
P R O J E C T I N G  P H Y S I C A L  O B J E C T S  
I NTO A V I R T U A L  S P A C E  U S I N G  

T H E  K I N E C T  AND O C U L U S  R I F T

A Project
By Shaun P. Bond

Presented to the Faculty of the University of Alaska Fairbanks 

In Partial Fulfillment of the Requirements of 

MASTER OF SCIENCE IN COMPUTER SCIENCE

Fairbanks, Alaska 

April 2015



P R O J E C T I N G  P H Y S I C A L  O B J E C T S  
I NTO A V I R T U A L  S P A C E  U S I N G  

T H E  K I N E C T  AND O C U L U S  R I F T

A Project
By Shaun P. Bond

RECOMMENDED: f

1 J  ^  ~ p f ' 2 1

Dr. Orion Lawler, Advisory Committee Chair Date

A tLyujlt lotf-W-lt
Dr. Glenn Chappell, Advisory Committee Member Date

APPROVED:

Dr. Jon Genetti, Advisory Committee Member Date

Dn4on Genetti, Dept. Head, Computer Science Date'

Page 2



ABSTRACT

Virtualized Reality as a field of research has been increasing over the last couple of decades. 
Initially, it required large camera arrays, expensive equipment, and custom software to implement 
a virtualized reality system. With the release of the Kinect and the Oculus Rift development kits, 
however, the average person now has the potential to acquire the hardware and software needed to 
implement a virtualized reality system. This project explores the possibility of using the Kinect and 
Oculus Rift together to display geometry based on real-world objects in a virtual environment.
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INTRODUCTION

Virtualized reality can be viewed as the complement to augmented reality. In augmented 
reality, computer generated visuals are integrated with real-world visuals. In virtualized reality, 
a computer generated representation of real-world objects is viewed in a virtual reality 
environment.

Virtualized reality has applications in many fields. It has been applied in research 
involving remotely controlled robotics (Hine, 1994; Goza, 2004), entertainment (Carnegie 
Mellon, 2001), and physical and mental rehabilitation (Thin, 2012). It also has potential for 
other applications such as microscopic visualization, training, engineering, architecture, and 
others.

Virtualized reality has been a field of research since as early as 1994, when Hine et al. 
developed a system to aid in the remote navigation of an underwater vehicle. This system used 
sensory data from the vehicle’s stereo cameras, and positional data to reconstruct the underwater 
environment. It also supported two display modes, one of which was a VR headset. Once the 
environmental data was collected, the operator could navigate from within the virtual 
environment relatively free from communication latency (Hine, 1994).

Fi g u r e  1: VEVI In t e r f a c e  (Hi n e , 1994)

In 1995, Kanade et al. developed a virtualized reality system utilizing a large camera 
array (Kanade, 1995). This camera array recorded video from various perspectives, which was 
later used to construct a 3-dimensional video. This allowed the viewer to select an arbitrary 
viewpoint during playback (Kanade, 1997). Later, in 2001, a version of this system was used to 
record a Super Bowl event (Carnegie Mellon, 2001).
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Fi g u r e  2: Th e  Do m e  a t  Ca r n e g i e  Me l l o n  Un i v e r s i t y  (Co p y r i g h t  Ca r n e g i e  Me l l o n , 1995)

More recently, some students at Carnegie Mellon University created a virtualized reality 
system that allows a person to explore the world from a third-person perspective (Ota, 2012). 
This system utilizes the Kinect’s depth sensor to gather environmental information, and the 
Oculus Rift head mounted display to view it. The Kinect is a motion-sensing input device 
developed by Microsoft, and the Oculus Rift is a virtual reality display device. The Kinect is 
mounted at a fixed position relative to the user, giving the third-person perspective to the viewer.

Fi g u r e  3: 3r d  p e r s o n  p e r s p e c t i v e  p o i n t  c l o u d  (Pr o p e r t y  o f  Jo h n a t h a n  Ot a )
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I wanted to explore whether real-time virtualized reality was feasible on commodity 
hardware. My goals for this project were to use the Microsoft Kinect to generate a 3D triangle 
mesh of real-world objects, place the mesh in a virtual environment, and display it to the Oculus 
Rift in real-time. Some projects I have found produce a triangle mesh in real-time, but do not 
display it in stereoscopic VR (Izadi, 2011). Others (Ota, 2012), display data from the Kinect in 
stereoscopic VR, but use a simple point-based rendering approach instead of a continuous 
triangle mesh. My project differs from these in that it does both.

HARDWARE

The Kinect is a device developed by the Microsoft Corporation to allow motion input for 
video games, but researchers have found many other uses for its depth detection and motion 
tracking capabilities. Among these are 3D reconstruction of objects (Izadi, 2011), translation of 
sign language (Chen, 2013), and hands free control of operating room computers (Tan, 2012). 
The original Kinect was designed for use with the Xbox 360, but there are newer versions 
available for Xbox One and personal computers. I used the original Xbox 360 version in my 
project, so the hardware and software specifications in this paper refer to that version.

The Kinect device consists of an infrared (IR) emitter, IR receiver, and color (RGB) 
camera. The IR emitter and receiver are located approximately 7.5 cm apart, and the IR emitter 
projects a predefined dot pattern (Freedman, 2012). This dot pattern bounces off of IR reflective 
objects and is acquired by the IR receiver. The Kinect analyzes the parallax shift and distortion 
of the pattern to build a two dimensional matrix of depth values, hereafter referred to as the depth 
image. The dot pattern can be seen in figure 5. The Kinect also has a motor in its base that 
allows it to adjust its vertical tilt.

Fi g u r e  4: Ki n e c t  f o r  Xb o x  360 (Ph o t o g r a p h : Mi c h a l  Cz e r w o n k a /Ge t t y  Im a g e s )
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Fi g u r e  5: IR d o t  p a t t e r n  e m i t t e d  b y  t h e  Ki n e c t

The Oculus Rift is a virtual reality headset in development by Oculus VR. As of this 
paper, they have released two versions. These are referred to as Development Kit 1 (DK1), and 
Development Kit 2 (DK2). The DK2 possesses a higher resolution and reduced latency over the 
DK1, as well as the addition of positional tracking. The DK2 is the version I used for this 
project, so the specifications here refer to that version.

The DK2 has a single display and two eyepieces. The display has a 1920 x 1080 pixel 
resolution, and 2 milliseconds of persistence. The low persistence provides better immersion and 
reduced motion sickness, compared with earlier VR headsets, by reducing motion blur. The 
optical lenses in the eyepieces have a 100-degree field of view, which allows for greater 
peripheral vision. However, the large field of view causes distortion of the image, which needs 
to be corrected. Another problem caused by the lenses is chromatic aberration, which must also 
be accounted for when rendering. These effects can be seen in figures 6 and 7. In order to 
achieve position and orientation tracking, the DK2 possesses an internal accelerometer, 
magnetometer, and gyroscope, as well as an external position tracking camera. The internal 
sensors update 1000 times per second, while the position tracking camera updates 60 times per 
second. All of the sensors communicate with the computer over a USB 2.0 connection, while the 
display is transmitted over an HDMI connection.

Stereoscopic vision is achieved by drawing a scene from two different perspectives, that 
of the left eye and that of the right eye. Each of these images is drawn on one half of the DK2 
display, and the eyepieces are focused on their respective halves. Chromatic aberration and lens 
distortion are handled in software prior to displaying the scene. The image is predistorted and 
chromatic aberration is applied in reverse. When the image passes through the lens, the effects 
are undone. This avoids the necessity for expensive hardware solutions.
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Fi g u r e  6: Di s t o r t i o n  c a u s e d  b y  l e n s e s  i n  Oc u l u s  Ri f t  Fi g u r e  7: Ch r o m a t i c  a b e r r a t i o n

The DK2 handles position tracking by using near-infrared LEDs placed on the headset. 
Each of these LEDs emits at a different frequency and intensity (Terndrup, 2014). This allows 
the position tracking software to identify which LED a signal came from, and calculate the 
position of the headset. The distance of the headset from the camera can be determined by the 
relative spacing of the LEDs. The vertical and horizontal position can be found in a 
straightforward manner using the 2D position of an LED and its distance from the camera.

Fi g u r e  8: Ne a r - i n f r a r e d  LEDs  i n  Oc u l u s  Ri f t  (Te r n d r u p , 2014)
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CONVERTING KINECT DEPTH TO 3D GEOMETRY

My first step for this project was to produce a 3D geometry from a Kinect depth image. 
To interface with the Kinect, I used an open source library called Libfreenect. Libfreenect 
defines the FreenectDevice base class, which is responsible for communicating with the Kinect 
device. A user then derives a class from FreenectDevice and overloads functions to receive 
video frames and perform any desired computation. FreenectDevice also contains functionality 
enabling the user to control the Kinect motor and LEDs.

The Kinect supports RGB, YUV, Bayer, and infrared (IR) image formats for its color 
video stream. RGB and Bayer can be returned in 640x480 or 1280x960 pixel resolutions. YUV 
and IR formats can only be returned in 640x480 pixel resolution. The user can request any of 
these formats and resolutions with Libfreenect. I used the 640x480 RGB resolution, which 
allows a maximum of 30 frames per second.

Because the focus of this project was doing the actual transformation, rather than building 
the infrastructure, I opted to start with an existing program that would handle all of the setup and 
receive images from the Kinect. The program I selected for this purpose is called cpp_view, a 
demo program that is part of the Libfreenect project. It receives frames from both the RGB and 
depth cameras, does some basic colorization of the depth image, and displays both images to the 
screen. Figure 9 shows the output of the original program. It also supports switching between 
the various image formats, adjusting the tilt of the Kinect, and operating the LEDs on the Kinect.

Fi g u r e  9: Ou t p u t  o f  u n m o d i f i e d  c p p _v i e w . Le f t : De p t h  s t r e a m . Ri g h t : RGB s t r e a m  s h o w i n g  IR.

Initially, I would get terminal errors intermittently when starting the program. I would 
also receive a terminal error consistently when exiting the program. After reviewing the code, I 
noticed that video streams from the Kinect were being initialized during the startup sequence, but 
were never stopped. Stopping the video streams in the destructor of the class derived from 
FreenectDevice solved both problems. It is my belief that the Kinect was attempting to continue 
writing to a buffer after it had been destroyed.

Page 12



In order to familiarize myself with the program and how it handled images, I modified 
the code so that it would display a gray-scale coloring of the depth image instead of a color one. 
I then added code to the same routine that calculates the 3D position of each pixel in the depth 
image and stores it in a vertex array. To assist with this, I used some code written previously by 
Dr. Lawlor to project a 2D point into 3D space (see figure 11). The Kinect does not record depth 
in any standard unit. Fortunately, Stephane Magnenat (OpenKinect, 2013) developed an 
algorithm that converts the depth value to meters with less than 3% error, as measured during my 
previous work with the CyberAlaska project.

d i s t a n c e  = 0 . 1 2 3 6  * t a n ( r a w D i s p a r i t y  /  2 8 4 2 . 5  + 1 . 1 8 6 3 )

Fi g u r e  10: St e p h a n e  Ma g n e n a t 's d e p t h  t o  d i s t a n c e  c o n v e r s i o n  (Op e n Ki n e c t , 2013)

v e c 3  l o c ( i n t  x , i n t  y)  c o n s t  {

r e t u r n  d i r ( x , y ) * d e p t h ( x , y ) ;

}

v e c 3  d i r ( i n t  x , i n t  y)  c o n s t  {

r e t u r n  v e c 3 ( ( x - w * 0 . 5 ) * p i x e l F O V ,  ( h * 0 . 5 - y ) * p i x e l F O V ,  1 ) ;

}

f l o a t  d e p t h ( i n t  x , i n t  y)  c o n s t  { 

u i n t 1 6 _ t  d i s p = d e p t h i [ y * w + x ] ;  

i f  ( d i s p > =  I N V A L I D _ D E P T H )  r e t u r n  0 . 0 ;  

r e t u r n  0 . 1 2 3 6  * t a n ( d i s p  /  2 8 4 2 . 5  + 1 . 1 8 6 3 )  -  0 . 0 3 7 ;

}

F i g u  r e  11: Dr . La w l o r 's  c o d e  f  o r  25 t o  3D p r o j e c t i o n

I needed to verify that my code was really producing a 3D point cloud with reasonable 
values. For the purposes of this project, it is more important that the results are visually 
convincing than it is that they are accurate, so I decided that the easiest way to verify was to 
display the point cloud along with the colorized depth image, as seen in figure 12. In order to do 
this, I replaced the RGB image with the point cloud, but this presented some difficulties. The 
Kinect uses a downward pointing y-axis, while OpenGL uses an upward pointing y-axis. The 
original code corrects this by flipping the projection coordinates, but Dr. Lawlor's code, 
mentioned previously, corrects the y-axis for the point cloud when the point coordinates are 
calculated. This resulted in the point cloud being displayed upside down. I corrected this issue 
by using two different viewports with two different projections. This also allowed me to display 
the point cloud in perspective, yielding a more convincing image, while not subjecting the depth 
image to perspective distortion.
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Fi g u r e  12: Mo d i f i e d  c p p _v i e w  s h o w i n g  g e n e r a t e d  p o i n t  c l o u d

Initially, I connected all of the points into a single triangle strip using a simple algorithm 
illustrated in figure 13. Unfortunately, the Kinect does not always know the depth at a given
pixel. In those cases, it will return the value 2047, marking it as too far, too close, or otherwise
unknown. Because I assumed that every pixel was a point so that I could implement this 
simplified triangle strip algorithm, my code assigned 
coordinates to invalid pixels as well. By default, Dr.
Lawlor’s code gave the coordinates (0, 0, 0) to pixels 
with an invalid depth. The consequence of this was 
that the triangle strip contained triangles connected to 
the origin, producing an image that was obviously not 
correct. Rather than attempt to implement an 
algorithm that did not include these invalid points in 
the triangle strip, and could have potentially been far 
more complex, this problem can be solved efficiently 
using a geometry shader. The coordinates (0, 0, 0) are 
the location of the Kinect device itself. Therefore, no 
point seen by the Kinect can have those coordinates.
This makes it a reasonable way to represent invalid 
points. Using this, I was able to write a geometry 
shader that checks each triangle for a point containing those coordinates. If the shader finds such 
a point, it discards the whole triangle. This produces an object that is much more visually 
convincing, leaving holes where the Kinect is unable to obtain information. Figure 14 shows the 
resulting geometry. This also has the advantage that it runs on the graphics card, so it does not 
use any more of the CPUs resources, and it is able to exploit the GPUs massive parallelization.

One other drawback of this algorithm is that it produces a triangle strip that is not well 
suited to spherical surfaces and some other shapes. However, this did not seem to make a 
noticeable impact on the appearance of the geometry, probably because of the extremely small 
size of the individual triangles. Therefore, I did not feel it was worth my time to create a more 
complicated algorithm.

Fi g u r e  13: Al g o r i t h m  f o r  g e n e r a t i n g  

t r i a n g l e  s t r i p . Ci r c l e s  r e p r e s e n t  v e r t i c e s ,
A R R O W S  r e p r e s e n t  T H E  O R D E R  I N  W H I C H  T H E Y

a r e  a d d e d , a n d  d o t t e d  l i n e s  r e p r e s e n t  t h e  

i m p l i c i t  c o m p l e t i o n  o f  a  t r i a n g l e .
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Fi g u r e  14: Mo d i f i e d  c p p _v i e w  s h o w i n g  t r i a n g l e  s t r i p  w i t h  d i s c a r d e d  t r i a n g l e s

RENDERING WITH THE OCULUS RIFT

The second phase of my project involved using the Oculus Rift to display a simple 
stereoscopic cube. I chose a simple cube for this phase to eliminate any complexities that might 
have been introduced by the code that handles the Kinect image processing and generated 
geometry. The API I used to interface with the Oculus Rift is the Oculus SDK, which includes 
LibOVR, a configuration utility, and demo application. Oculus SDK and LibOVR are developed 
by Oculus VR and have experimental Linux support at the time of this writing.

LibOVR is a state-driven API. There are several general steps involved in setting up the 
Oculus Rift. LibOVR must be initialized before anything else can be done. The library handles 
this itself when the initialization function is called. A head mounted display object must then be 
created. This object contains information about the headset and its capabilities, and it allows the 
software to interact with the head mounted display. The next step is to configure the head 
tracking and rendering settings. The application is responsible for creating a render texture using 
either Direct3D or OpenGL, and for passing a handle to LibOVR along with the graphics API 
used, texture size, and viewport. LibOVR supports the use of a single texture for both eyes, or a 
separate texture for each eye. In the prior case, one would define two viewports, and in the latter 
case, one would define two textures. LibOVR must be called before and after rendering the 
scene, and the application must render the scene once for each eye. The library contains various 
functions to assist with this.

As in the previous stage, I began with existing code in order to reduce development time. 
This time, I used a program I had written previously for a simple OpenGL app. I modified this 
code to render a basic cube in the standard way. Once I had that working, I included some basic 
LibOVR functionality. At this point I only set up the head mounted display so that I could
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access sensor data. I did not initialize the rendering configuration because I was not ready to 
render to the Oculus Rift yet. I then used the head mounted display’s reported interpupillary 
distance to shift the camera and render two images in stereo. I displayed both of these images 
side-by-side to the standard display so that I could visually verify that stereo rendering was 
working before introducing possible complexities with the head mounted display.
A  ,__________________________________________________________________________________________________ Virtualized Reality with Otulus and Kinect______________________________________________________________________________________________ r  Z *

4 A

H EALTH A  S A F E TY  W AR NING HEALTH & S A F E TY  W A R N IN G

toad and M ow  all warning and instructions 

included with the Haad*at before uaa. Headset 

should be calbrated for each user. Not for eee by 

ddMran under 13. Stop u m  if you experience any 

dbcomfort or health reactions.

toad and fofew all warning* and Instructions 

included with the Headset before u m . Headset 

should be calibrated for each user. Not for ass by 

chHdran under 13. Stop use If you experience any 

discomfort or health reactions.

More: www.oculut.com/wamin9> More: www.ocuhis.com/'warningi

Press any hay to acknowledge Press any key to acknowledge

Fi g u r e  15: Si m p l e  c u b e  r e n d e r e d  i n  s t e r e o  t o  s t a n d a r d  d i s p l a y

The next step was to display the cube on the headset. For this step, I needed to initialize 
the LibOVR rendering configuration. Actually getting LibOVR to do the rendering was as 
simple as replacing my call to swap the display buffers with the library’s equivalent. Because I 
set it up in the rendering configuration, LibOVR handled distortion correction and chromatic 
aberration correction for me. The final step in this stage was to incorporate head tracking. This 
involved querying the head mounted display for its position and orientation, and constructing 
view and projection matrices using that information.

Problems in this stage largely arose from a lack of documentation and simple demo 
programs. Oculus VR had written a user guide for the SDK, but it was not a very detailed guide. 
It described the basic steps involved in setting up and using the library, but described each step in 
isolation, with references to functions whose behavior was not described. Furthermore, there 
was no code reference. I spent a lot of time reading through the implementation, seeing how 
others used the library in examples, and experimenting. It was also difficult to apply the code in 
the examples to my project because all of the examples written for Linux were rather complex.
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INTEGRATING OCULUS RIFT AND KINECT

My goal for the third and final stage of this project was to display the geometry produced 
by the Kinect in stereoscopic 3D in real-time. However, I had some extra time at the end of the 
project to explore a couple of related problems. I will discuss those here as well.

Integrating the image processing code with the rendering code went smoothly. The 
image processing code was already written as an independent component that functioned in its 
own thread. The only change I needed to make after combining the code was to get the list of 
vertices from the Freenect device and tell OpenGL to display the vertices as a triangle strip 
instead of the cube. While the geometry displayed correctly, it was not oriented or positioned 
correctly. I fixed these problems by manually correcting the coordinate system. The result can 
be seen in figure 16. This would not be a suitable solution for released software, however, 
because simply moving the Kinect physically would require code changes to correct the 
geometry. Initially, the position tracking was not working, either. This was a hardware issue 
rather than a software one, though. The position tracking camera and the Kinect happened to be 
on the same USB bus. Because both devices send uncompressed video, the USB bus did not 
have enough bandwidth to support them, and the operating system dropped the position tracking 
camera. Ensuring that the two devices were on separate buses resolved the problem.

Fi g u r e  16: Re a l -w o r l d  g e o m e t r y  r e n d e r e d  o n  t h e  Oc u l u s  Ri f t
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The first additional problem I explored was that of coloring the geometry. For this to be 
of practical use, some kind of appropriate coloring needs to be applied to whatever geometry is 
produced. The Kinect comes equipped with an RGB camera, so I thought to use this to acquire 
the colors for the image. For my first attempt, I simply colored the geometry using a one to one 
correspondence between the pixels in the depth image and the RGB image. As shown in figure 
17, however, the colors did not line up correctly using this method, and the disparity was worse 
toward the extremities of the object. There are a couple reasons for this. The first is that the 
depth camera and RGB camera have different fields of view. This means that the RGB camera 
sees more of the scene than the depth camera does. In addition, the RGB camera and depth 
camera point in slightly different directions, which vary from device to device. There is a 
device-dependent series of transformations that one can perform to project a depth pixel into the 
color image, but simply adjusting for the difference in field of view and distance between IR and 
RGB cameras produces reasonable results.

Fi g u r e  17: RGB i m a g e  a p p l i e d  t o  g e o m e t r y  w i t h o u t  c o r r e c t i o n
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Fi g u r e  18: FOV a n d  d i s t a n c e  b e t w e e n  c a m e r a s  a c c o u n t e d  f o r  w h e n  a p p l y i n g  t e x t u r e

The second issue I wanted to explore was how to deal with depth measurement jitter in 
the generated object. Because the depth image from the Kinect is imprecise, and the object is 
regenerated every frame, the object surface appears to be constantly shifting. I explored three 
simple ideas to see how they would affect the appearance.

The first idea was to sample a pixel from every other row and column. This generates 
half as many points which are twice as far apart. The result is that slopes between points tend to 
be smaller, but the magnitude of deviations does not change. In the end, this method had little 
effect.

The second idea was to average the generated points over several Kinect frames. The 
idea is that it will not affect points that are stable, while the points that experience jitter will tend 
toward an average value. This value may still not be correct, but should generally be more 
stable. I only averaged over two frames in my test, but it resulted in generally smoother edges 
and more subdued jitter, as figure 19 shows. It is likely that averaging over a greater number of 
frames would produces better results, but this would also increase latency in the video. A second 
drawback of this method is that points that are invalid in one of the frames being averaged, 
therefore having coordinates (0, 0, 0), will pull the value of the other frame well away from its 
real position, creating visual artifacts.

The third method yielded the best results for the least effort. This method involved 
removing computer-generated lighting from the objects generated by the Kinect, and can be seen 
in figure 20. Because the objects are colored with the real-world image, lighting from the real- 
world is apparent on the object, creating subtle shading differences that help the viewer to 
recognize three dimensional shape. Additionally, because there is no jitter in the real-world, it is

Page 19



not apparent when viewing the object directly due to the lack of shading. Jitter is still apparent at 
the edges, though, because of deformation of the object silhouettes. The obvious drawback of 
this method is that the real-world lighting may not match the computer-generated lighting in the 
scene.

Fi g u r e  19: Sc e n e  r e n d e r e d  w i t h  g e o m e t r y  a v e r a g e d  o v e r  2 Ki n e c t  f r a m e s

Fi g u r e  20: Sc e n e  r e n d e r e d  w i t h  c o m p u t e r -g e n e r a t e d  l i g h t i n g  r e m o v e d  f r o m  r e a l -w o r l d  g e o m e t r y
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PERFORMANCE

As I was implementing this project, I recorded some performance metrics in case I 
needed to improve the processing or rendering speed to meet my goal of real-time interaction. 
Without the Oculus as part of the system, I was able to process frames from the Kinect at close to 
28 frames per second (fps) when I compiled the code with full optimizations. I was also able to 
display frames at a rate of around 36 fps. This was acceptable because the Kinect’s max frame 
rate is 30 fps.

When I added the Oculus to the system, the display rate improved, but the Kinect 
processing rate dropped rather dramatically. This is surprising because the Oculus imposes no 
extra load on the Kinect. Without access to the core implementation, or time for additional tests, 
I can only hypothesize that this shift in performance is due to the Oculus Rift using a 
multithreaded implementation that was stealing CPU time from the thread the Kinect was 
running in.

Otherwise, the system performed as one would expect. With the extra processing of the 
RGB image from the Kinect for coloring the object, the performance again dropped somewhat. I 
could only process frames from the Kinect at around 12 fps at this point, which was feeling 
rather choppy. However, sampling every other row and column, instead of every pixel, 
drastically improved the performance, and did not result in a significant drop in image quality.

m Pit g Frame Rate (Display) u Pn g Frame Processing (Kinect)

Without the Oculus

Oculus without color

Oculus with Color

Sampling every other pixel

0 10 20 30 40 50 60 70 80 90 100

Frames per second

Fi g u r e  21: Pe r f o r m a n c e  o f  Re n d e r i n g  a n d  Ki n e c t  i m a g e  p r o c e s s i n g
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FUTURE RESEARCH

There is a lot of potential for future research extending the scope of this project. A few 
ideas follow:

•  Automatically orienting Kinect generated geometry. The geometry is in the same units 
used by the Oculus rift for positional tracking, but it is oriented relative to the Kinect. 
Since the Kinect can be located at an arbitrary position and orientation, there should be 
some way to calibrate it so that objects detected will be in the proper space. For example, 
if we could automatically identify the Oculus headset in the Kinect image, we could 
correlate the Oculus and Kinect coordinate systems.

•  Using multiple Kinects, or persistent objects, to generate full 3D objects. A single Kinect 
can only see objects from one side. Additionally, it will cast IR shadows, preventing it 
from seeing objects behind other objects. Collecting multiple images and combining 
them to acquire a more complete image would do a lot to enhance the experience. When 
the same object is visible in more than one Kinect, it should be possible to automatically 
compute the coordinate system transformations between them to make the images of the 
object align.

•  Reducing or eliminating jitter. More experiments could be done with averaging of 
frames, but I feel that any real progress here will require some level of object persistence. 
If objects are only updated when data is missing or new, then jitter could be eliminated. 
This would be a difficult problem that delves into computer vision issues, because you 
would need a way to determine when a non-stationary object has changed and how.

•  Differentiation of objects. Currently, everything seen by the Kinect is treated as a single 
object unless the depth discrepancy with neighboring objects passes some threshold. 
This is a very simplistic algorithm that may separate a single object into two or more. A 
better algorithm would enhance the experience greatly, and may allow objects to be 
virtually manipulated when combined with object persistence. One possibility could be 
to include color data in classifying object connectivity, or to use persistence or multiple 
Kinects to determine when there is a discontinuity between objects.
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APPENDIX A: SOURCE CODE
/* Author: Shaun Bond (samuraicodemonkey@gmail.com)
* Date: 4-20-2015
* Source code is available at:
* https://projects.cs.uaf.edu/redmine/projects/virtualized_reality_oculus_kinect
*
* This code is licensed to you under the terms of the Apache License, version
* 2.0, or, at your option, the terms of the GNU General Public License,
* version 2.0. See the APACHE2 0 and GPL2 files for the text of the licenses,
* or the following URLs:
* http://www.apache.org/licenses/LICENSE-2.0
* http://www.gnu.org/licenses/gpl-2.0.txt
*
* If you redistribute this file in source form, modified or unmodified, you
* may:
* 1) Leave this header intact and distribute it under the same terms,
* accompanying it with the APACHE20 and GPL20 files, or
* 2) Delete the Apache 2.0 clause and accompany it with the GPL2 file, or
* 3) Delete the GPL v2 clause and accompany it with the APACHE20 file
* In all cases you must keep the copyright notice intact and include a copy
* of the CONTRIB file.
*
* Binary distributions must follow the binary distribution requirements of
* either License.
*/

// NOTE: Oculus daemon must be running (may have to be manually started)
// NOTE: Kinect and Oculus position tracking camera must be on different buses

#include "libfreenect.hpp" 
#include "lib/glslprog.h" 
#include <pthread.h>

#include <iostream> 
using std::cerr; 
using std::cout; 
using std::endl;

#include <string> 
using std::string;

#include <vector> 
using std::vector;

#include <algorithm> 
using std::copy;

#include <iomanip> 
using std::setw; 
using std::fixed; 
using std::setprecision;

#include "lib/vec4.h" 
#include "OVR.h"

#include "OVR_CAPI_GL.h" 
using OVR::Matrix4f; 
using OVR::Vector3f;

#include "Service_NetClient.h" // So I can query Oculus service for HMD errors
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#if defined(_ 
#include 
#include 
#include 

#else
#include
#include
#include

#endif

_APPLE )
<GLUT/glut.h>
<OpenGL/gl.h>
<OpenGL/glu.h>

<GL/glut.h>
<GL/gl.h>
<GL/glu.h>

// Global constants 
const short IMG_WIDTH = 640; 
const short IMG_HEIGHT = 480; 
const short PXL_SIZE = 3; 
const short DIMENSIONS = 3; 
const short INVALID_DEPTH = 2 04 ; 
const char ESC = 27;

// Global variables 
int saved_x = ;
int saved_y = ;

// Dimensions of render texture 
unsigned texture_w = ; 
unsigned texture_h = ;
vector<unsigned> indices; // Vertex indices for triangle strip.
vector<float> texCoords; // Texture coordinates for triangle strip.

ovrHmd hmd = NULL;
ovrEyeRenderDesc eyeRenderDesc[2]; 
ovrGLTexture eyeTextures[2];
GLuint hide_invalid_vertices = ;
GLuint gl_rgb_tex;
GLuint eye_tex[ ];
GLuint frame_buffers[ ];
double freenect_angle( ); 
int window(0); 
int g_argc; 
char **g_argv;

/*
Coordinate system:

Origin is Kinect's IR receiver
+X faces to the left (from Kinect's point of view)
+Y is up
+Z is away from Kinect 

Assumes that depth image is 640 x 480

This class is curtesy of Dr. Orion Lawlor. Used here in original form.
*/
class kinect_depth_image { 
public:

kinect_depth_image(const uint16_t *d_)
: depthi(d_), w (IMG_WIDTH), h (IMG_HEIGHT)
{
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}
/* Return depth, in meters, at this pixel */ 
float depth(int x ,int y) const { 

uint16_t disp=depthi[y*w+x]; 
if (disp>= INVALID_DEPTH) return 0.C;

//From Stephane Magnenat's depth-to-distance conversion function: 
return 0.1236 * tan(disp / 2842.5 + 1.1863) - 0.037; // (meters)

}
/* Return 3D direction pointing from the sensor out through this pixel 

(not a unit vector) */ 
vec3 dir(int x ,int y) const {

// Ypix = -Ydist / (pixelFOV*Depth) + .5h
return vec3((x-w*0.5)*pixelFOV, (h*0.5-y)*pixelFOV, 1);

}
/* Return 3D location, in meters, at this pixel */ 
vec3 loc(int x ,int y) const {

// Project view ray out for that pixel 
return dir(x ,y)*depth(x ,y);

}
private:

const uint16_t *depthi;
int w , h ; /* dimensions of image */
float pixelFOV; /* Unit-depth field of view offset per X or Y pixel */

pixelFOV=tan( .5 * (M_PI / 18 0.1) * 57.8)/(w* ). );

/* Borrowed this class from cppview.cpp. Used here in original form. */ 
class Mutex { 
public:

Mutex () {
pthread_mutex_init( &m_mutex, NULL );

}
void lock () {

pthread_mutex_lock( &m_mutex );
}
void unlock() {

pthread_mutex_unlock( &m_mutex );
}
class ScopedLock 
{

Mutex & _mutex; 
public:

ScopedLock(Mutex & mutex)
: _mutex(mutex)
{

_mutex.lock();
}

~ScopedLock()
{

_mutex.unlock();
}

};
private:

pthread_mutex_t m_mutex;
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/* Borrowed this class from cppview.cpp. Used here in a heavily modified form */ 
class MyFreenectDevice : public Freenect::FreenectDevice { 
public:

enum DisplayMode {POINTS, TRIANGLES};
MyFreenectDevice(freenect_context *_ctx, int _index)
: Freenect::FreenectDevice(_ctx, _index),

m_buffer_video(freenect_find_video_mode(FREENECT_RESOLUTION_MEDIUM,
FREENECT_VIDEO_RGB).bytes),

m_new_rgb_frame(false), 
m_new_vertices ( ),
m_display_format(TRIANGLES), 
m_depth_frames( )

{}
~MyFreenectDevice() {

stopVideo(); 
stopDepth();

}
// Do not call directly even in child
void VideoCallback(void* _rgb, uint32_t timestamp) {

Mutex::ScopedLock lock(m_rgb_mutex); 
uint8_t* rgb = static_cast<uint8_t*>(_rgb);
copy(rgb, rgb+getVideoBufferSize(), m_buffer_video.begin()); 
m_new_rgb_frame = true;

};
// Do not call directly even in child 
// Recieves a depth image for processing.
// Stores grayscale image in m_buffr_depth, with greater distance = darker. 
// Stores 3d vertex for each pixel in m_vertices.
// Sets m_new_depth_frame and m_new_vertices to true. 
void DepthCallback(void* _depth, uint32_t timestamp) {

Mutex::ScopedLock vertexLock(m_vertex_mutex);
uint16_t* depth = static_cast<uint16_t*>(_depth); 
kinect_depth_image img(depth);
// Move last frame into m_vertices. 
m_vertices.clear();

// Convert every other row and every other column into vertices. 
for( unsigned int yy = 0 ; yy < IMG_HEIGHT ; yy+= ) {

for( unsigned int xx = 3 ; xx < IMG_WIDTH ; xx+= ) {

// Get 3d coordinates of pixel in meters 
vec3 vertex = img.loc(xx, yy);

// Push vertex onto vertex array. 
m_vertices.push_back( vertex.x ); 
m_vertices.push_back( vertex.y ); 
m_vertices.push_back( vertex.z );

}
}
m_new_vertices = true; 
m_depth_frames += 1;

}
// If no new rgb frame 
// Returns false
// buffer remains unchanged.
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// m_new_rgb_frame remains unchanged.
// Otherwise 
// Returns true
// buffer will contain rgb image acuired from Kinect.
// Sets m_new_rgb_frame to false;
bool getRGBframe(vector<uint8_t> &buffer) {

Mutex::ScopedLock lock(m_rgb_mutex);
if (! m_new_rgb_frame) 

return false;
buffer.swap(m_buffer_video); 
m_new_rgb_frame = false; 
return true;

}

// If no new depth frame 
// Returns false
// buffer remains unchanged.
// m_new_vertices remains unchanged.
// Otherwise 
// Returns true
// buffer will contain 3d vertices acuired from depth image.
// Sets m_new_vertices to false;

bool getVertices(vector<float> &buffer) {
Mutex::ScopedLock lock(m_vertex_mutex);
if (!m_new_vertices) 

return false;
buffer.swap(m_vertices); 
m_new_vertices = false; 
return true;

}
// Returns the currently set display format.
DisplayMode getDisplayMode() {

return m_display_format;
}
// Returns the number of frames which have been processed. 
unsigned getFrames() {

return m_depth_frames;
}
// Toggles display mode between 3d point cloud, and kinect video. 
void toggleDisplayMode() {

if (m_display_format == TRIANGLES) 
m_display_format = POINTS; 

else if (m_display_format == POINTS) 
m_display_format = TRIANGLES;

}
private:

vector<uint8_t> m_buffer_video; 
vector<float> m_vertices;
Mutex m_rgb_mutex;
Mutex m_vertex_mutex; 
bool m_new_rgb_frame; 
bool m_new_vertices;
DisplayMode m_display_format; 
unsigned m_depth_frames;
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};

Freenect::Freenect freenect;
MyFreenectDevice* device;

// This function is called every frame to track FPS statistics. 
void calculateFPS()
{

// Variables used for various framerate calculations 
static const unsigned NUM_FRAMES = 30; 
static unsigned frames = 0;
static double saved_time[NUM_FRAMES] = {0}; 
static double avg_fps = ;
static double max_fps = ;
static double min_fps = DBL_MAX;

// Used to access time NUM_FRAMES frames ago 
unsigned index = frames % NUM_FRAMES;

// Get elapsed time in seconds and record the current time 
double curr_time = glutGet(GLUT_ELAPSED_TIME)/ 1000.0; 
double elapsed_time = curr_time - saved_time[index]; 
saved_time[index] = curr_time;

// Calculate current fps averaged over NUM_FRAMES frames for stability,
// average fps over total execution time, and min and max fps.
// First NUM_FRAMES frames don't yield accurate information. 
double fps = NUM_FRAMES / elapsed_time;
if( frames > NUM_FRAMES - 1 ) // At least NUM_FRAMES frames have passed 
{

float x = 1.0 / (frames - (NUM_FRAMES - 1)); // 1 / number of fpses in average
avg_fps = ( . - x) * avg_fps + x * fps;
if( fps > max_fps ) max_fps = fps;
if( fps < min_fps ) min_fps = fps;

// Here is some console output for user 
device->updateState ();
cout << "\r demanded tilt angle: " << setw( ) << freenect_angle 

<< " device tilt angle: " << setw(5)
<< device-> getState().getTiltDegs()
<< fixed << setprecision (2)
<< " fps: " << setw(6) << fps
<< " avg fps: " << setw( ) << avg_fps
<< " min fps: " << setw( ) << min_fps
<< " max fps: " << setw( ) << max_fps
<< " kinect fps: " << setw( ) << device->getFrames() / curr_time; 

cout.flush();
}
++frames;

}

// Sets up rendering parameters for kinect image vertices 
void setUpVertices(void* vertices)
{

// Send vertices to the graphics card 
glVertexPointer(3 ,

GL_FLOAT,
3*sizeof(float),
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vertices );

glEnableClientState(GL_VERTEX_ARRAY);
}

// This function is responsible for rendering the scene every frame 
void DrawGLScene()
{

// Set up buffers for images and point cloud
static vector<uint8_t> rgb(IMG_WIDTH * IMG_HEIGHT * PXL_SIZE);
static vector<float> vertices(IMG_WIDTH * IMG_HEIGHT * DIMENSIONS / );
calculateFPS();

// Start rendering. This allows libOVR to track timing information
// for things like predictive position tracking, which helps with rendering.
ovrHmd_BeginFrame(hmd, );

// set viewport
glViewport( , 1 , texture_w , texture_h);

// Get the offset of each eye from center. 
ovrVector3f hmdToEyeViewOffset[2];
hmdToEyeViewOffset[0] = eyeRenderDesc[0].HmdToEyeViewOffset; 
hmdToEyeViewOffset[1] = eyeRenderDesc[1].HmdToEyeViewOffset;

// Position and orientation of each eye will be stored in eyePoses. 
ovrPosef eyePoses [2]; 
ovrTrackingState hmdState;
ovrHmd_GetEyePoses(hmd, , hmdToEyeViewOffset, eyePoses, &hmdState);
if(!(hmdState.StatusFlags & ovrStatus_PositionTracked)) 

cout << endl << "No position tracking" << endl;
if(!(hmdState.StatusFlags & ovrStatus_PositionConnected))

cout << endl << "Position tracker not connected" << endl;

// Get the geometry. 
device->getVertices(vertices); 
setUpVertices(&vertices.front());

// Setup the texture to place on geometry. 
device->getRGBframe(rgb); 
glActiveTexture(GL_TEXTURE0); 
glBindTexture(GL_TEXTURE_2D, gl_rgb_tex);
glTexImage2D(GL_TEXTURE_2D, ( , GL_RGBA, IMG_WIDTH, IMG_HEIGHT,

0, GL_RGB, GL_UNSIGNED_BYTE, rgb.data());

// Render the scene for each eye
for(int index = 0; index < ovrEye_Count; ++index)
{

ovrEyeType curr_eye = hmd->EyeRenderOrder[index];

// Bind framebuffer
glBindFramebuffer(GL_FRAMEBUFFER, frame_buffers[curr_eye]); 
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Get a projection matrix from LibOVR.
Matrix4f projection = ovrMatrix4f_Projection(eyeRenderDesc[curr_eye].Fov, .01,

100, false);
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// Calculate left handed up vector and forward vector for eye 
Matrix4f view = Matrix4f(eyePoses[curr_eye].Orientation);
OVR::Vector3f up = view.Transform(OVR::Vector3f(0, -1, 0));
OVR::Vector3f forward = view.Transform(OVR::Vector3f(0, 0, -1));

// Get view matrix from LibOVR.
// Orientation + position in left handed system.
view = OVR::Matrix4f::LookAtLH(eyePoses[curr_eye].Position,

OVR::Vector3f(eyePoses[curr_eye].Position) +
forward,
up);

// Set projection matrix. 
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(&projection.Transposed().M [0][0]);

// Set view matrix. 
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(&view.Transposed().M [0][0]); // Camera position/orientation 
// .5 meters from position tracking camera is a good distance to call center 
glTranslatef(0, 0, .5); // Move World

// Rotate World

// Draw cube (virtual room) 
glPushMatrix();

// Position tracking camera is 1.2m high (0 y coordinate),
// virtual floor is 1.5m below 0 y, move up by difference. 
glTranslatef(0, .3, 0); // Move "room"

// Rotate "room"

glColor4f (0.5, 0.5, 0.5, 1.0); 
glutSolidCube(3.8); 

glPopMatrix();

// Draw Kinect geometry 
glPushMatrix();

// Transform Kinect geometry 
// Negate Z because image is behind
// Kinect is positioned .5 meters above position tracking camera,
// reduced by .1 meters due to angle of camera. 
glTranslatef(-.5, .4, 1.6); // Move geometry

// Rotate geometry
glScalef( 1, 1, -1); 
glColor4f(1, 0, 0, 1);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (device->getDisplayMode() == MyFreenectDevice::POINTS)
{

// Draw point cloud
glDrawArrays( GL_POINTS, 0, IMG_WIDTH * IMG_HEIGHT/ 4 );

}
else if (device->getDisplayMode() == MyFreenectDevice::TRIANGLES)
{

// Draw triangle strip 
glUseProgram(hide_invalid_vertices);
glDrawElements( GL_TRIANGLE_STRIP, indices.size(), GL_UNSIGNED_INT, 

&indices.front() );
glUseProgram(0);

}
glDisableClientState(GL_TEXTURE_COORD_ARRAY); 

glPopMatrix();
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}

glBindFramebuffer(GL_FRAMEBUFFER, 0); 
glBindTexture(GL_TEXTURE_2D, );

// Tell LibOVR to display the rendered scene. 
ovrHmd_EndFrame(hmd, eyePoses, &eyeTextures[ ].Texture);

}

// This is executed when there is no input. 
void idleFunc ()
{

// Written by Glenn G. Chappell 
static int error_count = C; 
if (GLenum err = glGetError())
{

++error_count;
std::cerr << "OpenGL ERROR " << error_count << ": " 

<< gluErrorString(err) << endl;
}
glutPostRedisplay();

}

// This handles keyboard keypresses.
void keyPressed(unsigned char key, int x , int y)
{

switch (key)
{

case ESC: // Shutdown program 
glutDestroyWindow(window);

// Clean up hmd and oculus VR library. 
ovrHmd_Destroy(hmd); 
ovr_Shutdown();
cout << endl << "Finished" << endl << endl; 
break;

case 'v': // Toggle display mode between point cloud and triangle strip. 
cout << endl << endl << " Changing display mode to: "; 
device->toggleDisplayMode();
if(device->getDisplayMode() == MyFreenectDevice::POINTS) 

cout << "POINTS" << endl; 
else if(device->getDisplayMode() == MyFreenectDevice::TRIANGLES) 

cout << "TRIANGLES" << endl; 
break;

// Change verticle tilt angle of Kinect. 
case'w':

freenect_angle++; 
if (freenect_angle > 3 )
{

freenect_angle = 30;
}
break; 

case 's': 
case 'd' :

freenect_angle = 0 ; 
break; 

case 'x' :
freenect_angle--;
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if (freenect_angle < -30)
{

freenect_angle = -30;
}
break; 

case 'e':
freenect_angle = 10; 
break; 

case 'c' :
freenect_angle = - ;
break; 

default: ;
}
device->setTiltDegrees(freenect_angle);

}

// Tracks the current mouse position when
// the mouse button is held and the mouse is moved.
void clickAndDrag(int x , int y)
{

saved_x = x ; 
saved_y = y;

}

// Tracks the current mouse position when mouse is moved. 
void mouseMove(int x , int y)
{

saved_x = x ; 
saved_y = y;

}

// Generate texture coordinate array for triangle strip assuming every pixel is a 
vertex
void generateTextureCoords()
{

const float fovCorrection = .92185;
const float offset = (1 - fovCorrection) / 2;
for( unsigned yy = 0; yy < IMG_HEIGHT; yy+=2 ) {

for( unsigned xx = 0; xx < IMG_WIDTH; xx+= ) {
texCoords.push_back(float(xx) / IMG_WIDTH * fovCorrection + offset); 
texCoords.push_back(float(yy) / IMG_HEIGHT * fovCorrection + 1.5 *

offset);
}

}
glTexCoordPointer( , GL_FLOAT, i , &texCoords.front());

}

// Initialize rendering variables, and set up shaders. 
void InitGL(unsigned int tex_w, unsigned int tex_h)
{

glClearColor(0.0f, 0.0f, 0.0f, 0.0f); 
glClearDepth(1.0);

// Compile shaders into a program. 
glewInit();
string vShader = "shaders/invalids_v.glsl";
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string gShader = "shaders/normals_g.glsl"; 
string fShader = "shaders/invalids_f.glsl";
hide_invalid_vertices = makeShaderProgramFromFiles(vShader, gShader, fShader);

// Create a texture for coloring Kinect geometry. 
glGenTextures( , &gl_rgb_tex); 
glBindTexture(GL_TEXTURE_2D, gl_rgb_tex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); 
generateTextureCoords();

// Create textures for each eye, and framebuffers for drawing to the textures. 
glGenTextures ( , eye_tex); 
glGenFramebuffers( , frame_buffers);
GLuint render_buffers[ ]; 
glGenRenderbuffers( , render_buffers);

// For position tracking.
ovrHmd_ConfigureTracking(hmd, ovrTrackingCap_Orientation |

ovrTrackingCap_MagYawCorrection | 
ovrTrackingCap_Position, 1 );

// Configure OVR rendering. 
ovrGLConfig apiConfig;
apiConfig.OGL.Header.API = ovrRenderAPI_OpenGL;
apiConfig.OGL.Header.BackBufferSize = OVR::Sizei(hmd->Resolution.w ,

hmd->Resolution.h);
apiConfig.OGL.Header.Multisample = 1; 
apiConfig.OGL.Disp = NULL;
ovrHmd_ConfigureRendering(hmd,

&apiConfig.Config, 
hmd->DistortionCaps, 
hmd->DefaultEyeFov, 
eyeRenderDesc);

// Set up render textures for each eye, and pass information to LibOVR. 
for(int eye = 0; eye < 2; ++eye)
{

// Make empty texture with correct size. 
glBindTexture(GL_TEXTURE_2D, eye_tex[eye]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); 
glTexImage2D(GL_TEXTURE_2D, 0 , GL_RGBA, tex_w , tex_h , , GL_RGBA,

GL_UNSIGNED_BYTE, NULL);

// Attach texture to render buffer.
glBindFramebuffer(GL_FRAMEBUFFER, frame_buffers[eye]); 
glBindRenderbuffer(GL_RENDERBUFFER, render_buffers[eye]);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, tex_w, tex_h); 
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,

eye_tex[eye], ); 
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

GL_RENDERBUFFER, render_buffers[eye]);

// Give texture handles to LibOVR.
eyeTextures[eye].OGL.Header.API = ovrRenderAPI_OpenGL; 
eyeTextures[eye].OGL.Header.TextureSize = OVR::Sizei(tex_w , tex_h); 
eyeTextures[eye].OGL.Header.RenderViewport = OVR::Recti( , 0, tex_w , tex_h); 
eyeTextures[eye].OGL.TexId = eye_tex[eye];

}
// Bind default texture and frame buffers for safety. 
glBindTexture(GL_TEXTURE_2D, 0);
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glBindFramebuffer(GL_FRAMEBUFFER, 0); 
glBindRenderbuffer(GL_RENDERBUFFER, );

// Enable simple lighting 
glEnable(GL_LIGHTING); 
glEnable(GL_COLOR_MATERIAL); 
glEnable(GL_LIGHT0);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE); 

glEnable(GL_DEPTH_TEST);
}

// Generate index array for triangle strip assuming every pixel is a vertex 
void makeIndexArray()
{

unsigned height = IMG_HEIGHT/ ; // Only using every other pixel in depth image.
unsigned width = IMG_WIDTH/ ; // Only using every other pixel in depth image.

for( unsigned yy = 0; yy < height-1; ++yy ) {
for( unsigned xx = 0; xx < width-1; ++xx ) {

unsigned x;
if( yy%2 == 1 ) x = width - xx - 1; // Odd rows go backwards 
else x = xx; // Even rows

// Push back vertical pairs of vertices. 
indices.push_back(yy * width + x); 
indices.push_back((yy+ ) * width + x);

}
// Only add one at the end of each row,
// the start of the next row will add the other. 
if( yy%2 == 0 )

indices.push_back((yy * width) + (width - ));
else

indices.push_back(yy * width);
}

}

// Handles OpenGL in separate thread. 
void *gl_threadfunc(void *arg)
{

cout << "GL thread" << endl;

// Initialize Oculus VR library. 
if( !ovr_Initialize () )
{

cout<< "Failed to Initialize OVR" << endl; 
exit(1);

}
cout << "libOVR initialized." << endl;

// Create an HMD object with data about the head mounted display. 
hmd = ovrHmd_Create( ); 
if( !hmd )
{

cout << OVR::Service::NetClient::GetInstance()->Hmd_GetLastError( ) << endl;
ovr_Shutdown();
exit(1);

}
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cout << "HMD created." << endl;

// If the hmd capabilities does not include extended desktop mode. 
if( !(hmd->HmdCaps & ovrHmdCap_ExtendDesktop) )
{

cout << "Not in extended desktop mode." << endl; 
ovrHmd_Destroy(hmd); 
ovr_Shutdown(); 
exit(0);

}
makeIndexArray();
// Initialize glut and create window with oculus HMD display size 
glutInit(&g_argc, g_argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH); 
glutInitWindowSize(hmd->Resolution.w , hmd->Resolution.h); 
glutInitWindowPosition(0, 0);
window = glutCreateWindow("Virtualized Reality with Oculus and Kinect");

// Register glut callback functions
glutDisplayFunc(&DrawGLScene);
glutIdleFunc(&idleFunc);
glutKeyboardFunc(&keyPressed);
glutMotionFunc(&clickAndDrag);
glutPassiveMotionFunc(imouseMove);
texture_w = hmd->Resolution.w/ ; 
texture_h = hmd->Resolution.h ;
InitGL(texture_w , texture_h);
glutMainLoop();
return NULL;

}

int main(int argc, char **argv)
{

device = ifreenect.createDevice<MyFreenectDevice>(0); 
if( device )
{

// Start Kinect processing.
device->startVideo();
device->startDepth();

// Start Rendering in separate thread. 
gl_threadfunc(NULL);

}
else
{

cerr << "Failed to create Freenect Device." << endl;
}
return 0;

}
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APPENDIX B: GLSL VERTEX SHADER
/* Author: Shaun Bond (samuraicodemonkey@gmail.com)
* Date: 4-20-2015
* Source code is available at:
* https://projects.cs.uaf.edu/redmine/projects/virtualized_reality_oculus_kinect
*
* This code is licensed to you under the terms of the Apache License, version
* 2.0, or, at your option, the terms of the GNU General Public License,
* version 2.0. See the APACHE2 0 and GPL2 files for the text of the licenses,
* or the following URLs:
* http://www.apache.org/licenses/LICENSE-2.0
* http://www.gnu.org/licenses/gpl-2.0.txt
*
* If you redistribute this file in source form, modified or unmodified, you
* may:
* 1) Leave this header intact and distribute it under the same terms,
* accompanying it with the APACHE20 and GPL20 files, or
* 2) Delete the Apache 2.0 clause and accompany it with the GPL2 file, or
* 3) Delete the GPL v2 clause and accompany it with the APACHE20 file
* In all cases you must keep the copyright notice intact and include a copy
* of the CONTRIB file.
*
* Binary distributions must follow the binary distribution requirements of
* either License.
*/

// So I can use things like gl_ModelViewProjectionMatrix to save time/effort.
// Ideally, the shaders should use modern glsl specification.
#version 150

//out vec4 v_color; 
out vec3 vertex; 
out vec2 tex_coords;

void main() {
vertex = gl_Vertex.xyz; // Unmodified coordinates passed to geometry shader 

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; 

tex_coords = gl_MultiTexCoord0.st;
}
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APPENDIX C: GLSL GEOMETRY SHADER
/* Author: Shaun Bond (samuraicodemonkey@gmail.com)
* Date: 4-20-2015
* Source code is available at:
* https://projects.cs.uaf.edu/redmine/projects/virtualized_reality_oculus_kinect
*
* This code is licensed to you under the terms of the Apache License, version
* 2.0, or, at your option, the terms of the GNU General Public License,
* version 2.0. See the APACHE2 0 and GPL2 files for the text of the licenses,
* or the following URLs:
* http://www.apache.org/licenses/LICENSE-2.0
* http://www.gnu.org/licenses/gpl-2.0.txt

* If you redistribute this file in source form, modified or unmodified, you
* may:

1) Leave this header intact and distribute it under the same terms, 
accompanying it with the APACHE20 and GPL20 files, or

2) Delete the Apache 2.0 clause and accompany it with the GPL2 file, or
3) Delete the GPL v2 clause and accompany it with the APACHE20 file

* In all cases you must keep the copyright notice intact and include a copy
* of the CONTRIB file.

* Binary distributions must follow the binary distribution requirements of
* either License.

const int SIZE = 3; 
const float INVALID = 0;

in vec3 vertex[SIZE]; 
in vec2 tex coords[SIZE];

// Incoming from vertex shader 
// Incoming from vertex shader

out vec2 uv;
//out vec3 surface_normal; // Used for virtual lighting

void main () {
// Find 2 sides of triangle
vec3 vectorl = vertex[1] - vertex[0];
vec3 vector2 = vertex[2] - vertex[0];

// Uncomment the following for virtual lighting 
//vec3 normal = cross(vector1, vector2);

// Only draw triangles that do not have a "long" side 
if( length(vector1) < .1 && length(vector2) < .1 ) {

for(int i = 0; i < SIZE; ++i) {
gl_Position = gl_in[i].gl_Position;
//surface_normal = normal; // Used for virtual lighting 
uv = tex coords[i];
EmitVertex();

+

}
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APPENDIX D: GLSL FRAGMENT SHADER
/* Author: Shaun Bond (samuraicodemonkey@gmail.com)
* Date: 4-20-2015
* Source code is available at:
* https://projects.cs.uaf.edu/redmine/projects/virtualized_reality_oculus_kinect
*
* This code is licensed to you under the terms of the Apache License, version
* 2.0, or, at your option, the terms of the GNU General Public License,
* version 2.0. See the APACHE2 0 and GPL2 files for the text of the licenses,
* or the following URLs:
* http://www.apache.org/licenses/LICENSE-2.0
* http://www.gnu.org/licenses/gpl-2.0.txt
*
* If you redistribute this file in source form, modified or unmodified, you
* may:
* 1) Leave this header intact and distribute it under the same terms,
* accompanying it with the APACHE20 and GPL20 files, or
* 2) Delete the Apache 2.0 clause and accompany it with the GPL2 file, or
* 3) Delete the GPL v2 clause and accompany it with the APACHE20 file
* In all cases you must keep the copyright notice intact and include a copy
* of the CONTRIB file.
*
* Binary distributions must follow the binary distribution requirements of
* either License.
*/

// direction of light source, hard coded 
const vec3 source = vec3(0,0,1);

uniform sampler2D texture; // RGB image from kinect

in vec2 uv; // Texture coordinates to sample
//in vec3 surface_normal; // Used for virtual lighting

void main() {
// Uncomment the following for virtual lighting 
//vec3 s_normal = normalize(surface_normal);
//float intensity = dot(s_normal, source);

// Uncomment the following for no virtual lighting 
float intensity = 1.0;

vec4 color = texture2D(texture, uv);
gl_FragColor = vec4(color.xyz * intensity + color.xyz * .5, );

}
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