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A b s tra c t

We present applications of some methods of control theory to problems of signal 

processing and optimal quadrature problems.

The following problems are considered: construction of sampling and interpolating 

sequences for m ulti-band signals; spectral estim ation of signals modeled by a finite 

sum of exponentials m odulated by polynomials; construction of optimal quadrature 

formulae for integrands determined by solutions of initial boundary value problems.

A m ulti-band signal is a function whose Fourier transform  is supported on a 

finite union of intervals. The approach used in C hapter I is based on connections 

between the sampling and interpolation problem and the problem of the controllability 

of a dynamical system. We prove th a t there exist infinitely many sampling and 

interpolating sequences for signals whose spectra are supported on a union of two 

disjoint intervals, and provide an algorithm for construction of such sequences.

There exist numerous methods for solving the spectral estim ation problem. In 

Chapter II we introduce a new approach to this problem based on the Boundary 

Control method, which uses the connection between inverse problems of m athem atical 

physics and control theory for partial differential equations. Using samples of the 

signal at integer moments of time we construct a convolution operator regarded as 

an input-output map of a linear discrete dynamical system. This system can be 

identified, and the exponents and amplitudes of the signal can be found from the 

param eters of the system. We show th a t the coefficients of the signal can be recovered 

by solving a generalized eigenvalue problem as in the M atrix Pencil method. Our 

m ethod allows to consider signals with polynomial amplitudes, and we obtain an 

exact formula for these amplitudes.

In the th ird  chapter we consider an optimal quadrature problem for solutions of 

initial boundary value problems. The problem of optim ization of an error functional 

over the set of solutions and quadrature weights is a problem of optimal control 

of partial differential equations. We obtain estimates for the error in quadrature 

formulae and an optim ality condition for quadrature weights.



Table of Contents
Page

Signature P a g e ................................................................................................................... i

Title P a g e ............................................................................................................................. ii

A b s tra c t ................................................................................................................................  iii

Table of C o n te n ts ...............................................................................................................  iv

List of T a b le s ...................................................................................................................... vii

A cknow ledgem ents............................................................................................................ viii

G e n e ra l I n t r o d u c t i o n .................................................................................................... 1

Sampling and interpolation ....................................................................................  1

Frequency e s tim a tio n .................................................................................................. 3

Approximate in te g ra tio n ...........................................................................................  4

Statem ent of co n trib u tio n s ........................................................................................ 5

Bibliography ...............................................................................................................  7

1 C o n s tru c t io n  o f  sam p lin g  a n d  in te rp o la t in g  seq u en ces  fo r m u lti-b a n d

signals. T h e  tw o -b a n d  case  ..............................................................................  10

A b s t r a c t .........................................................................................................................  10

1.1 I n t r o d u c t io n .....................................................................................................  10

The main r e s u l t s ........................................................................................................ 15

1.2 The O perators W , V  and K  ....................................................................... 15

1.3 The invertibility of the Operator K ............................................................... 19

1.3.1 The case of a — b 6  Q ..........................................................................  22

1.3.2 The case of a — b 6  E  \  Q ................................................................  27

1.4 The invertibility of the O perator V ...............................................................  30

Appendix l.A . The proof of Theorem 2 ................................................................  34

Appendix l.B . The proof of Lemma 1 ...................................................................  38

Bibliography ...............................................................................................................  40



2 B o u n d a ry  C o n tro l a p p ro a c h  to  th e  s p e c tra l  e s tim a tio n  p ro b le m . T h e  

case  o f  m u ltip le  p o l e s ............................................................................................  43

A b s tra c t .........................................................................................................................  43

2.1 In tro d u c tio n .......................................................................................................... 43

2.2 Dynamical s y s te m s ............................................................................................  46

2.3 C ontro llab ility ......................................................................................................  48

2.4 Operators W  and R ..... .......................................................................................  48

2.5 Identification ......................................................................................................  49

2.5.1 Determining the order of the s y s te m s .............................................  51

2.5.2 Determining e ig en v a lu e s ..................................................................... 51

2.5.3 Determining decompositions of vectors b and c in bases made

of generalized eigenvectors of M  and M * .....................................  54

2.6 Equivalence of dynamical systems with respect to a transform ation of

variable ...............................................................................................................  55

2.7 Connection with the original p ro b le m .............................................................  56

2.7.1 M atrix M ...............................................................................................  56

2.7.2 Dynamical systems and the controllability co n d itio n .................. 58

2.7.3 Kernel of the response operator of system (2 .3 2 ) ......................... 58

2.7.4 Equivalence of the problem of signal decomposition for signal

(2.29) to the identification problem for a dynamical system 

(2.32).........................................................................................................  60

Appendix 2.A. The proof of Lemma 1 ...................................................................  62

Bibliography ...............................................................................................................  65

3 O p tim a l q u a d r a tu r e  fo rm u lae  re la te d  to  so lu tio n s  o f  in it ia l  b o u n d a ry

v a lue  p r o b le m s ........................................................................................................... 67

A b s tra c t .........................................................................................................................  67

3.1 In tro d u c tio n .........................................................................................................  67

3.2 A maximization problem in the case of a parabolic e q u a t i o n ................  68

3.2.1 Control by the initial co n d itio n s .......................................................  68



3.2.2 Control on the b o u n d a ry .................................................................... 71

3.3 Minimax problem in the case of a parabolic e q u a t i o n ............................ 72

3.3.1 Control by the initial co n d itio n s ......................................................  72

3.3.2 Control on the b o u n d a ry ...................................................................  75

3.4 A maximization problem in the case of a hyperbolic equation . . . .  76

3.5 An example of finding coefficients for a quadrature formula ..............  78

Bibliography ...............................................................................................................  81

G e n e ra l C o n c l u s i o n s .................................................................................................... 83

Sampling and interpolation ....................................................................................  83

Frequency e s tim a tio n .................................................................................................. 84

Approximate in te g ra tio n ...........................................................................................  85

Bibliography ...............................................................................................................  87

vi



L ist o f  T ab les

Page

1.1 Summary of invertibility conditions for different combinations of coef

ficients ................................................................................................................... 20

3.1 Numerical Example 1 .......................................................................................  79

3.2 Numerical Example 2 .......................................................................................  80

vii



Acknowledgements

This dissertation would not have been w ritten w ithout the support of many people. 

I would like to thank my adviser Prof. Sergei Avdonin for proposed research topics 

and perm anent attention to my work. I am grateful to my graduate committee 

for their work and cooperation, particularly to Dr. Maxwell for letting me sit in 

his Functional Analysis class and for grading my papers. My work would not have 

been possible without financial support from the Departm ent of M athematics and 

Statistics, G raduate School, Alaska Volcano Observatory and Seismology Laboratory. 

I thank Prof. Neal Carothers, Prof. John Rhodes and Mrs. Laura Bender for their 

useful advice. I thank all my fellow graduate students, especially Victor Mikhailov, 

Vasil Godabrelidze and Odile Bastille for their help and for being great officemates, 

and Dm itry Nicolsky for giving me a tem plate for this thesis. 1 thank all my teachers 

who contributed to my growth. 1 thank my family for their help, encouragement and 

advice. Thanks to my boyfriend Robert for everything. While living in Fairbanks 1 

enjoyed presence of my friends here, including all members of the Fairbanks fencing 

community.



1

G e n e ra l In tr o d u c t io n

This thesis presents a collection of papers th a t have been published, accepted or 

subm itted for publishing. The overall theme of the thesis is the application of methods 

of Control Theory to  problems in Signal Processing and Numerical Integration. The 

main analytical results are contained in Chapters 1 and 2. Chapter 3 completes the 

manuscript. We dem onstrate how control theoretical ideas can be applied to

• the problem of sampling and interpolation;

•  the spectral estim ation problem;

•  non-standard approximation problems.

S a m p lin g  a n d  in te rp o la t io n

One of the fundam ental topics in Signal Processing is Sampling Theory. Sampling 

theory is concerned w ith the reconstruction of members of certain classes of functions, 

usually classes of band-limited functions, from sampled data.

Let E  C  M  be a bounded set. The Paley-Wiener space L E is the space of entire 

functions of the form

S(A )=  [  eiXt4>(t) dt, 0  e  L 2(E),
J e

with the L2(lR) norm. If E  has two or more disjoint components, a member of L 2E 

is called a m ulti-band function. A discrete set {A„} is a set of stable sampling for 

L 2e  if /  e  L 2e  implies | |/ | |z ,2 <  K \\f(X n)\\i2 for a constant K  independent of / .  If 

for any sequence {an} e  I2 there exists an /  € L \  such th a t / ( A„) =  an for all n, 

then {A„} is said to be a set of interpolation. Sequences th a t are both sampling and 

interpolating are non-redundant sampling sequences: if we remove one element from 

{A„}, the resulting sequence is no longer sampling.

In the case of band-limited functions, or E  = [—a, a], the simplest sampling 

and interpolating sequence is given by the W ittaker-Shannon-Kotel’nikov sampling 

theorem.
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T h e o re m  1. Let s be a function band-limited to [—a, a}:

SW  = f  eiXt(f>(t) dt, (f) e  L 2(—o,o).
J  —a

Then the function s can be reconstructed from  its sampled values at ~  k n /a  using 

the formula
/ \ \  / \  \ sincr(A — Xk)

s w  = Y 2 s M — (x— k f .

This is an example of regular or uniform sampling.

The theory of non-uniform sampling for one interval is also well developed. Neces

sary and sufficient conditions for a sequence {An} to have a sampling and interpolating 

property can be stated on the basis of the results of Pavlov [23]. Book by Avdonin 

and Ivanov [5] and paper by Hruscev, Nikol’skii, and Pavlov [13] give a complete 

characterization of such sequences.

In practice spectrum  of the signal may have gaps. In this case, applying results 

for single-band signals gives redundant sampling sequences -  sequences which are 

sampling, but not interpolating for L%. The question of whether there exists for every 

finite union E  ~  I\ U I 2 U . . .  U In of finite intervals a real sampling and interpolating 

sequence does not have a complete answer. It is known th a t there exist such complex 

sequences lying in horizontal strips. Works on this topic include [17; 12; 8 ; 9; 10], 

which consider cases of intervals and gaps between intervals having commensurable 

lengths. In paper [27] Seip constructs a t least one real sampling and interpolating 

sequence for an arbitrary  union of two intervals.

There are several papers th a t have related construction of sampling and interpo

lating sequences to the invertibility of certain convolution operators. Katsnelson [16] 

connected a sampling and interpolating property to invertibility of a certain convo

lution operator, and proved its invertibility in some cases, including the case when 

E  is a union of 2 intervals [ai, 61], [a2,^2] f°r which the gap a2 — b\ is smaller than  

the minimum of the lengths of two intervals. Lubaraskii and Spitkovsky [19] also 

construct a convolution operator and prove existence of a sampling and interpolating
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sequence in a strip {z  : \Im (z)\ < B }  for any finite union of intervals. Lubarskii 

and Seip [18] prove th a t there exists a sampling and interpolating sequence of real 

numbers for the case of a finite union of interval of equal length; this work is based 

on the results of Kohlenberg [17].

In Chapter 1 we consider a problem of construction of sampling and interpolating 

sequences for a class of two-band signals. We construct sampling and interpolating 

sequences in the Paley-W iener space using control theoretic ideas. To solve this prob

lem we use a connection with a problem of construction of a controllable dynamical 

system with control supported on a union of two intervals. The original problem is 

reduced to invertibility of the new system ’s control operator. Our approach can be 

extended to other classes of multi-band signals: signals with spectrum  supported on 

a union of n  intervals with n > 2 , where lengths of intervals and gaps are arbitrary. 

The results of this chapter are published in Avdonin, Bulanova, and Moran [2].

F req u e n c y  e s tim a tio n

Another im portant problem in signal processing is known as frequency estim ation 

problem. Let a signal r{t) be modeled by

K

r (t) =  X ^ n ( t ) e Ant,
1

where an(t) are polynomials and Xn can be real or complex numbers. We need to 

recover the number of poles K, the polynomial amplitudes {an(f)} and the exponents 

{A„} knowing the observations of the signal at discrete moments of time r(0), r ( l ) , ... 

The classical spectral estimation problem is to recover the coefficients a*, Aj of a 

signal r{t) = a,ieXit w ith constant amplitudes at, by the given observations r ( j) , 

j  = 0 , . . .  This problem is very im portant in signal processing, there are applications 

in wireless communications, antenna array design, bio-medical imaging, high-speed 

circuit analysis and others (see [14; 25]).

There are many methods of solving spectral estim ation problems. The first one 

developed is the m ethod of Prony [11; 20]. This m ethod was developed by Baron
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Gaspard Riche de Prony in 1795. It reduces the frequency estim ation problem to 

one of finding solutions of a polynomial equation. The M atrix Pencil m ethod was 

developed by Hua and Sarkar in late 1980-s [15; 14; 25]. In the M atrix Pencil method 

the exponents \ n are found by solving a generalized eigenvalue problem with matrices 

constructed from observations of the signal. There are also iterative maximum like

lihood methods (see, for example, [21]); MUSIC (Multiple Signal Classification) [26], 

ESPRIT (Estim ation of Signal Param eters via Rotational Invariance Techniques) [24], 

and many others.

In Chapter 2 a new approach based on the Boundary Control m ethod is intro

duced. The Boundary Control m ethod has been developed for solving dynamical and 

spectral inverse problems for partial differential equations, and is based on connec

tions between controllability and identification problems. We reduce the problem of 

estimating frequencies and amplitudes of the signal to an identification problem for 

a discrete time linear dynamical system, which can be solved using the BC method. 

The results of this chapter are subm itted for publication in Avdonin, Bulanova, and 

Nicolsky [3] and Avdonin and Bulanova [1],

A p p ro x im a te  in te g ra tio n

In the last part we study an approximate integration problem for solutions of initial 

boundary value problems. An integral is approximated by a linear combination of 

the values of the integrand:

Formulas of this type are usually called quadrature or cubature (when n  >  1) for

mulas. Optimal quadrature formulas are quadrature formulas th a t are the best in 

some sense for a given class of functions. Usually formulas th a t minimize the error 

are considered. Let the “error” functional have the form:

N

k= 1
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If, for a given class of functions Y , and for some {c£}, {x£},

s u p E(y,c*k,x*k) = inf su p E (y ,c k , x k),
y e Y  { c k , X k i  y € Y

then Ylk=i cly(xl) called an optimal quadrature formula for the class Y , and 

supyeK E(y,c*k,x*k) is an optimal quadrature error.

We consider parts of this problem th a t consist of finding supyeK E (y, c^, Xk) for 

fixed {cfc}, {xfc} and min{Cfc} supyey E(y, cfc, Xk) with fixed {x /J, where Y  is a class 

of solutions of a parabolic initial boundary value problem with nonzero boundary or 

initial condition. In this situation an optimal quadrature problem naturally becomes 

a problem of optimal control governed by a partial differential equation. The results 

of this chapter are published in Avdonin, Bulanova, and Ovsyannikov [4],

The optimal quadrature problem is a classical problem in approximate integration 

theory. It is covered in extensive literature and numerous papers. However, there are 

no results concerning the problem we are considering in this thesis.

S ta te m e n t o f c o n tr ib u tio n s

Chapter 1 is a continuation of joint research by Avdonin and Moran (see [6]). In pa

per [6] Avdonin and Moran derived the convolution operator W  (see formula (1.11)), 

invertibility of which is equivalent to sampling and interpolating property of a cor

responding real sequence. My advisor Prof. S. Avdonin stated  the goal of proving 

invertibility of W  for small enough values of param eter fi, by reducing the problem 

to  a problem of invertibility of a simpler operator. Introduction was w ritten by S. 

Avdonin and W. Moran, and later edited by me and S. Avdonin. The results by 

Avdonin and Moran are stated  in the introduction w ithout proofs. The rest of the 

results and proofs in this chapter are obtained by me. Prof. S. Avdonin pointed 

out possible ways of proving Theorem 5 in Section 1.3.2 (invertibility conditions for 

operator K  in irrational case).

In Chapter 2 we present a control theoretic approach to  the spectral estimation 

problem. Prof. S. Avdonin suggested th a t the Boundary Control m ethod is appli
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cable to the spectral estimation problem for signals modeled by sums of complex 

exponentials with polynomial coefficients, and dem onstrated the scheme of such ap

plication for the case of constant coefficients. I have developed his idea by proving all 

the necessary facts from realization theory, and extended it to the polynomial case. 

I have performed all the research and writing in Chapter 2.

Chapter 3 extends joint work of S. Avdonin and D. Ovsyannikov [7; 22]. The 

original results by Avdonin and Ovsyannikov are presented in sections 3.2.1, 3.4, 

and the first part of section 3.3.1. The additional results obtained by me are in 

section 3.3.1 starting  with the subheading “A wider class of sets 17” , sections 3.2.2,

3.3.2, 3.5; these include a more general class of initial conditions for the minimax 

problem in section 3.3.1, maximization and minimax problems for initial boundary 

value problem with nonzero boundary condition, and a numerical example. I was 

responsible for writing, form atting and editing of this chapter.

The main results of the thesis were presented at Joint M athematics Meetings, 

Washington, DC, January 5-8, 2009; Joint M athematics Meetings, San Diego, Jan 

uary 6-9, 2008; Joint M athematics Meetings, San Antonio, January 12-15, 2006; 

Colloquium, D epartm ent of M athematical Sciences, University of Alaska, Fairbanks, 

April 7, 2005; Colloquium, Departm ent of M athem atical Sciences, University of 

Alaska, Fairbanks, Spring, 2004, and are published or subm itted for publishing in 

[1; 2; 3; 4],
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C h a p te r  1

C o n s tru c t io n  o f  sa m p lin g  a n d  in te rp o la t in g  seq u en ces  fo r m u lti-b a n d

signals. T h e  tw o -b a n d  c ase 1

A b s tra c t

Recently several papers have related the production of sampling and interpolating 

sequences for multi-band signals to the solution of certain kinds of Wiener-Hopf equa

tions. Our approach is based on connections between exponential Riesz bases and 

the controllability of distributed param eter systems. For the case of two-band signals 

we derive an operator whose invertibility is equivalent to the existence of a sampling 

and interpolating sequence, and prove the invertibility of this operator.

K eywords: sampling and interpolation, multi-band signals, Riesz bases, families of exponentials,

W iener-Hopf equations, control, observation

1.1 In tro d u c t io n

Let E  be a finite union of disjoint intervals:

E  =  |^J I j , Ij = [cij, bj], 0 =  oq < bi < a2 < b2 < . . .  < aN < bN.
j =i

Several papers [Avdonin and Moran, 1999; Bezuglaya and Katsnelson, 1993; K at

snelson, 1996; Lyubarskii and Seip, 1997; Lyubarskii and Spitkovsky, 1996; Moran 

and Avdonin, 1999; Seip, 1995] have recently appeared th a t discuss Riesz bases of 

exponentials in L2{E). All of them  emphasize the im portance of this problem in

communication theory: if {elXkt} forms a Riesz basis in L 2(E) then A =  {A*,} is a

sampling and interpolating set for corresponding m ulti-band signals. In other words, 

the interpolation problem

s (Afc) =  oty., Afc G A, s £ L 2e ,

1S.A. Avdonin, A.S. Bulanova, and W. Moran, Construction of sampling and interpolating se
quences for multi-band signals. The two-band case, International Journal of Applied M athematics 
and Computer Science, vol. 17, (2007), no. 2, 143-156.
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has a unique solution for each {a*,} G I2. Here L2E is the space of entire functions of 

the form

s{A) =  f  ea t<f>(t) dt, <j> G L2(E),
J  E

endowed with the L2(1R) norm. The equivalence of these two problems is well known; 

it follows from standard duality arguments [see, for example, Hruscev et a l, 1981; 

Lyubarskii and Seip, 1997].

It is interesting to note tha t papers [Avdonin and Moran, 1999; Katsnelson, 1996; 

Lyubarskii and Spitkovsky, 1996] have related the production of Riesz bases to the 

invertibility of certain convolution integral operators. The method of Katsnelson 

[1996] is based on the mean periodic continuation of a function with respect to  a 

finite measure. The convolution operator in [Lyubarskii and Spitkovsky, 1996] is 

constructed on a union of intervals connected with the entire function generating the 

set A.

Another approach to the problem was proposed in paper [Avdonin and Moran, 

1999]. It is based on connections between the controllability of a dynamical system 

described by a linear PD E and the Riesz basis property of a corresponding exponential 

family. These connections are well known and widely exploited in control theory; see, 

for example, an excellent survey paper [Russell, 1978] and the book [Avdonin and 

Ivanov, 1995]. The problem of constructing an exponential basis on several intervals 

gives rise to a new type of control problem with boundary control supported on these 

intervals of time.

More precisely, Avdonin and Moran [1999] introduced an auxiliary dynamical 

system described by the string equation with boundary control u:

p2(x)ytt(x, t) = yxx(x ,t) , y(0, t) =  u(t),  yx( l , t ) = 0 ,  0 < x  < I, ( g R ,  (1.1)

where p(x)  is a positive function on [0, 1} which will be determined later. Usually in 

control theory the function u  is taken from L2(0, T)  for some positive T, but for our 

purposes we take u  from L20C(1R) with support restricted to E  and consider the initial
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conditions

y {x , ax) = y Q(x), yt {x%a { ) = y i ( x ) .  (1.2)

Eigen-frequencies An, n  G IN, of this system can be found from the boundary value 

problem

4>"{x) + X2p2(x)f>(x) = 0, 0 < x < I, 0(0) =  <t>'(l) = 0. (1.3)

System (1.1) is called exactly controllable if for any initial conditions (yo,y\) G 

L 2(0 ,1) x H ~ l (0 ,1) there is a unique control u G L 2( E ) which brings the system to 

the origin a t t = bN:

y(-,bN) = yt (-,bN) = 0.

Here H ~ 1(0 ,1) is the space dual to Hi(0,1)  :=  {0 G H 1(0 ,1) : 0(0) =  0}.

The following statem ent plays a key role in this approach to construction of sam

pling and interpolating sequences.

T h e o re m  1. [Avdonin and Moran, 1999]. System  (1.1) is exactly controllable i f  and 

only i f  the fam ily  {e±lA?it} form s a Riesz basis in L2(E).

In other words, the exact controllability of (1.1) is equivalent to the fact th a t A =  

{±An} is a sampling and interpolating sequence for L2E. Note th a t all A£ — eigenval

ues of boundary value problem (1.3) — are positive and we may therefore choose An 

to be positive.

Our problem then becomes th a t of constructing the function p(x)  in such a way 

th a t system (1.1) is exactly controllable. If the set E  consists only of the interval 

[a, 6] and control u acts from t =  a to  t = b then, as is well known [see, e.g., Russell, 

1978; Avdonin and Ivanov, 1995], system (1.1) is exactly controllable if and only if 

the length of the interval is equal to two optical lengths of the string:

b — a =  2 p(x) dx .
Jo

Choosing p = const (homogeneous string), we obtain the uniform sampling and 

interpolating sequence for L 2a bj:

A =  ± r ^ ( " - ^ ) '  n e K - <‘ -4)
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Taking p as a smooth (from C 2[a, 6]) non-constant function, we obtain a non-uniform 

sampling and interpolating sequence asymptotically close to (1.4).

In the m ulti-band case, we cannot (in a general situation) produce a sampling and 

interpolating sequence taking p as a constant or smooth function from C 2[a, b\. This 

fact can be understood by taking into account a necessary “geometric” condition of 

controllability of system (1.1): i f  system (1-1) is exactly controllable, then fo r  every 

Xq G [0 , I] both characteristics starting at the point x =  x 0, t = 0 and lying in the 

strip [0 ,/] x {t > 0} of (x, t)-plane have nonempty intersection with {x = 0 } x E . 

We suppose th a t the characteristics “reflect” from the boundaries subjecting to the 

geometric optics laws.

For example, if E  = [0,1] U [2, 3], none of the smooth functions p satisfies the 

“geometric” condition. Using Theorem 1 it can also be proved th a t uniform sampling 

and interpolation of m ulti-band signals is possible only when very special relations 

exist between lengths of intervals and gaps between them. More precisely, the special 

case is when E  is an explosion of an interval [Higgins, 1996, Sec. 13.1].

To satisfy the “geometric” controllability condition in the multi-band case, we 

should consider piecewise smooth functions p. More exactly, we take points 0 =  x 0 < 

x i < . . .  < x n  = I and a piecewise constant function p(x)  such th a t

p{x) = p j , for < x < xf ,  0 < pj < oo, Pj 7̂  Pj+i, (1-5)

Pj{xj -  Xj- i )  = (bj -  a f ) / 2, j  = 1, 2 , . . . ,  N.  (1.6)

Due to the condition pj ^  pj+i there are additional reflections of the waves from 

the boundaries x = Xj of the “layers” which improve controllability of system (1.1). 

Notice th a t additional compatibility conditions are required for systems (1.1), (1-3) 

at points x i} i =  1, 2 , . . . ,  N  of discontinuity of function p(x)  [see Avdonin and Moran, 

1999; Avdonin and Ivanov, 2008]. For system (1.1) these conditions are:

y(Xi -  0, t) = y(xi  +  0, t), yx(xi -  0, t) = yx{xi + 0 , t ) ,  i = 1 ,2 , . . . ,  N; (1.7)

for system (1.3):

4>(xi -  0) =  4>(xi +  0), <f>x(xi -  0) =  4>x(xi + 0 ) , '4 =  1 ,2 , . . . ,  N. (1.8)
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Analysis of the obtained control problem leads us to the following conjecture.

Conjecture 1. Let E  be a multi-band set described above. Then, fo r  all functions 

p(x) satisfying (1.5), (1-6), system (1.1) is exactly controllable.

This conjecture was confirmed in some particular cases in [Avdonin and Moran, 1999], 

and we are working on its complete proof using PD E techniques.

Conjecture 1 implies th a t the exponential family {e±lAnt}nej\j forms a Riesz basis 

in L 2( E ) where \ 2n are the eigenvalues of boundary value problem (1.3) and p(x ) 

satisfies conditions (1.5), (1.6). It is im portant for applications th a t the sampling 

and interpolating set {±An} is real.

Boundary value problem (1.3), (1.5), (1.6) represents an im portant example of an 

eigenvalue problem whose spectrum  generates a sampling and interpolation sequence 

for a m ulti-band signal.

In Avdonin and Moran [1999] the sampling and interpolation problem is reduced 

to the solution of linear functional equations, specifically, W iener-Hopf equations of 

a special form. The solution of problem (1.1), (1.2) with p(x)  satisfying conditions 

(1.5), (1.6) can be w ritten in an explicit although rather complicated form. Analysis 

of th a t formula leads to  invertibility problems for operators connected with linear 

functional equations. While this method appears to extend to  handle arbitrary  finite 

unions of intervals, we illustrate it in the case of two intervals.

Only a few results concerning sampling and interpolating sequences for the case 

when the set E  is a union of two intervals are known. Kohlenberg [1953] constructed 

a sampling and interpolating sequence for signals whose spectrum  is restricted to the 

union of two intervals of the same length (band-pass signals). The later great im pact to 

this field was due to Dodson and Silva [1989] and Beaty and Dodson [1989, 1993] and 

due to Bezuglaya and Katsnelson [1993]. In these papers the lengths of the intervals 

and the gaps were supposed to have special structure such as commensurability of 

the lengths of the intervals and the gaps. Lyubarskii and Seip [1997] remark th a t 

the m ethod of Kohlenberg [1953] can be extended to the case when the intervals 

comprising E  have commensurable lengths. The results of Seip [1995] are free of
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arithm etic restrictions on lengths of intervals comprising the set E; in particular, 

starting from the “1/4 in the mean” theorem [Avdonin, 1979] he gives a construction 

of a t least one real sampling and interpolating sequence for an arbitrary  E  consisting 

of two intervals.

T h e  m a in  re su lts

This chapter is devoted to the investigation of the convolution operator proposed 

in Avdonin and Moran [1999] for the cases of E  being a union of two arbitrary 

intervals. We prove th a t this operator is invertible if a param eter p  = (p2 — p i ) / (p2 +  

Pi) is small enough. This is a new result in theory of linear functional equations 

and convolution operators. It proves existence of infinitely many real sampling and 

interpolating sequences for signals with the spectrum  supported on two arbitrary 

intervals. We also give an algorithm for construction of such sequences. The former 

are results in sampling and interpolation theory. Also, the result on controllability 

of the corresponding dynamical system (1.1) follows from the invertibility of the 

convolution operator.

1.2 T h e  O p e ra to rs  W , V  a n d  K

Let

E  = h \ J  I2, Ij = [aj, bj], \Ij\ := bj -  aj = atj, j  = 1, 2, (1.9)

ct\ + a.2 — ct, a2 — bi =  a'. (1-10)

Note tha t, w ithout loss of generality, we can assume th a t ot\ is less than  or equal to 

a 2.

In Avdonin and Moran [1999] it was proved th a t the problem of construction of 

sampling and interpolating sequence for L2E can be reduced to study of the invertibility 

of the operator

W  : L2(0, « i)  (-> L 2(a ',a ' +  c*i).
oo oo fc

( W  f ) ( t )  =  X[a',a'+ai](t) EEE A ( r , k , q ) f ( t - w ( r , k , q ) ) ,  (1.11)
r = 0  fc=0 9 = 0
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where w(r, k, q) — ar  +  ol\ (k — q) +  a 29 ,

A(r,  k, q) =  ( - i r + y M  e  ( - 1 ,0 )  U (0,1),

* M,< 0  ~  \  0 , otherwise.

Here p, =  Pp ffpp\ , where pi, p2 are values of a piecewise constant density function 

of an associated string equation (1.1) satisfying controllability conditions (1.5), (1.6).

Once we find a param eter p for which the operator W  is invertible, a sampling and 

interpolating sequence for signals with the spectrum  supported on E  can be found 

using the following scheme.

A lg o r ith m  1. (a) Pick any two different values p\ > 0, p2 > 0 such that p  =

(P2 ~  Pi)/(P2 + Pi)-

(b) Find the numbers I and X\ from the equations

Oil
P ix i  =  y ,

p2{ l ~ X  j) =  y .

(c) Define the density function

p(x) = <
P i ,  when 0 < x < x \, 

P2 , when X\ < x < I.

(d) Find the eigenvalues o f boundary value system (1.3), (1.8) with the function  

p(x) and the number I found on steps (b) and (c). The sequence A =  {±An} is 

a sampling and interpolating sequence for L 2E.

In formula (1.11) and in what follows it is convenient to assume th a t /  is defined 

on the real axis with support in [0,c*i]. One can see th a t in this case for each 

t G [ct', a! +  c*i] the number of terms in the sum is finite, since only the term s with 

t — w(r, k, q) G [0, c*i] are not equal to zero.
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Our goal is to reduce the problem of the invertibility of the operator W  to  a 

problem of the invertibility of a simpler operator. We are going to  break the sum 

corresponding to the operator W  into two sums, W  = U + U , so th a t the operator 

U is invertible and its invertibility implies the invertibility of W. We show th a t it is 

possible to make U contain no more than  four terms. The invertibility of the operator 

U is proven in Theorems 7, 8 .

T h e o re m  2. For any aj and bj, there exists a nonnegative integer number k such 

that the operator W  can be written in the form

W  = U + U,

where the operator U is comprised of at most four terms whose coefficients each involve 

the parameter p  to a power not exceeding k + 1, and all terms of the operator U contain 

a factor p  at a power at least equal to k + 2. The operator U has the following form:

(U f ) ( t ) =  X[a',a'+ax\{t)[c\f{t -  Wi) +  C2f ( t  -  Wx -  <*1)
+  c3f ( t  - w 2 + ai )  + C\f  (t -  w2)],

where one or more o f the coefficients cx may be zero, and w\ and w2 have the form  

w (r , k, q) with f ,  k, q depending on relative position and lengths o f the intervals.

Note th a t the operator U may contain 2, 3 or 4 terms depending on the locations 

and the lengths of the intervals. There are many cases and sub-cases of the position 

of the intervals, so the proof is postponed to  Appendix l.A . Exact formulas for the 

operator U, which are im portant for the proof of the invertibility of U and W, are 

derived in the process of the proof.

We prove th a t for sufficiently small n  the invertibility of the operator U implies 

the invertibility of the operator W. This statem ent is based on the following lemma 

which is proved in Appendix l.B .

L em m a  1. I f  the operator U is invertible then | |f / -1 || <  \p,\~^k+l^C fo r  small enough 

\jj\, where C  >  0 does not depend on p,.
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T h e o re m  3. I f  the operator U is invertible, then fo r  small enough p, the operator W  

is also invertible.

Proof Theorem 2 states th a t the operator W  can be represented as a sum of two 

other operators W  = U + U. The operator U is made up of no more than  4 terms of 

W  with powers smaller or equal to k + 1, and the operator U contains the rest of the 

terms of W.

We have noticed th a t the operator W  has a finite number of terms. Therefore 

U also has a finite number of terms. Since U contains only powers of p  higher than 

k  +  1, then for small enough p,

l|C || <  M M D,

where D  does not depend on p.

Then from Lemma 1 it follows th a t for small enough p,

| |£ /- ‘ || ||£/|| <  1.

Note tha t

W  = U + U = U{I + U~l U).

Thus for small enough p  the operator W  is invertible □

It is convenient to scale so th a t ct\ = 1. After a change of variable the operator 

U is reduced to the operator V  in L2(0 , 1):

=

X[o,i](0  [ci f i f  +  a) +  c2f ( t  +  a — 1) +  czf{t  + b) +  c4/ ( t  +  6 —1)] . (1-12)

Here

0 < b <  a < 1

and Ci are the corresponding coefficients A{r, k, q) or 0.

To prove th a t the operator V  is invertible, we introduce a new operator K  which 

has the same form as the operator V, but coefficients Cj are arbitrary  real numbers.
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We consider two cases: the case when a — b is a rational number and the case of 

irrational a — b. The case of a — b € Q corresponds to the situation of o ti/a 2 € Q and 

the irrational case occurs if a .\/a 2 6  K \ Q ,  where ay and a 2 are the lengths of the 

intervals I \, I 2 as in (1.9). First we find the invertibility condition for the operator 

K , and then we show th a t the coefficients q  of the operator V  satisfy this condition.

1.3 T h e  in v e r tib il i ty  o f th e  O p e ra to r  K .

Consider the operator K  in L 2[0,1]:

[ci f ( t  + a) + C2 f ( t  + a — l ) + c 3f ( t - \ - b ) + C 4 f ( t  + b — l)\ ,  (1-13)

where t € [0,1]; a,b e  [0,1]; b < a; C\ ^  0 or c4 ^  0. Our goal is a sufficient 

condition for the invertibility of K.  We do not consider the case of C\ =  c4 =  0: the 

invertibility conditions for K  in this case are different from the invertibility conditions 

in all other cases, and we do not need the case of c\ =  c4 =  0 to prove the invertibility 

of the operator V.

From (1.13) one can easily see th a t the invertibility of the operator K  is equivalent 

to solvability for /  of the following system of equations:

c i f ( t  + a) + c3f ( t  + b) =  g{t) , t e  [0 , 1 — a),

c3f ( t  + b) + c2f ( t  + a - l )  = g(t) ,  f e ( l - a , l - 6), (1.14)

c2 f ( t  +  a — 1) +  C4/ ( t  + b — 1) =  g(t ) , t e  (1 — b, 1],

where g(t) is in L 2[0,1].

Let us find the conditions for the invertibility of the operator K  in special cases: 

Ci = c3 = 0, c2 =  c3 = 0, c2 — c4 =  0. The following lemma is a particular case 

of Theorems 4 and 5 which are proved in subsections 1.3.1, 1.3.2 respectively. We 

formulate it as a separate lemma because its proof is different from the proofs of the 

theorems.

L e m m a  2. Suppose that ci =  c3 =  0, or c2 = c3 = 0, or c2 =  c4 =  0. I f  

a — b is a rational number, The operator K  is invertible in L2[0,1] i f  and only if
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( _ l ) n c f c l + m c n - m - f c i  ^  Qn - k ,  Qk 1 ^  ^  ^ - * 2 ^  w h e n  a ~ b = ^

(f) is an irreducible fraction), k\ is the integer part o f bn, and k2 is the smallest in

teger such that k2 > bn. I f  a — b is an irrational number, the operator K  is invertible 

i f  and only i f  \c3\l~b\cA\b ±  |c2|a|c i |1-a.

Proof. Assume th a t c± =  C3 =  0. If a ^  1, the first equation of the system (1.14) 

becomes

0 =  g(t) , t G [0,1 — a).

So, the operator K  is not invertible.

If a =  1, then the first equation of (1.14) is defined on an interval of length zero. 

We get a system of two equations; this system is solvable when c2 ^  0 if b ^  1, and 

when c2 +  c4 ^  0 if b =  1. We can find the invertibility conditions for the cases of 

C2 =  c3 =  0 and c2 =  c4 — 0 using the same reasoning. We summarize all the cases in 

Table 1.1.

Table 1.1: Summary of invertibility conditions for different combinations of coeffi

cients

Coefficients Invertib ility  condition

O

IIC
O

IIG a 1 n o t invertible

C l  =  c3 =  0 a  =  1, b 1 C 2 ^ 0

O

IICO 
:

IIG a —  b =  1 q  t  q  /  0

c2 =  c3 = 0 a n o t invertib le

C 2  =  C 3  =  0 a —  b, a 1, a 0 ci ^  0  and  c4 ^  0

O

IIII<
N 0 II c

?- II 0 c i  ^  0

c 2  =  c 3  =  0 a —  b =  1 c 4  ^  0

C 2  =  C 4  =  0 b ^ t  0 n o t invertib le

£

II £ II 0

O"
t

k

C
3

O

II

C 3  7^  0

a a

11 0 a =  b =  0 ci +  c3 7̂  0

All the cases in the table 1.1 can be generalized by the two conditions given in 

the statem ent of this lemma. Observing this table we can see th a t under conditions
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of this lemma operator K  may be invertible only if b =  0, a — 1, or a = b. In the 

rational case these conditions correspond to ki = /c2 =  n — m , k\ = fc2 = 0 , and n  =  1, 

m  =  0 , 0 < k l  < k,2 < 1, so th a t zero coefficients get raised to the zero power. □

In what follows we will need to divide the equations of system (1.14) by ci and 

c2 or c3 and c4. By proving Lemma 2, we exclude the cases when cx =  c3 =  0, 

C2 =  c3 =  0, c2 =  c4 =  0 from consideration. Thus we can assume th a t (cj 7̂  0 and 

c2 7̂  0) or (c3 7̂  0 and c4 7̂  0).

Let A =  a — b, A =  1 — A.

If c3 7̂  0 and c4 7̂  0, then system (1.14) is equivalent to

/(*) +  — /(*  +  A ) =  — 9 ( t ~ b ) ,  t e [ b , A ) ,c3 c3

/ ( 0  H / ( t  +  A — 1) =  —g(t — b ) , f £ (A, 1),
c3 c3

f ( t ) - \ ---f ( t  + A) =  —<?(t +  1 — 6) , t e ( 0 , 6],
c4 c4

which is equivalent to the equation

f ( t )  +  +  A) mod 1) =  h(t), t G [0,1], (1.15)

where
c2/c4, t G (0, b),

0 (0  =  < ci/c3, t G (6, A),

c2/c3, t G (A, 1).

W hen Ci 7̂  0 and c2 7̂  0, system (1.14) is equivalent to

(1.16)

f i t )  + +  A) mod 1) =  k(t),  t G [0,1], (1.17)

where

0 ( 0  =  <

c3/c 2, t G (0, A),

c4/c 2, t G (A ,a),

c3/c i, t G (a, 1).

(1.18)
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Equations of type (1.15) were investigated in [Antonevich, 1996, Th. 2.1, pp. 29

32] for the case of continuous (p{t). In the course of proof of Theorems 4, 5 we will 

obtain solvability conditions for equations (1.15), (1.17) for piecewise continuous <fi(t) 

and ip(t) as defined in (1.16), (1.18).

1.3.1 T h e  case  o f  a — b e  Q

T h e o re m  4. Let a — b = ^  be an irreducible fraction. The operator K  is invertible

in L2{0,1] i f  and only i f  ( - l ) " c £ 1+mc r m-fcl ±  and ( - l ) " c * 2+mCr m~fe2 ±
cn-k2ck2  ̂ where a — b = > ^  is fae integer part o f bn, and k2 is the smallest integer

such that fc2 >  6n.

The results equivalent to  Theorem 4 were independently obtained by I. Spitkovsky 

[2006]. Theory of convolution operators in spaces of m atrix valued functions can be 

found in the book [Bottcher et al., 2002],

Proof. From Lemma 2 it follows th a t this theorem holds for the cases cx = c3 — 0, 

C2 =  c3 =  0, c2 =  c4 =  0. Thus we do not need to consider these cases in the proof of 

Theorem 4, and we can assume th a t (cq 7  0 and c2 7  ̂ 0) or (c3 7  0 and c4 7  ̂ 0). We 

defined the operator K  so th a t c\ 7  ̂ 0 or c4 7  ̂ 0.

As we have already noted, when both c3 and c4 are not equal to zero, the invert

ibility of the operator K  is equivalent to  solvability of equation (1.15). If c3 =  0 or

c4 =  0 then cx 7  ̂ 0 and c2 7  ̂ 0, and in this case the invertibility of K  is equivalent 

to solvability of (1.17). In the first case the problem will be reduced to solvability of 

two algebraic systems with determ inants

1 4- ( - 1  )n+1ck22+Tnc r m~k2/ ( c r k2ck42) and 1 +  ( - l ) " +1c£1+mc r m-fel/(c T * 1# ) -

In the second case the problem reduces to solvability of two systems with determ inants

1 +  (-T )"+1c r M 7 (c22+mc r m~fe2) and 1 +  ( - l ) " +1cr fclc47 ( c ^ +mc r m' fel)-

The proofs of the last two facts are analogous, so we will only show the derivation of 

the first of them.
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Suppose th a t c3 7  ̂ 0 and c4 7  ̂ 0.

Let us rewrite equation (1.15) as a family of equations defined on disjoint subin

tervals of the interval [0 , 1], choosing subintervals so th a t in each of those equations 

the function <j>{t) is constant.

First we divide the interval into n  pieces of the length { (L̂ ,  ^)}"=i- The 

number of such subintervals th a t are entirely inside of the interval [0 , b] is equal to 

the integer part of bn. Let us denote this number by k. Let us also introduce d -  the 

length of the interval [£,&]: d = b — k ^ .

Now we divide each subinterval of the length ^ into two smaller subintervals with 

the lengths of d and ^ — d and consider two sets of subintervals:

The set J\ contains all intervals of the length d, and J2 has all intervals of the length 

-  — d.n

Note tha t <j>(t) is constant on each of these subintervals (4>(t) is piecewise constant 

and it changes its values a t points b =  £ +  d and A =  IL̂ a ).

Now we can rewrite equation (1.15) as the following family of equations:

„ - if { t )  +  c2c4 l f { t  +  A) =  h(t) t e  (0, d)

f ( t )  + c2c^1f ( t  + A )  = h(t) t e ( d , ^ )

f ( t )  + c2c4 1f ( t  + A )  = h(t) t e  ( - — -  + d , - )
n n

/ ( f )  + c2c^1f ( t  +  A) =  h(t) t € ( - , -  + d) = (~,b)
n n n

(1.19)
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f ( t )  +  C1C3 1f ( t  +  A) =  h[t) 

f(t)  +  c i c ^ f i t  +  A) =

, k  A; +  1 . , A; +  1.
* G ( -  +  d ,  ) =  (6, ------- )

n n n
,k -\- 1 k -\- 1 .

4 G (—^ > + rf)n n

f { t )  + c1c3 1f ( t  + A) =  h(f) 

/(*) +  cic3 \/(*  +  A) =  /?,(*)

, n — m — 1 n — m — 1
t G ------------- , ---------------- +  d)n n

, n  — m  — 1 , x ,
t £ (--------------- +  d, A)

n
— 77, —  777,

/ ( t )  +  C2C3 1/ ( i  +  A — 1) =  /i(t) t 6  (A , b d)

n _ w / a ,x , / x  ,n — m  , n  — 7 7 i+ l./( f )  + c2c3 f ( t  + A — 1) = h(t) t £ ( b d , -------------- )
n n

f ( t )  +  C2C3 1f ( t  +  A — 1) — h(f) t £ ( ------- , ----------b d)
n n

71 —  1
f ( t )  +  C2C3 1 f ( t  +  A — 1) =  h(t ) £ £ (---------- b d , 1),

77,

Note th a t this family has three groups of equations: the first group contains 2k +  1 

equations defined on subintervals of (0, b), and the coefficient of f ( t  + A) is C2/C4; the 

second group contains 2n — 2m — 2k — 1 equations with the coefficient of f ( t  +  A) 

equal to Ci/c3; in the th ird  group there are 2m  equations, and the coefficient is c2/c3. 
Let us introduce f i ,gi  £ L2(0, L) for 1 <  z <  n:

fi(t)  =  f ( t  +
7 — 1

/id t) =  h(t  H ).
n

Substituting / ( f )  and h(t) by f i(t)  and hj(f) into each of the equations of family
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(1.19), the la tter can be transformed into two systems:

f i ( t )  +  c2c^ l fm+i{t) = hi(t)

f k + 1 ( 0  d~ C2C4 ^ fc+ 1 ( 0

f k + 2 ( f )  d~ CjCg f k + r r i + 2 ( 0  =  ^ f c + 2 ( 0

< . . .  on i 6  (0 , d) (1.20)

f n — m i f y  d~ ^ 1^3 f n i f )  ^ n —m i f )  

f n — m + 1  ( 0  +  c 2 c 3 1 f l ( t )  ~  h n  —m + 1  ( 0

k /«(*) +  C2C3 Vm (0  =  K ( t )

/ l ( 0  +  C2C4 V m + l ^ )  =  M O

/f c ( t )  +  C2C4 1 / f c + m ( 0  =  M O  

fk+1 ( 0  d" CjCg (f ) =  /ifc-)-l(t)

< . . .  on t G (d, —) (1-21)
n

/ n —m ( 0  d~ C jC g  f n ( t )  h n _ m ( f )

f n —m + l ( 0  d" C2C3 f l ( t )  h Tj _ T7i_)_i(t)

k /n (0  d- C2C3 Vm (0  =  M 0

Let X j ( t )  l)m) mod n (0 ‘

Since m  and n  are co-prime, this substitution maps the set { /i( t)}"=1 into the set

{ M 0 K U -

Systems (1.20) and (1.21) take the form:

M 0  d-  M (i+ i) mod n ( 0  =  M 0  on t e  (0 , d), 1 <  i <  n, (1-22)

^ii t)  d" £i-^(i+l) mod n ( 0  h j ( f )  On t €E (d, ~ )i 1 —  ̂ 5: (^-23)
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where

e  { —, —, —}, 1 <  I <  n. c4 c3 c3
In system (1.22), {V4}T=i has fc + 1  occurrences of C2/C4, n — m  — k — 1 occurrences of 

c i/c 3, and m  occurrences of c2/c 3. System (1.23) has k occurrences of C2/C4, n — m  — k 

occurrences of c i/c 3, and m  occurrences of C2/c 3. Therefore, determ inant of the first 

system is equal to

n

1 +  ( - l )n+1 TT 0 ; =  1 +  ( —l) Tl+1( —)fc+1( —)T*-TO- fc- 1( —J”1 =  
r=i °3 C3

fc+m+1 n—m—fe—1

i  +  ( - i ) n+1^ r - O T +i - >  (L24)

determ inant of the second system is:

1 +  ( - 1 ) ”+1 1 1 ^  ~  1 +  ( ~ 1)',+1 2 n - k  k  ■ t 1'2 5 )
<= 1 C3 C4

If bn is an integer, bn = k, then d = 0, and the first system lives on an empty 

interval. In this case the invertibility of the operator K  is equivalent to solvability of 

system (1.23) with determ inant 1 +  (—\ ) n+1 C2 +mc™~m~k/ (c%~kck4) (k =  bn). So K  is 

invertible if and only if 1 +  ( - 1  )n+1c£+mc?~m~7 ( c r fcc£) ^  0 .

Let bn ^  k. In this case both intervals (0, d) and (d, L) are nonempty. There

fore the invertibility of K  is equivalent to inequality to zero of determ inants 1 +

( - i ) n+ic^+m+ic r m_fc_1/ ( c r fe_1c4+1) and
1 +  (—l) n+1C2+mCj~m~fc/(c 3_fcC4). Here k is the integer part of bn, and k +  1 is 

the least integer greater than  or equal to bn.

In the formulation of Theorem 4 we defined k\ as the integer part of bn, and /c2 

as the smallest integer such th a t /c2 >  bn. Now we can see th a t the determ inants 

(1.24),(1.25) are equal to

1 +  ( - l ) " +1c^1+mc r m' fe7 ( c r felC41) and 1 +  ( - l ) n+1c*2+mc r m_fc2/ ( c r k2ck42),

correspondingly, and they are not equal to zero when

( - i r ^ + mc r m- fcl and ( - l ) nc£2+mc? - m- fe2 ^ c £ - fe2c*2.
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This proves the theorem for the case of c3 7  ̂ 0 and c4 7  ̂ 0.

We have discussed in the beginning of the proof th a t in the case of c3 =  0 or 

c4 =  0, the invertibility of K  is equivalent to

l  +  ( - l ) n+1c r fc2^ 7 (c^2+mc"-m- fe2) ±  0 a n d l  +  ( - l ) n+1c " -fel̂ 7 (c ^ +mc r m- fel) ±  0 . 

Theorem 4 is proved. □

1.3.2 T h e  case  o f  a — b e  IR \  Q

T h e o re m  5. When a — b is irrational, the operator K  is invertible i f

Notice th a t following the scheme of the proof in [Antonevich, 1996, Th. 2.1, pp. 

29-32] it is possible to show th a t the above condition is necessary and sufficient for 

the invertibility of the operator K . We omit the proof of the “necessary” part since 

we do not use it in the application to sampling and interpolation problems.

Proof. From Lemma 2 it follows th a t this theorem holds for the cases cx =  c3 =  0, 

C2 =  c3 =  0, C2 =  c4 =  0. Thus we do not need to  consider these cases to prove this 

theorem. This means th a t we can assume th a t (c4 ^  0 and C2 ^  0) or (c3 ^  0 and 

c4 7̂  0).

We know th a t when c3 ^  0 and c4 ^  0 the operator K  is invertible if equation 

(1.15) has a unique solution. If c3 =  0 or c4 =  0, we can assume th a t c\ ^  0 and 

c2 7  ̂ 0, and in this case K  is invertible when (1.17) has a unique solution. In this 

proof we first consider the case of c3 7  ̂ 0 , c4 7  ̂ 0 and |c2|a |c1 |1~a|c3|b-1|c4|_f’ < 1. 

Next we tu rn  to  the proof for c4 7  ̂ 0, c2 7  ̂ 0, and |c21“ |c! |1—“|c316—1 |c41—6 >  1 (or 

equivalently |c416|c311—6|c i |a—1 |c21—“ < 1 ); it has almost no differences from the first 

one and leads to  the same result.

Notice th a t the cases of (c3 =  0 and b 7  ̂ 1) and (c4 =  0 and 67  ̂ 0) are covered by 

the second part of the proof, and the cases of (c4 =  0 and 0 /  1), (02 =  0 and a 7  ̂ 0)
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correspond to the first part. When c3 =  0, b = 1, c4 ^  0 (and in all other similar 

cases) the expression |c2|a |c! |1—a|c316—1 |c4 1 has no zero factors, and this case falls in 

one of the two categories depending on the values of C\ , c2, c4.

Suppose th a t c3 7  ̂ 0 , c4 7  ̂0 and |c2|a |ci |1—a|c3|b—1 |c41— b < 1.

In this case the invertibility of the operator K  is equivalent to  solvability of equa

tion (1.15):

f ( t )  + + A) mod 1) =  h ( t ) ,  t  £  [0,1],

where /

c2/c 4, t e ( o , 6),

0 (0  =  C j / c 3 , t  £  (b, A),

C 2 / C 3 ,  t  £  (A, 1).

To solve equation (1.15) we can apply successive approximations

f o { t )  = h ( t ) ,  f n + i ( t )  = + A) mod 1) +  h ( t ) ,  n =  0 ,1 , . . . .

Then

f n + l ( t )  -  f n ( t )  =

=  ^ J ] j - 0 ( O  +  J'A) mod 1)]^ [/i((f + n A )  mod 1) -  f 0 ( ( t  + n A )  mod 1)]. (1.26)

If Ci =  0 or c2 =  0, then there is I such th a t

fn+ i(0  -  /n (0  =  0 for any n > I.

Thus, f ( l )  is a solution of equation (1.15). Therefore, the operator K  is invertible 

when Ci or c2 is equal to  zero, and c3 and c4 both are not equal to  zero.

Now, let us assume th a t ci ^  0 and c2 7  ̂ 0.

Since In 14>( t )  | is Riemann integrable, for any irrational A

N- 1

N k=0
- ^ ^ 1n |0 ((t +  /cA) mod i) | -♦ f  \n \<j>(t)\dt =

J  0

+  (1 — a) In

'o

=  6 In +  (a — b) In
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uniformly in t  G [0,1] (see, e.g., Peterson [1983], p. 156). Then,

l / NS N - 1

lim max ( TT \<j>((t + j A )  mod 1)|
jV—* oo t I J.

J= 0
:  N - l

=  exp Jim  max — In \ 4 > ( ( t  +  A:A) mod 1)| =
k =0

exp ( b In c2 +  (1 — a) In C l
+  (a — b) In c2 c2

b
C l

1 —a
C 2

V c4 c3 c3 J c4 c3 C 3

o —6

Note th a t
C 2

b
C l

1—a
£2

c4 c3 C 3

o —6 o L .  11 oIC2IIC1I 
|c3M c 4|i

< 1.

Then, for any e such th a t “1^1“ b < e < 1, there exist such M  tha t
’ J  I C 4  I I C 3  I I C 3  I ’

' N - 1 l / N

m a x  |  \<f>((t  +  j A )  mod 1)| <  £ (1.27)
j=o

for any N  > M.

Then, from (1.26), (1.27) we obtain th a t for large enough n

p n + k —2

I f n + p  f n \  — z  n \<f>((t  +  j A )  mod 1)1
k = 1 j = 0

and

Thus,

|/i((£  + (n + k  — 1)A) mod 1) — / 0((£ + (n + k  — 1)A) mod 1)|

oo (-y 2n

ll/„+„ -  M b  <  2 £ ( e " +‘ - ' ) 2 II/, -  f 4 h  =  f y - i l l / i  -  f 4 b  ■
k = i

IIf n + p  ~  / t i | | l 2 <  - ^ = = | | / l  ~  / o | | l 2 -

The norm | | /n+p — f n \\L2 can be done arbitrary  small for all p taking large enough 

n. Therefore, the sequence {/)}[Li converges to  a function / ,  and f ( t )  is the solution 

of equation (1.15).

Let now c\ ^  0, C2 ^  0 and |c4161c311—6[cq |a—1 |c21— “ < 1.
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W hen Ci ^  0 and c2 ^  0, the invertibility of the operator K  is equivalent to 

solvability of equation (1.17):

f ( t )  + + A) mod 1) =  k(t), t e [0,1],

where

ip(t) =  <

C3/C2, t 6  (0, A),

C4/C2, t e ( A , a ) ,

c3/c i, t € (a, 1).

This time we use the same kind of successive approximations to  prove solvability 

of second equation (1.17). We use the fact th a t

l / Nf N - 1

lim max [ TT |ip((t + j A )  mod 1)|71—*00 t \
. J = 0

c4 b
C3

1—a
C3

a—b

C2 Cl C2
<

to  prove th a t the new sequence {/j} converges to  the solution of equation (1.17). 

Therefore, the operator K  is invertible when |c3|1_b|c4|b ^  |c2|a |c1|1_a. □

1

1.4 T h e  in v e r tib il i ty  o f  th e  O p e ra to r  V .

In this section we use Theorems 4 and 5 to  show th a t the operator V  (see (1.12)) is 

invertible.

Prom formulas (1.37)-(1.46) (see Appendix l.A ), we know th a t there are three 

kinds of the operator V: 1) with C\ ^  0, c2 ^  0, and c3 =  c4 =  0 (or c3 ^  0, 

c4 ^  0, and cx =  c2 =  0); 2) with only one of the coefficients ct equal to  zero; 3) with 

Ci ^  0 for 1 < i < 4.

In case 1 the conditions of Theorems 4 and 5 hold, so, the operator V  is invertible. 

Let us prove th a t if only one of the coefficients q  is equal to  zero, the operator V  

is invertible.

T h e o re m  6 . When exactly one of the coefficients Ci is equal to zero, the operator V  

is invertible in L 2[0,1] fo r  small enough p,.
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Proof. The conditions of Theorems 4 and 5 hold if the zero coefficient is raised to 

a nonzero power. For example if a — b is an irrational number, C3 =  0, and b ^  1, 

then the condition of Theorem 5 becomes |0 |1_b|c4|b ^  |c21“ |c !|1—a, or |c2|a|c1j1~a ^  0, 

which is obviously true.

We will have to  separately handle the cases when the zero coefficient is raised to 

a zero power. In the case a — 6 G M \  Q, ex =  0, a =  l  the condition of Theorem 5 

becomes

|c3r | c 4|b *  |c2|. (1.28)

In the case a — 6 € 1 \ Q ,  c4 =  0, 6 =  0 the condition of Theorem 5 becomes

M  #  W W 1- .  (1.29)

From the formulas for the coefficients q  (1.38),(1.39),(1.42),(1.43),(1.45) derived in 

the proof of Theorem 2 in Appendix l.A , it follows th a t the left-hand side and the 

right-hand side of the inequalities (1.28),(1.29) involve different powers of fi. Thus for 

small enough n  the inequalities (1.28),(1.29) hold, and the operator V  is invertible.

In the case a—b G Q, C\ = 0 the condition of Theorem 4 is true unless n —m —k\ = 0 

or n  — m  — /c2 =  0. W hen n  — m  — ki = 0, the condition of Theorem 4 is

( - i r c" ^ c - cr m. (1.30)

In the case a — b G Q, c2 =  0, ki + m = 0, the condition of Theorem 4 is

( - l ) c i ^ c 3. (1.31)

In the case a — b G Q, C3 =  0, n =  /q, the condition of Theorem 4 is

( - l ) c 2 ^ c 4. (1.32)

In the case a — b G Q, c4 =  0, ki =  0, the condition of Theorem 4 is

( - 1  =1 c i (1.33)
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One can check th a t if m  ^  0, the conditions (1.30),(1.33) hold for small enough p, 

since the left-hand sides and the right-hand sides of the inequalities involve different 

powers of p. Therefore the operator V  is invertible in these cases.

If m  =  0 then n = 1, since ^  is an irreducible fraction. Inequalities (1.30),(1.33) 

take the form of inequalities (1.32),(1.31) correspondingly. To show th a t the inequal

ities (1.31),(1.32) hold, we use the fact th a t

|A(r,  A;, 0)| >  |A(r  — k + l , k ,  k)\ for k > 1. (1-34)

From the formulas for the coefficients q  (1.38),(1.39),(1.42),(1.43),(1.45) and the re

lation (1.34) it follows th a t one of the coefficients C\, c3 (or c2, c4) is larger than  the 

other one by absolute value, or both coefficients are positive or negative. Thus, the 

inequalities (1.31), (1.32) hold. □

Let us consider the case of q  ^  0 for 1 < i <  4. In this case the operator U is 

given by the following formula:

(U f ) ( t ) = X[a',a'+ai }(t) [A{r\, ki, 0 ) /( f  -  w(ru ku 0))

+  A(ri ,  ki +  1, 0) f ( t  -  w(ri ,  kx +  1, 0))

+  A[r\ -  ki +  1, k u  k i ) f ( t  -  w(ri  -  ki +  1, fci, fci))

+  A ( r i -  ki, ki +  1, ki + 1 ) f ( t  -  w(r i -  k it ki +  1, k\ +  1))]

(see the proof of Theorem 2 in Appendix l.A ).

Depending on the relations between the shifts w(r, k , q) in the above formula, 

coefficients c, may have two forms:

C = M r , k ,  0) =  ( _ 1) r + V ^ T i ^ '

c2 =  A( r , k  + 1,0) = ( - l ) r+fc+Vr+fe+l „fc+l (r  +  k +  1)!
r\(k + 1)! ’

c3 =  A(r  -  k, k +  1, k +  1) =  ( - 1  )r+1p k\r+i ,,fe+i (r- +  1)!
(1.35)

(r — k)\(k + 1)! ’ 

c4 =  A(r  — k +  1, k, k) = ( —1 )r+1p k\r+ i. ,fc (r +  1)!
(r — k + l)!/c! ’
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and

c - y l C r - * , *  +  l . *  +  l) =

o  = A l r - t + i , k , k )  = ( - i

c3 = A(r , k ,  0) =  {^ V r , , ‘ "{r A k i ' '

Ci = A ( r , k  +  l,0) = ( - l ) ^ V t+ l(" , | / ++1)1,)!.

with some r  >  0 and k > 1 (we do not have to consider cases with k = 

when k = 0 , at least one of the coefficients Cj is zero).

T h e o re m  7. When a — b is rational and c* ^  0 for  1 <  z <  4, f/ie operator V  is 

invertible in L2[0,1] fo r small enough p.

Proof By Theorem 4 the operator V  is invertible if and only if
( _ l ) „ c f c l +m c n - m - f c 1 ^  c n - f c l c fc! a n d  ^ _ l 3 ) n c k 2+ m c n - m - k 2 ^  < £ - * 2 ^  w h e r e  & =  2 ^

k\ is the integer part of bn, and k2 is the smallest integer such th a t k2 >  bn.

From formulas (1.35) and (1.36) we see th a t when ki ^  term s C21+mc"~rTl_fcl 

and c3~klckl have different powers of p. Therefore, in this case p  can be made small 

enough, to make ( — l ) n ckl+in c7l~ m~kl ^  c3~klckl . Similarly, when k2 7̂  for small 

enough p,  ( - l ) " c ^ 2+mc r m“ fc2 ±  cnf k2ck2.

If k\ or k2 or both are equal to then the corresponding inequality will have the
n+m  n  — m  n- f - m n ~ m

form (—l) nc2 2 c1 2 ^  c3 2 c4 2 . Now we cannot achieve the condition of Theorem

4 by making p  small, because the powers of p  are the same on both  sides of inequality. 

So, we have to  consider the specific forms of the coefficients c* (see (1.35), (1.36)).

Since k > 1, \A(r, k , 0)| >  \A(r — k + 1, k, k)l and lA(r, k +  1, 0)| > )A(r — k, k + 

l,fc +  l) |.  Then |c2| ẑ 22|c i |:L2irt ^  |c31 | C41 5 and therefore (—l )7̂ 2™ ^ 2 ^

□

T h e o re m  8 . When a — b is irrational and c* ^  0 for \ < i < A, the operator V  is 

invertible in L 2[0,1] fo r small enough p.

(1.36)

0 , because
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Proof. From Theorem 5 we know th a t the operator V  is invertible if

|c3p - 6M V  M I c j I 1- 0.

Using formulas (1.35) and (1.36) we see th a t if 1 — b f  a, then term s |c3[1—*|c4|* 

and |c2|a |c4|1—a involve different powers of p. We can choose p  such th a t |c3|1_6|c4|fc f  

|c2|a |c i|1- a.

If 1 — b = a, then the expression above will have the form: |c1|1_a|c2|a f  

| c31a | c411 a. We will again have to look a t the concrete forms of c,. As we know, 

for k > 1, \A(r — k , k  + l , k + l ) \  < \A(r, k + 1, 0)| and |A(r  — k + l , k , k ) \  < \A(r, k, 0)|. 

Since a — b = A 6  J  and 1 — b = a, then a 7̂  0 and a 7̂  1. Thus, either 

|c i|1- a |c2|a <  |c3|a |c4|1- a, or |c i|1_a|c2|a > |c3|a |c4|1-a.

Therefore, |c3[1_b|c4j* ^  |c2|a |c i |1_a.

This completes the proof of the invertibility of the operator V  for irrational A.

□

A p p e n d ix  l .A .  T h e  p ro o f  o f T h e o re m  2

Now we prove Theorem 2 from Section 1.2. We single out several term s of sum (1.11) 

th a t have smallest powers of /1. Sum of those term s form the operator U. We choose 

the number of term s so th a t later it will be possible to  prove the invertibility of U. 

In the course of this proof we show th a t this number of terms does not need to  be 

greater than  four.

T h e o re m  2. For any aj and bj, there exists a nonnegative integer number k such 

that the operator W  can be written in the form

w  = u + u,

where the operator U is comprised of at most four terms whose coefficients each involve 

the parameter p  to a power not exceeding k + 1, and all terms of the operator U contain
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a factor p, at a power at least equal to k +  2 . The operator U has the following form:

(U f ) ( t )  =  X{a',a' + ai](t)[cif(t -  wi)  + c2f ( t  -  wi -  a i )

+  c3/ ( f  -  w2 +  « i)  +  c4/ ( t  -  w2)],

where one or more of coefficients Ci may be zero, w\ and w2 have the form  w (r , k, q)

with f ,  k, q depending on relative position and lengths o f the intervals.

Proof 1. We are looking for r , k , q  with the smallest possible k such th a t t —

w(r, k, q) £ [0 , cti] for some t £ [a', a ' +

2 . Suppose th a t a'  — w(r , 0, 0) £ [0, ai] or a 1 + a i  — w(r , 0,0) £ [0, au] for some r.

2 .1. Let a' — w(r,  0 ,0) £ [0, cti]. Then, a ' +  a i  — w(r, 1,0) =  a'  — w(r,  0,0) £ [0, ai].

Also may or may not be a' + a i  — w(r,  1, 1) £ [0, o;i].

2.1.1. If a'  + ai  — w{r, 1,1) £ [0, a i], then

(Uf)(.t) = X[a',a'+ai](0 [A(r ,0,0) f ( t  -  w(r, 0,0))

+  A(r,  1, 0) f ( t  -  w(r,  1, 0)) +  A(r , 1,1 ) f ( t  -  w(r , 1,1))]. (1.37)

2.1.2. If a'  +  ot\ ~  w(r > 1) 1) ^ [O' a iL then

(U f ) { t ) =  X[a',a'+ai](0 [A(r ,0,0) f ( t  -  w(r, 0,0))

+  A ( r , l , 0 ) / ( t - u ; ( r , l , 0 ) ) ] .  (1.38)

2 .2 . Let a '+ a i  — w(r, 0, 0) £ [0, a 4). Since of > 0, r  > 0. Then a ' — ui(r — 1 ,1 ,1) =

a ' +  a i  — w(r, 0, 0) £ [0, a i) .  Also, a ' — w(r — 1, 1, 0) £ [0, au] may hold.

2.2.1. If a 1 — w(r — 1 ,1 ,0) £ [0, a i], then

(Uf ) ( t )  = X[a',a'+ai}(t) [A(r ,0 ,0) f ( t  -  w(r, 0,0))

+  A(r  —1,1 ,0  ) f ( t  — w(r  —1,1,0)) +  A{r  — 1,1,1 ) f { t  — w{r — 1, 1, 1))]. (1.39)

2.2.2. If a' — w(r — 1,1, 0) ^  [0, cti]), then

(Uf){t )  = X[a',a'+ai\{t) [A(r ,0 ,0) f ( t  -  w(r, 0,0))

+  A(r  -  1,1,1 ) f ( t  -  w(r  -  1 ,1 ,1 ))]. (1.40)
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3. Now we can assume th a t t — w(r,  0,0) ^  [0, a x) for any t G [a', a' + a x] and 

r  > 0 .
Note,

w(r, k, q) = w(r + q , k  — 2q, 0 ) for k > 2q

and

w(r, k, q) = w(r + k — q,2q — k,2q — k) for 2q > k.

Therefore, (r ,k ,q)  with minimal k such th a t t — w(r ,k ,q)  G [0, Qi] for some t G

[a', a ' + Qi] will have form (r, k, 0) or (r, k, k) where k > 1.

4. Let us find r x, k x such th a t a' — iy(r1,/c1, 0) G [0, Qi] and kx is the smallest 

possible.

The answer is: rx =  [ ^ J ,  kx =  where [xj denotes the integer part of x.

Also, a'  + ot\ — w(rx, kx +  1, 0) G [0, Qi].

Note th a t kx + 1  is the smallest k2 such th a t a'  + a x — w(r2, k2, 0) G [0, ax]. If there 

is k2 < k x + 1 w ith a ' + otx — w(r2, k2, 0) G [0, ax], then a ' +  w(r2, k2 — 1, 0) G [0, ax] 

and k2 — 1 < kx -  a contradiction.

5. Let us find r^, k3, r 4, k4 such th a t a'  + a j  — w(r3, k3, k3) G [0, ax] and a' —

w(r4, k4, k4) G [0, ax] with the smallest k3, k4.

It is k3 =  [ (ri+ )̂]Q~Q J and r3 = r1 + l -  k3; 

k4 =  k3 +  1, r 4 =  r 3 — 1.

6.1. Let r 3 < 0 or k3 > kx +  1. Then

(Uf) ( t )  =  X[a',a'+ai](0 [A(ru kx, 0)f  (t -  iw(n, kx,0))

+ A ( r x, ki + 1, 0) f ( t  -  w(r i , k i  +  1, 0))]. (1.41)

6.2. Let r3 = 0, k3 < kx + 1.

(U f ) ( t ) =  X[a',a'+ai]{t) [A{n,  kx,0 ) f ( t  -  w(rx, k x, 0))

+  A( rx, k x +  1 ,0 ) f ( t  -  w ( n , k x +  1,0))) +  A(0, k3, k3) f ( t  -  w(0, k3, k3))} . (1.42)
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6.3. Let r 3 > 0 and k3 = ki + 1. Then r$ = r\ — k\.

{Uf)( t )  =  X[a’,a>+ai](t) [A{ru k i , 0 ) f { t  -  w(ri ,ki ,Q))

+ A( r i , k i  + 1, 0) f ( t  -  w(r\ ,  ki +  1, 0))

+  A ( ti — ki, k\ +  1, ki +  1) f  (t — w (r\ — k\, ki +  1, ki +  1))]. (1.43)

6.4. Let r 3 > 0 and k3 =  fci.Then

{Uf){t)  = x\a',a'+ai}{t) [A(ru k i , 0 ) f ( t  -  w(r\ ,  ki ,0))

+ A(ri ,  ki +  1, 0) f ( t  -  w(ri ,  ki + 1, 0))

+  A(ri  -  ki + 1, ki, k i ) f ( t  -  w(ri  -  ki + 1, ki , k i ) )

+  A{t\ — k \ , k \  +  1, Aii +  1 ) f ( t  — w (r\ — +  1, k\ +  1))]. (1.44)

6.5. Let r 3 > 0 and k3 = ki — 1.

{Uf){t)  =  X[a',a'+ai](0  {A{r\ , kx, 0) f ( t  -  w(ru ku 0))

+ A{r\ — ki + 2, ki — 1, ki — 1 ) f ( t  — w(ri  — k\ +  2, ki — 1, ki — 1))

+  A (ri -  ki + 1, k i , k i ) f ( t  -  w(ri  -  ki + 1, ki, k i ) ) ] . (1.45)

6 .6 . Suppose r 3 > 0 and k3 < k i — 1.

(U f ) ( t ) = X[oc>,oc'+ai}{t) \A{r3, k3, k3) f ( t  -  w(r3, k3, k3))

+  ^l(r3 -  1, k3 + 1, A:3 +  1 ) f ( t  -  w (r3 -  1, k3 + 1, k3 + 1))]. (1.46)

We derived all possible formulas for U for various relative positions of intervals I\ 

and / 2 (see (1.10)). Note th a t U may contains two (formulas (1.38), (1.40), (1.41),

(1.46)), three (formulas (1.37), (1.39), (1.42), (1.43), (1.45)), or four (formula (1.44))

terms.

□
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A p p e n d ix  l .B .  T h e  p ro o f  o f  L e m m a  1

L em m a  1. I f  the operator U is invertible, then | | t / -1 || <  |/u|_ f̂c+1̂ C fo r  small enough 

\p\, where C  > 0 depends only on r, k, q.

Proof First we show th a t \\Uf\\ > |yu|fe+1B || / | |  for any /  G L2[0, a i], where B  is a 

positive constant. To prove this we need the formulas for the operator U from the 

proof of Theorem 2 given in Appendix l.A . We consider separately cases when U 

consists of 2, 3 and 4 terms.

In formulas (1.38,1.40,1.41,1.46) the operator U has two terms:

(Uf ) ( t )  = X[a',a'+ai](t) [tikAx f { t  -  w) +  p k+lA 2f ( t  — w ±  a-i)] .

Here A \, A 2, w do not depend on p, and A x ^  0, A 2 ^  0. Notice th a t since /  

is defined on [0 , aa], then the two term s are never nonzero on the same part of the 

interval [0, aj], because distance between t — w and t — w ±  au is au. Then

||(£ //)(f)|| >m ia(|.41| , | M J|)M ‘ ll/ll >  M * +1I^ I I I / I I

for small enough //.

Let us consider the cases when the operator U has three terms. In formulas 

(1.37,1.39,1.43,1.45) the operator U has the form

( t / / ) ( 0  =  X[a',a'+a1}(t)[h-kA l f ( t  -  W x )  +  p k+1A 2f ( t  - W i ±  a i )

+  p fc+1A3/ ( f  — w2)].

For these cases

\\{Uf)(t)\\ >  m in(|A i|, \pA2\, \Ai + p A 3\, \p{A2 + A3) |) |p |fc| | / | |  >

|p |fc+1m in(|A2 +  A3|, |A2|) | | / | |

for small enough p. One can check using the exact formulas for the coefficients Ai,  

th a t A 2 A3 0.
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In formula (1.42) the operator U is:

W )(< )  =  X[a',a>+cn](.t)\vhA if( .t -  Wi) + fj,k+1A 2f ( t  - w i ±  a i)  

+  n kaA $ f( t  — W2 )}, k$ <  k +  1.

Then for small enough /i and a positive constant D  we have

[ |( t / /) ( ( ) || >  M 21, Mi +  / * - % ! ,  IM 2 +  /-‘sM 3)|) W ‘ | | / | |

>  M +‘ m in(|X 2 + M - ‘ - M 3| ,M 2|) |! / | |  >  D M +' | | / | | .

Now we consider the last case of four term s (see formula (1.44)):

=  X[a',a'+a,}{t-)[k-kA i f ( t  -  wx) + g k+1A 2f{ t  - w i -  a 4) 

+  Az f ( t  — w2) + fj,k+1A i f ( t  — w2 +  ax)].

Then

11 {U f )  (011 ^  m in d ^ i +  ^ l ,  |j4i +  /x̂ 441, |2l3 +  fj.A2\, \g.{A2 + A 4) |) \g\k | | / | |  >

m ‘+1i ^ + m i i / i i

for small enough /r. Let us show th a t A 2 + A 4 ^  0. From formula (1.44) we see th a t

A - (  M r+fc+l(r  +  fc +  1) ! A _ (  1V-+1 ( ^ + 1 ) !
2  ̂ } r\(k + 1)! ’  ̂ } ( r - k ) \ ( k  + 1)!

for some r, k > 1. Note th a t for k > 1

(r +  k + 1)! (r +  1)!
r!(/c +  l)! (r — k)l(k + 1)! ’

so A 2 T  A 4 7̂  0.

We have shown th a t for any /  G L2([0 ,ai]), \\U f\\ > |/r|fc+15 | | / | | ,  where B  is 

a positive nonzero constant. Since we assumed th a t U is invertible, then for any 

g G L2([a ',a ' +  a i]), \\g\\ >  \fj,\k+1B \\U -1g\\. So, for every g G L2([a', a' +  a j]) : 

\\U -lg\\ <  Thus <  W {k+l)C. □
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C hap te r 2
B oundary  C ontrol approach to  th e  spectra l estim ation  problem . T he

case of m ultiple poles1

A bstract

There exist many methods for solving the spectral estimation problem. This chapter 

proposes a new approach to this problem based on the Boundary Control method. We 

show th a t the problem of decomposition of a signal modeled by a sum of exponentials 

with polynomial coefficients can be reduced to an identification problem for a discrete 

time linear dynamical system. It follows th a t values of exponentials can be found 

solving a generalized eigenvalue problem as in the M atrix Pencil method. We also 

give exact formulas for the polynomial amplitudes.

Keywords: Spectral estimation, Signal Processing, Boundary Control method, 

Control theory, M atrix Pencil method.

2.1 In troduction

Let a signal r(t)  be modeled by the following expression:

K

r{t) = J ^ a „ ( f ) e Ar,t, (2 .1)
n =  1

where an(t) are polynomials and A„ can be real or complex numbers. Our problem 

is to  recover the number of poles K , the polynomial coefficients {a„(f)} and the 

exponents {A„} knowing the observations of the signal r(0), r ( l ) , ...

Functions of the form (2.1) arise as solutions of linear homogeneous ordinary 

differentials equations with constant coefficients

x {d) +  + - . .  + A d = 0 (2 .2)

1S.A. Avdonin and A.S. Bulanova, Boundary control approach to the spectral estimation problem. 
The case of multiple poles, M athematics of Control, Signals, and Systems, subm itted, 2007.
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and linear homogeneous recurrence relations with constant coefficients

d n C\CLn —\  T  C2dri—2 4” • • • Cd&n—d' ( ^ ' ^ )

A general solution to equation (2.2) is

K  M i -1

x (t) =  an ijeZit
i = 1 j = 0

where z* is a zero of multiplicity M* of the characteristic polynomial

p(z) =  +  A iz d~l + . . .  A d.

A general solution to equation (2.3) is

K  M i - 1 / C M i -1

= E E = E E
j = 0  i = 1 j = 0

where A, is a zero of multiplicity M, of the characteristic polynomial

p(A) =  zd -  CxẐ 1  cd.

Solutions of the form Y?=i ^ ~ bit with real coefficients a* and 6, > 0 appear in heat 

diffusion and diffusion of chemical compounds problems, time series in medicine, 

economics. Solutions of the form Y f= i <bsin(M +  q )  occur when the characteristic 

polynomial has complex roots, and are typical for electrical systems.

The classical spectral estimation problem is to recover the coefficients a*, A* of 

a signal r(t) = Y?=i aieXit> by the given observations r(j ) ,  j  =  0 , . . .  2N  — 1. This 

problem is very im portant in signal processing, the applications are in wireless com

munications, antenna array design, bio-medical imaging, high-speed circuit analysis 

and others (see [9; 16]).

There exist many methods for solving the spectral estim ation problem: the m ethod 

of Prony and its numerous modifications [13; 11]; the M atrix Pencil method devel

oped by Hua and Sarkar [8 ; 9; 16]; iterative maximum likelihood methods (see, for
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example, [12]); MUSIC (Multiple Signal Classification) [17] and ESPRIT (Estima

tion of Signal Param eters via Rotational Invariance Techniques) [14] algorithms, and 

others. Badeau et al. [4] develop a generalized ESPRIT algorithm for estimation of 

param eters of a signal modeled by the Polynomial Amplitude Complex Exponentials 

model.

We propose a new approach to this problem based on the “nonselfadjoint” ver

sion of the Boundary Control (BC) m ethod [2], The BC m ethod has been recently 

developed for solving boundary spectral and dynamical inverse problems for partial 

differential equations (see, e.g., [5; 1]). The BC method reveals th a t the two central 

problems of the theory of inverse and control theory of distributed param eter sys

tems have a direct connection with each other. The first problem is the recovery of 

unknown coefficients, the second problem is the controllability of the corresponding 

initial boundary value problem. Roughly speaking, the BC m ethod gives the realiza

tion of R. K alm an’s idea th a t the controllable (or observable) part of a system can 

be identified. We extend this method to dynamical systems with discrete time.

In the joint paper with S. Avdonin and D. Nicolsky [3] the BC m ethod is applied 

to the problem of decomposition of a signal r ( t ) =  Yln=\ aneXnt, where amplitudes an 

are constant. Here we consider the case of a signal with polynomial amplitudes an(t): 

r(t)  = E Z =1 Unity** .
Using Boundary Control m ethod we show th a t the coefficients {An} can be ob

tained as in the M atrix Pencil method by solving the generalized eigenvalue problem 

for the matrices A  and B:

A f  = X B f

Aij = r(i + j -  1), Bij =  r(i + j  -  2), i , j  = 1,..., N

using this formula: An =  In A„. Also our m ethod gives exact formulas for com putation 

of the amplitudes an(t) in terms of generalized eigenvectors and eigenvalues of the
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above eigenvalue problem and observations r(t). Note th a t N  may be unknown and 

can be found in the procedure.

This chapter is organized as follows. We introduce a pair of auxiliary dynamical 

systems (2.5), (2.10) (see Sec. 2.2); state  a controllability condition for such systems 

(see Sec. 2.3), introduce the control and response operators for systems (2.5), (2.10) 

(Sec. 2.4). In Section 2.5, we consider the problem of identification for system (2.5): 

we show th a t param eters of system (2.5) can be recovered using values of the kernel 

of its response operator. Section 2.6 shows th a t an application of a transform ation 

of variable to system (2.5) does not change its response operator. In Section 2.7, we 

show th a t the problem of decomposition of a signal of form (2 .1) is equivalent to an

identification problem for a certain system of form (2.5) and present an algorithm for

signal estimation based on these ideas.

2.2 D ynam ical system s

In this section we construct such a dynamical system th a t the function

K

r(k) = Y , “,(k)Xtn (2.4)
71— 1

is the kernel of the input-output operator of this system. The problems of determining 

the coefficients A„ and an for functions (2.1) and (2.4) are equivalent. In what follows 

it is more convenient to work with form (2.4).

Let N  — Yln=i M n, where M n are the degrees of the polynomials an(k).

Let us introduce an auxiliary discrete-time dynamical system:

x(k  +  1) =  M x ( k ) +  bf(k) ,  x(k)  e  C ^ , x(0) =  0 (2-5)

with an observation y

y ( k ) =  (x(k), c)cn :=  c*x(k).

Here M  is an N  x N  constant matrix, /  is a scalar control, b, c e  C N, and c* means 

conjugate transpose of N  x 1 vector c. In general situation M  is not self-adjoint.



Solving equation (2.5) for a given control /(0 ) , / ( l ) , . . . ,  f ( k ) , . . .  we get

fc-i
x f (k) = ' ^ 2 M k- 1- il)f(i). (2 .6)

t=o

Define the m atrix Y ( k ) ^ x k  and the vector F(k)kxi  by

r(fc) =  (6|M 6|M 26| . . . | M fc" 16), (2.7)

m  =  ( f ( k -  1).. - . . / ( I ) ,  / ( 0 ) f .  (2.8)

Using (2.6), (2.7) and (2.8) we obtain

x / (k )  = Y  (k)F(k) .  (2.9)

We also consider the adjoint system:

z(k  + 1) -  M*z(k)  + cg(k), z ( k ) e  C N, z(0) =  0 (2.10)

with an observation w(k) = (z(k), b ) CN = b*z(k). The solution to this equation is

Z > ( k )  = cg(j).  (2.11)
3 = 0

Formula (2.11) can be rewritten in m atrix form as

Z9{k) = Y*(k)G(k) ,

where

Y * ( k ) =  (c|M*c|(M*)2c| . . . |(Af*)fc-1c),

G(k) = (g(k  -  1 ) , . . .  ,^ (1 ),^ (0 ))T.

We show th a t it is possible to solve the spectral estimation problem for signal (2.4) 

using systems (2.5), (2.10) and the ideas of the Boundary Control method.

47
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2.3 C o n tro lla b ility

D e fin itio n  1. System (2.5) is said to be controllable, i f  fo r any given w G Cn there 

exists a finite positive integer T  and a sequence o f inputs / ( 0 ) , . . . ,  f ( T  — 1) such that 

x-f(T) = w.

Equation (2.9) connects a control f ( i )  defined for i from 0 to k — 1 and the state  

x f (k )  of the system at the step k. Recall tha t x^(k)  is an N  x 1 vector, Y( k)  is an 

N  x k m atrix, F(k)  is a k x 1 vector. Then we can solve equation (2.9) for F(k)  with 

arbitrary  x*(k)  and given Y(k)  if k > N  and Y( k)  has full rank N.  This constitutes 

the well known Kalman’s controllability condition (see, for example, [6 ; 7; 10; 15]).

P ro p o s it io n  1 (Kalm an’s controllability condition). System  (2.5) is controllable if  

and only i f  the N  x N  matrix Y ( N )  =  (b\Mb\M2b\ . . .  |M N_1b) has rank N .

The m atrix Y  (N ) is called a controllability matrix. Similar condition obviously 

holds for adjoint system (2 .10): system (2 .10) is controllable if an only if

r a n k ( Y * ( N )) = rank(c\M*c\(M*)2c \ . . .  = N.

2.4 O p e ra to rs  W  a n d  R

Let us introduce the control operator W  : —> C ^,

( W f )  := x * ( N  +  1) 

and the response operator R  : C°° —> C°° for system (2.5),

(R f ) ( k )  :=  y(k) = {xf (k), c ) , k  = 1 , 2 , . . .  (2.12)

Similarly we introduce control and response operators for adjoint system (2.10): 

W * : C N+1^ C N, (W*g)  :=  z9( N  +  1),

R *  : C°° -> C°°, (R * g )(k ) := w(k) = (z9(k),b), k =  1 ,2 , . . .  (2.13)
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Notice th a t
k —1 k —1

(xf (k), c) =  c*xs {k) = c * J 2  [c*Mh~1~ib] f{i).
2=0 2=0

Therefore, if we denote c*M hb by r(k)  then R  takes the form:
k —1

( « /) (* )  =  ^ / ( j ) r ( f c  -  i  -  j ) .  (2.14)
j = 0

Likewise,
k ~ l

(R*g)(k)  = ^ 2 g ( j ) r ( k - l - j ) .  (2.15)
3 = 0

2.5 Identification

In this section we show th a t it is possible to obtain the eigenvalues of M  and coeffi

cients of decomposition of vectors b and c in bases of eigenvectors of matrices M  and

M* respectively from values r(k).

Suppose /(0 )  =  0, /(?;) =  0 for i > N  + 1. Let us introduce the shift operator S

f ( k )  = S f ( k )  = f ( k  + 1).

Then f ( i )  = 0 for i > N.

Since M  and b are both constant (do not depend on k), then x^(k)  = x^(k  + 1) 

for 1 <  A; <  N.

Since f ( N )  = 0,

x f ( N  + 1) =  M x f' (N)  =  M x f ( N  +  1), 

which can be rewritten as

W S f  =  M W  f.

This is true for all controls /  with support on the set 1 , . . . ,  N.

Consider expressions for following scalar products:

( W f ,  W* g )  = (xf ( N  + l ) , z 9( N  + l)) -  (z9( N  + 1))* x f  (N  + 1) 

= (Y * ( N ) G ) * Y ( N ) F  = G* ( Y* (N) ) *  Y (N) F,
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and

( W f ,  W* g )  = ( M W  f ,  W* g )  = (M x f ( N  +  1), z g(N  +  1))

=  (z9( N  + 1))* M x f ( N  +  1) =  ( Y * (N) G) *  M Y ( N ) F

= G* ( Y * (N) ) *  M Y ( N ) F .

Here F  and G are control vectors:

F = ( f ( N ) ......../ ( l ) f ,  G  — (g(N),

Let us define two N  x N  matrices:

B  = (Y * ( N ) ) * Y ( N ),

A = ( Y * ( N ) Y  M Y ( N ) .

Now we can rewrite the above scalar products as

( W f ,  W*g)  =  G*BF,

( W f ,  W* g)  =  G*AF.

Since

B  = ( Y * ( N ) Y  Y ( N )  = (c\M*c\ . . .  (M*)N~1c)*(b\Mb\. . .  |M N~l b),

then

Btj = ((M * y -1c}* M j ~'b = c*Mi~l M i ~l b = c*Mi+j~2b = r(i + j -  2). (2.20)

Also, using (2.17), we get

Aij = r ( i + j  -  1). (2.21)

Matrices A  and B  are nonsingular if Y ( N ) ,  Y * ( N ) ,  or M  are nonsingular. There

fore if A  or B  are not of full rank, then one or both of systems (2.5), (2.10) are not 

controllable. If rank(A)  = rank(B)  = N,  then r an k ( Y (N ) )  = r a n k (Y * (N )) =  N , 

and therefore both  dynamical systems are controllable. This way we can find out if 

both systems are controllable from values of r(k),  and the order of the systems N.

. . . . 9 ( 1 ))T

(2-16)

(2.17)

(2.18) 

(2.19)
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2.5.1 D e te rm in in g  th e  o rd e r  o f  th e  sy s te m s

On the other hand we can show th a t it is possible to find order N  of systems (2.5),

(2 .10), if we know th a t both of those systems are controllable and we are given values 

r(k)  for large enough number k.

For this we introduce a sequence of matrices B l x l , B 2x2, . . .  B LxL, . . .  of increasing 

sizes. Each m atrix B LxL is an L  x L  matrix, and B k xL = r(i + j  — 2). It is easy to  see 

th a t rank,(BLxL) <  ranfc(5^L+1 x̂(L+1 )̂. Also, notice th a t B LxL = (Y # ( L ) ) * Y ( L ).

T h e o re m  1. Assume that both systems (2.5), (2.10) are controllable. Then the sys

tems have order N  i f  and only i f  r a n k ( B NxN) = N  and rank(B ^N+1'lx N̂+1'l) = N .

Proof. Suppose th a t systems (2.5), (2.10) have order N  and are both  controllable. 

Then

r a n k ( Y * ( N ) )  = r a n k ( Y ( N )) =  ra n k {Y * (N  +  1)) =  r a n k { Y ( N  +  1)) =  N.

We know th a t B LxL = (Y#(L) )*Y(L) ,  therefore r a n k ( B NxN) = N,  

ran k(B (N+1')x(N+1'>) < N . Since r a n k ( B LxL) < ra nk(B (L+1'>x(L+1'1), we have 

rank,(B(N+1^x(N+1'1) = N .

Let us suppose th a t systems (2.5), (2.10) are controllable, but their order is un

known; and there is such number N , th a t ra n k (B NxN) =  rank(B ^N+l'>x̂ N+1 )̂ =  N . 

Let D  be an order of systems (2.5), (2.10). Let us show th a t D = N . Suppose th a t 

N  < D. Then ra n k (B (-N+1')x(-N+1')) = N  +  1. This contradicts our assumption. Let 

N  > D. Then r a n k ( B NxN) = D < N.  This contradiction completes the proof. □

So we can find order of system (2.5) and of adjoint system (2.10) by considering 

square matrices B hxh of increasing size until we find the first number L 0 such tha t 

the m atrix B L°xL° is singular. Then L q — 1 is the order of both  dynamical systems.

2.5.2 D e te rm in in g  e igenvalues

In this section we show how to  find eigenvalues of the m atrix M  of system (2.5) 

using the matrices A  and B  as in (2.20), (2.21) (Notice th a t the eigenvalues of M*
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are complex conjugates of the eigenvalues of M ). We assume th a t both systems are 

controllable.

Suppose th a t m atrix M  has K  eigenvalues { A i} ^ , and each eigenvalue \  has 

multiplicity M*. The matrices M  and M* both have N  generalized eigenvectors:

=  (2 .22)

M ' t p f  = Afi/'l’1 + </fir

Note, th a t we assume 4 $  =  V;Mi+i =  0, so th a t Y Y  and are eigenvectors of M  

and M* in a regular sense:

= A,rf>, = A < .

Since we assumed th a t both systems (2.5), (2.10) are controllable, then matrices 

Y ( N ) , Y * ( N )  are not singular, and we can multiply the equality (2.22) by ( Y # (N) ) *  

from the left:

( r # (iv))* m  ( r ( N ) r - J(N)) $

=  A, ( Y * ( N ) ) - ( Y ( N ) Y - ' ( N ) )  0<-> +  ( Y * ( N ) ) ‘ ( Y ( N ) Y - ' ( N ) )  (2.23)

Recall th a t

A = ( Y * ( N ) Y  M Y { N ) -  B  = ( Y * { N ) ) * Y ( N ) .

Then (2.23) transforms to

A Y ~ \N )(t> f = \ i B Y - l {N)(t>f + B Y ~ \N )4 > f_ v

Therefore the generalized eigenproblem

(>1 -  X i B f F ®  = 0

has the same eigenvalues A, with the same multiplicities M* as the m atrix M .

The generalized eigenvectors are connected to generalized eigenvectors of M  

by the equality:

f f  =  Y ~ '(N )4> t\
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Thus

4 ] = Y ( N ) F l l).

Notice th a t for such control fjf'1 th a t 1))T, x A ] (N  + 1) =

Y ( N ) F j ) \  Therefore the control fjf'1 drives our system to the state  ) (N  + 1) =  <p*j)\ 

Using the same reasoning we can deduce th a t solving the generalized eigenproblem

(A* -  \ B m)Mi+1- kG ^  =  0

we find control vectors th a t take adjoint system (2.10) to  z 9̂  (N  +  1) =  ip%\

We summarize this subsection in the following theorem:

T h e o re m  2. Suppose that both systems (2.5), (2.10) are controllable and have order 

N . Then we can find eigenvalues of the matrix M  and their multiplicities by solving 

the following generalized eigenproblem:

(.A -  Ai B ) kF ^  = 0, (2.24)

where A  and B  are N  x N  matrices,

Aij = r(i + j -  1), Bij = r(i + j  -  2), 1 <  i , j  < N.

F ^  gives us a control yielding the corresponding eigenvector o f matrix M : i f  we take a

control f  such that F ^  = (f ( N ) , . . . ,  / ( 0))T, then x? (N  + 1) =  Each generalized

eigenvector o f our generalized eigenproblem (2 .2 4 ) corresponds to an eigenvector o f 

matrix M .

Determining generalized eigenvectors o f the adjoint generalized eigenproblem

{A* -  \ ’iB m)Mi+1- kG%) = 0 , (2.25)

we obtain control vectors for the second system  that yield z 9̂  (N  + 1) =  ip ^  ■

Using Theorems 1 and 2 we can recover order of the systems and their eigenvalues 

with multiplicities, knowing values r ( 0 ) , . . .  , r (L)  for large enough number L.
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2.5 .3  D e te rm in in g  d e co m p o s itio n s  o f v e c to rs  b a n d  c in  b ases  m a d e  o f 

g e n e ra liz e d  e ig en v e c to rs  o f  M  a n d  M*

Here we assume th a t generalized eigenvectors xp^ of M* are biorthogonal to general

ized eigenvectors <p^ of M.

In this section we use controls described in the previous section. These controls 

and take our system to the corresponding generalized eigenvectors of M  and 

M -  : W f ?  =  4 \  W * g f  =  v£>.

Recall, th a t those controls can be found using Theorem 2 from generalized eigen

vectors of two generalized eigenproblems (2.24), (2.25). Then, is such th a t 

Fk ] =  (f k \ N )> /fc0 ( W - l ) ,  • ■ ■ > f l l\  ! ) )T; and 2?  is such th a t g £ } =  (g ^  (N ) , (N  -  
1 ) , . . . ,  g ^ \ l ) ) T . To get the controls such th a t the eigenvectors 4 $  ancj are 

biorthogonal, it is necessary to chose vectors and so th a t ( g ^ ^  B F — 1,

and B F = 0 when j  ^  i, k ^  I.

Formulas (2.12), (2.14) and (2.13), (2.15) give us:

N

f M w  AT i 1 \ —  V -  /•(*)/■ AT _  ^( R f F X N  +  1) =  £  f k U ) r ( N  -  j )  =  ( 4 \  c), (2-26)
i = i

(fl#j f ) ( J V + l)  = f ^ g f U X N - i )  = « ’?.'>}• (2.27)
j=l

Notice th a t (xp^ , b) are coefficients in a decomposition of the vector b in a basis of 

eigenvectors of m atrix M:

i ,k

Also, (<p^\c) are coefficients in a decomposition of the vector c in a basis made by 

eigenvectors of m atrix M*:

c = J 2 ^ \ c)'tPk)-
i ,k

Therefore we can use formulas (2.26), (2.27) to find the decomposition coefficients 

(4>k\c), (xp^\ b), if we know the kernel r(k)  of the response operator R  (we find

and gj^’ using Theorem 2).



55

T heorem  3. The coefficients in a decomposition of the vector b = in a

basis o f eigenvectors o f M  are given by the formula:

N

bi ] = J 2 gk )( j )r (N  ~  •?)•
3 =  1

The coefficients in a decomposition o f the vector c = ^2ik c ^x jj^  are

Ck} =
3 = 1

Theorems 1, 2, 3 allow us to extract information about dynamical systems (2.5),

(2.10) from the kernel of the response operator R. We can find the order of the 

systems, the eigenvalues of M, and decompositions of vectors b and c in bases of 

eigenvectors of M  and M* respectively. However, using only values of r(k)  we cannot 

find eigenvectors of M  and M*; instead we can find the controls for system (2.5) 

yielding the eigenvectors of M  and the controls for system (2.10) yielding the 

eigenvectors of M*.

2.6 Equivalence of dynam ical system s w ith  respect to  a transfo rm ation  

of variable

Let us apply a transform ation of variable x(k)  = Qx(k)  with a nonsingular m atrix Q 

to system (2.5):

Qx(k  + 1) =  M Q x ( k ) +  b f ( k ), 

y(k) = (x ( k ) , c ) =  (Qx( k ) , c ) =  (x(k) ,Q*c).

Multiplying both sides of the first equation by Q~x we get:

x(k  + 1) =  Q~l MQx ( k )  +  Q~1bf(k) .  (2.28)

The kernel of the response operator R  of system (2.5) is

r(k) = c*M kb.



56

New system has the same structure, with m atrix M  replaced by Q 1MQ,  vector b by 

Q~l b, and c by Q*c. The kernel of the response operator of system (2.28), is

f (k)  =  (Q*c)* { Q - ' M Q f Q - ' b  = c*Mkb = r(k).

Therefore the kernel r(k)  does not change when we apply a transform ation of a

variable to the system. This means th a t we can work with a convenient form of 

m atrix M , for example Jordan normal form.

2.7 C o n n e c tio n  w ith  th e  o rig in a l p ro b le m

In this section we show th a t the problem of estimation of coefficients an(t) and An of 

function (2.4) is equivalent to the problem of identification of param eters of system 

(2.5). First let us choose a form of the m atrix M  and vectors b and c so th a t the 

kernel r(k) = c*Mkb of response operator R  (2.12) has the same form as signal

r(t)  =  E ^ a ^ A ^ . (2.29)

2.7.1 M a tr ix  M

Let us assume th a t N  x N  m atrix M  has the following structure:

M  = T A T ~ \ (2.30)

where A is a Jordan canonical form of M:

A =  d i a g ( J i , J K)\ Jx = j

0 0 Ai 1

• 0 Ai y

T  =  diag(l,  Aj-1, . . . ,  a “ (Mi_1)
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Prom formula (2.30) it is easy to see th a t columns of the m atrix T  are generalized 

eigenvectors (p^ of M; columns of the m atrix (T "1)* are generalized eigenvectors 

of M*.  Notice, th a t eigenvectors constructed this way are biorthogonal:

1, when k =  I and i = j  

0 , otherwise.

We suppose th a t M  has K  nonzero eigenvalues A e a c h  eigenvalue has algebraic 

multiplicity Mj, and geometric multiplicity 1. Eigenvalue having geometric multi

plicity 1 means th a t only one Jordan block Jj corresponds to  this eigenvalue. In 

what follows we show th a t this condition is necessary for systems (2.5), (2.10) to be 

controllable.

It is easy to check th a t the m atrix M  has a block form:

/  1

0
M  = T A T  = d iag(D i, . . . ,  /?*,), where Di -- A j

1 0

V o

. .  \

0 

1

1 J
Di are Mi x Mi matrices. 

Then,

M m = d i ag ( D™, . . . , D™);

• (  m  )

(2.31)

DT = X

< \  (?) (?) ... 
0 1 (?) (?)

0

0

0 1

0
(T)

/

Here (J) are binomial coefficients Q) =  We assume th a t (J) =  0 when j  > k.
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2.7.2 D ynam ical system s and th e  controllability  condition

We work with two linear dynamical systems of the same structure as systems (2.5),

(2.10). We use m atrix M  =  T A T -1 as in (2.30):

x(k  +  1) =  T AT ' 1 x(k)  +  bf(k) ,  x(0) =  0, y(k) = {x(k), c) =  c*x(k); (2.32)

z(k  +  1) =  (T ~ 1)*A*T*z(k) +  cg(k), 2 (0) =  0, w(k) — {z ( k ), c) =  b*z(k). (2.33)

We denote entries of vectors 6, c by P ^  and 7^  in the following way:

b =  ( /#>, . .  / ? f ......../$ > _ , ..........................................................(2.34)

(7o1).- - - .7 m1_i ,7o2>.' ■ - .7 ^ - 1 ................................................... (2-35)

Then subvectors = (Pq \  ■ ■ ■, Pm] - i )T an<̂  =  ■ ■ • > 7mj- i )T °f  ̂ and c
correspond to j —th  block Dj  of M.

L e m m a  1 . System  (2.32) is controllable i f  and only i f  all eigenvalues of M  are 

not equal to zero (A, ^  0 Mi), have geometric multiplicity 1 (Aj ^  Xj Vi P  j ), and 

0Mi- 1 P  0 (the /ast entry o f each subvector PS is not equal to zero).

System  (2.33) is controllable i f  and only i f  all eigenvalues of M  are not equal to 

zero (Xi P  0 Vi), have geometric multiplicity 1 (Aj P Xj Vi P  j ), and 7^  p  0 (the first 

entry of each subvector P ll is not equal to zero).

We present a proof of this Lemma in Appendix 2.A.

2.7.3 K ernel of th e  response opera to r of system  (2.32)

From section 2.4 we know th a t kernel r(k)  of response operator R  for system (2.5)

has the form r(m) =  c*Mmb. For our choice of m atrix M  and vectors b and c (see
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(2.31), (2.34), (2.35)):

K

i=l

K

=  E A." '(l£ ).........7 $ - , )
i=l

/m\ /m\ ( 171 \
V I /  V 2 /  \ M i - 1 /

i (7) (7 ) •••

o

o

= E*i= 1

(Yo \  ■ ■ ■ i - 1)(*)

/
M i - l - j _____

E TfX 
1=0

(2.36)

Notice, th a t (7 ) is a j- th  degree polynomial in m. So, from the formula above it 

follows th a t r(m ) is a combination of A™ with polynomial coefficients. Thus r(m)  has 

the same form as the signal r(t) in (2.29). The kernel (2.36) of the response operator 

of system (2.32) corresponds to a signal

r(t)
K

= E
i= 1

Mi-1

E
L 3 = 0

Mi -1 —j ___

E -r/X
1=0

Aj.

Notice th a t the coefficient is a polynomial of degree
x :" 'o - 1  ( ‘ )  ( E J S r ' ^ i f X X

Mi — 1 w ith respect to £. Therefore it is obvious th a t for every controllable system

(2.32) there is a signal r(t) of form (2.29) th a t is equal to the kernel r(m)  = c*Mmb.

We would like to show th a t for any signal r(t) = E ^ 1aj(t)A- where Oj(t) are 

polynomials, there exists a controllable system (2.32) such th a t the kernel of the 

response operator of system (2.32) is r (m)  =

Let <ij(£) =  Yl%=o a ijV- for 0 <  i < K. Suppose aiPi ^  0, so th a t polynomial a,i(t) 

has the degree pt . Since ( f) is a j —th  degree polynomial, then

Pi
Wi

3 = 0 j =0
(2.37)

for some set { } ,  wipi ^  0.
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It is rather easy to show th a t for any such set {wij} we can find two sequences

\  such th a t
P i - 3  .

Wi. (2.38)
1=0

and ftp) 0 , 7q  ̂ 0 (this is necessary for the systems we are constructing to be

controllable). The proof of the following lemma is straightforward.

L e m m a  2 . Given p + 1 numbers {wj}?=0 with wp 0, one can find  2(p-f 1) numbers 

{ P j } Pj = o> M j = o s u c h  t h a t  P p  ^  0 ,  7 0  ^  0 ,  W j  =  Y f iZ l  l i P i + j -

Combining (2.29),(2.37), and (2.38) we get

K

■(0 = E
t=i

t o  ( E « A.
. j=o '  \  (=0

This is equivalent to (2.36) if we replace Mi — 1 with pi. Therefore, if we take a m atrix 

M  as in (2.30) with A; the same as Ai in our signal with multiplicities Mi = Pi + 1, 

where Pi is the degree of a,(f); and vectors b and c so th a t =  YZiZo @\+j, then 

the kernel of the response operator of system (2.32) is equal to r(t).

2.7.4 Equivalence of th e  problem  of signal decom position for signal (2.29) 
to  th e  identification problem  for a  dynam ical system  (2.32).

Returning to our original problem: given values of the signal r(t) at t =  0 , 1 , . . .  we 

want to find number and values of the poles Ai, and their polynomial amplitudes afit). 

By assumption our signal satisfies

r (0  =
i = 1

with some unknown K,  afit), A*. We need to find all these unknown values. In the 

previous section we showed th a t then r(t) also satisfies

K

•w = E
1=1

EC) (E ^ S
Lj = o z=o

A‘ (2.39)
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with 7^  7  ̂ 0 and (3$ 7  ̂ 0. Therefore, r(t) is the kernel of the response operator of 

some controllable (notice th a t all the conditions of Lemma 1 are satisfied) system of 

type (2.5).

Thus, we can apply Theorems 1, 2, and 3 to find Aj, 7^ ,  (3\l\  F irst we apply 

Theorem 1 to  find the order N  of the system. All th a t we need for th a t are values 

r(k)  for k from 0 to 2N  to construct a sequence of matrices B jX:>. After th a t we can 

apply Theorem 2; it gives us Aj, number K , and p± = Mi — 1. Using Theorem 3 we find 

(0fc\c) and For system (2.32) {4>f ,c) = 7fc2i\_(fc_1), =  Pk-A —

Since we already found all Aj, these equalities allow us to  find (3^\ 7^ .  Now all the 

coefficients in (2.39) are known. Thus, we have decomposed the signal r ( t ): we have 

found A„ K ,  a,(t) =  £ *  0 ( ‘) ( U S T ' t i l , )  ■

We describe an algorithm th a t allows us to recover the param eters of the signal 

r(t) from 2N  +  1 equispaced samples.

A lgorithm  1.

step 1 Construct a sequence of matrices o f increasing size B pXp. B pXp is a p x p  matrix, 

B f *p = r(i  +  j  — 2), i , j  = 1, . .  .p. Find N  such that B NxN is nonsingular, 
and _g(W'+i)x(N'+i) is singular. Then N  is the order of our systems. We use this 

number on the next step.

step 2 Consider two N x N  matrices A  and B : Aij = r{ i+ j — 1), Bij = r { i + j —2), i, j  = 

1, . . .  N.  Find eigenvectors and eigenvalues of the generalized eigenproblem

{A -  AjB ) kF ^  = 0

and

{A* -  \ B * ) M'+l~kG f  = 0 

so that BF'ff'* — 1, and (G ^ 'j  B F =  0 when j  7  ̂ i, k 7  ̂ I. We obtain:

•  Number and values of Aj. Those values Aj are the poles of our signal.

Number of distinct eigenvalues is the number K  in formula (2.29).
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•  Algebraic multiplicities o f Ai correspond to degrees of the polynomials 

ai(t) (Pi — Mi — 1). They are used on the next step.

•  The generalized eigenvectors and are used on the next step to find  

0*f and 7j l).

step 3 Theorem 3 allows us to find c) and \  b) knowing r(k) and vectors F ^ \

e  *
( t f ,  b) = 9 k \ j ) r ( N  -  j ) ,

j=i

= -  j) .
3 =  1

Here =  ( / ^ ( A ) , / « ( A  -  1) , . . . , / « ( l ) f ,

Since fo r  our kind o f system {<f>£\c) =  7^2 jAt ^  (f>^\b) = 0 ^ -i^ i Pk'*

and 7^  are given by

P(k = { ^ k l v h)Xi *> 7fc° = (<t>klvc)Xl  

Then the polynomial coefficients a i(t) can be found using the formula

Mi- 1 /jlN / Mi — l —j _m i- i  , \ i m i - i - j ____

- E ( ) E -rfXj=0 v / -/  V /=0

A p p e n d ix  2 . A . T h e  p ro o f  o f  L em m a  1

L em m a  1. System  (2.32) is controllable i f  and only i f  all eigenvalues of M  are 

not equal to zero ( \  7  ̂ 0 Ni), have geometric multiplicity 1 ( \  7  ̂ Xj Vi 7  ̂ j ) ,  and 

Pm  i 7  ̂ 0 (the last entry o f each subvector b ^  is not equal to zero).

System  (2.33) is controllable i f  and only i f  all eigenvalues o f M  are not equal to 

zero ( \  7̂  0 X/i), have geometric multiplicity 1 (Xl 7̂  Xj Vi 7̂  j ), and 7^  7̂  0 (the first 

entry of each subvector c^  is not equal to zero).



63

Proof. Controllability of (2.32) is equivalent to nonsingularity of m atrix Y ( N )  

(b\Mb\ . . .  |M N~l b) (see Proposition 1 in section 2.3).

Let us find the condition for d e t ( Y ( N )) ^  0.

Let

Y  = (b\(M -  X J ) b \ . . .  | (M -  A 1/ ) N_16).

One can see th a t d e t (Y( N) )  = d e t(y ). Since M  = diag(D\ , . . . ,  D k), then

(M  -  A j y  = d ia g ^D , -  A J ) ’ , (D2 -  Ai/ ) ' ,  . . . , ( £ > * -  X1I ) j ).

We can rewrite Y  as

(  b& (D1 -  A i/)^ 1) (Di -  A i/)* - 1̂ 1* ^

Y  =
bm (D2 -  Ai / )6(2) (D2 -  AjI ^ - ' b ^

K b w (D k  -  AiI ) b™ . . . (DK - X xI ) N- l b ^  j

Notice, th a t D\  is an Mi x Mi upper triangular m atrix with Ax on its main 

diagonal. Thus (£fi — AiZ)-7 =  0 for any j  > Mi. The m atrix T  can be called a ’’block 

lower triangular” matrix;

det(r(iV )) =  det(K)

=  det(6(1)|(D i -  Ai / )6(1)| . . .  | (Dj -  X J ^ - ' b ™ )  det(Ki),

(  {D2 - X 1I ) Mlb ^

\  ( D K - X J ^ b ^

(D2 - X l I ) N- lbM \

(.Dk  -  A i / ) ^ - 1̂ )

The  first m atrix ( b ^ \ ( D i  — Ai / )6^ | . . .  |(D i — AiI ) Ml 1b(-̂ ) is a square ’’upper-left”
o(DJMX-triangular m atrix with X \ - i  on antidiagonal. Thus, the first determ inant

det(6^ |( D i  — Ai/)i>0 )| _  Ai / )Ml_16^^) is not zero if and only if 1 0

and Ai ^  0 .

Notice, th a t it is necessary th a t Aj ^  X\ for % =  2 , 3 , . . . ,  K  in order for the second 

m atrix Yi to be nonsingular, otherwise one of the rows of Yi contain only zeros.
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Therefore m atrix Y ( N ) is nonsingular if and only if (3$ x ^  0, Ai ^  0, Ai ^  Aj 

for i =  2, 3 , . . . ,  K,  and det(Yi) ^  0.

Let us rename columns of Y\ in the following way:

b ■ =

(  {D2 - \ x ) M'bW \

; M  = diag((D 2 -  Ax l ) , . . . ,  (DK -  A,/)).

Then

Tj =  (b\M b \ . .. \ M N~l Mlb).

Notice th a t Y\ is the same type of m atrix as Y ( N ) ,  with M  being a block diagonal 

upper triangular m atrix with diagonal entries Aj — Aj (i > 2). If we repeat the same 

procedure for the new m atrix Yj, using A2 — A] instead of Aj, we see th a t de^Y j) ^  0 

if and only if

PmI - i 7̂  ^2 ¥= 0, Aj ^  A2 for i > 3; det(Y2) ^  0,

where
~~ ~ A/ — 1 — M-y — Mn —

Y2 = { b \ M b \ . . . \ M  b),

(  ( A  -  A2)M26(3) \

b := ! ; M  = diag((D 3 -  A2I ) , . . . ,  (D K -  A2/)).

V (DK - X 2) ^ >
Using the above scheme K  times we obtain the statem ent of the first part of the 

lemma. The proof of the second part is similar. □
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C hap te r 3
O ptim al quad ra tu re  form ulae re la ted  to  solutions of in itial boundary

value problem s1

A bstract

An approach to the construction of optimal quadrature formulae for the case of an 

integrand determined by a solution of a certain initial boundary value problem is 

presented. Several examples of initial boundary value problems are considered.

3.1 In troduction

Let be a bounded subset of Rn with a piecewise smooth boundary T. Let Y  be 

a certain class of real functions summable in fb Let us consider a linear functional 

l ( y ) , y e Y :
N

l(y) = y{x)dx -  y 2 c ky (x k),
fc=1

where ck € I ;  x k € fb Let us define d(Y, N )  for a given class Y  and a fixed number 

of points N:

d ( Y , N ) = inf sup |l{y)\.
{Cfc.Xfc} ygy

The problem of determining the value d(Y , N )  is a classical problem of quadrature 

theory. There are many works dedicated to this problem (see [11; 7; 3; 12]). Most 

notably, S.L. Sobolev [11] considered the portion of this problem concerned with 

finding su p ^ y  \l(y)\ for the case of Y  being a unit ball in space We consider

this problem for Y  defined as a set of solutions of a certain initial boundary value 

problem. The study of this problem is of interest for practical applications. We 

present several examples of estim ating su p ^ y  \l(y)\ and finding inf{Cfc} s u p ^ y  \l(y)\ 

for a given set of quadrature points ck. We extend the results of the previous works 

in this direction [9], [1] to more general classes of initial boundary value problems.

1S.A. Avdonin, A.S. Bulanova, and D.A. Ovsyannikov, Optimal quadrature formulae related to 
solutions of initial boundary value problems, Vestnik St. Petersburg University. Series 10. Applied 
Mathematics, Mechanics, Control Processes (2008), no. 2.
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3.2 A m axim ization problem  in th e  case of a parabolic equation

Let T  > 0, Q =  Q, x (0, T),  E =  T x (0, T).  Let functions be continuous in Q and 

satisfy the condition
n  n

i , j = 1 t =  1

for some a  > 0, where x  G Q, & G K. for * =  1 . . . ,  n.

In Sec. 3.2.1 we consider an initial boundary value problem controlled by the initial 

data; in Sec. 3.2.2 -  a problem controlled by the boundary conditions.

3.2.1 Control by th e  in itial conditions

Consider an initial boundary value problem

dv
—  =  A(t )y  in Q, y |s =  0, y\t=Q =  v. (3.1)

Here

A(t) = ^ 2  +ao(x, t )y ,
i , j = 1 1 '

a0 G C(Q),  v e  U, U is a closed bounded convex set in space L2(fl).

It is known (see [4]), th a t for smooth enough coefficients a^,  ao there exists a

unique weak solution of problem (3.1), such th a t

»(•, T)  6 m > j .  (3.2)

By the Embedding Theorem (see, e.g. [10]), it follows th a t y(- ,T)  G C (fl) whenever

condition (3.2) is satisfied. Therefore the following functional is well defined:

r JL  2
J(v) =  ”/* *y(x,  T)ip(x)dx -  V '  cky (x k, T)

k=i

where G L2(fl), c*, e  R, i(, e  fb Notice th a t

|J(w)| <  M jH y O .T )! !^  <  M 2||u|||2{n), r, G L2(0 ), Afj .Mj  > 0. (3.3)
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Our problem reduces to the problem of finding a function u  G U, such th a t 

J ( u ) =  sup.yg[/ J(v).  It is more convenient to rewrite the functional J(v)  as

J(v)  = \l(v)\2, (3.4)

where
r N

l(v) = y ( x , T ) f ( x ) d x ,  f ( x )  =  <p(x) -  ^  ckS(x -  x k).
*=i

Since J(v)  is a square of a linear bounded functional (see formula (3.3)), then it is 

weakly continuous. It follows from convexity and closedness of the set U th a t this 

set is weakly closed. Together with boundedness of the set U this implies existence 

of the optimal element u  G U (see [2]).

To obtain optim ality conditions, we define an initial boundary value problem 

adjoint to problem (3.1):

=  A ( t ) p in (3-5)

p |e  =  0, p(x,  T)  — f ( x )  f  y ( x , T ) f ( x ) d x .
Ja

We already know th a t the function /  determines a linear continuous functional

over space H™(Q) when m  > n / 2. Therefore p( - ,T ) G It is easy to

show using the Transposition Method (see [6]) th a t problem (3.5) has a unique weak 

solution, and p|t=o £ L 2(Q).

Proposition  1. The functional J(v)  achieves maximum at u(x) if

p(u- x, 0)[u(.t) — u(x)]dx < 0 (3.6)
Jn

fo r  all v  G U .

Proof. If u is an optimal element, then [2]

J' (u)(v — u) < 0 ,  v e u .  (3.7)



The left hand side of this inequality can be expressed as

J' (u)(v - u )  = Jy{y{u))y'(u)(v -  u) = Jy(y(u))[y(v) -  y (u )]

=  2 f  y ( u ; x , T ) f ( x ) d x  f  [y{y\x,T) -  y(u] x , T ) ] f ( x ) dx  
J  n  J  n

= 2 [  p ( u ; x , T ) [y (v , x ,T )  -  y (u;x ,T) \dx .  (3.8) 
J n

The following equalities hold for the solution y(-) of problem (3.1) and the solution 

p(-) of adjoint problem (3.5):

°  =  J  + V d x d t  ~  J  P + A V }  d x d t

= L { ^ v ~ p ^ ) d s d t + L l m ] I - o d x ' ( a 9 )
where

d p  _ d p

hi

u p   ̂ u p  . \ • 1 1
——  =  y .  ai j o— uu v — (ffii ^2, • • •, v n ) is the unit normal to r .
(s 1/ fit C/ X

l yj  J

Using boundary conditions y |s  =  p |£ =  0 we obtain

py\t=odx = py\t=Tdx. (3.10)
J  n Jn

If we combine (3.10) w ith (3.8) we get

J \u ) ( v  — u) = 2 I p(u; x, 0)[y(v; x, 0) — y{u\ x, 0)]dx
Jn

= ‘2 1 p(u-,x,0)[v(x) — u(x)]dx.
Jn

Substituting this expression in inequality (3.7), we get condition (3.6). □

From formulas (3.4), (3.5) it follows th a t

J(v) = p(v, x ,T)y (v ,  x ,T)dx .
Jn

Using equality (3.10) we obtain a representation of the functional J(v)  as
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Formula (3.11) is useful for computations and estimates. Let us consider the following 

example. Let U be a ball of radius s in space L 2{VL)\

U =  {v  e  L 2(Cl) : | M | l 2(u) <  e).

Then from formula (3.11) we get an estimate

|J (u ) | <  e| |p(u;- ,0) | |L2(n).

3.2.2 C ontrol on the  boundary

Let us consider an initial boundary value problem with control on the boundary
dv
—  = A( t )y  inQ,  y |s  =  v, y\t=o = 0. (3.12)

Similarly, let us define a problem adjoint to  (3.12):
dv

~ —  = A ( t ) p i n Q ,  (3.13)

p |s  — 0, p(x, T)  =  f ( x )  [  y ( x , T ) f ( x ) d x .
Jn

Proposition  2. The functional

y(x ,  r ) y ( x )  d x — y c i ,  y ( x t  , T )
Ja  l - i

(3.14)J(v)  =

achieves maximum iff — ——  (u(s, t) — v(s, t)) ds dt < 0, v E U  (3.15)
7 e  o v a

Proof As in the proof of Proposition 1, equalities (3.8) and (3.9) hold. Substituting 

initial and boundary conditions from (3.12) and (3.13) we get

/  -j^—v d s d t+  f  py\t=Tdx = 0. (3.16)
J e  o v a  Jn

Therefore

J' (u)(v — u) = 2 [  — —— (u(s, t )  — v(s , t ) )dsd t .
J  S duA

Using condition (3.7) we get

/  — S—  {u{s, t ) -  «(s, t)) ds dt < 0 .
J  S Ova

This completes the proof of Proposition 2 □
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3.3 M inim ax problem  in th e  case of a parabolic equation

3.3.1 C ontrol by th e  in itial conditions

Consider problem (3.1) for U  = {v  G L2(fi) : | | v | | l 2 (s7 ) < e}. As before, the functional 

J(v),  has the form

r JL 2
J(v) =  ~r  Ny(x,  T)<p(x) dx  -  ^  cky (x k, T)

fc=i

We show th a t in this case it is also possible to solve a problem of minimizing 

sup„ef/ J[v)  over coefficients c G  R, i.e. to find inf{C(j eIRN sup^ef/ J(v).  We use 

optimization methods for functionals defined on sets of solutions of initial boundary 

value problems (see [8]).

In addition to  problem (3.1) we consider an auxiliary problem

3z
~ —  = A { t ) z m Q ,  (3.17)

N

z\z = o, z(x,  T ) =  tp(x) -  c^ ( x  -  x*)•
fe=i

Similarly to problem (3.5), initial boundary value problem (3.17) has a unique weak 

solution z (x , t )  and z \t=0 G L2(fl). Clearly, identity (3.10) also holds for z, i.e.

y ( x , T ) z ( x , T ) d x  =  I  y (x ,0)z (x ,0)dx.  
*J Cl J Cl

Substituting the initial conditions from problems (3.1) and (3.17) into this equality, 

we get

[  y(x,  T)tp(x) dx — V"' cky(xk, T)  = f  v(x)z(x,  0) dx.  (3.18)
J n fc=1 J n

Therefore

sup | J(v)\ = e 2 f z 2(x,0)dx.  (3.19)
veu J  n

Denote by u the element of the set U for which this maximum is achieved. Clearly,

U(x) = £z(x,  0) 112T(*, 0) 1 1 ■
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Prom formula (3.19) it follows th a t the problem of minimization of supue[/ J{u) over 

coefficients ck is equivalent to a minimization problem for the functional J\{c) = 

Jn z2(.x, 0) dx, where c = {ck} G R N , z(x,t) is a solution of initial boundary value 

problem (3.17). Let us introduce a problem adjoint to problem (3.17):

~^ = A{ t )qmQ  (3.20)

g|s = 0, q(x, 0) = z{x, 0).

Using the same argument as in derivation of formula (3.6), we show th a t the gra

dient dJ\(c)/dc of the functional Ji(c) is a vector in space with components 

—q(c,xk,T), k = 1 ,2 , . . . , N . Notice th a t q(c,x,t) is a solution of problem (3.20),

where z(c,x,t)  is a solution of problem (3.17) for {ck} = c. Therefore the functional

J\{c) achieves minimum if

q(c*,xk,T) = 0, k = 1 , 2 , . . . ,  N, (3.21)

where c* = {c*k} is the optimal set of coefficients.

Prom formulas (3.17), (3.20), (3.21) it follows

z2(c*, x, 0) dx = [  z(c*,x,T)q(c*,x,T) dx 
Jn Jn

= [  v {x)q{c*,x, T) dx — c*kq(c*, xk, T) = f  ip(x)q(c*,x,T) dx.Jn k=1 Jn
Using formula (3.19) we obtain:

inf sup | J(v)\ = e 2 ip(x)q(c*,x,T)dx.{cjc}eKN V£u Jn

A  w ider class of sets U

Consider a wider class of sets U :

U = {v G L2(ft) : (Bv, v)l2(n) < e2}, 

B is a bounded, positive-definite operator in space L2(fl).

(3.22)
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Prom equality (3.18) it follows th a t

J{v)  =  {^J  v{x)z{x,  0) dx'j ,

where z ( x , t ) is a solution of auxiliary problem (3.17). Maximum of the functional 

J ( v ) on the set defined by formula (3.22) is achieved at

u(x)  = e B ~ l z{x,  0) J  J  z (x, 0)

and is equal to

sup | J(u)|  =  e2 B ~ 1z(x ,0)z (x ,0)dx.  
veu  Jn

In order to minimize supu€U J{u)  over the values of the coefficients ck, we introduce 

a functional ./2(c) =  f Q B ~ 1z(x,  0)z(x,  0)dx, c = {ck} £ Kn.

Consider an initial boundary value problem adjoint to problem (3.17):

dv
—  = A( t )r  inQ,  r |2 =  0, r(x,  0) =  B ~ 1z(x,  0). (3.23)

It can easily be checked th a t

rz\t=0dx=  rz\t=Tdx. Jn Jn
Therefore

J 2(c) =  B  1z (x ,0) z ( x ,0)  = r (x ,0)z (x ,0)
Jn Jn

= r ( x , T )  I ip(x) -  S ^ c k5(x -  x k) I d x =  r(x,  T)ip(x) dx  -  ^ ckr ( x k, T ). 
J n  \  k = 1 /  k = 1

(3.24)

From (3.24) it follows th a t <9«/2(c)/<9cj =  —r ( x k,T) .  Therefore, optim ality conditions 

for J 2(c) are

r(c*,xk, T )  = 0, k = 1, 2 , . . . ,  N

and

inf sup| J (u) |  =  e2 tp(x)r(c*, x , T )dx ,
(ojeM* v€u Jn

where r(c, x , t ) is a solution of problem (3.23).
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3.3.2 C ontrol on th e  boundary

Using the same approach as in Sec. 3.3.1 it is possible to determine inf{Cfc} sup„e[/ J(v)  

for the case of y (x , t ) being a solution of initial boundary value problem (3.12) with 

the control v on the boundary, U = {v £ L2(£ ) : I M I ^ e )  < £}■

Let us consider initial boundary value problems (3.12) and (3.17). Using the same 

argument as in the proof of identity (3.16), we obtain

[  y ( x , T ) z ( x , T ) d x  + [  y-^— dsdt = 0.
Jn Jt. ova

Using initial and boundary conditions in (3.12) and (3.17), we get

f  ^  f  dzj  y ( x , T ) < p ( x ) d x - ^ 2 c ky ( xk, T )  = J v — ^dsd t.
k=1

Therefore

J(v) = I / v (s> t )S —dsdt\2. J E ° UA

For U = {v £ L2(E) : ||n ||£2(E) < e} maximum of J(v)  is achieved at u(x) =
d z  | |  d z  II — 1 ,

£ d uA WdwA l lL 2( E ) ’

, £

Let us minimize the functional

sup J  (u) =  £2 [  ( dsdt .  
veu  J s  \ o i>a J

J 3(c) =  J  dsdt wherec =  {c*,} £

Let us introduce a problem adjoint to auxiliary problem (3.17):

=  A(t)q in Q, q\s  = q(x,  0) =  0. (3.25)

Then

Js(c) =  J  dsdt = J  ^ — q dsdt = — J  z ( x , T )q ( x , T ) d x

f  N= -  (<p(x) -  y :  ck5(x -  x k))q(x, T)dx,
j  n 1___1
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and
d J 3(c)

=  q ( c ,X i ,T ) .
dci

Therefore minimum of the functional Jz(c) is achieved a t c = c* such th a t

q(c*, x k, T )  = 0, k = 1 , 2 , ,  N,

and

e2 I (f[x)q[c , x , l  )ax,inf sup | J (u) |  =  e2 ( f (x)q(c*,x ,T)dx , 
v€u Jn{ckieR"

where q(c, x, t) is a solution of problem (3.25).

3.4 A m axim ization problem  in the  case of a hyperbolic equation

Our approach can be extended to hyperbolic equations, but in this case the function 

f ( x )  in the definition of the functional J{y) = | Jn f ( x ) y ( x , T )  d x \2 has to  be more 

regular. Let us consider an initial boundary value problem for a hyperbolic partial 

differential equation with nonhomogeneous boundary conditions of Dirichlet, type:

d2v
—  =  A(t )y  in Q, (3.26)

y Is =  v, y\t=0 =  yt\t=o =  0,

where v 6  U, U is a closed bounded convex set in space L2(£); the rest of notation 

is as in Sec. 3.2.

Initial boundary value problem (3.26) has a unique weak solution, such th a t 

y ( - , T ) e  L 2(Q) (see [5]). Therefore we can define the functional J ( v ):

J(v) [  f ( x ) y ( x , T ) d x  Jn
2

J e L 2(n).  (3.27)

Let us find u  e  U such th a t J{u)  =  s u p ^ ^  J(v).

Proposition  3. Necessary conditions of optimality fo r  the problem of maximization  

of the functional (3.27) are

dp(u ; s, t)

Le duA
-[u(s, t) — u(s, t)]ds dt < 0



77

for all v £ L2{H), where p (v ) is a solution of an initial boundary value problem

d 2p A n  —  = A p m  Q- (3.28)

p |e  =  0, p{x ,T)  = 0, pt ( x , T ) =  f ( x )  [  f ( x ) y (x , T ) d x .
Jn

Proof It can proved in the same way as in proof of Proposition 1 tha t

J' (u)(v -  u) = 2 [  y ( u \ x , T ) f ( x ) d x  f  [y(v\x ,T)  -  y(u; x ,T ) \ f ( x ) dx .
Jn Jn

Using a solution of problem (3.28), right hand side of this equality can be rew ritten

as

2 f  pt (u] x, T)[y(w, x, T)  — y(u\ x, T)]dx.
Jn

Solutions of problems (3.26) and (3.28) satisfy the following equality

(3.29)

0
= L

dp
do, -y -

dy
do, -V ds dt \pty -  m ]Li

Jn
dx.

Using boundary conditions y |s  =  v and initial conditions y |t=0 =  yt\t=o — 0, we get 

dp(u)
[  (u -  u)ds dt = [  pt (u\ x, T)[y{v\x,  T)  — y{u\ x, T)\dx. 

J e Jn'E duA

This completes the proof of Proposition 3.

(3.30)

□

Prom formulas (3.28), (3.30) we get an expression for the functional (3.27), similar 

to representation (3.11):

d p (v ,s , t)
= LIE d o A

Thus the following inequality is true

dp(v)

-v(s, t)ds dt.

I - WI  <
dvA i 2 (S)

\v \\i 2(E)-

This inequality gives a simple estimate for the functional J(v).
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3.5 An exam ple of finding coefficients for a  q u ad ra tu re  form ula

Let us consider an example of finding optimal coefficients c* for a quadrature formula

f  N
y(x,  T)dx  «  ^ 2  cky ( xk) T)

k =  1

in the case when y ( x , T ) is a solution of a heat equation

Vt = Vxx, j/(0 , t) =  y(7r, £) =  0 , y(z, 0) =  w(.x),

x E [0 , 7r], t > 0, v E L 2[0 ,7r], ||'u|| <  e. (3.31)

As in Sec 3.3.1 (see formulas (3.17) and (3.20)) we introduce an auxiliary problem

N

~ z t = z x x ,  z (0 , t) = z(n,  t) =  0 , z(x,  T)  = 1 -  ' ^2  c^ ( x  ~  x k), (3.32)
fc=i

and a problem adjoint to  (3.32)

Qt =  Qxx, 9(0, t) = q(n, t ) =  0, q(x, 0) =  z(x,  0). (3.33)

Solution of problem (3.32) can be represented as a Fourier series
OO

z(x,  t) =  ^22 ^ n ^ n2 T̂~t'> sin (nx),  (3.34)
71=1

where
TV N

2 r  2 2
A n = — (1 — y  ckS(s — x k)) sin(ns) ds = — (1 — cos(7r n ) )  ck sin i nxk).

7r /n z—' nn  tv z—<
1 /0  f c = l  k = 1

Similarly, solution of problem (3.33) can be represented as:
OO

q(x, t ) =  ^ 2  B ne~n2t sin (nx),  (3.35)
71=1

where B n = |  f ” z(x,  0) sin(ras) ds = A ne~n2T.

Optim ality conditions for this problem were derived in Sec. 3.3.1 (see formula 

(3.21)). Therefore, the optimal coefficients c* can be determined by solving a system 

of equations

q(c, x k, T)  = 0, k = 1 , . . . ,  N.
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- 2  n 2T

Using (3.34) and (3.35) we obtain:

OO_____________________________________
q(c, x k, T ) = ^ 2  sm (n xk)e~n2T = y  A n sin(nxk)e

n =  1 7 i= l

o° 2 00 o /  N \
=  — (1 — cos(7m))e-2n2r s in (nxfc) — — I c ,s in (n x ,)  J e_2n2rs in (nxfc).

^ '  T i n  — /  7 7  \  ^ '  I
71=1 71 =  1 \ j = l  /

Thus, optimal coefficients ck can be found solving a linear system of equations

Ac = b,

where
00 2

bi = Y  — (1 — cos(7rn))e 2n2rsin (nxA,* ^  7T717TTI 
71=1

A i j  =  — e 2n2T  sin(nxj) sin(nxj).
OO

7T
71=1

Let us consider two numerical examples of solution of this problem.

Let T  = 1. For a uniform quadrature set of ten points on the interval [0,7r] values 

of the coefficients c* are presented in the following table.

Table 3.1: Numerical Example 1

i 1 2 3 4 5 6 7 8 9 10

Xi tt/11 277/11 377/11 477/ H 577/11 677/11 777/11 877/ H 977/11 1077/11

Ci 0.3351 0.2611 0.2996 0.2782 0.2879 0.2879 0.2782 0.2996 0.2611 0.3351

In Table 3.1 the second row contains given values of the nodes X*, and the third 

row contains computed quadrature weights c*.

In the case of quadrature points defined by the vector

x = (71/10, 371 / 14 , t i / 3 , 27i / 5 , 97i / 17, 27i / 3 , 57i / 7 ,671/7, 97i / 10 , 187i / 19),

values of c* corresponding to each node x* are shown in Table 3.2.
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Table 3.2: Numerical Example 2

i 1 2 3 4 5 6 7 8 9 10

Xi tt/1 0 3 tt/1 4 7r/3 2?r/5 9tt/1 7 2tt/3 57r/7 67r/7 9 tt/1 0 18tt/1 9

Ci 0.3783 0.3646 0.3172 0.2416 0.4936 0.1780 0.3931 0.1444 0.6453 -0 .3 8 7 4
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G eneral Conclusions 

Sam pling and in terpo lation

In chapter 1 we investigate invertibility of the convolution operator W  (see formula

(1.11)) proposed in [2]. Invertibility of the convolution operator W  is equivalent to 

controllability of the corresponding dynamical system (1.1) with control supported 

on a union of two intervals E. So, by proving invertibility of W  we prove th a t the 

system (1.1) can be made controllable by choosing an appropriate density function.

Exact controllability of the system (1.1) is equivalent to sequence {An} forming a 

sampling and interpolating set for the Paley-Wiener space L2E, where are eigenval

ues of problem (1.3). This also proves th a t there are infinitely many such sequences, 

since there are infinitely many density functions th a t make the dynamical system con

trollable. These sequences can be found by solving the appropriate Sturm-Liouville 

problem (1.3).

To prove th a t the operator W  can be made invertible by choosing the value of 

param eter /z, we reduce the problem to invertibilty of a simpler operator. We prove 

th a t for a small enough value of the param eter /z invertibility of this operator is 

equivalent to invertibility of operator V  (1.12), which is equal to operator W  truncated 

to first 4 terms. Then we introduce a new operator K  of the same form as V :

(.K f ) ( t ) =  [cif{t  +  a) +  c2f ( t  + a -  1) +  c3f ( t  + b) + c4f ( t  + b -  1)], (3.36)

where t G [0,1]; a,b G [0,1]; b <  a; c\ ^  0 or c4 ^  0, and derive invertibility 

conditions for it (see theorems 4, 5 in Chapter 1). After th a t we proceed to prove 

th a t for small enough values of /z the coefficients of operator V  satisfy conditions of 

theorems 4, 5 in Chapter 1, and therefore V  is invertible.

Invertibility conditions for operator A' is a contribution to theory of convolution 

operators and linear functional equations. Proof of controllability of system (1.1) 

with control supported on two intervals is a new result in control theory. Our proof 

of the existence of infinitely many sampling and interpolating sequences for two-band 

signals extends the knowledge in sampling and interpolation theory. Another result
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concerning sampling and interpolation for two-band signals was obtained by Seip [4]. 

However, his m ethod is limited to  the case of two intervals.

Our approach to sampling and interpolation problem is extendable to the case 

of set E  being any finite union of intervals. We need to prove th a t system (1.1) 

with control supported on set E  can be made controllable by choosing an appropri

ate density function p. Another goal is to  prove Conjecture 1 in Chapter 1, which 

states, th a t dynamical system (1.1) is controllable for any density function satisfying 

conditions (1.5), (1.6). First step is to  try  to  prove it for the case of two intervals; 

second step is the proof for the case of any number of intervals. For the case of two 

intervals, we have found sufficient conditions on the density function for the system 

(1.1) to be controllable, but these conditions are not necessary. It is very likely th a t 

these conditions are much more restrictive than  needed. If we prove th a t less restric

tive conditions are valid, th a t will mean th a t the class of sampling and interpolating 

sequences is bigger than  the class presented in this dissertation.

Frequency estim ation

In Chapter 2 we apply a dynamical system approach to spectral estim ation prob

lem. We apply the Boundary Control m ethod to  recover signals of the form r(t) = 

0"n{t)eXnt, from given samples r ( 0 ) , r ( l ) , . . .  Here an(t) are polynomials, A„ are 

scalars. The constants A„ and polynomials an(t) are to be recovered. The Boundary 

Control m ethod is based on connections between inverse (identification) problems and 

controllability of dynamical systems (see [1]). It was introduced to solve Gelfand’s 

problem (boundary inverse problem for multidimensional wave equation), and later 

successfully applied to the heat, beam, Maxwell, Schrodinger equations.

We apply the Boundary Control m ethod’s framework to  the frequency estim ation 

problem by defining an auxiliary discrete-time linear dynamical system so th a t its 

input-output map is a convolution operator with a convolution kernel th a t has the 

same structure as signal r(t).  This system can be identified, and then the exponents 

and amplitudes of the signal can be found from the param eters of the system. We
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show th a t the coefficients of the signal can be recovered by solving a generalized 

eigenvalue problem as in the M atrix Pencil m ethod using the procedure in Section 

2.7.

The main novelty in our approach is application of control theoretic methods to 

this problem. There are numerous methods for solving this problem, among them  

are: maximum likelihood methods, the M atrix Pencil method, MUSIC, ESPRIT. 

Usually the case of constant amplitudes is considered. Badeau et al. [3] develop a 

generalized ESPR IT algorithm for estimation of param eters of a signal modeled by 

the Polynomial Amplitude Complex Exponentials model. Their results are similar to 

ours, but they use more complex linear algebra tools. One of the advantages of our 

approach is th a t it is easily extended to  the polynomial case. We also provide explicit 

formulas for the amplitudes an(t).

Our signal model does not include noise, so this is one of possible directions of 

future work. I would also like to try  to apply the Boundary Control m ethod to 

spectral estim ation of a signal represented by an infinite sum of exponentials, which 

would require introducing an auxiliary continuous-time dynamical system instead of 

a discrete-time system.

A pproxim ate in tegration

In the last C hapter 3 we present an approach to construction of optimal quadra

ture formulas for classes of solutions of certain initial boundary value problems. We 

consider two parabolic initial value boundary problems, one w ith non-zero initial con

dition, another one with non-zero condition on the boundary. First, we investigate 

a maximization problem for the error functional on the space of initial or boundary 

conditions for both  initial boundary value problems. This problem can be viewed as 

a problem of optimal control for initial boundary value problem. In the first case 

control is in the initial condition, in the second case control is on the boundary. 

We find optim ality conditions for the initial or boundary conditions, and an error 

estim ate in the case when the set of controls is bounded. If the set of controls is
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bounded it is possible to  also solve a minimax problem. We define the set of controls 

to be a ball of radius e. For the first problem we also consider the set of controls 

U = {v G L 2{Q) : ( B v , v ) L2(ty < e2}, where B  is a bounded, positively defined

operator in space L2(Q). We find conditions on quadrature weights for the maximum 

of error functional over the set of controls to achieve its minimum. Minimization over 

the nodes is not considered.

For hyperbolic equations, the optimal quadrature problem does not make sense the 

way we stated  it, since the solution is not regular enough to  evaluate it at any point. 

We apply methods we use to solve the optimal quadrature problem to maximize a 

functional defined on a space of controls of a hyperbolic dynamical system. This new 

functional is more regular than  the original quadrature error functional.

In the last section of Chapter 3 we present a simple numerical example of calcu

lating optimal quadrature weights for a one-dimensional heat equation.

To our knowledge there is no results on this kind of problems in literature: there 

are results for more general classes of integrands, or for finding the solution itself in

stead of its integral. The interest in approximate integration of initial boundary value 

solutions emerged from applications in control of charged particle beams. Equations 

describing particle beams are much more complex than  the ones th a t we consider, 

but our work is a good model example th a t can be extended to more complex cases. 

The next step in exploration of this topic will be to study optimal cubature formulas 

for integration of solutions of other initial boundary value problem types.
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