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Abstract

The objectives of this dissertation are to experimentally and numerically quantify the effect 

of antennas and the propagation channel on the performance of an Ultra Wide Band (UWB) 

receiver. This work has led to the following new results: (1) the variation in the time 

duration of the impulse response of the oval dipole in the vertical plane is within 5% up 

to an angle 0 — 60° off the broadside direction (0 =  90°); at larger angles a factor of six 

elongation in the time duration of the impulse response along the antenna axis (9 =  0°) is 

observed, (2) for an axial ratio of 0.5, the oval dipole has a Voltage Standing Wave Ratio 

(VSWR) of 2:1 (~  11% reflection coefficient) in a 3.1 GHz bandwidth with a lower cut off 

frequency of 2.8 GHz; for an axial ratio of 2.0 this scales to 0.5 GHz bandwidth with a lower 

cut off frequency of 1.75 GHz, (3) a new theoretical model has been developed for UWB 

pulse propagation over the ground which takes into account the geometrical properties of 

the propagation channel (such as the heights of the transmitter (hi) and the receiver (Z^) 

over the ground) and the nature of the radiated UWB pulse (such as pulse duration (rp) 

and cycle time (rc)), (4) an improvement in bit error rate by up to a factor of 100 can 

be achieved for a matched filter receiver by careful orientation of the transmitting and the 

receiving oval dipole antennas used in the measurements presented in this dissertation.
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1

Chapter 1 Introduction

1.1 Objective of this Dissertation

The objectives of this dissertation are: (1) To experimentally and numerically relate the 

geometry of two planar Ultra Wide Band (UWB) microstrip antennas to the nature of the 

radiated and the received UWB pulse. (2) To relate the nature of the UWB pulse and the 

physical properties (e.g., geometry, number of reflecting surfaces) of the propagation channel 

(e.g., hallway) to the peak amplitude of the received pulse at the receiver; (3) To calculate 

the bit error rate of a UWB receiver in the presence of noise and multipath propagation for 

two specific transmitting and receiving UWB antenna pairs.

1.2 Background

A UWB signal is a radio signal with an instantaneous bandwidth > 500 MHz [Fowler et 

al., 1990; Miller, 2003] or a fractional bandwidth > 0.2, where the fractional bandwidth is 

defined as the ratio of the instantaneous bandwidth to the center frequency of the signal 

spectrum [FCC, 2002]. The upper and lower ends of the instantaneous bandwidth are 

defined by the frequency points where the radiated power is down 10 dB from its peak 

level. Throughout this dissertation, the bandwidth of a signal is defined as the width of the 

frequency spectrum between the two -10 dB frequency points.

In the USA, the radiated UWB signal for indoor applications has to conform with the
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Q -5 0
CZ5 ^  -6 0

Frequency (GHz)
Figure 1.1. Federal Com m unications Com m ission (FC C ) spectrum  allocation for 
U W B  indoor applications. The black curve shows the Time Domain PulsON200 UWB 
signal spectrum and the grayed rectangles show the other commercial applications like GPS, 
PCS, cell phone, and wireless local area network (WLAN) signals. The solid black line shows 
the FCC regulated average power of -41.3 dBm/MHz over the licensed frequency band from 
3.1 GHz to 10.6 GHz for indoor UWB applications.
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following regulations: (1) The occupied spectrum of the UWB signal is between 3.1 GHz 

to 10.6 GHz. (2) The average radiated power over the entire spectrum should be <  -41.3  

dBm/MHz or 75 nW/MHz. These bounds ensure that the radiated UWB signals do not 

cause harmful interference to other licensed services and important radio operations [FCC, 

2002]. Figure 1.1 shows the spectrum of a commercial UWB system and other commercial 

systems that occupy the same frequency band.

The large bandwidth of the UWB signal (500 MHz to 7.5 GHz bandwidth) translates to 

a short time duration (~  2 ns to 133.3 ps), which offers several advantages over conventional 

narrow bandwidth (<  20 MHz) systems: (1) Immunity to interference from multiple propa

gation paths and other narrow bandwidth signals [Taylor, 2000]; (2) Faster transmission of 

information at data rates (>  100 Mbps over 5 m) [Scholtz, 1993] which are a factor of 100 

greater than competing narrow bandwidth technologies like bluetooth (1 Mbps over 10 m) 

and IEEE 802.15.3+ wireless local area network (55 Mbps over 10 m distance) [Porcino and 

Hirt, 2003]; (3) Precise location determination (5 cm to 50 cm accuracy) [Siwiak and Mcke- 

own, 2004]; and (4) High resolution radar capabilities [Astanin and Kostylev, 1989]. Hence 

UWB technology has gained considerable research interest for short-range (5 m to 50 m), 

high data rate (10 Mbps to 480 Mbps) communication, navigation and radar applications 

[Ghavammi et al., 2007].

1.3 Literature Review

There has been extensive work on several unique aspects and potential applications of 

UWB technology over the last 20 years. An exhaustive survey of 492 papers was done on 

the past work in (1) transmitted UWB pulse shape and antenna models, (2) UWB channel 

measurement and models, (3) UWB receiver design and signal processing algorithms. This 

was presented as a separate report [Hawkins et al., 2005]. The brief review (8 papers) 

presented here will focus mainly on the past work done which was not covered as a part of 

the previous report and that directly relates to the objectives of this dissertation.

To faithfully transmit information from the transmitter to the receiver, it is important
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4

to consider the impairments introduced by the propagation channel and the transmitting 

and receiving antenna. The propagation channel impairments are a result of frequency 

dependent reflections from structures present in the channel. These reflections or multipath 

signals interfere/overlap with the transmitted information signal and cause errors in the 

reception of the transmitted information. An extensive review of the past experimental 

and numerical work on multipath propagation of an UWB pulse was done by Molisch 

[2005]. Recent experimental work on UWB propagation inside buildings has shown that 

path loss and the Root Mean Square (RMS) delay spread depend strongly on the choice of 

center frequency and bandwidth of the transmitted UWB pulse [Malik et al., 2007]. It is 

also experimentally demonstrated that, for a UWB radar system centered at 12.5 GHz, a 

bandwidth greater than 4 GHz does not cause significant improvement in ranging accuracy 

(<  1 cm / GHz beyond 4 GHz) [Tarique et al., 2006]. The same work also shows that 

the standard deviation of ranging errors can decrease about 15 times by using directional 

antennas. The number of resolved multipaths in common rake receivers is shown to increase 

linearly with bandwidth with a slope of 11 paths/GHz and falls monotonically with an 

increase in the center frequency [Malik et al., 2004]. Numerical work on ranging accuracy 

of two types of UWB radar systems have shown that the selected pulse waveform has a 

significant impact on the distance estimation error, mainly due to bandwidth [Cardinali et 

al., 2006]. Hence the nature of the transmitted UWB waveform and the physical properties 

of the propagation channel strongly influence the achievable performance of a given UWB 

communication, navigation or radar system.

The antennas affect the bandwidth of the radiated UWB signal. The antenna’s transmis

sion and reception bandwidth and center frequency is highly sensitive to the transmission 

and reception angles at each end of a communication link [Malik et al., 2006]. For pulsed- 

UWB systems, it has also been shown that electrically small antennas are a direct source 

of pulse distortion [Pozar, 2003a; 2003b]. Most available UWB antennas have an octave of 

operational bandwidth in the main beam direction [Schantz, 2005]. The UWB signal has a

7.5 GHz bandwidth. Hence the limited bandwidth of the antenna causes zero crossings in
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the transmitted and the received UWB pulse resulting in an increase in the time duration 

and a corresponding decrease in the bandwidth of the radiated UWB pulse.

1.4 Problem Statement and Approach

This thesis presents analysis and calculations, via measurements and numerical simulations, 

to quantify the dependance of the amplitude and shape of the radiated and received UWB 

pulse on the geometry and orientation of the transmitting antenna, propagation channel 

and the receiving antenna. The thesis presents bit error rate calculations of two commonly 

used types of UWB receivers, namely, the matched filter receiver and the rake receiver.

Two planar, microstrip UWB dipole antennas, namely the oval dipole and the cat-fish 

dipole antenna [Schantz, 2005], are designed and built. Independent time and frequency 

domain experiments are performed to measure the transfer function, band-limited impulse 

response, and the radiation pattern of the two UWB antennas in the anechoic chamber at 

the University of Alaska Fairbanks (UAF). A set of test oval dipole antennas are used to 

measure the band-limited impulse response of a hallway inside the Duckering building at 

UAF. A Finite Difference Time Domain (FDTD) code is developed to run on 8 parallel 

computers at the Arctic Region Supercomputing Center (ARSC) at UAF. The FDTD code 

was used to calculate the transient response of the antennas and the propagation channel. 

The calculations were compared with measurements to relate the geometry of the antenna 

and the channel to the properties of the radiated and received UWB signal.

A MATLAB-based numerical model was developed to calculate the effect of the antennas 

and the propagation channel on the bit error rate of two commonly used UWB receivers. The 

top level program flow is shown in Figure 1.2. The transmitted information is modulated 

on a sequence of UWB pulses by changing their position in time in a coherent manner. 

The measured band-limited impulse response of the transmitting antenna, propagation 

channel and the receiving antenna are convolved with the generated sequence of UWB 

pulses. The received signal is decoded by the receiver models. The decoded information 

signal is compared with the original transmitted information to calculate the bit error
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Figure 1.2. Problem  approach. This approach was adapted from the direct-inverse 
problem approach used to simulate and analyze electromagnetic wave data received on a 
spacecraft [Sonwalkar, 1986]. The modular nature of this approach allows separate blocks 
to be modified independently. This approach also permits incorporating measurements to 
perform accurate case studies.

rate, which is the ratio of the number of received bits in error to the total number of bits 

transmitted.

1.5 Contributions of the Present Work

Part of the present work has been reported in three conference papers [Venkatasubramanian 

et al., 2007; Sonwalkar et al., 2007; 2006]. The specific contributions are listed as follows:

1. The transmitting and receiving properties of two microstrip UWB antennas, namely 

the oval dipole and the cat-fish dipole antennas, are measured in the time and the 

frequency domain.

2. A FDTD code is developed to run on 8 parallel computers at ARSC (UAF).

3. The reciprocity relation for constant gain UWB antennas is derived from measure

ments: (a) The transmitting antenna radiates the derivative of the input UWB wave

form in the time domain, so the corresponding spectrum of the radiated electric field is 

90° out of phase from the spectrum of the input voltage waveform, (b) The spectrum 

of the received voltage waveform is in phase with the spectrum of the electric field 

waveform incident on the antenna.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

4. The oval dipole antenna has a half-power beamwidth of 80° in the vertical plane 

and radiates uniform pulse properties (e.g., pulse width, cycle time) within 5% in the 

vertical plane for a broad beamwidth of ~  60° on either side of the broadside direction 

(90°).

5. FDTD simulations of the amplitude and the direction of the currents on the surface 

of an oval dipole are related to the nature of the radiated electric field waveform. The 

effect of the axial ratio of the ellipse on the impedance bandwidth of the antenna is 

presented. It is shown that as the axial ratio increases, the antenna presents a higher 

input impedance and hence is poorly matched to 50 Q.

6. A new theoretical model for UWB pulse propagation in the presence of a single reflect

ing surface is developed and the nature of the radiated UWB pulse and the physical 

properties of the propagation channel are related to the peak amplitude of the re

ceived signal at the receiver. Two new distance scales are proposed and are named 

breakpoint distances.

7. Frequency domain measurements of band-limited impulse response for line-of-sight 

and non-line-of-sight propagation in a hallway and a room are performed. The mea

surements show a clustering of multiple propagation paths. The peak amplitude of the 

pulse arriving through multiple propagation paths show a exponential decay. Both of 

these features that are observed in the data agree with the Saleh-Valenzuela model 

[Saleh and Valenzuela, 1987]. The measurements are compared with the FDTD sim

ulations and show excellent agreement for the first few (<  5) dominant propagation 

paths.

1.6 Organization of the Dissertation

The organization of this dissertation is as follow: The first chapter discusses the objective of 

this research work, the significance of the stated research problem in light of the work done 

in the past and the approach adopted in this dissertation. The second chapter presents
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the measurements and simulations of the transient response of two UWB microstrip dipole 

antennas to relate the geometry of the antenna to the properties of the radiated and re

ceived waveform. Chapter three presents the measurements and simulations of UWB pulse 

propagation in an empty parking lot and in a cluttered hallway and room. Chapter four 

presents a MATLAB-based numerical model of two UWB receivers to calculate the bit error 

rate and data rate of the receivers for specific antennas and propagation channel. Chapter 

five summarizes the results and discusses future directions for research.
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Chapter 2 UWB Dipole Antennas: 

Experiments and Numerical 

Simulations

2.1 Objective and Significance

The objective of this chapter is to relate, via measurements and numerical simulations, the 

physical properties (e.g., geometry, size) of two planar, microstrip UWB antennas to the 

nature (e.g., shape, duration) of the radiated electric field and received voltage waveform. 

Independent time and frequency domain experiments are performed to measure the band- 

limited transfer function, band-limited impulse response, impedance and radiation pattern 

of the two UWB antennas. A parallel FDTD code is used to calculate the time evolution 

of the first derivative of the vertical component of the current on the antenna surface. The 

calculated current direction and distribution is related to the nature of the radiated electric 

field. Implications of this work towards communication and navigation applications are 

discussed.

The broad bandwidth (>  500 MHz) of a UWB signal causes electrically small wire 

antennas to considerably distort the radiated UWB pulse [Pozar, 2003a]. Most UWB an

tennas, with the exception of some designs like Transverse Electromagnetic (TEM) horns,
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are a source of distortion for UWB pulses due to the variation of their transfer function 

with frequency [Scholtz and Win, 1997]. The pulse distortion of typical UWB antennas is 

strongly dependent on the angle of radiation or reception [Sorgel and Wiesbeck, 2005]. This 

is because the angular variation of the radiation pattern of an UWB antenna is frequency 

dependent. Recent measurements show that the transmission bandwidth of the radiated 

UWB signal is severely limited in some directions, and the signal energy is lost in undesired 

frequency bands as the look angle of the antenna moves off the broadside direction [Malik 

et al., 2006]. This causes interference with other narrow bandwidth systems. Hence the 

transmitting and the receiving UWB antenna transfer function in different directions needs 

to be accurately quantified. To some extent, this distortion can be avoided by the use of 

adaptive templates [Taha and Chugg, 2002] and pulse shaping filters [McLean et al., 2005] 

in correlation receivers. Pozar [2003b] proposed a method to optimize the generated UWB 

signal properties to achieve maximum output energy or peak amplitude of the received volt

age waveform. Though past work has been done on measurement of the impulse response 

of certain specific UWB antennas as a function of radiation or reception angle [Qing et 

al, 2006; Mehdipour et al., 2007], there is little work done [Schantz, 2005] in developing 

a general framework to relate the antenna physical properties (e.g., geometry, size) to its 

impulse response via measurements and numerical simulations. This is the focus of the 

research presented here.

The first section of this chapter discusses the objective and significance of the antenna 

work presented in light of work done in the past. The second section discusses the an

tenna measurements performed and the measurement results. The third section describes 

the simulation and validation of the FDTD code developed at UAF. The fourth section 

describes the simulation of an oval dipole antenna and compares the measurements with 

simulations. The fifth section summarizes the results presented in this chapter. The sixth 

section discusses the implications of this work for UWB communication, navigation and 

radar applications and the seventh section presents concluding remarks.
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2.2 Experiments

This section presents the UWB antenna experiments performed inside the anechoic cham

ber at the University of Alaska Fairbanks. Two planar microstrip dipole antennas are 

designed and their time domain and frequency domain properties are measured. A Vec

tor Network Analyzer (VNA) is used to measure the frequency domain transfer function, 

input impedance and radiation pattern of the two antennas from 300 kHz to 9 GHz. A 

Digital Sampling Oscilloscope (DSO) is used to measure the received voltage waveform 

for a pair of UWB antennas. The rest of this section will discuss the experimental setup, 

instrumentation, signal processing algorithms used and finally the experimental results.

2.2.1 Experimental Setup and Instrumentation Description

A measurement campaign was conducted in spring and summer of 2006 to measure the 

radiation and reception properties of two UWB planar microstrip dipole antennas in the 

UAF anechoic chamber. Independent time domain and frequency domain measurements 

were performed. Figures 2.1A and 2.IB show the coordinate system and the definition of 

the antenna orientation angles 6 and <j> that are used in the experiments presented in this 

section. The subscripts t and r are used for the transmitting and the receiving antenna 

respectively.

Figure 2.2A shows the experimental setup for the frequency domain measurements. A 

pair of antennas aligned along the z-axis (local vertical) with their broadside directions 

facing one another, and placed inside the anechoic chamber, are connected to the two ports 

of an Agilent E8358A PNA series vector network analyzer (VNA). When the two ports of 

the VNA are connected to calibrated 50 fi loads via test cables, the source power set to 

+10 dBm, and the intermediate frequency (IF) bandwidth set to 1 kHz, the measured noise 

floor of the VNA for the scattering parameter measurements is -9 8  ±  2 dBm in the 3 GHz 

to 9 GHz frequency range. A detailed discussion of the noise floor of the VNA is presented 

in Appendix A .l.

Figure 2.2B shows the experimental setup for the time domain measurements. Also
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Xt
Figure 2.1. Transmitting and receiving antenna coordinate system. (A) The plane 
containing the antenna is defined as the zt-Xt plane and the normal vector to the plane is 
the yt-axis. The zt-axis is along the local vertical. The elevation angle 6t is defined from 
the 2t-axis with 0° (end fire) along the zt-axis and 90° (broadside) along the yt-axis. The 
azimuth angle <f>t is defined from the xt-axis with 0° along the ajt-axis and 90° along the 
3/t-axis. (B) Receiving Antenna coordinate frame is the same as the transmitting antenna 
coordinate frame except that it is rotated by 180° about the zr-axis. The azimuth and 
elevation angles, 0r and 4>r axe defined from the zr-axis and the av-axis, respectively.
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A) Frequency Domain 
Zt0

CLyi

2 m
TX

VNA
RX

B) Time Domain 
Z+0

H y i

UWB
source

2 m 
TX RX

v > DSO

300 kHz to 9 GHz 
PT= 10 dBm 

C) MSSI Source

LNA DC to 8 GHz 
25±2.5dB 20 Gs/s

D) Antenna Positioner
. Mounting 
plate

Drive shaft

2 4 6 8
Frequency (GHz)

Motor inside 
box lined with 
absorbing foam

Figure 2.2. Experimental setup and instrumentation used for antenna measure
ments in the tim e and frequency domain. (A) Frequency domain measurement. (B) 
Time domain measurement. (C) Time domain waveform and frequency spectrum of a Mul- 
tispectral Solutions, Inc. (MSSI) TFP1001 UWB source. The peak-to-peak amplitude of 
the time domain waveform after 5 dB attenuation (to prevent gain clipping) is 4 V. The 
peak positive amplitude before the 5 dB attenuator is 10.24 V, corresponding to a peak 
power level of 2.1 Watts (+33 dBm). The MSSI source is operated by a 15 MHz clock 
resulting in a duty cycle of 1%. Hence the average power into a 50 ft load is less than 20 
mW. (D) One-axis antenna positioner built at UAF.
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shown in the figure is the coordinate system used for the antenna experiments presented 

in this thesis. The transmitting antenna is connected to a Multi Spectral Solutions Inc. 

(MSSI) TFP1001 impulse source whose time and frequency domain properties are shown in 

Figure 2.2C. The receiving antenna, 2 m away from the transmitting antenna, is connected 

to a Tektronix TDS 6804B digital storage oscilloscope (DSO) via a Miteq AFS3-0200600-15- 

LN low noise amplifier (LNA). The LNA has a nominal gain of 25±2.5 dB and a noise figure 

of 1.6 dB in the 2 GHz to 8 GHz frequency range. The DSO measures the received voltage 

waveform from DC to 8 GHz with a maximum sampling rate of 20 Gs/sec. A detailed 

discussion of the vertical resolution and sensitivity of the DSO is presented in Appendix 

A.2.

Figure 2.2D shows a picture of a one-axis antenna positioner that was developed in

house at UAF. The positioner is controlled by a program running under Windows 2000 on 

the VNA. The drive shaft and mounting plate of the positioner are made from non-metallic 

materials to minimize unwanted reflections. The antenna positioner is used to measure the 

radiation pattern of the UWB antennas in the time and frequency domains.

Figure 2.3 shows a picture of two types of UWB reference antennas used in the exper

iments presented in this thesis. The Sunol broadband DRH 118 horn antennas, shown in 

Figure 2.3A, have a wide bandwidth from 1 to 18 GHz and a gain of 10 ±  1.5 dB for minimal 

distortion of the received spectrum. The horn antenna is 28 cm long by 15 cm wide and 

offers an angular resolution of ~  4° in the vertical plane for radiation pattern measurements. 

These antennas are used as reference antennas to measure the time and frequency domain 

behavior of the antenna under test (AUT). The Time Domain Corporation Broadspec® 

P200 antennas, shown in Figure 2.3B, have an operational bandwidth from 3 GHz to 8 

GHz and are omni-directional with a gain of 2.2 dBi. They are used as probe antennas for 

the chamber calibration measurements discussed in Appendix A.3.

Figure 2.4 shows the UWB microstrip dipole antennas designed and built at UAF. 

Figures 2.4A and 2.4B show pictures of the oval and the cat-fish dipole antennas. The 

dimensions of the ovals were also chosen based on past work [Schantz, 2001]. The cat-fish
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Figure 2.3. U W B  Reference antennas. (A) Sunol Sciences DRH-118 broadband horn 
antennas (B) Time Domain Corporation Broadspec® P200 antennas.

dipole is an exact replica of the commercial Time Domain Broadspec® P200 antenna (Figure 

2.3B). The oval and the cat-fish dipole antennas were chosen because of their omnidirectional 

pattern uniform over a broad bandwidth (>  2 GHz), scalability to higher frequency ranges 

and linear polarization [Schantz, 2005]. The experimental procedure to measure the time 

and frequency domain properties of these antennas will be discussed next.

Figure 2.4. P ictures o f  the U W B  m icrostrip dipole antennas built at U A F . (A)
Oval dipole (B) Cat-Fish dipole. The 26 X  21 mm radiating oval is placed on the left 
and the 37 mm long tapered balun is placed on the right. All the dimensions shown are 
in millimeters. The balun design was based on the PulsON200™ antenna feeding struc
ture [Schantz, 2003]. The radiating elements on either side of the antenna are electrically 
connected by vias milled onto the antenna (not shown in figure).
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2.2.2 Frequency Domain Scattering Parameter Measurements

2.2.2.1 Broadside Transmitting and Receiving Impulse Response Measurement

The frequency domain transfer function and the time domain band-limited impulse response 

of a UWB antenna in the transmitting and the receiving mode is measured based on the 

procedure proposed by Qing et al. [2006]. This procedure involves a pair of “identical” 

antennas oriented with the same polarization so that the same parts of their radiation 

patterns point at each other. The two “identical” antennas are connected to a VNA inside 

the anechoic chamber (described earlier) as shown in Figure 2.2A. The VNA performs a 

swept frequency measurement of the scattering parameters of the antenna pair from 300 kHz 

to 9 GHz in steps of 5.6 MHz thereby, capturing a total of 1601 equally spaced measurements.

The VNA was calibrated using the Agilent electronic calibration (E-Cal) module prior 

to the commencement of the measurement. Calibration accuracy is confirmed using an 

independent set of mechanical standards. For S ll and S22 measurements, the significant 

analyzer error is due to the output signal reflecting back to the port at the directional 

coupler and the reflected signal from the device under test (DUT) that is reflected a second 

time at the port. After calibration, the measured reflection coefficients (S ll and S22) were 

within a few tenths of a dB for open and short standards, and less than —30 dB for a 50 

Cl load standard. The uncertainty in the measured transmission coefficients (S21 and S12) 

for a pair of commercial horn antennas (discussed in section 2.2.1), 2 meters apart, is <  0.2 

dB in the 300 kHz to 9 GHz frequency range. The two meter separation distance between 

the antennas inside the chamber was chosen based on the anechoic chamber calibration 

measurements presented in Appendix A.3.

The transmitting antenna transfer function, Ht (ui,Qt,4>t), is defined as the ratio of the 

radiated electric field to the input voltage applied to the antenna terminals. The radiated 

electric field is normalized to the magnitude and phase of the electric field at the location of 

the receiving antenna in the transmitting antenna reference frame (Figure 2.1A). Hence Ht 

(oj,0t,<f>t) is dimensionless. The receiving antenna transfer function Hr (uj,6r,<t>r) is defined 

as the output voltage at the antenna terminals divided by the electric field incident on
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the antenna. The direction of arrival of the incident electric field in the receiving antenna 

coordinate frame (Figure 2.1B) is given by (dr,<t>r). Hr (ai,6r,^r) has dimensions of meters.

N
£

s
X

00<DT3

Ss—/

0 1 2 3 4 5 6
Frequency (GHz)

Figure 2.5. Transmitting antenna transfer function com puted for the oval and 
cat-fish dipole antennas. The top panel shows the amplitude in log scale and the bottom 
panel shows the phase of the transmitting antenna transfer function calculated from the S21 
measured for a pair of matched oval (black curve) and cat-fish (red curve) dipole antennas 
separated by 2 m in the anechoic chamber (shown as inset in figure).

Figure 2.5A and 2.6B show the transmitting and receiving antenna transfer functions of 

a pair of identical oval (black curve) and the cat-fish (red curve) dipole antennas measured 

using the approach detailed in Appendix A.4.1. The transfer functions are measured for 

1601 positive frequency points spaced every 5.6 MHz. The inverse fourier transform of this 

transfer function yields a discrete time analytical signal [Iverson, 1991]. The real part of 

this signal yields the time domain impulse response, h(t), for each pair of elevation and 

azimuth angles [Sorgel and Wiesbeck, 2005]. The measured impulse response has a time 

resolution of 284.6 ps. The time resolution is improved to 5 ps by zero padding the measured 

transfer function from 9 GHz to 200 GHz. The impulse response is further processed by low
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Frequency (GHz)

Figure 2.6. R eceiving antenna transfer function com puted for the oval and cat
fish dipole antennas. The top panel shows the amplitude in log scale and the bottom 
panel shows the phase of the receiving antenna transfer function calculated from the S21 
measured for a pair of matched oval (black curve) and cat-fish (red curve) dipole antennas 
separated by 2 m in the anechoic chamber (shown as inset in figure).
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Figure 2.7. Transmitting and receiving antenna impulse response using the trans
fer functions calculated from  frequency dom ain scattering param eter measure
ments for the oval and cat-fish dipole antennas. (A) Oval dipole. (B) Cat-fish dipole. 
The transmitting antenna impulse response is shown as a red curve and the receiving an
tenna impulse response is shown as a black curve. The receiving antenna impulse response 
has dimensions of meters and the transmitting antenna impulse response is dimensionless. 
The receiving antenna impulse response is scaled 10 times for clarity.

pass filtering the high frequency oscillations due to the sharp cut off in the measurement 

at 9 GHz. Figures 2.7A and 2.7B show the band-limited transmitting (black curve) and 

receiving (red curve) antenna impulse response of an oval and a cat-fish dipole antenna 

using the transfer functions shown in Figures 2.5 and 2.6.

2.2.2.2 Voltage Standing Wave Ratio (VSWR) Measurement

The scattering parameter measurement also permits the calculation of the voltage standing 

wave ratio which is a measure of how well an antenna is impedance-matched to a 50 Q load. 

The VSWR is a real quantity and is related to the reflection coefficient Si i (cj) as

VSW R d D
l - l S n l '

Figures 2.8 shows the VSWR for the oval (black curve) and the cat-fish (red curve) 

dipole antennas along with the tapered balun feed (shown in Figure 2.4) in the 300 kHz 

to 9 GHz frequency range. Also shown in the figure is the VSWR of the Time Domain 

P200 antenna, measured by Schantz [2005]. It is interesting to note that this measurement
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departs from the VSWR of the cat-fish dipole which has the exact same dimensions as the 

P200 antenna. A VSWR of 1.5:1 is chosen which translates to a return loss of —14 dB or 

4% of the energy incident on the antenna is reflected back into the port.

Frequency (GHz)
Figure 2.8. V S W R  o f  the oval and the cat-fish dipole antennas. The black curve 
shows the VSWR of the oval dipole antenna which has a impedance bandwidth of 3.4 
GHz from 2.75 GHz to 6.15 GHz. The red curve shows the VSWR for the cat-fish dipole 
antenna which has an impedance bandwidth of 3.9 GHz from 4.0 GHz to 7.9 GHz. The 
red triangles represent the VSWR of the TDC Broadpsec® P200 antenna, which has a 
impedance bandwidth of 2.75 GHz from 2.8 GHz to 5.5 GHz. These measurements were 
estimated from Fig 6.28 in Schantz [2005]. The VSWR for the impedance bandwidth 
calculation is 1.5:1 shown as a horizontal dotted line.

The cat-fish dipole antenna is a variant of the oval dipole antenna. There are two main 

differences between the two antennas. The first difference is that the oval dipole antenna 

is center fed with the balun aligned perpendicular to the plane containing the radiating 

elements, whereas the cat-fish dipole antenna is bottom fed with the balun in the same 

plane as the radiating element. This affects the near fields of the antenna and the radiated 

electric field at angles close to the antenna null [Schantz, 2003]. The second difference is 

that the oval dipole antenna has symmetrical radiating elements on either side of the feed 

point in the same plane, whereas the cat fish dipole has asymmetrical radiating elements 

with part of the bottom oval etched out to accommodate the balun structure. This causes 

differences in the pattern, matching (as seen in Figure 2.8), and radiated pulse properties 

of the two antennas. Our main objective is to relate geometry of the radiating elements to
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the radiated electric field. Hence the rest of this chapter will focus only on the oval dipole 

antenna.

2.2.2.3 Measurement of the Cross-Polarized Antenna Response

The vector electric field vector radiated by an antenna is oriented in the plane perpendic

ular to the direction of propagation. The orientation of the electric field determines the 

polarization. The polarization characteristics of an oval dipole antenna is measured by 

connecting two identical ovals to the two ports of a network analyzer. The co-polarized 

measurement where the two ovals are identically oriented in azimuth and elevation is shown 

in Figure 2.5A. The cross polarized component of the electric field is measured by rotat

ing the receiving oval in the vertical plane by 90° as shown in Figure 2.9A. Figures 2.9B 

and 2.9C show the transmitting and the receiving antenna co-polarized (black curve) and 

the cross-polarized (red curve) impulse responses for a pair of oval dipoles separated by 

2 m in the anechoic chamber. The cross-polarized field components are ~  20 dB below 

the co-polarized components but the pulse width of the cross polarized response is a factor 

of 1.5 longer than the co-polarized signal for both the transmitting and receiving antenna 

response.

2.2.2.4 Co-Polarized and Cross-Polarized Radiation Pattern of the Oval Dipole An

tenna

The radiation pattern and the transient response of the oval dipole antenna is measured 

in the anechoic chamber in two orthogonal polarizations using the procedure proposed by 

Sorgel and Wiesbeck [2005]. Figure 2.10A shows the schematic of the experimental setup to 

measure the co-polarized antenna response. The oval dipole antenna and the horn antenna 

are connected to ports 1 and 2 of the VNA. The two antennas are aligned with their 

broadside direction facing each other. The oval dipole antenna is mounted on the antenna 

positioner (shown in Figure 2.2D) and is rotated in the horizontal plane in 5° increments. 

The elevation angle 0 is defined from the axis of the oval antenna which is aligned along

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

■’ 1
1 1

— ht,co(t)
— 30 ht,cross(t)

exfv—
— ht,co(t)

20 ht,cross(t)

8 9 10 11 12
Time (ns)

Figure 2.9. C o-polarized and cross-polarized transmitting and receiving impulse 
response o f  a pair o f  oval dipole antennas separated by 2 m  in the anechoic 
cham ber. (A) Experimental setup (B) Transmitting antenna impulse response. (C) Re
ceiving antenna impulse response.

the local vertical. The 0 =  90° corresponds to the broadside direction and the 0 =  0° 

corresponds to the end-fire direction. The horn is held fixed 2 m away throughout the 

measurement.

The co-polarized and cross-polarized transfer functions of the oval dipole antenna for 

each pair of elevation and azimuth angles are calculated from the measured forward trans

mission coefficient S21 using the relation

521 (w, e, <j>) = H r e f (u , 9 0 , 9 0 e,
lit tic

where Href(u , 90°, 90°) is the broadside receiving transfer function of the horn antenna and 

Ht(oJ,d,(t>) is the transmitting antenna transfer function of the oval dipole antenna. The 

measured broadside transfer function of the horn antenna, shown in Appendix A.3, is used 

to calculate the transfer function of the oval antenna from Equation 2.2.

Figures 2.10C and 2.10D show the co-polarized oval antenna transfer function for three 

elevation and azimuth angles respectively. The -10 dB bandwidth of the transfer function is
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3.5 GHz in the vertical plane and its variation remains within 5% up to an elevation angle 

of 33°. In the horizontal plane the bandwidth of the transfer function remains within 5% 

for all the azimuthal angles. Note that the negative slope in the transfer function is due to 

the l / / 2 path loss, shown as a black dotted line. The algorithm adopted to calculate the 

time duration, number of zero crossings, bandwidth, and center frequency of a waveform is 

discussed in Appendix B .l. For 8 =  0°, f c — 1.8 GHz, B — 400 MHz and with 9 =  90°, f c 

=  4.2 GHz, B =  3.5 GHz. For 4> =  0°, f c =  4.2 GHz, B =  3.5 GHz and with <f> =  90°, f c =

4.2 GHz, B =  3.3 GHz. This shows that the properties of the radiated pulse are strongly 

dependant on the orientation of the transmitting and receiving antenna.

Figure 2.10E shows the band-limited impulse response of the oval dipole antenna for 

8 =  0°, 30°, and 90°. The impulse response duration remains within 5% of the broadside 

direction value up to 9 =  33°. Beyond this angle, the duration of the impulse response is 

elongated by a factor of two at 8 =  30° and a factor of six along the antenna axis (9 =  0°) 

compared to the response in the broadside direction (8 =  90°). Figure 2.10F shows the 

band-limited impulse response of the oval dipole antenna for <f> =  0°, 30°, and 90°. The 

duration of the impulse response is within 5% of the <f> =  0° waveform time duration, which 

is ~  2.5 ns.

Thus far all the experiments presented have measured the co-polarized components such 

as the results shown in Figure 2.10. The experimental setup for the measurement of the 

cross-polarized components in the vertical and horizontal plane is similar to Figures 2.10A 

and 2.10B except that the receiving horn antenna is rotated by 90° on its axis. Figures 

2.11A and 2.1 IB show the cross-polarized oval antenna transfer function for three elevation 

and azimuth angles, respectively. The amplitudes are 15 dB down from the co-polarized 

amplitudes for the same three elevation angles (shown in Figures 2.10C and 2.10D). Figures 

2.11C and 2.11D show the corresponding cross-polarized band-limited impulse response. 

The peak amplitude is down by a factor of 10 and the pulse width increases by a factor 

of 5 in comparison with the co-polarized components for the same azimuth and elevation 

angles (shown in Figures 2.10E and 2.10F). The polarization ratio is the peak amplitude
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Figure 2.10. D irectional dependence o f  the co-polarized com ponents o f  the oval 
dipole antenna transfer function and impulse response. (A) Experimental setup to 
measure the variation of antenna response with elevation angle 9. (B) Experimental setup to 
measure the variation of antenna response with azimuth angle (j>. (C) Transmitting antenna 
transfer function for 6 =  0°, 30°, and 90°. (D) Transmitting antenna transfer function for 
4> =  0°, 30°, and 90°. (E) Band-limited impulse response for 0 =  0°, 30°, and 90°. (F) 
Band-limited impulse response for 4> — 0°, 30°, and 90°.
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of the cross-polarized band-limited impulse response divided by the peak amplitude of the 

co-polarized band-limited impulse response. These measurements suggest that the oval 

antenna has good polarization purity with 15 dB difference between the co-polarization to 

cross-polarization components. The maximum polarization ratio is 0.55 along the 0 =  0° 

null and the minimum is 0.06 along the 9 =  90° (broadside) direction.

Figure 2.12 shows the peak amplitude of the co-polarized (black) and the cross-polarized 

(gray) impulse response of the oval dipole in the vertical (curve) and the horizontal plane 

(diamonds). The oval antenna has a dipole like pattern in the vertical plane with the 

maximum shifted to ~  85°. The oval antenna has an omnidirectional pattern with a front 

to back ratio of 0.8 in the vertical plane. The asymmetry in the vertical plane is due 

to the geometry of the oval antenna and is exaggerated by the balun structure, which is 

asymmetrical on either side of the antenna and orthogonal to the plane containing the 

antenna. The cross polarization radiation pattern is dipole-like in the horizontal plane but 

rotated by 33° with its maximum at 115° and —75° respectively. In the vertical plane, the 

pattern is smeared out with a maximum at —110°.

2.2.3 Time domain Measurement of the Received Voltage Waveform

As discussed in Figure 2.2B, the time domain measurement involves exciting the antenna 

under test (AUT) with an MSSI UWB source (Figure 2.2C) and measuring the voltage 

received by a commercial horn antenna 2 m away using a DSO. The details of the DSO 

are discussed in section 2.2.1. Two signal processing algorithms are used to de-convolve the 

impulse response of the test antenna: (1) sensor-CLEAN algorithm [Cramer et al., 1999] 

and (2) Van-Citteret algorithm [Bennia and Riad, 1992] discussed in Appendix A.4.2.

Figure 2.13A shows the experimental setup for the time domain measurement. Figure 

2.13B shows the received voltage waveform, as a red curve, for a pair of horn antennas 

separated by 2 m in the anechoic chamber. The MSSI source waveform is shown as a 

black curve. Also shown, as a blue curve, is the received voltage waveform calculated 

by multiplying the transmitting and the receiving transfer function of the horn antenna,
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Figure 2.11. D irectional dependence o f  the cross-polarized com ponents o f  the oval 
dipole antenna transfer function and impulse response. (A) Transmitting antenna 
transfer function for 0 =  0°, 30°, and 90°. (B) Transmitting antenna transfer function for 
(j> =  0°, 30°, and 90°. (C) Band-limited impulse response for 6 — 0°, 30°, and 90°. (D) 
Band-limited impulse response for <j> =  0°, 30°, and 90°.
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Figure 2.12. Radiation pattern of the oval dipole antenna in the vertical and 
horizontal planes. The variation of the peak amplitude of the impulse response of the 
oval antenna as a function of elevation and azimuth angles are shown as a black curve and 
black diamonds respectively for vertical polarization and as a gray curve and diamonds re
spectively for horizontal polarization. The positive elevation angles from 0° to 180° denotes 
radiation directions in front of the antenna and the negative elevation angles denote the 
directions behind the antenna. Note that measurements are made from 0° to 180° and then 
from —180° to —5°. hence there is a missing data point shown by a gap in the pattern 
curve. The —3 dB beam width of the oval antenna is 67° ±  2°.
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measured by the VNA, with the frequency spectrum of the MSSI source. The primary cycle 

of the two waveforms show fair agreement, but the VNA measurement shows additional 

ringing. Figure 2.13C shows the frequency spectrum of the DSO (red curve) and VNA 

(blue curve) measurement of the received voltage waveform. Also shown as a black curve is 

the spectrum of the MSSI source signal. The received voltage waveform calculated from the 

frequency domain measurement has a lower center frequency compared to the time domain 

measurement. The spectrum of the DSO and VNA measurement align at the peak frequency 

of the MSSI source, which is 1.6 GHz. The VNA measured spectrum closely follows the 

spectrum of the MSSI source up to 4.5 GHz, suggesting that all the energy supplied to the 

antenna up to this frequency is radiated. The DSO measured spectrum shows a sharper 

fall off compared to the VNA measurement and has a narrower bandwidth.

Figure 2.14A shows the experimental setup for the time domain measurement. Figure 

2.14B shows the received voltage waveform measured by the DSO (red curve), for a pair of 

oval dipoles separated by 2 m in the anechoic chamber. Also shown, as a black curve, is 

the received voltage waveform calculated by multiplying the transmitting and the receiving 

transfer function of the oval dipoles with the frequency spectrum of the MSSI source (shown 

in Figure 2.2C). The primary cycle of the two waveforms show good agreement, but the 

frequency domain measurement shows additional ringing because most of the energy of the 

MSSI source lies in the DC to 3 GHz bandwidth, whereas the transmission bandwidth of the 

oval antenna is from 2 GHz to 6.5 GHz. Also, the time domain measurement has additional 

25 ±  2.5 dB gain owing to a LNA connected to the receiving antenna terminals. The details 

of the LNA are discussed in section 2.2.1. This additional gain provides ample signal to 

be well above the noise floor of the DSO in the time domain measurements. Figure 2.14C 

shows a comparison of the broadside spectrum of the received voltage waveform measured 

using the DSO (red curve) and the VNA (blue curve).

The radiation pattern of the oval dipole antenna is measured by mounting the oval on 

an antenna positioner, which rotates the antenna first in the vertical plane from 0° to 180° 

and then from —180° to 0° elevation angle. The oval antenna is connected to an MSSI
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Figure 2.13. T im e and frequency dom ain measurement o f  the received voltage 
waveform  for a pair o f  identical horn antennas. (A) The experimental setup for the 
time domain measurement. (B) The blue curve shows the transmitting and the receiving 
transfer function of the horn antennas, measured using VNA, and multiplied with the 
spectrum of the MSSI source. The resulting frequency domain signal is inverse fourier 
transformed to get the time domain waveform. This is compared with the voltage waveform 
directly measured at the terminals of the receiving antenna using a DSO, shown as a red 
curve. The MSSI source waveform is shown as a black curve. (C) The frequency domain 
spectrum of the received voltage waveform measured using the time domain (red curve), 
frequency domain (blue curve) and the MSSI source waveform (black curve).
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Figure 2.14. T im e and frequency dom ain measurement o f  the received voltage 
waveform  for a pair o f  identical oval antennas. (A) The experimental setup for the 
time domain measurement. (B) The blue curve shows the transmitting and the receiving 
transfer function of the horn antennas, measured using VNA, and multiplied with the 
spectrum of the MSSI source. The resulting frequency domain signal is inverse fourier 
transformed to get the time domain waveform. This is compared with the voltage waveform 
directly measured at the terminals of the receiving antenna using a DSO, shown as a red 
curve. The MSSI source waveform is shown as a black curve. (C) The frequency domain 
spectrum of the received voltage waveform measured using the time domain (red curve), 
frequency domain (blue curve) and the MSSI source waveform (black curve).
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source. The electric field radiated by the oval dipole is received by a horn antenna 2 m 

away with its broadside direction facing the oval antenna. The received voltage is amplified 

using a low noise amplifier and then measured on a DSO. The transmitting oval antenna 

impulse response is de-convolved using the measured broadside receiving transfer function 

of the horn antenna and the spectrum of the MSSI source waveform. The time domain 

results are presented later in section 2.3.

2.3 Finite Difference Time Domain Simulations

This section discusses the 3D FDTD simulation code that was developed to calculate the 

transient response of UWB antennas and the propagation of UWB signals. The FDTD 

method was chosen because: (1) It is a time domain method. (2) It is easily scalable for 

multiple domain sizes. (3) The code structure is amenable to parallelization permitting sim

ulation of large (> 1 GB storage space) domain sizes. There are several FDTD approaches 

known [Sullivan, 2000]. The implemented code uses a second-order, centered difference 

approach known as Yee’s algorithm on a uniform mesh of points [Yee, 1966].

This section will begin with a brief discussion of the FDTD method, followed by op

timization and parallelization of the FDTD code to run on the supercomputers available 

through the Arctic Region Supercomputing Center (ARSC) at UAF and finally the simu

lation of a few test cases.

2.3.1 Mathematical Formulation

The integral and differential form of Maxwell’s equations are [Taflove, 1995]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

Figure 2.15. Position o f  the field com ponents on  a single Yee cell. The problem 
space is divided into cubes called Yee Cells. In the cartesian coordinate system, each Yee 
cell contains six field components, Ex, Ey, Ez, Hx, Hy and Hz. The fields are all arranged in 
a staggered grid and are offset by half a step in the spatial domain as shown in the diagram.

For the fluxes holds: 'F =  J j ( D  • n )d2A, $  =  J J (B ■ ft )d?A.

The electric displacement D, and electric field strength E  depend on each other accord

ing to D — £q£xE, where £q is the permittivity of free space and £r is the permittivity of 

a medium. The magnetic field strength H, the magnetization M  and the magnetic flux 

density B  depend on each other according to B =  ^oMrH, where Ho is the permeability 

of free space and /ir is the permeability of the medium. The current density «7, and the 

electric field are related by J — JScmrce +  where a is the conductivity of a medium. It 

is important to note that only the curl equations (V  x ) determine how the E and H fields
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vary in space and time. The two divergence (V-) equations are implicitly described by the 

curl equations provided the initial conditions: V • D\t=o =  V • i?|t=o =  0 hold.

These equations are discretized in space and time resulting in a set of explicit finite- 

difference equations. Figure 2.15 shows one cube in the FDTD calculation domain. The 

discretized mesh has (i, j, k) spatial indices along the x, y, and z-axes as shown in the figure 

with spatial resolution Ax, A y  and A z  respectively. The implemented code has a uniform 

grid spacing A x =  Ay =  A z =  S. Note that each of the electric field (E) components 

are surrounded by four magnetic field (H ) components. Similarly, each of the magnetic 

field (H ) components are surrounded by four electric field (E) components. The difference 

equations compute the new field components from the field components at the previous time 

step with resolution At. The six scalar finite difference equations to calculate the vector E  

and H  fields are

E%+1(i +  1/2, j ,  fc) =  Ai+1/2tjikE%(i +  1/2, j, k) +  Bi+l/2jM[H ^ 1/2

(i +  l/2,j +  1/2, fc) -  H ^ \ i +  1/2,3 ~  l/2 ,fc )+  GEE)

H£+1/2(i +  l/2,j, fc -  1/2) -  Hy+1/2{i +  1/2, j ,  fc +  1/2)] 

Ey+1(i ,j  +  1/2, fc) =  AiJ+1/2'kE Z(i,j +  1/2, fc) +  Bid+1/2tk[ H ^ 2

0i , j  +  1 /2 , fc +  1/2) -  H ^ 2{i, j  +  1/2, fc -  1/2)4- (23b)

H ? +1/2{i -  1/2, j  +  1 /2 , fc) -  H ? +1/ 2(i +  1/2, j  +  1 /2 , fc)]

Enz +\ i,j ,  fc +  1/2) =  AitjM1/2Enz {i,j, fc +  1/2) +  Bi^k+1/2[H^+1/2

(i 4-1/2, j ,  fc 4-1/2) -  H£+1/2(i -  l/2,j, k +  1/2)4- H E

H%+ll2(i ,j  -  1/2, fc +  1/2) -  H%+1/2(i, j  +  1/2, fc +  1/2)]
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~ [

-  E%(i,j +  1/2, fc) +  k +  1/2) -  Enz {i ,j  +  1, A: +  1/2)]

H2+V \ i  +  1/2, j  +  1/2, k) =  +  1/2, k +  1/2) +  +  1/2, k +  1)

CUD

/ r ; +1/2(* +  1/2 ,j, k +  1/2) =  H ^ i i  +  1/2, j ,  k +  1/2) +  ^ [E ? ( i  +  l , j ,  k +  1/2)

-  Enz {i,j, k +  1/2) +  E*{i +  1/2, j, k) -  E*{% +  1/2, j, k +  1)]

( H D

H ” +1/2(i +  1/2, j  +  1/2, k) =  H ? -1/2(i +  1/2, j  +  1/2, k) +  +  1/2, j  +  1/2, k)

-  E%(i,j +  1/2, fc) +  E%(i,j +  1/2, fc) -  E%(i +  1 , j  +  1/2, fc)]

dD
where the terms A and B are given as

„ tr(i,j,k)

_  At 
B%'j 'k 1 e(i,j,k)S

2.3.2 Accuracy and Stability

Past work has shown that for FDTD methods to yield accurate results for a given wave

length, the grid spacing, S, must be less than the smallest dimension of the simulation ge

ometry and typically l /1 0 th  of the smallest wavelength [Taflove, 1995]. Hence, the highest 

frequency or the smallest wavelength controls the size of the FDTD domain. The stability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

condition relating the 6 and temporal step size A t is

At <  -^ =  
c\J3

where c is the speed of light. This condition places a bound on the minimum sampling time 

based on the time taken by an electromagnetic wave to propagate at the speed of light from 

one grid point to the next. Sub-Courant conditions can be achieved if the FDTD problem 

space is enclosed inside a medium of refractive index, n, such that the electromagnetic wave 

propagates slower at v =  c/n and hence the time resolution scales as nAt.

2.3.3 Boundary Conditions

In a finite sized FDTD grid, there are spurious reflections at the domain boundaries because 

of abrupt terminations. These reflections are avoided by using perfectly matched layer 

(PML) boundary condition [Berenger, 1994]. The PML boundary has a diagonal matrix 

of permittivity and conductivity which permits perfect transmission and zero reflection of 

an incident electromagnetic wave at all frequencies and angles of incidence. The PML 

boundary condition was chosen instead of a more commonly used absorbing boundary 

condition (ABC) because PML provides a larger dynamic range (80 dB) for the simulations 

compared to ABC (25 dB) [Taflove, 1995]. For all the simulations performed, PML with 7 

matched layers are chosen.

2.3.4 Serial Implementation

Figure 2.16 shows the flow diagram for the serial FDTD simulator. At t =  0, the domain 

size, problem geometry and the material properties of the various objects in the problem 

space are read from the header file. The uniform FDTD grid is generated. The E  and H  field 

arrays in the simulation space are initialized to zero. The initial source voltage is applied 

to the antenna terminals. The currents on the antenna are calculated from the magnetic 

field using Ampere’s law. Using Equations 2.3 (a-f) E  and H  components are calculated 

at alternate half time steps, such that at the nth time step, the H field components are
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Figure 2.16. Com putation flow o f  the serial F D TD  program . The grayed out area 
are changes made to a normal FDTD computation flow in order to improve performance 
and make the code more suitable for parallel programming.
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calculated at the n+1/2 time step followed by the E  field components at the n+1 time step. 

This update cycle is repeated until the last time step is reached. At each time step the 

electric and magnetic fields at the boundaries are calculated and the boundary conditions 

imposed.

Center

Figure 2.17. Snapshot in tim e o f  the electric field strength radiated by a 6 cm  
long dipole antenna.

To test the validity of the FDTD code, two test cases were calculated. The first case 

was the calculation of the radiation fields from a 6 cm dipole antenna. Figure 2.17 shows a 

snapshot of the normalized electric field magnitude radiated by the dipole antenna across 

a 100 X 100 X 357 grid of points at the 1021 time step. The dipole antenna is excited by 

a modulated gaussian waveform with pulse width 1 ns and center frequency 2 GHz. At 2 

GHz the dipole is half a wavelength long. The dipole radiates most of its energy from the 

center and the ends of each of its arms. This agrees with Figure 4.15 in Schantz [2005].

The second test performed was to check if the PML absorbing boundary conditions 

functioned properly. Figure 2.18 shows three snapshots in time of an electromagnetic wave

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

impinging on the PML boundary. The first snapshot in Figure 2.18A shows the electromag

netic wave propagating towards the PML layer. Figure 2.18B shows that the incident wave 

propagates into the absorbing layer with very little energy reflected back into the problem 

space. Figure 2.18C shows that the transmitted energy is completely absorbed and a small 

portion of the reflected energy propagates back in the problem space. A single PML layer 

is included in this simulation. A total of 8 layers were chosen for the rest of the simulation 

done in this chapter.

Transmitted Transmitted
wave wave absorbed by PML

- 1 1 - 1  1 - 1  1 
A) Towards PML B) Hits PML C) Small portion reflected

rest absorbed

Figure 2.18. Three snapshots in tim e o f  a electrom agnetic wave im pinging on 
the P M L  boundary.

2.3.5 Bottlenecks in Serial Code

For UWB simulations, the smallest wavelength is ~  2 cm (15 GHz). Hence the maximum 

spatial grid resolution is 2 mm. For free space propagation of an electromagnetic wave 

the time resolution is chosen as 3.8 ps. A 60 cm X 60 cm X 60 cm domain would require 

27 x 106 grid points. In a 3-D simulation, each grid point stores arrays for 6 field components, 

permittivity, e, conductivity, cr, and the 27 real and imaginary field components for the PML 

boundary layers as double precision floating point numbers. Each double precision floating 

point number occupies 8 bytes. So for the whole problem space 27x 106 x 1.05*(18 * 8 +  8) —

1.3 GB of memory is required. There is additional storage associated with the 6 PML
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boundary layers which is 796 MB. The memory scale factor of 1.05 is for pointer operations. 

Therefore a total of 2.1 GB of memory is required.

The dipole simulation presented in the previous section took ~  43 mins for a 60 cm X  60 

cm X  100 cm domain and a total of 1200 time steps at 0.5 ps time resolution. The simulation 

was done on an AMD Athlon 32 bit 2.2 GHz processor with 512 MB of RAM. Profiling 

the serial code reveals that 97% of the execution time is spent in updating the electric and 

magnetic field arrays. The large memory allocation for the electric and magnetic fields 

and the associated update coefficients require careful handling to prevent cache misses that 

severely affect performance and scalability.

Modifications to the serial code permit reduction of data storage. The e and a at each 

grid point are stored as real values, and only 6 values per grid point are stored. Also the 

material properties are pre-loaded in a look-up table and only a 1 byte short integer ID 

tag for the material is supplied to each node during computation. This further reduces the 

storage requirement for the FDTD code. Hence the number of bytes is reduced from 96 

bytes per grid point to 1 byte per grid point. Still the serial implementation of the FDTD 

approach using Yee’s algorithm is computationally intensive and a parallel implementation 

is necessary for larger computational domains.

2.3.6 Parallel Implementation of the Serial Code

The serial implementation of the FDTD code has a characteristic feature that makes it 

amenable for parallel programming; When the electric fields are being updated, the magnetic 

fields are only read and when the magnetic fields are being updated, the electric fields are 

only read at each grid point. Hence as long as the field update loops are kept separate, 

these calculations can be completed in a multi-threaded OpenMP environment. There is 

no risk of a race condition as long as different threads update different field components. 

Additionally, there is no domain distribution overhead problem as long as the storage is 

accessible by all of the threads.

The C code was parallelized using OpenMP mutliple threading environment. The up
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date equations for the E  and H  fields are split up by the multiple processors in the multi

threading environment. The speedup of the code after multi-threading for the dipole simu

lation with a 200 X 200 X 200 domain space with 1000 time steps running on an IBM p650 

computer with eight 1452 MHz Power4 processors and 1 GB of RAM is shown in Figure 

2.19. The problem scales well up to 6 processor threads after which the inter-thread com

munication overhead swamps the improvement and hence shows a higher execution time 

for 8 threads.
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Figure 2.19. The execution tim e as a function o f  the number o f  processors for a 
200 X  200 X  200 problem  space with 1000 tim e steps.

2.4 Simulation of the Oval Dipole Antenna

The parallel FDTD code is used to calculate the transient response of an oval dipole antenna. 

The top and bottom panel of Figure 2.20 shows the coordinate system and simulation 

geometry of the oval dipole in two projection planes. The UWB frequency range from 3.1 

GHz to 10.6 GHz corresponds to a minimum wavelength of ~  3 cm. Hence the spatial 

resolution of the FDTD mesh is 3 mm and the corresponding time step is 5 ps calculated 

using the Courant condition (Equation 2.6). The simulated spatial domain is 2 m long in
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Figure 2.20. Simulation geom etry o f  the oval dipole antenna. The Front view and 
the side view of the simulated oval antenna geometry. The antenna coordinate frame for the 
simulations is also shown. The plane containing the antenna is defined as the horizontal x-z 
plane and the normal to the plane is the y-axis. The elevation angle 6 is defined from the 
plane containing the antenna with 0° (endfire) along the 2-axis and 90° (broadside) along 
the y-axis. The azimuth angle is defined from the x-axis with 0° along the x-axis and 90° 
(broadside) along the y-axis. Note that this convention is opposite to the convention used 
for the measurements presented in the previous section.
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each dimension corresponding to a 700 X  700 X 700 uniform rectangular mesh of points. 

The input voltage waveform for the simulation is the measured Multi Spectral Solutions, 

Inc. (MSSI) TFP1001 impulse source (Figure 2.2C). The balun structure is not included in 

the simulation model and the input voltage waveform is applied to the center of the antenna 

structure which has a gap of 2 mm between the ovals.

Figure 2.21 showing the received voltage waveform as a function of four elevation angles 

0°, 20°, 60° and 90°, is calculated using the FDTD code. The calculated radiated electric 

field waveform for each of the elevation angles is convolved with the measured broadside 

receiving horn antenna transfer function to calculate the received voltage waveform. These 

simulated received voltage waveforms (black curve) show excellent agreement with the os

cilloscope measurements for the 90°, 60°, 40°, and 20° elevation angles. The comparison 

of the pulse shape, duration and cycle time of the simulated and measured waveforms for 

these four elevation angles show < 5% variation. The simulation result for the 0° elevation 

angle shows poor agreement with measurement. This is because the simulation does not 

include the balun structure which radiates most of the energy received by the horn antenna 

when the antenna is aligned with its axis facing the receiving horn antenna.

The top left panel of Figure 2.22 shows a schematic of the right hand rule of radiation. 

A dipole is a pair of opposite charges separated by a distance d. Energy supplied to the 

dipole causes the charges to move back and forth about their mean position. The moving 

charge corresponds to a current. The right hand rule of radiation [Schantz, 1997] states 

that, “if the thumb of the right hand points in the direction of the rate of change of current 

then the fingers curl in the direction of the radiated magnetic field.”

The radiated electric field vector E, the radiated magnetic field vector H  and the di

rection of propagation of the electromagnetic wave k form a mutually orthogonal system. 

Hence the radiated electric field is in the same direction as the rate of change of current 

but has opposite sign. This will be used to relate the surface currents calculated on an oval 

dipole antenna to the nature of the radiated electric field waveform.

The bottom left panel of Figure 2.22 shows the radiated electric field waveform calculated
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by the FDTD code for three elevation angles 0°, 30°, and 90° (solid black curve). Also shown 

in the figure is the DSO measurement of the electric field waveform (solid gray curve). The 

measured electric field waveform is calculated by de-convolving the broadside receiving horn 

antenna transfer function, measured using a VNA, from the received voltage waveform. 

The calculated waveform shows good agreement with the primary cycle of the measured 

waveform. There are additional features, such as secondary cycles and elongated width, in 

the measured electric field pulse which axe not reproduced by the simulation. These could 

be due to the limited bandwidth of the frequency domain measurement (0.0003 to 9 GHz) 

of the horn antenna’s response or the parasitic radiation from the balun structure which 

couples with the intense fields close to the antenna and distorts the radiated waveform 

[Schantz, 2005].

The right panel of Figure 2.22 shows a time evolution of the derivative of the vertical 

component of the surface current on a 26 cm X 21 cm oval dipole antenna at 5 different 

time steps corresponding to the points marked A, B, C, D and E in the broadside (6 =  90°) 

electric field waveform. Due to the symmetry of the oval dipole, the horizontal components 

of antenna current always exist as opposing pairs, so there is no net radiated energy in 

the far field. Only the vertical components need to be considered from the standpoint of 

radiated energy. At point A, the impulse enters the antenna at the feed point. Current is 

increasing in an upward direction in both the upper and lower arms of the antenna. Because 

the electric and magnetic fields are orthogonal to each other, upward accelerating currents 

result in a downward directed electric field (Figure 2.22, point A) in the radiated waveform. 

At point B, the current continues to propagate away from the feed point. At the same 

time, the feed from the source has ended and instantaneous currents at the feed point are 

decreasing. The instantaneous rate of change of currents are in opposing directions at the 

feed point and the mid point of the antenna. These opposing currents partially cancel in 

the far field resulting in reduced field strength at point B. The area of decelerating currents 

near the feed point continues to increase as the original impulse propagates toward the 

tip of the antenna. At point C, these factors approximately cancel each other and the
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Figure 2.21. M easured and simulated received voltage waveform for a oval dipole 
transm itting antenna and a horn receiving antenna system. The red curves show 
the time domain measurement using a DSO and an MSSI source. The black curves show 
the simulated received voltage waveform when the input waveform to the FDTD simulation 
is the MSSI waveform. The simulation calculates the radiated electric field from the oval 
dipole antenna 2 m away from the transmitting antenna. The calculated electric field is 
Fourier transformed and its frequency spectrum is multiplied with the receiving transfer 
function of the horn antenna. The resulting spectrum is inverse fourier transformed back 
to the time domain. The additional delays associated with the phase of the horn antenna 
and the method are removed to line up the maximum peak of the two waveforms.
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Figure 2.22. T im e evolution o f  the current distribution on the oval antenna 
calculated using F D T D . The top left panel shows the right hand rule of radiation adapted 
from Schantz [2005]. The bottom left panel shows the calculated (black) and measured 
(gray) electric field waveform in the broad side direction 0 =  90°. The calculated waveform 
shows good agreement with the primary cycle of the measured electric field waveform and 
shows similar cycle duration within 10%. The duration of the primary cycle of the waveform 
deviate by 5%. The right panel shows the time evolution of the vertical component of the 
current derivative at 5 points marked A, B, C, D, and E on the electric field waveform. Also 
plotted at each time is the magnitude (size of arrow) and direction (arrow direction) of the 
vertical current derivatives (arrows) on the antenna surface.
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Frequency (GHz) Frequency (GHz)

Figure 2.23. Effect o f axial ratio o f the oval on its matching and gain properties.
(A) Schematic of the oval dipole with major axis a and minor axis b. (B) VSWR simulated 
using FDTD for three axial ratios 0.5, 0.8 and 2. (C) The input impedance of the oval 
dipole for the three axial ratios.

radiated electric field approaches zero. As time passes, the accumulated charge in the two 

arms of the antenna reaches a maximum, and the downward current derivative reaches 

a maximum (point D). Current is accelerating in a downward direction over the entire 

structure, producing a peak positive directed electric field in the radiated waveform. As the 

built up charge in the antenna dissipates, the change in current slows. Eventually, the local 

electric field approaches a minimum with most of the local energy stored in the magnetic 

fields around the antenna. Currents are nearly constant and radiated energy approaches 

zero. As the magnetic field collapses, the cycle repeats itself (at reduced levels) and the 

direction of the rate of change of current once again points upward, this time producing 

a negative electric field in the radiated waveform (point E). This simulation suggests that 

there is a handshake of energy between the static and quasi-static reactive fields close to the 

antenna and the radiation fields. Therefore, the radiation efficiency of an antenna in a wide 

frequency range is improved by reducing the energy lost to the reactive fields surrounding 

the antenna.

Figure 2.23A shows a schematic of an oval dipole with the major axis, a, and the minor 

axis, b, defined. Here the axial ratio is defined as the ratio of the minor axis to the major 

axis of the ellipse. Figure 2.23B and 2.23C show the VSWR and the input impedance of
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the oval dipole for three axial ratios. In Figure 2.23C, the radiation resistance is shown 

as the red curve and the reactance is shown as the green curve. These results suggest 

that “bulbous” oval antennas (axial ratio < 1) have increased bandwidth but reduced gain 

compared to narrower “skinny” oval antennas (axial ratio > 1). This agrees with past 

measurements [Schantz, 2005] and can be explained as follows. The currents on the oval 

propagate differently at different frequencies (modes). Past work on a diamond dipole 

antenna [Lu et al, 2004] has shown that lower frequency currents are focused near the feed 

point of the antenna and higher frequency currents propagate along the edge of the antenna 

to the tip of the dipole. A similar behavior is observed in the distribution of the fundamental 

mode current of the oval dipole antenna shown in Figure 2.22. As the frequency increases 

the current peak moves along the edge of the oval to the tip of the oval away from the feed 

point. Hence the impedance difference between the various surface current modes determine 

the impedance bandwidth of the antenna. A smoother shape transition from the feed point 

to the tip of the antenna would result in smaller impedance differences between the current 

modes, which in turn would translate to a larger operational bandwidth. A sharper shape 

transition (like the edge of a triangle in a bow tie antenna) would result in larger impedance 

differences between the current modes reducing the operational bandwidth of the antenna. 

For an oval dipole antenna a smoother shape transition of the radiating element would 

imply increased axial ratio of the oval and hence a shorter length of the antenna. A shorter 

length relates to a lower gain and a higher cut off frequency of the radiation bandwidth of 

the antenna. For the same area of the radiating element, a sharper shape transition would 

imply reduced axial ratio of the oval and hence a longer antenna. A longer antenna implies 

increased gain at the cost of increased return loss, narrower operational bandwidth and a 

lower cut off frequency of the radiation bandwidth of the antenna. All of these features are 

observed in the results shown in Figures 2.23B and 2.23C. The results in the figures are 

specific to the input excitation which is a Gaussian waveform with a time duration of 1 ns.

An alternative explanation can also be provided for the results shown in Figures 2.23B 

and 2.23C. The reactance of the antenna, shown as a black curve in Figure 2.23C, increases

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

with increasing axial ratio, suggesting that energy stored in the electric and magnetic fields 

surrounding the antenna increases. This would imply that the quality factor of the antenna, 

which is the ratio of the stored energy to the radiated energy, increases. An increasing 

quality factor implies a narrower bandwidth and hence a more dispersive antenna.

2.5 Summary of Results

The following measurement results were presented in this chapter: (1) Time and frequency 

domain measurements of the transient response of an oval and cat-fish dipole antenna in the 

DC to 9 GHz frequency range. (2) Measured transmitting and receiving impulse response 

and transfer function of the two UWB antennas and a commercial horn antenna showed 

that the transmitting antenna will double differentiate an input UWB waveform as long as 

the spectrum of the input signal is within the operational bandwidth of the antenna. (3) 

The oval dipole has a half power beam width of 67° with a maximum at 85° in the vertical 

plane. (4) The peak amplitude of the cross polarized pulse radiated by an oval dipole in 

the broadside direction is 15 dB down compared to the co-polarized pulse peak amplitude.

The following simulation results were presented in this chapter: (1) FDTD numerical 

code was developed and tested in ARSC at UAF. (2) FDTD simulations of the currents 

on the surface of an oval dipole were related to the nature of the radiated electric field 

waveform. (3) The geometry of the oval antenna was related to the antenna radiation 

properties.

2.6 Discussion

The experimental and numerical results presented in this chapter suggest a strong relar 

tionship between the geometry and orientation of an UWB antenna to the radiated pulse 

properties (e.g., pulse width, cycle time, bandwidth, center frequency). The implication of 

the following antenna properties for UWB applications in light of the work presented in this 

chapter is discussed:
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(1) Reciprocity: The transmitting and receiving transfer function and impulse response 

measurements verify previous conclusions [Schmitt, 1960; Kanda, 1980] that, “a UWB 

antenna’s transmitting transient response is proportional to the derivative of the receiving 

transient response.” A derivative of the input waveform in the time domain translates to 

multiplying the transfer function in the frequency domain by juJ. Hence two time derivatives 

imply multiplication by —a;2. The 180° (multiply by -1) rotation between the transmitting 

and the receiving antenna impulse response and the shape of the impulse response in Figure

2.7 suggests that the transmitting antenna will differentiate an input UWB waveform as 

long as the spectrum of the input signal is within the operational bandwidth of the antenna. 

The receiving oval dipole antenna will not introduce zero crossings in the received waveform 

as long as the radiated spectrum is within the antenna operational bandwidth. This has 

also been mathematically derived by Shlivinski and Heyman [1999] and experimentally 

demonstrated by Scheers et al. [2000].

(2) Impedance matching: The antenna geometry controls the distribution of currents 

on the antenna from the feed point, which in turn control the impedance matching of the 

antenna to a 50 Q, load. To understand how this affects performance of a communication 

system, consider the following example: A 10 Mbps communication system with no coding 

and pulse position modulation transmits 1 pulse every 100 ns. Assuming the duration of 

the UWB signal is 1 ns and the feed line to the antenna is 50 cm long and has an effective 

permittivity of 4, the phase speed of propagation of the signal on the feed line is 1.5 x 108 

m/sec. If the antenna reflects 25% of the incident signal (VSWR of 3:1) and the transmission 

line has negligible losses then the amplitude of the reflection is l/8th  of the amplitude of 

the incident signal delayed by «  6.7ns. So if the input signal is 1 V, the re-radiated signal 

amplitude is 125 mV. The delayed copies will be re-radiated. The propagation channel 

will also introduce delayed replicas of the original radiated signal and the re-radiated signal 

which will overlap constructively or destructively at the receiver, thereby influencing the 

signal-to-noise ratio and the bit error rate of the communication system [Sonwalkar et al., 

2006]. Hence, ovals with an axial ratio of 0.5 have a gradual impedance transformation
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from the feed point, to free space (377 fl) thereby reducing the signal energy reflected back 

into the transmission line.

(3) Radiated pulse properties as a function of radiation angle: The oval dipole has 

uniform pulse properties within 5% in the vertical plane for a broad beamwidth of ~  60° on 

either side of the broadside direction. This permits applications like channel sounding and 

radio frequency identification tags. Increasing the axial ratio of the oval antenna will reduce 

the beam width of the antenna and hence control the properties of the pulse radiated in a 

particular direction. For example, suppose that Bob and Alice are communicating with one 

another, then Eve (eavesdropper) can intercept and decode the information as the broad 

beamwidth of the antenna provides Eve with consistent pulse properties. Now Bob and 

Alice can synchronously change the properties of the input waveform such that the pulse 

radiated by the antenna is consistent over a much narrower beamwidth thereby preventing 

Eve from decoding the information. This presents a new physical layer of security above 

the standard coding techniques.

2.7 Concluding Remarks

The results in this chapter showed that the nature (e.g., amplitude, shape, time duration) 

of the radiated UWB waveform is closely related to the geometry of the UWB antenna. 

The next chapter will discuss how multipath propagation of an UWB pulse relates to the 

received waveform properties (pulse width, cycle time, bandwidth and center frequency).
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Chapter 3 UWB Pulse Propagation: 

Experiments and Numerical 

Simulations

3.1 Objective and Significance

The objective of this chapter is to relate the nature of the received UWB pulse to the 

physical properties of the propagation channel. Measurements and numerical simulations 

of UWB pulse propagation in two scenarios are presented: (1) empty parking lot and

(2) cluttered hallway and room inside a building. A theoretical model is developed to 

relate the nature of the radiated UWB pulse and the physical properties of the propagation 

channel/reflecting surface that causes the multipath. Ray tracing and finite difference 

time domain (FDTD) calculations are presented for propagation scenarios with single and 

multiple reflecting surfaces respectively. Implications of this work towards communication, 

navigation, and radar applications are discussed.

Overlap due to multipath propagation places a fundamental limit on the use of UWB 

technology [Taylor, 2000]. This limitation depends on the properties of the pulse as well as 

those of the propagation channel. Recent advances in UWB transmitter and receiver tech

nologies permit adaptive variation in the characteristics of the UWB waveform transmitted
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[Silva et al. 2007; Mclean et al., 2006]. This makes it possible/practical to use a pulse that 

is optimized for a given application or propagation scenario. Therefore it is important to 

study how multipath propagation of UWB pulses depends on the waveform properties and 

the environment/channel/reflector that causes the multipath.

A fundamental propagation problem is the reflection of a UWB pulse from a single 

reflecting surface [Allen et al, 2006]. Past work identifies three propagation regimes due to 

the interference (overlap) of the direct path pulse and the pulse reflected from the surface 

[Ghavami et al., 2007; Siwiak and McKeown, 2004]. This overlap causes the received signal 

strength to fall off as the fourth power of the transmitter-receiver separation distance when 

the differential delay is less than half the pulse width, tp [Siwiak and Petroff, 2001]. The 

signal strength fall off have exponents that transit from ~  2 (free space) to ~  4 and this 

transition distance is referred to as the narrow bandwidth break point distance, Rb [Bertoni, 

2000]. The breakpoint distance increases with bandwidth, B, which is estimated either as 

the arithmetic mean [Sato and Kobayashi, 2004] or the geometric mean [Siwiak et al., 2003] 

of the upper (fa) and lower (fi) cut off frequencies. Recently, Liu et al. [2006] observed 

a new unsteady breakpoint in the UWB signal strength measurements at short separation 

distances (<  5 m) between the transmitter and receiver. A fluctuation of up to 6 dB is 

observed in the measured signal strength beyond this break point up to a transmitter- 

receiver separation distance of 10 m [Dohler et al., 2004]. Aroonpraparat et al. [2006] 

have proposed a linear regression dual slope path loss model for UWB ground reflection. 

Promwong et al. [2007] have proposed an experimental scheme to evaluate the effect of 

antenna response on the UWB ground reflection transmission loss. Recent simulation work 

by Yang et al. [2007] has shown the existence of three propagation regions in which the path 

loss has differing slopes depending on electric field polarization. Recent frequency domain 

propagation measurements by Malik et al. [2007] have shown that the slope of the fall off in 

the signal strength as a function of transmitter-receiver separation distance increases with 

increasing center frequency.

All the aforementioned results assume that far-field approximations hold. Numerical
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calculations [Cotton et al., 1999] have shown that for a 5.8 GHz system (100 MHz band

width) the near-field effects are substantially reduced to ~  1% when the separation distance 

between the transmitter and receiver and the antenna heights above the reflecting surface 

are > 1 m for a pair of short dipole antennas. It has also been shown that for UWB pulse 

propagation, the errors associated with the far field approximation are ~  12% for short 

ranges (<  5 m) and incidence angles close to the Brewster angle [Raspopovic and Thomp

son, 2005]. This error increases with permittivity, e, and center frequency, / c. The % refers 

to the change in field strength in relation to the expected far field amplitude.

A detailed review of the past work showed that a systematic investigation of the depen- 

dance of the propagation regimes on the nature of the transmitted UWB pulse is lacking. 

Hence this chapter focuses on measuring the properties of UWB pulse propagation in the 

presence of single and multiple reflecting surfaces. The observed features are explained 

using a two ray model and a FDTD simulation model respectively. A theoretical frame

work is developed to interpret and analyze UWB pulse propagation in far more complicated 

scenarios (e.g., hallway, room) than the scenario discussed in this chapter.

Section 3.2 discusses the propagation measurements, simulations and the theoretical 

framework developed for UWB signal propagation in the presence of a single reflecting 

surface in an empty parking lot. Section 3.3 discusses the propagation measurements, 

and the FDTD calculations for UWB signal propagation inside a hallway and a room and 

compares measurements with simulations. Section 3.4 summarizes the results presented in 

this chapter. Section 3.5 discusses the implications of this work for UWB communication, 

navigation and radar applications and the sixth section presents concluding remarks.

3.2 UW B Pulse Propagation in an Empty Parking lot

This section presents the measurements, numerical simulations and the theoretical models 

developed for UWB pulse propagation in the presence of a single reflecting surface.
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3.2.1 Measurements

Measurements were performed to study the effects of multiple path propagation arising from 

the overlap of the direct and ground reflected pulses on the received pulse peak amplitude 

as the relative locations of the receiver and transmitter were varied. The dates, temperature 

and the ground conditions when the experiments were performed in the Taku parking lot 

at UAF are listed in Appendix B.4. The effect of the snow as well as the condition of 

the ground were detectable in the measurements and are discussed in section 3.2.1.5 and 

Appendix B.4.

3.2.1.1 Experiment Geometry

Figure 3.1 shows the schematic of experimental arrangement. The transmitting antenna 

(Tx) and the receiving antenna (Rx) are located at heights h\ and /12, respectively, above 

the reflecting surface (ground) and are separated by a distance d. The transmitted signal 

reaches the receiver via a direct path and a reflected path as shown in the figure. The figure 

labels various angles and possible electrical field polarization vectors for this geometry.

3.2.1.2 Instrumentation Description and Measurements

The measurements, following the geometry shown in Figure 3.1, were carried out with 

the Time Domain Corporation® (TDC) PulsON 200™  UWB evaluation kit, one of the 

first commercially available devices to be certified under the FCC part 15 ruling for UWB 

transmissions [FCC, 2002]. Each PulsON 200™  evaluation kit contains two identical UWB 

transceivers with bottom-fed 2.6 cm x 4.3 cm planar elliptical dipoles [Schantz, 2003]. The 

transmitted UWB pulse is ~1 ns with frequency content from 2.5 to 6 GHz . When the 

transceivers are oriented vertically, their radiation pattern is similar to that of a dipole 

with a maximum 3 dB variation in the horizontal plane. The short duration UWB pulses 

are transmitted at a pulse repetition frequency of 9.6 MHz, resulting in a nominal average 

transmit power of approximately 50 fiW. The PulsON 200™  receiver captures the received 

waveform by internally integrating a minimum of 16 received pulses (corresponding to a
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z

Tx’
Figure 3.1. Schematic showing the geom etry o f  U W B  pulse propagation in the 
presence o f  a single reflecting surface. A UWB pulse from a transmitter (Tx) can 
reach the receiver (Rx) via a direct path of length D  and a reflected path of length D'. The 
transmitter and receiver are located at heights hi and h<i, respectively, from the reflecting 
surface and are separated by a distance d. The reflected ray path makes an angle ip with 
the surface. Tx' represents the image of the transmitter. The figure also shows the parallel 
and and perpendicular components of the electric field of the direct and reflected pulses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

maximum data rate of 600 kbps). The peak amplitude of the received waveform provides a 

measure of the received signal strength.

The PulsON 200™  radios were evaluated in the UAF anechoic chamber to deter

mine the output power and received waveform using PulsON’s performance application 

tool (PAT) and a Tektronix TDS6804B Digital Sampling Oscilloscope. The DSO has a 

sampling rate of 20 Gs/s corresponding to a minimum time resolution of 50 picoseconds 

and a dynamic range of 45 dB. First, both transmitting and receiving antennas were ori

ented vertically and facing each other, as shown in the inset of Figure 3.2A. This permits 

measurement of the parallel electric field component (labeled E i or Ey in Figure 3.1). Fig

ure 3.2A shows the average waveform of the 16 pulses received by the PulsON receiver at 

1 m separation distance, a far field distance at UWB frequencies. The received signal was 

captured using the PAT tool (dotted line) and the DSO (solid line). From the figure we note 

that the pulse width rp is ~1.5 ns, and the cycle time rc is ~0.25 ns. The calculation of the 

t p  and rc is discussed in Appendix B.l. The peak amplitude of the pulse is 112 mV. Figure 

3.2B shows the spectrum of the waveform shown in Figure 3.2A. From this spectrum, we 

obtain a -10 dB bandwidth of 2 GHz. The calculation of the -10 dB bandwidth B and center 

frequency f c is discussed in Appendix B.2. Next, the receiving antenna was rotated by 90° 

in the vertical plane, as shown in the inset of Figure 3.2C. This permits measurement of the 

perpendicular electric field component (labeled E2 or Ex in Figure 3.1). Figure 3.2C, shows 

the average waveform of the 16 pulses received by the PulsON receiver at 1 m separation 

distance for perpendicular polarization. The peak amplitude of the pulse is 13.2 mV, about 

an order of magnitude smaller than that for the vertical polarization. From the figure, rp 

is ~1.5 ns, and rc is ~0.2 ns. The Figure 3.2D shows the spectrum of the waveform shown 

in Figure 3.2C. From this spectrum, we obtain a -10 dB bandwidth of about 2 GHz. To 

summarize, we note that the time and frequency domain properties of both polarizations 

are similar and the main difference is in their amplitudes.
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A) Parallel B) Perpendicular
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Time (ns)

FCC mask B=2.84GHz
fc=4.25GHz
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Frequency (GHz)

r
9

Figure 3.2. The PulsON  200™  impulse captured by the PulsON  200™  receiver 
(dotted  line trace) and the Tektronix DSO (solid line trace), and their frequency 
dom ain spectra (lower panel).(A) The pulse is captured when the transmitting and 
the receiving antennas are aligned parallel to one another hence the parallel electric field 
component is measured. (B) The pulse is captured when the transmitter and receiver 
antennas are aligned perpendicular to one another hence the perpendicular electric field 
component is measured. There is no DSO measurement for this pulse.
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Figure 3.3. The change in radiated pulse shape as a function of elevation angle.
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Figure 3.4. The change in radiated pulse spectrum as a function of elevation 
angle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

180

Figure 3.5. Radiation pattern of the PulsON 200™  Broadspec antenna. The
frequency domain measurement at 4.2 GHz in the anechoic chamber shows a asymmetric 
pattern with a peak at 0 — 65°. The peak amplitude of the received UWB waveform as 
a function of polar angle 6 measured in the Taku parking lot when the transmitting and 
receiving antenna are 1 m above the ground and 1 m away from each other.
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Figure 3.6. The change in time domain properties of received U W B  pulse as a 
function of receiving angle 6r .
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Figure 3.7. The change in frequency dom ain properties o f  the received U W B  
pulse as a function o f  receiving angle Or .

3.2.1.3 PulsON 200 Antenna Description and Measurements

Results from Chapter 2 clearly indicate that the radiated pulse properties depend on the 

direction of radiation and the configuration and geometry of the transmitting antenna. 

Hence it is expected that the pulse arriving at the receiver by the direct path and the one 

arriving by the reflected path may have different properties. Therefore it is important to 

study the directional properties of the transmitting and the receiving antennas. Figure 3.3 

shows the 16-pulse average waveform received as a function of the elevation angle 0 for the 

measurements performed in the Taku parking lot. In most instances the ground reflected 

pulse (GR) does not overlap with the direct pulse, permitting measurement of the directional 

properties of the transmitted pulse. The peak of the radiation pattern occurs for 0 ~  65°. 

The temporal properties of the pulses as a function of angle do not change significantly. The 

change in the pulse width is within 10% of ~  1 ns and the change in the cycle time remains 

within 10% of 0.25 ns. Figure 3.4 shows the spectra of the pulses shown in Figure 3.3. 

Note that the frequency domain properties (i.e. pulse center frequency and the bandwidth)
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also remain roughly constant with changes in the radiation angle. The change in the pulse 

center frequency is within 10% of 4.2 GHz and the change in the bandwidth is within 10% 

of 2 GHz. Figure 3.5 shows the radiation pattern of the PulsON 200 antenna measured 

by two methods. The open circles give the frequency domain measurement at 4.2 GHz. 

The transmitting and receiving antennas were connected to the ports of an Agilent E8358A 

PNA Series Vector Network Analyzer (VNA) and the entire assembly was placed in the 

anechoic chamber. The receiving antenna was revolved around the transmitting antenna in 

the vertical plane to obtain the radiation pattern. At each location the receiving antenna 

was oriented perpendicular to the direction of arrival of the pulse. The solid diamonds 

give the peak amplitude as a function of the elevation angle, 0. These measurements were 

performed using PulsON 200 transceivers in the Taku parking lot at UAF. The transmitting 

antenna was oriented vertically over the ground. The receiving antenna was oriented in the 

vertical plane perpendicular to the direction of arrival (see the lowermost right panel of 

Figure 3.3). The radiation patterns indicated by both the open circles and solid diamonds 

show peaks at 0 ~  65° and a -3 dB beamwidth of ~  75°. Either type of radiation pattern 

measurements show asymmetry in the radiation pattern, i.e. the peak is not at 0 =  90°. 

This is related to the asymmetry in the geometry of the antenna as shown in Figure 3.5. 

The asymmetric antenna geometry is employed to avoid near field coupling between the the 

radiating oval elements and the feeding structure (balun transformer) [Schantz, 2003].

The experiments shown in Figures 3.3 to 3.5 relate the PulsON 200 antenna geometry 

to the time and frequency domain properties of the radiated UWB pulse. Figures 3.6 and

3.7 show the change in the time and frequency domain properties of the received UWB 

waveform as a function of the direction of arrival, Or . These measurements were performed 

using PulsON 200 transceivers in the Taku parking lot at UAF. The receiving antenna was 

oriented vertically 1 m above the ground. The transmitting antenna was oriented in the 

vertical plane perpendicular to the direction of radiation such that its broadside direction 

points at the receiving antenna. The transmitting antenna is rotated in the vertical plane 

and the received UWB voltage pulse for Or  =  30°, 60°, 90°, 120° and 150° is shown in
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the schematic in Figure 3.6. The time duration of the received pulse as a function of the 

direction of arrival remains within 10% of 1.25 ns and the change in the cycle time remains 

within 10% of 0.25 ns. Figure 3.7 shows the spectra of the pulses shown in Figure 3.6, 

indicating that the change in the pulse center frequency remains within 10% of 4 GHz and 

the change in the bandwidth remains within 10% of 1.4 GHz.

3.2.1.4 Measurement of the Peak Amplitude of the Received UWB Pulse

This subsection describes the measurement of the peak amplitude of the received pulse that 

is composed of pulses that reach the receiver by the direct and reflected paths, as illustrated 

in Figure 3.1. A single reflecting surface is an idealization and, as discussed in the next 

subsection, the experimental results show evidence of a layered ground. However, when 

only the first two pulses arriving at the receiver are considered, it may be assumed that the 

ground is a surface or wall of infinite thickness in the transverse direction.

The peak amplitude (16-pulse average) of the captured waveform as a function of the 

horizontal distance between the transmitter and the receiver was measured. A convenient 

way to describe this measurement is to define a relative signal strength (RSS), in dB, that 

relates the peak signal amplitude at a distance d (VG(d)) to that measured in the anechoic 

chamber at a reference distance of one meter (Vref ):

RSS(d) =  20 log f r p
vr e f

Note that relative path loss (RPL), another commonly used variable to describe signal 

strength, is the negative of RSS(d) given in dB. The peak signal level measured at d =  1 m 

in the anechoic chamber was Vref  = ~  6.7 mV. This value can be used with the measured

RSS to determine the peak signal level in mV for any given d using the following equation.

V G { d )  =  V r e f 1 0 RSS<-d)/2°  (3^2)

It is possible to provide a rough estimate of the absolute value of the measured electric
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field. Assuming the antenna effective length to be 2.15 cm, half the physical length, the 

peak electric field in the anechoic chamber at 1 m separation distance between transmitter 

and receiver was ~  6.7 mV /(0.023) m =  336 mV/m. Using this value for the electric 

field, the measured 3 dB beam width of ~  7r/2 in the vertical plane and isotropic beam 

in azimuth, 1 ns pulse duration, and 9.6 MHz pulse repetition rate, the estimated average 

radiated power from the PulsON200™ transmitter is ~14 fj,W, a factor of 3.5 less than the 

nominal radiated power of 50 fj,W listed by the manufacturer.

As seen in the bottom panel of Figure 3.8, three characteristic propagation regimes can 

be clearly identified. For the first few meters (< 3-4 m), in a region labeled ‘Little or no 

Overlap’, the signal power monotonically decreases as ~  dr1 (RPL increases as ~  d2), as 

shown by the dashed line labeled dr"1. The top left panel shows the captured waveform at 

d =  3 m, showing that the direct pulse (first pulse) and the reflected pulse do not overlap.

For the next ~15 m, from ~4-20 m, in a region labeled ‘Partial but Significant Overlap’ 

in the bottom panel of Figure 3.8, the received signal exhibits fading, which depends on the 

relative phases of the direct and ground reflected UWB pulses. The signal amplitude reaches 

a final maximum at ~18 m. The top middle panel of Figure 3.8 shows that the duration of 

the captured waveform at d — 7.6, is ~1.7 ns, which is greater than the transmitted pulse 

duration. This results from the partial overlap of the direct and reflected pulses.

Beyond the last maximum in the signal amplitude near 18 m, the RSS monotonically 

decreases with distance showing a ~  d-4 dependence for signal power, as shown by the 

dashed line labeled d-4 . This region is labeled as ‘Complete Overlap’ . The top right panel 

of the Figure 3.8 shows that the captured waveform, at d =  24 m, is about the same duration 

as the transmitted pulse (the first pulse seen in the top left panel). This results from almost 

complete overlap of the direct and reflected pulses.

Figure 3.8 also shows RSS as a function of d obtained from a ray tracing program that 

calculates, using the method of images approach, the electric and magnetic fields at the 

receiver location [Venkatasubramanian, 2003]. We note that simulations reproduce salient 

features of the measurements including three propagation regimes and the maxima and
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Figure 3.8. The relative path loss as a function o f  separation distance between 
the transm itter and the receiver held at 0.5 m  above the ground. The bottom 
panel shows the measured relative path loss (dB) versus separation distance. The dotted 
(lighter) curve represents the measured data and the darker curve shows the relative path 
loss calculated from a two-ray model. The measured relative path loss can be categorized 
into three propagation regimes: (1) Little or no overlap, where the peak power falls ap
proximately as d~2 (dashed line), (2) Partial but significant overlap, where the peak power 
shows fading maxima and minima, (3) Complete overlap, where the peak power falls ap
proximately as d~4 (dashed line). The top panel shows the received UWB waveforms at 
three different locations indicating (i) no overlap (top, left); (ii) partial overlap (top, mid
dle); and (iii) complete overlap (top, right), of the direct and reflected UWB waveform. All 
three waveform captures in the top panel are normalized to the peak amplitude of the total 
received waveform.
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d ( m )

Figure 3.9. Path loss measurement as a function o f  separation distance between 
the PulsON200 transm itter and receiver. The transmitting antenna height is varied 
from h\ =  0.2 — 1.0 m while the receiving antenna height is fixed at /12 =  0.5 m. The 
receiver locks on to the peak field value of the received pulse after averaging over 16 pulses. 
Also indicated are the two breakpoints d l and d2 as departures from the d~2 and d~4 lines.
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minima in regime two.

Measurements similar to those shown in Figure 3.8 were carried out as the relative 

locations of the transmitter and the receiver with respect to each other and with respect 

to the ground were varied. For all cases the RSS as a function of the horizontal distance 

between the transmitter and receiver showed features similar to those noted above: three 

characteristic propagation regimes were found, the first one in which RSS decreased mono

tonically as d~2, followed by the one in which RSS showed constructive and destructive 

fading, and the last one in which RSS decreased monotonically as d~4. Figure 3.9 shows 

RSS versus separation distance d between the two PulsON 200™  transceivers for a fixed 

receiver height h,2 =  0.5 m and for a number of transmitter heights ranging from 0.2 m to

1.0 m.
It is possible to assign characteristic length scales di and efe, called the first and second 

breakpoint distances, that determine the sizes of the three propagation regimes. Section 

3.2.2 will theoretically derive these characteristic lengths which depend both on the geo

metrical parameters ( hi, /i2, and d) as well as on UWB pulse properties (rp and rc, or 

equivalently B  and / c). It should be noted here that the second break point distance is well 

known for narrowband (NB) signals propagating over the ground and extensive literature 

exists on the subject (e.g., see [Bertoni, 2000] and references therein). We also note that 

recently, Liu et al. [2006] observed an unsteady breakpoint in their path loss calculations 

for short separation distances (<  5 m)between the transmitter and receiver.

3.2.1.5 Multiple Reflections from a Layered Ground

The results presented thus far were based on the overlap of the direct and the reflected 

pulse from the top face of the reflecting surface. This is tantamount to assuming that the 

surface is semi-infinite. Most surfaces (e.g., wall, ground) are layered. For layered surfaces, 

multiple primary reflections result, one from each boundary, and then multiple secondary 

and tertiary reflections from bouncing of waves between individual layers. Figure 3.10 shows 

three specific cases of received voltage waveform for a pair of P200 transceivers held at 0.5 m
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above the ground in the Taku parking lot. The received voltage waveform, captured by the 

PAT software, showed multiple reflections from layers of snow and ice on the ground in the 

Taku parking lot. Figure 3.10A shows four distinct pulses, one direct path pulse and three 

reflected pulses from the multiple layers of snow and ice on the ground. The amplitude and 

shape of the reflected pulses depend on the electrical properties and the thickness of the 

various layers. These type of pulses can indicate presence of snow layers on the ground and 

can be used to calculate the thickness and electrical properties of the snow layers above the 

ground.

Figure 3.10B shows one direct path pulse and one reflected pulse which is longer in time 

duration compared to the direct path pulse. This suggests that the pulse reflected from 

the top and bottom surfaces of the top layer above the ground add and subtract causing a 

resultant pulse with a time duration longer than the original transmitted pulse. These type 

of pulses indicate presence of a snow layer on the ground but do not provide information 

regarding the thickness of the snow layer above the ground. Figure 3.IOC shows one direct 

path pulse and one reflected pulse, both having the same time duration. These type of 

pulses provide an estimate of the electrical properties of the ground indicating an absence 

of snow layer on the ground.

3.2.2 Theoretical Formulation

3.2.2.1 A General Time and Frequency Domain Representations of UWB Multipath 

Propagation

The UWB literature does not provide a time and frequency domain representation of UWB 

pulses, direct and multiply reflected, that takes into account the wave polarization, the 

amplitude spectrum, and the reflection coefficient (reflecting surface properties), that will 

be useful for analytical and numerical development. One such formulation is provided in 

this section.

This section investigates the propagation of a UWB pulse over a plane reflecting surface. 

Figure 3.1 shows the geometry of the analysis. For a source of UWB radiation located at
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Figure 3.10. Four different types of received voltage waveforms measured by the 
PulsON 200 receiver in the Taku parking lot measurement.
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the origin, the electric field e(r, 0, 0, t) in free space at a point (r, 0, <j>) in the far field region 

can be described as follows:

2
a a * - Y ^ e o i ( t - r /c ,M ;& T)ro .  (ae(r ,0 ,0 ,t;aT) =  2 ^ ---------- ^ -------------P i(M ) (MJ

i=l

where eoi(t — r/c,d,(j), ax) refers to the UWB pulse electric field components at (ro, 0, 0) 

in the two mutually perpendicular directions p*, i =  1,2 in the plane perpendicular to 

the direction of propagation (0,0), and c «  3 x 108 m/s is the speed of light. The vector 

S t represents antenna orientation vector which includes the antenna axis and any rotation 

around this axis. The vector ax is included in the functional dependence of the electric 

field to indicate that pulse-radiation from a UWB antenna depends both on the direction 

of propagation as well as antenna orientation (see Section 3.2.1.3). The UWB electric field 

representation given in Equation 3.3 takes into account that the fax field electric field of

an arbitrary source of electromagnetic radiation is transverse. Within the limitation that

Equation 3.3 represents far field, this expression s general. In particular, Equation 3.3 

allows for different pulse shapes in different directions as expected for a UWB antenna 

[Venkatasubramanian et al., 2007]. There are certain restrictions on the allowed forms of 

eoi(t, 0,0). Assuming that the pulse was transmitted at t =  0 from a UWB source located 

at the origin, the following conditions must be satisfied:

eoj(t,0,0;aT) =  0, t < 0  (3.4a)

POO  ________

I eoi(t, 0,0; ax) dt =  0, No DC component (3.4b)
Jo

( 3 ^ )

(HD

JPOO

' eQi(t, 0,0; ax) dt <  oo, Finite energy 
o

If

/ OO
E o,(/,0 ,0 ;a T)ej2?r/£ df

•OO
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then \EOi(f,0,(t>)\ should satisfy UWB spectrum limitations specified by the FCC [2002].

It is assumed that both the receiving antenna and the reflecting surface are in the far 

field of the transmitting antenna. The conditions for the far-field approximation can be 

obtained as follows. For a radiated narrow band signal, the far field assumption requires 

that r »  A, I, and r > 2l2/\, where I is the largest dimension of the transmitting antenna 

and A is the wavelength of the signal [Kraus and Marhefka, 2001]. For a radiated UWB 

pulse we can estimate the far field distance by assuming A ~  4.4 cm, wavelength at 6.85 

GHz, roughly the center of the UWB band, and I ~  A/2. We obtain 2Z2/A =  2.2 cm.

It is convenient to write the Fourier domain representation of the transmitted pulse 

eo i(t)-

a J. 4..Z \ V'' f ° °  ^e(r, 0 ,0 , t; a T) =  2 ^ /  -------------------------P u M )
i = i  J - o o  r

e j ( 2 n f t - k r ) dj

Without any loss of generality, the geometry shown in Figure 3.1 is considered. In the 

z-x plane the locations of Tx and Rx are given by (0, hi) and (d, /12), respectively. The 

signal reaches the receiver via a direct path and via a reflected path as shown in the figure. 

The plane of incidence is given by the vector joining Tx and Rx and the direction of the 

normal (n) to the surface. In this plane, the directions of propagation of the direct and ray 

incident on the surface are described by the angles ipo and ipRi respectively. Since in the 

z-x  plane, the azimuthal angle =  0 we shall omit any further explicit reference to it. For 

the geometry shown in the Figure 3.1, it is convenient to choose pj to be in the plane of 

incidence (i =  1, TM) and in the plane perpendicular to the plane of incidence (i =  2, TE). 

The electric field of the signal arriving at the receiver by the direct path is given by

2
/ ,  , , , . . .  v-" eoi(t — D/c, aT)j-o _ , . Neo(d, h,2,t-,hi,a.T) =  ^ --------------- —------------- Pi(V^D) (3.6)

2=1
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where D — \/{h\ — h2)2 +  d? and tpo — tan-1 ((hi — h,2 )/d).

Because the reflection coefficient depends on frequency, it is helpful to use frequency 

domain representation, to describe the electric field of the signal arriving at the receiver by 

the reflected path.

eR.(d,h2,t;0 , h i,S t) =  (3J)

— — f ) p M e j(2nft- kD,)df

where D' =  y/(hi +  h2)2 +  cP, tpR =  tan +  h2)/d) and / )  is the reflection coef

ficient for TM (i =  1) and TE (i — 2) polarization.

It is possible to give an image source representation for the reflected signal. We consider 

an image source T'x  of the transmitter located at a distance h\ below the surface. The 

distance between the image and the receiver is D', which gives the total spreading of the 

reflected signal. The line joining the image source to the receiver Rx  makes an angle ipi 

with the reflecting surface (rr-axis) such that

V>/ =  i>R

Let

/ OO
Eoii'ipR, / ;  hi, aT, )Ti(ipR, f)e>2nft df

-00 

Then,

eatd. h,, t, , ST ; ) = £  ^ ~  ° ^  H D
I— 1

Equation 3.10 has a simple interpretation. The reflected signal at the receiver is direct 

signal from an image source located at hi below the surface and with radiated pulse given
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by Equation 3.9, which in turn relates radiation properties of the image source to the 

transmitter pulse and the reflection coefficients of the surface for the two polarizations.

The total field at the receiver is the sum of the direct and reflected pulses: eD +  eR. 

Both the direct and reflected pulses have two components, one in the plane of incidence and 

one normal to it.

e(d, /i2) tj hi,&T) =  en(d, h.2, t; h\, ax) +  eR.(̂ > ^ 2, t\ hi, ax) f3 .ll)

Equation 3.11 states that the total electric field at the receiver is sum of the direct 

and reflected pulses. Each of these pulses has two orthogonal polarizations, which add 

independently. For each polarization, the pulse shape and peak amplitude will be different 

for direct and reflected pulses. The direct and reflected pulses arrive at the receiver with 

time delays D/c and D'/c, respectively. Depending on the differential time delay, (D '—D)/c, 

the direct and reflected pulse may or may not overlap. In order to study how the electric 

field of the direct and the reflected pulses add, it is convenient to consider the electric field 

component in one direction: the ^-component. We shall find that an exactly analogous 

analysis can be carried out for the a:-component, and that similar results will be obtained.

Past measurements of the complex dielectric constant for commonly found wall materials 

in indoor propagation environments showed that the real part of the complex dielectric 

constant shows a 5% deviation from the mean value across the 1-15 GHz frequency range 

indicating that e can be regarded as independent of the transmission frequency [Davis et 

al., 2007; Muqabeil, 2003]. The value of the relative dielectric constant remains the same 

within 5% over the UWB range, a is constant over the UWB range, and this gives a 

complex reflection coefficient whose amplitude is the same within 10% and whose phase is 

linear within 5%, except at the points of inflections where the phase errors of the order 

of 40% to 50% are calculated. Our calculations show that in the UWB frequency range, 

the cycle time of the reflected pulse waveform changed by <  3%  from the cycle time of 

the incident pulse waveform incident on a dry ground with er =  15 [Bertoni, 2000] and a 

varying from 0.001 S/m to 0.1 S/m.
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Hence our calculations show that on the average it can be assumed that the reflection 

coefficient of a lossy, homogenous reflecting surface is roughly constant over the UWB 

frequency range at all angles of incidence. Hence T(ip, / )  «  T(V)) and the transmitted and 

reflected pulse wave forms are related by simple expressions

ez(d,h2,t,§LT) =  (3.12)
eo,((-P /c,fa,aT)r0p.iWD). .  + & ( t - P ' / g P £ ,>r)n| i W  .*

In general, the UWB antennas have a planar geometry. We can phenomenologically 

assign two effective lengths: one along the nominal axis of the antenna; and one perpen

dicular to it, which can be used to obtain the induced voltage across the antenna terminal. 

The effective lengths are represented by L\ and L2. The voltage at the receiving antenna 

terminal is given by

V(d, h2, t) =  (LiaR +  L2bn) • e(d, h2,t, a-r) [3.13]

where aR is a unit vector along the axis of the receiving antenna and 6r  is a unit vector 

in the plane of the antenna and perpendicular to aR.

If it is assumed that the center frequency and the bandwidth of UWB pulses transmitted 

in various directions are roughly the same (even though the pulse amplitude may vary), then 

the principal features of the direct pulse and the reflected pulse will remain same within a 

constant amplitude factor that depends on both the direction of the radiated pulse and the 

angle of incidence. Note in the experimental section, this assumption was well satisfied for 

the PulsON 200 antenna. Recent work on an oval dipole antenna [Venkatasubramanian et 

al., 2007] has shown that the center frequency and the bandwidth of the pulses radiated in 

different directions are within acceptable bounds for the presented results to hold true for 

a general case.

To summarize the results thus far, note that each component of the electric field consists
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of two pulses, direct and reflected. At the receiver, these pulses generate voltage pulses. It 

is assumed that the voltage pulses possess the same general character as the electric field 

pulses. Thus the received signal is considered to be made up of two voltage pulses resulting 

from the reception of the direct and the reflected electric field pulses. These two voltage 

pulses have the same rc, as shown in Figure 3.8, but different pulse envelopes (shape and 

amplitude), and different time of arrival. The total signal is the sum of these two pulses. As 

discussed below, owing to the same rc, the resulting overlap of the direct and the reflected 

pulses can be considered as an in-phase or out-of-phase addition depending on the relative 

time delays as a fraction of rc/2  (modulo rcj 2). Our analysis of the three propagation 

regimes is based on this fundamental result.

3.2.2.2 Theoretical Model of the Propagation Regimes: First and Second Breakpoints

The principal features of the data presented in the last section can be explained with the 

help of the two-ray theory. For the theory presented in this section, it is assumed that the 

receiver and the ground are in the far field of the transmitting antenna. It is also assumed 

that the transmitting and receiving antenna are isotropic and are oriented such that they 

transmit and receive vertically polarized electromagnetic waves. The transmitted UWB 

pulse is described by two parameters in the time domain: (1) pulse duration rp and (2) 

pulse cycle time tc. In general t p  > rc. For a UWB pulse in the 3.1 GHz to 10.6 GHz 

range with no DC component we expect at least one cycle (one positive and one negative 

excursion of the field) to be present in the transmitted signal. In the frequency domain, let 

the pulse be characterized by a bandwidth B  and center frequency f c. The time domain 

and frequency domain parameters of the UWB pulse are approximately related as follows:

B  ~  f c ~  -  f3T4)
Tp Tc

The exact relationship between the time and the frequency domain properties depends 

on the details of the pulse and the definitions of pulse width, cycle time, pulse bandwidth, 

and pulse center frequency [Bracewell, 1999]. The condition given by Equation 3.4b implies
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that tp >  2rc/2  or B < f c.

As shown in Figure 3.1, in the presence of a single reflecting surface there are two 

possible paths, direct and reflected, by which a UWB signal can reach the receiver. The 

path length of the direct signal is D, the distance between the transmitter T  and the receiver 

R, and the path length of the reflected signal is D', the distance between the image T' of 

the transmitter and the receiver R.

(a) ,P  ~D > lp (b) = 2 .  (c) «  (J) D l^ D <<tc

Figure 3.11. Schematic showing the overlap o f  the direct and reflected pulses 
in the tim e domain. The reflected pulse is shown in negative phase, resulting from 
negative value of reflection coefficient, with respect to the direct pulse.(a) The direct and 
reflected pulses do not overlap. The differential time delay is larger than the transmitted 
pulse duration, (b) and (c) The direct and reflected pulses partially overlap leading to 
constructive and destructive superposition, (d) The direct and reflected pulses completely 
overlap, adding in opposite phases.

Figure 3.11 schematically shows the signals arriving at the receiver. In free space the 

time delays for the direct and reflected signals are D/c and D'/c, respectively, where c is the 

velocity of light. Depending on the difference in the time delays, (D' — D)/c, of the signals 

arriving at the receiver from the direct and reflected paths relative to the pulse duration (rp) 

and cycle time (rc), three distinct propagation regimes can be identified (Figure 3.8). In 

the first regime, where (D '  — D ) / c > t p , the direct and reflected pulses do not overlap. The 

peak received power in this regime should fall as D ~ 2 , the same as that for propagation 

in free space (note that for h\, h% «  d, D~2 ~  d~2). In the second regime, where 

(D ' — D)/c < rp, direct and reflected pulses partially overlap leading to constructive and
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destructive superposition, depending on the relative path lengths. The peak received power 

in this regime should show fading maxima and minima. In the third regime, where (£)' —

D)/c «  t c ,  the direct and reflected pulses completely overlap. Due to the near grazing 

angle of incidence of the reflected ray, the direct and reflected signals have electric fields of 

about the same magnitude but opposite phase. Therefore, the electric fields of the direct 

and reflected pulses almost cancel out, leading to a ~  variation in the peak power for 

the case when hi, /12 < <  d.

The boundary between the first and the second regime is defined as:

Boundaryl : {D' — D ) / c  =  t p / 2 [3.15)

This definition assumes that the significant overlap between the direct and the reflected 

pulses does not begin until at least half the duration of the reflected pulse overlaps with the 

direct pulse. This definition is reasonable for those UWB pulses that have a roughly bell 

shaped envelope, with relatively slow rise and fall times. For pulses with relatively sharp 

rise time, we may have to modify the right hand side of the above equation.

The boundary between the second and the third regime is defined as:

Boundary2 : (D! — D)/c =  rc/2  (3.16)

For the case when hi, h  ̂ «  d, this definition provides a boundary on which the direct 

and reflected pulses add in phase, giving a maximum for one last time, before they begin 

to add in the opposite phase.

In the second regime, the direct and reflected pulses partially overlap, adding in phase or 

out of phase depending on both the path difference and the sign of the reflection coefficient. 

If it is assumed that the UWB pulse envelope is bell shaped, a maximum (Max) or minimum 

(Min) in the peak amplitude of the received pulse follows the relation:

Max/Min : (D' — D)/c =  nTc/2, n  =  1, 2,..., m, (3.17)
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where m ~  rp/rc. Case n =  1 gives the maximum identical to that given by Equation 3.16.

In Equations 3.15, 3.16, and 3.17, note that the left hand side term, (D' — D)/c, which 

is determined entirely by the geometry (hi, h2 , d), is equated to the properties of the pulses 

in the time domain. Other pulse characteristics, such as details of the pulse envelope and 

rise time (rr), may be significant in determining the boundaries between various regimes. 

By the duality between the time and the frequency domain, the above boundaries can be 

equivalently defined in terms of frequency domain parameters of the pulse (e.g., center 

frequency ( / e), bandwidth (B), and sidelobe magnitude). To first order, Equation 3.14 can 

be used to obtain boundaries defined in terms of frequency domain properties of the UWB 

pulse.

Boundaryl : (D' — D )/ c=  1/2B. (3.18)

Boundary2 : (D' — D )/ c=  1/2f c (3.19)

Max/Min : (D1 — D)/c — n/2fc, n =  1, 2,..., m (3.20)

There is a natural interpretation of boundaries defined by Equations 3.18-3.20. For example, 

if both sides of Equations 3.15 is multiplied by c, then

D' - D  =  c t p / 2 f l2 T )

The left hand side is the difference in distance of the receiver from two fixed points T  and 

T' and the right hand side is a constant distance crp/2, which depends on the pulse width. 

Thus, this represents a hyperbola with T  and T' as its two foci and the receiver R  given by 

coordinates (d, /12) lying on the hyperbola. Similarly, Equations 3.16 and 3.17 also represent 

hyperbolas. The expressions for these hyperbolas are given below.
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Boundaryl : A  _  ±  (3^ 2)

ho $  1Boundary2 : ^  ^  =  -  (^ 23 )

n/r /u '  ^2 ^  1M ax/M m  = ^ 2 ^ 2  -  (16ft2 _  c2n 2r 2) -  16 ( S i

where, n  =  1, 2 ,..., m.
Note that Equations 3.22 - 3.24 require that h\  >  crp/4 , ncrc/4 . For hi <  crp/4 , the first 
regime (no overlap) does not exist, and only partial or complete overlap occurs for all values 
of /12 and d ; for h\ <  ctp /&, even the second regime does not exist and almost complete 
overlap occurs for all values of /12 and d .

The asym ptotic forms of Equations 3.22, 3.23, and 3.24 which are generally valid when 
h i , h 2 »  cT p / 4 , n c T c / 4  and d  »  h i ,  are given by

CTp C ------

4/ll/l2 4/ll/l2 /c (126)
CTc C ' --------- '

4 / l i / l 2  4 / l i / l 2 / c  n «  f o  0 -7 'i
d  « -------- « -------------, n  =  1, 2,..., m 13.27)

cnrc nc---------------------------------------------------------- ------

3.2.2.3 Extension of the Theoretical Model to Finite Wall case for LOS and NLOS 

propagation

UW B is considered a viable technology for communication in cluttered propagation en
vironments. Past work in narrow band signal propagation has shown that, for outdoor 

environments, complex finite wall structures can result in a path loss difference of 8-10 dB  
[Holloway e t  a l ., 1997], and, for indoor environments, the delay spread of the propagation
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channel is sensitive to the structure and the electrical properties of the walls present in the 

environment [Zhang and Huang, 2002].

A) LOS B) NLOS
TX TX

Figure 3.12. Schematic showing the geom etry o f  U W B  pulse propagation in the 
presence o f  a single finite thickness reflecting surface for LOS and NLOS cases.
(A) LOS case - Schematic showing two reflected paths reaching the receiver (RX) from a 
transmitter (TX) from the top face of the wall (TX-C-RX) making an angle ipi with the 
wall surface and from the bottom face of the wall (TX-B-F-D-RX) making an angle ip2 

with the wall surface. (B) NLOS case - Schematic showing two transmitted paths reaching 
the receiver, one direct (TX-C-F-RX) making an angle tpi with the wall surface and one 
after two bounces (TX-B-E-D-G-RX) inside the wall making an angle V>2 with the wall 
surface. The transmitter and receiver are located at heights hi and fo, respectively, from 
the reflecting surface and separated by a distance d.

The wavelength of UWB signals ranges from 3 cm to 10 cm. The higher order reflections 

(resonances) inside the wall traverse a path length equal to several wavelengths before 

reaching the receiver. In our calculations of the time delay difference, A t , the following 

assumptions were made: (1) only the first order reflection inside the wall for the line-of- 

sight (LOS) case (Figure 3.12A) and the first order transmission and second order reflection 

inside the wall for the non-line-of-sight (NLOS) case (Figure 3.12B) are considered; (2) the
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properties of the radiated pulse do not change for the two aforementioned paths; and (3) the 

transmission angles for the two paths from the axis along the length vector of the radiating 

antenna are the same (ipi =  — V’) or CB/CA  <C 1. These assumptions are valid when

the wall thickness w <C d, \Jn2 — 1 ~  0(1) and h\jh<i ~  0(1).

Two cases are considered:

1) When the transmitter and the receiver are on the same side of a finite thickness wall 

- LOS case

Consider the tim e difference of arrival, A t , of the electric field pulse reaching the receiver 
after reflection from the top face (path TX-C-RX) and the bottom face (path TX-B-F-D- 

RX) of the wall as shown in Figure 3.12A.

2nw / ( n2 — 1 )d2 +  n2(hl +  h2)2 r n
A t = — V ~ n ^  +  (fcl+ /.2 )2 )

2 nw
A t  = ------ d — 0, normal incidence (3.29)

2 wy/n2 — 1
A r  = -------    d »  hi, /12, , i> —>■ 0°, grazing incidence (3.30)

where n is the refractive index of the wall, w is the wall thickness, d is the transmitter- 

receiver separation distance, and hi and /i2 are the transmitter and receiver heights from 

the reflecting wall surface.

2) When the transmitter and the receiver are on opposite sides of a finite thickness wall 

- non-line-of-sight. The time difference of arrival, A t , of the electric field pulse reaching the 

receiver from the two transmitted rays, one direct (path TX-C-F-RX) and one after two
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d D

(332)
(333)

For the above two cases, the overlap of the electric field pulses reaching the receiver from 

two propagation paths due to a finite wall depends on the width of the wall w, the electrical 

properties of the wall (er,a), and the radiated pulse properties ( t p , t c ,  f c,B). For A t  >  tp 

there is no overlap between pulses reaching the receiver from two different propagation 

paths and hence both di and e?2 are unaffected as rc <  tp. For A t  < tp there is overlap 

between pulses reaching the receiver from two different propagation paths. For small d, 

the pulse overlap affects the first break point distance d\. But as d increases the reflection 

coefficient of the wall — 1 and hence the path through the wall is very weak to make

any significant contribution to the overall electric field pulse at the receiver. Hence c?2 

remains unaffected for most values of time delay.

Most walls inside buildings are ~  5 cm to 30 cm thick [Bertoni, 2000]. For example, 

for the LOS case, the time delay difference for the PulsON200™ waveform (tp =  1.25 ns, 

rc =  0.2 ns) normally incident (d=0) on a 5 cm concrete wall (er =  6, a =  0.01) [Bertoni, 

2000] is ~  0.8ns. In comparison to a semi-infinite concrete wall, the above mentioned 

case would cause an elongation in the second propagation regime due to constructive and 

destructive interference of the direct and the reflected pulses but the second breakpoint 

remains unaffected. This result agrees with previous numerical work by Heidary [2004] on 

UWB pulse reflection from a three layer lossy wall. His results showed that the rc of the 

overall reflected pulse waveform remains the same within 5% but the rp of the pulse changes 

by up to three times the original pulse width depending on thickness and properties of the 

various wall layers. It should also be noted that structures present inside the wall (eg. metal 

studs) could result in a strong reflection reaching the receiver and hence could also affect

bounces (path TX-B-E-D-G-RX) inside the wall as shown in Figure 3.12B.

. 2n2w ,A t =  —  w
c\J n2 — cos2%j)
%Tl'UU

A t — ------ d =  0,ip =  90°normal incidence
c

2 tv̂ i/iii2  1
A t — ---------------- d 3> hi, ft2, ip ~ > 0°, grazing incidence
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the first breakpoint distance.

3.2.2A Comparison of the Theoretical model with Experiments

20 30d (m)
Figure 3.13. Com parison between the the m axima and minima distance predicted 
by the hyperbola m odel and measured from  the signal strength data. The solid 
black and red lines show the hyperbolas corresponding to maxima and minima in the peak 
amplitude of the received voltage when the time difference between the direct and the 
reflected path pulses is A =  nrc/2. The measured maxima and minima in the path loss 
curves axe shown as black (maxima) and red (minima) squares (first), circles (second) and 
diamonds (third) respectively starting from the closest distance between the transmitter 
and receiver. The transmitter height hi is varied from 0.2 m to 1.0 m. The receiver height 
/12 is held fixed at 0.5 m (shown by filled black circle). The measurements axe done using 
the PulsON200 UWB transceivers. The transmitted pulse has pulse width rp =  1.2 ns and 
cycle time rc =  0.2 ns.

Figure 3.13 shows the comparison of the hyperbolas calculated using the theoretical 

model with the measured data. The receiver and its image on the other side of the reflecting 

surface (ground) are located on the two foci of the hyperbola. The transmitter is located 

on the hyperbola curves. The red curves show the minima and the black curves show the
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maxima as the separation distance between the transmitter and receiver is changed. The 

black and the red diamonds, circles and squares show the maxima and minima measured 

from the received signal strength curves using the approach detailed in Appendix B.3. 

The measured maxima and minima locations show excellent agreement with the theoretical 

predictions within ± rc/2. Implications of this result for communication and navigation 

applications is discussed in section 3.5.

The locations of the maxima and the minima are calculated as

, 116/i2/i2 ra2c2A 2 T I  , nV n V fA 2 16-------

where c is the speed of light and A  =  rc/2.

The propagation of a UWB pulse in the presence of a single infinite/finite thickness 

wall is highly idealized. Several UWB applications are targeting short range (< 5 m) 

cluttered propagation environments inside buildings. Hence, measurements and numerical 

simulations of UWB pulse propagation in a hallway and a room are presented in the next 

section.

3.3 UW B Pulse Propagation inside a Building

The band-limited impulse response of a hallway and a room is measured using a vector 

network analyzer. Three specific transmitter-receiver configurations are chosen representa

tive of the propagation scenarios commonly encountered inside buildings. The FDTD code, 

discussed in Chapter 2, is used to calculate the channel impulse response and is compared 

with measurements.

3.3.1 Measurements

The top panel of Figure 3.14 shows the schematic of the ultra wideband wave propagation 

experiments done inside a hallway and a room in the Duckering building at UAF on 26 June 

2006. A pair of oval dipole antennas, discussed in Chapter 2, are connected to the two ports
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of a vector network analyzer (VNA). The VNA measures the scattering parameters in 1601 

equally spaced points between 300 kHz to 9 GHz. The transmitting oval dipole antenna is 

connected to port 1 of the VNA and placed in the center of the Duckering hallway. The local 

coordinate system chosen was: the z-axis along the local vertical upward from the floor, 

the x-axis along the length of the hallway and the y-axis along the breadth of the hallway 

in the cross product direction of the z-axis and the x-axis. The origin of the coordinate 

system is at the transmitting antenna location. Three receiver locations are chosen: (1) 

non-line-of-sight propagation (NLOS) in the hallway with a corner obscuring the direct 

LOS between the transmitter and receiver (Point A); (2) line-of-sight (LOS) propagation 

between the transmitter and the receiver separated by 14 feet (Point B); (3) NLOS through- 

the-wall propagation from the hallway to a laboratory classroom. For all three cases the 

transmitting and receiving antenna are held on a tripod 1.37 m above the ground.

The overall transfer function of the transmitting antenna-propagation channel-receiving 

antenna system is H(iv) which is related to the forward transmission coefficient measured 

by the VNA as

Ht{u)Hch{u)Hr{uj) =  S2i M /2  (335)

where Ht(uj) is the transmitting antenna transfer function, Hr(u) is the receiving an

tenna transfer function, and Hch(w) is the propagation channel transfer function, u — 2irf 

is the radian frequency. The antenna transfer functions axe measured in the anechoic cham

ber when the two antennas are held fixed along the local vertical with their broadside 

directions facing one another, as discussed in Chapter 2. The antenna response is assumed 

to be constant over a wide range of transmission and reception angles so that the receiving 

pulse amplitude at different angles of arrival may be weighted by the radiation pattern of 

the antenna but not distorted.

The band-limited impulse response of the channel hCh(i) is calculated after zero padding 

the channel transfer function from 9 GHz to 200 GHz which provides an interpolated time
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resolution of 5 ps.
h (+\ -  1 f  S21(u 

ch{t) ~  2 n J  2Ht(a>)Hr(u)
52i ( 3 l 6 l

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (ns) Time (ns)

Figure 3.14. M easurement and simulation o f  U W B  pulse propagation inside a 
hallway in the Duckering building at U AF. The top panel shows the geometry of 
the hallway. All the dimensions are in meters. The bottom panel shows the comparison of 
the measured (black curve) and the simulated (red curve) band-limited impulse response 
for the NLOS corner (left plot), LOS in hallway (middle plot) and NLOS through-the- 
wall propagation (right plot). The black dots show the peak amplitude of the multiple 
propagation paths for each of the propagation scenarios A, B and C, respectively.

The three plots in the bottom panel of Figure 3.14 show, as a black curve, the band- 

limited impulse response for the three receiver locations A, B and C. The impulse response 

clearly shows multiple pulses delayed in time and scaled in amplitude by the free space 

spreading loss and the reflection coefficient of the walls of the hallway. The ground of the 

hallway is 10 cm thick concrete (er =  4.44, a =  0.001 S/m) and the side walls 6 cm thick 

are sheetrock (er =  2.2, a — 0.002 S/m) [Bertoni, 2000]. The hallway roof is a false ceiling 

that covers several metal pipes and wires and is assumed to be a perfect reflector. The
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0 A) T=100 C) T=500

Metal
Wall

Waveguiding Effect

Figure 3.15. T im e snapshots o f  the F D T D  calculation o f  the U W B  peak electric 
field am plitude along the length o f  the hallway, across the corner, and inside 
the laboratory room . The simulation geometry is shown in the bottom right panel. All 
the dimensions are in meters.
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hallway is 2.85 m high by 30 m long by 2.8 m wide.

For the LOS case B (middle plot in bottom panel of Figure 3.14), using the formulae for 

direct and reflected path lengths discussed in the previous section, (1) the time of arrival 

of the first arriving direct path pulse is 14.4 ns, (2) the time of arrival of the reflection 

from the concrete ground is 16.9 ns, (3) the time of arrival of the reflection from the metal 

ceiling is 17.3 ns, (4) the time of arrival of the reflection from either side wall is 17.11 ns, 

and (5) the time of arrival of a perfect reflection from a 20 cm thick metal door, 3.7 ft 

behind the receiver at location B, is 21.9 ns. The measured impulse response shows the 

strongest peak at 14.4 ns. The impulse is fairly broadened from 14.4 +  3 ns, owing to the 

first order bounces from the roof, ceiling and side walls overlapping with the direct path. 

The reflection from the metal door is seen at 21.91 ns. Similarly in the measured impulse 

response of the NLOS cases A and C, the distinct dominant paths can be separated out 

to point out the contributing reflecting surfaces. The envelope of the impulse responses in 

all three cases show a clustering of multiple path pulse and an exponential decay of their 

amplitudes. This feature closely follows the modified Saleh-Valenzuela double exponential 

model for UWB propagation discussed in [Molisch, 2005 and references therein].

3.3.2 FD TD  Simulations

The problem geometry shown in the bottom right panel of Figure 3.15 is simulated using 

the parallel FDTD code developed at UAF and discussed in Chapter 2. The spatial domain 

of the simulation was 750 x 800 x 280 mesh points with a spatial resolution of 1 cm corre

sponding to a maximum frequency of 3 GHz. The time resolution calculated by Courant 

condition is 1.89 ps. The excitation voltage waveform is a Gaussian waveform with a pulse 

width of 1 ns.

The red curve in the bottom panel of Figure 3.14 shows the calculated time domain 

impulse response. For all the three scenarios, the time of arrival of the strongest pulse, 

calculated using FDTD, shows excellent agreement (<  1%) with the measured data. The 

FDTD simulation predicts only the first few multiple propagation paths (~  5 or 6 peaks)
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observed in the measured data. This is because of a lack of spatial and temporal resolution 

in the FDTD code. The FDTD code would require a spatial resolution of 3 mm to cover 

the entire VNA frequency range from 300 kHz to 9 GHz. The memory available for the 

simulations permitted a minimum spatial resolution of 1 cm which covered a frequency 

range from DC to 3 GHz. The memory required for this simulation was ~  8GB.

Figures 3.15 A-E show the snapshots in time of the electric field amplitude in the 

simulated hallway and room geometry shown in the top panel of Figure 3.14A. The electric 

field amplitude maps clearly show the wave guiding effect of the hallway and the effect of 

the metal wall behind the receiver at location B. The metal wall re-radiates the incident 

electromagnetic energy, thereby causing a strong signal to propagate along the hallway with 

its strength falling off slower than in free space as seen by the peak electric field amplitudes 

in time steps C, D, and E.

3.4 Summary of Results

The following results were presented in this chapter: (1) time domain measurements on 

ultra-wideband (UWB) pulse propagation over the ground show the presence of three dis

tinct propagation regimes separated by two characteristic distance scales di and c^, called 

the first and the second breakpoint distances, which depend both on the geometrical pa

rameters such as the heights of the transmitter (hi) and the receiver (h^) over the ground 

as well as on UWB pulse properties such as pulse duration (tp) and cycle time (rc). For a 

given transmitter height hi, the loci of first and second breakpoints in the (d, /12) plane axe 

hyperbolas with the transmitter and its image as the foci; (2) frequency domain measure

ments and FDTD simulations of UWB pulse propagation inside a hallway and a room show 

excellent agreement for the time of arrival and the amplitude of the first three dominant 

paths.
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3.5 Discussion

Given a pulse with certain rp and rc, the propagation regimes can be determined. As dis

cussed below, the propagation regimes have important implications for various applications 

of UWB technology.

3.5.1 Range of Propagation Regimes Consistent with FCC Regulation

Because the UWB band is controlled by FCC, it is important to determine the limits on the 

sizes of three propagation regimes consistent with FCC regulation Part 15, IEEE 802.15B. 

According to the FCC regulation, the minimum bandwidth is 500 MHz, corresponding to 

t p  — 2 ns and the maximum bandwidth is 7.5 GHz, corresponding to 130 ps. Assuming the 

transmitter and receiver heights hi =  h% =  1 m, the size of the first regime {d\ ~  Ah\h<zB/c) 

ranges between ~6.7 m and ~100 m. The size of the regime scales linearly with both h\ 

and /i2- The minimum and maximum values of f c are 3.35 Hz (assuming B=500 MHz) and 

10.35 GHz (assuming B=500 MHz). These correspond to the third regime (rfo ~  ^hih^fc/c) 

ranges of 44.7 and 138 m. Again the distance at which the third regime starts scales linearly 

with h\ and fo. When d\ < cfo, the second regime size is simply cfe — di. In the extreme 

case when B  ~  / c, we have di ~  and second regime disappears. Figure 3.16A shows the 

dependence of di and efo given B  and f c and 3.16B shows the dependence of f c and B  on 

di and d̂ . These figures may be useful in the design of UWB pulse properties in a given 

situation.

3.5.2 Effect of Finite Thickness Walls on UWB Receiver Performance

Finite thickness reflecting surfaces or layered reflecting surfaces cause the incident signal to 

bounce back and forth inside the wall surface thereby resulting in echoes or an elongated 

reflected signal depending on the time duration of the incident signal. The UWB received 

voltage measurements, in Figure 3.10A and 3.10B, showed an elongation of the duration of 

the pulse. To further quantify the relation between the width and the electrical properties 

of the reflecting surface and the time duration of the received voltage waveform, ray tracing
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Figure 3.16. Calculation o f  the three propagation regimes for varying pulse and 
geom etrical parameters. The solid lines show the transition between the first regime 
(no overlap) and the second regime (partial overlap). The dotted lines show the transition 
between the second regime and the third regime (complete overlap). The receiver height hi 
is varied from 0.2 - 10 m. In the top panel, the two transmitter heights chosen are hi — 0.2 m 
and hi =  10 m respectively. The transmitted pulse has a transmission bandwidth B =  500 
MHz and f c =  3.6 GHz. In the bottom panel, the transmitter hi =  1.0 m and the fractional 
bandwidth of the transmitted pulse is chosen as 0.14 and 0.88 respectively. The bandwidth 
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cases is f c =  3.6 GHz and f c =  6.85 GHz respectively.
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calculation were done for a 30 cm thick concrete wall (e =  4.44, a =  0.001 S/m [Bertoni, 

2000]). The problem geometry is shown in Figure 3.17A. A 1 ns long sine pulse (Figure 

3.17B) is radiated and received by a pair of isotropic antennas separated by a distance 

of 10 m. Figure 3.17C shows the direct path voltage at the terminals of the receiving 

antenna. Figure 3.17D shows the reflected path voltage for the transverse electric (TE) and 

the transverse magnetic (TM) polarization. Figure 3.17E shows the amplitude of the direct 

and the reflected electric field pulse for TE and TM polarization respectively in one figure 

to show the relative magnitude and placement in time of these two parts of the received 

signal. Note that the polarization of the direct and reflected pulse is different.

From these calculations it is observed that the width of the wall plays a significant part 

in determining not only the parameters of the reflected UWB pulse but also the pulse shape 

unlike narrow band pulses (> 1 fis) whose pulse shape remains unaltered. Therefore, the 

idea of using a correlation receiver might not work very well when the wall widths cause pulse 

propagation time inside the wall to be larger than the pulse duration. The pulse undergoes 

shape distortion as it reflects off the wall owing to interference between waves reflected of 

the front and back face of the wall. This would increase the multipath interference and is 

crucial in deciding the width of the UWB pulse. The shape distortion of the pulse places a 

question mark on the efficiency of pulse shape based modulation techniques [Ghavammi et 

al., 2007] especially in cluttered indoor environments. Our calculations also show delayed 

pulses coming from the back face of the wall. This could cause errors in the demodulation 

at the receiver for modulation schemes based on pulse position [Scholtz, 1993].

3.5.3 Extension of the Theoretical Model to LOS and NLOS Scenarios With 

More Than Two Propagation Paths

The theoretical model can easily be extended to multiple propagation paths involving one 

direct path and several reflected paths. Consider a two reflecting surface case, which may 

result from one finite thickness wall considered earlier or two semi-infinite surfaces, such 

as the space between a parallel plate waveguide (top panel of Figure 3.14). In this case,
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Figure 3.17. Ray tracing simulation o f  U W B  pulse propagation in the presence o f  
a 30 cm  concrete wall. A) Problem geometry. B) Transmitted pulse. C) Contributions 
of the direct pulse to the received signal. D) Contributions of the reflected pulse with 
transverse electric (TE) and transverse magnetic (TM) polarization to the received signal.
E) relative magnitude and placement in time of the direct and reflected pulse in one figure 
for TE and TM polarization respectively. Note that the polarization of the direct and 
reflected pulse is different. Clearly multiple reflections within the wall alter the amplitude 
and phase of each Fourier component of the transmitted uwb pulse causing a change in 
pulse shape in the frequency domain and a pulse spreading in time domain.
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consider a direct source and two image sources contributing to three principal paths and 

many other paths resulting from multiple reflections between the two walls. To a first 

approximation, this case can be treated as follows: calculate the breakpoints for each of the 

walls separately. Then, a first propagation regime of direct path only, followed by a second 

regime of overlap which will contain the first overlap of two UWB pulses and then for that 

of three. The second regime will continue until the second breakpoint (lower value of the 

two) when the direct and the reflected path will cancel out, but the third path will continue 

to contribute to RSS as 1/d2. At large enough d (d »  hi, h2) all paths will contribute 

equally and we will get a sum of N 1/d2 kind of terms adding in or out of phase, giving a 

power fall off larger than 1/d2. This is essentially the waveguide effect in which multiple 

paths contribute to the power in random phase. With a larger number of reflecting surfaces, 

we can envision a similar result: a region of no overlap, followed by a region of overlap in 

which direct path adds up constructively or destructively giving max. and min., followed 

by a region in which the direct path cancels out with the first arriving reflected path and 

other propagation paths add up in random phases leading to waveguide type of behavior. 

There is still three propagation regimes separated by the first and the second breakpoints 

estimated using the smallest of hi values. The character of the first and the second regime 

is qualitatively the same as that of the single wall case in the sense that the first regime 

is a “free space regime,” the second regime will consist of maxima and minima separated 

roughly by the same distance as the single reflecting wall. The third regime will be more 

complicated with rapid maxima and minima as the number of paths overlapping increases 

and the eventual falls off as in the case of a waveguide. This completes the discussion of 

UWB pulse propagation inside a room or a hallway with one line of sight path.

Now consider the NLOS case with no direct path between the transmitter and the 

receiver. Each of the multiple propagation paths reaching the receiver will contribute a 

pulse with the same rc but with different rp, amplitude and envelope depending on the 

thickness and the dielectric constant of the reflecting surface. There will be a shortest path, 

which may give us a first regime. It should be noted that the signal strength in this regime
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may fall off differently from free space 1/d2 fall off and will depend on the nature of the 

propagation of the first arriving pulse. Then there will be a second regime which will start 

at the first break point. Assuming the shortest NLOS pulse has a shape with a central 

maximum and a pulse width rpj > rp, a larger first regime is expected (see Figure 3.16). 

The third regime after the second break point will remain the same as the LOS case because 

rc remains the same. Note that the line joining the transmitter and receiver need not be 

normal to the wall. Each pulse arriving at the receiver has an amplitude, An, pulse width, 

Tpn  and cycle time, rm. Each pulse arrives with a certain delay Tg n . We have the same 

situation as discussed above for the waveguide case. Again three regimes are expected: 

a first regime where the RSS falls off as the peak amplitude of the first arriving pulse, a 

second regime where maxima and minima are observed in the RSS due to overlap between 

the first and the second arriving pulses, and a third regime in which the first and the second 

arriving pulses cancel out and the other multipath pulses add incoherently.

3.6 Concluding Remarks

The dependence of multipath propagation effects on UWB pulse characteristics has profound 

implications for the use of UWB technology in communication and navigation. The results 

presented in this chapter suggest a new method of secure communication. To illustrate 

this method, two hypothetical examples, one involving secure communication between two 

parties (e.g., two soldiers) and one involving secure communication among multiple sensors 

(e.g., a network of sensors gathering intelligence) is discussed. Consider transmission be

tween two parties, Alice and Bob. We can imagine both of them to be located at maximum 

signal locations. The reciprocity discussed above makes this possible. Now both Alice and 

Bob can vary their transmitted pulse properties ( / c, B) in any preconceived manner such 

that they remain located on one maximum or the other. An enemy, Eve (eavesdropper), 

located at a different location will observe a signal that fades in and out. A further level of 

security can be obtained by using two orthogonal antennas and transmitting on one or the 

other in a prescribed manner. When dealing with a sensor network communicating with
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a base station, it can be envisioned that sensors will be located on the maximum signal 

strength locations. Here again the / c and B can be varied in a prescribed manner. Of 

course, in this case, it is clear that there may be certain restrictions on how f c and B can be 

varied because it would be favorable that all the sensors lie on maximum signal amplitude 

locations all the time.

The work presented here indicates that the propagation channel and the antennas place 

a bound on the minimum achievable bit error rate of an UWB communication system. 

This is the topic of the next chapter where a modular simulation approach is developed in 

MATLAB to calculate the bit error rate of two UWB receiver models taking into account 

the antenna and the propagation channel measurements presented in Chapter 2 and this 

chapter.
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Chapter 4 Numerical Model of a 

UWB Matched Filter Receiver and a 

Rake Receiver

4.1 Objective and Significance

The objective of this chapter is to develop a MATLAB-based numerical model of a time 

hopping pulse position modulated (TH-PPM) UWB communication system with two com

monly used UWB receivers namely the matched filter and the rake receiver. The experi

mental results of the antennas and the propagation channel from chapters two and three 

are incorporated in the numerical model to calculate the bit error rate of the two receiver 

models for specific antenna and propagation channel configurations. The effect of thermal 

noise and multi user interference are also included in the calculations.

A lot of research has been done on the performance of TH-PPM based UWB commu

nication systems [Durisi et al., 2003; Win and Scholtz, 2000]. Past antenna [Schantz, 2005] 

and propagation [Molisch, 2005] work as well as work in chapters two and three clearly 

suggest that the antenna and the propagation channel place a stringent bound on the per

formance of a UWB system. Most numerical and analytical calculations of bit error rate of 

a UWB communication system assume omnidirectional antennas and a statistical propaga
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tion model [Dibenedetto and Giancola, 2004]. This omits a separate thorough evaluation 

of the pulse distortion caused by the antenna and the propagation channel on the UWB 

receiver performance. Most available channel measurements do not separate the antenna 

effects from the effects of the propagation channel [Cramer et al., 2002]. Recently, Sibelle 

et al. [2005] have provided a simulation framework to calculate the bit error rate of UWB 

receivers for measured UWB antenna response. Wang et al. [2005] calculated the bit er

ror rate of a UWB communication system for a pair of thin wire dipoles and square loops 

simulated using finite difference time domain calculations. Their results showed that high 

gain and well matched antenna pairs reduce the bit error rate of a UWB communication 

system. Zhang and Brown [2006] have computed the bit error rate of a binary phase shift 

modulated UWB system with simulated time domain response of a discone antenna and a 

ray tracing propagation model. Their results showed that pulse dispersion of the antenna 

in directions other than its main beam direction dominated the bit error rate of the UWB 

communication link. The work presented in this chapter has several unique features com

pared to the past work: (1) it computes the bit error rate of two UWB receivers for the 

measured transmitting and receiving antenna response for two specific UWB antennas: an 

omnidirectional oval dipole and a directional horn antenna; (2) it computes bit error rate as 

a function of the measured radiation pattern of an oval dipole antenna; (3) it calculates bit 

error rate for line-of-sight and non-line-of-sight propagation channel measurements inside a 

hallway.

The first section of the chapter discusses the objective and the significance of the receiver 

simulation work presented in light of work done in the past. The second section describes the 

MATLAB-based UWB system model developed. The third section presents case studies to 

quantify the effects of individual system parameters such as noise, antenna, multipath and 

multi-user interference on bit error rate of the two UWB receivers simulated. The fourth 

section summarizes the results presented in this chapter. The fifth section discusses the 

implications of the results presented for communication, navigation and radar applications 

and the sixth section presents concluding remarks.
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Figure 4.1. Block diagram of the numerical model of an U W B  communication 
link from signal generation to information retrieval.
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4.2 Simulation Model of a UW B Communication System

Figure 4.1 shows the block diagram of the end-to-end UWB communication system model. 

The transmitter model encodes the binary information that needs to be transmitted on a 

sequence of UWB pulses generated by the waveform generation model. The information is 

modulated by altering the pulse-to-pulse interval and applied to the transmitting antenna. 

The transmitting antenna model transforms the input pulse sequence into the frequency 

domain, and computes the complex spectrum of the radiated electric field at the receiving 

antenna location, in the far field of the transmitting antenna, via FDTD calculations or 

measured band-limited impulse response. The radiated vector electric field is a function of 

both the signal from the signal generator and the characteristics of the antenna. The prop

agation model calculates the multiple propagation paths by which the radiated electric field 

waveform reaches the receiving antenna location from the transmitting antenna location 

using either finite difference time domain calculations or frequency domain measurements. 

This model assumes that the transmitting and the receiving antenna are isotropic in na

ture. Thermal noise and undesired interference signals may be added to the received UWB 

signal transformed back into the time domain. Thermal noise is modeled as additive white 

Gaussian noise (AWGN) and the interfering signal may include a single frequency sinusoidal 

signal or an UWB signal with a different psuedo-random sequence of pulses. The receiving 

antenna model converts the incident electric field vector into a voltage signal at the antenna 

terminals, via FDTD calculations or measured band-limited impulse response. The received 

voltage signal is input to the UWB receiver model, where it is processed to extract the bi

nary information that was encoded onto the UWB signal by the signal generation model. 

The extracted binary information is compared with the original transmitted information to 

calculate the bit error rate (BER) of the UWB communication link.

4.2.1 Waveform Generation Model

Figure 4.2 shows the UWB waveform generation model. The UWB waveform can be defined 

by either an equation or a data file. UWB waveforms can generally be grouped into two
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categories: (1) Baseband impulses that have ultra-short pulse widths r  < 1 ns with corre

spondingly ultra-wide spectra (> 1 GHz), (2) Pulse modulated RF sine waves, in which the 

pulse width is typically only a few cycles of the RF center frequency. Figure 4.3 shows exam

ples of the normalized UWB pulses and their spectra generated by the waveform generation 

model.

Figure 4.2. B lock diagram o f  the U W B  waveform generation m odel.

4.2.2 Transmitter Model

Figure 4.4 shows the block diagram of the transmitter model. The input UWB waveform is 

generated by the waveform generation model. The position of the pulses in the time domain 

waveform is altered based on: (1) Orthogonal Pseudo-random Noise (PN) sequence for 

spectral shaping and/or code division multiple access (CDMA). For multi-user applications, 

the pulse delay is dithered in time by a unique PN code C(i) for each user. A PN code 

generator is used based on the number of frames and number of slots in each frame. The
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frame number is determined by pulse repetition rate. For example, if there are M pulses 

used to represent one bit information, the frame number equals to M. The number of slot 

in each frame is determined by number of users. For example, if each frame contains N 

slots, the maximum number of users in the system is 2N. (2) Pulse Position Modulation 

(PPM) by a equiprobable binary sequence [0 or 1] generated by the randO function in 

MATLAB. The PPM modulation scheme adds an additional time shift of S to ‘ 1’ bits, but 

no additional time shift to ‘0’ bits. The m-files used in this model are listed in Appendix

C.

Figure 4.5 shows an example of a sequence of pulses generated by the transmitter block 

with and without PN code generation. The top left panel shows a sequence of pulses 

uniformly spaced every 10 ns and the bottom left panel shows the sequence of pulses shifted 

in time by a PN code. The top right panel shows that uniform spacing of pulses causes sharp 

spectral peaks spaced every 100 MHz apart. These peaks cause unwanted interference with 

coexisting narrow band systems at specific frequencies inside the UWB bandwidth. The 

bottom right panel shows that the peaks can be removed by dithering the pulse sequence 

which randomly alters the phases of the frequency domain components thereby “whitening” 

or flattening out the spectrum of the signal. The overall envelope of the signal spectrum 

follows the spectrum of the individual waveform.

4.2.3 Transmitting Antenna and the Propagation Channel Model

The time domain voltage signal for user 1, sj(t), generated by the transmitter model, is 

applied to the transmitting antenna model shown in Figure 4.6. The transmitting antenna 

impulse response is either calculated using FDTD or measured as described in

Chapter 2. The antenna impulse response is Fourier transformed to get the antenna transfer 

function in the frequency domain, Ht(ui, 6t, fit), which is multiplied with the spectrum of 

the UWB signal generated at the transmitter output, Sl(u>) and inverse transformed to 

obtain the complex radiated electric field waveform, Erad{0t, <j>t,t) in the far field of the
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Figure 4.4. B lock diagram o f  the U W B  transm itter m odel.

transmitting antenna given as

Erad{Qu<t>t,t,i>) =  IF F T (H t(uj,dt,<pt,p)Sl(uj)) (4~l)

where p is the polarization vector. The orientation of the electric field vector in the far-field 

defines the polarization of the radiated signal for each transmission angle. Hence there 

are two separate band-limited impulse responses for each transmission angle (0t,4>t) to fully 

represent the most general antenna behavior with arbitrary polarization characteristics. In 

this chapter, only the vertically polarized components will be considered though horizontally 

polarized components are also available (discussed in Chapter 2) and will follow the exact 

same procedure detailed here.

Figures 4.7 shows the block diagram for the the propagation channel model. The 

transient response of the propagation channel can be either measured or simulated (using 

FDTD) to calculate the radiated electric field waveform at the receiving antenna location 

EredPu <Pt, t, R, p) given as
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Figure 4.6. B lock diagram for transm itting antenna m odel.
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Figure 4.7. B lock diagram for propagation channel m odel.

Erec{8t, <Pt, t, R ,p ) — IF F T (F F T (E rad(9t, <f>t, t,p))H ch(uj, R)) (4.2)

where R is the separation distance in meters between the transmitter and the receiver.

4.2.4 Noise and Interference Model

Background noise and signals from other undesired source may be added to the radiated 

electric field waveform at the receiving antenna location to evaluate the system performance 

in the presence of noise and interference. The background noise is modeled as a zero mean 

Gaussian noise with variance Nq/2 where No is the average noise spectral density. The 

background noise is added either as the ratio of the energy in one bit to the noise spectral 

density Eb/No or the energy in one pulse to the noise spectral density Ep/No as follows

Ep =  (1/Np) J \sj(t)\2dt

No =  Ep/1 0 ^  (43)

a =
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where Ep is the energy per pulse, No is the noise spectral density and a is the noise standard 

deviation. Or

Eb =  (1 /Nb) I  |4(*)|2<ft

N0 =  Ebj  lO3 ^  (4 4 )
<r =  t/N o/2

where Eb is the energy per bit. One bit can be spread over multiple pulses to improve the 

spreading gain of the system. If one bit is spread over Ns pulses then Eb =  NsEp. So for 

the same dB value, Ep/No introduces more noise than Eb/No- For the rest of the simulation 

Eb/No is used.

Past work has shown that UWB has multiple sources of interference from coexisting 

narrowband systems [Kissick, 2001]. Of particular importance is the potential interference

of GPS and navigational bands, and cellular phone bands with UWB [FCC, 2002]. There

is considerable work done in the study of degradation in UWB system performance due 

to single frequency and multiple frequency interfering signals [Choi and Stark, 2002 and 

references therein]. If the frequency of the interfering signal is known several techniques 

are proposed to avoid the interference to the UWB signal [Taha and Chugg, 2002; Wang et 

al., 2003]. Interference could also occur due to multiple UWB sources transmitting at the 

same time and in the same frequency range as the information signal thereby polluting the 

received pulse sequence [Reed, 2005 and references there in].

In our simulations, the undesired interference signal is modeled as a single frequency 

(tone) signal or an UWB signal with a different PN sequence than the desired UWB source 

signal to evaluate multi-user performance using Code Division Multiple Access (CDMA). 

The additional UWB sources have the same average transmit power as the desired signal.
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4.2.5 Receiving Antenna Model

Figure 4.8 shows the block diagram of the receiving antenna model. The band-limited 

impulse response, hr{9r,(f>r,t) of the receiving antenna is either calculated via FDTD or 

measured as discussed in Chapter 2. The impulse response is dependant on the angle of 

arrival of the transmitted signal (6r, <t>r), and the polarization of the signal relative to the 

receiving antenna. It is important to note that the current simulation model does not 

include separate impulse responses for each receive angle {dt, <f>t) and only accounts for the 

receiver held along the local vertical with its broadside direction facing the transmitting 

antenna.

Figure 4.9 shows a single frame of the generated pulse sequence s(t) (black dashed 

curve), the received pulse sequence in the anechoic chamber (black dotted curve), and the 

received pulse sequence in a line-of-sight (LOS) hallway. The parameters for the generated 

pulse sequence shown are: average transmission power Pt — 0 dBm; pulse width t p  — 1 

ns; and data rate Rb — 100 Mbps. The received pulse sequence is derived as described 

earlier by convolving the generated sequence with the band-limited impulse response of 

the transmitting and receiving commercial horn antennas, and the band-limited impulse 

response of the LOS hallway shown in case B of Figure 3.14. For the anechoic chamber 

scenario the pulses propagate in free space and so the propagation channel resembles an all 

pass filter. Additional zero crossings are introduced in the received voltage waveform by 

the transmitting and receiving horn antenna pair. There is no noise or interference added 

to the signal at the input to the receiving antenna model. This is done to isolate the effects 

of the antenna and the propagation channel on the generated UWB waveform. Note also 

that the received voltage waveform after multipath propagation spills over to the next time 

frame and alters the transmitted signal in the next frame. This indicates that multipath 

places a maximum bound on the achievable data rate of an UWB communication system 

for a given set of transmitted UWB pulse properties.
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Figure 4.8. B lock  diagram for the receiving antenna m odel.

Figure 4.9. Exam ple o f  the received voltage waveform for a pair o f  horn antenna 
4 m apart in a line o f  sight hallway. The broadside received voltage waveform for a pair 
of horn antennas separated by a distance of 2 m in the anechoic chamber is measured using a 
DSO as discussed in chapter 2. The propagation channel impulse response is calculated from 
the FDTD simulations for the case B discussed in Figure 3.14 of chapter 3 and convolved 
with the received voltage waveform.
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4.2.6 Receiver Model

Two commonly used receiver models are discussed in this section: (1) matched filter receiver 

and (2) rake receiver. The rake receiver with a single correlation path or finger is identical 

to the matched filter receiver. The effect of antenna and propagation channel on the bit 

error rate performance of these receivers is calculated using these models.

4.2.6.1 Matched Filter Receiver Model

Figure 4.10. B lock diagram o f  the basic receiver m odel. The various functional 
blocks in the model perform template generation, correlation, synchronization, acquisition 
and demodulation.

The matched filter correlation receiver is considered as the optimum receiver for pulsed 

antipodal (+ /-)  binary (0/1) communication [Proakis, 1995]. Figure 4.10 shows the block 

diagram for the correlator/matched filter receiver model. A correlator multiplies the re

ceived voltage waveform with a template waveform and then integrates the output of that 

process to yield a single DC voltage. The samples over a single bit time are multiplied and 

summed. With the proper template waveform, the output of the correlater is a measure of

the relative position in time of the received pulses. The FCC regulations [FCC, 2002] place 

stringent bounds on the average transmit power of UWB systems. Hence UWB systems
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axe buried in the noise of other narrow band signals. To detect the UWB signals each bit 

of information is spread over multiple pulses and correlator output of the pulses are added 

together to average the noise and thereby raise the available signal energy above the noise 

floor. This process is called pulse integration and permits UWB receivers to acquire, track 

and demodulate UWB signals significantly below the noise floor. This also places bounds 

on the maximum achievable data rate of an UWB system.

Figure 4.11A shows the block diagram of the template waveform generator. The tem

plate waveform, identical to the generated UWB waveform, is matched to the received UWB 

waveform to decode the received information. The template uses the same PN sequence 

as the transmitter to generate the signal wo{t), which represent a ‘0’ bit of information. 

As discussed in the PPM modulation part, there is an additional time delay 6 associated 

with the waveform representing a ‘1’ bit of information. The signal wi(t) is generated by 

adding a time delay to the Wo(t). To identify if the received waveform represents a ‘O’ or 

‘1’, the template must include both the ‘0’ and the ‘1’ bit waveform. The template signal 

v(t) =  wo(t) — w\(t) is generated as the template [Scholtz, 1993]. An example of template 

is shown in Figure 4.11B.

Figure 4.12A shows the block diagram for waveform acquisition. The correlator multi

plies the received voltage waveform, r(t) and the template waveform v(t) to get the corre

lation history C(t), given as

/ OO ______
v(t — r)r(t)dr (4.5]

■OO

where r  is a sample by sample time shift. At the time when a bit (‘0’ or ‘1’) is transmitted, 

a peak value in the correlation is observed in the correlation history. Figure 4.12B shows 

an example of a correlation history for a ‘0’ bit followed by a ‘1’ bit. Each bit is spread 

over 4 pulses. Each pulse is the second derivative of the gaussian waveform. After the 

correlation is done, the receiver will first find the maximum values (Cm) of the correlation 

result in each bit time. Those peak values will indicate the time when a bit of information 

was transmitted. If there is no noise, all of the peak values will be the result of perfect
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A) Flow Chart B) Example Template Waveform

Figure 4.11. B lock  diagram and output o f  the tem plate generator m odel. A) The
template uses the same PN sequence as the transmitted signal to generate the signal which 
represents a bit ‘O’ . The signal representing a bit ‘ 1’ , wi(t) has a additional time delay S. 
To identify the transmitted information, the template waveform must include both the ‘0’ 
and ‘ I ’ bit waveform [Scholtz, 1993]. B) Example of a template output generated by the 
model.
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Figure 4.12. B lock diagram and output o f  the acquisition m odel. A) Block diagram 
of the logical flow for signal acquisition in a matched filter receiver. B) A correlation history 
at the receiver when a message [0 1] is transmitted. Note that the receiver locks on to the 
starting time of each of the data frames in the received signal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

correlation and have the same value. In the presence of noise, the peak value will vary 

depending on the standard deviation of the noise. A coefficient (Kth) is used to indicate 

the variation of those peak values. This value needs to be set by trial and error. A threshold 

(Cth) value of correlation is set by scaling the maximum correlation with the coefficient Kth. 

The first position C(t) =  Cth, is considered the start of the message signal. As discussed the 

peak value of the correlation corresponds to the start of a sequence of pulses corresponding 

to a bit. Hence the correlations will help synchronize the bit time and the frame time of the 

transmitted sequence of pulses but has no clue of determining if the transmitted bit was a 

‘O’ or a ‘ 1’ . The additional delay associated with a ‘1’ bit requires a synchronization bit to 

be transmitted at the beginning of a message sequence. In this model the synchronization 

bit is set to ‘O’ . This means the transmitter needs to send a ‘0’ before all the message 

information starts.

After the synchronization is achieved, the receiver starts to demodulate the received 

signal as shown in the block diagram in Figure 4.13. The start time Ts of the pulse sequence 

is calculated from the index of the maximum correlation calculated in the previous step. 

The criterion for demodulation is

rnTs+T), __
Z — v(t — T)r(t)dr [4.6]

JnTs

where T& is the time duration of the received signal corresponding to one bit of information 

and n ranges from 0 to the total number of bits, numbits. If the value of Z is greater 

than zero, a ‘0’ bit is detected in the received signal. If the value of Z is less than zero, 

a ‘ 1’ bit is detected in the received signal. This criterion is based on the shape of the 

template waveform [Scholtz, 1993], This process is repeated every bit time till the last bit 

of information is decoded. The decoded information signal is compared with the transmitted 

information signal to calculate the number of bits in error or the bit error rate (BER). As 

the noise in the system is a random variable the simulations are repeated 50 times and an 

average bit error rate is calculated. The simulations were run 50 times because that reduced 

the difference in the calculated average bit error rate to < le — 3 with a simulation time of
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35 minutes.

Figures 4.14A and 4.14B show the case of one and two transmitting UWB signals re

ceived by a matched filter receiver 10 m away from the transmitting source(s). In both cases 

the transmitted bit energy to noise ratio is 5 dB. The bottom panels show the correlation 

history and the start time of each bit transmitted as detected by the matched filter receiver.

Figure 4.13. B lock diagram for dem odulation o f  the transm itted inform ation from  
the received signal.
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Figure 4.14. Example of pulse sequence with single and two U W B  users trans
mitting with a 5 dB ratio of received bit energy to noise spectral density. The
background noise is zero mean Gaussian noise with standard deviation ./Vo/2, where JVo is the 
average noise spectral density. Concurrent UWB users cause collision of pulses occupying 
a single time slot. This causes errors in decoding the transmitted information.
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4.2.6.2 Rake Receiver Model

The propagation channel causes multiple copies of the transmitted signal to reach the re

ceiver delayed in time and scaled in amplitude depending on the properties of the channel. 

This introduces a redundancy in the received signal that is exploited by the rake receiver 

[Dibenedetto and Giancola, 2004].

Figure 4.15 shows the block diagram of a rake receiver with two fingers. The rake receiver 

is essentially a bank of L correlator/matched filter receivers with template waveforms which 

are delayed replicas of the original transmitted waveform. The demodulated outputs Z{ 

from each of the 1 fingers from 1 to L is combined to calculate whether a ‘0’ or a ‘1’ is 

detected. The model implements two methods of combining the correlator variables namely, 

(1) maximum ratio combining, and (2) selective combining. The maximum ratio combining 

method involves normalizing the 1 correlator output array to the maximum amplitude of the 

array in the 1 to L rake branches and then summing them up to calculate the net correlator 

output Z t o t  which is used for detection. Selective combining involves selecting a specified 

number S of strongest correlation outputs and summing them up to calculate Z t o t -

The delay spread of a typical UWB propagation channel inside a building is approxi

mately 5 to 14 ns [Foerster et al., 2003]. An UWB signal has a bandwidth of 7.5 GHz and 

the number of possible multipath components for a 10 ns delay spread channel is ~  75. This 

would mean that to collect 100% of the free space energy, 75 rake branches are required. 

Clearly this is not possible. Hence careful choice of the number of rake branches that would 

provide a compromise between complexity and achievable BER performance for a specific 

configuration of antennas and the propagation channel is studied in the next section. The 

details of the m-files for each of the models are explained in a separate internal report 

[Venkatasubramanian, 2007].
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Figure 4.15. B lock  diagram for a tw o arm rake receiver m odel. Adapted from 
DiBenedetto and Giancola [2004].

4.3 Simulation Results - Case Studies

This section presents the simulated bit error rate performance for the following test cases 

to independently demonstrate the effect of the transmitting and receiving antenna and the 

propagation channel on the performance of a matched filter and a rake receiver. The three 

test cases considered are:

1. Case A - The effect of the transmitting and receiving antenna on the performance 

of a UWB communication system when the system is operating inside the anechoic 

chamber.

2. Case B - The effect of orientation of the transmitting antenna on the performance 

of a UWB communication system operating inside the anechoic chamber with two 

identical antennas.

3. Case C - UWB propagation channel effects on the performance of a UWB communica

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

tion system operating in a line-of-sight (LOS) hallway and a non-line-of-sight (NLOS) 

room.

The simulation parameters for the UWB binary PPM system are listed in Table 4.1. The 

two identical antenna pairs chosen are the commercial Sunol Sciences DRH-118 broadband 

horn antennas and the oval dipole antennas that were discussed in detail in Chapter 2. These 

two antennas were chosen because the horn antenna is a directional high gain antenna which 

has been modified for an uniform gain of 10 ±  1.5 dB over a bandwidth of 1 GHz to 18 GHz. 

The oval antennas is a omnidirectional antenna with a dipole-like pattern in the 2 GHz to 

6 GHz frequency range with a gain of 1.7 ±  0.5 dB.

Table 4.1. Input parameters for the U W B  com m unication system  simulations 
presented in this chapter.

Average Transmit Power Pt 0 dBm
Sampling frequency f s 25 GHz

Center frequency f c 3 GHz
Pulse width rp 0.5 ns
Data rate R\, 125 Mbps
PPM shift S 0.5 ns

Pulses per bit Ns 1
Total Number of bits transmitted 10000

Input Pulse Shape Gaussian

4.3.1 Case A - Effect of the Transmitting and the Receiving Antenna on the 

Bit Error rate of a Matched Filter and a Rake Receiver

The eifect of the transmitting and the receiving antenna on the bit error rate of a matched 

filter and a rake receiver is calculated. The input parameters are as shown in Table 4.1. 

Figures 4.16A and 4.16B show the transmitting and receiving antenna impulse for the horn 

and the oval dipole antennas, discussed in detail in Chapter 2. The transmitting antenna 

response is shown as a black curve and the receiving antenna response is shown as a red 

curve. Note that the horn antenna impulse response has a narrower time duration (~  0.6
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ns) compared to the oval antenna (~  1.25 ns). Also note that the horn antenna has a 

narrower cycle time (~  0.25 ns) compared to the oval antenna (~  0.35).

Figure 4.16C shows the calculated bit error rate as a function of transmitted bit energy 

(Eft) to noise spectral density (No), Eb/No, for a matched filter receiver with an oval-to- 

oval (red curve) and a horn-to-horn (black curve) communication link. The horn-to-horn 

communication link has a gain of 20 dB compared and the oval-to-oval link has a gain of 3.4 

dB. In spite of the reduced gain, the oval antennas show a lower bit error rate than the horn 

antennas for a Eb/No — 10 dB. This is because the horn antennas have additional ringing 

in their impulse response due to the limited bandwidth of the measurement (300 kHz to 

9 GHz) compared to the bandwidth of the antennas (1 GHz to 18 GHz). So this implies 

that the matched filter receiver is sensitive mainly to the time dispersion of the antennas 

and not the gain of the antennas. This would also mean that a comparable bit error rate 

performance can be achieved with a low gain, dispersion-less antenna rather than a higher 

gain dispersive antenna.

Figures 4.16D, 4.16E, and 4.16F show the calculated bit error rate as a function of Eb/No 

for a rake receiver with 2, 10, and 20 fingers/branches, respectively. The rake receiver can 

use the additional ringing and the higher gain of the horn antenna therefore performs better 

for the horn antenna pair compared to the oval antenna pair. The difference in the bit error 

rate increases from a factor of 2 for a rake with 2 branches to a factor of 8 for a rake with 20 

branches. Larger than 20 branches showed marginal improvement in the rake performance.

4.3.2 Case B - Effect of the Transmitting Antenna Orientation on the Bit Error 

Rate of a Matched Filter and a Rake Receiver

The effect of the orientation of the transmitting oval dipole antenna on the bit error rate of 

a matched filter and a rake receiver is calculated. The receiving horn antenna is held fixed 

with its broadside direction facing the transmitting oval dipole antenna. The measured 

band-limited impulse response of the oval dipole antenna in the vertical and the horizontal 

plane, discussed in detail in chapter 2, is used in the calculations presented in this section.
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Figure 4.16. B it error rate perform ance curves as a function o f  transm itted bit 
energy (Ef,) to  noise density (No) ratio for a m atched filter and a rake receiver 
with tw o identical antenna pairs in the anechoic chamber. (A) The band-limited 
impulse response of a horn-to-horn antenna system 2 m apart in the anechoic chamber. 
(B) The band-limited impulse response of an oval-to-oval antenna system 2 m apart in the 
anechoic chamber. (C) Matched filter receiver. (D)-(F) rake receiver with 2, 10, and 20 
branches, respectively.
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Figures 4.17A and 4.17B show the measured band-limited impulse response of the oval 

dipole antenna for two orientations angles of the antenna in the vertical and the horizontal 

planes, respectively. Figure 4.17C shows the bit error rate as a function of Eb/No for a 

matched filter receiver model for the input parameters listed in Table 4.1. There is a factor 

of 100 improvement in the bit error rate of the matched filter when the oval antenna is 

radiating in the broadside (0 =  90°) direction compared to the oval antenna radiating along 

its axis (6  — 0°) in the vertical plane. This is because: (1) the amplitude of the radiated 

pulse drops by 15 dB from the broadside direction to the direction along the axis of the 

oval, and (2) the time duration of the impulse response increases by a factor of 5 from 

the broadside direction to the direction along the axis of the oval. The time duration of 

the impulse response is the duration containing 90% of the total energy contained in the 

impulse response as discussed in Appendix B .l. In the horizontal plane the oval antenna 

shows comparable performance in the (<f> =  90° and (</> =  0°)) directions with a 10% 

improvement in the bit error rate for the (<f> — 0°) direction owing to increased amplitude 

in this direction.

Figures 4.17D, 4.17E, and 4.17F show the bit error rate as a function of Eb/No for a 

rake receiver with 2, 10, and 20 branches. As the number of branches increases the rake 

receiver captures more of the transmitted energy in different directions. For a rake receiver 

with 20 branches the bit error rate performance has <  10% variation in all directions. It 

should be noted that the rake receiver requires prior knowledge of the impulse response of 

the antennas in different directions. Hence the performance of the rake receiver depends on 

the accuracy with which the antenna response is estimated and the number of branches in 

the rake. An increase in the number of branches also means increased complexity and more 

power consumption at the receiver but these practical limitations will not be considered in 

this thesis.

Figure 4.18 shows the bit error rate performance as a function of Eb/No for a rake 

receiver with two branches and perfect knowledge of only the antenna impulse response in 

the broadside direction in the elevation plane. As can be seen the bit error rate increases
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by up to a factor 200 for 6  =  60°, 30°, and 0°, respectively, for Eb/No =  10 dB. This 

calculation provides a quantitative estimate of the effect of error in the estimation of the 

impulse response used by the rake receiver on its bit error rate performance. The figure 

also shows that the best achievable bit error rate for a rake receiver with 2 branches and a 

transmitted Eb/No =  10 dB is 10“ 2. This means that 1 bit is in error for every 100 bits 

transmitted.

4.3.3 Case C - Effect of the UWB Propagation Channel on the Bit Error Rate 

of a Matched Filter and a Rake Receiver

The effect of the propagation channel on the bit error rate as a function of Eb/No for a 

matched filter and a RAKE receiver with 2, 10, and 20 branches, respectively, is calculated. 

The results in the previous section showed that the the transmitting and receiving antenna 

distort the pulse and this caused degradation in the bit error rate of the UWB receivers. 

The propagation channel would further distort the pulse and therefore it is expected that 

it would further degrade the bit error rate performance of the UWB receivers. Hence the 

range of the Eb/No over which the calculations are performed is increased to 20 dB from 

10 dB. The measured band-limited impulse response of the propagation channel for the 

line-of-sight (LOS) scenario, presented in Chapter 3 (as Case B in Figure 3.14), is used in 

the bit error rate calculations. Figure 4.19A reproduces the empirical band-limited impulse 

response for the LOS case. Figures 4.19B shows the bit error rate as a function of Eb/No 

for a matched filter (solid blue curve) and a rake receiver with 20 (solid red curve) and 

200 (solid black curve) branches. The circles represent an oval-to-oval antenna link and 

the diamonds represent horn-to-horn antenna link. The matched filter receiver shows an 

improved performance for the oval antennas compared to the horn antennas similar to the 

result observed in Figure 4.16. The rake receiver shows an improvement in bit error rate 

by a factor of 20 when the horn antennas are used instead of the oval dipole antennas. An 

increase in the number of rake branches by a factor of 10 improves the bit error rate only 

by a factor of 3. This suggests that the propagation channel places a stringent bound on
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Figure 4.17. The effect o f  transm itting antenna orientation on  the bit error rate as 
a function o f  Eb/No for a m atched filter and a rake receiver. (A) The band-limited 
impulse response of a oval-to-horn antenna system 2 m apart in the anechoic chamber with 
the oval antenna radiating along the 0 =  90° direction (solid red curve) and 0 =  0° direction 
(solid black curve) in the vertical plane. (B) The band-limited impulse response of an oval- 
to-horn antenna system 2 m apart in the anechoic chamber with the oval antenna radiating 
along the <p =  90° direction (dotted red curve) and <p =  0°  direction (dotted black curve) in 
the horizontal plane. (C) BER as a function of Eb/No for a matched filter receiver. (D)-(F) 
BER as a function of Eb/No for a rake receiver with 2, 10, and 20 branches, respectively. 
The solid red BER curves represent antenna orientation angles in the vertical plane and the 
dotted curves represent the antenna orientation angles in the horizontal plane.
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Figure 4.18. Effect o f  tem plate selection on the bit error rate o f  a rake receiver.

the performance of a UWB receiver.

4.4 Summary of Results

The calculations presented in the previous section illustrate the following key results: (1) A 

modular simulation approach has been developed to calculate the bit error rate as a function 

of Eb/No for two UWB receiver models incorporating the empirical impulse responses of 

the antennas and the propagation channel. The simulation approach permits independent 

investigation of the relative importance of factors such as antenna pattern and propagation 

channel effects on the transmitted waveform and the related degradation in system perfor

mance. (2) The bit error rate of a matched filter and a rake receiver are strongly affected 

by the orientation of the transmitting and the receiving antenna. An increase in bit error 

rate by up to a factor of 100 is observed for the matched filter receiver as the antenna is 

rotated in the vertical plane. (3) The matched filter receiver is more sensitive to the time
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dispersion of the antenna and the propagation channel compared to the antenna gain. (4) 

The rake receiver shows marginal improvement (factor of 3) in the bit error rate when the 

number of branches is increased from 20 to 200 for LOS propagation.

4.5 Discussion

Based on the calculations presented in this chapter an adaptive receiver can be envisioned. 

It is assumed that the receiver has perfect knowledge of the properties of the pulse generated 

at the transmitter. The receiver first sends a single pilot pulse. The pulse is radiated by 

an antenna, propagates through the channel and is received by another antenna at the 

transmitter. The antennas and the propagation channel will distort the pulse. The received 

pulse is processed in software by the transmitter to estimate the impulse response of the 

antennas and the propagation channel. A mirror image of the estimated impulse response 

is used to pre-distort the pulse such that the received pulse has the exact same properties 

as the transmitted pulse. Hence this will result in improved bit error rate performance at 

the receiver. Some work has been done on various aspects of an adaptive receiver model 

[Wang et al., 2005; McKinney and Weiner, 2006] but further investigation is required.

4.6 Concluding Remarks

The calculation presented in this chapter suggest that the antenna and the propagation 

channel will distort the transmitted pulse. This distortion depends on the orientation and 

geometry of the antenna, geometry of the propagation channel, and the properties of the 

transmitted pulse, hence all these parameters place bounds on the bit error rate of a UWB 

receiver.

The next chapter discusses the important conclusions drawn from the research work 

presented in this dissertation and lists the shortcomings of the adopted experimental and 

theoretical methodology and the directions for future research.
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Chapter 5 Conclusions and 

Recommendations

5.1 Introduction

This chapter lists and discusses the results and important conclusions drawn from the ex

perimental and theoretical work presented in this dissertation. The chapter then discusses 

the deficiencies in the experimental and numerical methods adopted and concludes by dis

cussing some of the unanswered research questions that have risen based on the present 

work.

5.2 Summary of Conclusions

The conclusions drawn from the measurements, numerical simulations and theoretical anal

ysis presented in this dissertation are listed below:

1. The experimental and numerical results presented in Chapter 2 suggest that there is a 

strong relationship between the geometry and the orientation of a UWB antenna to the 

radiated pulse properties (e.g., pulse width, cycle time, bandwidth, center frequency). 

The reciprocity relation for oval dipole antennas is derived from the measurements: 

(i) The transmitting antenna radiates the derivative of the input UWB waveform in 

the time domain or the spectrum of the radiated electric field is 90° out of phase from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



127

the spectrum of the input voltage waveform, (ii) The spectrum of the received voltage 

waveform is in phase with the spectrum of the electric field waveform incident on the 

antenna.

2. The experiments and simulations in Chapter 2 show that the polarization of the 

radiated electric field waveform and the cross polarization ratio is closely related to 

the geometry of the UWB antenna. For the oval dipole antenna with an axial ratio 

of 0.8 it is shown that the horizontally polarized fields are 15 dB down compared to 

the vertically polarized fields in the broadside direction.

3. In Chapter 3, measurements on ultrarwideband (UWB) pulse propagation over the 

ground show the presence of three distinct propagation regimes: (1) in the first regime, 

the signal power decreases as ~  d~2, where d is the separation distance between the 

transmitter and the receiver; (2) in the second regime, the signal power decreases on 

the average as ~  d~ 2 with distance, but exhibits interference maxima and minima; (3) 

in the third regime, the signal power decreases as ~  d~A. Theoretical analysis indicates 

two characteristic length scales d\ and di, called first and second breakpoint distances, 

determine the sizes of the three propagation regimes. These characteristic lengths 

depend both on the geometrical parameters such as the heights of the transmitter 

(hi) and the receiver (hi) over the ground as well as on UWB pulse properties such 

as pulse duration (rp) and cycle time (rc). Simple expressions for break points exist 

when h\, hi »  c t v  and d »  h y . di «  4hihi/crp 4hihiB/c, and di «  4hihi/crc «  

4hihifc/c, where B  ~  l / r p is the bandwidth and f c ~  l / r c is the center frequency 

of the UWB pulse. For a given transmitter height hi, the loci of first and second 

breakpoints in the (d, hi) plane are hyperbolas with the transmitter and its image as 

the foci.

4. A  Finite Difference Time Domain (FDTD) code is developed to run on 8 parallel 

computers at the Arctic Region Super Computing Center (ARSC) at the University of 

Alaska Fairbanks (UAF). The F D TD  simulations for UWB antennas and UWB pulse
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propagation shown in Chapters 2 and 3 show excellent agreement with measurements.

5. A modular simulation approach is developed to calculate the bit error rate of two 

UWB receiver models for different measured and simulated antenna and propagation 

channel models. The simulation framework permits independent investigation of the 

relative importance of factors such as antenna pattern versus waveform distortion in 

the degradation of the system performance.

6. The bit error rate of a matched-filter receiver depends strongly on the transmitting 

and receiving antenna’s geometry and relative orientation. An increase in bit error 

rate by up to a factor of 100 is observed as we rotate the transmitting antenna from 

the broadside direction to the end-fire direction keeping the receiving antenna fixed 

and aligned along the local vertical. This is both due to the change in the amplitude 

and the time dispersion of the radiated pulse.

7. The propagation channel places a stringent bound on the bit error rate and data rate 

of a matched-filter receiver.

5.3 Deficiencies in the Presented Work and Suggested Improve

ments

There are several deficiencies in the algorithms employed in the experiments and numerical 

calculations presented in this dissertation related to the assumptions made. Some deficien

cies are listed as follows:

1. The algorithm to calculate the transmitting and the receiving antenna transfer func

tion from the measured scattering parameters, proposed by Qing et al. [2006], assumes 

perfect matching between the antennas and the ports of the vector network analyzer. 

The approach also assumes that the transmitting antenna transfer function is related 

to the receiving antenna transfer function by a joj factor or the transmitting antenna 

impulse response is related to the derivative of the receiving antenna impulse response.
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It has been shown by Schantz [2005] that the transmitting and the receiving antennas 

are related by a derivative only if the antennas axe constant aperture antennas. For 

constant gain antennas the transmitting antenna transfer function is related to 1 /ju 

times the receiving antenna transfer function. So the measured impulse responses 

in this work assumes a specific reciprocity relationship. An alternative approach to 

measuring the impulse response of a UWB antenna is by using a small antenna that 

is electrically short in the transmission frequency range and whose transmitting and 

receiving impulse response is known. Then the impulse response of the antenna un

der test can be measured directly from the scattering parameter measurements. This 

eliminates assumptions on the relation between the transmitting and the receiving 

antenna transfer functions and on the antennas.

2. The FDTD code developed uses OpenMP C to calculate the electric and magnetic 

fields radiated by a antenna geometry at each point in a three dimensional grid. The 

calculations over the entire domain at each time step is divided between a maximum of 

8 processors in one node. This limits the maximum possible domain size and the speed 

of the FDTD code owing to the limited processing power and memory available at each 

node. This deficiency could be overcome by modifying the current FDTD simulation 

code to use message passing interface (MPI) which would break the domain into a 

maximum of 8 parts and supply each part to a separate node. Each node will then 

further split that smaller domain into 8 smaller chunks and supply it to each of the 8 

processors. Information regarding boundary cells would be communicated back and 

forth between the various nodes. Hence the workload of the simulation domain is 

shared by a total of 64 processors.

3. The time domain measurements presented in Chapter 2 involved measuring the re

ceived voltage waveform without any synchronization between the generated waveform 

and the received waveform at the oscilloscope. If an exact estimate of the delay of 

the received pulse needs to be measured then the oscilloscope needs to be triggered at 

the same time the transmitting antenna is excited by the input pulse. This could be
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achieved by designing a power divider that would distribute the power in the input 

pulse equally to the transmitting antenna and the trigger of the scope. This measure

ment could provide an estimate of the location of the phase center of the antenna and 

how it moves as a function of the input pulse properties and antenna geometry.

4. In Chapter 3, the RSS of the UWB pulse propagating over ground is calculated from 

the peak amplitude of the pulse. There are other measures of the RSS like the energy 

in the pulse which may provide different propagation characteristics.

5. The frequency domain experiments presented in Chapter 3 are for a specific configu

ration of the antennas and a specific structure of the propagation channel, hence the 

empirical impulse response channel models used in the simulations are specific to the 

propagation geometry of the experiment. More generalized conclusions would require 

several measurements that would lead to statistical variations in the amplitude and 

delay of the multiple propagation paths reaching the receiving antenna. This would 

aid in building statistical models of the propagation channel based on measurements.

5.4 Outstanding Research Questions and Recommendations

This dissertation work has lead to the following unsolved research problem listed below 

along with recommendations for future work:

1. Is there a general reciprocity relationship between two UWB antennas? The mea

surements presented in Chapter 2 assumed that the transmitting antenna transfer 

function is related to the receiving antenna transfer function as [Lu et al., 2006]

Ht{u, 0t, <f>t) oc ju>Hr(uj, 6r, <(>r)

Is this a general relationship for all UWB antennas? Could this relationship be uti

lized to come up with antenna designs whose transmitting and receiving response are
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identical and related as

H t {u ,O t ,4>t) =  H r (u}, 6r , 4>r) =

The y fa u )  term implies fractional derivatives. Could the antenna geometry be mod

ified to yield antennas whose impulse responses are fractional derivatives. Such an

tennas would be very useful in controlling the properties of the radiated and received 

UWB pulse.

2. The work presented in Chapter 2 showed that the oval dipole antennas have different 

radiation properties when the axial ratio of the ovals is varied. Could this potentially 

be used to design antennas whose geometry is a combination of ovals with different 

axial ratios resulting in antenna properties favorable to an application? How would 

a combination of ovals change the radiation properties of each of the ovals taken 

separately?

3. The work presented in Chapter 2 showed that “bulbous” antennas have a broader 

impedance bandwidth than “skinny” antennas because they reduce the amount of 

input energy lost to the reactive fields surrounding the antenna. Can the handshake 

of energy between the reactive “near” fields and radiation “far” fields be tracked? 

There is some work done in the past on using energy flow diagrams to design efficient 

antennas [Schantz, 2001; 1995]. This work still docs not provide a general picture of 

how and where the energy decouples from the antenna other than for a few specific 

specific antenna geometries and input pulse shapes.

4. The work presented in Chapter 3 developed a new hyperbola model to relate the 

radiated UWB pulse properties and the geometry of the propagation channel to the 

RSS. This work relics on the fact that the cycle time of the radiated pulse remains 

unaltered for a broad range of radiation angles from the transmitting antenna. This 

is not true for many commonly available UWB antennas like the TEM horn and 

frequency independent antennas [Schantz, 2005]. How would this model be modified
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to estimate the character of the RSS when the radiated UWB pulse properties change 

in different directions from the transmitting antenna?

5. The work presented in chapter 3 has shown that maxima and minima in the signal 

strength will exist in complicated line-of-sight and non-line-of-sight scenarios, but can 

the properties of the generated and radiated pulses (antenna design) be controlled 

over f c and B to follow the maxima locations? Can this model be used to propose 

spatial encryption codes that would control the signal strength at different locations 

by changing the properties of the radiated waveform?

6. The frequency domain measurements and the FDTD simulations of UWB pulse prop

agation inside a hallway suggest that metallic structures cause strong reflections. Can 

these reflections be used to improve the signal to noise ratio in non-line-of-sight loca

tions. Can experimental and numerical work validate this assertion? How do metallic 

structures alter the shape of the UWB waveform? Can properties of the antenna and 

the generated waveform be altered to utilize these structures such as metal doors and 

dust bins present in a channel to provide propagation paths which enhance the signal 

amplitude at the receiver thereby improving bit error rate performance?

7. How would simultaneous transmission of multiple UWB receivers affect the bit error 

rate of a matched filter and a rake receiver? What is the maximum number of UWB 

receivers that a transmitter can transmit information to with a specific bit error rate 

and data rate for a specific set of antennas and propagation scenarios? Would signals 

from cellular phones and global positioning systems (GPS), which occupy similar 

frequency bands, affect the performance of a UWB receiver? If so, how and by how 

much? The modular simulation approach developed provides a method to perform 

calculations to answer many such questions within the assumptions of the approach.
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Appendix A Noise Calculation in 

Experiments

A .l  Noise Floor o f the Agilent E8358A Vector Network Analyzer

Agilent defines the test port noise floor as the “total average (rms) noise power calculated 

as the mean value of a linear magnitude trace expressed in dBm.” The manufacturer spec

ifications for the noise of the E8358A VNA with the IF bandwidth equal to 1 kHz and the 

source power equal to +10 dBm arc shown in Table A .l. With the analyzer test port cables 

on both input ports terminated with calibrated loads, source power set to 10 dBm and IF 

bandwidth set to 1 kHz, the measured noise floor was generally within specifications over 

the entire instrument range, as shown in Figure A .l. The noise floor decreased by 10 to 

15 dB when the analyzer averaged up to 10 frequency scans (grey curve in Figure A .l). 

Beyond 10 scans, there was <  1 dB improvement in the noise floor.

A.2 Tektronix TD S 6804B  Digital Signal Oscilloscope

A.2.1 Vertical Resolution and Quantization Noise

The 8-bit Analog-to-Digital Converters (ADCs) quantize the DSO input signal amplitude 

into 28 =  256 discrete levels, providing a maximum resolution of 0.39% of the full scale
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Frequency (GHz)

Figure A.I. VNA noise floor with both analyzer cables terminated with 50 
loads and calibrated shorts.
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Table A .I. A gilent E 8356A  V N A  noise pow er level and noise floor.

Frequency Range Noise Power Level with 1 
KHz IF bandwidth (dBm)

S-parameter Noise Floor 
with 10 dBm Source 
(dBm)

300 kHz to 25 MHz -95 -105
25 MHz to 3 GHz -98 -108
3 GHz to 9 GHz -88 -98

display. This corresponds to a dynamic range of 48 dB. The dynamic range of an oscilloscope 

refers to how well the instrument can detect small signals in the presence of large signals 

and is expressed in decibels (dB). It is limited by the quantization error and all other 

noise sources such as background noise, distortion, spurious signals, etc. The equation for 

computing the dynamic range is

Dynamicrange =  20log Ylrmx (A .l)
*min

The noise floor characteristics of the DSO was measured by grounding one of the input 

channels and collecting 32 million samples with no input signal applied. Figure A .2 shows 

the noise floor waveform captured with the vertical sensitivity set to 10 mV/division. The 

noise statistics computed by the DSO are shown at the bottom of the figure. The peak- 

to-peak noise level is 3.5 mV, which is 4.4% of the full-scale deflection of 80 mV. This 

corresponds to approximately 11 discrete levels of the quantized data. The maximum 

achievable signal-to-noise ratio (SNR) occurs when the input signal spans the full scale 

of the display. This corresponds to a maximum SNR of 27 dB for the peak level o f the 

waveform.

This noise floor evaluation was repeated for each vertical sensitivity value of the DSO. 

The rms and peak-to-peak noise voltages scale directly with the vertical sensitivity setting. 

This is because the noise is dominated by the quantization noise of the ADCs, which scales 

directly with the full-scale range of the display. The one exception is the most sensitive set-
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Figure A.2. D SO  N oise w aveform  and statistics for vertical sensitiv ity  equal to  
10 m V /d iv .

ting at 5 mV/division, which the DSO accomplishes by digitally zooming the data collected

at the 10 mV/division sensitivity. This effectively doubles the quantization noise voltage

for this vertical sensitivity. This quadruples the noise power at this lowest setting, which 

reduces the maximum achievable SNR by 6 dB.

The noise floor of the DSO may be quantified in terms of the thermal noise referenced 

to the input for a signal source of the same temperature and bandwidth. The thermal noise 

power is given by

A therm al =  k T arnb B  (A.2)

where k =  1.38 x 10~23 J/K , Tam& (K) is the ambient room temperature and B  (GHz) is 

the DSO bandwidth. For a system at room temperature (T =  300 K), and a bandwidth of 

8 GHz, the thermal noise power is -75 dBm. The DSO noise power may be computed from

Nnso =  ^  [A 3 ]
Zq

where Zo =  50 fl. The noise performance of the DSO may then be specified as cither a Noise 

Figure equal to the ratio of NDSO to Nthermal in dB, or as an equivalent noise temperature
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Table A .2. Noise Performance of Tektronix TDS6804B DSO.

Vertical
Sensitivity
(m V/Div)

RMS Noise 
Voltage (mV)

RMS Noise 
Power (dBm)

DSO Noise 
Figure (dB)

DSO Noise 
Temperature
(K)

5 0.69 -50.3 24.5 84,000
10 0.75 -49.4 25.4 103,000
20 1.25 -45.1 29.7 281,000
50 2.77 -38.1 36.7 1,390,000
100 6.83 -30.3 44.5 8,438,000
500 12.24 -18.3 56.5 133,406,000
1000 53.69 -12.4 62.4 522,213,000

that would produce thermal noise power equal to the system noise power. These metrics of 

noise performance are summarized for each DSO vertical sensitivity in Table A .2.

Although the DSO system noise power increases with the square of the vertical sensi

tivity, the maximum achievable SNR is nearly constant at 30 dB, as shown in Table A .3. 

As previously noted, the one exception is the 5 m V/div sensitivity which relies on the DSO 

digital zoom rather than actually re-scaling the signal applied to the ADC.

Table A .3. Maximum Signal-to-Noise Ratio for Tektronix TD S6804B DSO.

Vertical Sensitivity 
(m V/Div)

Peak-to-Peak Noise 
Voltage (mV)

Maximum Signal to 
Noise ratio (dB)

5 3.5 21.2
10 3.5 27.2
20 5.6 29.1
50 13.1 29.7
100 43.6 25.3
500 129.8 28.4
1000 306.1 28.3
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A .2.2 Sensitivity of the DSO

The shape of a received UWB waveform is a function of the source waveform, the transmit

ting antenna, the receiving antenna, and the propagation channel. In the NLOS project, 

we are evaluating the feasibility of utilizing UWB waveforms for real-time channel sounding 

by comparing the received waveform with the transmitted waveform to deduce the charac

teristics of the channel. The ability to accurately capture the waveform of low amplitude 

UWB signals is therefore crucial to the NLOS project. Since wc are trying to extract 

channel sounding information from the received waveform, a measurement with the highest 

possible SNR is desirable. As noted in Table A.3, the maximum achievable SNR for the 5 

mV/division setting of vertical sensitivity is approximately 6 dB less than the other settings, 

and is therefore not considered farther. The peak signal amplitude of the UWB waveform 

must be as close as possible to full scale on the DSO display to approach the maximum 

achievable SNR of ~  27 dB. The 10 mV/division setting is the best choice for capturing 

the lowest amplitude UWB signals, where the optimum peak-to-peak amplitude is 80 mV. 

This corresponds to a peak received power of 32 /xW (-15 dBm).

The sensitivity of the DSO to low amplitude signals may be improved by amplifying the 

received signal with a Low Noise Amplifier (LNA) to boost the signal amplitude relative 

to the noise floor of the DSO. Table A.3 shows that the RMS noise power associated with 

the 10 mV/division setting is -49 dBm, while the thermal noise floor is -75 dBm for an 8 

GHz system bandwidth. The input signal may be amplified by an LNA without adversely 

affecting the SNR of the DSO measurement, provided that the amplified thermal noise 

power plus the noise contributed by the LNA remains small compared to the DSO noise 

floor. If the LNA gain is equal to the difference between these power levels (i.e., 26 dB), and 

the LNA does not contribute additional noise (NF =  0 dB), then the amplified noise equals 

the DSO noise floor and the maximum achievable SNR is reduced by 3 dB. The maximum 

useful amount of LNA gain is approximately 26 dB which would reduce the required peak 

input power level to approximately 80 nW (-41 dBm) for measurements with optimum SNR.

The Miteq AFS3-0200600-15-LN LNA has a nominal gain of 26 dB (measured gain of
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30 dB) and a Noise Figure of 1.6 dB over the frequencies of interest. The corresponding 

effective noise temperature for this LNA is Tin a  — 135 K. The system noise temperature 

for the complete system at room temperature and the DSO vertical sensitivity set at 10 

mV/division is:

T s y s  =  T a n t  +  T l n a  +  r ,DS°  (A.4)
O L N A

=  300+  135+^

=  538K

which corresponds to a system noise figure of 2.5 dB. To achieve measurements with opti

mum SNR, a small amount of attenuation may be added to keep the peak amplitude of the 

input waveform near full scale of the DSO display to prevent switching to the next range 

of vertical sensitivity with the corresponding increase in the noise floor.

A .3 Anechoic Chamber Calibration Measurements

Figure A.3A shows a picture of the test setup for the free space anechoic chamber calibration 

measurements. A pair of Time Domain BroadSpec P200 UWB antennas (Figure 2.3B) are 

connected to the two ports of a VNA which measures the scattering parameters at 1601 

equally spaced points in the 300 kHz to 9 GHz frequency range with a transmit power of +  

10 dBm. Also shown in the figure is the coordinate system used for this measurement. The

2-axis is aligned along the local vertical and the x- and y-axis are along the breadth and 

length of the chamber. The receiving antenna is moved away from the transmitting antenna 

along the y-axis. The whole experimental setup is placed approximately equidistant from 

the side walls (walls with x-axis normal to it) of the chamber. Figures A.3B and A.3C  

show that, in the 2.5 GHz to 8 GHz frequency range (PulsON 200 antenna transmission 

bandwidth), the deviation from free space is <  0.5 dB for separation distances of 2 to 2.5
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A) Test Fixture

B) Vertical Polarization
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Figure A.3. Free space measurements to calibrate anechoic chamber using Time 
Domain P ulsO N 200™  antenna. (A) Test fixture fabricated from 1.5-inch Styrofoam 
sheets for positioning the receiving antenna at varying distances from the transmitting 
antenna. The transmitting antenna was located 60 cm from the tips of the cones on the 
transmit wall and the receiving antenna position was varied from 60 cm to 325 cm from the 
transmitting antenna. (B) 3D contour of deviation from the free space spreading loss versus 
frequency and distance for horizontal polarization of the transmitting and the receiving 
antenna. The antenna position was incremented in 1 cm steps and S21 was measured from 
300 kHz to 9 GHz at frequency each step. (C) 3D contour of deviation from the free space
spreading loss versus frequency and distance for vertical polarization of the transmitting 
and receiving antenna.
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m between the transmitting and the receiving antenna.

A .4 Signal Processing Algorithms

The signal processing techniques described in this section arc used to extract antenna and

impulse response in the time domain. Frequency domain techniques using measurements 

performed with a Vector Network Analyzer (VNA) are described in section A .3.1. Time 

domain techniques using measurements performed with a UWB source and a Digital Storage 

Oscilloscope (DSO) arc described in section A .3.2.

A .4.1 Frequency Domain De-convolution of the Antenna Impulse Response

The transfer function of an antenna is defined as a function of the operating radian fre

quency u>, the orientation of the antenna in the vertical (0 ) and the horizontal (</>) plane, 

and the separation distance, R, between the transmitting and the receiving antenna. The 

transmitting antenna transfer function, H t (uj,6t,<j)t) is defined as the ratio of the radiated 

electric field to the input voltage applied to the antenna terminals. The radiated electric 

field is normalized to the magnitude and phase of the electric field at the location of the 

receiving antenna in the transmitting antenna reference frame (Figure 2.1A). Hence Ht 

(u,9t,4>t) is dimensionless. The receiving antenna transfer function Hr {oj,6r ,4>r) is defined 

as the output voltage at the antenna terminals divided by the electric field incident on 

the antenna. The direction of arrival of the incident electric field in the receiving antenna 

coordinate frame (Figure 2.IB) is given by (6r ,(f)r). Hr (uj,Or,<j>r) has dimensions of meters.

The transmitting antenna transfer function is calculated as

channel characteristics from laboratory measurements. Antennas and propagation channels 

may be characterized by a transfer function in the frequency domain, or equivalently by an
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where Sln(a;) is the reflection coefficient of the antenna connected to port 1 when port 2 is

terminated in a matched load, SVifA is the reflection coefficient of the antenna connected 

to port 2 when port 1 is terminated in a matched load, 5Vi (w) is the transmission coefficient 

from the antenna connected to portl to the antenna connected to port 2, and k =  to/c is 

the wave number.

The receiving antenna transfer function is calculated as [Qing et al., 2006]

their measured phases need to be unwrapped using the unwrap.m function in MATLAB. 

This should be done before the calculation of the transmitting and the receiving antenna 

transfer function using Equations A .5 and A .6. Otherwise, the results will be nonphysical.

The assumptions in this experimental procedure are:

1. The two antennas are an identical, matched pair. This was achieved by comparing 

the S ll  measurement at each frequency point between 300 kHz to 9 GHz and picking 

two prototype antennas with average difference < 1 dB.

2. The two antennas are in the far field of each other and identically oriented that is 

0t =  6 r =  0 and (fit =  4>r —

3. The transmitting antenna transfer function is related to the receiving antenna transfer 

function as [Schcers et al., 2000]

where c is the speed of light in vaccum and j =  -1.

4. The transmitting and the receiving antenna impedance are equal and matched to the 

characteristic impedance of the transmission fine in the frequency range of interest.

H r (u), 6r , <fir) —

It should be noted that the scattering parameters are complex quantities and hence

Ht(u>, 0t, 4>t) =  ~ H r {uj,er ,fir) (a z )
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Frequency (GHz)

Figure A .4. Transmitting antenna transfer function computed for the horn an
tenna. The top panel shows the amplitude and the bottom panel shows the phase of the 
transmitting antenna transfer function calculated from the S21 measured for a pair of horn 
antennas separated by 2 m in the anechoic chamber (shown as inset in Figure).

Frequency (GHz)

Figure A .5. R eceivin g antenna transfer function for th e horn antenna. The top
panel shows the amplitude and the bottom panel shows the phase of the receiving antenna 
transfer function calculated from the S21 measured for a pair of horn antennas separated 
by 2 m in the anechoic chamber (shown as inset in Figure). The blue curve shows the free 
space l / / 2 path loss which explains the negative slope of the transfer function.
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To validate the above procedure, the transmitting and the receiving antenna transfer 

function for a pair of identical, commercial horn antennas (shown in Figure 2.3A) is mea

sured. The horn antennas are separated by 2m in the anechoic chamber with their broadside 

directions facing one another. The antennas are held on a tripod at a height of 1 m from the 

floor of the chamber (shown as inset in Figure A .4). The measured transmitting antenna 

transfer function, shown as a black curve in Figure A .4, indicates that the horn antenna 

has a flat frequency spectrum in the 1 to 9 GHz frequency range. The receiving antenna 

transfer function, shown as a black curve in Figure A .5, has a non zero DC component and 

a l / / 2 slope owing to the free space path loss (shown as a blue curve). The non-zero DC 

component is filtered out using a 100 MHz high pass filter (shown as red curve).

The transfer functions shown in Figures A.4 and A .5, are measured for 1601 positive 

frequency points spaced every 5.6 MHz. The inverse fourier transform of this transfer 

function yields a discrete time analytical signal [Iverson, 1991]. The real part of this signal 

yields the time domain impulse response, h(t), for each pair of elevation and azimuth angles 

[Sorgcl and Wiesbeck, 2005]. The measured impulse response has a time resolution of 284.6 

ps. The time resolution can be improved to 5 ps by zero padding the measured transfer 

function from 9 GHz to 200 GHz. The impulse response is further preprocessed by low pass 

filtering the high frequency oscillations due to the sharp cut off in the measurement at 9 

GHz.

A .4.2 Time Domain De-convolution of the Antenna Impulse Response

An input signal x(t) applied to a band-limited system with impulse response h(t) yields an 

output signal y(t) related to the input as the convolution of h(t) and x(t):

y(t) =  h(t) * x{t) ( A l )

A received signal waveform captured by the DSO in the anechoic chamber is the convolution 

of the transmitter waveform with the impulse responses for the transmitting antenna, the
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Figure A .6. Transmitting and receiving band-limited impulse response of the 
horn antenna. The black curve shows the transmitting antenna impulse response and the 
red curve shows the receiving antenna response. There is additional high frequency ringing 
(~  9 GHz) in the measured impulse responses owing to the sharp cut off of the VNA at 9 
GHz.

propagation channel, and the receiving antenna:

2/(0 =  ^TX,ant{t) * ĉ/wmnei * ^RX,antif) * ® (0

To characterize an antenna with time domain measurements, the ideal input signal would be 

a true impulse with infinite amplitude and zero width. Our closest available approximation 

to this ideal input signal is the band-limited impulse from the MSSI impulse source (shown 

in Figure 2.2C). This signal is transmitted between two antennas separated by 2 meters in 

the anechoic chamber. The received waveform captured with the DSO is a function of both 

the input waveform and the system impulse response.

The waveform is captured by the DSO at the minimum sampling period of 50 picoseconds 

per sample to provide the greatest possible resolution in the time domain. The effects of 

the non-ideal input signal must be removed from the DSO data to extract the band-limited 

impulse response of the system (h rx it)  * hcH * hR x(t)). De-convolution docs not provide 

a unique solution to the impulse response of the system. We illustrate this by applying two 

iterative de-convolution algorithms to the DSO waveform received through the two Sunol
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horn antennas.

The Van-Cittert algorithm described in Bennia and Riad [1992] is an iterative time 

domain technique that approximates hi(t) by performing successive convolutions with x(t) 

and then calculating an error term that is the difference between the actual output and the 

convolution array [hi(t) *x(t)]. The error term is iteratively added to the previous estimated 

impulse response hi-\{t) to yield ht(L). The sensor-CLEAN algorithm de-convolves the 

system impulse response by iteratively subtracting the peaks in the cross correlation array 

of x(t) and y(t) from the auto correlation of the input signal x (t). This yields the strongest 

energy peaks in the impulse response hi{t) at each time step.

The sensor-CLEAN algorithm initiates the impulse response at ho(t) =  0, whereas the 

Van-Cittert algorithm initiates the impulse response at ho(t) =  y(t). Therefore, the sensor- 

CLEAN algorithm requires a greater number of iterations but achieves greater accuracy and 

is less susceptible to noise in the signal. The Van-Cittert algorithm initiates the estimated 

impulse response to the output signal, so the impulse response is more susceptible to noise 

in the signal, which increases due to additions involved in the convolution operation. The 

sensor-CLEAN algorithm is more robust to noise because there is a constant reduction 

(subtraction) in the signal amplitude and noise level. However, the sensor-CLEAN can give 

false noise peaks in the impulse response. A detailed discussion of the methods is given in 

[Cramer et al., 1999].

To validate the approach, the received voltage waveform for a pair of horn antennas 

separated by 2 m in the anechoic chamber is shown in Figure A.7A as a red curve. The 

MSSI source waveform is shown as a black curve. Figure A.7B shows a comparison of 

the broadside impulse response of the transmitting horn antenna de-convolved from the 

time domain measurement using the sensor-CLEAN (red curve) and the Van-Citterct (blue 

curve) algorithms.
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Figure A .7. Time domain measurement of the band-limited impulse response of 
a pair of horn antennas. The top panel shows the two antennas separated by a distance 
of 2 m in the anechoic chamber. One antenna is connected to a MSSI source (black curve) 
that generates a ~  10 V peak amplitude waveform with a duration of 0.7 ns. The received 
voltage waveform (red curve) at the terminals of a identical antenna is measured using a 
TDS6804B high-speed digital storage oscilloscope (DSO) with a time resolution of 50 ps. 
The bottom panel shows the time domain band-limited impulse response computed using 
the sensor-CLEAN [Cramer et al., 1999] and the Van-Citteret [Bennia and Riad, 1992] 
iterative de-convolution algorithms, shown as red and blue curves respectively.
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Appendix B Data Processing 

Algorithms

B .l  Calculation of the Pulse W idth  t p and the Pulse Cycle T im e

Tc

There are many ways to define a pulse width [Bracewell, 1999]. For a single pulse with 

bell-shaped amplitude, or a modulated pulse with bell-shaped envelope, it is convenient to 

define the pulse width as the width where the peak amplitude of the pulse is down by 3 dB 

in log scale or 0.7 in linear scale. For a more general shape of the pulse or the envelope, 

it is more convenient to define pulse width as the duration of the pulse that contains 90% 

of the total energy [DiBenedetto and Giancola, 2004]. In this approach the energy in the 

input pulse is measured and the duration of the pulse that contains a fraction (0.9 or 90%) 

of the original energy is calculated. Figure B.1A shows the commercial Multi Spectral 

Solutions Inc. (MSSI) UWB pulse (solid black curve) measured by directly connecting it 

to an oscilloscope through a -5 dB attenuator. Also shown is the pulse duration containing 

90% of the signal energy. The calculated pulse width tp  is 0.72 ns. The half cycle time rc/2  

of the pulse is measured as twice the number of zero crossings in the measured tp  and is 0.38 

ns. The limitation of this approach is that the energy contained in the pulse depends on 

the total duration of the signal containing the pulse and the amount of noise in the signal.
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This decides the fraction of the energy that will be used to calculate rp and rc. So when 

the input energy is spread over multiple pulses then a large error (>  200%) is observed in 

the calculated tp  and rc values. An alternative approach is proposed for the determination 

of the pulse width of the received UWB pulse when there are multiple pulses.
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Figure B .l. D eterm in ation  o f  duration  and cycle  tim e o f  the input pulse. (A) The
duration tp  and cycle time rc of the MSSI source directly connected to an oscilloscope. The 
duration is measured as containing 90% of the pulse energy. (B) The duration tp  and cycle 
time t c of the MSSI source radiated and received by a pair of horn antennas separated by 
2 m in the anechoic chamber. The duration is measured using the pulse overlap method.

The proposed approach to calculate pulse width when the received pulse has an overlap 

of pulses arriving from two or more directions, as is the case in this thesis. This method is 

termed pulse overlap method. The pulse width is defined as twice the time delay at which 

the interference of the first and second arriving pulses will give a peak amplitude larger 

than the peak amplitude of the first arriving pulse. So to calculate the duration of the 

input pulse, an inverted copy of the pulse is added to the input pulse with a delay greater 

than at least twice the pulse duration to avoid any pulse overlap. The total pulse has a 

peak amplitude which is still same as the peak amplitude of the first arriving pulse within 

noise fluctuations. The delay of the inverted copy of the original pulse is reduced till the 

absolute peak amplitude total pulse is greater than or lesser than the peak amplitude of 

the first pulse by a threshold. The threshold depends on the noise and the envelope of the
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pulse. The calculated delay is half the duration of the pulse tp . The delay of the inverted 

copy is further reduced till an absolute maximum in the peak amplitude of the total pulse 

is calculated. This delay is the duration of one-half cycle, rcj 2, of the pulse. The inherent 

assumption in this approach is that the two pulses have the same cycle time, rc , envelope, 

and start overlapping when the reflection coefficient is approximately —1. Within these 

assumptions it is possible to define pulse width, tp , which is independent of the reflecting 

surface properties and the geometry of the propagation environment. Figure B.1B shows 

the MSSI source radiated and received by a pair of commercial horn antennas (section 

2.2.1, Figure 2.3A) separated by 2 m in the anechoic chamber. The received voltage pulse 

is measured by a oscilloscope (discussed in Appendix A). The black curve shows multiple 

copies of the first arriving pulse due to reflections in the connecting cables. So the energy 

in the first pulse is a fraction of the total energy contained in the signal and a threshold of 

90% provides a pulse width of 22.8 ns. The rp and rc calculated by the second method is 2.3 

ns and 1.15 ns. The threshold set for this calculation is that the difference in the absolute 

peak amplitude of the measured pulse and the total pulse containing the measured pulse 

and its inverted replica is greater than l/4 th  the peak amplitude of the measured pulse.

Note that in the second method, the defined pulse width tp will always be a multiple 

of the half-cycle duration rc/2 . This implies that an adaptive receiver design can change 

pulse properties in discrete steps of rc/2.

B.2 Calculation of the Bandwidth B and the Center Frequency fc

The bandwidth B and the center frequency f c of an input pulse are frequency domain 

properties of the time domain pulse. So the input pulse x(t) is Fourier transformed to the 

frequency domain X (f). The energy spectrum of the pulse is calculated as

E SD  =  \X(f)\2 /df2 f i T )
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where df is the frequency resolution determined as the ratio of the sampling frequency to the 

length of the pulse. The bandwidth occupied by the pulse is then defined as the frequency 

separation between the two points which arc below intersected by the straight line drawn 

at the threshold. The two point define the lower (fl) and the upper (fh) cut off frequency 

of the pulse. The center frequency f c is defined as the geometric mean of the lower and 

the upper cut off frequencies, so f c — ^ f l  ■ fh .  Note that this method depends on the 

sampling frequency and the noise contained in the measured pulse. A noisy spectrum of the 

pulse may have many points that cross a threshold line. But all these points arc localized 

to an average frequency with a spread which decides the error in the measurement. Figure

B.2 shows the frequency spectrum of the pulse received by a pair of PulsON 200 systems 

separated by 1 m in the Taku parking lot.

Figure B.2. D eterm in ation  o f  ban dw idth  B  and center frequency  f c. A pair of 
PulsON 200 systems are separated by 1 m in the Taku parking lot and the received pulse 
is fourier transformed to calculate the B and f c of the pulse.

B.3 Algorithm to Calculate the Breakpoint Distances and the Lo

cation of Maxima and Minima in the RSS data

The breakpoint distances and the location of maxima and the minima in the measured RSS 

(discussed in sections 3.2.1 and 3.2.2) are calculated using an algorithm detailed in this 

section. The flow diagram of the algorithm is shown Figure ??. The data is partitioned into
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two arrays RSS\(d) and RSS2 (d). The first array, RSSi(d), is from the first data point up 

to d2 and the second segment, RS8 2 (d), is from d2 to the last point. This procedure requires 

knowledge of d2 which is calculated using the formula d2 =  Ah\ h^fc/c- Using the first array, 

RSSi(d), the best fit to 1 /d2 is calculated. Then calculated linear fit line is subtracted from 

RSSi(d). The difference is a roughly zero mean data. The low frequency fluctuations in the 

data is removed by using the p o ly f i t  .m function in MATLAB. The variance of the resultant 

noisy data is calculated using the variance .m function. A peakdetect .m function measure 

the location of the maxima and minima in the resultant noisy data. To accurately measure 

d2 from the data, the second array RS8 2 (d) is linearly fit to the 1/d4 curve. The location of 

minimum variance between the linear fit curve and the measured data provides the location 

of d2. The location of d l is calculated from the formula dl =  \h\h2 B lc.

Figure B.4A shows the measured received signal strength as a function of separation 

distance for the transmitter and receiver at a height of 0.5 m above the ground in the Taku 

parking lot (same as Figure 3.8). The blue line shows the 1/d2 curve and the red line shows 

the 1/d4 curve. Also shown in the figure is the calculated location of the first breakpoint d l 

and the measured location of the second breakpoint d2. Figure B.4B shows the difference 

between the 1 /d2 linear fit line and the measured data as a black curve and the filtered 

data as a red curve. Also shown are the maxima and minima as black and red squares, 

respectively. Figure B.4C shows the variance of the 1/d2 and 1/d4 fit to the data shown as 

blue and red curve, respectively. The same procedure is repeated for the other transmitter 

heights shown in Figure 3.9.

B.4 Calculation of the relative perm ittivity of the ground and the 

thickness of snow layer on the ground using U W B  measurements

B.4.1 Mathematical Formulation

The thickness and the relative permittivity, er , of snow is calculated from the measured 

UWB pulse captured by a pair of Time Domain PulsON 200™  UWB transceiver systems
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INPUT:
Measured received signal strength Vs 
separation distance data RSS(d)

I

Figure B.3. Flow diagram for the algorithm to determine breakpoint distances 
and maxima and minima in the received signal strength data.
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Figure B.4. Determination of breakpoint distances and maxima and minima in 
the received signal strength data for h i =  h2 =  0.5 m.

in the Taku parking lot. The transmitting and the receiving UWB systems are held over 

the ground. As discussed in section 3.2.1 (Figure 3.10), the received UWB pulses, show one 

direct path pulse and one or more reflected pulses.

Figure B.5 shows the geometry and the variables required to calculate the permittivity 

of the ground. The peak amplitude of the direct path pulse, Ur , is given as

Vi0 =  - j j  G  t{6 d )  G r (0  D r )  COSIp D  ( B . 2 )

where Vo is the voltage at a reference distance of 1 m, Gi(9d) is the gain of the transmitting 

antenna along the direct path direction defined by the angle Od from the antenna axis which 

is aligned parallel to the local vertical, G r (9 /jr ) is the gain of the receiving antenna for an 

angle of arrival 0jjr defined from the antenna axis aligned along the local vortical, and tj)n 

is the projection angle of the direct path electric field on the receiving antenna axis.
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Zt

X

Figure B.5. Problem geometry to calculate the permittivity of the ground.

The peak amplitude of the reflected path pulse, V r , is given as

VR =  ^ G t{9inc)Gr{9refl)cos^RV{9R) ® 3 )

where Vo is the voltage at a reference distance of 1 m, Gt(Oinc) is the gain of the transmitting 

antenna along the reflected path direction defined by the angle 9inc from the antenna axis, 

Gr(Orefi ) is the gain of the receiving antenna for an angle of arrival Qrefl defined from the 

antenna axis, T is the reflection coefficient of the ground, Or  is the reflection angle defined 

from the normal to the ground and iJjr is the projection angle of the reflected path electric 

field on the receiving antenna axes.

Dividing Equations B.3 and B.2, and rearranging gives

i w  =
Vr D' G{9D)G{0Rr) cosier)

©VD D G(0inc)G(9rcfi ) costjjR 

where the transmitting and receiving antenna are assumed to have identical patterns Gt =  

Gr =  G. The relative permittivity of the medium is derived for Transverse Magnetic (TM )
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polarization [Bertoni, 2000] by solving the quadratic equation

)2er +  ( p" _|_ )2 tail2 Oinc — 0

The quadratic equation has two solutions for er out of which one solution is always

reflected pulse should not overlap with the direct path pulse. This will occur in the first 

regime when the time delay difference between the direct and the reflected paths is greater 

than the pulse duration, rp.

The thickness of the snow layer on the ground is calculated from measurements consisting 

of a direct path and two non-overlapping reflected paths. In such a case, the time difference, 

A r , between the first and the second reflected paths is used in determining the width, w, 

of layer using the formula

The refractive index of the layer is measured using the peak amplitude of the direct path

the snow layer can be measured only when there are two reflected pulses accompanying the 

direct path pulse in the received signal.

It should be noted that each of the reflected pulses may have multiple overlapping 

pulses. This is because the layers of snow/ice/water on the ground may not have definitive 

boundaries and will result in multiple overlapping reflected pulses which will change the 

duration, amplitude and envelope of the net reflected pulse.

B.4.2 Measurements

The UWB pulses were measured in the Taku parking lot for different ground conditions 

and at different transmitter heights. The measured pulses were categorized as:

less than or equal to 1 and the other solution provides an estimate of the effective relative 

permittivity of the ground. It should be noted that to calculate er of the ground, the

W 2 n2d2 +  n2{h\ +  h^)2
cA r (n2 -  1 )d2 +  n2(hi +  h2)21_ 1/2

pulse and first reflected pulse in Equations B.4 and B.5. It should be noted that the w of
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1. Type A: one direct path pulse and one non-overlapping reflected pulse.

2. Type B: one direct path pulse and two non-overlapping reflected pulses.

3. Type C: one direct path pulse and three non-overlapping reflected pulses

Figure B.6A shows the pulse received by a pair of PulsON ™  200 systems for h\ =  h<2 =  0.5 

m on 16 March 2004. The received signal has one direct path pulse and one non-overlapping 

reflected pulse. The reflected pulse is longer in duration than the direct path pulse and may 

have more than one overlapping pulses. Therefore such pulses can be used to measure an 

effective er of the ground.

Figure B.6B shows the pulse received by a pair of PulsON™  200 systems for h\ — 1 m 

and /12 =  0.5 m on 01 December 2004. The received signal has one direct path pulse and 

two non-overlapping reflected pulses. Such pulses will provide an estimate of w of the snow 

layer.

Figure B.6C shows the pulse received by a pair of PulsON ™  200 systems for hi — h-2 

— 0.5 m on 16 March 2004. The received signal has one direct path pulse and three non

overlapping reflected pulses. Such pulses will provide an estimate of er and w of multiple 

layers of ice/snow/water on the ground.

Pulses in all the three above types are used to measure the effective er of the ground. 

Pulses in types B and C are used to measure the w of the snow/ice layer. Table B.4 shows 

the list of days when the measurements were done, the ground conditions, and the recorded 

temperature.

The net er of the snow covered ground is measured for 16 March 2004, 21 November 

2004, 01 December 2004, and 22 December 2004. Figures B.7A, B.7B, B.7C, and B.7D show 

the measured er as a function of distance for each of those days. The measured er of the 

snow is 3.75±1.25 for the 16 March 2004 case, 3.95T2.76 for the 21 November 2004 case, 

4.19T1.76 for the 01 December 2004 case, and 4.56±1.02 for the 22 December 2004 case. 

From past measurements, it is known that the range of relative permittivity of snow/ice, in 

the 3 GHz to 37 GHz frequency range, is from 1 to 6 and depends on the water content and
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A) Type A

C) Type C

Figure B.6. E xam ples o f  received  U W B  pulses m easured in the Taku parking lot
at U A F . A) Received pulse categorized as type A with one direct path pulse and one non
overlapping ground reflected pulse. B) Received pulse categorized as type B with one direct 
path pulse and two non-overlapping ground reflected pulses. C) Received pulse categorized 
as type C with one direct path pulse and three non-overlapping ground reflected pulses. 
Note that each reflected pulse could be due to multiple reflected pulses overlapping with 
one another resulting in a change in the duration, amplitude and envelope of the pulse.
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Table B.4. Dates, temperature and ground conditions in the Taku parking lot 
when the U W B  propagation measurements were performed.

Date Temperature (° F) Ground Condition
16 March 2004 16 hard and packed snow

18 November 2004 6 hard and packed snow
21 November 2004 22 hard and packed snow
01 December 2004 30 loose and soft snow
22 December 2004 6 hard and packed snow

07 April 2005 50 dry (with few cm size stones)
13 April 2005 36 wet with patches of snow
14 April 2005 40 wet with patches of snow
15 April 2005 38 wet with patches of snow
21 April 2005 36 wet with patches of snow

the packing of snow per cubic centimeter [Tiuri et al., 1984; Hallikainen et al., 1986]. The 

imaginary part of the permittivity of snow is 0.27 at 3.78 GHz [Matzler, 1996]. The range 

of permittivity of the water layer is from 50 to 81 and the ground is from 10 to 30 [Bertoni, 

2000]. The conductivity of the ground varies from 10~4 S/m  to 10-1 S /m  [Parsons, 2000].

A detailed survey of the pulses needs to be done in the future to categorize the 9400 

pulses captured at different transmitter heights and on different days to calculate the real 

and imaginary part of the effective permittivity of the snow and the width of snow on the 

ground.
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Figure B.7. M easured er as a fu n ction  o f  d istance in the Taku P arking L ot.
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