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Abstract

Localization of the source of an acoustic wave propagating through the atmosphere is not a 

new problem. Location methods date back to World War I, when sound location was used 

to determine enemy artillery positions. Since the drafting of the Comprehensive Nuclear- 

Test-Ban Treaty in 1996 there has been increased interest in the accurate location of distant 

sources using infrasound. A standard method of acoustic source location is triangulation 

of the source from multi-array back azimuth estimates. For waves traveling long distances 

through the atmosphere, the most appropriate method of estimating the back azimuth is 

the least squares estimate (LSE). Under the assumption of an acoustic signal corrupted 

with additive Gaussian, white, uncorrelated noise the LSE is theoretically the minimum 
variance, unbiased estimate of the slowness vector.

The infrasonic noise field present at most arrays is known to violate the assumption of 

white, uncorrelated noise. The following work characterizes the noise field at two infrasound 

arrays operated by the University of Alaska Fairbanks. The power distribution and coher­

ence of the noise fields was determined from atmospheric pressure measurements collected 

from 2003-2006. The estimated power distribution and coherence of the noise field were 

not the white, uncorrelated noise field assumed in the analytic derivation of the LSE of the 

slowness vector.

The performance of the LSE of azimuth and trace velocity with the empirically derived 

noise field was numerically compared to its performance under the standard noise assump­
tions. The effect of violating the correlation assumption was also investigated. The inclusion 

of clutter in the noise field introduced a dependence to the performance of the LSE on the 

relative signal amplitude. If the signal-to-clutter ratio was above 10 dB, the parameter 

estimates made with the correlated noise field were comparable to the estimates made with 

uncorrelated noise. From the results of these numerical studies, it was determined that 

the assumption of Gaussian, white, uncorrelated noise had little effect on the performance 

of the LSE at signal-to-noise ratios greater than 10 dB, but tended to over estimate the 

performance of the LSE at lower signal-to-noise ratios.
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Chapter 1 
Background

Infrasound is the study of acoustic energy with frequencies in the range below human hear­

ing, 0.001 to 16 Hz. 1 Many natural events emit infrasound: storms at sea,2,3 earthquakes,4 

meteors,5,6 volcanos,7 turbulent airflow over mountain ranges,8’9 and the aurora10 can all 

emit infrasonic waves. Turbulent wind flow can also create pressure fluctuations in the 
atmosphere with frequencies in the infrasonic range.n ’12’ 13,i4,i5 Human activities such as 

explosions, airplanes, and rockets can produce infrasonic waves.1 These low frequency waves 

can propagate through the atmosphere for thousands of kilometers without substantial at­
tenuation. By monitoring infrasound, information about events many kilometers away can 

be gathered remotely.

One of the earliest recorded instances of infrasound was from the 1883 eruption of 

Krakatoa volcano in Indonesia. The explosive eruption emitted low frequency pressure waves 

that circled the globe several times and were recorded on barometers.7,16,17 Barometers 

also recorded infrasound from the meteor explosion above Tunguska, Russia in 1908.6,5 

The infrasound generated by these two early events was recorded using barometers and 

mechanical pressure gauges. Barometers and mechanical pressure gauges generally operate 
at frequencies that are too low for use in the study of infrasound and lack the required 

sensitivity (D. Osborne, personal communication, September 2006). It wasn’t until World 

War I that an electronic microphone designed for the low frequencies of infrasound was 

developed.

During W W I t both the French and German armies experimented with sound ranging 

to locate the positions of enemy artillery. The large artillery cannons produced both a shell 

wave and a report from the muzzle of the gun when fired. The explosion of the artillery 

shell upon impact produced another set of sound waves associated with the operation of 

the artillery cannons. Only the sound waves emitted from the muzzle report were used to 

locate the position of the opposing artillery. For sound ranging to be an effective method of 

gun position location, the gun report wave needed to be separated from the waves produced 

by the flight and explosion of the artillery shell. In 1916 Bragg and Tucker discovered

’ M lie history of infrasound given in this section was adapted from a talk given by D. Osborne in September 
2006 at the Infrasound Technology Workshop in Fairbanks, Alaska.
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that the muzzle report produced a low frequency acoustic wave while the shell flight and 

explosion produced high frequency acoustic waves. This discovery allowed the separation 

of the muzzle report wave from the high frequency acoustic shell and detonation waves. In 

June of 1916 Bragg and Tucker produced a frequency selective hotwire microphone that 

could be tuned to the frequency of the gun report by using a Helmholtz resonator. The 
Tucker hotwire microphone was the first microphone designed specifically for the collection 

of infrasonic signals.

Interest in sound ranging waned during WWII. The WWII battle fronts moved too 

quickly to make sound ranging useful and the technique was little improved during the 
war. After W W II the nuclear test explosions of the Atomic Age produced a new source 

of infrasonic waves. The atmospheric nuclear test explosions of the early Cold War era 
were monitored using infrasound. The use of infrasound as a monitoring system of atmo­

spheric nuclear test explosions decreased in the late 1960s as satellite technology improved 

and the atmospheric tests could be seen rather than heard. When the nuclear tests were 

conducted underground to avoid satellite observation, seismic data was used to monitor 

the test explosions. Interest in infrasound increased with the drafting of the Comprehen­

sive Nuclear-Test-Ban Treaty in 1996.1 The United Nations treaty called for the use of 

infrasound, among other technologies, to continuously monitor for nuclear test detonation.

To enforce the treaty the preparatory commission for the Comprehensive Nuclear-Test- 

Ban Treaty Organization (CTBTO) created the International Monitoring System (IMS), 
a network of geophysical sensor stations located around the world that monitor seismic 

signals, atmospheric radioactive material releases, hydroacoustic signals and infrasound. 

The locations of the current and proposed infrasound monitoring stations in the IMS1 are 

shown in Figure 1.1. The exact geometry of each of the infrasound monitoring stations 

is variable, but each station has four to nine microphone elements and a mechanism to 

reduce the wind noise. 18 In addition to monitoring compliance with the Comprehensive 

Test Ban Treaty, the IMS infrasound stations provide opportunities to explore low frequency 

atmospheric acoustics. The IMS infrasound stations have been used to locate geophysical 

sources, explore low frequency atmospheric turbulent pressure fluctuations, gather data on 
long distance propagation of sound through the atmosphere, and test the performance of 

atmospheric models.
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Infrasound Network 
(60 Stations)

Figure 1.1. Location of the IMS infrasound stations as of April 2007.

One avenue of research provided by the pressure data collected by the IMS infrasound 

stations is the structure of the noise field present at the arrays. In the following work 

the validity of the common signal processing noise field assumptions (Gaussian, white, 

uncorrelated) will be tested. It has been proved19 that under the assumption of Gaussian, 

white, uncorrelated noise (GWU) the least squares estimate is the most efficient estimate of 

signal parameters; the derivation of this fundamental result will be recapitulated. Then the 

performance of the least squares estimate will be investigated with the GWU noise field. 

Next the effects of the physical noise field on the least square estimate will be investigated. 
To explore the effects of the noise field, the character of the noise field at two of the IMS 

infrasound arrays, IS55 in Windless Bight, Antarctica and IS53 in Fairbanks, Alaska, will be 

explored in detail. Synthetic noise data will then be generated to statistically study the effect 

of the noise on the performance of far-field source location using least squares parameter 

estimation. The performance of the least squares estimate in the measured physical noise 
field will then be compared with the performance of the estimate in the GWU noise field.

To aid in the study of the noise field and acoustic source location a basic understanding
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of acoustic waves and atmospheric wave propagation is useful. This will provide a rudimen­

tary knowledge of how acoustic waves are produced and how they propagate though the 

atmosphere. The non-acoustic waves that may arise in the atmosphere will also be intro­

duced along with the frequencies at which each wave type can propagate. The attenuation 

of the atmospheric waves will also be explored to illustrate the utility of infrasonic waves in 

far-field source location and monitoring. An understanding of atmospheric acoustic waves 

will provide insight into what affects the propagation of a wave from its source to the array. 

Both the direction and speed of wave propagation are used in the source location problem, 

and information about anything that could alter the propagation parameters is useful.

1.1 Acoustic Waves in the Atmosphere

* Acoustic waves are pressure disturbances that can propagate through any compressible 

fluid. These pressure disturbances are caused by changes in the mass density as small 

volume elements of the fluid move from their respective equilibrium positions. An acoustic 

wave is different from the familiar “wave in a string” in that it is a longitudinal wave formed 

by molecules moving back and forth in the same direction as the wave propagation.22 The 

more familiar waves are the transverse wave where the molecules move perpendicular to the 
direction of propagation.

Acoustic waves can be described as spherical waves propagating radially outward from 

a point source pressure disturbance in three dimensions. As the distance from the source 

increases, the curvature of the spherical wave front becomes smaller and the spherical wave 

effectively becomes a plane wave propagating though the medium.24 The distance where the 

plane wave approximation is valid depends on the aperture size of the observing array and 

the sampling rate of the array.25 Sources that are closer than ten times the array aperture, 

approximately 15 to 20 km for the IMS arrays, produce waves that can be discerned as 

spherical waves at the array. 25 The pressure waves produced by sources at greater distances 
than ten times the array aperture can be approximated as plane waves at the Fairbanks and 

Windless Bight arrays. This factor of ten is valid for the particular sampling rate used at 

IS53 and IS55. The exact source distance at which the pressure waves can be approximated

"T h is  m aterial can  b e  found in m any standard texts. 20,21,22'23 T he form alism  o f  L .E . K insler and A .R . 
Frey was principally employed in this section.
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as plane waves is array and sample rate dependant and must be calculated separately for 

each individual array.25

To derive the wave equation for an acoustic plane wave the displacement of a volume 

element of the fluid must be related to the change in mass density that must have occured 

from the displacement of that fluid volume element. Consider the displacement of a volume 

element defined by the cross-sectional area S and the length x — (x  +  dx) =  dx. The mass 

contained in this volume will be given by the equilibrium mass density of the fluid, p0, 

multiplied by the volume Sdx. As the acoustic pressure wave passes through the volume 

element, assume that the plane originally at x  is displaced a distance i>{x). The plane, 
originally at x  +  dx, will be displaced a distance ip(x ) +  dx. The volume enclosed 

between the planes has been modified by the movements of the planes. The volume is now 

given by Sdx{ 1 +  9 ), which will be larger or smaller than Sdx depending on the sign 

of the partial derivative of the displacement. To satisfy conservation of mass the density 

inside the volume must change to offset the change in volume so that the mass enclosed 

inside the new volume remains constant. The conservation of mass equation can be used to 

relate the change in the density to the change in position,

pSdx{ 1 +  __ poSdx. ( l - l)

Equation 1.1 can be simplified by defining the dimensionless condensation, s =

Writing ^  in terms of the condensation,

(1 +  s) =  1 +  ^ ^
Po

_  Po +  p — Po 
Po

p
Po

and substituting into Equation 1.1 results in a new form of the density equation,

( 1.2)

(1 +  „)(1 +  ^ )  =  1. (1.3)

Even for acoustic waves with amplitudes that are painful to the human ear, both the 
dimensionless condensation, s, and the partial derivative of the displacement, , do not 

exceed 10~4 and the quantity in Equation 1.3 can be neglected as vanishingly small.22
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Neglecting s 9^ ' 1 in Equation 1.3 leads to a form of the continuity equation in terms of the 

condensation and the partial derivative of the displacement

d .4 )

The change in position can now be related to the change in pressure using Equation 1.4. 
Relating the change in pressure to the change in position is an essential step in the derivation 

the acoustic wave equation. A knowledge of which thermodynamic process best describes 

the compression and expansion of the medium due to the motion of the planes is necessary 

in order to determine the relationship between the pressure and the density. The compres­

sion of a fluid requires the expenditure of work that is converted into heat energy. This heat 

energy will increase the temperature of the fluid in the volume being compressed unless the 

compression process is slow enough to allow the heat generated to flow into the surrounding 

fluid. When a fluid is transmitting acoustic waves the temperature gradients between adja­

cent compressed and expanded parts of the fluid are relatively small.22 Small temperature 

gradients allow a slow rate of heat transfer between the volume elements. The transfer of 

heat between volume elements occurs at a rate that is too low to change the temperature 

of surrounding volume elements before compression cycle on the volume element is com­

pleted and compression halts.22 Under these assumptions, the process of the acoustic wave 

propagating through the fluid may be considered an adiabatic process.^22

With the knowledge of thermodynamic process involved in the wave propagation the 

changes in density can be related to the changes in pressure. Without loss of generality, the 

adiabatic process compression process can be represented by the equation

iIP
d P = ( — )0dp, (1.5)

where ( ^ ) o  is the slope of the line measured at the coordinate point, (P0. p0), o f the 

adiabatic pressure versus density plot.22 The changes in pressure and density due to the 

acoustic waves are small by assumption. The assumption of small pressure and density 

changes allows the incremental pressure change dP  to be replaced with the acoustic pressure^

""An adiabatic process is one for which no thermal energy enters or leaves the system. This can be 
achieved by thermally insulating the system or by performing the process rapidly.

^Acoustic pressure is defined as the difference between the instantaneous total pressure and the pressure 
that would be present in the absence of the acoustic waves.23
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and the incremental density change dp with the equilibrium density times the condensation, 

p0s. Substituting these small variation approximations into Equation 1.5 results in a new 

form of the adiabatic process equation

,d P .

Defining the quantity c2 =  ( rj^ )o  as the squared sound speed in the fluid allows further 

simplification of the equation for an adiabatic process,

2 d iS(x)
P = P°C ^ T '  (L7)

where the condensation, s, has been replaced with — according to Equation 1.4.

When a fluid is deformed in the manner described above the resulting pressures on the 

two faces of the volume element will be slightly different, resulting in a net force that will 

accelerate the fluid contained in the volume. The external force acting on each face of the 

volume element is equal to the product of the pressure on the face and the area of the face. 

The net force pushing the volume element Sdx in the positive x  direction is

dFx =  \ p - (p + ^ d s )\ S

=  d xS . (1 .8 )
o x

According to Newton’s 2nd Law, this force from the pressure difference is equal to the 

product of the mass contained in the volume element and acceleration of the volume element

- g * S  =  * * * £ $ ■ > .  (1.9)

Canceling like terms in Equation 1.9 produces a simplified equation that relates changes in 
position to changes in the pressure

dp d2^ (x )

Taking the derivative of Equation 1.7 and substituting the result into Equation 1.10 results 

in the acoustic wave equation
d ^ j x )  _  2 d2ip(x) 

dt2 8 d x 2 ' k j
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Equation 1.11 can be extended to three dimensions, resulting in the three dimensional 

acoustic wave equation

( 1.12)

where V 2 is the Laplacian operator.

1.2 Dispersion

** In the Section 1.1 the wave equation for pressure waves was derived in a fluid ignoring the 

effects of gravity on the fluid element and the rotation of the coordinates. When gravity 

is included in the equations governing waves in a fluid additional solutions to the wave 

equation arise in the form of gravity waves and the Lamb wave. The governing equations 

of waves in a fluid are the Mass Conservation Equation,

- ^  +  V -u  =  0, (1.13)
p at

where p is the mass density of the fluid and u is the velocity of the fluid. The Momentum 
Equation,

^  +  20 x u =  — -V p  — g +  vV 2u, (1-14)
at p

where is the angular frequency of the earth’s rotation, p is the pressure, g is the accel­

eration due to gravity, u is the fluid velocity, and v is the frictional coefficient. Each term

in Equation 1.14 represents a different force-like term that acts on the fluid element. From

left to right the terms are: the inertia, the centrifugal force, the pressure gradient, the 

gravitational force, and the viscosity force.21 The final governing equation is the Equation 

of State,

p =  p ( p , q j ) ,  (1-15)

where p is the mass density, p is the pressure, q is the humidity, and 0 is the potential

tem perature .T o  facilitate the derivation of the wave equation with the effects of gravity

included it is common to make simplifying assumptions involving the governing equations.

The term in the momentum equation that arises from the rotation of the earth can be

“ The wave equation derivations of A.E. Gill are principally followed in the this section. All work, unless 
otherwise specified, should be attributed to A.E. Gill.21

^The potential temperature is defined as the temperature that the fluid parcel would acquire if adiabat- 
ically brought to a standard reference pressure pQ-23
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neglected if the time scale of the waves are much less than the time scale of rotation, that 

is oj »  Q .20 The term introduced by friction may also be ignored if ui »  pk2.20 Finally, 

let u =  {u. v, w) and assume that there is no motion in the y-direction so that v — 0 .
To derive the wave equation including the effects of gravity consider small perturbations 

in pressure, p', and density, p', away from their respective equilibrium positions of p0 and 
p0. Since the assumed perturbations are small, the governing equations can be linearized.^ 

The linearized conservation of mass equation is

dp' dp0 fd u  dw\ . .

where p' is the perturbation in mass density, p0 is the equilibrium mass density of the fluid, 

u is the velocity in the horizontal, and w is the velocity in the vertical. Separation of 

the momentum equation into vertical and horizontal components results in two momentum 

equations,

^ = -L ¥  <li7>at p0 ox

for the horizontal momentum, and

dw 1 dp' p' .
~KT = ----- -5-----------9 (1-18)dt p0 dz po

for the momentum in the vertical direction. The linearized equation of state is found by

taking the total time derivative^ of the equation of state under the assumption that the

humidity (q) and the potential temperature (9) are constants. Linearization of the equation 

of state will result, with the use of the hydrostatic equation ^  =  —gp, in the equation

1 dp' dp' dp0
(“oT Pogw) =  -J— + W-J—, (1.19)

(cs)2 dt dt dz ’

where cs is the wave speed in the fluid.

Combination of Equation 1.16 and Equation 1.19 results in the expression

1 f  dp' \ fd u  dw\ .
^  ( w ~  <‘ °9W)  =  " ' ’■> (&  +  ■ ( 0)

The first wave equation governing waves in a fluid is found by combining the partial time 
derivative of Equation 1.20 and the partial derivative with respect to the x  coordinate

■“ To linearize replace a with a +  a/ and ignore products of perturbations. 
trThe total time derivative is defined as gj =  +  vff- +  w-f^.
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of Equation 1.17 into a single equation. By eliminating the terms containing u from the 

combined equation, the first wave equation for the fluid has been derived,

d V  1 _ < 9 V  & w _ _ p o g d w
d x 2 (cs)2 dt2 dzdt c2 d t '

A second wave equation can be found by rewriting Equation 1.18 as

g dt g dz

and take the partial time derivative. Equation 1.22 can be used to eliminate p' in Equa­

tion 1.19 resulting in the second wave equation for the fluid,

d2w  2 1 d2p' g dp' .
+  N 2W = --------------------------------------------------------------- (1.23)

dt2 p0 d zd t p0cj dt

where N 2 is an important quantity know as the Brunt-Vaisala frequency. The the Brunt- 

Vaisala frequency is the frequency above which there is no propagating gravity wave solu­

tion. N 2 is defined by
AT* =  _ « ! .  (1 .24)

Po dz cj

Equation 1.23 and Equation 1.21 govern the waves that occur in a stratified, compressible 

atmosphere.*

To explicitly solve Equation 1.23 and Equation 1.21 the form of the solutions to the 

wave equations must be assumed. The choice of harmonic waves as the form of the wave 
equation solutions results in

w  =  ^  c i(kx+mz-u>t)
y/Po

p' =  B  yfplS- kx+mz~ult) (1.25)

as the solutions21 to the wave equations, where A  and B  are wave amplitudes, m is the

vertical wave number, k is the horizontal wave number, and u  is the frequency of the wave.

The solutions the wave equations can now be used to obtain the dispersion relationship for 

pressure waves from Equation 1.21 and Equation 1.23. Substitution of the wave solutions, 

shown in Equations 1.25, into Equation 1.21 returns the equation
2

7 2 / — w  I , Po9 .—k p  g~P  =  Pornu!W H 2~iuJW. (1 -2 6 )
cs cs

* The assumption of a stratified atmosphere is implicit in the hydrostatic equation.
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Equation 1.23 yields
9 ,r? —mco . igco ,

—cow  +  N  w =  p  xp (1-27)
Po PoC%

when the harmonic wave solutions are inserted into the equation.

There are now two equations, Equation 1.26 and Equation 1.27, for two unknowns, k 

and co. To remove the dependence on the vertical velocity w Equation 1.27, solved for w, is 

substituted into Equation 1.26. The result is a quadratic equation in co2,

uo4 — [(mcs)2 +  g2 +  (kcs)2 +  N 2]co2 +  (csN k)2 — 0, (1.28)

which can be solved using the quadratic formula. The solution of Equation 1.28 is the 

dispersion relation for pressure waves in a compressible, stratified atmosphere,

1
co2 =  ^ |(mc8)2 +  g2 +  (kcs)2 +  N 2 ±  yj[(mcs)2 +  g2 +  (kcs)2 +  N 2p  -  A(csNk)2 ĵ .

(1.29)
It is now customary to look at the dispersion relation for the short waves and the long

waves separately.21,23,27 The gravity and sound waves decouple in the dispersion relation

for waves if small wavelength making it possible to ignore the effects of gravity on sound 

waves and the effects of compressibility on gravity waves. For long wavelength waves, 

like infrasound waves, the gravity waves and the sound waves are not decoupled and the 

assumption of an isothermal atmosphere is made to facilitate the analysis of the dispersion 

relation. In an isothermal atmosphere the change in the density is a constant given by the 

equation

1 ^ 2  =  - i - ,  (1.30)
Po dz Hs

where Ha is the scale height of the atmosphere. 27 The scale height is the height at which 

the pressure has fallen to e_1 of the value at the Earth’s surface. The scale height is given 

by the expression

Ha =  (1-31)
9

where R  is the gas constant and Tc is constant temperature.27 From the surface of the earth 

to an altitude of 70 km the temperature is within fifteen percent of 250 K for the standard 
atmosphere.21 The stability of the lower atmospheric temperature about 250 K  makes if the 

logical choice for the assumed Tc. The approximation of a constant temperature removes the
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derivative from the Brunt-Vaisala frequency and leaves an expression for the Brunt-Vaisala 

frequency dependant on the wave speed in the fluid,

In the long wave regime the Brunt-Vaisala frequency serves as a separation point between 
the acoustic and gravity waves. Acoustic waves cannot propagate at frequencies below 

the Brunt-Vaisala frequency and gravity wave cannot propagate at frequencies above the 

Brunt-Vaisala frequency.

There is an additional solution to the wave equation whose energy falls off exponentially 

with height called the Lamb wave. In an isothermal atmosphere the Lamb wave has no 

vertical velocity. 27 The derivation of the dispersion relation for the Lamb wave exploits the 

lack of vertical velocity in the Lamb wave solution. To derive the Lamb wave dispersion 

relation the vertical velocity is set to zero, w =  0, in equation Equation 1.21 and Equa­

tion 1.23. There are two solutions for the dispersion relation in the case where the wave 
cannot propagate vertically,

uj =  kcs,

and

w  —  0 ,

the latter of which is not a pressure wave.

With equations defining the three dispersion relations, a plot of the wave frequency 

versus the horizontal wave number for various vertical wave numbers can be produced. 

There are distinct regions where gravity and acoustic waves can propagate, separated by 

the Brunt-Vaisala frequency, as shown in Figure 1.2. Acoustic waves, shown as the blue 

lines, cannot propagate at frequencies below the Brunt-Vaisala frequency and gravity waves, 

plotted as red lines, cannot propagate at frequencies above the Brunt-Vaisala frequency. 

Between the acoustic and gravity waves is the Lamb wave, plotted in green in Figure 1.2. 
The lowest acoustic frequency that can propagate in a given atmosphere is known as the 

acoustic cut-off frequency, which is given by

<L33)
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Figure 1.2. Dispersion relation for atmospheric pressure waves. The atmosphere was as­
sumed to be isothermal and the dispersion relations were derived in the long wave regime. 
Wave frequency is shown on the vertical axis and the horizontal wave number is shown on 
the horizontal axis. Each line represents a different value of the vertical wave number m. 
The scale height of the atmosphere was set equal to unity to produce this plot. The blue 
lines represent the acoustic waves, the red lines are the gravity waves, and the green line is 
the Lamb wave.

where 7  is the adiabatic index. The slope of each of the lines in Figure 1.2 is the speed 

at which pressure waves with different vertical wavenumbers propagate. The sound speed 

slows for all frequencies of acoustic waves as horizontal wave number approaches zero.

In the real atmosphere temperature, pressure, and density all vary with height. For this 
reason the atmosphere is divided into several regions based on the way the temperature 

changes with height in the region. The four regions that can easily support acoustic waves 

are the troposphere, stratosphere, mesosphere, and thermosphere.21 The troposphere is the 

closest atmospheric layer to the earth. The troposphere extends from the surface of the 

earth to an altitude of 12 km on average. It is in this layer that 80% of the mass and 
nearly all the water vapor in the atmosphere resides. Strong vertical mixing occurs in the 

troposphere due to solar heating. The strong vertical mixing causes the temperature to
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decrease with height as a result of expansive cooling in the troposphere. The troposphere 

is capped by the tropopause, which marks the boundary between the troposphere and the 

stratosphere. The stratosphere is a very stable region of the atmosphere with little mixing 
that extends in altitude from 12 km to approximately 50 km. Due to the stability of the 

stratosphere the temperature increases with height in this region. Between the stratosphere 

and the mesosphere is the stratopause. Only 0.1% of the atmospheric mass lies above this 

boundary. From 50 km to 85 km lies the mesosphere in which the temperature decreases 

with height. Above the mesosphere, from 85 km to 640 km, is the thermosphere where 

temperatures rapidly increase with height to about 600 K in periods with little sun activity 
and to 2000 K for periods with an active sun.27,21

The fact that the atmosphere is not isothermal directly contradicts a key assumption 
made in the derivation of the dispersion relation. To see how this will effect the results 

of the dispersion relation derivation, an atmospheric model can be used to calculate the 

Brunt-Vaisala frequency and the acoustic cut-off frequency as a function of altitude. The 

model used was the COSPAR International Reference Atmosphere (CIRA) provided by the 

National Space Science Data Center.28 The CIRA atmospheric model is an empirical model 

of the temperatures and the densities gathered by ground and satellite observations. The 

CIRA was used to determine how the temperature and pressure vary with height. The 

Brunt-Vaisala frequency and acoustic cut-off frequency were calculated using the empirical 

temperature and pressure profiles from CIRA as a function of altitude. In order to calculate 

a realistic profile of the Brunt-Vaisala frequency an altitude dependent form of the equation 

must be found. Recasting Equation 1.24 in terms of the potential temperature, 6, results 

in an altitude dependent form of the Brunt-Vaisala frequency equation, 21

f1-34)
The potential temperature is given by the equation 27

0 = T, (1.35)Pr 
-P .

where pr is some reference pressure and k is The adiabatic index is defined as the 
ratio of the specific heats27 which can be calculated using the equations

CV ~  2 ^ 1  q  +  7 g )
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Figure 1.3. Atmospheric pressure versus height for May 1986 at 60°N latitude. The data 
was taken from the National Space Science Data Center’s COSPAR model atmosphere.

and

cv = b- R { l - q + ^ ) ,  (1.36)

where q is the humidity of the atmosphere and e is the ratio of the molecular mass of water 

to the molecular mass of air. Under the assumption of dry air27 q will be zero and the 

adiabatic power is

Using the temperature and pressure data obtained from the CIRA model, shown in Fig­

ures 1.3 and 1.4, the acoustic cut-off frequency and the Brunt-Vaisala frequency were 

plotted as functions of height. In the model atmosphere the Brunt-Vaisala frequency varies 

with height, shown in Figure 1.5. The acoustic cut-off frequency is calculated using the 

Brunt-Vaisala frequency and it varies with altitude in the same manner. The acoustic fre­
quency is greater than the Brunt-Vaisala frequency at all altitudes calculated in the stable 
model atmosphere. Since the acoustic cut-off frequency tracks the Brunt-Vaisala frequency 

at all altitudes, the Brunt-Vaisala frequency can still be used as a discriminator between
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Temperature (K)

Figure 1.4. Atmospheric temperature versus height for May 1986 at 60°N latitude. The 
data was taken from the National Space Science Data Center’s COSPAR model atmosphere.

gravity wave and acoustic wave frequencies even in a realistic atmosphere.

With the effects of gravity included there are three types of pressure waves that the 

atmosphere can support: acoustic, gravity, and Lamb waves. The infrasound waves belong 
to the acoustic wave set of atmospheric pressure waves. The frequencies at which the gravity 

and acoustic waves can propagate in the atmosphere are separate and distinct. Using the 
dispersion relations, the frequency band of the infrasound can be defined as the frequencies 

below 10 Hz but above the Brunt-Vaisala frequency.

1.3 Attenuation

As a pressure wave travels through the atmosphere the intensity of the wave decreases. The 

process of energy loss is known as attenuation. The rate of attenuation is dependent on 

the frequency of the pressure wave. Low frequency waves are attenuated less than high 

frequency waves over the same distance. It is because low frequency waves are not greatly 
attenuated that infrasonic waves can travel for long distances through the atmosphere.
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Frequency (Hz)

Figure 1.5. Brunt-Vaisala and acoustic cut-off frequency for the model atmosphere on May 
1986 at 60N Latitude. The solid line is the Brunt-Vaisala frequency and the dashed line is 
the acoustic cut-off frequency.

There are several sources of pressure wave attenuation in the atmosphere. In this section 

the various mechanisms of attenuation will be explored.

The idealized acoustic wave is assumed to be spherically symmetric when it is generated 

at a point source.23 The spherically symmetric pressure wave will expand radially outward 

from the source. The expanding acoustic wave can be represented as a sound field defined 

by the spatial and temporal dependent quantities o f pressure and velocity.23 To explore the 

attenuation an expression for the sound intensity as a function of space and time must be 
derived. For purposes of the derivation of sound intensity consider harmonic waves that 

oscillate with at a single frequency of u>. An acoustic wave is said to be harmonic if the time 

dependence of the sound pressure is given by a factor of cos((j) — wt) where <j> is a constant 

phase angle.27

Under the assumption of harmonic waves the pressure of the wave is defined by

p =  R e i p ^ 1), (1.37)
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where p is the wave pressure, u  is the frequency of the wave, t is the time, pc is the complex 

pressure, and Re indicates that the real part of the expression the wave pressure.27 The 

velocity of the harmonic acoustic wave can expressed as

u =  Re(uce~iult), (1.38)

where uc is the complex wave velocity, lo is the frequency of the wave, and t is the time. 

The complex quantities in Equation 1.37 and Equation 1.38 are defined as pc =  pr +  ipi 

and uc =  ur +  iui respectively.27 Defining the acoustic intensity as I  =  pu and using the 

definitions of the acoustic pressure and the acoustic velocity produces an expression for the 

intensity of the wavefield27

I  =  Re[(prcoswt +  pisinu!t)(urcosut +  Uisinwt)]

I  =  Re\prurcos2 (uit) +  - p rUisin{2uit) +  - PiUrsin{2uit) +  piUisin2 (ujt)]. (1.39)
Ad Zi

It would be useful to eliminate the explicit time dependence in Equation 1.39 in order 

to find the attenuation of the acoustic wave in terms of the average acoustic intensity. To 

eliminate the explicit time dependence take the time average of the acoustic intensity, in 

which case cos2(wt) and sin2(ut) are each replaced with | and sin(2Lut) goes to zero. The 

time average of Equation 1.39 produces the average acoustic intensity27,

1 ^ 1 ^
J-av — 2 P r^ r  ^ P iu i

=  Re • (1-40)

The average acoustic power emitted by the source can now be defined by integrating 

the average intensity of the acoustic wave over an arbitrary surface enclosing the source of 

the acoustic wave.27 The average acoustic power is defined as

[  [  lav- ft dSc, (1.41)
J JSc

where n is the outward unit normal vector to the surface, Sc, enclosing the source. The 

use of a spherical shell to enclose the acoustic source is appropriate under the assumption 

of a radially expanding acoustic wave. The integral in Equation 1.41 results in an average 
acoustic intensity of

*— 5 3 -  < ^ >
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Notice that in Equation 1.42 the average power emitted by the source is divided by the 

square of the radial distance of the surface from the source. As the distance from the source 

increases the average acoustic intensity decays as the inverse square of the distance to the 

source. This decrease in the acoustic intensity is known as geometrical attenuation and only 

occurs for spherical waves.

In the plane wave approximation there is no attenuation of the acoustic waves during 

transit in the ideal atmosphere. The effects of atmospheric absorption, which have been 

ignored up to this point, introduce attenuation. There are three types of attenuation caused 

by atmospheric absorption: viscosity, thermal transfer, and molecular relaxation.

The first mechanism of wave attenuation is absorption of wave energy due to the vis­

cosity of the air. The viscosity of the air attenuates the wave by reducing the velocity 

gradients of sound waves with small momentum transfers between fluid elements. To ob­

tain a quantitative expression of the amount of attenuation expected from the viscosity it is 

necessary to once again derive the acoustic wave equation with a viscosity term included in 

the momentum equation. To simplify the derivation, work in one dimension and ignore the 
effects of gravity.27 Including the viscosity term the one dimensional momentum equation 

becomes
du 1 dp' d2u
Ht -  ~ p 7 t e + U 7h?'  ̂ ' )

where as before p' is the perturbed pressure, p is the mass density of the atmosphere, u is

the horizontal velocity of the wave, and v is the viscosity of the air. Following the method

developed in Section 1.2, take the partial time derivative of Equation 1.43 and the spatial
derivative of the conservation of mass equation to get the wave equation including the term 

from the viscosity,
d2u d2u d3u .
W  ^ d x ^  +  Ud ^ d t'  ̂ ‘ ^

To represent the attenuation assume that the solution to Equation 1.44 has complex 

wave numbers. Assume a solution of the form

u =  Aei(-Ut~k'x\ (1.45)

where

k' =  k — ia  (1-46)
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is the complex wave number.22 Substitution of the complex wave number into Equation 1.45 

results in a solution of to the acoustic wave equation,

A ei(wt-kx)e-ax (1.47)

that explictly shows the effect of the attenuation in the term the exponential term e~ax.

To derive an expression for the attenuation coefficient the wave number must be related 

to frequency and sound speed through the familiar equation

uj
k = (1.48)

The use of a complex wavenumber in Equation 1.48 requires that the sound speed also be 

expressed as a complex number,

Cg =  cg( l  +  iu>r) 2 , (1.49)

where r  is the relaxation time of air.22 The relaxation time is defined as the time it takes the 

perturbed pressure to relax to within \ of its equilibrium value.22 Using the complex forms 

of the wavenumber and the sound speed in Equation 1.48 results in a equation in terms of 
the real sound speed and wavenumber that also includes the attenuation coefficient22

uj =  cs(k — ia )( 1 +  iujr) 2. (1.50)

Either the wavenumber or the wave frequency may be eliminated by equating the real 

and imaginary parts of Equation 1.50. The real part of Equation 1.50 is
,2

k a 2 =
u>

and the imaginary part is

2 ak

c2( 1 +  uj2t2)

a 3r
c2( l  +  uj2t2) ’ 

The attenuation coefficient22 can be expressed as

a = U)
(1 +  cu2t 2)2 (1 +  uj2t2)_

(1.51)

(1.52)

(1.53)

For the vast majority of fluids the relaxation time is very short and wr < <  l .22 Using the 
assumption of a small relaxation time Equation 1.53 is approximately equal to

a
u^r 
2c '

(1.54)
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The attenuation coefficient that occurs from the viscosity of the fluid is directly proportional 

to the square of the frequency. It follows that acoustic waves with higher frequencies will 

suffer from higher attenuation due to the viscosity of the atmosphere.

The thermal conduction of the air in the atmosphere is the second mechanism by which 

the atmosphere absorbs the energy of an acoustic wave. When the pressure wave compresses 

the fluid contained in a volume, the temperature is raised in the volume element according 

to the ideal gas law, pV  =  nRT.W The increase in the temperature of the fluid in the volume 

causes a temperature gradient between the volume being compressed and the neighboring 

fluid volume elements which are less compressed. The temperature gradient results in a 
flow of heat. The attenuation caused by the transport of heat between the volumes is given 

by the expression22
_  7 - 1  2 

a 2c W T’
where 7  is the power coefficient of the ratio of the specific heats of the air. The attenuation 

due to heat conduction is smaller than the attenuation due to the viscosity, but is of the 

same order of magnitude. The sum of the absorption due to the viscosity and thermal 

conduction is known as the classical attenuation.22

The last source of absorption in the atmosphere is absorption due to molecular relax­

ation.22 Molecular relaxation is an effect of the diatomic molecules that are the primary 

constituents of the atmosphere.21 As an acoustic wave compresses a volume element of the 

fluid, the temperature in the volume element increases. The temperature increase raises 

the energy contained in the volume element according to the equation

A  E =  CyAT. (1.55)

When a diatomic gas is compressed the work done by the compression is not immediately 

distributed evenly to all the various degrees of freedom of the diatomic molecule. The 

delay in the energy distribution occurs as a result of the finite time required for molecular 

collisions to distribute any excess energy to the rotational and vibrational modes of the 

diatomic molecules. The delay attenuates the wave by causing the increase in the density 

of the molecules from the compression of the volume to lag behind the pressure increase

is the temperature, p  is the gas pressure, R  is the universal gas constant, V  is the volume and the 
number of moles is n in the ideal gas law.
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Figure 1.6. The classic attenuation of an acoustic wave as a function of the wave frequency. 
The atmosphere is assumed to be homogeneous, isothermal, and dry. The relaxation time 
r  equals 1.7 x 10_10sec for 20°C.

in the volume due to the compression. The lag occurs because some of the translational 

energy of the molecules goes into exciting other states in the molecules instead of moving 

the molecules. Energy is then transfered back from the rotational and vibrational state to 

the translational state during the expansion part of the acoustic cycle, smoothing out the 

acoustic wave. The degree to which this process will attenuate the wave is dependent on the 

frequency of the wave.21 If the wave period is much longer than the molecular relaxation 

time, the molecules can transfer their energy between all states well within the period of 

the wave making the phase difference between the temperature and pressure changes small. 

If the wave period is much smaller than the molecular relaxation time the molecules do not 

have the time to interchange energy between states within the cycle of compression and 

expansion.

Figure 1.6 illustrates how the classic attenuation constant for the acoustic waves increase 
as the square of the frequency of the acoustic waves for dry air. Increasing the humidity 

of the air, q, increases the attenuation caused by the atmospheric absorption of energy
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increases faster than the classical attenuation theory can explain. This excess absorption 

is explained by the absorption due to molecular excitation. As the humidity increases the 

number of collisions needed to excite the vibrational mode of oxygen is reduced. For dry 

air, the oxygen is not normally excited because the relaxation time of oxygen is of the 

order of several seconds.21 As the humidity increase the number of collisions need to excite 
the oxygen decreases. The decrease in the number of collisions required results in a shorter 
relaxation time for oxygen. With the decrease in the relaxation time of the oxygen molecules 

the attenuation due to molecular excitation greatly increases. The amount of absorption is 

still dependent on the proximity of the frequency of the acoustic wave to the relaxation time 

of the molecules and has a greater attenuating effect when the wave period is comparable 

to the relaxation time.22 The relaxation time of oxygen is between 0.01 and 1 ms depending 

on the relative humidity, and does not affect low frequency waves excessively. 27

With this knowledge of how a acoustic wave is produced and propagates through the 

atmosphere the source location problem can now be addressed. In Chapter 2 the statistical 
tools for describing an acoustic wave in the atmosphere will be developed. Procedures for 

the estimation of desired wave parameters from the pressure data gathered by an array of 

sensors will also be discussed in Chapter 2. The performance of the Least Squares estimate 

of the trace velocity (the speed at which the 3-D acoustic wave appears to traverse the 2-D 

array), and of the azimuth with the assumed GWU noise field will be explored in Chapter 

3. The assumptions about the infrasonic noise field and the effects of the physical infrasonic 

noise field will be investigated in Chapters 4 and 5. Chapter 4 will address the assumption 

of Gaussian, white noise and Chapter 5 with the assumption of an uncorrelated noise field.
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Chapter 2
Digital Signal Processing &: Array Processing

Thus far acoustic waves traveling in the atmosphere have been modeled as deterministic 

signals, meaning the signal can be expressed by a mathematical formula. In real world 

situations the corruption of the signal with noise requires that the acoustic waves be treated 

as random signals. Two examples of pressure data recorded at IS53 are shown in Figures 2.1 

and Figure 2.2, one where the signal is clearly visible and the more typical case where the 

signal is buried in the background noise. In Figure 2.1 an obvious signal can be seen near 

the center of all eight sensor output plots. The unknown signal in Figure 2.1 is a short 
duration, high frequency ( 1 — 10 Hz) signal. This signal is superimposed on a background 

fluctuating pressure field known as the noise. Due to the high signal-to-noise ratio of the 

data in Figure 2.1 the signal is clearly visible in the unfiltered raw pressure data. Figure 2.2 

shows the more common case where the signal is not clearly separable from the background 

noise field due to a lower signal amplitude. The noisy data collected at the Fairbanks array 

was bandpass filtered to isolate the signal of interest from the clutter* in the noise field, 

which is a common practice in the infrasound community. Even though the data has been 

filtered to remove the effects of clutter, the signal is not clearly visible in the data due to a 

low signal-to-noise ratio. The lower signal-to-noise ratio reveals that the noise that appeared 

to be smoothly varying in Figure 2.1 is actually fluctuating rapidly in an apparently random 

fashion, which is typical for the infrasonic noise field at Fairbanks and Windless Bight. The 

particular signal in Figure 2.2 is a far-field volcanic signal from Mt. Augustine eruption 

in January 2006 recorded at the Fairbanks array, but the relation between the signal and 

noise amplitudes is typical for far-field infrasonic signals at IS53 and IS55. The corruption 

of the acoustic signals with random noise requires that the signals themselves be treated as 
random signals.29

Since the signals are random it is only possible to talk about the statistical character­
istics of the signals. The statistical description of the signals will provide a look at the 

average properties of the recorded signals.29,19 The necessary statistical tools for analyzing 

random signals recorded by an array of sensors are developed in this section. The statisti­
cal methods of describing the characteristics of random signals are first summarized. The 

t Clutter are acoustic signals that are not of interest to the signal processor.
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Fairbanks Data -  FAI200724019.mat 08/28/2007 BPF[0 10] dT=0.050

Time (UT)

Figure 2.1. Example of a large amplitude signal and the background noise recorded at 
the Fairbanks (IS53) array. The eight plots correspond to the output of the eight array 
elements. The y-axis displays the recorded pressure in Pascal and the x-axis is the time 
index.
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Fairbanks Data -  FAI200602817.mat 01/28/2006 BPF[0.03 0.1] dT=0.050
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Figure 2.2. Example of a typical low amplitude far-field signal and the background noise 
recorded at the Fairbanks (IS53) array. The eight plots correspond to the output of the 
eight array elements. The y-axis displays the recorded pressure in Pascal and the x-axis is 
the time index.
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details concerning the spatial sampling of the random signals, with an array of sensors, 

will then be presented. Finally, statistical methods of extracting desired information from 

recorded random signals, via parameter estimation, are summarized.

2.1 Random Vectors

2.1.1 Statistical Description of a Random Process

A compact way to represent a random signal is with a vector, where the elements of this 

random signal vector are samples of the signal taken at uniformly spaced times. The primary 

statistical tool used in describing a random signal is the distribution fu nction . 29’ 19 I f  the 

random signal is described as a random column vector,

x 1 

X2

X =  Xz

X N

the distribution function of the random signal vector is defined as

Fx (x°) =  Pr[x <  x°],

where x°  is some specific value for the vector and Pr[ ] represents the probability that the 
elements of the random vector x  are less than or equal to the corresponding elements of 

the vector x ° .29 The distribution function is a discrete function of the specific value of the 

vector x° chosen and therefore is of little practical use in statistical signal processing.29 

A more useful quantity used to describe the random vector is the continuous probability 

density function (pdf). The two quantities are related by the expression

; (f° )  =  f  f x {x)dx
J &min

or equivalently,
f  (~v\ 9 9 9 T? (-Uf x ( x ° )  =  —   -------------— F x (x)\s=So.

O X  I  O X  2 O X N
(2.1)

The utility of the probability density function stems from the fact that if it is known, 

expectations can be calculated. The expectation of a quantity derived from the random
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vector is the value that the quantity is expected to take on average.29 Only expectations 

of quantities which can be derived from the random vector whose pdf is being used can be 
calculated.29 The formula for calculating the expectation is

/ OO
^ {x ) fx {x)dx,

-OO

(2 .2)

where the pdf f x (x) is the pdf of the random vector from which T(a;) is derived.

When 'P(T) involves products of the components of x, the resulting expectations are 

referred to as moments of the pdf.29,19 For a Gaussian random process the first and second 

moments completely characterize the distribution.30 The moments are useful in describing 

the pdf in situations where the pdf is not known and is too difficult to estimate from the 

available data. The first moment is the mean of the pdf and is given by the equation

mx / OO

x f x {x)dx
-OO

=  E :
.Xi
■N’

(2.3)

where N  is the number of elements in the vector and £  is the expectation operator. The 

non-central second moments of the random vector x  are given by the correlation^ matrix

Rx =  £ {xx*T}.

In general the correlation matrix for random signals has the form29

Rx =

£ { M 2}
£ { x 2x \ }

£ { x i x %}

£ { N 2}

£ { x i x *n }  

£ { x 2 x*n }
(2.4)

_ £ {x n x i )  £{(a;jvX2) }  ••• £{|xjv|2}  .

The covariance matrix contains the set of central second moments

Cx =  £ { (x  -  mx)(x  -  mx)* )}  

and is related to the correlation matrix by the equation

R x Cx +  mxmtT.

(2.5)

(2.6)
t Random variables are said to be correlated if knowledge about one of the variables provides some 

information about the other random variable.30
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The diagonal elements of the covariance matrix have the form of the variance of the indi­

vidual variables,

0-2 =  ~  m * ) 2> (2 -7 ) 
i

while the off-diagonal elements are the covariances, which measure how strongly the two 

measurements are related to each other. 30 Most infrasound data is collected experimentally 
by discrete sampling of the continuous pressure field present in the atmosphere. The sam­

pling results in the collection of discrete random signals. With discrete random signals it is 

necessary to use the discrete form for the mean,

mx[n] =  £{x[n}}, (2 .8 )

and for the correlation matrix,

Rx[ni,no] =  £{x[rci]a;*[no]}, (2.9)

where n is the sample number.

For a stationary random process* the pdf is only a function of the spacing between the 

elements of the random vector.29 The mean and correlation of a stationary random process 

will depend only on the spacing between the sample points. By the definition of a stationary 

process the mean is a constant,

mx[n} =  mx . (2.10)

By defining the difference between the two sample points as the lag29, the correlation 

becomes a function of only the lag,

Rx[ni, no] =  Rx[l] =  £{x[n]x*[n -  1]} (2-11)

where I is the lag between the two sample points. By the same token, the covariance is also 

a function of the lag and it is given by

Cx[ni,no] =  Cx[l] =  £{{x[n] -  mx)(x [n - l } -  mx)*}. (2-12)

The interrelation between the covariance and the correlation in terms of the lag becomes

Rx[l] =  Cx[l\ -  \mx\2. (2-13)

* A random process is said to be stationary if its statistical description is not a strong function of time.29,19
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When the lag equals zero some useful quantities are given by the correlation and the co­

variance. The average power of the random process is given by the correlation at zero lag 

and the variance of the random process is given by the covariance at zero lag29

Cx[0] =  £ {\x [n\-m x \2}

=  (2-14)

If a quantity is a function of two random vectors -  a multivariate process -  the joint 

probability density function must be used in the calculation of the expectation of any quan­

tities derived from the multivariate process.29 The joint pdf is defined by a joint distribution 

function. The joint distribution function gives the probability of the joint event x  < x °  and 

y < y ° .  The joint pdf is related to the joint distribution function by

f  ______ d 9 9 9 r  I______^ to 15j
My[  ’ y } "  dx! dx2 dxN dyi dy2 dyN • ( 2 ' 1 5 )

The expectation of a multivariate process is defined by

/ OO POO

x , y ) f x,y(x,y)dxdy .  (2.16)
- o o  J — OO

The dependence of a process on two random vectors does not change the first moments 

at all, but it will effect the second moments. The correlation matrix becomes the cross­

correlation matrix,

Rxy =  £ { S f T}, (2.17)

and the covariance matrix becomes the cross-covariance matrix,

Cxy =  £ { ( x  -  mx)(Y  -  my)*T}.  (2.18)

The discrete form of the multivariate mean is the same as the discrete form the one variable 

mean. The discrete form of the correlation matrix can be extended to accommodate two 

random processes. If the two processes are jointly stationary the cross-correlation matrix 
is given by

Rxy[ni,no] =  £{x[n]y*{n -  I}}. (2.19)

The cross-covariance matrix is calculated according to the equation

Cx [n\,n0\ = C x [l] = £ { { x [n ]  - m x) ( y [ n - l ]  -  my)*}  (2.20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

with the appropriate means for the x and y processes. The relation between the covariance 

and the correlation is given by

Rxy[l\ — CXy[l] +  mxm*. (2.21)

Using the definitions of the second moments for two random processes, the definitions can 

expressed in terms of the cross-correlation and cross-covariance. The random vectors are 

uncorrelated if the cross-covariance is equal to zero.29 The vectors are orthogonal if the 

cross-correlation is zero.29

2.1.2 Frequency Domain Description of a Random Process

The first and second moments of a random process are calculated in the time domain of 

the random process. A useful tool in the analysis of deterministic sequences contained in 

the random time series is the frequency domain description of a random process. 29>19>31>32 

The frequency domain is the Fourier transform of the time domain. Two frequency domain 

quantities will be used extensively in this thesis and will be introduced in this section: 
the power spectral density function (PSD) and the magnitude squared coherence spectrum 

(MSC) of a time series.

The power spectral density function is the Fourier transform of the correlation function 

of the random process. The power spectral density function is estimated by taking the 

discrete Fourier transform of the correlation function29,
OO

Sxie” ) =  J2 Rx[l]e-iMl, (2 .22)
l= — o o

where ui is the signal frequency, I is the lag, and Rx is the correlation function. The power 

spectral density represents an estimate of the power contained in the random process at 

each frequency.

The cross-power density function can be found by taking the discrete Fourier transform 

of the cross-correlation function,
OO

S x y { e n =  R x y [ l } ^ 1- (2-23)
l= —oo

The cross-power spectrum is a plot of the cross-power density plotted against the frequency.

The cross-power spectrum can be interpreted as a measure of the correlation between the
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two random processes, x  and y, at a given frequency.31 The square of the normalized 

cross-spectrum is called the magnitude squared coherence (MSC) which is the cross-power 

spectrum normalized by the square root of the individual power spectral densities. The 

MSC is given by the formula

p ,2 =  \Sxy{eW)\2 , .
xyl Sx (e*>)Sy(e*>y

The value of the MSC can range between 0, when the two processes are absolutely uncor­

related, and 1, when the processes are perfectly correlated. 29

The PSD and the MSC are generally not known and must be inferred from the mea­

sured data. The process of inferring desired quantities from measured data is known as 

estimation. 19 There are two common methods for estimation of the power spectrum, the 

correlogram and the periodogram.29,19 The correlogram uses an estimate for the correlation 

function and Equation 2.22 to estimate the PSD. The estimate of the correlation function 

is given by29
 ̂ 1 Ns- l - l

&x[l] =  -rjr x[n +  l\x*[n}, (2.25)
1Vs n= 0

where Ns is the total number of data samples, I is the lag, and x*[n\ is the complex conjugate 

of the sequence x. The periodogram is given by the formula29

Px{ e n  =  j f \X{en\\  (2.26)

where X {e %u) is the Fourier transform of the sequence x. The periodogram is more conve­

nient to compute than the correlogram. 29

Assuming that the underlying process is stationary, there are several methods to decrease 
the variance of the PSD estimate and improve the preformance of the basic periodogram 

or correlogram PSD estimate. The first method is to average a number of different PSD 

estimates. The statistical properties of the periodogram do not improve with greater lengths 

of data. 29,33 A more efficient use of long data segments is break the data into smaller 

segments and average the resulting PSD estimates.33 The method of averaging several PSD 

estimates is known as the Bartlett procedure. When employing the Bartlett procedure the 
variance of the PSD estimate is decreased by a factor equal to the inverse of the number of 

data sub-segments if the sub-segments of the data are uncorrelated.29 The variance of the
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PSD estimate can also be decreased by smoothing the correlation function estimate with a 

window before Fourier transformation. The decrease in variance when using the Blackman- 

Tukey procedure is dependent on the window size and shape.34 It has been argued that 

when the transformed window is narrow compared to the variations in the spectrum, and 

the half length of the window is much smaller than the data length, the variance in the 

PSD estimate is reduced by

^  E  ( 2.27)
s l= -L + 1

where Na is the number of data samples, L is the half length of the smoothing window, and 

the sequence w is the smoothing window.35 The final method of reducing the variance of 

the PSD estimate is the Welch method.36 The Welch method, which is used extensively in 

the following work, combines smoothing windows and averaging the PSD estimates. The 
decrease in the PSD estimate variance when using the Welch method is approximately the 
same as the Bartlett method.29

The Bartlett and Welch procedures both segment the data in order to decrease the vari­

ance of the PSD estimate. The objective is to estimate the power spectrum of the data with 

high fidelity and high stability.31 High fidelity is obtained when the bias in the estimated 

spectrum is small. A spectral estimate with high stability has a small estimate variance. 

The data segment chosen when estimating a smoothed spectrum must be large enough to 

allow estimation of the low frequency components of the data set, but short enough to allow 

for averaging to improve the stability. There exists no set procedure to determine the opti­

mal data segment length when estimating the power spectrum. The process for determining 

the segment length while balancing the fidelity and the stability is known as the window 

closing procedure.31 The technique of window closing involves estimating a smoothed spec­

tral estimate with a large frequency space window and then estimating the spectrum using 

progressively smaller frequency space windows until an acceptable spectral estimate has 

been produced.31 Generally, a compromise between fidelity and stability suitable for the 
desired application must be found during the window closing process.
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2.2 Arrays

Sensors are used to convert the propagating atmospheric wave energy into electric signals 

that can be measured and recorded. The recorded electric signals result in a timeseries that 

represents the response of the instrument to the physical signal propagating past the sensor. 

Pressure waves vary in both space and time and any measurement device used should be 
able to sample the propagating wave spatially and temporally. There are two general kinds 

of sensors used to sample the field, directional and omnidirectional.24 Directional sensors 

gather the energy propagating from a specific direction and spatially integrate the energy in 

order to focus the sensor on the desired propagation direction. Omnidirectional sensors have 
no preferred direction of propagation and simply sample the environment at the location of 

the sensor. A group of individual sensors that are used to spatially sample the environment 

is called an array.24

The sampling process used by an array converts a wave field that is continuous in both 

space and time into a discrete time and space series. According to the Sampling Theorem,37 

under certain conditions, a discrete sample of a function can be used to represent the 

complete set of function values without any loss of information. Since the function is 

sampled in both space and time, there will be two separate but similar conditions for the 

validity of sampling theorem. The condition for the sampling theorem to be valid for both 

the temporal sampling and the spatial sampling is that the function be “bandlimited” in the 

temporal domain and the spatial domain respectively. The function is bandlimited in the 

temporal domain if the Fourier transform of the function is zero for temporal frequencies 

greater than some maximum temporal frequency, /m ax -37 The sampled function must also 

be bandlimited in the spatial domain and can not have spatial frequencies, wavenumbers, 

greater than some maximum spatial frequency, fcmax-24

The sampling theorem allows the representation of a continuous function with a discrete 

series sampled from the function.37 Due to physical limitations of computer memory it is 

desirable to sample the function as infrequently as possible to limit computer file sizes. 

The limiting factor on how few samples are needed to reconstruct the function accurately 

is dependent on the bandwidth of the function.37 Due to the sampling of the continuous 
function, the Fourier transform of the sampled function is composed of replications of the 

Fourier transform of the continuous function. As long as the sample frequency is sufficiently
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high, the replications do not overlap and the Fourier transform of the continuous function

pling frequency is not sufficiently high, the replications of the continuous Fourier transform 

overlap and it is no longer possible to accurately estimate the continuous Fourier transform 

from the Fourier transform of the sampled function. The overlap of the replications of the 

continuous Fourier transform is known as aliasing. To avoid aliasing the sample frequency 

must be at least twice the upper edge of the continuous function bandwidth; this is known 

the Nyquist frequency.37 The need to avoid aliasing dictates the minimum temporal sample 

rate for an array.
The maximum distance between sensors in an array is also dictated by the need to avoid 

spatial aliasing. Spatial aliasing o f the wavefunction can be avoided by using the minimum 
spatial sample rate, which is given by

The maximum distance between the elements of the array can be found by recalling that 

the wavelength is the inverse of the spatial frequency, giving

as the maximum distance between the elements of the array.24 For certain applications it 
is desirable to have the maximum allowable distance between elements of an array. The 

source localization problem is one of the applications that benefit by placing the array 

element at maximum inter-element distance. Placing the array elements at the maximum 

allowable distance from each other maximizes the time it takes an acoustic wave to travel 

between the elements of the array. The maximization of the time delays between the array 

elements improves the accuracy of the time of flight calculated from the recorded data. A 

large spatial separation also reduces the effects of noise on estimations of the time of flight 

between the array elements made using the collected data due to the spatial decoherence 

of the noise. (This will be discussed in more detail in Chapter 5.)

The minimum temporal sampling frequency is given by37

can be estimated using the Fourier transform of the sampled function.37 When the sam-

k'sample  ̂ ^max- (2.28)

(2.29)

fa — 2 /max (2.30)
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and, by using the relation between the frequency and period, the minimum temporal sample 

spacing is found to be

Ts =  — . (2.31)
* /max

A relation between bandlimiting in time domain and spatial domain is given by the for­

mula for the propagation speed of a wave. If the function is bandlimited in the time domain 
with temporal frequencies less than /max, then using the formula for the propagation speed 

of a wave,

c =  (2.32)

the function can have no wavenumber greater than The anti-aliasing requirements

stated in Equation 2.29 and Equation 2.31 can be combined to produce a relationship

between the minimum time domain and the minimum spatial domain sampling rates,

, c Ts
27r (2.33)

The placement of sensors in the array determines the spatial sampling rate and, in general, 

cannot be easily moved once deployed. The temporal sampling rate is determined by elec­

tronics and can be adjusted according to Equation 2.33. Arrays can be designed to increase 

the sensitivity to bandwidths of the waves of interest. A consequence of the dependence 

of the bandwidths on the wave is that different array geometries are responsive to waves 

with different frequencies. An array with a large aperture will detect low frequency waves 

better than an array with a small aperture, just as a small aperture array will be superior 

at detecting high frequency waves. 24

The aperture of an array acts as a spatial window through which the wavefield is ob­

served.24 The observed spectrum of the wavefield is convolved with the Fourier transform 
of the aperture window. Define the output of the sensor as

z(x, t) — w(x) f ( x ,  t), (2.34)

where w(x) is an array aperture weighting function and f ( x , t )  is the space-time signal.24 

To obtain the spectrum of the sensor output take the space-time Fourier transform of the 
sensor output

1 r°° -  -t -* -
z (k, f )  =  7 ^ 3  J  w ( k  -  f) F(l, f )  dl. (2.35)
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Notice that the spectrum of the sensor output is a convolution over wavenumber between the 

space-time signal and the aperture smoothing function, W (k ) .2i The convolution between 

the two functions smooths the spectrum of the wavefield with the transform of the aperture 

window.37 The aperture weighting function of an array is a discrete function represented 

in the time domain by wm. For instance, if the spatially sampled wavefield is sampled 

every d meters, the wavefield can be represented by ym(t) — f(md, t). The smoothed sensor 

output24 is

zm(t) =  wm Vmif) (2.36)

and the frequency-wavenumber spectrum is given by the convolution

z {k ’ f ) = ~L / I Y{1, f )  w {k  ~ i) d1, (2-37)d

where

W (k)  =  £  wm eikmd. (2.38)
m

The aperture smoothing function alters the wavenumber-frequency spectrum of the sam­

pled wavefield.24 This alteration affects the power spectrum and coherence spectrum es­

timated from the data collected with an array. The Fourier transform of the correlation 

function of a random signal is the power spectral density function of the random signal.29,19

The cross-correlation function of jointly stationary random processes is defined as

Rxy[l] =  £ {x[n]y*[n -  /]}. (2.39)

In an array of sensors the wavefield is sampled at discrete locations and the output of the N

sensors can be treated as N  different random signals. Since the wavefield is only sampled

at specific locations in space, the output of the mth sensor is the product of the continuous 

wavefield and a spatial weighting function,

Vmit) =  Wm f ( x m,t). (2.40)

The (raj, rrij)tfl entry in the spatiotemporal cross-correlation matrix is given by

tj)] , tj\

=  WnnWmjRfixm i  x rrij i T ). (2.41)
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Notice that the spatiotemporal correlation matrix is just the correlation function of the 

wavefield sampled by the array at a point in space. The correlation function of the wavefield 

is sampled by the product of , which is an element of the co-array.24 The co-array

is defined as the sum of over indices of equal baselines

unit weighting the co-array is the matrix of inter-sensor separations. To avoid aliasing in 

the spatial frequency domain the co-array sample spacing must be smaller than half the 

wavelength corresponding to the wavefield’s shortest wavelength, which is the main result 

of the Nyquist theorem.24

The results of any study done with an array of sensors are dependent on the geometry 

of the particular array used to perform the measurement. The arrays at Fairbanks (IS53), 

and Windless Bight, Antarctica (IS55), both have identical transducer geometries; but the 

actual realizations in the field have slight differences^. Both arrays are digital microphone 

arrays that use a digitizer to passively sample the pressure field at a sampling frequency of 

20 samples per second. The arrays are comprised of eight Model 5 Chaparral microphones 

with Geotech digitizers (D. Osborne, personal communication, January 2007).

The arrays are both eight sensor arrays arranged in an outer pentagon and an inner 

triangle as shown in Figure 2.3. The outer pentagon sensors are about one kilometer 

from the center of the array and the inner triangle sensors are approximately one hundred 

meters from the center of the array. The Windless Bight array (W BA) is located on the 

Ross ice shelf, 77.7416 degrees South latitude and 167.5820 degrees East longitude, about 

30 kilometers from McMurdo station. The terrain W BA is situated in is a level, perpetually 

snow-covered sheet of ice with no vegetation. The Fairbanks array is located on the campus 

of the University of Alaska Fairbanks, 64.8671 degrees North latitude and 147.8559 degrees 

West longitude, on a hillside that is covered by a boreal forest consisting mainly of black 

spruce trees.

§ Additional information about the arrangement of the arrays and the terrain surrounding the arrays can 
be found on the UAF infrasound website.38

(OTi,mj)e«9(x)

where 'd(x) represents the set of indices for which xmi — x m. =  y .24 For an array with
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Figure 2.3. The approximate array geometry of the Fairbanks (IS53) and Windless Bight 
(IS55) arrays. The pentagrams denote the location of the individual array elements.

2.3 Parameter Estimation

2.3.1 Estimation Background and Methods of Estimation

To estimate useful quantities from the raw recorded data, estimation theory must be em­

ployed.29,19,31 An estimated parameter will be a function of the observed data since the 

estimate of the parameter is derived from the observed data. The estimated quantity will 

therefore take on the properties of the data used to derive the estimate. If the variable is 

derived from a random signal, the estimate of the variable will be a random variable. 19 To 

reflect this explicit dependence on the observations, the estimate of the variable is written 
as

0 N  —  On ( x ) ,  (2.43)

where N  is the number of observations and x  is the recorded data.
Comparison of one method of estimation with another involves several qualities of the 

estimate. One of the most important statistical quantities used to compare the effectiveness 

of different estimates is the bias of the estimate.29,19 An estimate of a random variable, 9, is
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unbiased if the expectation value of the estimate is equal to the true value of the variable,

£{9N}  =  9. (2.44)

If the expectation value of the estimated variable does not equal the true value of the 

variable,

£{9N}  =  9 +  b(9), (2.45)

the estimate is said to be biased by the quantity b(9) . It is possible that an estimate is only 

unbiased if the number of observations, N, is very large. This is known as an asymptotically 

unbiased estimate and is represented by the expression

lim £ {§ n } =  9. (2.46)
TV—>-00

The Cramer-Rao lower bound is also used to describe the performance of an estimate. The 

Cramer-Rao lower bound states that the variance of any unbiased estimate is given by

Var[<9] > ----- , ..------------ , (2.47)
£ { ( - % {x’e))2}

where ( 81n- ^ x’^ ) is the partial derivative of the log likelihood function. The likelihood 

function is defined as the density function taken as a function of 9 for fixed values of the 

observations.29 An estimate is said to be most efficient when the estimate satisfies the 

Cramer-Rao lower bound with equality. 19

There are many different schemes for estimating variables from data collected. All 

the different estimation methods fall into two basic approaches to parameter estimationJl 

The first method of parameter estimation assumes that the parameter vector, (9), is a 

deterministic constant. Methods of estimation that use this assumption are called classical 

approaches to the estimation problem. In the classical approach the information contained 
in the data is summarized by a pdf that is determined from the data collected. The pdf 

is functionally dependent on the parameter vector in the classical estimation method. 19 

The second method of estimation assumes that the parameter vector is a realization of a 
random vector. Methods making use of this assumption are known as Bayesian approaches. 
Bayesian approaches make use of a pdf that describes any knowledge of the parameter vector

"This material can be found in the book by S.M. Kay, Chapter 14.1
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before any data is collected. In Bayesian approaches there must be some prior knowledge 

about the pdf of the parameter vector, (pdf(0)), while the classical approach requires no 
prior knowledge of the parameter vector.

There are some general rules to assist in deciding between the two approaches to param­

eter estimation. 19 The flow chart pictured in Figure 2.4 illustrates the process for choosing 

between the approaches to the estimation problem. ̂  Given a signal processing problem the 

first step shown in Figure 2.4 is to determine if dimensionality is a problem in the desired 

parameter estimate. A dimensionality problem occurs when the number of data points is 

not sufficiently larger than the number of parameters being estimated causing a lack of 
averaging. 19 Regardless of the answer to the question of dimensionality, the next step is to 

determine if there is prior knowledge about the parameters available. If prior knowledge 
is available the Bayesian approach to estimation should be used regardless of the question 
of dimensionality. If dimensionality is not a problem and no prior knowledge about the 

parameters is available then the classical approach should be used. The last possible path 

through the flow chart leads to the last choice, find a new data model or take more data. 

If it is not possible to either take more data or try a different data model then there is no 

estimation method available. With more data or a new data model the classical approach 

should be employed. For the specific case of acoustic source localization the classical ap­

proach is the most appropriate, because there should be no prior knowledge of the location 

of the source available, making it impossible to use the Bayesian approach to estimate the 
parameters.

2.3.2 Classical Estimators and the M VU  Estimate

Although the choice of a particular classical estimator is dependent on many considerations, 

the data model is the main factor in choosing an estimator. 19 The data model should be 

complex enough to describe the important features of the data, yet simple enough to allow 

the best estimator to be used. The different estimators are based on different assumptions 

about the data and process models. Out of all the estimators that can be used to estimate 

the parameters the “best” possible estimator is the unbiased estimator with the smallest 
variance for all values of the parameters. This estimator is called the minimum variance 

^This flow chart has been adapted from Chapter 14 of S.M. Kay’s book.19
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Figure 2.4. Graphical representation of the decision process to choose the general method 
of parameter estimation. The decision process starts in the top left corner of the figure. 
The process evolves by moving along the paths until a style of estimation is chosen or the 
determination of no estimation method available is reached.
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unbiased estimator (M VU). There is no guarantee that the MVU estimator exists, and there 

is no standard method for finding the MVU when it does exist. 19 The common classical 

estimators will be briefly described along with the data model assumptions.

There are three classical estimators that do not make use of a data model, but require 

that the pdf that describes the data is known. The Cramer-Rao lower bound is satisfied 

with equality when

^ ^ = / ( e l ( g ( x ) - 0 ) ,  (2.48)
80

where I (0) is a matrix dependent on the parameter vector 0 and g{x)  is a function of the 

data x. If the equality condition of the Cramer-Rao lower bound is satisfied, the Cramer- 
Rao lower bound can be used to estimate parameters from the data and the estimator is

g(x). If it exists this estimator will be the MVU estimator.19

The next estimator that only requires knowledge of the pdf is the Rao-Blackwell- 

Lehmann-Scheffe estimator. If the pdf can be factored, then

f ( x ;  0) =  g(T(x), $)h{x), (2.49)

where h(x) is a function of only x, and a complete, sufficient statistic exists. Then, if the 

expectation value of T  is 0, the estimator is just T. If the expectation value of T  is not 

the parameter vector, a function of T  whose expectation value is 0 must be found and the 
function of T  will be the estimate. If this estimate exists it will be the MVU estimate, but 

this method will fail if a sufficient statistic does not exist. 19

The final classical estimator that only requires a knowledge of the pdf of the data is 

the Maximum Likelihood Estimator (MLE). The MLE is defined as the value of 0 that 

maximizes the log of the likelihood function when x  is replaced by the observed data. The 

likelihood function is the density function of the data when it is viewed as a function of the 

parameter 0. The MLE is defined29 as

0ml =  argmaxef s .e. (2.50)

If the MVU exists, then the MLE will produce the MVU estimate. 19

The remaining common classical estimators make use of data models, but do not require 

a knowledge of the pdf of the data. The Best Linear Unbiased Estimator (BLUE) makes
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the assumption that the data is linear and of the form

x  =  H6 +  w, (2.51)

where H  is a known matrix and the expectation of w is zero. The BLUE is given by

^ { i F C - ' H y ' H T C - ' S  (2.52)

where C  is the covariance matrix of the data. The BLUE has the minimum variance of all 

estimators that are linear in x  and will be the MVU if w is a Gaussian random vector. 19

The second classical estimator that is data model dependent is the Least Squares Esti­

mator (LSE). The LSE assumes that the data is composed of a signal that depends explicitly 

on the unknown parameters and an additive noise vector,

x =  s(9) +  w. (2.53)

The method for determining the LSE will be discussed in great detail in Section 2.4. If the 

noise vector, w, is a Gaussian random vector the LSE is equivalent to the MLE estimate. 19

The final common classical estimator is the Method of Moments. The assumption nec­

essary to implement the Method of Moments estimator is that there are p known moments 

of the data that depend on the parameter vector in a known way. If the moments are 

expressed as

p  =  h(9), (2.54)

where h is an invertible function of the parameter vector, then the estimator is

e =  h~l (p), (2.55)

where p  is the vector of estimates of the moments. The Method of Moments estimator is 

not, in general, the best estimator, but it is usually the most straightforward estimator to 

implement. 19

There are some general rules to help choose an estimator for a given parameter estima­

tion problem. 19 The flow chart in Figure 2.5 illustrated the method used to choose a classical 
param eter e st im a ted  To start th e  p rocess of choosing a classical estimate the knowledge

*This flow chart has been adapted from Chapter 14 of S.M. Kay’s book.19
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Figure 2.5. Flow chart illustrating the process of choosing a classical parameter estimator. 
The process starts in the upper left hand corner of the figure. The choices then evolve down 
and to the left until the most appropriate classical parameter estimate has been chosen.
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of the pdf of the data must be taken into account. If the pdf is known, travel down the 

“yes” decision track in Figure 2.5 to the Cramer-Rao lower bound. If the Cramer-Rao lower 

bound is satisfied with equality use the Cramer-Rao lower bound estimator. If the Cramer- 

Rao lower bound is not satisfied with equality the next step is to determine if the complete 

sufficient statistic exists. If the statistic exists and it can be made unbiased, the estimator 

to use is the Rao-Blackwell-Lehmann-Schette estimator. If the statistic does not exist or 

cannot be made unbiased the next step is to evaluate the Maximum Liklihood Estimator. 

If the MLE can be evaluated it is the estimator to use, otherwise evaluate the Method of 

Moments Estimator. In the event that the Method of Moments cannot be evaluated there 
is no classical estimate available for the signal processing problem being attempted. The 

other major leg of the choice flow chart in Figure 2.5 is for the situation where the pdf of 
the data is not known. The data model being used is the first choice on this path of the 

choice chart. If the data cannot be modeled as a signal in noise no classical estimator is 

available. If the data can be modeled as a signal in noise and is not assumed to be linear 

then the Least Squares Estimator must be used to estimate the parameters. If the data 

is assumed to be linear and the first two moments of the noise are known then the Best 

Linear Unbiased Estimator can be used, if the first two noise moments are not known then 
the Least Squares Estimator must be employed to determine the parameters.

2.4 Linear Least Squares Estimation

The most appropriate method of classical estimation in the source location problem is Least 

Squares Estimation. In the process of determining the source location it is not assumed that 

the pdf of the desired parameters is available, nor is it assumed that the first two moments of 

the noise are known. As can be seen in Figure 2.5 the most appropriate estimation method 

in this particular case is the Least Squares Estimator. The estimate made using Least 

Squares Estimation involves the solution of linear equations and a knowledge of the first 

and second moments of the pdf of the random variable, but not knowledge of the moments 

of the noise. Since the Least Squares Estimator involves linear equations it is sometimes 
known as “linear mean-square” estimation. 19,39

To formally develop the method of linear mean-square estimation, consider an estimate
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of the quantity y with the form

y =  ax +  b, (2.56)

where the constants a and b are parameters that will be chosen in order to minimize the 

expectation of the square of the difference between y and the estimate y .19 Define the 

mean-square error as

£ =  £ { { y - y ) 2}, (2.57)

where the error is defined to be e =  y — y. Equation 2.57 has the form of the second moment 

of the error, e, and may be replaced with the known result for the second moment,

e — ml +  al, (2.58)

where me is the mean of the error and o f  is the variance of the error. 19 Equation 2.58 will 

only be minimized if the mean of the error is set to zero. The mean, unlike the variance, 

can always be set to zero by detrending the recorded data. 19 With the mean of the error 

set to zero, one of the free parameters in Equation 2.56 can now be eliminated,

m6 =  0

£ { y - y }  =  o

£ {y  — ax — b} =  0

£ { y }  — a £ {x }  — £{b }  =  0. (2.59)

The expectation value of the constant b is equal to b. The expectation values of y and

x are the mean of y, my , and the mean of x , mx.29 The form of b that will minimize the

square error can now be determined,

0 =  my — amx — b

b =  my — amx. (2.60)

The estimate of y is written in terms of only one free parameter, a, by substituting Equa­

tion 2.60 into Equation 2.56
y =  a(x — mx) +  my. (2-61)
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Using Equation 2.61 in the expression for the mean-square error (Equation 2.57), results in 

the mean-square error also being in terms of the one free parameter a 19,

£ {(V ~ la(x ~ m x ) + my))2}  =  £{[{y ~ my) -  a(x -  mx)]2}

=  £ { (y  -  my)2 -  2a(x  -  mx)(y -  my) +  a2(x -  mx)2}

=  £ { {y  -  my)2} -  2a£ {(x  -  mx)(y -  my)}  + a2£ { ( x  -  mx)2}. (2.62)

Recall that the variance in y is given by £ { {y  — my)2}  and £ { ( x  — rnx)2}  gives the

variance in x. The last term in Equation 2.62, £ { {x  — mx)(y — my)},  is the cross-covariance 

of x  and y. Writing the mean-square error in terms of the first and second moments of the 

pdf results in the equation

£ { ( y - y ) 2} =  a-l~2acxy + a 2a2x. (2.63)

The mean-square error can be minimized by determining the value of the last free parameter, 

a, that will minimize the mean-square error. The mean-square error will be the minimum 

if the derivative of the mean-square error with respect to a is zero,

^£lms =  0
da

- 2  cxy +  2aa2 =  0
cxyu, -  2 . (2.64)

The final form of the estimate is found by replacing the free parameters b and a with 

Equation 2.60 and Equation 2.64 respectively,

y =  ^ j x  +  (my -  ^ m x). (2.65)

To apply linear mean-square estimation, the general estimate given by Equation 2.65 

must be tailored to the specific problem. 19 The location of the source of acoustic plane 

waves using measurements taken across an array of microphones is the specific problem 

of interest. In order to determine the location of the source of the acoustic plane waves, 

the speed of the wave and the direction of arrival of the wave must be estimated from the 
recorded data. The most direct measurement that contains the desired information is the 

time it takes the wave front to travel between two known sensor locations in the array.
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For an arbitrary two dimensional coordinate system the wave front will make an unknown 

angle, 0, with the y-axis and travel with an unknown speed of v. Define the vector dm>n as 

the displacement from the mth sensor to the nth sensor; the distance between those sensors 

is dm,n =  \dm,n\- The time taken to travel between those two sensor locations can be related 

to the distance between those two sensor locations by the simple equation

V\\ X  T „ (2.66)

Here rm,n is the time it takes the wave to travel between the mth and nth sensors, and uy is 

the component of the wavefront vector velocity parallel to the displacement between those 

two sensors, because the direction of arrival of the wave is not guaranteed to be aligned 
t° dm>n. Solving Equation 2.66 for time and inserting the components of both dm>n and v 

results in the general time of flight equation

X m  ~~ X n + 2/m Vn
vsm(em,n) VCOS(0m>n) ‘

_  ( N - l ) N

(2.67)

For an N  sensor array, there are M  =   ̂ ~2 1 possible unique intersensor separations 

which will produce M  different time delay equations. With only two unknowns, the az­

imuthal angle 0 and trace velocity v, only two of the M  equations are necessary to find a 

solution. The use of only two of the M  equations would disregard the information contained 

in the remaining M  — 2 equations. An analogy here is to the process of fitting a line: the 

more data points that are used, the more accurate the solution for the unknowns will be. 

All M  equations can be used to find the two unknowns if, instead of writing M  separate 
equations, Equation 2.67 is written conceptually in matrix form

_ *
T  = (2 .68)

where the matrix of intersensor separations is given by

X  =

Xi

X2

y i 
2/2

(2.69)

x n  IIn

It is not possible to solve Equation 2.68 in the current form since no operation exists to 

divide by a vector. To circumvent this problem, replace the vector of the velocity with a
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new quantity called the slowness vector.39 The components of the velocity vector are related 

to the components of the slowness vector by the conformal map39

(2.70)7)2 _j_ qj2ux ' uy

S y =  ~ 2 ~ 7 ~ 2 -  ( 2 - 7 1 )vl +  vl v '

Replacing the velocity vector with the slowness vector in Equation 2.68 results in a new

equation for the time delays

t  =  XS. (2.72)

To make use of all the information recorded by the array, linear mean-square error 

estimation is used solve for the slowness vector. The only quantity that is being directly 

measured is the set of the time delays between sensors. The set of time delays is estimated 
from the data by determining the lags that maximize the cross-correlation functions between 

unique sensor pairs. When the presence of error in the time measurements is included 
explicitly, Equation 2.72 takes the form

r  =  X s  +  e, (2.73)

where e is the set of errors in the measurement of time delays. To use the method of mean-

square error to estimate the slowness vector, an expression for the error is required. An

expression for the error is obtained by solving Equation 2.73 for the error,

f = f - * s .  (2.74)

Notice that, similar to Equation 2.56, the error is in terms of a free parameter, in this case 

s. Next form the mean-square error E — e t e,

ft =  (f t ) - * t ( s t )

E  =  (f t)f —  (f t)X s  — X \ s  t ) f +  *t(s t)A’t(s t). (2.75)

Since the only free parameter is s the next step is to set the derivative of the mean-square
error with respect to s equal to zero

V 5(e t)e =  0
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V ^ e ^ e  =  e 

e =  0 

f  — X s  =  0

3  =  AT- 1f .  (2.76)

Equation 2.76 is the Least Squares estimate o f the slowness, but there is still a potential 

problem in the application of the estimate. The matrix of the intersensor separations is 
generally not a square matrix. Only square matrices can have an inverse.40 To solve this 

problem, form the pseudo inverse of the matrix X  by multiplying from the left by X^39,40,

X^t — X^Xs =  0. (2.77)

Since X^X  must be Hermitian, and since it can be shown that its determinant is non-zero, 

it is possible to find its inverse and solve Equation 2.77 for the Least Squares slowness 

estimate,

3 =  ( X ^ X ^ X ^ t . (2.78)

The azimuth and trace velocity of the plane wave are reconstructed from the estimated 

slowness vector. Estimates of the azimuth and trace velocity can be calculated once the slow­

ness vector has been estimated using Equation 2.78. The azimuth estimate from multiple 

arrays can then be employed to localize the source of the acoustic wave using triangula­

tion.41,42 The source is located in the region where the multiple azimuth estimates, plus 

or minus the uncertainty in the estimates,43 intersect. More accurate estimates of azimuth 

produce source locations with less uncertainty. A greater understanding of what affects 

the error sources in the least squares estimate of the slowness vector leads to an improved 

understanding of what affects the uncertainty in the far-field localization of an acoustic 

source.
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Chapter 3 
Bias in LSE

3.1 Introduction

Estimation theory is used to estimate desired signal parameters from the sampled fluctua­

tions in the pressure field. To accurately estimate signal parameters from the recorded data 

it is necessary to determine if the estimate used to obtain the signal parameter has any 

systematic error. In this chapter the bias of the least squares estimate of the magnitude of 

the slowness vector and of the azimuth is explored. When possible an analytic expression 

for the bias in the estimate is determined, followed by a numerical simulation to determine 

any dependence of the estimate bias on wave or array parameters. The chapter concludes 

with a numerical simulation to determine the quantitative magnitude of the bias in both 

the estimate of the slowness vector magnitude and the estimate of azimuth for the IS53 

and IS55 arrays. The magnitude of the bias in the estimates is then be compared with the 

uncertainties in the estimates of the signal parameters for the respective arrays.

3.2 The Slowness Vector

To locate the source of an acoustic wave that traverses an array, the direction of arrival 

(azimuth) of the wave and the magnitude of the wave velocity must be estimated from 

the recorded data.39,41,44 The slowness vector is used to reconstruct both the magnitude 

of the wave velocity and the azimuth. An estimate of the slowness vector can be used to 

form estimates of the magnitude of the wave velocity and azimuth. The estimate of the 
magnitude of the wave velocity39 is

i = i 4 = ^  <!u)
\Jsl  +  sl

and the estimate of the azimuth is given by

0 =  tan_1(^ -). (3.2)
Sy

Notice that the estimate for the magnitude of the wave velocity is the inverse of the estimate 

of the magnitude of the slowness vector. For the purposes of determining the statistical 

properties of the estimate of the magnitude of the wave velocity, the estimate of the mag­
nitude of the slowness vector can be used instead of the estimate of the magnitude of the 

wave velocity.
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The mean-square error of the least squares estimate of the slowness vector was found in 

Section 2.4. The least squares estimate of the slowness vector is formed3 by substituting 
t =  X s  +  e into Equation 2.78,

3 =  ( X ^ X ^ X ^ X i T + e )

g =  g +  (3.3)

The expectation value of the least squares estimate of the slowness vector, shown in Equa­

tion 3.3, must be calculated to determine if the estimate is biased,

£ {1 } =  £ { s }  +  (X TX )~ lX ^ e {^ .  (3.4)

The expectation value of the slowness vector estimate is

£ {s }  =  s

and the expectation of the vector of timing errors is

£ {e } =  me,

where the mean of the timing errors, m£, is zero by assumption.39 The least squares estimate 

of the slowness vector is unbiased by definition,29’19

£ {s }  =  s.

3.3 Bias in the Estimates of Slowness Magnitude and Azimuth

The least squares estimate of the vector slowness is an unbiased estimate. The fact that the 

estimate of the slowness vector is unbiased does not mean the estimates of the magnitude of 
the slowness vector and azimuth, which are derived from the slowness vector, are unbiased. 

The expectation value for both the estimate of slowness vector magnitude and the estimate 

of azimuth must be calculated to determine if the estimates are unbiased.

To calculate the expectation value of the estimates of slowness vector magnitude and 

azimuth it is first necessary to determine the probability density function of the slowness 
vector. Recall that the expectation value of any quantity derived from a random vector is 

given by the integral of the product of the quantity and the pdf of the random vector.29 The
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estimate of the magnitude of the slowness vector and the azimuth estimate are derived from 

the estimate of the slowness vector. The pdf of the slowness vector is needed to analytically 

calculate the expectation values of the slowness vector magnitude and azimuth estimates. 

It has been shown that the pdf of the vector slowness is distributed as a d-dimensional 

Gaussian in slowness space.43

3.3.1 Derivation of the pdf of the Slowness Vector

Two methods are available for deriving the pdf of the slowness vector. The first method, 

which is summarized in this section, requires that assumptions be made about the distribu­

tion of the error in the measurement of the time delay.43 An alternative method to making 

assumptions about the measurement error is to use the principles of entropy optimization45 

to derive the pdf of the slowness vector. Both methods result in a Gaussian slowness vector 

pdf. Since the first method relies on physical arguments more than mathematical principles, 

it will be used as the primary means of deriving the slowness vector pdf. The derivation of 

the slowness vector pdf using the principles of entropy optimization is shown in Appendix A.

To derive the pdf of the slowness vector, assume that errors in measurement of the time 

delays between sensors are distributed normally about a central time delay that represents 

the signal.43 The assumption can be justified empirically by contaminating a synthetic time 

series with Gaussian white noise and observing the distribution of intersensor time delays 
produced by the contaminated time series. The pdf of the normally distributed time delays 

can be represented as29,43

/(^  = r e -  5l(̂  - ^ \ r - r 0)}) (3 5)
(2tt) 2 jCT| 2

where CT is the covariance matrix of the time delays, N  is the number of unique intersensor 

separations, and r0 is the time delay vector that represents the signal. In addition to the 

assumption that the errors in measuring the time delays are normally distributed about f Q, it 
is also assumed that the covariances of the time delays are uncorrelated.43 The assumption 

of uncorrelated covariances of the time delays allows the covariance matrix of the time 
delays to be written as the diagonal matrix

CT =  (3.6)
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where aT is the variance in the time delay vector and I  is the identity matrix. A completely

uncorrelated noise field is rarely realized in physical situations, but the assumption seems

to hold in studies done with impulsive signals moving across the IS53 array at University 

of Alaska Fairbanks.43

Replacing the covariance matrix in Equation 3.5 with Equation 3.6 results in a simpler 

form for the pdf of the time delay vector

/ ( f )  =  L _ e- 4  (3 .7)
(27ro f) 2

The vector of time delays is related to the slowness vector through the familiar distance 

equals time multiplied by velocity equation,

f  =  XS, (3.8)

where A  is a matrix of intersensor separations, f  is a vector of intersensor flight times, and 

s is the vector slowness. Substituting Equation 3.8 into Equation 3.7 produces the pdf for 

the slowness vector,
f[g\ =  * e -4l& x'-*oX i)(xs-xSo)]t (3.9)

to within a (insignificant) normalization constant k.4s

Both the pdf of the time delay vector and the pdf of the vector slowness have the 

form of a Gaussian distribution. The pdf of the time delays is an IV-dimensional Gaussian 

distribution centered on f 0. When the pdf of the time delay vector was transformed into the 

pdf of the slowness vector, the M-dimensional Gaussian was mapped into a d-dimensional 

Gaussian distribution centered on s0.43 An effect of transforming the pdf of the time delays 

into the pdf of the slowness vector is the reduction of the dimension of the problem from M , 

the dimension of the time delay vector, to d, the dimension of both the vector slowness and 

the array used in the problem. To simplify the pdf of the vector slowness it is convenient to 

define residual slowness as the difference of the measured slowness and the actual slowness 

of the signal,

s — s — s0. (3.10)

Further simplification of the slowness vector pdf is achieved by collecting the factor of X^ 
in the first term in the argument of the exponent in Equation 3.9 and the factor of X  from
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the second term. Equation 3.9 can now be written in the compact form

(3.11)

where C =  X^X  is the covariance matrix of the intersensor separations.43

The covariance matrix has the form of a d dimensional Hermitian matrix whose elements 

are determined by the geometry of the array. Working with a generalized two dimensional 

array (d =  2), the covariance matrix has the form

The covariance matrix in Equation 3.12 can be simplified by using the Hermitian symmetric 

property shared by all covariance matrices29,

The matrix elements of Equation 3.12 are real numbers and C 12 =  C21 • In general the co­

variance matrix of the intersensor separations is not diagonal and the d-dimensional Gaus­

sian pdf of the vector slowness cannot be separated into the product of d one dimensional 

Gaussian distributions. When the argument of the exponent in Equation 3.11 is expanded,

it is clear that the cross term will foil any attempt to separate the pdf of the slowness 

vector. Physically, the cross term in Equation 3.14 indicates that the components of the 

slowness vector are correlated in the chosen coordinate system. While a correlation between 

the components of the slowness vector does not violate any of the assumptions made in 

the derivation of the slowness vector pdf or any physical laws, it greatly complicates any 

calculations done with the pdf and makes many of the necessary integrals intractable.
To remove any correlation between the vector components of the slowness, the covariance 

matrix can be diagonalized via the eigenvalue equations. The operation that diagonalizes 
the covariance matrix is equivalent to a rotation of the coordinate axes into alignment with 
the principal axes of the covariance matrix.29,43 If the matrix V  is the d-dimensional diagonal 

matrix of the eigenvalues of the covariance matrix and £  is the matrix of eigenvectors of

(3.12)

(3.13)

s C s — Ci 1 s\ +  2C12 sxSy +  C22 Sy, (3.14)
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the covariance matrix, then the covariance matrix can be diagonalized using the eigenvalue 

equations

V  =  & C S

C =  £V & .  (3.15)

Defining the product of the eigenvector matrix and the residual slowness as a new variable, 

s, and substituting Equation 3.15 into Equation 3.11 produces a Gaussian density function 

with components that are uncorrelated in the rotated coordinate system,

f { g \ = K e ~ 4  ^  (3.16)

With the uncorrelated components of the slowness vector, the d-dimensional Gaussian den­

sity function separates into the product of d one-dimensional Gaussian distributions.

The pdf of the vector slowness can be plotted as contours of constant probability in 

slowness space.43 The contours of constant probability in slowness space are defined by the 

relation f[s\ =  constant. The pdf of the vector slowness is a function of the components

of the slowness vector, and a contour of constant probability will be a curve on which the

density function remains constant as the components of the slowness vector vary. The 

components of the slowness vector are contained in the argument of the exponent in the 
slowness vector pdf. The contours of constant probability are found by setting the argument 

of the exponent equal to a constant.43

The surfaces of constant probability for the Gaussian pdf of the slowness vector are 

d-dimensional ellipsoids.43,46 Under the assumption that the noise corrupting the signal is 

a Gaussian random vector distributed as

w ~  N(0, <t2T),

the least squares estimate is equivalent to the maximum likelihood estimate. 19 The maxi­
mum likelihood estimate is given by maximizing the likelihood function

(3.17)
i

If each data point (Xi,yi) has its own standard deviation in y, ai, then the maximum 

likelihood estimate of the parameters is equivalently given by minimizing the quantity

2 _  ~  U(x i'i al ' ' ' am) ,2
X ~  ^  o-i2=1 1
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known as the “chi-square” minimization.46 When the method used to estimate the pa­

rameters is a chi-square minimization, the natural choice for the confidence region of the 

estimate is a region where x 2 increases by no more than a set amount A y 2.19,46,47 For a 
chi-squared distribution with v degrees of freedom and a confidence level of p, the equation 

of the ellipse^ becomes

=  E  i -  (3-18)
i= 1 Si

The ellipse in Equation 3.18 ensures that p percent of the data points in the distribution 

will be enclosed by the ellipse. Notice that the axes of the ellipsoid in Equation 3.18 have 

lengths that are proportional to the variances in the components of the slowness vector. 

The magnitudes of the variances are dependent on the uncertainty in the measurement of 
the time delays and on the array geometry according to the equation

(3.19)

where <r2 is the variance in the time measurements and the array geometry is included 

through the term Da  which is the diagonalized covariance matrix of the co-array.43

3.3.2 Bias in the Estimate of Slowness Vector Magnitude

Geometric Illustration of the Bias in the Slowness Vector Magnitude

A geometric exploration of the bias in the estimate of the magnitude of the slowness vector 

can be made using the contours of constant probability.43 In Figure 3.1, a generalized ellipse 

represents a contour of constant probability for an arbitrary pdf of the slowness vector. Not 

shown in the figure is density of estimates for each point inside the ellipse. The derived 

Gaussian pdf of the slowness vector is a symmetric distribution of estimates about sQ. Since 
the distribution of estimates about s0 is symmetric in sy and sx the exact heights are not 

qualitatively important to the general geometric argument. The dashed line indicates the 

curve where the magnitude of the slowness vector is constant. The pdf of the slowness is 

centered on the slowness representing the signal, and the curve of constant slowness vector 

magnitude will pass through the center of the contour of constant probability. The correct 
slowness vector is shown as s0 in Figure 3.1.

j. 2 2
'The general coordinate-aligned equation of an ellipsoid is +  ■ ■ ■=!.
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Figure 3.1. 2-D Geometric representation of the bias in the estimate of the slowness mag­
nitude. The solid ellipse is an arbitrary confidence limit of the slowness vector distribution. 
The dashed line is the contour of constant magnitude of the slowness vector which divides 
the slowness vector distribution into high magnitude estimates and low magnitude esti­
mates. The slowness vector representing a signal with a slowness magnitude of 3 ^  and 
an azimuth of 0° is represented by s0. For the reader’s convenience a line tangent to the 
contour of constant slowness magnitude that divides the slowness distribution in half has 
been included in the figure.

The curve of constant slowness vector magnitude in Figure 3.1 divides the pdf of the 

slowness vector into two separate regions, one of high magnitude estimates and one of low 

magnitude estimates. The volume above the curve of constant slowness vector magnitude 
will produce estimates of the slowness vector magnitude that are high; the volume below 

the curve yields magnitude estimates that are lower than the true value. Only estimates 

that are found on the curve of constant slowness vector magnitude will correctly return the 

slowness vector magnitude as 3 s/km. For the estimate of the slowness vector magnitude 

to be unbiased the volume above the curve of constant slowness vector magnitude must 
equal the volume below the curve of constant slowness vector magnitude. The dotted line 
in Figure 3.1 is tangent to the curve of constant slowness vector magnitude and cuts the
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ellipse in half. The volume below the curve of constant slowness vector magnitude is less 

than the volume above by the volume contained in the region between the two lines and so 

there must be a bias in the estimate of the magnitude of the slowness vector.

The volume between the two lines gives a rough idea of the size of the bias and how the 

bias reacts to a change in parameters. There are four independent parameters that affect the 

magnitude of the bias in the estimate of the slowness vector magnitude. These parameters 

are: the slowness vector magnitude, the wave direction of arrival, the area of the ellipse 

representing an arbitrary confidence limit, and the aspect ratio of the ellipse. The first two 

parameters, slowness and azimuth, are determined by the wave impinging on the array and 

are out of the control of the array operator. The area of the ellipse is determined by the size 

of the uncertainties in the components of the slowness vector, which are controlled by the 
array geometry and the error in the time measurements. The aspect ratio of an arbitrary 

confidence ellipse is completely dependent on the geometry of the array and is a constant 

once the array is deployed. The relation between the ellipse parameters and the bias in the 

estimate of the slowness vector magnitude can be explored using computer simulation; see 
Subsection 3.3.2.

Analytic Derivation of the Estimate Bias

In two dimensions the density function of the vector slowness is a normal distribution of 
the form,

1
m

( s x ~ S x n )2 i (»« —s«n)2 
trr2 2(7? (3.20)27T(7sx (Jgy

where the x-axis and y-axis are assumed to be aligned with the principal axes of the ar­

ray. 43’45 The magnitude of the slowness vector is found according to the equation,

| |s | |  =  V s l  s

=  \jsl  +  sl > (3.21)

where sx is the slowness vector component in the x  direction and sy is the slowness vector 
component in the y direction.

Since the estimate of the magnitude of the slowness vector is derived from the slowness 

vector, its pdf can be used to calculate the expectation value.29 Direct application of the
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expectation value definition results in the integral

The integral is intractable, but it is possible to circumvent the integral by using the formula

for standard deviation of the slowness magnitude. All authors agree that the formula for 

the standard deviation is,

is the square of the expectation of the magnitude of the slowness vector.30 Solving Equa­

tion 3.23 for the expectation of the magnitude of the slowness vector yields,

in terms of the expectation of the magnitude of the slowness vector squared and the variance 
in the magnitude of the slowness vector.

The expectation of the magnitude of the slowness vector squared can now be calculated 

using the pdf of the vector slowness. The expectation of the magnitude of the slowness 

vector squared is given by the equation

Rotating the coordinate system into the principle axes decorrelates the components of the 
covariance matrix and so the vector slowness pdf is the product of two one-dimensional

(3.24)

Gaussian distributions. The expectation of the magnitude of the slowness vector squared 

is calculated by breaking the integral into the sum of two integrals,

(3.26)

and

(3.27)
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These integrals are recast into the form of standard Gaussian integrals which can be found 

in integral tables.

The integral with respect to sy in Equation 3.26 was already in a form that can be found 

in standard integral tables. Integration with respect to sy yields

h
-----------  />00 t U x - s x n )2 1

J sl e 2°Sx dsx• (3-28)

Some manipulation of the remaining integral with respect to sx is required in order to obtain 

the desired form of a Gaussian integral. A change of variables produces the desired form of 

the integrand. Let

u =  sx — sXo and du =  dsx,

then

sx =  u -\- sXo => ŝ . =  v? +  +  2usXo.

Substituting the new variables into the integral with respect to sx produces a sum of three 

integrals that are all in standard Gaussian form. The integrals are

/ ^ o a2e +  du +  2sXo f ^ u e  2<  du

=  5 v M 20 3 +  (3-29)

Combining result shown in Equation 3.29 with Equation 3.28 gives

I\ =  2TraSxaSy(aSx +  sXo)

as the result for Equation 3.26. Repeating the procedure used to evaluate Equation 3.26 

with Equation 3.27 produces

h  =  2TT(TSxcrSy((TSy +  syo) (3.30)

as the result of the integration.

Combination of Equation 3.3.2 and Equation 3.30 with the normalization constant for 

the pdf of the slowness vector results in the expression

=  (asx +  °ay) +  llsol|2 (3.31)
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for the expectation value of the magnitude of the slowness squared where 11 ,s0112 =  (s2o+ s2o). 

Replacing (||s||2) in Equation 3.24 with Equation 3.31 yields the formula

^ { i N i } - \ / ^ + < )  + iiSoii2 - ( A iis^ 2 <3-32)

for the expectation value of the magnitude of the slowness vector. Notice that if (cr2̂  +  a '^ ) 

is equal to (A||s||)2 the expectation value of the estimate of the magnitude of the slowness 

vector will equal ||s0|| and the estimate will be unbiased.

An expression relating the magnitudes of (A||s||)2 and (a 2̂  +  <72y) is required to de­

termine if the least squares estimate of the magnitude of the slowness vector is a biased 

estimate. In Equation 3.24 A||s|| is defined as the standard deviation of the magnitude of 

the slowness vector, making (A||s||)2 the variance of the magnitude of the slowness vector. 

The variances of the slowness vector magnitude and the sum of the variances in the compo­

nents of the slowness must be calculated in order to compare the quantities and determine 

the bias in the least squares estimate of the slowness vector magnitude. The definition of 
variance was used to calculate the variance of the slowness vector magnitude,

s n —

n z r  Y \\Isl i + 4  -  \ M  +  4 ] 2> (3-33)

where sx and sy are the means of sx and sv> respectively, and n is number of elements in 

the sample. To facilitate the comparison of the sum of the variances in the components of 

the slowness vector and the variance of the magnitude of the slowness vector, the square in 

Equation 3.33 is expanded as

as =  +  4  +  a* +  4  -  V s2**2 +  < 4 + +  *&*$)■ (3-34)
i

The variances of the x  and y-components of the slowness vector are found to be

(3-35)
2 _  4 -  \2
Sxx n ■

and

=  ■  ̂ ~  ^y)2> (3.36)n —

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

respectively. Summing the variance of sx and sy and expanding the square gave the sum of 

the variances in the components of the slowness vector,

17 s +  17 s — —~Sx sv n -
(3.37)I X  +  +  sy. +  Sy 2 sXisx 2syisy

. i

Note that both the variance of the slowness vector magnitude and the sum of the vari­

ances of the components of the slowness vector have many common terms. The only terms 

that are not common between the two quantities are the cross terms picked up when the 

squares in Equation 3.33 were expanded,

\jsl i sl  +  s%.sl +  4 . s2 +  s2 ^  (3.38)

and

^Xi x̂ syisy (3.39)

in the sum of the variances of the components of the slowness vector. The relative mag­

nitudes of the terms which are not in common must be determined to relate magnitudes 

of the variance of the magnitude of the slowness vector and the sum of the variances of 

the components of the slowness vector. To eliminate the square root in Equation 3.38 the 

squares of Equation 3.39 and Equation 3.38 are compared instead of the original quantities. 

The inequality

\Jsl i4  +  4 , 4  +  Sh Sl  +  4 i 4  ^  +  sws2/)l (3-40)

must be proven to complete the comparison of the variance in the slowness magnitude and 

the sum of the variance in the components of the slowness vector. Notice that the right- 

hand term is the magnitude of Equation 3.39. Proving the inequality in Equation 3.40 

is sufficient to prove that terms in Equation 3.39 is less than or equal to the terms in 

Equation 3.38. If the magnitude of quantity Equation 3.39 is less than Equation 3.38, the 

sign of Equation 3.39 will not change that fact. To simplify the algebra, the squares of the 
quantities in Equation 3.40 were compared,

4,4 + 4,4 + + 4A ~ 4^1 + 4A  + 2s^  v  y- (3-41)

The terms on the right hand side of the inequality in Equation 3.41 are moved to the 
left by subtraction,

2 —2 i 2 —2 a — — >_ r\
S X i S y  +  S lliS X  ~  X i S y S y i  S x  >  0 .
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The right hand side of the resulting inequality is rewritten as a perfect square,

(sXiSy — syisx) >  0. (3.42)

Since any real number squared is positive, semidefinite, the inequality is proved and Equa­

tion 3.38 is shown to be greater than or equal to Equation 3.39. It follows from this result 

that

<7,2 < «  +  < ) .  (3.43)

With the equation relating magnitudes of the variances known, it becomes apparent 

that there is a bias in the least squares estimate of the magnitude of the slowness vector. 

The estimate of the magnitude of the slowness vector will be unbiased if the expectation of 

the estimate returns j|s0||. According to Equation 3.32, the least squares estimate of the 

slowness vector magnitude will be unbiased when ( a +  a2y) =  a2, which occurs as ||s0|| 

goes toward infinity. A slowness magnitude of infinity corresponds to a trace velocity of 

zero. For magnitudes of the slowness vector less than infinity, (a2x +  a 2y) >  a2 and the 

estimate of the magnitude of the vector slowness is biased high,

£{|| s ||} >|| s0 || . (3.44)

Effect of Array and Wave Parameters on the Bias in the Estimate of Slowness 
Vector Magnitude

The slowness vector magnitude is related to the speed at which the plane wave traverses the 
array. The slowness vector magnitude will affect the curvature of the contour of constant 

slowness vector magnitude, the dashed line in Figure 3.1. As the magnitude of the slowness 
increases, the curvature of the contour of constant slowness magnitude decreases and the 

bias in the estimate of slowness magnitude, represented by the volume between the lines, also 

decreases. In the limit that the magnitude of the slowness approaches infinity, the estimate 

of the slowness vector magnitude becomes unbiased, due to the curvature of the contour of 

constant slowness vector magnitude approaching a straight line. The disappearance of the 

bias in the limit of infinite slowness magnitude can be verified with the analytic solution by 
taking the limit of s0 going toward infinity in Equation 3.32.

The dependence of the bias in the estimate of slowness magnitude on the slowness vector 

magnitude was explored using a Monte Carlo-like computer simulation. The simulation
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Magnitude of sQ (s/km)

Figure 3.2. Bias in the least squares estimate of the slowness vector magnitude for a range 
of slowness vector magnitudes. The aspect ratio of the ellipse was held constant at 5 . The 
area of the ellipse was held at a value of n, and the azimuth was constant at 45°. The 
dependence of the bias in the estimate on the slowness vector magnitude was modeled by a 
sum of exponentials (equation shown in the figure).

consisted of producing simulated slowness vector pdfs for a range of slowness magnitudes. 

The other three parameters were held constant as the slowness magnitude was varied to 

ensure that any change in the bias of the estimate was due solely to the change in the 

slowness magnitude. The least squares estimate of the slowness vector magnitude was then 

calculated for each point in the simulated slowness vector pdf and the bias in the estimate 

determined using the definition of bias.

The results of the bias test using simulated slowness magnitude estimates are shown 

in Figure 3.2. In this simulation the shape of the ellipse was unchanged as the slowness 

vector magnitude was varied. The slowness vector magnitude was varied between 2 s/km 

and 4 s/km; acoustic waves generally have a slowness magnitude of approximately 3 s/km. 
The area of the ellipse was a constant value of 1r and the aspect ratio was held at one half. 
The wave was launched from the same arbitrarily chosen azimuth of 45° for all trials in the
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simulation. Figure 3.2 showed that the magnitude of the bias in the estimate of slowness 

vector magnitude increases as the slowness vector magnitude decreases. An increase in 

the slowness vector magnitude corresponds to a decrease in the magnitude of the wave 

velocity. Physically, the slower the encroaching wave, the less the bias in the estimate of 

the magnitude of the velocity of the wave.

The relation between the slowness vector magnitude and the bias in the estimate was

not a linear relationship. The relationship between the slowness magnitude and the bias in

the estimate of the slowness magnitude was modeled as a sum of exponentials. The model 

sum of exponentials curve was chosen because the sum of exponentials had the correct 

behavior as the magnitude of the slowness approaches infinity, since the bias predicted by 

the fit model approaches zero. The equation of the model curve was

b =  0.6 e-1 '3 l|So|i +  0.2 e-0 ’2 l|So11,

where b is the bias and ||s0|| is the slowness magnitude. The reliability of the curve fits was
measured with a goodness of fit test to quantitatively compare the accuracy of the curve
fits. To test the goodness of fit, the coefficient of determination was used to quantitatively 

measure how well the data was fit by the model.47 The coefficient of determination is defined 

by the quotient of the sum of squares of regression to the total sum of squares. The sum of 

squares of regression is defined by

n
SSR =  J 2 wi(yi ~ v )\  (3-45)

i= 1

where y* is the curve fit data, Wi are the weights for the data points, and y  is the mean of 

the experimental data. The total sum of errors is given by the expression
n

SSE =  ' £ w i(yi - y ) 2, (3.46)
2 = 1

where y is the experimental data. The closer the coefficient of determination is to a value 

of one, the more the variance in the data is accounted for by the model. The coefficient 

of determination calculated for the model curve fit to the experimental data was one to 
within four significant figures, meaning that the curve fit model accounted for virtually all 
the variance in the data.
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sx (s/km)

Figure 3.3. Bias in estimate of the slowness vector magnitude when the slowness vector is 
not aligned with the principal axes of the ellipse. The solid ellipse is an arbitrary confidence 
limit of the distribution of the slowness vector. The dashed line is the contour of constant 
slowness vector magnitude which divides the slowness vector distribution into high mag­
nitude estimates and low magnitude estimates. The slowness vector representing a signal 
with a slowness magnitude of 3 ^  and an azimuth of 45° is represented by sa. For the 
reader’s convenience a line dividing the slowness distribution in half has been included in 
the figure.

The magnitude of the bias in the estimate of the slowness vector magnitude is also 

dependent on the angle of arrival of the wave. Figure 3.3 geometrically illustrates the 

bias in the estimate of the slowness vector magnitude for an azimuth of 45° instead of the 

azimuth of 0° shown in Figure 3.1. Notice that the bias in the estimate of the slowness 

vector magnitude has apparently been increased by simply changing the direction the wave 

impinges on the array. Figure 3.4 displays the resulting numerically calculated bias in the 

slowness vector magnitude estimates for azimuths ranging from —90° to 90°. The bias 
in the estimate was minimized when the slowness vector was aligned with the semi-major 
axis of the ellipse, an angle of 0°, and maximized when the slowness vector is aligned with 

the semi-minor axis, an angle of ±90°. The estimate of the slowness vector magnitude was
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Figure 3.4. Bias in estimate of the slowness vector magnitude for wave azimuths ranging 
from —90° to 90°. The contour of constant probability for the simulated pdf was a coordinate 
aligned ellipse with the semi-major axis equal to ay and the semi-minor axis equal to ax. 
The ellipse was centered about a point with slowness magnitude s0 for each azimuth.

biased at all azimuths estimated. The bias in the estimate of the slowness vector magnitude 

was always biased high, resulting in a positive bias value for all estimated azimuths.

The last two ellipse parameters are, at least in part, determined by the geometry of 

the array and are pseudo-constants once the array is deployed. The shape of an arbitrary 

confidence ellipse can change in two distinct ways, the area of the ellipse can change or 
the aspect ratio of the ellipse can be varied. Physically, changing the area of the ellipse 

corresponds to changing the confidence limits. An increase in the area of the ellipse will 

cause increases in the variances of the components of the slowness vector, o f  and o f , and
7 & y  & x  7

an increase in the variance of the slowness magnitude, o f. The effect of increasing the 

area of the ellipse on the bias in the estimate of the slowness vector magnitude depends on 

the rate at which o fx +  o f  and o f  increase. Figure 3.5 shows the results of a numerical
simulation exploring how the magnitude of the bias in the estimate of slowness vector

magnitude reacted to an expanding ellipse with a constant aspect ratio and at a constant
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Area of the Ellipse ( jt ay ax )

Figure 3.5. Change in the bias of the estimate of the slowness vector magnitude as the area 
bounded by the contour of constant probability increases. The aspect ratio of the ellipse 
was held constant at 0.5 and the area was increased from 7t/2  to 2tt. The azimuth was held 
constant at 45° and the magnitude of the “true” slowness vector (s0) was constant at 3

slowness magnitude and azimuth.

As the area of the ellipse increases from n/2 to 27r, the magnitude of the bias in the 

estimate increased linearly. The relationship between the bias in the estimate of the slowness 

vector magnitude and the area of the ellipse was modeled by a straight line,

b =  0.02 (n * ax * cry) — 0 .001,

where ax and ay are the semi-major and semi-minor axes of the ellipse of constant probabil­

ity. The coefficient of determination for the linear fit was 1 to within four significant figures. 

The linear relationship indicated that, as the area of the ellipse increased the magnitude of 
the bias in the estimate of the slowness vector magnitude increased proportionately. The 

area of the ellipse can be altered once the array has been deployed through changes in 
the time measurement errors. The magnitude of the semi-major and semi-minor axes of 

the ellipse are proportional to the magnitude of the errors in the time measurements.43
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The dependence of the area of the ellipse on the errors in the time measurements can be 

seen analytically by using Equation 3.19 to find the uncertainties in the components of the 

slowness vector. Recall that the uncertainties in the components of the slowness vector are 

proportional to the semi-major/minor axes of the ellipse. Substituting the uncertainties 

into the equation for the area of an ellipse the dependence of the ellipse area on the time 

measurement errors is explicitly shown,

The array operator has some control over the magnitude of the uncertainties in the time

the uncertainty in the time measurement, aT can be approximated by aT ~  j - .43 Therefore, 

Equation 3.47 has an inverse squared dependence on the temporal sample rate. As the 

sample rate increases, the variances in the components of the slowness vector decrease and 

the area o f the ellipse decreases as well. A smaller ellipse area corresponds to a smaller bias 

according to Figure 3.5. An increase in the temporal sample rate will decrease the bias in 

the estimate of the slowness vector magnitude.

The aspect ratio of the ellipse is entirely dependant on the geometry of the array. By 

combining the equation for the aspect ratio of ellipse with Equation 3.19 the dependence of 

the bias in the estimate of slowness vector magnitude on array geometry can be analytically 

proven. When the two equations are combined,

the dependence on the errors in the time measurement drops out leaving only a dependence 

on the array geometry, represented by the diagonalized covariance matrix elements Da, in 
the aspect ratio. The exclusive dependence on the array geometry means that the aspect 
ratio of an arbitrary confidence ellipse will be a constant once the array is deployed.

Area =  n aSx aSy

(3.47)

measurements through the choice of the temporal sample rate.29,19>24 For impulsive signals

aspect ratio

(3.48)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

Aspect Ratio of the Ellipse (c /a x)

Figure 3.6. The dependence of the bias in the estimate of the slowness vector magnitude 
on the aspect ratio of the ellipse. The area of the ellipse was held constant at 7r and the 
aspect ratio was decreased from 1 to 0.1. The azimuth was held constant at 45° and the 
magnitude of the “true” slowness vector (sc) was constant at 3 ^ .

The aspect ratio amplifies the bias caused by varying the azimuth of the wave. The 

more eccentric the ellipse, the larger the range in the magnitude of the bias of the estimate 

of the slowness vector magnitude as the azimuth of the wave is varied around the circle. An 

ellipse with an aspect ratio equal to one {i.e. a circle) would no longer have any angular 

dependence in the bias of the estimate of the slowness vector magnitude.

The dependence of the bias in the estimate of the slowness vector magnitude on the as­
pect ratio is shown in Figure 3.6 for an azimuth of 45°. The azimuth, slowness magnitude, 

and ellipse area were held constant as the aspect ratio of the ellipse was varied. By conven­

tion the aspect ratio of the ellipse is calculated in such a way that the aspect ratio is less 

than or equal to one. 26 The bias in the estimate was at a minimum when the aspect ratio 

of the ellipse was equal to one. The bias in the estimate of slowness vector magnitude was 
estimated to have an inverse power law dependence on the aspect ratio of the ellipse based 

on the coefficient of determination for all the different curve fits of the data attempted. The
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equation of the inverse power law was estimated as

6 =  0.001 ^ ” 13 + 0.03. (3.49)

The coefficient of determination for the inverse power law fit to the data is 1 to four signifi­

cant figures. The value of the coefficients in the power law fit, the power and the constants, 

varied depending on the wave azimuth, but the dependence of the bias on the aspect ratio 

was always found to be an inverse power law. An aspect ratio of one results in the smallest 

bias in the estimate of the slowness vector magnitude for all azimuths.

3.4 Bias in the Estimate of the Azimuth

Like the slowness magnitude, the azimuth is contained in the slowness vector and the pdf of 

the slowness vector can be used to obtain the expectation value of the azimuth. Continuing 

to work in two dimensions, the expectation value of the azimuth is obtained by solving the 

equation

£ {0 }  =  6 - ------------e 2”Sx 2°sv dsxdsy. (3.50)
J — OC j  — OO '̂K&Sx&Sy

The azimuth can be expressed in terms of the components of the slowness vector using 

trigonometry,

e  =  tan" 1 I ^

and then inserted into Equation 3.50, giving the intractable integral

„ fOO  /"OO /  <5 \  1 - d 8 8  y g )  + (SV sJ/o)  1

=  /  tan-  ( —  ]  ---------—e 2°Sx 2a>,y dsxdsv. (3.51)
J - o o J - o o  \S X / 27T(7Sxa Sy y v '

A transformation of the problem into polar coordinates did not make the analytic integration 

of the pdf of the slowness vector and the azimuth possible.

The only way to calculate the expectation value of the least squares azimuth estimate was 

through numerical evaluation of the integral in Equation 3.51. Direct numerical integration 

of Equation 3.51 would produce results for the expectation value of the azimuth estimate, 

but there is a method for evaluation of the expectation of the azimuth estimate that produces 
more intuitive results than direct numerical integration. This second method makes use of 
the contours of constant probability of the slowness vector pdf and numerical evaluation of 

line integrals.
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3.4.1 Numerical Calculation of the Bias in the Azimuth Estimate

Instead of attempting an analytic solution of the expectation value of the azimuth estimate, 

the sources of the bias in the least squares estimate of the azimuth can be identified using 

contours of constant probability. It can be argued geometrically that the bias in the estimate 

of azimuth will be determined by the volume of the ellipse on either side of a line drawn from 

the origin through the true azimuth at the center of the ellipse. If there is more volume on 

one side of this dividing line than on the other side of the dividing line the estimate of the 

azimuth will be biased toward the side with more volume enclosed. The task now becomes 
determining how much volume is on either side of the dividing line.

In order to determine the amount of volume on either side of the dividing line, first 
investigate the area under two slices at +9  and —9. Azimuth estimates occuring on these 

lines will return an azimuth estimate of ±0. To calculate the volume on either side of the 

dividing line, the area under the ± 9 lines will be compared for a range of the estimates of 

the azimuth within an arbitrary confidence ellipse. Figure 3.7 illustrates the setup for the 

derivation of the bias in the estimate of the azimuth.

In Figure 3.7 the lines of constant azimuth estimates are shown as dashed lines. The 

lines are defined by sy =  tan (±0)sx and intersect the ellipse at four points, ± a  and ±b. 

These intersection points define the range of integration for the one dimensional slowness 

pdf integrals. The results of the one-dimensional integrals are the areas under the +9  and 
—9 lines. Substituting the expression for sy in terms of sx and 9 into the probability density 

function produces a one dimensional density function,

i . tan2w \ „2 I , s„„tan(fl)'
/[«] = ‘2'KCTSxCrSy

^  ■ - ^ r p - j s x + l
(3.52)

For the generalized case the slowness vector is not aligned with the principal axes of the 

array and the range of integration will be different for the ±9  integrals. The integration of 

the slowness pdf along the ± 9 lines must be done when the lines are inside the confidence 

ellipse. An azimuth-dependent expression determining the intersection points of the lines 

and the ellipse must be found to ensure the proper limits of integration. The only points 
on the ellipse where sy =  tan((?)sx are the points where the line and ellipse intersect. If the
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Figure 3.7. Setup for the calculation of the azimuthal estimate bias. The blue ellipse is a 
arbitrary contour of constant probability of the slowness pdf. Azimuth estimates made on 
the dashed red lines inside of the ellipse will return estimates of +6  and —6. The dashed 
lines intersect the ellipse at + / -  a and + / -  b.

equation of the line is substituted into the equation of the ellipse,

(sx - s Xo)2 | (tan(fl)sx -  syo)2
+ =  1, (3.53)

J S x  S y

the result is the equation* of the ellipse in terms of only one variable, sx . Expanding the 
squares and gathering the terms of like power together gives an equation in a form that can 

be solved using the quadratic formula. The solutions to the equation

1 tan(0)2
j 2 /j2
J SX S y

Sxo tan {d)sVo
2 ' 9ai a%S y

©2 «2X̂p , *y0
a2s erft>x Hy

=  0 (3.54)

are the points at which the line and the ellipse intersect.

The solutions of the one dimensional pdf integrals are error functions and must be 
evaluated numerically. A robust and accurate method for numerically evaluating integrals

*0 is the angle of incidence, plus or minus the angle of deviation from the dividing line.
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Volume on Either Side of the Dividing Line Difference between 0+ and 0_ integrals

S ± 0x

Figure 3.8. Bias in the azimuth estimates when the confidence ellipse is aligned with the 
principle axes of the array. The left hand plot shows the range of possible azimuth estimates 
in the arbitrary confidence ellipse. The right hand plot shows the difference between the line 
integral for the positive angle, Qup> and the negative angle, Q^0, for the range of possible 
angles.

is the method of quadrature.46 Using the built-in Matlab function “quadl.m” , the integrals 

were evaluated using adaptive Lobatto quadrature.46

The bias in the estimate of the azimuth was determined by calculating the ± 0  integrals 

for a range of possible azimuth estimates inside the confidence ellipse. The ± 0  integrals were 

calculated in angle steps of 0 .1° from the true azimuth to the positive and negative limit 

of possible azimuth estimates. The bias in the azimuth estimate for the special case where 

the slowness vector is aligned with the principal axes of the array was first considered. The 

method was then extended to the general case where the slowness vector was not aligned 
with the principle axes of the array.

When the slowness vector is aligned with the principle axes there will be no bias in the 
least squares estimate of azimuth. To illustrate that the azimuth estimate is unbiased in 
this special case, a range of ±Q lines was plotted in Figure 3.8 for an arbitrary ellipse. The
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left-hand plot in Figure 3.8 shows the range of ±0  lines for an ellipse with semi-major axis 

of 2 and semi-minor axis of 1. The slowness vector magnitude is 3 s/km and the slowness 

vector has an azimuth of zero, which aligns the slowness vector with the principal axes of the 

ellipse. Note that in the case where the slowness vector is aligned with the principal axes of 

the ellipse, the range of possible ± 9  angles are the same on either side of the dividing line. 

The right hand plot shows the difference between the line integral for the positive angle, 

Qup, and the negative angle, Q(\0, for the range of possible angles. The difference between 

the two line integrals is zero for all angles calculated, meaning that the volume above the 

dividing line is equal to the volume below the dividing line resulting in an unbiased estimate 
of azimuth.

The estimate of the azimuth is unbiased if the slowness vector is aligned with one of the 

principal axes of the distribution ellipse, but becomes biased as the slowness vector moves 

away from a principal axis. Azimuths resulting in an unbiased azimuthal estimate are rare, 

occuring only at four of an infinite set of azimuths. The more common case is one for which 

the slowness vector is not aligned with the principal axes of the ellipse. A set of plots similar 

to the plots shown in Figure 3.8 was produced for an azimuth of 45° degrees. The estimate 

of the azimuth is biased for this azimuth. The range of possible azimuthal estimates was 
different for the region above and the region below the dividing line. The possible azimuth 

estimates above the dividing line could not exceed 23.5°, however the angles below the 

dividing line could take values greater than 23.5°. Due to the asymmetric range of possible 

angles, there were some low azimuth estimates that were not balanced out by high azimuth 
estimates.

The unbalanced range in the possible azimuth estimates does not, in of itself, prove that 
the least squares estimate of the azimuth is biased. The volume above the line could be 

much greater than the volume below the line and balance out the low estimates that have 

no high counterparts. The right hand plot in Figure 3.9 shows that this is not the case. 

The right hand plot shows the difference between value of the line integral for +9  and the 

line integral for —9. The difference between the results of the numerical integration is not 

zero for all angles calculated. In this biased case, the —9 line integral is always greater than 
the +9  line integral, making the volume below the dividing line greater than the volume 

above the dividing line for all the common angles. The difference in the volumes introduces
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Volume on Either Side of the Dividing Line Difference between 0+ and 0_ integrals
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Figure 3.9. Bias in the azimuth estimates when the confidence ellipse is not aligned with the 
principle axes of the array. The left hand plot shows the range of possible azimuth estimates 
in the confidence ellipse. The right hand plot shows the difference between the line integral 
for the positive angle, <2 up> and the negative angle, Q^0 , for the range of possible angles.

a bias toward low azimuth estimates at 45°, compounded by the fact the there are more 

low estimates possible than high estimates.

3.4.2 Effect of Array and Wave Parameters on the Bias in the Estimate of 
Azimuth

The azimuth and slowness vector magnitude estimates are both derived from the estimate 
of the slowness vector. Since both estimates are derived from the same pdf the same four 

parameters that influenced the bias in the slowness vector magnitude estimate affect the 

bias in the estimate of azimuth. The parameters affecting the bias in the azimuth estimate 

are: area of the ellipse that encloses some fraction of the distribution, the aspect ratio of 

the ellipse, the slowness vector magnitude where the ellipse is centered, and the azimuth at 
which the ellipse is centered. The effects of these parameters on the bias in the estimate 

of azimuth were similar to the effects the parameters had on the estimate of the slowness
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Figure 3.10. Bias in the estimate of the azimuth versus the area of an arbitrary confidence 
ellipse. The blue +  are the results of the numerical simulation for various ellipse areas. The 
red line is the linear curve fit of the numerical results.

vector magnitude. The dependence of the bias in the azimuth estimate on wave and array 

parameters was explored using a numerical simulation in the same manner as the exploration 

of the bias in the slowness vector magnitude estimates.

The effect of the area of the confidence ellipse on the magnitude of the bias in the azimuth 

estimate was similar to the area effect for the estimate of the slowness vector magnitude. 

A linear relationship between the ellipse area and the magnitude of the bias in the azimuth 

estimate was observed in the numerical results of the azimuth bias versus the ellipse area 

test. The linear relation between the ellipse area and the bias in the azimuth estimate is 

shown in Figure 3.10. The aspect ratio of the confidence ellipse was held constant at 1/2 

during the variation of the area. The slowness magnitude and the azimuth were also held 

constant during the simulation at 3 s/km and 45°, respectively. The blue +  are the results 

of the numerical simulation for each ellipse area. The red line is a linear curve fit of the 
simulation results. The coefficient of determination for the linear fit was 1. The bias in 

the azimuth estimate increased proportionally with increases in the area of the confidence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

Aspect Ratio (CT/ ° X)

Figure 3.11. Bias in the estimate of the azimuth versus the aspect ratio of the confidence 
ellipse. The blue +  are the results of the numerical simulation for various aspect ratios of 
the ellipse. The red line is the inverse power law curve fit of the numerical results.

ellipse.

The bias in the estimate of the azimuth displayed an inverse power law dependence on 

the aspect ratio of the confidence ellipse. The estimate of the azimuth was unbiased when 

the aspect ratio is 1. The magnitude of the bias in the azimuth estimate increased as the 

eccentricity of the confidence ellipse is increased. The area of the ellipse was held constant 
at 7r as the aspect ratio was varied between 1 and 0.1. The slowness vector magnitude was 

a constant equal to 3 s/km and the azimuth was constant at 45°. An inverse power law 

curve, shown by the red line in Figure 3.11, was fit to the results of the numerical simulation 

exploring the effects of the aspect ratio on the bias in the azimuth estimate. The inverse 

power law curve,

b =  1.7( — )~ °'7 -  1.6, (3.55)

fit the numerical results with a coefficient of determination of 1 to within four significant 
figures.
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Figure 3.12. Bias in the estimate of the azimuth versus the slowness vector magnitude. The 
blue +  are the results of the numerical simulation for slowness magnitudes between 2 s/km 
and 4 s/km. The red line is a sum of exponentials curve fit of the numerical results.

A circularly-symmetric array has a confidence ellipse with an aspect ratio of one. The 

bias in the azimuth estimate of a circularly symmetric array predicted by the fit curve was 

0.052°. Unlike the estimate of the slowness vector magnitude, the theoretic bias in the 
azimuth estimate is zero for circularly symmetric array. The non-zero bias predicted by the 

curve fit is due to error in the curve fit. The bias in the least squares estimate of azimuth 

was minimized by a circularly symmetric array. Like the effect of the aspect ratio on the 

bias in the slowness magnitude estimate, a more eccentric aspect ratio of the confidence 

ellipse amplifies the angular dependence of the bias in the estimate of azimuth.

Similar to the effect of the slowness vector magnitude on the bias in the estimate of 
the slowness vector magnitude, the bias in the azimuth estimate decreased as the slowness 

vector magnitude is increased. The numerically simulated bias in the least squares azimuth 
estimate approached zero as the slowness vector magnitude increased toward infinity as 
expected. The blue +  in Figure 3.12 are the results of the numerical simulation for slowness 

magnitudes varying between 2 s/km and 4 s/km. The numerical results were fit with a sum
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of exponentials curve due to the asymptotic behavior of the azimuth bias as the slowness 

magnitude goes toward infinity,

b =  43.6e~L5||So11 +  5.8e_0’41||So11.

The simulated bias data was fit with this model to ensure that the behavior of the azimuth 

bias had the correct behavior as the slowness vector magnitude increased toward infinity. 

The red line shows the sum of exponentials curve fit to the numerical results for the bias 

in the azimuth estimate. The coefficient of determination was equal to 1 to within four 

significant figures, indicating that the variance in the data was accounted for by the curve 

model. The decrease in the azimuth estimate bias as the slowness magnitude increased 
can also be seen geometrically. As the confidence ellipse moves toward infinity the angle 

subtended from the origin by the ellipse decreases and the difference between the two 

volumes of the ellipse decreases toward zero.

The last of the four parameters affecting the bias in the azimuth estimate is the azimuth 

of the center of the confidence ellipse. Figure 3.13 shows a harmonic dependence of the bias 

in the azimuth estimate on the wave azimuth. Unlike the azimuth dependence of the 

estimate of the slowness vector magnitude, the bias in the estimate of the azimuth took 

on both positive and negative numbers depending on the angle of the ellipse center. The 

estimate of the azimuth was unbiased when the slowness vector was aligned with one of the 

principle axes of the array, as was expected from the numerical derivation of the bias. The 

characteristic of being unbiased at finite slowness vector magnitudes separates the azimuth 

estimate from the estimate of the slowness vector magnitude.

3.5 Conclusion

The least squares estimates of the slowness vector magnitude and of the azimuth are biased 

estimates. The bias in the parameter estimates represents a systematic error in the source 

location process. The bias in the least squares estimate of the slowness vector was analyti­

cally derived from the pdf of the slowness vector.43 The analytic expression of the bias in 

the slowness vector magnitude estimate showed that the estimate is always biased high for 

finite magnitudes of the slowness vector. The integrals required to analytically derive the 
bias in the least squares estimate of azimuth were intractable. A modified numerical inte­

gration scheme involving the curves of constant probability and one-dimensional numerical
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Figure 3.13. Bias in the estimate of the azimuth versus the azimuth of the center of the 
confidence ellipse. The blue +  are the results of the numerical bias simulation for azimuths 
between ±90 degrees.

integrals was used to determine that the azimuth estimate was biased. The bias in the least 
squares estimate of azimuth could be unbiased, biased high, or biased low depending on the 

wave and array parameters.

Numerical simulations were used to determine the effect of wave and array parameters 

on the magnitude of the bias in the estimates. The magnitude of the bias in both of 

the estimates was influenced by the wave parameters (the trace velocity of the wave and 

the wave azimuth) and the array parameters (the aspect ratio and area of the confidence 

ellipse). Since both estimates were derived from the same slowness vector pdf, the effects 

of the array and wave parameters on the bias in the estimates were similar for the two 

estimates. The bias in both the azimuth and slowness vector magnitude estimates due to 

the aspect ratio of the ellipse and due to the azimuth of the confidence ellipse is minimized for 

a circularly symmetric array. The azimuth estimate is unbiased for a circularly symmetric 
array. The bias in both estimates tended toward zero as the trace velocity of the acoustic 

wave approached zero. A linear dependence of the magnitude of the bias on the ellipse area
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was observed for both the azimuth and slowness magnitude estimates.

The magnitude of the bias in the least squares estimates of trace velocity and azimuth is 

at least an order of magnitude less than the uncertainty in the estimates. The uncertainty 

in the least squares estimate of azimuth is geometrically found by the angle subtended from 

the origin by the confidence ellipse and the uncertainty in the estimate of the slowness 

vector magnitude is given by the difference in the extremal distances for the origin of the 

ellipse.43 A numerical investigation of the magnitude o f the bias in the parameter estimates 

for the Fairbanks and Windless Bight arrays revealed that the bias is negligible compared 

to the uncertainty in the estimate. For signal-to-noise ratios of approximately 10 dB and a 
slowness vector magnitude of approximately 3 s/km, the measured variances associated with 

the numerically simulated slowness vector were of the order 10_1 s/km for trace velocity 

and 1 degree for azimuth estimates. The bias in the estimates of the slowness vector 

magnitude and azimuth were at least an order of magnitude smaller than the uncertainty 

in the estimate of the slowness vector magnitude and azimuth for all azimuths estimated. 

While the effects of the bias on the estimates are not noticeable in practical situations, the 

bias in the least squares estimate of slowness vector magnitude and azimuth still represents 

a systematic error in the acoustic source location process.

Even with the assumed GWU noise corrupting a signal the least squares estimates of 
azimuth and trace velocity are not unbiased and, consequently, are not the MVU estimate. 

It is a widely accepted fact that the infrasonic noise field is not white, uncorrelated noise. 

The effects of the physical noise field could introduce a further degradation of the least 

squares estimates of azimuth and trace velocity. In the following chapters the infrasonic 

noise field at IS53 and IS55 will be characterized, and the effects of the infrasonic noise field 
on the estimation of the azimuth and trace velocity will be determined.
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Chapter 4

Distribution of the Infrasonic Noise Field

4.1 Introduction

In the previous chapters the pressure data collected at an array of sensors was used to 

estimate velocity parameters of an acoustic wave traversing the array. In the process of 

estimating the wave parameters, data recorded by the sensors was modeled as a deterministic 

signal corrupted by an additive, random noise field. Due to the random nature of the noise 

field, the exact form of the noise field is generally not known in the source location problem. 

The standard assumption made about the characteristics of the noise field is that it is 
Gaussian, white, uncorrelated (GWU) noise. The GWU noise field is an idealization of the 

actual noise field present at the location of data collection. The deviation of the infrasonic 

noise field from this idealization could affect the accuracy of the least squares parameter 

estimation. By exploring the physical noise field present at the point of data collection it 

can be realistically modeled and the effects on the performance of the parameter estimation 

can be determined.

A statistical study was conducted to determine the form of the noise field at the Fair­

banks and Windless Bight arrays. The results of this study revealed that the infrasonic noise 

field at the arrays was a composite field made up clutter and turbulent pressure fluctua­

tions produced by convective ground heating and turbulent wind flow. The clutter elements 

of the noise field varied seasonally at the two array locations. A diurnal variation in the 
noise field power spectrum was also observed at the Fairbanks array in the summer months. 
The source of the diurnal cycle observed in the noise field power spectral density (PSD) is 

plausibly due to convective heating of the air by ground heated by solar insolation.

The effect of the local wind flow on the noise field at the Fairbanks and Windless Bight 

arrays was examined using the estimated power spectra. The noise power estimated from 

the data increased as the measured local wind speed increased. The increase in noise power 

with local wind speed did not occur equally across all frequencies for which the power was 

estimated. The frequency dependence of the noise power on local wind speed at both arrays 

was determined for the four seasons of the year. The effects of local terrain on the rate 
at w h ich  n oise  p ow er increases w ith  respect t o  lo ca l w in d  speed  w ere in ferred  from  the 

frequency-dependent data produced from the estimated power spectra.
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The empirical noise field was then used to determine the effects of the discrepancy 

between the GWU and actual noise fields on least squares parameter estimation. Synthetic 

noise data, with a qualitatively similar power distribution to the actual noise field, was 

generated using the results of the statistical noise field study. With the synthetic noise data, 

the effects of the empirical noise field could be determined with numerical simulations. The 

effectiveness of bandpass filtering the raw data to reduce the negative effects of the empirical 

noise field was also explored. When the data with the empirical noise is bandpass filtered, 

the performance of the least squares parameter estimate is comparable to the estimate 

performance with GWU noise, although at a lower signal-to-noise ratio.

4.2 The Noise Field

In order to explore the nature of the noise field, a definition of noise must be presented. 

No single definition of noise exists, but it is common practice to define noise as everything 

that is not a signal.48 This definition leads to an ambiguity in what exactly constitutes 

infrasonic noise. The definition of a signal is dependent on the application, and so, the 

definition of noise will be different for different applications. Without a well-defined way to 

identify noise it is difficult to explore the nature of the infrasonic noise field at Fairbanks 
and Windless Bight. In an attempt to more universally define what qualifies as noise, a 

new definition of the noise is proposed. In this application, noise is defined as the median, 

stationary fluctuating pressure field present at the point of data collection and a signal 

as a deviation away from this median, stationary fluctuating pressure field. The proposed 

definition is just a refinement of the common definition that noise is everything that is not 
a signal^.

The proposed definition of noise requires the determination of the median, stationary 

fluctuating pressure field at an array. The infrasonic noise field is a composite field and it is 

not a simple matter to determine form of its components. There are two main components 

of the infrasonic noise field: clutter, and turbulent pressure fluctuations. Clutter is defined 

as omnipresent pressure waves created by geophysical or man-made sources. Microbaroms49 

are a known source of a persistent clutter that affect infrasound measurements worldwide. 
T u rbu lent pressure flu ctu a tion s  are cau sed  b y  tu rbu len t w in d  flo w s12’13,14,15,50,51 and con- 

4Or rather that signal is everything that isn’t noise.
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vective heating of the air by ground heated by solar insolation.52 The magnitude of the 

effects of the clutter and turbulent pressure fluctuations on the noise field is highly depen­

dent on the location of data collection. Due to the dependence of the noise field on the 

location of the array, the noise field must be estimated for each array independently. In 

this study the noise field was estimated for the CTBTO arrays located at Fairbanks, Alaska 

(IS53) and Windless Bight, Antarctica (IS55).

4.2.1 Method

The noise field is a nondeterministic field and must be characterized using statistical meth­

ods. A method of determining the infrasonic noise field statistically was employed by 

Bowmann et a/.48 In their work, the recorded data were segmented, power spectra were 

estimated for each of the data segments, and the resulting power spectra were averaged 

together to characterize the noise field. A modified version of this basic method will be 

used to characterize the noise field at the Fairbanks and Windless Bight arrays. The major 

modifications to the method of Bowmann et al. will not be to the basic method, but to the 

application of the method to the data.

The first step in the process is to segment the data recorded at the arrays. There exists 

no analytic method to determine the optimal length of the data set, and the segment length 

must be determined empirically using the method of window closing.31 Although no exact 

rules exist to determine when to stop the window closing procedure, physical considerations 

can help guide the length of the data segment. For example, estimation of the power in 

frequencies lower than the Brunt-Vaisala frequency is not necessary since acoustic waves 

cannot propagate at frequencies lower than the Brunt-Vaisala frequency.

The length of the data segments used to estimate the power spectrum was chosen to be 

three minutes. This data segment length was chosen for several reasons. First, the PSD of 

a data segment of three minutes had only two frequency estimates that were lower than the 

Brunt-Vaisala frequency which contained no information on propagating acoustic waves. 

Second, the density of the frequency estimates in the frequency band of the microbaroms 
was high enough to produce a PSD with a fidelity that allowed for the analysis of the noise 
features caused by the microbaroms. Finally, a three minute data segment allowed a direct 
comparison of the results at the Fairbanks and Windless Bight arrays with the results of
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the work done by Bowmann et al.48 The resulting characterizations of the infrasonic noise 

fields produced by this method are insensitive to the choice of data segment length.

The stability of the estimated noise field PSD was enhanced by using the Welch method 

of spectral estimation;36 the three minute data segments were further segmented into four 

subwindows that were 1024 samples long and the PSD of each subwindow was calculated. 

The resulting power spectra for the subwindows were averaged to produce the Welch es­

timate of the PSD for the three minute data segment. The number of samples in the 

subwindows was chosen to optimize the calculation speed of the periodograms. The sub­

windows were overlapped by 515 samples to minimize the number of data samples omitted 
at the end of the data segment and give an overlap of approximately fifty percent. The 

analog pressure data collected at both of the arrays was sampled at a rate of twenty samples 

per second, resulting in a Nyquist frequency of 10 Hz. The data digitizer employs an analog 

anti-aliasing filter that filters out any frequency greater than 10 Hz prior to digitization 

so the power spectra estimates did not include any frequency estimates above the Nyquist 
frequency.

The data used to create the power spectra were not pre-processed to exclude data 

segments that contain signals from geophysical or man-made sources. In addition to the 

possible presence of signals in the calculated power spectra, the wind speed and diurnal 

cycle have an effect on the fluctuating pressure field. To filter out the effects of signals 

and determine the median, stationary fluctuating pressure field, the statistics of the noise 

field can be built by grouping many of the raw power spectra together to form a statistical 

ensemble. It is possible that the fidelity of the resulting characterization of the noise field 

will be decreased in the process of building the statistics of the noise field. If the underlying 

processes that produce the key features of the noise field, such as the microbaroms and the 

diurnal cycle, change too much during the time period being averaged, the fidelity of the 

characterization of the noise field will be decreased and the structure of the key features of 

the noise field will be altered. The microbaroms and the diurnal cycle vary seasonally and 

the noise field will also vary throughout the year. The expected seasonal variation of the 

noise field must be taken into account when choosing which power spectra are included in
the sta tistica l ensem ble.

To determine how many of the raw power spectra can be collected into the ensemble
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the principles guiding window closing can be employed. The window closing process begins 

with the separate power spectra produced for each of the eight sensors. The power spectra 

of the eight sensors were qualitatively compared during random time periods at both array 

locations. The characteristics of the noise field power spectra were similar enough to suggest 

that the inclusion of all eight of the power spectra in the ensemble would not result in a loss 

of fidelity in the estimated noise power spectrum. The window closing process was repeated 

for each of the three minute data segments within the same hour. The key features of the 

noise power spectra for the three minute windows were similar, and all twenty of the power 

spectra for one hour were included in the ensemble to improve stability. At this point in 

the window closing process the ensemble of power spectra estimates includes the estimates 

from all eight sensors for a time period of one hour.

The number of hours included in the ensemble was influenced by the diurnal cycle of 
the power spectra. The diurnal cycle in the atmospheric boundary layer is driven by solar 

heating.52 Each day was broken into four blocks to determine the effect of the atmospheric 

diurnal cycle on the noise field. The time blocks for both arrays were centered on the 

hours of sunrise, sunset, noon, and midnight. The time of sunrise and sunset varies signifi­

cantly throughout the year at the location of both arrays. The sunrise and sunset times at 

Fairbanks during the year 2006 are shown in Figure 4.1. Note that the largest time block 

that can be used at Fairbanks without sunrise and sunset overlapping is three hours, one 

hour before sunrise/sunset and one hour after sunrise/sunset. Using three hour blocks will 

lead to overlap of the noon, sunrise, and sunset time blocks for a week during the month 

of December, and of the midnight, sunrise, and sunset time blocks for a week during the 

month of June where all times refer to the local solar time. To avoid potential mixing of 

different atmospheric effects, these overlap weeks will be excluded from the averaging when 
the three hour block power spectra are created. The array at Windless Bight is at a higher 

latitude than the array at Fairbanks and during large portions of the year the sun is either 

always up or down. The sun never sets at Windless Bight from 24 October to 19 February 

and never rises from 25 April to 19 August. During these two periods the three hour time 

blocks were centered at 6:00 a.m., 12:00 a.m., 6:00 p.m., and 12:00 p.m., local solar time.
T h e  n o o n  or  m idn igh t b lock s  overlap  w ith  th e  sunrise and sunset b lock s  at W in d less  B igh t 

for the ten days preceeding and following the austral summer and winter. The days where
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Figure 4.1. Sunrise and sunset times for Fairbanks, AK during 2006. The black x are the 
local times of sunrise and the black +  are the local sunset times. The dashed lines are the 
limits of the three hour block for sunrise and sunset.

the overlap occured were omitted from the ensemble of the Windless Bight data. For the 

rest of the year the time blocks were centered in the same manner as the Fairbanks data. 

The result of this grouping of power spectra into four separate time bins is a potentially 

different noise field for the four times of day. Without the binning, the effects of the local 

atmospheric diurnal cycle on the infrasonic noise field could not have been resolved.

The building of the noise field statistics through window closing continued with the 

grouping of days, weeks, and months. At a time scale on the order of months the char­

acteristics of the microbaroms begin to vary at both array locations. The variation of the 

microbaroms must be considered while continuing to build the statistical ensembles. At 

the month-long time scale the ensembles for each of the four time periods consist of ap­

proximately 14,400 realizations of the fluctuating pressure field. Bowmann et al. further 

combined the monthly noise fields into seasonal representations of the noise field.48 The 
grouping of the monthly noise power spectra into a seasonal noise field representation will 

improve the statistics of the noise power spectra, but at the cost of fidelity. The combi-
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nation of the monthly noise fields must be done with care so as to not combine months in 

a manner that will sacrifice the fidelity of the microbaroms or the diurnal cycle observed 

in the noise field power spectrum estimate. The combination of months with dissimilar 

features averages the noise field features toward each other, resulting in a loss of resolution 

of the features. The grouping of months into seasonal groups must be dictated by the 

character of the microbaroms and the diurnal cycle during each month. The loss of fidelity 

resulting from seasonal groupings made seasonal groupings unattractive at the Fairbanks 

array. Simple four-season groupings of the monthly noise fields for Windless Bight did not 

suffer from this loss of fidelity and were used to improve the stability of the noise field power 

spectrum estimate.

4.2.2 Results

The median noise field power spectra, estimated from the separate statistical ensemble of 

the four time blocks, were plotted together on monthly log plots. The resulting noise fields 

estimated from the data collected at the Fairbanks array during 2006 are shown in Figure 4.2 

to Figure 4.4. These median noise field power spectra were found by calculating the median 

value of the power estimate at each frequency estimated in the monthly ensemble of power 

spectra. The noise field for each of the time blocks is plotted in a different color: midnight 

in black, noon in magenta, sunrise in blue, and sunset in red. The 5% and 95% confidence 
limits of the noise field power spectra ensembles were included on each of the monthly plots. 

The confidence limits indicate the power amplitude where 95% or 5% of the ensemble PSD 

estimates were less than the limit. The variance of each of the monthly time block PSD 

estimates is on the order of 4.17 x 10~6, under the assumption that the data in the time 

block ensemble is stationary.31 The layout of the plots was held constant across all the 

monthly ensembles produced from the data.

Microbaroms are acoustic signals associated with severe weather in the ocean and the 

high ocean surface waves caused by the severe weather.2 Microbaroms are observed world­

wide with coherent and incoherent energy between 0.1 and 1 Hz with a maximum energy 
at 0.2 Hz for open-ocean swells.53,3 The seasonal variation of the microbaroms was clearly 
illustrated in the plots of the monthly noise fields. During the month of January the micro­

barom peak, at approximately 0.2 Hz, was prominent. The prominence of the microbarom
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Figure 4.2. Median power spectra for the months of January-April 2006 measured at the 
Fairbanks array. The solid black line is the median power spectrum for the three hour time 
block centered about midnight, the solid magenta line is the median power spectrum during 
the noon time block, the solid red line is the power spectrum during sunset, and the solid 
blue line is the power spectrum during sunrise. The black dashed lines indicate the 95% 
and 5% confidence limits of all the power spectra for the entire month.
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Figure 4.3. Median power spectra for the months of May-August 2006 measured at the 
Fairbanks array. The solid black line is the median power spectrum for the three-hour time 
block centered about midnight, the solid magenta line is the median power spectrum during 
the noon-time block, the solid red line is the power spectrum during sunset, and the solid 
blue line is the power spectrum during sunrise. The black dashed lines indicate the 95% 
and 5% confidence limits of all the power spectra for the entire month.
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Figure 4.4. Median power spectra for the months of September-December 2006 measured at 
the Fairbanks array. The solid black line is the median power spectrum for the three-hour 
time block centered about midnight, the solid magenta line is the median power spectrum 
during the noon-time block, the solid red line is the power spectrum during sunset, and the 
solid blue line is the power spectrum during sunrise. The black dashed lines indicate the 
95% and 5% confidence limits of all the power spectra for the entire month.
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peak diminished during the spring and reached a minimum during the month of August. 

The microbarom peak increased during the fall and reached prominence again during the 

winter months.

A seasonal dependence of the diurnal cycle was also visible in the plots of the median 

noise field power spectra. The diurnal cycle was not observed at the Fairbanks array during 

the months of January, February, and March. The diurnal cycle emerged during the spring 

and summer. The diurnal cycle began to decay during September and was again absent 

during the months of October, November, and December. To ensure that the seasonal 

variations in the microbaroms and the diurnal cycle observed during the year of 2006 were 
consistent between years, the noise fields were also calculated for 2005 at the Fairbanks array. 

The microbaroms and the diurnal cycle showed qualitatively similar seasonal variations 
during the year 2005.

The seasonal variations of the estimated microbarom power were less pronounced at 

the Windless Bight array during 2006. The seasonal infrasonic noise field power spectra 

estimated at Windless Bight, shown in Figure 4.5, displayed a complete lack of any diur­

nal cycle. The smaller seasonal variation at Windless Bight allowed the statistics of the 

estimated noise field power spectra to be improved further by grouping the monthly power 

spectra into seasonal representations of the noise field power spectrum. The microbarom 

peak estimated at Windless Bight was most prominent during the austral fall and winter. 

During the summer season at Windless Bight the microbarom peak decreased slightly in 

amplitude, but remained the dominant feature of the infrasonic noise field. The dominance 

of the microbarom peak in the estimated noise field power spectra was reduced during the 

austral spring. During the spring season the estimated microbarom peak was similar in 

character to the microbarom peaks estimated at Fairbanks from May to August.

Meteorology

The variation in diurnal cycle observed at Fairbanks might be explained by boundary layer 
meteorology.52 The infrasonic noise field at the Fairbanks array was made up of pressure 

fluctuations from clutter and turbulence. The sources producing clutter do not vary ac­
cording to the time of day during the months when the diurnal cycle was observed (D. Lee, 

personal communication, February 2007). It follows that the diurnal cycle in the infrasonic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

PSD for Fall 2006 at IS55 PSD for Winter 2006 at IS55

Frequency (Hz) Frequency (Hz)

PSD for Spring 2006 at 1S55 PSD for Summer 2006 at IS55

ftOMCL

Frequency (Hz) Frequency (Hz)

Figure 4.5. 2006 seasonal noise power spectra estimated at the Windless Bight array. The 
solid black line is the median power spectrum for the three-hour time block centered about 
midnight, the solid magenta line is the median power spectrum during the noon-time block, 
the solid red line is the power spectrum during sunset, and the solid blue line is the power 
spectrum during sunrise. The black dashed lines indicate the 95% and 5% confidence limits 
of all the power spectra for the entire month.
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noise PSD was an effect of the turbulent pressure fluctuations, and not an effect of changes 

in the sources producing the clutter. The daily evolution of the turbulent mixing layer of 

the atmospheric boundary layer is summarized in general terms by Stull.52 The turbulent 

mixing layer is generally formed by convective heating, but is sometimes formed by strong 

winds. The local winds during the time blocks used to estimate the noise field power spec­

trum have an effect on the estimated noise power and will be explored in Section 4.3. For 

now it is simply noted that the pattern in the mean winds within the time blocks during 

the periods when the diurnal cycle was observed did not correspond to the pattern observed 

in the estimated noise field PSD.

There are two main sources of convective atmospheric heating.52 These two sources are: 

heat transfer from the warm ground to the air directly above it, and radiative cooling for 

the top of the cloud layer. The heat transfer from the ground to the air immediately above 

the surface causes thermals of warm air to rise from the ground, while cooling from the top 

of the cloud layer causes thermals of cool air to sink back toward the ground. Generally, 

the sun imparts energy to the ground during the day and the ground radiates this heat into 

the air above the ground. The heated air turbulently mixes with the cooler air above it, 

and produces turbulent pressure fluctuations.

The convective heating from the ground could drive the diurnal cycle observed in the 

noise field PSD. The assertion that the ground heating is critical to the formation of the 

diurnal cycle is supported by the correlation between the lack of a diurnal cycle and snow 

cover on the ground around the array. In Fairbanks the ground is typically covered by 

snow by October and remains covered until early April. The diurnal cycle in the noise field 

power spectrum estimates was absent in the power spectra from October though March at 

the Fairbanks array. When the ground surrounding the array at Fairbanks was covered by 
snow the diurnal cycle in the infrasonic noise field PSD was absent, and when the snow 

melted the diurnal cycle returned. Further support is given by the lack of a diurnal cycle 
at Windless Bight. At Windless Bight the surface underneath the array is a perpetually 

snow covered ice shelf. Even when the sun is up twenty four hours a day during the austral 

summer there, one expects a lack of a diurnal cycle in the noise field PSD because the 
surface surrounding the array cannot efficiently absorb and re-radiate the energy of the 

sun.
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The effects o f the diurnal cycle observed at Fairbanks display general trends in the noise 

fields for limited frequency bands. When the diurnal cycle is observed, the noise power is 

greatest during the sunrise time block from very low frequencies up to approximately 2 Hz. 

The power contained in the sunset time block is minimal from the lowest frequencies up 

to about 0.1 Hz for the months of observation. Details of the evolution of the boundary 

layer provided by Stull52 could explain why the sunrise block contains the most power 

and the sunset block the least. The turbulence created by the convective ground heating 

forms large thermals cells that mix heated air with the cooler air above the ground. This 

mixing happens in a shallow layer called the entrainment zone, whose location increases in 

altitude during the course of the day. The energy exchange between warm and cool air in 

the entrainment zone causes energetic turbulent cells to form. The turbulent air that is 

left underneath the entrainment zone as it increases in altitude is called the mixed layer. 

About half an hour before sunset the thermals cease to form and the turbulence in the 

mixed layer decays. During the night the air near the ground, at the arrays, becomes stable 

but the winds higher in the boundary layer may form nocturnal jets where the winds may 

accelerate to supergeostrophic speeds t. The net effect of the stable air near the ground 

and the nocturnal jets is short bursts of intense turbulence near the ground during the 

night. About thirty minutes after the sun has risen thermals once again start to form and 

the evolution of the boundary layer is repeated. The observed trends in the effects of the 

diurnal cycle on the noise field correspond to events in the evolution of the boundary layer. 

When the entrainment zone is near the ground, just after sunrise, the turbulence around 

the array is very intense and the noise power is greater in the majority of the frequency 

band. When the thermals cease to form, about one half hour before sunset, the noise power 

is at a minimum due to a lack of energy being added to the system.

Man-Made Clutter

In addition to the features of the infrasonic noise field that were natural in origin there 
was also man-made clutter present in the estimated noise power spectra. A “noise floor” 

was observed in the estimated noise field power spectra at Fairbanks and the summer 
noise field power spectra at Windless Bight. The electronic noise floor of the Model 5 

+ Supergeostrophic speeds are defined as speeds greater than required by the pressure gradient.52
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Chaparral microphones has been measured at approximately 10-8 Pascal.(D. Marriott, 

personal communication, February 2007) The analog data were filtered by the anti-aliasing 

filter, whose effect was visible in the estimated PSD as roll off in the spectra to an operational 

zero* at 10 Hz. The noise field power spectra estimated for Windless Bight smoothly 

decrease to this operational zero value, with the exception of the summer months. The 

power spectra estimated from the data collected at Fairbanks become constant at about 

1 Hz and then rapidly converge to the operational zero value at 10 Hz.

The exact origin of this noise floor is unclear, but several possible causes have been ruled 

out as its source. The ambient air temperature during the winter months at Fairbanks 

during the years included in the study was comparable to the temperature during the 
spring and fall at Windless Bight, yet the noise floor was not observed in the noise field 

PSD estimates during the spring or fall months at Windless Bight. The temperature of 

the data digitizer, shown in Figure 4.6, was also excluded as the source of the noise floor. 

In Figure 4.6 the daily median temperature of the data digitizer was plotted for both the 

Fairbanks array, the black + , and Windless Bight array, the black •, during the year of 

2006. If the noise floor was caused by the digitizer temperature then, according to the plot, 

spring at Windless Bight would have a higher noise floor since the digitizer temperature 

during the spring at Windless Bight was comparable to the digitizer temperature during the 

winter at Fairbanks. Rather, the Windless Bight data has a significantly lower noise floor 

in the estimated PSDs during the spring. The effects of wind speed on the noise field are 

investigated in the next section, but were also ruled out as a cause of the noise field. With 

all other obvious sources of the noise floor excluded it seems likely that human activity was 

responsible for the observed noise floor in the Fairbanks and summer time Windless Bight 

noise field PSD estimates. Human activity at Windless Bight is generally most intense 

during the summer months and almost non-existent during the rest of the year. The period 

of maximum human activity corresponded to the only time period where the noise floor was 

observed at Windless Bight and so we operationally conclude that the elevated noise floor 

is due to fundamentally anthropological residual transient sources.

The data digitizer creates electronic clutter in the high frequencies of the noise field
at b o th  F airbanks and W in d less  B igh t. T h e  d ig itizer  c lu tter  w as seen as sm all, n arrow

* Operational zero is a value on the order of 10-8 Pascal.
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Dally Median Digitizer Temperature for IS55 & IS53 (2006)

Figure 4.6. Digitizer temperature for both the Windless Bight and Fairbanks arrays. The 
+  are the daily median digitizer temperatures at Fairbanks and the • are the daily median 
temperature at Windless Bight. The daily digitizer temperatures where calculated for the 
year of 2006.

peaks located at 2, 4, 6, and 8 Hz in the estimated noise field power spectra. Members 

of Chaparral Physics (J. Helmericks, personal communication, March 2007) explained that 

the data digitizer introduces this clutter when the collected data is transmitted from the 

digitizer every half second. The period of data transmission corresponds to a principle 

frequency of 2 Hz. The other peaks are the harmonics of this principle digitizer data 
transmission frequency.

4.3 Effects of Wind on the Noise Field

A large body of work12’13’14’15,50,51 has been dedicated to the problem of understanding 

pressure fluctuations resulting from turbulent air flows. Laboratory experiments and ana­

lytic derivations contained within these studies found that the mean-square amplitude of
the pressure fluctuations is proportional to the mean-square velocity of the fluid flow. The

power contained in the pressure fluctuations is proportional to the square of the amplitude
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of the pressure fluctuations. It follows from the relationship between wind speed and pres­

sure amplitude that an increase in the local wind speed at an array results in an increase 

in the noise power observed at that array. Field surveys of the pressure fluctuations reveal 

a rudimentary frequency dependence in the rate at which the noise power increases with 

wind speed.12 The theoretical relationship between mean-square amplitude of the pressure 

fluctuations and the bulk wind speed does not provide a method to explore this frequency 

dependence in the rate of noise power increase. The shape of the noise power spectra will 

vary as the wind speeds vary due to the difference in the rate of increase of power across 

different frequencies. By exploring the different rates at which the power changes as a 
function of frequency, the general effects of the wind on the noise field were determined.

4.3.1 Method

The effects of the wind on the noise power spectrum were investigated by determining the 

frequency dependent rate of power increase for nine log-spaced frequencies. Each realization 

of the estimated power, in the manner described in Section 4.2.1, was plotted against the 

median wind speed. An example, Figure 4.7, shows the distribution of more than 34,000 
power estimates, taken from the power spectra, plotted on a semilog plot against the mean 

wind speed for two of the frequencies estimated from the data collected at the Fairbanks 
array during a three-month period starting in May 2006. The red and green distributions 

are the noise power estimated at 0.08 Hz and 5 Hz respectively. The solid black lines are 

the best fit lines of the median power estimated at each of the measured wind speeds. The 

process of determining the best fit line for the median power estimate is discussed below. 

The median power was used to fit the lines instead of the mean power to minimize the effect 

of outliers in the distribution caused by the presence of signals in the data set.

The power appears to be increasing exponentially with wind speed since the black line 

through the median powers for each wind speed was linearly increasing on a semilog plot. 

The median estimated powers were fit with an exponential curve of the form

f ( x )  =  a ebx, (4.1)

where f [ x )  is the median power, x  is the mean wind speed, and b is the exponential power 

which determines the slope of the linear line on a semilog plot. The fitting parameter a
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Noise Power vs. Wind Speed 
1 0 2  1 1 1------------------------------- 1—

Wind Speed (m/s)

Figure 4.7. The increase in the noise field power as a function of local wind speed. The red 
dots represent the power measured at a frequency of 0.08 Hz and the green dots are the 
power estimates at 5 Hz. The solid black lines are the best fit lines of the median power 
estimates at each of the measured wind speeds. Note the different rates of power increase 
for the two frequencies.

determines the power at a wind speed of zero and was not used in the following analysis. 

Once the curve parameters were determined, the exponential power, b, for each one of 
the nine frequencies was plotted against the frequencies corresponding to the exponential 

power. The resulting plot revealed the frequency response of the rate at which the noise 
power increases with wind speed. The effects of the local wind speed on the noise power 

spectra can be inferred from the frequency dependence of b. The 95% confidence limit of 

the coefficient of determination for an ensemble of exponential curve fits, of the form shown 

in Equation 4.1, of normally distributed random noise is 0.045. Such a small coefficient of 
determination is expected for two unrelated curves.47 A curve fit of the median estimated 

power versus local wind speed data that results in a coefficient of determination that is less 
than or equal to the 95% confidence limit of the coefficient of determination of the noise 
curve fit was excluded from the final analysis.
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To build the statistics of the median estimated power at the measured local wind speeds, 

several months of power spectrum estimates were combined into statistical ensembles. The 

combination of the power spectrum estimates into the ensembles was guided by window 

closing principles. The magnitude of the median noise power during the period of data 

collection used to produce the noise power versus wind speed plot had an effect on the b 

found when performing the curve fitting on this data. If the power in the noise field is 

modeled as a composite of the power provided by the wind and the ambient power from 

the clutter and thermals, the power in the noise field is given by

00
Sxy(expicj) — Rxy[l]e~tojl (4.2)

1= — OO

where u; is the frequency, I is the lag, and Rxy is the cross-correlation function.29 It can be 

shown29 that the cross-correlation is bounded by the average powers of the two processes 

being correlated,

l-Rxylfll ^  (4-3)

The total noise power must be less than or equal to one half the average power contained 

in the wind noise and ambient noise. Letting /^[O] be the ambient power and Ry [0] be the 

wind power, it can be verified that the smaller the ambient noise is with respect to the wind 

power, the more sensitive the total power is to increases in the wind power as the wind 

speed increase. The dependence of the rate of power increase (b) on the ambient power 

present during the time of power spectrum estimation limits the number of months that are 

grouped together to produce the noise power versus wind speed plots.

Months with high ambient noise will have a lower power increase with wind speed than 

months with lower ambient noise levels. The effect of a mismatch in the starting ambient 

noise power levels between the months was an averaging of the rates of noise power increase 

and, while not desirable, is not a critical flaw. To balance the desire for a large range 

of wind speeds with the desire to avoid the loss of too much resolution in the value of b, 

the data will be grouped into seasonal blocks when making the median power versus wind 

speed data sets. This grouping also allows the exploration of any seasonal changes in the 
frequency dependence of the growth rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

4.3.2 Results

The terrain in which an array is located affects the rate of noise power increase with wind 

speed. Figure 4.8 shows the median power for a frequency of 0.63 Hz at both the Fairbanks 

and Windless Bight arrays. The vertical power scale is the same for both plots. At the 
Fairbanks array, the median noise power increased by approximately 1 x 10-5 Pascal as 

the wind speeds increased from 0.1 m /s to 1 m/s. At wind speeds greater than 1 m /s the 

median noise power began to rapidly increase, increasing to six times the median power at 
1 m /s for a wind speed of 2 m /s. At the Windless Bight array the median noise power did 

not increase by 1 x 10-  ̂Pascal until the local wind speed was approximately 3.5 m /s. The 

noticeable difference in the rate at which the median noise power increases with wind speed 

was due to the different terrain in which the arrays are situated. The trees of the boreal 

forest surrounding the Fairbanks array caused the wind flow to become turbulent at lower 

wind speeds than the snow covered ice shelf at Windless Bight. The formation of turbulent 

flows at lower wind speeds at Fairbanks caused pressure fluctuations that raise the level of 
the median noise power at lower local wind speeds.

The rate of noise power increase with local wind speed is plotted in Figure 4.9 against 

the frequency for the four seasons at the Windless Bight array. The b versus frequency 

plots at the Fairbanks array, shown in Figure 4.10, were only produced for three seasons. 

A faulty wind sensor at Fairbanks meant that no wind speed data was collected for either 

spring 2006 or spring 2005. Three of the seasons at the Windless Bight array returned 

data that passed the goodness of fit test, described above, for all measured frequencies. 

The curve fit at a frequency of 0.32 Hz failed the goodness of fit test during the fall season 
at Windless Bight and was excluded from the final data set. The goodness of fit for the 

remaining eight frequencies calculated for the fall season pass the goodness of fit test with 

a coefficient of determination of at least 0.8 for all curves fit.

The Windless Bight b versus frequency plots, shown in Figure 4.9, do not display a 

uniform increase with increasing frequency of the rate of growth of the noise power with 

wind speed. The most sensitive frequency to increases in the mean local wind speed was a 
low frequency, 0.08 Hz, but it was not the lowest frequency estimated. The rate of increase 
of the median power decreased for the frequency estimates lower than the local maximum 
at 0.08 Hz. Moving away from this local maximum toward higher frequencies, the rate of
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Figure 4.8. The wind response of the Fairbanks and Windless Bight arrays. The top plot 
is the median power at 0.63 Hz at Fairbanks, with Windless Bight at the bottom.

increase quickly decreased to a minimum in the frequency neighborhood of 0.32 Hz and 

then began to slowly increase for frequencies higher than the local minimum. The rate 

of increase for the summer period was different from the other seasons at Windless Bight, 

decreasing after 1 Hz instead of continuing to increase.

The high frequency behavior of noise power growth rate at Windless Bight during the 

summer can be explained by looking at the seasonal noise power spectra estimated for 

Windless Bight, shown in Figure 4.5. At high frequencies the noise floor was present during 

the summer months, but not during the other seasons. Recalling that the ambient power 
present affects the rate of increase of the noise power with local wind speed, it follows that 

the noise floor will affect the rate of increase. The noise floor raises the ambient noise level 

at high frequencies and the rate of increase in the median noise power is decreased.

The frequency dependence of b for the Fairbanks array, shown in Figure 4.10, is similar to 
the frequency dependence during the summer season at the Windless Bight array. The curve 
fit corresponding to a frequency of 0.16 Hz during the winter months failed the coefficient of
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Rate of Increase of the Noise Rower vs. frequency (Winter at IS55)

Rate of Increase of the Noise Power vs. frequency (Fall at IS55)

Rate of Increase of the Noise Power vs. frequency (Spring at IS55)

Rate of Increase of the Noise Power vs. frequency (Summer at IS55)

Figure 4.9. Rate of power increase with local wind speed for the Windless Bight array. The 
95% and 5% confidence limits are included with each value of b as vertical bars. The curve 
fit corresponding to a frequency of 0.16 Hz during the winter months failed the coefficient 
of determination test and was excluded from the final data set.
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Rate of Increase of the Noise Power vs. frequency (Summer at IS53)

Rate of Increase of the Noise Power vs. frequency (Fall at IS53)

Rate of Increase of the Noise Power vs. frequency (Winter at IS53)

Frequency (Hz)

Figure 4.10. Rate of power increase with local wind speed for the Fairbanks array. The 95% 
and 5% confidence limits are included with each value of b as vertical bars. The bottom 
left panel is blank due to a lack of wind data available during the spring at the Fairbanks 
array.
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determination test and was excluded from the final data set. The high frequency behavior 

of the data collected at the Fairbanks array was influenced by the noise floor present during 
all seasons. The rate of increase observed at frequencies higher than 1 Hz decreased for 
all estimated seasons at the Fairbanks array. As at Windless Bight, the most sensitive 

frequency to variations in wind speed was 0.08 Hz and the minimum response was still in 

the neighborhood of 0.32 Hz. The behavior of the rate of increase at the frequencies lower 

than 0.08 Hz was also similar to the behavior in the Windless Bight data.

The magnitudes of the frequency-dependent rates of increase were consistently lower at 

Windless Bight than at Fairbanks. The estimated ambient noise levels at Windless Bight 

were lower than those at the Fairbanks array throughout the year. Considering the ambient 

noise levels, one would expect the median noise power rates of increase to be greater at 

Windless Bight than Fairbanks. The seeming contradiction is explained by consideration of 

the terrain at each location. The boreal forest surrounding the Fairbanks array is apparently 

more efficient at creating turbulent wind flow than the smooth terrain at Windless Bight. 

The efficiency of the Fairbanks terrain at creating turbulence results in a faster noise power 

rate of increase. Although the magnitudes of the rates of increase were different for the 

different seasons and locations, the general shape of b versus frequency plot remained the 

same, particularly for the frequencies below 0.32 Hz. The trends in the higher frequencies 

remained consistent as well once the data was grouped to reflect the presence or lack of the 

noise floor. The noise power contained in the mid-range frequencies at both locations is the 

least affected by increases in the local wind speed.

4.3.3 Application

The frequency dependence of the rate of increase affects the estimated noise power spectra. 

Noise fields during days with higher than average wind speeds will be altered in character 

from the median noise field by the frequency dependent rate of noise power increase with 

local wind speed. To empirically demonstrate this deformation, the power spectra estimated 

from the data collected at the Windless Bight during the winter months of 2006 were sorted 
according to local wind speed. The top plot in Figure 4.11 is of the median power spectrum 
for a high and low wind speed during the winter months of 2006 at the Windless Bight 
array. The blue line, corresponding to the median power spectrum when the mean wind
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PSD for High and Low W inds (IS55 W inter 06)

PSD for High and Low W inds (IS53 W inter 05)

Figure 4.11. Power spectra for high and low wind speeds at the Windless Bight and Fairbanks arrays. The top plot is for 
the Windless Bight array during the winter months of 2006. The red line is the median power spectrum for all estimates 
when the mean wind speed during the time window was 6 m /s and the blue line is the median power spectrum for a wind 
speed of 2 m/s. The bottom plot is for the winter months of 2005 at the Fairbanks array, this time the red line is for 
1.5 m/s and the blue line is 0.3 m /s. At high wind speeds the noise power spectrum is deformed from the median noise 
field.
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speed was 2 m /s, shows the noise power spectrum at low wind speeds where a well-defined 

microbarom peak and some sensor clutter can be seen in the estimated noise field power 

spectrum. The median Windless Bight power spectrum estimated during periods of 6 m /s 

mean wind speed is shown by the solid red line. The changes in the median estimated 

noise field power spectrum from the low wind speeds to the high wind speed illustrate the 

frequency dependence of the rate of increase of the noise power with local wind speed. 

A large increase of the power level estimated in the lowest and highest frequencies was 

observed while the power level of the noise increased by a small amount in the mid-range 

frequencies. These changes in the noise power levels agree with the b versus frequency plots 
discussed above. The bottom plot of Figure 4.11 shows the high and low wind speed median 

power spectrum estimated at the Fairbanks array. The changes in the noise power levels 

between the high and low wind spectra echoed the rates of increase shown in Figure 4.10. 
The noise power in the lowest frequencies increased the most between the low and high 

wind examples. The noise power increase in the highest frequencies began to decrease as 

the frequency increased past 1 Hz. The noise power contained in the mid-range frequencies 

also increased noticeably, showing the greater rates of power increase present at Fairbanks. 

Finally, note that the clutter in the high frequencies was not present for the high wind speed 

median power spectra. It will be useful for the upcoming correlation study to note that the 

clutter disappeared at higher local wind speeds, indicating that the local wind can mask 

the clutter.

4.4 Effect of the Infrasonic Noise Field on LSE

A survey of the data recorded at Windless Bight and Fairbanks revealed that the amplitude 
distribution of the infrasonic noise field passed a Chi-squared distribution test at a rate 

comparable to GWU noise at all temporal window lengths. Although the infrasonic noise 

field was Gaussian, the noise estimated at both the Fairbanks and Windless Bight arrays 

was not white noise in the frequencies recorded by the instruments. The empirical form 

of the noise field affects the performance of least squares estimates of trace velocity and 

azimuth. A statistical study was undertaken to compare the effect of the empirical noise
on  th e  p erform an ce  o f  th e  e st im a tor  by  q u a lita tiv e ly  ex p lor in g  b o th  n oise  regim es using 

synthetic data. It is common practice in the infrasound community to bandpass filter the
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infrasound data before performing the least squares estimate to limit the effects of the 

empirical noise field. The effectiveness of the practice of bandpass filtering the infrasound 

data before performing a least squares estimate of the azimuth and trace velocity was also 

considered in this statistical study.

To qualitatively explore the effect of the empirical noise field on the least squares param­

eter estimates of azimuth and trace velocity, synthetic data was produced by propagating 

a chosen waveform at a known speed and azimuth across an array. A 0.5 Hz windowed sine 

wave was chosen as the surrogate signal waveform. The surrogate signal had a duration 

of 20 seconds and was windowed with a Hanning window.29 A different waveform choice 
resulted in the same qualitative changes in the performance of the least square estimates 

though the changes were slightly different quantitatively due to the difficulty of ensuring an 

identical signal-to-noise ratio between different signal types. The geometry of the Windless 

Bight array was used during the generation of the synthetic data. The trace velocity was set 

to acoustic velocity, 0.343 km/s, and an arbitrary azimuth of 54 degrees, measured clock­

wise from due north, was chosen as the direction of arrival of the waveform. The effects 

of the azimuth and trace velocity on the performance of the least squares estimator have 

been discussed previously in this work and had little qualitative effect on the results of the 
present study.

The frequency bands used to filter the infrasound data are empirically determined by the 

person performing the data analysis. Considerations such as frequency location of clutter 

and previous knowledge of the frequency content of the signal of interest influence the choice 

of the passbands in the filtering process. The frequency bands used in this study were set 

to isolate the microbaroms in one frequency band. The broadband data was separated into 
three frequency bands. A low-frequency band, 0.015 to 0.1 Hz, a high-frequency band, 1 to 
10 Hz, and the microbarom-frequency band, 0.1 to 1 Hz.

The estimator performance was evaluated by creating two synthetic data sets, one with 
empirical noise and one with GWU noise. The empirical noise set was created in a manner so 

that the PSD of the empirical noise was qualitatively similar to the PSD estimate during the 

winter months at Windless Bight. The data sets were then bandpass filtered and the azimuth 
and tra ce  v e lo c ity  w ere estim a ted  using least squares estim a tion . T h e  process w as repeated  

1000 times to build the statistics of the parameter distributions. The signal-to-noise ratio
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was then altered and the process repeated to create ensembles of parameter variances and 

biases versus signal-to-noise ratio. By comparing the variance in the parameter distributions 

and the bias in the estimates at the various signal-to-noise ratios, the effect of the empirical 

noise was determined.

As the signal-to-noise ratio decreased, the least squares estimate of the trace velocity 

and azimuth began to fail at some critical signal-to-noise ratio. The first indication that 

the critical signal-to-noise ratio has been reached was an increase in the variance of the 

distribution of the estimated parameters. The bias in the estimate also began to increase 

rapidly after the critical signal-to-noise ratio has been exceeded. The effect of the empirical 

noise type on the performance of the least squares estimator was to increase the magnitude 

of the critical signal-to-noise ratio where the estimate began to fail. Physically, an increase 

in the magnitude of the critical signal-to-noise ratio translates into a higher required signal 

power for accurate parameter estimation.

The qualitative effects of the empirical noise on the least squares parameter estimates are 

the same for all three of the passbands used in this study. Quantitatively, the magnitude of 

the variance increase and the critical signal-to-noise were dependent on the frequency band 

used to filter the data. The largest variance increase was in the microbarom band, and the 

smallest increase was in the high-frequency band. The effects of the empirical noise were 

qualitatively similar for both the trace velocity and azimuth estimates. Figure 4.12 is an 

example of the variances in the distribution of trace velocity estimates in the high-frequency 
band for varying signal-to-noise ratios. The variance with the empirical noise was plotted 

with blue + ; the variance for GWU noise estimation is shown with red + . The signal-to- 

noise ratio present when the parameter estimation was calculated is shown along the x-axis 

of the plot. The variance curve for the empirical noise distribution is similar to the variance 

curve of the GWU noise distribution, the former being shifted toward higher signal-to-noise 

ratios.
The performance of the least squares estimator with the empirical noise field was similar 

to the performance of the estimator with GWU noise, but at lower signal-to-noise ratios. 
For this reason the assumption of GWU noise is a valid assumption for the noise field, if 
the frequency band is separated to isolate the effects of the microbaroms. If data is not 

bandpass filtered, the performance of the least squares estimate was greatly reduced and
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the assumption of GWU noise is violated.

4.5 Conclusion

The infrasonic noise field is composed of man-made and geophysical clutter and turbulent 

pressure fluctuations. The clutter contained in the infrasonic noise field of an array is 
dependent on the location of that array. The infrasonic noise field was estimated for the 

Fairbanks and Windless Bight arrays. There were differences between the infrasonic noise 

field at Fairbanks and Windless Bight. The infrasonic noise field at Fairbanks consists of 

microbarom clutter along with high-frequency, man-made clutter from nearby buildings on 

the UAF campus. The infrasonic noise field estimated at Fairbanks varied seasonally and 

diurnally. The Windless Bight noise field did not contain the high-frequency man-made 

clutter due to the remote location of the array. The noise field at Windless Bight was 

dominated by the microbarom clutter signal. The Windless Bight infrasonic noise field 

varied seasonally, but lacked a noticeable diurnal fluctuation in the estimated noise field 

power spectra. It is difficult to compare the results of the infrasonic noise field estimation 

at the Fairbanks and Windless Bight arrays with the results of Bowmann et al. due to the 
different array locations.48 The infrasonic noise fields estimated at Fairbanks and Windless 

Bight were qualitatively similar to those shown by Bowmann et al. Both sets of noise 

fields had similar frequency distributions of the noise power and distinctive microbarom 

peaks in the PSD estimates. The seasonal and diurnal variations in the noise field PSD are 

markedly different between the Bowmann et al. results and the results from the Fairbanks 

and Windless Bight arrays. The difference in the seasonal and diurnal variations of the 

infrasonic noise field was not unexpected due to the drastically different latitudes of the 

Fairbanks and Windless Bight arrays relative to the Bowmann et al. array located in 

Bolivia. The difference in the diurnal variation maybe compounded by the different methods 

of choosing the temporal location of the sample windows.
Convective ground heating is suggested as a possible mechanism responsible for the 

much observed diurnal fluctuation of the noise field power spectra at the Fairbanks array. 

The magnitude of the diurnal variation of the infrasonic noise field was influenced by the 
grou n d  cover  a rou n d  the array  lo ca t io n . I f  th e  ground is covered  b y  a reflective  m ateria l, 

such as snow, the solar heating of the ground is inhibited and the diurnal cycle will not be
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present in the noise field. The influence of the ground cover on the magnitude of the diurnal 

noise field variations can be seen in the Fairbanks noise field estimations. The character 

of the infrasonic noise field at the Fairbanks array did not vary diurnally in the winter. 

During the summer months a diurnal cycle in the noise field was observed. The emergence 

of a diurnal cycle corresponded to the annual melting of the snow cover in Fairbanks. The 

influence of the ground cover on the diurnal cycle was further supported by the lack of a 
diurnal cycle at Windless Bight, where the snow cover is persistent.

The turbulent pressure fluctuations caused by wind flow can change the shape of the 

noise power spectrum in a non-trivial manner. The rate at which power contained in 

the noise field increases with wind speed is dependent on the frequency of the pressure 

fluctuations. Both arrays displayed qualitatively similar frequency dependence in the rate 

of increase of the noise power with local wind speed. The noise power increased most rapidly 

at frequencies in the neighborhood of 0.08 Hz at both the Fairbanks and Windless Bight 

arrays. A local minimum was observed in the noise power rate of increase at the arrays 

for a frequency of approximately 0.32 Hz. The high frequency behavior of the noise power 

rate of increase differed between the Fairbanks and Windless Bight arrays. The rate of 

increase of noise power with local wind speed decreased for frequencies higher than 1 Hz for 

all seasons at Fairbanks and during the summer months at Windless Bight. The remaining 

three seasons at Windless Bight exhibited a continuing increase in the noise power rate of 

increase for frequencies greater than 0.32 Hz. The magnitude of increase with frequency 

of the noise power is influenced by the terrain at the location of the array. The noise 

power growth rate at Fairbanks was consistently greater than the growth rate at Windless 

Bight. The difference in the noise power rate of increase suggests that the terrain in which 
the Fairbanks array is situated is more efficient at converting the wind flow into turbulent 

pressure fluctuations. The frequency dependence of the noise power rate of increase with 

local wind speed will prove to be an important feature of the noise field affecting not only 

the shape of the noise power spectrum at different wind speeds, but also the frequency 

characteristics of the coherence spectrum of the noise field.

The infrasonic noise field estimated at both the Fairbanks and Windless Bight arrays
d id  n o t possess th e  idea lized  w h ite  n oise  p ow er sp ectru m . W h ile  th e  in frason ic  n oise  field 

was found to violate the GWU noise model, the performance of the least squares parameter
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estimate was not confounded if the data was bandpass filtered prior to estimation of the 

parameters. A study of the effects of the empirical noise field found that the effect of 

the empirical noise field on the performance of the least squares parameter estimate was 

analogous to the effects of decreasing the signal-to-noise ratio of the data when the data 

was first bandpass filtered. If the data was not first bandpass filtered, the empirical noise 

field greatly reduced the performance of the least squares parameter estimate for signal-to- 

noise ratios less than 5 dB. The study done on the effects of the empirical noise assumed 

uncorrelated noise. The presence of clutter in the infrasonic noise field suggests that the 

noise field could be correlated. In the next chapter the correlation of the infrasonic noise 
field will be explored for both array locations.
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Chapter 5
Correlation of the Infrasonic Noise Field

5.1 Introduction

The infrasonic noise field is commonly assumed to be uncorrelated at the spatial separations 

of the IS53 and IS55 array elements, on the order of 100 m .39,43,41 Under the assumption 

of Gaussian, white, uncorrelated (GWU) noise, the least squares parameter estimate is the 

minimum variance unbiased parameter estimate.19 The infrasonic noise fields estimated at 

the Fairbanks and Windless Bight arrays were not white noise. The effects of the empir­

ical infrasonic noise field on the least squares estimate were explored in Section 4.4. The 
assumption of an uncorrelated noise field and the effects of a correlated noise field on the 

least squares estimate of azimuth and trace velocity are explored in this chapter.

The accuracy of the least squares estimation of azimuth and trace velocity is dependent 

on the accuracy of the estimation of the lag vector from the recorded pressure data. When 

the infrasonic noise field is uncorrelated, the lag vector calculated by cross-correlation cor­

responds to the signal of interest at sufficiently high signal-to-noise ratios. The inclusion of 
correlated clutter in the infrasonic noise field changes the model of the sensor input from 

the assumed signal of interest plus additive uncorrelated noise29,19 to

N
y[n] =  Sinterest W +  +  WM> (5-1)

i=1

where Sinterest is the signal of interest, st is the ith the clutter signal, and w is the additive un­

correlated noise. With this new sensor input model the lag returned by the cross-correlation 

function is dependent on the relative signal strengths of the signal of interest and the clutter 
signals.

The clutter observed in the infrasonic noise field at Fairbanks and Windless Bight are 

correlated signals across at least part of the arrays.3,9,10 To determine the effects of a corre­

lated noise field on the least squares estimate of azimuth and trace velocity, the coherence 
spectrum of the noise field present at Windless Bight and Fairbanks was estimated from 

the recorded data. The coherence spectrum of the infrasonic noise field allowed for the 

identification of correlated clutter sources. A sense of the typical coherence level of the 
various clutter signals in infrasonic noise field was constructed by examining the estimated 

coherence spectra. Seasonal and diurnal fluctuations in the coherence spectrum were ex­
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plored and the sources of the variation identified to provide a better understanding of the 

correlation of the noise field as a function of time. The result of the estimation of the 

infrasonic noise field coherence spectrum was an qualitative sense of the typical coherence 

spectrum at both array locations for each season and time of day.

In Section 4.3.3, it was found that the power contained in the 6 Hz clutter decreased at 

high local wind speeds. The power decrease of the clutter signal indicated that the turbulent 

pressure fluctuations produced by the local wind flow affected the ability to detect the clutter 

signal by decreasing the signal-to-noise ratio. A decrease in the signal-to-noise ratio of the 

clutter signal will result in a decrease of the clutter correlation level. The effect of the local 
wind on the estimated infrasonic noise coherence spectrum was investigated for both array 

locations. Knowledge of the effect of the local wind on coherence further improved the 

understanding of the sources and behavior of the coherent power in the noise field.

With a knowledge of the qualitative nature of the coherence spectrum at IS53 and 

IS55, a numerical simulation was performed to determine the effects of coherent noise on 

least squares estimates of azimuth and trace velocity. The estimated infrasonic noise field 

coherence spectra were used to produce surrogate, correlated noise data. The surrogate 

noise data was then used to corrupt a synthetic signal with a known azimuth and trace 

velocity. The azimuth and trace velocity were estimated from synthetic data at a range of 
signal-to-noise ratios and noise field correlation levels. The performance of the least squares 

estimates with correlated noise was then compared to the performance of the minimum 
variance unbiased estimate, the least squares estimate with GWU noise.

5.2 Correlation of the Noise Field

In Chapter 4 the noise fields present at IS53 and IS55 were found to be composed of two 

elements, clutter and turbulent pressure fluctuations from wind and convective heating. The 

most prominent clutter at both arrays was in the microbarom frequency band. Previous 

work done with microbaroms 2,3,54,53 has shown that the signals can be coherent across arrays 

with sensor separations comparable to the separations of the inner triangle of microphones 

at the Fairbanks and Windless Bight arrays. Other clutter present in the infrasonic noise 
field at the arrays m a y  also  be corre la ted  between the array elements. The level of clutter 

coherence must be determined in order to produce synthetic, correlated data to use in
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numerically determining the effect of correlated noise on the least squares estimates of 

azimuth and trace velocity.

5.2.1 Method

The similarity of the data recorded at two sensor locations can be estimated in the time 

domain with the cross-correlation of the two data sets or, in the frequency domain, with 

the coherence function. The time and frequency domains are equivalent in time series 

analysis.31 Either the cross-correlation or the coherence can be used to determine the level 

of similarity of the noise field at two spatially separated locations in the array. The frequency 

domain measurement has several advantages over the time domain measurement. The cross­

correlation function has the disadvantage that it is calculated without regard to frequency, 

and correlated energy at any frequency results in a high correlation value. The usage of the 

cross-correlation function to measure the similarity of the data would require that the data 

be bandpass filtered to isolate the correlated microbaroms. The coherence describes the 
correlation of the two data segments as a function of frequency.31 The coherence spectrum 

of the noise field can be used to identify the frequencies of the correlated energy contained 

in the infrasonic noise field. Since the coherence spectrum estimates the correlation of the 

noise field at a range of frequencies, no bandpass filtering is required to isolate the highly- 

correlated clutter. The value returned by the cross-correlation function is also dependent on 

the chosen data window length, which introduces an additional parameter in the estimation 

of the noise field correlation. The coherence function has the additional advantage that it 

is insensitive to the choice of the data window length. A possible disadvantage of using 
coherence to estimate the correlation of the noise field is that most of the previous work 

done concerning the correlation of the noise field has been done in the time domain. The 

coherence of the noise field was investigated instead of the correlation of the noise field to 

take advantage of desirable properties of the coherence function.

The magnitude square coherence (MSC) is estimated by

Cxy{f) = k { f )P y { fy  (5-2)

where Pxy{ f ) is the cross power spectrum of the time series x  and y, Px ( f ) is the power 

spectrum of x, Py{ f )  is the power spectrum of y, and /  is the frequency.31 The power
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spectra used to calculate the coherence were calculated using the Welch method of spectral 

estimation.36 The data recorded at Fairbanks and Windless Bight were segmented into three 

minute data segments. Window closing techniques31 were used to determine the optimal 

data window length for the raw data. The effect of different window lengths was to make 

small changes in the fidelity and stability of the estimate of the coherence spectrum. A data 

segment length of three minutes produced stable estimates of the coherence spectra that 

correspond to the noise power spectra previously calculated. Three minute data segments 

were chosen to maximize the stability of the power spectrum estimate while preserving 

the fidelity of the estimated PSD. During the application of the Welch method of spectral 
estimation, the three minute data segments were further segmented into four subwindows 

that were 1024 samples long. The number of samples in the subwindows was chosen to 

optimize the calculation speed of the periodograms. The subwindows were overlapped by 

515 samples to minimize the number of data samples omitted at the end of the data segment 

and give an overlap of approximately fifty percent. The magnitude square coherence of the 

three minute windows was then estimated using the resulting PSDs and Equation 5.2. 

Statistical methods were used to determine the coherence of the noise field present at both 

the Fairbanks and Windless Bight arrays. To improve the statistics of the coherence of 
the noise field and to filter out the effects of signals, an ensemble of coherence spectra was 

produced. The data were segmented into three minute data subsets and the coherence 

spectrum was then calculated for each three minute data segment for each of the 28 unique 

microphone pairs.

To improve the statistics of the noise coherence estimate, the 28 estimates of the co­

herence (each a unique intersensor vector separation) were combined into ensembles of 

coherence spectra. It has been empirically shown that the coherence of a signal decreases 

as the spatial distances between of sensors recording the signal is increased.12,55 Qualitative 

comparison of 28 coherence spectra estimates revealed that the coherence of data sets with 

small intersensor distances, approximately 200 m, could be combined into an ensemble with­

out a loss of fidelity. Three of the 28 sensor pairs had this small intersensor distance and 

were combined into a “small” separation ensemble. The coherence spectra of the remaining 
25 sensor pairs, w ith  in tersensor d istan ces o f  ap p rox im a te ly  1 k m  (a  range from  0 .8  k m  to  

a maximum of 2 km with an average intersensor distance of 1 km), were combined into a
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“large” separation ensemble. The statistics of the noise field coherence spectrum were fur­

ther improved by including all the coherence spectra estimates for an hour time block into 

the small or large separation ensembles, depending on the particular intersensor separation.

The number of hours that could be included together in the ensembles at the Fairbanks 

array was dictated by the observed diurnal cycle in the noise power spectra. To investigate 

whether or not the pressure fluctuations produced by the convective heating causing the 

diurnal cycle observed in the noise field power spectra estimates are coherent, the coherence 

spectra produced from the data for three hour time blocks were combined into ensembles 

centered on sunrise, sunset, noon, and midnight local time. The three hour time blocks 
were chosen to maximize the number of days that could be included in the ensembles 

without the time blocks overlapping and mixing the potential effects of the diurnal cycle 

on the coherence spectra. The local times of sunrise and sunset for Fairbanks were shown 

in Figure 4.1. When the time blocks overlapped the coherence spectra for those days were 

excluded from the coherence spectra ensembles. June 18-25 and December 18-25 for the 

Fairbanks and February 1-20, April 24 - 30, August 1-18, and October 16-31 for Windless 

Bight were excluded from the ensembles. More days were excluded at Windless Bight due 

to its higher latitude. This temporal grouping is identical to the groupings used in the noise 

field power spectra chapter.

The window closing continued with the grouping of days, weeks, and months to improve 

the statistics of the noise field coherence spectra. The character of the microbaroms vary 

between months at both array locations. The microbaroms are known to be coherent 

and the variation of the microbaroms must be considered while continuing to build the 

statistical ensemble. The small separation monthly ensembles of coherence spectra for each 
of the four time periods consist of approximately 5,400 realizations of the small separation 

noise coherence spectrum. The monthly large separation ensemble contained over 40,000 

realizations of the large separation noise coherence spectrum. The size of the ensembles can 

be increased by combining the months seasonally, but the loss of fidelity in the estimate 

of the coherence spectrum makes this grouping undesirable at Fairbanks. The character 

of the microbaroms does not vary as much at Windless Bight and seasonal groupings were 
used for  th e  n oise coh eren ce  th ere t o  im p rove  th e  s ta b ility  o f  th e  estim a te  o f  the coh eren ce  

spectrum.
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5.2.2 Results

Monthly representations of the noise field coherence spectrum at both the Fairbanks and 

Windless Bight arrays were produced for the years of 2005 and 2006 using the described 

method. The noise field coherence spectra at Fairbanks exhibited seasonal and daily varia­

tions in both the small and large separation ensembles. Seasonal similarities were observed 

in the qualitative characteristics of the monthly coherence spectra at the Fairbanks array. 

In the interests of clarity and compactness, sample coherence spectrum plots from each of 

the seasons will be shown instead of the coherence plots for each month.

IS53 Coherence Spectra Results

The 2005 and 2006 noise field coherence spectra were qualitatively similar during the months 

of March and April at the Fairbanks array. The coherence spectrum for March 2005, shown 

in Figure 5.1, was used as the representative noise field coherence spectrum for the spring 

coherence spectrum at the Fairbanks array. The variance in the coherence spectrum was 

on the order of 0.01 for both the small and large separation estimates. The small and large 

separation coherence spectra for each of the four time blocks for the month of March are 

shown Figure 5.1. The coherence spectra for the three hours centered on local midnight 

are shown in the top left panel of Figure 5.1. The coherence spectra for sunrise, noon, 

and sunset are shown in the top right, bottom left, and bottom right panels of Figure 5.1 

respectively. The red curves in each panel of the figure denote the noise field coherence 

spectra for the small separation sensors during the three hour time blocks. The blue lines 

correspond to the coherence spectra for the large separations sensor during the time blocks. 

By design, the magnitude square coherence, shown on the y-axis, varies between a value 

of zero and one.29’31 A MSC of one indicates the power contained at the frequency is 

perfectly correlated. The expected MSC value for GWU noise was estimated to be 0.14 

using numerical simulation techniques and will be discussed in Section 5.2.3. The estimated 

frequencies, shown with a log scale along the x-axis, vary between 0.02 and 10 Hz.

Two distinct coherence peaks were observed at low frequencies in the large separation 

noise field coherence spectra for the spring season at the Fairbanks array. The higher 
frequency peak, which is present during all four time blocks, was produced by coherent
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Coherence for IS53 (Midnight March 2005)

Frequency (Hz)

10 1<f 10
Frequency (Hz)

Coherence for IS53 (Sunrise March 2005)

Frequency (Hz)

Coherence for IS53 (Sunset March 2005)

Frequency (Hz)

Figure 5.1. The sample spring noise field coherence spectrum at the Fairbanks array. The 
coherence spectrum for March 2005 was used as the representative spring noise field coher­
ence spectrum at Fairbanks. The red curves depict the coherence spectra of the noise field 
for intersensor separations of approximately 200 meters, the small separations. The blue 
curves are the coherence spectra for intersensor separations on the order of a kilometer, 
the large separations. The sample time windows of midnight, sunrise, noon, and sunset are 
shown in the top left, the top right, the bottom left, and the bottom right, respectively. 
The monthly median local wind speed is not shown on this plot due to a lack of wind data 
during the month of March.
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microbarom signals propagating across the array. The coherence of the microbaroms sig­

nals peaked around a frequency of 0.2 Hz for this study. Typical microbarom frequencies 

observed at the Fairbanks array range from 0.125 to 0.3 Hz,3 so the frequency location of 

the microbarom coherence peak estimated for the large sensor separations fell within the 

observed microbarom frequency range.

Coherent mountain associated waves9 (MAW) and high trace velocity events10 (HTV) 

produce the lower frequency coherence peak observed in the large separation coherence 

spectra. Both MAW and HTV are low frequency waves, with frequencies typically ranging 

from 0.014 to 0.05 Hz.8’9 The maximum coherence of the second peak in Figure 5.1 occured 
around 0.06 Hz. The center of the estimated lower frequency coherence peak occurred at a 

higher frequency than expected for MAW or HTV. The frequency position of the second peak 
is due to the sparsity of the coherence estimates at low frequencies. Estimating the coherence 

spectrum following the method described above resulted in a gap in the frequency estimates 

at the expected frequency of maximum coherence of M AW /HTV waves. The coherence 

estimates closest in frequency space to the expected maximum for M AW /H TV were the 

coherence estimates at 0.0586 and 0.0391 Hz. Consequently, the apparent coherence peak 

of MAW occured at a higher-than-expected frequency. Additionally, the height of the large 
separation M AW /HTV coherence peak varied between the noon time block and the other 

time blocks. The height of the M AW /H TV peak estimated during the midnight, sunrise, 

and sunset time blocks was comparable to the height of the microbarom coherence peak. 

The M AW /H TV coherence peak observed during the March noon block was noticeably 
smaller than the noon microbarom coherence peak.

At large separations the microbaroms and M AW /HTV coherence peaks were distinct 

during the month of March at Fairbanks. The two distinct large separation low frequency 

coherence peaks merge into a broad coherence peak for the small separation coherence 

spectra. The maximum of the coherence peak for small separations corresponded to the 

frequency of the microbarom peak seen in the large separation coherence spectra. The 

high coherence level, just under 0.9, of the microbaroms at small separations caused the 

width of the microbarom coherence peak to increase. The M AW /H TV coherence peak was 
n ot v is ib le  in  th e  n o o n  sm all sep aration  sp ectru m  du e to  th e  m u ch  g rea ter coh eren ce  o f  

the microbaroms. Since the noon M AW /H TV signal had a significantly lower coherence
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level than the microbarom signal, the side lobes of the noon microbarom peak were able to 

completely mask the smaller M AW /HTV coherence peak. The width of the microbarom 

peak also made it difficult to determine the exact frequency location of the small separation 
M AW /HTV peak during the noon, midnight, and sunrise blocks. The apparent frequency 

location of the M AW /H TV peak in the sunset block appeared to shift toward a higher 

frequency in the small separation coherence spectrum. When the M AW /H TV peak was 

clearly visible in the spring coherence spectra, the apparent frequency location of the peak 

was consistently shifted toward higher frequencies. The apparent frequency shift of the 

small separation M AW /HTV peak was most likely due to highly correlated elements of the 

M AW /HTV signal with less power than at frequencies around 0.06 Hz. The decrease in the 

coherence with increasing intersensor separations was expected from previous studies con­

ducted on the correlation of acoustic signals.12,55 The lower power of the highly correlated 

elements of the M AW /H TV signals meant the random pressure fluctuations cause a greater 

decrease in the correlation value at in the highly correlated elements than at 0.06 Hz. A 
separate signal that is coherent only at the small separations seems unlikely due to the fact 
that the 0.08 Hz small separation coherence peak was never observed when the M AW /HTV 

coherence peak was absent from the large separation coherence spectrum.

A high frequency coherence peak was observed at approximately 6 Hz in the small and 

large separation spring coherence spectra. This high frequency peak was produced by a 

near field signal from a building located near the array on the UAF campus (K. Arnoult, 

personal communication, September 2006). The peak was present during all four of the time 

blocks shown in Figure 5.1. The differences in the coherence of the 6 Hz signal between 

the time blocks were caused by difference in the local wind speeds and will be discussed in 

Section 5.3.2. Other high frequency coherence peaks were observed in the spring time small 

separation coherence spectra. The additional high frequency coherence peaks were not as 

well defined at the 6 Hz peak and absent in the large separation coherence spectra. The 

small coherence hump at approximately 2 Hz, while not clear in Figure 5.1, was persistent 

in the spring small separation coherence spectra. The level of coherence for the human 

activity coherence peaks was approximately equal to the background coherence observed at 
the F airbanks array, w ith  th e  ex ce p t io n  o f  th e  coh eren ce  peak  at 8 H z w h ich  is o f  u nk n ow n  

origin.
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The character of the noise field coherence spectrum changed markedly during the months 

of May, June, and July. The coherence spectra estimated from the data collected during 

June 2005, shown in Figure 5.2, were used as the representative summer noise field co­

herence spectra. The layout of the summer coherence spectrum plot was kept consistent 

with Figure 5.1. The frequency and coherence scales were also kept consistent with the 

spring coherence spectrum plot to facilitate direct comparison. The coherence of the low 

frequency peaks was generally less during the summer months than in the spring months. 

The M AW /HTV coherence peak was completely absent from the estimated summer coher­

ence spectrum for the noon block. The large separation coherence spectra for the other 
time blocks had a coherence peak at frequencies corresponding to M AW /H TV signals. The 

microbarom coherence peak was not clearly observed in the large separation coherence spec­
tra for the midnight, sunrise, and sunset time blocks during the summer months. A small 

microbarom coherence peak was seen in the estimated large separation coherence spectrum 

during the noon block.

The small separation microbarom coherence peaks seen during the summer season were 

smaller than the small separation microbarom coherence peaks seen during the spring sea­

son. The less coherent microbarom signals resulted in a coherence peak that was restricted 
in width. The summer small separation microbarom coherence peak estimated during the 

noon time block was particularly suppressed from the coherence level observed during the 

spring. The same frequency location shift of the small separation M AW /H TV seen in the 

spring occured during the summer. No clear pattern of variation in the high frequency 

coherence peaks was observed between summer and spring.

The coherence plots for August and September^ were qualitatively similar to the coher­

ence plots for spring. In the interest of compactness, a separate fall coherence plot is not 

shown. The final representative Fairbanks array coherence plot illustrates the qualitative 

behavior of the coherence spectrum during the winter months of November, December, and 

January. The months of February and October show qualitatively similar behavior to the 

winter months, but the level of coherence is less than November, December and January. 
The coherence spectra for December 2005, shown in Figure 5.3, will be a representative 
winter plot due to the qualitatively similar behavior of the winter months. The daily vari- 

* Spring and fall are the shoulder seasons of winter, which runs from October to March in Fairbanks.
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Coherence for IS53 (Midnight June 2005)

Frequency (Hz)

Coherence for IS53 (Noon June 2005)

Frequency (Hz)

Coherence for IS53 (Sunrise June 2005)

Frequency (Hz)

Coherence for IS53 (Sunset June 2005)

Frequency (Hz)

Figure 5.2. Sample summer noise field coherence spectrum for the Fairbanks array. The 
red curves display the coherence spectra of the noise field for intersensor separations of 
approximately 200 meters, the small separations. The blue curves are the coherence spectra 
for intersensor separations on the order of a kilometer, the large separations. The sample 
time windows of midnight, sunrise, noon, and sunset are shown in the top left, the top right, 
the bottom left, and the bottom right, respectively. The median monthly local wind speed 
for each time block is included with each coherence spectrum.
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ation observed in the coherence spectra estimated during spring, summer, and fall was 

absent during the winter months. The coherence of the microbaroms and M AW /H TV was 

greater during the winter months than in any other season. The small separation coherence 

maximum was again located at the expected frequency of the microbarom signals. The co­

herence of the microbaroms estimated during the winter months was slightly greater than 

0.9 for all time blocks. The exact value of the M AW /HTV coherence cannot be determined 

for the small separation coherence spectra due to the width of the microbarom coherence 

peak at small separations. A crude estimate of the frequency location of the small separa­

tion M AW /H TV appeared to continue the trend of the peak location of the M AW /HTV 
shifting toward higher frequencies. At large separations the coherence of the M AW /HTV 

was estimated at more than 0.4 for all time blocks. The coherence of the M AW /H TV and 

microbarom signals was comparable for the large separation ensemble during the winter. 

The high frequency coherence peaks varied only slightly between the times of day during 

the winter. The diurnal variation in the high-frequency peaks observed during the winter 

was the less than the summer, spring, and fall seasons.

IS55 Coherence Spectra Results

No obvious seasonal variation in the noise field coherence spectrum estimated at the Wind­

less Bight array was observed. Since the estimated noise field coherence spectrum did not 

qualitatively vary seasonally, only the coherence of the noise field during the austral win­

ter of 2006, shown in Figure 5.4, was used to represent the coherence of the noise field at 

Windless Bight. Since the sun is always down during the winter at Windless Bight the time 

blocks are centered at 6:00 a.m., 12:00 a.m., 6:00 p.m., and 12:00 p.m. local time. The 

layout and scale of Figure 5.4 is identical to the noise field coherence spectrum plots of the 
Fairbanks array data. The local median wind speeds during the four time blocks were not 
included in Figure 5.4, for the reason discussed in Section 5.3.2.

The large separation microbarom and M AW /H TV peaks at Windless Bight were not 

as distinct as those in Fairbanks during the spring, winter, and fall. The low coherence of 

the large separation microbarom signals and M AW /HTV signals coupled with the breadth 
of the coherence peaks made it difficult to identify well-defined peaks corresponding to 

the M AW /HTV and microbaroms at Windless Bight. The microbarom coherence peaks,
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Coherence for IS53 (Midnight December 2005)
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Coherence for IS53 (Noon December 2005)

Frequency (Hz)

Coherence for IS53 (Sunrise December 2005)

Frequency (Hz)

Coherence for iS53 (Sunset December 2005)
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Figure 5.3. Sample winter noise field coherence spectrum for the Fairbanks array. The 
red curves depict the coherence spectra of the noise field for intersensor separations of 
approximately 200 meters, the small separations. The blue curves are the coherence spectra 
for intersensor separations on the order of a kilometer, the large separations. The sample 
time windows of midnight, sunrise, noon, and sunset are shown in the top left, the top right, 
the bottom left, and the bottom right, respectively. The median monthly local wind speed 
for each time block is included with each coherence spectrum.
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Coherence for IS55 (Midnight Winter 2006)

Frequency (Hz)

Coherence for IS55 (Noon Winter 2006)

Frequency (Hz)

Coherence for IS55 (Sunrise Winter 2006)

Frequency (Hz)

Coherence for IS55 (Sunset Winter 2006)

Frequency (Hz)

Figure 5.4. Sample noise field coherence spectrum for the Windless Bight array. The 
red curves display the coherence spectra of the noise field for intersensor separations of 
approximately 200 meters, the small separations. The blue curves are the coherence spectra 
for intersensor separations on the order of a kilometer, the large separations. The sample 
time windows of midnight, sunrise, noon, and sunset are shown in the top left, the top 
right, the bottom left, and the bottom right, respectively. The local wind speeds recorded 
at Windless Bight were not used in the local wind speed study and are omitted from these 
plots.
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shown in Figure 5.4, occured at frequencies between approximately 0.15 and 0.2 Hz. The 

frequency location of the microbarom coherence peaks estimated at Windless Bight were 

within the expected frequency band of the microbarom signals. The M AW /H TV peak was

M AW /HTV was always slightly less than the coherence of the microbarom peak for all 
time blocks. Determining the exact location of the peak coherence of the M AW /H TV was 
complicated due to the overlap of the peaks, but the peak coherence appeared to occur at 

a frequency between 0.06 and 0.08 Hz. The location of the large separation M AW /HTV 

coherence peak was similar to the Fairbanks peak.

A single large coherence peak was observed in the small separation noise field coherence 

spectrum estimated for the Windless Bight array. This large coherence peak was located at 

a frequency between 0.16 and 0.2 Hz. The frequency of the coherence peak corresponds to 

the expected frequencies of microbarom signals.3 The shape of the coherence curve seen at 

Windless Bight was qualitatively similar to the curves observed at the Fairbanks array when 

the coherence peak of the large separation M AW /H TV signals was small or not observed. 

The maximum coherence level of the data recorded was approximately 0.85. The maximum 

coherence level estimated was less than the maximal coherence during the winter months 
at Fairbanks.

A persistent 2 Hz coherence peak was observed at the Windless Bight array. This high 

frequency bump was persistent across all time blocks and all seasons at the Windless Bight 

array. This small 2 Hz coherence bump was also observed during the winter, spring, and 

fall months at the Fairbanks array, although not as clearly as at Windless Bight. The 

height of the 2 Hz coherence peak observed at the Windless Bight array was much less 

than the previously discussed coherence peaks at the Windless Bight and Fairbanks arrays. 

To determine if such a small coherence peak is statistically relevant, the variance of the 

coherence spectrum estimates must be taken into account. The variance of the magnitude 
square coherence spectral estimate is given by

not distinct in any of the estimated coherence spectra. The estimated coherence of the

®coherence (5.3)

where

(5.4)
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T  is the total length of the data record, and w{n) is the smoothing window used in the 

estimation.31 The window used in the estimation of the coherence spectrum was a Hamming 

window, defined as

w{n) =  0.54 -  0.46 cos - j  , (5.5)

where 0 <  n <  L — 1 and L is the length of the smoothing window.29 Using Equation 5.3, 

the variance of the coherence spectral estimate was calculated to be 0.01. A variation in 

the coherence of less than the variance is not statistically significant and must be ignored. 

The height of the 2 Hz coherence peak above the surrounding local coherence level was 
larger than the variance of the coherence estimate. The 2 Hz coherence peak was therefore 

a statistically significant feature of the Windless Bight noise field coherence spectrum.

The source of the 2 Hz coherence bump remains unclear. The breadth of the 2 Hz 

frequency bump points toward an acoustic source rather than an electronic source of the 

coherent energy since the peaks produced by electronics are generally very sharp in fre­

quency space. At the Windless Bight array a coherent signal from human activity was 

unlikely during the winter months due to the remote location of the array. The generator 

that charges the batteries used to run the electronics of the array is located near the inner 

triangle of the Windless Bight array. An acoustic wave produced by the generator was 

also excluded as the source of the coherent energy at the small separation Windless Bight 

sensors. Estimates of the noise field coherence spectrum were made with data collected 

during the times the generator was in operation and the times when the generator was not 

in operation. The 2 Hz coherence peak remained unaltered between the generator on and 

generator off data ensembles. A lee wave produced by the building housing the generator 

was investigated as a possible source of the 2 Hz coherence peak. If the coherence bump 

were caused by a correlated lee wave, changes in the median local wind speed should re­

sult in alterations in the 2 Hz frequency bump. The coherence bump remained constant 

between periods with different local wind speeds. The final possible source of the 2 Hz 

coherence bump investigated was the wind reducing pipe array. The wind reducing pipe 

array was also excluded as the source of the coherence bump. The bump was observed at 

both the Fairbanks and the Windless Bight arrays. The wind reducing arrays used at the 
two locations have different geometries. Any coherent signal produced by the geometry of 

one of the wind reducing arrays should not be produced by the other wind reducing array.
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Although the source of the 2-Hz coherence bump remains unknown, the coherence level of 

the signal is very low. The effect of such a low coherence on the least squares estimate of 

the azimuth and trace velocity of signal of interest will be explored in Section 5.4.

5.2.3 Discussion

Seasonal and Daily Variation in the Low-Frequency Coherence

The estimated noise field coherence spectrum was observed to vary seasonally at the Fair­

banks array. During spring, summer, and fall the noise field coherence spectrum also varied 

as a function of the time of day for which the estimate was made. The seasonal and daily 

variation was observed in both the microbarom and the M AW /HTV coherence peaks. The 

near-field coherent signal, at 6 Hz, did not vary seasonally at the Fairbanks array. To ex­
plore the variation in the microbarom and M AW /HTV coherence peaks it was necessary 

to be able to clearly identify the separate coherence peaks. To this end, the analysis of the 

M AW /HTV variation was done with the large separation coherence spectrum estimates. 

The microbarom coherence peak was distinguishable in both the small separation and large 

separation coherence spectrum estimates. The observed seasonal variations in the micro­

barom coherence peak were greater in the small separation coherence spectrum estimates. 

To assist in the analysis of the seasonal variations of the microbarom coherence peaks, the 

small sensor separations estimates of the microbarom coherence were used.

The M AW /HTV coherence peak was observed in the large separation coherence spec­

trum estimates during every month of the year at the Fairbanks array. The prevalence 
of the M AW /H TV coherence peak varied both seasonally and diurnally at the Fairbanks 

array. During the winter months a qualitatively similar M AW /HTV coherence peak was 

present during all times of the day with only slight differences in the quantitative coherence 

level. The estimated coherence of the M AW /H TV signals during spring displayed a general 

decrease in the level of coherence for all estimated daily time blocks. A diurnal variation in 

the coherence of the M AW /H TV signals was also observed during the spring months at the 

Fairbanks array. The M AW /H TV coherence peak estimated during the noon time block of 

March was noticeably smaller than the M AW /H TV coherence peak estimated during the 
other daily time blocks. As the year progressed, the height of M AW /HTV coherence peak
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estimated during all time blocks continued to decrease, reaching a minimum coherence value 

during the month of June. The estimated M AW /H TV coherence peaks at all time blocks 

remained near the minimal coherence level until August. The much lower M AW /HTV 

coherence peak estimated for the spring noon time blocks disappeared for the noon time 

coherence spectrum estimates during the summer months. The M AW /H TV coherence peak 

remained absent from the noon time block until the coherence spectrum estimated during 

August. The height of the estimated M AW /H TV coherence peaks steadily increased for the 

sunset, sunrise, and midnight time blocks as the year progressed from summer to winter. 

No noticeable difference in the rate of increase of the estimated M AW /H TV coherence was 
observed between the three time blocks. The M AW /H TV coherence peak estimated during 

the noon time block increased at a greater rate than the estimated M AW /HTV coherence 

peaks during the other three time blocks. The M AW /H TV coherence estimated during 

the noon time block increased at a slightly greater rate than the other three time blocks 

from August to October. A large jump in the M AW /H TV coherence peak estimated during 

the noon time block was observed from October to November. The M AW /HTV coherence 

peaks for all time periods returned to the winter coherence levels by the month of Novem­

ber. The pattern observed in the seasonal variation of the estimated M AW /H TV coherence 
peaks for the year 2006 was qualitatively similar.

A seasonal and diurnal variation in the microbaroms coherence peak was also observed 

in the coherence spectra estimated at the Fairbanks array. The estimates of the microbarom 

coherence were maximal during the winter months. The winter month did not display a 

diurnal variation in the estimated microbarom coherence peak. The estimated coherence of 

the microbarom signal recorded at the Fairbanks array began to decrease from the winter 

maximum for all four time blocks during the month of March. The decrease in the estimated 

microbarom coherence in March from the previous months was approximately equal between 

the diurnal time windows. The estimated microbarom coherence continued to decrease 

during the month of April, but the observed decrease in coherence was no longer independent 

of the time of day for which the coherence spectrum estimation was made. The midnight, 

sunset, and sunrise time blocks displayed a slight decrease of approximately 0.2 in the 
estimated coherence of the microbaroms. The decrease in the coherence of the microbaroms 

estimated during the noon time block was more pronounced, decreasing by approximately
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0.6 from the coherence estimated during the winter months. A more pronounced decrease 

in the estimated microbarom coherence was seen during all estimated time blocks in May. 

The coherence drop observed during the month of May was most drastic for the estimated 

noon microbarom peak, which decreased from 0.8 to slightly less than 0.4. The decrease 

in the estimated microbarom coherence was no longer constant between the remaining 
three time blocks during the month of May. The decreases in the microbarom coherence 

were 0.12, 0.1, and 0.14 for the midnight, sunrise, and sunset time blocks respectively. 

The pattern in the slight differences in the decrease in the estimated coherence of the 

microbaroms was also observed during the month of May in 2006. The estimated coherence 
of the microbaroms reached a minimum during the month of June, shown in Figure 5.2, 

for all estimated time blocks. The microbarom coherence estimated during the noon time 
was much less than microbarom coherence estimated for the other times during the month 

of June. Due to the close temporal proximity of the midnight, sunrise, and sunset time 

blocks during the month of June, it was not surprising that the estimated coherence of the 

microbaroms during these three time blocks was comparable. The microbarom coherence 

peak estimated during the sunrise, sunset, and midnight time blocks began to increase in 

July. A slight coherence increase of 0.06 in the microbarom coherence estimated during 

the midnight and sunrise time blocks was observed in the July coherence spectra. The 

coherence increase seen during the July sunset time block was approximately 0.12. No 

discernible increase in the microbarom coherence estimated during the July noon time block 
was observed. For the remaining months of 2005, the microbarom coherence estimated 

during midnight, sunset, and sunrise time blocks continued to slowly increase. During the 

months following July the estimated noon time microbarom coherence peak began to rapidly 

increase. The microbarom coherence peaks estimated during all time blocks returned to 

their estimated winter coherence levels in November. The pattern in the estimated 2005 

microbarom coherence data was repeated in 2006.

The observed seasonal and diurnal variations in the estimated M AW /H TV and micro­

barom coherence peaks have several possible sources. A seasonal variation in the detection 
of the mountain associated waves and high trace velocity events has been observed in a 
stu d y  o f  th e  in frasou n d  d a ta  co lle c te d  at the F airbanks array fo r  2004-2006 (D. Lee, per­

sonal communication, March 2007). The data survey was conducted by bandpass filtering
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the data recorded at the Fairbanks array with a passband between 0.015 and 0.1 Hz and 

recording data sets with mean value of the 28 estimated cross-correlation maximum greater 
than 0.6 as detections of a M AW /HTV signal. The least squares estimate of wave trace ve­

locity was used to differentiate between the mountain associated and the high trace velocity 

events. The high trace velocity signals were defined to have trace velocity estimates greater 

than 0.780 km/s and less than 1.5 km/s. Detections with trace velocity estimates less than 

0.585 km/s were defined as mountain associated waves. The detection of M AW /HTV sig­

nals at the Fairbanks array peaked during the winter months and was minimal during the 

summer months. The pattern of M AW /H TV detections at the Fairbanks array arrived at 
by this study agreed with the observed seasonal variation in M AW /H TV coherence peaks. 

It is unclear if the seasonal variation in the M AW /H TV detections was due to a decrease in 

the production of the acoustic waves or if the waves are produced but not correlated at the 

Fairbanks array. The question of detection or production will be addressed in Section 5.3.2.

The seasonal variation in the detection of microbarom signals has been observed at many 

infrasound arrays.2,3,54,53 The source of this variation has been attributed to a variation in 

the propagation path of the infrasonic signals due to atmospheric winds, the proximity of 

the source, and the size and extent of the ocean swells producing the infrasound.2,53 Garces 
et al. demonstrated a correlation between the prevailing wind direction in the tropopause 

and the stratopause above an array and the microbarom azimuth of arrival. 53 The sound 

speed of a wave is a function of temperature and wind speed given by the formula,

cs =  y/jRT +  k ■ W , (5-6)

where k is a unit vector in the direction of sound wave propagation, W  is the wind velocity, 

T is the temperature, R  is the gas constant, and 7  is the ratio o f specific heats. 54 A acoustic 

wave will reflect when there is a positive gradient in the local sound speed with respect to 

altitude. A favorable prevailing wind direction lowers the turning height of the wave by 
increasing the sound speed to speeds greater than the ground level sound speed at lower 

altitudes. A strong stratospheric duct was modeled by Garces et al. during the winter 

months of 1989-1990 in the atmosphere above Eielson, Alaska.56 Using the Naval Research 
Laboratory Ground to Space (G2S) model the prevailing wind direction in the tropopause 

and stratopause above the Fairbanks array was calculated for 2003. The model for 2003
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was used as a proxy for 2005-2006 due to the lack of model data for that time period. The 

model results for the prevailing atmospheric winds are shown in Figure 5.5. The coordinate 

system in Figure 5.5 is the mathematical coordinate system where 0 degrees is due east 

and 90 degrees due north. The mathematical coordinate system has the desirable property 

that all winds arriving from the north of the array have positive angles and winds arriving 

from the south of the array have negative angles. The Fairbanks array is situated in such a 

manner that the majority of microbarom signals are generated to the south of the array in 

the Gulf of Alaska. Atmospheric winds blowing from the south would assist the propagation 

of these microbarom signals to the Fairbanks array. All such winds have negative angles in 
the mathematical coordinate system.

The prevailing wind direction in the stratopause, shown with +  in Figure 5.5, during 

the winter months at the Fairbanks array was from the southeast to the northwest. The 

prevailing direction of the stratopause winds shifted to a direction out of the east during 

the summer months of May, June, and July. In August the direction of the stratopause 

winds began to shift back toward a prevailing direction out of the south. The winds in 

the tropopause, shown with •, have a larger variance than those in the stratopause, and no 

clear seasonal shift in prevailing wind direction was visible in the G2S model data. These 

model results permit the formation of stratospheric ducts57 that assist in the propagation 

of acoustic waves generated by sources to the south of Fairbanks during the winter months.

During the summer months at the Fairbanks array, when the winds in the stratosphere 

and troposphere do not support the propagation of the microbaroms, coherent microbaroms 

can reach the array through thermospheric reflections.54 The microbaroms arriving at an 

array by the thermospheric path are attenuated more than microbaroms traveling through 

the stratosphere and troposphere due to the longer path length of the thermospheric re­

turns.54 The winds in the thermosphere are affected by the atmospheric solar tide.54,56,58 

Diurnal and semi-diurnal variations in the wind direction can increase the power in the 

thermospheric traveling microbaroms by decreasing the altitude of the turning point of the 
acoustic wave. When the atmospheric winds shift in the direction of propagation from the 
sou rce t o  th e  array, th e  a ltitu d e  o f  th e  tu rn in g  p o in t o f  th e  w ave is low ered  an d  th e  p a th  

length of the wave is shortened.
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Figure 5.5. The direction of stratospheric and tropospheric wind arrival at the Fairbanks 
array during 2003. The stratospheric winds, 50 to 70 km, are shown with +  and the 
tropospheric winds, 10 to 20 km, are plotted with -s. The Julian day number for 2003 is 
plotted along the axaxis. The direction of arrival is shown on the y-axis. The y-axis is 
oriented in the mathematic sense, with 0° pointing due east, 90° pointing due north, and 
-9 0 °  pointing due south.

The exact effect of the solar tide on the thermospheric winds and the altitude of the wave 
turning point is dependent on the latitude of measurement and the season of the year.59 A 

theoretical study of the effects of the solar tide on the propagation of simulated infrasonic 

waves near the Fairbanks array was done by Garces et al. °6 In this study, the increase in 

the northward meridional wind component caused by the atmospheric solar tide was found 

to be greatest at 9 a.m. and noon local time in the winter atmosphere near the Fairbanks 

array. The solar tide increase in the westward zonal wind was also greatest at 9 a.m. and 

noon, but the increase was less than the increase in the meridional wind component. Since 

the solar tide displays strong seasonal variations these results are valid only for the season 

at which they were calculated and cannot be extended to the other seasons at Fairbanks.
The atmospheric wind model presented by Garces et al. was produced for the winter
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months where no diurnal variation was observed in the microbarom coherence estimated 

at the Fairbanks array.56 During the spring, summer, and fall months, where the diurnal 

variation was observed, the exact time of the maximum solar tide wind variation was not 

known. In Figure 5.2 the estimated microbarom coherence was noticeably less at noon than 

at the other times of the day. The pattern of the noon time coherence being less was also seen 
during the months of May and July. Due to the prevailing direction of the stratospheric and 

tropospheric winds during these months, the majority of the microbaroms arriving at the 

Fairbanks array during the summer months have traveled via thermospheric paths. Waves 

traveling via thermospheric paths have the potential to be affected by the atmospheric solar 
tide. In the periods where the stratospheric and tropospheric winds are shifting, fall and 

spring, the diurnal pattern is less pronounced. The less pronounced diurnal pattern could 

be a result of more microbarom signals traveling via stratospheric and tropospheric paths 

where the atmospheric tide does not affect the atmospheric winds. When the stratospheric 

and tropospheric winds have shifted to favorable prevailing directions during the winter 

months, the majority of the microbaroms travel via stratospheric and tropospheric paths 

and the diurnal cycle was no longer observed.

The diurnal cycle observed in microbarom coherence could also be the result of weaker 

microbarom signals arriving at the Fairbanks array during the summer, spring, and fall 

seasons. The lower power of the coherent microbarom signals traveling via the thermosphere 

makes the microbarom coherence estimated from these signals more sensitive to the random, 

wind driven pressure fluctuations at the array. The incoherent noise at the array will 

decrease the coherence of lower power microbarom signals more than higher power ones. 

The diurnal cycle observed at Fairbanks appeared to be the result of a diurnal cycle in 
the local wind turbulence noise and not a result of the atmospheric solar tide. The effects 

of the local wind speed on the coherence of the noise field is discussed in more detail in 

Section 5.3.2.

High Frequency Coherence and the Coherence Floor

The median estimated coherence of uncorrelated noise was found through numerical simu­
lations to be 0.14. The noise model used to estimate the median coherence of uncorrelated 

noise had the same power spectral distribution as the empirical noise field estimated in
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Chapter 4. The estimated coherence of the high frequency noise field where no clutter sig­

nals were present approached a coherence “floor” value that was greater than the predicted 

coherence value of uncorrelated random noise at both the Fairbanks and Windless Bight 

arrays. The higher coherence of the high frequency noise field coherence floor estimated 

at the arrays was due to residual coherence in the noise field. The residual coherence is 

a function of the spacing between the locations of data collection. If two identical sensors 

were spatially located at the same point in space, the coherence of the recorded data would 

be perfect, returning a value of 1 even from random turbulent pressure fluctuations. As the 

sensors are moved apart, the coherence of the recorded noise field data decreases, reaching 
an incoherent value within five or six wavelengths for all wavelengths.12,55 Local conditions, 

including terrain and wind speeds, affect the rate at which the estimated coherence of the 

turbulently fluctuating pressure field, the residual coherence, decreases.11,14 The estimated 

coherence floor was greater for the small separation ensemble than for the large separation 

ensemble at both array locations. The decrease in the magnitude of the estimated coherence 

floor between the small and large separation ensemble provided support for the theory that 

the residual coherence produces the coherence floor.

The 6 Hz coherence peak seen in the Fairbanks coherence data was the result of a 
known near-field source (K. Arnoult, personal communication, September 2006). Near-field 

sources are not affected by conditions in the upper atmosphere since they travel as surface 

waves.60,61 The variations in magnitude of the coherence peak of the 6 Hz signal are caused 

exclusively by the local conditions near the array. The other high frequency coherence peaks 

seen at the Fairbanks array were not persistent throughout the year like the 6 Hz coherence 

peak. Variations in these other high frequency coherence peaks could be caused by local 

conditions around the array or variations in the mechanism producing the coherent signals. 

The sources of these other high frequency coherence peaks must have been persistent dur­

ing the time windows and months when they were observed, but not necessarily persistent 

throughout all time blocks and months. These other high frequency peaks were only ob­

served in the estimated coherence spectrum of the small separation ensemble and were not 

coherent across the entire array. The sources of the other high frequency coherence peaks in 
the estim a ted  F airbanks n oise  field  coh eren ce  sp ectru m  w ere m ost likely  h u m an -activ ities  

from the nearby city o f Fairbanks (fundamentally anthropogenic residual transient signals).
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5.3 Effect of Local Wind Speed on the Coherence Spectrum

As indicated in Section 5.2.3, the local wind at an array has an effect on the estimated 

noise field coherence spectrum at that array. The most pronounced features of the co­

herence spectrum stem from the coherent signals from the microbaroms, M AW /HTV, and 

man-made sources. As the local wind speed increases the power contained in the tur­

bulence pressure fluctuations increases at a frequency-dependent rate. The propagation 

of sound energy though a fluid with turbulent fluctuations has been the subject of many 

studies.62,63,64,65,66,67’68 It was determined in these studies that inhomogeneities caused by 

turbulence in media of propagation scattered coherent acoustic energy. The scattering of 

the acoustic energy causes an attenuation in the coherent power contained in the acoustic 

signal.

Acoustic energy with a wavelength approximately equal to the scale length of the turbu­

lent eddy will be preferentially scattered by the turbulent eddy.62 Much effort has been put 

into the problem of determining the scale length of the turbulent eddies in the atmosphere 

using readily-made atmospheric measurements.13’50,51,68 The relations for the turbulent 

scale length produced from these studies were valid only for the atmospheric regions and 

conditions assumed in each study. All of the analytic turbulent scale length relations rely 

upon simplifying assumptions which limit the applicability of the relations to a general 

atmosphere. No analytic method for determining the turbulent scale length is available for 

the case of a generalized atmosphere. Without the analytic ability to predict the turbulent 

scale length from readily measured local variables, the effect of the turbulence created by 

the local winds on the coherence spectrum must be determined empirically.

5.3.1 Method

The effect of local wind speed on the estimated noise field coherence spectrum at an array 

was determined using statistical methods. The median local wind speed during each of the 

three minute time windows used to estimate coherence spectrum was calculated from the 

meteorological data recorded at that array. All of the estimated coherence spectra for a 

chosen time period were sorted into median local wind speed statistical ensembles based 
on  w in d  speed bins o f  w id th  equal t o  0.1 in/s. The median coherence spectra for several 
of the measured wind speed ensembles were then compared to determine the effect of the
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local wind speed on the estimated coherence of the noise field.

The principles of window closing31 were used to determine an appropriate duration of 

the time period used to make the wind speed coherence ensembles. At the Windless Bight 

array, no monthly or diurnal variation was observed in the estimated coherence spectrum of 

the noise field. Due to the lack of variation in the estimated noise field coherence spectrum 

at Windless Bight, it was possible to combine an entire season’s worth of the noise field 

coherence spectrum estimates into the wind speed coherence ensembles. These large ensem­

bles ensure the largest wind speed range possible at Windless Bight without compromising 

the fidelity of the resulting median coherence spectra.
Both a seasonal and diurnal variation in the estimated noise field coherence spectra were 

observed at the Fairbanks array. The diurnal and seasonal variations had to be taken into 

account when creating the local wind speed coherence spectra ensembles. Care was taken to 

ensure that any changes in the estimated coherence spectra with wind speed was due only 

to the changes in the local wind speed and not the observed seasonal or diurnal variations. 
The diurnal variations observed in the estimated noise field coherence spectra were confined 
to the spring, summer, and fall seasons at Fairbanks. The winter season at Fairbanks did 

not display any daily variation in the estimated coherence spectra. An ensemble of the 

coherence spectrum estimates for the winter months of November, December, and January 

was chosen to create the wind speed coherence ensembles in order to isolate the effect 

of the local wind speed on the noise field coherence spectrum. The seasonal stability of 

the estimated noise field coherence spectrum during the winter months at the Fairbanks 

array also provided a large local wind speed range without compromising the fidelity of the 

resulting coherence spectrum estimates. The other seasons observed at the Fairbanks array 

did not have a wind speed range large enough to meaningfully reflect the effects of local 

wind speed on the estimates of the coherence spectra.

5.3.2 Results

A decrease in the estimated coherence of the noise field was observed as the local wind 

speed increased at both the Fairbanks and the Windless Bight arrays. The decrease in the 
estimated coherence was most apparent in the clutter. The effect of the local wind speed was 

more pronounced in the small separation estimate of the noise field coherence spectrum than
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in the large separation noise field coherence spectrum estimate. The effect of the local wind 

on the large separation noise field coherence was qualitatively consistent with the observed 

effect of the local wind speed on the small separation noise field coherence. For the sake 

of compactness, only the small separation noise field coherence spectrum estimates will be 

shown. The disadvantage of only showing the small separation coherence spectra was that 

the M AW /HTV coherence peaks were not distinct from the microbarom coherence peaks in 

the small separation coherence spectrum estimates. When a distinct M AW /HTV coherence 

peak was necessary for analysis of the effect of the local wind speed on the estimated 

coherence spectrum, the large separation coherence spectrum estimates are referenced, but 
not shown.

The effect of the local wind on the small separation noise field coherence spectrum 

estimated for the winter months of 2005 at Fairbanks is shown in Figure 5.6. The noise 

field coherence spectrum was estimated for four median local wind speeds measured at the 

Fairbanks array. To ensure a stable estimate of the coherence spectrum, only wind speed 

ensembles with at least 100 data sets were considered in the analysis. There were ensembles 

for each wind speed between 0.1 and 1.5 m /s in multiples of 0.1 m /s that met the stability 

criteria at the Fairbanks array during the winter of 2005. The extremal wind speeds of 

0.1 m /s, shown in blue, and 1.5 m /s, shown in magenta, were plotted in Figure 5.6. There 

were instances of higher median local wind speeds recorded at the Fairbanks array during 

the winter months, but the ensembles of coherence spectrum estimates for these wind speeds 

did not have enough elements to provide a stable estimate of the coherence spectrum. Two 

intermediate wind speeds, 0.5 m /s, shown in red, and 1 m /s, shown in green, were chosen 

to fill in between the extremal wind speeds and provide additional information about the 

effect of the local wind speed on the coherence spectrum.

At Windless Bight, a greater range of wind speeds met the stability criterion than at 

Fairbanks. The wind speed sensor used at Windless Bight has the potential to return false 

wind speeds readings when the local wind speed is less than 1 m /s (D. Osborne, personal 

communication, October 2006), so to avoid any false wind speed readings the lowest wind 

speed considered in the analysis was 1 m /s. The highest wind speed at Windless Bight 
w ith  at least 100 record ed  rea liza tion s during  th e  w in ter o f  2006  was 6 m/s. To span the 

recorded wind speed range without cluttering the resulting plot, the noise field coherence
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Coherence versus Wind Speed (Winter 2005 !S53)(Small Separations)

Frequency (Hz)

Figure 5.6. The median small separation noise field coherence spectrum estimated at the 
Fairbanks array versus the median local wind speed. The coherence spectra were estimated 
for the winter of 2005 at the Fairbanks array. The estimated coherence spectrum of the 
noise field for periods with local wind speeds of 0.1, 0.5, 1, and 1.5 m /s are shown in blue, 
red, green, and magenta, respectively. Notice that as the median local wind speed increases 
the estimated noise field coherence spectrum decreases across all estimated frequencies.
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spectrum at 1 m /s intervals was estimated and plotted in Figure 5.7; note that the data is 

still grouped into 0.1 m /s wind speed bins. The median Windless Bight noise field coherence 
spectrum was calculated at 1, 2, 3, 4, 5, and 6 m/s. The resulting coherence spectra are 

shown in blue, red, green, magenta, cyan, and black respectively. The scales of Figure 5.7 

and Figure 5.6 are identical.

The presence of the M AW /H TV coherence peak in the small separation estimate of 

coherence spectra at the Fairbanks and Windless Bight arrays was found to be dependent 

on the local wind speed during the period of data collection. In Figure 5.4 the M AW /HTV 

coherence peak was not seen in the small separation coherence spectrum for Windless Bight. 
An indistinct coherence peak in the Windless Bight coherence spectrum was observed in 

the 1 m /s coherence spectrum estimate, shown in Figure 5.7, at a frequency consistent with 

the M AW /H TV signals; it is indistinct because it overlaps the microbarom coherence peak. 

The small coherence peak in the estimated coherence spectrum disappeared for the 2 m /s 

coherence spectrum estimate. The median wind speed recorded during the winter of 2006 

at the Windless Bight array was 2.5 m/s. According to the results displayed in Figure 5.7, 

the M AW /HTV coherence peak should not be visible in the estimated small separation 

noise field coherence spectrum for Windless Bight at a wind speed of 2.5 m/s.

In Figure 5.3, the small separation M AW /H TV peak coherence estimated at the Fair­

banks array was less than the small separation coherence peak of the Fairbanks micro­

baroms. The median wind speed at the Fairbanks array during the month of December 

was found to be 0.4 m /s. For the lowest measurable wind speed at the Fairbanks array, 

the coherence of the M AW /H TV signal is greater than the coherence of the microbaroms. 

The coherence of the M AW /HTV decreases rapidly with wind speed, decreasing to a level 

well below the coherence of the microbaroms at a wind speed of 0.5 m /s. At the highest 

local wind speed of 1.5 m /s, the coherence peak of the M AW /HTV has completely vanished 

and the level of coherence has approached the expected incoherent value of 0.14 for truly 
random noise. These trends for the M AW /H TV coherence peak was also observed in the 

large separation estimate of the coherence spectrum, but the large separation M AW /HTV 

coherence peak was more resistant to an increase in the local wind speed.
A  decrease in  th e  estim a ted  coh eren ce  o f  th e  m icrob a rom s w ith  an  in crease in th e  lo ca l 

wind speed was also observed at both arrays. The decrease in coherence observed for micro-
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Coherence versus Wind Speed (Winter 2006 IS55)(Small Separations)

Frequency (Hz)

Figure 5.7. The median small separation noise field coherence spectrum estimated at the 
Windless Bight array versus the median local wind speed. The coherence spectra were 
estimated for the winter of 2006 at the Windless Bight array. The coherence spectrum of 
the noise field for local wind speeds of 1, 2, 3, 4, 5, and 6 m /s are shown in blue, red, green, 
magenta, cyan, and black, respectively. Notice that as the local wind speed increases, the 
estimated noise field coherence spectrum decreases across all estimated frequencies. At high 
local wind speeds the coherence floor at Windless Bight approaches the expected value of 
0.14.
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barom with respect to local wind speed was less rapid than the decrease of the M AW /HTV 

coherence. The coherence of the microbaroms began to decrease at lower local wind speeds 

in the coherence spectrum estimates for the Fairbanks array than the coherence spectrum 
estimates made at the Windless Bight array. The microbarom coherence estimated for the 

slowest local wind speed ensembles, 0.1 and 1 m /s at Fairbanks and Windless Bight, re­

spectively, was found to be approximately 0.9 for both the Windless Bight and Fairbanks 

array. An increase of 0.5 m /s in the local wind speed at the Fairbanks array decreased 

the estimated microbarom coherence only slightly. For each positive increment in the wind 

speed, the decrease in the microbarom coherence increased in magnitude. For example, the 
largest decrease in microbarom coherence observed at the Fairbanks array was for the wind 

speed increase from 1 to 1.5 m /s. The pattern in the microbarom coherence decrease, seen 

at the Fairbanks array, was repeated at the Windless Bight array, but the magnitude of the 

wind speed increase need to effect the same decrease in coherence was greater than at the 

Fairbanks array The initial increase in the local wind speed from 1 to 2 m /s had a negligible 

effect on the estimated coherence of the microbaroms. The width of the peak decreased 

for this initial wind speed increase due to the rapid decrease in the M AW /HTV coherence. 

As the median local wind speed continued to increase, the height as well as the width of 

the microbarom coherence peak began to decrease. Similar to the microbarom coherence at 

the Fairbanks array, the magnitude of the decrease of the estimated microbarom coherence 

peak increased as the wind speed increased. In addition to the decrease in the coherence of 

the microbaroms, the frequency of the microbarom peak appeared to move toward higher 

frequencies as the local wind speed increased at both Fairbanks and Windless Bight.

5.3.3 Discussion

As seen in Chapter 4, increasing local winds produce more energetic turbulent cells. It is 
possible that these turbulent cells are correlated across the length scales of the Fairbanks 

and Windless Bight arrays. Several papers have dealt with the correlation of the fluctuating 

pressures caused by the turbulent wind f lo w .11,12 The paper by Shields11 dealt specifically 

with the low frequency wind noise correlation. Using the Taylor hypothesis,15 Shields put 
forth an expression for the cyclic frequency of the turbulent pressure fluctuations in terms
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of the convection velocity, v, and the wavenumber in the direction of the bulk flow, k\,

F  =  ^  <5-7>

The decrease in the correlation of the pressure fluctuations in terms of the distance in 

wavelengths between the sensors was then experimentally determined. The relationship 

revealed that the intersensor separation must be less than 0.2A for the correlation of the 

pressure fluctuations to increase to correlation values greater than 0.2. Combining the 

cyclic frequency of the turbulence pressure fluctuations equation with the spatial separation 

information, the wind speeds that are theoretically necessary to produce correlations can 

be found for the two arrays.

The inner three sensors are separated by approximately 200 m for both the Fairbanks 

and Windless Bight arrays. The estimated coherence of the small separation ensemble was 

about 0.2 for the lowest frequencies at higher local wind speeds. A sensor separation of less 

than 0.2A is necessary to produce a coherence higher than the background coherence the low 

frequencies. For the lowest frequency estimate calculated, 0.02 Hz, the required wavelength 

is 1 km. Using the required wavelength and the lowest frequencies, the necessary wind speed 

to result in correlated turbulent pressure fluctuations was found to be 20 m /s. Sustained 

local wind speeds at or above 20 m /s are rare, even at Windless Bight, and the ensembles 

of coherence spectra at these wind speeds are too sparse to result in a stable estimation of 

the noise field coherence spectrum. In addition to the sparse statistics at the required wind 

speeds, the Taylor hypothesis is not valid at such high wind speeds.15 No increase in the 

estimated coherence spectra was observed as the local wind speeds increased. With a lack 

of empirical evidence to the contrary there is no reason to doubt the theoretic exclusion of 

coherent turbulent pressure fluctuations at the wind speeds observed for the Fairbanks and 
Windless Bight arrays.

The coherence of the clutter was observed to decrease with increasing local wind speeds. 
The apparent frequency shift observed in the estimated microbarom coherence peaks for 

both of the arrays can be explained by a frequency dependence in the rate of microbarom 

coherence decrease. The estimated coherence of the lower microbarom frequencies decreased 
at more rapidly with local wind speed than the coherence of the higher microbarom frequen­

cies. As the local wind speed increased the coherence at the higher microbarom frequencies,
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which started out at lower coherence levels than the lower microbarom frequencies, remained 

high, making the frequency of microbarom peak appear to shift as the wind speed increased.

The Windless Bight coherence estimates for frequencies in the neighborhood of the mi­

crobarom coherence peak were plotted against local wind speed in Figure 5.8. The coher­

ence spectrum estimates were made using the coherence spectrum estimates for the winter 

of 2006. The right hand panel of Figure 5.8 contains the microbarom frequencies of 0.16 

and 0.32 Hz, shown in red and green respectively, and the frequencies in the neighborhood 

of the microbaroms. Very low frequencies, less than 0.04 Hz shown in blue, responded only 

very slightly to increases in the local wind speed. The magenta and black dots in the right 
hand panel of Figure 5.8 represent the coherence of the frequencies 0.63 and 1.25 Hz, respec­

tively. These frequencies, which are higher than the frequencies of the microbaroms, also 
displayed a very weak response to changes in the local wind speeds. The left hand panel 

of Figure 5.8 contains the wind response of the estimated coherence for the bulk of the 

microbarom frequency estimates. The coherence of the frequencies 0.06 Hz, blue dots, and 

0.08 Hz, red dots, decreased as the local wind speed increased from 1 m /s. The estimated 

coherence at 0.1 Hz, green dots, did not immediately decrease as the local wind speed in­

creased past 1 m/s. The first several wind speeds had no effect on the estimated coherence 

at 0.1 Hz. When the local wind speed increased past 1.2 m /s the microbarom coherence at 

0.1 Hz began to rapidly decrease, in a manner similar to the lower frequency microbarom 

coherence estimates. The microbarom coherence estimated at 0.12 Hz , shown in magenta 

dots, did not respond to the local wind speed until it went past 1.6 m /s. In the left hand 

panel of Figure 5.8 the microbarom coherence at 0.14 Hz remained constant the longest as 

the wind speed increased, starting to respond to the wind at 2.5 m /s. The wind speeds 

required to decrease the estimated coherence of the microbaroms at the highest microbarom 

frequencies were the highest for all the estimated coherences. The persistence of the high 

frequency microbarom coherence estimates caused the observed shift in the microbarom 
coherence peak.

Scattering and Absorption

Local winds create turbulent fluctuations that can scatter coherent acoustic energy. One 
possible source of the frequency dependence of the decrease in the coherence of the mi-
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Figure 5.8. The wind response of the coherence estimates at the microbarom and neighbor­
ing frequencies. The frequencies most responsive to increases in the local wind speed are 
shown in the left hand panel. The right hand panel displays the frequencies less responsive 
to the local wind speed. In the left hand panel the coherence of the lower frequencies begin 
decreasing at lower wind speeds than the higher frequencies. Frequencies greater than or 
less than the microbaroms, 0.04, 0.63, and 1.25 Hz shown in the right hand panel, displayed 
a limited response to changes in the local wind speed.
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crobaroms with local wind speed is the preferential scattering and absorption of coherent 

energy by the turbulent eddies.62,63 Acoustic energy with a wavelength approximately equal 

to the scale length of a turbulent eddy will be preferentially scattered or absorbed by that 
turbulent eddy.62,63 If more turbulent eddies were formed with scale lengths approximately 

equal to the longer wavelength microbarom components, the coherent acoustic energy of 

the lower microbarom frequencies would be attenuated more rapidly than the higher mi­

crobarom frequencies. In turn, that greater low frequency attenuation would cause the 

coherence of the low frequency microbarom components to decrease more rapidly with local 

wind speeds than that of the high frequency microbarom components.
Eddies are formed by extracting turbulence kinetic energy from the mean flow at the 

largest scales.69,13’14 The exact size of the large length scales is imposed by physical con­

straints on the flow geometry, such as terrain and the depth of the boundary layer. These 

largest scales are known as the energy-containing range since the turbulent energy is pro­

duced at these ranges. The smallest turbulent scales are set by the viscosity of the fluid, 

and the rate at which energy is supplied to the small scale eddies by the energy containing 

eddies. The turbulent energy is dissipated at the small scale eddies by conversion of the 

turbulent kinetic energy into heat via viscosity. Between the energy-containing and small 
scales are the inertial subrange turbulence scales. At the inertial subrange turbulence scales, 

the turbulence kinetic energy is neither generated nor destroyed, but is transferred from 

larger to smaller scales. The large-scale eddies are broken down into smaller-scale eddies 

through the process of vortex stretching. In general the energy is transferred from the 

largest eddies to the smallest ones on a timescale of the energy-containing eddies, typically 

on the order of 10 minutes.68

The turbulence length scales for each of the eddy scale sizes is calculated by a character­

istic formula. The scale length of the energy-containing eddies is found through the integral 

scale length. The integral scale length for the energy-containing eddies is given by68

C =  \  f  R(r)dr, (5.8)
<J2 Jo

where C is the scale length of the eddies, R(r) is the autocorrelation of a velocity compo­
nent or temperature, r is the spatial displacement, and er2 is the variance of the velocity 

component or temperature. The scale length of the inertial subrange of turbulent eddies is
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given b y 15
7/3

I =  — , (5.9)

where I is the scale length of the eddies, e is the dissipation of turbulent energy per unit 

mass, and u is the velocity scale defined by

where is the mean squared wind velocity in the ith direction. The final turbulence length

scale is for the dissipative small scale eddies. The length scale of these eddies is given by 

Kolmogorov microscale.68 The Kolmogorov microscale rj is dependent on dissipation rate, 

e, and the kinematic viscosity, u and is given by

The turbulent length scales provided by the above relations are meant to give the order

Even with the required knowledge of the dissipation rate and kinematic viscosity, which 

is not avaliable at either the Fairbanks or Windless Bight arrays, the prediction of the 

turbulent scale sizes generated by the local wind would not be exact enough to determine 

if the frequency dependence of the coherence decrease is a result of preferential scattering 

and absorption. The general progression of the turbulent scale length can nonetheless be 

determined from the scale length relationships. Turbulence is generated from the bulk 

flow at the largest possible scale lengths. These large scale lengths would preferentially 

scatter or absorb the lowest frequency signals present in the noise field. The large scale 

lengths break down into smaller scale lengths in an unpredictable manner. At the smaller 

scale lengths there is preferential scattering or absorption of progressively higher frequency 

signals as the scale length is reduced toward the Kolmogorov microscale. No analytic 

method exists to predict if certain turbulent scale lengths are preferentially created as the 

large scale eddies are broken down into smaller ones. With no information to the contrary, 
it must be assumed that all turbulent scale lengths are equally likely and the distribution 

of turbulent scale lengths generated as the eddies break down is uniform.45 The initial

(5.11)

The work done under the most general assumptions involves the inertial subrange.13,15

of the eddy length scale, not an exact measurement of the turbulent length scale.13,15,68
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turbulent eddy scale length will be the largest possible, preferentially scattering signals 

with wavelengths comparable to the eddy scale length. As the turbulent eddy breaks down, 

it will preferentially scatter shorter and shorter wavelengths. Since there is no preferred 

inertial turbulent scale length and all smaller turbulent scale lengths are equally likely, the 

frequency dependence of the decrease of the microbarom coherence with wind speed cannot 

be caused by the preferred scattering and absorption of the acoustic energy by the turbulent 

eddies.

Signal-to-Noise Ratio and Loss of Coherence

The coherence of a signal can also be decreased by an increase in the incoherent noise power. 
A decrease in the signal-to-noise ratio will produce a decrease in the coherence of a signal 

without any scattering or absorption of the signal if the noise is uncorrelated, t It was 

shown in Section 4.3 that the rate of wind noise power increase was frequency dependent 

at both the Fairbanks and Windless Bight arrays. The result of the frequency dependence 

of the rate of increase of the noise power with local wind speed is a frequency dependent 

signal-to-noise ratio.
The frequency dependence of the rate of increase of the noise power with local wind 

speed was qualitatively similar at both the array sites. Magnitude of the rate of increase 

was initially small and increased as the frequency increased. At approximately 0.08 Hz, 

the rate of increase of the noise power with local wind speed reached a local maximum and 

began to rapidly decrease as the frequency continued to rise. The local minimum of the 

rate of increase occured in the neighborhood of 0.63 Hz for both array sites. The rate of 

increase of the noise power with local wind speed for the winter of 2006 at Windless Bight 

is shown in Figure 5.9. The rate of increase of the noise power with local wind speed, b, 
was found by fitting an exponential curve of the form

P  =  aebx (5.12)

to a plot of the median power, P, versus the wind speed, x. The details of the fitting process 

were discussed in Section 4.3.1. The red circle represents the frequency with the highest

'This is also seen in a numerical simulation where the physical affects of signal scattering and absorption 
cannot be occuring.
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value of b, at 0.08 Hz. The upper frequency limit for the bulk of the coherence microbarom 

energy at Windless Bight is 0.32 Hz, shown with a cyan circle in Figure 5.9. The final 

highlighted rate of increase, at 0.16 Hz (shown in green), was flagged to assist in tracking 

the microbarom coherence peak as the local wind speed increased.

The highlighted rates of increase of the wind noise power in Figure 5.9 correspond to 

the vertical dashed lines of the same colors in Figure 5.7. The power contained in the wind 

noise increased at a lower rate for frequencies to the right and left of the red dashed line in 

Figure 5.7. The lower rate of increase in the wind noise power corresponded to a smaller 

decrease in the signal-to-noise ratio as the local wind speed increased at the higher micro­
barom frequencies. The smaller decrease in the signal-to-noise corresponded to a smaller 

decrease in the estimated coherence of the microbaroms at the higher frequencies. The 

movement of the microbarom coherence peak about the dashed green line in Figure 5.7 il­

lustrated the effect of the frequency dependent decrease in the signal-to-noise ratio. At the 

lowest local wind speed of 1 m /s, the microbarom coherence peak appeared to be located 

slightly left of the 0.16 Hz line. Since b was greater at lower microbarom frequencies than 

at higher frequencies, the increase in the wind noise power with local wind speed decreased 

the coherence of the lower microbarom frequencies at a greater rate than the higher micro­

barom frequencies. As a result, the frequency location of the microbarom coherence peak 

slowly moved toward the higher frequencies on the right-hand side of the dashed green line 

as the local wind speed increased. The rate at which the frequency location of the mi­

crobarom coherence peak moved toward higher frequencies not only depended on the rate 

of increase of the noise power with local wind speed, but also on the estimated coherence 

of the microbaroms at each frequency. The coherence estimates of the higher microbarom 

frequencies were less than for the lower frequencies. Compared with the rapid decrease 

of the estimated coherence of the lower microbarom frequencies, the estimated coherence 

of the higher frequencies was more slowly decreasing. Due to the simultaneous coherence 

decrease, the migration of the microbarom coherence peak was slower than indicated by the 

rates of increase of the noise power with local wind speed shown in Figure 5.9.

The observed rate at which the coherence of the microbaroms decreased was not constant 
between the two arrays. Although the local wind speeds at the Windless Bight array 

generally had greater magnitudes than those recorded at the Fairbanks array, the coherence
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Wind Noise Power Increase Rate versus Frequency (Winter 2006 IS55)

Figure 5.9. The frequency dependence of the rate of increase of the wind noise power for 
winter 2006 at Windless Bight, Antarctica. The b was found by fitting an exponential 
curve to the median power versus wind speed data. The red circle represents the point of 
maximum noise power increase with wind speed at 0.08 Hz. The green and cyan circles 
represent the rate of increase at 0.16 and 0.32 Hz, respectively. The bulk of the coherence 
microbarom energy at the Windless Bight array occurs between 0.08 and 0.32 Hz. The 5% 
and 95% confidence limits of the rates of increase are shown with vertical bars.
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of the microbaroms at Fairbanks decreased much more rapidly than at Windless Bight. 

The rate of increase of the wind noise power at the two array locations can explain the 

difference in the microbarom coherence decrease rate. Recall that, while the pattern of the 

frequency dependence of the rates of increase was qualitatively similar between Fairbanks 

and Windless Bight, the magnitude of the rates of increase was greater at Fairbanks. The 

larger magnitudes of the rates of increase caused a greater frequency dependent decrease in 
the signal-to-noise ratio at the Fairbanks array. The accelerated decrease in the estimated 

microbarom coherence with increasing local wind speed observed at Fairbanks was due to 

the higher wind noise power growth rate at Fairbanks.

Atmospheric Solar Tide versus Local Wind Speed Noise

At this point it is tempting to argue that the observed daily variations in the monthly 

estimates of noise field coherence spectra were caused by the diurnal variation in the local 

wind speed at the Fairbanks array and not by the atmospheric solar tide. To attempt to 

provide support for observation of the atmospheric solar tide during the summer months 

at the Fairbanks array, the median local wind speed was determined for each time block 
during the year of 2005. The relative heights of the microbarom coherence peaks were then 

compared for comparable median monthly wind speeds. The median wind speed during 

midnight, sunrise, and sunset time blocks of June, shown in Figure 5.2, was 0.3 m /s. The 

median wind speed during the noon time block was 0.8 m /s for June 2005. To determine if 

the large loss of microbarom coherence during the noon time block observed in Figure 5.2 

was caused principally by the atmospheric solar tide or the local wind speed, a month with 
comparable wind speeds in the four time blocks was found. The month of April 2005, shown 

in Figure 5.10, had median wind speeds of 0.8, 0.25, 0.3, and 0.4 m /s for the noon, midnight, 

sunrise, and sunset time blocks, respectively. The red curves in Figure 5.10 represent the 

median small separation coherence spectrum estimates for the four time blocks. The median 

large separation coherence spectrum estimates for the four times blocks are shown in blue.

A comparison of the coherence spectra for the months of April and June indicated that 
the power contained in the microbaroms during the month of June was less than the mi­
crobarom signal power during the month of April. The generally lower level of microbarom 

coherence observed during the month of June was a result of the longer path length of the
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Coherence for IS53 (Midnight April 2005)

Frequency (Hz)

Coherence for IS53 (Noon April 2005)

Frequency (Hz)

Coherence for IS53 (Sunrise April 2005)

Frequency (Hz)

Coherence for IS53 (Sunset April 2005)

Frequency (Hz)

Figure 5.10. The estimated noise field coherence spectrum for April 2005 at the Fairbanks 
array. The red curves display the coherence spectra of the noise field for intersensor sepa­
rations of approximately 200 m, the small separations. The blue curves are the coherence 
spectra for intersensor separations on the order of a kilometer, the large separations. The 
sample time windows of midnight, sunrise, noon, and sunset are shown in the top left, the 
top right, the bottom left, and the bottom right, respectively. The median monthly local 
wind speed for each time block is included with each coherence spectrum.
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thermospheric reflected waves. The microbarom signal power was more attenuated trav­

eling on the thermospheric path than on the shorter paths possible in April. The loss of 

microbarom signal power caused a decrease in the signal-to-noise ratio during the month 

of June. The lower signal-to-noise ratio resulted in a decrease in the estimates of the June 

microbarom coherence. The majority of the coherent microbarom signals arriving at the 
Fairbanks array during the month of April appear to have taken the lower stratospheric or 

tropospheric paths. The shorter path length resulted in more coherent microbarom energy 

arriving at the array in April. The larger signal power arriving at the array increased the 

signal-to-noise ratio of the microbaroms and resulted in a higher coherence of the micro­

baroms during the month of April.

If the observed decrease in the microbarom coherence estimated for the noon time block 

in June was due to the shifting winds caused by the atmospheric solar tides, a large decrease 
in the microbarom power arriving at the array should be visible in the estimated noise power 

spectra for June 2005. The noise field power spectral density estimates for June and April 
are shown in Figure 5.11. The four time block PSDs were made in the manner described in 

Section 4.2.1. The median PSDs for midnight, sunrise, sunset, and noon are shown in black, 

blue, red, and magenta respectively. The frequency range of the PSD has been focused on 

the microbarom frequencies between 0.1 and 1 Hz.

The diurnal variation in the estimated microbarom power received at the Fairbanks 

array during the four time blocks was slight during the month of June. The estimated 

microbarom power received during June 2005 at the Fairbanks array was least during the 

sunset time block, not the noon time block. It seems unlikely that the small variations 

observed in the estimated received microbarom power could cause the drastic decrease in 

coherence, even if the power received during the noon time block was least. In the bottom 
panel of Figure 5.11 the received microbarom power during the month of April was observed 

to have more diurnal variation than microbarom power received during the month of June. 
The changes in the estimated microbarom coherence during the month of April were less 

dramatic than the variations observed in June microbarom coherence. The fact that the 
received power varies more, but the coherence varies less, supports the assertion that the 
diurnal variations in  th e  received  m icro b a ro m  p ow er d o  n ot exp la in  th e  coh eren ce  loss

observed at the Fairbanks array during the summer months.
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Figure 5.11. The PSD of the noise field at the Fairbanks array for the months of April and June. The median PSDs for 
midnight, sunrise, sunset, and noon are shown in black, blue, red, and magenta, respectively. The frequency range was 
chosen to focus attention on the microbarom frequencies. The top plot was made using the data collected during June 
2005 and the bottom plot used the data collected during April 2005.
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The small magnitude of the variations in received microbarom power point to variations 

in the local wind as the principle cause of the diurnal variations in the estimated microbarom 

coherence. The loss of coherence between the noon time coherence estimate and the other 

time block estimates was greater during the month of June than in April. The difference 

between the reaction to identical changes in the median local wind speeds can be explained 

by the difference in the microbarom power received at the array during the two months. The 

microbarom power received at the Fairbanks array in June was approximately a tenth of 

that received during April. The coherence of the less powerful microbarom signals received 

in June was more sensitive to increases in the wind noise power. Assuming the wind noise 
power increased at approximately the same rate with wind speed during both months, the 

signal-to-noise ratio during June would decrease approximately ten times as fast as in April. 
The accelerated decrease in the microbarom signal-to-noise ratio in June caused the greater 

decrease in the microbarom coherence during the noon time block, ft should be explicitly 

stated that this explanation of the daily variation of the microbarom coherence does not 

preclude some effect due to the atmospheric solar tide. If the magnitude of any effect of the 

atmospheric solar tide is smaller than the effects of the local wind, then the atmospheric 

solar tide effects would be masked by the effects of the varying local wind speeds.

5.4 Effect of Correlated Noise on LSE of Azimuth and Trace Velocity

The accuracy of the least squares estimation of azimuth and trace velocity is critically 

dependent on the accuracy of the estimated lag vector. With uncorrelated noise, the lag 

that results in the cross-correlation maximum occurs when the signals recorded at spatially 

separated sensors are phase aligned. With correlated infrasonic noise, the lag calculated 

using the cross-correlation maximum is dependent on the relative strength of the signal of 

interest and the clutter. Clutter with amplitudes approximately equal to the amplitude of 

the signal of interest will result in an inaccurate lag vector. When the least squares estimates 

of azimuth and trace velocity are made with an inaccurate lag vector, the resulting estimates 

do not correspond to either the clutter or the signal of interest. The qualitative effects of the 

correlated noise on the least squares estimate of azimuth and trace velocity were determined 
b y  n um erica l sim u lation . T h e  p erform an ce  o f  th e  least squares estim ates w ith  corre la ted  

noise was then compared to uncorrelated noise.
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5.4.1 Method

To investigate the effect of the correlated noise field on the least squares parameter estimate, 

a synthetic test signal was polluted with surrogate correlated noise. Synthetic correlated 

noise data was produced by corrupting a clutter signal with uncorrelated noise. The PSD 

frequency dependence of the additive noise did not affect the results of the simulation as 

long as the noise was uncorrelated. GWU noise was used to corrupt the synthetic clutter 

signal in an attempt to isolate the effects of the correlated clutter on the least squares 

estimate of azimuth and trace velocity. The exact waveform used as the clutter signal had 

quantitative effects on the results of the simulation, but results remain qualitatively similar 

for all waveforms used.

To limit the parameter space in the numerical simulation of the effects of the correlated 

noise on the least squares estimate, the correlated infrasonic noise field at Fairbanks was 

modeled as the 6 Hz clutter and the GWU noise. The 6 Hz clutter signal was modeled 

as a windowed sine wave with a duration of one minute. The sine wave was windowed 

with a Hanning window.29 The azimuth and trace velocity of the clutter signal were held 

constant at 23 degrees and 0.330 km/s, respectively. The correlation level of the noise 

field was adjusted by altering the signal-to-noise ratio of the 6 Hz clutter signal and the 

uncorrelated noise. To compare the effect of various noise field correlation levels, noise sets 

with correlation levels of 0.7, 0.5, and 0.3 were produced.

The surrogate correlated noise was then used to corrupt the test signal of interest. A 

windowed sine was also used as the signal of interest. The windowed sine had a center 

frequency of 2 Hz, a duration of 5 seconds, and was centered within the clutter window. 
Similar to the clutter signal, altering the choice of the waveform used for the signal of 

interest resulted in small quantitative changes in the results, but the results remained 

qualitatively similar. The trace velocity of the signal of interest was held constant at 

0.350 km/s throughout the simulation. The azimuth of the signal was varied to determine 

the dependence of the effect of the correlated noise on azimuth.

Since the noise field is non-deterministic, the effects of the correlated noise field on the 
parameter estimates were found using statistical methods. Four ensembles of corrupted 
signal data were produced, one for each of the correlation levels of the noise and one for 

uncorrelated noise. The data ensembles included 1000 realization of the azimuth and trace
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velocity at a chosen signal-to-clutter ratio. The signal-to-clutter ratio was varied from 

—30 dB to 30 dB. A plot of median azimuth or median trace velocity estimate versus the 

signal-to-clutter ratio was then produced to illustrate the effects of the correlated noise on 

the least squares estimate of the parameters.

5.4.2 Results

The primary effect of correlated noise on the performance of the least squares parameter 

estimate was a higher required signal-to-noise ratio for accurate least squares parameter 

estimation. The effect was similar to the effect observed for the empirical noise power 

distribution discussed in Section 4.4, but more pronounced. Figure 5.12 shows the effect 

of the surrogate correlated noise on the least squares estimation of a windowed sine wave 

with an azimuth of 113 degrees, which is perpendicular to the clutter azimuth, and a trace 

velocity of 0.350 km/s. In Figure 5.12 the median estimate of the azimuth is shown in the 

top panel and the median trace velocity estimate is shown in the lower panel. At signal-to- 

clutter ratios from 10 to 30 dB the median estimate returned for both azimuth and trace 

velocity corresponded to the signal of interest. The azimuth estimate for the data corrupted 
with 0.7 correlated noise, shown with + , began to migrate away from the azimuth of the 

signal of interest at a signal-to-clutter-noise of 8 dB. The trace velocity estimate of the 0.7 

correlated data had also drifted away from the desired trace velocity at this signal-to-clutter 

ratio. At a signal-to-clutter ratio of 6 dB both estimates for the data corrupted with the 

0.5 correlated noise had drifted away from the azimuth and trace velocity of the signal of 

interest. The estimates of azimuth and trace velocity for the data corrupted with the 0.3 

correlated noise data had migrated away from the desired values at a signal-to-clutter-noise 

ratio of 4 dB.

In Figure 5.12 the estimated trace velocity began to increase after the estimates had 

started to shift away from the signal of interest values. The azimuth estimates immediately 

began to migrate toward the clutter signal azimuth value of 23 degrees. As the signal-to- 
clutter-noise ratio continued to decrease, the estimated trace velocity stopped increasing 

and began to move back toward the clutter signal value of 0.330 km/s. The higher the 
correlation of the clutter signal, the faster the convergence of the parameter estimates on 
the clutter azimuth and trace velocity. The estimates consistently converged toward the
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Median Azimuth Estimate vs. Signal-to-Clutter-Noise Raito tor various noise correlation levels
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Figure 5.12. The effect of correlated noise on the least squares parameter estimates. The 
noise field correlation levels of 0.7, 0.5, 0.3, and uncorrelated are shown by + , x, *, and •, 
respectively. The upper plot shows the median azimuth estimates and the lower plot shows 
the median trace velocity estimates. The azimuth of the signal of interest was 113 degrees 
and the azimuth of the clutter signal was 23 degrees. The clutter trace velocity was 0.330 
km/s and the signal had a trace velocity of 0.350 km/s.
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clutter signal values when the clutter was present, but the higher the correlation value of 

the clutter, the smaller the variance in the clutter signal parameter estimate distributions.

The behavior of the estimates in the region between the point where the least squares 

estimates no longer locked on the signal of interest and the point where the estimates 

locked on the clutter signal, the transition region, was unpredictable. When the parameters 

of either signal of interest or the clutter signal were altered, the behavior of the estimates 

in this region was altered. For example, if the azimuth of the signal of interest was set to a 

value nearly parallel to the azimuth of the clutter signal, 28°, the trace velocity estimates 

decreased in magnitude in the transition region instead of increasing in magnitude. The 

azimuth estimate in the transition region appeared not to suffer from this sensitivity to the 

wave parameters and generally smoothly moved from one value to the other. The transition 
region was also characterized by large variances in the distribution of the azimuth and trace 
velocity distributions making any estimate in the region suspect.

When the noise field corrupting the signal of interest is uncorrelated, the performance 
of the least squares estimate was superior to the performance with correlated noise. No­

tice that in Figure 5.12 the uncorrelated noise data, shown with •, remained locked onto 

the signal of interest at lower signal-to-noise ratios than any of the correlated noise data 

sets. Unlike the correlated noise data, as the signal-to-noise ratio of the uncorrelated noise 

data set continued to decrease the azimuth estimates become random. The trace velocity 

estimate still converged toward a preferred trace velocity value as the signal-to-noise ratio 

decreased. The value that the trace velocity moves towards was dependent on the window 

length of the data. For small windows of uncorrelated data, the expectation of the lag 

maximizing the cross-correlation function is zero and the trace velocity converges toward 

infinity. For large windows the trace velocity converges towards slow velocities. The slow 
trace velocity estimates for large windows are caused by an increase in the variance of the 

lag estimate distribution for large data windows. The increase in the variance of the lag 

estimate distribution results in some of the estimated lags moving away from the correct 

value of zero for uncorrelated noise. With a few of the lags miscalculated, the estimate of 

the trace velocity converges toward low values instead of the infinite trace velocity expected
w hen  n o  signal is present.
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5.5 Conclusion

The clutter signals observed in the infrasonic noise field at both the Fairbanks and Windless 

Bight arrays had the potential to be correlated. The estimated correlation of the clutter 

signals was dependent on the intersensor separation distance and the local wind speed. In 

addition, at the Fairbanks array the estimated correlation can also be dependent on the time 

of day and the season of the year. The degree to which the clutter correlation depended on 

these parameters was different between the two array locations. The observed microbarom 
and M AW /HTV clutter signals were coherent across both the Fairbanks and Windless Bight 

arrays. The coherence spectrum estimated at the Fairbanks array exhibited coherent high 
frequency clutter signals as well as the coherent M AW /HTV and microbarom signals.

The estimated coherence spectrum at the Windless Bight array was stable throughout 

the year, displaying no seasonal or diurnal variation in the estimated coherence spectrum. 

A seasonal dependence in the estimated microbarom and M AW /HTV coherence was ob­

served at the Fairbanks array. During the winter months at Fairbanks the coherence of 

the microbarom and M AW /HTV signals estimated at small separations was approximately 

0.9. The spring and summer microbarom and M AW /HTV coherence decreased from the 

coherences seen during the winter months, reaching a minimum during the month of June. 

The coherence of the clutter remained at the summer time minimum coherence level until 

September, where the microbarom and M AW /H TV coherence began to increase. The esti­

mated microbarom and M AW /H TV coherence returned to the observed winter coherence 

levels during the month of November.

The seasonal variations in the microbarom and M AW /H TV coherence observed at the 

Fairbanks array were caused by a shift in the upper atmospheric winds during the summer 

months. The prevailing atmospheric wind direction during the summer months at the 

Fairbanks array did not support the creation of lower atmosphere wind ducts to assist in 

the propagation of the clutter signals to the Fairbanks array. The lack of low atmosphere 

propagation paths in the summer forced the microbarom and M AW /HTV signals to travel 
via thermospheric paths. These longer paths resulted in a larger attenuation of the clutter 

power. The local turbulent pressure fluctuations would thus more efficiently de-correlate 
the lower power clutter signals that arrived at the array by thermospheric paths causing 

the observed loss of coherence in the clutter signals during the summer months.
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A diurnal variation in the estimated clutter coherence was observed during the spring, 

summer, and fall months at the Fairbanks array. The diurnal variation in the coherence of 

the microbarom and M AW /HTV signals was caused by diurnal variation in the local wind 

speeds. The turbulent pressure fluctuations produced by the local wind flow decreased 

the coherence of the clutter signals by introducing random noise into the clutter signal. 

An increase in the local wind speed resulted in an increase in the power contained in 

the turbulent pressure fluctuations. The increase in turbulent pressure fluctuation power 

decreased the coherence of the clutter signals by decreasing the signal-to-noise ratio of the 

data. The measured local wind speed was generally highest during the noon hour at the 
Fairbanks array. The estimated microbarom and M AW /HTV coherence was lowest during 

the noon time block. When the local wind speeds were lowest, near the midnight hour, the 
estimated clutter coherence was greatest. The local winds at the Windless Bight array did 

not exhibit a diurnal cycle. The coherence of the clutter signals estimated at the Windless 

Bight array did not vary between the daily time blocks. Thus the diurnal cycle in the 

coherence of the microbaroms observed at Fairbanks array was driven by a combination of 

atmospheric path and local wind speed.

It has been indicated that the solar atmospheric tide will produce a diurnal fluctuation 
in the coherence spectrum of thermospherically traveling acoustic signals.54,56 No data on 

the solar atmospheric tide during the summer months was available at the Fairbanks array, 

but a study56 had been conducted on the structure of the atmospheric tide during the 

winter months at Fairbanks. The shift in the atmospheric winds produced by the solar 

atmospheric tide indicated in this study did not correspond to the diurnal cycle in the 

estimated clutter signal coherence observed at the Fairbanks array. The lack of correlation 

between the modeled solar atmospheric tide and the observed diurnal cycle in the coherence 

of the microbarom and M AW /H TV signals does not disprove that the solar atmospheric tide 

has an effect on the propagation of acoustic waves traveling through the lower thermosphere 

or upper mesosphere. It is possible that the diurnal variation in the local wind speed masked 

any effects of the solar atmospheric tide on the microbarom and M AW /H TV signals or that 

the structure of the solar atmospheric tide at the Fairbanks array changed between the 
w inter an d  summer months.

The coherence spectrum estimated at the Fairbanks array also contained a highly co­
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herent signal at 6 Hz. This high frequency coherent signal was a local signal generated by a 

building on the TJAF campus (K. Arnoult, personal communication, September 2006). No 

seasonal dependence was observed in the estimated coherence of the 6 Hz local signal. The 

lack of a seasonal variation in the coherence level o f the 6 Hz signal is consistent with the as­

sertion that the observed seasonal variations in the microbarom and M AW /H TV coherence 

were produced by atmospheric path differences between the seasons. A diurnal variation in 

the coherence of the 6 Hz signal was observed during the summer, spring and fall seasons, 

further supporting the theory that the diurnal variations in coherence of the microbarom 

and M AW /HTV signals were caused by the diurnally fluctuating local winds and not by 

the solar atmospheric tides.

In addition to altering the coherence level of the infrasonic noise field, changes in the 

local wind also shifted the frequency of the estimated microbarom coherence peak. The 

shift in the frequency of the microbarom coherence peak was caused by the frequency 

dependence in the rate of increase of the wind noise power. As the local wind speed 
increased, the wind noise power contained in the different frequencies increased at different 

rates. At frequencies where the wind noise power increased at a faster than average rate, 

the coherence decreased more rapidly with local wind speed. The estimated microbarom 

coherence peak spanned a frequency range that included the frequencies with the largest 

rate of increase of the noise power with local wind speed. As the coherence of the lower 

microbarom frequencies decreased at a faster rate than the higher microbarom frequencies, 

the frequency location of the estimated microbarom coherence peak appeared to shift toward 

the higher frequencies. The shift in the frequency location of the estimated microbarom 

coherence peak was observed at both the Fairbanks and Windless Bight arrays.

Finally, the coherent noise field estimated at the array had an effect on the performance 
of the least squares estimate of signal azimuth and trace velocity. The coherent noise field 

degraded the performance of the least squares estimate, requiring higher signal-to-noise 

ratios for accurate estimation of the azimuth and trace velocity. The signal-to-noise ratio 

where the estimates migrated away from the desired values was dependent on the coherence 

level of the noise field. The more coherent the noise field, the higher the signal-to-noise ratio 
w here th e  least squares estim a te  b eg a n  to  break  dow n . A t low er s ign a l-to -n o ise  ra tios, the 

estimates of azimuth and trace velocity locked onto the clutter field values. The transition
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the estimates and a sensitivity to the parameters of the signal of interest and the clutter.
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Chapter 6 
Conclusions

The purpose of this work was to characterize the infrasonic noise field present at the Fair­

banks array (IS53) and Windless Bight array (IS55), and determine the effect of the in­

frasonic noise field on the accuracy of the least squares estimation of wave azimuth and 

trace velocity. The effect on the least squares azimuth and trace velocity estimates was 

investigated when the signal of interest was corrupted with the commonly assumed additive 

Gaussian, white, uncorrelated (GWU) noise field. A statistical picture of the infrasonic 

noise field was then estimated from data collected at the Windless Bight and Fairbanks 
arrays. The power spectral density and magnitude square coherence estimated from the 

data revealed that the infrasonic noise field present at both arrays violated the assumption 
of white, uncorrelated noise. In this final chapter, the character of the infrasonic noise field 

at the arrays will be summarized. The effect of the empirical noise field on the least squares 

estimate of azimuth and trace velocity will be summarized, and some general conclusions 

on the validity of the assumed GWU noise field will be presented.

6.1 Summary

While the least squares estimate of the vector slowness is an unbiased estimate under the 

assumption of a GWU noise field, the least squares estimates of azimuth and trace velocity 

were found to be a biased estimates, even with the GWU noise field. The magnitude of 

the bias in the estimates was dependent on both array geometry and wave parameters. A 

circularly symmetric array was found to eliminate the azimuthal dependence of the bias in 

the estimate of trace velocity and completely eliminate the bias in the azimuth estimate. 

When the trace velocity of the wave approached zero, the least squares estimates of azimuth 

and trace velocity become unbiased estimates. The magnitude of the bias in each of the 

estimates was at least an order of magnitude less than the uncertainty in the estimated 

parameters for the ideal GWU noise field. Due to the comparatively large uncertainties, 

the systematic error represented by the bias in the least squares estimate of azimuth and 

trace velocity was masked by the uncertainty in the azimuth and trace velocity estimates 
and h ad  n o  con sp icu ou s e ffect o n  th e  a ccu ra cy  o f  th e  sou rce lo ca t io n  in  th e  presen ce o f  the 

ideal noise field.
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The estimated monthly power spectral densities of the infrasonic noise field at Fairbanks 

and at Windless Bight were not smooth functions of frequency. Microbarom signals pro­

duced a prominent power spectral feature at both the Fairbanks and Windless Bight arrays. 
Power spectral densities estimated at the Fairbanks array displayed a noise floor greater 

than the expected instrumental electronic noise floor in all the estimated power spectra 
during 2005 and 2006. A noise floor greater than the expected instrument noise floor was 

also observed at Windless Bight during the summer months, but not during winter, spring, 

or fall months. In addition to power spectrum features produced by the microbarom signals, 

the infrasonic noise field power spectrum estimated at the Fairbanks array also contained 

high frequency peaks due to human activity in the vicinity of the nearby town of Fairbanks, 

Alaska. The noise field PSD estimated at Windless Bight did not display any man-made 

peaks in the high frequencies due to the remote geographic location of the array.

The PSD of the infrasonic noise field estimated at Fairbanks was not a stationary field. 

The prominent characteristics of the estimated PSD varied seasonally and diurnally at the 

Fairbanks array. It was suggested that the diurnal cycle in the estimated noise field power 

was due to the convective heating of the air due to insolation of the ground surrounding 

the array. The theory that this solar driven convective heating produced the observed 
diurnal variations was supported by the lack of an observed diurnal cycle during the winter 

in Fairbanks, when the ground was snow covered, and the absence of a diurnal cycle at 

Windless Bight, where the ice shelf was perpetually snow covered. Seasonal variations 

in the character of the estimated PSD were seen at Fairbanks, but not at the Windless 

Bight array. The proposed mechanism for the seasonal variations in the PSD estimated at 

Fairbanks was seasonal shifts in the atmospheric winds causing a lack of lower atmospheric 

waveguides in the summer months.

The turbulent pressure fluctuations caused by wind flow can change the shape of the 

noise power spectrum in a non-trivial manner. The rate at which power contained in 
the noise field increases with wind speed was dependent on the frequency of the pressure 

fluctuations. Both arrays displayed qualitatively similar frequency dependence in the rate 

of increase of the noise power with local wind speed. The noise power increased most 
rapidly at frequencies in the neighborhood of 0.08 Hz at both the F airbanks and Windless 

Bight arrays. A local minimum was observed in the rate of increase at a frequency of
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approximately 0.32 Hz for both arrays. The high frequency behavior of the rate of increase 

differed between the Fairbanks and Windless Bight arrays. The rate of increase of the noise 

power with local wind speed decreased for frequencies higher than 1 Hz for all seasons at 

Fairbanks and during the summer months at Windless Bight. The remaining three seasons 

at Windless Bight exhibited a continuing increase in magnitude of rate of increase with 

frequency for frequencies greater than 0.32 Hz. The magnitude of the rate of increase was 
influenced by the terrain at the location of the array. The rate of increase at Fairbanks was 

consistently greater than the rate of increase at Windless Bight. The difference in the rate 

of increase of the noise power with local wind speed suggests that the terrain in which the 

Fairbanks array is situated was more efficient at converting the wind flow into turbulent 

pressure fluctuations. The frequency dependence of the rate of increase proved to be an 

important feature of the infrasonic noise field, affecting not only the shape of the noise 

power spectrum at different wind speeds, but also shifted the frequency characteristics of 

the coherence spectrum o f the infrasonic noise field.
The effect of the empirically derived noise field on the least squares estimation of azimuth 

and trace velocity was shown to be limited, if the data was first bandpass filtered to isolate 

the microbaroms. The infrasonic frequency band was divided into three frequency bands: 

a high frequency band from 1 to 10 Hz, a low-frequency band from 0.015 to 0.01 Hz, 
and a microbarom band from 0.01 to 1 Hz. When the data were bandpass filtered the 

performance of the least squares estimator with the empirical noise was comparable to the 

estimator performance with white noise at lower signal-to-noise ratios. The similar change 

in the performance of the least squares estimates between the GWU and modeled empirical 

noise fields was observed in all three frequency bands used in the study.

Several correlated clutter signals were present in the estimated infrasonic coherence 

spectra at Windless Bight and Fairbanks. The estimated correlation of the clutter signals 

was dependent on the intersensor separation distance, the local wind speed, and the season 

of the year. The degree to which the clutter correlation depended on these parameters 

was different between the two array locations. The observed microbarom and M AW /HTV 

clutter signals were coherent across both the Fairbanks and Windless Bight arrays. The 
coherence spectrum estimated at th e  F airbanks array ex h ib ited  coh eren t high frequ en cy  

clutter signals as well as the coherent M AW /HTV and microbarom signals.
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The estimated coherence spectrum at the Windless Bight array was stable throughout 

the year, displaying no seasonal or diurnal variation in the estimated coherence spectrum. 
A seasonal dependence in the estimated microbarom and M AW /HTV coherence was ob­
served at the Fairbanks array. During the winter months at Fairbanks, the coherence of the 

microbarom and M AW /H TV signals estimated at small separations was approximately 0.9. 

The spring and summer microbarom and M AW /H TV coherence decreased from the levels 

seen during the winter months, reaching a minimum during the month o f June. The coher­

ence of the clutter remained at the summer time minimum level until September, where the 

microbarom and M AW /HTV coherence began to increase. The estimated microbarom and 
M AW /HTV coherence returned to the observed winter levels during the month of Novem­

ber. The variations observed at Fairbanks were due to a combination of seasonally shifting 

winds in the troposphere and stratosphere, and a diurnal variation in local wind speeds. At 

IS53, some of the man-made clutter was also correlated across the array. Since the man- 

made clutter were near-field signals, the coherence of the signals varied with changes in the 

local wind speed, but were not affected by seasonal variations due to large scale atmospheric 
effects.

In addition to altering the coherence level of the infrasonic noise field, changes in the 

local wind also shifted the frequency of the estimated microbarom coherence peak. The 

shift in the frequency of the microbarom coherence peak was caused by the frequency 

dependence in the rate of increase of the noise power with local wind speed. As the local 

wind speed increased, the wind noise power contained in the different frequencies increased 

at different rates. At frequencies where the wind noise power increased at a faster than 

average rate, the coherence decreased more rapidly with local wind speed. The estimated 
microbarom coherence peak spanned a frequency range that included the frequencies with 

the largest wind noise power growth rates. As the coherence of the lower microbarom 

frequencies decreased at a faster rate with local wind speed than the higher microbarom 

frequencies, the frequency location of the estimated microbarom coherence peak appeared 

to shift toward the higher frequencies as the local wind speed increased. The shift in the 

frequency location of the estimated microbarom coherence peak was observed at both the 
Fairbanks an d  W in d less  B igh t arrays.

The coherent elements of the infrasonic noise field estimated at IS55 and IS53 had an
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effect on the performance of the least squares estimate of signal azimuth and trace velocity. 

The presence of correlated signals in the infrasonic noise field changed the assumed model 

of the sensor output from a signal of interest corrupted with uncorrelated noise to a signal 

of interest, clutter, and uncorrelated noise. The addition of clutter in the data degraded 

the performance of the least squares estimate, requiring higher signal-to-noise ratios to get 
the same accuracy in the estimation of azimuth and trace velocity. The signal-to-noise ratio 
where the estimates migrated away from the desired values was dependent on the coherence 

level of the noise field. The more correlated the clutter in the infrasonic noise field, the 

higher the signal-to-noise ratio where the least squares estimate began to break down. The 

typical signal-to-noise where this break down occured was approximately 8 dB for clutter 

with a correlation coefficient of 0.7, which is a typical value for the microbarom clutter. 

At low signal-to-noise ratios, the estimates of azimuth and trace velocity locked onto the 

values of the clutter in the noise field. The transition region between the signal of interest 

and clutter was characterized by high variances in the estimates and a sensitivity to the 
parameters of the signal of interest and clutter.

6.2 D iscussion

The least squares estimate of the slowness vector, and through the slowness vector the 

azimuth and trace velocity, is sensitive to the signal-to-noise ratio of the data used in the 

estimation. Figure 6.1 displays the results of a numerical simulation designed to deter­
mine the signal-to-noise ratio where the estimated slowness vector pdf can no longer be 

described as a Gaussian distribution. The slowness vector pdfs were produced by least 

squares estimation of the trace velocity and azimuth for 10,000 realizations of a synthetic 

signal corrupted with noise at each signal-to-noise ratio shown in Figure 6.1. The noise 

used to corrupt the synthetic signal was the ideal Gaussian, white, uncorrelated (GWU) 

noise. At each signal-to-noise ratio, 1,000 simulated slowness vector pdfs were produced to 
determine the percentage of distributions at each signal-to-noise ratio that were not Gaus­

sian, in the following sentense. The percent of synthetic slowness vector pdfs that failed 
the chi-squared distribution test47 with respect to an ideal Gaussian is shown on the y-axis. 
The signal-to-noise ratio of the data used during the estimation is shown along the x-axis. 

At high signal-to-noise ratios, nearly all the slowness vector pdfs pass the chi-squared test
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Figure 6.1. The percentage of synthetic slowness vector pdfs that fail a chi-squared distri­
bution test as a function of the signal-to-noise ratio.

and the distributions of the slowness estimates are 2-D Gaussian distributions in slowness 

space. As the signal-to-noise ratio decreases, the variances of the 2-D Gaussian distribu­

tions begin to increase and a progressively larger percentage of the distributions fail the 

chi-squared test, reaching a 100% fail rate at a signal-to-noise ratio of approximately 2 dB. 

The non-Gaussian distribution of the slowness estimates indicates that the Gaussian, white, 

uncorrelated noise present in the synthetic data has effectively masked the signal of interest 

and reliable estimation of the parameters is no longer possible. At low enough signal-to- 

noise ratios, approximately —3.5 dB, the distribution of the slowness estimates returns to 

a 2-D Gaussian distribution, but is now centered on either the noise or clutter values.

Although the physical noise field present at the Fairbanks and Windless Bight arrays 

violated the assumptions of white, uncorrelated noise, the least squares estimate of azimuth 

and trace velocity showed only a small degradation of performance when the data was 

bandpass filtered prior to estimation. At high signal-to-noise ratios, greater than 10 dB, 
the performance of the estimator with an empirically derived infrasonic noise field showed
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no deviation out to four significant figures from the estimator performance with the assumed 

noise field. At these high signal-to-noise ratios, the distribution of the slowness estimates 

was approximately a 2-D Gaussian. The main effect of the empirical noise field was to 

increase the signal-to-noise ratio where the estimate distribution began to deviate from a 

Gaussian distribution. The increase in the threshold signal-to-noise ratio was not large, less 
than 10 dB for the numerical simulations performed in this study. In light of the results 

of this study, it seems reasonable to assert that the assumption of Gaussian white noise 

does not result in any major deviations in the LSE estimations relative to the physical case 

at signal-to-noise ratios greater than 10 dB. At signal-to-noise ratios less than 10 dB, the 
noise model assumptions begin to noticeably deviate from the physical reality present at 

the Fairbanks and Windless Bight arrays, and the least squares estimates of azimuth and 

trace velocity begin to fail.
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Appendix A

Entopy Optimazation Derivation of the Slowness Vector pdf
t

In the derivation of the pdf of the slowness vector in Section 3.3.1, assumptions were 

made about the nature of the noise field at the points of data collection.43 The assumption 

of a normally distributed noise pdf is a standard assumption in signal processing, but still 

force the use of information that is not known a priori from the data. An alternative 

derivation of the pdf of the slowness vector can be preformed by applying the principles of 

entropy optimization.45 The principles of entropy optimization allows a derivation of the 
unknown probability density function that is based on the data collected and no additional 

assumptions.

The principles of entropy optimization are rules that standardize the criteria used when 

selecting a distribution function to represent empirical data. The general entropy optimiza­

tion principle is:

Out of all probability distributions satisfying given moment constraints together 

with the natural constraint on the probabilities, choose the distribution that is 

closest to the given a priori probability distribution, Q, and in the case that Q is 

not specified, choose the distribution that is closest to the uniform distribution.45

This principle is a common sense statement that only the information given should be used 

to choose a distribution to represent the emperical data.

The uniform distribution has the maximum uncertainty of all possible distributions. 

Choosing distributions that are closer to the distribution of maximum uncertainty may seem 

counter intuitive, but there is a reason for this rule. If a distribution other than the one with 

maximum uncertainty is chosen to represent the data, information not available from the 

data must have been used to determine that the distribution with the smaller uncertainty 

better represent the data. If the extra information used to select the distribution of lower 

uncertainty was not part of the original constraints derived from the data, then the use of 

the extra information goes against scientific principles. Using only the information derived 
from  th e  d a ta  w hen  determ in in g  w h ich  d is tr ib u tion  w ill represent th e  em p irica l d a ta  is at 

^This appendix summarizes a derivation found in the book by Kapur and Kesauan.45
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the heart of the principles of entropy optimization.

In order to minimize the entropy, it is first necessary to define the entropy and stan­

dardize the measure of this entropy. When entropy is discussed in entropy optimization 
what is meant is the probabilistic uncertainty in the distribution.45 The measurement of 

the entropy for a continuous-variate distribution with a pdf f ( x )  is

f (x) ln[ f (x)]dx.  (A .l)/J a

fJa

/Ja

According to the principles of entropy optimization, to find the pdf A. 1 must be maximized 

under the constraints on the moments and the “natural” constraint that the probabilities 
sum to unity. The natural constraint equation is

rb
f ( x ) dx  — 1, (A.2)

la

where the pdf must sum to unity over all space. The constraints on the moments can be 
compactly written as

b
f ( x ) g r(x)dx — ar, (A.3)

a

where g\ — x, g<i =  x 2, ... and the moments are represented by ar. If m moments are known 

from the empirical data, then the number of moment constraint equations in Equation A.3 

is m and r =  1 ,2 ,3 ,..., m. To maximize the entropy, the Lagrangian of the entropy,

L =  — f  f ( x ) l n [ f ( x ) } d x - ( \ 0 - l ) [ f a f ( x ) d x - l ] - Y T = i Xr [ J a f ( x ) g r ( x ) dx - ar\, (A.4) 
Ja

must be minimized using the Euler-Lagrange equation. The Euler-Lagrange equation states 
that if J  is defined by an integral of the form J =  J f ( x ,  y, y )dx ,  then J has a stationary 

value if
df d . d f  .
— =  0dy dx dyx ’

where

a®, =  S ' .yx dx
The Lagrangian of the entropy contains no f ' (x)  terms, so J =  f  F  (x, f ( x ) )  and the Euler- 
Lagrange equation becomes

OF d r OF
d f { x ) dx d f { x )  

8 F
9f ( x )

=  0

=  0, (A.5)
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where the term involving the derivative with respect to f ' (x)  is equal to zero. It follows from 

Equation A.5 that the minimum of the entropy can be found by differentiating Equation A.4 

with respect to f ( x )  and setting the result to zero,

d
df (x )

[f{x)ln[f{x)\ +  (A0 -  1 ) f ( x )  +  1 +  K f ( x ) g r(x) +  ar] =  0
r—1

ln[f(x)]  +  1 +  (A0 -  1) +  ^  Argr{x) =  0
r= 1

m
~ x o - J 2  =  lnif(x)}

r= 1
e[ - * o - 5 Z i ^ W l  =  (A.6)

Equation A.6 is the general form of the pdf where the unidentified multipliers, Ao, A i,...., Am,

determine the exact form of the pdf and are found by substituting the general form into

the constraint equations.

The normal distribution is the maximum entropy probability distribution (MEPD) for 

any random variate varying between —oo and +oo with a known mean and variance. With 

the first two moments known, Equation A.6 becomes

f ( x )  =  e - Xo~Xl X“ A2 x\

or rewriting the constants

f { x )  = e- 6(*-c)2_ (A.7)

The constraint equations can now be employed to determine the constants a, b, and c. There 

are three constraint equations, one from the natural constraint and two from the constraints 
on the moments,

/ OO 0
exp-6(x- c) dx =  1 (A.8)

-O O

/ OO _
x  exp~b(x~c) dx =  m (A.9)

-O O

/ OO 9
x2 exp -6(x- c) dx =  7- (A. 10)

-O O

The integrands in Equation A.8 and Equation A.9 are both in the form of Gaussian integrals, 
resulting in

a j  exp~b(-x~ĉ  dx =  a (A .l l)
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and

a f  x  exp-ft(x~c)2 dx =  a c Jt̂ r. (A. 12)
J—OQ V 0

The integrand of Equation A. 10 is more involved and the integration requires the use of 

substitution of variables. Let

u =  x  — c

so

x 1 — u2 T  c2 +  2uc

and the integrand becomes

/ ° °  /  \*> r°° o

x 2 e~b(~x~c  ̂ dx =  a (u2 +  c2 +  2uc)e~b “  du
-oo  «/—oo

oo

/ O O  2  / .O O  2  /.O O  2

u2 exp~b “ du +  ac2 e~b u du +  2ac u exp-6 “  du
-O O  J — OQ J — OQ

a  I  f t  . 2  I  f t

2VP + OC \Jb+2ac{0)
=  a \ / r [ 4  +  c2]- (A -13)b L2b

The system of equations to solve for the constants is

a b =  1 

a c J ^  =  m

a\ / ? [ 4  + c2] =  T'2' (A-14)b 2b

Upon solving the system of equations the constants are found to be

1
y/2ncr

c — m, (A.15)

where 7 2 — rns has been replaced with the variance a2. Substituting the constants into 
Equation A. 7 produces a normal distribution,

1 _ (a-c)2
f ( x ) =  ~ 7 ^ e 2,t2 . (A.16)

y Z T T C T
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and the MEPD with two known moments is the normal distribution.

This result can be extended to multivariate distributions by using the multivariate en­
tropy measure,

-  J  •••• J  f { x i , x 2, x n)ln[f(xi ,  x 2, x n)]dx1dx2...dn.

If the means, variances, and co-variances are prescribed as

E[xi] =  mi

E [ { x i - m i ) 2} =  o f

E [ ( x i  -  m i ) ( x j  -  rrij)} =  pcriCTj,

the maximum entropy probability distribution is

/ (£ ) [—|(x-ra)T E 1{x -m )]
(2 t t ) 2|£|2

-e1 2

where

x  =

and

£  =

/  X \  \

x2

\ xn /

/  m\ \ 

m2

\ mn j

&1 P l2<X \ 02 • • •  P \ n & l& n

p 2 l<y2CF\ < j\ • • •  p 2na  2<7n

m =

(A. 17)

(A.18)

(A.19)

(A.20)

. PnlO’n^’l ' ' ' ' ' ' &n

For the specific case of 2-d estimation with uncorrelated components of the slowness vector, 
the same assumption made in the paper by Szuberla et al.43, the variance matrix, £  is
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diagonal. The diagonal variance matrix allows the MEPD to be written as a sum to one 
dimensional Gaussian distributions,

21 ( S x - m x ) 2 (»»-” »)'
f ( s )  =  - ------------e e 2asv . (A.21)

Sx ̂  Sy

The MEPD in this form is identical to the slowness vector distribution found in Chapter 3. 

With only two moments of the distribution known the empirical slowness vector data must 

be represented by a normal distribution.
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