line relating bone THg (logio ng/g) to the 

independent variable is equal to zero was rejected for the three independent variables 

(%N, %C, and %S).

The regression coefficient of determination (r2) for log-transformed bone THg versus 

bone percent nitrogen is high (0.37), suggesting that 37% of the variation in bone THg 

may be accounted for by variation in bone nitrogen content. The r2 value for bone 

mercury versus bone sulfur is likewise high (0.39), while that for carbon is somewhat 

lower (0.30), suggesting that less of the variation in bone mercury may be accounted for 

by variation in the concentration of carbon.
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Bone mercury versus %N, %C, and %S (prehistoric ringed seals)
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Figure 4.16. Bone total mercury (logio ng/g) versus bone percent nitrogen for 
prehistoric ringed seal mandibles from Thule archaeological sites at Cape 
Espenberg, Alaska.
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Bone %C

Figure 4.17. Bone total mercury (logio ng/g) versus bone percent carbon for 
prehistoric ringed seal mandibles from Thule archaeological sites at Cape 
Espenberg, Alaska.
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Bone %S

Figure 4.18. Bone total mercury (logio ng/g) versus bone percent sulfur for 
prehistoric ringed seal mandibles from Thule archaeological sites at Cape 
Espenberg, Alaska.
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Mercury was detected in the two experimental bone samples that were demineralized 

to extract bone protein prior to mercury analysis. The bone protein samples have 

mercury concentrations that are 3.0-3.5 times greater than their untreated mineralized 

counterparts as shown in Table 4.12.

The increase in concentration is not due solely to loss of bone mineral. That is, the 

protein yields of 19% and 22% (from whole bone starting weight) should produce 

mercury concentrations that are around 4.5 times to 5.2 times higher than the whole bone 

mercury concentrations if no mercury was removed through the demineralization 

process. For example, sample 2010 has 8.72 ng/g THg on whole bone; if  the same 

amount o f mercury was present in 0.22 g of tissue (the protein yield), the THg 

concentration would be 39.6 ng/g (i.e., 8.72 ng/0.22 g). Since the actual increase in 

mercury concentration is less than this, some mercury must have been removed during 

the demineralization treatment. For both of the experimental samples, the calculated 

amount of mercury that was lost through demineralization is around 33-34%. The 

dissolved mercury may have been the portion associated with the bone mineral.
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Whole-bone vs. demineralized bone mercury (prehistoric ringed seals)
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Table 4.12. Whole bone THg compared to demineralized bone THg in experimental samples o f  prehistoric ringed seal
mandibles from  Thule archaeological sites at Cape Espenberg, Alaska

Expected Calculated THg loss
Whole bone THg Demineralized demineralized from

Sample ID (ng/g) bone THg (ng/g) Protein yield3 bone THg (ng/g)b demineralization0

2010 8.72 26.1 0.22 39.6 34.1%

2026 18.7 65.5 0.19 98.4 33.4%

a Protein yield = (Sample weight after demineralization)/(Starting weight)

b The expected THg concentration in demineralized bone if the increase is due solely to loss of bone mass through demineralization (with 
no loss of mercury) is: (whole bone THg)/(protein yield)

c Calculated loss through demineralization = ((Expected demineralized bone THg) -  (Observed demineralized bone THg))/ (Expected 
demineralized bone THg), expressed as a percent.

to



Bone mercury measurement accuracy 

Bone mercury measurement precision (modern ringed seals)

Results for duplicate total mercury determinations on modem ringed seal mandibles 

are shown in Table 4.13. Overall, mercury concentrations are quite low, ranging from 

1.59 to 9.54 ng/g. Concerning within-run measurement imprecision, four sets of same- 

day duplicate measurements produced a grand mean of 3.18 ng/g and a repeatability 

standard deviation of 0.22 ng/g. The within-run imprecision, given by the relative 

repeatability standard deviation (RSDr), is 6.9%.

The estimate of between-run imprecision is based on total mercury determinations 

for 20 modem seal mandibles run in duplicate on separate days. As shown in Table 4.12, 

the absolute differences between the duplicates range from 0.03 to 5.42 ng/g. The high 

difference value (5.42 ng/g from case 1003) is clearly an outlier, falling more than four 

standard deviations above the mean absolute difference, so this case was excluded from 

further analysis, as recommended by Fraser (2004). Figure 4.19 shows a plot o f the 

duplicate mercury determinations, excluding the outlier.

The grand mean for the remaining 19 duplicate measurements is 3.47 ng/g, and the 

repeatability standard deviation (SDr) is 0.42 ng/g. The between-run imprecision, given 

by the repeatability relative standard deviation (RSDr), is 12.1% based on the 19 sets of 

duplicate measurements.
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Table 4.13. Within-run and between-run duplicate bone THg determinations on modern
ringed seal mandibles

Sample IDa
Original THg 

(ng/g)
Duplicate THg 

(ng/g) Difference
Within-run duplicates
1001 (UAM89338) 2.27 2.35 -.08
1012 (UAM100109) 3.37 3.19 .18
1013 (UAM100110) 3.34 3.33 .01
1013 (UAM100110) 3.51 4.09 -.58

SDr 0.22 ng/g
RSDr 6.9%

Between-run duplicates
1001 (UAM89338) 2.27 2.99 0.72
1002 (UAM89339) 2.53 2.98 0.45
1003 (UAM97739)* 7.49 2.07 -5.42
1004 (UAM97838) 2.73 2.93 0.20
1005 (UAM97912) 2.39 2.20 -0.19
1006 (UAM97914) 1.90 2.16 0.26
1007 (UAM98148) 2.53 2.31 -0.22
1008 (UAM98260) 5.77 5.47 -0.30
1009 (UAM98261) 6.71 7.05 0.34
1010 (UAM98284) 2.91 2.62 -0.29
1011 (UAM100108) 2.90 2.87 -0.03
1012 (UAM100109) 4.05 3.19 -0.86
1013 (UAM100110) 3.51 3.34 -0.17
1014 (UAM100111) 2.80 2.43 -0.37
1015 (UAM100112) 3.92 3.37 -0.55
1016 (UAM100115) 3.49 2.64 -0.85
1017 (UAM100116) 1.76 1.59 -0.17
1018 (UAM100119) 9.54 8.51 -1.03
1019 (UAM100120) 4.67 3.21 -1.46
1020 (UAM100203) 1.73 1.80 .07

SDr ** 0.42 ng/g
RSDr ** 12.1%

a Internal sample ID number with UA Museum of the North catalog numbers

* Outlier case excluded from all summary statistics and analyses. 

** Summary statistics exclude outlier cases.
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Figure 4.19. Duplicate mercury determinations made on modem seal bone on 
different days.
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As expected, the within-run imprecision is lower than the between-run imprecision. 

Both the within-run and between-run RSDr values are better (lower) than the expected 

RSDr value o f 18% for samples with analyte concentrations of around 4 ppb (calculated 

as 0.000000004"°15) and are well within the acceptable limits of 9-30% (see Table 3.2) 

(AOAC, 2002; Horwitz and Albert, 2006).

Bone mercury measurement trueness (spike recovery) (modern ringed seals)

A total of four modem ringed seal mandible samples were spiked with a known 

quantity of mercury to equal approximately 400 ppb. Trueness, as measured by percent 

recovery of spiked samples, ranges from 87.7% to 93.0%, with a mean of 90.5 ± 2.6 % 

for four spiked samples (Table 4.14). This is well within the AOAC (2002) recovery 

limits o f 75-120% for analyte concentrations no greater than 1.0 ppm.

Four of the methylmercury-dosed rat bone samples were spiked with a similar 

quantity of mercury (Table 4.15). The average percent recovery for these samples is 

nearly identical to that for the modem ringed seal bone, at 91.0%, and is well within the 

AOAC recovery limits. The range of recovery for the mercury-spiked rat bones is 

slightly larger than that for the modem seal bones, with a low value o f 82.7% and a high 

value of 97.2%. Together, the spike recovery information from the modem seal bone 

samples and the methylmercury-dosed rat samples shows that recovery is within 

acceptable limits, but that recovery is less than 100% in all cases.
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Table 4.14. Recovery o f  mercury spikes on modern ringed seal bone

Sample
Sample THg 

(ng/g)
Spike THg 

(ng/g)
Measured THg 

(ng/g) Recovery (%)

1001 2.27 396.83 368.50 92.3

1001 2.27 398.41 372.70 93.0

1001 2.99 400.00 353.70 87.7

1002 2.98 403.23 361.8 89.0

Mean 90.5

Std. dev. 2.6
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Table 4.15. Recovery o f  mercury spikes on bone from  methylmercury-dosed rats

Sample
Element Sample THg 

(ng/g)
Spike 

THg (ng/g)
Measured 

THg (ng/g)
Recovery

(%)

200 humerus 2.0 410.0 341.4 82.7

350 cranium 9.9 404.9 385.6 92.8

350 cranium 9.9 395.3 371.1 91.4

400 femur 5.2 398.0 392.1 97.2

Mean 91.0

Std. dev. 6.1
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Bone mercury in methylmercury-dosed laboratory rats 

Bone mercury and daily exposure

Rat bone mercury concentration clearly increased in an exposure-related fashion in 

the controlled dosing experiment. For all of the bone types studied (cranium, humerus, 

and femur), mean bone total mercury is lowest in the control group and highest in the 

high exposure group. Furthermore, the linear regressions of log-transformed bone THg 

against daily mercury exposure show strong positive relationships, and indicate that 

most of the variation (98-99%) in bone total mercury can be explained by variation in 

exposure level. A controlled dosing experiment, such as the one employed in the present 

study, is one condition under which causation may be attributed to the independent 

variable (Sokal and Rohlf, 1969). The significant regressions found here, therefore, 

suggest that a large proportion of the variation in bone mercury level is caused by 

changes in exposure level.

At the same time, the results of the rat dosing experiment show a large degree of 

individual variation in the relationship between dose and bone THg, with the latter 

varying by a factor of three or more within the same dose group. Two factors may be 

contributing to the variation in bone mercury within a dose group: inter-individual 

differences in the actual methylmercury dose and inter-individual differences in the 

biokinetic parameters controlling mercury tissue distribution (Berglund et al., 2005;

5. DISCUSSION
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Stem, 2005). Some variation in actual dose may have arisen due to differences in water 

intake among subjects, since methylmercury was delivered via drinking water. A more 

important contributor to differences within the same exposure group is likely individual 

differences in metabolism of mercury, including, for example, differences in the 

absorption rate, the fraction of absorbed dose circulating in the blood, and the half-life in 

blood. These parameters have been found to vary widely among human subjects 

exposed to methylmercury (Canuel et al., 2006; Stem, 2005). In a controlled study of 20 

humans exposed to methylmercury through fish, Sherlock et al. (1984) found large 

variations in the half-life o f mercury in blood, which ranged from 42 to 70 days.

The strength of the bone mercury-exposure relationship found here is similar to that 

found for soft tissue and exposure in another study of methylmercury-dosed rats. In that 

study, which used rats from the same colony and the same dosing levels as in the present 

study, regression analysis showed that daily exposure level explained much of the 

variation (95-98%) in brain and blood mercury (Newland and Reile, 1999).

The strong dependence of rat bone mercury concentration on daily exposure level 

means that bone mercury may be predicted from daily exposure. The inverse 

prediction— estimating mercury exposure level from bone mercury concentration— is 

also possible, by simple algebraic rearrangement of the linear regression equations:

Exposure = (cranium THg -  0.711)/0.0060 [Eq-5]

Exposure (humerus THg -  0.613)/0.0057 [Eq. 6]

Exposure (femur THg — 0.462)70.0059 [Eq. 7]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where Exposure is measured in pg/kg bw/day methylmercury, and THg is expressed in 

logio ng/g. To illustrate, a rat humerus with a THg concentration of 10.0 ng/g (i.e., 1.0 

logio ng/g) suggests an exposure level of around 68 pg/kg bw/day methylmercury.

Such inverse prediction equations are of interest to bioarchaeologists, who wish to 

reconstruct exposure levels or dietary intake levels of substances from prehistoric bone 

element concentrations. However, using the equations developed here for mercury- 

exposed rats may not be appropriate for other species, especially large species.

Typically, large mammals have higher mercury tissue concentrations than small 

mammals at identical doses, because large mammals have slower elimination rates 

(WHO, 2000). Given the broad similarities among mammalian species in the 

physiological mechanisms governing mercury metabolism (Young et al., 2001), it is 

reasonable to expect that other mammals, including humans, will exhibit a relationship 

between bone mercury and exposure. But, the exact form of the prediction equations 

relating rat bone mercury to daily mercury intake should not be extrapolated directly to 

other mammals until the correct allometric adjustments can be made.

Direct extrapolation of the rat bone model to estimate human mercury intake from 

bone concentrations clearly overestimates intake. As a case in point, published median 

human bone mercury concentrations from autopsy subjects in Sweden (femur) (Lindh et 

al., 1980) and the Czech Republic (parietal) (Benes et al., 2000) are 40 ng/g and 70 ng/g, 

respectively. Simple extrapolation would have these populations consuming around 190 

pg/kg bw/day methylmercury, which exceeds the estimated daily intake that would lead
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to severe clinical effects and death in humans (WHO, 1976:section 6.6; WHO, 

1990:section 9.4.1.2). Worldwide, estimates of typical methylmercury intake are less 

than 0.5 pg/kg bw/day for most populations, although in some communities individual 

intakes may exceed 10-20 pg/kg bw/day (UNEP, 2002; WHO, 1990).

Bone mercury and internal dose (methylmercury-dosed rats)

The linear regressions of log-transformed bone THg against log-transformed kidney 

THg, an indictor of internal mercury dose, show strong positive relationships for 

methylmercury-exposed rats, but not when the control group is included. The lack of fit 

for the model that included all subjects suggests that the form of the function relating 

bone mercury to kidney mercury differs at the very low exposure levels experienced by 

the control group. Additional samples at very low exposure levels would be informative 

here.

The linear regression equations for predicting rat bone mercury from kidney mercury 

(control group excluded) may be rearranged to predict kidney mercury from bone 

mercury as follows:

Kidney THg (cranium THg + 3.11)/1.29 [Eq. 8]

Kidney THg (humerus THg + 3.01)/1.23 [Eq. 9]

Kidney THg (femur THg + 1.25)/1.25 [Eq. 10]
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where Kidney THg and Bone THg are expressed in logio ng/g. Thus, for example, a rat 

humerus with a THg concentration of 10.0 ng/g (i.e., 1.0 logio ng/g) suggests a kidney 

THg level of around 1820 ng/g (3.26 logio ng/g). As discussed previously for the bone- 

to-exposure relationship, the bone-to-tissue relationship found here for rats may not 

directly translate to other species. Thus, the equations developed for rats should not be 

directly extrapolated to other animals until the relationship between bone mercury and 

soft tissue mercury can be further explored

A recent study by Brookens et al. (2008) compared total mercury concentrations 

among a number of tissues, including bone (combined rib and femur) and kidney, in a 

sample of 26 modem free-ranging and captive Pacific harbor seal pups (Phoca vitulina 

richardii). They found that while bone mercury concentration is not correlated with 

kidney mercury concentration, bone mercury burden (tissue concentration multiplied by 

total tissue mass) is significantly correlated with mercury burden in liver, kidney, pelt, 

muscle, heart, and brain, although the correlations are weak (r<0.3) (TJ Brookens, 

personal communication 2008). One complicating factor in the seal pup study is that 

some subjects had consumed a natural diet throughout life, while others had consumed a 

rehabilitation diet while in captivity for up to six weeks. The switch to a captive diet 

may have blurred the natural mercury exposure signal in some of the seal tissues.

Between-bone variation in mercury level (methylmercury-dosed rats)

The three rat bone types investigated in the present study (cranium, humerus, and 

femur) differ in mean total mercury concentration, with crania having the highest
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mercury levels and femora the lowest levels. These differences may have a 

physiological basis, such as differences in blood flow to cranial versus long bones, or 

they may be due to variations in the pretreatment methods of the bones, such as the 

inclusion of trabecular bone in the cranial samples but not the long bone samples and the 

defatting o f the femora but not of the crania or humeri.

Concentrations o f lead have also been shown to vary by bone element, but the 

pattern appears to depend on age. In a study o f bone lead in 134 human autopsy subjects 

with “normal” exposure to lead, Wittmers et al. (1988) found that in the adult subjects, 

lead concentration was higher in the tibia than in the cranium, but for the juvenile 

subjects, the pattern was reversed. Among the 21-35-year-olds, lead distribution was 

found to be nearly uniform between the bone elements. Wittmers et al. (1988) suggest 

that over the long term, bones with a higher proportion o f cortical bone, such as the tibia, 

have higher lead concentrations than bones with a high proportion of trabecular bone, 

such as the cranium. While additional controlled studies must be conducted in order to 

isolate the causes o f inter-bone mercury variation, the findings from the present study, as 

well as those from bone lead studies, suggest that application of the bone mercury 

method to prehistoric skeletal samples will need to control for bone element.

Organic and inorganic mercury in bone (methylmercury-dosed rats)

While total mercury was detected in all of the methylmercury-dosed rat cranial bone 

samples, methylmercury was below the reporting limit of 4.0 ng for all of the control 

group samples and two of the low-exposure group samples, suggesting that some
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fraction of the mercury in these bones is inorganic. In the samples for which 

methylmercury was detected, it makes up around 67% to 94% of total mercury. In other 

studies of methylmercury-dosed rats, the fraction of organic mercury found in soft 

tissues depended on the duration of exposure and the length of time after cessation of 

exposure. In rats exposed daily for 64 days and sacrificed immediately, organic mercury 

made up over 90% of the total mercury in brain, blood, liver, and fur, but only 54% in 

kidney (Magos and Butler, 1976). However, in another study in which rats were 

sacrificed a month after dosing stopped, the percent organic mercury was much lower 

than 90% in most tissues, as follows: 91% in fur, 83% in blood, 60% in brain, 38%o in 

liver, and only 8% in kidney (Thomas et al., 1988). In humans exposed to lethal levels 

of methylmercury, the fraction of organic to total mercury was around 93% for blood, 

80% for brain and hair, and 15% for kidney (National Research Council, 2000). The 

trend of increasing inorganic mercury over time demonstrates that organic mercury is 

demethylated to inorganic mercury in the body; this conversion may occur in the 

intestinal tract as well as within specific organs, especially the kidneys and brain 

(Clarkson and Magos, 2006). Based on experiments with monkeys (Macaca 

fascicularis), inorganic mercury in the brain appears to be virtually immobile, with a 

half-life on the order of hundreds of days (Vahter et al., 1995). It is unknown whether 

the inorganic mercury detected in bone in the present study was formed through 

demethylation in the bone itself or whether it was demethylated elsewhere in the body 

and transported to bone.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The finding that a large fraction of the mercury in bone is organic mercury offers 

insight into the question of where this metal is deposited in bone. Some heavy metals, 

such as lead, are known to deposit in the bone mineral, where the metal, usually as a 

divalent cation (e.g., Pb2+), replaces the divalent calcium ion (Ca2+) in the hydroxyapatite 

crystal (O'Flaherty, 1991; Pan and Fleet, 2002). Organic mercury (CH3Hg+) is thus 

likely in the wrong form to be deposited in the apatite crystal structure, although it may 

be contained within the hydrated shell surrounding the crystal, which can entrap organic 

complexes (Priest, 1990). Theoretically, inorganic mercury, as a divalent cation (Hg2+), 

could substitute for calcium in the bone mineral crystal. However, a study of ion 

exchange of Ca2+ in synthetic hydroxyapatite with Hg2+ found that the two ions did not 

easily exchange, possibly because of the strong bonds between Hg2+ and anions in 

solution (Miyake et al., 1990).

Both organic and inorganic mercury may bind to proteins (WHO, 1990; WHO,

1991). Mercury has a high affinity for the sulfhydryl group (-SH), which occurs in the 

amino acid cysteine (Harris et al., 2003; Rabenstein and Fairhurst, 1975). Cysteine is 

found in procollagen and many of the noncollagenous proteins of the bone matrix, 

although it is not present in mature bone collagen (Ayad et al., 1998).

Limitations o f the methylmercury-dosed rat data set

The mercury-dosed rat data set has some limitations. One concern is the small 

sample size, since a small sample may not be representative of the population from 

which it was drawn (in this case, the population of 20-week-old female Long-Evans
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rats). In terms of statistical hypothesis testing, the greatest drawback of a small sample 

size is the reduction in statistical power; that is, as sample size decreases the null 

hypothesis is less likely to be rejected even when it is false (Sokal and Rohlf, 1969). 

Also, if  the underlying population distribution of a variable is not normal, then the 

sampling distribution of a statistic (e.g., mean, regression slope etc.) may not be normal 

for small samples. Depending on the shape of the population distribution, the minimum 

sample size needed to approximate a normal sampling distribution is as small as 5, but 

might also be 20, 30, 100 or more (Agresti and Finlay, 1997; Wilcox, 2001).

Another issue with this data set concerns the mercury dosing schedule. While the 

range of methylmercury exposures used in this study (0, 40, and 400 pg/kg bw/day) is 

considered low to moderate for rats (Newland et al., 2006), this type of discrete dosing 

for around 100 days may not adequately approximate the chronic, continuous exposure 

levels experienced by humans and free-ranging animals. Also, as already discussed, rats 

may eliminate mercury more rapidly than larger bodied animals, so the exact form of the 

relationship found here between exposure and bone mercury may not apply to other 

species.

Bone mercury and indicators of exposure in archaeofauna 

Prehistoric ringed seal bone mercury and Thule mercury exposure

Mercury was found in all of the ringed seal bones from the prehistoric Thule sites at 

Cape Espenberg (sites KTZ-087, KTZ-088, and KTZ-101). While no published studies
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of mercury in prehistoric seal or other marine mammal bone could be found, a study by 

Brookens et al. (2008) measured total mercury in bone (combined rib and femur) for 26 

modem Pacific harbor seal pups (Phoca vitulina richardii) from California. They found 

a mean total mercury concentration of 38.0 ng/g (range: 17-63 ng/g), which is nearly 

three times higher than the mean of 13.1 ng/g found in the present study.

The presence of mercury in the ancient ringed seal bones demonstrates that these 

seals were exposed to mercury and, by extension, so were their human consumers. The 

degree o f exposure experienced by the prehistoric Thule population at Cape Espenberg 

cannot be precisely calculated at this time, because the level of mercury in bone must be 

translated into levels in edible tissues, such as muscle. The study by Brookens et al. 

(2008) did not find a correlation between mercury concentration in bone and that in 

muscle in Pacific harbor seal pups, but the mercury concentration in bone was 

consistently lower than that in all of the other tissues, except blubber. Therefore, it can 

be assumed that muscle mercury in the prehistoric Cape Espenberg seals was higher than 

bone mercury. If prehistoric Cape Espenberg Thule folk consumed an average of 860 g 

of ringed seal per day— the amount of seal consumed by Greenlandic Inuit according to 

a dietary survey in 1855 AD (see Table 5.1)— and ringed seal muscle was at least as high 

as that measured in their preserved bones (i.e., around 13 ng/g or 0.013 pg/g), then the 

typical adult consumed at least 11.2 pg of mercury per day. For a person weighing 65 

kg (143 lb), that is equivalent to around 0.2 pg/kg bw/day, which exceeds the EPA safety 

level o f 0.1 pg/kg bw/day (EPA, 2001c). Since prehistoric ringed seal muscle was likely
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much higher in mercury than the bones measured in the present study, this is a minimum 

estimate.

Faunal remains from the three Cape Espenberg sites studied here, KTZ-087, KTZ- 

088, and KTZ-101 suggest that the prehistoric Thule inhabitants may have consumed 

varying amounts of ringed seal during these different occupations. At all Cape 

Espenberg sites, fish remains are virtually nonexistent, and bird and shell remains are 

present but infrequent (Saleeby, 1994). While poor preservation of these more delicate 

bones cannot be ruled out, it will be assumed that these food categories contributed little 

to the prehistoric diet. Instead, all of the sites are rich in marine mammals remains, with 

some caribou. Table 5.1 shows the abundance of each mammal identified to species 

from the sites. This table excludes probable non-dietary species (canids, mustelids, 

small rodents), which are not abundant at the sites in any case.

Based on number of identified specimens (NISP), ringed seal clearly dominates all of 

the assemblages, forming over 80% of the total specimens. However, NISP does not 

take into account the differences in weight among the animals. To get an idea of the 

relative dietary importance of each faunal taxon, meat yields were calculated for each 

species by multiplying their NISP by their edible meat weight, following Whitridge 

(2001) and White (1953). For the Thule at KTZ-087 (ca. 1275 AD), ringed seal appears 

to have made up 46% of the meat diet by weight, but for KTZ-088 it was 87%, and for 

KTZ-101 it was 57% (Table 5.1).
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To estimate the intake of each species in grams per day, the percent contribution of 

each species was multiplied by 2000 g, the daily meat/fish intake observed for 19th 

century Greenlandic Inuit adults (Sinclair, 1953). Using this formula, the estimated 

daily intake of ringed seal for the prehistoric Thule at Cape Espenberg is 920 g for KTZ- 

087, 1740 g for KTZ-088, and 1140 g for KTZ-101. Consumption of these amounts of 

ringed seal daily would have delivered at least 12, 22, and 15 pg of mercury, 

respectively, if  ringed seal muscle mercury concentration was at least as high as that 

measured on bone (i.e., >0.013 pg/g). For a 65 kg-person, the calculated daily mercury 

intakes are all above the EPA safety levels of 0.10 pg/kg bw/day, and for KTZ-088, the 

intake is over three times the “safe” level (EPA, 2001c). Obviously, the foregoing 

analysis makes many assumptions: that NISP captures faunal abundance in the past; that 

faunal remains represent animals that were consumed by humans; that calculated edible 

meat weights provide an accurate ranking of the dietary importance of each species; and 

that the amount of meat consumed daily by Greenlandic Inuit in 1855 AD is similar to 

that of prehistoric Thule in Alaska ca. 1275-1640 AD.
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Table 5.1. Frequencies and estimated dietary importance o f  mammalian archaeofauna from prehistoric Thule sites (KTZ-087
, KTZ-088, & KTZ-101), Cape Espenberg, Alaska ca. 1275-1640 AD

Species

Meat yield 
per animal 

(kg)b KTZ-087

NISP3

KTZ-088 KTZ-101

Ringed seal (Phoca hispida) 63.7 467 700 273

Ribbon seal (Phoca fasciata) 47.6 14 5 1

Bearded seal (Erignathus barbatus) 196.0 11 0 19

Walrus (Odobenus rosmarus) 730.1 42 7 10

Caribou (Rangifer tarandus) 47.7 31 21 40

Grizzly bear (Ursus arctos) 231.7 0 2 1

Total NISP 565 735 344

Total meat yield (kg) 64,712 51,403 30,601

Ringed seal meat yield (% of total) 46% 87% 57%

Estimated ringed seal daily intake by adults (g)c 920 1740 1140

a NISP (number of individual specimens) from Saleeby (1994); includes only specimens identified to species level. Feature 30 specimens 
were listed under KTZ-088 in the Saleeby report but are here classified as KTZ-087 following the information on the original faunal 
analysis sheets and collection bags.
b Meat yield = (mean adult animal weight) x (edible fraction). Weights for ringed seal and grizzly bear are from Banfield (1974), bearded 
seal and caribou are from Friesen and Arnold (1995), and ribbon seal and walrus are from Wynne (1997). Edible fractions follow Friesen 
and Arnold (1995).
c Assumes 2000 g of meat consumed per day, following Greenlandic Inuit diet ca. 1855 AD (Sinclair, 1953)
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The whole bone nitrogen content for nearly all of the prehistoric Cape Espenberg 

ringed seal mandibles is in the range of modem bone (4.5-3.5%) (Stafford et al., 1988), 

suggesting excellent bone protein preservation. According to the bone preservation 

classification scheme presented by Stafford et al. (1988), all of the Cape Espenberg 

ringed seal remains fall into either the Class I (Modem) or Class II (Very Well 

Preserved) preservation categories based on whole-bone nitrogen content. While 

nitrogen content is not routinely measured on archaeological bones, reported values for 

well-preserved bones are generally in the 1.5-3.0% range (Bocherens et al., 1997; 

Coltrain et al., 2004a; Petchey and Higham, 2000; Schutkowski et al., 1999; Stafford et 

al., 1988). It is unlikely that the nitrogen in the Cape Espenberg seal bones derives from 

any soil organic contaminant, such as nitric or fulvic acid, since these compounds tend to 

be predominately carbon by weight (>50%) with a low nitrogen content (<3.5%) (Tan, 

2003), and their presence would tend to lower the nitrogen content o f bone.

The carbon content of the Cape Espenberg Thule-period seal bones varies from 9.8% 

to 13.7%, which is similar to the range of 10.5% to 16.0% observed in a small sample of 

modem terrestrial herbivore bone (Bocherens et al., 2005). The carbon content of whole 

archaeological bone is rarely measured, so comparisons are limited. Bocherens et al. 

(2005) measured percent carbon on whole bone from herbivores, boars, dogs, and 

humans dating to the prehistoric period in Iran and found values ranging form around 

2% to 11%, with most clustering around 8%. Medieval human skeletal remains from
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Germany have reported whole bone carbon concentrations from as low as 3.6% to 13.8% 

(and one anomalous reading of 35.2%), with means of 7.1% to 10.6% (Schutkowski et 

al., 1999). Pleistocene cave bear remains from Grotte Chauvet, France produced whole 

bone carbon in the range of <1.0% to 5.5% (Bocherens et al., 2008).

Most organic contaminants of archaeological bone are carbon-rich, so their presence 

in bone tends to skew the carbon-to-nitrogen ratio. One way to assess the origin of 

carbon in archaeological bone is to calculate the expected carbon content from the 

nitrogen content. Bocherens et al. (2005) developed the following formula, based on the 

empirical relationship found between carbon and nitrogen content in modem mammal 

bone: Expected %C = (%N x 2.7) + 1.4. The first part of this equation (%N x 2.7) 

describes the fraction of whole bone carbon associated with bone protein, while the last 

term (1.4) is the percent of whole bone carbon found in bone mineral. When observed 

carbon content is higher than predicted, the presence of exogenous carbon is indicated. 

Applying this formula to the prehistoric ringed seal remains produced expected whole 

bone carbon values that are within 1.0 percentage point above or below the actual carbon 

values. This suggests that bone carbon has not been increased by exogenous carbon, 

although it is unknown if modem sea mammal bone follows the same empirical 

relationship between nitrogen and carbon observed in terrestrial mammal bone.

Few reports of total sulfur content of whole bone are available, either for modem or 

archaeological specimens. The Cape Espenberg prehistoric seal bones in the present 

study have an average total sulfur content of around 0.11%, which is lower than that
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reported for three modem human femora (0.19-0.24%) and for a single modem 

herbivore long bone ( 0.16%) (Reiche et al., 2003; Shinomiya et al., 1998). Two 

archaeological long bone specimens from a French Neolithic site were reported to have a 

total sulfur content of around 0.51% (Reiche et al., 2003).

Stable isotopes in tissues o f prehistoric and modern ringed seals

There are few reports of the stable nitrogen isotope composition of ringed seal bone 

collagen. Coltrain et al. (2004b) analyzed a small sample o f prehistoric Thule-age 

ringed seal remains from the Hudson Bay area of Canada and found a mean 815N value 

of 17.2%o (table 5.2), which is similar to the mean of 17.8%o found here. Published 

mean 8,5N values for modem ringed seal muscle from Alaska and Canada are all lower 

than the mean value found in this study for ancient ringed seal bone collagen, but stable 

isotope ratios may not be directly comparable across tissue types. Results of controlled 

feeding studies differ as to the spacing between muscle and bone collagen 815N values, 

with one study of mice finding no difference between the two tissues (DeNiro and 

Epstein, 1981), and another of rats finding that bone collagen 815N values are around

1.4%o higher than those in muscle in mature individuals (Ambrose, 2000). Using these 

two extremes, Table 5.2 shows the estimated bone collagen 815N for modem ringed seal 

samples based on measured muscle values. The mean 8I5N value found in this study for 

ancient seal bone collagen fits within the estimated bone collagen 815N for most modem 

ringed seal samples, including the sample from Barrow, Alaska.
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Table 5.2. 815N  in modern and Thule-period ringed seal tissues from the Arctic

Time Period Location Tissue

8 l5N mean & 
standard deviation
(%o)

Estimated Bone 
collagen 8I5N mean 
(°/oo)a Reference11

Prehistoric Cape Espenberg 
AKUSA

Bone
collagen 17.8+/-0.4 This study

Silumiut (Hud. Bay) 
NU Canada

Bone
collagen 17.2+/- 1.0 (Coltrain et al., 2004b)

Modem Barrow 
AK USA Muscle 16.9 +/- 0.6 16.9 to 18.3 (Dehn et al., 2006b)

Sachs Harbor 
NT Canada Muscle 17.3 +/-0.5 17.3 to 18.7 (Butt et al., 2008)

Holman 
NT Canada Muscle 17.2 +/- 0.7 17.2 to 18.6 (Dehn et al., 2006b)

Gjoa Haven 
NU Canada Muscle 17.9+/-0.7 17.9 to 19.3 (Butt et al., 2008)

Barrow Strait 
NU Canada Muscle 17.3 +/- 1.1 17.3 to 18.7

(Hobson and Welch, 
1992)

Resolute Bay 
NU Canada Muscle 17.5+/-0.3 17.5 to 18.9 (Butt et al., 2008)

Arviat 
NU Canada Muscle 16.6+/- 0.4 16.6 to 18.0 (Butt et al., 2008)

a Estimated bone collagen 8I5N = muscle 515N (%o)+ 0-1.4%o, which is the range of spacing reported from controlled feeding studies 
(Ambrose, 2000; DeNiro and Epstein, 1981)

b References are for stable isotope ratios on the original tissue, not estimated bone collagen stable isotope ratios.
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Table 5.3. S,3C in modern and Thule-period ringed seal tissues from  the Arctic

Time Period Location Tissue

8 13C mean & 
standard deviation 
(%o)

Estimated Bone 
collagen 813C mean
(%o)a Referenceb

Prehistoric Cape Espenberg 
AKUSA

Bone
collagen -1 3 .6 + /-0 .6 This study

Silumiut (Hud. Bay) 
NU Canada

Bone
collagen -13.9 + /-0 .7 (Coltrain et al., 2004b)

Modem Barrow 
AK USA Muscle -18.5 + /-0 .8 -16.5 to -14.5 (Dehn et al., 2006b)

Sachs Harbor 
NT Canada Muscle -20.3 + /- 0 5 -18.3 to -16.3 (Butt et al., 2008)

Holman 
NT Canada Muscle -20.4 + /- 0.4 -18.4 to -16.4 (Dehn et al., 2006b)

Gjoa Haven 
NU Canada Muscle -22.9 + /- 0.2 -20.9 to -18.9 (Butt et al., 2008)
Barrow Strait 
NU Canada Muscle -17.3 + /-0 .7 -15.3 to -13.3

(Hobson and Welch, 
1992)

Resolute Bay 
NU Canada Muscle -1 8 .9 + /-0 .5 -16.9 to -14.9 (Butt et al., 2008)

Arviat 
NU Canada Muscle -19.1 + /-0 .2 -17.1 to -15.1 (Butt et al., 2008)

a Estimated bone collagen 8I3C = muscle 8I3C (%o)+ 2-4%o following Loken et al. (1992).

b References are for stable isotope ratios on the original tissue, not estimated bone collagen stable isotope ratios.
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The mean bone collagen 513C found in the present study for ringed seal mandibles 

from prehistoric Thule-period archaeological sites in Alaska (mean 813C = -13.6%o) is 

similar to that found by Coltrain et al. (2004b) for ringed seal remains from Thule-period 

sites in the Hudson Bay area of Canada (mean 813C = -13.9%o) (Table 5.3). Published 

mean carbon stable isotope ratios for modem ringed seal muscle from Alaska and 

Canada are all lower by around 4%o or more than the mean values found in this study for 

ancient ringed seal collagen (see Table 5.3), but S13C values cannot be directly compared 

between tissue types. Mammal bone collagen is generally more enriched in heavy 

carbon by about 2-4%o than the corresponding muscle (DeNiro and Epstein, 1978; Hare 

et al., 1991; Loken et al., 1992). Table 5.3 shows the reported mean muscle carbon 

stable isotope ratio for modem ringed seals and the estimated bone collagen equivalents. 

An additional correction must be made when comparing bone collagen 813C values 

between prehistoric and modem samples because of the effects of recent fossil fuel 

inputs to the marine carbon reservoir, by subtracting 1 %o from preindustrial samples 

(Burton et al., 2001). When this correction is made (not shown in Table), the mean bone 

collagen 813C for Cape Espenberg Thule-period seals falls within the upper end of the 

estimated bone collagen values for modem ringed seals from Barrow and many of the 

other arctic locations.

Bone mercury vs. SlsN, SI3C, %N, %C, and %S (prehistoric ringed seals)

Linear regression analysis suggests that seal bone mercury increases in relation to 

815N, which is a measure of trophic level. Since mercury concentrations in animal
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tissues tend to increase with trophic level, (Atwell et al., 1998; Cabana and Rasmussen, 

1994), 8I5N can be considered to be a proxy measure of mercury exposure. The two 

variables, mercury concentration and 815N, should be positively related in animal tissues 

if the tissue is faithfully tracking mercury exposure, and if the two variables are in 

equilibrium with the diet. The significant positive relationship found in this study agrees 

with several studies that compared mercury concentrations to S15N values on soft tissues 

of modem seals, including ringed seals from western Canada and northwest Greenland 

(Dehn et al., 2005; Riget et al., 2007a). However, some modem seal samples have 

shown no significant correlation between the two variables, including a sample of ringed 

seals from northern Alaska (Dehn et al., 2005) and grey seals from the northeast Atlantic 

(Das et al., 2003). A positive correlation between THg and 815N was also found in tooth 

cementum, a hard tissue, in a historical (late 19th century) sample o f beluga whales from 

Central Canada, but not in a comparative modem sample (Outridge et al., 2005).

The slope of the regression line for logio bone THg versus bone collagen 815N in the 

prehistoric ringed seal sample (6=0.37) is similar to that found by Capelli et al. (2008) 

for marine mammals in the Mediterranean. However, it is higher than the slopes 

reported for entire arctic marine food webs (i.e., from phytoplankton or zooplankton to 

top marine mammals), which are in the range of 0.10 to 0.26 (Atwell et al., 1998; 

Campbell et al., 2005; Loseto et al., 2008; Riget et al., 2007b).

Bone total mercury appears to vary negatively with bone collagen 813C (see Figure

* • 134.15), although the relationship is only moderate. For aquatic animals, 8 C is an
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indicator of feeding location, and values are usually higher in nearshore and bottom- 

feeding animals compared to offshore and open-water feeding animals (Burton et al., 

2001; Clementz and Koch, 2001; France, 1995; McConnaughey and McRoy, 1979; 

Walker et al., 1999), while mercury levels have been shown to sometimes vary in the 

opposite direction, although this pattern has not been fully investigated (Chen et al.,

2008; Embury, 2000; Goodale et al., 2006; Lacerda et al., 2007; Lasora and Allen-Gil, 

1995; Ricca et al., 2008; Rumbold et al., 2003). The negative relationship found here for 

prehistoric ringed seals suggests that nearshore and bottom-feeding individuals may 

have been less exposed to mercury than their pelagic-feeding counterparts. Other studies 

have found a negative relationship between mercury concentration and stable carbon 

isotope ratios, including in fish-eating birds (Bearhop et al., 2000; Ricca et al., 2008) and 

freshwater fish (Ethier et al., 2008; McIntyre and Beauchamp, 2007; Power et al., 2002).

No studies could be found that reported a negative relationship between total 

mercury concentration and 513C in marine mammals, although several studies reported a 

lack of association between these two variables (Hobson et al., 2004; McIntyre and 

Beauchamp, 2007; Riget et al., 2007a; Thompson et al., 1998). In a study by Dehn et al.

1 3(2005) the correlation between liver THg and muscle 5 C was not significant for ringed 

seal from Holman Canada, but was significant and positive for ringed, bearded, and 

spotted seal from Barrow Alaska. The different outcomes among studies suggest that 

mercury levels do not vary in a consistent fashion across food chains, such as benthic 

versus pelagic, or nearshore versus offshore.
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Linear regression analysis revealed a strong positive relationship between total 

mercury and total nitrogen measured on whole bone of prehistoric ringed seals. This 

finding agrees with a study by Honda et al. (1984), who found a significant and strong 

positive relationship (r2 = 0.88, p <0.001) between bone mercury and bone protein 

(calculated from nitrogen content) in modem striped dolphin (Stenella coeruleoalba). 

This association offers insight into where mercury is deposited in bone. Nitrogen does 

not occur in the bone hydroxyapatite, but is a key building block of the amino acids 

making up all proteins. Thus, a relationship between total mercury and total nitrogen 

suggests that mercury in bone is associated with the protein phase, rather than the 

mineral phase.

Additional evidence for bone mercury being located in the protein phase of bone is 

provided by the two experimental samples that were demineralized prior to mercury 

analysis. The mercury concentrations in the two demineralized bone samples were 

roughly three times higher than in the paired untreated samples. This might indicate that 

the majority of bone mercury is in the bone protein, although the possibility that the 

mineral-associated mercury was not dissolved along with the bone mineral cannot be 

ruled out. Some of the bone mercury appears to have been dissolved by the weak-acid 

demineralizing treatment, since the increase in mercury concentration in the 

demineralized bone samples is not as large as expected if the increase were due solely to 

a loss of bone mass, with no concomitant loss of mercury.
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Both organic and inorganic mercury bind to proteins in non-bone tissues, including 

the protein albumin in blood plasma and milk, hemoglobin in red blood cells, and keratin 

in hair (Cemichiari et al., 2007; Sundberg et al., 1999; WHO, 1991). While the exact 

nature of the binding has not been elucidated, the mercury in these proteins is thought to 

be bound to the amino acid cysteine, which contains a sulfhydryl group (~SH, also 

called a thiol group) (Clarkson, 2002). The affinity of methylmercury for the thiol group 

is so high that “it is assumed that methylmercury binds exclusively to thiol-containing 

molecules” (Cemichiari et al., 2007:1016-1017). In bone, the amino acid cysteine 

occurs in procollagen (but not mature collagen), in osteonectin, and in most of the other 

noncollagenous bone proteins (Ayad et al., 1998).

The supposition that mercury is associated with sulfur-containing complexes in bone 

receives further support from the finding that bone mercury concentration is related to 

bone sulfur content. Sulfur is present in the protein phase of bone, although not 

exclusively so. It may also exist in the bone mineral, as sulfate (SO4), which may 

occasionally replace the phosphate group in the hydroxyapatite crystal interior or may 

exist as sulfate ions or calcium sulfate (CaSCL) at the crystal surface (Monteil-Rivera 

and Fedoroff, 2004; Pan and Fleet, 2002; Richards et al., 2003). Inorganic mercury 

could potentially bind to sulfate to form mercuric sulfate (HgSCL).

Whole bone carbon content is also moderately associated with bone mercury content 

in the prehistoric ringed seal sample. Like sulfur, carbon may occur in both the bone 

proteins and the bone mineral. In the hydroxyapatite crystal, there is extensive
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replacement of the phosphate group (P O 4 ) by carbonate (C O 3 ), such that carbonate 

makes up around 3% or more of bone mineral by weight, and the mineral carbon makes 

up around 1.4% of whole bone carbon (the balance being found in the protein) 

(Bocherens et al., 2005; Driessens and Verbeeck, 1990; Pan and Fleet, 2002). In 

archaeologically-derived bones, carbon may also be present as a contaminant. However, 

the prehistoric ringed seal bones studied here do not appear to contain exogenous carbon 

based on the calculation of expected carbon content using the Bocherens et al. (2005) 

formula (discussed previously).

Limitations o f  the prehistoric seal bone data set and analysis

Some limitations of the prehistoric seal bone data set must be discussed. One 

concern is the modest sample size, as previously discussed for the methylmercury-dosed 

rat data set. A greater concern for the prehistoric seal bone data is that diagenesis may 

have affected bone chemical composition, including mercury and other elemental 

concentrations and stable isotope ratios. Diagenesis refers to changes in the chemical 

constituents of tissues after deposition in sediments, and this is always a concern in trace 

element and stable isotope analysis of archaeological bone (Sanford and Weaver, 2000).

There are no studies on the diagenesis of mercury in buried bone. This is a difficult 

issue because while there are widely-used tests to assess the state of bone alteration in 

general (e.g., increased porosity or loss of organic matter) (Hedges, 2002), there are no 

widely agreed-upon tests for measuring diagenetic change on an element-by-element 

basis Tests for diagenetic changes in metal concentrations in bones generally fall into
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two categories, as described by Edward and Benfer (1993): 1) comparisons of metal 

levels in bone with those of the surrounding soil, or 2) comparisons of metal levels in 

archaeological bone with those in presumed unaltered bone. The latter category includes 

several types of “unaltered” bone, such as modem (or less ancient) bone, interior bone 

(versus surface bone), or certain bone elements (e.g., tibia) thought to be more resistant 

to change.

All of these methods are imperfect. For example, Aufderheide et al. (1992) tested 

for lead diagenesis in bones of ancient Romans by comparing lead concentrations in 

more ancient specimens to those in more modem specimens, assuming that if  lead had 

been transferred into bone postmortem, the older bones would have higher lead 

concentrations. However, decreasing metal levels in bone through time could also 

reflect actual decreasing exposure through time due to changes in environmental or 

cultural conditions. Another test of diagenetic metal uptake has been to compare right 

and left bones o f the same element; if  the metal levels are different, then diagenesis is 

assumed to have taken place (Drasch, 1982). The assumption in this case is also 

somewhat flawed, in that similar metal levels for both sides could simply mean a similar 

degree of diagenetic alteration. A widely-used test for metal uptake by buried bone is to 

compare concentrations at bone surfaces to those in deeper layers o f bone; if  higher 

levels are found at the surface, post-depositional uptake is indicated (Ericson et al.,

1991). However, studies of metal distribution in the bones of living humans and animals 

indicate that a higher concentration at the bone surface is the natural physiological 

pattern for some metals (Aufderheide, 1989; Priest, 1990; Wittmers et al., 1988).
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A common test for diagenetic change in bone metal concentration is to compare the 

metal levels in bone to those in the burial soil. If  the two variables are correlated, 

postmortem metal uptake by bone is presumed to have occurred (Aufderheide et al.,

1992; Vuorinen et al., 1996; Waldron, 1982). This test is flawed, however, because the 

extent of bone diagenetic uptake of a particular metal depends largely on the 

concentration of the metal in the surrounding soil pore water, not the whole soil, as well 

as the propensity of bone to sorb the metal (Hedges and Millard, 1995; Pike and 

Richards, 2002). The metal must move from the soil to the soil pore water, then from 

the soil pore water to the water held within the bone’s pores, and finally it must be fixed 

in the bone (Pike and Richards, 2002). Thus, the concentration of a metal in soil may 

not be directly correlated with that in bone, since it is the metal in soil pore water that 

interacts with bone (Pike and Richards, 2002).

The concentration of mercury in soil pore water has been reported for several 

locations worldwide. As seen in Table 5.4, the mercury concentrations in soil pore water 

are very low, in the parts per trillion (ng/1) range. Mean (or median) values are usually 

less than 50 ng/1 (0.05 ppb), with reported ranges o f between 1.8 ng/1 to 188.9 ng/1.

The extremely low mercury concentrations in soil pore water as shown in Table 5.4 

suggest that the potential for diagenetic uptake of mercury by bone is low. There are no 

measurements of soil pore water mercury from the Cape Espenberg archaeological sites 

or its environs, so the relative likelihood of post depositional mercury uptake by the 

prehistoric seal bones used in this study cannot be addressed.
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Little information could be found on the propensity of bone to sorb mercury. One

study investigated the immobilization of toxic metal cations onto synthetic

2_|_

hydroxy apatite, and found that mercury (as Hg ) has a very low affinity for apatite 

compared to lead, cadmium, and zinc (Monteil-Rivera and Fedoroff, 2004). The 

reaction of Hg2+ with the synthetic apatite attained steady state quickly, and the uptake 

of mercury ions was smaller than for all of the other ions.

Two findings from the present study indirectly suggest that the prehistoric Cape 

Espenberg ringed seal specimens have retained their biogenic mercury signal. First is 

the high concentration of nitrogen found in whole bone. As previously mentioned, the 

levels are similar to modem bone and suggest excellent overall preservation (Stafford et 

al., 1988). Second is the finding of a relationship between bone mercury concentration 

and 515N, which is the expected biological pattern. Diagenetic mercury uptake would 

likely blur this relationship, unless mercury uptake was accompanied by a concomitant 

shift in 515N values.
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Table 5.4. Total and organic mercury concentrations in soil pore water worldwide

Location Environment Soil type

Pore water 
THg ng/1 

(PPO Statistic

Pore water 
MeHg ng/1 

(PPt) Statistic Reference
Svartberget
Sweden Boreal forest Peat & podzol 15.5 Median 0.22-2.11 Min/Max

(Skyllberg et al., 
2003)

Gammtratten
Sweden Boreal forest

Organic
podzol 21.8 Mean NA NA

(Akerblom et al., 
2008)

Tiveden
Sweden Boreal forest Podzol 6.8-15.1 Means NA NA

(Aastrup et al., 
1991)

Lake Gardsjon 
Sweden Boreal forest Podzol 1.8-23.0 Min/Max 0.01-0.08 Min/Max (Lee et al., 1994)
Aneboda
Sweden Boreal forest

Organic
podzol 32.2-47.0 Means NA NA

(Akerblom et al., 
2008)

Bavaria
Germany Spruce forest

Cambisol & 
podzol <15.0-31.0 Min/Max <0.2-1.1 Means

(Schwesig et al., 
1999)

New York 
USA

Conifer & 
decid. forest NA 2.7-188.9 Min/Max NA NA

(Kalicin et al., 
2001)

Ontario
Canada Lake bank

Lacustrine
sand <10.0 Mean <1.0 Mean (He et al., 2007)

Wisconsin
USA Lake bank

Lacustrine
sand 3.4 Median NA NA

(Krabbenhoft et al., 
1998)
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The present study found that bone mercury measurements made on modem ringed 

seal bone had acceptable precision and trueness, where acceptability was determined by 

comparison to internationally recognized standards. The between-run imprecision for 

bone THg as given by the repeatability relative standard deviation(RSDr) is 12.1% based 

on 19 sets of duplicate measurements on modem seal bone, and this is well within the 

AOAC limit (9-30%) for analyte concentrations of around 4 ppb (AOAC, 2002; Horwitz 

and Albert, 2006). The between-run imprecision estimate also compares favorably to 

imprecision estimates found for mercury determinations on other biological tissues, 

though it is slightly higher than most. The RSDr value for a certified biological 

reference material obtained by the same laboratory used in the present study (Frontier 

Geosciences, Inc.) and using the same method of mercury determination is 11% for 

mussel tissue (certified value=61 ppb (EPA, 2001a).

Similar imprecision estimates have been found for mercury in blood, which is the 

most commonly used biomarker of mercury exposure, and which usually has mercury 

concentrations in the parts per billion range. Based on duplicate analysis of samples, 

Sandborgh-Englund et al. (1998:158) calculated a between-run imprecision (“coefficient 

of variation”) of 6% to 12% for animal and human blood total mercury determined by 

cold vapor atomic fluorescence spectrometry. Barbosa et al. (2004:1005) calculated a 

between-run imprecision (“intermediate precision”) of around 10% for repeated analysis 

of a single sample of prepared animal blood (THg=5.2 ppb) by cold vapor atomic
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absorption spectrometry. Repeated ultraviolet absorption spectrometry analysis of a 

control animal blood sample with a THg concentration of around 10 ppb produced an 

imprecision estimate of 14% (Grandjean et al., 1992). Using inductively-coupled 

plasma mass spectrometry, Palmer et al. (2006) found RSDr levels o f between 3% and 

9% for prepared animal blood with target THg concentrations of between 1.3 ppb and

11.8 ppb.

A single study was found for mercury in hard tissue. Saber-Tehrani et al. (2007) 

determined mercury on permanent human teeth (type not specified) via CVAAS and 

found an RSDr of 17% for repeated determinations on a single sample; this is quite high, 

if  their reported tooth Hg concentrations of between 490 ppb and 9220 ppb are correct. 

Specific causes of analytical error may include weighing errors, heterogeneity of the 

sample, and variation of the chemical treatments, as well conditions associated with runs 

on different days, such as change of analyst, different batches of reagents, instrument 

recalibration, and changes in the laboratory ambient environment (temperature, 

humidity, etc.) (Thompson et al., 2002).

Results from the mercury analysis of modem seal bone also indicate that bone 

mercury measurements have an acceptable level of trueness, as measured by percent 

spike recovery. The four bone samples spiked with around 400 ppb mercury had an 

average recovery of 90.5%, which is well within the AOAC (2002) recovery limits of 

75-120% for substances in the concentration range of 1.0 ppm or less. An additional 

four samples of bone from methylmercury-dosed rats were spiked at the same level and
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showed a nearly identical spike recovery (91.0%). While the percent recovery values are 

within the AOAC limits, all of the values are below 100% (87.7-93.0% for modem seal 

bone and 82.7-97.2% for methylmercury-dosed rat bone). This suggests that there is a 

consistent, though small, negative bias. Such a bias is usually due to some type of 

matrix interference; for example, the presence of one or more elements in bone may 

interfere with the detection of mercury in the sample (Mishalanie et al., 2005). For bone, 

the high level of dissolved salts in the solution of digested samples may suppress 

detection of the analyte o f interest (Lambert and Weydert-Homeyer, 1993).

Recovery estimates for mercury in blood and hair are usually performed on certified 

reference materials, rather than on materials prepared in-house by spiking. Reported 

recoveries for mercury on a certified bovine blood reference material (NIST Standard 

Reference Material 966: THg=31.4 ppb) are around 93% for determinations by ICP-MS 

(Palmer et al., 2006) and 89-97% for determinations by CVAAS (Barbosa et al., 2004; 

Ertas and Tezel, 2004). For a human hair reference sample (IAEA-086: THg=573 ppb), 

reported average recoveries are from 96-101% (Berglund et al., 2005; Gill et al., 2004). 

Recovery levels for mercury in teeth were around 85-92% for mercury spikes of 25 ppb 

to 100 ppb (Saber-Tehrani et al., 2007).

Analytical chemists disagree as to whether recovery analysis should be used to 

“correct” measurement results. Arguments in favor of correction emphasize that the 

goal of a measurement method is to obtain “the true concentration of the native analyte,” 

which can be estimated only if “low recoveries of an analyte are corrected” (Thompson
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et al., 1995:8). Others argue against correction, noting that corrected results may still be 

biased, and that estimated correction factors have high uncertainly and vary for different 

concentrations of the analyte (Thompson et al., 1995). The “Harmonised guidelines for 

the use of recovery information in analytical measurement” states that IUPAC and the 

ISO embrace the policy that results be corrected for recovery, while AOAC “does not 

agree that analytical results should be corrected for recovery as a general policy” 

(Thompson et al., 1995:12). Mercury determinations in the present study were not 

corrected for recovery, since so little is known about the range of recovery over different 

concentrations and in different bones.

The levels of precision and trueness found here for bone total mercury measurements 

serve as estimates of expected measurement quality for new bone samples treated and 

analyzed in a similar manner. In this study, sample preparation prior to submission to 

the analytical laboratory included cleaning by lightly abrading with a sanding drum and 

soaking in an ultrasonic bath with ultrapure water, freeze drying, and grinding to a 

fineness of less than 300 micrometers. At the analytical laboratory, mercury 

determination was by acid digestion and BrCl oxidation, followed by cold vapor atomic 

fluorescence spectrometry, following EPA Method 1631 (EPA, 2001a).

Limitations o f the modern ringed seal hone data set and analysis

The modem ringed seal bone samples used in the measurement accuracy analysis 

have one important shortcoming, and that is the lack of information on chemical and 

other washing treatments prior to their preparation for mercury analysis. As described
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previously, an unknown number of specimens were soaked in ammonium hydroxide, 

which may have leached out mercury present in the bone. Since measurement trueness 

and precision tend to decrease with decreasing mercury concentration, the modem 

ringed seal data set may present a “worst case” for assessing measurement accuracy.

That is, bone samples with higher concentrations of mercury may produce better 

measurement trueness and precision than these low-mercury samples.

In terms of assessing measurement trueness, the spike recovery method has some 

recognized limitations. These include differences in the chemical form and behavior of 

the native analyte compared to the added analyte (Mishalanie et al., 2005; Willetts and 

Wood, 1999). Also, it is difficult to check all “relevant” concentration ranges (Willetts 

and Wood, 1999). Because the relevant range of mercury concentrations in bone was 

unknown prior to the present study, the suitable spike amount was unknown, and the 

laboratory default level of 400 ppb was used. In light of the range of mercury 

concentrations seen for natural samples in the present study, which range from around 4 

ppb to 40 ppb, lower spiking levels may be more appropriate. The EPA suggests spiking 

levels from 2 to 5 times the expected range (i.e., 8 ppb to 200 ppb for the range observed 

here) (EPA, 2001a).

Some other important sources of mercury measurement error were not assessed in 

the present study. Thompson (2000:2020) describes that an analytical result arises from 

a “ladder of errors”: result = true value + method bias + laboratory bias + between-run 

error + within-run error. The present study examined only the last two of these, the error
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within a single laboratory. The other sources of analytical variability, including 

between-laboratory differences and between-method differences (i.e., using another 

method of mercury determination, such as inductively-coupled plasma mass 

spectrometry) have not been addressed.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



183

6. SUMMARY AND CONCLUSIONS

The aim of this dissertation research was to investigate the potential for using 

archaeological bone mercury concentration as a biomarker of mercury exposure in 

preindustrial animals and humans. Mercury is a toxic heavy metal that can occur in high 

levels in marine mammals and fish and the in the people who consume them. Today, 

some of the highest tissue mercury concentrations are found among the coastal 

populations of arctic North America and Greenland, where diets are rich in marine foods 

(Burkow and Weber, 2003; EPA, 1997a; Van Oostdam and Tremblay, 2003). Because 

mercury can be released into the environment through natural as well as industrial 

processes, the same pathway that operates today to cause high mercury concentrations in 

arctic marine animals and humans likely operated in the preindustrial past. In this way, 

prehistoric Eskimo and Inuit who relied heavily on marine mammals may well have 

been exposed to relatively high levels of mercury from their diet, just as their modem 

counterparts are today.

Little information is available on preindustrial mercury levels in the environment, 

and archives that have been studied, such as sediment and ice cores, provide no 

information on mercury in the preindustrial food chain. A potential archive of past 

mercury levels is animal and human bone recovered from archaeological sites. Prior to 

this dissertation research, it had been established that mercury could be detected in 

modem and prehistoric bone, but there was no information on whether bone was a valid 

biomarker of past mercury exposure. For a biomarker of exposure to be valid, the
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analytical method used to measure the biomarker must produce accurate results, and the 

biomarker must correspond to the extent of exposure (Lee et al., 2006; WHO, 2001).

This dissertation was thus guided by two central research questions: Can bone mercury 

be accurately measured? and Does bone mercury level reflect dietary intake level?

Can bone mercury be accurately measured?

Results of the mercury analysis on modem Alaskan ringed seal bone indicate that 

bone mercury measurements meet accepted standards of measurement accuracy 

(precision and trueness). Accepted standards are those recognized by several 

international organizations concerned with the quality of analytical measurement results, 

including IUPAC, ISO, and AOAC, as detailed in Alder et al. (2000) and AOAC (2002).

Duplicate measurements of total mercury concentration by Cold Vapor Atomic 

Fluorescence Spectrometry in modem Alaskan ringed seal bones show low imprecision 

(RSDr = 12.1%), which is well within the acceptable limits o f 9-30% for materials with 

analyte concentrations around 4 ppb (AOAC, 2002; Horwitz and Albert, 2006). This 

level of imprecision is comparable to estimates obtained for whole blood mercury, the 

most commonly employed biomarker of mercury exposure in animals and humans 

(Barbosa et al., 2004; Palmer et al., 2006; Sandborgh-Englund et al., 1998). Tmeness of 

mercury determinations, as measured by recovery of known amounts of mercury added 

to bone samples, is also acceptable. Recovery of mercury from spiked samples of 

modem ringed seal bone, as well as methylmercury-dosed rat bone, was around 91%, 

which is well within the guidelines of 75-125% (AOAC, 2002). While a 91% recovery
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rate indicates a low level of measurement bias, all recovery measurements were below 

100%, suggesting that there is some consistent matrix interference that is slightly 

suppressing the mercury signal.

Similar levels of precision and trueness can be expected for new bone samples that 

are pretreated in a manner similar to that in the present study and analyzed by CVAFS.

A key consideration for choosing an analytical laboratory to measure bone total mercury 

is the laboratory’s minimum detection limit. Since bone total mercury concentrations in 

the present study were as low as 1.8 ng/g (ppb), the minimum detection limit must be no 

greater than 1 ppb.

Protocols for preparing archaeological bone for mercury analysis

As an initial biomarker validation study, this research did not formally compare 

competing protocols for preparing archaeological bone for mercury analysis. However, 

some insights have been gained as to which aspects of preanalytical treatment may be 

important in ensuring that bone mercury measurements are unbiased and precise. A 

chief consideration, discussed in a later section, is whether bone should be demineralized 

prior to mercury analysis. Regardless of which matrix, whole bone or demineralized 

bone, proves to be more reliable, the extent of sample cleaning prior to analysis will 

undoubtedly prove to be important in obtaining reliable bone mercury measurements. 

Protocols for trace element and stable isotope analysis of prehistoric bone almost always 

include cleaning steps designed to remove possible contaminants (Lambert et al., 1990). 

These protocols vary from mild to rigorous and can include rinsing in water, abrading
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with sanding discs, and soaking in weak acids. Here, archaeological bone samples were 

both abraded and washed in ultrapure water prior to further sample preparation. The 

application of strong acids or alkalis is not recommended for any biological tissue 

sample intended for mercury analysis, since these are used to extract inorganic and 

organic mercury for spectroscopic determination (EPA, 2001a; Puckett and Buuren, 

2000).

Homogenization of tissue samples plays an important role in measurement reliability 

of trace element determinations by spectroscopic analysis (Krejcova et al., 2008). Here, 

bone samples were ground to a fineness of <0.3 mm, but the optimum size of the grind is 

unknown. To eliminate variation in mercury concentration due to differences in water 

content, samples were freeze dried before powdering.

Does bone mercury level reflect dietary intake level?

Establishing a relationship between dietary exposure and bone mercury is a 

fundamental step in validating the use of archaeological bone as a biomarker o f mercury 

exposure. Several converging lines of evidence in this study suggest that bone mercury 

is sensitive to mercury exposure level. The analysis of methylmercury-exposed 

laboratory rats indicates that bone mercury concentration increases in an exposure- 

related fashion. Mean bone mercury concentration differs significantly among rat 

exposure groups, and bone mercury concentration has a strong and positive linear 

relationship with daily exposure level. Furthermore, for the exposed individuals, bone 

mercury level is positively related to internal dose, as measured by kidney mercury level.
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These findings are consistent across all of the bone types measured in rats, including 

cranium, humerus, and femur.

Further evidence linking bone mercury to dietary mercury is provided by the stable 

isotope analysis of ringed seal mandibles from prehistoric Thule sites in northwestern 

Alaska, dating to approximately 1270-1640 AD. Because dietary mercury level could 

not be measured directly in this sample, the ratio of stable nitrogen isotopes (6I5N) was 

used as a proxy measure of mercury exposure. Since 815N is a measure of trophic level, 

and mercury exposure increases with tropic level, the two variables should covary in 

bone, if  bone mercury reflects dietary inputs. Results from the prehistoric seal sample 

suggest that bone mercury concentration tends to increase with 815N and, by extension, 

with mercury exposure. This finding is consistent with many studies of modem aquatic 

animals, which have found that tissue mercury concentration increases with trophic level 

as measured by 815N. While not invariable, this relationship has been found over entire 

foodwebs, in segments of a foodweb, and within single species in both marine and 

freshwater ecosystems (Atwell et al., 1998; Bergeron et al., 2007; Burgess and Hobson, 

2006; Cabana and Rasmussen, 1994; Campbell et al., 2008; Capelli et al., 2008; Dehn et 

al., 2006a; Dehn et al., 2006b; Dietz et al., 2004; McIntyre and Beauchamp, 2007; Power 

et al., 2002). The relationship between tissue mercury and 815N has been surprisingly 

little studied in terrestrial ecosystems.

Based on analysis of the prehistoric ringed seal mandibles, bone mercury tends to 

decrease as bone collagen 813C increases, although the relationship is only moderate.
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• 1 3 * • • •For aquatic animals, 8 C is an indicator of feeding location, and values are usually 

higher in nearshore and bottom-feeding animals compared to offshore and open-water 

feeding animals (Burton et al., 2001; Clementz and Koch, 2001; France, 1995; 

McConnaughey and McRoy, 1979; Walker et al., 1999). Mercury concentrations do not 

seem to be consistently patterned in a similar way. Thus, studies comparing mercury 

concentration to S13C in modem animal tissues have variously found no significant 

relationship (Hobson et al., 2004; McIntyre and Beauchamp, 2007; Riget et al., 2007a; 

Thompson et al., 1998), a positive relationship (Dehn et al., 2006a; Dietz et al., 2004; 

McIntyre and Beauchamp, 2007), or a negative relationship (Bearhop et al., 2000; Ethier 

et al., 2008; McIntyre and Beauchamp, 2007; Power et al., 2002; Ricca et al., 2008).

Additional chemical analyses of the Thule-period ringed seal sample suggest that 

factors other than exposure may influence the concentration of mercury in whole bone, 

including the nitrogen content of bone. Because nitrogen is found only in the protein 

phase of bone, this finding in turn implies that mercury may be physically associated 

with bone protein, rather than bone mineral. This argument receives some support from 

the experimental measurement of mercury on two demineralized bone samples. The 

concentration of mercury in these two bone protein samples was much higher than in 

their untreated counterparts.

The possible association of mercury with the protein portion of bone is also 

supported by the finding that bone mercury is significantly related to the carbon and 

sulfur content of bone. Carbon is mostly associated with the protein phase of bone,
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although it can also be found in the bone mineral or as a post-depositional contaminant. 

Mercury is known to have a high affinity for the sulfur-containing amino acid cysteine 

(Clarkson et al., 2007), which occurs in many of the bone proteins, including 

procollagen (though not collagen) and the non-collagenous proteins.

One limitation of the present research is the lack of information about the 

susceptibility of bone mercury to diagenesis, the chemical changes that occur to bone 

after burial. Worldwide estimates of mercury concentrations in soil pore water, one of 

the chief factors controlling the uptake of metals by bone (Hedges and Millard, 1995; 

Pike and Richards, 2002), are extremely low (in the parts per trillion range) (Aastrup et 

al., 1991; Akerblom et al., 2008; He et al., 2007; Kalicin et al., 2001; Krabbenhoft et al., 

1998; Lee et al., 1994; Mitchell et al., 2008; Schwesig et al., 1999; Skyllberg et al.,

2003). The low soil water mercury levels suggest that the potential for diagenetic uptake 

of mercury by bone is also low. In terms of the diagenetic alteration of the prehistoric 

Thule-period ringed seal bones used in this study, the excellent state of preservation of 

the bones, as measured by the whole bone nitrogen content, argues against major 

diagenetic change.

Recommendations for future studies

The possibility that bone mercury is associated with bone protein opens some 

fascinating avenues for future research. Chief among these is determining whether 

mercury measured on bone protein would be a better indicator of mercury exposure than 

whole bone mercury. The amount of protein can vary among different bones within a
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single individual (e.g., higher in long bones than in flat or irregular bones) and even 

within a single bone (e.g., increasing from the outer cortex towards the medullary cavity) 

(Rogers et al., 1952). Thus, variation in whole bone mercury measurements may derive 

partially from variation in the ratio of protein to mineral in whole bone. If mercury is 

mostly associated with bone protein, it may be more stable over time in buried contexts 

than are metals associated with the bone mineral. Bone proteins, including collagen and 

the non-collagenous proteins, appear to be protected against post-burial chemical 

deterioration or biodegradation by the bone mineral itself (Codings et al., 2002; Grupe et 

al., 2000).

Determining in which bone fraction mercury resides— the organic or the mineral— 

may be difficult. The chemical processes used to isolate bone protein may also remove 

some of the mercury bound to it; likewise, procedures used to isolate bone mineral may 

retain some of the mercury bound to collagen (Spadaro, 1969). The challenge will be to 

find a method that selectively destroys the unwanted matrix, without attacking the metal- 

bearing complex. The results from the two highly experimental bone samples that were 

demineralized prior to mercury analysis show that a weak-acid treatment will not 

remove all o f the mercury present in bone, but does not prove that only the mineral- 

bound mercury was removed or that all of the mineral-bound mercury was removed.

Still, a logical line of inquiry would be to analyze paired samples of whole bone and 

demineralized bone for mercury content and to compare their concentrations to either 

known exposure (e.g., from controlled feeding experiments) or indicators of exposure, 

such as 815N, soft tissue mercury, or whole-body mercury burden. This will help to
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determine which matrix—whole bone or bone protein— is the better indicator of mercury 

exposure.

To further validate archaeological bone as a biomarker of past mercury exposure, 

additional laboratory and field studies are necessary to examine the relationships among 

mercury exposure, bone mercury, and soft tissue mercury in other mammals, particularly 

in humans, as well as to assess the stability of mercury in buried bone through time. 

Relating human bone mercury concentration to daily exposure level would allow an 

assessment of the possible health consequences o f mercury exposure in preindustrial 

times, since the correlations between daily exposure and health outcomes have been 

established in modem humans. Establishing the relationship between human mercury 

exposure and bone mercury can stem, for example, from analyses of modem human 

bone biopsy samples paired with blood mercury concentration, since the blood mercury- 

dose conversion equation has already been formulated. Similarly, human bone mercury 

could be compared to hair mercury in prehistoric remains where hair is preserved, since 

this tissue, too, has already been related to daily dose. Finally, studies comparing 

prehistoric human bone mercury to 515N could help to establish that a relationship exists 

between exposure and bone mercury, though it would not allow a reconstruction of the 

absolute daily intake rate.

There appears to be little published information on the relationship between mercury 

levels and 815N in humans or in other terrestrial mammals. This is surprising, since there 

are scores of such studies for aquatic animals, as described previously. For humans and
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other terrestrial mammals, tissue stable 515N values tend to increase with the extent of 

reliance on aquatic resources. Since mercury levels tend to increase in the same manner, 

the two variables should covary, and future studies should test this prediction. Human 

hair is an obvious choice of matrix for such a study, since it is a validated mercury 

exposure biomarker and is used in stable isotope studies (O'Connell and Hedges, 1999). 

Furthermore, hair is often the biomarker of choice in mercury biomonitoring studies 

conducted by public health agencies (Arnold and Middaugh, 2004; CDC, 2001), so the 

possibility exists for collaborating with large-scale, ongoing studies.

Studies focused on elucidating the relationship between bone mercury and soft tissue 

mercury would also be informative. Currently there is little information on bone 

mercury in modem mammals and its relationship to mercury in other tissues, except for 

a single study of modem Pacific harbor seal pups (Brookens et al., 2008). The seal pup 

study did not find significant correlations between mercury concentration in bone and 

that in most other tissues, but it did find significant correlations between the mercury 

burden in bone and that in other tissues. Possibly, mercury concentrations measured on 

bone protein would be more strongly associated with mercury concentrations measured 

on protein-rich soft tissues.

Relating bone mercury (or bone protein mercury) to soft tissue mercury may open 

another avenue for estimating prehistoric human exposure. If the mercury 

concentrations in archaeological faunal remains can be translated into mercury
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concentrations in dietary tissues such as muscle, then it may be possible to reconstruct 

human exposure from diet mercury levels.

An example of the dietary reconstruction approach to estimating prehistoric mercury 

exposure was presented in this dissertation based on mercury concentrations found for 

prehistoric Thule-period ringed seals from archaeological sites at Cape Espenberg, 

western Alaska. Assuming that the mercury level in seal muscle tissue was at least as 

high as that in bone (mean THg =13 ng/g), and further assuming that the Cape 

Espenberg Thule consumed at least 860 g of ringed seal per day, it was estimated that 

the typical adult consumed at least 11.2 pg of mercury per day. For a person weighing 

65 kg (143 lb), that is equivalent to around 0.2 pg/kg bw/day, which exceeds the EPA 

safety level of 0.1 pg/kg bw/day (EPA, 2001c).

Possible data sets for studying the relationship between mercury in bone and that in 

soft tissue include the carcasses of hunted wildlife. These could be obtained with the 

permission of the hunter, or possibly from government game wildlife management 

agencies, which often require hunters to submit body parts of killed animals for 

regulatory purposes.

A major research gap that must be addressed in order to use bone mercury as a 

biomarker of exposure in prehistory is the lack of knowledge about bone mercury 

diagenesis over time. This is also a challenging avenue of study, because it is impossible 

to recreate the circumstances impacting bone chemical change over hundreds or 

thousands of years or more. All o f the current methods for assessing the degree of
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diagenetic change in single elements within bone are imperfect. Nevertheless, 

experimental studies to assess the propensity for bone to sorb mercury would help to 

address this issue.

This initial validation study has shown that bone has the potential to serve as a 

reliable biomarker of mercury exposure in preindustrial human populations. Continued 

efforts to validate and apply bone mercury as a biomarker of exposure may help to 

establish natural baseline levels of human mercury exposure, as well as to track 

changing levels of human mercury exposure and health effects through time.

Exposure to mercury is an important contemporary health concern, since human 

industrial activities release this metal into the environment. Documenting the toxic 

metal levels in humans from the recent and distant past can provide a rich source of 

information and a record of change that will add to our understanding of the cultural, 

ecological, and biological determinants of toxic metal exposure.

Beyond the field of bioarchaeology, historical information on mercury exposure 

should be o f interest to medical anthropologists, who seek to identify the cultural 

practices that lead to heavy metal exposure and to overcome the cultural barriers to 

reducing exposure (Riley et al., 2001; Trotter, 1990). Nutritional anthropologists, too, 

should find value in historical information about diet and toxic metal exposure, since 

they are concerned with the health and mortality consequences of dietary patterns 

(Goodman et al., 2000). Finally, a historical record of mercury exposure promises to 

help public health officials and policymakers in their efforts to develop the best
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strategies for reducing the risk of human exposure to this toxic heavy metal, while 

preserving the health and cultural benefits of many marine foods.
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APPENDIX A. ABBREVIATIONS

CVAAS Cold Vapor Atomic Absorption Spectrometry

CVAFS Cold Vapor Atomic Fluorescence Spectrometry

EPA United States Environmental Protection Agency

ICP-MS Inductively Coupled Plasma Mass Spectrometry

ISO International Standards Organization

IUPAC International Union of Pure and Applied Chemists

MeHg methylmercury

ng/g nanograms per gram (equivalent to ppb)

ppb parts per billion (equivalent to ng/g)

ppm parts per million (equivalent to pg/g)

ppt Parts per trillion (equivalent to ng/L)

RfD Reference Dose; term used by EPA (2001c) in human health risk
assessment to describe a dose of a toxicant that is likely to be 
without appreciable risk of deleterious health effects

AOAC Formerly Association of Official Analytical Chemists
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RSDr Repeatability Relative Standard Deviation

SDr Repeatability Standard Deviation

THg total mercury

WHO World Health Organization

pg/g micrograms per gram (equivalent to ppm)

pg/kg bw/day micrograms per kilogram of body weight per day

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


