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Abstract

The goal of this thesis is to develop long-term records of North Pacific 

ecosystems and explore relationships between change in marine ecosystems and 

prehistoric Aleut culture through soil chemistry, isotope analyses of lake cores, and 

isotope analyses of bone from archaeological middens. Chemical analysis of soils yielded 

differences in soils of various archaeological features as well as middens of varying 

composition. Sites that had no middens were chemically distinguishable from sites that 

did have middens helping to define resource consumption in the local region. An 

important result of this study is that no single ecosystem (nearshore benthic, coastal 

pelagic or deep-ocean pelagic) experienced the same changes in 813C and 515N over the 

past 4,500 years. This suggests that changes in climate affected different ecosystems in 

unique ways. Only one change spans all species studied; the decrease in modem 513C in 

comparison to 813C of prehistoric specimens. According to these comparisons, the 

modem Gulf of Alaska may not be in the highly productive state that it was for the past

4,500 years, with the possible exception of the Medieval Warm Period. Lake core 

sediment analysis suggests an increase in salmon stocks in the Gulf of Alaska beginning 

-6,000 years ago, with a decrease during the Medieval Warm Period. In fact, salmon 

stocks in the Gulf of Alaska appear to be healthiest during periods of atmospheric cooler 

and wetter climate over the past 4,500 years. In comparing my paleoecological records to 

the archaeological record of the area it appears that humans were affected by changes in
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their environment but, even in relatively small numbers, humans also influenced local 

ecosystems for the past 6,000 years. By building on our understanding of long-term 

climate change and long-term fluctuations in ecosystems and trophic dynamics of species 

in the North Pacific, and through considering humans in the ecological context, we can 

better understand present conditions in marine ecosystems.
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General Introduction

In order to understand present day change in the North Pacific, we need to 

understand past conditions and past variation more comprehensively than our current 

knowledge permits. This thesis considers the relationships between change in North 

Pacific marine ecosystems and prehistoric Aleut culture through studies including soil 

chemistry, isotopic analyses of lake cores, and isotopic analyses of bone from prehistoric 

middens focusing on the region located along the lower Alaska Peninsula (LAP)/eastem 

Aleutian Islands. Lake core sediments yielded data concerning Holocene paleoclimate 

and salmon returns from 6,000 calendar years before present (cal yrs BP). Bone isotope 

analysis returned information on changing environments and productivity starting ~

4,500 cal yrs BP, and elemental analysis of archaeological soils helped elucidate changes 

in human resource consumption. Existing data suggest that this period has been marked 

by numerous climatic fluctuations and cultural changes (Maschner 1998; Jordan and 

Maschner 2000; Finney et al. 2002; Gedalof and Mantua 2002; Fitzhugh 2003; Anderson 

et al. 2005; D’Arrigo et al. 2005; Maschner and Jordan 2005). Thus the data provided 

abundant opportunities to study the response of marine ecosystems and humans to 

climatic variability.

Changes in climate have been linked to increases and decreases in both pelagic 

and anadromous fish stocks (Ware and Thomson 1991; Beamish and Bouillon 1993; 

Francis and Hare 1994; Roemmich and McGowan 1995; Welch et al. 1998; Mantua 

2004) such as salmon and cod, important resources for pre-historic Aleut communities.
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These changes in climate also affect other aspects of marine ecosystems, such as species 

composition, abundance and geographic distribution of shellfish, fish and sea mammals 

(Francis and Hare 1994; Hare and Mantua 2000). Paleoclimate records spanning 

millennia indicate that climate has changed both locally and globally (Bradley 1999). The 

Aleuts have been dependant on the ocean for thousands of years and fluctuations in 

marine ecosystems will have impacted Aleut communities (bottom-up processes), even if 

only at the local level. Conversely, preferential resource consumption may have 

influenced local ecosystems (top-down processes). Studies by both archaeologists (Jordan 

and Maschner 2000) and marine scientists (Finney et al. 2002) suggest that changes in the 

environment of the Northeast Pacific Ocean co-occur with changes in Aleut and Koniag 

house form and organization. This thesis aims to further test that hypothesis and gain a 

clearer understanding on the relationship between cultural change and climate change.

Chapter 1 presents the results of a multi-element weak-acid soils extraction study. 

Soil chemistry analysis has been used mostly as a prospecting technique to locate sites in 

areas with few or no visible archaeological features or materials. Recently, studies have 

attempted to isolate chemical enrichment of anthropogenic soils and chemical variation 

between different activity areas of a site (Griffith 1980; 1981; Linderholm and Lundberg 

1994; Schuldenrain 1995; Middleton and Price 1996; Middleton 1998). Multi-element 

analyses of soils from archaeological sites were used to help compare changes in house 

form, use of space, and resource consumption through time in the eastern Aleutians/LAP 

to changes in the marine ecosystem. A small study (Misarti unpub.) conducted on soil 

samples from archaeological sites in the Aleutians suggested that middens of differing

2
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composition (i.e. shell fish versus sea mammal) can be differentiated through chemical 

signatures. It was hypothesized that the multi-element analysis conducted here will help 

distinguish for example, between marine diets based mostly on salmon versus those 

based more on sea mammals. During the 2004 field season, 779 soil samples were 

collected from archaeological sites on the Sanak Island archipelago, Alaska for multi­

element analysis. These were used in conjunction with 174 previously collected soil 

samples from Unalaska Island, Alaska to further evaluate the sensitivity of these 

elemental signatures to specific human activities. Off-site samples were also collected 

(both by coring and from open profiles) in order to understand the elemental composition 

of the natural soils in the area. Relative abundances of 11 elements (Al, Ba, Ca, Fe, K, 

Mg, Mn, P, Sr, Ti, and Zn) were analyzed on an Inductively Coupled Plasma-Mass 

Spectrometer (ICP-MS). This chapter will attempt to answer the following questions. 

Will trends reported in past small studies continue in a study with larger sample size?

Can these same trends be distinguished with coring techniques rather than large 

excavations? Do midden samples with more bone have a 2:1 ratio of Ca:P while midden 

samples with more shell have very little P as seen in a previous pilot study? Can this 

analysis distinguish between middens consisting mostly of salmon versus those based 

more on sea mammals versus those that are mostly shell? If so, does the chemistry vary 

over time or from site to site (seasonality)? How much do recent anthropogenic 

influences impact soil chemistry of sites?

The results of the lake core sediment analysis from two lakes are addressed in 

Chapter 2. Paleoclimate information and the levels of salmon-derived nutrients found in

3
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lake cores collected on Sanak Island, Alaska were derived from proxy data of stable 

nitrogen and carbon isotope analysis and carbon to nitrogen ratios. Recently, Finney 

(1998; Finney et al. 2000; 2002) has shown that stable nitrogen isotope composition of 

sediments from salmon system lakes is a useful tool to estimate fluctuations in salmon 

abundance over time. Climate change and ecosystem shifts were correlated across two 

cores, one from a salmon nursery lake and one without salmon. Use of a control lake was 

to determine if the proxy data utilized were sufficient to overcome the fact that lakes on 

Sanak are shallow and yearly precipitation is high and therefore there are high flushing 

rates in both lakes. Did changes in salmon-derived nutrients coincide with climate change 

data derived from the lake cores as well as previously published data for this geographic 

area?

Chapter 3 addresses stable isotope analysis of over 300 bone samples from 6 

species [Steller sea lions (Eumetopias jubata), Harbor seals (Phoca vitulina), Northern fur seals 

(Callorhinus ursinus), sea otter (Enhydra lutris), Pacific cod (Gadus macrocephalus) and sockeye 

salmon (Oncorhynchus nerka)] from middens spanning the past 4,500 years and compares 

them to modem samples from the same species. These species were chosen because they 

represent the benthic (sea otter and cod) and pelagic (pinnipeds and salmon) food webs. 

Cod may also reflect a more mixed diet, as they are known to prey on both fish and 

benthic invertebrates (Yang 2004). Stable isotope analysis is an extremely useful tool and 

can enhance past trophic dynamics and productivity of the ecosystems to be examined, a 

task conventional dietary studies can not accomplish (DeNiro and Schoeninger 1983;

Post 2002). Samples of fish and marine mammals recovered in archaeological midden

4
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samples of differing time periods were analyzed using stable isotopes of nitrogen and 

carbon in order to determine if the base of the food webs that these organisms rely on 

shifted over the past 4,500 years. Variations in 813C in food webs may be related to 

fluctuations in primary productivity (Hirons et al. 2001) that in turn has been linked to 

climate shifts (Francis and Hare 1994). The 515N and 513C of the bones recovered in these 

middens were used to determine trophic relationships and how they fluctuate over time. 

Bone collagen is well suited for this type of study as it reflects a longer period in an 

organism’s lifetime than tissues and hair and is not affected by seasonality (Koch et al. 

1994; Hedges et al. 2005). Several questions were discussed in this chapter. Did the 

nearshore ecosystem undergo discemable changes over the past 4,500 years? Is 

individual variability within a species in a given time period less than the variability over 

time and are there distinguishable differences in stable isotope ratios of each species 

throughout the last 4,500 years? Is there an inverse relationship between 813C and S15N of 

organisms over time? What is the nature of any variability in terms of event frequency 

and modes of food webs (i.e. restructuring into different species assemblages such as the 

sea otter/kelp versus sea urchin alternate communities)?

Chapter 4 integrates all three data sets previously discussed and relates the 

conclusions to the regional prehistory of the Aleut along the western Alaska Peninsula 

and specifically to Sanak. Data from previous zooarchaeological studies from the lower 

Alaska Peninsula, eastern Aleutian Islands, and recently collected from Sanak Island, 

including specimen counts and weights, minimum number of individuals of species and 

age and sex of specimens, were also used to track changes in species represented through

5
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time. Since preferred resource consumption (a cultural choice not based on availability 

of a species) could influence materials recovered from middens, zooarchaeological data 

alone cannot determine climate-derived influence on numbers and types of species found 

in an area over long periods of time. It is hypothesized that Aleuts changed their lifestyles 

in direct response to climate change that affected the marine ecosystems they relied on by 

shifting village location and size over the past few thousand years. If changes in 

ecosystems are discemable, did they coincide with changes in the archaeological record 

of material culture, house form, and resource consumption (all lines of evidence believed 

to reflect sociopolitical change)? Did Aleut village location and size, house form and 

size, and resource consumption change over time in conjunction with changes in the 

marine ecosystem? Do zooarchaeological data and soil samples show restructuring of 

resource consumption at the same time periods when isotope ratios of organisms 

demonstrate a change in the marine ecosystem?

By answering all of the above questions this thesis will lend a better 

understanding of the processes that govern change. This will subsequently frame our 

modem data in a longer perspective. Few researchers are investigating the distant past to 

determine if some of the changes in the ecosystems being studied have occurred before 

and what that variability may mean for recent and future ecosystems. The three data sets 

discussed above are synthesized to yield a strong base of knowledge of changes in 

ecosystems with regards to changes in climate and the part humans played throughout 

this history. The past is a key factor to comprehending current and future change in the 

North Pacific.
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Chapter 1: Reconstructing site organization using analysis of soil chemical 

composition in the eastern Aleutian Islands, AK.1 

Abstract

This study presents the results of multi-element analysis of weak-acid extractions 

of 953 soil samples collected by coring on and around prehistoric village sites on two 

islands, Sanak and Amaknak, in the eastern Aleutians. Concentrations of Al, Ba, Ca, Fe, 

K, Mg, Mn, P, Sr, Ti, Zn were determined using an inductively coupled plasma-mass 

spectrometer (ICP-MS). Resultant elemental signatures allow the identification of site 

features and activity areas in the absence of large-scale excavation. All the archaeological 

sites showed similar and distinct chemical signatures regardless of site age or intensity of 

occupation. Site features such as houses, house berms, house floors and middens had 

distinct anthropogenic signatures and could be distinguished from one another. This 

approach may be used to identify sites that do not have distinct surface features and to 

target areas for excavation.

'Misarti N, Finney B, and Maschner H. 2007. Reconstructing site organization using analysis o f  soil 
chemical composition in the eastern Aleutian Islands, AK. Prepared for the Journal o f Archaeological 
Science.
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Introduction

This study was undertaken to determine if the chemical analysis of soils collected 

using sediment coring methods is useful for distinguishing distinct areas within sites in 

the absence of excavation in the eastern Aleutian Islands of Alaska. If successful, such an 

approach would be useful in a number of different contexts, including those that 

characterize the study area; the region is remote, the field season is short (May through 

August), and sites are often difficult to locate. For example, in the Aleutians, while some 

sites have observable and visibly distinct features such as house and storage pits, many 

others are less apparent - obscured by post-occupational soil development, sometimes up 

to several meters worth, and other processes [14]. Exploratory test pits every few meters 

in such conditions are not always feasible or affordable and often yield very limited data.

The use of soil chemistry as an aid in archaeological investigations is well 

established, mostly as a prospecting technique to locate sites in areas with few or no 

visible archaeological features or materials. In the early 1900’s, Arrhenius used elevated 

phosphate levels in soils to locate prehistoric villages in Sweden [1], while Woods [42] 

and Cavanagh et al.[5] have used soil samples to distinguish site boundaries. More 

recently, there have been attempts to isolate chemical enrichment of anthropogenic soils 

and identify chemical variation among different activity areas of a site 

[8,9,10,16,20,26,27,28,35,41], Results indicate that several chemical elements occur in 

enriched or depleted amounts as a result of specific human activities (Table 1.1) and that
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the analysis of multiple elements can pinpoint site activity areas despite well-known 

issues with site formation processes [8,9,17,20,21,23,24,26,27,31,32,33,35].

Study Area

Climate

The soil samples used in this study were collected from two islands, Sanak and 

Amaknak, part of the Aleutian Island chain, Alaska (Figure 1.1). Cool summers and mild 

winters with high winds and rain characterize the climate of this region [ 11,31 ]. In the 

winter the Aleutian Low, a weather index of extremely low pressure that affects the 

eastern North Pacific, the Bering Sea and Sea of Okhotsk, dominates [30]. Summertime 

atmospheric temperatures are between 5° and 10° C while average winter temperatures 

are around 0° C. Annual precipitation varies from 530 mm to 2080 mm [30]. Vegetation 

is mostly tundra and shrubs or stunted trees.

Geology and sedimentology of Sanak and Amaknak Islands

The Aleutians are located on the edge of the North American tectonic plate and 

formed in response to the subduction of the Pacific plate [12]. The Aleutian Island arc 

originated in the Eocene [12,34,37]. Of volcanic origin and part of the “Ring of Fire”, the 

oldest known exposed rocks (basaltic lavas) are circa 37.4 ± 0.6 m. y. [12]. Sanak Island
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is located at the eastern-most part of the Aleutian chain, 55 km south of False Pass in the 

North Pacific Ocean (Figure 1.1). The bedrock geology consists of a thick Mesozoic 

flysch sequence introduced by dioritic plutons that includes dark gray sandstones and 

black shales and siltstones [3]. The soils, however, are volcanic in origin and not 

weathered from bedrock. The soils associated with most archaeological sites on Sanak 

are Typic and Dystric Cryandepts; andisols that occur in areas of volcanism [36]. Both 

soil types are well-drained and loamy with fine volcanic ash occurring on nearly level to 

rolling landscapes. They have aluminum (Al) producing organic enriched horizons that 

fix phosphorous (P), are strongly acidic, very dark, and contain a high percentage of 

organic matter. Soil samples from natural and anthropogenic soils were tested for pH on 

Sanak Island, where the natural soil mean was 5.81 and the anthropogenic mean 5.63 

(Huntley pers. comm.). Several sequences of surface horizons developed and were 

subsequently buried between periods of volcanic tephra falls. Tephras typically consist of 

black and reddish brown layers, and range from coarse to fine sandy/cindery ash (Figure 

1.2a). The cool summers, mild winters, and heavy year-round precipitation sustains 

mostly grassy tundra with some crowberry tundra on exposed hills and grass-sedge marsh 

in low-lying wet areas.

Amaknak Island, a small island on the north side of Unalaska Island, is one of the 

Fox Islands, also in the eastern Aleutians (Figure 1.1). The soils associated with 

Amaknak are Typic Cryandepts, well-drained loamy soils with repeated deposits of 

volcanic ash and buried surface horizons (see description above)[36]. The cool summers, 

mild winters, and heavy year-round precipitation sustains dwarf willows and shrubs,
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crowberry tundra and grassy tundra. The vegetation type depends on elevation, wind 

exposure, and local animal species.

Cool wet climates, like that of the North Pacific, can reduce the rates of chemical 

weathering helping to retain even more mobile anthropogenic elements in the soils. A 

previous, small, study conducted in the Aleutian Islands revealed strong anthropogenic 

soil signatures and demonstrated that the area is an ideal location for chemical analysis of 

soils [10].

Anthropogenic and biological influences on soil chemistry

Amaknak Island and Sanak Island soils and soil chemistry have been influenced 

by human-related activities for millennia, although the most profound impacts probably 

occurred within the last several hundred years. For example, the introduction of arctic 

foxes (Alopex lagopus) for the purposes of fox farming to islands of the Aleutian 

archipelago not previously colonized by foxes is believed to have changed the soil 

chemistry and plant species composition [6,22]. Fox predation decreased the populations 

of ground nesting seabirds, subsequently decreasing the amount of guano and reducing 

nutrient transport from sea to land. The resulting nutrient-impoverished soils have three 

times less P and much lower marine-derived nitrogen than soils on islands that remain 

fox-free. Plant composition shifted from mainly grasses and sedges to shrub tundra.

This change in soil chemistry could clearly affect Sanak and Amaknak islands as 

arctic foxes were introduced in the early 1900’s when fox farming in many areas of the

14
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Aleutians began. Early Russian accounts describe red/cross foxes (Vulpes vulpes) 

inhabiting Sanak and Amaknak when the Russians first explored the island in 1771 

[2,15,39] and recent archaeological excavations recovered pre-historic red fox remains 

(Betts, pers. comm.), so red foxes were indigenous to the islands. However, the numbers 

of foxes in the Aleutians were drastically reduced by the early 1800’s due to trapping 

[2,15]. Foxes were subsequently imported to various islands including the Sanak and 

Unalaska archipelagos [2], considerably increasing fox populations.

Cattle were introduced to Sanak in the late 1880’s although their numbers were 

small for the next 60 years [2], In the mid 1900’s the first commercial beef production 

started and by the 1960’s there was a large herd of nearly 500 cattle [2]. A number of 

horses were brought to the island at this time. Many feral cattle and a small herd of horses 

still roam on Sanak and the grasses are cropped short, even during the summer months 

(Figure 1.3). There are presently no cattle on Amaknak Island. The introduction of cattle 

to some Aleutian islands had a dramatic effect on plant communities and possibly also on 

soil chemical composition. Non-native plant species on Sanak now include Kentucky 

blue-grass (Poa pratensis) and dandelion (Taraxacum officinale) both of which are 

abundant (Huntley pers. comm.; Figure 1.3b) and could have been introduced with cattle 

and horse feed. Studies elsewhere show that in grazed areas there is often higher P and N 

in the soils from manure although long-term grazing and overgrazing can eventually 

lower P levels in soils [18,25,38].

15
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Materials and Methods

In order to understand what activities are represented by chemical signatures of 

soils from particular areas on a site, a database characterizing natural and anthropogenic 

soils needs to be constructed for the Alaska Peninsula and the Aleutian Islands through 

archaeological and ethnoarchaeological research. Analysis of the 953 soil samples from 

archaeological sites described in this project is the first step towards this end. Previous 

archaeological research in this area utilizing chemical characterization of soils is limited 

to a minor portion of a PhD dissertation [10]. Natural soils have been characterized by 

USGS and Department of Agriculture studies though not in any great detail for the 

geographic area under study [7,36].

Materials

Soil samples from Sanak and Amaknak Islands were collected from known 

archaeological contexts including middens, house floors and other features located 

through test pitting and area excavations. Additional samples were also collected from 

geological profiles to assess possible impacts of pedogenic processes on buried residues 

[28] and to determine the chemical composition of the natural soils. On Sanak Island 

samples were also collected by auger every meter along a transect crossing a site and 

from well-defined house pits. Samples were collected from Sister’s and Elma Islands, 

islands of the Sanak archipelago that did not have introduced species such as foxes or
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cattle (although Elma may have had foxes for a short period of time). In total 779 

samples from natural and archaeological soils were recovered from the Sanak 

archipelago, although most samples originated from 5 sites, three of which were sampled 

in one meter intervals along a transect (Figure 1.4). Supplemental soils from 19 sites were 

sampled opportunistically from particular site and soil profile locations. One hundred and 

seventy four samples were also collected from one site (UNL-050) on Amaknak Island.

Soil analysis

The well-established methodology of weak-acid element extraction of soils was 

used in this study [4,10,16,26,27,28,41], All samples were dried in an oven at 120°C for 

48 hours and were then sifted through a 2 mm geologic screen in order to remove large 

pieces of bone, charred wood, and basalt that may have been present in the sample, as 

well as any grains larger than sand. All removed materials were noted for each sample.

2.0 mg of soil were extracted at room temperature for two weeks in 20 ml of IN HC1.

The supematent was then poured off, using filters to ensure isolation from soil particles. 

The extractions were analyzed by an Agilent 7500ce Inductively Coupled Plasma-Mass 

Spectrometer (ICP-MS) for concentrations in parts per billion (ppb) of 11 elements 

[Aluminum (Al), Barium (Ba), Calcium (Ca), Iron (Fe), Potassium (K), Magnesium 

(Mg), Manganese (Mn), Phosphorous (P), Strontium (Sr), Titanium (Ti), and Zinc (Zn)]. 

The instrument was calibrated with commercially available standards and the standards 

were analyzed as a check every 10 samples. Duplicates of 100 samples were analyzed to

17
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determine long-term reproducibility (analytical precision >10 ppb for all elements except 

Fe, whose analytical precision >100 ppb).

Chronology

Radiometric samples of charcoal from archaeological middens (n = 44) indicate 

site age ranges from 4,000 cal yrs BP to 150 cal yrs BP (Table 1.2). Radiocarbon dates 

are from Beta Analytic (BETA) and the Center for Atomic Mass Spectroscopy (CAMS) 

and were calibrated using Calib5.02 [29].

Data analysis and display

All statistical analyses were computed in ‘R’. Box plots show medians 

(represented by a line or dot), quartiles (the central box) and extremes (the whiskers). As 

elemental concentrations ranged over several orders of magnitude, ppb concentrations 

were converted to base 10 logarithms for ease in analysis and visual display of data. Soils 

from known locations and features were grouped and analyzed in descriptive categories 

(Table 1.3) by discriminant function analysis (DFA) with sample group as the 

independent variable to the 11 elements. In order to evaluate the accuracy of soil 

sampling to distinguish archaeological site features and activity areas utilizing the coring 

method an initial set of 374 samples from test pits and open excavations only was

18
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analyzed using DFA and compared to the entire data set including samples taken from 

transects

Results

Chemical composition of natural and archaeological soils

Percentages of correctly classified samples changed little when comparing the 

initial 74 samples to the entire data set (Table 1.4). Concentrations of elements did not 

decrease as sites aged (Table 1.5) although the intensity of occupation in an area affects 

the concentrations of most elements (Table 1.6) with Sr and P positively correlated (r = 

0.82). There was a weak negative correlation between Ca and Sr (r = -0.41) over the last

4,500 years.

“On site” versus “off site” (see Table 1.3 for description) samples produced 

typical/distinct signatures for anthropogenic and natural soils. Consistent with other 

studies, Fe and Ti were lower on site than in natural soils but there was no discemable 

difference in Al [8,9,10,16,20,26,27,28,35,42; Figure 1.2b]. Sr and P were elevated in the 

anthropogenic soils as compared to natural soils (Table 1.6). In comparison to Elma and 

Amaknak Islands, mean P was lower overall on Sanak Island (Figure 1.5). Mean 

concentrations of K were lower on islands with cattle and foxes (Figure 1.6).

Principal component analysis (PCA) was performed on all elemental variables. 

The first component (explaining 38% of the variance) identified differences in soils
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between the Sanak archipelago and Amaknak Island (Figure 1.7), with Ba, Mn, P, Sr and 

Zn as the most important in the component. The second factor (explaining 23% of the 

variance) identified differences between natural soils and anthropogenic soils with Al,

Ba, K, Mg, Ti and Fe as the most important elements within the second component.

When means from only natural soils were calculated, very little difference was found in 

most element concentrations between the two islands, with the exception of the slight 

differences found in P and K discussed above (Figures 1.5 and 1.6).

Despite the apparent distinction in soils from the different islands, the relative 

concentrations of elements in soils from human activity areas across sites was definitively 

discemable by DFA (Table 1.4). Distinctions between anthropogenic (on site) soils 

versus natural (off site) soils are clear with 97% of “off site” and “on site” samples being 

correctly classified. The anthropogenic soil samples that were incorrectly classified are 

technically within site boundaries but represent soil layers between or below site 

occupations defined here as the “non-cultural” group. The elements that contribute most 

to the distinction between natural and anthropogenic soils are Fe, Ti, P, Sr, and Zn 

(Figure 1.2b).

House pits were easily distinguished from other “on site” soils using DFA; of 373 

house feature samples 309 were correctly identified (83% accuracy; Table 1.4). These 

samples were further subdivided to distinguish possible occupation levels, thin layers of 

middens within house pits and the berms which often form around house pit features.

DFA can classify the berms of houses versus other types of soils within a site with 90% 

accuracy. Thin layers of middens within houses and possible occupation surfaces
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(referred to here as house middens and house floors) are also distinguished by DFA, 

though defining house floors is less certain (88% and 68% accuracy, respectively).

Using a total of 246 midden samples, DFA classified midden soils with 80% 

accuracy (Table 1.4). Some of the misclassified soil samples were marginal midden 

samples often taken from below areas with midden remains and classified as middens. 

When these samples were removed 90% of middens were correctly classified (Table 1.4). 

Midden samples have elevated concentrations of P, K, Zn, Sr, Ba and Ca and slightly 

elevated levels of Mn (Table 1.6). These results are consistent with previous published 

studies utilizing chemical characterization of soils containing shell, bone and other food 

refuse (Table 1.1).

Middens containing both bone and shell were correctly classified 85% of the time 

while middens containing bone were only 64% correctly classified and about half (53%) 

of the samples from shell middens were correctly identified (Table 1.4). When the 

middens were divided into two main island groups (Amaknak and Sanak) the accuracy 

was improved overall. On Sanak Island bone middens were described with 82% 

accuracy, bone and shell middens with 94% accuracy and shell middens with 66% 

accuracy (Table 1.4). On Amaknak, bone middens were described with 82% accuracy, 

bone and shell with 85% accuracy and shell with 62% accuracy (Table 1.4). These 

results suggest that it is possible to determine composition of middens with some 

confidence within a local geographic area.
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Discussion

Previous research has linked changes in concentrations of particular chemical 

elements in soils to human activities (Table 1.1). The preliminary step in this study was 

to determine if these same patterns could be discerned in archaeological sites in different 

locations with different landscape histories using different methods of sample collection, 

and regardless of site age. In general, the results from this study are consistent with 

patterns discovered in other archaeological studies [8,9,16,17,19,20,26,27,28,35,41].

The high concentration of Sr in the archeological soils examined here is likely due 

to the incorporation of marine materials (Figure 1.2b). Hoffman [10] obtained similar 

results for Al concentrations in soils (no significant difference between natural and 

anthropogenic) analyzed from a prehistoric village site on Unimak Island, less than 60 

km distance from Sanak Island. The natural soils in the Aleutians, Typic and Dystric 

Cryandepts, characteristically have high levels of Al3+ that form strong bonds with 

phosphates. The aluminum phosphate bonds likely reduce the amount of soluble Al3+ 

leaching from the soil.

The large decrease in P discovered by Croll et al. [6] and Maron et al. [22] in 

natural soils on islands with foxes was not evident in this study (Figure 1.5), though it 

must be noted that the laboratory methods and analyses for these two studies were 

different. In fact, it is unlikely that the decreased P on Sanak is related to fox 

presence/absence. Amaknak Island, which has an indigenous fox population, has the 

highest overall P values (mean = 7.057 ± 0.43 log ppb) in natural soils while Elma Island
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(mean = 6.875 ± 0.07 log ppb), not presently inhabited by foxes, has increased 

concentrations of P when compared to Sanak, which has foxes (mean = 6.602 ± 0.21 log 

ppb) (Figure 1.5a). The increase of natural soil P from Sanak to Elma was approximately 

0.25 log ppb, less than three times as high as reported by Croll et al. [6] and Maron et al. 

[22]. Low P values from natural soils on Sanak Island are more likely due to the presence 

of cattle and the significant level of grazing that occurs across the entire island (Figure 

1.5b).

There is some export of K in grazed systems [18] and so the reduced levels of K 

in Sanak soils compared to Elma (Figure 1.6a) could be due to heavy grazing. However, 

this does not explain why Amaknak has the relative lowest amounts of K of all the 

islands. As both Amaknak and Sanak also have foxes it is possible that their presence in 

some way affects the concentration of K in soils. These differences in natural soils do not 

appear to affect the relative changes in chemical signatures of soils on archaeological 

sites.

It appears that the differences determined by PCA between islands (Figure 1.7) 

are primarily in the archaeological soils. This is not surprising as the soils collected from 

Amaknak Island were from house floors and defined pit features within houses in an open 

excavation. These were all areas of intense and long-term human activity so element 

concentrations tended to be a little elevated in comparison to overall Sanak Island 

samples collected from a variety of site and feature types (see discussion below).
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Chemical composition of site feature soils

Berms around house pit features are created during construction of semi-subterranean 

houses as dirt from the excavation was scattered around the outside of the pit [13]. 

Structural supports of driftwood or whalebone were then used as a roof frame and sod 

blocks were laid over the frames. If a house was abandoned and scavenged for structural 

supports, the berm would probably consist of the soils from sod used for roofing as well 

[13]. Therefore, house berm soils, although altered by excavation, should resemble 

natural soils more than anthropogenic ones. There are several elements (Ti, Fe, Ca, Sr,

Mg and Mn) that contributed to the distinctions of house berm soils (Table 1.6). Mean Ti 

was higher than any group of anthropogenic site soils but not quite as concentrated as 

natural site soils (Table 1.6). Fe concentration in berms was higher than in possible 

occupation layers, middens and middens within a house, and was as high as that in 

natural soils (Table 1.6). House berm samples also had slightly elevated levels of Al 

when compared to samples within house pits (Table 1.6). These chemical signatures 

demonstrate that despite being “on site” berm soils do resemble local natural soils 

confirming archaeological theories about methods of semi-subterranean house 

construction. Relatively high concentrations of P prevented misclassification of house 

berm samples as natural soils although P concentrations were slightly lower than most 

other anthropogenic soils analyzed at these sites (Table 1.6). Three elements had 

surprisingly high or low concentrations in house berm samples. Mean levels of Mg were 

higher in berm samples than in any other group analyzed in this study. Increased levels of
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Mg are associated with wood ash and bone (see Table 1.1) but only 5 house berm 

samples had any cultural materials associated with them. It is possible that refuse from 

house floors was deposited outside the house but lacked shellfish and therefore no trace 

of visible refuse remains. However, Ca and Mn concentrations (also associated with food 

refuse) in these soils were lower than any other on site soils (Table 1.6). All berm 

samples were collected from Sanak Island and Ca and Mn were lower in Sanak natural 

soils than other islands (Figure 1.6b). However, means of these two elements in berm 

samples were slightly lower than in natural soils from all islands combined, including 

Amaknak (Table 1.6).

A number of house floor samples contained food refuse and were often 

misidentifled as “middens”. The highest concentrations of mean group P and K of 

anthropogenic soils were found in soils from middens within a house and on possible 

house floors (Table 1.6). The only group of anthropogenic soils to contain higher 

concentrations of Sr than house middens and floors was the more encompassing group of 

“middens” (see Table 1.3 for group descriptions). Concentrations of Zn in soils from 

possible house floors were as high as any soil samples from midden locations (Table 1.6). 

Hoffman [10] found elevated levels of Zn on house floors and in hearths. High levels of 

Mg have been associated with fish and shell remains but house floors and middens did 

not reflect any elevated levels of Mg (Table 1.6). Ca was elevated on possible house 

floors and in house middens, even when compared to overall middens, and was as high as 

levels of Ca in shell middens (Table 1.6).
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Chemical composition of archaeological midden soils

DFA was unable to distinguish with accuracy between the three groups of 

middens (as described in Table 1.3) when all islands were included in the analysis (Table 

1.4). In a pilot study conducted on Amaknak Island, middens with more bone had 

roughly a 2:1 ratio of Ca:P while shell middens had negligable amounts of P (Misarti, 

unpub.); therefore, the expectation was to be able to distinguish between midden types. 

Analyses of middens from this study revealed a reduction in P concentration from 

midden samples with only bone relative to samples containing only shell, but did not 

have a clear distinction in Ca levels (Figure 1.8). Mg, although found to be related to 

bone and wood ash refuse in other studies, did not increase significantly in midden soils 

compared to other soil groups (Table 1.6).

Means of almost all chemical elements in midden soils differed between islands 

(Table 1.6). Differences in Ba, P and Zn between the three midden types on Amaknak 

were highly significant (single-factor ANOVA p < 0.001 for all three elements) but not 

significant (single-factor ANOVA p > 0.1 for all three elements) for middens on Sanak 

Island. These differences between islands may be due to several factors. It is possible that 

the differences reflect different species composition within the middens, different 

localized soil properties or different stages of decomposition of fauna. Only one site was 

considered from Amaknak Island while many sites, from various locations were
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considered from Sanak Island. The numerous factors involved in samples collected from 

Sanak may have mitigated the differences between midden types.

Chemical signatures of soils were different between sites that had middens and 

sites without any middens. On Sanak Island, Washwoman Creek (XFP-078), which 

contained no middens, was cored along a transect and soil samples were compared to all 

soil samples collected along a transect from two sites (XFP-057 and XFP-063), which did 

contain middens (Figure 1.4). DFA was able to distinguish all soils collected from 

Washwoman Creek when compared to soil samples collected from the two sites with 

middens with 94% accuracy. Only nine soil samples out of 137 from Washwoman Creek 

were misclassified as originating from the two sites that had midden remains. When 

compared individually all elements considered to be related to human activities (Ba, Ca,

K, Mg, Mn, Sr and Zn) were statistically different (single-factor ANOVA, p < 0.001 in 

all cases) when Washwoman Creek samples were compared to samples from XFP-057 

and XFP-063 together. In contrast, elements associated in high levels with natural soils 

had no statistical difference (Ti and Fe) or a weakly significant difference (Al, single­

factor ANOVA, p = 0.02) when soil samples from sites with middens were compared to 

Washwoman Creek. This suggests that natural soils across Sanak Island do not differ and 

are not the reason why Washwoman Creek soils were significantly different from soils at 

other sites. Instead the differences could be due to the presence of shell middens altering 

soil chemistry significantly across an entire site (not just in areas where middens are 

located) when compared to a site with no middens. An alternative hypothesis is the

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



differences are due to the human activities themselves that occurred at sites that have 

middens versus sites that do not.

Chemical composition of burial soils

Eighteen soil samples from beneath burials in a burial chamber from House 7, 

UNL-050 were analyzed as well. Ba, Mn and Sr were found in extremely high 

concentrations. P and Ca were found in concentrations equal to those found in “midden” 

groups. Concentrations of Fe were fairly low while Al levels resembled those of bone and 

shell middens and K concentrations were no different from many other groups (Table 

1.6). This is consistent with studies showing that Ca fluxes from bone into the 

surrounding soils while Fe, Al and K flux into bone [19]. Increased concentrations of Mg 

are associated with bone remains as well, however, mean Mg was lower than all other 

groups identified in this study (Table 1.6). Sr concentrations in samples of soils from 

areas beneath human burials were similar to levels in bone and shell middens, an 

expected result given the prehistoric marine-based diet. Ba and Mn in these samples had 

the highest concentrations of any group in this analysis. The reasons for this are not 

entirely clear. Houses have high concentrations of Ba and Mn, though not as high as 

those found in the soils beneath the burials. The burial chamber was a side room and part 

of the original structure so perhaps these concentrations reflect a signature more 

associated with occupation levels within a house.
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Evaluation of the utility of the core sampling technique

Taking cores on transects across sites or within and around house pits is nearly as 

accurate as taking samples from well-excavated, known areas in an archaeological site. 

There is currently little data on the length of occupation of most sites, but all sites 

sampled were villages with semi-subterranean house pits of varying size and form. 

Because the average concentrations of elements were similar across all sites, the data 

suggest that the length of occupation is not a dominant attribute effecting chemical 

signature (Table 1.5). Ethnographic studies of fish camps on the Yukon-Kuskokwim 

Delta, Alaska, confirm that fish camps only in use for one year had detectable 

anthropogenic signatures [16] so even temporary or short-term habitations can 

demonstrate a discemable change in chemical signatures.

Despite the wide range in radiocarbon-based ages of the archaeological sites used 

for this research, there does not appear to be any systematic change over time in the 

chemical composition of soils associated with human occupation. Studies of P during 

pedogenesis have shown that there are still significant amounts of acid-soluble P in soils 

even after 22,000 years [40], In the 4,500 year period encompassed by this study, site age 

does not appear to be a factor in controlling concentration of any of the chemical 

elements assessed (Figure 1.9, Table 1.5). Despite the high amount of rainfall and acidity 

of soils in the Aleutians and Lower Alaska Peninsula, it appears that pedogenic processes 

over a few thousand years do not significantly alter the concentrations of elements 

contributed to the soils by human occupation.
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There was a weak negative correlation between Ca and Sr (r = -0.41) throughout 

the 4,500 year period but there are a few time periods that are noticeably high in Ca and 

low in P and Sr (Figure 1.9). This could be due to time periods when shellfish were more 

important (increased Ca, decreased P) to diet than sea mammals (higher P and Sr and 

lower Ca). These time periods do appear to coincide with times when fewer sea mammals 

are found in archaeological middens around the northeast Pacific Rim (Misarti unpub.). 

Alternatively these differences could be due to seasonality of site occupation. If a site 

was occupied at a time of year when shellfish were the dominant diet source, the same 

trends in element concentrations would be expected.

The intensity of occupation does appear to be important in concentrating many 

elements (Table 1.6). For example, P was higher in all anthropogenic versus natural soils 

with highest concentrations found on house floors and all middens. Means for Zn, Sr, Ba, 

Ca and Mn yielded similar results. Fe, Ti and Al were lowest in areas of intense 

occupation (Table 1.6) while Sr and P were positively correlated (r = 0.82) in all the 

anthropogenic soils. UNL-50, despite being one of the oldest sites assessed, had some of 

the highest concentrations of all the elements associated with human activity (Table 1.5). 

This could be due to the fact that it was an intensely utilized site with many levels of 

human occupation and house floors.

30
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Conclusions

Archaeologists have already demonstrated the utility of chemical characterization 

of archaeological soils but the data presented here highlight the utility of using small 

diameter auger coring to collect useful samples for site characterization. Weak-acid 

multi-element extraction of samples collected with augers in combination with analysis 

of samples obtained from identified features made it possible to distinguish house pits, 

living surfaces within houses, house berms, and midden areas without the need for large 

excavations. Analysis of samples collected with an auger generated information about 

sites, such as intensity of occupation (i.e. concentrations of many chemical elements were 

higher in the soils of the highly occupied sites), despite the fact that investigations for 

Sanak Island were in an exploratory survey stage at the time the samples were collected.

Preservation of archaeological sites themselves is perhaps one of the major 

incentives to core sites rather than excavate them. Archaeology, after all, is a destructive 

science and excavation permanently damages a site and the information one can derive 

from it. Likewise, once test pits have been excavated, those areas of a site have been 

permanently disrupted. The Alaska Peninsula and the Aleutian Islands are remote, and 

with the exception of a few populated areas sites are generally not in danger of being 

removed. It would therefore be helpful and less destructive to be able to determine site 

features and activity areas without excavation.

This research has also been important in generating data on which chemical 

elements are related to various features or activity areas in the eastern Aleutians and
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western Alaska Peninsula. For example, I found an association of Ba, Zn and Sr in 

addition to the well-known connection of P and Ca with midden soils. High 

concentrations of Mn, Mg, and K were associated with house floors while high 

concentrations of K and Mg and low concentrations of Mn were associated with house 

berms. Although the cause of these associations may be as yet unknown they will still 

help identify these features in future research.

The date a site was occupied does not appear to influence chemical signatures but 

the intensity of occupation is important. It has been determined that the age of a site does 

not affect the strength of the anthropogenic chemical signatures for at least the last 4,500 

years. Many of the sterile layers between site occupations and at the base of sites have 

chemical signatures that approximate natural soils. This suggests that the elements 

associated with anthropogenic soils are not migrating far, despite the precipitation and 

well-drained quality of the site areas soils.

This data set can be used with some confidence to assist in the identification of: 1) 

site boundaries and features including middens in areas where these aspects of 

archaeological sites are not readily apparent, 2) ephemeral sites or older sites that may 

not have obvious surface features and 3) midden matrix (bone, shell or mixed). It is 

important that future research include both archaeological and experimental studies in 

order to better understand the processes involved in creating the specific signatures for 

each group discussed here.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

Figures

Figure 1.1. Map of project and island locations.
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Figure 1.2. Natural soils of Sanak Island, a. Profile of natural soils on Sanak Island with 
bands of tephras. b. Concentrations of select elements in natural (off) versus 
anthropogenic (on) soils for all sites on all islands.
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Figure 1.3. Comparison of vegetation types, a. Sister’s Island (no foxes or cattle) and b. 
Sanak Island (both foxes and cattle).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



XFP-00063

XFP-00078

Transect 
m  House Depression i\

HISteEdM
75 37.5 0 75 Meters

tV&s/i women Creek

Figure 1.4. Map of archaeological sites with transect locations. Hillside (XFP- 
063)Washwoman Creek (XFP-078), and Pauloff Harbor (XFP-057).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

9.0 _

8.5  _

& 80a
a.

7 .5  _

7.0  _

6.5  _

6.0 _

SO

Natural soils

a

Archaeological soils

a a .

- 9 .

a

Elma Sanak Amaknak Elma Sanak Amaknak

U)
ed

U)CO

Islands with Islands without
Cattle Grazing Cattle Grazing
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First Principal Component

Figure 1.7: First principal component (PCI). PCI represents differences in archaeological 
site soils between islands.
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Tables

Table 1.1: Chemical elements and related human activities

ELEMENT FOUND IN SOIL HUMAN ACTIVITY CORRELATES

High levels of P and N Bone, waste (includes organic matter), manure
High levels of N and Ca Bone
High levels of Mg Fish and bird bone, wood ash, heat treatment of rocks
High levels of K Waste, wood ash
High levels of Ca and Sr Prehistoric soil house floors
High levels of P and K Hearths
High levels of Ca and P Marine shell
High levels of P, Ca, K, and Mg Fish processing areas, Kiln areas
Low levels of Fe, Al, and K Burial soils
High levels of Mn, P, and Sr Fish processing areas
High levels of Fe, Ti, and Al Lithic production areas, natural soils
(compiled from 9,10,17,18,20,21,27,28,29,36,42)
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Table 1.2: Locations and radiocarbon dates of sites discussed in text
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Site Location (UTM) Material Laboratory # Date (BP) Cal Date (BP)
Easting Northing

XFP-31 653215.05 6036643.41 charcoal CAMS 110652 2225±35 2200-2300

XFP-34 652883.69 6036267.33 charcoal CAMS 127641 345±35 320-400

XFP-50 653947.23 6035579.29 charcoal CAMS 110654 415±45 450-520

XFP-50 charcoal CAMS 90203 1640±40 1515-1570

XFP-51 655559.15 6036034.46 charcoal CAMS 110655 2475±35 2500-2750

XFP-53 655306.98 6035690.48 charcoal CAMS 90204 1215±40 1070-1170

XFP-54 655279.29 6035339.58 charcoal BETA 194363 3410±50 3630-3760

XFP-54 charcoal CAMS 110656 3470±40 3790-3890

XFP-54 charcoal BETA 194362 3750±40 4130-4400

XFP-56 655412.09 6035298.58 charcoal CAMS 90213 920±40 950-1000

XFP-56 charcoal CAMS 110659 1005±50 900-970

XFP-56 charcoal CAMS 90206 1355±40 1260-1310

XFP-56 charcoal CAMS 110657 1435±35 1300-1350

XFP-56 charcoal CAMS 110658 1540±45 1460-1520

XFP-56 charcoal CAMS 90208 1725±40 1645-1695

XFP-57 650967.37 6036650.59 charcoal CAMS 90217 1030±40 920-980

XFP-57 charcoal CAMS 90205 1120±40 970-1060

XFP-58 648472.75 6030438.15 charcoal CAMS 110660 2070±35 2130-2160

XFP-63 649681.58 6029367.57 charcoal CAMS 110664 2090±35 2040-2200

XFP-63 charcoal CAMS 110665 3360±40 3600-3695

XFP-67 658317.25 6032675.34 charcoal CAMS 110666 2480±35 2540-2600

XFP-67 charcoal CAMS 110667 3050±30 3330-3385

XFP-78 644890.33 6031432.44 charcoal CAMS 110669 535±35 520-560

XFP-96 647771.03 6030533.12 charcoal CAMS 110675 1265±35 2090-2195

XFP-96 charcoal CAMS 110676 2115±35 2360-2400
XFP-96 charcoal CAMS 110677 2275±45 2200-2300

XFP-103 649468.69 6029522.27 charcoal CAMS 110679 3550±35 3880-3950

XFP-103 charcoal CAMS 110680 3590±35 3890-4000

XFP-110 649797.96 6029236.30 charcoal CAMS 110686 385±40 440-500

XFP-111 649728.98 6036037.79 charcoal CAMS 110688 265±35 285-320
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Table 1.2 (cont)

Site Location (UTM) Material Laboratory # Date (BP) Cal Date (BP)
XFP-111 charcoal CAMS 110687 3870±35 4290-4350

XFP-113 644455.59 6031709.56 charcoal CAMS 110689 2095±35 2090-2167

XFP-115 643824.81 6039815.21 charcoal CAMS 110690 2115±35 2090-2200

XFP-121 642574.53 6040197.55 charcoal CAMS 110693 315±35 356-430

XFP-121 642511.58 6040129.35 charcoal CAMS 110692 355±35 320-380

XFP-124 charcoal CAMS 110695 950±50 800-875

XFP-141 642449.89 6039882.26 charcoal CAMS 127708 1620±35 1510-1555

XFP-141 charcoal CAMS 127709 980±35 900-930

XFP-143 641471.65 6038718.16 charcoal CAMS 110699 2115±30 2100-2190

XFP-143 charcoal CAMS 110698 3505±40 3770-3855

XFP-146 641087.63 6038862.97 charcoal CAMS 110702 365±35 430-490

XFP-147 641290.18 6038877.93 charcoal CAMS 110703 1145±40 980-1085
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Table 1.3: Sample categories and their descriptions.

Category Description
Off Samples from natural soils outside of site boundaries
On All samples taken within site boundaries-includes non-cultural samples
Non-cultural Samples that are on-site but contain sterile layers between and at base 

of site occupation layers
Midden All midden samples-includes house midden samples
Bone Midden Midden samples containing only bone remains
Bone and 
Shell Midden

Midden samples containing bone and shellfish remains

Shell Midden Midden samples containing only shellfish remains
House All samples within visible house pits-includes house berm, house floor 

and house midden samples
House Berm Samples from visible house berms at edge of prehistoric house pits
House Floor Samples from known house occupation layers within house pit 

boundaries
House Midden Samples from thin midden layers within visible house pits
Burial Soils Samples from under and around human burials
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Table 1.4: Comparison of DFA outcomes from select soil samples from open excavations 
and test pits to samples taken from coring across archeological sites.__________________

Group Subset3 Complete Data 
Base

Group Subset3 Complete Data 
Base

On 98.8% 97% Off 1 0 0 % 97%
House 60% 83% Midden 90% 80%
House Berm 90% House Floors 6 8 %
House Midden 8 8 % Sites without 

Midden
94%

Bone and Shell 87% 85% Bone Midden 65% 64%
Midden
Shell Midden 46% 53%
Sanak Bone 82% Amaknak 82%
Middens Bone Middens
Sanak Bone and 94% Amaknak 85%
Shell Middens Bone and 

Shell Middens
Sanak Shell 6 6 % Amaknak 62%
Middens Shell Middens
“Subset is defined as samples collected from known archaeological contexts.
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Table 1.5: Means of elements from all sites sampled [ln(ppb)].
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Group Log
Al

Log
Ba

Log
Ca

Log
Fe

Log
K

Log
Mg

Log
Mn

Log
P

Log
Sr

Log
Ti

Log
Zn

UNL 50 8.21 5.94 7.10 7.59 6.28 7.22 6.93 8.18 6.45 6.93 5.96
XFP-031 8.31 5.50 6.24 8.41 6.48 7.38 5.79 7.67 6.04 7.29 5.53
XFP-034 8.35 5.45 6.33 8.47 6.49 7.38 5.78 7.61 5.99 7.34 5.31
XFP-053 8.35 5.40 6.13 8.58 6.41 7.31 5.43 8.12 6.32 7.23 5.43
XFP-057 8.36 5.74 7.26 8.37 6.42 7.34 6.78 7.26 5.64 7.27 5.71
XFP-063 8.23 5.79 7.14 8.24 6.44 7.33 6.65 7.69 5.99 7.11 5.67
XFP-067 8.27 5.74 7.39 8.43 6.50 7.41 6.62 7.65 6.07 7.10 5.76
XFP-078 8.26 5.69 7.19 8.39 6.30 7.18 6.53 7.57 5.67 7.17 5.58
XFP-096 8.21 4.89 6.07 8.45 6.38 7.43 5.59 7.67 6.36 7.12 5.16
XFP-101 8.33 5.65 6.15 8.57 6.73 7.46 5.64 7.81 6.26 7.26 5.53
XFP-103 8.21 5.92 6.88 8.31 6.44 7.40 6.30 8.11 6.61 7.05 5.80
XFP-110 7.97 5.59 6.08 8.24 6.67 7.39 5.86 8.37 6.86 6.78 5.93
XFP-111 8.18 5.53 6.14 8.47 6.74 7.25 5.79 8.06 6.35 7.18 5.64
XFP-112 7.93 5.14 5.86 8.14 6.53 7.33 5.28 7.37 5.99 6.81 5.15
XFP-113 8.16 4.94 6.33 8.44 6.49 7.29 5.67 7.72 6.51 7.28 5.55
XFP-115 8.31 5.49 6.06 8.61 6.57 7.51 5.60 7.70 6.37 7.30 5.90
XFP-116 8.19 5.24 6.27 8.47 6.63 7.43 5.79 8.04 6.61 7.28 5.76
XFP-121 8.27 6.00 6.17 8.58 6.84 7.43 5.86 8.35 6.79 7.25 6.07
XFP-124 8.37 5.98 6.15 8.65 6.46 7.27 5.46 8.35 6.56 7.36 5.67
XFP-141 8.32 5.71 6.21 8.50 6.88 7.35 5.85 8.39 6.76 7.37 5.95
XFP-142 8.38 5.56 6.16 8.52 6.78 7.38 5.81 7.70 6.05 7.29 5.82
XFP-143 8.10 5.38 5.93 8.37 6.83 7.45 5.57 8.36 6.77 6.81 5.83
XFP-146 8.18 5.19 6.10 8.39 6.87 7.24 5.30 7.32 5.71 7.22 5.38
XFP-147 8.11 5.18 5.77 8.47 7.12 7.37 5.37 7.88 6.09 6.91 5.85
XFP-050 8.22 5.82 7.04 8.21 6.81 7.25 6.64 7.87 6.07 7.05 5.72
XFP-051 8.29 6.07 6.17 8.12 6.69 7.79 5.83 7.94 6.21 7.22 5.82
XFP-054 8.09 5.65 6.93 8.05 6.25 7.19 6.51 7.01 5.71 6.93 5.46
XFP-056 8.12 5.77 7.06 8.12 6.32 7.20 6.52 7.90 6.41 7.02 5.76
XFP-058 8.04 5.68 6.11 8.06 6.49 7.46 5.43 7.80 6.44 7.01 5.67
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Table 1.6: Group means of all elements [ln(ppb)].

Group Log
Al

Log
Ba

Log
Ca

Log
Fe

Log
K

Log
Mg

Log
Mn

Log
P

Log
Sr

Log
Ti

Log
Zn

On 8.25 5.64 6.95 8.19 6.40 7.29 6.48 7.73 6.02 7.13 5.66
Off 8.28 5.50 6.82 8.34 6.38 7.28 6.27 6.67 5.49 7.20 5.47
House 8.31 5.57 6.92 8.37 6.49 7.35 6.41 7.67 5.90 7.21 5.57
House Berm 8.30 5.68 6.72 8.35 6.42 7.39 6.23 7.61 5.98 7.23 5.59
House Floor 8.23 5.91 7.04 7.84 6.38 7.26 6.80 8.07 6.33 7.02 5.86
House
Midden

8.18 5.86 7.08 7.60 6.31 7.24 6.81 8.05 6.34 6.92 5.84

Midden 8.27 5.85 6.95 7.84 6.37 7.29 6.65 8.10 6.48 6.96 5.84
Bone Midden 8.20 5.92 6.89 7.93 6.39 7.28 6.67 8.19 6.44 6.98 5.99
Bone and 
Shell Midden

8.14 5.82 7.00 7.73 6.32 7.26 6.70 8.13 6.56 6.93 5.87

Shell Midden 8.17 5.79 6.96 7.88 6.29 7.33 6.59 7.98 6.45 6.98 5.81
Non-cultural 8.31 5.63 7.01 8.35 6.40 7.29 6.44 7.46 5.75 7.22 5.56
Burial 8.17 6.05 7.10 8.21 6.38 7.17 6.91 8.19 6.53 6.97 6.01
Sanak
Midden

8.16 5.73 6.80 8.24 6.49 7.38 6.30 7.91 6.42 7.05 5.77

Amaknak
Midden

8.18 5.94 7.09 7.52 6.28 7.21 6.95 8.26 6.55 6.90 5.99
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Chapter 2 Inferring past changes in salmon abundance over the Holocene from 

stable isotope records (8!5N and 813C) of coastal Alaskan lakes, western Gulf of 

Alaska.1 

Abstract

Sediment cores were collected in 2004 from two lakes on Sanak Island, Alaska to 

determine long-term changes in numbers of returning salmon and paleoclimate 

information from nitrogen and carbon stable isotope analysis, carbon to nitrogen ratios 

and other proxies. One lake is within a sockeye salmon system, and the other is without 

salmon. These cores span the entire post-glacial period, from -16,000 cal yr BP.

15 13 *Volcanic activity in the area, as well as climate change affected both 5 N and 5 C in 

both lakes. Data suggest that after -  4,000 cal yrs BP the sedimentary 515N in 

anadromous Deep Lake becomes significantly enriched relative to the control, suggesting 

input of marine-derived nutrients (MDN) from spawning salmon. MDN and inferred 

salmon abundance is reduced around 1,000 cal yrs BP, and at highest levels during the 

Little Ice Age (700-100 cal yrs BP). The MDN fluctuations within Deep Lake sediments 

generally follow MDN from other lakes throughout Alaska. Despite high flushing rates 

and small salmon escapement numbers this research suggests the use of changes in 515N

1 Misarti N, Finney B, Maschner H. 2007. Inferring past changes in salmon abundance over the Holocene 
from stable isotope records (815N and 813C) o f coastal Alaskan lakes, western G ulf o f Alaska. Prepared for 
Limnology and Oceanography.
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is a valid method to track salmon productivity through time if there is a viable control 

lake with which to compare.
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Introduction

Fisheries research in the northeastern Pacific has become extremely important, 

specifically research on salmon due to their economic, socio-cultural and ecological 

importance to the northern Pacific-rim region. Salmon stocks respond to anthropogenic 

stresses such as commercial fishing as well as to climate change. For example, 

fluctuations in salmon stocks coinciding with climate regimes such as the Pacific Decadal 

Oscillation (PDO) have been well documented by researchers over the past 15 years 

(Ware and Thompson 1991, 2005; Beamish and Bouillon 1993; Hare and Francis 1995; 

Mantua et al. 1997; Beamish et al. 1999; Hare et al. 1999; Hare and Mantua 2000;

Mantua and Hare 2002; Mueter and Norcross 2002; Bond et al. 2003). Although these 

data have helped understand natural influences on salmon, they are of relatively short 

duration or incomplete for many stocks. Paleolimnologic studies of sockeye salmon 

(Oncorhynchus nerka) nursery lakes can trace past sockeye abundances and add to our 

comprehension of how climatic change impacts salmon.

Sediment cores were collected in 2004 from two lakes on Sanak Island, Alaska 

(Figure 2.1) as part of a larger biocomplexity project aimed at understanding the climatic, 

environmental, and human history of the island. Deep Lake (54° 25.005’ North; 162° 

40.725’ East, informal name) is within a watershed with one of the larger historical 

sockeye salmon runs on the island (ADF&G 2006), and was cored with the goal of 

reconstructing past salmon abundances within its catchment area. Swan Lake (54°

26.996’ North; 162° 43.619 East, informal name) was cored for comparison, as it is
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similar to Deep Lake in size and depth but not part of a salmon spawning system. The 

objectives of this research were 1) to reconstruct salmon/marine derived nutrient (MDN) 

fluctuations, 2 ) to attempt to develop data on climate change for the island from proxies 

in the cores, and 3) to correlate any such changes with paleoclimatic records and large 

scale environmental disruptions such as large inputs of volcanic ash. Stable carbon and

• 1 S 1 T •nitrogen isotope ( 8  N and 8  C) data and carbon to nitrogen ratios (C:N), loss on ignition 

(LOI), and magnetic susceptibility were used as environmental proxies and radiocarbon 

dating was used to provide chronological control.

Sources of 8 15N and 8 13C variability in lakes

The 8 15N signature in lake sediments is a function of nutrient source and 

subsequent fractionations associated with diagenetic alteration and nitrogen processing. 

Much of the nitrogen in lake watersheds that is ultimately delivered to lakes is derived 

from atmospheric N (8 15N of 0.0%o) (Meyers and Ishiwatari 1993; Meyers and Teranes 

2001; Leng et al. 2005). This nitrogen is recycled in soils and supplied by rivers, runoff 

and groundwater as dissolved inorganic nitrogen (DIN; mainly nitrate and ammonium), 

and dissolved organic nitrogen (DON) from plants and soils. Watershed nitrogen may 

also be supplied to sediments in particulate form from plant and/or soil material.

Ammonia has a S15N range of -10 to 0%o, while nitrates range from -4 to 4%o (Meyers 

and Ishiwatari 1993; Meyers and Teranes 2001; Leng et al. 2005). Terrestrial plants range 

from -5 to 0.5-1.0%o and aquatic plants and algae range up to 8.0%o (Meyers and
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Ishiwatari 1993; Meyers and Teranes 2001; Leng et al. 2005). Interpretations of 8 15N 

sedimentary records can be difficult due to the complicated nature of the nitrogen cycle, 

but 515N may be useful in identifying changes over time of nitrogen sources and 

availability within a lake.

In sockeye nursery lakes, 515N in sediment cores can also be utilized as a 

technique to determine long-term sockeye abundances (Finney 1998; Finney et al. 2000, 

2002). Adult sockeye obtain -99% of their body weight in the ocean and then transport 

those marine-derived nutrients (MDN) into freshwater when they return to their spawning 

grounds. Their carcasses can increase the 8 15N of the lake nutrient pool, which is 

reflected in phytoplankton and can subsequently be used to trace changes in the numbers 

of returning sockeye over time (Finney 1998). For the most part, paleolimnology has had 

success in tracing salmon fluctuations in lakes with large escapements and low flushing 

rates (Finney et al. 2000, 2002; Gregory-Eaves et al. 2003). In areas with shallower 

coastal lakes and high precipitation, such as on Sanak Island, AK, nutrient retention from 

MDN has been found to be much lower than in lakes with higher escapements and low 

flushing rates (Holtham et al. 2004). This low nutrient retention may affect the magnitude 

of S15N signatures, thus making it more difficult to interpret 8 15N trends in terms of 

salmon abundance.

8 13C in sediments can be used as a tracer for past changes in terrestrial and 

aquatic carbon cycles as the proportions of different terrestrial and lacustrine organic

1 Tmatter, in conjunction with the 8  C of DIC (dissolved inorganic carbon), largely

1 3determine the sediment 8  C (Meyers and Teranes 2001). For example, phytoplankton
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range from -47 to -26%o (Meyers and Ishiwatari 1993; Meyers and Teranes 2001; Leng et 

al. 2005). C3 plants and macrophytes can, however, overlap with the ranges for 

phytoplankton (from -32 to -22%o and -50 to -11 %o, respectively) (Meyers and Ishiwatari 

1993; Meyers and Teranes 2001). C:N can also be used to distinguish terrestrial from 

aquatic plant input into sediment organic matter (Leng et al. 2005). Organic material 

from phytoplankton generally has C:N below 10, while organic material from terrestrial 

plants has higher C:N (Meyers and Ishiwatari 1993; Meyers and Teranes 2001; Leng et 

al. 2005). If the organic material is predominantly from terrestrial vegetation, then 8 13C in 

sediments can be used to provide information on changing vegetation over time (Meyers 

and Teranes 2001). The 8 13C in sediments can be used to reconstruct past productivity 

rates if the organic matter in sediments is predominantly of aquatic origin, as higher 8 13C 

in phytoplankton corresponds to increased rates of primary productivity (Meyers and 

Teranes 2001). The positive relationship between productivity and 8 13C is due to the fact 

that organisms discriminate against heavier isotopes, but this occurs to a lesser extent 

when carbon and nitrogen are limiting. Larger phytoplankton blooms and faster cell 

growth rates (e.g. a highly productive system) can result in less fractionation during 

uptake and a draw-down of DIC concentrations, both factors leading to the 8 13C of 

phytoplankton increasing in comparison to times when there are fewer and slower 

growing phytoplankton (Laws et al. 1995).
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Site Description

The Aleutian Islands are located on the edge of the North American tectonic plate 

and formed in response to the subduction of the Pacific plate where it converges with the 

North American plate. Cool summers and mild winters with high winds and rain are 

characteristic of the climate in the Aleutians (Hunt and Stabeno 2005; Rodionov et al. 

2005). The area is dominated in the winter by the Aleutian Low, a weather system of 

extremely low average pressure that affects the eastern North Pacific, the Bering Sea and 

Sea of Okhotsk (Rodionov et al. 2005). Summertime atmospheric temperatures in the 

Aleutians are between 5° C and 10° C while average winter temperatures are around 0°

C. Annual precipitation varies from 530 mm to 2080 mm (Rodionov et al. 2005). The 

U.S. Weather Bureau stations nearest to Sanak Island are located in Cold Bay on the 

Alaska Peninsula and Unimak Island and record averages of 960 mm and 1290 mm in 

annual precipitation, respectively (Black 1977).

Sanak Island, the location of both lakes in this study, is located at the eastern most 

part of the Aleutian chain, 55 km south of False Pass in the North Pacific (Figure 2.1).

The cool summers, mild winters, and heavy year-round precipitation sustains mostly 

grassy tundra with some crowberry tundra on exposed hills and grass-sedge marsh in 

low-lying wet areas. The island is largely at low elevation, with the exception of Sanak 

Peak, and consists of small hills and low-lying areas with many small, shallow ponds and 

streams.

There is a century-long, though incomplete, record of salmon counts by species 

and bay/stream on Sanak Island (ADF&G 2006). The data suggest that in the early
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1900’s numbers of salmon returning to Sanak Island to spawn were higher than in recent 

times (Table 2.1). However, the numbers reflect total salmon counts for the entire island 

prior to 1927, and are specific for the catchment associated with Deep Lake from 1963 to 

the present. Prior to the 1900’s there are only anecdotal accounts of the numbers of fish 

returning to the Sanak area and archaeological evidence of salmon remains from many 

sites around the island. In 1771 Solov’ev, a Russian fur merchant, explored Sanak Island 

by foot and boat, and noted that there were numerous lake-fed salmon streams but fish 

counts were fairly low. Similarly a report from the Russian-American Company from 

1824 suggests that salmon numbers were much lower than nearby on the Alaska 

Peninsula (Black 1999). However, Veniaminov, a Russian cleric who lived in the 

Aleutians for 10 years from 1824-1834, described the southern portion of Sanak as 

having “relatively plentiful” numbers of returning salmon (Veniaminov 1984).

Deep Lake is small and shallow with a surface area of -0.33 km2, and a maximum 

depth o f -0.7 m. The lake most likely has a high flushing rate based on rainfall, 

watershed area and discharge observations. A stream runs from Salmon Bay through a 

chain of lakes including Deep Lake. Deep Lake was selected as the most likely to hold a 

record of past changes in MDN as it is the deepest lake in the chain and has an ancient 

fish weir at the head of its outlet stream. The lake and stream system support pink 

(Oncorhynchus gorbuscha), sockeye and in recent years an occasional run of coho 

salmon (Oncorhynchus kisutch), but abundance of all species is fairly low (Table 2.1). 

Swan Lake is located at the base of Sanak Peak and has a surface area of -  0.25 km2. It is 

also a shallow lake ( 1 . 2  m deep) with no apparent connection to a salmon stream system.
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It is entirely possible that both lakes have been affected by the introduction of 

ungulates, the subsequent introduction of two new plant species, Kentucky blue-grass 

(Poa pratensis) and dandelion (Taraxacum officinale) (Huntly pers. comm.), and the 

possible change in soil chemistry noted between islands in the Sanak archipelago with 

cattle and those without (Misarti unpub.). In the mid 1900’s the first commercial beef 

production started on Sanak and in the 1960’s a cattle ranch had a large herd of nearly 

500 cattle (Black 1999). A number of horses were brought to the island at this time.

Many cattle and a small herd of horses now roam wild on Sanak Island and grasses are 

cropped short, even during the summer months, by these free ranging ungulates.

Methods

Sediment cores were collected in the summer of 2004 using a Livingston piston 

corer from an inflatable catamaran raft. The cores were extruded in the field into rigid 

plastic tubes and wrapped in plastic wrap in order to preserve stratigraphic integrity. The 

cores span the entire post-glacial period, and were collected from a sockeye nursery lake 

(Deep Lake = 426 cm long) and a control lake (Swan Lake = 610 cm long). Both lakes 

had firm core tops allowing undisturbed recovery of the sediment water interface and 

upper sediments using the Livingston corer. Cores were kept cool in the field and quickly 

shipped to the University of Alaska Fairbanks where they were stored at ~4° C. The cores 

were split in two with one half reserved for archival purposes. Sediments were described 

in terms of general lithology, and sampled continuously at 1 cm intervals along the length
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of each core. Each sediment sample was measured for wet and dry bulk density, water 

content, LOI at 500° C and 850° C and magnetic susceptibility. Analysis of samples for 

%C, %N, 515N and 8 13C was completed in the Alaska Stable Isotope Facility, University 

of Alaska Fairbanks. Stable isotope ratios are expressed in the standard notation:

8 X (%o) = [(R sample/R standard) -  1] X 1000 

where X is 13C or 15N and R sample is 13C/12C or 15N/14N, respectively. 8 13C and 8 15N are 

expressed relative to Vienna Pee Dee Belemnite (VPDB) and atmospheric N2 (air), 

respectively. Samples were analyzed on a Finnigan DeltaplusXP IRMS and analytical 

precision, established by analysis of multiple (n = 8  per each 50 samples run) peptone

I -5 1:
standards throughout the run, was approximately ± 0.2%o for both 8  C and 8  N. Organic 

N and C concentrations were calculated as a percentage by weight while C to N molar 

ratios (C:N) were calculated by: C:N concentration x Catomic weight / N at0mic weight (or 14/12).

Flushing rates were calculated by estimating the volume of the lake (mean 

depth*lake size) and the volume of water passing through each year (annual 

precipitation* watershed size). Total volume of water passing through the system was 

calculated as: [(volume/year)/volume of the lake].

An age model was constructed using 17 calibrated atomic mass spectrometry 

(AMS) radiocarbon dates from terrestrial macrofossils found in cores from three lakes on 

Sanak. Cores were correlated by matching 13 tephras based on their visual characteristics 

and stratigraphic placement (Figure 2.2). Tephra layers were initially identified both 

visually and by magnetic susceptibility (Figure 2.3). Radiocarbon dates for all samples 

were derived from terrestrial macrofossils found in the lake cores and were analyzed at
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the Center for Atomic Mass Spectroscopy (CAMS), Lawrence Livermore National 

Laboratory. The dates were calibrated using Calib 5.02 from Queen’s University 

Belfast’s 14Chrono Centre (Reimer et al. 2004). Age-depth relationships and sediment 

accumulation rates were determined using third-order polynomial fits (r2 = 0.96) with 

AMS and interpolated tephra dates. Tephra dates were interpolated using the closest top 

and bottom bracketing AMS dates among three different cores (Figure 2.3). I adjusted 

depths in my age models by removing the thickness of four large, single-deposit ash 

accumulations in order to better estimate accumulation rates of non-tephra events, 

assuming the deposition of these relatively thick deposits was relatively instantaneous.

Results

Despite their relatively small sizes and shallow depths, these two lakes yielded a 

sediment record that appears to be continuous, and extends back to the deglaciation of 

Sanak Island. According to the age/depth model developed using the 17 calibrated 

radiocarbon ages from three lakes on Sanak Island, sediment in both Deep and Swan 

Lakes has been accumulating since -16,000 calibrated years before present (cal yrs BP) 

(Figure 2.3). Flushing rates in Deep and Swan appear to be close to 2 times the volume of 

the lakes per year.

The basal sediments in both Swan and Deep Lakes are glacial in origin, and 

consist of light brownish/gray laminated glacial mud and sand with several tephras. The 

average sedimentation rate for Swan Lake is 0.034 cm/yr, with a range 0.016 -0.1 cm/yr.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



There is a fairly steady rate of sedimentation of -0.028 cm/yr until about 6,000 cal yrs 

BP, then a much faster rate of 0.05-0.1 cm/yr until about 3,500 cal yrs BP. The younger 

sediments from 3,500 cal yrs BP to present accumulate much slower (0.016-0.025 cm/yr). 

Average sedimentation rates for Deep Lake are -0.019 cm/yr with a range of 0.013-0.066 

cm/yr. Sedimentation rates are steadily -0.04 cm/yr from deglaciation until about 10,650 

cal yrs BP when they decrease to -0.02 cm/yr. There is an increase in sedimentation rates 

at -6,500 cal yrs BP to -0.025 cm/yr and then a large decrease from -4,000 cal yrs BP to 

the present with sedimentation rates of -0.016 cm/yr.

The relatively slow rate of sedimentation of both Deep and Swan Lakes are 

punctuated with large accumulations of tephras from volcanic activity (Figures 2.2 and 

2.3). Throughout this time period there are several large volcanic events recorded in both 

lakes including one at -3620 cal yrs BP and one at -4730 cal yrs BP, with average ash 

falls of 10 cm in thickness in each lake core (Figure 2.2). Two larger volcanic events 

occurred earlier in the record, one at -7230 cal yrs BP, with an average of 40 cm of ash in 

each core and one at -10,765 cal yrs BP, approximately 35 cm thick in each core (Figure 

2.2). There are numerous other smaller volcanic events recorded by thin bands of tephras 

across the lake cores (< 1 .0  cm). None of the tephras have yet been thoroughly studied 

and therefore cannot be correlated to previously investigated volcanic events in the area.

Sediments in both lakes are light to dark olive brown organic mud, with 

occasional terrestrial and aquatic micro- and macro fossils (Munsell colors 2.5Y, 10YR, 

and 5YR family). Both lakes are heavily laminated, with numerous light gray to black 

fine to very coarse volcanic tephras. The organic matter content in both Deep and Swan
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lakes (Figure 2.3) as estimated by LOI ranges from 1-22%. In general, organic matter 

content is moderately high above the organic-poor glacial lacustrine muds at the bottom 

of each record, except for intervals dominated by volcanic tephras. Deep Lake magnetic 

susceptibility normalized to sample mass (SI units/g) ranges from 2-124 while Swan’s is 

from 3-189. The higher SI units/g reflect the volcanic ashes. Figure 2.3 shows an inverse 

relationship between LOI and SI units/g and these measurements together help identify 

the many tephras in each core.

Carbon and nitrogen in Deep Lake sediments (Table 2.3) range from 0.38% to 

7.48% and 0.01% to 0.79%, respectively. C:N ratios vary between 7.77 and 18.65 with a 

mean of 12.29 ±1.9 (Table 2.3, Figure 2.4). There are periods of notably lower C:N 

between 3,000 to 4,000 cal yrs BP, 7,500 and 8,000 cal yrs BP, as well as —11,000 cal 

yrs BP and -1 2 ,0 0 0  cal yrs BP. 513C values range between -25.5%o to -18.7%o (mean = 

-20.8%o ±1.2) with a notable decrease -1 0 ,5 0 0  to 11,000 cal yrs BP and one between 

-1 3 ,0 0 0  to 14,000 cal yrs BP (Figure 2.4). 8 15N varies between -1.2%o and 4.4%o (mean 

1.0%o ±1.0) with decreases -1 1 ,0 0 0  cal yrs BP, between 7500 cal yrs BP and 8000 cal yrs 

BP, -5 ,0 0 0  cal yrs BP, and -3 ,5 0 0  cal yrs BP (Figure 2.4).

Swan Lake sediment carbon and nitrogen (Table 2.3) ranges from 0.03% and 

5.98% and 0.0% and 0.47%, respectively. C:N ranges between 9.5 and 18.64 with a mean 

of 15.29 ±5.6 (Table 2.3, Figure 2.4). This is slightly higher than Deep Lake’s mean C:N. 

There is only one large drop in Swan Lake C:N -1 1 ,0 0 0  cal yrs BP (Figure 2.4). 513C 

values in Swan Lake sediments are fairly high, between -28.2%o to -16.9%o (mean =
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-21.24%o ±2.3) with notable decreases ~ 1 1,000 cal yrs BP and -7 ,0 0 0  cal yrs BP (Table 

2.3, Figure 2.4). 8 15N varies between -5.0%o and 3.7%o (mean -0.2%o ±1.4) with decreases 

-1 1 ,0 0 0  cal yrs BP, -7 5 0 0  cal yrs BP and -3 ,5 0 0  cal yrs BP (Figure 2.4).

Despite Swan and Deep lakes being of a similar age, size and depth, the sediments 

of the two lakes have fairly different isotopic compositions. 8 15N is significantly higher in 

Deep Lake than in Swan Lake (single-factor ANOVA, p< 0.0001). There is a difference 

in 8 13C between the two lakes as well (single factor ANOVA, p= 0.025), though it is of 

lesser significance than that of 8 15N. C:N is significantly different between the two lakes 

as well (single factor ANOVA, p< 0.0001), even if the single high point near the top of 

Swan Lake is excluded (Figure 2.4). By -4 ,0 0 0  - 3,500 cal yrs BP this deviation in 8 15N 

and C:N is statistically noticeable. During this period in time Deep Lake’s sediment 

average 8 15N is higher overall than the preceding 10,000 years (mean 1.3 ±0.5%o) while 

Swan Lake’s average sediment S15N remains the same as the preceding 10,000 years 

(-0.2 ±0.5%o) (Figure 2.3). In addition, 8 15N in sediments from Deep Lake from 3,500 cal 

yrs BP to the present has a weak significant difference when compared to older sediments 

(single-factor ANOVA, p= 0.08) while there is no statistical difference in the Swan Lake 

values when sediment 8 15N from 3,500 cal yrs BP to the present are compared to earlier 

sediments. The statistical difference between Deep Lake 8 15N becomes more pronounced 

when the last 4,000 years are compared to 4,000-8,000 cal yrs BP (single-factor 

ANOVA, p= 0.002; Table 2.3). Variability in 8 13C in Deep Lake sediments is reduced 

beginning -6 ,0 0 0  cal yrs BP, while Swan Lake 8 13C is three times as variable (Deep Lake
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variance = 0.5, Swan Lake variance = 1.7). Deep Lake trends begin to deviate from Swan 

Lake starting -6,000 cal yrs BP (Figure 2.4).

Discussion

Prior studies of lake core sediments have shown that any changes in elemental 

composition of sedimentary organic material during early diageneses are usually not 

large enough to erase the large differences in allochthonous and autochthonous matter 

(Meyers and Ishiwatari 1993; Meyers and Teranes 2001). There is no systematic 

downcore decrease in %N and %C of either lake, which suggests little diagenetic change 

in either element. In fact, %C and %N show a small overall decline over the Holocene. 

The mean %N and %C in Deep and Swan lakes, though similar, are different enough to 

result in significant differences in C:N between the lakes. The lower C:N in Deep Lake 

might suggest relatively higher lake productivity, or lower terrestrial input. The organic 

carbon content in both lakes is more than 1%, which indicates that C:N values should be 

a reliable indicator of the organic matter source for both lakes; i.e. that most of the 

nitrogen is in particulate organic matter (Meyers and Teranes 2001).

Both lakes have fairly low 8 15N, though as discussed Deep Lake has higher 

overall mean S15N than Swan Lake. The overall low values of 8 15N are most likely due to 

high flushing rates. Though no limnological studies have been conducted on these small 

island lakes, they are relatively shallow and annual precipitation is high, hencr the 

relatively high flushing rates. Stockner (1987) found that coastal lakes, specifically those
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along the Northeast Pacific, tended to be fast-flushing and they experienced maximum 

water input (and therefore nutrient loads from fluvial input) in the winter when water 

temperatures, column stability, and light availability are low. Therefore lakes such as 

those on Sanak Island experience their greatest input of nutrients at a time when algae, 

phytoplankton, and zooplankton are less able to take advantage of that availability. Since 

flushing rates are so high and water column stability low during winter months the 

nutrients are simply not retained in the system (Cederholm et al. 1989; Kline et al. 1993; 

Bilby et al. 1998; Scharf 1999; Holtham et al. 2004). Coastal lakes can therefore be 

phosphorous (P) limited, which limits primary productivity. If P is limiting primary 

productivity, then the nitrogen pool may be large relative to biological uptake and 

nitrogen isotope fractionation would be high, lowering 8 15N values in organisms within 

coastal lake systems. In previous paleolimnology studies of MDN, lakes with low 

flushing rates and very high escapement densities have 515N values from 4.0%o - 9.0%o 

depending on their location, while control lakes averaged between 1.0%o - 4.0%o (Finney 

et al. 2000, 2002). In comparison to these lakes, Deep Lake has a very low escapement 

density (Table 2.1) and very high flushing rates. This suggests that Deep Lake is similar 

to the oligotrophic lakes with low nitrogen levels in coastal British Columbia discussed 

by Holtham et al. (2004). In fact, based on the historical escapement reported by ADF&G 

(2006) and the relationship between sedimentary 8 15N and escapement/lake area shown 

by Finney et al. (2000; Figure 2.2C) the 8 15N level of Deep Lake is not unexpected for a 

sockeye nursery lake of its characteristics. Further, the relative high 8 15N in Deep Lake 

compared to Swan Lake (>1.0%o), is consistent with input of MDN.
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13 13There is a smaller statistical difference in 8  C between the lakes. Since 8  C is 

associated with the terrestrial input of lakes as well as the productivity (Meyers and 

Ishiwatari 1993; Meyers and Teranes 2001; Leng et al. 2005), this difference is consistent 

with the C:N and 8 15N data.

C:N in both Deep and Swan lakes is relatively low (with the exception of two 

peaks in Swan Lake). Lacustrine algae generally have C:N values between 4-10, while 

C3 terrestrial (or vascular) plants, such as those growing on Sanak Island, can range 

anywhere from 20 and higher (Meyers and Teranes 2001). The means of both lakes 

(Deep Lake = 12 and Swan Lake = 15) suggest a mix of algal and terrestrial inputs, 

which is common for many lakes (Meyers and Teranes 2001; Talbot 2001). In general, 

times of low 8 15N correspond with peaks of C:N in Deep Lake while this occurs to a 

lesser degree in Swan Lake (Figure 2.4). This could correspond to periods of high 

terrestrial input (Leng et al. 2005; Talbot 2001). However, there is no corresponding 

decrease or increase in 8 13C when C:N increases in either lake. It is possible that C:N 

changes in Deep Lake after -6,000 cal yrs BP correspond to an increase or decrease in 

MDN.

Changes in proxy data through time

In utilizing the proxy data to reconstruct salmon abundance over time, I consider 

only the Holocene, since comparisons are best between entities in a similar 

environmental state. Earlier portions of the record are complicated by a landscape
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adjusting to deglaciation, fairly different vegetation regimes (Misarti et al. 2007) and 

sediment infilling of the lake basins. The ontogeny of lakes is governed by many 

mechanisms and past productivity of a lake can be higher or lower than present day as 

they respond to changing climates, landscape developments and nutrient inputs. For 

example, during early post-glacial periods, accumulation rates of N and P are commonly 

high (Wetzel, 1983) as is reflected in the earlier portion of Deep and Swan Lakes records. 

Furthermore, in shallow lake basins where sedimentation has reduced water depths such 

as those of Swan and Deep Lakes, rates of lake ontogeny can greatly accelerate. Over 

time the origin of organic matter itself changes (i.e. between terrestrial and aquatic). As 

the depth of the lake decreases, the input from terrestrial/littoral plants increases, 

changing the organic chemistry of the lake. For all of the above reasons I will discuss 

only the last 6 , 0 0 0  years in detail.

The two lakes have corresponding changes over time in trends in sedimentation 

rates. Both Swan and Deep lake sedimentation rates accelerate at -6,500 cal yrs BP but 

slow again -4,000 - 3,500 cal yrs BP, shortly after the start of Neoglacial. These rates are 

independent of volcanic activity, which causes short peaks in sedimentation as larger ash 

layers are laid down over short periods of time.

Evidence suggests that volcanism can affect both Deep and Swan Lakes in terms 

of productivity. For instance, there is a drop in 8 15N immediately following each large 

ash layer in both lakes. Most volcanic layers are relatively thin (<1.0 cm) and do not 

appear to affect 8 15N to a large degree, but the four large tephra layers discussed in the 

results (each > 10.0 cm) do impact 8 15N signatures (Figure 2.4). This suggests that one of
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the primary reasons for steep decreases in productivity of both lakes is due to volcanic 

activity. There is a large reduction in 8 13C and %C following large layers of ash in the 

lake cores as well (Figure 2.4), which may be the result of a destabilization of the 

landscape and a greater input of terrestrial organic matter or possibly a decrease in 

photosynthesis resulting from a decrease in light intensity associated with volcanic 

events.

There are historic accounts of a two year period from 1824-1826 AD which saw 

fairly high volcanic activity along the Alaska Peninsula and eastern Aleutians, with many 

eruptions that disrupted daily life (Black 1977; Veniaminov 1984; Khlebnikov 1994; 

Black 1999). One specific volcanic eruption in October of 1826 obscured the sun for 8  

days (Black 1999) and left ash coating Sanak and its surrounding islands almost two feet 

thick (Khlebnikov 1994). According to Russian-American accounts, people had irritated 

eyes and throats for weeks afterward and introduced domestic animals, such as pigs, 

which had previously flourished on nearby islands were found dead supposedly from the 

ash (Veniaminov 1984; Khlebnikov 1994; Black 1999). Caribou herds decreased on the 

lower Alaska Peninsula as well and it was believed they moved farther up the peninsula 

in order to avoid the ash from the 1826 eruption (Veniaminov 1984). Streams ran with 

ash/mud for months after this event (Khlebnikov 1994; Black 1999), yet neither lake core 

studied showed a thick layer of ash from this time period. This suggests that the four, 

much larger, pyroclastic events recorded in the lake cores must have had a devastating 

impact on both terrestrial and aquatic local environments that is reflected in the decreased 

productivity of both lakes.
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Climate change also appears to influence Deep and Swan Lakes. There is an 

increase of 8 15N in Deep and Swan Lake at the onset of the Neoglacial (-4,000 cal yrs 

BP) which was discussed above. There is a further 515N increase in Deep Lake as climate 

changes towards the cooler temperatures of the Little Ice Age (LIA). Interestingly, there 

is a decrease in 515N during the Medieval Warm Period (MWP) in the sediments of Deep 

Lake while 515N in Swan Lake increases at this time (Figures 2.5 and 2.6). More than 

likely this difference is due to a decrease in MDN in Deep Lake as is seen in other lakes 

in Alaska during the MWP (Finney et al. 2000, 2002).

Although much of the history of both 515N and S13C in the lake cores have similar 

trends for about 10,000 years (Figure 2.4), the traits begin to diverge -6,000 cal yrs BP 

(Figures 2.5 and 2.6). Starting a little before 6,000 cal yrs BP, there was a change in 

climate towards moister conditions indicated by advancing Alaskan glaciers (Calkin et al.

2001) and changes in pollen analyzed from cores in Cold Bay Alaska, less than 50 km 

from Sanak Island (Jordan and Krumhardt 2003). Coastal erosion data in northern Alaska 

also show, an increase in storminess around this time as well (Mason and Jordan 1993; 

Jordan and Mason 1999). At this time 515N first started to be systematically higher in 

Deep Lake. By 3,500 cal yrs BP average 6 15N in Deep Lake sediments was higher overall 

and significantly different than the preceding 10,000 years, while Swan Lake’s was not 

altered. This suggests a further increase in MDN in Deep Lake after the start of the 

Neoglacial, a trend that is also seen in Iliamna Lake, on the Alaska Peninsula and Karluk 

Lake on Kodiak Island (Finney, pers. comm.). After 3,500 cal yrs BP Deep Lake has 

trends in the 8 15N of its sediments (Figure 2.5) that are recorded in the sediments of other
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Alaskan lakes with MDN. There is an overall increase in MDN in lakes around Alaska 

after the start of the Neoglacial, a period of cooler air temperatures, increased storminess 

and advancing glacial ice (Bradley 1999; Calkin et al. 2001; Finney et al. 2000, 2002) 

that is mirrored in Deep Lake sediments (Figure 2.5).

Around 1,000-1,200 cal yrs BP, within the MWP when climate was warmer and 

drier than now in many parts of the Northern Hemisphere (Stine 1994; Bradley 1999; 

Calkin et al. 2001; Jones et al. 2001; Esper et al. 2002; MacDonald and Case 2005), there 

was a decrease in 5I5N in sediments from lakes with salmon runs deriving from both the 

Bering Sea and the northeastern Pacific (Finney et al. 2000, 2002; Finney pers. comm.). 

Deep Lake also had a slight decrease in 515N of its sediments at this time (Figures 2.5 and 

2.6). These same Alaskan lakes with MDN had an increase in 8 15N in sediments around 

the time of the LIA, a period of cooler, wetter climate -700-150 cal yrs BP (Bradley 

1999; Finney et al. 2000, 2002; Roberts 2004) as did Deep Lake (Figure 2.3). It appears 

that sockeye began to spawn in the Deep Lake watershed in sizeable numbers relative to 

the N mass balance by -6,000 cal yrs BP, but numbers of returning salmon must have 

further increased -3,500 - 4,000 cal yrs BP as seen in the statistical increase in 8 15N and 

(Figures 2.5 and 2.6, Table 2.4).

Swan Lake, without the influence of MDN, had little significant change over the 

last 6,000 years (Table 2.4). It is possible that changing amounts of precipitation, wind 

and water temperatures affected Swan Lake 8 15N and 8 1 3C, and such trends were 

obscured in Deep Lake due to additional input from MDN. For example, while Deep 

Lake 8 15N slowly decreased toward the height of the MWP, Swan Lake’s 8 15N slowly
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increased (Figures 2.5 and 2.6). Perhaps warmer water temperatures and less precipitation 

increased phytoplankton productivity in Swan Lake, thereby increasing its 515N. As 

productivity increased in Swan Lake, DIN would have been drawn down and 

phytoplankton would have taken up more 8 15N, thereby raising the 8 15N value within the 

food web and eventually the sediments. In such a shallow lake it is unlikely that light 

would be a limiting factor unless wind action increased to the point that suspended 

particulate matter decreased light availability. This could explain the negative 

relationship in 8 15N seen in Swan Lake versus Deep Lake after 6,000 cal yrs BP. This is 

speculative as the changes are less than l%o.

The C:N of Deep Lake supports this hypothesis as well. Starting at -6,000 cal yrs 

BP the C:N ratio began to decrease, reflecting greater nitrogen input from aquatic sources 

(Figure 2.5). There was a noticeable increase -1,500 cal yrs BP in Deep Lake’s C:N, 

possibly reflecting smaller numbers of returning sockeye (Figure 2.4) leading up to the 

MWP. Another decrease in C:N occurred as the colder and wetter conditions that 

culminated in the LI A began. Swan Lake C:N, on the other hand, did not have a similar 

trend (Figure 2.4).

Conclusion

My results show relatively early deglaciation in this region, and thus 

paleolimnologic records of past environmental change cover the period from about 

-16,000 BP to present. Deglaciation on Sanak Island began earlier than on the nearby
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Alaska Peninsula (Jordan et al. 2005). Although small and shallow, sediments from Deep 

and Swan Lakes provide complete post-glacial records of regional volcanic activity and 

lake productivity. Changes in sedimentation rates were often associated with large, well- 

documented climate changes, as were stable isotope values of both carbon and nitrogen. 

For example, primary production in Swan Lake appears to have increased during periods 

of warmer atmospheric temperatures and decreased during colder climatic periods.

Despite high flushing rates and small historic salmon escapement numbers, this 

research suggests that fluctuations in 8 15N can infer salmon productivity through time if 

corresponding data from a viable control lake are available for comparison. In the case of 

anadromous Deep Lake, enrichment in 515N relative to Swan Lake after -6,000 cal yrs 

BP may suggest the development of a sockeye salmon return sufficient to impact nitrogen 

isotopic mass balance. The data suggest that -3,500 cal yrs BP, the salmon returns 

significantly increased and that there was a decline in salmon returns -1,000 cal yrs BP, a 

period associated with regional climate anomalies during the MWP. Salmon returns 

appeared to reach maximum levels during the LIA. These changes in salmon returns 

inferred by MDN generally correlate with well-known periods of climate change, and 

other salmon reconstructions for the North Pacific.
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Figure 2.1: Location of Sanak Island and the study lakes.
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Figure 2.2: Depth, thickness and correlations of tephras between Deep and Swan Lakes.
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Figure 2.3: Downcore plots of loss on ignition, magnetic susceptibility and calibrated 
ages based on radiocarbon dates and estimated tephra dates (Tables 2.2 and 2.3).
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Figure 2.5: Detail of 815N records of the last 6,500 years in Deep and Swan Lakes. 
Horizontal dashed lines represent periods of major climate transitions in this region.
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Figure 2.6: Differences in 815N in Deep versus Swan Lakes over the past 10,000 years. 
S15N data in both lakes were interpolated to every 25 years in the calculations of 515N 
differences.
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Tables

Table 2.1: Escapement data from Salmon Bay, Sanak Island, AK. Numbers from 1911 to 
1930 are an island total while those from 1963 represent only Salmon Bay, its tributaries 
and Deep Lake (Rich and Ball 1930; ADF&G 2006).

Location Year Survey Type Coho Chum Pink King Red

All Bays 1911 Catch-beach seine 25232 46067
All Bays 1912 Catch-beach seine 1854 10700 23592
All Bays 1914 Catch-beach seine 46004
All Bays 1915 Catch-beach seine 30677
All Bays 1917 Catch-beach seine 3147 319 22626
All Bays 1920 Catch-beach seine 132 8283
All Bays 1922 Catch-beach seine 99 19857
All Bays 1923 Catch-beach seine 2209 10012
All Bays 1924 Catch-beach seine 1854 5427
All Bays 1927 Catch-beach seine 44 18 736
Salmon Bay 1963 Aerial survey 6000
Salmon Bay 1985 Aerial survey 2000 6200
Salmon Bay 1986 Aerial survey 1000 2700
Salmon Bay 1990 Aerial survey 4000
Salmon Bay 1995 Aerial survey 3200 600
Salmon Bay 1996 Aerial survey 200
Salmon Bay 2001 Aerial survey 1000 2800 2600
Salmon Bay 2002 Aerial survey 3000 2500
Salmon Bay 2003 Aerial survey 2500 5000 2900
Salmon Bay 2004 Aerial survey 1700 1500 6000
Salmon Bay 2005 Aerial survey 4700 1800
Salmon Bay 2006 Aerial survey 700
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Table 2.2: Radiocarbon dates of terrestrial plant macrofossils in lake cores from Sanak
Island.

Lake Depth 
(cm below surface)

CAMS 
Lab ID

Age (BP) Age 
(cal yrs BP)

Swan Lake 9 124453 265±35 280-330
Swan Lake 48.5 124452 2295±35 2360-2400
Swan Lake 81 124454 3045±35 3275
Swan Lake 115 127196 3385±40 3630-3700
Swan Lake 173.5 N75223 3995±35 4460-4590
Swan Lake 219 124455 4420±35 3000-3100
Swan Lake 495 127197 10760±40 12750-12920
Swan Lake 533 111108 11900±60 13680-13970
Sanak Peak Lake 188 111103 1755±45 1700-1720
Sanak Peak Lake 292 111104 2400±40 2400-2520
Sanak Peak Lake 332 111105 3025±50 3130-3410
Sanak Peak Lake 504 111106 5840±60 6650-6790
Sanak Peak Lake 777 111107 9690±110 11120-11275
Sanak Peak Lake 803 115524 11810±70 13820-13650
Deep Lake 280 115525 9850±60 11200-11320
Deep Lake 376 115582 12070±55 13850-13990
Deep Lake 408 115526 13080±80 15190-15740
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Table 2.3: Estimated ages of volcanic events correlated between lake cores.
Volcanic Event Tephra Numher Age (cal yrs BP)
Brown TI 442
Flesh T2 1237
Unknown 2 T3 1712
Green T4 3586
Purple 1 T5 4960
Flesh 2 T6 6032
White (orange sandy) T7 6825
Lapilli T8 10716
Green 2 T9 11005
Orange T10 11201
Grey T il 12404
Black T12 13010
Yellow T13 15773
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Table 2.4: Means and SD of nitrogen and carbon of Deep and Swan Lakes over the 
entire record, and selected time periods (cal yrs BP).

Proxy Deep Lake 
Average

Deep Lake 
0-4,000

Deep Lake 
4,000-8,000

Deep Lake 
8,000-12,000

Swan Lake 
Average

Swan Lake 
0-4,000

Swan Lake 
4,000-8,000

Swan Lake 
8,000-12,000

6lSN (%o) l.O il.O 1.1±0.6 0.7±0.7 1.4± 1.3 -0.2± 1.4 -0.3±0.6 -0.2± 1.0 1.1± 1.3
813C (%«) -20.8± 1.2 -21.6±0.6 -20.4±0.7 -20.2± 1.1 -21.2±2.3 -21.2± 1.3 -20.8± 1.5 -21.5±2.1
C:N 12.3± 1.9 12.1± 1.6 13.6± 1.9 11.5±0.9 15.3±5.6 14.8±3.1 13.9±0.9 13.0± 1.4
%N 0.3±0.2 0.2±0.1 0.3±0.1 0.4±0.2 0.3±0.2 0.2± 0.1 0.3±0.1 0.3±0.1
%C 2.9± 1.6 1.7± 1.0 2.9±0.9 4.3± 1.8 3.1± 1.8 2.7± 1.7 3.9± 1.6 4.0± 1.5

ooLh
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Chapter 3 Changes in Northeast Pacific marine ecosystems over 4,500 years: 

Evidence from stable isotope analysis of bone collagen from archaeological 

middens.1 

Abstract

1 C t "2
Stable isotope analysis of nitrogen and carbon (8 N and 5 C) of bone collagen from 

coastal archaeological middens has the potential to yield information on food web 

dynamics and ocean productivity through time. I investigated changes in the stable 

nitrogen and carbon isotope composition of six marine species over the past 4,500 years. 

These species include Steller sea lions (Eumetopias jubata), Harbor seals (Phoca 

vitulina), Northern fur seals (Callorhinus ursinus), sea otter (Enhydra lutris), Pacific cod 

(Gadus macrocephalus) and sockeye salmon (Oncorhynchus nerka). Samples were 

collected from archaeological middens on Sanak Island located on the eastern edge of the 

Aleutian archipelago in the eastern North Pacific Gulf, Alaska. Of the marine mammals 

sampled for this study the sea otter had the highest mean 813C (-11.9 ±  0.7%o) and lowest 

S15N (14.5 ±  1.4%o), while Northern fur seals had the lowest 813C (-13.6 ± 1.4%o) and 

Steller sea lions had the highest 815N (18.4 ± 1.4%o). Cod isotope ratios demonstrate the 

demersal, near shore habitat (-12.5 ± 0.9%o 513C, 16.1 ±  1.4%o S15N) while salmon 

isotope ratios are consistent with an open ocean habitat and lower trophic level signature

1 Misarti N, Finney B, Maschner H, and M Wooller. 2007. Changes in Northeast Pacific marine ecosystems 
over 4,500 years: Evidence from stable isotope analysis o f  bone collagen from archaeological middens. 
Prepared for Oecologia.
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(-15.2 ±  1.4%o 8 13C, 11.5 ±  1.7%o 8 15N). Salmon had a significant difference in 813C over 

six prehistoric time periods while otters had a difference in S15N for the same six time 

periods. Mean 813C of modem animals is significantly lower than prehistoric animals, 

possibly due to a decrease in productivity in the Gulf of Alaska, and suggests that our 

current understanding of twentieth century North Pacific climate regimes may not be 

useful analogs of marine ecosystems beyond the last 200 years. Correlations of 815N and

138 C were negative for all species with the exceptions of salmon before -1 ,0 0 0  calendar 

years before present (cal yrs BP). These patterns changed after -1 ,0 0 0  cal yrs BP. 

Although it appears that 815N and 813C of species that inhabit different water bodies have 

reacted to climate change in different ways, the overall structure of the food web in this 

portion of the Northeast Pacific has remained relatively unchanged for the last 4,500  

years.
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Introduction

Historical increases and decreases in both pelagic and anadromous fish have been 

linked to changes in North Pacific climate (Ware and Thomson 1991; Hollowed and 

Wooster 1992; Beamish and Bouillon 1993; Francis and Hare 1994; Hare and Francis 

1995; Roemmich and McGowan 1995; Welch et al. 1998; Mantua 2004). These changes 

in climate can also affect other aspects of marine ecosystems, such as species 

composition, abundance and geographic distribution of shellfish, fish and sea mammals 

(Venrick et al. 1987; Baumgartner et al. 1992; Francis and Hare 1994; Ware 1995; 

Anderson and Piatt 1999; Hare and Mantua 2000; Hirons et al. 2001; Benson and Trites 

2002). These well-studied patterns can be used as analogs to explain past changes. For 

instance, the Pacific Decadal Oscillation (PDO) has characterized the climatic states of 

the North Pacific for most of the last century and has alternated between two ocean 

climate modes, often referred to as regimes, every ~20 - 30 years (Mantua and Hare 

2002). Alternate states (positive or negative) of the PDO affect sea surface temperature 

(SST), sea level pressure (SLP), the strength of the Aleutian Low (AL), wind strength, 

storm intensity, mixed layer depth and ocean current patterns (Overland et al. 1999). A 

warm PDO phase appears to favor production of salmon in the Gulf of Alaska (GOA), 

the Aleutian Islands and Bering Sea but is detrimental to salmon production in the 

California Currents system on the Northwest Coast (Beamish and Bouillon 1993; Francis 

and Hare 1994; Beamish et al. 1999; Hare et al. 1999; Mueter et al. 2002). Moreover, 

gadids and other flatfish increased in numbers in the GOA and Bering Sea during these
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years while shrimp and capelin decreased (Beamish 1993; Botsford et al. 1997; Anderson 

and Piatt 1999). Zooplankton increased in the GOA but decreased in the Bering Sea, 

along British Columbia and the West Coast (Brodeur and Ware 1992; Francis and Hare 

1994, Roemmich and McGowan 1995; Sugimoto and Tadokoro 1998; Hare and Mantua 

2000; Overland and Stabeno 2004). Pinnipeds, including Steller sea lions (Eumetopias 

jubata, SSL), Harbor seals (Phoca vitulina, HS), and Northern fur seals (Callorhinus 

ursinus, NFS), have declined in the western GOA and the Bering Sea since the 1980’s 

(Francis et al. 1998; Gentry 1998; Hirons et al. 2001; Wynne and Foy 2002; Stabeno et 

al. 2005). Many possible hypotheses have been proposed to explain these changes 

including food or nutrient limitations related to climatic change that occurred when gadid 

fish became the dominant fishes in these areas (Trites 1992; Anderson and Piatt 1999; 

Francis et al. 1998). Alternatively, these declines may have resulted from increased 

predation by killer whales (Jackson et al. 2001; Springer et al. 2003).

An example of the impact of climate on the marine ecosystems of the North 

Pacific took place during the winter of 1998/99. During this time a different atmospheric 

pattern (sometimes referred to as the Victoria Pattern) altered storm and SST trends in the 

eastern North Pacific (Benson and Trites 2002). The central Pacific Ocean SST north and 

west of Hawaii increased while there were cooler conditions from Vancouver Island to 

the Baja Peninsula. The GOA and Bering Sea continued to have warmer SST than during 

a negative PDO (Bond et al. 2003). In response to these changes California Current 

zooplankton doubled in biomass from previous years and were dominated by cold-water 

species as opposed to the warm water species seen previously, and anchovy, chinook and
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coho stocks increased along the west coast of the continental US (Bond et al. 2003).

Some groundfish stocks in this region also increased, while in the GOA herring stayed 

low in numbers and groundfish increased (Mueter 2004).

The different climate-ecosystem patterns, such as those seen in the PDO versus 

the Victoria Pattern, can be used to asses paleoecological data and characterize the 

occurrence and persistence of these patterns over longer time scales. Studies of past 

marine ecosystems and their responses to environmental changes in the North Pacific 

have primarily been based on historical data, which generally cover fewer than 100 years, 

and have focused primarily on decadal regime shifts. Only a few researchers have 

investigated past, long-term changes in these ecosystems employing various sets of proxy 

data, including stable isotopes (Burton et al. 2002; Causey et al. 2005; Maschner 2000; 

Finney et al. 2000, 2002).

Stable isotope analysis can often enhance more conventional studies of diet in 

marine ecosystems, as stable isotopic information can integrate diet over longer time 

periods compared to stomach content or observational data. More importantly for this 

study, dietary information on past ecosystems is recorded in the stable isotope ratios of 

carbon and nitrogen (513C and 515N respectively) in bone (Schoeninger and DeNiro 

1984), and can illuminate past trophic dynamics. In general, stable isotopic variations 

between organisms reflect different feeding ecologies, trophic positions and the isotopic 

composition of a food web’s base (Fry and Sherr 1984). Therefore an organism’s tissue 

has a stable isotopic composition that can be used to trace dietary inputs (DeNiro and 

Epstein 1981; Schoeninger and DeNiro 1984; Doucett et al. 1996; Hobson et al. 1996,

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1997; Hirons et al. 2001). 815N increases in marine food webs by approximately 3%o per 

trophic level while 813C increases by an average of 2%o from primary to secondary 

producers and from 0.5%o to l%o in higher trophic levels (Michener and Schell 1994; Post

2002). This has allowed researchers to place an organism relative to others in a trophic 

system (Wada et al. 1991). If an organism switches trophic level it can be detected by a 

change in 815N. In addition to trophic position, variations in 513C in food webs can be 

related to geography (Schell 2000), possible fluctuations in primary productivity (Hirons 

et al. 2001) that are linked to climate shifts (Francis and Hare 1994), and to changing 

carbon inputs linked to events unrelated to productivity (McRoy et al. 2004).

Phytoplankton discriminate against heavier isotopes, but this changes when 

carbon and nitrogen are less available in a system. Since nitrogen is one of the limiting 

factors of productivity in many of the world’s oceans, there will be less nitrate (or 

dissolved inorganic nitrogen) in a less productive system. Therefore, 815N should 

theoretically increase within organisms of a less productive marine system as more 

isotopically heavy nitrogen is taken up into the food web and the number of trophic levels 

increases as nitrogen gets recycled within the system. For carbon isotopes, the opposite 

is theoretically true. Larger phytoplankton blooms and faster cell growth rates (e.g. a 

highly productive system such as upwelling nearshore systems) draw down DIC

i -j
concentrations and phytoplankton 8 C becomes relatively higher (Laws et al. 1995). 

Therefore, 815N and 8I3C should be inversely related as productivity increases or 

decreases over time.
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However, both climate and local oceanographic conditions can also influence 

815N and 813C changes over time in an ecosystem. For example, during times when the 

AL is particularly strong it affects the GOA gyre (a HNLC body of water, limited by 

iron) with increased upwelling and Ekman transport and decreased SST (Overland et al. 

1999; Hare and Mantua 2000). The water column is less stable and nutrients and 

phytoplankton, which are mixed throughout the upper layers, are carried out of the gyre 

to the shelf so primary productivity in the gyre could be very low due. Therefore, both 

15N and 13C would be depleted in phytoplankton. In times of less intense ALs (reduced 

upwelling and Ekman transport) blooms, though still limited, would increase in the gyre 

due to warmer waters and some availability of nutrients (e.g. iron). If plant cell growth

13 15was fast enough, 5 C in phytoplankton may increase (per Laws et al. 1995) while 8 N 

may remain depleted.

During times when the AL is strong, GOA shelf waters experience increased 

vertical mixing in the winter (thought to determine spring nutrient levels) and increased 

SSTs. Increased precipitation increases streamflow and decreases surface salinity 

(Gargett 1997; Stabeno et al. 2005). Increased SST and decreased surface salinity 

increase stability of stratification. These factors combined tend to favor larger 

phytoplankton blooms on the shelf (Ware and Thompson 1991; Gargett 1997), which 

may cause carbon to be drawn down by quick plant cell growth but not nitrogen (which is 

not limiting for coastal GOA waters). However, if the water stability increased enough to 

limit nitrogen, or if a bloom was large enough to draw nutrients down, then both 815N and

13 •8 C would be expected to increase in phytoplankton. Depending on local conditions
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(oceanographic, climate and seasonal) 815N and 813C in the food web may not necessarily 

have an inverse relationship.

Stable isotopic signatures can be preserved in a range of animal tissues and 

compounds. Bone is often well preserved in archaeological middens permitting 

researchers to compare isotopic signatures over hundreds to thousands of years. Bone 

collagen is well suited for this type of study as it has a slower turnover rate relative to 

muscle tissue, organs and blood, reflecting a longer period in an organism’s lifetime 

(Ambrose and Norr 1993; Lambert and Grape 1993), and allowing researchers to 

compare organisms’ overall trophic status (Schoeninger and DeNiro 1984). This point is 

important when dealing with archaeological remains of sea mammals for several reasons. 

First, with the exception of HS, it is often difficult to age an animal beyond broad 

categories such as “juvenile” or “adult”. Second, most sea mammal species’ skeletal 

remains have not been sufficiently studied to be able to determine sex from different 

elements (although with some sexually dimorphic species adult males can be identified 

by the sheer size of elements). Third, despite knowing the exact location of an 

archaeological midden one cannot control for the vast areas over which many sea 

mammals forage throughout their life times (see below). Bone collagen integrates many 

years as well as geographic foraging areas and so allows a comparison of average isotope

ic  n
values over many hundreds of years. This study uses 8 N and 8 C of bone collagen 

from several marine species recovered from archaeological middens to discuss the 

persistence of 20th century climate regimes, effects of climate on different marine 

ecosystems, and individual species’ reactions to these changes over the past 4,500 years.
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Study site and faunal overview

The site of the research presented here, Sanak Island, is located at the eastern 

most part of the Aleutian chain, 40 km south of the Alaska Peninsula in the North Pacific 

and is situated on the outer continental shelf, which is fairly broad in this region (Figure 

3.1). Cool summers and mild winters with high winds and rain are characteristic of the 

climate in this region (Hunt and Stabeno 2005; Rodionov et al. 2005). The area is 

dominated in the winter by the AL, a weather cell of extremely low pressure, which 

affects the eastern North Pacific, the Bering Sea and Sea of Okhotsk (Rodionov et al.

2005). The primary ocean currents in the area are the Alaska Coastal Current (ACC) and 

the Alaska Stream (AS). The ACC carries fresher, warmer water from the coastal areas of 

the GOA down the coast of the Peninsula and along the eastern most islands of the chain, 

as opposed to the AS, which flows along the shelf break and carries colder, more saline 

and nutrient rich waters from the subarctic gyre in the Gulf (Hunt and Stabeno 2005;

Ladd et al. 2005; Logerwell et al. 2005).

Sanak Island was deglaciated by circa 16,000 calendar years before present (cal 

yrs BP) (Misarti unpub.). Since this time, with the exception of the Younger Dryas 

(Mann and Hamilton 1995), a general trend of warmer and drier periods has oscillated 

with cooler periods of increased precipitation. Tree-ring chronologies from various areas 

have been used to reconstruct climate states and search for PDO-like variations in the 

North Pacific Ocean and Bering Sea (D’Arrigo et al. 2005; MacDonald and Case 2005)
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and show that the PDO is typical for the past -200 years. Beyond the past 200 years 

however, the PDO appears to be only an intermittently strong mode of variation in time 

periods between 500 and 700 cal yrs BP with a strongly negative period from 1,000 to 

700 cal yrs BP (roughly the same time as the Medieval Warm Period (MWP)

(MacDonald and Case 2005).

Animals analyzed for this study include SSL, HS, NFS, sea otters (Enhydra lutris, 

SO), Pacific cod (Gadus macrocephalus) and sockeye salmon (Oncorhynchus nerka). For 

the purposes of this study it is important to know the modem prey species and trophic 

position of these animals.

SO have been known to forage on sea urchin, abalone, crab, mussels and clams, 

octopus, tunicates, shrimp species and kelp-forest fish throughout their habitat (Kenyon 

1969; Kvitek and Oliver 1992; Watt et al. 2000; Estes et al. 2003; Bodkin et al. 2004).

SO were selected for this study because they are considered keystone species in kelp 

forest communities in the Aleutians, influencing many other nearshore species, which in 

turn can effect local physical oceanographic processes such as light, temperature and 

water motion (Simenstad et al. 1978; Dayton 1985; Duggins et al. 1989; Simenstad et al. 

1993; Estes and Duggins 1995; Watt et al. 2000; Steneck et al. 2002; Reisewitz et al.

2006). In the eastern portion of the GOA, SO are also known to forage heavily on 

bivalves and urchins in soft-bottom communities (Kvitek et al. 1992). SO numbers in the 

Aleutians have declined rapidly since the 1990s, a fact that has been attributed by some 

researchers to predation by killer whales (Estes et al. 1998; Doroff et al. 2003; Springer et 

al. 2003). SO to the east of Kodiak Island however, do not appear to be declining in
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numbers, nor do they appear to be declining west of Attu Island in the Aleutians (Doroff 

et al. 2003).

In today’s ecosystem, Pacific cod along the lower Alaska Peninsula that are 

smaller than 60 cm prey mostly on invertebrates such as Tanner crabs, polychaetes, and 

crangonid shrimp while fish species such as walleye pollock are important parts of diets 

only of cod larger than 60 cm (Yang 2004). Just after the 1976/77 regime shift however, 

pandalid shrimp and capelin were the main food species of Pacific cod in Pavlof Bay on 

the Alaska Peninsula (Albers and Anderson 1985). Studies in the Bering Sea have shown 

that when warmer water temperatures allow cod and capelin habitat to overlap, cod will 

feed heavily on capelin (Ciannelli and Bailey 2005). Shrimp and capelin in the GOA 

have declined substantially since the 1976/77 regime shift (Botsford et al. 1997) and this 

decline may have been the impetus for diet changes in cod.

Pacific salmon are opportunistic feeders and their diets include everything from 

copepods, euphausiids, squid, ctenophores and jellies to small fish (Burgner 1991; Welch 

and Parsons 1993). However, it appears from both stomach content and stable isotope 

analyses, that chinook (Oncorhynchus tshawytshaw) are more likely to feed on fish 

species than pink (Oncorhynchus gorbuscha), chum (Oncorhynchus keta), and sockeye 

salmon, and that the latter three species feed in more open ocean habitats than do chinook 

and coho (Oncorhynchus kisutch) (Satterfield and Finney 2002). Both cod and salmon 

stocks have fluctuated (though not in conjunction with one another) with changing 

regime shifts in the past 40 years (Hollowed and Wooster 1992; Francis and Hare 1994; 

Hare and Mantua 2000).
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SSL are wide-ranging animals that return to rookeries to pup and breed (Call and 

Loughlin 2005; Fadley et al. 2005). Their habitat extends along the Pacific Rim from the 

Kurile Islands across the North Pacific and south through California. Today, SSL diet 

includes species such as walleye pollock, Atka mackerel, salmon, Pacific cod, arrowtooth 

flounder, herring, sandlance, Irish lord, squid and octopus (Sinclair and Zeppelin 2002). 

Common components of SSL diets in the eastern Aleutian Islands include walleye 

Pollock, Pacific herring, salmon spp and Atka mackerel while SSL in the western 

Aleutians feed off the continental shelf on Atka mackerel and cephalopods (Call and 

Loughlin 2005). Around Kodiak Island major components of the SSL diet include 

sandlance, arrowtooth flounder, Pacific cod and walleye pollock (Wynne and Foy 2002). 

The rapid decline of SSL in some areas in the past few decades has prompted many 

explanations such as nutritional stress, a shift in diet and predation by killer whales 

(Francis et al. 1998; Hirons et al. 2001; Springer et al. 2003; deHart et al. submitted).

NFS spend much of the year at sea, traveling from breeding grounds in the Bering 

Sea south to foraging grounds on the western coasts of the US and Canada (Gentry 1998). 

Much of the populations’ current breeding grounds are located in the Pribilof Islands, 

however, archaeological evidence suggests that NFS bred in the Aleutians and along the 

Alaska Peninsula and coast of Washington prior to the late 1700’s (Etnier 2002). NFS are 

opportunistic feeders and as such have a wide variety of prey including small schooling 

fish (10-20 cm in size) and squid (Gentry 1998; York 1995). While at rookeries in the 

Pribilofs, male NFS forage in offshore waters west of the islands and later move around 

and through the passes in the Eastern Aleutians. Females and juveniles forage in offshore
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waters from the coast of California to the Pribilof Islands. Numbers of NFS in the Pribilof 

Islands have declined since the 1950’s but no clear cause for this has been defined (York 

1995).

HS range from the southeastern Bering Sea through the GOA to California.

Unlike NFS, HS are believed to stay closer (within 50 km) to their coastal haulouts 

(Iverson et al. 1997; Frost et al. 1999), although satellite tracking studies have shown that 

juveniles can range more widely than previously thought (Lowry et al. 2001). Typical 

prey items include large and small herring and pollock, octopus, cephalopds, sandlance, 

capelin, flatfish, cod, salmon, and shrimp (Pitcher 1980a, b; Iverson et al. 1997). HS have 

had a marked decline in numbers in the GOA since the 1950’s (Pitcher 1990) but no one 

particular assessment as to why these declines have occurred has been agreed upon.

In the past -50 years, changes from the lowest trophic levels (phytoplankton 

blooms and copepod biomass) to the highest (SSL and other pinnipeds) have been 

documented and examined in the North Pacific Ocean and Bering Sea. While this study 

cannot elucidate ecosystem change on a decadal scale, it can offer insight to broad-scale 

changes over long periods of time.

Materials and methods

Sample collection and chronology

Bulk midden samples were collected from 24 archaeological middens on Sanak 

Island, Alaska in 2004 and span approximately the past 4,500 cal yrs (Table 3.1). All

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



bone was identified to species, element, right/left side, and age category when possible 

based upon initial identifications at Idaho State University (Tews 2005) and corroborated 

using comparison collections provided by University of Alaska’s Anthropology 

Department and the Museum of the North. All identifiable elements of marine mammals 

from each site were separated into left and right and the element with the largest number 

of lefts/rights with the additional information of age indicators was used to assign 

individuals of each species. Five age categories were used; infant, juvenile, subadult, 

adult and adult +. Infant is defined as 100% coverage of the juvenile cortex, lack of 

epiphyses, and very small in size. The term juvenile was defined as missing some 

epiphyses while those that were attached would have pronounced epiphyseal lines.

Juveniles may also have a large proportion of juvenile cortex. Subadults would have 

all epiphyses fused but would still have pronounced epiphyseal lines. Some juvenile 

cortex may still be present, but only at distal and proximal ends. Adults have fully 

ramified cortex and no epiphyseal lines while adult + have signs of degenerative 

pathologies.

Prehistoric samples included bones of SSL (minimum number of individuals 

(MNI)=15), HS (MNI=27), NFS (MNI=21), SO (MNI=88), pacific cod (number of 

identifiablel specimens (NISP)=101) and salmon (NISP=91) vertebrae. A total of 131 

NISP SO bones were sampled but only 60 could be counted as individuals using 

Grayson’s (1984) definition of MNI. However, stable isotope ratios of carbon and 

nitrogen in bone collagen have proven to be consistent over skeletal elements in an 

individual (DeNiro and Schoeninger 1983). Based on a difference of at least l%o in either
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513C or 815N from any of the possibly associated individuals described above, an 

additional 28 samples were added to the data set for a total of 88 MNI. Integrated 

samples of fish (five separate samples from each midden) were chosen due to the fact that 

fish vertebrae were used for analysis and there is no assurance that each vertebra 

represents a different individual. Each sample therefore represents an average isotope 

ratio for cod or salmon during a specific time period. Number of samples (NS) used for 

salmon and cod were reduced (NS=34 and NS=35 respectively).

Pink and sockeye salmon currently spawn in Sanak streams and lakes (Willis and 

Ball 1930; ADF&G 2006) although a small number of chum salmon were collected in 

beach seines from 1912 to 1927 (Willis and Ball 1930). Satterfield and Finney (2002) 

found similar 813C and 815N values for all three salmon species in the GOA, which can be 

attributed to similar feeding locations and prey items. Therefore despite difficulty 

associated with identifying vertebrae to a single species it is likely that my data are 

relevant to this group of lower trophic level salmon.

Radiocarbon dates of charcoal in archaeological middens produced by Beta 

Analytic (BETA) and the Center for Atomic Mass Spectroscopy (CAMS) were calibrated 

using Calib 5.02 (Reimer et al. 2004). Samples were collected from 16 midden deposits 

(Table 3.1).

Three species (SO, cod and salmon) were found in numbers sufficient to study 

changes over time in the archeological record. Time periods for SO, cod and salmon 

analyses were chosen by dividing the sites into six different time periods based on 

radiocarbon dates (Figure 3.2). The six time periods were chosen based on discontinuity
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in the recovered archaeological record (i.e. years the Sanak Island archipelago was either 

uninhabited or no archaeological sites with middens are known as yet) or oldest and 

youngest calibrated site dates did not overlap. When possible, large, known 

climatological periods such as the Neoglacial, MWP and the Little Ice Age (LIA) were 

associated with time period descriptions (Table 3.2). The modem period was defined as 

the last 50 years.

Sample preparation and stable isotope analysis

All collagen samples were prepared using bone collagen extraction procedures 

described by Matheus (1997). Slices of compact, cortical bone weighing between 0.1 and

1.0 grams were cleaned in a sonicator. Lipids were removed from the bone using a 

methanol/chloroform procedure (Bligh and Dyer 1959). The bones were then 

demineralized in 6N HC1 and ultra-pure water. The length of time to demineralize bone 

varied on a sample-by-sample basis. The remaining material was rinsed to neutral pH in 

ultra-pure water, soaked in 5% KOH for 8 hours to eliminate contamination from 

surrounding humic soils, and rinsed to neutral again. Samples were gelatinized by adding 

0.05 ml of 3N HC1 to 5 ml of ultra-pure water and heated to 65 °C. The samples were 

filtered and then placed in a freeze drier for 48 hours. Analysis of these samples was 

completed in the Alaska Stable Isotope Facility, University of Alaska-Fairbanks. Stable 

isotope ratios are expressed using the standard delta notation:

5X  (°/oo) = (R sample/R standard -  1) X  1000
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where X is 13C or 15N and R sampie is 13C/12C or 15N/14N, respectively. 813C and 815N are 

expressed relative to Vienna Pee Dee Belemnite (VPDB) and atmospheric N2  (air), 

respectively. Samples were analyzed on a Finnigan DeltaplusXP IRMS and analytical 

precision, established by analysis of multiple peptone standards throughout each run, was 

~ ± 0.2%o for both carbon and nitrogen.

Data analysis and display

All comparative modem salmon and cod muscle tissue (some samples analyzed 

by Satterfield 2000 and Hirons 2001) have been corrected to reflect the isotopic

1 3fractionations for C and N between muscle tissue and bone collagen in fish. 8 C in bone 

collagen of large fish that inhabit cold ocean waters is ~2.5%o greater than muscle tissue 

while 815N in bone collagen is ~1.0%o less (Appendix A). Therefore, all modem isotope 

values for cod and salmon are based on muscle tissue converted to collagen values.

Depletion in the 813C isotopic composition of dissolved inorganic carbon (DIC) in 

the worlds’ oceans due to the increase in anthropogenic CO2 released into the atmosphere 

(often referred to as the Oceanic Suess Effect) since the Industrial Revolution in the 

eastern North Pacific is estimated to be -0.62 ± 0.17%o as of 1991 (Ortiz et al. 2000). 

Although this is a smaller estimate of change than published values for some oceanic 

regions, Schell (2001) notes that in the areas where upwelling and winter deep mixing 

occur at higher latitudes such as the study region, the effects of anthropogenic decrease of

138 C are diminished. In the GOA and other areas of the North Pacific north of 50°, there
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has been a reduced accumulation of anthropogenic traces such as 813C (Gruber et al.

1999; Schell 2001; Quay et al. 2003; Guilderson et al. 2006). All 513C of the modem (i.e. 

1952 -  2000) samples used in this study have been adjusted according to year of sample 

using a modified equation from Hilton et al. (2006) in order to be directly compared to 

pre-historic values:

Suess Effect Correction Factor = a*exp(6*0.027)

where a = the maximum annual rate of 813C decrease in the North Pacific (in this case

-0.012 derived from Tanaka et al. (2003) and -0.014 derived from Quay et al. (1992)

which closely matches Gruber et al. (1999) estimate of global oceanic change and those

of Williams et al. (2007) estimate based on corals in the Northeastern Pacific), b = the

year represented by the death of the animal (Hirons 2001) minus 1850 (the start of the

Industrial Revolution), and 0.027 describes the curve presented by Gruber et al. (1999)

1 ̂for change in the 8 C of the worlds’ oceans from 1945-1997. This equation yields a 

maximum decrease from 1850 to 2007 of 0.97%o, a number that is compatible with Ortiz 

et al.’s (2000) estimated decrease of 0.62%o in the North Pacific by 1991.

Results

The mean C:N calculated for the midden bone samples is 3.2 ± 0.2 and falls 

within the range of values (2.9-3.6) considered to be indicative of collagen that has not 

undergone diagenesis (Tuross et al. 1988; Koch et al. 1994; Hedges et al. 2005). A 

summary of the isotopic results of archaeological specimens from Sanak Island (Table
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3.3, Appendix B) shows that of the marine mammals sampled for this study the SO had 

the lowest mean 815N and the highest mean 813C while NFS had the lowest 813C, and 

SSL had the highest 815N. Cod have higher 813C and 815N values compared with salmon 

(Table 3.3).

All prehistoric species have higher mean 813C compared to their modem 

counterparts even after correcting for the Oceanic Suess Effect (Figure 3.3). When 

compared to modem (1950’s to present day) collagen counterparts as analyzed by Hirons 

(2001), prehistoric SSL and HS had statistically higher 813C (single-factor ANOVA, P< 

0.005 and P «  0.001 respectively) while prehistoric NFS yielded no significant 

differences from modem samples for 813C (single-factor ANOVA, P = 0.35). Prehistoric 

SO and salmon had significantly higher 813C (single-factor ANOVA, P«0.001).

Prehistoric cod had significantly higher 8I3C (single-factor ANOVA, P=0.001) than 

modem cod. Salmon and SO had significant differences in 815N between prehistoric and 

modem samples (single-factor ANOVA p «  0.001). Comparisons of modem and 

prehistoric 815N for cod, SSL, NFS, and HS yielded no differences.

SO, the only mammalian species with high enough sample numbers to compare to 

each other over the six prehistoric time periods, had a significant difference in 813C 

(single-factor ANOVA, P= 0.07) and in 815N (single-factor ANOVA, P= 0.003) over the 

six prehistoric time periods when using all 88 individuals (Figure 3.4). Variation in 8I5N

1 Tand 8 C for cod over the six time periods was not statistically significant (Figure 3.4).
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1 -5
Changes in 5 C of salmon were statistically significant (single-factor ANOVA, P=

0.028) but no statistically significant changes were found for 815N (Figure 3.4).

Changing trends in the correlation of 813C and 815N were noted in graphical 

representations of the data -1,000 cal yrs BP and so this trend was tested statistically. 

Correlations of means of 8I3C and 8I5N of all individuals for each species at times before

1.000 cal yrs BP were compared to correlations at times after 1,000 cal yrs BP. For most

n  i f
species, correlations between 8 C and 8 N varied between periods over the last 4,500 

years (Table 3.4). SSL, SO and NFS 813C and 815N were negatively correlated before

1.000 cal yrs BP, while 813C and 815N were positively correlated after 1,000 cal yrs BP 

(Table 3.4). HS 813C and 815N were not correlated before 1,000 cal yrs BP and then 

positively correlated after 1,000 cal yrs BP. Salmon S13C and 815N were positively 

correlated throughout the entire 4,500 years (Table 3.4). Cod 813C and 815N were 

positively correlated before 1,000 cal yrs BP but negatively correlated after (Table 3.4).

Discussion

General

Based on the mean 8I5N and 813C for each species, some trophic level and 

foraging habitat trends are evident. For example, the elevated 8I3C signature for SO 

reflects a benthic/near shore diet of invertebrates that consume intertidal plants and
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macro-algae with elevated 813C in comparison to offshore phytoplankton (Fry and Sherr 

1984) and prey items that include deposit-feeding bivalves (Hobson and Welch 1992).

15 13Salmon, on the other hand, have isotopic signatures relatively depleted in N and C, 

indicating both lower trophic level foraging and an open-ocean habitat (Figure 3.5). 

Satterfield (2000) distinguished between 815N and S13C in oceanic versus coastal areas in 

the GOA for copepods and salmon. Both 815N and 813C were lower in the open ocean 

than in coastal areas. The coastal/shelf isotopic enrichment is likely due to higher primary 

production and a longer food chain. In comparison, cod collagen reflects the enrichment 

of both isotopes for coastal waters and for benthic prey species. Different prey items for 

cod and salmon obviously play a role in the isotopic diversity of salmon and cod.

SSL, HS, and NFS data show high, and generally similar, trophic positions. NFS 

have the most depleted 815N and 813C of all three pinnipeds species, which more than 

likely reflects the species’ mixed continental shelf and open water foraging patterns than 

absolute relative trophic position. SSL have the highest S15N, which may simply reflect

1 3their ability to forage on larger fish than HS and NFS, while HS have the highest 8 C of 

all the pinnipeds species. This may be due to the use of more near shore foraging 

grounds.

The changing correlations of 815N and 813C I present (Table 3.4) are not 

consistent with simple shifts in the organisms’ trophic level. An increase in trophic level 

should show a positive linear relationship between 815N and 813C with a slope of —3:1

15 13 *(8 N: 8 C), while a decrease should be a negative relationship along a similar slope.

I l l
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However, this is complicated by mixed diets, and physical and biological oceanographic 

processes.

When compared to modem trophic levels and food web positions of all species, it 

appears that the basic structure of the food web is the same over the past 4,500 years 

(Figures 3.3 and 3.6), but changes in isotope values occurred throughout this time within 

this basic food web structure (see details below). For example, the data reveal decreases 

in mean 813C of modem versus archaeological specimens (Figure 3.3, Table 3.3).

Overall, pelagic species have a larger decrease in 8I3C from prehistoric to modem times.

13I hypothesize that environmental change led to different relationships between 8 C and 

815N in deep ocean/gyre versus shelf waters.

The pelagic realm (coastal and open water)

Mean 813C for SSL, NFS, HS, and salmon are enriched by 0.5 - 1.6%o compared

to their modem counterparts, even after modem values were corrected for the Oceanic

11
Suess Effect (see Materials and Methods). Thus, the lower 8 C of these specimens 

relative to their modem counterparts cannot be attributed solely to the Suess Effect, 

unless this effect has been greatly underestimated. There are several possible 

explanations/hypotheses for the observed changes.

13 •One possible reason for a change in 8 C of pelagic species is the recent reduction 

of ice in the Bering Sea (Niebauer 1998; Parkinson and Cavalieri 2002). Ice algae can 

have higher S13C than phytoplankton, and would have played a reduced role in the food
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web as winter ice area in the Bering Sea decreased (McRoy et al. 2004). NFS feed part of 

the year in the Bering Sea and many individuals cross through Unimak and False Pass. 

Sanak Island is close to both passes and it is possible that along with NFS, the SSL and 

HS captured near Sanak Island may also have fed in Bering Sea waters. Young SSL on 

the Pacific side of the eastern Aleutians move through the passes and into the Bering Sea 

in late spring (Call and Loughlin 2005). Clusters of SSL rookeries near Sanak Island are 

associated with both diet and population growth with rookeries on the Bering Sea side of 

the Alaska Peninsula and eastern Aleutians (Sinclair et al. 2005). Both of these studies 

suggest that SSL from the North Pacific have forage locations in the Bering Sea. There 

are no studies that suggest HS move between the Pacific and Bering but the pattern of 

reduced 513C with no change in 515N for HS is similar to SSL and NFS.

Burton et al. (2001, 2002) proposed that differences in mean 615N and 813C 

between archaeological and modem samples of NFS are due to a difference in location of 

foraging from middle latitudes to higher latitudes, suggesting that the NFS harvested 

prehistorically in California were year-round residents in that area. NFS are the only 

marine mammal in this study whose mean archaeological 8I5N appears different (~l.l%o 

lower) than the modem 815N mean, though they are not statistically different (single­

factor ANOVA, p=0.146) due to the high variance in the prehistoric data. Most of the 

prehistoric NFS in my study were juveniles while modem specimens were of varying 

ages. Newsome et al. (2006) showed that S15N in NFS between 6 and 20 months of age 

(after weaning) decreased dramatically and was lower than both pre-weaned and adult 

815N, while 813C did not change. The disproportionate number of juveniles in this study
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makes it difficult to draw any conclusions about possible changes in S15N in comparison 

to the modem data.

The possibility of a change in SSL, NFS and HS foraging location is also a viable 

hypothesis. Theoretically, a decrease in 515N would also be expected if a change from 

shelf to deep water forage location occurred over the past few millennia. However,

Burton and Koch (1999) found that pinnipeds foraging in various locations, but at similar

15 * 13trophic levels, had similar 8 N composition of bone collagen but widely ranging 8 C.

813C values are generally lower in deep water than on the continental shelf. This is due to 

several factors, including differences in DIC from shelf waters to deep waters, growth 

rate and species composition of phytoplankton, and the input of carbon-enriched 813C 

from kelp and other macroalgae in coastal areas (Goericke et al. 1994; Michener and 

Schell 1994; Laws et al. 1995). It is possible that the pinnipeds found in archaeological 

middens on Sanak Island spent a greater percentage of time foraging in nearshore waters 

while modem pinnipeds utilize more offshore waters, though this explanation does not 

explain the lack of change in 815N. Clark (1986) discusses the possibility of changes in 

storm patterns forcing NFS closer to shore, as well as fluctuations in herring distribution 

and numbers as a rationale for the sudden increase in numbers of NFS foraging around 

Kodiak Island in the 1700’s.

A final hypothesis for the depletion of S13C in modem times across all pinnipeds 

is an overall decrease in the primary production of the pelagic zone in the northeast 

Pacific/southern Bering for recent times compared to the past 4,500 years. Some

1 Tresearchers have suggested that the recent depletion in 8 C is due to a decrease in ocean
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primary productivity over time in the GOA and the Bering Sea (Schell 2000, 2001;

Hirons et al. 2001; Hobson et al. 2004; Newsome et al. 2007). According to Kim et al. 

(2004) there has been an overall warming trend in SST in the Northeast Pacific over the 

last 7,000 years. Warming ocean waters could have caused a change in mixed layer depth 

and increased stratification in summer months, thereby reducing available nutrients that, 

in turn, reduced primary productivity. Gargett (1997) stated that there is an “optimal 

stability” window in which mixing and stratification are balanced enough to create 

geographic areas of high primary productivity. Conditions on either side of this window 

(i.e. too warm or too much mixing of the water column) are not conducive to large 

phytoplankton blooms. Freeland et al. (1997) used historical nutrient and weather data 

and suggested it indicates that over time there has been a decrease in mixed layer depth, 

decreasing the nitrate supply to the euphotic zone that is entrained yearly in the North 

Pacific by winter deep-mixing. Williams et al. (2007) used a similar argument to explain 

the reduction in both 513C and 815N in corals in the eastern Aleutian Islands over the last 

century. As discussed above, lower primary productivity can result in increased 13C 

discrimination in primary producers, lowering the overall 813C in a food web.

All pelagic species in this study had a decrease in mean 813C (-0.5 to -2.7%o) from 

prehistoric to modem times, with the largest decrease in salmon, the one species that 

spends the majority of their lifetime in offshore, deep ocean waters in the gyre. The 

modem data in this study includes marine mammals from pre- and post- 1977/78 regime 

shift, spanning the well-known changes in the North Pacific and Bering ecosystems and 

climate, and thereby excluding a trend based solely upon a single “regime”. The decrease
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in mean 513C in modem pelagic organisms suggests that perhaps the Northeast Pacific 

pelagic ecosystem has been, on average, in a different state than in the preceding 4,500 

years. Perhaps the recent warming has resulted in stratification that exceeds the “optimal” 

productivity window when compared to the past 4,500 years. This hypothesis assumes 

that foraging locations for pinnipeds did not change from coastal to deep ocean realms.

NFS and SSL 513C and 515N are negatively correlated but only until -1,000 cal 

yrs BP (Table 3.4). After 1,000 cal yrs BP the two isotope ratios are positively correlated. 

HS S13C and 515N are positively correlated after 1,000 cal yrs BP but are not correlated 

before. Hobson and Welch (1992) found that 513C and 615N for animals at the higher 

trophic levels of arctic food chains were not correlated, just as HS in this study were not 

correlated before 1,000 cal yrs BP. It is not surprising that all pinnipeds in this study have 

similar trends in 813C and 815N, as their modem prey items are similar and in similar 

trophic positions. It is difficult, however, to explain the changing relationships for 

pinnipeds, as they do not have the same trends as two of their modem potential prey 

items, cod and salmon. It is possible that neither of these fish played a large role in their 

diets prior to 1,000 cal yrs BP but open-water pelagic fish such as salmon play a larger 

role today.

Deep water/open ocean realm

The only species that spends the majority of its life in the open ocean in this study 

is salmon. Although median 815N changes over the six pre-historic time periods (Table
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3.2; Figure 3.4), suggesting changes in trophic level or prey over time, there is no 

statistically significant change in salmon, most likely due to high variance within each 

time period. This high variance within each time period, which could average many 

decades to century long regime shifts, makes it difficult to discuss any prolonged period 

of change in prey items and trophic level for sockeye salmon over the last 4,500 years. 

There is, however, a significant change in 513C over the six time periods (Figure 3.4).

The largest changes took place between Periods 1-2 and 2-3, with the median from each 

time period changing slightly over 2%o. Periods 3 and 4 have individual samples with the

• 13highest 5 C after which the median drops slowly until Period 6. When salmon numbers

are high during Period 2 (Table 3.2) (Finney et al. 2000, 2002), bottom-up theories

1suggest that 5 C would be relatively higher (Brodeur and Ware 1992; Beamish and 

Bouillon 1993; Laws et al. 1995). In fact, my data show that 813C is actually the same or 

lower relative to other periods over the last 4,500 years (Figure 3.4). During Periods 1 

(when salmon numbers are low but just starting to rise), 3 (a period when salmon 

numbers had been high but were dropping) and 4 (when salmon numbers are low) 

according to lake core data (Finney et al. 2000, 2002, pers. comm.), the 813C of sockeye 

collagen is relatively high (Figure 3.4). In Period 6, salmon abundance is high (Table 3.2) 

and 813C of salmon are low (Figure 3.4). Perhaps instead of coupling to primary 

productivity, the fluctuations in 813C for salmon are based on changes in geographic areas 

salmon inhabited (per Schell 2000). Differences in areas of upwelling may shift over time 

in response to AL position. Similarly, changes in upwelling rates may affect 813C as well, 

with higher rates bringing more carbon to surface waters and therefore lowering S13C in
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the food web. Iron in the North Pacific is thought to be mainly from the atmosphere, so 

increased upwelling rates may mean reduced iron concentrations and therefore slower

13growth of primary producers (Freeland et al. 1997), which may also lower 5 C in the 

food web (Laws et al. 1995).

13Sockeye are the only species with a consistently positive correlation between 8 C 

and S15N throughout the last 4,500 years (Table 3.4). They are also the only species that 

spend most of their lives in the open waters of the gyre. As discussed previously, it is 

possible that salmon move forage locations as wind patterns, SST, and upwelling areas 

change. Perhaps salmon are moving onto the shelf margins or farther from shelf margins 

depending on climatic conditions. Satterfield and Finney (2002) noted increasing S13C 

and 8I5N in copepods on a transect from open waters in the gyre to on-shelf waters 

(Figure 3.5). If salmon moved from one water body to another due to climate change, or 

if the conditions of the body of water they inhabited changed enough to simulate current 

differences between on-shelf and off-shelf, salmon 813C and 815N would fluctuate in a 

positively correlated manner. This may also explain the counter-intuitive data of low 

sockeye numbers in spawning lakes but high S13C discussed previously. Perhaps it is not 

as advantageous for salmon to feed in on-shelf waters (where 813C is higher) as it is in the 

gyre.
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The benthic/nearshore realm

Cod 815N and 813C do not appear to have fluctuated much over the last 4,500 

years. There are small changes over the six time periods that are not statistically 

significant (Figure 3.4, single-factor ANOVA, p=0.23 and 0.13, respectively, for 815N 

and 8I3C). Comparison of prehistoric to modem cod data does not reveal any significant 

difference in S15N (single-factor ANOVA, p=0.1) between the two groups, but does show

« « 1T « 1 ̂a difference in 8 C (single-factor ANOVA, p=0.001). However, the change in mean 8 C 

between modem and prehistoric cod is less than l%o, and not of biological significance. 

This remarkable lack of change in 815N and S13C over the past 4,500 years may be due to 

cod’s broad semi-demersal feeding habits. Despite changing climate and prey 

availability, it may be that the basic food web structure of the coastal/nearshore/benthic 

habitats did not alter to the extent of forcing cod to change their already diverse feeding 

habits, or to change foraging locations. Although some changes may have occurred, they 

may not have been large enough to be visible in the 815N and 813C data. For example, cod 

switched some prey items due to the changes after the 1976/77 regime shift (Albers and 

Anderson 1985; Yang 2004), but not their foraging location. If the prey items before and 

after the regime shift held similar trophic positions, the 815N and 813C of cod before and 

after the shift may not have a discemable difference in these isotope values if the base of 

the food web did not change.

Cod are the only species whose 813C and 815N are positively correlated before

1,000 cal yrs BP but negatively correlated after 1,000 cal yrs BP, and the only semi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



demersal species in the study that spend their time in the waters of the ACC. As all cod 

samples are from locations along the Alaska Peninsula, we can look to local explanations 

for these two trends. There may be differences in levels of nutrients transported within 

the ACC and down the Alaska Peninsula, which could cause changes in relationships

1-5 i c

between 5 C and 8 N. For example, iron could become a limiting factor to growth if 

less was carried in the ACC in times of less runoff from rivers.

ic n
SO 8 N and 8 C over the last 4,500 years has allowed the development of 

hypotheses about environmental change over time based on changing sea level as well as 

top-down effects of population size on foraging conditions. SO had a significant 

difference in 815N over the six prehistoric time periods. My SO 815N data suggest a 

change over time from a more mixed diet (including a greater emphasis on fish) in the 

earliest record for this study around 4,500 cal yrs BP, to one based more on benthic 

invertebrates (while still including fish), by -400 cal yrs BP. The earlier portion of the 

record could be partially explained by changing sea levels on Sanak Island and a less 

stable intertidal community prior to this time. During periods of falling sea level there is a 

dominance of rocky shores, while during times of high sea levels, coastal areas are filled 

in with sediment (Graham et al. 2003). Coastal habitat would alter along with these 

shoreline changes.

Sea level on Sanak was -5  m above modem sea level —4,000 cal yrs BP (Jordan et 

al. 2005), which could cause exposure of kelp to high wave action and sandy deposits 

along shorelines, making it difficult for kelp beds to be established in many areas around 

the Sanak Island archipelago. At this time, mean SO 81SN is high and individual 815N is

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



more variable, while S13C is at its lowest. In a less productive community, SO may have 

been more opportunistic feeders with pelagic fish and other prey playing a larger part in 

the diet than they do in well-established kelp forest communities. Sea level dropped 

slowly to 2-3 meters above modem sea level by 2,000 cal yrs BP (Jordan et al. 2005), 

probably accompanied by a decrease in wave action due to emergence of barrier bars and 

increased kelp growth. Mean 815N of SO dropped almost 2%o between 3,800 and 2,700 

cal yrs BP, and then remained fairly constant until the LIA (Figure 3.5), suggesting a less 

mixed diet for the otter population as a whole after 2,700 cal yrs BP.

Top-down processes could affect isotopic signatures of SO, as they were an 

important subsistence resource for the Aleut. This would, of course, be a local 

phenomenon. During Period 1, SO remains are frequent when compared to other sea 

mammals (Betts and Tews 2007). Watt et al. (2000) compared diet studies from the 

1950’s and 1960’s in the Aleutians when SO were at equilibrium density, to the 1990’s 

when SO population had declined. They observed that kelp forest and other fish were a 

much more important dietary item in the 1950’s and 1960’s than they were in the 1990’s, 

when sea urchin were a greater percentage of the diet. If SO were at equilibrium density 

-4,500 cal yrs BP but were subsequently heavily exploited by the Aleut causing a 

population decline then a shift in diet similar to that recorded between the 1950’s and the 

1990’s may have occurred. In fact, by -3,750 cal yrs BP SO frequency had declined 

drastically (Betts and Tews 2007), and perhaps reflects not only a change in subsistence 

to larger sea mammals but also a smaller SO population. By 2,750 cal yrs BP, after 

almost 2,000 years of exploitation, SO 5I5N had declined.
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The lower 815N and 813C in modem as compared to prehistoric SO suggests that 

top-down mechanisms through over-hunting may be the best explanation for changes in 

SO isotopes. Although otters may have switched towards a more benthic foraging 

strategy 2,000-3,000 cal yrs BP, it is possible that SO diet changed further sometime in 

the past 250 years. This may be due partly to the near extinction of otters through hunting 

that began in the 1750’s with Russian fur trading. As otter numbers declined, urchin 

numbers increased, and overgrazing of kelp may have created urchin barrens (Simenstad 

et al. 1978; Dayton 1985; Duggins et al. 1989; Estes and Duggins 1995; Steneck et al. 

2002). Urchin barrens have fewer fish (although they can be more species diverse) and 

invertebrates, so as otters returned in numbers they may have preyed on more pelagic fish 

species as well as the overly abundant urchins. All 13 modem SO samples came from the 

Aleutian Islands and the Alaska Peninsula, and were collected between 1960 and 2000. It 

is very possible that they were collected from areas with urchin barrens or newly 

recovering kelp forests, and therefore reflect a very different ecosystem than the 

prehistoric SO, whose isotopic values reflect healthier kelp forest systems during the 

prior few thousand years.

813C and 815N correlations for SO are difficult to explain. SO 813C and 815N are 

negatively correlated until -1,000 cal yrs BP but weakly positively correlated after 1,000 

cal yrs BP. SO may have been forced to make pelagic fish a larger portion of their diet at 

specific points in time and so may reflect correlations much like those of pinnipeds rather 

than cod. Increased sample sizes over all time periods will perhaps make these patterns 

more clear.
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Conclusions

My research illustrates that species from different water bodies in the Northeast

• • • 13Pacific reacted in different ways to climate change. When comparing shifts in mean 5 C 

and 515N in salmon, cod and SO over the past 4,500 years, it became clear that the 

organisms in different habitats reacted in different ways to either top-down or bottom-up 

forcing mechanisms. The changes in isotopic signatures of the species studied did not 

correspond to changes expected if species distribution and numbers changed in ways 

recently documented during PDO-like regime shifts and its effects on the GOA/NE 

Pacific waters.

SO were the only species that had a significant change in 515N over the six 

prehistoric time periods. It is possible that bottom-up processes such as changes in sea 

level might have affected kelp bed communities more than climate change and thus 

changed relative proportions of kelp-based versus pelagic fish diets. Top-down processes 

such as hunting pressures by humans may also have affected SO S15N by altering the 

kelp-forest community in which they foraged.

All modem animals, regardless of habitat size, location, and prey items, showed a 

significant decrease in 813C when compared to prehistoric ones. These changes are 

greater than those attributed to the Suess Effect, and at this time are best explained by the 

hypothesis that there has been an overall reduction in primary productivity in the 

Northeast Pacific in the late 20th century. The changes in 513C of salmon over the six time 

periods used in this study have yet another implication. It is possible that intensified AL
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may affect not only the primary productivity in deep ocean waters in the GOA, but 

perhaps the geographic locations where sockeye forage as well.

There appears to be some change in the marine environment -1,200-800 cal yrs 

BP, which may have changed how 513C and 515N relate to one another in different 

species and/or different water bodies. 513C and 515N correlations in species foraging in 

different habitats (with the exception of salmon), changed during this time period, and 

suggests an adjustment across all ecosystems. These shifts may be localized for species 

such as cod or SO that are believed to have smaller foraging territories.

1-5 | c
My research reveals advantages in analysis of 8 C and 8 N of bone collagen 

from archaeological middens as an effective tool for better understanding broad scale 

paleoenvironmental change.
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Figures

Figure 3.1: Location of study area in the Gulf of Alaska.
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Figure 3.2: Calibrated radiocarbon ages of sites used for this study. Time periods were 
subdivided (vertical dashed lines) based on breaks in the radiocarbon age distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-17 ■

-19

•  M ode rn  Sam ples 

O  A rchae o log ica l Sam p les

—I-  
11

—I—
13

—i—
15

—T—
1917

815N %0 (Air)

Figure 3.3: Means and standard deviations of bone collagen S13C and 815N from both 
modem and archaeological specimens. Modem data (-1950-2000 AD) from Satterfield 
(2000), Hirons (2001) and Appendix A have been corrected for the Suess Effect (see 
methods). Modem samples of cod and salmon are based on analysis of muscle and have 
been adjusted to collagen values based on the fractionation of 513C and 815N between 
muscle and collagen.
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Figure 3.5: Trophic position of archaeological mammals and fish with some selected 
modem prey species. All samples corrected for fractionation between muscle tissue and 
bone collagen. Prey data compiled from: Schoeninger and DeNiro 1984; Duggins et al. 
1989; Boutton 1991; Hobson and Welch 1992; Hobson et al. 1997; Satterfield 2000; 
Hirons 2001; Kline and Willette 2002.
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Table 3.1. Radiocarbon dates of charcoal samples from sites referred to in this study. 
Calibrations were calculated using Calib 5.02 (Reimer et al. 2004).

Tables

Site Laboratory # Date (BP) Cal Date (cal yrs BP)
XFP-31 CAMS 110652 2225±35 2200-2300
XFP-50 CAMS 110654 415±45 450-520
XFP-50 CAMS 90203 1640±40 1515-1570
XFP-52 CAMS 90212 190±40 145-215
XFP-52 CAMS 90207 420±40 460-515
XFP-56 CAMS 90213 920±40 950-1000
XFP-56 CAMS 110659 1005±50 900-970
XFP-56 CAMS 90206 1355±40 1260-1310
XFP-58 CAMS 110660 2070±35 2130-2160
XFP-61 CAMS 110662 2475±35 2760-2850
XFP-61 CAMS 110661 4515±40 5100-5360
XFP-63 CAMS 110664 2090±35 2040-2200
XFP-63 CAMS 110665 3360±40 3600-3695
XFP-67 CAMS 110666 2480±35 2540-2600
XFP-67 CAMS 110667 3050±30 3330-3385
XFP-96 CAMS 110675 1265±35 2090-2195
XFP-96 CAMS 110676 2115±35 2360-2400
XFP-96 CAMS 110677 2275±45 2350-2400

XFP-103 CAMS 110679 3550±35 3880-3950
XFP-103 CAMS 110680 3590±35 3890-4000
XFP-110 CAMS 110686 385±40 440-500
XFP-111 CAMS 127641 4040±35 4490-4540
XFP-111 CAMS 127700 4025±35 4480-4530
XFP-111 CAMS 110687 3870±35 4290-4350
XFP-115 CAMS 110690 2115±35 2090-2200
XFP-119 CAMS 110691 620±35 550-660
XFP-121 CAMS 110693 315±35 356-430
XFP-121 CAMS 110692 355±35 320-380
XFP-133 CAMS 127705 335±35 350-400
XFP-133 CAMS 127706 365±35 430-495
XFP-143 CAMS 110699 2115±30 2100-2190
XFP-143 CAMS 110698 3505±40 3770-3855

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.2. Regional climate and ecological changes corresponding to the time periods of
midden samples used in this study.______________________________________________
Time Period (cal Description*

yrs BP)________________________________________________________________
Period 1 Onset of neoglaciation, lower temperatures, precipitation

(4,000-3,800) systematically higher than the past few thousand years in central
coastal GOA, abrupt drop in SST, drop in numbers of returning 
salmon in lakes on Kodiak Island, sea level on Sanak Island -4-5

________________ meters above today’s levels___________________________________
(3,800-2,750) No known archaeological sites with middens on Sanak Island

Period 2 Ice advance from 3,300-2,100 cal yrs BP in southern AK and GOA
(2,750-2,400) glaciers, temperatures still low, increase in numbers of salmon

returning to Kodiak Island lakes, sea level on Sanak Island slowly
_________________dropping__________________________________________________

Period 3 Drop in SST starting at 2,000 cal yrs BP with a low at 1,800 cal yrs
(2,400-1,900) BP, drop in numbers of returning sockeye, sea level on Sanak 2-3

_________________meters above today’s levels___________________________________
(1,900-1,600) No known archaeological sites with middens on Sanak Island_______

Period 4 Rise in SST until -1,500 cal yrs BP then a slow drop, atmospheric
(1,600-1,500) temperature drop starting -1,600 cal yrs BP, drop in numbers of

returning sockeye in GOA lakes, sea level on Sanak slowly dropping
________________ towards today’s levels_______________________________________

(1,500-1,100) No known archaeological sites with middens on Sanak Island_______
Period 5 Onset of MWP, periods of higher temperatures between 900-850 cal

(1,100-600) yrs BP, 800-750 cal yrs BP and 600 cal yrs BP, decrease in SST at
1,000 cal yrs BP, decrease in sockeye returns around Alaska at 1,000 
cal yrs BP then an increase from 900-850 BP a small decrease -700 
cal yrs BP, increase -600 cal yrs BP, unlike the Bering and western 
Aleutians there is moderate atmospheric cooling in the GOA, eastern

________________ Aleutians from 1,100-750 cal yrs BP___________________________
(600-550) No known archaeological sites with middens on Sanak Island_______
Period 6 LIA, drop in atmospheric temperatures, drop in SST -500 cal yrs BP
(550-150) and advance of land-based glaciers, some fluctuation in sockeye

salmon returns from 400 cal yrs BP on but overall increase during the 
________________ LIA with a decreasing trend in all lakes in GOA at the end of the LIA
*Data from Huesser et al. 1985; Mann and Hamilton 1995; Finney et al. 2000, 2002; Gedalof and 
Mantua 2002; Calkin et aL 2001; Mann 2001; Kim et aL 2004; Savinetsky et aL 2004; Anderson et aL 
2005; Causey et aL 2005; D’Arrigo et aL 2005; Jordan et aL 2005.
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Table 3.3. Location, number, sample type and mean isotopic value of archaeological and modem 
specimens.______________________________________________________

Species Location # of Samples Sample
Type

Mean 613C 
± S.D.f

Mean 8lSN ± S.D.

Archaeological
E. lutris Sanak 88 bone -11.9 ± 0.8 14.5 ± 1.4
C. ursinus Sanak 27 bone -13.6± 1.4 16.1 ±2.4
P. vitulina Sanak 37 bone -12.2 ±0.8 17.1 ± 1.7
E. jubata Sanak 15 bone -13.1 ±0.7 18.4 ± 1.4
G. macrocephalus Sanak 101 bone -12.5 ± 1.0 16.1 ± 1.2
0. nerka Sanak 91 bone -15.2 ± 1.4 11.5 ± 1.7

Modern
E. lutris GOAd 13 bone -12.8 ±0.9 11.3 ±1.0
C. ursinusa GOAd 10 bone -14.1 ±0.8 17.2 ± 1.5
P. vitulinct GOAd 48 bone -14.0 ±0.8 17.2 ± 1.6
E. jubata11 GOAd 13 bone -13.9 ±0.9 18.5 ± 1.4
G. macrocephalusa Alaska Pen. 29 bone/musclec -13.3 ±0.0 15.8 ±1.1
0. nerkab GOAd 23 bone/musclec -17.8 ±0.6 10.0 ±0.5

Modem data from Hirons (200 l)a and Satterfield (2000)b.

CA11 modem fish muscle tissue has been corrected for fractionation difference between bone and muscle (see methods). 

dGOA=Gulf o f Alaska. All samples collected from Unimak Island to Kodiak Island and the western tip o f  the Kenai Peninsula. 

eAll modem carbon isotope values have been corrected to account for Suess Effect changes in the Eastern North Pacific (see methods).

UJK)
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Table 3.4. Summary of changes in Spearman’s correlations of carbon and nitrogen 
isotopes by site dates before and after 1,000 cal yrs BP.

Species Before 1000 BP After 1000 BP
(r=) (r=)

E. lutris -0.52 0.26
C. ursinus -0.66 0.90
P. vitulina Not correlated 0.90
E.jubata -0.40 0.50
G. macrocephalus 0.75 -0.37
Oncorhyncus ssp.________ 0.73_____________ 0.50
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Appendix A 

Fractionation of muscle tissue to collagen of 815N and 513C in large Northeast Pacific 
fish 

Introduction

Isotope analyses in archaeological studies have been utilized for many years and 

in many forms. Most of the studies have been conducted on human remains in order to 

pinpoint transitions to agriculture (the transition from C3 to C4 plants using carbon 

isotopes), geographical areas people inhabited (using strontium and barium isotopes or 

carbon and nitrogen isotopes), or simply how much of a particular food type was being 

consumed (such as marine versus terrestrial using carbon and nitrogen isotopes) (DeNiro 

1987; Sealy et al. 1991; Lambert and Grupe 1993; Pate 1994; Ezzo et al. 1997; Lambert 

1997; Price et al. 1998, 2000, 2002; Lee-Thorpe and Sponheimer 2003; Schweissing and 

Grupe 2003; Knudson et al. 2004; Newsome et al. 2004). Recently, paleoecologists have 

utilized remains from archaeological middens in order to reconstruct past environmental 

and/or ecosystem changes (Burton and Koch 1999; Burton et al. 2001, 2002; Hirons et al. 

2001; Newsome et al. 2006, 2007; DeHart et al. submitted). All of these studies based on 

archaeological midden remains utilize analysis of bone collagen and/or tooth dentin. 

These are interesting and exciting data sets, but in order to compare past and present 

environments it is often necessary to compare bone collagen data sets to modem day 

ecological data sets that rarely use bone collagen.
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Ecologists have determined fractionation between different types of tissue for 

many species through comparative studies of muscle to hair, vibrissae, internal organs, 

scales of fish, blubber of sea mammals, feathers of birds etc., but rarely are collagen data 

included in these studies (Tiezsen et al. 1983; Farquhar et al. 1989; Hobson and Clark 

1992; Hobson et al. 1996, 1997; Satterfield 2000; Hirons 2001; Vander-Zanden and 

Rasmussen 2001; Satterfield and Finney 2002; Greave et al. 2004; Newsome et al. 2006). 

There are a few studies on the fractionation between muscle tissue and collagen for 

mammals (Schoeninger and DeNiro 1984; Koch et al. 1994; Hedges et al. 2005), 

however, there are no such studies for large fish (although see Sholto-Douglas et al.

1991), a major contributor to archaeological midden remains in many coastal and some 

inland sites. This research paper aims to' determine the fractionation between muscle and 

bone collagen of large fish that inhabit colder ocean waters. In this case three salmon 

species and Pacific cod \Oncorhyncus nerka (sockeye), Oncorhyncus kisutch (coho), 

Oncorhyncus tshawytshaw (chinook) and Gadus macrocephalus (Pacific cod)] were 

analyzed for carbon and nitrogen isotopes (813C and 815N respectively) of bone collagen, 

muscle tissue and lipid extracted muscle tissue.
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Methods

Sample preparation and stable isotope analysis

Collagen samples were prepared using bone collagen extraction procedures 

described by Matheus (1997). Slices of compact, cortical bone weighing between 0.1 and

1.0 grams were cleaned in a sonicator. Lipids were removed using a methanol/chloroform 

procedure (Bligh and Dyer 1959) and bones were then demineralized in 6N HC1 and 

ultra-pure water. The samples were next rinsed to neutral pH with ultra-pure water. 

Samples were gelatinized by adding 0.05 ml of 3N HC1 to 5 ml of ultra-pure water and 

heated to 65 °C. The samples were filtered and lyophilized at -75 °C for 48 hours.

Muscle tissue was collected from areas that visually appeared to be predominantly 

muscle with no skin or fatty tissues attached. The muscle was rinsed thoroughly with 

ultra-pure water and samples from each fish were divided in two. One half was treated to 

remove lipids using a methanol/chloroform procedure (Bligh and Dyer 1959) and then 

rinsed several times. All muscle samples were lyophilized at -75 °C for 48 hours.

Analysis of all samples was completed in the Alaska Stable Isotope Facility, 

University of Alaska Fairbanks. Stable isotope ratios are expressed in the standard 

notation:

8X (%o) = (R Sample/R standard ~ 1) X 1000 

where X is 13C or I5N and R sampie is l3C/12C or 15N/14N respectively. 513C and 815N are 

expressed relative to Vienna Pee Dee Belemnite (VPDB) and atmospheric N2  (air),
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respectively. Samples were analyzed on a Finnigan DeltaplusXP IRMS and analytical 

precision, established by analysis of multiple analyses of a peptone standard throughout 

each run, was ~ ±0.2%o for both carbon and nitrogen.

Results and Discussion

The mean C:N calculated for the bone samples was 3.4 ±0.1 and falls within the 

range of values (2.9-3.6) considered to be indicative of collagen that has not undergone 

any diagenesis (Tuross et al. 1988; Koch et al. 1994; Hedges et al. 2005). Sockeye (n=7) 

do not appear to differ greatly from one another regardless of geographical location or 

marine versus freshwater locations (Table A.l). Coho salmon (n=3) were recovered only

13 15from marine waters but geographic location does not appear to influence 5 C and 5 N 

either (Table A.l). Only one chinook salmon and one Pacific cod were analyzed and so 

no comparisons were possible (Table A.l).

« * 1 3  1 ̂The differences in 5 C and 5 N between lipid extracted muscle tissue and un­

treated muscle tissue were minimal (mean 0.2 ±  0.7%o and 0.1 ±  0.0%o respectively). This 

is probably due to the fact that the muscle tissue was trimmed of any fatty portions before

1 3processing. 5 C in bone collagen of large fish that inhabit cold ocean waters is ~2.5%o 

greater than muscle tissue while 515N in bone collagen is ~0.8 to 1.0%o less (Table A.l; 

Figure A.l). These results are very different from those published for fractionation of

i
mammal tissue to collagen. 5 C in bone collagen is generally 5%o greater than in an 

animals’ diet (Schoeninger and DeNiro 1984; Koch et al. 1994; Hedges et al. 2005) while
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muscle tissue is 0.5 to 1.0%o greater. Therefore, in order to compare them with bone

13 15 • •collagen, one would increase muscle tissue sample 8 C by ~4%o. No 8 N fractionation 

between muscle tissue and bone collagen of mammals has been determined in these 

studies (Schoeninger and DeNiro 1984).

Conclusion

Sockeye and silver salmon, as well as Pacific cod, fell within the mean 

fractionation for all samples. The one chinook sample did not fall within the mean, 

although it is unclear as to why this may have occurred. There is very little difference in

13 15either 8 C or 8 N between lipid extracted muscle tissue and non-lipid extracted tissues. 

These results show that even in fish with known high lipid content such as salmon 

species, relatively pure muscle tissue samples were obtained. I have also shown that the 

fractionation of muscle tissue to collagen in large fish from cold ocean waters is very 

different than that of sea mammals. A13C between muscle tissue and collagen is -2 .5  ±  

1.8%o and A15N is ~ -1.0 ± 0.3%o. Species of fish, prey items and foraging habitat do not 

appear to affect fractionation of muscle tissue to collagen or lipid content of muscle 

tissue.
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Figure A.l. Linear regressions and r2 values of lipid extracted muscle tissue, non-lipid 

extracted muscle tissue and muscle tissue and collagen of both 815N and 813C.
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Table A .l: Results of isotopic analysis. Differences and means of differences 
between lipid and non-lipid extracted muscle tissue and collagen and lipid and non­
lipid extracted tissue.____________________________________________________
8 15N (Air) %.

Fish sam ple Collagen (C) Tissue (T) Lipid extracted  tissue T-C LT-C LT-T
(LT) A1SN A,SN A1SN

Chitna River-sockeye R1 9.34 9.79 10.03 0.45 0.69 0.24
Chitna River-sockeye R2 9.28 10.09 10.52 0.81 1.24 0.43
Yukon River-sockeye R3 9.19 9.93 9.88 0.74 0.69 -0.05
Chitna River-sockeye R4 9.81 10.75 11.5 0.94 1.69 0.75
Kodiak-sockeye R5 9.03 10.32 9.78 1.29 0.75 -0.54
Unalaska-sockeye R6 11.18 10.87 9.73 -0.31 -1.45 -1.14
Unalaska-sockeye R7 9.8 10.53 10.11 0.73 0.31 -0.42
Valdez-coho SI 11.67 12.96 13.14 1.29 1.47 0.18
Unalaska-coho S2 10.67 12.07 11.42 1.4 0.75 -0.65
Unalaska-coho S3 10.73 11.52 11.62 0.79 0.89 0.10
Yukon River-chinook K1 13.24 14.35 14.9 1.11 1.66 0.55
Pavlof -cod Cl 16.55 17.1 17.56 ' 0.55 1.01 0.46

M ean (no R6)*: 0.92 1.00 0.10
M ean: 0.80 0.81 0.01
St. Dev: 0.32 0.45 0.46

513C (VPDB) %o
Fish sam ple Collagen (C) Tissue (T) Lipid extracted  tissue T-C LT-C LT-T

(LT) a 13c AI3C a 13c
Chitna River-sockeye R1 -18.06 -22.97 -21.04 -4.91 -2.98 1.93
Chitna River-sockeye R2 -19.69 -21.71 -20.85 -2.02 -1.16 0.86
Yukon River-sockeye R3 -18.73 -20.99 -21.09 -2.26 -2.36 -0.10
Chitna River-sockeye R4 -18.05 -20.89 -20.47 -2.84 -2.42 0.42
Kodiak-sockeye R5 -18.56 -21.25 -21.76 -2.69 -3.2 -0.51
Unalaska-sockeye R6 -17.03 -20.06 -19.91 -3.03 -2.88 0.15
Unalaska-sockeye R7 -17.45 -20.65 -21.4 -3.2 -3.95 -0.75
Valdez-coho SI -18.44 -20.62 -20.25 -2.18 -1.81 0.37
Unalaska-coho S2 -17.26 -19.86 -20.4 -2.6 -3.14 -0.54
Unalaska-coho S3 -17.62 -19.64 -19.64 -2.02 -2.02 0.00
Yukon River-chinook K1 -22.54 -19.45 -19.9 3.09 2.64 -0.45
Pavlof Bay -cod Cl -13.33 -16.61 -15.81 -3.28 -2.48 0.80

K)
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Table A.l (cont.)
Mean (no Kl)*: -2.82 -2.58 0.24
Mean: -2.33 -2.15 0.18
St. Dev: 1.88 1.67 0.76

* R6 and K1 were removed from calculations due to possible laboratory or instrument error.
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Appendix B 

Table of raw data of all mammals studied

Table B .l: Description of age and element for each individual mammal studied with 
corresponding isotope values.____________________________
Sample # Species Element Side Age 815N 8,3C

1 E. lutris Femur Right Adult 15.35 -11.56
2 E. lutris Humerus Right Adult 14.39 -11.66
3 E. lutris Humerus Right Adult 15.10 -11.98
4 E. lutris Femur Left Adult 14.05 -11.67
5 E. lutris Femur Right Adult 13.15 -11.59
6 E. lutris Femur Right Adult 14.81 -11.32
7 E. lutris Femur Left Subadult 13.64 -11.07
8 E. lutris Humerus Left Subadult 13.45 -11.21
9 E. lutris Humerus Left Adult 16.41 -12.47
11 E. lutris Femur Right Adult 14.47 -10.85
12 E. lutris Humerus Right Juvenile 17.16 -13.11
13 E. lutris Humerus Left Adult 15.98 -11.73
14 E. lutris Femur Left Adult 13.64 -11.47
15 E. lutris Humerus Left Adult 14.39 -11.54
16 E. lutris Femur Left Adult 13.78 -11.20
17 E. lutris Humerus Right Adult 13.40 -10.80
18 E. lutris Humerus Left Adult 13.77 -11.35
19 E. lutris Femur Left Adult 12.63 -12.14
20 E. lutris Humerus Left Adult 16.26 -11.71
21 E. lutris Humerus Right Juvenile 14.59 -11.28
22 E. lutris Humerus Right Adult 17.94 -11.93
23 E. lutris Humerus Left Juvenile 11.18 -10.68
24 E, lutris Humerus Left Subadult 14.30 -11.57
25 E. lutris Humerus Unknown Adult 15.38 -12.77
26 E. lutris Humerus Left Adult 14.36 -11.14
27 E. lutris Humerus Left Adult 14.48 -11.38
28 E. lutris Humerus Unknown Subadult 15.10 -11.94
29 E. lutris Femur Unknown Adult 18.72 -13.14
30 E. lutris Humerus Left Adult 13.70 -11.08
31 E. lutris Femur Left Adult 14.69 -11.78
32 E. lutris Humerus Right Adult 15.54 -11.16
33 E. lutris Humerus Right Unknown 16.22 -11.10
34 E. lutris Humerus Right Adult 13.16 -12.56
35 E. lutris Humerus Right Juvenile 15.52 -11.38
36 E. lutris Humerus Right Adult 16.56 -10.49
37 E. lutris Humerus Left Adult 14.36 -11.55
38 E. lutris Femur Left Adult 14.97 -11.75
39 E. lutris Humerus Right Juvenile 14.70 -11.04
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Table B.l (cont.)
Sample # Species Elem ent Side Age 81SN S13C
40 E. lutris Humerus Right Unknown 14.78 -11.71
41 E. lutris Femur Right Adult 14.99 -11.40
42 E. lutris Humerus Right Adult 13.18 -12.06
43 E. lutris Femur Left Adult 14.12 -11.23
44 E. lutris Humerus Left Adult 15.16 -11.56
45 E. lutris Humerus Left Subadult 14.70 -11.68
46 E. lutris Humerus Left Juvenile 15.52 -11.02
48 C. ursinus Humerus Left Juvenile 13.86 -15.20
49 E. lutris Rib Left Subadult 14.91 -11.57
50 E. lutris Rib Right Adult 15.32 -11.03
51 E. lutris Humerus Right Adult 13.99 -11.98
52 E. lutris Vert.-Thoracic NA Subadult 15.44 -11.78
53 E. lutris Mandible Right Adult 13.75 -11.69
54 Pinniped Vert.-Lumbar NA Subadult 17.95 -12.90
55 C. ursinus Innominate Right Juvenile 13.22 -11.95
56 E. lutris Metapodial Unknown Adult 13.74 -12.54
57 O tarriid Rib Left Adult 16.17 -13.37
58 E. ju ba ta Radius Left Subadult 17.01 -13.05
60 O tarriid Fibula Right Subadult 22.49 -13.34
61 P. vitulina Mandible Right Subadult 17.45 -11.45
62 P. vitulina Humerus Left Infant 20.46 -10.62
63 C.ursinus Innominate Right Juvenile 13.06 -10.85
64 E. ju ba ta Femur Right Juvenile 19.73 -12.78
65 E. lutris Femur Left Juvenile 14.68 -11.55
66 E. ju ba ta Humerus Left Subadult 17.69 -12.81
67 E. ju ba ta Humerus Right Adult 18.20 -11.32
68 E. ju ba ta Humerus Right Subadult 18.63 -12.78
69 E. ju ba ta Humerus Left Subadult 19.42 -12.84
70 E. lutris Ulna Right Adult 13.99 -11.87
71 E. lutris Ulna Left Juvenile 16.18 -11.72
72 E. lutris Rib Left Subadult 13.99 -11.32
73 E. ju ba ta Innominate Left Subadult 18.91 -13.10
76 O tarriid Radius Right Subadult 11.32 -13.90
77 O tarriid Scaphoid Right Adult 18.96 -13.02
78 Phoca Phalanx-Medial Unknown Subadult 19.41 -12.55
79 O tarriid Phalanx-Medial Unknown Subadult 14.16 -12.40
80 O tarriid Phalanx-Medial Unknown Adult 18.52 -12.74
81 E. lutris Humerus Right Adult 13.17 -12.50
82 E. lutris Femur Right Juvenile 12.88 -10.99
83 E. lutris Femur Right Adult 17.84 -13.20
84 E. lutris Tibia Right Subadult 13.32 -11.51
85 E. lutris Femur Left Adult 18.04 -13.79
86 Phoca Vert.-Lumbar NA Adult 17.43 -11.62
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Table B.l (cont.)
Sample # Species Element Side Age 81SN 513C
88 Phoca Radius Left Subadult 14.84 -13.06
89 E. lutris Innominate Right Juvenile 15.76 -11.74
90 P. vitulina Tibia Right Adult 16.97 -11.99
91 P. vitulina Humerus Left Juvenile 14.27 -12.36
92 C.ursinus Scapula Right Subadult 20.34 -14.40
93 E. lutris Ulna Right Adult 13.37 -12.05
94 E. lutris Femur Left Adult 13.75 -12.40
95 Phoca Humerus Left Adult 15.71 -12.14
96 E. lutris Tibia Right Subadult 12.58 -11.30
97 E. lutris Humerus Left Adult 14.97 -12.73
98 E. lutris Ulna Right Adult 16.20 -13.23
99 E. lutris Tibia Right Unknown 12.40 -11.63
too E. lutris Femur Left Adult 14.86 -11.31
101 E. lutris Femur Right Juvenile 13.04 -11.80
102 E. lutris Ulna Left Adult 13.10 -11.59
103 E. lutris Ulna Right Adult 14.37 -11.94
104 E. lutris Scapula Right Adult 12.50 -11.37
105 E. lutris Tibia Right Juvenile 14.44 -10.94
106 Phoca Phalanx-Medial Unknown Adult 14.00 -12.35
108 O tarriid Ulna Right Subadult 18.98 -13.91
109 E. lutris Femur Left Juvenile 14.37 -12.57
110 O tarriid Metapodial Unknown Adult 16.70 -13.53
111 O tarriid Rib Right Adult 17.48 -11.80
112 P. vitulina Radius Right Subadult 17.85 -11.52
113 P. vitulina Maxilla Left Subadult 18.46 -13.30
114 E. lutris Femur Right Juvenile 15.62 -12.01
115 E. lutris Femur Right Juvenile 14.37 -11.69
116 E. lutris Femur Right Subadult 15.17 -14.65
117 E. lutris Femur Left Juvenile 15.39 -11.66
118 C. ursinus Femur Right Juvenile 13.52 -15.04
119 E. ju ba ta Humerus Left Adult 18.27 -13.51
120 E. lutris Ulna Left Subadult 15.29 -11.38
121 E. lutris Tibia Right Adult 12.63 -12.20
122 E. lutris Tibia Right Subadult 15.43 -12.38
123 E. lutris Fibula Unknown Juvenile 14.18 -14.49
124 E. lutris Ulna Right Adult 13.79 -10.74
125 E. lutris Ulna Left Subadult 16.18 -12.33
126 E. lutris Femur Right Infant 13.70 -12.40
127 C. ursinus Tibia Left Juvenile 14.33 -11.84
128 O tarriid Astragulus Left Adult 18.19 -12.75
130 O tarriid Tibia Right Subadult 18.02 -13.14
131 C. ursinus Humerus Right Adult 13.74 -15.15
132 C. ursinus Tibia Right Subadult 15.39 -14.56
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Table B.l (cont.)
Sample # Species Element Side Age 815N S13C
133 C. ursinus Femur Left Subadult 15.28 -14.59
134 P. vitulina Tibia Right Subadult 17.29 -12.61
135 E. lutris Mandible Left Subadult 12.73 -11.69
137 C.ursinus Innominate Right Adult 15.00 -11.13
138 E. ju ba ta Humerus Left Subadult 18.10 -12.87
139 E. ju ba ta Humerus Left Adult 18.20 -13.57
140 E. lutris Mandible Left Subadult 13.73 -12.27
141 E. lutris Ulna Left Adult 12.24 -14.16
142 E. lutris Vert.-Thoracic NA Adult 15.38 -11.29
143 E. lutris Vert.-Thoracic NA Adult+ 15.50 -12.34
144 E. lutris Ulna Right Adult 12.38 -11.41
146 Phoca Phalanx-Pl Right Adult 17.00 -12.46
147 C. ursinus Tibia Left Juvenile 14.62 -11.99
149 P. vitulina Mandible Left Subadult 16.22 -13.81
150 P. vitulina Mandible Left Subadult 20.50 -10.80
151 P. vitulina Innominate Right Adult 16.59 -11.89
152 Phoca Scapula Left Adult 16.28 -11.80
154 C. ursinus Humerus Right Juvenile 16.90 -14.46
156 P. vitulina Innominate Left Adult 17.00 -12.77
157 E. ju ba ta Radius Left Subadult 21.10 -14.60
158 E. lutris Astragulus Unknown Adult 15.80 -14.17
159 E. lutris Rib Left Adult 14.50 -12.15
160 O tarriid Navicular Unknown Juvenile 16.73 -14.28
161 P. vitulina Radius Right Adult 18.89 -12.81
162 E. lutris Innominate Left Infant 13.99 -11.62
163 E. lutris Innominate Left Juvenile 11.94 -12.02
164 E. ju bata Ulna Left Subadult 14.96 -13.54
165 E. ju ba ta Humerus Right Adult 17.59 -13.65
166 E. lutris Tibia Right Subadult 13.56 -12.27
167 E. lutris Tibia Right Subadult 13.31 -11.92
168 E. lutris Tibia Right Juvenile 14.97 -12.01
169 E. lutris Innominate Left Subadult 13.63 -10.87
170 E. lutris Tibia Right Adult 14.06 -11.07
171 E. lutris Ulna Right Adult 14.20 -11.10
172 E. lutris Tibia Left Adult 11.98 -12.14
173 E. lutris Phalanx-Distal Unknown Subadult 15.35 -11.85
175 O tarriid Rib Right Adult 18.63 -13.46
176 O tarriid Tibia Right Subadult 16.16 -14.23
177 P. vitulina Mandible Right Subadult 18.22 -11.90
178 P. vitulina Humerus Left Subadult 18.35 -12.10
179 P. vitulina Mandible Right Subadult 15.30 -11.36
180 C. ursinus Femur Right Adult 16.62 -13.28
181 C. ursinus Femur Right Juvenile 14.04 -15.83
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Table B.l (cont.)
Sample # Species Elem ent Side Age 81SN 8,3C
182 C. ursinus Ulna Left Juvenile 18.80 -14.01
183 C. ursinus Ulna Right Juvenile 15.59 -14.69
184 E. lutris Femur Right Subadult 13.67 -12.06
185 E. lutris Tibia Right Juvenile 14.12 -12.93
186 E. lutris Tibia Left Adult 14.71 -11.39
187 E. lutris Tibia Left Adult 14.39 -11.93
188 E. lutris Femur Right Adult 14.62 -12.14
189 E. lutris Femur Right Juvenile 12.00 -11.32
190 E. lutris Rib Right Subadult 15.45 -11.23
191 C. ursinus Phalanx-Medial Unknown Subadult 18.94 -12.71
192 O tarriid Phalanx-Medial Unknown Juvenile 17.36 -13.66
193 O tarriid Rib Right Adult 16.80 -11.62
194 O tarriid Ulna Right Subadult 17.27 -14.90
195 P. vitulina Mandible Right Subadult 17.07 -11.96
196 P. vitulina Tibia Left Adult 17.85 -11.51
197 E. lutris Humerus Left Adult 13.67 -12.36
198 E. lutris Innominate Left Subadult 13.89 -12.26
199 E. lutris Metapodial Unknown Adult 15.63 -12.43
200 O tarriid Rib Right Adult 14.11 -12.64
201 C. ursinus Humerus Right Adult 17.95 -13.14
202 C. ursinus Tibia Right Subadult 18.09 -14.30
203 E. lutris Tibia Left Juvenile 16.23 -11.31
204 O tarriid Radius Left Adult 15.43 -13.89
207 Pinniped Vert.-Lumbar NA Adult 18.61 -13.68
208 P. vitulina Humerus Left Adult 17.54 -11.93
209 P. vitulina Ulna Right Subadult 18.54 -12.50
210 E. ju ba ta Humerus Left Subadult 19.98 -13.47
212 P. vitulina Innominate Left Adult 16.95 -12.05
213 O tarriid Vert.-Lumbar NA Adult 17.60 -11.80
214 E. lutris Vert.-Thoracic NA Adult 16.57 -12.74
215 O tarriid Phalanx-medial Unknown Subadult 19.72 -12.32
216 E. lutris Rib Right Juvenile 12.70 -11.67
217 E. lutris Femur Right Juvenile 14.00 -12.46
218 E. lutris Radius Right Adult 14.86 -11.68
219 E. lutris Phalanx-medial Unknown Adult 13.65 -11.24
220 E. lutris Vert.-Thoracic NA Adult 14.09 -11.85
221 Phoca Rib Unknown Adult 13.48 -11.85
222 O tarriid Tibia-Distal epiphysis Right Subadult 18.52 -14.24
223 E. lutris Tibia Left Adult 15.32 -11.66
224 E. lutris Rib Right Adult 15.64 -12.16
225 E. lutris Vert.-Thoracic NA Adult 14.40 -12.31
226 O tarriid Metapodial Right Adult 18.24 -14.30
227 Phoca Scapula Right Subadult 17.80 -11.84
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Table B.l (cont.)
Sample # Species Elem ent Side Age 81SN 813C
228 E. lutris Scapula Left Adult 13.91 -11.48
229 E. lutris Ulna Right Subadult 14.03 -12.82
230 E. lutris Ulna Left Juvenile 14.11 -12.55
231 C. ursinus Tibia Right Subadult 21.39 -13.76
232 C. ursinus Mandible Left Juvenile 17.97 -14.32
233 E. lutris Rib Right Adult 13.71 -11.87
236 C. ursinus Tibia Left Juvenile 14.64 -12.29
237 O tarriid Tibia Left Juvenile 20.46 -13.79
238 P. vitulina Humerus Right Adult 14.80 -14.20
239 C. ursinus Scapula Left Juvenile 17.97 -14.36
240 E. lutris Rib Left Adult 12.58 -12.28
241 Pinniped Sternum NA Subadult 16.95 -13.67
242 E. lutris Femur Left Juvenile 17.89 -12.14
243 E. lutris Scapula Left Adult 13.89 -12.29
244 E. lutris Vert.-Lumbar NA Adult 15.39 -13.94
245 E. lutris Scapula Left Juvenile 17.06 -12.70
246 Phoca Phalanx-Distal Unknown Adult 16.55 -12.08
247 O tarriid Tibia Right Subadult 16.26 -14.27
119a E. ju ba ta Mandible Left Adult 18.62 -12.55
248 E. lutris Humerus Left Juvenile 13.64 -12.72
249 E. lutris Humerus Left Adult 15.20 -12.46
250 E. lutris Humerus Left Adult 14.23 -12.67
251 E. lutris Humerus Left Adult 13.29 -12.07
252 E. lutris Humerus Left Adult 13.25 -12.32
51827 E. lutris Cranial Fragments Adult 10.26 -14.38
51830 E. lutris Cranial Fragments Adult 10.22 -14.19
21998 E. lutris Cranial Fragments Adult 11.32 -14.22
60976 E. lutris Cranial Fragments Adult 11.90 -12.07
51828 E. lutris Cranial Fragments Adult 10.29 -12.63
61110 E. lutris Cranial Fragments Adult 11.30 -13.56
21990 E. lutris Cranial Fragments Adult 12.82 -14.03
66868 E. lutris Cranial Fragments Adult 11.10 -12.46
21684 E. lutris Cranial Fragments Adult 12.68 -13.25
85216 E. lutris Cranial Fragments Adult 12.26 -11.87
51829 E. lutris Cranial Fragments Adult 11.07 -13.84
48422 E. lutris Cranial Fragments Adult 9.13 -13.60
21991 E. lutris Cranial Fragments Adult 12.03 -13.64
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Chapter 4 Changes in eastern North Pacific ecosystems and their co-occurance with 

changes in Aleut culture: Preliminary findings from Sanak Island, Alaska.1 

Abstract

This chapter synthesizes relationships between changes in the North Pacific marine 

ecosystem and prehistoric Aleut culture through isotopic analyses of lake cores and of 

bone from prehistoric middens focusing on the region located along the lower Alaska 

Peninsula (LAP)/eastem Aleutian Islands. Lake core sediments from this project and 

other studies yielded data concerning Holocene paleoclimate and salmon returns from

6,000 calendar years before present (cal yrs BP). Bone isotope analysis returned 

information on changing environments and productivity starting ~ 4,500 cal yrs BP. Data 

from previous zooarchaeological studies from the lower Alaska Peninsula, eastern 

Aleutian Islands and Sanak Island were also used to track changes in species represented 

through time. It appears that humans not only adapted to their changing 

climates/ecosystems in noticeable ways, but may have also changed their local 

environments.
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1 Misarti N, Finney B, and Flerbert Maschner. Changes in eastern North Pacific ecosystems and their co- 
occurance with changes in Aleut culture: Preliminary findings from Sanak Island, Alaska. Prepared for 
Oecologia.
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Introduction

The Aleut way of life has been dependant on ocean resources for thousands of 

years and fluctuations in ocean ecosystems will have impacted this life style (bottom-up 

processes), even if only at the local level. Conversely, preferential resource consumption 

may have influenced local ecosystems (top-down processes). Archaeologists have been 

studying past environments and environmental change in order to determine how they 

may affect subsistence and cultural change (Jordan and Maschner 2000; Burton et al. 

2002; Butler and O’Conner 2004; Reitz 2004; Causey et al. 2005). Furthermore, many 

archaeologists have cited resource intensification, namely the improved technology for 

mass harvesting and processing and storage capability and therefore reliance on/use of 

salmon in the North Pacific, as a harbinger to cultural complexity (Coupland 1985; 

Matson 1992; Ames 1994; Hayden 1995; Matson and Coupland 1995; Maschner 1998; 

Fitzhugh 2003; Hoffman 2002) although others point to the use of shellfish as well 

(Ames and Maschner 1999). Recent research by both archaeologists (Jordan and 

Maschner 2000; Maschner and Hoffman 2003) and marine scientists (Finney et al. 2002) 

suggest that changes in the environment of the Northeast Pacific Ocean/ Gulf of Alaska 

(GOA) may correspond to changes in Aleut and Koniag house form and organization. 

This study was conceived to further test that hypothesis and gain a clearer understanding 

on the relationship between cultural change and climate change.

This thesis considers the relationship between change in the North Pacific marine 

ecosystem and prehistoric Aleut culture through multi-element weak-acid extraction of
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soils from archaeological sites, isotopic analyses of sediments in lake cores, and isotopic 

analyses of bone from prehistoric middens focusing on the region located along the lower 

Alaska Peninsula (LAP)/eastem Aleutian Islands. This interdisciplinary research draws 

on a range of fields including fisheries, oceanography and archaeology to build on our 

understanding of long-term climate change and long-term fluctuations in species density 

and trophic dynamics in the North Pacific, and considers humans as a part of the system. 

Here we attempt to integrate original data sets and compare and contrast them to 

published data from the North Pacific in the fields of marine science, paleoclimatology 

and zooarchaeology, and relate the conclusions to the regional prehistory of the Aleut 

along the western Alaska Peninsula, and specifically to Sanak Island, AK (Figure 4.1).

Paleoclimates of Alaska and Sanak Island

In order to understand how bottom-up processes could have affected ecosystems 

and therefore the people who relied on those systems we need to have some 

understanding of paleoclimates of an area. Sanak Island was deglaciated ~ 16,000 

calendar years before present (cal yrs BP) (Jordan et al. 2005; Misarti unpub.). Since this 

time, with the exception of the Younger Dryas (Mann and Hamilton 1995), a general 

trend of warmer and drier periods has oscillated with cooler periods of increased 

precipitation. In the central coastal region of the GOA, by 10,000 BP average summer air 

temperatures had risen to 14 °C, and by about 8,000 BP up to 16 °C, based on pollen 

transfer functions (Huesser et al. 1985). During periods of warmer temperatures the
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subtropical Pacific cyclone mode was predominant and there was much less precipitation. 

By 5,000 BP summer temperatures in southern Alaska had dropped to 12 °C (Huesser et 

al. 1985). During colder periods the Aleutian Low predominated over southern Alaska 

and generated more frequent and intense storms (Huesser et al. 1985). Overall, sea 

surface temperature (SST) rose in the northeast Pacific over the past 7,000 years (Kim et 

al. 2004).

By 4,500 BP precipitation was about twice as high as it was ~ 8,000 BP (Huesser 

et al. 1985; Mann and Hamilton 1995; Savinetsky et al. 2004) and pollen data suggests 

that temperatures were cooling and conditions were becoming wetter (Jordan and 

Krumhardt 2003). This is generally considered to be the onset of neoglaciation, and air 

temperatures were lower than in the previous few thousand years with more frequent and 

larger storms (Mann and Hamilton 1995). This climate transition corresponds with an 

increase in salmon/marine-derived nutrients (MDN) from numbers of returning salmon in 

Deep Lake sediments, Sanak Island (Misarti unpub.). Sea level on Sanak Island was ~4-5 

meters above today’s levels by 4,000 BP (Jordan et al. 2005). By 3,500 BP there was a 

large increase in MDN in sockeye nursery lakes on Kodiak (Finney et al. 2002) and a 

notable increase in Deep Lake MDN on Sanak Island itself (Misarti unpub.). This is also 

a period of ice advance in alpine and land-terminating glaciers (Huesser et al. 1985; 

Calkin et al. 2001) and there is evidence of increased storminess along beach ridges along 

northern Alaska coastlines (Mason and Jordan 1993). Lake core data also suggest that the 

Aleutian Low shifted eastward and/or intensified between -4,500 BP and 3,000 BP 

(Anderson et al. 2005). The ice advances continued until 2,700 BP (Calkin et al. 2001) or
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2,100 BP in southern Alaska and Gulf of Alaska glaciers (Huesser et al. 1985). During 

this period of cooling there was an increase in piscivorous birds in the archaeological 

record of the western Aleutians (Causey et al. 2005), perhaps due to an increase in 

pelagic fish. Sea level on Sanak Island dropped to 2-3 meters above today’s levels 

(Jordan et al. 2005). Sometime between 2,500-2,200 cal yrs BP the lower Alaska 

Peninsula was hit by a major earthquake and the terrestrial landscape subsided by several 

meters. The accompanying abrupt rise in sea level would have destroyed salmon habitat 

and disrupted much of the intertidal system (Maschner 2000). Deep Lake does have a 

brief but very pronounced drop in MDN around this time (Figure 4.2).

Salmon abundance in Kodiak Island and Bristol Bay decreased starting -2,000 BP 

(Finney et al. 2002), as did MDN in Deep Lake (Misarti unpub.). According to Calkin et 

al. (2001) glaciers receded at this time, and 6180  from sediments in Jellybean Lake, in the 

southern Yukon showed a weakening and/or westward movement of the Aleutian Low 

from -3,000 to 2,000 BP (Anderson et al. 2005). From -1,700 BP to 1,200 BP beach 

ridges around Kotzebue Sound prograded, implying less stormy conditions. These 

records combine to suggest warmer atmospheric temperatures and a decrease in intensity 

and numbers of storms beginning -2,000 BP.

A few recent papers suggest some glacial advances between 2,000 and 1,100 BP 

(Huesser et al. 1985; Calkin et al. 2001), which I will refer to as the pre-Medieval Warm 

Period (MWP). There was rapid change in 5180  in Jellybean Lake beginning -1,200 BP 

until -800 BP, which is believed to be tied to a shift in the Aleutian Low (Anderson et al. 

2005). There was a coeval increase in sockeye returns on Kodiak Island around 1,200 BP,
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then a decrease about 1,000 BP (Finney et al. 2002). Becharof and Deep Lakes have a 

fairly continuous decrease in MDN until -1,000 BP but levels still remained above pre­

neoglacial averages in Deep Lake (Misarti unpub.).

The period from -1,100 BP to 900 BP coincides with the MWP when mean 

annual July temperatures reached as high as 14°C on the North Pacific coast (Huesser et 

al. 1985). Starting -  1,100 BP there was a large and rapid decrease in 6180  in Jellybean 

Lake and a decrease in MDN in lakes around Alaska (Finney et al. 2000, 2002; Anderson 

et al. 2005). Deep Lake sediments record a decrease in MDN -1,100 BP. Glaciers 

receded from -1,100 BP to 800 BP (Calkin et al. 2001) and tree ring growth was above 

average in northern Alaska during the Medieval Warm (D’Arrigo et al. 2005). However, 

based on a combination of percent decomposition and ash of dated peats and ice-advance 

data, Causey et al. (2005) found that from 1,100 to 750 BP the GOA and eastern 

Aleutians may have experienced some moderate cooling, unlike the western Aleutians 

and the Bering Sea that experienced the warming trends that characterized the MWP.

The period from 750-100 BP coincides with the Little Ice Age, a time of world­

wide cooling in the northern hemisphere. During the coldest years of the 1800’s, 

temperatures on the North American continent were on average 1.5 °C colder than today 

(Mann 2001). The Little Ice Age (LIA) was clearly characterized by variability as 

witnessed by 4 phases of distinct glacial advances at -750, 500, 350 and 150 BP (Calkin 

et al. 2001). Many lakes show a subsequent increase in MDN, and therefore salmon 

abundance, starting soon after the beginning of the LIA. The 8lsO in Jellybean Lake 

increases dramatically, suggesting a strengthening of the Aleutian Low (Finney et al.
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2000, 2002; Anderson et al. 2005; Chapter 2). There were periods of higher temperatures 

in northwestern AK between 900-850 BP, 800-750 BP (the highest peaks in the record) 

and then once again at 600 BP (Mann 2001; D’Arrigo et al. 2005). Sockeye returns 

increase to the highest levels of the previous 1,000 years on Kodiak Island -750 but 

appear to fluctuate with decreases during periods of warmer temperatures not only in 

lakes on Kodiak but in Bristol Bay as well (Finney et al. 2000, 2002). The Deep Lake 

MDN record is of lower temporal resolution than these records, but suggests continual 

increase until -300 BP. It is interesting to note that throughout the last 300-400 years 

there is evidence for periods of both Pacific Decadal Oscillation (PDO) and non-PDO 

influenced climatic regimes, from both tree-ring data on the Seward Peninsula, AK and 

the Pacific Basin and lakecore data (Gedalof and Mantua 2002; Anderson et al. 2005; 

D’Arrigo et al. 2005; MacDonald and Case 2005).

Prehistory of the western Alaska Peninsula and Sanak Island

In recent years the western portion of the Alaska Peninsula has seen extensive 

archaeological research (Maschner and Reedy-Maschner 1998, 2005; Hoffman 1999, 

2002; Maschner 1999, 2000, 2004; Jordan and Maschner 2000; Jordan 2001; Maschner 

and Jordan 2001, 2005; Jordan and Krumhardt 2003; Maschner and Bentley 2003; 

Maschner and Hoffman 2003; Tews 2005) and a clearer understanding of cultural 

features and change has emerged. Jordan and Maschner (2000) published the first phase 

chronology for the lower Alaska Peninsula and adjacent islands and have since modified
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and refined their understanding (Maschner and Jordan 2005). Nine phases were defined 

that span the end of the Incipient Aleutian Tradition and the Aleutian Tradition as 

originally defined by McCartney (1984). Unless otherwise cited, all of the information 

synthesized below is derived from Jordan and Maschner (2000), Maschner and Jordan 

(2005) and Maschner (pers. comm.).

The Moffet Phase begins -5,000-3,600 cal yrs BP, and settlements during this 

time period were small, perhaps 30-60 people per village, as were individual dwellings 

(4-7 people per household). These few, small villages were located in areas with efficient 

access to marine, intertidal, riverine and terrestrial resources. In sites along the lower 

Alaska Peninsula, artifacts consisted of a bifacial technology of basalt projectiles, knives 

and scrapers, oil lamps, grinding stones, stone bowls, notched netsinkers and some rare 

polished slate items. Houses were semi-subterranean with surrounding exterior storage 

pits and red-ochre floors. Salmon, cod, seal and marine birds were located within 

middens. The oldest sites found on Sanak Island date from 6,000 cal yrs BP but did not 

have shell middens and therefore there is no preservation of faunal remains. These houses 

had box hearth and prepared floors. Shell middens appeared in sites on the southeast side 

of Sanak Island beginning -4,500 cal yrs BP and were composed of salmon, cod, halibut, 

pollock, ducks and alcids, geese, cormorants, and some sea mammals, including phocids, 

otariids, sea otter and some whale (Betts and Tews 2007). Shellfish abounded and species 

included whelks, clams, limpets, mussels, urchin, barnacles, chitons, periwinkles, 

dogwinkles etc. (Betts and Tews 2007). Shell middens have not been found on Sanak 

Island between -3,800 and 2,750 cal yrs BP.
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The Russell Creek Phase began -3,600-3,300 cal yrs BP and is distinguished from 

the Moffet Phase by several features. Village and house/household size is still small but 

houses now contain stone-lined box hearths, though villages are still located in areas with 

access to marine, intertidal, riverine and terrestrial resources. Artifacts consist of 

triangular end-blades, bone harpoons without line holes, oil lamps and a few rare 

microblades and cores. Faunal remains and lithics recovered from these sites suggest 

subsistence was focused on large marine mammals with riverine and smaller marine 

resources. There are no sites on Sanak Island from 3,600 to 3,350 cal yrs BP. By -3,310 

cal yrs BP, three sites are found on and around the Sanak archipelago, but only one has a 

clear, but small, midden associated with it (Betts and Tews 2007; Misarti unpub.).

By 3,300 cal yrs BP house and village size was increasing. The Kinzarof Phase 

(3,300-2,700 cal yrs BP) is defined by contracting stem end-blades, line-hole harpoons 

and a few rare toggling harpoons. Large, bifacially-flaked basalt tools were still common 

and primary subsistence species were salmon, cod, seal and marine birds.

Around 2,700 cal yrs BP there was an increase in expedient tools, especially net 

sinkers and some houses on the Alaska Peninsula have stone formations. Until -2,800 cal 

yrs BP there were still no shell middens in sites on Sanak (Misarti unpub.), at which point 

in time there was only a single midden site. When shell middens did re-appear (-2,600­

2,500 cal yrs BP) they contained very small numbers of previously harvested shellfish, 

small numbers of salmon, cod, geese, cormorants, smaller numbers of phocids and a few 

sea otters (Betts and Tews 2007).
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The Adamagan Phase began -2,400 cal yrs BP and ended -1,900 cal yrs BP. 

Villages and houses became very large, with 300 to 1,000 people per village and 10-25 

people per household and there are more villages, all indicating an increase in population 

density. Decorated artifacts and labrets were common. Hafted scrapers and knives, once 

rare, became common as did toggling harpoons. There were fishtail points and some rare 

polished slate. There was some use of salmon as a subsistence food but sites were located 

for better access to marine and intertidal resources. Overall it appears that larger sea 

mammals, including whales, were a greater focus of subsistence. This increase in sites 

and site size can be found on Sanak Island as well. Sanak Island middens contained 

remains of sea otters, phocids, very small numbers of otariids, cormorants, geese in small 

numbers, cod, halibut and very little salmon (Betts and Tews 2007).

During the Ram’s Creek Phase (-1,900-1,400 cal yrs BP) there were only a few 

large villages but many smaller ones. On average, villages ranged from 50-300 people 

and households contained 10-25 people. Sites continued to be located in areas with easy 

marine and intertidal access, with only small emphasis placed on the location of salmon 

streams. Fishtail points became rare and slate more numerous (though not common). Net 

weights and ground stone persisted. Most of the information for this time period is 

derived from the Hot Springs site where there is evidence for a ceremonial complex that 

included anthropomorphic figurines. From -1,900 to 1,600 cal yrs BP there are no known 

shell middens on Sanak Island (Misarti unpub.). There are two sites on Sanak Island that 

date to -1,550 cal yrs BP that contain shell middens, in which fewer sea otter remains are
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present but larger numbers of otariids and phocids. Cormorants, geese, a few ducks, 

salmon, cod, and cottidae are all present.

By 1,400 cal yrs BP houses and villages once again became smaller. The Frosty 

Creek Phase (1,400-900 cal yrs BP) had numerous villages with a population of 30-60 

people and 4-7 people per household. The most notable change from the previous 

settlement pattern was a move to what are historically pink and chum salmon streams, 

and sockeye nursery systems, many of these villages had poor access to the open coast. 

There is very little preservation at these sites as shell middens do not exist. On Sanak 

Island there was another 400-500 year period with no shell middens. There was more 

polished slate and some pottery (evidence of contact with the Bering Sea), ground stone 

and net weights. Defensive sites and refuges were being utilized so there is some 

evidence for warfare (Maschner and Reedy-Maschner 1998). More importantly, within 

this time frame there was an introduction of the recurved bow and armor from Asia as 

well as small, specialized arrow points (Maschner and Reedy-Maschner 1998; Maschner 

2000). Two sites with middens dating -1,000 cal yrs BP have been found on Sanak 

Island. These middens were the most species rich with many fish, avian and sea mammal 

species while barnacles, mussels, chitons and periwinkles dominate the shellfish 

assemblage (Betts and Tews 2007). There is also a site located on a defensible “refuge 

rock” along the coast of Sanak Island dated to this time period.

During the Cape Glaznap Phase (900-750 cal yrs BP), the first nucleus-satellite 

houses appear on the Peninsula. Villages were much larger (300 people to a village with 

30-50 per household) and are now located along the coast for access to marine, intertidal
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and sockeye salmon resources. These villages were also easily defensible (Maschner and 

Reedy-Maschner 1998). Midden deposits were still small and few in number showing 

little use of the intertidal zone. From the small amount of recovered faunal remains, it 

appears that the primary focus of subsistence were salmon, whales and geese. Polished 

slate was present as well as bifacial points but notched stones for net sinkers are now 

rare.

By 750 cal yrs BP (Izembek Phase) there was a drastic reduction in population on 

the western Alaska Peninsula and its neighboring islands, which coincides with a massive 

decrease in population all over the North Pacific. There were very few villages, with 20­

30 people per village, and households were once again small (no nucleaus-satellite 

houses existed). Villages were once again located along the open coast and less emphasis 

was placed on salmon. There is evidence that Eskimo-related people began to move into 

the newly depopulated area (McCartney 1984). Sanak Island had few middens from 900­

600 cal yrs BP and very few archaeological sites until after 550 cal yrs BP.

By the Morzhovoi Phase (525-200 cal yrs BP), population had drastically 

increased with 800-2000 people per village and 25-80 people per household. The villages 

were numerous and although located along coastlines were most often associated with a 

nearby sockeye nursery system. Middens were extensive and birds, salmon, cod, sea lion, 

and whales were abundant. There was no pottery but some polished slate. “Izembek” 

points continued in the record and there were small harpoons with off-center line holes. 

Refuge rocks were once again in use, suggesting that warfare was endemic (Maschner 

and Reedy-Maschner 1998). Sanak Island has numerous sites from this time period with
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large shell middens containing sea mammal, bird, shellfish and fish remains. These 

archaeological sites are the remains of the cultural traditions of people that the Russians 

encountered in the 1700’s as they explored the Aleutian Islands and Gulf of Alaska. A 

well-structured sociopolitical system, including corporate households, a class system, 

highly developed craft specialization and artwork etc. are the hallmarks of the historic 

Aleut, Koniag, and other Northwest Coast people that first encountered Europeans a little 

over 250 years ago (Hayden 1995).

Changes in the archaeofaunal record on Sanak Island

The available faunal record from Sanak Island spans from 4,500 cal yrs BP to 150 

cal yrs BP and is compiled from 32 discrete middens. Analysis is ongoing, but 

preliminary findings from 8 different contexts at different time periods allows for some 

comparison of change in the archaeofaunal assemblage over time on Sanak. The data 

presented here is exclusively from Betts and Tews (2007). Throughout the entire 4,500 

year period fish (specifically salmon ssp., Pacific cod, and the Cottidae family) dominate 

the assemblage (Betts and Tews 2007). Diet breadth did not change much, with a typical 

level of 17-22 taxa represented in most of the 4,500 years, with the exception of a period 

within the MWP in which 32 taxa are represented.

Evenness (V1) can be calculated from the Shannon-Weaver Index (H1), where V' = 

H' /In S (Reitz and Wing 1999; Grayson et al. 2001), where S is the number of non­

overlapping taxa in the assemblage, H' is defined as - X (pi) (In pi), where pi is the
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proportion of the number of taxa in the identified sample (Reitz and Wing 1999). The 

index ranges between 1 and 0; values close to zero reflect a sample dominated by a single 

species, while values closer to 1 reflect even abundance across all taxa. H’ < 0.4 during 

all time periods, suggesting that a few taxa tend to dominate in the assemblages (Figure 

4.3). The large number of fish bones in the middens, principally Pacific cod, salmon, and 

Cottidae family fish are most likely what influences the evenness index. A plot of 

richness (Figure 4.3) suggests little change in subsistence breadth over much of the first

3,000 years of the record. However, the midden context dating to -1,000 cal yrs BP 

shows a large increase in the number of exploited taxa during this time.

Abundance indices (Al-a normed ratio of a highly ranked taxon to a lower ranked 

taxon, measured as Al = A/A+B) shift over time for sea mammal, fish, bird, and shellfish 

species. Al values closer to zero indicate a complete absence of taxon A while those close 

to 1 indicate a dominating presence. Otariid indices correlated well over time and suggest 

a large increase in otariid frequencies in middens from -4,500 cal yrs BP to 3,750 cal yrs 

BP (Figure 4.4). Frequencies were lower but stayed fairly constant from -2,600 cal yrs 

BP to 1,900 cal yrs BP, and then decreased -1,500 cal yrs BP and 1,000 cal yrs BP (this 

time period is associated with the MWP). Frequencies increased once again by -500 cal 

yrs BP, the time period associated with the Little Ice Age. Interestingly, sea otter 

frequencies were inversely correlated with otariid frequencies.

Migratory water fowl AI’s (cormorant and alcid Al) generally track otariid AI’s 

(Figure 4.4). There was a substantial increase in frequency from 4,500 cal yrs BP to 

3,750 cal yrs BP. By 2,500 cal yrs BP these frequencies are declining and by -2,000 cal
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yrs BP were fairly low. Frequencies peaked once again at 1,500 cal yrs BP, then declined 

by 1,000 cal yrs BP (MWP) and began to rise by 500 cal yrs BP (LIA).

Pacific cod are the most abundant fish in all of Sanak Island middens (Figure 4.4). 

Fish AI’s (Cod-cottidae) suggest that cod were extremely frequent from 4,500 to 2,000 

cal yrs BP (neoglacial), at which point cod declined drastically until 1,000 cal yrs BP 

(MWP). Cod frequency then rebounded by -500 cal yrs BP (LIA). Compared to cod, 

salmon species are as frequent, though less numerous, in the archaeological record 

(Figure 4.2). Frequency of salmon did not decline as significantly as Pacific cod during 

the MWP when salmon-small flatfish Al were investigated. However, when salmon- 

cottidae Al were explored there was a significant decrease after -2,000 cal yrs BP and 

salmon frequency continued to decline throughout the available record.

Shellfish data were more difficult to interpret, with peaks in frequencies of mussel 

and chiton at 4,500 cal yrs BP, 2,600 cal yrs BP and at 500 cal yrs BP (Figure 4.4), all 

during times of glacial advances in and around Alaska (Calkin et al. 2001). However, 

there was a notable decrease in frequency of both mussel and chiton -3,750 cal yrs BP, 

well within the range of the neoglacial. Urchin frequency remained low, with the 

exception of 2,250 cal yrs BP when there was a small increase and 500 cal yrs BP, which 

showed drastic increase.
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Foraging theory, resource depression and intensification

When top-down processes and their possible effects on ecosystems are 

considered, we need to contemplate interpretations of the zooarchaeological record 

beyond changing climate and environment. Foraging theory, resource depression and 

resource intensification have been widely applied to interpret zooarchaeological data, 

settlement patterns, and even changes in sociocomplexity. Foraging theory, as it applies 

to humans, describes a general decline in abundance of higher ranked food sources 

(generally larger vertebrates) under heavy human hunting pressure and the eventual 

heavy reliance on smaller vertebrates and other lower ranked food sources that have less 

energy return for energy expended (Winterhalder and Goland 1993; Grayson and Cannon 

1999; Grayson 2001; Butler and Campbell 2004). In the case of marine ecosystems and 

human coastal adaptations, this has been documented both in historic and prehistoric 

contexts and is widely known as “fishing down the food web” (Pauly et al. 1998, 2001; 

Reitz 2004). This decline of higher ranked subsistence resources due to harvesting 

pressure is termed a “resource depression” (Grayson 2001).

“Resource intensification”, on the other hand, is defined as increasing the yield of 

a resource per unit area, and it often implies a narrowing of the subsistence focus (Ames 

and Maschner 1999; Butler and Campbell 2004). How resource intensification occurs is 

widely debated. Some believe that intensification occurs precisely because of resource 

depression. In other words, resource depression leads humans to spend more energy and 

time on harvesting their resources but innovations in technology allow them to harvest
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more from a certain area than previously (e.g. Grayson 2001). Some believe that 

technological and cultural innovations lead directly to intensification. In some ways 

historical fisheries have traced foraging theory and resource depression/intensification 

using “catch per unit effort”. As commercial fishing increased, resources declined, until 

new technologies either increased the catch of a species or allowed for larger numbers of 

smaller species to be harvested (Pauly et al. 1998, 2001).

Lake core records on Sanak Island

Two lakes were cored and analyzed on Sanak Island; Deep Lake, a sockeye 

nursery lake, and Swan Lake, a control lake with no apparent connection to a salmon 

spawning system. Although much of the history of both 815N and 813C in the lake cores 

was similar for about 10,000 years after deglaciation, the traits begin to diverge -6,000 

cal yrs BP (Figure 4.2). By 3,500 cal yrs BP average 815N in Deep Lake sediments were 

statistically higher overall than the preceding 10,000 years while Swan Lake’s was not 

altered, and 815N of sediments from Deep Lake were significantly different when 

compared to older sediments (single factor ANOVA, p = 0.002). This suggests an 

increase in MDN in Deep Lake after the start of the Neoglacial, a trend that is also seen 

in Iliamna Lake on the Alaska Peninsula and Karluk Lake on Kodiak Island. There is a 

decrease in 815N around 1,000-1,200 cal yrs BP (Figure 4.2), within the MWP when 

climate was warmer and drier than now (Stine 1994; Bradley 1999; Calkin et al. 2001; 

Jones et al. 2001; Esper et al. 2002; MacDonald and Case 2005), in lake sediments with
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salmon runs deriving from both the Bering Sea and the northeastern Pacific, including 

Deep Lake (Finney et al. 2000, 2002; Chapter 2). Alaskan salmon lakes generally show 

an increase in §15N in sediments around the time of the LIA, a period of cooler, wetter 

climate (Bradley 1999; Finney et al. 2000; 2002; Roberts 2004), as does Deep Lake.

Volcanism affects both Deep and Swan Lakes in terms of productivity with large 

ashfalls (each > 10.0 cm) -10,780, 7,230, 4,700 and 3,500 cal yrs BP. There is a drop in 

815N, and smaller ones in §I3C, immediately following each large ash layer in both lakes. 

Most other volcanic layers are relatively thin (<1.0 cm) and do not appear to affect 815N. 

This suggests that one of the primary reasons for steep decreases in productivity of both 

lakes is due to volcanic activity. Written records of volcanic activity, earthquakes and 

tsunamis and their effects on Alaskan people, have been kept for the last couple of 

hundred years. Russian ethnohistories recount mass fish kills in bays after volcanic 

eruptions and earthquakes and reduced numbers of salmon due to suffocation of adults 

attempting to spawn in lakes and streams (Veniaminov 1984; Khlebnikov 1994; Black 

1999). It is even possible that later hatchlings, which could have been affected by oxygen 

deprivation from sediment layers (Black 1981), could suffer. Veniaminov (1984) 

described the 1788 tsunami and its destructive power on Sanak Island. Mammals, both 

marine and terrestrial, were also impacted by thick layers of volcanic ash. Caribou moved 

north up the Peninsula after a particularly large ashfall in 1826 (Veniaminov 1984), 

which was also blamed for a sudden reduction in sea otters in the area (Khlebnikov 1994) 

(though this may have been due more to over hunting). Kenyon (1969) also noticed a 

drastic reduction in sea otters shortly after the famous 1964 earthquake. The 1912 Katmai
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eruption was shown to suffocate salmon already in the lakes on Afognak Island, while 

those salmon that attempted to enter the stream eventually turned back (Workman 1979).

Isotopic record of organisms recovered in archaeological middens on Sanak Island

Animals analyzed for this study include Steller sea lions (Eumetopias jubata, 

SSL), Harbor seals (.Phoca vitulina), northern fur seals (Callorhinus ursinus), sea otters 

(Enhydra lutris), Pacific cod (Gadus macrocephalus) and sockeye salmon 

(iOncorhynchus nerka). Samples are derived from 17 discrete middens and span the last

k  n
4,500 years. Based on the mean 8 N and 8 C for each species, some trophic level and

11foraging habitat information is evident (Figure 4.5). All species had a decrease in 8 C 

from prehistoric to modem times, even when accounting for the Suess Effect (Figure

4.5). Explanations for this change included hypotheses such as a decrease in sea ice and 

therefore ice algae that have a higher 813C than phytoplankton (but not all species 

analyzed may have fed in the Bering Sea), changes in foraging location of all species 

could have affected 813C (but that does not explain the fact the 815N did not change 

significantly for most species), or that environmental change led to a reduction in 

productivity in the modern GOA (Misarti unpub.). The conclusion was that 

climate/environmental change led to this reduction, which in turn may have had different 

effects in the different ecozones represented by the taxa.

Three species (sea otter, Pacific cod and sockeye salmon) were found in numbers 

sufficient to study changes over time in the archeological record. Pacific cod have very
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little change in §13C and 515N over the last 4,500 years (Figure 4.6). It is likely that cod 

feed on such a broad prey spectrum that despite changes in ecosystem that could have 

changed prey availability, cod did not have to change geographic locations nor did they 

need to change the trophic level at which they were feeding. This stability is reflected in

813C and 815N (Misarti unpub.). This interpretation makes the difference in the modem

1 ̂versus archeological change in 8 C noteworthy.

S13C and S15N of salmon, on the other hand, changed quite a bit over the past

4,500 years (Figure 4.5). High S13C and 815N in the earlier part of the record suggests that 

salmon foraged in shelf waters or that primary productivity was higher for much of the 

neoglacial period, with the exception of one 350 year period from 2,750-2,400 cal yrs BP 

(Misarti unpub.). The decrease in both S13C and 815N during the MWP suggests a drop in 

primary productivity during this time period, or a change in forage location to areas such 

as the subarctic gyre. The data from the LIA (a decrease in 813C and increase 815N) 

suggests, however, that perhaps physical conditions had changed and that this time of 

high primary productivity caused nitrogen limitations while stronger upwelling currents 

kept carbon levels from being drawn down (Misarti unpub.).

Sea otters appear to have been affected very differently than cod or otter (Figure

4.6). One hypothesis is that sea level and the health of the intertidal invertebrates and the 

kelp forest ecosystem affected the 813C and 815N of sea otters (Misarti unpub.). The 

health of the system could have been affected by environmental/climate change or 

anthropogenic top-down forcing. In times when 813C was low but 815N high (i.e. at the 

onset of neoglaciation) it is possible sea otters included more open-water fish in their
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diets but when 813C was high and 815N lower (such as they did during the height of 

neoglaciation) otter diets were likely dominated by urchins and other benthic 

invertebrates and perhaps some fish that thrive in kelp forest ecosystems (Misarti 

unpub.).

None of the temporal patterns of shifts in mean 813C and 8I5N in salmon, cod and 

sea otter were similar to one another when compared over the six time periods studied 

(the past 4,500 years). Nor did they correspond to what is understood about PDO-like 

regime shifts and their effects on the GOA/NE Pacific waters. Alternate states (positive 

or negative) of the PDO affect sea surface temperature (SST), sea level pressure (SLP), 

the strength of the Aleutian Low (AL), wind strength, storm intensity, mixed layer depth 

and ocean current patterns (Overland et al. 1999). A warm PDO phase appears to favor 

production of salmon in the Gulf of Alaska (GOA) while a cold PDO phase appears to 

play a role in decreased salmon stocks. Strangely, paleodata from lake cores around 

Alaska showed a different relationship with cooler time periods coinciding with apparent 

sockeye salmon stock increases (Misarti unpub.). The isotope data did not appear to fit 

with hypotheses about organisms’ discrimination against heavier isotopes until carbon 

and nitrogen are less available in a system either (Misarti unpub.). Theoretically, when 

productivity in the GOA is high, 813C and 815N should be higher in salmon, but the data 

did not fit this pattern. In fact, my findings did not correspond to relationships between 

813C and 815N resulting from changes in trophic levels or productivity. For example, 

none of the changes can be said to correspond to the 3:1 change between N and C as an 

organism changes trophic levels at which it feeds (Misarti unpub.).
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The information summarized above is the proxy data that are the basis for 

interpretations of cultural and environmental change. As noted in the introduction there 

are two sides to this discussion; the effects of climate change on humans and their 

lifestyles, and the effects humans had on their local environments. First I will discuss the 

arguments and evidence for bottom-up processes and then later the evidence of top-down 

processes. Last, but surely not least, I will discuss the catastrophic events such as 

volcanic activity, that may have impacted humans in the area.

Bottom-up processes

Our most current knowledge shows Sanak was inhabited by at least 6,000 cal yrs 

BP. Many of the oldest sites on the Alaska Peninsula also date from -6,000 cal yrs BP 

(Maschner 2000) as well. Some archaeologists have argued that the spread of people 

along the eastern Aleutians and Peninsula may have been due to the warmer, less stormy 

conditions of the Hypsithermal ameliorating conditions for open water travel (McCartney 

1984; Dumond 1998). However, such conditions would have existed for several thousand 

years (i.e. to the beginning of the Holocene). I do not believe that it is coincidence that 

the first evidence of substantial salmon abundance found in the Deep Lake record on 

Sanak coincides with the first evidence (so far) that the island was inhabited (Figure 4.7).

Discussion
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This is not to say that salmon were the driving force behind this, but if one considers 

increasing numbers of salmon as a proxy for increased productivity in the GOA then 

perhaps the picture becomes a bit clearer. In general, this is consistent with knowledge of 

how climate evolved over the Holocene and how this may have affected coastal 

productivity in the GOA. Increases in precipitation suggest a strengthening of the AL, 

which drives onshore advection of nutrients and wintertime mixing and spring 

stratification, all essential in accounting for the high productivity of the coastal 

downwelling GOA shelf region (Freeland et al. 1997). It is possible that a change 

occurred at a little more than 6,000 cal yrs BP, as registered by a glacial advance in the 

GOA (Calkin et al. 2001). Such evidence for a cooler and moisture climate may suggest 

higher ocean productivity, which may be analogous to changes during the LIA, which has 

also been argued to be a period of enhanced productivity in the northeast Pacific (Finney 

et al. 2002).

By -4,500 cal yrs BP shell middens have been found in association with 

archaeological sites on the southeast side of Sanak Island. Sea otters are abundant in the 

middens and the isotope data are consistent with a diet of pelagic fish (Figures 4.6 and 

4.8). This may have been partially driven by sea level, which may have been too high for 

kelp forest communities to have established themselves (Misarti unpub.) or the increased 

storminess that began about this time was keeping kelp density lower (Dayton et al.

1992). Another possibility is that otters were at equilibrium density, so there were fewer 

urchins and other benthic invertebrates and otters ate more fish (per Watt et al. 2000). 

Shell middens contain little urchin remains, but more mussels and chitons, so we know
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that rocky intertidal ecosystems existed. Perhaps the small numbers of sea urchins found 

in these deposits are indicative of large sea otter populations.

By the start of the Kinzarof Phase (-3,300 cal yrs BP) there was a large enough 

increase in salmon on Sanak Island to be statistically different from earlier times (Figures 

4.2 and 4.7), and a large increase in salmon was observed on Kodiak Island as well 

(Finney et al. 2002). There are several sources of evidence for cooler, wetter climate 

(pollen data, glacial advances and increased storminess). No middens have been found on 

Sanak dating from 3,100-2,600 cal yrs BP. Perhaps marine productivity overall was high 

enough, weather was calm enough and numbers of people small enough that harvesting 

the intertidal was not necessary.

By 1,900 cal yrs BP, the Ram’s Creek phase on the Peninsula had only a few 

large villages but many small ones and these villages were not located in areas that 

appear to make salmon a high priority. Salmon numbers, which had been very high are 

now beginning to decline in many places, but are actually still far from diminished 

(Figure 4.7). One environmental explanation for this is a previous catastrophic event a 

few hundred years beforehand that hurt salmon stocks. People may have begun to focus 

on other resources (see below). There are no sites with middens on Sanak from 1,900­

1,600 cal yrs BP and sites on either side of this time period also have very little in way of 

shellfish exploitation (Figure 4.4). It is pure conjecture, but perhaps Sanak Island was a 

place where fish stocks were still thriving and people occupied the island specifically to 

exploit this resource. By 1,600 cal yrs BP there is evidence that salmon numbers dropped 

in Deep Lake and other lakes around the GOA, and once again shellfish were exploited
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on Sanak. There were still very low numbers of sea otters in middens but sea lion 

frequency was high (Figure 4.8). We know that glaciers were receding at that time and 

there was a decrease in storminess. Perhaps, despite the fact that sea lions may have 

moved offshore, humans were once again able to harvest them in higher numbers because 

seas were calmer.

The next time period for which I have evidence for bottom-up control starts 

-1,250 cal yrs BP. Climate was warming and becoming less stormy, and salmon, 

previously in very high numbers, were just beginning to decline. However, villages were 

located almost exclusively along salmon streams. Villages were smaller and there is 

evidence for warfare (Frosty Creek Phase). Pacific cod and otariid frequency dropped, 

but sea otter frequency increased in Sanak Island middens while cod played a smaller role 

all over the lower Alaska Peninsula (Figure 4.4). This reduction in cod and otariids may 

have been due to warming waters.

The timing of the movement of settlements back out to coastal locations at -900 

cal yrs BP (start the Cape Glaznap Phase) cannot be a coincidence. In fact, all lakes in the 

GOA, including Deep Lake (Figures 4.2 and 4.7), showed the lowest numbers of salmon 

since the onset of neoglacial conditions by 900 cal yrs BP. The MWP was a time of warm 

and possibly dry conditions, receding glaciers, and decreasing storminess, all of which 

appear to hinder productivity in the northeast Pacific. In Sanak middens, animals 

(otariids, salmon, cod and waterfowl) that have been previously shown to have 

difficulties in warmer waters dropped in frequency (Figure 4.4). Sea otter and intertidal 

species increased in frequency once again. This change in frequencies of larger fish and
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sea mammals to smaller mammals and shellfish appears related not to hunting pressure, 

but mainly to environmental change. These are the most diverse (species rich) middens 

on Sanak (Figure 4.3), and it appears people were exploiting every resource they could. 

The only middens from this time period on Sanak date to -1,000 cal yrs BP. From 1,500­

1,100 cal yrs BP there are no middens on Sanak and from 1,200-1,000 cal yrs BP there 

are none on the lower Alaska Peninsula. People grouped into large villages and there is 

evidence of both warfare and trade with distant people.

By 750 cal yrs BP (Izembek Phase) there was a large population collapse all over 

the GOA. This was most likely a bottom-up process, a culmination and reflection of the 

low productivity in the northeast Pacific for the preceding few hundred years. Glacial 

advances and increased storminess were likely improving productivity in the GOA. The 

oceans appeared to be recovering with an increase in salmon by this time but people were 

not settling along salmon streams. This could be a cultural lag from the previous years 

when salmon were an unreliable resource.

The next period that I can attribute some cultural and population change to 

bottom-up processes is the LIA. There are large ice advances between 750-200 cal yrs BP 

and evidence for many large and frequent storms. In the Sanak Island middens, the 

frequency and numbers of all species increased. Sea otters and sea lions were found in 

about the same frequency in middens on Sanak, there were high frequencies of migratory 

waterfowl, cod, chiton, mussels and urchins, which may reflect humans exploitation of 

intertidal resources under stormy conditions. However, salmon relative abundance in 

middens was low compared to earlier times. Perhaps for Sanak, like many Aleutian
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Islands with salmon runs that are generally smaller than on the main land, there was less 

of an emphasis on salmon at a time when so many other resources were available.

In contrast, villages on the Peninsula can be directly associated with sockeye 

nursery lakes with substantial runs, coincident with a large increase in salmon over much 

of the GOA (Figure 4.7). Human populations were larger than at any time period, villages 

were extremely large and there is evidence for corporate households. The marine 

ecosystem, including humans, was once again thriving. Sea otters had high median 815N

13 • • •and 8 C (Figure 4.8), evidence for a diet heavy in fish, so perhaps they were at 

population equilibrium. This correlates with information from Russian ethnographies in 

the 1700’s. Since kelp forests were healthy and well established along much of the coast 

line at this time I can postulate that the fish in otter diets were kelp forest fish and not 

more open water fish with lower 813C.

Top-down changes

By 3,750 cal yrs BP the frequency of sea otters dropped drastically in the middens 

as did mussel and chiton (Figure 4.2). Sanak Islanders appear to still have a very heavy 

reliance on fish species at this time, and the frequency of Steller sea lion increased as 

well (Figure 4.2). This was a time of enhanced neoglacial conditions around the GOA 

and the cooler, wetter, stormier climate that began ~ 4,500 cal yrs BP was firmly in place. 

There were no large cultural changes with the exception of introduction of bone 

harpoons, which may have improved hunting techniques for Steller sea lions. The
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changes in the archaeological record from this time period appear to be related to top- 

down processes. By -3,700 cal yrs BP sea otters were either no longer as important a 

resource because Steller sea lions became available through new hunting technology and 

more waterfowl were being taken as well, or otters were impacted by the thousand or so

15 13years of hunting on the island. Isotope analysis showed an increase in both 8 N and 8 C 

for otters at this time (Figure 4.8), suggesting that the otter population was higher (and 

possibly included more fish in their diet) while otters were not hunted by humans. Shortly 

after this time period, 815N and 813C decreased once again, suggesting a predominance of 

urchin and other benthic invertebrates in otter diets. It is therefore possible that heavy 

predation of otters by humans could have caused a decrease in numbers of otters around 

Sanak Island, allowing sea urchin populations to increase. The few otters that were left 

may have fed heavily on the growing numbers of urchins and other invertebrates. Though 

speculation, this scenario would certainly imply an ecosystem manipulated in some ways 

by humans (Figure 4.8).

By 2,400 cal yrs BP, houses and village size increased, and line-hole harpoons 

became part of hunting technology. Betts and Tews (2007) believe sea lions may have 

moved offshore in response to heavy hunting by humans. In fact, sea otters were once 

again very frequent in middens and have slightly lower median 815N than at 3,700 cal yrs 

BP, suggesting otter populations around the island had decreased due to hunting 

pressures by humans. If sea lions moved offshore in response to hunting pressures, then 

Aleuts may have had to turn to sea otters once again.
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Changes in inclusion rates of smaller, less energy efficient resources over time is 

informative. During the LIA, there intertidal resources were heavily utilized despite the 

fact that other resources supposedly abounded. Such a change may be in response to 

village populations, which had become so large (and ethnographic sources agree that 

these villages were sedentary/semi-sedentary) that Aleuts needed to exploit any and all 

resources available to them, especially at times of the year when more energy-efficient 

resources may not have been available.

Volcanism, tsunamis, earthquakes and other catastrophes

There is strong evidence of volcanic activity and the subsequent drop in 

productivity in the lakes in the lake cores recovered from Sanak Island. It stands to reason 

that volcanic activity and other natural/cultural catastrophes would have similar 

deleterious effects on the humans that inhabited the landscape. The largest Holocene 

volcanic eruptions (-10,780 and 6,800 cal yrs BP) occurred before evidence of human 

occupation of Sanak. If there had been humans at these times, any survivors more than 

likely abandoned the area just as Anangula was abandoned after a large volcanic eruption 

(Black and Laughlin 1964; Black 1974). There is also evidence that a large volcanic 

eruption may have been the reason for site abandonment on Hog Island off of Unalaska 

-8,000 years ago as well.

Circa 4,700 and 3,600 cal yrs BP, there were two large volcanic eruptions 

recorded in lake cores on Sanak Island (Misarti unpub.). If these ashfalls are scaled to
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historic records and ethnographic sources can be believed, the amount of ash that fell 

would have clogged streams and probably also suffocated many intertidal organisms in 

Sanak’s bays. The time period of the earlier tephra coincides with the beginning of the 

Moffett Phase (-4,800 cal yrs BP), with villages located on high terraces and bluffs. On 

Sanak a single village existed with middens but was not located by a salmon stream. This 

is circumstantial evidence at best and it is entirely possible that this particular volcanic 

eruption did not affect humans to any great extent. Alternatively, there could have been 

abandonment and resettlement within 50 or 100 years, movements difficult to distinguish 

due to the resolution of the dating methods.

The second tephra, dated -3,600 cal yrs BP, could have had a stronger influence 

on the humans inhabiting Sanak Island. From 3,600 to 3,350 cal yrs BP no sites exist on 

Sanak Island. There are, however, sites located on the mainland, so it is not a case of 

people abandoning an entire area, just the islands of the Sanak archipelago. This gap in 

the archaeological record on Sanak is notable with the additional evidence of a large 

volcanic event, independently dated.

Conclusions

Bottom-up processes were affecting environments with times of glacial advances 

and increased storminess seemingly more productive in the GOA/NE Pacific, and the 

human population in the area seemed to grow during these times. Warmer periods appear 

to be times of lesser productivity. For example, the MWP appears to be a time when the
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GOA underwent some major change. According to lake core data, sockeye salmon 

returns decreased in most areas of Alaska (Finney et al. 2002; Anderson et al. 2005). 

There are no sites with middens on Sanak Island from this time, and on the lower Alaska 

Peninsula and Kodiak Island, humans that relied on marine mammals for a few thousand 

years suddenly appeared to rely mostly on salmon, and village numbers and size appear 

to have decreased (Maschner and Reedy-Maschner 1998; Maschner 2000). Finney et al. 

(2002) show that fluctuations in numbers of returning salmon in Kodiak lakes can be 

correlated with this major shift in material culture. By about 700 BP there were no large 

villages on Kodiak or the western Alaska Peninsula (Maschner and Reedy-Maschner 

1998; Maschner 2000). Marine populations obviously recovered and humans returned to 

harvesting the oceans, but the isotope trends discussed above did not return to earlier 

Holocene, pre-MWP trends.

The LIA ushered in a new period of high productivity in the area and it seems that 

most ecosystems responded favorably to the cooler temperatures, increased precipitation 

and increased storminess. By the Russian contact period the Aleut had reached a level of 

social complexity not seen in previous archaeological evidence. As evidenced by 

increases in salmon abundance, it appears the GOA had reached high levels of 

productivity that no longer exist in the modem GOA system.

All of these major climatic periods are potentially punctuated by natural disasters 

such as volcanic eruptions, earthquakes and tsunamis that can adversely affect all local 

communities from intertidal to human. I have noted the potential changes in location and 

village size in response to some of these disasters.
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At the onset of neoglacial conditions, people on Sanak were harvesting many sea 

otters and may have been the cause for a population reduction. As sea otter frequencies 

decreased in middens, otariid numbers increased. After over 1,000 years of hunting, it is 

possible that Aleuts were responsible for a change in otariid haul-out locations from local 

island areas to farther off shore (as per Betts and Tews 2007). It is also possible that after

1,000 or so years of hunting sea otters, humans were responsible for lower population 

numbers than had been the previous natural state, as is suggested by the 515N and 813C 

data of otters recovered from middens on Sanak Island.

The research presented here indicates that both top-down and bottom-up 

processes were shaping the North Pacific for the past 6,000 years. The Aleut have been 

an intricate part of the system, both shaping and being shaped by their environment, for 

thousands of years. It does appear that some changes in archaeological culture can be 

linked to climate/ecosystem change, with resource consumption restructuring during 

times when isotope ratios of organisms demonstrate changes as do reconstructed sockeye 

abundances. It appears that humans may also have caused some local changes with 

consumption of particular resources causing resource depressions that can be noted not 

only in zooarchaeological contexts, but in changes in isotope ratios of organisms as well.
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Figure 4.1: Location of study site, Sanak Island, in the Northeast Pacific.
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Figure 4.2. A comparison of proxy data between two lakes, Deep Lake-a sockeye salmon 
nursery, and Swan Lake-a control lake.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



198

X0)■o

*
e0>>

a>>(0o>
3
c
oc
c(0
(0

(00)
o
E
(/>o
o0)Q.(0

cal yrs BP

cal yrs BP

Figure 4.3. Measures of diversity and richness of Sanak Island middens spanning the last
4,500 years.
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Figure 4.4. Abundance indices of several resources from Sanak Island middens over the 
last 4,500 years.
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Figure 4.7. Abundance index, 815N from salmon and Deep Lake sediments, cultural 
phases and known climatological periods over the last 5,000 years. Y-error bars of 
salmon collagen denote the 1st and 2nd quartiles while X-error bars denote the time period 
each median represents.
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Figure 4.8. Abundance index, 815N from sea otters, Sanak Island sea levels, cultural 
phases and known climatological periods over the last 5,000 years. Y-error bars of sea 
otter collagen denote the 1st and 2nd quartiles while X-error bars denote the time period 
each median represents.
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General Conclusions

This project resulted in long-term records of the North Pacific ecosystem and 

explored the relationships between change in the North Pacific marine ecosystem and 

prehistoric Aleut culture through soil chemistry, isotope analyses of lake cores, and 

isotope analyses of bone from archaeological middens. This interdisciplinary dissertation 

involved varied sets of data that complimented one another in many ways.

Chapter 1 proved that weak-acid multi-element extraction of samples collected 

with augers in combination with analysis of samples obtained from identified features can 

distinguish house pits, living surfaces within houses, house berms and midden areas 

without the need for large excavations. This research has also been important in 

generating data on which chemical elements are related to various features or activity 

areas in the eastern Aleutians and western Alaska Peninsula. It has been determined that 

the age of a site does not affect the strength of the anthropogenic chemical signatures for 

at least the last 4,500 years.

Initially this portion of the dissertation was meant to elucidate changes in resource 

consumption through time. I found that although it is possible to chemically distinguish 

sites with shell middens versus those with no middens, it is not possible to distinguish 

actual resources. It may be that in the future, with more archaeological and experimental 

studies, specific signatures will eventually be distinguished. Although this portion of the 

project did not yield results about changing resource consumption over time, it is still of 

interest to archaeologists who wish to define site boundaries, site features, occupation
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features and midden matrices without the expense, time, and destruction that come with 

large excavations.

In Chapter 2, lake core analysis of 815N yielded information on a general increase 

in numbers of salmon during the Holocene, especially during the Neoglacial and Little 

Ice Age, while showing decreases during warmer periods like the Medieval Warm 

Period. These changes in salmon returns inferred by marine-derived nutrients generally 

correlate with well-known periods of climate change and other salmon reconstructions 

for the North Pacific. Although small and shallow, sediments from Deep and Swan Lakes 

provide a complete post-glacial record of regional volcanic activity and lake productivity. 

Despite high flushing rates and small historic salmon escapement numbers, my research 

suggests that fluctuations in 815N can infer salmon productivity through time if 

corresponding data from a viable control lake is available for comparison. Volcanic 

activity affected 815N and possibly the overall productivity of both lakes. However, large 

tephras appeared to affect Deep Lake, the salmon nursery lake, to a greater extent than 

Swan Lake, possibly indicating that volcanic activity had adverse effects on salmon 

within lake systems.

Bone collagen from sea mammals and fish over the past 4,500 years, as discussed 

in Chapter 3, generated data from three different ecosystems. Each ecosystem reacted in a 

unique manner to long-term fluctuations in climate. One change, however, did span all 

species and all ecosystems. All modem samples, regardless of species, habitat size, 

location, and prey items, showed a significant decrease in S13C when compared to 

prehistoric samples. These changes are greater than those attributed to the Suess Effect
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and are not based solely on modem organisms within one climate regime. The best 

explanation as of now is an overall reduction in primary productivity in the NE Pacific in 

the late 20th century. The changes in 813C of salmon over the six time periods used in this 

study have yet another implication. It is possible that an intensified Aleutian Low may 

affect not only the primary productivity in deep ocean waters in the Gulf of Alaska, but 

perhaps the geographic locations where sockeye forage as well.

In integrating all the sets of data, including archaeological data such as abundance 

indices of resources and site location and size, a few patterns emerged. It appears that in 

cooler wetter climates (glacial advances and increased storminess) the Northeast Pacific 

may have been more productive. Archaeological data reveals that human populations in 

the area increased during these times. Warmer periods, such as the Medieval Warm 

Period, seem to have decreased productivity in Northeastern Pacific waters. Overall, 

sockeye salmon runs increased over the Middle to Late Holocene with decreases during 

climatically warmer periods which include the modern-day Gulf of Alaska. It appears 

that -1000 years ago, during the Medieval Warm Period, the Gulf of Alaska underwent 

some major change, and humans responded to this decrease in productivity by moving 

village site location and changing resource strategies.

Sea otter 515N and 813C spanning 4,500 years suggests that humans may have 

altered local ecosystems on Sanak Island through sea otter hunting. This may have been 

in the form of a cascading effect with increases and decreases in sea urchin populations 

depending on numbers of otters inhabiting local Sanak Island waters.
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It appears that volcanic activity (and potentially other types of catastrophic 

events) had an affect on humans on Sanak Island, with at least one large vocanic event ~

3,500 years ago coinciding with a break in habitation of the island. More data from well 

dated contexts will have to be collected in order to discover if other catastrophic events 

can be correlated to noticeable changes in human subsistence or habitation in the area.

The research presented here indicates that both top-down and bottom-up 

processes were shaping the North Pacific for the past 6,000 years. Some changes in 

archaeological culture can be linked to climate/ecosystem change with resource 

consumption restructuring during times when isotope ratios of organisms and 

reconstructed sockeye abundance demonstrated change (bottom-up processes). Humans 

may also have caused some local changes with consumption of particular resources (in 

this case sea otters) causing resource depressions that can be noted not only in 

zooarchaeological contexts, but in changes in isotope ratios of organisms as well (top- 

down processes).

The most important aspect of this research is its long-term temporal records of a 

portion of the Northeast Pacific. This multi-disciplinary data set can provide guidance for 

long-term management and conservation of cultural and marine resources, helping to 

understand the thousands of years that humans have played a role in shaping their 

environment, and contributing to knowledge of how past changes in climate affected 

different ecosystems.
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