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ABSTRACT

Climate warming in high latitudes is expected to alter the carbon cycle o f the 

boreal forest. W arming will likely increase the rate o f organic matter decomposition and 

microbial respiration. Faster organic matter decomposition should increase plant 

available nutrients and stimulate plant growth. I examined these predicted relationships 

between C cycle components in three similar black spruce forests (Picea mariana [Mill] 

B.S.P) near Fairbanks, Alaska, that differed in soil environment and in-situ 

decomposition.

As predicted, greater in-situ decomposition rates corresponded to greater 

microbial respiration and black spruce aboveground growth. However root and soil 

respiration were both greater at the site where decomposition was slowest, indicating 

greater C allocation to root processes with slower decomposition. It is unclear what 

environmental factor controls spruce allocation. Low temperature or moisture could 

cause spruce to increase belowground allocation because slower decomposition leads to 

low N availability, but foliar N concentration was similar across sites and root N 

concentration greater at the slow decomposition site. The foliar isotopic composition of

13 • • •C indicated soil moisture was lower at the site with greater root and soil respiration. 

From a literature review of mature black spruce forests, it appears drier (e.g. Alaska) 

regions o f the boreal forest have greater soil respiration because o f greater black spruce C 

allocation belowground.

Organic matter characteristics identified with pyrolysis gas chromatography-mass 

spectrometry correlated with microbial processes, but organic matter chemistry less

iii
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influenced C and N mineralization than did temperature. Also, differences among sites in 

C and net N mineralization rates were few and difficult to explain from soil 

characteristics. Warming had a greater influence on C and N mineralization than the 

mediatory effect o f soil organic matter chemistry.

In this study, spruce root C allocation varied more among the three stands than 

other ecosystem components o f C cycling. Spruce root growth most affected the annual 

C balance by controlling forest floor C accumulation, which was remarkably sensitive to 

root severing. Predicting the response o f black spruce to climate change will require an 

understanding o f how spruce C allocation responds to available moisture and soil 

temperature.
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GENERAL INTRODUCTION

The interaction between climate and boreal forest carbon (C) cycling has received 

increased attention because o f ongoing climate warming in many high-latitude regions 

(Chapin et al. 2000, Serreze et al. 2000). The scientific community now generally agrees 

that part o f the increase in temperature is “very likely” from the human derived 

greenhouse gases and that warming will continue with greenhouse gas buildup 

(Houghton et al. 2001). Projected warming is expected to be greatest at high-latitudes 

and the warming will likely alter a number o f ecosystem processes in the boreal forest. 

Warming could increase the frequency o f fire (Kasischke et al. 1995) and insect 

outbreaks (Parson et al. 2001), and also alter the balance between photosynthesis and 

respiration (Goulden et al. 1998). For the greenhouse gas carbon dioxide (CO2), these 

ecosystem changes could significantly change the short- and long-term exchange o f CO2 

between the forest and atmosphere.

In northern latitude ecosystems, photosynthesis often only slightly exceeds 

respiration on an annual basis (Janssens et al. 2001), but over long enough time periods 

the difference is enough to result in the accumulation o f soil C. The boreal forest is the 

second largest forest biome and contains in its soils an estimated 182 Pg C (Post et al. 

1982) or 24% of the current amount o f atmospheric C. M uch of the soil C has 

accumulated because low soil temperatures and excessive soil moisture limit 

decomposition (Harden et al. 2000), making it possible that a warming or drying climate 

will stimulate the decomposition o f soil C (Kirschbaum 1995, McGuire et al. 1995, 

Chapin et al. 2000, Kirschbaum 2000). Alternatively, the warming would increase
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decomposition, plant nutrient availability, growing season length and, as a result, forest 

growth. In this latter case, photosynthesis may remove more CO2 from the atmosphere 

than the ecosystem loses from decomposition and the biome may increase its net C 

storage.

The potential o f these alternative scenarios varies by vegetation type. Slow 

growing vegetation overlying substantial accumulations o f soil C may not have the 

capacity to increase productivity to offset warming-induced decomposition. In Alaska, 

the most common tree species is black spruce (Picea mariana [Mill] B.S.P)(Labau and 

van Hees 1990), which is also the slowest growing tree species and co-occurs with the 

greatest amounts o f soil C (Van Cleve et al. 1983, Gower et al. 1997). The only 

published soil warming experiment in black spruce reported that after 3 years, 

aboveground production increased 33% and forest floor mass decreased 20% in response 

to a 8-10 °C soil warming (Horn 1986, Van Cleve and Yarie 1986, Van Cleve et al.

1990). The absolute amount o f forest floor decrease, however, was over lOx the increase 

in aboveground production (1800 vs. 128 g m '2) (estimated from data in Horn 1986), 

suggesting decomposition can contribute significant amounts o f C to the atmosphere with 

wanning. Although climate warming is not expected to be this extreme (Houghton et al. 

2001), model results (McGuire et al. 1995, Arain et al. 2002, Clein et al. 2002) and 

measurements with eddy-covariance systems (Jarvis et al. 1997, Goulden et al. 1998, 

Rayment and Jarvis 1999) have found that with moderate warming, respiration can 

temporarily exceed productivity in mature black spruce ecosystems.

2
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The focus o f this research is the relationships among plant primary production, 

decomposition, and root processes in mature black spruce forests that varied in in-situ 

decomposition rates and soil environment. Ecosystem C balance in black spruce is 

extremely sensitive to soil processes (Goulden et al. 1998, Ruess et al. in press), and 

these processes are the least understood and most difficult components o f ecosystem C 

cycling to study (Gower et al. 1997). For example if  increased decomposition causes soil 

C loss, then soil respiration should increase. However, both roots and microbes contribute 

to soil respiration and it is unclear if  both respond similarly to environmental change. 

Delineating microbial respiration from root processes is necessary to m onitor soil C loss 

(Boone et al. 1998) and for developing models o f ecosystem response to climate change 

(Hanson et al. 2000). Root growth and mortality also contribute to the accumulation o f 

soil C and an environmental factor that increases microbial respiration may also increase 

these root processes. The net result may be more soil C being stored.

Significant advances have been made in understanding the relationship between 

environment and root processes in black spruce ecosystems. As first reported by Tryon 

and Chapin (1983), the growth o f roots in black spruce correlate seasonally to soil 

temperature (Steele et al. 1997; O ’Connell et al. 2003; Ruess et al. (in press)) and the 

response o f root elongation rate to temperature is greater for black spruce than other 

boreal tree species (Tryon and Chapin 1983, Steele et al. 1997). The peak in soil 

respiration coming from spruce roots also occurs during mid-summer and is greater than 

respiration from microbial decomposition (O ’Connell et al. 2003). The seasonal course 

o f root respiration may be from a change in root mass, an increased temperature

3
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sensitivity o f root respiration, or from increased photosynthate supply to roots due to 

more sunlight. In a Scots pine forest, root respiration decreased within two weeks o f a 

tree girdling experiment (Hogberg et al. 2001), suggesting a strong link between recent 

photosynthate and root respiration. Boone et al. (1998) found root respiration controlled 

the temperature sensitivity o f soil respiration in temperate forests. In contrast to other 

ecosystems, a greater fraction o f soil respiration is derived from roots in the boreal biome 

(Raich and Nadelhoffer 1989). Among Alaska forests, black spruce allocate 

proportionately more C belowground than other forest species (Ruess et al. 1996). Thus 

within a growing season, root processes in black spruce ecosystems likely dominate soil 

C flux and are sensitive to environmental factors.

Trees also shift allocation between above- and belowground plant parts in 

response to changing environment and nutrient availability (Gower et al. 1994), and this 

aspect o f black spruce C dynamics is much less understood. However, for conifers a 

general understanding has developed for the relationship between nutrient availability 

and plant C allocation. With fertilization, absolute amounts o f root production often 

decrease for a species (Kurz 1989; Gower et al. 1992; Haynes and Gower 1995), or root 

production decreases as a proportion o f total plant production (Linder and Axelsson 

1982). Also where species composition is constant and the forest canopy is no longer 

aggrading, natural gradients in fertility indicate greater root production where nutrient 

availability is low (Keyes and Grier 1981, Kurz 1989). In cross-species comparisons, 

however, belowground production increases with nutrient availability (Nadelhoffer et al. 

1985). This may simply reflect greater overall C flux through the ecosystem.

4
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Fewer studies have looked at environmental influences on C allocation per se, but 

lower moisture availability often increases the proportion o f C allocated belowground in 

within species comparisons (Keyes and Grier 1981, Comeau and Kimmins 1989, Kurz 

1989, Gower et al. 1992). Alternatively in cross-species comparisons, the total amount of 

C allocated to roots increases with mean temperature and precipitation (Raich and 

Nadelhoffer 1989, Vogt et al. 1990, Gower et al. 1994). There is a clear distinction 

between the response o f one species to changing environment and nutrient availability, 

and the C allocation patterns o f different species. No studies have looked specifically at 

the belowground production response o f black spruce to variations in nutrient, moisture, 

or soil temperature. Alaskan studies, however, generally estimate a greater proportion o f 

ecosystem primary production going to black spruce root growth (47-63%) (Ruess et al. 

1996, Ruess et al. in press) than do studies in Canada (41-49%)(Gower et al. 1997, Steele 

et al. 1997, O'Connell et al. 2003a). Interior Alaska is drier than the Canadian study 

areas, which may explain this trend.

Changes in black spruce root processes may reflect the direct influence o f climate 

on physiological processes. Black spruce roots adjust basal respiration, or acclimate, to 

average temperatures (Tjoelker et al. 1999). For roots acclimated to cold temperatures, a 

subsequent increase in temperature initially elicits a greater respiration response than for 

roots experiencing long-term warmer temperatures. Flowever, if  temperatures are warm 

long enough, root respiration decreases. This response may be an adaptation that allows 

for near constant maintenance respiration costs independent o f temperature (Atkin et al.

2000), but how rapid acclimation occurs remains unknown (Tjoelker et al. 1999). It is

5
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also unclear how respiration acclimation and root growth interact with fluctuating soil 

temperatures.

The interaction between root processes and climate change may be expressed in 

root N concentration. Across a mean temperature transect in temperate forests, root N 

concentration was positively correlated to respiration rates, but the trend was best 

explained by in-situ net N mineralization rates rather than site temperatures (Burton et al.

1996). Alternatively, root respiration and root N concentration were both lower in warm 

than cool biomes (Burton et al. 2002). Black spruce respiration is positively correlated to 

N concentration (Tjoelker et al. 1999, Ruess et al. in press), and N availability will likely 

increase with warming soil temperatures (Kirschbaum 1995). Both N availability and 

root N content could increase with warming and increase root respiration rates.

From the various observations o f root function and its relationship to 

environment, it appears climate warming could have a positive, negative or neutral 

influence on C allocation to black spruce roots. A positive effect would occur if warming 

increases N  availability, root N concentration, root growth and respiration rate. A 

negative if increased N availability from warming results in less C allocated 

belowground. A “no-effect” o f climate warming would occur if C allocation to roots 

remained the same, with both root growth and respiration acclimating to the warmer 

temperatures. Rustad et al. (2001) reviewed soil-warming studies and found that in most 

cases, soil respiration and net N availability initially increased after warming but the 

increase was not sustained. Either root acclimation to warmer temperatures, decreased C

6
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allocation to roots, or microbial depletion o f easily decomposed organic matter may be 

responsible for this result (Rustad et al. 2001a).

The potential o f a net soil C loss will also depend on the amount o f soil C, its 

chemical characteristics, the temperature sensitivity o f microbial decomposition, and the 

degree o f temperature wanning (Kirschbaum 1995, Niklinska et al. 1999, Kirschbaum

2000). Among forest species in Alaska, the soil organic matter o f  black spruce generally 

has the slowest decomposition rate (Flanagan and Van Cleve 1983, Vance and Chapin

2001). The organic matter is, however, capable o f losing significant amounts o f mass 

with little change in the rate o f microbial decomposition (Sparrow and Cochran 1988, 

Vance and Chapin 2001, N eff and Hooper 2002). Thus, warming could result in a 

sustained loss in soil C, but concurrent with soil C mineralization is the conversion of 

organic nitrogen to forms that are available for plant uptake (Kirschbaum 2000). The 

chemical characteristics o f the organic matter, or its quality, will mediate the relative rate 

o f both mineralization processes.

Although a number o f comparisons o f organic matter quality have been made for 

different forest species (Flanagan and Van Cleve 1983, Vance and Chapin 2001), much 

less is known about the variability o f organic matter quality within the black spruce 

ecosystem type. Long-term inhibition o f decomposition by limiting temperature or 

moisture conditions may result in the buildup o f organic matter that would otherwise be 

decomposed, and therefore, a change in soil environment may elicit a greater microbial 

response for this organic matter (Kirschbaum 1995, Niklinska et al. 1999). As microbes 

increase decomposition rates they can either produce CO2 or incorporate the organic

7
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matter into biomass. I f  microbial biomass increases, the rate o f mineralization o f N to 

plant available forms may decrease (Flanagan and Van Cleve 1983). The organic 

chemistry may also influence the rate o f net N mineralization; the buildup o f low N 

compounds could increase N immobilization in microbial biomass when environmental 

limitations are removed. The result would be a longer lag between when microbes 

release C 0 2 and plant available N.

I focused my research on three stands in the Fairbanks area that are similar in 

stand structure (number o f trees, tree size, and density, understory species composition) 

and soil characteristics (amounts o f organic matter, loess soil cap). The site selection and 

approach was in part determined by my prior research experience in black spruce forests 

in Manitoba and Saskatchewan. Black spruce forests in different regions o f the boreal 

forest are remarkable to the degree they resemble one another in structural characteristics. 

I questioned whether forests that appear similar actually cycle C in the same manner 

across the boreal forest. Significant environmental variability exists at the cross-biome 

scale, but also locally in Alaska, and I was curious how soil environment and ecosystem 

C cycling interact.

In Chapter 1 ,1 examine the relationship between in-situ decomposition, microbial 

respiration, root respiration, and aboveground production o f three black spruce forests 

near Fairbanks, Alaska. The general hypothesis is that where decomposition is faster, 

both components o f soil respiration, microbial and root respiration are also greater. The 

faster decomposition o f organic matter should also increase N availability and 

aboveground production. An alternative hypothesis is that faster decomposition results in
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less belowground C allocation, and in this case, the respiratory processes will either stay 

the same or decrease. The possible environmental factors responsible for the patterns in 

plant allocation are examined both with foliar isotopes (13C and l5N) and soil temperature 

measurements.

The focus o f Chapter 2 is the relationship between organic matter quality, 

microbial C and N mineralization, and the temperature sensitivity o f these processes for 

the three sites. The experiment is based on laboratory incubations and the analysis of 

organic matter chemistry using pyrolysis gas chromatography-mass spectrometry. My 

objectives were to examine the interactive effect o f temperature and organic matter 

chemistry on mineralization processes and also determine if  the patterns in the laboratory 

could explain field observations o f spruce C allocation and soil heterotrophic respiration. 

A specific organic matter characteristic, the proportion o f primary polysaccharides, was 

hypothesized to reflect increased C mineralization potential and microbial respiration 

temperature sensitivity (Dai 2001, White et al. 2002). Conversely, I hypothesized the 

potential o f net N mineralization would be inversely related to primary polysaccharides 

occurrence because the compounds identified have little nitrogen associated with them. 

This characteristic should increase microbial immobilization. The temperature sensitivity 

o f processes was expected to be greatest for the low temperature site and be related to the 

primary polysaccharides.

The effect o f root inputs on forest floor C balance is examined in Chapter 3. The 

high degree o f belowground C allocation in black spruce led to the hypothesis that root 

exclusion should cause a divergence between control and trenched plot forest floor C.
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The change in forest floor C o f root exclusion areas is used to determine how root growth 

and decomposition influences the amount o f C found in the forest floor. Independent 

estimates o f root increment are derived from the “bomb” l4C age o f roots. A simple 

model o f forest floor C balance and power analysis are used to propose improvements in 

the trenched plot methodology.

10
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CHAPTER 1. Soil respiration in mature Alaskan black spruce forests that vary in 

soil organic matter decomposition rates 

ABSTRACT

Climate warming at high latitudes is expected to increase root and microbial 

respiration and thus cause an increase in soil respiration. We measured the root and 

microbial components o f soil respiration near Fairbanks, Alaska, in 2000 and 2001 in 

three black spruce (Picea mariand) forests. We hypothesized faster decomposition 

results in greater contributions o f roots and microbes to soil respiration. Two 

independent methods o f separating root and microbial respiration indicated roots 

contributed more to soil respiration than microbes, and the variation in root respiration 

drove between site differences in soil respiration. Thus, contrary to our prediction, the 

site with coolest summer soil temperatures and slowest decomposition (site ID “high- 

np”) had significantly (p<0.05) greater growing season soil respiration (485 g C m"2 y '1) 

than the two other sites (372 and 332 g C m '2 y"1). At any given temperature, soil and 

root respiration were greatest at high-np, and two indirect measurements suggest root 

functional differences were responsible. Fine root N concentration was 10 and 12% 

greater (p<0.05) at high-np than at the other two sites, which is consistent with the greater 

root respiration rates. High-np spruce also had foliage more enriched in 13C and depleted 

in l5N than the other two sites, suggesting lower available moisture and possibly slower 

N  turnover at this site, either o f which may have resulted in greater allocation to roots.
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Other components o f soil respiration (winter soil respiration, heterotrophic respiration 

and moss photosynthesis and respiration) varied among sites, but had less influence on 

soil respiration than root respiration. Black spruce aboveground production (g C m"2) 

generally decreased with increasing root and soil respiration. In an examination o f our 

results in the context o f other studies in black spruce ecosystems, we conclude moisture 

deficit may increase the amount o f C cycling through roots in this forest type. 

INTRODUCTION

Soil respiration generally increases with temperature, creating the possibility that 

the ongoing and predicted warming at high latitudes (Serreze et al. 2000) will increase 

soil respiration and decrease net boreal forest uptake o f CO2 from the atmosphere 

(Goulden et al. 1998). Both root and microbial respiration contribute to soil respiration 

and correlate with temperature, but the activity o f each has different implications for 

ecosystem carbon balance. Root respiration in general consumes photosynthate recently 

fixed by the canopy (Hogberg et al. 2001), thus this respiration has very little influence 

on annual net ecosystem carbon balance and is sensitive to both canopy and soil 

conditions. Alternatively, during decomposition microbes release CO2 from soil organic 

matter that ranges in age from recent (e.g., fine root turnover) to years and millennia 

(e.g., litter and humified soil C) (Trumbore and Harden 1997, Trumbore 2000). In 

particular, the decomposition o f boreal soil organic matter could drive a significant 

increase in atmospheric CO2 because boreal soils store about 182 Pg o f soil C (Post et al. 

1982), equivalent to 24% o f the current atmospheric pool.

12
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Separating the root and microbial components o f soil respiration is critical to 

monitoring the destabilization o f soil C pools (Hanson et al. 2000), determining the 

relative sensitivities o f roots and microbes to temperature or moisture (Boone et al. 1998, 

Melillo et al. 2002), and ultimately predicting how soil respiration will respond to a 

changing climate. Decomposition in boreal forests is very often temperature limited, and 

a general hypothesis for this forest is that with soil warming, microbial decomposition 

will increase, release more nutrients to the plants, stimulate photosynthesis and increase 

overall plant productivity, including roots. If  true, soil respiration should increase 

because o f the stimulated contribution o f both roots and microbes. However, experiments 

indicate that soil respiration enhancement is not sustained at high levels in response to 

warming (Jarvis and Linder 2000, Rustad et al. 2001b, M elillo et al. 2002). The relative 

respiratory contribution o f roots may decrease or stay the same with warming because of 

temperature acclimation or changing plant C allocation. Roots acclimate to warmer 

average temperatures by respiring less at a given temperature (Sowell and Spomer 1986, 

Tjoelker et al. 1999, Luo et al. 2001), also plants often decrease overall allocation to roots 

with increased nutrient availability (Haynes and Gower 1995). Microbes may also 

appear to acclimate to temperature (Flanagan and Veum 1974), but this result may 

instead may be from the relatively quick depletion o f easily decomposed soil organic 

matter (Giardina and Ryan 2000, Melillo et al. 2002).

Although soil-warming experiments provide direct evidence o f the potential 

influence o f climate change on decomposition and soil respiration, natural climate 

gradients can be useful for examining whether predictions o f the final carbon cycling

13
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characteristics o f a forest actually occur. The interpretive power o f this approach is 

strengthened if  the plant species community and soil characteristics remain relatively 

constant across environmental gradients. We used this approach, selecting a common 

overstory-understory species association found in the North American boreal forest. 

Black spruce {Picea mariana [(Mill) B.S.P]), the overstory species, occurs across the 

entire mean annual temperature range (7 to -11 °C) o f the North American boreal biome, 

it is the most prevalent and wide ranging tree species in the boreal forest (Bums and 

Honkala 1990), and the most common in boreal Alaska (Labau and van Hees 1990). The 

greatest amounts o f soil C occur under black spruce (Van Cleve et al. 1983, Gower et al.

1997), partly because o f its poor tissue quality for decomposition and predominance in 

wet, cool soils. Also bryophytes can cover 100% o f the forest floor underneath spruce 

and these bryophytes can drastically lower soil temperatures through the insulating 

properties o f their tissue (Oechel and Van Cleve 1986). In this study, the associated 

bryophytes mostly consisted o f feathermoss, which is a generic term for two species, 

Hylocomium splendens [(Hedw.) B.S.G.] and Pleurozium schreberi [(Brid.) Mitt.].

Our objectives were to examine the relationship between decomposition and the 

two components o f soil respiration, microbial and root respiration. We predicted that 

conditions favoring faster decomposition will favor higher rates o f all components o f soil 

respiration. Alternatively, a soil environment that promotes decomposition may cause 

temperature acclimation in roots or decreased available organic matter for microbes, 

resulting in similar or lower soil respiration across a decomposition gradient. Possible 

physiological explanations for root respiration patterns are examined in the context of
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foliage and fine root N concentration, and foliar isotopic differences in 513C and SI5N.

We also measured moss gross photosynthesis and modeled moss respiration to constrain 

the influence o f these on soil respiration results.

METHODS

Site selection and study area

We located a high elevation site with no permafrost (high-np) site, a mid­

elevation site with deep permafrost (mid-dp), and a low elevation site with shallow 

permafrost (low-sp) site (Table 1). One o f the sites is part o f the Bonanza Creek Long 

Term Ecological Research (LTER) study within the Bonanza Creek Experimental Forest 

(64° 48’N, 147°, 52’W). No two sites are greater than 30 km apart. Information about 

Alaska LTER research is accessible online (http://www.Iter.uaf.edu) .

Seasonal variation in daily mean air temperatures is extreme, ranging from -24 .9  

°C in January to 16.4 °C June, with a mean average temperature o f -3 .3  °C. Substantial 

local variation in temperature occurs, driven by adiabatic altitude-temperature lapse rates, 

winter temperature inversions, and topographical sun-shading. The winter cold-air 

inversions driven by altitude are especially extreme; with high elevations up to 30 °C 

warmer on winter days. Annual precipitation (269 mm) is less than potential 

evapotranspiration (466 mm), and 65% o f precipitation occurs during the growing season 

(Viereck et al. 1993).

At each site, black spruce is the only canopy species and feathermoss forms a near 

continuous carpet. Other cryptogams and bryophytes occupy <15% o f the forest floor at 

any site. Few other vascular species represent significant biomass, but common to the
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understory o f all sites are Vaccinium vitis idea (L.) and Cornus canadensis [(L.) Graebn], 

The two low elevation sites experience a mid-June flush o f Equisetum palustre  (L.), and 

high-np has three Alnus crispa [(Ait.) Pursh] bushes within the study area. The average 

diameter and stand density o f the spruce are similar between the three sites, but variations 

occur in age and depth to permafrost (Table 1).

The soils o f these stands are defined by permafrost, an organic matter mat, and a 

loessal parent material. Seasonal temperature patterns, soil moisture content, and soil 

texture control permafrost formation. In this study, the high-np site is without permafrost, 

which is common for higher elevations in interior Alaska because cold air drains to lower 

elevations during the winter. Thick organic matter mats accrue in black spruce forests 

and the majority o f roots are found within the upper 20 cm o f the soil profile (Tryon and 

Chapin 1983, Ruess et al. 1996, Ruess et al. (in review)), and mostly in the organic 

material. The mineral soil consists o f loess that was blown from the glaciated areas in the 

Alaska Range and fluvial plains during the Holocene and covered parts o f interior 

Alaska, which remained unglaciated (Pewe 1976). At the two permafrost sites, loess 

extends at least to the top o f the permafrost (65 cm to ~lm) ,  and at high-np, the loess cap 

is 50 cm thick and overlays a Cambrian schist.

Study design

Statistical comparisons are meant to test the relationships between decomposition, 

soil respiration and the components o f soil respiration, and not the landscape features 

creating the variability in them. Each study area was kept small because slight changes in
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elevation or aspect result in large differences in solar insolation, soil temperature or depth 

to permafrost.

Microbial and root respiration were separated from soil respiration using two 

methods: root exclusion via trenched plots, and the Total Belowground Carbon 

Allocation (TBCA) method (Raich and Nadelhoffer 1989). Trenched plots can track 

seasonal patterns o f root respiration, but increase the pool o f decomposing soil organic 

matter with the excision o f live roots. The TBCA provides a check on the trenched plot 

approach because it leaves the soil system intact but it can only be applied at an annual or 

greater time-step.

Three trenched plots were located between 9-20 m apart along the slope o f a 

stand. A 20 x 20 m grid abutting the three trenched plots was used for randomly 

selecting points for placing decomposition materials, collecting litterfall, and removing 

soil cores. These control samples were then assigned to one of the three trenched plots 

based on the location o f each relative to the trenched plot.

The overstory stand characteristics, spruce biomass and primary production were 

estimated with a prism (10 basal area factor (BAF)) (Gower et al. 1997). A prism sweep 

was located near each o f the three trenched plots. A corner o f trenched plot was 

randomly selected and the center o f the prism sweep located at a 45° angle 3 m from the 

comer. The diameter at breast height (DBH) o f each tree in the sweep was measured at 

1.37 m and an allometric equation relating DBH to biomass used to estimate the biomass 

o f each tree (Michelle Mack, unpublished data). To estimate spruce production, a tree 

core was collected at DBH from between 45-60 trees along a 4 m x 20 m transect through
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the control plot in the fall o f 2001. Tree rings were viewed using a microscope and 5 

years (1998-2001) o f ring width measured with a digital micrometer. The mean ring 

width for the 5 years and for all trees within a 2 cm size class (e.g. 2.5-4.5 cm) was 

assigned to each tree that represented the size class in the prism sweep. A change in tree 

diameter was estimated from the ring widths and scaled to biomass production using the 

allometric equation. The average increased tree size was multiplied by the number o f 

trees per hectare in a size class as estimated with the prism (Gower et al. 1997).

Vascular understory biomass and production was estimated in August o f 2000. A 

1 m2 plot was randomly located within 5 m of each trenched plot at a site. The 

understory biomass was clipped at the soil surface. Perennial plants were separated into 

new and old growth, dried and weighed. Annual plants were considered new growth.

Soil Temperature

At each site a two-channel HOBO (Onset Corp, Bourne, MA) temperature sensor 

continuously logged soil temperature at 10 and 20 cm depth from the top o f the moss 

surface. HO BO’s were placed both within one randomly selected trenched plot and 

within 3 m o f the same trenched plot. The loggers were left in the same location 

continuously from August 1999 to June 2002. The 10 and 20 cm HOBO temperatures 

were used to compare sites using the temperature index, soil summed-degree-days 

(SDD):
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n
SDD(i) = X Ti when the daily (i) maximum temperature T > 0 °C. Eqn. 1 

i=l

During each soil respiration measurement period, soil temperature was also 

measured with a handheld Digisense™ sensor using Type T (Cole Palmer) 

thermocouples affixed to a pole and inserted to depths o f 10 (n = 6 each site/treatment), 

20 (4), 30 (2), 40 (2), and 50 cm (2) from the moss surface. Estimates o f SDD also were 

made from the Digisense sensor measurements, but only for 30, 40, and 50 cm depths. 

Some gaps in the HOBO data occurred because animals damaged the sensors, batteries 

failed, or sensors were launched improperly. Respiration response functions were 

examined using the handheld temperature data because they better incorporated spatial 

and temporal variation.

Isotopic indicators o f  forest moisture and N  cycling

Soil moisture was not directly measured in 2000 and 2001 because non­

destructive methods (e.g. TDR) in low density organic matter requires calibration with 

harvested soil samples, and we were attempting to minimize disturbance to these 

repeatedly measured areas. Rather, the moisture status o f the trees was determined 

indirectly using the § i3C o f canopy foliage. Foliar 813C can incorporate soil moisture and 

atmospheric moisture deficits, and soil temperature through its effects on hydraulic 

conductivity (Lajtha and Michener 1994), but in our study a significant direct altitudinal 

effect on CO2 internal partial pressure is unlikely because site elevations only differed by 

400 m (Korner et al. 1988).
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We used foliar 5 I5N to determine whether soil N may be cycling differently 

among sites, but consider this an indirect measurement o f numerous N cycling processes 

(Nadelhoffer and Fry 1994). In the fall o f  2002, we collected current annual foliage from 

the south-facing, upper 1/3 canopy of four mature trees at each site. Foliage was 

removed from the stem, dried and ground with a roller ball mill. Samples were analyzed 

with a PDZ Europa 20-20 mass spectrometer at the Forest Soils Laboratory, University of 

Alaska-Fairbanks.

Soil respiration methods

The trenched plots were installed in August o f 1999. A trench 80 mm wide by 

0.5-1.0 m depth was dug around a 2.5 x 3.0 m area. Trench depth was limited by 

permafrost depth or bedrock (high-np). Roots were kept from re-colonizing the trenched 

plot interior area by a 0.2 mm thick polyethylene barrier placed to the depth o f the trench. 

The trench was then backfilled with soil. We located trenched plots between trees when 

possible, but at each site a black spruce tree (all < 4.0 cm DBH) was found in one plot. 

These trees and all understory vascular plants were removed by cutting at the soil surface. 

Plots were clipped continuously throughout the experiment to keep non-bryophyte 

understory from re-growing in the trenched plot.

Growing season (May 1-September 30) soil respiration measurements were made 

between 10 am and 2 pm about every ten days between June 1, 2000 and October 1,

2001. We delayed measurements 10 months after trenching to allow fine roots and labile 

C to at least partially decompose. Two PVC respiration collars (15.2 cm diameter) were 

randomly located in each trenched plot and two others randomly placed 2-4 m away as

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



controls. Collars were inserted ~3 cm in the moss layer, and all vascular plants, 

cryptogams, and non-feathermoss bryophytes were clipped from within the collar. 

Feathermoss was not removed because it greatly influences soil temperature, moisture, 

and gas diffusion. The collars were left in place for the duration o f the experiment. A 3 

m boardwalk was placed on the approach to each collar to minimize the disturbance 

around it. In 2001, a “no-moss” treatment was implemented. Live, green moss in six 

new collars at each site was clipped, and diluted Roundup™ (20 water: 1 herbicide) 

applied to the remaining brown moss surface to prevent regrowth.

A clear acrylic chamber was constructed that could be clasped to the permanent 

collar. The chamber was vented to allow for pressure equilibration, but the system was 

otherwise closed. A Brailsford pump (model TD-4N-A) circulated air at 1 L m in '1 

between a LICOR 6262 infrared gas analyzer and the chamber. Air coming from the 

LICOR was sent to a manifold encircling the bottom o f the chamber, air going to the gas 

analyzer was sampled at the top o f the chamber (~8 cm above surface o f moss). Before 

the chamber was attached to the permanent collar, it was held 1 m above the soil surface 

for 10 s so that the CO2 concentration in it was less than that at the soil surface. Ambient 

light and darkened chamber measurements were made on each collar during a sampling 

period to determine feathermoss gross photosynthesis (see below for details). For a 

darkened chamber measurement, an opaque bucket was put over the top o f the acrylic 

chamber.

A Flewlett Packard handheld computer logged the measured CO2 concentrations 

at 3 s intervals. The chamber was left on the collar for 2 minutes, but to calculate flux
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rate, only the CO2 increase between 45 to 75 seconds was used in a regression between 

time and C 0 2 concentration. Visual analysis o f numerous 6-minute intervals indicated 

this timeframe consistently provided linear and robust regressions o f concentration 

change with time.

Internal pressure, temperature, and A C 02/s were used in the ideal gas law to 

calculate flux. Chamber air temperature was measured using a shaded thermocouple 3 

cm above the moss surface. In 2001, each collar’s volume was estimated by injecting 

into the chamber headspace 5 ml o f 100% C 0 2, allowing it to thoroughly mix, and 

recording the increase in C 0 2 concentration after 2 minutes. The average volume of the 

chamber-collar system was 5.1 liters. Including collar specific volumes improved R2’s o f 

the temperature-respiration response equations by about 3%.

Respiration was also measured periodically during the winters o f 2000-01 and 

2001-02. During each measurement period, six locations were selected in and outside 

trenched plots and a measurement made on the snow surface at a distance o f at least 1 m 

from the operator’s footprints. A rectangular chamber (0.0794 m2) was first pressed into 

the snow surface to create an imprint, then lifted ~1 m, and after 20 s placed again in the 

imprinted snow. The timeframe used for regressions was the same as for summertime 

measurements. . Although the LICOR was encased in styrofoam insulation, the computer 

failed when the air temperature was less than -2 0  °C and therefore measurements are 

biased against extremely cold days.
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Moss gross photosynthesis and modeling respiration

To constrain the contribution o f moss respiration (Rsm) to soil respiration, we 

measured moss gross photosynthesis (Psm) and modeled moss respiration using an 

empirical model. The Psm for each measurement period was calculated as the difference 

between the fluxes measured in an ambient light and darkened chamber. Then using the 

chamber air temperature, we estimated the Rsm:Psm ratio using models we developed 

from data in Skre and Oechel (1981). Models were developed for both Hylocomium  and 

Pleurozium, and over three seasonal time-periods because moss photosynthetic capacity 

changes over the growing season (Skre and Oechel 1981). Time periods were based on 

Skre and Oechel’s measurement periods, and were snow-free to day 172, 173-210, and 

211 to the first snowfall. Trends in the ratio varied, and polynomial models were used 

because they most consistently captured this variability. The models were o f the form: 

Rsm:Psm= a+bT+cT2 , where T=air temperature. Eq 2.

The parameters a, b, and c were curve fit parameters generated in SAS with the NLIN 

procedure. Finally we multiplied the modeled ratio by the Psm measurement to estimate 

Rsm. Hylocomium  and Pleurozium  model results were weighted by the prevalence of 

each species at a site. This approach freed us from tracking the moss density and weight 

in each collar. The growing season estimates o f Psm and Rsm were derived by 

interpolating between measurements, and Psm estimates were corrected downwards by 

the number o f hours each day photosynthetic active radiation was less than the light 

compensation point for feathermoss (25 pmol m '2 s '1) (Williams and Flanagan 1998). 

The light measurements used for the correction were made at a FTER weather station 5-
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22 km from the sites. Moss net primary production for the growing season was 

calculated as the difference between the integrated Psm and Rsm values.

Estimates o f  annual soil respiration and moss photosynthesis

Annual estimates o f moss respiration, photosynthesis and soil respiration were 

made by multiplying fluxes by the time period (usually 9-14 days) between 

measurements. An alternative approach is to use the flux response to soil temperature 

and scale upward to annual estimates based on soil temperature data, but significant 

regressions between moss photosynthesis and soil temperature were not found.

Therefore, to remain consistent between moss and soil respiration flux we interpolated 

measurement between time periods. For soil respiration, using hourly soil temperatures 

at 10 cm to drive a model o f respiration produced seasonal estimates that differed on 

average by 7 ± 5% (n=6, trench and control) from interpolated values, with values not 

consistently greater or less than one another 

Soil and Root C and N

Soil cores were collected to estimate the soil C and N content for the trenched and 

control areas. In the fall o f 2001, we removed ten, 5.5 cm diameter x 30 cm deep soil 

cores from random locations in the control plot. We dissected the cores into organic 

horizons that most closely resembled the Canadian L (litter), F (fibric) and H (humic) 

classification system (Canadian Soil Classification System, 3rd ed.), and included an A 

horizon and mineral soil to 5 cm depth. In this classification, the L layer was mostly 

comprised o f live and dead moss. The F and H layers were not separated; but the F was 

live and dead fine roots, needles, and woody debris, and the H layer an amalgam of
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highly decomposed organic matter, some roots, charcoal, and small amounts o f mineral 

soil. The thickness o f each horizon was measured and the horizon weighed dry (all 

materials were dried for 72 hours at 65 °C). The organic L and F/H horizons were ground 

in a W iley mill using a 2 mm mesh screen. The A and mineral soil horizons were hand 

sieved through a 2 mm screen and the organic material remaining on the screen ground as 

before. Small pebbles were removed and the mineral and ground organic material 

thoroughly remixed for C and N analysis. All ground samples were analyzed with a 

LEC02000 CNS analyzer for C and N concentrations.

From a set o f 8 soil cores collected in July o f 2001, a subsample o f  easily 

identified live fine roots (< 2 mm) was selected from the F/H horizon o f  the core for C 

and N analysis. Roots from two cores were combined, for a total o f 4 root samples per 

site. Roots were rinsed with deionized water, dried as for the soil, and analyzed for C and 

N with the CNS analyzer.

Decomposition

We measured the rate o f mass loss o f a common substrate, cellulose filter paper, 

and spruce litter at each site. Filter paper was used in control areas and trenched plots in 

2000 and 2001, but spruce litter placed in control areas only in 2001. In 2000, we sewed 

cellulose filter papers (75 mm Whatman qualitative, fast) into nylon mesh bags (mesh 

size 2 mm) and put the bags vertically in the soil profile with the center o f the paper at 

3.5 cm below the moss surface. Five bags were spaced haphazardly in each trenched plot 

in each site and fifteen filter papers were randomly located in the 20x20 m grid area.
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The depth interval covered by the filter papers was increased in 2001. Six filter 

paper disks were arrayed two wide and three deep in 15 cm wide by 23 cm deep plastic 

mesh (mesh size 2 mm) birdseed bags (Quadel Industry, Coos Bay, OR, (541) 267-2622). 

We opened a slit in the organic horizon with a flat spade and inserted the bag bottom to a 

depth o f 24 cm, leaving the top ~1 cm below the surface. The filter papers and spruce 

needles were left to decompose for one year, beginning mid-June, 2001. Locations for 

both were selected in the same manner as 2000.

Spruce needle litter was collected near low-sp in 1998 by shaking a tree gently so 

that necrotic needles fell on a tarp placed underneath (Michelle Mack, pers. comm.). 

Approximately 100 g o f air-dried black spruce needles were sewn into 150 pm silkscreen 

bags. We placed 15 bags vertically ~4 cm into the feathermoss layer at each site, a depth 

corresponding to where we observed the most needle litter. The dry weight o f both 

materials before and after the 1 yr decomposition period was determined by drying for 72 

hours at 65° C.

Root Respiration

The Total Belowground Carbon Allocation (TBCA) method provides an upper 

limit to root respiration when soil C is near steady state (Raich and Nadelhoffer 1989). In 

this study, the litter component includes moss litter, which we set equal to moss primary 

production (assuming live moss mass is constant). Instantaneous Rsm was subtracted 

during each measurement, and we calculated estimates with and without winter 

respiration. The equation is thus:
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TBCA (Rr)=annual soil respiration -  (litterfall + moss production).

27 

Eq. 3.

Using trenched plots, root respiration is estimated as the annual difference 

between the trenched (Rst-Rsm  + heterotrophic microbial) and control (Rsc=Rst +root) 

plot soil respiration; thus

Rr=Rsc-Rst. Eq. 4.

Both the TBCA and trenched plot root respiration estimate includes the respiratory 

contribution o f root maintenance and growth, mycorrhizal fungal respiration, and 

heterotrophic respiration associated with root decomposition. Trenched plots include 

respiration from excised, previously live roots but we did not separate this respiration 

contribution. Rather, we intended to minimize the differential influence o f excised roots 

across sites by selecting for similar aboveground biomass and soil organic matter 

amounts, which assuming fixed root:shoot ratios, should result in similar initial root 

biomass inside the trenched plots for the three sites.

Litterfall was estimated at the three sites in 2000 and 2001. Six lm 2 wood-framed 

litter traps were randomly placed in the 20 x 20 m plot. The traps were elevated above 

the moss surface to minimize litter decomposition prior to collection periods and to 

prevent moss growth through the screen. We observed red squirrels using the collection 

screens as perches and depositing spruce cones into them. All squirrel-affected cones 

were removed from the litter estimates, which averaged 16% of the total litter mass. 

Otherwise the samples were not further separated by component (i.e. foliage, twig, etc.), 

and no coarse woody debris was captured in a litter trap. All vegetation was dried at
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65°C for 72 hours and weighed. Litter biomass was multiplied by 0.48 to convert from 

mass to C (Gower et al. 1997).

Statistics

Statistical analyses were performed using Statistical Analysis Software v. 8.0 

(SAS Institute, Inc. 1999). We used one-way ANOVA to compare among sites soil C 

content, filter paper decomposition, litterfall, 513C, 815N, foliage and root N 

concentration, and average soil respiration (average o f individual collar or trenched 

growing season estimate). Data were tested for normality (Shapiro-Wilks and visual 

inspection o f normality plots) and homogeneity o f variance (Levene’s). All data are 

presented as the mean ± standard deviation (S.D.).

To determine whether site differences in seasonal soil respiration were a function 

o f a temperature response differences, we fit temperature-response models for various 

model types (linear, exponential, quadratic) and examined residuals to determine which 

could be used and not violate the assumption o f homogeneous variance. Non-linear 

model fits were performed with PROC NLIN in SAS. Based on the residual distribution, 

we decided on a linear model. However, residuals indicated that second order polynomial 

model would better represent the temperature response curves for the low-sp control and 

mid-dp trenched respiration. Nevertheless for consistency we used the linear model for 

all comparisons.

We examined site and treatment differences in the relationship between soil 

temperature and respiration using a mixed model (PROC MIXED in SAS) and repeated 

measures. Mixed models re-create the covariance structure, which eliminates problems
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associated with correlated variances and unequal temporal spacing o f  sampling periods 

(Littel et al. 1997). Treatment (site or trench), year (2000 or 2001), temperature, and all 

possible interactions were tested as fixed effects. Site or treatment(collar) and 

temperature*site/treatment(collar) were tested as random effects. The remaining subplot 

error (time*site/treatment(collar)) was analyzed with repeated-measures analysis with a 

spatial power variance structure to account for respiration and temperature measurements 

being taken on the same soil collars throughout the study.

RESULTS

Soil Temperature, biomass, and fo liar isotopes

The monthly mean soil temperature at 10 cm from the moss surface ranged from 

-7.1 to 7.2 °C between June 2000 and July 2001 (Fig. 1). Soil temperature profiles (10 

and 20 cm) could not be compared statistically because only one HOBO logger was 

deployed per site and treatment, however, HOBOs at both low-sp and mid-dp 

consistently reported much colder winter temperatures than in high-np. Although these 

winter temperatures would have a strong influence on annual mean temperature, they had 

no discernible influence on growing season soil temperature at 10 cm. The permafrost 

sites’ summertime temperatures at 10 cm were warmer than in high-np in May and June 

and similar to high-np in July and August, but colder in September (Fig. 1). The 

summed-degree days (SDDiocm) were least for the high-np site and greatest at low-sp 

(Fig. 2). Deeper than 30 cm, the two permafrost sites had colder soils than high-np. 

Trenched plots were warmer (SDD) at 30, 40, and 50 cm depths, but with substantially 

less effect at the two permafrost sites than at high-np. The high-np average deep
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temperatures (30, 40 and 50 cm) were heavily influenced by the location o f one o f the 

two deep Digisense™ probes, which was in a particularly sunny area o f the trenched plot. 

August and September temperatures averaged 2 °C cooler in 2000 than 2001 (not shown), 

but the ranking o f site temperature for the 10 and 20 cm SDD did not change between 

years.

Foliar and root characteristics measured in high-np differed from those in the 

other two sites, which did not differ significantly from one another. The 8 I3C o f foliage 

was most enriched at high-np (Table 2), and marginally different (p=0.08) from low-sp, 

and mid-dp did not differ from either o f the other two sites. The 5 I5N was most depleted 

at high-np, but foliar N concentration did not differ across sites. Root N concentration 

was significantly greater at high-np than either o f the other two sites (Table 2).

The overstory biomass o f the two older sites was greater than that estimated for 

the younger mid-dp (Table 3). Understory biomass and production did not differ between 

high-np and low-sp, but there was much less vascular understory and production at mid- 

dp. The aboveground production differed significantly between sites (mid-dp>low- 

sp>high-np).

The C and N concentration and total C and N content o f the L horizon decreased 

with elevation (Table 4). No significant general trend was found for other soil horizons. 

The C:N ratio o f the F/H horizon at mid-dp was significantly lower than for either o f the 

other two sites. The low-sp site had significantly more total soil C than did either o f the 

two other sites (not shown), owing primarily to more C in the F/H and A horizons (Table 

4). The mineral soil horizon to 5 cm depth did not differ between sites in element
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concentration or mass, but the C:N ratio was greater at low-sp than mid-dp.

Decomposition

Filter paper (FP) decomposition was generally slowest at high-np for all depths 

and in both years (Table 5). Decomposition rates in the control areas o f the two 

permafrost sites differed little from one another. In 2001, the shallow control FP (1-8.5 

cm) decomposed significantly faster (p=0.04) at low-sp than high-np. Permafrost 

affected decomposition and soil temperature only below 20 cm (Fig. 2). The control FP 

decomposition rate decreased significantly (p<0.05) with increasing depth at high-np and 

low-sp (Table 5), reflecting the vertical soil temperature gradients (Fig. 2). In 2000, 

decomposition rates in trenched plots did not differ from control areas, but in 2 0 0 1  

trenching accelerated the decomposition rate for all FP depths at mid-dp, and for the 8.5­

16 cm depth at low-sp. FP decomposition generally was slower in 2000 for surface filter 

papers than in 2001 (Table 5). Patterns in spruce foliage decomposition mirrored those 

for filter paper at similar depths in 2 0 0 1 .

Soil respiration, moss photosynthesis and root respiration

Soil C 0 2 flux followed the seasonal soil temperatures at 10 cm during the 

growing season. The proportional contribution from roots occurred around the maximum 

in soil temperature (Fig. 3). Based on the difference between control soil respiration 

(Rsc) and trenched respiration (Rst), the amount o f C 0 2 coming from roots was -20%  

less in the fall than the maximum root contribution observed in late July or early August. 

Darkened chamber Rsc in the 2001 growing season averaged 3.63 ± 1.56, 2.66 ± 1.06, 

2.49 ± 1.18 pmoles C 0 2-C m "2 s' 1 at high-np, mid-dp, and low-sp, respectively, while Rst
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averaged 1.40 ± 0.45, 1.67 ± 0 .51 , and 1.35 ± 0.43 pmoles CO2-C m ' 2 s ’ 1 across the same 

sites (Fig. 3). Moss gross photosynthesis (Psm) decreased the Rsc flux 14, 8 , and 12% at 

the high-np, mid-dp, and low-sp sites. The percentage o f Pleurozium  was approximately 

87% of the number o f fronds counted in all collars at each site. The species percentage 

did not differ significantly between sites and the proportional distribution o f moss did not 

describe the variability in the Psm o f individual collars. Modeled moss respiration 

accounted for 5 o f 10% o f Rsc.

Winter fluxes decreased from the beginning o f the winter until the snow-free 

season began in late April, but did not correlate with temperature at any depth (Fig. 4). 

The average winter fluxes for control areas were 0.11 ± .09 (n=4), 0.22 ± .07 (n=5), and 

0.22 ± 0 .10  (n=5) pmole CO2-C m "2 s' 1 and trenched plot fluxes averaged 0.10 ± .09, 0.15 

± 0.08, and 0.15 ± 0.15 pmole CO2-C m "2 s" 1 at high-np, mid-dp, and low-sp. Based on 

same-day comparisons, winter soil respiration at high-np was significantly less than the 

two sites on three occasions (Fig. 4), despite generally lower temperatures in the 

permafrost sites (Fig. 2). The two permafrost sites did not differ during their only 

overlapping measurement period. We estimated winter respiration for high-np and the 

two permafrost sites using separate curves relating the decrease in respiration with time 

(Fig. 4). Integrated winter estimates were derived separately for control high-np (31 g C 

m ' 2 y '1) and the two permafrost sites (54 g C n f 2 y '1). Trenched plot winter flux did not 

differ between sites and one estimate was made for all sites (26 g C m ' 2 y’1).

At every site, the integrated Rsc respiration was significantly greater than Rst, and 

the annual root respiration (Rsc-Rst), averaged 296 ± 55, 206 ± 67, and 192 ± 72 g C m ' 2
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y "1 at high-np, mid-dp and low-sp, respectively (Fig. 5). The Rsc at high-np was also 

significantly greater annually than mid-dp and low-sp (Fig. 5). This contradicted our 

prediction that greater decomposition rates would yield greater soil respiration. The Rst 

in mid-dp was significantly higher than in the other two sites, possibly because trenching 

artifacts increased decomposition rates at this site. The Rst and the average filter paper 

mass loss o f the two deepest intervals (8.5-16 and 16-23.5 cm) were correlated (Fig. 6 ).

Faster decomposition in the trenched areas did not affect how sites were ranked 

based on decomposition and heterotrophic respiration. That is, when the relationship 

between trenched plot heterotrophic respiration and filter paper mass loss are used with 

control area filter paper decomposition (Fig. 6 ), the mid-dp heterotrophic respiration (172 

g C m '2) was still greater than for the other two sites (164 and 161 g C m '2, low-sp and 

high-np, respectively). The amount o f heterotrophic respiration was unrelated to the 

amount soil C, which may have reflected an interaction between organic matter quality 

and environment.

In 2001, Rsc from June-September was significantly greater than in 2000 at all 

sites (not shown), and the increase in Rst significant for two sites. Cooler soil 

temperatures at 10 cm in August and September o f 2000 resulted in lower respiration.

The interannual variability in temperature did not alter the rank order o f growing season 

site respiration for control (high-np>mid-dp>low-sp) or trenched plots (mid-dp>low- 

sp>high-np).

Differences in annual Rsc and Rst among sites were a function o f differences in 

the temperature response o f soil respiration. At all sites, Rsc and Rst increased with
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growing season 10 cm soil temperatures (Fig. 7a and b). The temperature sensitivity o f

Rsc was greater for high-np than low-sp, and Rst respiration at mid-dp was more

temperature sensitive than for the other two sites (Table 6 ). The trenching significantly

decreased the temperature sensitivity o f respiration at all sites. The moss respiration

(Rsm) did not affect trends in respiration across sites because of the uniformly low

contribution o f feathermoss to total soil respiration.

The two methods o f estimating root respiration were related among sites, but the

TBCA estimates were consistently higher (23-32%) than trenched plot estimates (Fig. 8 ).

The components o f TBCA (aboveground litter, moss production and winter respiration)

• 2 1varied between sites but did not affect overall trends. Aboveground litterfall (g C m ' y' ) 

was significantly greater (p=0.02) at mid-dp (58 ± 14, n=6 ) than at low-sp (41 ± 11), but 

neither differed from high-np (48 ± 11). Proportional root respiration varied from 50 to 

63% o f Rsc using the trenched plot method, and from 83 to 8 6 % o f Rsc using the TBCA 

method. Annual root respiration was significantly greater at high-np than at either 

permafrost site using the trenched plot method, and high-np root respiration greater than 

low-sp using the TBCA method (Fig. 8 )

DISCUSSION

Soil environment and constraints on decomposition

Temperature and moisture both likely influenced patterns in filter paper 

decomposition. The slow rate o f decomposition in the high-np site may have been due to 

lower soil temperature in the rooting zone during the early part o f the growing season 

(Fig. 2), however, statistical inference cannot be drawn from this apparent relationship
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because o f the limited number o f temperature loggers. Cellulose decomposition is 

extremely sensitive to temperature (Linkins et al. 1984), but soil moisture also may have 

affected decomposition. Although we have no direct measurement o f soil moisture 

patterns, spruce needles in the high-np site were least depleted in foliar-l3C, suggesting 

greater moisture stress (Lajtha and Michener 1994). Lower soil moisture at high-np than 

the other two sites was expected because the permafrost at mid-dp and low-sp degrades 

slowly over the growing season and may provide soil moisture to the plants and 

microbes. Also the slope at high-np (12%) was much greater than at the other two sites 

( 8  and 3%), which likely increased snowmelt runoff.

Nitrogen availability may also have affected filter paper decomposition. Lower N 

availability was implicated at high-np than the other two sites by the depleted foliage-l5N 

(Table 6 ), a phenomenon that often occurs with slower decomposition and greater N 

limitation (Garten and Van Miegroet 1994, Schuur and Matson 2001). However, foliar 

15N reflects numerous permutations o f the N cycle that may not relate directly to plant 

available N (Nadelhoffer and Fry 1994). Foliar N concentration also was similar among 

sites, suggesting N availability did not differ for the three stands. Root N concentration 

was also greater for the high-np site than the other two sites. Nitrogen availability may 

have affected decomposition but it is difficult to discern its influence from the indirect 

methods employed in this study.

The filter paper decomposition captured between site variability in microbial 

respiration and also indicated, at two of the sites, decomposition potential was enhanced 

in 2001 because o f trenching. The positive influence o f trenching on the decomposition
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rate o f cellulose has been previously demonstrated and may be due to greater available 

moisture or nutrients to microbes (Fisher and Gosz 1986). Alternatively, temperatures at 

deeper depths also increased with trenching in our study and at the same depths as the 

greatest increase in decomposition. We suggest researchers using trenched plots to 

estimate microbial respiration also use a decomposition proxy in the plot to estimate the 

artifacts associated with the technique.

Annual soil, root, and microbial respiration

Contrary to our prediction, soil respiration was not greater where microbial 

respiration and filter paper decomposition were greater. From literature estimates o f 

black spruce soil respiration, a relationship similar to ours between decomposition and 

soil respiration is difficult to identify because the two have rarely been measured together 

(Table 7). Our three-site mean growing season estimate for soil respiration o f 366 g C m "2 

y "1 fits between the median (287 g C n f 2 y"1) and the mean (393± 200 g C m ' 2 y '1, n=18) 

o f other reported values in mature black spruce (Schlentner and Van Cleve 1985,

Moosavi and Crill 1997, Nakane et al. 1997, O'Neill 2000, Rayment and Jarvis 2000, 

Swanson and Flanagan 2001, Wang et al. 2002, O'Connell et al. 2003b, Ruess et al. 2003, 

in press) (Table 7).

The greater soil respiration in high-np is the result o f  greater root respiration and 

based on the foliar l3C results, may have been due to increased moisture stress and 

greater belowground C allocation by black spruce at high-np. This hypothesis would fit a 

trend observed in the literature, where moisture deficit, or growing season precipitation 

minus potential evapotranspiration (Thomthwaite 1948), and soil respiration appear
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positively correlated in mature black spruce forests across Manitoba, Saskatchewan, and 

Alaska (Fig. 9) We restricted our literature review to mature (>70 years) black spruce 

forests, but did not control for variability in methodology (Table 7.) The fourth study in 

Nova Scotia was also conducted in black spruce but no information was provided on 

stand age, so we cannot eliminate this as a confounding factor (Risk et al. 2002) The 

trend also support the “wet-dry” comparison o f Wang et al. (2002) where greater soil 

respiration was found in drier black spruce sites. Growing season mean or maximum 

temperatures, annual mean temperatures, and precipitation did not suggest as strong a 

trend across studies.

The total allocation to fine roots has been shown to increase in xeric conditions 

(Keyes and Grier 1981, Gower et al. 1992), but more often the proportional allocation is 

greater where soil moisture is limiting (Santantonio and Flermann 1985, Comeau and 

Kimmins 1986). The mean proportional root contribution reported by studies is 55 ±

11% (n=9) without including TBCA estimates, which agrees with the trenched plot 

average o f 55% for the three sites in this study (Table 7). However, given the differences 

in total respiration among studies, our estimate o f the absolute amount o f C cycling 

through roots is considerably higher than for both Saskatchewan and Manitoba 

(O'Connell et al. 2003 Wang et al. 2002) and overall the studies indicate Alaskan black 

spruce forests allocate substantially more C belowground than elsewhere (Fig. 9). Neither 

soil or root respiration has, to our knowledge, been examined with root production in 

forests across gradients in moisture; therefore it is not possible to speculate how these 

processes actually scale with one another.
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Decreased C allocation belowground has also been observed in N fertilization 

studies (Gower et al. 1992), along natural gradients in nutrients (Keyes and Grier 1981), 

and in one study both fine root production and soil respiration were depressed by the 

addition o f N fertilizer (Haynes and Gower 1995). In this study, the black spruce 

aboveground production was unrelated to soil respiration but followed the trend in 

microbial respiration (mid-dp>low-sp>high-np), suggesting black spruce shifted 

allocation from aboveground to belowground processes with depressed decomposition. 

Faster soil organic matter turnover may indicate greater N availability, increased 

aboveground growth and spruce allocating less C belowground when N availability is 

greater.

The greater root N concentration in high-np than the other two sites may indicate 

an adaptation by roots to the lower soil temperatures and may explain the greater root and 

soil respiration at the site (Burton et al. 1996). Root respiration rate and root N 

concentration are generally positively correlated in tree species (Burton et al. 1996, 

Pregitzer et al. 1998, Burton et al. 2002). Because more enzymes and proteins are 

necessary for cold weather function (Atkin et al. 2000), increased tissue N concentration 

may signify adaptation to low temperature. Alternatively, our root N concentrations may 

have captured varying patterns in root morphology among sites. That is, during our 

sampling we collected roots < 2  mm but if  within that category the size distribution varied 

with environmental factors, then fine root N concentration would also vary because root 

N concentration is generally negatively related to root diameter (Burton, Pregitzer et al. 

2002).
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The discrepancy between the root respirations (Rr) estimated from the TBCA 

method and trenched plots may have reflected artifacts associated with either technique. 

The decomposition o f excised roots in the trenched plots could partly explain the 

discrepancy. Other researchers have constrained the artifact of excised root decay by 

applying decomposition constants to root biomass and estimating the resulting 

heterotrophic contribution (Bowden et al. 1993, Lavigne et al. 2003). This correction is 

necessary when the heterotrophic respiration from trenched plots is used for ecosystem 

carbon budget analysis. The TBCA and trenched plots may also differ because we did 

not account for an important litter component (e.g. past coarse woody debris), or possibly 

the soil C pool is degrading at these sites (Raich and Nadelhoffer 1989). However, where 

TBCA could be estimated in other studies it consistently provided greater estimates o f 

root respiration than where trenched plot (O'Connell et al. 2003b) or even direct 

measurements o f root respiration (Ruess et al. in press) were employed (Table 7). As 

suggested by Hanson et al. (2000), further direct comparisons o f methods to estimate root 

respiration are necessary to understand why divergent estimates o f root respiration occur 

using methods that should provide similar results.

-2  • IOur estimated winter (snow-cover season) respiration o f 36-54 g C m" winter" 

was similar to values reported in Winston et al. (1997) for black spruce and jack pine 

forests (40-55 g C m ' 2 winter"1) and by Wang et al. (2003) (25-35 g C m "2 w inter'1, Table 

7) for M anitoba black spruce. The extremely high value (321 C m "2 w inter'1) reported by 

O ’Connell et al. (2003) is likely an outlier due to the method used to separate winter and 

growing season respiration. The lower winter respiration at high-np than the two
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permafrost sites was surprising (Fig. 7), considering the warmer winter soil temperatures 

and thicker layer o f non-frozen soil at this site (Fig. 2). This result may be due to 

differences in organic matter quality or available soil moisture (Clein and Schimel 1995, 

Dioumaeva et al. 2002, Michaelson and Ping 2003).

The exclusion o f roots also influenced winter respiration at two o f the sites, 

however, we do not know if  the effect is due to black spruce roots respiring at very low 

soil temperatures ( - 6  to -1  °C) because we are aware o f no direct root respiration 

measurements at temperatures below freezing. The indirect influence o f  roots on winter 

respiration has also been demonstrated for arctic tundra (Grogan et al. 2001). The 

influence o f root exclusion on winter soil respiration may hinge on how much the 

cessation o f annual fine root mortality reduces C availability to microbes and macrofauna 

rather than the direct reduction in root respiration. For example, in the control areas we 

have observed active macroinvertebrates in minirhizotrons during most o f the winter 

(Ruess et al., unpublished data), organisms that likely take advantage o f the fine roots 

that senesce during the fall and winter (Steele et al. 1997, Ruess et al. in press).

Soil, microbial and root response to temperature

Seasonally and inter-annually within a site, growing season soil, root, and 

microbial respiration covaried with temperature in our study. The peak o f soil, microbial, 

and root respiration occurred in late July and early August, coinciding both with the 

maximum 1 0  cm soil temperature and a well-identified maximum in black spruce fine 

root growth (Tryon and Chapin 1983, Steele et al. 1997, Ruess et al. in press). The 

temperature sensitivity o f soil respiration was more affected by root than microbial
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respiration, which is consistent with other studies in forest ecosystems (Boone et al. 1998, 

Lavigne et al. 2003, O'Connell et al. 2003b).

The warmer soil temperatures in 2001 than 2000 elicited a greater increase in 

respiration from control than trenched areas at all sites. This observation might also 

reflect the greater temperature sensitivity o f root respiration or that trenched plot 

respiration was beginning to decrease with substrate limitation from 2 0 0 0  to 2 0 0 1 .

O ’Neill (2000) reported inter-annual soil respiration variability for mature Alaskan black 

spruce forests; however, Ruess et al. (in press) found no significant inter-annual variation 

in soil respiration despite considerable between year soil temperature differences.

W hether a significant increase in soil respiration is observed in a warm year may be 

dependent on how quickly the system adjusts to the warmer temperature. For example, 

Jarvis and Linder (2000) and Mellilo et al. (2002) reported fairly rapid temperature 

acclimation o f soil respiration in forests that were experimentally warmed. I f  acclimation 

occurs annually in ecosystems, it might explain why some studies observe inter-annual 

increases in soil respiration with natural warming but others do not.

Annual moss photosynthesis and respiration

Moss function did not differ greatly from other experiments in boreal systems or 

explain between site differences in soil respiration for this study. In control collars, the 

decrease in soil respiration by moss gross photosynthesis (Psm) o f 8-14% is considerably 

less than the 35% reduction reported for black spruce forests in Saskatchewan (Swanson 

and Flanagan 2001), but closer to the 20% reduction in a Swedish spruce/pine forest 

(Moren and Lindroth 2000). Mean growing season Psm for all sites (0.53 pmole m ' 2 s '1)
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was on the low end o f the range 0.5-1.0 pmole m "2 s"1 reported in Goulden and Crill 

(1997) in Manitoba black spruce and less than the seasonal average o f 0.75 pmole m "2 s' 1 

o f Swanson and Flanagan (2001) in Saskatchewan. Because moss is highly sensitive to 

moisture deficit (Skre and Oechel 1981, O'Neill 2000), the lower growing season 

precipitation in interior Alaska (175 mm) than at the locations o f the other two studies 

(352 mm and 302 mm) is consistent with our lower values.

Modeled average moss respiration (Rsm) contribution to soil respiration (5-10%) 

compared well with the 7% moss contribution estimated by Swanson and Flanagan 

(2001). Moss primary production for the three sites averaged 14 ± 3 g C m "2 y '1, lower 

than the 24 g C n f 2 y ’ 1 reported for a central Saskatchewan forest (O'Connell et al.

2003b), but similar to the 14-15 g C m "2 y ’ 1 measured 166 km southeast o f our study area 

(Jennifer Harden pers. comm.). Although our production and Psm values are similar to 

other studies, in this study 6 % of measurements during the two growing seasons indicated 

a Psm of zero, which would result in zero Rsm using our approach. This is likely an 

inaccurate description o f moss function and under certain conditions may pose a 

significant difficulty in using gross photosynthesis to constrain moss respiration. 

CO NCLUSIO NS

Although heterotrophic respiration correlated significantly with decomposition 

rates, total soil respiration did not. Instead, variations in the much larger rates o f root 

respiration drove landscape and inter-annual patterns in total respiration. The greater 

allocation belowground at the high-np site could be related to decreased moisture 

availability, as the trend in Fig. 9 indicates for different areas in North America. A causal
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factor may be the differences in root N concentration, which is consistent with between 

site differences in root respiration. Burton et al. (1996) also found root N concentration 

explained root respiration patterns in a temperate forest but they also observed that 

greater net N mineralization co-occurs with greater root N concentration. Our indirect 

estimates o f nitrogen availability (similar foliage N concentration and lower 8 I5N and 

lower decomposition rate at high-np) suggest the root N concentration was an adaptation 

to its environment and not a result o f greater N availability. Rather, because soil 

temperature is cooler and available soil moisture likely less at the site with greater root N 

concentration, it may be the high N concentration and root respiration are an expression 

o f a combination o f cold weather acclimation and moisture limitation. These hypotheses 

need to be tested with experimental soil w arn ing  research and moisture manipulations, 

which should track both microbial and root respiration with concomitant measurements 

o f root N concentration and N availability (both organic and inorganic). I f  these soil 

respiratory patterns are indicative o f changes that might occur with climate change, then 

increases in soil respiration might be from a net soil C loss, but more likely any increase 

will be due to adjustments in root respiration.
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Table 1-1. General topographic, soil and vegetation characteristics o f the 

three study sites.

High-np Mid-dp Low-sp

T opography

Elevation (m) 580 184 124

Aspect (degrees) 340 180 195

Slope (%) 1 2 8 3

Active layer thickness (m) 1 >1.5? 0.85 0.64

Overstory characteristics

Trees per hectare 6,588 8 , 0 0 0 6,941
2 1Basal Area (m ha" ) 28.6 26.0 30.4

Ave. Diameter (cm) 7.4 6 . 2 7.6

Age (years) 1 1 0 75 1 2 0

'depth to permafrost measured between 8/31 and 9/2/99
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Table 1-2. Isotopic signatures and N concentration o f new foliage, and fine root N 

concentration (mean ± SD, n=4). Significant (p<0.05) differences noted by different 

letters.

Site 8 I5N

Foliage 

N concentration 5 i3C

Root 

N concentration

high-np -6.07 ± 0.54a 0.83 ± 0.10 -27.5 ±0.66* 1.05 ± 0.01a

mid-dp -4.27 ± 0.66b 0.84 ± 0.06 -28.5 ± 0 .80 0.92 ± 0.06b

low-sp -4.58 ± 0.07b 0.84 ± 0.05 -28.9 ±0.21* 0.93 ± 0.01b

*high-np>low-sp (p=0.08)
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2 2 1 Table 1-3. Mean (n=3) aboveground biomass (g C m ' ) and productivity (g C m" y" ) o f

black spruce and vascular understory (mean±standard deviation). Different letters

represent differences between sites (one-way ANOVA, LSD).

Black spruce Understory

Site Biomass Productivity Biomass Productivity

high-np 4,422 ± 360a 42.3 ± 4.2c 7.9 ± 3.9a 4.8 ± 2.3a

mid-dp 3,394 ± 560b 54.8 ± 7.6a 1.0 ± 0.5b 0.9 ± 0.7b

low-sp 4,607 ± 230a 46.0 ± 5.2b 10.9 ± 4.2a 4.9 ± 3.6a
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Table 1-4. Values are mean (± standard deviation) C and N concentration, C:N, and total 

C and N (g m"2) for soil horizons. Comparisons are between sites for a horzion (one-way 

ANOVA, LSD). Soil includes coarse and fine roots.

Site Horizon %C %N C:N Total C Total N

High-np L 46.0  ±  1.8a 1.0 ±  0.24a 47 ±  10b 428  ±  174a 10 ± 5a

F/H 39.5 ± 6 .6 0.67 ±  0.11b 59 ±  9a 4409  ±  1483 74 ± 17

A 9.30 ±  2.9b 0 .37 ±  0.14b 25 ±  6 1441 ±  518b

00 30

Min' 3 .20 ±  1.00 0 .16 ±  0.04 21 ±  3.0ab 1180 ±  410 63 ± 11

Mid-dp L 40 .6  ±  4.0b 0.91 ±  0.11b 45 ±  10b 353 ±  232a 8 ± 5a

F/H 41 .6  ± 2 .6 0.88 ±  0.12a 47 ±  9b 4679  ±  1836 101 ± 46

A 9.32 ±  5.8b 0.33 ±  0.11b 28 ±  3 1565 ±  1047b 72 ± 61

Min 2.90 ±  1.30 0 .16 ±  0.05 1.7 ±  3.0a 1333 ±  429 74 ± 18

Low-sp L 39.0  ±  5.6c 0 .74 ±  0 .21c 55 ±  10a 186 ±  62b 3 ± 2b

F/H 41.6  ± 2 .2 0 0.67 ±  0.09b 63 ±  10a 5260  ±  1204 86 ± 26

A 17.5 ±  4.2a 0.63 ±  0.11a 28 ±  4 2379  ±  463a 87 ± 17

Min 2.80 ±  1.30 0.19 ±  0.13 25 ±  5.6b 1378 ±  180 94 ± 77

'Mineral soil to 5 cm below the A horizon
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Table 1-5. Mean (± standard deviation, n=15) ly r decomposition (% mass loss) of filter 

papers and spruce litter in and outside trenched plots. Comparisons are between sites 

within treatment1, control vs. trench2, and years for surface filter paper3.

60

Year 

Material 

Depth (cm)

2000

Filter Paper 

1-8.5

2001 

Filter Paper 

1-8.5 8.5-16 16-23.5

2001 

Spruce litter 

~4

Site Control

high-np 11 ±  10b& 39 ± 24b& 14 ± 0.11 1 ± 9 b 19 ±  10a

mid-dp 46 ± 3 a 49 ± 19ab* 25 ± 0 .2 1 * 17 ±  16a* 29 ±  10b

low-sp 32 ±  23ab& 55 ± 17a& 22 ± 0.14* 10 ±  14a 25 ± 9 a b

Trench

high-np 17 ±  0.12b 24 ±  23b 11 ±  0.15b 9 ±  15b no data

mid-dp 54 ± 0.22a& 81 ± 1 4 a * 54 ±  0.24a* 54 ± 19 a * "

low-sp 39 ±  0 .19a& 60 ±  20a 44 ±  0.23a* 13 ±  10b 11

'different letters indicate significant difference between sites within treatment (p<0.05)
•)

"( * ), signifcant difference between trench and control

3( & ), between year significant differences for surface filter paper
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Table 1-6. Linear regression coefficients o f respiration 

(umole C n f 2 s"1) increase with temperature, R2 

(coefficient o f variation), and number o f sample periods x 

replicates. Significant difference between sites denoted 

by different letters. Trenched and control temperature 

sensitivity differed for all sites.

Site Treatment bO bl R2 n

High-np Control 0.93 0.29a 0.76 57

Mid-dp 0.63 0.27ab 0.70 38

Low-sp 0.62 0 .2 2 b 0.83 54

High-np Trench 0.52 0 .1 1 b 0.59 57

Mid-dp 0.54 0.16a 0.70 38

Low-sp 0.52 0 . 1 0 b 0.75 54
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Table 1-7. Literature estimates o f soil respiration during winter and the growing season 

(GS) and proportional contribution o f moss and roots in mature black spruce forests. 

Descriptions o f the methods employed by other studies for soil respiration and for 

estimating root respiration not found in this paper. Reviews o f methodology can be found 

in Norman et al. (1997) and Hanson et al. (2001).
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Flux (gC  m'2 y ') % contribution

Study Location G S12 Winter Moss Root3 GS+winter

Schlenter and Van Cleve (1985) Alaska 369suu

O'Neill (2000 and submitted)4 Alaska 627ic'm 14 74ri

505 21 63

Ruess et al. (in press) Alaska 616icnm 57dr, 86t

624 57dr, 82t

501 57dr, 90t

This Study Alaska 436icnm 36 5 63tp, 861 62, 85

354 54 7 50tp, 83t 51, 81

307 54 10 53tp, 85t 54, 83

Valentine, D.W. unpublished data Alaska 500ic,m 70

Nakane et al. (1997) Saskatchewan 368aa,nm

283

Swanson and Flanagan (2001) Saskatchewan 2871C'MP 7

Rayment and Jarvis (2000) Saskatchewan 896 'Q .m

O'Connell et al. (2003) Saskatchewan 2 4 2 i c ,n m 321 69tp, 67t 32, 86

Wang et al. (2003) Manitoba 250 25 50bu

225 20 46bu

210 35 46bu

230 20

CO0
0

"sf

Trumbore (2000)5 Manitoba 200 4 5 I4C

Moosavi and Crill (1997) Manitoba 2 5 9 S C M

'Respiration technique:soda lime (SL), IRGA closed system (IC), alkali absorption (AA), IRGA open system (10), 
static cham ber (SC)
2M oss treatment: Unknown (U), moss included (M), removed (NM), or moss photosynthesis included (MP)

’Root respiration method: burn vs. unburn (BU), direct measurement o f  roots (DR), trench plots (TP), TRCA (T), 
bomb carbon (14C), reconstruction from laboratory incubation (RI)

4Proportions o f  moss and root are part o f  submitted paper

’Study reports recent carbon and not necessarily root, also the "recent carbon" is actually 40-50%
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Figure 1-1.  Trenched plot and control area seasonal course of mean monthly 

temperatures (September 30, 2000 to October 1, 2001) at 10 cm depth.
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Figure 1- 2. Growing season summed soil degree-days for five depths. The high-np deep 

temperatures were greatly influenced by one probe in a sunny area o f  the trenched plot.
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Figure 1-3.  Seasonal (2001 only) dynamics o f measured darkened chamber and ambient 

light soil respiration (pmol CO2-C m "2 s '1) efflux.
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Figure 1 - 4. W inter trend in soil respiration for the control areas o f the two permafrost 

sites, high-np, and the trenched plots o f all sites. Bars represent measurement periods 

where a control high-np measurement overlapped with one o f the two low elevation sites 

and the difference between the two was significant. The (x) in each regression is the 

number o f days since Oct 10, 2000; the day after the first significant snowfall.
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Figure 1- 5. Respiration from control soil (Rsc), trench/microbial (Rst), moss (Rsm), and 

moss gross photosynthesis (Psm). Significant differences between sites denoted by 

different letters (n=6, ±SD), significant influence o f trench treatment indicated with (*) 

(n=3, ±SD).
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Figure 1- 6. Relationship between annual trenched plot soil respiration and average 

percent mass loss o f filter papers at two depths (8.5-16 and 16-23.5 cm from moss 

surface) for 2001.
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Figure 1- 8. Annual root respiration (g C m"2 y '1) (n=3 ± SD), estimated with trenched 

plots and TBCA method for 2001. Significant differences (p<0.05) among sites denoted 

with different letters.
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Figure 1- 9. Relationship between moisture deficit (precipitation-potential 

evapotranspiration) and growing season soil respiration (mean±standard error) for mature 

black spruce studies in Manitoba, Saskatchewan, Nova Scotia and Alaska. Table 7 

describes the studies in more detail.
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CHAPTER 2. The influence of temperature and organic matter quality on C and 

net N mineralization in the organic horizons of black spruce soils 

ABSTRACT

In boreal ecosystems, the rate o f C and N mineralization in surface organic soils 

plays a critical role in ecosystem C balance. Climate warming will likely increase these 

mineralization processes. We studied how C and net N mineralization vary with 

temperature, organic matter chemistry, and microbial dynamics for black spruce organic 

soils from three sites that differed in in-situ decomposition rates. Laboratory incubations 

were conducted at five temperatures (0, 5, 10, 15 and 20°C) for 188 days. Warming 

increased both mineralization processes. The respiration rate increase in C mineralization 

between temperature intervals (Qio) decreased with warmer temperatures. Net N 

mineralization also generally increased with warming and cumulative C loss, but within a 

temperature treatment, the C lost did not constrain the amount o f N mineralized. Sites 

did not differ in microbial biomass or microbial turnover time (biomass/respiration rate), 

but both indices were significantly greater at 5 than 15 °C for all sites. Thus, temperature 

was a consistent positive influence on mineralization processes, but site differences in 

these processes were difficult to explain from soil characteristics or in-situ decomposition 

rates.

For most temperature treatments, microbial respiration was correlated to the 

relative contents o f polysaccharides (negative) and phenols and lignins (positive) 

determined through pyrolysis-gas chromatography/mass spectrometry. These results

Prepared fo r  submission to Soil Biology and Biochemistry
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were contrary to our original hypothesis that labile polysaccharides would be positively 

related to respiration. However, the polysaccharide pool size was correlated positively to 

microbial biomass at 5 and 15 °C. Polysaccharides also decreased to a greater degree over 

the course o f the incubation than other compounds, suggesting they were preferentially 

consumed but turned into biomass or microbial secondary-products and not CO 2 . Thus, 

C 0 2 production may not track compound specific decomposition dynamics. For 

polysaccharides, their residence time in microbial biomass or the decomposition to other 

organic compounds (e.g. phenols, polypeptides) appear to be an important intermediate 

step in decomposition. We conclude soil warming will increase the rate o f C and N 

mineralization, however, microbial dynamics and organic matter characteristics interact 

to modify the production o f CO2 and mineral N.

INTRODUCTION

Boreal forest soil C represents an estimated 24% of the atmospheric pool (Post et 

al. 1982), and much o f this soil C is considered “reactive” or potentially sensitive to 

wanning (McGuire et al. 1995). Regions o f the boreal forest have been warming for the 

past 100 years (Serreze et al. 2000), which is likely increasing soil organic matter (SOM) 

mineralization to CO2 and plant available N. Some boreal ecosystems can experience a 

net carbon (C) loss with warming temperature due to enhanced microbial decomposition 

outstripping net primary production (Goulden et al. 1998; Janssens et al. 2001). If  this 

were to become widespread, the current atmospheric CO2 increase could accelerate. 

Concurrent nitrogen (N) mineralization with warming will likely stimulate plant growth 

(Kirschbaum 1995), but the available evidence suggests that in boreal systems CO2
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production proceeds at a much greater rate than net N mineralization (Vance and Chapin 

2001).

W arming increases mineralization processes, and in some studies, the total 

potential amount o f C or N mineralized (Ellert and Bettany 1992; M acDonald et al. 1995; 

Dalias et al. 2001). In the latter case, a warmer soil temperature allows microbes to 

mineralize organic matter that may never be mineralized at lower temperatures. This 

may be due to microbial community change with warming (Zogg et al. 1997; Andrews et 

al. 2000) or because the optimal temperatures for certain microbial enzyme function is 

reached with warming (Linkins et al. 1984). Thus at cooler temperatures, organic matter 

may accumulate that has a greater potential to lose soil C under a warmer climate 

(Niklinska et al. 1999, Dalias et al. 2001). A clear link has not been made, however, 

between a SOM characteristic and the potential temperature response o f mineralization 

processes.

Investigators using pyrolysis-gas chromatography/mass spectrometry (PY- 

GC/MS) have reported strong positive relationships between the relative abundance o f 

certain indicator compounds, such as primary polysaccharides, and microbial respiration 

(White et al. 2002). Where SOM decomposition is inhibited, primary polysaccharides 

could accumulate and increase the potential for future C mineralization. Alternatively, the 

microbial consumption o f a substrate can generate microbial biomass, respiratory CO 2 or 

other by-products o f metabolism. The amount and rate that each end product is produced 

is to some degree dependent on the chemistry o f the original substrate (Sugai and 

Schimel 1993, Nicolardot et al 1994). Substrate chemistry could also influence N
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dynamics (Weintraub and Schimel 2003). For example, the decomposition o f N-free 

primary polysaccharides could enhance microbial N immobilization, thereby depressing 

the rate o f net N mineralization (Vance and Chapin 2001).

We studied organic soils from black spruce (Picea mariana [(Mill) B.S.P])- 

feather moss (Pleurozium schreberi (Brid.) Mitt, and Hylocomium splendens (Hedw.)

B.S.G) forests. Black spruce is the most prevalent tree species in Alaska (Labau and van 

Hees 1990) and co-occurs with the greatest amounts o f soil C (Van Cleve et al. 1983). 

The forest type spans the mean annual temperature range o f the North American boreal 

forest (Bums and Honkala 1990), which likely means the spruce- and moss-derived SOM 

found across this temperature gradient will not be mineralized uniformly in response to a 

temperature increase (Kirschbaum 1995).

Our overall objective was to examine the relationships between soil 

characteristics and microbial processes. Traditional indices (pFI, C:N ratio) o f soil 

organic matter quality and specific organic compounds (polysaccharides, lignin, 

phenolics) identified with PY-GC/MS were related to microbial processes. We 

hypothesized that where cold temperatures depress in-situ decomposition, relatively 

labile organic compounds (e.g., 1° polysaccharides) accumulate. We predicted that with 

warming, soil polysaccharide content would correlate to greater microbial biomass, 

respiration, and the ratio o f C mineralized to N mineralized. We also hypothesized that 

the temperature sensitivity (indexed by the Q i0 coefficient) and rates o f net N 

mineralization would be negatively correlated to the abundance o f polysaccharides.
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METHODS

Site descriptions and soil sampling

The association o f black spruce and feathermoss is common in the boreal forest 

and prevalent in areas o f interior Alaska where black spruce is relatively productive 

(Viereck et al. 1993). We attempted to maintain this vegetation association across a 

gradient in the rate o f in-situ decomposition. In a subsequent examination o f the field 

data, we found two o f the sites were similar in in-situ temperature and decomposition. 

Complete site descriptions can be found in Chapter 1, but sites were designated “high- 

np”, “mid-dp” and “low-sp”, for high, mid, and low elevation sites; the postscripts, -np, - 

dp, and -sp reflect “no-”, “deep-”, and “shallow-” permafrost depths. General site 

characteristics are summarized in Table 1.

In November 2001, 5 soil monoliths (-225 cm ) that extended from the moss 

surface down to mineral soil were collected from 5 random points located within a 

20x20m plot at each site. We collected samples in the fall because this is when the 

greatest amount o f “fresh” organic matter is available for microbial use due to fine root 

mortality and other tissue senescence (Ruess et al. in press). The litter or L layer was 

removed, and the F and H layers (The Canadian system o f soil classification, 1998) were 

combined and sieved through a 3 mm mesh screen while still partially frozen. Large roots 

(>2 mm) and detritus that passed through the sieve were picked from the soil. Sieved 

soils were immediately refrozen (—5 C) until all soils were sieved. The combined F and 

H layers were used for the incubations.
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Water-holding capacity

W ater-holding capacity (WHC) was determined for each sieved soil and then all 

soils were either dried or wetted to reach 50% WHC. To estimate WHC, a 15 cm length 

glass vial was filled with soil, water applied in drips until it pooled at the bottom, the 

surface to 5 cm soil scooped, weighed wet, then dried for 48 hours at 65 °C and finally 

weighed dry. The moisture content o f the field samples was measured, and if  needed, 

deionized water added to bring the sample to 50% WHC. Three soils needed drying and 

were put into an open plastic bag and then in an incubator set to 1 °C. Soils were dried 

between 2 and 5 days, and turned twice a day to prevent differential drying. All other 

soils were placed in the same incubator in closed bags. The duration o f drying varied 

between 2 and 5 days. The soils were then thoroughly remixed and pre-incubated for 5 

days at 0 °C to reduce the CO2 signal associated with sample preparation. The 50%

WHC was maintained throughout the incubation by adding water when necessary.

C mineralization

For the C mineralization experiment, 5 temperature treatments (0, 5, 10, 15, and 

20°C) were maintained for 188 days. Fifty grams o f wet soil were placed in glass mason 

jars (volume=910 mL for 10, 15, 20°C, volume=455 mL for 0 and 5°C). Each jar had a 

rubber septum embedded in the jar lid. At the beginning o f each measurement period, the 

jar was held in front o f a fan and then capped. Each jar was immediately over­

pressurized using a syringe containing 20 mL o f ambient air. Then 20 mL o f headspace 

was drawn and analyzed with a LICOR 6262 infrared gas analyzer connected to a 

pressurized sample loop. The jars were allowed to accumulate CO2 between 1 and 3 days
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before a second sample was drawn. No air was injected before drawing the second 

sample. The slope o f concentration increase with time, the incubation air temperature, jar 

volume, and air pressure were used in the ideal gas law to calculate flux rate. Air 

pressure was recorded from the LICOR system. Rates were estimated immediately after 

putting the jars into temperature controlled incubators, and then at 3, 5, 12, 20, 37, 51, 67, 

80, 100, 134 and 188 days later. Between sampling periods, the jars were left opened but 

covered with a plastic extra cling Saran® wrap, a type o f wrap which repels H2O but 

allows CO2 to pass through the membrane. The time between sample field collection and 

the beginning o f the incubation was 23 days.

Net N  mineralization

A second experiment was simultaneously prepared for estimating net N 

mineralization and microbial biomass C (detailed in next section) using the same soils. 

Forty grams (g) o f soil were transferred into 100 mL plastic cups, and 10 cups for each 

site incubated at 5, 10 or 15 °C. Each cup was covered with the plastic wrap to avoid 

moisture loss. Five replicate cups were used for an initial mineral N extraction and five 

for a second mineral N extraction. The first extraction for mineral N occurred 20 days 

after the start o f  the incubation and the second extraction at staggered intervals after the 

first (15°C-80 days, 10°C-92 days, 5°C-108 days). The second extraction was staggered 

to standardize among the temperature treatments by the amount o f CO2 lost.

Before an extraction, two 10-g soil subsamples were removed from the cup to 

measure moisture content and microbial biomass (second extraction only). Then 100 mL 

of 0.5 M K2SO4 was combined with the remaining 20 g o f soil (5:1 ratio o f soil to
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K2SO4). The slurry was shaken by hand for 20 seconds, and placed in an incubator for 24 

hours at 0 °C. When removed from the incubator, the slurry was shaken as before and 

then extracted with a Falcon fdtering system through a glass fiber filter with 1.0 pm pore 

size (GFA-VWR). The entire extract solution was suctioned through the filter. The C 

mineralization rate was also measured for these N mineralization samples with essentially 

the same methodology to the C-mineralization experiment. The concentrations o f NFLt+ 

and NO3" in extracts were estimated colormetrically using a modified dual channel 

Technicon II Autoanalyzer system. Method details are found in Vance and Chapin 

(2001 ).

Microbial biomass

Microbial biomass C (MBC) was determined using the chloroform-fumigation 

extraction method (Brookes et al. 1985), except that derived MBC values were not 

increased by a factor relating to “true” microbial biomass because no such factor has been 

developed for this soil type. The 10-g soil subsample removed from the N-extraction cup 

was fumigated for 4 hours and then extracted in the same manner as outlined in the 

previous section. These post-fumigation extracts and extracts from the pre-fumigation 

were digested (detailed in next paragraph). The microbial C was estimated from the C 

difference between the two extracts.

Extracts were digested in 100 mL serum vials. Five mL o f extract and 5 mL of an 

oxidizing potassium persulfate digest were combined in each serum vial, which was then 

immediately sealed with a rubber septum and a crimped aluminum seal (Cabrera and 

Beare 1993). Vials were then placed in a drying oven set to 85 °C for 24 hours. After
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allowing the vials to cool to room temperature, the serum vial headspace was sampled 

with a syringe and the concentration o f CO2 determined on the LICOR 6262 system. Six 

phenylalanine standard solutions, ranging from 0 to 300 ppm of solution C, also were 

digested and the CO2 concentration in the headspace regressed against the solution C 

concentration to develop a standard curve. We expected phenylalanine’s aromatic 

structure to make its recalcitrance representative o f the organic matter in solution 

(Brenner et al. submitted). The standard curve was linear with an R2 equaled 0.99.

Respiration rates were expressed as mg C g soil C '1 day '1, and rates increased by 

the amount o f soil C previously mineralized as estimated by multiplying respiration rates 

by the time between measurement periods (Hobbie et al. 2002). The rate increase with 

temperature o f C and net N mineralization processes was examined using the Q 10 

function:

Qio= (k2/k ,)[l0/(t2-t,)] Eq. 1;

Where k2 and k, equal the process rates at temperatures t2(Wa.m) and ti(c00i) (Van’t Hoff 

1898). Qio’s were examined at 5 °C intervals and the “rates” used were estimated from 

the accumulated CO2 during the course o f the incubation, or in the case o f net N 

mineralization, the interval between the first and second extraction. The net N 

mineralization rates were expressed as pg N g soil N '1 d a y 1.

Soil analysis

A pre-incubation subsample o f dried soil was prepared for pH, total C and N, and 

PY-GC/MS analysis by grinding in a roller ball mill for 24 hours. For the pH
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measurement, deionized water and the ground oven-dried soil were combined at a 20:1 

w/w ratio. Total C and N were measured on a LECO CNS analyzer.

PY-GC/MS was used in organic matter quality analysis. Details o f the 

methodology are found in White et al. (2002). Briefly, a subsample o f  dried soil 

containing about 200 pg carbon was pyrolyzed in a quartz sample tube. Pyrolysis was 

performed on a CDS Analytical Pyroprobe 2000/AS2500. The pyrolyzer was connected 

to an HP 6890 gas chromatograph in tandem with an HP 5973 mass selective detector 

operated in electron impact mode. Compounds were separated in the gas chromatograph 

using a Restek Rtx35-MS column (30 m x 0.32 mm x 0.25 pm). Helium was the carrier 

gas and the flow rate held constant at 2.0 ml/min. Mass spectra were identified using the 

Wiley 275 library. Clean sample tubes were run every fourth sample to prevent or detect 

any carry-over (White et al. 2002).

An index o f 30 compounds were identified from each chromatogram and grouped 

into 9 classes based on the probable origin o f each compound (Bracewell et al. 1989, 

White et al. 2002) (Table 2). The compound designation represents the relative 

abundance o f a class o f compounds in the index but not the total amount o f the class in 

the organic matter. The chromatographic areas o f all 30 index compounds in each 

chromatogram were summed to find the total index area for that chromatogram, and each 

class was then divided by the total index area to develop a proportional estimate. Some 

post-incubation samples were also analyzed, eleven from the 5 °C and six from the 20 °C 

incubation. A full sampling o f all temperature treatments was not possible due to limited 

access to the gas chromatograph-mass spectrometer.
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Statistical Analysis

All statistical analyses were performed with SAS statistical software v. 9.0. One­

way ANOVA was used to compare the C and N mineralization amounts and microbial 

biomass among sites and between temperatures, and means were compared using the 

Least Significant Difference (LSD) method. A two-way ANOVA was used to examine 

site and temperature interactions. Normality o f data was tested with the Shapiro-W ilk’s 

statistic (a=0.05). Both net N mineralization and the C:N mineralization ratio needed to 

be log-transformed, and means reported are untransformed and weighted. Pearson’s 

correlation coefficients were examined to test hypotheses regarding the interaction 

between initial PY-GC/MS chemical compounds, the mineralization process rates, and 

microbial biomass and tunover. Process rates and microbial dynamics also were 

examined in correlation to one another and, in this case, a Bonferroni correction was 

applied to the p-value o f correlations to avoid Type I errors since no a-priori hypotheses 

were formulated for these relationships. In subsequent statistical analyses only the four 

classes o f compounds (primary and secondary polysaccharides, lignin, and phenols) were 

significantly related to microbial processes. Therefore, only these relationships are 

reported. The change over the course o f the incubation o f organic compounds was 

examined relative to microbial processes using correlation analysis. Stepwise multiple 

regression analysis was also performed but results are not reported because the procedure 

consistently selected the variable with the highest correlation coefficient but did not 

combine variables in novel ways. Time-series repeated measures analysis o f respiration 

rates did not reveal significant differences that were not observed by comparing the
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estimated total amount o f C lost, which is likely due to their being no consistent trend in 

respiration rates with time across sites.

RESULTS

Site comparisons

For traditional indices o f organic matter quality, few site differences in soil 

characteristics were evident. The organic matter from each site was similar in C and N 

concentration, C:N ratio, and water holding capacity, but the pH o f the high-np soil was 

slightly lower than for the other two sites (Table 1). The pyrolysis analysis did indicate 

some site differences in organic matter quality. As predicted, the site (high-np) with the 

slowest in-situ decomposition had a higher relative proportion o f polysaccharides, which 

were greater than either mid-dp (p=0.064) or low-sp (p=0.081), but other compound 

groups did not differ significantly among sites (Table 3).

Site differences in respiration rate were few for all temperature, but temperature 

affected the temporal dynamics o f respiration rate and the amount o f C lost. The 

maximum respiration rate rarely occurred at the beginning o f the experiment, and for 

most temperatures, the respiration rate did not decrease predictably with time or C loss 

(Fig. 1). The exceptions were the 15 and 20 °C incubations for low-sp, and the 0 °C 

respiration rates for high-np. In these cases, respiration decreased steadily as C content 

declined (Fig. 1). The estimated total C lost increased significantly with temperature for 

all sites (p-0.03 to p<0.001), but the only site difference in cumulative C loss was at 0 °C 

where low-sp lost more C than the other two sites (Fig. 2).
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The temperature sensitivity o f respiration (Qio) varied among sites for low 

incubation temperatures and Qio generally decreased with increasing temperature. We 

predicted the site with the slowest in-situ decomposition (high-np) would have the 

greatest temperature sensitivity, but this prediction only held for the lowest temperature 

interval (Fig. 3). Qio at the two coldest temperature intervals (5/0 and 10/5) was 

significantly higher than the Qio based on either o f the warmest temperatures (15/10 and 

20/15) for all sites.

Both temperature and site influenced the rate o f net N mineralization. The net N 

mineralization was greater for mid-dp than low-sp at both 10 and 15 °C, but no 

significant differences were observed among sites at 5 °C (Fig. 4a). A two-way ANOVA 

for all sites indicated both temperature (F2,is =4.82, p=0.02) and site (F2,is=4.82, p=0.02) 

significantly influenced net N  mineralization, but the interaction term was not significant. 

Flowever, for individual sites, net mineralization only increased significantly with 

temperature for the mid-dp site. Net nitrification did not occur at any temperature.

Organic matter chemistry or shifting microbial function were expected to 

differentially affect the ratio o f  C mineralization to net N mineralization (Cmin:Nmin) 

with changing temperature and organic matter chemistry, however, the ratio did not vary 

with temperature and site differences were difficult to explain based on soil 

characteristics. We predicted the site with the most polysaccharides (high-np) would 

have the greatest Cmin:Nmin ratio because o f microbial immobilization o f N, however, 

the Cmin:Nmin ratio was only greater for low-sp than mid-dp at 10 and 15 °C (Fig. 4b). 

Microbial function was expected to vary with temperature, but for all sites, the
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Cmin:Nmin ratio was similar among temperatures. The Qio o f net N mineralization 

between temperature intervals also did not vary with temperature (Fig. 5). Thus, there 

does not appear to be a differential influence o f temperature on net N mineralization. 

However in all o f  these comparisons, the extreme variability of net N mineralization may 

have obscured relationships.

Microbial dynamics were more sensitive to temperature than to site soil 

characteristics. Microbial biomass (MBC) did not differ among sites for a given 

temperature (Table 4), but the amount o f MBC was significantly less at 15 than 5 °C at all 

sites. This temperature difference was significant even when microbial mass was 

expressed on a per-gram soil C basis that had the estimated amount o f C previously lost 

from the soil removed. At all sites, microbial turnover time (MBC/respiration rate) 

decreased significantly with warming from 5 to 15 °C.

Correlations among soil characteristics, mineralization rates and microbial biomass

The compounds within either a labile (e.g. polysaccharides) or recalcitrant (e.g. 

lignin) group were positively correlated to one another (i.e. lignin vs. phenols), and 

between groups compounds were negatively correlated (i.e. primary polysaccharides vs. 

phenols). We also examined whether pyrolysis compound correlated with other soil 

characteristics and how soil characteristics covaried with one another. Primary 

polysaccharides were negatively correlated to pH (p=0.07), and lignin was weakly 

negatively correlated to N concentration (p=0.08, n=13), and (Table 5). W ater holding- 

capacity (WHC) was the soil characteristic most strongly correlated to pyrolysis groups.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The labile group was negatively correlated, and the resistant group positively correlated 

to WHC (p<0.01).

Microbial respiration and biomass were generally significantly correlated with 

pyrolysis compounds (Table 6). Contrary to our prediction, however, the presumed labile 

primary and secondary polysaccharides were negatively correlated to microbial 

respiration at most temperatures. Lignin and phenols were expected to be resistant to 

microbial breakdown but were positively correlated to respiration. O f the two, phenols 

were more strongly positively correlated with respiration than lignin at all temperatures. 

Microbial biomass and microbial turnover time (MTT) were positively correlated to the 

polysaccharides and both microbial indices were negatively correlated to lignin and 

phenols (Table 6). The Qio o f respiration for any given temperature interval did not 

correlate with pyrolysis products.

Indices o f microbial function (i.e. mineralization rates, temperature sensitivity) 

and microbial biomass were only marginally linked in correlations analysis. The 

mineralization rates and index o f microbial function generally were not correlated to one 

another unless they shared variables (Table 7). The only marginally significant 

correlation between independent variables was at 15 °C, where net N mineralization was 

negatively correlated to MTT (r=-0.61, p=0.09).

Changes in the proportions o f compounds in the pyrolysis index during 

incubations indicate relative rates o f consumption, production, or preservation. The most 

significant change at both 5 and 20°C was the net decrease o f primary polysaccharides 

within the index (Table 8). However, the temperature treatment did not result in a greater
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net decrease in polysaccharides. The correlation between the relative changes in 

compounds may indicate whether the preferential consumption o f one corresponds to a 

net preservation or production o f another compound (Dai 2001). Significant correlations 

were found at 5°C between the change in polysaccharides and an increasing proportion o f 

phenols (n=l 1, p=0.002) and polypeptides (n=l 1, p=0.02) (Fig. 6). The mean absolute 

peak area decreased for the polypeptides but increased for phenols, suggesting there was 

a net production o f phenols. The polypeptides may have decreased over the incubation 

but at a slower rate than the polysaccharides. The change in polysaccharides at 20°C did 

not significantly correlate with the change in another compound.

The change in the pyrolysis index over the course o f the incubation at 5°C was not 

correlated to most microbial processes. Only when one sample was rejected as an outlier 

was net N mineralization (r=0.82, p=0.003) correlated to the decrease in primary 

polysaccharides (Fig. 7). Although the initial concentrations of pyrolysis compounds 

described microbial processes, the change in the pyrolysis index was a poor indicator of 

most microbial functions during the course o f the incubation. Also, the pyrolysis makeup 

at the end o f the experiment for the 5°C and 20°C did not correlate with processes during 

the course o f the incubation (not shown).

DISCUSSION

C m ineralization

The high capacity for C loss that we observed is a definitive characteristic of 

black spruce organic horizons in particular (Sparrow and Cochran 1988; Vance and
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Chapin 2001; Dioumaeva et al. 2002; N eff and Hooper 2002) and high latitude organic 

soils in general (Nadelhoffer et al. 1991; Niklinska et al. 1999; Hobbie et al. 2002; 

Weintraub and Schimel 2003). For the black spruce organic soils in this study and others 

(Sparrow and Cochran 1998; Dioumaeva et al. 2002; N eff and Hooper 2002) it is also 

apparent that soil C mineralization rates can persist largely independent o f C loss for 

most temperatures (Fig. 1). However, the respiration rate o f the fastest decomposition 

site (low-sp) did decrease slightly over the course o f the experiment at the two warmest 

temperatures. Niklinska et al. (1999) also found respiration decreased predictably for 

organic soils collected from southern forests at warmer incubation temperatures but for 

northern forests, respiration persisted without a noticeable decrease. A larger gradient in 

temperature or decomposition environment may be necessary to fully develop the 

influence o f these site factors on mineralization potential for black spruce forests.

Based on the parameters o f first order kinetic models fit to respiration trends with 

time, M cDonald et al. (1995) proposed that the available pool size for microbial 

decomposition increases with warmer temperatures. The implication o f  this finding is 

that warming increases the total potential C loss from a soil, not simply the respiration 

rate. We could not address this hypothesis with the kinetic models o f M cDonald et al. 

(1995) because respiration rate did not express a definitive time-trend. Instead we 

examined the respiration rate trends as a function o f estimated C loss. Using this 

approach, we hypothesized that if  the C available was larger at the warmer temperature, 

the respiration rate would begin to decrease after more C had been lost from the soil in 

warmer than cooler incubations. For two o f the sites (mid-dp, low-sp) respiration rate for
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the 10°C incubation did not change appreciably past the C loss point o f  initial C where 

the 15 and 20°C incubations began to decrease (~4.5 to 6%)(Fig. 1). This did not indicate 

the available pool size increased at the two warmer temperatures. The contrary findings 

o f McDonald et al. (1995) may be specific to mineral soils, or a longer incubation o f an 

organic soil horizon may be necessary to address this hypothesis.

We hypothesized that microbial respiration would be more temperature sensitive 

at the colder site. Our hypothesis was supported by the Qio’s at the lowest temperature 

interval (5/0), or the temperature range most relevant to growing season soil 

temperatures, but for no other. Kirschbaum’s (1995) literature review indicated 

microbial respiration was increasingly temperature sensitive with decreasing average 

temperatures. As a result, he proposed high-latitude ecosystems might lose more soil 

carbon with warming temperatures than other ecosystems. However the absolute rates 

from various studies were not reported (Kirschbaum 1995) and we found that the site 

with faster in-situ decomposition lost more C at colder temperatures than the site with 

depressed in-situ decomposition. Thus in our study the temperature sensitivity difference 

(slower decomposition site Qio>faster decomposition site Q i0) was primarily a function 

o f lower respiration at colder temperatures at the slow-decomposition site (Fig. 2 and 3). 

This agrees with the work o f Niklinska et al. (1999) who found generally lower 

respiration at 5 °C for incubated soils from more northerly, colder sites than southern, 

warmer forests.

Contrary to our prediction, the Qio’s o f C and net N mineralization were not 

related to the relative abundance o f primary polysaccharides, or to any other soil

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



characteristic. Our results also suggest there is no relationship between mineralization 

temperature sensitivity and the substrate consumed. However, the Qio index may not 

adequately capture microbial growth, respiration and thus temperature sensitivity (Ellert 

and Bettany 1992, M acDonald et al. 1995). There are also difficulties in estimating the 

parameter. The depletion o f available C proceeds at a different time-step for each 

temperature treatment. Thus, calculating Qio’s based on instantaneous rates is extremely 

sensitive to the changing pool size and possibly microbial response to initial sample 

preparation (Niklinska et al. 1999). To address the first difficulty, we attempted to match 

respiration rates in time (i.e. 1 week after start o f  incubation) and percent C lost (i.e. after 

2% loss) but still found no relationships between Qio and soil characteristics. The only 

significant relationships with Qio were microbial biomass C at 15°C and respiration rate 

at 10 °C, indicating microbial function are better predictors o f temperature sensitivity. 

Linking soil organic matter characteristics to the temperature sensitivity o f mineralization 

processes may require a more detailed understanding o f microbial dynamics than that 

provided by measuring respiratory CO2 or mineralized N (Ellert and Bettany 1992, 

Nicolardot et al. 1994, M acDonald et al. 1995).

Pyrolysis compounds and microbial processes

The role o f organic matter chemistry in influencing microbial processes was 

difficult to discern at the site level, and correlations between processes and individual 

samples provided results contrary to our original hypotheses. We hypothesized the 

proportion o f polysaccharides would be positively correlated to microbial respiration, 

similar to the results o f White et al. (2000, 2003). Instead, we found the opposite to be
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true at most temperatures. Alternatively, microbial biomass and the microbial turnover 

time were positively related to the proportion o f polysaccharides. One possible 

implication o f our observations is that the microbial processing o f a substrate is not 

necessarily reflected in CO2 production. Studies where l4C-labeled substrates are added 

to soils suggest that the proportion o f substrate released as CO2 vs. converted to microbial 

biomass or secondary microbial product is dependent on temperature (Nicolardot et al. 

1994) and substrate chemistry (Sugai and Schimel 1996). The nutrients available to 

microbes may also determine whether microbes process available C to CO2 . Vance and 

Chapin (2001) found that in black spruce soils, the amount o f added cellobiose and 

cellulose converted to CO2 increased with the amount o f added N. We note again that 

White et al. (2002, 2003) found a positive relationship between the same primary 

polysaccharide index we used and microbial respiration. Perhaps the reason for their 

result is that by adjusting nutrients, temperature, moisture, and pH to an optimal level, 

they selected for a microbial community that preferentially converted the polysaccharides 

to CO2 in a relatively short time-frame, or created conditions favoring the conversion of 

polysaccharides to CO2 .

Microbial biomass was a relatively small fraction o f soil C and it is unlikely 

polysaccharides consumed during the incubation could be solely retained in this pool. 

Rather, the production o f phenols during decomposition may represent the fate o f 

consumed polysaccharides (Fig. 6). In the incubations o f arctic soils published in White 

et al (2002), the index changes were much more dramatic with primary polysaccharides 

decreasing nearly 70% as a percent o f index, and phenolics increasing by nearly 70%.
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However, since lignin also produces methylphenol when pyrolyzed, the increase in the 

relative abundance o f phenolics cannot be strictly tied to microbial metabolism. Some 

amino acids also produce phenols when pyrolyzed (Chefetz et al. 2002). The increase in 

the phenolic index may represent the change in multiple compounds.

We unexpectedly found that water holding capacity (WHC) was positively 

correlated to microbial biomass and turnover time, but negatively to microbial respiration 

(not shown). Soil WHC was also strongly correlated with the classes o f pyrolysis 

compounds (Table 5). We found no relationship between soil water content and 

microbial respiration. Thus WHC in o f itself may be an important influence on microbial 

dynamics or one that integrates multiple factors influencing microbial processes. The 

possible influence o f WHC on microbial processes requires further research.

Net N  mineralization

Net N mineralization generally increases with the decrease in available C and 

microbial immobilization o f N; thus, we predicted primary polysaccharides would be 

negatively correlated to net N mineralization. The initial proportion o f  polysaccharides 

was negatively correlated to N mineralization at 15°C (Table 6), however, at 5 and 10°C 

the initial polysaccharides and net N mineralization were not correlated. The 

relationship’s temperature dependence may reflect that N mineralization depends more 

on the decomposition o f available C rather than initial C quality (Schimel and Weintraub 

2003). This appears to be the case for the 5°C incubation, where the relative decrease in 

polysaccharides over the duration o f the incubation was positively correlated to net N 

mineralization (Fig 7.). We also expected that if  C processing and N mineralization are
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correlated, cumulative C mineralization should explain variability in net N mineralization 

for a given temperature. However, only when all temperatures were included in the 

analysis was the relationship between C and N mineralization significant. The lack o f a 

significant relationship within a temperature may reflect the order o f magnitude 

difference in the two rates, the lack o f sensitivity o f the measurements, or again, that 

microbial processing o f organic matter is not solely expressed in CO 2 loss.

Organic matter chemistry after the incubation

The proportional decrease in primary polysaccharides was not directly related to 

the amount o f C lost at both 5 and 20°C. The reason for this result could vary for the two 

temperatures (the only two analyzed for pyrolysis products both before and after the 

incubation). As discussed earlier, for the 5 °C incubation the production o f phenols may 

be a significant end-product o f processed polysaccharides. For the 20°C, the lack o f  a 

correlation between the decreasing polysaccharides and increase in other compounds may 

reflect that the polysaccharides were used very early in the incubation and the subsequent 

respiration was the result o f  the simultaneous metabolism o f multiple organic fractions. 

Weintraub and Schimel (2002) found for organic soil incubations conducted at 20°C, the 

proportions o f organic matter fractions (cellulose, hemi-cellulose, acid-insoluble lignin) 

did not change significantly between the beginning and end o f  a yearlong incubation for 

most o f the arctic soils they studied. They also found the soluble fraction was the best 

predictor o f microbial respiration throughout the study. Whether organic matter fractions 

change significantly in relation to one another may depend on the incubation temperature 

or the amount o f C lost.
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Conceptual model

We organized the various results from this study around a simple conceptual 

model that relates the transformation o f specific organic matter constituents, the 

production o f microbial biomass or CO2, and the dynamics o f N (Fig. 8). We found 

support for our original hypothesis that polysaccharides are preferentially consumed. 

Within the timeframe of our study, however, we propose consumption resulted more in 

the transformation o f polysaccharides to another compound class (phenolics) than it did 

in the production o f CO2 . The phenolics may be produced and then consumed again and 

converted to CO2, which is reflected by the lower (faster) microbial turnover time in soils 

having more phenolic compounds. Microbial biomass becomes C limited with a decrease 

in polysaccharides, leading to net N mineralization. Thus, net N mineralization is 

dependent on the degree polysaccharides are consumed rather than the initial amount of 

polysaccharides. Although similar to more traditional concepts o f soil C dynamics in that 

C availability and decomposition are linked, the model diverges from past models in that 

C availability does not relate to CO2 production. Also, the increase in N mineralization is 

dependent on the consumption o f specific compounds and not CO2 production.

Our conceptual model is sensitive to the limitations o f the PY-GC/MS method. 

The most substantial pyrolysis limitation reflects the inability to directly relate the 

chromatographic peaks in PY-GC/MS to the mass o f compounds (Bracewell et al. 1989). 

Therefore, a complete test o f the model we propose will require the inclusion o f wet 

chemistry methods (Dai 2001) or a study-design that combines pyrolysis and C additions 

o f different compounds to soils. Also, the apparent temperature dependence o f compound
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production and consumption may be a function o f temperature or o f C loss. These 

alternatives could be addressed by harvesting and analyzing incubated soil samples 

during the course o f incubations conducted at different temperatures.

CONCLUSIONS

Microbes in black spruce organic soils can sustain C mineralization rates for 

prolonged periods o f time. This result suggests these soils may be more likely than soils 

from other ecosystems to experience a net loss o f soil C with warming (Giardina and 

Ryan 2001). However unlike estimated C loss, the temperature sensitivity o f respiration 

offers counterintuitive information regarding potential soil C loss. This is because 

indices o f relative temperature sensitivity, such as Qio, are highly sensitive to the CO2 

evolution rates at the lowest temperatures. Also, within the narrow range o f organic 

matter we studied, temperature sensitivity was not linked to an organic matter 

characteristic. With these considerations in mind, we urge caution in interpreting Qio 

values in the context o f soil C loss potential with warming temperatures.

Organic matter characteristics modified the influence o f temperature on 

mineralization processes and in a consistent manner across temperatures. Thus, there 

does not appear to be a differential effect o f organic matter chemistry on microbial 

processes with changes in temperature. Although our study suggests that long-term 

inhibited in-situ decomposition could result in organic matter chemistry differences, the 

resulting differences among sites had little effect on C mineralization potential and net N 

mineralization within the timeframe o f our study. A larger gradient o f in-situ 

environment or decomposition may be required for understanding their effects on
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potential mineralization processes. Finally, our results for the change in compounds at

5°C and 20°C highlight that decomposition is not simply the transformation o f organic

matter to CO2 , but rather a multi-step transformation process.
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Table 2-1. In-situ temperature and decomposition, and the soil characteristics o f organic 

matter incubated in this study. Different letters represent significant (p<0.05) between 

site differences. Least significant difference (LSD) used for comparisons.
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site SDD1

Mass loss 

(%)2 %C %N C:N pH W HC3

high-np 929 13a 41 0.80 51 4.2 ± 0 .15a 535 ±102

mid-dp 979 23b 41 0.94 44 4.5 ± 0.12b 512 ± 56

low-sp 988 20b 38 0.82 46 4.5 ± 0.16b 524 ±55

'summed daily maximum temperature > 0 °C based on one temperature logger 

placed at 10 cm soil depth during 2000 and 2001 (Chapter 1).

20ne'yeardecomposition o f filter paper placed between 7.5 and 15.0 cm depth (Chapter 1) 

3water holding capacity, g H20/g dry soil
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Table 2-2. Grouping o f organic molecules identified with pyrolysis gas chromatography 

(White et al. 2002).
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Category Specific molecules identified

primary furfural; hydroxyfuran; methyl hydantion;

polysaccharides 1,4:3,6-dianhydro-a-d-glucopyranose

secondary methylfurfural; 2-propyl furan

polysaccharides

polypeptides indole; pyridine

lignin 2-methoxyphenol; 4-ethyl-2-methoxy phenol; 4-vinyl-2-methoxy phenol

phenols phenol; 2-methyl phenol; 4-methyl phenol; dimethyl phenol

lipids 1-tridecene; l-pentadecene;l-hexadecene; 1-heptadecene; 1-octadecene

alkanes decane; un-, do-, tri-, penta-, hexadecane; napthalene
& napthalene

cyclopentones methylcyclopentenone; dimethylcyclopentenone

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2-3. Percent o f index area for chemical compounds 

found in incubated soils (mean±standard error).

Site

polysaccharides 

primary secondary lignin phenols

high-np 50.6 ±2.4* 11.0 ±0.7 12.6 ±1.8 16.0 ±1.0

(n=4)

mid-dp 46.3 ±0.7 11.3 ±0.6 13.0 ±1.0 17.4 ±0.5

(n=5)

low-sp 45.9 ± 1.2 9.9 ±0.3 14.7 ±1 18.4 ±0.5

(n=4)

*high-np>mid-dp, p=0.064, one-way ANOVA, LSD 

*high-np> low-sp, p=0.081
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Table 2-4. Microbial biomass1 and turnover time2 for the three 

sites and temperatures (mean±standard error). Different letter 

represent between temperatures differences for a site (p<0.05). 

No significant differences among sites for a temperature were 

found.

Microbial

Site Temperature Microbial C 1 Turnover time2

(mg FE-C/g soil C) (days)

high-np 5 10.2 ±1.00 a 34.4 ± 6.1 a

10 8.5 ±1.37 ab 21.2 ± 7 .0  ab

15 6.5 ±1.05 b 9.3 ± 2.5 b

mid-dp 5 10.3 ±0.33 a 33.7 ± 2 .2  a

10 9.5 ±0.51 a 16.4 ± 0.6 b

15 7.2 ±0.44 b 8.7 ± 0 .8  c

low-sp 5 9.1 ±0.67 a 29.1 ± 3 .8  a

10 9.3 ±0.84 a 14.8 ± 1.4 b

15 6.8 ±0.39 b 7.6 ± 0.8 c

12 • •’ Definitions o f terms found in Table 6, or methods
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Table 2-5. Pearson's correlation coefficients between 

pyrolysis products and soil attributes are shown if 

significant.

Soil polysaccharides lignin phenols

A ttribute prim ary secondary

%C — - — —

%N — — -0.49* —

C:N -  — - —

pH -0.51* - — 0.67***

W H C 1 0.79*** 0.63** -0.68*** -0 7 9 ***

*p<0.10, **p<0.05, ***p<0.01 

'w ater holding capacity
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Table 2-6. Pearson correlation coefficients between microbial processes and pyrolysis 

compounds. Levels o f signifigance denoted by * (p<0.1), **(p<0.05), and ***(p<0.01).

107

Temperature Process
polysaccharides 

primary secondary lignin phenols

0 Respiration1 -0.61 ** -0.64 ** 0.62 ** 0.64

5 Respiration -0.77 ** -0.64 ** 0.69 ** 0.82 **
Microbial C2 - - - - -0.53 * - -
Turnover3 0.82 *** 0.70 ** -0.76 *** -0.80 **

Cmin:Nmin4 -  - -  - -  - -  -

Nm in5 -  - -  - -  - -  -

Qio6 -  - -  - -  - -  -

10 Respiration -  - -  - -  - -  -

Microbial C 0.80 *** 0.66 ** -0.86 *** -0.74 **
Turnover 0.76 ** 0.62 ** -0.61 ** -0.75 **
Cmin:Nmin -  - -  - -  - -  -

Nmin -  - -  - -  - -  -

Qio ----- ----- — -----

15 Respiration -0.63 ** -0.58 ** -  - 0.59 **
Microbial C 0.50 * 0.52 * -0.68 ** -  -

Turnover 0.80 *** 0.72 ** -0.71 ** 0.70 **
Cmin:Nmin -  - -  - -  - -  -

Nmin -0.55 * -  - -  - -  -

Qu, ----- ----- — -----

20 Respiration -0.64 ** -0.51 * 0.62 ** 0.65 **
Qio " " "

1 average respiration rate for the duration o f experiment

Chloroform fumigation extraction microbial C (CFE), not true biomass (s 
methods for details)

turnover time o f microbial biomass (CFE/respiration rate)
4 ratio o f cumulative C respired to N mineralized

5 Net N  mineralization

6 The Q 10 was developed from the respiration at this temperature and the 
next lowest
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Table 2-7. Pearson correlation coefficients between microbial processes. Level o f 

signifigance denoted by * (p<0.1) and **(p<0.05). A Bonferroni correction is applied to 

the p-values o f these relationships.

Temperature Process C N  N ■Minn x> min Resp Microbial C Turnover

10

15

C • -N ■

N •1 Mnin

Resp

Microbial C 

Turnover

Qio

C • -N ■

N •A^min

Resp

Microbial C 

Turnover

Qio

C • -N ■

N •A^min

Resp

Microbial C

Turnover

Qio

-0.92 **

-0.89 **

-0.93 **

-0.83 ** 0.75 **

-0.85 ** 0.81 **

0.84 ** - -

-0.61 * -0.83 ** 0.64 *

- -  - -  0.61 *

-0.60

see Table 6 for definitions o f processes
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Table 2-8. Mean (±standard deviation) proportional change (%) in compounds after a 188 day incubation at 5 °C (n=l 1) and 20 

°C (n=6).

polysaccharides

Temperature primary secondary polypeptides lignin phenols lipids alkanes cyclopentones

5 -5.77 ±0.91 -0.15 ± 0.46 0.77 ± 0.23 1.91 ±0.51 2.43 ±0.80 0.46 ± 0.20 0.22 ± 0.25 0.13 ±0.15

20 -7.94 ±1.03 -0.61 ± 0.36 0.81 ± 0.24 1.26 ±0.45 4.07 ±0.63 -0.12 ± 0.23 0.30 ± 0.23 0.06 ±0.16
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T emperature High- no
1.60 - * - 0

0 2 4 6 8 10 12 14

%C lost

Figure 2- 1. Respiration (mg C 0 2-C g soil C"1 d a y 1) (mean o f  5 samples±stderr) 

expressed as a function o f the estimated C lost for the three sites and five temperature 

treatments. Percent C loss was estimated from the respiration rates
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Figure 2- 2. The percentage o f initial total C estimated to have been lost from each 

temperature treatment and site over the course o f 188 days. Different letters represent 

differences among sites for a temperature treatment, the increase between 5 °C 

temperature intervals was significant for each site. One-way ANOVA and least squares 

difference used for all comparisons.
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Figure 2- 3. Change in respiration Q )0 with temperature interval. Calculated from the 

total mass loss during the incubation. Mean (±standard error) o f  5 incubated soils per 

site. Different letters represent significant differences among sites (p<0.05) within a 

temperature interval (lower case) and between temperatures for a given site (upper case).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

c
2

t d  '> p  

^  -a 13 —L_
s *I  M

Z  ^
oj
z

&JD

.2
c3S-

§ O
i

03 X

! *
§3 O a

700

600

500

400

800

4.5

4.0

3.5

3.0

2.5

2.0

1.5 

1.0 

0.5 

0.0

A)

i-np 

■  mid-dp 

□  low-sp

B)

ab aAB

f t

10

Temperature (C)

m t u

15

5 10 15
Temperature (C)
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temperatures. Different lower case letters represent significant differences between sites 

(p<0.05) for a temperature, upper case letters represent between temperature differences 

for a site. A two-way ANOVA indicated both site and temperature were significant.
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Figure 2- 5. The temperature sensitivity o f net N mineralization for each site and two 

temperature intervals. No significant differences were observed between sites or 

temperatures treatments.
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Figure 2- 6. The proportion o f phenols and polypeptides increased as a function o f the 

decrease in primary polysaccharides for the 5°C incubation.
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biomass, phenolics and mineral N. Results suggest polysaccharides are consumed and 

converted to phenolics, which are then mineralized. The decomposition o f 

polysaccharides results in increased net N mineralization.
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CHAPTER 3. Roots determine the forest floor carbon balance of black spruce 

ecosystems 

ABSTRACT

We examined the root contribution to forest floor carbon (C) balance in three 

mature black spruce forests using three complimentary techniques. For one technique, 

we estimated net root increment (NRI) from the change in forest floor C inside trenched 

plots after three years o f root exclusion. The NRI estimate is equivalent to root 

production, plus root senescence, minus C lost through root decomposition. NRI 

estimates ranged between 216 to 583 g C m '2 y '1 and were sensitive to assumptions 

regarding root decomposition. In an alternative approach, we used the root pool’s bomb 

14C age to estimate root increment at two of the sites. The combined live and dead root 

pool increment estimated with l4C was much lower (121 and 130 g C m '2 y"1) than the 

trenched plot NRI estimates. The trenched plot estimates may include senescent root 

contributions to forest floor organic matter or indicate that the dissolved organic flux 

from severed roots is substantial. Finally, a forest floor turnover time o f  29-34 years was 

estimated from heterotrophic respiration and forest C in the control areas. This turnover 

time is much less for this forest type than has been previously estimated based on 

aboveground litter. These results suggest root processes are an important contribution to 

heterotrophic respiration and that the black spruce forest floor is more dynamic than has 

been previously estimated.

Prepared for submission to Canadian Journal o f  Forest Research
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INTRODUCTION

The belowground carbon (C) allocation o f forests remains one o f the least 

understood components o f ecosystem C cycling. Fine roots, mycorrhizae, coarse roots, 

and rhizosphere organisms receive an annual allocation o f C that varies in relative 

proportions and in absolute amounts over the course o f a growing season and within a 

soil profile. The complexity o f the soil-root-heterotrophic system makes it difficult to 

make precise measurements o f all belowground components, which then confounds C 

budget analysis. Most often an estimate o f dry matter production or respiratory flux is by 

necessity made at a small scale and extrapolated to an annual estimate using an 

environmental or temporal scaling factor. The conclusions o f a study are therefore highly 

dependent on the scaling method used, yet the error terms that reflect each component o f 

the scaling are unknown or unreported. As a result, conclusions regarding belowground 

C cycling developed in one study are difficult to compare across studies (Kurz and 

Kimmins 1987, Publicover and Vogt 1993, Vogt et al. 1998).

In this study, we used root exclusion areas or trenched plots and a mass balance 

approach to estimate belowground C allocation in black spruce forests. After the insertion 

o f root impenetrable barriers, trenched plots exclude new root growth. With time, the 

control and trenched plot area will differ in soil C because o f root growth in the control 

area and C loss from the trenched plots. I f  C loss from the trenched plots is measured, 

then new root growth, the conservation o f senesced roots, minus the decomposition o f 

senesced roots can be calculated for the controls areas. The strength o f the technique is 

that mass change is integrated over multiple years, it takes into account all components o f

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



plant and mycorrhizae growth, and the resulting control and trenched plot errors o f 

measurement can be calculated. One weakness is that unless individual components o f 

the root and soil system are identified at the outset and end of experiment, the net 

increment o f any one component cannot be identified. When researchers do identify 

specific belowground components, the trenched plot method can be used in conjunction 

with compartment flow models to estimate production, mortality and root decomposition 

(Santantonio and Grace 1987).

Yanai et al. (2003) reviewed the literature and determined that for most studies, a 

change in forest floor C o f at least 20% is necessary to detect significant change with a 

reasonable number o f samples. Aspects o f black spruce growth may make this change 

attainable in a relatively short amount o f time with root exclusion. For example, mature 

spruce roots are found almost entirely in the forest floor (Tryon and Chapin 1983) and the 

species allocates between 41-63% o f annual production to root growth (Steele et al. 1997; 

Ruess et al. (in review)).

The objectives o f this study are to measure the importance o f root inputs to forest 

floor C balance using multiple complimentary techniques. Because o f the high degree o f 

belowground C allocation in these forests, we hypothesized that forest floor C balance 

would be extremely sensitive to root exclusion. From the difference in forest floor C, we 

estimated net root increment and used a mass balance model to account for other 

components o f the soil C cycle that may have influenced results. We also estimated root 

increment from the l4C content o f the fine root pools. The forest floor turnover time was 

also examined to determine the root inputs necessary to maintain heterotrophic flux.
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METHODS

Site selection

We selected three sites that differed in elevation and the depth from the soil 

surface to underlying permafrost. Sites were designated high elevation no permafrost 

(high-np), mid-elevation deep permafrost (mid-dp), and low elevation shallow permafrost 

(low-sp). The mid-dp site is a younger stand (75 vs. 110 years for high-np and 120 for 

low-sp) with slightly lower overstory biomass (3.9 kg C m '2) than high-np (4.4 kg C m '2) 

and low-sp (4.9 kg C m’2) (Chapter 1). The sites were selected to represent the local 

variation in temperature that is driven by altitude, winter temperature inversions, and 

topographical sun-shading. At each site, black spruce is the only canopy species and 

feathermoss forms a near continuous carpet. At the two permafrost sites, loess extends at 

least to the top o f the permafrost (65 cm to ~ lm ), and at high-np, the loess cap is 50 cm 

thick and overlays a Cambrian schist (Chapter 1).

The trenched plots were installed between late-July and mid-August o f 1999. A 

trench 80 mm wide by 0.5-1.0 m depth was dug around a -2 .0  x 3.0 m area. Trench 

depth was limited by the depth to permafrost or bedrock. Roots were kept from re- 

colonizing the trenched plot interior area by a 0.2 mm thick polyethylene barrier placed 

to the depth o f the trench. The vascular understory in the trenched plots was clipped 

continuously throughout the experiment. Details o f trenched plot installation are found in 

Chapter 1.
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Trenched plot overview

Researchers have used root exclusion areas, or trenched plots, to examine root and 

heterotrophic respiration (O ’Connel et al. 2003, Melillo et al. 2002, Boone et al. 1998, 

Haynes and Gower 1995, Bowden et al. 1993) and root decomposition (Publicover and 

Vogt 1993, Santantanio and Grace 1987). The technique has also been used to examine 

the influence o f roots on soil C pools (Hart and Sollins 1998) and N cycling (Fisher and 

Gosz 1986).

Trenching may cause environmental artifacts that subsequently increase 

heterotrophic respiration. Trenching areas often opens the canopy and allows greater 

radiation to reach the forest floor, increases nutrient availability to microbes, and 

increases soil moisture (Fisher and Gosz 1986). To account for these artifacts, in Chapter 

1 we used a decomposition proxy in and outside trenched plots. The proxy (cellulose 

filter paper) tracked heterotrophic respiration in the trenched plots, but at two o f the sites 

(low-sp and mid-dp) the proxy decomposition rate in trenched plots was faster than the 

control area proxy. We corrected downwards the heterotrophic respiration from the 

control areas by using a correlation between filter paper mass loss and heterotrophic 

respiration from trenched plots (y =104.17x + 146.31, r2 =0.89). Excised live roots also 

contribute to heterotrophic respiration and this flux is also accounted for (detailed in later 

section).

Soil C and N

Soil cores were collected to estimate the soil C and N content for the trenched and 

control areas. In the fall o f 2001, we removed 10, 5.5 cm diameter x 30 cm deep soil
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cores from random locations in the control area. We dissected the cores into L (litter), 

and a combined F (fibric) and H (humic) organic horizon (Canadian soil classification 

system 3rd ed). We also identified an A horizon and the mineral soil to 5 cm below the A 

horizon. In August 2002, 3 soil cores were collected from each trenched plot and were 

processed in the same manner as the control collars. The C and N concentration o f each 

soil horizon was determined with a LECO CNS2000 analyzer. Details about methods 

used to analyze the cores are found in Chapter 1.

Root biomass

Root biomass was estimated from three soil cores collected in early June 2000 

from the control areas o f high-np and low-sp. The soil horizons were identified as for the 

soil C and N analysis. Each horizon was hand-washed over a fine mesh screen (125 pm). 

The organic material remaining on the screen (roots+detritus) was put into a plastic bag 

filled with distilled water. The bag was then poured and swirled onto a shallow (40-cm 

diameter) circular pan until organic material appeared homogeneously distributed (Steele 

et al. 1997). The pan was divided into 16th’s and 3 sections randomly selected for the L,

A, and the mineral soil horizons. The F+H horizon was subsampled to a greater degree 

(detailed in next section). Roots were separated into coarse (>2 mm) and fine (<2 mm) 

size classes and also into a live and dead root fraction. Live and dead roots were 

differentiated by color and consistency. Extremely fine roots (<0.75 mm) were judged 

live or dead strictly by coloration, with dark roots considered dead and white and tan 

roots considered live. Darkened roots greater than -0 .75 mm in diameter were not
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assumed dead, but if  a firm consistency was felt, the roots were pulled apart to determine 

if  a live inner cambial region existed.

The F+H horizon had the greatest mass o f roots and required a greater degree of 

subsampling. Three sections were randomly selected, removed from the pan, and the 

organic material remaining on the pan discarded. The three sections were then swirled 

back onto the pan’s surface, divided into 16thsand 5 sections again randomly selected for 

sorting. Each core required 14-18 hours o f processing time. The washed root samples 

for mid-dp were accidentally warmed for an unknown amount o f time, and therefore were 

discarded without being sorted.

Subsamples o f live and dead roots were dry-ashed at 450°C for 12 hours to 

determine the organic matter percent. The organic matter was assumed to have a C 

concentration o f 45% because samples were too small for direct C and N analysis. 

Subsamples o f live and dead roots were also sent to Lawrence Livermore laboratory for 

l4C analysis on an accelerator mass spectrometer and prepared following the procedure 

outlined in Trumbore and Harden (1997) and (Vogel 1992). After dry ashing, there was 

not enough root material from one o f the high-np cores for l4C analysis.

Estimating net root increment with trenched plots

In this experiment the variable o f interest is the divergence in forest floor C 

between trenched plots and control areas after three years o f root exclusion. However, the 

control area was sampled about 9 months before the third year. The estimate o f forest 

floor C includes both live and dead roots. In the control area, any forest floor change 

(AFFc) is the net result o f inputs to the soil (net root increment (NRI), moss production
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(NPPm), understory litter and root production (NPPuc), and litterfall (L)) and outputs 

(heterotrophic respiration (Rh) dissolved organic carbon export (fDOC) and particulate 

organic matter export (fPOM) (Fig 1.). NRI is equivalent to root net primary production 

plus root detritus production, minus the amount o f heterotrophic respiration coming from 

root turnover. This balance can be expressed for the control area:
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In the trenched plots, the trenched plot forest floor C change (AFFT) includes a 

component not in the AFFc equation: the heterotrophic respiration from excised root 

decomposition (Rhr). Also, the NRI in the trenched plot is zero. The equation is:

We assumed equality for the initial forest floor conditions in the trenched plot and control 

areas and also that the shared variables were equal. The equation for the difference 

between the control forest floor C and trenched plots at time (t) is then:

FFC(t)- FFC(o)=(NRI + NPPm + NPPUC+ L) -  (Rh + fDOC + fPOM); Eq. 1.

FFT(tr  FFT(0)=(NPPm + L) -  (Rh + Rhr + fDOC + fPOM); Eq. 2.

FFC(t)-FFT(t)= NRI + Rhr; Eq. 3.
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Thus the difference between trenched plot and control forest floor C represents the sum 

o f net root increment in the control areas and the artifact o f previously live roots being 

excised and decomposed in the trenched plots.

Vascular understory biomass was eliminated from the trenched plots. Therefore 

its litter and belowground production was not part o f the trenched plot input term and 

does not cancel (Fig. 1). The primary production o f the control understory (NPPuc) 

ranged from 0.9-4.8 g C n f2 y"1, and was mostly new foliage growth (Chapter 1). We 

assumed understory production approximated annual litterfall and that there was a 1:1 

ratio between above- and belowground production (Steele et al. 1997).

Including understory production and rearranging Eq. (3) we estimated NRI as 

follows.

NRI =FFc(t) - FFT(t)-Rhr -  N P P uc; Eq. 4.

Estimating the contribution o f  excised roots soil C loss

In the first approach to constraining Rhr, we used a published estimate o f fine root 

decomposition rate (k) for Engelmann spruce in Pacific Northwest forests (Chen et al. 

2002). The decomposition rate was applied to the fine live root biomass estimated for the 

control areas in the spring o f 2000. The exponential decay function was used to model 

the mass loss with time:

Yt=Y0e x p kt
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where Yo is the fraction o f initial fine root mass, Y t is the fraction o f  initial mass 

remaining at year t, and k is the turnover rate (year'1). When developing models 

parameters from observed data, Chen et al. (2002) did not force Yo to be the initial root 

mass. Therefore, Yo was not 100%, but rather 79% o f initial root mass and k=0.172 

(Chen et al. 2002). We selected Engelmann spruce fine roots because they had a similar 

N concentration (1.0 to 1.2%) to the fine roots in this study (Chapter 1). We assumed that 

coarse roots decomposed at half the rate o f fine roots and that the decomposed left the 

soil system. For the mid-dp site, the average aboveground biomass to belowground 

biomass ratio o f the other two sites was used to estimate belowground biomass.

In the second approach to constrain Rhr, we assumed the decomposition o f roots 

occurred at the same rate as the bulk soil organic matter. The live roots comprised 17% of 

the soil carbon (average o f high-np and low-sp), which if  scaled directly would represent 

17% o f heterotrophic flux from the trenched plots. In Chapter 1, we reported Rh+Rhr 

values for the trenched plots for 2000 and 2001. The Rh+Rhr estimates for 1999 and 

2002 were based on the average o f 2000 and 2001 values. The 2002 Rh+Rhr estimate 

was set to the average o f the 2000 and 2001 trenched plot respiration. The 1999 Rh+Rhr 

estimates were also assumed to equal the average o f 2000 and 2001, but the estimates 

were weighted downwards by the amount o f time before the trenched plots were 

installed. We likely underestimated Rh+Rhr for 1999 because the excised roots were 

decomposing at their fastest rate and overestimated the flux for 2002 because a 

significant decrease in soil C had previously occurred.
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Estimating root increment with l4C signatures o f  live and dead roots

An alternative root increment can be estimated from a l4C age o f roots. The pool 

o f live and dead roots have a l4C signature associated with the “bomb” spike, or the 

influx o f l4C to the atmosphere as the result o f aboveground nuclear testing during the 

1950’s and early 1960’s (Trumbore and Harden 1997). The historical track o f 

atmospheric l4C has been estimated directly for northern latitudes (Burcholadez et al. 

1989, Trumbore and Harden 1997) but in this study the l4C for 1997-2000 was modeled 

based on a general decrease in atmospheric concentrations. The radiocarbon values are 

expressed as AI4C, which is the difference in parts per thousand (per mil or %o) between 

the 14C /I2C ratio in the sample and that o f a universal standard (oxalic acid I, decay 

corrected to 1950). The A14C values are corrected by the plant tissues l3C /l2C ratio to 

account for discrimination against the isotopes during photosynthesis.

Only the live and dead roots from the F/H horizon were analyzed for l4C. For live 

roots, the 14C age represents the time-integrated, continual input o f new root production 

minus annual root mortality. The l4C age o f dead roots represents the age o f newly dead 

roots plus the residual age o f the dead root mass as it decomposes (Gaudinski et al. 2001). 

Gaudinski et al. (2001) proposed a one-pool, steady state model to estimate the mean age 

o f roots, but they found the results were not significantly different from an age directly 

estimated from the root position along the atmospheric l4C curve. We chose the latter 

approach because o f its simplicity (Fig. 2), and applied it to the combined live and dead 

pool as a whole rather than each individually because o f uncertainty in separating live 

and dead roots. Also, the pools did not differ significantly from one another in AI4C
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(Appendix 1). Using this approach, the increment o f the root pool is the pool size divided 

by the l4C age. Thus, we assume a normal distribution o f root mass around the l4C age 

and that the same amount o f C annually leaving the pool through decomposition enters 

the root live and dead pools again through root production and mortality. Although 

necessary for estimating increment, we note these assumptions are poorly tested and are 

sensitive to the multi-pool nature o f root matter (Gaudinski et al. 2001). Root pools from 

mineral soil horizons and the coarse root size classes were assumed to be accumulating C 

since the beginning o f stand initiation.

The turnover time index o fforest floor dynamics

The impact o f root processes on forest floor C dynamics can also be examined 

from indices o f forest floor decomposition. One useful index in this regard is forest floor 

turnover time. Turnover time is estimated as forest floor C (g C m"2) divided by 

heterotrophic respiration (g C m"2 y '1). Many past studies have used this index, but have 

only used aboveground litter as a proxy for heterotrophic respiration. Alternatively, either 

directly measured heterotrophic respiration or multiple litter components can be used to 

estimate turnover time. We used aboveground litter, heterotrophic respiration and 

belowground increment and compared these turnover times to literature estimates with 

and without belowground production.

Statistical Analyses

Statistical analysis was performed using Statistical Analysis Software v. 8.0 (SAS 

Institute, Inc. 1999). A mixed model was used for the analysis o f  forest floor C because 

the comparison between the trenched plot treatments and control forest floor was
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unbalanced (n=3 trenched plots, n=10 control). Comparisons between treatment and 

control for a site and across sites were also performed. The sites and treatment were 

designated fixed effects and the replicates for forest floor sampling or the trenched plots 

were considered random. Data were tested for normality (Shapiro-W ilks) and 

homogeneity o f variance (Levene’s).

Using power analysis, we estimated how many samples would be needed at 

different years after initial trenching to detect a decrease in forest floor C in the trenched 

plot and a possible accumulation o f C in the control area. We used two approaches for 

estimating C accumulation in the control forest floor. The first was based on the 

estimated net root increment (Eq. 3), and the measured litter, understory and moss 

production minus the heterotrophic respiration (Rh) from the trenched plots (excised root 

respiration (Rhr) and extra Rh from trench artifacts are both removed). Forest floor 

accumulation rate was also estimated from the forest floor mass divided by the stand age 

minus 40 years. Forty years was removed because a chronosequence study in Alaska 

indicated little forest floor C accumulation occurs prior to this point in stand history 

(O'Neill 2000). The average rates for the three sites are used in the analysis.

The power analysis was performed using the three site average variance o f both 

the control and trench forest floor C. Power analysis was based on a one-tailed test 

because the trenched plots could only lose C relative to the control. The number o f 

replicates needed was estimated for both a=0.05 and a=0.10, and the power (P) set to 

(0.75) (Yanai et al. 2003). Because the standard deviations are known, we used the Z-test 

for analysis (Steidl and Thomas 2001).
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RESULTS AND DISCUSSION

Root biomass

The identifiable roots represented a sizeable fraction o f the forest floor mass. The 

live coarse plus fine root biomass comprised 17% o f forest floor C in high-np and 14 % 

in low-sp (Table 1 and 2). For any soil horizon, the live and dead root pools o f the two 

sites did not differ significantly from one another for any size class. Including the dead 

root pool, total root mass comprised 24% in high-np and 28% in low-sp o f the forest floor 

C. Tryon and Chapin (1983) reported a live root biomass o f 1230 g m"2 for a mature 

black spruce forest in Alaska, which was 16% of the forest floor mass (Van Cleve et al. 

1983). Two and three times more root mass was found in the forest floor L and F/H than 

in the mineral soil (Table 1). We may have underestimated root biomass because the 

water-soluble fraction was lost during root washing. Although washing is a necessary 

and common practice in spruce forest studies (Steele et al. 1997, Ruess et al. in press), 

researchers in other systems have found the water-soluble C to represent nearly 23% o f 

fine root mass (Chen et al. 2002).

Control and trench soil C and N

Trenching significantly reduced soil C content overall after 3 years (p=0.024).

The trenched plot forest floor C was significantly lower (p=0.03) than the control area 

forest floor C at the low-sp site (Fig. 3), but these differences were not significant within 

the other two sites. The mean difference between trenched plot and control forest floor C 

(28%) was greater than the necessary 20% effect size Yanai et al. (2003) estimated would 

be necessary for most studies to detect significant changes in forest floor C. Our results

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



differed from those o f Hart and Sollins (1998), who found no discernible effect o f root 

exclusion on soil C in a mature Douglas-fir forest 13 years after initial trenching. This 

apparent discrepancy may reflect the nature o f black spruce root growth and C allocation. 

As indicated by the distribution o f roots in this study (Table 1), most black spruce root 

growth occurs in the forest floor (Tryon and Chapin 1983, Ruess et al. 1996, Steele et al. 

1997, Ruess et al. (in review)). This growth characteristic restricts the root exclusion 

effect o f trenching to the forest floor where the highest decomposition rates also occur. 

The forest floor is easier to sample than the entire mineral soil and the root growth 

characteristic reduces the probability that roots will grow under the trench barriers and 

recolonize the trenched plot. Finally, the high C allocation to roots by black spruce may 

make their exclusion disproportionately important. For example, the ratio o f 

belowground production to aboveground litterfall has been estimated to be between 90:1 

(Ruess et al. 1996) and 13:1 in Alaskan black spruce (Ruess et al. in press), which is far 

greater than for most other forests (Vogt et al. 1986).

The amount o f C loss did not increase by including the mineral A horizon or the 

mineral soil horizon to 5 cm below the A horizon (not shown). This result is consistent 

with the observation o f greater root inputs in organic horizons than in the mineral. There 

was a non-significant trend o f N decrease across sites when the A horizon was included 

(Fig. 4). We mention this because with direct measurements of N flux, trenched plots 

may provide valuable information on the role roots and available C play in maintaining 

soil N in these ecosystems.
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Estimating net root increment

Given the change in forest floor C over three years and the two estimated losses 

from excised root decomposition (Rhr), the net increment o f  roots (NRI) was between 

216 and 583 g C m '2 y"1 (Table 2). These values are much higher than root production 

estimates from other studies o f mature black spruce, where values have ranged between 

110 and 168 g C n f 2 y 1 (Ruess et al. 1996, Steele et al. 1997, O’Connell et al. 2003b, 

Ruess et al. in press). NRI includes annual root production and the accumulation of 

annually senesced roots, but should be lower than root production because it includes the 

decomposition o f annual root turnover.

The NRI estimates was extremely sensitive to how the respiration or mass loss of 

excised roots (Rhr) was calculated. The NRI estimate based on root decomposition rates 

were closer to published estimates o f root production than the method based on CO2 loss 

from the trenched plots (Table 2). The decomposition method would capture the 

potential flux o f dissolved organic matter (fDOC) or particulate organic matter (fPOM), 

although we did not measure any water-borne C flux. These fluxes would have to be 

substantially elevated due to trenching to account for the differences in NRI. Watershed- 

level measurements have indicated that only 1.0 g C m‘2 y '1 is lost through fDOC from 

permafrost watersheds in Alaska (MacClean et al. 1999). This analysis only includes C 

leaving the watershed and misses C transported within the soil profile or the watershed 

and is likely a low estimate. An alternative approach for estimate the influencing o f 

trenching is to estimate how the lack o f transpiration could increase fDOC from the 

trenched plots. Arain et al. (2002) reported that a mature black spruce forest in central
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Saskatchewan evapotranspired 320 mm/year. Assuming a similar value for the forests in 

our study and that half the water lost is transpired and half evaporated, then a lack of 

transpiration could result in an excess 160 mm/year o f water in the soil profile o f a 

trenched plot. Shibata et al. (2003) reported that the DOC concentration in suction 

lysimeters under an Alaskan black spruce forests floor averaged 65 mg C L"1 over a 

growing season. If  this DOC concentration is lost with the excess water then the 

estimated excess fDOC is 10 g C m '2 year'1 from the trenched plot. Soil DOC and POM 

concentrations also may have been elevated in trenched plots because o f soluble C loss 

from severed fine roots (Chen et al. 2002), however, it is difficult to account for the 

discrepancy between the two methods for estimating Rhr given our current understanding 

o f water-bome C flow through these soils.

The highest reported values o f black spruce root growth are from Ruess et al. (in 

press) where the litter to fine root belowground production for three Alaskan black spruce 

forests was between 13 and 17:1. Applying these two ratios to our litter estimates (41-58 

g C m '2 y '1) would give fine root production estimates o f between 533 and 986 g C m"2 y' 

The Ruess et al. sites are considerably older than ours, which means the actual ratios 

for our and their study likely differ. It is noteworthy, however, that they did not estimate 

net coarse root production or mycorrhizae growth, both o f which would be captured by 

our estimate.

The old l4C age o f the fine root (live and dead) pool indicated the pools measured 

in this study do not turn over annually in relationship to annual inputs o f atmospheric l4C 

(Table 3). Annual turnover would be necessary for the NRI estimates at low-sp to be
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valid because the fine root pool size is only slightly larger than the NRI estimate (Table 1 

and 2). Using the l4C age o f root pools, Gaudinski et al. (2001) also estimated root 

turnover would have to be longer than 1 year for a temperate forest. Because o f our 

sampling time (first week o f June), the root pools we sampled may represent an older 

cohort than that o f annual production. For example, Ruess et al. (in press) reported a 

significant fraction o f black spruce fine roots that appeared during the growing season in 

minirhizotrons decomposed within the same year, but that as roots aged and grew in 

diameter, the likelihood they would die and decompose decreased exponentially. Also, 

the seasonal maximum in root biomass generally occurs in late July and early August 

(Steele et al. 1997, Ruess et al. in press). Therefore, the age distribution o f the sampled 

roots in our study is likely weighted toward the older fraction o f roots.

Much younger l4C ages would be necessary for trenched plots NRI estimates 

(based on decomposition) to agree with 14C method root increment. The estimated root 

pool age would have to be 3.9 years for high-np and 2.4 years for low-sp. One possible 

reason for the older l4C age is that the amount o f soluble C stored by the live and dead 

fine roots is mostly lost during root washing, making the root pools appear older because 

only the root structural C is left behind. Alternatively, the fraction o f roots that do 

turnover annually may become part o f the soil organic matter that is not clearly 

distinguishable from other detritus. The contribution to forest floor organic matter by 

these roots would not be captured by the l4C method. For the l4C root increment and the 

NRI estimates to agree, the contribution o f decomposing roots to forest floor C would 

have to be 95 and 350 g C m '2 y '1 for high-np and low-sp, respectively,. The turnover
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time o f control forest floor C provides some insight into whether this amount o f flux from 

decomposing roots is possible.

Forest flo o r  turnover and relationship to net root increment

The turnover time o f the forest floor suggests a much faster decomposition rate in 

black spruce forests than has been previously reported. Van Cleve et al. (1983) as 

modified by Ruess et al. (1996) estimated the forest floor turnover time o f a spruce forest 

to be 167 years, but this estimate was based solely on the input o f aboveground litter. Our 

turnover time estimates using overstory litterfall, understory production and moss litter 

are less than the Van Cleve et al. (1983) estimates, ranging between 63 and 102 years 

(Table 4). The estimates o f forest floor turnover time from heterotrophic respiration are 

even less, ranging between 29 and 34 years for the control areas. Ruess et al. (1996) 

made a similar observation o f a lower forest floor turnover time in black spruce forests. 

Based on their fine root production (assuming root litter=root production) and 

aboveground litter fall estimates, the forest floor residence time in their study was -25  

years. Including the NRI estimates from Table 2 reduced the forest floor turnover time in 

our study to values less than that estimated from heterotrophic respiration (Table 4). The 

difference in turnover using heterotrophic respiration versus the NRI estimates may 

reflect the deviation from steady state, in other words, the net increment o f forest floor C. 

The results also suggest root inputs can have a large influence on the rate o f forest floor 

turnover in these systems.
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Estimated effect size and sample size

. From our power analysis and the estimated effect size, we determined the

number o f samples needed at different years past initial trenching to detect a divergence

in forest floor C. The effect size is the amount o f C accumulated in the control area and

the total amount lost from inside the trenched plot. The net amount o f C accumulated in

the control area equals inputs minus outputs. Inputs to forest floor C include net root

increment (NRI), litter (L), and moss and understory productivity (NPPm and NPPuc).

The NRI estimate was based on the decomposition approach in Table 2. The carbon

output equals heterotrophic respiration (Rh). The trenched plot loses carbon at a rate

equal to Rh plus the extra decomposition o f previously live roots (Rhr). For comparison

purposes, we include an average forest floor C accumulation rate (FFA) estimated from

2 1the forest floor C divided by stand age minus 40 years (87±26 g C m" y  , n=3). We 

subtract 40 years because O ’Neill (2000) reported forest floor C accumulation only began

after this period in a chronosequence study o f interior Alaska black spruce forests and

2 1that the rate o f accumulation averaged 100 g C m' y‘ . The potential divergence between 

trenched plots and control areas is diagrammed in Figure 5, with 2003 values projected 

from prior estimates o f Rh and Rhr (Chapter 1). The variance in the trenched plot forest 

floor C was lower than control area C; as a result, a study design based on this variance 

would require less sampling intensity (Table 5). The true variance o f a study would 

reflect a combination o f control and trenched plot variance, which would result in an 

intermediate sampling intensity.
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The difference in variance between the trenched plot and control areas may 

indicate either an actual change that occurs with trenching or an aspect o f the sampling 

scheme. As decomposition proceeded in the trenched plots, the variability in forest floor 

C may have decreased as the organic matter approached a similar chemical makeup. For 

example, the trenched plots may begin with variable proportions o f soluble organic 

matter, cellulose, and lignin, but as microbes preferentially consumed soluble organic 

matter and cellulose, all trenched plots would eventually begin to consist o f mostly 

lignin. Variability caused by annual inputs o f root C would then be reduced.

Alternatively, the spatial distribution o f control and trenched forest floor sampling 

differed and therefore the reduced variability in the trenched plots might reflect that they 

are in fact sub-populations o f the control area. The most likely sub-population scenario 

would be that forest floor samples from a trenched plot were on average farther away 

from large tree roots, which may cause increased variability in the control samples. We 

addressed this possibility by correlating forest floor C from each trenched plot subsample 

to the distance to the nearest tree, but did not find a significant correlation. We could not 

relocate the cored control areas because numerous other samplings had occurred at the 

sites. Liski et al. (1995) reported greater mineral soil C nearer to a tree base than further. 

This observation may not apply to mature black spruce forests because their coarse roots 

spread laterally from the tree base.

Assumptions and recommendations

Implicit in the net root increment estimate was the assumption the control and 

trenched plot forest floor C were initially similar, which we do not know because we did
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not wish to disturb the trenched plots at the beginning o f the experiment by collecting soil 

cores. Also, by sampling the trenched plot and control areas 9 months apart, we may have 

underestimated NRI. Finally we did not measure overstory litter inside the trenched 

plots, and therefore do not know if  litter amounts are similar. I f  they differ slightly, 

however, it would have little effect because NRI is between five and ten times greater 

than the aboveground litter inputs.

Yanai et al. (2003) found that paired designs generally increased the power and 

decreased the number o f samples needed in studies o f forest floor C change, which 

reflects the positive influence pairing has on the power o f a study design (Steidl and 

Thomas 2001). A paired design could be implemented by collecting control samples at 

the beginning o f an experiment that are equidistant to the surrounding trees in reference 

to the trenched plots, and then using distance as a pairing mechanism. We have found 

that 0.15 m diameter root exclusion collars (effectively 0.07 m2 trenched plots) provided 

similar heterotrophic respiration estimates as the large trenched plots (6 m2) (Vogel, 

unpublished data). This means trench size could be reduced and plots spaced more 

evenly between trees. Small trenched plots could also make the measurement o f fDOC 

easier because the entire underside o f the trenched plot could be underlain by a lysimeter. 

An improved approach to our decomposition method would be to sort and weigh the live 

and dead pool at the beginning and end o f the experiment and estimate live root mass loss 

(Santantonio and Grace 1987). This approach introduces the error o f root sorting but 

would provide an estimate o f Rhr that includes fDOC. Also if  a researcher used the latter 

approach, then the trenched plot barriers could be made permeable to water movement in
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the soil profile since control area gas flux would no longer be a confounding factor. 

Unfortunately, the rooting and allocation characteristics o f black spruce may make 

trenched plots uniquely suited to it, but difficult to successively employ in other forest 

types (Hart and Sollins 1998).

CONCLUSIONS

Black spruce forest floor turnover time is less than previously reported when root 

growth and decomposition are accounted for, and overall, forest floor C balance is 

extremely sensitive to the exclusion o f new root growth and root severing. For the three 

sites, the minimum estimate for net root increment (216, 290, 493 g C m"2 y"1, Table 2) is 

higher than root production reported for Canadian black spruce (101-120 g C irf2 y"1) 

(Steele et al. 1997, O'Connell et al. 2003b), but are closer to estimates for Alaskan black 

spruce (120-168 g C n f2 y '1) (Ruess et al. 1996, Ruess et al. in press). This might reflect 

the high degree o f belowground C allocation in Alaskan forests (Chapter 1), or that 

coarse root primary production, soluble C stored in live roots, or the conservation of 

senesced roots and mycorhizzae in the forest floor are more important to soil C balance 

than previously accounted for.

We believe the net root increment (NRI) estimate is too high for one site (low-sp), 

possibly because o f the influence o f permafrost on soluble C loss and overall the NRI 

estimates likely include an extra dissolved organic C flux. However, for two sites, the 

average forest floor C accretion rate we estimate is 166 g C m"2 y"1 when using the net 

root increment estimates from the decomposition approach. This forest floor accretion 

rate is only greater by 66 g C n f2 y"1 from chronosequence work in Alaska (O ’Neill
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2000). For the two forests where NRI seems reasonable, combining aboveground 

production estimates from Chapter 1 with the C accretion in the forest floor suggests the 

forests sequester 212 g C m"2 y '1. This degree o f C accumulation differs from most 

studies o f mature black spruce which have indicated they annually gain small C amounts 

or even lose C (Goulden et al. 1998, O'Connell et al. 2003b, Ruess et al. in press), but one 

eddy-covariance study reported an annual uptake o f 222 g C m"2 y"1 (Rayment and Jarvis 

1999). With the methodological improvement we suggest, the impact o f roots on forest 

floor C balance may be more easily examined with trenched plots than other methods that 

scale fluxes up to annual estimates. Reliable estimates o f root contributions to ecosystem 

C balance in mature black spruce forests may be attainable within 3-4 years o f trenching 

if  a paired design is employed in forests aggrading forest floor C.
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Table 3 -1 . Root distribution (g C m"2) between live and dead, and fine (<2mm) and 

coarse (>2mm) roots for the different soil layers in the control areas. Values represent 

mean (±standard error, n=3). Root estimates were not made for site mid-dp

Fine Roots Coarse roots

Site Soil Layer Live Dead Live Dead

........... ~g C m
-2

high-np L 10 ± 3 8 ± 4 0 ± 0 0 ± 0

F/H 5 3 8 ± 153 293 ±116 262 ± 72 35 ± 9

A 42 ± 8 130 ± 19 120 ±61 13 ± 6

mineral 55 ± 22 105 ± 25 64 ± 60 19 ± 14

Total 645 ±161 536 ± 139 447 ± 164 67 ± 15

low-sp L 9 ± 2 11 ± 6 1 ± 1 4 ± 3

F/H 427 ± 93 682 ± 152 336 ±205 48 ± 16

A 86 ± 56 100 ± 4 22 ± 9 51 ± 48

mineral 5 ± 1 26 ± 3 3 ± 2 6 ± 2

Total 527 ±145 819 ±145 362 ± 196 108 ± 49
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Table 3- 2. Net root increment (NRI) estimates based on the difference in forest floor (AFF) 3 years after trenching. The three 

year cumulative estimate o f trenched plot respiration (Rh+Rhr) is used to estimate excised root decomposition (Rhr)a. In an 

alternative method, the decomposition of excised roots is estimated from root biomass and a published decomposition rateb. 

Understory production (NPPuc) is not found in the trenched plots and is subtracted from the forest floor change. The 

cumulative RI estimates are divided by 3 years for an annual estimate.
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Forest floor (g C nf2) AFF Rh+Rhr NPPyc Rhr (g C m '2) NRI=AFF-Rhr-NPPuc NRI (g C -2 -Km y )

Site Control Trench (g C m'2) ( g C m 2) (g C n f2) Respa Decompb Resp Decomp Resp Decomp

high-np 4837 3669 1168 451 29 77 490 1063 649 354 216

mid-dp 5031 3774 1257 537 5 103 383 1149 869 383 290

low-sp 5427 3537 1890 495 30 81 410 1779 1450 593 483

aExcised root decomposition (Rhr) estimated as 17% of trenched plot respiration 

bExcised root decomposition estimated from exponential decay of fine and coarse roots (Chen et al. 2002).



Table 3- 3. The average root pool mass (g C m '2)(fme roots3 and other rootsd) and l4C age 

o f pools. Root increment is calculated from the fine root pool divided by the pool's l4C 

age. An increment is also estimated from pool size o f coarse roots and other fine roots in 

the A and mineral horizon divided by stand age. The two increments are summed to 

estimate total NRI. The AI4C for individual live and dead pools and instrument precision 

found in Appendix 1.
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Fine Roots" A I4C 14 /-1  bC age l4C Finec Other roots1' Other roots' Total

site live+dead (years) NRI live+dead NRI NRI

high-np 849 155 ± 4 7.5 ± 1 113 845 8 121

low -sp 1149 173 ± 2 6 9.3 ± 3 124 687 6 130

afineroot mass (g C m"2) o fL  and F/H horizon, from Table 1.

h estimated from Fig. 2, difference between year sam pled (June o f  2000) and root age on l4C curve. 

c Fine root p o o l/l4C age

^Coarse roots and live and dead fine roots (g  C m'2) in A  and mineral soil, from Table 1. 

eNRI =  "other root pool"/stand age.
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Table 3- 4. The turnover time (years) o f the 

forest floor (L,F, and H) estimated from 

dividing control forest floor C (g C m"2) by 

either litter, heterotrophic respiration or 

litter+root increment (g C m"2 y '1)

site

Turnover Time (years) 

Litter Control Litter+RI

high-np 76 29 16

mid-dp 63 29 14

low-sp 102 34 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



151

Overstory jyj0ss Understory Heterotrophic
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Figure 3 -1 . Carbon cycle components contributing to forest floor carbon balance in- and 

outside trenched plots. The gray arrows (net root increment, excised root decomposition, 

and understory litter) are fluxes not shared by the other pool. The dashed arrows 

represent fluxes not directly measured (dissolved organic carbon and particulate organic 

matter) but which may differ between trenched plots and control areas
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Figure 3 -2 . Atmospheric AI4C and the probable year position of live and dead roots 

sampled from the F/H horizon o f two sites. There are 5 live and dead root samples but 

most overlap with one another and are not individually detectable in graph. The period of 

root sampling was the first week o f June 2000.
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Figure 3- 3. The control area and trenched plots total forest floor C (L, F, and H horizon) 

for the three sites (mean ± standard error). P-values above bars represent within site 

comparisons, and the p-value from comparing all trenched plot and control areas across 

sites is in the upper right hand comer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



154

2
DO

Oo

<DuO
U h

140

120

100

80

60

40

20

□  Control (n 10) 

■  Trench (n=3)

High-np Mid-dp Low-sp

Figure 3- 4. The control area and trenched plots total forest floor N (L, F, and H horizon) 

for the three sites (mean ± standard error). Treatment and control area are not 

significantly different from one another
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Figure 3- 5. Estimated divergence between trenched plot and control forest floor C, or 

effect size (g C m '2) with time since trenching. Forest floor accumulation for control 

areas is from the sum o f net root increment (NRI, Table 2, decomp method), litter (L), 

and moss and understory productivity (NPPm and NPPuc) minus heterotrophic 

respiration (Rh). An estimate o f average forest floor C accumulation rate (FFA) in the 

control area is used for comparison. Trenched plots lose C from the sum o f Rh and the 

decomposition o f newly dead roots (Rhr). Values are mean (±standard error) o f estimates 

for the three sites.
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Appendix 1. The AI4C o f live and dead root pools 

for two o f the sites. Value in parentheses are 1 SD 

o f the accelerator mass spectrometry (AMS) 

radiocarbon measurement.

Site Sample Live A 14C Dead A14C

high-np 1 159 (6) 154 (5)

2 151 (5) 157 (5)

low-sp 1 212 (6) 134 (5)

2 166 (6) 191 (6)

3 167 (6) 168 (5)
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SUMMARY AND SUGGESTED FUTURE WORK

Climate warming at high latitudes is generally expected to increase decomposition 

rates, soil respiration, heterotrophic respiration, and plant primary production (Chapin et 

al. 2000). From this study, it appears faster decomposition rates do result in greater 

heterotrophic respiration and aboveground plant primary production. Soil respiration, 

however, may not increase with warming because it is dominated by root respiration in 

black spruce forests. Root respiration and soil respiration were both greater at the site 

with the slowest decomposition and least aboveground production. This suggests the 

amount o f C allocation to roots will control soil respiration in black spruce forests and 

that this aspect o f C cycling will need to be understood before general predictions on 

ecosystem response to environment can be made.

The environmental factor that controls C allocation was difficult to discern from 

the three sites in this study, but across the biome, moisture deficit was the most apparent 

control. The site with slower decomposition was only marginally cooler than the other 

two sites and the difference only apparent during May and early June. Decomposition 

rates may have affected nutrient availability, as suggested by the more depleted foliar 15N 

at the slow decomposition site. This may have resulted in greater belowground C 

allocation by spruce. Foliar N concentration, however, did not differ among sites and root 

N concentration was greater at the slow decomposition site. Soil moisture deficit may 

have been a factor for both decomposition and plant C allocation; the slow decomposition 

site had greater l3C content in the foliage than the shallow permafrost site. A soil 

moisture deficit effect best fits this study into the cross biome trend apparent from a
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literature review. That is, soil and root respiration greatly increase with moisture deficit 

across the boreal biome and because Alaska is drier than most other regions, the black 

spruce here cycle a greater amount o f C through the root system.

Winter soil respiration trends indicated this component o f ecosystem C cycling 

deserves further study. Although winter soil respiration was only 5 to 15% o f  annual soil 

respiration, it was less at the site with warmer winter soil temperatures, which suggests 

some other environmental factor (i.e. moisture) or organic matter characteristic is 

affecting winter efflux. Root exclusion also decreased winter respiration at two o f the 

sites, indicating either root detritus as a C supply to microbes or root maintenance 

respiration affect winter soil respiration. Climate warming is expected to be greater 

during the winter season in high-latitude regions (Houghton et al. 2001), but based on the 

results from this study, controls on winter respiration may require further investigation 

before it can be concluded that winter soil respiration will increase simply as a function 

o f temperature.

Based on the rate o f microbial respiration in the incubation study, very little 

difference existed among sites in organic matter quality. The only respiration differences 

occurred at the lowest incubation temperature (0 °C), where the trends followed the in- 

situ winter soil respiration measurements. One hypothesis in Chapter 2 was that 

microbial respiration from the site with the slowest in-situ decomposition would have the 

greatest temperature sensitivity. This occurred, but was a function o f less microbial 

respiration at low temperatures and not greater respiration at warmer. The temperature 

sensitivity index (Qio) o f microbial respiration did not correlate to any aspect o f soil
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organic matter chemistry. The sensitivity o f Qio to the low temperature mineralization 

rates and the difficulties in determining how to calculate Qio, make it a poor tool for 

understanding the links between temperature sensitivity, microbial processes, and organic 

matter chemistry.

Organic matter chemistry influenced microbial processes in unexpected ways. I 

hypothesized that the accumulation of polysaccharides due to inhibited decomposition 

would result in greater microbial respiration. Although microbes did preferentially 

consume polysaccharides during the course o f the incubation, microbial respiration and 

microbial biomass were negatively and positively correlated, respectively, to the 

proportion o f polysaccharides. These results suggest microbes used polysaccharides but 

they were converted to biomass and not CO2 . The decomposition o f an organic matter 

compound may not directly relate to the production o f CO2 because o f lags caused by 

microbial turnover time.

Temperature influenced mineralization processes to a greater degree than did the 

organic matter attributes for a site. Across sites, the proportion o f polysaccharides 

consumed during the incubation was positively correlated to net N mineralization, 

suggesting a link between organic matter quality and N availiability. Differences in net N 

mineralization among sites did not suggest N availability was the reason for greater 

allocation belowground at the lowest decomposition site, however, in-situ measurements 

o f N availability would better address this possibility.

The importance o f root processes on soil C balance was also apparent based on 

the results in Chapter 3. Although it is generally assumed that the amount o f soil C is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



160

relatively insensitive to C inputs on annual basis, a significant difference was observed 

between the forest floor C in- and outside root exclusion areas after three years. From the 

difference in C between treatment and control and using two different modeling 

approaches, I estimated net root increment (root production minus decomposition) for the 

three stands to range between 216 and 583 g C m"2 y"1. An alternative analysis based on 

the 14C age o f the live and dead root pools, indicated root increment was 120 and 131 g C 

n f2 y"1 at two o f the sites. The difference between the two methods may indicate that a 

significant fraction o f annual root turnover is converted to soil organic matter or that 

trenched plots result in an extraordinary loss o f dissolved organic carbon. Nonetheless, 

the forest floor turnover time o f black spruce forests appear much lower than past 

estimates have indicated (Van Cleve et al. 1983).

The high degree o f belowground C allocation in these ecosystems and the 

concentration o f roots near the soil surface may make the trenched plot method a valuable 

new tool in determining the role roots play in maintaining forest floor C balance in black 

spruce ecosystems. The method can be improved, however, from the approach I used. 

Foremost, trenched plots need not be as large as the ones in this study (6 m 2). Very small 

trenched plots (0.07 m2) inside and outside large trenched plots provided heterotrophic 

respiration estimates indistinguishable (6% less, n=6) from the large trenched plots.

Small trenched plots would be superior to large plots because they can be spaced more 

evenly between trees and the flux o f dissolved organic carbon easily measured with a 

lysimeter underlying the trenched plot. A second improvement to the method would be 

estimating root mass at the beginning and end o f the experiment in and outside the
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trenched plot. Although this introduces the expense and error o f measuring root mass, 

root decomposition and accumulation estimates would be more firmly grounded. Finally, 

small trenched plots should be paired to control sample areas by the distance to the 

nearest tree(s). Pairing generally increases the power o f a study design (Steidl and 

Thomas 2001, Yanai et al. 2003), and using tree distance may reduce the variability in 

forest floor C sampling. In a black spruce forest aggrading forest floor C, a significant 

difference between trenched plot and control area forest floor C may be detectable within 

3-4 years o f installation with a reasonable number o f trenched plots.

Black spruce as a species is generally slow growing and adapted to cool and wet 

soil environments (Van Cleve et al. 1983, Viereck et al. 1993). The environmental 

conditions that define its habitat in the boreal biome will change with proposed climate 

warming and alter the C cycle o f these forests. Each component o f C cycling in black 

spruce ecosystems will likely also change, but o f these, soil respiration and root 

respiration are the most variable across environmental gradients and may respond to 

climate warming in unexpected ways. From this study, it appears inhibited 

decomposition results in greater C allocation to the root system o f black spruce and 

greater soil respiration. Thus, faster decomposition with climate warming may result in 

less soil respiration, despite heterotrophic respiration and aboveground production 

increasing. It is unclear from this study whether allocation shifts annually in response to 

environment, but if  it does, this would have implications for interpreting tree ring 

response to environment and for using empirical soil respiration models over multiple 

years for a given location.
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The environmental mechanism controlling shifts in allocation may be temperature 

or moisture availability but it is difficult to determine which factor is preeminent. 

Environmental control on allocation may actually represent nutrient availability control 

because o f decomposition dynamics. Manipulative experiments that adjust soil moisture 

and temperature, and that measure both above- and belowground components o f the C 

cycle, are necessary in black spruce ecosystems. At a minimum in a manipulative study, 

root respiration should be separated from total soil respiration, but ideally root growth 

and changes in root N concentration would also be monitored. Root growth and 

mortality have a substantial influence on ecosystem and soil C balance, and these aspects 

o f black spruce growth require further study in manipulated environments. The 

experimental design should also include a priori measurements o f soil C that have enough 

statistical power to detect the changes in soil C that will likely occur with a warming 

experiment (Horn 1986).
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