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ABSTRACT

The mineralization, retention and movement of soil nitrogen (N) was investigated 

in forest types which encompass one of the most dramatic plant successional transitions 

in the boreal forest -  the shift from mid-succession stands of balsam poplar (Populus 

balsamifera) to late-succession stands of white spruce (Picea glauca). Nitrogen is an 

essential nutrient that often limits plant productivity in the boreal forest. However, N 

uptake by plants is constrained by the activity of soil microbes which break down organic 

molecules and release N to plants (e.g., as amino acids, ammonium and nitrate). The 

availability o f labile carbon (C) is generally thought to limit soil microbes; however, it 

has been hypothesized that soil microbes in stands o f balsam poplar are actually N 

limited. Balsam poplar trees also have large N requirements; thus, the overall demand for 

N is considerable in these stands and biological N retention should be high. In contrast, 

lower primary productivity and more recalcitrant soil organic matter in white spruce 

stands should result in comparatively less immobilization and less retention of N in this 

stand type.

Experimental N additions resulted in the acceleration of net N mineralization and 

nitrate leaching in both stand types, probably because biological N demand was rapidly 

satiated. In balsam poplar soil, net nitrification was greatly stimulated by N additions, 

but in white spruce soil only ammonification was stimulated, indicating that different 

mechanisms control N transformations in these stands. Nitrogen additions did not affect 

soil microbial biomass in either stand. Results from a laboratory soil incubation study
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indicate that soil organic matter in late succession stands was more labile and the 

mineralization of C and N were significantly more temperature sensitive than in mid 

succession. Thus, climatic warming may result in the release of a larger proportion of 

soil C and N from late succession stands. A study examining soil solution N 

concentrations and movement also showed that the Tanana River is a source of nitrate to 

the active layer during the growing season in both mid- and late succession stands.
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1

C hapter 1

An Introduction to Successional Control Over Soil C and N Transformations

Nitrogen (N) is a fundamental element within protein molecules and therefore is 

needed by all forms of life on Earth. As N 2 gas, N constitutes the largest fraction (> 78%) 

of gas within the Earth’s atmosphere. Thus, it is somewhat paradoxical that N is also the 

element which limits plant growth in a wide range of terrestrial biomes (Vitousek & Field 

2001). Plant N limitation is thought to be particularly prevalent in high-latitude 

ecosystems such as the boreal forest (Nasholm et al. 1998; Persson & Nasholm 2001) due 

to the spatial and temporal extent (well into the growing season) of cold soil. Cold soil 

conditions limit the rate of microbially-mediated organic matter depolymerization 

(breakdown) and restrict the release of useable forms of N (amino acids, NH4 , NO 3) to 

plants (Figure 1.1; Klingensmith & Van Cleve 1993; Schmidt et al. 1999; Jonasson et al. 

2001; Hobbie et al. 2002; Schimel & Bennett 2004).

While the boreal forest is characterized by a short growing season and cold 

conditions, it is currently experiencing the initial effects of a warming climate (Houghton 

et al. 1996; Serreze et al. 2000; Hassol 2004; Overland et al. 2004). The warming of this 

cold-dominated region could induce a substantial increase in the mineralization of large 

stores o f soil organic matter, which, in turn, could promote further atmospheric warming. 

However, because C fixation by boreal plants is largely thought to be N limited, an 

intimate knowledge of the controls over soil N transformations is fundamental to 

forecasting how warming will influence the net balance of C within the boreal forest
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(Hobbie et al. 2002). For example, how sensitive is the heterotrophic utilization of soil 

organic matter to increases in temperature in the boreal forest? Does successional stage 

have a large influence on the quality of soil organic matter and therefore the rate of N 

mineralization? To what extent could microbial N demand control N losses if 

mineralization rates were to increase? The research presented within this dissertation 

addresses these questions while also investigating biologically-driven modifications to 

soil N and C transformations brought about by a natural alteration of the dominant plant 

community over time (plant succession).

Plant succession in the boreal forest can have a dramatic influence on ecosystem 

N and carbon (C) cycling (Flanagan & Van Cleve 1983; Fox & Van Cleve 1983; Van 

Cleve et al. 1996). A prime example o f successional control over biogeochemical 

processes can be seen on the floodplain ecosystems o f Alaska’s interior (Figure 1.2; 

Viereck 1989) where there is a major modification to the soil chemical and physical 

environment as mid-succession stands of balsam poplar (Populus balsamifera) succumb 

to dominance by white spruce (Picea glauca) during the advent o f late succession 

(Viereck et al. 1983; Van Cleve et al. 1991). As balsam poplar is shaded out by white 

spruce there is a decrease in the amount of leaf litterfall, which enables moss to establish 

in the understory (Viereck et al. 1993a). A progressively thicker layer o f moss acts as 

insulation and inhibits soil warming during the summer months such that surface 

horizons remain frozen throughout an ever-increasing portion o f the growing season. 

Eventually the soil becomes permanently frozen year-round (permafrost) with only a 

shallow active layer that is unfrozen during the growing season. Plant litter produced

2
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during late succession contains high ratios of lignin:N and C:N relative to earlier 

successional stages and is generally thought to be more recalcitrant to microbial 

breakdown (Van Cleve & Viereck 1981; Flanagan & Van Cleve 1983). Thus, the 

successional transition from a deciduous to coniferous-dominated landscape in the boreal 

forest is a fundamental turning point in which plant species composition mediates 

declines in soil temperature, organic matter decomposition, and rates of nutrient cycling.

In this research I used a combination of in situ N fertilizer additions, field and 

laboratory soil incubation experiments, and chemical analyses o f soil and water samples 

to test several predictions regarding succession-induced changes to soil N and C 

transformations during the transition from mid to late succession. Specific hypotheses 

and predictions will be given in detail within the subsequent chapters; however, an 

overarching assumption when this research began was that the demand for N by plants 

and soil microbes would be higher in mid-succession stands o f balsam poplar than in late- 

succession stands of white spruce. Higher N demand in balsam poplar stands, I reasoned, 

should limit leaching losses o f biologically-available N forms and allow for the microbial 

immobilization of N added during experimental additions.

In the first study (Chapter 2) experimental N additions (100 kg N-ha'l-yr‘ 1 as 

NH4NO3) were used to investigate microbial N demand in balsam poplar and white 

spruce soil. I predicted that soil microbes in balsam poplar stands would readily 

accommodate N additions through N immobilization and increased microbial biomass 

with only small changes to soil N transformations or evidence o f N leaching losses. In 

contrast I predicted that N additions in white spruce stands would result in the leaching of

3
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biologically-available forms of dissolved N below the main rooting zone and would cause 

an immediate increase in net N transformation rates because microbial demand for N 

should be satisfied rapidly. To examine these predictions, intact buried soil cores were 

incubated in control and fertilized plots of balsam poplar and white spruce. The in situ 

soil incubations took place each month (or over winter) for two years (1999 -2001). 

From these soil cores, net N mineralization rates, microbial biomass C and N and nitrate 

leaching to deeper soil layers were measured.

In the second study (Chapter 3), arrays of tension lysimeters were installed within 

and below the main rooting zone in balsam poplar and white spruce stands in order to 

investigate the leaching o f dissolved organic N (DON) and inorganic N (DIN) below the 

main rooting zone during the 2 0 0 0 - 2 0 0 1  growing seasons. I predicted that the ratio of 

DON:DIN in the soil solution below the rooting zone would be much higher in balsam 

poplar stands than in white spruce stands. This prediction was, again, based on higher 

relative N demand in balsam poplar stands which should have resulted in a greater 

utilization o f the biologically-available DIN. I also reasoned that much o f the DON 

likely consists o f recalcitrant molecules that, for the most part, are not available for 

utilization by plants or microbes. Thus, I assumed that losses of DON were not under a 

high degree of biological control. Major ions in the soil solution and river water also 

were measured in this study in order to investigate the possibility that soil solution moves 

into the soil active layer during the growing season.

In the third and final study (Chapter 4), the temperature sensitivity o f soil C and N 

mineralization was investigated in soil collected from mid and late succession stands.

4
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The goals o f this study were to: (1) test the hypothesis that soil organic matter becomes 

more recalcitrant during late succession; (2 ) investigate the temperature sensitivity of 

organic N and C mineralization due to predicted climatic warming; and (3) determine 

whether the lower rates of net N mineralization generally observed in white spruce soil 

are due to lower gross N mineralization or greater microbial immobilization. Organic 

soil from balsam poplar and white spruce stands was incubated at four temperatures (5, 

10, 15 and 20°C) in the laboratory for over 300 days. Gross N mineralization and 

microbial biomass were measured during the first month of the incubation while net N 

mineralization was measured periodically for 182 days. The rate and cumulative amount 

of C mineralization was measured for the entire study.

Study Sites

This research was conducted within or adjacent to the Bonanza Creek Long Term 

Ecological Research Site (BNZ-LTER), approximately 30 km south o f Fairbanks, Alaska 

USA (64°45' N, 148°18' W; Figure 1.3). Balsam poplar sites (LTER sites BP1, BP2 and 

BP3) contained trees 80-100 years old with a substantial understory o f rose (Rosa 

acicularis) and N-fixing thinleaf alder (Alnus tenuifolia). White spruce sites (LTER sites 

FP4A, FP4B and FP4C) generally consisted of trees 200+ years in age and an understory 

of alder (A. crispa and A. tenuifolia) and rose; however, alder was not present at the 

FP4C site. White spruce soils were covered by a carpet of moss approximately 10-15 cm 

thick (Hylocomium splendens and Pleurozium schreberi). All research sites were on 

islands within the active portion of the Tanana River floodplain, and all soil profiles

5
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contain multiple buried organic horizons as a result o f past flooding events. The buried 

organic horizon closest to the soil surface was likely the result o f a massive flood in 

1967. Frozen soil in balsam poplar sites was gone by the end of July but persisted 

throughout the entire growing season in white spruce sites (Brenner et al. In Press). Soil 

temperature was generally highest around the second week in August in both stand types 

with maximum values ranging from 10-14°C at 5 cm to ~5°C at 20 cm (LTER 

unpublished -  See Reference section). Select soil characteristics for these stands can be 

found in Table 2.1, and a complete overview of the climate, soil and vegetation of these 

stands can be found in Viereck et al. (1993a; 1993b).
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Figure 1.1. A contemporary view of soil N transformations from Schimel & Bennett (2004). Here, microbial 
depolymerization of soil organic matter controls successive transformation processes such as N mineralization and the 
availability o f amino acids, NH4 and NO3 for plants. Used with permission from the Ecological Society o f America, 2004.
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Figure 1.2. A boreal forest primary successional sequence along rivers in interior Alaska. Modified from Viereck (1989).
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Study Sites

Figure 1.3. The location of balsam poplar (squares) and white spruce (triangles) study sites. All study sites were located 
along the Tanana River in interior Alaska.



C hapter 2

Nitrogen Additions to Pristine, High-Latitude, Forest Ecosystems: Consequences for Soil 

Nitrogen Transformations and Retention in Mid and Late Succession1

A bstract

We hypothesized that differences in microbial and plant N demand in balsam poplar and 

white spruce stands would control in situ net N transformation and retention following N 

additions. Throughout the study, N fertilizer (NH4NO3) was added in three increments 

during the growing season, giving an annual N addition of 100 kg ha^ y r'1. In balsam 

poplar, fertilization induced a large (-285%) increase in annual net nitrification but 

tended to reduce net ammonification. In white spruce, fertilization generally stimulated 

net N mineralization (via higher net ammonification) while net nitrification increased 

only slightly or remained unchanged. For 0-20 cm soil cores o f both stand types, 

fertilization rapidly increased extractable DIN pools; however, the absolute amount of 

this increase was significantly larger in white spruce than in balsam poplar. In both 

stands, extractable NO3 -N in 20-30 cm mineral cores increased within the first year 

following N additions, indicating that leaching of NO3-N was fairly rapid. Fertilization
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did not significantly alter microbial biomass N or C. After four years o f fertilizer 

additions there were slight but insignificant changes in fine root C:N and % N. The 

immediate alteration of N transformation rates and extractable DIN pools, notably the 

higher NO3-N at the 20-30cm depth, may indicate that this ecosystem is sensitive to 

atmospheric N deposition. However, we also speculate that plants and microbes in this 

ecosystem, in which the extractable DIN pool is dominated by NH4 (NH4-N: NO3-N = 

18-30), might be poorly adapted or physiologically unable to assimilate significant 

quantities of NO3.

Introduction

Prompted by concern for the large increase in human-derived nitrogen (N) inputs into 

terrestrial ecosystems during the past several decades (Galloway et al. 1995; Vitousek et 

al. 1997; Asman et al. 1998; Fowler et al. 1998; Mosier et al. 2001), a number o f studies 

in recent years have examined the consequences of experimental N additions to soil 

nutrient and carbon (C) cycling in temperate and boreal forest ecosystems (Aber et al. 

1998; Wright & Rasmussen 1998). These experiments have provided insights into 

factors regulating nutrient cycling and retention in forest soils and have helped increase 

our knowledge of the consequences o f human-alterations to the global N and C cycles. 

These studies have shown that forest soils often respond to such additions with increased 

leaching of nitrate (Tietema et al. 1997; de Schrijver et al. 2000) and base cations (Adams 

et al. 2000; Hruska et al. 2001), soil acidification (Fenn et al. 1998; Bergholm & Majdi
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2001), and increases in N transformation rates, notably net nitrification (Aber et al. 1995; 

Gundersen et al. 1998; Tietema 1998; Andersson et al. 2001).

Nearly all studies which have simulated N deposition in temperate and sub-arctic 

forest ecosystems, or which have examined increasing ambient N deposition, have taken 

place in the northeastern US and Europe where the deposition of N, sulfur and acid rain 

have been substantial for several decades and also where humans otherwise have altered 

the landscape for centuries and sometimes longer. Thus, there is the potential that forest 

research sites experimentally amended with N were adversely affected by one or more 

anthropogenic disturbances prior to the start of the N additions (Emmett et al. 1998a). 

Additionally, some N-amended sites are on previously agricultural landscapes that were 

once fertilized with inorganic and/or manure N. Therefore, despite controls on the 

amounts o f N applied and, to a lesser degree on land-use history (Aber & Driscoll 1997), 

it has not always been clear to what extent plants and soils responded to the experimental 

N additions alone versus those plus the combination o f long-term atmospheric pollutants, 

prior fertilization, and land-use change.

Forests in interior Alaska are part of a pristine landscape in a region which has 

been negligibly influenced by logging or other human disturbances (Van Cleve & 

Viereck 1981) and which has very low background levels o f ambient wet N deposition 

averaging approximately 0.21 kg N-ha‘1-yr' 1 (NADP unpublished). This rate is similar to 

that reported by Perez et al. (1998) for an unpolluted temperate forest in southern Chile 

(0.1 kg N-ha’1-yr'1) but is substantially smaller than values reported for forests o f western 

Europe and Scandinavia (2.6-59 kg N ha^ yr"1; wet + dry) (Emmett et al. 1998a; Wright
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& Rasmussen 1998), and the northeastern US (5-19 kg N-ha'1-yr'1; wet + dry) (Ollinger et 

al. 1993; Likens & Bormann 1995; Magill et al. 2000) where most experimental N- 

deposition studies have taken place. Low ambient N deposition and a historic lack of 

disturbance from pollution or land clearing make Alaska’s interior forests an ideal 

location to investigate the consequences of N additions to soil nutrient cycling in high- 

latitude forest ecosystems.

In this study we examined the influence of experimental N additions to deciduous 

and coniferous forest stands which represent mid and late stages o f a primary 

successional sequence along the Tanana River floodplain in interior Alaska. Primary 

succession in the floodplain ecosystem is initiated by the deposition o f glacially-derived 

silt loam alluvium, on which the early succession plant communities (e.g., willow (Salix 

spp.) and thin-leaf alder (Alnus tenuifolia)) are established. The continued addition of 

mineral alluvium during flooding events builds terraces several meters above the river on 

which successive plant communities develop. During early succession the N cycle is 

relatively open, with large amounts of soil N accretion (up to 164 kg N-ha' 1 -yr'1) due to 

N 2 -fixation by thin-leaf alder (Van Cleve 1971; Klingensmith & Van Cleve 1993a). 

Although, N inputs into this system have been shown to rapidly enter a stable organic 

matter pool and are not immediately available for microbial processing (Kaye et al. 

2003). Balsam poplar (Populus balsamifera L.) replaces thin-leaf alder to begin the mid- 

successional period 20-30 years after initial alluvium deposition, though alder remains a 

significant component of the understory. Soil N cycling slows during this stage with 

much reduced rates of N2-fixation (avg. 38 kg N-ha' 1 -yr'1; Uliassi & Ruess 2002) and soil
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N accumulation, and vegetation that is thought to be increasingly N limited (Van Cleve & 

Viereck 1981; Flanagan & Van Cleve 1983). These deciduous stands are eventually 

dominated by white spruce (Picea glauca (Moench) Voss) after approximately 150 years 

(Van Cleve et al. 1996).

The transition from balsam poplar to mature white spruce is characterized by 

significant changes in nutrient cycling processes that are induced by changes in 

vegetation, notably the formation of a substantial moss layer (Van Cleve et al. 1991; 

Viereck et al. 1993a). Accompanying this transition there is a general decline in average 

soil temperatures, primary productivity, soil organic matter decomposability (Flanagan & 

Van Cleve 1983; Van Cleve et al. 1991) and net soil N transformation rates 

(Klingensmith & Van Cleve 1993b; Van Cleve et al. 1993b). While primary productivity 

o f both balsam poplar and white spruce may be limited by soil N or P availability, soil 

microbial communities in white spruce stands are likely limited by labile C due to inputs 

of recalcitrant litter with a high lignin:N ratio (Flanagan & Van Cleve 1983). In contrast, 

the soil o f balsam poplar stands contains a large pool of labile C from low-molecular 

weight phenolics, and heterotrophic microbes in this stand type have been theorized to be 

N limited (Clein & Schimel 1995; Schimel et al. 1998). Thus, within the span of 50-150 

years there may be a shift from N-limited to C-limited soil microbes corresponding to 

changes in aboveground plant community structure.

The objective o f this study was to examine the initial effects of approximately 3.5 

years of experimental N additions (100 kg N-ha'1-yr'1) to stands o f balsam poplar and 

white spruce in order to determine how major differences in plant species composition
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and associated soil properties affect soil N transformations and retention. Specifically, 

we hypothesized that soil microbes in late-successional stands of white spruce (C limited) 

would be ineffective at immobilizing added N, and would rapidly exhibit characteristics 

o f “N saturation” (Aber et al. 1989; Aber et al. 1998), including an increase in the pool 

size of nitrate at depth, an increase in net mineralization and net nitrification, and a 

decrease in soil pH. In contrast, we hypothesized that stands of balsam poplar, in which 

soil heterotrophs are thought to be N limited and plants have higher rates of net primary 

productivity (higher N demand), would readily accommodate N additions through N 

immobilization and increased microbial biomass with lesser changes to soil N 

transformations or evidence o f N leaching losses than in white spruce.

M ethods

Study Sites

This study took place within the Bonanza Creek Long Term Ecological Research Site 

(BNZ-LTER) located along the Tanana River in interior Alaska, approximately 30 km 

south of Fairbanks (64°45' N, 148° 18' W). Annual precipitation in this region is very 

low, averaging only 269 mm, and is exceeded by potential evapotranspiration o f 466 mm. 

The mean annual air temperature is -3.7 °C with extremes ranging from -50 °C in winter 

to 35 °C in summer (Viereck et al. 1993b). Our research sites were in stands of balsam 

poplar and white spruce located on terraces >3 m above average river height on islands 

within the active portion of the floodplain. All sites had frozen soil throughout a 

significant portion of the growing season; however, balsam poplar sites became ice-free
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by early August while white spruce sites generally contained frozen soil until at least 

early October (Figure 2.1). The soils in these sites are classified as Typic Cryofluvents 

(Viereck et al. 1983; Van Cleve et al. 1993a) and consist of silt with occasional pockets 

of sand. Mineral soils on the floodplain are alkaline (pH > 7) due to the high 

concentrations of CaC0 3  from the weathering of carbonate rock by glaciers in the Alaska 

Range (Marion et al. 1993a; Marion et al. 1993b). As a result of flooding events all sites 

contained multiple buried organic layers, although the number, depth and thickness of 

these varies among sites.

Balsam poplar sites (BP1, BP2 and BP3) consisted o f mature, uneven stands with 

some individuals exceeding 1 0 0  years of age and a dense understory dominated by thin- 

leaf alder, rose (Rosa acicularis) and intermittent white spruce. White spruce sites (4A, 

4B and 4C) consisted of both mature and senescing stands 200+ years in age with an 

understory of thin-leaf alder, rose and feather mosses (Hylocomium splendens and 

Pleurozium schreberi). Alder (Alnus crispa and A. tenuifolia) was a much smaller 

component of the understory in white spruce sites than in balsam poplar and was nearly 

absent at the 4C site. Table 2.1 lists above- and belowground biomass and productivity 

for these sites. A complete description of plant and soil characteristics for the floodplain 

successional sequences can be found in Viereck et al. (1993) and on the Bonanza Creek 

LTER website (LTER unpublished -  See References Section).

N-fertilized (30 x 30 m) and control plots (30 x 30 m) were established at each 

site (n=3 sites per successional stage) when fertilizer additions began during the summer 

of 1998. Ammonium nitrate (NH4NO3) as dry pellets was applied by hand spreader to
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fertilized plots in three equal portions over the course of the growing season (June- 

August) at a rate of 100 kg N ha ' 1 yr'1. Fertilizer was applied each summer during this 

study and was ongoing as of 2003.

Net Nitrogen Transformations

Net rates of nitrogen (N) mineralization, nitrification and dissolved organic N 

production were assessed in situ from August 1999 to August o f 2001 (except for 

September o f 1999) with a modified intact-core incubation technique (Raison et al. 

1987). In our view it was not possible or practical to separate organic and mineral 

horizons without causing a major disturbance to the physical characteristics o f the soil 

due to the high degree o f integration between forest-floor, buried organic horizons and 

mineral soil. Thus, pool sizes, net transformation rates and other dependent variables 

measured in this study were obtained from intact soil cores consisting of both organic and 

mineral soil and are presented on an area basis.

At the beginning of each incubation period five pairs o f soil cores at the 0-20 cm 

depth were randomly collected from each plot with a 5.8 cm ID steel hand corer fitted 

with a 0.5 mm thick plastic sleeve. Cores started at approximately the interface of the Oi 

and Oa layers and included highly decomposed leaf litter in balsam poplar plots and dead 

moss in white spruce plots. One core from each pair was immediately brought to the 

laboratory for processing. The other core, collected within a sleeve pre-drilled with 

approximately 30, 0.5 cm- diameter holes, was placed in a 0.025 mm (1 mil) plastic bag 

within a fiberglass “mosquito mesh” bag, then re-inserted into the soil and covered with
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surface litter. This procedure was designed to keep cores intact and allow the free 

exchange of air while keeping soil moisture constant. Cores remained in the soil for 

approximately 30 days during the growing season (June to October) but were incubated 

from October to late-May during the winter. All cores were kept cool during transport to 

Fairbanks where they were sieved (to 5.6 mm) and homogenized within 24-48 hrs of 

collection. A 10 g sample o f homogenized field-moist soil from each core was extracted 

with 75 mL of 0.5M K2 SO4 for 24 hrs before vacuum-filtration through a l-pm  pore 

diameter glass fiber filter. Subsamples from each core were taken for determination of 

gravimetric water content. Four times during the study (July 1999, July 2000, August 

2000 and September 2000) we also incubated soil from the 20-30 cm depth of the soil 

profile in situ in order to examine net N transformations and extractable N within the 

deeper mineral soil.

Soil extracts were analyzed for ammonium and nitrate + nitrite with an API 300 

segmented flow autoanalyzer (Astoria-Pacific Inc., Clackamas, Oregon, USA). 

Dissolved organic nitrogen (DON) in extracts was determined by digestion with a 

buffered potassium persulfate solution (Cabrera & Beare 1993) followed by nitrate 

analysis.

Net mineral N production was calculated as the total change in extractable NH4-N 

+ NO3-N per incubation period while net production o f ammonium (ammonification) and 

nitrate (nitrification) were separately determined from the change in NH4-N or NO3-N, 

respectively, during the incubation period. Net DON production was calculated as the 

net change in DON per incubation period. Annual net N transformations were calculated
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for the complete 1-yr period (June 2000-June 2001) and the 2-yr period from August 

1999-August 2001 (excluding September-October 1999) by summing N production 

across incubation periods within each plot and -  in the case o f the 2 -yr data set -  

adjusting for the total number of incubation days. Mean annual net N transformation 

rates from individual plots were then used as replicates in the split-plot ANOVA (see 

Statistical Analysis below).

Microbial Biomass

Microbial biomass in soil samples taken from initial cores in June of 2001 was 

determined using chloroform fumigation-extraction (CFE) (Horwath & Paul 1994). 

Fumigated and non-fumigated extracts were digested with potassium persulfate as 

described for DON except that the digestion took place in serum vials fit with rubber 

septa which were crimp-capped. Solutions containing 0 to 150 mg C L ' 1 phenylalanine 

were used as internal digestion standards. Phenylalanine was chosen as a standard 

because it contains an aromatic ring and was thought to provide a good comparison to the 

types of complex molecules (e.g., humics and phenolics) found in soil solution.

Following digestion, serum vials were cooled to room temperature and the 

pressure inside each vial was measured using a pressure transducer (Soil Measurement 

Systems, Tucson, Arizona, USA). A 10-15 cc headspace sample was then drawn into a 

syringe and immediately analyzed for CO2 using a LICOR 6200 (LICOR, Lincoln, 

Nebraska, USA) modified with a syringe-injection system. In order to determine an 

approximate digestion efficiency of samples, the predicted amount of CO2 in the
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headspace o f the phenylalanine standards was calculated using a pressure-volume 

equation and compared to linear curves o f the actual CO2  in the headspace of the 

standards measured with the LICOR. The digestion efficiency of the phenylalanine 

standards was determined to be >90%, and the amount of dissolved C in the samples was 

subsequently determined using the linear regressions from these standards. Digestion 

efficiency was based on C rather than N because it is 10 or more times more prevalent 

than N in the extraction solution and requires the largest portion of oxidizing power from 

the potassium persulfate. After headspace sampling, the solution in each serum vial was 

removed and analyzed for nitrate as for soil extracts. We did not use a conversion factor 

to correct for extraction efficiency of C (KeC) or N (Ken). A conversion factor is 

dependent upon soil properties (e.g., organic matter content) and is likely highly variable 

among floodplain forests due to stand and plot-level variation in buried organic horizons 

and, perhaps, associated differences in microbial community composition.

Soil and Fine-Root C, N  and pH

Total soil C and N were determined for subsamples of homogenized soil cores collected 

throughout the course of the study. Total C and N of live fine-roots (<0.5 mm), removed 

from soil cores collected in August of 2001, were determined using a LECO CNS 2000 

autoanalyzer (LECO, St. Joseph, Michigan, USA). Soil pH from 0-20 cm soil was 

determined on field-fresh samples collected in October o f 2000 (Robertson et al. 1999). 

All pools of C and N in the soil were first calculated per g 105°C oven-dry soil and then 

converted to an area basis using plot-level estimates of bulk density.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

Statistical Analysis

Comparisons o f N transformation rates and pool sizes between individual incubation 

periods were done with a restrictive maximum likelihood (REML) technique (Littell et al.

2002) using PROC MIXED in SAS (SAS 1999). Models with appropriate covariance 

structures (first-order autoregressive, unstructured and Toeplitz) were compared, and the 

model with the lowest Akaike Information Criterion (AIC) value was used for further 

analyses. Standard errors and degrees of freedom were obtained using a Kenward and 

Roger correction (Littell et al. 2002).

Pool size and N transformation rate data from individual soil cores collected 

within each o f the 1 2  research plots were averaged so that each plot represented a single 

replicate. Data that were not collected over several time periods (e.g., fme-roots, 

microbial C and N, soil pH) or that were obtained by averaging values across time (e.g., 

DIN pools and yearly N transformation rates) were analyzed using a split-plot ANOVA 

design with the GLM module of Statistica (StatSoft 2003) or with PROC MIXED in SAS. 

Stand type was the between-subject (whole plot) factor, and treatment the within-subject 

(split-plot) factor. Significant effects for planned tests were further analyzed using paired 

contrasts, and Satterthwaite’s approximation was implemented when exact F-tests were 

not possible. Both linear and non-linear regressions were used to explore relationships 

between microbial C and N and soluble N pools. For all analyses the homogeneity of 

variance assumption was tested using Levene’s test. When there were significant 

deviations from this assumption, data were square-root transformed (Zar 1999), and an
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additional analysis was performed. Data presented in tables and figures are means ± 1 

standard error (S.E.) from untransformed data. Significance for all tests was established 

at the P < 0.05 level; however, we classify as “marginally significant” values <0.10.

Results

Extractable N  Pools

Fertilization significantly increased 0-20 cm extractable DIN pools within the first year 

(1999) following N additions (Figure 2.2) (Fi 4= 8 .8 ; p=0.04); however, there was not a 

consistent increase in soil DIN over time for either stand type. When averaged across all 

sampling periods, pools o f extractable NH4-N and NO3-N (mg N-m'2) were significantly 

larger in fertilized plots compared to control plots for both stand types (Table 2.2). 

Although pool sizes of extractable NH4-N and NO3-N were similar for the fertilized plots 

of both stand types, there was a significant and much larger absolute increase in DIN 

following fertilization in white spruce compared to balsam poplar ^ 4 = 1 4 .7 , p= 0 .0 2 ), 

due primarily to an increase in NH4-N (Figure 2.2, Table 2.2). During July of 2001, the 

last measurement period, there was a spike in NO3-N in fertilized white spruce which was 

significantly larger (Figure 2.2b; F 1,4=15.4; p=0.02) than extractable NO3-N pools during 

all other periods. For 0-20 cm soil control plots, extractable NH4-N made up the vast 

majority of DIN in both stands types; however, the pool size of NH4-N was over twice as 

large (Fi,4.7= 8 .3; p=0.04) in control plots of balsam poplar compared to white spruce. 

Pools of extractable NO3-N in control plots were quite low (<0.04 g N-m'2) and not 

significantly different between stand types (Table 2.2a; Fi,7.98=0.03; p=0.86).
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Dissolved organic nitrogen (DON) made up the largest pool of soluble N (mg 

N-m'2) for 0-20 cm soil (Table 2.2). The pool size of DON was not affected by N 

fertilization but was significantly larger for balsam poplar compared to white spruce 

(Table 2.2a; F i>g=7.1; p= 0.03), averaging 3733 ± 309 mg N-m ' 2 for balsam poplar and 

2571 ± 254 mg N-m ' 2 for white spruce when control and fertilized plots were considered 

together.

Fertilization significantly increased average extractable pools o f NO3-N in 20-30 

cm mineral soil cores for both stand types when averaged across all time periods (Table 

2.2b). In September 2000 (Figure 2.3), the last time mineral soil cores from the 20-30 cm 

depth interval were collected, NO3 -N concentrations were significantly elevated in 

fertilized white spruce (F 1,4 = 15.2; p=0.02) and balsam poplar (Fij4 =8.9; p=0.04), 

compared to those collected during all other time periods. In contrast, NH4  -N 

concentrations in 20-30 cm cores were not significantly different for control and fertilized 

plots within either stand type (Table 2.2b) and did not increase over time (data not 

shown). As in 0-20 cm cores, the majority of soluble N for the 20-30 cm cores consisted 

of DON (Table 2.2b). DON at this depth did not differ significantly by stand or treatment 

type.

Net N  Transformations

Across stand types, fertilized plots had significantly higher annual rates of net N 

mineralization (0-20 cm soil depth, Table 2.3) when calculated for the entire two-year 

study. Relative to control plots, annual net production of DIN was 62% higher in the
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fertilized plots of balsam poplar ^ 1,4 = 1 2 .5 ; p= 0.02) and 77% higher in white spruce 

(marginally significant, Fi;4 =4 .3 ; p=0.10). Annual net N mineralization was also higher 

for control plots of balsam poplar than white spruce, although not significantly (Fi, 5 .7 6 = 

3.6; p= 0.11).

When considering just the 2000-2001 period, fertilization increased annual net 

mineralization in white spruce but not balsam poplar stands (Table 2.3). Control plots of 

balsam poplar had significantly higher annual net mineralization than white spruce 

control plots during this period (Fi, 7.81 = 6.4; p = 0.04).

For the two-year study period, fertilization increased annual net nitrification rates 

(mg NO3-N m ' 2  yr'1), but only in balsam poplar (Table 2.3), where net nitrification was 

higher than in control plots during eight of the nine incubation periods (Table 2.4). 

Although fertilization did not increase average net nitrification in white spruce for the 

two-year period, this was largely due to unusually high net immobilization of NO3 -N 

during July-August 2001 (Table 2.4) which offset the majority o f incubation periods in 

which nitrification was either marginally higher or not statistically different in fertilized 

plots. For the 2000-2001 period fertilization significantly increased annual net 

nitrification across stand types (Table 2.3), but this was due principally to a fertilization 

response in balsam poplar (marginally significant, Fi;4=4 .7 ; p=0.10) as white spruce 

stands did not have significantly higher nitrification during this period (F 14=3.9; p=0.12).

Fertilization tended to increase ammonification rates in white spruce, but lowered 

them in balsam poplar (Table 2.3, Table 2.4). This created a significant standxtreatment
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interaction for the one-year (2 0 0 0 -2 0 0 1 ) incubation period and a marginally significant 

interaction effect for the two-year incubation period.

There was a large amount of variation in net N transformations during the two 

overwinter incubation periods (Table 2.4). In the winter o f 1999-2000, net N 

ammonification tended to be positive and accounted for a large portion o f the yearly net 

N mineralization rate, but in 2000-2001 net N ammonification tended to be negative 

except in white spruce fertilized plots where it was positive. Net nitrification rates were 

also highly variable but were positive for all standxtreatment combinations during both 

overwinter periods.

Net rates of DON production were strongly positive for balsam poplar (697 ± 257

2 1 2 1 mg DON-m' -y r ') but strongly negative for white spruce (-680 ± 278 mg DON-m" -yr’ )

when computed for the two-year time period (Table 2.3; Fi,4= 1 0 .0 1 ; p=0.03).

Fertilization did not significantly affect net DON production rates over this period for

either stand type, although rates were somewhat lower in fertilized stands o f balsam

poplar relative to controls. A similar trend existed during the 2000-2001 period when

there was a marginally significant effect from stand type on net DON production and a

marginally significant effect due to fertilization. During this period white spruce control

plots had significantly higher net DON production than fertilized plots (Table 2.3;

Fi,4=9.8; p=0.03).

There were no significant stand or treatment effects on net N mineralization rates 

(mg DIN-m"2 -day'1) for the 20-30 cm mineral soil cores (data not shown). Net N 

mineralization rates were very low during the four periods measured, and average net
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mineralization for this soil depth was not significantly different from zero for any 

standxtreatment combination.

Microbial Biomass C&N

Fertilization did not have a significant affect on either microbial biomass C or N within 

either stand type (Figure 2.4); however, slightly larger pools o f microbial N and slightly 

smaller pools of microbial C resulted in significantly lower microbial C:N in fertilized 

stands relative to control stands (Fi,4 = 10.2; p=0.03) (9.4 ± 0.4 for control plots vs. 7.9 ± 

0.4 for fertilized plots). There was no difference in microbial C:N between stand types 

(Fi,4 = 0.4; p=0.56). When averaged across control and fertilized plots, balsam poplar 

stands had 8 8 % higher microbial biomass C (Figure 2.4; Fi,4=36.7; p = 0.004), and 93% 

higher microbial biomass N, than white spruce (Fij4=203.5; p < 0.0001).

Soil and Fine-Root C & N  and Soil pH

Fertilization did not have a significant influence on either fine-root C:N (Fi,4 =2 .5 ; 

p=0.19) or %N (Fi,4=2 .2 ; p=0.23) (Figure 2.4b). Fine-root C:N was significantly lower 

(Fi;4=18.2; p=0.01; Figure 2.4b), and fine-root %N significantly higher (Fi,4=29.2; 

p=0.006), in balsam poplar stands compared to white spruce. The 0-20 cm soil C:N 

(Table 2.2) was also significantly lower in balsam poplar compared to white spruce 

(F |4=53.96; p=0.002) but was unaffected by fertilization (Fi 4=0.17; p=0.7). Soil pH 

(Table 2.2) was generally lower in the fertilized plots of both stand types, but this 

difference was not significant (F1 4  = 3.4; p=0.13). Across control and fertilized plots,
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stand type had a marginally significant effect on 0-20 cm soil pH (F 1 4  = 6.7; p=0.06) 

which was higher in balsam poplar than white spruce (Table 2.2).

Discussion

N  Transformations and Pool Sizes From Intact Cores

Results from this study do not support our hypothesis that balsam poplar would be 

minimally impacted by N fertilization. Fertilizer additions brought about significant 

alterations to soil N transformations in balsam poplar by decreasing net ammonification 

and substantially increasing both annual net nitrification as well as pools of DIN (0-20 

cm depth) and NO3-N (20-30 cm depth). Given our assumption that soil microbes (Clein 

& Schimel 1995; Schimel et al. 1996; Schimel et al. 1998) and perhaps plants in balsam 

poplar stands were N limited, and would quickly immobilize fertilizer additions, we were 

surprised by the speed and magnitude of response in this stand type. By 1999, just one 

year after initial fertilizer additions, the pool size o f extractable NO3-N in balsam poplar 

was already appreciably higher in fertilized balsam poplar plots than in control plots for 

the 0-20 cm (Figure 2.2a) and 20-30 cm cores (Figure 2.3). Because negligible root 

biomass was observed at the 20-30 cm soil depth, we believe that an increase in NO3-N 

following fertilization is indicative of N leaching. Thus, it would appear that large-scale 

net immobilization of added N may not have occurred as we had anticipated or that the 

added N simply overwhelmed plant and microbial uptake.

Soil microbes in the balsam poplar stands of this study may not have been as N 

limited as we had originally thought or may have had very different soil characteristics
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than those from the Clein and Schimel (1995) study. For example, their soil contained 

only forest floor organic material that likely had a much higher proportion o f phenolic- 

rich leaf litter and could very well have been N limited. In contrast, we purposefully 

excluded the prior season o f leaf litter from our 0 - 2 0  cm intact cores, but our soil did 

include several buried organic horizons. We suspect that our soil consisted o f older, 

more highly decomposed organic material which had reduced heterotrophic N demand 

and, perhaps, also contained a higher density of N-fixing nodules.

An overall annual net nitrification rate that was dramatically higher in fertilized 

balsam poplar plots (Table 2.3) is consistent with previous suggestions that nitrification 

in poplar is primarily controlled by soil N availability rather than allelopathic inhibition 

from the large amount of secondary metabolites produced by this species (Clein & 

Schimel 1995; Schimel et al. 1996; Uliassi et al. 2000). We believe that fertilizer 

additions produced an immediate increase in overall N availability such that soil nitrifiers 

could more successfully compete with heterotrophic microbes (and perhaps plants) for 

NH4-N. This reasoning may seem counterintuitive given that control plots of balsam 

poplar already had a higher NH^-N supply than white spruce; however, it is important to 

note that net nitrification was also substantially higher in control plots of balsam poplar 

compared to white spruce (Table 2.3). Thus, nitrification may already have been 

stimulated in balsam poplar prior to N additions. The much larger pool size o f NH4-N in 

balsam poplar control plots may be a function of the microbial biomass (larger in balsam 

poplar, Figure 2.4a) involved in N transformations combined with the temporal gap 

between NH4-N production and immobilization — a “snapshot” of a flux. Thus, NH4-N
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pool size may be less representative of N demand than it is o f NH4-N flow between pools. 

Long-term measurements of in situ gross N mineralization and nitrification and the 

microbial pool size would be needed to resolve this issue.

Arguably, fertilization produced an even greater change to soil N cycling and DIN 

pool sizes in white spruce. Annual rates o f net N mineralization, driven by elevated 

ammonification (Table 2.3, Table 2.4), consistently increased with fertilization in white 

spruce plots but were only occasionally higher following fertilization in balsam poplar. 

This would indicate that N additions overwhelmed the ability of soil heterotrophs in 

white spruce to immobilize excess N. There was also a significantly larger absolute 

increase in the average pool size of DIN for 0-20 cm soil and NO3-N for 20-30 cm soil 

(though not significant) in white spruce compared to balsam poplar. Although, it is 

unclear if  such stand-level differences were due to dissimilar plant or microbial N 

demand or were the result of contrasting patterns of N losses such as leaching or 

denitrification. The large spikes in NO3-N for 0-20 cm during July 2001 (Figure 2.2b) 

and 20-30 cm soil during September 2000 (Figure 2.3) in fertilized white spruce -  the last 

time these depths were sampled -  may indicate that nitrate leaching was increasing 

dramatically. In contrast, in situ denitrification has previously been shown to be 

negligible in these stands (Klingensmith & Van Cleve 1993a) and suggests that this 

process was not responsible for controlling DIN pool sizes following fertilization. 

However, that study only measured denitrification from July - September during a single 

growing season. We believe that denitrification may be an important source of
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ecosystem N losses during the spring (mid-May to mid-June) when soil is at or near 

saturation following snowmelt.

Our results, which show that white spruce soils in interior Alaska responded 

quickly to fertilizer additions, with NO3-N leaching and increases in net N mineralization, 

are similar to other studies of northern coniferous forests exposed to long term N 

additions (Emmett et al. 1998b; Gundersen 1998). However, our study sites did not 

exhibit the consistent increases in nitrification or a drop in soil pH often associated with 

“N saturation” in coniferous stands. This may be due to the relatively recent nature o f N 

additions in this study (< 4 years) and because the alkaline soils o f the floodplain served 

to buffer the effects o f N additions.

The measurement of net DON production during soil incubation experiments is 

not one that has been used widely in the literature (but see N eff & Hooper 2002) and may 

not be particularly meaningful to specific aspects of plant or microbial N demand. 

However, we presented measurements o f DON production here in order to stimulate 

discussion of what is, increasingly, regarded as an important component of plant and 

microbial N uptake in the boreal forest (Nasholm et al. 1998; McFarland et al. 2002) and 

to highlight the higher DON production in balsam poplar relative to white spruce (Table 

2.3). We speculate that input to the DON pool is tied to the heterotrophic breakdown of 

soil detritus as well as the release of organic leachates from decomposing leaves and 

roots. Thus, the measurement of net DON production may be an index o f inputs into the 

soluble pool and indicate a larger or more active pool of detritus in balsam poplar 

compared to white spruce.
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Plant N  Demand

The lack of significant change in fine-root %N or C:N following several years of 

N additions (Figure 2.4b) mirrors results by Pregitzer et al. (2002) who measured fine- 

roots from these same plots shortly after the initiation of fertilization in 1998 and 1999. 

Since roots from our study were collected in August of 2001, after two additional years of 

N additions, our results might indicate that the C:N of these roots is relatively fixed or 

indicate that plant N demand was not as high as we had originally anticipated. It is also 

probable that some component of these stands (e.g., alder) is limited by phosphorus rather 

than N (Uliassi et al. 2000; Uliassi & Ruess 2002).

Perhaps a more meaningful indication of plant N limitations will come not from 

changes to tissue N concentrations but rather from ongoing studies of belowground 

processes examining the response of fine root production and turnover to increases in soil 

N availability. Minirhizotron-based estimates from control plots show that fine root 

production was 67% higher in balsam poplar than white spruce (Table 2.1) and likely 

play a large, albeit unknown, role in determining microbial N and C demand in these 

stands. A large portion of fine roots in this system die and decompose within a year of 

being produced (Ruess et al. in review). Fine roots have low C:N ratios, and may account 

for a substantial source of actively cycled soil N; however, there is uncertainty regarding 

how much fine root N may be retranslocated prior to root death or senescence (Gordon & 

Jackson 2000), and the amount of plant N retranslocation may vary widely depending 

upon plant and soil nutrient status (Salifu & Timmer 2001). The answer to this problem
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has large implications for microbial C and N demand: If  much of the N in fine roots is 

retranslocated prior to senescence then soil microbes should have a large N demand as 

they decompose a labile source of C; however, if much of the N remains in senesced 

roots then soil microbes should cycle a substantial portion of this back into soil during 

decomposition.

Ecosystem Nitrate Utilization

Could there be a common factor responsible for the immediate increase in 

extractable N O J-N  pools observed following fertilization in both stand types for 20-30 

cm soil? A plant and/or microbial preference for NH4-N over NO3-N (or inability to 

utilize NO3-N) could be the answer. Ammonium, which dominates the salt-extractable 

DIN pool in these stands (NH4-N:N0 3 -N -  18.2 in white spruce and 30.3 in balsam 

poplar; Table 2.2), is known to inhibit nitrate reductase activity in both plants (Larcher 

1995) and microbes (Atlas & Bartha 1993; Myrold 1999). It has also been suggested that 

plants and microbes exposed to increased N deposition have a reduced ability to absorb 

NO3-N (Kjonaas et al. 1998), and Tietema (1998) reported no immobilization of NO3-N 

by soil microbes in sites with substantial N deposition in northwestern Europe. White 

spruce in particular is known to have a very limited capacity to utilize NO3 -N 

(Kronzucker et al. 1995a; Kronzucker et al. 1995b;1997), while field and laboratory 

studies have shown that Norway spruce (Picea abies) and beech (Fagus sylvatica) have a 

reduced or complete inability to take up NO3-N when exposed to N fertilizer or when 

grown in soil with a high NEL^NCE ratio (Gessler et al. 1998; Rennenberg et al. 1998).
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Several other studies (Chapin et al. 1986; Hangs et al. 2003; Yarie 1993) also report low 

or negligible uptake of NO3-N, but substantial uptake of NH4-N by balsam poplar, aspen 

(Populus tremuloides), green alder (Alnus crispa), paper birch (Betula papyrifera) and 

jack pine {Pinus banksiana Lamb.).

Thus, many coniferous and deciduous trees in the boreal forest generally may 

have a limited ability to utilize NO3-N, especially in the presence of larger amounts of 

DIN or NH4, which may inhibit the uptake of NO3-N and/or suppress nitrate reductase. 

While the leaching of NO3-N to the 20-30 cm soil depth in this study could, in part, be 

attributed to the high mobility of NO3-N in the soil profile relative to NH4-N, this may 

not fully explain why NO3-N was able to move through multiple buried organic horizons 

within a year after initial fertilizer additions.

Microbial C and N

Contrary to our prediction, N fertilization did not increase microbial biomass in balsam 

poplar stands; rather, biomass remained unchanged in both stand types after more than 

three years of N fertilization while microbial C:N was significantly lower across both 

stand types. Although we are skeptical that microbial C:N was actually reduced in 

response to fertilization, rather than changed by slight differences between control and 

fertilized plots, Tietema (1998) also observed lower microbial C:N ratios following N 

additions and found that microbial biomass C remained unchanged across a wide gradient 

of N deposition in coniferous forests across Europe. Aber et al. (1995, 1998) (hardwoods 

and conifers) and Gundersen (1998) (conifers) also concluded that microbial biomass did
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not change following large-scale N addition, while Fisk & Fahey (2001) and Corre et al. 

(2003) (hardwoods) showed a significant decrease in chloroform-extractable biomass in 

N fertilized stands. Thus, the response of soil microbial biomass to long-term N 

additions would appear to be variable across forest ecosystems.

The much larger pool of microbial biomass in balsam poplar compared to white 

spruce (Figure 2.4a), but lack of change following fertilization, suggests that factors 

associated with plant composition and inputs (fine-root and litter quality) have a much 

stronger influence on microbial biomass in this ecosystem than short-term N inputs and 

availability. In this regard we reiterate our view that the production and turnover o f labile 

fine roots plays a major role in belowground carbon and nutrient cycling and, almost 

certainly, microbial biomass in the boreal forest where the ratio o f belowground 

production to aboveground litter fall inputs is high relative to temperate forests (Ruess et 

al. 1996, Ruess et al. 2003). We predict that, with longer term N additions in these 

stands, the degree to which plant belowground production and turnover may be altered 

with increased N availability will ultimately determine whether or not there are 

significant changes in microbial biomass.

Conclusions

The results from this study help to elucidate controls on successional patterns of 

ecosystem N cycling as well as the types of responses that could be expected as pristine 

high-latitude forests experience increased deposition of human-derived reactive N. 

Though current N deposition in Alaska’s interior boreal forest is exceptionally low, N
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deposition is already elevated beyond pre-industrial levels in parts o f the boreal forests in 

Canada and Russia (Holland et al. 1999), and global N deposition is predicted to increase 

substantially during the next several decades (Galloway et al. 1994; Galloway et al. 

1995). The 100 kg N ha'^yr'1 applied during this study is in excess o f any conceivable 

near-term increase in human-induced N deposition to interior Alaska; however, primary 

productivity in these stands is considerably higher than other plant communities (e.g., 

black spruce) in this region. Thus, the responses of soil N cycling observed here (e.g., 

the leaching of NO^and the alteration of N mineralization and nitrification) could occur 

with substantially smaller inputs of N in other pristine boreal communities which have 

much lower N demand. We believe that both deciduous and coniferous high-latitude 

forests, in which state factors such as light and temperature play a critical role in limiting 

nutrient cycling and primary production during a brief growing season, are particularly 

vulnerable to the effects of N deposition compared to temperate systems with higher 

overall ecosystem N demand.
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Figu re  2 .1 .  Growing season depth-of-thaw for stands of balsam poplar (BP) and white 
spruce (WS). Measurements were taken between June 2001 and May 2002 using a i m  
frost probe. Values are mean ± 1 S.E. and n=3 plots per stand type. In balsam poplar 
stands, the exact depth o f thaw after July 10 can only be characterized as > 1 m.
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Figu re 2.2. Pool size (mgN-m2) of 0.5M K2 S0 4 -extractable inorganic N for 0-20 cm soil 
depth. Soil cores were collected at each of the 9  incubation periods for control (CONT) 
and fertilized (FERT) plots of a) balsam poplar and b) white spruce (WS). Ammonium- 
N begins at the top of the NO3-N bar, thus bar height indicates total the sum of NO3-N + 
NH4 -N or DIN. Values are means ( + 1  S.E.) and n=3 for each standxtreatment 
combination.
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Figu re 2 .3. Pool size (mg-N m'2) of 0.5M K^SCVextractable N 0 3 -N from 20-30cm soil
depth. Soil cores were collected from control (CONT) and fertilized (FERT) plots of 
balsam poplar (BP) and white spruce (WS) at four times during the two year study. 
Values are means + 1 S.E. and n=3 replicate plots for each standxtreatment combination. 
Graph is from untransformed data but data were square-root transformed before 
ANOVA.
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Figure 2.4. Microbial biomass C, N (g m'2) and C:N. (2.4a); and Fine-root (<0.5 mm) %:C, % N and C:N (2.4b) for 0-20 cm 
depth soil. Values were determined from soil cores collected in control (CONT) and fertilized (FERT) plots o f balsam poplar 
(BP) and white spruce (WS). Balsam poplar stands had significantly higher microbial biomass C, N, fme-root % N and 
significantly lower fine-root C:N than white spruce, but only microbial C:N was significantly affected (reduced) by N 
fertilization. Values are means + 1 S.E. and n=3 replicate plots for each standxtreatment combination.
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Table 2 .1 . Select stand structure and biomass production data. Values are for balsam poplar and white spruce stands on the 
Tanana River floodplain.

Stand Type Species 'Stem 
Density 

(stems ha '1)

'Basal 
Area (m2 

ha'1)

'Aboveground 
Tree Biomass 

(kg ha’1)

2
Aboveground 
Production 

(kg ha ' 1 y r'1)

UF 
Litterfall 

(kg ha ' 1 yr' 
!)

4Fine Root 
Production 

(kg ha ' 1 yr'')

Balsam
poplar

Populus
balsamifera

763 ± 93 36.7 ±2 .9 170411± 
14079

5236 ±355 2585 ± 202 3036 ±428

Alnus tenuifolia 485 ± 77 1.8 ±0.3

White
spruce

Picea glauca 518 ± 36 38.9 ±5.5 203089 ± 
26837

4541± 833 1020 ±311 1814 ±605

Alnus
crispa/tenuifolia

148± 158 0.6 ±0 .7

Biomass, production and litterfall values are expressed as kg oven-dry (65°C) mass. N= 6  for each stand type.

’Ruess, unpublished data
includes trees, shrubs and bryophytes (Ruess et al. in review).
3Litterfall includes leaves and needles, fine wood (<10 cm) and reproductive litter.
4 Stand-level estimates of fine root production derived from minirhizotrons (Ruess et al. in review).
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Table 2.2. Soil C and N content and pH. Values are for a) 0-20 cm soil and b) 20-30 cm soil cores. Cores were collected in 
control (CONT) and N fertilized (FERT) plots o f balsam poplar and white spruce. Values are means ± 1 S.E. taken from a 
repeated-measures ANOVA of nine sampling events spanning the two-yr study period (August ’99-July ’01). There are n=3 
replicate plots for each standx treatment combination.

2 .2 a.) 0 - 2 0  cm soil
Stand Treatment pH Soil C 

(gC m '2)
Soil N 

(gN-m'2)
C:N n h 4-n

(mgN-m"2)
N 0 3-N

(mgN-m'2)
DON

(mgN-m'2)

Poplar CONT 7.62 5174 298 17.36 1333 44 3910
(± S.E.) (0 .2 2 ) (367) (25) (0.37) (58) (5) (319)

** **
FERT 7.06 5220 289 18.06 1749 687 3556

(± S.E.) (0.34) (330) (23) (0.43) (6 6 ) (262) (587)
P=0.06 * ** *

Spruce CONT 6.43 4569 193 23.67 626 34 2499
(± S.E.) (0.49) (784) (41) (1.31) (166) (2 ) (502)

*** **
FERT 6.18 3997 174 22.97 1690 853 2642

(± S.E.) (0 .1 2 ) (412) (18) (0.09) (291) (2 2 0 ) (256)
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Table 2.2 Continued. Soil C and N content and pH for 20-30 cm soil.

2.2b.) 20-30 cm soil
Stand Treatment pH Soil C 

(gCm-2)
Soil N 

(gN-nf2)
C:N NH4-N

(mgN-m'2)
N 0 3-N

(mgN-m'2)
DON

(mgN-m'2)

Poplar CONT 7.71 959 61 15.72 225 28 869
(± S.E.) (0.28) (178) (11.5) (0.75) (44) (6 )

*
(125)

FERT 7.70 1881 94 2 0 . 0 1 157 264 945
(± S.E.) (0 .2 2 ) (749) (29) (2.95) (13) (64) (2 0 1 )

Spruce CONT 7.14 1181 67 17.63 302 31 836
(± S.E.) (0.34) (311) (2 0 ) (0.56) (89) (9)

*
(240)

FERT 6.51 1 2 2 0 72 16.94 2 2 0 407 736
(± S.E.) (0.42) (647) (29) (2.15) (51) (232) (370)

Asterisks between stands indicate significance of stand-level effects; those between treatments indicate significant contrasts, 
where: * p < 0.05; * * p < 0 .0 1 ; * * * p <  0.001.

Os
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Table 2.3. Annual net N mineralization, nitrification, ammonification and DON production (mg N-m'^yr'1) for 0-20 cm depth 
soil. Values were based on the entire two-years of the buried-bag study and on the complete one-year period from June 2000- 
June 2001 (± 1 S.E; n=3 experimental plots for each standxtreatment combination). Estimates were calculated by summing 
plot-level production of individual N species during either the one-year period from June 2000 to June 2001 or the two-year 
period from August 1999 to July 2001. P-values between control (CONT) and N-fertilized (FERT) means are for contrasts, p- 
values at bottom of table are from the split-plot ANOVA with 1 and 4 degrees of freedom. Significant, p < 0.05, and 
marginally significant, p < 0 .1 0 , p-values are in bold.

Stand Treat. Net
Min.
(two-
year)

Net
Min.
(2 0 0 0 
2 0 0 1 )

Net Nit.
(two-
year)

Net Nit. 
(2 0 0 0 
2 0 0 1 )

Net
Ammon.
(two-year)

Net
Ammon.
(2 0 0 0 
2 0 0 1 )

Net
DON
Prod.
(two-
year)

Net
DON
Prod.
(2 0 0 0 
2 0 0 1 )

p-values Stand 0.06 0 . 2 1 0.03 0.07 0.75 0.49 0.03 0.09
for
ANOVA

Fert. 0.02 0.07 0.05 0.04 0.63 0.83 0.16 0.06

Standx Fert 0.36 0.10 0.07 0.90 0.09 0.02 0.33 0.15
B. Poplar CONT 2972 

(± 733)
3210 
(± 1 2 2 0 )

849
(± 570)

999
(± 670)

2123 
(± 179)

2 2 1 2

(±551)
1104
(±371)

-377 
(± 582)

Contrast
p-values 0.02 0.84 0.02 0.10 0.34 0.05 N/A 0.58

FERT 4824 
(± 791)

3222 
(± 587)

3266 
(± 488)

2548 
(± 742)

1558 
(± 480)

675
(± 239)

289 
(± 162)

-651 
(± 437)

W. Spruce CONT 1365 
(± 373)

933 
(± 280)

138
(±113)

24
(± 107)

1227 
(± 344)

908
(± 229)

-586 
(± 406)

-1288
(±712)

Contrast
p-values 0.10 0.03 0.9 0 . 1 2 0.13 0.04 N/A 0.04

FERT 2453 
(± 385)

3455 
(± 532)

262 
(± 249)

828
(± 234)

2191
(±512)

2627 
(± 528)

-774 
(± 462)

-2693 
(± 225)
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Table 2.4. Total DIN produced during each incubation period. The amount o f DIN produced (Prod.) (in mg N-m'2) is divided 
into a.) net N mineralization or total production, b.) nitrification, and c.) ammonification (0-20 cm soil depth) for control 
(CONT) and fertilized (FERT) plots of balsam poplar (BP) and white spruce (WS). The parameters (mg N-m'2) are expressed 
as cumulative values for each incubation period. Daily rates can be calculated by dividing production estimates by the number 
of days in the incubation period. Values are means ± 1 S.E. from n=3 plots for each stand x treatment combination.

Net DIN Production/ 
Mineralization

Length of
Incubation
(days)

A u g-
Sept.'99

Oct.'99-
June'00

June - 
Ju ly ’00

Ju ly  - 
Aug.'OO

A ug.-
Sept'OO

Sept. - 
Oct.'00

Oct.'OO-
June'01

June - 
Ju ly '0 1

Ju ly  - 
Aug.'01

38-39 235-236 28-29 29 25-26 39-40 232-233 33 29

BPCONT Prod. 753.6 1054.7 1345.9 -42.9 1113.8 999.4 -206.3 13.0 595.1
(± S.E). (154.2) (204.0) (259.4) (342.8) (467.7) (71.8) (227.1) (127.2) (129.0)

BPFERT Prod. 1643.1 2507.0 1031.3 -769.8 2320.1 882.3 -241.6 598.6 1160.8
(± S.E.) (180.4) (774.7) (362.4) (309.3) (220.8) (263.7) (280.1) (605.5) (111.2)

WSCONT Prod. 395.2 676.6 81.5 -90.9 390.6 631.5 -80.2 -7.8 588.0
(± S.E.) (113.5) (147.5) (22.3) (56.4) (256.3) (205.5) (161.8) (113.8) (136.1)

WSFERT Prod. 1130.4 857.1 495.0 204.4 2074.3 90.3 590.9 146.4 -944.2
(± S.E.) (417.1) (308.3) (74.2) (434.8) (764.5) (731.3) (283.1) (983.0) (1058.3)

Net N 0 3 -N Production/ 
Nitrification
BPCONT Prod. 399.2 29.1 364.9 192.8 157.0 197.1 86.6 59.8 120.2

(± S.E.) (244.6) (59.3) (238.6) (118.8) (107.1) (138.7) (70.3) (68.8) (61.6)
BPFERT Prod. 888.3 895.4 550.1 -93.9 1006.9 835.4 249.3 851.8 998.9

(± S.E.) (111.6) (651.6) (270.1) (236.1) (290.6) (180.5) (193.4) (373.9) (450.2)
WSCONT Prod. 130.9 19.0 -73.5 36.5 25.4 4.5 31.2 21.3 66.1

(± S.E.) (8.8) (25.9) (18.2) (19.3) (17.8) (21.5) (47.4) (34.5) (43.5)
WSFERT Prod. 105.7 37.4 36.5 123.2 534.8 -214.7 348.4 276.1 -751.0

(± S.E.) (168.5) (149.9) (80.7) (180.3) (383.6) (433.8) (161.4) (770.8) (514.1)
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Table 2.4 Continued. N et NH 4 Production/Ammonification.

Net NH4-N Production/ 
Ammonification
BPCONT Prod. 354.4 1025.7 981.0 -235.7 956.8 802.3 -292.9 -46.8 474.9

(± S.E.) (93.3) (262.8) (158.0) (232.9) (379.1) (68.0) (161.3) (62.0) (99.7)
BPFERT Prod. 754.8 1611.6 481.2 -675.9 1313.2 46.9 -490.9 -253.3 161.9

(± S.E.) (182.0) (248.0) (351.5) (78.4) (144.8) (201.3) (105.0) (385.2) (351.7)
WSCONT Prod. 264.3 657.6 155.0 -127.5 365.3 627.0 -111.4 -29.1 522.0

(± S.E.) (110.0) (146.5) (17.3) (71.7) (239.6) (193.9) (143.7) (140.2) (107.3)
WSFERT Prod. 1024.7 819.7 458.5 81.2 1539.6 305.0 242.5 -129.7 -193.1

(± S.E.) (264.1) (164.8) (107.9) (292.3) (587.7) (403.8) (337.7) (261.8) (551.9)

VO



C hapter 3

Soil Solution Nitrogen and Dissolved Ions During Mid and Late Succession of an 

Undisturbed Boreal Forest Ecosystem . 1

A bstract

We investigated the prediction that the transition from mid- to late succession forests in 

interior Alaska would bring about an increase in the proportion of dissolved inorganic 

nitrogen (DIN) below the rooting zone, relative to dissolved organic nitrogen (DON). 

This prediction was based on the hypothesis that decreased nitrogen (N) demand in late 

succession would facilitate leaching losses of DIN, while the production and export of 

DON pool would remain relatively stable. The study was conducted in mature stands of 

balsam poplar (mid succession) and white spruce (late succession) located along the 

Tanana River in interior Alaska. Soil solution samples were collected over two growing 

seasons at two different depths within the soil profile (12 cm -  rooting zone and 40 cm -  

mineral soil below rooting zone) using tension lysimeters. In contrast to our prediction, 

soil solution DIN and DON concentrations were very similar across balsam poplar and 

white spruce stands. Most N in solution at the 12 cm and 40 cm depths consisted of 

DON (~92 % of total dissolved N (TDN) at 12 cm and -79  % of TDN at 40 cm). Across 

stands, nitrate dominated the DIN pool (84-98%) at all depths, with ammonium generally

'Brenner, R.E., Jones, J.B. Jr., and Boone, R.D. and Ruess, R.W. (in prep). Soil Solution Nitrogen and 

Dissolved Ions During Mid and Late Succession of an Undisturbed Boreal Forest Ecosystem.
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< 0.03 mg NH 4 -N L '1. Nitrate concentration in deeper mineral soil (40 cm) was 

significantly higher than in the surface horizon (12 cm) (0.17 ± 0.12 mg N O 3- N  L ’ 1 and 

0.46 ± 0.12 mg NO 3- N  L '1, respectively). Significant positive correlations between soil 

moisture potentials at all depths and the rate o f discharge from the Tanana River (Adj.- 

R2= 0.92 for white spruce and 0.56 for balsam poplar; post-snowmelt), combined with 

results from principal component and cluster analyses, suggest that dissolved ions in the 

active layers o f both stand types are derived from Tanana River water that moves into the 

surface horizons via hyporheic (capillary) flow during the growing season. Therefore, 

river water is probably also contributing to the influx of biologically important nutrients 

into the surface soils of late-succession stands that contain frozen soil throughout the 

growing season. Leaching and hyporheic flow are likely both important processes 

influencing soluble N concentrations in these stands; however, the relative influence of 

these processes across seasons and throughout succession remains to be determined.

Introduction

Due to the critical role of nitrogen (N) in regulating net ecosystem production in 

many regions, N inputs and losses from forest ecosystems have been the subject of much 

attention in biogeochemical research (Sollins et al. 1980; Tietema et al. 1997; Seely et al. 

1998; Vitousek & Field 2001). During the 1970s a hypothesis of nitrogen (N) retention 

in forest ecosystems was developed (Vitousek & Reiners 1975; Gorham et al. 1979) 

proposing that N will generally be retained in aggrading, mid-succession, forests but

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



increasingly lost from late-succession (old growth) forests as a decrease in net ecosystem 

productivity induces a reduction in ecosystem N demand. A refinement of this 

hypothesis added that substantial losses of dissolved organic nitrogen (DON) may occur 

regardless of biological N demand (Hedin et al. 1995, Vitousek et al. 1998), and several 

studies across a wide range of forest types have shown that DON often makes up the 

dominant form o f N lost from forest ecosystems ( Sollins et al. 1980; Currie et al. 1996; 

MacLean et al. 1999; Perakis & Hedin 2002). This is probably because a substantial 

fraction of DON and associated DOC is comprised of recalcitrant, biologically- 

unavailable forms (Qualls & Haines 1991; Stepanauskas et al. 2000; Yano et al. 2000), 

and DON losses from ecosystems occur without extensive plant or microbial utilization. 

Thus, while biotic N demand likely plays a considerable role in the retention of N forms 

that are readily available to plants and soil microbes (e.g., NO3, NH4 and amino acids), all 

successional stages may have N leaching losses dominated by DON, provided that 

anthropogenic inputs of reactive N are low.

Floodplain stands o f balsam poplar and white spruce in Alaska’s interior 

encompass a dramatic primary successional transition (Viereck et al. 1993a) in a region 

with very low deposition of reactive N (< 0.3 kg N-ha"'-yr" 1 wet + dry deposition) 

(http://www.ena.gov/castnet/sites/den417.html). During the course of approximately 150 

years, deciduous, mid-succession stands of balsam poplar (Populus balsamifera) 

completely succumb to dominance by coniferous, late-succession stands o f white spruce 

(Picea glauca), which shade out balsam poplar. Net primary productivity (Viereck et al. 

1983), the abundance of N-fixing alder (Alnus tenuifolia and A. crispa) (Viereck et al.
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1993a), as well as net soil N transformations (Klingensmith & Van Cleve 1993b, Van 

Cleve et al. 1993c) all decline during this transition. Furthermore, the N demand of 

vegetation shifts from high demand in balsam poplar stands to lower demand in white 

spruce stands (Van Cleve et al. 1983). Integral to the changes in composition, 

productivity and nutrient cycling are the development of a nearly continuous moss cover, 

a decline in soil temperatures and the associated occurrence o f frozen soil throughout an 

increasing portion of the growing season in white spruce stands (Van Cleve et al. 1991).

In addition to decreased plant N demand, floristic succession on the floodplain 

may also bring about an alteration of overall ecosystem N retention. Soil N accumulates 

rapidly during early succession and throughout much of the balsam poplar stage, but 

shows no net gain as white spruce become dominant (Van Cleve & Viereck 1981; Van 

Cleve et al. 1993a). Reduced rates of N accumulation during late succession forests are 

almost certainly linked to a decrease in the abundance of N-fixing alder; however, the 

plateau in N accumulation may also indicate an acceleration of N losses during this 

successional stage. Studies of N fixation by thinleaf alder (Alnus tenuifolia) (Uliassi & 

Ruess 2002) suggest that much of the N fixed does not end up in the soil and thus may be 

lost from the system during the balsam poplar stage. This is a period in which N is still 

accumulating in the soil and soil heterotrophs are thought to be N limited due to a rich 

supply of labile phenolics in poplar litter (Clein & Schimel 1995; Schimel et al. 1998; 

Schimel et al. 1996). Thus, N losses on the floodplain, perhaps from an unavailable 

DON fraction, may occur throughout succession, even during periods o f high soil and 

plant N demand. While N fixation inputs into white spruce stands are currently
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unknown, soil microbes in this stand type are thought to be C limited (Flanagan & Van 

Cleve 1983) and thus may have an even more reduced capacity to immobilize 

biologically-available forms of N than during mid-succession. Low to undetectable rates 

of denitrification across a wide range of successional sequences on the Tanana River 

floodplain in interior Alaska (Klingensmith & Van Cleve 1993a) also indicate that N 

leaching is the primary route o f N loss from this system.

The objective of this study was to examine the relative abundance o f dissolved 

inorganic nitrogen (DIN) vs. DON in the soil solution o f mid and late stages o f a primary 

successional sequence. Our intention was not to determine an input/output budget of N 

in these stands; rather, our study assumes that the composition o f soil solution N 

collected below the rooting zone (e.g. NO?, NH4 and DON) will define the dominant form 

of N leached from these stands. Assuming that water fluxes and DON leaching losses are 

fairly constant across this relatively brief (-100-150 year) successional transition, stands 

which have lower biotic N retention and higher leaching losses o f DIN should also have a 

relatively lower ratio of DON: DIN below the rooting zone compared to stands in with 

high N demand and low levels of leaching losses. Thus, the ratio of soil solution 

DON:DIN should be indicative of the relative ecosystem N retention of biologically- 

available N. Accordingly, we predicted that the soil solution of late-succession white 

spruce stands would have a lower ratio of DON:DIN than is found in mid-succession 

balsam poplar soils. In addition, we examined the relationship between major ions in the 

soil solution and river water to evaluate the importance of subsurface flow (hyporheic 

flow) from the river on the chemistry of soil water in the surface horizons.
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M ethods

Study Site

This study took place at the Bonanza Creek Long Term Ecological Research Site 

(BNZ-LTER), approximately 30 km south of Fairbanks, Alaska (64°45' N, 148°18' W). 

Replicate research plots ( 1 5 m x  15 m) were located within stands of balsam poplar and 

white spruce on islands spread throughout the active floodplain (n=3 plots per stand 

type). All plots were located on high terraces (>3 m) formed by the frequent deposition 

of fluvial material. Precipitation in this region is low, averaging 269 mm, and is 

exceeded by potential evapotranspiration of approximately 466 mm. Mean annual air 

temperature is -3.7 °C with extremely cold winters (to -50 °C) and warm summers (to 35 

°C) (Viereck et al. 1993b). All sites contained frozen soil throughout a large portion of 

the growing season; however, balsam poplar sites generally became ice-free by August 

while some white spruce sites contained frozen soil until early October (Table 3.1). Soils 

in these sites are classified as Typic Cryofluvents (Viereck et al. 1983; Van Cleve et al. 

1993b) and generally consist o f silt with occasional pockets of sand. Due to past 

flooding, all sites contained multiple buried organic layers; however, the number and 

depth of these varied among sites. Mineral soils are alkaline due to the high 

concentration of CaC0 3  originating from the primary (glacial) weathering of carbonate 

rock in the Alaska Range (Marion et al. 1993a; Marion et al. 1993b).

Balsam poplar sites (LTER sites BP1, BP2 and BP3) consisted of mature, uneven 

stands with some individuals exceeding 1 0 0  years of age and a dense understory of thin-
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leaf alder (Alnus tenuifolia Nutt.), rose (Rosa acicularis) and infrequent white spruce. 

White spruce sites (LTER sites 4A, 4B and 4C) consisted of both mature and senescing 

stands 200+ years in age with an understory of alder (A. crispa and/or A. tenuifolia), rose 

and feather mosses (Hylocomium splendens and Pleurozium schreberi). Alder was a 

much smaller component of the understory in white spruce sites than in balsam poplar 

and was nearly absent at one site (4C). A complete description o f plant and soil 

characteristics for the floodplain can be found in Viereck et al. (1993) and on the 

Bonanza Creek LTER website (htty://www.Iter.uaf.edu/BCEF index.htm).

Soil Water and River Sampling

Tension lysimeters (Prenart Equipment ApS, Frederiksberg, Denmark) were 

installed during late June 2000 in both stand types. In each plot, lysimeters were installed 

at the 12-cm (n=5) and 40-cm depths (n=4). In the case of white spruce the soil depth 

was measured from the base of the live moss layer whereas in balsam poplar it was 

calculated from underneath the previous year’s litter. Lysimeters were installed at 

approximately a 30° angle in order to minimize disturbance to the soil surrounding the 

lysimeter head. In addition, we attempted to limit damage to the moss ground cover in 

white spruce by installing board walks, from which lysimeter and tensiometer installation 

and sampling took place. During lysimeter installation a 1-m long hole was bored into 

the soil using a metal rod. The lysimeter and associated tubing were inserted to the end 

of the hole which was first backfilled with a slurry of silica flour and then with a slurry of 

mineral silt from the shore of the Tanana River. An additional 1-m of tubing ran
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underneath the litter layer from the opening of the borehole to a shallow pit where a glass 

collection bottle was placed. Lysimeters were left undisturbed for one month after 

installation, and the first two sampling periods in 2 0 0 0  were excluded from the analysis.

Tensiometers (Soil Measurement Systems, Tucson, Arizona) were installed 

concurrent with lysimeters in an array of 14, 32 and 50-cm depths (n=3 arrays per plot). 

Tensiometer tubes were filled with water the day prior to lysimeter sampling and soil 

water potentials were measured with a pressure transducer the day of lysimeter sampling. 

The transducers are sensitive to ± 0.1 kPa (1 mbar). The difference in soil water potential 

at the 14 and 32 cm or 32 and 50 cm depths were used to determine the direction of 

vertical flux of water within the soil profile. For example, a more negative water 

potential at 32 cm than 50 cm indicates that water is moving up through the profile.

Approximately 24 hours prior to sample collection, lysimeter tubes were 

connected with air-tight fittings to 2-L Prenart bottles. Bottles and tubing were then 

evacuated to -40 kPa using a hand pump (Soil Measurement Systems, Santa Barbara, 

California). The following day, water in lysimeter bottles was poured into acid-washed 

Nalgene® bottles that were placed on ice packs in a cooler for transport to the laboratory. 

Samples were filtered with pre-leached glass fiber filters (1 pm pore diameter), and pH 

and conductivity were measured. Samples then were frozen until further analysis. Water 

samples were also collected from the adjacent Tanana River during most sampling 

periods. River water was collected from the bow of a boat which was held into the 

oncoming current in the middle of the main channel. Lysimeters were sampled 20 times 

from August 2000 until October 2001, approximately weekly during frost-free periods
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(late May -  early October), although sample collection was briefly terminated during 

periods when soil was dry.

Nitrate and ammonium concentrations were measured on an API 300 segmented- 

flow autoanalyzer (Astoria-Pacific Inc., Clackamas Oregon) using standard colorimetric 

protocols (Bundy & Meisinger 1994). Dissolved organic N (DON-N) was determined by 

subtracting DIN (nitrate + ammonium) from total persulfate-digestible N (Cabrera & 

Beare 1993). Anion (chloride and sulfate) and cation (calcium, magnesium, sodium and 

potassium) concentrations were analyzed on a Dionex DX-320 ion chromatograph 

(Dionex Corp., Sunnyvale California). As a check on our autoanalyzer we also re

measured ammonium and nitrate in most samples via ion chromatography during the 

analysis o f anions and cations. Total organic carbon (TOC) on a random subset o f 157 

samples spanning the entire experiment was determined using a Shimadzu TOC-5000 

(Shimadzu Corp, Kyoto Japan).

Statistical Analysis

The concentrations of elements collected within each plot at a given depth were 

averaged such that each plot represented a single replicate (n=3 plots per stand type). 

Data were analyzed with a split-plot ANOVA design using PROC MIXED in SAS (SAS 

1999). Stand type was used as the between-subject (whole plot) factor, and depth was the 

within-subject (split-plot) factor. Season (spring, summer or autumn) was also included 

in the model as a repeated measures factor. Significant effects were further analyzed 

using paired contrasts. A Kenward and Roger correction (Littell et al. 2002) was
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implemented because exact F-tests were generally not possible. For all analyses the 

homogeneity of variance assumption was tested using Levene’s test. Data were square- 

root transformed when the assumptions of homogeneity of variance was violated (Zar 

1999), and an additional analysis was performed. Principal components analysis (PCA) 

and cluster analysis (Single Linkage, Euclidian distance) were used to investigate the 

relationship between dissolved ions from the Tanana River with those from each 

standxdepth combination of the soil solution. The first two factor scores from the PCA 

were further analyzed in a MANOVA and, when there were significant effects, paired 

contrasts were used to determine significant differences between groups. Data presented 

in Tables and Figures are means ± 1 standard error (S.E.) from untransformed data. 

Significance for all tests was established at the P < 0.05 level with values between 0.05 

and 0 . 1 0  considered “marginally” significant.

Results

The largest portion (79-92%) of total dissolved nitrogen (TDN) in the soil 

solution at all stands and depths was comprised of DON (Figures 3.1 and 3.2, Table 3.2). 

In addition, DON concentrations across stand types were significantly higher at the 12 

cm, than 40 cm, depth (F i;8.64=9.84; p=0.01; 3.05 ± 0.27 for 12 cm vs. 1.85 ± 0.27 for 40 

cm). This difference between depths was significant for white spruce (F ij9.68=7.69; 

p=0.02) but only marginally significant for balsam poplar (F ijo.i=3.24; p=0.10). The 

ratio of DON:DIN was not significantly different between stand types but was 

significantly higher at the 12 cm than 40 cm depth (Table 3.2). Averaged across stand
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types, DON concentrations at the 12 cm depth were significantly higher during the 

summer period compared to the fall (F i,io8= 3 .91 ; p=0.05) (Figure 3 .2 ) . The summer was 

also the period when soil moisture content was lowest (see below), suggesting that DON 

concentration was influenced by dilution from snowmelt during the spring and 

precipitation in autumn.

Nitrate accounted for the largest fraction (84-98%) o f the soil solution DIN pool 

with ammonium concentrations low throughout the study, averaging <0.03 mg NH4-N L ' 1 

(Figure 3.1). In contrast to trends observed for DON, soil solution nitrate concentration 

was significantly higher (Fi ,3.73 = 7.69; p = 0.05) at the 40 cm depth (0.46 ±0.12 mg NO3 

-N L"1) compared to the 12 cm depth (0.17 ± 0.12 mg NO3-N L '1) when averaged across 

stands (Figure 3.1 and 3.2). However, within stands the difference between depths was 

only marginally significant for white spruce (F1 3 .8 9  =5.45; p=0.08) and was not 

significant for balsam poplar (Fi,4.06=2.45; p=0.19). Nitrate concentration did not change 

significantly across seasons ( F i ^ j  = 1.05; p = 0.31), although, the highest mean nitrate 

concentration observed in the study was from the 40 cm depth of white spruce during the 

fall (mean nitrate = 0.61 mg NO3-N L '1; Figure 3.2).

Averaged across all stands, soil solution DOC was significantly higher at 12 cm 

than 40 cm (Table 3.2: Fij4 = 11.92; p= 0.03). But, as with other solutes, this difference 

was only significant for white spruce (Fij4 = 9.30; p= 0.04) and not for balsam poplar (Fi^ 

= 3.357; p= 0.14). DON and DOC concentrations were positively correlated across all 

sampling periods and sites (adj.-R2 = 0.82, p <0.001; data not shown). As such the ratio 

of DOC:DON was fairly consistent across all depths and stand types, ranging from 34.7
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in the 12 cm depth o f balsam poplar to 40.5 in the Tanana River (Table 3.2) although 

there were not any significant difference.

Of the measured cations and anions only potassium and chloride concentrations 

exhibited consistent depth-wise patterns, with highest concentrations at the 12 cm depth 

for both stand types (p < 0.01; Table 3.3). Although there were some exceptions, cation 

concentrations in soil solution and river samples generally followed the pattern o f Ca > 

Mg ^  h  bla ^  Li, and for anions SO4 ^  Cl. A cluster analysis of standardized ion 

concentrations (Figure 3.3) shows that ions in the Tanana river were most closely 

associated with those from the 40 cm depth (Euclidian distance of 1.97 for white spruce 

and 2.40 balsam poplar) and more distantly associated with 12 cm depth (Euclidian 

distance of 2.93 for white spruce and 2.94 for balsam poplar). Factor scores generated 

from a principal components analysis o f ion concentrations generally show ions from the 

Tanana River and 40 cm soil solution to be grouped much more tightly on the factor 

plane than those from the 12 cm soil solution (Figure 3.4). The first two PCA-generated 

factors explained >83% of the total variance. Factor 1 was highly correlated with SO4, 

Ca, Na, and Mg and Factor 2 was highly correlated with Cl and K. A MANOVA of the 

factor scores yielded a highly significant site effect (p < 0.0001; data not shown). For 

Factor 1, pair contrasts indicate significant differences (p < 0.02) between ions in the 

Tanana River and those in the soil solution at all depths except white spruce 40 cm (Table 

3.4). For Factor 2, paired contrasts yielded significant contrasts between ions in the 

Tanana River and the soil solution at the 12 cm depth of balsam poplar (Table 3.4). 

Electrical conductivity did not differ significantly between stand types or depths, but, like
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all the elements measured, electrical conductivity was lower in the Tanana River samples 

compared to the soil solution (Table 3.2). The pH of soil solution and river samples was 

consistently above 8  throughout the course o f the study. The pH o f the soil solution did 

not vary significantly by stand type, soil depth, or season (p > 0 .1 0 ) and ranged from 8 . 2  

to 8.5.

Soil water potentials were highest, and often positive indicating saturated soil 

conditions, during the spring at all depths (Figure 3.5). The high values were the result of 

snowmelt, which saturated soil and, in some cases, pooled water on top of frozen soil 

during the spring flush. Standing water was most evident at the 50 cm depth of both 

stands, where water potentials remained positive until late June or early July. Water 

potentials at all depths dropped sharply in late June and early July as soil surfaces dried 

out. Water potential increased in late July as the discharge o f the Tanana River rose and 

rains began, and decreased in the fall as the river level fell. There was a significant 

correlation between discharge of the Tanana River and soil water potential, but only for 

the period after July 10 (Figure 3.6) when surface horizons had begun to dry following 

the spring flush. Based on differences in water potentials between depths, we determined 

that for white spruce plots the downward infiltration o f water roughly tracked 

precipitation events (Figure 3.7). In contrast, only during the spring flush was downward 

infiltration of water observed in balsam poplar.
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Discussion

Contrary to our prediction, soil water DIN concentrations did not differ 

significantly between mid-succession balsam poplar and late-succession white spruce 

stands. Instead, both stand types had comparable concentrations o f DIN, most o f which 

(84-98 %) consisted of NO 3-N (Figure 3.1). The similar ratio o f DON:DIN at the 40 cm 

depth o f balsam poplar and white spruce (4.0 in balsam poplar and 3.8 in white spruce) 

(Table 3.2) also runs counter to our prediction that, due to greater plant and microbial 

demand for DIN in balsam poplar, this ratio would be higher in balsam poplar than in 

white spruce. While N demand in balsam poplar stands may indeed exceed that in white 

spruce as the result o f a more labile pool o f litter C (Schimel et al. 1996; Schimel et al. 

1998) and higher rates of above- and belowground plant primary production (Ruess et al. 

in press), we do not believe there is definitive evidence that plants or microbes in this 

stand type are N limited. Mature poplar stands on the floodplain do have lower rates of N 

fixation inputs than the pure alder stands o f early succession; however, N inputs from 

alder are still substantial during this stage (-38 kg N-ha ' 1 y r ' 1 Uliassi et al. 2000; Uliassi 

& Ruess 2002; Anderson et al. 2004). We suspect that N inputs may roughly equal or 

exceed the high biological N demand created from a labile litter pool and high rates of 

primary productivity. There is also a strong possibility that phosphorus, rather than N, is 

a more limiting nutrient to plants in these floodplain forests (Chapin et al. 1983; Uliassi 

& Ruess 2002), which grow on a very young alkaline soil with negligible amounts of 

mineral weathering. The uniform pool size of soil solution DIN below the rooting zone 

and uniform ratio o f DON.DIN observed throughout the dramatic transition from mid to
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late succession could indicate that successional stage does not play a critical role in 

regulating soil N retention in these forests. Many floodplain successional stages may 

have losses of DON and nitrate during some portion of the growing season, and, even 

though N fixation may decline later in succession, these inputs could continue to exceed 

N demand.

On the other hand, there is some evidence that soil microbes in balsam poplar 

stands do immobilize a higher proportion of nitrate produced from nitrification than those 

in white spruce soil. In our previous work we investigated monthly rates o f in situ net 

nitrification over the course of two and a half years within these research plots (Brenner 

et al. In Press). Within balsam poplar stands the soil had higher mean rates of net 

nitrification than white spruce during all nine of the incubation period of the study and 

had yearly mean rates o f net nitrification that were several times larger than in white

—  9  1 —  9  1spruce stands (849 mg NO 3-N  m' yr' in balsam poplar vs. 138 mg NO 3-N  m" yr' in 

white spruce). That higher concentrations of nitrate were not observed below the rooting 

zone of balsam poplar suggests that soil microbes may play a larger role in immobilizing 

nitrate in this stand type. However, an examination of gross rates o f nitrification, 

combined with accurate estimates of nitrate retention would be needed to evaluate this 

possibility.

Because DON comprised the largest portion of soluble N in the soil solution at the 

40 cm depth it likely constitutes the dominant form of soluble N loss from both of the 

successional stages in this study. While the bioavailability o f DON at this depth is 

unknown, DON from streams of boreal forest ecosystems has been shown to have a high
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proportion (81-72% at baseflow) of biologically-unavailable constituents (Stepanauskas 

et al. 2000). The same is likely true in these stands where there was a relatively high 

ratio of DOC:DON in the soil solution at all depths (34 - 41; Table 3.2). It is unknown if 

the soil solution from these stands serves as a major source of labile C for soil 

heterotrophs; however, the high ratio of DOC:DON exceeds by several fold the C:N ratio 

of substances such as amino acids which are known to be a direct sources for plant N 

uptake in the boreal forest (Nasholm et al. 1998; Persson & Nasholm 2001; McFarland et 

al. 2002). Thus, our study lends support to the idea that a sizeable fraction of the DON in 

forest ecosystems is not readily useable for plants and indicates that DON losses in this 

system are not necessarily controlled by biological N demand (Vitousek et al. 1998).

Interestingly, while DON significantly decreased with depth, nitrate concentration 

increased significantly with depth across stands (Figure 3.1). Given that nitrate made up 

the majority of the DIN pool and is highly mobile in soil (Vitousek et al. 1982; Miller & 

Gardiner 1998), nitrate leaching losses might be proportionally much higher than would 

be indicated by its relative abundance in the soil solution N pool. The increase in nitrate 

with depth is consistent with previous reports o f soil solution chemistry for the floodplain 

in which the surface (20 cm) nitrate concentration was lower than at 50 cm (Yarie et al. 

1993). The higher concentration o f nitrate relative to ammonium in soil solution and 

Tanana River water throughout this study, particularly in the deeper mineral soil (Figure 

3.1 and 2), is not consistent with predictions that DIN losses from pristine (low N 

deposition) forest ecosystems should have a very low ratio of nitrate:ammonium (Perakis 

& Hedin 2002). Although nitrate in soil solution at 40 cm cannot necessarily be
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considered “removed” from the ecosystem, this depth is below the zone where ~ 90 % of 

fine root production occurs (Ruess et al. in press) and thus may not be readily available to 

most of the plants and soil microbes. Overall, our study reaffirms that “pristine” 

ecosystems with low rates of anthropogenic N deposition generally have soil solution and 

stream N pools consisting primarily of DON (MacLean et al. 1999, Sollins et al. 1980, 

Hedin et al. 1995; Stepanauskas et al. 2000).

Annual leaching losses of soluble N from floodplain soils o f interior Alaska are 

difficult to estimate due to the unpredictable nature of water movement through 

seasonally frozen soil (Kane & Chacho 1990), as well as uncertainty in estimating water 

movement and soluble N concentrations in the mineral soil during the early spring (late 

April-May) and early winter (October to December). During late fall and early winter the 

collection of soil solution with lysimeters is difficult due to the freezing o f lysimeter 

tubing. Moreover, our access to floodplain research plots is nearly impossible during the 

process of river freeze-up in October when travel by boat is not possible. However, three 

main factors suggest that N leaching losses likely occur during the early winter in this 

ecosystem: 1) Much of the upper 1 m of mineral soil remains unfrozen for two or more 

months after surface horizons freeze, making infiltrate to groundwater possible; 2) 

Depending upon the stand type, plant N demand is probably negligible (white spruce) or 

non-existent (balsam poplar) during early winter, and N immobilization by soil microbes 

is likely much diminished relative to the summer period due to low soil temperature; and 

3) reduced evapotranspiration following leaf-fall (balsam poplar) and the onset o f near
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freezing conditions should increase the possibility of downward infiltration of water 

following precipitation events.

Differences between the infiltration of growing-season precipitation to deeper soil 

in balsam poplar and white spruce stands (Figure 3.7) might create dissimilar rates o f N 

leaching losses in these stand types. Our study indicates that, for the sampling periods 

after snowmelt, downward infiltration to the 50 cm depth was never evident following 

rain events in balsam poplar. In contrast, infiltration of rain to the 50 cm depth was often 

observed in white spruce stands. This apparent difference between stand types might 

partially be explained by greater retention o f water in the surface organic matter and moss 

in white spruce which would increase the time it takes water potentials to equilibrate with 

the mineral soil and would allow these events to be detected by manual tensiometer 

measurements, such as those used in this study. In other words, the moss carpet in white 

spruce stands may act as a sponge that holds onto rain water which would then move into 

the mineral soil in the days following a rain event. We believe that substantially higher 

stand-level transpirational water loss by plants (e.g., poplar, alder, rose) in balsam poplar 

is preventing the downward infiltration of rain water to the 50 cm depth. Therefore, 

despite a similar composition of N in the soil solution in both stand types, a larger 

amount o f infiltration into the deeper mineral soil in white spruce following rain should 

result in greater N leaching during the growing season in this stand type. However, N 

losses due to downward infiltration are also complicated by the greater prevalence of 

frozen soil in white spruce (Table 3.1), which could both prevent water from infiltrating
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to groundwater and prevent groundwater from moving into surface horizons during the 

first half of the growing season.

Soil water potential at all depths was quite high (wet soil) after snowmelt in the 

early spring, and then became progressively more negative (drier soil) until mid-July 

(Figure 3.5). Overall, we found that soil water potential during the growing season on the 

floodplain was significantly correlated with the height of the Tanana River (Figure 3.6). 

Part of this relationship could be due to the onset of rain during mid-July (Figure 3.7). 

However, despite the continuation of rain events, soil water potentials at all depths 

actually decreased during mid August, as did the discharge from the Tanana River. This 

reaffirms our belief that over the course of the growing season river height is generally 

more important in maintaining the soil moisture o f the unsaturated zone than are rain 

events. The rise o f the Tanana River during the growing season elevates groundwater 

closer to surface horizons (Viereck et al. 1993b) through the process of hyporheic flow — 

the mixture o f river water with groundwater and subsequent capillary rise into surface 

horizons. This process likely helps explains how soil water status can remain favorable 

to plants (generally > -20 kPa) in an ecosystem which has annual losses from 

evapotranspiration (466 mm) that are much higher than annual inputs from precipitation 

(269 mm).

In addition to the significant correlation between river discharge and soil moisture 

potential, several lines of evidence from our soil solution ion data also suggest that 

hyporheic flow could be a major factor controlling the movement o f dissolved substances 

from riverwater and groundwater into the unsaturated zone of the soil profile -  especially
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at the 40 cm depth. A tree diagram generated from a cluster analysis o f major dissolved 

ions (Figure 3.3) shows that river water ions have a strong linkage (shortest Euclidian 

distances) with the soil solution at the 40 cm depths of both stand types. The ratios of 

major ions (excluding sulfate) in the 40 cm soil solution to those o f the same ion in the 

Tanana River (e.g., [Ca] in soil solution: [Ca] river water) were fairly constant in both 

stand types (2.3 -  5.4 in balsam poplar and 2.0 -  3.4 in white spruce), suggesting that the 

soil water originated from a common source (Table 3.3). The ratio of nitrate and DON at 

the 40 cm depths to those of river water also ranged from 4-5 and thus may also originate 

from river or groundwater. Similarly, Yarie et al. (1993) found significant positive 

correlations between many individual ions in Tanana River water and those collected 

from tension lysimeters in these stand types. Lastly, a principal components analysis o f 

major ions anecdotally suggests that ions in the Tanana River (particularly K and Cl) may 

be closely associated with those in the 40 cm soil solution (Figure 3.4). Contrasts of PCA 

factor scores did indicate a significant difference between river water ions and those of 

the 40 cm soil solution in balsam poplar for the first PCA factor (p = 0.0008; Table 3.4). 

However, there were not any significant differences between factor scores from river 

water and the 40 cm depth of white spruce (p = 0.11 and p = 0.68 for Factor 1 and 2 in 

paired contrasts, respectively; Table 3.4). Also, the overall distribution o f the two factors 

which explained > 83% of the total variance in the ion data seems to indicate that 

dissolved ions from the 40 cm soil solution clusters closely to those from river water 

(Figure 3.4). In contrast, the factor scores of ions from the surface soil solution are 

spread over a much wider range across the factor plane and overlap greatly with the
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clusters from 40 cm and the Tanana River. This is probably due to evaporation at the soil 

surface which concentrates ions during dry periods and dilutes them during snow melts 

and rain events.

Thus, when compared to the explanation that precipitation flushes dissolved ions 

out of the system via downward flow, hyporheic flow seems to better explain the 

concentration of dissolved ions in surface soils. Hyporheic flow almost certainly plays 

some role in influencing the movement of nitrate and DON during parts of the growing 

season and further complicates our ability to understand N losses from this system, ft is 

also possible that the higher concentrations of NO 3 observed at 40cm in both stand types 

was the result of nitrification at the stream-soil interface with subsequent capillary rise to 

toward the surface. The hyporheic zone can be a significant source o f NOJ when 

oxygen-rich river water with low bio-available DOC create conditions favorable for 

nitrification (Jones & Holmes 1996). The drop in NO 3 near the surface could be the 

result o f increased microbial immobilization fueled by labile C from root exudates and 

decomposing litter and fine roots.

Nevertheless, it also seems plausible that DON observed at 40 cm originates near 

the soil surface as this is where the vast majority of N inputs from symbiotic N fixation 

and decomposition (root and litter) occur. It is our view that both hyporheic flow and the 

downward leaching of the soil solution are important processes in the biogeochemistry of 

the floodplain and do not necessarily represents mutually exclusive mechanisms for the 

movement of N and other dissolved solutes in this ecosystem. For example, hyporheic 

flow might be the dominant process during late July as frozen soil dissipates (Table 3.1),
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soil and air temperatures are near their maximum and, most importantly, glacial melt 

increases river discharge and elevates groundwater towards the soil surface (Viereck et 

al. 1993b; Figure 3.6). In contrast, runoff and the downward leaching o f solutes might be 

more prevalent following snowmelt and during the late fall (“shoulder” periods) when 

river level is relatively low, precipitation inputs are relatively high and surface soils are 

wettest.

Conclusions

Our study indicates that DON is the most prevalent form of N in the soil solution 

below the main rooting zone and may be the dominant form of N lost from this 

ecosystem via leaching. However, our results also suggest that the capillary rise of 

Tanana River water within forests (hyporheic flow) may replenish dissolved ions in the 

unsaturated zone and plays at least some role in the seasonal movement of riverine N into 

the soil active layer. Soil solution N pools and the ratio o f DON:DIN did not differ 

across stands, and thus did not support our prediction that late successional stands have a 

larger proportion o f DIN below the rooting. Perhaps more importantly, our study brings 

to light several unresolved questions regarding the potential pathways of N losses in this 

and other high latitude forest ecosystems: 1) How do differences in stand-level water 

requirements influence the movement o f soil water to mineral horizons, and what role do 

these differences play in altering N leaching losses?; 2) What are the rates of N leaching 

following the onset of freezing air temperatures during the late fall/early winter period 

when surface horizons remain unfrozen?; 3) To what degree does the presence of frozen
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soil during the growing season influence N leaching losses and runoff during this 

period?; and 4) To what extent does hyporheic (capillary) flow contribute to stabilized 

and biologically-available N in these forests and how do these patterns change throughout 

succession? The answer to these questions will further our understanding of the factors 

regulating primary productivity and carbon sequestration in this and other sub-arctic 

ecosystems that are strongly influenced by seasonally frozen soil.
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12 cm 40 cm 12 cm 40 cm River

Figu re  3 .1 .  Soil solution NO 3-N , NH4 -N and DON-N concentrations. The soil solution 
was taken from balsam poplar and white spruce stands and the Tanana River. Values are 
means obtained from a repeated-measures ANOVA. Samples were collected 20 times 
from August 2000 to October 2001 (n=3 for each standxdepth combination during each 
collection period).
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12 cm Lysimeters 40 cm Lysimeters

12 cm Lysimeters 40 cm Lysimeters

Figu re  3.2. Mean seasonal soil solution concentrations of a.) NO 3 -N  and b.) DON 
averaged for 2000-2001. Values are mean ± 1 S.E. obtained in a repeated measures 
ANOVA with n=3 replicate plots per stand*depth combination. There were no 
significant seasonal trends for nitrate (p>0.05); however, across stands DON was 
significantly lower at the 1 2  cm depth during the fall compared to the summer period.
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Figure 3.3. Mean soil water potentials (kPa) for stands of balsam poplar and white spruce during 2001. N = 3 replicate sites 
per stand.
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River Discharge (m V 1)

Figure 3.4. Mean soil water potential (kPa) vs. discharge of the Tanana River (W -s'1). 
Soil water potential was measured at the 32 cm depth of soil in stands o f balsam poplar 
and white spruce from July 10 to September 23 during 2001. Soil water potential values 
are the mean taken from n=3 plots per stand type. The dashed regression line is for 
balsam poplar and the solid line for white spruce.
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Figu re 3 .5 . Downward infiltration and precipitation. This figure shows the proportion of 
tensiometer arrays within each stand type in which soil water is infiltrating downward 
(line + symbol) and cumulative precipitation for three days prior to sampling (bars) on 
each sampling day during 2001.
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Single Linkage — Euclidian Distance

Linkage Distance

Figu re 3.6. Cluster analysis associations o f anions and cations. This dendrogram shows 
the associations between stand*depth levels and the Tanana River obtained from a cluster 
analysis o f anion and cation concentrations. Values next to each soil solution category 
are the Euclidian distances from this group to the Tanana River.
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Figu re  3.7 . The grouping of the two principal factors from a principal component 
analysis o f major ions. Ions are from the Tanana River and the soil solution. Factor 1 
explained 52.71% of the total variance and was highly correlated with SO4 , Ca, Mg and 
Na; Factor 2 explained 30.64% of the total variance and was highly correlated with Cl 
and K.
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Table 3.1. Depth o f active layer (depth to frozen soil) (cm) in stands o f balsam poplar 
and white spruce. Values are the range of mean values from n=3 replicate sites.

Date___________ B. Poplar  W. Spruce
May 28 3 0 -5 9 16-33
June 23 3 6 -75 2 5 -4 8
July 10 5 3 -N .F . 3 0 -7 5
August 21 N.F. 5 3 -N .F .
Sept. 23 N.F. 63 -  N.F.

* N.F. = No frozen soil detected in upper 1 m.
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Table 3 .2 . Select characteristics for Tanana River water and the soil solution. The soil 
solution is from stands of balsam poplar and white spruce. Values are means (± 1 S.E.) 
and all concentrations are in mg-L'1.

BP 12cm BP 40 cm WS 12cm WS 40cm Tanana
River

pH
8.50a 8.37a 8.20a 8.30a 8.41a
(0.07) (0.11) (0.10) (0.09) (0.12)

Electrical
Conductivity
(juS-cm'1)

283.54ab 539.24b 394.75ab 335.17ab 164.463
(86.81) (204.05) (232.13) (92.42) (10.65)

DON-N: 27.6a 5.7b 24.0a 6.6b 4.3b
DIN-N1 (16.9) (2.5) (9.5) (4.2) (0.5)

DOC-C 95.18ab 68.18b 127.70a 76.75b 16.83c
(6.57) (2.25) (25.61) (11.19) (1.19)

DOC-C:
DON-N 34.7a 38.2a 38.l a 40.l a 40.5a

Superscript with the same letters are not significantly different (p<0.05). 

fMeans were transformed prior to analysis.
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Table 3.3. The concentration (mg-L') o f major ions from the Tanana River and the soil 
solution. The soil solution was from stands of balsam poplar and white spruce. All 
values are means (± 1 S.E.).

Cations
BP 12cm BP 40 cm WS 12cm WS 40cm

Tanana
River

Ca
31.28 42.89 31.47 37.83 18.57
(7.73) (7.61) (10.42) (6.17) (1.63)

Mg 14.24 35.87 22.55 22.87 6.67
(6.47) (13.75) (13.53) (7.81) (1.51)

K 20.35 8.36 17.59 6.05 2.64
(4.08) (0.37) (2.77) (1.81) (0.26)

Na 5.74 13.50 12.31 7.93 3.34
(3.38) (7.24) (7.98) (3.41) (0.39)

Li 0.01 0.001 0.02 0.003 0.001
(0.01) (0.002) (0.01) (0.001) (0.0003)

Anions

S 0 4
35.99 127.58 134.98 49.86 35.80
(19.07) (92.61) (113.93) (27.59) (4.06)

Cl 21.03 5.49 11.81 2.80 1.18
(3.22) (1.09) (5.05) (0.71) (0.12)
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Table 3.4. P-values from planned contrasts between ions in Tanana River water and the 
soil solution. Contrasts follow a MANOVA of the first two factor scores from a principal 
component analysis. The factor scores were square-root transformed prior to the 
MANOVA and were highly correlated (>76% correlation) with the ions listed beneath 
them.

Wilks Factor 1 Factor 2
Multivariate test (SO4, Ca, Mg, (Cl, K) 
________________ Na)___________________

BP 12 cm 
BP 40 cm 
WS 12 cm 
WS 40 cm

< 0.0001 
0.002 
< 0.0001
0.21

0.02 
0.0008 
< 0.0001
0.11

.0006
0.86
0.64
0.68
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C hapter 4

The Temperature Dependence of Soil Nitrogen and Carbon Mineralization in Mid and 

Late Succession Forests on the Boreal Floodplain.

A bstract

We examined the temperature sensitivity of gross and net N mineralization and 

hetrotrophic respiration for soils from mid- and late- successional boreal forest in Alaska. 

Soil from surface and buried organic horizons from balsam poplar (mid succession) and 

white spruce (late succession) stands was incubated at four temperatures (5, 10, 15 and 

20°C) at 50% water holding capacity. Gross N mineralization was measured after three 

weeks while net N mineralization and CO2 respiration were measured periodically for 

182 and 320 days, respectively. Across stands, gross rates o f N mineralization (per g soil 

N) were more than an order of magnitude higher than net rates. Gross N mineralization 

was higher for white spruce soil than for balsam poplar across all incubation 

temperatures, except at 5°C where the difference was not significant (p>0.05). There was 

also a higher rate o f increase (significantly steeper slope and higher Q10 values) in gross 

N mineralization with temperature in white spruce than balsam poplar. Soil respiration
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rates (per g soil C), the temperature sensitivity of soil respiration determined from Qio 

and activation energy (Ea), and the cumulative amount of C respired during the entire 

incubation were also generally higher in white spruce compared to balsam poplar soil.

Soil temperature appeared to have a larger role in limiting the turnover of C and N 

during late succession than a priori indicators of organic matter quality such as C:N and 

lignin:N ratios. Due to the unique nature of the floodplain environment, caution should 

be used in extrapolating our results to a larger scale or other systems. Nevertheless, 

compared to the soil of mid-succession stands, increases in soil temperature brought on 

by the warming of high-latitude forests could result in a proportionately larger increase in 

the mineralization o f N and C from the cold-dominated soils of late-succession stand 

types (i.e., white spruce and black spruce).

Introduction

In high-latitude ecosystems low soil temperature inhibits the microbially- 

mediated breakdown of organic matter and consequent mineralization o f nitrogen (N) 

(Klingensmith & Van Cleve 1993; Schmidt et al. 1999; Jonasson et al. 2001) and carbon 

(C) (Goulden et al. 1998; Hobbie et al. 2000; Neff & Hooper 2002). Therefore, the

ongoing and future warming of northern high-latitude regions (Houghton et al. 1996; 

Serreze et al. 2000; Overland et al. 2004) has large implications for soil C and N cycling 

in a variety of boreal forest community types where plant primary productivity is 

generally thought to be N limited (Nasholm et al. 1998; Persson & Nasholm 2001) and
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where soil organic matter often tends to accumulate due to the wide-spread occurrence of 

cold soils or permafrost conditions. However, the magnitude by which soil C and N 

cycling will be altered by future climatic warming will also depend in part upon 

biologically-driven modifications to the soil environment from plant contributions to 

above- and belowground litter production.

In the boreal forest, soil temperature and the composition and decomposability of 

soil organic matter can be dramatically altered as a consequence of plant successional 

events (Flanagan & Van Cleve 1983; Fox & Van Cleve 1983; Van Cleve et al. 1996). On 

the floodplain ecosystems of Alaska’s interior a major modification to the soil chemical 

and physical environment occurs when mid succession stands of balsam poplar (Populus 

balsamifera) succumb to dominance by white spruce (Picea glauca) (Viereck et al. 1983; 

Van Cleve et al. 1991) during the advent o f late succession. As balsam poplar is shaded 

out by white spruce there is a decrease in the amount of leaf litterfall, which enables moss 

to establish in the understory (Viereck et al. 1993a). Progressively thicker layers of moss 

act as insulation and inhibit soil warming during the summer months such that surface 

horizons remain frozen throughout an ever-increasing portion o f the growing season. 

Eventually the soil becomes permanently frozen year-round (permafrost) with only a 

shallow active layer unfrozen during the growing season. Plant litter produced during 

late succession contains higher ratios o f lignin.N and C:N than in mid succession and is 

generally thought to be more recalcitrant to microbial breakdown (Van Cleve & Viereck 

1981; Flanagan & Van Cleve 1983). Thus, the successional transition from a deciduous 

to coniferous-dominated landscape in the boreal forest is a fundamental turning point in
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which plant species composition mediates declines in soil temperature, organic matter 

decomposition and rates of nutrient cycling.

The accumulation of organic matter in boreal floodplain forests has an additional 

element of complexity in that flooding events periodically deposit mineral substrate on 

top of the forest floor. The soil profile becomes stratified with a surface forest floor/litter 

layer and multiple buried organic and mineral horizons of varying thickness and 

composition. Flooding events eventually create terraces 3-4 meters above the average 

height of the river such that by the later part of mid-succession (mature balsam poplar) 

the inundation of surface soil is relatively infrequent. However, buried organic horizons 

remain within the soil profile, and constitute an important portion of the overall soil 

organic matter. Buried organic horizons likely persist because they are insulated from the 

higher surface temperatures that would facilitate decomposition and, in later succession 

stands, this portion of the soil profile remains frozen throughout a considerable portion of 

the growing season. Buried organic horizons are also known to be areas that are actively 

colonized by fine roots (Ruess pers comm.) and thus may actually accumulate or be 

replenished by labile forms of C and N over time.

In this study we used organic soil throughout the top 20 cm (surface and buried 

organic horizons) to investigate the influence of soil temperature on C and N 

mineralization during mid (balsam poplar) and late (white spruce) succession in forest 

stands on a boreal floodplain. Our goal was to simultaneously examine the influence of 

soil temperature on these two aspects of organic matter breakdown. In particular, we 

wanted to test whether field studies showing generally higher rates o f net N
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mineralization in the soil of mid versus late succession communities of this ecosystem 

(Figure 4.1; Klingensmith & Van Cleve 1993; Van Cleve et al. 1993; Brenner et al. In 

Press) could be attributed to a decrease in soil temperature during late succession or 

might be related to some other factor such as more recalcitrant organic matter. For 

example, if  the recalcitrant nature of organic matter inhibits C and N mineralization rates 

in white spruce soil, then, compared to balsam poplar soil, gross N mineralization and 

CO2  respiration should be less responsive to increases in temperature. However, if  soil 

temperature is the main factor controlling organic matter breakdown in white spruce soil, 

then overall rates o f soil C and N cycling in white spruce should be more sensitive to 

increases in temperature relative to balsam poplar. To accomplish these goals we 

measured gross and net N cycling during an initial (~1 month) period across a range of 

temperature treatments (5, 10, 15 & 20°C). In order to compare the longer-term pool size 

of potentially mineralizable soil C in these two successional sequences, we periodically 

measured soil C mineralization for 316 days. In an effort to better understand the 

influence of temperature on the nature of C being mineralized (e.g., labile or recalcitrant) 

we also tracked the 13C0 2  isotopic signature of respiration at various times throughout the 

course of the study.

M ethods

Study Sites

Soils for this experiment were collected from mature stands o f balsam poplar and 

white spruce, located within and adjacent to the Bonanza Creek Long Term Ecological
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Research Site (BNZ-LTER), approximately 30 km south of Fairbanks, Alaska USA 

(64°45' N, 148°18' W). Balsam poplar sites (FTER sites BP1, BP2 and BP3) contained 

trees 80-100 years old with a substantial understory of rose (Rosa acicularis) and In

fixing thinleaf alder {Alnus tenuifolia). White spruce sites (LTER sites FP4A, FP4B and 

FP4C) generally consisted of trees 200+ years old and an understory of alder (A. crispa 

and A. tenuifolia) and rose; however, alder was not present at the FP4C site. White 

spruce soils were covered by a carpet of moss approximately 10-15 cm thick 

(Hylocomium splendens and Pleurozium schreberi). All research sites were on islands 

within the active portion of the Tanana River floodplain and all soil profiles contain 

multiple buried organic horizons as a result of past flooding events. The buried organic 

horizon closest to the soil surface was likely the result o f a massive flood in 1967. 

Frozen soil in balsam poplar sites was gone by the end o f July but persisted throughout 

the entire growing season in white spruce sites (Brenner et al. In Press). Soil temperature 

was generally highest around the second week in August in both stand types with 

maximum values ranging from 10-14°C at 5 cm to ~5°C at 20 cm (LTER unpublished -  

See Reference section). Select soil characteristics for these stands can be found in Table 

1 and a complete overview of the climate, soil and vegetation o f these stands can be 

found in Viereck et al. (1993a; 1993b).

Experimental Design

Intact soil cores, 0-20 cm in length, were randomly collected from 15 x 15 m 

plots during September of 2001 using a 5.8 cm diameter hand corer and immediately
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frozen. The soil cores began in the surface litter layer and included dead moss and 

decomposed leaves; however, live moss and the previous 1 - 2  years o f senesced leaves 

were pushed aside prior to coring. After approximately one month, cores were thawed at 

4°C and organic layers, which included multiple buried organic horizons and surface 

organic layers, were removed and placed in a common container. Soils were then sieved 

to 5.6 mm to remove course roots and woody litter. All the soil from each stand type was 

then homogenized and adjusted to 50% water holding capacity (WHC) with the addition 

o f de-ionized water. Approximately 120 g of soil from each stand type was placed in 20, 

-473 cm3 canning jars to be used for the determination o f gross and net N cycling rates. 

An additional 20 g o f soil from each stand type was placed in 20 canning jars (same size) 

to monitor C respiration over time. Twenty N mineralization and C mineralization 

canning jars from each stand type were randomly assigned to four temperature treatments 

(5, 10, 15 or 20°C with 5 replicate soil samples for each standxtemperature combination) 

and placed in the dark in their respective incubation chamber to begin day 1 o f the 

experiment. All processing was completed within 48 hours of thawing.

Net and Gross N  mineralization Rates

Gross N mineralization and consumption was measured between days 21 to 23 of 

the incubation using 15N pool dilution (Davidson et al. 1991; Hart et al. 1994b). The pool 

dilution procedure was conducted when microbial processes in the soil had stabilized 

following thawing and sieving. Stability was characterized as a leveling off in the rate of 

soil respiration (see below) observed immediately after sieving and initial incubation.
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The pool dilution procedure consisted of injecting a solution containing a label o f 99% 

15NH4-N into each o f the “N Mineralization” canning jars using a needle and syringe and 

then mixing the soil and solution with a sterile spoon. The labeled solution added did not 

exceed 10% of the overall NH4  pool. Fifteen minutes following injection a sample of soil 

was mixed with 0.5 M K2SO4, shaken for 2 hours, and vacuum filtered through glass- 

fiber filters (1 pm nominal pore size). All N Mineralization jars were then covered and 

incubated at their respective temperatures for 48 hours, at which time another soil sample 

was removed and extracted using the same procedure. To examine microbial 

immobilization of the 15N label (Davidson et al. 1991), a soil sample was also removed at 

this time and fumigated with CHCI3 for 24 hours in a vacuum chamber before extraction 

with 0.5 M K2SO4. Subsamples of fumigated and non-fumigated extracts were digested 

in serum vials using a modified potassium persulfate digestion protocol (Cabrera & Beare 

1993) in which dissolved N is oxidized to NO3. During this procedure several different 

concentrations of phenylalanine were used as an internal digestion standard.

The concentration of NO3 and NH4 in the soil extracts was determined using 

standard colorimetric techniques on an API 300 segmented flow autoanalyzer (Astoria- 

Pacific Inc., Clackamas Oregon, USA). The NO3 in the post-digestion product was 

determined in the same manner and microbial N was calculated as the difference of total 

soluble N in fumigated and non-fumigated extracts expressed on a per gram dry soil and 

per g soil N basis. The amount of 15N within pools of NH4, DON, and microbial biomass 

(post-digestion product as NO3) was determined by first using a diffusion procedure to 

trap soluble N onto acidified filter paper following the protocol o f (Khan et al. 1998).
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The atom percent 15N enrichment (APE = [(mole fraction o f 15N)/(mole fraction of 

14+15N) x 100]) of theN  trapped on the acidified disks was then measured on an isotope- 

ratio mass spectrometer at the University of Illinois (Mulvaney et al. 1990). Gross NH4  

production and consumption were calculated using the equations of Kirkham & 

Bartholomew (1954) and microbial immobilization of the I5NH 4  label was calculated 

using the non-linear method of Davidson et al. (1991).

Net N cycling was determined periodically throughout the experiment by 

removing soil samples and measuring the concentration o f NH 4  and NO 3 in the N 

Mineralization jars. This was done on three occasions prior the gross N mineralization 

procedure (days 0, 8  and 21), during gross mineralization (day 23), and at day 182.

Carbon Mineralization and SI3C o f  Heterotrophic Respiration

Soil CO2 respiration was monitored throughout the course of the experiment by 

capping the C mineralization canning jars and measuring the change in headspace CO2 

concentration over the course of 2-5 days (Robertson et al. 1999). Gas sampling occurred 

by first venting and capping the jars, then injecting and extracting an initial - 1 0  cc 

sample (Co) through a rubber septa using a needle and syringe. The initial injection was 

made so that the samples did not remain under vacuum during the incubation period. 

After 2-4 days, a final 10 cc sample (Cx) was extracted. The concentration o f C 0 2  in Co 

and Cx samples was measured with a LICOR 6200 infra red gas analyzer (LICOR, 

Lincoln, Nebraska, USA) that had been modified with a sample-injection port. The 

concentration of headspace C 0 2 was kept below 4% while jars were capped and the soil
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was exposed to moist air in the incubators between headspace samplings. Heterotrophic 

respiration was calculated as the amount of C evolved during the incubation, expressed 

on a per g soil or per g C basis. The C mineralization experiment was ended by placing 

all jars into the 20°C incubator where they remained from days 316 through 320 in order 

to compare the relative of amount of microbially available C remaining within the two 

stand types.

The amount of C respired per g soil C during the incubation was determined by 

fitting second-order exponential decay functions to the respiration rates of individual 

incubation jars during the entire 316 day incubation (modified from Robertson et al. 

1999):

CT = x C ,x  e(-k' + (k2 x C 2x e{~klx<)) + y 0 (1)

where C t is the total amount of C available to soil microbes at a particular point in time, 

Ci is the pool size of the most labile C (pg C-g soil' 1 or pg C-g soil C '1), k\ is the rate 

constant for the labile pool (day1), C2 is the pool size of the intermediate pool, ki is the 

rate constant for the intermediate pool , e is the base o f the natural logarithm, t is the 

amount of time from the start of the incubation (days) and yo is the asymptote of the 

curve near the steady state. This function was then integrated across time to yield the 

cumulative amount of C respired. Curve fitting and integration were done with the 

Origin 7.5 software package (OriginLab Corp, Northampton, MA, USA). Both 

respiration rates and cumulative amounts of C respired were expressed per g soil C and 

were corrected for C lost throughout the experiment.
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The temperature sensitivity o f C respiration and gross N mineralized between 

each sequential 5°C incubation intervals was investigated by a Qi0 coefficient 

(Kirschbaum 1995):

, r 10 1

e , o = ( r 2 _ n )K

where Qio is the coefficient for the exponential relationship between C or N 

mineralization and temperature normalized to a 10°C temperature interval; T1 and T2 are 

a cooler and warmer incubation temperature separated by 5°C, respectively, and ki and k2 

are the rates of C or N mineralization or cumulative amounts of C respired for the cooler 

and warmer incubation temperatures, respectively.

The temperature sensitivity of C mineralization was also examined through the 

calculation of activation energy (Ea). Activation energy is conventionally defined as the 

amount of energy needed to move a substrate from the ground state to the transition state. 

In the context o f this work a higher Ea at a given temperature does not necessarily 

translate to a pool of available C that is more recalcitrant to heterotrophic utilization but 

rather that that the process of C mineralization is more temperature sensitive. Activation 

energy was determined from C mineralization rates at day 24 o f the incubation and for 

the cumulative amount of C respired during the incubation. This was done by solving for 

Ea in a modified Arrhenius-type equation (Lloyd & Taylor 1994):

R = R xe v  T (3)
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where R is the cumulative amount of C respired at temperature T (in Kelvin), Rx is the 

cumulative amount of C respired at a reference temperature (Tx), Ea is the energy of 

activation (Joules-mole1) and K is the universal gas constant (8.314 Joules mole',K"1).

1 TAt three times during the incubation (days 31, 84, 232 o f the incubation) the 5 C 

o f CO2  from Co and Cx headspace subsamples was measured on a Europa PDZ 20-20 

isotope-ratio mass spectrometer (SerCon Ltd, Cheshire, U.K.). A mixing model was then 

used to calculate the source signature of S13 CO2 from heterotrophic respiration.

The concentration of microbial C and DOC in the 0 . 5  M K2SO4 extracts obtained 

at the end o f the gross N mineralization procedure were determined using the persulfate 

digestions procedure mentioned previously. The post-digestion solution was quite acidic 

(pH 2-3); thus, the dissolved carbon oxidized during the digestion ended up as CO2 in the 

headspace of the serum vials. The headspace air was sampled by inserting a needle 

through the septa o f the serum vial and withdrawing a 1 0 - 1 2  cc sample into a syringe. 

The air was analyzed for CO2 using the method described previously for respired CO2. 

Along with digestion blanks, five concentrations o f phenylalanine were used as an 

internal digestion standard. The amount of CO2 evolved from the phenylalanine 

standards was used to develop a regression equation for calculation of the amount of 

dissolved C in the samples. Soluble C in the digestion solution was also calculated 

separately with the use of a pressure-volume equation:
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pressure + post-digestion pressure inside serum vial), V is the headspace volume (cm ) or 

total serum vial volume minus the volume of the digestion solution, R is the gas constant 

of 82.05 (ml-atm/mole-K) and T is the ambient temperature in degrees Kelvin. 

Measurements were made after the serum vials were cooled to ambient laboratory 

temperature following the digestion.

The pressure-volume (actual C in solution) and internal standard-based 

determinations of the C in the digested standard were compared and the efficiency with 

which the phenylalanine standards were digested to CO2 was calculated as:

%Ed = p * - x l 0 0  (5)
total

where %Ed is the digestion efficiency expressed as the percentage of total C in solution 

digested to CO2 , Cph is the amount of C digested to CO2  as calculated from a pressure- 

volume equation of phynylalanine stds (blank corrected) and Ctotai is the amount of 

phenylalanine-C in the original digestion solution.

Statistical Analysis

Experimental results were analyzed using a factorial ANOVA or repeated 

measures ANOVA in the General Linear Model (GLM) or General Regression Model 

(GRM) modules of the Statistica software package (StatSoft 2004, Tulsa, OK, USA). 

Tukey’s Honestly Significant Difference (HSD) multiple comparison test was used to 

determine significant differences within and between soil types for measurements during 

a single sampling period (e.g., gross NH4  mineralization); however, the HSD test was
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determined to be overly conservative when comparing values for repeated measures 

analysis across multiple time periods, and in these situations (e.g., soil respiration over 

time), Fisher’s Least Significant Difference (LSD) method was used. Linear and 

polynomial regression curves were used to examine the relationship between incubation 

temperature and C and N cycling processes within a given time period. Statistical 

significance was determined at a= 0.05 with values between 0.05 and 0.10 considered 

“marginally” significant.

Results

Gross and Net Nitrogen Transformations

For white spruce there was a highly significant linear relationship (Adj.-R = 0.93, 

p < 0.0001) between temperature and gross NH 4 mineralization (pg NH4-N g soil N ' 1 day

'), and gross NH 4 mineralization for this soil type increased significantly (p < 0 .0 0 1 ) with 

each successive 5°C increases in incubation temperature (Figure 4.2). Gross 

mineralization rates per g soil N in white spruce soil were also larger than in balsam 

poplar for the entire range of incubation temperatures. For balsam poplar soil there was a 

significant linear relationship between gross NH 4 mineralization and temperature from 5-

'y +15°C (Adj-R =0.70, p < 0.0001). However, gross NH 4 mineralization decreased 

dramatically in balsam poplar soils at 20°C, where the rate was similar to that found at 

5°C (Figure 4.2a). Excluding the 20°C incubation temperature, there was a significantly 

steeper rate of increase in gross NH 4 mineralization with temperature in white spruce 

compared to balsam poplar (p = 0.0003 for stand * temperature interaction), such that
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stand-level differences in gross NH 4 mineralization between 5-15°C became increasingly 

larger with increasing temperature (Figure 4.2a). In addition, Q10 values for gross NH 4 

mineralization were significantly higher for white spruce soil than balsam poplar between 

at all temperature intervals (Figure 4.3).

Gross NH 4  consumption, which includes microbial immobilization and 

adsorption, followed the same pattern as gross NH4 mineralization (Figure 4.2b) and 

absolute rates o f NH 4  consumption closely matched gross mineralization in both stand 

types. Gross consumption also was highly correlated with temperature in white spruce 

(Adj.-R2 = 0.97, p = 0.008), where NH 4 consumption increased steadily with each 5°C 

increase in incubation temperature, and in balsam poplar from 5-15°C (Adj.-R2 = 0.99, p 

= 0.02). Patterns o f gross consumption and mineralization differed in that rates of 

consumption did not decrease as dramatically at 20°C in balsam poplar as did gross 

mineralization.

Trends in the gross microbial immobilization of NH 4  were less pronounced than 

for either gross mineralization or consumption (Figure 4.2c). In balsam poplar soil, gross 

immobilization of NH 4  increased linearly with temperature from 5-20°C (Adj.-R = 0.94, 

p < 0.0001), and there was not a decrease in gross immobilization at 20°C as was 

observed for gross mineralization and consumption. In white spruce there was a 

progressive decline in microbial immobilization of NH^with temperature between 5-15°C 

(Adj.-R2 = 0.67, p < 0.0001) but an increase between 15-20°C (regression not shown).

The net N mineralization rate (per g soil N) measured during the first 21 days of 

the study, was significantly higher in white spruce soil than balsam poplar at all
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temperatures (Figure 4.4a; p < 0.001) except at 15°C where the difference was not 

significant (p = 0.50). Across stand types there were widely contrasting patterns of net 

ammonification and nitrification that contributed to the overall net rate. For white spruce 

soil there was a net production of NH4-N and a strong positive correlation between 

temperature and net NH4-N production when fit with an exponential growth equation 

(Figure 4.4b; R2 = 0.98). Net nitrification in white spruce was near zero at all incubation 

temperatures (Figure 4.4c). In contrast, for balsam poplar soil there was a net production 

of NO 3-N  and net nitrification made up the only positive contribution to overall net N 

mineralization. This is because there was always a net consumption of ammonium in 

balsam poplar and net ammonification did not respond to increased temperature. There 

was a strong exponential relationship between net nitrification and incubation 

temperature (R2  of exponential fit = 0.96).

The concentration of NO3-N rose steadily in all balsam poplar soils throughout 

the course of the experiment and also increased with incubation temperature (Figure 

4.5a). In white spruce, the pool size of NO^-N remained near zero until day 182 when 

concentrations increased dramatically and were greater than or equal to those found in 

balsam poplar stands. In balsam poplar soil the pool size o f NH^-N decreased steadily 

from days 0 to 182 (Figure 4.5b), and did not appear to be correlated to temperature, 

while in white spruce NH^-N increased from day 0 to 21 and also generally increased 

with incubation temperature. However, the concentration of NH^-N in white spruce soil 

changed only slightly between days 2 1  and 182.
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The ratio of gross-to-net DIN mineralization was around 20 in white spruce across 

all incubation temperatures (Figure 4.6a). However, in balsam poplar this ratio was 

significantly higher than white spruce soil at 5°C (102.2 ± 8.4) and 10°C (87.2 ±26.3), 

while at 15°C and 20°C it was not significantly different between stand types.

Carbon Mineralization

Heterotrophic respiration per gram soil C increased with incubation temperature 

in both stand types throughout the course of the incubation (Figure 4.7) and respiration 

rates were significantly higher (p < 0.05) in white spruce compared to balsam poplar soils 

during many o f the sampling periods. During the period in which gross N processes were 

measured (week 3), soil respiration per g soil C was significantly higher (p<0.01) in 

white spruce compared to balsam poplar at every incubation temperature (Figure 4.8). 

The cumulative amount of CO2 -C respired during the entire 316 day incubation was also 

significantly higher for white spruce compared to balsam poplar for all incubation 

temperatures (Figure 4.9). In addition, the difference between rates in white spruce and 

balsam poplar increased with incubation temperature, especially at 15 and 20°C where 

there was substantially more C respired per g initial soil C.

Incubating all soils at 20°C during days 316 to 320 reversed the previous trend in 

respiration such that an inverse relationship developed between the previous incubation 

temperature and respiration (Figure 4.10). During this period respiration per g soil C was 

very similar between stand types. The only significant difference was at 10°C where 

respiration was slightly higher for balsam poplar than white spruce soil (p=0 .0 1 ).
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Qio values calculated from the entire amount o f C respired during the incubation 

were not significantly different between stand types for the 5-to-10°C or 10-to-15°C 

intervals but were dramatically higher for white spruce than balsam poplar at the 15-to- 

20°C interval (Figure 4.11a; p < 0.0001). Qio decreased steadily with incubation 

temperature in balsam poplar but remained flat until the 15-to-20°C interval in white 

spruce. The energy o f activation (Ea) decreased with incubation temperature in balsam 

poplar but increased with incubation temperature in white spruce. The energy of 

activation was significantly higher (p < 0 .0 0 0 1 ) for white spruce than balsam poplar at 

10, 15 and 20°C. Compared to balsam poplar stands, Qio values calculated at day 24 of 

the incubation were significantly higher for white spruce soil at the 15-to-20°C (1.90 ± 

0.04 for balsam poplar vs. 2.19 ± 0.05 for white spruce; p < 0.01) interval and marginally 

higher for white spruce at the 5-to-10°C (2.04 ± 0.03 for balsam poplar vs. 2.20 ± 0.06 

for white spruce; p = 0.06) and 10-to-15°C (2.20 ± 0.08 for balsam poplar vs. 2.34 ± 0.05 

for white spruce; p = 0.08) intervals (Figure 4.11b). The energy o f activation was 

significantly (p < 0.05) higher for white spruce soil at 10, 15 and 20°C.

As was the case for the ratio o f gross-to-net N mineralization, the ratio of the 

CO2-C respiration rate to net N mineralization (per g soil) during the pool dilution study 

was significantly higher at 5°C (p = 0.006) and 10°C (p = 0.01) in balsam poplar than in 

white spruce soil (Figure 4.6b). However, the ratio was similar between stand types at 

the 15 and 20°C incubation temperatures. In contrast, the ratio of CO2 respiration to 

gross NH4-N mineralization was significantly higher (p < 0.0001) for white spruce than
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balsam poplar soil at all incubation temperatures except for 20°C (Figure 4.6c). The 

ratios in both soil types generally increased with temperature.

Microbial Biomass C and N

Microbial biomass C per g soil C measured at day 23 of the incubation was not 

significantly different between stand types (p > 0.23; table 2). There was a significant 

inverse correlation between temperature and microbial biomass C in balsam poplar (R = - 

0.62, p = 0.004) and white spruce (R = -0.64, p = 0.003). However, this correlation only 

resulted in a slight decrease in biomass C with temperature. Microbial biomass N per g 

soil N was larger in white spruce than balsam poplar at all incubation temperatures (p < 

0.0002). There was no relationship between incubation temperature and microbial 

biomass N.

DOC and DON

Dissolved organic carbon (DOC) concentrations (per g soil C), measured during 

the analysis of gross N cycling rates (day 23), were higher in balsam poplar soil than in 

white spruce across all incubation temperatures (table 2). Per g soil N, dissolved organic 

nitrogen (DON) concentrations were similar between stand types, except at the 20°C 

incubation temperature where the concentration was slightly higher for balsam poplar soil 

(table 2 ).
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S  C o f  Respiration

The 8 13C signature of heterotrophic respiration became increasingly more 

enriched over time with mean values generally between -30% o and -27% o early in the 

incubation and increasing to between -26%o and -24.5% o range by day 2 3 2  (Figure 4 .1 2 ). 

Within a given sampling date there was a trend toward more depleted values with 

increasing temperature. The trend of heterotrophic respiration being progressively more 

enriched over time but more depleted with increasing temperature was similar for both 

stand types.

Discussion

Gross and Net N  Mineralization

Despite patterns observed in situ showing that net soil N mineralization slows 

during the transition from mid-succession balsam poplar stands to late-succession white 

spruce stands (Klingensmith & Van Cleve 1993; Van Cleve et al. 1993; Brenner et al. In 

Press), laboratory estimates of gross (Figure 4.2a) and net (Figure 4.4) N mineralization 

rates (expressed per g soil N) in this study were greater in white spruce soil than in 

balsam poplar soil across all incubation temperatures. Moreover, the faster rate of 

increase in gross N mineralization (steeper slope) with increasing temperature and higher 

Qio values (Figure 4.3) in white spruce soil compared to balsam poplar suggests that N 

mineralization in white spruce soil is more sensitive to increases in temperature. These 

data also suggest that organic matter “quality” with respect to N cycling does not 

necessarily decrease during this successional transition and that decreased soil
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temperature could be the primary driver of the lower rates of in situ net N mineralization 

within the soil of late succession forests.

Because of the relatively high rates of NH4 consumption (Figure 4.2b) and 

immobilization (Figure 4.2c), gross N mineralization rates were generally about 20 times 

those of net mineralization at day 23 of the incubation when gross N mineralization was 

measured (Figure 4.6a). Using the average daily rate of N mineralization between days 0 

and 21, the ratio of gross-to-net N mineralization was very consistent across all 

incubation temperatures in white spruce; however, this ratio was considerably higher 

(ratio of -100) at the 5°C and 10°C incubation temperatures in balsam poplar. Initially, 

this would seem to indicate that incubation temperature had a much stronger influence on 

microbial N demand in balsam poplar soil compared to white spruce (higher N 

consumption relative to production). However, we suspect that the decrease in this ratio 

with temperature may also be indicative of the limitations associated with laboratory 

incubations. By the time of the pool dilution procedure (days 21-23), an appreciable 

amount of inorganic N had built up inside of those soils that had been incubated at higher 

temperatures (Figure 4.5). Thus, the influence of temperature on rates o f N cycling was 

confounded by the higher absolute amounts of inorganic N within the soils at the start of 

the pool dilution procedure. We believe that the steady build up o f inorganic N may have 

served to alleviate microbial N demand in balsam poplar at the higher temperatures while 

the pool of active C was decreasing rapidly. Thus, soil microbes did not have an 

adequate supply of C to immobilize inorganic N at the higher incubation temperatures, 

resulting in higher net rates of N mineralization and a lower ratio o f gross-to-net
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mineralization. Nevertheless, when comparing the two stand types the substantially 

lower amount of net N mineralization and higher ratio of gross-to-net N mineralization in 

balsam poplar for the 5°C and 10°C incubation temperatures indicates that this soil type 

probably had a higher initial N demand. This would be in line with previous studies 

suggesting that microbes in balsam poplar soil are relatively N limited (Clein & Schimel 

1995; Schimel et al. 1998) compared to other boreal forest communities which have been 

hypothesized to be limited by available energy (labile C) (Flanagan & Van Cleve 1983).

Similar to patterns observed in situ (Van Cleve et al. 1993; Brenner et al. In 

Press), a large portion of the calculated rate of net N mineralization (Figure 4.4) 

consisted of nitrification in balsam poplar soil but was dominated by ammonification in 

white spruce. We did not measure gross rates of nitrification in this study; therefore, we 

are not able to resolve the mechanisms behind this phenomenon and this topic warrants 

attention in future research. Possible explanations for the disparity in N forms produced 

during net N mineralization include higher rates of gross nitrification in balsam poplar 

soil, greater consumption of NOj by microbes in white spruce soil, or the inhibition of 

soil nitrifiers in white spruce soil. O f these, it seems that consumption of NOj in white 

spruce during the first several weeks of the incubation is the most likely possibility. 

Coniferous stands can have negligible net rates of nitrification but substantial amounts of 

gross NO 3 production when measured by the 15N 0 3 pool dilution technique (Stark & Hart 

1997). This occurs because microbial immobilization of NO 3 can equal or exceed that of 

gross NO 3 production. In the present study, the concentration of NO 3 increased
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dramatically in the white spruce soil when it was last measured on day 182 (Figure 4.5a) 

and this would indicate that nitrifying bacteria were not chemically inhibited within this 

soil type. At some point prior to day 182 the pool of labile C had probably decreased to 

the extent that soil microbes could no longer immobilize NO 3 , allowing the concentration 

to increase rapidly (Hart et al. 1994a).

There were two results pertaining to the influence of temperature on N 

mineralization that were puzzling to us. First, both gross N mineralization and

consumption in balsam poplar soil decreased substantially at the 20°C incubation 

temperature, although we observed a linear increase between 5-15°C. Second, there was 

an exponential increase in net N mineralization (Figure 4.4) and C respiration (Figure 

4.8) with temperature but only a linear increase in gross NH 4  production and 

consumption with temperature. Do these disparities accurately reflect what occurs in situ 

or could they be an artifact of examining these processes in a laboratory incubation 

experiment? Both results could be explained by a violation of one of the assumptions of 

the pool dilution method -  that the 15NH 4 label is not re-mineralized back into the NH 4 

pool once it has been taken up by soil microbes (Hart et al. 1994b). Such a re

mineralization would make it appear that the gross production of NH 4 was lower than it 

actually was. This is because gross rate calculations are based upon the dilution of the 

15NH 4 label by the production of predominantly 14NH 4  during the depolymerization o f 

organic molecules. If  re-mineralization did occur during the 48 hours between the 

injection of the 15N label and sample extraction it would likely have increased with 

temperature along with the turnover o f microbial biomass. Across stands, a temperature-
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dependent increase in re-mineralization could have caused the disappearance of the 

exponential trend from the actual gross rate of production while a particularly high rate of 

re-mineralization at 20°C in balsam poplar soil could have produced the appearance of a 

decrease in gross mineralization between 15-20°C.

If the “no re-mineralization” assumption is increasing violated at higher 

temperatures it severely confounds the ability to study the temperature dependence of 

gross N processes. This is because incubation length would need to be longer at low 

temperatures (e.g., -5 to 5°C) in order to have measurable amounts o f production, but 

would need to be shorter at higher temperatures (> 20°C) to account for re

mineralization. Another possibility is that the observed lower gross rate at 20°C in 

balsam poplar soil reflects the disappearance of labile organic matter prior to the time that 

the pool dilution study had begun. This could occur if balsam poplar soil was at or near 

this temperature in situ which would allow a broad range o f organic constituents (both 

labile and refractory) to be accessible to enzymatic breakdown. However, if  this were the 

case then there also should have been an associated decrease in respiration at this 

temperature, and there was not. Whatever the reason behind the linear trends in gross 

NH 4  production with increasing temperature or the drop at 20°C in balsam poplar, it is 

clear from this study that incubating soil above temperatures that normally occur in situ 

will not necessarily result in a maximization of gross N transformation rates.
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C Mineralization

Results from this study suggest that, across a wide range o f temperatures, soils 

from late succession stands of white spruce contained a higher proportion of labile C than 

soils from mid succession stands of balsam poplar. Over the course o f the incubation, 

soils from white spruce stands respired a significantly larger amount of C (per g soil C) at 

all incubation temperatures compared to that from balsam poplar stands (Figure 4.9). 

The difference in respired C in white spruce vs. balsam poplar also increased with 

incubation temperature. Moreover, activation energy for C respiration in white spruce 

soil was significantly higher than in balsam poplar from 10-20°C (Figure 4.11), 

indicating greater temperature sensitivity. Activation energy throughout the entire 

experiment (data not shown) was also almost always higher in white spruce. The Qio of 

respiration was also generally higher in white spruce than balsam poplar. Overall, these 

results indicate that, compared to soil from balsam poplar stands, soil from these white 

spruce stands had: 1) a proportionately larger pool of available C for microbial 

breakdown across a wide range of temperatures; 2) respiratory losses o f C that were 

generally more sensitive to increases in temperature; and, 3) respiratory temperature 

sensitivity that increased with incubation temperature.

It was somewhat surprising that the soil from white spruce stands had a larger 

fraction of microbially-available C than the soil from balsam poplar stands. Microbes in 

balsam poplar soils are thought to have a rich supply o f C available to them due to the 

large annual inputs of poplar leaves containing labile, low molecular weight phenolics 

(Clein & Schimel 1995, Schimel et al. 1998). In contrast, it has been reported that
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evergreen litter generally decomposes more slowly than litter from deciduous species 

(Hobbie et al. 2000; but, see Ruess et al. in press-b). In addition, the decomposability or 

“quality” of soil organic matter is thought to decrease sharply in late succession 

evergreen stands o f the boreal forest as soil is formed from recalcitrant litter with a high 

lignin content and high ratio of C:N (Flanagan & Van Cleve 1983; Vance & Chapin 

2001). However, previous studies suggesting that late-succession coniferous litter 

decomposes more slowly than mid-succession deciduous litter may not translate entirely 

to this study in which a combination of surface and buried organic horizons were 

incubated. The coarsely sieved soil of this study probably contained a large amount of 

labile fine roots that decompose rapidly (Ruess et al. in press-a; Ruess et al. in press-b) 

and such a pool might also have been quite sensitive to increases in temperature. The 

organic soil layers at the bottom of our white spruce cores also contained plant material 

from previous successional stages (e.g., alder and poplar) that may have been of 

relatively high quality. Such material would be at or near freezing for much of the year 

in white spruce stands in which frozen soil was detected throughout the growing season. 

Therefore, results showing that white spruce soil had larger amounts of C respired per g 

soil C at all temperatures, and respiration that was more temperature sensitive than 

balsam poplar soil, may reflect belowground turnover much more than surface litter 

which, we speculate, may contain a higher portion of recalcitrant material.

Our results are also in agreement with other studies suggesting that initial 

measures o f low soil “quality” such as high ratios o f C:N and lignin:N (table 1) and low 

pH may not always be good indicators of the relative rates of soil C and N mineralization
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(Giardina et al. 2001; Hobbie et al. 2002). This is probably because the relative rates of 

decomposition in this and other high-latitude ecosystems are controlled to a greater 

degree by conditions in the field (e.g., low temperature or high moisture) rather than by 

soil chemistry (Weintraub & Schimel 2003). Therefore, it should not be assumed that 

soils from older coniferous successional seres in the boreal forest always have more 

recalcitrant organic matter than that of younger deciduous stands.

Relationships Between C and N  Mineralization

The mineralization of C and N generally appeared to be linked in this study with 

significant linear correlations in both stand types between C respiration and gross and net 

N mineralization (p < 0.0001). However, for both stand types, with increasing 

temperature the amount o f C respired tended to increase relative to the amount o f gross N 

produced (Figure 4.6c). The proximate cause for this disparity is the exponential increase 

in C respiration with increasing temperature but linear increase of gross N mineralization 

with increasing temperature. Again, this might be due to a violation of the assumptions 

involved in the 15N pool dilution technique (increasing re-mineralization of immobilized 

15N at higher temperature). It is our belief that the proportion of C-to-N mineralized is 

actually consistent across temperatures and that the increase o f this ratio at higher 

temperatures represents the degree by which re-mineralization o f the l5N label reduced 

gross rates in both stand types.

The ratio o f C-to-net N mineralization (Figure 4.6b) provides further evidence 

that there was a reduction in microbial N demand with increasing temperature in the
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balsam poplar soil. As was the case for the ratio of gross:net N mineralization (Figure 

4.6a), the ratio of C-to-net N mineralization measured during the third week of the study 

was very constant across all incubation temperatures in white spruce (125-150) and at the 

15 and 20°C incubation temperatures in balsam poplar (~75). However, this ratio was 

substantially higher at the 5°C and 10°C incubation temperatures (300-325) in balsam 

poplar. Between stands, we believe that microbial demand for N was highest in balsam 

poplar soil but this demand was rapidly satiated at the higher incubation temperatures 

(15°C and 20°C) due to the increase in the pool size of DIN (Figure 4.5) and the 

simultaneous loss of labile C by week three of the incubation (Figure 4.7).

SI3C o f  Heterotrophic Respiration

Time and temperature induced opposing trends on the isotopic composition of 

heterotrophic respiration (Figure 4.12). The approximately 2.5 to 3%o enrichment of the 

8 13C0 2  signature between day 31 and 232 is comparable to trends observed in other 

studies (Andrews et al. 1999; Kohzu et al. 1999) and represents a source pool of available 

C that becomes increasingly enriched with time. The same situation occurs with depth in 

soil, perhaps because a given cohort of C — a pool of C that enters the soil as litter at a 

point in time — becomes increasingly composed of the enriched, reprocessed, constituents 

of soil microbes due to the respiratory loss of lighter isotopes (Ehleringer et al. 2000). 

This may involve the preferential digestion of enriched labile compounds over more 

depleted and recalcitrant compounds that, in situ, would be lost as DOC (Tu & Dawson 

In Press). However, in the short term (days to months) this mechanism would appear to
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be an unsatisfactory explanation for the results of our study in which a 15°C increase in 

temperature resulted in a l-2% o depletion of respired CO2 and, presumably, also the pool 

of C available to soil heterotrophs. We had expected higher incubation temperatures to 

be a good surrogate for time, in that a faster turnover of available C pools would cause 

the respiratory signature to become enriched more quickly than at the lower incubation 

temperatures. Instead, our results suggest that at higher incubation temperatures 

isotopically depleted substrates such as lignin and lipids (Gleixner et al. 1993; Fernandez 

et al. 2003) represent a larger portion of the C pool that is available to soil microbes. A 

shift towards the utilization of these more recalcitrant substrates at higher temperatures 

could be the result of a temperature-induced change in the microbial community 

(Andrews et al. 2000) or fractionation during substrate utilization (Henn & Chapela 2000; 

Henn et al. 2002). Another possibility is that the labile and enriched substrates are 

exhausted rapidly at higher temperatures, leaving only the more recalcitrant and depleted 

substrates by day 31. While we cannot rule out fractionation during C uptake, the 

utilization o f more depleted and recalcitrant substrates at higher temperatures to us seems 

the most parsimonious explanation given the higher activation energy required for their 

enzymatic depolymerization. Over longer time periods our data suggest that the overall 

enrichment o f available C pools will continue at all incubation temperatures and, we 

suspect, the influence of temperature on S13C0 2  will be lessened as labile and 

intermediate pools of plant-derived C are used up.
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Conclusions

Results from this study suggest that the depolymerization o f organic C and N is 

generally linked in both stand types, with increasing temperature resulting in increases in 

C respiration as well as gross and net N mineralization. However, significantly higher 

Qio values for C and N mineralization, higher activation energy, and a greater cumulative 

amount of C respired at all incubation temperatures in white spruce than in balsam poplar 

soils indicate that the soil of this late-succession stand type has a proportionately larger 

pool of microbially-available organic matter that is relatively more sensitive to microbial 

utilization with increasing temperature. Given scenarios predicting a warming of high- 

latitude ecosystems during the coming decades, boreal floodplain ecosystems that have 

deep stores o f C (buried organic horizons) protected from microbial degradation by low 

soil temperatures could be landscapes that are particularly susceptible to C loss. This 

should be of particular concern given the substantial decrease in the areal extent of 

permafrost in Alaska’s floodplain forests during recent decades (Jorgenson et al. 2001).
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Figure 4.1. Average yearly net N mineralization rate from intact soil cores (0-20cm). 
The soil cores were incubated in stands of white spruce and balsam poplar during 2000
2001. Each replicate core was incubated for approximately one month during the snow 
free period and over the course of the winter from October to May. The soil included 
decomposed surface litter material as well as buried organic and mineral horizons. 
Values are means ± 1 S.E. from n=3 replicate plots per stand type.
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4.2a)

Incubation Temperature (°C)

Figu re 4.2a. Gross NH^-N mineralization.

Figu re  4.2. Bar graphs of a) gross mineralization, b) gross consumption and c) gross 
microbial immobilization. Rates were determined from organic soils o f balsam poplar 
and white spruce incubated at 5, 10, 15 and 20°C and all values are expressed as pg NH4- 
N-g soil N"'-day"1. For Figure 4.2a, the solid line is the linear regression of gross 
mineralization and temperature in white spruce from 5-20°C and the dashed line is the 
regression in balsam poplar from 5-15°C. Values in Figures are means ( ± 1  S.E.) from 
n=5 replicate samples and asterisks indicate the following significant differences between 
stand types * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 4.3. Qio values determined from gross NH^-N mineralization rate and incubation 
temperature. The Qio describes the increase in gross NH 4-N mineralization normalized 
to a 10°C increase in incubation temperature. Each point is the mean (±1 S.E.) Qio from 
n=5 replicate samples (incubation jars) per standxtemperature combination. Asterisks 
indicate the following significant differences between stand types * p < 0.05, ** p < 0.01, 
* * * p <  0 .0 0 1 .
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4.4a)

F igu re 4.4a. Net N mineralization at day 21 of the incubation.

F igu re 4.4. Mean (±1 S.E.) rates of a) net N mineralization, b) ammonification and c) 
nitrification (pg N-g soil N '^day '1) in organic soils of balsam poplar and white spruce 
taken from the Tanana River floodplain. Rates were determined at day 21 of the 
incubation during the addition of the 15N labeled solution.
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Figure 4.6a. The ratio o f gross :net N mineralization at day 21 o f the incubation.

Figure 4.6. Ratio of a) gross-to-net DIN mineralization, b) CO2 -C respired-to-net N 
mineralization and c) CO2 -C respired-to-gross N mineralization at day 21 of the 
incubation. Values are means (± 1S.E.) and n=5 for each standxtemperature combination 
from untransformed data. Data were square-root transformed for statistical tests.
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Figure 4.6c. The ratio of C respired to gross NH^-N mineralized at day 21 of the 
incubation.
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Figure 4.7. Soil respiration rate per g C for select days during the 316 day incubation. Rates are least-squares means ±1 S.E. 
calculated from a repeated measures ANOVA.

(—»



152

Incubation Temperature (°C)

Figure 4.8. Soil Respiration per g soil C at day 24 of the incubation. Here, logarithmic 
growth curves have been fit to the rates in each stand type. Asterisks indicate the 
following significant differences between stand types * p < 0.05, ** p < 0.01, *** p < 
0 .0 0 1 .
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Figure 4.9. Cumulative amount of C respired during the course of the incubation. Values are means 1 ± S.E. (Least square 
means) (mg CO2 -C g soil C’1) generated from a repeated measures ANOVA on select dates over time. Asterisks at day 316 
indicates significant differences (*** = p<0.001) in the cumulative amount o f C respired in white spruce and balsam poplar.
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Previous Incubation Temperature (During Days 0-316)

Figure 4.10. Respiration per g soil C at the end of the incubation (days 316 -  320). 
Values are means ±95% confidence intervals from n=5 replicate jars per standxtreatment 
combination.
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Figure 4.11. Average energy of activation (Ea) (scatterplot) and Qio values (bar graph) for microbial respiration. Figure 4.1 la  
is from day 24 of the incubation and 4.1 lb  is the cumulative values for the entire 316 day incubation. Values are means ±1 
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Incubation T emperature

Figure 4.12. 5 1 3C0 2  of microbial respiration at days 31, 84 and 232 of the incubation. 
Values are means (±1 S.E.) from n = 5 replicate incubation jars per standxtemperature 
combination obtained from a repeated measures ANOVA.
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Table 4.1. Select soil characteristics of balsam poplar and white spruce soil. The 
characteristics were determined prior to the beginning of the incubation and are expressed 
on an oven-dry (105°C) basis. Values are means (±1 S.E.) calculated from n=4 replicate 
samples per stand type.

% C % N C:N LignimN* [NH4 -N] 
ugN g 1

[NO 3 -N] 
ugN g ' 1

5 13C 5 15N

B. 20.18 1.13 17.86 2 0 . 0 34.67 5.39 -28.02 -1.79
Poplar (0.03) (0.006) (0 .6 ) (0.59) (0.17) (0 .0 2 ) (0 .1 2 )

W. 18.59 0.70 26.56 27.0 2.97 0.28 -27.01 -0.87
spruce (0.08) (0.004) (0 .6 ) (0 .1 1 ) (0.003)* (0.09) (0 .0 0 2 )

f Lignin-to-N ratio taken from Van Cleve et al. 1993.
* The small standard error for NO3 -N is due to many white spruce samples having nitrate 
concentrations that were near the detection limits of 0.02 ppm NO 3 -N.
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Table 4.2. Microbial biomass C and N, DOC and DON at day 23 of the incubation. Biomass values were not corrected for 
extraction efficiency. Values are means ±1 S.E. from n=5 replicate soil samples per stand x temperature combination.

Incubation Microbial C Microbial N DOC DON
Temperature (pg C g soil C '1) (pg N g soil N '1) (pg C-gsoil C '1) (pg N-gsoil N '1)
(°C)

BP WS BP WS BP WS BP WS
5 5,808 5,549 14,055 16,941*** 4,631*** 3,688 3,613 3,574

(162.6) (91.9) (71.1) (91.3) (47.8) (43.3) (45.0) (8 6 .0 )

1 0 5,661 5,556 14,764 17,722*** 4 4 5 7 *** 3,286 3,467 3,252
(91.2) (156.2) (181.7) (202.9) (2 2 .2 ) (138.8) (18.8) (62.5)

15 5,515 5,224 14,710 19,239*** 3,989*** 3,391 3,132 3,312
(56.1) (69.9) (204.3) (420.6) (32.6) (36.1) (2 2 .0 ) (53.9)

2 0 5,313 4,827 14,973 18,822*** 3,875*** 3,184 3,192 3 771***
(124.4) (245.7) (167.2) (227.2) (43.6) (139.6) (35.5) (93.2)

Asterisks (***) indicate a significant c ifference o f p< 0 . 0 0 1  between stands for a particular incubation temperature.
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C hapter 5

Concluding Remarks on the Influence of Succession on Soil N Transformations

Studies and their Conclusions

In this research, in situ nitrogen (N) additions, chemical analysis, and laboratory 

soil incubations were used to investigate several aspects of soil N and C transformations, 

N demand and N retention in forest stands which encompass a dramatic successional 

transition in the boreal forest. Nitrogen is believed to limit plant productivity in many 

boreal communities; thus, a better understanding of soil N transformations is critical in 

elucidating the controls over ecosystem processes and should improve forecasting of the 

impact that climate change may have on the net balance of C in the boreal forest. The 

main assumption when this research began was that higher levels o f productivity in mid

succession stands of balsam poplar combined with a labile source o f C in balsam poplar 

litter would result in an overall higher demand for N by plants and microbes in this stand 

type compared to late-succession stands of white spruce. It was also assumed that the 

overall quality of soil organic matter decreased during the transition from mid- to late 

succession. The following is a summary of results and conclusions from the studies 

conducted to investigate potential changes in soil N transformations in mid and late 

succession stands.

In the first study, N fertilizer additions (100 kgN ha ' 1 y r'1) were used to compare 

the relative demand for N by soil microbes in stands o f balsam poplar and white spruce. 

Nitrogen additions induced an immediate increase in net N mineralization relative to
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control plots in both white spruce and balsam poplar. This increase was likely due to the 

inability o f soil heterotrophs to immobilize a significant portion of the added N. In other 

words, the gross production of mineral N continued as soil microbes broke down organic 

matter, but the amount of available labile C in these soils was not sufficient for microbes 

to utilize the excess in fertilized plots. Microbial biomass also did not change as a result 

of N additions, and excess nitrate leached below the main rooting zone in N fertilized 

plots shortly after N additions were applied. Combined, these results suggest that, soil 

microbes in balsam poplar stands, relative to soil microbes in white spruce stands, did not 

have a larger N demand as we had predicted. However, there were large differences in 

the type o f N transformations that were stimulated as a result o f N additions. Nitrogen 

fertilization additions resulted in the stimulation of net nitrification in balsam poplar soil 

but increased net ammonification only in white spruce soil. Thus, either nitrification was 

inhibited in white spruce soil or any nitrate produced was quickly immobilized. The 

examination o f gross nitrification rates with a 15N 0 3  pool dilution technique is needed to 

resolve this question. In addition, because the amount o f N applied to these plots quickly 

overwhelmed the ability of soil microbes to immobilize it, incremental levels of N 

additions may need to be applied in order to fully determine the relative demand for N by 

soil microbes in mid and late succession stands.

The assumption of higher biological N demand in balsam poplar than in white 

spruce was further investigated by examining the various organic and inorganic 

constituents of N  found in soil water. For this study tension lysimeters were installed 

within and below the main rooting zone in both stand types. It was predicted that the
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ratio of soil solution dissolved organic N (DON) to dissolved inorganic N (DIN) below 

the main rooting zone would be much higher in balsam poplar stands compared to white 

spruce stands. This prediction was based on the assumption that plants and microbes 

were N limited in balsam poplar stands and that DIN would be exhausted in the soil 

solution as it moved down through the soil profile.

Soil water was collected approximately every week for two growing seasons 

(2000-2001), and we determined that the ratio of DON:DIN was nearly identical in the 

two stand types and decreased significantly with depth in both stands. This occurred as a 

result of higher concentrations of nitrate, but lower concentration o f DON, in the deeper 

mineral soil. Tensiometer measurements and a multivariate analysis o f dissolved ions 

both indicated that the soil solution often moves up through the soil profile from 

ground/river water during the growing season (hyporheic flow) in these stands. Thus, the 

rise and fall of the Tanana River also likely contributes to plant and microbial N 

requirements throughout at least the beginning of late succession. This result may also 

help to explain the higher concentration o f nitrate in the deeper soil, as nitrate moving up 

through the soil profile may not be utilized until it gets to the surface horizon where there 

is a sufficient supply of labile C to fuel microbial immobilization and plants roots also 

gain access to it.

In the third study, the influence of temperature on the mineralization o f soil C and 

N was investigated. Soil temperature generally declines in late succession due to the 

development of an insulating moss layer, and it has also often been stated that late 

succession brings about a decline in the quality or decomposability o f soil organic matter
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and litter. Results from past studies and this dissertation have shown a general decline in 

in situ net N mineralization rates in late succession stands o f white spruce compared to 

mid succession stands of balsam poplar. However, since both temperature and organic 

matter quality can control the mineralization o f N in soil, it is not clear whether lower 

temperatures or a decrease in organic matter quality is more responsible for this decline. 

In this study soil from mid and late succession stands were incubated at 5, 10, 15 and 20 

°C and C mineralization and gross and net N mineralization were measured.

Across the range o f incubation temperatures, rates of C mineralization (per g soil 

C) and net and gross N mineralization (per g soil N) were almost always significantly 

higher in white spruce soil than in balsam poplar soil. Additionally, compared to balsam 

poplar soil, the mineralization of soil C and N in white spruce was also generally more 

sensitive to temperature increases (higher Qio and activation energy). Thus, it would 

appear that the quality of organic matter was actually higher in these late succession 

stands, the opposite of what has typically been suggested. These results suggest that a 

warmer climate will bring about a larger respiratory loss of soil C from late succession 

stands.

Based on the results from these studies we argue that there are more similarities 

than differences with respect to soil N transformations in mid and late succession. 

Although rates of in situ N mineralization were often higher in mid succession, the 

biological demand for N was not shown to be appreciably higher in mid succession as 

had been predicted. In addition, the results do not support the conventional thought that, 

in late succession, there is a decline in the quality of the organic material in soil. Thus,
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we believe that other factors such as temperature, moisture, N-fixation inputs or perhaps 

even riverine influences are more responsible for the high rates of productivity in mid 

succession stands.

F uture Research

Several decades of research on the boreal floodplain of Interior Alaska have 

greatly improveed our knowledge of the biological, physical and chemical properties that 

contribute to the functioning of this ecosystem (Van Cleve & Viereck 1981; Flanagan & 

Van Cleve 1983; Van Cleve et al. 1983; Van Cleve et al. 1993b; Viereck et al. 1993; 

Clein & Schimel 1995; Ruess et al. 1996; Uliassi & Ruess 2002). However, as is often 

the case, this dissertation and the studies that have come before it also bring to light many 

additional questions. The following categories highlight areas of nutrient cycling on the 

floodplain that deserve further attention.

(1) Organic N Uptake. What proportion o f plant N uptake consists o f organic vs. 

inorganic N (McFarland et al. 2002)? Which plant species are able to utilize organic N 

and what processes control the uptake of the various N forms?

(2) Denitrification. How much gaseous N is lost from the floodplain through the 

process o f denitrification (Klingensmith & Van Cleve 1993)? Does the rate of 

denitrification change seasonally and throughout succession as the availability of water 

and labile C is altered?

(3) Nitrification. What mechanisms are responsible for the substantial decline in 

net rates of nitrification between mid and late succession (Van Cleve et al. 1993a;
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Brenner et al. In Press)! Does gross nitrification decline in the soil of late succession 

stands or does immobilization of N O 3 increase?

(4) Nitrate Reduction by Plants and Microbes. Do high relative concentrations of 

extractable NH 4 repress nitrate reductase in plants and microbes and contribute to 

leaching losses of nitrate? Does the persistently high ratio o f ammoniummitrate in soil 

extracts from mid and late stands affect the ability o f plants and soil microbes to take up 

and utilize (reduce) nitrate (Kronzucker et al. 1995a; Kronzucker et al. 1995b; 1997)?

(5) Phosphorus vs. N Limitation. Does the availability o f phosphorus, rather than 

N, limit plant growth during some portion of the floodplain successional sequence such 

as when alder or balsam poplar are the dominant vegetation types (Uliassi & Ruess 

2002)?

(6 ) Hydrological Inputs and Losses o f N . What is the role o f hydrology in 

controlling the net balance of N inputs on the Tanana River floodplain (Yarie et al. 1993 

Chapter 3, this dissertation)? How do N inputs from the Tanana River (from deposition 

and hyporheic flow) compare to N losses via leaching and overland flow? What is the 

role of successional stage, permafrost, and terrace height in influencing this balance?

(7) Nitrogen Fixation. How much of the N fixed by the Alnus-Frankia symbiosis 

(Van Cleve 1971; Uliassi et al. 2000; Uliassi & Ruess 2002) actually becomes available 

to other plants and how much of it quickly enters a slow or recalcitrant organic pool 

(Kaye et al. 2003)?

Addressing these questions will further improve our understanding of how N 

availability influences plant growth in the most productive stand types o f Alaska’s boreal
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forest. This, in turn, will provide valuable insights into the potential consequences o f a 

changing climate to net carbon storage, plant-microbe competition for resources, and 

plant community composition.
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