
P R O J E C T I N G P H Y S I C A L O B J E C T S
I NTO A V I R T U A L S P A C E U S I N G

T H E K I N E C T AND O C U L U S R I F T

A Project
By Shaun P. Bond

Presented to the Faculty of the University of Alaska Fairbanks

In Partial Fulfillment of the Requirements of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Fairbanks, Alaska

April 2015

P R O J E C T I N G P H Y S I C A L O B J E C T S
I NTO A V I R T U A L S P A C E U S I N G

T H E K I N E C T AND O C U L U S R I F T

A Project
By Shaun P. Bond

RECOMMENDED: f

1 J ^ ~ p f ' 2 1

Dr. Orion Lawler, Advisory Committee Chair Date

A tLyujlt lotf-W-lt
Dr. Glenn Chappell, Advisory Committee Member Date

APPROVED:

Dr. Jon Genetti, Advisory Committee Member Date

Dn4on Genetti, Dept. Head, Computer Science Date'

Page 2

ABSTRACT

Virtualized Reality as a field of research has been increasing over the last couple of decades.
Initially, it required large camera arrays, expensive equipment, and custom software to implement
a virtualized reality system. With the release of the Kinect and the Oculus Rift development kits,
however, the average person now has the potential to acquire the hardware and software needed to
implement a virtualized reality system. This project explores the possibility of using the Kinect and
Oculus Rift together to display geometry based on real-world objects in a virtual environment.

Page 3

ACKNOWLEDGEMENTS

Special thanks to Dr. Orion Lawlor, Dr. Glenn Chappell, and Dr. John Genetti for their
guidance, technical support, and assistance during my completion of the Master's program and this
project report. I would also like to thank Connie Huizenga for always being helpful, the Department
of Computer Science at the University of Alaska Fairbanks for providing me with this opportunity,
all of my professors for being awesome professors and imparting their knowledge to me, my
mother, Anne Holladay, for her financial assistance and support, and Ayse Yeager for her personal
support.

Page 4

TABLE OF CONTENTS

Abstract ... 3

Acknowledgements .. 4

Table of Figures .. 6

Introduction .. 7

Hardware .. 9

Converting Kinect Depth to 3D Geometry ... 12

Rendering With the Oculus Rift ..15

Integrating Oculus Rift and Kinect ...17

Performance .. 21

Future Research ...22

References ..23

Appendix A: Source code .. 25

Appendix B: GLSL vertex shader.. 38

Appendix C: GLSL Geometry shader.. 39

Appendix D: GLSL Fragment Shader... 40

Page 5

TABLE OF FIGURES

Figure 1: VEVI Interface (Hine, 1994)... 7
Figure 2: The Dome at Carnegie Mellon University (Copyright Carnegie Mellon, 1995)......................8
Figure 3: 3rd person perspective point cloud (Property of Johnathan Ota)...8
Figure 4: Kinect for Xbox 360 (Photograph: Michal Czerwonka/Getty Images)................................... 9
Figure 5: IR dot pattern emitted by the Kinect... 10
Figure 6: Distortion caused by lenses in Oculus Rift...11
Figure 7: Chromatic aberration..11
Figure 8: Near-infrared LEDs in Oculus Rift (Terndrup, 2014).. 11
Figure 9: Output of unmodified cpp_view... 12
Figure 10: Stephane Magnenat's depth to distance conversion (OpenKinect, 2013)..........................13
Figure 11: Dr. Lawlor's code for 2D to 3D projection... 13
Figure 12: Modified cpp_view showing generated point cloud... 14
Figure 13: Algorithm for generating triangle strip... 14
Figure 14: Modified cpp_view showing triangle strip with discarded triangles..................................15
Figure 15: Simple cube rendered in stereo to standard display..16
Figure 16: Real-world geometry rendered on the Oculus Rift.. 17
Figure 17: RGB image applied to geometry without correction..18
Figure 18: FOV and distance between cameras accounted for when applying texture...................... 19
Figure 19: Scene rendered with geometry averaged over 2 Kinect frames.. 20
Figure 20: Scene rendered with virtual lighting removed from real-world geometry.......................20
Figure 21: Performance of Rendering and Kinect image processing.. 21

Page 6

INTRODUCTION

Virtualized reality can be viewed as the complement to augmented reality. In augmented
reality, computer generated visuals are integrated with real-world visuals. In virtualized reality,
a computer generated representation of real-world objects is viewed in a virtual reality
environment.

Virtualized reality has applications in many fields. It has been applied in research
involving remotely controlled robotics (Hine, 1994; Goza, 2004), entertainment (Carnegie
Mellon, 2001), and physical and mental rehabilitation (Thin, 2012). It also has potential for
other applications such as microscopic visualization, training, engineering, architecture, and
others.

Virtualized reality has been a field of research since as early as 1994, when Hine et al.
developed a system to aid in the remote navigation of an underwater vehicle. This system used
sensory data from the vehicle’s stereo cameras, and positional data to reconstruct the underwater
environment. It also supported two display modes, one of which was a VR headset. Once the
environmental data was collected, the operator could navigate from within the virtual
environment relatively free from communication latency (Hine, 1994).

Fi g u r e 1: VEVI In t e r f a c e (Hi n e , 1994)

In 1995, Kanade et al. developed a virtualized reality system utilizing a large camera
array (Kanade, 1995). This camera array recorded video from various perspectives, which was
later used to construct a 3-dimensional video. This allowed the viewer to select an arbitrary
viewpoint during playback (Kanade, 1997). Later, in 2001, a version of this system was used to
record a Super Bowl event (Carnegie Mellon, 2001).

Page 7

Fi g u r e 2: Th e Do m e a t Ca r n e g i e Me l l o n Un i v e r s i t y (Co p y r i g h t Ca r n e g i e Me l l o n , 1995)

More recently, some students at Carnegie Mellon University created a virtualized reality
system that allows a person to explore the world from a third-person perspective (Ota, 2012).
This system utilizes the Kinect’s depth sensor to gather environmental information, and the
Oculus Rift head mounted display to view it. The Kinect is a motion-sensing input device
developed by Microsoft, and the Oculus Rift is a virtual reality display device. The Kinect is
mounted at a fixed position relative to the user, giving the third-person perspective to the viewer.

Fi g u r e 3: 3r d p e r s o n p e r s p e c t i v e p o i n t c l o u d (Pr o p e r t y o f Jo h n a t h a n Ot a)

Page 8

I wanted to explore whether real-time virtualized reality was feasible on commodity
hardware. My goals for this project were to use the Microsoft Kinect to generate a 3D triangle
mesh of real-world objects, place the mesh in a virtual environment, and display it to the Oculus
Rift in real-time. Some projects I have found produce a triangle mesh in real-time, but do not
display it in stereoscopic VR (Izadi, 2011). Others (Ota, 2012), display data from the Kinect in
stereoscopic VR, but use a simple point-based rendering approach instead of a continuous
triangle mesh. My project differs from these in that it does both.

HARDWARE

The Kinect is a device developed by the Microsoft Corporation to allow motion input for
video games, but researchers have found many other uses for its depth detection and motion
tracking capabilities. Among these are 3D reconstruction of objects (Izadi, 2011), translation of
sign language (Chen, 2013), and hands free control of operating room computers (Tan, 2012).
The original Kinect was designed for use with the Xbox 360, but there are newer versions
available for Xbox One and personal computers. I used the original Xbox 360 version in my
project, so the hardware and software specifications in this paper refer to that version.

The Kinect device consists of an infrared (IR) emitter, IR receiver, and color (RGB)
camera. The IR emitter and receiver are located approximately 7.5 cm apart, and the IR emitter
projects a predefined dot pattern (Freedman, 2012). This dot pattern bounces off of IR reflective
objects and is acquired by the IR receiver. The Kinect analyzes the parallax shift and distortion
of the pattern to build a two dimensional matrix of depth values, hereafter referred to as the depth
image. The dot pattern can be seen in figure 5. The Kinect also has a motor in its base that
allows it to adjust its vertical tilt.

Fi g u r e 4: Ki n e c t f o r Xb o x 360 (Ph o t o g r a p h : Mi c h a l Cz e r w o n k a /Ge t t y Im a g e s)

Page 9

•• • I* •

% I »

% * •

• •

» >1
» • i
. . •

• v. »*
• IV

Fi g u r e 5: IR d o t p a t t e r n e m i t t e d b y t h e Ki n e c t

The Oculus Rift is a virtual reality headset in development by Oculus VR. As of this
paper, they have released two versions. These are referred to as Development Kit 1 (DK1), and
Development Kit 2 (DK2). The DK2 possesses a higher resolution and reduced latency over the
DK1, as well as the addition of positional tracking. The DK2 is the version I used for this
project, so the specifications here refer to that version.

The DK2 has a single display and two eyepieces. The display has a 1920 x 1080 pixel
resolution, and 2 milliseconds of persistence. The low persistence provides better immersion and
reduced motion sickness, compared with earlier VR headsets, by reducing motion blur. The
optical lenses in the eyepieces have a 100-degree field of view, which allows for greater
peripheral vision. However, the large field of view causes distortion of the image, which needs
to be corrected. Another problem caused by the lenses is chromatic aberration, which must also
be accounted for when rendering. These effects can be seen in figures 6 and 7. In order to
achieve position and orientation tracking, the DK2 possesses an internal accelerometer,
magnetometer, and gyroscope, as well as an external position tracking camera. The internal
sensors update 1000 times per second, while the position tracking camera updates 60 times per
second. All of the sensors communicate with the computer over a USB 2.0 connection, while the
display is transmitted over an HDMI connection.

Stereoscopic vision is achieved by drawing a scene from two different perspectives, that
of the left eye and that of the right eye. Each of these images is drawn on one half of the DK2
display, and the eyepieces are focused on their respective halves. Chromatic aberration and lens
distortion are handled in software prior to displaying the scene. The image is predistorted and
chromatic aberration is applied in reverse. When the image passes through the lens, the effects
are undone. This avoids the necessity for expensive hardware solutions.

Page 10

Fi g u r e 6: Di s t o r t i o n c a u s e d b y l e n s e s i n Oc u l u s Ri f t Fi g u r e 7: Ch r o m a t i c a b e r r a t i o n

The DK2 handles position tracking by using near-infrared LEDs placed on the headset.
Each of these LEDs emits at a different frequency and intensity (Terndrup, 2014). This allows
the position tracking software to identify which LED a signal came from, and calculate the
position of the headset. The distance of the headset from the camera can be determined by the
relative spacing of the LEDs. The vertical and horizontal position can be found in a
straightforward manner using the 2D position of an LED and its distance from the camera.

Fi g u r e 8: Ne a r - i n f r a r e d LEDs i n Oc u l u s Ri f t (Te r n d r u p , 2014)

Page 11

CONVERTING KINECT DEPTH TO 3D GEOMETRY

My first step for this project was to produce a 3D geometry from a Kinect depth image.
To interface with the Kinect, I used an open source library called Libfreenect. Libfreenect
defines the FreenectDevice base class, which is responsible for communicating with the Kinect
device. A user then derives a class from FreenectDevice and overloads functions to receive
video frames and perform any desired computation. FreenectDevice also contains functionality
enabling the user to control the Kinect motor and LEDs.

The Kinect supports RGB, YUV, Bayer, and infrared (IR) image formats for its color
video stream. RGB and Bayer can be returned in 640x480 or 1280x960 pixel resolutions. YUV
and IR formats can only be returned in 640x480 pixel resolution. The user can request any of
these formats and resolutions with Libfreenect. I used the 640x480 RGB resolution, which
allows a maximum of 30 frames per second.

Because the focus of this project was doing the actual transformation, rather than building
the infrastructure, I opted to start with an existing program that would handle all of the setup and
receive images from the Kinect. The program I selected for this purpose is called cpp_view, a
demo program that is part of the Libfreenect project. It receives frames from both the RGB and
depth cameras, does some basic colorization of the depth image, and displays both images to the
screen. Figure 9 shows the output of the original program. It also supports switching between
the various image formats, adjusting the tilt of the Kinect, and operating the LEDs on the Kinect.

Fi g u r e 9: Ou t p u t o f u n m o d i f i e d c p p _v i e w . Le f t : De p t h s t r e a m . Ri g h t : RGB s t r e a m s h o w i n g IR.

Initially, I would get terminal errors intermittently when starting the program. I would
also receive a terminal error consistently when exiting the program. After reviewing the code, I
noticed that video streams from the Kinect were being initialized during the startup sequence, but
were never stopped. Stopping the video streams in the destructor of the class derived from
FreenectDevice solved both problems. It is my belief that the Kinect was attempting to continue
writing to a buffer after it had been destroyed.

Page 12

In order to familiarize myself with the program and how it handled images, I modified
the code so that it would display a gray-scale coloring of the depth image instead of a color one.
I then added code to the same routine that calculates the 3D position of each pixel in the depth
image and stores it in a vertex array. To assist with this, I used some code written previously by
Dr. Lawlor to project a 2D point into 3D space (see figure 11). The Kinect does not record depth
in any standard unit. Fortunately, Stephane Magnenat (OpenKinect, 2013) developed an
algorithm that converts the depth value to meters with less than 3% error, as measured during my
previous work with the CyberAlaska project.

d i s t a n c e = 0 . 1 2 3 6 * t a n (r a w D i s p a r i t y / 2 8 4 2 . 5 + 1 . 1 8 6 3)

Fi g u r e 10: St e p h a n e Ma g n e n a t 's d e p t h t o d i s t a n c e c o n v e r s i o n (Op e n Ki n e c t , 2013)

v e c 3 l o c (i n t x , i n t y) c o n s t {

r e t u r n d i r (x , y) * d e p t h (x , y) ;

}

v e c 3 d i r (i n t x , i n t y) c o n s t {

r e t u r n v e c 3 ((x - w * 0 . 5) * p i x e l F O V , (h * 0 . 5 - y) * p i x e l F O V , 1) ;

}

f l o a t d e p t h (i n t x , i n t y) c o n s t {

u i n t 1 6 _ t d i s p = d e p t h i [y * w + x] ;

i f (d i s p > = I N V A L I D _ D E P T H) r e t u r n 0 . 0 ;

r e t u r n 0 . 1 2 3 6 * t a n (d i s p / 2 8 4 2 . 5 + 1 . 1 8 6 3) - 0 . 0 3 7 ;

}

F i g u r e 11: Dr . La w l o r 's c o d e f o r 25 t o 3D p r o j e c t i o n

I needed to verify that my code was really producing a 3D point cloud with reasonable
values. For the purposes of this project, it is more important that the results are visually
convincing than it is that they are accurate, so I decided that the easiest way to verify was to
display the point cloud along with the colorized depth image, as seen in figure 12. In order to do
this, I replaced the RGB image with the point cloud, but this presented some difficulties. The
Kinect uses a downward pointing y-axis, while OpenGL uses an upward pointing y-axis. The
original code corrects this by flipping the projection coordinates, but Dr. Lawlor's code,
mentioned previously, corrects the y-axis for the point cloud when the point coordinates are
calculated. This resulted in the point cloud being displayed upside down. I corrected this issue
by using two different viewports with two different projections. This also allowed me to display
the point cloud in perspective, yielding a more convincing image, while not subjecting the depth
image to perspective distortion.

Page 13

Fi g u r e 12: Mo d i f i e d c p p _v i e w s h o w i n g g e n e r a t e d p o i n t c l o u d

Initially, I connected all of the points into a single triangle strip using a simple algorithm
illustrated in figure 13. Unfortunately, the Kinect does not always know the depth at a given
pixel. In those cases, it will return the value 2047, marking it as too far, too close, or otherwise
unknown. Because I assumed that every pixel was a point so that I could implement this
simplified triangle strip algorithm, my code assigned
coordinates to invalid pixels as well. By default, Dr.
Lawlor’s code gave the coordinates (0, 0, 0) to pixels
with an invalid depth. The consequence of this was
that the triangle strip contained triangles connected to
the origin, producing an image that was obviously not
correct. Rather than attempt to implement an
algorithm that did not include these invalid points in
the triangle strip, and could have potentially been far
more complex, this problem can be solved efficiently
using a geometry shader. The coordinates (0, 0, 0) are
the location of the Kinect device itself. Therefore, no
point seen by the Kinect can have those coordinates.
This makes it a reasonable way to represent invalid
points. Using this, I was able to write a geometry
shader that checks each triangle for a point containing those coordinates. If the shader finds such
a point, it discards the whole triangle. This produces an object that is much more visually
convincing, leaving holes where the Kinect is unable to obtain information. Figure 14 shows the
resulting geometry. This also has the advantage that it runs on the graphics card, so it does not
use any more of the CPUs resources, and it is able to exploit the GPUs massive parallelization.

One other drawback of this algorithm is that it produces a triangle strip that is not well
suited to spherical surfaces and some other shapes. However, this did not seem to make a
noticeable impact on the appearance of the geometry, probably because of the extremely small
size of the individual triangles. Therefore, I did not feel it was worth my time to create a more
complicated algorithm.

Fi g u r e 13: Al g o r i t h m f o r g e n e r a t i n g

t r i a n g l e s t r i p . Ci r c l e s r e p r e s e n t v e r t i c e s ,
A R R O W S r e p r e s e n t T H E O R D E R I N W H I C H T H E Y

a r e a d d e d , a n d d o t t e d l i n e s r e p r e s e n t t h e

i m p l i c i t c o m p l e t i o n o f a t r i a n g l e .

Page 14

Fi g u r e 14: Mo d i f i e d c p p _v i e w s h o w i n g t r i a n g l e s t r i p w i t h d i s c a r d e d t r i a n g l e s

RENDERING WITH THE OCULUS RIFT

The second phase of my project involved using the Oculus Rift to display a simple
stereoscopic cube. I chose a simple cube for this phase to eliminate any complexities that might
have been introduced by the code that handles the Kinect image processing and generated
geometry. The API I used to interface with the Oculus Rift is the Oculus SDK, which includes
LibOVR, a configuration utility, and demo application. Oculus SDK and LibOVR are developed
by Oculus VR and have experimental Linux support at the time of this writing.

LibOVR is a state-driven API. There are several general steps involved in setting up the
Oculus Rift. LibOVR must be initialized before anything else can be done. The library handles
this itself when the initialization function is called. A head mounted display object must then be
created. This object contains information about the headset and its capabilities, and it allows the
software to interact with the head mounted display. The next step is to configure the head
tracking and rendering settings. The application is responsible for creating a render texture using
either Direct3D or OpenGL, and for passing a handle to LibOVR along with the graphics API
used, texture size, and viewport. LibOVR supports the use of a single texture for both eyes, or a
separate texture for each eye. In the prior case, one would define two viewports, and in the latter
case, one would define two textures. LibOVR must be called before and after rendering the
scene, and the application must render the scene once for each eye. The library contains various
functions to assist with this.

As in the previous stage, I began with existing code in order to reduce development time.
This time, I used a program I had written previously for a simple OpenGL app. I modified this
code to render a basic cube in the standard way. Once I had that working, I included some basic
LibOVR functionality. At this point I only set up the head mounted display so that I could

Page 15

access sensor data. I did not initialize the rendering configuration because I was not ready to
render to the Oculus Rift yet. I then used the head mounted display’s reported interpupillary
distance to shift the camera and render two images in stereo. I displayed both of these images
side-by-side to the standard display so that I could visually verify that stereo rendering was
working before introducing possible complexities with the head mounted display.
A ,__ Virtualized Reality with Otulus and Kinect__ r Z *

4 A

H EALTH A S A F E TY W AR NING HEALTH & S A F E TY W A R N IN G

toad and M ow all warning and instructions

included with the Haad*at before uaa. Headset

should be calbrated for each user. Not for eee by

ddMran under 13. Stop u m if you experience any

dbcomfort or health reactions.

toad and fofew all warning* and Instructions

included with the Headset before u m . Headset

should be calibrated for each user. Not for ass by

chHdran under 13. Stop use If you experience any

discomfort or health reactions.

More: www.oculut.com/wamin9> More: www.ocuhis.com/'warningi

Press any hay to acknowledge Press any key to acknowledge

Fi g u r e 15: Si m p l e c u b e r e n d e r e d i n s t e r e o t o s t a n d a r d d i s p l a y

The next step was to display the cube on the headset. For this step, I needed to initialize
the LibOVR rendering configuration. Actually getting LibOVR to do the rendering was as
simple as replacing my call to swap the display buffers with the library’s equivalent. Because I
set it up in the rendering configuration, LibOVR handled distortion correction and chromatic
aberration correction for me. The final step in this stage was to incorporate head tracking. This
involved querying the head mounted display for its position and orientation, and constructing
view and projection matrices using that information.

Problems in this stage largely arose from a lack of documentation and simple demo
programs. Oculus VR had written a user guide for the SDK, but it was not a very detailed guide.
It described the basic steps involved in setting up and using the library, but described each step in
isolation, with references to functions whose behavior was not described. Furthermore, there
was no code reference. I spent a lot of time reading through the implementation, seeing how
others used the library in examples, and experimenting. It was also difficult to apply the code in
the examples to my project because all of the examples written for Linux were rather complex.

Page 16

http://www.oculut.com/wamin9
http://www.ocuhis.com/'warningi

INTEGRATING OCULUS RIFT AND KINECT

My goal for the third and final stage of this project was to display the geometry produced
by the Kinect in stereoscopic 3D in real-time. However, I had some extra time at the end of the
project to explore a couple of related problems. I will discuss those here as well.

Integrating the image processing code with the rendering code went smoothly. The
image processing code was already written as an independent component that functioned in its
own thread. The only change I needed to make after combining the code was to get the list of
vertices from the Freenect device and tell OpenGL to display the vertices as a triangle strip
instead of the cube. While the geometry displayed correctly, it was not oriented or positioned
correctly. I fixed these problems by manually correcting the coordinate system. The result can
be seen in figure 16. This would not be a suitable solution for released software, however,
because simply moving the Kinect physically would require code changes to correct the
geometry. Initially, the position tracking was not working, either. This was a hardware issue
rather than a software one, though. The position tracking camera and the Kinect happened to be
on the same USB bus. Because both devices send uncompressed video, the USB bus did not
have enough bandwidth to support them, and the operating system dropped the position tracking
camera. Ensuring that the two devices were on separate buses resolved the problem.

Fi g u r e 16: Re a l -w o r l d g e o m e t r y r e n d e r e d o n t h e Oc u l u s Ri f t

Page 17

The first additional problem I explored was that of coloring the geometry. For this to be
of practical use, some kind of appropriate coloring needs to be applied to whatever geometry is
produced. The Kinect comes equipped with an RGB camera, so I thought to use this to acquire
the colors for the image. For my first attempt, I simply colored the geometry using a one to one
correspondence between the pixels in the depth image and the RGB image. As shown in figure
17, however, the colors did not line up correctly using this method, and the disparity was worse
toward the extremities of the object. There are a couple reasons for this. The first is that the
depth camera and RGB camera have different fields of view. This means that the RGB camera
sees more of the scene than the depth camera does. In addition, the RGB camera and depth
camera point in slightly different directions, which vary from device to device. There is a
device-dependent series of transformations that one can perform to project a depth pixel into the
color image, but simply adjusting for the difference in field of view and distance between IR and
RGB cameras produces reasonable results.

Fi g u r e 17: RGB i m a g e a p p l i e d t o g e o m e t r y w i t h o u t c o r r e c t i o n

Page 18

Fi g u r e 18: FOV a n d d i s t a n c e b e t w e e n c a m e r a s a c c o u n t e d f o r w h e n a p p l y i n g t e x t u r e

The second issue I wanted to explore was how to deal with depth measurement jitter in
the generated object. Because the depth image from the Kinect is imprecise, and the object is
regenerated every frame, the object surface appears to be constantly shifting. I explored three
simple ideas to see how they would affect the appearance.

The first idea was to sample a pixel from every other row and column. This generates
half as many points which are twice as far apart. The result is that slopes between points tend to
be smaller, but the magnitude of deviations does not change. In the end, this method had little
effect.

The second idea was to average the generated points over several Kinect frames. The
idea is that it will not affect points that are stable, while the points that experience jitter will tend
toward an average value. This value may still not be correct, but should generally be more
stable. I only averaged over two frames in my test, but it resulted in generally smoother edges
and more subdued jitter, as figure 19 shows. It is likely that averaging over a greater number of
frames would produces better results, but this would also increase latency in the video. A second
drawback of this method is that points that are invalid in one of the frames being averaged,
therefore having coordinates (0, 0, 0), will pull the value of the other frame well away from its
real position, creating visual artifacts.

The third method yielded the best results for the least effort. This method involved
removing computer-generated lighting from the objects generated by the Kinect, and can be seen
in figure 20. Because the objects are colored with the real-world image, lighting from the real-
world is apparent on the object, creating subtle shading differences that help the viewer to
recognize three dimensional shape. Additionally, because there is no jitter in the real-world, it is

Page 19

not apparent when viewing the object directly due to the lack of shading. Jitter is still apparent at
the edges, though, because of deformation of the object silhouettes. The obvious drawback of
this method is that the real-world lighting may not match the computer-generated lighting in the
scene.

Fi g u r e 19: Sc e n e r e n d e r e d w i t h g e o m e t r y a v e r a g e d o v e r 2 Ki n e c t f r a m e s

Fi g u r e 20: Sc e n e r e n d e r e d w i t h c o m p u t e r -g e n e r a t e d l i g h t i n g r e m o v e d f r o m r e a l -w o r l d g e o m e t r y

Page 20

PERFORMANCE

As I was implementing this project, I recorded some performance metrics in case I
needed to improve the processing or rendering speed to meet my goal of real-time interaction.
Without the Oculus as part of the system, I was able to process frames from the Kinect at close to
28 frames per second (fps) when I compiled the code with full optimizations. I was also able to
display frames at a rate of around 36 fps. This was acceptable because the Kinect’s max frame
rate is 30 fps.

When I added the Oculus to the system, the display rate improved, but the Kinect
processing rate dropped rather dramatically. This is surprising because the Oculus imposes no
extra load on the Kinect. Without access to the core implementation, or time for additional tests,
I can only hypothesize that this shift in performance is due to the Oculus Rift using a
multithreaded implementation that was stealing CPU time from the thread the Kinect was
running in.

Otherwise, the system performed as one would expect. With the extra processing of the
RGB image from the Kinect for coloring the object, the performance again dropped somewhat. I
could only process frames from the Kinect at around 12 fps at this point, which was feeling
rather choppy. However, sampling every other row and column, instead of every pixel,
drastically improved the performance, and did not result in a significant drop in image quality.

m Pit g Frame Rate (Display) u Pn g Frame Processing (Kinect)

Without the Oculus

Oculus without color

Oculus with Color

Sampling every other pixel

0 10 20 30 40 50 60 70 80 90 100

Frames per second

Fi g u r e 21: Pe r f o r m a n c e o f Re n d e r i n g a n d Ki n e c t i m a g e p r o c e s s i n g

Page 21

FUTURE RESEARCH

There is a lot of potential for future research extending the scope of this project. A few
ideas follow:

• Automatically orienting Kinect generated geometry. The geometry is in the same units
used by the Oculus rift for positional tracking, but it is oriented relative to the Kinect.
Since the Kinect can be located at an arbitrary position and orientation, there should be
some way to calibrate it so that objects detected will be in the proper space. For example,
if we could automatically identify the Oculus headset in the Kinect image, we could
correlate the Oculus and Kinect coordinate systems.

• Using multiple Kinects, or persistent objects, to generate full 3D objects. A single Kinect
can only see objects from one side. Additionally, it will cast IR shadows, preventing it
from seeing objects behind other objects. Collecting multiple images and combining
them to acquire a more complete image would do a lot to enhance the experience. When
the same object is visible in more than one Kinect, it should be possible to automatically
compute the coordinate system transformations between them to make the images of the
object align.

• Reducing or eliminating jitter. More experiments could be done with averaging of
frames, but I feel that any real progress here will require some level of object persistence.
If objects are only updated when data is missing or new, then jitter could be eliminated.
This would be a difficult problem that delves into computer vision issues, because you
would need a way to determine when a non-stationary object has changed and how.

• Differentiation of objects. Currently, everything seen by the Kinect is treated as a single
object unless the depth discrepancy with neighboring objects passes some threshold.
This is a very simplistic algorithm that may separate a single object into two or more. A
better algorithm would enhance the experience greatly, and may allow objects to be
virtually manipulated when combined with object persistence. One possibility could be
to include color data in classifying object connectivity, or to use persistence or multiple
Kinects to determine when there is a discontinuity between objects.

Page 22

REFERENCES

(Carnegie Mellon, 2001) Carnegie Mellon. “Carnegie Mellon Goes to the Super Bowl."
Carnegie Mellon Goes to the Super Bowl. Jan. 2001. Web. 8 Apr. 2015.

(Chen, 2013) Chen, Xilin, Hanjing Li, Tim Pan, Stewart Tansley, and Ming Zhou. “Kinect Sign
Language Translator Expands Communication Possibilities." Microsoft Research. 30 Oct.
2013. Web. 8 Apr. 2015.

(Freedman, 2012) Freedman, Barak, Alexander Shpunt, Meir Machline, and Yoel Arieli. “Depth
Mapping Using Projected Patterns.” Prime Sense Ltd., assignee. Patent US 8150142 B2.
3 Apr. 2012. Print.

(Goza, 2004) Goza, S.M., R. O. Ambrose, M. A. Diftler, and I. M. Spain. “Telepresence Control
of the NASA/DARPA Robonaut on a Mobility Platform.” CHI ‘04 Proceedings o f the
SIGCHI Conference on Human Factors in Computing Systems, pp. 623-629. ACM. 25
Apr. 2004. Print.

(Hine, 1994) Hine, B. P., et al. "The Application of Telepresence and Virtual Reality to Subsea
Exploration." Proc. RO V '94. The 2nd Workshop on Mobile Robots for Subsea
Environments, May 1994. Print.

(Hine, 1995) Hine, B., P. Hontalas, Terrence W. Fong, L. Piguet, E. Nygren, and A. Kline.
"VEVI: A Virtual Environment Teleoperations Interface for Planetary Exploration." SAE
25th International Conference on Environmental Systems, July 1995. Print.

(Izadi, 2011) Izadi, Shahram, et al. "KinectFusion: Real-time 3D Reconstruction and Interaction
Using a Moving Depth Camera." Microsoft Research. ACM Symposium on User
Interface Software and Technology, Oct. 2011. Web. 8 Apr. 2015.

(Kanade, 1995) Kanade, Takeo, Peter Rander, and P. J. Narayanan. "Virtualized Reality:
Concepts and Early Results." IEEE Workshop on the Representation o f Virtual Scenes,
pp. 69-76. IEEE. 24 June 1995. Print.

Page 23

http://www.ri.cmu.edu/events/sb35/tksuperbowl.html
http://www.ri.cmu.edu/events/sb35/tksuperbowl.html
http://research.microsoft.com/en-us/collaboration/stories/kinect-sign-language-translator.aspx
http://research.microsoft.com/en-us/collaboration/stories/kinect-sign-language-translator.aspx
http://research.microsoft.com/en-us/collaboration/stories/kinect-sign-language-translator.aspx
https://www.google.com/patents/US8150142
https://www.google.com/patents/US8150142
https://www.google.com/patents/US8150142
http://dl.acm.org/citation.cfm?id=985771
http://dl.acm.org/citation.cfm?id=985771
http://dl.acm.org/citation.cfm?id=985771
http://dl.acm.org/citation.cfm?id=985771
http://www.ri.cmu.edu/publication_view.html?pub_id=2797
http://www.ri.cmu.edu/publication_view.html?pub_id=2797
http://www.ri.cmu.edu/publication_view.html?pub_id=2797
http://www.ri.cmu.edu/publication_view.html?pub_id=2794
http://www.ri.cmu.edu/publication_view.html?pub_id=2794
http://www.ri.cmu.edu/publication_view.html?pub_id=2794
http://research.microsoft.com/apps/pubs/default.aspx?id=155416
http://research.microsoft.com/apps/pubs/default.aspx?id=155416
http://research.microsoft.com/apps/pubs/default.aspx?id=155416
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=476854&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D476854
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=476854&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D476854
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=476854&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D476854

(Kanade, 1997) Kanade, Takeo, Peter Rander, and P. J. Narayanan. "Virtualized Reality:
Constructing Virtual Worlds from Real Scenes." IEEE Multimedia, Immersive
Telepresence Vol. 4, Iss. 1, pp. 34-47. IEEE. Jan. 1997. Print.

(OpenKinect, 2013) OpenKinect Project. "Imaging Information." OpenKinect. 12 Nov. 2013.
Web. 17 Apr. 2015.

(Ota, 2012) Ota, Jonathan. "Virtualized Reality." Virtualized Reality - Jonathan Ota. 2012. Web.
8 Apr. 2015.

(Tan, 2012) Tan, Justin H., Cherng Chao, Mazen Zawaideh, Anne C. Roberts, and Thomas B.
Kinney. "Informatics in Radiology: Developing a Touchless User Interface for
Intraoperative Image Control during Interventional Radiology Procedures."
RadioGraphics. RSNA. 12 Sept. 2012. Web. 20 Apr. 2015.

(Terndrup, 2015) Terndrup, Matthew. "Reverse Engineering the Oculus Rift DK2 Provides
Brilliant Insight into Inner Workings." Road to VR. 8 Oct. 2014. Web. 8 Apr. 2015.

(Thin, 2012) Thin, Alasdair G. "A Game-Based Virtualized Reality Approach for Simultaneous
Rehabilitation of Motor Skill and Confidence." Advances inHuman-Computer
Interaction Vol. 2012. Hindawi Publishing Corporation. 8 Oct. 2012. Web. 8 Apr. 2015.

Page 24

https://www.ri.cmu.edu/publication_view.html?pub_id=981
https://www.ri.cmu.edu/publication_view.html?pub_id=981
https://www.ri.cmu.edu/publication_view.html?pub_id=981
http://openkinect.org/wiki/Imaging_Information
http://openkinect.org/wiki/Imaging_Information
http://cargocollective.com/jonathanota/Virtualized-Reality
http://cargocollective.com/jonathanota/Virtualized-Reality
http://pubs.rsna.org/doi/abs/10.1148/rg.332125101
http://pubs.rsna.org/doi/abs/10.1148/rg.332125101
http://pubs.rsna.org/doi/abs/10.1148/rg.332125101
http://pubs.rsna.org/doi/abs/10.1148/rg.332125101
http://www.roadtovr.com/reverse-engineering-oculus-rift-dk2-positional-tracking-camera-linux-sdk/
http://www.roadtovr.com/reverse-engineering-oculus-rift-dk2-positional-tracking-camera-linux-sdk/
http://www.hindawi.com/journals/ahci/2012/213143/
http://www.hindawi.com/journals/ahci/2012/213143/
http://www.hindawi.com/journals/ahci/2012/213143/

APPENDIX A: SOURCE CODE
/* Author: Shaun Bond (samuraicodemonkey@gmail.com)
* Date: 4-20-2015
* Source code is available at:
* https://projects.cs.uaf.edu/redmine/projects/virtualized_reality_oculus_kinect
*
* This code is licensed to you under the terms of the Apache License, version
* 2.0, or, at your option, the terms of the GNU General Public License,
* version 2.0. See the APACHE2 0 and GPL2 files for the text of the licenses,
* or the following URLs:
* http://www.apache.org/licenses/LICENSE-2.0
* http://www.gnu.org/licenses/gpl-2.0.txt
*
* If you redistribute this file in source form, modified or unmodified, you
* may:
* 1) Leave this header intact and distribute it under the same terms,
* accompanying it with the APACHE20 and GPL20 files, or
* 2) Delete the Apache 2.0 clause and accompany it with the GPL2 file, or
* 3) Delete the GPL v2 clause and accompany it with the APACHE20 file
* In all cases you must keep the copyright notice intact and include a copy
* of the CONTRIB file.
*
* Binary distributions must follow the binary distribution requirements of
* either License.
*/

// NOTE: Oculus daemon must be running (may have to be manually started)
// NOTE: Kinect and Oculus position tracking camera must be on different buses

#include "libfreenect.hpp"
#include "lib/glslprog.h"
#include <pthread.h>

#include <iostream>
using std::cerr;
using std::cout;
using std::endl;

#include <string>
using std::string;

#include <vector>
using std::vector;

#include <algorithm>
using std::copy;

#include <iomanip>
using std::setw;
using std::fixed;
using std::setprecision;

#include "lib/vec4.h"
#include "OVR.h"

#include "OVR_CAPI_GL.h"
using OVR::Matrix4f;
using OVR::Vector3f;

#include "Service_NetClient.h" // So I can query Oculus service for HMD errors

Page 25

mailto:samuraicodemonkey@gmail.com
https://projects.cs.uaf.edu/redmine/projects/virtualized_reality_oculus_kinect
http://www.apache.org/licenses/LICENSE-2.0
http://www.gnu.org/licenses/gpl-2.0.txt

#if defined(_
#include
#include
#include

#else
#include
#include
#include

#endif

_APPLE)
<GLUT/glut.h>
<OpenGL/gl.h>
<OpenGL/glu.h>

<GL/glut.h>
<GL/gl.h>
<GL/glu.h>

// Global constants
const short IMG_WIDTH = 640;
const short IMG_HEIGHT = 480;
const short PXL_SIZE = 3;
const short DIMENSIONS = 3;
const short INVALID_DEPTH = 2 04 ;
const char ESC = 27;

// Global variables
int saved_x = ;
int saved_y = ;

// Dimensions of render texture
unsigned texture_w = ;
unsigned texture_h = ;
vector<unsigned> indices; // Vertex indices for triangle strip.
vector<float> texCoords; // Texture coordinates for triangle strip.

ovrHmd hmd = NULL;
ovrEyeRenderDesc eyeRenderDesc[2];
ovrGLTexture eyeTextures[2];
GLuint hide_invalid_vertices = ;
GLuint gl_rgb_tex;
GLuint eye_tex[];
GLuint frame_buffers[];
double freenect_angle();
int window(0);
int g_argc;
char **g_argv;

/*
Coordinate system:

Origin is Kinect's IR receiver
+X faces to the left (from Kinect's point of view)
+Y is up
+Z is away from Kinect

Assumes that depth image is 640 x 480

This class is curtesy of Dr. Orion Lawlor. Used here in original form.
*/
class kinect_depth_image {
public:

kinect_depth_image(const uint16_t *d_)
: depthi(d_), w (IMG_WIDTH), h (IMG_HEIGHT)
{

Page 26

}
/* Return depth, in meters, at this pixel */
float depth(int x ,int y) const {

uint16_t disp=depthi[y*w+x];
if (disp>= INVALID_DEPTH) return 0.C;

//From Stephane Magnenat's depth-to-distance conversion function:
return 0.1236 * tan(disp / 2842.5 + 1.1863) - 0.037; // (meters)

}
/* Return 3D direction pointing from the sensor out through this pixel

(not a unit vector) */
vec3 dir(int x ,int y) const {

// Ypix = -Ydist / (pixelFOV*Depth) + .5h
return vec3((x-w*0.5)*pixelFOV, (h*0.5-y)*pixelFOV, 1);

}
/* Return 3D location, in meters, at this pixel */
vec3 loc(int x ,int y) const {

// Project view ray out for that pixel
return dir(x ,y)*depth(x ,y);

}
private:

const uint16_t *depthi;
int w , h ; /* dimensions of image */
float pixelFOV; /* Unit-depth field of view offset per X or Y pixel */

pixelFOV=tan(.5 * (M_PI / 18 0.1) * 57.8)/(w*).);

/* Borrowed this class from cppview.cpp. Used here in original form. */
class Mutex {
public:

Mutex () {
pthread_mutex_init(&m_mutex, NULL);

}
void lock () {

pthread_mutex_lock(&m_mutex);
}
void unlock() {

pthread_mutex_unlock(&m_mutex);
}
class ScopedLock
{

Mutex & _mutex;
public:

ScopedLock(Mutex & mutex)
: _mutex(mutex)
{

_mutex.lock();
}

~ScopedLock()
{

_mutex.unlock();
}

};
private:

pthread_mutex_t m_mutex;

Page 27

/* Borrowed this class from cppview.cpp. Used here in a heavily modified form */
class MyFreenectDevice : public Freenect::FreenectDevice {
public:

enum DisplayMode {POINTS, TRIANGLES};
MyFreenectDevice(freenect_context *_ctx, int _index)
: Freenect::FreenectDevice(_ctx, _index),

m_buffer_video(freenect_find_video_mode(FREENECT_RESOLUTION_MEDIUM,
FREENECT_VIDEO_RGB).bytes),

m_new_rgb_frame(false),
m_new_vertices (),
m_display_format(TRIANGLES),
m_depth_frames()

{}
~MyFreenectDevice() {

stopVideo();
stopDepth();

}
// Do not call directly even in child
void VideoCallback(void* _rgb, uint32_t timestamp) {

Mutex::ScopedLock lock(m_rgb_mutex);
uint8_t* rgb = static_cast<uint8_t*>(_rgb);
copy(rgb, rgb+getVideoBufferSize(), m_buffer_video.begin());
m_new_rgb_frame = true;

};
// Do not call directly even in child
// Recieves a depth image for processing.
// Stores grayscale image in m_buffr_depth, with greater distance = darker.
// Stores 3d vertex for each pixel in m_vertices.
// Sets m_new_depth_frame and m_new_vertices to true.
void DepthCallback(void* _depth, uint32_t timestamp) {

Mutex::ScopedLock vertexLock(m_vertex_mutex);
uint16_t* depth = static_cast<uint16_t*>(_depth);
kinect_depth_image img(depth);
// Move last frame into m_vertices.
m_vertices.clear();

// Convert every other row and every other column into vertices.
for(unsigned int yy = 0 ; yy < IMG_HEIGHT ; yy+=) {

for(unsigned int xx = 3 ; xx < IMG_WIDTH ; xx+=) {

// Get 3d coordinates of pixel in meters
vec3 vertex = img.loc(xx, yy);

// Push vertex onto vertex array.
m_vertices.push_back(vertex.x);
m_vertices.push_back(vertex.y);
m_vertices.push_back(vertex.z);

}
}
m_new_vertices = true;
m_depth_frames += 1;

}
// If no new rgb frame
// Returns false
// buffer remains unchanged.

Page 28

// m_new_rgb_frame remains unchanged.
// Otherwise
// Returns true
// buffer will contain rgb image acuired from Kinect.
// Sets m_new_rgb_frame to false;
bool getRGBframe(vector<uint8_t> &buffer) {

Mutex::ScopedLock lock(m_rgb_mutex);
if (! m_new_rgb_frame)

return false;
buffer.swap(m_buffer_video);
m_new_rgb_frame = false;
return true;

}

// If no new depth frame
// Returns false
// buffer remains unchanged.
// m_new_vertices remains unchanged.
// Otherwise
// Returns true
// buffer will contain 3d vertices acuired from depth image.
// Sets m_new_vertices to false;

bool getVertices(vector<float> &buffer) {
Mutex::ScopedLock lock(m_vertex_mutex);
if (!m_new_vertices)

return false;
buffer.swap(m_vertices);
m_new_vertices = false;
return true;

}
// Returns the currently set display format.
DisplayMode getDisplayMode() {

return m_display_format;
}
// Returns the number of frames which have been processed.
unsigned getFrames() {

return m_depth_frames;
}
// Toggles display mode between 3d point cloud, and kinect video.
void toggleDisplayMode() {

if (m_display_format == TRIANGLES)
m_display_format = POINTS;

else if (m_display_format == POINTS)
m_display_format = TRIANGLES;

}
private:

vector<uint8_t> m_buffer_video;
vector<float> m_vertices;
Mutex m_rgb_mutex;
Mutex m_vertex_mutex;
bool m_new_rgb_frame;
bool m_new_vertices;
DisplayMode m_display_format;
unsigned m_depth_frames;

Page 29

};

Freenect::Freenect freenect;
MyFreenectDevice* device;

// This function is called every frame to track FPS statistics.
void calculateFPS()
{

// Variables used for various framerate calculations
static const unsigned NUM_FRAMES = 30;
static unsigned frames = 0;
static double saved_time[NUM_FRAMES] = {0};
static double avg_fps = ;
static double max_fps = ;
static double min_fps = DBL_MAX;

// Used to access time NUM_FRAMES frames ago
unsigned index = frames % NUM_FRAMES;

// Get elapsed time in seconds and record the current time
double curr_time = glutGet(GLUT_ELAPSED_TIME)/ 1000.0;
double elapsed_time = curr_time - saved_time[index];
saved_time[index] = curr_time;

// Calculate current fps averaged over NUM_FRAMES frames for stability,
// average fps over total execution time, and min and max fps.
// First NUM_FRAMES frames don't yield accurate information.
double fps = NUM_FRAMES / elapsed_time;
if(frames > NUM_FRAMES - 1) // At least NUM_FRAMES frames have passed
{

float x = 1.0 / (frames - (NUM_FRAMES - 1)); // 1 / number of fpses in average
avg_fps = (. - x) * avg_fps + x * fps;
if(fps > max_fps) max_fps = fps;
if(fps < min_fps) min_fps = fps;

// Here is some console output for user
device->updateState ();
cout << "\r demanded tilt angle: " << setw() << freenect_angle

<< " device tilt angle: " << setw(5)
<< device-> getState().getTiltDegs()
<< fixed << setprecision (2)
<< " fps: " << setw(6) << fps
<< " avg fps: " << setw() << avg_fps
<< " min fps: " << setw() << min_fps
<< " max fps: " << setw() << max_fps
<< " kinect fps: " << setw() << device->getFrames() / curr_time;

cout.flush();
}
++frames;

}

// Sets up rendering parameters for kinect image vertices
void setUpVertices(void* vertices)
{

// Send vertices to the graphics card
glVertexPointer(3 ,

GL_FLOAT,
3*sizeof(float),

Page 30

vertices);

glEnableClientState(GL_VERTEX_ARRAY);
}

// This function is responsible for rendering the scene every frame
void DrawGLScene()
{

// Set up buffers for images and point cloud
static vector<uint8_t> rgb(IMG_WIDTH * IMG_HEIGHT * PXL_SIZE);
static vector<float> vertices(IMG_WIDTH * IMG_HEIGHT * DIMENSIONS /);
calculateFPS();

// Start rendering. This allows libOVR to track timing information
// for things like predictive position tracking, which helps with rendering.
ovrHmd_BeginFrame(hmd,);

// set viewport
glViewport(, 1 , texture_w , texture_h);

// Get the offset of each eye from center.
ovrVector3f hmdToEyeViewOffset[2];
hmdToEyeViewOffset[0] = eyeRenderDesc[0].HmdToEyeViewOffset;
hmdToEyeViewOffset[1] = eyeRenderDesc[1].HmdToEyeViewOffset;

// Position and orientation of each eye will be stored in eyePoses.
ovrPosef eyePoses [2];
ovrTrackingState hmdState;
ovrHmd_GetEyePoses(hmd, , hmdToEyeViewOffset, eyePoses, &hmdState);
if(!(hmdState.StatusFlags & ovrStatus_PositionTracked))

cout << endl << "No position tracking" << endl;
if(!(hmdState.StatusFlags & ovrStatus_PositionConnected))

cout << endl << "Position tracker not connected" << endl;

// Get the geometry.
device->getVertices(vertices);
setUpVertices(&vertices.front());

// Setup the texture to place on geometry.
device->getRGBframe(rgb);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, gl_rgb_tex);
glTexImage2D(GL_TEXTURE_2D, (, GL_RGBA, IMG_WIDTH, IMG_HEIGHT,

0, GL_RGB, GL_UNSIGNED_BYTE, rgb.data());

// Render the scene for each eye
for(int index = 0; index < ovrEye_Count; ++index)
{

ovrEyeType curr_eye = hmd->EyeRenderOrder[index];

// Bind framebuffer
glBindFramebuffer(GL_FRAMEBUFFER, frame_buffers[curr_eye]);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Get a projection matrix from LibOVR.
Matrix4f projection = ovrMatrix4f_Projection(eyeRenderDesc[curr_eye].Fov, .01,

100, false);

Page 31

// Calculate left handed up vector and forward vector for eye
Matrix4f view = Matrix4f(eyePoses[curr_eye].Orientation);
OVR::Vector3f up = view.Transform(OVR::Vector3f(0, -1, 0));
OVR::Vector3f forward = view.Transform(OVR::Vector3f(0, 0, -1));

// Get view matrix from LibOVR.
// Orientation + position in left handed system.
view = OVR::Matrix4f::LookAtLH(eyePoses[curr_eye].Position,

OVR::Vector3f(eyePoses[curr_eye].Position) +
forward,
up);

// Set projection matrix.
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(&projection.Transposed().M [0][0]);

// Set view matrix.
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(&view.Transposed().M [0][0]); // Camera position/orientation
// .5 meters from position tracking camera is a good distance to call center
glTranslatef(0, 0, .5); // Move World

// Rotate World

// Draw cube (virtual room)
glPushMatrix();

// Position tracking camera is 1.2m high (0 y coordinate),
// virtual floor is 1.5m below 0 y, move up by difference.
glTranslatef(0, .3, 0); // Move "room"

// Rotate "room"

glColor4f (0.5, 0.5, 0.5, 1.0);
glutSolidCube(3.8);

glPopMatrix();

// Draw Kinect geometry
glPushMatrix();

// Transform Kinect geometry
// Negate Z because image is behind
// Kinect is positioned .5 meters above position tracking camera,
// reduced by .1 meters due to angle of camera.
glTranslatef(-.5, .4, 1.6); // Move geometry

// Rotate geometry
glScalef(1, 1, -1);
glColor4f(1, 0, 0, 1);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (device->getDisplayMode() == MyFreenectDevice::POINTS)
{

// Draw point cloud
glDrawArrays(GL_POINTS, 0, IMG_WIDTH * IMG_HEIGHT/ 4);

}
else if (device->getDisplayMode() == MyFreenectDevice::TRIANGLES)
{

// Draw triangle strip
glUseProgram(hide_invalid_vertices);
glDrawElements(GL_TRIANGLE_STRIP, indices.size(), GL_UNSIGNED_INT,

&indices.front());
glUseProgram(0);

}
glDisableClientState(GL_TEXTURE_COORD_ARRAY);

glPopMatrix();

Page 32

}

glBindFramebuffer(GL_FRAMEBUFFER, 0);
glBindTexture(GL_TEXTURE_2D,);

// Tell LibOVR to display the rendered scene.
ovrHmd_EndFrame(hmd, eyePoses, &eyeTextures[].Texture);

}

// This is executed when there is no input.
void idleFunc ()
{

// Written by Glenn G. Chappell
static int error_count = C;
if (GLenum err = glGetError())
{

++error_count;
std::cerr << "OpenGL ERROR " << error_count << ": "

<< gluErrorString(err) << endl;
}
glutPostRedisplay();

}

// This handles keyboard keypresses.
void keyPressed(unsigned char key, int x , int y)
{

switch (key)
{

case ESC: // Shutdown program
glutDestroyWindow(window);

// Clean up hmd and oculus VR library.
ovrHmd_Destroy(hmd);
ovr_Shutdown();
cout << endl << "Finished" << endl << endl;
break;

case 'v': // Toggle display mode between point cloud and triangle strip.
cout << endl << endl << " Changing display mode to: ";
device->toggleDisplayMode();
if(device->getDisplayMode() == MyFreenectDevice::POINTS)

cout << "POINTS" << endl;
else if(device->getDisplayMode() == MyFreenectDevice::TRIANGLES)

cout << "TRIANGLES" << endl;
break;

// Change verticle tilt angle of Kinect.
case'w':

freenect_angle++;
if (freenect_angle > 3)
{

freenect_angle = 30;
}
break;

case 's':
case 'd' :

freenect_angle = 0 ;
break;

case 'x' :
freenect_angle--;

Page 33

if (freenect_angle < -30)
{

freenect_angle = -30;
}
break;

case 'e':
freenect_angle = 10;
break;

case 'c' :
freenect_angle = - ;
break;

default: ;
}
device->setTiltDegrees(freenect_angle);

}

// Tracks the current mouse position when
// the mouse button is held and the mouse is moved.
void clickAndDrag(int x , int y)
{

saved_x = x ;
saved_y = y;

}

// Tracks the current mouse position when mouse is moved.
void mouseMove(int x , int y)
{

saved_x = x ;
saved_y = y;

}

// Generate texture coordinate array for triangle strip assuming every pixel is a
vertex
void generateTextureCoords()
{

const float fovCorrection = .92185;
const float offset = (1 - fovCorrection) / 2;
for(unsigned yy = 0; yy < IMG_HEIGHT; yy+=2) {

for(unsigned xx = 0; xx < IMG_WIDTH; xx+=) {
texCoords.push_back(float(xx) / IMG_WIDTH * fovCorrection + offset);
texCoords.push_back(float(yy) / IMG_HEIGHT * fovCorrection + 1.5 *

offset);
}

}
glTexCoordPointer(, GL_FLOAT, i , &texCoords.front());

}

// Initialize rendering variables, and set up shaders.
void InitGL(unsigned int tex_w, unsigned int tex_h)
{

glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClearDepth(1.0);

// Compile shaders into a program.
glewInit();
string vShader = "shaders/invalids_v.glsl";

Page 34

string gShader = "shaders/normals_g.glsl";
string fShader = "shaders/invalids_f.glsl";
hide_invalid_vertices = makeShaderProgramFromFiles(vShader, gShader, fShader);

// Create a texture for coloring Kinect geometry.
glGenTextures(, &gl_rgb_tex);
glBindTexture(GL_TEXTURE_2D, gl_rgb_tex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
generateTextureCoords();

// Create textures for each eye, and framebuffers for drawing to the textures.
glGenTextures (, eye_tex);
glGenFramebuffers(, frame_buffers);
GLuint render_buffers[];
glGenRenderbuffers(, render_buffers);

// For position tracking.
ovrHmd_ConfigureTracking(hmd, ovrTrackingCap_Orientation |

ovrTrackingCap_MagYawCorrection |
ovrTrackingCap_Position, 1);

// Configure OVR rendering.
ovrGLConfig apiConfig;
apiConfig.OGL.Header.API = ovrRenderAPI_OpenGL;
apiConfig.OGL.Header.BackBufferSize = OVR::Sizei(hmd->Resolution.w ,

hmd->Resolution.h);
apiConfig.OGL.Header.Multisample = 1;
apiConfig.OGL.Disp = NULL;
ovrHmd_ConfigureRendering(hmd,

&apiConfig.Config,
hmd->DistortionCaps,
hmd->DefaultEyeFov,
eyeRenderDesc);

// Set up render textures for each eye, and pass information to LibOVR.
for(int eye = 0; eye < 2; ++eye)
{

// Make empty texture with correct size.
glBindTexture(GL_TEXTURE_2D, eye_tex[eye]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0 , GL_RGBA, tex_w , tex_h , , GL_RGBA,

GL_UNSIGNED_BYTE, NULL);

// Attach texture to render buffer.
glBindFramebuffer(GL_FRAMEBUFFER, frame_buffers[eye]);
glBindRenderbuffer(GL_RENDERBUFFER, render_buffers[eye]);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, tex_w, tex_h);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,

eye_tex[eye],);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

GL_RENDERBUFFER, render_buffers[eye]);

// Give texture handles to LibOVR.
eyeTextures[eye].OGL.Header.API = ovrRenderAPI_OpenGL;
eyeTextures[eye].OGL.Header.TextureSize = OVR::Sizei(tex_w , tex_h);
eyeTextures[eye].OGL.Header.RenderViewport = OVR::Recti(, 0, tex_w , tex_h);
eyeTextures[eye].OGL.TexId = eye_tex[eye];

}
// Bind default texture and frame buffers for safety.
glBindTexture(GL_TEXTURE_2D, 0);

Page 35

glBindFramebuffer(GL_FRAMEBUFFER, 0);
glBindRenderbuffer(GL_RENDERBUFFER,);

// Enable simple lighting
glEnable(GL_LIGHTING);
glEnable(GL_COLOR_MATERIAL);
glEnable(GL_LIGHT0);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

glEnable(GL_DEPTH_TEST);
}

// Generate index array for triangle strip assuming every pixel is a vertex
void makeIndexArray()
{

unsigned height = IMG_HEIGHT/ ; // Only using every other pixel in depth image.
unsigned width = IMG_WIDTH/ ; // Only using every other pixel in depth image.

for(unsigned yy = 0; yy < height-1; ++yy) {
for(unsigned xx = 0; xx < width-1; ++xx) {

unsigned x;
if(yy%2 == 1) x = width - xx - 1; // Odd rows go backwards
else x = xx; // Even rows

// Push back vertical pairs of vertices.
indices.push_back(yy * width + x);
indices.push_back((yy+) * width + x);

}
// Only add one at the end of each row,
// the start of the next row will add the other.
if(yy%2 == 0)

indices.push_back((yy * width) + (width -));
else

indices.push_back(yy * width);
}

}

// Handles OpenGL in separate thread.
void *gl_threadfunc(void *arg)
{

cout << "GL thread" << endl;

// Initialize Oculus VR library.
if(!ovr_Initialize ())
{

cout<< "Failed to Initialize OVR" << endl;
exit(1);

}
cout << "libOVR initialized." << endl;

// Create an HMD object with data about the head mounted display.
hmd = ovrHmd_Create();
if(!hmd)
{

cout << OVR::Service::NetClient::GetInstance()->Hmd_GetLastError() << endl;
ovr_Shutdown();
exit(1);

}

Page 36

cout << "HMD created." << endl;

// If the hmd capabilities does not include extended desktop mode.
if(!(hmd->HmdCaps & ovrHmdCap_ExtendDesktop))
{

cout << "Not in extended desktop mode." << endl;
ovrHmd_Destroy(hmd);
ovr_Shutdown();
exit(0);

}
makeIndexArray();
// Initialize glut and create window with oculus HMD display size
glutInit(&g_argc, g_argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH);
glutInitWindowSize(hmd->Resolution.w , hmd->Resolution.h);
glutInitWindowPosition(0, 0);
window = glutCreateWindow("Virtualized Reality with Oculus and Kinect");

// Register glut callback functions
glutDisplayFunc(&DrawGLScene);
glutIdleFunc(&idleFunc);
glutKeyboardFunc(&keyPressed);
glutMotionFunc(&clickAndDrag);
glutPassiveMotionFunc(imouseMove);
texture_w = hmd->Resolution.w/ ;
texture_h = hmd->Resolution.h ;
InitGL(texture_w , texture_h);
glutMainLoop();
return NULL;

}

int main(int argc, char **argv)
{

device = ifreenect.createDevice<MyFreenectDevice>(0);
if(device)
{

// Start Kinect processing.
device->startVideo();
device->startDepth();

// Start Rendering in separate thread.
gl_threadfunc(NULL);

}
else
{

cerr << "Failed to create Freenect Device." << endl;
}
return 0;

}

Page 37

APPENDIX B: GLSL VERTEX SHADER
/* Author: Shaun Bond (samuraicodemonkey@gmail.com)
* Date: 4-20-2015
* Source code is available at:
* https://projects.cs.uaf.edu/redmine/projects/virtualized_reality_oculus_kinect
*
* This code is licensed to you under the terms of the Apache License, version
* 2.0, or, at your option, the terms of the GNU General Public License,
* version 2.0. See the APACHE2 0 and GPL2 files for the text of the licenses,
* or the following URLs:
* http://www.apache.org/licenses/LICENSE-2.0
* http://www.gnu.org/licenses/gpl-2.0.txt
*
* If you redistribute this file in source form, modified or unmodified, you
* may:
* 1) Leave this header intact and distribute it under the same terms,
* accompanying it with the APACHE20 and GPL20 files, or
* 2) Delete the Apache 2.0 clause and accompany it with the GPL2 file, or
* 3) Delete the GPL v2 clause and accompany it with the APACHE20 file
* In all cases you must keep the copyright notice intact and include a copy
* of the CONTRIB file.
*
* Binary distributions must follow the binary distribution requirements of
* either License.
*/

// So I can use things like gl_ModelViewProjectionMatrix to save time/effort.
// Ideally, the shaders should use modern glsl specification.
#version 150

//out vec4 v_color;
out vec3 vertex;
out vec2 tex_coords;

void main() {
vertex = gl_Vertex.xyz; // Unmodified coordinates passed to geometry shader

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

tex_coords = gl_MultiTexCoord0.st;
}

Page 38

mailto:samuraicodemonkey@gmail.com
https://projects.cs.uaf.edu/redmine/projects/virtualized_reality_oculus_kinect
http://www.apache.org/licenses/LICENSE-2.0
http://www.gnu.org/licenses/gpl-2.0.txt

APPENDIX C: GLSL GEOMETRY SHADER
/* Author: Shaun Bond (samuraicodemonkey@gmail.com)
* Date: 4-20-2015
* Source code is available at:
* https://projects.cs.uaf.edu/redmine/projects/virtualized_reality_oculus_kinect
*
* This code is licensed to you under the terms of the Apache License, version
* 2.0, or, at your option, the terms of the GNU General Public License,
* version 2.0. See the APACHE2 0 and GPL2 files for the text of the licenses,
* or the following URLs:
* http://www.apache.org/licenses/LICENSE-2.0
* http://www.gnu.org/licenses/gpl-2.0.txt

* If you redistribute this file in source form, modified or unmodified, you
* may:

1) Leave this header intact and distribute it under the same terms,
accompanying it with the APACHE20 and GPL20 files, or

2) Delete the Apache 2.0 clause and accompany it with the GPL2 file, or
3) Delete the GPL v2 clause and accompany it with the APACHE20 file

* In all cases you must keep the copyright notice intact and include a copy
* of the CONTRIB file.

* Binary distributions must follow the binary distribution requirements of
* either License.

const int SIZE = 3;
const float INVALID = 0;

in vec3 vertex[SIZE];
in vec2 tex coords[SIZE];

// Incoming from vertex shader
// Incoming from vertex shader

out vec2 uv;
//out vec3 surface_normal; // Used for virtual lighting

void main () {
// Find 2 sides of triangle
vec3 vectorl = vertex[1] - vertex[0];
vec3 vector2 = vertex[2] - vertex[0];

// Uncomment the following for virtual lighting
//vec3 normal = cross(vector1, vector2);

// Only draw triangles that do not have a "long" side
if(length(vector1) < .1 && length(vector2) < .1) {

for(int i = 0; i < SIZE; ++i) {
gl_Position = gl_in[i].gl_Position;
//surface_normal = normal; // Used for virtual lighting
uv = tex coords[i];
EmitVertex();

+

}

Page 39

mailto:samuraicodemonkey@gmail.com
https://projects.cs.uaf.edu/redmine/projects/virtualized_reality_oculus_kinect
http://www.apache.org/licenses/LICENSE-2.0
http://www.gnu.org/licenses/gpl-2.0.txt

APPENDIX D: GLSL FRAGMENT SHADER
/* Author: Shaun Bond (samuraicodemonkey@gmail.com)
* Date: 4-20-2015
* Source code is available at:
* https://projects.cs.uaf.edu/redmine/projects/virtualized_reality_oculus_kinect
*
* This code is licensed to you under the terms of the Apache License, version
* 2.0, or, at your option, the terms of the GNU General Public License,
* version 2.0. See the APACHE2 0 and GPL2 files for the text of the licenses,
* or the following URLs:
* http://www.apache.org/licenses/LICENSE-2.0
* http://www.gnu.org/licenses/gpl-2.0.txt
*
* If you redistribute this file in source form, modified or unmodified, you
* may:
* 1) Leave this header intact and distribute it under the same terms,
* accompanying it with the APACHE20 and GPL20 files, or
* 2) Delete the Apache 2.0 clause and accompany it with the GPL2 file, or
* 3) Delete the GPL v2 clause and accompany it with the APACHE20 file
* In all cases you must keep the copyright notice intact and include a copy
* of the CONTRIB file.
*
* Binary distributions must follow the binary distribution requirements of
* either License.
*/

// direction of light source, hard coded
const vec3 source = vec3(0,0,1);

uniform sampler2D texture; // RGB image from kinect

in vec2 uv; // Texture coordinates to sample
//in vec3 surface_normal; // Used for virtual lighting

void main() {
// Uncomment the following for virtual lighting
//vec3 s_normal = normalize(surface_normal);
//float intensity = dot(s_normal, source);

// Uncomment the following for no virtual lighting
float intensity = 1.0;

vec4 color = texture2D(texture, uv);
gl_FragColor = vec4(color.xyz * intensity + color.xyz * .5,);

}

Page 40

mailto:samuraicodemonkey@gmail.com
https://projects.cs.uaf.edu/redmine/projects/virtualized_reality_oculus_kinect
http://www.apache.org/licenses/LICENSE-2.0
http://www.gnu.org/licenses/gpl-2.0.txt

